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Summary

In this thesis we study algebraic cycles on Shimura varieties of orthogonal type. Such
varieties are a higher dimensional generalization of modular curves and their important
feature is that they have natural families of algebraic cycles in all codimesions. We mostly
concentrate on low-dimensional examples: Heegner points on modular curves, Hirzebruch-
Zagier cycles on Hilbert surfaces, Humbert surfaces on Siegel modular threefolds.

In Chapter 2 we compute the restriction of Siegel Eisenstein series of degree 2 and more
generally of Saito-Kurokawa lifts of elliptic modular forms to Humbert varieties. Using
these restriction formulas we obtain certain identities for special values of symmetric
square L-functions.

In Chapter 3 a more general formula for the restriction of Gritsenko lifts to Humbert
varieties is obtained. Using this formula we complete an argument which was given in
a conjectural form in [76] (assertion on p. 246) giving a much more elementary proof
than the original one of [36] that the generating series of classes of Heegner points in the
Jacobian of a modular curve is a modular form.

In Chapter 4 we present computations that relate the heights of Heegner points on
modular curves and Heegner cycles on Kugo-Sato varieties to the Fourier coefficients of
Siegel Eisenstein series of degree 3. This was the problem originally suggested to me as
a thesis topic, and I was able to obtain certain results which are described here. Some of
the results of this chapter overlap some of those given in the recent book [53]. succeed
in calculating all terms completely, and also, similar results appeared in the recent book
[53].

The main result of the thesis is contained in Chapter 5. In this chapter we study CM
values of higher Green’s functions. Higher Green’s functions are real-valued functions
of two variables on the upper half-plane which are bi-invariant under the action of a
congruence subgroup, have a logarithmic singularity along the diagonal and satisfy Af =
k(1 — k)f, where k is a positive integer. Such functions were introduced in [35]. Also
it was conjectured in [35] and [36] that these functions have “algebraic” values at CM
points. A precise formulation of the conjecture is given in the introduction. thesis [60]. In
Chapter 5 we prove this conjecture for any pair of CM points lying in the same quadratic
imaginary field. Our proof has two main parts. First, we show that the regularized
Petersson scalar product of a binary theta series with a weight one weakly holomorphic
cusp form is the logarithm of the absolute value of an algebraic number. Second, we prove
that the special values of weight & Green’s function occurring in the conjecture can be
written as Petersson product of this type, where the form of weight one is the (k — 1)-st
Rankin-Cohen bracket of an explicit weakly holomorphic modular form of weight 2 — 2k
with a binary theta series. The algebraicity of regularized Petersson products was proved
independently at about the same time and by different method by W. Duke and Y. Li
[23]; however, our result is stronger since we also give a formula for the factorization of
the algebraic number in the number field to which it belongs.






Introduction

This thesis is devoted to the study of algebraic cycles and modular forms on Shimura
varieties of orthogonal type. The motivating example of a Shimura variety for us will be
the modular curve X (I'), constructed as the quotient of the upper half-plane §) by the
by the action of a congruence subgroup I' of the modular group SLy(Z). The extensive
study of such curves in nineteenth century lead to the proof of the beautiful “Kronecker’s
Jugendtraum”. Recall, that each point 7 € SLy(Z)\$ corresponds to the elliptic curve
C/Z + Zr. The endomorphism ring of an elliptic curve is usually Z, but if not, it is
an order in an imaginary quadratic number field, and the elliptic curve is then said to
have complex multiplication. The points of the upper half-plane that lie in an imaginary
quadratic field K correspond to elliptic curves with complex multiplication by some order
in K, and they are called the CM points. The first important result in this subject goes
back to Kronecker and Weber, and it states that the Hilbert class field (maximal abelian
unramified extension) of an imaginary quadratic field K is generated by the special value
j(7) of the j-function at any element 7 of K lying in the complex upper half-plane and
having the fundamental discriminant. Recall that j(7) is the unique holomorphic function
on the complex upper half-plane invariant under the action of SLy(Z), having a simple

pole with residue 1 at infinity and the unique zero at %j?’

Another important application of the CM-points on modular curves was found by
Heegner in his work [38] on the class number problem for imaginary quadratic fields. The
significance of these points in the arithmetic of the Jacobians of modular curves was first
recognized by Birch. In [8] Birch used these CM-points to construct rational points of
infinite order in the Jacobians. In the landmark work [35] Gross and Zagier have found
the criterion for a Heegner point on modular elliptic curve to be of infinite order. The
criterion is given in terms of L-functions. Combined with the result of Kolyvagin [49] this
proves the equality between the rank of an elliptic curve and the order of vanishing of its
Hasse-Weil L-function predicted by the Birch and Swinnerton-Dyer conjecture provided
the order of vanishing of L-function is less than or equal to 1.

Hilbert emphasized the importance of extending the complex multiplication theory to
functions of several variables in the twelfth of his problems at the International Congress
in 1900. First steps in this direction were made by Hilbert, Blumenthal and Hecke in
their study of Hilbert modular varieties. However, the modern theory of Shimura va-
rieties originated with the development of the theory of abelian varieties with complex
multiplication by Shimura, Taniyama and Weil, and with the proof by Shimura of the
existence of canonical models for certain families of Shimura varieties. In two fundamen-



tal papers [20, 21] Deligne reformulated the theory in the language of abstract reductive
groups and extended Shimura’s results on canonical models.

A Shimura variety is equipped with a large supply of algebraic cycles provided by sub-
Shimura varieties. The simplest example of such cycles would be CM-points on modular
curves. For Shimura varieties of orthogonal type a similar pattern of subvarieties arises
in all co-dimensions and can be well understood in terms of lattices in corresponding
quadratic spaces and their sublattices [51, 76]. This picture gives rise to the following
questions: relations between special values of L-functions [40, 44], modularity of gen-
erating series of CM-cycles modulo different equivalence relations [76, 81], computation
of CM-values of modular functions [13, 33, 62]. In this thesis we address some of these
questions.

The thesis is organized as follows. In Chapter 1 we collect necessary facts on the theory
of automorphic forms. We recall the definition and main properties of Shimura varieties of
orthogonal type. Also in this chapter we give a brief review of the theta correspondence.
We consider both the classical theta lift acting between spaces of holomorphic modular
forms and the regularized Borcherds lift extended to modular forms with singularities at
cusps.

In Chapter 2 we compute the restriction of Siegel Eisenstein series of level 1, degree 2,
and arbitrary weight k£ to Humbert surfaces. More precisely, for each prime discriminant
p > 0 we consider an embedding p of Hilbert modular surface corresponding to p into a
Siegel modular threefold. Denote by A the Naganuma lifting from the space of modular
forms of Hecke’s Nebentypus () to the space of Hilbert modular forms for SLy(0), where
0 is the ring of integers in the real quadratic field Q(y/p). Then we prove
Theorem 2.1 The pullback of the Siegel Eisenstein series via the map o defined in (1.6)

equals
dimMy, (T'o(p),x)

Esieg(Q(Tlsz)) = Z i N (fi) (71, 72),

i=1

where fi(1) = >, ai(m)e*™™7 are the normalized Hecke eigenforms in My(To(p), (;))
and

Ai

- 2874kk!(2]€ - 3)! . a(p)? L(Sszfi, 2k — 2)
n By Bag 2 p*h? il =2

We illustrate this formula numerically for p = 5 and k£ = 4,6, 12.

In Chapter 3 we generalize this theorem and obtain a formula for the restriction of
Gritsenko lifts of arbitrary modular forms of half integral weight to Humbert varieties.
Consider an integer N satisfying (N/p) = 1. Let a be a fractional ideal contained in
971, the inverse of the different of K, and suppose that 97/a = Z/NZ. In Section 1.2
we describe an embedding of Hilbert surface SL(o & a)\$ x $ into the Siegel modular
threefold I'y\$®, where I'y denotes the level N paramodular group. Denote by N the
Naganuma lifting from the space of modular forms Si(I'o(p), (5)) to the space of Hilbert
modular forms Si(SL(0 & a)).

Theorem 3.1 Let h be a half-integral modular form in Ml;tlﬂ(]\/') and F € Mi(Ty) be



the Gritsenko lift of h. Then the pullback of F' via the map p defined in (1.6) equals

1

F(p(r1,m2)) = 3

9 ag(7—1;7—2)7

where g(1) = O(T)h(p7)|Usn -

We give the following application of this formula. In the paper [76] Zagier suggests
a method how to deduce the modularity of the generating series of Heegner points on
modular curve modulo rational equivalence from the modularity of the generating series
of homology classes of modular curves on Hilbert surfaces, which was proved in [41]. How-
ever, an important assertion on p. 246 in [76] was left without a proof, and the method
was applied only to Heegner points on the modular curve Xy(37). Using Theorem 3.1 we
prove this assertion under additional assumptions about the convergence of power series.

Theorem 3.2. Let h be a holomorphic periodic function on $ having the Fourier expan-
sion of the form

hr) = Y bD)q" (q=e")

D>0
— D= square mod 4N

with N prime, and suppose that the power series

gp(7) = h(p7) O \U4N—Z( > b (4NM ))qM

M>0  22<4NM
x2=4N M (mod p)

is a modular form of weight k, level p and Nebentypus (£) for every prime p =1 (mod 4)
with (p) = 1. Then h belongs to M," 12(NV).

Thus, we can apply the method proposed in [76] to all modular curves Xy(p) with
prime conductor. In [81] X. Yuan, S.-W. Zhang and W. Zhang extended the idea of [76]
to higher dimensional cycles and obtained conditional modularity results for Chow groups
of Shimura varieties of orthogonal type.

The main result of the thesis is contained in Chapter 5. In this chapter we employ the
theory of Borcherds lift and the idea of a see-saw identity to study CM values of higher
Green’s functions. For any integer k£ > 1 and subgroup I' C PSLy(Z) of finite index there
is a unique function Gl,;\y) on the product of two upper half planes $ x ) that satisfies
the following conditions:

(i) Gg\ﬁ is a smooth function on $ x H \ {(7,y7),7 € H,7 € I'} with values in R.
(i) Gg\ﬁ(ﬁﬂb) = Gl;\ﬁ(%ﬁﬁﬂb) for all y1,72 € I.

(iil) A, G—'F\yJ ( k)G, G\ where A; is the hyperbolic Laplacian with respect to the
-th Varlable =1, 2
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(iv) G};\ﬁ(ﬁ,@) = mlog|m — 7| + O(1) when 71 tends to 7 (m is the order of the
stabilizer of 75, which is almost always 1).

(v) Gg\ﬁ (11, 72) tends to 0 when 77 tends to a cusp.

This function is called the higher Green’s function. Such functions were introduced in
[35]. The existence of the Green’s function is shown in [35] by an explicit construction and
the uniqueness follows from the maximum principle for subharmonic functions. In the case
k = 1 also there exists the unique function G{\ﬁ(ﬁ, T5) satisfying (i)-(iv) and the condition
(v) should be slightly modified. We know from [35] that the values Glf\ﬁ(Tl, Ty) are
essentially the local height pairings at archimedean places between the divisors (71) — (00)
and (72) — (0c0) on I'\$.

Consider the function

Gl,;\f = Z A\, mFt Gg\ﬁ(ﬁ, )| Thn,

m=1

where T, is a Hecke operator and XA = {\,,}3°_, € &5°_,Z satisfies >~ Apa, = 0 for
any cusp form f =3 a,,¢™ € So(I'). We call such A a relation for Sy (T').

If £ = 1, then, since the action of the Hecke operators on the Jacobian of F\_.Sﬁ is
the same as that on Sy(I'), the fact that A is a relation for Sy(I') means that the divisor
Yo AT ((z) — (00)) is principal. Suppose that for 7,7 € T'\$) the divisors (1) —
00, (73) — 0o ore defined over Q. Then the axioms for the local height pairings imply that

the number G{\;j (11, T2) is the logarithm of the absolute value of an algebraic number.

for GiLQ(Z)\ﬁ.
It was suggested in [35] that for £ > 1 there also should be an interpretation of
Gi\ﬁ(n,@) as some sort of a height. Such interpretation was given by Zhang in [80],

though a complete height theory in this case is still missing. The following conjecture was
formulated in [35] and [36].

Conjecture 1. Suppose A is a relation for So,(SLa(Z)). Then for any two CM points 31,
32 of discriminants Dy, Dy there is an algebraic number o such that

Gia(31,32) = (D1D2) 7 log .

Moreover, D. Zagier has made a more precise conjecture about the field of definition
and prime factorization of this number a. This conjecture is stated as Conjecture 2 in
Section 5.1.

In many cases (e.g k = 2, D; = —4 and D, arbitrary) Conjecture 1 was proven by A.
Mellit in his Ph.D. thesis [60]. In Chapter 5 we prove this conjecture for any pair of CM
points lying in the same imaginary quadratic field.

Theorem 5.7 Let 31,30 € $H be two CM points in the same quadratic imaginary field
Q(V/—=D) and let X be a relation on Sor(SLo(Z)) for integer k > 1. Then there is an
algebraic number o such that

G A(31,32) = D'"*log |al.



Along the way of the proof of Theorem 5.7 we have discovered the following result
which is of independent interest. After the results of this paper where first announced,

the author learned that a similar result was found independently in a slightly different
context by W. Duke and Y. Li [23].

Theorem 5.6 We let N be an even lattice of signature (2,0) and let f be a weakly
holomorphic weight one vector valued modular form transforming with representation py
(this representation is defined in Section 1.4) that has zero constant term and rational
Fourier coefficients. Then the regqularized Petersson inner product between f and the
(vector valued) binary theta series Oy satisfies

(fa @N)reg = log |a|

for some o € Q.

Moreover, in Theorem 5.8 we find the field of definition and a simple formula for the
prime factorization of the number « in the above theorem. This result allows us to prove
Conjecture 2.

Our proof of Theorem 5.7 is based on the theory of Borcherds lifts developed in [10]
and the notion of see-saw identities introduced in [50]. From [12] we know that the Green’s
functions can be realized as Borcherds lifts. In Theorem 5.3 we show that higher Green’s
functions are equal to the Borcherds lift of an eigenfunction of the Laplace operator.
This allows us to extend a method given in [62], that is to analyze CM values of Green’s
function using see-saw identities. Applying see-saw identities in Theorems 5.4 and 5.5 we
prove that a CM-value of higher Green’s function is equal to the logarithm of a CM-value
of a certain meromorphic modular function with algebraic Fourier coefficients. Thus, it
follows from the theory of complex multiplication that Gy, (31,32) is the logarithm of the
absolute value of an algebraic number. Finally, we use the theory of local height pairing
[34] and the explicit computations of the height pairing between Heegner points made in
(35, 36] in order to compute these CM-values and hence prove Conjecture 2.

We finish this section by giving an example for Conjectures 1 and 2.

Example. The space Sox(SLo(Z)) is zero for & = 1,2,3,4,5 and 7. Hence, A =
(1,0,0,...) is a relation for these spaces. Thus, Conjecture 1 predicts that for k =1,...,5

14v/=23 —1++/—23
G’“( 4 4

) = 23" log|ay|,

where oy, is an algebraic number.
Consider the following numbers in the Hilbert class field H of Q(1/—23). Let o be the
real root of the polynomial X3 — X — 1. Define

71'5:2—@, 7T7:Q+2, 711:2Q—1, 7T17:39+2, 7T19:39+1, (01)

Toz =20+ 3, oy =3 — 0,5 =20° — 0+ 1, ma9 = 0> — 20+ 3,

where each 7, has norm g.



One can check numerically that

23 18 _—42 36 _—48 _4 _-22 30 207
Wog Qg =T5 Tog5 Tg Tyg N1 N7 M9 O (0.2)

232 204 546 _572 _—100 _1052 _ 166 _—146 187
Wog Qg =Ty~ Tog Tg  Tyg T Ti7 Tg O

—9233 _ _ — _
23 ay :71_516878 718271'721276 3168 3164 1080271'196930 120183

Wos Tos Ty T11 Ty 0 )
23 627354 _ 5446 _ 108156 _ 34084 _ 411844 _ 142078 _ 239838 373939
Wog Q5 =Ty Tos — T7 Tyg 1 7 g 0 .

We will prove these identities in Section 5.13 and demonstrate how all the steps of the
proof of Theorem 5.7 work.



List of notations

Ak ring of adeles of a global field K;
Q field of rational numbers;
R field of real numbers;
Z ring of integers;
C field of complex numbers;
R(z) real part of z;
3(z) imaginary part of z;
e(r) =
vV, (, ) quadratlc vector space;
q(l) = 5(1,1) norm of a vector I € V;
O(V) orthogonal group;
L C V a lattice;
={ve L®Q|(v,L) C Z} dual lattice;
We say that the lattice L C V is even if q(I) € Z for all | € L;
Aut(L', L) denotes the subgroup of SO(V) that fixes each element of L'/L;
$H = {z € C|Sz > 0} upper half-plane;
9" ={Z € Mat,,(C)|Z = 'Z, 3(Z) > 0} Siegel upper half space of degree n;
W, (, ) symplectic vector space;
Sp(W) symplectic group;
SLy(Z) the full modular group;
Mp,(Z) the metaplectic cover of SLy(Z), defined in Section 1.4;
pr the Weil representation of Mp,(Z) associated to the lattice L, see in Section 1.4;
M. (p) the space of real analytic,
]l{k(p) the space of holomorphic,

271'1:1:

M;.(p) the space of almost holomorphic,

M (p) the space of weakly holomorphic vector valued modular forms of weight k and
representation p;

Gr* (V) set of b™-dimensional positive define subspaces of the space V @ R of signature
(6, 07);

O (r,v") Siegel theta function, defined in Section 1.8;

@ (f,v") regularized theta lift, defined in Section 1.8;

tZ the transpose of the matrix Z.
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Chapter 1

Background on modular varieties
and modular forms

1.1 Introduction

In this chapter we give necessary background on the theory of automorphic forms.

In Section 1.2 we recall the definition and main properties of Shimura varieties of
orthogonal type. An essential feature of such varieties is that they have natural families
of algebraic cycles in all codimensions. Another important fact about these varieties is
that in small dimensions they coincide with classical modular varieties like modular curves
and Hilbert modular surfaces. Finally, the construction of automorphic forms on Shimura
varieties by means of theta correspondence gives a lot of information about the geometric
properties of these varieties [11], [31].

The theta correspondence provides a method to transfer automorphic forms between
different reductive groups. Central to the theory is the notion of a dual reductive pair.
This is a pair of reductive subgroups G and G’ contained in an isometry group Sp(W) of
a symplectic vector space W that happen to be the centralizers of each other in Sp(W).
This correspondence was introduced by Roger Howe in [42]. In Section 1.6 we recall
the explicit construction of theta correspondence for the reductive pair consisting of the
double cover Mp, of SLy and the orthogonal group O(V) of a rational quadratic space V'
of signature (2,n).

The main examples of the theta correspondence for us will be the Shimura, Doi-
Naganuma and Gritsenko lifts, considered in Section 1.6, and the Borcherds lift, considered
in Section 1.8.

Finally, in Section 1.10 we recall the notion of a “see-saw dual reductive pair” intro-
duced by S. Kudla in the paper [50].

11
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1.2 Quotients of Grassmanians and Shimura varieties
of orthogonal type

A Shimura variety is a higher-dimensional analogue of a modular curve. It arises as a quo-
tient of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic
group defined over Q. Modular curves, Hilbert modular surfaces, and Siegel modular vari-
eties are among the best known classes of Shimura varieties. Special instances of Shimura
varieties were originally introduced by Goro Shimura as a part of his generalization of the
complex multiplication theory. Shimura showed that while initially defined analytically,
they are arithmetic objects, in the sense that they admit models defined over a number
field. In two fundamental papers [20, 21], Pierre Deligne created an axiomatic framework
for the work of Shimura. Langlands made Shimura varieties a central part of his pro-
gram, as a source of representations of Galois groups and as tests for the conjecture that
all motivic L-functions are automorphic.

We will start with a definition of Shimura varieties. Let S be C* regarded as a torus
over R. A Shimura datum is a pair (G, X) consisting of a reductive algebraic group G
defined over the field Q and a G(R)-conjugacy class X of homomorphisms h : S — G
satisfying, for every h € X:

(SV1) Adoh: S — GL(Lie(Ggr)) defines a Hodge structure on Lie(Gg)
of type {(=1,1),(0,0), (1, =1)};

(SV2) ad h(i) is a Cartan involution on G4
(SV3) G* has no Q-factor on which the projection of h is trivial.

These axioms ensure that X = G(R)/K ., where K, is the stabilizer of some h € X is
a finite disjoint union of hermitian symmetric domains.

Let A be the ring of adeles of Q and A be a ring of finite adeles. For a compact open
subgroup K C G(Ay) the double coset space

Shi (G, X) = GQ\(X x G(Af)/K)

is a finite disjoint union of locally symmetric varieties of the form I'\X™, where the plus
superscript indicates a connected component. The varieties Shy (G, X) are complex quasi-
projective varieties, which are defined over Q, and they form an inverse system over all
sufficiently small compact open subgroups K. The inverse system (Shy (G, X))k admits
a natural right action of G(Ay). It is called the Shimura variety associated with the
Shimura datum (G, X)) and is denoted Sh(G, X).

We will give more elementary and explicit description of Shimura varieties in the case
when G is the orthogonal group of signature (2,57).

Let (V,(, )) be a quadratic space over Q of signature (2,57). Denote by Gr™ (V) the
set of positive definite 2-dimensional subspaces v of V' ® R.

In the case of signature (2,b~) the Grassmanian Gr™ (V) carries a structure of a Her-
mitian symmetric space. If X and Y are an oriented orthogonal base of some element
vt in Grt(V) then we map v to the point of the complex projective space P(V @ C)
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represented by Z = X + 1Y € V ® C. The fact that Z = X + ¢Y has norm 0 is equiv-
alent to saying that X and Y are orthogonal and have the same norm. This identifies
Gr* (V) with an open subset of the norm 0 vectors of P(V ® C) in a canonical way, and
gives Gr' (V) a complex structure invariant under the subgroup O™ (V ® R) of index 2
of O(V ®R) of elements preserving the orientation on the 2 dimensional positive definite
subspaces. More explicitly, the open subset

P={[Z]eP(V&®C) | (Z,Z)=0and (Z,Z) > 0}

is isomorphic to Gr* (V') by mapping [Z] to the subspace RR(Z) + RI(Z).
Consider an even lattice L C V. Denote by Aut(L) the group of those isometries of
L ® R that fix each element of L'/L. We will study the quotient

X1 = GrH(V)/Aut(L).

An important feature of such varieties is that they come with natural families of
algebraic cycles in all codimensions, see [51]. These special cycles arise from embeddings
of rational quadratic subspaces U C V' of signature (2,¢~) with 0 < ¢~ < b, since in this
case there is a natural embedding of Grassmanians Gr™ (U) < Gr* (V).

There is a principal C* bundle £ over the hermitian symmetric space P, consisting of
the norm 0 points Z = X +iY € V ® C. We define an automorphic form of weight k£ on
Gr* (V) to be a function ¥ on £ which is homogeneous of degree —k and invariant under
some subgroup I' of finite index of Aut(L). More generally, if x is a one dimensional
representation of I' then we say ¥ is an automorphic form of character y if ¥(o(2)) =
X(o)¥(Z) for o €T

The following technical construction will give us a convenient “coordinate system” on
the space X;. We choose m € L, m’ € L’ such that m*> = 0, (m,m’) = 1 and denote
Vo :=V Nnm*Nm't. The tube domain

H = {z € Vo @ C[(3(2), 3(2)) > 0} (1.1)

is isomorphic to P by mapping z € H to the class in P(L ® C) of

Z(z)=z4+m — %((z,z) + (m/,;m’))m.

The choice of a vector m is equivalent to choice of a cusp on X = Gr*(V)/Aut(L).
Now we consider several low-dimensional examples.

Modular curves

We fix N to be any positive integer (called the level). We let L be the 3-dimensional even

lattice of all symmetric matrices
| C/N —B/2
~\-B/2 A
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with A, B, C' integers, with the norm q(I) = $(I,1) equal to —N det(l). The dual lattice
is the set of matrices
C'/N —B'J2N

~B'/2N A

with A’, B', C" integers, and L’/L can be identified with Z/2NZ by mapping a matrix of
L’ to the value of B’ mod Z/2N7Z. The group

acts on the lattice L by | — ~Iv" for v € T'g(IV), and under this action it fixes all elements
of I'/L. We identify the upper half-plane with points in the Grassmanian Gr*(L @ R)
by mapping 7 € $ to the 2-dimensional positive definite space spanned by the real and
imaginary parts of the norm 0 vector
(77)
T 1)

For each d € Z~y and A € L'/L = Z/2NZ the Heegner divisor Py, is the union of the

points orthogonal to norm ﬁ vectors of L + A. In terms of points on $) this Heegner

divisor consists of all points 7 € § such that
AT + BT +C =0
for some integers A, B, C' (not necessarily coprime) with

N|A, B = Amod 2N, B? — 4AC = —d.

Hilbert modular surfaces

Fix a squarefree positive integer A, and consider the real quadratic field K = Q(\/Z)
Let o be the ring of integers of K. We will write 2’ for the conjugate of an element x € K,
n(z) := a2’ for the norm, and tr(x) = z + 2’ for the trace. Also we denote by 0 the
different of K (i. e. the principal ideal (v/A)).

The group SLy(K) acts on $) x ) by

a b ari +b a1+
— 1.2
(C d) (7—1’7_2) (CT1+d’C/TQ+d/ ( )

For the fractional ideal a of K we set

SL(o@a):{(Z Z)M,deo, beal, cea}.

The quotient space

SL(o @ a)\H x H
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is called a Hilbert modular surface.
We let L be the even lattice of matrices of the form

[ = ( C -B )
-B" A
with A,C € Z, B € o, with the norm given by —2det(l). The group SLy(K) acts on the
vector space L ® Q of hermitian matrices by | — ~Iv" for v € SLy(K) and | € L ® Q.
The group SLs(0) maps L to itself under this action.
We identify the product of two copies of the upper half-plane with the positive Grass-

mannian of LQR by mapping (71, 72) € $? to the space spanned by the real and imaginary
parts of the norm 0 vector
T2 T1
()

This induces the usual action of SLy(K) on $? given by (1.2).
If [ is a negative norm vector in L’ then we define the curve 7T; to be the orthogonal
complement of [ in the Grassmannian of L. If [ is the matrix

C -B
—-B A
then T is the set of points (11, 72) € H? such that

Animo+ B'1+ By +C = 0.

The following union of such curves

Ty = U T,

ler’
q()=-N

is a Hirzebruch-Zagier divisor considered in [41].

Siegel modular threefolds

If we take L to be a lattice of signature (2,3) then the positive Grassmanian of L is
isomorphic to the Siegel upper half space of genus 2. The divisors on this Siegel upper
half space associated to vectors of L (or rather their images in the quotient) are the so-
called Humbert surfaces. Recall that the Siegel upper half space of genus 2 is defined
as

9® = {Z € Maty,»(C) | Z = 'Z, $(Z) > 0}.

Here we write !Z for the transpose of the matrix Z. Let us denote by Ay the moduli
space of abelian surfaces with polarization of the type (1, V)

Ay 2Ty \ HP,
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where
*  Nx % *
* * *  N7'x
Iy := € S5p(4,Q), all x € Z (1.3)
*  Nx % *

Nx Nx Nx *

is a paramodular group. These varieties are referred to as Siegel modular varieties.

The Hilbert modular surfaces are the moduli spaces of complex abelian surfaces whose
endomorphism ring contains an order from a real quadratic field. In [28] van der Geer
describes natural maps of Hilbert modular surfaces to Siegel modular threefolds. The
images of these maps are called the Humbert surfaces.

