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Köln

Bonn 2012





Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der

Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Felix Otto
2. Gutachter: Prof. Dr. Herbert Koch

Tag der Promotion: 4. Februar 2013

Erscheinungsjahr: 2013





Inhaltsangabe

In der vorliegenden Arbeit soll ein Zweiphasenmodell aus der Strömungsmechanik
besprochen werden. Seien s+, s− zwei Dichten mit Summe s+ + s− = 1,
und u± zwei Geschwindigkeitsfelder. Wir interessieren uns für die partielle
Differentialgleichung in Raum und Zeit,

∂ts± +∇ · (s±u±) = 0, (1)

∂tu± +Du± u± +∇p = 0. (2)

Sie steht in einem gewissen, noch nicht genau spezifizierten Zusammenhang
zur Eulergleichung für ein inkompressibles Fluid, und dessen Instabilität,
siehe [10], [19], die Arbeiten von Brenier, und auch unsere vorliegende
Diskussion.

Insbesondere kann sie begriffen werden als relaxiertes Modell für die zeitliche
Entwicklung eines vortex sheet, d. i. eine Trennschicht, die durch konzen-
trierte Wirbelbildung entsteht. Wir möchten dies hier auf der Ebene eines
Variationsproblems darstellen:
Die Euler–Gleichung, die dem Fluid zugrundeliegen soll, kann verstanden
werden als Hamiltonsche Gleichung, die durch das Problem der kleinsten
Wirkung beschrieben wird,∫∫

|u|2dxdt → min .

Es soll nun mithilfe einer Materialpartition, die an das vortex sheet angepasst
ist, das Geschwindigkeitsfeld zerlegt werden in u = χ+u+ + χ−u−,
und folglich ∫

|u|2dx =

∫
χ+|u+|2dx+

∫
χ−|u−|2dx.

Hier sind χ± zwei charakteristische Funktionen mit Summe χ+ + χ− = 1.
Sie dienen dazu, die Lage des vortex sheet im Raum anzugeben. Wegen des
Helmholtz’schen Erhaltungssatzes für die Vortizität müssen sie formal der
Transportgleichung

∂tχ± +∇ · (χ±u) = 0

genügen. Auf diese Weise wird die Evolution als freies Randwertproblem
interpretiert.

Es ist dann ein natürliches Vorgehen, zunächst zu den Variablen χ± und
m± = χ±u überzugehen, sodass die Transportgleichung linear wird,

∂tχ± +∇ ·m± = 0;

und den so beschriebenen Konfigurationsraum abzuschließen unter schwacher
Konvergenz: Man geht über zum größeren Konfigurationsraum aller s±,m±,
wobei nun s± ∈ [0, 1].



In diesem Raum wird folgendes Variationsproblem betrachtet,∫∫
s+

∣∣∣∣m+

s+

∣∣∣∣2 dxdt+ ∫∫ s−

∣∣∣∣m−
s−

∣∣∣∣2 dxdt → min . (3)

Der Integrand s±

∣∣∣m±
s±

∣∣∣2 kann als konvexe Einhüllende der ursprünglichen

Energie verstanden werden. Tatsächlich stimmt er überein mit χ±|u±|2,
wann immer s± = χ± charakteristische Funktionen sind, und man hat
die Unterhalbstetigkeit unter der schwachen Konvergenz, die zugrundegelegt
wurde.

Ein solcher Relaxationsprozess ist dann vollständig befriedigend, wenn man
rechtfertigen kann, dass für Folgen im Raum der χ±,m±, der Grenzübergang

von χ±|u±|2 zu s±

∣∣∣m±
s±

∣∣∣2 möglich ist. Wie unsere Diskussion anzudeuten

versucht, ist eine solche Beziehung eine vernünftige Hypothese auf der Ebene
des Variationsproblems, aber es ist nicht ganz offensichtlich, inwiefern sie
eine fluidmechanische Interpretation besitzt.

Unabhängig davon hat das relaxierte Modell eine Berechtigung in sich, und
soll im Weiteren untersucht werden. Wir möchten uns in dieser Arbeit mit
ihm beschäftigen unter dem Gesichtspunkt seiner Geometrie als geodätischer
Fluss. Tatsächlich lässt sich die Gleichung (1), (2) auffassen als Hamil-
ton’sche Gleichung, die aus dem Variationsprinzip (3) hervorgeht.
Die zugrundeliegende Geometrie wird analog zu den Resultaten von Arnold
für die Euler–Gleichung charakterisiert durch eine Riemannsche Mannig-
faltigkeit; und der zugehörige Krümmungstensor wird bestimmt. Eine sorgfältige
Abschätzung desselben produziert eine Instabilitätsanalyse, die die bekannte
Instabilität dieses relaxierten Modells herausarbeitet. Unser Resultat repro-
duziert in gewisser Weise auch die Überlegungen von Kelvin und Helmholtz
zur Instabilität des vortex sheet, ist aber eigenständig, und erlaubt den Ver-
gleich von Eulergleichung und relaxiertem Problem.

Die Arbeit enthält ferner Bemerkungen zu speziellen 1–dimensionalen Lösungen
der relaxierten Gleichung, sowie auch zu Entropien.
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1 Introduction: Homogenized Equations

We discuss in this work a certain two–phase model for the motion of a
perfect fluid. It stands in a loose relation to fluid–dynamical instability in a
more general sense of the term. The resulting equations are in some sense
canonical, and hence different ways to justify them seem possible. We would
like to take the approach to introduce them as a possible homogenized but
kinetic description of the motion that follows a vortex sheet configuration.
This attempt is indeed instructive, but we will have to consider such a
description to be problematic and to leave open questions. Therefore we
will only try to give a sketch of such a derivation in simple terms.

Consider, let us say, a two–dimensional domain, x ∈ R/Z, y ∈ R, and let
u0(x, y) = (±1, 0) be the discontinuous shear flow with x–component +1 for
y > 0 and −1 for y < 0. This configuration is the simplest case of a vortex
sheet: its tangential component has a jump across the line {y = 0}. It is a
stationary solution of the Euler equation

∂tu+∇ · (u⊗ u) +∇p = 0, (4)

∇ · u = 0. (5)

Similar situations in dimension d > 2 can of course be considered. Let uε
be a perturbation, ε→ 0, consisting of smooth divergence–free fields so that
∥uε − u0∥ → 0 in L2(dxdy). Here, one may assume periodicity on a small
scale, probabilistic data may be introduced, or a small viscosity, but since
we keep this discussion informal, we would like to leave these details open.

Let then uε(t) be the solution of the Euler equation, which exists for all time
in the present case of dimension 2, and may be assumed to exist otherwise.
Since one has that

∫
|uε|2dxdy is bounded uniformly, there is a sub–sequence

with a weak L2–limit u∞(t). It is the consequence of the instability of the
configuration u0, that in general, this limit is not a strong limit, and that
in general moreover, u∞ ̸= u0. We may say that the Euler equation with
datum u0 is ill–posed, in the sense of an L2–topology (even in a strong–weak
sense). This ill–posedness is known since Kelvin and Helmholtz, although
they considered merely the free boundary value problem which arises if the
velocity is required to be always of the vortex sheet type. It is a different
question, whether nevertheless, u∞ will be a solution to the Euler equation
(4), (5). This has actually shown to be true in dimension d = 2, [8], and is
probably false if d > 2.

The question that leads to the model that we would like to investigate
may be asked as follows: Is it possible to understand this limit process by
introducing a material partition: i. e. a pair of functions χε

±(t), valued in
{0, 1} and with sum 1 for all (t, x, y), so that

∂tχ
ε
± +∇ · (χε

± uε) = 0 (6)
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holds, the transport along the solution of the Euler equation. The property
(6) is consistent in view of (5). This is motivated as follows: As long as
uε is in the class of solutions of the vortex sheet type, the vorticity will be
concentrated on a line at every instant in time, and the evolution can be
understood as a free boundary value problem. Then χε

± should be chosen so
that uε is curl–free in the support of both χε

+ and χε
− (see also our Remark

1). In this case, (6) is formally a consequence of the conservation of vorticity.
A similar two–phase problem, which is however different in character, has
been investigated in [17].

One then always has the weak limits of the measures

χε
± ⇀ s±, (7)

χε
± uε ⇀m±, (8)

χε
± (uε ⊗ uε)⇀ T±. (9)

Here, s± is a pair of functions, valued in [0, 1] and with sum 1. The question
may be asked more precisely: Is it possible to choose the material partition
in such a way that in this limit not too much information is lost, so that a
consistent description results? We mean that

m± = s±u±

=⇒ T± = s± (u± ⊗ u±). (10)

This amounts to the information that by means of such a partition, one may
understand the Reynolds tensor

−wlim uε ⊗ wlim uε + wlim (uε ⊗ uε). (11)

We emphasize that the condition (10) can be characterized simply in terms
of the kinetic energy, without further knowledge of curl uε.

If such a description is possible, it leads to a closed equation which is a
two–phase model of fluid motion. It may be described both in terms of a
partial differential equation, and of a variational problem. We first give this
equation:

∂ts± +∇ · (s±u±) = 0, (12)

∂t(s±u±) +∇ · (s±u± ⊗ u±) + s±∇p = 0. (13)

Here, the pressure p is common to both phases, and is self–consistently
defined in such a way as to assure s+ + s− = 1. Hence apparently, in such
a limit process, compactness of the pressure gradients
∇pε = −∂tuε−∇ · (uε⊗uε) would be needed in a strong topology (say L1).
In this case, (12), (13) are indeed the limit of (4) and (6), in view of (7) –
(9) and (10).

This equation still has variational structure, and can in fact be understood
as the optimality equation for the variational problem which follows,
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Definition 1. (Relaxed variational problem)
We denote

I = inf

{∫ ∫∫
s+|u+|2 + s−|u−|2 dxdy dt

}
(14)

where the infimum is taken over s±(t), u±(t) so that

∂ts± +∇ · (s±u±) = 0, s+ + s− = 1.

It may be regarded as the limit of the variational problem which gives rise
to the Euler equation on the level of the uε,

inf

{∫ ∫∫
|u|2dxdy dt

}
, (15)

because indeed, according to (9), (10), where the limit of the second mo-
ments of uε was described, one has∫ ∫∫

χε
± |uε|2 dxdy dt →

∫ ∫∫
s± |u±|2 dxdy dt.

The variational problem in Definition 1 has to be equipped with time bound-
ary data. Here, different choices seem possible. In particular, one may
choose as boundary data the pair s± with sum 1, to be prescribed at say
t = 0 and t = 1.

As is shown in [4], minimizing I in this way, one can produce solutions to
(12), (13). These are special in that the velocities u± are curl–free: they
satisfy u± = ∇ϕ±, at least in the case of positive densities s±. We mention
here immediately that the solutions to (12), (13) with positive densities s±
and curl–free u± = ∇ϕ± enjoy stronger properties, [4]: they are always
equal to the unique minimizer of I with respect to their endpoints, and also
they are stable with respect to their boundary data.

If one has thus constructed a homogenized solution, the following reverse
question makes sense, which we leave as a question. A good answer will
clarify the amount of information which is contained in the homogenized
quantities s±, u±.

The variational problem I gives rise to a distance in the space of pairs s±.
One may ask whether there is a relaxation gap: Can the infimum in (14)
(which is attained) be realized by smooth fluid flow? More precisely, we try
to formulate in the simplest possible way

Question 1. Given a smooth trajectory s±(t), u±(t), which satisfies s+ +
s− = 1 and

∂ts± +∇ · (s±u±) = 0,

13



is there a sequence of smooth velocities, uε(t), with

∇ · uε = 0,

and of pairs of {0, 1}–valued functions with sum 1, χε
±(t), so that

∂tχ
ε
± +∇ · (χε

± uε) = 0, (16)

and it holds true that

χε
±(t) ⇀ s±(t), (17)

lim sup
ε→0

∫ ∫∫
|uε|2 dxdy dt ≤

∫ ∫∫
s+|u+|2 + s−|u−|2 dxdy dt. (18)

That is, the smooth flow should join in the limit the same data s±(0) and
s±(1), and have not larger action.

It should be reasonably added that

χε
±u

ε ⇀ s±u±, (19)

although it is not needed to formulate the question.

If one believes that, justifiably, the relaxed infimum I in (14) is already de-
scribed by the infimum over smooth curves s±(t), u±(t), a positive answer
to Question 1 indeed means that the relaxed distance problem encodes the
behaviour of minimizing sequences for the original action (15) – in the class
of smooth flows u, given the initial and final position of the material par-
tition which is then subject to (16). These sequences are in general quite
complicated, since the homogenized quantities s±, u± are to be understood
in the sense of a Young measure: the construction to answer Question 1
should consequently use fine laminates where the velocity oscillates between
u+ and u−.

We remark finally, that the interpretation of the homogenized solutions in
the sense of Question 1 can be extended to any curve s±(t), u±(t), in par-
ticular to any solution to (12), (13), rather than just to minimizers of I.
Indeed, when in Question 1, we require in addition (19), it becomes in fact
equivalent to the same question, but where (18) is replaced by (9), (10).
Hence the focus is then both narrowed and enlarged, from the study of a
relaxation gap to the mere realization of a Young measure. A good an-
swer may eventually constitute a mechanical interpretation of such a Young
measure in a simple case, a question that was raised in [19], see also [21].

1.1 Discussion: Variational formulation, consistency

We have hence seen where the merit of the homogenized solutions lies, be
they applied to a perfect fluid, directly as a relaxed model for a vortex sheet
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or possibly more generally to a description of its instability, or possibly even
to other related situations, involving more explicitly two distinct phases.

Notice also that the study of the variational problem is closely linked to
the study of the homogenized equations, in that it provides existence, and
in some sense also uniqueness. More importantly still, so far for us, it is
the only way to express that the interpretation as smooth flow according
to Question 1 of a homogenized solution, would actually be related to the
Euler equation (4), (5). This last point seems to be less problematic in a
framework of the Euler equations as a differential inclusion, [21].

Going now back to our original motivation, the consideration of the stratified
sheet u0, we would like to use this subsection to resume that several points in
the correspondence of homogenized solutions and smooth fluid flow remain
problematic. Also, we comment on the nature of the variational solutions.

We would like to remark here that a limit of incompressible flows in the
form (9), (10) is likely to be restricted to a certain regime. It should be
noted for example that under the condition (10), no energy can be lost in a
concentration process, but all information is contained in a kind of oscillatory
pattern, see [9]. Also, we notice that it may be considered as the content of
(10), that the Young–measure µ(x,y)(du), associated to the sequence uε, is
only concentrated on two velocities, u+(x, y) with probability s+(x, y), and
u−(x, y) with probability s−(x, y). It can then be easily seen that in this
case, the tensor in (11) must have rank 1. This is in contrast to the result
of [8], which states that in the case of signed vorticity, and dimension d = 2,
this Reynolds tensor must be isotropic.

It may be for this reason, that in [10], such a two–phase model was only
judged to be a first step in this kind of study of fluid dynamic instability.
To be more flexible in this respect, one may extend the model to allow the
Young–measure to have more than two atoms, as was already suggested in
[4].

Remarkably, the solutions to (12), (13) with positive densities and curl–free
velocities are in fact minimal in the larger class of pairs of generalized flow,
given their endpoints, [4].

Let us emphasize, that following this line of thought leads to a contrast to
the original deliberation of homogenizing a free boundary value problem. As
we will mention below, such a point of view is indeed justified on the level
of the variational problem; one should then a priori only work with (7) –
(9), without (10).

Furthermore, it may be worth pointing out in this context, that the special
solution which we discuss in Problem 1 below actually uses velocities in the
normal, the y–direction. One could then even try to make a more concise
point, again in the context of the dynamic equation: that such a situation
of a ’saturated instability’ be on the one hand typical because of the very
unstable nature of the vortex sheet configuration, and that on the other
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hand, this situation be the only reasonable scenario where actually, the
Young–measure would be two–atomic.

We turn now to the discussion of the class of variational solutions. It can
be remarked that the choice of a time–boundary datum changes the nature
of the problem, and the choice of a space boundary condition also changes
the nature of the problem.

Let us first comment, that already in the unrelaxed formulation, the relation
of the variational problem to the motion of an incompressible fluid is not
quite clear, although as a matter of fact, the correct equations (4), (5),
(6) are produced. Indeed, minimizing the action (15), given the material
partition at the time boundary, plays a yet somewhat unspecified role, and
has rather the character of a transport problem: Neither does it mean to
prescribe the vorticity at the time boundary, which would lead to an over–
determined problem, nor is it identical to the classical problem of Euler–
Arnold.
We underline however that this point may supportably be ignored, and
the variational problem may be isolated: One may investigate the question
whether there is a relaxation gap in the passage from (15) to (14) in its
own right, as it is expressed by Question 1. From this point of view, we
may understand (14) as the natural relaxation of the free boundary value
problem (15), (16), because the action functional in (14) is seen to be convex,
and one has the property of lower semi–continuity as stated in Lemma 2.

The following can then be said about the relation to the incompressible fluid,
a posteriori. The choice of a solution periodic in space, of the form

u = χ+∇ϕ+ + χ−∇ϕ−, with ∇ · u = 0, (20)

is restrictive in that it only allows for modulated vortex sheets rather than
a configuration like the stratified sheet u0. We mean that curl u is concen-
trated on a line but changes sign. It was mentioned in [8] that a configuration
of this form is probably even more unstable than u0, for which the curl is
signed. It seems fine to consider solutions of the form (20), then maybe
rather as an intrinsic instability of the fluid. The homogenized velocities
which arise as the limit of solutions of the form (20) need not automatically
be themselves curl–free.
Also, the choice of a material partition as time boundary datum restricts
the solution – in particular, the stratified velocity field u0 would not occur
because the solution has no reason to move at all if the material partition
does not change. Let us elaborate on this remark: The homogenized so-
lution which minimizes I subject to given material partition, was seen to
be formally a particular solution of (12), (13) of the form u± = ∇ϕ±. It
is then still to be interpreted in the sense that it produces at least some
sequence which belongs to the original variational problem (15), according
to Question 1 – if ever the question has a positive answer, this recovering
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sequence should then be taken to be of the form (20), up to a small error in
L2, see our Remark 3. Hence although in Question 1, the material partition
is apparently only introduced to verify the time boundary data, it is in this
reconstruction, that the original idea reappears that it be the purpose of
such a material partition to separate two regions of curl–free flow.

We suggest finally that it may be reasonable to discuss further the boundary
conditions for the variational problem, to adapt it to more precise situations,
such as the stratified sheet u0. Two possible extensions of the variational
problem I seem appropriate in this context: On the one hand, one may
prescribe a boundary condition in space, such as u± = (±1, 0) at y = ±∞.
On the other hand, the time boundary condition may be more precisely
specified to be a transport plan, allowing two final positions for each particle,
rather than just the two densities s±. Such a suggestion is inspired by our
discussion in Section 2.

