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1. Introduction

Human desire to understand the world, in which we live, propelled the development
of religion, philosophy and natural sciences which, from different perspectives, all are
addressing fundamental questions about the origin of our world, the structures inherent
and our existence itself. It drove high energy particle physics as a broad field of fun-
damental research dedicated to unravel the fundamental constituents of matter. With
the construction of more and more powerful accelerators the exploration of smaller and
smaller structures became possible, leading to the discovery of new fundamental parti-
cles. In the 1960’s a theoretical model has been developed which consistently describes
the elementary particles and the interactions among them. It is called the Standard
Model (SM) of particle physics. Additional fundamental particles were predicted be-
fore their experimental discovery, e.g. the charm and top quark, the latter having been
discovered in 1995.

Despite this great success of the SM, it leaves fundamental questions unanswered. The
SM, apart from other short comings, neither explains the observation of dark matter on
cosmological scales nor the fact that three families of leptons and quarks are observed
which only differ by their masses, while the interactions are identical. It is very difficult
to understand why weak nuclear interactions and gravity differ by as much as 32 orders
of magnitude in strength, i.e. their coupling constants. In fact, gravity is not considered
at all in the SM and the numerous attempts to include it have been unsuccessful up
to now. Therefore the SM can not be complete. A strong effort is currently underway
to experimentally establish the process which gives mass to the fundamental particles
of the SM. This process is believed to be the Higgs mechanism [1] which requires the
existence of a further elementary boson. It has not yet been experimentally identified
and is the last missing particle in the SM.

In the hope to shed some light on the open questions of particle physics a new ac-
celerator has been built at the European Organisation for Nuclear Research (CERN),
the Large Hadron Collider (LHC) [2]. Together with its experiments it is the largest
global effort ever to investigate the fundamental structure of matter. The accelerator is
designed to produce proton–proton collisions at a center-of-mass energy of

√
s = 14 TeV.

Since the start of the data taking in 2010, at a center of mass energy of 7TeV, many
results have been published, culminating in the first ground-breaking discovery of a new
particle in July 2012. It is a strong candidate for the long searched Higgs boson. How-
ever, the nature of the new particle still has to be studied. Two experiments, ATLAS
[3] and CMS [4], are optimised for the study of such new phenomena.

Besides the search for new particles strong effort is devoted to precisely measure and
test the parameters of the SM in the new energy regime accessible at the LHC. Any
deviation from the SM predictions would hint to new physics. Within the SM valuable
information on the structure of the nucleon and the strong and electroweak forces can
be obtained. This thesis is devoted to such a measurement. The di-muon channel is
investigated in the reaction pp → Z/γ∗ + X → µ+µ− + X. In particular, the angular
distributions of the final state muon provide access to a fundamental parameter of the

1



1. Introduction

SM, the weak mixing angle θW . It is measured in this thesis with an accuracy ten times
better than before in proton–proton interactions. Although the precision does not reach
that of the LEP1 [5] experiments, it is of interest to study effects due to the hadronic
initial state at the LHC. In addition, the angular distributions also allow a measurement
of the spin of the gluon. Albeit already well known the spin determination provides an
independent cross check of the observed properties of the studied reaction.

The thesis is structured as follows. First the theoretical foundations of the SM are
presented with a focus on the electroweak interaction and a discussion of the angular
distributions in the process pp→ Z/γ∗+X → µ+µ−+X. Then the ATLAS experiment
is introduced in chapter 4. Chapter 5 presents the measurement of the reconstruction
efficiency of the final state muons. It provides a basis for measurements of the weak
mixing angle and the spin of the gluon. The corresponding analyses are presented in
chapters 6 and 7, respectively.

1The Large Electron Positron collider was located at CERN and until the year 2000 in operation. It
was dedicated to electroweak precision measurements.
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2. Theoretical Considerations

Four fundamental forces are presently known: gravity, electromagnetism, weak and
strong force. All but gravity are described by the SM of particle physics. This theory
includes the interactions of all known elementary particles which make up the visible
matter in the universe. The design of the theory was finalized in the mid 1970’s and
numerous predictions of the SM have since been experimentally tested and confirmed.
Several parameters are measured very accurately, e.g. the magnetic moment of the elec-
tron g which is measured to a precision of 10−13 [6]. Despite the tremendous success of
the theory, it is not capable of explaining all observations in particle physics. Several
experimentally established facts must be put explicitly into the model. A derivation
from underlying theoretical principles is not possible at present, e.g. for the number
of quark and lepton families. All attempts to incorporate gravity in a consistent way
have failed so far. Furthermore, no potential particle for dark matter is available which
seems to be responsible for more than 80 % of the total matter in the universe. Also
the asymmetry between matter and antimatter in the universe remains unexplained up
to now. To elucidate the boundaries of the model and hunt for possible signs of physics
beyond the SM, direct searches for new particles as well as precision tests of parameters
of the theory are performed in many different experiments.

This chapter briefly describes the elementary particles in the SM and the interactions
among them. Special emphasis is put on the electroweak interaction, including sponta-
neous symmetry breaking and the weak mixing angle as well as higher order corrections
and definitions of effective parameters of the theory. Discussions in this chapter are
largely based on the textbooks [7] and [8].

2.1. The Standard Model of Particle Physics

Two types of fundamental particles are included in the model: fermions carry half-integer
spin S = 1

2 and are the basic constituents of matter. Bosons carry integer spin S = 0, 1
and mediate the forces between the fermions and, in some cases, also between themselves.
The fundamental fermions can be divided into two types, leptons and quarks. Only the
latter ones participate in the strong interaction, which distinguishes them from leptons.
Six leptons are known: electron e, muon µ, tauon τ , all with electric charge1 Q = 1, and
the corresponding electrically neutral neutrinos νe, νµ and ντ . Neutrinos only interact
via the weak force while the other leptons also interact electromagnetically.

Similarly to the leptons six flavours of quarks are known: u, c, t with charge Q = +2/3
and d, s, b with charge Q = −1/3. Additionally to the electric and weak charge quarks
have another degree of freedom, called color, which can be either red, green or blue.
Experiments suggest that all free particles are colorless (white), i.e. in a color singlet
state. This is also known as confinement as all colored particles are confined in bound
objects. It is realized in two ways. Three quarks carrying different colors form bound

1The electric charge is always stated in units of the elementary charge e.

3



2. Theoretical Considerations

Families Quantum Numbers

1 2 3 T T 3 Y Q C

Leptons(
νe

e−

)

L

(
νµ

µ−

)

L

(
ντ

τ−

)

L

(
1/2

1/2

) (
1/2

−1/2

) (
−1

−1

) (
0

−1

) (
0

0

)

e−R µ−R τ−R 0 0 -2 -1 0

Quarks(
u

d

)

L

(
c

s

)

L

(
t

b

)

L

(
1/2

1/2

) (
1/2

−1/2

) (
1/3

1/3

) (
2/3

−1/3

) (
r, g, b

r, g, b

)

uR cR tR 0 0 4/3 2/3 r, g, b

dR sR bR 0 0 -2/3 -1/3 r, g, b

Table 2.1.: Elementary fermions and their quantum numbers (explained in the subse-
quent paragraph), T : Weak isospin; T 3: 3rd component of weak isospin; Y :
Hypercharge; Q: electric charge; C: color charge. All quantum numbers flip
their sign when considering anti-fermions.

states called baryons. Examples are the proton (uud) and neutron (udd). Alternatively,
quark-antiquark pairs – called mesons – represent color singlets when combining color
and the corresponding anticolor, e.g. π+ (ud̄). Mesons and baryons participate in the
strong interaction and are referred to as hadrons.

An overview of all fermions and their quantum numbers is shown in table 2.1. They
are organised in three families, also called generations, which only differ in the mass of
the fermions and their flavour. All macroscopic objects are built of the four particles
belonging to the 1st generation, e, νe, u and d. Heavier fermions of the 2nd and 3rd

generations always decay into lighter ones via the weak interaction.
Within the SM forces are described as gauge fields and are mediated by corresponding

gauge bosons, which are identified with the generators of the underlying symmetry group
of each interaction. The electromagnetic interaction, mediated by the photon (γ), is
described within a theory called quantum electrodynamics (QED) which is invariant
under U(1) gauge transformations. The weak interaction is described by a field theory
with an underlying SU(2) symmetric gauge group with three gauge bosons: the charged
W+ and W− and the neutral Z0. Both forces have been successfully combined to
a single underlying interaction called the electroweak interaction, which is formulated
as a SU(2)L ⊗ U(1)Y gauge group. The subscript L denotes left handed and Y the
hypercharge. This interaction is of special interest for this thesis and will be explained
in more detail in section 2.1.1. The strong force can be formulated as a field theory with
underlying gauge group SU(3)C

2, which has eight generators corresponding to eight
differently colored gauge bosons called gluons (g). Gluons carry color and anti-color
themselves and therefore interact with each other, which is one of the peculiarities of this
theory called quantum chromodynamics (QCD). It will be briefly discussed in section
2.1.3. Despite all efforts it has not yet been possible to unify strong and electroweak
interactions. It is strongly believed, however, that this is not a problem in principle, and
the quantum theory underlying the SM is assigned the symmetry structure SU(3)C ⊗

2The index C denotes the color charge of the involved particles.

4



2.1. The Standard Model of Particle Physics

interaction charge
gauge Boson(s)

symbol charges carried

electromagnetic Q γ none
weak weak isospin T W+, W−, Z weak, electric (only W±)
strong color C gi, i = 1 . . . 8 color

Table 2.2.: Forces described by the Standard Model, their charges and force mediating
gauge bosons.

SU(2)L ⊗ U(1)Y. Forces, corresponding charges and gauge bosons are summarized in
table 2.2.

2.1.1. Electroweak interaction

Experimental studies of the β-decay revealed that only left handed leptons take part in
charged current weak interactions. The interactions can be described by a combination
of vector (V) and axialvector (A) operators which turns out to be V-A. Hence, the theory
is also called V-A theory. Left handed (Weyl-) fermions [9] are obtained by means of the
helicity operator: fL = 0.5(1 − γ5)f , where f is the dirac spinor describing a fermion.
Leptons l (l = e, µ, τ) and the corresponding neutrinos νl are combined into a left handed
doublet Ll and a right handed singlet Rl under the weak SU(2) symmetry:

Ll =
1

2
(1− γ5)

(
νl
l−

)
=

(
νl
l−

)

L

, Rl =
1

2
(1 + γ5) l− = l−R . (2.1)

Using this, the charged currents can be written as

J l,±µ = L̄lγµτ
±Ll, (2.2)

with τ± = (τ1 ± iτ2)/2 and τ j being the Pauli matrizes3. Together with the neutral
current

J l,3µ = L̄lγµ
τ3

2
Ll (2.3)

they form a weak isospin triplet under SU(2):

J l,jµ = L̄lγµT
jLl = L̄lγµ

τ j

2
Ll, for (j = 1, 2, 3) (2.4)

with T j being the corresponding weak charge which obeys the SU(2) algebra. Due to
the presence of a vector–operator (γµ) weak interactions violate parity conservation.

In order to combine the weak with the electromagnetic force a new quantum number
called weak hypercharge is introduced. It is the eigenvalue of Y which is related to the
simultaneous symmetry under the groups U(1)Y and SU(2)L:

Y = 2
(
Q− T 3

)
. (2.5)

3 Pauli matrizes: τ1 = ( 0 1
1 0 ), τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. τ j is used to denote the Pauli matrices instead

of the usual σj to make clear that they are applied in weak isospin space, and not the regular spin
space.
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2. Theoretical Considerations

Y
2 is the generator of the U(1)Y group. The concept of combining two charges in this way
originates from the Nakano-Nishijima-Gell-Mann relation [10] in which strong isospin
and electric charge are combined to the hypercharge in the same way.

Knowing the currents, a lagrangian L with SU(2)L⊗U(1)Y symmetry is constructed.
It is divided in parts L = LF + LG + LS + LY describing the interaction of fermions,
kinetic energy of the gauge field, a scalar field and a Yukawa type interaction between
the scalar field and the fermions, respectively. The fermionic part is constructed as4

LF =
∑

l=e,µτ

[
L̄liγµDµLl + R̄liγµDµRl

]
(2.6)

=
∑

l=e,µτ

L̄liγµ(∂µ − ig
~τ

2
· ~Wµ +

i

2
g′Bµ)Ll + R̄liγµ(∂µ + ig′Bµ)Rl. (2.7)

W i
µ, i = 1, 2, 3 and Bµ are the massless gauge boson fields of SU(2)L and U(1)Y ,

respectively, and g, g′ the corresponding couplings. Note that the singlet states R do
not couple to W i

µ. The covariant derivative is defined as

Dµ = ∂µ − ig
~τ

2
· ~Wµ − ig′

Y

2
Bµ (2.8)

with Y = −1 for L and Y = −2 for R. The kinetic energy term of the gauge fields,
which should be added to LF , is written as

LG = −1

4
F iµνF

iµν − 1

2
BµνB

µν , (i = 1, 2, 3) (2.9)

where F iµν and Bµν are the field strength tensors of the gauge fields corresponding to
SU(2)L and U(1)Y , respectively. Gauge boson mass terms do not appear in this theory
as they would break the local gauge invariance of the lagrangian. To make fermions
and all bosons but the photon massive a spontaneous breakdown of the electroweak
symmetry is needed [11], i.e. the Higgs mechanism [1]. The symmetry is broken as:

SU(2)L ⊗ U(1)Y → U(1)em . (2.10)

In order to achieve the electroweak symmetry breaking in the simplest way a doublet of
complex scalar fields is added to the theory:

LS = (Dµφ)†(Dµφ)− V (φ†φ); φ =

(
ϕ+

ϕ0

)
, Yφ = +1, ϕ0neutral, ϕ+charged. (2.11)

The potential V is defined in a gauge invariant way by

V (φ†φ) = m2φ†φ+ λ(φ†φ)2, m, λ ∈ R. (2.12)

Higher orders of (φ†φ) are not allowed in order to keep the theory renormalizable. To
ensure the stability of the vacuum, λ has to be greater than zero. If in addition m2 = −µ2

is chosen negative, the potential takes the famous shape of a mexican hat, illustrated

4The scaler product for 3-vectors is always indicated by using variables overset with vector symbols,
whereas the Einstein summation convention is used for 4-vectors.
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2.1. The Standard Model of Particle Physics

V(φ)

φ2
φ1

Figure 2.1.: Illustration of the shape of the potential according to Eq. (2.12). The
import feature is the degenerate ground state lying on a circle around the
V (φ) axis. The symmetry is spontaneously broken when a physical ground
state develops by choosing a specific position in the degenerate minimum of
V (φ).

in Fig. 2.1. Couplings of the scalar fields to fermions are defined as Yukawa type
interactions, respecting the SU(2)L ⊗ U(1)Y symmetry:

LY = −
e,µ,τ∑

l,j

Glj(L̄lφRj + R̄lφ†Lj) + h.c. (2.13)

The full lagrangian of the electroweak theory is obtained as the sum of the discussed
parts: L = LF + LG + LS + LY .

Another very convincing need for an additional particle in the framework of the stan-
dard model arises from the scattering cross section of W bosons. This process violates
unitarity for larger energies, in case no scalar field is considered. This is fixed by intro-
ducing an additional particle, like the Higgs boson, which leads to an additional diagram
in the scattering amplitude.

Electroweak symmetry breaking

The potential of the scalar fields given in Eq. (2.12) and illustrated in Fig. 2.1 has a
degenerate ground state, as the minimum min{φ†φ} = min{|φ|2} = v2/2, with v :=√
µ2/λ, describes a circle in the φ0–φ+ plane. Through the choice of any (arbitrary)

value φ0 = < 0|φ|0 > for the ground state, the symmetry is spontaneously broken. All
generators T j and Y are broken as they do not annihilate the vacuum, i.e. Y |0 >6= 0,
whereas the charge operator Q = T 3−Y/2 remains unbroken, i.e. Qφ0 = 0⇒ e−iεQφ0 =
φ0 with ε ∈ R being arbitrary. Hence, the remaining symmetry of the theory is U(1)em,
consistent with experimental observations. From the three generators of the gauge groups
belonging to the broken symmetries three massless Goldstone bosons5 are expected,
which become visible in the following parametrization of φ:

φ =

(
ϕ+

ϕ0

)
= ei~τ ·

~ξ/2v

(
0

(v +H)/
√

2

)
; ξj , j = 1, 2, 3 andH ∈ R. (2.14)

5After the Goldstone theorem [12] each broken symmetry leads to a massless boson, called Goldstone
boson.
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2. Theoretical Considerations

The ξj are interpreted as Goldsone bosons and H is called the Higgs boson which is a
scalar particle.

A special gauge called unitary gauge can be found such that the three Goldstone
bosons disappear and all fields can be associated with particles again. The appropriate
gauge transformations is

U(~ξ) = e−i~τ ·
~ξ/2v. (2.15)

All transformed fields will be labelled with a prime. Now the first term of Eq. (2.11),
which describes the dynamics of free gauge bosons and contains the mass-squared term
for the weak gauge bosons, becomes

Lmass = (Dµφ)′†(Dµφ)′ =
v2

8

(
g2W ′1µW

′1µ + g2W ′2µW
′2µ + (gW ′3µ − g′B′µ)2

)
. (2.16)

The physical, charged boson fields are defined as

W±µ =
W ′1µ ∓ iW ′2µ√

2
. (2.17)

With this the first two terms of Eq. (2.16) simplify to g2v2W+
µ W

−
µ /4 which corresponds

to the squared mass term of the W bosons MW = gv/2, assuming the same absolute
charge for both W bosons. The weak eigenstates in the remaining term of Eq. (2.16)
can be expressed in terms of mass eigenstates in the following way:

(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W ′3µ
B′µ

)
. (2.18)

Applying this rotation the last term in Eq. (2.16) reads

v2

8
(Zµ Aµ) =

(
g2 + g′2 0

0 0

)(
Zµ

Aµ

)
=
v2

8
(g2 + g′2)ZµZ

µ + 0 ·AµAµ. (2.19)

θW is called weak mixing or Weinberg angle and is the observable of interest in chapter 6
which deals with its measurement. The mixing angle is affected by several higher order
corrections which lead to the definition of an effective mixing angle discussed in sec.
2.1.2. From Eq. (2.19) the Z mass is found to be MZ = v

√
g2 + g′2/2 whereas the field

Aµ, which is associated with the photon, remains massless. The masses of the W and Z
bosons are related via

cos θW =
MW

MZ
. (2.20)

As a direct consequence the relation g′ = tan θW g between both involved coupling con-
stants is obtained.

Also fermions acquire mass by spontaneous symmetry breaking. This exhibits when
LY is considered in unitary gauge. It contains mass terms of the form Gl,jv/

√
2L̄lRj .

As neutrinos are massless in this theory the matrix relating their weak eigenstates to
the mass eigenstates can be diagonalized and no mixing between mass eigenstates and
flavour eigenstates is found. This leads to flavour conservation in the Glashow-Weinberg-
Salam (GWS) model, which is violated for the case of massive neutrinos. In the quark
sector the picture changes. As quarks are massive, with very different masses, weak and
mass eigenstates are not identical. This gives rise to the CKM matrix [13] describing
the flavour mixing of the mass eigenstates.

8



2.1. The Standard Model of Particle Physics

Finally, the mass term of the Higgs boson in the scalar potential

V (φ′ † φ′) = −µ
2v2

4
+

1

2

(
2µ2
)
H2 + λvH3 +

λ

4
H4 (2.21)

is found to be MH =
√

2µ2. The exact value can not be predicted in the GWS model.
Recently the LHC experiments ATLAS and CMS announced the discovery of a new
particle with a mass of 126 GeV/c2 [14, 15], which is a candidate for the long searched
Higgs boson. The discovery of H would fix the value of µ, the last unknown fundamental
parameters of the SM.

The fermion lagrangian in the unitary gauge reads

LF =

e,µ,τ∑

l

[
L̄′liγµ∂µL′l + R̄′liγµ∂µR′l + g ~J lµ · ~A′

µ
+
g′

2
JY lµ B′µ

]
(2.22)

where the first two terms describe the kinetic energy of a lepton and its neutrino. The last
two terms represent the electroweak currents which can be split into neutral and charged
currents, where the neutral current can be further divided into the electromagnetic and
weak contributions (1st and 2nd term in Eq. (2.24), respectively)

LCC = g
(
J l1µ A

′µ + J l2µ A
′µ
)

=
g√
2

(
J l−µ W−µ + J l+µ W+µ

)
and (2.23)

LNC = gJ l3µ A
′3µ +

1

2
g′J lYµ B′µ

=

(
g sin θWJ

l3
µ + g′ cos θW

J lYµ
2

)
Aµ +

(
g cos θWJ

l3
µ − g′ sin θW

J lYµ
2

)
Zµ

= g sin θWJ
em
µ Aµ +

g

cos θW

(
J l3µ − sin2 θWJ

em
µ

)
Zµ. (2.24)

From the second term in the weak neutral current (Eq. (2.24)) the coupling to left and
right handed fermions follows as gR = −Qf sin2 θW and gL = T 3

f −Qf sin2 θW , where Q
is the electric charge in units of e. The vector and axialvector couplings are then given
as:

gfV = gfL + gfR = T 3
f − 2Qf sin2 θW (2.25)

gfA = gfL − g
f
R = T 3

f (2.26)

⇒ sin2 θW =

(
1− gV

gA

)
T 3
f

2Qf
(2.27)

2.1.2. Effective weak mixing angle and higher order corrections

Without further ado the theory described in the previous chapter is only consistent in
lowest order of perturbation theory, called tree level. Infinite integrals appear when
considering higher order diagrams like photon radiation or internal loops, examples of
which are shown in Fig. 2.2. Divergences of these kind can be absorbed when redefining
the physical parameters of the theory, a procedure called renormalisation. The rede-
fined quantities are considered to be the observables accessible in experiments and the
’bare’ parameters of the theory may differ from them. The exact value of an observable
predicted by theory depends on the chosen renomalisation procedure and scale. Many

9
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γ

Z/γ∗

q

q̄

µ+

µ−

(a)

Z/γ∗
W/Z/γ∗

(b)

Z/γ∗ Z/γ∗

(c)

Figure 2.2.: Exemplary next-to-leading order diagrams representing three types of elec-
troweak corrections to the Z production and decay. (a): Initial state photon
radiation. (b): Electroweak final state correction. (c): Propagator correc-
tion, leading to running of αem.

electroweak corrections can be absorbed into a renormalised Fermi coupling constant
GF . The tree level expression of the couplings given in Eq. (2.25) and (2.26) is then
modified to

ḡfV =
√
ρf
(
T 3
f − 2Qfκf sin2 θW

)
, ḡfA =

√
ρf T

3
f . (2.28)

The radiative electro-weak (EW) corrections are absorbed into ρf and κf which depend
on the fermion f and the used renormalisation scheme and scale. It is convenient to define
an effective weak mixing angle such that the couplings are the tree level expressions times√
ρf , i.e.

sin2 θeff
W = κf sin2 θW and ḡfV =

√
ρf

(
T 3
f − 2Qf sin2 θeff

W

)
. (2.29)

In the Monte–Carlo (MC) simulation program PYTHIA, which is used in this thesis, the
modified minimal subtraction scheme (MS scheme) [16] is used in the renormalisation
procedure. This scheme greatly reduces the dependence of SM parameters on the top
mass. The parameters of the effective couplings are

√
ρl = 0.9981 and κl = 1.0013 which

translates into

sin2 θeff
W = sin2 θMS

W |MZ
+ 0.00029, (2.30)

where sin2 θMS
W |MZ

is the weak mixing angle calculated in the MS scheme with the renor-
malisation scale µ set to the Z mass. The extraction of the effective weak mixing angle
from a global fit of the SM parameters to a variety of experimental data [17] yields
sin2 θeff

W = 0.23146± 0.00012.

Including 1-loop corrections in the calculation of sin2 θMS
W induces a scale dependence

[18, 19] which is known as the running of sin2 θMS
W . The scale dependence is shown in

Fig. 2.3 together with experimental results. In the low energy region electron proton
scattering is used to measure the weak mixing angle [20]. In the mid energy region
neutrino scattering off iron [21] and at the Z mass the LEP [5], Tevatron [22] and LHC
[23] experiments measure it.

2.1.3. Quantum Chromodynamics and phenomenology of proton–proton
collisions

Quantum chromodynamics (QCD) is the quantum field theory to describe the interac-
tion between color charged objects, i.e. quarks and gluons. There are three kinds of
color charges labeled red, green and blue. QCD color interaction is related to the non
abelian SU(3) symmetry group. Consequently, the force carrying gauge bosons, called

10
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18 10. Electroweak model and constraints on new physics

0.2403 ± 0.0013, and established the scale dependence of the weak mixing angle (see
Fig. 10.3) at the level of 6.4 standard deviations. One can also define the so-called weak
charge of the electron (cf. Eq. (10.32) below) as QW (e) ≡ −2 C2e = −0.0403 ± 0.0053
(the implications are discussed in Ref. 133).

Figure 10.3: Scale dependence of the weak mixing angle defined in the MS

scheme [132] (for the scale dependence of the weak mixing angle defined in a
mass-dependent renormalization scheme, see Ref. 133). The minimum of the curve
corresponds to Q = MW , below which we switch to an effective theory with the
W± bosons integrated out, and where the β-function for the weak mixing angle
changes sign. At the location of the W boson mass and each fermion mass there
are also discontinuities arising from scheme dependent matching terms which are
necessary to ensure that the various effective field theories within a given loop
order describe the same physics. However, in the MS scheme these are very small
numerically and barely visible in the figure provided one decouples quarks at
Q = m̂q(m̂q). The width of the curve reflects the theory uncertainty from strong
interaction effects which at low energies is at the level of ±7×10−5 [132]. Following
the estimate [135] of the typical momentum transfer for parity violation experiments
in Cs, the location of the APV data point is given by µ = 2.4 MeV. For NuTeV we
display the updated value from Ref. 134 and chose µ =

√
20 GeV which is about

half-way between the averages of
√

Q2 for ν and ν interactions at NuTeV. The
Tevatron measurements are strongly dominated by invariant masses of the final
state dilepton pair of O(MZ) and can thus be considered as additional Z pole data
points. However, for clarity we displayed the point horizontally to the right. Similar
remarks apply to the first measurement at the LHC by the CMS collaboration.

