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1. Summary 
 

To characterize lipid uptake pathways in cultured cells, uptake and metabolism of different 

isotope-labeled lipid probes were investigated in human skin fibroblasts, a mouse 

macrophage-like cell line (RAW264.7), human hepatocellular carcinoma cells (HepG2 cells) 

and a human squamous carcinoma cell line (A431 cells). As lipid probes, we used different 

fatty acids, cholesterol, a cholesteryl ester, a triacylglycerol, and the phospholipids 

phosphatidylcholine and sphingomyelin. The uptake and metabolism of exogenously added 

lipid probes differed with cell type, lipid structure, and mode of delivery. Cationic 

amphiphilic drugs (CADs) are widely used drugs that are known to interfere with lipid 

metabolism and to induce phospholipidosis in human patients. We investigated the influence 

of the desipramine, imipramine, chlorpromazine, chloroquine, and FTY720 as representative 

CADs on uptake and processing of the phospholipid probes. Desipramine was found to have 

drastic and cell-type specific effects on FA processing. Lipid processing was also impaired in 

a genetic phospholipidosis, Niemann-Pick disease, type A. 

 

Fatty acids: to study the uptake and processing of C-18 fatty acids in cultured cells, uptake 

and incorporation of four FA probes in membrane phospholipids and in nonpolar lipids were 

monitored. We used FA probes that differed in the degree of unsaturation: stearic acid (18:0), 

oleic acid (18:1,ω-9), linoleic acid (18:2, ω-6), and linolenic acid (18:3, ω-3). These FA were 

applied in complex with bovine serum albumin (BSA) to the four different types of cultured 

cells. Significant differences were found between uptake and metabolism of these fatty acids, 

when fatty acid class and cell type were varied. FA uptake by fibroblasts and macrophages 

was highest with 18:1, and lowest with 18:3, and 18:0, respectively. Uptake by A431 cells 

and HepG2 cells was lowest with 18:0, and highest with 18:2 and 18:3, respectively. In 

macrophages, stearic acid and oleic acid are predominantly incorporated into nonpolar lipid 

droplet (LD) lipids, while linoleic and linolenic acid are predominantly incorporated into 

polar lipids. Also in HepG2 cells, the level of FAs incorporated into polar lipids was much 

greater for unsaturated FAs than for saturated FAs. In fibroblasts, only a minor incorporation 

of FAs into neutral lipids and a major incorporation into polar lipids were observed. In A431 

cells, 18:2 was best incorporated into neutral lipids, followed by 18:3, 18:1, and 18:0. The 

impact of a cationic amphiphilic drug (CAD, FIASMA = functional inhibitor of acid 

sphingomyelinase), desipramine, on this process was also analyzed. Treatment with 

desipramine caused a tremendous reduction of FA-incorporation into triacylglycerols of 
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macrophages and A431 cells, but only a slight decrease in HepG2 cells. Fibroblasts showed 

an unexpected increase in the incorporation of FAs into triacylglycerol (TAG) and 

diacylglycerol (DAG). We also measured the uptake of [
3
H]desipramine by different types of 

cells, which was lowest in fibroblasts. 

 

Cholesterol, cholesteryloleate, and triolein: to characterize the uptake pathways for these 

lipids, we investigated the effect of different lipid delivery methods. The exogenous lipid 

probes were applied to the four different types of cultured cells either in complex with bovine 

serum albumin (BSA), or as components of low density lipoprotein (LDL) particles. 

Significant differences in uptake and metabolism after application of these two methods were 

found. When incorporated into LDL, uptake of cholesterol, cholesterol ester, and 

triacylglycerol was 2-4-fold higher than when delivered by BSA. Furthermore, the uptake of 

cholesterol presented as BSA-complexes was best for A431 cells, while uptake of the other 

lipids presented as LDL- and BSA-complexes were higher in fibroblasts than the other cell 

types. Also the metabolic incorporation of cholesterol and oleate derived from cholesterol 

ester and triacylglycerol was higher. These findings indicate that LDL-associated lipid is 

incorporated into cultured cells via a pathway that differs significantly from that of BSA-

lipid. 

 

Cholesterol and phosphatidylcholine processing in Niemann-Pick disease, type A: to 

investigate the role of Niemann-Pick disease, type A (NPA), one of the lysosomal storage 

diseases, on the processing of [
14

C]cholesterol and [
14

C]phosphatidylcholine, we applied the 

methods mentioned above to human fibroblasts and to fibroblasts from patients with NPA 

disease. Incubation with LDL-associated [
14

C]phosphatidylcholine and LDL-associated 

[
14

C]cholesterol show reduced processing of [
14

C]phosphatidylcholine and [
14

C]cholesterol 

by 25, and 21%, respectively. This study indicates that in NPA disease, also nutrient delivery 

via the endolysosomal system is impaired. 

 

Phosphatidylcholine (PC) and sphingomyelin (SM) processing in drug-treated cells: to 

investigate the influence of cationic amphiphilic drugs on uptake and processing of 

exogenously added choline-containing phospholipids, the influence of five cationic 

amphiphilic drugs, desipramine (DMI), imipramine (IM), chlorpromazine (CPZ), chloroquine 

(CQ), and fingolimod (FTY720), were studied. The lipid probes were delivered as 

components of LDL-particles, and the metabolic fate of their isotope-labeled fatty acid 

moieties was monitored in the four different cell types mentioned before. Concentrations of 
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10μM had slightly to no apparent effect on [
14

C]-SM and [
14

C]-PC processing for all CADs 

tested. Profound changes were observed when CADs were administered in high concentration 

(20µM, and 40µM). In macrophages, all investigated drugs lead to an impaired processing of 

SM and PC. Incorporation of the fatty acids released from PC and SM into diacylglycerols, 

triacylglycerols, and glycerophospholipids was drastically reduced in the presence of 20µM 

of the drugs. Furthermore, each cell type showed a characteristic neutral lipid and 

phospholipid pattern. The effect of the investigated CADs on SM and PC processing in terms 

of pmol per μg cell protein depend on the concentration of the investigated CADs, the cell 

type, and the identity of the FA in lipid probes. For example, 20µM FTY720 caused a 

drastically reduced incorporation of sphingomyelin-derived stearic acid into triacylglycerols 

in macrophages, fibroblasts and A431 cells, but not in HepG2 cells. While 20µM FTY720 

caused a slightly reduced incorporation of phosphatidylcholine-derived palmitic acid into 

triacylglycerols in macrophages. Therefore, our method is able to detect metabolic steps that 

are affected in the presence of CADs and to predict the potential of CADs to induce 

phospholipidosis. 
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2. Introduction 

 

In this work, the uptake and metabolism of different isotope-labeled lipid probes in 

fibroblasts (which can be obtained also from the patients), macrophages (which can 

eat/consum, or engulf/digest cellular debris), HepG2 cells (that are derived from the liver 

tissue which play a major role in lipid metabolism) and A431 cells (which have a high 

content of lipid droplets) were compared, to characterize lipid uptake pathways by cultured 

cells.  

 

2.1. Cell culture 

 

The cell is the basic structural and functional unit of all known living organisms. It is the 

smallest unit of life that is classified as a living thing, and is often called the building block 

of life. Organisms can be classified as unicellular (consisting of a single cell; including most 

bacteria) or multicellular (including plants and animals). Humans contain about 10
14

 cells, for 

every 10 of those, about one is actually human and the remainder from bacteria and other 

microorganism. The cell is size ranging from 135µm in the anterior horn in the spinal cord to 

4µm in granule cells in the cerebellum, but a typical cell size is 10µm and a typical cell mass 

is 1ng. Cell culture is a term referred to the growth and maintenance of prokaryotic or 

eukaryotic cells under sterile and appropriate conditions (typically, 37 °C, 5% CO2 for 

mammalian cells) out of their natural environment. Some cells can naturally survive in 

suspension cultures without being attached to a surface, such as cells that exist in the 

bloodstream. Adherent cells require a surface to continue to divide and fill the available area, 

such as a standard culture plastic dish. Sterile techniques are generally performed to avoid 

contamination with bacteria, yeasts, or other cells. To exclude contaminating 

microorganisms, antibiotics (e.g. penicillin and streptomycin) are added to the growth media, 

and the cell culture is carried out in a biosafety hood. Cell culture conditions can vary widely 

from one cell type to another. The growth medium is the most commonly varied factor 

among the culture conditions. It can vary in pH, glucose concentration, growth factors such 

as calf serum, and the presence of other nutrients. Cultured cells of different types serve as 

model systems of reduced complexity for living cells in their physiological surroundings. 

Although lipids of different classes have been applied to different types of cultured cells, a 

systematic study is missing that shows how different cells types take up and utilize lipids of 

different classes. In the present work, I provide a systematic comparison of four different cell 

http://en.wikipedia.org/wiki/Carbon_dioxide
http://en.wikipedia.org/wiki/Antibiotics
http://en.wikipedia.org/wiki/Penicillin
http://en.wikipedia.org/wiki/Streptomycin
http://en.wikipedia.org/w/index.php?title=Biosafety_hood&action=edit&redlink=1
http://en.wikipedia.org/wiki/Growth_factors
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types towards their capacity to incorporate and metabolize different classes of lipids from the 

culture medium. This is part of a larger program to determine the kinetics by which 

exogenously applied lipids of different classes are taken up by cultured cells and processed to 

lipid droplets (LDs) constituents. LDs are intracellular storage organelles for nonpolar lipids 

(Goodman, 2008; Thiele, et al. 2008). They play a crucial role for lipid metabolism and 

homeostasis (Fujimoto, et al. 2008) and for diseases like obesity, metabolic syndrome, 

diabetes, and others (LeLay, et al. 2009). However, to make confident comparisons among 

studies using cells from different sources, the following cells were compared. 

 

2.1.1. A macrophage-like cell line 

 

In 1893 Metchnikoff was the first who used the term “macrophage”. Human macrophages are 

about 21µm in diameter. Macrophages are derived from monocytes that circulate in the 

blood. The most convenient source of macrophages are CD34 positive bone marrow 

progenitors that shed their progeny after proliferation and differentiation to promonocytes in 

the bloodstream. They then further differentiate into monocytes and extravasate into tissues 

(Ross, et al., 2002). Macrophages develop from the division of monocytes that migrate from 

the blood into many tissues throughout the body, including connective tissues, liver, lung, 

lymph nodes, spleen, bone marrow, skin, and others. The type of macrophage that results 

from monocyte differentiation depends on the type(s) of cytokines that these cells encounter. 

Cytokines are peptides and proteins produced by immune cells that can influence cell 

behavior and affect interactions between cells. They act as antimicrobial mediators and play 

critical roles in immune regulation and wound-healing. 

Macrophages have a wide range of cellular functions; they engulf and destroy cellular debris, 

ingest foreign invaders of the body, damaged macromolecules, bacteria, and infected or dead 

body cells by phagocytosis. After infection, damaged tissue is repaired and the remaining 

macrophages and other leukocytes move out of the tissue and reenter the circulation. In 

atherosclerosis, macrophages migrate to inflamed areas of the vessels of the cardiovascular 

system, where they can endocytose substantial amounts of cholesterol from lipoproteins, and 

accumulate within the artery wall under some circumstances (Lucas, et al. 2001). As the 

imported cholesterol is converted into the esterform, they accumulate cholesteryl esters in 

lipid droplets. These lipid-filled macrophages are called foam cells because the lipid droplets 

have a foamy appearance. As macrophage foam cells accumulate in an artery wall, they 

initially form an early fatty streak, the first unique step in atherosclerosis. RAW 264.7 (Fig. 
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2.1B), a mouse leukaemic monocyte macrophage cell line, is the most commonly used 

monocyte-derived line. These cell lines show fundamental differences to the primary cells in 

that they grow continuously in culture due to permanent alterations in their genes that may 

have an effect on the signaling cascades that are activated by microbial ligands (Hartley, et al. 

2008). 

 

2.1.2. Human skin fibroblasts 

 

The skin is the largest organ system in the body, acting as the protective barrier against the 

damaging effects of the environment. The skin consists of two basic layers, the epidermis, 

which is largely composed of keratinocytes, and the dermis. Fibroblasts have a branched 

cytoplasm surrounding an elliptical, speckled nucleus having one or two nuclei that often 

locally align in parallel cluster when crowded. Fibroblasts are large and flat with elongated 

cells possessing processes extending out from the ends of the cell body (Fig. 2.1A). 

Fibroblasts produce collagen proteins in order to maintain structural framework integrity for 

many tissues. They also appear to play an important role in the pathophysiology of fibrotic 

diseases as well as in cutaneous wound-healing tissues (Cevikbas, et al. 2011; Diegelmann, et 

al. 2004) by migrating to the site of damage, where they deposit new collagen and facilitate 

the healing process. Fibroblasts are morphologically heterogeneous with diverse appearances 

depending on their location and activity. Fibroblasts show distinct phenotypes in different 

anatomical locations, such as fibroblast-like cells that are found between the cartilaginous 

fibers in the synovial membrane of joints and are called synoviocytes. Fibroblasts produce 

one type of the extracellular protein fibronectin. This fibronectin is able to adhere fibroblasts 

to the extracellular matrix. Fibronectins are essential for the migration and differentiation of 

many cell types in embryogenesis. These proteins are also important for wound-healing 

because they promote blood clotting and facilitate the migration of macrophages and other 

immune cells into the affected area. 

 

2.1.3. A human epidermoid carcinoma cell line (A431 cells) 
 

A431 cells are a model cell line derived from a human epidermoid carcinoma from an 85 year 

old female patient (Giard, et al. 1973), which has been used for a variety of studies in cell 

biology. A431 cells (Fig. 2.1C) were found to have high levels of the epidermal growth factor 

receptor (EGFR) on its cell surface, nearly 3 million receptor sites per cell, and amplification 

of the EGF receptor gene (Merlino, et al. 1984). Therefore, they are used as a positive control 

http://en.wikipedia.org/wiki/Cytoplasm
http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Nucleoli
http://www.britannica.com/EBchecked/topic/101396/cell
http://www.britannica.com/EBchecked/topic/101396/cell
http://www.britannica.com/EBchecked/topic/125409/collagen
http://www.copewithcytokines.de/cope.cgi?key=cell%20types
http://www.copewithcytokines.de/cope.cgi?key=synoviocytes
http://www.copewithcytokines.de/cope.cgi?key=cell%20types
http://en.wikipedia.org/wiki/Cell_line
http://www.copewithcytokines.de/cope.cgi?key=cell%20types
http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
http://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
http://en.wikipedia.org/wiki/Scientific_control
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for EGFR expression, furthermore, they are used in studies of the cell cycle and cancer-

associated cell signaling pathways. The growth of A431 cells has been shown to be inhibited 

by high concentrations of EGF (Kamata, et al. 1986), and paradoxically to stimulate A431 

cell proliferation at low concentrations of EGF (Kawamoto, et al. 1983). This is in marked 

contrast to normal human fibroblasts, which have a much more reduced EGF receptor 

density. 

 

2.1.4. Human liver hepatocellular carcinoma cells (HepG2 cells) 

 

The HepG2 cell line was established by D.P. Aden, (Aden, et al. 1979) and is the most 

commonly used cell line for a variety of biochemical and cell biological studies of hepatocyte 

functions (Fig. 2.1D). This cell line is derived from a 15 year old male patient with primary 

liver cancer with differentiated hepatocellular carcinoma. In morphology, these cells are 

epithelial as monolayers and in small aggregates, have a model chromosome number of 55, 

and are not tumorigenic in nude mice. HepG2 cells exhibit numerous functions, including the 

synthesis and secretion a variety of major plasma proteins (Knowles, et al. 1980) such as 

albumin, transferrin and the acute phase proteins fibrinogen, alpha 2-macroglobulin, alpha 1-

antitrypsin, and plasminogen, and enzymes of carbohydrate metabolism (Verspohl, et al. 

1984). HepG2 cells appear to be a useful model of the human hepatocyte and are widely used 

as an in vitro model of human hepatic lipid metabolism (Javitt, et al. 1990). 

 

2.1.5. Niemann-Pick diseases, type A (NPA) 

 

Niemann-Pick diseases, type A (NPA) is one of a group of metabolic diseases classified as 

lysosomal storage disorders (LSD’s) in which lipids accumulate in certain tissues, caused by 

mutations in the sphingomyelin phosphodiesterase 1 gene (SMPD1) encoding for acid 

sphingomyelinase (Ferlinz, et al. 1991). NPA is a severe neurodegenerative disorder of 

infancy. It usually begins in the first few months of life; symptoms are an enlarged liver and 

spleen, enlarged lymph glands, swelling of the skin of the face, and brain and nervous system 

impairment. Acid sphingomyelinase (ASM) is the lysosomal enzyme affected by the gene 

defects. Its function is to degrade sphingomyelin (SM) into ceramide and phosphorylcholine, 

and is found in every cell of the body. The enzyme defect leads to sphingomyelin and 

cholesterol accumulation within the lysosomal compartment inside cells, causing cell death in 

early childhood. NPA occurs in all races and ethnicities, but higher rates are seen in the 

Ashkenazi (Eastern European) Jewish population. In this study, the uptake and subsequent 

http://en.wikipedia.org/wiki/Gene_expression
http://en.wikipedia.org/wiki/Cell_cycle
http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Cell_signalling
http://www.copewithcytokines.de/cope.cgi?key=cell%20types
http://www.copewithcytokines.de/cope.cgi?key=EGF
http://www.copewithcytokines.de/cope.cgi?key=Cytokine%20Inter%2dspecies%20Reactivities
http://www.copewithcytokines.de/cope.cgi?key=fibroblasts
http://www.copewithcytokines.de/cope.cgi?key=EGF%20receptor
http://www.copewithcytokines.de/cope.cgi?key=Cell%20lines%20in%20Cytokine%20Research
http://www.copewithcytokines.de/cope.cgi?key=hepatocytes
http://en.wikipedia.org/wiki/Epithelium
http://en.wikipedia.org/wiki/Ploidy
http://en.wikipedia.org/wiki/Albumin
http://en.wikipedia.org/wiki/Transferrin
http://en.wikipedia.org/wiki/Fibrinogen
http://en.wikipedia.org/wiki/Alpha-2-Macroglobulin
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metabolism of both LDL-associated [
14

C]cholesterol and LDL-associated 

[
14

C]phosphatidylcholine into cultured skin fibroblasts from controls (healthy probands), and 

from a patient with Niemann-Pick diseases, type A was also examined. 

 

 

Figure 2.1: Morphological aspects 

of A: fibroblasts (Lysy, et al. 2007); 

B: RAW 264.7 macrophage (Cox, et 

al. 2009); C: A431 cells (Veldman, 

et al. 2005); and D: HepG2 cells 

(Reynaert, et al. 2004) that were 

used in the present study.  

 

 

 

 

2.2. The biological membrane 

 

Membranes in cells typically define enclosed spaces or compartments in which cells may 

maintain a chemical or biochemical environment that differs from the outside. Biological 

membranes are asymmetric structures. Both the lipids and the proteins of membranes exhibit 

lateral (when lipids or proteins of particular types cluster in the plane of the membrane) and 

transversal asymmetries. In eukaryotic cells, also the lipid composition of the membranes of 

different organelles is heterogeneous. For example, the plasma membrane is highly enriched 

in cholesterol and glycosphingolipids, which are nearly absent from the endoplasmic 

reticulum (ER) (Prinz, 2002; Munro, 2003). In addition, there is a transbilayer lipid 

compositional asymmetry within the same membrane (Pomorski, et al. 2001), and in 

polarized cells, apical and basolateral membrane have different lipid and protein composition. 

Biological membranes and their components serve a number of essential cellular functions: 

They act as a selective barrier within or around a cell, where many reactions and processes 

occur; function as a platform for signal transduction; allow cell recognition; provide 

anchoring sites for cytoskeletal filaments or components of the extracellular matrix; 

compartmentalize cells; regulate the fusion of the membrane with other membranes in the 

cell and provide a passage way across the membrane for certain molecules. 

http://en.wikipedia.org/wiki/Cell_compartment
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Biochemistry
http://en.wikipedia.org/wiki/Environment_%28biophysical%29
http://en.wikipedia.org/wiki/Cell_%28biology%29
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The major components of all biological membranes are lipids, proteins and small amount of 

carbohydrates (as part of glycolipids and glycoproteins) of less than 10% of the mass of most 

membranes in variable proportion. Membranes proteins mediate and regulate transport of 

metabolites, macromolecules, and ions in and out of cells or subcellular organells (Shkulipa, 

2006). The lipids of cell membranes play a crucial role in the function and properties of cell 

membranes. The membrane lipids consist of many different lipid species, classified according 

to head-group and backbone structures. These include glycerophospholipids, sphingolipids 

and cholesterol (Pomorski, et al. 2001; Edidin, et al. 2003; Holthuis, 2001; Fahy, et al. 2005). 

The carbohydrate moieties attached to some proteins and lipids are particularly abundant on 

the extracellular surface of the plasma membrane where they form the glycocalyx. The 

function of this layer is to prevent uncontrolled membrane fusion and to participate in 

recognition phenomena. In endothelial tissues, the glycocalyx serves to shield the vascular 

wall from the shear stresses of blood flow, impede leakage of blood constituents across the 

endothelial lining, and prevent adhesion of leucocytes and platelets to the endothelium 

(Rehm, et al. 2004). 

Many subcellular organelles in eukaryotes are surrounded by membranes (Voet, et al. 2011) 

such as nuclei, mitochondria, chloroplasts, endoplasmic reticulum, and Golgi apparatus. 

These organelles continually exchange biomolecules by a variety of membrane trafficking 

mechanisms (Sprong, et al. 2001; Mellman, 1996).  

In 1972, S.J. Singer, and G.L. Nicolson proposed the fluid mosaic model for membrane 

structure (Fig. 2.2), a widely accepted model of biological membranes. They suggested that 

membranes are dynamic structures composed of proteins and phospholipids. In this model, 

the phospholipids form a fluid bilayer (Singer, et al. 1972) in which the nonpolar regions of 

the lipid molecules in each layer face the core of the bilayer and their polar head groups face 

outward, interacting with the aqueous phase on either side. The hydrophobic nature of lipid 

molecules allows membranes to form spontaneously, and to act as effective barriers to polar 

molecules. The fluidity of the hydrocarbon core of the bilayer increases with increasing 

content of unsaturated or branched alkyl chains or with decreasing alkyl chain length. 

Membrane proteins can be embedded in the bilayer by hydrophobic interactions between the 

membrane lipids and hydrophobic domains of the proteins. Some proteins protrude from only 

one side of the membrane; others have domains exposed on both sides. The orientation of 

proteins in the bilayer is asymmetric, giving the membrane “sidedness”: the protein domains 

exposed on one side of the bilayer are different from those exposed on the other side, 

reflecting functional asymmetry. The individual lipid and protein units in a membrane form a 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Singer%20SJ%22%5BAuthor%5D
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fluid mosaic because most of the interactions among its components are noncovalent, leaving 

individual lipid and protein molecules capable of rotational degrees of freedom and to move 

laterally in the plane of the membrane, but movement of either from one face of the bilayer to 

the other is restricted. 

Singer and Nicolson defined two classes of membrane proteins: peripheral (or extrinsic 

proteins) and integral proteins (or intrinsic proteins). The first includes those proteins that do 

not penetrate the bilayer to any significant degree and are associated with the membrane by 

virtue of electrostatic interactions and hydrogen bonds between the polar groups on the 

membrane surface and the surface of the protein. Furthermore, peripheral proteins can easily 

be dissociated from the membrane by treatment with salt solutions or by changes in pH. 

Integral proteins, in contrast, possess hydrophobic surfaces that can readily penetrate the 

matrix of the phospholipid bilayer itself as well as surfaces that prefer contact with the 

aqueous medium. In eukaryotic cells, almost all integral membrane proteins are synthesized 

on the surface of the rough ER (Gilmore, et al. 2012). Integral membrane proteins are 

strongly associated with bilayer lipids that influence specific function of certain membrane 

proteins. Because of these interactions, integral proteins can only be removed from the 

membrane by agents capable of breaking up the hydrophobic interactions within the lipid 

bilayer itself such as detergents and organic solvents.  

 

 

Figure 2.2: The fluid-mosaic model of membrane structure proposed by (Singer, S.J. and Nicolson, 

G.L. 1972). In this model, a lipid bilayer is composed of phospholipids, cholesterol, glycolipids, and 

proteins. Peripheral proteins are embedded in either the outer or inner leaflet of the lipid bilayer, while 

integral proteins are firmly embedded in the lipid layers. Many of the proteins and lipids have 

externally exposed oligosaccharide side chains (Nelson, et al. 2005). 
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2.2.1. Lipid bilayers 

 

Amphipathic lipids spontaneously form a variety of supramolecular structures when added to 

an aqueous medium. They can aggregate into one of three forms: spherical micelles, 

liposomes, and sheetlike, two-molecule-thick bilayers (Fig. 2.3). All these structures form in 

ways that minimize the surface area in contact between the hydrophobic lipid chains and the 

aqueous milieu. For example, when small amounts of a fatty acid are mixed with an aqueous 

solution, a monolayer is formed at the air–water interface, with the polar head groups in 

contact with the water surface, shielding their hydrophobic tails from the water in contact 

with the air (Shkulipa, 2006). Micelles formed from an amphipathic lipid in water position 

the hydrophobic tails in the center of the lipid aggregate with the polar head groups facing 

outward. Micelles are the preferred form of aggregation in water for detergents and soaps. 

Phospholipids prefer to form bilayer structures in aqueous solution because their pairs of fatty 

acyl chains do not pack well in the interior of a micelle. Phospholipid bilayers form rapidly 

and spontaneously when phospholipids are added to water, and they are stable structures in 

aqueous solution. Extensive bilayers normally wrap around themselves and form closed 

vesicles. The nature and integrity of these vesicle structures are very much dependent on the 

lipid composition. Phospholipids can form either unilamellar vesicles (with a single lipid 

bilayer) known as liposomes, or multilamellar vesicles which are reminiscent of the layered 

structure of onions. 

The lipid bilayer thickness is about 3nm, 30Å thick (Heimburg, 2009), and is defined by the 

length, degree of saturation, and packing of the fatty acid chains. The thickness of bilayers is 

not a static number since thickness can vary over the surface of a membrane if microdomains 

of lipids are formed with different alkyl chain lengths. For example, addition of cholesterol or 

increasing chain length causes membrane thickening, whereas increased chain unsaturation or 

the strength of head group repulsions causes the bilayer to thin (Cantor, 1999).  

An important property of the lipid bilayer heterogeneity is that it contributes to membrane 

fluidity. The bilayer's fluidity allows lateral mobility within the lipid bilayer. It depends on 

the membrane phase and changes with the temperature. This fluidity is biologically 

important, influencing membrane transport. For example, the membranes of mammalian 

spermatozoa are composed of a complex mixture of lipids that provide the correct 

infrastructure and fluidity for the membrane mediated events that lead to fertilization (Ladha, 

1998). Other roles for lipid diversity are the storage of precursors that can be metabolized to 

potent second messengers, e.g., diacylglycerol, ceramide, sphingosine, inositol trisphosphates 
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and eicosanoids. In addition, several phosphoinositides (phosphatidylinositol 3-phosphate 

(PI3P), phosphatidylinositol 4-phosphate (PI4P), phosphatidylinositol-4,5-biphosphate 

(PI45P2), phosphatidylinositol-3,4,5-triphosphate (PI345P3)) act as membrane recognition 

and attachment sites for protein complexes involved in protein traffic and membrane fusion 

events (Simonsen, et al. 2001; Barlow, et al. 2010).  

 

2.2.2. Transmembrane lipid asymmetry 
 

The fluidity of the lipid bilayer of biological membranes has been established by biophysical 

studies. The lipids can rotate freely about their axis perpendicular to the plane of the 

membrane and diffuse readily within the lateral plane. Movement of polar lipids from one 

leaflet of the bilayer to the other is severely constrained and is measured in half times of 

hours or days. This constraint results from the requirement of free energy to move a hydrated 

polar moiety from the aqueous interface through the hydrocarbon interior of the structure. As 

a consequence of this restricted motion, an asymmetric distribution of lipids can be created 

and maintained across biological membranes. In many naturally occurring bilayers, the 

external monolayer of the mammalian cell membrane is made up almost exclusively of the 

neutral zwitterionic phospholipids phosphatidylcholine (PC), and sphingomyelin (SM), 

together with some phosphatidylethanolamine (PE). Phosphorylcholine is the most common 

head group accounting for about half of the phospholipids in most mammalian cells. In 

contrast, the internal monolayer contains anionic phospholipids as a major component which 

account for about 30% of cell phospholipids (Verkleij, et al. 1973; Buckland, et al. 2000; 

Chaurio, et al. 2009), mainly phosphatidylserine, phosphatidylethanolamine, and the 

phosphatidylinositols are much more abundant in the inner (cytoplasmic) leaflet (Chaurio, et 

al. 2009; Quinn, 2002). This is illustrated in figure 2.4, which shows the percentage 

distribution of the major lipid classes between the cytoplasmic and outer leaflet of the human 

erythrocyte membrane.  

Lipid asymmetry is maintained by translocases (Flippases) (Van Meer, et al. 2008). The 

aminophospholipid translocase is an ATPase II type enzyme that requires Mg
2+

 and 

specifically transports phosphatidylserine and phosphatidylethanolamine from the outer to the 

cytoplasmic leaflet of the membrane, while choline phosphatides are transported from the 

cytoplasmic to the outer leaflet. 
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Figure 2.3: Variety of structures of amphipathic lipid that aggregates in water. (a) In micelles, the 

hydrophobic fatty acid chains are sequestered at the core of the sphere with only small amounts of 

water in the hydrophobic interior. (b) In an open bilayer, all fatty acids acyl side chains are protected 

from interaction with water except those at the edges of the sheet. (c) When a bilayer folds on itself, it 

forms a closed bilayer (liposome) enclosing an aqueous cavity (Nelson, et al. 2005). 

 

Figure 2.4: In erythrocyte plasma membrane, 

percentage asymmetric distribution of the major 

phospholipids between the cytoplasmic and outer 

monolayers leaflets. This distribution is 

determined by treating the intact cell with 

phospholipase C, which removes the head groups 

of lipids in the outer monolayer, but cannot reach 

lipids in the inner monolayer (leaflet). In the outer 

monolayer, the proportion of each head group 

released provides an estimate of the fraction of 

each lipid (Nelson, et al. 2005). 

 

2.2.3. Membrane phospholipids 

 

Lipids are a class of biological molecules defined by low solubility in water and high 

solubility in nonpolar solvents (Fahy, et al. 2005). The lipids found in biological systems are 

either hydrophobic or amphipathic. Phospholipids are the primary building blocks of most 

biological membranes. In eukaryotic cells, phospholipids are synthesized by enzymes located 

on the surface of the endoplasmic reticulum (ER). The membranes of mammalian cells 

contain more than 1,000 different phospholipid species (Vance, 2008). Phospholipids are 

abundant in all biological membranes and are derived from either glycerol or sphingosine, a 

long-chain unsaturated amino alcohol (Berg, et al. 2003). Phosphoglycerides (Fig. 2.6) 

consist of a glycerol backbone to which two residues (Fahy, et al. 2005), mostly fatty acids 

and a phosphorylated alcohol are attached in ester linkage. The fatty acid constituents are 
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usually even-numbered, most commonly of 16 or 18 carbons. Naturally occurring 

phospholipids contain a saturated fatty acid (such as stearic acid or palmitic acid) in position 

sn-1, whereas an unsaturated one (such as oleic acid, linoleic acid or arachidonic acid) in sn-2 

position. The length and the degree of unsaturation of fatty acids in the membrane have an 

important effect on the fluidity (Chaurio, et al. 2009). 

The major phosphoglycerides arise from phosphatidate through the formation of an ester 

bond between the phosphate group of phosphatidate and the hydroxyl group of one of several 

alcohols. The simplest phosphoglyceride is phosphatidic acid, which is sn-1,2-diacylglycerol 

3-phosphate, a key intermediate in the formation of all other phosphoglycerides. In other 

phosphoglycerides, the 3-phosphate is esterified to an alcohol such as ethanolamine, choline, 

serine, glycerol, or inositol (Fig. 2.5). The second major class of phospholipids is 

sphingomyelin, which contains a sphingosine backbone rather than glycerol. A fatty acid is 

attached by an amide linkage to the amino group of sphingosine, forming ceramide.  

