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EFFICIENT WATER ALLOCATION AND WATER CONSERVATION POLICY 

MODELING IN THE ARAL SEA BASIN 

ABSTRACT 

Increasing water demand challenges policy makers to implement in-time and effective water 

management measures to mitigate both the on-going and upcoming water crisis in the Aral Sea 

basin (ASB) of Central Asia. The shrinkage of the Aral Sea due to the rapid expansion of irrigated 

agriculture along the two main rivers of the basin – the Amu Darya and Syr Darya – which 

accompanied by water overuse is at the core of the all water related problems. Various hypothetical 

“solutions”, including massive inter-basin water transfers, have been considered to ease the water 

challenge. Yet, given the enormous conveyance and water application losses in the irrigation 

system combined with ineffective coordination of the basin resources among the riparian countries 

in both the Amu and Syr Darya basins, increasing the efficiency of using internal water resources is 

more technically and financially feasible option. Furthermore, water management measures must 

address the root causes of water scarcity and ecological deterioration rather than attempting to deal 

with the consequences of the problem only. This study examines therefore three important options 

for addressing the core reasons of aggravated water (ab)use in the ASB. In the first option, sectoral 

transformations (e.g., economic restructuring) are considered by prioritizing economic activities 

with relatively high economic growth impacts and low water consumption requirements. In the 

second option, it is assessed to replace the current administrative water management institutions 

with more effective market-based water allocation institutions to encourage cooperation among 

regional water users for attaining optimal basin-wide benefits. In the third option, technological and 

infrastructural improvements are evaluated following an increased efficiency of the irrigation 

systems and building reservoirs in the upper reaches of the rivers to regulate river flow. 

Economic restructuring was analyzed by ranking all economic sectors based on their sustainable 

economic growth potentials using an environmentally extended input-output model. The forward 

and backward linkages and the total (direct and indirect) water requirements of the different 

economic activities were estimated and compared as well. The results indicated that water demand 

in the ASB can be reduced substantially by decreasing the production of the water intensive sectors 

such as agriculture in favor of  the development of less water demanding, non-agricultural sectors. 

Within the agriculture sector, crop diversifications are recommendable, e.g. by partially replacing 

rice cultivation and cotton production, which have the highest total (direct and indirect) water use 

contents of 36 m
3
/USD and 18.4 m

3
/USD respectively, with high water productive crops such as 

fruits/vegetables with total water use of 9.1 m
3
/USD. 

Potential effects of replacing the traditional administrative water allocation system with market-

based water allocation approaches were examined through an aggregated hydro-economic model. 

Substantial basin-wide economic gains is appeared feasible when the trade of water rights among 

all irrigation zones is allowed in each river basin (the Amu Darya or Syr Darya). Total benefits 

under restricted water rights trading by permitting a trade only among the regions located within 

each upstream, midstream, and downstream sub-basins (catchments) is lower than the total 

economic gains of unrestricted water rights trading but is still higher than total benefits of the 

option without trading. Depending on water availability, the amount of additional annual gains 

ranged between $373 and 476 million USD under an inter-catchment (unrestricted) water rights 

trading system whereas additional annual gains of $259–339 million USD were predicted under 

intra-catchment (restricted) water rights trading. Benefits from water rights trading increase with 

growing water scarcity. When purchase of water use rights is considered to enhance environmental 

flow into the Aral Sea while compensating reduced water withdrawals of agricultural producers, 

basin-wide economic gains are expected to be higher if water rights trading among irrigation zones 
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are allowed rather than prohibited. Moreover, the cost of purchasing water use rights for 

environmental needs is less expensive compared to an interbasin water transfer. Since the 

establishment and operation of market-based water allocation institutions comes with costs, the 

transaction costs of introducing tradable water use rights were considered in assessing the 

effectiveness of such institutional changes. An inverse relationship were found between the 

benefits of water rights trading and its transaction costs. Results showed furthermore that 

transaction costs of more than $0.05 USD per m
3 

of water use rights eliminate the potential benefits 

of a water trading option. 

