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Introduction

1. Introduction

The central objects of this thesis are cohomology Bott manifolds which are a generali-
sation of Bott manifolds. Bott manifolds were defined in [BS58] by Bott and Samelson.
The name Bott manifold is due to a paper of Grossberg and Karshon ([GK94]).
By definition a Bott manifold is the total space of an iterated CP1-bundle, where each
total space is the fibrewise projectivisation of the Whitney sum of an arbitrary complex
line bundle and a trivial one. In [GK94] they were examined from the perspective of
symplectic geometry. Later on, they came into the focus of toric topologists as one of the
main examples for toric manifolds. An n−dimensional toric manifold is defined to be a
smooth and compact, normal, complex algebraic variety X which contains an algebraic
torus (C∗)n ⊂ X as a dense subset and which admits an action (C∗)n ×X → X of the
algebraic torus which extends the action of (C∗)n on itself (cf. [Ful93]). In 2008 Choi,
Masuda and Suh [CMS10] enhanced the interest in Bott manifolds when they started to
work on the following conjectures.

Conjectures:

1. Let M and N be two toric manifolds such that their integral cohomology rings are
isomorphic. Then M and N are diffeomorphic.

2. Any isomorphism φ : H∗(M) → H∗(N) between the integral cohomology rings of
M and N can be realised by some diffeomorphism f : N →M , i.e. f∗ = φ.

The first part of the conjecture is usually referred to as the weak, the second as the
strong cohomological rigidity conjecture or problem for toric manifolds, abbreviated by
(WCRP) or (SCRP).
Before Choi, Masuda and Suh started to examine this problem Masuda in [Mas08]
showed that equivariant cohomology distinguishes toric manifolds as varieties. Hence,
the question arose whether ordinary cohomology can distinguish toric manifolds.
Since Bott manifolds are toric manifolds they form a test case for the (WCRP) and
the (SCRP). From now on, if we talk about the weak or strong cohomological rigidity
problem, we refer to the respective conjectures for Bott manifolds.

So far there is a number of special cases in which the conjecture is proven. Bott manifolds
of dimension four were already known by Hirzebruch. In [Hir51], he considers a class
of complex surfaces and shows that two of those surfaces are diffeomorphic if either
both are Spin-manifolds or both are not. If they are Spin they are diffeomorphic to
CP1×CP1; if they are non-Spin they are diffeomorphic to CP 2]CP 2. At the time these
complex surfaces formed the first known examples of manifolds which admit infinitely
many complex structures. Honoring his work, Bott manifolds of real dimension four
are called Hirzebruch surfaces. By explicit construction of all isomorphisms of their
cohomology rings, the (SCRP) is known to hold for Hirzebruch surfaces.
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Furthermore, the (WCRP) is known for two classes of Bott manifolds, known as Q-trivial
and one twist Bott manifolds, introduced in [CM12] and [CS11a], respectively.
The idea for the proof of the (WCRP) for these two classes of Bott manifolds is to use
bundle isomorphisms of the underlying complex vector bundles, i.e. isomorphisms of
those vector bundles whose projectivisations are the considered Bott manifolds.
For Q-trivial Bott manifolds this method even allows to prove the (SCRP).

The first class of Bott manifolds for which a different machinery is necessary is the class
of Bott manifolds of real dimension six. The proof of the (WCRP) in dimension six
uses surgery theoretical results developed in [Wal66] and [Jup73]. Since the cohomology
ring of a Bott manifold is torsion free an isomorphism between the integral cohomology
rings of two Bott manifolds induces an isomorphism between the cohomology rings with
coefficients in Z/2. Therefore, we denote the isomorphism on cohomology with Z/2-
coefficients with the same symbol. By the results in [Wal66] and [Jup73] it suffices
to show that any isomorphism ϕ : H∗(B) → H∗(B′) between the cohomology rings of
six-dimensional Bott manifolds B and B′ has the following two properties:

1. It preserves the total Stiefel-Whitney classes w(B) and w(B′) of B and B′, respec-
tively, i.e. ϕ(w(B)) = w(B′) and

2. it also preserves the total Pontrjagin classes p(B) and p(B′) of B and B′, respec-
tively, i.e. ϕ(p(B)) = p(B′).

This was proven in [CMS10].

For Bott manifolds of dimension eight there exists a preprint by Choi (cf. [Cho11a])
which shows that the (WCRP) holds for Bott manifolds of dimension eight. Furthermore,
he reduces the (SCRP) to the problem, whether four automorphisms of a certain class
of Bott manifolds can be realised.

Motivated by these examples which support the cohomological rigidity conjecture and
by the methods of the proof for the (WCRP) of six-dimensional Bott manifolds we pose
slightly different questions.
Let M be a smooth, simply connected and closed manifold of dimension greater or equal
to six. Furthermore, let B be a fixed Bott manifold and let ϕ : H∗(B) → H∗(M) be a
ring isomorphism which has the properties that

1. it preserves the total Stiefel-Whitney classes, i.e. ϕ(w(B)) = w(M) and

2. it preserves the total Pontrjagin classes , i.e. ϕ(p(B)) = p(M).

We refer to the class of manifolds M with these properties as cohomology Bott manifolds
(with respect to B). Note that this definition differs from the one given in [CS11a].
By [CMS10] the first property of ϕ is automatically fulfilled for any ring isomorphism

6



Introduction

of cohomology Bott manifolds. The second property is believed to hold if M is a Bott
manifold, too. This was claimed in [Cho11b], but unfortunately there was a gap in the
proof.

We ask ourselves the following natural questions about cohomology Bott manifolds.

Questions:

1. Can we say something about diffeomorphism classes of cohomology Bott manifolds?

2. Is it possible that they also fulfil cohomological rigidity?

3. Can we classify them in some way?

Since dimension six is solved by [Wal66], [Jup73] and [CMS10], we consider the next
interesting dimension, i.e. we consider cohomology Bott manifolds of dimension eight.

This thesis answers the first two questions and examines the third.

Our method to examine cohomology Bott manifolds is modified surgery theory as devel-
oped in [Kre99]. This method enables us to translate the question whether two manifolds
are diffeomorphic to the question whether these manifolds represent the same element
in a certain bordism group ΩB

8 . Since bordism groups are stable homotopy groups of
Thom spectra, by the Pontrjagin-Thom construction, modified surgery theory allows
us to examine the diffeomorphism classification of cohomology Bott manifolds with the
tools of stable homotopy theory.

Using this method we can answer the first question with Theorem 4.2:

Theorem. Let B4 be a Bott manifold of dimension eight. The number of diffeomorphism
classes of cohomology Bott manifolds with respect to B4 is finite.

The proof of the theorem is based on the fact that we can control the free part of the
bordism groups ΩB

8 by invariants.
As a matter of fact we can even give an upper bound for the number of diffeomorphism
classes of cohomology Bott manifolds with respect to B4 (cf. Corollary 4.8). The upper
bound can be deduced from the size of the torsion subgroup of the bordism group.

To answer the second question we construct explicit examples of cohomology Bott man-
ifolds which are not diffeomorphic to a Bott manifold in Theorem 4.10:

Theorem. Let S be a Bott manifold which admits a String-structure and which fulfills
the (SCRP). Then there exists a cohomology Bott manifold F (with respect to S) such
that F is not diffeomorphic to any Bott manifold.

Since there clearly exist Bott manifolds which fulfil the assumptions of the theorem, for
example in the class of Q-trivial Bott manifolds, the answer to the second question is
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negative: cohomology Bott manifolds are in general not cohomologically rigid.
In a sense this theorem is also a first step towards the answer of the third question. We
can hope to classify cohomology Bott manifolds if we understand the torsion subgroup
of ΩB

8 and F gives rise to a non-trivial element in ΩB
8 . Conjecturally the theorem, and in

particular the methods we use to construct F can be used to construct more manifolds
which represent elements in ΩB

8 .
To prove the theorem we need a codimension two Arf-invariant, that is, the Arf-invariant
of a submanifold of codimension two. Another interesting question is, whether cohomol-
ogy Bott manifolds are rigid if we additionally require them to have the same codimension
two Arf-invariants or additionally also the same Arf-invariants for some further codimen-
sions.

Interestingly enough codimension two Arf-invariants are also important for the final part
of this thesis, where we examine the (SCRP) in dimension eight. As already mentioned
the (SCRP) in dimension eight can be solved (cf. [Cho11a]) if four specific automor-
phisms on a certain class of Bott manifolds can be realised. In Theorem 5.2 we show
that one of these automorphisms can be realised if certain codimension two Arf-invariants
vanish.

Organisation of this thesis:

In Section 2 we define Bott manifolds and recall their basic properties, e.g. we compute
the cohomology ring of a Bott manifold and introduce two sets of generators of the
cohomology ring, we determine the isomorphism class of the tangent bundle of a Bott
manifold and their Stiefel-Whitney and Pontrjagin classes.
In Section 3 we recall the basic notions of modified surgery theory and the main theorem
of modified surgery theory for even-dimensional manifolds. We adapt the main theorem,
i.e. we deduce two corollaries, namely Corollary 3.11 and 3.12 which are convenient for
the application to cohomology Bott manifolds.
Furthermore, we introduce tools which we need for the calculation of bordism groups
that appear later on.
In Section 4 we use Corollary 3.11 to prove Theorem 4.2, i.e. that the number of diffeo-
morphism classes of cohomology Bott manifolds is finite. Then we construct the counter
examples to cohomological rigidity of cohomology Bott manifolds in Theorem 4.10.
In Section 5 we examine whether one of the automorphisms mentioned above can be
realised.
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Bott manifolds - Basic properties

2. Bott manifolds - Basic properties

In this section, we introduce Bott manifolds and their basic properties. We determine
the cohomology ring and the homotopy groups of a Bott manifold. The cohomology
ring of a Bott manifold, and later on a cohomology Bott manifold, plays a central role
throughout this thesis.
Furthermore, we examine the tangent bundle and point out how the characteristic classes
of a Bott manifold are determined by its cohomology ring.

2.1. Definition and cohomology ring

The manifolds, which are now called Bott manifolds, were first introduced in a paper by
Bott and Samelson (cf. [BS58]). The name Bott manifold is due to [GK94], a paper by
Grossberg and Karshon.
Bott manifolds are defined inductively. Given any Bott manifold, we obtain a new Bott
manifold by projectivising some appropriate complex rank two vector bundle over the
given one.

In this section, we consider fibre bundles obtained by projectivising complex vector bun-
dles in general and then specialise to Bott manifolds which form one class of examples.
For the remainder of this section, we fix p : E → X to be a smooth complex vector
bundle of rank r+ 1 over a smooth manifold X. Moreover, we denote the fibrewise pro-
jectivisation of E by P (p) : P (E) → X. We deduce basic properties of Bott manifolds
from the general case of a projectivised bundle P (E).
The trivial complex vector bundle of rank r is denoted by Cr, i.e. we suppress the pro-
jection and base space from notation. Furthermore, we denote a fibre bundle and its
total space with the same symbol if the projection map is obvious.

Definition 2.1. Define B0 to be a point. Assume inductively that Bj−1 is defined and
let Lj−1 → Bj−1 be some complex line bundle over Bj−1. Then Bj is the total space of
the bundle P (Lj−1 ⊕ C)→ Bj−1. We obtain a sequence of fibre bundles

CP1
j+1

ij+1

��

CP1
j

ij

��

CP1
j−1

ij−1

��
... // Bj+1

πj+1 // Bj
πj // Bj−1

// ... // B0 .

We call the whole sequence a Bott tower and each Bj a Bott manifold.

Note that the first stage B1 of a Bott tower is the complex projective space since all
bundles over the point are trivial.
A Bott tower is not only equipped with a projection between any two stages but also
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2.1 Definition and cohomology ring

with a section
CP1

j+1

ij+1

��

CP1
j

ij

��
Bj+1

πj+1
**
Bj

sj+1

ll

.

Restricted to an open subset U ⊂ Bj such that Bj+1|U ∼= U × CP1
j+1, i.e. restricted

to a local trivialisation the section is given by b
sj+17→ (b, [1 : 0]). This determines the

section on all of Bj since all transition functions are elements in the projectivisation of
U(1)⊕ U(1) ⊂ U(2).

By the existence of the section, the long exact sequence of homotopy groups of the
fibration CP1

j → Bj → Bj−1 decomposes into split short exact sequences. Inductively
we see

Lemma 2.2. The homotopy groups of Bott manifolds are determined by the homotopy
groups of S2, namely πi(Bj) ∼= πi(S

2)j.

Consider the more general situation, i.e. E → X is again a smooth complex vector
bundle of rank r+1 over an arbitrary smooth manifold X. The total space P (E) admits
a tautological line bundle γ → P (E), which is defined analogously to the tautological
line bundle over the complex projective spaces. Its total space γ consists of pairs (p, v) ∈
P (E)× E such that v ∈ p. The projection is given by (p, v) 7→ p.

By calling this bundle tautological line bundle we stick to the conventions of [CMS10].
Standard text books as [MS74] refer to this bundle as the canonical bundle.

In the case of a Bott manifold Bj = P (Lj−1 ⊕ C) we denote the tautological bundle by
γj , i.e. γj consists of the total space

γj := {(b, v) ∈ Bj × (Lj−1 ⊕ C) | v ∈ b}

together with the obvious projection.

The first Chern class of the tautological line bundle γ → P (E) plays a central role for
the description of the cohomology of P (E). We denote its negative by y := −c1(γ). In
the case of Bott manifolds we write

−c1(γj) = yj ∈ H2(Bj ;Z). (1)

We introduce the sign to ensure 〈i∗jyj , [CP1
j ]〉 = 1, where 〈 , 〉 denotes the Kronecker

product. Furthermore, it allows an elegant description of the cohomology ring.
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2.1 Definition and cohomology ring

Once more, we turn back to the general situation of a complex rank (r+1) vector bundle
E → X. Consider the pullback diagram

i∗γ //

��

γ

��
CP r

i // P (E) // X .

By definition, the pullback i∗γ is the tautological bundle over the fibre. Hence, its first
Chern class is a generator of the second cohomology of the fibre.
By the Leray-Hirsch Theorem (cf. [Hat02] Theorem 4D.1) the integral cohomology ring
H∗(P (E)) is generated as a H∗(X)-module by 1, y, ..., yr.
From now on all cohomology will be integral cohomology unless otherwise indicated.

Again specialising to Bott manifolds, we see that H∗(Bj) is a H∗(Bj−1)-module on the
generators 1 and yj . Inductively we see that the cohomology groups H2k(Bj), k ≤ j are
generated by cup products yi1 ∪ ... ∪ yik , 1 ≤ i1 < ... < ik ≤ j, where we suppress the
pullbacks from notation from now on.

We still need to describe the ring structure. Consider P (E) → X. From the definition
of Chern classes using the splitting principle (cf. [Hus94, p. 248]), we get

H∗(P (E)) ∼= H∗(X)[y]/(
r+1∑

i=0

ci(E)yr+1−i) (2)

as rings. Owing to our choice of sign, i.e. defining y to be −c1(γ) there do not appear
any signs in the sum.

We need some more notation.
For any manifold X the set of isomorphism classes of complex line bundles over X,
denoted by LC(X), can be endowed with a group structure by the tensor product. The
neutral element is the trivial line bundle, the inverse of some bundle is its dual bundle.
We denote the inverse of a line bundle L → X by L−1. With this group structure the
first Chern class c1 : LC(X)→ H2(X) is an isomorphism of groups (cf. [Hus94, Theorem
3.4, p.250]).

Recall that each Bott manifold Bj is defined using a line bundle Lj−1 → Bj−1. Since
y1, ..., yj−1 generate H2(Bj−1) there exist Aij ∈ Z, i < j such that

Lj−1 =

j−1⊗

i=1

γ
Ai

j

i .

Define αj :=
j−1∑
i=1

Aijyi = −c1(Lj−1). Consequently, the total Chern class of Lj−1 ⊕ C is

12



2.1 Definition and cohomology ring

given by c(Lj−1 ⊕ C) = 1− αj . Hence, by (2) and induction we obtain the cohomology
ring of Bj to be

H∗(Bj) ∼= H∗(Bj−1)[yj ]/(y
2
j = αjyj)

∼= Z[y1, ..., yj ]/(y
2
i = αiyi)i=1,...,j .

In particular, the elements y1, ..., yj form a basis of H2(Bj). We refer to this basis as
the bundle basis of H2(Bj).
Note that the cohomology ring was already determined in the paper by Bott and Samel-
son [BS58] in which Bott manifolds were first studied.

Using a naturality argument we now show that

s∗j (yj) = αj . (3)

For this purpose, we show that the pullback of γj to Bj−1 along the section is the defining
bundle Lj−1.
For now, let pj−1 : Lj−1 → Bj−1 denote the projection of the defining bundle an let
v ∈ p−1

j−1(b) be an element in the fibre over b ∈ Bj−1. Furthermore, let (b, w) be an
element in the total space of C→ Bj−1. If (v, w) 6= (0, 0) we denote the induced element
in Bj = P (Lj−1 ⊕ C) by (b, [v : w]). Moreover, we denote an element in the total space
of γj which projects to (b, [v : w]) by (b, v′, w′), i.e. (v′, w′) ∈ [v : w]. By the definition
of pullback of a fibre bundle,

s∗j (γj) =
{(

(b, v, w), b′
)
∈ γj ×Bj−1 | (b, [v : w]) = (b′, [1 : 0])

}
.

This only holds if b = b′ and [v : w] = [1 : 0]. The second equation only holds, if
w = 0. Hence, there is an isomorphism f : s∗jγj → Lj−1 of vector bundle defined by
(b, (v, 0), b) 7→ (b, v). By naturality Equation (3) follows.

So far we only considered the basis of H∗(Bj) which is most commonly used in the
literature, e.g. [CMS10]. But later on, we need another basis which we introduce now.
In a sense, this new basis is very geometric because it is defined by considering homology
classes which are induced by embedded submanifolds in Bj . The submanifolds are the
fibres CP1

i , i ≤ j of the Bott tower and the first Bott stage CP1
1 := B1 which are

embedded by the appropriate compositions of inclusion of fibres and sections. We denote
the induced elements in H2(Bj) by

σ1 := [sj ◦ . . . ◦ s2(CP1
1)]

σ2 := [sj ◦ . . . ◦ s3 ◦ i2(CP1
2)]

...

σj−1 := [sj ◦ ij−1(CP1
j−1)]

σj := [ij(CP1
j )].
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2.1 Definition and cohomology ring

Furthermore, denote their Kronecker duals by xk ∈ H2(Bj), i.e.

〈xk, σl〉 = δkl

for k, l ≤ j. We claim that the elements x1, ..., xj ∈ H2(Bj) form another basis of H2(Bj)
which we call the geometric basis. The base change between the bundle basis and the
geometric basis is given in the following Lemma.

Lemma 2.3. Let yk, αk and xk, k ≤ j be as above. Then

xk = yk − αk.

In particular, this implies that {x1, . . . , xj} is another basis for H2(Bj) and generates
H∗(Bj) as a ring. The proof is elementary.

Proof. For this proof it is necessary to spell out all pullbacks. In particular, note that

i∗l π
∗
l ◦ . . . ◦ π∗k+1yk = 0 (4)

for k < l. Furthermore, recall that αk = −c1(Lk−1) ∈ H2(Bk−1).
The defining property of the xk is how they evaluate on σl. Hence we only need to show
that 〈π∗j ◦ . . . ◦ π∗k+1(yk − αk), σl〉 = δkl.
Let fl denote s2 if l = 1 and il otherwise. There are three different cases: k < l, k = l
and k > l.
We start with k > l:

〈π∗j . . . π∗k+1(yk − π∗kαk), (sj)∗ . . . (sl+1)∗(fl)∗[CP1
l ]〉

= 〈yk − π∗kαk, (sk)∗ . . . (fl)∗[CP1
l ]〉

= 〈s∗kyk − αk, (sk−1)∗ . . . (fl)∗[CP1
l ]〉

= 0 by Equation (3).

If l < k the claim holds by Equation (4).
It remains to check that 〈π∗j . . . π∗k+1(yk − π∗kαk), σk〉 = 1:

〈π∗j ...π∗k+1(yk − π∗kαk), σk〉 = 〈π∗j ...π∗k+1(yk − π∗kαk), (sj)∗...(fk)∗[CP1
k]〉

= 〈f∗kyk − f∗kπ∗kαk, [CP1
k]〉

= 〈f∗kyk[CP1
k]〉 − 〈f∗kπ∗kαk, [CP1

k]〉
= 1.

Here the last equation holds for the following reasons: By definition the pullback f∗kyk
is the generator of H2(CP1

k) which is Kronecker dual to [CP1
k]. Furthermore, the map

fk is the inclusion of the fibre if k 6= 1, i.e. f∗kπ
∗
k = 0 and if k = 1 the f∗1π

∗
1 = s∗2π

∗
1 = 0

since π1 is the projection to B0 = pt.

14



2.2 Tangent bundle and characteristic classes

We introduce another nice geometric interpretation of the xi in the case of a Bott
manifold of dimension eight.

Remark 2.4. Let
CP1

4

i4

��

CP1
3

i3

��

CP1
2

i2

��
B4

π4 // B3
π3 // B2

π2 // CP1
1

denote a Bott tower of height four. In addition to the section

sk : Bk−1 → Bk, b 7→ (b, [1 : 0])

there is a second section

s∞k : Bk−1 → Bk, b 7→ (b, [0 : 1]).

In B4 there exist the following submanifolds:

P1 := B4|B3|i2(CP1
2)
, P2 := B4|B3|s∞2 (CP1

1)
, P3 := B4|s∞3 (B2) and P4 := s∞4 (B3).

By definition they are Bott manifolds of dimension six.
Let fl be as in the proof above. Abbreviate s4 ◦ .. ◦ fl(CP1

l ) by sl(CP1
l ). Observe that

sl(CP1
l ) and Pk intersect in one point if l = k. If l 6= k they are disjoint.

We can consider the induced homology classes ρi := [Pi].
Let • : H6(B4)×H2(B4)→ H0(B4) denote the intersection product (cf.[Bre93] Chapter
VI.11). If the homology classes in consideration are given by submanifolds Theorem VI
11.9 of [Bre93] allows us to calculate the intersection product by counting intersection
points of the underlying submanifolds. Thus,

ρl • σk = δlk.

Let M be an oriented, connected, closed manifold of dimension n. Sticking to the
notation of [Bre93] let D : Hi(M)→ Hn−i(M) denote the inverse of the Poincaré duality
isomorphism. By definition ρl • σk = D(ρl) ∩ σk = δlk. Thus, xl as in the Lemma is the
Poincaré dual of ρl

xl ∩ [B4] = ρl.

2.2. Tangent bundle and characteristic classes

Using that s∗jγj = αj (cf. Equation (3)), we can determine the tangent bundle TBj . We
claim

TBj ∼=
j⊕

i=1

γ−2
i ⊗ Li−1.

15



2.2 Tangent bundle and characteristic classes

Since TBj ∼= π∗jTBj−1⊕TfibBj determining the tangent bundle amounts to determining
the fibrewise tangent bundle of the fibre bundle Bj → Bj−1. Here, the fibrewise tangent
bundle is a complex line bundle, i.e. it is determined by its first Chern class

c1(TfibBj) =:

j∑

i=1

λiyi ∈ H2(Bj).

Let y denote the negative of c1(γ) where γ is the tautological bundle over CP1
j .

By definition the fibrewise tangent bundle pulls back to the tangent space of the fibre
under the inclusion of the fibre. Consequently, we obtain

2y = c1(TCP1
j ) = c1(i∗jTfibBj) = i∗(

j∑

i=1

λiyi) = λjy,

where the last equality holds by Equation (4). Hence λj = 2.
On the other hand, we can consider the pullback of the fibrewise tangent bundle along
the section sj : Bj−1 → Bj = P (Lj−1 ⊕ C), b 7→ (b, [1, 0]) and obtain the normal bundle

ν(Bj−1
sj→ Bj) ∼= L−1

j−1 (cf. Section 2.3). Therefore,

αj = c1(L−1
j−1) = c1(s∗j (TfibBj))

= s∗j (c1(TfibBj)) = s∗j (2yj) +

j−1∑

i=1

λiyi.

Since αj = s∗jyj we obtain
j−1∑
i=1

λiyi = −αj . Hence, the first Chern class c1(TfibBj) equals

2yj − αj , i.e. TfibBj ∼= γ−2
j ⊗ Lj−1

Another way to determine the fibrewise tangent bundle is to use Borel and Hirzebruch’s
general formula (cf. [BH58]) for the total Chern class of the fibrewise tangent bundle of
P (E)→ X, for E and X as before. They determine

c(TfibP (E)) =
r+1∑

q=0

(1 + y)r+1−qcq(E),

which leads to the same result as above.

By the Whitney sum formula the total Chern class of a Bott manifold with tangent
bundle TBj is

c(TBj) = c(

j⊕

i=1

TfibBi) =

j∏

i=1

(1 + 2yi − αi).
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2.3 Global description

The odd Stiefel-Whitney classes are the mod two reduction of the Chern classes. Thus,
we see that the Stiefel-Whitney classes are determined by the αi. Similarly, the Pontr-
jagin classes are determined by

c(TBj ⊗ C) = c(

j⊕

i=1

TfibBi) ∪ c(
j⊕

i=1

TfibBi)

=

j∏

i=1

(1 + 2yi − αi) ∪
j∏

i=1

(1− 2yi + αi) =

j∏

i=1

(1− α2
i ).

In this sense the cohomology ring determines the Stiefel-Whitney and Pontrjagin classes.

2.3. Global description

One way to understand the normal bundle of the section si : Bi−1 → Bi is to use the
global description of Bott manifolds. Global description here means that we introduce a
Bott manifold Bi as a quotient of (C2/{0})i. Apparently, this was first done in [CM12].

The complex projective space is very well-known to be

C2 − {0}/ ∼ ,

where two points in (p1, q1), (p̃1, q̃1) ∈ C2 − {0} are equivalent if (p1, q1) = z1(p̃1, q̃1),
for some z1 ∈ C∗. As usual, we denote the equivalence classes under this relation by
[p1 : q1].
The A1

2-th tensor power of the tautological line bundle is then given by

C2 − {0} × C/ ∼ ,

where two points (p1, q1, p2) and (p̃1, q̃1, p̃2) are equivalent if

(p1, q1, p2) = (z1p̃1, z1q̃1, z
−A1

2
1 p2),

for some z1 ∈ C∗. Adding a trivial line bundle amounts to adding a fourth coordinate
q2. After projectivising we get a stage two Bott manifold

B2 = (C2 − {0})2/ ∼ ,

where two points (p1, q1, p2, q2) and (p̃1, q̃1, p̃2, q̃2) are equivalent if

(p1, q1, p2, q2) = (z1p̃1, z1q̃1, z2z
−A1

2
1 p̃2, z2q̃2)

for some z1, z2 ∈ C∗.
Generalising this procedure, we obtain a Bott manifold by

Bj = (C2 − {0})j/ ∼ ,

17



2.3 Global description

where ((p1, q1), ..., (pj , qj)) and

(
z1(p1, q1), z2(z

−A1
2

1 p2, q2), ..., zj(
∏j−1
i=1 z

−Ai
j

i pj , qj)

)
are

equivalent for all (z1, ..., zj) ∈ (C∗)j .
We can also say that the Bott manifold Bj is the orbit space of the free, proper and
smooth action (C∗)j × (C2 − {0})j → (C2 − {0})j defined by

((z1, ..., zj), ((p1, q1), ..., (pj , qj))) 7→
(
z1(p1, q1), ..., zj(

j−1∏

i=1

z
−Ai

j

i pj , qj)

)
.

The Ajj+1-st power of the tautological line bundle over Bj is given by

γ
Aj

j+1

j = {((p1, q1), ..., (pj , qj), pj+1)) ∈ (C2/{0})j × C}/ ∼ ,

where ((p1, q1), ..., (pj , qj), pj+1) and

(
z1(p1, q1), ...zj(

∏j−1
i=1 z

−Ai
j

i pj , qj), z
−Aj

j+1

j pj+1

)
are

equivalent for zi ∈ C∗, i ≤ j. We denote the equivalence classes by brackets again.
In this setting, the section sj : Bj−1 → Bj is given by

[p1 : q1 : ... : pj−1 : qj−1] 7→ [p1 : q1 : ... : pj−1 : qj−1 : 1 : 0].

It is obviously well-defined.
Moreover, we see that a tubular neighbourhood of sj(Bj−1), i.e. a disk bundle of the
normal bundle of D(ν(Bj−1 → Bj)) consists of points which admit preferred representa-
tives of the form (p1, q1, ..., pj−1, qj−1, 1, p

−1
j qj). Changing the representative for a point

in (p1, q1, ..., pj−1, qj−1) ∈ Bj−1 by the action of some (z1, ..., zj−1) ∈ (C∗)j−1 amounts to

changing the last coordinate p−1
j qj of the preferred representative by

∏j−1
i=1 z

Ai
j

i . This is

one way to see that the normal bundle ν(Bj−1 → Bj) is isomorphic to L−1
j−1
∼=
⊗
γ
−Ai

j

i .
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Modified surgery theory

3. Modified surgery theory

In this section, we introduce the methods we use to examine eight-dimensional cohomol-
ogy Bott manifolds on the one hand, and the strong cohomological rigidity conjecture
in dimension eight on the other hand.
For the reader’s convenience, we summarise the most important notions of modified
surgery theory as developed in [Kre99]. Then we adapt the main theorem of modified
surgery theory for even-dimensional manifolds to our situation.
Afterwards, we develop some tools to calculate bordism groups that appear in this set-
ting.

3.1. Postnikov decompositions

This section recalls the notion of a Postnikov decomposition of a fibration and introduces
some necessary notation.
Furthermore, we present a result that connects a differential in the Leray-Serre spectral
sequence of a principal fibration with fibre an Eilenberg-MacLane space, to the classifying
map of the fibration.

Consider a fibration F → E
p→ B of path-connected CW-spaces. Then there exists a

Postnikov decomposition (cf. [Bau77] p. 306 ff.).

Theorem 3.1. For a fibration F → E
p→ B as above, there exists a commutative

diagram
E

p

��i1zzuuuuuuuuuu

i2
uullllllllllllllllll

in

tttt

Foo

... // En qn
// ... q3

// E2 q2
// E1 q1

// E0 = B

such that for all j ≥ 0

• the maps qj+1 : Ej+1 → Ej are fibrations with fibre the Eilenberg-MacLane space
K(πj+1(F ), j),

• the maps ij : E → Ej are (j+1)-connected, i.e. for k ≤ j they induce isomorphisms
πk(E)→ πk(Ej) and an epimorphism πj+1(E)→ πj+1(Ej),

• the maps pj := q1 ◦ ...◦ qj : Ej → B are (j+ 1)-co-connected, i.e. for k ≥ j+ 1 they
induce isomorphisms πk(Ej)→ πk(B) and a monomorphism πj(Ej)→ πj(B).

Each space Ej is unique up to fibre homotopy. It is called the j-th Postnikov stage of
the fibration E → B. The whole tower is called Postnikov decomposition of the fibration
E → B.
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3.1 Postnikov decompositions

Instead of considering an arbitrary fibration E → B as above, we now restrict to the
case B ' ∗ to get the well-known Postnikov tower of a path-connected space E. In this
situation we denote each stage by PjE. The diagram simplifies to

E

p

��i1yyssssssssss

i2
uujjjjjjjjjjjjjjjjjjjj

in

ssss... // PnE qn
// . . . q3

// P2E q2
// P1E q1

// P0E ' ∗ .

From now on, we assume that E is simply connected. Note that the Postnikov tower
can be constructed functorially under this assumption. The functorial construction can
be found in Chapter IX of [Whi78].
Furthermore, each fibration PjE → Pj−1E is a principal fibration (cf. [Hat02], Theorem
4.69). Therefore, there exists a map kj : Pj−1E → K(πj(E), j + 1), which is called the
j-th k-invariant of the Postnikov tower, such that the fibration qj : PjE → Pj−1E is the
pullback of the path-loop fibration

K(πj(E), j) = ΩK(πj(E), j + 1)→ PK(πj(E), j + 1)→ K(πj(E), j + 1)

along kj .