The existence of minimizers is in both cases unknown. In the first case, this
is a question in its own right because such boundary condition in space may
or may not change the nature of the variational problem. In the second
case, we see two questions: Firstly, is the variational problem consistent in
this case, that is will the infimum be attained in the class of two–flows?
Secondly, in a limit process as in our motivation, (7) – (9), would one have
enough information about the transport plan at some positive time?

1.2 Contribution of the present work

In the present work, we will not try to answer Question 1. We refer to [19]
and [1], where similar questions were discussed. It seems that the answer is
positive in dimension d ≥ 3, and unclear if d = 2. Moreover, we concentrate
on the equation (12), (13), rather than to contribute to the study of the
variational problem. We are interested more precisely in the unstable nature
of equation (12), (13): It can be shown that is not of hyperbolic character,
and in fact leads still to an ill–posed Cauchy–problem – following Hadamard,
we indicate by this term that the solution for data s±, u± at a time t = 0
cannot be determined in a stable way. It is in this sense that the model even
in itself may be considered as yet somewhat unsatisfactory.

It seems worth to try and understand the nature of this instability, also
because the equations themselves are of a canonical form.

In Section 2, we give the formal relation of the variational problem with the
equation (12), (13). In Section 3, it is shown that the system (12), (13) is of
a character elliptic in space–time, at least in a special class of solutions in
one space variable. This shows the ill–posed stability property in a special
case, and means also that it is in fact favourable to consider the variational
problem I in this situation.

We then proceed to describe in Section 4 an interpretation of the relaxed
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distance problem as a geodesic problem on a formal Riemannian manifold,
following the work of Arnold et al. for the Euler flow. The outcome is the
identification of a Riemannian curvature tensor, whose sectional curvatures
describe in a way that is more related to the original metric setting (distance
in action) the instability of both the original problem (4), (5), and the
relaxed problem (12), (13). We devote the major part of this work, Section
6 and 7, to an analysis of this object, which produces an expression of the
instability in terms of a pair of variational fields along a given smooth pair
of velocity fields. We give a rigorous estimate for this instability. It makes
discernible the elliptic character, for two representative choices of the phase
functions s±.
The same tensor is capable of describing both the sharp and the relaxed
situation. In a certain sense, we show also that it is already well–understood
when computed for smooth s±, as is expressed by the continuity property
in Sections 6.5, 7.2.

As an additional remark, in Section 5, an entropy identity is noted as a
formal identity. It shows that a mixing entropy is displacement convex
along smooth solutions. A similar remark was made in [10]. We do not
enter here seriously the discussion of this fact.

Finally, one can clarify some basic behaviour of the system through the
study of special solutions, notably in one space dimension. Also here, we
make only minor contributions.

18



2 Derivation of the geodesic equations from the
principle of least action

We give now, to be explicit, a formal derivation of the geodesic equations
from the variational problem. We do this in four versions: we distinguish a
sharp interface, this is, a sharp material partition, as in Proposition 1, and
a relaxed material partition, that means, two interpenetrating phases, as in
Proposition 2. And moreover we distinguish a general pair of velocities for
the two phases, as in point i), and the case of potential velocity fields, as in
point ii).
Let in this section x ∈ Td denote a general space variable. We obtain the
following two propositions.

Proposition 1. (Description of a vortex sheet)
i) The system

∂tχ± +∇ · (χ±u±) = 0, (21)

∂tu± +Du±u± +∇p = 0 (22)

describes the stationary points of the variational problem

A =

∫ T

0

∫
χ+|u+|2 + χ−|u−|2dx dt −→ min,

where always, ∂tχ±+∇·(χ±u±) = 0, and χ± ∈ {0, 1} with χ++χ− = 1, and
where the endpoints of the curve t 7→ (Φ+(t),Φ−(t)) are prescribed. Here,
the diffeomorphism Φ±(t, x) integrates the velocity: ∂tΦ± = u± ◦ Φ±.

ii) The system

∂tχ± +∇ · (χ±∇ϕ±) = 0, (23)

∂tϕ± +
1

2
|∇ϕ±|2 + p = 0 (24)

describes the stationary points of the same variational problem

A =

∫ T

0

∫
χ+|u+|2 + χ−|u−|2dxdt −→ min,

if only the endpoints of the curve t 7→ (χ+(t), χ−(t)) are prescribed.

Remark 1. i) This system describes still solutions to the Euler equation in
weak form: If u = χ+u++χ−u−, then since χ± are characteristic functions,
one has u⊗ u = χ+u+ ⊗ u+ + χ−u− ⊗ u−, and it follows that in fact

∇ · u = 0, ∂tu+∇ · (u⊗ u) +∇p = 0.

ii) In its potential version (23), (24), this system describes the same solu-
tions as the so–called Birkhoff–Rott equation, where the velocity is recovered
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from a vorticity concentrated solely on an interface, through a principal value
integral. We refer to the book of Marchioro and Pulvirenti [15], where details
of this relation are given.
One may say that the Birkhoff–Rott solutions are rare, because they require
a smooth (analytic) interface. Moreover, they would in general exist only
for short time.
iii) We consider the property of stationarity formal, because we believe that
the infimum generically is not attained in the class of χ±.
iv) The pressure is common to both phases, and satisfies an elliptic equation

∇ · ∇ · (χ+u+ ⊗ u+ + χ−u− ⊗ u−) + ∆p = 0.

Proposition 2. (Homogenized Vortex Sheet Equations)
i) The system

∂ts± +∇ · (s±u±) = 0, (25)

∂tu± +Du±u± +∇p = 0 (26)

describes the stationary points of the variational problem

A =

∫ T

0

∫
s+|u+|2 + s−|u−|2dx dt −→ min,

where always, ∂ts± +∇ · (s±u±) = 0, and s± ∈ [0, 1] with s+ + s− = 1, and
where the endpoints of the curve t → (Φ+(t),Φ−(t)) are prescribed. Again,
the diffeomorphisms Φ±(t) integrate the two velocities: ∂tΦ± = u± ◦ Φ±.

ii) The system

∂ts± +∇ · (s±∇ϕ±) = 0, (27)

∂tϕ± +
1

2
|∇ϕ±|2 + p = 0 (28)

describes the stationary points of the same variational problem

A =

∫ T

0

∫
s+|u+|2 + s−|u−|2dx dt −→ min,

if only the endpoints of the curve t 7→ (s+(t), s−(t)) are prescribed.

Remark 2. i) The sum s+u+ + s−u− = j describes the mean flux of parti-
cles. It is not anymore in general a solution to the Euler equations.
ii) It is in the potential version (27), (28), that Brenier [4] obtains an ex-
istence result for the Homogenized Vortex Sheet equations (HVSE): An ar-
gument based on general convexity and duality produces a so–concipied (and
slightly more precisely defined) variational solution, for any data s± ∈ L∞

given at t = 0, t = T .
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iii) We interpret these HVSE as geodesic equations in a Riemannian context
in Section 4.

iv) The pressure is common to both phases and satisfies an elliptic equation

∇ · ∇ · (s+u+ ⊗ u+ + s−u− ⊗ u−) + ∆p = 0. (29)

Argument. To prove the two propositions, we rewrite the variational prob-
lem in Lagrangian form, so that it reads∫ T

0

∫
χ+(0, x)|∂tΦ+(t, x)|2 + χ−|∂tΦ−(t, x)|2dxdt,

and ∫ T

0

∫
s+(0, x)|∂tΦ+(t, x)|2 + s−(0, x)|∂tΦ−(t, x)|2dxdt,

respectively.

We obtain a formula for the first variation along a variational field (ξ+(t), ξ−(t)):
If Φ±(t, ε) is a family of curves so that ∂Φ±

∂ε = ξ± ◦ Φ±, then

∂

∂ε
A =

∫ T

0

∫
χ+u+ · (∂tξ+ +Dξ+u+) + χ−u− · (∂tξ− +Dξ−u−)dx dt,

and

∂

∂ε
A =

∫ T

0

∫
s+u+ · (∂tξ+ +Dξ+u+) + s−u− · (∂tξ− +Dξ−u−)dx dt,

respectively. Here, we transformed back to Eulerian variable, using s±(t) =
Φ±(t)#s±(0).

We infer that if we require ξ± to vanish at the endpoints, then a stationary
trajectory satisfies∫ T

0

∫ {
∂t(s+u+)+∇·(s+u+⊗u+)

}
·ξ++

{
∂t(s−u−)+∇·(s−u−⊗u−)

}
·ξ− dxdt = 0,

(30)
for all ξ± so that ∇ · (s+ξ+ + s−ξ−) = 0. The same holds true if s± = χ±,
only the integral is to be read as a distributional pairing

⟨∂t(χ+u+)+∇·(χ+u+⊗u+), ξ+⟩+⟨∂t(χ−u−)+∇·(χ−u−⊗u−), ξ−⟩. (31)

If the variation is not required to fix endpoints, we obtain in addition∫
s+u+ · ξ+ + s−u− · ξ−dx = 0 (32)

at t = 0, t = T . The same holds true for χ±.
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It remains to deduce the systems in i), that means (25), (26), from (30),
and (21), (22) from (31); and moreover to use (32) to interpret the systems
in ii), (27), (28) and (23), (24). These latter are always a special case of
the systems in i): if ϕ± solve the system in ii), then u± = ∇ϕ± solve the
system in i). We assume here that u± are smooth and stationary in the
sense of (30) and (31), respectively, and, as for the case of ii), additionally
in the sense of (32). We achieve both aims by a consideration of the space
of tangent vectors and its decompositions.

Let us first argue that (32), as valid for all ξ± so that both ∇ · (s+ξ+) = 0,
∇ · (s−ξ−) = 0, implies that u± are of the form u± = ∇ϕ±. This is indeed
the consequence of a classical Helmholtz–decomposition. We may hence
interpret the special cases ii): If ξ± are allowed to be non–zero at the time
boundary, only subject to fixing s±, we obtain u± = ∇ϕ± as an optimality
condition. This property in fact, for the minimizer, holds at every instant
in time, because given a solution s±, u±, replacing u± by the projection,

−∂ts± = ∇ · (s±u±) = ∇ · (s±∇ϕ±),

produces the same curve s±(t), but with less action.

We are hence left with showing i), and we argue separately for the two propo-
sitions in this step. To prove the first proposition, two classes of variational
fields are needed: If we use independently ξ+ and ξ− with ∇ · (χ±ξ±) = 0,
we infer from

⟨∂t(χ±u±) +∇ · (χ±u± ⊗ u±), ξ±⟩ = 0,

that the distribution on the left hand side equals a gradient, which must be
smooth in suppχ±, if u± are assumed to be smooth,

∂t(χ±u±) +∇ · (χ±u± ⊗ u±) + χ±∇p± = 0.

This is guaranteed by the Helmholtz–decomposition in the domain suppχ±.

If secondly we use global smooth divergence–free test fields ξ, ξ± = χ±ξ, we
can infer, now by virtue of a Helmholtz–decomposition in Td, that the sum
on the left hand side equals some distribution ∇p,

∂t(χ+u+ + χ−u−) +∇ · (χ+u+ ⊗ u+ + χ−u− ⊗ u−) +∇p = 0. (33)

But the comparison of the two results shows

∇p = χ+∇p+ + χ−∇p−,

whence in particular ∇p is integrable. This yields a continuity condition for
p across the interface, and makes meaningful the assertion that p is common
to both phases. We may also remark that the statement (33) means that
u = χ+u+ + χ−u− is a weak solution to the Euler equation.
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We have shown that

∂t(χ±u±) +∇ · (χ±u± ⊗ u±) + χ±∇p = 0,

which translates to our claim (22), since u+, u− are assumed to be smooth
in the support of χ±.

We now address the second proposition. We need again two classes of vari-
ational fields in this case. Let us assume here that both s± and u± are
smooth functions, and s± > 0. Then we use firstly independent fields ξ±
with ∇ · (s±ξ±) = 0, to infer via a Helmholtz–decomposition that there are
gradients ∇p± so that

∂t(s±u±) +∇ · (s±u± ⊗ u±) + s±∇p± = 0. (34)

Secondly, and only for the relaxed model, we may construct variational fields
so that s+ξ+ + s−ξ− = 0. Indeed since s± > 0, we are free to arbitrarily
choose m = s+ξ+ = −s−ξ−. Stationarity with respect to these fields implies

1

s+

(
∂t(s+u+)+∇ · (s+u+⊗u+)

)
=

1

s−

(
∂t(s−u−)+∇ · (s−u−⊗u−)

)
. (35)

We remark that in particular we have thus included the use of global divergence–
free variational fields ξ, in the sense that ξ− = ξ+ = ξ, which produces the
information that there is a gradient ∇p so that

∂t(s+u+ + s−u−) +∇ · (s+u+ ⊗ u+ + s−u− ⊗ u−) +∇p = 0. (36)

It now follows, combining (34) with first (35) and then additionally with
(36), that in fact

∇p+ = ∇p− = ∇p.

We conclude with the assertion, because by means of the formula

∇ · (su⊗ u) = ∇ · (su)u+ sDuu,

the equations obtained for the momenta,

∂t(s±u±) +∇ · (s±u± ⊗ u±) + s±∇p = 0.

translate into equations for the velocities, (26).

Let us finally make explicit the following simple observations.

Lemma 1. (Kinetic energy of the mean flux)
Let j = s+u+ + s−u− be the flux. Then we have
i)
∫
|j|2dx ≤

∫
s+|u+|2+ s−|u−|2dx, with equality only if for every x, either

s+(x)s−(x) = 0 or u+(x) = u−(x).
ii) Likewise for the tensor product, j ⊗ j ≤ s+u+ ⊗ u+ + s−u− ⊗ u− in
the sense of symmetric matrices, with equality only if either s+s− = 0 or
u+ = u−.
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Proof. We have |j|2 = |s+u++s−u−|2 = s2+|u+|2+2s+s−u+ ·u−+s2−|u−|2.
By the Cauchy-Schwarz inequality, 2u+ · u− ≤ |u+|2 + |u−|2, with equality
only if u+ = u−. Hence we have |j|2 ≤ s2+|u+|2 + s+s−|u+|2 + s+s−|u−|2 +
s2−|u−|2, with equality only if either s+s− = 0 or u+ = u−. But since
s++s− = 1, we have s2+|u+|2+s+s−|u+|2+s+s−|u−|2+s2−|u−|2 = s+(s++
s−)|u+|2 + s−(s+ + s−)|u−|2 = s+|u+|2 + s−|u−|2. This shows i) after an
integration, and the proof of ii) is similar, if one considers j ·ξ for an arbitrary
ξ ∈ Rd.

Lemma 2. (Lower semi–continuity)
Let χε

±, u
ε be a sequence of velocity fields, together with a material partition.

Assume there are s±, u±, so that

χε
± ⇀ s±, χε

±u
ε ⇀ s±u± weakly.

Then it holds ∫
s+|u+|2 + s−|u−|2dx ≤ lim inf

ε→0

∫
|uε|2dx.

Proof. We have that the relaxed action is convex, as stated in Proposition 5.
The lower semi–continuity then follows with a straightforward argument.

Remark 3. (Property of the Young–measure)
Consider a sequence of velocity fields with material partition, so that the
limit

χε
± ⇀ s±,

χε
±uε ⇀ s±u±,

χε
±|uε|2 ⇀ s±|u±|2

exists. Then one has indeed, up to an error term in L2(dx), that

uε = χε
+u+ + χε

−u− + o(1).

Proof. It is straightforward, expanding the square, that by the assumptions,∫
|uε − χε

+u+ − χε
−u−|2 dx =

∫
χε
+|uε − u+|2dx +

∫
χε
−|uε − u−|2dx

must converge to zero.
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3 Linear stability analysis, ill–posedness of the Cauchy–
problem, elliptic character

It is the first main insight that the relaxed model (25), (26) is in itself subject
to instability and in fact leads to an ill–posed Cauchy–problem.

It can be understood that we obtained the relaxed formulation as the convex
envelope of the action minimization problem. The relaxation then is to be
interpreted in the sense that now two individual phases of fluid are allowed to
interpenetrate. As we have seen, the relaxed model allows for a larger class
of tangent vectors, describing also the mixing of the phases. It can be said
that it is this class of mixing variations that makes up a one–dimensional
class of solutions. It can be easily seen that the relaxed model is unstable
in this class, in the sense that it leads to an ill–posed Cauchy problem.
Nevertheless, solutions can be produced by means of the variational problem,
and summarizing, it can be said that the model is of a character elliptic in
space–time. The purpose of this section is to make this fact apparent in the
simplest possible way.

3.1 Homogenized Vortex Sheet Equations in one spatial vari-
able

We would like to introduce briefly a special solution of the HVSE which only
depends on one spatial variable. More precisely we discuss the following
problem which is of some interest of its own, as a model problem as well as,
possibly, as a building block for more general constructions. It motivates
the study of the equations of 1–dimensional HVSE.

Problem 1. (Solution on two unit cubes)
Consider two spatial variables −1 ≤ y ≤ 1 and 0 ≤ x ≤ 1, and a time
variable −1 ≤ t ≤ 1. Let χ(x, y) = χ(y) = 1{y≤0}. We ask for the solution
of the variational problem I with (s+, s−) equal to (χ, 1−χ) at t = −1, and
equal to (1− χ, χ) at t = 1.

We will take for granted

Proposition 3. (after Brenier)
There is a unique minimizer s±(t, x, y), u±(t, x, y), solution to (27), (28).

We refer also to [5], where this solution is characterized as the solution of
some degenerate elliptic problem.

We would like to collect the simplest properties of this solution. We empha-
size that in particular, the solution is a mixture.

Lemma 3. (Symmetries)
i) s± = s±(t, y) and u± = u±(t, y) do not depend on x. Moreover, u± =
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(0, u±y ) has only the normal component.
ii) One has the symmetries

s+(−t, y) = s−(t, y) = s+(t,−y).

In particular, s+(0, y) =
1
2 = s+(t, 0).

iii) The flux j = s+u+ + s−u− vanishes: j = 0.
iv) The pressure can be chosen as an even function, p(−t, y) = p(t, y) =
p(t,−y), equal to p = u+u−.

Proof. ad i). Introduce the momenta m± = s±u±, and consider the aver-
aged quantities s̄±(t, y) =

∫
s±(t, x, y)dx, m̄±(t, y) =

∫
m±(t, x, y)dx. Then

still the constraint is satisfied: ∂ts± +∇ ·m± = 0 implies ∂ts̄± + ∂ym̄ = 0;
and of course s̄+ + s̄− = 1. But the averaged trajectory has less action: by
convexity, ∫

s̄±|
m̄±
s̄±

|2dy ≤
∫
s±|

m±
s±

|2dxdy.