The content of phospholipids also varies among organelles. For example, cardiolipin is a 

major constituent of the inner membrane of mitochondria, but is absent from other organelles 

(Van Meer, et al. 2008), whereas bis(monoacylglycero)phosphate is largely confined to late 

endosomes and lysosomes (Kolter, et al. 2010; Matsuo, et al. 2004; Kobayashi, et al. 2002). 

In mammalian cells, glycerophospholipids account for approximately 70% of the total 

membrane lipid content and thus play key roles in the structure and function of mammalian 

membranes; the other 30% consists of cholesterol, sphingomyelin, and glycosphingolipids 

(Leventis, et al. 2010). Among the phospholipids derived from glycerol, phosphatidylcholine 

(PC) is the most prevalent and accounts for 40-50% of the total phospholipids (Vance, 2008; 

Matsuo, et al. 2004). Of this amount, 76% is found in the outer monolayer, and 24% is found 

in the inner monolayer. Phosphatidylethanolamine (PE) is the next most abundant, which 

ranges from 20-45% of the total phospholipids, depending on the tissue (Vance, 2008; 

Murphy, et al. 2000), and is the major phospholipid in bacteria. Phosphatidylinositol (PI) (2-

8% of the total PL), phosphatidylserine (PS) (2-10% of the total PL), phosphatidic acid (PA) 

(1% of the total PL), phosphatidylglycerol (PG) (<1% of the total PL), and 

bis(monoacylglycero)phosphate (BMP) (<1% of the total PL) (Kolter, et al. 2005) are 

present, but in lesser amounts (Leventis et al. 2010).  

Most cells continually degrade and replace their membrane lipids. For each hydrolyzable 

bond in a glycerophospholipid, there is a specific hydrolytic enzyme in the lysosome and 

other subcellular compartments (Fig. 2.7). Phospholipases of the A type remove one of the 

two fatty acids at the sn-1 position, producing a lysophospholipid. Phospholipases A2 
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hydrolyze the ester bonds of intact glycerophospholipids at sn-2 of glycerol. Phospholipases 

C and D each split one of the phosphodiester bonds in the head group.  

 

 

Figure 2.5: Structure of glycerol 

phosphate-based lipids. The lipid 

structures are shown with head 

group from top to bottom, 

phosphatidic acid (PA), 

phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), 

phosphatidylserine (PS), 

phosphatidylinositol (PI), and 

phosphatidylglycerol (PG).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: A phosphoglyceride showing 

the fatty acids (R1 and R2), glycerol, and 

phosphorylated alcohol components. In 

phosphatidic acid, R3 is hydrogen 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: The specificities of phospholipases. The 

ester bonds of intact glycerophospholipids at sn-1 and 

sn-2 of glycerol are hydrolyzed by phospholipases A1, 

and A2, respectively. PLB cleaves both the sn-1 and 

sn-2 ester bonds.  Phospholipases C and D each split 

one of the phosphodiester bonds in the head group. R1 

and R2, (CH2)nCH3; R3, various head groups.  

(Richmond, et al. 2011). 
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2.3. Endocytosis  

 

2.3.1. Entry pathways into cells 

 

In eukaryotic cells, endocytosis is a process by which cells take up large molecules, such as 

proteins, from the environment to the inside of the cell by engulfing them.  In this process, 

plasma membrane lipids, integral proteins, and extracellular fluid become fully internalized 

into the cell (Doherty, et al. 2009). It is used by all cells of the body since many substances in 

the environment are large polar molecules that cannot pass through the hydrophobic plasma 

membrane. The endocytic pathway consists of distinct compartments that receive internalized 

molecules from the plasma membrane and recycle them back to the surface in early 

endosomes, or sort them to degradation in late endosomes and lysosomes. 

Many endocytic entry pathways into cells have been identified, which differ in the cargoes 

they take up and in the protein machinery that mediates the endocytic process (Mayor, et al. 

2007). Extracellular materials can enter the cell depending on the nature and size of the 

molecules either by endocytosis, phagocytosis, or macropinocytosis (Aderem, et al. 1999). 

The basic steps of the endocytic pathway are summarized in figure 2.8. 

A few specialized cell types (e.g., macrophages and granulocytes) can ingest whole bacteria 

and other large particles whose size exceeds about 0.5μm such as viruses, cells debris, micro-

organisms, and even apoptotic cells by phagocytosis. Phagocytosis is a nonselective, actin-

mediated process and is usually independent of clathrin in which extensions of the plasma 

membrane envelop the ingested material, forming large vesicles called phagosomes. Once 

inside the phagocyte, the phagosome contains the pathogenic microorganism such as 

mycobacterium avium or mycobacterium tuberculosis. It appears to fuse well with early and 

poorly with late endocytic organelles, since the pH of phagosomes was precisely that of the 

early endosomes (≈ 6.3) (Kuehnel, et al. 2001). Macrophages are extremely active in this 

regard and may ingest 25% of their volume/hour. Thus, phagocytosis by macrophages is 

critical for the uptake and degradation of infectious agents and senescent cells, and it 

participates in tissue remodeling and inflammation. 

Macropinocytosis is another form of endocytosis, a mainly actin-dependent endocytic process 

that usually starts from highly ruffled regions of the plasma membrane and is used to 

internalize nonspecifically large amounts of fluid, growth factors and small droplets of 

extracellular fluid to form an external macropinocytic structure that is then enclosed and 

internalized, forming discrete vacuoles, the macropinosomes, which are accumulated within 

http://en.wikipedia.org/wiki/Chemical_polarity
http://en.wikipedia.org/wiki/Hydrophobic
http://en.wikipedia.org/wiki/Cell_membrane
http://en.wikipedia.org/wiki/Micro-organisms
http://en.wikipedia.org/wiki/Micro-organisms
http://en.wikipedia.org/wiki/Apoptotic
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the cell (Lim, et al. 2011). Vesicles mediating this form are filled with a large volume of 

extracellular fluid and molecules. The formation of these vesicles is an extremely active 

process. It is highly active in macrophages and dendritic cells; for example, fibroblasts 

internalize their plasma membrane at about one-third of the rate of macrophages. The vesicle 

then travels into the cytosol and fuses with other vesicles such as endosomes and lysosomes 

(Falcone, et al. 2006).  Internalized macropinosomes share many features with phagosomes 

and both are distinguished from other forms of endocytic vesicles by their large size, 

morphological heterogeneity, and the lack of coat structures (Jones, et al. 2007). 

In clathrin-mediated endocytosis, clathrin subunits form a three limbed structure called a 

triskelion, with each limb being made up of one light and one heavy chain of clathrin. The 

clathrin is polymerized into a basket by assembly particles, composed of four adapter 

proteins. These interact with certain amino acid sequences in the cytoplasmic domain of 

membrane-bound receptors that become endocytosed, ensuring selectivity of uptake. The 

clathrin lattice grows as more receptors are occupied by target proteins, until a complete 

membrane-bound endocytic vesicle buds off the plasma membrane mediated by the protein 

dynamin and enters the cytoplasm. Clathrin coated pits make up about 2% of the surface of 

cells such as hepatocytes and fibroblasts. The clathrin is quickly removed by uncoating 

enzymes, and the individual vesicles fuse with each other to form early endosomes. Coated 

pits can concentrate large extracellular molecules that have different receptors responsible for 

the receptor-mediated endocytosis of ligands, such as low-density lipoprotein (LDL); the 

iron-carring protein transferrin; many protein hormones (e.g., insulin); and certain 

glycoproteins. Coated pits also involved in desensitizing of G-proteins coupled receptors 

(Kobilka and Lefkowitz, 2012). 

Caveolae are dynamin-dependent and non-clathrin-coated plasma membrane buds. Caveolae 

are 50-80nm flask shape pits in the plasma membrane that resemble the shape of a cave 

(hence the name caveolae). They exist on the surface of many cell types, especially in 

endothelial cells and adipocytes. They consist of the cholesterol-binding protein caveolin, 

eventually in a putative domain enriched in cholesterol and sphingolipids (Simons, et al. 

1997), signaling proteins and clustered glycosyl phosphatidylinositol-anchored proteins (GPI-

Aps) (Aboulaich, et al. 2004; Lemaitre, et al. 2005; Sprenger, et al. 2004) and have several 

functions in signal transduction (Anderson, R.G. 1998). They also play a role in endocytosis, 

oncogenesis, and the uptake of pathogenic bacteria and certain viruses (Frank, et al. 2004; Li, 

et al. 2005; Pelkmans, 2005). Caveolar cargoes are diverse, ranging from lipids, proteins and 

lipid-anchored proteins to pathogens.  

http://en.wikipedia.org/wiki/Cytosol
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ATPases in the endosomal membranes reduce the pH in the endosomal lumen, facilitating 

dissociation of receptors from their target ligands. The imported ligands and receptors 

dissociate in the late endosome, the ligand is released, and the receptors recycle back to the 

cell surface. Ligands are then transported from late endosomes and are delivered to the 

lysosomes for degradation.  

 

Figure 2.8: Endocytic entry pathways into cells. Phagocytosis can take up large particles, whereas 

fluid uptake occurs by macropinocytosis. The size of the vesicles formed by phagocytosis and 

macropinocytosis is much larger, compared with the other endocytic pathways. Some vesicles derived 

from the plasma membrane such as clathrin- or caveolin-coated vesicles and tubular intermediates 

internalize cargoes (known as clathrin-and dynamin-independent carriers (CLICs)) and deliver it to 

the early endosome. Some cargo may traffic first to intermediate compartments, such as the 

caveosome or glycosyl phosphatidylinositol-anchored protein enriched early endosomal 

compartments (GEEC), before it moves to the early endosome (Mayor, et al. 2007). 

 

2.3.2. Lysosomes  

 

Lysosomes are acidic organelles enriched with catabolic enzymes for the degradation of 

various products of cellular turnover (Pastores, 2006) that have been taken up from the 

outside or have become obsolete for the cell. Lysosomes vary in size (0.1–1.2μm; Kuehnel, 

2003) and shape. Lysosomes are found exclusively in animal cells, while in yeast and plants 

the same roles are performed by lytic vacuoles (Samaj, et al. 2005). The process by which an 

aged organelle is degraded in a lysosome is called autophagy. Lysosomes contain a group of 

enzymes that degrade polymers into their monomeric subunits. For example, nucleases 

degrade RNA and DNA into their mononucleotide building blocks; proteases degrade a 

variety of proteins and peptides; phosphatases remove phosphate groups from 

http://en.wikipedia.org/wiki/Micrometre
http://en.wikipedia.org/wiki/Vacuole
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mononucleotides, phospholipids, and other compounds; still other enzymes degrade complex 

polysaccharides and glycolipids into smaller units. All the lysosomal enzymes work most 

efficiently at acidic pH values (pH 4.8) and collectively are termed acid hydrolases, 

compared to the slightly alkaline cytosol (pH 7.0 - 7.3). The lysosome maintains this pH by 

vacuolar proton pumps. The acid pH helps to denature proteins, making them accessible to 

the action of the lysosomal hydrolases, which themselves are resistant to acid denaturation. 

Lysosomal enzymes are poorly active at the neutral pH of cells and most extracellular fluids.  

Mutations within the genes that encode distinct acid hydrolases lead to the progressive 

accumulation of incompletely metabolized substrates within various tissues, and ultimately a 

disruption of organ function (Beck, 2010; Pastores, 2006). Characteristic disease 

manifestations may include distinctive facial features, organomegaly, skeletal problems and 

central nervous system (CNS) dysfunction. As a group, these disorders are commonly 

referred to as the lysosomal storage diseases (LSDs); inborn errors of metabolism that have 

traditionally been classified according to the biochemical nature of the incompletely degraded 

tissue deposits (Futerman, et al. 2004). Furthermore, phospholipidosis is another lysosomal 

storage disorder that is characterized by the excess accumulation of phospholipids in tissues. 

A large number of approved catonic amphiphilic drugs (CADs) can induce phospholipidosis 

(drug-induced phospholipidoses) that may interfere with cellular functions, such as increased 

autophagy and loss of nuclei leading to chronic disease or even death. CADs might also bind 

to phospholipids, creating a complex which is trapped in the form of lysosomal lamellar 

bodies (Nioi, et al. 2008) that are resistant to degradation by phospholipases (Reasor, et al. 

2006). The identification of the potential to induce phospholipidoses at early stages of drug 

discovery can be advantageous for selecting improved drug development candidates 

(Kasahara, et al. 2006; Nonoyama, et al. 2008; Nioi, et al. 2008), since drug-induced 

phospholipidosis is one of the major reasons for the retraction of drug candidates (Reasor, et 

al. 2006). In cultured cells treated with CADs, phospholipids can accumulate intracellularly 

with the formation of lysosomal multi-lamellar bodies within only a few hours of exposure 

(Nonoyama, et al. 2008). In addition, the chemical modification of lipoproteins, 

enzymatically degraded LDL (eLDL) and oxidized LDL (oxLDL), induce lipid storage in 

different compartments. While eLDL preferentially induces rapid formation of large 

cytoplasmic lipid droplets, oxLDL provokes endolysosomal phospholipidosis and impaired 

cholesterolester hydrolysis (Orso, et al. 2011).  
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2.4. Lipoproteins 

 

Lipoproteins are soluble complexes of proteins (apolipoproteins) and lipids that transport 

hydrophobic, water-insoluble lipids and other fat soluble nutrients like vitamins A, K, D and 

E to different organs (liver) and tissues (adipose and other cells) in the circulation of all 

vertebrates. In vertebrates, dietary triacylglycerols are solubilized by amphipathic bile salts 

such as taurocholic acid, which are synthesized from cholesterol in the liver. They convert 

dietary fats into mixed micelles of bile salts and triacylglycerols. Micelle formation 

enormously increases the fraction of lipid molecules accessible to the action of water-soluble 

lipases in the intestine, and lipase action converts triacylglycerols to monoacylglycerols, free 

fatty acids, and glycerol. These products of lipase action diffuse into the epithelial cells lining 

the intestinal surface, the intestinal mucosa. There, they are reconverted to triacylglycerols 

and packaged with dietary cholesterol and specific proteins into lipoprotein aggregates called 

chylomicrons and enter the blood stream, which carries them to muscle and adipose tissue.  

Chylomicrons are the largest of the lipoproteins and the least dense, containing a high 

proportion of triacylglycerols and other lipid soluble nutrients, e.g, vitamins. Chylomicrons 

are synthesized in the ER of epithelial cells that line the small intestine, then move through 

the lymphatic system and enter the bloodstream via the left subclavian vein. The 

apolipoproteins of chylomicrons include apolipoprotein B-48 (apoB-48) unique to this class 

of lipoproteins, apoE, and apoC-II. ApoB-48 is the major protein which has a molecular 

weight of 240kDa and forms an amphipathic shell around the spherical fat globule. ApoB-48 

is formed from the first 48% of apoB-100 and arises from the posttranscriptional editing of 

apoB-100 mRNA in the intestine. Chylomicrons carry dietary fats to the target tissues where 

they are consumed (muscle) or stored (adipose tissue) after cleavage by the extracellular 

enzyme lipoprotein lipase. The remnants of chylomicrons, which are depleted of most of their 

triacylglycerols, but still contain cholesterol, apoE, and apoB-48, then move through the 

blood stream to the liver. Receptors in the liver bind to the apoE in the chylomicron remnants 

and mediate their uptake by endocytosis. In the liver, the remnants release their cholesterol 

and are degraded in lysosomes. Triacylglycerols that enter the liver by this route are cleaved 

into glycerol and fatty acids, which may be oxidized to provide energy, or to provide 

precursors for the synthesis of ketone bodies. When the diet contains excess carbohydrate and 

more fatty acids than are needed as fuel, they are converted to triacylglycerols in the liver and 

packaged with specific apolipoproteins into very-low-density lipoprotein (VLDL, or pre-β-

lipoproteins). In addition to triacylglycerols, VLDLs contain some cholesterol and cholesteryl 
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esters, as well as apoB-100, apoC-I, apoC-II, apoC-III, and apo-E. These lipoproteins are 

transported in the blood from the liver to muscle and adipose tissue, where the free fatty acids 

are released from the VLDL triacylglycerols through lipoprotein lipase activated by apoC-II. 

Adipocytes take up these fatty acids, reconvert them to triacylglycerols, and store them in 

intracellular lipid droplets. The size and lipid composition of chylomicrons and VLDLs vary 

according to the nutritional status of the animal. Most VLDL remnants are removed from the 

circulation by hepatocytes. The uptake, like that for chylomicrons, is receptor-mediated and 

depends on the presence of apoE in the VLDL remnants. The loss of triacylglycerol converts 

some VLDL to VLDL remnants (also called intermediate density lipoprotein, IDL), by the 

action of lipases associated with capillary surfaces and their consequent enrichment in 

cholesterol esters. These intermediate-density lipoproteins may be taken up by the liver and 

further processed or converted into low-density lipoproteins (LDLs) by hydrolysis of more 

triacylglycerol, representing a final stage in the catabolism of VLDL. LDLs are very rich in 

cholesterol and cholesteryl esters and contain apoB-100 as their major apolipoprotein. LDLs 

carry cholesterol to extrahepatic tissues that have specific plasma membrane receptors that 

recognize apoB-100. These receptors mediate the uptake of cholesterol and cholesteryl esters. 

The fourth major lipoprotein type, high-density lipoprotein (HDL), originates in the liver and 

small intestine as small, protein-rich particles. HDLs contain apoA-I, apoC-I, apoC-II, and 

other apolipoproteins, as well as the enzyme lecithin-cholesterol acyl transferase (LCAT). 

LCAT is a glycoprotein of 67kDa on the surface of nascent HDL particles, converts the 

cholesterol and phosphatidylcholine of chylomicrons and VLDL remnants to cholesteryl 

esters, which begin to form a core, transforming the disk-shaped nascent HDL to a mature, 

spherical HDL particle. This cholesterol-rich lipoprotein then returns to the liver for 

metabolism and excretion. Some of this cholesterol is converted to bile salts in a process 

referred to as reverse cholesterol transport. LCAT uses preferentially PC species with 18:2 or 

18:1 fatty acids in the sn-2 position (by the action of PLA2), thus enriching cholesteryl esters 

in these fatty acids. In contrast, PC containing 18:0 or 20:4 fatty acids is a poor substrate for 

LCAT, explaining the decreased contents of these fatty acids in the cholesteryl esters.  

ApoA, apoC and apoE are referred to as exchangeable apolipoproteins (Saito, et al. 2004) and 

they are responsible for regulating the traffic of lipids into and out of a cell by acting as 

cofactors for plasma enzymes and ligands for cell-surface receptors. The classification into 

chylomicrons (CM), very low-density (VLDL), low-density (LDL), and high-density (HDL) 

lipoproteins is based on their relative contents of protein and lipid that determine the densities 

of these lipoprotein classes. Chylomicrons have only 1-2% protein while HDL has about 50% 
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protein by weight. The diameters of lipoproteins are inversely correlated with their densities 

and range from about 1200nm for CM down to 8nm for the smallest HDL. 

 

2.4.1. Low density lipoprotein (LDL) 

 

Low density lipoprotein (LDL), the most abundant cholesterol-carrying lipoprotein in human 

plasma, is one of the five major groups of lipoproteins which are synthesized in the intestine 

and the liver. The particles are usually spherical in shape and are classified according to their 

buoyant density. Subclasses of LDL in the density range from 1.027 - 1.060 g/mL and size 

range from 270 - 210 Å (27 – 21nm in diameter) have been obtained and shown to have 

different metabolic properties (Shen, et al. 1981). LDL contains an amphipathic monolayer 

shell surrounding a hydrophobic lipid core (Fig. 2.9), which is typically composed of about 

170 TAG molecules, and 1600 CE molecules per LDL esterified mainly with linoleate. The 

surface monolayer comprises about 700 phospholipids, the majority of which is PC, about 

450 molecules per LDL, 600 molecules of unesterified cholesterol, and also a single copy of 

apolipoprotein B-100 (apoB-100). ApoB-I00 is an amphipathic protein, which has 4536 

amino acids residues and a mass of 514kDa (Hevonoja, et al. 2000). Human apoB-100 

contains 25 cysteine residues of which 16 exist as intramolecular disulfide bonds: 14 of these 

are clustered in the N-terminal region, disulfide bonds in this region are critical for the correct 

folding and secretion of apoB. The type of fatty acid supplied to hepatocytes influences the 

secretion of apoB-containing lipoproteins. For example, when oleate is added to HepG2 cells, 

the synthesis of TAG and phospholipids is stimulated and the amounts of apoB and TAG 

secreted are increased (Dixon, et al. 1991). Thus, an increased lipid supply enables a larger 

proportion of newly synthesized apoB to be translocated across the ER membrane and enter 

the secretory pathway. In contrast, compared to oleic acid, the (n-3) fatty acids 

eicosapentaenoic acid (20:5) and docosahexaenoic acid (22:6), found in fish oils, decrease 

plasma TAG levels in humans and decrease the secretion of apoB-containing lipoproteins 

from rat hepatocytes and hepatoma cells.  

Once in the circulation, LDL may either take up free cholesterol from cells or deliver free or 

esterified cholesterol to cells. The cholesterol bound to LDL is referred to as bad cholesterol 

because it is thought to have deleterious health impacts (Brunzell, et al. 2008). For example, 

increasing levels of LDL-cholesteryl esters (LDL-CE) were associated with elevated risk of 

atherosclerosis, leading to cardiovascular diseases, including heart attack and stroke (Scott, 

2004; Rosenson, 2004).  
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Figure 2.9: A schematic molecular model of an LDL 

particle. The colour coding for the molecules is: dark 

blue – phosphatidylcholine, light blue – sphingomyelin, 

dark yellow – cholesterol ester, red – cholesterol, green 

– triglyceride, and grey – apolipoprotein B-100. The 

molecular shapes and scales are derived from molecular 

dynamics simulations (Hevonoja, et al. 2000). The 

showed particle has a diameter of 20nm, including a 

surface monolayer of 2nm (yellowish background). 

 

 

 
 

2.4.2. Lipoprotein uptake and trafficking 
 

Lipoprotein receptors play an important role in lipoprotein metabolism and in cellular 

cholesterol homeostasis. The affinity and specificity of these receptors for the different 

lipoproteins facilitate the uptake and metabolism of lipoproteins in various tissues and cells. 

Each receptor can handle only one particle of LDL at a time. Brown and Goldstein in the 

1970s identified the details of the uptake and metabolism of LDL following receptor-

mediated endocytosis. When radiolabeled LDL was investigated to compare its uptake from 

the circulation of experimental animals into various tissues, high levels of hepatic LDL 

receptors were observed. Steinberg and co-workers and Dietschy and co-workers (Pittman, et 

al. 1982; Spady, et al. 1983) demonstrated that about 70% of the total-body uptake of 

radiolabeled LDL took place in the liver by LDL receptor-dependent pathways. 

Most mammalian cells produce cell-surface receptors that specifically bind to the apoB-100 

protein embedded in the phospholipid outer layer of LDL particles. In 1985, Brown and 

Goldstein were awarded with the Nobel Prize for their identification of the low density 

lipoprotein receptor (LDLR). LDLR complexes are present in clathrin-coated pits (or buds) 

on the cell surface, which when bound to LDL via adaptin, are pinched off to form clathrin-

coated vesicles inside the cell. This allows LDL to be bound and internalized in a endocytosis 

process and prevent the LDL just diffusing around the membrane surface. Once the vesicle 

coat is shed, the uncoated endocytic vesicle (early endosome) fuses with an acidic late 

endosome. The acidic pH in this compartment causes a conformational change in the LDL 

receptor that leads to release of the bound LDL particle. The late endosome eventually fuses 

with the lysosome, and then the proteins and lipids of the free LDL particle are broken down 

to their constituent parts by lysosomal hydrolases that could easily digest all of the 
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components of LDL releasing cholesterol and fatty acids into the cytosol. Cholesterol that 

enters cells by this path may be incorporated into membranes or re-esterified by Sterol O-

acyltransferase (SOAT) for storage within cytosolic lipid droplets. The apoB-100 of LDL is 

also degraded to amino acids that are released to the cytosol. The LDL receptor, which 

dissociates from its ligands in the late endosome, is either destroyed or can be recycled via an 

endocytic cycle back to the cell surface. The neutral pH of the exterior medium enables the 

receptor to undergo a conformational change so that it can function again in LDL uptake 

(Brown, et al. 1986; Rudenko, et al. 2002). ApoB-100 is also present in VLDL, but its 

receptor-binding domain is not available for binding to the LDL receptor. Conversion of 

VLDL to LDL exposes the receptor-binding domain of apoB-100. 

Furthermore, various ligands including not only native lipoproteins (LDL, HDL, VLDL, and 

chylomicrons) but also modified lipoproteins (acetylated LDL, oxidized LDL, and oxidized 

HDL), anionic phospholipids, and maleyated BSA (Haberland, et al. 1985) can bind to 

specific amino acid residues of a cell surface transmembrane protein, the scavenger receptor 

glass B type I (SR-BI) (Trigatti, et al. 2003; McNutt, et al. 2007). Moreover, Ueda and 

colleagues have shown a reduction in plasma apoB in mice overexpressing SR-BI (Ueda, et 

al. 1999). In addition, CD36 is an integral membrane protein found on the surface in a variety 

of cells. In macrophages, CD36 binds oxidized LDL, acetylated LDL, native lipoproteins, 

oxidized phospholipids (Wang, et al. 2007) and long chain FA (Baillie, et al. 1996). 

 

2.4.3. Regulation of LDL receptors 

 

When cellular free cholesterol increases, the production of LDL receptors is reduced (Brown, 

et al. 1975). Together with the reduction in 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMG-CoA reductase), this regulatory response decreases cholesterol input from plasma as 

well as from endogenous synthesis. The mechanism that mediated regulation of LDL 

receptors for this dual regulation was clarified by the discovery of sterol regulatory element-

binding proteins (SREBPs) (Brown, et al. 1999). SREBPs are synthesized as membrane-

bound proteins attached to the endoplasmic reticulum. In the presence of cholesterol, SREBP 

is bound to the protein SCAP (SREBP-cleavage-activating protein). In cholesterol-depleted 

cells, the complex migrates to the Golgi apparatus, where SREBP is cleaved by two 

proteases, S1P and S2P (site-1 and -2 protease). These two enzymes are activated by SCAP, 

to release a soluble fragment that enters the nucleus and acts as a transcription factor. It binds 

to the sterol response element (SRE) and it stimulates the transcription of many genes. 
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Among these are HMG CoA reductase and all the other enzymes of cholesterol biosynthesis 

as well as the LDL receptor (Horton, et al. 2002). LDLR mRNA is translated by ribosomes 

on the endoplasmic reticulum and the protein is modified in the Golgi apparatus before 

traveling in vesicles to the cell surface. The newly produced LDL receptors remove LDL 

from the blood, and deliver it to the interior of the cell where the LDL is digested and its 

released cholesterol becomes available for metabolic purposes. When LDL-derived 

cholesterol enters cells, it blocks the transport of SREBPs to the Golgi complex. By inhibiting 

the SREBP pathway, LDL also suppresses transcription of the LDL receptor gene (Brown, et 

al. 1999) which allows cells to adjust the number of LDL receptors to provide sufficient 

cholesterol for metabolic needs without producing cholesterol over accumulation (Brown, et 

al. 1975). The net effect is that the amount of cholesterol in the liver is maintained at a 

normal level while at the same time the level of LDL-cholesterol in blood is kept low 

(Brown, et al. 2004). 

 

2.4.4. Bovine serum albumin (BSA) 

 

In mammals, the blood plasma protein serum albumin is the most abundant plasma protein. In 

addition to its lipid transport properties, it plays a role in the regulation of lipid metabolism 

and it maintains the “osmotic pressure” needed for proper distribution of body fluids between 

intravascular compartments and body tissues, which causes fluid to remain within the blood 

stream instead of leaking out into body tissues. Its binding function in blood has been 

associated mostly with the transport of a wide varity of endogenous and exogenous 

compounds including fatty acids (Simard, et al. 2005), metal ions, amino acids, steroids and 

drugs (Carter, et al. 1989).  

Bovine serum albumin (BSA) is a large globular protein (66kDa) with a single chain of 583 

amino acid residues, and contains 17 pairs of disulfide bonds (Peters, 1985). BSA is a lipid-

free soluble protein of the circulatory system and has many physiological functions (Carter, et 

al. 1994). It contains a limited number of saturable binding sites for lipids (Bhattacharya, et 

al. 2000) that are able to bind anionic and cationic ligands via both hydrophilic and 

hydrophobic interactions (Charbonneau, et al. 2010). In contrast to the many other proteins, 

bovine serum albumin has high affinity binding sites for anions with hydrophobic side chains 

(Choi, et al. 2002). However, the fatty acid binding affinity of albumin increases with 

increasing chain length, because of an increase in hydrophobic interactions (Choi, et al. 

2002). BSA at pH 7.3 and molar ratio ≤ 1.5 has three equivalent binding sites for fatty acids 
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at temperatures from 0 
0
C to 38 

0
C (Bojesen, et al. 1994). It has long been known to serve as 

an extremely versatile transporter protein for a variety of compounds (Shcharbin, et al. 2007; 

Shcharbin, et al. 2005). BSA is considered as a ‘soft’ protein (Peters, 1985) because it does 

not have a high degree of structural stability. Therefore, conformational changes occur upon 

adsorption to a surface (Norde, et al. 1992; Kondo, et al. 1991; Giacomelli, et al. 2001).  

There are marked similarities between BSA and human serum albumin (HSA) in their 

conformation due to 76% of amino acid sequence homology. BSA contains three 

homologous α-helical domains I, II and III, each domain contains two subdomains (A, and B) 

that share common structural motifs. HSA has only one tryptophan residue Trp-214, while 

BSA contains two tryptophans (Fig. 2.10), Trp-134 in the first domain located on the surface 

of the molecule and Trp-212 in the second domain located within a hydrophobic binding 

pocket of the protein (Tayeh, et al. 2009). Trp-212 in BSA and Trp-214 in HSA are located in 

a similar hydrophobic microenvironment in the sub-domain IIA (Peters, 1985).  

The choosing of BSA in our experiments is based on its structural homology with HAS and 

due to the wide information available on BSA properties in solution (Doherty, et al. 1974; 

Bendedouch, et al. 1983). In addition, it is produced at industrial scale, therefore, it has been 

one of the most extensively studied member of this group of proteins (Charbonneau, et al. 

2010). 

Stremmel et al. 1983 showed that in rat liver, plasma membranes do not contain a specific 

albumin receptor of sufficient binding affinity to be detected or isolated by techniques that 

have been used for other kinds of cell surface receptors. It has been shown that lipid-BSA 

probes behave as reliable markers for fluid phase endocytosis in hepatocytes (Stromhaug, et 

al. 1997; Synnes, et al. 1999).  

 

 

 

 

Figure 2.10: X-ray structure of bovine serum 

albumin with tryptophan residues in green color 

(Charbonneau, et al. 2010). 
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2.4.5. Interaction between BSA or LDL and lipids  

 

The basis for the interaction between lipids and proteins is related to their amphiphilic nature 

and is due to their influence on the water structure, the so-called hydrophobic effect (Tanford, 

1980).  

Within living organisms, some proteins are adapted to form stable water-soluble complexes 

with lipids and to function in the mobilization of complex lipids. There are two main types of 

complexes; complexes formed between monomeric proteins and lipids and, secondly, large 

lipoprotein complexes. One of the most ubiquitous monomeric proteins that bind lipids is 

albumin. Serum albumin is a flexible protein that can adopt multiple conformations of 

approximately equal energy to accommodate the binding of ligands. One of the primary 

functions of albumin is to bind free fatty acids during mobilization of lipids in the body and 

transport them in the blood stream as a stable water-soluble complex. The protein has at least 

three fatty acid binding sites. The mechanism of binding of the fatty acids to the protein has 

been investigated by NMR methods (Lucas, et al. 2004). The dissociation of fatty acids from 

serum albumin takes place rapidly 0.04 – 0.14s
-1

 (Weisiger, et al. 1987) with a dissociation 

constant of 1.4 ± 0.2 mM (Dubois, et al. 1993). Their dissociation from the complex at the 

site of entry into cells is assisted by the presence of proteins in the plasma membrane with a 

high affinity for fatty acids (McArthur, et al. 1999).  

