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SUMMARY  

This thesis combines three different topics that are seemingly unconnected but inherently 

linked. The first part deals intensively with co-products from biofuel production on a 

European level. There are numerous co-products which are all suitable as protein 

supplements for ruminants, pigs and poultry. The results of a number of experiments with 

lactating dairy cows and fattening bulls suggest that distillers grains, rapeseed meal and 

rapeseed cake as the main protein source may support a high productive performance. Pigs 

would particularly benefit from breeding or production progress in further reduction of 

glucosinolate levels of rapeseed, whereas in cattle, a safer quality assessment of the 

rapeseed cake is needed. Another fundamental co-product of the biodiesel production is 

glycerine. In ruminant diets, glycerine at different purities may help to stabilise the 

hygienic quality of pelleted compound feeds without compromising physical quality of 

pellets. The efficient utilisation of biofuel co-products is a key tool towards more 

sustainable biofuel production. Future research should quantify all expenditures on the 

processing of biofuel co-products in order to be able to evaluate meaningful carbon 

footprints. 

The second part of the thesis draws attention to the question of whether it makes sense to 

use equations based on feed and intake characteristics to estimate methane (CH4) emissions 

from dairy cows. Nine CH4 prediction equations were applied to five typical Central 

European diets in order to compare their applicability. As a result, smallest differences to 

mean values were observed with equations using neutral detergent fibre, while standard 

deviations were highest, and therefore showed the best capability to differentiate between 

diets, when using equations that operated with forage proportion and dry matter intake. The 

differences in levels of CH4 estimates show that the equations are still inaccurate and may 

only serve as implications to locate trends. It should be taken into consideration to expand 

datasets, involving future CH4 measurements, on animal and herd level, feeding typical up 

to date regional diets in order to get more precise equations, suitable for a greater range of 

estimations. To ease and simplify the future applications, the prediction equations could be 

classified into groups, clearly stating by which data they were derived, for example 

regional origin and diet composition.  

In the third part of this study, 33 samples with main focus on unprotected or rumen-
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protected protein supplements, were analysed using an enzymatic in vitro procedure 

(EIVP) in order to determine intestinal crude protein (CP) digestibility (IPD) of ruminally 

undegraded CP (RUP). Results of this study showed that the EIVP seems to be an 

adequately working, simple and reliable method to estimate IPD of RUP in concentrate 

feeds. This method in its current, strictly standardized form can be applied to develop a 

database which can be used for protein evaluation systems for establishing tabular values 

of IPD. However, future studies may be constricted since sufficient reference values are 

missing.  

In conclusion it can be stated that there is still research needed to improve existing systems 

in order to optimise feeding strategies to meet the animals’ nutrient requirements as well as 

minimising greenhouse gas (GHG) emissions and energy loss in agricultural production 

systems. This reseach should include the improvement of GHG estimation systems towards 

a more differentiated view to regional conditions and resources as well as an improvement 

of the protein evaluation system with standardised, easy to apply laboratory methods to 

estimate nutrient requirements for a more efficienct usage of local resources and co-

products. 
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ZUSAMMENFASSUNG 

Potenziale und Grenzen zur Verbesserung der Energie- und 

Sticktoffnutzungseffizienz in der Ernährung landwirtschaftlicher Nutztiere 

Die vorliegende Arbeit beinhaltet drei verschiedene Themen, deren Zusammenhänge auf 

den ersten Blick nicht sofort erkennbar, dennoch aber stark miteinander verknüpft sind. 

Der erste Teil beschäftigt sich mit der Biokraftstoffproduktion und deren Koppelprodukten 

in der EU. Diese Koppelprodukte eignen sich als Proteinergänzungsfutter für Wiederkäuer, 

Schweine und Geflügel. Ergebnisse aus Versuchen mit laktierenden Kühen und Mastbullen 

zeigen, dass Nass- und Trockenschlempen, Rapsexktraktionsschrot und Rapskuchen als 

alleiniges Proteinergänzungsfutter durchaus die hohe Leistung der Tiere fördern. Trotz 

alledem müssen, vor allem in der Schweinefütterung, die Glucosinolatkonzentrationen bei 

Rapsprodukten durch verarbeitungstechnischen und züchterischen Fortschritt noch 

verringert werden. Dies ist unkritisch für Wiederkäuer, allerdings sollte eine bessere 

Qualitätsprüfung für Rapskuchen gewährleistet werden. Ein weiteres Koppelprodukt aus 

der Biodieselproduktion ist Glycerin. In Wiederkäuerrationen kann es in unterschiedlichen 

Reinheitsgraden zu einer besseren hygienischen Qualität von Mischfutter beitragen, ohne 

die physikalische Eigenschaften der Pellets zu beeinträchtigen. Die effiziente Nutzung der 

Biokraftstoff-Koppelprodukte trägt zu einer nachhaltigen Kraftstoffproduktion bei. 

Allerdings sollten zukünftige Recherchen alle Aufwände quantifizieren, die mit der 

Biokraftstoffproduktion und deren Koppelprodukten zusammenhängen, um eine präzisere 

CO2-Bilanz ermitteln zu können. 

Im zweiten Teil dieser Arbeit wird die Frage untersucht, ob es sinnvoll ist, 

Schätzgleichungen auf Basis von Futtermittel- und Futteraufnahmekenngrößen zu 

verwenden, um die Methanemissionen bei Wiederkäuern zu ermitteln. Um ihre praktische 

Eignung vergleichen zu können, wurden neun Schätzgleichungen auf fünf typische 

mitteleuropäische Rationen angewendet. Die kleinsten Unterschiede zum Mittelwert 

wurden bei den Schätzgleichungen festgestellt, welche die Neutral-Detergenzien-Faser als 

Variable benutzen. Die Standardabweichungen waren am höchsten in Gleichungen, die die 

Trockenmasseaufnahme als Variable benutzen. Somit waren diese Gleichungen am besten 

in der Lage, zwischen verschiedenen Rationen zu differenzieren. Die zum Teil großen 

Unterschiede in den Ergebnissen zeigen jedoch auch,  dass bisherige Gleichungen ungenau 

sind. Generell sollte man eine Erweiterung der Datenbasis, mit deren Hilfe 
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Schätzgleichungen und Modelle gebildet werden, in Betracht ziehen. Dies sollte vor allem 

neue Messungen mit einbeziehen, sowohl am Einzeltier als auch auf Herdenniveau, bei 

denen typische, aktuelle und lokale Rationen gefüttert werden. Um die Anwendung von 

Schätzgleichungen in Zukunft einfacher zu gestalten, könnten diese zum Beispiel in 

Gruppen eingeteilt werden, welche die Herkunft der Daten und Rationsgestaltung genauer 

definieren. Im dritten Teil der Arbeit wurden 33 Futtermittel, mit einem Schwerpunkt auf 

ungeschützten und pansengeschützen Proteinergänzungsfuttermitteln mit einem 

enzymatischen in vitro-Verfahren (EIVP) analysiert, um die Dünndarmverdaulichkeit des 

Rohproteins zu bestimmen. Die Ergebnisse dieser Studie zeigen, dass das EIVP eine 

verlässliche und einfach anwendbare Methode ist, die sich besonders für verschiedene 

Konzentratfutter eignet. Diese Methode kann angewandt werden, um eine Datenbank zu 

schaffen, mit deren Hilfe Proteinbewertungssysteme verbessert und weiterentwickelt 

werden können. Es fehlen jedoch bei dieser Vorgehensweise noch Referenzwerte aus in 

vivo-/in situ-Versuchen. 

Zusammenfassend kann festgestellt werden, dass Fütterungsstrategien noch weiter 

optimiert werden sollten, um den Bedarf der Tiere genauer zu decken und somit 

Treibhausgasemissionen und Energieverluste weiter zu verringern. Um dies 

bewerkstelligen zu können, ist es erforderlich, dass die Schätzung von 

Treibhausgasemissionen in der Landwirtschaft durch Gleichungen und Modelle noch 

genauer auf regionale Bedingungen eingeht. Proteinbewertungssysteme könnten durch 

einfachere und besser standardisierte Methoden noch genauere Empfehlungen geben, um 

regionale Ressourcen und Koppelprodukte effizienter nutzen zu können.
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1. GENERAL INTRODUCTION  

Environmental issues and agriculture are two subjects that are closely related to each other. 

In a world where the population is growing and demand for food increases there is a need 

to use resources efficiently and at the same time keep the impact on the environment as 

low as possible. One possible option to achieve this is the use of by-products of different 

commodities that are produced for human needs. These by-products can be used as 

feedstuffs for several farm animals. As the populations grows the need for transportation 

increases as well. Road transport fuels are considered to contribute about 18% of 

Greenhouse Gas (GHG) emissions in the European Union (EEA, 2008; The Royal Society, 

2008; Pinkney, 2009). Politicy makers considered the use of biofuels as an essential 

element to reduce the emissions from fossil fuel and to decarbonise transport fuels with a 

GHG reduction potential of at least 50% when compared to fossil fuel emissions 

(CONCAWE, EUCAR, JRC, 2007; RFA, 2008). Nevertheless, the use of biofuels is still a 

controversial issue. There is a public debate about pressure on land use and the competition 

between feed, food and fuel. The CO2-saving effect of biofuel of the first generation, with 

by-products such as glycerine, oilseed meals and cakes, and distillers grains with solubles, 

depends on many factors, like processing, manufacturing and using appropriate feedstock 

(Windhorst, 2008; Fischer, 2009; Pinkney, 2009). When a by-product of sufficient quality 

is obtained it is well suited as an alternative to conventional feedstuffs. Another important 

issue that is of high interest is the contribution of methane (CH4) from (dairy) cattle into 

the atmosphere. Methane is one of the major GHG which may contribute greatly to global 

warming. Globally, 1.3 billion cattle produce approximately 80 million tonnes of CH4 a 

year, accounting for around one third of anthropogenic emissions of CH4 (Jentsch et al., 

2009). Cattle lose approximately 2-10% of their ingested energy as eructated CH4, 

depending mainly on diet quality and feed intake level (Johnson and Johnson, 1995). 

Through optimised feeding strategies it may be possible to decrease CH4 emissions and 

energy loss. However, this is only one fraction of the answer to the problem – an optimised 

and efficient production cycle with high performance has the most potential to mitigate 

GHG emissions worldwide. In order to use feeds more efficiently standardised methods are 

needed to analyse nutrients and furthermore give precise advice for the animals’ 

requirements. For example, crude protein (CP) values of feeds do not supply precise 

information about the protein that flows into and may actually be digested in the small 
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intestine of ruminants. The CP reaching the small intestine consists of both, the ruminally 

synthesized microbial CP as well as the feed CP that escaped ruminal degradation. In the 

ideal case, the animal is neither undersupplied nor oversupplied. Nitrogen losses through 

faeces and urine – after conversion outside the animal’s body – contribute to environmental 

pollution, either as ammonia, nitrous oxide, N oxides in air, or as nitrate in soil and ground 

water. To meet the animal’s requirements it is important to know the intestinal digestibility 

of the ruminally undegraded CP of the respective feedstuffs. There are several techniques 

that include in vivo and in vitro methods, and differ highly in complexity, cost and effort. 

The challenge is to find a simple, cheap and easy to standardise method that serves all 

demands and is helpful to support efficient feeding strategies for high performing animals. 

Growing agricultural production, high demand for food, food security, the emerging 

biofuel development and climate change are all linked to each other and in the future will 

all have a significant impact on the world food system. 
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2. SCOPE OF THE THESIS 

 

This is a cumulative thesis composed of three papers directly or indirectly addressing 

topics that are related to environmental aspects and feed efficiency in regard to farm 

animals and particularly their nutrition. The three main chapters (3 - 5) compile 

manuscripts that are formatted according to the regulations of the journal chosen for 

submission. 

The third chapter, in a comprehensive review, adresses co-products from biofuel 

production from a European perspective. There are numerous co-products which are all 

suitable as protein supplements for ruminants, pigs and poultry. The objective of this 

chapter is to analyse and summarize results of studies dealing with by-products from 

biofuel production in farm animal nutrition under European conditions. 

Chapter four of the thesis has a more theoretical approach. The most commonly used 

equations to estimate Methane emissions from dairy cows based on feed and intake 

characteristics are applied to five typical Central European diets. The general question is 

raised if it makes sense to use equations to estimate emissions. Most equations are 

imprecise and there is a high risk of getting lost in over- or underestimations. The objective 

of this study is to compare and interpret the equations’ applicability in regard to dietary 

measures to mitigate CH4 production and energy loss in dairy cattle. 

Chapter five is a laboratory-based approach to study to estimate intestinal protein 

digestibilities (IPD) of the ruminal undegraded protein of several protein supplements. The 

application of a new enzymatic in vitro procedure lends hope to a more standardized and 

easy to execute method. This method in its current, strictly standardized form can be 

applied in order to develop a database which can be used for protein evaluation systems for 

establishing tabular values of IPD. A second objective of this study was to evaluate 

relationships and interactions between calculated IPD values and analysed chemical 

variables of feedstuffs. 
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ABSTRACT 

In the first part of this chapter, a brief history of by-products from bioethanol production is 

presented. By-products, like distillers grains are well known for their beneficial nutrient 

composition and have been used in animal nutrition already since the end of 19th century. 

Recent animal trials have shown that wheat-based dried distillers grains with solubles 

(DDGS) may replace protein supplements like soybean or rapeseed meals in dairy cow 

diets up to about 200 g/kg dry matter Other than maize-based DDGS in North America 

which are higher in fat, European wheat-based DDGS has not influenced milk fat content 

negatively. Moreover, trials with fattening bulls exhibited that DDGS as a main protein 

source is able to sustain a high productive performance. Trials with grower-finisher pigs 

suggested that DDGS up to 200g/kg diet did not influence the growth performance, 

fattening and slaughtering variables. Similarly, laying intensity of hens as well as egg 

quality and health were not affected by inclusion levels ranging from 150 g/kg to 300 g/kg 

diet. Trials with broilers suggest that diets that contain more than 100 g/kg DDGS may 

lower performance. Hence, it is recommended to add non-starch polysaccharide (NSP)-

degrading enzymes (e.g., xylanase or xylanase mixed with other enzymes) to poultry diets 

rich in DDGS.  

In the second part, a brief review and summary of data is presented on the use of glycerol 

for farm animals with emphasis on ruminants which will encompass the following topics: 

quality criteria for glycerol, rumen events and effects on feed intake and performance of 

dairy cows. For the benefit of a fail-safe usage of glycerol in diets of all farm animals, 

methanol should be removed from the glycerol as far as technically possible. Glycerol at 

different purities may help to stabilise the hygienic quality of pelleted compound feeds 

without compromising physical quality of pellets. Glycerol is a versatile feedingstuff in 

particular for ruminants. Data on ruminal turnover of glycerol would suggest that it should 

replace rapidly fermentable carbohydrates and thus, is not a direct competitor of propylene 

glycol. Previous studies have shown that glycerine may help to prevent ketoacidosis in 

high yielding dairy cows by increasing glucose precursors.  Mature cattle can consume 

considerable quantities of glycerol (1 kg/day). However, greater dry matter intakes by cows 

supplemented with glycerine often did not result in increased milk or milk component 

yields. Further labour is thus required to fully explore the potential of glycerol in dairy cow 

diets but type of diet and route of glycerol administration seem to play important roles.  
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In the third part, again putting an emphasis on ruminants, the feeding value of rapeseed 

products such as rapeseed meal (solvent-extracted) and rapeseed cake (mechanically 

extracted) is reviewed. Rapeseed meal compare well with soybean meal for dairy cows if 

fed on an isonitrogenous basis. Milk and milk component yields were similar for diets 

containing soybean meal or rapeseed meal. The value of rapeseed cake would benefit from 

a standardization of the composition, because varying crude fat and crude protein 

concentrations makes the feeding value difficult to predict and could also affect storage 

stability of the cake. Even though the amino acid composition in rapeseed products is quite 

well balanced and favourable to non-ruminant animals, the sensitive reaction of  pigs and 

poultry to glucosinolates in rapeseed meal and cake are still of concern. Therefore, it is 

recommended to add iodine, since glucosinolates act as antagonists. However, if 

glucosinolates are present in high concentrations, the negative effects may not be 

compensated, even if iodine is supplemented in high amounts. Concluding, it becomes 

evident that a more widespread use of rapeseed meal and rapeseed cake in diets for pigs 

and poultry requires further reduction of glucosinolate levels. 

Finally, energy utilisation efficiency and sustainability of by-products from biofuel are 

addressed. Up to this day, no definite regulations exist in order to assign emissions either to 

the main product or the by-product(s).  When considering the causation principle, the 

producer or the responsible party should be accountable for all emissions. However, drying 

of DGS is only of interest if the products will be utilized as feedstuffs for animals and thus 

emissions associated with processing of by-products are not of interest or necessity for 

biofuel producing companies. 