Recall that for us cohomology is always integral cohomology unless otherwise indicated.
Later on, we need tools to calculate the cohomology of a Postnikov stage Hk(PjE). For
k ≤ j this is rather easy.

Lemma 3.2. Let PjE be the j-th Postnikov stage of a simply connected space E. Then
Hk(PjE) ∼= Hk(E) for k ≤ j.

Proof. First we apply the mapping cylinder construction to turn the map ij : E → Pj(E)
into an inclusion. Hence we can consider the pair (PjE,E). Since ij is (j+ 1)-connected
the relative homotopy groups πk(PjE,E) vanish for k ≤ j + 1.
By assumption E is simply connected, whence we can apply the relative Hurewicz the-
orem. We deduce that Hk(PjE,E) also vanishes for k ≤ j + 1.
The universal coefficient theorem implies Hk(PjE,E) = 0 for k ≤ j+1. Thus, we obtain
the lemma by the long exact sequence in cohomology of the pair (PjE,E).

One approach to the calculation of the cohomology groups Hk(PjE) for k > j is given by
the application of the cohomological Leray-Serre spectral sequence with integral coeffi-
cients. But to successfully determine Hk(PjE), at least in a range, we need to understand
the differentials.

Consider the fibration K(πj(E), j) → PjE → Pj−1E. The fibre K(πj(E), j) is (j − 1)-
connected. Again applying the Hurewicz theorem and the universal coefficient theorem
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3.1 Postnikov decompositions

we see

H̃k(K(πj(E), j);πj(E)) ∼=
{

0 if k < j

Hom(πj(E), πj(E)) if k = j.

Let Ep,qj+1 be the (p, q)-entry on the (j + 1)st page of the Leray-Serre spectral sequence
of the fibration K(πj(E), j)→ PjE → Pj−1E with coefficients in πj(E).

All differentials dk : E0,j
k → Ek,j−k+1

k for k ≤ j vanish, since H̃ l(K(πj(E), j);πj(E)) = 0

for l < j. Thus E0,j
j+1
∼= Hj(K(πj(E), j);πj(E)) and

dj+1 : E0,j
j+1 → Ej+1,0

j+1

is the first differential, with this domain, that need not vanish. It is also the first
differential that can hit Ej+1,0

j+1 . Thus we can identify Ej+1,0
j+1

∼= Hj+1(Pj−1E;πj(E)).

Lemma 55 in [Mül09a] connects the differential dj+1 : E0,j
j+1 → Ej+1,0

j+1 to the k-invariant

of PjE → Pj−1E. Let ∆ denote the canonical generator of Hj+1(K(πj(E), j);πj(E))
and let κj ∈ Hj+1(Pj−1E;πj(E)) denote the cohomology class that corresponds to the
k-invariant kj : Pj−1E → K(πj(E), j + 1) under the isomorphism

[Pj−1E,K(πj(E), j + 1)]→ Hj+1(Pj−1E, πj(E)).

Lemma 3.3. The differential dj+1 : E0,j
j+1 → Ej+1,0

j+1 maps the canonical generator ∆ of

Hj(K(πj(E), j);πj(E)) to κj ∈ Hj+1(Pj−1E;πj(E)).

Now, let Ep,qj+1 be the (p, q)-entry on the (j+1)st page of the Leray-Serre spectral sequence
with integral coefficients.
Later on, we need the integral Leray-Serre spectral sequence for fibrations of the form
K(πj(E), j) → PjE → Pj−1E. Fortunately, Proposition 4.4 in [Mül09b] determines

the differential dj+1 : E0,j
j+1 → Ej+1,0

j+1 for principal fibrations P → B whose fibre is an
Eilenberg-MacLane space, under some conditions.

Proposition 3.4. [Mül09b, Proposition 4.4] Let π be a finitely generated, free abelian
group. Furthermore, let P → B be a principal fibration with fibre K(π, j) such that B is
homotopy equivalent to a CW-complex and assume that Hi(B) is finitely generated for
i ≤ j + 2.
Let k : B → K(π, j+ 1) be the classifying map for P → B and let κ ∈ Hj+1(B;π) be the
induced class in cohomology.
Then there exists a natural isomorphism

Ψ: Hj+1(B;π)→ Hom(Hj(K(π, j)), Hj+1(B))

such that Ψ(κ) = (dj+1 : E0,j
j+1 → Ej+1,0

j+1 ).
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3.2 Main theorem of modified surgery theory for even-dimensional manifolds

Let M be a closed, simply connected manifold with finitely generated, free abelian
homotopy group πj(M). As stated above, the fibration K(πj(M), j) → PjM → Pj−1M
is principal with classifying map k = kj , where kj is the j-th k-invariant. Thus, we can
apply the proposition to this setting.

3.2. Main theorem of modified surgery theory for even-dimensional
manifolds

In this section, we recall some definitions and statements of [Kre99] for the convenience
of the reader. Some of the definitions are rather algebraic. Another reference for the
algebraic part is [CS11b].

We start with the definition of the normal k-type of a manifold.
Let M be a smooth n-dimensional manifold. By Whitney’s embedding theorem there
exists a smooth embedding of M in Rn+r for r ≥ n. Such an embedding is unique up to
isotopy if r ≥ n+ 1 (cf. [Wu58]).
The normal Gauss map νr : M → BOr of an embedding ϕ : M → Rn+r is a representative
for the homotopy class of maps which classify the normal bundle ν(M

ϕ→ Rn+r).
Let BO be the direct limit of all BOr, ir : BOr → BO the inclusion. We call ir ◦ νr
the stable normal Gauss map of the embedding ϕ. Since, for N ≥ 2n + 1, any two
embeddings into RN are isotopic their stable normal Gauss maps are homotopic. Thus,
the stable normal Gauss map is unique up to homotopy.

Definition 3.5. [Kre99, p. 711] Let M be a smooth n-dimensional manifold and let
ν : M → BO be its stable normal Gauss map. Furthermore, let p : B → BO be a
fibration. If there exists a lift of the stable normal Gauss map, i.e. if there exists a map
ν̃ : M → B such that the diagram

B

p

��
M

ν //

ν̃

<<zzzzzzzz
BO

commutes up to homotopy, then M admits a normal B-structure.
If ν̃ : M → B is (k+ 1)-connected, i.e. if ν̃∗ : πi(M)→ πi(B) is an isomorphism for i ≤ k
and onto for i = k + 1, we call ν̃ a normal k-smoothing into B.
If, furthermore, p : B→ BO is (k + 1)-co-connected, i.e. if p∗ : πi(B)→ πi(BO) is injec-
tive for i = k + 1 and an isomorphism for i ≥ k + 2, we call B the normal k-type of M .
Let M0 and M1 be two n-dimensional manifolds which admit normal B-structures
ν̃i : Mi → B, then M0 and M1 are normally B-bordant if there exists a compact manifold
W of dimension n + 1 and a normal B-structure ν̃ : W → B such that ∂W = M0 ∪M1

and ν̃|Mi = ν̃i.
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3.2 Main theorem of modified surgery theory for even-dimensional manifolds

Being B-bordant is an equivalence relation on manifolds which admit a normal B-
structure. The set of equivalence classes of all k-dimensional manifolds which admit
a B-structure turns out to be a group, the B-bordism group which we denote by ΩB

k . For
more details on B-structures and B-bordism we refer the reader to [Sto68].
Employing the pathspace construction, we can consider the stable normal Gauss map as
a fibration. Thus, we see that the normal k-type of a manifold is the k-th stage of the
Postnikov decomposition of its stable normal Gauss map. Hence, by Theorem 3.1, the
normal k-type of M is unique up to fibre homotopy equivalence. Therefore, we denote
it by Bk(M). Normal k-smoothings, however, are not unique in general.

Before we can cite the main theorem of modified surgery theory for even-dimensional
manifolds, we still need to define the surgery obstruction in the setting of modified
surgery theory. It is an element in the so-called “little l”-monoid, which we define next.

Let π be a group together with a homomorphism w : π → Z/2 and let Λ := Z[π] be its
integral group ring. On Λ, there exists an involution defined by

− : Λ → Λ∑

g∈π
λg · g 7→

∑

g∈π
λg · g :=

∑

g∈π
λgw(g)g−1.

Here, w(g) acts by sign.
We work with left Λ-modules. Applying the involution we can turn every right Λ-module
into a left one.

Let ε ∈ {±1} and consider S := {s− εs | s ∈ Λ}. The maps

Λ/S × Λ/S → Λ/S, ([x], [y]) 7→ [x+ y],

Λ× Λ/S → Λ/S, (x, [y]) 7→ [xyx] and

Λ/S → Λ, [x] 7→ x+ εx

are well-defined. From now on we omit the brackets in the notation.

Definition 3.6. [Kre99, p. 725] Let ε ∈ {±1} and let V be a left Λ−module. An
ε-quadratic form is a triple (V, λ, µ), where λ : V × V → Λ and µ : V → Λ/S are maps
such that, for all v, w ∈ V and x ∈ Λ:

i) λv : V → Λ, w 7→ λv(w) := λ(w, v) is an element in HomΛ(V,Λ),

ii) λ(v, w) = ελ(w, v),

iii) µ(v + w) = µ(v) + µ(w) + λ(v, w) ∈ Λ/S,

iv) µ(xv) = xµ(v)x and
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3.2 Main theorem of modified surgery theory for even-dimensional manifolds

v) λ(v, v) = µ(v) + εµ(v) ∈ Λ.

We call λ intersection form and µ quadratic refinement.

Note that there is a natural way to add quadratic forms. Let (Vi, λi, µi), i = 1, 2 be two
ε-quadratic forms. We define the sum of the two intersection forms, λ1⊕λ2 : V1⊕V2 → Λ,
by (λ1⊕λ2)(u, v) := λ1(u1, v1)+λ2(u2, v2) for (u1, u2) = u and (v1, v2) = v two elements
of V1 ⊕ V2. The same works for the quadratic refinements.
We denote the sum of two quadratic forms by

(V1, λ1, µ1) ⊥ (V2, λ2, µ2) := (V1 ⊕ V2, λ1 ⊕ λ2, µ1 ⊕ µ2).

Let e1, e2 denote the standard basis for the Λ−module Λ⊕ Λ.
For us, the most important example of an ε-quadratic form is the triple (Λ⊕ Λ, λε, µε),
where λε is defined by λε(ei, ei) = 0 for i = 1, 2 and λε(e1, e2) = 1 and µε(ei) = 0 for
i = 1, 2. This form is called the standard ε-hyperbolic form. Let (Λ⊕Λ, λε, µε)

⊥r denote
its r-fold sum.

Recall that Λ is the group ring Z[π] and that w : π → Z/2 is a homomorphism.
We consider two bases of a Λ−module as equivalent if the matrix of the base change
vanishes in the Whitehead group Wh(π) which is defined in [Lüc02, Chapter 2.1].
A Λ−module is called based if it is equipped with an equivalence class of bases. Let V
and V ′ be based Λ−modules. An isomorphism φ : V → V ′ is called simple if its matrix
with respect to the two equivalence classes of bases vanishes in Wh(π).

The objects of the “little l”-monoids are represented by tuples ((Λ⊕ Λ, λε, µε)
⊥r , V ) of

the r-fold sum of the hyperbolic form and a based, half-rank direct summand V of Λ2r.
Next, we define a equivalence relation on such tuples.

First of all we stabilise, i.e. we identify the tuples
(

(Λ⊕ Λ, λε, µε)
⊥r , V

)
and

(
(Λ⊕ Λ, λε, µε)

⊥r+1 , V ⊕ (Λ× {0})
)
.

Following Wall [Wal70] we define TU ε(Λ2r) to be the group of those isometries

φ : (Λ⊕ Λ, λε, µε)
⊥r → (Λ⊕ Λ, λε, µε)

⊥r ,

of the r-fold sum of the standard ε-hyperbolic form, whose restriction to Λr × {0} is a
simple isomorphism.
We denote the direct limit with respect to the inclusions TU ε(Λ2r) → TU ε(Λ2r+2) by
TU ε(Λ).
Let σ : Λ⊕Λ→ Λ⊕Λ be defined by σ(e1) = εe2 and σ(e2) = e1 for {e1, e2} the standard
basis of Λ⊕ Λ, as before. We call σ the flip map.
Finally, let RU ε(Λ) be the group generated by elements in TU ε(Λ) and by the flip map.

Now we have assembled all objects necessary to define the “little l”-monoid.
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3.2 Main theorem of modified surgery theory for even-dimensional manifolds

Definition 3.7. [Kre99, p. 733] Let
(

(Λ⊕ Λ, λε, µε)
⊥r , V

)
and

(
(Λ⊕ Λ, λε, µε)

⊥r′ , V ′
)

be two stable tuples of sums of hyperbolic forms and based, half-rank direct summands
V and V ′, respectively. Two such stable tuples are equivalent if there exists an element
A ∈ RU ε(Λ) such that, stably, the image of V under A is V ′, i.e. there exists l ∈ N such
that A(V ⊕ (Λl × {0})) = V ′ ⊕ (Λr−r

′+l × {0}).
For ε := (−1)q the little l-monoid l2q+1(π,w) is defined to be the set of equivalence

classes [((Λ⊕ Λ), λε, µε)
⊥r , V ] of stable tuples.

Together with the sum operation ⊥, which is well-defined on the equivalence classes, this
set becomes a monoid.

If the action of w on π is trivial we omit it in the notation. In particular, if π is the
trivial group, we denote its integral group ring by Z. Thus, its little l-monoid is denoted
by l2q+1(Z).

To get from the algebraic setting to topology, we need Proposition 4 of [Kre99]. From
now on, if we talk about surgery on a compact B- manifold W , we always refer to surgery
which is compatible with the B-structure.

Proposition 3.8. Let W be a smooth, compact manifold of dimension 2q or 2q + 1 for
q ≥ 2. Let B → BO be a fibration whose total space B is connected and has a finite
q-skeleton.
If W admits a normal B-structure ν̃ : W → B, we can change (W, ν̃) to (W ′, ν̃ ′) such
that ν̃ ′ is a normal (q − 1)-smoothing by a finite sequence of surgeries.

This type of surgery is known as surgery below the middle dimension.

We are finally ready to define the surgery obstruction. The manifolds we are interested
in are all of dimension 2q for q even. Consequently, we restrict to q even from now on.
Thereby, we avoid some technicalities in dimensions 6 and 14.

Let B → BO be a fibration as in Proposition 3.8, π := π1(B) and w := w1(B), where
w1(B) is the first Stiefel-Whitney class of B. The surgery obstruction for B-bordism is an
element in l2q+1(π1(B), w1(B)). Therefore, we start by constructing a Λ−module which
admits an ε−quadratic form and a based, half-rank direct summand.

Let M0 and M1 be two connected manifolds of dimension 2q, q ≥ 2 and q even, with
the same Euler characteristic. Furthermore, let f : ∂M0 → ∂M1 be a diffeomorphism.
Assume there exist normal (q − 1)-smoothings ν̃i : Mi → B which are compatible with
f , i.e. ν̃0|∂M0 ' ν̃1 ◦ f . Furthermore, assume that there exists a zero-bordism W of
M0 ∪f M1 which admits a normal B-structure ν̃ : W → B that fulfils ν̃|Mi = ν̃i.
By surgery below the middle dimension as in Proposition 3.8, we can assume that ν̃ is a
normal (q − 1)−smoothing, too. Hence, the first non-vanishing homotopy group of the
pair (B,W ) is πq+1(B,W ).
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3.2 Main theorem of modified surgery theory for even-dimensional manifolds

Choose embeddings fj : Sqj ↪→ intW which generate im (d : πq+1(B,W )→ πq(W )). By
the transversality theorem we can always arrange the embeddings to have empty inter-
section.
Since they are in the image of d the induced elements Sqj ↪→W

ν̃→ B in πq(B) are trivial.

In particular, [Sqj
fj
↪→ W

ν̃→ B → BO] vanishes in πq(BO). This implies that ν(W )|Sq
j

is trivial. Therefore, the normal bundle of Sqj → W is trivial and we obtain disjoint

embeddings Sqj ×Dq+1 ↪→ intW by the tubular neighbourhood theorem.

Let U :=
⋃
j(S

q
j ×Dq+1). Since Mi and ∂U are disjoint Hk(∂U ; Λ) ∼= Hk(∂U∪Mi,Mi; Λ)

for all k. Consider the triple

Mi ⊂Mi ∪ ∂U ⊂W − int(U)

and its long exact sequence

→ Hk+1(W−int(U), ∂U∪Mi; Λ)→ Hk(∂U ∪Mi,Mi; Λ)︸ ︷︷ ︸
∼=Hk(∂U ;Λ)

→ Hk(W−int(U),Mi; Λ)→ .

Since ∂U ∼= Sq × Sq the homology groups Hk(∂U ; Λ) vanish for all k 6= 0, q, 2q.
Recall that Hq(∂U ; Λ) is equipped with a quadratic form given by the geometric inter-
section and self-intersection form (cf. [Wal70]). It actually is (−1)q−hyperbolic. We
denote it by (Hq(∂U ; Λ), λU , µU ).
Standard arguments in algebraic topology show that

rankHq+1(W − int(U), ∂U ∪Mi; Λ) = rankHq(W − int(U),Mi; Λ).

Further arguments show that the homology groups Hk+1(W − int(U), ∂U ∪Mi; Λ) and
Hk(W − int(U),Mi; Λ) vanish for k 6= 0, q, 2q. Thus, we can apply Lemma 2.3 of [Wal70]
which implies that all modules in

0→ Hq+1(W − int(U), ∂U ∪M0; Λ)→ Hq(∂U ; Λ)→ Hq(W − int(U),M0; Λ)→ 0.

are stably free and can be equipped with a preferred equivalence class of bases. Thus,
we obtain a short exact sequence of based Λ-modules. Since the rank of the left and the
right modules is equal, the image im(Hq+1(W − int(U), ∂U ∪M0; Λ)→ Hq(∂U ; Λ)) is a
based, half-rank direct summand. We are now ready to define the surgery obstruction.
Its well-definedness will follow from the theorem below the definition.

Definition 3.9. (cf. [Kre99] p. 734) Let q ≥ 2, q even, let W of dimension 2q + 1 be a
B-bordism between M0 and M1 as above and let

V := im(Hq+1(W − int(U), ∂U ∪M0; Λ)→ Hq(∂U ; Λ)).
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3.2 Main theorem of modified surgery theory for even-dimensional manifolds

The surgery obstruction is defined to be

Θ(W, ν̃) := [(Hq(∂U ; Λ), λU , µU ), V ] ∈ l2q+1(π1(B), w1(B)).

Let Ṽ be a based, half-rank direct summand of (Λ ⊕ Λ)⊥r such that Ṽ ⊕ ({0} × Λr) ∼=
(Λ ⊕ Λ)r and such that the basis of Ṽ together with the standard basis of {0} × Λr is
equivalent to the standard basis of (Λ⊕ Λ)r.
The surgery obstruction is elementary if there exists Ṽ as above such that Θ(W, ν̃) is

equivalent to
(

(Λ⊕ Λ, λε, µε)
⊥r , Ṽ

)
.

Next we state Theorem 4 of [Kre99] for q even.

Theorem 3.10. Let M0 and M1 be two connected manifolds of dimension 2q, q ≥ 2
even, which have the same Euler characteristic χ(M0) = χ(M1) and let f : ∂M0 → ∂M1

be a diffeomorphism.
Furthermore, let B → BO be a fibration and ν̃i : Mi → B, i = 0, 1 normal (q − 1)-
smoothings such that ν̃0 ' ν̃1 ◦ f .
Assume that there exists a zero-bordism W of M0 ∪f M1 which admits a normal B-
structure ν̃ : W → B that fulfils ν̃|Mi = ν̃i. Then

Θ(W, ν̃) ∈ l2q+1(π1(B), w1(B))

is invariant under bordism relative to the boundary.
Moreover, (W,Θ) is bordant, relative to the boundary, to a relative s-cobordism if and
only if Θ(W, ν̃) is elementary.

Note that the existence of (W, ν̃) as in the theorem is equivalent to the statement that
[M0 ∪f M1, ν̃0 ∪f ν̃1] vanishes in ΩB

2q.

For our purposes we specialise Theorem 3.10 in a number of ways. In our applications
all manifolds will be simply connected and we control πq(Mi), in particular we know it
is finite. As we will see this controls the surgery obstruction.
We now state two corollaries. Then, we prove both in one go.

Corollary 3.11. Let M0 and M1 be two simply connected, closed 2q−dimensional man-
ifolds, q > 3 even, which fulfil χ(M0) = χ(M1) and which have finite homotopy groups
πq(Mi) for i = 0, 1.
Furthermore, let B → BO be a fibration and ν̃i : Mi → B, i = 0, 1 normal (q − 1)-
smoothings.
Assume that M0 and M1 are B-bordant, i.e. assume that there exists a bordism W be-
tween M0 and M1 which admits a normal B-structure ν̃ : W → B which fulfils ν̃|Mi = ν̃i.
Then there exists a diffeomorphism m : M0 →M1 such that ν̃1 ◦m ' ν̃0.
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3.2 Main theorem of modified surgery theory for even-dimensional manifolds

In Section 4 we use this corollary to prove that the number of diffeomorphism classes of
cohomology Bott manifolds in dimension eight is finite.
Apart from this classification result, we also examine (cf. Section 5) if a certain automor-
phism of the cohomology ring of specific eight-dimensional Bott manifolds is realisable.
To do this, we use the relative setting of Theorem 3.10, that is, we use that it can be
applied to manifolds with boundary.
The underlying idea is to consider closed manifolds Xi, for i = 0, 1, which admit a
decomposition Xi = Mi ∪hi Ni, where Mi and Ni are smooth manifolds and hi is a
diffeomorphism of the boundaries ∂Mi → ∂Ni. If we have a diffeomorphism n between
N0 and N1 we can apply Theorem 3.10 to M0 ∪h1◦n◦h−1

0
M1 to obtain

Corollary 3.12. Let Mi and Ni, for i = 0, 1, be simply connected, compact 2q−dimensio-
nal manifolds with boundary such that χ(M0) = χ(M1) and such that πq(Mi) is finite.
Let hi : ∂Mi → ∂Ni and n : N0 → N1 be diffeomorphisms.
Furthermore, let ν̃i, i = 0, 1 be normal (q − 1)-smoothings of M0 and M1 into the same
fibration B→ BO such that

ν̃0|∂M0 ' ν̃1 ◦ h−1
1 ◦ n ◦ h0.

If there exists a zero-bordism W of M0 ∪h−1
1 ◦n◦h0

M1 which admits a B-structure

ν̃ : W → B which restricts to ν̃i on Mi , then there exists a diffeomorphism m : M0→M1

which extends n, i.e. M0 ∪h0 N0 is diffeomorphic to M1 ∪h1 N1 under m ∪ n.

To deduce the corollaries from Theorem 3.10, we essentially need to show that the surgery
obstruction is elementary under the assumptions of the corollaries, namely the assump-
tion that the homotopy groups in the middle dimension are finite and the assumption
that both Mi are simply connected. In the proof, we use Proposition 8 of [Kre99] which
essentially states that the surgery obstruction, in our situation, is an element in Wall’s
L-group.
For the proof we stick to the notation of Corollary 3.11 but the arguments work exactly
the same in the setting of Corollary 3.12.

Proof. By [Kre99, p. 733] there exists a subgroup L2q+1(π,w) in the monoid l2q+1(π,w)
which consists of those elements

(
(Z⊕ Z, λ, µ)⊥r ,W

)
∈ l2q+1(π,w) whose intersection

form and quadratic refinement vanish on W . As the notation indicates this group is
connected to Wall’s L-groups LWall

2q+1(π,w). Let Wh(π) denote the Whitehead group of

π. There exists a homomorphism L2q+1(π,w)→Wh(π) whose kernel is LWall
2q+1(π,w).

Since our fundamental group is trivial the Whitehead group vanishes and we can identify
L2q+1(Z) with LWall

2q+1(Z). But the odd L-groups are well-known to vanish in the simply
connected setting (cf. [Wal70, Theorem 13A]), i.e. L2q+1(Z) = 0.
Thus, it suffices to show that the surgery obstruction Θ(W, ν̃) is an element of L2q+1(Z).

Let
(
(Z⊕ Z, λε, µε)⊥r , V

)
be a representative for Θ(W, ν̃). We need to show that λε and
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3.3 Twisted Bordism

µε vanish on V .

Wall’s intersection and self-intersection form induce an intersection form and a quadratic
refinement, in the sense of Definition 3.6, on K := ker (πq(M0)→ πq(B)) (cf. [Kre99, p.
727]). By Proposition 8 of [Kre99], there exists a surjective isometry of quadratic forms
V → K. Consequently, it suffices to show that the intersection form and the quadratic
refinement vanish on K.
From the properties of the intersection form and the quadratic refinement we deduce
that both of them vanish on elements x ∈ K whose order is finite.
Indeed, assume that k ·x = 0 for k 6= 0, i.e. λ(kx, y) = 0 for all y ∈ K. By property i) of
a quadratic form this implies that kλ(x, y) = 0 ∈ Z whence λ(x, y) = 0. Since q is even,
Λ/S ∼= Z. Therefore, the analogous proof works for the self-intersection form if we use
property iv) instead of property i).
By assumption of the corollaries πq(M0) is finite. Hence, K is finite, as well. Therefore,
the intersection form and the quadratic refinement both vanish on K, implying that
the surgery obstruction is an element of the trivial group LWall

2q+1(Z). Thus, the surgery
obstruction vanishes.

Consider the setting of Corollary 3.11. Then, by Theorem 3.10, there exists an s-
cobordismW betweenM0 andM1. By the s-cobordism theoremW is diffeomorphic, rela-
tive to the boundary, to M0×I. In particular, there exists a diffeomorphism f : M0 →M1

such that ν̃0 ' ν̃1 ◦ f .

Consider the setting of Corollary 3.12. There, Theorem 3.10 implies that there exists
an s-cobordism of M0 ∪h−1

1 ◦n◦h0
M1. Thus, there exists a diffeomorphism m : M0 →M1

such that m|∂M0 = h−1
1 ◦ n ◦ h0.

3.3. Twisted Bordism

Let M be an n-dimensional manifold. The goal of this section is to construct fibrations
B over BO which admit normal smoothings M → B. Similar constructions can be found
in [KS91], [Tei93] and [Olb07].
Let pm : BO〈m〉 → BO denote the (m − 1)-connected cover of BO. By definition
the homotopy groups of BO〈m〉 are either πi(BO〈m〉)∼=πi(BO) for i ≥ m, where the
isomorphism is induced by pm, or πi(BO〈m〉) = 0 for i < m.
One naive way to try to construct a fibration which admits k-smoothings for k sufficiently
large is to take the product of a Postnikov stage PlM of M and a sufficiently high
connected cover BO〈m〉, for m > l + 1, of BO:

PlM ×BO〈m〉
pm◦pr2 // BO .

Here pr2 denotes the projection onto the second factor.
A space M always admits a map into all its Postnikov stages and the map jl into the
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3.3 Twisted Bordism

l-th stage induces isomorphisms for all homotopy groups of degree lower or equal l and
an epimorphism in l + 1. Therefore, if ν : M → BO admits a lift ν̃ to BO〈m〉, the map

M
∆→ M ×M jl×ν̃−→ PlM × BO〈m〉 is an l-smoothing. If m = l + 2, the fibration even is

the normal l-type.
If we do not need the l-type but only a fibration that admits a normal l−smoothing we
can replace PlM by any spaceX that admits a map ι : M → X which is (l+1)−connected.
Of course, a lift ν̃ : M → BO〈m〉 does not exist in general.

In all cases that are of interest to us we can solve this problem by “twisting” the fibration.
Let BOr denote the classifying space of real vector bundles of rank r and, furthermore,
let ir : BOr → BO denote the inclusion into the direct limit BO.

Definition 3.13. Let E → X be an oriented vector bundle of rank r over a CW-complex
X. By abuse of notation we denote the classifying map of E → X by E : X → BOr,
too. Let γu → BO be the stable universal vector bundle and let ⊕ : BO × BO → BO
be the classifying map of γu × γu → BO ×BO.
Consider the map

X ×BO〈m〉 ir◦E×pm // BO ×BO ⊕ // BO

and replace its domain by a homotopy equivalent space such that the map becomes a
fibration which we denote by X×̃BO〈m〉. Normal bordism with respect to this fibration

is called twisted bordism. We denote its normal bordism groups by Ω
O〈m〉
n (X,E).

If the bundle E is trivial we obtain ordinary O〈m〉-bordism.

Knowing that we can replace maps by fibrations we, from now on, will not distinguish
between the map ⊕ ◦ (ir ◦ E × pm) and the fibration we can replace it with.

In the next lemma we specify manifolds which admit l-smoothings into X×̃BO〈m〉.

Lemma 3.14. Let M be a manifold that admits a map ι : M → X which is (l + 1)-
connected. Furthermore, let E → X be an oriented real vector bundle of rank r and let
−E denote its K-theory inverse.
If the classifying map of ι∗(−E) ⊕ ν(M) admits a lift µ : M → BO〈m〉 for m > l + 1,
then (ι× µ) ◦∆: M → X×̃BO〈m〉 is a normal l−smoothing.

Proof. It is obvious that (ι×µ)◦∆ is (l+1)-connected since πi(BO〈m〉) = 0 for i ≤ l+1.
It remains to show that it is a lift of the stable Gauss map ν : M → BO.
By definition ⊕∗γu ∼= γu × γu. Thus, (ir ◦ E × pm)∗(γu × γu) is stably isomorphic to
E × γum, where γum = p∗mγ

u is the universal bundle over BO〈m〉.
By assumption (ι × µ)∗(E × γum) ∼= ι∗E × (ι∗(−E) ⊕ ν(M)). Finally, we pull back
along the diagonal map ∆, which corresponds to taking the Whitney sum, and obtain
ι∗ (E ⊕ (−E))⊕ ν(M) which is stably isomorphic to ν(M).
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3.4 Computing twisted bordism groups

For the classification problems we are interested in, this construction will always suffice.
The next step is to develop tools to calculate the bordism groups of twisted fibrations
over BO.

3.4. Computing twisted bordism groups

We want to be able to use the methods of stable homotopy theory to calculate twisted
bordism groups. Consequently, we need to construct spectra whose stable homotopy
groups are isomorphic to the twisted bordism groups which we want to determine. The
construction follows along the lines of Chapter 12 in [Swi02].

We obtain spectra for twisted bordism by modifying the construction of Thom spectra
for BO〈m〉-bordism slightly. In order to distinguish Thom spaces from Thom spectra
we denote the first by Th(.) and the latter by M(.). For any map f of vector bundles,
we denote by Th(f) the induced map between the Thom spaces of the bundles.

To construct spectra as in Chapter 12 of [Swi02] we need (strictly) commutative diagrams

BO〈m〉n−1
on,m //

prn−1,m

��

BO〈m〉n
prn,m

��
BOn−1

on // BOn .

(5)

We obtain those by using a functorial construction for the (m − 1)-connected cover of
a simply connected space. Instead of working over BO we can always work over BSO
since there exist commutative diagrams

BSOn−1
//

��

BSOn

��
BOn−1

// BOn ,

(6)

where all maps are induced by the respective inclusions of the underlying groups.
By [Whi78], Chapter IX the Postnikov tower of a simply connected CW complex can be
constructed functorially.
Applying the construction to BSOn we obtain maps BSOn → Pm−1BSOn. By the long
exact sequence of homotopy groups of a fibration, the homotopy fibre of this map is
the (m − 1)-connected cover BO〈m〉n of BSOn. Since the homotopy fibre can also be
constructed functorially we obtain commutative squares

BO〈m〉n−1
on,m //

p̃rn−1,m

��

BO〈m〉n
p̃rn,m

��
BSOn−1

on,1 // BSOn .

(7)
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3.4 Computing twisted bordism groups

Combining the commutative squares of diagram (6) and (7) we obtain the commutative
square in diagram (5). Using the observations above, we can now sketch the construction
of the Thom spectrum for BO- and BO〈m〉-bordism denoted by MO and MO〈m〉,
respectively.
Let γun → BOn denote the universal vector bundle of rank n and let R → BOn denote
the trivial line bundle. There exist a bundle map on : o∗nγ

u
n → γun covering on and there

exists an isomorphism fn : γun−1⊕R→ o∗nγ
u
n. Composing both and passing to the Thom

spaces we obtain a map

σn := Th(on ◦ fn) : Th(γun−1) ∧ S1 → Th(γun) .