On the other hand, serum lipoproteins are specifically adapted to form structures designed to 

transport lipids throughout the body. These lipoproteins are circulating in the mammalian 

blood stream to distribute a cargo of lipids from their site of synthesis or uptake to the 

peripheral tissues. The lipids, mainly triacylglycerols, cholesterol, and cholesterol esters, 

occupy a central core surrounded by a shell of polar lipids and proteins. The proteins act to 

stabilize the lipid core and provide recognition sites for targeting the complex to the 

appropriate site of delivery. Moreover, the phospholipids that are associated with LDL are 

known to affect the physicochemical properties of the lipoprotein (Kleinman, et al. 1988) and 

may play a role in LDL metabolism by affecting the interaction between LDL and its receptor 

in the cell membrane (Aviram, et al. 1988). According to the LDL pathway (Goldstein, et al. 

2009), LDL is endocytosed after binding to LDL receptors and transferred to lysosomes as 

mentioned before. Remarkably, LDL-associated PC is not only hydrolyzed in lysosomes, but 

also at other subcellular sites (Ishikawa, et al. 1989). LDL-phospholipids are known to affect 

epitope expression of apoB-100 on the surface of LDL particles (Aviram, et al. 1988), and 

consequently may alter the interaction between LDL and its receptor. It has been suggested 
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that hydrolysis of LDL-derived glycerophospholipids by hepatic lipase enhances the 

interaction between lipolysed LDL and LDL-receptor, might affect the apoB-100 epitope, 

and the cellular uptake of LDL via the receptor (Aviram, et al. 1988).  

 

2.5. Lipid transfer proteins 

 

Both cholesterol ester transfer protein and phospholipid-transfer protein act as specific 

mediators of lipid transfer between lipoproteins and lipoproteins and cells. 

 

2.5.1. Cholesteryl ester transfer protein (CETP) 

 

CETP is a hydrophobic glycoprotein of mass 74kDa, and plays an important role in reverse 

cholesterol transport. It promotes the efflux of cholesterol from peripheral tissues to the liver 

for excretion and degradation to bile acids, so LCAT is of great importance for cholesterol 

homeostasis. It is a suggested target for therapeutic intervention against atherosclerosis. The 

action of CETP is to transfer cholesteryl ester from HDL to the other triacylglyerol-rich 

lipoproteins such as LDL and VLDL, and reciprocal transfer of triacylglycerol from 

triacylglycerol-rich lipoproteins to HDL, and vice versa. Physiologically, the main effect of 

CETP may be to promote the transfer of LCAT derived cholesteryl esters out of HDL (where 

they were formed) into VLDL and LDL, in exchange for triacylglycerol (Fielding, et al. 

2002). Inhibition of CETP offers a new approach to coronary artery disease therapy 

(Brousseau et al. 2004), since high CETP activity lowers the HDL/total cholesterol ratio, 

potentially increasing risk for atherosclerosis (Papp, et al. 2012). 

 

2.5.2. Phospholipid-transfer protein (PLTP) 

 

PLTP is a glycoprotein of mass 55kDa. PLTP is the second lipid transfer protein found in 

human plasma that enhances the transport of phospholipids and cholesterol from 

triacylglyerol-rich lipoproteins such as VLDL to HDL particles and promotes the generation 

of small pre-β-HDL particles that are initial acceptors of cell-derived cholesterol and the 

preferred substrate for LCAT (Jauhiainen, et al. 1993). PLTP has been shown to bind to both 

ApoA-I and ApoA-II (Pussinen, et al. 1998) and enhance CETP (Tollefson, et al. 1988). 

Three major classes of mammalian phospholipid transfer protein were identified, 

phosphatidylcholine transfer protein, phosphatidylinositol transfer protein, and the non-
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specific lipid transfer protein denoted as sterol carrier protein 2 (SCP-2) that can transfer a 

wide range of phospholipids including sterols (Wirtz, 2006).  

 

2.6. Fatty acid functions 

 

Fatty acids have an amphipathic nature and constitute one of the most fundamental classes of 

biological lipids (Fahy, et al. 2005). They serve as the basic building blocks of complex 

lipids. In form of triacylglycerol, they represent a major form of storage energy. As part of 

glycerophospholipids, they provide an essential structural component of membranes, and 

through direct covalent linkage they are used to modify and regulate the properties of many 

proteins. They can also be metabolized to lipid signalling molecules that perform important 

roles as metabolic intermediates used for lipid synthesis and protein modification as well as 

can be broken down through mitochondrial beta-oxidation to generate ATP via oxidative 

phosphorylation (Puzio-Kuter, 2011). FAs directly regulate cellular processes via regulation 

of gene transcription (Jump, 2004), or via binding to membrane-bound receptors (GPR40, 

GPR41, GPR43, GPR84, and GPR120). For example oleic acid binds to GPR43 (Briscoe, et 

al. 2003), and ω3-unsaturated FAs to GPR120 (Oh, et al. 2010; Ichimura, et al. 2012). In 

addition, they regulate cell behaviour also indirectly through their bioactive metabolites 

(Fritsche, 2006; Calder, 2011). It is worth noting that fatty acids can regulate the expression 

of a range of genes involved in lipid metabolism. Recent studies have shown that poly 

unsaturated FA interacts directly with nuclear receptors such as peroxisome proliferator 

activated receptors (PPARs). PPARs are members of a sub-family of the nuclear hormone 

receptors (Montagner, et al. 2011) that act as sensors of fatty acids and fatty acid analogues. 

The PPAR family consists of three isoforms, PPARα, PPARβ (also known as δ) and PPARγ. 

These PPARs play essential roles in the regulation of fatty acid metabolism (Bishop-Bailey, 

2011) and were found to be key regulators of lipid and carbohydrate metabolism (Varga, et 

al. 2011). The affinity of PPAR sub-types to FAs appears to be greatest for PPARα followed 

by PPARγ and PPARβ (Kliewer, et al. 1997). PPARα, the predominant isoform in liver, play 

a major role in the fatty acid-induced regulation of hepatic gene transcription, while PPARβ 

is abundant not only in skeletal muscle but also in adipose tissue, where it is involved in 

general and fundamental cellular processes (Montagner, et al. 2011). Both PPARα and 

PPARβ are activated by saturated and unsaturated fatty acids. PPARγ plays an important role 

in the storage of lipids in adipose tissue and is only activated by long-chain unsaturated fatty 

acid. 
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In a physiological context, the uptake of FAs is a highly regulated process, e.g., in endothelial 

cells, vascular endothelial growth factor B coordinates FA uptake with the energy demands of 

the surrounding tissue (Hagberg, et al. 2010). FA uptake and processing is also required for 

cancer cell survival (Zhan, et al. 2008; Hess, et al. 2010). A diet that is relatively high in 

unsaturated fatty acids, especially polyunsaturated fatty acids, may reduce the risk of heart 

attacks and strokes (Kwak, et al. 2012). By contrast, the incidence of cardiovascular disease 

is correlated with diets high in saturated fatty acids. In the present study, uptake and 

processing of exogenously added FAs by four different cell types were investigated. To avoid 

artefacts caused by the use of fluorescent or chemical reporter groups, labelling by 

radioisotopes was used to distinguish endogenous lipids from those that arose by 

incorporation of FAs of exogenous origin. The four investigated C18-FAs (Fig. 2.11) differ in 

the degree of unsaturation (18:0, 18:1, 18:2, and 18:3) were applied in concentrations of 

10µM. They were added to the culture medium of the cells in complex with bovine serum 

albumin (BSA). After different incubation time ranging from 15–120min, their cellular 

uptake and processing into different lipid classes in the different cell types were monitored. 

 

2.6.1. Fatty acid biosynthesis 

 

The liver and adipose tissue in most animals are the major sites of fatty acid biosynthesis. 

The two pancreatic hormones, insulin and glucagon exert essentially opposite effects on 

energy metabolism. Thus, during feeding, when the ratio of insulin to glucagon increases in 

the blood, the activities of several enzymes in the glycolytic and lipogenic pathways are 

elevated, while the activities of key gluconeogenic enzymes are decreased. As the ratio of 

insulin to glucagon decreases in the blood during prolonged periods of fasting, the activities 

of key enzymes in the glycolytic and lipogenic pathways are decreased, while the activities of 

key gluconeogenic enzymes are increased resulting in a reversal of the process. The fatty acid 

biosynthetic pathway is carried out by the multifunctional fatty acid synthase enzyme that 

catalyzes multiple condensations of malonyl-CoA with acetyl-CoA or the elongating lipid, 

eventually generating palmitate. A first step includes the formation of malonyl-CoA from 

acetyl CoA by the activity of the enzyme acetyl-CoA carboxylase. Formation of malonyl-

CoA is a rate-limiting step of FA biosynthesis, because malonyl-CoA has no metabolic role 

other than serving as a precursor to FAs. Acetyl transacylase (acetyl transferase) and malonyl 

transacylase (malonyl transferase) catalyse the formation of acetyl ACP and malonyl ACP 

from acetyl-CoA and malonyl-CoA, respectively. Acetyl ACP (ACP= acyl carrier protein) is 
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condensed with malonyl ACP catalysed by acyl-malonyl ACP to form acetoacetyl ACP. A 

sequence of reactions follows in which the chain is extended to form butanoate. First, the 

reaction is catalysed by β-ketoacyl-ACP synthetase to produce 3-oxobutanoate, this is 

reduced to 3-hydroxy-butanoate by β-ketoacyl-ACP reductase, which is in turn dehydrated to 

E-2-butenoate by β-hydroxyacyl-ACP hydratase before it is reduced to butanoate by enoyl-

ACP reductase. The addition of further six units of malonyl-ACP then continues until 

palmitoyl-ACP is formed. At this step, a thioesterase removes the fatty acyl product as the 

free acid (with the mammalian enzyme), which has to be converted to the CoA-ester before it 

can enter the various biosynthetic pathways for the production of specific lipids. Further 

elongation of palmitoyl-CoA by C2 units occurs to form long- or very-long-chain fatty acids 

by Type III fatty acid synthetases (elongases).  

A great diversity of fatty acid structures is produced by variations of the basic biosynthetic 

process. Fatty acids are either saturated such as stearic acid (18:0) or unsaturated such as 

oleic acid (18:1). Saturated fatty acids are built from two carbon units, initially derived from 

acetate, added to the carboxyl end of the molecule. The number of double bonds in an 

unsaturated fatty acid varies typically from one to six. They are introduced by desaturase 

enzymes at specific positions relative to the carboxyl group (Hunter, 2006). Elongases further 

extend the chain in two carbon units from the carboxyl end. All the possible odd- and even-

numbered homologues with 2 to 36 carbon atoms have been found in nature in esterified 

form, but the most abundant saturated fatty acids in animal and plant tissues are straight-

chain compounds with an even number of 14, 16 and 18 carbon atoms. 

 

Figure 2.11: The 

structures of some 

typical fatty acids A: 

palmitic acid (16:0); 

B: stearic acid (18:0); 

C: oleic acid (18:1, ω9, 
9
); D: linoleic acid 

(18:2, ω6, 
9,12

); E: α-

linolenic acid (18:3, 

ω3, 
9,12,15

).  

 

 

2.6.2. Fatty acid uptake and trafficking 

 

In adipose tissue, fatty acids are liberated from triacylglycerol-rich lipoproteins through the 

action of lipoprotein lipase. Released fatty acids are bound by albumin and free fatty acids 
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present in the equilibrium are taken up by cells. From a physiological perspective, it would be 

highly preferable to regulate fatty acid entry into the cell to ensure fatty acid uptake when its 

extracellular concentration is low, to limit uptake when the extracellular concentration is 

high, to potentially select for specific fatty acid types, and to allow rapid adjustments in fatty 

acid provision to meet fluctuations in metabolic demands (Glatz, et al. 2010). 

The solubility of fatty acids in aqueous solutions is low, i.e., in the range of 1–10nM (Vorum, 

et al. 1992). The ability of proteins to bind fatty acids dramatically increases the total amount 

of fatty acids that can be present in the aqueous phase. Albumin and cytoplasmic fatty acid-

binding protein (FABPc) act as extracellular and intracellular buffers for fatty acids, 

respectively. For instance, albumin at a concentration of 300–600mM can accommodate up to 

1–2mM fatty acids in plasma and interstitium (Richieri, et al. 1993), while FABPc inside the 

cell functions as a sink for incoming fatty acids can accommodate up to150–300mM fatty 

acids (Vork, et al. 1993; Richieri, et al. 1994). Scavenging of fatty acids by binding proteins 

play a crucial role to prevent the toxicity of free fatty acids and their intermediates in the 

cytosol by intracellular transport towards their sites of metabolic conversion (Schaap, et al. 

1998). 

There are different pathways for the uptake of FA through the cell membrane (Schwenk, et 

al. 2010) (Fig. 2.12). First, the amphipathic nature of the fatty acid molecule provides it with 

the biophysical properties to pass the phospholipid bilayer of the cell membrane by simple 

diffusion (Fig. 2.12, Path 1). Adsorption from the outer leaflet of the bilayer, flip-flop, and 

desorption of fatty acids functions to transfer protons across the membrane. Several studies 

showed that biological membranes do not form a barrier for fatty acids and that fatty acids 

can rapidly and spontaneously diffuse through phospholipid bilayers without the help of 

membrane proteins (Hamilton, 2007). A second possibility is that plasma membrane fatty 

acid-binding proteins (FABPpm), a family of small, highly abundant proteins that bind tightly 

and sequester free fatty acids (La Londe, et al. 1994), facilitate and regulate transmembrane 

fatty acid transport across the cell membrane and prevent destabilization of the membrane 

(Schwenk, et al. 2010). These fatty acid-binding proteins act as acceptors for fatty acids 

whereafter the fatty acids make their way through the cell membrane by simple diffusion 

(Fig. 2.12, Path 2). Furthermore, CD36 (88kDa; also referred to as ‘fatty acid translocase’) 

alone or together with plasma membrane fatty acid-binding protein (FABPpm) might serve as 

acceptors of albumin-derived extracellular FA to increase their local concentration at the cell 

surface and thus increase the number of FA-diffusion events (Stremmel, et al. 2001) (Fig. 

2.12, Path 3). Additionally, fatty acid transport proteins (FATPs) are thought to accelerate the 



33 

rate of trans-membrane transport of FA, which are rapidly activated by plasma membrane 

acyl-CoA synthetase (ACS1) to form acyl-CoA esters (Fig. 2.12, Path 4). The colocalization 

of FATP1, FATP6, and CD36 within distinct areas of the plasma membrane makes an 

interaction likely (Gimeno, et al. 2003; Pohl, et al. 2000). Currently, it is not known to which 

extent an interaction of the CD36/FABPpm complex with one or more of the FATP species 

occurs. The mechanisms by which long-chain FAs enter mammalian cells may differ from 

one cell type to others. For example, the incorporation of FAs in fibroblasts depends on the 

structure of the FA: apparently, palmitic acid enters the cell by simple diffusion, while oleic 

acid (OA) uses saturable transport processes (Damyanova, et al. 2010). FATPs preferentially 

transport very-long- chain fatty acids VLC-FA (> C22); and by action of their synthetase 

activity they directly convert them into very-long-chain acyl-CoA esters (Fig. 2.12, Path 5). 

After being taken up, FAs are bound to cytoplasmic FA binding proteins (FABPc) 

(Haunerland, et al. 2004) that transport them to intracellular target locations such as 

mitochondria, peroxisomes, or the endoplasmic reticulum (Storch, et al. 2000). Once inside 

the cell, free fatty acids are minimally soluble in the aqueous cytoplasm. At high enough 

concentrations fatty acids exert a detergent-like effect that would disrupt membranes. In 

addition to these proteins, long-chain acyl-CoA synthetases (ACSLs) are involved in FA 

uptake by converting them into membrane impermeable acyl-CoAs in an ATP-dependent 

reaction, and thus facilitate the import of exogenous FAs by trapping them inside the cells 

(Duttaroy, 2009). The acyl-CoAs have numerous metabolic fates, including donating FAs for 

incorporation into TAGs and membrane phospholipids, as substrates for β-oxidation and 

protein acylation, and as ligands for transcription factors. 

 

 

 

 
Figure 2.12: Proposed different models of 

fatty acid (FA) transport across the cell 

membrane (Schwenk, et al. 2010).  

 

 

 

 

 

 

 

 

 

 



34 

 

2.7. Cholesterol  

 

In 1926, Heinrich Wieland was awarded the Nobel Prize in chemistry who suggested the 

structure of cholesterol and bile acids. Cholesterol (Fig. 2.13), is the most prevalent steriod in 

mammalian cells and serves as precursor of bile acids and steroid hormones. Vitamin D3 is 

derived from 7-dehydrocholesterol, the immediate biosynthetic precursor of cholesterol. 

Cholesterol is a principal component of the plasma membranes of mammalian cells, and 

much smaller amounts of cholesterol are found in the membranes of intracellular organelles 

like mitochondria, Golgi complexes, and nuclear membranes. It intercalates among the 

phospholipids of the membrane, with its hydroxyl group at the aqueous interface and the 

remainder of the molecule within the leaflet. The relatively rigid fused ring system of 

cholesterol and the weakly polar group at the C-3 position have important consequences for 

the properties of plasma membranes. It stabilizes the liquid ordered phase of membranes and 

prevents phase transitions. Furthermore, most endocytic pathways like clathrin-dependent 

and clathrin-independent pathways are inhibited by the loss of cholesterol.  

Cholesterol is also a component of lipoprotein complexes in the blood, and it is one of the 

constituents of plaques that form on arterial walls in atherosclerosis. Excess cholesterol is 

metabolized to oxysterols (Rock, 2008), which are not only blocking SREBP cleavage-

activating protein (SCAP), but also facilitate proteolysis of SREBP and thereby down-

regulate endogenous cholesterol synthesis and LDL receptor levels. Cholesterol has to be 

oxidized to oxysterols before it can leave the brain. In addition, oxysterols further reduce the 

cellular content of unesterified cholesterol by activating bile acid synthesis and cholesterol 

esterification. Rising cholesterol levels cause hydroxy-methylglutaryl-CoA (HMG-CoA) 

reductase to be ubiquitinated and degraded by the proteosome. They cause SREBP cleavage-

activating protein (SCAP) to remain localized to the endoplasmic reticulum rather than 

translocating to the Golgi. Within endolysosomal compartements, cholesteryl esters can be 

hydrolized by acid lipase to fatty acids and free cholesterol required for membrane and 

lipoprotein formation and for hormone synthesis in adrenal cells. The free cholesterol binds 

to the NPC-2 protein, which transports and delivers the cholesterol to the NPC-1 protein, 

located in the perimeter membrane (Abdul-Hammed, et al. 2010). Deficiency of lysosomal 

acid lipase results in Wolman disease (Tanaka, 1995). Cholesterol, however, is insoluble in 

blood and is transported in the circulatory system bound to one of the varieties of 

lipoproteins. Therefore, in our study, we used albumin and low density lipoprotein as a 

carrier for cholesterol.  
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Figure 2.13: The structure of cholesterol, showing 

the rings of the steroid nucleus and carbon 

numbering. 

 

 

2.7.1. Cholesterol and cholesteryl ester biosynthesis 

 

Cholesterol is present in tissues and in plasma either as free cholesterol or combined with a 

long-chain fatty acid as a storage form. Both forms are transported in plasma by lipoproteins. 

More than half the cholesterol of the body is formed by synthesis (about 700 mg/d), and the 

average diet provides the remainder (Mayes, et al. 2003).  

The cholesterol biosynthetic pathway (Fig. 2.14) starts from the cytosolic thiolase that 

catalyzes the Claisen condensation of two molecules of acetyl-CoA to form acetoacetyl-CoA. 

Acetoacetyl-CoA reacts with another molecule of acetyl-CoA in an aldol addition to form 3-

hydroxy-3-methylglutaryl-CoA (HMG-CoA) catalyzed by cytosolic HMG-CoA synthase. 

The next step in this pathway is the rate-limiting step in cholesterol biosynthesis, in which 

HMG-CoA is reduced by two molecules of NADPH to produce mevalonate. The reaction is 

catalyzed by HMG-CoA reductase, a 97kDa glycoprotein that traverses the endoplasmic 

reticulum membrane with its active site facing the cytosol. A series of four reactions converts 

mevalonate to isopentenyl pyrophosphate and then to dimethylallyl pyrophosphate. 

Pyrophosphomevalonate decarboxylase phosphorylates the 3-hydroxyl group, which is 

followed by a trans-elimination of the phosphate and carboxyl groups to form the double 

bond in isopentenyl pyrophosphate. Isomerization of the double bond yields dimethylallyl 

pyrophosphate. Condensation of these two 5-carbon intermediates produces geranyl 

pyrophosphate, a further condensation of 5-carbon isopentenyl pyrophosphate forms farnesyl 

pyrophosphate. Then two molecules of farnesyl pyrophosphates condense to form squalene. 

Before ring closure occurs, squalene monooxygenase, an enzyme bound to the endoplasmic 

reticulum, converts squalene to squalene-2,3-epoxide. This reaction requires NADPH as 

coenzyme and O2. A second ER membrane enzyme, 2,3-oxidosqualene:lanosterol cyclase, 

catalyzes the second reaction to form lanosterol, which involves the transfer of methyl groups 

from C14 to C13 and from C8 to C14 as cyclization occurs. To convert lanosterol to cholesterol, 

another 20 steps are required that take place at the membranes of the endoplasmic reticulum 

and peroxisomes. They involve removal of the methyl groups on C14 and C4 to form 14-
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desmethyl lanosterol and then zymosterol. The double bond at C8–C9 is subsequently moved 

to C5–C6 in two steps, forming desmosterol. Finally, the double bond of the side chain is 

reduced, to produce cholesterol.  

Cholesteryl esters are formed in the liver through the action of Sterol O-acyltransferase 

SOAT (formely called Acyl-CoA cholesterol acyl transferase ACAT). SOAT is the 

intracellular protein on the cytoplasmic face of the ER membrane, which catalyzes the 

transfer of a fatty acid from coenzyme A to the hydroxyl group of cholesterol, converting the 

cholesterol to a more hydrophobic and storage form. In vivo, SOAT plays an important 

physiological role in intestinal absorption of dietary cholesterol, and in control of the cellular 

free cholesterol pool that serves as substrate for bile acid and steroid hormone formation.  

 

Figure 2.14: The biosynthetic pathway of cholesterol.  

http://en.wikipedia.org/wiki/Acyl
http://en.wikipedia.org/wiki/Transferase
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2.8. Di- and tri-acylglycerols 

 

Diacylglycerols are the principal precursors of glycerophospholipids, consisting of two fatty 

acid chains covalently bound to a glycerol molecule through ester linkages. DAG can induce 

structural changes in the lipid bilayer, which may be responsible for the molecular signal 

transduction, such as activation of protein kinase C or to enhance membrane fusion 

processes. Switching off the signal generated by the formation of diacylglycerol is 

accomplished by diacylglycerol kinase, which converts the substrate into phosphatidic acid 

(Stathopoulos, et al. 1990). On the other hand, triacylglycerols are nonpolar, hydrophobic 

molecules, synthesized mainly in adipose tissue, liver, and intestine and serve as the principal 

energy storage molecule in eukaryotes. Although triacylglycerols are insoluble in water, 

mono-and diacylglycerols are able to form lyotropic liquid crystalline structures in water 

(Macierzanka, et al. 2006). Mammalian triacylglycerol synthesis is affected by a large 

number of factors. These include nutritional, hormonal, and pharmacological effects. A major 

function of triacylglycerols in mammalian cells is to allow the transport in the form of the 

serum lipoproteins and storage of acyl moieties in the body. The formation of triacylglycerols 

removes the potentially harmful fatty acids (Brindley, 1991). Moreover, plenty of evidence 

suggests that elevated triacylglycerol levels are an independent risk factor for cardiovascular 

disease (CVD) (Jacobson, et al. 2007; Botham, et al. 2007). Metabolism of triacylglycerols in 

animals requires lipoprotein lipase involved in uptake of FAs from plasma and hormone-

sensitive lipase involved in release of fatty acids from lipid stores. Hormone-sensitive lipase 

is responsible for hydrolysis of the esters at positions 1 and 3 of the triacylglycerol, and 

monoacylglycerol lipase catalyzes hydrolysis of the remaining ester to yield a third free fatty 

acid and glycerol (Bernlohr, et al. 2002). Fatty acids are immediately bound to serum 

albumin and carried in the bloodstream to the liver, muscle, and other tissues for oxidation, 

while glycerol has to be shuttled back to the liver for oxidation or gluconeogenesis.  

 

2.8.1. Di- and tri-acylglycerol biosynthesis 

 

Diacylglycerol can originate from two sources (Fig. 2.16), either it is formed by 

phosphatidate phosphohydrolase (phosphatidic acid phosphatase) that converts phosphatidate 

(phophatidic acid) to 1,2-diacylglycerol (DAG), or it is synthesized by acylation of 

monoacylglycerol (MAG) by monoacylglycerol acyltransferase. Most of the activity of these 

enzymes resides in the endoplasmic reticulum of the cell, but some is found in mitochondria. 

http://en.wikipedia.org/wiki/Fatty_acid
http://en.wikipedia.org/wiki/Fatty_acid
http://en.wikipedia.org/wiki/Covalent_bond
http://en.wikipedia.org/wiki/Glycerol
http://en.wikipedia.org/wiki/Ester
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Phosphatidate phosphohydrolase is found mainly in the cytosol, but the active form of the 

enzyme is membrane-bound. It can be inhibited by some cationic amphiphilic drugs (Koul, et 

al. 1987). Furthermore, diacylglycerol can be transiently formed in cell membranes as a 

consequence of phospholipase C-type enzymes activated by a variety of hormones, growth 

factors, and neurotransmitters.  

Diacylglycerol is a precursor for synthesis of  triacylglycerol (TAG), 

phosphatidylethanolamine (PE), and phosphatidylcholine (PC). Triacylglycerol is formed 

(Fig. 2.16) by the esterification of a third fatty acid to the hydroxy group of diacylglycerol 

under the catalysis of diacylglycerol acyltransferases (DGAT-1, and DGAT-2) located in the 

endoplasmic reticulum (Kolter, Römpp Online). Their activities are especially high in 

lipogenic tissues like adipose and liver. In Caco-2 cells and rat intestinal mucosal 

membranes, 76% and 89% of the in vitro TAG synthesis are initiated from MAG, which is 

mediated by DGAT1, respectively. XP620 (Fig. 2.15) is an inhibitor for DGAT-1 

investigated for the treatment of obesity (Cheng, et al. 2008). However, complete deletion of 

SOAT- or DGAT activity triggers FA-mediated cell death (Garbarino, et al. 2009).  

 

 

 

Figure 2.15: Structure of XP620 

 

 

 

 

 

2.9. Phospholipids 

 

Phospholipids form the essential milieu of cellular membranes and provide a barrier for entry 

of exogenous compounds into cells. Phospholipids act as precursors of second messengers 

such as diacylglycerol (DAG) and inositol-1,4,5-P3. Phospholipids also function as storage of 

energy in the form of fatty acyl components. This function is probably quantitatively 

important only under extreme conditions such as starvation (Vance, 2002).  

Phospholipids are divided into two main classes depending on whether they contain a 

glycerol backbone, glycerophospholipids or contain a sphingosyl backbone, 

sphingophospholipids. 

 

 

http://en.wikipedia.org/wiki/Triacylglycerol
http://en.wikipedia.org/wiki/Triacylglycerol
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2.9.1. Glycerophospholipids 

 

Glycerophospholipids are members of the broader class of lipids known as phospholipids. 

Most of the phospholipids that are derived from glycerol are synthesized on the cytosolic side 

of the endoplasmic reticulum (ER) membrane from water-soluble cytosolic precursors.  

 

2.9.2. Phosphatidic acid biosynthesis 

 

The synthesis of phosphatidic acid (PA), the simplest negatively charged membrane 

phospholipid, is a common pathway that operates in nearly all organisms. PA is a key 

intermediate in the formation of glycerophospholipids (Wang, et al. 2003) and 

triacylglycerols (Mayes, et al. 2003).  

In liver and kidney, glycerol kinase catalyzes the phosphorylation of glycerol to form L-

glycerol-3-phosphate, which is then acylated at both the 1- and 2- positions to yield 

phosphatidic acid (or 1,2-diacylglycerol phosphate) (Fig. 2.16). First, the two molecules of 

acyl-CoA are formed by the activation of fatty acids by acyl-CoA synthetase and both 

glycerol and fatty acids must be activated by ATP before they can be incorporated into 

acylglycerols. The first acylation at position sn-1 is catalyzed by glycerol-3-phosphate 

acyltransferase, while 1-acylglycerol-3-phosphate acyltransferase catalyzes the second 

acylation at position sn-2. Commonly but not invariably, the fatty acid at C-1 is saturated and 

that at C-2 is unsaturated. 

In eukaryotic systems, if the activity of glycerol kinase is absent or low as in muscle or 

adipose tissue, most of the glycerol 3-phosphate is formed from dihydroxyacetone phosphate 

by the action of glycerol-3-phosphate dehydrogenase. Again a specific acyltransferase adds 

the first acyl chain, followed by reduction of the backbone keto group by 

acyldihydroxyacetone phosphate reductase, using NADPH as the reductant. Enzymes on the 

cytosolic face of the ER membrane then catalyze the addition of different polar head groups. 

A phosphatase converts phosphatidic acid to diacylglycerol, as mentioned before. 

 

2.9.3. Phospholipid biosynthesis  

 

Phosphorylethanolamine and phosphorylcholine are formed by phosphorylation by ATP of 

ethanolamine or choline in the presence of the cytosolic enzymes ethanolamine kinase or 

choline kinase, respectively. The following reaction involves the rate limiting step, transfer of 

a cytidylyl group from cytidine triphosphate (CTP) to form cytidine diphosphates (CDP-

ethanolamine or CDP-choline) and pyrophosphate. Pyrophosphate hydrolysis drives this 

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3250/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3042/
http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A3012/
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reaction forward. Finally, CDP-ethanolamine:1,2-diacylglycerol phosphoethanolamine 

transferase or CDP-choline:1,2-diacylglycerol phosphocholine transferase then links 

phosphoethanolamine or phosphocholine to the diacylglycerol backbone to form the neutral 

charged phospholipids, PE, and PC, respectively (Renooij, et al. 1981; Gibellini, et al. 2010). 

This sequence of reactions is known as the Kennedy-pathway. CDP-diacylglycerol derived 

from phosphatidic acid can also be used as a precursor for several other negatively charged 

phospholipids, including a phosphatidylinositol (PI), phosphatidylglycerol (PG), and 

cardiolipin (CL) (Hatch, 1994). The enzyme CDP-DAG synthase is largely microsomal, but 

is also found in the mitochondrial inner membrane (Zinser, et al. 1991). 

However, an alternative pathway can convert phosphatidylethanolamine to 

phosphatidylcholine by methylation reactions involving S-adenosylmethionine (Shields, et al. 

2003) catalyzed by PE-N-methyltransferase.  This reaction has been sugested to play an 

important role in the transport of polyunsaturated fatty acids (PUFAs) like docosahexaenoic 

acid (DHA) from the liver to plasma and possibly other tissues (Wijk, et al. 2012). In 

mammals and yeast, PE can also be formed from PS by conversion of serine to ethanolamine 

through an indirect route, in which ethanolamine is formed by mitochondrial PS 

decarboxylase. In animal, PS is synthesized by PS-synthases I and II that exchange the 

choline and ethanolamine head groups of PC and PE for serine, respectively (Arikketh, et al. 

2008; Vance, 2008).  

Biosynthesis of inositol from glucose occurs in the brain, testes, and in other tissues to a 

lesser extent. The rate limiting step appears to be the synthesis of myo-inositol-3-phosphate 

from glucose-6-phosphate (Downes, et al. 1990). Inositol-3-phosphate is hydrolyzed to 

inositol by a phosphatase. Further phosphorylations can take place at different positions of 

myo-inositol (Roeber, 2002) and give rise to several phosphatidylinositol phosphates.  