 

 

Key words: feeding value, DDGS, glycerine, rapeseed cake, rapeseed meal, pig, poultry, 

ruminants  
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3.1. Introduction 

Road transport fuels are considered to contribute about 18% of Greenhouse Gas (GHG) 

emissions in the EU (EEA, 2008; The Royal Society, 2008; Pinkney, 2009) with a 

consistent  increase of about 1.6% per year (IEA, 2008a). Apart from more efficient cars 

and new transportation technologies, politics considered the use of biofuels as an essential 

element to reduce the emissions from fossil fuel and to decarbonise transport fuels. Some 

expert groups assessed the GHG reduction potential of biofuel being at least 50% of fossil 

fuel emissions (e.g., CONCAWE, EUCAR and JRC, 2007; RFA, 2008). Estimations by 

IEA (2008a) expect an increase in world biofuel consumption from 24.4 million tonnes oil 

equivalents (Mtoe) in 2006 to 94 Mtoe in 2020; 125 Mtoe in 2030 and approximately 

about 210 Mtoe in 2050 (about 6% of the global need; IEA, 2008a). In 2020 about 55 Mtoe 

of biofuel will be consumed in the United States and the EU. 

Fischer (2009) analysed the relationships of emerging biofuel development, food security 

and climate change, concluding that the additional non-food use of crops will have a 

significant impact on the world food system. Therefore, higher plant yields and the 

continuous development of the second generation of biofuels, produced from woody or 

herbaceous non-food plant materials will receive increasing interest in the future (IEA, 

2008b). 

The CO2-saving effect or the carbon footprints (CF) of biofuel of the first generation 

depends on many factors such as proper manufacturing, using the most appropriate 

feedstock, efficiency of feed production for fermentation, processing of by-products (e.g., 

drying), further use of by-products. The utilisation of by-products from biofuel production 

of the first generation such as glycerine, oilseed cakes and meals and distillers grains with 

solubles in wet (DGS) or dry (DDGS) form is an important controversial issue (see 

Windhorst, 2008; Fischer, 2009; Pinkney, 2009) that encompasses 

- contribution in the reduction of GHG emissions, 

- pressure on land use, 

- competition between feed, food and fuel for crop yields. 

By-products may contribute to mitigate this conflict. They contain less fat and starch than 

oilseeds and cereal grains, respectively but more fibre, proteins and minerals. The crude 
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protein (CP) concentration of the by-products varies between 300 and 400 g/kg dry matter 

(DM) and is similar to some traditional feed protein sources. All environmental and 

nutritional aspects and calculations (e.g., CF) should consider the whole processing chain 

and all final products. Crutzen et al. (2008) estimated the N2O release from agro-biofuel 

production without considering by-products and their utilisation. They concluded that use 

of cereal grains and rapeseed for biofuel production is a very ineffective and environmental 

unfriendly way. However, in a more recent publication on this subject the same authors 

performed a life-cycle analysis and came to a similar conclusion, namely that biofuel 

production may trigger a net increase in global warming (Mosier et al., 2009).  

The objective of this chapter is to analyse and summarize results of studies dealing with 

by-products from biofuel production in farm animal nutrition under European conditions. 

3.2. By-products from bioethanol production 

3.2.1. History 

Distillers grains with solubles in wet and dry form are the most important by-products of 

alcohol production from cereal grains. The starch of the raw material is mainly fermented 

to alcohol. The by-product comprises of all the other components of the original substrate 

such as CP, ether extract, fibre and ash as well as the CP from yeast used for fermentation. 

Traditionally, DGS at DM concentrations at 40 - 90 g/kg has been fed to ruminants, horses 

and pigs in close proximity to the distilleries. 

At the end of the 19th century many data about the composition and the feed value of 

distillers grain were available (e.g., Schulze and Maerker, 1872; Behrend and Morgan, 

1880; both in Kellner, 1905). Already at that time it was known that the raw materials had 

the ability to influence the composition of DGS, Maerker (1908) described that the 

fermentation of cereal grains resulted in by-products (DGS) with the highest concentration 

of nutrients, and those from molasses with the lowest nutritive value, On the basis of the 

composition of the original substrate and the alcohol output the same author calculated the 

composition of DGS. In his famous textbook “The Nutrition of Domestic Animals”, 

Kellner (1905) summarized the composition (Table 3.1), digestibility (Table 3.2) and starch 

units for different by-products of ethanol production. 
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Table 3.1. Composition (g/kg dry matter unless stated) of distillery by-products (fresh and 

dried) of various origins (Kellner, 1905). 

Source of by-
product  

Water 
(g/kg) 

Crude 
protein 

Crude fat (Ether 
extract) Crude fibre 

N-free 
extractives Ash 

Cereal grains, 
unspecified, dried 75 235 75 134 415 66 
Maize grain, fresh 913 20 9 8 45 5 
Dried 86 285 107 102 401 22 
Molasses, fresh 922 19 - - 40 19 
Rye grain, fresh 922 17 4 7 46 4 
Dried 100 165 82 162 478 13 
Potatoes, fresh 943 12 1 6 31 7 
Dried 100 243 37 95 408 117 
 

Table 3.2.  Mean digestibility coefficients (ranges in parentheses) of distillery by-products 

for ruminants and pigs (Kellner, 1905). 

Source of by-
product 

Organic 
matter Crude protein 

Crude fat 
(Ether extract) 

N-free 
extractives Crude fibre 

Ruminants 

0.710 0.640 0.940 0.800 0.610 Cereals grains, 
general (0.600-0.810) (0.490- 0.800) (0.920-  0.940) (0.540-0.850) (0.410-0.920) 

0.690 0.640 0.930 0.700 0.670 
Maize grain (0.660-0.720) (0.610- 0.670) (0.910-  0.950) (0.700-0.710) (0.640-0.700) 

0.570 0.590 0.620 0.490 0.500 
Rye grain (0.450-0.680) (0.520- 0.650) (0.600-  0.640) (0.440-0.540) (0.370-0.620) 

Pigs 
Cereal grains, 
general 0.580 0.780 0.560 0.510 0.360 
 

Developments in distilling technology with consequences on composition and nutritive 

value of DGS during the last century were reported in several scientific publications (e.g., 

Naesi, 1985; Askbrant and Thomke, 1986), in animal feeding (e.g., Jensenet al.,1974; 

Firkins et al., 1985), as substrate for ensiling (e.g., Abrams et al., 1983, Flachowsky et al., 

1990) and were summarized in various textbooks in Germany (e.g., Kling, 1928; Nehring, 

1949; Becker and Nehring, 1967; Kling and Wöhlbier, 1983; Menke and Huss, 1987; 

Jeroch et al., 1993). 

Due to the high demand of liquid fuels throughout Europe and the decreasing disposability 
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of fuels from fossil sources, the production of biofuel including bioethanol has gained 

more importance. The increased production capacity and the ascending number of large 

biofuel plants resulted in large amounts of DGS. It is unrealistic to distribute large amounts 

of DGS in nearby areas of the biofuel plant. Due to the short shelf-life of DGS, a large 

proportion is dried and used as DDGS. The nutritional quality of DGS and DDGS varies 

remarkably caused by the variability of the feedstock, the diversity of the production 

process and the proportion of solubles which are included in the final commodity (Belyea 

et al., 2004; Losand et al., 2009; Zijlstra and Beltranena, 2009). Intensive research on the 

use of mostly maize-based distillers grains in livestock has been conducted in North 

America over the past years (reviewed by e.g., Klopfenstein et al., 2008; Schingoethe et 

al., 2009). However, experiments that examine the nutritional value of DDGS common in 

Europe based on wheat, barley or rye grains, or mixtures of these grains are rare (Franke et 

al., 2009; Aldai et al., 2010; Meyer et al., 2010). 

3.2.2. Nutritive value and feeding to ruminants 

The chemical composition and energy concentration of DGS and DDGS from different 

grains are presented in Table 3.3. Distillers grains with solubles are high in CP with a 

considerable variation between the different types of grains used in the production process. 

The highest average CP content of 370 g/kg DM was reported for DDGS produced from a 

mix of 90% wheat and 10% barley (Franke et al., 2009, Losand et al., 2009, Meyer et al., 

2010). Mustafa et al. (2000) reported that the ruminal escape of CP was lower for wheat- 

than barley-based DGS (490 versus 415 g/kg CP). Generally, distillers grains have a 

relatively high fibre concentration, with highest cell-wall (neutral detergent fibre, NDF) 

values found for barley-based distillers grains likely due to a greater hull proportion of 

grain DM.  

Nutrient digestibility coefficients can be used to calculate metabolisable energy (ME) for 

ruminating animals (GfE, 1995). Therefore a number of experiments were carried out with 

adult wethers in order to evaluate the nutrient digestibility of rye DGS as well as wheat- or 

wheat/barley-based DDGS. The experimental diets consisted of grass hay, grass silage or 

straw supplemented with DDGS ranging from 15 to 75% of diet DM. The apparent total 

tract digestibility of organic matter, ether extract, crude fibre, NDF and acid detergent fibre 

(ADF) is shown in Table 3.4.  
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Table 3.3. Chemical composition and net energy (NE) concentration (g/kg of dry matter unless stated) of distillers grains with solubles in wet 

(DGS) or dry (DDGS) form from various sources. (unsp., unspecified; n.a., not analysed; NDF, neutral detergent fibre, ADF, acid detergent fibre) 

    
Mustafa et al. 
(2000) 

Schingoethe et al. 
(2009) 

Franke et al. 
(2009) 

Losand et al. 
(2009) 

Engelhard 
(2011) Meyer et al. (2010) 

Grain source   
Barley, wheat and 
rye/triticale Wheat Wheat and barley 

Wheat and 
barley Rye Wheat and barley 

    DGS unsp. DDGS DDGS DGS DDGS 

Dry matter (DM) g/kg 289 n.a. 923 934 n.a.  923 
Crude protein  154 362 367 370 153 367 
Ether extract  60 67 62 50 67 64 
Ash  42 54 58 54 28 58 
NDF  743 414 496 305 n.a.  490 
ADF  311 173 159 155 n.a.  162 
Starch  110 n.a.  n.a.  n.a.  54 n.a.  
Sugar  n.a.  n.a. n.a.  n.a.  45 n.a.  
Calcium  n.a.  3.0 n.a.  n.a.  n.a.  n.a.  
Phosphorus  n.a.  10.5 n.a.  n.a.  n.a.  n.a.  
Sodium  n.a.  2.3 n.a.  n.a.  n.a.  n.a.  
Magnesium  n.a.  6.0 n.a.  n.a.  n.a.  n.a.  
Sulfur  n.a.  5.7 n.a.  n.a.  n.a.  n.a.  

NE maintenance MJ/kg n.a.  9.13 n.a.  n.a.  n.a.  n.a.  
NE gain MJ/kg n.a.  6.28 n.a.  n.a.  n.a.  n.a.  
NE lactation MJ/kg n.a.  8.46 n.a.  n.a.  n.a.  n.a.  
NE lactation MJ/kg DM n.a.  n.a.  n.a.  7.3 n.a.  n.a.  
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Table 3.4. Digestibility coefficients of nutrients measured in sheep according to GfE (1991) 

and estimated concentrations of metabolisable energy (ME) of distillers grains with solubles 

in wet (DGS) or dry (DDGS) form from rye, wheat or wheat/barley. 

Authors Alert et al.  (2007)1 Losand et al. (2009)1 Meyer et al. (2010)2 

Grain source + 
supplement Rye + DGS 

Wheat or wheat and 
barley + DDGS 

Wheat and barley 
+DDGS 

n 6 15 4 

Organic matter 0.568 (±0.038) 0.758 (±0.048) 0.780 (±0.021) 
Ether extract 0.598 (±0.302) 0.839 (±0.107) 0.914 (±0.010) 
Crude fibre 0.515 (±0.100) 0.517 (±0.259)  

n   4   

NDF3  0.650 (±0.131)  
ADF4  0.544 (±0.110)  

ME (MJ/kg DM) 9.1 12.1 12.6 
1Means with standard deviation in parenthesis 
2Least squares means with standard error in parenthesis 
3NDF, neutral detergent fibre 
4ADF, acid detergent fibre  
 

The digestibility of ether extract and fibre fractions showed the highest variation. When 

compared with rapeseed meal wheat- and barley-based DDGS had similar organic matter and 

ether extract digestibilities (Meyer et al., 2010). Organic matter digestibility of the rye-based 

DGS was notably lower and ranged from 0.531 to 0.619 (Alert et al., 2007). This reflects in a 

lower concentration of ME of rye DGS for which no obvious explanation exists. The ME 

concentration of wheat- and barley-based DDGS compared well with ME of rapeseed meal 

(RSM; Meyer et al., 2010). 

Table 3.5 shows results of experiments with lactating dairy cows conducted in Germany and 

Austria that compared DDGS or DGS (mainly based on wheat) with other protein 

supplements like RSM or soybean meal (SBM). The aim of these studies was to investigate 

whether the different kinds of distillers grains can adequately replace RSM or SBM in diets of 

high yielding cows. Most of the rations comprised a considerable portion of grass silage and 

maize silage. The proportion of distillers grains in the diets ranged from 50 g (Urdl and 

Gruber, 2011) to 170 g/kg DM (Franke et al., 2009). The feed intake in all experiments varied 

between 21 and 24 kg DM/day and was not influenced by protein source. Mean milk yield 

and milk fat concentration across studies ranged from 26 to 43 kg/day and from 33 to 45 g/kg 

milk. However, no significant differences were detected within the experiments. Only one 

study showed a lower milk protein concentration yet no lower protein yield for cows fed 
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DDGS compared with RSM (Franke et al., 2009). In accordance with recommendations of 

Schingoethe et al. (2009) the outcome of the different experiments suggest that distillers 

grains can replace other protein supplements up to about 200 g/kg DM in dairy cow rations. 

The results of trials with male calves and fattening bulls are presented in Table 3.6. Primarily 

wheat-based DDGS replaces RSM or SBM in maize silage or maize silage- and hay-based 

rations. The animals were fed DDGS from 140 g (Ettle et al., 2009) up to 200 g/kg DM 

(Preißinger et al., 2009) of the diets. No differences between protein sources were detected in 

DM, CP and ME intake as well as in live weight gain in both experiments with Simmental 

calves (Preißinge et al., 2009). Due to the higher final live weight the mean feed intake of 

Simmental bulls (Ettle et al., 2009) was higher (9.4 versus 7.7 kg DM/day) than that of 

Holstein bulls (Meyer et al., 2010). Simmental and Holstein bulls showed a good growth 

performance and live weight gain averaged about 1.55 and 1.40 kg/day. However, live weight 

gain differed significantly within experiments. Ettle et al. (2009) found differences between 

bulls fed DDGS (1.49 kg/day) and SBM (1.60 kg/d) which might be a result of the higher 

energy concentration of SBM as DM intakes were not different across treatments. Feeding a 

mixture of DDGS and RSM resulted in the highest weight gain (1.46 kg/day) compared with 

SBM, RSM or DDGS (1.31 kg/day; Meyer et al., 2010). The results of the experiments with 

fattening bulls showed that DDGS as the main protein source compares well with other 

protein supplements and is able to sustain a high productive performance. This does also 

indicate that differences between CP sources regarding the amino acid pattern of the ruminally 

undegraded CP (RUP) was not a constraint for intensive growth. 
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Table 3.5. Comparative evaluation of distillers grains with solubles in wet (DGS) or dry (DDGS) form mainly from wheat fermentation in diets 

for lactating dairy cows. (unsp., unspecified; MS, maize Silage; GS, gras Silage, RSM, rapeseed meal; BG, brewers grain; SBM, soybean meal; RSC, 

rapeseed cake) 

Location FLI Braunschweig1 
LLFG Iden2 

 
TLL Jena3 

 
HBLFA Irdning4 

 

Authors 
  Franke et al. (2009) Engelhard (2011) Dunkel (2011) Urdl and Gruber (2011) 
Duration  
(days) 147 50 unsp. unsp. 60 
Cows  
(n) 16 36 126 123 3 
Basal diet MS, GS MS, GS MS, GS MS, GS, Hay 

Protein supplement  
DDGS 
(wheat) RSM 

DWG   
(rye) BG 

DDGS 
(wheat) SBM, RSM DDGS (maize) DDGS (wheat) SBM, RSC 

(kg dry matter [DM]/day) 3.5 3.6 ca. 3.8 ca. 1.9 ca. 1.8 ca. 1.5 ca. 1.1 ca. 1.0 ca. 1.2 
DM intake  
(kg/day) 20.8 21.9 ca. 24.0 ca. 23.6 unsp. unsp. 20.8 20.9 20.9 
Milk  
(kg/day) 34.9 34.0 42.1 42.5 35.8 37.0 26.4 25.9 26.2 
Fat  
(g/kg milk) 32.6 35.3 38.9 39.7 41.0 42.0 44.6 44.8 44.3 
Protein  
(g/kg milk) 31.1a 32.9b 32.3 32.4 35.1 35.3 33.3 33.4 33.9 

a,bDifferent superscripts  in one column within an experiment indicate significant differences (P<0.05) 
1Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Institute for Animal Health, Braunschweig, Germany 
2Centre for Livestock Husbandry and Equipment, Regional Institute for Agriculture, Forestry and Horticulture Saxony-Anhalt (LLFG), Iden, Germany 
3Agricultural Research Centre of Thuringia (TLL), Jena, Germany 
4Institute of Livestock Research, Agricultural Research and Education Centre Raumberg-Gumpenstein (HBLFA), Irdning, Austria 
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Table 3.6. Comparative evaluation of dried distillers grains with solubles (DDGS) in diets for bulls during the whole fattening period and 

growing male calves before the beginning of the fattening period. 