The spectrum MO consists of the spaces Th(γn) together with the maps σn.

Denote the pullback of γun along prn,m by γun,m. Completely analogously to the construc-
tion above we obtain the spectra MO〈m〉:
There exists a bundle map on,m : o∗n,mγ

u
n,m → γun,m and, by commutativity of the diagram

(5), a bundle isomorphism f̃n : (γun−1,m ⊕ R)→ o∗n,mγ
u
n,m.

By composing both maps and by passing to the Thom spaces we obtain maps

σn,m := Th(on,m ◦ f̃n) : Th(γun−1,m) ∧ S1 → Th(γun,m) .

The spectrum MO〈m〉 consists of the Thom spaces Th(γun,m) together with the maps
σn,m.

Now we come to the construction for twisted bordism.
Recall that the fibration X×̃BOn−r is defined by

X ×BO〈m〉 ir◦E×pm // BO ×BO ⊕ // BO ,

for E the classifying map of a vector bundle of rank r over X. We denote the total space
of the bundle by E, too. There are commutative diagrams

X ×BO〈m〉n−1−r
1X×on−r,m //

E×prn−1−r,m

��

X ×BO〈m〉n−r
E×prn−r,m

��
BOr ×BOn−r−1

1BOr×on−r //

⊕
��

BOr ×BOn−r
⊕
��

BOn−1
on // BOn .

Thus, we obtain another sequence of Thom spaces

Xn := Th(E × γun−r,m) ∼= Th(E) ∧ Th(γun−r,m).
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The maps 1E × on−r,m ◦ f̃n−r induce

1Th(E) ∧ σn−r,m : Xn−1 ∧ S1 → Xn.

Let M(E × γu) be the spectrum consisting of the spaces Xn together with the maps
1Th(E) ∧ σn−r,m. By the Pontjagin-Thom construction we know

ΩO〈m〉
n (X,E) ∼= πstn (M(E × γu)).

Thus, we can now apply the Adams spectral sequence to compute πstn (M(E × γu)), i.e.

Ω
O〈m〉
n (X,E)

In addition, it is helpful to have a modified version of an Atiyah-Hirzebruch spectral
sequence which we introduce now. It is particularly helpful, because we can use it to

determine which torsion can appear in Ω
O〈m〉
n (X,E). For this purpose, we use it, e.g. in

Sections 4.3 and 5.4.

We denote the t-fold suspension of a spectrum A by ΣtA.
By construction M(E × γu) ' Th(E) ∧ Σ−rMO〈m〉 ' Σ−r(Th(E) ∧MO〈m〉). Hence,

ΩO〈m〉
n (X,E) ∼= πstn (Σ−r(Th(E) ∧MO〈m〉))

∼= πstn+r(Th(E) ∧MO〈m〉) ∼= Ω
O〈m〉
n+r (Th(E), pt).

Remark 3.15. On a geometric level the isomorphism T which is given by the compo-
sition

ΩO〈m〉
n (X,E)→ Ω

O〈m〉
n+r (Th(E), pt)→ Ω

O〈m〉
n+r (D(E), S(E))

maps an element [M,f ×α] to [(D(f∗E), S(f∗E)), f̃ × α̃]. Here α̃ is the O〈m〉-structure
on D(f∗E), obtained by composing the projection of the disc bundle with α, and f̃ is
the bundle map covering f .

To compute Ω
O〈m〉
∗ (Th(E), pt) we can use the usual Atiyah-Hirzebruch spectral sequence

converging to the reduced ordinary O〈m〉-bordism groups, i.e.

E2
pq = H̃p(Th(E); ΩO〈m〉

q (pt))⇒ Ω
O〈m〉
p+q (Th(E), pt).

By the Thom isomorphism for oriented vector bundles

Hp(X; ΩO〈m〉
q (pt)) ∼= H̃p+r(Th(E); ΩO〈m〉

q (pt)).

Since Ω
O〈m〉
p+q (X,E) ∼= Ω

O〈m〉
p+q+r(Th(E), pt) there is a spectral sequence with E2-page

E2
pq
∼= Hp(X; ΩO〈m〉

q (pt))
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converging to Ω
O〈m〉
p+q (X,E).

We refer to this as the twisted Atiyah-Hirzebruch spectral sequence.

Note, that the E2-page for the twisted Atiyah-Hirzebruch spectral sequence is exactly
the same E2-page as the one of the Atiyah-Hirzebruch spectral sequence converging

to the ordinary O〈m〉-bordism group Ω
O〈m〉
p+q (X). But even d2-differentials can differ if

w2(E) 6= 0, as we will see below.

Recall that, for m ≥ 4, we have Ω
O〈m〉
0 (pt) ∼= Z and Ω

O〈m〉
i (pt) ∼= Z/2 for i = 1, 2. Thus,

entries in the 0-, 1- and 2-line on the (twisted) Atiyah-Hirzebruch spectral sequence are
given by homology with coefficients in Z and Z/2, respectively.
In general we do not know the differentials in the (twisted) Atiyah-Hirzebruch spectral
sequence. But we can say something about some of the d2-differentials. The following
lemma is due to [Tei93] for m = 4 but the proof follows completely analogously for
m > 4.

Lemma 3.16. Let X be a CW-complex and E → X a (possibly trivial) twisting bundle.

Consider the (twisted) Atiyah-Hirzebruch spectral sequence converging to Ω
O〈m〉
n (X,E)

for m ≥ 4.

1. Let w2 := w2(E). The differential d2 : E2
p+2,1 → E2

p,2 is dual to

Sq2
w2

: Hp(X;Z/2) → Hp+2(X;Z/2),

x 7→ Sq2(x) + x ∪ w2.

2. Let Sq2
w2

be defined as above. The differential d2 : E2
p+2,0 → E2

p,1 is given by the

composition d2 = (Sq2
w2

)∗ ◦ red, where red : Hp+2(X;Z) → Hp+2(X;Z/2) is the
reduction mod two.

Another helpful tool for computations is a sequence that allows us to compare twisted
O〈l〉-bordism of CPm and CPm−1. We start with the definition of a map which appears
within the sequence but also in a more general setting.
Let ξ → X be a real bundle over a manifold X which contains a codimension r subman-
ifold Y ⊂ X and let ξ′ denote the normal bundle of Y ↪→ X.

Definition 3.17. Let M be a smooth, closed n-dimensional manifold and f : M → X
a map such that νM ⊕ f∗(−ξ) admits a O〈l〉-structure α : M → BO〈l〉. Consider the

induced element [M,f × α] ∈ Ω
O〈l〉
n (X, ξ), We can always assume that f |∩ Y . Let N be

the preimage f−1(Y ). Since

ν(N) ∼= ν(N ↪→M)⊕ ν(M)|N ∼= (f |N )∗ξ′ ⊕ ν(M)|N ,
the Whitney sum of ν(N) and (f |N )∗(−(ξ|Y ⊕ ξ′)) fulfills

ν(N)⊕ (f |N )∗(−(ξ|Y ⊕ ξ′)) ∼= ν(M)|N ⊕ (f |N )∗(−ξ|Y ).

34



3.4 Computing twisted bordism groups

Consequently α|N defines a O〈l〉-structure twisted by ξ|Y ⊕ ξ′.
Thus, we can define

t : ΩO〈l〉
n (X, ξ)→ Ω

O〈l〉
n−r(Y, ξ|Y ⊕ ξ′), by [M,f × α] 7→ [N, (f × α)|N ].

This map is well-defined by the following observation. Given two representatives of

[M,f × α] ∈ Ω
O〈l〉
n (X, ξ) they are, by definition, bordant in Ω

O〈l〉
n (X, ξ). We apply the

construction in the definition of t to the bordism and obtain that the images of the

representatives under t are bordant in Ω
O〈l〉
n−r(Y, ξ|Y ⊕ ξ′).

Now we come to the special case of X = CPm and Y = CPm−1. We obtain a long
exact sequence relating twisted bordism of CPm and CPm−1 which is well-known to the
experts. Applications of a similar sequence can be found in [Kre09]. But there does not
seem to be a published proof. Therefore, we also give a proof.

Lemma 3.18. Let ξ → CPm be an oriented real vector bundle of finite rank. Let

i : Ω
O〈l〉
k (pt) → Ω

O〈l〉
k (CPm, ξ) be the map induced by the inclusion of a point into CPm

and let H := ν(CPm−1 → CPm) denote the Hopf bundle. Then the following sequence
is exact:

...→ ΩO〈l〉
n (pt)

i→ ΩO〈l〉
n (CPm, ξ)

t→ Ω
O〈l〉
n−2(CPm−1, ξ|CPm−1 ⊕H)

s→ Ω
O〈l〉
n−1(pt)→ ... .

The map s will be constructed in the proof.

To prove this lemma we need the following easy observation.

Lemma 3.19. Let ξ → CPm be a real vector bundle, M a compact, smooth manifold
and f : M → CPm−1 a map. Furthermore, let pS : S(f∗H) → M denote the sphere
bundle of f∗H.
Then the bundle p∗Sf

∗(ξ|CPm−1) is trivial.

Proof. Let em denote the top cell of CPm. We obtain the following commutative diagram
of total spaces

S(f∗(H)) //
� _

��
pS

""

S(H)� _

��

� � // em� _

��
D(f∗(H))

f //

��

D(H)

��

� � // CPm

M
f // CPm−1

Recall that CPm = D(H) ∪S(H) e
m, i.e. S(H) bounds the top disc em. Every bundle ξ

over CPm becomes trivial under restriction to em and thus, under restriction to S(H).
By the commutativity of the diagram the pullback p∗Sf

∗ξ|CPm−1 is also trivial.
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Now we are ready to prove Lemma 3.18. Within the proof we suppress the decoration
O〈l〉 in the notation of the twisted bordism groups.

Proof. We start with the definition of s : Ωn−2(CPm−1, ξ|CPm−1 ⊕ H)→Ωn−1(pt). We
claim that

s : Ωn−2(CPm−1, ξ|CPm−1 ⊕H) → Ωn−1(pt) defined by

[M,f × α] 7→ [S(f∗H), pt× (α ◦ pS)],

is a well-defined map. Here pt denotes the constant map to a point. We need to check
that [S(f∗H), pt× α ◦ pS ] is an element in Ωn−1(pt), i.e. we need to show that α ◦ pS is
an O〈l〉-structure on the total space of the sphere bundle pS : S(f∗H)→M .
The stable tangent bundle of S(f∗H) is isomorphic to p∗STM⊕p∗S(f∗H), where p∗S(f∗H)
is trivial by Lemma 3.19 since we can consider the Hopf bundle over CPm−1 as restriction
of the Hopf bundle over CPm. Thus, the stable normal bundle ν(S(f∗H)) is isomor-
phic to p∗S (ν(M)). By Lemma 3.19 the bundle p∗Sf

∗ (−(H ⊕ ξ)|CPm−1) is also trivial.
Consequently, we obtain

ν(S(f∗H)) ∼= p∗S
(
ν(M)⊕ f∗ (−(H ⊕ ξ)|CPm−1)

)
.

By assumption, α is an O〈l〉-structure on ν(M)⊕f∗ (−(H ⊕ ξ)|CPm−1). Hence, the com-
position α ◦ pS is a O〈l〉-structure on the normal bundle ν(S(f∗H)).

Well-definedness of s follows, again, by applying the construction of s to a twisted
CPm−1×̃BO〈l〉-bordism between two representatives of [M,f × α].

Now, we prove the exactness. We start by showing that im(i) ⊂ ker(t).
Let [M,pt × α] ∈ Ωn(pt). The map pt : M → CPm is transversal to CPm−1 ⊂ CPm if
pt /∈ CPm−1. Thus, by definition of t, the composition t ◦ i vanishes.

Next, we show ker(t) ⊂ im(i).
Let [M,f × α] ∈ ker(t) ⊂ Ωn(CPm, ξ) and let [N, (f × α)|N ] := t([M,f × α]). Since, by
assumption, [N, (f×α)|N ] = 0 there exists a CPm−1×̃BO〈l〉 zero-bordism W , i.e. ∂W =
N and there exists a map F ×β : W → CPm−1×BO〈l〉 such that (F ×β)|N = (f×α)|N .
By definition, β is an O〈l〉-structure on the Whitney sum ν(W )⊕ F ∗(−(ξ ⊕H)).
Let D denote the total space of the disc bundle pD : D(F ∗H) → W . Since the normal
bundle of D is isomorphic to p∗D(ν(W ) ⊕ F ∗(−H)), β ◦ pD is an O〈l〉-structure on the
sum ν(D) ⊕ p∗DF ∗(−ξ). Furthermore, there are isomorphisms D|N ∼= D((f |N )∗H) ∼=
Dν(N ↪→M) =: D′. In particular, there is an embedding D′ ↪→M ×{1}. Thus, we can
construct a bordism

W ′ := M × I ∪D′ D.
It admits a twisted O〈l〉-structure and a map to CPm whose restriction to M×{0} ⊂W ′
is f × α.
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The other boundary component of W ′ is M ′ = (M−D′)∪S(F ∗H). By construction there
is a map F : S(F ∗H) → S(H) ⊂ em, covering F , which is homotopic to the constant
map. By Lemma 3.19 β ◦ pS is an O〈l〉-structure on ν(S(F ∗H)).
The map f |M−D′ is also homotopic to the constant map since im(f |M−D′) ⊂ em ⊂ CPm.
Thus, the restriction f∗(−ξ)|M−D′ is trivial. Consequently, α|M−D′ is an O〈l〉-structure
on ν(M −D′) = ν(M)|M−D′ . Hence, we obtain an element [M ′, pt× (α|M−D′ ∪ β ◦ pS)]
in Ωn(pt) whose image under i is, by W ′, bordant to [M,f × α] ∈ Ωn(CPm, ξ).

We proceed by showing that im(t) ⊂ ker(s).
Let [M,f × α] ∈ Ωn(CPm, ξ) and let [N, (f × α)|N ] := t([M,f × α]). We need to show
that S := S((f |N )∗H) is zero-bordant in Ωn−1(pt).
Note that S ∼= S(ν(N ↪→ M)). Thus, it is the boundary of W := M −D(ν(N ↪→ M)).
By construction we again obtain that im(f |W ) ⊂ em ⊂ CPm and thus, f |W is homotopic
to the constant map implying that f∗(−ξ)|W is trivial. Consequently, the restriction α|W
is an O〈l〉-structure on ν(M)|W ∼= ν(W ). Hence, W is a zero-bordism of S in Ωn−1(pt).

Of course, the next step is to show that ker(s) ⊂ im(t).
Now assume that [N, g × β] is in the kernel of s, i.e. [S(g∗(H)), pt × (pS ◦ β)] is zero-
bordant by some bordism W with O〈l〉-structure α which restricts to pS ◦ β.
Let D denote the total space of the disc bundle pD : D(g∗H) → N . Its normal bundle
is ν(D) ∼= p∗D(ν(N)⊕ g∗(−H)). Thus, β ◦ pD is an O〈l〉-structure on ν(D)⊕ p∗Dg∗(−ξ).
Furthermore, there is a bundle map g : D(g∗H)→ D(H) ↪→ CPm covering g. As before,
the image of g|S(g∗H) is contained in the the top cell em ⊂ CPm, i.e. g|S(g∗H) ' pt.
Consider M := W ∪S(g∗H) D. It admits a map f := pt ∪ g : M → CPm. Furthermore,
α∪β◦pD is an O〈l〉-structure on ν(M)⊕f∗(−ξ). By construction t([M,f×(α∪p◦β)]) =
[N, g × β].

It remains to show that im(s) = ker(i).
Let [M,f × α] ∈ Ωn−2(CPm−1, (ξ ⊕ H)|CPm−1). We need to construct a zero-bordism
of i ◦ s([M,f × α]) = i([S(f∗H), pt × α]) in Ωn−1(CPm, ξ). Consider the disc bundle
with total space D := D(f∗H) and projection pD, together with the covering map
f : D(f∗H) → D(H) ⊂ CPm. Since ν(D) ∼= ν(M) ⊕ p∗Df

∗(−H), α ◦ pD is an O〈l〉-
structure on ν(D)⊕p∗Df∗(−ξ). Thus, D together with f and α◦pD is our zero-bordism.

Finally, we show that ker(i) ⊂ im(s).
For this purpose, let [M,pt × α] ∈ ker(i) ⊂ Ωn−1(pt). Let W be a zero-bordism of
i([M,pt × α]) ∈ Ωn−1(CPm, ξ), i.e. there exists F : W → CPm such that ν(W ) ⊕
F ∗(−ξ) admits an O〈l〉-structure β which restricts to α. Assume that F is transversal
to CPm−1 ⊂ CPm and let N := F−1(CPm−1) and F |N =: f . Then ν(N) ∼= ν(W )⊕f∗H
and β|N is an O〈l〉-structure for ν(N)⊕ f∗(−(ξ⊕H)). Consequently, [N, f × β|N ] is an
element in Ωn−2(CPm−1, ξ ⊕H).
Consider W ′ := W − D(f∗H). Then β restricts to an O〈l〉-structure on ν(W ′) since
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im(F |W ′) ⊂ em ⊂ CPm, i.e. (F |W ′)∗(−ξ) is trivial. Thus, W ′ is a bordism between
s([N, f × β|N ]) and [M,pt× α].
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4. Eight-dimensional cohomology Bott manifolds

In this section, we consider cohomology Bott manifolds of dimension eight, i.e. simply
connected, closed, smooth, eight-dimensional manifolds M which admit an ring isomor-
phism between the integral cohomology ring of M and the integral cohomology ring of
a Bott manifold B which preserves the Stiefel-Whitney and Pontrjagin classes. We will
make this notion precise subsequently.

Recall that the weak cohomological rigidity problem asks if two Bott manifolds are dif-
feomorphic if their integral cohomology rings are isomorphic. Our motivation to consider
the class of cohomology Bott manifolds is based on the observation that the proof of
the weak cohomological rigidity problem in dimension six only uses that any cohomol-
ogy ring isomorphism of Bott manifolds preserves the Stiefel-Whitney and Pontrjagin
classes. It does not use the toric structure of Bott manifolds in any way. The underlying
results which are used in the proof are classification results of Wall and Jupp (cf. [Wal66]
and [Jup73]) on simply connected six-dimensional manifolds. One consequence of their
results is that cohomology Bott manifolds of dimension six are rigid. Thus, we consider
the next interesting dimension, which is dimension eight.

After we make the notion of a cohomology Bott manifold precise, we show that the
number of diffeomorphism classes of cohomology Bott manifolds, with respect to some
Bott manifold, is finite. This is the content of Theorem 4.2.
In Theorem 4.10 we then show that there exist cohomology Bott manifolds which are
not diffeomorphic to any Bott manifold, i.e. cohomology Bott manifolds are not rigid.
The proof of this theorem gives first clues towards a classification of cohomology Bott
manifolds.

We start with the definition of a cohomology Bott manifold.

Let M be a smooth, closed manifold with torsion-free integral cohomology. Since H∗(M)
is torsion free, an isomorphism of integral cohomology induces an isomorphism of coho-
mology with coefficients in Z/2. We denote both isomorphisms by the same symbol.
The total Stiefel-Whitney and Pontrjagin classes of a smooth manifold M are denoted
by w(M) and p(M), respectively.

Definition 4.1. Let M and N be two smooth, closed manifolds with torsion-free in-
tegral cohomology. A polarisation map gM,N of M and N is an isomorphism of rings
gM,N : H∗(M)→ H∗(N) such that g(p(M)) = p(N) and g(w(M)) = w(N).
The polarised structure set Sp(M) of M is defined to be

Sp(M) := {(N, gM,N ) | N smooth manifold, gM,N polarisation map}/ ∼,
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where (N, g) ∼ (N ′, g′) if and only if there exists a diffeomorphism h : N → N ′ such that

H∗(N ′)
h∗ // H∗(N)

H∗(M)

g′

eeKKKKKKKKKK g

99sssssssss

commutes. Obviously, ∼ is an equivalence relation.
If M is simply connected we, in addition, demand that all elements in the polarised
structure set Sp(M) are simply connected.
We call a smooth, simply connected manifold N a cohomology Bott manifold (with
respect to a Bott manifold Bj) if there exists a polarisation map gBj ,N , i.e. if [N, gBj ,N ] ∈
Sp(Bj).

If H∗(M) is generated as a ring by elements in Hr(M) the condition on the total Stiefel-
Whitney class is automatically fulfilled by Lemma 8.1 in [CMS10]. Since elements in
H2(Bj) generate H∗(Bj) this, in particular, holds for cohomology Bott manifolds.
Some of the toric topologists conjecture that a ring isomorphism between the integral
cohomology rings of two Bott manifolds automatically is a polarisation map, i.e. they
conjecture that a ring isomorphism between the cohomology rings of two Bott manifolds
also preserves the Pontrjagin classes. There was an attempt to prove this conjecture in
[Cho11b] but it turned out that there was a gap in the proof.

From now on, we concentrate on eight-dimensional cohomology Bott manifolds.

Theorem 4.2. Let B4 be a Bott manifold of dimension eight. The cardinality of the
polarised structure set |Sp(B4)| is finite, i.e. the number of diffeomorphism classes of
cohomology Bott manifolds with respect to B4 is finite.

Note that the statement that |Sp(B4)| is finite, is stronger that the statement that the
number of diffeomorphism classes of the underlying manifolds is finite. If |Sp(B4)| is
finite the number of diffeomorphism that are not realisable is also finite.

The proof of this theorem will take the next sections. The proof strategy, of course,
is to use modified surgery theory, in particular, Corollary 3.11. To use Corollary 3.11
we need to compare manifolds up to B-bordism, for a convenient fibration B → BO.
Thus, we construct B in Section 4.1. Then we determine the (co)homological properties
of B in Section 4.2. Using the (co)homological properties of B we can approximate
the B-bordism groups in Section 4.3. Finally, we assemble everything into the proof of
Theorem 4.2 in Section 4.4.
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4.1. The normal three-type for elements of Sp(B4)

For the classification of eight-dimensional cohomology Bott manifolds, one convenient
fibtration B is the normal three-type of B4.
Recall that we denote the universal stable real vector bundle over BO by γu. Further-
more, let ⊕ : BO ×BO → BO denote the classifying map of γu × γu → BO ×BO. We
change our notation slightly. Instead of denoting the seven-connected cover of BO by
BO〈8〉, we denote it by its more common name BString.

Proposition 4.3. Let B4 be an eight-dimensional Bott manifold.

1. If w2(B4) = 0 and p1(B4) = 0 the normal three-type of B4 is given by

B3(B4) ' P3B4 ×BString
p8◦pr2 // BO .

Here pr2 is the projection to the second factor and p8 is the usual projection map
BString → BO.

2. Otherwise, the normal three-type is given by

B3(B4) ' P3B4×̃BString
−

⊕
li×p8 // BO ×BO ⊕ // BO .

The map −⊕ li is the classifying map for the bundle −⊕ li → P3B4 which is
constructed in the proof.

Recall that the first Pontrjagin class of a Spin-manifold M is always divisible by two.
The obstruction to the existence of a normal String-structure on a M is 1

2p1(M). In our
setting M has torsion-free cohomology. Thus, if it suffices to show that p1(M) vanishes.

Proof. Consider the first part of the lemma. Since w2(B4) = 0 = p1(B4) the stable
normal Gauss map admits a lift ν̃ to BString. By definition of P3B4 there exists a four-
connected map B4 → P3B4. Since BString is seven-connected the product of this map
and ν̃ is also four-connected, whereas the projection is four-co-connected. Consequently,
the first part of the Proposition follows.

Thus, let B4 be as in its second part.
By the definitions of BString and Postnikov stage ⊕ ◦ (−⊕ li × p8) : B3(B4) → BO is
four-co-connected in this setting, too.
Let ι3 : B4 → P3B4 denote an arbitrary four-connected map. By Lemma 3.14 it only
remains to show that there exists a vector bundle E of finite rank such that the classifying
map of ι∗3(−E)⊕ ν(B4) admits a lift to BString.

Recall the following result on complex line bundles:
Let X be a space which has the homotopy type of a CW complex and let LC(X) denote
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the group of isomorphism classes of complex line bundles over X. The first Chern class
constitutes an isomorphism c1 : LC(X)→ H2(X) (cf. [Hus94, Theorem 3.4, p.250]).
By Section 2.2 the tangent bundle of B4 is a Whitney sum of complex line bundles l̃i
for i = 1, .., 4, i.e. TB4 =

⊕
l̃i. In particular, l̃i is determined by c1(l̃i). Since ι3 is

four-connected ι∗3 is an isomorphism in second cohomology. Therefore, we can always

find classes ωi ∈ H2(P3B4) such that ι∗3(ωi) = c1(l̃i) for i = 1, .., 4. We define line bundles
li by c1(li) = ωi. By construction ι∗3(

⊕
li)⊕ ν(B4) is isomorphic to TB4 ⊕ ν(B4). This

bundle is trivial and, therefore, clearly admits a String structure.
Thus, the twisting bundle E as in Lemma 3.14 should be related to −⊕ li, the K-
theoretic inverse of

⊕
li. Unfortunately this, a priori, need not be a vector bundle of

finite rank, which is assumed in Lemma 3.14.
Each complex line bundle l over a CW-complex X is the pullback of the tautological line
bundle γ → CP∞ along a map c : X → CP∞, where c corresponds to the first Chern
class c1(l). For each finite dimensional skeleton X(k) the map factors through CP k, i.e.
we obtain c(k) : X(k) → CP k.
Let γ⊥ → CP k denote the bundle which is perpendicular to γ, i.e. the bundle with total
space γ⊥ =

{
(z, v) ∈ CP k × Ck+1 | v⊥ ∈ z

}
and projection (z, v) 7→ z. Since γ ⊕ γ⊥ is

trivial we can define −l|X(k) := (c(k))∗γ⊥.
We are interested in maps from eight-dimensional manifolds to P3B4. Therefore, we
can always assume that the image of those maps is contained in the k-skeleton of P3B4

for some sufficiently large k. Thus, we can define the twisting bundle −⊕ li to be the
Whitney sum of the pullbacks of γ⊥ along the maps induced by c1(li).

Let (N, gB4,N ) be a cohomology Bott manifold together with a polarisation map.
In order to apply modified surgery theory with respect to the control space B3(B4) to
all elements in the polarised structure set, we need to show that there exists a normal
three-smoothing N → B3(B4) for each pair (N, gB4,N ) as above.

Proposition 4.4. Let B4 be a Bott manifold and let (N, gB4,N ) be a representative of an
element in Sp(B4). Furthermore, let B3(B4)→ BO be the fibration induced by the maps
introduced in Proposition 4.3. Then, there exists a normal three-smoothing N → B3(B4).

Proof. The proof is structured in the following way. We start by constructing the Post-
nikov tower P3B4 → P2B4 more explicitly. Then, we show that there exists a map
j3 : N → P3B4 which is four-connected. The last step is to show that the classifying map
of j∗3(

⊕
li) ⊕ ν(N) admits a lift α to BString. Then j3 × α : N → B3(B4) is a normal

three-smoothing, again by Lemma 3.14.

The homotopy groups of B4 are πi(B4) ∼= πi(S
2)4, for all i ∈ N, by Lemma 2.2.

Therefore, B4 is simply connected and π2(B4) ∼= Z4. Hence, the second Postnikov stage
is

P2(B4) ' (CP∞)4.
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Let ai, i ≤ 4, denote a basis of H2((CP∞)4), such that each ai is the pullback of a
generator of the cohomology of one factor. In Section 2.1 Equation (1) we introduced
generators yi, 1 ≤ i ≤ 4 for H∗(B4).
Since CP∞ ' K(Z, 2) there exists a map ι2 : B4 → (CP∞)4 such that i∗2(ai) = yi.
Because π3(B4) ∼= Z4, we see that P3B4 is the total space of a fibration over P2B4 with
fiber K(Z4, 3). The fibration P3B4 → P2B4 is the pullback of the pathspace fibration
over K(Z4, 4) by the third k-invariant k3 : P2B4 → K(Z4, 4) (cf. Section 3.1). Our next
goal is to understand k3.

To determine the k-invariant we use Lemma 3.3 which connects the k-invariant to a
differential in the cohomological Leray-Serre spectral sequence with coefficients in π3.
By Lemma 3.2 H3(P3B4) ∼= H3(B4) = 0. Thus, the universal coefficient theorem implies
H3(P3B4;π3(B4)) = 0.
Consider the fourth page Epq4 of the cohomological Leray-Serre spectral sequence of the
fibration

K := K(π3(B4), 3)→ P3B4
p→ P2B4 =: P2

with coefficients in Z4 ∼= π3(B4) =: π3 for p+ q ≤ 4 and q ≤ 3.

0 2 4

0

2

π3 H2(P2;π3)

H3(K;π3)

H4(P2;π3)

The indicated differential must be injective since we already know that H3(P3B4;π3) = 0.
Consequently, Lemma 3.3 implies that

k∗3 : H4(K(π3, 4);π3)→ H4(P2B4;π3)

is also injective. Since π3 is free it follows that k∗3 : H4(K(π3, 4))→ H4(P2B4) is injective,
too.
Consider a lift ι3 : B4 → P3B4 of ι2 : B4 → P2B4 which exists by the definition of a
Postnikov tower. In particular, the k-invariant k3 has the property that the composition
k3 ◦ ι2 : B4 → K(π3, 4) is homotopic to the constant map, i.e. i∗2 ◦ k∗3 is the zero-map in
cohomology with coefficients in π3.
Again by the universal coefficient theorem and the fact that π3 is free, this implies that
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k3 fulfills i∗2 ◦ k∗3 = 0 in integral cohomology.
Recall (cf. Section 2.1) that the generators yj , 1 ≤ j ≤ 4 of the cohomology ring of B4

fulfil y2
j = αjyj =

∑
i<j A

i
jyiyj . Consequently, a basis for ker(i∗2 : H4(P2B4) → H4(B4))

is given by a2
j −

∑
i<j A

i
jaiaj .

Let zi for 1 ≤ i ≤ 4 denote a basis of H4(K(π3, 4)) ∼= Z4. Since K(π3, 4) is an Eilenberg-
MacLane space, maps into K(π3, 4) are determined, up to homotopy, by the cohomology
class they induce. We choose k3 to be the map defined by

k∗3(zi) = a2
i −

∑

i<j

Aijaiaj .

Thus, the fibration P3B4 → P2B4 is the pullback of the pathspace fibration by k3.

Next, we show that N also admits a map to P3B4 which is a four-equivalence.
Since P2B4 is an Eilenberg-MacLane space we obtain a map N → P2B4 by fixing classes
in H2(N). Let j2 : N → P2B4 be the map defined by ai 7→ gB4,N (yi). Thus, j∗2 is an
isomorphism on second cohomology. Since gB4,N is an isomorphism of rings we have

j∗2(a2
j −

∑

i<j

Aijaiaj) = gB4,N (y2
j −

∑

i<j

Aijyiyj) = 0.

Consequently, there exists a lift of j2 which we denote by j3 : N → P3B4.

Now we show that this map is four-connected.
We turn N → P2B4 into an inclusion by the mapping cylinder construction and consider
the long exact sequence of the pair (P2B4, N) in cohomology

H0(N)
∼=→H0(P2B4)→H1(P2B4, N)→

=0

H1(P2B4)→
=0

H1(N)→H2(P2B4, N)→H2(P2B4)
∼=→

H2(N)→H3(P2B4, N)→H3(P2B4)
=0

→H3(N)
=0

→H4(P2B4, N)→H4(P2B4)
∼=Z10

j∗2→H4(N)
∼=Z6

.

