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Synopsis

The subject of the present work, titled “Extensibility of Association Schemes

and GRH-Based Polynomial Factoring”, is the application of the theory of

combinatorial schemes to problems in computational algebra. The principal

notions of combinatorial schemes which are studied in this work are asso-

ciation schemes (Bannai & Ito (1984), Zieschang (1996, 2005)), m-schemes

(Ivanyos, Karpinski & Saxena (2009), Arora et al. (2012)), and presuper-

schemes (Smith (1994, 2007), Wojdy lo (1998, 2001)). The main computa-

tional problems considered in this work are polynomial factoring over finite

fields, the Schurity problem of association schemes (and its relaxation in the

notion of extensibility), and matrix multiplication. We show that each of

the latter problems admits a deep connection to the theory of combinato-

rial schemes, and describe natural algebraic-combinatorial frameworks which

capture the essence of their algebraic complexity. As a logical application,

we delineate how structural results for combinatorial schemes can translate

to fundamental improvements in the realm of computational algebra.

Consider the classical problem of finding a nontrivial factor of a given

polynomial f(x) over a finite field Fq. This problem has many known ef-

ficient, but randomized, algorithms. The deterministic complexity of this

problem is a famous open question even assuming the generalized Riemann

hypothesis (GRH). A large part of this work is devoted to the recent results by
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2 Synopsis

Arora et al. (2012), which improve the state of the art of polynomial fac-

toring by putting the focus on prime degree polynomials. Suppose f(x)

is a polynomial of prime degree n. We show that if (n − 1) has a ‘large’

r-smooth divisor s, then it is possible to find a nontrivial factor of f(x) in

deterministic poly(nr, log q) time; assuming GRH and that s = Ω(
√
n/2r).

In particular, for r = O(1) we have a polynomial time algorithm. Further,

for r = Ω(log log n) there are infinitely many prime degrees n for which the

algorithm is applicable and better than the best known; assuming GRH. The

framework underlying the above results builds on the algebraic-combinatorial

notions of association schemes and m-schemes. We show that the m-schemes

on n points which implicitly appear in the factoring algorithm have an ex-

ceptional structure; leading to the improved time complexity. The structure

theorem at the heart of this argument proves the existence of small intersec-

tion numbers in any association scheme that has many relations, and roughly

equal valencies and indistinguishing numbers. We note that this structure

theorem could also be of independent (combinatorial) interest.

A related topic, which represents another focal point of this work, is

the notion of extensibility of association schemes, which was introduced by

Arora & Zieschang (2012). An association scheme X = (Q,Γ) is said to

be extensible to height t if X is associated to a height t presuperscheme.

Smith (1994, 2007) showed that an association scheme X = (Q,Γ) of or-

der d := |Q| is Schurian (i.e. induced by a group) iff X is extensible to

height (d − 2). In this work, we formalize the maximal height tmax(X) of

an association scheme X as the largest number t ∈ N such that X is ex-

tensible to height t (we also include the possibility tmax(X) = ∞, which

is equivalent to tmax(X) ≥ (d − 2)). Intuitively, the maximal height pro-

vides a natural measure of how close an association scheme is to being
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Schurian. Moreover, the maximal height lies at the core of the question under

which conditions certain types of m-schemes can be ‘embedded’ into a larger

(m+ k)-scheme (where k > 0); the latter observation links the notion of the

maximal height to the subject of polynomial factoring. For computing the

maximal height, we introduce the association scheme extension algorithm,

which on input an association scheme X = (Q,Γ) of order d := |Q| and a

number t ∈ N such that 1 ≤ t ≤ (d− 2), decides in time dO(t) if the scheme

X is extensible to height t. In particular, if t is a fixed constant, then the

running time of the association scheme extension algorithm is polynomial in

the order of X. The association scheme extension algorithm is used to show

that all non-Schurian association schemes up to order 26 are completely in-

extensible, i.e. they are not extensible to any positive height t ∈ N>0. The

above results may be viewed as a first step towards understanding the alge-

braic and combinatorial properties possessed by association schemes which

are extensible to a certain height; the latter topic is of particular interest for

the polynomial factoring connection delineated in this work.

As an additional application of the theory of association schemes to prob-

lems in algebraic complexity, we describe the recent approach by Cohn &

Umans (2012) to efficient matrix multiplication. The term ‘efficient matrix

multiplication’ refers to the problem of minimizing the number of arithmetic

operations necessary to multiply two matrices with entries in some field k. We

outline here why the problem is considered to be central in computational

algebra and theoretical computer science as a whole, describe some of the

past breakthroughs in obtaining upper bounds on the matrix multiplication

exponent ω, and delineate in detail the Cohn-Umans ‘algebra-embedding’

approach and the progress it has made towards the famous open conjecture

ω = 2. In addition, we describe how association schemes and their adjacency
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algebras pertain to the Cohn-Umans fast matrix multiplication framework,

and explain their important role in further research plans.

The material in this work is organized as follows. Chapter 1 provides a

detailed overview of the concepts and problems which represent our main

topics of study. Chapter 2 introduces the notion of association schemes,

which is central throughout the whole of this work – and discusses important

and recent structural results in association scheme theory. In Chapter 3,

we define the concept of m-schemes and describe properties of this object

which are intimately connected to the subject of polynomial factoring over

finite fields. In Chapter 4, we delineate the GRH-based IKS-framework for

polynomial factoring over finite fields (Ivanyos, Karpinski & Saxena (2009),

Arora et al. (2012)), which builds on the theory of m-schemes. Moreover,

we describe how structural results for association schemes and m-schemes

may be used to obtain improvements in the domain of polynomial factoring

via the IKS-framework. Chapter 5 introduces the notion of extensibility of

association schemes, a concept closely related to both the Schurity problem

of association schemes and the IKS-polynomial factoring framework. Chap-

ter 6 delineates the recent framework of Cohn & Umans (2012) for efficient

matrix multiplication, which connects the complexity of matrix multipli-

cation to purely combinatorial properties of association schemes and their

adjacency algebras. Chapter 7 provides a conclusion of the methods and re-

sults depicted in this work, and considers some of the questions which were

left open.



Chapter 1

Introduction

In the following, we provide a detailed overview of the concepts and problems

which are central throughout the whole of this work. §1.1 introduces the

problem of polynomial factoring over finite fields, and outlines the idea of the

IKS polynomial factoring framework [IKS09, AIKS12] which is based on the

theory of combinatorial schemes. §1.2 provides an overview of the notion of

extensibility of association schemes, which is connected to both the Schurity

problem of association schemes and the IKS-polynomial factoring framework.

§1.3 introduces the subject of efficient matrix multiplication, and discusses

a new approach to this topic, suggested by Cohn and Umans [CU12], which

centers around a scheme-theoretic framework.

1.1 Polynomial Factoring over Finite Fields

We consider the classical problem of finding a nontrivial factor of a given

polynomial over a finite field. This problem is known to admit random-

ized polynomial time algorithms, such as Berlekamp [Ber67], Rabin [Rab80],

Cantor & Zassenhaus [CZ81], von zur Gathen & Shoup [vzGS92], Kaltofen

5



6 1. Introduction

& Shoup [KS98], and Kedlaya & Umans [KU11], but its deterministic time

complexity is a longstanding open problem. The computational problem

of polynomial factoring over finite fields is embedded into the larger deran-

domization question in computational complexity theory, i.e. whether any

problem solvable in probabilistic polynomial time can also be solved in de-

terministic polynomial time.

In this work, we consider the deterministic time complexity of polyno-

mial factoring over finite fields assuming the generalized Riemann hypothe-

sis (GRH) (see Section 4.1). GRH ensures that we efficiently find primitive

r-th nonresidues in a finite field Fq, which are in turn used to find a root

x (if it exists in Fq) of polynomials of the type xr − a over Fq [AMM77].

There are many known GRH-based deterministic factoring algorithms but

all of them are super-polynomial time except on special input instances:

Rónyai [Rón92] showed that under GRH, any polynomial f(x) ∈ Z[x] can

be factored modulo p deterministically in time polynomial in the order of

the Galois group of f(x), except for finitely many primes p. Rónyai’s re-

sult generalizes previous work by Huang [Hua91], Evdokimov [Evd89], and

Adleman, Manders & Miller [AMM77]. Bach, von zur Gathen & Lenstra

[BvzGL01] showed that polynomials over finite fields of characteristic p can

be factored in deterministic polynomial time if φk(p) is smooth for some

integer k, where φk(p) is the k-th cyclotomic polynomial. This result gen-

eralizes previous work by Rónyai [Rón89], Mignotte & Schnorr [MS88], von

zur Gathen [vzG87], Camion [Cam83], and Moenck [Moe77].

The line of research which the present work connects to was started by

Rónyai [Rón88]. There GRH was used to find a nontrivial factor of a poly-

nomial f(x) ∈ Fq[x], where n = deg f has a small prime factor, in deter-

ministic polynomial time. The framework of Rónyai [Rón88] relies on the
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discovery that finding a nontrivial automorphism in certain algebras (such

as A := Fq[x]/f(x) and its tensor powers) yields an efficient decomposition

of these algebras under GRH. Building on the work of Rónyai, Evdokimov

[Evd94] showed that an arbitrary degree n polynomial f(x) ∈ Fq[x] can be

factored deterministically in time poly(log q, nlogn) under GRH. Since Ev-

dokimov’s work, there have been several attempts to either remove GRH

[IKRS12] or improve the time complexity, leading to several analytic num-

ber theory, algebraic-combinatorial conjectures and special case solutions

[CH00, Gao01, Sah08, IKS09, AIKS12].

In this work, we delineate the methods of [IKS09, AIKS12], which sub-

sume the known algebraic-combinatorial approaches to polynomial factor-

ing over finite fields [Rón88, Evd94, CH00, Gao01, Sah08]. The frame-

work which we describe here relates the complexity of polynomial factor-

ing to ‘purely’ combinatorial objects (called schemes) that are central to

the research area of algebraic combinatorics. Note that the methods of

[Rón88, Evd94, CH00, Gao01, Sah08] arrange the underlying roots of the

polynomial in a combinatorial object that satisfies some of the defining prop-

erties of schemes. In this work, we further the understanding of schemes by

making progress on a related combinatorial conjecture, which is naturally

connected to the subject of polynomial factoring.

A special case which is of particular interest to the present work is the

factorization of prime-degree polynomials over finite fields. It is perhaps

surprising that this case should be easier than the problem of polynomial

factoring in general, but it turns out that the combinatorial framework in-

troduced in [IKS09, AIKS12] behaves quite well for prime-degree polynomi-

als and gives an improved time complexity (see Section 4.4). The reason

for this behavior is found in the theory of combinatorial schemes; in particu-
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lar in certain structural results about association schemes of prime order (see

Sections 2.5 & 2.6) and m-schemes on a prime number of points (see

Section 3.5). We delineate the core ideas of these notions below.

Association Schemes and m-Schemes

The GRH-based algorithm for factoring polynomials over finite fields by

Ivanyos, Karpinski and Saxena [IKS09, Aro10, AIKS12] (called IKS-algorithm

in the following) relies on the use of combinatorial schemes, more specifically

association schemes and m-schemes (for a given positive integer m). If we

denote [n] := {1, ..., n}, then an m-scheme can be described as a partition

of the set [n]s, for each 1 ≤ s ≤ m, which satisfies certain natural proper-

ties called compatibility, regularity and invariance (Section 3.1). The notion

of m-scheme is closely related to the concepts of presuperscheme [Woj01a,

Woj98, Woj01b], superscheme [Smi94], association scheme [BI84, Zie05], co-

herent configuration [Hig70], cellular algebra [WL68] and Krasner algebra

[Kra38]. The reader may note that the techniques initiated by [WL68] are

closely related to another open problem in computational complexity - decid-

ing graph isomorphism. Moreover, coherent configurations provide a natural

framework for fast matrix multiplication [CU12].

The IKS-algorithm (Section 4.2) associates to a polynomial f(x) ∈ Fq[x]

the natural quotient algebra A := Fq[x]/f(x) and explicitly calculates spe-

cial subalgebras of its tensor powers A⊗s (1 ≤ s ≤ m). It then performs a

series of operations on systems of ideals of these algebras (which are efficient

under GRH), and either finds a zero divisor in A - which is equivalent to

factoring f(x) - or obtains an m-scheme from the combinatorial structure

of A⊗s (1 ≤ s ≤ m). In the latter case (which we think of as the ‘bad’

case), the m-scheme obtained may be interpreted as the ‘reason’ why the
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IKS-algorithm could not find a zero divisor in A. However, it is not dif-

ficult to prove that the IKS-algorithm always finds a zero divisor in A if

we choose m large enough (viz. in the range log n), yielding that the IKS-

algorithm deterministically factors f(x) in time poly(nlogn, log q). Moreover,

it is conjectured that even choosing m as constant, say m = c where c ≥ 4, is

enough to find a zero divisor in A (and thus factor f), which would give the

IKS-algorithm a polynomial running time under GRH. This is the subject of

the so-called schemes conjecture (Section 3.5) on the existence of matchings

(Sections 3.4 & 4.3).

We remark that the schemes conjecture is a purely combinatorial conjec-

ture which concerns structure of certain types of m-schemes. The schemes

conjecture is especially motivated by the fact that it is already proven for an

important class of m-schemes, namely the so-called orbit m-schemes (Theo-

rem 3.5.2). In this current work, we outline the argument of [AIKS12], which

gives a proof of the schemes conjecture for an interesting class of m-schemes

on a prime number of points. Via the IKS polynomial factoring framework,

the latter result translates to a (perhaps surprising) theorem about the fac-

torization of prime degree polynomials over finite fields (see Theorem 4.4.1).

The proof builds on the intimate connection of m-schemes and association

schemes (see Section 3.2), and involves some strong structural results about

association schemes of prime order by Hanaki & Uno [HU06] and Muzychuk

& Ponomarenko [MP12]. We provide some intuition for the above-mentioned

results in the following.

Recall [Zie05, MP12] that an association scheme is a pair (X,G) which

consists of a finite set X and a partition G of X ×X such that

1. G contains the trivial relation 1 := {(x, x) |x ∈ X},

2. if g ∈ G, then g∗ := {(y, x) | (x, y) ∈ g} ∈ G, and
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3. for all f, g, h ∈ G, there exists an intersection number chfg ∈ N such

that for all (α, β) ∈ h, chfg = #{γ ∈ X | (α, γ) ∈ f, (γ, β) ∈ g}.

An element g ∈ G is called a relation (or color) of (X,G). We call |X|

the order of (X,G). For each g ∈ G, we define its valency ng := c1
gg∗ , and its

indistinguishing number c(g) :=
∑

v∈G c
g
vv∗ .

One may think of an association scheme (X,G) as a colored directed graph

with vertices X and edges G. However, association schemes are significantly

richer in algebraic structure than a graph – in fact, they can be regarded as

a natural generalization of the notion of groups (which is why the field of

association schemes has frequently been referred to as “group theory without

groups” [BI84]). The central scheme-theoretic result of this work proves

the existence of small intersection numbers in association schemes where

both the nontrivial valencies and indistinguishing numbers are confined to

a certain range (see Theorem 2.6.1). The latter theorem especially applies

to association schemes of prime order - yielding a strong structural result

for this class of schemes (see Theorem 2.5.5 and Corollary 2.6.2). Drawing

on the connection of association schemes and m-schemes, we deduce from

Corollary 2.6.2 the existence of matchings in certain m-schemes on a prime

number of points (see Theorem 3.5.3). Via the IKS polynomial factoring

framework, the latter result translates to significant improvements in the

domain of polynomial factoring (see Theorem 4.4.1 and Corollary 4.5.2).

1.2 Extensibility of Association Schemes

A substantial part of this work is devoted to the notion of extensibility of

association schemes, a concept which was first defined in [AZ12]. We motivate

the notion of extensibility below. Let X be a finite set and G a partition

of X ×X. We call the partition G group-induced if there exists a transitive
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permutation group G acting on X such that the partition G is the set of

diagonal orbits of X ×X under the action of G. It is a natural problem to

ask for an efficient algorithmic method to determine whether a given partition

G of X ×X is group-induced. Note that this amounts to the same problem

as asking for an efficient algorithm to detect whether a colored complete

digraph is exactly determined by its automorphism group.

A necessary condition for the partition G of X ×X to be group-induced

is that the pair (X,G) forms an association scheme (see Section 2.1) – a

condition which can be checked in time polynomial in |X|. A necessary and

sufficient condition for G to be group-induced is that the pair (X,G) forms a

Schurian association scheme. Note that it is a long-standing open question

whether there exists a polynomial-time algorithm for detecting the Schurity

of association schemes; currently, the best known methods for Schurity test-

ing have a subexponential running time [BKL83, BL83]. In this work, we

study the notion of extensibility of association schemes, which may be re-

garded as an intuitive measure of how close an association scheme is to being

Schurian. As we will see, the problem of computing the extensibility prop-

erties of association schemes provides a natural relaxation of the Schurity

testing problem.

Phrasing Smith’s characterization of Schurity [Smi94, Smi07] in the ter-

minology of extensibility, a partition G of X × X is group-induced if the

pair (X,G) is an association scheme which is extensible to height (d − 2),

where d := |X| is the order of (X,G). Note here that an association scheme

X = (X,G) is said to be extensible to height t if X is associated to a height

t presuperscheme (see Section 5.1); the latter notion may be regarded as a

higher-dimensional analog of association schemes. In Chapter 5, we formal-

ize the maximal height tmax(X) of an association scheme X = (X,G) as the
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largest number t ∈ N such that X is extensible to height t (we also include

the possibility tmax(X) =∞, which is equivalent to tmax(X) ≥ (d− 2)). The

notion of the maximal height fully captures the extensibility properties of

association schemes, and specifies our previous remark that the extensibility

properties provide a natural measure of how close an association scheme is

to being Schurian.

For the purpose of computing the maximal height, we introduce the asso-

ciation scheme extension algorithm [AZ12]. On input an association scheme

X = (Q,Γ) of order d := |Q| and a number t ∈ N such that 1 ≤ t ≤ (d− 2),

the association scheme extension algorithm decides in time dO(t) if the scheme

X is extensible to height t. In particular, if t is a fixed constant, then the

running time of the association scheme extension algorithm is polynomial in

the order of X. The association scheme extension algorithm is used to show

that all non-Schurian association schemes up to order 26 are completely in-

extensible, i.e. they are not extensible to any positive height t ∈ N>0. Via

the tensor product of association schemes, the latter result gives rise to a

multitude of infinite families of completely inextensible association schemes.

Apart from its connection to the problem of Schurity testing, the no-

tion of extensibility also plays a major role in the IKS polynomial factoring

framework [AIKS12, IKS09]. For the area of research which the latter works

fall into, it is of particular interest to gain a more thorough understanding

of the combinatorial properties possessed by association schemes which are

extensible to a certain height. We discuss this connection in Section 5.1.