Location LfL Poing1 FLI Braunschweig2 LfL Poing 
Authors Ettle et al. (2009) Meyer et al. (2010) Preißinger et al. (2009) 

Animals (n) 44 42 15 14 15 21 
Final live weight (kg) 710 712 720 556 560 557 558 162 164 153 157 
Basal diet MS3 MS MS, Hay 
Protein supplement DDGS SBM4 RSM5 DDGS SBM RSM RSM + DDGS DDGS RSM DDGS RSM 
(kg dry matter [DM]/day) ca. 1.3 ca. 1.0 ca. 1.4 1.44 0.96 1.30 0.72 +0.74 0.42 0.44 0.59 0.58 
DM intake (kg/day) 9.37 9.37 9.51 7.66 7.54 7.59 7.97 2.4 2.4 2.9 3.0 
Crude protein intake (kg/day) 1.110 1.116 1.102 1.118 1.103 1.078 1.155 0.412 0.423 0.469 0.476 
Energy intake (MJ ME6/day) 108.3 109.3 111.0 86.2 84.9 84.7 89.3 31.0 30.3 35.5 36.2 

Live weight gain (kg/day) 1.493b 1.602a 1.549ab 1.310b 1.390ab 1.440ab 1.460a 1.008 1.039 1.003 1.053 
1 Institute for Animal Nutrition and Feed Management, Bavarian State Research Centre for Agriculture (LfL), Poing, Germany 
2 Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Institute for Animal Health, Braunschweig, Germany 
3 MS, maize silage 
4 SBM, soybean meal  
5 RSM, rapeseed meal 
6 ME, metabolisable energy  

a,b Different superscripts  in one column within an experiment indicate significant differences (P<0.05)
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3.2.3. Nutritive value and feeding to non-ruminants – pigs  

By-products from biofuel production such as DDGS have been fed also to non-ruminant 

animals, particularly pigs (e.g., Lindermayer, 2004; Richter et al., 2006a; Berk, 2007; Hackl et 

al., 2007; Berk et al., 2008; Kluge and Kluth, 2008) and poultry (e.g., Damme and Pegeanova, 

2006; Richter et al., 2006b; Trautwein et al., 2008). Patience et al. (2007) summarized mainly 

North American results from feeding studies with DDGS in pigs. 

Some authors investigated the amino acid pattern of DDGS and their praecaecal digestibility 

in pigs (e.g., Richter et al., 2006a; Hackl et al., 2007; Hackl et al., 2007; Kluth et al., 2009). 

Hackl et al. (2007a) and Hackl et al. (2007b) studied a wheat-DDGS with 386 g CP per kg 

DM. Compared to wheat (32 g lysine per kg CP) DDGS contained only 17 g lysine per kg CP. 

The low concentration and the low praecaecal digestibility coefficient of lysine in wheat-

DDGS (0.69 compared with 0.872 for wheat) underline the significance of lysine as the first-

limiting amino acid in DDGS for pigs. Although DDGS contains about 2.5-3 times more CP 

than wheat, it only 1-1.5 times the concentration of praecaecally digestible lysine. Very low 

praecaecal digestibilities have been reported by Hackl et al. (2007a) and Hackl et al. (2007b) 

only for sulphur-containing amino acids (0.67 – 0.69), but not for most of the other essential 

amino acids. In broilers, however, Kluth et al. (2009) measured a praecaecal digestibility 

coefficient for lysine in DDGS of 0.79. 

In a feeding trial with 80 growing-finishing pigs (40 females and 40 castrated males) from 35 

kg initial live weight up to 115 kg slaughtering weight, Berk (2007) partially replaced SBM 

and/or RSM by DDGS or a DDGS/RSM mix (Table 3.7). The feed in mash form and drinking 

water were offered for ad lib intake. Feed intake, total weight and slaughtering results were 

not influenced (P>0.05) by protein source. From this data it can be concluded that DDGS can 

partially replace SBM in diets for growing-finishing pigs in intensive production systems.
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Table 3.7. Protein sources (grower/finisher), feed intake, daily weight gain and some slaughtering data of pigs (Berk, 2007). 

Protein source   Soybean Soybean/rapeseed meal Soybean/DDGS1 Soybean meal/ rapeseed meal/ DDGS 

Grower 15.0  6.0 8.0 6.0 Soybean meal 
Finisher 11.0 (-) 5.0 3.0 
Grower (-) 10.0  (-) 5.0 

Rapeseed meal 
Finisher (-) 15.0 (-) 6.0 
Grower (-) (-) 8.0  5.0 

DDGS 
Finisher (-) (-) 10.0 6.0 

Grower 178 176 178 175 
Crude protein (g/kg dry matter) 

Finisher 163 166 166 169 
Feed intake (kg/(animal x day))  2.83 2.81 2.83 2.76 

Weight gain (g/(animal x day)) 
total 

1010 959 998 940 

Lean meat (%)   54.4 55.6 54.7 55.7 
Backfat thickness (mm)   29.0 28.0 28.4 25.1 

Backfat fatty acids       

SFA2 40.5 40.1 41.1 39.2 

MUFA3 47.4 49.5 46.8 48.8. 

PUFA4 

(% of total) 

12.1 10.4 12.0 12.4 
1DDGS, dried distillers grains with solubles 
2SFA, short-chain fatty acids 
3MUFA, monounsaturated fatty acids 
4PUFA, polyunsaturated fatty acids
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Richter et al. (2006a) carried out four feeding trials with piglets (0 - 100 g/kg DDGS in the 

diet; Table 3.8) as well three trials with growing-finishing pigs (0 - 250 g/kg DDGS in the 

diets; Table 3.9). The authors concluded that piglets below 10 kg live weight should not 

consume DDGS and diets of heavier piglets may contain DDGS up to 100 g/kg diet. 

Table 3.8. Average live weight gain (g/day) of piglets (18-65 animals per treatment; initial 

age: 28-48 days; final age: 70 days) fed with various amounts of wheat-based dried distillers 

grains with solubles (DDGS; Richter et al., 2006a). 

DDGS (g/kg of diet) 0 30 50 80 100 

Trial      

1 480a 440bd 448bc 417d - 

2 518 - - - 505 

3 445a - 408ab - 346c 

4 364 - 353 - 361 
a,b,c,d different indices indicate significant differences (P<0.05) 
 

Table 3.9. Average live weight gain (g/day) of pigs (15-36 animals per treatment; initial live 

weight: 27-32 kg; final live weight: 112-121 kg) fed with various amounts of wheat-based dried 

distillers grains with solubles (DDGS; Richter et al., 2006a). 

DDGS (g/kg of diet) 0 100 150 200 250 
Trial      

1 791 784 787 - - 

2 834a - 827a - 745b 

3 932 905 - 939 - 
a,b different indices indicate significant differences (P<0.05) 
 

The results suggest that DDGS up to 200 g/kg diet in grower-finisher diets of pigs did not 

influence the performance. The lower recommended inclusion level for piglets is most likely 

due to the low lysine content of the DDGS. Hence, higher inclusion levels may be possible if 

lysine levels are adjusted as well. Kluge and Kluth (2008), Punz et al. (2010) and Schedle et 

al. (2010) replaced SBM in grower-finisher diets completely by DDGS and did not observe 

any adverse effect on fattening and slaughtering variables. Additional non-starch 

polysaccharide (NSP) enzyme supplementation did not improve animal performance.  
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Another important aspect of DDGS incorporation in pig diets is the P excretion, which is a 

major concern for the swine industry due to its potential impact on the environment. There are 

no European studies on this subject so far. A Canadian study evaluated the effect of wheat-

based DDGS on P excretion patterns of grower-finisher pigs. Intake, excretion and retention 

of P were influenced by DDGS. Total tract P digestibility of DDGS was 40 percentage units 

higher than that of wheat. Similarly daily P excretion of pigs fed DDGS was higher than that 

of pigs fed the wheat control diet (Widyaratne and Zijlstra, 2007). In another study conducted 

in North America measured, among others, P in maize-based DDGS fed to growing pigs. 

Apparent total tract digestibility for P in DDGS was measured at 59.1% while the control 

group fed a maize-based diet had apparent total tract digestibility of 19.3%. It was concluded 

that with DDGS a greater proportion of the organic P will be digested and absorbed, hence, 

lowering the need to add inorganic P to pig diets (Pedersen et al., 2007). 

3.2.4. Nutritive value and feeding to non-ruminants – poultry 

Richter et al. (2006b) included up to 200 g/kg wheat-based DDGS to diets of chicks, pullets, 

laying hens and broilers. No effect of DDGS inclusion level on growth performance of chicks 

and pullets was observed (Table 3.10). 

Table 3.10. Influence of dried distillers grains with solubles (DDGS) on live weight and feed 

conversion ratio (FCR) of chicks and pullets (average of two trials; 168 animals per treatment; 

Richter et al., 2006b). 

DDGS (g/kg of diet) 0 50 100 150 200 

Live weight (g)      

8 weeks 654 654 658 644 656 

18 weeks 1432 1439 1448 1429 1435 

FCR (kg/kg, feed/gain)      

0-8 weeks 3.16 3.18 3.17 3.17 3.16 

0-18 weeks 5.12 5.13 5.08 5.09 5.10 
 

Laying intensity of hens as well as egg quality were not affected (P>0.05) by 150 g/kg DDGS 

in diets of laying hens (Damme and Peganova, 2006; Richter et al., 2006b). Askbrant and 

Thomke (1986) did not observe any negative effect on egg yield and health of laying hens fed 
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diets with 300 g/kg DDGS. 

Richter et al. (2006b) carried out three feeding studies with 276 broilers per treatment 

(unsexed). The diets contained 0, 50, 100, 150 or 200 g/kg DDGS and was offered in pelleted 

form from day 1-14; mash feed was fed from day 15-33. The final live weight of the broilers 

amounted to 1995, 1987, 1953, 1884 and 1842 g per animal for DDGS inclusion levels of 0, 

50, 100, 150 and 200 g/kg, respectively. These results suggest that diets that contain more 

than 100 g/kg DDGS may lower performance, which is in agreement with Chidothe et al. 

(2002a), Chidothe et al. (2002b) and Trautwein et al. (2008). 

Other authors added NSP-degrading enzymes (e.g., xylanase or xylanase mixed with other 

enzymes) to poultry diets rich in DDGS. In addition to an improved energy supply due to 

partial degradation of NSP and subsequent absorption of its constituent sugars (reviewed by 

Dänicke, 1999), the supplementation of xylanase is supposed to change the composition and 

metabolic potential of bacterial populations and may also influence fat absorption in younger 

animals (Hübner et al., 2002). Dalibard et al. (2008) added a NSP-enzyme produced by 

Penicillium funiculosum to diets of layers containing 100 or 200 g/kg maize-based DDGS. 

Enzyme supplementation did not increase nutrient digestibilities and energy concentration, 

but enzyme-supplementation of diets with 100 and 200 g/kg DDGS increased apparent ME 

concentration by 0.24 and 0.18 MJ/kg DM. Richter et al. (2006b) measured higher final live 

weight of chicks and pullets after enzyme supplementation to a diet with 150 g/kg DDGS. 

However, laying hens did not respond to enzyme supplementation. Chidothe et al. (2002a), 

Chidothe et al. (2002b) measured higher live weight gain of broilers fed with 100 and 200 

g/kg enzyme-supplemented DDGS, but the gain was still below the level of the control group 

without DDGS. Similar results have been reported by Trautwein et al. (2008) after feeding 

diets with 100 g/kg DDGS. 

Another important aspect which needs to be considered is the availability of P. Studies 

referring to wheat-based DDGS,  the most common DDGS source in Europe, is reviewed in 

another chapter in this document, which provides a more in-depth account  of wheat DDGS in 

poultry (Noblet et al., 2012). Studies on maize-based DDGS reported a substantial variability 

in relative P bioavailability among different batches, which seems mainly due to different 

heating conditions employed during processing. During the process of fermentation for 

bioethanol production, small quantities of phytase are produced by the yeast, converting the P 

into better available forms (Martinez Amezuca et al., 2004). 
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3.3. By-Products from Biodiesel Production 

3.3.1. Glycerine 

Biofuel production in the European Union is mainly based on rapeseed oil, basically in form 

of rapeseed oil methylester or biodiesel, leaving glycerine as a co-product.  During biodiesel 

generation fatty acids are hydrolyzed from the glycerine backbone of the triglyceride 

molecule by a transesterification process using methanol. Subsequent to separation of the fatty 

acid esters, glycerine still contains methanol and salts from the reactions. Separation or 

purification of glycerine can be fluctuating depending on the plant and the applied process 

(Schröder and Südekum, 1999). Yield of glycerine from this process is approximately 1unit 

per 10 units of biodiesel produced (Friedrich, 2004).  

Starting around 60 years ago, researchers have shown that glycerine may help prevent keto-

acidosis in the high-yielding dairy cow by increasing glucose precursors (Forsyth, 1953; 

Johnson, 1954; Fisher et al., 1971; Fisher et al., 1973). Around 40 years ago, glycerine was 

registered as a feed additive (E 422) in the European Union (Anonymous, 1970) with no 

restrictions as to animal species and quantity added to feeds. Today, glycerine is listed as a 

feedstuff in the “Positive List” of authorized feed materials (Central Committee of the 

German Agriculture, Standards Commission for Straight Feeding Stuffs, 2011) while research 

expanded not only in dairy cattle but also in other farm animals to elucidate the conditions 

under which glycerine may be used advantageously. The reader is referred to two other 

chapters in this document which provide a more in-depth account of inclusion of glycerine in 

transition and lactating cow diets and of swine energy value, metabolism, contaminants, 

feeding levels, and performance and carcass composition .   

3.3.3. Glycerine quality 

Glycerine may be obtained with varying quality, depending on the degree of refinement. 

Schröder and Südekum (2002) analyzed the chemical composition of glycerine at different 

stages of the rapeseed oil methylester production process (Table 3.11). Important to notice is 

that the impure quality with elevated methanol concentrations (267 g/kg DM) was not a 

commodity but an intermediary product that was used for experimental purposes only. For the 

benefit of a fail-safe usage of glycerine in diets for all farm animals, methanol should be 

removed as far as technically possible.  
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Table 3.11. Chemical composition of glycerine representing different stages of the rapeseed 

oil methylester production process (Schröder and Südekum, 2002). 

    Purity of glycerine 

 Item Low Medium High 

Water (g/kg) 268 11 25 

 

Dry matter composition (g/kg unless stated) 

    

Glycerine  633 853 998 

Crude fat      7.1     4.4 NA 

Phosphorus    10.5    23.6 NA 

Potassium    22.0   23.3 NA 

Sodium     1.1     0.9 NA 

Lead (mg/kg)     3     2 NA 

Methanol 267     0.4 NA 
NA, not analysed; analyses were omitted because the glycerine content was close to 1000 g/kg 

 

Table 3.12. Standardized composition (g/kg) of two different glycerine qualities according to 

the German “Positive List“ (Central Committee of the German Agriculture, Standards 

Commission for Straight Feeding Stuffs, 2011). 

Item Glycerine Glycerine, crude 

Glycerine Minimum 990 Minimum 800 

Water 5 - 100 100 – 150 

Ash Maximum 1.0 Maximum 100 

Methanol ND Maximum 2.0 

Other - NaCl, K, P, S 
ND, not detected 
 
Table 3.12 presents two different glycerine qualities according to the German “Positive List” 

(Central Committee of the German Agriculture, Standards Commission for Straight Feeding 

Stuffs, 2011). Crude glycerine is the quality currently used in farm animal feeding and it is 

strongly recommended that at least the specifications listed should be declared on each batch 

of crude glycerine. Due to legal restrictions as to the use of animal products in farm animal 

feeding and because crude glycerine may contain some residual fat, the source of the 

glycerine must also be known and stated. 