Let a be a fractional ideal of a real quadratic field K = Q(v/A) and suppose that a is
contained in 0. It is explained in [28] that SL(0@®a)\$ x § is the moduli space of triples
(A, j,7), A a polarized n-dimensional complex abelian variety, j : 0 — End(A) and r on
o-module isomorphism carrying a Riemann form to the standard form. This Riemann
form is equivalent to

0 0 d O
0 0 0 do
—d, 0 0 0|’

0 —do 0 O

where d;|dy are the elementary divisors of the abelian group 97! /a.

For simplicity we assume that d; = 1 and dy = N.

Since we can view the varieties SL(0o @ a)\$ x $ as moduli spaces of polarized complex
abelian varieties with some additional structure there exist “forgetful” maps

SL(o @ a)\$ x H — [y\H® (1.4)

(with 7' /a & Z/ZN) which are called modular embeddings. These maps are described
explicitly on p. 209 in [28].
Choose R € GL(2,R) such that

(]gt}gl)o@a:ZxeZxZN, (1.5)
where we view 0 @ a as embedded in R* using K — R?. Then the following two maps
pHXH—HY
p 71 0,
(11, 72) — R (O 7_2) R, (1.6)

and
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where T = (8 S,) , describe the modular embedding (1.4) explicitly.

It follows from (1.5) that the matrix R has the form

()
papy )’

where p; € a, p, €0 and det R = +1/V/A.

The image of p($) x 9) in the quotient 'y \$H® does not depend on the choice of R.
Moreover the pullback of a Siegel modular form F of weight k& on £ via the map p
will be a Hilbert modular form of weight & for the group SL(o @ a). A consequence of
transformation properties of F' is that F' o p does not depend on particular choice of R.

To a non-zero vector x = (A, B,C, D, E) € Z° we associate the subset H, in a Siegel
upper half space

H, = {(Tl - ) e n? | A71+Bz+CTQ+D(22—T1Tz)+E=0}- (L.7)

zZ To

Denote by Vi a the set of all (A, B,C, D, E) € Z® with
C,D =0 (mod N) and B* — 4AC — 4DE = A. (1.8)
The image p($ x 9) belongs to the surface given by (1.7) with
A= An(py), B=Atr(pipy), C =An(p), D=FE=0.

It follows from (1.5) that the relation (1.8) is true for these coefficients.

Denote by $Ha the image under H2 - FN\JF)(2) of all H, with x € Vya and =z
primitive. The surface Ha is called a Humbert surface of invariant A in I’ N\f)@). The
following theorem gives us information about irreducible components of .

THEOREM. ([28] Theorem (2.1)) Every irreducible component of Ha in Ty\H? can be
represented in $ by an equation T + bz + cN1y with b*> —4Nc= A, 0 < b < 2N. The
number of irreducible components of Ha is #{b (mod 2N) | b = A(mod 4N) }.

If A is a fundamental discriminant each irreducible component of $Ha corresponds to
a strict ideal class [b] of o containing an ideal b C 9~! with 971/b = Z/NZ.

1.3 Weil representation

The metaplectic group Mp(W) is a double cover of the symplectic group Sp(W). It can
be defined over either real or p-adic numbers. More generally, the metaplectic group can
be constructed over an arbitrary local or finite field, and even the ring of adeles. The
metaplectic group has a particularly significant infinite-dimensional linear representation,
the Weil representation [73]. It was used by André Weil to give a representation-theoretic
interpretation of theta functions, and is important in the theory of modular forms of
half-integral weight and the theta correspondence.

The Weil representation [73] can be defined for any abelian locally compact group G.
We will restrict here to the case of a finite free module W over R equal to a Q,, R or
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A respectively. Let V' be an R-vector space. Then W =V & V* becomes a symplectic
vector space in a canonical way by

((v1,01), (v2,03)) = vi(v2) — v3(v1).

Associated with W there is a Heisenberg group
H:=RxVxV"*,
defined by the group law
(T17 U1, UI)(T27 V2, U;) = (frl + 1y + UT<U2)7 vy + V2, UT + U;)

Choose any non-trivial additive character x on R. We get an action of H on Ls(V*) by

(99)(v") = X(r1 + 0" (01))B(v" + v})
for g = (ry,v1,v]) and ¢ € Ly(V*). This is the unique irreducible representation of H,

where R acts through y. The unicity yields a projective representation of the automor-
phism group of H. This group is the symplectic group Sp(W). It acts by

(Z Z) (r,v,0*) =

1 1
<§<cv + dv*, av + bv*) — 5(1}*,@ +r,av + bv*, cv + dv*).

This projective representation can be considered as an honest representation of an exten-
sion
0 — C*— Mp(W) — Sp(W) — 0.
It is called the Weil representation.
The Weil representation can be described explicitly. Consider the following elements

of Sp(W)
Ja = (8 taO—l) (1.9)

(15
w=(51)
. [0 —=tet
yc—(c ‘ )

where a € Aut(V), b € Hom(V*,V) is the bilinear form on V* and ¢ € Iso(V,V*). The

elements defined in (1.9) have lifts to Mp(W) given by the following action on the space
S(V}) of Schwartz-Bruhat functions on V3

w(ga)(0)(2") = | det(‘a)|*p(az”) (1.10)
w(up) () (") = x((z", b(x")))p(7)

w(ge) () (2") = |det(0)|_1/2/VQO(tcx)X((x*ax))dw-

Here dzx is any measure on V' and |c| is the comparison factor between the image under
¢ of the chosen measure on V' and the dual of the chosen measure. Note that the last
formula does not depend on this choice.
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1.4 Vector-valued modular forms

Recall that the group SLy(Z) has a double cover Mp,(Z) called the metaplectic group
whose elements can be written in the form

(¢

cd
where | ¢ Z € SLy(Z) and v/eT + d is considered as a holomorphic function of 7 in
c

the upper half-plane whose square is ¢ + d. The multiplication is defined so that the
usual formulas for the transformation of modular forms of half integral weight work, which
means that

(A, f(1))(B, g(7)) = (AB, f(B(7))g(7))
for A, B € SLy(Z) and f, g suitable functions on $).

Suppose that V' is a vector space over Q and ( , ) is a bilinear form on V' x V' with
signature (b*,b7). For an element x € V we will write 2 := (z,z) and q(z) = 3(z, z).
Let L C V be a lattice. The dual lattice of L is defined as L' = {z € V|(z, L) C Z}. We
say that L is even if q(I) € Z for all [ € L. In this case L is contained in L’ and L'/L is a
finite abelian group.

We let the elements e, for v € L'/L be the standard basis of the group ring C[L'/L],
so that e e, = e,4,. The complex conjugation acts on C[L'/L| by €, = e,. Consider the

scalar product on C[L'/L] given by

(€usen) =0 (1.11)

and extended to C[L’/L] by linearity. Recall that there is a unitary representation pj, of
the double cover Mpy(Z) of SLy(Z) on C[L'/L] defined by

pr(T)(e,) = e(a(v)) e, (1.12)

pr(S)(e,) =i PVLYLITY? N e~ (1, v))ey, (1.13)
nweL’'/L

() () s

are the standard generators of Mp,(Z).

For an integer n € 7Z we denote by L(n) the lattice L equipped with a quadratic form
¢™(1) := nq(l). In the case n = —1 the lattices L'(—1) and (L(—1))" coincide and hence
the groups L'/L and L(—1)"/L(—1) are equal. Both representations p;, and pr_1) act on

C[L'/L] and for v € Mpy(Z) we have pr1)(7) = pr(7).
A vector valued modular form of half-integral weight k£ and representation pr is a
function f : $ — C[L'/L] that satisfies the following transformation law

((z28) (1) i)

ct +d d

where
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for each ((C d) i\/ﬁ) € Mpy(Z).

We will use the notation 9 (pr) for the space of real analytic, My (pr) for the space
of holomorphic, ]\/Zk(pL) for the space of almost holomorphic, and M;(p;) for the space
of weakly holomorphic modular forms of weight k£ and representation py.

Now we recall some standard maps between the spaces of vector valued modular forms
of associated to different lattices [15].

If M C L is a sublattice of finite index then a vector valued modular form f € 9 (pr)
can be naturally viewed as a vector valued modular form in f € 9My(pas). Indeed, we
have the inclusions

McLcL cM

and therefore
L/M C L'/M c M'/M.

We have the natural map L'/M — L'/L, pn — fi.

Lemma 1.1. For M =91, M, M or M" there are two natural maps

resg v @ Mi(pr) = Mi(par),

and
trL/M : ./\/lk(pM) — Mk(PL)a
given by
Jos fpe L'/M

resy /v = , M , M' /M )

esen,= 8 0 (f € Mulpr), pe M//M)  (1.15)
and

(tror(9), = Y. g (9 € Mi(par), A€ L'/L). (1.16)
weL'/M: =\

Now suppose that M and N are two even lattices and L = M & N. Then we have
L'/L = (M'/M)& (N'/N).

Moreover
C[L'/L) = C[M'/M]® C[N'/N]

as unitary vector spaces and naturally
pPL = pm @ PN.

Lemma 1.2. For two modular forms f € My(pr) and g € Mi(prr(-1)) the function

h = (f,g)cp /v = Z ey Z fuev 9

veEN'/N  peM’'/M

belongs to My i(pn)-
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1.5 Jacobi forms and Kohnen’s plus space

In this section we explain a relation between vector valued modular forms and more
classical objects: Jacobi forms and scalar valued modular forms for congruence subgroups

A Jacobi form of weight k£ and index N is a holomorphic function ¢ : § x C — C
satisfying the transformation law

¢(“T+b : ):(CT+d)ke<NCZQ)¢(T,z) (1.17)

cr+d et +d et +d

for (a 2) € SLy(Z) and
c

O(1, 2+ m +n) = e(—Nm’1 — 2mz) ¢(r, 2) (1.18)

for m,n € Z. Such function ¢ has a Fourier expansion of the form

o(r,2) = Z c(n,r)e(nt +rz),
n,reZ
r2<4Nn

where c(n,r) depends only on 7> — 4Nn and on the residue class of r(mod 2N). The
systematic theory of such functions is developed in [25]: in this monograph Jacobi cusp
forms, Eisenstein series, the Petersson scalar product, Hecke operators, and new forms
are defined.

It is shown in Theorem 5.1 of [25] that the space Ji y of Jacobi forms of weight &
and level N is isomorphic to the space of vector valued modular forms M;_1/2(pz-n)),
where Z(—N) is the lattice Z equipped with the quadratic form q(l) := —NI? [ € Z. The
connection between the spaces of vector valued modular forms related to other lattices
and and Jacobi forms is explained in [17], [69].

In this section we show that the space of vector valued modular forms is isomorphic to
a space of certain real-analytic functions similar to Jacobi forms. Let L be an even lattice
of signature (b",07). Let v* be a positive b-dimensional subspace of L ® R. Denote
by v~ the orthogonal complement of v*. For a vector [ € L denote by l,+ and [, its
projections on v+ and v

For A € L'/L we define

01 (1 z07) == Y e(alloe)T + a(le-)7 + (1, 2)),

leX+L

where 7 € 9, 2 € L®C, and v, € Gr*(L). It follows from Theorem 4.1 of [10] that this
function satisfies the following transformation properties

-1 z,+ Zy—
J v v, _
0L+)\ <T’ - + = av+> - (1.19)
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N

iw—/z_b+/m|1//14-4/27ﬁ+/2fb—/2€3(Q(Zv+)_+ q(z )) j{: e(—(\, #))9H+L(T zvh).

=
weL’/L

IS

For a vector valued modular form f = (f\)aer/n € Mi(SLa(Z), pr) we consider the
function

F(r,z;v%) = Zf,\ 0)\721))

NeL!/L

Equation (1.19) implies that F' satisfies the following transformation properties similar to
(1.17), (1.18), namely

Y —

T T T

p( 20 2 ) o err e v g (G | A gy
T T

and
F<T7 Z+mT+mn, v+) = e( - 2q<mv+>T - Qq(mv_)T - (27 TTI,)) F(Ta Z7U+)

for m € L' ;n € L. In particular, when the lattice L is negative definite the function F'
is a holomorphic Jacobi form. For positive definite lattices L the function F' becomes a
skew holomorphic Jacobi form. These forms were introduced by Skoruppa in [68].
Modular functions of half-integral weight are defined like forms of integral weight,
except that the automorphy factor is more complicated.
Let

o(r) =) e (1.20)

nez

be the standard theta function. If A = (22) belongs to I'y(4), we have

0(Az) = j(A, 2)0(2),

where j(A, z) is the ”@-multiplier” of A. Recall (cf. for instance [65]) that, if ¢ # 0, we
have

(A, 2) = ed(d>(cz+d)1/2

where
- 1 ifd=1mod4
7\ i ifd=—1mod4

and (cz + d)'/? is the "principal” determination of the square root of cz + d, i.e. the one
whose real part is > 0.

A function h on $ is called a modular form of weight k/2 on I'g(4N) if :

a) h(r)/0%(7) is invariant under T'y(4N);

b) ¢ is holomorphic, both on $ and at the cusps (see [65]).
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We denote the space of such forms by M;/»(N). Shimura developed an extensive
theory of such forms in [64, 65]. Kohnen introduced the following subspace of My 5 , the
so-called “+”-space [47],

M ,(N) = {h € My_1/5(N) ( h(r) = 3 b(D)e(DT)}.

—D =square mod 4N

For N prime the following map

Z b(D)e(Drt) — Z b(4Nn —1?)e(nt +rz), (1.21)

—D =square mod 4N n.re’

4ANn—12>0

gives an isomorphism between Mk‘f_l /2(N ) and Ji . Thus, the following spaces are iso-
morphic
M;,j_l/z(N) = JeN = My_1/2(pz-ny)-

1.6 Theta correspondence

In this section we briefly recall the theta (Howe) correspondence. For a commuting pair
of subgroups in the metaplectic group there is a correspondence between representations
of the two subgroups, obtained by decomposing Weil representation of the metaplectic
group into a sum of tensor products of representations of the two subgroups. As some
representations of groups over the adeles tend to correspond to automorphic forms, we
can get a correspondence between automorphic forms on these two groups.

Firstly, we would like to describe the logical structure of the theta correspondences on
the level of abstract representations [42], [43].

Let W be a vector space over the number field & endowed with a symplectic form ( , ).
Let

Mp(Wa) — Sp(Wa)

be the nontrivial 2-fold central extension of the adelization of Sp(W},). In Section 1.3
we have consider the representation w of Mp(W,) called the Weil representation. The
Hilbert space on which the representation w is realized is Lo(V}"). The space of smooth
vectors is the space S(V}) of Schwartz-Bruhat functions on V* [73].

In [73] it is shown that there is a certain linear functional © on S(V}") such that

O(w(7)p) = O(p) 7€ Sp(Wi), ¢ € S(Vy). (1.22)

This linear functional is defined as follows. In the symplectic vector space W, choose two
maximal isotropic subspaces V' and V* such that W =V & V*. We will assume V and V*
are in fact k-rational subspaces of W. We then call the pair (V,V*) a k-rational complete
polarization. The functional © of formula (1.22) is given by

O(p) = > olx), ¢e€SVy).

aJGVé
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Property (1.22) is a generalization of the Poisson summation formula.

Recall that a reductive pair in Sp(W) is a pair (G, G") of reductive subgroups of Sp(IV)
each of which is the full centralizer of the other. Let G(A) and G’(A) denote the inverse
images of G(A) and G'(A) in Mp(W,). Given ¢ € S(V}), we can define a function 6, on
éA X ZJV’A by the rule

0.(9.9') = Ow(g)w(g) (@) g€ GA), ¢ €C'(A).

The function 6, is referred as the 0-kernel corresponding to ¢.

Let f be a cusp form on G(A). If ¢ satisfies certain finiteness conditions (see [43]),
then

0,(/)(g) = / £(9)0,(.9) dg (1.23)
)

G(RN\G(A

is an automorphic form on G’(A). This automorphic form is called the @-lift of f.
In the next two sections we will give several examples of the realization of theta
correspondence for concrete subspaces of automorphic forms.

1.7 Shimura, Doi-Naganuma, Saito-Kurokawa and
Gritsenko lift

Let V' be a finite dimensional vector space over Q, and let be ( , ) an inner product
on V. Let O(V) denote the group of linear isometries of (, ). Let W denote another
finite-dimensional vector space over Q and let (, ) denote a symplectic form on W. Set
W' :=V & W. The tensor product of the forms (, ) and (, ) defines a symplectic form
(, ) on W’'. The groups O(V) and Sp(W) act on W’ in the obvious way. Their action
clearly preserves the form (, ), and each group clearly commutes with the other. In fact,
each of the groups O(V) and Sp(W) is the full centralizer of the other in Sp(W”’), so that
(O(V),Sp(W)) forms a dual pair in Sp(W’).

In this section we consider theta lifts for dual reductive pair (O(V'), Sp(W)) in the case
when the symplectic space W has dimension 2 and the quadratic space V' has signature
(2,m). In many particular cases such theta lifts were found before the general theory was
developed. Since it is difficult to compute the action of representation w given by (1.10),
finding theta kernel 6,(g, ¢’) in (1.23) becomes a nontrivial computation. In this section
we give examples of the theta kernel for some concrete subspaces of modular forms (see
(1.31), (1.35)). Another important task is to compute the Fourier expansion of the theta
lift 6,(f) from the Fourier expansion of f (see (1.24), (1.33), (1.34)).

Shimura lifting

Shimura’s correspondence introduced in [64, 65] takes modular forms of half integral
weight & 4+ 1/2 modular forms of integral weight 2k, which can be thought of as modular
forms of weight & for the group Oy ;(R). In the simplest case, when f(7) =Y c¢(n)¢" is a



25

modular form for I'g(4) of weight & + 1/2 such that ¢(n) vanishes unless n = 0,1 mod 4

then
F(z) = +ZZd’” (n*/d*) e(nz)

n=1 d|n

is a modular form of weight 2k.

Doi-Naganuma lifting

In [48] K. Doi and H. Naganuma discovered a lifting from the space of ordinary modular
forms to the space of Hilbert modular forms for real quadratic field. In [61] Naganuma
extended these ideas to the case of modular forms of Hecke’s Nebentypus. More precisely,
in [48, 61] Doi and Naganuma proved the following. Let p be the prime equal 1 modulo
4, 0, denotes the ring of integers in Q(y/p) and let f(7) = Y7, a,e*™ be the Hecke
eigenform in the space of cusp forms for I'g(p) and the character y = (p/ ). Then, if 0, is

€ 6_11”) ( p an integer of Q(/p),

Euclidean, so that SLy(0,) is generated by (_01 (1)> and (O
€

€ a unit of Q(y/p)), the product

(L) ()

is the Mellin transform of a Hilbert modular form for SLs(0,). Employing a later result
of Vaserstein (see [28] Chapter IV.6) on generators of Hilbert modular groups, the proof
can be generalized to all primes with class number 1.

Let Sk(Io(A), x) be the space of cusp forms for I'y(A) and the character x = (A/)
and SHHP(A) the space of cusp forms for the Hilbert modular group SLy(0a). We denote
the Naganuma map by

N 2 Si(To(A), x) — SFP(A).

In [74] D. Zagier gave an alternative definition of the map A and showed that the
lifting exists for all positive discriminants A = 1 mod 4. In the simplest case when A = p
is prime the lifting of f =Y a(n)¢" € Sk(To(p), x) equals

Nf(r,m) = Z c((v0)) e(vm + V'), (1.24)

veo~ !
>0

where for each ideal a the coefficient ¢(a) is defined as

c(a) = Zr“d(%?), (1.25)

rla

with



26

To show this Zagier constructed the kernel function Q(7, 71, 72) for the map N. The kernel
function has the property that for each f € Si(I'o(A), x) the identity

N(f) (11, 72) / f(r)Q(r, m, 7'2) S(T)k_2 dr. (1.26)
To(A)\H

holds. For each m > 0 consider the function

Win(T1,T2) = Z ! . (1.27)

1 (amimy + A1 + N1o + b)F
a,bEZ, NV

AN —ab=m/A

Then the function €2 is defined by

Q71,1257 Zm o (11, ) e(mT). (1.28)

It is a Hilbert modular form in variables (71, 75) and a modular form for I'o(A) and the
character x = (A/ ) in variable 7.

In [28] the Naganuma map is defined for all groups SL(o @ a). For each fractional ideal
a of K the function

omalrim) =3 ! ' (1.29)

L (amimy + A1y + N1 + b/n(a))
a,beZ, A\ea™ 0~

AN'n(a)—ab=m/A

is a Hilbert modular form of weight k in SL(o @ a). It follows from (1.29) that

-1 ! Rk rk oma(T1, To
wm’a(n(a)ﬁ’ n(a)TQ) = 1n(a)" 77 75 Wina(T1, T2). (1.30)

In analogy with (1.31) the kernel function is defined by
o(T1, T2 T Z M W a(T1, 72) €(mT). (1.31)
It is proved in Theorem 3.1 of [28] that 4(71, 72;7) in variable 7 is a cusp form of weight

k on I'o(A) and character (-/A).
The lift N : Sk(To(A), x) = Sk(SL(o @ a)) is defined by

No(f) (71, 72) / (1) (7,71, 72) ()2 dr. (1.32)
In this case the analog of the formula (1.24) is
Ny f(m, 1) = Z c((Wpat)e(vr +v'n). (1.33)
vea !
v>0

This identity follows from Theorem (4.2) in [28] and the proof of Theorem 5 in [74].
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Gritsenko lift
The Gritsenko lift of a Jacobi form

(1, 2) = Zb(n, rye(nt +rz) € Jpn

is defined as .
F(Z) =) _B(T)e(tr(TZ))€ M;*(Ty),

B(;Z ;ﬁ) - ¥ z“%%,%), (1.34)

1|(m,n,r)

where

and

B(r% Tf) = 0if Ntn.

It is proved in [37] that F(Z) is a Siegel modular form for a paramodular group I'y
introduced in (1.3).

1.8 Borcherds lift

In this section we recall the definition of regularized theta lift given by Borcherds in [10].
We let L be an even lattice of signature (2,b) with dual L'. The (positive) Grass-
mannian Gr* (L) is the set of positive definite two dimensional subspaces vt of L&R. We
write v~ for the orthogonal complement of v, so that L ® R is the orthogonal direct sum
of the positive definite subspace v and the negative definite subspace v~. The projection
of a vector [ € L ® R into a subspaces v+ and v~ is denoted by [+ and [,-, respectively,
so that [ = [+ + [,-.
The vector valued Siegel theta function O : § x Gr™ (L) — C[L'/L] of L is defined
by
Ot ) =9" " D ex Y e(qler)T +q(l-)7). (1.35)

AeL'/L  lEL4A

Remark 1.1. Our definition of © differs from the one given in [10] by the multiple 3 /2.

Theorem 4.1 in [10] says that ©(7,v") is a real-analytic vector valued modular form
of weight 1 — b~ /2 and representation p;, with respect to variable 7.

We suppose that f is some C[L'/L]-valued function on the upper half-plane § trans-
forming under SLy(7Z) with weight 1 — b~ /2 and representation py. Define a regularized
theta integral as

reg

Bo(vt, f) = / (), Ba(r™)) y 2 de dy (1.36)

SL2(Z)\%
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(the product of O, and f means we take their inner product using (e,,e,) = 1if p = v
and 0 otherwise.)

The integral is often divergent and has to be regularized as follows. We integrate over
the region F;, where

Fo={7€H—-1/2<R(7) <1/2and |7| > 1}

is the usual fundamental domain of SLy(Z) and F; is the subset of F,, of points 7 with
(1) < t. Suppose that for £(s) > 0 the limit

lim [ (f(7),0L(r, o)y 17 2 dxdy

t—o0 F
exists and can be continued to a meromorphic function defined for all complex s. Then
we define rog

[ @By ey

SLa(Z)\$
to be the constant term of the Laurent expansion of this function at s = 0.
As i Section 1.2, we denote by Aut(L) the group of those isometries of L&R that fix all

elements of L'/L. The regularized integral ®,(v™, f) is a function on the Grassmannian
Gr*(L) that is invariant under Aut(L).

Suppose that f € M '(Mpy(Z), p1) has the Fourier expansion

fulr) =323 culn,t) e(n, )y

neQ teZ

and the coefficients ¢, (n,t) vanish whenever n < 0 or t <0 or ¢ > 0.
We will say that a function f has singularities of type g at a point if f — g can be
redefined on a set of codimension at least 1 so that it becomes real analytic near the point.
Then the following theorem which is proved in [10] describes the singularities of reg-
ularized theta lift @, (vT, f).
THEOREM B1.([10] Theorem 6.2) Near the point vy € Grt(L), the function ®p(v", f)
has a singularity of type

S (). t) (~Aralte) log(all) /1
t20 1eL'nuy
10

In particular @y, is nonsingular (real analytic) except along a locally finite set of codimen-
sion 2 sub Grassmannians (isomorphic to Gr*(2,b= — 1)) of Gr* (L) of the form I+ for
some negative norm vectors | € L.

Recall that in Section 1.2 we have shown that the open subset

P={[Z] e P(L&C)|(Z Z)=0and (Z,Z) > 0}

is isomorphic to Gr* (L) by mapping [Z] to the subspace RR(Z) + RI(Z).
We choose m € L, m’ € L' such that q(m) =0, (m,m’) = 1. Denote V; :== L&QNm*N
m't. The tube domain

H = {z € Vo @ C(3(2), 3(2)) > 0} (1.37)
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is isomorphic to P by mapping z € H to the class in P(L ® C) of

2() = 2 4wl = 5((2,2) + (', Y)m.
We consider the lattices M = LNm™* and K = (LNm™*)/Zm, and we identify K ® R
with the subspace L @ RNm* Nm/*.
We write N for the smallest positive value of the inner product (m,[) with [ € L, so
that |L'/L| = N*|K'/K]|.
Suppose that f=>" y €S+ 18 a modular form of type pr and half integral weight &.
Define a C[K’/K]-valued function

Z fK-I—H(T) €r

KEK'/K

by putting
feen(T) = D) franl

pneL’/L:
plM=kx
for k € K. The notation A|M means the restriction of A\ € Hom(L,Z) to M, and
v € Hom(K,Z) is considered as an element of Hom(M,Z) using the quotient map from
M to K. The elements of L' whose restriction to M is 0 are exactly the integer multiples
of m/N.
For z € H denote by w* the following positive definite subspace of Vj

wt(z) = RS(2) € Gr(K). (1.38)

Theorem 7.1 in [10] gives the Fourier expansion of the regularized theta lift and in the
case when lattice L has signature (2, b™) this theorem can be reformulated at the following
form.

THEOREM B2. Let L, K, m,m’ be defined as above. Suppose

Z ey Z cu(m,y) e(mx)

neL'/L meQ

is a modular form of weight 1 —b~ and type p;, with at most exponential growth asy — oco.
Assume that each function c,(m,y) exp(—27w|m|y) has an asymptotic expansion asy — 0o
whose terms are constants times products of complex powers of y and nonnegative integral
powers of log(y). Let z = u+iv be an element of a tube domain H. If (v,v) is sufficiently
large then the Fourier expansion of ®p(vt(z), f) is given by the constant term of the
Laurent expansion at s = 0 of the analytic continuation of

Va)Pg(wt(2), f \/_Z Z Z ((nl,u —m') + (np,m')) x (1.39)

leK’ per//L: n>0
pl M=l
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7m2q(v) (l,v)2 —s—3/2
x /cﬂ (a().y) eXp( ) Wy< @) 2<1(l))> Y dy
y>0
(which converges for R(s) > 0 to a holomorphic functions of s which can be analytically
continued to a meromorphic function of all complex s ).