1.3 Efficient Matrix Multiplication

As an additional application of (commutative) association schemes to compu-

tational complexity, we describe the recent Cohn-Umans [CU12] framework
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for efficient matrix multiplication. The term ‘efficient matrix multiplica-

tion’ refers to the computational problem of minimizing the number of arith-

metic operations necessary to compute the product of two n × n matrices

A,B ∈ kn×n with entries in some field k,

(AB)ik =
n∑
j=1

AijBjk.

The asymptotic complexity of matrix multiplication is captured by the matrix

multiplication exponent ω, which represents the minimum number ω ∈ [2, 3]

such that the product of two n×n matrices can be computed using O(nω+o(1))

arithmetic operations. It is a well known fact that the complexity of many

central computational problems (besides matrix multiplication) depend on

the exponent ω: For instance, the problem of matrix inversion, comput-

ing the determinant, and computing the characteristic polynomial of n × n

matrices each have complexity O(nω+o(1)) (see [BCS97], Ch. 16 for a com-

prehensive list of problems whose complexity depend on ω). Determining

the exact value of ω is a long-standing barrier in the field of computational

algebra, and is widely considered one of the most important open problems

in complexity theory as a whole. It is a famous open conjecture to prove that

ω = 2; currently, the best known upper bound for the exponent ω stands at

ω < 2.373 [VW12].

In this work, we delineate the Cohn-Umans [CU12] algebra embedding

framework for efficient matrix multiplication. The Cohn-Umans approach

relies on the notions of matrix multiplication tensors and tensor rank to

algebraically describe the asymptotic complexity of matrix multiplication

(similar to the classical works [Bin80, Sch81, CW87]). In contrast to the

latter works, Cohn and Umans [CU12] do not produce explicit tensor calcu-

lations to deduce bounds on ω. Rather, they develop a universal method to
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embed matrix multiplication tensors into commutative and semisimple com-

plex algebras, thereby relating the complexity of matrix multiplication to

properties of purely algebraic objects (see Section 6.2). Their work extends

a previous line of research which specialized on embedding matrix multi-

plication tensors into group algebras [CU03, CKSU05, ASU12]. Using the

Cohn-Umans group algebra embedding framework, one can show the upper

bound ω < 2.41 [CKSU05], not far from the best known ω < 2.373 [VW12].

As a promising candidate class of commutative and semisimple com-

plex algebras to realize matrix multiplication tensors and improve the upper

bound on ω, Cohn and Umans [CU12] identify complex adjacency algebras

of commutative association schemes. They provide a purely combinatorial

condition for association schemes to realize matrix multiplication tensors

via their complex adjacency algebra (see Section 6.3). In particular, this

approach leads to a natural algebraic-combinatorial conjecture for proving

ω = 2 (see Conjecture 6.3.1). Interestingly, Conjecture 6.3.1 subsumes the

entirety of the earlier conjectures for ω = 2 of the Cohn-Umans group al-

gebra framework [CU03, CKSU05, ASU12]. Adopting a more global view,

the Cohn-Umans [CU12] efficient matrix multiplication framework reflects

fittingly the overall idea of the present work – the application of association

schemes (as a natural extension of the group concept) as a combinatorial tool

in computational complexity.



Chapter 2

Association Schemes

Association schemes are standard combinatorial objects which appear fre-

quently in the realm of algebraic combinatorics [Bai04, BI84, Zie96]. The

theory of association schemes is often referred to as “group theory without

groups”, since it constitutes a natural generalization of the latter notion. In

this chapter, we give an introduction to the theory of association schemes

and discuss several important and recent results in this area. Our approach

to association schemes is of algebraic nature; it utilizes ring theory, represen-

tation theory and linear algebra. Note that the results which are discussed

in this chapter will be of much importance to the framework for polynomial

factoring over finite fields described in Chapters 3 and 4.

The material in this chapter is organized as follows. In §2.1, we introduce

the notion of association schemes and look at basic examples. In §2.2, we

define the concept of the adjacency algebra of association schemes. §2.3

provides an overview of the character theory of association schemes. §2.4

provides some important results about characters of the complex adjacency

algebra. In §2.5, we consider structural results for association schemes of

prime order, most notably the Hanaki-Uno Theorem (see Theorem 2.5.4). In

15
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§2.6, we prove a central combinatorial result about association schemes with

bounded valencies and indistinguishing numbers (see Theorem 2.6.1).

2.1 Basic Notions

In this section, we discuss the definition of association schemes and look at

notable examples. The examples we consider include Schurian association

schemes, cyclotomic schemes and strongly regular graphs. Furthermore, we

give some basic identities for the intersection numbers of association schemes.

Definition 2.1.1 (Association Scheme). Let X be a finite set and G a par-

tition of X ×X. We say that X = (X,G) is an association scheme if

(A1) G contains the trivial relation 1 := {(x, x) |x ∈ X},

(A2) If g ∈ G, then g∗ := {(y, x) | (x, y) ∈ g} ∈ G,

(A3) For all f, g, h ∈ G, there exists an intersection number chfg ∈ N such

that for all (α, β) ∈ h,

chfg =
∣∣{γ ∈ X | (α, γ) ∈ f and (γ, β) ∈ g}

∣∣ .
An element g ∈ G is called a relation (or color) of X. We call |X| the

order and |G| the rank of X. For each relation g ∈ G, we define its va-

lency ng := c1
gg∗ and its indistinguishing number c(g) :=

∑
v∈G c

g
vv∗ .

If chfg = chgf for all f, g, h ∈ G, then we say that X is commutative.

A classical example of association schemes is provided by Schurian asso-

ciation schemes, which arise from the diagonal orbits of transitive permuta-

tion groups (see below). In Chapter 3, when we study m-schemes, Schurian

schemes will appear as a special case of the more general orbit m-schemes.
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Example 2.1.2 (Schurian Association Scheme). Let X be a finite nonempty

set and let G be a transitive permutation group on X. Let G := {1, g1, ..., gs}

denote the set of orbits of X × X under the diagonal action of G, where

1 := {(x, x) |x ∈ X} denotes the trivial orbit. Then (X,G) is an association

scheme. Schemes which arise from the action of a permutation group in the

above-described manner are called Schurian association schemes.

Schurian schemes provide copious examples of association schemes, but

they do not cover all association schemes. A list of non-Schurian association

schemes of small order can be found in Hanaki and Miyamoto’s work [HM03].

Examples of infinite families of non-Schurian association schemes can for

instance be found in [EP99, FKM94].

Determining whether there exists a polynomial-time algorithm which de-

cides if a given association scheme is Schurian or non-Schurian is a long-

standing open problem. The methods introduced in [BKL83, BL83] yield

subexponential-time algorithm for testing Schurity of association schemes;

this is currently the best known. Recently, Ponomarenko [Pon11] devised an

algorithm which decides the Schurity problem for antisymmetric association

schemes in polynomial time (note that an association scheme X = (Q,Γ) is

called antisymmetric if for all 1 6= g ∈ G, g∗ = {(y, x) | (x, y) ∈ g} 6= g).

Next, we consider the example of cyclotomic schemes.

Example 2.1.3 (Cyclotomic Scheme). Let q be prime power and let

d|(q − 1). Let F∗q denote the multiplicative group of the field Fq. Fix a

generator α of F∗q and consider the subgroup
〈
αd
〉

generated by αd. Note

that
〈
αd
〉

is a subgroup of index d in F∗q, the cosets of
〈
αd
〉

in F∗q are

αi
〈
αd
〉
, i = 1, ..., d.
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Let P := {Pi | 0 ≤ i ≤ d} be the partition of Fq × Fq defined by

P0 := {(x, x) |x ∈ Fq},

Pi := {(x, y) ∈ Fq × Fq |x− y ∈ αi
〈
αd
〉
}, i = 1, ..., d.

Then (Fq,P) is an association scheme. Observe that all relations of (Fq,P)

are equal in size, i.e. |Pi| := q(q−1)
d

(i = 1, ..., d). Moreover, observe that

the definition of (Fq,P) does not depend on the choice of the generator α:

If β is another generator of F∗q, say β = αs for some s ∈ N, then

βj
〈
βd
〉
⊂ αjs

〈
αd
〉

(j = 1, ..., d), and since βj
〈
βd
〉

and αjs
〈
αd
〉

are equal

in size,

βj
〈
βd
〉

= αjs
〈
αd
〉
, j = 1, ..., d.

Hence, substituting β in place of α merely permutes the numbering of the

relations of (Fq,P). We conclude that the construction of (Fq,P) depends

only on the choice of q and d. We call (Fq,P) the cyclotomic scheme in

(q, d) and denote it by Cyc(q, d).

An important class of examples of association schemes is constructed from

the notion of strongly regular graphs. We describe this type of example below.

Example 2.1.4 (Strongly Regular Graph). A k-regular graph (V,E) is said

to be strongly regular if there exist numbers r, s ∈ N such that:

(i) Every two adjacent vertices have r common neighbors,

(ii) Every two non-adjacent vertices have s common neighbors.

Note that if (V,E) is a strongly regular graph, then its complement (V, Ē) is

also strongly regular. If we regard (V,E) and (V, Ē) as symmetric digraphs,

then we can construct an association scheme X = (V,G) by defining

G := {1, E, Ē},
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where 1 denotes the trivial relation. We call X the association scheme cor-

responding to the strongly regular graph (V,E).

For further examples of association schemes, the reader is referred to the

introductory texts [Bai04, BI84]. We conclude this section by listing some

fundamental identities for the intersection numbers of association schemes.

Note that the identities given below can all be found in [Zie96]; we make

repeated use of them in later parts of this work.

Lemma 2.1.5. Let (X,G) be an association scheme and let d, e, f ∈ G. The

following holds:

(i) cfde = cf
∗

e∗d∗,

(ii) cedf · ne = cdef∗ · nd,

(iii)
∑

g∈G c
f
ge = ne∗,

(iv)
∑

g∈G c
g
ef · ng = ne · nf .

2.2 The Adjacency Algebra

Let X = (X,G) be an association scheme and let n := |X| be the order of X.

For a relation g ∈ G, we denote its adjacency matrix by σg. Namely, σg

is a matrix whose rows and columns are indexed by X and its (x, y)-entry

is 1 if (x, y) ∈ g and 0 otherwise. Let Λ := {σg | g ∈ G} be the set of all

adjacency matrices of G. It follows from Definition 2.1.1 that

(i)
∑

g∈G σg is the n× n matrix with entries all 1,

(ii) σ1 ∈ Λ is the n× n identity matrix,

(iii) If σg ∈ Λ, then σg∗ = σTg ∈ Λ,
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(iv) For all f, g, h ∈ G, there exists a number chfg ∈ N such that

σfσg =
∑
h∈G

chfgσh.

To obtain (iv), note that for (α, β) ∈ h, the equation

chfg =
∣∣{γ ∈ X | (α, γ) ∈ f and (γ, β) ∈ g}

∣∣
can also be written as

chfg =
∑
γ∈X

(
σf
)
αγ

(
σg
)
γβ
,

and the right hand side is
(
σfσg

)
αβ

by the definition of matrix multiplication.

Note that a system of 0-1-matrices satisfying the above properties (i)-(iv)

and an association scheme constitute the same notion. Moreover, observe

that statements (i)-(iv) still hold if we consider the adjacency matrices

Λ = {σg | g ∈ G} as matrices over some commutative ring R with unity.

The latter observation gives rise to the definition of the adjacency algebra of

association schemes.

Definition 2.2.1 (Adjacency Algebra). Let X = (X,G) be an association

scheme and let R be a commutative ring with 1. Then we can define an

R-algebra (with respect to matrix multiplication)

RX =
⊕
g∈G

Rσg,

where σg is considered as a matrix over the coefficient ring R. We call RX

the adjacency algebra of X over R.

It is easily seen that the adjacency algebra RX is commutative iff the asso-

ciation scheme X is commutative. Moreover, we have the following important

criterion for the semisimplicity of adjacency algebras:
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Theorem 2.2.2. Let X = (X,G) be an association scheme. Let K be a field

of characteristic zero. Then the adjacency algebra KX is semisimple.

Proof. It suffices to prove that the Jacobson radical J(KX) of KX is trivial.

For the sake of contradiction, suppose there exists 0 6= σ ∈ J(KX). Choose

{rg ∈ K | g ∈ G} such that

σ =
∑
g∈G

rgσg.

Since σ is nontrivial, we can choose f ∈ G such that rf∗ 6= 0. We have

tr(σfσ) =
∑
g∈G

rg tr(σfσg) = rf∗ |f | ,

where tr denotes the trace function. Note that the second equality above

follows from

tr(σfσg) =
∑
h∈G

chfgtr(σh) =
∑
h∈G

chfgδ1h |X|

= c1
fg |X| = δf∗g nf |X| = δf∗g |f | .

Now observe that σfσ lies in J(KX); hence σfσ is nilpotent. It follows that

tr(σfσ) = 0.

We conclude rf∗ |f | = 0. But this contradicts rf∗ 6= 0.

Note that there exist many more useful criteria for establishing the semi-

simplicity of adjacency algebras. The reader may refer to [Zie96], Th. 4.1.3

and [Han00] for further examples of such criteria.

2.3 Character Theory of Association Schemes

In the following, we give a survey of the character theory of association

schemes. We begin by recalling the basic definition of characters. Let A be
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an algebra over some field K. Let V be anA-module such that dimK(V ) ∈ N.

For each a ∈ A, we have a linear map

ϕa : V −→ V, v −→ va.

The linear map defined by

χV : A −→ K, a −→ tr(ϕa)

is called the character of A afforded by V . In case V is an irreducible

A-module, we call χV an irreducible character. The set of all irreducible

characters of A is denoted by Irr(A).

Equivalently, characters can be defined via the notion of matrix represen-

tations. Recall that a matrix representation of A is a K-algebra homo-

morphism from A into a full matrix ring over K,

X : A −→Mn(K), a −→ X(a).

Given a matrix representation X of A, the map

χ : A −→ K, σ −→ tr(X(σ)).

constitutes a character of A, i.e. χ = χV for some A-module V such that

dimK(V ) ∈ N (note that the A-module V which affords χ is determined

uniquely up to isomorphism). In the above situation, we call χ the character

of A afforded by X. Furthermore, we call V a representation module

for χ.

In the following, let X = (X,G) be an association scheme and let K be a

field of characteristic 0. Note that we may regard integers a ∈ Z as elements

of K by identifying a = a ·1K . We will study the characters of the adjacency

algebra KX. Consider the following examples.
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Example 2.3.1 (Trivial Character). Consider the KX-representation

X : KX −→ K, σg −→ ng.

This is indeed a representation, since for all e, f ∈ G, it holds that

X(σeσf ) =
∑
g∈G

cgefX(σg) =
∑
g∈G

cgefng = nenf = X(σe)X(σf )

(see Lemma 2.1.5 (iv)). Let 1G denote the character afforded by X. We call

1G the trivial character of KX. Explicitly, we have

1G(σg) = ng

for all g ∈ G. Moreover, since dimK(T ) = 1 for any representation module

T of X, the trivial character 1G is irreducible.

Example 2.3.2 (Principal Character). Let χKX denote the character of KX

which is afforded by KX as a module. We call χKX the principal character

of KX. Explicitly, we have

χKX(σg) =
∑
v∈G

cvvg

for all g ∈ G.

Example 2.3.3 (Standard Representation, Standard Character). Denote by

n := |X| the order of X. We define the standard representation Y of

KX by

Y : KX −→Mn(K), σg −→ σg.

Let γ denote the character afforded by Y. We call γ the standard charac-

ter of KX. Explicitly, we have

γ(σg) = δ1gn

for all g ∈ G, where δ denotes the Kronecker delta.
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In the following, let X = (X,G) be an association scheme and let K

be a field of characteristic 0. By Theorem 2.2.2, the adjacency algebra

KX is semisimple. Especially, there are finitely many isomorphism types

S1, ..., Sk of irreducible KX-modules. Further, for any KX-module V such

that dimK(V ) ∈ N, we have an irreducible decomposition

V ∼= λ1S1 ⊕ · · · ⊕ λkSk,

where λ1, ..., λk ∈ N are some multiplicities. For the character χV of KX

afforded by V , this translates to the irreducible character decomposition

χV =
k∑
i=1

λiχi,

where χi denotes the irreducible character corresponding to the module Si.

Especially, note that the standard character γ of KX can be written as a

linear combination of irreducible characters. Since this constitutes an impor-

tant special case, we settle for the following convention.

Definition 2.3.4 (Multiplicity). Let γ be the standard character of KX

and let

γ =
∑

χ∈Irr(KX)

mχχ

be the irreducible character decomposition of γ, where mχ denotes the mul-

tiplicity corresponding to the irreducible character χ. We refer to mχ simply

as the multiplicity of χ.

The multiplicities {mχ ∈ N |χ ∈ Irr(KX)} can be calculated explicitly

via the orthogonality relations, which are provided below.

Theorem 2.3.5 (Orthogonality Relations). Let φ, ψ ∈ Irr(KX). We have

the following:
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(i) For each g ∈ G, ∑
e∈G

∑
f∈G

cfg∗e
|e∗|

φ(σe∗)ψ(σf ) = δφψ
φ(σg∗)

mφ

.

(ii) We have ∑
g∈G

1

|g∗|
φ(σg∗)ψ(σg) = δφψ

φ(σ1)

mφ

.

The above version of the orthogonality relations, alongside a proof,

can be found in [Zie96] (Th. 4.1.5). Bailey’s book (see [Bai04], Th. 2.12 and

Cor. 2.14, 2.15) gives a similar treatment of the subject, while Bannai and

Ito (see [BI84], Th. II.3.5) only consider the orthogonality relations in the

case of commutative association schemes.

As a consequence of Theorem 2.3.5, we obtain the following corollary:

Corollary 2.3.6. The trivial character 1G ∈ Irr(KX) has multiplicity

m1G = 1 in the standard character γ.

Proof. Using the second orthogonality relation, we infer∑
g∈G

1

|g∗|
1G(σg∗)1G(σg) =

1G(σ1)

m1G

.

By the definition of the trivial character (see Example 2.3.2), this yields∑
g∈G

1

|g|
n2
g =

1

m1G

,

and the left side is 1 by the identity ng |X| = |g|.

2.4 Characters of the Complex Adjacency

Algebra

In the following, let X = (X,G) be an association scheme and let CX de-

note the complex adjacency algebra. We discuss some basic lemmas about
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characters of CX which will be of importance throughout the remainder of

this chapter. The results described below are used to prove structural results

about association schemes of prime order (see Section 2.5).

The following lemma provides an apt character-theoretic description of

the concept of commutativity of association schemes. Moreover, it gives the

irreducible character decomposition of the principal character of the complex

adjacency algebra.

Lemma 2.4.1. Let χCX denote the principal character of CX and let 1 be

the unity in CX. The following holds:

(i) We have ∑
χ∈Irr(CX)

χ(1) ≤
∑

χ∈Irr(CX)

χ(1)2 = |G| ,

and equality holds if and only if X is commutative.

(ii) We have

χCX =
∑

χ∈Irr(CX)

χ(1)χ.