Südekum et al. (2008) investigated physical, chemical and hygienic quality characteristics of 

pelleted compound feeds with varying quality glycerine (Table 3.11) inclusion levels of 50, 
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100 and 150 g/kg concentrate DM. The quality of the concentrates was assessed under two 

environmental conditions (15 °C and 60% relative humidity; 20 °C and 70% relative 

humidity) and storage durations of four and eight weeks. The chemical composition was only 

slightly affected by concentration and purity of glycerine or by storage and duration 

influences. Moreover, the data indicated that glycerine of different purities had a preserving 

effect and the physical quality of the pellets was not affected by purity or concentrations of 

glycerine. However, Löwe (1999) noted that when pellets were produced with molasses and 

glycerine concentrations greater than 50 g/kg, pellets showed a rough and scaly surface. This 

author also remarked that when feeds are stored in meal form, concentrations greater than 50 

g glycerine/kg may result in lump formation, and therefore suggested to restrict glycerine 

concentration in pelleted compound feeds to 60 - 70 g/kg based on general storage behaviour 

including storage in large silos. 

In conclusion, glycerine of different purities as a by product from rapeseed oil methylester 

production may help stabilise the hygienic quality of pelleted compound feeds without 

compromising physical quality of the pellets.  

 

3.3.4. Rumen events of feeding glycerine 

Previous studies on ruminal metabolism of glycerine indicated that glycerine is rapidly and 

extensively fermented in the rumen with propionic acid as the major product of fermentation 

(Bergner et al., 1995; Kijora et al., 1998). However, there is controversial information 

regarding the exact biochemical pathway and the end products of glycerine fermentation by 

ruminal microbes. Ferraro et al. (2009) measured in vitro gas production from glycerine 

lucerne and maize silage. Results indicated that glycerine has a long lag time and a slow rate 

of degradation. Moreover, glycerine fermentation resulted in reduced acetate and increased 

butyrate concentration. Krueger et al. (2010) evaluated the in vitro effect of two levels of 

glycerine (20 or 200 g/kg) on their inhibitory effect against ruminal lipolysis by mixed rumen 

microbes as well as the effect of feeding various amounts of glycerine on fermentation 

kinetics of lucerne hay. They concluded that an inclusion rate of up to 200 g/kg decreased the 

rate of free fatty acid accumulation, decreased fermentation rate but appeared to have no 

negative effect on NDF digestibility. The authors suggested that utilizing glycerine as a short-

term feed ingredient in cattle diets can potentially inhibit bacterial fat degradation. 

Schröder and Südekum (2002) evaluated in vivo effects of glycerine in compound feeds on 
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nutrient turnover in the rumen and digestibilities in the whole tract of cattle. Four ruminally 

cannulated steers were used in a 4 x 4 Latin square design and received a mixed diet 

consisting of 400 g/kg DM forage and 600g/kg DM concentrate. Concentrate in pelleted form 

comprised either no glycerine or 150 g/kg glycerine of different purities (630, 850 or >995 

g/kg glycerine). Feeding glycerine resulted in a slight shift towards a reduced ratio of acetic 

acid towards propionic acid. Rumen fill was slightly higher when diets contained glycerine. 

Furthermore, glycerine appeared to have an impact on water turnover since the proportion of 

bailable liquids of total ruminal contents was higher when diets contained glycerine 

irrespective of quality. No effect on fermentation of fibre components was observed in vivo, 

however, when glycerine was supplemented to a medium containing cellobiose as the sole 

energy source (Roger et al., 1992), it inhibited the growth and cellulolytic activity of two 

rumen cellulolytic bacterial species (Ruminococcus flacefaciens, Fibrobacter succinogenes). 

The growth of the anaerobic fungal species, Neocallimasix frontalis, was inhibited as well and 

its cellulolytic activity almost completely disappeared. Another study by Abo El-Nor et al. 

(2010) measured the effects of substituting maize grain with glycerine at different levels (36, 

72, 108 g/kg DM) on deoxyribonucleic acid (DNA) concentration of selected rumen bacteria 

using continuous fermenters. The DNA concentration for Butyrivibrio fibrisolvens (fibre 

degradation) and Selenomonas ruminantium (starch and sugar degaradation) were reduced 

when glycerine at levels 72 and 108 g/kg DM was supplemented. However, implications 

derived from this data about the inhibition of bacterial and fungal growth could be caused by 

both, specific in vitro conditions such as the single species and sole substrate conditions. 

The in vivo data indicated that there should be no negative effects on ruminal turnover and 

digestibilities of organic matter constituents in the total tract when glycerine is used as a 

substitute for rapidly-fermentable starch sources like wheat or maize grain. Further, possible 

effects of glycerine on rumen microbial protein metabolism may require more detailed 

investigations. Paggi et al. (1999) investigated the in vitro effect of increasing levels of 

glycerine (50, 100, 200, 300 mM) on the proteolytic activity of bovine rumen fluid and found 

that all concentrations of glycerine reduced proteolytic activity by 20%. Kijora et al. (1998) 

infused 400 g glycerine per day (corresponding to 100 g/kg DM intake) into the rumen of 

growing bulls which were fed a hay-grain diet. They observed lower concentrations of 

isobutyric and isovaleric acid in the rumen and concluded that fewer branched-chain amino 

acids had been degraded. A slower rumen microbial crude protein and amino acid degradation 

would primarily increase the protein value of fermented forages.   
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3.3.5. Dairy cow performance in response to glycerine 

Previous studies have shown that glycerine may help to prevent ketoacidosis in high yielding 

dairy cows by increasing glucose precursors (Forsyth, 1953; Johnson, 1954; Fisher et al., 

1971; Fisher et al., 1973; Sauer et al., 1973). In the majority of these trials glycerine was 

applied as an oral drench. Recent research has focussed on using glycerine either as a dietary 

supplement or as a partial replacement for starchy dietary ingredients.  

Khalili et al. (1997) fed grass silage for ad libitum consumption and 7 kg per day of a barley 

based concentrate to mid lactating Friesian cows. Barley was partially replaced with either 

glycerine, a fractionated vegetable fatty acid blend or a 1:1 mixture of glycerine and free fatty 

acids. Glycerine intakes (150 g/day) had no effects on intake or performance, however the 

combination of glycerine and free fatty acids tended to increase milk yield. DeFrain et al. 

(2004) fed complete diets to Holstein cows from 14 days prepartum to 21 days postpartum. 

Diets were top-dressed with 860 g maize starch (control), 430 g maize starch and 430 g 

glycerine, or 860 g glycerine (day x cow). Rapidly fermentable glycerine replaced a slowly 

and incompletely fermentable carbohydrate source. Prepartum dry matter intake was greater 

for cows fed the control when compared with the two glycerine-supplemented diets. Rumen 

fluid collected postpartum from cows who received a glycerine supplemented diet had greater 

total volatile fatty acids, greater molar proportions of propionate and a decreased ratio of 

acetate to propionate. Furthermore, concentrations of butyrate seemed to be greater in rumens 

of cows fed glycerine-supplemented diets. Yield of energy-corrected milk during the first 70 

days postpartum tended to be greatest for cows fed the control diet. Since the only observed 

effect of glycerine-supplemented diets prepartum was on dry matter intake the authors 

suggested that glycerine should be delivered as a drench in hypoglycaemic dairy cows and not 

fed as a component of transition dairy cow diets. Bodarski et al. (2005) observed an increase 

in β-hydroxybutyrate in blood serum as well after adding 500 mL glycerine per day for the 

first 70 days postpartum. However, glycerine supplementation decreased total non-esterified 

fatty acid levels when compared to the non-supplemented controls. Other than DeFrain et al. 

(2004), Bodarski et al. (2005) observed that cows which consumed the glycerine diet 

exhibited a higher dry matter intake and gave 13 to 18% more milk than the control groups.  

Recently, two German groups investigated glycerine in diets for dairy cows in direct 

comparison with propylene glycol. Engelhard et al. (2006) supplemented the same calculated 

amounts per cow of both, glycerine and propylene glycol prepartum (150 g/day) and 

postpartum (250 g/day). Energy-corrected milk yields as well as concentrations of milk fat 
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and protein were not different between cows fed propylene glycol or glycerine. Nevertheless, 

the authors observed that older cows (> second lactation) which received the glycerine 

supplemented diet consumed more DM and thus energy. Blood levels of indices of ketosis 

such as β-hydroxybutyrate and non-esterified fatty acids were not different between groups. 

 

3.3.6. Rapeseed meal and rapeseed cake – ruminants 

Rapeseed meal is still considered to be an important source of high-quality protein for all farm 

animal species and especially for ruminants. Approximately 4.4 million tons of RSM were 

produced in Germany in the year 2008, from which 3 million tons were used for domestic 

consumption exclusively (Weiß and Schwarz, 2010). It can be assumed that the main part was 

utilized as protein supplements in ruminant nutrition. One of the main reasons for this may be 

the low cost of RSM in comparison to imported SBM. Moreover, techniques to extract RSM, 

including physical pressure and high temperatures, are responsible for an increased fraction of 

CP which is protected from ruminal degradation. 

Protein values of SBM and RSM published in feeding value tables and research papers differ 

to great extents. The concentration of RUP is stated as 350 g/kg CP for SBM and 250 g/kg CP 

for RSM (Universität Hohenheim – Dokumentationsstelle, 1997). Similarily, mean values 

calculated from data reported in the feed composition table of the ARFC (1993) resulted in 

280 g RUP/kg CP for RSM and 370 g RUP/kg CP for SBM at a rumen outflow rate of 5%/h. 

However, more recent experiments indicate that the considerable differences between the 

tabulated ruminal degradability values of the two meals in favour of SBM no longer reflect 

the current situation. A cross-sectional study conducted by Südekum et al. (2003; Table 3.13) 

covered all oilmills processing rapeseed and soybean in Germany and in addition 

encompassed some imported SBM commodities.  
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Table 3.13. Protein value of contemporary qualities of rapeseed (RSM) and soybean (SBM) 

meals (Südekum et al., 2003) as compared with feeding table values 

 Item RSM SBM 

Mean RUPa,  g/kg of crude protein 300 300 
 
DLG Table (Universität Hohenheim – 
Dokumentationsstelle, 1997) 250 350 

   

Mean uCPb, g/kg dry matter 231 288 

DLG Table (Universität Hohenheim – 
Dokumentationsstelle, 1997) 219 298 – 308 

aRUP, ruminally undegraded crude protein 
buCP, utilisable crude protein at the duodenum (sum of microbial and ruminally undegraded crude 

protein) 

 

A total of 15 studies published between 1983 and 1997 could be identified (Rooke et al., 

1983; Mir et al., 1984; Voigt et al., 1990; Kendall et al., 1991; Tuori, 1992; Zinn, 1993; 

Khorasani et al., 1994; Liuet al., 1994; Moss and Givens, 1994; Vanhatalo et al., 1995; 

Stanford et al., 1995; Stanford et al., 1996; Gralak et al., 1997; Mustafa et al., 1997; 

Zebrowska et al., 1997). Nine studies observed greater RUP values (g/kg CP) for SBM than 

RSM, three studies reported the opposite and three studies noticed no differences between 

RUP values for SBM and RSM. Moreover, RUP values varied largely in all studies, more 

precisely results for SBM ranged between 200 to 500 g/kg CP and from 120 to 560 g/kg CP 

for RSM. Thus, data reported by Südekum et al. (2003) appears acceptable and may more 

closely mimic recent and current SBM and RSM qualities than tabular values. In conclusion it 

can be stated that it is currently recommended to state a mean RUP concentration of 300 g/kg 

CP for RSM and SBM (Südekum and Spiekers, 2002).  

Other recent experiments tested the hypothesis that SBM can be fully replaced by RSM in 

dairy cow diets when fed on an approximate isonitrogenous and isocaloric basis (without 

considering differences in ruminal degradation and/or amino acid pattern. Table 3.14 

summarizes the data and indicates that milk yield and milk component concentrations were 

similar for diets containing SBM or RSM, and thus the hypothesis can still be sustained. The 

energy concentration of the whole diet seems to be a key factor for the successful replacement 
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of RSM for SBM as lower energy concentrations generally mean insufficient DM intakes and 

this may be further aggravated if RSM (moderate energy density) is included at the expense of  

SBM (high energy density). 

Steingass et al. (2010) tested in which concentrations rapeseed cake could replace SBM. A 

feeding trial, including 60 dairy cows and 7 time periods (4 control + 3 periods with rapeseed 

cake or rapeseed cake plus RSM) revealed higher DM intake and milk yield as well as lower 

milk fat and protein values when rapeseed cake was fed. The authors suggested that even 

though rapeseed cake and RSM differ widely in their protein values, both feedstuffs can be 

regarded as suitable full protein supplements in diets for dairy cows. 

Moreover it should also be pointed out that the overall quality of RSM and rapeseed cake 

depends also on the concentration of glucosinolates and, in case of rapeseed cake, the content 

and quality of the lipid proportion. Generally, average glucosinolate concentrations of RSM 

are low while glucosinolate concentrations of rapeseed cake are considerably higher. 

However, a great variation of this item applies to both feedstuffs. In addition, crude fat in 

rapeseed cake fluctuates, making ration formulation a difficult task. Increasing crude fat 

content lowers CP concentrations and vice versa. Hence, grouping of rapeseed cakes 

according to crude fat concentration (g/kg) appears necessary. Additionally, storage stability 

should also be considered, since the fat is in a non-protected form after the mechanical 

extraction of the seed. It has also been reported by farmers and consultants that physical 

characteristics resulting from plaque forming during oil extraction may handicap rapeseed 

cake handling, e.g. a homogenous distribution in complete diets or silage mixtures is difficult 

to achieve. 
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Table 3.14. Comparative evaluation of rapeseed (RSM) and soybean (SBM) meals in diets for 

high-producing dairy cows - summary of German trials (Spiekers and Südekum, 2004; 

Steingass et al., 2010). 

Location, duration of trials 
Protein 
supplement Milk Fat Protein 

and diets kg/(day x cow) kg/day g/kg milk g/kg milk 

LWZ Haus Riswick5: lactation weeks 5 - 35 

Basal diet SBM 2.3 kg 31.1 39 31 

 1/3 MS1 + 2/3 GS2 RSM 3.1 kg 31.3 39 32 

 

LWZ Haus Riswick: lactation weeks 2 – 44 

TMR3 with SBM 1.6 kg 25.2 42 34 

 50% MS + 25% GS RSM 2.2 kg 25.8 41 34 

 

LLFG Iden6: until lactation week 17 

TMR3 with 40% (MS + SBM 4.0 kg 40.0 38 33 

 EMS4) + 25% GS RSM 4.3 kg 40.5 39 33 

 

LVA Köllitsch7: 17 weeks 

Basal diet     SBM 1.6 kg 31.2 39 34 

 50% MS + 50% GS RSM 2.0 kg 32.7 40 34 

     

Universität Hohenheim8:     

TMR3 with SBM 1.2 kg 30.9 45 35 

22% MS + 21% GS RSM 1.8 kg 32.4 43 35 
1MS, maize silage 
2GS, grass silage 
3TMR, totally mixed ration 
4EMS, ear-maize silage 
5Chamber of Agriculture of North Rhine-Westphalia, Landwirtschaftszentrum (LWZ) Haus Riswick, 
Kleve, Germany 
6Centre for Livestock Husbandry and Equipment, Regional Institute for Agriculture, Forestry and 
Horticulture Saxony-Anhalt (LLFG), Iden, Germany 
7State Office for Environment, Agriculture and Geology, Lehr- und Versuchsgut (LVA) Köllitsch, 
Germany 
8Institute of Animal Nutrition, University of Hohenheim, Stuttgart, Germany 
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3.3.7. Rapeseed cake and meal – pigs and poultry 

Other than ruminants, pigs and poultry react more sensitive to the glucosinolate content in 

rapeseed meal and cake. Even though the amino acid composition in rapeseed products is well 

balanced and favourable to monogastric animals, there are two limiting factors: the 

concentration and structural type of glucosinolates and the dietary fibre. There are two 

different types of glucosinolate including aliphatic glucosinolate derived from methionine and 

indole glucosinolate derived from tryptophan. Aliphatic glucosinolate, which causes the most 

negative antrinutritive effect, may be reduced by plant breeding to levels close to zero while 

indole glucosinolate contributes with 2-4 µmoles/g seed (Sørensen, 1990). The high content 

of fibre and fibre-associated CP, contributes to a relatively low digestibility of CP and energy 

in RSM. This is mainly due to the high lignin content of the hull, which may vary largely 

(47 - 517 g/kg) depending on genotype and processing of the seed (Jensen et al., 1990). Table 

3.15 presents average amino acid contents of SBM, RSM and wheat. Lysine content of RSM 

is slightly lower than that of SBM, however threonine and sulfur amino acids (methionine, 

cysteine) are higher in RSM. 