We deduce that H i(P2B4, N) = 0 for i = 1, 2, 3 and H4(P2B4, N) ∼= ker(j∗2), which is
torsion free. By the universal coefficient theorem Hi(P2B4, N) vanishes for i = 1, 2, 3 and
by the relative Hurewicz theorem πi(P2B4, N) vanishes, too. Furthermore, the relative
Hurewicz theorem implies π4(P2B4, N) ∼= H4(P2B4, N). Now we consider the long exact
sequence of homotopy groups

π4(P2B4)︸ ︷︷ ︸
=0

→ π4(P2B4, N)→ π3(N)→ π3(P2B4)︸ ︷︷ ︸
=0

,

to obtain π4(P2B4, N) ∼= π3(N). We assemble all isomorphisms, use the universal coeffi-
cient theorem once more, and obtain

π3(N) ∼= π4(P2B4, N) ∼= H4(P2B4, N) ∼= H4(P2B4, N) ∼= ker(j∗2) ∼= Z4.
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Note that p∗ : π2(P3B4) → π2(P2B4) and (j2)∗ : π2(N) → π2(P2B4) are isomorphisms.
The map (j3)∗ : π2(N) → π2(P3B4) is an isomorphism, too, since p ◦ j3 = j2. The same
holds for the induced map (j3)∗ on homology. By turning j3 into an inclusion we obtain

π3(N)
(j3)∗ // π3(P3B4) // π3(P3B4, N)

∼=��

// π2(N)
∼= // π2(P3B4)

0 = H3(N) // H3(P3B4) // H3(P3B4, N) // H2(N)
∼= // H2(P3B4) .

By Lemma 3.2 H3(P3B4) vanishes, hence H3(P3B4, N) = 0. Thus, the map (j3)∗ is
onto. Its domain and target fulfil π3(N) ∼= Z4 ∼= π3(P3B4). Consequently, (j3)∗ is an
isomorphism.

It remains to show that j∗3(
⊕
li) ⊕ ν(N)) admits a String-structure, i.e. it remains to

show that w2(j∗3(
⊕
li)⊕ ν(N)) and p1(j∗3(

⊕
li)⊕ ν(N)) both vanish.

By definition of j3 and the fact that gB4,N is a polarisation map

j∗3(w2(
⊕

li)) = gB4,N (w2(TB4)) = w2(TN) = w2(ν(N)).

Since H1(N ;Z/2) = 0 the last equality follows by applying the Whitney sum formula to
w2(TN ⊕ ν(N)) = 0. Analogously we obtain j∗3(p1(

⊕
li)) = p1(TN).

There also exists a Whitney sum formula for Pontrjagin classes (cf. [MS74] p. 175). For
two vector bundles ξ and η over the same base space the total Pontrjagin classes fulfil

2(p(ξ ⊕ η)− p(ξ) ∪ p(η)) = 0.

In our situation the base space is N . Since H∗(N) is torsion free p(ξ ⊕ η) = p(ξ)∪ p(η),
in particular p1(ξ) + p1(η) = p1(ξ ⊕ η). Therefore, we have

p1(j∗3(
⊕

li)⊕ ν(N)) = p1(TN)⊕ p1(ν(n)) = p1(TN ⊕ ν(N)) = 0.

Thus, there exists a lift ν̃N of the classifying map of j∗3(
⊕
li ⊕ νN ), i.e. by Lemma 3.14

j3 × ν̃N is a normal three-smoothing of N .

Subsequently we denote the elements in ΩString
8 (P3B4,−

⊕
li) induced by a cohomol-

ogy Bott manifold N and a polarisation map gB4,N , as constructed in the proof, by
[N, j3 × ν̃N ].

Note that the lift j3 : N → P3B4 is unique since H3(N ;π3) = 0.
Let

⊕
li ⊕ νN be oriented. Then, the lift ν̃N is also unique.

Observe that the induced element [N, j3 × ν̃N ] is independent of the choice of represen-
tative of an equivalence class [Ñ , g̃] ∈ Sp(B4):
Let (N, gB4,N ) and (N ′, gB4,N ′) be two representatives of [Ñ , g̃]. By definition there ex-
ists a diffeomorphism f : N ′ → N inducing a commutative triangle on cohomology as
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in Definition 4.1, i.e. gB4,N ′ ◦ f∗ = gB4,N . The map j2 is defined by the polarisation
map and thus unique up to homotopy, as is the lift j3 since the number of choices of
lifts is determined by H3(N) = 0. Thus, by construction (j3 × ν̃N ) ◦ f ' j′3 × νN ′ , i.e.
N × I ∪f N ′ is a B3(B4)-bordism between N and N ′.

The construction in Proposition 4.4 results in a map Sp(B4) → ΩString
8 (P3B4,−

⊕
li).

It is well-defined by the observation above. We prove Theorem 4.2 by showing that the
map is injective and has finite image.

4.2. Homology of P3B4

In Section 3.4 we introduced the twisted Atiyah-Hirzebruch spectral sequence. In the
next section, we use it to calculate ΩString

8 (P3B4,−
⊕
li). Recall that this includes the

untwisted case if
⊕
li is the trivial bundle.

In order to calculate the E2-page of the twisted Atiyah-Hirzebruch spectral sequence we
need the homology groups of P3B4, at least up to dimension eight.
Since P3B4 is the total space of a fibration we can apply the Leray-Serre spectral sequence
with integral coefficients. Even though we are interested in the first eight homology
groups of P3B4 we use the cohomological Leray-Serre spectral sequence, because there
we can employ the multiplicative structure on cohomology. For this purpose, we need
the integral cohomology of the fiber. In [Hat04] on page 30 we find

i 0 1 2 3 4 5 6 7 8 9

H i(K(Z, 3)) Z 0 0 Z 0 0 Z/2 0 Z/3 Z/2
.

With the more general form of the Künneth theorem for cohomology as presented in
[HW60] we calculate

i 0 1 2 3 4 5 6 7 8 9

H i(K(Z4, 3)) Z 0 0 Z4 0 0 Z6 ⊕ Z/24 0 Z/34 Z4 ⊕ Z/26

Within the calculation of H∗(P3B4) we abbreviate the fibration K(Z4, 3)→ P3B4 → P2B4

with K → P3 → P2.

For p+ q ≤ 9, there does not exist a page Epqj in the Leray-Serre spectral sequence with

integral coefficients that admits non-vanishing differentials with target or domain E08
i

or E28
i since these entries contain the only appearing odd torsion.

Thus, the indicated d4-differential in the E4-page below is the first possible to appear in
this range. It is determined by the third k-invariant (cf. Proposition 3.4).
By the Künneth theorem for cohomology presented in [HW60] products of the generators
in H3(K) generate E06

4 = H6(K) and E09
4 = H9(K), whence the Leibniz rule determines

the differentials with domain Ei64 and Ei94 .

Find below the E4-page of the cohomological Leray-Serre spectral sequence with integral
coefficients of the fibration K → P3 → P2 for q ≤ 9 and p+ q ≤ 10.
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0 2 4 6 8 10

0

3

6

9

H0(K) H2(P2)
∼=Z4

H3(K)
∼=Z4

H4(P2)
∼=Z10

H6(P2)
∼=Z20

H8(P2)
∼=Z35

H10(P2)
∼=Z56

H6(K)
∼=Z6⊕Z/24

H8(K)
∼=Z/34

H9(K)
∼=Z4⊕Z/26

H2(P2)⊗H3(K)
∼=Z16

H2(P2)⊗H6(K)
∼=Z24⊕Z/216

H2(P2)⊗H8(K)
∼=Z/316

H4(P2)⊗H3(K)
∼=Z40

H4(P2)⊗H6(K)
∼=Z24⊕Z/216

H6(P2)⊗H3(K)
∼=Z80

Up to extension problems we obtain H i(P3B4) for i ≤ 9 from the Leray-Serre spec-
tral sequence above. The extension problems are considered in Appendix A. They can
be solved by comparison with the cohomology with Z/2-coefficients H∗(P3B4;Z/2). In
Appendix A we determine H∗(P3B4;Z/2) using the Leray-Serre spectral sequence with
coefficients in Z/2.
After solving the extension problems in cohomology, the Künneth Theorem determines
Hi(P3B4) for i ≤ 8.

Lemma 4.5. The integral (co)homology groups of P3B4, abbreviated by P3, are

i 0 1 2 3 4 5 6 7 8 9

H i(P3) Z 0 Z4 0 Z6 0 Z4⊕Z/24 0 Z⊕Z/216⊕Z/34 0

Hi(P3) Z 0 Z4 0 Z6 Z/24 Z4 Z/216⊕Z/34 Z

.
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⊕
li)

In Appendix A we also compute the product structure of the integral cohomology and
of cohomology with coefficients in Z/2, in a range. For the latter we also determine the
Steenrod-module structure.

4.3. The twisted bordism group ΩString
8 (P3B4,−

⊕
li)

The E2−page of the (twisted) Atiyah-Hirzebruch spectral sequence converging to B-
bordism, with B either a twisted fibration X×̃BO〈m〉 or the product fibration X ×
BO〈m〉 overBO is in both cases is given by E2

p,q
∼= Hp(X; Ω

O〈m〉
q (pt)), by the construction

in Section 3.4. Of course, the differentials depend on the bundle we twist with.
We apply the (twisted) Atiyah-Hirzebruch spectral sequence to our situation. Therefore,
we need the coefficients ΩString

i (pt). For dimensions less or equal 16 they were calculated
in [Gia71]. For i ≤ 9 they are:

i 0 1 2 3 4 5 6 7 8 9

ΩString
i (pt) Z Z/2 Z/2 Z/24 0 0 Z/2 0 Z⊕ Z/2 Z/22

.

Since we are interested in ΩString
8 (P3B4;−⊕ li) we only depict the seventh, eighth and

ninth diagonal and the coefficients.

0 2 4 6 8

0

3

6

9

Z

Z/2

Z/2

Z/24

Z/2

Z⊕ Z/2

Z/22

Z/246

Z/24

Z/28

Z/216⊕Z/34

Z/24

Z/24

Z/28

Z/216

Z

Z/28

Z/216

Z/217

T
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⊕
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Here T is a finite group we cannot and need not determine exactly.
By Lemma 3.16 there is a tool to compute the differential d2 : E2

p+2,q → E2
p,q+1 for

q = 0, 1. In order to use Lemma 3.16 we need to know the second Steenrod square
Sq2 : Hk(P3B4;Z/2)→ Hk+2(P3B4;Z/2) for k = 5, 6, 7, furthermore, the reduction mod-
ulo two red : Hk(P3B4) → Hk(P3B4;Z/2) for k = 8, 9 and, in the twisted case, the cup
product with w2(−⊕ li).
We determine the complete Steenrod module structure of Hk(P3B4;Z/2) for k ≤ 10 (Ap-
pendix A). There we also obtain a sufficient part of the product structure in the same
range to determine the cup product with w2(−⊕ li).
We consider the case w2(B4) 6= 0 first.

We start with d2 : E2
71 → E2

52 which, by Lemma 3.16 is dual to the map

Sq2
w : H5(P3B4;Z/2) → H7(P3B4;Z/2)

x 7→ Sq2(x) + x ∪ w2.

Knowing the Steenrod module structure we, in particular, know that the Steenrod square
Sq2 : H5(P3B4;Z/2)→ H7(P3B4;Z/2) vanishes (compare Equation (15) in Appendix A),
i.e. Sq2

w(x) =Sq2(x) +x∪w2 =x∪w2. Thus, the cup product with w2 determines Sq2
w.

By the product structure of H7(P3B4;Z/2) we know Sq2
w is injective. Hence,

ker(d2 : E2
71 → E2

52) = Z/212.

By a slightly more tedious argument we obtain

im(d2 : E2
81 → E2

62) ∼= Z/24.

The calculation here is a bit more involved because Sq2 : H6(P3B4;Z/2)→ H8(P3B4;Z/2)
does not vanish (compare Table A and Equations (14) and (16) in Appendix A). But in
the end the cup product with w2 determines Sq2

w and thus d2.

The last differential whose image we determine is d2 : E2
90 → E2

71. Here the result
depends on the coefficients Aij , for 1 ≤ j ≤ 4 and i < j, which determine the defining
line bundles for a Bott tower of height four (cf. Section 2.1).
In Section 2.2 we show c(TB4) =

∏
(1 − 2yi + αi), where αi =

∑
Aijyj for i < j. The

second Stiefel-Whitney class w2(TB4) is the reduction modulo two of c1(TB4). Thus,

w2(B4) = (A1
2 +A1

3 +A1
4)y1 + (A2

3 +A2
4)y2 +A3

4y3 mod 2.

Let p3 : P3B4 → P2B4 denote the projection and let ai for i = 1, .., 4 denote the basis
of H2(P2B4) as before. Recall that the isomorphism ι∗3 : H2(P3B4) → H2(B4) has the
properties p∗3ai 7→ yi and ι∗3(

⊕
li) ∼= TB4. Hence, we obtain

w2(−
⊕

li) = w2(
⊕

li) = (A1
2 +A1

3 +A1
4)p∗3a1 + (A2

3 +A2
4)p∗3a2 +A3

4p
∗
3a3 mod 2.
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⊕
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Here, im(d2 : E2
90 → E2

71) depends on the coefficients Aij reduced mod two, for 1 ≤ j ≤ 4
and i < j.
Let aiaj , 1 ≤ i, j ≤ 4, i 6= j be the basis of H4(P3B4;Z/2) which consists of pullbacks
of aiaj ∈ H4(P2B4;Z/2) and let bk, 1 ≤ k ≤ 4 denote a basis of H5(P3B4;Z/2) (cf.
Appendix A, Table A).
By Equations (14), (15) and the product structure of H∗(P3B4;Z/2) given in Table A
the image of Sq2

w : H7(P3B4;Z/2)→ H9(P3B4;Z/2) is generated by

(
(A2

3 +A2
4)a1a2 +A3

4a1a3

)
bk,

(
(A1

2(A2
3 +A2

4) +A1
3 +A1

4)a1a2 +A3
4a2a3

)
bk,(

(A1
2 +A1

3)a1a4 +A2
3a2a4

)
bk and

(
(A1

2 +A1
3A

3
4 +A1

4)a1a3 + (A2
3A

3
4 +A2

4)a2a3

)
bk.

By Lemma 3.16 (Sq2
w)∗ ◦ red = d2 for q = 0. The map red : H9(P3B4)→ H9(P3B4;Z/2)

is onto which can be seen by using the Bockstein long exact sequence of Z→ Z→ Z/2.
Thus, ker(Sq2

w) is either Z/216,Z/28 or Z/24, i.e.

im(d2 : E2
90 → E2

71) = 0,Z/28 or Z/212.

If w2(B4) = 0 the differentials d2 : E2
71 → E2

52 and d2 : E2
81 → E2

62 vanish. But
again, the differential d2 : E2

90 → E2
71 depends on the Aij . In this case the image

im(Sq2 : H7(P3B4;Z/2)→ H9(P3B4;Z/2)) is generated by

A1
2a1a2bk, (A1

3a1a3 +A2
3a2a3)bk and (A1

4a1a3 +A2
4a2a4)bk.

Thus, ker(Sq2) is either Z/216,Z/28 or Z/24, i.e.

im(d2 : E2
90 → E2

71) = 0,Z/28 or Z/212.

Note that, for the twisted and the untwisted case as well, there cannot appear any
differentials that kill the integral part of the eighth diagonal. Thus, we have

Lemma 4.6. Let R denote the torsion subgroup of ΩString
8 (P3B4,−

⊕
li). Then

ΩString
8 (P3B4,−

⊕
li) ∼= Z2 ⊕R,

and

1. for w2 6= 0 we obtain |R| ≤ |Z/2k|, where k = 25, 17 or 13 for im(d2 : E2
90 → E2

71) =
0,Z/28 or Z/212, respectively, and

2. for w2 = 0 we obtain |R| ≤ |Z/2k|, where k = 33, 25 or 21 if im(d2 : E2
90 → E2

71) =
0,Z/28 or Z/212, respectively.

We did not find any way to determine further differentials in the (twisted) Atiyah-
Hirzebruch spectral sequence. Furthermore, we tried to apply the Adams spectral
sequence but this, in general, did not help to determine the twisted bordism group
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⊕
li)

ΩString
8 (P3B4,−

⊕
li) on the nose. Even the calculation of the E2-page of the Adams

spectral sequence is quite tedious, since it depends on the Steenrod module structure
which in turn depends on the Aij .
None the less we, at least, want to give one example of a calculation with the Adams
spectral sequence because it allows a statement about the form of the torsion subgroup.

Assume we are in the first case of Lemma 4.3, i.e. consider a Bott manifold which is
String. Additionally, assume that Aij = 0 mod 2 for i < j ≤ 4. By the Pontrjagin-

Thom construction ΩString
k (P3B4) ∼= πstk (P3B4+∧MString) and we can apply the Adams

spectral sequence.
From the Atiyah-Hirzebruch spectral sequence we know that the only torsion which
can appear for ΩString

8 (P3B4) is torsion at the prime two. Thus, it suffices to consider
the Adams spectral sequence converging to πstt−s(P3B4+ ∧MString)/non-2-torsion for
t− s ≤ 9. Its E2-page is given by

Es,t2 = Exts,tA (H∗(P3B4+ ∧MString; Z/2),Z/2).

To calculate the E2-page for t − s ≤ 9 we use the method of minimal resolutions as
introduced in [Sto85]. Later on we calculate a resolution for one example explicitly (cf.
Appendix B). Here, we just depict the E2-page for t− s ≤ 9. We calculated it with the
computer algorithm developed by Bruner (cf. [Bru93] and [Bru]). We use the following
notation: • denotes a Z/2, � a Z/24, ◦ a Z/26, ? a Z/216 and4 a Z/224. The multiplicative
structure on the E2 is indicated in the same way as in Example 6.19 of [Sto85].
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Since we did not find a way to determine the d2-differential d2 : E90 → E82, the Adams
spectral sequence also does not determine ΩString

8 (P3B4). It does, however, imply, that
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4.4 Proof of Theorem 4.2 by modified surgery theory

the torsion subgroup T of ΩString
8 (P3B4) is a direct sum of Z/2-summands for this class

of Bott manifolds. If we drop the condition Aij = 0 mod 2 the E2-page still indicates
that the torsion subgroup is a sum of Z/2-summands. In general, this need not be true.

4.4. Proof of Theorem 4.2 by modified surgery theory

Now we are ready to apply Corollary 3.11 to prove that two cohomology Bott manifolds
with respective polarisation maps represent the same element in the polarised structure
set Sp(B4) if they induce the same element in ΩString

8 (P3B4,−
⊕
li).

Lemma 4.7. Let N and N ′ be two eight-dimensional cohomology Bott manifolds with
polarisation maps g : H∗(B4) → H∗(N) and g′ : H∗(B4) → H∗(N ′), respectively. Their
induced elements in ΩString

8 (P3B4,−
⊕
li), as constructed in the proof of Proposition 4.4,

are denoted by [N, j3 × ν̃N ] and [N ′, j′3 × ν̃N ′ ]. If

[N, j3 × ν̃N ] = [N ′, j′3 × ν̃N ′ ] ∈ ΩString
8 (P3B4,−

⊕
li),

then
[N, g] = [N ′, g′] ∈ Sp(B4).

Proof. By the definition of the polarised structure set, we need to find a diffeomorphism
f : N ′ → N such that f∗ ◦ g′ = g.
To apply Corollary 3.11 it remains to show that the fourth homotopy groups of N and
N ′ are finite. We show that this holds for all cohomology Bott manifolds of dimension
eight.
Recall that p3 : P3B4 → P2B4 is the projection of the Postnikov tower and that p∗3ai
generate H2(P3B4), where ai, 1 ≤ i ≤ 4, are a basis for H2(P2B4).
In Appendix A we deduce that H4(P3B4) is generated by products aiaj for i 6= j. Thus,
the map j∗3 : H4(P3B4) → H4(N) is an isomorphism by construction. The universal
coefficient theorem implies that (j3)∗ : H4(N)→ H4(P3B4) is an isomorphism, too. Here,
we use that Hk(P3B4) is torsion free for k ≤ 4.
By the long exact sequence

H5(N)︸ ︷︷ ︸
=0

→ H5(P3B4)
q∗→ H5(P3B4, N)→ H4(N)

∼=→ H4(P3B4)→ H4(P3B4, N)→ H3(N)︸ ︷︷ ︸
=0

q∗ is an isomorphism on fifth homology and H4(P3B4, N) = 0. Since j3 is 3-connected
the lower homology groups of the pair vanish as well. Thus, by Hurewicz’s theorem and
the long exact sequences of the pair (P3B4, N) in homotopy there are isomorphisms

H5(P3B4) ∼= H5(P3B4, N) ∼= π5(P3B4, N) ∼= π4(N).

In Lemma 4.5 we showed that H5(P3B4) is finite. Thus, since [N, g] and [N ′, g′] are
bordant by assumption, there exists a diffeomorphism f : N → N ′ such that j′3 ◦ f = j3
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4.4 Proof of Theorem 4.2 by modified surgery theory

by Corollary 3.11.
By construction j3 and j′3 are lifts of j2 and j′2, respectively. Thus, j′2 ◦ f = j2.
By definition (cf. proof of Proposition 4.4), j∗2(ai) = g(yi) and (j′2)∗(ai) = g′(yi). Since
the cohomology of N is generated by elements in degree two f∗ fulfils f∗ ◦ g′ = g.

Now we are ready to prove Theorem 4.2.

Proof. We know ΩString
8 (P3B4,−

⊕
li) ∼= Z2⊕R, where R denotes the torsion subgroup.

By the Lemma above it suffices to show that all elements in the bordism group that
are induced by cohomology Bott manifolds have the same image under projection to the
integral part of the controlled bordism group.
We need two invariants which detect Z2 ⊂ ΩString

8 (P3B4,−
⊕
li), the first is the Thom

homomorphism and the second is related to the Pontrjagin numbers.

Consider the Thom homomorphism

T : ΩString
8 (P3B4,−

⊕
li) → H8(P3B4)

[M,h× β] 7→ h∗[M ].

It is also possible to describe the Thom homomorphism as edge homomorphism

ΩString
8 (P3B4,−

⊕
li) � E∞80 ↪→ E2

80
∼= H8(P3B4)

of the twisted Atiyah-Hirzebruch spectral sequence. This follows from [Arl96]. Note
that there, the Thom homomorphism is called generalised Hurewicz homomorphism.
Thus, the Thom homomorphism detects the integral summand Z ∼= E∞p0 .

Next, we show that T ([N, j3 × ν̃]) = T ([N ′, j′3 × ν̃ ′]) for any two cohomology Bott
manifold N and N ′ with maps j3 and j′3 induced by the polarisation maps g and g′,
respectively.
Recall that ai, 1 ≤ i ≤ 4 denote the generators of H∗(P2B4) and that p3 : P3B4 → P2B4

denotes the projection. The class p∗3(a1∪a2∪a3∪a4) =: a is a generator of Z ⊂ H8(P3B4)
by a spectral sequence argument (cf. Leray-Serre spectral sequence in Section 4.5 and
Appendix A).
Let (N, g) and [N, j3 × ν̃] be as above. By construction of j3

j∗3(a) = j∗2(a1 ∪ a2 ∪ a3 ∪ a4) = g(y1 ∪ y2 ∪ y3 ∪ y4) = [N ]∗,

where [N ]∗ denotes the generator of H8(N) dual to the fundamental class [N ] ∈ H8(N).
Since H9(P3B4) = 0 the universal coefficient theorem implies (j3)∗[N ] = a∗, where a∗ is
the dual of a, for all elements in ΩString

8 (P3B4,−
⊕
li) induced by elements in Sp(B4).

This holds for all cohomology Bott manifolds with respect to B4. Hence, any two
cohomology Bott manifolds have the same image under the Thom homomorphism.
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Recall that E∞08
∼= Z ⊕ Z/2 or Z, depending on the differentials, and that the bordism

group is ΩString
8 (P3B4;−⊕ li) ∼= R ⊕ E∞08/tor ⊕ Z. The second (integral) summand is

given by E∞08/tor ↪→ Ω8(P3B4;−⊕ li). We claim that E∞08/tor
∼= ΩString

8 (pt)/tor. To
see this, let Etp,q(X,E) denote the (p, q)-entry on the t-th page of the (twisted) Atiyah-

Hirzebruch spectral sequence converging to ΩString
p+q (X,E), where we omit E from the

notation if it is trivial. Furthermore, let r be the rank of −⊕ li.
By definition of the twisted Atiyah-Hirzebruch spectral sequence

E2
08(P3B4,−

⊕
li) = E2

r,8(Th(−
⊕

li)).

The r-skeleton of Th(−⊕ li) is Sr. The inclusion of the r-skeleton induces a map
E2
r,8(Sr) → E2

r,8(Th(−⊕ li)). But E2
r,8(Sr) ∼= Ω̃String

r+8 (Sr) ∼= ΩString
8 (pt). Thus, the

claim follows.
Now we consider the situation on a geometric level. Define

incl : ΩString
8 (pt) → ΩString

8 (P3B4,−
⊕

li) by

[M, ν̃] 7→ [M,pt× ν̃].

Furthermore, let pr8 be the projection BString → BSO and

pr∗ : ΩString
8 (P3B4,−

⊕
li) → ΩSO

8 (pt) ∼= Z⊕ Z,

[M,f × ν̃] 7→ [M, (−
⊕

li ⊕ pr8) ◦ (f × ν̃)].

The composition pr∗ ◦ incl equals (pr8)∗ and is well-known to have kernel Z/2. Thus, Z
is contained in im(incl) and pr∗|Z⊂im(incl) : Z→ ΩBSO

8 is injective.
The Pontrjagin numbers with respect to p2 and p2

1 are a complete set of invariants for
ΩSO

8 (pt). Since these are fixed in the polarised structure set, this finishes the proof.

Note that the proof of the theorem and Lemma 4.6 lead to the following corollary:

Corollary 4.8. Let B4 be a Bott manifold and let R denote the torsion subgroup of
ΩString

8 (P3B4,−
⊕
li). Then the number of diffeomorphism classes of cohomology Bott

manifolds is bounded by |R| and we obtain

1. for w2 6= 0 |R| ≤ |Z/2k|, where k = 25, 17 or 13 for Im(d2 : E2
90 → E2

71) = 0,Z/28

or Z/212, respectively, and

2. for w2 = 0 |R| ≤ |Z/2k|, where k = 33, 25 or 21 if Im(d2 : E2
90 → E2

71) = 0,Z/28 or
Z/212, respectively.

Here, the differentials are differentials of the (twisted) Atiyah-Hirzebruch sequence on
page 49.
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4.4 Proof of Theorem 4.2 by modified surgery theory

Remark 4.9. To conclude, we want to outline the classification of cohomology Bott
manifolds of real dimension ten.

For a classification of ten-dimensional manifolds we need normal four-smoothings. We
can construct the normal four-type of a Bott manifold B5 of dimension ten.
The tangent bundle of a ten-dimensional Bott manifolds B5 is a sum of complex line
bundles

⊕
l̃i, where 1 ≤ i ≤ 5. The normal three-type of B5 is given by P3B5×̃BString.

Here the twist bundle is −⊕ li, for 1 ≤ i ≤ 5, where li is defined by the property that
the pullback of li under the map B5 → P3B5 is l̃i.
By Lemma 2.2 π5(B5) is isomorphic to Z/25. By Section 3.1 the fourth Postnikov stage of
B5 is a fibration K(Z/25, 4)→ P4B5 → P3B5 which is classified by a map to K(Z/25, 5).
The normal four-type of B5 is given by B4(B5) := P4B5×̃BString, where the twist
bundle is the same as the one for the normal three-type.

Analogously to Proposition 4.4 we see that a representative (N, gB5,N ) of an element in
Sp(B5) admits a normal three-smoothing j3 × ν̃N into B3(B5). Since H5(N ;Z/25) = 0
the obstruction to the existence of a lift of j3 to P4B5 vanishes. Thus, N admits a normal
four-smoothing into P4B5×̃BString = B4(B5). To get a result similar to Theorem 4.2

we need to compute Ω
B4(B5)
10 , at least we need to determine the integral subgroups.

By Lemma 3.2 the cohomology groups Hk(P4B5) are isomorphic to Hk(B5) for k ≤ 4.
Therefore, the non-vanishing cohomology groups in this range are Hk(P4B5) ∼= Z,Z5 and
Z10 for k = 0, 2, 4, respectively. From the cohomological Leray-Serre spectral sequence
of P4B5 → P3B5 we deduce that the only further free subgroups in Hk(P4B5) are Z10 for
k = 6, Z5 for k = 8 and Z for k = 10.
Consider the E2-page of the (twisted) Atiyah-Hirzebruch spectral sequence

E2
pq = Hp(P4B5; ΩString

q (pt))

converging to ΩString
p+q (P4B5,−

⊕
li) for p + q = 10. The only free subgroups of the

coefficients are contained in ΩString
0 (pt) ∼= Z and ΩString

8 (pt) ∼= Z⊕Z/2. This implies that

only the entries E28
2 and E10,0

2 contain integral summands, namely Z5 and Z, respectively.
Furthermore, there are no differentials which can kill these groups since all integral
entries appear in Erpq with p and q even and p+ q ≤ 11.

The Thom homomorphism is an invariant for Z ⊂ E10,0
2 , as before. Furthermore, the

image of a representative (N, gB5,N ) of an element in Sp(B5) is fixed as in the eight-
dimensional case. Therefore, it remains to find invariants for Z5 ⊂ E28

∞ .

There is a map
p× p8 : P4B5 ×BString → P2B5 ×BSO

which induces a map (p × p8)∗ : ΩString
10 (P4B5,−

⊕
li) → ΩSO

10 (P2B5) ∼= ΩSO
10 ((CP∞)5).

This map is injective on Z5 ⊂ E28
∞ ⊂ ΩString

10 (P4B5,−
⊕
li) since the underlying map on
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

homology is injective in second homology. Let aj ∈ H2((CP∞)5) for 1 ≤ j ≤ 5 denote
a basis of H2((CP∞)5), furthermore, let p1 ∈ H4(BSO) and p2 ∈ H8(BSO) denote
the universal Pontrjagin classes and let [M,f × ν̃] be an element in ΩSO

10 ((CP∞)5).
Then we can define invariants ajpi, for 1 ≤ j ≤ 5, i = 1, 2, on ΩSO

10 ((CP∞)5) by
[M,f × ν̃] 7→ (f∗(aj) ∪ ν̃∗(p1)2) ∩ [M ] and by [M,f × ν̃] 7→ (f∗(aj) ∪ ν̃∗(p2)) ∩ [M ].
Since the Pontrjagin classes and the cohomology ring of a cohomology Bott manifold
are fixed, all of these invariants have the same image for cohomology Bott manifolds of
dimension ten.

Therefore, the polarised structure set Sp(B5) is finite, i.e. the number of cohomology
Bott manifolds in dimension ten is also finite. A straight forward calculation will deter-
mine an upper bound k for the rank of the torsion subgroup R of ΩString

10 (P4B5,−
⊕
li).

Thereby the rank of Sp(B5) is also bounded by k.

We conclude with the following observation. An upper bound for the number of dif-
feomorphism classes of Bott manifolds (or toric manifolds) whose cohomology ring is
isomorphic to H∗(B5) now only depends on k and the number of ring isomorphisms
which do not preserve the Pontrjagin classes.

4.5. A cohomology Bott manifold which is not diffeomorphic to a Bott
manifold

For the remainder of this section, T denotes a Bott manifold for which p1(T ) = 0,
w2(T ) = 0 and for which the strong cohomological rigidity problem holds, i.e. for any
other Bott manifold B4 such that there exists a ring isomorphism Ψ: H∗(T )→ H∗(B4)
there exists a diffeomorphism f : B4 → T such that f∗ = Ψ. Such Bott manifolds exist
by [CM12] and [Cho11a].
For each T as above we construct an explicit counterexample to the cohomological rigid-
ity of eight-dimensional cohomology Bott manifolds, i.e. we construct a manifold in the
polarised structure set of Sp(T ) which is not diffeomorphic to any Bott manifold, in
particular, not to T .

Theorem 4.10. For each Bott manifold T as above there exists a cohomology Bott
manifold F ∈ Sp(T ) such that F is not diffeomorphic to a Bott manifold.

The strategy of the proof is to find a manifold, which we denote by Kp, which induces

a non-trivial element in ΩString
8 (CP∞). Furthermore, Kp has the property that the

parametric connected sum T#
CP1Kp, which we explain subsequently, is a cohomology

Bott manifold. The assumption that T#
CP1Kp and T are diffeomorphic leads to a

contradiction.