June 18, 2012 16:19

Figure 2.3.: Scale dependence of the weak mixing angle defined in the MS scheme [17].
The minimum of the curve corresponds to µ = MW . The discontinuities in
the curve correspond to various thresholds in the renormalisation procedure,
while the size of the theoretical uncertainties is reflected in the thickness
of the line. The Tevatron and LHC measurements are dominated by the
invariant mass of the final state dilepton pair of O(MZ) and are considered
additional Z pole data point. However, for clarity the points are shifted
horizontally to the right.

gluons, carry color charge themselves and hence interact with each other. The strong
coupling constant αs has a particularly strong scale dependence, often referred to as
running. For small momentum transfers, i.e. large distances, it is large (≈ 1) whereas it
becomes smaller with increasing momentum transfer in the interaction6. The fact that
the interaction becomes stronger for larger distances leads to the feature of confinement,
which implies that quarks only exist in bound states of color singlets, also called color-
less. On the other hand, for very short distances the coupling between quarks becomes
so weak that they behave as virtually free particles. This is called asymptotic freedom
and a perturbative treatment of the theory is only possible in this regime. Low energies
remained a domain of (quark) models for long time. Only recently ab initio calculations
carried out on a discrete space-time lattice (’Lattice QCD’) made significant progress
[24] in the confinement region.

Although the main topic of this thesis is related to electroweak interactions, QCD is
necessary to describe the initial state of the proton–proton collisions for two reasons.
First of all, protons are composite objects where the constituents are quarks and gluons.
Macroscopic properties of the nucleons can be described by the three valence quarks. In
high energy reactions, however, nucleons appear as objects composed of many quark–
antiquark pairs in addition, the sea quarks, as well as gluons. While the proton’s valence
quarks must be either up or down, in general all flavours may contribute to the quark
sea. However, the chance to find heavier quarks is suppressed by their larger mass. In
fact, top quarks are virtually non existent in protons at the considered energy. As the
quarks are moving within the proton their momentum is not well defined. However, it
follows a universal probability distribution called parton density function (PDF). PDFs

6Note that this is opposite to the much weaker scale dependence of the electromagnetic coupling.
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2. Theoretical Considerations

describe the probability of finding a parton of a given flavour with certain momentum
fraction x of the total proton momentum. They depend on the scale determined by
the involved momentum transfer Q2. The matrix element describing the collision of two
protons can be factorised in a matrix element describing the interaction of two partons at
large momentum transfer, called the hard interaction, and factors describing the initial
state for the hard interaction with the help of a PDF. However, PDFs can not get
calculated from QCD but need to be measured. This was done in many experiments,
most notably at HERA and the Tevatron. A chart of the mapped (x-Q2) space is shown
in Fig. 2.4. Note that W and Z production at the LHC probes a previously not accessed
region, into which the measured PDFs are evolved. The evolution technique is a main
difference between different PDFs, next to varying the input data used. In general,
PDFs are afflicted with rather large uncertainties in some kinematic regions. A sample
PDF is shown in Fig. 2.5. As can be seen, valence quarks carry on average a larger
momentum than sea quarks. This is an important feature as it allows to statistically
distinguish quarks and antiquarks in the initial state of proton–proton collisions.
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Figure 2.4.: Plotted is the momentum transfer squared Q2 versus the momentum fraction
x of a parton on the proton momentum [25]. Areas probed by experiments
are marked as shaded areas. Most of the probed low Q2 region has been
studied by the HERA experiments. The Tevatron experiments probe the
region with large x and 103 GeV2 < Q2 < 105 GeV2. The theoretically ac-
cessible region by the LHC experiments is indicated by blue line. Accessible
by studies using W,Z bosons is the region between 10−3 < x < 10−1 and
Q2 = MW,Z , indicated by the blue solid bar.

The second important aspect of the strong interaction in the process pp→ Z/γ∗+X →
µ+µ−+X is the production of additional final state particles due to gluon radiation off
quarks. The radiated gluons may carry a significant momentum fraction of the parent
quark. In case gluon radiation occurs off the initial state partons the process is called
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pp - Kollisionen:  Die Vorteile

Kristof Schmieden 17

• Quarks & Gluonen im Proton tragen einen Teil des Proton Impulses
• Parton Impulsverteilung wird duch „parton distribution functions“ (PDFs) beschrieben

• Verfügbare Energie in harter Streuung ist durch Impulse der Partonen gegeben
• bei konstanter Strahl Energie wird ein großer Energiebereich getestet 

(aufgrund der Impulsverteilung der Partonen)
• Protonen verlieren im vergleich zu Elektronen viel weniger Energie durch Synchrotronstrahlung

Ma. Laach, Sep. 2010 C.-E. Wulz 29 

Kenntnis der PDF ist enorm wichtig für LHC-Physik. QCD-Untergrund ist immer 
präsent! Besonders wichtig für SUSY, Extradimensionen, Compositeness u.a. !

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

 HERAPDF1.5 (prel.) 

 exp. uncert.

 model uncert.

 parametrization uncert.

 

x

x
f

2 = 10 GeV2Q

vxu

vxd

xS 

xg 

H
E

R
A

 S
tr

u
ct

u
re

 F
u

n
ct

io
n

s 
W

o
rk

in
g
 G

ro
u

p
J
u

ly
 2

0
1
0

H1 and ZEUS HERA I+II Combined PDF Fit

0.2

0.4

0.6

0.8

1

Valenzquarks 

Gluonen 

Seequarks 

H1 and ZEUS Combined PDF Fit

H
E

R
A

 S
tr

u
ct

u
re

 F
u

n
ct

io
n

s 
W

o
rk

in
g

 G
ro

u
p

A
p

ri
l 

2
0

0
8

x = 0.000032, i=22

x = 0.00005, i=21
x = 0.00008, i=20

x = 0.00013, i=19
x = 0.00020, i=18

x = 0.00032, i=17

x = 0.0005, i=16

x = 0.0008, i=15

x = 0.0013, i=14

x = 0.0020, i=13

x = 0.0032, i=12

x = 0.005, i=11

x = 0.008, i=10

x = 0.013, i=9

x = 0.02, i=8

x = 0.032, i=7

x = 0.05, i=6

x = 0.08, i=5

x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q
2
/ GeV

2

!
r(

x
,Q

2
) 

x
 2

i

HERA I e
+
p (prel.)

Fixed Target

HERAPDF0.1 (prel.)

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

10
5

10
6

10
7

1 10 10
2

10
3

10
4

10
5

Ma. Laach, Sep. 2010 C.-E. Wulz 28 

Die  Partonendichtefunktion  (PDF,  parton  distribution  function)  fi  (x,Q2)  ist  die 
Wahrscheinlichkeitsdichte, ein Parton i (Quark, Gluon) mit einem Bruchteil x des 
Protonimpulses bei Impulsübertrag Q2  (4-Impulsquadrat des virtuellen Teilchens, 
das  ausgetauscht  wird)  zu  finden.  Die  x-Abhängigheit  kann  nicht 
störungstheoretisch  aus  der  QCD  berechnet  werden,  sondern  wird  aus 
experimentellen Daten bestimmt (z.B. Parametrisierung CTEQ6).!

X 
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√
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X (“underlying event”) 

F (Endzustand) 

• Produktion von Teilchen durch starke Kraft möglich!

(final state)

Figure 2.5.: Parton density distribution of the proton, as measured by the HERA col-
laborations [26]. Plotted is the probability xf to find a parton of a given
momentum fraction x on the proton momentum versus the momentum frac-
tion x. Valence quark momenta peak around x = 0.1 to x = 0.2, whereas
sea quarks favour small momenta.

initial state radiation (ISR). Usually the gluons will then split into quark antiquark
pairs. These processes lead to the formation of a parton shower. Finally all partons
bind into (colorless) hadrons, a process referred to as hadronisation. Experimentally a
shower of partons is therefore detected as a collimated bunch of particles which is called
jet. The cross section for the production of electroweak bosons with additional jets is
interesting in itself, as it is sensitive to the strong coupling. In addition to ISR, gluons
can also originate from the hard interaction, yielding the same final state as ISR. In
contrast to ISR, gluons participating in the hard interaction may influence the angular
distributions of the final state leptons. This is described in more detail in the next sec-
tion.

The total cross section for QCD reactions in proton–proton collisions at the LHC at√
s = 7 TeV is 98 mb [27], which is eight orders of magnitude larger than the cross section

for the reaction pp→ Z/γ∗ → µ+µ− of 1 nb.

2.2. Angular distributions in pp→ Z → µµ

The focus of this thesis is put on the angular distributions of the final state muons in
the reaction pp→ µ+µ− +X (Drell–Yan process). Several important quantities can be
measured using the angular distributions, in particular the weak mixing angle and the
spin of the gluon. The link of these quantities to the angular distributions will be given
in this section.

For the reaction
pp→ Z/γ∗ +X → µ+µ− +X, (2.31)
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2. Theoretical Considerations

where X denotes additional final state particles (mostly from radiated partons), two
types of Feynman diagrams exist in lowest order perturbation theory. One is the so
called 2→ 1 process, shown in Fig. 2.6, with only leptons in the final state. Additional
final state particles can be generated through initial or final state radiation. Note that the
intermediate Z/γ∗ will undergo a subsequent decay which is not shown in the Feynman
diagrams. The other type of diagrams are so called 2→ 2 processes7 involving a gluon in
the initial or final state, shown in Figs. 2.7 and 2.8. The principle difference between both
types of processes is that if a gluon with its spin S = 1 is involved in the process it may
lead to transverse polarisation of the intermediate state. Furthermore, the momentum
of the the final state parton, against which the Z/γ∗ recoils, defines a reference plane
together with the initial state partons against which the azimuthal angle φ of the final
state lepton is defined. A transverse polarisation gives rise to a modulation of the φ
distribution. Hence the 2→ 2 processes are sensitive to the spin of the gluon.

In proton–proton collisions both types of processes are present. Their relative ad-
mixture depends on the momentum transfer of the reaction as well as the PDF of the
colliding protons. The general form of the differential cross section for the process of
Eq. (2.31) is given as [28], [29]:

dσ

d cos θdφ
∝
(
1 + cos2 θ

)
+

1

2
A0

(
1− 3 cos2 θ

)
+A4 cos θ

+A1 sin(2θ) cosφ+
1

2
A2 sin2 θ cos(2φ) +A3 sin θ cosφ

+A5 sin θ sin(2φ) +A6 sin(2θ) sinφ+A7 sin θ sinφ , (2.32)

where θ and φ are the polar and azimuthal angles of the final state lepton8 in the Collins-
Soper frame (CS frame), a special rest frame of the dilepton pair which is explained in
section 6.1. In this thesis only 1-dimensional angular distributions are considered, as
they contain all relevant information. They are obtained by integrating either over cos θ
or over φ:

dσ

d cos θ
∝
(
1 + cos2 θ

)
+

1

2
A0

(
1− 3 cos2 θ

)
+A4 cos θ (2.33)

dσ

dφ
∝ 1 +

2π

16
A3 cosφ+

1

4
A2 cos(2φ) +

3π

16
A7 sinφ+

1

4
A5 sin(2φ). (2.34)

The coefficients A5 and A7 are expected to be 0, as shown in [29]. All terms but one are
symmetric in cos θ. The exception is A4 cos θ in Eq. (2.33) which leads to a forward–
backward asymmetry (Afb), the magnitude of which is determined by the coefficient A4

(Afb = 3
8A4). An event is called forward if cos θ ≥ 0 and backward otherwise. The

forward–backward asymmetry is hence defined as

Afb :=

∫ 1
0

dσ
d cos θ d cos θ −

∫ 0
−1

dσ
d cos θ d cos θ

∫ 1
−1

dσ
d cos θ d cos θ

. (2.35)

72→ 2 processes are one order higher in the perturbation series of αs as the 2→ 1 process and should
hence be referred to as next-to-leading order (NLO) processes. However, in some literature both are
denoted leading order processes. To avoid confusion they will be referred to as 2 → 1 and 2 → 2
processes in the following.

8All angles are given w.r.t. the negatively charged final state lepton. The positively charged lepton is
not considered.
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Z/γ∗

q̄

q

Figure 2.6.: Annihilation diagrams for Z-boson production belonging to the category of
2→ 1 processes.

q

q̄

Z, γ

g

q

q̄
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Z, γ

Figure 2.7.: Annihilation diagrams for Z-boson production with an additional gluon in
the final state, belonging to the category of 2→ 2 processes.
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Z, γ
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Figure 2.8.: Compton-like diagrams for Z-boson production with an additional quark in
the final state, belonging to the category of 2→ 2 processes.
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This asymmetry is sensitive to the weak mixing angle, as is shown in the following.
For a specific quark flavour q in the initial state it can be calculated as

Afb(Mµµ, y) =
3

4

F q1 (Mµµ, y)

F q0 (Mµµ, y)
(2.36)

with Mµµ being the invariant mass of the dimuon pair and y its rapidity. The functions
F q are defined as

F q0 = Q2
qQ

2
l + 2 Re{χ(Mll)}QqQlgqV glV

+ |χ(Mll)|2
(

(gqV )2 + (gqA)2
)(

(glV )2 + (glA)2
)

(2.37)

F q1 = 2 Re{χ(Mll)}QqQlgqAglA + 4 |χ(Mll)|2 gqV g
q
Ag

l
V g

l
A , (2.38)

where Q is the electric charge of the involved fermion and gV,A is the vector/axial vector
coupling as defined in (2.25) and (2.26). χ is the Breit–Wigner amplitude of the Z
resonance

χ(M) =
GFm

2
Z

2
√

2πα
· M2

M2 −m2
Z + iΓZM2/mZ

, (2.39)

with GF being the Fermi constant, α the electromagnetic coupling constant, mZ the Z
boson mass and ΓZ its width. A derivation of the relation (2.36) is found, e.g., in [30].
The weak mixing angle enters the asymmetry via the vector coupling gV . As all other
parameters are known to a good precision the weak mixing angle can be determined by
measuring the forward–backward asymmetry in the vicinity of the Z resonance. This
measurement is described in section 6. In proton–proton collisions a complication arises
due to the substructure of the protons. Associated with up and down quarks in the
initial state are different asymmetry distributions, due to their different electric charge.
To get the total asymmetry, the structure functions have to be summed over all quark
flavours, appropriately weighted with the probability to find a certain quark flavour q
with momentum x in the reaction with momentum transfer Q2 = M2

µµ. Hence, all simu-
lation predictions of the angular distributions and, in particular, the forward–backward
asymmetry will depend on the PDFs.

In addition to the asymmetry the coefficients A0 and A2 are of particular interest, i.e.
their dependence on the transverse momentum of the final state dilepton pair pT(Z).
The so called Lam-Tung relation [31] states that the coefficient functions A0(pT) and
A2(pT) are identical for all pT: A0(pT) = A2(pT), if the spin of the gluon equals S(g) = 1.
In case of a scalar gluon this relation is badly broken [32]. The measurement of both
coefficients and the determination of the spin of the gluon is presented in chapter 7.

Different angular distributions are expected for annihilation (Fig. 2.7) and Compton-
like processes (Fig. 2.8). In the vicinity of the Z-pole the leading order prediction of the
pT dependence of A0,2 for a gluon of S(g) = 1 are given by [33–35]:

A0,2 =
p2

T

p2
T +M2

ll

for annihilation processes, (2.40)

and A0,2 =
5p2

T

5p2
T +M2

ll

for Compton− like processes. (2.41)
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2.2. Angular distributions in pp→ Z → µµ

Calculations at NLO show corrections of up to 20% on A2(pT), whereas A0 remains
nearly unchanged. Hence the relation A0(pT) = A2(pT) is only valid to the 20% level
[29].

In addition to the difference A0(pT)−A2(pT) also the dependence of each coefficient Ai
on the transverse momentum is of interest, since different simulation programs predict
different dependences. The reason for this is that initial state gluon radiation (ISR),
which is simulated by means of parton shower algorithms, has the same final state as
a hard 2 → 2 process with a gluon in the final state. In the latter case the gluon is
included in the matrix element of the hard interaction and spin effects are taken into
account. Contrary, in case of ISR the radiated gluon will not alter the polarisation of
the intermediate gauge bosons. Hence, the resulting angular distributions will be differ-
ent. Note that this particular effect does not alter the forward–backward asymmetry.
However, as angular distributions are important observables when studying new parti-
cles it is interesting to investigate which MC generators are most accurate in describing
known SM processes. A comparison of various generators with the measured angular
distributions is therefore presented in chapter 7.6.
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3. Monte–Carlo Event Generation and
Detector Simulation

Experimental observations of final state particles are often compared to predictions of
theoretical models at the level of quarks and gluons (partons). To allow for such a
comparison the process of interest as well as the detector response to the final state
particles is simulated. This chapter presents an overview of the software tools used for
event simulation, which is divided into the MC event generation, detector simulation,
digitisation and, eventually, the reconstruction of the events. The event generation is
discussed in the next section. An overview of the used generators is given as well.
Detector simulation and digitisation (sec. 3.2) as well as the event reconstruction (sec.
3.3.1) is identical for all used generators. All MC event samples used in this thesis are
listed in Tab. A.2.

3.1. Event generation

Event generators are software tools that model the complex physics processes occurring
in collisions of high energy particle beams. Specialised software exists for a variety of
beam types and physics processes. For hadron collisions and in particular for proton–
proton collisions the event generation follows few general steps [36]. This is illustrated
for a specific example in Fig. 3.1.

First, the interaction of a pair of partons originating from the incident protons is
simulated. This interaction of the two initial state partons is called the hard process.
Usually only a few hard processes of interest are simulated at a time, an example is
qq̄ → Z/γ∗ → µ+µ−. The partonic composition of the colliding protons is modelled
by the parton density functions (PDFs). The hard process is described by a matrix
element corresponding to one or several Feynman diagrams representing the parton–
parton interaction. The order of the generator is defined by the power of a coupling
constant present in the calculation of the matrix element. Where the most basic form
of a given process is referred to as leading order (LO) process1. If not noted otherwise
the strong coupling constant αs is referred to in this context. The process given in the
example above is hence a LO process, both in QED and QCD.

Higher order QCD effects not accounted for in the matrix element are added in the next
stage of the simulation, the so called parton-shower. In this step all partons participating
in the hard process, including the initial state partons, are allowed to split (g → gg, qq̄)
or to radiate gluons (↪ ↩q → ↪ ↩q g). The resulting partons are allowed to branch again, thus
leading to a whole shower of partons. This process gives rise to transverse momentum
of the hard interaction. A principle difference between gluon radiation simulated in
the parton shower and calculated in the matrix element of the hard interaction is that
in the latter case also spin interactions and interference effects are taken into account,

1 Note that some processes are forbidden in leading and hence only occur in higher orders.
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3. Monte–Carlo Event Generation and Detector Simulation

Figure 3.1.: Sketch of a proton–proton collision at high energy [37]. In the upper hemi-
sphere of the figure partons from the initial protons (large green ellipses)
radiate gluons and eventually interact in the hard interaction (red blob).
The products of the hard interaction produce a parton shower, depicted in
red, which eventually hadronizes (the green blobs represent hadrons) which
subsequently decay into the final state particles, all shown as small green
circles. The lower hemisphere of the figure depicts the underlying event,
starting from some gluons radiated off the protons, which interact produc-
ing a parton shower as well (purple). Also the beam remnants, shown as light
blue blobs, are considered part of the underlying event. Photon radiation
occurs at all stages in the event generation (indicated as yellow lines).
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3.1. Event generation

which are neglected in the parton shower. Hence the angular distributions of the final
state particles will be affected by the number of additional partons used in the hard
process, usually defined by the order of the generator. Particularly difficult to model is
the transition between the treatment of partons in the matrix element and in the parton
shower. Different approaches are implemented in different generators. Also higher order
radiative QED effects are modelled in electromagnetic showers. However, effects of
loop diagrams can only be calculated within the matrix element but they are of less
significance compared to radiative effects treated in the parton shower.

In the next step of the simulation all colored objects are combined into colorless
hadrons. This procedure, called hadronisation, results in many short lived resonances
which are subsequently allowed to decay. Finally, the colored remnants of the initial
protons are allowed to interact, forming the underlying event.

The default event generator used in this thesis is PYTHIA [38]. However, the signal
event sample has been generated using a variety of generators to allow a comparison
of generators and their specific features. Background processes are simulated using a
generator suitable for the process considered. All but the MadGraph simulation are
processed within the ATLAS common analysis framework called Athena. A tuned set
of parameters is applied within Athena to the generators denoted as ATLAS MC11
tune [39]. The MadGraph samples are generated (privately) with the default tune of
the MadGraph package. Some details on all generators used are given in the following
sections.

3.1.1. PYTHIA

PYTHIA [38] (used in version 6.4) is a general purpose LO generator, both in QCD and
QED diagrams, which can be used for p–p, e–p and e+–e− collisions. It contains all
previously described elements of the event generation process including the simulation
of the underlying event. This feature is also used for the simulation of multiple collisions
occurring simultaneously with the process of interest2. Several specific features made
PYTHIA the generator of choice for this thesis:

• The running of αem is taken into account.

• The value assumed for the weak mixing angle can easily be changed. This is
essential for the applied method to measure sin2 θeff

W as presented in chapter 6.

• Effects of higher order QED radiation are taken into account by the program
PHOTOS [40] which is interfaced to PYTHIA.

• The PYTHIA simulation is reasonably well tuned to the measured ATLAS data
in the used MC11 tune [39]. An exception is the simulation of the transverse
momentum of the Z/γ∗ (pZT), which was correct in the previous tune (MC10),
but not in MC11. Hence the simulated events are reweighted to follow the pZT
distribution of the MC10 tune.

Also a reweighting of the simulated events to different PDF sets is straightforward as
the initial state always consists of a quark-antiquark pair. Despite all these advantages
over most other generators, PYTHIA does not simulate the full angular distributions
in pp → Z + X → µ+µ− + X events correctly, as additional final state partons are

2Called pileup events.
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3. Monte–Carlo Event Generation and Detector Simulation

not calculated in the matrix element of the hard process but are solely simulated in
the parton shower. This shortcoming does, however, not affect the forward–backward
asymmetry which is fully determined by the parity violation in Z boson production and
decay.

The method to measure the effective weak mixing angle presented in chapter 6 re-
quires the variation of the value of sin2 θeff

W in the simulation. This parameter is directly
accessible in PYTHIA. In the used ATLAS tune for PYTHIA [39] αem is allowed to run
and sin2 θeff

W is fixed in all calculations to the specified value3.

PYTHIA performs electroweak calculations within the MS renormalisation scheme
[16]. The vector and axialvector couplings (gV and gA) are defined in this scheme as
presented in Eq. (2.28). However, in the PYTHIA simulation the parameter

√
ρ is set

to 1 instead of its nominal value in the MS scheme,
√
ρ = 0.9981. As the influence of√

ρ on sin2 θeff
W cancels, as is shown in Eq. (2.27), the determination of the weak mixing

angle is not affected4 by the slight deviation of
√
ρ in the PYTHIA simulation. Hence,

the determined value for sin2 θeff
W in chapter 6 can directly be interpreted as the effective

weak mixing angle.

3.1.2. AlpGEN

AlpGEN [41] is a LO generator for SM processes with a special emphasis on multijet
final states. It explicitly takes helicity correlations of itermediate gauge bosons and final
state particles into account, thus reproducing a more accurate description of the angular
distributions than PYTHIA. Parton showers and hadronisation have to be computed by
external programs. In the ATLAS setup the programs HERWIG+JIMMY [42] are used
to do this.

3.1.3. HERWIG

HERWIG [43] is a general purpose event generator for SM and supersymmetric processes
at hadron and lepton colliders similar to PYTHIA. Included is initial and final state
radiation via its own parton shower algorithm, hadronisation and hadron decay as well
as the simulation of the underlying event. It features full spin correlations between initial
and final states. A major difference w.r.t. PYTHIA is the use of a different hadronisation
algorithm referred to as ’cluster fragmentation’.

3.1.4. MC@NLO

MC@NLO [44] calculates the hard processes in NLO of αs. However, concerning elec-
troweak diagrams the calculations are in LO. Spin correlations and mass effects are
included in nearly all processes. MC@NLO provides its own parton shower algorithm.

3.1.5. MadGraph

MadGraph [45] follows a different concept compared to the other generators described.
In a first step the Feynman diagrams for a given, arbitrary process are created together

3sin2 θeff
W is set via the configuration option pru(102) and the option MSTP(8) is set to 0

4Note that the influence on the forward–backward asymmetry cancels exactly only at the Z-pole.
However, deviations due to higher order effects are much smaller than the precision of this analysis
in the vicinity of the Z-pole.
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3.2. Detector simulation

with some source code to compute the corresponding matrix elements. In principle this
can be done to any order in QED and QCD. However, with increasing order the number
of diagrams rapidly grows to inconvenient levels. In a second step the generated code
is used to simulate events for the requested process. PDFs can be used to model the
phenomenology of the proton–proton initial states. Parton shower, hadronisation and
underlying event calculations have to be carried out in external programs, e.g. PYTHIA.

As MadGraph generates code for the evaluation of the matrix elements on the fly, it
is easily possible to change the properties of the participating particles (e.g. the gluon)
and such the physics of the interaction. This has been utilised to predict the angular
distributions for the case of a gluon with spin zero (S(g) = 0). This is explained in the
following.

MadGraph uses different models when generating the Feynman diagrams. A model
contains all existing particles and their properties, possible vertices in the Feynman
diagrams (i.e. the interactions between particles) as well as the Lorentz structure of
each allowed vertex which eventually defines the interaction of a given vertex. Finally,
a set of couplings is included in the model, used to describe the strength of the allowed
interactions. The MadGraph model describing the SM is used as the starting point for
the construction of a model with a gluon of spin S(g) = 0. Two modifications are made
to the original model:

1. The particle definition of the gluon is altered from S(g) = 1 to S(g) = 0.

2. Vertices containing only gluons or gluons and quarks are changed to obey the
Lorentz structure of a scalar gluon. The appropriate Lorentz structure is already
defined for the usage in vertices containing a scalar Higgs boson. The coupling
constant used in conjunction with gluons is not altered, nor is the allowed set of
vertices including gluons.

In the private simulation only the matrix elements are calculated. As no parton shower
simulation is added the simulation can not describe the low transverse momentum region
of the intermediate state. Hence a minimum transverse momentum of pT(Z/γ∗) >
10 GeV/c is required for events simulated by MadGraph. The predictions of the angular
distributions from MadGraph 5 (version 1.3.32) using this model are compared to the
SM prediction and the measured angular distributions in chapter 7.

3.2. Detector simulation

The generated events are passed to the detector simulation. It simulates the physical
response of long lived5 particles traversing through and interacting with the material of
the detector. For this purpose an accurate model of the ATLAS detector is implemented
using the GEANT4 toolkit. The detector description includes maps of the magnetic
field as well as measured misalignments of the tracking detectors. All particles are
stepped through the material, calculating multiple scattering, energy loss and charge
deposition in the detector material. Also nuclear reactions are simulated to obtain a
realistic behaviour of particles showering in the calorimeters.