Since the averaging respects also the time boundary datum, it follows that
already s± = s̄±. It follows then that ∂ts± = −∂y(s±u±y ) does not depend on
u±x , whence one must have u±x = 0 so that the energy

∫
s±(|u±x |2 + |u±y |2)dy

is least.
ad ii). This is true since (s−(−t, y), s+(−t, y)) and (s−(t,−y), s+(t,−y))
match the same boundary data as (s+(t, y), s−(t, y)). As together with the
according velocities (−u−,−u+), they produce the same action, they actu-
ally solve the same variational problem, hence by uniqueness coincide with
(s+, s−).
ad iii). One has s+ + s− = χ+ (1− χ) on the two cubes, in particular
∂t(s+ + s−) = 0. Therefore,

0 = ∂t(s+ + s−) = −∂yj

holds distributionally on R, and implies j = const, hence j = 0.
ad iv). Since j = 0, one has that

−s+u2+ − s−u
2
− = s−u−u+ + s+u+u− = u+u− (37)

To see first the symmetry, observe that the symmetry of s± implies

−∂ts+(−t, y) = ∂ts−(t, y) = ∂ts+(t,−y),

whence also

−∂ym+(−t, y) = ∂ym−(t, y) = ∂ym+(t,−y).

Since again, this is an identity distributionally on R, by the boundary con-
dition at ±∞,

−m+(−t, y) = m−(t, y) = −m+(t,−y).
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Therefore,
−u+(−t, y) = u−(t, y) = −u+(t,−y),

which implies

∂tu+(−t, y) = ∂tu−(t, y) = −∂tu+(t,−y),

and
−∂yu+(−t, y) = ∂yu−(t, y) = ∂yu+(t,−y).

It follows that
∂yp(−t, y) = ∂yp(t, y) = −∂yp(t,−y).

Now, by the optimality equation, namely (29), one has

∂yy(s+u
2
+ + s−u

2
− + p) = 0,

which according to (37) implies

∂y(p− u+u−) = const.

But the constant function is odd in y and must in fact vanish, whence we
obtain p = u+u−, and

p(−t, y) = p(t, y) = p(t,−y),

as claimed.

Remark 4. i) This motivates the study of the PDE

∂ts± + ∂y(s±u±) = 0, (38)

∂tu± + u±∂yu± + ∂y(u+u−) = 0. (39)

It takes the form of a local conservation law and is the object of our discus-
sion in the remaining paragraphs 3.2 and 3.3 of this section.
ii) One may investigate the behaviour at the singularity in (t = −1, y = 0).
We will not do this in the present work, but it seems reasonable to conjecture
a self–similar behaviour of the form

s(t, y) = ŝ

(
y

(t+ 1)
2
3

)
, u(t, y) =

1

(t+ 1)
1
3

û

(
y

(t+ 1)
2
3

)
.

Indeed, this scaling respects both the dimension of u as a velocity, and the fact
that the kinetic energy

∫
s+u

2
++s−u

2
−dy is constant in time. An example of

such a solution has been given independently by Brenier and Duchon/Robert
[10].

We make a humble contribution to the study of (38), (39), and give a special,
homogeneous solution in Appendix 9.
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3.2 Linear instability and ill–posedness

In this section, we report the result of a linear stability analysis of the partial
differential equation (38), (39), subject to s+ + s− = 1, s+u+ + s−u− = 0.
It takes the form of a local conservation law

∂tq +A(q) ∂yq = 0, (40)

where q = (s, u) = (s+, u+) denotes the two effective variables in this con-
strained system. We show in Appendix 10,

Proposition 4. The matrix A has genuinely complex eigenvalues, for every
1 > s > 0, u ̸= 0. Consequently, the conservation law (40) is ill–posed.

Indeed, the linearized equation takes to leading order the form

∂tq + ikλq = 0,

if λ is an eigenvalue of the matrix A and q an eigenvector. Moreover here,
k denotes the Fourier–variable replacing y. If the eigenvalue λ = ℜλ+ iℑλ
is genuinely complex, then the system is said to be of an elliptic character.
As a consequence, the perturbation is a travelling wave which is amplified
exponentially as exp(k ℑλ t), hence with uncontrollably large rate.

This shows that the Cauchy–problem for (38), (39), hence also, in general,
for (25), (26), is ill–posed. On the other hand, the variational problem with
time boundary data has a solution, and it must even display an interior
regularity, as is shown in [4].

In a sense, we reproduce this instablity analysis in Section 6, and generalize
it to the nonlocal system (25), (26), on the level of a Riemannian curvature
tensor.

3.3 Convexity of the action functional

The system (38), (39) is simpler because the mean flux j = 0. At least
for this system, we show also in the appendix, that one gains an additional
convexity of the kinetic energy density, with respect to the phase functions
s±. This fact is related to the elliptic character of the system in the following
sense: If one writes ∂yh = s, for a function h(t, y) suitably chosen, one
finds that ∂th = −m = −su. Hence the action functional takes the form∫ ∫

F (s, u, v)dydt =
∫ ∫

F (s,m)dydt =
∫ ∫

F (∂yh, ∂th)dydt. Thus strict
convexity of F corresponds to the elliptic property of the system. See also
[5] for a similar observation.

We have
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Proposition 5. Consider for pairs s±, m± so that s++s− = 1, m++m− =
0, the function

F : (s±,m±) 7→ s+|
m+

s+
|2 + s−|

m−
s−

|2.

Then F is convex, and strictly convex for s± > 0: D2F > 0.

A proof is shown in Appendix 10.
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4 Riemannian interpretation

4.1 Preliminaries. Classical fluid mechanics

We would like to give, for convenience and in view in particular of the next
paragraph 4.2, a short informal overview following Arnold et al., [2], [3], and
summarize certain notions and notations to give a geometric interpretation
of smooth fluid flow.

To this purpose, let D denote the set of diffeomorphisms of Td. Moreover,
denote by P the space of densities on Td, and by µ the Lebesgue measure.
Then by Dµ we denote the subset of all volume–preserving diffeomorphisms.
Now D can be regarded as a Riemannian manifold, if equipped with a metric

⟨u, u⟩ =
∫

|u|2ρ dµ, (41)

for any ρ ∈ P fixed, and for any vector field u, considered as a tangent vector
in the identity to D. The metric is extended to TD as follows: if Φ ∈ D,
u ◦ Φ the tangent vector, then the metric equals∫

|u ◦ Φ|2ρ dµ =

∫
|u|2Φ#ρ dµ, (42)

where we use the notation Φ#ρ = detDΦ−1ρ ◦Φ−1 for the push forward of
the measure ρ dµ. We stress that this structure is flat w.r.t. the underlying
Euclidean space, D ⊂ L2(Td), but not right-invariant as w.r.t. the group
structure of D.
Denote by Dρ the set of all diffeomorphisms which preserve the measure
ρ dµ. It is regarded as a submanifold of D, with its metric∫

|u|2ρ dµ,

which is right–invariant on Dµ since detDΦ = 1. Here, the field u is in the
tangent space to the identity, Vρ = {u,∇ · (ρu) = 0}.
On the other hand we have a Riemannian submersion

π : D −→ P, Φ 7→ Φ#ρ, (43)

if P is equipped with the so–defined image metric, which induces the Wasser-
stein distance on the space of probability measures. The fibres of the sub-
mersion are sets of diffeomorphisms that preserve a given measure, and in
particular,

π−1(ρ) = Dρ.

Notice that the tangent space in the identity, V , which contains all vector
fields on Td, splits into the set Vρ of vectors tangential to Dρ, which we
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call vertical – they satisfy a constraint ∇ · (ρ u) = 0, and the set of vectors
normal to TDρ, which we call horizontal, and which can be expressed as a
gradient u = ∇η.

Then on a level of formal computation, we have the following notions. The
embedding Dρ ↪→ D gives rise to a second fundamental form B(u, u) = ∇p,
expressed by the formula ∇ · (ρ (Duu+∇p)) = 0 for any field u ∈ Vρ. It is
the normal projection of the covariant derivative Duu. Notice that owing
to ∇ · (ρu) = 0, we have ρDuu = ∇ · (ρ u⊗ u), so that

∇ · (∇ · (ρu⊗ u) + ρ∇p) = 0. (44)

We give explicitly the equations of geodesics. In D, geodesics are character-
ized by the Burgers equation

∂tu+Duu = 0. (45)

The normal bundle is an image (gradient of functions) and, in the solution
space, it is invariant. This is the same as to say that we have an equation
of horizontal geodesics, the Hamilton–Jacobi equation, or potential Burgers
equation, on the level of η:

∂tη +
1

2
|∇η|2 = 0. (46)

Indeed one verifies easily that if η is a solution to (46), then u = ∇η solves
(45). The horizontal equation (46) describes in fact also the geodesics in the
image P of the submersion, in the sense that any path in D with velocity u
projects to P by means of a transport equation

∂tρ+∇ · (ρu) = 0,

and the equations of geodesics in P are given by

∂tρ+∇ · (ρ∇η) = 0,

∂tη +
1

2
|∇η|2 = 0. (47)

We refer here to the careful exposition in [16].

On the other hand, the geodesics in Dµ are given by the vertical projection
of the covariant derivative,

∂tu+Duu+B(u, u) = 0.

Explicitly, this means the Euler equations

∂tu+Duu+∇p = 0, (48)

∇ · (ρu) = 0,
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where the case ρ = 1 corresponds to the classical notion of incompressible
fluid.

Finally, by means of the Gauss–formula, we are able to relate the exterior
geometry of Dρ in D to the interior geometry of Dρ: Notice that D is
flat as expressed by (45), so the sectional curvature of in plane spanned by
normalized vectors u, v ∈ Vµ is given by

R(u, v) ≡ R(u, v, u, v) = ⟨B(u, u), B(v, v)⟩ − |B(u, v)|2

=

∫
∇pu · ∇pv ρ dµ−

∫
|∇q|2 ρ dµ. (49)

Here, pu and pv are defined as in (44), whereas q uses the polarization,
explicitly

∇ · (∇ · (ρu⊗ v) + ρ∇q) = 0,

or with a test function,∫
ρ∇q · ∇η dµ =

∫
ρ u⊗ v : D2η dµ, (50)

see Lemma 4 below.

Notice on the other hand that according to Otto [16], translating a formula
by O’Neill to the submersion onto P allows one to understand the interior
geometry of P . Its curvature is non–negative, and the difference to the
flat situation in D owes to the fact that the normal bundle is not integrable.
Precisely, the vertical part of the commutator accounts for this phenomenon,
and it is found that in any given point ρ ∈ P , the sectional curvature of a
plane in TP spanned by normalized vector fields ∇η1,∇η2 is given by

R(η1, η2) = inf
π

{∫
| [∇η1,∇η2]−∇π |2 ρ dµ

}
. (51)

This expression is nonnegative and in general non–zero. So one can see that
such a process of submersion can only produce more positive curvature in
the base space than in the original space.

To conclude this introduction, let us include the following basic assertion.
It can be interpreted as to say that TDρ is integrable in a way which is
compatible with its structure as a subgroup, and in particular identifies the
expression in (50) as the symmetrization of (44).

Lemma 4. (Polarization identity)
i) The expression ∇ · ∇ · (ρu⊗ v) is symmetric in u and v.
ii) Let u, v be vector fields which satisfy ∇· (ρu) = 0 and ∇· (ρv) = 0. Then
the commutator again satisfies ∇ · (ρ [u, v]) = 0.
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Proof. Ad i). This is clear because by symmetry of the second derivative
D2η, the expression ∫

D2η : u⊗ v ρ dµ,

for any test function η, is symmetric in u and v. Ad ii), notice that

∇ · (ρu⊗ v) = ∇ · (ρu) v + ρDv u. (52)

So by the assumption on u and v,

∇ · (ρu⊗ v − ρv ⊗ u) = ρDv u− ρDu v = ρ [u, v].

Taking the divergence, we find that ii) follows from i).

4.2 Homogenized Vortex Sheet Equations

We show now an interpretation of the Homogenized Vortex Sheet Equations
as geodesic equations on a Riemannain manifold. In particular, we aim to
identify the curvature tensor associated to this geometry. It is on the basis
of this object, that we present our instability analysis in Section 6. In this
section, we aim to make it valid in the sense of a formal computation with
smooth functions and positive densities.

Let in this section x ∈ Td. We would like to convince the reader of the
following two propositions.

Proposition 6. The HVSE system,

∂ts± +∇ · (s±u±) = 0,

∂tu± +Du±u± +∇p = 0, (53)

can be understood as the equations of geodesics in a submanifoldM ⊂ D×D.
Its geometry is characterized by a curvature tensor of the form

R(u
(1)
± , u

(2)
± ) = −

∫
|∇q|2dx+

∫
∇p1 · ∇p2 dx. (54)

This gives immediately the formula for the sectional curvature in the plane

spanned by u
(1)
± and u

(2)
± , if one assumes normalized vectors,∫

s+|u(i)+ |2 + s−|u(i)− |2 dx = 1, i = 1, 2.

Moreover, the pressure terms are determined by the self–consistent recon-
struction relation

∇ ·
(
∇ · (s+u+ ⊗ u+ + s−u− ⊗ u−) +∇p

)
= 0, (55)

and its symmetrization.
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Proposition 7. The potential HVSE system,

∂ts± +∇ · (s±∇ϕ±) = 0,

∂tϕ± +
1

2
|∇ϕ±|2 + p = 0, (56)

can be understood as the equations of geodesics in a submanifold N ⊂ P×P .
Its geometry is characterized by a curvature tensor of the form

R(ϕ
(1)
± , ϕ

(2)
± ) = −

∫
|∇q|2dx+

∫
∇p1 · ∇p2 dx

+inf
π+

∫
s+|[∇ϕ(1)+ ,∇ϕ(2)+ ]−∇π+|2 dx+inf

π−

∫
s−|[∇ϕ(1)− ,∇ϕ(2)− ]−∇π−|2 dx.

(57)

This gives immediately a formula for the sectional curvature in the plane

spanned by ϕ
(1)
± and ϕ

(2)
± , if one assumes normalized vectors,∫

s+|∇ϕ(i)+ |2 + s−|∇ϕ(i)− |2 dx = 1, i = 1, 2.

Moreover, the pressure terms are determined by the self–consistent recon-
struction relation

∇ ·
(
∇ · (s+∇ϕ+ ⊗∇ϕ+ + s−∇ϕ− ⊗∇ϕ−) +∇p

)
= 0, (58)

and its symmetrization. Finally, [u, v] = Duv −Dv u denotes the commu-
tator of two vector fields.

Justification. Let us make more precise the first proposition. Let an initial

datum s
(0)
± with s

(0)
+ + s

(0)
− = 1 be fixed, and consider D×D, equipped with

the metric, given for a tangent vector u± to a point Φ± as

gΦ±(u±, u±) =

∫
s+|u+|2 + s−|u−|2dx =

∫
s
(0)
+ |∂tΦ+|2 + s

(0)
− |∂tΦ−|2 dx.

(59)
Here, we gave two expressions which are equivalent due to the change of

variables formula, and mean more precisely that s± = Φ±#s
(0)
± , and ∂tΦ± =

u± ◦ Φ±. With this metric, D ×D is a flat manifold, and its geodesics are
described by the ’straight lines’

∂tu± +Du±u± = 0. (60)

Denote more precisely D×D = D+×D− to distinguish the phases, and let
M ⊂ D+ ×D− be given by

M = {Φ± |Φ+#s
(0)
+ +Φ−#s

(0)
− = 1}. (61)
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The relation means precisely that s+ + s− = 1 along the motion, so that by
what we showed earlier, (53) are indeed the geodesic equations in the set
M .

Notice that TM ⊂ TD+ × TD− is given as

TΦ±M =
{
u± ∈ TΦ+D+×TΦ−D− = V ×V

∣∣ ∇· (s+u++s−u−) = 0
}
. (62)

We now interpret (60) and (53) as the covariant derivative in D+ ×D− and
M respectively. Indeed this is justified simply because both were derived
as geodesic equations. (It means more precisely that the connection must
respect the metric and be torsion–free.)
This justifies to regard their difference ∇p as the projection onto M . More
precisely, the vector w± ∈ TD+ × TD− given by w+ = ∇p = w−, is orthog-
onal to TM , since ∫

(s+u+ + s−u−) · ∇p dx = 0,

and its value defined by (55) is indeed to be understood as the second
fundamental form associated to the embedding M ⊂ D+ × D−, in other
words,

B(u±, u±) = ∇p.

Finally, we find the remaining values of the quadratic formB by polarization.
In particular, in (54), p1 and p2 are defined by

∇ ·
(
∇ · (s+u(i)+ ⊗ u

(i)
+ + s−u

(i)
− ⊗ u

(i)
− ) +∇pi

)
= 0, i = 1, 2,

and q by the symmetrization

∇ ·
(
∇ · (s+u(1)+ ⊗ u

(2)
+ + s−u

(1)
− ⊗ u

(2)
− ) +∇q

)
= 0,

where we refer to Lemma 4 to identify this symmetrization.
This allows us to justify (54) as a formula for the sectional curvature, by
means of the Gauss–formula, analogous to (49). Indeed, the metric then
reduces to ∫

s+∇p1 · ∇p2 + s−∇p1 · ∇p2 dx =

∫
∇p1 · ∇p2 dx,

and likewise for ∇q.

We next turn to the second proposition. Here, let P × P be equipped with
the product metric, given in a point s± as

gs±(ϕ±, ϕ±) =

∫
s+|∇ϕ+|2 + s−|∇ϕ−|2 dx, (63)
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if we understand the potentials ϕ± to realize the tangent vector ∂s± ∈
T (P × P ) according to ∂s± +∇ · (s±∇ϕ±) = 0.
With this metric, which induces the Wasserstein distance, P ×P is not flat,
but indeed by an O’Neill formula as in Section 4.1, carries a nonnegative
curvature

R(ϕ
(1)
± , ϕ

(2)
± ) = inf

π+

∫
s+|[∇ϕ(1)+ ,∇ϕ(2)+ ]−∇π+|2 dx

+ inf
π−

∫
s−|[∇ϕ(1)− ,∇ϕ(2)− ]−∇π−|2 dx. (64)

Its geodesics nevertheless, similar with the above, are ’straight lines’ as
described by

∂tϕ± +
1

2
|∇ϕ±|2 = 0. (65)

Let now N ⊂ P × P be given as

N = {s±|s+ + s− = 1}. (66)

Then by construction, (56) are the geodesic equations in N . Again, TN ⊂
TP × P is given as

Ts±N =
{
ϕ± ∈ Ts+P × Ts−P

∣∣ ∇ · (s+∇ϕ+ + s−∇ϕ−) = 0}.

We argue analogously as for the first proposition: one may interpret (65) and
(56) as the covariant derivative in N and P × P , respectively. This justifies
to regard their difference p as the projection onto N . More precisely, the
vector ψ± ∈ TP × P given by ψ+ = p = ψ−, is orthogonal to TN , and its
value defined by (58) is to be understood as the second fundamental form
associated to the embedding N ⊂ P × P ,

B(ϕ±, ϕ±) = p.