Technical improvements to raise the efficiency of water use and water coordination were analyzed 

through a disaggregated hydro-economic model. Substantial benefits can be expected from 

improving irrigation (conveyance and water application) efficiencies in the ASB. Total basin-wide 

benefits can increase by 20% to 40% depending on basin-wide water availability when irrigation 

system efficiencies are optimized across the basin. The findings showed also that a construction of 

upstream reservoirs as intensely debated at present by up- and downstream countries in Central 

Asia does not considerably influence on the irrigation water availability if these reservoirs are 

operated with the objective of providing optimal basin-wide benefits. In constrast, constructing 

additional dams can boost hydropower production. Particulalry, additional hydropower produciton 

benefits are expected to be considerably higher from the construction of the Kambarata reservoir 

than those from the construction of the Rogun dam because of higher investment costs of the latter. 

Thus, the construction of dams upstream can increase national and regional energy security due to 

65-67% increase in hydropower production levels. Yet, the risks of flooding related to natural and 

political calamities and reduced downstream water availability during the period of filling the 

reservoirs should be evaluated further for a more comprehensive assessment of such infrastructural 

developments. High risks of using upstream reservoirs as a tool of geopolitical influence and 

consequent damage on downstream irrigation and environmental systems should not be forgotten 

as well. Establishing effective relationships among the riparian countries, ensuring the rule of law, 

empowering water users for decision making, raising their awareness on ecological sustainability 

and market-based management approaches, and maintaining human and technological capacities 

are also essential for finding a compromise in sharing common basin resources in the ASB. 

Keywords: Water rights trading, Transaction costs, Environmental flow, Hydro-economic model, 

irrigation technology, infrastructural development, Rogun dam, Kambarata reservoir, Sectoral 

transformation, Virtual water, Input-output analysis 
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MODELLIERUNG VON STRATEGIEN ZUR EFFIZIENTEN ALLOKATION UND 

SCHONUNG VON WASSERRESSOURCEN IM EINZUGSGEBIET DES ARALSEES 

ZUSAMMENFASSUNG 

Im Einzugsgebiet des Aralsees (ASB) stellt der steigende Wasserbedarf eine Herausforderung an 

die  Entscheidungsträger dar, zeitnah Maßnahmen  für eine effiziente Wasserbewirtschaftung 

einzuführen, um die derzeitige und zukünftige Wasserkrise in der Region zu entschärfen. Die 

schnelle Ausdehnung der bewässerten Landwirtschaft in Verbindung mit einer Über-Nutzung der 

Wasserressourcen führte zum Schrumpfen des Aralsees; zur Lösung dieses Problems wurden 

zahlreiche hypothetische Ansätze vorgeschlagen, die auch den massiven Wassertransfer aus 

anderen Einzugsgebieten einbezogen. Bedenkt man allerdings die enormen Transport- und 

Wasseraufleitungsverluste in den Bewässerungssystemen und die ineffektive Koordination in der 

Bewirtschaftung von Ressourcen aufgrund unzureichender Zusammenarbeit zwischen den Staaten 

in den Einzugsgebieten der Flüsse Amu Darya und Syr Darya, erscheint die Erhöhung der internen 

Effizienz bei der Nutzung der Wasserressourcen ein in  technischer und finanzieller Hinsicht eher 

Erfolg versprechender Ansatz. Darüber hinaus sollten diese Maßnahmen der 

Wasserbewirtschaftung auch und vor allem die wesentlichen Ursachen des Wassermangels und der 

ökologischen Probleme angehen, anstatt lediglich deren Folgen zu behandeln. 

Diese Studie untersucht drei wichtige Ansätze, um die grundlegenden Ursachen der sich 

verschärfenden Wasserbewirtschaftungsprobleme im ASB zu bearbeiten. Die erste Option ist die 

sektorale Transformation (ökonomische Neuordnung), bei der man wirtschaftliche Aktivitäten mit 

hoher Priorität versieht, die  einen relativ hohen Impuls auf das Wirtschaftswachstum ausüben und 

einen niedrigen Wasserverbrauch erfordern. Die zweite Option besteht darin, die bürokratischen 

Wassermanagement-Institutionen durch effektivere Markt-basierte Wasserallokations-Institutionen 

zu ersetzen, die die Zusammenarbeit zwischen regionalen Wassernutzern fördern, um in Bezug auf 

das gesamte Einzugsgebiet Vorteile zu erzielen. Die dritte Option beinhaltet die Verbesserung der 

Effizienz der Bewässerungssysteme und den Bau von Speichern zur Regulierung des Abflusses  an 

den Oberläufen der Flüsse.  