We start by constructing Kp.
It is well-known that the Kervaire manifold S3 × S3 =: K together with the String
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

structure L : K → BString obtained by the Lie-group framing, is the non-trivial element
ΩString

6 (pt) ∼= Ωfr
6 (pt) ∼= Z/2, since its Arf-invariant (or Kervaire-Arf-invariant) is non-

trivial. This was already shown in [KM63]. For a definition of the Arf-invariant we refer
the reader to Chapter 6 in [Lüc02]. We denote the non-trivial element in ΩString

6 (pt) by
[K,L].
Now we consider K × CP1 together with the map L × pt : K × CP1 → BString. By
abuse of notation we denote this map by L, too. Since T (L × CP1) ∼= TL ⊕ TCP1 the
normal bundle is given by ν(L × CP1) ∼= ν(L) ⊕ ν(CP1). Since the latter summand is
stably trivial L induces a normal String structure on K × CP1.

Lemma 4.11. Let pr2 : K × CP1 → CP1 be the projection upon the second factor. The
element ω := [K × CP1, pr2 × L] ∈ ΩString

8 (CP1) is non-trivial. It is of finite order.

The construction which we use to prove the first part of the lemma is also known as
codimension two Arf-invariant.

Proof. In Definition 3.17 we introduce the homomorphism

t : ΩString
8 (CP1) → ΩString

6 (pt)

[M,f × α] 7→ [f−1(f |∩ pt)(f × α)|
f−1(f |∩pt)].

By construction t([K×CP1, pr2×L]) = [K,L] 6= 0. Thus, the preimage [K×CP1, L×pr2]
must be non-trivial in ΩString

8 (CP1).

The map t vanishes on im(ΩString
8 (pt) ↪→ ΩString

8 (CP1)) by the exact sequence of Lemma
3.18. Thus, ω must be non-trivial under the projection to the reduced bordism group
Ω̃String

8 (CP1) ∼= Z/2.

Next we show that ω is of finite order.
As in the proof of Theorem 4.2 we use the map pr8 : BString → BSO which induces a
map Z⊕ Z/2 ∼= ΩString

8 (pt)→ ΩSO
8 (pt) whose kernel is Z/2.

The Pontrjagin numbers are a complete set of invariants of ΩSO
8 (pt). The first Pontrjagin

class p1(K × CP1) is an element in H4(K × CP1) which vanishes. Hence, the second
Pontrjagin number p(2)(K × CP1) := 〈p2(K × CP1), [K × CP1]〉 is, by the signature

theorem, determined by the signature of K × CP1. But H4(K × CP1) = 0 implies
that the signature vanishes. Thus, p(2)(K × CP1) vanishes, as well. This shows that

the element ω ∈ ΩString
8 (CP1) is contained in ΩString

8 (pt)/Z⊕ Ω̃String
8 (CP1) which is the

finite group Z/2⊕ Z/2.

Now we change [K × CP1, pr2 × L] by surgery. By Proposition 4 of [Kre99] (which we
cite in Proposition 3.8) we can turn pr2×L into a four-equivalence by surgery below the
middle dimension. Since H̃k(CP1 × BString) = 0 for 2 6= k ≤ 7 we obtain a manifold
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

Kp with

Hk(Kp) ∼=
{
Z for k = 0, 2, 6, 8

0 else.

We denote this representative of [K × CP1, pr2 × L] ∈ ΩString
8 (CP1) by (Kp, κ× ν̃Kp).

Later on we want to be able to compare elements induced by T and the parametric
connected sum - which we still need to explain - of T and Kp in ΩString

8 (CP∞). To be

able to do this we need to understand Kp as an element in ΩString
8 (CP∞).

Lemma 4.12. The inclusion CP1 → CP∞ induces a monomorphism

ΩString
8 (CP1)→ ΩString

8 (CP∞).

In particular, [Kp, κ× ν̃Kp ] gives rise to a non-trivial element in Ω̃String
8 (CP∞).

The strategy of the proof is the following. The Pontrjagin-Thom construction results in
an isomorphism

ΩString
8 (CP∞) ∼= πst8 (CP∞+ ∧MString).

Thus, we can apply the Adams spectral sequence to calculate ΩString
8 (CP∞). Then we

can compare the Atiyah-Hirzebruch spectral sequences of ΩString
8 (CP1) and ΩString

8 (CP∞)
since the inclusion CP1 → CP∞ induces a map on the respective E2-pages. By the calcu-
lations of ΩString

8 (CP1) and ΩString
8 (CP∞) we also know the infinity pages. This enables

us to deduce that the map

ΩString
8 (CP1)→ ΩString

8 (CP∞)

induced by the inclusion CP1 → CP∞ is injective.

Later on we calculate the E2-page of the Atiyah-Hirzebruch spectral sequence. There
we see, that the only torsion that appears is two-primary. Consequently it is justified
to restrict to the Adams spectral sequence at the prime two. Recall that the E2-page of
the Adams spectral sequence, converging to πstt−s(CP

∞
+ ∧MString), at the prime two,

has entries
Es,t2 = Exts,tA (H∗(CP∞+ ∧MString; Z/2),Z/2).

To calculate the E2-page for t−s ≤ 9 we use the method of minimal resolutions as intro-
duced in [Sto85]. We calculate the necessary data for the method of minimal resolutions,
i.e. the Steenrod module structure of H∗(CP∞ ∧MString; Z/2) in the proof. For this
one example we also calculate the resolution explicitly in Appendix B. We checked the
result by a computer algorithm developed by Bruner (cf. [Bru93] and [Bru]).
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

Proof. To calculate the minimal resolution we needHk(CP∞+ ∧MString; Z/2) for k ≤ 10.
The ring H∗(CP∞, Z/2) is generated by a ∈ H2(CP∞; Z/2).
The cohomology H∗(BString; Z/2) is determined in [Sto63]. By the Thom isomorphism
the only non-vanishing cohomology groups of MString in degree less or equal ten are
Hk(MString; Z/2) ∼= Z/2 for k = 0, 8. The generator in degree zero is the Thom class
u, the one in degree eight is uw8. Here w8 denotes the pullback of the eighth universal
Stiefel-Whitney class in H8(BO;Z/2) to H8(BString;Z/2). By Chapter 8 in [MS74] we
know Sq8(u) = uw8.
We consider the pullback of the classes u, uw8, a, a

2, ... to H∗(CP∞+ ∧MString), apply
the Künneth theorem and obtain

i 0 2 4 6 8 10

H i(CP∞+ ∧MString; Z/2) Z/2 Z/2 Z/2 Z/2 Z/22 Z/22

generators u ua ua2 ua3 uw8, ua
4 ua5, w8a

.

The other groups H i(CP∞+ ∧MString; Z/2) vanish for i ≤ 10. Now, a straight forward
calculation shows that the only non-vanishing operations of Steenrod squares Sqi in this
range are:

Sq8u = uw8, Sq2ua = ua2,

Sq8ua = uw8a, Sq4ua2 = ua4,

Sq2ua3 = ua4, Sq4ua3 = ua5.

From this data we calculate the minimal resolution in Appendix B and obtain the fol-
lowing E2-page. Again, we indicate the multiplicative structure on the E2-page as in
Example 6.19 of [Sto85].

0 2 4 6 8

0

2

4

6

8
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

The entries for t − s=9 correspond to the coefficients ΩString
9 (pt). Consequently, they

must survive to the E∞-page. Hence, there cannot be any differential that hits the
column (t− s) = 8 and we obtain

ΩString
8 (CP∞) ∼= ΩString

8 (pt)⊕ Z⊕ Z/2.

Since CP1 ∼= S2 we see

ΩString
8 (CP1) ∼= ΩString

8 (pt)⊕ ΩString
8 (S2, pt) ∼= ΩString

8 (pt)⊕ ΩString
6 (pt)

is isomorphic to ΩString
8 (pt)⊕ Z/2.

Now we start the comparison of the E2-pages of the Atiyah-Hirzebruch spectral sequences
converging to ΩString

8 (CP1) and ΩString
8 (CP∞). For this we use that CP1 ↪→ CP∞ induces

an injective map on homology groups.
Consider the Atiyah-Hirzebruch spectral sequence with E2-page

E2
pq(CP

∞) ∼= Hp(CP
∞; ΩString

8 (pt))

converging to ΩString
p+q (CP∞). Since we are only interested in p + q = 8 we only depict

the seventh, eighth and ninth diagonal and the coefficients.

0 2 4 6 8

0

3

6

Z

Z/2

Z/2

Z/24

Z/2

Z⊕ Z/2

Z/24

Z/2

Z/2

Z/2

Z

Z/28

Z/2
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

Since Sq2 : H6(CP∞;Z/2)→ H8(CP∞;Z/2) is an isomorphism, the indicated differential
is an isomorphism by Lemma 3.16 as well. Thus, on the E3-page, there only remain two
entries containing a Z/2. Since ΩString

8 (CP∞) ∼= ΩString
8 (pt)⊕Z⊕Z/2 both entries must

survive to the E∞-page.
We now compare the E2-pages. Denote the entry of the Atiyah-Hirzebruch spectral
sequence converging to ΩString

8 (CP1) by E2
pq(CP1) = Hp(CP1; ΩString

q (pt)). The inclusion

CP1 ↪→ CP∞ induces injective maps

H0(CP1; ΩString
8 (pt)) ∼= E2

08(CP1) → E2
08(CP∞) ∼= H0(CP∞; ΩString

8 (pt)) and

H2(CP1; ΩString
6 (pt)) ∼= E2

26(CP1) → E2
26(CP∞) ∼= H2(CP∞; ΩString

6 (pt)).

Since all these entries survive to E∞, this proves the Lemma.

Now we construct the parametric connected sum T#
CP1Kp and show that it actually is

a cohomology Bott manifold.

By Hurewicz’s Theorem all classes in H2(Kp) ∼= Z are spherical. Thus, we can fix an
embedding i : S2 ↪→ Kp such that i∗[S

2] generates H2(Kp). Since Kp is a String manifold
ν(S2 ↪→ Kp) is stably trivial. The rank of ν(S2 ↪→ Kp) is bigger than the dimension of
the sphere, whence the normal bundle is actually trivial. Consequently, we obtain an
embedding S2 ×D6 ↪→ Kp.
The same holds for T , where we take the embedding to be s4 ◦ s3 ◦ s2 : CP1

1 → T as
defined in Section 2.1. Thus, we can cut S2 × D6 out of T and Kp and identify the
boundaries along the identity. We call this the parametric connected sum and denote it
by F := T#

CP1Kp, where F stands for fake Bott manifold.

Note that we could also construct F using the embeddings given by the appropriate
compositions of sections and inclusions of the fiber, e.g. s4 ◦ i3.

Lemma 4.13. The parametric connected sum F is a cohomology Bott manifold.

Recall that a cohomology Bott manifold is defined to be a manifold which admits a
polarisation map g : H∗(T )→ H∗(F ). We construct such a map g in the proof.

Proof. First we prove that there exists a ring isomorphism g : H∗(T )→ H∗(F ).
Let CK be the complement Kp−S2×D6 and let CT be the complement T − (S2×D6).
By the Mayer-Vietoris sequence of Kp = S2 ×D6 ∪CK we get Hj(CK) ∼= Hj(S2 ×D6)
for all j.
Similarly, by the Mayer-Vietoris sequence of T = CT ∪ S2 ×D6 and F = CT ∪ CK , we
obtain isomorphisms Hk(T ) → Hk(CT ) and Hk(F ) → Hk(CT ) for k = 0, 2, 4. Since
these are induced by the inclusions i : CT → T and j : CT → F they are natural with
respect to the cup product.
Combining both isomorphisms we obtain isomorphisms

φk := i∗ ◦ (j∗)−1 : Hk(T )→ Hk(F )
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

for k ≤ 4 such that, for all x, y ∈ H2(T ), φ2(x) ∪ φ2(y) = φ4(x ∪ y).

Let D6
ε ⊂ D6 be a disk such that the closure of D6

ε is contained in the interior of D6.
Thus, we can apply excision to S2 × D6

ε ⊂ S2 × D6 ⊂ T and obtain an isomorphism
Hk(T, S2 ×D6) ∼= Hk(CT , ∂CT ).
Similarly we can construct C̃K ⊂ CK such that we can apply excision to C̃K ⊂ CK ⊂ F ,
whence Hk(F,CK) ∼= Hk(CT , ∂CT ).
Furthermore, by the long exact sequence of the pairs (T, S2×D6), (F,CK) and (CT , ∂CT ),
we obtain a commutative diagram, where, for k = 4 all maps are isomorphisms:

Hk(T ) // Hk(CT ) Hk(F )oo

Hk(T, S2 ×D6) //___

OO�
�
�

Hk(CT , ∂CT )

OO

Hk(F,CK) .oo_ _ _

OO�
�
�

For k = 4 the dotted arrows form φ4. Composing the dashed arrows we also obtain φ4 by
commutativity. For k = 8 the dashed arrows are also natural isomorphisms. We denote
their composition by φ8 : H8(T )→ H8(F ). By naturality φ4(x) ∪ φ4(y) = φ8(x ∪ y) for
all x, y ∈ H4(T ). In particular, this determines the intersection form on F .

Since all odd cohomology groups of F vanish, it remains to construct an isomorphism
φ6 : H6(T )→ H6(F ) such that together all φk, for k = 0, 2, 4, 6, 8, constitute an isomor-
phism of rings.
Recall that xm := ym − αm is a basis for H2(T ) by Lemma 2.3.
For 1 ≤ i, j, l,m ≤ 4, i < j and l < m we obtain

φ2(yi) ∪ φ2(yj) ∪ φ2(yl) ∪ φ2(xm) = φ4(yi ∪ yj) ∪ φ4(yl ∪ xm) = φ8(yi ∪ yj ∪ yl ∪ xm).

An explicit calculation shows that yi ∪ yj ∪ yl ∪ xm is a generator, and thereby that
φ8(yi ∪ yj ∪ yl ∪ xm) is a generator, if and only if {i, j, l,m} = {1, 2, 3, 4} and zero else.
Let l /∈ {i, j, k}. By the above observation the products φ2(yi) ∪ φ2(yj) ∪ φ2(yk) for
i < j < k, form the basis of H6(F ) consisting of the Kronecker duals of φ2(xl) ∩ [F ].
Define φ6(yi∪yj∪yk) := φ2(yi)∪φ2(yj)∪φ2(yk) for i < j < k. Together the φk constitute
a ring isomorphism g : H∗(T )→ H∗(F ).

It remains to show that g is a polarisation map, i.e. that it preserves the Stiefel-Whitney
and Pontrjagin classes.

To prove that g preserves the characteristic classes in degree less or equal four, we use
the inclusions i : CT → T and j : CT → F . By construction φ2 and φ4 are (j∗)−1 ◦ i∗.
The tangent bundles of T and F both pull back to the tangent bundle of CT under i
and j, respectively. Thus, by naturality, φ2 and φ4 respect the second and fourth Stiefel-
Whitney class and the first Pontrjagin class.
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

The Euler class of F and T is even. Thus, the top Stiefel-Whitney class vanishes since
it is just the mod two reduction of the Euler class. The signatures of F and T agree and
p1(T ) = 0 = p1(F ). Hence, their second Pontrjagin classes are preserved under g by the
signature theorem.
Consequently, it remains to show that g(w6(T )) = w6(F ). We use the Wu classes to
check this.
Recall that the Wu classes vi(X) of an n−dimensional, compact, smooth manifold X
are defined by vk(X) ∪ x = Sqk(x) for all x ∈ H∗(X;Z/2). In particular, vk = 0 for
2k > n. The Wu classes are connected to the Stiefel-Whitney-classes by the Wu formula
(cf. [MS74] p.132)

wi(X) =
∑

i+j=k

Sqi(vj(X)).

Since w2(T ) = 0 = w2(F ) and H i(T ; Z/2) = H i(F ; Z/2) = 0 for i = 1, 3 the first three
Wu-classes vanish. Consequently w4(T ) = v4(T ) and w6(T ) = Sq2(w4(T )).
The even Stiefel-Whitney classes are the mod two reductions of the corresponding Chern
classes. We use Section 2.2 to calculate w4(T ) = α2α3 +α2α4 +α3α4 mod 2. A straight
forward calculation shows that this term simplifies to a multiple of y1y2. Thus, w6(T ) = 0
since Sq2(y1y2) = 0.
We already established that g(w4(T )) = w4(F ), i.e. it is a multiple of g(y1)g(y2). In
particular, it is a product of classes in degree two. Since Sq2(x) = x2 if the degree of x
is two, the multiplicative structure of H∗(F ) determines the square Sq2(g(y1)g(y2)). It
vanishes, whence w6(F ) = 0, too.
This finishes the proof that g is a polarisation map.

Lemma 8.1 in [CMS10] implies that any ring isomorphism of cohomology Bott mani-
folds fixes the Stiefel-Whitney classes. Its proof works along the lines of our explicit
calculations to show that g preserves the Stiefel-Whitney classes.

Remark 4.14. We already mentioned that we can also build the parametric connected
sum Fi := T#S2Kp, for i = 2, 3 and 4, using the embeddings given by s2 := s4 ◦ s3 ◦ i2,
s3 := s4◦i3 and s4 := i4, respectively. The proof of Lemma 4.13 does not use the explicit
form of the embedding. Consequently, it also works for Fi.

We are now ready to prove Theorem 4.10.

Proof. First of all we want to understand F , together with appropriate maps, as an
element in ΩString

8 (CP∞). Let ν̃T be a lift of the stable normal Gauss of T .

Then [T, y1× ν̃T ] is an element in ΩString
8 (CP∞), where y1 : T → CP∞ is a representative

of the homotopy class of maps that corresponds to the generator y1.
Recall, that the embedding S2 → B4 is the composition s := s4 ◦ s3 ◦ s2 : CP1

1 → T . In
particular, s∗(y1) is a generator of S2. Thus, S2 × D6 → T → CP∞ corresponds to a
generator of H2(S2). Note, that we obtain the other generator by choosing −y1 instead
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4.5 A cohomology Bott manifold which is not diffeomorphic to a Bott manifold

of y1.
We turn to Kp. The surgery by which we obtain Kp from K × CP1 leaves a neighbour-
hood of the 2-skeleton invariant. Thus, in a tubular neighbourhood S2 ×D6 ↪→ Kp of
i : S2↪→Kp the map κ : Kp → CP1 is the projection to CP1. The map to CP∞ is given
by composition with the inclusion

κ̃ : Kp → CP1 → CP∞.

Again precomposing with the embedding S2 × D6 → Kp, we obtain a map that also
corresponds to a generator of H2(S2).
Thus, the maps T → CP∞ and Kp → CP∞ can be chosen compatibly on S2 ×D6.
Since π2(BString) is trivial ν̃Kp |S2×D6 ' ∗ ' ν̃T |S2×D6 , i.e. the maps T → BString
and Kp → BString are also compatible on S2 ×D6.
Hence, the parametric connected sum is a well-defined element

[F, (κ̃× ν̃Kp)#
CP1(y1 × ν̃T )

︸ ︷︷ ︸
:=h×ν̃F

] ∈ ΩString
8 (CP∞).

Consider S2 × D6 × D1 together with the String structure given by the constant map
pt : S2 ×D6 ×D1 → BString and the map S2 ×D6 ×D1 → CP∞ corresponding to a
generator of H2(S2 ×D6 ×D1). We obtain a controlled bordism

W := T × I ∪Kp × I ∪ S2 ×D6 ×D1

between F = T#
CP1Kp and the disjoint union T ∪Kp. Thus,

[F, h× ν̃F ] = [Kp, κ̃× ν̃Kp ] + [T, y1 × ν̃T ] ∈ ΩString
8 (CP∞).

We prove the Theorem by contradiction.
Assume that there exists a diffeomorphism f : T → F . Then

[T, (h× ν̃F ) ◦ f ] = [F, h× ν̃F ] = [Kp, κ̃× ν̃Kp ] + [T, y1 × ν̃T ] ∈ ΩString
8 (CP∞).

By Lemma 4.12 [Kp, κ̃ × ν̃Kp ] is a non-trivial element in ΩString
8 (CP∞). Consequently,

it only remains to show that [T, (h× ν̃F ) ◦ f ] = [T, y1 × ν̃T ].

By construction the maps h◦f and y1 to CP∞ correspond to primitive elements a and y1

of H2(T ) that square to zero. Thus, there exists an automorphism Ψ: H∗(T )→ H∗(T )
such that Ψ(a) = y1. By assumption all automorphisms on H∗(T ) are realisable by a
self-diffeomorphism f ′. Consequently, there exists a controlled bordism T × I ∪f ′ T × I
between [T, (h× ν̃F ) ◦ f ] and [T, y1 × ν̃T ]. Thus, the bordism classes are equal.

Assume F is diffeomorphic to another Bott manifold B4 by some diffeomorphism ϕ.
Then H∗(B4) and H∗(T ) are isomorphic by the composition of ϕ∗ and the polarisation
map between H∗(F ) and H∗(T ). By assumption B4 and T are diffeomorphic, implying
that F and T are diffeomorphic which is a contradiction.
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Remark 4.15. We can modify this proof such that we see that each cohomology Bott
manifold Fk, for k = 2, 3, 4, as in Remark 4.14 is not diffeomorphic to any Bott manifold,
either. For this purpose we replace [T, y1 × ν̃T ] in the proof by [T, yk × ν̃T ] such that
s∗k(yk) is a generator of H2(CP1

k). With this modifications the proof works the same.

Of course each parametric connected sum, F =: F1 as well as each Fk, induces an element
in ΩString

8 (P3T ). Recall that we have a map P3T → P2T ' (CP∞)4. We can compose the
map P3T → (CP∞)4 with the projection to one of the factors. This composition induces
four maps

qk : ΩString
8 (P3T )→ ΩString

8 (CP∞).

Let N be a cohomology Bott manifold in the polarised structure set of T .
Recall the following construction and notation: In Proposition 4.4 we construct a map
j3 : N → P3T such that the pullback of the generators ai of H2(P3T ) are generators of
H2(N). The induced element in ΩString

8 (P3T ) is denoted by [N, j3 × ν̃N ].
The element [T, yk×ν̃T ]−[Fk, (jk)3×ν̃Fk

] is non-trivial under qk. We can use this to show

that the [Fk, (jk)3×ν̃Fk
], for k = 1, ..., 4 are non-trivial, distinct elements in ΩString

8 (P3T ).

Thus, we obtain representatives for a subgroup of order |Z/24| in ΩString
8 (P3T ).

We conjecture that we can generalise this construction to cohomology Bott manifolds
with respect to arbitrary Bott manifolds B4 which fulfil the (SCRP), i.e. we drop the
assumption that the Bott manifold must be String.
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5. On the realisation of some automorphism on H∗(B4)

In the previous section we examine cohomology Bott manifolds. Now we return to the
original cohomological rigidity problem, to be more precise, the strong cohomological
rigidity problem, i.e. the question whether an isomorphism between the cohomology
rings of two Bott manifolds can be realised by a diffeomorphism of the underlying spaces.
For Bott manifolds of dimension smaller than or equal to six the strong cohomological
rigidity conjecture holds by [Cho11a] and [CM12]. In the latter paper, it is also proven
for the so-called Q-trivial Bott manifolds.

In [Cho11a] this question is studied for eight-dimensional Bott manifolds and reduced
to the question, whether four automorphisms of the cohomology ring of a special class
of Bott manifolds can be realised by a diffeomorphism.

We start by introducing the class of Bott manifolds. Let B4 be the fourth stage of a
Bott tower of the form

CP1
4

i4 // B4

π4

��

= P (γ3 ⊗ γ
− 1

2
A2

3

2 ⊗ γ−
1
2
A1

3

1 ⊕ C) =: P (L3 ⊕ C)

CP1
3

i3 // B3

π3

��

s4

UU

= P (γ
A2

3
2 ⊗ γ

A1
3

1 ⊕ C) =: P (L2 ⊕ C)

CP1
2

i2 // B2

π2

��

s3

UU

= P (γ
A1

2
1 ⊕ C) =: P (L1 ⊕ C)

CP1
1

s2

UU

where c1(L1) is arbitrary while c1(L2) = −A2
3y2 −A1

2y1 = −α3 must be divisible by two
since c1(L3) = −α4 = 1

2α3− y3. Here, we use the notation introduced in Section 2.1, i.e.
yi = −c1(γi), where γi is the tautological bundle over Bi.
For the remainder of the section, B4 will denote Bott manifolds of this form.

We consider the realisation question for one of the four automorphisms introduced in
[Cho11a]. Next, we recall those four automorphisms.
In [Cho11a] these automorphism are defined using the bundle basis, i.e. using the basis
consisting of yi = −c1(γi), for 1 ≤ i ≤ 4. But to attack the realisation question we
must understand the automorphism on the basis elements xi, for 1 ≤ i ≤ 4, of the
geometric basis introduced in Section 2.1. Recall that the geometric basis is given by
the Kronecker duals of the homology classes defined by the CP1

i , embedded along the
appropriate compositions of inclusions of the fibres and sections.
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By Proposition 2.3 we get the following base changes between the geometric and the
bundle basis for B4:

x1 =y1, y1 =x1 (8)

x2 =y2 − α2, y2 =x2 +A1
2x1

x3 =y3 − α3, y3 =x3 +A2
3x2 + (A1

2A
2
3 +A1

3)x1

x4 =y4 − α4, y4 =x4 + x3 +
1

2
A2

3x2 +
1

2
(A1

2A
2
3 +A1

3)x1.

We abbreviate A2
3x2 + (A1

2A
2
3 +A1

3)x1 by α̃3. This notation is justified since x2
i = −α̃ixi.

For the sake of completeness we now recall all four automorphisms φi of H∗(B4), defined
in [Cho11a] for i = 1, 2, 3, 4, in the bundle basis and in the geometric basis even though
we only examine φ1 later on.
For the two bases the automorphisms are defined by φi(yj) = yj and φi(xj) = xj for
j = 1, 2 and by:

φ1(y3) =2y4 − y3 + α3, φ1(x3) =2x4 + x3 (9)

φ1(y4) =y4, φ1(x4) =− x4

φ2(y3) =2y4 − y3 + α3, φ2(x3) =2x4 + x3

φ2(y4) =y4 − y3 +
α3

2
, φ2(x4) =− x4 − x3 −

α̃3

2

φ3(y3) =− 2y4 + y3, φ3(x3) =− 2x4 − x3 − α̃3

φ3(y4) =− y4, φ3(x4) =x4

φ4(y3) =− 2y4 + y3, φ4(x3) =− 2x4 − x3 − α̃3

φ4(y4) =− y4 + y3 −
α3

2
, φ4(x4) =x4 + x3 +

α̃3

2
.

We consider the first automorphism φ1. Its easy form in the geometric basis allows us
to apply Corollary 3.12.

Recall that, to apply Corollary 3.12, we need to decompose the manifold on which we
want to realise a diffeomorphism. Let B4 =: M ∪h∂ N , where h∂ : ∂M → ∂N is a
diffeomorphism. We determine the explicit forms of M and N later in this section. In
particular, we see that H2(N) ∼= H2(B4). Thus, we can attempt to realise φ1 on N . This
is actually possible by a diffeomorphism n : N → N which we also construct. Finally,
we use Corollary 3.12 to examine whether the diffeomorphism can be extended over M .
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On the realisation of some automorphism on H∗(B4)

Recall that ΩString
8 (pt) ∼= Z ⊕ Z/2 (cf. [Gia71]), where the two-torsion is generated by

an element θ̃8.

Lemma 5.1. The generator θ̃8 of Z/2 ⊂ ΩString
8 (pt) is the exotic eight-sphere Θ8 con-

sidered as an element in String-bordism.

Proof. Since Hk(Θ8) vanishes for k 6= 0, 8 there is no obstruction to the existence of a
String structure ϑ8 on Θ8. Thus, [Θ8, ϑ8] =: θ̃8 clearly is an element in ΩString

8 (pt).

It remains to show, that θ̃8 is non-trivial and of order two.
Assume that θ̃8 vanishes in ΩString

8 (pt). Then, there exists a bordism W , together with a
String-structure ν8 : W → BString such that ∂W = Θ8 and ν8|Θ8 = ϑ8. This will result
in a contradiction to the non-existence of a parallelisable manifold whose boundary is
Θ8.

By surgery below the middle dimension in the interior of W we can turn ν8 into a four-
equivalence. Thus, we can assume W to be three-connected which implies H8(W ) = 0.
The obstruction for the existence of a lift of ν8 to BO〈9〉 → BO〈8〉 = BString is an
element in H8(W ). Hence, we know that ν8 admits a lift ν9 : W → BO〈9〉.
The obstruction to the existence of a lift ν10 : BO〈9〉 → BO〈10〉 is w9(W ).
Recall that the Wu classes vi(X) of an n−dimensional, compact, smooth manifold X
are defined by vk(X) ∪ x = Sqk(x) for all x ∈ H∗(X;Z/2). In particular, vk = 0 for
2k > n. The Wu classes are connected to the Stiefel-Whitney-classes by the Wu formula
(cf. [MS74] p.132)

wi(X) =
∑

i+j=k

Sqi(vj(X)).

Since W is three-connected the formula for w9(W ) simplifies to

w9(W ) = Sq0(v9(W )) + Sq4(v5(W )) + Sq5(v4(W )) + Sq9(v0(W ))

= Sq0(v9(W )) + Sq4(v5(W )),

where the second equality holds for dimension reasons. But v5(W ) and v9(W ) correspond
to Sqi : Hk(W ;Z/2) → Hk+i(W ;Z/2) for i = 5, 9, respectively. Consequently, they also
vanish.
This implies that ν10 exists. Since W is of dimension nine all further obstruction to W
being parallelisable vanish. But since bP9 is trivial Θ8 cannot bound a parallelisable
manifold and we have a contradiction. Hence, θ̃8 is non-trivial in ΩString

8 (pt).
Since Θ8#Θ8 = S8 it is of order two.

Let X × BString
E×p8−→ BO × BO

⊕→ BO denote a twisted fibration over BO. The
inclusion pt ↪→ X induces a map ΩString

8 (pt)→ ΩString
8 (X,E). Let θ8 denote the image

of θ̃8 under this map.
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Our goal is to prove the following theorem.

Theorem 5.2. Let φ1 : H∗(B4)→ H∗(B4) be the automorphism of Equation (9) and e8

an eight-cell. Then there exist

• a twisted fibration

B := (CP 2]CP 2 ∪ e8)×BString E×p8 // BO ×BO ⊕ // BO ,

• a decomposition B4 = M∪h∂N into manifolds with boundary and a diffeomorphism
n : N → N ,

• two normal three-smoothings ν̃1, ν̃2 : M → B fulfilling ν̃1◦h−1
∂ ◦n◦h∂ ' ν̃2|∂M which

give rise to an element [M ∪h−1
∂ ◦n◦h∂

M, ν̃1 ∪ ν̃2] =: ω ∈ ΩString
8 (CP 2]CP 2 ∪ e8, E)

and

• invariants a1, a2 : ΩString
8 (CP 2]CP 2 ∪ e8, E)→ Z/2

such that φ1 is realisable if a1(ω) = 0 = a2(ω) and ω 6= θ8.

All objects will be constructed in a very explicit way subsequently.
The invariants a1 and a2 are so-called codimension two Arf-invariants. We will see that
they allow a very nice geometric description. Roughly, they associate to elements in the
torsion subgroup of ΩString

8 (CP 2]CP 2∪e8, E) the Arf-invariant of some codimension two
submanifold.

The second cohomology of N turns out to be isomorphic to H2(B4). The conjugation
of n∗ with this isomorphism realises φ1 on a subspace of B4.
To attack the realisation problem for the automorphisms φi for i = 2, 3, 4 in Equation
(9) using Corollary 3.12 is more difficult, if at all possible, since there is no obvious
decomposition of B4 into manifolds M ′ and N ′ such that φi can be realised on N ′ in
some way.