We may hence define the symmetrization by

∇ ·
(
∇ · (s+∇ϕ(1)+ ⊗∇ϕ(2)+ + s−∇ϕ(1)− ⊗∇ϕ(2)− ) +∇q

)
= 0,

and justify by the Gauss–formula, that the curvature in N can be expressed
in terms of the curvature in P × P , (64), and the second fundamental form
B, precisely as the sum in (57) .

Let us make finally the following remark. The double copy of the operation
of projecting from D onto P , π : Φ 7→ Φ#s(0), maps D × D onto P × P ,
may be restricted to a projection M −→ N . One may say that it commutes
with the inclusions M ⊂ D×D, N ⊂ P ×P : It is equally fine to notice that
(58) is simply the restriction of (55) to horizontal vectors ∇ϕ±, and apply
first the Gauss–formula for M ⊂ D ×D, and then the O’Neill–formula for
π :M −→ N . Since this latter O’Neill formula is more complicated (in that
it involves two projections), we propose the argument given above.
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5 Digression: Entropy

We aim here to study the behaviour of functionals of the form∫
h(s+) + h(s−) dx (67)

for some convex function h, along the geodesic flow given by the potential
HVSE system. In the sense of Remark 6 below, the result sheds an additional
light on the relaxation process.
In particular, we are interested in the functional

E =

∫
s+ ln s+ + s− ln s− dx, (68)

the Boltzmann mixing entropy, which is bounded as s± ∈ [0, 1]. We are
going to show that E is convex on the Riemannian manifold N ⊂ P × P .
It is only in 1 space dimension that we can prove a corresponding result for
more general convex functions h.

We can think of two ways to see that E is convex with respect to the geodesic
flow

∂ts± +∇ · (s±∇ϕ±) = 0, (69)

∂tϕ± +
1

2
|∇ϕ±|2 + p = 0. (70)

Of course one may perform the direct calculation. This is possible, and
a result is obtained in explicit local terms because the entropy functional
is such that the term ∇p producing the projection onto N ⊂ P × P is
orthogonal to the gradient of E.
We present here an alternative reasoning using the gradient flow of E. This
has some advantage, in that it involves a parabolic evolution rather than a
conservative one, and hence is at least consistent regarding the regularity
of the solution. Again, the Boltzmann entropy is particular in that this
gradient flow is linear in s. We obtain

Proposition 8. (Displacement convexity)
Along any smooth solution to the potential HVSE system (69), (70) with
positive densities s±, one has

∂tt

(∫
s+ ln s+ + s− ln s− dx

)
=

∫
s+|D2ϕ+|2 + s−|D2ϕ−|2 dx. (71)

This is the analogous result as is known in the theory of optimal mass
transportation. We mean that by the same reasoning, E is convex on P ×P ,
and we find here that it is equally convex on N ⊂ P × P . The explanation
for this fact may be formally expressed as ∇E(s) ∈ TsN ∀s ∈ N .
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Remark 5. (Mixing entropy is finite)
i) E is bounded according to −E0 ≤ E ≤ 0. The extreme values are attained
for s± = 1

2 =⇒ E = −E0 =
∫
dx ln 1

2 , and for s± = χ± =⇒ E = 0.
ii) Of course the kinetic energy K =

∫
s+|∇ϕ+|2 +

∫
s−|∇ϕ−|2dx is con-

served: ∂tK = 0.

5.1 Discussion: Displacement convexity

It would be a natural question whether it is possible to justify at least the
inequality

∂ttE ≥
∫
s+|D2ϕ+|2 + s−|D2ϕ−|2 dx

for a more general, distributional solution of the potential HVSE, with only
nonnegative densities, or in particular, for the minimizing geodesic. This
question does not, to our knowledge, have an obvious answer.

Let us briefly mention three implications:

Remark 6. Such an entropy inequality would express in a quantitative way
the fact that the solution of the shortest distance problem will not remain in
the class of characteristic functions (because then E = 0 and hence D2ϕ± =
0), but make use of the possibility of passing mixed states. Although it may
be considered a crude example, indeed the solution to Problem 1 above was
shown to be a mixture.

It is worth pointing out on the other hand a notable exception to this be-
haviour: The analytical solutions to the Birkhoff–Rott equation, which as
mentioned is equivalent to the potential Vortex Sheet system (23), (24), sat-
isfy E = 0 but ∇ϕ± ̸= 0, although they solve the geodesic equation. We could
then give the interpretation that these non–generic analytical short–time so-
lutions are actually not to be viewed as the shortest geodesics in the sense of
a Riemannian interpretation of the system (27), (28). In fact a conjecture
seems plausible that they would not even for short time be minimizers of I.

Moreover, such an inequality expresses a certain regularity of the solution.
We refer to [4] for a rigorous result in this direction.

Finally, the existence of a bounded and convex entropy functional is related
to the fact that solutions to the potential HVSE system on a compact domain
can only exist for finite time. This assertion, too, is shown in [4].

5.2 A formal proof of the formula for the Hessian

We now give the formal proof of the formula (71) in Proposition 8. Consider
the gradient flow of the functional E =

∫
s+ ln s+ +

∫
s− ln s−, that is the
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dynamics for s(t) ∈ N given by

⟨∂ts, ξ⟩ = − ∂

∂ξ
E, ∀ tangent vectors ξ.

Explicitly, the tangent vector ξ = (ξ+, ξ−) is to be understood in the sense
∂s± +∇ · (s±ξ±) = 0, so that the right hand side equals

−
∫

ln s+ ∂s+ −
∫

ln s−∂s− = −
∫
s+∇ ln s+ · ξ+ −

∫
s−∇ ln s− · ξ−.

The left hand side uses the metric, so if ∂ts±+∇· (s±u±) = 0, the left hand
side is equal to ∫

s+u+ · ξ+ +

∫
s−u− · ξ−.

The identity holds true for all ξ± with ∇· (s+ξ++ s−ξ−) = 0. By definition,
also∇·(s+u++s−u−) = 0, and moreover it is the property of the Boltzmann
entropy to be extensive: Its gradient is consistent with s+ + s− = 1, since
automatically, s+∇ ln s+ + s−∇ ln s− = ∇s+ +∇s− = 0. Hence we deduce
that s±u± = −s±∇ ln s± = −∇s±, and the gradient flow turns out to be

∂ts± −∇ · ∇s± = 0.

So it follows simply the heat equation, in particular is linear, and respects
the product structure of P × P .

To compute the Hessian of E, we compute the evolution of the metric tensor
along this gradient flow, for a variation of a fixed solution. This yields indeed
an expression for the Hessian of E, because if ∂ts = −∇E(s), then

∂tṡ = −HessE(s) ṡ =⇒ ∂t
1

2
⟨ṡ, ṡ⟩ = −⟨ṡ, HessE(s) ṡ⟩.

Since the heat flow is linear, also the variation ṡ± of s± (understood simply
with respect to the underlying vector space, ṡ+ + ṡ− = 0), satisfies

∂tṡ± −∇ · ∇ṡ± = 0.

We thus observe that

∂t
1

2
⟨ṡ, ṡ⟩ = ∂t

(
1

2

∫
s+|∇ϕ+|2 +

1

2

∫
s−|∇ϕ−|2

)
is to be computed along the heat flow, if we understand now
ṡ± +∇ · (s±∇ϕ±) = 0. By a classical calculation, the result is

−
∫
s+|D2ϕ+|2 −

∫
s−|D2ϕ−|2. (72)
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This establishes the claim of the proposition, because the second derivative
along a geodesic coincides by definition with the evaluation of the Hessian.
Obviously, at this point, our argument is formal.

For convenience, we reproduce the classical [18] calculation which leads to
(72). For this, we need an expression for ∂tϕ± and find it as

ṡ± +∇ · (s±∇ϕ±) = 0 =⇒ (73)

∂tṡ± +∇ · (∂ts±∇ϕ±) +∇ · (s±∇∂tϕ±) = 0. (74)

We proceed to compute for each phase, say ϕ = ϕ+, s = s+, ṡ = ṡ+,

∂t
1

2

∫
s|∇ϕ|2 = two terms.

Indeed, the derivative would apply on the one hand to s, to yield

1

2

∫
∆s|∇ϕ|2 =

∫
s∆

1

2
|∇ϕ|2. (75)

On the other hand, it would apply to ϕ, to give via (74) the contribution∫
s∇ϕ ·∇∂tϕ =

∫
∆ṡ ϕ−

∫
∆s |∇ϕ|2 =

∫
s∇ϕ ·∇∆ϕ−

∫
s∆ |∇ϕ|2. (76)

The argument is concluded with help of the Bochner formula

∆
1

2
|∇ϕ|2 = ∇ϕ · ∇∆ϕ+ |D2ϕ|2,

summing (75) and (76) to arrive at (72).

5.3 Entropies in dimension 1

The one–dimensional system (38), (39) is simpler for three reasons: obvi-
ously, the mean flux j = 0, moreover, in dimension 1, length and volume
coincide, and also u± = ∂yϕ± are automatically curl–free. This allows us to
obtain a more general result.

Let h(s) be a convex function. Notice that in the case
h(s) = s ln s + (1 − s) ln(1 − s), one has h′′(s) s(1 − s) = 1. Consider the
equation as written for s = s+, u = u+:

∂ts+ ∂y(su) = 0, (77)

∂tu+ u ∂yu− ∂y

(
s

1− s
u2
)

= 0. (78)

This is for example a special case of (153) in the appendix.
Denote here nevertheless as an abbreviation, v = − s

1−su. Then the following
identity holds true:
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Proposition 9.

d2

dt2

∫
h(s)dy =

∫
h′′(s)s(1− s)

(
s |∂yu|2 + (1− s)|∂yv|2

)
dy. (79)

For completeness we include

Remark 7. If h is of the form h(s) = g(s) + g(1− s), then
i) g′′ ≥ 0 =⇒ h′′ ≥ 0,
ii) g′′(s) s ≥ 1 =⇒ h′′(s) s(1− s) ≥ 1,
and the reverse implications are both false.

Proof of the Proposition. We have

∂t

∫
h(s)dy =

∫
h′(s)∂ts dy =

∫
∂y(h

′(s)) su dy.

We write this as ∫
h′′(s) s ∂ys u dy =

∫
∂y(F (s))u dy,

if F ′(s) = h′′(s)s. From there we obtain

∂tt

∫
h(s)dy =

∫
∂y∂t(F (s))u dy +

∫
∂y(F (s)) ∂tu dy,

which by the equation equals

−
∫
∂y(F

′(s) ∂y(su))u dy−
∫
∂y(F (s))u ∂yu dy+

∫
∂y(F (s)) ∂y

(
s

1− s
u2
)
dy.

The first term, integrating first by parts and then differentiating the bracket
∂y(su), is found to equal∫

F ′(s)∂ys u ∂yu dy +

∫
F ′(s)s |∂yu|2 dy.

The fact that the square |∂yu|2 appears, is specific of dimension 1. Hence
the first term produces a cancellation with the second term. Carrying out
then the differentiation in the third term, and inserting back the definition
of F , we are left with

∂tt

∫
h(s)dy =

∫
F ′(s)s |∂yu|2 dy +

∫
F ′(s)∂ys ∂y

(
s

1− s
u2
)
dy

=

∫
h′′(s)s2 |∂yu|2 dy +

∫
h′′(s)s ∂ys ∂y

(
s

1− s
u2
)
dy.
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From here, we split the first term into two parts and differentiate the bracket
in the second term, using that ∂y

s
1−s = 1

(1−s)2
∂ys. We hence obtain

∂tt

∫
h(s) dy =

∫
h′′(s)s(1− s) s|∂yu|2 dy

+

∫
h′′(s)s3 |∂yu|2 dy+2

∫
h′′(s)

s2

1− s
∂ys u ∂yu dy+

∫
h′′(s)

s

(1− s)2
|∂ys|2 u2dy.

(80)

On the other hand, the second term in the claim, replacing ∂yv = −∂y( su
1−s),

equals∫
h′′(s)s(1− s) (1− s)|∂yv|2dy =

∫
h′′(s)s(1− s)2

∣∣∣∣∂y ( s

1− s
u

)∣∣∣∣2 dy
=

∫
h′′(s)s(1−s)2

(
s2

(1− s)2
|∂yu|2 +

2

(1− s)2
∂ys

s

1− s
u ∂yu+

1

(1− s)4
|∂ys|2u2

)
dy,

hence matches precisely the three terms in (80). This concludes the proof
of the identity (79).
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6 A Lagrangian instability analysis

We show in this chapter how to give a linear stability analysis in a La-
grangian sense by means of the curvature tensor. For simplicity, we restrict
ourselves to the case of two dimensions with coordinates x and y. We assume
x to be a periodic variable. Similar results are valid in dimension d ≥ 2.

We show how the vortex sheet is responsible for an instability. The result
relates to the findings of Section 3.2 in the following sense: The geometry
in which vortex sheet dynamics can be viewed as a geodesic flow, is still
more hyperbolic than it is the case for classical fluid dynamics. This can
be expressed by the fact that the Jacobi equation has elliptic character in
space–time. We will not try to be rigorous about this last point, but still
we give the correspondent Remark 8.

We focus here on negative curvature. Indeed we identify the same type of
unstable behaviour in the case of two representative examples: we study the
case of a single sharp interface, which corresponds to the original geometry
of the Euler flow, and the case of a homogeneous mixture. Our results give
the impression that the unbounded sectional curvatures are in fact always
negative; at least this is the case for our two examples.

6.1 Curvature in the classical case

Here we address the Euler system as in Section 4.1 with ρ = 1, where the
quantities p, q, R were defined. Let u(x, y) = f(y) ∂

∂x be a fixed shear flow
with flow direction x, shear direction y. We are interested in the stability
of this stationary flow with respect to variations in direction of a second
divergence–free field w(x, y). The second variation of the action then is
related to the sectional curvature of the plane spanned by u and w. Since u
is a stationary solution with zero pressure (indeed, Duu = 0), we have

R(u,w) = −
∫

|∇q|2 dx dy,

where q is given by the relation

∇ · (Duw +∇q) = 0. (81)

Indeed, the polarization was identified in Lemma 4 of Section 4.1, which
entails in particular ∇ · (Duw − Dwu) = 0; and (50) together with (52)
gives (81).

We observe in this section simply, that this implies that |R(u,w)| can be
estimated as∫

|∇q|2dxdy ≤
∫

|Duw|2dxdy ≤ sup |Du|2
∫

|w|2dxdy. (82)
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Now to obtain the sectional curvature, one has to divide this by
∫
|u|2dxdy

and
∫
|w|2dxdy. Hence if we fix u with

∫
|u|2 = 1 and sup |Du| <∞, we find

that the sectional curvature is negative and bounded (independent of w). It
is not summable in the sense of a Ricci tensor as observed by Malliavin [7].

6.2 The case of a vortex sheet, in the classical setup

We are now interested in the case where f is close to the jump function
−1{y<0} + 1{y>0}, that is u is close to the discontinuous shear flow which
constitutes a vortex sheet (the line {y = 0}). We use the same formula as
above, with reverse roles,

∇ · (Dwu+∇q) = 0. (83)

The estimate (82) then becomes useless. In fact we will see, that this time,
the curvature is unbounded and only controlled by

∫
|Dw|2dxdy, which in

turn is obvious with a similar argument as above. In fact since Dwu =
f∂xw, we even have:∫

|∇q|2dxdy ≤
∫

|Dwu|2dxdy ≤ sup |u|2
∫

|∂xw|2dxdy. (84)

To argue that this is sharp, it is convenient to have w of the form w = ∇ϕ,
where ϕ is the harmonic function in the half space with normal velocity
equal to a function g(x) on {y = 0}. Explicitly if for k ∈ Z, g(x) = cos kx,
then

w(x, y) = e−|k||y|(signy signk sin kx, cos kx) (85)

is divergence–free, curl–free in {y ̸= 0}, and has second component cos kx
on {y = 0}. That is, w is of the form w = χ+∇ϕ+ + w−∇ϕ−. In this case,

R(u,w) = −
∫

|∇q|2dxdy

is to be devided by
∫
|u|2dxdy and

∫
|w|2dxdy. We will ignore for the mo-

ment the fact that u is not square–integrable.

To proceed, we have to compute q from the elliptic equation (83). Because u
is divergence–free, we find not surprisingly, that∇·(Duw) = f ′(y)∂xwy(x, y)
depends only on Du and Dw. We assume now that f ′(y) is close to 2δ, a
Dirac mass in y = 0, in the sense for example of a convolution, on a scale
[y] ∼ ε, and k is large but |k|−1 ≫ ε. Observe then that wy(x, 0) = g(x),
hence ∂xwy(x, 0) = ∂xg, so that we have justified that (83) turns into

2δy=0 ∂xg +∆q = 0. (86)

In a terminology introduced in the Appendix 11, q is then the Hilbert trans-
form of g = wy(·, 0), and one has∫

|∇q|2dxdy =

∫
|∇wy|2dxdy, (87)
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which in turn equals
∫
|∂xw|2dxdy. This means that in fact, (84) is sharp.

Explicitly, if g(x) = cos kx, then ∂xg(x) = −k sin kx, and we have q(x, y) =
−sign ke−|k||y| sin kx, whence

∇q = |k|e−|k||y|(cos kx,−signk signy sin kx),

since indeed the jump of ∂yq at y = 0 is −2k sin kx = 2∂xg(x).
Thus

∫
|∇q|2dxdy = |k|2

∫
|w|2dxdy, so that we have found that

the sectional curvature in the plane spanned by u and w is of order O(|k|2).

Remark 8. We now show how this finding is related to the Jacobi equation
for the variation along geodsics. It reads

−D
2

dt2
J −R(γ̇, J)γ̇ = 0, (88)

where γ(t) is the geodesic, and J the Jacobi field. We are thus interested in
the spectrum of the symmetric operator

J 7→ −R(γ̇, J)γ̇. (89)

It is the symmetric operator which generates the quadratic form

J 7→ −R(γ̇, J, γ̇, J). (90)

We will show below that it behaves like a certain (degenerate) Dirichlet in-
tegral.

Now this implies that the index–form

∫ T

0

∥∥∥∥DdtJ
∥∥∥∥2 −R(γ̇, J, γ̇, J) dt

behaves like a Dirichlet–integral in space–time; and on the other hand the
operator (89) has unbounded spectrum - or indeed, behaves like negative
second space derivatives. Thus, equation (88) will be (degenerate) elliptic in
character.

It is a natural question what this implies about the regularity of solutions.
Indeed, we understand that we may interpret more or less the regularity
result of [4] in this way: Brenier obtains interior regularity through an inner,
or geometric, variation.
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6.3 Instabilty of a 2 phase–model

As we have seen in the discussion of ellipticity in Section 3.2, the relaxed
model must be expected to be already unstable (ill–posed) for intrinsic rea-
sons. The result of Proposition 4 has indeed its counterpart on the level
of the curvature tensor. For this discussion, we are interested in generic
smooth positive densities s±. For simplicity, we content ourselves here to
the homogeneous case s+ = 1

2 = s−. Let moreover the pair (u+, u−) be
fixed with ∇ · (12u+ + 1

2u−) = 0.