Proof. Note that

χV (1) = tr(idV ) = dimC(V )

for any character χV afforded by a CX-module V with dimC(V ) ∈ N. Using

the above identity, statements (i), (ii) are simple corollaries of Wedderburn’s

Theorem (see [NT89], Th. I. 8.5).

Next, consider the following basic preliminary lemma.

Lemma 2.4.2. Let X be matrix representation of CX,

X : CX −→Mk(C), σ −→ Y (σ).

Then for all σ ∈ CX, every eigenvalue of X(σ) is also an eigenvalue of σ.
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Proof. Put n := |X|. Let f(x) =
∑n

i=1 aix
i be the characteristic polynomial

of σ and let λ be some eigenvalue of X(σ). It suffices to show f(λ) = 0. For

this purpose, note that
n∑
i=1

aiσ
i = 0

by Cayley-Hamilton’s Theorem. Applying X to both sides of this equation

yields
n∑
i=1

aiX(σ)i = 0.

Thus, if 0 6= v ∈ Ck is some eigenvector of X(σ) associated with λ, we have

n∑
i=1

aiX(σ)iv = 0 =⇒
n∑
i=1

aiλ
iv = 0 =⇒ f(λ)v = 0 =⇒ f(λ) = 0,

from which the assertion follows.

We obtain the following important result:

Lemma 2.4.3. Let χ be a character of CX. Then the character values

{χ(σg) | g ∈ G} are algebraic integers.

Proof. Let X be a matrix representation of CX that affords χ. For g ∈ G,

every eigenvalue of X(σg) is also an eigenvalue of σg (see Lemma 2.4.2). But

σg is an integral matrix; thus, the eigenvalues of σg are algebraic integers.

Hence, χ(σg) = tr(X(σg)) is a sum of algebraic integers and therefore an

algebraic integer itself.

For the next result, let χ ∈ Irr(CX). Let K be a finite normal extension

of the rational number field Q such that the character values {χ(σg) | g ∈ G}

are contained in K and KX is a split K-algebra (for the existence of K, see

[Bos06] (Ch. 3.5) or [NT89] (Ch. II. 3)). We denote by Gal(K/Q) the Galois

group of this extension. The following holds:
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Lemma 2.4.4. In the above situation, for each τ ∈ Gal(K/Q), there exists

a character χτ of CX such that

χτ (σg) = χ(σg)
τ

for all g ∈ G. Moreover, the character χτ is irreducible.

Proof. Let U be an irreducible CX-module which affords χ. Then by

[CR88], Th. 29.21 there exists an irreducible KX-module V such that

C⊗K V ∼= U.

For τ ∈ Gal(K/Q), let στ denote the (entrywise) image of σ ∈ KX under τ .

We exchange the original scalar product on V with the slightly modified

V ×KX −→ V, (v, σ) −→ vστ ;

the resulting KX-module we denote by V τ . Clearly, V τ is an irreducible

KX-module (this follows from the irreducibility of V ). Consequently,

C⊗K V τ =: U τ

is an irreducible CX-module (see [CR88], Th. 29.21). Moreover, it is evident

from the above construction that the character χτ of CX afforded by U τ

satisfies

χτ (σg) = χ(σg)
τ

for all g ∈ G. This completes the proof.

Using the notation of Lemma 2.4.4, we can define a group action of

Gal(K/Q) on the set Irr(CX) of irreducible characters of CX,

Gal(K/Q)× Irr(CX) −→ Irr(CX), (τ, χ) −→ χτ .
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In the following, we call two characters χ, ϕ ∈ Irr(CX) algebraically con-

jugate if they lie in the same orbit by this action. Note that this definition

does not depend on the choice of K, which the reader may prove himself by

using the fact that the restriction homomorphism

Gal(Q/Q) −→ Gal(K/Q), τ −→ τ |K

is surjective (see [Bos06], Ch. 4.1). Using the above terminology, we prove

the following important lemma:

Lemma 2.4.5. Let χ be an irreducible character of CX. Let Φ be the sum of

all algebraic conjugates of χ. Then the Φ-values {Φ(σg) | g ∈ G} are rational

integers.

Proof. We use the same notation as in Lemma 2.4.4. Define by

I := {τ ∈ Gal(K/Q) |χτ = χ}

the stabilizer group of χ in Gal(K/Q). Clearly,
∣∣Gal(K/Q) : I

∣∣ <∞. Put

Gal(K/Q) = Iτ1 ∪ · · · ∪ Iτr

a coset decomposition of Gal(K/Q). Then

{χτ | τ ∈ Gal(K/Q)} = {χτ1 , ..., χτr}.

Consequently,

Φ =
r∑
i=1

χτi .

For g ∈ G, it follows that Φ(σg)
τ = Φ(σg) for all τ ∈ Gal(K/Q). Hence,

Φ(σg) ∈ Q. But Φ(σg) is an algebraic integer (see Lemma 2.4.3), so we even

have Φ(σg) ∈ Z. This completes the proof.
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2.5 Association Schemes of Prime Order

In this section, we consider structural theorems for association schemes of

prime order. In particular, we discuss the Hanaki-Uno Theorem [HU06] and

certain results related to this topic. Given an association scheme X = (X,G)

of prime order p := |X|, we prove that the multiplicities of all nontrivial

irreducible characters of CX coincide, i.e. there exists k ∈ N such that

k = mχ for all 1G 6= χ ∈ Irr(CX). Moreover, we show that k = ng for

all 1 6= g ∈ G, i.e. all nontrivial valencies coincide with k. Furthermore,

we show that for all relations 1 6= g ∈ G, the indistinguishing number is

c(g) = (k − 1). In addition, we obtain that the scheme X is commutative.

We begin by proving some basic preliminary lemmas. In the following,

let p ∈ N be a prime number and let F be a field of characteristic p. Let

X = (X,G) be an association scheme of order |X| = p. For a ∈ Z, let

a denote the image of a under the canonical projection π : Z −→ F . We

use the same notation for polynomials f(x) ∈ Z[x] and matrices α ∈ Mp(Z)

whose coefficients/entries are reduced under π (i.e. f(x) and α, respectively).

We regard ZX as a subring of Mp(Z) and denote by E the p×p identity matrix

in characteristic zero.

Lemma 2.5.1. Let α ∈ ZX. If α2 = α, then α is either 0 or E.

Proof. For the sake of contradiction, suppose α2 = α and α 6= 0 and

α 6= E. Observe that since α2 = α, every eigenvalue of α is either 0 or 1.

Since we assume α 6= 0 and α 6= E, we have tr(α) 6= 0. However, since

α ∈ ZX, all entries on the diagonal of α coincide. Especially, p|tr(α). This

is a contradiction.

Note that the following result was first proven by Hanaki [Han02]. The

proof given below, which constitutes a significant simplification of the original
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proof, was communicated via personal correspondence by Hanaki [Han10].

Lemma 2.5.2 ([Han02, Han10]). Let p ∈ N be a prime. Let F be a field

of characteristic p and let X = (X,G) be an association scheme of order

|X| = p. For g ∈ G, the matrix σg has the unique eigenvalue ng in F .

Proof. Let f(x) be the characteristic polynomial of σg. Then f(x) ∈ F [x] is

the characteristic polynomial of σg. For the sake of contradiction, suppose

there exists an eigenvalue of σg which is not equal to ng. Then there exists a

polynomial g(x) ∈ F [x] such that f(x) = (x−ng)eg(x), where 0 ≤ e < p and

g(ng) 6= 0. Since F [x] is a principal ideal domain, there exists polynomials

s(x), t(x) ∈ F [x] such that

(x− ng)es(x) + g(x)t(x) = 1.

Now one can easily check that (σg − ng)
es(σg) and g(σg)t(σg) are nonzero

idempotents and

(σg − ng)es(σg) + g(σg)t(σg) = E.

This contradicts Lemma 2.5.1.

We can now prove the following crucial lemma.

Lemma 2.5.3 ([HU06, Han10]). Let X = (X,G) be an association scheme of

prime order p := |X|. Let χ be a nontrivial irreducible character of CX and

let Φ be the sum of all algebraic conjugates of χ. Then there exist rational

integers {ug | g ∈ G} such that

Φ(σg) = ngΦ(1)− ugp.

Proof. Let K be a finite extension of the rational number field Q such

that for each g ∈ G, all eigenvalues of σg are contained in K. Then by
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[NT89] (Ch. I. 13), there exists a valuation ring R of K with maximal ideal

π such that F := R/π is a field of characteristic p and

π ∩ Z = (p).

As a valuation ring, R is integrally closed (see [Mat06], Th. 10.3). Especially,

for each g ∈ G, all eigenvalues of σg are contained in R. Moreover, observe

the following:

(i) Φ(σg) is a sum of Φ(1) eigenvalues of σg (see Lemma 2.4.2),

(ii) All eigenvalues of σg are congruent to ng modulo π (see Lemma 2.5.2).

Together, this yields

Φ(σg) ≡ ngΦ(1) (mod π).

Since Φ(σg)− ngΦ(1) ∈ Z by Lemma 2.4.5, we conclude

Φ(σg)− ngΦ(1) ∈ π ∩ Z = (p).

The assertion follows.

We can now prove the main result of this section, the Hanaki-Uno The-

orem, which provides a strong structural result for association schemes of

prime order.

Theorem 2.5.4 ([HU06]). Let X = (X,G) be an association scheme of

prime order p := |X|. Then all nontrivial irreducible characters of CX are

algebraically conjugate. Especially, their multiplicities coincide.

Proof. Let 1G be the trivial character of CX and let χ be a nontrivial irre-

ducible character of CX. Let Φ be the sum of all algebraic conjugates of χ,

and let Ψ be the sum of all nontrivial irreducible characters which are not
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algebraically conjugate to χ. If Ψ is zero, then the assertion holds, so we

assume Ψ 6= 0.

By Lemma 2.5.3, there exist rational integers {ug | g ∈ G} such that

Φ(σg) = ngΦ(1)− ugp.

Similarly, there exist rational integers {vg | g ∈ G} such that

Ψ(σg) = ngΨ(1)− vgp.

By the orthogonality relation (Theorem 2.3.5 (ii)),

0 =
∑
g∈G

1

ng
1G(σg∗)Φ(σg) =

∑
g∈G

Φ(σg)

=
∑
g∈G

(
ngΦ(1)− ugp

)
= p

Φ(1)−
∑
g∈G

ug

 .

Hence,
∑

g∈G ug = Φ(1). Similarly, one can show
∑

g∈G vg = Ψ(1).

Again by the orthogonality relation,

0 =
∑
g∈G

1

ng
Φ(σg∗)Ψ(σg) =

∑
g∈G

1

ng

(
Φ(1)ng∗ − ug∗p

) (
Ψ(1)ng − vgp

)
=
∑
g∈G

Φ(1)Ψ(1)ng −
∑
g∈G

Φ(1)vgp−
∑
g∈G

Ψ(1)ug∗p+
∑
g∈G

1

ng
ug∗vgp

2

= pΦ(1)Ψ(1)− pΦ(1)Ψ(1)− pΦ(1)Ψ(1) +
∑
g∈G

1

ng
ug∗vgp

2

= −pΦ(1)Ψ(1) +
∑
g∈G

1

ng
ug∗vgp

2.

We conclude

Φ(1)Ψ(1) =
∑
g∈G

1

ng
ug∗vgp.

However, Φ(1)Ψ(1) is relatively prime to p (because Φ(1),Ψ(1) < p), whereas

the right hand side is divisible by p (because ng and p are relatively prime

for all g ∈ G). This is a contradiction.
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The combinatorial significance of Theorem 2.5.4 becomes apparent when

considering the next result. The proof given below follows after the works of

Blau [Bla10] and Muzychuk-Ponomarenko [MP12].

Theorem 2.5.5. Let X = (X,G) be an association scheme. Assume that all

nontrivial irreducible characters of CX have the same multiplicity, i.e. there

exists k ∈ N such that k = mχ for all 1G 6= χ ∈ Irr(CX). Then:

(i) The association scheme X is commutative,

(ii) The valency of any relation 1 6= g ∈ G is ng = k,

(iii) The indistinguishing number of any relation 1 6= g ∈ G is c(g) = (k−1).

Proof. We begin by proving statement (ii). Let γ denote the standard char-

acter of CX and let

Φ :=
∑

1G 6=χ∈Irr(CX)

χ

denote the sum of all nontrivial irreducible characters of CX. Observe the

following:

|X| = γ(1) = 1 + kΦ(1),

0 = γ(σg) = ng + kΦ(σg), g ∈ G.

Choose 1 6= f ∈ G such that nf is the smallest valency of a relation in G.

Then

k(−Φ(σf ))(|G| − 1) = nf (|G| − 1) ≤ |X| − 1 = kΦ(1) ≤ k(|G| − 1).

Since (−Φ(σf )) is a positive integer, the above inequality implies

(−Φ(σf )) = 1. We conclude that equality holds at every point in the above

inequality. Especially, k(|G| − 1) = nf (|G| − 1) = |X| − 1. Since nf is the

smallest valency of a relation in G, we conclude k = ng for all 1 6= g ∈ G.
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This proves statement (ii). Moreover, since Φ(1) = (|G| − 1), we conclude

that X is commutative (see Lemma 2.4.1 (i)). This proves statement (i).

What remains is to prove statement (iii). Let χCX denote the principal

character of CX. Note that by Lemma 2.1.5 and statement (ii), we have

χCX(σg) =
∑
v∈G

cvvg = c(g)

for all 1 6= g ∈ G. Now observe that since X is commutative, we have χ(1) = 1

for all irreducible characters χ ∈ Irr(CX) (see Lemma 2.4.1). Consequently,

by Lemma 2.4.1 (ii), for all 1 6= g ∈ G,

χCX(σg) = k + Φ(σg).

Now observe that for all 1 6= g ∈ G,

k(k − χCX(σg)) = −kΦ(σg) = k − γ(σg) = k;

especially, χCX(σg) = (k − 1). This yields statement (iii).

2.6 Association Schemes with Bounded

Valencies and Indistinguishing Numbers

In the following, we concern ourselves with association schemes X = (X,G)

whose valencies and indistinguishing numbers of nontrivial relations g ∈ G

are confined to a certain range (see Theorem 2.6.1). In simple terms, we

prove that there exist small intersection numbers in such association schemes.

Note that association schemes of prime order are easily seen to belong to the

class of association schemes considered in this section (see Theorem 2.5.5).

Moreover, note that the results of this section will be of much importance

in Chapters 3 and 4, when they are applied to a general framework for the

computational problem of polynomial factoring over finite fields.
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Theorem 2.6.1 ([AIKS12]). Let (X,G) be an association scheme. Assume

there exist c, k, ` ∈ N and 0 < δ1, δ
′
1, δ
′
2 ≤ 1 with 1 < ` < (δ2

1/δ
′
1) · k such that

for all 1 6= g ∈ G,

δ1 · k ≤ ng ≤ δ′1 · k and c(g) ≤ δ′2 · c.

If |G| ≥ 2(δ′1/δ1)3δ′2 · c
`−1

+ 2 then there exist nontrivial relations u 6= v,

w 6= w′ ∈ G such that 0 < cwu∗v ≤ cw
′

u∗v < `.

Proof. Fix a relation 1 6= u ∈ G and a pair (α, β) ∈ u. For all v ∈ G \ {1, u},

define

Sv := {(α′, γ) ∈ X2 | (α′, β) ∈ u; (α, γ) 6= (α′, γ) ∈ v}.

The set Sv consists of those pairs (α′, γ) ∈ X2 which together with (α, β)

form a non-degenerate quadrilateral of the type seen below.

α

u
��

v

��

b // α′

u

��

v

��
β w

// γ

We determine the cardinality of Sv. Note that for any relation b ∈ G, there

are exactly cubu choices for α′ ∈ X such that (α, α′) ∈ b and (α′, β) ∈ u.

Moreover, after choosing α′, there are exactly cbvv∗ choices for γ ∈ X such

that (α, γ), (α′, γ) ∈ v. Thus, |Sv| =
∑

b∈G c
u
bu · cbvv∗ . In particular,

∑
v∈G\{1,u}

|Sv| =
∑

16=b∈G

cubu ·
∑

v∈G\{1,u}

cbvv∗ ≤
∑

1 6=b∈G

cubu · δ′2 · c ≤ δ′1 · δ′2 · c · k,

where the last inequality follows from Lemma 2.1.5 (3).

For the sake of contradiction, assume that for all v ∈ G \ {1, u} we have

either cwu∗v = 0 or cwu∗v ≥ ` for all except at most one relation w ∈ G.
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We derive a lower bound on |Sv| in order to obtain the contradiction. For

v ∈ G \ {1, u} define

Wv := {w ∈ G | cwu∗v 6= 0}.

Note that for each relation w ∈ Wv there are exactly cuvw∗ choices for γ

such that (β, γ) ∈ w and (α, γ) ∈ v. Moreover, after choosing γ, there are

exactly cwu∗v − 1 choices for α′ such that (α′, β) ∈ u and (α′, γ) ∈ v. Thus,

|Sv| =
∑

w∈Wv
cuvw∗ ·(cwu∗v−1). Now observe that cuvw∗ ≥ cwu∗v · δ1δ′1 for all w ∈ Wv

by Lemma 2.1.5 (1), (2). Since we assume that cwu∗v ≥ ` for all except at

most one relation w ∈ Wv we conclude

|Sv| ≥
δ1

δ′1
·
∑
w∈Wv

cwu∗v(c
w
u∗v − 1) ≥ δ1

δ′1
·

(`− 1) ·
∑
w∈Wv

cwu∗v −
`2

4

 .

Note that the last inequality follows from the summand-wise inequality:

(` − 1)cwu∗v − cwu∗v(c
w
u∗v − 1) ≤ (`2/4). From

∑
w∈Wv

cwu∗v · nw = nu∗ · nv
(see Lemma 2.1.5 (4)) it follows that

∑
w∈Wv

cwu∗v ≥ (δ2
1/δ
′
1) · k. Moreover,

using the assumption 1 < ` < (δ2
1/δ
′
1) · k, we deduce

|Sv| ≥
δ1

δ′1
· (`− 1) ·

(
δ2

1

δ′1
· k − `2

4(`− 1)

)
>

δ3
1

2(δ′1)2
· (`− 1)k.

In particular, we have∑
v∈G\{1,u}

|Sv| > (|G| − 2) · δ3
1

2(δ′1)2
· (`− 1)k.

This yields δ′1δ
′
2 · ck > (|G| − 2) · δ31

2(δ′1)2
· (` − 1)k, from which we conclude

2(δ′1/δ1)3δ′2 · c
`−1

+ 2 > |G|. This is a contradiction.

Theorem 2.6.1 establishes the existence of small intersection numbers in

association schemes where both the valencies and indistinguishing numbers

of nontrivial relations are confined to a certain range. Applying this result

to association schemes of prime order (see Theorems 2.5.4 and 2.5.5) yields

the following corollary.
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Corollary 2.6.2 ([AIKS12]). Let (X,G) be an association scheme of prime

order p := |X|. Let k ∈ N be such that for all 1 6= g ∈ G, k = ng. Let

` ∈ N>1. If |G| ≥ 2(k−1)
`−1

+ 2 then there exist nontrivial relations u 6= v,

w 6= w′ ∈ G such that 0 < cwu∗v ≤ cw
′

u∗v < `.

