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Summary

In this thesis we study algebraic cycles on Shimura varieties of orthogonal type. Such
varieties are a higher dimensional generalization of modular curves and their important
feature is that they have natural families of algebraic cycles in all codimesions. We mostly
concentrate on low-dimensional examples: Heegner points on modular curves, Hirzebruch-
Zagier cycles on Hilbert surfaces, Humbert surfaces on Siegel modular threefolds.

In Chapter 2 we compute the restriction of Siegel Eisenstein series of degree 2 and more
generally of Saito-Kurokawa lifts of elliptic modular forms to Humbert varieties. Using
these restriction formulas we obtain certain identities for special values of symmetric
square L-functions.

In Chapter 3 a more general formula for the restriction of Gritsenko lifts to Humbert
varieties is obtained. Using this formula we complete an argument which was given in
a conjectural form in [76] (assertion on p. 246) giving a much more elementary proof
than the original one of [36] that the generating series of classes of Heegner points in the
Jacobian of a modular curve is a modular form.

In Chapter 4 we present computations that relate the heights of Heegner points on
modular curves and Heegner cycles on Kugo-Sato varieties to the Fourier coefficients of
Siegel Eisenstein series of degree 3. This was the problem originally suggested to me as
a thesis topic, and I was able to obtain certain results which are described here. Some of
the results of this chapter overlap some of those given in the recent book [53]. succeed
in calculating all terms completely, and also, similar results appeared in the recent book
[53].

The main result of the thesis is contained in Chapter 5. In this chapter we study CM
values of higher Green’s functions. Higher Green’s functions are real-valued functions
of two variables on the upper half-plane which are bi-invariant under the action of a
congruence subgroup, have a logarithmic singularity along the diagonal and satisfy ∆f =
k(1 − k)f , where k is a positive integer. Such functions were introduced in [35]. Also
it was conjectured in [35] and [36] that these functions have “algebraic” values at CM
points. A precise formulation of the conjecture is given in the introduction. thesis [60]. In
Chapter 5 we prove this conjecture for any pair of CM points lying in the same quadratic
imaginary field. Our proof has two main parts. First, we show that the regularized
Petersson scalar product of a binary theta series with a weight one weakly holomorphic
cusp form is the logarithm of the absolute value of an algebraic number. Second, we prove
that the special values of weight k Green’s function occurring in the conjecture can be
written as Petersson product of this type, where the form of weight one is the (k − 1)-st
Rankin-Cohen bracket of an explicit weakly holomorphic modular form of weight 2− 2k
with a binary theta series. The algebraicity of regularized Petersson products was proved
independently at about the same time and by different method by W. Duke and Y. Li
[23]; however, our result is stronger since we also give a formula for the factorization of
the algebraic number in the number field to which it belongs.
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Introduction

This thesis is devoted to the study of algebraic cycles and modular forms on Shimura
varieties of orthogonal type. The motivating example of a Shimura variety for us will be
the modular curve X(Γ), constructed as the quotient of the upper half-plane H by the
by the action of a congruence subgroup Γ of the modular group SL2(Z). The extensive
study of such curves in nineteenth century lead to the proof of the beautiful “Kronecker’s
Jugendtraum”. Recall, that each point τ ∈ SL2(Z)\H corresponds to the elliptic curve
C/Z + Zτ . The endomorphism ring of an elliptic curve is usually Z, but if not, it is
an order in an imaginary quadratic number field, and the elliptic curve is then said to
have complex multiplication. The points of the upper half-plane that lie in an imaginary
quadratic field K correspond to elliptic curves with complex multiplication by some order
in K, and they are called the CM points. The first important result in this subject goes
back to Kronecker and Weber, and it states that the Hilbert class field (maximal abelian
unramified extension) of an imaginary quadratic field K is generated by the special value
j(τ) of the j-function at any element τ of K lying in the complex upper half-plane and
having the fundamental discriminant. Recall that j(τ) is the unique holomorphic function
on the complex upper half-plane invariant under the action of SL2(Z), having a simple

pole with residue 1 at infinity and the unique zero at 1+
√
−3

2
.

Another important application of the CM-points on modular curves was found by
Heegner in his work [38] on the class number problem for imaginary quadratic fields. The
significance of these points in the arithmetic of the Jacobians of modular curves was first
recognized by Birch. In [8] Birch used these CM-points to construct rational points of
infinite order in the Jacobians. In the landmark work [35] Gross and Zagier have found
the criterion for a Heegner point on modular elliptic curve to be of infinite order. The
criterion is given in terms of L-functions. Combined with the result of Kolyvagin [49] this
proves the equality between the rank of an elliptic curve and the order of vanishing of its
Hasse-Weil L-function predicted by the Birch and Swinnerton-Dyer conjecture provided
the order of vanishing of L-function is less than or equal to 1.

Hilbert emphasized the importance of extending the complex multiplication theory to
functions of several variables in the twelfth of his problems at the International Congress
in 1900. First steps in this direction were made by Hilbert, Blumenthal and Hecke in
their study of Hilbert modular varieties. However, the modern theory of Shimura va-
rieties originated with the development of the theory of abelian varieties with complex
multiplication by Shimura, Taniyama and Weil, and with the proof by Shimura of the
existence of canonical models for certain families of Shimura varieties. In two fundamen-

3
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tal papers [20, 21] Deligne reformulated the theory in the language of abstract reductive
groups and extended Shimura’s results on canonical models.

A Shimura variety is equipped with a large supply of algebraic cycles provided by sub-
Shimura varieties. The simplest example of such cycles would be CM-points on modular
curves. For Shimura varieties of orthogonal type a similar pattern of subvarieties arises
in all co-dimensions and can be well understood in terms of lattices in corresponding
quadratic spaces and their sublattices [51, 76]. This picture gives rise to the following
questions: relations between special values of L-functions [40, 44], modularity of gen-
erating series of CM-cycles modulo different equivalence relations [76, 81], computation
of CM-values of modular functions [13, 33, 62]. In this thesis we address some of these
questions.

The thesis is organized as follows. In Chapter 1 we collect necessary facts on the theory
of automorphic forms. We recall the definition and main properties of Shimura varieties of
orthogonal type. Also in this chapter we give a brief review of the theta correspondence.
We consider both the classical theta lift acting between spaces of holomorphic modular
forms and the regularized Borcherds lift extended to modular forms with singularities at
cusps.

In Chapter 2 we compute the restriction of Siegel Eisenstein series of level 1, degree 2,
and arbitrary weight k to Humbert surfaces. More precisely, for each prime discriminant
p > 0 we consider an embedding ρ of Hilbert modular surface corresponding to p into a
Siegel modular threefold. Denote by N the Naganuma lifting from the space of modular
forms of Hecke’s Nebentypus (

p
) to the space of Hilbert modular forms for SL2(o), where

o is the ring of integers in the real quadratic field Q(
√
p). Then we prove

Theorem 2.1 The pullback of the Siegel Eisenstein series via the map ̺ defined in (1.6)
equals

ESieg
k (̺(τ1, τ2)) =

dimMk(Γ0(p),χ)∑

i=1

λiN (fi)(τ1, τ2),

where fi(τ) =
∑

m ai(m)e
2πimτ are the normalized Hecke eigenforms in Mk(Γ0(p), (p))

and

λi =
28−4kk!(2k − 3)!

BkB2k−2
·
(
1 +

a(p)2

p2k−2

)
·L(Sym

2fi, 2k − 2)

‖fi‖2π3k−3 .

We illustrate this formula numerically for p = 5 and k = 4, 6, 12.

In Chapter 3 we generalize this theorem and obtain a formula for the restriction of
Gritsenko lifts of arbitrary modular forms of half integral weight to Humbert varieties.
Consider an integer N satisfying (N/p) = 1. Let a be a fractional ideal contained in
d−1, the inverse of the different of K, and suppose that d−1/a ∼= Z/NZ. In Section 1.2
we describe an embedding of Hilbert surface SL(o ⊕ a)\H × H into the Siegel modular
threefold ΓN\H(2), where ΓN denotes the level N paramodular group. Denote by Na the
Naganuma lifting from the space of modular forms Sk(Γ0(p), (p)) to the space of Hilbert

modular forms Sk(SL(o⊕ a)).

Theorem 3.1 Let h be a half-integral modular form in M+
k−1/2(N) and F ∈ Mk(ΓN) be
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the Gritsenko lift of h. Then the pullback of F via the map ρ defined in (1.6) equals

F (ρ(τ1, τ2)) =
1

2
Nag(τ1, τ2),

where g(τ) = θ(τ)h(pτ)|U4N .

We give the following application of this formula. In the paper [76] Zagier suggests
a method how to deduce the modularity of the generating series of Heegner points on
modular curve modulo rational equivalence from the modularity of the generating series
of homology classes of modular curves on Hilbert surfaces, which was proved in [41]. How-
ever, an important assertion on p. 246 in [76] was left without a proof, and the method
was applied only to Heegner points on the modular curve X0(37). Using Theorem 3.1 we
prove this assertion under additional assumptions about the convergence of power series.

Theorem 3.2. Let h be a holomorphic periodic function on H having the Fourier expan-
sion of the form

h(τ) =
∑

D>0
−D≡ square mod 4N

b(D) qD (q = e2πiτ )

with N prime, and suppose that the power series

gp(τ) := h(pτ) θ(τ) | U4N =
∑

M>0

( ∑

x2<4NM
x2≡4NM(mod p)

b
(4NM − x2

p

))
qM

is a modular form of weight k, level p and Nebentypus (p· ) for every prime p ≡ 1 (mod 4)
with (N

p
) = 1. Then h belongs to M+

k−1/2(N).

Thus, we can apply the method proposed in [76] to all modular curves X0(p) with
prime conductor. In [81] X. Yuan, S.-W. Zhang and W. Zhang extended the idea of [76]
to higher dimensional cycles and obtained conditional modularity results for Chow groups
of Shimura varieties of orthogonal type.

The main result of the thesis is contained in Chapter 5. In this chapter we employ the
theory of Borcherds lift and the idea of a see-saw identity to study CM values of higher
Green’s functions. For any integer k > 1 and subgroup Γ ⊂ PSL2(Z) of finite index there

is a unique function G
Γ\H
k on the product of two upper half planes H × H that satisfies

the following conditions:

(i) G
Γ\H
k is a smooth function on H× H \ {(τ, γτ), τ ∈ H, γ ∈ Γ} with values in R.

(ii) G
Γ\H
k (τ1, τ2) = G

Γ\H
k (γ1τ1, γ2τ2) for all γ1, γ2 ∈ Γ.

(iii) ∆iG
Γ\H
k = k(1− k)G

Γ\H
k , where ∆i is the hyperbolic Laplacian with respect to the

i-th variable, i = 1, 2.
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(iv) G
Γ\H
k (τ1, τ2) = m log |τ1 − τ2| + O(1) when τ1 tends to τ2 (m is the order of the

stabilizer of τ2, which is almost always 1).

(v) G
Γ\H
k (τ1, τ2) tends to 0 when τ1 tends to a cusp.

This function is called the higher Green’s function. Such functions were introduced in
[35]. The existence of the Green’s function is shown in [35] by an explicit construction and
the uniqueness follows from the maximum principle for subharmonic functions. In the case
k = 1 also there exists the unique function G

Γ\H
1 (τ1, τ2) satisfying (i)-(iv) and the condition

(v) should be slightly modified. We know from [35] that the values G
Γ\H
1 (τ1, τ2) are

essentially the local height pairings at archimedean places between the divisors (τ1)− (∞)
and (τ2)− (∞) on Γ\H.

Consider the function

G
Γ\H
k,λ :=

∞∑

m=1

λmm
k−1G

Γ\H
k (τ1, τ2)|Tm

where Tm is a Hecke operator and λ = {λm}∞m=1 ∈ ⊕∞m=1Z satisfies
∑∞

m=1 λmam = 0 for
any cusp form f =

∑∞
m=1 amq

m ∈ S2k(Γ). We call such λ a relation for S2k(Γ).

If k = 1, then, since the action of the Hecke operators on the Jacobian of Γ\H is
the same as that on S2(Γ), the fact that λ is a relation for S2(Γ) means that the divisor∑∞

m=1 λmTm((x) − (∞)) is principal. Suppose that for τ1, τ2 ∈ Γ\H the divisors (τ1) −
∞, (τ2)−∞ ore defined over Q. Then the axioms for the local height pairings imply that

the number G
Γ\H
1,λ (τ1, τ2) is the logarithm of the absolute value of an algebraic number.

for G
SL2(Z)\H
k .

It was suggested in [35] that for k > 1 there also should be an interpretation of

G
Γ\H
k (τ1, τ2) as some sort of a height. Such interpretation was given by Zhang in [80],

though a complete height theory in this case is still missing. The following conjecture was
formulated in [35] and [36].

Conjecture 1. Suppose λ is a relation for S2k(SL2(Z)). Then for any two CM points z1,
z2 of discriminants D1, D2 there is an algebraic number α such that

Gk,λ(z1, z2) = (D1D2)
1−k
2 log |α|.

Moreover, D. Zagier has made a more precise conjecture about the field of definition
and prime factorization of this number α. This conjecture is stated as Conjecture 2 in
Section 5.1.

In many cases (e.g k = 2, D1 = −4 and D2 arbitrary) Conjecture 1 was proven by A.
Mellit in his Ph.D. thesis [60]. In Chapter 5 we prove this conjecture for any pair of CM
points lying in the same imaginary quadratic field.
Theorem 5.7 Let z1, z2 ∈ H be two CM points in the same quadratic imaginary field
Q(
√
−D) and let λ be a relation on S2k(SL2(Z)) for integer k > 1. Then there is an

algebraic number α such that

Gk,λ(z1, z2) = D1−k log |α|.
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Along the way of the proof of Theorem 5.7 we have discovered the following result
which is of independent interest. After the results of this paper where first announced,
the author learned that a similar result was found independently in a slightly different
context by W. Duke and Y. Li [23].

Theorem 5.6 We let N be an even lattice of signature (2, 0) and let f be a weakly
holomorphic weight one vector valued modular form transforming with representation ρN
(this representation is defined in Section 1.4) that has zero constant term and rational
Fourier coefficients. Then the regularized Petersson inner product between f and the
(vector valued) binary theta series ΘN satisfies

(f,ΘN)reg = log |α|

for some α ∈ Q̄.
Moreover, in Theorem 5.8 we find the field of definition and a simple formula for the

prime factorization of the number α in the above theorem. This result allows us to prove
Conjecture 2.

Our proof of Theorem 5.7 is based on the theory of Borcherds lifts developed in [10]
and the notion of see-saw identities introduced in [50]. From [12] we know that the Green’s
functions can be realized as Borcherds lifts. In Theorem 5.3 we show that higher Green’s
functions are equal to the Borcherds lift of an eigenfunction of the Laplace operator.
This allows us to extend a method given in [62], that is to analyze CM values of Green’s
function using see-saw identities. Applying see-saw identities in Theorems 5.4 and 5.5 we
prove that a CM-value of higher Green’s function is equal to the logarithm of a CM-value
of a certain meromorphic modular function with algebraic Fourier coefficients. Thus, it
follows from the theory of complex multiplication that Gk,λ(z1, z2) is the logarithm of the
absolute value of an algebraic number. Finally, we use the theory of local height pairing
[34] and the explicit computations of the height pairing between Heegner points made in
[35, 36] in order to compute these CM-values and hence prove Conjecture 2.

We finish this section by giving an example for Conjectures 1 and 2.
Example. The space S2k(SL2(Z)) is zero for k = 1, 2, 3, 4, 5 and 7. Hence, λ =
(1, 0, 0, . . .) is a relation for these spaces. Thus, Conjecture 1 predicts that for k = 1, . . . , 5

Gk

(1 +
√
−23

4
,
−1 +

√
−23

4

)
= 231−k log |αk|,

where αk is an algebraic number.
Consider the following numbers in the Hilbert class field H of Q(

√
−23). Let ̺ be the

real root of the polynomial X3 −X − 1. Define

π5 = 2− ̺, π7 = ̺+ 2, π11 = 2̺− 1, π17 = 3̺+ 2, π19 = 3̺+ 1, (0.1)

π23 = 2̺+ 3, ̟23 = 3− ̺ , π25 = 2̺2 − ̺+ 1, π49 = ̺2 − 2̺+ 3,

where each πq has norm q.
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One can check numerically that

̟−2323 α2 =π
18
5 π−4225 π 36

7 π−4849 π 4
11 π

−22
17 π−3019 ̺ 207, (0.2)

̟ 232

23 α3 =π
−294
5 π 546

25 π 572
7 π−10049 π 1052

11 π 166
17 π−14619 ̺ 187,

̟−23
3

23 α4 =π
16878
5 π−718225 π 21276

7 π−316849 π 3164
11 π−1080217 π−693019 ̺ 120183,

̟ 234

23 α5 =π
627354
5 π−544625 π 108156

7 π−3408449 π−41184411 π 142078
17 π 239838

19 ̺ 373939.

We will prove these identities in Section 5.13 and demonstrate how all the steps of the
proof of Theorem 5.7 work.



List of notations

AK ring of adeles of a global field K;
Q field of rational numbers;
R field of real numbers;
Z ring of integers;
C field of complex numbers;
ℜ(z) real part of z;
ℑ(z) imaginary part of z;
e(x) := e2πix;
V, ( , ) quadratic vector space;
q(l) = 1

2
(l, l) norm of a vector l ∈ V ;

O(V ) orthogonal group;
L ⊂ V a lattice;
L′ = {v ∈ L⊗Q|(v, L) ⊆ Z} dual lattice;
We say that the lattice L ⊂ V is even if q(l) ∈ Z for all l ∈ L;
Aut(L′, L) denotes the subgroup of SO(V ) that fixes each element of L′/L;
H = {z ∈ C|ℑz > 0} upper half-plane;
H(n) = {Z ∈ Matn×n(C)|Z = tZ, ℑ(Z) > 0} Siegel upper half space of degree n;
W, 〈 , 〉 symplectic vector space;
Sp(W ) symplectic group;
SL2(Z) the full modular group;
Mp2(Z) the metaplectic cover of SL2(Z), defined in Section 1.4;
ρL the Weil representation of Mp2(Z) associated to the lattice L, see in Section 1.4;
Mk(ρ) the space of real analytic,
Mk(ρ) the space of holomorphic,

M̂k(ρ) the space of almost holomorphic,
M !

k(ρ) the space of weakly holomorphic vector valued modular forms of weight k and
representation ρ;
Gr+(V ) set of b+-dimensional positive define subspaces of the space V ⊗ R of signature
(b+, b−);
ΘL(τ, v

+) Siegel theta function, defined in Section 1.8;
ΦL(f, v

+) regularized theta lift, defined in Section 1.8;
tZ the transpose of the matrix Z.
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Chapter 1

Background on modular varieties

and modular forms

1.1 Introduction

In this chapter we give necessary background on the theory of automorphic forms.

In Section 1.2 we recall the definition and main properties of Shimura varieties of
orthogonal type. An essential feature of such varieties is that they have natural families
of algebraic cycles in all codimensions. Another important fact about these varieties is
that in small dimensions they coincide with classical modular varieties like modular curves
and Hilbert modular surfaces. Finally, the construction of automorphic forms on Shimura
varieties by means of theta correspondence gives a lot of information about the geometric
properties of these varieties [11], [31].

The theta correspondence provides a method to transfer automorphic forms between
different reductive groups. Central to the theory is the notion of a dual reductive pair.
This is a pair of reductive subgroups G and G′ contained in an isometry group Sp(W ) of
a symplectic vector space W that happen to be the centralizers of each other in Sp(W ).
This correspondence was introduced by Roger Howe in [42]. In Section 1.6 we recall
the explicit construction of theta correspondence for the reductive pair consisting of the
double cover Mp2 of SL2 and the orthogonal group O(V ) of a rational quadratic space V
of signature (2, n).

The main examples of the theta correspondence for us will be the Shimura, Doi-
Naganuma and Gritsenko lifts, considered in Section 1.6, and the Borcherds lift, considered
in Section 1.8.

Finally, in Section 1.10 we recall the notion of a “see-saw dual reductive pair” intro-
duced by S. Kudla in the paper [50].

11
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1.2 Quotients of Grassmanians and Shimura varieties

of orthogonal type

A Shimura variety is a higher-dimensional analogue of a modular curve. It arises as a quo-
tient of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic
group defined over Q. Modular curves, Hilbert modular surfaces, and Siegel modular vari-
eties are among the best known classes of Shimura varieties. Special instances of Shimura
varieties were originally introduced by Goro Shimura as a part of his generalization of the
complex multiplication theory. Shimura showed that while initially defined analytically,
they are arithmetic objects, in the sense that they admit models defined over a number
field. In two fundamental papers [20, 21], Pierre Deligne created an axiomatic framework
for the work of Shimura. Langlands made Shimura varieties a central part of his pro-
gram, as a source of representations of Galois groups and as tests for the conjecture that
all motivic L-functions are automorphic.

We will start with a definition of Shimura varieties. Let S be C× regarded as a torus
over R. A Shimura datum is a pair (G,X) consisting of a reductive algebraic group G
defined over the field Q and a G(R)-conjugacy class X of homomorphisms h : S → GR

satisfying, for every h ∈ X:

(SV1) Ad ◦ h : S→ GL(Lie(GR)) defines a Hodge structure on Lie(GR)
of type {(−1, 1), (0, 0), (1,−1)};

(SV2) ad h(i) is a Cartan involution on Gad;

(SV3) Gad has no Q-factor on which the projection of h is trivial.

These axioms ensure that X = G(R)/K∞, where K∞ is the stabilizer of some h ∈ X, is
a finite disjoint union of hermitian symmetric domains.

Let A be the ring of adeles of Q and Af be a ring of finite adeles. For a compact open
subgroup K ⊂ G(Af ) the double coset space

ShK(G,X) = G(Q)\(X ×G(Af )/K)

is a finite disjoint union of locally symmetric varieties of the form Γ\X+, where the plus
superscript indicates a connected component. The varieties ShK(G,X) are complex quasi-
projective varieties, which are defined over Q, and they form an inverse system over all
sufficiently small compact open subgroups K. The inverse system (ShK(G,X))K admits
a natural right action of G(Af ). It is called the Shimura variety associated with the
Shimura datum (G,X) and is denoted Sh(G,X).

We will give more elementary and explicit description of Shimura varieties in the case
when G is the orthogonal group of signature (2, b−).

Let (V, ( , )) be a quadratic space over Q of signature (2, b−). Denote by Gr+(V ) the
set of positive definite 2-dimensional subspaces v+ of V ⊗ R.

In the case of signature (2, b−) the Grassmanian Gr+(V ) carries a structure of a Her-
mitian symmetric space. If X and Y are an oriented orthogonal base of some element
v+ in Gr+(V ) then we map v+ to the point of the complex projective space P(V ⊗ C)
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represented by Z = X + iY ∈ V ⊗ C. The fact that Z = X + iY has norm 0 is equiv-
alent to saying that X and Y are orthogonal and have the same norm. This identifies
Gr+(V ) with an open subset of the norm 0 vectors of P(V ⊗ C) in a canonical way, and
gives Gr+(V ) a complex structure invariant under the subgroup O+(V ⊗ R) of index 2
of O(V ⊗R) of elements preserving the orientation on the 2 dimensional positive definite
subspaces. More explicitly, the open subset

P = {[Z] ∈ P(V ⊗ C) | (Z,Z) = 0 and (Z,Z) > 0}

is isomorphic to Gr+(V ) by mapping [Z] to the subspace Rℜ(Z) + Rℑ(Z).
Consider an even lattice L ⊂ V . Denote by Aut(L) the group of those isometries of

L⊗ R that fix each element of L′/L. We will study the quotient

XL := Gr+(V )/Aut(L).

An important feature of such varieties is that they come with natural families of
algebraic cycles in all codimensions, see [51]. These special cycles arise from embeddings
of rational quadratic subspaces U ⊂ V of signature (2, c−) with 0 ≤ c− ≤ b−, since in this
case there is a natural embedding of Grassmanians Gr+(U) →֒ Gr+(V ).

There is a principal C∗ bundle L over the hermitian symmetric space P , consisting of
the norm 0 points Z = X + iY ∈ V ⊗ C. We define an automorphic form of weight k on
Gr+(V ) to be a function Ψ on L which is homogeneous of degree −k and invariant under
some subgroup Γ of finite index of Aut(L). More generally, if χ is a one dimensional
representation of Γ then we say Ψ is an automorphic form of character χ if Ψ(σ(Z)) =
χ(σ)Ψ(Z) for σ ∈ Γ.

The following technical construction will give us a convenient “coordinate system” on
the space XL. We choose m ∈ L, m′ ∈ L′ such that m2 = 0, (m,m′) = 1 and denote
V0 := V ∩m⊥ ∩m′⊥. The tube domain

H = {z ∈ V0 ⊗R C|(ℑ(z),ℑ(z)) > 0} (1.1)

is isomorphic to P by mapping z ∈ H to the class in P(L⊗ C) of

Z(z) := z +m′ − 1

2
((z, z) + (m′,m′))m.

The choice of a vector m is equivalent to choice of a cusp on XL = Gr+(V )/Aut(L).
Now we consider several low-dimensional examples.

Modular curves

We fix N to be any positive integer (called the level). We let L be the 3-dimensional even
lattice of all symmetric matrices

l =

(
C/N −B/2
−B/2 A

)
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with A,B,C integers, with the norm q(l) = 1
2
(l, l) equal to −N det(l). The dual lattice

is the set of matrices

l′ =


 C ′/N −B′/2N
−B′/2N A′




with A′, B′, C ′ integers, and L′/L can be identified with Z/2NZ by mapping a matrix of
L′ to the value of B′ mod Z/2NZ. The group

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)| c ≡ 0 mod N

}

acts on the lattice L by l → γlγt for γ ∈ Γ0(N), and under this action it fixes all elements
of L′/L. We identify the upper half-plane with points in the Grassmanian Gr+(L ⊗ R)
by mapping τ ∈ H to the 2-dimensional positive definite space spanned by the real and
imaginary parts of the norm 0 vector

(
τ 2 τ
τ 1

)
.

For each d ∈ Z>0 and λ ∈ L′/L = Z/2NZ the Heegner divisor Pd,λ, is the union of the
points orthogonal to norm −d

4N
vectors of L + λ. In terms of points on H this Heegner

divisor consists of all points τ ∈ H such that

Aτ 2 +Bτ + C = 0

for some integers A,B,C (not necessarily coprime) with

N |A, B ≡ λ mod 2N, B2 − 4AC = −d.

Hilbert modular surfaces

Fix a squarefree positive integer ∆, and consider the real quadratic field K = Q(
√
∆).

Let o be the ring of integers of K. We will write x′ for the conjugate of an element x ∈ K,
n(x) := xx′ for the norm, and tr(x) = x + x′ for the trace. Also we denote by d the
different of K (i. e. the principal ideal (

√
∆)).

The group SL2(K) acts on H× H by

(
a b
c d

)
(τ1, τ2) =

(
aτ1 + b

cτ1 + d
,
a′τ2 + b′

c′τ2 + d′

)
(1.2)

For the fractional ideal a of K we set

SL(o⊕ a) =

{(
a b
c d

) ∣∣ a, d ∈ o, b ∈ a−1, c ∈ a

}
.

The quotient space
SL(o⊕ a)\H× H
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is called a Hilbert modular surface.
We let L be the even lattice of matrices of the form

l =

(
C −B
−B′ A

)

with A,C ∈ Z, B ∈ o, with the norm given by −2 det(l). The group SL2(K) acts on the
vector space L ⊗ Q of hermitian matrices by l → γlγ′t for γ ∈ SL2(K) and l ∈ L ⊗ Q.
The group SL2(o) maps L to itself under this action.

We identify the product of two copies of the upper half-plane with the positive Grass-
mannian of L⊗R by mapping (τ1, τ2) ∈ H2 to the space spanned by the real and imaginary
parts of the norm 0 vector (

τ1τ2 τ1
τ2 1

)
.

This induces the usual action of SL2(K) on H2 given by (1.2).
If l is a negative norm vector in L′ then we define the curve Tl to be the orthogonal

complement of l in the Grassmannian of L. If l is the matrix

(
C −B
−B′ A

)

then Tl is the set of points (τ1, τ2) ∈ H2 such that

Aτ1τ2 +B′τ1 +Bτ2 + C = 0.

The following union of such curves

TN :=
⋃

l∈L′
q(l)=−N

Tl

is a Hirzebruch-Zagier divisor considered in [41].

Siegel modular threefolds

If we take L to be a lattice of signature (2, 3) then the positive Grassmanian of L is
isomorphic to the Siegel upper half space of genus 2. The divisors on this Siegel upper
half space associated to vectors of L (or rather their images in the quotient) are the so-
called Humbert surfaces. Recall that the Siegel upper half space of genus 2 is defined
as

H(2) = {Z ∈ Mat2×2(C) |Z = tZ, ℑ(Z) > 0}.
Here we write tZ for the transpose of the matrix Z. Let us denote by AN the moduli
space of abelian surfaces with polarization of the type (1, N)

AN
∼= ΓN \ H(2),
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where

ΓN :=








∗ N∗ ∗ ∗
∗ ∗ ∗ N−1∗
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗


 ∈ Sp(4,Q), all ∗ ∈ Z





(1.3)

is a paramodular group. These varieties are referred to as Siegel modular varieties.
The Hilbert modular surfaces are the moduli spaces of complex abelian surfaces whose

endomorphism ring contains an order from a real quadratic field. In [28] van der Geer
describes natural maps of Hilbert modular surfaces to Siegel modular threefolds. The
images of these maps are called the Humbert surfaces.

Let a be a fractional ideal of a real quadratic field K = Q(
√
∆) and suppose that a is

contained in d−1. It is explained in [28] that SL(o⊕a)\H×H is the moduli space of triples
(A, j, r), A a polarized n-dimensional complex abelian variety, j : o → End(A) and r on
o-module isomorphism carrying a Riemann form to the standard form. This Riemann
form is equivalent to 



0 0 d1 0

0 0 0 d2
−d1 0 0 0

0 −d2 0 0


 ,

where d1|d2 are the elementary divisors of the abelian group d−1/a.
For simplicity we assume that d1 = 1 and d2 = N .
Since we can view the varieties SL(o⊕a)\H×H as moduli spaces of polarized complex

abelian varieties with some additional structure there exist “forgetful” maps

SL(o⊕ a)\H× H→ ΓN\H(2) (1.4)

(with d−1/a ∼= Z/ZN) which are called modular embeddings. These maps are described
explicitly on p. 209 in [28].

Choose R ∈ GL(2,R) such that
(
R 0
0 tR−1

)
o⊕ a = Z× Z× Z× ZN, (1.5)

where we view o⊕ a as embedded in R4 using K → R2. Then the following two maps

ρ : H× H→ H(2)

(τ1, τ2)
ρ

// R

(
τ1 0

0 τ2

)
tR, (1.6)

and
φ : SL(o⊕ a)→ ΓN

(
αβ
γ δ

)
→
(
R 0
0 tR−1

)(
α̃ β̃

γ̃ δ̃

)(
R−1 0
0 tR

)
,
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where x̃ =
(
x 0
0 x′
)
, describe the modular embedding (1.4) explicitly.

It follows from (1.5) that the matrix R has the form

R =

(
ρ1 ρ

′
1

ρ2 ρ
′
2

)
,

where ρ1 ∈ a, ρ2 ∈ d−1 and detR = ±1/
√
∆.

The image of ρ(H × H) in the quotient ΓN\H(2) does not depend on the choice of R.
Moreover the pullback of a Siegel modular form F of weight k on H(2) via the map ρ
will be a Hilbert modular form of weight k for the group SL(o ⊕ a). A consequence of
transformation properties of F is that F ◦ ρ does not depend on particular choice of R.

To a non-zero vector x = (A,B,C,D,E) ∈ Z5 we associate the subset Hx in a Siegel
upper half space

Hx :=

{(
τ1 z
z τ2

)
∈ H(2) | Aτ1 +Bz + Cτ2 +D(z2 − τ1τ2) + E = 0

}
. (1.7)

Denote by VN,∆ the set of all (A,B,C,D,E) ∈ Z(5) with

C,D ≡ 0 (mod N) and B2 − 4AC − 4DE = ∆. (1.8)

The image ρ(H× H) belongs to the surface given by (1.7) with

A = ∆n(ρ2), B = ∆tr(ρ1ρ
′
2), C = ∆n(ρ1), D = E = 0.