In a next step the deposited charge in the active detector elements is fed into a
simulation of the readout electronics and data acquisition system of the real detector.

5Long lived in this context means that the particles traverse a macroscopic portion of the detector
before decaying.
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3. Monte–Carlo Event Generation and Detector Simulation

At this stage also noise is introduced into the simulation. Taking into account timing
constraints of the real system a set of hits is obtained from the detector simulation
which is passed to the event reconstruction software. The same software is also used for
reconstructing real, measured events without any changes of settings.

The detector simulation is a very computation intensive task. Simulation of millions
of events is only feasible using massive parallel computing and usually performed on the
GRID [46].

3.3. Data processing and object reconstruction

Physical objects are reconstructed using identical algorithms for simulated and measured
events. The measured events, however, undergo additional treatment before and after
reconstruction.

Before the properties of physical objects (e.g. muons) are reconstructed from the
measured data, calibration factors have to be applied to the measurements. These are
determined from events routed to a dedicated stream, called express-stream, which is
analysed immediately. Reconstruction of the rest of the measured events is started with
a 36 h delay, to allow the proper determination of the calibration constants and the beam
spot position and the identification of noisy detector channels. After reconstruction the
quality of the obtained data is categorised in terms of data quality flags [47] which state
if a given subdetector or reconstruction algorithm is working within normal parameters.
This information is available once per luminosity-block6. So called good run lists (GRLs)
are generated from the data-quality flags, listing all luminosity blocks fulfilling the re-
quired criteria on the detector operation for a given data taking period. These lists
are used for easy preselection of useful events. Whenever a significant amount of data
is collected it is processed by performance groups (e.g. the Muon Combined Perfor-
mance (MCP)). They provide corrections to be applied to the simulated event samples
to match their properties (e.g. energy / momentum scales, resolution and reconstruction
efficiencies) to the measured data.

The reconstructed final state particles used in this thesis are exclusively muons. Some
details of the muon reconstruction are discussed in the next section.

3.3.1. Muon reconstruction

Muons are measured in both tracking systems of the detector, inner detector (ID) and
muon spectrometer (MS). This allows for several definitions of a muon as objects recon-
structed from the measurements.

Stand-alone muon (SA): The muon trajectory is only reconstructed in the MS. The
muon momentum measured in the MS is corrected for the parametrized energy
loss of the muon in the calorimeter to obtain the muon momentum at the interac-
tion point. The direction of flight and the impact parameter of the muon at the
interaction point are determined by extrapolating the spectrometer track back to
the beam line.

6The recorded data is divided into luminosity-blocks. One block usually correspond to a fixed timespan
of data taking in the order of minutes.
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3.3. Data processing and object reconstruction

Segment tagged muon (ST): A track in the inner detector is identified as a muon
if the track extrapolated to the muon spectrometer is associated with straight
track segments in the precision detectors of the MS. All track parameters are
reconstructed from the inner detector measurement.

Combined muon (CB): Track reconstruction is performed independently in the ID and
the MS. A track is formed from the combination of both measurements.

Calorimeter tagged muons: An ID track is identified as a muon by the characteristic
energy loss in the calorimeters. This definition has a poor purity and is not used
in the analyses of this thesis.

Combined muons are the muon candidates with the highest purity and are used for all
analyses in this thesis. Their reconstruction efficiency is determined mostly by the prob-
ability to reconstruct a track in the MS. This probability, and hence the reconstruction
efficiency, varies with pseudorapidity (η) and azimuthal angle (φ), mostly apparent in
two regions:

• At η ∼ 0 the MS is only partially equipped with muon chambers to provide space
for services of the ID and the calorimeters.

• In the transition region between the barrel and the end caps at |η| ∼ 1.2 only
one chamber is traversed by muons in the MS due to staged end-cap chambers.
Hence no stand-alone momentum measurement is available and the combined muon
efficiency and resolution are reduced.

For details on the different detector regions see section 4.2.3. The drop of the reconstruc-
tion efficiency in the transition region can be recovered by using segment-tagged muons.
As segment-tagged muons do not require an independent momentum measurement in
the muon spectrometer also muons which cross only one layer of the MS, e.g. low pT

muons, are reconstructed [48].
ATLAS uses two algorithm chains for reconstructing combined and segment-tagged

muons simultaneously which are labelled Staco and Muid. They follow different pattern
recognition strategies, described in [49], and define the combined muon in slightly differ-
ent ways [50]. In Staco it is required that the muon momentum is measured in both, the
ID and the MS. The momentum of the combined muon is then calculated as the weighted
average of the ID and the MS stand-alone momentum measurements. The ID dominates
the momentum measurements up to pT ∼ 50 GeV/c. For 50 GeV/c < pT < 100 GeV/c
the ID and MS measurements have similar weight and the MS dominates the measure-
ment for pT > 100 GeV/c. In Muid, instead of this statistical combination, a combined
track fit to all muon hits in the ID and the MS is performed. This makes it possible to
include also hit configurations in which no muon momentum measurement is possible in
the MS alone. As a consequence, more combined muons at |η| ∼ 1.2 are found in Muid
than in Staco.

The analyses presented in chapter 6 and 7 will use combined Muid muons.
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4. The LHC and the ATLAS detector

4.1. The Large Hadron Collider (LHC)

The LHC [2] accelerates and collides two beams of protons or heavy ions at the highest
currently achievable energies. It is installed in the 27 km long circular tunnel which
previously housed the Large Electron Positron Collider (LEP) at the ’Centre Européenne
pour la Rechere Nucléaire’ (CERN) in Geneva, Switzerland. At the design luminosity
for proton operation of 1034 cm−2s−1, two bunches containing 1.1 · 1011 protons collide
every 25 ns. On average about 25 proton–proton interactions happen during the collision
of two such bunches at a nominal center-of-mass energy of 14 TeV. Currently the LHC
is operating at a center-of-mass energy of 7 TeV with collisions happening every 50 ns.
A peak instantaneous luminosity of 8 · 1033 cm−2s−1 is reached. In heavy ion mode, the
design energy is 2.76 TeV per nucleon in case of Pb ions at an instantaneous luminosity
of 1027 cm−2s−1. Mainly fully stripped lead atoms are used in heavy ion collisions. A
schematic overview of the full accelerator complex at CERN is shown in Fig. 4.1.

First proton–proton collisions at a center-of-mass energy of 7 TeV were created end
of march 2010 with an initial instantaneous luminosity of 2 · 1027 cm−2s−1. During the
operation in 2010, which was essentially devoted to the development of the machine,
the instantaneous luminosity already reached 1032 cm−2s−1. In 2011 the operation fo-
cused on providing a large data sample for the experiments still at the same energy.
About 5.6 fb−1 of proton–proton collisions have been delivered by the LHC at a peak
instantaneous luminosity of 4 · 1033 cm−2s−1 with proton bunches colliding every 50 ns.

Six experiments are installed at the four interaction points of the proton beams of the
LHC. (cf. 4.1). Two general purpose detectors, ATLAS [3] and CMS [4], are designed to
record as much information as is technically possible about the proton–proton collisions
with the aim to look for any sign of new physics. These two are the largest experiments
at the LHC. LHCb [51] is a single sided forward spectrometer specifically designed to
investigate the physics of b quarks and B hadrons. ALICE [52] is designed to investigate
the collisions of heavy ions. Its strength is the reconstruction of a huge number of tracks,
up to several thousand, in each collision. The aim is to study exotic states of matter in
very high densities, such as a quark–gluon plasma. Two smaller experiments, TOTEM
[53] and LHCf [54], are placed at some distance to the interaction points to investigate
particles produced at very small angles in the collisions. This is a region experimentally
not accessible by the other detectors. TOTEM focuses on the measurement of the total
elastic and diffractive cross section of proton–proton interactions. LHCf uses the high
energy particles to study the reaction chains induced by cosmic rays in the atmosphere.

The dataset used in this thesis is recorded with the ATLAS detector during the year
2011 and corresponds in total to an integrated luminosity of 4.7 fb−1 of proton–proton
collisions at a center-of-mass energy of

√
s = 7 TeV.
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4. The LHC and the ATLAS detector

Figure 4.1.: The CERN accelerator complex [55]: Protons are fed into the LHC via a
chain of accelerators: Linac2, Booster, PS and SPS. The four large ex-
periments using the LHC are located at the interaction points of the two
circulating beams, marked as yellow dots.
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4.2. The ATLAS detector

4.2. The ATLAS detector

ATLAS is the name of a titan from Greek mythology who carries the celestial sphere.
It also is an acronym for ’A Toroidal LHC ApparatuS’ which is one of the four large
experiments at the LHC and is located at the interaction point 1. The detector is
designed as a general purpose instrument. As such it should be able to reconstruct all
products of the proton–proton collisions, even in the high luminosity environment at
the LHC with more than twenty proton–proton interactions happening simultaneously
in a single collision of two bunches of protons. For this purpose the tracks of charged
particles and their associated momenta have to be measured with great accuracy and a
time resolution of a single bunch crossing, i.e. 25 ns, or better.

ATLAS is designed as a magnetic spectrometer following a cylindrical symmetry. All
subdetectors are divided into a central part called barrel and a forward section on each
side, called endcap. It features two sets of tracking detectors to measure the momenta
of charged particles. One is located in the innermost region of the detector within
a solenoidal magnetic field. It is referred to as inner detector (ID) (cf. sec. 4.2.1).
The second one covers the outermost volume of ATLAS and is placed within a toroidal
magnetic field, thus giving a completely uncorrelated momentum measurement w.r.t.
the ID. This spectrometer is capable of identifying muons, as they are the only charged
particles reaching this detector, and hence is called muon spectrometer (MS). It can
measure momenta up to the TeV region (cf. sec. 4.2.3). Also a subdetector belonging to
the ID is used for particle identification: the transition radiation tracker (TRT). It can
distinguish electrons from other charged particles by means of transition radiation. Two
calorimeters, an electromagnetic and a hadronic one, are placed between the ID and the
MS to measure the energy of particles leaving the collision (cf. sec. 4.2.2). To be able
to infer the presence of neutral particles not interacting with the detector material, e.g.
neutrinos or hypothetical dark matter particles, the energy of all particles leaving the
collision must be measured. Therefore the calorimeters enclose the interaction point as
much as technically possible. A schematic view of ATLAS is shown in Fig. 4.2. With
outer dimensions of 46 m in length and 25 m in diameter, it is the biggest detector at
the LHC.

The coordinate system used in ATLAS is introduced in the following to allow the
precise definition of the acceptance ranges for the individual subdetectors later on. It
is aligned with the beam circulating counter clock wise, which defines the z-axis at
the nominal interaction point. The x-axis points towards the center of the accelerator
ring and, consequently, the y-axis upwards. The direction of a particle trajectory is
parametrized by the azimuthal angle φ, defined as the angle between the projection of
the trajectory on the (x−y) plane and the x-axis, and by the polar angle θ, defined as the
angle between the trajectory and z-axis. Usually the pseudorapidity η = − ln tan(θ/2) is
used instead of θ. R denotes the radial distance to the nominal interaction point in the

(x− y) plane and ∆R is the distance in (η − φ) space defined as ∆R =
√

(∆η2 + ∆φ2).

The following sections discuss briefly the subsystems of the detector, based on refer-
ences [3] and [56], and conclude with the trigger system presented in section 4.2.4.

4.2.1. Inner Detector

The inner detector (ID) is designed to measure the trajectory of charged particles with
great precision. A particularly important task is the position determination of the col-
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Figure 4.2.: Schematic overview of the ATLAS detector [57].

lision vertex (called primary vertex (PV)) and any secondary vertices as well as the
determination of the impact parameter1 of a particle trajectory w.r.t. a vertex. Sec-
ondary vertices occur when relatively long lived particles like τ -leptons and b-hadrons
decay. The reliable reconstruction of secondary vertices is essential for the tagging of
jets originating from a b-quark.

The ID itself is based on three subdetectors, all placed within a solenoidal magnetic
field of 2 T oriented parallel to the beam axis. The subdetectors are arranged as cylin-
drical layers in the central region, and several disk or wheel like structures in the forward
and backward regions. From the in- to outside the subsystems are: three layers of silicon
pixel sensors (PIX), four layers of silicon strip detectors (SCT) and a straw tube tracker
(TRT). In total the ID extends 6.2 m in length, 2.1 m in diameter and covers a pseudo-
rapidity range of |η| < 2.5. For a central track with pT = 5 GeV/c the relative resolution
on the measured transverse momentum is around 1.5 % [3]. A schematic drawing of the
ID is presented in Fig. 4.3. To minimise the effects of radiation on the silicon detectors
they are operated at a temperature of −5 ◦C to −10 ◦C. The TRT is operated at room
temperature.

The Pixel detector (PIX) features 80 M readout channels, which is about 80% of the
total number of readout channels in all of ATLAS. Pixels are grouped in 1744
modules à 46 k pixels each where every pixel is a readout channel. Each module is
divided into 16 readout chips which are directly connected to the sensor substrate
via bump-bonds in every pixel. The pixel dimensions are 50µm times 400µm
and allow for a single hit resolution of ∼ 10µm in the (R − φ) plane and 115µm
in z (barrel) / R (end-cap). The innermost layer has a radius of 5.05 cm, the

1The impact parameters denoted the minimal distance between a particle trajectory and a reference
point, usually the associated vertex.
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Figure 4.3.: Schematic drawing of the inner detector of ATLAS [58]. From in- to outside
the subsystems are: 3 layers of silicon pixel sensors, 4 layers of silicon strip
sensors and a straw tube tracker with transition radiation capability.

outermost 12.2 cm. With this layout a resolution of the vertex position of ∼ 30µm
is achieved in the transverse plane and about 50µm in the longitudinal direction
[59]. The detector can be triggered with a maximum rate of 100 kHz.

The tuning of the pixel detector is a complex task as each pixel has two individual
settings, one defining the charge threshold for a hit to be recognised, and one for
calibrating the charge measurement. Besides this fine tuning the coarse range of
these parameters can be set individually for each readout chip. For the tuning
of these approximately 160 M parameters to be completed on a reasonable time
scale, a massive parallelisation of the task is necessary. This is achieved by using the
processing power installed on the off-detector readout electronics, which provides
around four digital signal processors per 24 detector modules. The implementation
was partly done during the service work performed prior to the analysis presented
in this thesis. It is documented in [60] and [61].

The Silicon Strip Detector (SCT) is divided into four barrel layers and nine end-cap
disks on each side with a total of 4088 modules. Each module consists of four
sensors, two being daisy chained and glued back to back to the other two providing
a stereo angle of 40 mrad between them. In total each barrel module contains
786 12 cm long strips with 80µm pitch. The strips are aligned along the beam
axis which corresponds to the direction of the magnetic field. In the end-cap
modules the strips are oriented radially with varying pitch over a module. With
this layout typically eight measurements are provided per charged particle track
with an intrinsic resolution of 17µm in the (R− φ) plane and 580µm in z / R.
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The Transition Radiation Tracker (TRT) consists of approximately 280 k proportional
drift tubes (straws) of 4 mm diameter. About 50 k axially aligned tubes with split
anodes and two sided readout make up the central (barrel) part of the detector
in the range |η| < 1. On both sides of the barrel nine wheel-like structures with
radially oriented straws cover the range 1.0 < |η| < 1.96. The layout is chosen
such that a particle trajectory with pT > 0.5 GeV/c crosses about 36 straws. This
provides a continuous tracking in the TRT volume with the possibility to measure
the energy loss of a particle along its path. In addition, the TRT provides electron
identification via transition radiation from polypropylene fibers (barrel) or foils
(wheels) interleaved with the straws. Transition radiation photons are identified
by their much larger energy deposition of about 6 keV compared to the few hundred
eV deposited by a minimum ionizing particle.

4.2.2. Calorimeters

The calorimeters are designed to provide a precise measurement of the energy of all
particles leaving the interaction, except for neutrinos and muons which are not absorbed
in the calorimeter. To be able to estimate the amount of energy escaping the detector
unrecognised (EmissT ), a maximum coverage of the solid angle is desirable. In ATLAS
the calorimeters cover the full azimuth and the pseudorapidity range of |η| < 4.9 cor-
responding to 0.85◦ < θ < 179.15◦. Two types of calorimeters are distinguished: the
electromagnetic calorimeter used to measure the energy of photons and electrons and
the hadron calorimeter used to measure the energy of hadrons. The geometrical layout
of both is similar to the layout of the ID, consisting of a central barrel and end-caps.
The forward calorimeters cover the pseudorapidity range of 3.1 < |η| < 4.9. The de-
sign specification for the electromagnetic calorimeters states an energy resolution of
σE/E = 10%/

√
E ⊕ 0.7% with E given in GeV. For the hadron calorimeters the design

goal is a jet energy resolution of σE/E = 50%/
√
E ⊕ 3% in the region |η| < 3.2 and

σE/E = 100%/
√
E ⊕ 10% in the forward region [3].

The electromagnetic calorimeter is a high granularity sampling calorimeter. It uses
liquid argon (LAr) as active medium and accordion shaped lead plates as absorber. The
accordion shape enables a constant distance between the absorber layers throughout the
detector. A total thickness of more than 22 radiation lengths (X0) is reached in the
barrel part (|η| < 1.8) and more than 24X0 in the end-cap region.

The hadron calorimeter, also implemented as a sampling calorimeter, uses different
technologies in different detector regions. In the barrel region plastic scintillators are
used as active medium in conjunction with absorber plates made out of steel, reaching
a thickness of 7.4 interaction lengths. The end-cap (1.5 < |η| < 3.2) part uses copper as
absorber and liquid argon (LAr) as active material to withstand the high particle fluxes
there.

The forward calorimeters (3.1 < |η| < 4.9) consist of three layers, all equipped with
LAr as active material and a total thickness of 10 interaction lengths. The inner layer,
primarily used as electromagnetic calorimeter, uses copper as absorber whereas the outer
layers use tungsten to achieve a large absorption of stray particles.
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4.2. The ATLAS detector

4.2.3. Muon Spectrometer

The outer most part of the ATLAS detector is covered by a standalone muon spectrom-
eter (MS) which accounts for most of the volume of the entire detector. It is designed
to detect charge particles leaving the calorimeters and measure their momentum with
a precision of 10% at a momentum of 1 TeV. The magnetic field needed for momentum
measurement is created by three air-core superconducting toroidal magnet systems, one
large barrel torroid and two end-cap magnets. They provide a field of about 0.5 T in the
barrel region and 1 T in the end-cap region. The transition region between the barrel and
the end-cap systems provides an irregular magnetic field which is a challenging situation
for the momentum reconstruction.

2008 JINST 3 S08003

Figure 1.4: Cut-away view of the ATLAS muon system.

1.4 Muon system

The conceptual layout of the muon spectrometer is shown in figure 1.4 and the main parameters
of the muon chambers are listed in table 1.4 (see also chapter 6). It is based on the magnetic
deflection of muon tracks in the large superconducting air-core toroid magnets, instrumented with
separate trigger and high-precision tracking chambers. Over the range |η | < 1.4, magnetic bending
is provided by the large barrel toroid. For 1.6 < |η | < 2.7, muon tracks are bent by two smaller
end-cap magnets inserted into both ends of the barrel toroid. Over 1.4 < |η | < 1.6, usually referred
to as the transition region, magnetic deflection is provided by a combination of barrel and end-cap
fields. This magnet configuration provides a field which is mostly orthogonal to the muon trajec-
tories, while minimising the degradation of resolution due to multiple scattering. The anticipated
high level of particle flux has had a major impact on the choice and design of the spectrome-
ter instrumentation, affecting performance parameters such as rate capability, granularity, ageing
properties, and radiation hardness.

In the barrel region, tracks are measured in chambers arranged in three cylindrical layers
around the beam axis; in the transition and end-cap regions, the chambers are installed in planes
perpendicular to the beam, also in three layers.
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Figure 4.4.: Schematic overview of the muon spectrometer and its magnet system [62].

The detectors are separated into a barrel part (|η| < 2.0) and end-cap wheels on both
sides of the barrel, covering the range 2.0 < |η| < 2.7. A schematic overview of the
MS is presented in Fig. 4.4. The barrel consists of three layers, the end-caps of three
wheels. All barrel layers and the two outer most wheels are equipped with monitored
drift tubes (MDTs) as precision detectors. The MDT chambers consist of eight layers
of drift tubes operated at an absolute pressure of 3 bars. A position resolution of
80µm per tube and 35µm per chamber is achieved. The innermost end-cap wheels use
cathode strip chambers (CSCs) instead to cope with the high particle flux. The CSCs
are multiwire proportional chambers with cathode planes segmented orthogonal to the
wires, thus allowing both coordinates to be measured. A resolution of 40µm in the
bending plane and 5 mm in the non-bending plane is reached. In addition all barrel
layers are quipped with resistive-plate chambers (RPCs) which measure the trajectory
position in the non-bending plane of the magnetic field and have fast trigger capability.
The end-cap wheels use thin-gap chambers (TGCs) for the same purpose. RPCs and
TGCs only cover the range in pseudorapidity up to |η| < 2.4, which is the acceptance
limit of all muon triggers. All chambers exist in two widths, large and small, which are
installed in alternating order (see Fig. 4.5, left).

The muon system has some holes which are needed for services to the calorimeters
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Figure 6.1: Cross-section of the bar-
rel muon system perpendicular to the
beam axis (non-bending plane), show-
ing three concentric cylindrical layers of
eight large and eight small chambers. The
outer diameter is about 20 m.

Figure 6.2: Cross-section of the muon system in
a plane containing the beam axis (bending plane).
Infinite-momentum muons would propagate along
straight trajectories which are illustrated by the dashed
lines and typically traverse three muon stations.

where a high momentum (straight) track is not recorded in all three muon layers due to the gaps
is about ±4.8◦ (|η | ≤ 0.08) in the large and ± 2.3◦ (|η | ≤ 0.04) in the small sectors. Additional
gaps in the acceptance occur in sectors 12 and 14 due to the detector support structure (feet). The
consequences of the acceptance gaps on tracking efficiency and momentum resolution are shown
in figures 10.37 and 10.34, respectively. A detailed discussion is given in section 10.3.4.

The precision momentum measurement is performed by the Monitored Drift Tube chambers
(MDT’s), which combine high measurement accuracy, predictability of mechanical deformations
and simplicity of construction (see section 6.3). They cover the pseudorapidity range |η | < 2.7
(except in the innermost end-cap layer where their coverage is limited to |η | < 2.0). These cham-
bers consist of three to eight layers of drift tubes, operated at an absolute pressure of 3 bar, which
achieve an average resolution of 80 µm per tube, or about 35 µm per chamber. An illustration of a
4 GeV and a 20 GeV muon track traversing the barrel region of the muon spectrometer is shown in
figure 6.4. An overview of the performance of the muon system is given in [161].

In the forward region (2 < |η | < 2.7), Cathode-Strip Chambers (CSC) are used in the inner-
most tracking layer due to their higher rate capability and time resolution (see section 6.4). The
CSC’s are multiwire proportional chambers with cathode planes segmented into strips in orthogo-
nal directions. This allows both coordinates to be measured from the induced-charge distribution.
The resolution of a chamber is 40 µm in the bending plane and about 5 mm in the transverse plane.
The difference in resolution between the bending and non-bending planes is due to the different
readout pitch, and to the fact that the azimuthal readout runs parallel to the anode wires. An illus-
tration of a track passing through the forward region with |η | > 2 is shown in figure 6.5.

To achieve the sagitta resolution quoted above, the locations of MDT wires and CSC strips
along a muon trajectory must be known to better than 30 µm. To this effect, a high-precision optical
alignment system, described in section 6.5, monitors the positions and internal deformations of
the MDT chambers; it is complemented by track-based alignment algorithms briefly discussed in
section 10.3.2.
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Figure 4.5.: Schematic cross section of the muon spectrometer [3]. Left: non-bending
(x− y) plane. Right: bending (z − y) plane.

and support structures. Most pronounced are the regions around |η| . 0.05 and at the
position of the detector feet. This leads to a non uniform acceptance in (η − φ) space.
Furthermore, a varying efficiency of the muon spectrometer within its acceptance is ob-
served due to the use of the different types of detectors as well as the different geometries
of the detector modules . To account for these effects in the efficiency determination, re-
gions in (η−φ) space are grouped such that they represent the geometrical configuration
of the muon system. Ten different regions are defined, corresponding to ten different
physical regions in the MS (see Fig. 4.6). The regions are labelled and described below:

• Barrel large: only large barrel chambers.

• Barrel small: only small barrel chambers.

• Barrel overlap: overlap between small and large barrel chambers.

• Feet: region of the feet supporting the detector; some chambers are missing in this
region which makes the muon reconstruction more difficult.

• Transition: transition region between the barrel part and the end-cap wheels.
Most trajectories in this region only pass two instead of three muon stations.
Additionally the magnetic field has a complex geometry in this region which makes
the muon reconstruction more difficult.

• End-cap small: small end-cap sectors, MDTs.

• End-cap large: large end-cap sectors, MDTs.

• BEE: sectors containing specialized MDT chambers which are mounted on top of
the end-cap toroid cryostat (Barrel–endcap endcap region). In this area only part
of the azimuthal range is covered.

• CSC small: small end-cap sectors, CSCs, outside TRT acceptance.

• CSC large: large end-cap sectors, CSCs, outside TRT acceptance.
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Figure 4.6.: Illustration of the detector regions defined in (η − φ) space. The regions
correspond to the physical layout of the muon spectrometer.

To achieve a momentum resolution of better than 10% on a trajectory with a mo-
mentum of 1 TeV the sagitta of 500µm has to be measured with an accuracy better
than 50µm. To reach this goal the position of the MDT and CSC wires along the muon
trajectory have to be known to a precision better than 30µm. For this purpose a high-
precision optical alignment system is installed. Additionally, the geometry is measured
in situ using dedicated alignment runs where data is recorded without magnetic field.

The efficiency measurement of the muon spectrometer is presented in more detail in
chapter 5.

4.2.4. Triggering

At the design specifications of the LHC two bunches of protons collide every 25 ns,
producing 25 proton–proton interactions on average. This corresponds to an event rate
of about 1 GHz. But only a tiny fraction of these events contains interesting information.
The maximum rate at which events can be stored to mass storage is limited to 300 Hz.
Hence, a real-time selection of interesting events is necessary. This is performed by
the trigger system. Event classification and selection is done in three stages which are
explained in the following.