It is possible to prove that, in a certain sense, the result achieved in

Corollary 2.6.2 is optimal. The example of the cyclotomic scheme below

shows that the conditions of Corollary 2.6.2 cannot be relaxed (up to constant

factors).

In the following, let p be a prime and fix d|(p−1). Let Cyc(p, d) = (Fp,P)

denote the cyclotomic scheme in (p, d) and let k := (p− 1)/d. For nontrivial

relations Pr, Ps, Pt ∈ P and (x, y) ∈ Pt, we have

ctrs = #{z ∈ Fp | (x− z) ∈ αr
〈
αd
〉
, (z − y) ∈ αs

〈
αd
〉
}

= #{(y1, y2) ∈ F∗p × F∗p |αryd1 + αsyd2 = (x− y)}/d2.

Note that we divide by d2 because this is the exact number of repetitions of

a value (yd1 , y
d
2) as we vary y1, y2 ∈ F∗p.

By the Hasse-Weil bound [Wei76, Voi05], we have∣∣∣#{(y1, y2) ∈ Fp × Fp |αryd1 + αsyd2 = (x− y)} − (p+ 1)
∣∣∣ ≤ d2√p+O(1),

from which it follows that∣∣∣∣ctrs − (p+ 1)

d2

∣∣∣∣ ≤ √p+O(1).

To make the ‘error’ term small, we fix p and d such that d = k1/3/c � p1/4 for

a large enough constant c ∈ N (note that there are infinitely many primes p

for which there exists such d by [For08], Theorem 7). Now (p+ 1)/d2 ≥ 2
√
p

and we can estimate

ctrs >
k

2d
> (c/2) · k2/3 � p1/2.
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Moreover, we have |G| > d ≥ k/(ck2/3). Thus, we have an association scheme

where both the number of relations and the intersection numbers are large,

i.e. in the range k
1
3 and k

2
3 , respectively. This matches the parameters of

Corollary 2.6.2 exactly.
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Chapter 3

m-Schemes

In this chapter, we introduce the notion of m-schemes, combinatorial objects

which may be regarded as higher-dimensional analogs of the concept of as-

sociation schemes. m-Schemes were first defined in the paper [IKS09], where

they appear naturally in connection with an algebraic-combinatorial ap-

proach to the computational problem of polynomial factoring over finite fields

(the polynomial factoring approach of [IKS09] is delineated in Chapter 4).

If we denote [n] := {1, ..., n}, then an m-scheme can be described as a parti-

tion of the set [n]s, for each 1 ≤ s ≤ m, which satisfies certain natural prop-

erties called compatibility, regularity and invariance (see Section 3.1). Note

that m-schemes are closely related to association schemes (see Section 3.2)

and are connected to various other notions of combinatorial schemes, such

as presuperschemes [Woj01a, Woj98, Woj01b], superschemes [Smi94, Smi07],

coherent configurations [Hig70], cellular algebras [WL68] and Krasner alge-

bras [Kra38].

The material in this chapter is organized as follows. In §3.1, we define

m-schemes and discuss certain natural properties associated with this notion.

In §3.2, we describe the connection of m-schemes and association schemes.

41
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§3.3 provides a discussion of orbitm-schemes, a class ofm-schemes which may

be regarded as a higher-dimensional analog of Schurian association schemes.

§3.4 introduces the notion of matchings, generalizing the concept of thin re-

lations (i.e. relations of valency 1) from association schemes to the higher

dimensions of m-schemes. §3.5 provides a discussion of the schemes conjec-

ture, which concerns the existence of matchings in homogeneous and anti-

symmetric m-schemes and holds great significance for the polynomial factor-

ing framework described in Chapter 4. In §3.6, we prove the currently best

known bound for the existence of matchings in homogeneous and antisym-

metric m-schemes.

3.1 Basic Notions

In this section, we introduce the notion of m-schemes. The terminology used

here follows after the works [IKS09, AIKS12].

s-Tuples: Throughout this section, let V be an arbitrary set of n distinct

elements. For 1 ≤ s ≤ n, we define the set of essential s-tuples by

V (s) := {(v1, v2, . . . , vs) | v1, v2, . . . , vs are s distinct elements of V }.

Projections: For each s > 1, we define s natural projections

πs1, π
s
2, . . . , π

s
s : V (s) −→ V (s−1)

πsi : (v1, . . . , vi−1, vi, vi+1, . . . , vs) −→ (v1, . . . , vi−1, vi+1, . . . , vs).

Furthermore, for 1 ≤ i1 < . . . < ik ≤ s we define

πsi1,...,ik : V (s) −→ V (s−k), πsi1,...,ik = πs−k+1
i1

◦ . . . ◦ πsik .

Permutations: The symmetric group on s elements Symms acts on

V (s) in a natural way by permuting the coordinates of the s-tuples. For all



3.1. Basic Notions 43

(v1, . . . , vi, . . . , vs) ∈ V (s) and τ ∈ Symms, define

(v1, . . . , vi, . . . , vs)
τ := (v1τ , . . . , viτ , . . . , vsτ ).

m-Collection: For 1 ≤ m ≤ n, an m-collection on V is a set Π of

partitions P1, . . . ,Pm of V (1), . . . , V (m) respectively.

Colors: For 1 ≤ s ≤ m, the equivalence relation on V (s) corresponding

to the partition Ps will be denoted by ≡Ps . We refer to the elements P ∈ Ps
as s-colors.

Next, we discuss some natural properties of m-collections which are rel-

evant to us in the future. In the following, let Π = {P1, . . . ,Pm} be an

m-collection on V .

P1 (Compatibility): We say that Π is compatible at level 1 < s ≤ m,

if ū, v̄ ∈ P ∈ Ps implies that for every 1 ≤ i ≤ s there exists Q ∈ Ps−1 such

that πsi (ū), πsi (v̄) ∈ Q.

In other words, if two tuples (at level s) have the same color then for

every projection the projected tuples (at level s− 1) have the same color as

well. It follows that for a class P ∈ Ps, the sets πsi (P ) := {πsi (v̄) | v̄ ∈ P}, for

all 1 ≤ i ≤ s, are colors in Ps−1.

P2 (Regularity): We say that Π is regular at level 1 < s ≤ m, if

ū, v̄ ∈ Q ∈ Ps−1 implies that for every 1 ≤ i ≤ s and for every P ∈ Ps,

#{ū′ ∈ P | πsi (ū′) = ū} = #{v̄′ ∈ P | πsi (v̄′) = v̄}.

Fibers: We call the tuples in P ∩ (πsi )
−1(ū) the πsi -fibers of ū in P . Using

this terminology, the property of regularity just means that the cardinalities

of the fibers above a tuple depend only on the color of the tuple.

Subdegree: The above two properties motivate the definition of the

subdegree of an s-color P over an (s−k)-color Q as s(P,Q) := |P |
|Q| , assuming
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πsi1,...,ik(P ) = Q for some 1 ≤ i1 < . . . < ik ≤ s and that Π is regular at all

levels 2, . . . , s.

P3 (Invariance): We say that Π is invariant at level 1 < s ≤ m, if for

every P ∈ Ps and τ ∈ Symms,

P τ := {v̄τ | v̄ ∈ P} ∈ Ps.

In other words, the partitions P1, . . . ,Pm are invariant under the action of

the corresponding symmetric group.

P4 (Homogeneity): We say that Π is homogeneous if |P1| = 1.

P5 (Antisymmetry): We say that Π is antisymmetric at level

1 < s ≤ m, if for every P ∈ Ps and id 6= τ ∈ Symms, we have P τ 6= P .

P6 (Symmetry): We say that Π is symmetric at level 1 < s ≤ m, if for

every P ∈ Ps and τ ∈ Symms, we have P τ = P .

Note that an m-collection is called compatible, regular, invariant, antisym-

metric, or symmetric if it is at every level 1 < s ≤ m, compatible, regular,

invariant, antisymmetric, or symmetric respectively.

m-Scheme: An m-collection is called an m-scheme if it is compatible,

regular and invariant.

To familiarize ourselves with the above definitions, we prove an easy non-

existence lemma for m-schemes. Note that the lemma below rephrases the

combinatorial argument of [Rón88] in m-scheme terminology.

Lemma 3.1.1 ([IKS09]). Let r > 1 be a divisor of n. Then for m ≥ r there

does not exist a homogeneous and antisymmetric m-scheme on n points.

Proof. For m ≥ r, clearly every m-scheme contains an r-scheme. Hence it

suffices to prove the above statement for m = r. Suppose for the sake of

contradiction that there exists a homogeneous and antisymmetric r-scheme

Π = {P1,P2, . . . ,Pr} on V = {v1, v2, . . . , vn}. By definition, Pr partitions
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n(n − 1) · · · (n − r + 1) tuples of V (r) into, say, tr colors. By antisymme-

try, every such color P has r! associated colors, namely {P τ | τ ∈ Symmr}.

Moreover, by homogeneity, the size of every color at level r is divisible by n.

Hence, r!n|n(n− 1) · · · (n− r+ 1). But this implies r!|(n− 1) · · · (n− r+ 1),

which contradicts r|n. Therefore, Π cannot exist.

In the following sections, we describe the relationship between m-schemes

and association schemes and discuss the example of orbit m-schemes.

3.2 3-Schemes from Association Schemes

The notion of m-schemes is closely related to the concept of association

schemes. In this section, we show that the notion of homogeneous 3-schemes

and association schemes are essentially equivalent. The next lemma shows

that the first two levels of any homogeneous 3-scheme constitute an associa-

tion scheme (up to containment of the identity relation).

Lemma 3.2.1. Let Π = {P1,P2,P3} be a homogeneous 3-scheme on the set

V = {v1, v2, . . . , vn}. Then
(
P1,P2 ∪ {1}

)
constitutes an association scheme,

where 1 = {(v, v) | v ∈ V } denotes the identity relation.

Proof. We prove that for all Pi, Pj, Pk ∈ P2, there exists an integer ckij such

that for all (α, β) ∈ Pk,

ckij = #{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj}.

The trivial case where at least one of Pi, Pj, Pk is the identity relation is

omitted. By the compatibility and regularity of Π at level 3, there exists

S ⊆ P3 such that for all (α, β) ∈ Pk, the set {γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj}
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can be partitioned as

⊔
P∈S

{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj, (α, γ, β) ∈ P}.

By the compatibility of Π at level 3, this partition can simply be written as

⊔
P∈S

{γ ∈ V | (α, γ, β) ∈ P}.

By the regularity of Π at level 3, the size of each set in the above partition

is |P |
|Pk|

, which means that

#{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj} =
∑
P∈S

|P |
|Pk|

.

Since the above equation is independent of the choice of (α, β) ∈ Pk, it follows

that
(
P1,P2 ∪ {1}

)
is an association scheme.

The next lemma states that, in turn, every association scheme also nat-

urally gives rise to a homogeneous 3-scheme.

Lemma 3.2.2. Let (P1,P2) be an association scheme on V = {v1, v2, . . . , vn}.

Let ≡P2 denote the equivalence relation on V × V corresponding to the par-

tition P2. Let P3 be the partition of V (3) such that for two triples (u1, u2, u3)

and (v1, v2, v3), we have (u1, u2, u3) ≡P3 (v1, v2, v3) if and only if

(u1, u2) ≡P2 (v1, v2), (u1, u3) ≡P2 (v1, v3), (u2, u3) ≡P2 (v2, v3).

Then {P1,P2 − {1},P3} is a 3-scheme.

Proof. It is an easy exercise to show that {P1,P2 − {1},P3} satisfies com-

patibility, regularity and invariance.
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3.3 Orbit m-Schemes

In this section, we introduce orbit m-schemes, a class of m-schemes which

is constructed from the action of permutation groups. Orbit m-schemes can

be regarded as a higher-level analog of the notion of Schurian association

schemes (see Example 2.1.2). Throughout this section, let V = {v1, v2, ..., vn}

be a set of n distinct elements and G ≤ SymmV a permutation group.

Consider the following theorem.

Theorem 3.3.1. Fix some integer 2 ≤ m ≤ n. For 1 ≤ s ≤ m, let Ps
be the partition on V (s) such that for any two s-tuples (u1, u2, ..., us) and

(v1, v2, ..., vs), we have (u1, u2, ..., us) ≡Ps (v1, v2, ..., vs) if and only if

∃ σ ∈ G : (σ(u1), σ(u2), ..., σ(us)) = (v1, v2, ..., vs).

Then {P1,P2, ...,Pm} is an m-scheme on V . Moreover:

(i) {P1,P2, ...,Pm} is homogeneous if and only if G is transitive,

(ii) {P1,P2, ...,Pm} is antisymmetric if and only if gcd(m!, |G|) = 1.

Proof. We prove statement (ii) and leave the remaining assertions as an

exercise to the reader. First, suppose gcd(m!, |G|) = 1. Assume for the

sake of contradiction that {P1,P2, ...,Pm} is not antisymmetric at some level

1 < s ≤ m. Then there exists (u1, u2, ..., us) ∈ V (s) such that

(u1, u2, ..., us) ≡Ps (u1τ , u2τ , ..., usτ )

for some id 6= τ ∈ Symms. By the definition of {P1,P2, ...,Pm}, this means

there exists σ ∈ G such that

(σ(u1), σ(u2), ..., σ(us)) = (u1τ , u2τ , ..., usτ ).
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Choose an index j ∈ {1, ..., s} such that σ(uj) 6= uj. Then there exists an

integer k such that 2 ≤ k ≤ s and

σk(uj) = uj.

Clearly, k divides the order of σ, which in turn divides the order of G. Hence

gcd(m!, |G|) > 1, a contradiction.

Now consider the converse: Suppose {P1,P2, ...,Pm} is antisymmetric.

Assume for the sake of contradiction that gcd(m!, |G|) > 1. By Sylow’s

Theorem, there exists σ ∈ G such that σk = id for some k ≤ m. We can

now easily obtain a contradiction by reversing the proof of the opposite di-

rection. The details are left to the reader.

We call m-schemes which arise from the action of permutation groups as

described in Theorem 3.3.1 orbit m-schemes. Currently, all examples of

homogeneous and antisymmetric m-schemes with m ≥ 4 which we know of

stem from the class of orbit m-schemes.

It is known that every (n − 1)-scheme on n points is an orbit scheme

(see Theorem 5.1.2). Moreover, the important schemes conjecture (see Sec-

tion 3.5) is already proven for orbit m-schemes. We will study the above

issues in more detail at a later point.

3.4 Matchings

We now introduce the notion of matchings, certain special colors of

m-schemes which have important applications for the polynomial factor-

ing framework described in Chapter 4. Note that matchings generalize

the concept of thin relations (i.e. relations of valency 1) from the theory

of association schemes to the higher-dimensional setting of m-schemes. In
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the following, let V = {v1, v2, . . . , vn} be a set of n distinct elements and let

Π = {P1,P2, . . . ,Pm} be an m-scheme on V .

Matching: A color P ∈ Ps at any level 1 < s ≤ m is called a match-

ing if for some positive integer k there exists 1 ≤ i1 < . . . < ik ≤ s and

1 ≤ j1 < . . . < jk ≤ s with (i1, . . . , ik) 6= (j1, . . . , jk) such that

πsi1,...,ik(P ) = πsj1,...,jk(P ) and
∣∣∣πsi1,...,ik(P )

∣∣∣ = |P |.

Note that the paper [IKS09] which originally defined the concept of

matchings had the restriction that k = 1. The above definition is broader

and constitutes a natural generalization of the previous (limited) notion of

matchings. Also note that under the identification of homogeneous 3-schemes

and association schemes (see Lemmas 3.2.1 and 3.2.2), matchings at level 2

correspond simply to thin relations (i.e. relations of valency 1).

The next theorem gives an important sufficient condition for the existence

of matchings in m-schemes.

Theorem 3.4.1 ([AIKS12]). Let Π = {P1,P2, . . . ,Pm} be an m-scheme on

V = {v1, v2, . . . , vn}. Assume Π is antisymmetric at level 2. Moreover,

assume there exist colors Pt ∈ Pt and Pt−1 := πti(Pt) ∈ Pt−1 for some

1 < t < m and 1 ≤ i ≤ t such that 1 < s(Pt, Pt−1) = |Pt|
|Pt−1| ≤ ` and

m ≥ t − 1 + log2 `, where ` ∈ N. Then there exists a matching in

{P1,P2, . . . ,Pm}.

Proof. Wlog, let us assume that Pt−1 = πtt(Pt) ∈ Pt−1. We outline an itera-

tive way of finding a matching in Π. Note that the set

Ut+1 := {v̄ ∈ V (t+1) |πt+1
t (v̄), πt+1

t+1(v̄) ∈ Pt}

is a nonempty union of colors in Pt+1. Let Pt+1 be a color of Pt+1 such that

Pt+1 ⊆ Ut+1. Then by the antisymmetry of Π we have

s(Pt+1, Pt) =
|Pt+1|
|Pt|

<
s(Pt, Pt−1)

2
≤ `

2
.



50 3. m-Schemes

Evidently, if s(Pt+1, Pt) = 1 then Pt+1 is a matching. Otherwise,

if s(Pt+1, Pt) > 1 then we proceed to level t + 2 and again strictly halve

the subdegree (by the same argument as above). This procedure finds a

matching in at most log2 ` rounds.

As an easy consequence of the above theorem, we obtain the following

corollary.

Corollary 3.4.2. Let Π = {P1,P2, . . . ,Pm} be a homogeneous m-scheme on

the set V = {v1, v2, . . . , vn}. Let Π be antisymmetric at level 2. If m ≥ log2 n

then there exists a matching in {P1,P2, . . . ,Pm}.

In Section 3.6, we show how combinatorial arguments can further improve

the bound m ≥ log2 n of Corollary 3.4.2. It is conjectured that m ≥ c (where

c ≥ 4 is some constant) is sufficient to guarantee the existence of matchings

in homogeneous and antisymmetric m-schemes. We discuss this conjecture

in the next section.

3.5 The Schemes Conjecture

In Corollary 3.4.2 it was shown that every antisymmetric m-scheme on n

points (for large enough m) contains a matching between levels 1 and log2 n.

Below, we formulate a conjecture which asserts the existence of a constant

c ≥ 4 that could replace the above log2 n-bound.

Conjecture 3.5.1 (Schemes Conjecture). There exists a constant c ≥ 4

such that every homogeneous, antisymmetric m-scheme with m ≥ c contains

a matching.

In Chapter 4, we revisit a theorem from [IKS09, AIKS12], which states

that under GRH, the correctness of the schemes conjecture implies a de-
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terministic polynomial time algorithm for the factorization of polynomials

over finite fields (see Theorem 4.3.1). The schemes conjecture is especially

motivated by the fact that it is known to be true for orbit m-schemes.