It follows from (1.5) that the relation (1.8) is true for these coefficients.
Denote by H∆ the image under H(2) → ΓN\H(2) of all Hx with x ∈ VN,∆ and x

primitive. The surface H∆ is called a Humbert surface of invariant ∆ in ΓN\H(2). The
following theorem gives us information about irreducible components of H∆.
Theorem. ([28] Theorem (2.1)) Every irreducible component of H∆ in ΓN\H(2) can be
represented in H(2) by an equation τ1 + bz + cNτ2 with b2 − 4Nc = ∆, 0 ≤ b < 2N . The
number of irreducible components of H∆ is ♯{ b (mod 2N) | b2 ≡ ∆(mod 4N) }.

If ∆ is a fundamental discriminant each irreducible component of H∆ corresponds to
a strict ideal class [b] of o containing an ideal b ⊂ d−1 with d−1/b ∼= Z/NZ.

1.3 Weil representation

The metaplectic group Mp(W ) is a double cover of the symplectic group Sp(W ). It can
be defined over either real or p-adic numbers. More generally, the metaplectic group can
be constructed over an arbitrary local or finite field, and even the ring of adeles. The
metaplectic group has a particularly significant infinite-dimensional linear representation,
theWeil representation [73]. It was used by André Weil to give a representation-theoretic
interpretation of theta functions, and is important in the theory of modular forms of
half-integral weight and the theta correspondence.

The Weil representation [73] can be defined for any abelian locally compact group G.
We will restrict here to the case of a finite free module W over R equal to a Qp, R or
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A respectively. Let V be an R-vector space. Then W = V ⊕ V ∗ becomes a symplectic
vector space in a canonical way by

〈(v1, v∗1), (v2, v∗2)〉 = v∗1(v2)− v∗2(v1).

Associated with W there is a Heisenberg group

H := R× V × V ∗,

defined by the group law

(r1, v1, v
∗
1)(r2, v2, v

∗
2) = (r1 + r2 + v∗1(v2), v1 + v2, v

∗
1 + v∗2).

Choose any non-trivial additive character χ on R. We get an action of H on L2(V
∗) by

(gφ)(v∗) = χ(r1 + v∗(v1))φ(v
∗ + v∗1)

for g = (r1, v1, v
∗
1) and φ ∈ L2(V

∗). This is the unique irreducible representation of H,
where R acts through χ. The unicity yields a projective representation of the automor-
phism group of H. This group is the symplectic group Sp(W ). It acts by

(
a b
c d

)
(r, v, v∗) =

(1
2
〈cv + dv∗, av + bv∗〉 − 1

2
〈v∗, v〉+ r, av + bv∗, cv + dv∗

)
.

This projective representation can be considered as an honest representation of an exten-
sion

0→ C∗ → Mp(W )→ Sp(W )→ 0.

It is called the Weil representation.
The Weil representation can be described explicitly. Consider the following elements

of Sp(W )

ga =

(
a 0
0 ta−1

)
(1.9)

ub =

(
1 b
0 1

)

jc =

(
0 −tc−1

c 0

)

where a ∈ Aut(V ), b ∈ Hom(V ∗, V ) is the bilinear form on V ∗ and c ∈ Iso(V, V ∗). The
elements defined in (1.9) have lifts to Mp(W ) given by the following action on the space
S(V ∗R) of Schwartz-Bruhat functions on V ∗R

ω(ga)(ϕ)(x
∗) = | det(ta)|1/2ϕ(ax∗) (1.10)

ω(ub)(ϕ)(x
∗) = χ((x∗, b(x∗)))ϕ(x∗)

ω(jc)(ϕ)(x
∗) = | det(c)|−1/2

∫

V

ϕ( tcx)χ((x∗, x))dx.

Here dx is any measure on V and |c| is the comparison factor between the image under
c of the chosen measure on V and the dual of the chosen measure. Note that the last
formula does not depend on this choice.
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1.4 Vector-valued modular forms

Recall that the group SL2(Z) has a double cover Mp2(Z) called the metaplectic group
whose elements can be written in the form

((
a b
c d

)
,±
√
cτ + d

)

where

(
a b
c d

)
∈ SL2(Z) and

√
cτ + d is considered as a holomorphic function of τ in

the upper half-plane whose square is cτ + d. The multiplication is defined so that the
usual formulas for the transformation of modular forms of half integral weight work, which
means that

(A, f(τ))(B, g(τ)) = (AB, f(B(τ))g(τ))

for A,B ∈ SL2(Z) and f, g suitable functions on H.
Suppose that V is a vector space over Q and ( , ) is a bilinear form on V × V with

signature (b+, b−). For an element x ∈ V we will write x2 := (x, x) and q(x) = 1
2
(x, x).

Let L ⊂ V be a lattice. The dual lattice of L is defined as L′ = {x ∈ V |(x, L) ⊂ Z}. We
say that L is even if q(l) ∈ Z for all l ∈ L. In this case L is contained in L′ and L′/L is a
finite abelian group.

We let the elements eν for ν ∈ L′/L be the standard basis of the group ring C[L′/L],
so that eµeν = eµ+ν . The complex conjugation acts on C[L′/L] by eµ = eµ. Consider the
scalar product on C[L′/L] given by

〈eµ, eν〉 = δµ,ν (1.11)

and extended to C[L′/L] by linearity. Recall that there is a unitary representation ρL of
the double cover Mp2(Z) of SL2(Z) on C[L′/L] defined by

ρL(T̃ )(eν) = e
(
q(ν)

)
eν , (1.12)

ρL(S̃)(eν) = i(b
−/2−b+/2) |L′/L|−1/2

∑

µ∈L′/L
e
(
−(µ, ν)

)
eµ, (1.13)

where

T̃ =

((
1 1
0 1

)
, 1

)
and S̃ =

((
0 −1
1 0

)
,
√
τ

)
(1.14)

are the standard generators of Mp2(Z).
For an integer n ∈ Z we denote by L(n) the lattice L equipped with a quadratic form

q(n)(l) := nq(l). In the case n = −1 the lattices L′(−1) and (L(−1))′ coincide and hence
the groups L′/L and L(−1)′/L(−1) are equal. Both representations ρL and ρL(−1) act on
C[L′/L] and for γ ∈ Mp2(Z) we have ρL(−1)(γ) = ρL(γ).

A vector valued modular form of half-integral weight k and representation ρL is a
function f : H→ C[L′/L] that satisfies the following transformation law

f

(
aτ + b

cτ + d

)
=
√
cτ + d

2k
ρL

((
a b
c d

)
,
√
cτ + d

)
f(τ)
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for each

((
a b
c d

)
,±
√
cτ + d

)
∈ Mp2(Z).

We will use the notation Mk(ρL) for the space of real analytic, Mk(ρL) for the space

of holomorphic, M̂k(ρL) for the space of almost holomorphic, and M
!
k(ρL) for the space

of weakly holomorphic modular forms of weight k and representation ρL.
Now we recall some standard maps between the spaces of vector valued modular forms

of associated to different lattices [15].
IfM ⊂ L is a sublattice of finite index then a vector valued modular form f ∈Mk(ρL)

can be naturally viewed as a vector valued modular form in f ∈ Mk(ρM). Indeed, we
have the inclusions

M ⊂ L ⊂ L′ ⊂M ′

and therefore
L/M ⊂ L′/M ⊂M ′/M.

We have the natural map L′/M → L′/L, µ→ µ̄.

Lemma 1.1. For M = M,M, M̂ or M ! there are two natural maps

resL/M :Mk(ρL)→Mk(ρM),

and
trL/M :Mk(ρM)→Mk(ρL),

given by

(
resL/M(f)

)
µ
=





fµ̄, if µ ∈ L′/M
0 if µ /∈ L′/M

,
(
f ∈Mk(ρL), µ ∈M ′/M

)
(1.15)

and (
trL/M(g)

)
λ
=

∑

µ∈L′/M : µ̄=λ

gµ,
(
g ∈Mk(ρM), λ ∈ L′/L

)
. (1.16)

Now suppose that M and N are two even lattices and L =M ⊕N . Then we have

L′/L ∼= (M ′/M)⊕ (N ′/N).

Moreover
C[L′/L] ∼= C[M ′/M ]⊗ C[N ′/N ]

as unitary vector spaces and naturally

ρL = ρM ⊗ ρN .

Lemma 1.2. For two modular forms f ∈Mk(ρL) and g ∈Ml(ρM(−1)) the function

h := 〈f, g〉C[M ′/M ] =
∑

ν∈N ′/N
eν

∑

µ∈M ′/M

fµ⊕ν gµ

belongs to Mk+l(ρN).
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1.5 Jacobi forms and Kohnen’s plus space

In this section we explain a relation between vector valued modular forms and more
classical objects: Jacobi forms and scalar valued modular forms for congruence subgroups
of SL2(Z).

A Jacobi form of weight k and index N is a holomorphic function φ : H × C → C
satisfying the transformation law

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k e

(
Ncz2

cτ + d

)
φ(τ, z) (1.17)

for

(
a b
c d

)
∈ SL2(Z) and

φ(τ, z + τm+ n) = e
(
−Nm2τ − 2mz

)
φ(τ, z) (1.18)

for m,n ∈ Z. Such function φ has a Fourier expansion of the form

φ(τ, z) =
∑

n,r∈Z
r2≤4Nn

c(n, r) e(nτ + rz),

where c(n, r) depends only on r2 − 4Nn and on the residue class of r(mod 2N). The
systematic theory of such functions is developed in [25]: in this monograph Jacobi cusp
forms, Eisenstein series, the Petersson scalar product, Hecke operators, and new forms
are defined.

It is shown in Theorem 5.1 of [25] that the space Jk,N of Jacobi forms of weight k
and level N is isomorphic to the space of vector valued modular forms Mk−1/2(ρZ(−N)),
where Z(−N) is the lattice Z equipped with the quadratic form q(l) := −Nl2, l ∈ Z. The
connection between the spaces of vector valued modular forms related to other lattices
and and Jacobi forms is explained in [17], [69].

In this section we show that the space of vector valued modular forms is isomorphic to
a space of certain real-analytic functions similar to Jacobi forms. Let L be an even lattice
of signature (b+, b−). Let v+ be a positive b+-dimensional subspace of L ⊗ R. Denote
by v− the orthogonal complement of v+. For a vector l ∈ L denote by lv+ and lv− its
projections on v+ and v−.

For λ ∈ L′/L we define

θJL+λ(τ, z; v
+) :=

∑

l∈λ+L
e
(
q(lv+)τ + q(lv−)τ̄ + (l, z)),

where τ ∈ H, z ∈ L⊗ C, and v+ ∈ Gr+(L). It follows from Theorem 4.1 of [10] that this
function satisfies the following transformation properties

θJL+λ

(−1
τ
,
zv+

τ
+
zv−

τ̄
; v+
)
= (1.19)
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i(b
−/2−b+/2) |L′/L|−1/2 τ b+/2 τ̄ b−/2 e

(q(zv+)
τ

+
q(z2v−)

τ̄

) ∑

µ∈L′/L
e(−(λ, µ)) θJµ+L(τ, z; v+).

For a vector valued modular form f = (fλ)λ∈L′/L ∈ Mk(SL2(Z), ρL) we consider the
function

F (τ, z; v+) :=
∑

λ∈L′/L
fλ(τ) θλ(τ, z; v+).

Equation (1.19) implies that F satisfies the following transformation properties similar to
(1.17), (1.18), namely

F
(−1
τ
,
zv+

τ
+
zv−

τ̄
, v+
)
= i(k+b

−/2−b+/2) τ k+b
+/2 τ̄ b

−/2 e
(q(zv+)

τ
+
q(zv−)

τ̄

)
F (τ, z, v+),

and

F (τ, z +mτ + n, v+) = e
(
− 2q(mv+)τ − 2q(mv−)τ − (z,m)

)
F (τ, z, v+)

for m ∈ L′ , n ∈ L. In particular, when the lattice L is negative definite the function F
is a holomorphic Jacobi form. For positive definite lattices L the function F becomes a
skew holomorphic Jacobi form. These forms were introduced by Skoruppa in [68].

Modular functions of half-integral weight are defined like forms of integral weight,
except that the automorphy factor is more complicated.

Let

θ(τ) =
∑

n∈Z
e2πin

2

(1.20)

be the standard theta function. If A =
(
a b
c d

)
belongs to Γ0(4), we have

θ(Az) = j(A, z) θ(z),

where j(A, z) is the ”θ-multiplier” of A. Recall (cf. for instance [65]) that, if c 6= 0, we
have

j(A, z) = εd

( c
d

)
(cz + d)1/2,

where

εd =

{
1 if d ≡ 1 mod 4
i if d ≡ −1 mod 4

and (cz + d)1/2 is the ”principal” determination of the square root of cz + d, i.e. the one
whose real part is > 0.

A function h on H is called a modular form of weight k/2 on Γ0(4N) if :

a) h(τ)/θk(τ) is invariant under Γ0(4N);

b) φ is holomorphic, both on H and at the cusps (see [65]).
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We denote the space of such forms by Mk/2(N). Shimura developed an extensive
theory of such forms in [64, 65]. Kohnen introduced the following subspace of Mk/2 , the
so-called “+”-space [47],

M+
k−1/2(N) =

{
h ∈Mk−1/2(N)

∣∣∣ h(τ) =
∑

−D≡ square mod 4N

b(D) e(Dτ)
}
.

For N prime the following map
∑

−D≡ square mod 4N

b(D) e(Dτ)→
∑

n,r∈Z
4Nn−r2≥0

b(4Nn− r2) e(nτ + rz), (1.21)

gives an isomorphism between M+
k−1/2(N) and Jk,N . Thus, the following spaces are iso-

morphic
M+

k−1/2(N)
∼= Jk,N ∼= Mk−1/2(ρZ(−N)).

1.6 Theta correspondence

In this section we briefly recall the theta (Howe) correspondence. For a commuting pair
of subgroups in the metaplectic group there is a correspondence between representations
of the two subgroups, obtained by decomposing Weil representation of the metaplectic
group into a sum of tensor products of representations of the two subgroups. As some
representations of groups over the adeles tend to correspond to automorphic forms, we
can get a correspondence between automorphic forms on these two groups.

Firstly, we would like to describe the logical structure of the theta correspondences on
the level of abstract representations [42], [43].

LetW be a vector space over the number field k endowed with a symplectic form 〈 , 〉.
Let

Mp(WA)→ Sp(WA)

be the nontrivial 2-fold central extension of the adelization of Sp(WA). In Section 1.3
we have consider the representation ω of Mp(WA) called the Weil representation. The
Hilbert space on which the representation ω is realized is L2(V

∗
A ). The space of smooth

vectors is the space S(V ∗A ) of Schwartz-Bruhat functions on V ∗A [73].
In [73] it is shown that there is a certain linear functional Θ on S(V ∗A ) such that

Θ(ω(γ)ϕ) = Θ(ϕ) γ ∈ Sp(Wk), ϕ ∈ S(V ∗A ). (1.22)

This linear functional is defined as follows. In the symplectic vector space W , choose two
maximal isotropic subspaces V and V ∗ such that W = V ⊕V ∗. We will assume V and V ∗

are in fact k-rational subspaces of W . We then call the pair (V, V ∗) a k-rational complete
polarization. The functional Θ of formula (1.22) is given by

Θ(ϕ) =
∑

x∈V ∗
Q

ϕ(x), ϕ ∈ S(V ∗A ).
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Property (1.22) is a generalization of the Poisson summation formula.
Recall that a reductive pair in Sp(W ) is a pair (G,G′) of reductive subgroups of Sp(W )

each of which is the full centralizer of the other. Let G̃(A) and G̃′(A) denote the inverse
images of G(A) and G′(A) in Mp(WA). Given ϕ ∈ S(V ∗A ), we can define a function θϕ on
G̃A × G̃′A by the rule

θϕ(g, g
′) = Θ(ω(g)ω(g′)(ϕ)) g ∈ G̃(A), g′ ∈ G̃′(A).

The function θϕ is referred as the θ-kernel corresponding to ϕ.

Let f be a cusp form on G̃(A). If ϕ satisfies certain finiteness conditions (see [43]),
then

θϕ(f)(g
′) =

∫

G(k)\G(A)

f(g) θϕ(g, g
′) dg (1.23)

is an automorphic form on G̃′(A). This automorphic form is called the ϕ-lift of f .
In the next two sections we will give several examples of the realization of theta

correspondence for concrete subspaces of automorphic forms.

1.7 Shimura, Doi-Naganuma, Saito-Kurokawa and

Gritsenko lift

Let V be a finite dimensional vector space over Q, and let be ( , ) an inner product
on V . Let O(V ) denote the group of linear isometries of ( , ). Let W denote another
finite-dimensional vector space over Q and let 〈 , 〉 denote a symplectic form on W . Set
W ′ := V ⊗W . The tensor product of the forms ( , ) and 〈 , 〉 defines a symplectic form
〈 , 〉′ on W ′. The groups O(V ) and Sp(W ) act on W ′ in the obvious way. Their action
clearly preserves the form 〈 , 〉′, and each group clearly commutes with the other. In fact,
each of the groups O(V ) and Sp(W ) is the full centralizer of the other in Sp(W ′), so that
(O(V ), Sp(W )) forms a dual pair in Sp(W ′).

In this section we consider theta lifts for dual reductive pair (O(V ), Sp(W )) in the case
when the symplectic space W has dimension 2 and the quadratic space V has signature
(2, n). In many particular cases such theta lifts were found before the general theory was
developed. Since it is difficult to compute the action of representation ω given by (1.10),
finding theta kernel θϕ(g, g

′) in (1.23) becomes a nontrivial computation. In this section
we give examples of the theta kernel for some concrete subspaces of modular forms (see
(1.31), (1.35)). Another important task is to compute the Fourier expansion of the theta
lift θϕ(f) from the Fourier expansion of f (see (1.24), (1.33), (1.34)).

Shimura lifting

Shimura’s correspondence introduced in [64, 65] takes modular forms of half integral
weight k + 1/2 modular forms of integral weight 2k, which can be thought of as modular
forms of weight k for the group O2,1(R). In the simplest case, when f(τ) =

∑
c(n)qn is a
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modular form for Γ0(4) of weight k + 1/2 such that c(n) vanishes unless n ≡ 0, 1 mod 4
then

F (z) :=
−c(0)Bk

2k
+

∞∑

n=1

∑

d|n
dk−1 c(n2/d2) e(nz)

is a modular form of weight 2k.

Doi-Naganuma lifting

In [48] K. Doi and H. Naganuma discovered a lifting from the space of ordinary modular
forms to the space of Hilbert modular forms for real quadratic field. In [61] Naganuma
extended these ideas to the case of modular forms of Hecke’s Nebentypus. More precisely,
in [48, 61] Doi and Naganuma proved the following. Let p be the prime equal 1 modulo
4, op denotes the ring of integers in Q(

√
p) and let f(τ) =

∑∞
n=1 ane

2πinτ be the Hecke
eigenform in the space of cusp forms for Γ0(p) and the character χ = (p/ ). Then, if op is

Euclidean, so that SL2(op) is generated by
(
0 1
−1 0

)
and

(
ǫ ǫ−1µ
0 ǫ−1

)
( µ an integer of Q(

√
p),

ǫ a unit of Q(
√
p)), the product

(∑
ann

−s
) (∑

ann
−s
)

is the Mellin transform of a Hilbert modular form for SL2(op). Employing a later result
of Vaserstein (see [28] Chapter IV.6) on generators of Hilbert modular groups, the proof
can be generalized to all primes with class number 1.

Let Sk(Γ0(∆), χ) be the space of cusp forms for Γ0(∆) and the character χ = (∆/ )
and SHilb

k (∆) the space of cusp forms for the Hilbert modular group SL2(o∆). We denote
the Naganuma map by

N : Sk(Γ0(∆), χ)→ SHilb
k (∆).

In [74] D. Zagier gave an alternative definition of the map N and showed that the
lifting exists for all positive discriminants ∆ ≡ 1 mod 4. In the simplest case when ∆ = p
is prime the lifting of f =

∑
a(n)qn ∈ Sk(Γ0(p), χ) equals

N f(τ1, τ2) =
∑

ν∈d−1

ν≫0

c
(
(νd)

)
e(ντ1 + ν ′τ2), (1.24)

where for each ideal a the coefficient c(a) is defined as

c(a) =
∑

r|a
rk−1â

(n(a)
r2

)
, (1.25)

with

â(n) :=

{
a(n) if p ∤ n

a(n) + ā(n) if p|n.
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To show this Zagier constructed the kernel function Ω(τ, τ1, τ2) for the map N . The kernel
function has the property that for each f ∈ Sk(Γ0(∆), χ) the identity

N (f)(τ1, τ2)
.
=

∫

Γ0(∆)\H

f(τ) Ω(τ, τ1, τ2)ℑ(τ)k−2 dτ. (1.26)

holds. For each m ≥ 0 consider the function

ωm(τ1, τ2) =
∑

a,b∈Z, λ∈d−1

λλ′−ab=m/∆

1

(aτ1τ2 + λτ1 + λ′τ2 + b)k
. (1.27)

Then the function Ω is defined by

Ω(τ1, τ2; τ) =
∞∑

m=1

mk−1ωm(τ1, τ2) e(mτ). (1.28)

It is a Hilbert modular form in variables (τ1, τ2) and a modular form for Γ0(∆) and the
character χ = (∆/ ) in variable τ .

In [28] the Naganuma map is defined for all groups SL(o⊕a). For each fractional ideal
a of K the function

ωm,a(τ1, τ2) =
∑

a,b∈Z, λ∈a−1d−1

λλ′n(a)−ab=m/∆

1

(aτ1τ2 + λτ1 + λ′τ2 + b/n(a))k
(1.29)

is a Hilbert modular form of weight k in SL(o⊕ a). It follows from (1.29) that

ωm,a

( −1
n(a)τ1

,
−1

n(a)τ2

)
= n(a)k τ k1 τ

k
2 ωm,a(τ1, τ2). (1.30)

In analogy with (1.31) the kernel function is defined by

Ωa(τ1, τ2; τ) =
∞∑

m=1

mk−1ωm,a(τ1, τ2) e(mτ). (1.31)

It is proved in Theorem 3.1 of [28] that Ωa(τ1, τ2; τ) in variable τ is a cusp form of weight
k on Γ0(∆) and character (·/∆).

The lift Na : Sk(Γ0(∆), χ)→ Sk(SL(o⊕ a)) is defined by

Na(f)(τ1, τ2)
.
=

∫

Γ0(∆)\H

f(τ) Ωa(τ, τ1, τ2)ℑ(τ)k−2 dτ. (1.32)

In this case the analog of the formula (1.24) is

Na f(τ1, τ2) =
∑

ν∈ad−1

ν≫0

c((ν)da−1) e(ντ1 + ν ′τ2). (1.33)

This identity follows from Theorem (4.2) in [28] and the proof of Theorem 5 in [74].
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Gritsenko lift

The Gritsenko lift of a Jacobi form

φ(τ, z) =
∑

n,r

b(n, r) e(nτ + rz) ∈ Jk,N

is defined as

F (Z) =
∑

T

B(T ) e
(
tr(TZ)

)
∈MSieg

k (ΓN),

where

B

(
m r/2

r/2 nN

)
=

∑

l|(m,n,r)
lk−1c

(
mn

l2
,
r

l

)
, (1.34)

and

B

(
m r/2

r/2 n

)
= 0 if N ∤ n.

It is proved in [37] that F (Z) is a Siegel modular form for a paramodular group ΓN
introduced in (1.3).

1.8 Borcherds lift

In this section we recall the definition of regularized theta lift given by Borcherds in [10].
We let L be an even lattice of signature (2, b−) with dual L′. The (positive) Grass-

mannian Gr+(L) is the set of positive definite two dimensional subspaces v+ of L⊗R. We
write v− for the orthogonal complement of v+, so that L⊗R is the orthogonal direct sum
of the positive definite subspace v+ and the negative definite subspace v−. The projection
of a vector l ∈ L⊗ R into a subspaces v+ and v− is denoted by lv+ and lv− , respectively,
so that l = lv+ + lv− .

The vector valued Siegel theta function ΘL : H × Gr+(L) → C[L′/L] of L is defined
by

ΘL(τ, v
+) = yb

−/2
∑

λ∈L′/L
eλ

∑

l∈L+λ
e
(
q(lv+)τ + q(lv−)τ̄

)
. (1.35)

Remark 1.1. Our definition of ΘL differs from the one given in [10] by the multiple yb
−/2.

Theorem 4.1 in [10] says that ΘL(τ, v
+) is a real-analytic vector valued modular form

of weight 1− b−/2 and representation ρL with respect to variable τ .
We suppose that f is some C[L′/L]-valued function on the upper half-plane H trans-

forming under SL2(Z) with weight 1 − b−/2 and representation ρL. Define a regularized
theta integral as

ΦL(v
+, f) :=

∫ reg

SL2(Z)\H

〈f(τ),ΘL(τ, v+)〉 y−1−b
−/2 dx dy (1.36)
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(the product of ΘL and f means we take their inner product using 〈eµ, eν〉 = 1 if µ = ν
and 0 otherwise.)

The integral is often divergent and has to be regularized as follows. We integrate over
the region Ft, where

F∞ = {τ ∈ H| − 1/2 < ℜ(τ) < 1/2 and |τ | > 1}
is the usual fundamental domain of SL2(Z) and Ft is the subset of F∞ of points τ with
ℑ(τ) < t. Suppose that for ℜ(s)≫ 0 the limit

lim
t→∞

∫

Ft

〈f(τ),ΘL(τ, v+)〉 y−1−b
−/2−s dx dy

exists and can be continued to a meromorphic function defined for all complex s. Then
we define ∫ reg

SL2(Z)\H
〈f(τ),ΘL(τ, v+)〉 y−1−b

−/2 dx dy

to be the constant term of the Laurent expansion of this function at s = 0.
As i Section 1.2, we denote by Aut(L) the group of those isometries of L⊗R that fix all

elements of L′/L. The regularized integral ΦL(v
+, f) is a function on the Grassmannian

Gr+(L) that is invariant under Aut(L).

Suppose that f ∈ M̂ !(Mp2(Z), ρL) has the Fourier expansion

fµ(τ) =
∑

n∈Q

∑

t∈Z
cµ(n, t) e(n, τ) y

−t

and the coefficients cµ(n, t) vanish whenever n≪ 0 or t < 0 or t≫ 0.
We will say that a function f has singularities of type g at a point if f − g can be

redefined on a set of codimension at least 1 so that it becomes real analytic near the point.
Then the following theorem which is proved in [10] describes the singularities of reg-

ularized theta lift ΦL(v
+, f).

Theorem B1.([10] Theorem 6.2) Near the point v+0 ∈ Gr+(L), the function ΦL(v
+, f)

has a singularity of type
∑

t≥0

∑

l∈L′∩v−
0

l 6=0

−cl+L
(
q(l), t

) (
−4π q(lv+)

)t
log

(
q(lv+)

)
/t! .

In particular ΦL is nonsingular (real analytic) except along a locally finite set of codimen-
sion 2 sub Grassmannians (isomorphic to Gr+(2, b− − 1)) of Gr+(L) of the form l⊥ for
some negative norm vectors l ∈ L.

Recall that in Section 1.2 we have shown that the open subset

P = {[Z] ∈ P(L⊗ C)|(Z,Z) = 0 and (Z,Z) > 0}
is isomorphic to Gr+(L) by mapping [Z] to the subspace Rℜ(Z) + Rℑ(Z).
We choose m ∈ L, m′ ∈ L′ such that q(m) = 0, (m,m′) = 1. Denote V0 := L⊗Q∩m⊥∩
m′⊥. The tube domain

H = {z ∈ V0 ⊗R C|(ℑ(z),ℑ(z)) > 0} (1.37)
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is isomorphic to P by mapping z ∈ H to the class in P(L⊗ C) of

Z(z) = z +m′ − 1

2
((z, z) + (m′,m′))m.

We consider the lattices M = L∩m⊥ and K = (L∩m⊥)/Zm, and we identify K ⊗R
with the subspace L⊗ R ∩m⊥ ∩m′⊥.

We write N for the smallest positive value of the inner product (m, l) with l ∈ L, so
that |L′/L| = N2|K ′/K|.

Suppose that f =
∑

µ eµfL+µ is a modular form of type ρL and half integral weight k.
Define a C[K ′/K]-valued function

fK(τ) =
∑

κ∈K′/K
fK+κ(τ) eκ

by putting

fK+κ(τ) =
∑

µ∈L′/L:
µ|M=κ

fL+µ(τ)

for κ ∈ K. The notation λ|M means the restriction of λ ∈ Hom(L,Z) to M , and
γ ∈ Hom(K,Z) is considered as an element of Hom(M,Z) using the quotient map from
M to K. The elements of L′ whose restriction to M is 0 are exactly the integer multiples
of m/N .

For z ∈ H denote by w+ the following positive definite subspace of V0

w+(z) = Rℑ(z) ∈ Gr+(K). (1.38)

Theorem 7.1 in [10] gives the Fourier expansion of the regularized theta lift and in the
case when lattice L has signature (2, b−) this theorem can be reformulated at the following
form.
Theorem B2. Let L,K,m,m′ be defined as above. Suppose

f =
∑

µ∈L′/L
eµ

∑

m∈Q
cµ(m, y) e(mx)

is a modular form of weight 1−b− and type ρL with at most exponential growth as y →∞.
Assume that each function cµ(m, y) exp(−2π|m|y) has an asymptotic expansion as y →∞
whose terms are constants times products of complex powers of y and nonnegative integral
powers of log(y). Let z = u+ iv be an element of a tube domain H. If (v, v) is sufficiently
large then the Fourier expansion of ΦL(v

+(z), f) is given by the constant term of the
Laurent expansion at s = 0 of the analytic continuation of

√
q(v)ΦK(w

+(z), fK) +
1√
q(v)

∑

l∈K′

∑

µ∈L′/L:
µ|M=l

∑

n>0

e
(
(nl, u−m′) + (nµ,m′)

)
× (1.39)
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×
∫

y>0

cµ
(
q(l), y

)
exp

(
−πn

2q(v)

y
− πy

((l, v)2
q(v)

− 2q(l)
))

y−s−3/2 dy

(which converges for ℜ(s) ≫ 0 to a holomorphic functions of s which can be analytically
continued to a meromorphic function of all complex s).

The latticeK has signature (1, b−−1), so Gr+(K) is real hyperbolic space of dimension
b− − 1 and the singularities of ΦK lie on hyperplanes of codimension 1. Then the set of
points where ΦK is real analytic is not connected. The components of the points where
ΦK is real analytic are called the Weyl chambers of ΦK . If W is a Weyl chamber and
l ∈ K then (l,W ) > 0 means that l has positive inner product with all elements in the
interior of W .

1.9 Infinite products

We see from Theorem B1 that the theta lift of a weakly holomorphic modular form has
logarithmic singularities along special divisors. In [10] Borcherds shows that it’s possible
to exponentiate this function. The following theorem relates regularized theta lifts with
infinite products introduced in the earlier paper [9].
Theorem B3([10], Theorem 13.3) Suppose that f ∈M !

1−b−/2(SL2(Z), ρL) has the Fourier
expansion

f(τ) =
∑

λ∈L′/L

∑

n≫−∞
cλ(n) e(nτ) eλ.

and the Fourier coefficients cλ(n) are integers for n ≤ 0. Then there is a meromorphic
function ΨL(Z, f) on L with the following properties.

1. Ψ is an automorphic form of weight c0(0)/2 for the group Aut(L, f) with respect to
some unitary character of Aut(L, f)

2. The only zeros and poles of ΨL lie on the rational quadratic divisors l⊥ for l ∈ L,
q(l) < 0 and are zeros of order

∑

x∈R+ :
xl∈L′

cxl
(
q(xl)

)

3.
ΦL(Z, f) = −4 log |ΨL(Z, f)| − 2c0(0)(log |Y |+ Γ′(1)/2 + log

√
2π).

4. For each primitive norm 0 vector m of L and for each Weyl chamber W of K the
restriction Ψm(Z(z), f) has an infinite product expansion converging when z is in a
neighborhood of the cusp of m and ℑ(z) ∈ W which is some constant of the absolute
value ∏

δ∈Z/NZ
δ 6=0

(1− e(δ/N))cδm/N (0)/2
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times

e((Z, ρ(K,W, fK)))
∏

k∈K′:
(k,W )>0

∏

µ∈L′/L:
µ|M=k

(1− e((k, Z) + (µ,m′)))cµ(k
2/2).

The vector ρ(K,W, fK) is the Weyl vector, which can be evaluated explicitly using
the theorems in Section 10 of [10].

Remark 1.2. In the case then L has no primitive norm 0 vectors Fourier expansions of Ψ
do not exist.

1.10 See-saw identities

In the paper [50] S. Kudla introduced the notion of a see-saw dual reductive pair and
proved a wide family of identities between inner products of automorphic forms on differ-
ent groups, now called see-saw identities. His construction clarified the source of identities
of this type which appeared in many places in the literature, often obtained from compli-
cated manipulations.