The lattice K has signature (1,b~ —1), so Gr™(K) is real hyperbolic space of dimension
b~ — 1 and the singularities of ®x lie on hyperplanes of codimension 1. Then the set of
points where @ is real analytic is not connected. The components of the points where
® is real analytic are called the Weyl chambers of ®5. If W is a Weyl chamber and
[ € K then (I,W) > 0 means that [ has positive inner product with all elements in the
interior of W.

1.9 Infinite products

We see from Theorem B1 that the theta lift of a weakly holomorphic modular form has
logarithmic singularities along special divisors. In [10] Borcherds shows that it’s possible
to exponentiate this function. The following theorem relates regularized theta lifts with
infinite products introduced in the earlier paper [9].

THEOREM B3([10], Theorem 13.3) Suppose that f € Ml!ib_/2<SL2(Z), pL) has the Fourier

expansion
f(r) = Z Z ca(n)e(nr)ey.

AeL! /L n>—0o0
and the Fourier coefficients cx(n) are integers for n < 0. Then there is a meromorphic

function V1 (Z, ) on L with the following properties.

1. W is an automorphic form of weight co(0)/2 for the group Aut(L, f) with respect to
some unitary character of Aut(L, f)

The only zeros and poles of Uy lie on the rational quadratic divisors I+ for 1 € L,
q(l) < 0 and are zeros of order

o

Z Cyl ((l(xl))

zERT:
zlel’!

D17, ) = ~4log [W1(Z, )] - 260(0) (g [V] + T"(1)/2 + log V2r).

4. For each primitive norm 0 vector m of L and for each Weyl chamber W of K the
restriction V,,(Z(z), f) has an infinite product expansion converging when z is in a
neighborhood of the cusp of m and (z) € W which is some constant of the absolute

value
[T 0 —e(a/n)eomsor:

5€Z/NT
540
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times

e(Z o W. 1) [T I (0 —etk,2) + (um!))=Er2.
keK’: peLl’/L:
(k,W)>0 M=k

The vector p(K, W, fx) is the Weyl vector, which can be evaluated explicitly using
the theorems in Section 10 of [10].

Remark 1.2. In the case then L has no primitive norm 0 vectors Fourier expansions of ¥
do not exist.

1.10 See-saw identities

In the paper [50] S. Kudla introduced the notion of a see-saw dual reductive pair and
proved a wide family of identities between inner products of automorphic forms on differ-
ent groups, now called see-saw identities. His construction clarified the source of identities
of this type which appeared in many places in the literature, often obtained from compli-
cated manipulations.

We will use the same notations as in Section 1.6. Consider a dual reductive pair
(G,G") in Sp(W). For automorphic forms fi, fo on G(A) with f; a cusp form denote

(i, f)e = / f1(9) Fol@) dg

Z(8)G(kK)\G(A)

where dg is the Tamagawa measure and Z(A) is a center of G(A). Let f and f’ be a pair
of cusp forms on G(A) and G’(A) respectively. For the theta lifts of f and f’ given by
(1.23) one obviously has the following adjointness formula:

0o(): e = (f,0,(f"))cr- (1.40)
A see-saw dual pair in Sp(W) is a pair (G, H'), (H,G") of dual pairs in Sp(WW) such that
GDOH and G' C H.

The “see-saw” identity associated to such a pair is an immediate generalization of the
adjointness formula (1.40). Let f and f’ be cusp forms on H(A) and H'(A) respectively,
then

<990(f): fI>G = <f> ev(fl»G’ (1-41)

where functions 6,,(f) and 6,(f’) are restricted to H and H' respectively.
In this thesis the see-saw pair (Sp(W), O(V)), (Sp(W)xSp(W),0(V")x O(V")) plays
an important role, where the dimW = 2 and V = V' & V”. In Theorems 3.1 and 5.2
we prove identities associated to this pair for certain concrete subspaces of automorphic
form. We should say that we rephrase identity (1.41) in the following way. In Sections 3.2
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and 5.3 we prove that there exits a map 7" : M (Sp(W)) — M'(Sp(W)) between certain
subspaces of modular forms which will be specified in Sections 3.2 and 5.3 such that

‘950<f)‘o(vl) = 0,(T(f))- (1.42)

Such reformulation of (1.41) is especially useful in the case of the regularized theta lift,
when the Petersson scalar product might not converge.



Chapter 2

The restriction of Siegel Eisenstein
series to Humbert surfaces

2.1 Introduction

In this chapter we compute the restriction of Siegel Eisenstein series from the Siegel
half-space $ to Humbert surfaces.

The Siegel half-space $® is a multidimensional generalization of the Poincare half-
plane § consisting of complex 2 x 2 matrices with positive-definite imaginary part

(2) .__ _ (M1
9= {z—=(7 ;) |s(2)>0}.
The Siegel Eisenstein series is defined as
ER5(Z) = det(CZ+ D)™*,
{C.D}
where the sum is taken over the equivalence classes of coprime symmetric pairs.

The quotient space ) /Sp,(Z) is the moduli space of principally polarized abelian va-
rieties of dimension 2. This manifold has a rich geometry and contains a lot of subvarieties
with remarkable arithmetic and geometric properties [27].

For instance, for each A > 0 there is a Hilbert modular surface of the real quadratic
field Q(v/A) in $® /Sp,(Z), called the Humbert variety $a. In the simplest case A = 1
the surface $; is the image of all diagonal matrices (7(_)1 %) € 9@ and is isomorphic to
$9/SLo(Z) x $/SLa(Z). The restriction formula for Siegel Eisenstein series in this case is
well known (e.g. [26]) and reads

dim M,

ie 0
B g(%m) = > wigi(n) gi(m).
=1

Here the coefficients pu; are related to a special value of the symmetric square L-function
of the normalized eigenforms g; € M.(SLy(7Z))
B B4R B (2k — 3)! D(g;, 2k — 2)
N T BiBusy alPr

33
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where D(g, s) is defined in Section 2.3 for cusp forms, and j; = (2k/By)? for the Eisenstein
series g1 = Gy, = =B /2k + 32, (3, m" )™

In Theorem 2.1 we generalize this formula for 4, when A is prime and equals 1
modulo 4.

2.2 Eisenstein series

In this Chapter we consider several different spaces of modular forms. Each of them can
be decomposed into two parts: the space of cusp forms and the space of Eisenstein series.
These two subspaces are orthogonal to each other with respect to Peterson scalar product.

In the case of ordinary modular forms M (SLs(Z)) the space of Eisenstein series is
one-dimensional and it is spanned by the function

1 / 1
E = — E S —
K(7) 2 = (e + d)F’

where the summation is taken over all coprime pairs of integers. We will use the following
different normalization of the Eisenstein series

Gi(r) = —2% Eu(r) = —2_% L3 (S e
n. mln

The function Gy is a normalized Hecke eigenform, i.e. it is a common eigenvector for all
Hecke operators and the Fourier coefficient at e?™7 equals 1.

Denote by My.(Ty(p), x) the space of modular forms on the group I'y(p) of weight k
and character x = () (see Section 1.7 for the definition). The space of Eisenstein series

in My (To(p), x) has dimension 2 if p is prime. It is spanned by the Hecke eigenforms

By =2 kX) 1—” EYY

n=1 m|n
and .
Gk = szk "x(n/m)q"
n=1 m|n

For a fundamental discriminant A > 0 denote by Mj(SLa(0a)) the space of Hilbert
modular forms for the group SLg(0a). The definition of Hilbert modular forms is given
in Section 1.7. The dimension of the space of Hilbert Eisenstein series in M (SLa(04)) is
equal to the class number of Q(\/Z) More explicitly, for each ideal class C' of K, set

| 1
E(r, 7 C) = N@)* Y s
(u,v)E(axa—{(0,0)})/o* (/“—1 + V) (M To + v )

where 71, 75 are in §) and a is any ideal in C. The Eisenstein series E}'°(-, C), C € CL(K),
are linearly independent and span the space E;(SLs(0a)). Consider the finite sum

il , il
EP (1, 1) = E E; P (1, m;C).




35

Recall that in Section 1.7 we have defined the map A" : Sp(To(A), x) — SHIP(SLy(04)).
The map N can be defined not only for cusp forms but also can be extended to the whole
space

M(To(A), x) = E(Lo(A), x) ® Sk(To(A), X)-
The space E(I'o(A), x) is spanned by two functions
L(l — ]{5 Xd) > _
+ ) k—1 n
By =——>5 +) 0> mF T (xa(m) + xa(n/m))g

n=1 mln

For them we have N'(E, ) =0 and N'(E;") = E/I".
The Siegel Eisenstein series is given by
E5(Z) =Y det(CZ+ D)™
{¢.D}
where the sum is taken over the equivalence classes of coprime symmetric pairs. We
recall that the pair of matrices is called symmetric if C*D = D'C. We say that two
pairs {C4, D1} and {Cy, Dy} are equivalent if there exists a unimodular matrix U such

that UC, = Cy and UD; = Ds. And finally, the pair {C, D} is coprime if the matrices
XC, XD are integral only for X integral. We will also use a different normalization of

Siegel Eisenstein series
: 1—k)((3—2k)
Gileg _ C( )g( )E’?eg‘
Siegel Eisenstein series posseses the Fourier expansion of the form

GY¢(Z) Z A(T)e(trTZ),

where the sum is taken over semi-definite half—mtegral symmetric matrices. The coeffi-
cients A(T) are defined in the following way. If D is a fundamental discriminant denote
by Lp(s) the L-series L(s, (2)). For all D € Z we define

0 if D=2,3mod 4,
Lp(s) = ¢(1—2s) it D=0,
Lpy(8) X gy #(d)(B2)d 01 o5(f /) if D=0,1mod4, D # 0,

where in the last line D = Dy f? with f € N and Dy equals to a discriminant of Q(v/D).
The values Lp(2 — k) are well-known to be rational and non-zero. They were extensively
studied by H. Cohen [18], who used the notation

H(k—1,|D|) = Lp(2 — k).

Then the Fourier coefficients of Siegel Eisenstein series equal
m r/2 dmn — r?
A - lk‘lH(k —1 —)
(r /2 n ) Z B £ ’
1|(m,n,r)
0 0) _ A=k
A (O 0/ 2
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2.3 Symmetric square L-function

Let f =" a(n)e*™™ be an eigenform in the space Si(I'o(A), x). For each prime ¢ let oy
and 3, be the roots of the polynomial

2

v — agr + x(9)¢" .

Then the symmetric square L-function attached to f is defined by the Euler product
—5 —5 —s\\ 1
D(f,s) = [[((1=aZq™)(1 = Ba*)(1 — agBeq ™))

q

The following identity holds

2\, —s _ D(f,s)
2_a(m*)m™ = C(2s — 2k +2)°

m

2.4 Restriction formula

Futher we assume A = p to be prime and equal 1 modulo 4.

Theorem 2.1. The pullback of the Siegel Eisenstein series via the map o defined in (1.6)

equals
dim My, (To (p),x)

EX®(o(m,m) = Y, ANN(fi)(m,7m),

i=1

where fi(T) =Y., a;(m)e*™™ are the normalized Hecke eigenforms in My(To(p), x) and

284k L1 (2K — 3)! 2N D(fi, 2k —2
By Bop_o p2h—2 [ £;][2733
If p =1 mod 4 we can choose the basis of 0 to be p; = 1+2\/15 and py = %ﬁ , in this
case
1+p 1—/p
R= 1_2\/13 1+2\/]3 and det R = /p.
2 2
Let {C, D} be a symmetric pair. Then the matrix RC'D'R has the form
RCD'R = (73). (2.2)

where o € 0, and s € Z (we denote by X the adjoint of the matrix X).

Let Q be the set of all triples (a,b, @), where a,b € Z, ) is an integral symmetric
matrix and det ) = ab. We will denote by cont(() the content of the matrix @, i.e. the
greatest common divisor of elements of ). Let Q' be the set of all elements (a,b, Q) € Q
with ged(a, b, cont@) = 1. In order to prove Theorem 1 we will need the following technical
statement.
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Lemma 2.1. The map ¢ defined by
{C, D}~~~ (det C,det D,CD) , (2.3)

gives a one-to-one correspondence between the set of equivalence classes of symmetric
coprime pairs and Q'/ ~.

Proof. First we show that the map ¢ is well-defined. It is clear that equivalent pairs are
mapped to equivalent triples. We have to show that the image of a coprime pair belongs to
Q'. Assume that for the coprime pair {C, D} some prime ¢ divides the greatest common
divisor of (det C,det D, cont(CD)). Since the pair {C, D} is coprime, ¢ can not divide
both cont(C') and cont(D). Without loss of generality suppose that ¢ 1 cont(C') (otherwise
we can change {C, D} by the pair {*D," C'}) and consider the matrix X = %C’ The matrix
X is not integral, although the matrices XC, X D are. Thus, we have got a contradiction
with the assumption that the pair {C, D} is coprime.

The next step is to show that the map ¢ is surjective. Fix some (a,b,Q) € Q. We

have to show that there exists a coprime symmetric pair {C, D} such that
det C' =a, detD=b and CD = Q. (2.4)

For some unimodular matrices Uy, U the matrix U;QU, is diagonal. We can write this
Qg

matrix as a product over prime numbers U1QUy = [ | g Qg where Qg = <q0 q%q) (we will

use the notation ¢* = 0 ). Let ¢*'||a and ¢%||b. Since ged(a, b, cont@) = 1, one of the
numbers «a, 3, ar, B, should be zero. Consider these four cases:

o if a; =0, we define C,:=F and D, := Q,,
o if 3, =0, wedefine Cy:=Q, and D, :=FE,

o if ay, =0, we define C, := (qg,(1)> and D = (é;%’) )

[ ] lf ﬁq = O7 we deﬁne Cq = (éqg,) and Dq . <q§/g) |

It is easy to see that in all these cases the pair {C,, D,} defined above is coprime. Thus
we can define the pair {C, D} as

C=Uy " ([[CoUrt and D = U7 (][ Dy)U5
q q

Obviously, this pair is symmetric, coprime and satisfies conditions (2.4).

Finally, it remains to show that the pair corresponding to (a,b, Q) € Q' is unique up
to equivalence. Assume that there exist two such pairs {C}, D1} and {Cs, Dy}. In this
case C’lel = C’;ng . The matrix U := C'ngl has determinant 1 and

UCl = OQ and UD1 = DQ. (25)

Since the pair {Cy, D1} is coprime, the matrix U is integral, and hence, unimodular.
Hence, it follows from (2.5) that the pairs {C}, D1} and {C5, Dy} are equivalent. O
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For an integer m > 0 denote by 7y, the set of triples (a,b, o) wherea € Z, b € Z, 0 € 0
and
oo’ — pab = m?, (2.6)

Let T :=,, Tm- Now we prove

Lemma 2.2. The map 1
(a,5,Q) = (a,b,0) (2.7)

where o is defined by RQ 'R = (g(f/), maps Q to T. Each element in \J,,, T has

exactly 1 preimage and each element in Up|m T has 2 preimages.

Proof. First we show that 1 maps Q to 7. Let (a,b,Q) € Q be mapped to the triple
(a,b,0) by 1. It is easy to see, that o € 0 and s € Z. Since

det <g§/) = pab, (2.8)

the triple (a,b, o) is an element of 7.
Let (a,b,0) € Tp. It follows from (2.8) that (a,b,0) can only have 2 preimages

(a) b7 Q:t)a where
. 1 o +tm)\ ¢
Q= Rr(S5,5") ‘R
It follows from (2.6) that
m? — (tr(c)/2)* = 0 mod p.

Define s to be either m or —m so that s + tr(c)/2 = 0 mod p. For such choice of s the
matrix

_loros\
Q=R (95) 'R
is integral, (a,b,Q) € Q and ¥(a,b,Q) = (a,b,0). The lemma is proved. ]

Proof of Theorem 2.1. A corollary of Lemma 2.1 is

- 1
EJ8(Z) = 3 > dfdet(aZ + Q)7
(a,b,Q)eQ’

Since each non-zero element (a, b, Q) € Q can be uniquely written as (Aa, Ab, AQ) for some

(a,b,Q) € Q@ and X € N, we have

Sie o k —k
E¥s(7) = R0 (%b%ega det(aZ + Q)" (2.9)

Let (a,b,0) € T corresponds (a,b, Q) via the map ¢ (see (2.7)). From a simple compu-
tation we get
a 'det(ap(ti, ) + Q) = apmiTo + o + 0’10 + .
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Hence it follows from Lemma 2.2 that

. 1
ESleg ’ E E 2.10
e (P, 72)) M Bo)eTn (apmiTy + 011 + 0’9 + b)F " ( )

1
+ Z Z (apTi7o + 0T + 0'To + b)F

p|m (a,b,0)ETm

For the fundamental unit € the number 7 := €,/p is totally positive and has norm p.
We can write

apmiTe + om + '+ b =anmn'm + M + N'n'm + b,
where A = o/n € ©7!. Thus from definitions (1.6) and (1.27) we get

Elgieg(Q(Tl,E <Zwm2 T1, T2 +Zwm2 T1, T2 >

plm
We can reformulate identities the (1.27) and (1.31) to obtain

dim S (To(p),x) ( )

W =m 7Y C’L‘anZ N(fi), m=1,

i=1

where f; =3  a;(n)q", i = 1,...,dimSk(Iy(p), x) denote the normalized Hecke eigen-

forms. From [74] p. 30 we find that the right-hand side should be multiplied by ¢, =

—1)R2p . . .
% in order to get exact equality. Hence we arrive at

E(o(r, 7)) = N(fi) (11, 72),

dim Sk (T'o (), x)
wWo (7'1, 7'2) +
=1

c
k) :
where - , - )

N = AT (mZ =AY i)
It is shown in [74] that wy is a multiple of the Hecke-Eisenstein series

C(k) Hilb
CK(]{> Ek (7'1,’7'2).

wo(Tl,TQ) =

This finishes the proof. [J

2.5 Example p=5

In this section we check the restriction formula numerically in the case p = 5.
The dimensions of the spaces of cusp forms of small weight are given in the following
table.
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k 2 4 6 8 10 12 14 16 18 20
dimSp(SLo(Z)) |0 0 0 0 0 1 0 1 1 1
dim S,(To(5),x) |0 0 2 2 4 4 6 6 8 8
dimS,(SLs(0)) [0 0 1 1 2 3 3 4 5 7

For each even k£ > 2 the dimensions of corresponding spaces of Eisenstein series equal
dim E(SLy(Z)) =1, dim EL(To(5), x) =2, dimEL(SLa(0)) = 1.

In this section we will check the identity

 dmSy(To(5)0)
G+ ) NN (2.11)

i=1

2 S 1
—G 1eg @) Q - —_—
C(3—2k) k L(=k+1)

for several values of k. The Fourier expansion of Hilbert Eisenstein series is given by

G?ilb(’rl,’rg) _ g@(\/») —k + 1 Z Z N k: 1 271'2 (v +v/ 7'2)
vep—1 bl()®

>0

We will compare Fourier coefficients of both sides of (2.11) for several v € @', The
Fourier coefficients of the functions involved in (2.11) are given in the following table:

Vo G o G N
0 G k)g(g’ — 2k) Corvs (—k+1) 0
! +2‘/5 H(k—1,0) = C(3 - 2k) 1 |
14++v5 | H(k—1,-3)+ (2*' + 1) H(k — 1,0) 4k=1 41 a(2)? + 2k
V5 H(k—1,—4) 5141 a(5) +a(5s)
1+23\/5 H(k—1,-7)+ H(k —1,-8) 1=t +1 a(11)

Case k = 4. In this case the equation (2.11) becomes

2 s 1 .
—G%®op=—G'P 2.12
¢(=5) " Ly(=3) " 212
We compute the values of L-functions
-1 1
¢(=5) 259 (=3) = 5>

and the values of H(3, D) are given in the table below



H(3,0)

H(3,-T)

H(3,-8)

—1
252

2 7

—16

-3

Substituting these values into the table we verify that the identity (2.12) holds:

1

s

0 1 1
240 240

1 +2\/5 ) )
1++/5 65 65
V5 126 126
# 1332 1332

Case k = 6.
The space Sg(To(5), x) is spanned by the two eigenforms f = > a(n)¢™ and fP =
> a(n)q™, where the first coefficients of f are given in the table

n a(n)

1 1

2 2/—11

3 —6¢/—11

4 —12

5 | —45+10y/—11

6 132

7 —18y/—11

8 404/—11

9 153

10 | —220 — 90y/—11

11 252
The equation (2.11) can be written as

g Ce e 0= g GE W),
where ) is a special value of the symmetric square L-function.
We find that . 67
¢(=9) = Ly(=5) =

132 10
and the values of H(5, D) are given in the following table



H(5,-3)

H(5,—4)

H(5,—7)

H(5,—8)

DN | Ut

32

o7

42

The Fourier coefficients of the Eisenstein series and the Doi-Naganuma lift are given in

the table:

From that we find

This agrees with the value found directly from (2.1).

1 Sie, i
\/BV @ GG & o} G(I:I Ib DNf
1 67
0 N - 0
504 2520
145 —55 1025 20
NG —330 3126 | —90
1
._iﬁglf§ —11748 161052 | 252
72
A= —.
67

Case k = 12. This is the first interesting case, when the space Si(SLs(0)) is not
spanned by Naganuma lifts of elements from Sy (I'o(5), x).

The space S12(I'o(5), x) has dimension 4. It is spanned by the functions f;
and f =3 a;(n)q", i = 1,2, where the first coefficients of f; are given in the table

> ai(n)q"



n a;(n)
1 1
2 a;
-1 2
3 —af — Eai
112 28
4 oF + 2048
3345
— a3 24 77 .
5 1% + 5a; + oy + 10255
6 11a? + 22288
17 o 12949
7 BT Ayt
8 o + 4096
9 —T8a? — 154785

10 | 503 — 6502 + 10225q; — 111440
11 —22002 — 536108

Here oy, @ and ap, @sy are solutions of the equation

a + 4132a% + 2496256 = 0.

Thus, we check the identity
2

Sieg

1
((—21) 12 ¢TI (-1

We compute

77683
—91]) = —— %
1150921
LX(_ll) = )
2
and
1 - 32760 2 131040

C(—11) ~ 691 (g (—11) 795286411
The values of H(11, D) are given in a table

G 1L 2NN f1 4+ 20N fo.

H(11,0) | H(11,-3) | H(11,—4) | H(11,—7) | H(11,-8)

77683 3694 00521

276 3 2

— | —9006448 | —36581523

43
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The Fourier expansions of the functions are equal to

Vor | Gitoo 15" DN fi DN fy
0 53678953 | 795286411 0 0
18083520 65520
1+v5 | 77683 . | |
2 276
159512315
LHVE | - | 4194305 2030 + 30v/1969 2030 — 30/1969
50521
V5 - 48828126 —150 +300v/1969 | —150 — 300/1969
1+3v5
——— | 45587971 | 285311670612 | —81588 — 6600v/1969 | —81588 + 6600v/1969

From the table we find
15 (7102265 4 107979371969 )

- 140 (—7102265 — 107979371969 ) 1
b 89406996043+/1969 L, (—11)¢(—21) 24/1969 ’
o 140 (7102265 — 10797937+/1969 ) B 1 15 (—7102265 + 10797937/1969 )
2 89406996043+/1969 © Ly(—11)¢(-21) 21/1969 '

An interesting observation is that the denominator of the product

M =-22.3.52. 7. 1171.79-13172- 17971 - 59372 . 536651 - 1150921+

is divisible by the prime 1150921, which also divides the special value L, (—11) = 1153921.
A similar phenomenon holds also in the case k = 6. In the level one case congruences of

this type are discussed in [24].



Chapter 3

Modular surfaces, modular curves,
and modular points

3.1 Introduction

In this chapter we generalize the see-saw identity obtained in the previous section to the
case of the paramodular group.

Using this identity we give a much simpler proof of the modularity of the generating
series > Pyq? of Heegner points on the modular curve X,(N). We follow the idea explained
in [76], which has been applied to X((37) there. In Section 3.3 we prove Theorem 3.2 which
was formulated in conjectural form in [76]. This allows to apply the method developed in
[76] to any prime level N.

3.2 Pullbacks of Gritsenko lifts

In this section we compute the restriction of the Gritsenko lift of a half intergral weight
modular form to the Humbert surfaces, which were defined in Section 1.2.
Let

h(r) = b(n)e(nr) € M, ,(To(4N))

be a modular form of half-integral weight and let

F(Z)=) _B(T)e(tx(TZ)) € My**(T'y)

be the Gritsenko lift of h. It follows from (1.34) and (1.21) that

#(Jh ) = 2 ) o

l|(m,n,r)

In what follows we will use the operator Uy defined by

a(n)e(nt) | Uy := Za(Nn) e(nr).
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For M | N this operator maps My (I'o(M)) to Mg(T'o(N)), but in certain situations it can
even decrease the level. For example, see [77].

Lemma 3.1. Let h € MJ_I/Q(FO(ZLN)) be a half-integral weight modular form and let 6

be the standard theta-function (1.36). Fizx a positive prime discriminant p with (%) = 1.
Then the function

g = Uyn|[0(T)h(pT)]
belongs to My(To(p), x)-
Let N,p,a be as in Section 1.7. Denote by Hy the set of semi-definite half-integral
m r/2

matrices of the form
r/2 Nn

), and let S, be the set of couples (o, s) such that

1
cea o0>0, se -7,
p

400" — s* > 0 and (tr(o) — s) € Z.

T = (;72 ;ﬁ) € Hy and 'RTR = (;2 Sf) , (3.2)

Let

where the matrix R is defined in (1.6). Further assume that p is prime.

Lemma 3.2. Denote by ¢ the map
T ——(0,s), (3.3)
where o and s are defined from (3.2). Then
a) the map v gives a one-to-one correspondence between Hy and S,.
b) for each integer I we have

l|(m,n,r) < l|(po, ps, s — tr(o)). (3.4)

Proof. Suppose that T' € Hy satisfies (3.2). It follows from (3.2) that

o =pim + prpar + pynN,
s =2p1pym + (p1ph + php2)r + 2papy Nn. (3.5)

Note that from 9! /a 2 Z/NZ we see that N/,/p is an element of a. Since p; € a, p, € 7!
it is clear that 0 € a and s € %Z. It follows from the identity

o+0' —s=(p1—p)*m+ (pr = p)(p2 = Po)r + (p2 — p3)*n

that tr(c)—s € Z. Finally, since T' > 0 we obtain inequalities the o > 0 and 400’ —s* > 0.
Hence, (o, s) is an element of S,.
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Now we assume that (o, s) belongs to S,. In this case the preimage of (o, s) under the
map ¢ is the matrix
m r/2 iR o s/2 R
r/2 nN s/2 o

m =p ((py)*0 — paphs + psa’),
n =p ((p))’c — pip\s + pio’),
r=p (= 2p1p50 + (p1py + pip2)s — 2pipac’).

where

It follows from the identities

m =p ((trps)*(tro — s) — trpa(p2 — p5) (0 — ') /2 + (p2 — pb)*(tro + ) /4),
n=p ((trp1)*(tro — s) — trpi(p1 — p)) (0 — o) /2 + (p1 — py)*(tro + ) /4),
r=p (tr(pipy)(tro + s) + (p1py — prps) (0 — o)), (3.6)

that numbers the m, n,r are integers. Since n belongs to aNZ it is divisible by N. Thus,
part (a) of the Lemma is proved. Part (b) follows from (3.5) and (3.6). O

Assume that N and p are prime and () = 1. Let a be a fractional ideal contained in
07! with 07! /a 2 Z/NZ. Then the following theorem holds.