Theorem 3.5.2 (Schemes Conjecture for Orbit m-Schemes). For m ≥ 4,

every homogeneous, antisymmetric orbit m-scheme contains a matching.

Proof. This is shown in [IKS09], Section 4.1.

Drawing on the association scheme results from Section 2.6, we can prove

the schemes conjecture for m-schemes Π = {P1, . . . ,Pm} on a prime number

of points which have ‘large’ number of relations at level 2. This is provided

in the following theorem.

Theorem 3.5.3 ([AIKS12]). Let Π = {P1, . . . ,Pm} be a homogeneous, an-

tisymmetric m-scheme on V , where p := |V | is a prime number. Let k ∈ N

denote the valency of every nontrivial relation of the association scheme

(P1,P2 ∪ {1}). Assume that m ≥ 2 log2 ` + 3 and |P2| ≥ 2(k−1)
`−1

+ 1 for

some ` ∈ N>1. Then there exists a matching in Π.

Proof. By Corollary 2.6.2, there exist nontrivial relations u 6= v, w 6= w′ ∈ P2

such that 0 < cwu∗v ≤ cw
′

u∗v < `. Hence there exist α, β, γ, γ′ ∈ V such that

(α, β) ∈ u, (α, γ), (α, γ′) ∈ v, (β, γ) ∈ w and (β, γ′) ∈ w′. Clearly, the rela-

tion P ∈ P4 containing the tuple (β, α, γ, γ′) satisfies π4
1,3(P ) = π4

1,4(P ) = v.

Also, |P |/|v| = |P |/|u| ≤ cwu∗v · cw
′

u∗v ≤ `2, thus P has subdegree at most

`2 over v. Now if s(P, v) = 1 then P is a matching. On the other hand,

if s(P, v) > 1 then we define Q := π4
4(P ) ∈ P3 and consider the equation

s(P, v) = s(P,Q) · s(Q, v). It follows that at least one of the subdegrees

s(P,Q), s(Q, v) is both at least 2 and at most `2. Especially, we get a match-

ing in Π by suitably invoking Theorem 3.4.1.
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In Chapter 4, we describe how Theorem 3.5.3 translates to an important

result concerning the factorization of prime-degree polynomials over finite

fields (see Theorem 4.4.1). It is a good example of how progress towards the

schemes conjecture translates into improvements in the realm of polynomial

factoring through the IKS-framework.

3.6 An Improved Matching Bound

In this section, we strengthen the criterion for matchings in homogeneous and

antisymmetric given in Corollary 3.4.2. For the remainder of this chapter, we

omit the level indices of the projections πs1, π
s
2..., π

s
s (s > 1), we assume that

the corresponding level will be clear from context. In addition, we establish

the following terminology.

Underlying Color Sequence: Let Π = {P1,P2, ...,Pm} be an

m-scheme, where m ≥ 3. Then we define the underlying color sequence

of a color C ∈ P3 as the tuple

(π1(C), π2(C), π3(C)),

which gives us the information to which colors C projects at the second level.

The following result was shown in [IKS09] (see Lemma 10). It gives an

improvement of the bound for the existence of matchings in homogeneous

and antisymmetric m-schemes over Corollary 3.4.2.

Theorem 3.6.1 ([IKS09]). Let Π = {P1,P2, ...,Pm} be a homogeneous

m-scheme on V = {v1, v2, ..., vn}. Assume that Π is antisymmetric at the

first three levels. Moreover, assume that m ≥ 2
3

log2 n. Then there exists a

matching in {P1,P2, ...,Pm}.
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We will see next that it is possible to further improve the bound

m ≥ 2
3

log2 n of Theorem 3.6.1. The discussion below leads to new results

and manifests some new concepts. First, we prove the following preliminary

lemma.

Lemma 3.6.2 ([Aro11]). Let Π = {P1,P2,P3} be a homogeneous, antisym-

metric 3-scheme on V = {v1, v2, ..., vn}. Assume that P2 contains exactly 2

colors, say P2 = {P,Q}, where Q = P (1,2). Then the following holds:

(i) There exists a color C ∈ P3 with underlying color sequence (P, P, P ),

(ii) There exists a color D ∈ P3 with underlying color sequence (P,Q, P ),

(iii) There exists a color S ∈ P3 with s(S, P ) ≤ n
12

and π1(S) = π3(S) = P .

Proof. (i) First, observe that the set

A := {v̄ ∈ V (3) |π2(v̄), π3(v̄) ∈ P}

is a nontrivial union of P3-colors that have underlying color sequence either

(P, P, P ) or (Q,P, P ). Second, observe that if a color S ∈ P3 has underlying

color sequence (Q,P, P ), then its associated color T := S(2,3) has underlying

color sequence (P, P, P ). Together, this implies that there exists at least one

color C ∈ P3 with underlying color sequence (P, P, P ).

(ii) Recall that since |P2| = 2 there are exactly 8 possibilities of underlying

color sequences for colors in P3. We can partition these 8 possibilities into

two sets

{(P, P, P ), (P, P,Q), (P,Q,Q), (Q,Q,Q), (Q,Q, P ), (Q,P, P )},

{(P,Q, P ), (Q,P,Q)}
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which constitute the two different options for the set of underlying color

sequences that a set of associated colors {F σ |σ ∈ Symm3} (F ∈ P3) can

have. Now observe that∣∣∣{v̄ ∈ V (3) |π1(v̄), π2(v̄), π3(v̄) ∈ P}
∣∣∣ =
|A|
2

=
n · (n− 1) · (n− 3)

8
(3.6.1)

and hence the combined size of all colors having one of the underlying color

sequences

(P, P, P ), (P, P,Q), (P,Q,Q), (Q,Q,Q), (Q,Q, P ), (Q,P, P )

is 6 · n·(n−1)·(n−3)
8

, which is strictly smaller than
∣∣∣V (3)

∣∣∣. So there must exist

colors in P3 whose underlying color sequence is not one of the above six, but

rather one of

(P,Q, P ), (Q,P,Q).

This completes the proof of statement (ii).

(iii) Consider the set

Z := {v̄ ∈ V (3) |π1(v̄), π3(v̄) ∈ P}.

The above set can be partitioned into Z = X t Y , where

X := {v̄ ∈ V (3) |π1(v̄), π2(v̄), π3(v̄) ∈ P},

Y := {v̄ ∈ V (3) |π1(v̄), π3(v̄) ∈ P, π2(v̄) ∈ Q}.

For the cardinalities of Z and X, we have

|Z| = n · (n− 1) · (n− 3)

4
, |X| = n · (n− 1) · (n− 3)

8
;

the latter one was computed in Equation (3.6.1). From this we obtain the

cardinality of Y ,

|Y | = |Z| − |X| = n · (n− 1) · (n− 3)

8
. (3.6.2)
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We now show that there are at least 3 colors in P3 which are subsets of Z.

For this purpose, choose a color D ∈ P3 with underlying color sequence

(P,Q, P ). Next, observe that there are exactly 3 colors in {Dσ |σ ∈ Symm3}

which have underlying color sequence (P,Q, P ). Hence there are at least 3

colors in P3 which are subsets of Z. Consequently, there exists a color S ∈ P3

such that S ⊂ Z and

s(S, P ) ≤ |Z| /3
|P |

< n/12;

the latter inequality can be deduced using Equation (3.6.2). This completes

the proof.

Using Lemma 3.6.2, we can now prove the main result of this section.

Theorem 3.6.1 yields an improved level bound for matchings in homogeneous

and antisymmetric m-schemes (which is currently the best known).

Theorem 3.6.3. Let Π = {P1,P2, ...,Pm} be a homogeneous m-scheme on

V = {v1, v2, ..., vn}. Assume that Π is antisymmetric at the first three levels.

Moreover, assume m ≥ 2
log2 12

log2 n+ 2 ≈ 0.559 log2 n+ 2. Then there exists

a matching in {P1,P2, ...,Pm}.

Proof. By Lemma 3.6.2 (iii), for any color Pt ∈ Pt (1 < t ≤ m−2) which has

subdegree ` over Pt−1 := πt(Pt) ∈ Pt−1, we either find a color Pt+2 ∈ Pt+2

such that πt+2(Pt+2) = πt(Pt+2) and s(Pt+2, πt+2(Pt+2)) < `
12

, or we find a

color Pt+1 ∈ Pt+1 such that πt+1(Pt+1) = πt(Pt+1) and s(Pt+1, πt(Pt+1)) < `
4
.

Using this observation, iteration yields the desired bound.
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Chapter 4

GRH-Based Deterministic

Polynomial Factoring

In this chapter, we discuss the IKS-framework for polynomial factoring over

finite fields [IKS09, AIKS12], which is based on the assumption of the gen-

eralized Riemann hypothesis (GRH). The IKS-framework relies on the the-

ory of m-schemes, which provides a natural tool to codify the algebraic-

combinatorial information which occurs in the process of polynomial factor-

ing. The IKS-algorithm associates to a polynomial f(x) ∈ Fq[x] the natural

quotient algebra A := Fq[x]/f(x) and explicitly calculates special subalge-

bras of its tensor powers A⊗s (1 ≤ s ≤ m). Through a series of operations on

systems of ideals of these algebras (which can be performed efficiently under

GRH), the IKS-algorithm either finds a zero divisor in A - which is equivalent

to factoring f(x) - or obtains an m-scheme from the combinatorial structure

of A⊗s (1 ≤ s ≤ m). It is not difficult to prove that the IKS-algorithm al-

ways finds a zero divisor in A if we choose m large enough (viz. in the range

log n), which implies that the IKS-algorithm deterministically factors f(x) in

time poly(nlogn, log q). Moreover, it is conjectured that even choosing m as

57
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constant, say m = c where c ≥ 4, is enough to find a zero divisor in A (and

hence factor f), which would give the IKS-algorithm a polynomial running

time under GRH. The latter result would follow from the correctness of the

schemes conjecture (see Section 3.5).

The IKS-framework subsumes several earlier approaches to GRH-based

polynomial factoring. Given a degree n polynomial f(x) ∈ Fq which has n

distinct roots in Fq, the IKS-algorithm finds a nontrivial factor of f(x) in

time poly(nlogn, log q), matching the best known time-bound of Evdokimov

[Evd94]. Moreover, if the degree n of the polynomial f(x) is constant-smooth,

then the IKS-algorithm factors f(x) in polynomial time, matching an earlier

result of Rónyai [Rón88] (which used a framework less general than that of

m-schemes). Concerning the factorization of prime-degree polynomials - a

notoriously complicated case - the IKS-algorithm offers significant improve-

ments over the earlier methods. It was shown in [IKS09] that the IKS-

algorithm has a deterministic polynomial running-time for factoring polyno-

mials of prime degree n, where (n − 1) is a constant-smooth number. In

Section 4.4, we delineate the advances of [AIKS12], which extend this result

to polynomials of prime degree n, where (n− 1) has a large constant-smooth

factor. This relaxation implies that under a well-known number theory con-

jecture involving Linnik’s constant, there are infinitely many primes n such

that any polynomial f(x) ∈ Fq[x] of degree n can be factored by the IKS-

algorithm in time poly(n, log q).

The material in this chapter is organized as follows. In §4.1, we provide

the necessary algebraic prerequisites for the discussion of the IKS-framework

for polynomial factoring over finite fields. In §4.2, we give a description of the

IKS-algorithm. §4.3 delineates how certain properties of m-schemes relate to

the problem of polynomial factoring via the IKS-framework. §4.4 describes
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how structural results for m-schemes on a prime number of points translate

to improvements for factoring certain classes of prime-degree polynomials.

In §4.5, we take a closer look at specific classes of prime numbers for which

our structural results make progress.

4.1 Algebraic Prerequisites

In this section, we discuss algebraic prerequisites for the description of the

IKS-algorithm. Below, we revisit some of the basic concepts of polynomial

factoring over finite fields.

Associated quotient algebra A: In order to solve polynomial factor-

ing over finite fields, it is enough to factor polynomials f(x) of degree n over

Fq which have n distinct roots α1, . . . , αn in Fq [Ber67, Ber70]. Given a poly-

nomial f(x) ∈ Fq[x], for any field extension k ⊇ Fq, we have the associated

quotient algebra

A := k[x]/(f(x)).

The algebra A is isomorphic to kn, the direct product of n copies of the

one-dimensional algebra k. In the following, we interpret A as the algebra

of all functions

V := {α1, . . . , αn} −→ k.

The factors of f(x) appear as zero divisors in A: Observe that for

nonzero polynomials y(x), z(x) ∈ A, if y(x)z(x) = 0 then f(x) | y(x) · z(x),

which implies gcd(f(x), z(x)) factors f(x) nontrivially. Since the gcd of poly-

nomials can be computed by the Euclidean algorithm in deterministic poly-

nomial time, factoring f(x) is, up to polynomial time reductions, equivalent

to finding a zero divisor in A.
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Ideals of A and roots of f(x): For an ideal I of A, we define the

support of I as

Supp(I) := V \ {v ∈ V | a(v) = 0 for every a ∈ I}.

Via the support, ideal decompositions of A induce partitions on the set V ,

as shown in the following lemma.

Lemma 4.1.1. If I1, . . . , It are pairwise orthogonal ideals of A (i.e. IiIj = 0

for all i 6= j) such that A = I1 + · · ·+ It, then V can be partitioned as

V = Supp(I1) t · · · t Supp(It).

Tensor powers of A: For 1 ≤ m ≤ n, we denote by A⊗m the

m-th tensor power of A (regarded as k-modules). We may interpret A⊗m

as the algebra of all functions from V m to k. In this interpretation, the

rank one tensor element h1 ⊗ · · · ⊗ hm corresponds to a function that maps

(v1, . . . , vm) 7→ h1(v1) · · ·hm(vm).

Essential part of tensor powers: We define the essential part A(m)

of A⊗m to be the (unique) ideal of A⊗m consisting of the functions which

vanish on all the m-tuples (v1, . . . , vm) ∈ V m with vi = vj for some i 6= j.

One may interpret A(m) as the algebra of all functions V (m) −→ k.

Ideals of A(m) and roots of f(x): As in the case m = 1, we define the

support of an ideal I of A(m) as

Supp(I) := V (m) \ {v̄ ∈ V (m) | a(v̄) = 0 for every a ∈ I}.

Using this convention, Lemma 4.1.1 can be generalized as follows:

Lemma 4.1.2. For s ≤ n, if Is,1, . . . , Is,ts are pairwise orthogonal ideals of

A(s) such that A(s) = Is,1 + · · ·+ Is,ts, then V (s) can be partitioned as

V (s) = Supp(Is,1) t · · · t Supp(Is,ts).
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Connection with GRH: The IKS-algorithm relies on the assumption

of the generalized Riemann hypothesis (GRH) [Rie59, Cho65, BCRW08].

We formally state the hypothesis below. Recall that a Dirichlet charac-

ter of order k ∈ N>1 is defined as a completely multiplicative arithmetic

function χ : (Z,+) −→ (C, ·) such that χ(n + k) = χ(n) for all n, and

χ(n) = 0 whenever gcd(n, k) > 1. Given a Dirichlet character χ, we define

the corresponding Dirichlet L-function by

L(χ, s) =
∞∑
n=1

χ(n)

ns

for all complex numbers s with real part > 1. By analytic continuation, this

function can be extended to a meromorphic function defined on all of C. The

generalized Riemann hypothesis asserts that, for every Dirichlet character χ,

the zeros of L(χ, s) in the critical strip 0 < Re s < 1 all lie on the critical

line Re s = 1/2.

Under the assumption of GRH, Rónyai [Rón92] showed that the knowl-

edge of any explicit nontrivial automorphism σ ∈ Aut(A) of A immediately

gives us a nontrivial factor of f(x). The latter result is used in the routine of

the IKS-algorithm. Rónyai’s result [Rón92] relies on the ability of efficiently

computing radicals (r-th roots for prime r) in finite fields, which is known to

be possible under GRH as shown by Huang [Hua84]. Hence, the assumption

of GRH is an artifact of Huang’s result. The motivating case of a prime

field and r = 2 can be easily explained by Ankeny’s theorem [Ank52] on the

smallest primitive root.

4.2 Description of the IKS-algorithm

In the following, we describe the routine of the IKS-algorithm. Throughout

this section, let f(x) ∈ Fq[x] be a polynomial of degree n having n dis-
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tinct roots V = {α1, . . . , αn} in Fq. For some field extension k ⊇ Fq, let

A := k[x]/(f(x)) be the associated quotient algebra. For algorithmic pur-

poses, we assume A is given by structure constants with respect to some basis

b1, . . . , bn. Below, we recall below a result from [IKS09] which delineates a

deterministic algorithm for computing the essential parts A(s) (1 ≤ s ≤ n).

Lemma 4.2.1. A basis for A(m) = (k[X]/(f(X)))(m) over k ⊇ Fq can be

computed by a deterministic algorithm in time poly(log |k| , nm).

Proof. Define embeddings µi (1 ≤ i ≤ m) of A into A⊗m as follows:

µi : A −→ A⊗m, a −→ 1 ⊗ · · ·⊗ 1 ⊗ a ⊗ 1 ⊗ · · · ⊗ 1.

↑
i-th factor

In the functional interpretation, µi(A) corresponds to those functions on V (m)

which depend only on the i-th coordinate of the tuples. For 1 ≤ i < j ≤ m,

we define

∆m
i,j := {b ∈ A⊗m | (µi(a)− µj(a))b = 0 for every a ∈ A}.

Observe that ∆m
i,j is the ideal of A⊗m consisting of the functions which are

zero on every tuple (v1, v2, ..., vm) ∈ V m with vi 6= vj. A basis for ∆m
i,j can be

computed by solving a system of linear equations in time polynomial in the

dimension of A⊗m over k (which is nm). Since A(m) is just the annihilating

ideal of
∑

1≤i<j≤m ∆m
i,j,

A(m) = {c ∈ A⊗m | bc = 0 for every b ∈∑
1≤i<j≤m ∆m

i,j
},

we can compute A(m) in poly(nm) field operations. The assertion follows.

We now proceed to give an overview of the routine of the IKS-algorithm.

We delineate how an m-scheme can be obtained from the ideal decomposi-

tions of the essential parts A(s) (1 ≤ s ≤ n). For referential purposes, let us

quickly recall the algorithmic data:
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Input: A polynomial f(x) ∈ Fq[x] of degree n having n distinct roots

V = {α1, . . . , αn} in Fq.

Also 1 < m ≤ n is given, and we can assume that we have the smallest

field extension k ⊇ Fq having s-th nonresidues for all 1 ≤ s ≤ m (computing

k will take poly(log q,mm) time under GRH).

Output: A nontrivial factor of f(x) or a homogeneous, antisymmetric

m-scheme on V = {α1, . . . , αn}. (In the latter case we get the m-scheme

implicitly via a system of ideals of A(m).)

Description of the algorithm: We define A(1) = A = k[x]/(f(x)) and

compute the essential parts A(s) (1 < s ≤ m) of the tensor powers of A (this

takes poly(log q, nm) time by Lemma 4.2.1).