The proof takes the remainder of the section. It consists of two parts. First, we construct
the objects whose existence is claimed in the theorem. Then we use modified surgery
theory, in particular Corollary 3.12, to examine if we can extend the self-diffeomorphism,
which we can construct on a subspace of B4, all over B4. The subsequent sections can
be summarised as follows:
In Section 5.1 we construct M , N and the diffeomorphism h∂ : ∂M → ∂N . In Section 5.2
we construct the diffeomorphism n : N → N . In Section 5.3 we construct the fibration
B and the normal smoothings ν̃1, ν̃2 : N → B. This finishes the constructive part of the
proof.
Next, we compute the twisted bordism group ΩString

8 (CP 2]CP 2 ∪ e8, E) in Section 5.4.
In Section 5.5 we assemble all objects into a proof of Theorem 5.2. The key of the proof
is to develop the invariants a1 and a2.
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5.1. A suitable description for B4

First of all, we change our perspective on the Bott manifold B4 slightly. So far we con-
sidered B4 as CP1-fibre bundle over B3. We change that now.
For this purpose, we use Ehresmann’s theorem (cf. [Voi07] Chapter 9.9.1). Let B, Ei
and Fi for i = 1, 2 be smooth manifolds, p1 : E1 → B a smooth fibre bundle with fibre
F1 and p2 : E2 → E1 a smooth fibre bundle with fibre F2. Then Ehresmann’s theorem
states that the composition p := p1 ◦ p2 : E2 → B is again a smooth fibre bundle if
p−1(pt) is compact. In particular, the fibre of p : E2 → B is E2|F1 , i.e. it is the total
space of a fibre bundle F2 → F → F1.

In our situation we consider the bundles π4 : B4 → B3 and π3 : B3 → B2. By Ehres-
mann’s Theorem π := π3 ◦ π4 is again a fibre bundle if π−1(pt) is compact.
Let i3 : CP1

3 → B3 denote the inclusion of the fibre. To determine what the restriction
of B4 = P (L3 ⊕ C) to i3(CP1

3) is, we determine the restriction of the defining bundle
L3, i.e. we consider the pullback i∗3L3. By definition of the tautological line bundle over
some stage Bj , this is just the tautological line bundle γ = i∗3(γ3) over CP1

3. Thus,

π−1(pt) = π−1
4 (i3(CP1

3)) = P (γ ⊕ C).

In particular, π−1(pt) is compact. Hence, π : B4 → B2 is a fibre bundle with fibre
P (γ ⊕ C).

We have another description for P (γ ⊕ C).
In [Hir51] Hirzebruch already showed that two Bott manifolds H := P (γa1 ⊕ C) and
H ′ := P (γa

′
1 ⊕ C) of dimension four are diffeomorphic if and only if a = a′ mod 2. If

a = 0 mod 2, then H is diffeomorphic to CP1×CP1 and we denote it by H0. Otherwise,
i.e. if a = 1 mod 2, then H is diffeomorphic to CP 2]CP 2 which we denote by H1.
Honoring his work we still call Bott manifolds of dimension four Hirzebruch surfaces.

In Section 2.2 we determine the Stiefel-Whitney classes of a Bott manifold. These
results show that w2(P (γ ⊕ C)) 6= 0. Consequently, the fibre of the bundle π : B4 → B2

is diffeomorphic to the non-trivial Hirzebruch surface CP 2]CP 2. Note that the base
space B2 is a Hirzebruch surface, too. But since A1

2 is arbitrary, we do not know which
one, so we stick to the notation B2.

The next step is to use the description of B4 as total space of H1 → B4 → B2 to obtain
the manifolds M and N of Theorem 5.2.

The idea to obtain M and N is the following:
We decompose the base space B2 into two parts. One part is the a tubular neighbourhood
of the two-skeleton S2∨S2 of B2 which we denote by Pl, the other part is the complement
B2 − Pl, which is the top disc of B2. We can restrict B4 to both parts and obtain a
decomposition of B4. Finally, we show that one of this parts admits a diffeomorphism
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5.1 A suitable description for B4

to Pl ×H1.

Now let us construct the decomposition in more detail. Since H1 → B4 → B2 is a
locally trivial fibre bundle, the normal bundle of the inclusion of the fibre is trivial.
Thus, there exists an embedding Ψ: D4 × H1 ↪→ B4 and we can choose D4 such that
π ◦Ψ(D4 ×H1) = D4 ⊂ B2.
We can consider the complement B4 −Ψ(D4 ×H1). This complement is the restriction
of the bundle B4 → B2 to B2 −D4.
The Hirzebruch surface B2 is homotopy equivalent to a CW-complex (S2 ∨ S2) ∪ e4.
Thus, if we cut out the top disc, we obtain a space which is homotopy equivalent to
S2 ∨ S2 ∼= CP1 ∨ CP1.
More precisely, we can choose the two-skeleton to consist of B1 = CP1

1, embedded by the
section s2 : CP1

1 → B2, and CP1
2, embedded by the inclusion of the fibre i2 : CP1

2 → B2.

Their normal bundles are ν(CP1
1 ↪→ B2) ∼= γ

−A1
2

1 and ν(CP1
2 ↪→ B2) ∼= C, i.e. the trivial

bundle. By the tubular neighbourhood theorem there exist embeddings

s : Dν(CP1
1)→ B2 and i : Dν(CP1

2)→ B2.

The images of the embeddings intersect in an embedded D2 × D2. We identify x1 ∈
Dν(CP1

1) and x2 ∈ Dν(CP1
2) if s(x1) = i(x2) and obtain the plumbing

Pl = Dν(CP1
1)\Dν(CP1

2)

of Dν(CP1
1) and Dν(CP1

2) together with an embedding s\i : Pl→ B2.
A priori a plumbing as Pl is not a smooth manifold but a manifold with corners. For-
tunately we can smoothen the corners by standard methods as described in Appendix
A of [Kre10].
We obtain a decomposition D4 ∪ (s\i)(Pl) = B2.

If we restrict the composition of s4 ◦ s3 to B4|(s\i)(Pl) we still obtain embeddings of CP1
1

and CP1
2 into B4|(s\i)(Pl). If we choose the inclusions of the fibres CP1

3 and CP1
4 to be

inclusions over a point in (s\i)(Pl) and B3|(s\i)(Pl), respectively, they are also still em-
bedded in B4|(s\i)(Pl). All four embeddings together induce a basis of H2(B4|(s\i)(Pl)).
Consequently, their Kronecker duals form a basis for H2(B4|(s\i)(Pl)).
Under the inclusion B4|(s\i)(Pl) ↪→ B4 the basis of embedded CP1 maps, by definition, to
the basis elements σi, 1 ≤ i ≤ 4 of H2(B4) (cf. Section 2.1). The Kronecker duals of the
σi are the basis elements xi, 1 ≤ i ≤ 4 of the geometric basis. We denote the pullbacks
of the xi to H2(B4|(s\i)(Pl)) by xi, too. They are Kronecker duals of embedded CP1

i , too.

In a sense, we now have a decomposition of B4 into pieces, namely D4 × H1 = B4|D4

and B4|(s\i)(Pl) which are identified along the identity on the boundary. Now we want to
understand B4|(s\i)(Pl) better, to be able to realise φ1 there. Here, realisation means that
we find a self-diffeomorphism of B4|(s\i)(Pl) which realises φ1 on H2(B4|Pl) ∼= H2(B4).
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Our next goal is to construct a diffeomorphism B4|(s\i)(Pl) ∼= Pl ×H1.
The construction works along the following lines:
Since Dν(CP1

i ) is homotopy equivalent to CP1
i the restriction of B4 to the embedded

Dν(CP1
i ) is determined by the restriction of B4 to the embedded CP1

i , for i = 1, 2.
We will show below that the restrictions of B4 to the embedded CP1

i are Bott man-
ifolds of dimension six which are diffeomorphic to CP1

i × H1. We can extend these
diffeomorphisms to ones between B4|s(Dν(CP1

1)) and DνCP1
1 ×H1, and B4|i(Dν(CP1

2)) and

DνCP1
2 ×H1, respectively. Finally, we “glue” the diffeomorphisms to obtain one diffeo-

morphism B4|Pl ∼= Pl ×H1.

We start by considering the restrictions of B4 to the embedded CP1
1 and CP1

2. Recall,
that

B4 = P (L3 ⊕ C)→ P (L2 ⊕ C)→ P (L1 ⊕ C) = B2.

with L1 = γ
A1

2
1 , L2 = γ

A1
3

1 ⊗ γA
2
3

2 and L3 = γ
− 1

2
A1

3

1 ⊗ γ−
1
2
A2

3

2 ⊗ γ3. Recall that A1
3 and

A2
3 are divisible by two, by assumption. We determine the restrictions B4|CP1

i
by first

considering the underlying defining bundles Li ⊕ C, for i = 2, 3, and their restrictions,
i.e. their pullbacks.
We start with the pullback of L2 ⊕ C to CP1

i along s2 and i2 for i = 1, 2, respectively.
By Section 2.1 we know

s∗2(L2 ⊕ C) = γ
(A1

2A
2
3+A1

3)
1 ⊕ C and i∗2(L2 ⊕ C) = (γ2|A

2
3

CP1
2
⊕ C).

After projectivisation we obtain submanifolds B̂2 and B2 that are Bott manifolds them-
selves. Consequently, there are commutative squares

B3

π3

��

B̂2
? _

ŝ2oo

π3|B̂2
��

CP1
3

oo B3

π3

��

B2
? _

i2oo

π3|B2
��

CP1
3

oo

B2 CP 1
1

? _
s2oo B2 CP 1

2
? _

i2oo

Then we repeat the procedure with L3⊕C, i.e. we pull back L3⊕C to B̂2 and B2 along
ŝ2 and i2 respectively. Again after projectivisation we obtain the following two Bott
towers:

B4

��

P ((γ
− 1

2
(A1

2A
2
3+A1

3)

1 ⊗ γ3)|
B̂2
⊕ C)=:B̂3

? _oo

��
π̂

��

B4

��

P ((γ
− 1

2
A2

3

2 ⊗ γ3)|B2
⊕ C)=:B3

? _oo

��
π

��

B3

��

B̂2
? _oo

��

B3

��

B2
? _oo

��
B2 CP 1

1
? _oo B2 CP 1

2 .
? _oo
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Thus, we identified B4|CP1
i

to be B̂3 and B3 for i = 1, 2, respectively. Therefore, we are

now ready to construct diffeomorphisms ĥ : B̂3 → CP1
1 ×H1 and h : B3 → CP1

2 ×H1.

Observe that the Bott towers of B̂3 and B3 are both of the form

P (γ−k1 ⊗ γ2 ⊕ C)→ P (γ2k
1 ⊕ C)→ CP1

for k = 1
2(A1

3 + A1
2A

2
3) and k = 1

2A
2
3, respectively. Denote P (γ−k1 ⊗ γ2 ⊕ C) by B̃3.

Consequently, it suffices to construct h̃ : B̃3 → CP1 ×H1 to obtain ĥ and h.
Let v1, v2, v3 ∈ H2(B̃3) denote the bundle basis for cohomology, i.e. the basis given the
negative of the first Chern classes of the respective tautological line bundles. Using the
results of Section 2.1 we get,

v2
1 = 0, v2

2 = 2kv1v2 =: ϑ2v2 and v2
3 = −kv1v3 + v2v3 =: ϑ3v3.

In particular ϑ2
i = 0 for i = 1, 2. This is important because we are now in the setting of

so-called Q−trivial Bott manifolds, where, abstractly, the existence of diffeomorphisms
realising isomorphisms of the cohomology ring, is known.

By definition a Bott manifold Bj is Q-trivial (cf. [CM12]) if and only if the rational
cohomology rings H∗(Bj ;Q) and H∗((CP1)j ;Q) are isomorphic as graded rings.
Let yi ∈ H∗(Bj) be the bundle basis, which, in particular, fulfils y2

i = αiyi for 1 ≤ i ≤ j.
Proposition 3.1 in [CM12] shows that Bj is Q−trivial if and only if α2

i = 0 for all
1 ≤ i ≤ j.
Furthermore, Corollary 5.2 in [CM12] states that each cohomology ring isomorphism
between Q-trivial manifolds can be realised by a diffeomorphism.

Let p : H1 → CP1 denote the fibre bundle projection. The product CP1 ×H1 is a Bott
manifold and the third stage in the tower

CP1 ×H1
1×p−→ CP1 × CP1 → CP1.

Let b1, b2, b3 denote the bundle basis of CP1 ×H1. Then,

b21 = 0, b22 = 0 and b23 = b1b3.

Consequently, the bundle CP1 ×H1 is a Q−trivial Bott manifold, too.

The cohomology rings of B̃3 and CP1 ×H1 are isomorphic as rings. It is easy to check,
that

ϕk : H2(CP1 ×H1)→ H2(B̃3) (10)

b1 7→ v1

b2 7→ v2 − kv1

b3 7→ v3
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5.1 A suitable description for B4

induces an isomorphism of rings with inverse

ϕ−1
k : H2(B̃3)→ H2(CP1 ×H1)

v1 7→ b1

v2 7→ b2 + kb1

v3 7→ b3.

Thus, by [CM12, Corollary 5.2], there exist diffeomorphisms

ĥ : B̂3 → CP1
1 ×H1 and h : B3 → CP1

2 ×H1

that induce ϕk for k = 1
2(A1

3 +A1
2A

2
3) and k = 1

2A
2
3, respectively.

Instead of just stating the existence we explicitly construct these diffeomorphisms. We
claim that they are induced by an isomorphism of vector bundles. The general result
for Q-trivial Bott manifolds is based on similar constructions.

Recall that there is a bundle isomorphism G between γ2k
1 ⊕C→CP1 and γk1 ⊕ γk1→CP1

(follows from Corollary 3.5 in [Hus94]) which covers the identity 1
CP1 . The projec-

tivisation P (γk1 ⊕ γk1 ) is diffeomorphic to CP1 × CP1. The projectivisation of G is a
diffeomorphism g̃ such that the diagram

P (γ2k
1 ⊕ C)

g̃ //

��

CP1 × CP1

��
CP1

1
CP1

// CP1

,

commutes. By the commutativity g̃∗(b1) = v1. Since g̃ is a diffeomorphism it induces
a ring isomorphism in cohomology. The image g∗(b2) must be ±v2 ∓ kv1, otherwise g∗

would not be a ring isomorphism.
To determine the sign we consider the tautological line bundle η2 over P (γk ⊕ γk), i.e.
the bundle whose negative first Chern class is b2. Let ι : CP1 → P (γ2k

1 ⊕ C) denote
the inclusion of the fiber. The pullback of η2 along the composition ι ◦ g̃ must be the
tautological bundle over the fiber. Thus, the sign in front of v2 must be positive. Here,
we use the isomorphism between cohomology in degree two and isomorphism classes of
complex line bundles (cf. [Hus94, Theorem 3.4]).
Consequently, g̃ realises ϕk|Z〈b1,b2〉 and the pullback g̃∗(η2) is isomorphic to γ−k1 ⊗ γ2.

This implies that there is a bundle isomorphism g′ : γ−k1 ⊗ γ2 → η2 covering g̃.
Furthermore, there is a bundle isomorphism between the trivial bundles over P (γ2k⊕C)
and CP1 × CP1 given by

k : P (γ2k ⊕ C)× C → (CP1 × CP1)× C
(x, z) 7→ (g̃(x), z) .
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The projectivisation of the Whitney sum g′⊕ k, which is an isomorphism of vector bun-
dles, is the bundle diffeomorphism h̃ : B̃3 → CP1 ×H1 which we want to construct.
It remains to check that h̃∗(b3) = v3. Up to sign this follows, again, from the fact that
h̃ induces an isomorphism of rings. The sign is again determined by the pullback along
the inclusion of the fibre.

We take ĥ and h to be the diffeomorphism h̃ constructed above, for k = 1
2(A1

3+A1
2A

2
3)and

k = 1
2A

2
3, respectively. In particular, ĥ and h are both diffeomorphisms of fibre bundles

and cover ĝ and g. Here, ĝ and g are the diffeomorphisms corresponding to g̃ as above
for the respective k.

Next, we extend the diffeomorphism to DνCP1
1 and DνCP1

2, respectively.
Let pi : DνCP1

i → CP1
i be the projections to the base space, ti the zero-sections of both

bundles and pr2 : CP1
1 ×H1 → H1 the projection to the second coordinate. Recall that

s : DνCP1
1 → B2 and i : DνCP1

2 → B2 denote the embeddings of the tubular neighbour-
hoods, i.e. s ◦ t1 = s2 and i ◦ t2 = i2.

By definition p∗1(B̂3) =
{

(d, b) ∈ DνCP1
1 × B̂3 | p1(d) = π̂(b)

}
, whence we define a dif-

feomorphism

ĥ1 : p∗1(B̂3) → DνCP1
1 ×H1 by

(d, b) 7→ (d, pr2 ◦ ĥ(b))

with inverse

ĥ−1
1 : DνCP1

1 ×H1 → p∗1(B̂3) by

(d, h) 7→ (d, ĥ−1(p1(d), h)).

Note that p∗1(B̂3)|
CP1

1
= B̂3 and ĥ1|B̂3

= ĥ.

Since t1 ◦p1 is homotopic to the identity 1Dν(CP1
1) the restriction B4|s(Dν(CP1

1)) = s∗B4 =

1∗
Dν(CP1

1)
s∗B4 is isomorphic to p∗1t

∗
1s
∗B4 = p∗1B4|s◦t1(CP1

1) = p∗1B̂3 as fibre bundles. Com-

posing this diffeomorphism with ĥ1 we obtain a diffeomorphism

h1 : B4|s(DνCP1
1) → p∗1(B̂3).

By construction the restriction of h1 to B4|s(CP1
1) = B̂3 ' B4|s(DνCP1

1) is ĥ. Consequently,

h1 realises ϕ 1
2

(A1
3+A1

2A
2
3) as in Equation (10).

Analogously we define h2 : B4|i(DνCP1
2) → p∗2(B3) using h which realises ϕ 1

2
A2

3
as in

Equation (10).

Now we combine both diffeomorphisms to obtain h : B4|Pl → Pl × H1. To do that we
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recall the construction of Pl = Dν(CP1
1)\Dν(CP1

2) = Dν(CP1
1) q Dν(CP1

2)/ ∼, where
x ∼ y if s(x) = i(y). Define

Pl ×H1 := DνCP1
1 ×H1 qDνCP1

2 ×H1/ ∼,

where we identify x ∼ y, for x ∈ Dν(CP1
1) × H1 and y ∈ Dν(CP1

2) × H1, if they fulfil
h−1

2 (y) = h−1
1 (x). The notation as a product, i.e. the trivial H1-bundle over Pl is

justified since h1 and h2 are diffeomorphisms of fibre bundles. Therefore, Pl×H1 really
is the trivial H1-bundle over Pl. We smoothen the corners of Pl in the same way as
above and obtain

h : B4|(s\i)(Pl) → Pl ×H1,

defined by h(x) = h1(x) if x ∈ B4|s(DνCP1
1) and h(y) = h2(y) if y ∈ B4|i(DνCP1

2) which is
a well-defined diffeomorphism of smooth fibre bundles.

Recall that, by construction, the diffeomorphisms ĥ and h cover the diffeomorphisms
ĝ : B3|s(CP1

1) → CP1
1 × CP1

3 and g : B3|i(CP1
2) → CP1

2 × CP1
3. Analogously to the con-

struction of h1, h2 and h we obtain g1, g2 and g. In particular, there is a commutative
diagram

B4|(s\i)(Pl) h //

��

Pl ×H1

��
B3|(s\i)(Pl)

g // Pl × CP1
1 .

(11)

To construct a map on Pl×H1 that gives rise to a realisation of φ1 on second cohomology
H2(B4|(s\i)(Pl)) ∼= H2(B4), we need to understand h∗ on second cohomology. Since we

do understand ĥ∗ and h
∗

we can deduce h∗ from an easy diagram chase in the Mayer-
Vietoris sequences of B4|(s\i)(Pl) ' B̂3 ∪B3 and Pl ×H1 ' CP1

1 ×H1 ∪ CP1
2 ×H1:

0 // H2(Pl ×H1) //

h∗

��

H2(CP1
1 ×H1)⊕H2(CP1

2 ×H1) //

ĥ∗⊕h∗
��

H2(H1)

��

// 0

0 // H2(B4|(s\i)(Pl)) // H2(B̂3)⊕H2(B3) // H2(H1) // 0 .

Let w1, .., w4 denote the bundle generators of H∗(Pl × H1). The diffeomorphism h
induces the isomorphism given by

h∗ : H2(Pl ×H1) → H2(B4|(s\i)(Pl))
wi 7→ yi for i = 1, 2, 4 and

w3 7→ y3 −
1

2
(A1

3y1 +A2
3y2).

An analogous calculation shows g∗ = h∗|Z〈w1,w2,w3〉.
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5.2. Realisation of φ1 on B4|(s\i)(Pl)
Now, B4 is decomposed into N = B4|(s\i)(Pl) and M = D4 × H1, identified along the
identity on the boundary, and we can start with the realisation of φ1. For abbreviation
we omit the embedding in the notation of B4|(s\i)(Pl) from now on.
In Equation (9) we saw that φ1 has a very nice form if we change to the geometric basis.
Thus, we need the isomorphism h∗ in terms of the geometric basis of B4|Pl, given by the
Kronecker duals of the appropriately embedded CP1

i , 1 ≤ i ≤ 4.

Let v1, .., v4 denote the geometric basis of Pl × H1. By Lemma 2.3 vi = wi, for i ≤ 3
and v4 = w4 − w3.
In Equation (8) we recalled the base change for H2(B4). The base change for B4|Pl
is slightly different. Since the base space Pl is homotopy equivalent to CP1

1 ∨ CP1
2 the

generator y2 is Kronecker dual to [CP1
2], i.e. x2 = y2. The base change between yi and

xi for i = 1, 3, 4 is exactly the same as the base change of the corresponding elements in
H2(B4).
In the geometric basis h∗ is given by

vi 7→ xi for i = 1, 2, 4 and

v3 7→ x3 +A1
3x1 +A2

3x2

with inverse

xi 7→ vi for i = 1, 2, 4 and

x3 7→ v3 −A1
3v1 −A2

3v2

To realise φ1 on B4|Pl we need to realise φ̃1 := (h∗)−1 ◦ φ1 ◦ h∗ on Pl ×H1. A straight
forward calculation shows:

Lemma 5.3. On H2(Pl ×H1) we need to realise φ̃1 defined by

vi 7→ vi for i = 1, 2

v3 7→ v3 + 2v4 and

v4 7→ −v4.

We claim that there exists a diffeomorphism of the form 1Pl × f : Pl ×H1 → Pl ×H1

that induces φ̃1. It remains to determine f which is a diffeomorphism on a Hirzebruch
surface. Thus, we briefly discuss some diffeomorphisms on the non-trivial Hirzebruch
surface CP 2]CP 2. We use Lemma 2 of [Wal64].

Lemma 5.4. Let M1 and M2 be two closed manifolds of dimension n and ki : Mi →Mi

two orientation preserving self-diffeomorphisms. Then there exists a diffeomorphism
k : M1#M2 →M1#M2 whose induced map on cohomology is k∗ = k∗1 ⊕ k∗2.
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Wall constructs k by changing k1 and k2 up to isotopy such that there exist embedded
discs which are fixed by the modified ki. Thus he can build the connected sum along
these discs and obtain k as “honest” connected sum of both maps. Therefore, we denote
k as in the lemma by k1#k2.

Let c : CP 2 → CP 2 be given by complex conjugation on the homogeneous coordinates
of CP 2, i.e. [z0 : z1 : z2] 7→ [z0 : z1 : z3]. Consider the embedding e : CP1 → CP 2, which
is defined by [z0 : z1] 7→ [z0 : z1 : 0]. Let a := e∗[CP1]. Since c|e(CP1) is the reflection on

RP 1 ↪→ CP 1, i.e. the map of degree −1, we obtain c∗(a) = −a.
Analogously we obtain c : CP 2 → CP 2.
Together with Lemma 5.4 this enables us to realise some automorphisms of CP 2]CP 2,
in particular we claim that we can realise the automorphism which we need.

Embed two copies of CP1 into CP 2]CP 2 on the one hand as two-skeleton of CP 2, on
the other as two-skeleton of CP 2. This gives rise to the standard basis of H2(H1), we
denote it by s1 and s2. Let t1, t2 denote the Poincaré duals of s1 and s2. They form a
basis of H2(H1). With respect to this basis the intersection form is

(
1 0
0 −1

)
.

With respect to the basis v3, v4 the intersection form is

(
0 1
1 −1

)
.

Let εi be ±1 for i = 1, 2. Using the intersection forms we obtain the following base
change between v3, v4 and t1, t2

v3 = ε1t1 − ε2t2 and v4 = ε2t2.

An easy computation shows φ̃1(t1) = t1 and φ̃1(t2) = −t2 in the basis of the ti. In
particular, Φ̃ is realised by 1Pl × 1#c : Pl× CP 2]CP 2 → Pl× CP 2]CP 2. Therefore, we
proved the following Lemma.

Lemma 5.5. On B4|Pl the automorphism φ1 is realised by the self-diffeomorphism

h−1 ◦ (1Pl × f) ◦ h, where f = 1#c.

In other words we have now have h−1 ◦ (1Pl × f) ◦ h =: n, where n : N → N is the
diffeomorphism of Theorem 5.2.
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5.3. Preparing the setting for modified surgery

Now we finally come to the application of modified surgery theory, in particular, of
Corollary 3.12. We have a decomposition B4 = B4|Pl∪IdB4|D4 = N ∪M and a diffeo-
morphism n=h−1 ◦(1×f)◦h on B4|Pl, which we want to extend over B4|D4 = D4×H1.

By Lemma 2.2, we know π4(D4 ×H1) ∼= Z/22. Thus, the first assumption of Corollary
3.12, i.e. the finiteness assumption on the homotopy group in middle dimension, is ful-
filled.

In order to apply modified surgery theory, it remains to construct a fibration B → BO
such that there exist two normal three-smoothings D4×H1 → B which, on the boundary
∂D4 ×H1 = S3 ×H1, are compatible with the diffeomorphism h−1 ◦ (1× f) ◦ h|S3×H1

.
Let e8 be an 8-cell, ρ ∈ π7(H1) and ι : H1 → H1 ∪ρ e8 the inclusion. We will see that for
some choice of ρ the total space of B is (H1 ∪ρ e8)×BString. The fibration is a twisted
fibration over BO. The twist is made explicit subsequently.

Before we start the construction of the twisted fibration over BO or even its total space,
we need one further observation.
Let γ → CP1 denote the tautological line bundle. So far we only need the abstract
knowledge that P (γ ⊕ C) is the non-trivial Hirzebruch surface CP 2]CP 2. Now we need
the identification a bit more explicit. Recall that the embedding e : CP1 → CP 2 has
normal bundle ν(e) = γ−1 and that we can identify Dν(e) with CP 2 −D4, where D4 is
the top disc.
Since H1 is a Bott manifold it, in particular, admits a section σ2 : CP1 → H1 as defined
above Lemma 2.2 in Section 2.1. Let σ : Pl × CP1

3 → Pl ×H1 be 1× σ2.
We know (cf. Section 2.3) that the normal bundle of the section σ2 : CP1 → P (γ ⊕C) is
γ−1. Thus, we can identify a tubular neighbourhood of σ2(CP1), which is an embedded
Dν(s), with CP 2 −D4. Under this identification the maps σ2 and e are equal.
Recall that there exist sections s4 : B3|Pl → B4|Pl and s3 : Pl→ B3|Pl.
Lemma 5.6. Let h : B4|Pl → Pl×H1 and g : B3|Pl → Pl×CP1

3 be the diffeomorphisms
constructed in the last section. This diffeomorphisms fulfil

h ◦ s4 = (1× σ2) ◦ g = (1× e) ◦ g.
Furthermore, we obtain g ◦ s3 = incl1, for incl1 : Pl → Pl × CP1

3 the inclusion into the
first factor.

Recall that there is a commutative diagram

B4|Pl
π4 //

h

��

B3|Pl

$$IIIIIIIIII

g

��
Pl ×H1

1×p
// Pl × CP1

3 pr1
// Pl .
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The upshot of the lemma is that the following diagram is also commutative:

B4|Pl h //

��

Pl ×H1

��
B3|Pl

g //

s4

TT

((

Pl × CP1
3

σ2

UU

��
Pl .

s3
gg

incl1

??

To show this we use that we constructed h as the projectivisation of an isomorphism of
the underlying vector bundles. Unfortunately, the sections s4 and σ2 are not induced
by sections of the underlying vector bundles in an obvious way. Thus, we are forced to
change the perspective on B4 and H1 slightly.

Proof. The equation (1× σ2) ◦ g = (1× e) ◦ g follows from the observations previous to
the lemma.
For the first equation we use Lemma 2.1 of [CMS10]. Let B be any smooth manifold,
E → B a complex vector bundle and L → B a line bundle. By Lemma 2.1 of [CMS10]
the fibre bundles P (E) and P (E ⊗ L) are isomorphic. Thus, their total spaces are
diffeomorphic.
Recall that B4 is the projectivisation P (L4⊕C). By the lemma we have a diffeomorphism
between P (L4 ⊕ C) and P (C⊕ L−1

4 ). Analogously H1 is diffeomorphic to P (C⊕ γ−1).
Thus, we can consider the following section

s̃4 : B3 → C⊕ L−1
4

given by the direct sum of the constant section into C and the zero-section into L−1
4 .

The constant section is given by b 7→ (b, z) ∈ C = B3×C for z ∈ C a fixed, non-vanishing
complex number.
After projectivisation and identification of P (C ⊕ L−1

4 ) with P (L4 ⊕ C) this is exactly
our section s4.
In the same way, we can construct σ2 as the projectivisation of the sum of the constant
section into C = CP1

3×C - with respect to the same constant z ∈ C - and the zero-section
into γ−1.

Let pr2 : Pl × CP1
3 → CP1

3 denote the projection to the second factor. Furthermore, let
η3 = pr∗2γ denote the tautological bundle over Pl× CP1

3, i.e. −c1(η3) = w3, where w3 is
the third generator of the bundle basis of Pl × CP1

3.
Recall that we constructed g such that g∗(w3) = y3− 1

2(A1
3y1 +A2

3y2). Thus, the pullback
g∗η−1

3 is isomorphic to L−1
4 as bundle.

The bundle map g′ : g∗η−1
3 → η−1

3 over g maps the zero-section in the pullback bundle to
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the zero-section in η−1
3 . On the other hand the isomorphism g∗η−1

3
∼= L−1

4 also preserves
the zero-section.
To obtain h we also consider the constant map between the trivial bundles

k : (Pl × CP1
3)× C → B3|Pl × C,
(x, y) 7→ (g−1(x), y)

which preserves the constant section. By construction the projectivisation of k⊕ g′ is h
and preserves the projectivisation of the sum of the constant and the zero-section. Since
h covers g we, for b ∈ B3|Pl, obtain h(s4(b)) = (1× σ2)(g(b)).
The proof for the equality g ◦ s3 = incl1 works the same way.

Now we begin the construction of the normal smoothings, by constructing highly con-
nected maps into H1 ∪ρ e8.

Lemma 5.7. Let ι : H1 → H1 ∪ρ e8 denote the inclusion and let pr : D4 × H1 → H1

denote the projection onto H1. The following maps are six-connected

i1 : D4 ×H1 → H1 ∪ρ e8, i1 := ι ◦ pr and

i2 : D4 ×H1 → H1 ∪ρ e8, i2 := ι ◦ pr ◦ (1D4 × f)

for any element ρ ∈ π7(H1). Furthermore, there exists ρ ∈ π7(H1) such that the diagram

H1 ∪ρ e8

S3 ×H1
h−1◦(1S3×f)◦h|S3×H1

//

i2|S3×H1

88rrrrrrrrrr
S3 ×H1

i1|S3×H1

ffLLLLLLLLLL

commutes up to homotopy.

Proof. It is obvious that i1 and i2 are six-connected.

For the remainder of the proof, we always consider all maps restricted to S3×H1 unless
otherwise indicated.

To show the commutativity of the diagram we first show

pr ◦ h−1 ◦ (1S3 × f) ◦ h|S3∨H1
= pr ◦ (1S3 × f)|S3∨H1

. (12)

Let DiffH1 denote the group of self-diffeomorphisms of the non-trivial Hirzebruch surface
H1. By construction h : S3×H1 → S3×H1 is a diffeomorphism of fibre bundles. Thus, it
is of the form h(t, b) = (t, h̃(t)(b)) for some h̃ which represents an element in π3( DiffH1).
The elements of π3( DiffH1) are induced by base point preserving maps S3 → DiffH1,
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where the base point of DiffH1 is the identity. Thus, there is a base point s0 of the
sphere which always maps to the identity 1H1 . In particular, this also holds for h̃.
Hence, Equation (12) holds for all points in (s0, x) ∈ {s0} ×H1.