We will use the same notations as in Section 1.6. Consider a dual reductive pair
(G,G′) in Sp(W ). For automorphic forms f1, f2 on G̃(A) with f1 a cusp form denote

〈f1, f2〉G =
∫

Z̃(A)G(k)\G(A)

f1(g) f2(g) dg

where dg is the Tamagawa measure and Z̃(A) is a center of G(A). Let f and f ′ be a pair

of cusp forms on G̃(A) and G̃′(A) respectively. For the theta lifts of f and f ′ given by
(1.23) one obviously has the following adjointness formula:

〈θϕ(f), f ′〉G = 〈f, θϕ(f ′)〉G′ . (1.40)

A see-saw dual pair in Sp(W ) is a pair (G,H ′), (H,G′) of dual pairs in Sp(W ) such that

G ⊃ H and G′ ⊂ H.

The “see-saw” identity associated to such a pair is an immediate generalization of the
adjointness formula (1.40). Let f and f ′ be cusp forms on H(A) and H ′(A) respectively,
then

〈θϕ(f), f ′〉G = 〈f, θϕ(f ′)〉G′ (1.41)

where functions θϕ(f) and θϕ(f
′) are restricted to H and H ′ respectively.

In this thesis the see-saw pair
(
Sp(W ),O(V )

)
,
(
Sp(W )×Sp(W ),O(V ′)×O(V ′′)

)
plays

an important role, where the dimW = 2 and V = V ′ ⊕ V ′′. In Theorems 3.1 and 5.2
we prove identities associated to this pair for certain concrete subspaces of automorphic
form. We should say that we rephrase identity (1.41) in the following way. In Sections 3.2
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and 5.3 we prove that there exits a map T : M(Sp(W )) → M ′(Sp(W )) between certain
subspaces of modular forms which will be specified in Sections 3.2 and 5.3 such that

θϕ(f)|O(V ′) = θϕ(T (f)). (1.42)

Such reformulation of (1.41) is especially useful in the case of the regularized theta lift,
when the Petersson scalar product might not converge.



Chapter 2

The restriction of Siegel Eisenstein

series to Humbert surfaces

2.1 Introduction

In this chapter we compute the restriction of Siegel Eisenstein series from the Siegel
half-space H(2) to Humbert surfaces.

The Siegel half-space H(2) is a multidimensional generalization of the Poincare half-
plane H consisting of complex 2× 2 matrices with positive-definite imaginary part

H(2) :=
{
Z =

(
τ1 z
z τ2

) ∣∣∣ℑ(Z) > 0
}
.

The Siegel Eisenstein series is defined as

ESieg
k (Z) :=

∑

{C,D}
det(CZ +D)−k,

where the sum is taken over the equivalence classes of coprime symmetric pairs.
The quotient space H(2)/Sp4(Z) is the moduli space of principally polarized abelian va-

rieties of dimension 2. This manifold has a rich geometry and contains a lot of subvarieties
with remarkable arithmetic and geometric properties [27].

For instance, for each ∆ > 0 there is a Hilbert modular surface of the real quadratic
field Q(

√
∆) in H(2)/Sp4(Z), called the Humbert variety H∆. In the simplest case ∆ = 1

the surface H1 is the image of all diagonal matrices
(
τ1 0
0 τ2

)
∈ H(2) and is isomorphic to

H/SL2(Z)× H/SL2(Z). The restriction formula for Siegel Eisenstein series in this case is
well known (e.g. [26]) and reads

ESieg
k

(
τ1 0
0 τ2

)
=

dimMk∑

i=1

µi gi(τ1) gi(τ2).

Here the coefficients µi are related to a special value of the symmetric square L-function
of the normalized eigenforms gi ∈Mk(SL2(Z))

µi =
28−4k k! (2k − 3)!

Bk B2k−2
· D(gi, 2k − 2)

‖gi‖2 π3k−3 ,

33
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whereD(g, s) is defined in Section 2.3 for cusp forms, and µ1 = (2k/Bk)
2 for the Eisenstein

series g1 = Gk = −Bk/2k +
∑

n(
∑

m|nm
k−1)qn.

In Theorem 2.1 we generalize this formula for H∆, when ∆ is prime and equals 1
modulo 4.

2.2 Eisenstein series

In this Chapter we consider several different spaces of modular forms. Each of them can
be decomposed into two parts: the space of cusp forms and the space of Eisenstein series.
These two subspaces are orthogonal to each other with respect to Peterson scalar product.

In the case of ordinary modular forms Mk(SL2(Z)) the space of Eisenstein series is
one-dimensional and it is spanned by the function

Ek(τ) =
1

2

∑

(c,d)

′ 1

(cτ + d)k
,

where the summation is taken over all coprime pairs of integers. We will use the following
different normalization of the Eisenstein series

Gk(τ) =
−Bk

2k
Ek(τ) =

−Bk

2k
+

∑

n

(∑

m|n
mk−1

)
e2πinτ .

The function Gk is a normalized Hecke eigenform, i.e. it is a common eigenvector for all
Hecke operators and the Fourier coefficient at e2πiτ equals 1.

Denote by Mk(Γ0(p), χ) the space of modular forms on the group Γ0(p) of weight k
and character χ = ( ·

p
) (see Section 1.7 for the definition). The space of Eisenstein series

in Mk(Γ0(p), χ) has dimension 2 if p is prime. It is spanned by the Hecke eigenforms

Eχ,k =
L(1− k, χ)

2
+

∞∑

n=1

∑

m|n
mk−1 χd(m) q

n

and

Gχ,k =
∞∑

n=1

∑

m|n
mk−1 χ(n/m) qn.

For a fundamental discriminant ∆ > 0 denote by Mk(SL2(o∆)) the space of Hilbert
modular forms for the group SL2(o∆). The definition of Hilbert modular forms is given
in Section 1.7. The dimension of the space of Hilbert Eisenstein series in Mk(SL2(o∆)) is
equal to the class number of Q(

√
∆). More explicitly, for each ideal class C of K, set

EHilb
k (τ1, τ2;C) = N(a)k

∑

(µ,ν)∈(a×a−{(0,0)})/o∗

1

(µτ1 + ν)k (µ′τ2 + ν ′)k
,

where τ1, τ2 are in H and a is any ideal in C. The Eisenstein series EHilb
k (·, C), C ∈ CL(K),

are linearly independent and span the space Ek(SL2(o∆)). Consider the finite sum

EHilb
k (τ1, τ2) :=

∑

C

EHilb
k (τ1, τ2;C).
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Recall that in Section 1.7 we have defined the mapN : Sk(Γ0(∆), χ)→ SHilb
k (SL2(o∆)).

The map N can be defined not only for cusp forms but also can be extended to the whole
space

Mk(Γ0(∆), χ) = Ek(Γ0(∆), χ)⊕ Sk(Γ0(∆), χ).

The space Ek(Γ0(∆), χ) is spanned by two functions

E±k =
L(1− k, χd)

2
+

∞∑

n=1

∑

m|n
mk−1(χd(m)± χd(n/m))q

n.

For them we have N (E−k ) = 0 and N (E+
k )

.
= EHilb

k .
The Siegel Eisenstein series is given by

ESieg
k (Z) =

∑

{C,D}
det(CZ +D)−k,

where the sum is taken over the equivalence classes of coprime symmetric pairs. We
recall that the pair of matrices is called symmetric if CtD = DtC. We say that two
pairs {C1, D1} and {C2, D2} are equivalent if there exists a unimodular matrix U such
that UC1 = C2 and UD1 = D2. And finally, the pair {C,D} is coprime if the matrices
XC,XD are integral only for X integral. We will also use a different normalization of
Siegel Eisenstein series

GSieg
k =

ζ(1− k) ζ(3− 2k)

2
ESieg
k .

Siegel Eisenstein series posseses the Fourier expansion of the form

GSieg
k (Z) =

∑

T

A(T ) e(trTZ),

where the sum is taken over semi-definite half-integral symmetric matrices. The coeffi-
cients A(T ) are defined in the following way. If D is a fundamental discriminant denote
by LD(s) the L-series L(s, (

D
· )). For all D ∈ Z we define

LD(s) =





0 if D ≡ 2, 3 mod 4,

ζ(1− 2s) if D = 0,

LD0
(s)

∑
d|f µ(d)(

D0

d
)d−sσ1−2s(f/d) if D ≡ 0, 1 mod 4, D 6= 0,

where in the last line D = D0f
2 with f ∈ N and D0 equals to a discriminant of Q(

√
D).

The values LD(2− k) are well-known to be rational and non-zero. They were extensively
studied by H. Cohen [18], who used the notation

H(k − 1, |D|) = LD(2− k).

Then the Fourier coefficients of Siegel Eisenstein series equal

A

(
m r/2

r/2 n

)
=

∑

l|(m,n,r)
lk−1H

(
k − 1,

4mn− r2

l2

)
,

A
(
0 0
0 0

)
=
ζ(1− k)

2
.
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2.3 Symmetric square L-function

Let f =
∑
a(n)e2πinτ be an eigenform in the space Sk(Γ0(∆), χ). For each prime q let αq

and βq be the roots of the polynomial

x2 − aqx+ χ(q)qk−1.

Then the symmetric square L-function attached to f is defined by the Euler product

D(f, s) :=
∏

q

(
(1− α2

qq
−s)(1− β2

q q
−s)(1− αqβqq

−s)
)−1

.

The following identity holds

∑

m

a(m2)m−s =
D(f, s)

ζ(2s− 2k + 2)
.

2.4 Restriction formula

Futher we assume ∆ = p to be prime and equal 1 modulo 4.

Theorem 2.1. The pullback of the Siegel Eisenstein series via the map ̺ defined in (1.6)
equals

ESieg
k (̺(τ1, τ2)) =

dimMk(Γ0(p),χ)∑

i=1

λiN (fi)(τ1, τ2),

where fi(τ) =
∑

m ai(m)e
2πimτ are the normalized Hecke eigenforms in Mk(Γ0(p), χ) and

λi =
28−4kk!(2k − 3)!

BkB2k−2
·
(
1 +

a(p)2

p2k−2

)
· D(fi, 2k − 2)

‖fi‖2π3k−3 . (2.1)

If p ≡ 1 mod 4 we can choose the basis of o to be ρ1 =
1+
√
p

2
and ρ2 =

1−√p
2

, in this
case

R =

(
1+
√
p

2

1−√p
2

1−√p
2

1+
√
p

2

)
and detR =

√
p.

Let {C,D} be a symmetric pair. Then the matrix R̃C̃DtR̃ has the form

R̃C̃DtR̃ =:
(
σ s
s σ′

)
, (2.2)

where σ ∈ o, and s ∈ Z (we denote by X̃ the adjoint of the matrix X).
Let Q be the set of all triples (a, b, Q), where a, b ∈ Z, Q is an integral symmetric

matrix and detQ = ab. We will denote by cont(Q) the content of the matrix Q, i.e. the
greatest common divisor of elements of Q. Let Q′ be the set of all elements (a, b, Q) ∈ Q
with gcd(a, b, contQ) = 1. In order to prove Theorem 1 we will need the following technical
statement.
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Lemma 2.1. The map ϕ defined by

{C,D} ϕ
// (detC, detD, C̃D) , (2.3)

gives a one-to-one correspondence between the set of equivalence classes of symmetric
coprime pairs and Q′/ ∼.
Proof. First we show that the map ϕ is well-defined. It is clear that equivalent pairs are
mapped to equivalent triples. We have to show that the image of a coprime pair belongs to
Q′. Assume that for the coprime pair {C,D} some prime q divides the greatest common
divisor of (detC, detD, cont(C̃D)). Since the pair {C,D} is coprime, q can not divide
both cont(C) and cont(D). Without loss of generality suppose that q ∤ cont(C) (otherwise
we can change {C,D} by the pair {tD,tC}) and consider the matrix X = 1

q
C̃. The matrix

X is not integral, although the matrices XC, XD are. Thus, we have got a contradiction
with the assumption that the pair {C,D} is coprime.

The next step is to show that the map ϕ is surjective. Fix some (a, b, Q) ∈ Q′. We
have to show that there exists a coprime symmetric pair {C,D} such that

detC = a, detD = b and C̃D = Q. (2.4)

For some unimodular matrices U1, U2 the matrix U1QU2 is diagonal. We can write this

matrix as a product over prime numbers U1QU2 =
∏

qQq, where Qq =

(
qαq 0
0 qβq

)
(we will

use the notation q∞ = 0 ). Let qα
′ ||a and qβ′ ||b. Since gcd(a, b, contQ) = 1, one of the

numbers α, β, α′q, β
′
q should be zero. Consider these four cases:

• if α′q = 0, we define Cq := E and Dq := Qq,

• if β′q = 0, we define Cq := Qq and Dq := E,

• if αq = 0, we define Cq :=

(
qα
′

0
0 1

)
and Dq :=

(
1 0
0 qβ

′

)
,

• if βq = 0, we define Cq :=

(
1 0
0 qα

′

)
and Dq :=

(
qβ
′

0
0 1

)
,

It is easy to see that in all these cases the pair {Cq, Dq} defined above is coprime. Thus
we can define the pair {C,D} as

C := U−12 (
∏

q

Cq)U
−1
1 and D := U−11 (

∏

q

Dq)U
−1
2 .

Obviously, this pair is symmetric, coprime and satisfies conditions (2.4).
Finally, it remains to show that the pair corresponding to (a, b, Q) ∈ Q′ is unique up

to equivalence. Assume that there exist two such pairs {C1, D1} and {C2, D2}. In this
case C−11 D1 = C−12 D2 . The matrix U := C2C

−1
1 has determinant 1 and

UC1 = C2 and UD1 = D2. (2.5)

Since the pair {C1, D1} is coprime, the matrix U is integral, and hence, unimodular.
Hence, it follows from (2.5) that the pairs {C1, D1} and {C2, D2} are equivalent.
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For an integerm ≥ 0 denote by Tm the set of triples (a, b, σ) where a ∈ Z, b ∈ Z, σ ∈ o

and

σσ′ − pab = m2. (2.6)

Let T :=
⋃
m Tm. Now we prove

Lemma 2.2. The map ψ

(a, b, Q)
ψ

// (a, b, σ) , (2.7)

where σ is defined by R̃Q tR̃ =
(
σ s
s σ′

)
, maps Q to T . Each element in

⋃
p∤m Tm has

exactly 1 preimage and each element in
⋃
p|m Tm has 2 preimages.

Proof. First we show that ψ maps Q to T . Let (a, b, Q) ∈ Q be mapped to the triple
(a, b, σ) by ψ. It is easy to see, that σ ∈ o and s ∈ Z. Since

det
(
σ s
s σ′

)
= pab, (2.8)

the triple (a, b, σ) is an element of T|s|.
Let (a, b, σ) ∈ Tm. It follows from (2.8) that (a, b, σ) can only have 2 preimages

(a, b, Q±), where

Q± =
1

p
R

(
σ ±m
±m σ′

)
tR.

It follows from (2.6) that

m2 − (tr(σ)/2)2 ≡ 0 mod p.

Define s to be either m or −m so that s + tr(σ)/2 ≡ 0 mod p. For such choice of s the
matrix

Q :=
1

p
R

(
σ s
s σ′

)
tR

is integral, (a, b, Q) ∈ Q and ψ(a, b, Q) = (a, b, σ). The lemma is proved.

Proof of Theorem 2.1. A corollary of Lemma 2.1 is

ESieg
k (Z) =

1

2

∑

(a,b,Q)∈Q′
ak det(aZ +Q)−k.

Since each non-zero element (a, b, Q) ∈ Q can be uniquely written as (λa, λb, λQ) for some
(a, b, Q) ∈ Q′ and λ ∈ N, we have

ESieg
k (Z) =

1

2ζ(k)

∑

(a,b,Q)∈Q
ak det(aZ +Q)−k. (2.9)

Let (a, b, σ) ∈ T corresponds (a, b, Q) via the map ψ (see (2.7)). From a simple compu-
tation we get

a−1 det(aρ(τ1, τ2) +Q) = apτ1τ2 + στ1 + σ′τ2 + b.
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Hence it follows from Lemma 2.2 that

ESieg
k (ρ(τ1, τ2)) =

1

2ζ(k)

∑

p∤m

∑

(a,b,σ)∈Tm

1

(apτ1τ2 + στ1 + σ′τ2 + b)k
+ (2.10)

+
1

ζ(k)

∑

p|m

∑

(a,b,σ)∈Tm

1

(apτ1τ2 + στ1 + σ′τ2 + b)k
.

For the fundamental unit ǫ the number η := ǫ
√
p is totally positive and has norm p.

We can write

apτ1τ2 + στ1 + σ′τ2 + b = aητ1η
′τ2 + λητ1 + λ′η′τ2 + b,

where λ = σ/η ∈ D−1. Thus from definitions (1.6) and (1.27) we get

ESieg
k (̺(τ1, τ2)) =

1

2ζ(k)

( ∞∑

m=0

ωm2(τ1, τ2) +
∑

p|m
ωm2(τ1, τ2)

)
.

We can reformulate identities the (1.27) and (1.31) to obtain

ωm
.
= m−k+1

dimSk(Γ0(p),χ)∑

i=1

ai(m)

‖fi‖2
N (fi), m ≥ 1,

where fi =
∑∞

n=1 ai(n)q
n, i = 1, . . . , dimSk(Γ0(p), χ) denote the normalized Hecke eigen-

forms. From [74] p. 30 we find that the right-hand side should be multiplied by ck =
(−1)k/2π
2k−3(k−1) in order to get exact equality. Hence we arrive at

ESieg
k (̺(τ1, τ2)) =

ck
ζ(k)

ω0(τ1, τ2) +

dimSk(Γ0(p),χ)∑

i=1

λiN (fi)(τ1, τ2),

where

λi =
ck

2ζ(k)‖fi‖2
( ∞∑

m=1

ai(m
2)

m2k−2 +
∞∑

m=1

ai(m
2p2)

m2k−2p2k−2

)
.

It is shown in [74] that ω0 is a multiple of the Hecke-Eisenstein series

ω0(τ1, τ2) =
ζ(k)

ζK(k)
EHilb
k (τ1, τ2).

This finishes the proof. �

2.5 Example p = 5

In this section we check the restriction formula numerically in the case p = 5.
The dimensions of the spaces of cusp forms of small weight are given in the following

table.
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k 2 4 6 8 10 12 14 16 18 20

dimSk(SL2(Z)) 0 0 0 0 0 1 0 1 1 1

dimSk(Γ0(5), χ) 0 0 2 2 4 4 6 6 8 8

dimSk(SL2(o)) 0 0 1 1 2 3 3 4 5 7

For each even k > 2 the dimensions of corresponding spaces of Eisenstein series equal

dim Ek(SL2(Z)) = 1, dim Ek(Γ0(5), χ) = 2, dim Ek(SL2(o)) = 1.

In this section we will check the identity

2

ζ(3− 2k)
GSieg
k ◦ ̺ = 1

Lχ(−k + 1)
GHilb
k +

dimSk(Γ0(5),χ)∑

i=1

λiN fi (2.11)

for several values of k. The Fourier expansion of Hilbert Eisenstein series is given by

GHilb
k (τ1, τ2) = ζQ(

√
5)(−k + 1) +

∑

ν∈D−1

ν≫0

∑

b|(ν)D
N(b)k−1e2πi(ντ1+ν

′τ2).

We will compare Fourier coefficients of both sides of (2.11) for several ν ∈ D−1. The
Fourier coefficients of the functions involved in (2.11) are given in the following table:

√
5ν GSieg

k ◦ ̺ GHilb
k N f

0
ζ(1− k)ζ(3− 2k)

2
ζQ(

√
5)(−k + 1) 0

1 +
√
5

2
H(k − 1, 0) = ζ(3− 2k) 1 1

1 +
√
5 H(k − 1,−3) + (2k−1 + 1)H(k − 1, 0) 4k−1 + 1 a(2)2 + 2k

√
5 H(k − 1,−4) 5k−1 + 1 a(5) + ā(5)

1 + 3
√
5

2
H(k − 1,−7) +H(k − 1,−8) 11k−1 + 1 a(11)

Case k = 4. In this case the equation (2.11) becomes

2

ζ(−5)G
Sieg
4 ◦ ̺ = 1

Lχ(−3)
GHilb

4 . (2.12)

We compute the values of L-functions

ζ(−5) = −1
252

, Lχ(−3) =
1

2
,

and the values of H(3, D) are given in the table below
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H(3, 0) H(3,−3) H(3,−4) H(3,−7) H(3,−8)
−1
252

−2
9

−1
2

−16
7

−3

Substituting these values into the table we verify that the identity (2.12) holds:

√
5ν

1

ζ(−5) G
Sieg
4 ◦ ̺ GHilb

4

0
1

240

1

240
1 +

√
5

2
1 1

1 +
√
5 65 65√

5 126 126

1 + 3
√
5

2
1332 1332

Case k = 6.

The space S6(Γ0(5), χ) is spanned by the two eigenforms f =
∑
a(n)qn and fρ =∑

a(n)qn, where the first coefficients of f are given in the table

n a(n)

1 1
2 2

√
−11

3 −6
√
−11

4 −12
5 −45 + 10

√
−11

6 132

7 −18
√
−11

8 40
√
−11

9 153

10 −220− 90
√
−11

11 252

The equation (2.11) can be written as

2

ζ(−9)G
Sieg
6 ◦ ̺ = 1

Lχ(−5)
GHilb

6 + 2λN (f),

where λ is a special value of the symmetric square L-function.
We find that

ζ(−9) = −1
132

, Lχ(−5) =
−67
10

,

and the values of H(5, D) are given in the following table
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H(5, 0) H(5,−3) H(5,−4) H(5,−7) H(5,−8)
−1
132

2

3

5

2
32 57

The Fourier coefficients of the Eisenstein series and the Doi-Naganuma lift are given in
the table:

√
5ν

1

ζ(−9) G
Sieg
6 ◦ ̺ GHilb

6 DN f

0 − 1

504

67

2520
0

1 +
√
5

2
1 1 1

1 +
√
5 −55 1025 20

√
5 −330 3126 −90

1 + 3
√
5

2
−11748 161052 252

From that we find

λ =
72

67
.

This agrees with the value found directly from (2.1).

Case k = 12. This is the first interesting case, when the space Sk(SL2(o)) is not
spanned by Naganuma lifts of elements from Sk(Γ0(5), χ).

The space S12(Γ0(5), χ) has dimension 4. It is spanned by the functions fi =
∑
ai(n)q

n

and fρi =
∑
ai(n)q

n, i = 1, 2, where the first coefficients of fi are given in the table
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n ai(n)

1 1

2 αi

3
−1
112

α3
i −

725

28
αi

4 α2
i + 2048

5
5

112
α3
i + 5α2

i +
3345

28
αi + 10255

6 11α2
i + 22288

7 −17
16
α3
i −

12949

4
αi

8 α3
i + 4096αi

9 −78α2
i − 154785

10 5α3
i − 65α2

i + 10225αi − 111440

11 −220α2
i − 536108

Here α1, α1 and α2, α2 are solutions of the equation

a4 + 4132a2 + 2496256 = 0.

Thus, we check the identity

2

ζ(−21)G
Sieg
12 ̺ =

1

Lχ(−11)
GHilb

12 + 2λ1N f1 + 2λ2N f2.

We compute

ζ(−21) = −77683
276

,

Lχ(−11) =
1150921

2
,

and
1

ζ(−11) =
32760

691

2

ζQ(
√
5)(−11)

=
131040

795286411
.

The values of H(11, D) are given in a table

H(11, 0) H(11,−3) H(11,−4) H(11,−7) H(11,−8)

−77683
276

−3694
3

−50521
2

−9006448 −36581523
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The Fourier expansions of the functions are equal to

√
5ν GSieg

12 ◦ ̺ GHilb
12 DN f1 DN f2

0 −53678953
18083520

−795286411
65520

0 0

1 +
√
5

2
−77683

276
1 1 1

1 +
√
5 −159512315

276
4194305 2030 + 30

√
1969 2030− 30

√
1969

√
5 −50521

2
48828126 −150 + 300

√
1969 −150− 300

√
1969

1 + 3
√
5

2
-45587971 285311670612 −81588− 6600

√
1969 −81588 + 6600

√
1969

From the table we find

λ1 =
140

(
−7102265− 10797937

√
1969 )

89406996043
√
1969

=
1

Lχ(−11)ζ(−21)
15

(
7102265 + 10797937

√
1969

)

2
√
1969

,

λ2 =
140

(
7102265− 10797937

√
1969

)

89406996043
√
1969

=
1

Lχ(−11)ζ(−21)
15

(
−7102265 + 10797937

√
1969

)

2
√
1969

.

An interesting observation is that the denominator of the product

λ1 λ2 = −29 · 3 · 52 · 74 · 11−1 · 79 · 131−2 · 179−1 · 593−2 · 536651 · 1150921−1

is divisible by the prime 1150921, which also divides the special value Lχ(−11) = 1150921
2

.
A similar phenomenon holds also in the case k = 6. In the level one case congruences of
this type are discussed in [24].



Chapter 3

Modular surfaces, modular curves,

and modular points

3.1 Introduction

In this chapter we generalize the see-saw identity obtained in the previous section to the
case of the paramodular group.

Using this identity we give a much simpler proof of the modularity of the generating
series

∑
Pdq

d of Heegner points on the modular curveX0(N). We follow the idea explained
in [76], which has been applied toX0(37) there. In Section 3.3 we prove Theorem 3.2 which
was formulated in conjectural form in [76]. This allows to apply the method developed in
[76] to any prime level N .

3.2 Pullbacks of Gritsenko lifts

In this section we compute the restriction of the Gritsenko lift of a half intergral weight
modular form to the Humbert surfaces, which were defined in Section 1.2.

Let
h(τ) =

∑
b(n) e(nτ) ∈M+

k−1/2
(
Γ0(4N)

)

be a modular form of half-integral weight and let

F (Z) =
∑

T

B(T ) e
(
tr(TZ)

)
∈MSieg

k (ΓN)

be the Gritsenko lift of h. It follows from (1.34) and (1.21) that

B

(
m r/2

r/2 Nn

)
=

∑

l|(m,n,r)
lk−1 b

(4Nmn− r2

l2

)
. (3.1)

In what follows we will use the operator UN defined by

∞∑

n=0

a(n) e(nτ) | UN :=
∞∑

n=0

a(Nn) e(nτ).
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For M | N this operator maps Mk(Γ0(M)) to Mk(Γ0(N)), but in certain situations it can
even decrease the level. For example, see [77].

Lemma 3.1. Let h ∈ M+
k−1/2(Γ0(4N)) be a half-integral weight modular form and let θ

be the standard theta-function (1.36). Fix a positive prime discriminant p with
(
N
p

)
= 1.

Then the function
g := U4N [θ(τ)h(pτ)]

belongs to Mk(Γ0(p), χ).

Let N, p, a be as in Section 1.7. Denote by HN the set of semi-definite half-integral

matrices of the form

(
m r/2

r/2 Nn

)
, and let Sa be the set of couples (σ, s) such that

σ ∈ a, σ ≫ 0, s ∈ 1

p
Z,

4σσ′ − s2 ≥ 0 and (tr(σ)− s) ∈ Z.

Let

T =

(
m r/2

r/2 nN

)
∈ HN and tRTR =

(
σ s/2

s/2 σ′

)
, (3.2)

where the matrix R is defined in (1.6). Further assume that p is prime.

Lemma 3.2. Denote by ι the map

T ι
// (σ, s) , (3.3)

where σ and s are defined from (3.2). Then

a) the map ι gives a one-to-one correspondence between HN and Sa.

b) for each integer l we have

l|(m,n, r)⇔ l|(pσ, ps, s− tr(σ)). (3.4)

Proof. Suppose that T ∈ HN satisfies (3.2). It follows from (3.2) that

σ =ρ21m+ ρ1ρ2r + ρ22nN,

s =2ρ1ρ
′
1m+ (ρ1ρ

′
2 + ρ′1ρ2)r + 2ρ2ρ

′
2Nn. (3.5)

Note that from d−1/a ∼= Z/NZ we see that N/
√
p is an element of a. Since ρ1 ∈ a, ρ2 ∈ d−1

it is clear that σ ∈ a and s ∈ 1
p
Z. It follows from the identity

σ + σ′ − s = (ρ1 − ρ′1)
2m+ (ρ1 − ρ′1)(ρ2 − ρ′2)r + (ρ2 − ρ′2)

2n

that tr(σ)−s ∈ Z. Finally, since T ≥ 0 we obtain inequalities the σ ≫ 0 and 4σσ′−s2 ≥ 0.
Hence, (σ, s) is an element of Sa.
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Now we assume that (σ, s) belongs to Sa. In this case the preimage of (σ, s) under the
map ι is the matrix (

m r/2

r/2 nN

)
= p tR∗

(
σ s/2

s/2 σ′

)
R∗,

where

m =p
(
(ρ′2)

2σ − ρ2ρ
′
2s+ ρ22σ

′),
n =p

(
(ρ′1)

2σ − ρ1ρ
′
1s+ ρ21σ

′),
r =p

(
− 2ρ1ρ

′
2σ + (ρ1ρ

′
2 + ρ′1ρ2)s− 2ρ′1ρ2σ

′).

It follows from the identities

m =p
(
(trρ2)

2(trσ − s)− trρ2(ρ2 − ρ′2)(σ − σ′)/2 + (ρ2 − ρ′2)
2(trσ + s)/4

)
,

n =p
(
(trρ1)

2(trσ − s)− trρ1(ρ1 − ρ′1)(σ − σ′)/2 + (ρ1 − ρ′1)
2(trσ + s)/4

)
,

r =p
(
tr(ρ1ρ

′
2)(trσ + s) + (ρ1ρ

′
2 − ρ1ρ

′
2)(σ − σ′)

)
, (3.6)

that numbers the m,n, r are integers. Since n belongs to a∩Z it is divisible by N . Thus,
part (a) of the Lemma is proved. Part (b) follows from (3.5) and (3.6).

Assume that N and p are prime and ( p
N
) = 1. Let a be a fractional ideal contained in

d−1 with d−1/a ∼= Z/NZ. Then the following theorem holds.

Theorem 3.1. Suppose that h is a half-integral modular form in M+
k−1/2(N) and let

F ∈Mk(ΓN) be the Gritsenko lift of h. Then, the pullback of F via the map ρ defined in
(1.6) equals

F (ρ(τ1, τ2)) =
1

2
Nag(τ1, τ2),

where g(τ) = θ(τ)h(pτ) | U4N and Na is the Naganuma lift defined by (1.33).

Proof. First we will compute the Fourier expansion of F (ρ(τ1, τ2)). Suppose that h(τ) has
the Fourier expansion

h(τ) =
∑

b(D) e(Dτ).

The Gritsenko lift of h equals

F (Z) =
∑

T

B(T ) e(trTZ),

where B(T ) are given by (1.34). It follows from the definition of the map ρ that

F (ρ(τ1, τ2)) =
∑

T half−integral
T≥0

B(T ) e

(
tr

[
tRTR ·

(
τ1
τ2

)])
.
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From Lemma 3.2 we obtain

F (ρ(τ1, τ2)) =
∑

σ∈o
σ≫0

∑

tRTR=

(
σ s/2

s/2 σ′

)
B(T ) e(στ1 + σ′τ2),

where the last summation is taken over all semi-definite half-integral matrices T that

satisfy tRTR =

(
σ s/2

s/2 σ′

)
for some s. It follows from formula (3.1) and Lemma 3.2 that

for fixed σ ∈ ad−1

∑

tRTR=

(
σ s/2

s/2 σ′

)
B(T ) =

∑

4σσ′−s2≥0
l|s−trσ
l|(pσ,ps)

lk−1 b

(
(4σσ′ − s2)p

l2

)
,

where s ∈ Z and l ∈ N. So, we get

F (ρ(τ1, τ2)) =
∑

σ∈ad−1

σ≫0

ã(σ) e(στ1 + σ′τ2),

where

ã(σ) =
∑

4σσ′−s2≥0
p l|s−trσ
l|(σ,s)

lk−1 b

(
(4σσ′ − s2)p

l2

)
. (3.7)

Our second step is to compute the Fourier expansion of N (g)(τ1, τ2). It follows from
the definition (5.3) that

g(τ) =
∞∑

n=0

c(n) e(nτ),

where

c(n) =
∑

4Nn−t2≥0
p|4Nn−t2

b
(4Nn− t2

p

)
. (3.8)

For an integer n define

δp(n) :=

{
1 if p ∤ n,

2 if p | n.
The Naganuma lift of g(τ) has the Fourier expansion

Nag(τ1, τ2) =
∑

σ∈ad−1

σ≫0

b̃(σ) e(στ1 + σ′τ2)
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for some numbers b̃(σ) ∈ C. Since the coefficients c(n) are real, from the additive formula
(1.24) for the Naganuma map we get

b̃(σ) =
∑

l|(σ)da−1

lk−1 δp

(
n(σ)p2

Nl2

)
c

(
n(σ)p2

Nl2

)
.