The first trigger stage, called level-1, operates at a nominal rate of 75 kHz. It only uses
coarse information from fast detectors. These are RPC and TGC chambers of the muon
system, calorimeter trigger towers2, accelerator information and in special cases the TRT.
Simple algorithms, implemented in custom made hardware, process these information for
signs of muons, electrons, jets, missing energy and some other properties. Furthermore,
momentum thresholds can be applied to these objects. Many different criteria can be
defined to classify an event as interesting. Each criterion is an entrance to a trigger
chain. Many chains are run in parallel to classify events in categories, already at this
initial stage. Eventually, events are sorted by their classification into different so called
streams. For example, all events passing a muon trigger end up in a specific stream.

If an event is accepted by the level-1 trigger, all subdetectors will be read out, but
only in regions of interest defined by the level one trigger. The data of those regions

2Trigger towers are groups of calorimeter cells with varying size in (η − φ) space.
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4. The LHC and the ATLAS detector

correspond to ∼ 2% of the full phase space. It is reconstructed using dedicated fast
algorithms, after which information about particle trajectories and particle identification
is available as well as some calorimeter based information. This information is processed
by the level-2 trigger algorithms which reduces the event rate to ∼ 3.5 kHz. The average
event treatment time is 10 ms at this stage.

Events passing the level-2 decision stage trigger the read out of the full detector.
They are then reconstructed completely using the standard off-line algorithms and some
preliminary calibration. The fully reconstructed events are passed to the level-3 decision
stage, also called event filter (EF). The large processing rate can only be achieved by the
massive usage of parallel computing, as reconstruction and decision taking by the EF
requires several seconds. The EF ultimately assigns events to the output streams. The
acceptance rate is kept constant around 300 Hz by adjusting the prescaling3 of trigger
chains to the instantaneous luminosity.

Names of trigger chains follow the convention: <Trigger Level> <stream> <momentum
threshold> <optional specifications>. An example is EF mu 18 medium, which corre-
sponds to events selected by the EF with at least one muon with pT > 18 GeV/c. In
this case the addition medium defines which level-1 seed is used, in this case L1 mu 10
with a momentum threshold of pT > 10 GeV/c.

3High rate trigger chains are prescaled by a variable factor n which means that only every nth event
passing this trigger is recorded.
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5. Measurement of the Muon
Reconstruction Efficiency

When analysing processes with muon final states, it is essential to know the recon-
struction efficiency of the muons. Of particular interest is the reconstruction efficiency
with respect to the position of the trajectory in the detector and the momentum of the
muon in question. This information is useful e.g. to spot malfunctions in the muon
detectors and essential to measure differential cross sections or, in general, for precision
measurements.

The reconstruction efficiencies are determined using the so-called tag-and-probe method
on muon pairs produced in the decays of Z bosons. The idea of this method is to select
events containing two muons without requiring two reconstructed muons in the event
selection. An obvious candidate for such events are Z bosons decaying into two muons.
They are identified in two steps. First, one (or more) well reconstructed muon(s) is
required in the event. This tags the decay into muons. Then a well reconstructed track
from the ID is required, which yields an invariant mass very close to the mass of the Z
boson when combined with the muon. This track is called probe. The selected events
contain only very little background. Hence, all probe tracks are assumed to be muons
from Z decays. The reconstruction efficiency, w.r.t. the efficiency of the ID, is then
given by the number of probe tracks which are matched to a reconstructed muon di-
vided by all selected probes. As the ID efficiency is 1 for the considered muons, the
measured efficiencies correspond to the absolute reconstruction efficiencies. The results
are compared to simulation, and correction factors are provided for different geometrical
and kinematic regions.

The muon reconstruction efficiency is measured using the initial collision data from
the start-up phase of the LHC, in close collaboration with the ATLAS Muon Combined
Performance (MCP) group, and published in [63]. It uses the data sample of proton-
proton collisions recorded in 2010 at a centre of mass energy of 7 TeV, corresponding to
an integrated luminosity of 42 pb−1. The efficiencies of both independent muon recon-
struction algorithm chains in the prompt reconstruction of p-p collision data, Staco and
Muid, are studied.

As will be explained in detail in the next sections the muon reconstruction efficiency
is found to be well above 92%, as predicted by the Monte–Carlo (MC) simulation. The
average scale factor (SF)1 between experimental data and MC simulation for combined
muons from Z boson decays is found to be 0.9806(31) for Staco and 0.9918(28) for
Muid. Differentially in the transverse momentum (pT), deviations from the average are
within one standard deviation. Studying the efficiency w.r.t. different detector regions
reveals three distinct regions where the efficiencies measured in the recorded data are
significantly lower than expected from the simulation. In the transition region both
reconstruction algorithms show lower efficiencies than expected. In the feet and BEE

1SF is defined as the ratio of an efficiency in simulation and data, and is commonly used in physics
analyses to correct the simulation to match the conditions found in data.
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5. Measurement of the Muon Reconstruction Efficiency

regions2 only Staco is affected. More details are given later in this chapter.
Results from the tag-and-probe efficiency determination are used in all physics groups

analysing muon final states. For this purpose the MCP group provides up-to-date effi-
ciencies with the increasing amount of recorded data. All further studies presented in
this thesis use the efficiency SFs which are determined from the data sample used in the
corresponding study.

In the following sections the muon reconstruction and the tag-and-probe method is
explained. The method is then applied to simulated and experimental data, including a
discussion of systematic uncertainties on the efficiency measurements.

5.1. The tag-and-probe method

In general, tag-and-probe refers to the method of tagging an object, e.g. an event, which
fulfils certain properties, in order to allow a prediction of some sort. Once tagged, it can
subsequently be probed if the prediction is true. This approach is commonly used to
determine efficiencies of all kinds. In the particular case considered here, the goal is to
select events containing a muon, without requiring this muon to be identified as a muon
and without introducing any bias on the muon reconstruction. This is best achieved
using events where a Z boson decays into two muons. These events are selected by
requiring one well reconstructed muon and one charged particle track measured by the
ID which must yield an invariant mass close to the Z boson mass when combined with
the muon. Furthermore, both tracks must have opposite charges. The ID track is the
probe. It is tagged as a muon by the selection of a Z decay topology in addition with
a well reconstructed muon (called tag) in the final state. All tag muons are required
to trigger the data acquisition to avoid any bias caused by other triggers. The recon-
struction efficiency is determined from the fraction of probes which are reconstructed as
muons divided by the number of all selected probes. This results in a relative efficiency
measurement w.r.t. the efficiency of the ID. As the latter one is 100% within less than
1% statistical uncertainty [64] all obtained efficiencies are taken to be absolute. The
tag-and-probe method is well established and in [49] it is shown that it reproduces the
efficiency in simulated Z → µµ events correctly.

Due to the limited size of the used data sample some bins in the efficiency spectrum
have low statistics. To avoid unphysical results, especially concerning the calculated
uncertainties, the efficiencies are calculated with the Bayesian approach for a binomial
distribution using a minimally informative (flat) prior. Flat prior means that a priori
all efficiencies in the interval ε ∈ [0 : 1] are equally probable [65]. Accordingly, the
efficiencies are calculated as:

εreco =
# successful matches + 1

# trials + 2
.

Note that the addends +1 and +2 enter due to the use of a Bayesian ansatz.

5.2. Selection of tag-and-probe pairs

The cut based selection is performed in three steps: selection of collision events, tag
selection and probe selection. These steps are discussed in the next subsections. A
detailed overview of all cuts is given in table 5.1.

2See section 4.2.3 for details on the detector regions.
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5.2. Selection of tag-and-probe pairs

All tracks considered in the analysis must have a minimum number of hits in the
silicon detectors. Within the geometrical acceptance of the TRT a successful extension
of the muon trajectory into that detector is enforced by requirements on the numbers of
TRT hits associated to the track and TRT outliers. TRT outliers appear in two forms
in the track reconstruction: as drift tube signals without a near-by track or as a set of
TRT measurements which fail to form a smooth trajectory together with the Pixel and
SCT measurements. These quality cuts suppress fake tracks and discriminate muons
from hadrons.

5.2.1. Collision event selection

To ensure the event is a p-p collision at least one reconstructed primary vertex with
at least three associated tracks is required. Only events are considered where the ID
and MS, including their magnet systems, have been fully operational. This information
is provided on a per luminosity block basis in so called GRL provided by the Data
Quality Group, see also section 3.3. Events must furthermore pass the muon trigger
with the lowest available transverse momentum threshold which was unprescaled. The
pT threshold of the trigger was well below the pT threshold of the tagged muon in the
analysis.

5.2.2. Tag muon selection

Tags are defined as combined muons, separately for each of the two reconstruction chains.
A combined muon has to pass the following cuts:

• ID track quality criteria listed in table 5.1 applied on the ID track associated with
the combined muon,

• transverse momentum (pT) greater than 20 GeV/c,

• |η| < 2.4, limited to the acceptance of the muon trigger system,

• longitudinal distance from primary vertex |z0| < 10 mm,

• additional muon quality requirements are imposed to remove a part of the back-
ground from decays in flight:

– χ2 of the MS-ID match lower than 150 for 5 degrees of freedom,

– if the momentum measured in the MS (pMS) is below 50 GeV/c, the difference
between pID, the momenta measured in the ID, and pMS normalized by pID

must be larger than −0.4,

• trigger of the data acquisition,

• isolation:
∑
pT(∆R < 0.4)/pT(muon) < 0.2 (with ∆R :=

√
∆η2 + ∆φ2),

where the sum extends over all charged particle track momenta within a cone of
0.4 around the tag, excluding the charged particle track on which the tag is based.

The muon quality requirements are applied only for Staco which has had a looser selec-
tion of combined muon candidates during the commissioning phase with 2010 pp collision
data. Note that these cuts are no longer needed with the Staco configuration used in
2011.
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5. Measurement of the Muon Reconstruction Efficiency

5.2.3. Probe selection

Probes are defined as tracks measured by the ID which pass the following criteria:

• ID track quality criteria listed in table 5.1,

• pT greater than 20 GeV/c,

• |η| < 2.5, limited to the coverage of the ID,

• longitudinal distance from primary vertex |z0| < 10 mm,

• isolation:
∑
pT(∆R < 0.4)/pT(muon) < 0.2, where the sum extends over all

charged particle track momenta within a cone of 0.4 around the probe, excluding
the probe itself,

• associated with the same vertex as the tag,

• azimuthal distance between tag and probe tracks φ > 2.0,

• the invariant mass of the tag-and-probe pair is close to the nominal Z boson mass:
|mZ −mTP| < 10 GeV/c2,

• probe and tag oppositely charged.

5.2.4. Probe - Muon matching

After selecting all tag-and-probe pairs an attempt is made to match the probe tracks to
muons in the event. A match is considered successful if both have the same measured
charge and are close in (η, φ) space: ∆R ≤ 0.01.

40



5.2. Selection of tag-and-probe pairs

Collision Event Selection

Data quality muon Good Run List [48]
Primary Vertex with ≥ 3 tracks ≥ 1

ID Hit Requirements for all Tracks

ID Si hit requirement number of pixel hits ≥ 1, SCT hits ≥ 6

TRT hit requirements: |η| ≤ 1.9 hits + outliers > 5 & outliers
hits+outliers < 0.9

TRT hit requirements: |η| > 1.9 if (hits + outliers > 5): outliers
hits+outliers < 0.9

Tag Selection

Kinematics pT ≥ 20 GeV/c & |η| ≤ 2.4 & |z0| < 10 mm
Isolation

∑
tracks

pIDT / pT < 0.2 inside cone of 0.4 around tag

Muon Quality (only Staco) χ2
match < 150

if (pMS < 50 GeV/c): pMS − pID

pID > − 0.4

Trigger:
Period A-D pT > 10 GeV/c at level 1
Period E-F pT > 10 GeV/c at the Event Filter
Period G-H pT > 13 GeV/c at the Event Filter

Period I pT > 13 GeV at the Event Filter

Probe Selection

Kinematics pT ≥ 20 GeV/c & |η| ≤ 2.5 & |z0| < 10 mm
Isolation

∑
tracks

pIDT / pT < 0.2 inside cone of 0.4 around probe

Charge chargeTag · chargeProbe < 0

∆φ(Tag, Probe) > 2.0
Invariant mass |mZ − mTP| < 10 GeV/c

same vertex as Probe |z0Tag − z0Probe
| < 3 mm

Probe - Muon matching

∆R < 0.01
Charge same

Table 5.1.: Summary of all cuts used in the efficiency measurement to select the tag-and-
probe pairs and to match probes to muons. The measured data is divided in
periods A–I with similar beam conditions and the pT threshold of the trigger
is adjusted accordingly.
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5. Measurement of the Muon Reconstruction Efficiency

5.3. Expectations from Monte–Carlo simulation and
background estimation

Many physics analyses compare their results to predictions from MC simulation. Here
the deviation of the reconstruction efficiency found in the measured data compared to
the simulated one is of interest rather than the absolute efficiency. For this reason
scale factors are calculated, defined as the ratio between the efficiencies in data and MC
simulation. Furthermore simulated event samples are used to estimate the influence of
background processes on the efficiency measurement, which is discussed in the following.

The MC samples used for these studies are generated with PYTHIA [38] using the
ATLAS MC09 tune [66]. In these samples only a single interaction is simulated per bunch
crossing. Six background channels were considered: Z → ττ , W → µν, W → τν, and
production of bb̄, cc̄, and tt̄ pairs. For the two QCD background channels a scale factor
of 0.58 is applied to the generator cross section. This factor is measured in [67].

The background events can be split into two categories:

• Cat. 1: Events in which the probe track is a muon. These background events do
not bias the efficiency measurement.

• Cat. 2: Events in which the probe track is not a muon. These events lead to an
apparently reduced muon reconstruction efficiency. The measured reconstruction
efficiency has to be corrected for the rate of these events.

The number of all probe tracks and those which are reconstructed as a muon are cal-
culated from the simulated Z → µµ signal and each of the six considered background
samples individually. The obtained numbers are summed, weighted by the integrated
luminosity of the corresponding sample, and eventually used to calculate the reconstruc-
tion efficiency εreco including the background (bg) effects. The influence of bg on εreco is
calculated by subtracting the efficiency obtained from the simulated signal sample alone.

If only the signal sample is considered, the efficiency is independent of the muon pT

in the region under study. In the different detector regions (see Fig. 5.1), the combined
muon efficiencies vary between 90% and 98% in Staco and between 96% and 99% in Muid.
Only the barrel regions equipped with large muon chambers show a lower efficiency of
only 92%. These areas suffer most from the gap in the muon system around η ≈ 0 [3]
which reduces the acceptance of the muon system. If the region |η| < 0.1 is excluded from
the efficiency calculation the measured efficiency in the barrel regions rises significantly.
However, current physics analyses do not remove the central η region in their event
selection. Hence, this cut is not considered further in the efficiency determination.

When background contamination is taken into account, the calculated efficiency is
lowered by ∼ 1% in total. The efficiency results for signal only and signal plus bg are
shown in Fig. 5.1. The drop in the efficiency is most pronounced in the low pT bins,
as displayed in Fig. 5.1 (c, d). To quantify the impact of category 2 background events
from different processes on εreco, the number of probe tracks which are not reconstructed
as a muon are compared to the number of probes in the Z → µµ signal sample. The
obtained fractions are summarized in table 5.2.

Overall the contamination of the selected event sample with background events is only
0.7%, which is small but not negligible, in particular as the background contributions
from charm and bottom decays, referred to as QCD events, are mainly found for low
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Figure 5.1.: Efficiencies for combined muons, determined from simulated events, are pre-
sented differentially w.r.t. detector region (a, b), transverse momentum (pT)
(c, d) and pseudorapidity (η) (e, f) of the muon for the reconstruction al-
gorithms Staco (left) and Muid (right). Triangles correspond to signal only.
Black dots correspond to signal plus all studied background contributions.
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5. Measurement of the Muon Reconstruction Efficiency

bg channel Z → ττ W → µν W → τν bb̄ cc̄ tt̄ Total
cat. 2 bg fraction [%] 0.02 0.30 0.07 0.22 0.08 0.03 0.72

Table 5.2.: Fraction of category 2 bg events in the final data sample after all selection
cuts.

muon pT. As a consequence the measured efficiency drops significantly towards lower
pT. The largest background contributions are due to W, b and c decays.

A cross check on the amount of simulated background events has been made by se-
lecting like-charge tag-and-probe pairs. In simulation 91 ± 6 and in data 75 ± 9 pairs
have been found. The ratio of like-charge to opposite-charge tag-and-probe pairs agrees
very well between simulation (0.38%) and data (0.40%).
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5.4. Results on experimental data

5.4. Results on experimental data

The muon reconstruction efficiencies are determined using the full proton-proton data
sample recorded in 2010. The data corresponds to 42 pb−1 for which the MS and ID are
fully operational and is divided into nine data taking periods, labeled A-I, of approxi-
mately one month length each. These coincide with periods of similar beam conditions
in the LHC.

5.4.1. Efficiencies for combined muons.

Fig. 5.2 shows the efficiency for combined muons as a function of pT and detector region
for data and simulation. The simulation includes all background channels listed in the
previous section. The scale factor defined as the ratio between data and Monte–Carlo
is displayed in the lower panel of each plot. It is on average 0.9806 ± 0.0024 for
Staco and 0.9918 ± 0.0020 for Muid, where the errors are only statistical. The largest
deviation is found to be in the transition region with a scale factor of 0.902 for Staco
and 0.971 for Muid. For Staco also the feet and the BEE region show significantly lower
efficiencies compared to the simulation with scale factors of 0.959 and 0.958, respectively.
These efficiency drops are understood to arise from a poor alignment in both areas.
The efficiency drop in the transition region is attributed to the limited accuracy of the
magnetic field map used in the first-pass reconstruction of the ATLAS data in this
region, which leads to a small mis-measurement of the standalone muon momentum.
The efficiency drops can be recovered by using muons which are tagged by only one
muon station as is described in detail in the next section.

The scale factors determined in bins of pT while averaging over η and φ agree within
1.5 standard deviations with the average scale factor of the algorithm in question. Hence
it is sufficient to only consider the dependence on the different detector regions when
applying the scale factors in a physics analysis. The background corrected efficiencies for
combined muons are shown in Fig. 5.3. The background is estimated from Monte–Carlo,
as described in the previous section. It is subtracted for every bin individually. Tab. 5.3
summarises the background corrected efficiencies measured from data for the different
data taking periods. The efficiencies as a function of time agree within the statistical
uncertainties.

Period A-D E F G H I

CB
εMuid 0.946(19) 0.950(8) 0.960 (6) 0.945(4) 0.955(4) 0.955(2)
εStaco 0.933(21) 0.896(10) 0.916(7) 0.919(5) 0.922(4) 0.925(3)

CB+ST
εMuid 0.971(15) 0.985(5) 0.987(4) 0.979(3) 0.977(3) 0.980(1)
εStaco 0.971(15) 0.976(7) 0.974(5) 0.977(3) 0.974(3) 0.978(2)

Table 5.3.: Background corrected reconstruction efficiencies for individual data taking
periods. For each chain and muon definition the efficiency is consistent with
being stable over the full run period. The statistical errors are shown in
brackets.
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5. Measurement of the Muon Reconstruction Efficiency

5.4.2. Efficiencies for combined plus segment tagged muons.

The capability to recover a part of the muon efficiency in the difficult detector regions3

by means of segment tagging is studied by measuring the efficiency for combined plus
segment-tagged muons [63]4. The tag-and-probe method described in section 5.1 is used
with the only difference that the probe is matched to a combined or segment-tagged
muon. As combined muons are also reconstructed as segment-tagged muons, combined
muons which are rejected by the additional quality cuts5 for Staco enter the combined
plus segment-tagged muon sample as tagged muons. Fig. 5.4 shows the gain in efficiency
when using segment-tagged muons in addition to the combined muons. The largest
gains are in the feet (12 %) and transition (18 %) regions of the detector for Staco. For
the Muid algorithm the gain is 3 % in the feet and 5 % in the transition region. In
Fig. 5.5 the efficiency for combined plus segment-tagged muons measured from data is
compared to the MC expectations and scale factors are derived. The scale factors for
combined plus segment-tagged muons are 0.9990(16) for Staco and 1.0006(15) for Muid
after background correction. The increase of the scale factor compared to the ones for
combined muons only is 1.8 %for Staco and 0.9 % for Muid.

5.5. Systematic uncertainties

Background contributions and the finite resolution of the detector lead to systematic
uncertainties. Contributions from the latter are estimated by varying the selection cuts
when determining the efficiency from Monte–Carlo. The cuts on the mass window around
the Z mass and the cut on the transverse momentum of the tag are each varied within
their resolution. Other cuts are varied by ±10 % representing a conservative estimate
on their precision. The resulting change in the scale factors is quoted as systematic
uncertainty. The amount of simulated background is varied by ±10 % and the resulting
differences in the scale factors are considered as additional systematic uncertainties.
A variation of ±10 % is chosen as it corresponds to the statistical uncertainty of the
measurement of like-charge tag-and-probe pairs presented in section 5.3. Furthermore,
the uncertainty of the measurement of electro-weak and QCD background contributions
in [68] also state an uncertainty of ∼ 10 %.

The systematic uncertainties on the total scale factors for combined muons are sum-
marised in Tab. 5.4. The individual systematic uncertainties are considered to be un-
correlated and are added in quadrature to obtain the total systematic uncertainty. For
values which result from an up- and downward variation the larger value is quoted and
used. The largest deviation arises from the variation of the mass window followed by
the variation of the background contamination and the variation of the probe isolation.

As the same tag-and-probe selection is used for the measurement of the CB+ST
muon efficiency, the same systematic uncertainties are expected for the corresponding
scale factors.

3Feet, transistion and BEE region
4Results obtained by E. Le Ménédeu in collaboration with the MCP group
5The Staco quality cuts (cf. sec. 5.2) are necessary to suppress secondary muons from decays in flight

which are picked up by Staco in 2010 data. These cuts are no longer needed with the improved
configuration of Staco in 2011.
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5.5. Systematic uncertainties

Cut Variation absolute difference of SF from nominal
Staco SF = 0.9806 Muid SF = 0.9918

Probe isolation 0.2 → 0.18 0.0009 0.0009
Mass window 10 GeV/c2 → 8 GeV/c2 0.0014 0.0013

∆φ 2.0 → 2.2 0.0003 0.0003
pT(tag) 20 GeV/c → 22 GeV/c 0.0006 0.0006

Probe TRT outlier frac. 0.9 → 0.7 0.0001 0.0001

MC Background + 10% 0.0007 0.0008

Total 0.0020 0.0019

Table 5.4.: Contributions to the total systematic uncertainty in the CB muon efficiency
measurement. For the total uncertainty only the largest deviation of an
upward/downward variation is considered. The individual uncertainties are
treated as fully uncorrelated and are added in quadrature.
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Figure 5.2.: Reconstruction efficiencies and scale factors for combined muons. The ef-
ficiency for the two reconstruction chains Staco (left) and Muid (right),
obtained from data (dots) and Monte–Carlo (open triangles) including back-
grounds, are shown in the upper part of each figure. The corresponding scale
factors (SF) are shown in the lower part.
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Figure 5.3.: Background corrected efficiencies for combined muons for the two recon-
struction chains Staco (left) and Muid (right), obtained from data (dots)
and Monte–Carlo (open triangles).
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Figure 5.4.: Efficiencies for combined plus segment-tagged muons (open circles) in com-
parison to those for combined muons only (dots) for the two reconstruction
chains Staco (left) and Muid (right). The relative gain is shown in the lower
part of each figure.
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Figure 5.5.: Efficiencies for combined plus segment-tagged muons for the two reconstruc-
tion chains Staco (left) and Muid (right), obtained from data with back-
ground correction (dots) and Monte–Carlo of the signal (open triangles).
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6. Measuring the Weak Mixing Angle in
pp→ Z/γ∗ → µµ +X

In the electroweak process qq̄ → Z/γ∗ → l+l− leptons are expected to exhibit a forward-
backward asymmetry with respect to the quark direction in the rest frame of the dilepton
pair. This is due to the parity violating properties of the electroweak interaction as
explained in section 2.2. The magnitude of the asymmetry depends on the mass of the
intermediate state and the weak mixing angle sin2 θeff

W . The asymmetry can therefore be
used to measure the weak mixing angle. The method and the details of the analysis are
is described in this chapter.

The differential cross section for the parton-level process in lowest order can be cast
into the form

dσ

d cos θ
=
πα2

2s

[
F q0 (1 + cos2 θ) + 2F q1 cos θ

]
, (6.1)

where
√
s is the center-of-mass energy of the incoming partons and θ is the angle between

the lepton (l−) and the incoming quark in the rest frame of the dilepton system. F q0 and
F q1 are defined in (2.37) and (2.38), respectively. The linear term in cos θ, while giving
a null contribution to the integrated cross section, causes an asymmetry between the
number of forward (cos θ > 0) and backward (cos θ < 0) events which is defined as

Afb =

∫ 1
0

dσ
d cos θ d cos θ −

∫ 0
−1

dσ
d cos θ d cos θ

∫ 1
−1

dσ
d cos θ d cos θ

=
3

4

F q1
F q0

. (6.2)

The dependence of the asymmetry on the weak mixing angle (cf. Fig. 6.1) is found in

the definition of the vector coupling gfV = I3 − qf sin2 θfW which is used in the functions
F q0 and F q1 . Consequently, the measurement of the forward-backward asymmetry (Afb)
measures the couplings of the electroweak interaction. In addition, several scenarios of
physics beyond the Standard Model, e.g. additional Z bosons [69], predict a deviation
of Afb from its SM value.

Several methods exist to extract the weak mixing angle in the considered reaction.
The three most often used ones are:

1. An unbinned maximum likelihood fit using the full event information and leaving
(at least) sin2 θeff

W as free parameter. Since it exploits the maximum amount of
information present in each event, this approach should theoretically reach the
highest sensitivity. However, all detector effects as well as the PDFs have to be
modelled correctly in the likelihood function which is a very complex task with
non trivial impact on the resulting uncertainties. Hence, this method has been
discarded in this thesis.