Theorem 3.1. Suppose that h is a half-integral modular form in M;—1/2(N) and let

F € Mi(T'y) be the Gritsenko lift of h. Then, the pullback of F' via the map p defined in
(1.6) equals

1

F(P(TLTQ)) = éNag(Tl,ﬁL

where g(1) = 0(7)h(p7) | Usn and N is the Naganuma lift defined by (1.33).

Proof. First we will compute the Fourier expansion of F'(p(7, 7)). Suppose that h(7) has
the Fourier expansion

h(t) =Y _b(D)e(Dr).

The Gritsenko lift of h equals

F(Z)=) B(T)e(trTZ),
T
where B(T') are given by (1.34). It follows from the definition of the map p that

Flp(m,m)= > B(T)e(tr[tRTR-ClTQ)D.

T half—integral
T>0
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From Lemma 3.2 we obtain
p(11,72)) Z Z B(T)e(or + 0'm),
7o (')
where the last summation is taken over all semi-definite half-integral matrices 7" that

2
satisfy 'RT R = ( o s/

2 o ) for some s. It follows from formula (3.1) and Lemma 3.2 that
5/2 o

for fixed o € ad~!

>, BM= ) l’f—lb<@‘7‘7/l—2_52)p)’

tRTR:( o S/?) 400" —52>0

s/2 o

/ l|s—tro
U|(pops)

where s € Z and [ € N. So, we get

Flp(ri.m)) = ) alo)e(on +o'm),

a>0

where

ao)= > I b(w) (3.7)

400’ —s2>0
pl|s—tro

l|(o,s)

Our second step is to compute the Fourier expansion of N (g)(71, 7). It follows from
the definition (5.3) that
= Z c(n)e(nt

=0

3

where AN )
—1
c(n) = Z b(n—> (3.8)
4Nn—t2>0 P
p|4Nn—t2
For an integer n define
1 if pin,
dp(n) = )
2 ifp|n.

The Naganuma lift of g(7) has the Fourier expansion

Nog(riom) = Y blo)e(or +0'm)

ocap~ !
>0



49

for some numbers b(c) € C. Since the coefficients ¢(n) are real, from the additive formula
(1.24) for the Naganuma map we get

Wo)y= > I 51,(“53252) c(“%‘”)f?).

I|(o)oa~1

It follows from (3.8) that

o)=Y ¥ z’f—l(s("l—wb<—(4‘70/l—2l2t2)p>.

llo 400’ [12—t2>0
pldoc’ /12 —t?

Note that for any sequence {v(n)},cz we have

Z 7(n2):%(5(a) Z v(n?).

n=a mod p n=+a mod p

Thus, we have

w1 00 doo’ —Pt*\ 1 w1, [(doo’ —IPt?

2
p-l
400’ JI2—t2>0 4o’ —12t2>0
pldoc’ /12 —t3 pltro—l-t
llo

Hence, we arrive at

oc€a !
>0
where . too! 1242
~ o k—1 oo —
b(o) =5 > b(v). (3.9)
4o’ —12t2>0
plltro—I-t

llo

Comparing the Fourier expansions (3.7) and (5.3) we finish the proof of the Theorem. [

3.3 Modularity of Heegner Points

The following statement is formulated as a conjecture in [76]

Theorem 3.2. Let h : 5 — C be a periodic holomorphic function having a Fourier
expansion of the form

hr)= Y  bD)¢"  (¢=¢)
D>0
— D= square mod 4N
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with N prime, and suppose that the power series

9p(7) = h(pT) 0(T)[Us

is a modular form of weight k, level p and Nebentypus (2) for every prime p =1 (mod 4)
with (%) = 1. Then h belongs to M,;tl/z(N).

In this section we prove Theorem 3.2 under additional assumptions on h. Namely,
we assume that coefficients b(D) have moderate growth and power series h converges for
lg| < 1. Then Ah(7) is a holomorphic function on $).

Although we don’t know that the function A is a modular form, we can define its
Gritsenko lift by formula (3.1)

F(Z)=> B(T)e(tx(TZ)).

For the function F' we prove the following

Lemma 3.3. Let h(1) be a holomorphic function on $). Suppose that the function h
satisfies the hypotheses of Theorem 2. Then the function F' defined above is a Siegel
modular form for the paramodular group I' .

Proof. We have to show that

F|\M(Z)=F(Z) (3.10)
for all M € I'y and Z € ). Suppose that Z = p(11,7) € H? for some map p defined
in (1.6) and some (71, 72) € H x H. We will check the identity (3.10) for the generators of
I y. It is shown in [32] that the paramodular group is generated by

0 0 1 0
Ty — 0 0 0N

-1 0 0 O

0 -NO0O 0

and the elements of I'y N ', (Q), where

% k%
* % k%
Fol@ =910 o &« & | €5P(@
0 0 *x =
First we show that for Z = p(71, 73) the identity
Fludy(Z) = F(Z) (3.11)

holds. In this case

Flodn(Z) = NFdet z*F [ (L O ) gt [ ™ "N 0
0 Nt 0 0 Nt
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It follows from the definition of the Gritsenko lift (1.34) that

Tz Nty —z B
F(z 7_2> —F< . N_17'1> = (3.12)

_r 0 —NY2)\ /(7 =z 0 N2
N N-/2 =n )\ -NV2 g '

Thus, we can write

0
10 L F (10
v =r (5 ) w0 L e (G ) ) -
_F 0 —1 tp-1 ~n U Rl 0 1
1 0 0 ]\7_1 —10
T2

‘R = det(R) ((1) _01>R<_01 (1))

Using this identity we arrive at

Note that

—_p
Ny 0

F(Jy(Z)=F R ‘R =

—_p

Nt

=Fop —_p’ Py
NTQ NTl
It follows from Theorem 3.1 that F o p = 1 N;(g). It follows from (1.30) that

1 —p —p R
— — W — |==-N =
2Na<g)(N7-2’NTl> o 1 T2 Na(g) (11, 72)

= NFrFrh Fop(r,m).

Now it remains to prove (3.10) for M € I'yNI'(Q). Each element of M € I'yNI'»(Q)
can be written as M = My Mg, where

U 0 . t * Nx
My = thU'U=F, U=
v (OU)’W1 ’ (N* *)’

and

(U0 . ot (% *
MS—<0 U),WlthS— S,S—<* N‘l*)'
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Here all * are in Z. The matrix P = UR satisfies (1.5) and defines a map m(7, ) =
P (Tl 0 > tP. Obviously,

0 T2
F(My(Z)) = F om(r,72).
It follows from Theorem 3.1 that
1
Forn(m,n)= §Na(g)(7'1,7'2) = F o p(11,72).

Thus, we obtain
F|yMy(Z) = F(Z). (3.13)

Finally, it follows easily from (3.1) that
FliMs(Z)=F(Z+ S) = F(2). (3.14)

It follows from (3.11), (3.13), and (3.14) that (3.10) holds for all M € 'y and Z = p(7, 72).
The set of all matrices Z = p(1, 12) for all primes p, maps p defined by (1.6) and all points
(11,72) € $ x H is dense in H?. Since the function F is continuous, the identity (3.10)
holds for all Z € $®. Lemma 3.3 is proved.

O

Using Theorem 3.2 we can deduce the modularity of the generating series of the classes
of the Heegner divisors in the Jacobian of Xy(N) from the modularity of the generating
series of the classes of Hirzebruch-Zagier curves in the homology group of a certain Hilbert
surface. This idea is explained in [76] and is applied there in the case N = 37. The
Hirzebruch-Zagier curve Ty on the Hilbert surface Y5 = $ x $\SLs(0) is given by the

equations
/

A
Anmo + —7'1 ——n+B=0

NN

with AB — AN /p = N. The curve Ty is isomorphic to Xo(N). Denote by [T%] the
(compact) homology class of T. It is proved in [41] that Y ~_,[Tn]¢" is a modular form
of weight 2, level p and nebentypus (5). Since the surface Y, is simply connected, the

generating series Y x_; Twvg" of classes of Ty in its first Chow group is also a modular
form. Since

TvNTy = U Pin_r2,
P

the series

is also a modular form of weight 2, level p and nebentypus (5).
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Next, an estimate of the naive height of points P,; in the Jacobian shows that the
power series
Z Py qd
d

converges for |q| < 1.

Hence, it follows from Theorem 3.2 that ), Py q? is a modular form of half integral
weight. This is one of the main results of [36], where it is proved by a much more difficult
computation of the height pairings of Heegner points.
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Chapter 4

Heegner points and Siegel Eisenstein
series

4.1 Intoduction

In this chapter we study a relation between Fourier coefficients of the degree 3 Siegel
Eisenstein series of weight 2 and heights of Heegner points on modular curves. Such a
relation was conjectured by B. Gross and S. Kudla many years ago and it became one
of the motivating examples of Kudla’s program connecting special cycles on Shimura
varieties with Eisenstein series. In this chapter we explain how this idea can give a new
approach to Gross-Kohen-Zagier formula that is both easier and more conceptual than
the original one. Some of our results overlap with results given in [53].

In the paper [1] Gross and Zagier showed that the height of Heegner point on an elliptic
curve F is an explicit(and in general non-zero) multiple of the derivative L'(E/Q, 1). This
implies that for any given elliptic curve E with ords—; L(E/Q, s) = 1 there are Heegner
points of non-zero height, which therefore are non-torsion, in particular the rank of F(Q)
is then at least one. In a subsequent paper [36] the same authors and W. Kohnen proved
a more general formula involving L'(E(Q), 1) and height pairings between two different
Heegner points. We now explain this in more detail.

Let Xo(N) be the modular curve with complex points ['o(/N)\$ and J* be the Jaco-
bian of X§(NV), the quotient of Xo(N) by the Fricke involution wy. For each imaginary
quadratic field K whose discriminant D is a square modulo N and to each r € Z/2NZ
with 7* = D(mod 2N), we associate a Heegner divisor yj,, € J* as follows. If 7 € § =
{z € C| &(2) > 0} is the root of a quadratic equation

ar’>+br+¢=0, a,b,ceZ, a>0,

a = 0(mod N), b=r(mod2N), b*—4ac= D

then the image of 7 in /I'g(N) C Xo(N)(C) is defined over H, the Hilbert class field of
K. There are exactly h = [H : K] such images and their sum is a divisor Pp, of degree
h defined over K. We write yp, for the divisor Pp, — h - (c0) of degree 0 on X(NV)
and for its class in the Jacobian, and y7,, for the image of yp, in J*. The action of the
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non-trivial element of Gal(K/Q) on Try/k((y)) is the same as that of wy, therefore the
image yp,,. of yp, in J* is defined over Q. Its f-component is non-trivial only if f is a
modular form on I'*(N), and this is the case precisely when L(f,s) has a minus sign in
its functional equation and hence a zero (of odd order) at s = 1.

A striking coincidence is that the Heegner divisors y7,, and Fourier coefficients of
Jacobi cusp forms of weight 2 and level N are indexed by the same set of pairs (D, r),
where D is a square modulo N and r € Z/2NZ satisfies r* = D(mod 2N). Moreover, it
is shown in [67] that the new part of the space of Jacobi cusp forms .J;'% is isomorphic
as a Hecke module to the new part of the space Sa,_o(IN)~ space of cusp forms of weight
2k — 2 on T'y(N) with eigenvalue —1 under the involution f(z) — (—=N2z2)7**1f(—1/Nz).
This led the authors of [36] to guess that the height pairing of the f-components of
Yo, a0d yp, . for different discriminants Dy and Dy should be related to the product
L'(f,1) c(ng,70) ¢(ny, 1), where D; = 72 — 4Nn; and ¢(n;,r;) are the Fourier coefficients
of a unique up to scalar Jacobi form ¢ € J;}\S,p having the same eigenvalues as f under all
Hecke operators.

More precisely, let Dy, Dy < 0 be coprime fundamental discriminants, D; = r? —4Nn,,
and f € Sy(I'5(NV)) a normalized newform, in [36] the authors prove the formula for the
height pairings of the f-eigencomponents of yp, .. and yp, .

(U)W, )7) = ol )l ) (4.)

where ¢(n;, ;) denote the coefficient of e(n;7 + 7;2) in ¢ € J3'3°

sponding to f (i =0, 1).

In the case when f is a modular form of weight 2k > 2 P. Deligne has found a definition
of Heegner vectors S, in the stalks above Heegner points x of the local coefficient system
Sym*~2(H"')(H" = first cohomology group of the universal elliptic curve over Xo(N)) and
suggested an interpretation of the right-hand side of (4.1) as some sort of height pairing
between these Heegner vectors. In [16] Brylinsky worked out some definitions of local
heights suggested by Deligne. In [80] Zhang extended the result of [36] to higher weights
by using the arithmetic intersection theory of Gillet and Soulé [30]. More precisely, for a
CM-divisor on Xy(N)z Zhang defined a CM-cycle Si(z) on a certain Kuga-Sato variety.
He defined the (global) height pairing between CM-cycles in these Kuga-Sato varieties,
and showed an identity between the height pairings of Heegner cycles and coefficients of
certain cusp forms of higher weights. We consider the following two generating functions

, the Jacobi form corre-

Hi,n (70, 2031, 21) 1= Z (Sk—1(YDo,r0)s Sk-1(YD1 1)) €(10T0 + 1020 + NaT1 + 7121)
no,r0,M1,71
and
dimSQk_Q(N)7
L(fik—1
ﬁk,N(To,Zo;TbZﬂ = M ¢i<7—0720) ¢i(7'1721)’ (4-2)

drrl|oa1?

where the sum is taken over a set of normalized Hecke eigenforms f; € Sor_o(N)™ and
¢; € Ji N are the corresponding Jacobi forms.

i=1
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The Gross-Kohnen-Zagier formula (4.1) says that the Fourier coefficients of Hy y and
Lo n at e(ngro + rozo + n1m + r12z1) coincide if the discriminants Dy, D; are fundamental
and coprime. This formula is proved in [36] by showing that both # (the value related to
height pairing of two Heegner points) and L (the special value of L-function) are equal
to a complicated “seventeen term” expression X. The idea of B. Gross and S. Kudla
was show that H and £ are both equal to &, the Fourier coefficients of a certain Siegel
Eisenstein series. This idea is shown symbolically in the following picture:

Gross—Kohnen—Zagier

S formula 7
A\ 7
A\ Z

N\ n
A\ X /
N\ 7
N\ Y
N\

(4.3)

Denote by Eég)(~;s) the non-holomorphic Siegel Eisenstein series of degree 3 and
weight 2. The definition of Siegel Eisenstein series is given in Section 4.6. The upper
half-space ) consists of symmetric 3 x 3 complex matrices

T0 2 20
7 = Z T 2
2o 21 T

with positive definite imaginary part.
The starting point of our research is the observation made many years ago by B. Gross
and S. Kudla that
ESNZ.0)=0, ZegsW®. (4.4)

We will show that the single function of 6 variables

9 gz

E*(Z) = B

s=0
encodes information about the height of Heegner points and Heegner cycles for all weights
k and levels V.

The function E*(Z) is naturally related to both sides of the Gross-Kohnen-Zagier
formula. Firstly, using the Rankin-Selberg method one can find a connection between
E*(Z) and a derivatives of L-functions. This has been shown by T. Arakawa and B.
Heim [5]. Secondly, the height pairing of two divisors is defined as a sum of local heights
for all primes including infinity (see Section 4.3). At the same time the Fourier coefficients
of E{Y (- s) can be written as a product of local densities (see Section 4.6). The miraculous
identity (4.4) leads to a natural decomposition of the the Fourier coefficients of £* into a
sum of local contributions (see Theorems 4.1 and 4.2). Thus, we hope to restore from the
function £* not only the global height of Heegner points but also the local contribution
for each place of Q. In this chapter we show that this is the case when the discrminants
of these two Heegner points are fundamental and coprime.



o8

4.2 Statement of results

The function E*(Z) has the Fourier expansion

= Y AHY;s)e(trHZ),
HeH3(Z)
where H3(Z) denotes the set of half integral 3 x 3 matrices.

In Section 4.8 we recall the Maass operator M} that maps Siegel modular forms of
weight 2 to the space of Siegel modular forms of weight k. We define

Ei(Z) = MyE*(2).
It has the Fourier expansion

Z AL(H,Y)e(trHZ).

HeHs(Z
In Section 4.9 we compute the Fourier expansion of E}(Z) with respect to the vari-
able 7. The following limit exists

w+1

* T0 <= - N
Ekz(\?)((; 7-1> (2072’1)) = lim o*/?7! / E;(Z)e(—Nr)dr

V—00
i

and transforms like a holomorphic Jacobi form of degree 2 weight £ and level N. Set
* * 70 0
EkN(Tojzo;ThZﬂ = Ek}(\?)(<g ) ,(20721))-
b b} Tl

In Section 4.10 we calculate the holomorphic projection of Ej y to the space J,‘;Ef,p ®
Jen - The resulting function
ErN = Mol (Ef y)
can be used to prove the Gross-Kohnen-Zagier formula.
For a half-integral matrix

2ng r 1o

H=— r 2ny g
To T1 2N
we define
A;;(H) k 3/2//1 (k 2)/2A*(H Y)) k—5/2 k 5/2 27r(D0U0+D1v1) d’U d?}l,
vV—00
0 0
(4.5)
where
vo 0 %o
Y=10 v 1p and D; =7} —4Nn;, (i =0,1).
Yo Y1 v

The following proposition is proved in Section 4.10.
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Proposition 4.1. For N € N and even k > 2 the function &, n has the Fourier expansion

Exn = E c(no,ro;n1, 1) €(noTo + rozo + N +1121),

where

c(no,ro;ny, m) = Z A (H(r))

reZ

and
2ng r 1o

1
H<r) = Hno,ro,nl,m (T) - 5 T 2”1 Tl
ro 11 2N

In Section 4.11 we prove the following formula for finite primes
Theorem 4.1. Fiz N € N and even k > 2. Let Dy, D1 < 0 be coprime fundamental

discriminants and ng,ny, 19,71 € Z satisfy D; = r2 — 4n; N, then for a finite prime p

<Sk—1(yDo,7’o)7 Sk‘—1<yD1,7’1)>p = const Zp AZ(H<T))7

where the sum is taken over all integers r such that the matriz H(r) is positive definite
and anisotropic over the field Q, of p-adic numbers.

Theorem 4.2. Fizx N € N and even k > 2. Let Dy, D1 < 0 be fundamental discriminants
coprime to N and ng,ny,ro,m1 € Z satisfy D; = r? —4n;N. Then

(Ske1 (YD) Skt (U)o = comst > A(H(r)), (4.6)

where the sum is taken over all integers r such that the matriz H(r) is indefinite.

Note that for & = 2 the infinite sum (4.6) does not converge. However the next
theorem holds for all even & > 2.

Theorem 4.3. The Fourier coefficients of &, n and Hy n at e€(ngto + 1oz0 + N1 + 7121)
coincide if D; = r? — 4Nn;,i = 0,1, are fundamental and coprime.

The main result of [4] combined with Theorem 2.6 in [39] gives us a connection between
the values of L-functions and the Siegel Eisenstein series.
THEOREM. (Arakawa, Heim) Let ¢ € J,z}f,p be a Hecke-Jacobi newform and let E;iN be
the degree 2 Jacobi-Fisenstein series defined in Section 4.9, then

<¢(7-0720>5EI;]7N <(g) 2) ,(zo,zl),s)>J =

c(k,N,s)L(2k — 3+ 2s,¢)o (71, 21),

where
c(k,N,s) = ((4s+ 2k —2) J[J(A +p)

p|N

The following identity is an immediate corollary of the above restriction formula.
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Theorem 4.4. For N € N and even k > 2

&1 = L3
where EFY and L1 denotes the projection of functions & n and Ly n into the space of
new forms.

Now the Gross-Zagier formula and its analog for & > 2 follow from Theorems 4.3
and 4.4.

Remark 4.1. In a recent book [53] Theorems 4.2 and 4.1 are proved (in a different way)
in the case k = 2 without the additional assumptions on Dy and D;.

4.3 Local and global heights on curves

In this section we recall the basic ideas of Néron’s theory. A more detailed overview of
this topic is given in [34]. Let X be a non-singular, complete, geometrically connected
curve over the locally compact field F,. We normalize the valuation map | |, : F,, = R}
so that for any Haar measure dz on F, we have the formula o*(dz) = |af, - dz.

Let a and b denote divisors of degree zero on X over F, with disjoint support. Then
Néron defines a local symbol (a,b), with values in R which is

(i) bi-additive,
(ii) symmetric,
(iii) continuous,

(vi) satisfies the property (> m,(z), (f)), = log|[] f(x)™|,, when b = (f) is principal.

These properties characterize the local symbol completely.

When v is archimedean, one can compute the Néron symbol as follows. Associated
to b is a Green’s function G on the Riemann surface X (F,) — |b| which satisfies 00G), =
0 and has logarithmic singularities at the points in |[b|. More precisely, the function
Gy — ord,(b) log |7|,, is regular at every point z, where 7 is a uniformizing parameter at
z. These conditions characterize (G, up to the addition of a constant, as the difference of
any two such functions would be globally harmonic. The local formula for a = > m,(z)

is then
(a,b), = Z my Gy(x).

This is well-defined since ) m, = 0 and satisfies the required properties since if b = (f)
we could take G} = log|f].

If v is a non-archimedean place, let o0, denote the valuation ring of F, and ¢, the
cardinality of the residue field. Let & be a regular model for X over o, and extend the
divisors a and b to divisors A and B of degree zero on X. These extensions are not unique,
but if we require that A have zero intersection with each fibral component of X’ over the
residue field, then the intersection product (A - B) is well defined. We have the formula

<a7b>v = _(A ) B) log qy.
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Finally, if X, a, and b are defined over the global field F' we have (a,b), = 0 for almost
all completions F, and the sum

(a,0) = (a,b), (4.7)
depends only on the classes of a and b in the Jacobian. This is equal to the global height
pairing of Néron and Tate.

It is desirable to have an extension of the local pairing to divisors a and b of degree 0
on X which are not relatively prime. At the loss of some functoriality, this is done in [34]
as follows.

At each point z in the common support, choose a basis % for the tangent space and
let © be a uniformizing parameter with %—: = 1. Any function f € F,(X)* then has a
well-defined “value” at x: F

2

57> not on 1. Clearly we have

where m = ord, f. This depends only on

To pair a with b we may find a function f on X such that b = div(f) + b, where ¥/ is
relatively prime to a. We then define

(a,b)o = log | fa]ls + (a, V). (4.8)

This definition is independent of the choice of f used to move b away from a. The same
decomposition formula (4.7) into local symbols can be used even when the divisors a and
b have a common support provided that the uniformizing parameter © at each point of
their common support is chosen over F.

4.4 Arithmetic intersection theory

Let us review the arithmetic intersection theory of Gillet and Soulé [30]. Let F be a
number field with with the ring of integers op. Let Y be a regular arithmetic scheme of
dimension d over Spec o . This means that the morphism Y — Specor is projective and
and that Y is regular. For any integer p > 0, let APP(Y") (respectively DPP(Y')) denote
the real vector space of real differential forms o which are of type (p, p) on Y (C) and such
that FL oo = (—1)Pa, where F : Y(C) — Y (C) denotes the complex conjugation.

A cycle of codimension p on Y with real coefficients is a finite formal sum

J = Z TZ'ZZ',

where r; € R, and Z; are closed irreducible subvarieties of codimension p in Y. Such a cycle
defines a current of integration 0, € DPP(Yg), whose value on a form 7 of complementary

degree is
dz(n) = T / UL
ZZ': Z;(C)
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A Green’s current for Z is any current g € DP~'?71(Yg) such that the curvature

hz—5Z——9

is a smooth form in APP(Y) C DPP(Y).

The (real) arithmetic Chow group of codimension p is the real vector space Ch? (Y)r
generated by pairs (Z, g), where Z is a real cycle of codimension p on Y and g is a Green’s
current for Z, the addition being defined componentwise, with the following relation over

R. Firstly, any pair (0; Ju-+0dv) is trivial in Ch? (Y)gr. Secondly, if Y C Y’ is an irreducible
subscheme of codimension p — 1 on Y, f € F*(Y’) is a nonzero rational function on Y,
then the pair (div(f), —log|f|dy(c)) is zero in @’(Y)R.

It is shown in [13] that there is an associative and commutative intersection product

ChP(Y)r ® ChU(Y)g — Ch"H(Y)g
such that, if (71, ¢1) and (Z, g2) are two cycles of codimension p and ¢, then
(Zv,91) - (Za, 92) := (Z1 - Z2, 926 7,(C) + hzy 1)

We can identify Chd(Y)R with R by taking intersection with Y, then the intersection
product of cycles with complementary degrees gives the intersection pairing of these cycles.
Let Zy = (Z1,g1) and Zy = (Z5, g2) be two arithmetic cycles of Y of co-dimensions p

and d — p. We would like to decompose Z1 ZQ into the local intersections (Z1 Zg) for
places v of F

If Z, and Z, are disjoint at the generic fiber then the intersection Z; - Zs with support
defines an element in Chijzlm\zg\ (Y) (see Section 4.1.1 in [30]). Since | Z;|N|Z;| is supported

in special fibers, one has well defined z, € Ch|y® r,|(Y) for each finite place v such that

Zl'ZQZZl'U.

We define

if v is finite, and
/ g1+ / gohz,
Z24(C) Y, (C)

if v is infinite, where Y,, denotes ¥ ®,, , C for an embedding ¢ : ' — C inducing v and
Zoy is the pullback of Z5 on Y.
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4.5 Heegner cycles on Kuga-Sato varieties

In this section we recall the definition of CM-cycles on Kuga-Sato varieties given by Zhang
in [80].

For an elliptic curve E with a CM by /D, let Z(E) denote the divisor class on E x E
of I — E x {0} — D{0} x E, where T is the graph of v/D. Then for a positive integer k
Z(E)*1is a cycle of codimension k — 1 in E*~2. Denote by Si(E) the cycle

¢ S signg'(Z(E)Y),

g€Gag 2

where Gyj_» denotes the symmetric group of 2k — 2 letters which acts on E?*~2 by per-
muting the factors, and ¢ is a real number such that the self-intersection of Si(F) on each
fiber is (—1)*1.

For N a product of two relatively prime integers > 3, one can show that the universal
elliptic curve over the non-cuspidal locus of X (V)z can be extended uniquely to a regular
semistable elliptic curve E(N) over whole X (N). The Kuga-Sato variety Y = Y, (N) is
defined to be a canonical resolution of the (2k —2)-tuple fiber product of E(N) over X (N).
If y is a CM- point on X (N), the CM-cycle Si(y) over y is defined to be Si(&,) in Y. If
x a CM-divisor on Xy(N)z the CM-cycle Si(z) over z is defined to be Y Si(z;)/+/deg p,
where p denotes the canonical morphism from X (N) to Xo(NV), and > x; = p*z. One can
show that Si(x) has zero intersection with any cycle of Y supported in the special fiber
of Yz, and that the class of Sy(z) in H?**(Y(C);C) is zero. Therefore, there is a Green’s
current g(z) on Y(C) such that

00
— k(%) = 05, (a)-

The arithmetic CM-cycle S’k(x) over x, in the sense of Gillet and Soulé [30], is defined to
be

Si(@) = (Sk(@), gi(@)).
If x and y are two CM-points on Xo(N), then the height pairing of the CM-cycles Si(x)
and Sk(y) is defined as the intersection product

~ ~

(Sk(), Su(y)) := (=1)"Sk(=) - Sk(y),

which was considered in the previous section.