We will preferably use a natural class w± ∈ L∞ ∩H1, and sometimes also
even sup |Du±|. Although there is no reason in the evolution why in par-
ticular u± ∈ L∞, it is in this class that one has estimates of the curvature
symmetric in u± and w±. For this section, let x ∈ Td denote the (homoge-
neous isotropic) space variable.
We are then interested in the Rayleigh quotient

(w+, w−) 7−→
∫
|∇q|2∫

|w+|2 + |w−|2 dx
,

among w± with

∇ ·
(
1

2
w+ +

1

2
w−

)
= 0. (91)

Here, q is defined by

∇ ·
(
∇ ·
(
1

2
u+ ⊗ w+ +

1

2
u− ⊗ w−

)
+∇q

)
= 0. (92)

It was argued in Section 4 that the so–defined q is indeed symmetric in u±
and w±.

We have

Proposition 10. (Estimate for homogeneous mixture)

i)

∫
|∇q|2 dx ≤ 1

2

∫
|Dw+u+|2 + |Dw−u−|2dx (93)

+
1

2

(∫
|∇ · u+|2 + |∇ · u−|2dx

) (
sup |w+|2 + |w−|2

)
. (94)

ii) If (w+, w−) = (∇ϕ+,∇ϕ−) is potential flow, then in fact∫
|∇q|2 dx =

1

4

∫
|Dw+u+ +Dw−u−|2dx− r, (95)

with a remainder r which can be estimated as

|r| ≤ C

(∫
|Du+|2 + |Du−|2dx

) (
sup |w+|2 + |w−|2

)
, (96)

|r| ≤ C
(
sup |Du+|2 + |Du−|2

) (∫
|w+|2 + |w−|2dx

)
, (97)
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with a numerical constant C.

Lemma 5. The other contribution to the curvature tensor,∫
∇pu · ∇pw dx,

is controlled by

sup |u±|
(∫

|Du+|2 + |Du−|2
) 1

2

sup |w±|
(∫

|Dw+|2 + |Dw−|2
) 1

2

.

If u± are smooth, there is even a constant C = C(u±), so that∫
∇pu · ∇pw dx ≤ C

∫
|w+|2 + |w−|2dx. (98)

As an immediate consequence one can see

Corollary 1. (Curvature for homogeneous mixture)
Let u± be smooth, and let R = −

∫
|∇q|2dx +

∫
∇pu · ∇pwdx be defined as

by Proposition 6 of Section 4.2. If both w± = ∇ϕ± and u± = ∇ψ± are
potential velocities, then

R(u,w) = −
∫

1

2
|Dw+u+|2 +

1

2
|Dw−u−|2dx + O

(∫
|w±|2dx

)
. (99)

Remark 9. We also have

4

∫
|∇q|2dx =

∫ ∣∣∣P[u+(∇ · w+)] + P[u−(∇ · w−)]
∣∣∣2dx + r, (100)

with a remainder

r = O
(
min

{∫
|Du±|2dx sup |w±|2, sup |Du±|2

∫
|w±|2dx

})
.

Here, Pw± = ∇∆−1∇ · w± is the Helmholtz projection onto gradients.
In particular, in view of (91), this instability only exists, if u+ ̸= u−.

Proof of Proposition 10. The first statement is obvious by continuity in
L2 of the Helmholtz–projection. Indeed we have according to (92) that

2∇q = P (Dw+u+ +Dw−u−) + P (w+(∇ · u+) + w−(∇ · u−)).

Notice that reversing the roles of u± and w±, we may also immediately
deduce Remark 9.
To see the second point, we write

P
[
D2ϕ± u±

]
= D2ϕ±u± + (−id+ P)(D2ϕ±u±).
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It now remains to estimate the last projection against (96) or (97). But
since D2ϕu+DuT∇ϕ = ∇(∇ϕ · u) is a gradient,

(−id+ P)(D2ϕ±u±) = (id− P)(DuT±∇ϕ±),

which finally is controlled by
∫
|Du±|2|∇ϕ±|2dx, by continuity in L2 of the

projection (id− P).
Proof of Lemma 5. The first statement is an application of Proposition
10. The second statement follows from the definition of pw, which entails∫

∇pu · ∇pw dx =

∫
D2pu : (

1

2
w+ ⊗ w+ +

1

2
w− ⊗ w−) dx,

and the fact that pu is smooth if u± are.

Proof of Corollary 1. By Lemma 5, it suffices to consider the first term∫
|∇q|2dx. By Proposition 10, ii), it can be replaced up to bounded contri-

butions by 1
4

∫
|Dw+u+ + Dw−u−|2dx. But then if u±, w± are potential,

the divergence–constraint means actually u+ = −u−, w+ = −w−, so that

1

4

∫
|Dw+u+ +Dw−u−|2dx =

1

2

∫
|Dw+u+|2dx+

1

2

∫
|Dw−u−|2dx.

This proves the claim.

6.3.1 Construction of unstable directions

We have shown in Corollary 1, that the map w 7→ |R(u,w)| behaves like a
certain Dirichlet integral. We would like to establish now that this lower
bound indeed is larger than the L2–norm of w±, more precisely matches∫
|Dw±|2dx in terms of scaling. We obtain an asymptotic expression for the

rescaled quantity.

Precisely, let (u+, u−) = (∇ψ+,∇ψ−) be a fixed pair of smooth vector fields,
and (w+, w−) = (∇ϕ+,∇ϕ−) be fixed potential flows, which are supposed
to be nontransversal to u in the sense∫

DwT
±(z)Dw±(z)dz :

∫
u±(x)⊗ u±(x)dx ̸= 0. (101)

We propose the following rescaled vector fields

(wN
+ (x), wN

− (x)) = (w+(Nx), w−(Nx)), N ∈ N,

which are again periodic in the torus. Then the L2–norm of wN
± is indepen-

dent of N . Hence by Corollary 1, it is enough to discuss the leading term:
We then have to check that

∫
|DwN

+u+|2dx = O(N2). This is true, because∫
|DwN

+u+|2dx = N2

∫
|Dw+(Nx)u+(x)|2dx (102)

= N2

(∫
DwT

+(z)Dw+(z)dz :

∫
u+(x)⊗ u+(x)dx + o(1)

)
. (103)

48



Here we used, that for the torus,
∫
dz = 1. So for large N , the integral

decomposes into short and long wavelength, and if we require that the prod-
uct in (101) is nonzero, indeed the right hand side of (99) is of order N2.
Precisely, we used that a rescaled function f(x) = DwTDw(x)ij , periodic in
L1(Td), converges to its average, f(Nx) →

∫
f(z)dz weakly.

Arguably, also if w+ is not a gradient field but satisfies some weaker condi-
tion, a suitable choice of a test function on two scales may show an estimate
of the form

sup
η

∫
DwNu · ∇ηdx( ∫

|∇η|2dx
) 1

2

≥ O(N).

We thus found that the bound in Corollary 1 matches
∫
|Dw±|2dx in terms

of scaling, and the asymptotic expression (103) is a less degenerate Dirichlet–
integral than the one in Corollary 1. More precisely even, the generic sit-
uation is that the tensor

∫
u(x) ⊗ u(x) dx has full rank, in which case the

asymptotic expression (103) is actually equivalent to the full Dirichlet inte-
gral

∫
|DwN

± |2dx.

6.4 The case of sharp interface

Here, we consider a model interface, which is the x-axis, so let χ+ = 1{y>0}.
We keep the discussion two–dimensional, but it can be made valid for any d
dimensions through an integration over the remaining coordinates. For the
velocities, we write u = χ+u+ + χ−u−, and likewise for w. The derivate,
symbolically

Dw = χ+Dw+ + χ−Dw− +

(
[wx]

∂

∂y
⊗ ∂

∂x

)
dH1(x),

has a regular and a singular part. Here, [wx] = (w+ − w−)x is the jump
of the tangential velocity component across Γ = {y = 0}, and H1 denotes
the Hausdorff measure on Γ. Moreover ∂

∂x is the unit vector in x–direction.
Let us denote finally by wy the well defined trace of the normal velocity.
We discuss this case of sharp interface in some detail, but the main result is
Corollary 3, which complements Corollary 1 of the last section.

We first show that a natural space is w ∈ L2 and moreover w ∈ L∞ and
χ+Dw+ + χ−Dw− ∈ L2. This is expressed by the following proposition,
which we try to keep symmetric in u and w.

Proposition 11. (Estimate for sharp interface)
Let q be defined by

∇ · (∇ · (u⊗ w) +∇q) = 0 distributionally in S1 × R.
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Then for any smooth test function η, one has the formula∫
∇q · ∇η dxdy

= −
∫

(χ+Dw+u+ + χ−Dw−u−) · ∇η dxdy −
∫

[wx]uy ∂xη dH
1(x).

(104)

Moreover, the following estimate holds true∫
|∇q|2dxdy ≤ C sup

x,y
|u|2

(∫
χ+|Dw+|2 + χ−|Dw−|2dxdy

)
(105)

+ sup
x∈Γ

|[wx]|2
∫

|∇uy|2dxdy, (106)

where C is a numerical constant.

The proof makes use of the following classical observation.

Lemma 6. (Trace estimate)
Let f = f(x, y), g = g(x, y) be two functions in the cylinder {x ∈ S1}×{y >
0} with values f(x, 0), g(x, 0) on {y = 0}. Then∣∣∣∣∫ f ∂xg dH

1(x)

∣∣∣∣ ≤ (∫
|∇f |2dxdy

) 1
2
(∫

|∇g|2dxdy
) 1

2

.

In particular, we say that f ∈ H
1
2 , if the seminorm(∫

|∂1/2x f |2 dH1(x)

) 1
2

:= sup
g

∫
f∂xg dH

1(x)

(
∫
|∇g|2dxdy)

1
2

is finite, and a pairing ⟨f, ∂xg⟩ is defined in this completion.

We discuss this lemma in Appendix 11.

Proposition 11 implies

Proposition 12. (Formula for sharp interface)

The traces limy→0± q are defined in H
1
2 , and coincide, [q] = 0. One has∫

|∇q|2dxdy =

∫
(χ+Dw+u+ + χ−Dw−u−) · ∇q dxdy + ⟨[wx]uy, ∂xq⟩.

Discussing further the term
∫
|∇q|2dxdy, on the other hand, reversing the

roles of u and w, similar as in (83), (84), we obtain the following estimate.
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Proposition 13. (Lower bound)
We have for smooth η the formula∫

∇q · ∇η dxdy

= −
∫

(χ+Du+w+ + χ−Du−w−) · ∇η dxdy −
∫

[ux]wy∂xη dH
1(x). (107)

Moreover, if u± are C1, then an equality∫
|∇q|2dxdy =

∫ ∣∣∂ 1
2
x ([ux]wy)

∣∣2dH1(x)− r, (108)

holds true, where

|r| ≤ C(u)

∫
|w|2dxdy.

We can see in particular that we have an instability only if [ux] ̸= 0. It is
then obvious that the expression (108) is controlled up to terms of order∫
|w|2dxdy by the norm

∫
|∇wy|2dxdy of the normal velocity component:

Remark 10. If u± are smooth, there is a constant C = C(u), so that∫
|∇q|2dxdy ≤ C

∫
|∇wy|2dxdy + C

∫
|w|2dxdy.

This upper bound is in accordance with (87). We show on the other hand
in Appendix 11, that we have the following control,

Proposition 14. If u± ∈ C1, and g(x, y) denotes a smooth continuation of
[ux]|Γ, then there is a constant C = C(g) = C(u) so that for all potential
w± = ∇ϕ± one has

C

∫
|w|2dxdy + 4

∫ ∣∣∂ 1
2
x ([ux]wy)

∣∣2dH1(x) ≥
∫
g2|∇wy|2dxdy. (109)

The constant depends essentially on the upper bound sup |∂x[ux]|2.

Thus the instability due to the vortex sheet is nonlocal, and behaves indeed
as a weighted H

1
2 –norm of the normal component of the perturbation veloc-

ity, wy, weighted with [ux], the intensity of vorticity on the sheet. It allows
a lower bound in terms of a degenerate Dirichlet–integral, degenerate only
in terms of zeroes of [ux].

As a further remark, and also for later reference, we give an additional
formula for this situation of a sharp interface, with more regular velocity
fields.
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Proposition 15. If u± ∈ C1, then one has for all smooth η the symmetric
formula∫

∇q · ∇η dxdy =

∫
(χ+tr Du+Dw+ + χ−tr Du−Dw−) η dxdy (110)

+

∫
([wx]∂xuy + [ux]∂xwy) η dH

1(x). (111)

In particular, q can be interpreted as the solution of a Neumann problem of
the form

∆q = f in y ̸= 0, (112)

[∂yq] = g across y = 0, (113)

if we set f = χ+tr Du+Dw++χ−tr Du−Dw−, and g = [wx]∂xuy+[ux]∂xwy.

By general theory of the Neumann–problem, this assures

Corollary 2. If u± and w± are smooth, then q is smooth and bounded up
to the interface with derivatives, and the jump of the derivative is a smooth
function of x equal to

[∂yq] = [wx]∂xuy + [ux]∂xwy. (114)

Let us finally make explicit

Remark 11. These results, in particular formula (107), or Proposition 15,
generalize the one obtained in Section 6.2, in particular based on (86), which
corresponds to the special case that the normal velocity uy = 0, the jump
[ux] = 1, and Du± = 0.

Proof of Proposition 11. If we remember that for the moment, ∇q
denotes only a measure, the defining relation for q may be written as∫

∇q · ∇η dxdy =

∫
(χ+u+ ⊗ w+ + χ−u− ⊗ w−) : D

2η dxdy. (115)

We proceed to derive the expression (104) through an integration by parts.
We find∫

χ±u± ⊗ w± : D2η dxdy

= −
∫
χ±Dw±u± · ∇η dxdy −

∫
(±u±)y(w± · ∇η)dH1(x). (116)

Indeed, more precisely,∫
χ+(ux(wx∂xxη + wy∂xyη) + uy(wx∂yxη + wy∂yyη)) dxdy (117)

=

∫
χ+(ux∂x(wx∂xη + wy∂yη) + uy∂y(wx∂xη + wy∂yη) dxdy (118)

−
∫
χ+((ux∂xwx + uy∂ywx)∂xη + ((ux∂xwy + uy∂ywy)∂yη) dxdy, (119)
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and the term (118) equals further

−
∫
χ+(∂xux + ∂yuy)(wx∂xη + wy∂yη) dxdy (120)

−
∫
Γ+

uy(wx∂xη + wy∂yη) dH
1(x). (121)

Then (120) vanishes because of ∇ · u = 0 for y > 0. Thus we are left with
(119) and (121). A similar reasoning is valid for χ− and concludes the proof
of (116).

As uy is continuous across Γ, the first contribution to the boundary term
(121) sums up to yield −

∫
uy[wx]∂xη dx. As also wy is continuous across

Γ, the second contribution to the boundary term vanishes after summation.
This shows (104).

We now justify ∇q ∈ L2 and show the estimate. To achieve this, we show
that the expression (104) defines a bounded functional on η ∈ H1. The
norm of the first term in the formula (104) is obviously estimated against
the first term in the claim, (105). It remains to estimate the second term
using the trace estimate. For this, we use Lemma 6 with the functions
f = [wx]uy, g = η. We may conclude with the expression (105), (106), if we
make a careful choice for the continuation f(x, y): Let h(x, y) the harmonic
function with boundary values [wx], and f(x, y) = h(x, y)uy(x, y). Then∫

|∇f |2dxdy ≤ sup
x,y

|h|2
∫

|∇uy|2dxdy + sup |uy|2
∫

|∇h|2dxdy. (122)

For the first term, we have that by the maximum principle, supx,y |h| ≤
supx |[wx]|, so that the first term is estimated against the second term (106)
in the claim. Concerning the second term on the other hand, the Dirichlet
integral satisfies∫

|∇h|2dxdy =

∫
|∂

1
2
x [wx]|2dx ≤

∫
χ+|Dw+|2 + χ−|Dw−|2,

so that the second term is estimated against the first term (105) in the
claim.

Proof of Proposition 12. Having shown the estimate (105), (106), we
may invoke Lemma 6. This shows [q] = 0, and we may deduce the formula
as the limit ∇η → ∇q of formula (104).

Proof of Proposition 13. We obviously have formula (107), which follows
as above from the definition of q. We then appeal to(∫

|∇q|2dxdy
) 1

2

= sup
η

∫
∇q · ∇η dxdy

(
∫
|∇η|2dxdy)

1
2

.
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Taking a look at the right hand side of (107) reveals that the first term is

bounded against sup |Du±|(
∫
|w|2dxdy)

1
2 . But the second term, by defini-

tion, gives rise to the H
1
2 –norm.

Proof of Remark 10. We start with the expression (107), and argue
similarly as for the estimate (105), (106). The first term in (107) is bounded
by C(u)

∫
|w|2dxdy, as a H1–functional. For the second term, we invoke

Lemma 6 with the functions f = [ux]wy, g = η, and with some continuation
f = hwy. It remains to estimate∫

|∇f |2dxdy ≤ sup |h|2
∫

|∇wy|2dxdy + sup |∇h|2
∫

|wy|2dxdy,

and to notice that sup |∇h| only depends on u, for a suitable choice of the
continuation.

Proof of Proposition 15. We start from (107). An integration by parts
identifies the first term with∫

(χ+trDu+Dw+ + χ−trDu−Dw−)η dxdy +

∫
[w · ∇uy]η dH1(x). (123)

Indeed more precisely,

−
∫
χ+((wx∂x + wy∂y)ux ∂xη) + (wx∂x + wy∂y)uy ∂yη) dxdy (124)

=

∫
χ+

(
∂x((wx∂x + wy∂y)ux) + ∂y((wx∂x + wy∂y)uy)

)
η dxdy (125)

+

∫
(wx∂x + wy∂y)uy η dH

1(x). (126)

This shows (123) in view of ∇ · u = 0 in {y > 0}, if one differentiates the
products in the first term (125). Moreover, due to the regularity assump-
tion, the trace (∂yuy)+ is defined, and must equal −∂x(u+)x because of the
divergence condition.
A similar reasoning is valid for χ−. Hence summing the two phases, the
boundary term (126) gives rise to∫

[wx] ∂xuy η − wy ∂x[ux] η dx.

The sum with the second term in (107), after an integration by parts in x,
yields the expression in (111).

We may now proceed to discuss the tensor R.

Lemma 7. We have that the contribution∫
∇pu · ∇pw dxdy
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is controlled by

sup |u|
(∫

χ+|Du+|2 + χ−|Du−|2dxdy
) 1

2

sup |w|
(∫

χ+|Dw+|2 + χ−|Dw−|2dxdy
) 1

2

.