Automorphisms and ideal decompositions of A(s) (1 < s ≤ m):

Observe that for each τ ∈ Symms, the map defined by

τ : A(s) −→ A(s), (bi1 ⊗ · · · ⊗ bis)τ 7→ bi1τ ⊗ · · · ⊗ bisτ

is an algebra automorphism of A(s). By [Rón92], this knowledge of explicit

automorphisms of A(s) can be used to efficiently decompose A(s) under GRH:

Namely, one can compute mutually orthogonal ideals Is,1, . . . , Is,ts (ts ≥ 2)

of A(s) such that

A(s) = Is,1 + · · ·+ Is,ts .

By Lemma 4.1.2, this decomposition of A(s) induces a partition Ps on V (s):

Ps : V (s) = Supp(Is,1) t · · · t Supp(Is,ts).

Together with P1 := {V } this yields an m-collection Π = {P1,P2, . . . ,Pm}

on V .

We will now show how to refine the m-collection Π to an m-scheme using

algebraic operations on the ideals Is,i of A(s). To do that, we first need a tool

to relate lower level ideals Is−1,i to higher level ideals Is,i′ .
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Algebra embeddings A(s−1) −→ A(s): For each 1 < s ≤ m we

have s natural algebra embeddings ιs1, . . . , ι
s
s : A⊗(s−1) −→ A⊗s which map

bi1 ⊗ · · · ⊗ bis−1 to bi1 ⊗ · · · ⊗ bij−1
⊗ 1⊗ bij ⊗ · · · ⊗ bis−1 respectively (for the

s positions of 1). By restricting ιsj to A(s−1) and multiplying its image by

the identity element of A(s), we obtain s algebra embeddings A(s−1) −→ A(s)

denoted also by ιs1, . . . , ι
s
s. In the following, we interpret ιsj(A(s−1)) as the set

of functions V (s) −→ k which do not depend on the j-th coordinate.

The algorithm is now best described by explaining the five kinds of re-

finement procedures which implicitly refine Π.

R1 (Compatibility): If for any 1 < s ≤ m, for any pair of ideals

Is−1,i and Is,i′ in the decomposition of A(s−1) and A(s) respectively, and

for any j ∈ {1, . . . , s}, the ideal ιsj(Is−1,i)Is,i′ is neither zero nor Is,i′ , then

we can efficiently compute a subideal of Is,i′ and thus, refine Is,i′ and the

m-collection Π.

Note that R1 fails to refine Π only when Π is a compatible collection.

R2 (Regularity): If for any 1 < s ≤ m, for any pair of ideals Is−1,i

and Is,i′ in the decomposition of A(s−1) and A(s) respectively, and for any

j ∈ {1, . . . , s}, ιsj(Is−1,i)Is,i′ is not a free module over ιsj(Is−1,i), then by

trying to find a free basis, we can efficiently compute a zero divisor in Is−1,i

and thus, refine Is−1,i and the m-collection Π.

Note that R2 fails to refine Π only when Π is a regular collection.

R3 (Invariance): If for some 1 < s ≤ m and some τ ∈ Symms the

decomposition of A(s) is not τ -invariant, then we can find two ideals Is,i and

Is,i′ such that Iτs,i∩Is,i′ is neither zero nor Is,i′ ; hence, we can efficiently refine

Is,i′ and the m-collection Π.

Note that R3 fails to refine Π only when Π is an invariant collection.
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R4 (Homogeneity): If the algebra A(1) = A is in a known decom-

posed form, then we can trivially find a nontrivial factor of f(x) from that

decomposition.

Note that R4 fails to refine Π only when Π is a homogeneous collection.

R5 (Antisymmetry): If for some 1 < s ≤ m, for some ideal Is,i and for

some τ ∈ Symms\{id}, we have Iτs,i = Is,i, then τ is an algebra automorphism

of Is,i. By [Rón92], this means we can find a subideal of Is,i efficiently under

GRH and hence, refine Is,i and the m-collection Π.

Note that R5 fails to refine Π only when Π is an antisymmetric collection.

Summary: The algorithm executes the ideal operations R1-R5 described

above onA(s) (1 ≤ s ≤ m) until either we get a nontrivial factor of f(x) or the

underlying m-collection Π becomes a homogeneous, antisymmetric m-scheme

on V . It is routine to verify that the time complexity of the IKS-algorithm

is poly(log q, nm).

4.3 From m-Schemes to Factoring

In the last section, we described how to either find a nontrivial factor of a

given polynomial f(x) or construct an m-scheme on the n roots of f(x). In

the following, we explain how to deal with the ‘bad case’, when we get a

homogeneous, antisymmetric m-scheme instead of a nontrivial factor. We

show how the properties of homogeneous and antisymmetric m-schemes can

be used to obtain a nontrivial factorization of f(x) even in this case. The

next theorem is of crucial importance (it extends the argument of [IKS09],

Theorem 7 to our general notion of matchings).

Theorem 4.3.1 ([AIKS12]). Let f(x) be a polynomial of degree n over Fq
having n distinct roots V = {α1, . . . , αn} in Fq. Assuming GRH, we ei-
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ther find a nontrivial factor of f(x) or we construct a homogeneous, anti-

symmetric m-scheme on V having no matchings, deterministically in time

poly(log q, nm).

Proof. We apply the algorithm described in Section 4.2. Suppose it yields

a homogeneous, antisymmetric m-scheme Π = {P1,P2, . . . ,Pm} on V . For

the sake of contradiction, assume that some color P ∈ Ps is a matching.

Let 1 ≤ i1 < . . . < ik ≤ s and 1 ≤ j1 < . . . < jk ≤ s with (i1, . . . , ik) 6=

(j1, . . . , jk) be such that πsi1,...,ik(P ) = πsj1,...,jk(P ) and
∣∣∣πsi1,...,ik(P )

∣∣∣ = |P |.

Then πsi1,...,ik(π
s
j1,...,jk

)−1 is a nontrivial permutation of πsi1,...,ik(P ). For the

corresponding orthogonal ideal decompositions of A(1), . . . ,A(m), this implies

that the embeddings

ιsi1,...,ik := ιsi1 ◦ . . . ◦ ι
s−k+1
ik

, ιsj1,...,jk := ιsj1 ◦ . . . ◦ ι
s−k+1
jk

both give isomorphisms Is−k,l′ −→ Is,l, where the ideals Is−k,l′ and Is,l corre-

spond to πsi1,...,ik(P ) and P , respectively. Hence, the map (ιsi1,...,ik)
−1ιsj1,...,jk is

a nontrivial automorphism of Is−k,l′ . By [Rón92], this means we can find a

subideal of Is−k,l′ efficiently under GRH and thus, refine the m-scheme Π.

Combining the above result and Corollary 3.4.2, we conclude that one can

completely factor f(x) in time poly(log q, nlogn) under GRH. This reproves

Evdokimov’s result [Evd94], which is based on a framework less general than

that of m-schemes described above. Note that any progress towards the

schemes conjecture (Section 3.5) will directly result in an improvement of the

time complexity of the IKS-algorithm. A proof of the schemes conjecture,

for parameter c, would imply that the total time taken for the factorization

of f(x) would improve to poly(log q, nc).

In the special case that f(x) is a polynomial of prime degree n, where

(n − 1) satisfies certain divisibility conditions, we study the structure of
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association schemes of prime order to show that for a ‘small’ m the ‘bad’ case

in Theorem 4.3.1 never occurs. This is discussed in the following section.

4.4 Factoring Prime Degree Polynomials

Following after the work [AIKS12], we show that the IKS-algorithm has

polynomial running time for the factorization of polynomials f(x) ∈ Fq[x] of

prime degree n, where (n−1) has a large constant-smooth factor. By this we

mean a number s ∈ N of magnitude
√
n/` such that s|(n− 1) and all prime

factors of s are smaller than r (the exact relationship between `, r and the

time is described in Theorem 4.4.1). Previously, the IKS-algorithm was only

known to have polynomial running time for the factorization of polynomials

of prime degree n, where (n − 1) is constant-smooth [IKS09]. The results

given in this section imply that under a well-known number theory conjecture

involving Linnik’s constant, there are infinitely many primes n such that any

polynomial f(x) ∈ Fq[x] of degree n can be factored by the IKS-algorithm in

time poly(log q, n). As a main tool, we employ the structural results about

association schemes of prime order described in Sections 2.5 and 2.6.

Theorem 4.4.1 ([AIKS12]). Let f(x) be a polynomial of prime degree n

over Fq. Assume (n− 1) has an r-smooth divisor s, with s ≥
√
n/`+ 1 and

` ∈ N>0. Then we can find a nontrivial factor of f(x) deterministically in

time poly(log q, nr+log `) under GRH.

Proof. Let `′ := (2`+ 1). It suffices to consider the case that f(x) has n dis-

tinct roots V = {α1, . . . , αn} in Fq. Let m := max{r + 1, 2 log2 `
′ + 3}.

We apply the IKS-algorithm (Section 4.2) and by Theorem 4.3.1 either

find a nontrivial factor of f(x) or construct a homogeneous, antisymmetric
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m-scheme Π = {P1,P2, . . . ,Pm} on V having no matchings, deterministi-

cally in time poly(log q, nm). Suppose for the sake of contradiction that the

latter case occurs.

Clearly, (P1,P2 ∪ {1}) is an association scheme of prime order n, where

1 denotes the trivial relation. Thus, by Hanaki-Uno’s theorem [HU06] there

exists k|(n− 1) such that |P | = kn for all P ∈ P2. Hence |P2| = (n− 1)/k.

We distinguish between the following two cases.

Case I: gcd(s, k) = 1. Then |P2| = (n − 1)/k ≥ s ≥
√

2n/(`′ − 1) + 1.

Thus, k <
√
n(`′ − 1)/2 =

√
2n/(`′ − 1) · (`′ − 1)/2 ≤ (s − 1)(`′ − 1)/2,

implying |P2| ≥ s > 1 + 2k
`′−1

. In particular, Π contains a matching by

Theorem 3.5.3, contrary to our assumption.

Case II: gcd(s, k) > 1. The colors in {P2, . . . ,Pr+1} can be used to

define a homogeneous, antisymmetric r-scheme on k points as follows: Pick

P0 ∈ P2 and define V ′ := {α ∈ V | (α1, α) ∈ P0}. Furthermore, define an

r-collection Π′ = {P ′1, . . . ,P ′r} on V ′ such that for all 1 ≤ i ≤ r and for each

color P ∈ Pi+1, we put a color P ′ ∈ P ′i such that

P ′ := {v̄ ∈ V ′(i) | (α1, v̄) ∈ P}.

Then |V ′| = k, and Π′ = {P ′1, . . . ,P ′r} is a homogeneous, antisymmetric

r-scheme on k points. On the other hand, by gcd(s, k) > 1 we know that

k has a prime divisor which is at most r; therefore, Π′ cannot exist by

Lemma 3.1.1.

Naturally, one asks if there exist infinitely many primes n for which

Theorem 4.4.1 is a significant improvement. A well-known number theory

conjecture concerning primes in arithmetic progressions is connected to this

question (Section 4.5). Under the conjecture that L = 2 is admissible for

Linnik’s constant [Lin44], we prove that there exist infinitely many primes n
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for which the time complexity in Theorem 4.4.1 is polynomial. Even simply

under GRH the factoring algorithm has an improved time complexity over

the best known ones, for infinitely many n.

4.5 Connection to Linnik’s Constant

Linnik’s theorem in number theory answers a natural question about primes

in arithmetic progressions. For coprime integers a, s such that 1 ≤ a ≤ s−1,

let p(a, s) denote the smallest prime in the arithmetic progression {a+ is}i.

Linnik’s theorem states that there exist (effective) constants c, L > 0 such

that

p(a, s) < csL.

There has been much effort directed towards determining the smallest admis-

sible value for the Linnik constant L. The smallest admissible value currently

known is L = 5, as proven by Xylouris [Xyl11]. It has been conjectured nu-

merous times that L ≤ 2 [SS58, Kan63, Kan64, HB92] as noted below.

Conjecture 4.5.1. There exists c > 0 such that for all coprime integers a, s

with 1 ≤ a ≤ s − 1, the smallest prime p(a, s) in the arithmetic progression

{a+ is | i ∈ N} satisfies p(a, s) < cs2.

Note that the above conjecture is not known to be true under GRH. The

best known under GRH is p(a, s) < 2(s log s)2 (see [BS96], Theorem 5.3). In

the following corollary, we consider how the primes of the type described in

Theorem 4.4.1 relate to p(1, s).

Corollary 4.5.2 ([AIKS12]). Assuming GRH, there exist infinitely many

primes n such that every polynomial f(x) ∈ Fq[x] of degree n can be factored

deterministically in time poly(log q, nlog logn).
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Further if L = 2 is admissible for Linnik’s constant, then there exist

infinitely many primes n such that every polynomial f(x) ∈ Fq[x] of degree

n can be factored deterministically in time poly(log q, n).

Proof. For the first part, we just assume GRH. Let r ∈ N>1 be a constant

and s ∈ N a (large enough) r-smooth number. By [BS96], Theorem 5.3 there

exists a prime n = p(1, s) < 2(s log s)2. Thus,

s >
√
n/2/ log s ≥ (

√
n/2/ log n) + 1 =

√
n/(2 log2 n) + 1.

It follows that we can generate infinitely many primes n such that

Theorem 4.4.1 applies for ` := `(n) = 2 log2 n, and proves a time complexity

of poly(log q, nlog logn).

For the second part, we additionally assume Conjecture 4.5.1. Let

r ∈ N>1 be a constant and s ∈ N a (large enough) r-smooth number. By the

conjecture there exists a prime n = p(1, s) < cs2. Thus,

s >
√
n/c ≥

√
n/(c+ 1) + 1.

It follows that we can generate infinitely many primes n such that

Theorem 4.4.1 applies for ` := (c + 1), and proves a time complexity of

poly(log q, n).

The techniques known before our work do not give a result as strong as

ours on this particular infinite family of degrees. The best one could have

done before is poly(log q, nlogn) time, by the general purpose algorithm of

Evdokimov [Evd94].

Naturally, one asks if it is possible to further relax the conditions which

Theorem 4.4.1 places on the prime number n (i.e. the degree of the polyno-

mial we want to factor). In our current framework, this translates to asking
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to which extent we can relax the conditions for the existence of small inter-

section numbers in schemes of bounded valency and indistinguishing number

(see Theorem 2.6.1). However, we saw in Section 2.6 from the example of

the cyclotomic scheme that the conditions of Theorem 2.6.1 cannot be re-

laxed (up to constant factors). On the other hand, this does not rule out

improvements of the following kind: If X = (X,G) is an association scheme

of prime order p := |X| and we assume |G| ≈ k/ log k, where k ∈ N is such

that k = ng for all 1 6= g ∈ G, then there exist at least two constant-small

intersection numbers in X (note that in this case, the argument involving the

Hasse-Weil bound from Section 2.6 produces too large an ‘error’ in order to

restrict the intersection numbers). This would be enough to give an infinite

family of primes n for which Theorem 4.4.1 has a polynomial time complexity

(only assuming GRH).
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Chapter 5

Extensibility of Association

Schemes

In this chapter, we introduce the notion of extensibility of association schemes,

a concept which was first defined in [AZ12]. An association scheme which is

associated to a height t presuperscheme [Woj98, Woj01a, Woj01b] is said to

be extensible to height t. Smith [Smi94, Smi07] showed that an association

scheme X = (Q,Γ) of order d := |Q| is Schurian iff X is extensible to height

(d−2). We formalize the maximal height tmax(X) of an association scheme X

as the largest number t ∈ N such that X is extensible to height t (we also in-

clude the possibility tmax(X) =∞, which is equivalent to tmax(X) ≥ (d− 2)).

Intuitively, the maximal height provides a natural measure of how close an

association scheme is to being Schurian.

For the purpose of computing the maximal height, we introduce the

association scheme extension algorithm. On input an association scheme

X = (Q,Γ) of order d := |Q| and a number t ∈ N such that 1 ≤ t ≤ (d− 2),

the association scheme extension algorithm decides in time dO(t) if the scheme

X is extensible to height t. In particular, if t is a fixed constant, then the

73
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running time of the association scheme extension algorithm is polynomial in

the order of X. The association scheme extension algorithm is used to show

that all non-Schurian association schemes up to order 26 are completely in-

extensible, i.e. they are not extensible to any positive height t ∈ N>0.

Apart from its connection to the Schurity problem, the notion of exten-

sibility of association schemes is deeply related to the IKS-framework for

polynomial factoring over finite fields (see Chapter 4). In the language of

m-schemes, the concept of extensibility formalizes the property that a ho-

mogeneous 3-scheme {P1,P2,P3} on a set V is part of a larger m-scheme

Π = {P1,P2,P3, . . . ,Pm} on V , where m > 3 (see Section 5.1). For the line

of research started in [IKS09, AIKS12], it is of particular interest to gain a

more thorough understanding of the combinatorial properties possessed by

association schemes which are extensible to a certain height. The present

chapter provides an algorithmic starting point for this discussion.

The material in this chapter is organized as follows. §5.1 introduces the

notion of t-preschemes and defines the concept of extensibility of association

schemes. In §5.2, we define adjacency tensors of t-preschemes and delineate

in which sense they express a central combinatorial property of t-preschemes

(see Theorem 5.2.3). In §5.3, we give a description of the association scheme

extension algorithm. §5.4 lists the computational results obtained through

the application of the algorithm.

5.1 Height t Presuperschemes

In this section, we introduce the notion of height t presuperschemes (short:

t-preschemes), which may be regarded as a higher-dimensional analog of the

notion of association schemes. In the following, let Q be a finite nonempty
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set. For each n ∈ N>1, define a projection

prn : Qn −→ Qn−1

(x1, ..., xn−1, xn) −→ (x1, ..., xn−1)

(the projection prn eliminates the last coordinate from tuples in Qn). The

inverse image of a set C ⊆ Qn−1 under prn is denoted by pr−1
n (C). Through-

out this work, we omit the index n (we assume it is clear from context) and

just write pr instead of prn. For each n ∈ N, observe that the symmetric

group on n elements Symmn acts on the set of tuples Qn by permuting the

coordinates. For all ū := (u1, ..., un) ∈ Qn and τ ∈ Symmn, define

ūτ := (uτ(1), ..., uτ(n)).

Furthermore, we fix the following convention:

Nt := {n ∈ N |n ≤ t}, N2
t := {(m,n) ∈ N2 |m+ n ≤ t}.

The definition of height t presuperschemes given below is equivalent to the

definition given by Wojdy lo [Woj98, Woj01a, Woj01b].