It follows from (3.8) that

b̃(σ) =
∑

l|σ

∑

4σσ′/l2−t2≥0
p|4σσ′/l2−t2

lk−1 δ

(
σσ′

l2

)
b

(
(4σσ′ − l2t2)p

l2

)
.

Note that for any sequence {γ(n)}n∈Z we have
∑

n≡a mod p

γ(n2) =
1

2
δ(a)

∑

n≡±a mod p

γ(n2).

Thus, we have

∑

4σσ′/l2−t2≥0
p|4σσ′/l2−t2

lk−1δ

(
σσ′

l2

)
b

(
4σσ′ − l2t2

p · l2
)
=
1

2

∑

4σσ′−l2t2≥0
p·l|trσ−l·t

l|σ

lk−1 b

(
4σσ′ − l2t2

p · l2
)
.

Hence, we arrive at

Nag(τ1, τ2) =
∑

σ∈ad−1

σ≫0

b̃(σ) e(στ1 + σ′τ2),

where

b̃(σ) =
1

2

∑

4σσ′−l2t2≥0
p·l|trσ−l·t

l|σ

lk−1 b

(
4σσ′ − l2t2

p · l2
)
. (3.9)

Comparing the Fourier expansions (3.7) and (5.3) we finish the proof of the Theorem.

3.3 Modularity of Heegner Points

The following statement is formulated as a conjecture in [76]

Theorem 3.2. Let h : H → C be a periodic holomorphic function having a Fourier
expansion of the form

h(τ) =
∑

D>0

−D≡ square mod 4N

b(D) qD
(
q = e2πiτ

)
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with N prime, and suppose that the power series

gp(τ) := h(pτ) θ(τ)|U4N

is a modular form of weight k, level p and Nebentypus (p· ) for every prime p ≡ 1 (mod 4)
with (N

p
) = 1. Then h belongs to M+

k−1/2(N).

In this section we prove Theorem 3.2 under additional assumptions on h. Namely,
we assume that coefficients b(D) have moderate growth and power series h converges for
|q| < 1. Then h(τ) is a holomorphic function on H.

Although we don’t know that the function h is a modular form, we can define its
Gritsenko lift by formula (3.1)

F (Z) =
∑

T

B(T ) e
(
tr(TZ)

)
.

For the function F we prove the following

Lemma 3.3. Let h(τ) be a holomorphic function on H. Suppose that the function h
satisfies the hypotheses of Theorem 2. Then the function F defined above is a Siegel
modular form for the paramodular group ΓN .

Proof. We have to show that
F |kM(Z) = F (Z) (3.10)

for all M ∈ ΓN and Z ∈ H(2). Suppose that Z = ρ(τ1, τ2) ∈ H(2) for some map ρ defined
in (1.6) and some (τ1, τ2) ∈ H×H. We will check the identity (3.10) for the generators of
ΓN . It is shown in [32] that the paramodular group is generated by

JN =




0 0 1 0

0 0 0 N−1

−1 0 0 0

0 −N 0 0




and the elements of ΓN ∩ Γ∞(Q), where

Γ∞(Q) =








∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 ∈ Sp4(Q)




.

First we show that for Z = ρ(τ1, τ2) the identity

F |kJN(Z) = F (Z) (3.11)

holds. In this case

F |kJN(Z) = N−k detZ−kF



(
1 0
0 N−1

)
tR−1




−1
τ1

0

0 −1
τ2


R−1

(
1 0
0 N−1

)
 .
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It follows from the definition of the Gritsenko lift (1.34) that

F

(
τ1 z
z τ2

)
= F

(
Nτ2 −z
−z N−1τ1

)
= (3.12)

= F

((
0 −N1/2

N−1/2 0

)(
τ1 z
z τ1

)(
0 N−1/2

−N1/2 0

))
.

Thus, we can write

F (JN(Z)) = F



(
1 0
0 N−1

)
tR−1




−1
τ1

0

0 −1
τ2


R−1

(
1 0
0 N−1

)
 =

= F



(
0 −1
1 0

)
tR−1




−1
Nτ1

0

0 −1
Nτ2


R−1

(
0 1
−1 0

)
 .

Note that
tR−1 = det(R−1)

(
0 −1
1 0

)
R

(
0 1
−1 0

)
.

Using this identity we arrive at

F (JN(Z)) = F


R




−p
Nτ2

0

0 −p
Nτ1


 tR


 =

= F ◦ ρ
( −p
Nτ2

,
−p
Nτ1

)
.

It follows from Theorem 3.1 that F ◦ ρ = 1
2
Na(g). It follows from (1.30) that

1

2
Na(g)

( −p
Nτ2

,
−p
Nτ1

)
=
1

2
Nk τ k1 τ

k
2 Na(g) (τ1, τ2) =

= Nk τ k1 τ
k
2 F ◦ ρ(τ1, τ2).

Now it remains to prove (3.10) forM ∈ ΓN∩Γ∞(Q). Each element ofM ∈ ΓN∩Γ∞(Q)
can be written as M =MUMS, where

MU =

(
U 0
0 U

)
, with U tU = E, U =

(
∗ N∗
N∗ ∗

)
,

and

MS =

(
U 0
0 U

)
, with S = tS, S =

( ∗ ∗
∗ N−1∗

)
.
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Here all ∗ are in Z. The matrix P = UR satisfies (1.5) and defines a map π(τ1, τ2) =

P

(
τ1 0

0 τ2

)
tP . Obviously,

F (MU(Z)) = F ◦ π(τ1, τ2).

It follows from Theorem 3.1 that

F ◦ π(τ1, τ2) =
1

2
Na(g)(τ1, τ2) = F ◦ ρ(τ1, τ2).

Thus, we obtain
F |kMU(Z) = F (Z). (3.13)

Finally, it follows easily from (3.1) that

F |kMS(Z) = F (Z + S) = F (Z). (3.14)

It follows from (3.11), (3.13), and (3.14) that (3.10) holds for allM ∈ ΓN and Z = ρ(τ1, τ2).
The set of all matrices Z = ρ(τ1, τ2) for all primes p, maps ρ defined by (1.6) and all points
(τ1, τ2) ∈ H × H is dense in H(2). Since the function F is continuous, the identity (3.10)
holds for all Z ∈ H(2). Lemma 3.3 is proved.

Using Theorem 3.2 we can deduce the modularity of the generating series of the classes
of the Heegner divisors in the Jacobian of X0(N) from the modularity of the generating
series of the classes of Hirzebruch-Zagier curves in the homology group of a certain Hilbert
surface. This idea is explained in [76] and is applied there in the case N = 37. The
Hirzebruch-Zagier curve TN on the Hilbert surface Yδ = H × H\SL2(o) is given by the
equations

Aτ1τ2 +
λ√
p
τ1 −

λ′√
p
τ2 +B = 0

with AB − λλ′/p = N . The curve TN is isomorphic to X0(N). Denote by [T cN ] the
(compact) homology class of TN . It is proved in [41] that

∑∞
N=1[TN ]q

N is a modular form
of weight 2, level p and nebentypus (

p
). Since the surface Yp is simply connected, the

generating series
∑∞

N=1 TNq
N of classes of TN in its first Chow group is also a modular

form. Since
TN ∩ TM =

⋃

r2<4MN
p|4MN−r2

P 4MN−r2

p

,

the series
∑

M

( ∑

4MN−r2>0

p|4MN−r2

P 4MN−r2

p

)
qM

is also a modular form of weight 2, level p and nebentypus (
p
).
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Next, an estimate of the naive height of points Pd in the Jacobian shows that the
power series ∑

d

Pd q
d

converges for |q| < 1.
Hence, it follows from Theorem 3.2 that

∑
d Pd q

d is a modular form of half integral
weight. This is one of the main results of [36], where it is proved by a much more difficult
computation of the height pairings of Heegner points.
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Chapter 4

Heegner points and Siegel Eisenstein

series

4.1 Intoduction

In this chapter we study a relation between Fourier coefficients of the degree 3 Siegel
Eisenstein series of weight 2 and heights of Heegner points on modular curves. Such a
relation was conjectured by B. Gross and S. Kudla many years ago and it became one
of the motivating examples of Kudla’s program connecting special cycles on Shimura
varieties with Eisenstein series. In this chapter we explain how this idea can give a new
approach to Gross-Kohen-Zagier formula that is both easier and more conceptual than
the original one. Some of our results overlap with results given in [53].

In the paper [1] Gross and Zagier showed that the height of Heegner point on an elliptic
curve E is an explicit(and in general non-zero) multiple of the derivative L′(E/Q, 1). This
implies that for any given elliptic curve E with ords=1L(E/Q, s) = 1 there are Heegner
points of non-zero height, which therefore are non-torsion, in particular the rank of E(Q)
is then at least one. In a subsequent paper [36] the same authors and W. Kohnen proved
a more general formula involving L′(E(Q), 1) and height pairings between two different
Heegner points. We now explain this in more detail.

Let X0(N) be the modular curve with complex points Γ0(N)\H and J∗ be the Jaco-
bian of X∗

0 (N), the quotient of X0(N) by the Fricke involution wN . For each imaginary
quadratic field K whose discriminant D is a square modulo N and to each r ∈ Z/2NZ
with r2 ≡ D(mod 2N), we associate a Heegner divisor y∗D,r ∈ J∗ as follows. If τ ∈ H =
{z ∈ C| ℑ(z) > 0} is the root of a quadratic equation

aτ 2 + bτ + c = 0, a, b, c ∈ Z, a > 0,

a ≡ 0(mod N), b ≡ r(mod 2N), b2 − 4ac = D

then the image of τ in H/Γ0(N) ⊂ X0(N)(C) is defined over H, the Hilbert class field of
K. There are exactly h = [H : K] such images and their sum is a divisor PD,r of degree
h defined over K. We write yD,r for the divisor PD,r − h · (∞) of degree 0 on X0(N)
and for its class in the Jacobian, and y∗D,r for the image of yD,r in J

∗. The action of the
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non-trivial element of Gal(K/Q) on TrH/K((y)) is the same as that of wN , therefore the
image y∗D,r of yD,r in J

∗ is defined over Q. Its f -component is non-trivial only if f is a
modular form on Γ∗(N), and this is the case precisely when L(f, s) has a minus sign in
its functional equation and hence a zero (of odd order) at s = 1.

A striking coincidence is that the Heegner divisors y∗D,r and Fourier coefficients of
Jacobi cusp forms of weight 2 and level N are indexed by the same set of pairs (D, r),
where D is a square modulo N and r ∈ Z/2NZ satisfies r2 ∼= D(mod 2N). Moreover, it
is shown in [67] that the new part of the space of Jacobi cusp forms Jcusp

k,N is isomorphic
as a Hecke module to the new part of the space S2k−2(N)

− space of cusp forms of weight
2k− 2 on Γ0(N) with eigenvalue −1 under the involution f(z)→ (−Nz2)−k+1f(−1/Nz).
This led the authors of [36] to guess that the height pairing of the f -components of
y∗D0,r0

and y∗D1,r1
for different discriminants D0 and D1 should be related to the product

L′(f, 1) c(n0, r0) c(n1, r1), where Di = r2i − 4Nni and c(ni, ri) are the Fourier coefficients
of a unique up to scalar Jacobi form φ ∈ Jcusp

2,N having the same eigenvalues as f under all
Hecke operators.

More precisely, let D0, D1 < 0 be coprime fundamental discriminants, Di = r2i −4Nni,
and f ∈ S2(Γ

∗
0(N)) a normalized newform, in [36] the authors prove the formula for the

height pairings of the f -eigencomponents of y∗D0,r0
and y∗D1,r1

〈(y∗D0,r0
)f , (y

∗
D1,r1

)f〉 =
L′(f, 1)

4π‖φ‖2 c(n0, r0) c(n1, r1). (4.1)

where c(ni, ri) denote the coefficient of e(niτ + riz) in φ ∈ Jcusp
2,N , the Jacobi form corre-

sponding to f (i = 0, 1).
In the case when f is a modular form of weight 2k > 2 P. Deligne has found a definition

of Heegner vectors Sx in the stalks above Heegner points x of the local coefficient system
Sym2k−2(H1)(H1 = first cohomology group of the universal elliptic curve over X0(N)) and
suggested an interpretation of the right-hand side of (4.1) as some sort of height pairing
between these Heegner vectors. In [16] Brylinsky worked out some definitions of local
heights suggested by Deligne. In [80] Zhang extended the result of [36] to higher weights
by using the arithmetic intersection theory of Gillet and Soulé [30]. More precisely, for a
CM-divisor on X0(N)Z Zhang defined a CM-cycle Sk(x) on a certain Kuga-Sato variety.
He defined the (global) height pairing between CM-cycles in these Kuga-Sato varieties,
and showed an identity between the height pairings of Heegner cycles and coefficients of
certain cusp forms of higher weights. We consider the following two generating functions

Hk,N(τ0, z0; τ1, z1) :=
∑

n0,r0,n1,r1

〈Sk−1(yD0,r0), Sk−1(yD1,r1)〉 e(n0τ0 + r0z0 + n1τ1 + r1z1)

and

Lk,N(τ0, z0; τ1, z1) :=
dimS2k−2(N)−∑

i=1

L′(fi, k − 1)

4π‖φi‖2
φi(τ0, z0)φi(τ1, z1), (4.2)

where the sum is taken over a set of normalized Hecke eigenforms fi ∈ S2k−2(N)
− and

φi ∈ Jk,N are the corresponding Jacobi forms.
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The Gross-Kohnen-Zagier formula (4.1) says that the Fourier coefficients of H2,N and
L2,N at e(n0τ0 + r0z0 + n1τ1 + r1z1) coincide if the discriminants D0, D1 are fundamental
and coprime. This formula is proved in [36] by showing that both H (the value related to
height pairing of two Heegner points) and L (the special value of L-function) are equal
to a complicated “seventeen term” expression X. The idea of B. Gross and S. Kudla
was show that H and L are both equal to E , the Fourier coefficients of a certain Siegel
Eisenstein series. This idea is shown symbolically in the following picture:

HGross−Kohnen−Zagier
formula

L

X

E

(4.3)

Denote by E
(3)
2 ( · ; s) the non-holomorphic Siegel Eisenstein series of degree 3 and

weight 2. The definition of Siegel Eisenstein series is given in Section 4.6. The upper
half-space H(3) consists of symmetric 3× 3 complex matrices

Z =

(
τ0 z z0
z τ1 z1
z0 z1 τ

)

with positive definite imaginary part.
The starting point of our research is the observation made many years ago by B. Gross

and S. Kudla that
E

(3)
2 (Z; 0) ≡ 0, Z ∈ H(3). (4.4)

We will show that the single function of 6 variables

E∗(Z) :=
∂

∂s
E

(3)
2 (Z; s)

∣∣∣∣
s=0

encodes information about the height of Heegner points and Heegner cycles for all weights
k and levels N .

The function E∗(Z) is naturally related to both sides of the Gross-Kohnen-Zagier
formula. Firstly, using the Rankin-Selberg method one can find a connection between
E∗(Z) and a derivatives of L-functions. This has been shown by T. Arakawa and B.
Heim [5]. Secondly, the height pairing of two divisors is defined as a sum of local heights
for all primes including infinity (see Section 4.3). At the same time the Fourier coefficients

of E
(3)
2 ( · ; s) can be written as a product of local densities (see Section 4.6). The miraculous

identity (4.4) leads to a natural decomposition of the the Fourier coefficients of E∗ into a
sum of local contributions (see Theorems 4.1 and 4.2). Thus, we hope to restore from the
function E∗ not only the global height of Heegner points but also the local contribution
for each place of Q. In this chapter we show that this is the case when the discrminants
of these two Heegner points are fundamental and coprime.
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4.2 Statement of results

The function E∗(Z) has the Fourier expansion

E∗(Z) =
∑

H∈H3(Z)

A∗(H, Y ; s) e(trHZ),

where H3(Z) denotes the set of half integral 3× 3 matrices.
In Section 4.8 we recall the Maass operator Mk that maps Siegel modular forms of

weight 2 to the space of Siegel modular forms of weight k. We define

E∗k(Z) :=MkE
∗(Z).

It has the Fourier expansion

E∗k(Z) =
∑

H∈H3(Z)

A∗k(H, Y ) e(trHZ).

In Section 4.9 we compute the Fourier expansion of E∗k(Z) with respect to the vari-
able τ . The following limit exists

E
∗,(2)
k,N

((
τ0 z
z τ1

)
, (z0, z1)

)
:= lim

v→∞
vk/2−1

iv+1∫

iv

E∗k(Z) e(−Nτ) dτ

and transforms like a holomorphic Jacobi form of degree 2 weight k and level N . Set

E∗k,N(τ0, z0; τ1, z1) := E
∗,(2)
k,N

((
τ0 0
0 τ1

)
, (z0, z1)

)
.

In Section 4.10 we calculate the holomorphic projection of E∗k,N to the space Jcusp
k,N ⊗

Jcusp
k,N . The resulting function

Ek,N := πhol(E
∗
k,N)

can be used to prove the Gross-Kohnen-Zagier formula.
For a half-integral matrix

H =
1

2



2n0 r r0
r 2n1 r1
r0 r1 2N




we define

A∗
k(H) := (D0D1)

k−3/2
∞∫

0

∞∫

0

lim
v→∞

(
v(k−2)/2A∗k(H, Y )

)
v
k−5/2
0 v

k−5/2
1 e2π(D0 v0+D1 v1) dv0 dv1,

(4.5)
where

Y =



v0 0 y0
0 v1 y1
y0 y1 v


 and Di = r2i − 4Nni, (i = 0, 1).

The following proposition is proved in Section 4.10.
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Proposition 4.1. For N ∈ N and even k > 2 the function Ek,N has the Fourier expansion

Ek,N =
∑

c(n0, r0;n1, r1) e(n0τ0 + r0z0 + n1τ1 + r1z1),

where
c(n0, r0;n1, r1) =

∑

r∈Z
A∗
k(H(r))

and

H(r) = Hn0,r0,n1,r1(r) =
1

2



2n0 r r0
r 2n1 r1
r0 r1 2N


 .

In Section 4.11 we prove the following formula for finite primes

Theorem 4.1. Fix N ∈ N and even k ≥ 2. Let D0, D1 < 0 be coprime fundamental
discriminants and n0, n1, r0, r1 ∈ Z satisfy Di = r2i − 4niN , then for a finite prime p

〈Sk−1(yD0,r0), Sk−1(yD1,r1)〉p = const
∑p

r

A∗
k(H(r)),

where the sum is taken over all integers r such that the matrix H(r) is positive definite
and anisotropic over the field Qp of p-adic numbers.

Theorem 4.2. Fix N ∈ N and even k > 2. Let D0, D1 < 0 be fundamental discriminants
coprime to N and n0, n1, r0, r1 ∈ Z satisfy Di = r2i − 4niN . Then

〈Sk−1(yD0,r0), Sk−1(yD1,r1)〉∞ = const
∑∞

r

A∗
k(H(r)), (4.6)

where the sum is taken over all integers r such that the matrix H(r) is indefinite.

Note that for k = 2 the infinite sum (4.6) does not converge. However the next
theorem holds for all even k ≥ 2.

Theorem 4.3. The Fourier coefficients of Ek,N and Hk,N at e(n0τ0 + r0z0 + n1τ1 + r1z1)
coincide if Di = r2i − 4Nni, i = 0, 1, are fundamental and coprime.

The main result of [4] combined with Theorem 2.6 in [39] gives us a connection between
the values of L-functions and the Siegel Eisenstein series.
Theorem. (Arakawa, Heim) Let φ ∈ Jcusp

k,N be a Hecke-Jacobi newform and let EJ
k,N be

the degree 2 Jacobi-Eisenstein series defined in Section 4.9, then
〈
φ(τ0, z0);E

J
k,N

((
τ0 0
0 τ1

)
, (z0, z1), s

)〉

J

=

c(k,N, s)L(2k − 3 + 2s, φ)φ(τ1, z1),

where
c(k,N, s) = ζ(4s+ 2k − 2)−1

∏

p|N
(1 + p−s+1)−1.

The following identity is an immediate corollary of the above restriction formula.
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Theorem 4.4. For N ∈ N and even k ≥ 2

Enew
k,N = Lnew

k,N ,

where Enew
k,N and Lnew

k,N denotes the projection of functions Ek,N and Lk,N into the space of
new forms.

Now the Gross-Zagier formula and its analog for k > 2 follow from Theorems 4.3
and 4.4.

Remark 4.1. In a recent book [53] Theorems 4.2 and 4.1 are proved (in a different way)
in the case k = 2 without the additional assumptions on D0 and D1.

4.3 Local and global heights on curves

In this section we recall the basic ideas of Néron’s theory. A more detailed overview of
this topic is given in [34]. Let X be a non-singular, complete, geometrically connected
curve over the locally compact field Fv. We normalize the valuation map | |v : Fv → R×+
so that for any Haar measure dx on Fv we have the formula α

∗(dx) = |α|v · dx.
Let a and b denote divisors of degree zero on X over Fv with disjoint support. Then

Néron defines a local symbol 〈a, b〉v with values in R which is

(i) bi-additive,

(ii) symmetric,

(iii) continuous,

(vi) satisfies the property 〈∑mx(x), (f)〉v = log |∏ f(x)mx |v, when b = (f) is principal.

These properties characterize the local symbol completely.
When v is archimedean, one can compute the Néron symbol as follows. Associated

to b is a Green’s function Gb on the Riemann surface X(Fv)− |b| which satisfies ∂∂Gb =
0 and has logarithmic singularities at the points in |b|. More precisely, the function
Gb − ordz(b) log |π|v, is regular at every point z, where π is a uniformizing parameter at
z. These conditions characterize Gb up to the addition of a constant, as the difference of
any two such functions would be globally harmonic. The local formula for a =

∑
mx(x)

is then
(a, b)v =

∑
mxGb(x).

This is well-defined since
∑
mx = 0 and satisfies the required properties since if b = (f)

we could take Gb = log |f |.
If v is a non-archimedean place, let ov denote the valuation ring of Fv and qv the

cardinality of the residue field. Let X be a regular model for X over ov and extend the
divisors a and b to divisors A and B of degree zero on X . These extensions are not unique,
but if we require that A have zero intersection with each fibral component of X over the
residue field, then the intersection product (A · B) is well defined. We have the formula

〈a, b〉v = −(A · B) log qv.



61

Finally, if X, a, and b are defined over the global field F we have (a, b)v = 0 for almost
all completions Fv and the sum

〈a, b〉 =
∑

v

〈a, b〉v (4.7)

depends only on the classes of a and b in the Jacobian. This is equal to the global height
pairing of Néron and Tate.

It is desirable to have an extension of the local pairing to divisors a and b of degree 0
on X which are not relatively prime. At the loss of some functoriality, this is done in [34]
as follows.

At each point x in the common support, choose a basis ∂
∂t
for the tangent space and

let π be a uniformizing parameter with ∂π
∂t

= 1. Any function f ∈ Fv(X)
∗ then has a

well-defined “value” at x:

f [x] =
f

zm
(x) in F ∗v ,

where m = ordxf . This depends only on
∂
∂t
, not on π. Clearly we have

fg[x] = f [x] g[x].

To pair a with b we may find a function f on X such that b = div(f) + b′, where b′ is
relatively prime to a. We then define

〈a, b〉v = log |f [a]|v + 〈a, b′〉. (4.8)

This definition is independent of the choice of f used to move b away from a. The same
decomposition formula (4.7) into local symbols can be used even when the divisors a and
b have a common support provided that the uniformizing parameter π at each point of
their common support is chosen over F .

4.4 Arithmetic intersection theory

Let us review the arithmetic intersection theory of Gillet and Soulé [30]. Let F be a
number field with with the ring of integers oF . Let Y be a regular arithmetic scheme of
dimension d over Spec oF . This means that the morphism Y → SpecoF is projective and
and that Y is regular. For any integer p ≥ 0, let Ap,p(Y ) (respectively Dp,p(Y )) denote
the real vector space of real differential forms α which are of type (p, p) on Y (C) and such
that F ∗∞α = (−1)pα, where F∞ : Y (C)→ Y (C) denotes the complex conjugation.

A cycle of codimension p on Y with real coefficients is a finite formal sum

Z =
∑

i

riZi,

where ri ∈ R, and Zi are closed irreducible subvarieties of codimension p in Y . Such a cycle
defines a current of integration δZ ∈ Dp,p(YR), whose value on a form η of complementary
degree is

δZ(η) =
∑

i

ri

∫

Zi(C)

η.
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A Green’s current for Z is any current g ∈ Dp−1,p−1(YR) such that the curvature

hZ = δZ −
∂∂

πi
g

is a smooth form in Ap,p(Y ) ⊂ Dp,p(Y ).

The (real) arithmetic Chow group of codimension p is the real vector space Ĉhp(Y )R
generated by pairs (Z, g), where Z is a real cycle of codimension p on Y and g is a Green’s
current for Z, the addition being defined componentwise, with the following relation over

R. Firstly, any pair (0; ∂u+∂v) is trivial in Ĉhp(Y )R. Secondly, if Y ⊂ Y ′ is an irreducible
subscheme of codimension p − 1 on Y , f ∈ F ∗(Y ′) is a nonzero rational function on Y ,

then the pair (div(f),− log |f |δY (C)) is zero in Ĉh
p(Y )R.

It is shown in [13] that there is an associative and commutative intersection product

Ĉhp(Y )R ⊗ Ĉhq(Y )R → Ĉhp+q(Y )R

such that, if (Z1, g1) and (Z2, g2) are two cycles of codimension p and q, then

(Z1, g1) · (Z2, g2) := (Z1 · Z2, g2δZ1(C) + hZ2
g1).

We can identify Ĉhd(Y )R with R by taking intersection with Y , then the intersection
product of cycles with complementary degrees gives the intersection pairing of these cycles.

Let Ẑ1 = (Z1, g1) and Ẑ2 = (Z2, g2) be two arithmetic cycles of Y of co-dimensions p

and d − p. We would like to decompose Ẑ1 · Ẑ2 into the local intersections (Ẑ1 · Ẑ2)v for
places v of F

Ẑ1 · Ẑ2 =
∑

v

(Ẑ1 · Ẑ2)vǫv

If Z1 and Z2 are disjoint at the generic fiber then the intersection Z1 · Z2 with support
defines an element in Chd|Z1|∩|Z2|(Y ) (see Section 4.1.1 in [30]). Since |Z1|∩|Z2| is supported
in special fibers, one has well defined xv ∈ Chd|Y⊗Fv |(Y ) for each finite place v such that

Z1 · Z2 =
∑

v

xv.

We define

(Ẑ1 · Ẑ2)v = deg xv

if v is finite, and

(Ẑ1 · Ẑ2)v =

∫

Z2v(C)

g1 +

∫

Yv(C)

g2hZ1

if v is infinite, where Yv denotes Y ⊗oF ,σ C for an embedding σ : F → C inducing v and
Z2v is the pullback of Z2 on Yv.
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4.5 Heegner cycles on Kuga-Sato varieties

In this section we recall the definition of CM-cycles on Kuga-Sato varieties given by Zhang
in [80].

For an elliptic curve E with a CM by
√
D, let Z(E) denote the divisor class on E×E

of Γ − E × {0} −D{0} × E, where Γ is the graph of
√
D. Then for a positive integer k

Z(E)k−1 is a cycle of codimension k − 1 in E2k−2. Denote by Sk(E) the cycle

c
∑

g∈G2k−2

signg∗(Z(E)k−1),

where G2k−2 denotes the symmetric group of 2k − 2 letters which acts on E2k−2 by per-
muting the factors, and c is a real number such that the self-intersection of Sk(E) on each
fiber is (−1)k−1.

For N a product of two relatively prime integers ≥ 3, one can show that the universal
elliptic curve over the non-cuspidal locus of X(N)Z can be extended uniquely to a regular
semistable elliptic curve E(N) over whole X(N). The Kuga-Sato variety Y = Yk(N) is
defined to be a canonical resolution of the (2k−2)-tuple fiber product of E(N) over X(N).
If y is a CM- point on X(N), the CM-cycle Sk(y) over y is defined to be Sk(Ey) in Y . If
x a CM-divisor on X0(N)Z the CM-cycle Sk(x) over x is defined to be

∑
Sk(xi)/

√
deg p,

where p denotes the canonical morphism from X(N) to X0(N), and
∑
xi = p∗x. One can

show that Sk(x) has zero intersection with any cycle of Y supported in the special fiber
of YZ, and that the class of Sk(x) in H

2k(Y (C);C) is zero. Therefore, there is a Green’s
current gk(x) on Y (C) such that

∂∂̄

πi
gk(x) = δSk(x).

The arithmetic CM-cycle Ŝk(x) over x, in the sense of Gillet and Soulé [30], is defined to
be

Ŝk(x) = (Sk(x), gk(x)).

If x and y are two CM-points on X0(N), then the height pairing of the CM-cycles Sk(x)
and Sk(y) is defined as the intersection product

〈Sk(x), Sk(y)〉 := (−1)kŜk(x) · Ŝk(y),

which was considered in the previous section.

4.6 Siegel Eisenstein series

For matrix Z in Siegel upper half-space Hn = {Z = tZ| ℑ(Z) is positive definite} and
s ∈ C, ℜ(s) ≫ 0, the non-analytic Siegel Eisenstein series of degree n and weight k are
defined as

E
(n)
k (Z; s) = det(ℑZ)s

∑

{C,D}
det(CZ +D)−k| det(CZ +D)|−2s.
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Here the summation is taken over the set of equivalence classes of coprime symmetric
pairs. We know from [55] that the series E

(n)
k (Z, s) have a meromophic continuation to

the whole s-plane and satisfy a functional equation. Set

Ê
(n)
k (Z, s) = Γ

(n)
k (s)E

(n)
k (Z, s),

where

Γ
(n)
k (s) =

Γn(s+ k)

Γn(s+ k/2)
ζ̂(2s+ k)

[n/2]∏

j=1

ζ̂(4s+ 2k − 2j),

Γn(s) = πn(n−1)/4
n−1∏

j=0

Γ(s− j/2),

ζ̂(s) = π−s/2 Γ(s/2) ζ(s).

The completed Eisenstein series satisfy the following functional equation

Ê
(n)
k (Z, s) = Ê

(n)
k (Z,−k + n+ 1

2
− s). (4.9)

We are most interested in the case n = 3, k = 2. In this case

Γ
(3)
2 (s) = s (s+ 1/2) (s+ 1) ζ̂(2s+ 2) ζ̂(4s+ 2).

It is known that E
(3)
2 (Z, s) is holomorphic at s = 0. Hence it follows from (4.9) that

E
(3)
2 (Z, 0) ≡ 0.

For a commutative ring R denote by Sn(R) the set of symmetric n× n matrices with
entries in R and by Hn(R) the set of symmetric half-integral matrices over R. The Siegel
Eisenstein series posses the Fourier expansion

E
(n)
k (Z; s) =

∑

H∈Hn(Z)

Ak(H, Y ; s) e(trHZ), Z = X + iY.

For a non-degenerate H ∈ Hn(Z) we have a decomposition

Ak(H, Y ; s) = Wk(H, Y ; s)B(H; k + 2s).

Here

Wk(H, Y ; s) =

∫

Sn(R)

detY s det(X + iY )−k |det(X + iY )|−2s e(−trHZ) dX (4.10)

is a generalized Whittaker function (or a confluent hypergeometric function). The analytic
properties of such functions where studied in detail by Shimura [66]. The Siegel series
B(H; s) are defined as

B(H; s) =
∑

R

ν(R)−s e(tr RH),
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where R runs over a complete set of representatives of Sn(Q)/Sn(Z) and ν(R) is the
product of denominators of elementary divisors of R. To investigate the Siegel series, for
a prime number p and a half-integral matrix H of degree n define the local Siegel series
Bp(H, s) by

Bp(H, s) =
∑

R∈Sn(Qp)/Sn(Zp)

p−ord(ν(R))s e(trHR).

It is easy to see that

B(H, s) =
∏

p

Bp(H, s).

An explicit form of Bp(H, s) for any non-degenerate half-integral matrix H over Zp is
given in [45]. More precisely, the local densities are equal to

Bp(H, s) = (1− p−s)(1− p2−2s)fp(p
2−s), (4.11)

where fp is a polynomial depending on the p-adic nature of H. To define it we need the
local invariants of H at p. Define nonnegative integers α, β, γ and δ by

α = ordp(m(2H)), β = ordp(m(2̃H))− 2α, δ = 3α + 2β + γ = ordp(4 detH),

wherem(2H) andm(2̃H) denote the content(greatest integer dividing) 2H and its adjoint

2̃H in the lattice of even integral matrices and the set of ternary quadratic forms repre-
senting only integers congruent to 0 or 3 modulo 4, respectively. We also have cp(= ±1),
the Hasse invariant of m(H)−1H, as well as a further invariant ǫ = ±1 to be defined below
in the case that β is even and γ 6= 0. If p is odd, then we can diagonalize H over Zp as
diag(pαA, pα+βB, pα+β+γC) with p ∤ ABC, and cp = (−1

p
)αβ(−AC

p
)α(−BC

p
)β.