 

Table 3.15. Amino acid profiles (g/100 g crude protein) of rapeseed meal, soybean meal and 

wheat (Degussa Feed Additives, 1996) 

  Rapeseed meal Soybean meal Wheat 
Lysine 5.6 6.3 2.8 
Methionine+Cysteine 4.6 3.0 3.8 
Threonine 4.4 4.0 2.9 
Tryptophan 1.3 1.3 1.2 

 

The acceptance of using RSM in pig diets increased highly in the last years. This is mainly 

due to the beneficial price as well as declined concentration of glucosinolates and an 

improved quality monitoring. Moreover, RSM reveals similar values for protein quality when 

compared with SBM, however lysine concentration and digestibilities are lower in RSM. For 

the practical use this means that other protein supplements or free amino acids should 

compensate the loss. In contrast, RSM includes higher concentrations of sulphur amino acids 

than SBM. 

Several trials throughout Germany were performed in order to ascertain the tolerance towards 

the maximum supplementation of RSM in pig diets. In early trials, amounts of 50 g/kg for 
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growing and 100 g/kg RSM for finishing pigs replaced SBM as a protein supplement in the 

diet. As a result no differences were observed between groups receiving RSM or SBM. The 

proximate trial increased the amount of RSM to 100, respectively 150 g/kg in the diets. 

Similarly, no differences in performance and carcass quality were observed when compared 

with pigs that were fed SBM. Concluded it can be stated that diets may contain 100 g/kg RSM 

in the grower diet (40 – 70 kg live weight) and 150 g/kg RSM in the finishing diet (70 -120 kg 

live weight). It is recommended that piglets, which are more sensitive to glucosinolate and 

high fibre concentrations can receive up to 50 g/kg RSM in diets and may also tolerate levels 

of up to 100 g/kg RSM (12 -15 kg live weight). However, levels of glucosinolates should not 

exceed 10 mmol/kg RSM (Weiß and Schöne, 2008; Weber, 2010; Weber et al., 2011). 

Other than RSM, rapeseed cake is only produced at smaller oilmills and represents around one 

tenth of the total rapeseed feed consumption. The major difference to RSM is that rapeseed 

cake comprises a much higher and varying concentration of crude fat (20 vs. 100- 160 g/kg) 

as well as twice as high glucosinolate concentrations (6.2 – 9.4 vs. 11.6 – 17.1 mmol/kg cake). 

Recommendations for the practical use of rapeseed cake depend mainly on glucosinolate 

levels. If the compliant amount is exceeded animals react with a decrease of feed intake and 

performance and in the worst case an enhancement of the thyroid. Weiß and Schöne (2010) 

summarized 5 different trials that were carried out in order to estimate the maximum 

supplementation of rapeseed cake. It was concluded that fattening pigs may receive between 

70 to 100 g/kg rapeseed cake, while sows and piglets may be fed between 50 up to 100 g/kg 

rapeseed cake. The exact amount depends on the glucosinolate level which should not exceed 

1.5 mmol/kg diet. Moreover, crude fat content should be more standardized to be able to use 

commodities easier and more reliable. 

The smallest application of rapeseed products can be found in poultry nutrition. For this 

reason not much research has been conducted, results vary to great extents and unfortunately, 

no declaration on glucosinolate levels of the used RSM can be found in most of the literature. 

Richter et al. (1996) noticed a decrease in performance when adding 50 g/kg RSM while 

Faghani and Kheiri (2007) observed no differences when RSM was added at levels of 100 

g/kg. Few studies with rapeseed cake revealed that it is possible to use approximately 150 

g/kg diet without any losses in performance (Peter and Dänicke, 2003). Jeroch et al. (2008) 

reviewed several trials and concluded that broiler, when fed rapeseed cake, tolerate between 3 

and 5 mmol/kg glucosinolate. Moreover, it is highly important to add iodine, since 

glucosinolates act as antagonists. It is suggested that iodine supplementation should be twice 
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general recommendations (GfE, 1999). However, if glucosinolates are present in high 

concentrations, the negative effects may not be compensated, even if iodine is supplemented 

in high amounts. 

Concluding, it becomes evident from these data that a more widespread use of RSM and 

rapeseed cake in diets for pigs and poultry requires further reduction of glucosinolate levels.  

 

3.4. Energy utilisation efficiency and sustainability 

The biofuel yield per tonne rapeseed varies between 250 and 350 kg rapeseed oil and per 

tonne maize or wheat grain between 300 and 350 kg bioethanol (Pinkney, 2009). Some losses 

are caused as CO2 during alcohol fermentation. All other products may be considered as by-

products and may be used in various ways as feedstuff in animal nutrition in wet and dry form 

or as fertilizer. Biofuel by-products can be considered as valuable protein sources for farm 

animals. Their CP concentration varies between 300 and 400 g/kg DM. Land use scenarios 

using wheat for biofuel or using wheat and soybean meal to match animal feed value of 

DDGS have been evaluated by Pinkney (2009). The most effective way to utilize the DGS 

resulting from biofuel production in large plants is feeding of this low DM material (80 g 

DM/kg) to farm animals. As it is unrealistic to distribute large amounts of DGS in nearby 

areas of the biofuel plant and due to the short shelf-life of DGS, it becomes necessary to dry 

the material in other to preserve the by-product. Therefore, additional energy expenditures and 

GHG emissions must be considered in any assessment of ecobalances (CF, life-cycle 

assessment) of the by-products or the whole biofuel production chain. 

Up to this day, no definite regulations exist in order to classify emissions of the main product 

and the by-product (Bockisch et al., 2000; Flachowsky et al., 2011). When considering the 

causation principle, the producer or the responsible party should be accountable for all 

emissions. However, drying of DGS is only of interest if the products will be utilized as 

feedstuffs for animals and thus emissions associated with processing of by-products are not of 

interest or necessity for biofuel producing companies. 
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3.5. Knowledge gaps and future research 

Even though, much research has already been conducted in the utilisation of bioethanol and 

biodiesel by-products for animal nutrition there are important aspects which need further 

consideration. Dose-response studies are required for all by-products covered in this chapter, 

in order to evaluate the exact mode of action as well as the appropriate inclusion level in diets 

of farm animals. More precisely this means that methanol must be removed from glycerine as 

far as technically possible since separation or purification of glycerine can be fluctuating 

depending on the plant and the applied process. Rapeseed products which are fed to pigs and 

poultry should contain as few glucosinolates as possible. This might be achieved through the 

breeding process, while the antinutritive impact of the remaining glucosinolates may be 

compensated by iodine addition.  

Further attention should also be paid to the influence of processing conditions on composition 

and nutritive value of by-products in dependence on raw materials. Especially, rapeseed cake 

need further consideration and more reliable data because variations in the processing 

conditions result in varying chemical composition, particularly regarding the crude fat and CP 

content. These circumstances currently lead to difficulties in prediction of the feeding value of 

rapeseed cake for all categories of farm animals and could also affect storage stability. 

Therefore, the value of rapeseed cake would benefit from a standardization of composition. 

Similarly, a standardisation of processing and moreover using constant proportions of raw 

materials for the production of distillers grains would be desirable. 

Future research should also focus on measuring additional expenditures of the processing of 

by-products in order to be able to evaluate CF and identify GHG reduction potentials. Factors 

like harvesting, pressing, drying, conservation and transportation should be accounted for in 

the same way as animal emissions and manure management since focussing on single factors, 

does not provide an assessment that reflects the complexity of this subject. 

3.6. Conclusion 

The results of a number of experiments with lactating dairy cows and fattening bulls suggest 

that distillers grains as the main protein source may support a high productive performance. 

Trials with grower-finisher pigs suggested that DDGS up to 200g/kg diet did not influence the 

growth performance and fattening and slaughtering variables. Similarly, laying intensity of 
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hens as well as egg quality and health were not affected by inclusion levels ranging from 150 

g/kg to 300 g/kg diet. Trials with broilers suggest that diets that contain more than 100 g/kg 

DDGS may lower performance. Hence, it is recommended to add non-starch polysaccharide 

(NSP)-degrading enzymes (e.g., xylanase or xylanase mixed with other enzymes) to poultry 

diets rich in DDGS. 

Table 3.16 summarizes current German recommendations for rapeseed products in diets for 

cattle and pigs. Pigs would particularly benefit from breeding or production progress in 

further reduction of glucosinolate levels, whereas in cattle, a safer quality assessment of the 

rapeseed cake is needed.  

 

Table 3.16. Practical recommendations for daily amounts or dietary concentrations (as fed 

basis for dry diets) of rapeseed products for cattle, pigs and poultry (Weiß, 2007; Jeroch et al., 

2008). 

Animal category 
Rapeseed meal, 
solvent-extracted 

Rapeseed cake,  
mechanically extracted 

Dairy cow Maximum 4 kg 1.5 - 2.0 kg 

Beef cattle Maximum 1.2 kg 1 kg 

Fattening pigs Maximum 100 g/kg 70 – 100 g/kg 

Sows 50 – 100 g/kg 50 – 100 g/kg 

Piglets Maximum 50 g/kg 50 – 100 g/kg 

Broiler 50 -150 g/kg 50 -100 g/kg 

Laying hens 0 -100 g/kg 0 – 50 g/kg 
 

The current chapter reviewed, upon other the use of glycerine as a by-product from biodiesel 

production, as well as rapeseed products such as rapeseed meal and cake for farm animals. 

For the benefit of a fail-safe usage of glycerine in diets for all farm animals, methanol should 

be removed as far as technically possible. Glycerine at different purities may help to stabilise 

the hygienic quality of pelleted compound feeds without compromising physical quality of 

pellets. Furthermore, glycerine is no direct competitor of propylene glycol, since data on 

ruminal turnover suggest that glycerine, other than propylene glycol, should replace rapidly 
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fermentable carbohydrates. Mature cattle may consume up to 1 kg glycerine per day, while it 

may still be necessary to investigate if the sweet taste of glycerine may improve feed intake of 

diets with inferior palatability. 

In conclusion, glycerine can be used a versatile feedstuff, in particular for ruminants, 

however, further research is thus required to explore the full potential of glycerine in dairy 

cows.   

Other rapeseed products for ruminants, such as rapeseed meal, compare well with soybean 

meal for dairy cows. Recent research on rapeseed meal has shown that it can fully replace 

soybean meal within dairy cow diets when fed on an approximate isonitrogenous and 

isocaloric basis, i.e. without considering differences in ruminal degradation and (or) amino 

acid pattern. Moreover, milk and milk component yields were similar for diets containing 

soybean meal or rapeseed meal.  

Nevertheless, rapeseed cake needs further consideration and more reliable data because 

variations in the processing conditions result in varying chemical composition, particularly 

regarding the crude fat and protein content. These circumstances currently lead to difficulties 

in prediction of the feeding value of rapeseed cake for all categories of farm animals and 

could also affect storage stability. Therefore, the value of rapeseed cake would benefit from a 

standardization of composition 
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ABSTRACT 

Techniques that allow direct measurements on animals to quantify methane (CH4) emissions 

are costly and difficult to transfer to herd level. Mathematical approaches have been 

developed to predict methane emissions of cattle based on diet and intake characteristics 

which were calibrated against largely varying calorimetry data. In this study nine CH4 

prediction equations were applied to five typical Central European dairy cow diets in order to 

compare their applicability. The five diets differed in respect of forage proportion and type. In 

a first attempt regression equations were selected containing easily accessible data such as dry 

matter intake (DMI, kg/d) forage proportion (forage DMI/DMI), as well as neutral and acid 

detergent fibre, both expressed exclusive residual ash (NDFom, ADFom) that can also be 

extracted from on-farm datasets. Smallest differences to mean values were observed with the 

application of equations using NDF, while standard deviations were highest, and therefore 

showed the best capability to differentiate between diets, when using equations that operated 

with forage proportion and DMI. Nevertheless, the role of CH4 prediction equations should 

not be overestimated. The differences in levels of CH4 estimates show that frequently used 

equations are still inaccurate and may only serve as implications to locate trends. It should be 

taken into consideration to expand datasets, involving future CH4 measurements, on animal 

and herd level, feeding typical up to date regional diets in order to get more precise equations, 

suitable for a greater range of estimations. To ease and simplify the future applications, the 

prediction equations could be classified into groups, clearly stating by which data they were 

derived, for example regional origin and diet composition. 

 

 
Keywords: dairy cattle; greenhouse gas; methane; prediction 
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4.1. Introduction  

Methane (CH4) is one of the major greenhouse gases which may contribute greatly to global 

warming. The main sources of CH4 output into the atmosphere include lowland marshes and 

wetlands, the burning of forests and grassland, the strongly increasing numbers of termites in 

the harvested tropical forest, rice fields, coal mines, the oceans and around 1.3 billion cattle 

(Jentsch et al., 2009).  Globally, ruminants produce approximately 80 million tonnes of CH4 a 

year, accounting for around one third of anthropogenic emissions of CH4 (Beauchemin et al., 

2008). Cattle lose approximately 2-10% of their ingested energy as eructated CH4, depending 

on diet quality (Johnson and Johnson, 1995).  Due to these facts agriculture has a 

responsibility to help decrease CH4 emissions, which in the case of cattle can be achieved 

through optimized feeding strategies. There are several approaches in evaluating the 

contribution of different feedstuffs to CH4 output. Techniques that allow for direct 

measurements on animals to quantify CH4 emissions are costly and difficult to transfer to herd 

level. As an alternative to that, mathematical approaches have been developed to predict CH4 

emissions of cattle based on diet and intake characteristics which have been calibrated against 

largely varying calorimetry data. The challenge is that some of these models were developed 

solely on the basis of their regional data sets, whilst other models were developed with an 

insufficient amount of data. Likewise datasets for typical Central European diets are rare and 

partly overage. The practical use of certain regression equations is questionable since 

available data for different feedstuff is often not complemented (Wilkerson et al., 1995). Even 

though this subject is of great interest and a current issue, there are only few studies dealing 

with the evaluation of prediction equations, especially for Central European data. Even in a 

recently published issue on greenhouse gases in animal agriculture (McAllister et al., 2011), 

no evaluation or proceeding study on this subject was reported.  In this study, several CH4 

prediction equations were applied to five typical Central European dairy cow diets in order to 

compare their applicability in regard to dietary measures to mitigate CH4 production in dairy 

cattle and to evaluate their overall performance. 

4.2. Materials and Methods 

4.2.1. Diets 

Five different typical Central European dairy cow diets were chosen to compare performance 

of the different regression equations. All diets have been or are in practical use (Research 
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Farm “Frankenforst”, University of Bonn; Research Farm “Haus Riswick”, Agricultural 

Chamber North Rhine Westphalia) and differ mostly in their maize and grass silage fraction 

(Table 4.1).  

Diet 1 which was composed for dairy cows with a body weight of 630 kg and 32 kg milk 

yield had a relatively high proportion of grass silage (332 g/kg DM) combined with 357 g/kg 

DM of compound feed in the total mixed ration (TMR). Available data from this diet included 

a complete proximate constituents analysis as well as NDFom (neutral detergent fibre, 

expressed exclusive residual ash) and ADFom (acid detergent fibre, expressed exclusive 

residual ash) analysis. Diet 2 consisted mainly of maize silage (653 g/kg DM) and was 

composed for dairy cows with a milk yield of 39 kg combined with a body weight of 630 kg. 

Diet 3 had a major proportion of grass silage (553 g/kg DM), likewise designed for dairy 

cows with a milk yield of 39 kg combined with a body weight of 630 kg. Diet 4 and 5 did not 

differ in their forage proportion, both consisting of 461 g/kg DM grass silage and 326 g/kg 

DM maize silage. Only their actual amount differed as Diet 4 was developed for cows 

yielding 36 kg milk and Diet 5 for cows with a 25 kg milk yield. The diets also differed in 

DM intake (DMI). Cows which were fed Diet 5 consumed an average of 18.2 kg DM, while 

cows who were fed Diet 2 consumed an average of 22.8 kg DM. Cows fed Diet 1, 3 and 4 

consumed 19.3, 22.3 and 22.4 kg DM respectively. Because of differences in performance and 

DMI all variable inputs have been transformed to a comparable daily DMI of 22 kg DM/(cow 

x d). This transformation allows to rule out the major effect of DMI on daily methane output 

but allows at the same time to determine the effect of diet composition more accurately. 