Definition 5.1.1 (Height t Presuperscheme). Let Q be a finite nonempty

set and let t ∈ N. A height t presuperscheme (Q,Γ∗) on Q is a family of

sets {Γn}n∈Nt , where each set Γn = {Cn
1 , ..., C

n
sn} is a partition of the direct

power Qn+2 (note that all Cn
i are assumed to be nonempty), such that:

(P1) (Identity Relation) C0
1 := {(x, x) |x ∈ Q};

(P2) (Projection) ∀n ∈ Nt − {0}, ∀Cn
j ∈ Γn,

pr(Cn
j ) := {pr(ū) | ū ∈ Cn

j } ∈ Γn−1;

(P3) (Invariance) ∀n ∈ Nt, ∀Cn
j ∈ Γn, ∀τ ∈ Symmn+2,

(Cn
j )τ := {ūτ | ū ∈ Cn

j } ∈ Γn;
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(P4) (Intersection) ∀(m,n) ∈ N2
t , ∀Cm

i ∈ Γm, ∀Cn
j ∈ Γn, ∀Cm+n

k ∈ Γm+n,

∃c(i, j, k;m,n) ∈ N. ∀(x0, ..., xm, y0, ..., yn) ∈ Cm+n
k ,∣∣∣{z ∈ Q | (x0, ..., xm, z) ∈ Cm

i , (z, y0, ..., yn) ∈ Cn
j }
∣∣∣ = c(i, j, k;m,n).

For brevity, we refer to height t presuperschemes simply as t-preschemes.

We call the elements of Γn (0 ≤ n ≤ t) the relations at height n. We refer

to the numbers c(i, j, k;m,n) as the intersection numbers of (Q,Γ∗).

Property (P2) interrelates the different layers {Γn}n∈Nt of a

t-prescheme, while Properties (P3), (P4) may be regarded as higher-

dimensional analogs of Properties (A2), (A3) of association schemes, re-

spectively (see Definition 2.1.1). From Definition 5.1.1 it is clear that a

0-prescheme and an association scheme constitute the exact same notion.

If (Q,Γ∗) is a t-prescheme, then (Q,Γ0) is an association scheme. We say

that the association scheme (Q,Γ0) is associated to the t-prescheme (Q,Γ∗).

If an association scheme X is associated to a t-prescheme (Q,Γ∗), we call X

extensible to height t. In this case, we refer to the t-prescheme partitions

{Γn}1≤n≤t as a t-Extension of X. Note that by definition, every association

scheme is extensible to height 0.

We define the maximal height tmax(X) of an association scheme X as the

largest number t ∈ N such that X is extensible to height t. If X is extensible

to arbitrary heights (meaning that for all t ∈ N, X is extensible to height t),

we say that X has maximal height ∞. In case tmax(X) = 0, we say that X is

completely inextensible.

For an association scheme X = (Q,Γ) of order d := |Q|, it is easily proven

that tmax(X) =∞ iff X is extensible to height (d− 2). A fundamental result

by Smith connects the concept of extensibility to the notion of Schurity of

association schemes.
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Theorem 5.1.2 (Smith [Smi94, Smi07]). An association scheme X = (Q,Γ)

of order d := |Q| is Schurian iff X is extensible to height (d− 2).

Note that Theorem 5.1.2 may also be phrased as follows: An associ-

ation scheme X is Schurian iff tmax(X) = ∞. Moreover, observe that if

an association scheme X = (Q,Γ) of order d := |Q| is non-Schurian, then

0 ≤ tmax(X) < (d− 2).

We end this section with a remark about the relationship of t-preschemes

and m-schemes (the latter notion was introduced in Chapter 3). We saw in

Section 3.2 that there exists a natural correspondence between homogeneous

3-schemes and association schemes (which we may regard as 0-preschemes).

A simple extension of Lemmas 3.2.1 and 3.2.2 shows that more generally,

homogeneous m-schemes (where m ≥ 3) naturally correspond to preschemes

of height (m − 3). Especially, the concept of extensibility can be phrased

in m-scheme terminology as follows: An association scheme X is said to

be extensible to height t if the homogeneous 3-scheme corresponding to X

constitutes the first three levels of a (t + 3)-scheme. As we will see in the

following sections, the advantage of using the notion of preschemes is that

certain scheme-theoretic properties can be phrased in a more algebraic and

computational way in this framework.

In the same context, we also want to mention the following result, which

is a variation of Theorem 5.1.2 (it is the m-scheme version of the theorem).

We cite it here for completeness.

Theorem 5.1.3. Every homogeneous (n− 1)-scheme on n points is an orbit

scheme.

Proof. A simple comparison of definitions shows that every homogeneous

(n − 1)-scheme on n points can be regarded as a superscheme (in the sense
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of [Smi07]). The assertion then follows from [Smi07], Th. 8.5.

5.2 Adjacency Tensors

In this section, we introduce the notion of adjacency tensors. The concept

of adjacency tensors of t-preschemes naturally generalizes the notion of ad-

jacency matrices of association schemes (see Section 2.2). Analogously, ad-

jacency tensors describe the intersection property of t-preschemes in simple

algebraic terms (see Theorem 5.2.3). Note that we apply the concept of

adjacency tensors in Section 5.3, when we describe the association scheme

extension algorithm.

As a first step, we introduce tensors of order k (short: k-tensors) and

discuss certain natural operations associated with this notion. Note that k-

tensors constitute a natural generalization of the concept of square matrices.

Definition 5.2.1 (k-Tensor). For k ≥ 2, a k-tensor with entries in Z is a

function

T : {1, ..., d}k −→ Z.

We refer to the number k as the order of the tensor T . We denote by Ti1···ik

the image of (i1, ..., ik) under T . We call Ti1···ik the (i1, ..., ik)-entry of T .

Throughout this work, tensors are regarded simply as multidimensional

arrays. For k = 2, the notion of k-tensors with entries in Z coincides with

the notion of d×d matrices with entries in Z. For a more general (algebraic)

treatment of tensors, the reader is referred to [CL03, Dim02].

In the following, we define some basic operations for k-tensors. These

operations naturally generalize the standard matrix operations from linear

algebra. For two k-tensors S, T : {1, ..., d}k −→ Z, we define their sum
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U = S + T as the k-tensor U : {1, ..., d}k −→ Z with entries

Ui1···ik = Si1···ik + Ti1···ik .

For an element c ∈ Z and a k-tensor S : {1, ..., d}k −→ Z, we define their

scalar product V = c · S as the k-tensor V : {1, ..., d}k −→ Z with entries

Vi1···ik = c · Si1···ik .

For a m-tensor E : {1, ..., d}m −→ Z and a n-tensor F : {1, ..., d}n −→ Z,

we define their inner product W = EF as the order (m + n − 2) tensor

W : {1, ..., d}(m+n−2) −→ Z with entries

Wi1···im+n−2 =
d∑
j=1

Ei1···im−1j · Fjim···im+n−2 .

The above operations generalize the standard addition, scalar multiplication

and inner multiplication of matrices. It is easily verified that addition and

inner multiplication of tensors are associative, distributive and compatible

with scalar multiplication.

Next, we define the notion of adjacency tensors, boolean tensors which

indicate membership to subsets of direct powers of Q := {1, ..., d}.

Definition 5.2.2 (Adjacency Tensor). Let Q := {1, ..., d} and let C ⊆ Qn,

where n ≥ 2. We define the adjacency tensor corresponding to the subset

C as the n-tensor A(C) : {1, ..., d}n −→ Z such that the entry [A(C)]x1···xn

is 1 if (x1, ..., xn) ∈ C and 0 otherwise.

Let (Q,Γ∗) be a t-prescheme on Q := {1, ..., d}. We denote the adja-

cency tensor of a relation Cm
i ∈ Γm (m ∈ Nt) as the (m + 2)-tensor

Ami : {1, ..., d}m+2 −→ Z, where (Ami )x1···xm+2 is 1 if (x1, ..., xm+2) ∈ Cm
i and

0 otherwise. Adjacency tensors can be used to express the intersection prop-

erty of t-preschemes in algebraic terms (analogously to adjacency matrices

in the case of association schemes, see [BI84, Zie05]).



80 5. Extensibility of Association Schemes

Theorem 5.2.3 ([AZ12]). Let (Q,Γ∗) be a t-prescheme on Q := {1, ..., d}.

Then for all (m,n) ∈ N2
t , C

m
i ∈ Γm and Cn

j ∈ Γn, it holds that

Ami A
n
j =

sm+n∑
k=1

c(i, j, k;m,n)Am+n
k ,

where Ami , A
n
j and Am+n

k denote the adjacency tensors of Cm
i , C

n
j and

Cm+n
k ∈ Γm+n, respectively, and c(i, j, k;m,n) ∈ N denote the intersection

numbers. Furthermore, the above statement is equivalent to the intersection

property of t-preschemes (see Definition 5.1.1 (P4)).

Proof. Recall the intersection property of t-preschemes: For all (m,n) ∈ N2
t ,

Cm
i ∈ Γm, Cn

j ∈ Γn, Cm+n
k ∈ Γm+n and (x0, ..., xm, y0, ..., ym) ∈ Cm+n

k , it

holds that

c(i, j, k;m,n) =
∣∣∣{z ∈ Q | (x0, ..., xm, z) ∈ Cm

i , (z, y0, ..., ym) ∈ Cn
j }
∣∣∣ .

Note that the above equation can also be written as

c(i, j, k;m,n) =
d∑
z=1

(Ami )x0···xmz

(
Anj

)
zy0···ym

where the right-hand side is
(
Ami A

n
j

)
x0···xmy0···ym

by the definition of the inner

product of tensors. From this the assertion follows immediately.

5.3 The Association Scheme Extension

Algorithm

In this section, we describe the association scheme extension algorithm [AZ12].

On input an association scheme X = (Q,Γ) of order d := |Q| and a number

t ∈ N such that 1 ≤ t ≤ (d − 2), the association scheme extension algo-

rithm decides in time dO(t) if X is extensible to height t. Furthermore, if
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X is extensible to height t, then the algorithm outputs its unique coarsest

t-extension Xt, which represents the most ‘basic’ way in which X can be

extended to a t-prescheme. We apply the association scheme extension al-

gorithm to determine that all non-Schurian association schemes up to order

26 are completely inextensible (see Theorem 5.4.1). Via the tensor product

of association schemes, the latter result gives rise to a multitude of infinite

families of completely inextensible association schemes (see Section 5.4).

Description of the Algorithm

We now describe the association scheme extension algorithm. On input an

association scheme X = (Q,Γ) on Q := {1, ..., d} and a number t ∈ N such

that 1 ≤ t ≤ (d−2), the algorithm begins with trivial partitions Γs := {Qs+2}

(1 ≤ s ≤ t) and then gradually refines these partitions according to a set

of rules derived from the properties of t-extensions (see Definition 5.1.1).

Via this refinement process, the partitions Γs (1 ≤ s ≤ t) either turn into a

t-extension of X, or they provide combinatorial justification for the conclusion

that X cannot be extended to height t.

Input: An association scheme X = (Q,Γ) on Q := {1, ..., d}, and a number

t ∈ N such that 1 ≤ t ≤ (d− 2).

Output: A t-extension {Γs}1≤s≤t of X, or the decision that X is not exten-

sible to height t.

Initialization. For each 1 ≤ s ≤ t, let Γs := {Qs+2} be the trivial partition

of Qs+2.

Step 1. For each 1 ≤ s ≤ t, refine the partition Γs of Qs+2 according to the

projection property of t-preschemes (see Definition 5.1.1 (P2)). That is, for

each C ∈ Γs, determine if the set pr(C) can be written as a union of relations
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in Γs−1, i.e. if

pr(C) = Cs−1
i1
∪ · · · ∪ Cs−1

ik

for some Cs−1
i1

, ..., Cs−1
ik
∈ Γs−1.

If YES. Replace in Γs the set C ∈ Γs with the pairwise disjoint sets

C ∩ pr−1(Cs−1
i1

), ..., C ∩ pr−1(Cs−1
ik

).

ELSE. Distinguish between the following two cases:

(a) If s > 1. Replace in Γs−1 each set C ′ ∈ Γs−1 such that

C ′∩pr(C) 6= ∅ with the two disjoint sets C ′∩pr(C) and C ′\pr(C).

(b) If s = 1. Terminate the algorithm and output: X is not exten-

sible to height t.

Step 2. For each 1 ≤ s ≤ t, refine the partition Γs of Qs+2 according to the

invariance property of t-preschemes (see Definition 5.1.1 (P3)). That is, for

each C ∈ Γs and each τ ∈ Symms+2, replace in Γs each set C ′ ∈ Γs such

that C ′ ∩ Cτ 6= ∅ with the two disjoint sets C ′ ∩ Cτ and C ′ \ Cτ .

Step 3. For each 1 ≤ s ≤ t, refine the partition Γs of Qs+2 according to

the intersection property of t-preschemes (see Theorem 5.2.3). That is, for

each m,n ∈ N such that s = (m + n), and each pair of sets Cm
i ∈ Γm and

Cn
j ∈ Γn, compute the inner product

P := Ami A
n
j ,

where Ami , A
n
j denote the adjacency tensors of Cm

i , C
n
j , respectively (see Sec-

tion 5.2). The entries of P are integers in the range from 0 to d. For each

r = 0, ..., d define

P−1(r) := {(i1, ..., is+2) ∈ Qs+2 |Pi1···is+2 = r}
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and replace in Γs each set C ∈ Γs such that C ∩ (P−1(r)) 6= ∅ with the two

disjoint sets C ∩ (P−1(r)) and C \ (P−1(r)).

Repeat Steps 1-3. If none of them yields any further refinement of the parti-

tions Γs (1 ≤ s ≤ t), then terminate the algorithm and output {Γs}1≤s≤t.

Correctness of the Algorithm

We now prove the correctness of the association scheme extension algorithm.

We need the following preliminary lemma.

Lemma 5.3.1 ([AZ12]). Let X = (Q,Γ) be an association scheme on the set

Q := {1, ..., d} and let t ∈ N be such that 1 ≤ t ≤ (d − 2). The following

holds:

(1) On input X and t, the association scheme extension algorithm termi-

nates after at most dO(t) steps.

(2) On input X and t, if the association scheme extension algorithm out-

puts a set of partitions {Γs}1≤s≤t, then these partitions constitute a

t-extension of X.

Proof. (1) Note that the algorithm can make at most (d3 + ... + dt+2) re-

finements to the partitions {Γs}1≤s≤t before it must terminate. Moreover,

observe that the algorithm goes through at most dO(t) elementary operations

in between two refinements. From this the assertion follows directly.

(2) Note that the algorithm outputs a set of partitions {Γs}1≤s≤t only if

Steps 1-3 of the algorithm do not yield any further refinement of {Γs}1≤s≤t.

The latter condition implies that Definition 5.1.1 (P2)-(P4) hold for X and

{Γs}1≤s≤t (see Theorem 5.2.3). This in turn implies that the partitions

{Γs}1≤s≤t constitute a t-extension of X.
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Let us fix some terminology. Let X be a finite, nonempty set and let P ,R

be partitions of X. If for each P ∈ P there exist sets R1, ..., Rn ∈ R such

that P = ∪ni=1Ri, then we call P a fusion of R. We use this convention in

the proof of correctness of the association scheme extension algorithm given

below.

Theorem 5.3.2 ([AZ12]). The association scheme extension algorithm works

correctly, and its running time is dO(t).

Proof. Let X = (Q,Γ) be an association scheme on Q := {1, ..., d} and let

t ∈ N be such that 1 ≤ t ≤ (d − 2). First, assume X is not extensible to

height t. Then by Lemma 5.3.1 (1), (2) it follows that on input X and t, the

algorithm correctly outputs the decision that X is not extensible to height t,

in time dO(t).

Now consider the converse: Assume we are given as input an associ-

ation scheme X = (Q,Γ) on Q := {1, ..., d} and a number t ∈ N with

1 ≤ t ≤ (d − 2) such that X is extensible to height t. Choose an arbitrary

t-extension {Γ̃s}1≤s≤t of X. Observe the following facts about the partitions

{Γs}1≤s≤t which appear in the algorithm:

(i) For each 1 ≤ s ≤ t, the partition Γs is trivially a fusion of Γ̃s at the

initialization step.

(ii) For each 1 ≤ s ≤ t, the partition Γs remains a fusion of Γ̃s over the

whole course of the algorithm (this follows from Properties (P2), (P3),

(P4) of Definition 5.1.1 applied on X and {Γ̃s}1≤s≤t). Especially, the

algorithm never terminates during the execution of Step 1.

From statement (ii) and Lemma 5.3.1 (1) we conclude that on input X

and t, the algorithm outputs a set of partitions {Γs}1≤s≤t. Consequently, by

Lemma 5.3.1 (2), the output {Γs}1≤s≤t constitutes a t-extension of X.
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Recall that in the proof of Theorem 5.3.2, the t-extension {Γ̃s}1≤s≤t of X

was chosen arbitrarily. Hence we obtain the following corollary.

Corollary 5.3.3 ([AZ12]). On input an association scheme X = (Q,Γ) and

a number t ∈ N with 1 ≤ t ≤ (d − 2) such that X is extensible to height t,

the association scheme extension algorithm outputs the unique coarsest

t-extension Xt := {Γs}1≤s≤t of X. That is, for any t-extension {Γ̃s}1≤s≤t

of X, for each 1 ≤ s ≤ t, the partition Γs is a fusion of Γ̃s.

5.4 Computational Results

In this section, we discuss computational results obtained through the ap-

plication of the association scheme extension algorithm. More precisely, we

determine the extensibility properties of all non-Schurian association schemes

up to order 26. Note that there are exactly 142 non-Schurian schemes of order

less or equal to 26 (see [HM98a, HM98b, HM03, HM09]).

Theorem 5.4.1 ([Aro12], [AZ12]). All non-Schurian association schemes

X = (Q,Γ) of order |Q| ≤ 26 are completely inextensible.

Proof. We created a program of the association scheme extension algorithm

with fixed parameter t = 1 in the input, written in “C”. We applied our

program to all non-Schurian association schemes of order less or equal to 26;

for this we relied on the classification of non-Schurian association schemes

of small order by Hanaki and Miyamoto [HM98a, HM98b, HM03, HM09].

The reader can download an organized version of the C-programs and their

output online [Aro12].

Let us fix some convention. For an association scheme X = (Q,Γ), we

denote the equivalence relation on Q × Q corresponding to the partition Γ
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by ≡Γ. Recall the definition of the tensor product of association schemes.

For two association schemes X1 = (Q1,Γ1) and X2 = (Q2,Γ2), the tensor

product X1⊗X2 is defined as the association scheme (Q1×Q2,Γ1⊗Γ2) such

that for all x1, x
′
1, y1, y

′
1 ∈ Q1 and x2, x

′
2, y2, y

′
2 ∈ Q2,

((x1, x2), (x′1, x
′
2)) ≡Γ1⊗Γ2 ((y1, y2), (y′1, y

′
2))

⇐⇒(x1, x
′
1) ≡Γ1 (y1, y

′
1) and (x2, x

′
2) ≡Γ2 (y2, y

′
2).

Given a number t ∈ N, it is easily seen that the tensor product X1 ⊗ X2 is

extensible to height t iff both X1 and X2 are extensible to height t. Via the

above construction, Theorem 5.4.1 gives rise to a multitude of examples of

infinite families of completely inextensible association schemes. Especially,

we have the following corollary.