In case α = β = γ = 0 the p-rank of H is 3 and f0,0,0(X) = 1.
In case α = β = 0, γ > 0 the p-rank of H is 2. Then H̃ has p-rank 1, so −H̃ represents

numbers D prime to p but these all have the same value ±1 of (D
p
). This common value

is denoted by ε. Then

f0,0,γ(X) = 1 + εX + · · ·+ εγXγ. (4.12)

In other cases we get more complicated recursive formula given in [45].
The H-th coefficient of the Eisenstein series of even weight k ≥ 2 on Sp(3,Z) is given

by

Ak(H) =
4

ζ(1− k)ζ(3− 2k)

∏

p

fp(p
2−k). (4.13)

4.7 Quaternion algebras and local densities

We will start this section with a brief overview of quaternion algebra theory. An intro-
duction to this subject can be found in [2, 63, 72].

Let K be a field of characteristic different from 2. A quaternion K-algebra B is a
central simple K-algebra of dimension 4 over K.
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Over a field K of characteristic different from 2, every quaternion algebra B has K-
basis {1, i, j, ij} satisfying the relations i2 = a, j2 = b, and ij = −ji, for some a, b ∈ K∗.

A quaternion ω = x+ yi+ zj + tij in B is called pure if x = 0. We denote by B0 the
K-vector space of pure quaternions.

Every quaternion K-algebra B is provided with a K-endomorphism which is an in-
volutive antiautomorphism called conjugation; for ω = x + yi + zj + tij it is defined by
ω̄ := x − yi − zj − tij. The reduced norm and reduced trace are defined by n(ω) := ωω̄
and tr(ω) := ω + ω̄, respectively. There is a symmetric bilinear K-form on B given by
(a, b) := tr(ab). For a place v of K we define

Bv := Kv ⊗ B.

If Bv is a division algebra, we say that B is ramified at v; otherwise we say that B is
non-ramified at v. The following theorem is well known.
Theorem.

(i) B is ramified at a finite even number of places

(ii) Two quaternion K-algebras are isomorphic if and only if they are ramified at the
same places.

A subset S ⊂ B is called a Z-order if it is a Z-ideal and a ring. By definition an Eichler
Z-order is an intersection of two maximal Z-orders. We associate to each half integral
3× 3 matrix an order in a quaternion algebra. Let

H =
1

2



2n0 r r0
r 2n1 r1
r0 r1 2N


 .

Put

n = r0r1 − 2Nr, Di = r2i − 4niN (i = 0, 1). (4.14)

We define a quaternion algebra B(H) over Q with basis 〈1, e0, e1, e0e1〉 satisfying mul-
tiplicative relations

e20 = D0, e
2
1 = D1, e0e1 + e1e0 = 2n.

We now introduce the order

S(H) := Z+ Zα0 + Zα1 + Zα0α1 (4.15)

in the quaternion algebra B(H), where αi :=
ri+ei

2
.

The following Lemma gives us a connection between the quaternion algebra Bp(H)
and the local density Bp(H, s) defined in Section 4.6.

Lemma 4.1. If B(H) is ramified at p then the local density Bp(H, 2) = 0.
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Proof. Denote by Spn(H) the number of solutions modulo p
n of the equation

2R tR ≡ 2H( mod pn). (4.16)

It is proved in [70] that

Bp(H, 2) = lim
n→∞

p−6nSpn(H).

Assume that Bp(H, 2) 6= 0. Then there is a solution of (4.16) in Qp. Hence H is isotropic
in Qp for p 6= 2 ( the identity matrix I3 is isotropic over Qp).

Now assume that B(H) is ramified at p. Then q(a) = −a2 is an anisotropic quadratic
form on the space of pure quaternions B0(H)p. In the basis 〈e0, e1, e0e1−n〉 this quadratic
form is given by the matrix

G =

(−D1 n 0

n −D0 0

0 0 4MN

)
, M = 4detH.

For the matrix

A =

(
1 0 0
0 1 0
r0 r1 2N

)

we have

G = A 2̃H tA.

We have got a contradiction, since G is anisotropic and H̃ is isotropic over Qp.

Recall that an order R of B is an Eichler order of index N if for all primes p ∤ N the
localization Rp = R ⊗ Zp j Hp = H ⊗ Qp is a maximal order and for all primes p | N
there is an isomorphism from Hp to M2(Qp) which maps Rp to the order

{(
a b

Nc d

)∣∣∣∣ a, b, c, d ∈ Zp

}
.

Denote by ρp(H) the number of Eichler orders of index N in Bp(H) that contain
Sp(H). The next two lemmas follow from identity (4.11) and the proof of Proposition 2
in Section I.3 of [36]. Here we assume that D0 and D1 defined by (4.14) are coprime.

Lemma 4.2. If B(H) is non-ramified at prime q then the local density Bq(H, 2) is equal
to (1− q−2)2 ρq(H).

Lemma 4.3. If B(H) is ramified at p then

∂

∂s
Bp(H, 2 + 2s)

∣∣∣∣
s=0

= (1− p−2)2 · log p · (ordp(M) + 1),

where M = 4detH. In this case ρp(H) = 1.



68

4.8 Maass differential operator

In this section we recall a differential operator introduced in [56] that raises the weight
of Siegel modular forms. We slightly modify the operator, so that the function obtained
from a holomorphic modular form transforms like a holomorphic modular form of higher
weight, however it is not holomorphic.

Suppose that Z = X + iY is an element of H3. This matrix can be written as
Z = {zij}3i,j=1, where zij = zji. Consider the matrix ∂

∂Z
:= {(1 + δij)

∂
∂zij
}3i,j=1. Then

det( ∂
∂Z
) is a differential operator of order 3. Define the operator

Dk := detY 1−k det(
∂

∂Z
) detY k−1.

It is proved in [56] on p. 309 that this differential operator has the following property

Dk(F |kM) = Dk(F )|k+2M

for an arbitrary smooth enough function F on H(3) and an arbitrary symplectic matrix
M . Therefore, if the function F transforms like a holomorphic Siegel modular form of
weight k then DkF transforms like a a holomorphic Siegel modular form of weight k + 2.
For k ∈ 2Z the following operator

Mk := Dk−2 ◦ · · · ◦ D2

maps Siegel modular forms of weight 2 to Siegel modular forms of weight k. It is shown
in Section 19 of [56] that

Mk(E2(Z, s)) = ǫ(k, s)Ek(Z, s− (k − 2)/2),

where

ǫ(k, s) =

(k−2)/2∏

h=2

(h+ s)(h+ s− 1

2
)(h+ s− 1).

Set
E∗k(Z) :=Mk(E

∗(Z)).

Since E2(Z, 0) ≡ 0, then the following is true

Mk(E
∗(Z)) = ǫ(k, 0)

∂

∂s
Ek(Z, s+ 1− k/2)

∣∣∣∣
s=0

. (4.17)

4.9 Jacobi Eisenstein series of degree two

The notion of Jacobi forms can be generalized to higher dimensions in the following way.
The Heisenberg group Hn(R) is defined to be the set of triples (λ, µ, κ) ∈ Rn × Rn × R
with group law

(λ, µ, κ)(λ′, µ′, κ′) = (λ+ λ′, µ+ µ′, κ+ κ′ + λ tµ′ − µ tλ′).
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The group Sp(2n,R) operates on Hn(R) from the right by

(λ, µ, κ) ◦M = ((λ, µ)M,κ).

The semidirect product Gn(R) = Sp(2n,R)⋉Hn(R) is called a generalized Jacobi group.
An element

γ =

((
A B
C D

)
, (λ, µ, κ)

)
∈ Gn(R)

acts on H(n) × Cn by

γ(T, z) = ((AT +B)(CT +D)−1, (z + λT + µ)(CT +D)−1).

We define
jk,N(γ;T, z) := det(CT +D)−k×

×eN
(
−z(CT +D)−1C tz + 2z(CT +D)−1 tλ+ λ(AT +B)(CT +D)−1 tλ

)
.

For k,N ∈ Z the group Gn(R) acts on functions f : H(n) × Cn → C by

f(T, z)|k,N γ = jk,N(γ;T, z)f(γ(T, z)).

Set ΓJ := Gn(Z) and denote by ΓJ
∞ be the stabilizer group of the constant function 1. We

define the Eisenstein-Jacobi series EJ
k,N(T, z; s) on Hn × Cn as

EJ
k,N(T, z; s) =

∑

γ∈ΓJ
∞\ΓJ

det(ℑ(T ))s |k,N γ.

Note that we consider z as a row-vector. We have the Fourier expansion

EJ
k,N(T, z, s) =

∑

H′,µ

AJ
k,N(H

′, µ, V ; s) e(trTH ′ + z tµ), T = U + iV,

where H ′ runs over symmetric half-integral 2× 2 matrices and µ runs over Z2.
As in the case of Siegel Eisenstein series considered in Section 4.6 the Fourier coef-

ficients AJ
k,N(H,µ;V ; s) also can be decomposed into “analytic” and “arithmetic” parts.

Consider the following singular series

BJ
N(H,µ; s) :=

∑

M∈Pn,0\Γ∗n/PJ
n,0

∑

λ∈Zn/ZnC

detC−s eN(λAC−1 tλ) e(C−1DH + µC−1 tλ),

where M =
(
AB
C D

)
with A,B,C,D ∈ Mn×n(Z) and

P0,n =

{(
A′ B′

0n,nD
′

)
∈ Sp2n(Z)

}
,

Γ∗n =
{(

A′ B′

C ′ D

)∣∣∣C ′ 6= 0 ∈ Sp2n(Z)
}
,
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P J
0,n =

{(
1n B′

0n,nD
′

)
∈ Sp2n(Z)

}
.

We will use the following notations

Z =
(
T tz
z τ

)
, Z = X + iY ∈ Hn+1, (4.18)

T = U + iV ∈ Hn, z = x+ iy ∈ Cn, τ = u+ iv ∈ C,

H =

(
H ′ 1

2
tµ

1
2
µ N

)
∈ Hn+1(Z), H ′ ∈ Hn(Z), H ′′ = H ′ − 1

4N
tµµ.

The following statement is proved by T. Arakawa and B. Heim.
Lemma([5], Proposition 2.1) Assume that H ′, H ′′, µ, V are defined as in (4.18) and H is
a non-degenerate matrix. Then

AJ
k,N(H

′, µ;V ; s) = Wk−1/2(H
′′;V ; s)BJ

N(H
′, µ; k + 2s),

where Wk(H, Y ) is a generalized Whittaker function defined in Section 4.6.
The following result due to Kohnen relates Jacobi-Eisenstein series EJ,n

k,N with Siegel

Eisenstein series E
(n+1)
k .

Theorem.([47], eq.(20)) Let Z be as above (4.18) and N be squarefree then

lim
v→∞

v−s e2πNv
1∫

0

E
(n+1)
k (Z; s) e−N(u) du = µk,N,sE

(n)
k,N(T, z; s),

where µk,N,s = (−1)k/2Nk+2s−1 (2π)k+s−1/Γ(k + s).

Lemma 4.4. Let H,H ′′ and Y, V, v be as in (4.18). Then

lim
v→∞

vsWk(H, Y ; s) = µk,N,sWk−1/2(H
′′, V ; s).

Proof. Using the identity

det
(
T tz
z τ

)
= (τ − zT−1 tz) detT

and integral representation (4.10) we can write

Wk(H, Y ; s) = e2πtrHY
∫

Sn+1(R)

detZ−k | detZ|−2s e(−trHX) dX =

= e2πtr(H
′V )

∫

Sn×Rn

detT−k | detT |−2s e(−trH ′U − z tµ)×

×e2πNv
∫

R

(τ − zT−1 tz)−k |τ − zT−1 tz|−2s e−N(u) du dU dz, (4.19)
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where Sn = Sn(R). From formulas 13.1.33 and 13.5.2 in [1] we have an asymptotic
representation

∫

R

(u+ iv)−k|u+ iv|−2s e(−Nu) du = v−s e−2πNv
(
µk,N,s + o(

1

v
)
)
, v → +∞.

Since ℑ(zT−1z) ≤ C for some C depending only on y = ℑz and V = ℑT the expression

vse2πNv
∫

R

(u− zT−1 tz + iv)−k|u− zT−1 tz + iv|−2se(−Nu) du

is bounded uniformly in v, U = ℜ(T ), and x = ℜ(z) and tends to e(−NzT−1 tz) as v
tends to infinity. For s ≫ 0 the integral (4.19) converges absolutely and uniformly in v
on intervals [v0,∞). So we can interchange limit with integration

lim
v→∞

vsWk(H, Y ; s)

= µk,N,s e
2π(trH′V )

∫

Sn×Rn

detT−k | detT |−2s e(−trH ′U − z tµ−NzT−1 tz) dU dz

= (2i)−n/2 µk,N,s e
2πtr(H′′V )

∫

Sn

detT−k+1/2 | detT |−2s e(−trH ′′U) dU.

The lemma is proved.

Using the theorem of Kohnen and the above lemma we can compute the Fourier
coefficients of E

(n)
k,N .

Proposition 4.2. For squarefree N and non-degenerate H

AJ
k,N(H,µ;V ; s) = Wk− 1

2

(
H ′′;V ; s

)
B

(n+1)
k+2s (H).

4.10 Holomorphic projection

In this section we compute the holomorphic projection of the function

EJ
k,N

((
τ0 0
0 τ1

)
, (z0, z1), s

)

to the space Jcusp
k,N ⊗ Jcusp

k,N . We start with a definition of holomorphic projection.
Let φ and ψ be two Jacobi cusp forms of weight k and level N , then the Petersson

scalar product of φ and ψ is defined as

〈φ, ψ〉 =
∫

ΓJ\H×C

φ(τ, z)ψ(τ, z) vk e−4πNy
2/v dV, (4.20)



72

where
τ = u+ iv, z = x+ iy, dV = v−3 du dv dx dy.

Let f be a function on H × C that transforms like a holomorphic Jacobi form of weight
k and level N and rapidly decays at infinity, so that the integral (4.20) is well defined for
any cusp form ψ ∈ Jcusp

k,N . Then the holomorphic projection of f is a unique holomorphic
function πholf ∈ Jcusp

k,N that satisfies

〈f, ψ〉 = 〈πholf, ψ〉

for all ψ ∈ Jcusp
k,N .

Lemma 4.5. Assume that the function f(τ, z) transforms like a holomorphic Jacobi form
of weight k and level N and it has a Fourier expansion

f(τ, z) =
∑

n,r

c(n, r, v) e(nτ + rz),

where τ = u + iv. Let for µ modulo 2N the function hµ be defined as in (5.66). Assume
that for all µ modulo 2N

hµ(τ) = cµ +O(v−ǫ) as v →∞

for some numbers cµ ∈ C and ǫ > 0. Then

πhol(f) =
∑

n,r

c(n, r) e(nτ + rz),

where

c(n, r) = αk,N (4Nn− r2)k−
3

2

∞∫

0

vk−
5

2 c(n, r, v) e−π(4Nn−r
2)v/N dv, (4.21)

and

αk,N =
Nk−2 Γ(k − 3/2)

2πk−3/2
.

Proof. For integers n, r with r2 < 4Nn there is a unique function Pn,r ∈ Jcusp
k,N depending

only on r2 − 4Nn and on r( mod 2N), such that

〈φ, Pn,r〉 = αk,N (4Nn− r2)k+3/2 b(n, r) (4.22)

for all φ =
∑
b(n, r) e(nτ + rz) ∈ Jcusp

k,N .
It is shown in [36] on p. 519 that

Pn,r(τ, z) =
∑

γ∈ΓJ
∞\ΓJ

e(nτ + rz)|k,N γ,

where

ΓJ
∞ =

{((
1 n

0 1

)
, (µ, 0)

)
| n, µ ∈ Z

}
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is the stabilizer of the function e(nτ + rz) in the full Jacobi group ΓJ = SL2(Z)⋉Z2. By
the usual unfolding argument, we see that the Petersson product of f and Pn,r equals

∫

ΓJ
∞\H×C

f(τ, z) e(nτ + rz) vk−3 e−4πNy
2/vdx dy du dv.

Putting in the Fourier expansion of f and observing that a fundamental domain for the
action of ΓJ

∞ on H× C is ([0,∞)× [0, 1])× (R× [0, 1]), we find that the integral equals

∑

n′,r′

∫

[0,∞)×[0,1]×R×[0,1]

c(n′, r′, v) e
(
(n′ − n)u+ (r′ − r)x

)
e−2π((n

′+n)v+(r′+r)y)×

×vk−3e−4Ny2/v du dv dx dy

=

∞∫

0

c(n, r, v) e−4πnv vk−3
( ∞∫

−∞

e−4π(ry+Ny
2/v) dy

)
dv.

The inner integral equals ( v
4N
)1/2eπr

2v/N , so the scalar product equals

1/
√
4N

∞∫

0

c(n, r, v) vk−5/2 e−π(4n−r
2/N)v dv.

This proves our claim.

For a matrix H ′′ =
(
a0 a
a a1

)
and κ ∈ Z/2 define

Wκ,s(H
′′) := aκ−10 aκ−11

∞∫

0

∞∫

0

Wκ

(
H ′′,

(
v0 0
0 v1

)
; s

)
vκ−20 vκ−21 e−2π(a0 v0+a1 v1) dv0 dv1,

(4.23)
where Wκ(H

′′, V ; s) is a generalized Whittaker function defined in Section 4.6.

Proposition 4.3. The holomorphic projection of Jacobi-Eisenstein series has a Fourier
expansion

πholE
J
k,N

((
τ0 0
0 τ1

)
, (z0, z1); s

)
= αk,N

∑
c(n0, r0, n1, r1) e(n0τ0 + r0z0 + n1τ1 + r1z1),

where the coefficients c(n0, r0, n1, r1) are given by the formula

c(n0, r0, n1, r1) =
∑

r∈Z
Wk− 1

2
,s

(
1

4N

(
D0 n

n D1

))
Bk+2s


1

2



2n0 r r0
r 2n1 r1
r0 r1 2N




 ,

with Di = 4Nini − r2i (i = 0, 1) and n = 2Nr − r0r1. Here the generalized Whittaker
function Wk,s and singular series Bs are defined in Section 4.6 and αN,k is as in Lemma
4.5.
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Proof. The statement follows from Lemmas 4.2 and 4.5.

Set

wκ,s(t) := Wκ,s

(
1 t/2

t/2 1

)
. (4.24)

The following identity is a consequence of the elementary properties of Whittaker
functions

Wκ,s

(
1

4N

(
D0 n

n D1

))
=

(
D0D1

4N2

)κ+s− 3

2

wκ,s

(
2n√
D0D1

)
. (4.25)

The following lemma shows that wκ,s(t) is a Mellin transform (with respect to s) and
a Fourier transform (with respect to t) of a J-Bessel function.

Lemma 4.6. For κ+ 2s > 3/2 and 2s < 1 the following identity holds

wκ,s(t) = λκ,s

∞∫

−∞

|x|−κ−2s+1 Jκ−1(4πx) e(−tx) dx, (4.26)

where Jκ−1 denotes the Bessel function of the first kind and λκ,s = π2κ2−2s+2Γ(κ −
1)(π1/2Γ(κ+ s− 1)/Γ(κ+ s)− 2πi)/(κ+ s− 1).

Proof. Identities (4.10), (4.23), and (4.24) imply

wκ,s(t) =

∫

Π

yκ+s−20 yκ+s−21 (z0z1 − x2)−κ−s (z̄0z̄1 − x2)−s e(−z̄0 − z̄1 − tx) d̟, (4.27)

where zj = xj + iyj (j = 0, 1),

Π = [0,∞)2 × (−∞,∞)3

and
d̟ = dy0 dy1 dx0 dx1 dx.

This integral converges absolutely for s < 1
2
and κ+ 2s > 2. Indeed, we have

∫

Π

yκ+s−20 yκ+s−21 |z0z1 − x2|−κ−2s e−2πy0−2πy1 d̟ =

=

∞∫

0

∞∫

0

yκ+s−20 yκ+s−21 e−2πy0−2πy1 dy0 dy1

∫

S2(R)

| det(X + iE)|−κ−2s dX,

where E denotes the identity matrix.
After the change of variables z1 = −x2

z2
in (4.27) we get

wκ,s(t) =

∫

Π′

yκ+s−20 yκ+s−22 |x|−2s z̄−κ2 (z0 + z2)
−κ−s (z̄0 + z̄2)

−s e(−z̄0 + x2/z̄2 − tx) d̟′,
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where z2 = x2 + iy2,

Π′ = [0,∞)2 × (−∞,∞)3

and

d̟′ = dy0 dy2 dx0 dx2 dx.

It follows from a standard presentation of the Bessel function of the first kind [1] that

∞∫

−∞

z̄−κ2 e(z̄2 + x2/z̄2) dx2 = 2πi−κx−κ+1Jκ−1(4πx).

And finally, after the change of variables x3 = x0 + x2, the identity

∞∫

−∞

∞∫

0

∞∫

0

yκ+s−20 yκ+s−22 (x3+ iy0+ iy2)
−κ−s (x3− iy0− iy2)−se(−x3+ iy0+ iy2) dx3 dy0 dy2 =

1∫

0

(1− u)κ+s−2 uκ+s−2 du

∞∫

−∞

(v + i)−κ−s(v − i)−s
( ∞∫

0

yκ−2 e(−yv + iy) dy

)
dv =

= (2π)2κ
(

1

2(κ+ s− 1)
− i π1/2 Γ(κ+ s− 1/2)

Γ(κ+ s)

)
Γ(κ− 1)Γ(κ+ s− 1)2

Γ(2κ+ 2s− 2)
= λκ,s

finishes the proof.

Using presentation (4.26) and integration by parts we obtain the following result.

Lemma 4.7. The function w = wκ,s(t) satisfies the following second order differential
equation

(1− t2)w′′ − (2− 2λ) t w′ + (κ− 1/2− λ) (κ− 3/2 + λ)w,

where λ = κ+ 2s− 3/2.

The integral (4.26) is computed in the closed form in [7] (vol I, p. 45, eq. (13)); hence,
as a corollary of Lemma 5.5 we obtain the identity

wκ,s(t)

λκ,s
=





(2π)κ+2s−2 Γ(1
2
− s)

Γ(κ+ s− 1
2
)
2F1

(1
2
− s,

3

2
− κ− s;

1

2
;
t2

4

)
4− t2 > 0

(2π)κ+2s−2Γ(2κ+ 2s− 1)

Γ(κ)
sin(sπ) t2s−1 2F1

(1
2
− s, 1− s;κ;

4

t2

)
4− t2 < 0,

where 2F1(a, b; c; z) denotes the hypergeometric function. Using identities for hypergeo-
metric series [6](vol I, eq. (15) on p. 150 and eq. (8) on p. 122) we obtain the following.
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Lemma 4.8. For k ∈ 2Z the following identities hold

wk− 1

2
,1− k

2

(t) = −λk− 1

2
,1− k

2

Pk−2(t/2), 4− t2 > 0

and
∂

∂s
wk− 1

2
,s(t)

∣∣∣∣
s=1− k

2

= λk− 1

2
,1− k

2

Qk−2(t/2), 4− t2 < 0,

where Pk(t) = (2kk!)−1 d
k

dtk
(t2−1)k is the Legendre function of the first kind and Qk−1(t) =

∞∫
0

(t+
√
t2 − 1 cosh u)−kdu is the Legendre function of the second kind.

The final result of this section is the following.

Theorem 4.5. For N ∈ N and even k > 2 the function Ek,N has the Fourier expansion

Ek,N =
∑

c(n0, r0;n1, r1) e(n0τ0 + r0z0 + n1τ1 + r1z1),

where
c(n0, r0;n1, r1) =

∑

r∈Z
A∗
k(H(r)).

Here for the matrix

H = H(r) =
1

2



2n0 r r0
r 2n1 r1
r0 r1 2N


 ,

we have

A∗
k(H) =





(D0D1)
k/2−1 Pk−2

( n√
D0D1

) ∂

∂s
B(H, 2 + s)

∣∣∣∣
s=0

H > 0,

(D0D1)
k/2−1Qk−2

( n√
D0D1

)
B(H, 2) H is indefinite.

4.11 Computation of non-archimedean local height

Proof of Theorem 4.1:
Case k = 2.

We should say, that a proof of this theorem in the case k = 2 is already contained in [36]
but is not emphasized there.

Let X be a modular model for X0(N) over Z. Denote by X ∗ the minimal desingular-
ization of the quotient of X by the Fricke involution. We let P ∗D,r denote the multi-section
of X ∗ over Zp which extends P ∗D,r, the image of the divisor PD,r on X∗(N). Let W be the
completion of the maximal unramified extension of Zp.

It is shown in [36] that

(P ∗D0,r0
· P ∗D1,r1

)p = (PD0,r0
· (PD1,r1

+ PD1,−r1))W .
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A point x = (φ : E → E ′) lies in the divisor PD0,r0
if o0 = Z+ ZD0+

√
D0

2
embeds into

End(x) and α0 =
r0+

√
D0

2
∈ End(x) annihilates kerφ.

Suppose that (x · y)W > 0 for x ∈ PD0,r0
and y ∈ PD1,r1

. Then our diagramms

x = (φ : E → E ′) and y = (ψ : F → F ′)

reduce to the same isogeny z on X ⊗ W/pW . Write R for the endomorphism ring
EndW/pW (z). The reduction of endomorphisms gives injections

EndW (x) →֒ R, EndW (y) →֒ R.

It follows from Deuring’s theory that R⊗Q is a quaternion algebra over Q ramified only
at p and ∞, and that R is an Eichler order of index N in this quaternion algebra. It
is shown in [36] on p. 549 that the embeddings of EndW (x) and EndW (y) give elements√
Di and αi = (ri +

√
Di)/2 (i = 0, 1) in R satisfying

√
D0

√
D1 +

√
D1

√
D0 = 2n for some n ∈ Z, (4.28)

n ≡ r0r1 (mod 2N), n
2 < r0r1.

Thus, we get an embedding of the Clifford order

S = Z+ Zα0 + Zα1 + Zα0α1

into R. The order S corresponds to a half-integral matrix

H =
1

2



2n0 r r0
r 2n1 r1
r0 r1 2N


 , where r =

r0r1 − n

2N
, (4.29)

in a sense of equation (4.15). By Proposition 6.1 in [35] the intersection number (x · y)W
is equal to

(x · y)W =
1

2

∑

i≥1
Card HomW/piW (x, y)deg 1,

and it is shown in [36] that

(x · y)W =
1

2
(ordp(M) + 1), where M =

D0D1 − 4n2

4N
.

Thus, it follows from Lemma 4.3 that

log p (x · y)W =
∂

∂s
Bp(H, 2 + s)

∣∣∣∣
s=0

. (4.30)

On the other hand for a fixed matrix H, it is shown in [36] that the given embeddings of
o0 and o1 into R correspond to points x ∈ PD0,r0

and y ∈ PD1,r1
which reduce to z(mod p)

and are congruent modulo pk where k = (ordp(M) + 1)/2. It is also proved in [36] that
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for a given matrix H the number of such points is equal to the number of embeddings of
S(H) into Eichler orders of index N in B(H). From Lemma 4.2 we know that the number
of such embeddings is equal to

∏
q 6=pBq(H). Thus, we have

(P ∗D0,r0
·P ∗D1,r1

)p log p =
∑

x∈P ∗D0,r0

y∈P ∗D1,r1

(x·y)W log p =
∑p

r∈Z

∂

∂s
Bp(H(r), 2 + s)

∣∣∣∣
s=0

∏

q 6=p
Bq(H(r)).

Here the sum is taken over the matrices H(r) of the form (4.29) such that the quaternion
algebra B(H(r)) is ramified at p and ∞. Since W2(H, Y ; 0) = 1 for H > 0 this sum is
equal to

∑p

r∈Z

∂

∂s
A2(H(r), s)

∣∣∣∣
s=0

.

Theorem 4.1 in the case k = 2 is proved.
Case k > 2. Suppose that x ∈ PD0,r0

and y ∈ PD1,r1
satisfy condition (4.28). It

follows from equation (3.3.1) and Proposition 3.3.3 in [80] that

(Sk−1(x) · Sk−1(y))W = (x · y)W (D0D1)
k/2−1 Pk−2

( n√
D0D1

)
,

where Pk−2(t) denote a constant multiple of
dk−2

dtk−2 (t
2 − 1)k−2 such that Pk−2(1) = 1. Set

H ′′(r) =
1

4N

(
D0 n

n D1

)
.

From equation (4.25) and Lemma 4.8 we see that

(Sk−1(x) · Sk−1(y))W = (x · y)W Wk−1/2,1−k/2(H
′′(r)).

Similarly to the case k = 2 considered above we arrive at the identity

(Sk−1(PD0,r0
) · Sk−1(PD1,r1

))p log p =
∑

x∈P ∗D0,r0

y∈P ∗D1,r1

(Sk−1(x) · Sk−1(y))W log p =

∑p

r∈Z
Wk−1/2,1−k/2(H

′′(r))
∂

∂s
Bp(H(r), 2 + s)

∣∣∣∣
s=0

∏

q 6=p
Bq(H(r)).

Here the sum is taken over the matrices H(r) of the form (4.29) such that the quaternion
algebra B(H) is ramified at p and ∞. This is equal to

∑p

r∈Z
A∗k(H(r)).

This finishes the proof of Theorem 4.1.
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4.12 Computation of archimedean local height

Proof of Theorem 4.2: For k > 2 and τ0, τ1 ∈ H define

gk(τ0, τ1) := −2Qk−2

(
1 +

|τ0 − τ1|2
2ℑτ0ℑτ1

)
.

Consider the function on H× H\ {(τ0, τ1)|τ0 = τ1} given by

Gk(τ0, τ1) =
∑

γ∈Γ0(N)

gk(τ0, γ(τ1)).

It is proved in Proposition 3.4.1 of [80] that for any two CM-points x and y on X0(N)
one has

〈Sk−1(x), Sk−1(y)〉 =
1

2
Gk(x, y).

Thus, it follows from Proposition 2 on p. 545 in [36] that

〈Sk−1(y∗D0,r0
), Sk−1(y

∗
D1,r1

)〉∞ = −2
∑

n>
√
D0D1

n≡−r0r1(mod2N)

ρ(n)Qk−2(
n√
D0D1

). (4.31)

For n ∈ Z, n2 ≡ D0D1 (mod 4N), where

ρ(n) =
∑

d|n
2−D0D1

4N

ε(d),

and ε is associated to the quadratic form [D0,−2n,D1] as in Sect. 3 of Chap. I in [36].
Take r := (n + r0r1)/2N and ni := (Di + r2i )/4N, i = 0, 1. It the case when the matrix
H(r) defined by (4.29) is indefinite we have

B(H(r), 2) = ρ(n). (4.32)

By Theorem 4.5 the number A∗
k(H(r)) in this case is equal to

A∗
k(H(r)) = (D0D1)

k/2−1Qk−2

( n√
D0D1

)
B(H, 2). (4.33)

Thus, equations (4.31)-(4.33) imply the statement of Theorem 4.2. 2

4.13 Computation of global height

Proof of Theorem 4.3: In the case k = 2 Theorem 4.3 follows from the results of [53].
Hence, here we concentrate on the case k > 2.
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Let D0, D1 be fundamental coprime discriminants and y
∗
D0,r0

, y∗D1,r1
be two Heegner

divisors on X0(N). From the arithmetic intersection theory reviewed in Section 4.4 we
know that

〈Sk−1(y∗D0,r0
), Sk−1(y

∗
D1,r1

)〉 =
∑

p

〈Sk−1(y∗D0,r0
), Sk−1(y

∗
D1,r1

)〉p

where the sum is taken over all the places of Q. For an integer r we consider a half integral
matrix

H(r) =
1

2



2n0 r r0
r 2n1 r1
r0 r1 2N


 . (4.34)

By Theorems 4.1 and 4.2 we have

〈Sk−1(y∗D0,r0
), Sk−1(y

∗
D1,r1

)〉p = const
∑p

r

A∗
k(H(r)),

where and the sum is taken over all integers r such that the quaternion algebra B(H(r))
(see Section 4.7 for the definition) is ramified at p and ∞ if p is finite and unramified at
all places if p =∞.

Each quaternion algebra B(H(r)) is ramified at an even number of places. Moreover,
Lemma 4.1 implies that A∗(H(r)) = 0 in the case when B(H(r)) is ramified at least at
two finite primes. Thus, we conclude

∑

p

∑p

r∈Z
A∗
k(H(r)) =

∑

r∈Z
A∗
k(H(r)).