There were differences in the available data concerning the chemical composition of the 

different diets. While Diet 1 covered the required information sufficiently, Diet 2 provided 

only few variables. Diet 3, Diet 4 and Diet 5 included basic information but lacked details on 

fibre fractions. Missing information was calculated using data and recommendations from 

literature (DLG, 2001).  
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Table 4.1. Ingredient and chemical composition of selected diets. 

  [g/kg DM]¤  

 Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 
Ingredients      

 Grass silage 332 117 553 461 461 

 Maize silage 153 653 194 326 326 
 Beet pulp silage    134 134 
 Wheat grain 118    58   
 Compound feed 357 209 120 58 54 
 Straw 28  15   
 Mineral mix 4 11 5 3 5 
 Other 8 10 55 18 20 
Chemical composition    
 DM 443 532 446 359 359 
 CP† 165 177 173 175 175 
 Ash   70   62   65   72   70 
 NDFom‡ 434 383 413 442 446 

 ADFomα 215 196 189 267 275 
       
 NEL# [MJ/kg DM]     6.8     7.1     7.0     7.0     6.6 
Notes: ¤DM, Dry matter; †CP, Crude protein; ‡NDFom, Neutral detergent fibre, expressed exclusive 

residual ash; αADFom, Acid detergent fibre, expressed exclusive residual ash; #NEL = Net energy for 

lactation. 

 

4.2.2. Equations 

Regression equations were selected based on the available nutritional analysis of the diets, as 

well as their appearance in scientific literature. In addition, it was important that equations 

were to apply simply and practicable for regular use. The most available data was dry mater 

intake (DMI), forage proportion and in some cases NDFom and ADFom. Table 4.2 presents 9 

suitable equations that were found in the literature.  Equations (1) - (4), as well as equations 

(6) and (8) are simple regression equations, whereas the rest are multiple regression equations. 

The equations differed in their input factors - equations (1) – (3) used DMI as a sole factor, 

Equations (4) and (5) used forage proportion as an input factor, while Equations (6) – (9) 

relied on information of fibre fractions.  Equations by Ellis et al. (2007) were developed from 

a database of 83 beef and 89 dairy cattle from North America. It was important to the author 

that the research to conduct the database was done either in the northern United States or in 

Canada, to ensure similarity of feedstuff. What should be noticed in this case is that Equations 

(1), (7) and (9) were developed using both, the dairy and the beef databases, while Equations 

(4), (6) and (8) were developed using only the dairy database. The data derived from the dairy 
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database included diets with forage proportion ranging from 28 to 100%. The combined 

database included diets with forage proportions from 9 to 100%. Equation (3), which was 

developed by Jentsch et al. (2007) used a Central European database of 337 cattle, including 

oxen, young bulls, cows and heifers. The diets fed in this database were composed of dry 

feedstuff and compounds ranged from 100% dried roughages (without concentrates) to 30% 

dried roughages plus 70% mixed concentrates. Equations (2) and (5) by Mills et al. (2003) 

were developed using a dataset of 159 dairy cattle from the U.K. and North America. The 

U.K. data included diets with forage proportions ranging from 48 to 100% while forage 

proportion of the Northern American diets ranged between 54 to 69%. The milk yield of the 

used animals ranged between 8.9 up to 30.8 kg/d. All of the estimated results of CH4 were 

calculated in grams in order to have better comparability. 

Table 4.2. List of statistical models used to predict CH4 production. 

Source Equation 
no. 

Equation r² 

Ellis et al. (2007) (1) CH4 [MJ/d] = 3.272 + 0.736 · DMI¤ [kg/d] 0.68 
Mills et al. (2003) (2) CH4 [MJ/d] = 5.93 + 0.92 · DMI [kg/d]  0.60 
Jentsch et al. (2007) (3) CH4 [kJ] = 1802 - 21.1 · DMI [g/kg BW] 0.22 
Ellis et al. (2007) (4) CH4 [MJ/d] = 8.56 + 0.139 · forage [%] 0.56 
Mills et al. (2003) (5) CH4 [MJ/d] = 1.06 + 10.27 · dietary forage proportion + 

0.87 · DMI [kg/d] 
0.61 

Ellis et al. (2007) (6) CH4 [MJ/d] = 3.14 + 2.11 · NDF† [kg/d] 0.46 
Ellis et al. (2007) (7) CH4 [MJ/d] = 3.44 + 0.502 · DMI [kg/d] + 0.506 · NDF 

[kg/d] 
0.67 

Ellis et al. (2007) (8) CH4 [MJ/d] = 5.87 + 2.43 · ADF‡ [kg/d] 0.56 
Ellis et al. (2007) (9) CH4 [MJ/d] = 3.41 + 0.520 · DMI [kg/d] - 0.996 · ADF³ 

[kg/d] + 1.15 · NDF [kg/d] 
0.67 

Notes: ¤ DMI, Dry matter intake; †NDFom, Neutral detergent fibre, expressed exclusive residual ash, 
‡ADFom, Acid detergent fibre, expressed exclusive residual ash. 

 

4.2.3. Analysis and calculations 

The evaluation and descriptive statistics of the results was performed using the means 

procedure of SAS Version 9.2 (SAS 2002). As the true CH4 output of all diets is unknown, the 

mean of all estimated values within diets was calculated. These means can be interpreted as 

the most likely values and serve as reference values in the analysis. In the next step, the 

estimated CH4 emissions were expressed as a deviation between reference values and 

calculated value. Over- or underestimation of the different equations can be seen by the 

algebraic sign and dimension of these deviations. The capability of the equations to 

differentiate the possible CH4 emission of the different diets can be explained by the standard 

deviations across diets. Determination coefficients of equations, which were also used in 
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analysis of data were taken from respective literature (Mills et al., 2003; Ellis et al., 2007; 

Jentsch et al., 2007). 

4.3. Results  

Table 4.3 presents the results of calculated CH4 emissions with different diets and equations. 

Overall the results ranged from 298.4 g (Diet 5, Equation (1)) up to 612.3 g (Diet 2, Equation 

(5)). Mean values ranged from 367.2 g up to 471.8 g. Respective mean values [g/(cow x d)] 

and their standard deviations are presented in Table 4.4. Smallest differences to mean values 

were observed with the application of Equation (6), (9) and (3). Equations (6) and (3) tend to 

overestimate CH4 emissions, while equation (9) rather tends to underestimate. Standard 

deviations were highest when using Equation (4), (5) and (8) and therefore have the best 

capability to differentiate various diets. In this case, two equations seem to underestimate 

results (equation (4) and (8)) and one equation overestimates the CH4 emissions (equation 

(5)). Overall, equations which use forage proportion or ADF seem to be more practicable 

when different types of diets are applied. Nevertheless, no clear position can be concluded on 

which variables to use when differences to mean values are compared.  

Table 4.3.  Methane production from different diets [g/(cow x d)] estimated by several simple 

and multiple regression equations 

Diet¤ Equation 
no. 1 2 3 4 5 
[1] 326.7 431.8 413.8 418.2 298.4 
[2] 445.3 576.6 553.9 559.5 409.9 
[3] 428.6 482.1 477.8 490.7 408.0 
[4] 306.1 385.3 378.9 389.9 389.9 
[5] 428.8 612.3 585.0 598.6 457.0 
[6] 388.2 465.4 475.0 510.2 360.8 
[7] 325.0 415.4 405.3 416.8 298.7 
[8] 302.6 355.2 344.8 429.0 323.0 
[9] 354.2 449.1 445.8 433.6 358.9 
Mean 367.3 463.7 453.4 471.8 367.2 
Notes: ¤ Following conditions were assumed (see Materials and Methods): Because of 
differences in performance and DMI all variable inputs have been calculated to a comparable 
DMI of 22 kg DM/(cow x d) with: Diet1: cow of 630 kg body weight, 32 kg milk yield ; Diet 2: 
cow of 630 kg body weight, 39 kg milk yield; Diet 3: cow of 630 kg body weight, 39 kg milk 
yield; Diet 4: cow of 650 kg body weight, 36 kg milk yield; Diet 5: cow of 650 kg body weight, 
25 kg milk yield 
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Table 4.4. Differences from CH4 estimates to their reference values, respective mean values 

and standard deviations [g/(cow x d)] 

Diet¤   Equation 
no. 1 2 3 4 5 Mean sd 
[1] 40.6 31.9 39.6 53.6 68.8 46.9 13.0 
[2] -78.0 -112.9 -100.6 -87.7 -42.7 -84.4 23.9 
[3] -61.4 -18.4 -24.4 -18.9 -40.8 -32.8 16.4 
[4] 61.2 78.4 74.5 81.9 -22.7 54.7 39.3 
[5] -61.5 -148.6 -131.6 -126.7 -89.8 -111.7 31.6 
[6] -20.9 -1.7 -21.7 -38.4 6.4 -15.3 15.9 
[7] 42.3 48.3 48.1 55.0 68.5 52.4 9.0 
[8] 64.7 108.5 108.6 42.9 44.1 73.8 29.4 
[9] 13.0 14.6 7.6 38.2 8.3 16.3 11.3 
Notes: ¤ Following conditions were assumed (see Materials and Methods): Because of differences in 
performance and DMI all variable inputs have been calculated to a comparable DMI of 22 kg 
DM/(cow x d) with: Diet1: cow of 630 kg body weight, 32 kg milk yield ; Diet 2: cow of 630 kg body 
weight, 39 kg milk yield; Diet 3: cow of 630 kg body weight, 39 kg milk yield; Diet 4: cow of 650 kg 
body weight, 36 kg milk yield; Diet 5: cow of 650 kg body weight, 25 kg milk yield. 

4.4. Discussion 

4.4.1. Dry matter intake 

It is widely recognized that DMI is one of the dominant factors determining CH4 production 

in cattle. Therefore various studies have been performed to examine this effect in order to use 

it for developing equations for predicting CH4 emissions in ruminants. In this study six 

equations included DMI as a variable, while three of these equations used DMI as a sole 

factor. Equation (3) developed by Jentsch et al. (2007), was a well performing equation when 

comparing its result to the respective mean value, however the standard deviations were 

average. This could be due to the fact that in this case, DMI was related to body weight which 

seems to make results more accurate. Also, Equation (3) was developed using a bigger dataset 

(n = 337) and Central European data, which may contribute to its preciseness.  

Generally it can be stated that DMI is a factor which is easy to obtain and even under practical 

circumstances to apply simply in equations. Even if farms do not have access to their herds’ 

exact DMI, there are several approaches to estimate these values reliably. For example Gruber 

et al. (2004) developed several estimation equations to quantify DMI depending on variables 

such as animal data, feed and management data. These estimates were based on an extensive 

dataset from 10 research institutions and are now widely used to calculate on-farm DMI of 

dairy cows. The findings of this study are in agreement with previous studies, where DMI was 

present on average as the best predictor (Axelsson 1949; Johnson and Johnson, 1995; Mills et 
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al., 2003; Ellis et al., 2007). Nevertheless, it has to be kept in mind that even if CH4 

production increases almost linearly with a higher feed intake (Kirchgeßner et al., 1995), the 

fraction of consumed gross energy lost as CH4 decreases. This was also shown in a theoretical 

study performed by Mills et al. (2001) who found that there is an inverse relationship between 

feed intake and gross energy loss as CH4. In their study, they increased feed intake from 10 to 

24 kg/d with a diet containing a 1:1 ratio of grass silage and concentrate.  They assumed that 

the decrease of CH4 emissions was due to a reduction in rumen digestibility, shifts in the 

rumen fermentation and higher passage rates. The degree of the fermentation process in the 

fore stomachs is known to rely on rumen retention time which is reduced with rising levels of 

feed intake (Kirchgeßner et al. 1995; Benchaar et al. 2001). This leads to the conclusion that 

CH4 production does not solely depend on feed intake but also depends on the quality, 

quantity and composition of the diet (Johnson and Johnson, 1995; Moss et al., 2000; Benchaar 

et al., 2001;  Jentsch et al., 2007). Thus, DMI is a fair prediction factor which is easy to apply 

on farm level, but if results need to be more exact, other variables should be included. 

4.4.2. Forage proportion 

Two of the evaluated equations included forage proportion as a parameter. Equation (4) used 

forage proportion as a sole parameter, while Equation (5) also included DMI in its prediction. 

Surprisingly, results differed to a great extent. While Equation (4) resulted in average CH4 

values, Equation (5) showed relatively high CH4 values when compared to the mean. The 

effect of forage proportion on CH4 production has been the subject of many studies. 

Generally, CH4 production rises when forage proportion in a diet is increased (Shibata et al., 

1992; Johnson and Johnson, 1995). This is due to methanogenic Archaea which use CO2 and 

H2 to form CH4 (McAllister and Newbold, 2008). High proportions of cell wall carbohydrates 

promote methanogenesis and favour acetic acid production which leads to a higher CH4 

production (Shibata et al., 1992; Johnson and Johnson, 1995; Beauchemin and McGinn, 

2005). Consequently this means that if lower forage proportions are fed and replaced by 

concentrates containing more non-structural, rapidly fermentable carbohydrates, CH4 

production decreases. This effect is due to a shift in ruminal fermentation toward propionate 

production and a decrease of ruminal pH (Fahey and Berger, 1988). Propionate promotes 

competitive pathways for H2 use in the rumen and thereby decreases overall CH4 production 

(Moss et al., 2000; Monteny et al., 2006).  This finding was confirmed in this study, revealing 

highest CH4 production with the largest proportion of forage (Diet 4). 

Forage proportion as a parameter to estimate CH4 production is practicable if no other data is 



Prediction of methane production from dairy cattle 

 62 

available. Nevertheless this factor implies no statement on forage quality. Therefore, more 

accurate results may be obtained using parameters which give more information on forage 

composition, such as cell wall substances and their ruminal degradability, starch and sugar to 

predict CH4 production. 

4.4.3. Fibre fraction 

Equations (6) – (9) included ADFom, NDFom, DMI or all three as parameters. Results of 

these applications gave satisfactory results. Equation (7) and (9) had the lowest deviations of 

the whole dataset. Again, these equations were developed by Ellis et al. (2007) and were 

designed specifically for Northern American data, which confirms their low capability to 

differentiate between diets. Nevertheless, it has been shown that ADFom, NDFom and their 

components cellulose, hemicellulose and lignin are valuable factors in estimating CH4 

production (Moe and Tyrell, 1979; Ellis et al. ,2007). Generally, cellulose promotes CH4 

production three times more than hemicellulose (Moe and Tyrell, 1979). Moreover, cellulose 

and hemicellulose ferment at slower rates than non-structural carbohydrates (McAllister et al. 

1996).  Decreased passage rates out of the rumen favour a high acetate:propionate ratio and 

therefore lead to increased CH4 production (Hegarty and Gerdes, 1998). This was also 

reported by Benchaar et al. (2001) who performed a rumen simulation with increasing forage 

proportion from 30 to 80% of DMI. While observing an increase in CH4 production up to 

80%, the authors noticed a decline when simulating proportions of more than 80%. It was 

suggested that this is due to higher passage rate, decreased ruminal digestion of starch, 

increased digestion of NDF and increased microbial efficiency.  Similarly, Popova et al. 

(2011) found that bulls which were fed a fibrous diet produced 21% more CH4 than those 

receiving a starch-rich diet. The authors concluded that this was attributed to methanogen 

activity and furthermore suggested that it is essential to use a holistic approach in studying the 

rumen ecosystem in order to better understand the effect of dietary CH4 mitigation in 

ruminants. 

4.4.4. Estimation vs. Measurement 

There are several approaches to estimate or measure CH4 emissions. This study used nine 

common estimation equations to compare their applicability for typical Central European 

diets. The range of the levels of the estimated results showed that there is still uncertainty and 

results depend strongly on the dataset which was used to develop the respective equation. 

Storm et al. (2012) reviewed the most common methods for measuring and estimating CH4 
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emissions from ruminants. When comparing ten of the most common CH4 prediction 

equations the authors derived that the application of the respective models leads to large 

differences.  They concluded that no method is flawless and knowledge of advantages and 

disadvantages of the experimental methods is essential and should be taken into account when 

planning, interpreting and publishing results. 

Klevenhusen et al. (2010) tested the accuracy of the Intergovernmental Panel on Climate 

Change (IPCC) default values, which is the standard model usually used for calculating cattle 

CH4 emissions. The authors indicated that the CH4 conversion rate is slightly underestimated 

by the IPCC (2006) for several diet types, in particular good quality forage-dominated diets, 

typical for Central Europe.  

Likewise, in a recently published review, Flachowsky et al. (2011) stated that several 

frequently used prediction equations are imprecise and resulting methane emissions vary to 

great extents. Most equations do not account for different feeding strategies. For example, 

equations which were derived from cows that were fed a forage and high fibre diet estimated 

much higher methane emissions than equations that were developed with data from cows 

which were fed a diet with a very high concentrate fraction.  