If u± are smooth, then there is a constant C = C(u) so that

∣∣∣∣∫ ∇pu · ∇pw dxdy
∣∣∣∣

≤ C

∫
|w|2dxdy + C

(∫
g2|∇wy|2dxdy

) 1
2
(∫

|w|2dxdy
) 1

2

, (127)

if g is a suitable C1–continuation of [ux].

Proof. The first point is an application of Proposition 11. If u± are smooth,
then by Corollary 2, D2pu is smooth up to the boundary, and the jump
[∂ypu] = 2[ux]∂xuy is also a smooth function (which vanishes if [ux] does).
Consider the definition of pw as in (115), and choose as test functions an
approximation of pu. We find that in the limit,

∫
∇pu · ∇pw dxdy

=

∫
χ+D

2pu : w+⊗w++χ−D
2pu : w−⊗w− dxdy+

∫
[∂ypu]w

2
y dH

1(x).

(128)

Indeed, this must be true by Corollary 2, if w± are smooth. In particular we
are claiming then, as may also be seen as an application of Proposition 11
to the derivative ∂xq, that ∂xypu ∈ L2, and only ∂yypu has a singular part.
In a second step, we see, again by Corollary 2, that the function D2pu|y ̸=0

is actually bounded, and so is [∂ypu], so that by a similar trace estimate as
above, it is clear that (128) holds also true if only w ∈ L2, wy ∈ H1.

The first term in (128) is then estimated in an obvious way, and the relevant
term is a boundary term, which has an explicit expression,

2

∫
[ux] ∂xuy w

2
y dH

1(x).

We estimate it as follows: If g is a continuation of [ux], then |g| is a contin-
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uation of |[ux]|, |∂y|g|| ≤ |∂yg|, and we have∣∣∣∣∫ [ux]∂xuy w
2
y dH

1(x)

∣∣∣∣
≤ sup |∂xuy|

∫
|[ux]|w2

ydx

= C(u)

∫ 0

−∞

∫
∂y(|g|w2

y) dxdy

≤ C

∫∫
|g||wy||∂ywy|dxdy + C(g)

∫∫
w2
ydxdy.

We conclude by the Cauchy–Schwarz inequality.

Our results may be summarized as follows:

Corollary 3. The curvature tensor,

R(u,w) = −
∫

|∇q|2dxdy +
∫

∇pu · ∇pw dxdy,

for smooth u± and potential w± = ∇ϕ±, satisfies

−R(u,w) + C(u)

∫
|w|2dxdy ∼

∫
|∂

1
2
x ([ux]wy)|2 dH1(x) +

∫
|w|2dxdy.

(129)
Here, ∼ means equivalence of norms.

Proof. The statement follows from an application of Proposition 13 to the
first term

∫
|∇q|2dxdy, and the combination of Proposition 14 and Lemma

7 for the second term
∫
∇pu · ∇pwdxdy.

6.4.1 Construction of unstable directions

As in the previous discussion in Section 6.3, we obtained a lower bound,
Corollary 3, and are now interested in showing that it matches (87) in terms
of scaling. That is, we provide a choice of u±, w±, and derive an asymptotic
expression.
It turns out that for the situation with an interface, the construction of
unstable directions is slightly more delicate. To see why, consider a similar
rescaling procedure as in the last section,

wN (x, y) = N
1
2w(Nx,Ny), (130)

for a given velocity w. This time, we normalized so that
∫
w2dxdy = O(1).

Note that because of y ∈ R, an additional re–normalizing factor appears. In
this case, the quantity

∫
χ+|Dw+|2 + χ−|Dw−|2dxdy is of order N2, while

sup |w|2 is still of order N .
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We will now argue for smooth u±, and for potential w±, so that the con-
clusion of Corollary 3 is valid, hence avoiding this difficulty. Precisely fix a
pair w± = ∇ϕ± and define wN

± by (130). Let g denote a suitable smooth
continuation of [ux]|Γ.
It remains then, in view of Proposition 14, to show that the semi–norm∫

g2|∇wN
y |2dxdy ≥ O(N2).

Indeed, it may be written as

N3

∫
|g(x, y)|2|∇wy(Nx,Ny)|2dxdy (131)

= N2

(∫
Γ
|[ux]|2dH1(x)

∫
|∇wy(x̃, ỹ)|2dx̃dỹ + o(1)

)
, (132)

by a similar argument about decomposition of the integral as in the previous
section. More precisely, here the measureN |∇wy(Nx,Ny)|2dxdy is bounded
uniformly, and converges to a measure which is supported only on {y = 0}
(in view of the rescaled y–variable), and has constant density (in view of the
rescaled x–variable).

Arguably, also if w±
y are not harmonic but satisfy some weaker condition, a

suitable choice of test function on two scales may show an estimate of the
form

sup
η

∫
[ux]w

N
y ∂xη dH

1(x)( ∫
|∇η|2dxdy

) 1
2

≥ O(N).

We thus found that Corollary 3 matches (87) in terms of scaling. More-

over, the asymptotic expression (132) is actually the full H
1
2 –norm of wy,

which equals some multiple of the full Dirichlet integral
∫
χ+|Dw+|2 +

χ−|Dw−|2dxdy, as long as [ux] does not vanish altogether.

6.5 Continuity of the second fundamental form, hence the
curvature, for sharp interface

After the discussion of the last section, we are in a position to verify the
following continuity property. We mention that the limit in this section
somehow resembles the one in Section 6.2 above, where the vorticity function
concentrates on an interface (f ′ → 2δ, which led to (86)), but is different in
nature.

We would like to consider the question of a sequence of relaxed material
partitions recovering again a sharp interface. More precisely, let us consider

Requirement–Conjecture 1. Let (χ+, χ−) be a given interface with smooth
boundary Γ. Let (u+, u−) be a given velocity, of class H1 ∩ L∞, so that

∇ · (χ+u+ + χ−u−) = 0.
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Then there exists a sequence of smooth functions (sε+, s
ε
−), (u

ε
+, u

ε
−), with

sε+ + sε− = 1, ∇ · (sε+uε+ + sε−u
ε
−) = 0 ∀ε ≥ 0,

so that as ε→ 0,

1. sε± → χ± in L1∗, that means∫
hsε±dxdy →

∫
hχ±dxdy ∀ h ∈ L1(dxdy),

2. sε±u
ε
± → χ±u±, sε±Du

ε
± → χ±Du± in L2,

3. uε± ∈ L∞ uniformly, with χ±(u
ε
± − u±) → 0 in L1∗, that means∫

χ±h · (uε± − u±)dxdy → 0 ∀ h ∈ L1(dxdy),

4.
∫
s±|uε±|2dxdy →

∫
χ±|u±|2dxdy, and

∫
sε±|Duε±|2dxdy →

∫
χ±|Du±|2dxdy.

We consider this statement partly as a proposition, and actually suggest it is
true. In particular we are again interested in the case where the interface is
the line {y = 0}, and s± = s±(y) depend only on the normal coordinate. We
show in the Appendix 12, that a natural canditate for such an approximation
can be obtained through a convolution, and indeed prove the proposition for
the special case s± = s±(y).

In this limit, we are interested in the continuity of second fundamental form.
Here, we content ourselves to consider the listed properties as an assumption.

Proposition 16. For two sequences, sε± = sε(y), uε±, w
ε
± as in the Require-

ment, we have
i) sε+u

ε
+ ⊗ uε+ + sε−u

ε
− ⊗ uε− → χ+u+ ⊗ u+ + χ−u− ⊗ u−, in the sense of

measures.
ii) If qε, q are defined by

∇ · ∇ · (sε+uε+ ⊗ wε
+ + sε−u

ε
− ⊗ wε

−) + ∆qε = 0,

∇ · ∇ · (χ+u+ ⊗ w+ + χ−u− ⊗ w−) + ∆q = 0,

we have that ∫
|∇qε|2dxdy −→

∫
|∇q|2dxdy. (133)

In particular, we claim that the expression
∫
|∇qε|2dxdy is bounded uni-

formly, above and below, thus establishing a sort of compatibility between
the estimates for homogeneous mixture of Section 6.3 and those for sharp
interface in Section 6.4.

Proof of Proposition 16. The first point is an obvious consequence of the
assumptions. It implies in particular that qε → q in the sense of measures.
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We next establish (133), that is ∇qε → ∇q in L2. Notice that we have
shown already in Proposition 11, that the limit

∫
|∇q|2dxdy must be finite.

Let thus η be a smooth test function. Then on the level of the sε, one has
after an integration by parts,∫

∇qε · ∇η dxdy =

∫
(sε+Dw

ε
+u

ε
+ + sε−Dw

ε
−u

ε
−) · ∇η dxdy (134)

+

∫
(∇ · (sε+uε+))(wε

+)x∂xη + (∇ · (sε−uε−))(wε
−)x∂xη dxdy (135)

+

∫
(∇ · (sε+uε+))(wε

+)y∂yη + (∇ · (sε−uε−))(wε
−)y∂yη dxdy. (136)

We claim that this expression for ∇qε converges to the corresponding one
found for ∇q in (104), weakly, and indeed strongly in the sense of H1–
functionals, which is equivalent to the claim. The first term (134) obviously
converges to the first term in (104), since sε±Dw

ε
± → χ±Dw± converges in

L2, and uε± → u± converge in L1∗, finally ∇η ∈ L2. More precisely, the
difference of the first term to its limit is the sum of two terms of the form∫

(sε±Dw
ε
± − χ±Dw)u

ε
± · ∇η dxdy +

∫
χ±Dw± (uε± − u±) · ∇η dxdy,

which converge to zero because of assumptions 2. and 3.

We claim further that the second term (135) converges to the second term
in (104), and that finally, the third term (136) converges to zero, by virtue
of the side constraint.

We address more precisely the second term (135), which after an integration
by parts is found to equal∫

(s+u+·∇w+
x +s−u−·∇w−

x )∂xη dxdy+

∫
(s+u+w

+
x +s−u−w

−
x )·∇∂xη dxdy

=

∫
(s+u+·∇w+

x +s−u−·∇w−
x )∂xη dxdy−

∫
[s+∂x(u+w

+
x )+s−∂x(u−w

−
x )]·∇η dxdy,

(137)

where we used that s± = s±(y). This shows that it is bounded in terms of
the assumed quantities, as a functional w.r.t. η ∈ H1. In particular, it must
be weakly convergent.

As for the third term, differentiating the bracket yields an expression∫
[s+(∇·u+)w+

y +s−(∇·u−)w−
y ]∂yη dxdy+

∫
[∂ys+u

+
y w

+
y +∂ys−u

−
y w

−
y ]∂yη dxdy.

Using then all three manifestations of the side constraint, we find that

∂ys+ u
+
y w

+
y + ∂ys− u

−
y w

−
y

= (∂ys+u
+
y + ∂ys−u

−
y )w

+
y + (∂ys− + ∂ys+)u

−
y w

+
y + u−y (∂ys+w

+
y + ∂ys−w

−
y )

= −[s+(∇ · u+) + s−(∇ · u−)]w+
y − u−y [s+(∇ · w+) + s−(∇ · w−)].
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Hence also the third term is a bounded H1–functional. It is even strongly
convergent by assumption, with limit zero, as Du±, Dw± must be trace–free
in the limit. Here, for example,∫
sε−(∇·uε−) (wy)

ε
+ ∂yη dxdy =

∫
(sε−(∇·uε−)−χ−(∇·u−)) (wy)

ε
+ ∂yη dxdy → 0,

because sε−Du
ε
− converges in L2, and wε

+ is bounded in L∞.

Finally we identify the limit of the second term (135), and see also that
the convergence must be strong in the sense of H1–functionals. This holds
because for the limit, the same expansion holds true, precisely∫

uy [wx] ∂xη dH
1(x)

=

∫
(χ+u+·∇w+

x +χ−u−·∇w−
x ) ∂xη dxdy−

∫
(χ+∂x(u+w

+
x )+χ−∂x(u−w

−
x ))·∇η dxdy,

so that (137), hence (135), for similar reasons as before, must converge
by the given assumptions to the pairing ⟨uy[wx], η⟩ =

∫
uy [wx] ∂xη dH

1(x),
uniformly in η ∈ H1.
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7 Potential HVSE

For the potential HVSE model, only slight modifications of our discussion
are necessary. Since we discuss in particular the term from the submersion,
let for this section again x ∈ Td denote a general spatial variable.

7.1 The expression of O’Neill/Otto

Here we address first the term (51) from the introductory Section 4.1,

N(ϕ1, ϕ2) = inf
π

∫
ρ|[∇ϕ1,∇ϕ2]−∇π|2 dx.

We expect that the following quotient is divergent:

sup
ϕ1,ϕ2

infπ
∫
ρ|[∇ϕ1,∇ϕ2]−∇π|2 dx∫

ρ|∇ϕ1|2dx
∫
ρ|∇ϕ2|2dx

= ∞.

We show here only

Proposition 17. (Contribution from the submersion)

inf
π

∫
ρ|[∇ϕ1,∇ϕ2]−∇π|2 dx ≤ sup |D2ϕ1|2

∫
ρ|∇ϕ2|2 dx.

In particular, if ϕ1 is smooth, then ∇ϕ2 7→ N(ϕ1, ϕ2) is a bounded quadratic
form, and yields bounded sectional curvature.

Proof. This statement follows from continuity of the projection, as applied
to the asymmetric formula

N(ϕ1, ϕ2) = inf
π

∫
ρ|D2ϕ1∇ϕ2 −∇π|2 dx, (138)

which in turn is due to D2ϕ1∇ϕ2 +D2ϕ2∇ϕ1 = ∇ (∇ϕ1 · ∇ϕ2).
We obtain in the same way the following estimate, uniform in s±,

Proposition 18. (HVSE)
For all pairs (s+, s−) we have with constant 1,

inf
π+

∫
s+|[∇ϕ(1)+ ,∇ϕ(2)+ ]−∇π+|2 dx + inf

π−

∫
s−|[∇ϕ(1)− ,∇ϕ(2)− ]−∇π−|2 dx

≤ sup |D2ϕ
(1)
+ |2

∫
s+|∇ϕ(2)+ |2 dx + sup |D2ϕ

(1)
− |2

∫
s−|∇ϕ(2)− |2 dx.
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7.2 Continuity for sharp interface

The same continuity property for the curvature tensor as in the last section
is addressed. As we will show, it is no problem to see that the O’Neill–term
is a contribution which is continuous with respect to the identified natural
convergences. The continuity property analogous with Section 6.5 hence
follows, if we may rely on the slightly more delicate set of properties,

Requirement–Conjecture 2. Let (χ+, χ−) be a given interface with smooth
boundary Γ. Let (∇ϕ+,∇ϕ−) be a given velocity, of class H1 and, say, C0,α

∃α > 0. Then there exists a sequence (sε+, s
ε
−), (ϕ

ε
+, ϕ

ε
−), with

∇ · (sε+∇ϕε+ + sε−∇ϕε−) = 0 ∀ε ≥ 0,

so that as ε→ 0,

1. sε± → χ± in L1∗,

2. sε±∇ϕε± → χ±∇ϕ±, sε±D
2ϕε± → χ±D

2ϕ± in L2,

3. ∇ϕε± ∈ L∞ uniformly, with χ±(∇ϕε± −∇ϕ±) → 0 in L1∗,

4.
∫
s±|∇ϕε±|2dx→

∫
χ±|∇ϕ±|2dx,

∫
sε±|D2ϕε±|2dx→

∫
χ±|D2ϕ±|2dx.

Again, we view this statement partly as a conjecture. We will not insist on
its proof, but we propose a natural candidate sequence in Appendix 12, and
at least prove parts of its statement.

To argue for the continuity of the curvature–tensor, we view the listed prop-
erties as an assumption. We then have

Proposition 19. (Continuity of the O’Neill term)
Under the assumptions of the Requirement, it holds that

inf
π+

∫
sε+|[∇ϕ

(1)
+ ,∇ϕ(2)+ ]ε −∇π+|2 dx+ inf

π−

∫
sε−|[∇ϕ

(1)
− ,∇ϕ(2)− ]ε −∇π−|2 dx

converges to

inf
π+

∫
χ+|[∇ϕ(1)+ ,∇ϕ(2)+ ]−∇π+|2 dx+ inf

π−

∫
χ−|[∇ϕ(1)− ,∇ϕ(2)− ]−∇π−|2 dx

Together with Proposition 16, this asserts the continuity of the sectional
curvatures, as defined by Proposition 7 in Section 4.2.

By means of the asymmetric formula (138), Proposition 19 is reduced to
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Lemma 8. For uε±, w
ε
± as in the Requirement 1 (as in Section 6.5),

lim
ε→0

inf
π

∫
sε±|Dwε

±u
ε
± −∇π|2dx = inf

π

∫
χ±|Dw± u± −∇π|2dx.

Proof. Let us first show that

lim
ε→0

∫
sε±|Dwε

±u
ε
± − χ±Dw± u±|2dx = 0. (139)

This is clear because similar with the argument in the last section, by as-
sumptions 2., 3., 4., and 1.,∫

sε±|Dwε
± − χ±Dw±|2|uε±|2dx+

∫
sε±χ±|Dw±|2 |uε± − u±|2dx

converges to zero (expanding the square for the first term).

It is then obvious (commuting limit and infimum) that

lim sup
ε→0

inf
π

∫
sε±|Dwε

±u
ε
± −∇π|2dx ≤ inf

π

∫
χ±|Dw± u± −∇π|2dx.

This would already be sufficient for our discussion, which is concluded with
this upper bound on the positive part of the curvature tensor.

To show the equality, it is necessary to understand the optimal π. This is
also possible, using more explicitly the construction in the appendix which
produces the recovery sequence. Precisely, let πε± and π± be the optimal
functions in the infimum, that is, the solutions of

∇ · (sε±Dwε
±u

ε
± − sε±∇πε±) = 0, ∇ · (χ±Dw±u± − χ±∇π±) = 0.

Then, as is argued at the end of Appendix 12, the convergence in (139)
entails ∫

sε±|∇πε± − χ±∇π±|2dx → 0.

This shows the claim of the lemma, hence also Proposition 19.