Die Möglichkeit der ökonomischen Restrukturierung wurde mit Hilfe eines auf die 

Umweltfaktoren ausgeweiteten Input-Output Modells analysiert, so dass im Ergebnis alle 

ökonomischen Sektoren im Hinblick auf ihren potenziellen Beitrag zu einem nachhaltigen 

Wirtschaftswachstum beurteilt und in eine Rangliste  gebracht wurden. Hierfür wurden Vorwärts- 

und Rückwärtsverknüpfungen und die gesamten (direkten und indirekten) Wasserbedarfswerte der 

verschiedenen wirtschaftlichen Aktivitäten geschätzt und miteinander verglichen. Die Ergebnisse 

zeigten, dass der Wasserbedarf im ASB reduziert werden kann, indem die Produktion 

wasserintensiver Sektoren wie Landwirtschaft verringert wird, während die Entwicklung weniger 

wasserintensiver Sektoren  außerhalb der Landwirtschaft gefördert wird. Innerhalb der 

Landwirtschaft ist eine Diversifizierung ratsam, die den Anbau von Reis und Baumwolle mit 

jeweils hohem Gesamtwasserverbrauch (direkt und indirekt) von 36 m
3
/USD bzw. 18,4 m

3
/USD 

teilweise ersetzt durch Wasser-produktivere Pflanzen, wie beispielsweise Obst/Gemüse mit einem 

Gesamtwasserverbrauch von 9,1 m
3
/USD.  

Mit einem aggregiertem hydro-ökonomischen Modell wurden potenzielle Auswirkungen 

untersucht, die mit dem Ersetzen des traditionellen administrativen Wasserallokations-System 

durch Markt-basierte Wasserallokation erzielt werden können. Bedeutende ökonomische Gewinne 

im gesamten Einzugsgebiet sind erreichbar, wenn der Handel von Wasserrechten zwischen allen 

Bewässerungszonen in jedem der Einzugsgebiete (Amu Darya oder Syr Darya) erlaubt wurde. Die 

Begrenzung des Handels von Wasserrechten auf jeweils Untereinheiten der Einzugsgebiete (oberer, 

mittlerer, unterer Teil) führte zu einem  Gesamtgewinn, der zwar geringer ausfiel als im Fall des 
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unbegrenzten Handels aber höher war als bei der Option ohne Wasserhandel. Die Ergebnisse 

zeigen ein Potential von zusätzlichen  jährlichen Gewinnen zwischen 373 bis 476 Millionen USD 

durch den Handel mit Wassernutzungsrechten im gesamten Einzugsgebieten (zwischen den 

Untereinheiten) in Abhängigkeit von der Wasserverfügbarkeit. Gleichermaßen ergeben sich 

zusätzliche Erträge von 259 bis 339 Millionen USD durch den Handel innerhalb von 

Untereinheiten desEinzugsgebietes. Die durch Wasserhandel erzielbaren Gewinne  steigen mit 

zunehmenden Wassermangel. Wenn Wasserhandel zwischen den Bewässerungszonen eingesetzt 

würde, um den ökologisch motivierten  Mindestwasserfluss zum Aralsee zu erhöhen (und 

gleichzeitig die entsprechend geringere Wasserverfügbarkeit für die Produzenten in der 

bewässerten Landwirtschaft kompensiert würde), lässt der Wasserhandel größere ökonomische 

Vorteile auf der Ebene des gesamten Einzugsgebietes erwarten als ohne die Möglichkeit des 

Wasserhandels . Zudem wären die Kosten für den ökologisch motivierten Wasserkauf  

kostengünstiger als die Überleitung von Wasser aus anderen Einzugsgebieten. Da der Aufbau und 

der Betrieb von Markt-basierten Wassermanagement-Institutionen mit Kosten verbunden sind, 

werden die Transaktionskosten für die Einführung von handelbaren Wasserrechten berücksichtigt, 

um die Effektivität der institutionellen Veränderungen zu bewerten. Die Ergebnisse weisen auf eine 

umgekehrt proportionale Beziehung zwischen den Vorzügen des Wasserrechthandels und dessen 

Transaktionskosten. Die Ergebnisse zeigen, dass Transaktionskosten von über 0.05 USD/m
3
 pro 

Einheit gehandelter Wasserhandelsrechte die potenziellen Vorteile der Wasserhandelsoption 

eliminieren würden. 