By Proposition 4.1 this number is equal to the Fourier coefficient c(n0, r0, n1, r1) of the
function Ek,N . 2



Chapter 5

CM values of higher Green’s

functions

5.1 Introduction

For any integer k > 1 there is a unique function Gk on the product of two upper half
planes H× H which satisfies the following conditions:

(i) Gk is a smooth function on H× H \ {(τ, γτ), τ ∈ H, γ ∈ SL2(Z)} with values in R.

(ii) Gk(τ1, τ2) = Gk(γ1τ1, γ2τ2) for all γ1, γ2 ∈ SL2(Z).

(iii) ∆iGk = k(1− k)Gk , where ∆i is the hyperbolic Laplacian with respect to the i-th
variable, i = 1, 2.

(iv) Gk(τ1, τ2) = m log |τ1−τ2|+O(1) when τ1 tends to τ2 (m is the order of the stabilizer
of τ2, which is almost always 1).

(v) Gk(τ1, τ2) tends to 0 when τ1 tends to a cusp.

This function is called the Green’s function.
Let f be a modular function. Then the action of the Hecke operator Tm on f is given

by
(
f | Tm

)
(τ) = m−1

∑
(
a b
c d

)
∈ SL2(Z)\Mm

f

(
aτ + b

cτ + d

)
,

whereMm denotes the set of 2× 2 integral matrices of determinant m.
The Green’s functions Gk have the property

Gk(τ1, τ2) | T τ1
m = Gk(τ1, τ2) | T τ2

m ,

where T τi
m denotes the Hecke operator with respect to variable τi, i = 1, 2. Therefore, we

will simply write Gk(τ1, τ2)|Tm.
Denote by S2k(SL2(Z)) the space of cusp forms of weight 2k on the full modular group.

81
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Proposition 5.1. Let k > 1 and λ = {λm}∞m=1 ∈ ⊕∞m=1Z. Then the following are
equivalent

(i)
∑∞

m=1 λmam = 0 for any cusp form

f =
∞∑

m=1

amq
m ∈ S2k(SL2(Z))

(ii) There exists a weakly holomorphic modular form

gλ(τ) =
∞∑

m=1

λmq
−m +O(1) ∈M !

2−2k(SL2(Z)).

The proof of this proposition can be found, for example, in Section 3 of [11]. The
space of obstructions to finding modular forms of weight 2− 2k with given singularity at
the cusp and the space of holomorphic modular forms of weight 2k can be both identified
with cohomology groups of line bundles over a modular curve. The statement follows
from Serre duality between these spaces. An elementary proof that (ii) implies (i) is given
by noticing that if f =

∑
m amq

m ∈ S2k then f(τ) gλ(τ) dτ is a meromorphic form on
H\SL2(Z) with no poles except at ∞, thus its residue

∑
m λmam at ∞ vanishes by the

residue theorem.
We call a λ with the properties, given in the above proposition, a relation for S2k(SL2(Z)).

Note that the function gλ in (ii) is unique and has integral Fourier coefficients.
For a relation λ denote

Gk,λ :=
∞∑

m=1

λmm
k−1Gk(τ1, τ2) | Tm.

The following conjecture was formulated in [35] and [36].

Conjecture 1. Suppose λ is a relation for S2k(SL2(Z)). Then for any two CM points
z1, z2 of discriminants D1, D2 there is an algebraic number α such that

Gk,λ(z1, z2) = (D1D2)
1−k
2 log |α|.

Moreover, D. Zagier has made a more precise conjecture about the field of definition
and prime factorization of this number α. We will have to introduce some notations before
we can state the conjecture.

Assume that the discriminant −D < 0 is prime and consider the imaginary quadratic
field K := Q(

√
−D). For an integral ideal a ⊂ oK and m ∈ Z denote by ra(m) the

number of integral ideals of the norm m in the ideal class of a. We will write r(m) for
the total number of integral ideals of the norm m in K. Let H be a Hilbert class field
of K. Denote by h the class number of K. For an ideal class a ∈ CL(K) we denote by
σa the element of Gal(H/K) corresponding to a under the Artin isomorphism. Fix an
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embedding ı : H → C. Let p be a rational prime with
(
p
D

)
= −1. Let Pp = {Pi}hi=0 be

the set of prime ideals of H lying above p. Complex conjugation acts on this set. Since
the class number h is odd, there exists a unique prime ideal in Pp, say P1, with P1 = P1.
For a prime ideal P ∈ Pp there exists a unique element σ ∈ Gal(H/K) such that

Pσ = P1. (5.1)

Denote by a = a(P) a fractional ideal of K whose class corresponds to σ under the Artin
isomorphism.

The following precise version of Conjecture 1 was made by D. Zagier.

Conjecture 2. Let z1, z2 ∈ H be two CM-points of discriminant −D and let b := z1Z+Z,
c := z2Z+ Z be the corresponding fractional ideals of oK. Then

Gk,λ(z1, z2) = D1−k log |α|,

where α lies in the Hilbert class field H. Moreover, for a rational prime p with
(
p
D

)
6= 0

and a prime ideal P lying above p in H we have

ordP(α) = 0

in case
(
p
D

)
= 1 and

ordP(α) =
∞∑

m=1

Dm∑

n=0

λmm
k−1 Pk−1

(
1− 2n

Dm

)
rbc(Dm− n) rbca2

(n
p

)
(1 + ordp(n)) (5.2)

in case
(
p
D

)
= −1. Here Pk(x) = (2kk!)−1 dk

dxk
(x2 − 1)k is the k-th Legendre polynomial

and the ideal class a is defined as above.

In this chapter we present a proof Conjecture 1 in the case when z1, z2 lie in the same
imaginary quadratic field Q(

√
−D) and a proof of Conjecture 2.

Two main ingredients of our proof are the theory of Borcherds lift developed in [10]
and a notion of see-saw identities introduced in [50]. Firstly, following ideas given in [12]
we prove in Theorem 5.3 that the Green’s function can be realized as a Borcherds lift of
an eigenfunction of Laplace operator. This allows as to extend a method given in [62],
that is to analyze CM values of Green’s function using see-saw identities. In Theorem 5.4
we prove that a CM-value of higher Green’s function is equal to the regularized Petersson
product of a weakly holomorphic modular form of weight 1 and a binary theta series. In
Theorem 5.5 we use an embedding trick and show that the regularized Petersson product
of any weakly holomorphic modular form of weight 1 and a binary theta series is equal to
a CM-value of a certain meromorphic modular function. Thus, from Theorems 5.4 and
5.5 we see that that a CM-value of higher Green’s function is equal to the logarithm of a
CM-value of a meromorphic modular function with algebraic Fourier coefficients. Finally,
we use the theory of local height pairing [34] and the explicit computations of the height
pairing between Heegner points made in [35, 36] in order to compute these CM-value and
hence prove Conjecture 2.
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5.2 Differential operators

For k ∈ Z denote by Rk and Lk the Maass raising and lowering differential operators

Rk =
1

2πi

(
∂

∂τ
+

k

τ − τ̄

)
, Lk =

1

2πi
(τ − τ̄)2

∂

∂τ̄
,

which send real-analytic modular forms of weight k to real-analytic modular forms of
weight k + 2 and k − 2, respectively. Then the weight k Laplace operator is given by

∆k = −4π2Rk−2 Lk = −4π2 (Lk+2Rk − k) = (τ − τ̄)2
∂2

∂τ∂τ̄
+ k(τ − τ̄)

∂

∂τ̄
.

For integers l, k we denote by Fl,k the space of functions of weight k satisfying

∆f = (l − k/2)(1− l − k/2)f.

Proposition 5.2. The spaces Fl,k satisfy the following properties:

(i) The space Fl,k is invariant under the action of the group SL2(R),

(ii) The operator Rk maps Fl,k to Fl,k+2,

(iii) The operator Lk maps Fl,k to Fl,k−2.

For a modular form f of weight k we will use the notation

Rrf = Rk+2r−2 ◦ · · · ◦Rkf.

Denote f (s) := 1
(2πi)s

∂s

∂τs
f . We have (see equation (56) in [14])

Rr(f) =
r∑

s=0

(−1)r−s
(
r

s

)
(k + s)r−s
(4πy)r−s

f (s), (5.3)

where (a)m = a(a + 1) · · · (a +m− 1) is the Pochhammer symbol. For modular forms f
and g of weight k and l the Rankin-Cohen bracket is defined by

[f, g] = lf ′g − kfg′,

and more generally

[f, g]r = [f, g]k,lr =
r∑

s=0

(−1)s
(
k + r − 1

s

)(
l + r − 1

r − s

)
f (r−s) g(s). (5.4)

The function [f, g]r is a modular form of the weight k + l + 2r. Note that
(
k

s

)
:=

(k − s+ 1)s
s!

is defined for s ∈ N and arbitrary k.
We will need the following proposition.
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Proposition 5.3. Suppose that f and g are modular forms of weight k and l respectively.
Then, for an integer r ≥ 0 we have

Rr(f) g = a[f, g]r +R

( r−1∑

s=0

bsR
s(f)Rr−s−1(g)

)

where

a =

(
k + l + 2r − 2

r

)−1

and bs are some rational numbers.

Proof. The operator R satisfies the following property

R(fg) = R(f)g + fR(g).

Thus, the sum ∑

i+j=r

aiR
i(f)Rj(g)

can be written as

R

( ∑

i+j=r−1
biR

i(f)Rj(g)

)

for some numbers bi if and only if
∑r

i=0(−1)iai = 0. For the Rankin-Cohen brackets the
following identity holds

[f, g]r =
r∑

s=0

(−1)s
(
k + r − 1

s

)(
l + r − 1

r − s

)
R(r−s)(f)Rs(g). (5.5)

We will use the following standard identity

r∑

s=0

(
k + r − 1

s

)(
l + r − 1

r − s

)
=

(
k + l + 2r − 2

r

)
.

It follows from the above formula and (5.5) that the sum

(
k + l + 2r − 2

r

)
Rr(f)g − [f, g]r

can be written in the form

R

( ∑

i+j=r−1
biR

i(f)Rj(g)

)
.

This finishes the proof.
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Proposition 5.4. Suppose that f is a real analytic modular form of weight k − 2 and g
is a holomorphic modular form of weight k. Then, for a compact region F ⊂ H we have

∫

F

Rk−2(f) ḡ y
k−2 dx dy =

∫

∂F

f ḡ yk−2 (dx− idy).

Proof. This result is well known [12] and it follows easily from Stokes’s theorem.

Denote by Kν the K-Bessel function

Iν(x) =
∞∑

n=0

(x/2)ν+2n

n!Γ(ν + n+ 1)
, Kν(x) =

π

2

I−ν(x)− Iν(x)

sin(πν)
.

The function Kν becomes elementary for ν ∈ Z+ 1
2
. It can be written as

Kk+ 1

2
(x) =

(π/2)
1

2

xk+
1

2

e−x hk(x),

for k ∈ Z≥0, where hk is the polynomial

hk(x) =
k∑

r=0

(k + r)!

2rr!(k − r)!
xk−r. (5.6)

The equation (5.3) implies immediately the following statement.

Proposition 5.5. For k ∈ Z>0 the following identity holds

Rk
−2k(e(nτ)) = 2 y

1

2 nk+
1

2 Kk+1/2(2πny) e(nx) = y−k hk(2πny) e(nτ).

5.3 A see-saw identity

In the paper [50] S. Kudla introduced the notion of a “see-saw dual reductive pair.”
It gives rise in a systematic way to a family of identities between inner products of
automorphic forms on different groups, thus clarifying the source of identities of this type
which appear in many places in the literature. In this section we prove a see-saw identity
for the regularized theta integrals described in Section 1.8.

Suppose that (V, q) is a rational quadratic space of signature (2, b) and L ⊂ V is an
even lattice. Let V = V1 ⊕ V2 be a rational orthogonal splitting of (V, q) such that the
space V1 has the signature (2, b − d) and the space V2 has the signature (0, d). Consider
the two lattices N := L ∩ V1 and M := L ∩ V2. We have two orthogonal projections

prM : L⊗ R→M ⊗ R and prN : L⊗ R→ N ⊗ R.

Let M ′ and N ′ be the dual lattices of M and N . We have the following inclusions

M ⊂ L, N ⊂ L, M ⊕N ⊆ L ⊆ L′ ⊆M ′ ⊕N ′,
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and equalities of the sets

prM(L
′) =M ′, prN(L

′) = N ′.

Consider a rectangular |L′/L|×|N ′/N | dimensional matrix TL,N = TL,N(τ) with entries

ϑλ,ν(τ) =
∑

m∈M ′:
m+ν∈λ+L

e
(
−q(m)τ

)
(λ ∈ L′/L, ν ∈ N ′/N, τ ∈ H).

This sum is well defined since N ⊂ L. Note that the lattice M is negative definite
and hence the series converges. For a function f = (fλ)λ∈L′/L ∈ Mk+d/2(ρN) we define
g = (gν)ν∈N ′/N by

gν(τ) =
∑

λ∈L′/L
ϑλ,ν(τ) fλ(τ). (5.7)

In other words
g = TL,Nf (5.8)

where f and g are considered as column vectors.

Theorem 5.1. Suppose that the lattices L, M and N and functions f , g are defined as
above. Then the function g belongs to Mk+d/2(ρN). Thus, there is a map TL,N :Mk(ρL)→
Mk+d/2(ρN) defined by (5.8).

Proof. Consider the function

ΘM(−1)(τ) = ΘM(τ) =
∑

µ∈M ′/M

eµ
∑

m∈M+µ

e(−q(m)τ)

that belongs to Md/2(ρM(−1)). It follows from (5.7) and (1.15) that

TL,N(f) =
〈
resL/M⊕N(f),ΘM(−1)

〉
C[M ′/M ]

.

Thus, from Lemma 1.2 we deduce that TL,N(f) is in Mk+d/2(ρN).

Theorem 5.2. Let L, M , N be as above. Denote by i : Gr+(N) → Gr+(L) a natural
embedding induced by inclusion N ⊂ L. Then, for v+ ∈ Gr+(N) the theta lift of a function

f ∈ M̂ !
1−b/2(SL2(Z), ρL) the following holds

ΦL(i(v
+), f) = ΦN(v

+, TL,N(f)). (5.9)

Proof. For a vector l ∈ L′ denote m = prM(l) and n = prN(l). Recall that m ∈ M ′ and
n ∈ N ′. Since v+ is an element of Gr+(N) it is orthogonal to M . We have

q(lv+) = q(nv+), q(lv−) = q(m) + q(nv−).

Thus for λ ∈ L′/L we obtain

Θλ+L(τ, v
+) =

∑

l∈λ+L
e
(
q(lv+)τ + q(lv−

)
τ̄) =
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∑

m∈M ′, n∈N ′:
m+n∈λ+L

e
(
q(nv+)τ + q(nv−)τ̄ + q(m)τ̄

)
.

Since N ⊂ L we can rewrite this sum as

Θλ+L(τ, v
+) =

∑

ν∈N ′/N
Θν+N(τ, v

+)ϑν,λ(τ).

Thus, we see that for f = (fλ)λ∈L′/L the following scalar products are equal

〈f,ΘL(τ, v+)〉 = 〈TL,N(f),ΘN(τ, v+)〉.

Therefore, the regularized integrals (1.36) of both sides of the equality are also equal.

Remark 5.1. Theorem 5.2 works even in the case when v+ is a singular point of ΦL(v
+, f).

If the constant terms of f and TL,N(f) are different, then subvariety Gr
+(N) lies in singular

locus of ΦL(v
+, f). On the other hand, if constant terms of f and TL,N(f) are equal then,

singularities cancel at the points of Gr+(N).

Remark 5.2. The map TM,N is essentially the contraction map defined in §3.2 of [62].

5.4 Lattice M2(Z)

Consider the lattice of integral 2 × 2 matrices, denoted by M2(Z). Equipped with the
quadratic form q(x) := − det x it becomes an even unimodular lattice (recall that in our
notations the corresponding bilinear form is defined by (x, x) = 2q(x)).

The Grassmannian Gr+(M2(Z)) turns out to be isomorphic to H×H. This isomorphism
can be constructed in the following way. For the pair of points (τ1, τ2) ∈ H× H consider
the element of the norm zero

Z =

(
τ1τ2 τ1
τ2 1

)
∈M2(Z)⊗ C.

Define v+(τ1, τ2) be the vector subspace of M2(Z)⊗R spanned by two vectors X = ℜ(Z)
and Y = ℑ(Z). The map

(τ1, τ2) → v+(τ1, τ2) := RX + RY (5.10)

gives an isomorphism between hermitian domains H× H and Gr+(M2(Z)).
The group SL2(Z)× SL2(Z) acts on M2(Z) by (γ1, γ2)(x) = γ1x

tγ2 and preserves the
norm.The action of SL2(Z)×SL2(Z) on the Grassmannian agrees with the action on H×H

by fractional linear transformations

(γ1, γ2)(v
+(τ1, τ2)) = v+(γ1(τ1), γ2(τ2)).

We have

(X,X) = (Y, Y ) =
1

2
(Z,Z) = −1

2
(τ1 − τ̄1)(τ2 − τ̄2),
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(X, Y ) =
1

2i
(Z,Z) = 0.

For l =

(
a b
c d

)
∈M2(Z) and v+ = v+(τ1, τ2) we have

q(lv+) =
(l, Z)(l, Z)

(Z,Z)
=
| dτ1τ2 − cτ1 − bτ2 + a |2
−(τ1 − τ̄1)(τ2 − τ̄2)

.

Denote
Θ(τ ; τ1, τ2) := ΘM2(Z)

(
τ, v+(τ1, τ2)

)

where τ = x + iy. Considered as a function of τ Θ belongs to M0(SL2(Z)) and we can
explicitly write this function as

Θ(τ ; τ1, τ2) = y
∑

a,b,c,d∈Z
e

( |aτ1τ2 + bτ1 + cτ2 + d|2
−(τ1 − τ̄1)(τ2 − τ̄2)

(τ − τ̄)− (ad− bc)τ̄

)

= y
∑

a,b,c,d∈Z
e

( |aτ1τ2 + bτ1 + cτ2 + d|2
−(τ1 − τ̄1)(τ2 − τ̄2)

τ − |aτ1τ̄2 + bτ1 + cτ̄2 + d|2
−(τ1 − τ̄1)(τ2 − τ̄2)

τ̄

)
.

5.5 Higher Green’s functions as theta lifts

The key point of our proof is the following observation:

Proposition 5.6. Denote by ∆z the hyperbolic Laplacian with respect to variable z. For
the function Θ defined in the previous section the following identities hold

∆τΘ(τ ; τ1, τ2) = ∆τ1Θ(τ ; τ1, τ2) = ∆τ2Θ(τ ; τ1, τ2).

This identity can be proved by a straightforward computation. Identities of this kind
are the general feature of theta kernels [42], which was used in [12] in order to show that
Green’s functions can be realized as theta lifts. In this section we show how this general
principle can be applied to higher Green’s functions introduced in Section 5.1.

Suppose that λ = {λm}∞m=1 is a relation on S2k(SL2(Z)) (the definition is given in the
introduction). Then there exists a unique weakly holomorphic modular form gλ of weight
2− 2k with Fourier expansion of the form

∑

m

λm q
−m +O(1).

Consider the function hλ := Rk−1(gλ) which belongs to M̂
!
0(SL2(Z)).

Theorem 5.3. The following identity holds

Gk,λ(τ1, τ2) = ΦM2(Z)(v
+(τ1, τ2), hλ).

Here

ΦM2(Z)(v
+(τ1, τ2), hλ) = lim

t→∞

∫

Ft

hλ(τ)Θ(τ ; τ1, τ2) y
−2dx dy. (5.11)
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Proof. We verify that the function ΦM2(Z)(v
+(τ1, τ2), hλ) satisfies conditions (i)-(iv) listed

in the introduction.
Firstly, we verify Property (i). Let Tm ⊂ SL2(Z)\H × SL2(Z)\H be the m-th Hecke

correspondence. For a relation λ consider a divisor

Dλ :=
∑

m

λmTm.

Denote by Sλ the support of Dλ. It follows from the properties (i), (iv) of Green’s function
given at the introduction that the singular locus of Gk,λ is equal to Sλ. It follows from
Theorem B1 of Section 1.8 that the limit (5.11) exists for all (τ1, τ2) ∈ H×H\Sλ, moreover,
it defines a real-analytic function on this set. For the convenience of the reader we repeat
the argument given in [10]. The function hλ has the Fourier expansion

hλ(τ) =
∑

n∈Z
n≫−∞

c(n, y) e(nτ).

Fix v+ = v+(τ1, τ2) for some τ1, τ2 ∈ H×H. For t > 1 the set Ft can be decomposed into
two parts Ft = F1∪Πt where Πt is a rectangle Πt = [−1/2, 1/2]× [1, t]. It suffices to show
that the limit

lim
t→∞

∫

Πt

hλ(τ)ΘM2(Z)(τ ; v
+) y−2dx dy

exists for all (τ1, τ2) /∈ Sλ. We split the integral over Πt into two parts

∫

Πt

hλ(τ)ΘM2(Z)(τ ; v
+) y−2 dx dy =

∫

Πt

∞∑

m=1

c(−m, y)e(−mτ)ΘM2(Z)(τ ; v
+) y−2 dx dy

(5.12)

+

∫

Πt

(
hλ(τ)−

∞∑

m=1

c(−m, y) e(−mτ)
)
ΘM2(Z)(τ ; v

+) y−2 dx dy.

The first integral can be estimated as

∫

Πt

∞∑

m=1

c(−m, y) e(−mτ)ΘM2(Z)(τ ; v
+) y−2 dx dy

=
∞∑

m=1

t∫

1

∑

l∈M2(Z), q(l)=−m
c(−m, y) exp

(
−4π q(lv+) y

)
y−1 dy. (5.13)

Note that lv+ > 0 if c(q(l), y) 6= 0 and v+ /∈ Sλ. Hence, the limit of (5.13) as t → ∞ is
finite for v+ /∈ Sλ. Using the asymptotic estimates

hλ(τ)−
∞∑

m=1

c(−m, y) e(−mτ) = O(y1−k), y →∞,
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and

ΘM2(Z)(τ ; v
+) = O(y), y →∞,

we see that the second summand at the right hand side of (5.12) tends to a finite limit
as t goes to infinity.

Properties (i) and (iv) follow from Theorem B1 stated in Section 1.8.
Property (ii) is obvious since the function Θ(τ ; τ1, τ2) is SL2(Z)-invariant in the vari-

ables τ1 and τ2.
Property (iii) formally follows from the property of the theta kernel given in Proposi-

tion 5.6 and the fact that the Laplace operator is self adjoint with respect to Petersson
scalar product. More precisely, we have

∆τ1ΦM2(Z)(hλ, v
+(τ1, τ2)) = lim

t→∞

∫

Ft

hλ(τ)∆τ1Θ(τ ; τ1, τ2) y
−2dx dy.

Using Proposition 5.6 we arrive at

∆τ1ΦM2(Z)(hλ, v
+(τ1, τ2)) = lim

t→∞

∫

Ft

hλ(τ)∆τΘ(τ ; τ1, τ2) y
−2 dx dy.

It follows from the Stokes theorem that
∫

Ft

hλ(τ)∆τΘ(τ ; τ1, τ2) y
−2 dx dy −

∫

Ft

∆hλ(τ)Θ(τ ; τ1, τ2) y
−2 dx dy =

1/2∫

−1/2

(hλ L0(Θ)− L0(hλ)Θ)y
−2dx

∣∣∣∣∣
y=t

.

This expression tends to zero as t tends to infinity. Since gλ ∈ Fk,2−2k it follows from
Proposition 5.2 that ∆hλ = k(1 − k)hλ. Thus, we see that the theta lift ΦM2(Z)(hλ, v

+)
satisfies the desired differential equation

∆τiΦM2(Z)(hλ, v
+(τ1, τ2)) = k(1− k)ΦM2(Z)(hλ, v

+(τ1, τ2)), i = 1, 2.

It remains to prove (v). To this end we compute the Fourier expansion of ΦM2(Z)(hλ, v
+(τ1, τ2)).

This can be done using Theorem B2 of Section 1.8. We select a primitive norm zero vector

m :=

(
1 0
0 0

)
∈M2(Z) and choose m′ :=

(
0 0
0 1

)
so that (m,m′) = 1. For this choice of

vectors m, m′ the tube domain H defined by equation (1.37) is isomorphic to H×H and
the map between H × H and Grassmanian Gr+(M2(Z)) is given by (5.10). The lattice
K = (M2(Z) ∩m⊥)/m can be identified with

M2(Z) ∩m⊥ ∩m′⊥ =

{(
0 b
c 0

)∣∣∣∣ b, c ∈ Z

}
.
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Denote xi = ℜ(τi) and yi = ℑ(τi) for i = 1, 2. The subspace w+(τ1, τ2) ∈ Gr+(K) defined
by equation (1.38) in Section 1.8 is equal to

R

(
0 y1
y2 0

)
.

Suppose that the function gλ has the Fourier expansion

gλ =
∑

n∈Z
a(n) e(nτ).

It follows from Proposition 5.5 that

hλ(τ) =
∑

n∈Z
c(n, y) e(nτ)

where

c(n, y) = a(n) y1/2 nk−1/2Kk−1/2(2πny) exp(2πny).

Using (5.6) we can write

c(n, y) =
k−1∑

t=0

b(n, t)y−t,

where

b(n, t) = a(n)nk−1−t
(k + t− 1)!

2 πt t! (k − t− 1)!
.

We can rewrite (4.9) as

ΦM2(Z)(v
+, hλ) =

1√
2 |mv+ |

ΦK(w
+, h) +

√
2 |mv+ |

∑

l∈K

∑

n>0

e
(
(nl, u)

)
× (5.14)

×
∞∫

0

c
(
q(l), y

)
exp

(
−πn2/4q(mv+)y − 4πq(lw+)y

)
y−3/2dy

=
√
y1y2ΦK(w

+(τ1, τ2), fK) +
1√
y1y2

∑

l∈K

∑

n>0

e((nl, u))×

×
∞∫

0

c
(
q(l), y

)
exp

(
−πn

2y1y2
y

− πy
(l, v)2

y1y2

)
y−3/2dy,

where v+ = v+(τ1, τ2), w
+ = w+(τ1, τ2), u = ℜ

(
0 τ1
τ2 0

)
, and v = ℑ

(
0 τ1
τ2 0

)
. We

choose a primitive norm 0 vector r =

(
0 1
0 0

)
∈ K. It follows from Theorem 10.2 [10]
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that for y1 > y2

ΦK(w
+, hλ) =

k−1∑

t=0

(2r2w+)t+1/2 b(0, t) (−4π)t+1B2t+2 t!/(2t+ 2)! (5.15)

=
k−1∑

t=0

(y2/y1)
t+1/2 b(0, t) (−4π)t+1B2t+2 t!/(2t+ 2)!

=
(y2
y1

)k−1/2
(−1)k 2π a(0)B2k

2k(2k − 1)
.

In the case lw+ 6= 0 it follows from Lemma 7.2 of [11]

∫

y>0

c
(
q(l), y

)
exp

(
− πn2/4yq(mv+)− 2πyq(lw+)

)
y−3/2 dy (5.16)

=
k−1∑

t=0

2b
(
q(l), t

)
(2|mv+ | |lw+ |/n)t+1/2K−t−1/2(2πn|lw+ |/|mv+ |).

In case lw+ = 0 it follows from Lemma 7.3 of [11]

∫

y>0

c
(
q(l), y

)
exp

(
− πn2/4yq(mv+)− 4πyq(lw+)

)
y−3/2 dy (5.17)

=
k−1∑

t=0

b
(
q(l), t

) (
4q(mv+)/πn

2
)t+1/2

Γ(t+ 1/2).

Substituting formulas (5.15)-(5.17) into (5.14) we obtain

ΦM2(Z)(v
+(τ1, τ2), hλ) =(−1)k+1 (2πy2)

k

(2πy1)k−1
a(0)B2k

2k(2k − 1)
(5.18)

+ (4π2y1y2)
1−k a(0) ζ(2k − 1)

(2k!
k!

)2

+ 4
∑

t

∑

(c,d)∈Z2

(c,d) 6=(0,0)

∑

n>0

(y1y2)
−tb(cd, t)n−2t−1×

× e(ncx1 + ndx2)|ncy1 + ndy2|t+1/2K−t−1/2(2π|ncy1 + ndy2|).

We see from (5.18) that ΦM(v
+(τ1, τ2), hλ)→ 0 as y1 →∞. This finishes the proof.

Remark 5.3. The Fourier expansion of higher Green’s functions is computed using a
different method by Zagier in an unpublished paper [79].

5.6 CM values as regularized Petersson products

Now we can analyze the CM values of Gk,λ using the see-saw identity (5.9) .
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Let z1, z2 ∈ H be two CM points in the same quadratic imaginary field Q(
√
−D). Let

v+(z1, z2) be the two-dimensional positive definite subspace of M2(R) defined as

v+(z1, z2) = Rℜ
(
z1z2 z1
z2 1

)
+ Rℑ

(
z1z2 z1
z2 1

)
. (5.19)

In the case when z1 and z2 lie in the same quadratic imaginary field the subspace v
+(z1, z2)

defines a rational splitting of M2(Z) ⊗ Q. Therefore, we can consider the following two
lattices

N := v+(z1, z2) ∩M2(Z) and M := v−(z1, z2) ∩M2(Z).

The Grassmannian Gr+(N) consists of a single pointN⊗R and its image in Gr+(M2(Z))
is v+(z1, z2).

Since the lattice N has signature (2, 0) the theta lift of a function f ∈ M̂ !
1(SL2(Z), ρN)

is just a number and it is equal to the regularized integral

ΦN(f) =

∫ reg

SL2(Z)\H
〈f(τ),ΘN(τ)〉 y−1 dx dy =: (f,ΘN)reg. (5.20)

Here ΘN is a usual (vector valued) theta function of the lattice N . The matrix TM2(Z),N =
(ϑ0,ν)ν∈N ′/N becomes a vector in this case and it is given by

ϑ0,ν(τ) =
∑

m∈M ′∩(−ν+M2(Z))

e(−τm2/2).

Till the end of this section we will simply write ϑν(τ) for ϑ0,ν(τ).

Theorem 5.4. Suppose that two CM-points z1, z2 and a lattice N ⊂ M2(Z) are defined
as above. Let λ be a relation for S2k(SL2(Z)) and let gλ ∈ M !

2−2k(SL2(Z)) be the corre-
sponding weakly holomorphic form defined in Proposition 5.1. Then, if (z1, z2) /∈ Sλ we
have

Gk,λ(z1, z2) = (f,ΘN)reg,

where f = (fν)ν∈N ′/N ∈M !
1(SL2(Z), ρN) is given by

fν = [ gλ, ϑν ]k−1.

Proof. Recall that by Theorem 5.3

Gk,λ(z1, z2) = ΦM2(Z)(v
+(z1, z2), R

k−1(gλ)).

For (z1, z2) /∈ Sλ the constant term (with respect to e(x)) of the product

〈Rk−1(gλ)(τ),Θ(τ ; z1, z2)〉

is equal to ∑

l∈M2(Z)

al2/2(y) exp(−2πyl2v+)y
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and decays as O(y2−k) as y →∞. Thus,

ΦM2(Z)

(
v+(z1, z2), R

k−1(gλ)
)
= lim

t→∞

∫

Ft

Rk−1(gλ)(τ)Θ(τ ; z1, z2) y
−2dx dy.

It follows from the see-saw identity (5.9)

ΦM2(Z)

(
v+(z1, z2), R

k−1(gλ)
)
= lim

t→∞

∫

Ft

〈Rk−1(gλ)ϑ,ΘN〉 y−1 dx dy.

By Proposition 5.3

Rk−1(gλ)ϑν = (−1)k−1[gλ, ϑν ]k−1 +R
( k−2∑

s=0

bsR
s(gλ)R

k−2−s(ϑν)
)
, (5.21)

where bs are some rational numbers. For ν ∈ N ′/N denote

ψν(τ) :=
k−2∑

s=0

bsR
s(gλ)R

k−2−s(ϑν).

Using identity (5.21) we write

lim
t→∞

∫

Ft

〈Rk−1(gλ)ϑ,ΘN〉 y−1 dx dy =

(−1)k−1 lim
t→∞

∫

Ft

〈[gλ, ϑ]k−1,ΘN〉 y−1 dx dy + lim
t→∞

∫

Ft

〈R(ψ),ΘN〉 y−1 dx dy.

It follows from Proposition 5.4 that

lim
t→∞

∫

Ft

〈R(ψ),ΘN〉 y−1 dx dy =

lim
t→∞

∫ 1/2

−1/2
〈ψ(x+ it),ΘN(x+ it)〉 t−1 dx = 0.