4.6 Siegel Eisenstein series

For matrix Z in Siegel upper half-space " = {Z = 'Z| 3(Z) is positive definite} and
s € C, R(s) > 0, the non-analytic Siegel Eisenstein series of degree n and weight k are
defined as

BV (Zys) = det(32)* Y det(CZ + D)™¥| det(CZ + D)| 7.
{C.D}
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Here the summation is taken over the set of equivalence classes of coprime symmetric
pairs. We know from [55] that the series b?,(@”)(Z7 s) have a meromophic continuation to
the whole s-plane and satisfy a functional equation. Set

E(Z,s) =T\"(s) B{(Z,s),

where e
Cu(s+k) ~ -~ :
rm =—_—"" 7 (2 k | | 4 2k — 2
k (8) Fn(5+/€/2) C( s+ >j:1 C( s+ j)u

n—1
Lo(s) = 7" AT (s = 5/2),
5=0
C(s) =72 T(s/2) ().
The completed Eisenstein series satisfy the following functional equation

I ~n 1
B (Z,5) = B (2, —k + 5

—5). (4.9)

We are most interested in the case n = 3,k = 2. In this case

~ ~

5 (s) = s (s +1/2) (s + 1) {(25 +2) {(4s +2).
It is known that Eé?’) (Z, s) is holomorphic at s = 0. Hence it follows from (4.9) that
EY)(Z,0)=0.

For a commutative ring R denote by S, (R) the set of symmetric n x n matrices with
entries in R and by H"(R) the set of symmetric half-integral matrices over R. The Siegel
Eisenstein series posses the Fourier expansion

EM(Zys)= Y AWHYis)e(trHZ), Z =X +iY.
HeH"(Z)
For a non-degenerate H € H"(Z) we have a decomposition

A(H,Y;s) = Wi(H,Y;s) B(H; k + 2s).

Here

Wi(H,Y:s) = / det V* det(X + V)~ [det(X + V)| 2 e(—tr HZ)dX  (4.10)

Sn(R)

is a generalized Whittaker function (or a confluent hypergeometric function). The analytic
properties of such functions where studied in detail by Shimura [66]. The Siegel series
B(H;s) are defined as
B(H;s) =Y v(R)“e(tr RH),
R
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where R runs over a complete set of representatives of S, (Q)/S,(Z) and v(R) is the
product of denominators of elementary divisors of R. To investigate the Siegel series, for
a prime number p and a half-integral matrix H of degree n define the local Siegel series
B,(H,s) by
B,(H,s) = > pitWse(tr HR).
ReSn(Qp)/Sn(Zp)

It is easy to see that

B(H,s) =[] B,(H. ).

An explicit form of B,(H,s) for any non-degenerate half-integral matrix H over Z, is
given in [45]. More precisely, the local densities are equal to

By(H,s) = (1—p~°)(1—=p* ) f,(p>*), (4.11)

where f, is a polynomial depending on the p-adic nature of H. To define it we need the
local invariants of H at p. Define nonnegative integers «, 3, v and ¢ by

a =ord,(m(2H)), = ordp(m(ZAI-/[)) —2a,  6=3a+20+v=ord,(4det H),

where m(2H) and m(2H) denote the content(greatest integer dividing) 2H and its adjoint
2H in the lattice of even integral matrices and the set of ternary quadratic forms repre-
senting only integers congruent to 0 or 3 modulo 4, respectively. We also have ¢,(= %£1),
the Hasse invariant of m(H)~'H, as well as a further invariant ¢ = +1 to be defined below

in the case that § is even and v # 0. If p is odd, then we can diagonalize H over Z, as

diag(p™A, p**° B,p*t"C) with pt ABC, and ¢, = (1) (=59)*(=5°)".

In case @ = =y = 0 the p-rank of H is 3 and fyo0(X) = 1.

In case a = 3 =0, v > 0 the p-rank of H is 2. Then H has p-rank 1, so —H represents
numbers D prime to p but these all have the same value £1 of (%). This common value
is denoted by . Then

foor,(X)=14eX+---+7X". (4.12)

In other cases we get more complicated recursive formula given in [45].
The H-th coefficient of the Eisenstein series of even weight k& > 2 on Sp(3,Z) is given
by

AH) = 55 [Thu (1.13)

4.7 Quaternion algebras and local densities

We will start this section with a brief overview of quaternion algebra theory. An intro-
duction to this subject can be found in [2, 63, 72].

Let K be a field of characteristic different from 2. A quaternion K-algebra B is a
central simple K-algebra of dimension 4 over K.
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Over a field K of characteristic different from 2, every quaternion algebra B has K-
basis {1,1,7,ij} satisfying the relations i? = a, j* = b, and ij = —ji, for some a,b € K*.

A quaternion w = x + yi + zj + tij in B is called pure if x = 0. We denote by By the
K-vector space of pure quaternions.

Every quaternion K-algebra B is provided with a K-endomorphism which is an in-
volutive antiautomorphism called conjugation; for w = = + yi + zj + tij it is defined by
w:=x —yi — zj — tij. The reduced norm and reduced trace are defined by n(w) := ww
and tr(w) := w + @, respectively. There is a symmetric bilinear K-form on B given by
(a,b) := tr(ab). For a place v of K we define

B, = K, ® B.

If B, is a division algebra, we say that B is ramified at v; otherwise we say that B is
non-ramified at v. The following theorem is well known.
THEOREM.

(i) B is ramified at a finite even number of places

(i) Two quaternion K-algebras are isomorphic if and only if they are ramified at the
same places.

A subset S C B is called a Z-order if it is a Z-ideal and a ring. By definition an Eichler
Z-order is an intersection of two maximal Z-orders. We associate to each half integral
3 x 3 matrix an order in a quaternion algebra. Let

1 2ng r 1o
H=- r 2n, 1
To T1 2N

Put
n =rer; —2Nr, D; =17 —4n;N (i = 0,1). (4.14)

We define a quaternion algebra B(H) over Q with basis (1, e, €1, epe;) satisfying mul-
tiplicative relations
6(2) = Dy, ef = Dy, ege1 + e1e9 = 2n.

We now introduce the order

S(H) =7 + ZO{O + ZO&l + ZOJ(]C“ (415)

in the quaternion algebra B(H), where a; 1= 53%.
The following Lemma gives us a connection between the quaternion algebra B,(H)

and the local density B,(H, s) defined in Section 4.6.

Lemma 4.1. If B(H) is ramified at p then the local density B,(H,2) = 0.
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Proof. Denote by Sy (H) the number of solutions modulo p™ of the equation
2R 'R =2H( mod p"). (4.16)

It is proved in [70] that
By(H,2) = lim p~"5,0(H).
Assume that B,(H,2) # 0. Then there is a solution of (4.16) in Q,. Hence H is isotropic
in Q, for p # 2 ( the identity matrix I3 is isotropic over Q,).
Now assume that B(H) is ramified at p. Then ¢(a) = —a? is an anisotropic quadratic
form on the space of pure quaternions B°(H),. In the basis (eg, €1, ege; —n) this quadratic
form is given by the matrix

—Dln 0
G:( n —Dy 0 ), M =4det H.

0 0 4MN
For the matrix
10 0
A=101 0
To T1 2N
we have -
G=A2H"'A.
We have got a contradiction, since G is anisotropic and H is isotropic over Q,. O

Recall that an order R of B is an Eichler order of index N if for all primes p{ N the
localization R, = R® Z, € H, = H® Q, is a maximal order and for all primes p | N
there is an isomorphism from H,, to M>(Q,) which maps R, to the order

a b
Nc d
Denote by p,(H) the number of Eichler orders of index N in B,(H) that contain

Sp(H). The next two lemmas follow from identity (4.11) and the proof of Proposition 2
in Section 1.3 of [36]. Here we assume that Dy and D; defined by (4.14) are coprime.

a,b,c,dEZp}.

Lemma 4.2. [f B(H) is non-ramified at prime q then the local density B,(H,2) is equal
to (1— g )2 py(H).

Lemma 4.3. If B(H) is ramified at p then

%BP(H, 2+ 2s) =(1—-p?)?*-logp- (ord,(M) + 1),
s=0

where M = 4det H. In this case p,(H) = 1.
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4.8 Maass differential operator

In this section we recall a differential operator introduced in [56] that raises the weight
of Siegel modular forms. We slightly modify the operator, so that the function obtained
from a holomorphic modular form transforms like a holomorphic modular form of higher
weight, however it is not holomorphic.

Suppose that Z = X + iY is an clement of $3. This matrix can be written as
Z = {z;}},_,, where z;; = zj;. Consider the matrix 2 = {(1 + (51-]-)% ?:—1. Then
det(a%) is a differential operator of order 3. Define the operator

Dy = det Y'7F det(a%) det YF~1,

It is proved in [56] on p. 309 that this differential operator has the following property
Di(F|eM) = Di(F)|p2M

for an arbitrary smooth enough function F' on $® and an arbitrary symplectic matrix
M. Therefore, if the function F' transforms like a holomorphic Siegel modular form of
weight k then Dy F' transforms like a a holomorphic Siegel modular form of weight £ + 2.
For k € 27 the following operator

Mk ::Dk,QO-”ODQ

maps Siegel modular forms of weight 2 to Siegel modular forms of weight k. It is shown
in Section 19 of [56] that

M (Ey(Z,5)) = e(k,s) Ex(Z,s — (k —2)/2),

where
(k—2)/2 1
e(k,s) = h+s)(h+s—=)(h+s—1).
(k,s) }HQ( ) 5 )
Set

Ep(Z) .= Mi(E*(Z)).
Since F5(Z,0) = 0, then the following is true

My(E*(Z)) = e(k,0) %Ek(Z, s+1—k/2)| . (4.17)

4.9 Jacobi Eisenstein series of degree two

The notion of Jacobi forms can be generalized to higher dimensions in the following way.
The Heisenberg group H,,(R) is defined to be the set of triples (A, p, k) € R* x R” x R
with group law

N YN i 6y = N+ N+ il k4 &+ X = ).
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The group Sp(2n,R) operates on H, (R) from the right by

(>‘7:u7 H) oM = (()‘7“)M’ "i)'

The semidirect product G, (R) = Sp(2n,R) x H,(R) is called a generalized Jacobi group.

An element
. A B
= ((85) 0nm)e cutm

acts on $H™ x C» by
YT, z) = ((AT + B)(CT + D)*l, (z+ AT + p)(CT + D)*l).

We define
Jen(1; T, 2) == det(CT + D)~*

xe" (—=z(CT + D)™'C 'z +22(CT + D) ‘A + MAT + B)(CT + D)™ ‘) .
For k, N € Z the group G,(R) acts on functions f : § x C* — C by
f<T7 Z)‘k,N7 = jk,N(f}/; T, Z)f(’)/(T, Z))

Set I := G,,(Z) and denote by I')_ be the stabilizer group of the constant function 1. We
define the Eisenstein-Jacobi series E) (T, z;s) on £ x C" as

Eln(T z8)= > det(S(T))" [ew 7.

Note that we consider z as a row-vector. We have the Fourier expansion

Eln(T,z,s) = ZA H' 1, Vis)e(trTH + 2 'p), T =U +iV,

where H' runs over symmetric half-integral 2 x 2 matrices and p runs over Z2.

As in the case of Siegel Eisenstein series considered in Section 4.6 the Fourier coef-
ficients Ai, ~(H, p; V5 s) also can be decomposed into “analytic” and “arithmetic” parts.
Consider the following singular series

Bl (H, ji;s) := > > detCeN(AACT 'N) e(CT'DH 4 pC 'N),

M€P, 0\T';/ Py, \Z" /ZC

where M = (ég) with A, B,C, D € M,,»,(Z) and

A B
{8 5) emin)

r;:{(é‘ﬁ%)]o’#oe Spgn(Z)},
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1, B’
P({n = {(OnnD/) S szn(Z)} .

We will use the following notations

7 = (Cg sz) Z=X+iy €5, (4.18)
T=U+iVen, z=c+iycC", r=u+iv e C,
ao (T2 cn @ wem@ w-m- L
%N N 9 ? 4N

The following statement is proved by T. Arakawa and B. Heim.

LEMMA([5], Proposition 2.1) Assume that H', H", u,V are defined as in (4.18) and H is
a non-degenerate matrix. Then

Al N(H 5 Vis) = Wioayo(H" Vi s) BY(H', ps k + 2s),

where Wi (H,Y) is a generalized Whittaker function defined in Section 4.6.

The following result due to Kohnen relates Jacobi-Eisenstein series E,ﬂ;{, with Siegel

Eisenstein series E\"™Y.
THEOREM. ([47], €q.(20)) Let Z be as above (4.18) and N be squarefree then

1
lim v~=* ™Y / E,g"H)(Z; s)e N(u)du = s E,gnjz,(T, 2,8),

V—00
0

where iy s = (—1)F2 NFF2=1 (9n)hts=1 /P(k + 5).

Lemma 4.4. Let H,H" and Y,V v be as in (4.18). Then

lim v* Wy (H,Y;s) = pen,s Wie1/2(H", V5 s).

vV—00

Proof. Using the identity

det (7; t7'_2> =(r—2T""2) detT

and integral representation (4.10) we can write

Wi(H,Y;s) = ™Y / det Z7F | det Z| > e(—trHX) dX =

Sn+1(R)
= e2mtr(H'V) / det T7F | det T| ™ e(—trH'U — z ') ¥
S XR™

x 2™Nv /(7‘ — 2TV )R — 2T 2 e N (u) dudU dz, (4.19)

R
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where S, = S,(R). From formulas 13.1.33 and 13.5.2 in [1] we have an asymptotic
representation

1
/(u +iv) Flu+ iv| P e(—Nu) du = v e ™ (j vs + 0(=)), v — Fo00.
R v
Since (2T 'z) < C for some C depending only on y = Sz and V' = QT the expression
vy /(u — 2T 4 iv) Fu— 2T 2+ v e(—Nu) du
R

is bounded uniformly in v, U = R(T), and z = R(z) and tends to e(—NzT""'*z) as v
tends to infinity. For s > 0 the integral (4.19) converges absolutely and uniformly in v
on intervals [vg, 00). So we can interchange limit with integration

lim v* Wy (H,Y;s)

V—00

= pup s €7HY) / det T7% | det T| ™ e(—trH'U — z tp— N2T—" t2) dU dz

S xR™

= (20)7V? 5 2EHTY) / det 775412 | det T|** e(—trH"U) dU.
Sn

The lemma is proved. O

Using the theorem of Kohnen and the above lemma we can compute the Fourier
coefficients of E,g"]z,

Proposition 4.2. For squarefree N and non-degenerate H

AL N(H, Vi) = Wy 1 (H";Vss) BUY (H).

4.10 Holomorphic projection

In this section we compute the holomorphic projection of the function

T0 0
Elg,N (((;) Tl) 7(20721)7‘9)
usp

to the space J.'’ @ J;y’. We start with a definition of holomorphic projection,
Let ¢ and ¢ be two Jacobi cusp forms of weight k and level N, then the Petersson
scalar product of ¢ and v is defined as

(6,1) = / b, 2) D7 2) oF e~/ gy, (4.20)

r\HxC
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where
T=u+iv, z=x+iy, dV =v *dudvdzdy.

Let f be a function on $ x C that transforms like a holomorphic Jacobi form of weight
k and level N and rapidly decays at infinity, so that the integral (4.20) is well defined for
any cusp form ¢ € J;'%P. Then the holomorphic projection of f is a unique holomorphic
function m,. f € J,gjf,p that satisfies

<f7 ¢> = <7Th01f7 ¢>
for all ¢ € J7.

Lemma 4.5. Assume that the function f (7, z) transforms like a holomorphic Jacobi form
of weight k and level N and it has a Fourier expansion

f(r,2) = Z c(n,r,v)e(nt +rz),

n,r

where T = w+ 1v. Let for p modulo 2N the function h,, be defined as in (5.66). Assume
that for all pn modulo 2N

hy(T) =¢c, +O(v™°) asv — o0

for some numbers c,, € C and € > 0. Then

Thol(f) = Z c(n,r)e(nt +rz),

n,r

where

Njw

c(n,r) = apn (4Nn —r?)* /ng c(n,r,v) e~ T(ANn=r%)u/N dv, (4.21)
0

and
B NFE—2 ['(k—3/2)

Qk,N = ork—3/2

Proof. For integers n, r with 72 < 4Nn there is a unique function P, , € J;'\¥ depending
only on 72 — 4Nn and on 7( mod 2N), such that

(¢, Poy) = agny (4N1 — r2)F 432 p(n, 1) (4.22)

for all ¢ = > b(n,r)e(nt +rz) € J).
It is shown in [36] on p. 519 that

P, (1,2) = Z e(nt +rz)|, x 7,
YLD

() 00) e

where
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is the stabilizer of the function e(n7 +rz) in the full Jacobi group IV = SL,(Z) x Z*. By
the usual unfolding argument, we see that the Petersson product of f and P, , equals

/ F(r.2)e(nt +rz) o* 2 e NV o dy du do.
rJ\sxcC
Putting in the Fourier expansion of f and observing that a fundamental domain for the
action of '), on § x C is ([0,00) x [0,1]) x (R x [0, 1]), we find that the integral equals
Z / c(n’,r' v)e((n' —n)u+ (' —r)z) e~ 2m (vt (r4n)y) o

710,00 x [0,1] x R [0,1]

x vk 3NV gy dy da dy

= /c(n, rv) e Uk_3</ e~ 4m(ry+Ny?/v) dy) dv.
0

—00

1/2 T v/N

The inner integral equals (%) so the scalar product equals

VAN / c(n, r,v) vF=5/2 g=min=r*/N)v gy,
0

This proves our claim. O
For a matrix H"” = <C;0 a ) and x € Z/2 define
WH,S(H”) = agil aTl//W/{ (H// (O 15)) 5> Ug 2’Ulf 26727r(a0v0+a1 vi) d’UO d’l}l,
00

(4.23)
where W, (H",V; s) is a generalized Whittaker function defined in Section 4.6.

Proposition 4.3. The holomorphic projection of Jacobi-Fisenstein series has a Fourier
expansion

EJ To 0 . _
ol n (| g ,(20,21);8 | = g c(no, 7o, n1,71) €(noTo + Tozo + M1y + 7121),
1

where the coefficients c(ng, 9, n1,71) are given by the formula

1 /D n 1 2ng T 19
C(n())rOanl)rl) - Zwk—%,s (m ( no D )) Bk.ﬁ’_gs 5 T 2n1 Tl 5
rEL ! o T1 2N

with D; = AN;n; —r? (i = 0,1) and n = 2Nr — rory. Here the generalized Whittaker
function Wy, s and singular series By are defined in Section 4.6 and ayy, is as in Lemma

4.5.
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Proof. The statement follows from Lemmas 4.2 and 4.5. m
Set )
1 t/2
rs(t) = Wn s . 4.24
T (4.24)

The following identity is a consequence of the elementary properties of Whittaker

functions
w. (L (Do n\\_ (DD mhs—g m (.25)
“\an \n D))~ \Tan e\ VDoDy ) |

The following lemma shows that w, s(¢) is a Mellin transform (with respect to s) and
a Fourier transform (with respect to t) of a J-Bessel function.

Lemma 4.6. For k + 2s > 3/2 and 2s < 1 the following identity holds

Wes(t) = A / e[~ ] (drr) e(—tx) da, (4.26)
where J._1 denotes the Bessel function of the first kind and A, = 722720 (k —

D (7T (k+ s —1)/T(k + s) — 2mi)/(k + s — 1).
Proof. Identities (4.10), (4.23), and (4.24) imply

Wy s(t) = /yg+s_2 YT (22 — 2) T (202 — @) Pe(—2 — 71 — txr) dw,  (4.27)
i

where z; = z; +iy; (j =0,1),

IT = [0, 00)? x (—00, 00)?
and

dw = dyo dy, dzg dxy dx.

This integral converges absolutely for s < % and k + 2s > 2. Indeed, we have

k+s—2  Kk+s—2 2|—k—2s —2mwyo—27 _
/?Jo Uy |z021 — 27| e T (g =

II

= / / Yo TRy T eI T dyy dyy / | det(X +4E)|7"7* dX,
0 0 S (R)

where F denotes the identity matrix.
After the change of variables z; = —i—z in (4.27) we get

/

Wrs(t) = /yé‘“‘2 Ys T T B (20 + 22) T (B0 + ) T (=20 + 2772 — ta) d,

H/
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where 29 = 19 + 1y,
I = [0, 00)% x (—00, 00)?

and

dw’ = dyg dys dxy dxs dx.
It follows from a standard presentation of the Bessel function of the first kind [1] that

/ Z, " e(Zy + 1%/ Z) dwy = 2mi ", (A7),

—00

And finally, after the change of variables x3 = xy + x5, the identity

///y"”s 2yt (wg iy Fiye) T (23 —iyo —iyo)Se(—x3 +iyo +iya) das dyo dys =
oo 0 0

1 00 00
/(1 — ) TR gy / (v+13) " (v—1)"° (/ Y2 e(—yv + iy) dy) dv =
0 —00 0
1 r —1/2)\TI'(k = 1)’ —1)2
= (2m)% il (k+s—1/2)\T'(k = Dl'(k+s ) — AL
2(k+s—1) L(k+s) I'(2k+2s—2) ’
finishes the proof. O

Using presentation (4.26) and integration by parts we obtain the following result.

Lemma 4.7. The function w = wy(t) satisfies the following second order differential
equation

(1—tHw" —(2—=2\)tw' + (k—1/2 = X)) (k —3/2+ N w
where A = Kk + 2s — 3/2.

The integral (4.26) is computed in the closed form in [7] (vol I, p. 45, eq. (13)); hence,
as a corollary of Lemma 5.5 we obtain the identity

INCES 1 3 1 ¢
(27)n+2s—2(2—5)1 o F <_ — — Kk —s; ) 4420
Wy s(t) I'(k+s—3) 2 72 274
3 —
K,S F 2 2 o 1 1 4
() ( H;_(l,;; ) sin(s) 271 o <§ = 8,1 =5k t_2) 4—1? <0,

where o Fi(a, b; ¢; z) denotes the hypergeometric function. Using identities for hypergeo-
metric series [6](vol I, eq. (15) on p. 150 and eq. (8) on p. 122) we obtain the following.
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Lemma 4.8. For k € 27 the following identities hold

wk_%71_§(t) = _Ak—%,l—g Pk_g(t/Z), 4 — t2 >0

and 3
%wk—%,s(t) ok = Ak—%71_§ Qk—?(t/2)7 4 — t2 < 07
where Py(t) = (28114 (#2 — 1)* is the Legendre function of the first kind and Q. (t) =

o0

[t +Vt* — 1coshu) % du is the Legendre function of the second kind.
0

The final result of this section is the following.

Theorem 4.5. For N € N and even k > 2 the function &, y has the Fourier expansion

Ekn = 5 c(ng, ro;n1,r1) €(noto + Toz0 + T + 1121),

where
c(no, ro;n1,m1) = Y AR(H(r)).
TEZL
Here for the matriz
1 2ng r 10
H:H(r):§ ro2ny |,

o T1 2N
we have
9
DyD k/2—1P_< " >—BH,2+ H >0,
(LoD Pia| 5se) g BUL2+9))
A (H) =

)B(H, 2) H is indefinite.

4.11 Computation of non-archimedean local height

Proof of Theorem 4.1:

Case k = 2.

We should say, that a proof of this theorem in the case k = 2 is already contained in [36]
but is not emphasized there.

Let X be a modular model for Xy(N) over Z. Denote by X* the minimal desingular-
ization of the quotient of X by the Fricke involution. We let P}, denote the multi-section
of X* over Z, which extends P}, ., the image of the divisor Pp, on X*(N). Let W be the
completion of the maximal unramified extension of Z,.

It is shown in [36] that

(B*DOJ”O : B*Dl,rl)]? = (BDU,TU : (BDl,Tl + BDl,—’r‘l))W'



77

A point x = (¢ : £ — E') lies in the divisor Pp, . if 00 = Z + ZM embeds into
End(z) and o = %Dio € End(z) annihilates ker ¢.
Suppose that (z -y)w > 0 for z € Pp . and y € Pp, .. Then our diagramms

r=(¢:E—=FE) and y=(¢: F — F')

reduce to the same isogeny z on X ® W/pW. Write R for the endomorphism ring
Endy/,w (2). The reduction of endomorphisms gives injections

Endw (z) < R, Endw(y) — R.

It follows from Deuring’s theory that R ® Q is a quaternion algebra over Q ramified only
at p and oo, and that R is an Eichler order of index N in this quaternion algebra. It
is shown in [36] on p. 549 that the embeddings of Endy (z) and Endy (y) give elements

VD; and a; = (r; ++/D;)/2 (i = 0,1) in R satisfying

\/Do\/ D1+ v/ D1/ Dy = 2n for some n € Z, (4.28)

n = rory (mod 2N),n* < rory.

Thus, we get an embedding of the Clifford order
S =7+ Zoay + Zay + Zagay
into R. The order S corresponds to a half-integral matrix

] 2ng r 1o
H = 5|7 2n; 1 |, where r= %, (4.29)
o T1 2N

in a sense of equation (4.15). By Proposition 6.1 in [35] the intersection number (z - y)w
is equal to

1
(g . y)W = 5 Z Card HOmW/piW(£7 g)degl’

i>1

and it is shown in [36] that

1 DoD; — 4n?
(- Q)W = §(Ordp<M) +1), where M = —
Thus, it follows from Lemma 4.3 that
0
logp (z-yhw = 7-By(H,2+5)| . (4.30)
s=0

On the other hand for a fixed matrix H, it is shown in [36] that the given embeddings of
0 and 05 into R correspond to points x € Pp, . and y € P, . which reduce to z(mod p)
and are congruent modulo p* where k = (ord,(M) + 1)/2. It is also proved in [36] that
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for a given matrix H the number of such points is equal to the number of embeddings of
S(H) into Eichler orders of index N in B(H). From Lemma 4.2 we know that the number

of such embeddings is equal to [, B,(H). Thus, we have

« . p 0
(BDo,TQ'BDl,Tl)pIng: Z (gg)w logp: Z %BP(H(T)72+S)

reZ

11 B.(H ().
2€P o 5=0 q#p

*
QEBDl Net

Here the sum is taken over the matrices H(r) of the form (4.29) such that the quaternion
algebra B(H (r)) is ramified at p and oo. Since W5(H,Y;0) = 1 for H > 0 this sum is
equal to

S %AQ(H(T), s)

rel

s=0

Theorem 4.1 in the case k = 2 is proved.
Case k > 2. Suppose that x € Pp, . and y € Pp, . satisfy condition (4.28). It
follows from equation (3.3.1) and Proposition 3.3.3 in [80] that

(Sk_l(g) . Sk_l(g))W _ (@ . Q)W (DODl)k/2—1 Pk_2(\/%)7

where Py (t) denote a constant multiple of 4.2 (#> — 1)¥~2 such that P, (1) = 1. Set

1 (Dy n
" = 0
H(T)_4N(n Dl)'

From equation (4.25) and Lemma 4.8 we see that

(5" 2) - " W)w = (& y)w Wiryza-n/2 (H"(r)).

Similarly to the case k = 2 considered above we arrive at the identity

(Sk-1(Ppyro) - Sk-1(Pp, ,))plogp = Z (SF () - Sk_l(g))w logp =

£€B*Doﬁro
YePp oy
1 a
S Wi a(H'(r)) 5 Bp(H(r), 2+ 5) [[B.(H()).

reZ s=0 qF#p

Here the sum is taken over the matrices H(r) of the form (4.29) such that the quaternion
algebra B(H) is ramified at p and oo. This is equal to

S AL(H ().

reZ

This finishes the proof of Theorem 4.1.
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4.12 Computation of archimedean local height

Proof of Theorem 4.2: For k > 2 and 719, 71 € $) define

To — 7%
9r(70,71) = —2Qk—2 (1 + M) .