Nevertheless, policy makers depend on mathematical approaches to estimate regional, 

national and global GHG emissions and as long as datasets for CH4 emissions for individual 

animals and whole barn systems are lacking, frequently applied equations may still serve as 

indications. To ease and simplify future applications, the prediction equations could be 

classified into groups, clearly stating by which data they were derived, for example regional 

origin and diet composition.   

 

4.5. Conclusions 

An evaluation of dietary measures at farm level requires a close look at animal level, 

following an evaluation at herd level in terms of productivity and nutrient utilisation 

(Monteny et al., 2006). Subsequently measures to reduce CH4 production should imply 

increasing the level of rapidly fermentable carbohydrates to enhance propionate production 

and altering the diet concerning feed intake and feed composition to allow a better 

performance (Monteny et al. 2006; Beauchemin et al., 2008). 

Overall it can be stated that all equations are suitable for practical use to some extent.. DMI, 

ADFom, NDFom and forage proportion seem to be helpful dietary factors which can be easily 
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extracted, even from on-farm data sets, although fibre fractions might not necessarily be 

needed for rough estimations of CH4 emissions. Mitigation strategies should be considered for 

future research, while prediction equations can be of help for developing optimised feeding 

strategies. Nevertheless, the role of modelling and CH4 prediction equations should not be 

overestimated. The range in levels of CH4 estimates show that frequently used equations are 

still imprecise and may only serve as implications to locate trends (Walter 2009). It should be 

taken into consideration to expand and classify datasets, involving future CH4 measurements, 

on animal and herd level, feeding typical up to date regional diets in order to get more precise 

equations, suitable for a greater range of estimations. 
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ABSTRACT 

This study included 33 samples with main focus on unprotected or rumen protected rapeseed 

and soybean feedstuffs, which were analysed using an enzymatic in vitro procedure (EIVP) in 

order to determine intestinal crude protein (CP) digestibility (IPD) of ruminally undegraded 

CP (RUP). The EIVP involved the sequential digestion of samples with a protease from 

Streptomyces griseus, pepsin-HCl and pancreatin. The activity of S. griseus protease was 

related to the true protein content of the feed sample. Briefly, the EIVP started with 

determination of true protein. Feeds were incubated for 18 h in a buffer solution at a constant 

ratio (14 U/g) of S. griseus protease activity to feed true protein. The dried residues were 

incubated in pepsin-HCl solution for 1 h and residues from this step were incubated in 

pancreatin solution for 24 h. Results appeared to have lower IPD dimensions than literature-

data of previous studies. In addition, correlation analysis of IPD in relation to different 

nutrient values revealed a negative correlation between acid detergent fibre and IPD, as well 

as a positive correlation between crude protein, true protein and IPD. To sum up, the EIVP 

seems to be a reliable, simple laboratory method to estimate IPD of RUP in concentrate feeds. 

However, future studies may be constricted since sufficient reference values, e.g. in vivo data 

is missing.  

 
 

Keywords: Rumen, protein, rapeseed meal, soybean meal, enzymatic in vitro procedure 

 



Estimation of intestinal protein digestibility using a three-step enzymatic in vitro procedure 

 69 

5.1. Introduction 

Crude protein (CP) values of feeds do not supply precise information about the protein that 

may actually be digested in the small intestine by ruminants. The CP reaching the small 

intestine consists of both, the ruminally synthesized microbial CP as well as the feed CP that 

escaped ruminal degradation. Several techniques are available to determine ruminal 

degradation and whole-tract digestibility of CP. These techniques include in vivo and in vitro 

methods, and differ highly in complexity, cost and effort. Calsamiglia and Stern (1995) 

developed a three-step in situ-in vitro procedure (ISIVP) to estimate intestinal CP digestibility 

(IPD) by simulating physiological conditions in the ruminants` digestive tract. The method is 

supposed to be rapid, reliable and inexpensive, can be applied to a wide variety of protein 

supplements and accurately reflects differences in protein digestion (Calsamiglia and Stern, 

1995). However, the procedure includes ruminal incubation of samples which may be 

regarded as an additional error source and still might be unable to compete with simple 

laboratory methods.  Subsequently, Irshaid (2007) refined the procedure and developed an 

enzymatic in vitro procedure (EIVP) by replacing the rumen incubation step of Calsamiglia 

and Stern (1995) with an enzymatic treatment using a protease from Streptomyces griseus to 

mimic ruminal degradation of CP. Although values for IPD of ruminally undegraded dietary 

protein (RUP) are existing for a number of feeds, there are remarkable gaps in regard to 

reliable data, in particular for protein supplements like solvent-extracted oilseed meals, 

especially rapeseed and soybean commodities, which are considered to be an important source 

for high-quality protein to all farm animal species. For this reason, the main objective of this 

study was to evaluate IPD of RUP of several protein supplements which were predominantly 

characterised as protected from ruminal degradation through specific technical treatments, via 

the EIVP (Irshaid, 2007). The second aim of this study was to evaluate relationships and 

interactions between calculated IPD values and analysed chemical variables of feedstuffs. 

 

5.2. Materials and Methods 

5.2.1. Feedstuffs  

This study included 33 commodities that are commonly used as protein supplementation 

(Table 5.1), with a main focus on rapeseed meal (RSM) and soybean meal (SBM). Twenty-



Estimation of intestinal protein digestibility using a three-step enzymatic in vitro procedure 

 70 

three samples were protected from rumen degradation either by a physical, namely thermal 

treatment (13 samples) or by chemical treatment (10 samples). Chemical treatments included 

formaldehyde (4 samples), xylose (5 samples) or polyurea-formaldehyde (1 sample) 

additions, in order to decrease ruminal CP degradation. Further, five samples were specifically 

assembled for experimental purposes.  Three of these assembled RSM were extracted with 

hexane as a solvent, either directly (1 sample) or after squeezing (2 samples). The remaining 

two RSM samples were treated with supercritical CO2 (300 bar, 40°C), with or without 

squeezing. The supercritical CO2 treatment is supposed to be more gentle than other 

procedures and therefore does only little damage to the native protein of the rapeseed. The 

remaining samples were commercially purchased. Moreover, this study included samples of 

rapeseed hulls, rapeseed cake, protected wheat grain, unprotected lupine and solvent-extracted 

sunflower meal (protected and unprotected). Unfortunately information about specific 

treatments of samples was not provided for the commericially purchased samples. 

 

5.2.2. General analytical procedures 

The DM was estimated by oven-drying at 105 °C overnight. The N content was determined 

using the standard Kjeldahl procedure (4.1.1.) using a Vapodest 50s carousel (Gerhardt, 

Königswinter, Germany) for automated distillation and titration. The CP was calculated by 

multiplying N by 6.25. Acid detergent fibre (ADF) was analyzed according to AOAC (1990) 

and is expressed inclusicve residual ash. 



Estimation of intestinal protein digestibility using a three-step enzymatic in vitro procedure 

 71 

Table 5.1. Feedstuff description including analyzed results for dry matter (DM), Ash, ADFom 

(Acid detergent fibre, expressed inclusive residual ash), crude protein (CP) and true protein 

(TP) expressed as g/kg DM unlessed stated differently.  

No. Feedstuff DM (g/kg) Ash  ADF CP  TP 

1 Wheat grain, protecteda 865.9 2.6 25.7 143.5 111.3 
2 Lupine 886.3 2.8 201.6 296.5 224.7 
3 Lupine, protectedb 892.5 6.9 201 309.1 287.2 
4 Sunflowerseed meal 918.6 5.6 297.7 278.9 244.9 
5 Sunflowerseed meal, protectedb 907.0 5.9 312.1 280.2 242.4 
6 Rapeseed hullsc 892.2 4.8 628.8 135.3 113.8 
7 Rapeseed cake, protected 1b 911.5 6.3 208.9 336.8 290.1 
8 Rapeseed cake, protected 2a 895.0 5.6 244.1 291.4 275 
9 Rapeseed meal 1 896.8 6.6 226.5 354.6 325.4 
10 Rapeseed meal 2c 929.9 6.4 110.5 375.4 291 
11 Rapeseed meal 3c 942.3 5.4 199.2 290.7 193.4 
12 Rapeseed meal 4c 921.5 6.7 161.4 387.6 286.2 
13 Rapeseed meal 5c 931.1 6.2 148.4 371.4 253.7 
14 Rapeseed meal 6c 917.7 6.8 228.2 353.7 242.6 
15 Rapeseed meal, protected 1b 907.7 6.1 213.4 353.0 294 
16 Rapeseed meal, protected 2b 908.9 6.2 217.2 341.3 322.9 
17 Rapeseed meal, protected 3b 898.8 5.8 223 341.1 314.7 
18 Rapeseed meal, protected 4b 910.3 6.4 208.5 340.3 331.4 
19 Rapeseed meal, protected 5b 888.6 6.1 235.8 338.3 293.8 
20 Rapeseed meal, protected 6b 899.7 5.8 216.3 335.5 303.1 
21 Rapeseed meal, protected 7b 894.9 6.2 226 346.8 316.7 
22 Rapeseed meal, protected 8b 914.9 6.4 203.2 355.4 282.4 
23 Rapeseed meal, protected 9d 902.6 6.7 216.3 341.8 333.2 
24 Rapeseed meal, protected 10d 924.3 5.9 274.8 362.4 323.5 
25 Rapeseed meal, protected 11a 921.6 6.1 225.9 323.3 303.3 

26 
Rapeseed-/Soybean meal, protected 
1b 883.2 6.4 229.3 337.9 318.4 

27 
Rapeseed-/Soybean meal, protected 
2b 889.8 6 155.4 400.6 382.7 

28 Soybean meal 891.5 6.3 64.8 513.3 460.6 
29 Soybean meal, protected 1d 884.6 5.8 103.1 431.8 414.7 
30 Soybean meal, protected 2d 922.7 6.6 179.6 486.7 446.8 
31 Soybean meal, protected 3a 875.1 5.1 98.5 456.7 424.5 
32 Soybean meal, protected 4a 921.0 6.3 51.6 447.8 436.9 
33 Soybean meal, protected 5e 895.3 5.6 126.3 501.3 454.9 

a treated with xylose in lignosulphonate solution to increase ruminally undegraded CP fraction 
b treated with a physical- thermal method to increase ruminally undegraded CP fraction 
c specifically assembled for experimental purposes 
d treated with formaldehyde to increase ruminally undegraded CP fraction 
e treated with polyurea formaldehyde to increase ruminally undegraded 
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5.2.3. Enzymatic in vitro procedure 

Before enzymatic treatment, samples were ground through a 1-mm screen (Model M 20; IKA, 

Staufen, Germany). The three-step enzymatic procedure (ISIVP) followed Calsamiglia and 

Stern (1995) except for the first step that stimulates rumen incubation, which was done 

according to Irshaid (2007) and Irshaid and Südekum (2007), who replaced the original in situ 

rumen degradation step with a standardized Streptomyces griseus protease incubation. The 

true protein (TP) contents of all samples were determined using trichloroacetic acid (1000 g/l) 

as precipitating agent (Licitra et al., 1996). Based on the TP concentration of the samples, 

addition of a S. griseus protease solution was adjusted to the ratio of 41 U/g TP (Licitra et al., 

1998; 1999) for ruminal protein degradation. Samples (2.5 g) were accurately weighed into 

500 ml Erlenmeyer flasks and 200 ml of borate-phosphate buffer (pH 6.7-6.8) were added. 

Flasks were then kept in a shaking water bath at 39 °C for 1 h. The required amount of fresh 

protease solution was added to the flask. The flasks were removed after 18 h.. Following, the 

content was filtered with the aid of a mild vacuum through a filter bag (38 µm pore size). 

Mild vacuum was used to facilitate the filtration. Residues were washed with 1.25 l deionized 

water and dried in a forced-air oven at 55 °C for 48 h. 

Four replicates of each feed sample residue were weighed into 50-ml centrifugation tubes in 

an amount corresponding to 15 mg N for intestinal protein digestion. Subsequently, 10 mL of 

a 0.1 N HCl solution (pH 1.9) containing 1 g/l of pepsin were added to each tube and tubes 

were incubated at 38 °C for 1 h in a shaking water bath. After incubation, pH was neutralized 

with 0.5 ml of 1 N NaOH; then 13.5 ml of a phosphate buffer (pH 7.8) containing 37.5 mg of 

pancreatin were added to each tube which was then vortexed and incubated at 38° C in a 

shaking water bath. Immediately after 24 hours incubation, 3 ml of trichloroacetic acid 

solution (1000 g/l) were added to each tube to stop enzymatic action and precipitate 

undigested protein. After about 15 minutes , the samples were centrifuged at 10,000 x g for 

another 15 minutes at 5 °C. The precipitate was then filtrated through filter paper (no. 589, 

Schleicher und Schuell, Dassel, Germany) and the residue on the filter paper was analysed for 

insoluble N by Kjeldahl procedure. 
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5.2.4. Statistical analysis and calculations 

Intestinal protein digestibility (IPD; g/kg CP) was estimated as: 

IPD = (RUP - RCP)/ RUP x 1000; 

where RUP, the rumen undegradable CP content (g) of the feed sample which was weighed 

into a 50-ml centrifugation tube and RCP, residual CP content (g) of the precipitate. 

PROC CORR of SAS 9.2 (SAS® 2009) tested potential relations between calculated IPD 

values in relation to DM, ash, acid detergent fibre (ADF, expressed inclusive residual ash) and 

CP. Pearson’s correlation coefficient was reported from PROC CORR as an indicator of the 

strength and the direction of these relationships. Relations between these variables and IPD 

were considered significant at P < 0.05. 

Data for IPD was analyzed as a completely randomized design using the GLM procedure of 

SAS (SAS® 2009) separately for all 33 samples. The following orthogonal contrasts were 

used to compare treatment means (for explanation of feedstuff and treatment see Table5.1): 

‘protected vs. unprotected’(Feedstuff No. 2, 4, 9-14, 28 vs. Feedstuff No. 3, 5, 15-25, 29-33); 

‘RSM protected vs. SBM protected’ (Feedstuff No.15-25 vs. Feedstuff No. 29-33); ‘other 

protein supplements vs. RSM’ (Feedstuff No. 1, 3, 5 vs. Feedstuff No. 15-25); ‘other protein 

supplemts vs. SBM’ (Feedstuff No. 1, 3, 5 vs. Feedstuff No. 29-33).   

 

5.3. Results 

Table 5.2 shows analysed IPD values, as well as effects of treatment and feedstuff 

combinations. In general, rapeseed products mean IPD values for RUP gathered at 648 g/kg 

CP and soybean feedstuffs exhibited an average value of 755 g/kg CP. The highest IPD value 

for RUP was shown by a formaldehyde-treated SBM with 880 g/kg CP, followed by xylose 

treated wheat grain with a IPD value of 840 g/kg CP. While the SBM also resulted in average 

to high CP values (446 g/kg DM), the analysed wheat grain exhibited CP value of (143 g/kg 

DM). The highest IPD value for RUP for a RSM was shown by a meal which was extracted 

with supercritical CO2 (820 g/kg CP). Likewise this RSM is characterised by a relatively 

average CP value (290 g/kg TM). The lowest IPD value for RUP for a RSM was displayed by 

a meal which was extracted with hexane (498 g/kg CP). The SBM generally showed high IPD 

values and ranged between 722 g/kg CP up to 880 g/kg CP. Lowest IPD values were found in 
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hexane extracted rapeseed hulls (182 g/kg CP). Untreated SBM and RSM did not reveal 

numerically lower IPD values (SBM: 821 g/kg CP; RSM: 533 g/kg CP) although it has to be 

stated that the tested untreated SBM showed a relatively high CP value (513 g/kg DM). 

The IPD values were affected by treatment (Table 5.3. protected vs. unprotected; P<0.001) 

and moreover, indicated that the type of protein supplement has an influence on the IPD 

(RSM protected vs. SBM protected; P<0.001; other protein supplements vs. RSM; P<0.001; 

other protein supplemts vs. SBM; P<0.001). 

Analysis of correlation coefficients revealed a strong negative correlation between ADF 

values and IPD (r = -0.718, P < 0.001) as well as positive correlations between CP and IPD 

(r= 0.4535, P = 0.008) as well as TP and IPD (r = 0.46111, P = 0.0069). 
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Table 5.2. Intestinal protein digestibility (IPD) of ruminally undegraded protein (RUP), 

respective standard deviations (sd), expressed in g/kg crude protein (CP). 