This finishes the proof.

5.7 Embedding trick

Theorem 5.5. We let N be an even lattice of signature (2, 0) and let f ∈ M !
1(ρN) be a

modular form with zero constant term and rational Fourier coefficients. Then there exists
an even lattice P of signature (2, 1) and a function h ∈M !

1/2(ρP ) such that

(i) there is an inclusion N ⊂ P ;

(ii) the lattice P contains a primitive norm zero vector;
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(iii) the function h has rational Fourier coefficients;

(iv) the constant term of h is zero;

(v) we have TP,N(h) = f for the map TP,N defined in Theorem 5.2.

Proof. We adopt the method explained in [10], Lemma 8.1.
Consider two even unimodular definite lattices of dimension 24, for example three

copies of E8 root lattice E8 ⊕ E8 ⊕ E8 and the Leech lattice Λ24. We can embed both
lattices into 1

16
Z24. To this end we use the standard representation of E8 in which all

vectors have half integral coordinates and the standard representation of the Leech lattice
togather with the norm doubling map defined on p.242 of Chapter 8 in [19].

Denote by M1 and M2 the negative definite lattices obtained from E8 ⊕ E8 ⊕ E8 and
Λ24 by multiplying the norm with −1 and assume that they are embedded into 1

16
Z24.

Denote by M the negative definite lattice 16Z24. The theta functions of lattices M1

and M2 are modular forms of level 1 and weight 12 and their difference is 720∆, where
∆ = q − 24q2 + 252q3 +O(q4) is the unique cusp form of level 1 and weight 12.

Consider the function g in M !
−11(SL2(Z), ρN⊕M) defined as

g := res(N⊕M1)/N⊕M(f/∆)− res(N⊕M2)/N⊕M(f/∆).

The maps

res(N⊕Mi)/N⊕M :M !
−11(SL2(Z), ρN⊕Mi

)→M !
−11(SL2(Z), ρN⊕M), i = 1, 2,

are defined as in Lemma 1.1. It is easy to see from the definitions (1.15) and (5.7) that

TN⊕M,N(g) = TN⊕M,N

(
res(N⊕M1)/N⊕M(f/∆)− res(N⊕M2)/N⊕M(f/∆)

)
=

TN⊕M1,N(f/∆)− TN⊕M2,N(f/∆) =

f

∆
(Θ̄M1

− Θ̄M2
) = 720f.

Suppose that g has the Fourier expansion

gµ(τ) =
∑

m∈Q
cµ(m) e(mτ), µ ∈ (N ′ ⊕M ′)/(N ⊕M).

By the construction of g its constant term is zero. Consider the following set of vectors
in M ′

S := {l ∈M ′|c(0,l+M)

(
q(l)

)
6= 0},

where (0, l +M) denotes an element in (N ′ ⊕M ′)/(N ⊕M). Note that this set is finite
and does not contain the zero vector. Choose a vector p ∈M such that
1. the lattice N ⊕ Zp contains a primitive norm 0 vector;
2. (p, l) 6= 0 for all l ∈ S.
Consider the lattice P := N ⊕ Zp. It follows from Theorem B1 that the subvariety
Gr+(P ) of Gr+(N ⊕M) is not contained in the singular locus of ΦN⊕M(v

+, g). Moreover,
the restriction of ΦN⊕M(v

+, g) to Gr+(P ) is nonsingular at the point Gr+(N).
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Define h := 1
720
TN⊕M,P (g). The constant term of h is nonzero and h has rational (with

denominator bounded by 720) Fourier coefficients. We have

TP,N(h) =
1

720
TP,N

(
TN⊕M,P (g)

)
=

1

720
TN⊕M,N(g) = f.

This finishes the proof.

Theorem 5.6. We let N be an even lattice of signature (2, 0) and let f ∈ M !
1(ρN)

be a modular form with zero constant term and rational Fourier coefficients. Then the
regularized Petersson product

(f,ΘN)reg :=

∫ reg

SL2(Z)\H
f(τ)ΘN(τ) y

−1dx dy

satisfies

(f,ΘN)reg = log |α|

for some α ∈ Q̄.

Proof. By the definition of the regularized theta lift

ΦN(f) = (f,ΘN)reg.

Choose a lattice P of signature (2, 1) and a function h ∈ M !
1/2(ρP ) that satisfy Theorem

5.5. By Theorem 5.2 the conditions (iv) and (v) of Theorem 5.5 imply

ΦN(f) = ΦP (Gr
+(N), h).

There exists an integer n such that all negative Fourier coefficients of nh are integers.
The function nh satisfies the assumptions of Theorem B3 in Section 1.9. Hence we can
write

ΦP (Gr
+(N), h) = −4 log |ΨP (Gr

+(N), h)|,

where ΨP ( · , nh) is the meromorphic infinite product defined in Theorem B3. Since the
constant term of h is zero, from Theorem B3 we know that

ΦP (Gr
+(N), nh) = −4 log |ΨP (τN , nh)|,

where ΨP (τ, nh) is a meromorphic modular function on H for a congruence subgroup of
SL2(Z) with respect to some unitary character and τN ∈ H is a CM point. Theorem
14.1 of [11] says that this unitary character is finite. Theorem B3 Part 3 implies that
ΨP (τ, nh) has rational Fourier coefficients. Thus, it follows from the theory of complex
multiplication that α := ΨP (τN , h)

1/n is an algebraic number.
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5.8 Main Theorem

Theorem 5.7. Let z1, z2 ∈ H be two CM points in the same quadratic imaginary field
Q(
√
−D) and let λ be a relation on S2k(SL2(Z)) for an integer k > 1. Then there is an

algebraic number α such that
Gk,λ(z1, z2) = log |α|.

Proof. Let gλ be the weakly holomorphic modular form of weight 2 − 2k defined by
Proposition 5.1. Consider the function hλ = Rk−1(gλ). In Theorem 5.3 we showed that

Gk,λ(τ1, τ2) = ΦM2(Z)(v
+(τ1, τ2), hλ) (5.22)

for (τ1, τ2) ∈ H× H \ Sλ.
Let v+(z1, z2) be the two-dimensional positive definite subspace of M2(R) defined in

(5.19). In the case when z1 and z2 lie in the same quadratic imaginary field the subspace
v+(z1, z2) defines a rational splitting of M2(Z) ⊗ R. Hence, the lattice N := v+(z1, z2) ∩
M2(Z) has signature (2, 0).

It follows from Theorem 5.4 that

ΦM2(Z)(v
+(z1, z2), R

k−1(gλ)) = ΦN(f), (5.23)

where f = (fν)ν∈N ′/N ∈M !
1(SL2(Z), ρN) is given by

fν = [ gλ, ϑν ]k−1.

Let P and h be as in Theorem 5.5. Theorem 5.6 implies

ΦN(f) = ΦP (Gr
+(N), h) = −4 log |ΨP (Gr

+(N), h)|.
Thus, from the theory of complex multiplication we know that

ΦN(f) = log |α| (5.24)

for some α ∈ Q̄. The statement of the theorem follows from equations (5.22) – (5.24).

5.9 Prime factorization of regularized Petersson prod-

ucts

In this section we find a field of definition and prime factorization of the algebraic number
α defined in Theorem 5.6. For simplicity, we will restrict ourself to the case when the
lattice N has prime discriminant.

Theorem 5.8. Let N be an even lattice of signature (2, 0) and prime discriminant D.
Suppose that N is isomorphic to a fractional ideal b ⊂ K equipped with the quadratic form

1
NK/Q(b)

NK/Q(·). Let f ∈ M !
1(ρN) be a weakly holomorphic modular form with the Fourier

expansion

f =
∑

ν∈N ′/N

∑

t≫−∞
cν(t) q

t eν ,
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where cν(t) ∈ Z and c0(0) = 0. Then

(f,ΘN)reg = log |α|,

where α ∈ H. Moreover, for a rational prime p and an ideal P of H lying above p we
have

ordP(α) =
∑

t<0

∑

ν∈N ′/N
cν(t) rba2

(−Dt
p

) (
1 + ordp(t)

)
in the case

( p
D

)
= −1, (5.25)

ordP(α) = 0 in the case
( p
D

)
= 1.

We will prove Theorem 5.8 in Section 5.11.
Theorem 5.8 is compatible with, but stronger than the result of J. Schofer [62]. More

precisely, Theorem 4.1 of [62] states that the sum over all isomorphism classes of even
lattices of discriminant −D of the identity (5.8) is true.

In Section 5.12 we will show that Theorem 5.8 implies Conjecture 2.

Theorem 5.9. The factorization formula for the CM-values of higher Green’s functions
given in Conjecture 2 in Section 5.1 is true.

5.10 Lattices and fractional ideals

In this section we collect some facts about lattices and fractional ideals of quadratic
imaginary fields. They will play an important role in our proof of Theorems 5.8 and 5.9.

In this section −D is a negative prime discriminant. Recall the following well-known
resuts about fractional ideals of the imaginary quadratic field K = Q(

√
−D).

Lemma 5.1. Suppose that −D < 0 is a square-free discriminant and [a, b, c] is a primitive
quadratic form of disctiminant −D. Let z be a solution of the equation az2 + bz + c = 0.
Then the lattice

c = Z+ zZ

is a fractional ideal of the imaginary quadratic field K = Q(
√
−D). Moreover, this ideal

satisfies
cc = (a)−1. (5.26)

Lemma 5.2. Let c ⊂ K be a fractional ideal. Consider the quadratic form q(·) on K
given by q(β) = NK/Q(β). Then the dual lattice of c with respect to this quadratic form
is equal to (NK/Q(c))

−1 c d−1. Here d denotes the different of oK, i. e. the principal ideal
(
√
−D).

Our next goal is to find a convenient lattice of signature (2, 1) that contains the positive
definite lattice associated to the ideal b as a sublattice. Consider the lattice

L =

{(
A/D B

B C

) ∣∣∣A,B,C ∈ Z

}
(5.27)
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equipped with the quadratic form q(x) := −D det(x). Its dual lattice L′ is given by

L′ =

{(
A′/D B′/2D

B′/2D C ′

)∣∣∣A′, B′, C ′ ∈ Z

}
. (5.28)

For ℓ ∈ L′ with q(ℓ) < 0 denote by zℓ the point in H corresponding to the positive
definite subspace ℓ⊥ via (5.45). More explicitly, for the vector

ℓ =

(
γ −β/2

−β/2 α

)

the point zℓ is a root of the quadratic equation

αz2ℓ + βzℓ + γ = 0. (5.29)

The following two lemmas are crucial to show that for each fractional ideal b the
positive definite lattice associated to it is contained in L as a lower rank sublattice.

Lemma 5.3. For each ideal class c ∈ CLK there exists a vector m ∈ L′ such that q(m) =
−1/4 and zmZ+ Z ⊂ K is a fractional ideal in c.

Proof. The classical correspondence between fractional ideals of oK and binary quadratic
forms of discriminant −D implies that for each ideal class c ∈ CLK there exist A,B,C ∈ Z
such that

B2 − 4AC = −D
and for z ∈ H, satisfying

Az2 +Bz+ C = 0,

the subset zZ + Z of K is a fractional ideal in the ideal class c. Or equivalently, there
exists a half-integral matrix

l =

(
C −B/2

−B/2 A

)

with

zlZ+ Z ∈ c.

For each x ∈ SL2(Z) the fractional ideal zxlxtZ+ Z is equivalent to zlZ+ Z. It is easy to
see, that the matrix l is SL2(Z)-equivalent to some matrix of the form

l̃ =


 C̃ −B̃/2
−B̃/2 Ã


 , Ã ∈ DZ, B̃ ∈ DZ, C̃ ∈ Z.

Then the matrix m =: l̃/D belongs to L′, has norm −1/4, and since zm = zl̃ the fractional
ideal zmZ+ Z belongs to the ideal class c. Lemma is proved.
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Lemma 5.4. Let m ∈ L′ be a vector of norm −1/4. Set N := L ∩m⊥. Denote by c the
fractional ideal zmZ+ Z. Then the following holds
(i) the lattice N is isomorphic to the fractional ideal c2 equipped with the quadratic form
q(γ) = 1

NK/Q(c
2)
NK/Q(γ);

(ii) L = N ⊕ 2mZ.

Proof. First we prove part (i). Each element of L′ can be written as

m =
1

D

(
c −b/2

−b/2 a

)

for some a ∈ DZ, b ∈ Z, c ∈ Z. The condition 4Dq(m) = b2 − 4ac = −D implies that
b ∈ DZ. Set

Z :=
a

D

(
z2m zm

zm 1

)
.

This element of L⊗ C satisfies

q(Z) = q(Z) = 0 and (Z,Z) = 1.

Moreover, the elements Z and Z are both orthogonal to m. Consider the map

ı : K → N ⊗Q

defined by
s→ sZ + sZ.

This map is an isometry, assuming that the quadratic form on K is given by q(β) =
NK/Q(β) and the quadratic form on N ⊗Q is given by q(ℓ) = −D det(ℓ). We have

ı(a) =
a

D

(
z2m + zm

2 zm + zm

zm + zm 2

)
=

1

D

(
(b2 −D)/2 −ab
−ab 2a2

)
,

ı(azm) =
a

D

(
zmzm(zm + zm) z2m + zm

2

z2m + zm
2 zm + zm

)
=

1

D

(
−bc (b2 −D)/2

(b2 −D)/2 ab

)
,

ı(az2m) =
a

D

(
z2mzm

2 zmzm(zm + zm)

zmzm(zm + zm) z2m + zm
2

)
=

1

D

(
2c2 −bc
−bc (b2 −D)/2

)
.

Using that a, b ∈ DZ and b ≡ D(mod 2), we see that

ı(aZ+ a zm Z+ a z2mZ) ⊆ N. (5.30)

On the other hand
(a)c2 = aZ+ azmZ+ az2mZ. (5.31)
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Lemma 5.1 implies that the ideal (a)c2 has norm 1. Hence, by Lemma 5.2 the dual lattice
of (a)c2 in K is equal to d−1(a)c2. Since ı is an isometry, the dual of ı((a)c2) is ı(d−1(a)c2).
We have the inclusions

ı((a)c2) ⊆ N ⊂ N ′ ⊆ ı(d−1(a)c2). (5.32)

Since (d−1(a)c2)/((a)c2) ∼= Z/DZ we find that |N ′/N | is a divisor of D. Since a positive
definite 2-dimensional even lattice can not be unimodular, we deduce that |N ′/N | = D.
Thus the symbols “⊆” in (5.32) should be replaced by “=”. Part (i) of Lemma 5.4 is
proved.

Now we prove (ii). The condition q(m) = −1/4 implies that b ∈ DZ. Hence, the
element 2m belongs to L. Set M := 2mZ. We have the following inclusions

M ′ ⊕N ′ ⊆ L′ ⊂ L ⊆M ⊕N.

Observe that

|L′/L| = 2D, |M ′/M | = 2, |N ′/N | = D.

Thus, L =M ⊕N and L′ =M ′ ⊕N ′.

We combine the previous two lemmas in the following theorem.

Theorem 5.10. For each ideal class B of K there exists a vector m ∈ L′ such that
(i) q(m) = −1/4;
(ii) the lattice N := L∩m⊥ is isomorphic to the lattice NB defined as (b,NK/Q(·)/NK/Q(b))
for some b ∈ B;
(iii) L = N ⊕ 2mZ.

Proof. Since D is prime, the class number of K is odd. Thus, each ideal class b is equal
to c2 for some c ∈ CLK . Let m ∈ L′ be the vector constructed in Lemma 5.3, which
satisfies zmZ + Z ∈ c. Then Lemma 5.4 readily implies that m satisfies the conditions of
the theorem.

The following lemma will play an important role in the proof of Conjecture 2.

Lemma 5.5. Let z1, z2 ∈ H be two CM-points of discriminant D and let b := z1Z + Z,
c := z2Z+ Z be fractional ideals of oK. Consider the lattices N = M2(Z) ∩ v+(z1, z2) and
M = M2(Z) ∩ N⊥. Then the lattice N is isomorphic to the fractional ideal bc equipped

with the quadratic form
NK/Q(·)
NK/Q(bc)

and the lattice M is isomorphic to the fractional ideal bc

equipped with the quadratic form
−NK/Q(·)
NK/Q(bc)

.

Proof. Firstly, we compute the lattice N . Suppose that

a1z
2
1 + b1z1 + c1 = 0

and

a2z
2
2 + b2z2 + c2 = 0,
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where a1, b1, c1 ∈ Z, gcd(a1, b1, c1) = 1, a1 > 0 and a2, b2, c2 ∈ Z, gcd(a2, b2, c2) = 1,
a2 > 0. Consider the map

 : K →M2(Q)

defined by

x+ y
√
−D →




−b1 − b2
4a1a2

x− b1b2 −D

4a1a2
y

1

2a1
x+

b1
2a1

y

1

2a2
x+

b2
2a2

y −2y


 .

It maps K to v+(z1, z2) and is an isometry, provided that the quadratic form on K is
given by q(β) = NK/Q(β) and the quadratic form on M2(Q) is given by q(l) = − det(l).
We have

(1) =
−1
4a1a2

(
b1 + b2 −2a2
−2a1 0

)
,

(z1) =
−1
4a1a2

( −2c1 0

b1 − b2 2a2

)
,

(z2) =
−1
4a1a2

( −2c2 −b1 + b2
0 2a1

)
,

(z1 z2) =
−1
4a1a2

(
0 2c1
2c2 b1 + b2

)
.

Thus, we have

M2(Z) ∩ v+(z1, z2) = 2a1a2 (1)Z+ 2a1a2 (z1)Z+ 2a1a2 (z2)Z+ 2a1a2 (z1z2)Z. (5.33)

On the other hand

bc = Z+ z1Z+ z2Z+ z1 z2Z. (5.34)

Note that NK/Q(b) =
1

a1
and NK/Q(c) =

1

a2
. The quadratic form on bc is given by

q(γ) = a1 a2NK/Q(γ). Hence, we check that

q(1) = q
(
2a1a2 (1)

)
,

q(z1) = q
(
2a1a2 (z1)

)
,

q(z2) = q
(
2a1a2 (z2)

)
,

q(z1z2) = q
(
2a1a2 (z1z2)

)
.

Now the statement of the lemma follows from the equations (5.33) and (5.34). The lattice
M can be computed along the same lines.
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5.11 Proof of Theorem 5.8

Our next goal is to find a preimage of a function f ∈M !
1(ρN) under the map TL,N defined

in Theorem 5.2.
Recall that N ′/N ∼= Z/DZ and L′/L ∼= Z/2DZ. Moreover, we can choose isomor-

phisms ıN : Z/DZ→ N ′/N and ıL : Z/2DZ→ L′/L such that q(ıN(ν)) ≡ ν2/D(mod Z)
for each ν ∈ Z/DZ and q(ıL(λ)) ≡ λ2/4D(mod Z) for each λ ∈ Z/2DZ. Suppose that
f = (fν)ν∈N ′/N belongs to M !

k(ρN) for some odd k. Then, the transformation property

(1.12) for R̃ =

((
−1 0
0 −1

)
, i

)
and T̃ =

((
1 1
0 1

)
, 1

)
∈ Mp2(Z) implies that

fν = f−ν , ν ∈ Z/DZ

and fν has the Fourier expansion of the form

fν =
∑

t≡ν2(mod D)

c(t) e
( t
D
τ
)
.

Since D is prime, the Fourier expansion of f can be written as

f(τ) =
∑

ν∈Z/DZ

eν
∑

t≡ν2(mod D)

c(t) e
( t
D
τ
)
.

Similarly, we see that for l ∈ 1/2 + 2Z each modular form h ∈ M !
l (ρL) has the Fourier

expansion of the form

h(τ) =
∑

λ∈Z/2DZ

eλ
∑

d≡λ2(mod D)

b(d) e
( d

4D
τ
)
.

Theorem 5.11. Let the lattices L, N , and the vector m be as in Theorem 5.10. Sup-
pose that f ∈ M !

1(ρN) is a modular form with zero constant term and rational Fourier
coefficients. Then there exists a function h ∈ S !

1/2(ρL) such that:

(i) the function h(τ) =
∑

λ∈Z/2DZ eλ
∑

d≡λ2(mod 4D) b(d) e(
d
4D
τ) has rational Fourier coef-

ficients;

(ii) the Fourier coefficients of h satisfy b(−Ds2) = 0 for all s ∈ Z;

(iii) TL,N(h) = f .

Proof. Denote by S the lattice Z equipped with the quadratic form q(x) := −x2. For
this lattice we have S ′/S ∼= Z/2Z. Lemma 5.4 implies that L ∼= N ⊕ S. Note that
L′/L ∼= S ′/S ×N ′/N and ρL = ρS ⊗ ρN . Set

θ0(τ, z) =
∑

n∈Z
e(n2τ + 2nz), θ1(τ, z) =

∑

n∈ 1

2
+Z

e(n2τ + 2nz)
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and
θκ(τ) = θκ(τ, 0), κ = 0, 1.

It follows from the definition of TL,N that

(TL,N(h))ν =
∑

κ∈S′/S
h(κ,ν)θκ.

Let φ̃−2,1, φ̃0,1 be the weak Jacobi forms defined on p. 108 of [25]. These functions can
be written as

φ̃−2,1(τ, z) = ψ0(τ) θ0(τ, z) + ψ1(τ) θ1(τ, z),

φ̃0,1(τ, z) = ϕ0(τ) θ0(τ, z) + ϕ1(τ) θ1(τ, z)

where

ψ0 = −2− 12q − 56q2 − 208q3 + · · · , (5.35)

ψ1 = q−1/4 + 8q3/4 + 39q7/4 + 152q11/4 + · · ·

ϕ0 = 10 + 108q + 808q2 + 4016q3 + · · · ,
ϕ1 = q−1/4 − 64q3/4 − 513q7/4 − 2752q11/4 + · · · .

The vector-valued functions (ψ0, ψ1) and (ϕ0, ϕ1) belong to the spaces M !
−5/2(ρS) and

M !
−1/2(ρS) respectively, and they satisfy

φ̃−2,1(τ, 0) = ψ0(τ) θ0(τ) + ψ1(τ) θ1(τ) = 0, (5.36)

φ̃0,1(τ, 0) = ϕ0(τ) θ0(τ) + ϕ1(τ) θ1(τ) = 12.

First, we construct a function g ∈ M !
1/2(ρL) that satisfies conditions (i) and (iii).

Define

g(κ,ν) :=
1

12
ϕκfν , (κ, ν) ∈ S ′/S ×N ′/N. (5.37)

This function satisfies

TL,N(g) =
1

12

∑

ν∈N ′/N
eν (g(0,ν)θ0 + g(1,ν)θ1)

=
1

12

∑

ν∈N ′/N
eν fν(ϕ0θ0 + ϕ1θ1)

=f.

Next, we will add a correction term to g and construct a function that satisfies also
(ii). Fix an integer s > 0. Our next goal is to construct a supplementary function
g̃(τ) =

∑
λ∈Z/2DZ

∑
d≡λ2(mod 4D) ã(d) e(dτ) ∈M !

1/2(ρL) with the following properties:

ã(−Ds2) 6= 0 and ã(−Dr2) = 0 for all r > s, (5.38)

TL,N(g̃) = 0 (5.39)

g̃ has rational Fourier coefficients. (5.40)
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To this end we consider the following theta function

Θ̃ :=
∑

ν∈Z/DZ

eν
∑

a∈o+ν/
√
−D

(a2 + a2) e(aaτ).

By Theorem 4.1 in [10] his theta function belongs to S3(ρ). We define

g̃(κ,ν) := ψκ Θ̃ν j
s2−t

4
+1, (κ, ν) ∈ S ′/S ×N ′/N, (5.41)

where

t =

{
0 if s ≡ 0 mod 2,

1 otherwise,

and j is the j-invariant. First we check that the function g̃ satisfies condition (5.38). For
D 6= 3 we have

Θ0 = 4q +O(q2), q = e(τ).

Hence, from (5.41) we find that for s even

g̃(0,0) =− 8q−s
2/4 +O(q−s

2/4+1),

g̃(1,0) =4q
−s2/4−1/4 +O(q−s

2/4+3/4),

and for s odd

g̃(0,0) =− 8q−s
2/4+1/4 +O(q−s

2/4+5/4),

g̃(1,0) =4q
−s2/4 +O(q−s

2/4+1).

This proves (5.38). The function g̃ satisfies

TL,N(g̃) =
∑

ν∈N ′/N
eν (g̃(0,ν)θ0 + g̃(1,ν)θ1)

=
∑

ν∈N ′/N
eν Θ̃o+ν j

s2−t
4

+1 (ψ0θ0 + ψ1θ1)

= 0.

This proves (5.39). The property (5.40) is obvious.
By subtracting from g a suitable linear combination of functions g̃ for different s we

find a function

h(τ) =
∑

λ∈Z/DZ

eλ
∑

d≡λ2(mod 4D)

b(d) e
( d

4D
τ
)
∈M !

1/2(ρL)

such that

b(−Dr2) = 0 for all r ∈ Z\0, (5.42)

TL,N(h) = f, (5.43)

h(τ) has rational Fourier coefficients. (5.44)
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The final step is to show that b(0) = 0. Identity (5.43) implies that

h(0,0)θ0 + h(1,0)θ1 = f0.

Hence, the constant terms of these functions are equal. By the assumptions of the theorem

CT(f0) = 0.

On the other hand

CT(h(0,0)θ0 + h(1,0)θ1) =
∑

s∈Z
b(−Ds2) = b(0).

Thus, the function h satisfies the conditions (i)-(iii) of the theorem. This finishes the
proof.

We observe that the Grassmanian Gr+(L) is isomorphic to the upper half-plane H.
There is a map H→ Gr+(L) given by

z → v+(z) := ℜ
(
z2 z
z 1

)
R+ ℑ

(
z2 z
z 1

)
R ⊂ L⊗ R. (5.45)

The group Γ0(D) acts on L
′ and fixes all the elements of L′/L. Denote by X0(D) the

modular curve Γ0(D)\H.
Suppose that the vector m ∈ L′, the lattice N and the point zm ∈ H are defined as in

Theorem 5.10. Let h be the modular form h ∈ S !
1/2(ρL) satisfying

TL,N(h) = f, (5.46)

that was constructed in the previous theorem. It follows from (5.46) and Theorem 5.2
that

ΦL(h, zm) = ΦN(f).

Recall that by definition
ΦN(f) = (f,Θb)

reg.

Without loss of generality we assume that h has integral negative Fourier coefficients.
The infinite product Ψ(z) := ΨL(h, z) introduced in Section 1.9 defines a meromorphic
function on X0(D). Theorem B3 in Section 1.9 implies

(f,Θb)
reg = log |ΨL(h, zm)|. (5.47)

It also follows from Theorem B3 that the divisor of ΨL is supported at Heegner points.
Next we compute the local height pairing between Heegner divisors. These calculations

are carried out in the celebrated series of papers [35], [36]. For the convenience of the
reader we recall the main steps of the computation in what follows.

First, let as recall the definition of Heegner points and the way they can be indexed
by the vectors of the lattice L′.
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For ℓ ∈ L′ with q(ℓ) < 0 denote by xℓ the divisor (zℓ) − (∞) on the modular curve
X0(D). The divisor xℓ is defined over the Hilbert class field of Q(

√
Dq(ℓ)).

For any integer d > 0 such that −d is congruent to a square modulo 4D, choose a
residue β( mod 2D) with −d ≡ β2( mod 4D) and consider the set

Ld,β =

{
ℓ =

(
a/D b/2D

b/2D c

)
∈ L′

∣∣∣ q(ℓ) = − d

4D
, b ≡ β( mod 2D)

}

on which Γ0(D) acts. Define the Heegner divisor

yd,β =
∑

ℓ∈Γ0(D)\Ld,β

xℓ.

The Fricke involution acts on L′ by

ℓ→ 1

D

(
0 1
−D 0

)
ℓ

(
0 −D
1 0

)

and maps Ld,β to Ld,−β. Set
y∗d = yd,β + yd,−β. (5.48)

The divisor y∗d is defined over Q ([36] p. 499.)
Now we would like to compute the local height pairings between the divisor xℓ and a

Heegner divisor. The definition of the local height pairing is given in Section 4.3. The
divisors xℓ and y

∗
d have the point∞ at their common support. In order to define the height

pairing between these divisors we must fix a uniformizing parameter π at this cusp. We
let π denote the Tate parameter q on the family of degenerating elliptic curves near ∞.
This is defined over Q. Over C we have q = e(z) on X∗

0 (D) = Γ∗0(D)\H, where z ∈ H with
ℑ(z) sufficiently large. The following theorem can be deduced from the computations in
Section IV.4 in [36].

Theorem 5.12. Let d1, d2 > 0 be two integers and β1, β2 be two elements of Z/2DZ
with −d1 ≡ β2

1( mod 4D) and −d2 ≡ β2
2( mod 4D). Suppose that d1 is fundamental and

d2/d1 is not a full square. Fix a vector ℓ ∈ Ld1,β1. Let p be a prime with gcd(p,D) = 1.
Choose a prime ideal P lying above p in the Hilbert class field of Q(

√
−d1). Then the

following formula for the local height holds:
in the case

(
p
d1

)
= 1 we have

〈xℓ, y∗d2〉P = 0, (5.49)

in the case
(
p
d1

)
= −1 we have

〈xℓ, y∗d2〉P = log(p)
∑

r∈Z
r≡β1β2 mod 2

δd1(r) rnc2a2

(
d1d2 − r2
4Dp

)
ordp

(
d1d2 − r2

4D

)
. (5.50)

Here c = Zzℓ+Z, n = ZD+Zβ1+
√
−d1

2
, a is any ideal in the ideal class A defined by (5.1),

and

δd(r) =

{
2 for r ≡ 0 mod d;

1 otherwise.
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Proof. The curve X0(D) may be described over Q as the compactification of the space
of moduli of elliptic curves with a cyclic subgroup of order D [35]. Over a field k of
characteristic zero, the points y of X0(D) correspond to diagrams

ψ : F → F ′,

where F and F ′ are (generalized) elliptic curves over k and ψ is an isogeny over k whose
kernel is isomorphic to Z/DZ over an algebraic closure k.

The point zℓ ∈ H defines the point x ∈ X0(D). Then x = (φ : E → E ′) and over C
this diagram is isomorphic to

C/c
idC

// C/cn .

Following the calculations in [35] we reduce the computation of local heights to a
problem in arithmetic intersection theory. Let us set up some notations. Denote by v
the place of Hd1 , the Hilbert class field of Q(

√
−d1), corresponding to the prime ideal P.

Denote by Λv the ring of integers in the completion Hd1,v and let π be an uniformizing
parameter in Λv. Let W be the completion of the maximal unramified extension of Λv.
Let X be a regular model for X over Λv and x, y be the sections of X⊗Λv corresponding
to the points x and y. A model that has a modular interpretation is described in Section
III.3 of [35]. The general theory of local height pairing [34] implies

〈x, y〉v = −(x · y) log p.

The intersection product is unchanged if we extend scalars to W . By Proposition 6.1
in [35]

(x · y)W =
1

2

∑

n≥1
CardHomW/πn(x, y)deg1.

Denote by R the ring HomW/π(xℓ). On p. 550 of [36] the following formula for the
intersection number is obtained

(xℓ · y∗d2)W =
1

4

∑

r2<d1d2

r≡β1β2(mod 2D)

Card
{
S[d1,2r,d2] → R mod R×

}
ordp

(
d1d2 − r2

4D

)
, (5.51)

where S[d1,2r,d2] is the Clifford order

S[d1,2r,d2] = Z+ Z
1 + e1
2

+ Z
1 + e2
2

+ Z
(1 + e1)(1 + e2)

4
,

e21 = −d1, e22 = −d2, e1e2 + e2e1 = 2r.

In the case
(
p
d1

)
= 1 the ring R is isomorphic to an order in od1 . Since d1/d2 is not a

full square the ring R can not contain the Clifford order S[d1,2r,d2]. Hence, (xℓ · y∗d2)W = 0.

This proves (5.49).
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Now we consider the case
(
p
d1

)
= −1. Formula (9.3) in [35] gives us a convenient

description of the ring R. Namely, for a, b ∈ Q(
√
−d1) denote

[a, b] =

(
a b

pb a

)

and consider the quaternion algebra over Q

B =
{
[a, b]

∣∣∣ a, b ∈ Q(
√
−d1)

}
.

Then R is an Eichler order of index D in this quaternion algebra given by

R =
{
[a, b]

∣∣∣ a ∈ d−1, b ∈ d−1naca−1c−1, a ≡ b mod od1

}
,

where d is the different of Q(
√
−d1).