7.3 Summary and discussion

We showed that in the two prototype cases of a homogeneous mixture and a
sharp interface, the sectional curvature ofM or N is bounded above and un-
bounded below. More precisely, if u± denote a smooth pair of velocities, the
sectional curvature is bounded from above by the metric tensor as applied
to the perturbation fields w±.
The passage to infinite negative sectional curvature is then governed by the
leading term −

∫
|∇q|2dx, which behaves as a certain H1–type norm of the

perturbation that was identified in the two special cases. We believe that it
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follows with similar arguments that such a behaviour is common to all s±
which are fixed positive smooth functions. We leave as a conjecture, that
this be indeed the general behaviour, uniform in s±, and we suggest that
the approximation procedure presented is an indication that this may be
true. Indeed we showed in Sections 6.5 and 7.2 that the expression for the
sectional curvature behaves in a continuous way in the limit s± → χ±.
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8 As an additional consideration: Asymptotic di-
rections

In this section, we discuss the occurrence of asymptotic directions: For an
embedding of a Riemannian manifold in some ambient space, this notion
describes those tangent vectors to the sub–manifold, for which the geodesic
in the sub–manifold with this start velocity does not differ up to second
order in time from the geodesic in the ambient space with this start veloc-
ity. It means precisely, that in the direction of this tangent vector X, the
second fundamental form vanishes, more precisely that the normal vector
B(X,X) is zero. In the case of co–dimension 1, and flat ambient space, the
presence of such asymptotic directions is directly linked to the sign of the
sectional curvatures: Presence of asymptotic directions implies presence of
semi–negative curvature, and their absence implies positive curvature. In
the case of larger codimension, in the case to be discussed even of infinite
co–dimension, the first implication remains true, but the second does not.

We wish to discuss the embeddingM ⊂ D×D: Here, there are many asymp-
totic directions, since any shear flow u = f(y) ∂

∂x gives rise to a stationary
solution with zero pressure. This indicates the presence of a lot of negative
sectional curvatures, and such shear flows even span L2. This is analogous
to what was oberved for the classical embedding Dµ ⊂ D, in [2] and also in
[7].
In the case of the embedding N ⊂ P × P for the potential HVSE–system,
however, the presence of such asymptotic directions is not so clear, at least
not in a sufficiently regular class. We would like to formulate this as a
problem

Conjecture 1. Let (s+, s−) be a pair of smooth functions on the torus,
valued in (0, 1) and so that s++ s− = 1. Let (ϕ+, ϕ−) be a pair of functions
which satisfies

∇ · (s+∇ϕ+ + s−∇ϕ−) = 0, (140)

and solves

∇ · (∇ · (s+∇ϕ+ ⊗∇ϕ+ + s−∇ϕ− ⊗∇ϕ−)) = 0. (141)

Then (∇ϕ+,∇ϕ−) = (0, 0).

In the homogeneous case, s± = 1
2 , the statement simplifies, and we can prove

at least the following fact.

Lemma 9. Let ϕ(x) be a smooth function on the torus, x ∈ Td, which solves

∇ · (∇ · (∇ϕ⊗∇ϕ)) = 0. (142)

Then ϕ is constant.
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Proof. For a smooth solution, we may carry out the differentiation, to find

2∇ϕ · ∇∆ϕ+ (∆ϕ)2 + |D2ϕ|2 = 0.

Consider a point where ∆Φ has a local maximum or minimum. In such a
point in fact,

(∆ϕ)2 + |D2ϕ|2 = 0,

whence in particular ∆ϕ = 0. This implies that

∆ϕ = 0 on the torus.

We conclude with the assertion, now by the maximum principle applied to
ϕ.

More generally, we can remark that the constrained equation (141) in the
conjecture can be reduced to a single equation,

∇ · ∇ · (Lϕ⊗ Lϕ+ α∇ϕ⊗∇ϕ) = 0. (143)

This follows from the following lemma which makes more precise Lemma 1,

Lemma 10. The pair ∇ϕ± is recovered from the two quantities

u = s+∇ϕ+ + s−∇ϕ−, ϕ = ϕ+ − ϕ−.

In particular, the tensor of second moments has the expression

s+∇ϕ+ ⊗∇ϕ+ + s−∇ϕ− ⊗∇ϕ− = u⊗ u+ s+s−∇ϕ⊗∇ϕ.

Finally in (143), we wrote α = s+s− and u = Lϕ, on the basis of

Remark 12. The mean velocity u only depends on the pair ϕ± through their
difference ϕ, since

∇ · u = 0, ∇× u = ∇s+ ×∇ϕ.

Remark 13. (Regularity class)
Lemma 9 holds true, if ϕ ∈ C3. Notice on the other hand that the lemma is
false, if one requires only ∇ϕ ∈ L2: any solution to the Eikonal–equation in
one dimension, |φ′|2 = 1, will produce a solution to (142) of the form

ϕ(x) = φ(k · x), k ∈ Zd,

and these functions even span L2(dx). On the other hand they would each
give rise to an infinite sectional curvature, and it remains open whether
(142) has non–trivial solutions, if one restricts for example to D2ϕ ∈ L2.
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9 Appendix: A spatially homogeneous solution to
the HVSE

We seek a particular solution of the one–dimensional system

∂tu+ u ∂yu+ ∂y(uv) = 0, (144)

∂tv + v ∂yv + ∂y(uv) = 0, (145)

where this time y ∈ R. Whenever there is a solution in the elliptic case
uv < 0, it is possible to reconstruct the densities s± from s+ + s− = 1 and
s+u+s−v = 0, and by construction they will satisfy the transport equation.
We make now the following ansatz; it is a generalization of the formula
u = y

t , which describes a kind of fundamental solution in the hyperbolic
case of a single mass transport. Let thus u, v be of the form

u(t, y) = a(t)y, v(t, y) = b(t)y,

for functions a and b. The merit of this solution must remain somewhat
open, since it has infinite energy. The system then reduces to two ordinary
differential equations for a, b:

∂ta+ a2 + 2ab = 0, (146)

∂tb+ b2 + 2ab = 0. (147)

We are interested in solutions in the region a > 0, b < 0. (On reversing time
they correspond directly to solutions with a < 0, b > 0.) The vector field
(∂ta, ∂tb) is homogeneous, so if one understands one solution, all others can
be obtained by scaling.

There are five straight lines in the (a, b)–plane which confine an orbit. {a =
0}, which will not be passed because there, ∂ta = 0. {2a + b = 0}, which
is a line on which ∂tb = 0. {a + b = 0}, which is a line of symmetry: if
(t, a, b) is a solution, so is (−t,−b,−a), in particular, if −a = b for t = 0,
the trajectory has this symmetry. {2b + a = 0}, where ∂ta = 0. {b = 0},
which cannot be passed since there, ∂tb = 0.

Proposition 20. The solution through (t = 0, a = 1, b = −1) behaves as
follows: It is defined on t ∈ (−∞,+∞), and
i) for t → −∞, it approaches the origin (0, 0), more precisely, a(t) ∼ 1

t2
,

and b ∼ 1
t ,

ii) it passes the three lines mentioned, so that afterwards, ∂ta, ∂tb have
changed sign, in particular, in t = 0, (∂ta, ∂tb) = (1, 1),
iii) for t→ +∞, it approaches again the origin (0, 0), more precisely, a(t) ∼
1
t , and b ∼ − 1

t2
.
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Proof. It is enough to show iii). For large times, by what was said before,
one must have b→ 0 and |b| ≪ a. Hence one determines the behaviour of a
from

∂ta+ a2 = 0,

which yields a ∼ 1
t . Then b is approximately subject to

0 = ∂tb+ 2ab = ∂tb+
2

t
b,

whence −b ∼ 1
t2
. Indeed one may check also that a2

b is approximately
constant via

∂t
a2

b
= −3b

a2

b
.

If
∫
(−b)dt <∞, this implies −b ∼ a2.

These solutions are bounded, in contrast to the one–phase hyperbolic case,
where u = y

t has a singularity in t = 0.
On the level of s, these solutions are very simple, since due to the momentum
balance as+ + bs− = 0, s± = s±(t) must be homogeneous in space. Such a
solution exchanges phases in the sense

s+ → 1, s− → 0, as t→ −∞, s+ → 0, s− → 1, as t→ +∞.

On the level of the particles, if for large positive times, a(t) ∼ 1
t , then

particles follow straight lines:

ẏ ∼ y

t
=⇒ y(t) ∼ u0t.

On the other hand, if for large negative times, a(t) ∼ 1
t2
, then particles move

only a finite distance:

ẏ ∼ y

t2
=⇒

∫
∂t log y dt <∞.

A similar fact holds for the particles in the (−)–phase: for negative times
they are straight lines, but for positive times, trajectories are bounded.

10 Appendix: Calculations for the linear stability
analysis

10.1 Computation of a discriminant

Here, we prove Proposition 4. In order to be able to make an according
remark we introduce in this section an additional parameter ρi ∈ [0, 1].
Hence we study ∫

s|u|2dµ+ ρi

∫
(1− s)|v|2dµ,
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subject to the transport equations

∂ts+∇ · (su) = 0, ∂t(1− s) +∇ · ((1− s)v) = 0.

Here, in favour of the formulation (154) below, we used the notation
(s, 1− s) = (s+, s−), (u, v) = (u+, u−).
The geodesic equations are then changed according to

∂tu+Duu = ρi(∂tv +Dv v) = −∇p.

Hence ρi plays the role of a density of inertial mass in the (−)–phase with
respect to the (+)–phase. As ρi → 0, the particles in the (−)–phase are
infinitely easy to move and we are left with an equation ∂tu + Duu = 0
for the velocity transporting a single density function s ≤ 1. This case
corresponds to the classical optimal mass transport.

In this section we study only the 1-dimensional system

∂ts+ ∂y(su) = 0, (148)

∂tu+ u ∂yu+ ∂yp = 0, (149)

∂t(1− s) + ∂y((1− s)v) = 0, (150)

ρi(∂tv + v ∂yv) + ∂yp = 0, (151)

with su+ (1− s)v = 0. (152)

In the case ρi = 1, there is a symmetry between the two phases and it is
possible to substitute the pressure according to p = −uv. In the present
case we prefer the equally fine approach to write the system for two effective
variables s and u. Let us assume here that s < 1. This is reasonable since
whenever s(y) = 1 we must have u(y) = 0. Thus we compute the pressure
as follows: Note that ρi = 0 implies ∂yp = 0, and otherwise

0 = −∂t(s+u)− ∂t(s−v) = ∂y(s+u
2) + s+∂yp+ ∂y(s−v

2) +
1

ρi
s−∂yp,

whence ∂yp = − 1
s+ 1

ρi
(1−s)

∂y(su
2 + (1− s)v2) = − ρi

ρis+1−s∂y

(
s

1−su
2
)
.

Therefore, we find that one can replace the system (148) ff. by ∂ts+∂y(su) =
0 and

0 = ∂tu+ u ∂yu− ρi
ρis+ 1− s

∂y

(
s

1− s
u2
)
. (153)

We used here that su2 +(1− s)v2 = su2 + s2

1−su
2 = s

1−su
2. Notice moreover

that ∂y
s

1−s = 1
(1−s)2

∂ys, so that we can write the system as a conservation

law:(
∂ts
∂tu

)
+

(
u s
0 u

)(
∂ys
∂yu

)
+

(
0 0

−f(s, ρi)u2 −2g(s, ρi)u

)(
∂ys
∂yu

)
= 0, (154)
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where we introduced the functions

f(s, ρi) =
ρi

ρis+ 1− s

1

(1− s)2
, g(s, ρi) =

ρi
ρis+ 1− s

s

1− s
.

We see that if ρi = 0, (153) is just the Burgers equation, which is hyperbolic:
the first matrix in (154) has a double (degenerate) eigenvalue equal to the
velocity u. For ρi > 0, we are interested in the spectrum of the sum of
the two matrices. We have that the trace equals 2u − 2gu, which turns
into 2(u + v) in the symmetric case ρi = 1. Moreover the determinant is
(1− 2g)u2 + sfu2, so that we find a discriminant(

1

2
trace

)2

− determinant =
[
(1− g)2 − (1− 2g)− sf

]
u2.

We compute the expression

(1− g)2 − (1− 2g)− sf

=
(
1− ρis

(ρis+ 1− s)(1− s)

)2 − 1 +
2ρis

(ρis+ 1− s)(1− s)
− ρis

(ρis+ 1− s)

1

(1− s)2

=
1

(ρis+ 1− s)2 (1− s)2
[ρ2i s

2 − ρis(ρis+ 1− s)]

= − ρis(1− s)

(ρis+ 1− s)2 (1− s)2
. (155)

We hence see that the discriminant is non–positive and negative as soon as
ρi > 0. Let us mention that in the case ρi = 1 it turns into − s+s−

s2−
u2 = uv

(and is negative since u and v have opposite signs). We found that the
system (154), hence (148) ff., has a double real eigenvalue u, for ρi = 0 (in
which case it is hyperbolic), but a pair of genuinely complex eigenvalues, as
soon as ρi > 0. In particular, in the case ρi = 1 it is elliptic.

It may be worth to include the

Remark 14. (Hyperbolic scaling)
It is a consequence of this elliptic property, that there cannot be a self–similar
solution to (40) of the form

s(t, y) = s
(y
t

)
, u(t, y) = u

(y
t

)
.

Indeed, in this case, denoting ξ = y
t , and q = q(ξ), q′ = ∂q

∂ξ , (40) turns into

−ξq′ +A(q)q′ = 0,

which cannot hold if A has no real eigenvectors.
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10.2 Convexity of the kinetic energy density

To round up the discussion, we take in this section a look at the action
functional and prove Proposition 5. As we have seen, its strict convexity is
related to the elliptic character of the system (38), (39).
We will keep again the parameter ρi ∈ [0, 1]. Hence we are interested in the
function

F (s+, s−,m+,m−) = s+|u|2 + ρis−|v|2 =
1

s+
|m+|2 + ρi

1

s−
|m−|2.

We will compute the Hessian and show that it is only positive semidefinite
for ρi = 0, but positive definite as soon as ρi > 1. This is linked to the elliptic
property: in the case of classical mass transport it gives only information
on the velocity variable ∂th = −m, thus giving rise to a hyperbolic system,
whereas the coupling of the phases (ρi > 1) produces a convexity also with
respect to the space derivative ∂yh = s, so that the resulting system becomes
elliptic.

Explicitly, let us compute the Hessian of the function F0(s,m) = 1
s |m|2. We

have (
∂ssF0 ∂smF0

∂smF0 ∂mmF0

)
=

2

s

(
|m|2
s2

−m
s

−m
s 1

)
.

Let γ = ṡ, α = ṁ be the linearized variables. The Hessian of F0 is thus
characterized by the quadratic form

2

s

(
|m|2

s2
γ2 − 2

m

s
γ · α+ |α|2

)
=

2

s

∣∣∣m
s
γ − α

∣∣∣2 .
We see that it is positive semidefinite. Now if accordingly γ±, α± denote
linearized variables, we have that the Hessian of F gives rise to a quadratic
form

2

s+

∣∣∣∣m+

s+
γ+ − α+

∣∣∣∣2 + ρi
2

s−

∣∣∣∣m−
s−

γ− − α−

∣∣∣∣2 . (156)

Again it is positive semidefinite. But as soon as ρi > 0, it can only be zero
if

m+

s+
γ+ − α+ = 0,

m−
s−

γ− − α− = 0. (157)

Let us identify the kernel of the Hessian. Since the constraint s+ + s− = 1
implies γ+ + γ− = 0, we may write γ+ = γ = −γ−, and from γ, both α+

and α− are already determined. Now if j = 0, this gives the constraint
m+ +m− = 0, as well as α+ + α− = 0. So in this case, if the form (156) is
zero we infer in particular

0 =
m+

s+
γ+ +

m−
s−

γ− − α+ − α− =
m+

s+
γ − m−

s−
γ.
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It follows that either γ is zero (and hence α± by (157)), or

m+

s+
− m−

s−
= 0,

which means u = v. But this cannot happen if m+ +m− = j = 0, unless
u = v = 0. So in the case that j = 0, the kernel is trivial, and the action is
strictly convex.

The proof of Proposition 5, also for the case s+ = 0, is completed in Ap-
pendix 12, according to the note following (178).

11 Appendix: Control by means of a weighted
H

1
2–norm

In this section we prove Proposition 14 of Section 6.4. We believe that there
can be a simpler argument for this fact, but we are quite willing to introduce
the Hilbert transform.
For this, let w be a smooth harmonic function in the cylinder (x, y) ∈ S1 ×
{y ≥ 0}, that vanishes at infinity as expressed by

∫
|w|2dxdy < ∞. Then

in particular, w(x, 0) must be mean–free:
∫
w dH1(x) = 0, and also one has∫

|∇w|2dxdy <∞. We introduce

Lemma 11. Consider the unique smooth integrable solution F of the Neumann-
problem

∆F = 0 in y > 0 (158)

∂yF = ∂xw for y = 0. (159)

Then F (x, 0), and also ∂yF (x, 0), are again mean–free, and the Cauchy–
Riemann equations

∂yF = ∂xw (160)

∂xF = −∂yw (161)

hold in S1 × {y ≥ 0}. In particular, we have the point–wise identity
|∇F |2 = |∇w|2.
Moreover, in terms of a Fourier expansion,

if w = eikxe−|k|y, then F = −i (signk)w. (162)

This implies that also ∫
|w|2dxdy =

∫
|F |2dxdy. (163)

This assignment, w 7→ F , is also called the Hilbert transform.
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Proof. The first equation, (160), holds because both ∂yF and ∂xw are
harmonic and integrable, with the same Dirichlet datum by definition. We
deduce (161) from (160) because we know already that w and F are har-
monic: One has

−∂yyw = ∂xxw = ∂xyF,

and
∂xyw = ∂yyF = −∂xxF,

whence ∂xF + ∂yw is constant. Since it is also mean–free on {y = 0}, we
obtain (161).

The formula (162) is obvious. To see (163), we have only to notice that the
Fourier modes in (162) are not only orthogonal as elements of L2(dH1(x)),
but also in L2(dxdy). Since under the assumptions given,

∫
w2dH1(x) is

finite, and eikx form a basis of L2(dH1(x)), w(x, y) possesses an expansion
in these modes. Hence (163) follows.

Remark 15. i) The function F is the test function which realizes

sup
f

∫
∂xwfdH

1(x)( ∫
|∇f |2dxdy

) 1
2

. (164)

ii) If w = ∂yϕ for a harmonic potential ϕ, then in fact F = ∂xϕ.

Let us sketch for completeness a proof of Lemma 6. Expand f(x, 0) =∑
k∈Z fk e

ikx in a Fourier series. Then f(x, y) =
∑

k∈Z fk e
ikxe−|k|y is the

harmonic continuation in the half plane. Denote moreover by f̃(x, y) any
other continuation. Then one sees
1)
∫
|∇f̃ |2dxdy ≥

∫
|∇f |2dxdy,

as a consequence of f = f̃ at y = 0, and ∆f = 0,
2)
∫
|∇f |2dxdy =

∑
k∈Z |k| |fk|2,

evaluating the integral
∫
e−2|k|ydy and using a Plancherel identity,

3)
∫
{y=0} f ∂xg dx = i

∑
k∈Z k fk gk, also by Plancherel’s identity.

The claim then follows as an application of the Cauchy Schwarz – inequality.

Next let g be a smooth function, vanishing at infinity. We obtain the desired
estimate (109) as follows.