No. Feedstuff IPD sd 

1 Wheat grain, protecteda 840 7,1 

2 Lupine 625 47,7 

3 Lupine, protectedb 617 9,3 

4 Sunflowerseed meal 685 31,6 

5 Sunflowerseed meal, protectedb 625 13,5 

6 Rapeseed hullsc 182 17,4 

7 Rapeseed cake, protected 1b 645 13,2 

8 Rapeseed cake, protected 2a 680 17,4 

9 Rapeseed meal 1 533 21,0 

10 Rapeseed meal 2c 816 14,4 

11 Rapeseed meal 3c 820 11,5 

12 Rapeseed meal 4c 541 18,6 

13 Rapeseed meal 5c 498 10,7 

14 Rapeseed meal 6c 596 7,1 

15 Rapeseed meal, protected 1b 544 17,0 

16 Rapeseed meal, protected 2b 599 12,0 

17 Rapeseed meal, protected 3b 592 18,8 

18 Rapeseed meal, protected 4b 666 17,7 

19 Rapeseed meal, protected 5b 639 27,1 

20 Rapeseed meal, protected 6b 663 12,3 

21 Rapeseed meal, protected 7b 660 14,9 

22 Rapeseed meal, protected 8b 580 11,1 

23 Rapeseed meal, protected 9d 648 5,4 

24 Rapeseed meal, protected 10d 789 11,3 

25 Rapeseed meal, protected 11a 749 10,6 

26 Rapeseed-/Soybean meal, protected 1b 619 7,2 

27 Rapeseed-/Soybean meal, protected 2b 723 19,4 

28 Soybean meal 821 7,2 

29 Soybean meal, protected 1d 757 21,0 

30 Soybean meal, protected 2d 880 11,4 

31 Soybean meal, protected 3a 722 5,4 

32 Soybean meal, protected 4a 750 7,1 

33 Soybean meal, protected 5e 770 14,9 
a treated with xylose in lignosulphonate solution to increase ruminally undegraded CP fraction 
b treated with a physical- thermal method to increase ruminally undegraded CP fraction 
c specifically assembled for experimental purposes 
d treated with formaldehyde to increase ruminally undegraded CP fraction 
e treated with polyurea formaldehyde to increase ruminally undegraded 
e specifically assembled for experimental purposes 
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Table 5.3. Contrasts, effects of treatment combinations of analysed feedstuff 

‘protected vs. unprotected’ 
(Feedstuff No. 2, 4, 9-14, 28 vs. Feedstuff No. 3, 5, 15-25, 29-33) 0.001 
‘RSMa protected vs. SBMb protected’  
(Feedstuff No.15-25 vs. Feedstuff No. 29-33) 0.001 
‘other protein supplements vs. RSM’  
(Feedstuff No. 1, 3, 5 vs. Feedstuff No. 15-25) 0.001 
‘other protein supplements vs. SBM’  
(Feedstuff No. 1, 3, 5 vs. Feedstuff No. 29-33) 0.001 

a RSM, Rapeseed meal 
b SBM, Soybean meal 

5.4. Discussion 

There are several attempts to standardize the method to evaluate IPD. One big aim in the last 

years was to avoid the rumen incubation step which is mandatory in the most common 

procedures (Hvelplund,1985; Hvelplund et al., 1992). Efforts included the incubation of a 

feed sample with mixed rumen microorganisms or proteolytic enzymes extracted from rumen 

contents (Kohn and Allen, 1995; Luchini et al., 1996). Results of these studies were promising 

but fistulated animals were still needed. Other studies found that feed samples can also be 

incubated in a solution containing a protease from S. griseus to replace rumen fluid or ruminal 

proteolytic enzymes (Kopency et al., 1989; Roe et al., 1991; Aufrere et al., 1991; Assoumani 

et al., 1992, Cone et al., 1996; Coblentz et al., 1998). Finer aspects in this context were added 

by Licitra et al. (1998, 1999) who determined the activity of protease to estimate the ruminal 

in situ CP degradability values more precisely. Moreover, the used variable ratio of enzyme 

units for each tested feed sample depending on TP content instead of using the same constant 

ratio for all samples.  

With this knowledge, Irshaid (2007) complemented the well established three-step ISIVP by 

Calsamiglia and Stern (1995) and found evidence that IPD values estimated from the new 

procedure (EIVP) compared well with data derived from ISIVP (r2 = 0.98, P < 0.0001) and 

data obtained by the mobile bag technique (MBT; r2 = 0.66, P < 0.0001) by Hvelplund (1985) 

and Hvelplund et al. (1992). Similarly, present results are in agreement with previous studies 

which have been performed to evaluate IPD in concentrate feedstuffs with either the MBT or 

the ISIVP (Table 5.4). In this study wheat grain exhibited the highest IPD value- this is in 

agreement with work by Frydrych (1992) who observed an IPD value of 886 g/kg CP using 

the MBT, and Irshaid (2007) who found a IPD value of 802 g/kg CP for wheat grain using the 

EIVP. A slightly higher IPD value was observed by Tomankova and Homolka (2002), who 

observed a relatively high IPD value of 946 g/kg CP for wheat grain using the MBT. 
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Similarly, sunflowerseed meal analysed with the MBT was expressed with an IPD value of 

850 – 980 g/kg CP in a study by Alcaide et al. (2003) and hence was higher then the 

sunflowerseed meal in this study. Likewise to our study, IPD values found in literature for 

RSM and SBM differ to great extents. Studies which used the MBT found IPD values similar 

to this study for RSM (Frydrych et al., 1992; Tomankova and Homolka, 2002) and higher IPD 

values for SBM (Frydrych, 1992; Tomankova and Homolka, 2002). Similar findings can be 

observed by studies which used the ISIVP to analyse the IPD. Intestinal protein digestibility 

found in literature for RSM ranged comparable to this study (Kopecny et al., 1998;  Woods et 

al., 2003), while IPD values for SBM were found higher in other studies (Kopecny et al., 

1998;, Woods et al., 2003; Samadi and Yu, 2011). However, Can et al. (2011) who also used 

the EIVP to estimate IPD from SBM found alike results to this study. 

It appears that findings of ISIVP and MBT result in higher IPD values than the ones 

determined in the present study by EIVP. Since both procedures include ruminal incubation of 

the samples, higher variations of results are possible, mainly due to factors like animal 

characteristics, bag or temporal properties as well as other procedural aspects (Kopecny et al., 

1998; Vanzant et al., 1998). Consequently, the EIVP could be more repeatable than 

established in situ methods since laboratory standardization may be easier to accomplish than 

diminishing individual animal effects. 
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Table 5.4. Literature values of intestinal protein digestibility (g/kg CP) of feedstuff estimated by mobile bag technique (MBT), in situ in vitro 

procedure (ISIVP) or by the three-step enzymatic in vitro procedure (EIVP). 

Feedstuff 
Frydrych, 
1992 

Tomankova and 
Homolka, 2002 

Gargallo et 
al., 2006 

Kopecny 
et al., 1998 

Alcaide et 
al., 2003  

Woods et 
al., 2003 

Samadi and 
Yu, 2011 

Irshaid, 
2007 

Can et al., 
2011 

Wheat graina 886 946 - - - - - 802 - 

Lupine - - 882 - - - - - - 
Sunflowerseed meal - - - - 850-980 605 - - - 
Rapeseed meal 571 745 - 720  620 - 297-710 - 

Rapeseed mealb - - - - - - - - - 

Rapeseed mealb  - - - - - - - 705 - 

Rapessed mealb - - - - - - - - - 

Soybean meal 990 973 - 965-972 - 840 824 - 779 

Soybean mealb - - 963 - - - 799-898 - 690-778 

Soybean mealc - - - - - - - 793-801 - 

Soybean meala - - - - - - - 822 - 

Method MBT MBT ISIVP ISIVP ISIVP ISIVP ISIVP EIVP EIVP 
atreated with xylose in lignosulphonate solution to increase ruminally undegraded CP fraction  
btreated with a physical- thermal method to increase ruminally undegraded CP fraction 
ctreated with formaldehyde to increase ruminally undegraded CP fraction 
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5.5. Conclusions 

The comparison between experimentally determined results and literature data resulted in 

agreements as well as variations. In order to evaluate if absolute results are plausible and 

applicable, further research regarding IPD of RUP is required. However, it is possible that the 

EIVP is more standardized than the ISIVP and the MBT due to replacing the incubation of 

feed samples in the rumen with a more repeatable enzymatic procedure. This study showed 

that the EIVP seems to be an adequately working method to estimate IPD of RUP in 

concentrate feeds. The EIVP in its current, strictly standardized form can be applied to 

develop a database that can be used for protein evaluation systems for establishing tabular 

values of IPD. Nevertheless, future studies may be hindered since sufficient reference values, 

e.g. in vivo data is completely missing.  
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6. GENERAL DISCUSSION AND CONCLUSION  

Three different topics in animal nutrition have been discussed in the previous parts of this 

thesis – methane emissions, co-products of biofuel production and a new method to estimate 

intestinal protein digestibilities of the ruminally undegraded crude protein. At first sight these 

topics seem to be very different and the approach to look at them from one perspective is 

difficult. Nevertheless, they have certain things in common, which can be detected at a closer 

view. The background of all three topics is the better and more efficient use of limited resour-

ces, their impacts on the environment and a better understanding of agroecosystems. The aim 

of the general discussion and conclusion is to draw links between these topics and establish 

new approaches to see connections from a greater perspective. 

Two of the studies of this work deal with topics that are seemingly unrelated but inherently 

connected. Biofuel production is considered to be one of the “hot topics” these days. Not only 

is there a fast development in the different methods and techniques, there is also a huge public 

debate about the ecological and economical sense of its use. Apart from the question of the 

general use there is also a recurring discussion about the use of respective co-products as 

feedstuff for farm animals.  As the world moves forward to a population of nine to ten billion 

people by 2050 (Godfray et al., 2010), land availability becomes a bigger issue. There is 

competition for land providing food, water, timber, energy, settlements, infrastructure and 

biodiversity. Two of the greatest challenges facing humanity are the need to feed this growing 

population and trying to avoid climate change and adapting to the impact that cannot be 

avoided. There is also need to improve the resilience of food production to environmental 

change (Easterling et al., 2007), protect biodiversity (FAO, 2010), protect the freshwater 

resource (Frenken and Kiersch, 2011), move to healthier diets (WHO, 2004) and reduce the 

adverse impacts of food production on the whole ecosystem (Firbank et al., 2011). 

Society faces important decisions regarding climate change and about the potential 

implications of the build-up in atmospheric concentrations of greenhouse gases (GHG). This 

build-up will affect the global climate, most likely stimulate global warming and moreover, 

will take a long time to reverse (IPCC 2000). Agriculture can play a role in an effort to reduce 

net emissions of GHG. It has the potential to absorb emissions, particularly CO2, through 

changes in land use including conversion of cropland to grassland or forest. Agriculture can 

also offset GHG emissions by increasing the production of biomass commodities, which can 

serve either as feedstock for electricity generating power plants or as a substitute for fossil 
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fuel based petrol. The biofuel product ethanol has desirable environmental/health attributes 

relative to petroleum- based fuels. The belief that biofuels reduce GHG emissions is 

promoting a great interest in them throughout the world. This belief rests on Life Cycle 

Analysis models, which include calculations of GHG emissions from the manufacture of the 

fertilizers and pesticides used in crop production; from fossil fuel used to transport the 

fertilizer to the farm, farming operations and transport of the crop to the biofuel refinery 

(Schneider and McCarl, 2003).  

In virtually all lifecycle analyses, the GHG emissions from producing, transporting and 

refining cereals and vegetable oil into ethanol and biodiesel substantially exceed the 

emissions from mining and refining crude oil into petrol or diesel. Reductions of GHG are 

concluded as a result of ignoring the carbon emitted as CO2 from the exhaust pipes of vehicles 

that use biofuels, as well as the CO2 emitted by fermentation. In a world that needs to produce 

more food while reducing emissions, it would be surprising to discover benefits from biofuels 

that use much of the world’s best cropland. A more relevant focus of biofuel policy should be 

on the generation of additional biomass from waste feedstock, or high-yielding bioenergy 

crops with low nitrogen demand on land that is capable of generating these yields (Smith and 

Searchinger, 2012). However, biofuels can be produced in many different ways and in many 

different locations in the world with widely varying conditions. It is not possible to generalise 

the debate about whether production of biofuels is a threat or an opportunity. To stimulate a 

more varied discussion, as well as providing better decision data for various organisations, 

more knowledge needs to be developed and disseminated so the arguments for and against 

biofuels can be reviewed critically (Börjesson, 2009).  

One of the major contributions to atmospheric pollution is caused by Nitrogen (N) derived 

from cattle, especially dairy cows. On the one hand dairy cows are able to make efficient use 

of low levels of dietary N because microbes in the rumen can synthesize a large proportion of 

the animals required N (Broderick, 2009). However, on the other hand, there is a limited 

potential of cows to convert feed N into milk. Subsequently, excessive N intake, mainly 

through high protein supplements, leads to large losses of N through animal excretion. One 

approach to define and border the feed N use efficiency (NUE) is calculated as the percentage 

mass of N output per mass of N input. Chase et al. (2003) specified the feed NUE of less than 

20% as very low; 20 - 25% indicates substantial improvements can be made; 25 - 30% is the 

normal, average value while 30 - 35% is seen as above average and greater than 35% is 

considered as excellent. Table 6.1 gives an overview about ranges of NUE found in literature.  
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Powell et al. (2010) found that feed NUE is generally greater on confinement- than on 

grazing-based dairy farms due to several factors. Confinement farms have more detailed 

information on the nutritive values of the fed diets, so they can more efficiently control N 

levels in dairy cow rations. This allows more precisely balanced diets and better strategic use 

of concentrates and other protein supplements. On grazing farms it is more difficult to control 

the feed protein because pastures, particularly during early growth, are higher in (crude) 

protein than the requirement of dairy cows (NRC, 2001). Therefore, recommendations for 

improving feed NUE are farm specific and may also vary by region. The main aim is to 

narrow the gap between the actual feed NUE and the potential feed NUE, which leads to 

benefits, such as reductions in the need to import feeds and fertilizers (Kohn et al., 1997), 

increasing whole-farm NUE, reducing costs and the decrease of N excretion through manure.  

Table 6.1. Indicative range of N inputs, N outputs and feed N use efficiency (NUE) on dairy 

farms (Powell et al., 2010).  

Input to output parameters 
N input range  
(g x cow/day) 

NUE range  
(%) 

Source 
 

Feed to milk (feed-NUE) 26-33 26-33 Powell et al. (2006a) 

 22-29 22-29 Kebreab et al. (2001) 

 21-32 21-32 Castillo et al. (2000) 

 21-36 21-36 Chase (2004) 

 16-24 16-24 Aarts et al. (2000) 
 

One of the big aims in animal nutrition is an efficient N feeding strategy. In the ideal case, the 

animal is neither undersupplied nor oversupplied with protein. Nitrogen losses through faeces 

and urine contribute to environmental pollution, either as ammonia, nitrous oxide, N oxides in 

air, or as nitrate in soil and ground water (Tamminga, 1992). Nevertheless, cattle and other 

ruminants are able to convert vast renewable resources from rangeland, pasture, crop residues 

and other by-products into food. With ruminants, land that is too poor to cultivate becomes 

productive. Moreover, nutrients in co-products are utilized and do not become a waste-

disposal problem. In an ideal case, the dairy cow nutrient requirements should be met by their 

natural feed to forage ratio. High production demands and limited space make protein 

supplements an essential part of the diet. The challenge is to establish the minimal amount of 

protein required by high yielding dairy cows to achieve optimal milk production while 

minimizing environmental emissions.  

To secure efficient feeding strategies there have to be methods estimating precisely how much 
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nitrogen the animal needs, or how much for the animal utilisable protein is available in the 

feedstuff. The current feed evaluation systems recognise the need to estimate the protein value 

as the amount of protein truly absorbed in the small intestine (NRC, 1985; NKJ, 1985; AFRC, 

1992; Volden, 2011). The application of these systems requires data on the digestibilitiy of 

rumen- undegradable protein in the small intestine. Currently, methods to estimate intestinal 

digestibilites rely heavily on fistulated animals. In situ and in vitro methods are high in cost, 

labour, time and results may vary to great extents, due to the lack of standardization. In 

general in vitro methods are preferable but must first be validated with in vivo or in situ data.  

In conclusion it can be stated that there is still research needed to improve existing systems in 

order to optimise feeding strategies to meet the animals’ nutrient requirement as well as 

minimising GHG emissions and energy loss in agricultural production systems. This reseach 

should include the improvement of GHG estimation systems towards a more differentiated 

view to regional conditions and resources (e.g.biofuel co-products) as well as an improvement 

of the protein evaluation system and standardised, easy to apply laboratory methods to 

estimate nutrient requirements in order to achieve a more effienct usage of local resources. 

Growing agricultural production, high demand for food, food security, the emerging biofuel 

development and climate change are all linked to each other and in the future will all have a 

significant impact on the world food system 
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