The next step is to show that there exists a point y0 ∈ H1 such that Equation (12) holds
for all (t, y0) ∈ S3 ×H1.
First we consider pr◦h−1◦(1S3×f)◦h. Let (t, x) be a point in the image of s4(S3×CP1) =
S3 × e(CP1). By Lemma 5.6 we know h(t, x) ∈ σ({t} × CP1

3). By definition of f = 1#c
the map 1S3 × f is the identity on σ({t} × CP1

3) = {t} × e(CP1
3). Thus, we obtain

pr ◦ h−1 ◦ (1S3 × f) ◦ h(t, x) = pr(t, x) = x for all (t, x) ∈ S3 × e(CP1).
Now we consider pr ◦ (1S3 × f).
Let (t, x) ∈ s4(S3 × CP1

3) = S3 × e(CP1). Again, by definition of f = 1#c we know
pr ◦ (1S3 × f)(t, x) = x. Therefore, Equation (12) holds on S3×{y0} for all y0 ∈ e(CP1

3)
and thereby on S3 ∨H1.
In other words, the diagram in the lemma commutes on S3∨H1 without composing with
ι. This implies commutativity on the four-skeleton at least up to homotopy, i.e. there
exists a homotopy ht : (S3∨H1)×I → H1∪e8 such that h0 = pr◦h−1◦(1S3×f)◦h|S3∨H1

and h1 = pr ◦ (1S3 × f)|S3∨H1
.

The next step is to use obstruction theory to extend the homotopy ht over the six-
skeleton, i.e. to a homotopy Ht : (S3 ×H1)(6) × I → H1 which fulfils

H0 = pr ◦ h−1 ◦ (1S3 × f) ◦ h|(S3×H1)(6) , (13)

H1 = pr ◦ (1S3 × f)|(S3×H1)(6) and

ht = Ht|S3∨H1
.

Obstruction theory implies that we can extend the homotopy ht all over S3 ×H1 × I if
the obstruction classes ωk in Hk+1((S3 × H1) × I, (S3 ∨ H1) × I; πk(H1)) vanish. For
k ≤ 3 there is nothing to show since the cohomology groups themselves vanish by the
long exact sequence of the pair.

Recall that πj(H1) ∼= πj(CP1)2 by Lemma 2.2, furthermore, that PjH1 denotes the j−th
Postnikov stage of H1 and that kj+1 : PjH1 → K(πj+1(H1), j + 2) denotes the (j + 1)-st
k-invariant.

We know that ht exists. Thus, for all j, there exists a map hjt : (S3 ∨ H1) × I → PjH1

such that kj+1 ◦ hjt is null-homotopic. Consequently, we obtain a map from the cone

C := C
(
(S3 ∨H1)× I

)
→ PjH1 which we denote by C(hjt ). If we can extend this map

to (S3 ×H1 × I) ∪ C, the obstruction class vanishes by definition.

Since ωk = 0 for k ≤ 3 we have a map j : ((S3 ×H1)× I) ∪C → P3H1 extending C(h3
t ).

We show that k4 ◦ j ' pt, where k4 : P3H1 → K(Z/22, 5) is the fourth k-invariant.
Let pri : K(Z/22, 5) = K(Z/2, 5) ×K(Z/2, 5) → K(Z/2, 5), for i = 1, 2, denote the pro-
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jection upon the first, respectively second factor. The map k4 ◦ j is null-homotopic if
and only if pri ◦ k4 ◦ j are null-homotopic for i = 1, 2.
Thus, we can consider j∗ on cohomology with Z/2−coefficients, where we have Steenrod
operations.
We know (cf. Appendix B) that Sq2 : H5(P3H1;Z/2) → H7(P3H1; Z/2) vanishes identi-
cally. By the long exact sequence of the pair H5(S3×H1;Z/2) ∼= H5(S3×H1 ∪C;Z/2).
But in H5(S3×H1;Z/2) there exist elements whose second Steenrod square do not van-
ish, namely s(w4+kw3) for k = 0, 1, where s is the pullback of a generator of H3(S3;Z/2).
By naturality we thereby know that these elements cannot be hit, i.e. the image of j∗ is
contained in Z/2〈sw3〉.
Now we consider s4 : S3 × CP1

3 ↪→ B4|∂P l = S3 ×H1. By definition sw3 pulls back to a
generator of H5(S3 × CP1

3;Z/2). On the other hand we already know that our original
diagram commutes on S3× e(CP1

3) by the considerations above, so there all obstruction
classes vanish. Since sw3 injects into H5(S3 × CP1

3), imj∗ cannot contain sw3.
Thus, imj∗ = 0, i.e. (k4 ◦ j)∗ = 0, and there exists a lift S3×H1 ∪C → P4H1. The next
obstruction class is an element in H6(S3 ×H1 ∪ C;π5(H1)) which vanishes by the long
exact sequence of the pair (S3 ×H1 × I, (S3 ∨ H1) × I). Consequently, we even find a
lift j̃ : S3 ×H1 × I → P5H1 which extends the map (S3 ∨H1)× I → P5H1.

Now we consider the inclusion of the six-skeleton ι6 : (S3 ×H1)(6) × I → (S3 ×H1)× I.
We obtain a map into P5H1 by composing ι6 with j̃. All higher cohomology groups of
H∗((S3 × H1)(6) × I, (S3 ∨ H1) × I) vanish. Therefore, we can lift j̃ ◦ ι6 through the
whole Postnikov tower, i.e. we know there exists Ht as in Equation (13).

The final step is to extend the homotopy over the seven-skeleton. So far we nei-
ther needed the 8-cell attached to H1 nor did we specify the map by which it is at-
tached. We now collapse the six-skeleton of S3 ×H1 whence we get two induced maps
pr ◦ h−1 ◦ (1S3 × f̃) ◦ h : S7 → H1 and pr ◦ (1S3 × f) : S7 → H1 which induce elements
α and β in π7(H1). By attaching the 8-cell along ρ := α − β we ensure commutativity
of the diagram in the lemma.

As in Section 4 we will consider a convenient bordism group, subsequently. For this
purpose, we need a map to BString. Since our manifold D4 × H1 has non-vanishing
second Stiefel-Whitney class we cannot lift the normal Gauss map to BString even
though p1

2 vanishes. As before, we resolve the problem by twisting with a vector bundle
over H1 ∪ρ e8.

By Section 2.2 there exist line bundles l̃1 and l̃2 over H1 such that l̃1 ⊕ l̃2 ∼= TH1. Since
the inclusion ι : H1 → H1 ∪ e8 induces an isomorphism ι∗ : H2(H1 ∪ e8)→ H2(H1) there
exist l1 and l2 such that ι∗li = l̃i, i.e. ι∗(l1 ⊕ l2) ∼= TH1.

Recall that, by the definition of twisted bordism in Section 3.3, we need that the twisting
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bundle is of finite rank. Here, the twisting bundle will be the sum of −l1 and −l2. Hence,
we want that −l1 and −l2 are of finite rank. We claim that they are:
The Chern classes c1(l1) and c1(l2) determine maps to CP∞ which are unique up to
homotopy. After making them cellular, we obtain maps to some finite CPn since H1∪e8

is a finite dimensional complex.
Over CPn there exists an additive inverse to the canonical line bundle γ → CPn given
by the perpendicular bundle with total space γ⊥ =

{
(z, v) ∈ CPn × Cn+1|v⊥ ∈ z

}
and

projection (z, v) 7→ z. Thus, we can pull back γ⊥ along the maps determined by c1(l1)
and c1(l2) and obtain inverse bundles −l1 and −l2 of rank n.

Lemma 5.8. Let pt : D4 ×H1 → BString denote the constant map and, furthermore,
let B := H1 ∪ e8×̃BString. Consider the following fibration over BO:

B
−(l1⊕l2)×pStr // BO ×BO ⊕ // BO .

Then i1 × pt and i2 × pt are normal six-smoothings D4 ×H1 → B.
Under restriction of all maps to S3 ×H1 the diagram

H1 ∪ e8 ×BString

S3 ×H1

h−1◦(1S3×f)◦h
//

i1×pt
66mmmmmmmmmmmmm

S3 ×H1

i2×pt
hhQQQQQQQQQQQQQ

commutes up to homotopy.

Proof. By Lemma 5.7 and the fact that πi(BString) = 0 for all i ≤ 7 we know that the
maps are seven-connected. Therefore, it only remains to show that they really are lifts
of the stable normal Gauss map.
The pullback i∗2(l1 ⊕ l2) ∼= (1D4 × f)∗pr∗ι∗(l1 ⊕ l2) ∼= (1D4 × f)∗pr∗(TH1) is isomorphic
to TH1 since f is a diffeomorphism on H1. Since h−1 ◦ (1S3 ×f)◦h is a diffeomorphism,
a bundle isomorphic to the tangent bundle pulls back to a bundle that is isomorphic to
the tangent bundle again.
Since l1 ⊕ l2 pulls back to the tangent bundle, its inverse −(l1 ⊕ l2) pulls back to the
stable normal bundle.

Therefore the, maps i1 × pt and i2 × pt are the normal three-smoothings ν̃1 and ν̃2 of
Theorem 5.2.

By Corollary 3.12 the diffeomorphism on B4|Pl admits an extension over D4×H1 if the
element induced by Y := D4 ×H1 ∪h−1◦(1S3×f)◦h D

4 ×H1 together with the map

ν̃1 ∪ ν̃2 : Y → H1 ∪ e8 ×BString
is trivial in the twisted bordism group ΩString

8 (H1 ∪ρ e8,−(l1 ⊕ l2)).
From now on we will denote the bundle −(l1 ⊕ l2) by E and ν̃1 ∪ ν̃2 by ν̃.
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5.4. The twisted bordism group ΩString
8 (H1 ∪ρ e8, E)

For the proof of Theorem 5.2, we calculate the twisted bordism group ΩString
8 (H1∪ρe8, E)

which is the goal of this section. In the next section, we develop invariants which detect
whether [Y, ν̃] vanishes in ΩString

8 (H1 ∪ρ e8, E).

We first use the twisted Atiyah-Hirzebruch sequence to check that the only appearing
torsion is two-torsion. Then we apply the Adams spectral sequence to calculate the
twisted bordism group.

Recall that the E2-page of the twisted Atiyah-Hirzebruch spectral sequence is given by
E2
p,q
∼= Hp(H1 ∪ρ e8; ΩString

q (pt)). The non-vanishing homology of H1 ∪ e8 is

i 0 2 4 8

Hi(H1 ∪ e8;Z) Z Z2 Z Z
.

For the coefficients we refer the reader to page 48. Thus, we can write down the E2-page
of the twisted Atiyah-Hirzebruch spectral sequence converging to ΩString

8 (H1 ∪ρ e8, E).
We only depict the coefficients and the seventh, eighth and ninth diagonal. Furthermore,
we depict all possibly non-trivial differentials which have domain in, or target on the
eights diagonal. For the sake of brevity we place all differentials in one diagram even
though they are differentials of different pages in the twisted Atiyah-Hirzebruch spectral
sequence.

0 2 4 6 8

0

2

4

6

8

Z Z2 Z

Z/2

Z/22

Z/2

Z⊕Z/2

Z/2

Z/24 Z/24

Z

Z/2
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As claimed the only possible torsion in ΩString
8 (H1 ∪ e8, E) is torsion at the prime two.

But we cannot determine the group since we cannot determine the differentials.

Let Th(E) denote the Thom space of E. Since rankE = 2n the twisted bordism group
ΩString

8 (H1 ∪ e8, E) is isomorphic to πst8+2n(Th(E) ∧MString). By the consideration
above it suffices to consider the Adams spectral sequence with E2-page

Es,t+s2 = Exts,t+sA (H∗(Th(E) ∧MString; Z/2),Z/2)

converging to πstt (Th(E) ∧MString).

We use the method of minimal resolutions as developed in Section 6 of [Sto85]. More
precisely we use Bruner’s computer algorithm (cf. [Bru93] and [Bru]) which implements
the method of minimal resolutions. The input for the algorithm is the Steenrod module
structure of H∗(Th(E)∧MString; Z/2) for ∗ ≤ 10+2n. This range for ∗ suffices by the
method of minimal resolutions since we are only interested in πst8+2n(Th(E)∧MString).

Next, we determine the Steenrod module structure on H∗(H1 ∪ e8;Z/2).
We denote by ỹi, i = 1, 2 those generators in H2(H1 ∪ e8;Z/2) which fulfil ι∗(ỹi) = yi,
for yi, i = 1, 2, the generators of the bundle base of H2(H1;Z/2). By naturality and
since ι : H1 → H1∪e8 induces an isomorphism on the four lowest cohomology groups we
know that Sq2ỹi = ỹ2

i = (i− 1)ỹ1ỹ2 for i = 1, 2. For dimension reasons Sq6(ỹi) vanishes.
The generators in fourth cohomology are products, namely ỹ1ỹ2. Therefore, we know
that Sq4(ỹ1ỹ2) = 0.
The reduced cohomology of the Thom space Th(E) is determined by the Thom isomor-
phism, i.e. each class x ∈ H∗(H1 ∪ e8;Z/2) corresponds to a class xu, where u denotes
the Thom class.
Let

Sq =
∑

i

Sqi and w =
∑

i

wi

denote the total Steenrod square and the total Stiefel-Whitney class, respectively.
By Wu’s formula (cf. [MS74] p.132) the Steenrod-operations on u are determined by the
total Stiefel-Whitney classes of E, namely

Sq(u) = w ∪ u.

The twisting bundle E is defined such that the pullback ι∗(−E) ∼= TH1. By Section
2.2 the total Stiefel-Whitney class of TH1 is 1 + y1. Thus, naturality determines the
total Stiefel-Whitney class of −E to be w(−E) = 1 + ỹ1. Since −E ⊕ E is trivial
w(−E ⊕ E) = 1. Consequently, the total Stiefel-Whitney class of E is w(E) = 1 + ỹ1.
Hence, the total Steenrod square of u ∈ H∗(Th(E);Z/2) is

Sq(u) = u+ ỹ1u.
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Let ỹ8 be a generator of H8(H1 ∪ e8;Z/2). We can calculate the total Steenrod squares
on the other cohomology classes in H∗(Th(E);Z/2). They are:

Sq(uỹ1) = Sq(u)Sq(y1) = (u+ uỹ1)ỹ1 = uỹ1,

Sq(uỹ2) = Sq(u)Sq(y2) = (u+ uỹ1)(ỹ2 + ỹ1ỹ2) = uỹ2,

Sq(uỹ1ỹ2) = Sq(u)Sq(ỹ1ỹ2) = (u+ uỹ1)ỹ1ỹ2 = uỹ1ỹ2 and

Sq(uỹ8) = Sq(u)Sq(ỹ8) = (u+ uỹ1)ỹ8 = uỹ8 .

Therefore, we now know the Steenrod module structure of H∗(Th(E);Z/2).
The cohomology H∗(MString;Z/2), for ≤ 10, is generated by uStr, the Thom class of
MString and w8ustr, where w8 is the pullback of the universal Stiefel-Whitney class in
BO to BString. Thus, SquStr = uStr + uStrw8 in H∗(MString,Z/2) for ∗ ≤ 10.
We apply the Künneth theorem to calculate H∗(Th(E) ∧ MString,Z/2). There, we
obtain the following non-trivial Steenrod-operations in H∗(Th(E) ∧MString;Z/2) for
∗ ≤ 10 + 2n:

Sq(uuStr) = uuStr + uỹ1uStr + uuStrw8 + uỹ1uStrw8,

Sq(uỹ1uStr) = uỹ1uStr + uỹ1uStrw8,

Sq(uỹ2uStr) = uỹ2uStr + uỹ2uStrw8 and

Sq(uuStrw8) = uw8 + uỹ1w8.

We use Bruner’s program and obtain the following E2-page for the Adams spectral
sequence. Again, we indicate the multiplicative structure on the E2-page as in Example
6.19 of [Sto85].

b 2n 2n+8

By the multiplicative structure, there cannot appear any non-vanishing differentials, that
kill the torsion, whence

ΩString
8 (H1 ∪ e8) ∼= Z2 ⊕ Z/4⊕ Z/2.
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In particular, all differentials in the twisted Atiyah-Hirzebruch spectral sequence con-
verging to ΩString

8 (H1 ∪ e8), as depicted on page 5.4, vanish.

5.5. Proof of Theorem 5.2

Now we are ready to prove Theorem 5.2. As already mentioned we want to apply
Corollary 3.12. By Lemma 2.2 π4(D4 ×H1) is finite. Furthermore, we have two normal
three-smoothings ν̃0 and ν̃1 into the same fibration H1 ∪ e8×̃BString → BO which are
compatible with the diffeomorphism n = h−1 ◦ (1Pl × f) ◦ h. Recall that Y denotes the
manifold

D4 ×H1 ∪h−1◦(1S3×f)◦h D
4 ×H1

and ν̃ denotes the map into H1 ∪ e8×̃BString obtained from ν̃1 and ν̃2 constructed in
the proof of Lemma 5.7. Corollary 3.12 implies that we can extend n over D4 ×H1, i.e.
that we can realise φ1, if ω := [Y, ν̃] vanishes in ΩString

8 (H1 ∪ e8, E).

Hence, our goal is to find invariants that detect whether ω vanishes in ΩString
8 (H1∪e8, E).

Proof. Let E∞pq denote the (p, q)-entry on the E∞-page of the twisted Atiyah-Hirzebruch

spectral sequence converging to ΩString
8 (H1 ∪ e8, E). By the calculation of Section 5.4

we know
ΩString

8 (H1 ∪ e8, E) ∼= Z/4⊕ Z/2⊕ E∞80 ⊕ E∞08/tor,

where E∞80
∼= Z and E∞08

∼= Z ⊕ Z/2. The Z/2 summand in E∞08 extends one of the Z/2
summands of E∞26

∼= Z/22 non-trivially and gives rise to the Z/4 summand. We start by

considering the two integral summands of ΩString
8 (H1 ∪ e8, E), i.e. we consider Z ⊂ E∞08

and E∞80 .

To show that ω vanishes on the Z ⊂ E∞08 we compare String-bordism and oriented
bordism as in the proof of Theorem 4.2.
Let prStr : BString → BSO denote the projection and let p denote the composition

H1 ∪ e8 ×BString E×pStr // BSO ×BSO ⊕ // BSO.

Consider the map ΩString
8 (pt)

j→ ΩString
8 (H1 ∪ e8;E) induced by the inclusion of a point

pt→ H1 ∪ e8. Recall that composing j with the map p induces the map

(p8)∗ : ΩString
8 (pt)︸ ︷︷ ︸
Z⊕Z/2

→ ΩSO
8 (pt)︸ ︷︷ ︸
Z⊕Z

.

In dimension eight this map is well-known to have kernel Z/2. In particular, the compo-
sition

Z ↪→ ΩString
8 (pt) ∼= E∞08 ↪→ ΩString

8 (H1 ∪ e8;E)→ ΩSO
8 (pt)
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is injective. A manifold induces the trivial element in ΩSO
8 (pt) if its Pontrjagin numbers

vanish. Consequently, the element ω ∈ ΩString
8 (H1 ∪ e8, E) vanishes on Z ⊂ E∞08 if the

Pontrjagin numbers of the underlying manifold Y vanish.

By construction h−1 ◦ (1S3 × f) ◦ h|S3×H1
: S3 ×H1 → S3 ×H1 is a fibre bundle map.

Consequently, the manifold Y is the total space of a fibre bundle over S4 with fibre
H1. We denote the bundle projection by π : Y → S4 and the inclusion of the fibre by
incl : H1 → Y .
To determine the Pontrjagin numbers we calculate H∗(Y ). We use the cohomological
Leray-Serre spectral sequence to determine the integral cohomology of the total space
of the fiber bundle H1 → Y → S4. Its E2-page is given by Epq2 = Hp(H1;Hq(S4)), i.e.
we obtain

0 2 4

0

2

4

Z Z

Z2 Z2

Z Z

.

Obviously, there are no non-trivial differentials. In particular, we obtain H4(Y ) ∼= Z2.
Using the edge homomorphisms we see that H4(Y ) is generated by two classes a, b, where
a = π∗(s) and incl∗(b) is a generator of H4(H1).
We turn to the Pontrjagin numbers. The tangent bundle of Y decomposes into the direct
sum TY ∼= π∗TS4⊕ TfibY . Since p1(S4) = 0 the first Pontrjagin class of the total space
isp1(TY ) = p1(TfibY ).
The pullback incl∗TfibY is isomorphic to TH1 whose first Pontrjagin class p1(TH1)
vanishes (cf. Section 2.2). By naturality incl∗(p1(TfibY )) vanishes, too. Thus, p1(TfibY )
is a multiple of π∗(s). But the square π∗(s) ∪ π∗(s) = π∗(s ∪ s) vanishes. This implies
that the Pontrjagin number

p(1,1)(Y ) := 〈p1(Y ) ∪ p1(Y ), [Y ]〉 = 0.

The only other Pontrjagin number in dimension eight is 〈p2(Y ), [Y ]〉 =: p(2)(Y ). To
show that it also vanishes we use the following statement.
Let F → E → B be a fibre bundle with F, E andB connected and compact and π1(B) =
0. By [CHS57] the signature of the total space of such a fibre bundle is multiplicative,
i.e. σ(E) = σ(B) · σ(F ). Applied to our bundle this implies σ(Y ) = σ(S4) · σ(H1) = 0.
Let p(2)(Y ) denote 〈p2(Y ), [Y ]〉. By Hirzebruch’s signature theorem

1

45

(
−p(1,1)(Y ) + 7p(2)(Y )

)
= σ(Y ) = 0.
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Hence, p(2)(Y ) is trivial, too. Consequently, the element ω vanishes on the first integral
summand E∞08/tor.

Now we use the Thom homomorphism T : ΩString
8 (H1∪e8, E)→ H8(H1∪e8) to show that

ω vanishes in the second integral summand E∞80 . The Thom homomorphism admits two
descriptions; it is the edge homomorphism in the Atiyah-Hirzebruch spectral sequence
and it has a geometric descrition.
By its description as the edge homomorphism of the Atiyah-Hirzebruch spectral sequence
E∞80 injects into H8(H1 ∪ e8), i.e. ω vanishes on E∞80 if T (ω) vanishes in H8(H1 ∪ e8).
To determine T (ω) we use the geometric description. Consider an element [M,f1 × f2]
in ΩString

8 (H1 ∪ e8;E), where f1 : M → H1 ∪ e8. The image of [M,f1 × f2] under the
Thom homomorphism is (f1)∗[M ].

By definition ν̃ = (i1× pt)∪ (i2× pt) =: i× pt for i1 and i2 as defined in Lemma 5.7, i.e.
i1 = ι ◦ pr and i2 = ι ◦ pr ◦ (1D4 × f). To show that i∗([Y ]) = 0 ∈ H8(H1 ∪ e8) we apply
the Mayer-Vietoris Sequence.
By the Leray-Serre spectral sequence above the group H7(Y ) vanishes. Since Y has
vanishing 7−th homology we can find a CW-structure on Y such that Y ' Y (6) ∪ ẽ8,
where we denote the eight-cell with a tilde to distinguish it from the eight-cell we attach
to H1. We now compare the Mayer-Vietoris sequences of Y and H1 ∪ e8:

H8(Y (6))⊕H8(ẽ8)

��

//

��

H8(Y ) //

i∗
��

H7(Y (6) ∩ ẽ8) //

(i|
Y (6)∩ẽ8 )∗

��

H7(Y (6))⊕H7(ẽ8)

��
H8(H1)⊕H8(e8) // H8(H1 ∪ e8) // H7(H1 ∩ e8) // H7(H1)⊕H7(e8)

The left- and right-most entries vanish for dimension reasons. Therefore, we are left with
the middle square in which the horizontal arrows are isomorphisms. But the domain of
i|Y (6)∩ẽ8 is a subset of the six-skeleton. By Equation (13) in the proof of Lemma 5.7 we
know

pr ◦ h−1 ◦ (1S3 × f) ◦ h|(S3×H1)(6) ' pr ◦ (1S3 × f)|(S3×H1)(6) .

Thus, the map (i|Y (6)∩ẽ8)∗ factors through H7(H1) which vanishes. Hence, the map
i∗ : H8(Y )→ H8(H1 ∪ e8) vanishes identically.

To finish the proof we now need to determine the invariants a1 and a2 on the torsion
subgroup of ΩString

8 (H1 ∪ e8, E).

First of all note that the inclusion ι : H1 → H1 ∪ e8 induces a homomorphism

ΩString
8 (H1,−TH1)

ι∗→ ΩString
8 (H1 ∪ e8, E).

We claim that ι∗ is injective. This follows from comparing the E2-pages of the Atiyah-
Hirzebruch spectral sequences converging to ΩString

8 (H1,−TH1) and ΩString
8 (H1∪e8, E),
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respectively, by the induced map ι∗ on homology with coefficients. The E2-page of the
spectral sequence converging to ΩString

8 (H1,−TH1) differs from the one depicted on page
85 only by the E2

80-entry which vanishes in this case. To solve the extension problem
we also repeat the Adams spectral sequence computation and obtain the E2-page below,
where • and ? depict a Z/2. We need the distinction later on. Furthermore the labels
for the columns indicate the degree of the twisted bordism group which differs from
the degree of the stable homotopy group by the rank n of the twisting bundle since
Ωk(H1,−TH1) ∼= πstk+n(Th(E) ∧MString).

0 2 4 6 8

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Therefore, we can deduce

ΩString
8 (H1,−TH1) ∼= Z⊕ Z/2⊕ Z/4.

On homology the map ι∗ : H1 → H1 ∪ e8 is injective. All entries E2
pq with p+ q = 8 on

the E2-page of the twisted Atiyah-Hirzebruch spectral sequence survive to E∞, by the
Adams spectral sequence calculation. Thus, the map on bordism groups is also injective.
In particular, the image of ι∗ is ΩString

8 (H1 ∪ e8)/E∞80 . By the Thom homomorphism we
already know that ω vanishes on E∞80

∼= H8(H1 ∪ e8). Hence, it is contained in imι∗.

Consequently, it suffices to find invariants for the torsion subgroup of ΩString
8 (H1,−TH1).

We consider two maps into H1. The inclusion of the fiber i2 : CP1 → H1 and the section
from the base space σ2 : CP1 → H1. By the properties of the tautological bundles over
a Bott manifold (cf. Section 2.1 Equation (3)) we obtain

σ∗2(TH1) ∼= γ−2
1 ⊕ γ−1

1 .

Over CP1
1
∼= S2 there exist only two stable real vector bundles since π2(BO) ∼= Z/2. The

non-trivial stable vector bundle is induced by the tautological bundle γ1. Its square γ2
1

is stably trivial. Therefore, γ−2
1 ⊕ γ−1

1 is isomorphic to γ1 as a stable real vector bundle.
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Consequently, the pullback of −TH1 is isomorphic to the inverse of γ1. But that is again
stably isomorphic to γ1.
Since i∗2(TH1) ∼= TCP1

2 which, as a real vector bundle, is stably trivial, i∗2(−TH1) is
trivial, too. Consequently, the maps σ2 and i2 induce homomorphisms

(σ2)∗ : ΩString
8 (CP1

1, γ1) → ΩString
8 (H1,−TH1) and

(i2)∗ : ΩString
8 (CP1

2) → ΩString
8 (H1,−TH1).

We denote reduced bordism groups by a tilde. We know

ΩString
8 (CP1

2) ∼= ΩString
8 (pt)⊕ Ω̃String

8 (S2) ∼= ΩString
8 (pt)⊕ΩString

6 (pt) ∼= ΩString
8 (pt)⊕Z/2.

We obtain ΩString
8 (CP1

1, γ1) ∼= Ω̃String
10 (CP 2) ∼= Z⊕Z/4 ∼= πst10(CP 2∧MString) by another

Adams spectral sequence calculation (The E2-page is given by the ?-entries in the Adams
spectral sequence above). Then we compare the Atiyah-Hirzebruch spectral sequences,
using that σ2 and i2 induce injective maps on homology. Furthermore,

im
(
(i2)∗ : H2(CP1

2;Z/2)→ H2(H1;Z/2)
)
⊕ im

(
(σ2)∗ : H2(CP1

1;Z/2)
)
→ H2(H1;Z/2))

= H2(H1;Z/2).

All entries on the (twisted) Atiyah spectral sequences converging to ΩString
8 (CP1

1, γ1),

ΩString
8 (CP1

2) and ΩString
8 (H1,−TH1) survive to E∞. We claim that

ΩString
8 (H1,−TH1) ∼= Ω̃String

8 (CP1
2)⊕ ΩString

8 (CP1
1, γ1).

Let π : H1 → CP1
1 denote the projection. That Ω̃String

8 (CP1
2) splits off follows, on the

one hand, by considering the filtration groups of the spectral sequences converging to
Ω̃String

8 (CP1
2) and ΩString

8 (H1,−TH1) and, on the other hand, by considering the induced

map π∗ on im(i2)∗ and on ΩString
8 (pt) ⊂ ΩString

8 (H1,−TH1).

First, we consider elements in im((i2)∗). By Lemma 3.18 we have an exact sequence of
the form

...→ ΩString
n (pt)

i→ ΩString
n (CPm, ξ)

t→ ΩString
n−2 (CPm−1, ξ ⊕H)

s→ ΩString
n−1 (pt)→ ... .

Here, we are interested in the case where m = 1 and where ξ is the trivial bundle. It
follows that

t : Ω̃String
8 (CP1

2)→ ΩString
6 (pt)

is an isomorphism. Furthermore, the non-trivial element in ΩString
6 (pt) is detected by

the Arf-invariant (cf. Chapter 6 of [Lüc02] for a definition). We can define an invariant
on ΩString

8 (H1,−TH1) ⊂ ΩString
8 (H1∪ e8, E) by first projecting to ΩString

8 (CP1
2), then
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applying t and finally using the Arf-invariant in ΩString
6 (pt). We denote this invariant

by
a1 : ΩString

8 (H1 ∪ e8, E)→ Z/2,

and call it a codimension two Arf-invariant.

It remains to find an invariant for ΩString
8 (CP1

1, σ
∗
2ι
∗E) ∼= ΩString

8 (CP1
1, γ1). This time we

apply Lemma 3.18 to m = 1 and ξ = γ1. We obtain an epimorphism

t : ΩString
8 (CP1

1, γ1)→ ΩString
6 (pt)

with kernel ker(t) = im
(

ΩString
8 (pt)

i→ ΩString
8 (CP1

1, γ1)
)

and can again use the Arf-

invariant on ΩString
6 (pt) to obtain a second codimension two Arf-invariant

a2 : ΩString
8 (H1 ∪ e8, E)→ Z/2.

Here, we project to ΩString
8 (CP1

1, σ
∗
2ι
∗E), then apply t to map to ΩString

6 (pt) and take
the Arf-invariant there.

We already showed that ω vanishes on Z ⊂ ker(t) using the Pontrjagin numbers. By
Lemma 5.1 the generator of the finite subgroup of ker(t) it the exotic eight sphere. To
my knowledge there is no invariant that detects the exotic eight sphere in ΩString

8 (pt).

We denote its image in ΩString
8 (H1 ∪ e8, E) by θ8.

Thus, we come to the last part of the proof. If the codimension two Arf-invariants vanish
on ω = [Y, i], then ω = 0 if ω 6= θ8. Thus, we obtain the final condition of the theorem
ω 6= θ8 ∈ ΩString

8 (H1 ∪ e8, E).
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A. The cohomology of P3B4

In this appendix we calculate Hk(P3B4;Z/2) together with its product and Steenrod
module structure for k ≤ 10. The extension problem for integral cohomology will follow
from the calculation of Z/2-cohomology.

Recall that H1 denotes the non-trivial Hirzebruch surface which is a four-dimensional
Bott manifold B2. In Section 5.3 we need the Steenrod module structure of P3H1 which
is the total space of a fibration K2 := K(Z2, 3) → P3H1 → P2H1 ' (CP∞)2. The
calculation is completely analogous to the one for P3B4, only less tedious since the
number of generators is smaller. We will not write down the calculations, only the
intermediate steps and results.