2%7’0%7’1

Consider the function on  x 9\ {(70,71)|70 = 71} given by

Gr(10,71) = Z 9r(70,7(71))-

v€lG(N)

It is proved in Proposition 3.4.1 of [80] that for any two CM-points x and y on Xy(N)
one has

(Si1(2), Sir () = 5Gile.v).

Thus, it follows from Proposition 2 on p. 545 in [36] that

(St Wy ro)s Skt Wpy s Voo = =2 D p(n)%(ﬁ) (4.31)
n>v/DoD1

n=—ror1(mod2N)

For n € Z, n* = DyD; (mod 4N), where

2
n“—DgDq
d‘ 4N

and ¢ is associated to the quadratic form [Dy, —2n, D;] as in Sect. 3 of Chap. I in [36].
Take r := (n + ror1)/2N and n; := (D; +r?)/4N, i = 0,1. Tt the case when the matrix
H(r) defined by (4.29) is indefinite we have

B(H(r),2) = p(n). (4.32)

By Theorem 4.5 the number A} (H (r)) in this case is equal to

n

v DyD,

Thus, equations (4.31)-(4.33) imply the statement of Theorem 4.2. O

AG(H(r) = (DoD1)"* 7 Qo )B(H,2). (4.33)

4.13 Computation of global height

Proof of Theorem 4.3: In the case k = 2 Theorem 4.3 follows from the results of [53].
Hence, here we concentrate on the case k > 2.
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Let Do, Dy be fundamental coprime discriminants and yp, .., ¥p,,, be two Heegner
divisors on Xo(N). From the arithmetic intersection theory reviewed in Section 4.4 we
know that

<Sk*1(y*Do,T0)7 Skfl(y*D1,7‘1)> = Z(Skfl(y*Do,T‘())? Sk*l(y*Dl’rl)>p

p

where the sum is taken over all the places of Q. For an integer r we consider a half integral
matrix

] 2ng r 1
H(r) = o 2ny |- (4.34)
ro 11 2N

By Theorems 4.1 and 4.2 we have

* * p *
<Sk*1(yDo,ro)7 Skfl(Z/Dl,n»p = const Z AL (H(r)),

where and the sum is taken over all integers r such that the quaternion algebra B(H (r))
(see Section 4.7 for the definition) is ramified at p and oo if p is finite and unramified at
all places if p = oco.

Each quaternion algebra B(H (7)) is ramified at an even number of places. Moreover,
Lemma 4.1 implies that A*(H(r)) = 0 in the case when B(H (r)) is ramified at least at
two finite primes. Thus, we conclude

SOS T A HE) =Y ALH).

By Proposition 4.1 this number is equal to the Fourier coefficient ¢(ng,rg,n1,71) of the
function &, y. O



Chapter 5

CM values of higher Green’s
functions

5.1 Introduction

For any integer & > 1 there is a unique function Gy on the product of two upper half
planes $ x $ which satisfies the following conditions:

(i) G is a smooth function on $ x H \ {(7,77), 7 € H,7 € SLy(Z)} with values in R.
(ii) Gr(m1,72) = Gr(11T1,7272) for all 1,7, € SLy(Z).

(iii) A;Gg = k(1 — k)G , where A, is the hyperbolic Laplacian with respect to the i-th
variable, i =1, 2.

(iv) Gi(71, 72) = m log |11 — 72|+ O(1) when 7 tends to 75 (m is the order of the stabilizer
of 75, which is almost always 1).

(v) Gi(11,72) tends to 0 when 7y tends to a cusp.

This function is called the Green’s function.
Let f be a modular function. Then the action of the Hecke operator T,, on f is given

by
(FIT) () =m™ Y f(“;ifl)

(28)esLa(@\ M

where M,,, denotes the set of 2 x 2 integral matrices of determinant m.
The Green’s functions G have the property

Gr(m,70) | T, = Gr(m1,72) | T2,
where 77 denotes the Hecke operator with respect to variable 7;, @« = 1,2. Therefore, we

will simply write G (71, 72)| Tin-
Denote by Sor(SL2(Z)) the space of cusp forms of weight 2k on the full modular group.

81
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Proposition 5.1. Let k > 1 and A = {\,}X_, € ©X_Z. Then the following are
equivalent

(i) 3 Amam = 0 for any cusp form

f=> amq™ € Su(SLy(Z))

m=1

(ii) There exists a weakly holomorphic modular form
ga(m) =D Ang ™+ O(1) € My, (SLa(Z)).
m=1

The proof of this proposition can be found, for example, in Section 3 of [11]. The
space of obstructions to finding modular forms of weight 2 — 2k with given singularity at
the cusp and the space of holomorphic modular forms of weight 2k can be both identified
with cohomology groups of line bundles over a modular curve. The statement follows
from Serre duality between these spaces. An elementary proof that (ii) implies (i) is given
by noticing that if f = Y  a,¢™ € So then f(7)gx(7)dr is a meromorphic form on
$H\SL2(Z) with no poles except at oo, thus its residue ) A,a, at oo vanishes by the
residue theorem.

We call a XA with the properties, given in the above proposition, a relation for So,(SLa(Z)).
Note that the function gy in (ii) is unique and has integral Fourier coefficients.

For a relation A denote

Gk)\ = Z )\m mk_l Gk(’Tl,Tg) | Tm
m=1

The following conjecture was formulated in [35] and [36].

Conjecture 1. Suppose A is a relation for Sor(SLo(Z)). Then for any two CM points
31, 32 of discriminants Dy, Dy there is an algebraic number a such that

Gk,,\(zhﬁz) = (D1D2)%k log |05‘-

Moreover, D. Zagier has made a more precise conjecture about the field of definition
and prime factorization of this number av. We will have to introduce some notations before
we can state the conjecture.

Assume that the discriminant —D < 0 is prime and consider the imaginary quadratic
field K := Q(v/—D). For an integral ideal a C ox and m € Z denote by ry(m) the
number of integral ideals of the norm m in the ideal class of a. We will write r(m) for
the total number of integral ideals of the norm m in K. Let H be a Hilbert class field
of K. Denote by h the class number of K. For an ideal class a € CL(K) we denote by
0, the element of Gal(H/K) corresponding to a under the Artin isomorphism. Fix an



83

embedding + : H — C. Let p be a rational prime with (%) = —1. Let P, = {;}, be
the set of prime ideals of H lying above p. Complex conjugation acts on this set. Since
the class number A is odd, there exists a unique prime ideal in P,, say ‘B;, with 3, = B,
For a prime ideal ‘B € P, there exists a unique element o € Gal(H/K) such that

BT =P (5.1)

Denote by a = a(*R) a fractional ideal of K whose class corresponds to o under the Artin
isomorphism.
The following precise version of Conjecture 1 was made by D. Zagier.

Conjecture 2. Let 31, 32 € 9 be two CM-points of discriminant —D and let b := 312+7Z,
¢ := 3272 + 7 be the corresponding fractional ideals of ox. Then

Gia(31,32) = D' Floglal,

where « lies in the Hilbert class field H. Moreover, for a rational prime p with (%) #0
and a prime ideal P lying above p in H we have

ordg (o) =0
in case (&) =1 and
* 2 2n
ordg(a mz:lnz%/\ A 1(1 — D_> T6e(Dm — 1) Tpeq2 <p> (14 ordy(n)) (5.2)

in case (&) = —1. Here Py(z) = (2Fk!)™ dk S (@® — 1)¥ s the k-th Legendre polynomial
and the ideal class a is defined as above.

In this chapter we present a proof Conjecture 1 in the case when 31, 32 lie in the same
imaginary quadratic field Q(/—D) and a proof of Conjecture 2.

Two main ingredients of our proof are the theory of Borcherds lift developed in [10]
and a notion of see-saw identities introduced in [50]. Firstly, following ideas given in [12]
we prove in Theorem 5.3 that the Green’s function can be realized as a Borcherds lift of
an eigenfunction of Laplace operator. This allows as to extend a method given in [62],
that is to analyze CM values of Green’s function using see-saw identities. In Theorem 5.4
we prove that a CM-value of higher Green’s function is equal to the regularized Petersson
product of a weakly holomorphic modular form of weight 1 and a binary theta series. In
Theorem 5.5 we use an embedding trick and show that the regularized Petersson product
of any weakly holomorphic modular form of weight 1 and a binary theta series is equal to
a CM-value of a certain meromorphic modular function. Thus, from Theorems 5.4 and
5.5 we see that that a CM-value of higher Green’s function is equal to the logarithm of a
CM-value of a meromorphic modular function with algebraic Fourier coefficients. Finally,
we use the theory of local height pairing [34] and the explicit computations of the height
pairing between Heegner points made in [35, 36] in order to compute these CM-value and
hence prove Conjecture 2.
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5.2 Differential operators

For k € Z denote by Ry and Lj the Maass raising and lowering differential operators

1 0 k 1 0
Rk —<E+ ), Lk:—(T—T’)Q—

" omi T—T 2mi or’
which send real-analytic modular forms of weight k£ to real-analytic modular forms of

weight k£ + 2 and k& — 2, respectively. Then the weight k Laplace operator is given by

2 .0
oroT + k(- T)E

For integers [, k we denote by F;;, the space of functions of weight % satisfying

Af=(1—-k/2)1-1-k/2)f.
Proposition 5.2. The spaces Iy, satisfy the following properties:

Ay = —47° Ry o Ly = —47° (Lo Ry — k) = (1 — 7)°

(i) The space Fy, is invariant under the action of the group SLa(R),
(i1) The operator Ry, maps Fy i, to Fjyia,
(1i1) The operator Ly maps Fyj to Fj_o.
For a modular form f of weight k we will use the notation
R'f = Ryi9, 200 Ryf.

Denote () := 19" f We have (see equation (56) in [14])

(2mi)s o1

R'(f) = Z(_Dr*s (T) M f(S), (5.3)

— s) (4my)r—s

where (a), = a(a+1)---(a+ m — 1) is the Pochhammer symbol. For modular forms f
and g of weight k and [ the Rankin-Cohen bracket is defined by

[fag] :lf/g_kfg/7

and more generally

ol = g = Sy (R [t T VR )

S r—s
s=0

The function [f, g], is a modular form of the weight k + [ + 2r. Note that

(k) _ (k — s'+ 1),

is defined for s € N and arbitrary k.
We will need the following proposition.
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Proposition 5.3. Suppose that f and g are modular forms of weight k and | respectively.
Then, for an integer r > 0 we have

R(f)g = alf. g} + R(Z by R*(f) RT—H(g))

(k;+l+2r—2>‘1
“= T

and by are some rational numbers.

where

Proof. The operator R satisfies the following property

R(fg) = R(f)g + fR(g)

Thus, the sum

Z a;R'(f)R(9)

i+j=r

R( > bR(f) Rj<g>)

i+j=r—1

for some numbers b; if and only if Y7 (—1)%a; = 0. For the Rankin-Cohen brackets the
following identity holds

o= (T (T e (5.5

S r—s
s=0

can be written as

We will use the following standard identity

ZT: k+r—1\/l+r—1 B k+142r—2
— S r—s a r '

It follows from the above formula and (5.5) that the sum

(k:+l—|—2r—2

r

)R’mg g

can be written in the form
(X wrmr)
i+j=r—1

This finishes the proof. O
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Proposition 5.4. Suppose that f is a real analytic modular form of weight k — 2 and g
is a holomorphic modular form of weight k. Then, for a compact region F' C $ we have

/Rk_2(f)§y’“‘2 dedy = [ fgy"? (dz —idy).
F oF

Proof. This result is well known [12] and it follows easily from Stokes’s theorem. [

Denote by K, the K-Bessel function

S T L) - L)
L@=2 o+t S )

n=0

The function K, becomes elementary for v € Z + % It can be written as

(2) = (m/2)2 . (),

K
k+ 1
mk+,

1
2
for k € Z>(, where hy, is the polynomial
k

) =3 = EEO e (5.6)

—
—2rl(k —r)!

The equation (5.3) implies immediately the following statement.

Proposition 5.5. For k € Z~ the following identity holds

RF, (e(n1)) = 2 y2 nkte Kyi1/2(2mny) e(nz) = y " hy(2mny) e(n7).

5.3 A see-saw identity

In the paper [50] S. Kudla introduced the notion of a “see-saw dual reductive pair.”
It gives rise in a systematic way to a family of identities between inner products of
automorphic forms on different groups, thus clarifying the source of identities of this type
which appear in many places in the literature. In this section we prove a see-saw identity
for the regularized theta integrals described in Section 1.8.

Suppose that (V,q) is a rational quadratic space of signature (2,b) and L C V' is an
even lattice. Let V' = V] @ V4 be a rational orthogonal splitting of (V,¢) such that the
space V has the signature (2,0 — d) and the space V3 has the signature (0,d). Consider
the two lattices N := LNV}, and M := L N V,. We have two orthogonal projections

pry, : LOR - M@Randpry: LOR - N ®R.
Let M’ and N’ be the dual lattices of M and N. We have the following inclusions

McL NcL M&NCLCLCM&N,
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and equalities of the sets
pry (L) =M pry(L')=N"
Consider a rectangular |L'/L|x|N'/N| dimensional matrix 77, xy = T, n(7) with entries

Ohw(m)= > e(-qm)r) (AeL'/LiveN/N,T€8H).

meM’:
m~+vel+L

This sum is well defined since N C L. Note that the lattice M is negative definite
and hence the series converges. For a function f = (fa)aer/n € Miyas2(pn) we define

9 = (9v)venrn by
g(1) = > () h(7). (5.7)

AeL!/L

In other words
g=Tinf (5.8)

where f and ¢ are considered as column vectors.

Theorem 5.1. Suppose that the lattices L, M and N and functions f, g are defined as
above. Then the function g belongs to My as2(pn). Thus, there is a map Ty n : Mi(pr) —

Mieya/2(pn) defined by (5.8).

Proof. Consider the function

Oucn(r)=0un) = Y ¢ > e(-a(m)7)

pneEM’'/M  meM+p

that belongs to Mg/2(par(—1)). It follows from (5.7) and (1.15) that
TL7N<f) = <reSL/M@N(f)7 @M(—1)>(C[M//M]'

Thus, from Lemma 1.2 we deduce that 77 y(f) is in Myq/2(pn). O

Theorem 5.2. Let L, M, N be as above. Denote by i : Gr*(N) — Gr* (L) a natural
embedding induced by inclusion N C L. Then, forv™ € Gr*(N) the theta lift of a function

fe A/J\ll_b/Z(SLQ(Z),pL) the following holds

p(i(v"), f) = Pn (v, TN (f)). (5.9)

Proof. For a vector | € L' denote m = pr,,(l) and n = pry(l). Recall that m € M’ and
n € N'. Since v" is an element of Gr™(N) it is orthogonal to M. We have

q(lzﬁ) = q(”v*)a q(lv*) = Q(m) + q(nv*)'
Thus for A € L’/L we obtain

Oxir(r,vt) = Z e(q(lyr )T+ q(l-)7) =

lENL
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S efalns)r +a(n )T +a(m)r).

meM'’' , neN’:
m+neX+L

Since N C L we can rewrite this sum as

Ornir(r o) = > Oun(r,v) Do),

veN'/N

Thus, we see that for f = (f)acr//r the following scalar products are equal

(f,0r(r,v")) = (Ten(f), On(T,0T)).
Therefore, the regularized integrals (1.36) of both sides of the equality are also equal. [

Remark 5.1. Theorem 5.2 works even in the case when v is a singular point of ®(v™, f).
If the constant terms of f and T}, x(f) are different, then subvariety Gr' (N) lies in singular
locus of @1 (v™, f). On the other hand, if constant terms of f and T, n(f) are equal then,
singularities cancel at the points of Gr'(N).

Remark 5.2. The map Ty n is essentially the contraction map defined in §3.2 of [62].

5.4 Lattice My(Z)

Consider the lattice of integral 2 x 2 matrices, denoted by Ms(Z). Equipped with the
quadratic form q(x) := — det z it becomes an even unimodular lattice (recall that in our
notations the corresponding bilinear form is defined by (z,z) = 2q(x)).

The Grassmannian Gr* (M,(Z)) turns out to be isomorphic to x . This isomorphism
can be constructed in the following way. For the pair of points (71, 73) € $ X $ consider
the element of the norm zero

T2 T1
Z:(T2 1)€M2(Z)®C
Define v (71, 72) be the vector subspace of M(Z) ® R spanned by two vectors X = R(Z)
and Y = ¥(Z). The map
(r1,72) — v(m, ) :=RX +RY (5.10)

gives an isomorphism between hermitian domains $ x § and Gr™(My(Z)).

The group SLy(Z) x SLy(Z) acts on My(Z) by (71,72)(x) = 11292 and preserves the
norm.The action of SLy(Z) x SLo(Z) on the Grassmannian agrees with the action on £ x £
by fractional linear transformations

(71,72) (v (11, 72)) = v (71(71), 72(72))-

We have ) |
(X, X)=(Y)= 5(277) = —5(71 —71)(72 — T2),
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1
X)Y)=—=(Z,7Z)=0.
For | = (a 2) € My(Z) and vt = v™ (7, 72) we have

c

(L2),Z)  |dniTm—cem — by +al?
Ah) = (2,2) —(n-7)(n-%)

Denote

@(7;7'1,7'2) = @MQ(Z) (T, U+(7'1,7'2))
where 7 = x + iy. Considered as a function of 7 © belongs to My(SL2(Z)) and we can
explicitly write this function as

O(T;1,m2) =y Z

a,b,c,deZ

. <‘a7—17—2 + b7y + ey + d?

—(n = 7) (12 — T2)

(r—7)— (ad — bC)T)

=Y Z e <|a7—17—2 on ¥ e & d|27- _ |a7—177'2 + b + T + d|27_-)
a,b,c,dEZ —(n—7)(n— ") —(11 = T1)(12 — T2) .

5.5 Higher Green’s functions as theta lifts

The key point of our proof is the following observation:

Proposition 5.6. Denote by A* the hyperbolic Laplacian with respect to variable z. For
the function © defined in the previous section the following identities hold

ATO(T;71,72) = ATO(T; 71, 2) = ATO(T; 11, T2).

This identity can be proved by a straightforward computation. Identities of this kind
are the general feature of theta kernels [42], which was used in [12] in order to show that
Green’s functions can be realized as theta lifts. In this section we show how this general
principle can be applied to higher Green’s functions introduced in Section 5.1.

Suppose that A = {\,,,}°°_; is a relation on S (SL2(Z)) (the definition is given in the
introduction). Then there exists a unique weakly holomorphic modular form gy of weight
2 — 2k with Fourier expansion of the form

Z Amq ™+ O(1).

Consider the function hy := R*~(gy) which belongs to M (SLy(Z)).
Theorem 5.3. The following identity holds
Gia(11,72) = Cagy(zy (v (11, 72), hr).

Here
o2y (0 (11, 72), ) = lim ha(7) O(7; 71, 7))y~ 2dx dy. (5.11)

t—o00 F,
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Proof. We verify that the function ®yz,(z)(v" (71, 72), ha) satisfies conditions (i)-(iv) listed
in the introduction.

Firstly, we verify Property (i). Let T,,, C SLa(Z)\$ x SLa(Z)\$ be the m-th Hecke
correspondence. For a relation A consider a divisor

Dy = Z)\me.

Denote by Sy the support of Djy. It follows from the properties (i), (iv) of Green’s function
given at the introduction that the singular locus of Gy x is equal to Sx. It follows from
Theorem B1 of Section 1.8 that the limit (5.11) exists for all (71, 72) € $x$H\ S, moreover,
it defines a real-analytic function on this set. For the convenience of the reader we repeat
the argument given in [10]. The function hy has the Fourier expansion

hx(T) = Z c(n,y) e(nt).

Fix vt = 0™ (7, 72) for some 11,75 € $ x . For t > 1 the set F; can be decomposed into
two parts [y = Fy UII; where I1, is a rectangle IT, = [—1/2,1/2] x [1,t]. It suffices to show
that the limit

lim ha(T) O gy (z) (75 07) y2dx dy

t—o00 I

exists for all (1, 72) ¢ Sx. We split the integral over II; into two parts

/h)\<7—> Oz (T3 0+) y 2 da dy:/ZC(—my)e(—mT) Onpy(zy(T507) y > da dy
1, I, m=1

(5.12)

n / (ha(7) = 3 e(=m. y) e(=m7)) Orgycay (75 07) 2 dar dy.

m, m=1

The first integral can be estimated as

/ > e(=m,y) e(=mT) Oupy(zy (5 v7) y > da dy

B Z/ c(=m,y) exp(—4mq(l,+)y) y~' dy. (5.13)

Note that I+ > 0 if ¢(q(l),y) # 0 and v ¢ Sy. Hence, the limit of (5.13) as t — oo is
finite for v* ¢ Sy. Using the asymptotic estimates

ha(r) = Y e(=m,y) e(=mr) = O(y'™*), y = oo,

m=1
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and
Ony(z)(T507) = O(y), y = o0,

we see that the second summand at the right hand side of (5.12) tends to a finite limit
as t goes to infinity.

Properties (i) and (iv) follow from Theorem Bl stated in Section 1.8.

Property (ii) is obvious since the function ©(7; 7, 72) is SLy(Z)-invariant in the vari-
ables 71 and 7.

Property (iii) formally follows from the property of the theta kernel given in Proposi-
tion 5.6 and the fact that the Laplace operator is self adjoint with respect to Petersson
scalar product. More precisely, we have

AT Dy, z) (ha, v7 (11, 72)) = tllrgo/hx(T) AT O(T; 11, 72) y 2dx dy.
Fy

Using Proposition 5.6 we arrive at

AP, o) (i, v (7, 7) = lim / ha(r) A0 m) y~2 dar dy.
Fy

It follows from the Stokes theorem that
/ hx(T) ATO(T; 71, T2) y 2 dr dy — /Ah)\(T) O(7; 7, 72) y 2dedy =
Ft Ft

1/2

/ (ha To(©) — Lo(hy) O)y~2dz

—1/2

y=t

This expression tends to zero as ¢ tends to infinity. Since gx € Fj oo it follows from
Proposition 5.2 that Ahy = k(1 — k)hx. Thus, we see that the theta lift ®yy, ) (hx, v™)
satisfies the desired differential equation

ATi(I)Mz(Z)(hAa U+<7_177_2>> - k<1 - k)¢M2(Z)<hA7U+(7—1a 7_2))7 L= 17 2.

It remains to prove (v). To this end we compute the Fourier expansion of ® s,z (hx, v (11, 72)).
This can be done using Theorem B2 of Section 1.8. We select a primitive norm zero vector

m = ( 1 0) € M5(Z) and choose m' := 0°07) o that (m,m’) = 1. For this choice of

00 01
vectors m, m’ the tube domain H defined by equation (1.37) is isomorphic to £ x $ and
the map between ) x $ and Grassmanian Gr'(My(Z)) is given by (5.10). The lattice
K = (My(Z) n'm*)/m can be identified with

MQ(Z)mmmeu:{(o b)

b L.
c 0 ’CE}
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Denote x; = R(7;) and y; = S(7;) for i = 1,2. The subspace w' (71, 7) € Gr*(K) defined
by equation (1.38) in Section 1.8 is equal to

0w
R .

Suppose that the function gy has the Fourier expansion

gr = Z a(n)e(nr).

neL

It follows from Proposition 5.5 that

where
c(n,y) = a(n) y"? n* 2 K, o(27ny) exp(2mny).

Using (5.6) we can write

k-1
c(n,y) =) bn,t)y ™",
t=0
where
o, (k+t—1)!
(n,t) = aln) T == 1)

We can rewrite (4.9) as

Pz (V7 ha) = ! P (wh, h) —|—\/_\mv+\zz ((nl,u)) (5.14)

\/_ 2 |my+ | leK n>0

[e.o]

< / ¢(a(l), y) exp(—mnAq(mas )y — dmq(lus )y)y~>dy
ZZe nl u

:\/ylqu)K(w+(7'ly 7'2)
y1y2 leK n>0

7 2 l 2
" / exp Y 7Ty( V) )y_3/2dy,
0

Yy Y1Y2

where v = v (r, 1), wh = wH(n, ), u =N 0 ,and v = Q 07 . We
T2 0 T2 0
01

0 O) € K. It follows from Theorem 10.2 [10]

choose a primitive norm 0 vector r = (



that for y; > y»

Br(wh ha) =) (2r2)F20(0,1) (—47) ™+ Bypyo t1/(2t 4 2)!

w

=D (52/9)" T2 0(0,8) (—4m)"*! Barsa t!/(2t + 2)!

— 2

:<%)k—1/2( N %'

In the case [+ # 0 it follows from Lemma 7.2 of [11]

/ oc(q(l)’ y) exp (—mn®/Aya(my:) = 2mya(ly)) =2 dy

k—1

= 3" 2b(q(0). 1) @me | [t | /) 2K oo (2nlLe |/l ).

t=0

In case [+ = 0 it follows from Lemma 7.3 of [11]

/ oc(q(l)>y) exp (— mn® /Ayq(my+ ) — Amyq(ly+)) y =2 dy

k—

,_.

b(q(l), 1) (dq(mys)/mn?) 2T+ 1/2).
t=0

Substituting formulas (5.15)-(5.17) into (5.14) we obtain

(27ry2)k CL(O) BQk
(2myp )kt 2k(2k — 1)

+ () a0) ¢k - 1) ()

—|—4Z Z Zylyg b(cd, t)n 21 x

t (cd)ez? n>0
(c,d)#(0,0)

Dy () (07 (11, 72), ha) =(—1)"!
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(5.15)

(5.16)

(5.17)

(5.18)

x e(nexy + ndws)neyy + ndys|"TEK o (27necys + ndys)).

We see from (5.18) that @y (vt (71, 72), ha) — 0 as y; — oco. This finishes the proof. [

Remark 5.3. The Fourier expansion of higher Green’s functions is computed using a

different method by Zagier in an unpublished paper [79].

5.6 CM values as regularized Petersson products

Now we can analyze the CM values of Gy,  using the see-saw identity (5.9) .
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Let 31,32 € $ be two CM points in the same quadratic imaginary field Q(v/—D). Let
v7(31,32) be the two-dimensional positive definite subspace of My(R) defined as

+ _ 3132 31 o~ [ 3132 31
v(m@ﬁ——R%( o 1) TR0 ) (5.19)

In the case when 3; and 35 lie in the same quadratic imaginary field the subspace v™ (31, 32)
defines a rational splitting of My(Z) ® Q. Therefore, we can consider the following two
lattices

N = U+(31,32) N MQ(Z) and M := 7)_(31,52) N MQ(Z)

The Grassmannian Gr* (V) consists of a single point N®R and its image in Gr™ (My(Z))

is U+(51,32).
Since the lattice N has signature (2,0) the theta lift of a function f € M} (SLy(Z), pn)
is just a number and it is equal to the regularized integral

o) = [ ). By dady = (f, O (5.20)
SL2(Z)\$

Here Oy is a usual (vector valued) theta function of the lattice N. The matrix Ty, z) v =
(Yo,)ven'/n becomes a vector in this case and it is given by

Do, (1) = > e(—tm?/2).
meM'N(—v+Ma(Z))
Till the end of this section we will simply write 4, (7) for ¥y, (7).