Technische Ansätze zur Verbesserungen der Effizienz der Wassernutzung und -koordination 

wurden mit einem dis-aggregierten hydro-ökonomischen Modell analysiert. Erhebliche Vorteile 

werden von der Verbesserung der Bewässerungswirkungsgrade (Bewässerungsnetz und Feldebene)  

im ASB erwartet. Aufgrund der Ergebnisse lässt sich der Gewinn im gesamten Einzugsgebiet um 

20 bis 40% steigern (in Abhängigkeit von der Wasserverfügbarkeit), wenn die 

Bewässerungswirkungsgrade im gesamten Einzugsgebiet optimiert würden. Weiterhin belegen die 

Ergebnisse, dass die Konstruktion von Speicher an den Oberläufen der Flüsse (wie derzeit intensiv 

zwischen Ober- sowie Unterliegerstaaten in Zentralasien diskutiert) die Verfügbarkeit von 

Bewässerungswasser in der Region nicht erheblich beeinträchtigt, wenn diese Speicher unter der 

Zielvorgabe optimaler Einzugsgebiets-weiter Vorteile betrieben werden. Der Bau des Kambarata-

Speichers lässt erhebliche Gewinne durch Stromerzeugung erwarten, wohingegen dies beim 

Rogun-Speicher aufgrund der hohen Investitionskosten nicht der Fall sein wird. Dennoch verstärkt 

die Konstruktion von Dämmen an den Oberläufen die nationale und regionale Energiesicherheit 

durch eine Zunahme der Energiegewinnung aus Wasserkraft um 65-67%. Jedoch sollten mögliche 

Überflutungsrisiken durch Erdbeben und politische Instabilitäten sowie die verringerte 

Wasserverfügbarkeit flussabwärts während der Periode der Füllung der Speicher weiterführend 

untersucht werden, um eine fundierte Bewertung dieser Infrastrukturmaßnahmen zu ermöglichen. 

Es sollte nicht vernachlaessigt werden, dass die hohen Risiken von Speichern in oberen Bereichen 

der Einzugsgebiete durch die Nutzung als Instrumente geopolitischer Einflussnahne und aufgrund 

von Folgen fuer unterliegende Bewaesserungsgebiete sowie Oekoststeme die Vorteile der Speicher 

bei der infratsrukturellen Entwicklung eliminieren koennen. Wirksame Beziehungen zwischen den 

Anrainerstaaten, die Sicherung der Rechtstaatlichkeit, die Stärkung der Mitwirkungsmöglichkeiten  

der Wassernutzer an Entscheidungen undihres Bewusstseins für ökologische Nachhaltigkeit sowie 

Markt-basierte Managementansätze und die Aufrechterhaltung von menschlichen und technischen 

Fähigkeiten sind ebenfalls wichtig, um einen Kompromiss zu finden bei der Aufteilung 

gemeinsamer Ressourcen im Einzugsgebiet im ASB.  

Schlüsselwörter: Wasserhandel, Transaktionskosten, Ökologischer Mindestabfluß, Hydro-

ökonomisches Modell, Bewässerungstechnologie, Infrastrukturelle Entwicklung, Rogun Damm, 

Kambarata Speicher, Sektor-Transformation, Virtuelles Wasser, Input-Output Analyse  
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1 INTRODUCTION 

1.1 The importance, availability, and management challenges of water resources 

Water is a vital and irreplaceable resource for sustaining life, development and the environment 

(Dublin Conference 1992). Aside from being a necessary resource for drinking, it is crucial for 

irrigation, industrial production, hydropower generation, water transportation and ecosystem 

functioning as well. Moreover, achieving most of the Millennium Development Goals (UN 2000) 

such as alleviating poverty, eradicating hunger and providing basic sanitation, directly depends on 

access to a sustainable water supply (von Braun et al. 2003, 2009:23).  