The biosynthesis of bis(monoacylglycero)phosphate (BMP), (Heravi, et al. 1999; Scherer, et 

al. 2010) involves hydrolysis of PG to 1-acyl-sn-glycero-3-phospho-rac-glycerol (LPG) by a 

lysosomal phospholipase A2 (PLA2). Sn-3:sn1' LPG is then acylated on the glycerol head 

group by a transacylase, using a phospholipid as the acyl donor, to form 

bis(monoacylglycero)phosphate that still retains the sn-3:sn-l' stereo configuration of the 

original PG and a lysophospholipid. The phosphoryl ester from sn-3 to the sn-l is reoriented 

by an enzymatic activity to yield sn-l:sn-l'-LPG. The final product, sn-1:sn-1'-BMP (Fig. 

2.17), is formed upon acylation of the glycerol backbone of sn-1:sn-1'-LPG. BMP is not 

present in the limiting lysosomal membrane (Möbius, et al. 2003), but is required for 

sphingolipid degradation on inner membranes of the acidic compartments (Kolter, et al. 



41 

2010). In Lands' cycle (Lands, 1958), the rapid turnover of the sn-2 acyl moiety of 

glycerophospholipids by PLA2 liberates lysophospholipids and free FAs. The free FA 

released can be activated to acyl-CoA by acyl-CoA synthetase (ACS). Lysophospholipids are 

then converted to phospholipids in the presence of acyl-CoA by lysophospholipid 

Acyltransferases (LPLAT).  

 
 

Figure 2.16: Synthesis of triacylglycerol and glycerolipids begins with the formation of phosphatidic 

acid, which may be formed from dihydroxyacetone phosphate or glycerol. 
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Figure 2.17: Structure of bis(monoacylglycero)phosphate. The acyl chain residues are on the sn-2 

position of both glycerol backbones. 
 

2.9.4. Sphingophospholipids 

 

Sphingophospholipids represent another class of phospholipids frequently found in biological 

membranes that contain sphingosine ((2S, 3R)-2-aminooctadec-4-ene-1,3-diol) or another 

sphingoid base that forms the backbone of these lipids rather than glycerol in 

glycerophospholipids. The most common phospholipid in this class is the phosphorylcholine 

ester of an N-acylsphingosine (or ceramide) that is more commonly called sphingomyelin. 

Sphingomyelin represents a major lipid of certain membranes in brain and nervous tissue of 

higher animals. The lysosomal hydrolysis of sphingomyelin to ceramide and phosphocholine 

is catalyzed by acid sphingomyelinase, which cleaves the phosphodiester bond of 

sphingomyelin between ceramide and phosphorylcholine (Lansmann, et al. 2003). In humans, 

a rare genetic defect in the enzyme ASMase results in Niemann-Pick disease (Horinouchi, et 

al. 1995), which is associated with the accumulation of sphingomyelin in endosomes and 

lysosomes (Schuchman, 2010). Sphingomyelin accumulates in the brain, spleen, and liver. 

Type A of the disease becomes evident in infants, and causes mental retardation and early 

death. 

Ceramide is the building block of other sphingolipids and glycosphingolipids and plays an 

important role in membrane signaling processes, and membrane fusion (Lopez-Montero, et 

al. 2005). Ceramides are known to be one of the main mediators of apoptosis in cells. 

Increasing the levels of ceramide by inhibition of ceramidases, which convert ceramide to 

sphingosine and free fatty acid, results in cell death (Strelow, et al. 2000). Likewise, 

inhibition of ceramide production by blocking the de novo synthesis pathway (fumonisin B1) 

or inhibiting neutral, (GW 4869), and acid (D606 and desipramine) sphingomyelinase 

activity, slows down apoptosis in response to a variety of factors including chemotherapeutic 
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agents, tumor necrosis factor-ß, angiotensin-II, and B-cell activation (ElBawab, et al. 2002; 

Takahashi, et al. 2006; Huang, et al. 2011).  

 

2.9.5. Sphingolipid biosynthesis 

 

In eukaryotic cells, sphingomyelin and glycosphingolipids are components of the outer leaflet 

of plasma membranes (Kolter, et al. 1999). The membrane-bound enzymes that catalyze the 

de novo biosynthesis of ceramide are localized on the cytosolic leaflet of the endoplasmic 

reticulum (Stiban, et al. 2008; Mandon, et al. 1992). The initial reaction of the de novo 

biosynthesis of sphingolipids (Fig. 2.18) is the condensation of the amino acid L-serine and 

palmitoyl-CoA, catalyzed by serine palmitoyltransferase (Hanada, 2003) to form 3-

ketosphinganine. Reduction of the ketone product to sphinganine is catalyzed by 3-

ketosphinganine reductase, with NADPH as a reductant. Sphinganine is acylated to form 

dihydroceramide by an enzyme family encoded by the lass-genes (longevity assurance genes) 

(Teufel, et al. 2009). These enzymes have different specificities for the fatty acid CoA 

thioesters and are generating different dihydroceramide species (Pewzner-Jung, et al. 2006).  

Dihydroceramide is then desaturated by dihydroceramide desaturase (Rother et al. 1992) to 

form ceramides (N-acylsphingosines). Ceramide is tranported with the aid of the transfer 

protein CERT (Hanada, 2006) from the ER to the Golgi apparatus or the trans-Golgi network. 

Glycosylation of the first hydroxyl group of ceramide by sugar nucleotides yields the 

cerebrosides galactosylceramide (GalCer) on the luminal site of the Golgi apparatus and 

glucosylceramide (GlcCer) on the cytosolic leaflet of the Golgi apparatus by 

galactosyltransferase and glucosyltransferase, respectively. GalCer is a major lipid of myelin, 

which makes up about 15% of the lipids of myelin sheath structures, whereas GlcCer is the 

major glycosphingolipid of extraneural tissues and is a precursor of most of the more 

complex glycosphingolipids. Sphingomyelin, which is both a phospho- and sphingolipid, is 

synthesized through the action of sphingomyelin synthase by transfer of phosphorylcholine 

from phosphatidylcholine to ceramide, liberating diacylglycerol. De novo sphingomyelin 

synthesis occurs mainly on the luminal face of the Golgi apparatus and to a lesser extent in 

the plasma membrane (Tafesse, et al. 2007). Further deacylation of sphingomyelin by 

sphingomyelin deacylase produces sphingosylphosphorylcholine (lysosphingomyelin). 

Phosphorylation of ceramide (another metabolic step) by ceramide kinase forms ceramide-1-

phosphate (Bajjalieh, et al. 2000). In the salvage pathway, attachment of a fatty acid to the 

amino group of sphingosine or other related amino alcohols via an amide linkage gives rise to 

ceramides, which are catalyzed by ceramide synthase. Furthermore, ceramide can also be 
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formed by degradation of sphingomyelin and glycosphingolipids in lysosomes through the 

action of sphingomyelinases (Goni, et al. 2002) and glycosidases, respectively. On the other 

hand, catabolism of ceramide in lysosomes to sphingosine is catalyzed by acid ceramidase. 

Degradation of ceramide by ceramidases is enhanced by a variety of agents including 

cytokines, cell differentiating agents, death receptor ligands, cancer chemotherapeutic agents, 

and ionizing radiation (Sandhoff, et al. 2001). Sphingosine can be phosphorylated at the 1-

position to sphingosine-1-phosphate (S1P). Phosphoethanolamine and hexadec-2-enal can be 

formed by cleavage of S1P via a pyridoxal phosphate dependent lyase.  
 

 

Figure 2.18: Biosynthesis pathway of sphingolipids in animals.  
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2.10. Cationic amphiphilic drugs (CADs) 

 

Many lipids of exogenous origin enter the cell through the endolysosomal system. 

Endosomes and lysosomes are the intracellular sites through which the majority of nutrients 

enter the cell. Furthermore, the uptake and processing of many lipid classes is impaired in 

lysosomal storage diseases or in the presence of cationic amphiphilic drugs that interfere with 

endolysosomal lipid processing, and lead to drug-induced lipidoses (Kolter, et al. 2010; 

Anderson, et al. 2006; Nonoyama, et al. 2008). Long-term treatment of human patients or 

animals with cationic amphiphilic drugs (CADs) can induce the storage of lipids as a severe 

side-effect (Anderson, et al. 2006; Lüllmann-Rauch, et al. 1975; Lüllmann, et al. 1978). In 

the present work, the influence of five selected CADs on uptake and processing of 

phosphatidylcholine (PC) and sphingomyelin (SM) by different types of cultured cells is 

investigated. Furthermore, the influence of desipramine on uptake and processing of four C18 

fatty acids by different cell types was studied. 

Desipramine is a tricyclic antidepressant drug that induces premature degradation of acid 

sphingomyelinase, which is mainly localized in endosomes and lysosomes, and leads to 

endolysosomal storage of SM (Hurwitz, et al. 1994; Kölzer, et al. 2004). Desipramine 

interferes with the interaction of the positively charged protein with the negatively charged 

luminal membranes. This leads to the release of this enzyme from the surface of 

intraendosomal and intralysosomal membranes and its subsequent premature degradation. 

Drugs with such properties have been named functional inhibitors of acid sphingomyelinase 

(FIASMAs) (Kornhuber, et al. 2010). Also acid ceramidase activity is apparently reduced by 

desipramine in SCC-14A cells and the mouse fibroblast cell line L929 (Zeidan, et al. 2006), 

5637 cells, and HeLa cells (Elojeimy, et al. 2006). In addition, desipramine increased 

cytoplasmic Ca
2+

 ion concentration in PC3 human prostate cancer cells (Huang, et al. 2007) 

and human osteosarcoma MG63 cells (Jan, et al. 2003) by causing Ca
2+

 release from the 

endoplasmic reticulum in a phospholipase C-independent fashion and by inducing Ca
2+

 

influx. Furthermore, desipramine inhibits protein kinase C (PKC) activity in rat brain 

(Morishita, et al. 1997).  

Imipramine is also a tricyclic antidepressant drug that acts as an apparent inhibitor of acid 

sphingomyelinase in cultured cells (Jensen, et al. 1999). Also imipramine induces 

phospholipidosis upon prolonged administration in animals (Lüllmann-Rauch, et al. 1975). 

Chlorpromazine is a cationic amphiphilic phenothiazine derivative, and has been widely 

used as an antipsychotic neuroleptic drug. It antagonizes receptors for dopamine (D2), 
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serotonin (5-HT2A), histamine (H1), and others, and due to its multiple side-effects, it had to 

be rejected from the market. Chlorpromazine also inhibits the formation of clathrin-coated 

pits (Nawa, et al. 2003) and disrupts clathrin-mediated endocytosis by inhibiting the 

relocation of clathrin and adaptor protein 2 complexes (Yao, et al. 2002) from the plasma 

membrane. It binds to the cytoplasmic tail of the cell surface receptors that recruit clathrin 

(Sorkin, 2004), and also inhibits LDL receptor recycling. It causes clathrin lattices to 

assemble on endosomal membranes and at the same time it prevents coated pit assembly at 

the cell surface of human fibroblasts (Wang, et al. 1993). Microscopy and transport studies 

revealed that chlorpromazine perturbs membrane properties of cellular organelles and leads 

to a blockage of the secretory pathway (De Filippi, et al. 2007). It can form stoichiometric 

1:1-complexes with acidic phospholipids such as phosphatidic acid (PA) (Stuhne-Sekalec, et 

al. 1987) and phosphatidylinositol (PI) (Schwendener, 1988), but not with neutral 

glycerophospholipids such as phosphatidylcholine (PC). Previous studies have shown that 

chlorpromazine and other amphiphiles cause pronounced perturbation of membranes 

(Burack, et al. 1994) and induce the expression of a number of genes in both bacteria and 

mammalian cells (Vigh, et al. 1998). Since the activity of membrane-bound proteins 

(receptors, channels, and enzymes) can be dependent on the lipid composition of the 

membranes (Lee, 2003), CADs such as chlorpromazine might influence the activity of such 

proteins even without direct interaction between the protein and the CAD (Gjerde, et al. 

2004; Chen, et al. 2005).  

Chloroquine is a CAD used in the treatment of malaria, and acts as a potent inducer of 

lysosomal storage of phospholipids in both cell cultures and in vivo (Hostetler, et al. 1985). 

Chloroquine also inhibits the recycling of the LDL-receptor, but not of the scavenger receptor 

BI to the plasma membrane (Minahk, et al. 2008). Also chloroquine leads to an apparent 

inhibition of acid sphingomyelinase activity (Yoshida, et al. 1985). It has been suggested that 

chloroquine inhibits degradation of complex endocytosed molecules indirectly by inhibiting 

the transport from endosomes to lysosomes (Tolleshaug, et al. 1979; Berg, et al. 1980). 

Chloroquine (Kodavanti, et al. 1990), like Chlorpromazine (Pappu, et al. 1984) has been 

reported to inhibit lysosomal phospholipases A and C. Similar to desipramine, chloroquine 

and chlorpromazine were able to reduce apparent acid ceramidase activity (Elojeimy, et al. 

2006), presumably according to the same mechanism as acid sphingomyelinase (Hurwitz, et 

al. 1994). Such drugs also interfere with P-glycoprotein involved in multidrug resistance 

(Jaffrezou, et al. 1995). 
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FTY720, is an immunosuppressant, and has been approved for the treatment of multiple 

sclerosis. It behaves as a prodrug of a functional antagonist of sphingosine phosphate 

receptors (Chun, et al. 2010). In addition, FTY720 shows multiple effects, e.g. as cannabinoid 

receptor antagonist (Paugh, et al. 2006), as cPLA2 inhibitor (Payne, et al. 2007), ceramide 

synthase inhibitor (Berdyshev, et al. 2009; Dawson, et al. 2011), or inhibits lysosomal acid 

sphingomyelinase but not neutral sphingomyelinase activity (Dawson, et al. 2011). It 

decreases cholesterol toxicity in primary human macrophages, and stimulates 27-

hydroxycholesterol production (Blom, et al. 2010). 

 

 

Figure 2.19: Structure of different cationic amphiphilic drugs 
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3. Aim and concept of the present study 
 

The aim of this work is to characterize lipid entry pathways in cultured cells.  Cultured cells 

of different types serve as model systems of reduced complexity for living cells in their 

physiological surroundings. Although lipids of different classes have been applied to different 

types of cultured cells before, a systematic study is missing that compares quantitative 

differences between different cell types towards uptake and processing of different lipids. We 

were interested in this question also to determine the impact of lipid delivery methods, and of 

different amphiphilic drugs on cellular lipid entry processes. 

We investigated the capacity of four different cell types to incorporate and metabolize 

various lipids including complex lipids with different fatty acid moieties from the culture 

medium such as fatty acids (FAs), triacylglycerols (TAGs), cholesterol esters (CE), 

cholesterol (Chol), phosphatidylcholine (PC), and sphingomyelin (SM).  

In this work, also two different lipid delivery methods have been compared. Uptake and 

processing of exogenous lipid probes were determined that were either added to cultured cells 

in complex with bovine serum albumin (BSA), or as components of low density lipoprotein 

(LDL) particles. Based on our results, it will be possible in the future to select the optimal 

cell type, delivery method, and read-out to evaluate the impact of the endolysosomal system 

on uptake and processing of a certain lipid. 

We analyzed the role of Niemann-Pick disease, type A (NPA) on the uptake and processing 

of [
14

C]cholesterol and [
14

C]phosphatidylcholine compared to normal fibroblasts. 

We also investigated the influence of representative cationic amphiphilic drugs, desipramine, 

imipramine, chlorpromazine, chloroquine, and FTY720 on the processing of selected lipids 

and their ability to induce phospholipidosis in cultured cells. For the first time, we could 

demonstrate a drastic and cell type-specific effect of the antidepressant desipramine on 

uptake and metabolism of fatty acids. 
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4. Results 

 

4.1. Uptake and processing of C-18 fatty acids in cultured cells 

 

Uptake and processing of four different FAs with C18 chain length were investigated. They 

differ in the degree of unsaturation (18:0, 18:1, 18:2, or 18:3), and were applied in 

concentrations of 10µM. They were added to the different types of cultured cells in complex 

with bovine serum albumin (BSA) (Pütz, et al. 1995). After different incubation time ranging 

from 15 - 120min, their cellular uptake and processing into different lipid classes were 

determined. All fatty acid that have been tested are readily taken up by cultured cells and 

incorporated into both nonpolar and polar lipid fractions. In addition, the impact of a 

representative CAD, desipramine, on this process was investigated. 

 

4.1.1. Fatty acid uptake and processing  

 

Fibroblasts, macrophages, A431 cells, and HepG2 cells were cultured as described in the 

materials and methods section (Chapter 6). 1-[
14

C]FAs (stearic acid, oleic acid, linoleic acid, 

and linolenic acid) were delivered to cultured cells as BSA-complexes in concentrations of 

10µM for 15, 30, and 120min (Table 4.1).  

The FAs were added as complexes with BSA to mimic the physiological situation, to avoid 

possible toxic effects of the free acids, and to avoid addition of a solvent that had to be used 

to increase their solubility. The molar ratio between FA and albumin in the medium has been 

found to influence the uptake kinetics of FAs in rat hepatocytes (Sorrentino, et al. 1989). The 

molar FA/BSA ratio was maintained at 1:1; the physiological ratio rarely exceeds 2:1 

(Spector, 1986). We used a maximal value of 2h as incubation time since elongation and 

desaturation rates, which are slow compared to the esterification rates, can be neglected 

within this time frame. For example, 80% of radiolabeled palmitic acid added to cultured 

hamster fibroblasts underwent no desaturation or elongation within 2h incubation time 

(Maziere, et al. 1982). 80-90% of the FAs metabolically incorporated into phosphoglycerides 

had not been altered in chick embryo fibroblasts (Daniel, et al. 1980) and human fibroblasts 

(Spector, et al. 1979). In our experiments, the cell viability in the presence of FA showed no 

significant indications of decreased cell integrity and amount of cellular protein.  
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4.1.2. Differences between fatty acids uptake of different structure 

 

Stearic acid (SA), oleic acid (OA), linoleic acid (LA) and linolenic acid (LOA) were added to 

four different types of cultured cells, human fibroblasts, macrophages, A431 cells, and 

HepG2 cells. The different FAs were taken up to a similar degree by macrophages, 

fibroblasts, and HepG2 cells. In A431 cells, however, uptake of LA and OA was higher than 

of SA and LOA. From the FAs present in the medium, (1-15) % were taken up after 15min, 

and (5-44) % after 120min incubation time by the four cell types. 

In A431 cells and HepG2 cells, when cultured with FAs for 120min incubation time, the 

lowest amount was observed for SA, and the highest for LA and LOA, respectively. The 

highest amounts were observed for OA, and the lowest for SA and LOA in macrophages and 

fibroblasts, respectively (Table 4.1). 

 

4.1.3. Differences between cell types 

 

FA uptake differed between the investigated cell types: the average uptake of FA during 15, 

30, and 120min incubation time is shown in Table 4.1. In HepG2 cells, uptake of LOA was 

highest, followed by that of LA. Compared to the other cells types (fibroblasts, macrophages, 

and HepG2 cells), uptake of the saturated and unsaturated FAs from the medium was highest 

by A431 cells (123 pmol/mg protein for SA, and 154 pmol/mg protein for LA), followed by 

fibroblasts. In the other cell types, uptake was almost in the same range. No significant 

differences were noted in cellular FA uptake among 18:0, 18:1, 18:2, and 18:3 in all 

investigated cell types. 

Hence, uptake of 1-[
14

C]FAs depends both on the investigated cell type and the identity of the 

FAs. Uptake was not linear with time over 120min (Fig. 4.1, Fig. 4.2), but appears to follow 

saturation kinetics. The results are in agreement with a report on the uptake of SA, OA, LA, 

and LOA by HepG2 cells (Dokko, et al. 1998), when 0.25-1.0mM of FA-albumin complexes 

with a molar ratio of 4:1 during a 4h incubation period were applied. 
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Figure 4.1: Uptake of FA (10µM) delivered in complex with BSA (1:1) by cultured cells. A. stearic 

acid, B. oleic acid, C. linoleic acid, and D. linolenic acid. The uptakes were measured 15, 30, and 

120min after addition of the FA-BSA complexes. These diagrams were determined by scintillation 

counting of the lipid extract after different incubation time. 

 

Figure 4.2: Uptake of different FA by A. fibroblasts, B. macrophages, C. A431 cells, D. HepG2 cells. 

These diagrams were determined by scintillation counting of the lipid extract after different 

incubation time. 
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4.1.4. Utilization of fatty acids 

 

Incorporation of radiolabeled FAs into different lipid classes was investigated after lipid 

extraction and separation of the polar and nonpolar lipid fractions (Chapter 6). Lipid classes 

were separated by thin layer chromatography (TLC; Chapter 6). The incorporation of FAs 

into lipid classes after 120min incubation time of four cell types is shown in table 4.2. The 

incorporation of FAs into the various lipid classes differed considerably among the cell types, 

and with the identity of the FA added to the cells. 

 

Table 4.1: FA uptake by four different types of cultured cells. 

 

Table 4.2: Metabolic incorporation of exogenously added FAs into lipid classes. 

Incorporation of 

FA into cellular 

lipids (pmol /mg 

of protein) after 

2h incubation 

Fibroblasts Macrophages A431 cells HepG2 cells 

ST OA LA LOA ST OA LA LOA ST OA LA LOA ST OA LA LOA 

Cholesterol ester 0.75 0.39 1.43 3.07 6.0 2.3 0.1 0.1 2.1 1.9 2.7 2.4 0.2 0.2 0.1 0.4 

TAG 2.17 0.96 1.25 2.75 20.0 8.6 0.1 0.1 7.7 9.6 7.0 3.8 2.2 2.6 4.4 8.8 

FA 12.8 2.48 3.89 10.4 9.8 6.8 0.5 0.6 13.4 9.6 7.0 6.3 5.1 5.5 5.5 11.4 

DAG 4.05 8.42 7.13 7.23 5.6 3.3 0.6 0.8 3.6 12.9 24.6 24.1 1.4 2.5 3.1 4.0 

Cer 1.71 1.15 1.17 1.41 1.0 0.4 0.2 0.3 0.9 0.7 1.5 2.6 0.2 0.2 0.3 0.4 

Glccer 0.77 2.19 1.20 1.15 0.1 0.9 0.3 0.3 0.6 2.5 2.8 3.8 0.1 0.6 0.6 0.6 

PE, BMP 11.4 5.88 8.24 12.1 3.9 3.8 8.9 19.1 6.1 5.8 6.2 4.8 4.7 3.8 4.2 6.2 

PG 8.96 22.9 4.44 4.03 0.9 1.9 2.3 3.1 20.8 28.7 10.7 9.9 1.4 3.1 2.4 2.4 

PC, PA 38.7 44.8 55.4 45.2 10.8 17.3 29.8 18.9 22.3 33.2 49.9 29.9 4.9 5.5 15.9 15.1 

PI 7.41 5.18 7.50 7.15 6.4 4.7 9.4 12.8 10.9 7.3 15.3 7.2 2.8 1.4 2.6 2.5 

SM 10.7 6.98 5.28 3.97 3.4 3.5 4.1 4.2 9.2 9.3 12.7 9.9 1.6 0.9 2.6 1.9 

Sum 99.5 101 96.9 98.6 68.2 59.5 56.3 60.7 98.2 121 140 109 25.2 26 41.3 54.0 

 

Fibroblasts, macrophages, A431 cells, and HepG2 cells were cultured as described in the materials 

and methods section in serum-free medium supplemented with 10µM [
14

C]-FAs (added as a BSA-FA 

complex; the BSA/FA ratio was 1:1). After different incubation time (15, 30, and 120min), cells were 

harvested, and lipids were extracted. FAs incorporated into nonpolar and polar lipids were determined 

as pmol of lipid per mg of protein. 

 

 

 

 

Cellular lipid 

uptake (pmol/ 

mg of protein)  

Fibroblasts Macrophages A431 cells HepG2 cells 

15min 30min 120min 15min 30min 120min 15min 30min 120min 15min 30min 120min 

Stearic acid 22.1 35.7 114 20.3 30.3 69.1 33.1 49.1 123 9.8 13.0 28.7 

Oleic acid 23.6 35.3 122 16.6 25.1 71.5 40.7 56.2 132 12.5 19.6 32.4 

Linoleic acid 18.1 36.0 113 24.2 33.1 70.9 36.3 48.8 154 9.5 20.5 51.6 

Linolenic acid 24.8 38.5 103 20.4 28.1 70.2 43.6 61.1 124 18.5 24.7 56.1 
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4.1.5. FA processing in macrophages 

 

When macrophages were cultured in the presence of the FAs, a major incorporation of FAs 

into TAG and CE was observed. 1-[
14

C]SA and 1-[
14

C]OA were predominantly incorporated 

into TAG, DAG and CE. On the other hand, the incorporation of 1-[
14

C]LA and 1-[
14

C]LOA 

into TAG, DAG and CE was significantly lower when compared to SA and OA (Fig. 4.3B). 

The major FAs incorporated in the nonpolar lipid fraction of macrophages were OA and SA; 

they comprised 44 % and 60 %, respectively, of the total FAs that where incorporated into the 

nonpolar lipid fractions (TAG, DAG, and CE), or were found as free FAs.  

In the same cell types, LA and LOA (Fig. 4.4B) were preferentially incorporated into polar 

lipids (PLs). OA was only modestly incorporated into polar lipids, and SA showed the lowest 

incorporation into polar lipids compared to the other FAs. 

In the PL fraction of macrophages cultured in the presence of FA-BSA complexes, the major 

incorporated FAs were LA and LOA. They each comprised 94.1% and 94.4%, respectively, 

of the total FAs incorporated into PLs and sphingolipids (Table 4.2). FAs are selectively 

incorporated into polar lipids depending on the degree of unsaturation (SA<OA<LA<LOA). 

The results show that in macrophages, more unsaturated FAs are predominantly incorporated 

into PLs, while more saturated FAs are incorporated more into LD lipids.  

 

4.1.6. FA processing in HepG2 cells 

 

The liver is the key organ in lipid metabolism. Therefore, we investigated uptake and 

metabolism of FAs also in HepG2 cells, which are widely used as a model system for hepatic 

lipid metabolism. These cells are human hepatoma cells and known to exert a number of 

human liver functions, including lipid uptake, synthesis, VLDL assembly and VLDL 

secretion (Lin, et al. 1995). 

When incubated with different FAs in medium, the incorporation of 1-[
14

C]FA into TAG and 

DAG increased with incubation time. Delivery of SA, OA, LA, and LOA as BSA complex 

resulted in incorporation of 2.2, 2.6, 4.4, and 8.8 pmol/mg protein into TAG after 120min 

incubation (Fig. 4.3D), respectively. Furthermore, when HepG2 cells were incubated with 

radiolabeled C18-FAs of different structure, the level of FAs incorporated into polar lipids 

was much greater for unsaturated FAs than for saturated FAs. Both LA and LOA were 

markedly incorporated into polar lipids of HepG2 cells. Delivery of OA, LA, and LOA as 

BSA complex resulted in incorporation of 15.6, 28.8, and 29.3 pmol/mg protein into PLs 
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after 120min incubation (Fig. 4.4D), respectively. We observed a positive relationship 

between the number of double bonds and the incorporation both into nonpolar and polar 

lipids. 

The results show that in HepG2 cells, the incorporation of FAs into cellular lipids is increased 

with increasing number of double bonds. The uptake values also show (table 4.1) that more 

unsaturated FAs are taken up compared to saturated FAs. 

 

4.1.7. FAs processing in fibroblasts 

 

Human fibroblasts readily take up FAs and incorporate them into cellular polar and nonpolar 

lipids (Spector, 1986; Rosenthal, et al. 1981). When human skin fibroblasts were cultured in 

the presence of FAs, only a minor incorporation of FAs into nonpolar lipids was observed 

compared to polar lipids. Within the nonpolar lipid fraction in fibroblasts (Fig. 4.3A), but also 

in A431 cells (Fig. 4.3C), we observed the predominant incorporation into DAG after 120min 

incubation. An exception was SA in A431 cells, where a predominant incorporation into 

TAG was detected after 120min incubation. The major FAs incorporated into the nonpolar 

lipid fraction of fibroblasts was LOA, which comprised 24% of the total LOA that where 

incorporated into the nonpolar lipid fractions (TAG, DAG, and CE), or were recovered as 

free LOA.  

In the PL fraction of fibroblasts (Fig. 4.4A), the major incorporated FA was OA. It comprised 

87% of the total OA incorporated into PLs and sphingolipids (ceramide, glucosylceramide, 

and sphingomyelin). From this value, 50% and 25% of OA incorporated into the polar lipids 

were incorporated into PC and PG, respectively. 

The results show that in fibroblasts, the incorporation of SA, OA, LA, and LOA into 

nonpolar lipids occurred predominantly into DAG, and the incorporation of OA into PG is 

increased compared with other FAs.  

 

4.1.8. FA processing in A431 cells 

 

After 120min incubation, incorporation of OA, LA, and LOA into nonpolar lipids of A431 

cells occurred predominantly into DAG, while SA was more incorporated into TAG than 

DAG (Fig. 4.3C). Within the polar lipid fraction, these FAs have been preferentially 

incorporated into PC (Fig. 4.4C). LA was more incorporated into the polar lipids than the 

other FAs, it comprised 72%, followed by OA which comprised 71% of total FAs 
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incorporated into the polar lipids. Moreover, OA and SA were more incorporated into PG 

than LA and LOA. 

 

 

Figure 4.3: Incorporation of FAs into cellular nonpolar lipids after incubation of the cells with 10μM 

1-[
14

C]-FAs delivered as BSA complex in a 1:1 molar ratio for 120min in the culture medium, A. 

fibroblasts, B. macrophages, C. A431 cells, and D. HepG2 cells. Separation of lipid classes was 

achieved by using the solvent system (nHexane/Diethylether/Acetic acid 70:30:1 by vol.). 

Radioactivity found in the lipid extract of different cells was set equal 100%. Radioactivity was 

analyzed by phosphoimager analysis. All data are given as mean values of more than two different 

experiments. 
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Figure 4.4: Incorporation of FAs into cellular polar lipids after incubation of the cells with 10μM 1-

[
14

C]-FAs delivered as BSA complex in a 1:1 molar ratio for 120min in the culture medium, A. 

fibroblasts, B. macrophages, C. A431 cells, and D. HepG2 cells. Separation of lipid classes was 

achieved by using the solvent system (chloroform/methanol/water 65:25:4 by vol.). Radioactivity 

found in the lipid extract of different cells was set equal 100 %. Radioactivity was analyzed by 

phosphoimager analysis. All data are given as mean values of more than two different experiments. 
 

4.1.9. FA processing in different cell types 

 

Fig. 4.5 shows the incorporation of FAs in cellular PLs, nonpolar lipids, and the recovery of 

free FAs in pmol/µg protein.  

 

 

Figure 4.5: Incorporation and/or recovery of 1-[
14

C] 18:0, 18:1n-9, 18:2n-6, and 18:3n-3 FA into 

cellular lipid classes given as pmol 
14

C-FAs/μg protein. Free FA (A), nonpolar lipids (B), and polar 

lipids (C). Nonpolar lipids include diacylglycerol, triacylglycerol and sterol ester.  Polar lipids 

includes ceramide, glucosylceramide, phosphatidylethanolamine, phosphatidylglycerol, 

phosphatidylcholine, phosphatidylinositol, sphingomyelin, bis(monoacylglycero)phosphate, and 

phosphatidic acid. 
 

In fibroblasts and A431 cells, all FAs were mainly esterified to polar lipids (0.07 - 0.1 

pmol/µg protein), whereas (0.007 - 0.034 pmol/µg protein) was incorporated into the neutral 

lipid fraction, and (0.0025 - 0.013 pmol/µg protein) were recovered as free FAs. 

In A431 cells, LA was mainly incorporated into cellular nonpolar lipids, followed by LOA, 

OA, and SA. The incorporation into polar lipids was not significantly different between the 

FAs, ranging from 0.07 - 0.1 pmol/µg protein.  
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In fibroblasts, the recovery of 18:0 as FFA was significantly higher than other FAs, followed 

by LOA, LA, and OA. The incorporation into neutral and polar lipids was not significantly 

different between the FAs. 

In macrophages, SA and OA, but not LA and LOA were mainly esterified into nonpolar 

lipids (> 0.014 pmol/µg protein), whereas in polar lipids, LA and LOA, but not SA and OA 

were mainly incorporated (0.055 pmol/µg protein), and the lowest amounts were recovered as 

free FA. 