Theorem 5.4. Suppose that two CM-points 31,32 and a lattice N C My(Z) are defined
as above. Let X be a relation for Sap(SLo(Z)) and let gn € M, _,, (SLy(Z)) be the corre-
sponding weakly holomorphic form defined in Proposition 5.1. Then, if (31,32) ¢ Sx we
have

Grea(31:32) = (f, ON)regs
where f = (f,)ven N € M (SLy(Z), pn) is given by

fo =192k
Proof. Recall that by Theorem 5.3
Gk,A(31,52) = (I)MQ(Z)(U+(31752)7 Rk_l(gA))~
For (31,32) ¢ Sx the constant term (with respect to e(xz)) of the product
(R*(ga)(7), O(73 51, 52))

is equal to

Z ap2(y) exp(—2mylZ )y
leM>(Z)
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and decays as O(y*>*) as y — oo. Thus,

arn (07 (31,32), B (g2)) = lim | R*Hoa)(7) O(T350,32) y iy,

F

It follows from the see-saw identity (5.9)

Daryz) (v (31532), R H(ga)) = lim | (R*Y(ga) 0, On) y~ ' ddy.

t—00 F,
By Proposition 5.3
k—2
R (ga) 0, = (=1)F ga, Ouler + R(D_ bR (ga) RF27(0,)), (5.21)
s=0

where by are some rational numbers. For v € N'/N denote

k—2
Yo (7) =) bR (ga) R¥27°(0,).
s=0
Using identity (5.21) we write

lim [ (R"'(gx)0,0On)y "dody =

t—o00 F

(=)' lim [ ([gx, Ve—1,On) y~ " dady + lim (R(v),On) y ' dz dy.

t—00 F, F,

It follows from Proposition 5.4 that

lim [ (R(¢),On)y " dedy =

t—00 F
1/2
lim (W(x +it), On(z +it)) t ' dr = 0.
This finishes the proof. O

5.7 Embedding trick

Theorem 5.5. We let N be an even lattice of signature (2,0) and let f € M| (pn) be a
modular form with zero constant term and rational Fourier coefficients. Then there exists
an even lattice P of signature (2,1) and a function h € Ml!/Z(pp) such that

(1) there is an inclusion N C P ;

(i1) the lattice P contains a primitive norm zero vector;
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(11i) the function h has rational Fourier coefficients;
(iv) the constant term of h is zero;
(v) we have Tpy(h) = f for the map Tpy defined in Theorem 5.2.

Proof. We adopt the method explained in [10], Lemma 8.1.

Consider two even unimodular definite lattices of dimension 24, for example three
copies of Eg root lattice Fg @ Eg @ Fg and the Leech lattice Ayy. We can embed both
lattices into %Zm. To this end we use the standard representation of Eg in which all
vectors have half integral coordinates and the standard representation of the Leech lattice
togather with the norm doubling map defined on p.242 of Chapter 8 in [19].

Denote by M; and M, the negative definite lattices obtained from Eg & Eg & Eg and
Aoy by multiplying the norm with —1 and assume that they are embedded into %6224.
Denote by M the negative definite lattice 16Z%*. The theta functions of lattices M,
and M, are modular forms of level 1 and weight 12 and their difference is 720A, where
A = q— 24¢* + 252¢% + O(q?) is the unique cusp form of level 1 and weight 12.

Consider the function g in M' |, (SLa(Z), pyens) defined as

g = l"eS(N@Mﬂ/N@M(f/A) - res(NEBMz)/NGBM(f/A)'

The maps

IeS(NeM;)/NeM M 11 (SLa(Z), pyens,) — M 11(SLa(Z), pyem), i = 1,2,

are defined as in Lemma 1.1. It is easy to see from the definitions (1.15) and (5.7) that

Tnomn(9) = Tvamn (tresivarn ) vam (f/A) — res(venn)vem (f/A))=

Tnom n(f/A) = Tnorn(f/A) =

%(@Ml _ By) = T20f.

Suppose that g has the Fourier expansion

gu(m) =D cu(m)e(mr), pe (N'© M')/(N & M).

meQ

By the construction of ¢ its constant term is zero. Consider the following set of vectors
in M’

S = {l € M'|ciou+an)(a(l)) # 0},
where (0,1 + M) denotes an element in (N’ @& M')/(N @ M). Note that this set is finite
and does not contain the zero vector. Choose a vector p € M such that
1. the lattice N @& Zp contains a primitive norm 0 vector;
2. (p,l)#0foralll e S,
Consider the lattice P := N & Zp. It follows from Theorem B1 that the subvariety
Gr*(P) of Gr™ (N @ M) is not contained in the singular locus of ®nga(vF, g). Moreover,
the restriction of ® e (vT, g) to Grt(P) is nonsingular at the point Gr™ (V).
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Define h := ﬁTN@ wm.p(g). The constant term of h is nonzero and h has rational (with
denominator bounded by 720) Fourier coefficients. We have

1 1

Tpn(h) = 50 LN (Tver.p(9))= %TN@M,N(Q) = f.

This finishes the proof. O

Theorem 5.6. We let N be an even lattice of signature (2,0) and let f € M} (py)
be a modular form with zero constant term and rational Fourier coefficients. Then the
reqularized Petersson product

reg

(f, O ues = / F(r) B () y e dy

SL2(Z)\$

satisfies
<f7 @N)reg - IOg ‘Oé‘

for some o € Q.

Proof. By the definition of the regularized theta lift

(I)N(f) - (fa ®N>reg-

Choose a lattice P of signature (2,1) and a function h € Mll/g(pP) that satisfy Theorem
5.5. By Theorem 5.2 the conditions (iv) and (v) of Theorem 5.5 imply

On(f) = Pp(Grt(N),h).

There exists an integer n such that all negative Fourier coefficients of nh are integers.
The function nh satisfies the assumptions of Theorem B3 in Section 1.9. Hence we can
write

Op(GrT(N),h) = —4log|Vp(Grt(N),h)],

where Wp(-,nh) is the meromorphic infinite product defined in Theorem B3. Since the
constant term of A is zero, from Theorem B3 we know that

q)P(GrJr(N)? nh) =—4 log |\IIP(TN7 nh)|7

where Wp(7,nh) is a meromorphic modular function on § for a congruence subgroup of
SLo(Z) with respect to some unitary character and 7y € $ is a CM point. Theorem
14.1 of [11] says that this unitary character is finite. Theorem B3 Part 3 implies that
Up(7,nh) has rational Fourier coefficients. Thus, it follows from the theory of complex
multiplication that o := Wp(7y, )" is an algebraic number. O
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5.8 Main Theorem

Theorem 5.7. Let 31,30 € $ be two CM points in the same quadratic imaginary field
Q(v—D) and let X be a relation on Sa(SLa(Z)) for an integer k > 1. Then there is an

algebraic number o such that
Gr,A(31,32) = log|al.

Proof. Let gx be the weakly holomorphic modular form of weight 2 — 2k defined by
Proposition 5.1. Consider the function hy = R*71(gy). In Theorem 5.3 we showed that

Gk,A(Tl,Tz) = q)Mg(Z)(er(leTQ)ah)\) (5-22)

for (7’1,7’2) ENXH \ Sa.

Let v (31, 32) be the two-dimensional positive definite subspace of My(R) defined in
(5.19). In the case when 3; and 39 lie in the same quadratic imaginary field the subspace
v7(31,32) defines a rational splitting of My(Z) ® R. Hence, the lattice N := v (31,32) N
M,(Z) has signature (2,0).

It follows from Theorem 5.4 that

Pary(z) (v (31,32), R (ga)) = v (f), (5.23)
where f = (f,)uenr/n € MY(SLa(Z), py) is given by
fo=19x, D]r-1.
Let P and h be as in Theorem 5.5. Theorem 5.6 implies

On(f) = Pp(Grt(N),h) = —4log |[¥p(GrT(N),h)|.
Thus, from the theory of complex multiplication we know that
Oy (f) =logla (5.24)
for some a € Q. The statement of the theorem follows from equations (5.22) - (5.24). [

5.9 Prime factorization of regularized Petersson prod-
ucts
In this section we find a field of definition and prime factorization of the algebraic number

« defined in Theorem 5.6. For simplicity, we will restrict ourself to the case when the
lattice N has prime discriminant.

Theorem 5.8. Let N be an even lattice of signature (2,0) and prime discriminant D.
Suppose that N is isomorphic to a fractional ideal b C K equipped with the quadratic form
WNK/@(-). Let f € Mi(py) be a weakly holomorphic modular form with the Fourier

expansion
f: Z Z Cu(t) qtel/7

VEN' /N t>—00
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where ¢,(t) € Z and co(0) = 0. Then

(f> @N)reg = log ‘05’7

where o« € H. Moreover, for a rational prime p and an ideal ¥ of H lying above p we
have

ordy (o) = Z Z (1) rbaz(_ft> (1+ord,(t)) in the case (%) =—1, (5.25)

t<0 veN’/N

ordg(a) =0 in the case <%) = 1.

We will prove Theorem 5.8 in Section 5.11.

Theorem 5.8 is compatible with, but stronger than the result of J. Schofer [62]. More
precisely, Theorem 4.1 of [62] states that the sum over all isomorphism classes of even
lattices of discriminant —D of the identity (5.8) is true.

In Section 5.12 we will show that Theorem 5.8 implies Conjecture 2.

Theorem 5.9. The factorization formula for the CM-values of higher Green’s functions
given in Conjecture 2 in Section 5.1 is true.

5.10 Lattices and fractional ideals

In this section we collect some facts about lattices and fractional ideals of quadratic
imaginary fields. They will play an important role in our proof of Theorems 5.8 and 5.9.

In this section —D is a negative prime discriminant. Recall the following well-known
resuts about fractional ideals of the imaginary quadratic field K = Q(v/—D).

Lemma 5.1. Suppose that —D < 0 is a square-free discriminant and [a, b, c| is a primitive
quadratic form of disctiminant —D. Let 3 be a solution of the equation a3 + bz + ¢ = 0.
Then the lattice

c =72+ 37%
is a fractional ideal of the imaginary quadratic field K = Q(v/—D). Moreover, this ideal

satisfies
¢ = (a) " (5.26)

Lemma 5.2. Let ¢ C K be a fractional ideal. Consider the quadratic form q(-) on K
given by q(f) = Nkjo(B). Then the dual lattice of ¢ with respect to this quadratic form
is equal to (N g(c))~ cd7!. Here d denotes the different of of, i. e. the principal ideal

(V=D).

Our next goal is to find a convenient lattice of signature (2, 1) that contains the positive
definite lattice associated to the ideal b as a sublattice. Consider the lattice

L:{(AéD 2)‘A,B,Cez} (5.27)



100

equipped with the quadratic form q(z) := —D det(z). Its dual lattice L is given by
A'/D B'/2D
L= / / ‘A’, B.C' e\, (5.28)
B/2D "

For ¢ € L' with q(¢) < 0 denote by 3, the point in $ corresponding to the positive
definite subspace ¢+ via (5.45). More explicitly, for the vector

(v B2
g_(—ﬁ/Q o )

the point 3, is a root of the quadratic equation
a3; + B3+ =0. (5.29)

The following two lemmas are crucial to show that for each fractional ideal b the
positive definite lattice associated to it is contained in L as a lower rank sublattice.

Lemma 5.3. For each ideal class ¢ € CLg there exists a vector m € L' such that q(m) =
—1/4 and 3, Z + Z C K is a fractional ideal in c.

Proof. The classical correspondence between fractional ideals of oy and binary quadratic
forms of discriminant —D implies that for each ideal class ¢ € CLg there exist A, B,C € Z
such that

B?* —4AC = -D

and for 3 € 9, satisfying
A3+ B3+ C =0,

the subset 3Z + Z of K is a fractional ideal in the ideal class ¢. Or equivalently, there

exists a half-integral matrix
[ C —-B/2
~\-B/2 A

WL+ 7 < c.

with

For each x € SLy(Z) the fractional ideal 3.,+Z + Z is equivalent to 3,Z + Z. 1t is easy to
see, that the matrix [ is SLy(Z)-equivalent to some matrix of the form

C —BJ2

~ ., AeDz,BeDZC €L
-B/2 A

Then the matrix m =: [, /D belongs to L', has norm —1/4, and since 3, = 3; the fractional
ideal 3,,Z + 7Z belongs to the ideal class ¢. Lemma is proved. [l
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Lemma 5.4. Let m € L' be a vector of norm —1/4. Set N := L N'm*. Denote by ¢ the
fractional ideal 3,,7Z + 7Z. Then the following holds
(i) the lattice N is isomorphic to the fractional ideal ¢ equipped with the quadratic form

qa(y) = WNK/Q(V);
(ii) L = N & 2mZ.

Proof. First we prove part (i). Each element of L' can be written as

1 c —b/2
=D -b/2 a

for some a € DZ,b € Z, ¢ € Z. The condition 4Dq(m) = b* — 4ac = —D implies that
be DZ. Set
2
a | 3m dm
Z == m :

a(Z)=q(Z)=0 and (Z,Z)=1.

This element of L ® C satisfies

Moreover, the elements Z and Z are both orthogonal to m. Consider the map
1 K-> N®Q

defined by
s =37 +sZ.

This map is an isometry, assuming that the quadratic form on K is given by q(f8) =
Nk jo(f) and the quadratic form on N ® Q is given by q(¢) = —D det(¢). We have

oa) =& 2 t3m dmtim ) _ L[ (*—D)/2 —ab
D\ 3m+im 2 D —ab  2a% )’
a [ 3m3m(am+3m) 3 +3m 1 ~be (B>~ D)/2
1azy,) = _ 4 |

"D\ 2437 mtim D\ ®-D)/2  ab

fag) =& sednt dwdmm t3m) | 1 (2 —be
"D\ GudmGm 3m) 3 I D\ —be (1 — D)/2

Using that a,b € DZ and b = D(mod 2), we see that
WaZ+azmZ+a32,7) C N. (5.30)

On the other hand
(a)¢® = aZ + a3pZ + a3 7. (5.31)
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Lemma 5.1 implies that the ideal (a)¢? has norm 1. Hence, by Lemma 5.2 the dual lattice
of (a)c? in K is equal to 07! (a)c®. Since 7 is an isometry, the dual of +((a)c?) is 2(07!(a)c?).
We have the inclusions

1((a)c®) € N C N C (0 (a)c?). (5.32)

Since (07%(a)c?)/((a)c?) = Z/DZ we find that |[N’/N| is a divisor of D. Since a positive
definite 2-dimensional even lattice can not be unimodular, we deduce that |[N'/N| = D.

Thus the symbols “C” in (5.32) should be replaced by “=”". Part (i) of Lemma 5.4 is
proved.
Now we prove (ii). The condition q(m) = —1/4 implies that b € DZ. Hence, the

element 2m belongs to L. Set M := 2mZ. We have the following inclusions
M@eN CL cLCM®N.

Observe that
|L'/L| =2D, |M'/M|=2, |N'/N|=D.

Thus, L=M & N and L' = M' & N'. H
We combine the previous two lemmas in the following theorem.

Theorem 5.10. For each ideal class B of K there exists a vector m € L' such that

(i) a(m) = —1/4;

(i) the lattice N := LNm™ is isomorphic to the lattice Ng defined as (b, N /q(-) /N q(b))
for some b € B;

(i1i)) L = N @& 2mZ.

Proof. Since D is prime, the class number of K is odd. Thus, each ideal class b is equal
to ¢ for some ¢ € CLg. Let m € L' be the vector constructed in Lemma 5.3, which
satisfies 3,,Z + Z € ¢. Then Lemma 5.4 readily implies that m satisfies the conditions of
the theorem. O]

The following lemma will play an important role in the proof of Conjecture 2.

Lemma 5.5. Let 31, 32 € 9 be two CM-points of discriminant D and let b := 37 + Z,
¢ := 322 + 7Z be fractional ideals of or. Consider the lattices N = Mo(Z) N vt (31, 32) and

M = My(Z) N N*+. Then the lattice N is isomorphic to the fractional ideal be equipped
Nr/o()
NK/Q(bC)

equipped with the quadratic form

with the quadratic form and the lattice M is isomorphic to the fractional ideal bt

—Ng/o()
Ng /q(be) ©

Proof. Firstly, we compute the lattice N. Suppose that
CL15% +bi31+c1 =0

and
235 + baga + ¢y = 0,
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where ay,b1,¢1 € Z, ged(ay, by, 1) = 1, ap > 0 and ag, by, co € Z, ged(ag, by, co) = 1,
as > 0. Consider the map

7 K — My(Q)
defined by
—b1 — b2 blbz —D 1 bl
4a1a2 v 4@1(12 Y 2_CL1x + Tlly
r+yv—D —
2&2 QCLQy 4

It maps K to v"(31,32) and is an isometry, provided that the quadratic form on K is
given by () = Nk/g(f) and the quadratic form on My(Q) is given by q(l) = — det().

We have
—1 b1+b2 —2@2
1) =
j( ) 4@1&2 ( —2(11 0 ’

—201 0
b1 — bg 2@2 ’

(
o= (72 Y,
(

—1

2&1

Thus, we have
My(Z) Nt (31,32) = 2a1a2 J(1)Z + 2a1as 3(31)Z + 2a1a3 )(32)Z + 2a1a2 7(3132)Z.  (5.33)

On the other hand
bec = Z+31Z+3QZ+51522 (534)

1 1

Note that Ng/g(b) = — and Ng/g(c) = —. The quadratic form on bc is given by
aq (05}

a(y) = a1 as Nk jg(7). Hence, we check that

q(1) =aq(2maz (1)),

q(31) =a(2a1a23(31)),

A(32) =a(2a1a25(32)),
A(3132) = q(2a102(3132)).

Now the statement of the lemma follows from the equations (5.33) and (5.34). The lattice
M can be computed along the same lines. O]
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5.11 Proof of Theorem 5.8

Our next goal is to find a preimage of a function f € M/ (py) under the map T}, y defined
in Theorem 5.2.

Recall that N'/N = Z/DZ and L'/L = Z/2DZ. Moreover, we can choose isomor-
phisms vy : Z/DZ — N'/N and 1y, : Z/2DZ — L'/ L such that q(ix(v)) = v*/D(mod Z)
for each v € Z/DZ and q(11(\)) = A\?/4D(mod Z) for each \ € Z/2DZ. Suppose that
f = (f.)venr/n belongs to M, (py) for some odd k. Then, the transformation property

(1.12) for R = (( _01 _01> ,i) and T = (((1) }) ,1) € Mp,(Z) implies that

fo=1f., veEZLIDZ
and f, has the Fourier expansion of the form
fo = Z c(t) e(iT>.
D
t=v2(mod D)
Since D is prime, the Fourier expansion of f can be written as

=3 a ¥ de(sr)

v€Z/DZ  t=v?(mod D)

Similarly, we see that for [ € 1/2 + 2Z each modular form h € M,'(p;) has the Fourier
expansion of the form

h(t) = Z ex Z b(d)e(%T)

X€Z/2DZ  d=X%(mod D)

Theorem 5.11. Let the lattices L, N, and the vector m be as in Theorem 5.10. Sup-
pose that f € M/ (pn) is a modular form with zero constant term and rational Fourier
coefficients. Then there ezists a function h € Sf/Q(pL) such that:

(i) the function h(T) = 3 57907 €x D d=r2(mod 4p) 0(d) e(;57) has rational Fourier coef-
ficients;

(i) the Fourier coefficients of h satisfy b(—Ds?) =0 for all s € Z;
(1ii) T n(h) = f.

Proof. Denote by S the lattice Z equipped with the quadratic form q(z) := —a?. For
this lattice we have S’/S = Z/2Z. Lemma 5.4 implies that L = N & S. Note that
L'/JL=S5"/S x N'/N and pr, = ps ® pn. Set

Oo(T,2) = Z e(n’t +2nz), 6i(r,2) = Z e(n’r + 2nz)

nez neL+Z
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and
0.(7) =0,(7,0), k=0,1.

It follows from the definition of 77, y that
TL N Z h(fi 1/)0
kES'/S

Let gg,g,l, &071 be the weak Jacobi forms defined on p. 108 of [25]. These functions can
be written as

$-21(7,2) = 1ho(7) Oo(T, 2) + ¥1(7) Ou(T, 2),
G0.1(T, 2) = o(7) Oo(7, 2) + 1(7) O1(T, 2)
where
Yo = —2 — 12¢ — 56¢* — 208¢° + - - - , (5.35)
=g +8¢%* + 397 + 152¢"* +

po = 10 + 108¢ + 808¢* + 4016¢° + - - - ,
o1 = q Yt —64¢%* — 513¢7* — 2752¢" 4 - -

The vector-valued functions (¢, 1) and (o, 1) belong to the spaces Mi5/2(PS) and
M, J2(ps) respectively, and they satisfy

$_2.1(7,0) = 1o(7) Oo(7) + 1 (7) 02(7) = 0, (5.36)
G0,1(7,0) = o(7) o(7) + @1 (1) 01 (7) = 12.

First, we construct a function g € M1!/2(,0L) that satisfies conditions (i) and (iii).

Define 1
—oufu, (k,v)€S/Sx N'/N. (5.37)

(k) = 12

This function satisfies

1

Trn(g) =1

1
12

Z ey (90,00 + 9(1,)01)

veN'/N
Z ev fu(pobo + ¢101)
veN'/N

Next, we will add a correction term to g and construct a function that satisfies also
i). Fix an integer s > 0. Our next goal is to construct a supplementary function

(ii

9(T) = D\cz/202 2 —d=2(mod ap) (d) €(dT) € Ml!/Q(pL) with the following properties:
a(—Ds?*) # 0 and a(—Dr?) = 0 for all 7 > s, (5.38)
Tin(g) =0 (5.39)
g has rational Fourier coefficients. (5.40)
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To this end we consider the following theta function
0= Z e, Z (a® +@*) e(aar).
v€EZ/DZ aco+v//—D

By Theorem 4.1 in [10] his theta function belongs to Ss5(p). We define

Giew) = 00,57 1 (k,v) €5'/S x N'/N, (5.41)

where

. 0 if s=0mod 2,
1 otherwise,

and j is the j-invariant. First we check that the function ¢ satisfies condition (5.38). For
D # 3 we have
O =49+ 0(¢*), q=e(r).

Hence, from (5.41) we find that for s even

g(0,0) _ 8q752/4 + O(q752/4+1),
LZ](LO) :4q—32/4—1/4 + O(q—s2/4+3/4)’

and for s odd

. _$2 _&2
J00) = — 8¢ JA+1/4 4 O(q /4+5/4)’

- g2 g2
9e1,0) =4q Mt O(q /4“)'

This proves (5.38). The function § satisfies

Tin(g) = Z ev (900,100 + ga1,)bh)

veN'/N
= Z ev Qo T 1 (tobo + Y16h)
veN'/N
=0.
This proves (5.39). The property (5.40) is obvious.

By subtracting from ¢ a suitable linear combination of functions g for different s we
find a function

d
r)= Y e Y blde(557) € Minlo)
X\EZ/DZ  d=A2(mod 4D)
such that

b(—Dr?) = 0 for all r € Z\0, (5.42)

Ton(h) = f, (5.43)
h(7) has rational Fourier coefficients. (5.44)
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The final step is to show that 5(0) = 0. Identity (5.43) implies that
h0,0)00 + h(1,001 = fo.
Hence, the constant terms of these functions are equal. By the assumptions of the theorem
CT(fo) = 0.

On the other hand

CT(h(O,())eo + h(l,g)el) - Z b(—D52) = b(O)

SEL

Thus, the function h satisfies the conditions (i)-(iii) of the theorem. This finishes the
proof. ]

We observe that the Grassmanian Gr' (L) is isomorphic to the upper half-plane §.
There is a map $ — Gr™ (L) given by

2 2
z = v+(z)::§R(z T)R—F%(z T)RCLQ_@R. (5.45)
z z

The group I'g(D) acts on L' and fixes all the elements of L'/L. Denote by Xy(D) the
modular curve I'y(D)\$.
Suppose that the vector m € L/, the lattice N and the point 3,, € $ are defined as in

Theorem 5.10. Let h be the modular form h € Sf/Q(pL) satisfying

Tin(h) =, (5.46)

that was constructed in the previous theorem. It follows from (5.46) and Theorem 5.2
that

Or(hy3m) = O (f).

Recall that by definition
On(f) = (f, ©p)" .

Without loss of generality we assume that h has integral negative Fourier coefficients.
The infinite product W(z) := W, (h, 2) introduced in Section 1.9 defines a meromorphic
function on Xy(D). Theorem B3 in Section 1.9 implies

(f, ©0)™® = log [V (h, m)|- (5.47)

It also follows from Theorem B3 that the divisor of W is supported at Heegner points.
Next we compute the local height pairing between Heegner divisors. These calculations
are carried out in the celebrated series of papers [35], [36]. For the convenience of the
reader we recall the main steps of the computation in what follows.
First, let as recall the definition of Heegner points and the way they can be indexed
by the vectors of the lattice L'.
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For ¢ € L' with q(¢) < 0 denote by x, the divisor (3¢) — (00) on the modular curve
Xo(D). The divisor x; is defined over the Hilbert class field of Q(1/Dq(¢)).

For any integer d > 0 such that —d is congruent to a square modulo 4D, choose a
residue 4( mod 2D) with —d = ?( mod 4D) and consider the set

a/D b/2D ,
Lap = {EZ (b/QD c ) €L

on which T'g(D) acts. Define the Heegner divisor

Va3 = Z Xg.

¢eTo(D)\ L,

q(l) = —

1D’ b = [( mod 2D)}

The Fricke involution acts on L’ by
1 0 1 0 —D
K%D(—D o>€<1 o)

Ya = Y+ Ya s (5.48)
The divisor yj is defined over Q ([36] p. 499.)

Now we would like to compute the local height pairings between the divisor x, and a
Heegner divisor. The definition of the local height pairing is given in Section 4.3. The
divisors x, and y; have the point co at their common support. In order to define the height
pairing between these divisors we must fix a uniformizing parameter 7 at this cusp. We
let m denote the Tate parameter ¢ on the family of degenerating elliptic curves near co.
This is defined over Q. Over C we have ¢ = e(z) on X (D) = [;(D)\$, where z € § with
3(2) sufficiently large. The following theorem can be deduced from the computations in
Section IV .4 in [36].

Theorem 5.12. Let dy, dy > 0 be two integers and Bi, Po be two elements of Z/2DZ
with —d, = B?( mod 4D) and —dy = $3( mod 4D). Suppose that dy is fundamental and
dy/dy is not a full square. Fix a vector £ € Lg, g,. Let p be a prime with ged(p, D) = 1.
Choose a prime ideal B lying above p in the Hilbert class field of Q(v/—dy). Then the
following formula for the local height holds:

in the case (ﬁ) =1 we have

and maps Ly to Lg_g. Set

dy
<X57 yr12>‘13 - 07 (549)
in the case (d%) = —1 we have
d1d2 — 7”2 dldQ — T2
<X€7yul2 log TGZZ 5d1 The2q2 (W) Ol"dp(T . (550)
r=[1 2 mod 2

Here ¢ =Z3+7Z, n = ZD—i-ZﬂﬁT 4 s any ideal in the ideal class A defined by (5.1),
and

1  otherwise.

2  forr =0modd;
5d<r>={ !
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Proof. The curve Xo(D) may be described over Q as the compactification of the space
of moduli of elliptic curves with a cyclic subgroup of order D [35]. Over a field k of
characteristic zero, the points y of Xo(D) correspond to diagrams

W F— F',

where F' and F" are (generalized) elliptic curves over k and v is an isogeny over k& whose
kernel is isomorphic to Z/DZ over an algebraic closure k.

The point 3, € $ defines the point x € Xo(D). Then x = (¢ : E — E’) and over C
this diagram is isomorphic to

(C/C&C/cn.