2. The theoretical prediction of the asymmetry spectrum can directly be fitted to the
measured asymmetry spectrum after correcting it for detector effects with sin2 θeff

W

being a free parameter in the fit. This method might be the most obvious one but
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Figure 6.1.: Forward–backward asymmetry versus invariant µµ mass for three different
values of the weak mixing angle. Simulated events without detector simula-
tion are used to obtain the presented distributions. Fractions of the shown
distributions w.r.t. a nominal weak mixing angle of 0.232 are shown in the
lower canvas.

it has two disadvantages. The dependence of the asymmetry on the invariant µµ
mass depends on the quark flavour in the initial state. Hence, the fraction of up-
type to down-type quarks participating in the reaction has to be fitted along with
the weak mixing angle, leading to larger uncertainties compared to a single free
parameter. This could be avoided by constraining the fit to a very small region
in the vicinity of the Z-peak where the asymmetry is fairly independent of the
flavour composition. This, however, reduces significantly the available statistics.
In addition, the unfolded1 Afb spectrum is needed. The unfolding procedure has to
correct for acceptance and dilution2 effects which reduce the asymmetry to 20% of
its original value. This leads to additional uncertainties due to the large corrections
needed and introduces a strong dependence on the MC simulation.

3. Templates of the asymmetry versus invariant µµ mass distribution are constructed
from simulated event samples for various values of sin2 θeff

W . The value of the weak
mixing angle present in the measured data is obtained by comparing the simulated
distributions to the measured one. This method has the advantage of being easily
controllable. Furthermore, no corrections to data have to be applied, a broad mass
range can be used and sin2 θeff

W is the only free parameter. However, also this
method relies on a correct description of the asymmetry by the simulation and
may hence depend on the chosen MC event generator.

In this thesis method 3 is used to extract the weak mixing angle. First, the reference
frame used for the measurement of sin2 θeff

W will be discussed in the next section, followed
by the detailed presentation of method 3 in sec. 6.2. Further sections present the cross
check of the statistical uncertainty (sec. 6.3), the event selection procedure (sec. 6.4),
corrections applied to MC simulated events (sec. 6.5), background evaluation (sec. 6.6),
study of systematic uncertainties (sec. 6.7) and eventually the final results (sec. 6.8).

1’unfolding’ names the procedure of removing all experimental effects from the measured data.
2Dilution is explained in section 6.1.1.
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6.1. The Collins-Soper reference frame

In order to study the angular distribution of the lepton pairs from Z/γ∗ decays w.r.t.
the incoming partons, a suitable reference frame must be defined. To be sensitive to the
underlying physics process in the reaction a rest frame of the intermediate Z/γ∗ state
is chosen. Non trivial is the definition of the polar (or z) axis relative to which the
polar angle of the final state lepton shall be measured. Since the Z/γ∗ origins from a
qq̄ annihilation, a natural choice would be the direction of the q. Without transverse
momentum this coincides with the proton direction, i.e. the beam axis. Of course, it
remains a priori unknown which of the colliding protons contained the quark and which
the antiquark. This induces an ambiguity regarding the positive direction of the z-axis
which can not be resolved event–wise. It can, however, be estimated on a statistical
basis, as is described in sec. 6.1.1.

If significant transverse momentum of the Z/γ∗ is observed the q and q̄ are not collinear
any more. In this case also the initial proton momenta p1 and p2 are not collinear in
the Z/γ∗ rest frame. But as the initial state quark (i.e. before gluon radiation) still is
collinear with its parent proton, the proton momenta in the Z/γ∗ rest frame are used
to define a suitable coordinate frame. However, if the Z/γ∗ system has transverse mo-
mentum the polar axis can not be determined unambiguously as it can not be inferred
which of the initial protons (or partons) underwent gluon radiation. To minimize the
effect of this lack of knowledge, the polar axis is defined in the rest frame of the inter-
mediate state such that it is bisecting the angle between the momentum of one of the
incoming protons and the inverse of the momentum of the second one. To complete the
coordinate system the y-axis is defined as the normal vector to the plane spanned by the
two incoming protons. In case of zero transverse momentum the direction of the y-axis
is arbitrary. Finally, the x-axis is chosen such that a right handed Cartesian coordinate
system is obtained. This specific reference frame is called Collins-Soper frame (CS) [70].
It is illustrated in Fig. 6.2.

p

µ
θ

φ

p

xy

z

Figure 6.2.: The Collins-Soper frame is a rest frame of the Z/γ∗ system. The polar axis
(~z) is defined as the one bisecting the angle between the direction of one of
the incoming protons and the inverted direction of the other proton. The
~y-axis is defined as the normal vector to the plane spanned by the incoming
proton momenta and the ~x-axis is chosen to set a right handed Cartesian
coordinate system with the other two axes. Polar and azimuthal angles
are calculated w.r.t. the outgoing lepton (µ−) and are labeled θ and φ,
respectively.
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The transformation into the CS frame is implemented in the analysis in the following
way.

1. The incoming proton momenta are defined in the general form (px, py, pz, E) as
p1 = (0, 0, EB, EP ) and p2 = (0, 0,−EB, EP ) with EB being the beam energy of

3.5 TeV and EP =
√
E2
B +M2

p the proton energy with the rest mass of the proton,

MP .

2. Proton and lepton momenta are boosted into a rest frame of the lepton pair.

3. Now the coordinate axes are constructed using the boosted proton momenta:

• ~z = p̂1 − p̂2

• ~y = p̂1 × p̂2

• ~x = ~y × ~z

4. The angles are calculated as:

• θCS = angle between the lepton (µ−), boosted into the dilepton rest frame,
and ~z.

• φCS = Arg ( ~pµ · ~y + i ~pµ · ~x) + π

In order to determine the sign of cos(θCS) the direction of the incoming quark needs to
be known. As mentioned above, in pp collisions there is in principle no way of knowing
to which of the two beams the quark belonged and to which the anti-quark. However,
one can gain some insight into the quark direction by observing the longitudinal boost of
the resulting lepton pair in the laboratory frame. This is explained in the next section.

6.1.1. Dilution of the forward–backward asymmetry

The orientation of the reference axis, relative to which the polar angle in the CS frame is
determined depends on the direction of the incoming quark. As it is a priori not known
from which proton the (anti-) quark originates, also the sign of cos(θCS) is undetermined.
If it were completely arbitrary, this would spoil any sensitivity to Afb in this variable.
However, the quark direction can be inferred on a statistical basis.

In pp collisions the antiquark must originate from the quark sea, whereas the quark
in the reaction can be a valence quark. Using the fact that statistically valence quarks
carry a larger momentum fraction of the proton momentum compared to sea quarks (cf.
Fig. 2.5) a statistical sensitivity to the sign of cos(θCS) can be restored. This is achieved
by observing the longitudinal direction of the Z/γ∗ system in the lab frame which is
likely to coincide with the direction of the incoming quark. This information is used to
fix the direction of the polar axis3 (i.e. the sign of cos θcs) in the following way:

sign =
pllz
|pllz |

.

The sensitivity to the sign of cos(θCS) depends on the rapidity of the dilepton system
which is illustrated in Fig. 6.3. For vanishing rapidity all sensitivity is lost while a sen-
sitivity of 1 is asymptotically reached with increasing y. The reduction of the measured

3In fact the sign of EB in the definition of p1 and p2 (sec. 6.1) are set according to the determined sign.
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6.1. The Collins-Soper reference frame

magnitude of Afb compared to the true asymmetry in this context is called dilution.
The impact of the dilution on cos(θCS) and Afb is shown in Fig. 6.4. A rapidity aver-
aged dilution factor of 0.17 is obtained in studies using the PYTHIA MC signal sample4

within the acceptance of the detector.
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Figure 6.3.: Sensitivity to the sign of cos(θCS) in dependence on the rapid-
ity of the dilepton system. The sensitivity, which is defined as
[(#{sign estimate correct} −#{sign estimate wrong}) /#{all events}], is
calculated within the geometrical acceptance of the detector which limits
the rapidity to |y| ≤ 2.4. Detector effects are excluded in the calculation.
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Figure 6.4.: Influence of finite acceptance, dilution and detector effects on cos(θ) (left)
and Afb (right). Shown are the simulated distributions without detector
simulation in the full phase space (MC truth, black line), within the accep-
tance of the analysis (MC truth in acceptance, green line), with dilution
added on top (diluted, red line), after detector simulation (MC reco, blue
open squares) and the measured distributions (data, black dots). The largest
distortion of the cos θ distribution originates from the limited acceptance of
the detector, whereas the largest reduction of the Afb is due to dilution.

4See app. A Tab. A.2 for details on the MC samples.
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6.1.2. Gluons in the initial state

The definition of the polar axis of the CS frame is explained above. If reconstructed
events are used, the procedure is identical for measured data and for simulation. How-
ever, if the truth information of simulated events is used, some thought has to be given
to the case of gluons in the initial state. This is the case for Compton-like processes (cf.
section 2.2, Fig. 2.8), where the initial state is composed of a gluon g and a quark q or
antiquark q̄. Each vertex in Fig. 2.8 involving a gluon and two quarks is interpreted as
gluon splitting (g → qq̄) or quark antiquark annihilation (qq̄ → g). Hence, if the initial
state comprises a gluon and a quark, the quark momentum orientation is taken as the
reference in the construction of the polar axis. If instead a gluon and an antiquark are
present in the initial state, the orientation of the gluon momentum is used as a reference.
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6.2. The template method for extracting sin2θeff
W

In this approach simulated event samples, each generated with a different value of
sin2 θeff

W , are compared to the measured data. The best match between simulation and
measurement reveals the weak mixing angle. All information on sin2 θeff

W is found in
the forward–backward asymmetry and its dependence on the mass of the Z/γ∗ system.
Hence the Afb versus invariant µµ mass distribution is used for this comparison. No cor-
rections need to be done to the measured data which is the advantage of this approach.
However, it is crucial that the Monte–Carlo simulation describes the underlying physics
processes as well as the detector response accurately. Any discrepancy potentially biases
the measurement of the weak mixing angle. This, however, also holds for the other
methods mentioned before. Great care has therefore been given to the study of any
differences found between the MC and the measured data distributions, as discussed in
section 6.5. As it turns out, this analysis is particularly sensitive to various kinds of
misalignment within the tracking system of the detector. Several discrepancies between
the description of the alignment in the MC simulation and the real situation present in
the data have been uncovered, both in the inner detector (ID) and in the muon spec-
trometer (MS). These issues are discussed in section 6.7.2. Remaining influences due
to alignment uncertainties are considered as systematic uncertainty and are well under
control. All systematic studies are presented in section 6.7 and the final results in section
6.8. The method itself is described in detail in the next section.

6.2.1. The method in detail

A schematic overview of the method is shown in Fig. 6.5. The goal is to construct
Afb(mµµ) curves based on different values of sin2 θeff

W including all detector effects in the
simulation and compare the simulated with the measured Afb distributions. However,
the simulation of events including the full detector simulation is highly time consuming
and not feasible on the scale of several 100 M events needed for this analysis. Therefore
a dedicated method has been implemented to reweight the existing MC events, which
include the detector simulation, to different values of sin2 θeff

W .

reweight 
official MC

2

data
Afb 

spectrum

MC
Afb 

spectrum

sin2 w

MC-truth
generation

Mµµ vs. cos *

Figure 6.5.: Schematic overview of the extraction of the weak mixing angle using MC
templates.

Within the region of interest, i.e between 0.217 ≤ sin2 θeff
W ≤ 0.236, 20 MC data

sets are generated containing 14 M events each. Truth information (without detector
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6. Measuring the Weak Mixing Angle in pp→ Z/γ∗ → µµ+X

simulation) is generated using the PYTHIA 6.4 event generator [38]. To be compatible
with other ATLAS data sets the official Evgen.trf job transformation from the MC11
[39] simulation campaign is used. This ensures that the ATLAS specific generator tune
is set. The only varied parameters are the weak mixing angle and the used PDF set for
systematic studies. Note that changing the weak mixing angle leaves mZ unchanged in
the simulation (cf. Fig. 6.6). For details on how PYTHIA handles the weak mixing
angle see section 3.1.1.
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Figure 6.6.: Truth mean µµ invariant mass in the mass range 80 GeV/c2 to 100 GeV/c2

for different values of sin2 ΘW . No systematic change of the Z mass wrt.
sin2 θeff

W is visible.

From the newly generated MC samples the decay angle cos(θCS) and the invariant
mass of the di-muon pair (mµµ) are filled into a two dimensional histogram, called target
histogram. The number of entries in one bin is labelled targetij , i, j denoting the bin
number in mll and cos θCS , respectively. Another histogram is filled from the truth
information of the default PYTHIA signal sample, called the reference histogram. The
number of entries in one bin of this histogram is labelled refij . Weights describing the
difference between the reference and each of the target distributions are calculated in
every bin as wij = targetij/refij . Target and reference histograms are normalised to the
same number of entries before calculating the weights. These weights are then applied to
the PYTHIA MC signal events which include the detector simulation, in order to obtain
a fully simulated dataset for each of the different values of sin2 θeff

W . These datasets are
referred to as reweighted datasets in the following.

From the reweighted datasets the Afb spectrum is compared to the measured one in
a χ2 test. The χ2 value of each comparison is calculated as:

χ2 =
N∑

i=1

(datai −MCi)
2

σ(datai)2 + σ(MCi)2 + σ(sysi)2
. (6.3)

where σ(datai) and σ(MCi) represent the statistical uncertainties on the asymmetry in
the i-th mass bin for the measured and simulated event samples, respectively. σ(sysi) is
the systematic uncertainty in the i-th mass bin (cf. sec. 6.7). The statistical uncertainty
in one bin is calculated as

σ =
2

(f + b)2

√
(f · δb)2 + (b · δf)2 (6.4)
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6.3. Verifying the statistical uncertainty

with the number f (b) of forward (backward) events and the corresponding uncertainties
δf (δb). For data distributions Gaussian errors are assumed, i.e. δfdata =

√
f . In this

case Eq. (6.4) can be written as σ =
√

(1−A2
fb)/N . For the MC samples the uncertainty

on the weights needs to be taken into account. The uncertainty for a single weight is
calculated as

δwij =

√(
δtargetij
refij

)2

+

(
targetij · δref

refij
2

)2

, δtargetij =
√
targetij , δrefij =

√
refij .

(6.5)
The uncertainty of bin i of the reweighted distribution is obtained by adding the sta-
tistical uncertainty w̄

√
n and the uncertainty due to the weights

∑
δw in quadrature:

δfMC =

√√√√
(

n∑

k=1

δwk

)2

+
(
w̄
√
n
)2

(6.6)

with n being the number of events, wk the weight of event k and w̄ the average weight
of events in the corresponding bin. As the summed weights are highly correlated their
uncertainties are added linearly.

When plotting the obtained χ2 values versus the value of sin2 θeff
W used in the simulation

a parabolic shape is obtained. Its minimum corresponds to the most probable value of
sin2 θeff

W in the measured data. It is determined by fitting a second order polynomial to
the χ2 distribution,

χ2(x) = a+ b · (x− c)2, (6.7)

where c corresponds to the minimum. The statistical uncertainty is given by σ =
√

1/b,
which equals the width of the χ2 parabola at χ2

min + 1 [71]. The obtained uncertainty is
a composition of statistical components from the data and the simulated event samples.
They are disentangeled by using either only the data or MC uncertainty in Eq. 6.3. The
statistical uncertainty originating purely from the data sample is quoted as statistical
uncertainty of the measurement. The contribution due to the finite MC statistics is
included in the systematic uncertainty of the measurement, cf. section 6.7.

To verify the proper implementation of the analysis a so called closure test is per-
formed. For this purpose the simulated event sample, with known weak mixing angle
sin2 θeff

W = 0.232, is used as input to the analysis. The true sin2 θeff
W of the event sample

is recovered: sin2 θeff
W = 0.23287± 0.00056, with χ2

min/ndf = 0.1. The corresponding χ2

parabola is shown in Fig. 6.7. The χ2
min/ndf is much smaller than 1 as the templates

are generated from the same simulated event sample which is also used as data input.
However, some statistical component is introduced due to the reweighting of the tem-
plate distributions to different values of sin2 θeff

W , which explains why extracted and true
values do not equal exactly but differ marginally.

6.3. Verifying the statistical uncertainty

The calculation of the statistical uncertainty has been verified in two ways. In each case
the measured data is used as a starting point:

1. In a so called sub-sample test the available measured data has been divided into 30
disjunct subsets of 55 k events each and the analysis is performed on each sample.
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Figure 6.7.: χ2 results of the template comparisons to the simulated event sample. A 2nd

order polynomial is fitted to the distribution from which the most probable
value of sin2 θeff

W is extracted. The χ2
min/ndf = 0.1 is below 1 as the templates

are generated from the same simulated event sample used as input.

The resulting distribution of sin2 θeff
W values is shown in Fig. 6.8. Its width of

45(6) · 10−4 agrees well with the mean statistical uncertainty of the 31 samples of
< σ >= 48 · 10−4.

2. A bootstrap test [72] has been performed. For this N events are drawn randomly
from the data sample 1000 times. The analysis is performed on each of the 1000
pseudo data sets and the resulting distribution of extracted values for sin2 θeff

W

is fitted by a Gauss curve. Its width of σboostrap = 0.00094 agrees well with the
uncertainty calculated in the template fit of σt−fit = 0.00087. Details are described
below.
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Figure 6.8.: The available dataset is divded into 30 disjunct samples with 55k events
each. The measured sin2 θeff

W are histogrammed. The RMS = 45(6) · 10−4 is
a measure for the statistical uncertainty. It is in agreement with the mean
statistical uncertainty calculated from the template fits < σ >= 48 · 10−4.
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6.3.1. Bootstrap Test

Bootstrapping is a commonly used procedure to estimate observables of random distri-
butions when only a sub-sample S of the unknown underlying distribution F is available
[72]. Here it is adapted to estimate the statistical uncertainty of the measurement of the
weak mixing angle.

The idea is to N times randomly draw with replacement n events from S. The
N drawn samples are considered statistically independent. For this study sin2 θeff

W is
extracted from each of the N samples. The distribution of resulting values for sin2 θeff

W

is expected to follow a Gauss curve if N is chosen large enough. Its width corresponds
to the statistical uncertainty of the sample S on this observable.

In this specific case n is chosen to equal the number of events in the data sample
S, which is 1.6 M, and N to be 1000. Instead of drawing random events, which is an
inefficient procedure on the root-trees used to store the event information, all events are
given an individual weight randomly drawn from a poisson distribution with mean and
variance set to 1. For each of the N samples the initial random seed is changed.

The resulting distribution of extracted sin2 θeff
W values is fitted with a Gauss function,

shown in Fig. 6.9. The width corresponds to the statistical uncertainty on sin2 θeff
W and

is found to be σbootstrap = 0.00094. This is in good agreement with the value estimated
from the template fit σt−fit = 0.00087.
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Figure 6.9.: Histogrammed sin2 θeff
W values extracted from each of the 1000 bootstrap

samples (cf. text). The distribution is fitted with a Gauss function. Good
agreement of the width of the Gauss curve in comparison to the statistical
uncertainty calculated during the extraction of sin2 θeff

W from the data sample
is found.
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6.4. Event selection

As the data statistics is not limiting this analysis the best possible purity of events in
matching the signature pp → Z/γ∗ → µµ was aimed at. All selection criteria are cuts
on properties of the measured tracks and vertices. No calorimeter information is used
in this analysis. The cuts are grouped in three categories: collision event selection,
selection of well reconstructed muons and, finally, the Z selection. A summary of all
event selection cuts, which are described in the following, can be found in Tab. 6.1. The
event selection is similar to the one used for the efficiency determination described in
section 5.2. Throughout the analysis the transverse momentum information is taken from
the measurement of the inner detector track associated with the muon considered. The
reason for this a mismodelled alignment of the muon spectrometer is the MC simulation,
which turned out to significantly affect the analysis. For details see section 6.7.2.

All data recorded in 2011 with a fully operational detector is considered in this analysis,
corresponding to 4.7 fb−1. The information about the detector status is provided on a per
luminosity block basis in the so called good run list (GRL) provided by the Data Quality
Group [47]. Events must furthermore pass the muon trigger EF mu18 MG medium which
includes a lower threshold of 18 GeV/c on the transverse momentum of the muon track.
To ensure that the event is a p–p collision at least one primary vertex not further than
200 mm away from the nominal interaction point with at least three associated tracks
must be reconstructed. These requirements are considered as the collision event selection.

In the next steps well reconstructed muons are identified. They must have a transverse
momentum above the trigger threshold of pT > 20 GeV/c and fall within the acceptance
of the inner detector, i.e. |η| < 2.4. The tracks are required to be isolated in order
to reject background events, in particular muons originating from QCD processes. The
isolation variable is the sum of the transverse momenta of all tracks in a cone of ∆R =√

(∆η)2 + (∆φ)2 < 0.2 around the track in question, excluding that one, divided by the
pT of the track in question. This variable, named cone activity, is required to be smaller
than 0.1. To ensure a proper definition of the cone activity in the entire geometrical
acceptance of the analysis, the η range is limited to be smaller than 2.4, whereas the
acceptance of the inner detector reaches up to |η| < 2.5. All muons are furthermore
required to have a minimum number of silicon hits in the inner detector and a maximum
number of missing hits, called holes, as well as a successful extension in the TRT within
its geometrical acceptance. To reduce the contamination with cosmic rays, the tracks
must have a longitudinal impact parameter of less than 10 mm with respect to the
reconstructed primary vertex.

The last set of cuts selects the actual event signature of interest. Exactly two good
muons with opposite charges are required. Events with more than two good muons are
discarded in the analysis to avoid combinatorial background when reconstructing the Z
bosons. Finally, the invariant mass of the di-muon pair is required to be larger than
60 GeV/c2, as is the case for the generated intermediate state of the used MC signal
sample.

The distributions of several kinematic quantities for the selected Z/γ∗ → µµ candi-
dates are shown in Fig. 6.10 for the measured data and the PYTHIA MC signal sample.
To reach the very good agreement observed between data and simulation in these plots,
several corrections have to be applied to the simulated event sample, which are described
in the next section.

Tab. 6.2 shows the number of data events surviving the selection described above.
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Collision Event Selection

Data quality GRL [48]
Trigger EF mu18 MG medium (pT threshold 18 GeV/c)

Primary Vertex (PV) with ≥ 3 tracks ≥ 1
|z0 (PV) | < 200 mm

Good Muon Selection

Kinematics pT ≥ 20 GeV/c & |η| ≤ 2.4 & |z0| < 10 mm
ID Si hit requirement hit in B-layer = 1 if expected

number of pixel hits1> 1, SCT hits > 5

TRT hit requirements: |η| ≤ 1.9 Hits + Outliers > 5 & Outliers
Hits+outliers < 0.9

TRT hit requirements: |η| > 1.9 if (Hits + Outliers > 5): Outliers
Hits+outliers < 0.9

Isolation
∑

tracks

pIDT / pT < 0.1 inside cone of 0.2

Z signature selection

number of muons in event = 2
charge of muons c1 · c2 = −1
invariant mass mZ > 60 GeV/c2

1 non functional sensors in the path of the track are counted as hits for these cuts

Table 6.1.: Summary of all cuts used for selecting pp→ Zγ∗ → µµ candidate events.

For reference, Tab. 6.3 shows the same results, obtained with the signal MC.
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Data

Cut Number of Events Abs. Efficiency Rel. Efficiency
[106] [%] [%]

Collision event. selection 59.79 100 100

Muon type 9.71 16.2 16.2
pT(µ) > 20 GeV 2.15 3.60 22.2
η(µ) < 2.4 2.03 3.41 94.60

MCP Quality 1.96 3.28 96.29

(z0 − zvtx) < 10 mm 1.958 3.27 99.84

Isolation 1.70 2.85 86.95

exactly 2 muons 1.70 2.85 99.99
Opposite charge 1.70 2.85 99.93

Invariant mass > 60 GeV/c2 1.63 2.73 96.02

Table 6.2.: Number of events in data sample passing each selection cut. The cut flow
starts after the collision event selection as no information about the events
rejected by the GRL or the trigger is available.

Monte Carlo signal

Cut Number of Events Abs. Efficiency Rel. Efficiency

[106] [%] [%]

All 9.99 100 100
Collision event selection 7.24 72.46 72.46

Muon Type 4.99 49.90 68.87
pT(µ) > 20 GeV/c 4.36 43.67 87.51

η(µ) < 2.4 4.11 41.11 94.15
MC Quality 4.00 40.05 97.41

(z0 − zvtx) < 10 mm 3.99 39.98 99.82
Isolation 3.94 39.39 98.51

exactly 2 muons 3.93 39.39 1.00
Opposite charge 3.93 39.39 99.99

Invariant mass > 60 GeV/c2 3.92 39.27 99.70

Table 6.3.: Number of events in Monte Carlo signal sample passing each selection cut.
Absolute and relative efficiency of each cut are shown.
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muon pairs, linear scale.
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Figure 6.10.: Comparison of control distributions obtained from PYTHIA MC simulation
after all corrections (open circles) and measured data (filled circles). A good
agreement between simulation and measurement is observed in particular
in the invariant mass distributions.
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6.5. Corrections applied to the Monte–Carlo simulation

The MC simulation incorporates the best knowledge of the detector at the time of pro-
duction of the simulated events. But with an increasing amount of analysed data the
understanding of the actual detector system improves and on top of that the detector
conditions may vary. Most importantly the resolution and efficiencies are time depen-
dent, e.g. due to changes in the alignment or failing modules. To obtain the best
predictions from the simulated events those effects have to be taken into account at the
time of analysing the recorded data. Therefore a number of corrections are applied to
the simulated events. These corrections are provided to the ATLAS collaboration by
the performance groups, in case of muons by the Muon Combined Performance (MCP)
group, and are recalculated whenever a significant amount of new data has been col-
lected. Note that no corrections are applied to data after the reconstruction of the
events.

The corrections applied in this analysis are calculated for the entire data set recorded
in 2011. PYTHIA is used as event generator for the simulation of the signal process.
Applied corrections are listed here and their impact on the analysis will be explained
later on:

• Pile–up correction

• Momentum smearing

• Momentum scale correction

• Trigger and reconstruction efficiency correction

• Reweighting of transverse momentum distribution of the Z/γ∗.

Pile–up correction:
The average number of multiple interactions within one bunch crossing, µ, also called
pile–up, varies with the instantaneous luminosity. The amount of pile–up depends on
the number of protons in the colliding bunches and the size of the beam spot at the
interaction point. The luminosity, in addition, also depends on the number of bunches
in both beams. Accordingly, µ varies for different periods of data taking when the beam
parameters change. Additionally, µ decreases during a fill as the instantaneous luminos-
ity drops. In MC, however, only a couple of different values of µ are simulated. As the
analysis as well as the event reconstruction may show a µ dependent performance the
pile–up spectrum in the simulated event samples is reweighted to match the one found
in the data sample used in the analysis. It turns out that the asymmetry spectrum is
not affected by pile–up effects.