In HepG2 cells, LOA was mainly incorporated into both, cellular neutral and polar lipids, 

followed by LA, OA, and SA. This is in agreement with a previous report in atlantic salmon 

hepatocytes (Stubhaug, et al. 2005) where the main proportion of [1-
14

C]FAs taken up was 

incorporated into cellular lipids in order 16:0<18:1<18:2<18:3.  

 

4.1.10. Pulse-chase studies 

 

In order to compare fate of a FA after their initial incorporation into different lipids, four 

types of cultured cells were pulsed with medium containing 10μM of BSA-[
14

C]oleic acid at 

37 
0
C  and 4 

0
C. After 2h incubation time, radiolabeled oleic acid was removed, followed by 

incubation with medium containing 10% FCS (chase) for a variable period of time (24, 48, 

72, 122, and 144h) at 37 
0
C, as described in chapter 6.   

In macrophages, the pulse–chase experiments showed that, after 24h, radioactivity was 

largely confined to TAG. By the end of the chase period, substantially more radiolabeled 

oleic acid accumulated in TAG compared to the other lipids (Fig. 4.6B). In the same cell type 

(Fig. 4.7B), more labeled FA was incorporated into PG after 72h. At 4 
0
C, the labeled oleic 

acid was much less incorporated into TAG after 24h than at 37 
0
C (data not shown). 

When cultured fibroblasts were incubated in the presence of 10μM of BSA-[
14

C]oleic acid at 

37 
0
C for 2h, in the nonpolar lipid fractions, labeled oleate was preferentially incorporated 

into DAG (Fig. 4.6A), and most of the oleate incorporated into phospholipids was in PC and 

PG (Fig. 4.7A). During the chase period, more of the labeled oleate was found in TAG 

instead of DAG, with relatively little accumulation of free FA after 48h incubation. In polar 

lipids, there was incorporation of labeled oleate mainly in PC, PA, and PG using 2h pulse. In 

the chase experiment, the labeled oleate in PC and PA decreased after 24h, with an increase 

of label in PG, GlcCer, and PI. At 4 
0
C, free FA was significantly decreased after 2h 

incubation with increased incorporation in TAG (data not shown). 

 



58 

 

 

Figure 4.6: Pulse-chase experiments with [
14

C]oleic acid  at 37 
0
C . Incorporation of [

14
C]oleic acid 

into different nonpolar lipids after different chase times are shown A. fibroblasts; B. macrophages; C. 

A431 cells; and D. HepG2 cells. Cells were either collected for lipid extraction after 2h labeling 

(pulse), or washed and incubated without labeled OA in medium containing 10% FCS for different 

incubation time (chase). 

 

Figure 4.7: Pulse-chase experiments with [
14

C]oleic acid  at 37
0
C . Incorporation of [

14
C]oleic acid 

into different polar lipids after different chase times are shown A. fibroblasts; B. macrophages; C. 

A431 cells; and D. HepG2 cells. Cells were either collected for lipid extraction after 2h labeling 

(pulse), or washed and incubated without labeled OA in medium containing 10% FCS for different 

incubation time (chase). 
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In A431 cells, the [
14

C]oleic acid was incorporated predominantly into phospholipids. During 

the chase period, the labeled oleate in PC, PA, and PG decreased after 24h, with an increase 

of lable PE, GlcCer, and PI. However, after 24h chase, the amount of radioactivity in the 

DAG fraction decreased. By the end of the chase period, substantially more radiolabeled 

oleic acid accumulated into TAG compared to the other lipids (Fig. 4.6C). At 4 
0
C, free FA 

was significantly decreased after 24h incubation with increased incorporation of TAG (data 

not shown). 

In HepG2 cells, the incorporation of [
14

C]oleate into TAG increased during the chase period 

(Fig. 4.6D). The incorporation of labeled oleate into polar lipids increased during the 24h 

chase in PI and GlcCer (Fig. 4.7D). Incorporation of label oleate into TAG during the 24h 

chase was accompanied by concomitant decrease in radioactivity in the phospholipid.  

In summary, most FAs were initially incorporated in polar lipids, presumably via Lands' 

cycle. After longer chase time, they end up on the TAGs. 

 

4.1.11. The effect of cationic amphiphilic drug, desipramine on FAs uptake 

and processing 

 

CADs are known to interfere with the processing of complex lipids within the endolysosomal 

system. There are no data on the impact of CADs on FA processing in the literature. 

Although it is not expected that endosomes and lysosomes are involved in FA uptake and 

metabolism, we investigated the impact of the tricyclic antidepressant, desipramine, on 

uptake and processing of SA, OA, LA, and LOA. Desipramine is known to cause 

phospholipidosis in humans and animals by inducing premature degradation of acid 

sphingomyelinase.  

Surprisingly, in the presence of 10µM and 20µM desipramine in the medium, the 

incorporation of 1-[
14

C]FA into TAGs was drastically reduced in cultured A431 cells (Fig. 

4.8) and macrophages (Fig 4.9), and slightly in HepG2 cells (data not shown). The small 

effect on processing of FAs in HepG2 cells may be attributed to the low uptake of 

desipramine (Fig. 4.13). In A431 cells, the incorporation of SA, OA, LA, and LOA into TAG 

was decreased by 97, 83, 94, and 93% when treated with 20µM desipramine, respectively. In 

macrophages, the effects of desipramine are less than in A431 cells. It decreases the 

incorporation of SA, OA, LA, and LOA into TAG by 77, 73, 66, and 45%, respectively. 

Desipramine also affects the incorporation of FAs into DAG, but to a lesser extent. In A431 

cells, the incorporation of SA, OA, LA, and LOA into DAG was decreased 74, 29, 49, and 
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63%, when treated with 20µM desipramine, respectively. In macrophages, the incorporation 

into DAG was decreased by only 17, 19, 42, and 44%, respectively. 

In contrast to the other cell types, the incorporation of 1-[
14

C]FA into TAGs was drastically 

increased in cultured fibroblasts treated with 10µM and 20µM desipramine (Fig. 4.10). The 

incorporation of SA, OA, LA, and LOA into TAG was increased by 83, 80, 87, and 88% in 

the presence of 20µM desipramine, respectively. Furthermore, the incorporation into DAG 

also increased by 65, 77, 73, and 67% in presence of 20µM desipramine, respectively. 

In contrast to the nonpolar lipid fractions of A431 cells, in the polar lipid fractions, 

incorporation of linoleic acid was drastically increased into PC, PE, and PG in the presence 

of 10µM and 20µM desipramine in the medium (Fig. 4.11). The other fatty acids were only 

slightly incorporated into polar lipids of A431 cells.  

In fibroblasts, incorporation of all FAs into PI and ceramide was significantly increased in the 

presence of desipramine (Fig. 4.12). In macrophages, the incorporation of SA and OA into 

PC, PG, and SM was increased slightly in the presence of 10µM and 20µM desipramine, but 

the incorporation into PE was not affected. Furthermore, in the same cell type, the 

incorporation of LA and LOA into PC, PG, PE, and SM was not affected (data not shown).  

The cell viability in the presence of 10µM and 20µM desipramine was not affected and 

ranged from 88 to 100% of untreated cells (Fig. 4.38). Therefore, the reduced incorporation 

of FAs into TAG and DAG in the presence of desipramine in A431 cells and macrophages 

cannot be attributed to toxicity. 
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Figure 4.8: Incorporation of A. [
14

C]stearic acid, B. [
14

C]oleic acid, C. [
14

C]linoleic acid, and D. 

[
14

C]linolenic acid into nonpolar lipids of A431 cells in the absence and presence of two different 

concentrations of desipramine. Statistical significance between desipramine treatment and matched 

control is determined using statistical student’s t-test. * represents p < 0.05, and ** represents p < 

0.005.  

 

 

Figure 4.9: Incorporation of A. [
14

C]stearic acid, B. [
14

C]oleic acid, C. [
14

C]linoleic acid, and D. 

[
14

C]linolenic acid into nonpolar lipids of macrophages in the absence and presence of two different 

concentrations of desipramine. Statistical significance between desipramine treatment and matched 

control is determined using statistical student’s t-test. * represents p < 0.05, and ** represents p < 

0.005. 
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Figure 4.10: Incorporation of . [
14

C]stearic acid, B. [
14

C]oleic acid, C. [
14

C]linoleic acid, and D. 

[
14

C]linolenic acid into nonpolar lipids of fibroblasts in the absence and presence of two different 

concentrations of desipramine. Statistical significance between desipramine treatment and matched 

control is determined using statistical student’s t-test. * represents p < 0.05, and ** represents p < 

0.005. 

 

Figure 4.11: Incorporation of A. [
14

C]stearic acid, B. [
14

C]oleic acid, C. [
14

C]linoleic acid, and D. 

[
14

C]linolenic acid into polar lipids of A431 cells in the absence and presence of two different 

concentrations of desipramine. Statistical significance between desipramine treatment and matched 

control is determined using statistical student’s t-test. * represents p < 0.05, and ** represents p < 

0.005. 
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Figure 4.12: Incorporation of A. [
14

C]stearic acid, B. [
14

C]oleic acid, C. [
14

C]linoleic acid, and D. 

[
14

C]linolenic acid into polar lipids of fibroblasts in the absence and presence of two different 

concentrations of desipramine. Statistical significance between desipramine treatment and matched 

control is determined using statistical student’s t-test. * represents p < 0.05. 

 

Figure 4.13 shows the uptake of [
3
H]-desipramine into four different cell types after 48h 

incubation time. The uptake of [
3
H]-desipramine by A431 cells and HepG2 cells was slightly 

decreased, but only with 40µM desipramine. Uptake of [
3
H]-desipramine into macrophages 

was slightly increased. In contrast, the uptake was significantly decreased in the presence of 

20µM and 40µM desipramine by fibroblasts. The cell viability in the presence of 40µM 

desipramine was reduced 28% compared to untreated cells (Fig. 4.38); while the amount of 

cellular protein was reduced by 8%. Therefore, the reduced incorporation of FAs into TAG 

and DAG in the presence of desipramine in macrophages and A431 cells cannot be attributed 

only to toxicity. 

 

 

Figure 4.13: Uptake of [
3
H]-desipramine 

into different cultured cells  
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4.2. Analysis of two lipid delivery methods towards lipid uptake and 

processing 
 

As probes for lipid uptake and processing via the endolysosomal system, suitably labeled 

complex lipids can be added to cells. Lipids like cholesterol, cholesterol ester, and 

triacylglycerol are nearly insoluble in blood. In the circulatory system, they are transported 

by lipoproteins, and are also found in complex with albumins. Therefore, we used albumin 

and low density lipoprotein as carriers for TAG, CE, and cholesterol in the medium of 

cultured cells. This should mimic the physiological situation in which these lipids enter cells 

via endocytosis and other pathways. TAG and CE are then degraded by lysosomal acid 

lipase, and the FA moiety is liberated and degraded or re-utilized for lipid biosynthesis and 

protein modification. 

In this part, the effects of two different ways for lipid delivery, either with albumin or 

lipoprotein complexes, were examined in different cell types. We used cholesterol, 

cholesterol ester, and triacylglycerol labeled with [
14

C]oleic acid, since oleic acid is one of 

the major FAs of cholesterol esters and triacylglycerol 

(http://lipidlibrary.aocs.org/Lipids/cholest/index.htm). 

To study possible differences in uptake and metabolism in dependence of the lipid delivery 

method, we used [4-
14

C]cholesterol, [1-
14

C]cholesteryloleate, and [1-
14

C]trioleoylglycerol in 

complex with LDL or BSA.  

 

4.2.1. Cholesteryl ester uptake and processing 

 

[1-
14

C]Cholesteryloleate (1µM) was added to four different types of cultured cells, human 

fibroblasts, macrophages, A431 cells, and HepG2 cells, either as a complex with LDL, or 

with BSA. As shown in figure 4.14, the uptake of both complexes, [
14

C]CE-LDL and 

[
14

C]CE-BSA, by fibroblasts is higher than by the other cell types. Compared to [
14

C]CE-

BSA, the uptake of [
14

C]CE-LDL is 4-fold higher in fibroblasts and A431 cells, 3-fold higher 

in macrophages, and 2-fold higher in Hep-G2 cells during an 24h incubation at 37 °C. 

The incorporation of the oleate moiety derived from CE into lipids of the nonpolar lipid 

fraction of different cell types is illustrated in figure 4.15. There were significant differences 

in the incorporation of 1-[
14

C]oleate into total neutral lipids (except [
14

C]CE) between the 

types of the cells incubated with [
14

C]CE and LDL as shown in Fig. 4.15A. After 24h 

incubation, the incorporation of cholesterol ester-derived [
14

C]oleate into nonpolar lipids 

remained largely unchanged in fibroblasts and macrophages. In HepG2 cells and A431 cells, 
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CE-LDL derived 1-[
14

C]oleate is more incorporated into TAG than in the other cell types. 

When compared to BSA, delivery via LDL leads to an increased formation of metabolic 

products derived from the fatty acid part. Also the dependence of the cell type is visible. This 

result indicates that the differences in metabolism of cholesteryloleate depend on the delivery 

method. If the function of the endolysosomal system is assayed by processing of [1-

14
C]cholesteryloleate, it should be delivered as LDL-complex and the incorporation of 

labeled oleic acid into TAG, PE, and PC should be chosen as read-out. 

The incorporation of [
14

C]oleate derived from CE delivered as LDL-complex into lipid 

classes of the nonpolar lipid fraction in dependence of incubation time and cell type is shown 

in figure 4.16. In HepG2 cells, after 24h of incubation at 37 °C, the major fraction of CE-

derived [
14

C]oleate is incorporated into TAG (Fig. 4.16B) and, to a lesser extent, into 

phospholipids (Fig. 4.21B). A small fraction of label is recovered as non-esterified fatty acid 

and found in diacylglycerol. In HepG2 cells, the incorporation of the CE-derived [
14

C]oleate 

into TAG was 3-fold higher than in macrophages. Furthermore, in macrophages, the re-

incorporation into and/or recovery of cholesteryl[
14

C]oleate is 2-fold higher than in HepG2 

cells. 

 

 
 

Figure 4.14: Uptake of [
14

C]CE (1µM) delivered as complex with LDL (A) or BSA (B) by four types 

of cultured cells. The uptakes were measured 1, 6, and 24h after addition of the CE-complexes. 

Uptake was determined by scintillation counting of the lipid extract after different incubation time.  
 

 



66 

 

Figure 4.15: A. Incorporation of CE-derived [
14

C]oleate delivered as LDL-complex into lipids of the 

nonpolar lipid fraction. B. Incorporation of CE-derived [
14

C]oleate delivered as BSA-complex into 

lipids of the nonpolar lipid fraction. In both cases, CE-was present in 1µM concentration in the 

medium; incubation time: 24h. Lipid classes were separated using the solvent system 

(nHexane/Diethylether/Acetic acid 70:30:1 by vol.). 
 

 

Figure 4.16: Incubation of different types of cultured cells with 1µM [
14

C]CE-LDL complex in the 

culture medium for 1, 6, and 24h, A. macrophages, and B. HepG2 cells. Lipid classes were separated 

by tlc using the solvent system (nHexane/Diethylether/Acetic acid 70:30:1 by vol.). Radioactivity 

found in the lipid extract of different cells was set equal 100%. Radioactivity was analyzed by 

phosphoimager analysis.  
 

4.2.2. Cholesterol uptake and processing 

 

[4-
14

C]cholesterol was added to four different types of cultured cells, human fibroblasts, 

macrophages, A431 cells, and HepG2 cells either as a complex with LDL or with BSA in a 

concentration of 1µM. When compared to [4-
14

C]cholesterol delivered as BSA-complex, the 

uptake of [4-
14

C]cholesterol delivered as LDL-complex is 3-fold higher in macrophages, 2.5-

fold higher in fibroblasts, Hep-G2 cells, and A431 cells. Furthermore, uptake of [4-

14
C]cholesterol delivered as LDL by fibroblasts is higher than by the other cell types, and 

uptake of [4-
14

C]cholesterol delivered as BSA-complex by A431 cells is higher than by the 

other cell types (Fig. 4.17).  

The incorporation of the [4-
14

C]cholesterol delivered as LDL-complex into CE of 

macrophages is higher than in the other cell types, as shown in figure 4.18A. Compared to [4-

14
C]cholesterol delivered as BSA complex, the incorporation of [4-

14
C]cholesterol into CE 

after 24h incubation time is 10-fold higher when [4-
14

C]cholesterol is delivered as LDL-

complex. The ability of [4-
14

C]cholesterol delivered as LDL-complex to be incorporated in 

cholesteryloleate of macrophages can be related to atherosclerosis. If the function of the 

endolysosomal system is assayed by transport of [4-
14

C]cholesterol, it should be delivered as 

LDL-complex and the incorporation of labeled cholesterol into CE of macrophages should be 

chosen as read-out. 
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Figure 4.17: Uptake of [4-
14

C]cholesterol (1µM) delivered as complex with LDL (A) or BSA (B) by 

four types of cultured cells. The uptakes were measured 1, 6, and 24h after addition of the Chol-

complexes. Uptake was determined by scintillation counting of the lipid extract after different 

incubation time. 
 

 

Figure 4.18: A. Incorporation of [4-
14

C]cholesterol delivered as LDL-complex into lipids of the 

nonpolar lipid fraction. B. Incorporation of [4-
14

C]cholesterol delivered as BSA-complex into lipids of 

the nonpolar lipid fraction. In both cases, [4-
14

C]cholesterol was present in 1µM concentration in the 

medium; incubation time: 24h. Lipid classes were separated using the solvent system 

(nHexane/Diethylether/Acetic acid 70:30:1 by vol.). 
 

4.2.3. Triacylglycerol uptake and processing 

 

[1-
14

C]Trioleoylglycerol was added to four different types of cultured cells, human 

fibroblasts, macrophages, A431 cells, and HepG2 cells, either as a complex with LDL or with 

BSA, in a concentration of 1µM in the culture medium. As shown in figure 4.19, the uptake 

of [
14

C]TAG-LDL and  [
14

C]TAG-BSA by fibroblasts is higher than by the other cell types. 

Compared to [
14

C]TAG-BSA, the uptake of [
14

C]TAG-LDL is 4-fold higher in A431  cells, 

Hep-G2 cells, and  macrophages, and 3-fold higher in fibroblasts. 

When TAG is delivered as LDL-complex, TAG-derived [
14

C]oleic acid is mainly 

incorporated into neutral lipids. When macrophages are exposed to 1μM TAG-LDL–

complex, the incorporation of TAG-derived [
14

C]oleate into CE is higher compared to the 
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other investigated cell types (Fig. 4.20A). In addition, the incorporation of [
14

C]oleate into 

CE after 24h incubation time is 11-fold higher when TAG is delivered as LDL-complex than 

when delivered as BSA complex (Fig. 4.20C, Fig. 4.20D). Incorporation of TAG-derived 

[
14

C]oleate into DAG was 10- fold lower than into TAG,  suggesting that DAG might be an 

intermediate in the process of FA-incorporation into TAGs. On the other hand, the labeled 

oleic acid derived from TAG-BSA was incorporated only slightly into the nonpolar lipid 

fractions of the four investigated cell types (Fig. 4.20B). In cultured cells exposed to 1μM 

TAG-BSA–complex, levels of free [
14

C]oleic acid were higher in fibroblasts than that of the 

other cell types (Fig. 4.20B). If the function of the endolysosomal system is assayed by 

processing of TAG-derived [
14

C]oleate, it should be delivered as LDL-complex and the 

incorporation of labeled oleic acid into PC (Fig. 4.21A) should be chosen as read-out.  

We demonstrated that lipid complexes with LDL show higher uptake and processing 

compared to lipid complexes with albumin. We also demonstrated that the uptake of [
14

C]CE-

LDL, [
14

C]Chol-LDL, and [
14

C]TAG-LDL in fibroblasts is higher compared to other cell 

types. 

 

 

Figure 4.19: Uptake of [1-
14

C]trioleoylglycerol (1µM) in complex with  A. LDL, B. BSA by cultured 

cells. The uptakes were measured 1, 6, and 24h after addition of the trioleoylglycerol-complexes. 

These diagrams were determined by scintillation counting of the lipid extract after different 

incubation time. 
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Figure 4.20: Incubation of cells with A. [
14

C]TAG-LDL , B. [
14

C]TAG-BSA complexes (1µM) (upper 

panel) in the culture medium for 24h. Incubation of macrophages with C. [
14

C]TAG-LDL, D. 

[
14

C]TAG-BSA (bottom panel) for 1, 6, and 24h. Lipid classes were separated using the solvent 

system (nHexane/Diethylether/Acetic acid 70:30:1 by vol.). Radioactivity found in the lipid extract of 

different cells was set equal 100%. Radioactivity was analyzed by phosphoimager analysis. 
 

The polar lipid pattern that arise from the utilization of CE- and TAG-derived [
14

C]oleic acid 

were also compared (Fig. 4.21). Both complex lipids were applied as LDL- and BSA-

complexes with an incubation time of 24h and a concentration of 1µM. Our results 

demonstrate that even though the oleate in cholesteryl oleate and trioleoylglycerol was 

delivered in the same carrier as LDL particles, oleic acid-incorporation into polar lipids leads 

quantitatively to different pattern. 

 

 

Figure 4.21: illustrates the incorporation of A. 1μM TAG-LDL-derived [
14

C]oleate B. 1μM CE-LDL-

derived [
14

C]oleate into polar lipids of different cell types after 24h incubation. Lipid classes were 

separated using the solvent system (chloroform/methanol/water 65:25:4 by vol.). 
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4.3. Analysis of lipid processing in Niemann-Pick disease, type A cells 

(NPA) compared to normal fibroblasts 

 

NPA is one of the lysosomal storage disease in which sphingomyelin accumulates in cells 

and tissues. To assess the role of the endolysosomal system in the processing of LDL-

associated [
14

C]cholesterol and LDL-associated [
14

C]phosphatidylcholine, human fibroblasts 

and fibroblasts from patients with NPA disease, were investigated after 6h and 24h 

incubation.  

Incubation with LDL-associated [
14

C]cholesterol shows that there were no detectable 

differences in cholesterol uptake between normal fibroblasts and NPA disease after 6h 

incubation. Whereas, after 24h incubation, cholesterol uptake increased 21% in NPA cells 

compared to normal cells as shown in figure 4.22A.  

Incubation with LDL-associated [
14

C]phosphatidylcholine shows that 

[
14

C]phosphatidylcholine is largely hydrolyzed in both normal fibroblasts and NPA disease 

cells. Some of the labeled fatty acids that results from lysosomal hydrolysis are effluxed into 

the media, and other incorporated into polar and nonpolar lipids (Groener, et al. 1996). After 

6h and 24h incubation, levels of [
14

C]phosphatidylcholine that are presumably trapped in 

lysosomes increased by 20%, and 25%, respectively, compared to normal cells (Fig. 4.22B). 

We also observed that the PC-derived FA is incorporated into polar lipids or recovered as 

free fatty acid to a lesser extent in NPA disease cells compared to normal cells after 24h 

incubation time. We found that the relative levels of labeled fatty acids and polar lipids in 

NPA disease cells after 24h were 10% and 8% lesser than that in normal fibroblasts, 

respectively, as shown in figure 4.23. In summary, these observations indicate an impaired 

processing of lipids via the endolysosomal system in NPA disease. 
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Figure 4.22: Cells were incubated for 6h and 24h with 1µM A. LDL-associated [
14

C]cholesterol; B. 

LDL-associated [
14

C]phosphatidylcholine in normal fibroblasts and NPA disease cells. Normal 

fibroblasts and NPA disease cells were grown as described under experimental procedures (Chapter 

6).  
 

 

Figure 4.23: Cells were incubated for 6h and 24h with 1µM LDL-associated 

[
14

C]phosphatidylcholine. The figure shows the incorporation of PC-derived [
14

C]palmitate in A. 

nonpolar lipids, and B. polar lipids in normal fibroblasts and NPA disease cells. Normal fibroblasts 

and NPA disease cells were grown as described under experimental procedures (Chapter 6).  
 

4.4. Effect of cationic amphiphilic drugs on uptake and processing of 

choline-containing phospholipids by different types of cultured cells 

 

Phospholipidosis induced by CADs impairs cellular function to an unknown extent. The best 

investigational example for a molecular effect of CADs is the premature degradation of acid 

sphingomyelinase, which leads primarily to SM-accumulation. Therefore, uptake and 

processing of PC containing [
14

C]palmitic acid (Table 4.3) and SM containing [
14

C]stearic 

acid (Table 4.4) as lipid probes was determined in four different types of cultured cells. To 

target the endolysosomal system, the lipid probes were delivered to the cells as part of LDL 

particles. In the absence of additional drugs added to the culture medium, both probes were 

taken up to a similar extent by macrophages, fibroblasts, A431 cells, and HepG2 cells as 

shown in figure 4.24.  
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Figure 4.24: Uptake of A. [
14

C]-PC, B. [
14

C]-SM delivered as complex with LDL by four types of 

cultured cells. Concentration = 1µM. The uptakes were measured 1, 6, and 24h after addition of the 

SM-complexes. Uptake was determined by scintillation counting of the lipid extract after different 

incubation time. 

 

4.4.1. Differences between cell types 
 

The impact of the different CADs on uptake and processing of the SM- and the PC-probe was 

investigated in the four different cell types. The average uptake of the SM-probe in the 

presence of 0, 20, and 40µM CADs is shown in tables 4.3, and that of the PC-probe in table 

4.4.  

 

Table 4.3: Cellular SM-probe uptake by four different types of cultured cells. 

 Table 4.4: Cellular PC-probe uptake by four different types of cultured cells. 

 

Fibroblasts, macrophages, A431 cells, and HepG2 cells were cultured as described in the materials 

and methods section in serum-free medium supplemented with 1μM of the [
14

C]SM-probe (Table 4.3) 

and the [
14

C]PC-probe (Table 4.4). Both were added as lipid-LDL complexes. After treatment with 

different CADs in different concentrations (0, 10, 20 and 40µM) and incubation for 24h, cells were 

harvested and lipids were extracted. The incorporation of the labeled FA derived from the lipid probe 

into nonpolar and polar lipids was determined as pmol of lipids per μg of protein. Cell viability was 

not significantly influenced by 10µM or 20µM CADs as shown in figure 4.38. 

 

 

Cellular SM-probe 

uptake (pmol/µg of 

protein) 

Fibroblasts Macrophages A431 cells HepG2 cells 

0µM 20µM 40µM 0µM 20µM 40µM 0µM 20µM 40µM 0µM 20µM 40µM 

Desipramine 1.70 1.69 1.70 1.09 0.77 0.70 1.17 0.85 0.77 0.82 0.29 0.27 

Imipramine 1.78 1.70 1.66 1.45 1.41 1.36 1.37 1.31 1.19 1.09 1.07 1.07 

Chlorpromazine 1.73 1.49  1.35 1.34  1.35 1.17  1.16 1.06  

FTY720 1.82 1.62  1.30 0.78  1.36 0.94  0.87 0.73  

Chloroquine 1.79 1.74 1.63 1.42 1.35 1.30 1.46 1.42 1.40 1.07 1.01 0.90 

Cellular PC-probe 

uptake (pmol/µg of 

protein) 

Fibroblasts Macrophages A431 cells HepG2 cells 

0µM 20µM 40µM 0µM 20µM 40µM 0µM 20µM 40µM 0µM 20µM 40µM 

Desipramine 1.60 1.62 1.56 0.97 0.42 0.38 1.22 1.15 0.94 0.79 0.47 0.42 

Imipramine 1.76 1.72 1.65 1.34 1.21 1.08 1.52 1.50 1.49 1.11 1.09 1.07 

Chlorpromazine 1.90 1.41  1.26 1.11  1.46 1.15  0.87 0.81  

FTY720 1.82 1.72  1.30 1.10  1.42 1.34  0.97 0.93  

Chloroquine 1.82 1.70 1.68 1.42 1.29 1.20 1.59 1.52 1.55 1.01 0.88 0.73 
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4.4.2. Impact of desipramine on SM and PC uptake 

 

The uptake of the SM- and the PC-probe in terms of pmol per μg cell protein was dependent 

on the identity and the concentration of the investigated CADs, on the incubation time, and 

on the cell type. In cultured cells that were pre-incubated for 24h with 0, 10, 20, and 40µM 

desipramine, the uptake of the lipid probes per µg protein decreased with increasing 

concentrations of desipramine in the culture medium. This decrease in lipid uptake was 

visible after 24h and was dose dependent. In cultured cells pre-treated with different 

concentrations of desipramine (Fig. 4.25), the uptake of [
14

C]PC and [
14

C]SM was 

significantly decreased in macrophages and HepG2 cells compared to in the control cells. 

From the SM probe or PC probe present in the medium, 23% and 22% were taken up without 

treatment with DMI, 21% and 15% were taken up after treatment with 20µM DMI, and 19% 

and 10% after treatment with 40µM DMI, respectively. 

 

4.4.3. Effect of desipramine on SM and PC processing 
 

When macrophages were cultured in the presence of different concentrations of desipramine, 

10μM desipramine had only a slight effect on [
14

C]SM processing. 10µM desipramine led to 

a decrease in labeled total neutral lipids and free fatty acids by 24% and 18%, respectively. 

40µM desipramine led to a decrease in labeled total neutral lipids and free fatty acids by 39% 

and 55%, respectively. TAG, CE, and DAG were reduced by 47%, 80%, and 13%, 

respectively. Treatment of macrophages with 20µM desipramine resulted in an increased 

level of the exogenously added SM probe consistent with the effect of desipramine on 

premature degradation of acid sphingomyelinase, and a reduced intracellular capacity to 

release the radiolabeled fatty acid from the incorporated lipid probe. At 10 and 20µM 

desipramine, levels of labeled ceramide also increased 1.5-fold compared to control cells 

(Fig. 4.26B). This is in agreement with the reported induction of degradation of acid 

ceramidase by desipramine and other CADs (Elojeimy, et al. 2006). These results support the 

dual effects of desipramine on both acid sphingomyelinase and acid ceramidase also in this 

cell type. Incubation with 40µM desipramine led to a 7-fold increase in labeled SM compared 

to untreated cells.  

The effect of desipramine on the incorporation of [
14

C]PC-derived palmitic acid into PLs of 

macrophages is shown in figure 4.27B. In cultured cells treated with 10µM desipramine, PC-

derived [
14

C]palmitic acid was incorporated approximately to the same extent into complex 
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cellular lipids as in the control. A slight increase of labeled PC was observed in the presence 

of 20µM desipramine, whereas a significant increase of labeled PC, PA, and lysoPC was 

visible in the presence of 40μM desipramine. Labeling of PA and LysoPC was increased 2.5- 

and 2-fold, respectively.  

In macrophages and HepG2 cells, after treatment with 10µM and 20μM desipramine, the 

incorporation of [
14

C]PC-derived palmitic acid into[
14

C]TAG appeared to be higher than that 

of other nonpolar lipids. After treatment with 40μM desipramine, the reverse was observed. 

In A431 cells, the incorporation of [
14

C]PC-derived palmitate into TAG was decreased 

slightly, but increased slightly in fibroblasts treated with 40µM desipramine (data not 

shown). Furthermore, 40μM desipramine inhibits significantly the incorporation of [
14

C]PC-

derived palmitate into total neutral lipids and free fatty acids of macrophages by 33% and 

28%, respectively. TAG, CE, and DAG were reduced by 39%, 21%, and 23%, respectively. 

These data suggest that only higher concentration (40μM) of desipramine significantly inhibit 

the incorporation of [
14

C]PC-derived palmitate into TAG of cultured macrophages, A431 

cells and HepG2 cells, but not of fibroblasts.  

 

 

Figure 4.25: Uptake of labeled A. PC, B. SM administered as part of LDL particles by cultured cells 

after 24h incubation time in the absence and presence of different concentrations of desipramine. 

Cells were pre-incubated with different concentration of desipramine for 24h before the addition of 

the complexes. Uptake was determined by scintillation counting of the lipid extract, so that the given 

values represent the sum of unchanged phospholipid and hydrophobic metabolites derived from it. 