Corollary 5.4.2 ([AZ12]). There exist infinitely many completely inextensi-

ble association schemes.



Chapter 6

Efficient Matrix Multiplication

using Association Schemes

The topic of this chapter is a new approach, suggested by Cohn and Umans

[CU03, CU12], to efficient matrix multiplication, i.e. the problem of minimiz-

ing the number of arithmetic operations necessary to multiply two matrices

with entries in some field k. We outline here why the problem is considered

to be central in computational algebra and theoretical computer science as a

whole, describe some of the past breakthroughs in obtaining upper bounds on

the exponent of matrix multiplication ω, and delineate in detail the Cohn-

Umans algebra embedding approach and the progress it has made towards

the famous open conjecture ω = 2. In addition, we describe how association

schemes and their adjacency algebras pertain to the Cohn-Umans fast ma-

trix multiplication framework, and delineate in which way they could help

to improve the state of efficient matrix multiplication.

We remark that the main intention of this chapter is to give an exposi-

tion of the Cohn-Umans approach, delineating a further application of com-

binatorial schemes to computational complexity. We will not provide a full

87
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introduction to the subject of fast matrix multiplication - for this purpose,

the reader is referred to the classical introductory text [BCS97].

6.1 The Exponent of Matrix Multiplication

We consider the problem of multiplying two n×n matrices A,B ∈ kn×n with

entries in some field k, i.e. computing the product

(AB)ik =
n∑
j=1

AijBjk. (6.1.1)

Matrix multiplication is one of the most fundamental problems in alge-

braic complexity, with hosts of applications to various algorithms used by

mathematicians, computer scientists, physicists and engineers today. We

are interested in the algorithmic complexity of matrix multiplication – more

specifically, in answering the following question: What is the minimum value

ω(k) ∈ [2, 3] such that the product of two n × n matrices over the field k

can be computed using less than nω(k)+o(1) arithmetic operations? Note here

that the lower bound ω(k) ≥ 2 follows because each entry of the n×n matri-

ces to be multiplied must be considered at least once, and the upper bound

ω(k) ≤ 3 is obtained from the complexity of the naive method of computa-

tion computation of the matrix product (plainly following Equation (6.1.1)

- which takes O(n3) arithmetic operations). The quantity ω(k) is often re-

ferred to as the exponent of matrix multiplication, possibly depending

on the underlying field k (although ω(k) depends, if at all, on the charac-

teristic of k, since ω(.) is invariant under field extensions [Sch81]). In the

following, we just write ω instead of ω(k), as the methods mentioned here

are not exclusive to any specific characteristic.

It is well-known that the exponent of matrix multiplication ω measures

the asymptotic complexity of several central computational problems besides
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matrix multiplication. For example, the problem of computing the determi-

nant, the characteristic polynomial and the inverse of an n× n matrix each

have asymptotic complexity nω+o(1) (see [BCS97], Ch. 16 for an exposition

of problems whose complexity depends on ω). In particular, the complexity

of any algorithm which depends on the multiplication, determinant, charac-

teristic polynomial or inversion of ‘large’ rectangular matrices benefits from

improvements on the upper bound of ω. This may shed additional light on

why determining the exact value of ω is considered to be one of the most

important open problems in algebraic complexity.

In the following, we give a brief summary of the history of upper bounds

obtained on the exponent ω. The first nontrivial upper bound on ω was

achieved by Strassen [Str69], who showed ω < 2.81; a result which essentially

started the field of efficient matrix multiplication. Among the most important

milestones since Strassen, one has to count the work of Bini et al. [BCRL79]

and Bini [Bin80], who obtained the upper bound ω < 2.78 by introducing

the notion of border rank of tensors. Another milestone was achieved by

Schönhage [Sch81], who used his asymptotic sum inequality (which relates

ω to the border rank of direct sums of independent matrix multiplication

tensors) to obtain ω < 2.55. Further milestone improvements came - once

again - from Strassen [Str87], who introduced the laser method, by which he

obtained ω < 2.48, and Coppersmith and Winograd [CW87], who extended

the laser method and achieved ω < 2.376. By pushing Coppersmith and

Winograd’s ideas a little further, Stothers [Sto11] obtained ω < 2.374 and

Vassilevska Williams [VW12] obtained ω < 2.373, which is currently the best

known. (For a more detailed history from Strassen (1969) to Coppersmith-

Winograd (1987), see [BCS97], §15.13). Nowadays, it is a widely believed

conjecture among complexity theorists that ω = 2. The correctness of this
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conjecture would imply that asymptotically, multiplying two n× n matrices

does not require much more computational effort than simply looking at each

of the matrices’ components once.

6.2 The Cohn-Umans Approach

The Cohn-Umans algebra embedding approach [CU03, CU12] subsumes many

of the earlier works on efficient matrix multiplication. It provides an algebraic-

combinatorial framework in which properties of certain algebras correspond

to upper bounds on the matrix multiplication exponent ω. In the following,

we assume some familiarity with tensorial notation (see [BCS97] for an in-

troduction to tensors). We adopt the standard convention of representing

tensors as multilinear forms.

Let k be a field. Recall that the matrix multiplication tensor

〈`,m, n〉 is the tensor
∑`

i=1

∑m
j=1

∑n
k=1 x̂ij ŷjkẑki, where x̂ij, ŷjk, ẑki are formal

variables. The tensor 〈`,m, n〉 naturally corresponds to the matrix multipli-

cation k`×m × km×n −→ k`×n (see [BCS97], Prop. 14.15). It is a well-known

fact that

ω = inf{τ ∈ R |R(〈n, n, n〉) = O(nτ )}, (6.2.1)

where R(.) is the tensor rank (see [BCS97], §15.1). Recall that the support

supp(T ) of a tensor T is the set of monomials that have nonzero coefficients

(in the case of 〈`,m, n〉, these are exactly the monomials of the form x̂ij ŷjkẑki).

Cohn and Umans [CU12] define the s-rank Rs(T ) of a tensor T as the

minimum rank of a tensor T ′ for which supp(T ) = supp(T ′). Moreover, they

define the notion of s-rank exponent of matrix multiplication

ωs := inf{τ ∈ R |Rs(〈n, n, n〉) = O(nτ )}. (6.2.2)
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It is easily seen that 2 ≤ ωs ≤ ω. Moreover, it can be proven that

ωs ≤ 2 + ε ⇒ ω ≤ 2 + 3
2
ε (see [CU12], Th. 3.6), which means ωs = 2

implies ω = 2; a crucial observation. Furthermore, it was shown in [CU12],

Prop. 3.5 that

(`mn)ωs/3 ≤ Rs(〈`,m, n〉). (6.2.3)

Following the work [CU12], we define next what it means for an

r-dimensional complex algebra A to realize a matrix multiplication tensor

〈`,m, n〉. Let U := {u1, ..., ur} be a basis of A and let (λijk)i,j,k denote the

structure constants defined by uiuj =
∑

k λijkuk. We say that A realizes

〈`,m, n〉 if there exist three injective functions

α : [`]× [m] −→ [r], β : [m]× [n] −→ [r], γ : [n]× [`] −→ [r]

such that λα(a,b′),β(b,c′),γ(c,a′) 6= 0 iff a = a′, b = b′ and c = c′. For group alge-

bras A = CG, where G is a group, the property that A realizes

〈`,m, n〉 naturally leads to the notion of the triple product property of groups

[ASU12, CKSU05, CU03]. The above-mentioned works constitute a line of re-

search in which certain properties of groups satisfying the triple product prop-

erty are related to upper bounds on ω. Using this group-theoretic framework,

one can show the upper bound ω < 2.41 [CKSU05], not far from the best

known ω < 2.373 [VW12]. Furthermore, the works [ASU12, CKSU05, CU03]

give a discussion of group-theoretic and combinatorial conjectures which

would imply ω = 2. In the following, we delineate the more general approach

of [CU12], in which the aforementioned conjectures appear as a special case

of a universal conjecture for ω = 2.

As before, assume that A is an r-dimensional complex algebra. Let

U := {u1, ..., ur}, V := {v1, ..., vr} and W := {w1, ..., wr} be any three bases

of A and let (cijk)i,j,k be the coefficients defined by uivj =
∑

k cijkwk. We
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call

TA :=
∑
i,j,k

cijkx̂iŷj ẑk

the structural tensor of A with respect to the bases U, V,W , or simply

the structural tensor of A (since different choices of bases U, V,W all yield

isomorphic structural tensors). If A realizes 〈`,m, n〉, then it holds that

Rs(〈`,m, n〉) ≤ R(TA) (see [CU12], Prop. 4.2). Moreover, if A is semisimple,

then there exist d1, ..., dt ∈ N such that A ∼= Cd1×d1 × · · · × Cdt×dt , in which

case TA ∼= 〈d1, d1, d1〉 ⊕ · · · ⊕ 〈dt, dt, dt〉. If additionally we assume A to be

commutative, then di = 1 for all 1 ≤ i ≤ t and hence R(TA) = r. Thus, we

obtain the following theorem:

Theorem 6.2.1 ([CU12]). If A is an r-dimensional, semisimple and com-

mutative complex algebra which realizes 〈`,m, n〉, then Rs(〈`,m, n〉) ≤ r.

The above theorem gives reason to hope that ‘suitable’ semisimple and

commutative complex algebras may be helpful in obtaining nontrivial upper

bounds on Rs(〈`,m, n〉) (which in turn may translate to nontrivial upper

bounds on ωs by Equation (6.2.3)). This intuition will be made precise in

the following.

6.3 Connection to Association Schemes

As a promising class of commutative algebras to realize matrix multiplication

tensors and obtain upper bounds on ωs, Cohn and Umans [CU12] identify ad-

jacency algebras of commutative association schemes (note that their paper

actually uses the term commutative coherent configurations , which is syn-

onymous). Efficient matrix multiplication constitutes yet another important

computational problem to which the theory of association schemes is closely



6.3. Connection to Association Schemes 93

related - for problems such as polynomial factoring over finite fields [AIKS12,

Evd94, IKS09] and graph isomorphism [CFI92, EKP99, Wei76, WL68], the

connection to combinatorial schemes has been known for a long time.

In the following, let X = (X,G) be an association scheme and let CX

denote the complex adjacency algebra of X (see Chapter 2). Note that the

structure constants of the algebra CX with respect to the basis consisting

of the adjacency matrices of X are simply the intersection numbers of the

association scheme X. Moreover, note that the adjacency algebra CX is

semisimple (see Theorem 2.2.2), and it is commutative iff the association

scheme (X,G) is commutative. Finally, observe that the rank of CX equals

|G|.

It is essential to discern the structural conditions placed on association

schemes in order for their adjacency algebra to realize a matrix multiplication

tensor 〈`,m, n〉. Cohn and Umans [CU12] have started this discussion by

introducing the following notion: An association scheme X = (X,G) of rank

r is said to realize 〈`,m, n〉 if there exist three injective functions

α : [`]× [m] −→ [r], β : [m]× [n] −→ [r], γ : [n]× [`] −→ [r]

such that the intersection number λα(a,b′),β(b,c′),γ(c,a′) is nonzero iff a = a′,

b = b′ and c = c′. Clearly, if an association scheme X = (X,G) realizes

〈`,m, n〉, then CX realizes 〈`,m, n〉 as an algebra. Exemplary, Cohn and

Umans describe the condition which Schurian association schemes must sat-

isfy in order to realize a matrix multiplication tensor 〈`,m, n〉 (see [CU12],

Prop. 4.7); we omit the details of this special case here.

As one would hope, applying the Cohn-Umans algebra embedding ap-

proach from Section 6.2 to adjacency algebras of ‘suitable’ commutative as-

sociation schemes yields bounds on the s-rank exponent of matrix multipli-

cation ωs. In [CU12], Theorem 5.6 we find commutative association schemes
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X = (X,G) which - via the adjacency algebra CX - prove the s-rank exponent

bounds ωs ≤ 2.48, ωs ≤ 2.41, and ωs ≤ 2.376, respectively. (Note that it is

no coincidence that the upper bound ωs ≤ 2.376 equals the upper bound on

ω obtained by Coppersmith-Winograd [CW87] - it is due to a construction of

the latter work being transferred into the Cohn-Umans [CU12] framework).

Moreover, the approach described by Cohn-Umans [CU12] naturally leads to

the following conjecture for proving ωs = 2 (and hence ω = 2):

Conjecture 6.3.1 ([CU12]). There exist commutative association schemes

Xn = (Xn, Gn) realizing 〈n, n, n〉 and of rank |Gn| = n2+o(1).

Notably, the latter conjecture subsumes all of the earlier conjectures for

ω = 2 of the ‘group-algebra embedding’ approach [ASU12, CKSU05, CU03]

(for an explanation of this fact, the reader is referred to [CU12], §5). Prin-

cipally, this makes the above conjecture the ‘easiest’ among all conjectures

associated with the Cohn-Umans approach for proving ω = 2.



Chapter 7

Conclusion

In Chapter 4, we studied the computational problem of polynomial factoring

over finite fields (assuming GRH). Our approach was based on algebraic-

combinatorial techniques introduced in Chapters 2 and Chapters 3. These

techniques proved to be very effective when the polynomial has a prime

degree (Theorem 4.4.1). We were able to give an infinite family of prime

degrees for which our analysis is much better than the known techniques

(Corollary 4.5.2). It is a central open problem to extend the methods de-

scribed in this work to factor all prime degree polynomials efficiently. The

key to this problem lies in studying the underlying m-scheme that the factor-

ing algorithm gets ‘stuck’ with. Its 3-subscheme has a convenient structure -

it is an equivalenced association scheme. Since the intersection numbers, and

other deeper representation theory invariants, manifest in the higher levels of

the m-scheme, the schemes conjecture (Section 3.5) might be within reach.

Another open problem is to ‘slightly’ improve Corollary 2.6.2. We showed

that it cannot be improved to an arbitrary extent (Section 2.6), but this

does not rule small improvements of the following kind: There exist at least

two constant-small intersection numbers in prime-order association schemes
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X = (X,G) which satisfy |G| ≈ k/ log k, where k ∈ N is such that k = ng for

all 1 6= g ∈ G. As we remarked before, the possibility for this improvement

arises because the argument involving the Hasse-Weil bound from Section 2.6

produces too large an ‘error’ in order to restrict the intersection numbers in

this case. Note that an improvement of the above kind would be enough to

give an infinite family of primes n so that Theorem 4.4.1 has a polynomial

time complexity (only assuming GRH).

It is also open to extend Theorem 2.6.1, so that it becomes applicable

to composite-order association schemes. Improvements there would likely

translate to new results in the domain of polynomial factoring, especially

concerning the factorization of additional classes of composite-degree poly-

nomials. This question connects to a more general open problem: We proved

in Theorem 3.6.3 that a homogeneous, antisymmetric m-scheme on n points

always contains a matching if m ≥ 0.559 log2 n + 2, beating the previously

best known bound m ≥ 2
3
n. In generalizing the (purely combinatorial) meth-

ods of Section 3.6, the bound m = o(log n) for the existence of matchings in

homogeneous and antisymmetric m-schemes on n points seems approachable.

The latter result would already translate to an improved time complexity for

the general case of polynomial factoring over finite fields (assuming GRH).

In Chapter 5, we introduced the notion of extensibility of association

schemes. We defined for an association scheme X = (X,G) the notion of

the maximal height tmax(X) and - assuming that X is extensible to height t

- the concept of the unique coarsest t-extension Xt. We delineated in which

sense the maximal height may be regarded as an intuitive measure of how

close an association scheme is to being Schurian. Moreover, we saw that the

concept of extensibility - phrased in the language of m-schemes - can also be

used to formalize the property that a homogeneous 3-scheme {P1,P2,P3} on
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a set V is part of a larger m-scheme Π = {P1,P2,P3, . . . ,Pm} on V , where

m > 3. The latter observation connects the notion of extensibility to the

topic of m-schemes and the IKS polynomial factoring framework (Chapters

3 and 4). For the IKS-framework, it is of particular interest to gain a more

thorough understanding of the combinatorial properties possessed by asso-

ciation schemes which are extensible to a certain height. The present work

provided an algorithmic starting point for this discussion.

In Section 5.3, we described the association scheme extension algorithm,

which on input an association scheme X = (Q,Γ) of order d := |Q| and

a number t ∈ N such that 1 ≤ t ≤ (d − 2), decides in time dO(t) if X is

extensible to height t. We used the association scheme extension algorithm

to determine that all non-Schurian association schemes up to order 26 are

completely inextensible, i.e. they have maximal height 0. It is evident that

computing the maximal height of an association scheme X = (Q,Γ) with

the association scheme extension algorithm may require time exponential in

|Q| in the worst case. A central open question is whether there exists an

algorithm for computing the maximal height which achieves a better worst-

case running time (for instance, in the subexponential range). A relaxation

of this question would be to ask whether there exist ‘thresholds’ t(d) ∈ N

such that for all association schemes X = (Q,Γ) of order d := |Q|, deciding

if X is extensible to height t(d) can be done more efficiently than using the

association scheme extension algorithm. Apart from this, we note that it is

currently an open problem to identify the smallest order d ∈ N for which

there exists a non-Schurian association scheme of positive maximal height.

We leave the above questions to future research.

In Chapter 6, we described the Cohn-Umans algebra embedding approach

to efficient matrix multiplication, which relates the exponent of matrix mul-
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tiplication ω to combinatorial properties of association schemes and their

adjacency algebras. The logical centerpiece for further research on the Cohn-

Umans approach is the identification of suitable ‘candidate’ classes of asso-

ciation schemes (X,G), which - via the framework described in Section 6.2

- could help improve the upper bound ωs ≤ 2.376 [CU12]. As a first step,

it is essential to discern the structural conditions placed on various classes

of association schemes in order for their adjacency algebra to realize a ma-

trix multiplication tensor 〈`,m, n〉. Cohn and Umans [CU12] started this

discussion by describing the condition which Schurian association schemes

must satisfy in order to realize a matrix multiplication tensor 〈`,m, n〉

(see [CU12], Prop. 4.7). Moreover, they used ideas from earlier works on

efficient matrix multiplication (such as [CW87, CU03]) to design explicit con-

structions of commutative association schemes which yield nontrivial upper

bounds on ωs (see [CU12], §6). It is evident that the algebraic-combinatorial

discussion of the concept of realization of matrix multiplication tensors in

association schemes (Section 6.3) is still in the beginning stages, and much

‘groundwork’ is required with regards to the question of how association

schemes and their adjacency algebras can be of use in the Cohn-Umans

fast matrix multiplication framework. Apart from the central goal, estab-

lishing a theory whose ultimate consequence will be an improvement of

the upper bound of the s-rank exponent ωs (and thereby to gain ground

on the conjecture ω = 2), there are many more worthwhile objectives at

hand, e.g. finding the correct place of the ‘main’ Cohn-Umans conjecture

(see [CU12], Conject. 5.7) within the field of algebraic combinatorics. The

above issues represent natural topics for further research.
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