Momentum smearing:
The resolution of the detector is modelled slightly better in the simulation than it turns
out to be in reality. This effect is accounted for by smearing the momenta of the re-
constructed muons in the simulated event sample until the resolution matches the one
found in data. The ID track momentum as well as the combined muon momentum is
smeared. The smearing constants are determined by fitting the Z lineshape. The pro-
cedure is described in detail in [73]. The correction constants used are distributed with
the muon momentum smearing package MuonMomentumCorrections-00-05-03 including
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6.5. Corrections applied to the Monte–Carlo simulation

the uncertainties on the correction constants.

Momentum scale correction:
The scale of the muon momenta is determined from the decay of Z bosons into muons.
The scale information is provided in bins of the position of the muon within the de-
tector, (η, φ), and its transverse momentum, pT. The position of the Z mass peak is
used to determine the momentum scale [73]. A global scale, common for both charges
of the decay muons, is determined as well as a charge dependent scale. Accordingly
the scale correction is applied in two steps: first the global correction followed by the
charge dependent one. As the momentum scale also influences the width of the Z mass
peak, similar to the momentum smearing, the corresponding corrections for the simu-
lated events are provided together with the momentum smearing and, in addition, also
the corresponding uncertainties.

Trigger efficiency correction:
The efficiency of the muon trigger is also slightly different in the recorded data compared
to the simulation. This is corrected by means of scale factors describing the efficiency
difference between data and simulation in bins of η, φ and pT of the muon which are
applied to the simulated event sample. Details on the trigger efficiency scale factors
can be found in [74]. The scale factors are provided with the muon efficiency correction
package MuonEfficiencyCorrections-02-01-01.

Reconstruction efficiency correction:
The reconstruction efficiency is handled similarly to the trigger efficiency. The deter-
mination of the reconstruction efficiency scale factors is described in detail in chapter
5 and published in [63]. As the results shown there have been obtained with the data
set recorded in 2010 they are not used in this analysis. Instead the up to date numbers
obtained from the data set recorded in 2011 are used which are distributed with the
muon efficiency correction package MuonEfficiencyCorrections-02-01-01. The analysis
result proved to be insensitive to variations of the efficiency scale factors.

Reweighting of pT(Z/γ∗):
The pT(Z) distribution of the PYTHIA signal sample (cf. App. A) is wrongly modelled
in the MC11 tune [39], but correct in the older MC10 tune. Hence a reweighting of the
used MC events to the valid pT(Z) distribution is performed. Very good agreement with
the measured data is observed afterwards (cf. Fig. 6.10f). Note that this correction is
only applied to the PYTHIA signal sample.

After all corrections are applied the agreement between the simulated events and the
measured data is very good. This can be seen in the distributions of basic properties
of the selected muons and Z bosons shown in Fig. 6.10. Also the forward–backward
asymmetry spectrum is described well by the PYTHIA simulation (see Fig. 6.11).

6.5.1. Some remarks on the shape of the Afb versus mµµ distribution

The Afb spectrum measured from data is well described by the PYTHIA simulation
(cf. 6.11). There is one surprising eye-catching feature: The asymmetry is nearly con-
stant in the vicinity of the Z-peak (86 GeV/c2–95 GeV/c2) in the data as well as in the
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reconstructed MC, while this is not the case before the detector simulation (truth infor-
mation). This effect is caused by the finite mass resolution of the detector. It can be
reproduced by smearing the truth information on the invariant mass according to the
detector resolution, after taking into account the effects of dilution and acceptance (cf.
fig6.12).
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Figure 6.11.: Comparison of the Afb versus µµ invariant mass (mµµ) distribution from
measured data and MC simulation: before detector simulation in the full
phase-space (truth), within the acceptance of this analysis, with added
dilution and after detector simulation (reco). (a): full mas range, (b):
zoomed mass range.
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Figure 6.12.: Illustration of the impact of the finite detector resolution on the Afb versus
µµ invariant mass distribution. Simulated events are considered before
detector simulation, but required to be within the acceptance of the analysis
and with added dilution. The invariant mass is smeared with a Gaussian
function with σ = 2.8 GeV/c2.
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6.6. Background considerations

The amount of events originating from background (bg) processes passing the event
selection (cf. sec. 6.4) and their influence on the measured weak mixing angle is studied
in this section. Background processes can be split into four categories:

1. Electroweak single boson production

2. Electroweak di-boson production

3. tt̄ production

4. QCD reactions with muons in the final state, e.g. cc̄ and bb̄ jet production.

Electroweak processes and top production are well described by MC simulation and
large event samples are available. Therefore, the bg contamination due to these events is
studied on the simulated event samples. The cross section for QCD reactions with muons
in the final state is about two orders of magnitude larger than the cross section of Z boson
production. No simulated event samples with large enough statistics exist to reliably
determine the impact of QCD background on this measurement. Accordingly, it has
to be estimated from the data sample itself. An overview of all considered bg channels
is presented in Tab. 6.4 and a summary of their contributions in Tab. 6.6. Important
features of the bg samples, such as the generator used, the generator efficiency, εgen, the
generator cross section, σgen, and (N)NLO corrections applied to σgen by means of a
multiplicative factor, called k - factor, are listed in Tab. 6.5. The integrated luminosity
of each sample is calculated by

∫
L =

∑
event weights

σgen · k · εgen
.

As some generators produce events with weights w 6= 1 the sum of event weights is used
rather than the number of events in the sample.

Channel σeff [nb]
∫
L [fb−1] available after selection norm

∫
Ldata

Data - 4.70 1.67 · 106 1.67 · 106

Z → ττ 0.833 5.522 4.6 M 1.42 k 1.20 k
W → µν 10.50 0.4 - 8.3 11.6 201 205
W → τν 10.50 0.4 - 8.3 11.6 15 22

WW 0.0222 112.16 2.49 M 30 k 1.22 k
WZ 0.0056 178.6 1.00 M 49 k 1.29 k
ZZ 0.0013 192.3 15.0 M 39 k 950

tt̄ 0.0909 165.0 15 M 133.4 k 3.8 k

QCD - - - 27.75 499

sum 9186

Table 6.4.: Background contributions considered and the available MC statistics in each
channel. The QCD bg has been estimated from the measured data (cf. sec.
6.6.1).

The total amount of bg events passing the selection is only 0.6% of the overall se-
lected event sample. Such a small bg contamination can only significantly influence the
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Process Generator σgen [nb] k-factor gen. eff σeff [nb]

Z → µµ PYTHIA 0.8356 1 1 0.8356
Z → ττ PYTHIA 0.8328 1 1 0.8328
W → µν Alpgen 8.75 1.2 1 10.50
W → τν Alpgen 8.75 1.2 1 10.50

WW Herwig 0.0150 1.48 1 0.0222
WZ Herwig 0.0035 1.60 1 0.0056
ZZ Herwig 0.0046 1.30 0.213 0.0013

tt̄ MCNLO 0.0790 1.15 1 0.0909

Table 6.5.: List of generators and event sample properties of the considered bg processes.

Backgrounds used in correction fitted sin2 θeff
W difference to uncorrected data

no correction 0.22969 -
tt̄ 0.22947 −22 · 10−5

EW 0.22969 0
QCD 0.22969 0

All 0.22937 −22 · 10−5

Table 6.6.: EW and tt̄ background contributions are estimated from MC simulation, the
QCD bg from the measured data. Estimated bg contributions are subtracted
from the data distributions after appropriate normalisation. sin2 θeff

W is ex-
tracted from the bg corrected distributions.

asymmetry, if it shows a significant asymmetry in the cos(θ) distribution itself. For the
largest bg channel, which is tt̄ production, the cos(θ) distribution of selected events is
shown in Fig. 6.13. A clear asymmetry is observed, which is opposite in sign to the one
observed in the signal sample (cf. Fig. 6.4a). To check the impact of the tt̄ contamina-
tion on the measured sin2 θeff

W , it is subtracted from the data distributions and sin2 θeff
W

is extracted. Compared to the unmodified data sample the extracted weak mixing angle
changes by −22 · 10−5 from 0.22959 to 0.22937. As the second largest contribution,
Z → ττ , has four times less events passing the selection it contribute at least a factor
of four less than the tt̄ channel. For the final result all bg contributions are summed
up, normalised to the integrated luminosity of the data sample, and subtracted from the
data distribution before extracting the weak mixing angle. The summed contribution
of all background channels listed in Tab. 6.4 changes the measured value of sin2 θeff

W by
−22 · 10−5, completely dominated by the tt̄ channel. In fact, correcting the measured
distributions for QCD or EW background contributions has no visible effect at all. The
cross sections of all processes, except QCD reactions, are known to better than 10%. The
selected amount of QCD bg events is estimated with rather large uncertainty. However,
the cos(θ) distribution is symmetric for these events, as is shown in the next subsection.
Even doubling the amount of QCD events in the bg correction does change the result
only by 0.4 · 10−5. Hence, a systematic uncertainty of (10% · 22 + 0.4) · 10−5 ≈ 3 · 10−5

is assigned to the impact of the total background on the measured sin2 θeff
W .
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Figure 6.13.: Distributions of the decay angle cos(θ) in simulated tt̄ events passing the
event selection. The spectrum is not normalised to the data sample size.

6.6.1. QCD background estimation from data

The QCD production of heavy quark pairs (i.e. bb̄ and cc̄) with subsequent decay into
at least one muon in the final state has a cross section of roughly 100 nb, which is two
orders of magnitude above the cross section for Z → µµ events. In most cases the final
state muons of these events are accompanied by several pions and other hadrons and
are rejected in the analysis by the isolation requirement. Only in rare cases two isolated
leptons are found in such an event. However, due to the overall large cross section this
background contribution can not be neglected. For the same reason no simulated event
samples exist which are large enough to predict the impact on the measurement reliably.
Therefore, it has to be estimated from the measured data itself.

In order to select an event sample containing mostly QCD events the isolation re-
quirement is inverted:

∑
ptrack

T /pµT > 0.1. 27.75 k data events pass this selection. The
cone activity spectrum is shown in Fig. 6.14a. Figure 6.14b shows the invariant mass
spectrum of the selected events which follows an exponential function, as is expected.
No significant asymmetry is observed in the cos θCS spectrum, cf. Fig. 6.14c. Also the
asymmetry spectrum (Fig. 6.14d) is compatible with zero asymmetry. Hence, a contam-
ination of the signal sample with QCD events will only lead to a dilution of the observed
asymmetry. This effect is negligible if the number of selected bg events is small. The
PYTHIA MC samples containing bb̄ and cc̄ events (bb muX and cc muX) are used to
determine the fraction of QCD events passing the nominal isolation requirement over
QCD events passing the inverted isolation to be 1.8%. Using this, the total number of
QCD events in the selected event sample is estimated to be 27.75 k · 0.018 = 500, equiv-
alent to a fraction of 3 · 10−4 on the total amount of data events. When subtracting the
QCD template estimated as described above from the selected event sample no change
of the measured weak mixing angle is observed. Even when assuming large uncertainties
on the number of QCD bg events of a factor two, the extracted sin2 θeff

W changes by only
0.4·10−5 which is negligible. Nevertheless, this background channel is taken into account
when calculating sin2 θeff

W and a systematic uncertainty of 0.4 · 10−5 is assigned on the
sin2 θeff

W measurement.
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(a) Cone activity spectrum after inverting the
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The distribution is well described by a Lan-
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(c) cos(θCS) spectrum. No significant asymme-
try is observed (mean = 0.0064).
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Figure 6.14.: Spectra of QCD events selected form the data sample by inverting the
isolation requirement.
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6.7. Systematics

Several corrections are applied to the MC simulation, as described in sec. 6.5. The
uncertainties on these corrections are treated, among others, as systematic uncertainties
of the measurement. All contributions to the systematic uncertainty are discussed in
this section. The various sources are, in order of significance:

• MC statistics:
This item reflects the impact of the statistical uncertainty of the templates on the
measured quantity due to the limited size of the MC samples. With the generation
of larger MC samples this uncertainty could relatively easily be reduced.

• PDFs:
The asymmetry spectrum differs for up- and down-type quarks. Hence the mea-
surement is sensitive to the flavour composition of the initial state which is de-
scribed by the PDF.

• Momentum scale dependence:
Changing the weak mixing angle has a similar effect on the Afb spectrum as moving
the position of the Z-peak. Therefore, a precisely fixed absolute momentum scale
of the muons, which determines the Z-peak position and influences its width, is
crucial for this measurement.

• Alignment uncertainties:
Mismodelled alignment of the tracking detectors may result in charge dependent
variation of the measured momentum. Even if the Z peak position remains un-
changed the boost into the Z-rest frame will change. In the worst case this leads
to a flip of the sign of the measured polar angle in the decay. Although this effect
overlaps with the systematics on the momentum scale, it is added as a separate
uncertainty as studies showed a large sensitivity on misalignment effects.

• Momentum smearing:
To match the MC prediction to the data the momenta of the muons are smeared.
This contribution accounts for the uncertainty on the smearing coefficients.

• Background:
The uncertainty of the background cross sections is only known to a precision of
∼ 10%. This translates into an uncertainty on the measured weak mixing angle,
which has been discussed in sec. 6.6.

Table 6.7 lists all contributions. Adding them in quadrature yields a total systematic
uncertainty of ±0.00119. This is nearly twice the size of the statistical uncertainty of
±0.00087 on the measurement and is dominated by the MC statistics and the PDF un-
certainty. The latter can be improved relatively easily.

The influence of the limited MC statistics can be assessed by removing σ(datai) and
σ(sysi) from the χ2 calculation in Eq. (6.3). The statistical uncertainty calculated in
this way solely depends on the MC uncertainty and is quoted as systematic contribution
due to the limited MC statistics. For the momentum scale and smearing corrections
1σ uncertainties on the correction constants are provided (cf. 6.5). They are used to
vary the corrections independently up and down. The value of sin2 θeff

W is extracted
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Figure 6.15.: Forward–backward asymmetry, calculated separately for up- and down-
quarks in the initial sate, obtained from PYTHIA truth events without
detector simulation. The PDF set used is MRSTMCal.

with newly generated templates for each variation. The maximum deviation of the
up/down variations from the nominal value is quoted as a systematic uncertainty. A
particularity of the momentum scale correction is that two independent contributions,
a charge independent correction and on top of it a charge dependent factor, are applied.
Both systematic contributions are listed. The latter one is showing a larger impact on
sin2 θeff

W .

Contribution size [10−5]

Smearing correction 3
Scale correction (charge indep.) 14
Scale correction (charge dep.) 53
Misalignment 18
PDFs 59
Background 3
MC statistics 86

Total 119

Table 6.7.: Contributions to the systematic uncertainty. For the final result all contri-
butions are added in quadrature.

6.7.1. Choice of PDF and PDF–systematics

The Afb(mµµ) functional shape depends on the charge of the initial state partons, as the
charge of the parton enters the definition of the vector coupling gV . Hence, the Afb mass
dependence is sensitive to the fraction of up- to down-type quarks in the initial state.
Fig. 6.15 shows the simulated Afb versus µµ invariant mass distributions for up- and
down-type quarks in the initial state, which differ significantly. The flavour composition
of the initial state is described by the parton density function used in the simulation.
Accordingly, any uncertainty on the used PDF translates into an uncertainty on the
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extracted sin2 θeff
W . The procedure to estimate this uncertainty in this analysis follows

[75].

The PDF used in the PYTHIA MC simulation is called MRSTMCal [76]. It is a
leading order (LO) PDF which uses relaxed physical constraints in the PDF fitting
procedure. Due to these modifications this particular PDF set is not used in the
analyses. A more suited PDF is MSTW2008Lo [77]. It also is a LO PDF but addi-
tionally provides error sets. However, within the ATLAS EW working group it was
shown that the provided error sets underestimate the uncertainty [78]. A more reli-
able error estimate is obtained from the CT10 PDF set [79]. This is a NLO PDF
providing 90% C.L. uncertainties. However, the predictions of a NLO PDF in con-
junction with a LO MC generator may be biased. Hence, this PDF is only used for
estimating the uncertainty and not for the extraction of the central value. To extract
the central value, events from the PYTHIA signal simulation are reweighted to the
MSTW2008Lo PDF, called the target PDF. The necessary weights are calculated as
w = ftarget(x1, f l1, x2, f l2, Q

2)/foriginal(x1, f l1, x2, f l2, Q
2). ftarget gives the probability

to find the two initial state partons with flavour fli and momentum fraction xi at a given
momentum transfer Q2 using the target PDF. foriginal gives the same probability using
the original PDF used in the PYTHIA simulation. In the calculation of the templates
(cf. sec. 6.2) the required PDF can alternatively be specified in the generation of the
truth events. In this case no dedicated reweighting is needed. To avoid the simulation
of too many truth samples, the reweighting is utilised in the estimation of the PDF
uncertainty. In the following the calculation of the PDF uncertainty is explained.

A common approach to estimate the PDF uncertainty is to compare results obtained
using completely different PDFs and quoting the observed difference. This is considered
to lead to arbitrary results, as the choice of PDFs to compare is arbitrary itself. Instead
it is suggested by ATLAS [75] to use the error sets provided with the used PDF set to
estimate the systematic uncertainty. For each free parameter in the parametrisation of
a given PDF two additional PDFs, called error sets, are provided. In these PDFs the
corresponding eigenvector (EV) of the diagonalised covariance matrix is set to the upper
and lower limit, respectively. The error sets of a particular PDF represent the best
knowledge of its uncertainty, including experimental and most theoretical uncertainties.
To get the uncertainty on the measured quantity, the analysis has to be run for all error
set members. The difference on sin2 θeff

W of the up/down variation of each EV of the CT10
PDF is presented in Fig. 6.16. To get a symmetric uncertainty estimate, the difference
of the up and down variation of each EV is summed in quadrature, as is explained in
[79]:

σPDF =
1

2

√∑

EV i

(
F (X+

i )− F (X−i )
)2

= 97 · 10−5. (6.8)

Asymmetric uncertainties are calculated as:

σ+
PDF =

√∑(
max

[
F (X+

i )− F (X0), F (X−i )− F (X0), 0
])2

= 93 · 10−5 (6.9)

σ−PDF =

√∑(
max

[
F (X0)− F (X+

i ), F (X0)− F (X−i ), 0
])2

= 104 · 10−5 (6.10)

where F (X±) denotes the extracted value of sin2 θeff
W using templates generated with the

up- (down-) ward variation of the ith EV and F (X0) the extracted sin2 θeff
W using the

central PDF in the templates. As the variation in the CT10 error PDFs correspond to a
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90% C.L. but all other uncertainties correspond to one standard deviation (68.27% C.L.),
the uncertainty is scaled by a factor of 1/1.64485 [80] yielding a value of σPDF = 59·10−5.
It corresponds to one standard deviation and is used in the following.

The obtained uncertainty on the Afb versus invariant µµ mass distribution itself is
shown in Fig. 6.17. Furthermore, the simulated Afb versus invariant µµ mass distri-
butions obtained with each of the 52 CT10 error sets, normalised by the distribution
obtained with the central CT10 PDF, are displayed. Clear correlations between the
shape of these distributions on the used PDF set are visible.

The difference in sin2 θeff
W obtained for the two central PDFs of the CT10 and MSTW-

2008Lo PDFs is 2 · 10−5, which is negligible w.r.t. the uncertainty calculated from the
CT10 error sets.
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Figure 6.16.: Shown is the difference of the extracted sin2 θeff
W when varying the PDF set

used for creating the templates w.r.t. the CT10 PDF. In the first bin the
MSTW2008Lo PDF is used. In the other 52 bins the CT10 error sets are
used, reflecting the up / down variations of the 26 eigenvectors describing
the CT10 PDF.

6.7.2. Alignment uncertainty

During this study the forward–backward asymmetry turned out to be very sensitive to
the so called weak mode misalignments of the ATLAS tracking detectors. In general,
geometry descriptions which satisfy the assumed track model but lead to biased physics
measurements are called weak modes. They can also be defined as those geometry
deformations which leave track-hit residuals5 or the χ2 of the track fit invariant. Possible
origins can be deformations of the detector or artefacts of the alignment procedure itself.
Two types are distinguished: One acts symmetric on both charges while the other leads
to antisymmetric changes of the measured track momenta w.r.t. the sign of the charge. A
detailed study of these effects and their correction is given in [81]. The first one is mainly
absorbed in the calibration of the momentum scale. The second one, however, mostly
affects the forward–backward asymmetry. The deformations can, e.g., be a twist or curl
of the detector. The peculiarity of these deformations is that the Z-peak position remains

5Track-hit residuals are defined as the distance between the fitted track and the individual position
measurements. They are a quality measure of the reconstructed track.
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Figure 6.17.: The upper canvas displays the Afb versus invariant µµ mass distribution for
each of the 52 CT10 PDF error sets used in the simulation, normalised by
the simulated distribution using the central CT10 PDF. The lower canvas
displays the absolute uncertainty calculated using Eq. 6.8 (cf. sec. 6.7.1).

practically unchanged if the full phase space is integrated over. Only a degradation of the
mass resolution is observed. However, when studying the dependence of the observed Z-
peak on the positions of the muons in the detector, the real effect on the Z-peak position
is exhibited. For more details see the dedicated note on this topic [81].

Similarly, the asymmetry is only little distorted when integrating over the full phase
space. Nevertheless, the discrepancy of the measured Afb versus invariant µµ mass dis-
tribution to the simulation is significant, cf. Fig. 6.18a. This observation triggered a
thorough investigation of the weak mode misalignment. In the following the reconstruc-
tion software without correction of the charge antisymmetric weak mode misalignment
is referred to as release 16 whereas the event reconstruction including these corrections
is referred to as release 17.

Requiring that both muons in an event fall onto the same side of the detector revealed
the picture shown in 6.18b. At the Z mass events with muons recorded in one detector
side exhibit a pronounced ’dip’-like structure in the Afb versus invariant µµ mass distri-
bution whereas the other detector side shows a much smoother behaviour. This clearly
hints to a detector related origin of the observed effect. Figures 6.18c and 6.18d show
the same distributions, but determining the momentum of the muons by using the inner
detector (ID) or the muon spectrometer (MS), respectively. The wiggle is only observed
using the ID momenta and only in the A side of the detector. These findings triggered
further studies within the ID tracking performance group which eventually identified
a twist of the ID in itself. A correction for this twist applied to the measured muon
momenta eliminates the observed structure. In the release 17 reconstruction the geome-
try description itself includes the revealed deformations. The asymmetry spectrum now
shows the same behaviour on both detector sides and agrees well with the simulation
when using the ID or MS pT information, as shown in Fig. 6.19. The ID tracking
performance group quotes 25% of the original weak mode misalignment as remaining
uncertainty on the alignment in the rel. 17 processing [81]. To assess the size of this
remaining bias on sin2 θeff

W the original correction produced for the release 16 reconstruc-
tion is applied with 25% strength to the newly processed data. The change in sin2 θeff

W
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of 18 · 10−5 is stated as the corresponding systematic uncertainty.
In release 16 also the asymmetry spectrum generated using the MS pT information

shows features which depend on the detector region, e.g. the slope is different in both
detector sides, as shown in Fig. 6.18d. This effects is cured with an updated geometry
of the MS in the new reconstruction, as is demonstrated by the good agreement between
simulation and data in figures 6.19c and 6.19d.

Despite these improvements the asymmetry spectrum generated using momenta of
combined muons shows a similar structure as seen before using the ID information,
and it is incompatible with the simulation, cf. figures 6.19e and 6.19f. This was first
observed in the present analysis. With valuable input provided from this analysis, the
origin of this effect could be traced within the Muon Combined Performance group.
As it turned out, the MS endcap C is misplaced in the geometry description by 5 cm
along the beam axis. This leads to systematic shifts of the reconstructed combined
muon momenta due to the setup of the track fitting algorithms. As the asymmetry
analysis is the only one affected significantly, a fix of the geometry description will
only be available with the next reprocessing of the collected data. Unfortunately, this
is beyond the time frame of this thesis. Therefore, it was decided to only use the
momentum information from the ID for this thesis. This is a reasonable approach as
the momentum measurement is dominated by the ID measurements up to transverse
momenta of 50 GeV/c. From 50 GeV/c to roughly 100 GeV/c both subsystems have
similar contributions. The transverse momentum distribution of muons from Z decays
has a maximum at 43 GeV/c.

6.7.3. Determination of used mass range in χ2 calculation

The influence of the flavour composition of the initial state is strongest for small and
large invariant masses of the dilepton pair (cf. Fig. 6.15). At the Z-pole the influence
is smallest (cf. Fig. 6.17). Hence, a dependence of the systematic uncertainty due
to the error on the PDF on the used mass range for extracting sin2 θeff

W is expected.
Furthermore, as the weak mixing angle itself depends on the Q2 of the reaction, it is
important to study the impact of the used mass range on the measured value of sin2 θeff

W .
The results of this study is presented in Tab. 6.8. The extracted value for sin2 θeff

W shows
no systematic dependence on the mass window. The mass range chosen for this analysis
is 70 − −250 GeV/c2, which is a trade-off between statistical uncertainty and influence
due to the uncertainty on the used PDF.

Mass range [GeV/c2] ndf σstat. sin2 θeff
W χ2

min/ndf

60-1000 21 87 0.22929 1.09
60-300 20 87 0.22929 1.14
70-250 17 88 0.22937 1.15
76-250 16 89 0.22900 1.03
80-125 14 90 0.22874 0.97
80-105 11 91 0.22890 1.00
86-100 9 99 0.22774 0.80

Table 6.8.: Influence of the mass range used in the χ2 calculation on the sin2 θeff
W and its

statistical uncertainty.
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(a) Afb spectrum in release 16 for data and
simulation.
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(b) Afb spectrum with both muons in either
one or the other side of the detector. Mo-
mentum information taken from combined
muons.
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(c) Afb spectrum with both muons in either
one or the other side of the detector. Mo-
mentum information from the ID used.
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Figure 6.18.: Afb versus µµ mass distributions obtained from 460 pb−1 of data recon-
structed with release 16, shown for different detector regions and detector
subsystems. The influence on the asymmetry is caused by weak mode
misalignments.
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(b) ID pT information, C side.
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(c) MS pT information, A side.
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(d) MS pT information, C side.
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(e) CB pT information, A side.
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Figure 6.19.: Comparison of MC simulation to the measured data, reconstructed with
release 17 including corrections for the weak mode misalignment of the
inner detector (ID).
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6.8. Results

In this section the extracted value of sin2 θeff
W from the measured forward–backward

asymmetry is presented and compared to other measurements of this particular quantity.
The forward–backward asymmetry is strongly affected by the limited acceptance of

the detector and the dilution (cf. section 6.1.1). Furthermore, it is very sensitive to the
correct alignment of the tracking detectors, as the present study revealed (cf. section
6.7.2). However, all these effects are well described by the MC simulation which repro-
duces the measured data nicely. Hence, the extraction of the weak mixing angle from
the Afb spectrum is reliably possible using template comparisons (cf. section 6.2).