Lemma 12. There is a constant C = C(g), depending only on the upper
bound sup |∇g|, so that one has i)∫

∂x(gw) gF dH
1(x) + C

∫
w2dxdy ≥ 1

2

∫
g2|∇w|2dxdy,

and ii) ∫
|∇(gF )|2dxdy ≤ 2

∫
g2|∇w|2dxdy + C

∫
w2dxdy.
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Proof. The second point is obvious:∫
|∇(gF )|2dxdy ≤ 2

∫
g2|∇F |2dxdy + 2

∫
|∇g|2F 2dxdy (165)

≤ 2

∫
g2|∇F |2dxdy + 2 sup |∇g|2

∫
F 2dxdy (166)

= 2

∫
g2|∇w|2dxdy + 2 sup |∇g|2

∫
w2dxdy, (167)

by Lemma 11. To see i), we compute∫
∂x(gw) gF dH

1(x) =

∫
∂xg w g F dx+

∫
g ∂xw g F dx (168)

=

∫
1

2
∂x(g

2)wF dx+

∫
g2∂xwF dx (169)

= −1

2

∫
g2∂x(wF ) dx+

∫
g2 ∂xwF dx (170)

=
1

2

∫
g2 ∂xwF dx− 1

2

∫
g2w ∂xF dx. (171)

According to Lemma 11, we identify this last expression as

1

2

∫
g2 ∂yF F dx+

1

2

∫
g2w ∂yw dx.

In view of the harmonicity of w, F , an application of the Gauss formula
reveals that it can be written and estimated as

1

2

∫
∇ · (g2F ∇F )dxdy + 1

2

∫
∇ · (g2w∇w)dxdy

=
1

2

∫
g2|∇F |2dxdy+

∫
g∇g·F∇Fdxdy+ 1

2

∫
g2|∇w|2dxdy+

∫
g∇g·w∇wdxdy

≥ 1

4

∫
g2|∇F |2dxdy− sup |∇g|2

∫
F 2dxdy+

1

4

∫
g2|∇w|2dxdy− sup |∇g|2

∫
w2dxdy

=
1

2

∫
g2|∇w|2dxdy − 2 sup |∇g|2

∫
w2dxdy.

This proves i).

Corollary 4.∫
g2|∇w|2dxdy ≤ 4

∫
|∂

1
2
x (gw)|2dH1(x) + C(g)

∫
w2dxdy.

Proof. Denoting generic constants C1, C2, we have using Lemma 12, i) and
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ii),

C1

(∫
w2dxdy

) 1
2

+

(∫
|∂

1
2
x (gw)|2dx

) 1
2

≥ C1∥w∥2 +
∫
∂x(gw) gF dx( ∫
|∇(gF )|2dxdy

) 1
2

≥ C1∥w∥2 +
1
2

∫
g2|∇w|2dxdy − C2(∥w∥2)2

(2
∫
g2|∇w|2dxdy)

1
2 + C2∥w∥2

≥ 1

4

(∫
g2|∇w|2dxdy

) 1
2

.

This proves Proposition 14, because we may take w, g to be wy, and g, the
continuation of [ux]. It is then apparent that the constant C = C(sup |∇g|)
in fact depends only on sup |∂x[ux]|+ sup |[ux]|.
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12 Appendix: Estimate of a convolution operation

Let y ∈ R. Let η(y) be a nonnegative, symmetric kernel,
∫
η dy = 1. Let

χ(y) = 1y>0 be the indicator function of the right half–line, and let f(y) be
a function.
Let then m = χf , and consider for ε > 0 the operation

sε = ηε ∗ χ, (172)

mε = ηε ∗m, (173)

fε =
1

sε
mε, (174)

which assigns to each function f a convolute fε. Here,

ηε(y) =
1

ε
η
(y
ε

)
,

denotes as usual the rescaled convolution kernel, and it is worth noticing
that also sε(y) = s(yε ) for s = s1 = η ∗ χ.
We denote this linear operator as fε = Lεf . Note that the quotient in
(174) is to be read as an ordinary quotient, if η > 0 on R, and defines a
Radon-Nykodim–derivative fε of mε with respect to sε otherwise.

Lemma 13. (Estimate in energy)
i) If f is bounded, we have that

sup
y∈R

|fε(y)| ≤ sup
y≥0

|f(y)|

with constant 1, and indeed if f ∈ C0 then fε → f point–wise in y > 0.
ii) If χ|f |2 is integrable, we have∫

sε|fε|2dy ≤
∫
χ|f |2dy (175)

with constant 1, and indeed∫
sε|fε|2dy →

∫
χ|f |2dy (176)

as ε→ 0. Moreover, the functions sε|fε|2 are uniformly integrable, that is if
B ⊂ R, then ∫

B
sε|fε|2dy → 0,

uniformly in ε as |B| → 0.

Remark 16. We have more precisely, that f ∈ L∞ implies∫
χh (fε − f) dy → 0, (177)

for any h ∈ L1(dy).
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Proof. Ad i). Since η and χ, hence also sε, are nonnegative,

sε(y) |fε(y)| = |(sε fε)(y)| =
∣∣∣∣∫ ηε(z)χ(y − z)f(y − z) dz

∣∣∣∣ ≤ ∫ ηε(z)χ(y−z) |f(y−z)| dz,

which is less than∫
ηε(z)χ(y − z)dz sup |f | = sε(y) sup |f |.

To see the convergence, it suffices to combine

mε → χf, point–wise in y > 0

with sε → χ = 1, point–wise in y > 0.

Proof of the remark. To prove the remark, we need sε ≥ 1
2 in y ≥ 0, which

holds by symmetry of the kernel η, and sε → χ = 1 in y > 0. The remark
follows from the formula

fε − f =
1

sε
(mε −m) +

(
1

sε
− 1

χ

)
m,

which holds in y > 0. Indeed, the second term then passes to the limit
because m ∈ L∞. For the first term, we appeal to the fact that mε → m in
L1∗, which holds by duality:∫

χh (mε −m) dy =

∫ (
ηε ∗ (χh)− χh

)
mdy,

and the convolution converges in L1.

Ad ii). To see the estimate (175), we invoke Jensen’s inequality. More
precisely, consider the function

F (s,m) =


|m|2
s , if |m| > 0, s > 0,
∞, if |m| > 0, s = 0,
0, if m = 0.

(178)

We have seen that this is a convex function for s > 0. Due to its homogeneity,
it is actually a convex function also for s ≥ 0: Along any straight line in the
(m, s)–plane, one must have

lim
m→0, s→0

F (s,m) = 0.

With this knowledge we find a function r(z, y), so that

∀ y, z, F (χ(z),m(z)) ≥ F (sε(y),mε(y)) + r(z, y), (179)

∀ y,
∫
ηε(z)r(y − z, y)dz = 0. (180)
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Precisely, r is the affine function

r(z, y) =
2mε(y)

sε(y)
(m(z)−mε(y))−

m2
ε(y)

s2ε(y)
(χ(z)− sε(y)).

Integrating inequality (179) against the convolution kernel yields∫
ηε(z)F (χ(y − z),m(y − z))dz ≥ F (sε(y),mε(y)) ∀y ∈ R.

Integrating finally over y ∈ R, and using
∫
ηε(z)dz = 1,∫

F (χ(y),m(y)) dy ≥
∫
F (sε(y),mε(y)) dy.

By the definition of F , this means∫
χ|f |2dy ≥

∫
sε|fε|2dy.

To show the uniform integrability, we integrate over B ⊂ R and find∫
B
sε|fε|2dy ≤

∫
ηε(z)

∫
B
F (χ(y−z),m(y−z))dydz ≤ sup

z

∫
B−z

F (χ(y),m(y)) dy,

thus identifying a modulus of integrability in terms of the limit f , because
the Lebesgue measure is translation invariant.

To see that this implies convergence in L2, we show that on the other hand∫
χ|f |2dy ≤ lim inf

ε→0

∫
sε|fε|2dy (181)

must hold true. This is a consequence of the convergence of mε → m in
L2(dy), which holds weakly (and in fact strongly, as is well known and
follows by a similar argument as the one presented here). Indeed, since
0 ≤ sε ≤ 1,∫

χ|f |2dy =

∫
|χf |2dy ≤ lim inf

ϵ→0

∫
|sεfε|2dy ≤ lim inf

ε→0

∫
sε|fε|2dy,

which completes the proof. Notice that we have shown in particular as a
straightforward consequence that

∫
y≤0 sε|fε|

2dy → 0, and (expanding the

square) that ∫
sε|fε − χf |2dy → 0. (182)

We now proceed to discuss the derivative. For this let
∫
χ|f ′|2dy < ∞.

It turns out that the choice of convolution kernel now plays a certain role.
Any reasonable kernel η will work, either piecewise polynomial with compact
support, or of algebraic or exponential decay. We have
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Lemma 14. (Estimate for the derivative)
i) There is a constant C = C(η), so that for all ε ≥ 0,∫

sε|f ′ε|2dy ≤ C

∫
χ|f ′|2dy. (183)

ii) The value f(0) is defined, and it holds

1

ε1/2
|fε(0)− f(0)| → 0. (184)

iii) One has uniform integrability of sε|f ′ε|2, and

lim
ε→0

∫
sε|f ′ε|2dy =

∫
χ|f ′|2dy. (185)

iv) sε f
′
ε → χf ′ in L2(dy).

Proof. The first point will be seen along the proof of iii). The fact that

f(0) is defined is due to the embedding into the Hoelder–space C0, 1
2 . The

second point also follows as a by–product. We proceed directly to the proof
of iii), which relies on a formula for the derivative. One can say that the
strategy is to compare m′

ε = s′εfε + sεf
′
ε with m′ = f(0)δ0 + χf ′. Precisely

we claim that

f ′ε(y) = −ηε(y)
sε(y)

(fε(y)− f(0)) + (Lεf
′)(y). (186)

Here, we denoted as above,

Lεf
′ =

1

sε
ηε ∗ (χf ′). (187)

Indeed, notice first that s′ε = ηε. Then by the definition of fε,

f ′ε = −s
′
ε

s2ε
ηε ∗ (χf) +

1

sε
ηε ∗ (χf)′.

The first term can be written as −ηε
sε
fε. For the second term, the deriva-

tive falls onto f , and yields precisely Lεf
′, or falls onto χ, and then yields

ηε(y)
sε(y)

f(0).

It was the result of Lemma 13 that the sequence Lεf
′ is uniformly integrable,

and realizes already the limit∫
sε|Lεf

′|2dy →
∫
χ|f ′|2dy. (188)

Moreover obviously, sε Lεf
′ → χf ′ in L2(dy).
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Hence to prove iii), (and thus also iv)), it remains only to show that the first
term in (186) converges to zero. To show this, we rely on another expression,
precisely in terms of Lεf

′. Indeed we have

ηε(y)

sε(y)
(fε(y)− f(0)) =

ηε(y)

sε(y)2

∫ y

−∞
(ηε ∗ (χf ′))(z)dz, (189)

or equivalently,

fε(y)− f(0) =

∫ y

−∞

sε(z)

sε(y)
(Lεf

′)(z)dz. (190)

In this second form, we deduce this formula directly from the differential
equation (186). Indeed, (190) is Duhamel’s formula and provides clearly a
solution to the differential equation (186). Hence one verifies (190) if one
checks that the integral is finite, and the limit at y → −∞ is consistent.
But this is obvious from its last reformulation as

sε(y)fε(y)− sε(y)f(0) =

∫ y

−∞
(ηε ∗ (χf ′)(z)dz. (191)

Indeed, on the left hand side, both sε and sεfε = mε must decay to zero.
On the right hand side, the integrand is the convolute of a function that
vanishes for y < 0.
Let us more precisely give an estimate of this right hand side. It reads by
virtue of the Fubini lemma∫ y

−∞

∫
R
ηε(w)(χf

′)(z − w)dw dz =

∫
z≤y

dz

∫
w≤z

dw ηε(w)f
′(z − w) (192)

=

∫
w≤y

dw

∫
w≤z≤y

dz f ′(z − w) ηε(w), (193)

and is estimated according to Cauchy–Schwarz as∫ y

−∞
|(ηε ∗ (χf ′)(z)| dz ≤

∫ y

−∞
dw ηε(w) |y − w|

1
2

(∫ y

w
|f ′(z − w)|2dz

) 1
2

.

(194)
Let us show that the evaluation in y = 0 leads to the claim ii). Indeed, due
to the symmetry of η, sε(0) =

1
2 , hence according to (191) and (194),

1

2
|fε(0)− f(0)| ≤

∫ 0

−∞
dw ηε(w) |w|

1
2

(∫ 0

w
|f ′(z − w)|2dz

) 1
2

.

The right hand side in turn we rewrite according to the rescaling procedure
εw = ŵ as

ε
1
2

∫ 0

−∞
dŵ η(ŵ)|ŵ|

1
2

(∫ 0

εŵ
|f ′(z − εŵ)|2dz

) 1
2

.
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We see that if

|ŵ|
1
2 η(ŵ) ∈ L1(dŵ), (195)

and of course χf ′ ∈ L2(dz), then

1

ε1/2
|fε(0)− f(0)| ≤ 2

∫ 0

−∞
dŵ η(ŵ)|ŵ|

1
2

(∫ 0

εŵ
|f ′(z − εŵ)|2dz

) 1
2

is finite independent of ε, and even tends to zero as ε → 0 by dominated
convergence: For every fixed ŵ, the dz–integral converges to zero as ε→ 0.
Under the same assumption on η, the right hand side of (194) is finite, and
this proves the formula (190).

In view of (186), we finally need to show that the norm∫
R
sε(y)

η2ε(y)

s2ε(y)
|fε(y)− f(0)|2dy → 0, (196)

as ε → 0. Indeed this will show claim iii), and make obvious a forteriori
claim iv). We rely again on the estimate (194) to see

|fε(y)− f(0)| ≤ 1

sε(y)

∫ y

−∞
dw ηε(w) |y − w|

1
2

(∫ y

w
|f ′(z − w)|2dz

) 1
2

,

so that the norm in (196) is less than

∫
R
dy

η2ε(y)

s3ε(y)

∣∣∣∣∣
∫ y

−∞
dw ηε(w) |y − w|

1
2

(∫ y

w
|f ′(z − w)|2dz

) 1
2

∣∣∣∣∣
2

.

A similar rescaling procedure as above turns this into

∫
R
dŷ

η2(ŷ)

s3(ŷ)

∣∣∣∣∣∣
∫ ŷ

−∞
dŵ η(ŵ) |ŷ − ŵ|

1
2

(∫ εŷ

εŵ
|f ′(z − εŵ)|2dz

) 1
2

∣∣∣∣∣∣
2

.

We see that if in addition

η2(ŷ)

s3(ŷ)

(∫ ŷ

−∞
dŵ η(ŵ) |ŷ − ŵ|

1
2

)2

∈ L1(dŷ), (197)

then the norm (196) must be bounded by C
∫
χ|f ′|2dz. This proves claim

i), in view of (186) and Lemma 13. More precisely, the norm (196) must
converge to zero by dominated convergence: For fixed ŷ, ŵ, the dz–integral
tends to zero, hence by dominated convergence, for fixed ŷ, the dŵ–integral
converges to zero, and for the same reason, the dŷ–integral converges to
zero. This proves claim iii), again in view of (186) and Lemma 13.
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Let us show in addition that (197) can indeed be satisfied, by a function η
of algebraic decay |ŷ|−(α+1), α > 0. Then the integral is finite for ŷ > 0,
since there, s ≥ 1

2 , if only η
2(1 + |ŷ|) ∈ L1, which is obviously true.

And for ŷ ≪ −1 we have, dropping the hats, up to constants depending on
α,

|y|−2(α+1)

|y|−3α

(∫
|w|−(α+1)(|y|1/2 + |w|1/2)dw

)2

,

which behaves as |y|−(α+1) and is hence in L1. Indeed, the exponent is

−2α− 2 + 3α− 2(α− 1 + 1
2 + 1) = −α− 1.

It is not difficult to produce from these arguments the
Proof of Conjecture 1 (of Section 6.5, in the case s = s(y)). Given the
pair χ±(y), choose η(y) as a mollifier in the normal direction, and let as
above, sε± = ηε ∗ χ±. This respects s+ + s− = 1. Given moreover the pair
u± with

∫
χ±|u±|2dxdy <∞ and ∇·(χ+u++χ−u−) = 0, consider the same

operation, the convolution to be understood in the y–variable:

m± = χ±u±, (198)

mε
± = ηε ∗m±, (199)

uε± =
1

sε±
mε

±. (200)

It respects
∇ · (s+u+ + s−u−) = 0.

Then by the first lemma, applied to the two components of u, one has
the L∞–bound, and convergence in L1∗, moreover the L2–convergence. For
the derivative, notice that ∂x commutes with the operator Lε, hence also
the L2–convergence of the x–derivative follows from the first lemma. For
the y–derivative, we invoke the second lemma, which also yields the L2–
convergence.

We address finally the Conjecture 2 (in Section 7.2). Here, we suggest
that the natural operation would be

m± = χ±∇ϕ±, (201)

mε
± = ηε ∗m±, (202)

−∇ · (sε±∇ϕε±) +∇ ·mε
± = 0. (203)

It respects the side constraint. Let us show that one has convergence in
L2, which at least justifies the definition of the ϕε±. We suggest that one
can show in a similar way the L2–convergence for the derivative, combining
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the arguments of Lemma 14 with those following below. It is a different
question whether there is an estimate for the elliptic equation (203) which
assures that ∇ϕε± ∈ L∞, and we leave it aside.

To show the convergence in L2, we remark that on the one hand,∫
sε|∇ϕε|2dx ≤

∫
sε |

mε

sε
|2dx ≤

∫
χ|∇ϕ|2dx,

where the first inequality is the property of the Dirichlet integral, and the
second is the result of Lemma 13.
On the other hand,∫

sε∇ϕε · ∇η dx =

∫
mε · ∇η dx →

∫
χ∇ϕ · ∇η dx

holds true for any test smooth function η, and implies∫
χ|∇ϕ|2dx ≤ lim inf

ε→0

∫
sε|∇ϕε|2dx,

because indeed(∫
χ|∇ϕ|2dx

) 1
2

= sup
η

∫
χ∇ϕ · ∇η dx

(
∫
χ|∇η|2dx)

1
2

= sup
η

lim
ε→0

∫
sε∇ϕε · ∇η dx

(
∫
sε|∇η|2dx)

1
2

is not larger than

lim inf
ε→0

sup
η

∫
sε∇ϕε · ∇η dx

(
∫
sε|∇η|2dx)

1
2

= lim inf
ε→0

(∫
sε|∇ϕε|2dx

) 1
2

.

As in (182), this implies∫
sε |∇ϕε − χ∇ϕ|2dx → 0.
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[21] L. Székelyhidi, Jr., E. Wiedemann, Young measures generated by ideal
incompressible fluid flows. Arch. Rat. Mech. Anal., to appear.