Statistical significance between desipramine treatment and matched control is determined using 

statistical student’s t-test. * represents p < 0.05. 
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Figure 4.26: Effect of desipramine on the incorporation of SM-derived 1-[
14

C]stearic acid into 

nonpolar lipids (left) and polar lipids (right) of macrophages after 24h incubation time (pre-incubation 

with desipramine for 24h before the addition of the complexes). Statistical significance between 

desipramine treatment and matched control is determined using statistical student’s t-test. * represents 

p < 0.05, and ** represents p < 0.005. 
 

 

Figure 4.27: Effect of desipramine on the incorporation of PC-derived 1-[
14

C]palmitic acid into 

nonpolar lipids (left) and polar lipids (right) of macrophages after 24h incubation time (pre-incubation 

with different concentrations of desipramine 24h before the addition of the complexes). Statistical 

significance between desipramine-treatment and matched control is determined using statistical 

student’s t-test: * represents p < 0.05, and ** represents p < 0.005. 
 

4.4.4. Impact of chlorpromazine on SM and PC uptake 
 

Chlorpromazine has been demonstrated to inhibit the formation of clathrin-coated pits (Nawa, 

et al. 2003) and acts as an inhibitor of receptor-mediated endocytosis. Therefore it should also 

reduce the uptake of lipids delivered as part of LDL particles via the LDL-receptor. We 

examined the role of chlorpromazine in four cell types and measured the uptake of PC and 

SM as part of LDL complexes. Uptake of the PC- and SM-probe delivered as LDL complex 

was determined in the presence of (0, 10, and 20µM) of chlorpromazine. Concentrations of 

more than 20µM reduced the cell viability and amount of cellular protein (Fig. 4.38A). As 

shown in figure 4.28A, in the presence of 20µM chlorpromazine no big effects of 

chlorpromazine on lipid uptake were detected in macrophages and HepG2 cells. Independent 



76 

 

of this, uptake of LDL-associated PC and LDL-associated SM was lower in fibroblast and 

A431 cells compared to other cell types.  

 

4.4.5. Effect of chlorpromazine on SM and PC processing 
 

The incorporation of SM-derived [
14

C]stearic acid into nonpolar lipids was depressed 

markedly in the presence of chlorpromazine (Fig. 4.29A). This includes the incorporation 

into DAG, which is the intermediate for the synthesis of TAG, PC and PE and is formed 

primarily by the action of phosphatidic acid phosphohydrolase, an enzyme that can be 

inhibited by CADs (Leli, at al. 1987; Pappu, et al. 1984). Also levels of labeled TAG were 

decreased by 65%. Furthermore, chlorpromazine had an inhibitory effect on the synthesis of 

PC and other phospholipids from [
14

C]SM-Stearate. In macrophages, SM-derived [
14

C]stearic 

acid was predominantly recovered as SM, which comprised 95% of the total labeled 

phospholipids of the polar lipid fraction. These data suggest that chlorpromazine may act by 

inhibiting CTP:phosphocholine cytidylyltransferase (Fig. 5.3), as shown by Pelech, et al.  

1984, and decrease the incorporation of [
14

C]SM-derived stearate precursors into PC and PE 

as seen in our data (Fig. 4.29B).  

When PC-derived [
14

C]palmitic acid was added to the cells as part of LDL-complexes, 

chlorpromazine at 10μM did not alter lipid metabolism significantly. However, at 20μM there 

was a slightly decreased incorporation of PC-derived [
14

C]palmitate into neutral lipids of 

macrophages. The incorporation of [
14

C]palmitic acid derived from PC into TAG and DAG 

decreased 22%, and 25%, respectively (Fig. 4.30A). Level of PC-derived palmitic acid 

increased with increasing concentration of chlorpromazine (Fig. 4.30B). Labelling of PE, 

Cer, and SM decreased in response to the same dose. In the presence of 20μM 

chlorpromazine, the level of labeled PC increased 50% after 24h incubation. On the other 

hand, the incorporation of PC-derived [
14

C]palmitate into neutral lipids of A431 cells was 

decreased by 22% on treatment with 20µM chlorpromazine. This concentration has no 

significant effects on the incorporation of [
14

C]palmitate into neutral lipids of HepG2 cells 

(data not shown). 
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Figure 4.28: Uptake of labeled A. PC, B. SM administered as part of LDL particles into the lipid 

fraction of cultured cells after 24h incubation time. Cells were pre-incubated with different 

concentrations of chlorpromazine for 24h before the addition of the complexes. Uptake was 

determined by scintillation counting of the lipid extract, so that the given values represent the sum of 

unchanged phospholipid and hydrophobic metabolites derived from it.  
 
 

 

Figure 4.29: Effect of chlorpromazine on the incorporation of SM-derived 1-[
14

C]stearic acid into 

nonpolar lipids (left) and polar lipids (right) of macrophages after 24h incubation time (pre-incubation 

with different concentrations of chlorpromazine for 24h before the addition of the complexes). 

Statistical significance between chlorpromazine treated and matched controls is determined using 

statistical student’s t-test. * represents p < 0.05, and ** represents p < 0.005. 
 
 

 

Figure 4.30: Effect of chlorpromazine on the incorporation of PC-derived 1-[
14

C]palmitic acid into 

nonpolar lipids (left) and polar lipids (right) of macrophages after 24h incubation time (pre-incubation 

with different concentrations of chlorpromazine for 24h before the addition of the complexes). 

Statistical significance between chlorpromazine treated and matched control is determined using 

statistical student’s t-test. * represents p < 0.05, and ** represents p < 0.005. 
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4.4.6. Impact of imipramine on SM and PC uptake 
 

Figure 4.31 shows the uptake of radiolabeled PC and SM after 24h incubation with 

imipramine in different types of cultured cells. In macrophages, increasing concentrations of 

imipramine in the culture medium cause an decreased uptake of PC by the cells, which is 

observed in the other cell types to a much lesser extent (Fig. 4.31A). The uptake of 

radiolabeled SM delivered as part of LDL particles in the absence and in the presence of 10, 

20 and 40μM imipramine by macrophages, fibroblasts, and HepG2 cells is shown in figure 

4.31B. At higher concentrations of imipramine in the culture medium, uptake of SM was 

slightly decreased in A431 cells. 

 

4.4.7. Effect of imipramine on SM and PC processing 
 

Cultured cells were pre-incubated with medium containing 0, 10, 20 and 40μM imipramine 

for 24h and then treated with SM labeled by [
14

C]-stearic acid, still in the presence of drug for 

24h. We observed an increase of labeled phospholipids per μg of protein during imipramine 

exposure. This phospholipid accumulation appeared after 24h and was dose dependent. The 

effect of imipramine on the incorporation of SM-derived [
14

C]stearic acid into nonpolar and 

polar lipids of macrophages is shown in figure 4.32A and figure 4.33A. In the presence of 

10µM imipramine in the culture medium, the incorporation of SM-derived [
14

C]stearic acid 

into phospholipids was nearly the same as in control cells. However, a significant increase of 

label in acidic phospholipids was observed after treatment with 20μM imipramine. The 

highest incorporation was observed into phosphatidic acid. It can be assumed that this is due 

to a decreased degradation of phosphatidic acid in the presence of imipramine, since labeling 

of PC and PE were two times lower. The incorporation of SM-derived [
14

C]stearic acid into 

neutral lipids and recovery of free fatty acid was decreased by 45% and 67%, respectively, 

when macrophages were treated with 40μM imipramine.  

The incorporation of PC-derived [
14

C]palmitic acid into cholesteryl ester and diacylglycerol 

were lower in macrophages pre-treated with 40μM imipramine compared to control cells, i.e. 

1.4 and 1.1 vs 0.2 and 0.5 pmol/mg protein in CE and DAG, respectively. No significant 

change in the incorporation of PC-derived [
14

C]palmitic acid into TAG pre-treated with 

40μM imipramine was observed in comparison to control cells (Fig. 4.32B). Furthermore, the 

incorporation of PC- derived [
14

C]palmitic acid into neutral lipids and its recovery as free 

fatty acid was decreased by 15% and 27%, respectively, when cells were treated with 40μM 

imipramine. There were no significant differences in the incorporation of the labeled fatty 
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acid derived from PC in phospholipids between control cells and macrophages pre-treated 

with 10μM imipramine. The incorporation of PC-derived [
14

C]palmitic acid into PC was 

increased by 16% in the presence of 40µM imipramine (Fig. 4.33B).  

 

 

Figure 4.31: Uptake of labeled A. PC, B. SM. Both lipids were administered as part of LDL particles. 

Labelling of the lipid fraction of cultured cells after 24h incubation time with imipramine was 

determined in the absence and presence of different concentrations of imipramine. Cells were pre-

incubated with different concentrations of imipramine for 24h before the addition of the complexes. 

Uptake was determined by scintillation counting of the lipid extract, so that the given values represent 

the sum of unchanged phospholipid and hydrophobic metabolites derived from it. Statistical 

significance between imipramine treatment and matched control is determined using statistical 

student’s t-test. * represents p < 0.05. 
 

 

Figure 4.32: Effect of imipramine on the incorporation of SM-derived [
14

C]stearic acid (left) and PC-

derived [
14

C]palmitic acid (right) into nonpolar lipids of macrophages after 24h incubation time (pre-

incubation with different concentrations of imipramine for 24h before the addition of the complexes). 

Statistical significance between imipramine-treated and matched controls is determined using 

statistical student’s t-test. * represents p < 0.05, and ** represents p < 0.005. 
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Figure 4.33: Effect of imipramine on the incorporation of SM-derived [
14

C]stearic acid (left) and PC-

derived [
14

C]palmitic acid (right) into polar lipids of macrophages after 24h incubation time (pre-

incubation with different concentrations of imipramine for 24h before the addition of the complexes). 

Statistical significance between imipramine treatment and matched control is determined using 

statistical student’s t-test. * represents p < 0.05, and ** represents p < 0.005. 
 

4.4.8. Impact of chloroquine on PC and SM uptake 
 

Chloroquine is known to cause inhibition of LDLR recycling (Minahk, et al. 2008). This 

offers the possibility to investigate the importance of LDLR on the uptake of radiolabeled PC 

and SM delivered as LDL particles. The four cell types were cultured in the presence of 1µM 

of the lipid probe and different concentrations of chloroquine. PC uptake assays revealed a 

significant reduction in [
14

C]PC uptake by macrophages and HepG2 cells (Fig. 4.34A). 

Analysis of [
14

C]PC uptake by fibroblasts treated with chloroquine showed a slight reduction 

in uptake in the presence of 40µM chloroquine (Fig.4.34A). This result is in agreement with 

previous result which suggest that PC as part of LDL-particles can be delivered to mouse 

hepatocytes by an LDLR independent pathway (Minahk, et al. 2008). Furthermore, the 

uptake of [
14

C]SM by macrophages, fibroblasts, and HepG2 cells was slightly decreased in 

the presence of chloroquine compared to control cells. Chloroquine has no significant effects 

on lipid uptake of both the PC and the SM-probe by A431 cells (Fig. 4.34).  

These data also supports the previous results which represent that chloroquine may disturb 

LDLR recycling pathways. 

 

4.4.9. Effect of chloroquine on PC and SM processing 
 

The addition of chloroquine induced a decrease in the incorporation of fatty acids released 

from PC or SM into TAGs in macrophages (Fig. 4.35A, Fig. 4.35B).  

When macrophages were incubated with [
14

C]PC in the absence of chloroquine, (69%, 11%, 

and 14%) of the radioactivity was found in phospholipids, neutral lipids, and free fatty acid, 

respectively. PC represents about 50% of the radioactivity of the total phospholipids. When 

macrophages were incubated with [
14

C]SM in the absence of chloroquine, (64%, 14%, and 

18%) of the radioactivity was found in phospholipids, neutral lipids, and free fatty acid, 

respectively. Here, SM represents about 70% of radioactivity of the phospholipids. When 

macrophages were incubated for 24h in the presence of 40µM chloroquine, (82%, 4%, and 

8%) and (76%, 8%, and 12%) of the radioactivity was found in phospholipids, neutral lipids, 

and free fatty acid after labeling with both, the PC- and the SM-probe, respectively (Fig. 

4.35). PC represents about 58% of radioactivity of the total phospholipids after labeling with 
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the PC-probe, while SM represents about 78% of radioactivity of the total phospholipids after 

labeling with the SM-probe. The effects of 40µM chloroquine to decrease the incorporation 

into neutral lipids were also observed with other cell types, when LDL associated PC and 

LDL associated SM probes were used (data not shown).  

 

 

Figure 4.34: Uptake of labeled A. PC, B. SM. Both lipids were administered as part of LDL particles. 

Concentration = 1µM. Cells were pre-incubated with different concentrations of chloroquine for 24h 

before the addition of the complexes. Uptake was determined after 24h incubation by scintillation 

counting of the lipid extract, so that the given values represent the sum of unchanged phospholipid 

and hydrophobic metabolites derived from it. Statistical significance between chlorpromazine 

treatment and matched control is determined using statistical student’s t-test. * represents p < 0.05. 
 

 

Figure 4.35: Effect of chloroquine on the incorporation of PC-derived 1-[
14

C]palmitic acid (A, C) and 

SM-derived 1-[
14

C]stearic acid (B, D) into nonpolar lipids (upper panel)  and polar lipids (bottom 

panel) of macrophages after 24h incubation time (pre-incubation with different concentrations of 

chloroquine for 24h before the addition of the complexes). Statistical significance between 

chloroquine treatment and matched control is determined using statistical student’s t-test. * represents 

p < 0.05. 
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4.4.10. Impact of FTY720 on PC and SM uptake 

 

FTY720 has been demonstrated that lead to an apparent inhibition of acid sphingomyelinase 

(Dawson, et al. 2011) and all six ceramide synthase isozymes (Berdyshev, et al. 2009). We 

examined the role of FTY720 on uptake and processing of PC and SM in four cell types. 

Both phospholipids were delivered as part of LDL-particles in concentration of 1µM in the 

presence of different concentrations of FTY720 (0, 10, and 20µM). Concentrations of more 

than 20µM FTY720 reduced cell viability and amount of cellular protein. In the presence of 

FTY720, the uptake of both, [
14

C]SM and [
14

C]PC was slightly decreased in fibroblasts and 

HepG2 cells, and the uptake of [
14

C]SM was significantly decreased in macrophages and 

A431 cells compared to in the control cells, as shown in figure 4.36. 

 

4.4.11. Effect of FTY720 on PC and SM processing 
 

When cultured macrophages were incubated with [
14

C]PC or [
14

C]SM in the presence of 

FTY720 for 24h, the effect of FTY720 on processing of the lipid probes was dependent on its 

concentration. At 10µM, FTY720 did not alter levels of labeled metabolites significantly. 

However, at 20µM concentration, FTY720 produces a significant increase in the 

incorporation of 1-[
14

C]stearic acid derived from SM into GlcCer and LacCer (Fig. 4.37D). In 

macrophages treated with 1µM LDL associated SM-stearate, 10µM FTY720 led to a 

decrease in labeled neutral lipids and PLs by 10% and 18%, respectively. While, 20µM 

FTY720 led to a decrease in labeled neutral lipids and PLs by 42% and 24%, respectively. 

Free stearic acid was increased by 34% when treated with 20µM FTY720 compared to 

control. Treatment of macrophages with 20µM FTY720 resulted in an increased level of the 

exogenously added SM probe consistent with the effect of FTY720 on premature degradation 

of acid sphingomyelinase.  

The incorporation of PC-derived [
14

C]palmitic acid into cholesteryl ester and triacylglycerol 

were decreased in macrophages by 21%, and 34% pre-treated with 20μM FTY720 compared 

to control cells, respectively. Free palmitic acid was increased by 38% when treated with 

20µM FTY720 compared to control cells (Fig. 4.37A).  There were no significant differences 

in the incorporation of the labeled palmitic acid derived from PC in polar lipids between 

control cells and macrophages pre-treated with 10μM FTY720. The level of PC-derived 

palmitic acid was increased in the presence of 20μM FTY720. The incorporation of the 
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labeled palmitic acid into PC was increased by 31% in the presence of 20µM FTY720 (Fig. 

4.37C). 

 

 

Figure 4.36: Uptake of 1µM labeled A. PC, B. SM, administered as part of LDL particles by cultured 

cells after 24h incubation time. Cells were pre-incubated in the absence and presence of different 

concentrations of FTY720 for 24h before the addition of the complexes. Uptake was determined by 

scintillation counting of the lipid extract, so that the given values represent the sum of unchanged 

phospholipid and hydrophobic metabolites derived from it. Statistical significance between 

chlorpromazine treatment and matched control is determined using statistical student’s t-test. * 

represents p < 0.05. 
 

 

 

Figure 4.37: Effect of FTY720 on the incorporation of PC-derived [
14

C]palmitic acid (A, C) and SM-

derived [
14

C]stearic acid (B, D) into nonpolar lipids (upper panel)  and polar lipids (bottom panel) of 

macrophages after 24h incubation time (pre-incubation with different concentrations of FTY720 for 

24h before the addition of the complexes). Statistical significance between imipramine treatment and 

matched control is determined using statistical student’s t-test. * represents p < 0.05, and ** 

represents p < 0.005. 
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In summary, we demonstrated that lipid-LDL complexes are taken up at a higher rate in 

fibroblasts compared to other cell types. On the other hand, Chol-BSA complexes are taken 

up at a higher rate in A431 cells compared to CE-BSA, TAG-BSA which is taken up at a 

higher rate in fibroblasts. We also demonstrated that when macrophages were treated with 

20µM CADs, [
14

C]SA derived from SM was mainly recovered as SM (1.3 pmol/µg protein) 

when treated with chlorpromazine, followed by desipramine, which comprised (0.9 pmol/µg 

protein). [
14

C]palmitic acid derived from PC was mainly recovered as PC (1.1 pmol/µg 

protein) when treated with chlorpromazine, followed by FTY720, which comprised (1.0 

pmol/µg protein). Therefore, chlorpromazine has the strongest negative impact on 

sphingomyelinase action and phosphatidylcholine degradation.  

 

4.4.12. Analysis of cell viability 
 

Analysis of cell viability in different cultured cells is one of the important means of 

evaluating in vitro drug effects in cytotoxicity essays. Our conditions were not accompanied 

by a loss of cell viability as determined by total cell protein. One of the traditional methods of 

cell viability analysis is the CellTiter Blue (CTB) assay. As shown in figure 4.38, in the 

CellTiter Blue assay, a concentration of 40µM FTY720 and chlorpromazine show a decrease 

in cell viability of more than 50 %. Therefore, effects of these concentrations of the drugs on 

lipid metabolism cannot be considered. 

 

 

Figure 4.38: Cell viability assay in A: macrophages (CADs concentrations dependence), and B: 

different cell types in the presence of desipramine.  
 

4.4.13. Analysis of lipid binding to LDL 
 

The lipid-protein complexes were examined by gel chromatography. Separation by gel-

filtration chromatography is based on differences in the size of the analyte molecules 
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(molecules with less access to the pore volume elute first, while the smallest molecules elute 

last). Lipid-LDL complexes were isolated through a sephacryl S-300 (pore size: 10-

3000kDa), column size (2 x 20cm) and equilibrated with 10mM Tris-HCl (pH 7.5) containing 

0.3mM NaCl, and 0.3mM EDTA as a running buffer, and the column was eluted with the 

same buffer. In gel chromatography column runs, more than 78% of the lipid radioactivity 

and more than 90% of the protein were recovered. 

Figure 4.39 showed that in the [
14

C]PC–LDL complex, the aggregation state was different 

from the pure [
14

C]PC. The original homogeneous distribution of [
14

C]PC aggregates 

changed to heterogeneous distribution after interacted with LDL molecules. This experiment 

was designed to show that [
14

C]PC molecules readily bound with ApoB100 in LDL 

molecules to form [
14

C]PC–LDL complex separated differentially from the sole [
14

C]PC 

under identical experimental conditions.  

 

 

 

Figure 4.39: Gel chromatographic elution profile of [
14

C]-PC-LDL complex and [
14

C]-PC on 

Sephacryl S-300.  
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5. Discussion 

 

5.1. Uptake and processing of C-18 fatty acid in cultured cells 

 

As far as it is known, fatty acids are taken up without contribution of the endolysosomal 

system, and fatty acid probes themselves are not suitable to assay lipid uptake and processing 

via this compartment. Nevertheless, a series of labeled FAs of different structure (saturated, 

ω-3, ω-6, and ω-9) were used to get insight into their metabolic utilization in different types 

of cultured cells. The resulting incorporation pattern can be compared to those that arise from 

hydrolyses of FA-labeled complex lipids in the lysosomes. Based upon the data reported 

before in cultured keratinocytes (Schürer, et al. 1988), FAs were applied in a concentration of 

10µM, at that concentration the uptake of all fatty acids was in the same range. At a lower 

concentration (0.1µM), the uptake of linoleic acid is reported to significantly exceed that of 

other FAs including stearic acid, oleic acid, and palmitic acid (Schürer, et al. 1988). In 

contrast, the uptake of stearic acid was significantly lower than that of the other FAs at 

concentrations of more than 10µM (Schürer, et al. 1988). In these and in our experiments, the 

reason for this might be linked to G-protein coupled receptors. For example OA binds to 

GPR43 (Briscoe, et al. 2003), and ω3-unsaturated FAs to GPR120 (Oh, et al. 2010; Ichimura, 

et al. 2012). Furthermore, in Huh-7 cells, OA stimulates rapid (15min) LD formation through 

activating the GPR120 receptor (Wakelam, et al. 2012). 

To mimic the physiological situation, we applied the FAs in complex with BSA (Pütz, et al. 

1995). The decision to use radiolabeled FAs is based on previous results from a series of tests 

with FA probes that were labeled with azide groups as chemical reporter groups or with 

stable isotopes. Both methods were not sensitive enough in our hands to determine the whole 

set of metabolic products on a background of endogenous lipids with mass spectrometry as 

readout. These control experiments with exogenously added radiolabeled FAs revealed that 

the metabolism of these lipid probes varies in part considerable with the number of Z-double 

bonds present in the probes, and with the cell type. Therefore, it is not possible to draw 

conclusions on the complete FA entry pathway with only one lipid probe and cell type. 

The dissociation constants for various FA from the FA-BSA complexes were dependent upon 

the type of fatty acid and not dependent on the FA/BSA ratio (Demant, et al. 2002). The 

values of the rate of FA dissociation from BSA increase in the order stearic acid < oleic acid 

< palmitic acid ≈ linoleic acid < arachidonic acid at 37 °C (Demant, et al. 2002). 



87 

Although it is not expected that endosomes and lysosomes are involved in FA uptake and 

metabolism, the impact of a cationic amphiphilic drug (CAD), desipramine (DMI), on uptake 

and processing of SA, OA, LA, and LOA that is known to cause phospholipidosis in humans 

and animals by inducing premature degradation of endosomal acid sphingomyelinase were 

also analyzed. Furthermore, there are no data on the impact of DMI on FA processing in the 

literature.  

 

5.1.1. FA uptake in cultured cells 

 

In chapter 4, the basal uptake of different FAs by four different types of cultured cells was 

determined. Both, cell type and FA structure, influence FA uptake by confluent cultured 

fibroblasts, macrophages, A431 cells, and HepG2 cells. The cellular uptake of FAs is a 

regulated process; and unsaturated FAs have shown to induce formation of lipid droplets, 

presumably by activation of the G-protein coupled receptor GPR120 (Rohwedder, et al. 2011; 

Oh, et al. 2010; Ichimura, et al. 2012) and to stimulate FA uptake . For example, in placental 

trophoblast cells, FA uptake increases by 20–50%, when the cells were pre-incubated for 24h 

with 100mM long chain polyunsaturated FAs (LCPUFA). These FAs were preferentially 

incorporated into cellular phospholipids. Stimulation of FA uptake by LCPUFA corresponds 

to the increased expression of long-chain acyl-CoA synthetase (ACSL), indicating that acyl-

CoA synthetase activity may be required for stimulation of FA uptake by LCPUFAs in this 

and in other cell types.  

The nature of the binding of exogenously FA to cultured cells may be of similar nature of 

binding of exogenously added gangliosides reported previously (Saqr, et al. 1993). It was 

demonstrated that exogenous gangliosides are present in aqueous solution either as 

monomers, aggregates (oligomers), or micelles. These are incorporated into cells but are 

mainly adherent to the surface membrane. This form represents the major portion of 

exogenous lipids bound to the plasma membrane, and is loosely associated with the cell 

surface. Another part is attached to binding proteins as monomers or micelles that can only be 

removed by trypsination, or as monomers inserted into hydrophobic regions of the 

membrane. Therefore, exogenously added FAs and lipids which are generally recovered from 

the lipid extract of cells might contain a fraction, that is only adhered to the cells. 
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5.1.2. FA processing in HepG2 cells 

 

The human hepatoma cell line (HepG2) is one of particular interest as the liver is the primary 

site for the synthesis of fatty acids. The HepG2 cell line has been shown to exhibit many 

functions of differentiated human liver cells, through the expression of secretory proteins 

such as albumin, transferrin and fibrinogen (Dixon, et al. 1993) and retains many hepatic 

metabolic functions, including lipoprotein and apolipoprotein synthesis and cholesterol 

metabolism (Javitt, 1990). We used the HepG2 cell line in this study as a model of fatty acid 

uptake and processing by liver cells.  

In HepG2 cells, SA, OA, LA, and LOA are taken up at almost identical rates, and no 

significant differences in cellular uptake were noted among these FAs. These results are in 

agreement with (Dokko, et al. 1998). In the same cell type, we observed that the more double 

bonds the FAs contained, the more they are incorporated into LD lipids. In HepG2 cells, we 

observed that both saturated, and to a greater extent, unsaturated C18-FAs, especially LOA, 

are efficiently incorporated in TAG, DAG, and CE. This is in agreement with previous work 

(Fujimoto, et al. 2006), which demonstrated that FAs with hydrocarbon chains of C12 - C18 

(saturated and unsaturated long chain FAs) were accumulated in TAG and CE, which were 

concentrated in LDs. Moreover, hepatocytes and hepatic stellate cells play a central role in 

retinoid (Fig. 5.1A) or vitamin A ((2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-

1-yl)nona-2,4,6,8-tetraenoic acid) storage and metabolism (Vogel, et al. 2000). To maintain 

plasma retinol levels, hepatocytes are responsible for the uptake of postprandial retinyl esters 

and are responsible for secretion of retinol bound to retinol-binding protein, since hepatocytes 

are essentially involved in maintaining circulating levels of retinol. Furthermore, the long-

chain FA binding protein (L-FABP) binds a broad range of hydrophobic ligands, including 

FAs, and has a preference for unsaturated FAs as opposed to saturated FAs (McArthur, et al. 

1999). L-FABP overexpression markedly increased the rate of FA uptake in hepatoma cells 

(Wolfrum, et al. 1999), and high level expression of L-FABP not only stimulated FA uptake, 

but also increased intracellular esterification of exogenously supplied FAs (Murphy, et al. 

1996). Culture of three different hepatoma cell lines (HepG2; PLC/PRF 5; Mz-Hep-1) using 

[
3
H]OA in the presence of various concentrations of albumin showed that cellular uptake of 

[
3
H]OA over the initial 30sec incubation period was maximal, and the uptake of FAs by 

human hepatoma cell lines is, at least in part, mediated by a membrane FA binding protein 

(Stremmel, et al. 1989). These data suggest a significant role of fatty acid in regulating the 

incorporation into polar and nonpolar lipids by HepG2 cells.  
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The LD formation was effectively blocked by a long-chain acyl-CoA synthetase (ACSL) 

inhibitor, triacsin C (Fig. 5.1B); therefore, long chain FAs and ACSLs are significant factors 

for LD formation in hepatocytes. Also caveolae, but not clathrin-coated pits, have been 

implicated in uptake and intracellular trafficking of LCFA in HepG2 cells (Pohl, et al. 2002). 

Inhibition of caveolae formation by filipin III resulted in a reduction of [
3
H]OA and  [

3
H]SA 

uptake by 54%, and 44%, respectively. 

In our experiments, all FAs were more incorporated into polar lipids (PLs), especially into PC 

than into the other PLs, while the ratio of labeled PC/PE with SA and OA was less than with 

the other FAs. This is in agreement with previous work (Marra, et al. 1992), which 

demonstrated that when SK-Hep-1 cells were incubated with [
14

C]LA, the unaltered FA was 

mainly incorporated into PC. Examination of the total FA of HepG2 cells revealed a high 

level of OA (Woldseth, et al. 1993). The ability of HepG2 cells to incorporate 0.66µM of 

different saturated and unsaturated FAs from the cultured medium was determined for 

following 1-[
14

C]FAs: 16:0, 18:0, 18:2(n-6), 18:3(n-3), and 20:3(n-6) (Angeletti, et al. 1995). 

These results are in agreement with our results.  

 

 

Figure 5.1: Chemical 

structure of A. retinoic 

acid, B. triacsin C. 
 

 

 

 

5.1.3. FA processing in macrophages 

 

The phospholipid FA compositions of cellular membranes alter their fluidity and induce 

changes in cell signaling leading to altered gene expression and lipid mediator production 

(Calder, 2010). In macrophages, the phospholipid FA composition influences processes such 

as apoptosis, production of cytokines, release of inflammatory mediators, and NO production. 

In macrophages, there is a strong positive correlation between phagocytosis and the content 

of polyunsaturated FA (Calder, et al. 1990). Macrophages enriched with polyunsaturated FAs 

showed 25-55% enhancement of phagocytic capacity. We observed that SA and OA are 

markedly incorporated in nonpolar lipids. Among unsaturated FAs, OA was more 

incorporated in nonpolar lipids, followed by LA and LOA. In contrast, we observed that LA 

and LOA are markedly incorporated in polar lipids compared to SA and OA. Furthermore, 

within the time frame used in our study, labeling of PC was always greater than that of PE, 
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except for LOA, which was incorporated into PE to a larger extent than into the other PL 

classes. These results are in agreement with previous work, which showed that in 

macrophages the content of polyunsaturated FAs in the PL fraction was higher than in the 

neutral lipid fraction (Calder, et al. 1990). Our results are also in agreement with previous 

results obtained in isolated rat liver cells, which show that FAs were incorporated in the PL 

fraction to a very different extent, and in the order 18:0 > 16:0 (Woldseth, et al. 1993).  

 

5.1.4. FA processing in A431 cells 

 

In A431 cells, the incorporation of OA, LA, and LOA into nonpolar lipids occurred 

predominantly into DAG, while SA was more incorporated into TAG than DAG (Fig. 4.3C). 

DAG originates either from the hydrolysis of phosphatidic acid, from TAG, or from PL 

hydrolysis. Among the nonpolar lipids, FAs were more incorporated into diacylglycerols than 

into TAG in fibroblasts. In macrophages and HepG2 cells, in which more incorporation into 

nonpolar lipids occurred, FAs were mainly incorporated into TAGs. 

To explain these results, Pulse-chase studies were carried out. Results indicate that DAGs are 

only transiently formed during the formation of TAGs. During short-time pulse periods (2h) 

we observed a major incorporation of radiolabeled oleate into diacylglycerol in fibroblasts, 

and A431 cells. In the other cell types, the major incorporation of labeled oleate was 

observed into TAG. In chase experiments, the level of labeled triacylglycerol was increased 

after 72h incubation in macrophages and fibroblasts. Similarly, the labeled triacylglycerol 

increased with time in HepG2 cells, and A431cells. Moreover, the incorporation of labeled 

PC was decreased during the chase periods in all cell types (Fig. 4.7). These observations 

indicated a role of the Lands' cycle to remodel phospholipids during the chase period.  

 

5.1.5. FA processing in fibroblasts 

 

Different FAs were added to cultured human fibroblasts. These cells are easy to prepare and 

are available in larger quantities. Human skin fibroblasts readily take up exogenous free FAs 

and incorporate them into cellular TAGs and PLs (Spector, et al. 1979: Rosenthal, et al. 

1981). We found that within two hours, human skin fibroblasts incorporate all long chain FAs 

studied into diacylglycerol. SA was less incorporated into DAG than the other unsaturated 

FAs, and compared to unsaturated FAs, more SA was detected in free form. A previous study 

(Rosenthal, et al. 1981) has shown a progressive incorporation into diacylglycerols in 
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fibroblasts incubated in the presence of exogenous long chain saturated FAs. Incubation of 

fibroblasts with saturated FAs lead to increased levels of neutral lipids into lipid droplets. 