The χ2 results of the template comparisons to the data is shown in Fig. 6.20. Each
point corresponds to the χ2 value obtained from the comparison of a template created
with a particular value of sin2 θeff

W to the measured Afb spectrum. The resulting parabola
is fitted to estimate its minimum, which corresponds to the measured sin2 θeff

W . The
extracted value is

sin2 θeff
W = 0.22937± 0.00087(stat.)± 0.00119(sys.).

The quality of the template prediction for the best matching template is obtained as
χ2/ndf = 1.13. The value found is close to one, ensuring a reliable estimation of the
weak mixing angle using this technique.

There have been numerous measurements of sin2 θeff
W at similar Q2 scales, among them

the LEP and Tevatron experiments as well as CMS at the LHC. The different measure-
ment techniques and results are presented in the following.

• LEP and SLD: The weak mixing angle is calculated directly from the forward–
backward asymmetry observed at the Z-pole. Leptonic and hadronic final states
are taken into account. Additionally the SLD experiment measures the left–right
polarisation asymmetry ALR, yielding the most precise results for the weak mixing
angle. The obtained value from SLD, averaged over all experiments, is 0.23096±
0.00020 [17]. The averaged results from the LEP experiments is 0.23181± 0.00028
[17]. These two results dominate the current world average of 0.23152(16)6.

• D0 (Tevatron): Template comparisons are used to extract the weak mixing angle
(as in the present work). The obtained value is 0.23090(100) [22].

• CDF (Tevatron): CDF extracts the weak mixing angle directly from the asym-
metry by comparing the SM prediction of the parameter A4 of the angular dis-
tribution to the measurement. This method is afflicted with large theoretical un-
certainties from QCD predicitons. Their obtained value is sin2 θeff

W = 0.23290 ±
0.00080(A4 error)+0.00100

−0.00090(QCD) [82].

• CMS (LHC): CMS uses a maximum likelyhood fit to extract the weak mixing angle
[23]. The obtained value is 0.22870(320).

• Global fit over all SM parameters: The particle data group publishes a fit over all
SM parameters including many experimental datasets. Their result is sin2 θeff

W =
0.23146(12) [17].

An overview of all results is given in Tab. 6.9 and Fig. 6.21. The result of this analysis
is well compatible the results of other experiments.

6As presented at the Moriond conference in 2011.
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Figure 6.20.: χ2 results of the template comparisons for different values of sin2 θeff
W with

the measured data. A second order polynomial is fitted to the distribution
from which the most probable value of sin2 θeff

W as well as the statistical
uncertainty is extracted. The data distribution has been corrected for
background. Note that all χ2 values are correlated as the same simulated
event sample is reweighted and compared to the same measured event sam-
ple each time. Hence the displayed statistical errors appear larger than the
statistical fluctuations of the χ2 values.

Source sin2 θeff
W ∆[10−5] ∆/σ

this analysis 0.22937± 0.000147 - -
PDG global fit [17] 0.23146± 0.00012 209 1.4
SLD result [17] 0.23096± 0.00020 159 1.1
LEP result [17] 0.23181± 0.00028 244 1.6
D0 [22] 0.23090± 0.00100 153 0.9

CDF [82] 0.23290± 0.00080+0.00100
−0.00090 353 1.8

CMS [83] 0.22870± 0.00320 67 0.2

Table 6.9.: Comparison of prediction and different results for
sin2 θeff

W . ∆ denotes the absolute difference of the re-
sult w.r.t. to the result of the present analysis. ∆/σ
denotes the difference in units of the uncertainty (the
uncertainties of both results in question are added in
quadrature).
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W in comparison to the ob-

tained value from this analysis. The vertical bar indicates the average over
all shown values, excluding the global fit, with its uncertainty.
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7. Measurement of the Angular
Distributions and the Spin of the Gluon

When particles decay, the angular distributions of the decay products are a rich source of
information. The spin of the particle in question is accessible as well as several properties
of the underlying interaction. The asymmetric part of the polar angular distribution
in Z → µµ decays for example is sensitive to the vector coupling of the weak force
and with it to the weak mixing angle (cf. previous chapter). Other parameters of
the angular distribution contain further interesting information, e.g. on the production
mechanism of the intermediate state. Also properties of the particles involved in the
reaction are accessible. It turns out that in the vicinity of the Z mass peak the reaction
pp→ µ+µ−+X is sensitive to the spin of the gluon (cf. sec. 2.2 and below). The Collins-
Soper frame (CS frame) (sec. 6.1) is used to measure the angles. The event selection
criteria are the same as described in sec. 6.4, except for an additional constraint on the
invariant mass of the intermediate state which is required to be close to the Z mass:
|mll −mZ | ≤ 10 GeV/c2. In this analysis 4.70 fb−1 of data, collected in 2011, are used
which corresponds to 1.46 M selected events.

The polar and azimuthal angular distributions of the decay lepton in the reaction
pp→ Z/γ∗+X → µ+µ−+X can be separately described by two 1-dimensional functions
(cf. sec. 2.2),

dσ

d cos θ
∝
(
1 + cos2 θ

)
+

1

2
A0

(
1− 3 cos2 θ

)
+A4 cos θ, (7.1)

dσ

dφ
∝ 1 +

2π

16
A3 cosφ+

1

4
A2 cos(2φ) +

3π

16
A7 sinφ+

1

4
A5 sin(2φ). (7.2)

The full 2-dimensional cross section is given in Eq. (2.32). Of particular interest in
this chapter are the two parameters A0 and A2 and their dependence on the transverse
momentum (pT) of the dilepton pair. According to the so called Lam-Tung relation [31]
they are identical for all pT if the spin of the gluon equals 1. In this case the leading
order prediction for A0(pT) and A2(pT) is [33, 35]:

A0,2 =
p2

T

p2
T +M2

ll

for annihilation processes, (7.3)

and A0,2 =
5p2

T

5p2
T +M2

ll

for compton− like processes. (7.4)

More information on the processes is given in section 2.2.

In addition, the angular distributions are interesting in themselves. They are diffi-
cult to simulate as they depend on the combination of the matrix element of the hard
interaction and the parton shower model for jets due to gluon radiation. Also the spin-
correlations of final state partons affect the angular distributions. They are, however,
neglected in some generators. Hence, different MC generators yield different angular
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distributions. PYTHIA, e.g., does only simulate the annihilation process and does not
take into account spin correlations of partons in the final state (cf. chapter 3).

The measured angular distributions are heavily distorted by the acceptance of the de-
tector. In order to recover the true angular distributions two methods are implemented
using different approaches to compensate for detector effects. In the first method the
effects of the acceptance on the angular distributions are estimated from the MC sim-
ulation. The measured data are corrected by applying a factor fi in each bin i of the
angular distribution, where fi is the fraction of the bin content found in simulation on
truth level (no detector simulation) and after detector simulation: fi = N true

i /N reco
i .

In this simple method significant uncertainties are introduced in the case of large fi.
Furthermore, no migration effects between bins are taken into account. However, as a
rather coarse binning for the angular distributions is chosen, migration effects between
bins are expected to be small.

Similar to the measurement of the weak mixing angle (cf. 6.2) the idea of the second
method is to use templates which are created from MC events, and fit those to the
measured angular distributions. For this purpose three orthogonal functions are created,
the sum of which describes one of the 1-dimensional angular distributions. They are
transformed into templates including all detector effects which finally are fitted to the
measured angular distributions. This avoids any corrections to the measured data. From
the relative contributions of the individual templates in this fit the coefficients Ai are
calculated. Both methods yield very similar results, as is shown in sec. 7.4.

In the next section the expectations from MC simulation for the angular distribu-
tion are presented and the influence of the finite detector acceptance is discussed. The
implementation and comparison of the results from both methods used to extract the
angular coefficients are shown in sections 7.2, 7.3 and 7.4. Afterwards the systematic
uncertainties on the angular coefficients are discussed in sec. 7.5. Finally, the measured
coefficients are compared to the predictions from different MC generators and the spin
of the gluon is determined (cf. sec. 7.6).
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7.1. Expectations from simulation

Simulated event samples are used to study the impact of various detector effects on the
angular distributions and to validate the fitting routines used to extract the coefficients
Ai from the angular distributions. Furthermore, the prediction of the dependence of A0,2

on the transverse momentum of the di-muon pair is studied in the mass window around
the Z mass (pT(Z)). Several simulation programs and assumptions of spin 0 and 1 for
the spin of the gluon are compared. If not stated otherwise, the angular coefficients are
extracted from the measured distributions using the default PYTHIA MC event sample
from the MC11c [39] production campaign for the process Z → µµ. The PYTHIA
generator is chosen instead of AlpGEN as it nicely reproduces the transverse momentum
distribution of the final state muons (pT(µ)), which is not the case for AlpGEN. For
details on the used event samples see appendix A.

The simulated (truth) angular distributions change drastically when limiting the con-
sidered phase space to the acceptance of this analysis (i.e. pT(µ) > 20 GeV/c and
|η| < 2.4, cf. Fig. 7.1). This effect can be attributed to the correlation between the
angles (cos θ, φ) and pT or η of the final state muon (see Fig. 7.2). Compared to this
acceptance effect all other experimental effects are small. The dilution of the forward–
backward asymmetry due to the unknown direction of the incoming quark (see section
6.1.1) only affects the cos θ distribution and overall remains a small effect. Further de-
tector effects, like non–perfect resolution and efficiency, alter the shape of the angular
distributions only marginally.
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Figure 7.1.: Angular distributions of the polar angle cos θ (left) and the azimuthal an-
gle φ (right) averaged over all pT(Z). To illustrate the deformations of the
true angular distributions from various sources the following histograms are
overlaid: simulated true angular distributions (MC truth), acceptance cuts
applied, dilution added on top, results from the MC including detector sim-
ulation (MC reco) and eventually the results from data. For both angles
the limited detector acceptance has the greatest impact on the spectra. The
φ–distribution is not affected at all by the dilution. Therefore, the green
and red curves in (b) lie on top of each other. The cos θ–distribution ob-
tained from data is matched very well by the MC prediction, whereas the
φ–distribution is not. This is explained in detail in section 7.1.1.

All of the analysis is performed in bins of the transverse momentum of the dilepton pair
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Figure 7.2.: Correlations between the decay angles cos θ (left) / φ (right) and the kine-
matic properties of the decay muon η (upper row) / pT (lower row).

in order to evaluate the dependence of the angular distributions on pT. Of particular in-
terest are the coefficientsA0(pT) andA2(pT). The chosen binning is piT := [0, 5, 10, 15, 20,
30, 50, 80, 150, 300]. Unless otherwise noted, histograms of cos θ and φ distributions in
this chapter are from the 4th pT bin (15 GeV/c ≤ pT < 20 GeV/c). Corresponding plots
for all pT bins can be found in appendix B.

To extract A0,2(pT) from the simulated event sample the functions (7.1) and (7.2)
are fitted to the cos θ and φ distributions obtained from truth information (without
detector simulation), respectively. The fit is performed individually for each pT bin.
Exemplary results for a single pT bin are shown in Fig. 7.3. The obtained values for the
coefficients A0,2(pT) are shown in Fig. 7.4 together with the leading order predictions
for the annihilation and the Compton-like initial states (cf. sec. 2.2). As PYTHIA
only simulates the 2 → 1 annihilation process in the current ATLAS configuration, it
is expected that the result follows the prediction for annihilation processes. This is
indeed observed in the low pT(Z) region. For larger pT(Z) the coefficients fitted to
the simulated distributions lie below the LO prediction. In contrast to the PYTHIA
simulation, the measured data is expected to be a mixture of both processes and hence
the pT dependence of A0 and A2 is expected to lie in-between the prediction of both
processes.

In addition to the PYTHIA prediction, simulated events from three other MC gen-
erators were analysed: MC@NLO, AlpGen and MadGraph [45]. The first two are next-
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Figure 7.3.: True angular distribution in cos θ (left) and φ (right) for 15 GeV/c ≤ pT <
20 GeV/c, as predicted by PYTHIA. The leading order prediction (Eqs.
(7.1), (7.2)) are fitted to the histograms (solid line). The fit to the cos θ
distribution excludes the outer most bins as this region is nearly completely
cut out in data by the finite detector acceptance.

to-leading order generators whereas the last one is a so called matrix element generator
(cf. section 3). The results obtained from MC@NLO and AlpGen are shown in Fig.
7.5. Both generators simultaneously simulate annihilation and Compton-like processes
which is nicely reflected in the pT-dependence of A0,2. Unfortunately only 1.5 M events
are available from MC@NLO within the considered mass window (0.5 M after detector
simulation). MadGraph allows the generation of arbitrary Feynman graphs and the rela-
tively easy tuning of the coupling structure of the simulated interactions. Therefore, it is
used to predict angular distributions for the case of a scalar gluon. As no official ATLAS
samples from this generator are available, the used event samples have been privately
produced (see sec. 3.1.5), without detector simulation. Simulated are the 2 → 2 pro-
cesses presented in section 2.2. In the case of a vector gluon (S(g) = 1), the extracted
pT dependence of A0,2 (Fig. 7.6a ) lies between the predictions of annihilation and
compton-like processes, as expected. Furthermore they follow the Lam-Tung relation by
lying on top of each other in the full pT range. In case of a scalar gluon (Fig. 7.6b )
the pT dependence of both coefficients changes dramatically and the Lam-Tung relation
becomes badly broken. Note that higher order QCD corrections violate the Lam-Tung
relation only by 20% at most [84].

7.1.1. Impact of a non-zero beam crossing angle

At interaction point 1 of the LHC, where the ATLAS detector is located, the proton
beams are crossing under an angle of β = 240µrad, which leads to a small boost of all
events along the x-axis of the laboratory frame (cf. Fig. 7.7). The effect of this non-
zero crossing angle is negligible for most physics analyses. Hence the default ATLAS
MC simulation assumes a zero crossing angle. However, the boost along a fixed axis in
the laboratory frame defines a reaction plane for the Z-production and decay which, in
general, will lead to a modulation of the azimuthal distribution of the decay leptons in the
rest frame of the dilepton pair. The influence of this effect on the angular distributions
is studied as follows. The boost B due to the crossing angle β of the beams is calculated

91



7. Measurement of the Angular Distributions and the Spin of the Gluon

 (Z) [GeV/c]
T

p

0 50 100 150 200 250 300

2
, A 0

A

0

0.2

0.4

0.6

0.8

1

A0
A2
Annihilation
Compton

Figure 7.4.: Dependence of the coefficientsA0 (circles) andA2 (squares) on the transverse
momentum of the final state dilepton pair as obtained from the PYTHIA
simulation (truth, no detector simulation applied). Leading order predic-
tions for the annihilation and compton-like processes are shown as dashed
and dotted lines, respectively. Only the 2 → 1 annihilation process is sim-
ulated, hence the simulation is close to the leading order prediction for the
annihilation process.
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(a) MC@NLO, 1.5 M events within mass win-
dow.
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(b) AlpGen, 6.7 M events within mass window.

Figure 7.5.: Predictions of A0 and A2 from different MC generators. No detector simu-
lation is applied and muons are considered within the full phase space. The
invariant mass of the di-muon pair is required to be within a window of
20 GeV/c2 around the Z-peak.
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(a) Spin of gluon S(g) = 1
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Figure 7.6.: Predictions of the dependence of A0,2 on pT(Z) produced with the MadGraph
generator, once for the standard model gluon with spin S(g) = 1 (left hand
side) and once for a scalar gluon with S(g) = 0 (right hand side). For the
SM case the Lam-Tung relation is satisfied, i.e. A0(pT) = A2(pT) for all pT,
and A0,2 lie between the LO prediction for annihilation and compton-like
processes shown as dashed and dotted lines, respectively. For the scalar
gluon case a completely different behaviour is observed: A0(pT) ≈ 0 and
A2(pT) is monotonously falling.

β
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p p

Figure 7.7.: Sketch of the beam crossing with non-zero crossing angle and resulting boost
of the collision.

from the initial proton momenta, given as standard four vectors (px, py, pz, E):

p1 =

(
sin(β/2) · Ebeam, 0, cos(β/2) · Ebeam,

√
E2

beam +m2
P

)

p2 =

(
sin(β/2) · Ebeam, 0, − cos(β/2) · Ebeam,

√
E2

beam +m2
P

)

B = p1 + p2. (7.5)

Ebeam is the beam energy and mP the mass of the proton. The resulting transverse
momentum is 0.84 GeV/c. The boost calculated in Eq. (7.5) is applied to the simulated
events in order to investigate the impact of the non-zero beam crossing angle on the
angular distributions. The impact on the angular distributions is found to be very
small. A0,2 are affected by at most 2% in the lowest pT(Z) bin and much less elsewhere
(≤ 0.5%). A3 is changed by up to 2.3% in the lowest bin and around 1% for larger pT.
A4 is not affected at all. Hence, it is confirmed that, compared to the total uncertainties
(cf. Tab. 7.6) inherent to the angular distributions, the non-zero beam crossing angle is
indeed negligible.
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7.2. Method 1: Acceptance correction factors

The angular coefficients are determined by fitting the analytical functions Eqs. (2.33)
and (2.34) to the measured angular distributions. Before this fit can be performed,
however, the distortions caused by the detector on the angular distributions need to be
corrected. This is described in the following. The influence of the detector is estimated
using simulated events. The angular distributions are divided into bins of transverse
momentum, pT, and polar angle, cos θ, or azimuthal angle, φ. In each bin i the fraction

wi =
N true
i

N reco
i

(7.6)

is calculated, with N true
i being the number of events in bin i in the full phase space,

i.e before detector simulation, and N reco
i the number of events in bin i after detector

simulation. The weights wi are multiplied to the measured data distributions to obtain
the true angular distributions. The obtained weights for both angles are shown in Fig.
7.8. In regions affected most by the limited acceptance of the detector they become large.
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Figure 7.8.: Weights to correct the influence of the detector on the angular distributions
in the range 15 GeV/c < pT(µµ) < 20 GeV/c. In particular, the cos θ spec-
trum (a) is affected by the limited acceptance of the detector. Correction
factors on the φ spectrum show lower fluctuations and reflect the overall
acceptance of about 37%.

This introduces large uncertainties on the corrected spectra. Furthermore, asymmetrical
migration of events between bins is not taken into account. This effect is small due to
the coarse binning.

To check the consistency of the correction method the weights are applied to the
same event sample used to calculate them (closure test). As expected, the true angular
distribution is recovered (see Fig. 7.9). The angular distributions obtained from data
are shown in Fig. 7.10.

Finally the coefficients A0,2(pT) are determined by fitting the analytical functions from
Eqs. (2.33) and (2.34) to the corrected angular distributions. The result is shown in
Fig. 7.11 and Tab. 7.1 in sec. 7.4.
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Figure 7.9.: Closure test for the correction of detector effects on the angular distributions.
The correction factors are applied to the same simulated event sample used
to calculate them. Results are shown for the range 15 GeV/c < pT(µµ) <
20 GeV/c. Note the different scales on the y-axis of both plots. All his-
tograms are normalised to the same integral for better comparison of the
shapes.

)Θcos(

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

E
nt

rie
s 

/ 0
.1

25

10
20
30
40
50
60
70
80
90

310×

MC - truth

Data - raw

Data - corrected

)cos(θ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1D

at
a 

/ M
C

1
10

(a)

 (CS-frame)φ

0 1 2 3 4 5 6

E
nt

rie
s 

/ 0
.3

14

38

40

42

44

46

48

310×

MC - truth

data - raw

Data - corrected

 - CS frameφ
0 1 2 3 4 5 6

σ
 / ∆ -2

0
2

(b)

Figure 7.10.: Angular distributions in the range 15 GeV/c < pT(µµ) < 20 GeV/c as
obtained from the measured data in comparison to the simulation. Note the
different scales on the y-axis of both plots. All histograms are normalised
to the same integral for better comparison of the shapes.
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Figure 7.11.: Coefficients A0,2 of the angular distributions as a function of the transverse
momentum (pT) of the final state di-muon pair. The coefficients are ex-
tracted from measured data using method 1. The simulated event sample
is reweighted to match the measured pT(µµ) distribution before calculating
the correction factors applied to the measured angular distributions.

7.3. Method 2: Template Fits

In this approach no corrections are applied to the measured distributions, avoiding large
correction factors and the corresponding uncertainties. Instead a set of templates is
created from the simulated event samples which can be fitted directly to the measured
distributions. The coefficients Ai are then calculated from the respective contributions
of the templates to the description of the measured data.

The templates have to fulfil certain requirements. First of all they need to be linearly
independent. Otherwise the fit result may not be unique and converging fitting routine
will become problematic. Furthermore, all entries in the templates must be greater or
equal to zero in all bins to assure a proper normalisation. With this in mind, Eqs. (2.33)
and (2.34) can be rewritten as

1

σ

dσ

d cos θ
=

(
1 +

1

2
A0 −A4

)
+ (A4) (1 + cos θ) +

(
1− 3

2
A0

)
cos2 θ

= α+ β cos2 θ + γ (1 + cos θ) (7.7)

1

σ

dσ

dφ
=

(
1− A2

4
− 16A3

3π

)
+
A2

4
(1 + cos(2φ)) +

16A3

3π
(1 + cosφ)

= α′ + β′ (1 + cos(2φ)) + γ′ (1 + cosφ) . (7.8)

The chosen templates are 1, 1 + cos θ and cos2 θ for the polar distribution, and 1, 1 +
cos(2φ) and 1+cosφ for the azimuthal. The coefficients α(′), β(′) and γ(′) are determined
by fitting the templates to the measured angular distributions. The integral of the
template distributions is normalized to 1 before the fitting procedure. The normalisation
factor, 1/σ, reflects the number of entries in the measured distributions. It is determined
in the fitting procedure as well, using the extended maximum likelihood method [71].
This method is chosen over the maximum likelyhood method as it shows a more stable
behaviour. The fitting procedure is implemented using the roofit toolkit [85].
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The templates are created as follows. First, the angular distributions as obtained
from the MC simulation without acceptance restrictions (without detector simulation)
are weighted in a way to reproduce the desired shapes. The so obtained templates
are called truth-templates in the following. The weights are calculated by dividing the
analytical template description by the angular distributions obtained from the MC simu-
lation, without detector simulation and without acceptance restrictions. Then, the same
weights are applied to the MC distributions after detector simulation. These templates,
called reco-templates in the following, can directly be fitted to the measured angular
distributions. The fit of the reco-templates to the measured distributions is done inde-
pendently for each pT bin of the analysis.

A closure test is performed by fitting the truth-templates to the angular distributions
obtained from simulated events without detector simulation. The true spectrum is re-
covered by the fit as shown in Fig. 7.12 (a) and (b). The closure test on MC events after
detector simulation is shown in subfigures (c) and (d). The results on the measured data
are displayed in subfigures (e) and (f). The data distributions are well described by the
reco-templates.

The coefficients A0,2 are calculated from the fit parameters as:

A0 = 2
α− β + γ

3α+ β + 3γ
(7.9)

A2 =
1

4

β

α+ β + γ
. (7.10)

The measured pT dependence of A0,2 using this method is listed in Tab. 7.1. The results
are compatible with the ones obtained using method 1, as will be discussed in more
detail in the next section.

7.4. Comparison of method 1 and 2

The results obtained from the two methods described above are compared in Fig. 7.13
and Tab. 7.1. When using simulated events without detector simulation (truth) both
methods produce virtually identical results. All deviations are negligible. The results
obtained when applying both methods to data agree within 1.5 standard deviations.
However, the statistical uncertainties of the measured coefficients Ai from method 1 are
larger (by 50% or more for A0) compared to those of method 2 (cf. Tab. 7.1). This
is largely due to the acceptance correction factors applied in method 1 which naturally
increase the statistical uncertainty of the result. The influence on the systematic uncer-
tainties, however, is not obvious at all. It is expected that the reduction of the statistical
uncertainty in method 2 is counteracted by an increase of the systematic uncertainties as
both methods use the same measured information. However, as a deeper investigation
showed, method 2 yields overall slightly smaller uncertainties compared to method 1.
As the central value of both methods is very similar and no systematic discrepancy is
observed, only results of method 2 will be considered in the following.
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Figure 7.12.: Result of the template fit to: PYTHIA simulation without detector simu-
lation (a,b); PYTHIA simulation including detector effects (c,d) with tem-
plates generated from the same simulated event sample; measured data
(e,f) with templates generated from PYTHIA simulation and corrected for
the beam crossing angle. Shown is the pT range 15 GeV/c < pT(µµ) <
20 GeV/c. The original distributions are displayed as open circles. The
3 templates as crosses (black: 1; green: 1 + cos θ, 1 + cosφ; red: cos2 θ,
1 + cos(2φ)) and the sum of the templates, obtained from the fit, as solid
diamonds. In all cases the fitted templates describe the original distribu-
tions very well. Note that the histograms shown in (a)-(d) are normalized
to an integral of one.
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Figure 7.13.: Dependence of A0,2 on the transverse momentum of the di-muon pair
pT(µµ) obtained using extraction methods 1 and 2. (a,b): Results from
PYTHIA simulation without detector simulation (truth). (c,d): Results
from measured data. The PYTHIA simulation is used to correct the data
distributions (method 1) and to create the templates used in method 2.

Method 1 Method 2
pT(µµ) [ GeV/c ] A0 A2 A0 A2

0 - 5 −0.042± 0.011 0.019± 0.014 −0.034± 0.006 0.019± 0.008
5 - 10 −0.019± 0.009 0.012± 0.012 −0.015± 0.006 0.011± 0.046
10 - 15 0.046± 0.012 0.034± 0.015 0.032± 0.008 0.036± 0.010
15 - 20 0.069± 0.015 0.089± 0.018 0.066± 0.010 0.090± 0.014
20 - 30 0.145± 0.014 0.129± 0.017 0.136± 0.009 0.128± 0.013
30 - 50 0.259± 0.017 0.331± 0.018 0.294± 0.010 0.333± 0.015
50 - 80 0.533± 0.029 0.565± 0.029 0.528± 0.012 0.584± 0.024
80 - 150 0.745± 0.047 0.654± 0.047 0.712± 0.017 0.640± 0.040
150 - 300 0.781± 0.105 0.691± 0.105 0.852± 0.035 0.713± 0.093

Table 7.1.: Coefficients A0,2 of the angular distributions in dependence of the transverse
momentum (pT) of the final state di-muon pair. Coefficients extracted using
method 1 and method 2 are shown with statistical uncertainties only.
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7.5. Systematic uncertainties

Several sources of systematic uncertainties on the angular coefficients are studied using
the PYTHIA MC event sample after detector reconstruction. They are listed in the
following in order of significance. Figures illustrating the systematic variations of the
coefficients A0,2 are presented for the four largest systematics.