By the same computations as in Lemma 3.5 of [33] we find that the number of em-
beddings of S[d1,2r,d2] into R, normalized so that the image of e1 is [

√
−d1, 0], is equal

to

δd1(r) rnc2a2

(
d1d2 − r2
4Dp

)
ordp

(
d1d2 − r2

4D

)
.

This finishes the proof of the theorem.

Proof of Theorem 5.8. Since the discriminant −D is prime, the class number of K is odd
and there exists an ideal class c such that b = c2 in the ideal class group. The class c

contains an ideal of the form

c = zZ+ Z, (5.52)

where z is a CM point of discriminant −D. Property (5.52) is preserved when we act on
z by elements of SL2(Z). As we have explained in the proof of Theorem 5.10, we may
assume that z satisfies the quadratic equation

az2 + bz+ c = 0

for a ∈ DZ, b ∈ DZ, c ∈ Z and b2 − 4ac = −D. The matrix

m =
1

D

(
c −b/2
−b/2 a

)

belongs to the lattice L′ and has the norm −1/4. Lemma 5.4 implies that the lattice
N := L ∩m⊥ is isomorphic to the fractional ideal c2 equipped with the quadratic form
q(γ) = NK/Q(γ)/NK/Q(c

2) and moreover, the lattice L splits as L = N ⊕ 2mZ.
Next, by Theorem 5.11 we find a weak cusp form h ∈ S !

1/2(ρL) satisfying

TL,N(h) = f, (5.53)
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where TL,N is defined as in Theorem 5.2. Function h has the Fourier expansion

h(τ) =
∑

β∈Z/2DZ

eβ
∑

d≡β2( mod 4D)

b(d) e
( d

4D
τ
)
.

It follows from (5.53) and Theorem 5.2 that

(f,ΘN)reg = ΦL(h, z).

From Theorem B3 in Section 1.9 we know that

ΦL(h, z) = log |ΨL(h, z)|, (5.54)

where Ψ(z) = ΨL(h, z) is a meromorphic function. Theorem B3 also implies that

div(Ψ) =
∞∑

d=0

b(−d) y∗d, (5.55)

where y∗d is the Heegner divisor defined in (5.48).
Set x = (z) − (∞). The condition (ii) of Theorem 5.11 implies that the function

ΦL(h, ·) is real analytic at the point z. Thus, the only point in the common support of x
and div(Ψ) is∞. Recall, that we have fixed the uniformizing parameter π at this cusp to
be the Tate parameter q on the family of degenerating elliptic curves near ∞.

Recall that the divisors x and div(Ψ) are defined over H. The axioms of local height
(listed in Section 4.3) together with the refined definition (4.8) imply that for each prime
P of H

ordP
(
Ψ(z)

)
log p− ordP

(
Ψ[∞]

)
log p =

〈
x,

∞∑

d=1

b(−d) y∗d
〉
P
. (5.56)

From the infinite product of Theorem 13.3 in [10] we find that Ψ[∞] = 1 for the choice
of the uniformizing parameter at ∞ as above. Theorem 5.11 part (ii) implies that d/D
is not a full square provided b(−d) 6= 0. Thus, by Theorem 5.12 for each prime P of H
lying above a rational prime p with

(
p
D

)
6= 0 we obtain

〈x, y∗d〉P = 0

in the case
(
p
D

)
= 1, and

〈x, y∗d〉P = log(p)
∑

n∈Z
n≡d(mod 2)

rc2a2

(
d−Dn2

4p

)
ordp

(
d−Dn2

4

)
(5.57)

in the case
(
p
D

)
= −1. We observe that the sum

∞∑

d=0

b(−d)
∑

n∈Z
n≡d(mod 2)

rc2a2

(
d−Dn2

4p

)
ordp

(
d−Dn2

4

)
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is equal to the constant term with respect to e(τ) of the following series

∑

ν∈Z/DZ

((
h(0,ν)θ0 + h(1,ν)θ1

) ∑

t≡ν mod D

rba2
( t
p

)
ordp(t) e

( t
D
τ
) )

.

The equation (5.53) implies

fν = h(0,ν)θ0 + h(1,ν)θ1, ν ∈ Z/DZ. (5.58)

Hence, combining the equations (5.57) and (5.58) we arrive at

〈
x,

∞∑

d=0

b(−d) y∗d
〉
P
= log p

∑

ν∈Z/DZ

∞∑

t=0

cν(−t) rba2
( t
p

)
ordp(t).

Finally, the equations (5.54) and (5.56) imply

ordP(α) = ordP(ΨL(h, z)) =
1

log p

〈
x,

∞∑

d=0

b(−d) y∗d
〉
P
=

=
∑

ν∈Z/DZ

∞∑

t=0

cν(−t) rba2
( t
p

)
ordp(t).

This finishes the proof of Theorem 5.8. 2

5.12 Theorem 5.8 implies Conjecture 2

Proof of Theorem 5.9: Recall that for a relation λ and two CM-points z1, z2 ∈ H lying
in the same quadratic field K = Q(

√
−D) Theorems 5.3 and 5.4 imply

Gk,λ(z1, z2) = (f,ΘN)reg. (5.59)

Here the lattices N and M are defined as

N := v+(z1, z2) ∩M2(Z), M := N⊥ ∩M2(Z)

and the function f =∈M !
1(SL2(Z), ρN) is given by

f = [ gλ,ΘM(−1)]k−1.

Firstly, we compute the lattices N = M2(Z) ∩ v+(z1, z2) and M = M2(Z) ∩ N⊥.
By Lemma 5.5 the lattice N is isomorphic to the fractional ideal bc equipped with the
quadratic form 1

NK/Q(bc)
NK/Q(·) and the lattice M is isomorphic to the fractional ideal bc

equipped with the quadratic form −1
NK/Q(bc)

NK/Q(·).
Next, we compute the negative Fourier coefficients of the function

f = [gλ,ΘM(−1)]k−1.



113

The function f has the Fourier expansion of the form

f =
∑

ν∈N ′/N
eν

∑

t∈ 1

D
Z

t≫−∞

cν(t) e(tτ).

For a definite even lattice L, an element λ ∈ L′/L and a rational number t we denote by
RL,λ(t) the number of elements of norm t in λ+ L. The formula (5.4) implies

[e(−mτ), e(nτ)]2−2k,1k−1 =
k−1∑

s=0

(−1)s
(

k − 1
k − 1− s

)(−k
s

)
(−m)(k−1−s) ns e

(
(−m+ n)τ

)

= (−m)k−1Pk−1
(
1− 2n

m

)
e
(
(−m+ n)τ

)
,

where Pk(x) = (2kk!)−1 dk

dxk
(x2 − 1)k is the k-th Legendre polynomial. Hence, for t < 0

and ν ∈M ′/M the Fourier coefficients of f are equal to

cν(t) = (−1)k−1
∑

m

λmm
k−1 Pk−1

(
− 1− 2t

m

)
RM(−1),ν(m+ t). (5.60)

Finally, we recall that by the standard argument

rf(n) =
∑

λ∈L′/L
RL,λ(

n

D
),

whereD is square free, f is a fractional ideal in the imaginary quadratic fieldK = Q(
√
−D)

and L is the lattice a with quadratic form 1
NK/Q(f)

NK/Q(·). Note that q(λ) ∈ 1
D
Z for all

λ ∈ L. Thus, we can rewrite (5.60) for n > 0 as

∑

ν∈N ′/N
cν
(−n
D

)
=
∑

m

λmm
k−1 rbc(Dm− n)Pk−1

(
1− 2n

Dm

)
. (5.61)

Now, after we have computed the lattice N and the function f in (5.59), applying
Theorem 5.8 to the right hand side of (5.59) we obtain the statement of Conjecture 2.2

5.13 Numerical examples

In this section we give examples and numerical computations to Theorems 5.7, 5.8, and 5.9.

Computation of G2(z1, z2)

In this subsection we explain how to compute G2(z1, z2) for two CM points z1, z2 ∈ H lying
in the same quadratic imaginary field Q(

√
−D), and then give an example that is worked

out in detail.
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Step 1. Find the function g ∈ M !
−2(SL2(Z)) with Fourier expansion g = q−1 + O(1).

This function is

g =
E4E6

∆
.

Step 2. Consider the vector space v+ = v+(z1, z2). Compute the latticesN = v+∩M2(Z),
M = N⊥ ∩M2(Z) and the corresponding finite abelian groups N ′/N , M ′/M .

Step 3. Compute TM2(Z),N = (ϑν)ν∈N ′/N , where ϑν is the binary theta series

ϑν(τ) = ϑ0,ν(τ) =
∑

m∈M ′∩(−ν+M2(Z))

e
(
− τq(m)

)
.

Step 4. Compute f ∈M !
1(SL2(Z), ρN) given by

fν = [g, ϑν ], ν ∈ N ′/N.

Step 5. The vectors

l1 = ℜ
(
z1z2 z1
z2 1

)
l2 =

1√
D
ℑ
(
z1z2 z1
z2 1

)

satisfy

N ⊗Q = l1Q+ l2Q,

q(l1) = Dℑ(z1)ℑ(z2), q(l2) = ℑ(z1)ℑ(z2), (l1, l2) = 0.

For simplicity assume that there exist a Q-basis m1,m2 of N ⊗Q such that

q(m1) = D, q(m2) = 1, (m1,m2) = 0.

This assumption holds in the examples we consider below. Define K = mZ where
q(m) = −1 and set

P := N ⊕K.
It follows from the assumption that the lattice P contains a norm 0 primitive vector.
Moreover, there is an isomorphism between rational quadratic spaces (P ⊗Q, q) and
(S2(Q),−D det(·)). For example, the isomorphism given by

xm1 + ym2 + zm →



z + y

D
x

x z − y


 .

The group SL2(Q) acts on P ⊗Q by x→ γxγt and preserves the norm q(·). Finally,
we find a congruence subgroup Γ ⊂ SL2(Z) that fixes all elements of P ′/P .
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Step 6. Next we must find h ∈M !
1/2(SL2(Z), ρP ) with constant term 0 satisfying

TP,N(h) = f, (5.62)

where TP,N is defined as in Theorem 5.2. We do this as follows.

Note that P ′/P ∼= K ′/K × N ′/N and ρP = ρK ⊗ ρN . For K as above we have
K ′/K ∼= Z/2Z.

Denote
θ0(τ, z) =

∑

n∈Z
e(n2τ + 2nz), θ1(τ, z) =

∑

n∈ 1

2
+Z

e(n2τ + 2nz)

and
θκ(τ) = θκ(τ, 0), κ = 0, 1.

Recall that by the definition of TP,N

(TP,N(h))ν =
∑

κ∈K′/K
h(κ,ν)θκ.

Let φ̃−2,1, φ̃0,1 be the weak Jacobi forms defined in the book [25] p.108.

We can write

φ̃−2,1(τ, z) = ψ0(τ) θ0(τ, z) + ψ1(τ) θ1(τ, z),

φ̃0,1(τ, z) = ϕ0(τ) θ0(τ, z) + ϕ1(τ) θ1(τ, z)

where

ψ0 = −2− 12q − 56q2 − 208q3 + · · · , (5.63)

ψ1 = q−1/4 + 8q3/4 + 39q7/4 + 152q11/4 + · · ·

ϕ0 = 10 + 108q + 808q2 + 4016q3 + · · · ,
ϕ1 = q−1/4 − 64q3/4 − 513q7/4 − 2752q11/4 + · · · .

The vector valued functions (ψ0, ψ1) and (ϕ0, ϕ1) belong to M
!
−5/2(SL2(Z), ρK) and

M !
−1/2(SL2(Z), ρK) respectively, and one has

φ̃−2,1(τ, 0) = ψ0(τ)ϑ0(τ) + ψ1(τ)ϑ1(τ) = 0, (5.64)

φ̃0,1(τ, 0) = ϕ0(τ)ϑ0(τ) + ϕ1(τ)ϑ1(τ) = 12.

Define the supplementary function f̃ ∈M !
3(SL2(Z), ρN) as

f̃ν = [g, ϑν ]2, ν ∈ N ′/N.

We have
f0 = q−1 + 0 +O(q), and f̃0 = q−1 + 0 +O(q). (5.65)
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Consider the function h ∈M !
1/2(SL2(Z), ρP ) defined by

h(κ,ν) :=
3

4
ψκf̃ν +

1

9
ϕκfν , (κ, ν) ∈ K ′/K ×N ′/N. (5.66)

It follows from (5.63) and (5.65) that h has the constant term 0. The equations
(5.64) imply that h satisfies (5.62).

Step 7. Compute the infinite product corresponding to h defined in Theorem B3(see
Section 1.9). Note that the negative Fourier coefficients of h might be not integral.
Denote by n the common denominator of all negative Fourier coefficients of h. The
function nh(τ) satisfies the conditions of Theorem B3 and only the function ΨP (nh)
is well defined.

Using results from [10], which are repeated in Section 1.9, we can find the level
of ΨP (nh), its zeros and poles, and its Fourier expansion at cusps. Knowing this
information we can compute the value of ΨP (nh) at the CM-point Gr

+(N).

Step 8. In the final step we compute G2(z1, z2). Theorems 5.3 and 5.4 tell us that

G2(z1, z2) = (f,ΘN)reg.

Theorem 5.5 implies
(f,ΘN)reg = ΦP (Gr

+(N), h).

Since the constant term of h is zero, from Theorem B3 we know that

ΦP (Gr
+(N), h) = − 4

n
log(ΨP (Gr

+(N), nh)).

Computation of G2

(
1+
√
−23
4

, −1+
√
−23

4

)

Now we apply the algorithm described above to the pair of CM points

z1 =
1 +
√
−23

4
, z2 =

−1 +
√
−23

4
.

Step 1. Recall that

g =
E4E6

∆
= q−1 − 240− 141444q − 8529280q2 − 238758390q3 + · · ·

is the unique function in M !
−2 with the Fourier expansion q

−1 +O(1).
Step 2. The lattice N = v+(z1, z2) ∩M2(Z) is equal to

N = n1Z+ n2Z

where

n1 =

(
3 −11
−12 −2

)
, n2 =

(
0 1
1 0

)
.
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The dual lattice is given by

N ′ =
1

23
n1Z+ n2Z

and the Gram matrix of N is
(
276 −23
−23 2

)
.

Step 3. We compute TM2(Z),N = (ϑν)ν∈N ′/N defined by

ϑν(τ) =
∑

m∈M ′∩(−ν+M2(Z))

e
(
− τq(m)

)
.

The lattice M = N⊥ ∩M2(Z) is equal to

M = m1Z+m2Z

where

m1 =

(
−11 2
−2 −8

)
, m2 =

(
−7 1
−1 −5

)
.

The dual lattice is given by

M ′ =
1

23
m1Z+m2Z

and the Gram matrix of M is
(
−184 −115
−115 −72

)
.

We identify Z/23Z with N ′/N by sending r to r
23
n1. Then

ϑν(τ) =
∑

x∈6r+23Z, y∈Z
e
(
τ(

4

23
x2 + 5xy + 36y2)

)
.

Step 4. We compute f ∈M !
1(SL2(Z), ρN) given by

fν = [g, ϑν ], ν ∈ N ′/N.

The Fourier expansion of 23f is given below.
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ν ∈ N ′/N 23 fν

0 −23x−23 −3253074x23 + · · ·
±1 −11x−17 −2845x6 − 4964298x29 + · · ·
±2 75x− 34489x24 + · · ·
±3 −7x−15 −3801x8 − 5530941x31 + · · ·
±4 −15x−19 −1889x4 − 4397647x27 + · · ·
±5 2x−11 −11520x12 − 13295643x35 + · · ·
±6 −5x−14 −4238x9 − 5829924x32 + · · ·
±7 26x−5 −17221x18 − 16709862x41 + · · ·
±8 18x−7 −15305x16 − 15577459x39 + · · ·
±9 −17x−20 −1411x3 − 4114356x26 + · · ·
±10 −19x−21 −960x2 − 3818769x25 + · · ·
±11 3x−10 −6093x13 − 6982596x36 + · · ·

Here x = e(τ/23).

Step 5. Consider the lattice

L =

{(
a/23 b

b c

) ∣∣∣a, b, c ∈ Z

}

equipped with the quadratic form q(l) := −23 det(l). Choose the vector

l1 =

(
12/23 1

1 2

)
.

The vector l1 has the norm q(l1) = −1 and its orthogonal complement L∩l⊥1 is isomorphic
to N . Moreover, L splits into a direct sum L ∼= p1Z⊕N. Denote

l2 =

(
6 12
12 23

)
, l3 =

(
11/23 −1
−1 −1

)
.

The lattice L is equal to l1Z+l2Z+l3Z and the dual lattice L′ is equal to 1
2
l1Z+

1
23
l2Z+l3Z.

The group Γ∗0(23) acts on L
′ by x→ γxγt and fixes all elements of L′/L.

Step 6. We compute the function h ∈ M !
1/2(SL2(Z), ρL) defined by (5.66). The Fourier

expansion of 529h(τ) is given in the following table.
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µ ∈ L′/L 529hµ(τ)

(0, 0) 4232x−92 +O(x)

(0, 1) −5290x−115 − 4232x−23 +O(x)

(±1, 1) −2854x−91 +O(x)

(±1, 0) 2672x−68 +O(x)

(±2, 1) 1698x−19 +O(x)

(±2, 0) O(x)

(±3, 1) −2186x−83 +O(x)

(±3, 0) 2440x−60 +O(x)

(±4, 1) −3594x−99 − 12943x−7 +O(x)

(±4, 0) 3048x−76 +O(x)

(±5, 1) −2132x−67 +O(x)

(±5, 0) 4816x−44 +O(x)

(±6, 1) −1879x−79 +O(x)

(±6, 0) 2378x−56 +O(x)

(±7, 1) 148x−43 +O(x)

(±7, 0) 6880x−20 +O(x)

(±8, 1) −468x−51 +O(x)

(±8, 0) 5904x−28 +O(x)

(±9, 1) −3991x−103 − 16870x−11 +O(x)

(±9, 0) 3290x−80 +O(x)

(±10, 1) −4406x−107 − 17224x−15 +O(x)

(±10, 0) 3568x−84 +O(x)

(±11, 1) −831x−63 +O(x)

(±11, 0) 2490x−40 +O(x)

with x as before .

Step 7. There is a map H→ Gr+(L) given by

z → v+(z) := ℜ
(
z2 z
z 1

)
R+ ℑ

(
z2 z
z 1

)
R ⊂ L⊗ R. (5.67)

For the theta integral of the vector valued function h ∈M !
1/2(SL2(Z), ρL) we write

ΦL(z, h) := ΦL(v
+(z), h),

and for the corresponding meromorphic function(infinite product)

ΨL(z, h) := ΨL(v
+(z), h). (5.68)
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Note that

Gr+(N) = v+
(23 +

√
−23

46

)
. (5.69)

All the elements of L′/L are fixed by the group Γ0(23). Hence, the theta integral
ΦL(z, h) is invariant under Γ0(23). The infinite product ΨL(z, h) is an automorphic mod-
ular function for Γ0(23) with some unitary character χ. This character has finite order
(see [11], Theorem 4.1).

The curve Γ∗0(23)\H has genus 0 and only one cusp. Let j∗23(z) be the Hauptmodul for
Γ∗0(23) having the Fourier expansion j

∗
23(z) = q−1 + O(q), where q = e(z). This function

is given explicitly by

j∗23(z) =
1

η(z)η(23z)

∑

m,n∈Z
e((m2 +mn+ 6n2)z)− 3

= q−1 + 4q + 7q2 + 13q3 + 19q4 + 33q5 + 47q6 + 74q7 + · · · .

For any integer d > 0 such that −d is congruent to a square modulo 92, choose an integer
β( mod 46) with −d ≡ β2( mod 92) and consider the set

Ld,β =

{
l =

(
a/23 b/46

b/46 c

)
∈ L′

∣∣∣ q(l) = −d/92, b ≡ β( mod 46)

}

on which Γ0(23) acts. The Fricke involution acts on L
′ by

l → 1

23

(
0 1
−23 0

)
l

(
0 −23
1 0

)

and maps Ld,β to Ld,−β
For l ∈ L′ with q(l) < 0 denote by zl the point in H corresponding the positive definite

subspace l⊥ via (5.67). The following equation holds

23az2l + bzl + c = 0 for l =

(
c/23 −b/46
−b/46 a

)
.

We define a polynomial Hd,23(X) by

Hd,23(X) =
∏

l∈Ld,β

(X − j∗23(zl))
1/|Stab(l)|.

It follows from Theorem B3 part 2 that

Ψ(z, h) = λ(h)
∏

d≪∞
Hd,23(j

∗
23(z))

B(d),

where
λ(h) = 216
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and the numbers B(d) can be found from the Fourier expansion of h given in the table
on page 122. For example we find

B(7) = −12943, B(11) = −16870, B(15) = −17224, B(19) = 1698.

The full list of the numbers B(d) is given in the table on page 126.

Step 8. The last step is to compute the value ΨL

(
Gr+(N), h

)
. The equation (5.69)

implies

ΨL

(
Gr+(N), h

)
= ΨL

(23 +
√
−23

46
, h
)

Consider the following algebraic numbers. Let ̺ be the real root of the polynomial
X3 −X − 1, and let πq, (q = 5, 7, 11, 17, 19, 25, 49) be the numbers of norm q in H given

in (0.2). The value of the Hauptmodul j∗23 at the point
23+

√
−23

46
is equal to −̺ − 2. The

values of Hd,23

(
j∗
(
23+

√
−23

46

))
are given in the following table.

d 529B(d) Hd,23(X) Hd,23(−2− ̺)

7 −12943 (X + 2)2 ̺2

11 −16870 (X + 1)2 ̺6

15 −17224 (X2 + 3X + 3)2 ̺10

19 1698 (X + 3)2 ̺−8

20 6880 (X2 + 4X + 5)2 π2
5 ̺

10

23 −4232 X3 + 6X2 + 11X + 7 0

28 5904 X2(X + 2)2 π2
7 ̺

2

40 2490 (X2 + 2X + 3)2 π2
25 ̺

6

43 148 (X − 1)2 π4
5 ̺

16

44 4816 (X + 1)2(X3 + 7X2 + 17X + 13)2 π2
11 ̺

10

51 −468 (X2 + 4X + 7)2 π4
7 ̺

−6

56 2378 (X4 + 4X3 − 16X − 17)2 π2
49 ̺

12

60 2440 (X2 + 3X + 3)2(X2 + 7X + 13)2 π2
25

63 −831 (X + 2)2(X4 + 5X3 + 12X2 + 20X + 19)2 π4
25 ̺

8

67 −2132 (X − 3)2 π4
11 ̺

6

68 2672 (X4 + 10X3 + 34X2 + 46X + 25)2 π2
17 ̺

−6

76 3048 (X + 3)2(X3 −X2 − 9X − 9)2 π2
19 ̺

4
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d 529B(d) Hd,23(X) Hd,23(−2− ̺)

79 −1879 (X5 + 10X4 + 43X3 + 90X2 + 90X + 27)2 π4
49 ̺

16

80 3290 (X2 + 4X + 5)2(X4 + 6X3 + 20X2 + 30X + 17)2 π2
5 π

2
25 ̺

28

83 −2186 (X3 −X2 − 13X − 19)2 π4
25 ̺

6

84 3568 (X4 + 2X3 + 6X2 + 14X + 13)2 π2
49 ̺

26

91 −2854 (X2 − 4X − 9)2 π4
17 ̺

−6

92 4232 (X3 − 2X2 − 17X − 25)×H23,23(X) −22̟23 ̺
5 × 0

99 −3594 (X + 1)2(X2 + 8X + 19)2 π4
19 ̺

−8

103 −3991 (X5 + 4X4 + 7X3 + 33X2 + 99X + 81)2 π4
5 π

4
25 ̺

18

107 −4406 (X3 + 5X2 + 19X + 31)2 π4
49 ̺

8

115 −5290 (X + 5)2 ̟2
23

Finally we arrive at

23

12
log
∣∣∣ΨL

(23 +
√
−23

46
, h
)∣∣∣ = log

∣∣π 18
5 π−4225 π36

7 π−4849 π4
11 π

−22
17 π−3019 ̟−2323 ̺−9·23

∣∣.

This proves the result (0.2) for k = 2 obtained numerically from the Fourier expansion
(5.18). The same argument works for k = 3, 4, 5, 7.

Numerical verification of Theorem 5.9

In this subsection we check the factorization formula (5.2).
The ideal class group of the field K = Q(

√
−23) consists of three elements

CLK = {o, b, b−1}.

Each rational prime p that is inert in K splits in the Hilbert class field H as

(p) = P1 P2 P2

for some prime ideals P1, P2 with P1 = P1. Theorem 5.7 implies that for k = 1, . . . , 5
and 7

Gk

(1 +
√
−23

4
,
−1 +

√
−23

4

)
= 231−k log |αk|,

where αk is an algebraic number. Conjecture 2 proved in Section 5.12 predicts that αk ∈ H
and gives the factorization of αk. Specifically it says that no prime factor of l in H occurs
in αk if l is split in K, while if l is inert in K we have

ordP1
(αk) = 23k−1

23∑

n=0

Pk−1

(
1− 2n

23

)
rb(23− n) ro

(n
p

)
(1 + ordp(n)), (5.70)

ordP2
(αk) = ordP2

(αk) = 23k−1
23∑

n=0

Pk−1

(
1− 2n

23

)
rb(23−n) rb

(n
p

)
(1+ ordp(n)). (5.71)

We verify these identities in the following table.
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p 5 7

23− n 18 13 8 3 16 9 2

n 5 10 15 20 7 14 21

rb(23− n) 2 1 1 1 2 1 1

rb

(n
p

)
0 1 1 1 0 1 1

ro

(n
p

)
1 0 0 1 1 0 0

23P1

(
1− 2n

23

)
13 3 −7 −17 9 −5 −19

232P2

(
1− 2n

23

)
−11 −251 −191 169 −143 −227 277

233P3

(
1− 2n

23

)
−4823 −2313 4697 1207 −5319 3655 −2071

234P4

(
1− 2n

23

)
−105359 87441 18241 −102959 −27039 58081 −41039

p 11 17 19 23

23− n 12 1 6 4 23 0

n 11 22 17 19 0 23

rb(23− n) 2 0 1 1 0 1/2

rb

(n
p

)
0 1 0 0 1/2 0

ro

(n
p

)
1 0 1 1 1/2 1

23P1

(
1− 2n

23

)
1 −21 −11 −15 23 −23

232P2

(
1− 2n

23

)
−263 397 −83 73 232 232

233P3

(
1− 2n

23

)
−791 −6489 5401 3465 233 −233

234P4

(
1− 2n

23

)
102961 80961 −71039 −119919 234 234

For example, for p = 7 and k = 2 we have

P1 = (π7), P2 P2 = (π49),
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where p7 and p49 are defined in (0.1). We find

ordP1
(α2) =23

23∑

n=0

P1

(
1− 2n

23

)
δ(n) rb(23− n) ro

(n
p

) (
1 + ordp(n)

)

=23

(
P1

(19
23

)
rb(2) ro(3) + P1

( 5
23

)
rb(9) ro(2) + P1

(−9
23

)
rb(16) ro(1)

)

=36,

ordP2
(α2) = ordP2

(α2) =23
23∑

n=0

P1

(
1− 2n

23

)
δ(n) rb(n) rb

(23− n

p

) (
1 + ordp(n)

)

=23

(
P1

(19
23

)
rb(2) rb(3) + P1

( 5
23

)
rb(9) rb(2) + P1

(−9
23

)
rb(16) rb(1)

)

=− 48.

This agrees with formula (0.2) found by numerical computations.

Numerical verification of Theorem 5.8

In this subsection we illustrate Theorem 5.8 with several examples coming from the com-
putation of CM values of higher Green’s functions. As before, let N andM be the lattices

N = v+(z1, z2) ∩M2(Z) and M = v+(z1, z2) ∩M2(Z),

where z1 =
1+
√
−23
4

, z2 =
−1+

√
−23

4
. For k = 2, 3, 4, 5, 7 let gk be the unique element of

M !
2−2k with the Fourier expansion gk = q−1 +O(1). Denote

fk = 23k−1[gk,ΘM(−1)]k−1.

Theorems 5.3 and 5.4 imply that

log(αk) = 23k−1Gk

(
1 +

√
−23

4
,
−1 +

√
−23

4

)
= (fk,ΘN)reg.

Functions fk have Fourier expansions of the form

fk =
∑

ν∈N ′/N
eν
∑

t∈Z
c(k)ν (t) e

( t

23
τ
)
.

From Theorem 5.8 we deduce

ordP1
(αk) =

∞∑

n=0

∑

ν∈N ′/N
c(k)ν (−n) ro

(n
p

) (
1 + ordp(n)

)
,

ordP2
(αk) = ordP2

(αk) =
∞∑

n=0

∑

ν∈N ′/N
c(k)ν (−n) rb

(n
p

) (
1 + ordp(n)

)
.

For the primes p = 5, 7, 11, 17, 19 we get the following table.
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p n ν rb
(
n
p

)
ro
(
n
p

)
2c

(2)
ν

(
− n

)
2c

(3)
ν

(
− n

)
2c

(4)
ν

(
− n

)

5 5 ±7 0 1 −52 44 19292

10 ±11 1 0 −6 −502 4626

15 ±3 1 0 14 −382 −382
20 ±9 1 1 34 338 −2414

7 7 ±8 0 1 −36 −572 21276

14 ±6 1 0 10 −454 −7310
21 ±10 1 0 38 554 4142

11 11 ±5 0 1 −4 −1052 3164

17 17 ±1 0 1 22 −166 −10802

19 19 ±4 0 1 30 146 −6930

The prime ideals of H lying above p = 5 satisfy

P1 = (p5), P2 P2 = (p25).

We compute

ordP1
(α2) =2

(
c(2)(−5) ro(1) + c(2)(−10) ro(2) + c(2)(−15) ro(3) + c(2)(−20) ro(4)

)

=− 42,

ordP2
(α2) = ordP2

(α2)

= 2
(
c(2)(−5) rb(1) + c(2)(−10) rb(2) + c(2)(−15) rb(3) + c(2)(−20) rb(4)

)

= 18.

For p = 7 we have
P1 = (p7), P2 P2 = (p49).

Thus, we arrive at

ordP1
(α2) =2

(
c(2)(−7) ro(1) + c(2)(−14) ro(2) + c(2)(−21) ro(3)

)

=36,

ordP2
(α2) =ordP2

(α2)

=2
(
c(2)(−7) rb(1) + c(2)(−14) rb(2) + c(2)(−21) rb(3)

)

=− 48.

This agrees with the numerical computations (0.2).
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No. 389, pp. 123165. Lecture Notes in Math., Vol. 244, Springer, Berlin, 1971.

[21] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construc-
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[27] G. van der Geer, On the geometry of Siegel modular threefold. Math. Ann. 260, pp.
317-350, (1982).

[28] G. van der Geer, Hilbert modular surfaces, Springer Verlag 1987.

[29] S. Gelbart, Examples of dual reductive pairs, Proc. Symp. Pure Math. XXXIII,
A.M.S.,
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[59] H. Maass, Über eine Spezialschar von Modulformen zweiten Grades, III. Inv. Math.
53, pp. 255-265, (1979).

[60] A. Mellit, Higher Greens functions for modular forms, PhD thesis, 2008.

[61] H. Naganuma, On the coincedence of two Dirichlet series associated with cusp forms
of Hecke’s “Neben”-type and Hildert modular forms over a real quadratic field, J.
Math. Soc. Japan 25, pp. 547-555 (1973).

[62] J. Schofer, Borcherds forms and generalizations of singular moduli, J. Reine Angew.
Math. 629 (2009), 136.



131

[63] J.-P. Serre, A course in arithmetic. Translated from the French. Graduate Texts in
Mathematics, No. 7. Springer-Verlag, New York-Heidelberg, 1973.

[64] G. Shimura, Modular forms of half integral weight, in Modular Functions of one Vari-
able, I. Lecture Notes N 320, Springer-Verlag, Berlin/Heidelberg/New York (1973),
pp. 57-74.

[65] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973), pp.
440-481.

[66] G. Shimura, Confluent hypergeometric functions on tube domains, Math. Ann. 260,
pp. 269-302, (1982).

[67] N. Skoruppa, D. Zagier, Jacobi forms and a certain space of modular forms, Invent.
Math. 94 (1988), pp. 113-146.

[68] N. P. Skoruppa, Explicit formulas for the Fourier coefficients of Jacobi and elliptic
modular forms. Invent. Math. 102, no. 3, pp. 501-520, (1990).

[69] N. Skoruppa, Jacobi forms of critical weight and Weil representations.Modular forms
on Schiermonnikoog, 239-266, Cambridge Univ. Press, Cambridge, 2008.

[70] C. L. Siegel, Einfürung in die Theorie der Modulfunktionen n-en Grades. Mathema-
tische Annalen 116, pp. 617-656, (1939).
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