Into phospholipids, OA was incorporated to a greater extent than other FAs. LOA is less 

incorporated into PLs, while LOA was found to a greater extent in nonpolar lipids than the 

other FAs. Our results show that between 82% (SA) and 76% (LOA) of the applied FAs were 

incorporated into PLs and much less into TAGs (7.9% for SA and 12% for LOA). These 

results are in agreement with previous work (Rosenthal, et al. 1981), which showed that when 

G10-fibroblasts were incubated with 2µM concentration of different FAs for 24h, about 89% 

(SA) and 66% (LOA) of the applied FAs were incorporated into PLs, and much less into 

TAGs (8.3% for SA and 26% for LOA). Furthermore, in G10-fibroblasts, more [
14

C]OA, 

[
14

C]LA, and [
14

C]LOA was incorporated into TAGs than radiolabeled SA (Rosenthal, et al. 

1981). These values are also in agreement with our cell culture experiments  

Previous studies in hamster fibroblasts with 0.2µCi/mL of 1-[
14

C]-labeled fatty acid 

(Maziere, et al. 1982) are in agreement with our results. The authors demonstrated an 

enhanced incorporation of saturated FA into SM and ceramide compared to unsaturated FAs. 

OA was more incorporated into polar lipids than the other FAs, and its incorporation into 

phosphatidylglycerol (PG) was higher than that observed for the other FAs. Previous work in 

normal fibroblasts (Daniel, et al. 1980) revealed a lower incorporation of polyunsaturated 

FAs in ethanolamine glycerophospholipids in normal cells. This is in agreement with our 

results, which show that the unsaturated FAs were less incorporated into PE compared with 

saturated fatty acid. When human skin fibroblasts were incubated in serum-free medium with 

up to 100nmol/mL OA bound to albumin in a 4.6:1 ratio, the rate of [
14

C]OA incorporation 

into TAG was approximately 5-fold higher than that of radiolabeled eicosapentaenoic acid 

(EPA). The mass of TAG formed after incubation of fibroblasts with EPA was also 

significantly lower than that formed with OA (Miller, et al. 1993). Among the C18-FAs, 

human skin fibroblasts incorporate more OA than LA into membrane lipids. The percentage 

of exogenous FA incorporated is dependent on cell density, length of incubation, and 

concentration of serum protein in the culture medium, but not on the concentration of OA 

(Rosenthal, 1980). Uptake of LA and OA bound in varying molar ratios to albumin (ranging 

between 0.25:1 and 2:1, and in 173µM concentration in the medium) by dermal fibroblasts 

was linear over an incubation period of 5min, with similar low uptake rates for both OA and 

LA over the initial phase (Schurer, et al. 1994). Thus, fibroblasts demonstrate no initial rapid 

influx of FA, and FA-uptake in fibroblasts was more consistent with uptake entirely by 
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passive diffusion. It was suggested that the ability to synthesize TAG plays a critical role in 

protection from lipotoxicity (Listenberger, et al, 2003).  

In fibroblasts, the incorporation of 10µM FA into polar and nonpolar lipids has shown to be 

higher than macrophages and HepG2 cells as shown in table 4.2. Previous studies 

demonstrated that overexpression of the FA binding proteins FATP1 and FABPpm in 3T3 

fibroblasts (Isola, et al. 1995) not only stimulated FA uptake, but also increased intracellular 

esterification of exogenously supplied FAs (Murphy, et al. 1996). Furthermore, expression of 

FAT/CD36 in fibroblasts (Ibrahimi, et al. 1996) and muscle cells (Bastie, et al. 2004) 

increased FA uptake rates. On the other hand, caveolin-1 expression is necessary for post-

translational stabilization and membrane expression of CD36. Caveolin-1 ablation in 

fibroblasts reduced the plasma membrane content of CD36 in parallel with a reduction of 

cellular FA uptake (Ring, et al. 2006). Furthermore, dysfunctional NPC1 (the protein 

involved in the subcellular trafficking of cholesterol out of late endosomes and lysosomes) 

does not lead to aberrant fatty acid efflux from late endosomes and lysosomes in human 

fibroblasts (Passeggio, et al. 2005). In contrast, NPC1 mutation shows a decreased 

incorporation of LDL-derived fatty acid into phospholipids in macrophages (Leventhal, et al. 

2004). 

 

5.1.6. The effect of the cationic amphiphilic drug, desipramine, on FA 

uptake and processing 

 

Desipramine as a prototypical CAD is able to induce phospholipidosis in humans (Hurwitz, et 

al. 1994; Kölzer, et al. 2004; Nioi, et al. 2008; Reasor, et al. 2006). Influences of desipramine 

on FA uptake and metabolic incorporation into cellular lipids have not been reported before. 

Since desipramine targets lipid processing in the endolysosomal system, an effect of 

desipramine on uptake and processing of FAs was not expected. Therefore, it was a surprise 

that profound changes are produced in FA metabolism by desipramine, when administered in 

different concentrations to various cell types.  

Other CADs have been reported (Fig. 5.2), such as tianeptin (Frumenty, et al. 1989) and 

amineptin (Le Dinh, et al. 1988), to inhibit mitochondrial β-oxidation of short and medium-

chain FAs. 
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Figure 5.2: Chemical structure 

of A. tianeptin, B. amineptin. 

 

 

 

CADs enter the cells and then lysosomes depending on the logP and pKa-values within 

minutes to many hours (Kornhuber, et al. 2010). Desipramine has a fast lysosomal uptake 

kinetics (equilibrium within 30min), and a moderate lysosomal accumulation (accumulation 

ratio lysosome:extracellular ˂ 100:1) (Kornhuber, et al. 2010). An effect of CADs on steps 

downstream of lysosomal depends on the applied CAD, on the identity of the FA, and on the 

cell type, as indicated by our experiments. In macrophages and A431 cells, treatment with 

desipramine leads to a drastically reduced incorporation of all FAs investigated into TAG and 

DAG, without reduction of FA uptake. In HepG2 cells, the effect of desipramine on saturated 

FA processing was less pronounced on the incorporation into TAG. 20µM desipramine 

decreases the incorporation of SA, OA, LA, and LOA into TAG by 10%, 14%, 35%, and 

44%, but incorporation into polar lipids was significantly increased for unsaturated FAs 16%, 

30%, 46%, and 54% when treated with 20µM desipramine, respectively (data not shown). In 

macrophages, pre-incubation with 20µM desipramine in the culture medium reduced the 

incorporation of radiolabeled SA, OA, LA, and LOA into TAG by 77%, 73%, 66%, and 45%, 

respectively. Also the level of intracellular free FA, and FA incorporation into DAG was 

reduced by 17%, 19%, 42%, and 44%, respectively, but to a lesser extent than into TAG (Fig. 

4.9). In macrophages, when the concentration of desipramine increased, the incorporation of 

1-[
14

C]FA into neutral and acidic polar lipid increased in the presence of SA and OA, but is 

less affected with LA and LOA (data not shown). A possible explanation for the observed 

metabolic alterations is a reduced availability of DAG due to a desipramine-induced increase 

in endogenous sphingomyelin concentrations not only in the endolysosomal compartment, 

but also in the Golgi-apparatus (Fig. 5.4). This can drive the formation of PC from DAG, and 

deplete the DAG-pool available for TAG synthesis (Deevska, et al. 2009).  

Another possible explanation is that phosphatidic acid phosphatase can be inhibited by 

desipramine in rat brain (Koul, et al. 1987) and by desipramine and other CADs in 

macrophages (Perry, et al. 1992). The resulting decreased availability of the DAG precursors 

might be the reason for the decreased incorporation of FAs into DAG, as shown in figure 5.3. 
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Figure 5.3: Desipramine-inhibits the activity of phosphatidic acid phosphohydrolase.  This explains 

the decreased incorporation of FA into DAG, TAG, PC, and PE. 

 

 

 

Figure 5.4: Model for the desipramine-induced reduction of incorporation of exogenous FAs into the 

neutral lipids DAG and TAG, and their increased incorporation into PC.  
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In A431 cells, 20μM desipramine reduced the incorporation of radiolabeled SA, OA, LA, and 

LOA into TAG by 97%, 83%, 94%, and 93%, respectively, while the levels of FAs 

incorporated into DAG were reduced by 74%, 29%, 49%, and 63 %, respectively (Fig. 4.8). 

Unexpectedly, desipramine had a different effect on the uptakes of FAs in cultured 

fibroblasts. This was significantly increased in contrast to the other cell types (data not 

shown). The incorporation of the FAs into all analyzed lipids increased with increasing 

concentrations of desipramine. Treatment with 20μM desipramine increased the 

incorporation of SA, OA, LA, and LOA into TAG by 83%, 80%, 87%, and 88%, 

respectively, while the incorporation into DAG was increased by 65%, 77%, 73%, and 67%, 

respectively (Fig. 4.10). This is completely different from the uptake and processing by the 

other investigated cell types. The molecular reason for this phenomenon is unknown. 

[
3
H]-desipramine was used to measure desipramine uptake in the various cell types and to 

investigate if differential desipramine uptake accounts for the observed cell-type specific 

effects. Uptake of [
3
H]desipramine by fibroblasts is much lower than by macrophages, A431 

cells, and HepG2 cells (Fig. 4.13), so that this can only account for quantitative differences in 

its impact on FA processing. Antidepressants such as desipramine exhibit anticancer 

properties, although the mechanism for this is not clear (Ma, et al. 2011). Since some tumors 

cells depend on fatty acid uptake (Zhan, et al. 2008; Hess, et al. 2010), our new data on 

disturbance of fatty acid uptake in the presence of desipramine offer another possible mode of 

action of such antidepressants. 

 

5.2. Analysis of two lipid delivery methods towards lipid uptake and 

processing 
 

This work is the first comparative study of the uptake and metabolism of lipid probes 

delivered either as part of LDL-particles or in complex with BSA in four representative types 

of cultured cells. Despite the considerable attention devoted to studying the metabolism of 

LDL-lipids and apoB100, less is known about the uptake and metabolism of lipids associated 

with albumin. The ability of cargoes to bind to receptors at the cell surface is a fundamental 

cellular mechanism of specific transport into cells. LDL (from human) and delipidated BSA 

(from cattle) were loaded with [
14

C]cholesteryloleate, [4-
14

C]cholesterol, and 

[
14

C]trioleoylglycerol. Incubation time of 6h or less led only to minor uptake and small 

values that were not high enough to allow reasonable experiments. 24h incubation time was 

suitable to demonstrate the significant differences in uptake and processing between the cell 

types. Therefore, this value was chosen for the experiments. 
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5.2.1. Cholesterol 

 

Cholesterol is a major constituent of mammalian cell membranes. Hypercholesterolemia 

coupled with low HDL is a major risk factor for cardiovascular disease, CVD (Deng, et al. 

2012). Accumulation of LDL-cholesterol in the blood is directly involved in the development 

of atherosclerosis. Most endocytic pathways like clathrin-dependent and clathrin-independent 

pathways are inhibited by the loss of cholesterol (Rodal, et al. 1999). Cholesterol itself shows 

only low solubility in blood and is transported in the circulatory system bound to 

lipoproteins. Therefore, in our study, we used low density lipoprotein as a carrier for 

cholesterol to address the receptor-mediated endocytic pathway, and compared it to albumin 

as an extracellular cholesterol carrier. Different types of cultured cells had an influence on the 

incorporation of the cholesterol into CE. This study asked to which extent the vehicle that 

delivers cholesterol to cells has an influence on its conversion to cholesteryl ester of lipid 

droplets. 

It is known that LDL particles are internalized by cells via receptor-mediated endocytosis and 

are then sorted to endosomes and lysosomes. In our experiments, the uptake of [4-

14
C]cholesterol delivered as LDL-complex is 3-fold higher in macrophages, 2.5-fold higher in 

fibroblasts, Hep-G2 cells, and A431 cells, when compared to [4-
14

C]cholesterol delivered as 

BSA-complex. To explain these results, previous studies have reported that the LDL-receptor 

and the scavenger-receptor SR-BI have a specific role for the uptake of lipoprotein-associated 

cholesterol by various cell types (Urban, et al. 2000; Temel, et al. 1997; Goldstein, et al. 

1987). In normal fibroblasts, the LDL receptor remained bound to LDL on the surface of cell 

membrane for less than 10min, within this time most of the surface bound LDL particles 

entered the cells, and the protein component of LDL was completely digested within another 

60min (Goldstein, et al. 2009). SR-BI is participates in intracellular cholesterol trafficking 

(Silver, et al. 2001) and is also believed to facilitate the excretion of excess cholesterol into 

bile (Kozarsky, et al. 1997). Furthermore, the LDL particle is degraded in the endolysosomal 

compartment and free cholesterol is released by hydrolysis of cholesteryl esters in the core of 

LDL (Goldstein, et al. 2009). Cholesterol is sorted out of endosomes with the aid of the 

proteins NPC1 and NPC2 (Abdul-Hammed, et al. 2010), and then loaded on a cytoplasmic 

oxysterol-binding protein–related protein Orp-protein (Du, et al. 2011). 

The incorporation of the 1µM [4-
14

C]cholesterol delivered as LDL-complex into CE of 

macrophages is higher compared to other cell types. The incorporation of [4-
14

C]cholesterol 

delivered as LDL-complex into CE of fibroblasts, macrophages, A431 cells, and HepG2 cells 

http://www.newworldencyclopedia.org/entry/Cholesterol
http://www.newworldencyclopedia.org/entry/Cell_membrane
http://en.wikipedia.org/wiki/LDL-cholesterol
http://en.wikipedia.org/wiki/Atherosclerosis
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were increased by 0.2%, 15%, 2%, and 4%, respectively (Fig. 4.18A). These results are in 

agreement with previous work (Wong, et al. 1987), which demonstrated that cholesterol is 

significantly esterified with endogenous FAs for the formation of cholesteryl ester droplet by 

macrophages. Furthermore, a previous study showed that in HeLa cells, BODIPY-labeled 

cholesterol analog (BODIPY-chol) moved from the plasma membrane (PM) to lipid droplets 

(LDs) with a half-time value of approximately 30min (Jansen, et al. 2011). 

 

5.2.2. Cholesteryloleate 

 

As shown in our results (Fig. 4.14), the uptake of [
14

C]CE-LDL is 4-fold higher in fibroblasts 

and A431 cells, 3-fold higher in macrophages, and 2-fold higher in Hep-G2 cells during an 

24h incubation at 37 °C, compared to [
14

C]CE-BSA. Previous studies demonstrated that 

LDL-receptor and SR-BI are important for the delivery of LDL-CE to cultured cells (Minahk, 

et al. 2008). Minahk and co-workers demonstrated that LDL is internalized by cells via 

receptor-mediated endocytosis, in which CE-LDL complexes are taken up mainly by LDL 

receptor to 60-70% by primary hepatocytes. On the other hand, the uptake of the remaining 

30-40% of CE-LDL complexes is mediated by the scavenger receptor class B, type I, which 

is considered an important receptor not only for LDL (Swarnakar, et al. 1999) but also for 

HDL (Rhainds, et al. 2003). Furthermore, various ligands, including native lipoproteins 

(LDL, VLDL, HDL, and chylomicrons) and modified lipoproteins (acetylated LDL, oxidized 

LDL, and oxidized HDL) are bound by specific amino acid residues of plasma membrane 

SRBI, which facilitates CE transport down its concentration gradient into the plasma 

membrane via a hydrophobic channel (Connelly, et al. 1999). SR-BI appears to have different 

binding sites for apolipoproteins and phospholipids (Urban, et al. 2000).  

It has been observed that clathrin-dependent endocytosis is sensitive to low temperature 

(Wileman, et al. 1985; Baluška, et al. 2002). In our experiments, the effect of temperature on 

the lipid uptake was tested by adding lipid probe to cultured cells previously incubated at 4 

0
C for 30min and kept for a further 2h. The uptake of  [

14
C]CE,  [

14
C]Chol, and [

14
C]TAG 

were significantly decreased by 83%, 78%, and 80%, when cells were incubated with the 

[
14

C]CE-LDL,  [
14

C]Chol-LDL, and [
14

C]TAG-LDL at 4 °C compared to control at 37 °C, 

respectively, (data not shown). These data demonstrate that the classical endocytic process 

mainly affected the uptake of [
14

C]CE, [
14

C]Chol, and [
14

C]TAG and its transfer to early 

compartments, which is effectively inhibited by low temperature. These results support the 
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previous work (Minahk, et al. 2008) which demonstrated that LDL-receptor and SR-BI are 

important for the delivery of LDL-CE to cultured cells. 

The metabolic processing of labeled oleic acid released from CE by lysosomal acid lipase in 

four types of cultured cells was followed. Liberated labeled oleate was incorporated 

significantly into glycerolipids, especially into phosphatidylcholine (Fig. 4.21B), and to a 

lesser extent into TAG. Similar results were previously reported in human fibroblasts 

(Groener, et al. 1996) and macrophages (Li, et al. 1995).  

On the other hand, the incorporation of cholesteryl ester-derived [
14

C]oleate delivered as 

BSA-complex into nonpolar and polar lipids is significantly lower in all cell types compared 

to cholesteryl ester-derived [
14

C]oleate delivered as LDL-complex. Stromhaug et al. 

demonstrated that albumin is taken up by non-receptor fluid phase endocytosis (Stromhaug, 

et al. 1997) compared to the lipoprotein, which is taken up by receptor mediated endocytosis 

(Minahk, et al. 2008).  

 

5.2.3. Triacylglycerol 

 

A comparison of [1-
14

C]trioleoylglycerol associated with LDL with that associated with BSA 

containing equimolar amounts by cultured cells has been investigated (Fig. 4.20). The 

experiments show that the incorporation of OA derived by the hydrolysis of TAG into other 

neutral and polar lipids was higher in macrophages compared to other cells. A possible 

explanation is that [1-
14

C]trioleoylglycerol is hydrolysed by different enzyme capacities 

involved in different cell types. Previous studies have reported that J774 macrophages have 

very active triacylglycerol lipases that appear to be distinct from that of other cell types 

(Khoo, et al. 1984). 

Our major findings are as follows: (i) lipid complexes with LDL show higher uptake 

compared to lipid complexes with albumin; (ii) LDL-lipids are metabolized differently than 

that delivered by BSA.  

It is known that mammalian cells can take up macromolecules of a considerable size range. It 

has been suggested that within limits, an increase in molecular size may determine an 

increase in cellular uptake (Ryser, 1967). Since albumin and low density lipoprotein have not 

too different isoelectric points (4.7 and 5.4, respectively), but different molecular weight 

(66.5kDa and 3000kDa, respectively) (Chaiyasut, et al. 2001; Jachimska, et al. 2008), it is 

likely that the molecular size is a contributing factor in this case. Key factor, however, 

appears to be that a receptor-mediated pathway exists for LDL (Goldstein, 2009). 
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In contrast to FAs bound to BSA, many data suggest that there BSA-lipid complexes are 

taken up by the cell through a process independent of receptor-mediated endocytosis (Synnes, 

et al. 1999; Kobuna, et al. 2010; Berger, et al. 1994). Therefore, it is understandable that 

uptake and metabolism of the examined lipid probes depend on the mode of the delivery 

(LDL, BSA). These findings indicate that LDL-associated (CE, TAG, and Chol) are taken up 

into cells via a pathway that differs from that of BSA-associated (CE, TAG, and Chol). 

Essentially, lipid-BSA complexes were taken up at a lower rate compared to lipid-LDL 

complexes. With the exception of FA-BSA complexes, BSA-lipid complexes are largely 

taken up by fluid-phase endocytosis (Stromhaug, et.al 1997). Furthermore, we suspect that 

both the oleate derived from cholesteryl oleate and trioleoylglycerol delivered as LDL, are 

processed by the cell in a similar fashion. Only slightly different pattern were observed (Fig. 

4.21) for metabolic products of cholesteryl oleate and trioleoylglycerol. We observed that 

there was a difference in the distribution of oleate among phospholipids even though oleate in 

cholesteryl oleate and trioleoylglycerol was delivered by the same carriers.  A previous study 

(Teruya, et al. 1995) demonstrated different rates of lysosomal hydrolysis of oleate from 

cholesteryl oleate and from trioleoylglycerol in the lysosomes. Also in our experiments, free 

oleate delivered as albumin complexes (Fig. 4.3) shows pattern different from oleate derived 

from cholesteryl oleate and trioleoylglycerol delivered as LDL. Oleate delivered as 

trioleoylglycerol and cholesteryl oleate must first be hydrolyzed from the lipid probes, and 

can then be converted to fatty acyl-CoA for esterification. On the other hand, free oleate 

enters the cytoplasm of the cell without any metabolic step and is converted to fatty acyl-CoA 

for esterification into cellular complex lipids. The extra metabolic step in the lysosomes may 

account for differences in the rate of cellular metabolism of oleate. Moreover, the uptake of 

fatty acids from lipoproteins is receptor mediated, as opposed to the uptake of free oleate 

bound to albumin, which is predominantly non-receptor mediated uptake (Rosenthal, 1987). 

Furthermore, in both lipid probe delivered as LDL and free oleate delivered as BSA, the 

incorporation of oleate was predominantly into PC with all cell types. These results are also 

in agreement with previous results in human umbilical vein endothelial cells (Teruya, et al. 

1995). 
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5.3. Analysis of lipid processing in Niemann-Pick A cells compared to 

normal fibroblasts. 

 

Lysosomal storage diseases are a family of at least 40 inherited metabolic disorders that 

collectively have an incidence of 1 per 7700 live births (Meikle, et al. 1999). In most 

lysosomal storage diseases, multiple substrates accumulate. Some result from a distinct 

blockage in a metabolic pathway, whereas others appear to be secondary. Cholesterol 

accumulation represents a secondary metabolic defect that is observed in human patients with 

NPA disease, since sphingomyelin has a strong affinity for cholesterol (Leventhal, et al. 

2001; Lönnfors, et al. 2011). Once sphingomyelin is degraded by lysosomal ASM, 

cholesterol can efflux from the lysosomal compartment (Leventhal, et al. 2001, Abdul-

Hammed, et al. 2010). 

Our results indicate that the processing of cholesterol and phosphatidylcholine through NPA 

is slightly reduced compared to normal cells. Nutrient uptake via endosomes and lysosomes 

is an important function of these organells. In mouse models of both GM1 and GM2 

gangliosidoses, an impaired iron uptake via the endolysosomal system leads to progressive 

depletion of iron in brain tissue. Administration of iron prolonged survival in the diseased 

mice by up to 38% (Jeyakumar, et al. 2009). Our results indicate that also lipid uptake and 

processing is impaired in NPA, which might contribute to pathogenesis. 

 

5.4. Effect of cationic amphiphilic drugs on uptake and processing of 

choline-containing phospholipids by cultured cells 

 

5.4.1. Effect of CADs on SM uptake and processing 
 

Several side-effects of clinically used CADs can be attributed to a drug-induced impairment 

of lysosomal function. It is known that the antidepressant desipramine leads to premature 

degradation of acid sphingomyelinase in the endolysosomal compartment and subsequently 

to SM accumulation (Kölzer, et al. 2004). Desipramine interferes with the binding of acid 

sphingomyelinase (ASMase) to intraendosomal membranes and lipid aggregates and thereby 

displaces the enzyme from the membranes where it is protected from degradation (Kölzer, et 

al. 2004). ASMase contributes to lysosomal SM turnover and is also secreted upon cellular 

treatment with inflammatory stimuli (Smith, et al. 2008; Gulbins, et al. 2003). Desipramine 

remains a useful medication for the treatment of several conditions, although many other 
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antidepressants have been developed since 1964. Displacement of ASMase from 

intraendosomal and intralysosomal membranes can be expected also for the antidepressant 

imipramine that shows a structure similar to desipramine, and has also been reported to lead 

to an apparent reduction of ASMase activity (Albouz, et al. 1981; Jensen, et al. 1999). The 

neuroleptic drug chlorpromazine interferes with clathrin-mediated endocytosis by inhibiting 

the relocation of clathrin (Wang, et al. 1993), so that it had to be expected that the amount of 

incorporated SM delivered as LDL-complex was reduced in the presence of this drug. 

Chlorpromazine is a cell-permeable CAD that inserts into lipid bilayers and binds to anionic 

lipids including polyphosphoinositides, and in this way influences a variety of cellular 

processes that depends on phosphoinositides (De Filippi, et al. 2007). Chloroquine has been 

reported to block LDLR recycling to the plasma membrane (Minahk, et al. 2008), and to an 

apparent inhibition of acid ceramidase (Elojeimy, et al. 2006). Chloroquine has been 

demonstrated to elevate the intracellular pH, thus altering lysosomal function and perturbing 

endosomal/recycling pathways (Anderson, et al. 2006). Moreover, chloroquine can affect the 

activity of lysosomal phospholipases (Matsuzawa, et al. 1980) that have an optimal pH in the 

acidic range. FTY720, a functional antagonist of one of the receptors of sphingosine-1-

phosphate and currently used for the treatment of multiple sclerosis leads to an apparent 

inhibition of acid sphingomelinase by a mechanism similar to that exerted by tricyclic 

antidepressants (Dawson, et al. 2011). FTY720 and chlorpromazine also have been reported 

to inhibit ceramide synthases (Berdyshev, et al. 2009). It is noteworthy that we have only 

measured the affect of cationic amphiphilic drugs in hours, and the treatment of human 

patients with cationic amphiphilic drugs can be over many years. For example, most patients 

take desipramine for 6 months to a year. 

For all cell types, we observed a dose-dependent (10, 20 and 40µM) and time-dependent 

reduction of the incorporation of SM-derived stearic acid and PC-derived palmitic acid into 

nonpolar lipids and polar lipids.  

The impact on phospholipid processing of the investigated CADs was assessed at 20µM and 

40µM concentration, because some changes in phospholipid turnover were clearly visible 

only at these concentrations. The effect of the drugs on PC and SM processing were 

dependent on its concentration: at 10μM, the drugs did not significantly alter lipid 

metabolism. High concentrations of more than 20µM chlorpromazine and FTY720 were 

found to be toxic. Concentrations of the CADs can reach millimolar levels in the lysosomal 

lamellar bodies isolated from the liver of rats treated with the drugs (Hostetler, et al. 1985). 

Prolonged incubation of the cells with PC-containing LDL or SM-containing LDL was 
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necessary to detect changes in the incorporation of PC-derived palmitic acid or SM-derived 

stearic acid into cellular lipids. Experiments with incubation time of 6h or less showed only 

effects too small to be observable, while 24h incubation time was suitable to demonstrate the 

impact of CADs on PC or SM uptake and metabolism.   

In our experiments, all investigated drugs lead to an impaired SM processing in macrophages, 

but to a different extent. The incorporation of SM-derived 1-[
14

C]stearic acid into neutral 

lipids (triacylglycerol and diacylglycerol) and into different glycerophospholipid classes was 

drastically reduced in the presence of the drugs.  

Decreased degradation of exogenously added SM in the presence of FTY720, and also 

enhanced levels of SM-derived ceramide are in agreement with a premature degradation of 

acid ceramidase. Since increase of intracellular ceramide concentrations has been claimed to 

be a general measure to treat cancer (Radin, et al. 2004), the investigated CADs might be 

combined with radiation or chemotherapy to enhance ceramide levels and produce a more 

potent therapeutic effect. 

A previous study demonstrated that FTY720 reduces cholesterol toxicity in primary human 

macrophages, e.g. by facilitating its release to extracellular physiological acceptors (Blom, et 

al. 2010). Our results show that the incorporation of SM-derived 1-[
14

C]stearic acid or PC-

derived [
14

C]palmitic acid into cholesterylstearate or cholesteryloleate were drastically 

reduced in the presence of the 20µM FTY720. Our experiment shows that CE decrease 48% 

and 67% in the presence of 20µM FTY720, respectively, compared to control. 

The different drugs used by us caused phospholipidosis in terms of labeled SM accumulation 

to a different extent. For example, macrophages showed a 54% and 21% increase in labeling 

of SM in the presence of 20µM chlorpromazine and FTY720, respectively, in the culture 

medium, and a 25% and 52% increase in the presence of 20µM imipramine and desipramine, 

respectively. When treated with 40μM of imipramine or desipramine, levels of labeled SM 

increased by 34% and 68%, respectively. These results indicate that our method is able to 

detect metabolic steps that are affected in the presence of CADs and to predict the potential 

of CADs to induce phospholipidosis.  

The cells also showed increased levels of radiolabeled ceramide, when treated with 20µM 

desipramine, imipramine, and FTY720. This was not observed when the cells were treated 

with chlorpromazine and chloroquine. Increased levels of ceramide can result from reduced 

degradation of ceramide by acid ceramidase. FTY720 also causes a drastically reduced 

incorporation of SM-derived stearic acid into triacylglycerol. This was observed in all 

examined cell types supplemented with an SM-LDL complex at 1µM.  
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Macrophages treated with 20µM desipramine showed the similar effect on the incorporation 

into TAG, when [
14

C]stearic acid or  SM-derived 1-[
14

C]stearic acid are used as a tracers. 

Previous experiments by us, in which macrophages were incubated with 1-[
14

C]stearic acid, 

showed a substantial labeling of TAG (Fig. 4.3B). This labeling was reduced significantly by 

62% and 54% in the presence of 20µM desipramine when cell treated with1-[
14

C]stearic acid 

(Fig. 4.9) and SM-derived 1-[
14

C]stearic acid (Fig. 4.26A), respectively. These data suggest 

that desipramine may affect the activity of phosphatidic acid-phosphatase (Koul, et al. 1987; 

Perry, et al. 1992) by decrease the incorporation of SM-derived 1-[
14

C]stearic acid into TAG, 

as shown in figure 5.3. 

Furthermore, in macrophages, CADs reduce the incorporation of radiolabeled stearate into 

TAG by 47%, and 20% with 40µM desipramine and imipramine, respectively, while further 

increasing that in SM by 68%, and 34%, respectively. A previous study reported that 

desipramine affects the de novo synthesis of sphingolipids by reducing the incorporation of 

radiolabeled fatty acid into TAG by 40% while further increasing that in ceramide and 

sphingomyelin (Deevska, et al. 2009) when HepG2 cells are supplemented with palmitic acid 

at different concentrations ranged between 0.1 - 1.0mM . 

 

5.4.2. Effect of CADs on PC uptake and processing 
 

PC is the most abundant phospholipid in numerous cell types and is generally thought to be 

essential for membrane structure and cellular function. Since there is only limited information 

on the fate of LDL-derived PC in cultured cells and the effect of CADs on their uptake and 

processing, we studied uptake and processing on LDL-derived PC in different cultured cells 

in the presence of CADs. Incorporation of PC-derived [
14

C]palmitic acid into polar and 

nonpolar lipids of different cell types were studied in the presence of chlorpromazine (CPZ), 

chloroquine (CQ), desipramine (DMI), imipramine (IM), and fingolimod (FTY720).  

Recent evidence had indicated that the consumption of diet rich in saturated fats, palmitate 

(but not other free fatty acids), can stimulate not only the rate of TAG accumulation but also 

stimulation of the de novo synthesis of ceramide, SM and generate excessive amounts of 

sphingolipid metabolites in a variety of cells (Deevska, et al. 2011). The flux through the 

sphingolipid synthetic pathway depends upon the availability of palmitate (Merrill, et al. 

1988). Serine palmitoyl transferase (SPT) catalyzes the rate-limiting step in the synthesis of 

sphingolipids (Ikushiro, et al. 2011). Inhibition of SPT in animals by myriocin blocks the flux 

of palmitate through the de novo pathway (Holland, et al. 2008). 
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Previous studies demonstrated that dipalmitoyl PC is associated with phospholipidosis 

induced by amphiphilic drugs (Chatelain, et al. 1985; Miles, et al. 1986). Various amphiphilic 

drugs either bind to the hydrophobic moiety or hydrophilic head group of dipamitoyl PC with 

different potencies. The order of binding strength was chlorpromazine > imipramine > 

chloroquine (Joshi, et al. 1988). The drugs may interact with either or both of the hydrophilic 

and lipophilic sites of dipalmitoyl PC. Chlorpromazine and imipramine showed two binding 

affinities of these drugs to dipalmitoyl PC, whereas chloroquine displayed a single binding 

affinity site to dipalmitoyl PC (Joshi, et al. 1988). 