Following the calculations in [35] we reduce the computation of local heights to a
problem in arithmetic intersection theory. Let us set up some notations. Denote by v
the place of Hy,, the Hilbert class field of Q(v/—d;), corresponding to the prime ideal .
Denote by A, the ring of integers in the completion Hy, ,, and let m be an uniformizing
parameter in A,. Let W be the completion of the maximal unramified extension of A,.
Let X be a regular model for X over A, and x, y be the sections of X ® A, corresponding
to the points x and y. A model that has a modular interpretation is described in Section
I11.3 of [35]. The general theory of local height pairing [34] implies

(%, )y = —(x-y)logp.

The intersection product is unchanged if we extend scalars to W. By Proposition 6.1
in [35]

1
(x-y)w = 5 Z CardHomyy)» (X, ¥ )deg1 -

n>1

Denote by R the ring Homyy)(x¢). On p. 550 of [36] the following formula for the
intersection number is obtained

1 dydy — 1
(X¢ - ya, ) w = 1 Z Card{ S, 2r.4,) = R mod R*} ord, (%), (5.51)

r2 <dida
r=£1P2(mod 2D)

where S|4, 2r.4,) is the Clifford order

1+e 1+e 1+e)(l+e
Stdy 2rds) = L+ Z 5 1+Z 22+Z( 1{4( 2)7

2 2
e; = —dy, e;=—dy, ejey+ ege; =2

In the case (d%) = 1 the ring R is isomorphic to an order in 04,. Since d;/ds is not a

full square the ring R can not contain the Clifford order Spg, or.4,. Hence, (x; - y§2)w =0.
This proves (5.49).
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Now we consider the case (d%) = —1. Formula (9.3) in [35] gives us a convenient

description of the ring R. Namely, for a,b € Q(v/—d;) denote

a b
la, 8] = (pl_) E)

and consider the quaternion algebra over QQ

B ={[a,8]] a,b € Qv/=d1)}.

Then R is an Eichler order of index D in this quaternion algebra given by
R = {[a, b] ‘ acdt, beonaca e, a = bmod 0d1}7

where 0 is the different of Q(+/—d;).
By the same computations as in Lemma 3.5 of [33] we find that the number of em-
beddings of Sj4, 254, into R, normalized so that the image of e; is [v/—d,0], is equal

to
dldg — 7"2 dldg — T2
90, (1) T (W) ordy (T -

This finishes the proof of the theorem. O

Proof of Theorem 5.8. Since the discriminant —D is prime, the class number of K is odd
and there exists an ideal class ¢ such that b = ¢ in the ideal class group. The class ¢
contains an ideal of the form

¢ =3Z+7, (5.52)

where 3 is a CM point of discriminant —D. Property (5.52) is preserved when we act on
3 by elements of SLy(Z). As we have explained in the proof of Theorem 5.10, we may
assume that 3 satisfies the quadratic equation

a3’ + by +c=0

for a € DZ,b € DZ,c € Z and b* — 4ac = —D. The matrix

1 c —b/2
" D -b/2 a

belongs to the lattice L' and has the norm —1/4. Lemma 5.4 implies that the lattice
N := L Nm' is isomorphic to the fractional ideal ¢? equipped with the quadratic form
a(7) = Ngso(7)/Nk/g(c?) and moreover, the lattice L splits as L = N & 2mZ.

Next, by Theorem 5.11 we find a weak cusp form h € S /Q(pL) satisfying

Trn(h) =1, (5.53)
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where 17, i is defined as in Theorem 5.2. Function h has the Fourier expansion
= Y e Y bd)e(i57).
4D
BEZ/2DZ  d=B?( mod 4D)

It follows from (5.53) and Theorem 5.2 that

<f7 @N)reg - q)L(h,ﬁ)

From Theorem B3 in Section 1.9 we know that
®r(h,3) = log|[VL(h,3)l, (5.54)

where U(z) = Wy (h, z) is a meromorphic function. Theorem B3 also implies that

div(®) =) " b(—d) v}, (5.55)

where y7 is the Heegner divisor defined in (5.48).

Set x = (3) — (00). The condition (ii) of Theorem 5.11 implies that the function
1 (h, ) is real analytic at the point 3. Thus, the only point in the common support of x
and div(¥) is oo. Recall, that we have fixed the uniformizing parameter 7 at this cusp to
be the Tate parameter ¢ on the family of degenerating elliptic curves near oo.

Recall that the divisors x and div(V) are defined over H. The axioms of local height
(listed in Section 4.3) together with the refined definition (4.8) imply that for each prime
Lof H

ordy (¥(3)) log p — ordy (¥[oo]) log p = Z b(— y2>m. (5.56)

From the infinite product of Theorem 13.3 in [10] we ﬁnd that W[oo] = 1 for the choice
of the uniformizing parameter at oo as above. Theorem 5.11 part (ii) implies that d/D
is not a full square provided b(—d) # 0. Thus, by Theorem 5.12 for each prime P of H
lying above a rational prime p with ( ) # 0 we obtain

X ya)p =0

in the case (%) =1, and

(it = 108(0) 3 v (T2 ) v () (5.57)

neL 4p
n=d(mod 2)
in the case (%) = —1. We observe that the sum
ib Z d — Dn? q d — Dn?
2| —— )or _—
4p P 4
=0 nez

n=d(mod 2)
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is equal to the constant term with respect to e(7) of the following series
S ((hostothans) 3 (L) odytre(5r) ).
) ) B p P D
v€EZ/DZ t=v mod D
The equation (5.53) implies
fy = h(07,,)00 + h(l,l/)gly Ve Z/DZ (558)
Hence, combining the equations (5.57) and (5.58) we arrive at
<X, Z b(—d) y2> =logp Z Z e(— Thaz( ) ord,(1).
d=0 VEZ/DZ t=0
Finally, the equations (5.54) and (5.56) imply

orda(a) = ordp(V1(h5)) = o (xS W—d)vi) =
d=0

Z Z Cu(—1) Tpa2 <p> ord,(?).

veZ/DZ t=0
This finishes the proof of Theorem 5.8. O

5.12 Theorem 5.8 implies Conjecture 2

Proof of Theorem 5.9: Recall that for a relation A and two CM-points 31, 32 € $ lying
in the same quadratic field K = Q(v/—D) Theorems 5.3 and 5.4 imply

Gral31:32) = (f; ON)res- (5.59)
Here the lattices N and M are defined as
N :=v"(31,30) " My(Z), M := NN My(Z)
and the function f =€ M/(SLy(Z), py) is given by
J=19x Onm1)lr-1

Firstly, we compute the lattices N = My(Z) N v"(31,32) and M = My(Z) N N*.
By Lemma 5.5 the lattice N is isomorphic to the fractional ideal bc equipped with the
quadratic form WN x/0(+) and the lattice M is isomorphic to the fractional ideal be

equipped with the quadratic form WNK/Q(').

Next, we compute the negative Fourier coefficients of the function

[ =1[9x, Om—1)lr-1
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The function f has the Fourier expansion of the form

f= Z ey Z c,(t)e(tr

/
veN'/N tE%Z

t>—o00

For a definite even lattice L, an element A € L'/L and a rational number ¢ we denote by
Ry \(t) the number of elements of norm ¢ in A + L. The formula (5.4) implies

et et = (1) () e

—1-—s S
s=0

= (—m)* P, _ 1(1—%) e((—m+n)7),

where Py(z) = (2Fk!)~! dk 4 (2? — 1)* is the k-th Legendre polynomial. Hence, for ¢t < 0
and v € M'/M the Fourler coefficients of f are equal to

e (t) = (~D)F 13 A Pk_1< - E> Rusiyw(m +1). (5.60)

Finally, we recall that by the standard argument

Z RL,A(%)a

XeL'/L

where D is square free, f is a fractional ideal in the imaginary quadratic field K = Q(v/—D)
and L is the lattice a with quadratic form WNK/QO' Note that q(\) € 5Z for all

A € L. Thus, we can rewrite (5.60) for n > 0 as

Z Z A ML rge(Dm — n) Py_y (1 — ;—:@) (5.61)

veN'/N

Now, after we have computed the lattice N and the function f in (5.59), applying
Theorem 5.8 to the right hand side of (5.59) we obtain the statement of Conjecture 2.0

5.13 Numerical examples
In this section we give examples and numerical computations to Theorems 5.7, 5.8, and 5.9.

Computation of G5(31,32)

In this subsection we explain how to compute G (31, 32) for two CM points 31, 32 € $ lying
in the same quadratic imaginary field Q(v/—D), and then give an example that is worked
out in detail.
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Step 1. Find the function g € M',(SLy(Z)) with Fourier expansion g = ¢~! + O(1).

This function is
E,FEs

I=7A

Step 2. Consider the vector space v = v"(31,32). Compute the lattices N = vt NMy(Z),
M = N+ N My(Z) and the corresponding finite abelian groups N'/N, M'/M.

Step 3. Compute T, z),n = (¥,)ven/n, where ¥, is the binary theta series

0,(1) = o, (7) = > e( —q(m)).

meM'N(—v+M2(Z))
Step 4. Compute f € M/ (SLy(Z), pn) given by
fv=19,9.], v€ N'/N.

Step 5. The vectors
3132 31 1 3132 31
I =% lp = —=S
1 (32 1) : fD“<5z 1)

N®Q=1Q+LQ,
a(l) = DS(31) SG2)s  allz) = S(31)SG2), (L, le) = 0.

For simplicity assume that there exist a Q-basis my, ms of N ® Q such that

satisfy

q(mi) =D, q(me) =1, (my,mse)=0.

This assumption holds in the examples we consider below. Define K = mZ where
q(m) = —1 and set
P=N®K.

It follows from the assumption that the lattice P contains a norm 0 primitive vector.
Moreover, there is an isomorphism between rational quadratic spaces (P®Q, ¢) and
(52(Q), —Ddet(+)). For example, the isomorphism given by

Z+y
xmq +yme +2z2m — D
r  z—y

T

The group SLy(Q) acts on P®Q by x — vav' and preserves the norm ¢(-). Finally,
we find a congruence subgroup I' C SLy(Z) that fixes all elements of P'/P.
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Step 6. Next we must find h € M1!/2(SL2(Z), pp) with constant term 0 satisfying

Ten(h) = f, (5.62)

where Tp y is defined as in Theorem 5.2. We do this as follows.

Note that P'/P = K'/K x N'/N and pp = px ® py. For K as above we have
K'/K = 7,/27.

Denote
Oo(T,2) = Z e(n’t + 2nz), 0,(1,2) = Z e(n’t + 2nz)

nez nei+z

and
0.(1) =0.(7,0), £=0,1.

Recall that by the definition of Tp x

(TRN(h))V = Z h(li,l/)e,‘i'

KeEK' /K

Let Qg_z,h Q;O,l be the weak Jacobi forms defined in the book [25] p.108.

We can write
$-21(7,2) = Uo(7) Oo(7, 2) + ¢1(7) b (7, 2),
$0.1(7,2) = @o(7) O0(7, 2) + @1(7) 61 (7, 2)
where

g = —2 — 12q — 56¢* — 208¢° + - - - , (5.63)
Py = q 4 8¢¥ 4 39¢74 4 152¢M 4 - -

@o = 10 + 108¢ 4 808¢° + 4016¢> + - - - ,
o1 = q—1/4 _ 64q3/4 _ 513q7/4 _ 2752q11/4 4o

The vector valued functions (¢, 11) and (¢, ¢1) belong to M’_S/z(SLQ(Z), pr) and
Mil/Q(SLg(Z), pr) respectively, and one has

¢-2.1(7,0) = o (7)00(7) + ¢1(7)0:(7) = 0, (5.64)
on,l(ﬂ 0) = wo(1)Vo(T) + 1 (1) (1) =1

Define the supplementary function f € M, (SLy(Z), py) as

fl/: [gaﬁu]% VGN//N'

We have )
fo=a"+0+0(q), and fo =q "+ 0+ O(q). (5.65)
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Consider the function h € MI!/Q(SLQ(Z), pp) defined by

3+ 1
Py = Zzﬁﬁfy + §<p,€fy, (k,v) € K'/K x N'/N. (5.66)

It follows from (5.63) and (5.65) that h has the constant term 0. The equations
(5.64) imply that h satisfies (5.62).

Step 7. Compute the infinite product corresponding to h defined in Theorem B3(see
Section 1.9). Note that the negative Fourier coefficients of A might be not integral.
Denote by n the common denominator of all negative Fourier coefficients of h. The
function nh(7) satisfies the conditions of Theorem B3 and only the function Vp(nh)
is well defined.

Using results from [10], which are repeated in Section 1.9, we can find the level
of Wp(nh), its zeros and poles, and its Fourier expansion at cusps. Knowing this
information we can compute the value of Wp(nh) at the CM-point Gr™(N).

Step 8. In the final step we compute G2(31,32). Theorems 5.3 and 5.4 tell us that

G2(517 32) = (f7 @N)reg-

Theorem 5.5 implies
(f7 @N)reg = ®P(Gr+(N), h)

Since the constant term of A is zero, from Theorem B3 we know that

B p(CrH(N), h) = —%log(\lfp(GrJr(N),nh)).

Computation of G2<1+\{1—73’ —1+21/_73)

Now we apply the algorithm described above to the pair of CM points

C1+v/=23 0 —1+4/-23
R R

31 32

Step 1. Recall that

By

A =4 — 240 — 141444q — 8529280¢° — 238758390¢" + - -

is the unique function in M', with the Fourier expansion ¢~! + O(1).
Step 2. The lattice N = v"(31,32) N M2(Z) is equal to

N =mZ + noZ

L (3 -1 (01
7\ 212 2 )0 ™2 \10)

where
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The dual lattice is given by

1
N/ = 2-37112 -+ TLQZ

276 —23
=23 2 '

Step 3. We compute Ty z)n = (V)ven/n defined by

and the Gram matrix of N is

9, (1) = > e( —rq(m)).

mEM/N(—v+Ms(Z))
The lattice M = N+ N My(Z) is equal to

M = le+mQZ

(112 (T 1
L N, R e s R

The dual lattice is given by

where

1
M/ = 2—3m1Z + m2Z

—184 —115
—115 =72 )~

We identify Z/23Z with N'/N by sending r to 5zn:. Then

and the Gram matrix of M is

9, (1) = Z e(T(iac2 + 5y + 36y7)).

23
x€br+23Z, yeZ
Step 4. We compute f € M/(SLy(Z), py) given by
f,=19,9,], ve N'/N.

The Fourier expansion of 23f is given below.
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veN/N 23 f,
0 —23272  —32530742% + - -

+1 —1127'7  —28452° — 496429822 + - ..
+2 75z — 34489724 + ...
+3 —727%  —38012% — 55309412 + - - -
+4 —1527%  —1889x* — 43976472%" + - -
+5 20711 —11520212 — 1329564323 + - -
+6 —5r~ M 423827 — 582992472 4 - - .
+7 26270 —172212'® — 1670986224 + - - -
+8 1827 —153052'0 — 1557745923 + - ..
+9 —172720  —14112°% — 4114356220 + - .-
+10 —1927%  —96022 — 38187692% + - - -
+11 32710 —6093z'% — 6982596236 + - ..

Here x = e(7/23).
Step 5. Consider the lattice

{02

equipped with the quadratic form q(l) := —23 det(l). Choose the vector

11:<12/23 1)_
12

The vector [; has the norm q(l;) = —1 and its orthogonal complement LNl is isomorphic
to N. Moreover, L splits into a direct sum L = p;Z @& N. Denote

(6 12 (123 -1
2 12 23 ) 3 1 -1 |-

The lattice L is equal to [;Z+ 127+ 137 and the dual lattice L’ is equal to %llZ—i- %12Z+Z3Z.
The group I'(23) acts on L' by  — vav' and fixes all elements of L'/ L.

Step 6. We compute the function h € Ml!/Q(SLg(Z), pr) defined by (5.66). The Fourier
expansion of 529h(7) is given in the following table.

a,b,cEZ}
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€ L'JL | 529h,(T)

(0,0) | 42322792 4+ O(x)

(0,1) —52902711° — 4232272 + O(x)
(£1,1) | —285427 9" + O(x)

(£1,0) | 267227 + O(x)

(£2,1) | 1698271 + O(x)

(£2,0) | O(x)

(£3,1) | —218627% + O(x)

(£3,0) | 244027 + O(x)

(£4,1) | —359427% — 12943277 + O(x)
(£4,0) | 30482776 + O(x)

(£5,1) | —2132275 + O(x)

(£5,0) | 48162~ * 4+ O(x)

(£6,1) | —187927 ™ + O(x)

(£6,0) | 2378270 + O(x)

(£7,1) | 14827% + O(x)

(£7,0) | 6880220 + O(x)

(£8,1) | —46827° + O(x)

(£8,0) | 5904228 + O(x)

(£9,1) | —3991271%% — 168702~ + O(x)
(£9,0) | 3290275 + O(x)

(£10,1) | —440627197 — 1722427 + O(x)
(£10,0) | 3568278 + O(x)

(£11,1) | —83127% + O(x)

(£11,0) | 24902~ + O(x)

with x as before .
Step 7. There is a map $ — Gr' (L) given by

SRR w@y:%(fz)m+%(fi>RcL®R. (5.67)

z 1 z
For the theta integral of the vector valued function h € M| 1o(SLa(Z), pr.) we write
Or(z,h) :=Pr(v"(2),h),
and for the corresponding meromorphic function(infinite product)

Ur(z,h) =V (v"(2),h). (5.68)
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Note that

28+v—23 V_23> (5.69)

46

All the elements of L'/L are fixed by the group I'((23). Hence, the theta integral
(2, h) is invariant under I'y(23). The infinite product W (z, h) is an automorphic mod-
ular function for I'g(23) with some unitary character x. This character has finite order
(see [11], Theorem 4.1).

The curve I'§(23)\$ has genus 0 and only one cusp. Let j3;(2) be the Hauptmodul for
[';(23) having the Fourier expansion j3;(z) = ¢~' 4+ O(q), where ¢ = e(z). This function
is given explicitly by

Grf(N) = U+<

o S e((m? +mn+6n)z) —
323(2) - n(z)n(ng) m%;Z (< + _'_6 ) ) 3

=q ' +4q+7¢* +13¢* + 19¢* + 33¢° + 47¢° + T4¢" + - - .

For any integer d > 0 such that —d is congruent to a square modulo 92, choose an integer
B( mod 46) with —d = 3?( mod 92) and consider the set

Lo (b
S b/46 ¢

on which I'g(23) acts. The Fricke involution acts on L’ by

1 0 1 0 —23
l%ﬁ(—% o)l(1 0 >
and maps Lgp to Lq_g

For | € L' with q(I) < 0 denote by 3; the point in § corresponding the positive definite
subspace [+ via (5.67). The following equation holds

c/23 —b/46
—b/46  a '

q(l) = —=d/92,b = 5( mod 46)}

23a312+b51+c:Of0rl:<

We define a polynomial H423(X) by

Haz(X) = T (X = Ga(ar)) /001

lGLdﬁﬁ

It follows from Theorem B3 part 2 that
W(z,h) = A(h) [ Hazs(izs(2))"?,
d<oo

where

Ah) = 21¢
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and the numbers B(d) can be found from the Fourier expansion of h given in the table
on page 122. For example we find

B(7) = —12943, B(11) = —16870, B(15) = —17224, B(19) = 1698.

The full list of the numbers B(d) is given in the table on page 126.

Step 8. The last step is to compute the value ¥, (Gr*(N),h). The equation (5.69)

implies

23 + /23 h>

v, (Gﬁ(N), h) - \h( -

Consider the following algebraic numbers. Let o be the real root of the polynomial
X3 — X —1,and let m,, (¢ =5,7,11,17,19,25,49) be the numbers of norm ¢ in H given
n (0.2). The value of the Hauptmodul j;; at the point 23+*/7 is equal to —p — 2. The
* (234%—73 ))

values of Hg23 ( J are given in the following table.

Cl 529 B(d) ,Hd,zg(X) Hd 23( 2 — Q)
7| —12943 | (X +2)? 0

11| —16870 | (X +1)2 o°

15| —17224 | (X2 43X +3)? o

19 1698 | (X + 3)? o8

20 6880 | (X2 +4X +5)? 72 o0
23 | —4232 | XP+6X?24+ 11X +7 0

28 5904 | X%(X +2)? 72 0
40 2490 | (X% +2X +3)? 72 08
43 148 | (X —1)2 7T§ 916
44 4816 | (X + 1)2(X3 + 7X% 4+ 17X + 13)? 77, o'
51 —468 | (X2 +4X +7)? T3 07"
56 2378 | (X*+4X3 - 16X — 17)? 72, 02
60 2440 | (X2 43X +3)%(X2 +7X + 13)? T2

63 —831 | (X 4+ 2)*(X* +5X3 +12X? + 20X +19)? | 735 0°
67 | —2132| (X —3)? i 0°
68 2672 | (X*+ 10X + 34X? 4+ 46X + 25)? 72, 07"
76 3048 | (X +3)2(X3 — X2 —9X —9)2 72, o
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d | 529B(d) | Haas(X) Hazs(—2— o)
79 | —1879 (X5 +10X* 4+ 43X3 4 90X2 + 90X + 27)? i, 016
80 3290 | (X2 44X +5)2(X* +6X3 +20X% + 30X + 17)% | 72 nd, o*
83 —2186 | (X® — X2 — 13X — 19)? a5 0°
84 3568 | (X*+2X3 +6X2 + 14X 4 13)? T 0%°
91 —2854 | (X2 —4X —9)2 T 0"
92 4232 | (X3 — 2X2 — 17X — 25) X Hag0s(X) —2% a3 0° X 0
99 —3594 (X +1)2(X% 48X +19)? w078
103 | —3991 | (X® +4X* + 7X% + 33X2 + 99X + 81)2 wg 7r§5 o'
107 | —4406 | (X® +5X%+ 19X + 31)? i o8
115 | —5290 | (X +5)2 why
Finally we arrive at
23 + /=23
= log ’qu (%7 ) ‘ = log | md® w2 w0 g w2 0 2B 0

This proves the result (0.2) for k = 2 obtained numerically from the Fourier expansion
(5.18). The same argument works for k = 3,4,5,7.

Numerical verification of Theorem 5.9

In this subsection we check the factorization formula (5.2).
The ideal class group of the field K = Q(v/—23) consists of three elements

CLg = {o,b,b7'}.
Each rational prime p that is inert in K splits in the Hilbert class field H as

(p) = PB1 B2 B,
for some prime ideals B, Py with P; = P,. Theorem 5.7 implies that for k = 1,...,5

and 7
14+v—-23 —14++v/—-23
Gk) < )
4 4
where ay, is an algebraic number. Conjecture 2 proved in Section 5.12 predicts that ay, € H
and gives the factorization of ay. Specifically it says that no prime factor of [ in H occurs
in «y if [ is split in K, while if [ is inert in K we have

) = 23" logJay,

ordy, (o) = 23571 i Piy <1 - 2—2) 76(23 —n) 7T, (%) (1 + ord,(n)), (5.70)
orcg, (o) = ordlg () = 23 ipk_1(1 . 2-3) re(23 — n) rb<p> (1 +ord,(n)). (5.71)

We verify these identities in the following table.
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P ) 7
23 —n 18 13 8 3 16 9 2
n 5 10 15 20 7 14 21
76(23 — n) 2 1 1 1 2 1 1
ro (E) 0 1 1 1 0 1 1
P
r, (ﬁ) 1 0 0 1 1 0 0
P
23P, (1 _ %l) 13 3 _7 _17 9 5  —19
232P2(1 _ z—g) 11 —251  —191 169 _143  —227 277
2
233 P, (1 _ 2-3) _A823  —2313 4697 1207 | —5319 3655 —2071
9
234P4<1 _ 2—7;) 105359 87441 18241 —102959 | —27039 58081 —41039
» 11 17 19 23
23— n 12 1 6 4 23 0
n 11 99 17 19 0 23
r5(23 — ) 2 0 1 1 0 1/2
Y <ﬁ> 0 1 0 0 |12 o0
D
o (E) 1 0 1 112 1
P
2
23P, (1 _ g) 1 91 | —11 15 | 23 —23
2 2n 2 2
232 P, (1 _ 2—3) —263 397 | —83 73 | 232 923
2
233 P, (1 _ 2—Z> _791  —6489 | 5401 3465 | 233 —233
2
234134(1 _ 2—Z> 102961 80961 | —71039 | —119919 | 23% 234

For example, for p =7 and k = 2 we have

P1 = (m7), BBy = (m9),
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where p7 and pyg are defined in (0.1). We find

ordg, (ao) 232 P (1 - —) d(n)ry(23 —n)r, <E> (1+ ordy(n))

p

_23(131(22) J(2)r (3)+P1<2—2> rb(9)ra(2)—|—P1<;—§> rb(16)r0(1))

=36,

ordg, () = ordg, 232 Py (1 - —) d(n)re(n) re (23 — n) (14 ord,(n))

93 (P1 (;2) o(2)10(3) + P, (%) r(9)r(2) + Pi(5 ) re(16) n,<1)>
— 48,

This agrees with formula (0.2) found by numerical computations.

Numerical verification of Theorem 5.8

In this subsection we illustrate Theorem 5.8 with several examples coming from the com-
putation of CM values of higher Green’s functions. As before, let N and M be the lattices

N =0"(31,32) N My(Z) and M = v"(31,32) N Ms(Z),

where 3; = V=2 '4_23, 32 = _1+T V=28 For k = 2,3,4,5,7 let g, be the unique element of
M, _,,. with the Fourier expansion g, = ¢~! 4+ O(1). Denote

fr = 23" gk, Onr(-1)li-
Theorems 5.3 and 5.4 imply that

B 14++/-23 —1++/-23
log(oy) = 23" 1sz< TR 1 > = (frs ON)reg-

Functions f; have Fourier expansions of the form
t
0e()
Z €VZCV (t)e 537 )
VEN'/N  teZ
From Theorem 5.8 we deduce

ordy, (k) Z Z k) <?—)> (1 + ord,(n)),

n=0 veN'/N

ordg, (ay,) = ordg, Z Z B (%) (1 + ordy(n)).

n=0 yeN'/N

For the primes p = 5,7,11,17,19 we get the following table.



p|n 2 (% To (% 20,(,2)( — n) 20,(,3)( — n) 20&4)( — n)
51 5 | £7 0 1 —52 44 19292
10 | £11 1 0 —6 —502 4626
15| £3 1 0 14 —382 —382
20 | £9 1 1 34 338 —2414
717 | £8 0 1 —36 —572 21276
14 | £6 1 10 —454 —7310
21 | £10 1 38 554 4142
1111 | 45 0 1 —4 —1052 3164
1717 | £1 0 1 22 —166 —10802
1919 | +4 0 1 30 146 —6930
The prime ideals of H lying above p = 5 satisfy
P = (ps), q32$2 = (p2s)-

We compute

ordg, (a) =2(c?(=5) 14(1) + @ (=10) 7o(2) + P (=15) 14(3) + ¢ (—20) r,(4))
= 42

ordsy, (az) = ordg, ()
= 2(c?(=5) 1(1) + @ (=10) 76(2) + P (—15) r4(3) + P (—20) 7(4))
—18.

For p =7 we have

P1=(p7). PPy = (pao).

Thus, we arrive at

ordgy, (o) :2(0(2)(—7) To(1) + P (=14) 14 (2) + @ (=21) 7(3))
=36,

ordsy, (ap) =ordg, (as)
=2(c@(=7)1(1) + P (=14) 16(2) + P (=21) 174(3))
— 48

This agrees with the numerical computations (0.2).
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