• Alignment uncertainties (cf. Fig. 7.16a,b):
As described in sec. 6.7.2 a remaining uncertainty on the inner detector alignment
exists. A correction within the uncertainty has been applied to the MC events in
order to study the impact on the angular coefficients. As it turns out the alignment
significantly impacts A0,2, in particular in the low transverse momentum region.
The absolute deviations from the nominal MC are up to 0.05 for A0 and up to 0.04
for A2.

• Variation of the rapidity spectrum (y) (cf. Fig. 7.16c,d):
The simulated rapidity spectrum (after detector simulation) of the di-muon pairs
does not perfectly match the measured one. As no unfolded measurement of the
y spectrum with the needed precision is available for the time being, differences
between the MC predictions from the generators PYTHIA and AlpGEN are used
to estimate the systematic uncertainty on the angular coefficients. The variation
of the measured angular coefficients between using one of the two generators in the
extraction is assigned as systematic uncertainty. This is a significant contribution
to the systematic uncertainty, although the predictions of both generators after
detector simulation nicely envelop the measured distribution (cf. Fig. 7.14). It
even contributes the largest uncertainty on A0. A maximum absolute deviation
w.r.t. the nominal MC of 0.06 on A0 and 0.02 on A2 is observed.

• Momentum scale dependence (cf. Fig. 7.16e,f):
The momentum scale correction for the MC samples consists of two independent
contributions: a charge independent correction and on top of it a charge dependent
factor. Uncertainties on the momentum scale correction factors corresponding to
one standard deviation are carefully evaluated and provided by ATLAS. These are
used to calculate up/down variations of both contributions independently. The
maximum variation in the angular coefficients from one up/down variation is as-
signed as systematic uncertainty. The uncertainty due to each momentum scale
factor is added in quadrature. A maximum uncertainty on A0 of 0.014 in the
highest pT bin is observed and much smaller uncertainties elsewhere. A2 is very
sensitive to the momentum scale in the low pT region with systematic deviations
up to 0.036.

• PDFs (cf. Fig. 7.17a,b):
The CT10 PDF and its error sets are used to estimate the uncertainty due to
the used PDF on the extraction of the angular coefficients from the measured
data. MC events are reweighted to each of the PDF error sets before creating the
templates used in method 2. The uncertainty on A0,2 is calculated in each pT bin
using Eq. (6.8) described in sec. 6.7.1. The PDF uncertainty is small in the whole
pT region, with a maximum of 0.015 on A0 and 0.007 on A2.

• Momentum smearing:
To match the MC prediction of the width of the Z-peak to the measured width
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7.5. Systematic uncertainties

an additional smearing of the muon momenta is applied to the simulated events.
The uncertainty on the magnitude of the smearing translates into a systematic
uncertainty on the measured angular coefficients. It is determined by varying the
amount of smearing. A maximum deviation of 0.007 w.r.t. the nominal MC is
observed on A0 and A2, which is one order of magnitude less than the alignment
uncertainty.

• Variations of the pT(µµ) spectrum:
The true transverse momentum spectrum of the Z/γ∗ system is measured precisely
in [86]. Hence the simulated spectrum is reweighted to match the measured one.
It is then varied within the uncertainties on the measurement. The corresponding
changes of the angular coefficients is assigned as systematic uncertainty. This is
the smallest systematic uncertainty compared to the other studied sources with a
maximum deviation w.r.t. the nominal MC of 6 · 10−4 on A0 and 0.002 on A2.

Note that in general the angular distributions are very sensitive to the transverse
momentum spectrum of the di-muon pairs, in particular the azimuthal one. This
can be seen when studying events simulated using the original PYTHIA MC11
tune [39] without reweighting the transverse momentum distribution of the di-
muon pairs to the measured one. In this case the predicted azimuthal angular
distribution changes significantly, as do the values of the measured coefficient A2

which is illustrated in Fig. 7.15.

• Background:
The contamination of the selected event sample with events from background pro-
cesses is below 0.5%. It has no significant impact on this analysis and is hence
neglected.

The individual uncertainty contributions for each pT bin as well as the total systematic
uncertainty are listed for the angular coefficients A0,2,3,4 in Tabs. 7.2 - 7.5, respectively.
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Figure 7.14.: Comparison of the rapidity distribution observed in data with simulations
from PYTHIA and AlpGEN.
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7. Measurement of the Angular Distributions and the Spin of the Gluon

pT(µµ) Alignment p p y pT(µµ) PDF total
[ GeV/c ] scale smearing

0–5 0.0131 0.0058 0.0037 0.0597 0.0001 0.0144 0.0631
5–10 0.0099 0.0088 0.0064 0.0591 0.0002 0.0148 0.0626
10–15 0.0294 0.0032 0.0011 0.0588 < 10−4 0.0146 0.0675
15–20 0.0481 0.0048 0.0010 0.0575 0.0001 0.0145 0.0765
20–30 0.0204 0.0060 0.0023 0.0542 0.0000 0.0138 0.0599
30–50 0.0151 0.0041 0.0009 0.0528 0.0003 0.0137 0.0568
50–80 0.0088 0.0034 0.0028 0.0420 0.0002 0.0133 0.0452
80–150 0.0326 0.0054 0.0040 0.0275 0.0006 0.0106 0.0445
150–300 0.0213 0.0145 0.0077 0.0106 0.0004 0.0068 0.0297

Table 7.2.: Systematic uncertainties on the angular coefficient A0.

pT(µµ) Alignment p p y pT(µµ) PDF total
[ GeV/c ] scale smearing

0–5 0.0303 0.0165 0.0020 0.0033 0.0022 0.0019 0.0348
5–10 0.0222 0.0328 0.0057 0.0039 0.0005 0.0029 0.0403
10–15 0.0259 0.0349 0.0051 0.0030 0.0001 0.0027 0.0439
15–20 0.0046 0.0200 0.0048 0.0052 0.0004 0.0038 0.0221
20–30 0.0322 0.0174 0.0027 0.0070 0.0004 0.0035 0.0376
30–50 0.0193 0.0079 0.0066 0.0146 0.0010 0.0052 0.0268
50–80 0.0395 0.0086 0.0027 0.0158 0.0001 0.0048 0.0437
80–150 0.0156 0.0116 0.0072 0.0092 0.0005 0.0033 0.0230
150–300 0.0196 0.0088 0.0072 0.0062 0.0019 0.0072 0.0247

Table 7.3.: Systematic uncertainties on the angular coefficient A2.

pT(µµ) Alignment p p y pT(µµ) PDF total
[ GeV/c ] scale smearing

0–5 0.0281 0.0316 0.0065 0.0001 0.0001 0.0003 0.0428
5–10 0.0344 0.0391 0.0014 0.0012 0.0001 0.0007 0.0521
10–15 0.0102 0.0361 0.0025 0.0008 < 10−4 0.0007 0.0376
15–20 0.0168 0.0303 0.0012 0.0001 < 10−4 0.0003 0.0347
20–30 0.0176 0.0287 0.0024 0.0002 < 10−4 0.0007 0.0338
30–50 0.0218 0.0286 0.0023 0.0005 0.0001 0.0010 0.0360
50–80 0.0099 0.0310 0.0024 0.0010 < 10−4 0.0020 0.0327
80–150 0.0074 0.0348 0.0056 0.0020 < 10−4 0.0017 0.0361
150–300 0.0920 0.0536 0.0083 0.0027 0.0001 0.0047 0.1069

Table 7.4.: Systematic uncertainties on the angular coefficient A3.
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7.5. Systematic uncertainties

pT(µµ) Alignment p p y pT(µµ) PDF total
[ GeV/c ] scale smearing

0–5 0.0012 0.0036 0.0029 0.0022 < 10−4 0.0034 0.0062
5–10 0.0186 0.0044 0.0024 0.0030 < 10−4 0.0034 0.0198
10–15 0.0079 0.0066 0.0041 0.0032 < 10−4 0.0033 0.0120
15–20 0.0111 0.0027 0.0016 0.0024 < 10−4 0.0030 0.0122
20–30 0.0101 0.0038 0.0022 0.0025 < 10−4 0.0027 0.0116
30–50 0.0134 0.0040 0.0026 0.0012 < 10−4 0.0027 0.0145
50–80 0.0320 0.0023 0.0011 0.0004 < 10−4 0.0024 0.0322
80–150 0.0464 0.0019 0.0007 0.0002 < 10−4 0.0029 0.0465
150–300 0.1481 0.0120 0.0061 0.0048 0.0002 0.0032 0.1488

Table 7.5.: Systematic uncertainties on the angular coefficient A4.
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Figure 7.15.: Impact of the simulated transverse momentum distribution of the di-
muon pair on the simulated azimuthal angular distribution in the range
5 GeV/c < pT(Z) < 10 GeV/c (a) and the measured coefficient A2 (b).
Compared is the original PYTHIA simulation using the MC11 tune (filled
circles) and the same simulation with the pT(Z) distribution reweighted to
the measured one (open circles).
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7. Measurement of the Angular Distributions and the Spin of the Gluon
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(b) A2 – Alignment uncertainty
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(c) A0 – Uncertainty on rapidity spectrum

 pT [GeV/c]µµ

0 50 100 150 200 250 300

2
A

0

0.2

0.4

0.6

0.8

rapidity fom Pythia

rapidity from Alpgen

 p
T
 [GeV/c]µµ

0 50 100 150 200 250 300U
nc

er
ta

in
ty

-0.01
0

0.01

(d) A2 – Uncertainty on rapidity spectrum
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(e) A0 – Corrections to the MC events
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Figure 7.16.: Systematic uncertainties on the angular coefficients A0,2 from several
sources. The absolute systematic uncertainty is shown in the lower canvas
of each plot. The A0,2 values themselves are presented for all variations in
the upper canvases.
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7.6. Results
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(a) A0 – PDF Systematic
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Figure 7.17.: Systematic uncertainty on A0,2 due to the uncertainty on the PDF. The
absolute systematic uncertainty is shown in the lower canvases. The dis-
tributions of A0,2 for all 52 error sets of the CT10 PDF are overlaid in the
upper canvases.

7.6. Results

The coefficients A0(pT), A2(pT), A3(pT) and A4(pT) describing the angular distributions
of muons originating from Z/γ∗ decays (cf. eqs. (7.1),(7.2) ) are measured using two
different techniques, both yielding similar results. The results presented in the following
are obtained using method 2.

The measured dependence of Ai on the transverse momentum pT(µµ) of the inter-
mediate state is compared to predictions from the MC generators PYTHIA, AlpGEN,
MC@NLO and MadGraph in Fig. 7.18. For details on the MC generators see section 3.1.
Note that the MadGraph simulation is using the default MadGraph tune and impos-
ing a cut on the minimum transverse momentum of pT(µµ) > 10 GeV/c. Nevertheless,
MadGraph describes all measured angular coefficients very well except for A4, whereas
PYTHIA, the standard generator, describes the data worst. This is expected as PYTHIA
only simulates the qq̄ annihilation process in the used event sample. Quark–gluon initial
states are not considered, but make up a significant fraction of the data events. All other
simulated event samples include both production processes (cf. sec. 2.2). Overall, the
AlpGEN simulation yields the best agreement with the measured angular coefficients
A0,2,3. However, due to the size of the uncertainties a meaningful discrimination be-
tween predictions from AlpGen, MC@NLO and MadGraph is not possible. The picture
changes when looking at the coefficient A4 which is directly related to the forward–
backward asymmetry via Afb = 3

8A4. The AlpGEN and MadGraph predictions do not
describe the measured data at all in the low pT(µµ) region. The reason for this is unclear.
PYTHIA, on the other hand, describes A4(pT) very well, even better than MC@NLO.
This is in agreement with the findings in chapter 6 where a good agreement between the
PYTHIA prediction and the measured forward–backward asymmetry versus invariant
µµ mass distribution is observed.

The presented measurement of the coefficients of the angular distributions is the first
one done with data from the LHC. A similar measurement has recently been published
by the CDF collaboration [87] presenting results obtained from pp̄ collisions at a center-
of-mass energy of

√
s = 1.96 TeV. Results of the presented measurement are compared
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Figure 7.18.: Dependence of the angular coefficients on the transverse momentum of
the di-muon pair pT(µµ) as extracted from data (black dots), including
all systematics. MC predictions from different generators are shown for
comparison.

to results from the CDF collaboration in Fig. 7.19. Both measurements of the angular
distributions A0,2,3 agree well. The measured slope of A3(pT) is in particular in agree-
ment with the recent prediction by [88] and the AlpGen and MadGraph simulations.
Only PYTHIA, which is known to model the angular distributions poorly, predicts a
positive slope of A3(pT), in contrast to the measurement. The remaining coefficient A4

agrees poorly in the low pT(Z) region with the CDF measurement due to different mass
regions used both analyses for selecting the di-lepton pairs in. The PYTHIA simulation
describes the measured A4(pT) dependence very well whereas AlpGen and MadGraph
predict larger values of A4, especially in the low pT(Z) region.

The precision of the present measurement is limited by systematic uncertainties. The
most significant contributions originate from the remaining uncertainty on weak mode
misalignments of the tracking detector and the rapidity spectrum of the di-muon pair.
The latter contribution will shrink significantly once a measurement of the differential
cross section dσ

dy of Z/γ∗ production becomes available. In spite of the uncertainties,
first sensitivity to theory predictions is achieved and subtle differences of individual MC
generators become visible in this measurement. It more than doubles the studied range
of transverse momentum of the di-muon pair in comparison to previous measurements
at hadron colliders.
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7.6. Results

pT(µµ) [ GeV/c] A0 A2 A3 A4

0 - 5 0.011± 0.056 0.049± 0.038 −0.016± 0.045 0.204± 0.452
5 - 10 0.023± 0.044 0.008± 0.063 −0.005± 0.052 0.212± 0.461
10 - 15 0.062± 0.054 0.008± 0.045 −0.008± 0.038 0.208± 0.457
15 - 20 0.093± 0.057 0.047± 0.026 −0.008± 0.035 0.201± 0.449
20 - 30 0.155± 0.041 0.084± 0.053 −0.013± 0.034 0.180± 0.424
30 - 50 0.316± 0.068 0.313± 0.145 −0.002± 0.042 0.153± 0.392
50 - 80 0.537± 0.045 0.562± 0.170 0.016± 0.042 0.140± 0.376
80 - 150 0.708± 0.036 0.604± 0.048 0.040± 0.040 0.091± 0.308
150 - 300 0.850± 0.048 0.761± 0.103 0.089± 0.117 0.102± 0.382

Table 7.6.: Measured angular coefficients in dependence of the transverse momentum
pT(µµ). Uncertainties include statistical and systematic errors.

7.6.1. Gluon spin S(g)

As outlined in section 2.2, the angular distributions are sensitive to the spin of the gluon
S(g). This is expressed in the Lam-Tung relation, stating that A0(pT) = A2(pT) for
all pT if S(g) = 1. Predictions of the angular coefficients A0,2 are made for a scalar
(S(g) = 0) and a vector (S(g) = 1) gluon using the MadGraph event generator (cf.
Fig. 7.6). Comparing the predictions with the measured angular coefficients (cf. Fig.
7.18) reveals a clear preference of the data for a gluon with spin S(g) = 1. This is more
clearly visible by studying the difference A0(pT)− A2(pT), which is shown in Fig. 7.20.
The average difference is compatible with zero: 〈A0(pT) − A2(pT)〉 = 0.002 ± 0.078.
Note that the Lam-Tung relation is not exact any more when considering higher orders
of αs in the calculation of the angular distributions. A2 is expected to change up to
20% whereas A0 remains nearly unaffected [84]. The hypothesis of a vector like gluon
(A0(pT)−A2(pT) = 0) is tested using a Kolmogorov-Smirnov test [89], neglecting higher
order corrections. It yields a probability of 42% that this hypothesis is true. Applying
the same test to the MadGrahp prediction for a scalar gluon yields a probability of
10−16.

This result is in agreement with previous measurements of the spin of the gluon which
was originally determined in studies of the angular distributions of 3-jet events in e+e−

collisions [90].
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Figure 7.19.: Measured angular coefficients Ai (black circles) in comparison to the results
from CDF [87] (red triangles). Good agreement is observed for A0,2,3. A4

differs between both analyses due to different mass ranges considered for
the di-lepton pairs.
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squares) and a scalar gluon (green triangles) in comparison to the measured
data (blue circles).
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8. Summary

The main result of the present work is the measurement of the weak mixing angle,
sin2 θeff

W , in the decay of Z bosons into pairs of muons, produced in proton–proton colli-
sions at the LHC and observed with the ATLAS detector.

The LHC extended experimental particle physics into a new energy regime since the
operation started in 2010 at a center-of-mass energy of

√
s = 7 TeV. In 2011 a large

data sample with an integrated luminosity of
∫

L dt = 4.70 fb−1 was recorded with the
ATLAS detector. It is used in this work to study the angular distributions of the final
state muon (µ−) in the reaction pp→ Z/γ∗+X → µ+µ−+X. The angular distributions
are sensitive to several aspects of the involved particles and interactions. One is the weak
mixing angle which is accessible through the forward–backward asymmetry in Z → µ+µ−

decays. A value of

sin2 θeff
W = 0.22937± 0.00087(stat)± 0.00119(sys)

is measured with a precision similar to the one reached in pp̄ collisions at the Teva-
tron with an integrated luminosity of

∫
L dt = 5 fb−1. It is compatible with previous

measurements (cf. Fig. 8.1).
To achieve such a level of precision detailed studies concerning the muon reconstruction

efficiency and the alignment of the tracking detectors were performed (cf. sections 5 and
6.7.2), the latter leading to an improved understanding of the geometry deformations
within the ATLAS detector.
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Figure 8.1.: Results from various measurements of sin2 θeff
W in comparison to the value

obtained in this analysis. The vertical bar indicates the average over all
shown values, excluding the global fit, with its uncertainty.

Although sin2 θeff
W has already been measured with higher accuracy in e+e− collisions

at LEP and SLD, this is an important result, as both the complex initial state in proton–
proton collisions compared to e+e− collisions and the by far increased collision energy
w.r.t. previous hadron colliders might have resulted in unexpected effects. And not
least, the understanding of the detector and the simulation is brought forward.
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8. Summary

In addition to the integral forward–backward asymmetry the differential angular dis-
tributions (dσ/d cos θ and dσ/dφ) were measured in a small region around the Z mass.
This is the first measurement of the angular distribution from Z boson decays at the
LHC. Compared to the latest measurement from proton–antiproton collisions [87] the
transverse momentum range is significantly increased while comparable uncertainties are
achieved. The angular distribution is sensitive to the relative composition of qq̄ annihi-
lation and qg scattering in the initial state. Although the comparison to the pp̄ results
from CDF [87] seems to suggest a larger contribution of the qg initial state in the LHC
data, the size of the uncertainties does not allow a conclusive statement.

In addition to the composition of the initial state, the angular distributions are also
sensitive to the spin of the gluon through the so called Lam-Tung relation [32]. For two
coefficients of the angular distribution it states that they are equal, A0(pT) = A2(pT),
in the case that the gluon has spin S(g) = 1. The measured coefficients obey the Lam-
Tung relation in the studied transverse momentum range of 0 ≤ pT(Z) ≤ 300 GeV/c.
An average difference of 〈A0(pT)−A2(pT)〉 = 0.002± 0.078 is measured.

The study of angular distributions is particularly exciting in the light of the resonance
at a mass of m ' 126 GeV/c2, which has been discovered by ATLAS and CMS in 2012
and is thought to be the Higgs–Boson. A measurement of its spin and CP eigenstate,
which is possible on the basis of angular correlations in the decay channel H → ZZ → 4l,
will be an important step to unravel the identity of this Higgs candidate.
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A. Used datasets and PDFs

Name Ref. Order Usage and Remarks

MSTMCal [76] LO Standard PDF in Pythia simultaion
MSTW2008Lo [77] LO Extraction of sin2 θeff

W

CT10 [79] NLO Error estimation due to PDFs, 90%CL error sets
+ αs variation included

Table A.1.: Overview of the used PDF sets in this thesis.
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Prozess Generator Event sample identifier

Signal samples

Z/γ∗ → µµ PYTHIA mc11 7TeV.106047.PythiaZmumu no filter.merge.AOD.e815 s1272 s1274 r3043 r2993
Z/γ∗ → µµ MC@NLO mc11 7TeV.106088.McAtNloZmumu no filter.merge.AOD.e872 s1310 s1300 r3043 r2993
Z/γ∗ → µµ AlpGEN mc11 7TeV.10766[0..5].AlpgenJimmyZmumuNp[0..5] pt20.merge.AOD.e835 s1299 s1300 r3043 r2993

Background channels

Z/γ∗ → ττ PYTHIA mc11 7TeV.106052.PythiaZtautau.merge.AOD.e825 s1349 s1300 r3060 r2993
W → µν + 0 Jets AlpGEN + Jimmy mc11 7TeV.107700.AlpgenJimmyWtaunuNp0 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → µν + 1 Jets AlpGEN + Jimmy mc11 7TeV.107701.AlpgenJimmyWtaunuNp1 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → µν + 2 Jets AlpGEN + Jimmy mc11 7TeV.107702.AlpgenJimmyWtaunuNp2 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → µν + 3 Jets AlpGEN + Jimmy mc11 7TeV.107703.AlpgenJimmyWtaunuNp3 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → µν + 4 Jets AlpGEN + Jimmy mc11 7TeV.107704.AlpgenJimmyWtaunuNp4 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → µν + 5 Jets AlpGen + Jimmy mc11 7TeV.107705.AlpgenJimmyWtaunuNp5 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → τν + 0 Jets AlpGen + Jimmy mc11 7TeV.107700.AlpgenJimmyWtaunuNp0 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → τν + 1 Jets AlpGen + Jimmy mc11 7TeV.107701.AlpgenJimmyWtaunuNp1 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → τν + 2 Jets AlpGen + Jimmy mc11 7TeV.107702.AlpgenJimmyWtaunuNp2 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → τν + 3 Jets AlpGen + Jimmy mc11 7TeV.107703.AlpgenJimmyWtaunuNp3 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → τν + 4 Jets AlpGen + Jimmy mc11 7TeV.107704.AlpgenJimmyWtaunuNp4 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993
W → τν + 5 Jets AlpGen + Jimmy mc11 7TeV.107705.AlpgenJimmyWtaunuNp5 pt20.merge.AOD.e835 s1299 s1300 r3043 r2993

WW HERWIG mc11 7TeV.105985.WW Herwig.merge.AOD.e825 s1310 s1300 r3043 r2993
WZ HERWIG mc11 7TeV.105987.WZ Herwig.merge.AOD.e825 s1310 s1300 r3043 r2993
ZZ HERWIG mc11 7TeV.105986.ZZ Herwig.merge.AOD.e825 s1310 s1300 r3043 r2993

tt̄ MC@NLO mc11 7TeV.105200.T1 McAtNlo Jimmy.merge.AOD.e835 s1272 s1274 r3043 r2993

QCD: bb̄ PYTHIA mc11 7TeV.108405.PythiaB bbmu15X.merge.AOD.e825 s1310 s1300 r3043 r2993
QCD: cc̄ PYTHIA mc11 7TeV.106059.PythiaB ccmu15X.merge.AOD.e825 s1310 s1300 r3043 r2993

AtlFast2 samplesfor the signal process used for the template validation

sin2 θeff
W = 0.232 PYTHIA mc11 7TeV.106047.PythiaZmumu no filter.merge.AOD.e1025 a131 s1353 a139 r2900

sin2 θeff
W = 0.250 PYTHIA mc11 7TeV.129836.PythiaZmumu sin2ThW 2350.merge.AOD.e1452 a131 s1353 a145 r2993

Table A.2.: All simulated event samples used in the present analysis.
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B. Angular distributions for all bins in
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Figure B.1.: Azimuthal angular distributions obtained from the PYTHIA simulation
without detector simulation (truth) in comparison of the measured distri-
butions without (open circles) and with correction for detector effects (open
squares). All distributions in one transverse momentum bin are normalized
to the same integral for easier comparison of the shapes.
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B. Angular distributions for all bins in pT(µµ)
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Figure B.2.: Polar angular distributions obtained from the PYTHIA simulation with-
out detector simulation (truth) in comparison of the measured distribu-
tions without (open circles) and with correction for detector effects (open
squares). All distributions in one transverse momentum bin are normalized
to the same integral for easier comparison of the shapes.
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Figure B.3.: Template fit of the measured azimuthal angular distribution. The templates
are constructed from the PYTHIA simulation with the pT(Z) reweighted to
the measured distribution. The three templates are shown as crosses (black,
red and green), the measured distribution as open circles and the fit result
as blue diamonds.
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Figure B.4.: Template fit of the measured polar angular distribution. The templates are
constructed from the PYTHIA simulation with the pT(Z) reweighted to the
measured distribution. The three templates are shown as crosses (black, red
and green), the measured distribution as open circles and the fit result as
blue diamonds.
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Figure B.5.: Closure test of the analytical fit method (1) which is used to extract the
angular coefficients - azimuthal angle. The correction weights constructed
from the PYTHIA simulation with the pT(Z) reweighted to the measured
distribution are fitted to the angular distributions are applied to the same
MC sample. The analytical description of the angular distribution if fitted
to the obtained distributions.
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Figure B.6.: Closure test of the analytical fit method (1) which is used to extract the
angular coefficients - polar angle. The correction weights constructed from
the PYTHIA simulation with the pT(Z) reweighted to the measured distri-
bution are fitted to the angular distributions are applied to the same MC
sample. The analytical description of the angular distribution if fitted to
the obtained distributions.
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Figure B.7.: Closure test of the template fit method (2) which is used to extract the
angular coefficients - azimuthal angle. The templates constructed from the
PYTHIA simulation with the pT(Z) reweighted to the measured distribu-
tion are fitted to the angular distributions obtained from the same MC
sample. The three templates are shown as crosses (black, red and green),
the measured distribution as open circles and the fit result as blue diamonds.
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Figure B.8.: Closure test of the template fit method (2) which is used to extract the angu-
lar coefficients - polar angle. The templates constructed from the PYTHIA
simulation with the pT(Z) reweighted to the measured distribution are fit-
ted to the angular distributions obtained from the same MC sample. The
three templates are shown as crosses (black, red and green), the measured
distribution as open circles and the fit result as blue diamonds.
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