In cultured macrophages, the incorporation of PC-derived palmitic acid into TAG was 

increased in cells pre-treated with 10µM desipramine (Fig. 4.27A). Minahk and co-worker 

(Minahk, et al. 2008) demonstrated that in cultured primary hepatocytes, 50% of LDL-

[
3
H]oleate-PC is converted to triacylglycerol via phospholipase C and DGAT2 rather than via 

lysosomal degradation. A recent study also demonstrated that PC plays a significant role to 

supply DAG for TAG synthesis via a PLC- mediated pathway (Robichaud, et al. 2009) , since 

desipramine has been demonstrated to stimulate PLC activity (Bouron, et al. 1999). Chinese 

hamster ovary cells can metabolize lipoprotein-associated PC to generate DAG by PLC that 

can be directly incorporated into TAG without prior formation of phosphatidic acid as the 

precursor (Igal, et al. 2001).  

Our results show that after 24h incubation of cultured macrophages with 40μM DMI, the 

total phospholipid labeling of DMI-treated macrophages was increase compared to the 

untreated cells (Fig. 4.27B). More specifically, a marked accumulation of label in PC, 

phosphatidic acid (PA) and lysoPC (LPC) occurred in a concentration-dependent manner in 

the DMI-treated macrophages. We also observed a significantly decrease in the incorporation 

into TAG by 39%, and a 56% increase into PA with 40µM DMI compared to control. Several 

cationic amphiphilic drugs have been shown to inhibit soluble phosphatidate 

phosphohydrolase in C6 glioma cells (Leli, et al. 1987), rat liver, and rat brain (Koul, et al. 

1987). These data suggest that desipramine at 40µM may affect the activity of PA 

phosphohydrolase with increased formation of phosphatidyl-CMP, the intermediate for the 

synthesis of acidic phospholipids (F.g. 5.3). This may explain the marked increase in PA and 

decrease in DAG labeling, which are translated into decreased labeling of PE and TAG when 

treated with 40µM DMI (Fig. 4.27B). The cell viability in the presence of 40µM desipramine 

was reduced 28% compared to untreated cells (Fig. 4.38); the amount of cellular protein was 

reduced by 8%. Therefore, the reduced incorporation of FAs into TAG and DAG in the 

presence of 40µM desipramine in macrophages cannot be attributed only to toxicity. 
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In cells pre-treated with CPZ or DMI for 24h, levels of labeled PC were increased 3- and 2-

fold in the presence of 20µM CPZ or DMI, respectively. Furthermore, all drugs significantly 

reduced the amount of label in SM compared to the control cells and the experiments clearly 

show reduced processing of exogenously added PC with higher concentration of drugs. Some 

increase in FA was seen in macrophages treated with FTY720.  

In macrophages, the recovery of [
14

C]stearic acid derived from SM and [
14

C]palmitic acid 

derived from PC as free FAs was significantly higher in cells treated with 20µM FTY720 

than in cells treated with other CADs. One hypothetical explanation is that FTY720 might 

cause an elevated intralysosomal pH and lead to a lower degree of protonation of the fatty 

acid, which, in turn, will cause the fatty acid to diffuse more slowly across the lysosomal 

membrane since the pKa values of FTY720 is lower (7.8) than those of the other CADs, 

which have pKa values of 10.4, 9.4, 9.2, and 8.1 for desipramine, imipramine, 

chlorpromazine, and chloroquine, respectively. Other possible explanation assumed that this 

might be caused by the formation of complexes between positively charged FTY720 and the 

negatively charged fatty acid, which become trapped in the lysosomes. 

Despite the difference in chain length of only two methylene groups, the saturated FAs 

present in our PC- and SM- probes should not necessarily undergo the same metabolic 

reaction. The metabolic fate of a saturated fatty acid derived from PC was significantly 

different from that derived from SM. For example, levels of palmitic acid derived from PC 

incorporated into TAG are increased in the presence of 10µM, and 20µM desipramine, while 

the opposite was observed for SM in the presence of desipramine. Furthermore, the 

incorporation of PC-derived [
14

C]palmitic acid into TAG decreased slightly, but not 

significantly in fibroblasts and A431cells pre-treated with chlorpromazine compared to 

controls, while there were no significant differences in the incorporation of PC-derived 

[
14

C]palmitic acid into TAG in HepG2 cells pre-treated with different concentrations of 

chlorpromazine and untreated control cells (data not shown). 

In general, CADs are lysosomotropic agents that accumulate in lysosomes, can lead to pH 

elevation of the acidic compartment, and to the mis-localization of soluble lysosomal 

enzymes (Nanoyams, et al. 2008). Some CADs induce an inhibition of phospholipid 

catabolism in lysosomes and increase cellular phospholipids in human and other mammalian 

tissues. Effects of CADs on steps downstream of lysosomal release of the fatty acid from the 

lipid probe depend on the applied CAD, on the identity of the fatty acid and the cell type, as 

indicated by previous experiments. Independent studies in cultured primary hepatocytes 

demonstrated that PC present in LDL is taken up not only by LDL receptors (30%) and 
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scavenger receptors (class B, type I) (20-30%), but also by additional unknown mechanisms 

that are responsible for the remaining (40-50%) (Minahk, et al. 2008). Therefore, CADs 

might impact only processing of that fraction of LDL-derived PC, which enters the acidic 

compartments and not on that fraction for which the interaction between LDL and its receptor 

proteins are irrelevant (Truong, et al. 2000). Ishikawa et al. showed that in smooth muscle 

cells only a fraction of LDL-PC was degraded in lysosomes. They found 25% of LDL-

derived PC in the lysosome-rich fraction and 25% in the cytosol-rich fraction. They 

concluded that LDL-derived PC was sorted equally between lysosomal and extralysosomal 

compartements (Ishikawa, et al. 1989) and also suggested that phospholipase A on plasma 

membranes, which can hydrolyze LDL-PC before LDL binds to LDL receptor, might affect 

the apoB epitope and the cellular uptake of LDL via the receptor. In addition, the authors 

found that phospholipases A1 and A2 are optimally active at neutral or alkaline pH ranges as 

well and might react with LDL-PC (Ishikawa, et al. 1988). 
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6. Material and Methods  

 

6.1. Material  

 

6.1.1. Analytical equipment  

 

Autoclave  Systec V-150,  Wettenberg, Germany  

Blotter  Mini-TransBlot, BioRad, München, Germany  

Centrifuges  Eppendorf, Hamburg, Germany  

L 8-80, mit SW-28-Ti-Rotor, Beckmann, Palo 

Alto, USA  

Centrifuge tubes  12 mL: Costar, Cambridge, USA  

15 mL: Greiner, Nürtingen, Germany  

50 mL: Falcon/BectonDickinson, Bedford, 

USA  

Glass tools  Schott-Duran, Jenaglas, Mainz, Germany  

Incubator  Binder CO2, Tuttlingen, Germany  

Microscope  Helmut Hund GmbH, Typ h500, Germany  

pH-meter  pH 537, WTW, Weinheim, Germany  

Phosphoimager Fujix BAS 1000 Bio Imaging Analyzer, 

Raytest, Straubenhardt, Germany  

Phosphoimaging plates  
14

C-screen BAS MS 2040, 
3

H-Screen BAS Tr 

2040, Raytest, Straubenhardt, Germany  

Scintillation counter  Tri-Carb 2900TR, Packard Instruments Co., 

Inc, Downers Grove, USA  

Shaker water bath  Gesellschaft für Labortechnik, Burgwedel, 

Germany  

Sterile benches  LaminAirHA 2472 GS, Heraeus, Düsseldorf, 

Germany  

TLC-tank  Desaga, Heidelberg, Germany  

TLC-heater  TLC-Plate Heater III, Camag, Berlin, Germany  

Ultrasound bath  

Heating-stirring module 

Sonorex RK 100, Bandelin, Berlin, Germany  

Pierce, Therm III, Rockford 
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FLUO-STAR plate reader 

Cell culture hood 

BMG, Germany 

Lamin Air, HB 2448, Heraeus, Hanau 

Ultrasound  Cap horn, Sonifer B-12, Branson Ultrasonic 

Corp., Danbury, USA  

Vortex MS Minishaker, IKA-Werk, Staufen, Germany  

Water purification  

 

 

Balance 

Micropipette 

Pipette controllers 

Oven 

Washer disinfectors for laboratory glassware 

Multiskan photometer 

Water bath 

Refrigerator (4 
0
C, -20 

0
C) 

 

Millipore-Pelicon filtration device with 

polysulfone filter cassette, Millipore, 

Molsheim, France 

Sartorius AG, Göttingen,  Germany 

Eppendorf 

Brand, accu-jet, Wertheim, Germany 

Memmert, Germany 

Miele G7783, Gütersloh, Germany 

Thermo scientific, Ascent, Vantaa, Finland 

GFI, Burgwedel, Germany 

Liebherr, Switzerland 

6.1.2. Consumables and chemicals  

 

Centrifuge Falcon tube (15 mL, 50 mL) 

Safe-lock tube (0.5mL, 1.5mL, 2mL) 

Glass fiber wadding, silanized 

Micropipette tips (20µL, 200µL, 1000µL) 

Cell culture petri-dish 

Cell culture flask 

Vivaspin, 3.000 MWCO 

96-microplates 

Stripette, serological pipettes 

Greiner Bio-one, Solingen 

Eppendorf, Germany 

Macherey-Nagel, Düren, Germany 

Brand, Wertheim, Germany 

BD Falcon, USA 

BD Falcon, USA 

Sartorius, Germany 

Greiner Bio-one, Solingen 

Sigma-aldrich, Germany 

Pasteur pipette 

Bovine serum albumin 

Low density lipoprotein 

Lipoprotein deficient serum 

VWR, Germany 

Sigma, Taufenkirchen, Germany  

Invitrogen  

Sigma, Germany  

DEAE sephadex A-25  

Sepharose CL-2B 

GE Healthcare, Uppsala, Sweden  

GE Healthcare, Uppsala, Sweden  
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Copper (II) sulfate solution 

Bicinchoninic acid solution 

Sigma-Aldrich, Germany 

Sigma-Aldrich, Germany 

LiChroprep® RP18 (40-63 μM)  Merck, Darmstadt, Germany  

Lipid standards  Sigma, Taufkirchen, Germany  

Screw cap glass  Pyrex, BibbySterlin Ltd, Stone, Great 

Britain  

Sterile filters    Sartorius, Göttingen, Germany  

Scintillation polyethylene vials (6mL, 20mL) Perkin Elmer, USA 

TLC plates (glass coated with silica gel 60)  

Tris-(hydroxymethyl)-aminomethan 

Hydrochloride (Tris-HCl) 

Acetic acid 99.8% 

Chloroform 

Ethanol 100% 

Methanol 

Diethyl ether 

n-Hexane 

Merck, Darmstadt, Germany  

 

Applichem, Darmstadt, Germany 

BDH Prolabo, Darmstadt, Germany 

Fisher chemical 

Merck 

J.T.Baker 

BDH Prolabo, Darmstadt, Germany 

Merck 

 

6.1.3. Radiolabeled markers 

 

[4-14C]Cholesterol Perkin Elmer, Boston, USA 

Cholesteryl [14C]-oleate Perkin Elmer, Boston, USA 

[14C]Trioleoylglycerol Perkin Elmer, Boston, USA 

[1-14C]-Stearic acid GE Health Care, Amersham, UK  

[1-14C]-Oleic acid GE Health Care, Amersham, UK  

[1-14C]-Linoleic acid American Radio Labeled, USA 

[1-14C]-Linolenic acid Perkin Elmer, Boston, USA 

Phosphatidyl ethanol amine, 

[1-14C-dioleoyl] 

 

American Radio Labeled, USA 

Phosphatidyl choline, [L-α-1-14C- 

dipalmitoyl] 

 

Perkin Elmer, Boston, USA 
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Phosphatidyl choline, [1-14C-dioleoyl] Perkin Elmer, Boston, USA 

Sphingomyelin [Stearoyl-1-
14

C] American Radio Labeled, USA 

Desmethyl imipramine hydrochloride, 

[benzene ring, 10, 11-
3
H] 

 

Perkin Elmer, Boston, USA 

  

6.2. Biological materials  

 

6.2.1. Cells and additives  

 

Human skin fibroblasts  Kinderklinik St. Augustin, Germany  

Mouse leukaemic monocyte macrophages, 

(Raw264.7) 

 

DSMZ, Braunschweig, Germany 

A431 cells DSMZ,Braunschweig, Germany 

Hep-G2 cells DSMZ, Braunschweig, Germany 

Niemann Pick A cells  

DMEM, RPMI  

Universitätsklinik, Münster, Germany 

Gibco, Eggenstein, Germany  

Foetal calf serum (FCS)  Cytogen, Berlin, Germany  

Leupeptinhemi sulfate Sigma, Taufkirchen, Germany  

Streptomycin  Sigma, Deisenhofen, Germany  

Trypsin  Cytogen, Berlin, Germany  

N-Acetyl-L-Alanine-L-Glutamine  Seromed, Biochrom, Berlin, Germany  

 

6.2.2. Kits  

 

CellTiter Blue (CTB) assay Promega, Germany  

 

6.3. Methods 

 

6.3.1. Cell culture  

 

Fibroblasts, macrophages, and Hep-G2 cells were grown in DMEM, A431 cells were grown 

in RPMI-1640, supplemented with 2mM glutamine, 10% (v/v) heat-inactivated fetal bovine 

serum, and 100mg/L streptomycin. Cells were collected from liquid nitrogen storage 

(appropriate protective equipment). The frozen screw-cap vials were thawed immediately in a 

water bath at 37 
0
C and the vials were wiped with 70% ethanol before transferring to the cell 

culture hood to reduce bacterial contamination. The cell suspensions in the vial were 
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transferred to a 15mL Falcon tube with 2mL FCS. The cells were centrifuged at 300g for 

5min at room temperature. After the supernatant was discarded, 1mL 10% DMEM was added 

and mixed with the cells by pipetting. The cell mixture was transferred to 25cm
2
 flasks 

containing 1mL FCS and mixed. Growth medium (5 mL 10% DMEM) was added drop-wise 

and the flasks were incubated at 37 
0
C in a humidified atmosphere of 95% air and 5% CO2. 

After reaching a confluent state, the cells were sub-cultured 1:2 in 75cm
2 

culture flasks. For 

passaging of cells, the medium was removed and the cells were washed with PBS to remove 

the residual medium. To detach them from the flasks surface, the cells were incubated for 1-

2min with 2mL trypsin/EDTA at 37 °C, upon gently shaking. 3mL DMEM containing 10% 

FBS was added to stop the digestion and pipetted to detach all cells from the flask wall. The 

cell suspension was transferred to a new Falcon tube and the cells were centrifuged at 300g 

for 5min, the supernatant was discarded, and the cells were re-suspended in growth medium. 

For our experiments, cells were grown until confluence in 35mm Petri-dishes or 25cm
2
 flasks 

and were seeded to a density of 1 x l0
6
 cells/mL (average count per square*dilution 

factor*10
4
). The medium was replaced with fresh culture medium every 2-3 days. Cells were 

examined using an inverted microscope to check confluence and confirm the absence of 

contaminations. All procedures with cells were carried out under sterile conditions using 

aseptic techniques. 

 

6.3.2. Protein determination 
 

Cell protein was determined using the Bicinchoninic acid method with bovine serum albumin 

(BSA) as a standard (Smith et al., 1985). Prior to lipid extraction, cell pellets were 

homogenized 3 times (30sec) by ultrasonic treatment (120W) in 800μL of water, and aliquots 

were used for protein determination. 5μL of cell homogenate were diluted to 20μL with water 

in a multiwell plate (96-micro-plates). 200μL of freshly prepared reagent working solution 

(BicinChoninic Acid/copper (II) sulfate 50:1 by vol.) were added. After 30min incubation at 

60 
0
C, the absorption of samples was measured at 562nm. Protein content was calculated on 

the basis of a standard curve, obtained by diluting BSA standard (0.25-5μg BSA/20μL).  

 

6.3.3. Lipid extraction and analysis 
 

Cell pellets were suspended in 0.86mL water by ultrasonic treatment (120W; 3 times, 30sec). 

60μL aliquots for protein determination and radioactivity measurement were issued, and the 

remainder was extracted by adding chloroform/methanol/water (1:2:0.8, v/v/v) to the cell 

homogenate. The mixture was vortexed and incubated for 12h at 40 °C in a water bath. 
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Insoluble cellular components were separated by filtration through wadding and the extract 

was dried under a stream of nitrogen. 1mL chloroform/methanol (1:1, v/v) was added to re-

dissolve the dried lipids in a glass tubes, vortexed and sonicated by ultrasound bath for 5min. 

10μL of cell suspension in 1mL solvent mixture were mixed with 10mL liquid scintillation 

cocktails in plastic scintillation vials to count the radioactivity in the scintillation counter. 

Incorporation of radioactivity into the lipid extract was determined using a Packard 2900 TR 

scintillation counter (Packard, Frankfurt) with a counter efficiency of 90-92% for 
14

C. Then, 

lipids were separated by thin layer chromatography (tlc). 

 

6.3.4. Anion-exchange chromatography 
 

Ion exchange chromatography was carried out to separate acidic and neutral lipids according 

to differences in their net charge. This was done with an anion exchanger, Diethylaminoethyl 

(DEAE) Sephadex A-25, in which negatively charged ions bind to a positively charged resin. 

First, the matrix was converted from the chloride to the acetate form to obtain maximum 

affinity of acidic lipids. 500g of ion exchanger was first slurred with 1L methanol for 12h to 

allow the resin to swell. Then, it was suspended in 0.5L water and allowed to stand for 24h. 

Then the resin was transferred into a glass column and suspended in 0.5L 1M sodium acetate 

solution. To eliminate chloride ions, the resin had to be washed several times with 1M 

sodium acetate solution, until no chloride was detectable by silver nitrate test. Then the 

acetate form was washed first with 1L water and then with 1L methanol and was stored as 1:1 

suspension in methanol at 4 °C before use.  

Small pieces of silanized glass fiber wadding were introduced into glass Pasteur pipettes and 

1mL of DEAE-Sephadex A-25 (in acetate form)/methanol suspension (1:1) was added and 

equilibrated with 3mL of chloroform-methanol-water (3:7:1, v/v/v). Samples were dissolved 

in 2mL with the same solvent, sonicated for 5min and applied to the column. The column was 

rinsed with 6mL of the same solvent. The fractions that passed through the column contained 

the neutral sphingo and phospholipids. 8mL of chloroform-methanol-0.8M ammonium 

acetate (3:7:1, v/v/v) were applied to column to elute acidic lipids. The lipid fractions were 

evaporated to dryness under a nitrogen stream. 

 

6.3.5. Alkaline hydrolysis  

 

Alkaline hydrolysis is used to remove phospholipids from lipid mixtures. Lipid samples were 

first dissolved in 1mL of chloroform-methanol (1:1, v/v), vortexed, and then the glass of the 

reaction vessel were rinsed with 1.5mL of the same solvent. After 5min ultrasonic treatment, 
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62μL of 4N NaOH were added, and further 5min ultrasound, then the solution was incubated 

for 2h at 37 °C in a water bath. After the reaction mixture was cooled and neutralized with 

10μL glacial acetic acid, the lipid fractions were evaporated to dryness under a stream of 

nitrogen. 

 

6.3.6. Reversed-phase chromatography (RP18)  

 

Desalting of lipid samples was performed according to the method described by (Williams 

and McCluer, 1980). In brief, small pieces of silanized glass fiber wadding were introduced 

into glass Pasteur pipettes and the Pasteur pipettes were clamped vertically. 1.5mL of 

LiChroprep RP-18 (40-63μm) (1:1) was added into the pipettes. The column was washed 

with solvents in the following order: 1mL methanol, 2mL water, 1mL methanol, 2mL of 

chloroform/methanol (1:1 (v/v)), 1mL methanol and 2mL of chloroform/methanol/0.1M KCl 

in water (3:48:47 (v/v/v)). After the washing process, lipid samples were dissolved in 1mL 

methanol, and sonicated for 5min. After further addition of 1mL ammonium acetate (300mM 

in water), the mixture was directly applied to the column. The glass vial was rinsed two times 

with 1mL ammonium acetate (200mM in methanol/water 1:1 (v/v)), and applied to the 

column. This was followed by washing with 6mL double distilled water to remove salt 

particles from the sample. 400µL methanol was added to the column. Glass tubes were 

placed under each column for lipid collection. Lipids were eluted with 600µL methanol 

followed by 8mL of chloroform/methanol (1:1 (v/v)). After the elution, the lipid fractions 

were evaporated to dryness under a stream of nitrogen. 

 

6.3.7. Thin-layer chromatography 
 

The dried lipids in the glass tubes were re-dissolved with 1mL chloroform/methanol (1:1, 

v/v), vortexed and sonicated by ultrasound bath for 5min. An aliquot of the re-dissolved lipid 

was then transferred to corresponding safe-lock tubes (Eppendorf), and evaporated to dryness 

under a stream of nitrogen. The dried lipids inside the safe-lock tubes were re-dissolved in 

40μL chloroform-methanol (1:1, v/v) and applied to silica gel 60-precoated glass plates with 

glass capillaries. Each of the safe-lock tubes was rinsed with 25μL of the same solvent and 

again applied on the TLC plates. The TLC-plates were dried in an evacuated desiccator over 

sodium hydroxide. The chromatography tank was lined with filter paper and filled with 

200mL of mobile phase using a one-dimensional system. For the separation of lipids, two 

developing systems were used:  
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To separate non-polar lipids, polar lipids and free FAs, the following solvent systems were 

used as the mobile phase: 

Neutral lipids and free FAs:   n-hexane/diethyl ether/acetic acid 70:30:1 (v/v/v) 

Phospholipids and sphingolipids:  chloroform/methanol/water 65:25:4 (v/v/v) 

Lipid classes were assigned to visualized spots by co-chromatography with authentic 

standard substances (Schürer, et al. 1993). For monitoring and visualizing a radiolabeled 

lipid, the plate was exposed on a 
14

C-Screen for 2-4 days. The radiolabeled spots were 

visualized using a phosphoimager (FUJIX BAS 1000, Raytest, Straubenhardt, Germany). 

Lipid spots were quantified using Tina software. Standard lipids were applied to the TLC 

plates along with the radiolabeled lipids, and the standards were visualized by immersing the 

area of the plate containing the standards spots in CuSO4*5H2O/H3PO4 (85%)/H2O 

(15.6:9.4:75 (w/v/v)) Yao and Rastetter, 1985  followed by heating on a heater plate. 

 

6.3.8. Feeding with Lipid-BSA complexes 
 

Stock solutions of 100nmol radiolabeled lipids in 300μL were complexed with FA-free 

bovine serum albumin (BSA; 7 mg) under vigorous stirring (Pütz and Schwarzmann, 1995). 

The lipid-BSA or FA-BSA complexes were diluted to a final concentration of 1μM for CE-

BSA, Chol-BSA, and TAG-BSA, and to 10μM for FA-BSA complexes in the culture 

medium (DMEM in the case of fibroblasts, macrophages, and Hep-G2 cells; and RPMI 

medium in the case of A431 cells). The molar ratio of lipid to albumin was kept at 1:1. The 

cells were seeded in 25cm
2
 plastic flasks with lipid-BSA complexes or 35mm Petri-dish with 

FA-BSA complexes. 1mL of radiolabeled lipid-BSA complexes were added to the cells for 

various incubation times as follows: 

CE-BSA, TAG-BSA, and Chol-BSA  1h, 6h, and 24h.  

SA-BSA, OA-BSA, LA-BSA, LOA-BSA  15min, 30min, and 120min. 

The cells were rinsed two times with 1mL PBS, and harvested after trypsinization by a 

trypsin/EDTA solution. All procedures with cells were carried out under sterile conditions. 

All solutions were prepared freshly prior to the experiments. All experiments were conducted 

in duplicate and repeated two times. 

 

6.3.9. Feeding with lipids-LDL complexes 

 

Lipid-LDL complexes were prepared according to a modified procedure based on (Brown S., 

and Goldstein L. 1975). The probe (100nmol) was incorporated into LDL by a solvent 
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exchange technique (Howard, 1979). The dried lipid was dissolved in 30µL of MeOH, 

vortexed, sonicated by ultrasound bath for 5min, and added to 4mL of LDL (750µg) in Tris-

Buffer. The resulting suspension was stirred for 4h at 37 
0
C in a water bath, and then filtered 

through a 3.000 MWCO Vivaspin filter (Howard, 1979). 30µL of the lipid-LDL suspension 

were taken before and after the filtration for scintillation counting and protein determination. 

The lipid-LDL complexes in suspension buffer were diluted to a final concentration with 

medium to yield 1μM for lipid-LDL complexes in medium containing 0.8% lipoprotein 

deficient serum (LPDS) in DMEM (0.8% LPDS in RPMI for A431cells). After adding 1mL 

of radiolabeled lipid-LDL complexes for various incubation times (1h, 6h, and 24h) to the 

medium, the cells were rinsed two times with 1mL PBS, and harvested after trypsinization by 

trypsin/EDTA solution. Although the lipid-LDL complex suspension appeared to be stable 

for more than a week, all lipid-LDL complexes were prepared freshly prior to the 

experiments. 

 

6.3.10. Feeding with cationic amphiphilic drugs (CADs) 

 

Fibroblasts, macrophages, and HepG2 cells were maintained in dulbecco´s modified eagle 

medium (DMEM), A431 cells were maintained in roswell park memorial institute (RPMI) 

medium, cultured in 25cm
2
 culture flasks, and supplemented with 0.8% lipoprotein deficient 

serum. CADs (0, 10, 20, and 40µM), were added to the medium for 24h before the addition 

of the complexes. The lipid-LDL complexes were added to the medium and incubated for 

another 24h so that the drug was still present. Cells were maintained in an incubator 

containing 95% nitrogen and 5% CO2. Control cells, cultured at the same time, were treated 

under the same conditions. After 24h the cells were harvested and the lipids were extracted 

using chloroform/methanol (1:2, v/v). 60µL aliquots of harvested cells were used for protein 

determination and counting. Radiolabeled polar and non-polar lipids were quantified after 

lipid extraction and separation by tlc using the following mobile phases: First, in n-

hexane/diethylether/acetic acid (70:30:1, v/v/v) to separate non-polar lipids and free fatty 

acid, and chloroform/methanol/water (65:25:4, v/v/v) to separate polar lipids. Then, the 

separated lipids were visualized by phosphoimaging. Radioactivity of each lipid class was 

calculated from the distribution and the total radioactivity applied to each lane. 

Radioactivities in the homogenates were measured in a liquid scintillation counter. Lipid 

uptake was measured and the levels of the most prominent metabolites that did arise from 

incorporation of fatty acid derived from the exogenously added lipids into different lipid 
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classes were determined. A 24h incubation period was chosen for more detailed evaluation of 

the effects of the exogenously added lipids, because the changes during this period were more 

readily distinguishable. 

 

6.3.11. Cell viability assay 

 

In order to evaluate if the addition of inhibitors affected the cells viability or induced stress 

resulting in apoptosis of the cells, cell viability was measured using the CellTiter Blue (CTB) 

assay (Evans, et al. 2001, Brien, et al. 2000), following the manufacturer's instruction 

(Promega). The assay is based on the ability of living cells to convert the dye resazurin into 

the fluorescent product resorufin.  Nonviable cells rapidly lose metabolic capacity, do not 

reduce the indicator dye, and thus do not generate a fluorescent signal. Therefore, the 

fluorescence produced is proportional to the number of viable cells. In brief, cells were 

cultured in 100μL DMEM medium per well in 96-well microplates (10,000 cells/well) 

supplemented with 5% fetal calf serum and 2mM L-glutamine. Cells were grown in the 

presence of 0µM (control), 10µM, 20µM, and 40μM CADs for 48h. Medium was removed, 

and 100µL CTB medium (85µL fresh medium and 15µL CTB reagent) were added directly 

to the cells of each well. After 90min incubation at 37 
0
C, the fluorescence was determined at 

excitation/emission wavelengths of 544/590nm using a FLUO-STAR plate reader (BMG, 

Germany). For each compound, the average value of the duplicate samples was calculated. 

Data were processed using an Excel spreadsheet. The cell viability ranged from 70 to 112 ± 

20% in the presence of inhibitors.  

 

6.4. Control experiments 

 

The following experiments were used as a control. 

 

6.4.1. Gel-filtration chromatography 

 

Gel-filteration was carried out for separation non-bound lipids from lipid incorporate into 

lipoproteins by passing them through Sephacryl S-300. The column was packed with 

Sephacryl S-300 and equilibrated with 10mM Tris-HCl (pH 7.5) containing 0.3mM NaCl, 

and 0.3mM EDTA as a running buffer, and the column was eluted with the same buffer. The 

lipid-LDL complexes were loaded to the column, and the lipoproteins were eluted with Tris-

buffer. Then, 2mL fractions were collected. 
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6.4.2. Pulse-chase experiment 

 

Radiolabeled oleic acid was tracked in selected cells (fibroblasts, macrophages, A431 cells, 

and Hep-G2 cells) to determine the fate of incorporated radiolabeled fatty acids at various 

incubation times. Cells were incubated at different temperatures, either at 37 
0
C, or at 4 

0
C 

(which blocks the endocytosis pathways). 

After 2h incubation time, the radiolabeled fatty acids were removed immediately from the 

culture medium. The cultured cells were rinsed three times with 1mL PBS to remove un-

incorporated radiolabeled FA. Fresh 10% FCS in DMEM were added, and the cells were 

incubated again in chase medium at 37 °C. The medium was removed with five interval 

chase time points (24, 48, 72, 120, and 144h). At each time point, the cells were collected, 

washed with 1mL PBS, then trypsinized and transfered to a screw cup glass. After centrifuge 

for 5min, washed again with 1mL PBS. Centrifuge the cells again at 1000rpm for 5min, the 

pellet were store at –20°C until all time points have been completed. 

 

6.4.3. Feeding with radiolabeled desipramine 

 

[
3
H]-Desipramine was used as a control to determine its uptake by different cell types. [

3
H]-

Desipramine (0.45nmol; 40µL in ethanol) was pipetted into Falcon tubes, dried to half 

contents under a stream of nitrogen, and then diluted with 12mL DMEM solution (containing 

different concentrations of unlabeled desipramine) to yield a 0.1µM [
3
H]-desipramine in 

1.5mL medium. After incubation of the cells with 1.5mL of various concentrations of [
3
H]-

desipramine (10, 20, and 40µM) for 48h incubation time, the cells were washed 3 times with 

1mL PBS. After addition of 1mL trypsin/EDTA, the cells were incubated for 1-2min at 37 

°C. Cells were carefully detached by gently tapping and the cell suspensions were transferred 

into a screw cap glass. The vials were washed with 1mL PBS, and the cell suspension was 

collected into a screw cap glass. The cells were centrifuged at 1000rpm for 5min, and washed 

again with 1mL PBS. After centrifugation of the cells at 1000rpm for 5min, the pellets were 

stored at –20 °C until use. Cell pellets were suspended in 0.86mL water and by ultrasonic 

treatment (120W; 3 times, 30sec). The amounts of protein and the radiolabeled [
3
H]-

desipramine taken up were determined. 

 

 

 

http://www.biology-online.org/dictionary/Determine
http://www.biology-online.org/dictionary/Fate
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8. ABBREVIATIONS 

 

ACSL    acyl-CoA synthetase 

BSA    bovine serum albumin 

PBS    phosphate buffered saline 

DMEM   dulbecco’s modified eagle’s medium  

RPMI    roswell park memorial institute 

TLC    thin layer chromatography 

LDL    low density lipoprotein 

LPDS    lipoprotein deficient serum 

CAD    cationic amphiphilic drug 

CE    cholesteryl ester 

DAG    diacylglycerol 

TAG    triacylglycerol 

Chol    cholesterol 

LD    lipid droplet 

FA    fatty acid  

FABP    fatty acid binding protein 

LCPUFA   long chain polyunsaturated fatty acid 

PL    polar lipid 

SA    stearic acid 

OA    oleic acid 

LA    linoleic acid 

LOA    linolenic acid 

PC    phosphatidylcholine  

PG    phosphatidylglycerol 

PA    phosphatidic acid 

PE    phosphatidylethanolamine 

BMP    bis(monoacylglycero)phosphate 

PI    phosphatidylinositol 

SM    sphingomyelin 

Cer    ceramide  

GlcCer    glucosylceramide 

LacCer    lactosylceramide 
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