We start with the calculation of Hk(P3B4;Z/2) for k ≤ 10. Since P3B4 is the total space of
the fibration K4 := K(Z4, 3)→ P3B4 → P2B4 ' (CP∞)4, we can use the cohomological
Leray-Serre spectral sequence with coefficients in Z/2, i.e.

Epq2 = Hp(P2B4;Hq(K4;Z/2))⇒ Hp+q(P3B4;Z/2).

Since the integral cohomology Hq(P2B4) is torsion-free and finitely generated, the E2-
page simplifies to Epq2 = Hp(P2B4)⊗Hq(K4;Z/2) by the universal coefficient theorem.
The Z/2-cohomology of K(Z, 3) is very well-understood (cf. [McC01], Theorem 6.19).
We abbreviate Steenrod operations SqiSqj by Sqij . For i ≤ 10 the non-vanishing groups
H i(K(Z, 3);Z/2) and their generators are

i 0 3 5 6 8 9 10

Hi(K(Z, 3);Z/2) Z/2 Z/2 Z/2 Z/2 Z/2 Z/2 Z/2

generators 1 ι Sq2ι ι2 ι ∪ Sq2ι Sq42ι Sq2ι ∪ Sq2ι
.

Since K(Z, 3)4 ' K(Z4, 3) = K4 and K(Z, 3)2 ' K(Z2, 3) = K2, respectively, we
can apply the Künneth theorem to obtain the Z/2-cohomology of the product. In the
following table 1 ≤ l ≤ m ≤ n ≤ 4, 1 ≤ i, j ≤ 4 and 1 ≤ r ≤ s ≤ t ≤ 2, 1 ≤ a, b ≤ 2 and
we suppress the cup products from notation.

i 0 3 5 6 8 9 10

Hi(K2;Z/2) Z/2 Z/22 Z/22 Z/23 Z/24 Z/26 Z/24

generators 1 ιr Sq2ιr ιrιs ιaSq
2ιb Sq42ιr, ιrιsιt Sq2ιrSq

2ιs

Hi(K4;Z/2) Z/2 Z/24 Z/24 Z/210 Z/216 Z/224 Z/210

generators 1 ιl Sq2ιl ιlιm ιiSq
2ιj Sq42ιm, ιlιmιn Sq2ιlSq

2ιm

We denote the generators of H i(P2B4;Z/2) by aj for 1 ≤ j ≤ 4. Since K4 is 2-connected
the first non-trivial differential in the integral Leray-Serre spectral sequence of the fi-
bration K4 → P3B4 → P2B4 is dZ4 : E03

4 → E40
4 . Recall that we already determined this

differential dZ4 : E03
4 → E40

4 via the k-invariant and Proposition 3.4. For 1 ≤ i < j and
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2 ≤ j ≤ 4 let Aij denote the integers that determine a Bott tower of height four (cf.

Section 2.1) as before. If zj , 1 ≤ j ≤ 4 denotes a basis of H4(K4), the differential is

dZ4 (zj) = a2
j −

∑

i<j

Aijaiaj .

Furthermore, dZ4 : E03
4 → E40

4 can be identified with the transgression (cf. [McC01]
Theorem 6.8). The integral transgression determines the Z/2-transgression which then

determines the Z/2-differential d
Z/2
4 : E03

4 → E40
4 . Thus,

d
Z/2
4 (ιj) = a2

j −
∑

i<j

Aijaiaj mod 2

=: a2
j + α̃jaj .

By the Leibniz-formula this determines differentials on all products of il or il and aj .

It remains to determine the differentials on Sq2ιl and Sq42ιl. To understand this calcu-
lations more easily, take a look at the E4- page of the cohomological Leray-Serre spectral
sequence converging to H∗(P3B4;Z/2) on the next page.
The only differential dj : E05

j → Ej,5−jj that can be non-trivial is d6 : E05
6 → E06

6 . In

particular, we can identify E05
6 with H5(K4;Z/2). By Corollary 6.9 in [McC01] we know

d6(Sq2ιl) = Sq2 ◦ d4(ιl) ∈ E60
6 = H6(P2;Z/2)/im(d4). Since

Sq2◦d4(ιl) = Sq2(a2
l + α̃lal) = Sq2(α̃2)al+αlSq

2al = α̃l(α̃lal+a
2
l ) ∈ im(d4 : E23

4 → E60
4 )

the differential d6(Sq2ιl) vanishes for all 1 ≤ l ≤ 4.

Thus, it only remains to determine the differential on Sq42ιl ∈ E09
j . We use [Ara57],

where the idea of Steenrod operations on cohomology is extended to Steenrod operations
on the Leray-Serre spectral sequence.
Let F → E → B be a fibration with connected fibre and simply connected base space.
Then, on the E2-page, the Steenrod operations on the spectral sequence, as defined in
[Ara57], coincide with the ordinary Steenrod operations of the fibre and base on E0q

2

and Ep02 , respectively. Furthermore, the Steenrod operations on the spectral sequence
commute, in some sense, with the differentials (see [Ara57] p.89/90).
This enables us to determine dj(Sq

42ιl) = 0 for all 2 ≤ j ≤ 10, i.e. Sq42ιl survives to
E∞.

Next we write down the E2-page for K4 → P3B4 → P2B4 with Z/2-coefficients and entries
Epq2 with q ≤ 10 and p+q ≤ 11. Instead of writing down the groups Epq2 , we write down a
basis for each entry. Let 1 ≤ l ≤ m ≤ n ≤ 4, 1 ≤ i1 ≤ ... ≤ i5 ≤ 4 and 1 ≤ s, t ≤ 4. Since
the first non-trivial differentials appear on the E4-page, the E2-page and the E4-page
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agree. Therefore, we indicate the d4-differential which determines all other differentials.

0 2 4 6 8 10

0

3

6

9

Z/2 ai1

ιl

ai1ai2 ai1ai2ai3 ai1ai2ai3ai4 ai1 ...ai5

ιlιm

Sq2ιl

ιsSq2ιt

Sq42ιl

ιlιmιn

ai1Sq
42ιl

ai1 ιlιmιn

Sq2ιlSq
2ιm

ai1 ιl

ai1Sq
2ιl

ai1 ιlιm

ai1 ιsSq
2ιt

ai1ai2 ιl

ai1ai2Sq
2ιl

ai1ai2 ιlιm

ai1ai2ai3 ιl

ai1ai2ai3Sq
2ιl

ai1 ...ai4 ιl

Note that the E4-page of the cohomological Leray-Serre spectral sequence with coef-
ficients in Z/2, which converges to H∗(P3H1;Z/2) looks almost the same. The only
difference is, that all indices run between 1 and 2 and not between 1 and 4.

Combining all our knowledge on the differentials, we obtain Epq∞ for all p, q with q ≤ 11
and p + q ≤ 10. Again we write down a basis for each entry Epq∞ . We only depict rows
which are non-empty in our range.
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On the E∞-page, let the indices be given by 1 ≤ l ≤ m ≤ 4 and 1 ≤ i1 < i2 < i3 ≤ 4.

0 2 4 6 8

0

5

6

9

10

Z/2 ai1 ai1ai2 ai1ai2ai3 a1a2a3a4

ι2l

Sq2ιl

Sq42ιl

Sq2ιlSq
2ιm

ai1Sq
2ιl

ai1 ι
2
l

ai1ai2Sq
2ιl

ai1ai2 ι
2
l

Again, the E∞-page for P3H1 looks similar. The indices still run between 1 and 2. Since
there cannot be indices fulfilling 1 ≤ i1 < i2 < i3 ≤ 2 the entries E60

∞ and E80
∞ vanish for

H∗(P3H1;Z/2). From now on we abbreviate P3H1 by Q3.

To determine generators of H∗(P3;Z/2) and H∗(Q3;Z/2), respectively, we take into ac-
count the cup product structure. For the rest of this calculation let 1 ≤ i < j < h ≤ 4
and 1 ≤ l,m ≤ 4 for P3. For the statement of results the indices for Q3 are 1 ≤ i < j ≤ 2
and 1 ≤ l,m ≤ 2.
We start by using that p∗ : H∗(P2;Z/2) → H∗(P3;Z/2) is the edge homomorphism
Hp(P2;Z/2) ∼= Ep02 � Ep0∞ ↪→ Hp(P3;Z/2). Thus, the elements p∗(ai) and p∗(ai)p

∗(aj)
form a basis for H2(P3,Z/2) and H4(P3;Z/2), respectively. By the properties of d4 we
obtain p∗(ai)

2 = p∗(α̃iai).
Furthermore, p∗(aiajah) and p∗(a1a2a3a4) are generators forH6(P3;Z/2) andH8(P3;Z/2),
respectively. The relation p∗(ai)

2 = p∗(α̃i)p
∗(ai) determines all products of generators

in the image of p∗. From now on we suppress the pullback p∗ in the notation of the
generators.
Let k : K4 → P3 denote the inclusion of the fibre. There is a second edge homomorphism
Hq(K4;Z/2) � Eq0∞ ↪→ Eq02

∼= Hq(K4;Z/2) which equals k∗. Thus, there is a basis bl,
1 ≤ l ≤ 4 of H5(P3;Z/2) with the property that k∗(bl) = Sq2ιl.
The cup product structure on the cohomology of the total space H∗(P3;Z/2) induces a
cup product structure on E∗∗∞ . Thus, if there is a non-trivial cup product on the E∞-page
there must be a corresponding non-trivial cup product on H∗(P3;Z/2).
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The elements aibl form a basis for H7(P3;Z/2) ∼= E25
∞ , since E05

∞ × E20
∞ → E25

∞ is an
isomorphism.
By the edge homomorphism argument there exists generators cl ∈ H6(P3;Z/2) which ful-
fil k∗(cl) = ι2l . We specify this generators subsequently. Together with aiajah they form
a basis for H6(P3;Z/2). Furthermore, there again is an isomorphism E06

∞ × E20
∞ → E26

∞ .
Thus, clai, together with a1a2a3a4 form a basis for H8(P3;Z/2).
In the end, we obtain the following table of non-trivial reduced cohomology groups and
generators

i 2 4 5 6 7 8 9 10

H̃i(Q3;Z/2) Z/22 Z/2 Z/22 Z/22 Z/24 Z/24 Z/26 Z/25

generators ai a1a2 bl cl aibl aicl, a1a2bl, el a1a2cl, blbm

H̃i(P3;Z/2) Z/24 Z/26 Z/24 Z/28 Z/216 Z/217 Z/228 Z/234

generators ai aiaj bl aiajah, cl aibl aicl, a1a2a3a4 aiajbl, el aiajcl, blbm

.

Here, el has the property that k∗el = Sq42ιl. Note that all products are determined by
the products indicated in the table and by a2

i = α̃iai.

The calculation implies that the extension problems for the integral cohomology groups
of degree less or equal ten are trivial. Recall that integrally H5(P3) = 0 and H6(P3) is
either Z4 or Z4 ⊕ Z/24 (cf. spectral sequence on page 47). For H5(P3;Z/2) to be Z/24

the group H6(P3) must split off Z/24 by the universal coefficient theorem. Analogously
H8(P3) must split off Z/216. Calculating H∗(P3;Z/3) one can see, that H8(P3) must also
have a direct summand Z/34.

Next we turn to the Steenrod module structure, in particular to the calculation of Sq2.
Let Sq denote the total Steenrod square. For any two elements x and y in cohomology
with Z/2-coefficients Sq(xy) = Sq(x)Sq(y). Thus, it suffices to determine the Steenrod
operations on each factor. Since Sq2(ai) = a2

i = α̃iai we have

Sq(ai) = ai + α̃iai. (14)

We turn to bl ∈ H5(P3;Z/2) (bl ∈ H5(Q3;Z/2), respectively). By naturality k∗(Sq1(bl)) =
Sq1(k∗bl) = Sq1Sq2ιl = ι2l . Hence, we can define Sq1bl =: cl. Analogously we obtain
Sq4(bl) =: el and Sq5(bl) = b2l .
Determining Sq2bl is slightly harder. Consider ∨4S

2 := S2 ∨ S2 ∨ S2 ∨ S2 and S2 ∨ S2.
There are obvious maps f4 : ∨4 S

2 → (CP∞)4 = P2 such that f∗4 (ai) =: ãi is a basis of
H2(∨4S

2;Z/2) and f2 : S2∨S2 → (CP∞)2 = P2H1 =: Q2 such that f∗2 (ai) =: ãi is a basis
of H2(S2 ∨ S2;Z/2). The pullback f∗4 (P3) is the product fibration ∨4S

2 ×K4 → ∨4S
2,

whereas the pullback f∗2 (Q3) is the product fibration S2∨S2×K2 → S2∨S2. We obtain
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commutative diagrams of fibrations

K4
1 //

��

K4

��

K2
1 //

��

K2

��
∨4S

2 ×K4
f̃4 //

��

P3

��

S2 ∨ S2 ×K2
f̃2 //

��

Q3

��
∨4S

2 f // P2 S2 ∨ S2 f // Q2 .

In particular, we obtain a map (f∗k )r for k = 2, 4 between the Er-pages of the cohomo-
logical Leray-Serre spectral sequences of both pairs of fibrations.
Note that the first three collumns of the E2-page of ∨4S

2 ×K4 → ∨4S
2 agree with the

first three columns of the E2-page of P3 → P2 and the first three collumns of the E2-page
of S2∨S2×K2 → S2∨S2 agree with the first three columns of the E2-page of Q3 → Q2.
By the Künneth theorem all differentials in the spectral sequence of ∨4S

2×K4 → ∨4S
2

and S2 ∨ S2 ×K2 → S2 ∨ S2 vanish. Since all extensions are trivial we obtain

f̃∗4 (bl) = Sq2ιl ∈ H5(∨4S
2 ×K4;Z/2) and

f̃∗2 (bl) = Sq2ιl ∈ H5(S2 ∨ S2 ×K2;Z/2).

Furthermore, the maps

f̃∗4 : H7(P3;Z/2) → H7(∨4S
2 ×K4;Z/2) and

f̃∗2 : H7(Q3;Z/2) → H7(S2 ∨ S2 ×K2;Z/2)

are isomorphisms. Since Sq2(Sq2ιl⊗1) = 0, we obtain Sq2bl = 0. By the Adem relations
Sq3(bl) = Sq1Sq2(bl) = 0 and, hence, the total Steenrod square is

Sq(bl) = bl + cl + el + b2l , (15)

for bl ∈ H5(P3;Z/2) and bl ∈ H5(Q3;Z/2), respectively.
This is all we need to know of the Steenrod module structure of Q3. Thus, we do not
consider it any further.

Since cl = Sq1bl we instantly obtain Sq1cl = 0. Again, Sq2 is harder. To calculate it,
we, amongst other things, need to compare H∗(P3;Z/2) and H∗(B4;Z/2). We already
saw that p∗(a1a2a3a4) ∈ E80

∞ ⊂ H8(P3;Z/2) is a generator. Recall that we have a
commutative triangle

P3

p

��
B4

i3
=={{{{{{{{ i2 // P2 .
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By definition i∗2(a1a2a3a4) is a generator of H8(B4;Z/2). Thus, i∗3|E80
∞

is an isomorphism.
To determine Sq2(cl) we consider the following commutative diagram

H5(B4;Z/2)

Sq3

��

H5(P3;Z/2)
i∗3oo

� _

Sq1

��
H8(B4;Z/2) H6(P3;Z/2)

s1

wwnnnnnnnnnnnnn
Sq2

��

s2

))RRRRRRRRRRRRRRRR

f̃∗ // H6(∨4S
2 ×K4;Z/2)

Sq2

**UUUUUUUUUUUUUUUU

E80
∞ //

i∗3

OO

H8(P3;Z/2) // E26
∞

f̃∗4 |E26∞ // H8(∨4S
2 ×K4;Z/2).

Since H5(B4;Z/2) = 0 and since i∗3|E08
∞

is an isomorphism, s1(Sq1bl) = 0. Addi-
tionally, s2 also vanishes since Sq2 : H6(∨4S

2 × K4;Z/2) → H8(∨4S
2 × K4;Z/2) van-

ishes. Consequently, Sq2(Sq1bl) = Sq2cl = 0. Hence, Sq3cl vanishes, too. Finally,
k∗(Sq4cl) = Sq4(Sq3cl) = Sq5Sq2ιl = (Sq2ιl)

2 = k∗(b2l ) and we obtain the total Steen-
rod square to be

Sq(cl) = cl + b2l + x, (16)

where x is an element of H i(P3;Z/2) for i ≥ 11.
Observe that we now have assembled the complete Steenrod module structure ofH i(P3;Z/2)
for i ≤ 10.
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B. Calculation of a minimal resolution

In this appendix we explicitly construct a minimal resolution to calculate the E2-page
of an Adams spectral sequence at the prime two. The group we want to calculate is
πst8 (CP∞+ ∧MString). Thus, we need the E2-page

Es,t2 = Exts,tA (H∗(CP∞+ ∧MString; Z/2),Z/2).

for t− s ≤ 9.

We construct the minimal resolution as described in Section 6.18 of [Sto85]. For this pur-
pose we need Hk(CP∞+ ∧MString; Z/2) for k ≤ 10. Recall that we denote the generator
of the ring H∗(CP∞, Z/2) by a ∈ H2(CP∞; Z/2), the generator of H0(MString;Z/2)
by u and the one of H8(MString;Z/2) by uw8. Here, u is the Thom class of MString
and w8 is the pullback of the eighth universal Stiefel-Whitney class in H8(BO;Z/2) to
H8(BString;Z/2).
We consider the pullback of the classes u, uw8, a, a

2, ... to H∗(CP∞+ ∧MString), apply
the Künneth theorem and obtain

i 0 2 4 6 8 10

H i(CP∞∧MString; Z/2) Z/2 Z/2 Z/2 Z/2 Z/22 Z/22

generators u ua ua2 ua3 uw8, ua
4 ua5, w8a

.

The other groups H i(CP∞+ ∧MString; Z/2) vanish for i ≤ 10. An easy calculation
shows that the only non-vanishing operations of Steenrod squares Sqi in this range are:

Sq8u = uw8, Sq8ua = w8a, Sq2ua = ua2,

Sq4ua2 = ua4, Sq2ua3 = ua4, Sq4ua3 = ua5.

Now we can calculate the minimal almost free resolution (cf. Definition 6.2 and 6.12 in
[Sto85])

...→Mi →Mi−1 → ...→M1 →M0 → H i := H i(CP∞ ∧MString;Z/2).

We stick to the notation of [Sto85], in particular

ast and ãst ∈ Exts,tA (H∗(CP∞+ ∧MString; Z/2),Z/2),

generate Ms, i.e.

Ms
∼=
⊕

t

Aast ⊕
⊕

t

A/(ASq1)ãst.

Then, Proposition 6.14 in [Sto85] states how these generators of the modules in the
resolution of H i form a Z/2-basis of Exts,tA (H∗(CP∞+ ∧MString; Z/2),Z/2).
Find the resolution on the next pages.
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i H i M0 M1 M2 M3 M4 M5
0 u ã00

1 0

2 au ã02
Sq2ã00 a12

3 Sq3ã00 Sq1a12

4 a2u Sq2ã02
Sq4ã00 a14

Sq2a12 a24

5 Sq5ã00 Sq21a12 a25
Sq1a14

Sq3ã02 ã15
Sq3a12 Sq1a24

6 a3u ã06 Sq31a12 Sq2a24 a36
Sq6ã00 Sq2a14 Sq1a25
Sq42ã00 Sq4a12
Sq4ã02 a16

7 Sq7ã00 Sq3a14 Sq3a24 Sq1a36
Sq52ã00 Sq5a12 Sq21a24

Sq41a12
Sq5ã02 Sq2ã15 a27

Sq1a16
Sq21a14 Sq2a25

8 u ∪ w8 Sq8ã00 Sq6a12 a28
Sq62ã00 Sq4a14
Sq6ã02 Sq2a16 Sq21a25 Sq2a36

Sq51a12 Sq31a24
a3u Sq42ã02 a18

Sq2ã06 Sq42a12 Sq4a24
Sq21a14 Sq3a25
Sq3ã15 Sq1a27
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i H i M0 M1 M2 M3 M4 M5

9 Sq9ã00 Sq421a12
Sq72ã00 Sq41a14 Sq4a25

Sq5a14 Sq1a28
Sq7a12

Sq63ã00 Sq61a12
Sq7ã02 Sq3a16
Sq52ã02 Sq4ã15 Sq31a25 Sq3a36
Sq3ã06 Sq1a18 Sq5a24 Sq21a36

Sq52a12 Sq41a24
Sq21a16 Sq2a27

10 Sq10ã00 Sq42a14
Sq82ã00 Sq8a12
Sq73ã00 Sq71a12 Sq51a24 Sq31a36

Sq6a14 Sq2a28
Sq51a14 Sq5a25

aw8 Sq8ã02 Sq521a12 Sq42a24 Sq4a36
Sq62ã02 Sq4a16 Sq41a25

Sq2a18 a210
a5u Sq4ã06 Sq62a12 Sq6a24

Sq5ã15 Sq21a27
Sq31a16 Sq3a27

11 Sq11ã00 Sq52a14
Sq9a12 Sq21a28

Sq92ã00 Sq621a12 Sq421a24
Sq61a14 Sq6a25 a311

Sq83ã00 Sq81a12
Sq72a12 Sq7a24

Sq9ã02 Sq41a16
Sq42ã15 Sq4a27

Sq72ã02 Sq5a16 Sq1a210
Sq3a18 Sq52a24 Sq41a36

Sq63ã02 Sq6ã15 Sq51a25 Sq5a36
Sq6ã06 Sq21a18 Sq31a27 b̃311

Sq63a12 Sq61a24
Sq7a14 Sq3a28
Sq421a14 Sq42a25
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i H i M0 M1 M2 M3 M4 M5

12 Sq82a12 Sq8a24
Sq10a12
Sq62a14 Sq4a28
Sq71a14 Sq31a28
Sq91a12 Sq7a25 Sq1a311

Sq521a24
Sq721a12 Sq421a25 Sq42a36
Sq73a12 Sq71a24
Sq631a12 Sq62a24 Sq6a36

Sq61a25
Sq521a14 Sq52a25
Sq6a16 Sq51a36 ã412
Sq31a18 Sq2a210
Sq51a16 Sq5a27
Sq52ã15 Sq41a27

13 Sq72a24 Sq7a36
Sq71a25
Sq9a24 Sq421a36 a413
Sq81a24 Sq2a311
Sq621a24
Sq521a25 Sq52a36
Sq51a27 Sq2b̃311
Sq63a24 Sq61a36

14 Sq521a36 Sq1a413
Sq3a311 Sq2ã412 a514
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Zusammenfassung

Diese Dissertation befasst sich mit der Klassifikation von Kohomologie Bott Mannig-
faltigkeiten, einer Verallgemeinerung von Bott Mannigfaltigkeiten, mit den Methoden
der modifizierten Chirurgietheorie. Bott Mannigfaltigkeiten wurden in der Arbeit [BS58]
von Bott und Samelson eingeführt. Eine Bott Mannigfaltigkeit ist der Totalraum eines
iterierten CP1-Bündels, bei dem jedes Bündel die Projektivierung eines komplexen Vek-
torbündels vom Rang zwei ist. Ihren Namen haben Sie von Grossberg und Karshon in
[GK94] erhalten.
Bott Mannigfaltigkeiten der komplexen Dimension n stellen ein wichtiges Beispiel für
torische Mannigfaltigkeiten dar. Eine torische Mannigfaltigkeit X ist eine glatte, kom-
pakte, normale, komplexe Varietät, die einen algebraischen Torus (C∗)n als dichte Teil-
menge enthält, so dass es eine Wirkung des algebraischen Torus (C∗)n auf X gibt, welche
die natürliche Wirkung des algebraischen Torus auf (C∗)n ⊂ X fortsetzt. Für sie wurden
2008 von Choi, Masuda und Suh in [CMS10] die folgenden Vermutungen formuliert:

1. Zwei torische Mannigfaltigkeiten M und N sind genau dann diffeomorph, wenn
ihre Kohomologieringe isomorph sind.

2. Für jeden Isomorphismus φ : H∗(M) → H∗(N) der ganzzahligen Kohomolo-
gieringe zweier torischer Mannigfaltigkeiten M und N gibt es einen Diffeomor-
phismus f : N →M , so dass f∗ = φ, d.h. so dass φ von f realisiert wird.

Man spricht im ersten Fall von der schwachen, im zweiten Fall von der starken kohomol-
ogischen Starrheitsvermutung. Diese beiden überraschenden Vermutungen wurden am
Beispiel der Bott Mannigfaltigkeiten untersucht. Von nun an beziehen wir uns, wenn
wir von den Vermutungen sprechen, immer auf die entsprechende Vermutung für Bott
Mannigfaltigkeiten.

Bott Mannigfaltigkeiten der reellen Dimension vier sind sogenannte Hirzebruchflächen.
Wie der Name impliziert wurden diese bereits von Hirzebruch in [Hir51] untersucht. Sie
erfüllen die starke Starrheitsvermutung.

Weiterhin gibt es die Klassen der sogenannten Q-trivialen und der einfach verdrillten
Bott Mannigfaltigkeiten. Sie wurden in [CM12] beziehungsweise [CS11a] eingeführt und
untersucht. Für Q-triviale Bott Mannigfaltigkeiten gilt die starke, für einfach verdrillte
Bott Mannigfaltigkeiten die schwache Vermutung.

Für die bisher genannten Bott Mannigfaltigkeiten kann man die schwache Vermutung
beweisen, indem man im Wesentlichen Isomorphismen der unterliegenden Vektorbündel
betrachtet.

Eine weitere Klasse von Bott Mannigfaltigkeiten, für die die schwache Vermutung gilt, ist
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die der sechs-dimensionalen Bott Mannigfaltigkeiten. Diese wurden in [CMS10] unter-
sucht. Um die schwache Vermutung hier zu beweisen ist allerdings eine andere Technik
nötig, nämlich die der Chirurgietheorie. Der Beweis nutzt Klassifikationsresultate für
einfach zusammenhängende Mannigfaltigkeiten, die in [Wal66] und [Jup73] bewiesen
wurden.
Um diese Klassifikationsresultate nutzen zu können, mussten Choi, Masuda und Suh im
Wesentlichen prüfen, ob ein Isomorphismus ϕ : H∗(B) → H∗(B′) zwischen den Koho-
mologieringen zweier sechs-dimensionaler Bott Mannigfaltigkeiten B und B′ die folgen-
den zwei Bedingungen erfüllt:

1. Der Isomorphismus, der durch ϕ auf Kohomologie mit Z/2-Koeffizienten induziert
wird bildet die totalen Stiefel-Whitney Klassen aufeinander ab, d.h. es gilt
ϕ(w(B)) = w(B′).

2. Auch die totalen Pontrjagin Klassen werden aufeinander abgebildet, d.h. es gilt
ϕ(p(B)) = p(B′).

Diese Beobachtung hat uns dazu veranlasst eine allgemeinere Klasse von Mannigfaltig-
keiten zu untersuchen, die Kohomologie Bott Mannigfaltigkeiten. Es sei B eine Bott
Mannigfaltigkeit. Eine Kohomologie Bott Mannigfaltigkeit M bezüglich einer Bott Man-
nigfaltigkeit B ist eine glatte, geschlossene und einfach zusammenhängende Mannig-
faltigkeit, für die es einen Ringisomorphismus ϕ : H∗(B)→ H∗(M) gibt,

1. so dass die totalen Stiefel-Whitney Klassen aufeinander abgebildet werden, d.h.
sie erfüllen ϕ(w(B)) = w(M) und

2. so dass die totalen Pontrjagin Klassen aufeinander abgebildet werden, d.h. sie
erfüllen ϕ(p(B)) = p(M).

Für Kohomologie Bott Mannigfaltigkeiten fragen wir uns,

1. ob wir etwas über die Diffeomorphismusklassen von Kohomologie Bott Mannig-
faltigkeiten sagen können,

2. ob die Möglichkeit besteht, dass sie, wie im Fall der Dimension sechs, kohomolo-
gisch starr sind und

3. ob wir sie irgendwie klassifizieren können.

Mit diesen Fragen beschäftigt sich diese Arbeit. Da die Dimension sechs bereits gelöst
ist, haben wir uns diese Fragen für acht-dimensionale Bott Mannigfaltigkeiten gestellt.
In dieser Dimension ist die schwache Starrheitsvermutung für Bott Mannigfaltigkeiten
nach einem Preprint von Choi (siehe [Cho11a]) gelöst. Über Kohomologie Bott Mannig-
faltigkeiten ist allerdings nichts bekannt.
In Theorem 4.2 beantworten wir die erste Frage. Wir stellen fest, dass die Anzahl an
Kohomologie Bott Mannigfaltigkeiten immer endlich ist.
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Theorem. Es sei B4 eine Bott Mannigfaltigkeit der Dimension acht. Die Anzahl von
Diffeomorphismusklassen von Kohomologie Bott Mannigfaltigkeiten, deren Kohomolo-
giering isomorph zu B4 ist, ist endlich.

Die Antwort auf die zweite Frage ist, dass Kohomologie Bott Mannigfaltigkeiten nicht
kohomologisch starr sind. In Theorem 4.10 zeigen wir:

Theorem. Es sei S eine Bott Mannigfaltigkeit, für die die starke kohomologische Starr-
heitsvermutung gilt und die außerdem eine String-Struktur zulässt. Dann existiert eine
kohomologie Bott Mannigfaltigkeit F (bzgl. S), so dass F nicht diffeomorph zu einer
Bott Mannigfaltigkeit ist, insbesondere nicht zu S.

Die Theorie, die wir für den Beweis beider Theoreme nutzen ist die der modifizierten
Chirurgietheorie. Dabei führen wir die Frage, ob zwei Mannigfaltigkeiten deren Nor-
malenbündel eine gewisse Zusatzstruktur tragen, die wir normale B-Struktur nennen,
diffeomorph sind, auf die Frage zurück, ob sie B-bordant sind, d.h. bordant durch
einen Bordisums, dessen Normalenbündel ebenfalls eine B-Struktur trägt, welche sich
auf die B-Strukturen der beiden Mannigfaltigkeiten einschränkt. Die Menge aller B-
Bordismusklassen von n-dimensionalen Mannigfaltigkeiten mit normaler B-Struktur bil-
det eine Gruppe, die sogenannte B-Bordismusgruppe ΩB

n. Können wir also die B-Bordis-
musgruppen kontrollieren, so erlaubt uns dies eine Aussage über die Diffeomorphis-
musklassen.

Um das erste Theorem zu beweisen, zeigen wir, dass alle acht-dimensionalen Koho-
mologie Bott Mannigfaltigkeiten eine gewisse B-Struktur tragen. Wir berechnen die
B-Bordismusgruppen und finden Invarianten, die zeigen, dass durch Kohomologie Bott
Mannigfaltigkeiten nur endlich viele Elemente in ΩB

8 erzeugt werden.

Für den Beweis des zweiten Theorems nutzen wir eine Konstruktion, die man als Kodi-
mension zwei Arf-Invariante bezeichnen kann, d.h. wir nutzen die Arf-Invariante einer
Untermannigfaltigkeit der Kodimension zwei. Darauf aufbauend knnen wir S und F
in einer geeigneten B-Bordismusgruppe unterscheiden. Wir zeigen, dass Sie damit ins-
besondere nicht diffeomorph sein können.
Wir vermuten, dass die Kodimension zwei Arf-Invarianten ein erster Ansatzpunkt für
die Klassifikation von Kohomologie Bott Mannigfaltigkeiten ist.

Interessanter Weise begegnet uns diese Art Invariante auch im letzten Kapitel dieser
Arbeit. Dort befassen wir uns mit dem starken Starrheitsproblem. Wie bereits erwähnt
ist die schwache Vermutung für acht-dimensionale Bott Mannigfaltigkeiten gelöst. Die
starke Vermutung wird, ebenfalls in [Cho11a], auf die Frage reduziert, ob vier Automor-
phismen auf dem Kohomologiering einer speziellen Klasse von Bott Mannigfaltigkeiten
realisiert werden können. Einen dieser vier Automorphismen untersuchen wir im letzten
Teil der Arbeit. Wir stellen in Theorem 5.2 fest, dass dieser Automorphismus realisiert
werden kann, falls bestimmte Kodimension zwei Arf-Invarianten verschwinden.
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