Despite the abundant amount of water that exists on Earth, only 3% is usable fresh water and just 

0.3% of the entire freshwater resources are readily available to humans as surface water sources 

such as rivers and lakes (Gleick 1996). Moreover, these surface water resources are not only of 

varying quality but also very unevenly distributed within and across countries, resulting in limited 

water supplies in most parts of the world. In contrast to an increasing variations in water supply due 

to the expected global warming (IPCC 2007), the demand for water resources has been rapidly 

increasing in recent decades due to population growth, urbanization, dietary changes, industrial 

development and irrigation expansion (Vörösmarty 2000, Rosegrant et al. 2002, Gleick 2003). 

Whereas the world population has tripled from 1.6 to 6 billion in the last century, the demand for 

fresh water resources has increased six-fold (UN WATER 2007). Around one-fifth of the world’s 

population currently lives in water scarce areas, and more than two-thirds will live in areas with 

physical or economic water scarcity by 2025 (UN WATER 2007). International development 

organizations frequently underline the possibility of water crisis driven by increasing pressure on 

water resources due to economic development and aggravating competition for water between the 

economic sectors (WEF 2008, 2009; WB 1995). Competition over scarce natural resources 

intensified also as a result of the dramatic rise in global food prices in 2007–08 (von Braun 2009). 

Natural ecosystems are disproportionately affected by water competition since their value is 

typically neglected in water sharing decisions, as there are often no representatives to advocate and 

lobby for environmental water needs (Ringler 2001). 

Coping with the increased threats of water scarcity and thus reducing poverty, hunger and 

malnutrition, require the development and timely implementation of measures for efficient water 

use (von Braun et al. 2003, von Braun 2008). Since irrigated agriculture consumes more than 70% 

of the water withdrawn from natural sources (WRI 2005) and average irrigation efficiency is less 

than 40% at the global level (Pimental et al. 1997), this sector has huge potential for reducing water 

use. Irrigation water management improvements are particularly essential in developing and 

transition countries, where more than 80% of the global irrigated croplands are located (FAO 2013) 

and “water is the defining line between poverty and prosperity” (Saleth and Dinar 2004:4). 

Although the problems related to water scarcity and the need for a comprehensive approach to 

water management are common in most of the river basins of the developing and transition world, 

“no single recipe for policy reform can be applied universally” (EC 2000, Ringler 2001, Pujol et 

al. 2006a). Therefore, prospective water management strategies must consider the characteristics of 

each region rather than suggesting a universal set of options. The demand of developing improved 

water resources management strategies is prominent particularly in Central Asia, which during the 

Soviet period has become, with 8 milion ha (Dukhovny and Shutter 2011), one of the largest 

irrigated areas and cotton producing zones in the world. However, following independence in 1991, 

the management strategies promoted by Moscow showed to be insufficient, inadequate and 

ineffective for a compromising solution for water distribution among individual countries and 

regions. Yet, the former mindset that guided water management during the SU epoch still prevails. 
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This study therefore considered the case of the Aral Sea basin (ASB) of Central Asia to investigate 

the potentials of socio-economic transformations, improved water management institutions, and 

technological-infrastructural improvements for increasing water use efficiency. The region is 

representative of areas of the world where the continuation of high water intensive production 

activities, lack of investments in improvement of the irrigation infrastructure and inefficient water 

management institutions are accused to be responsible for the recurrently stated unproductive use 

of resources and reduced environmental flows. 

 

1.2 Water in the Aral Sea basin: issues, research needs and purposes 

According to Smith (1995), anthropogenic environmental damages and the potential for conflicts 

over water needs among irrigated agriculture, energy production, and environmental systems, 

though not unique, are nowhere in the world more evident than in Central Asia. The tremendous 

development of irrigation in the ASB to reach the self-sufficiency of cotton production in the 

former Soviet Union (SU) resulted in economic systems that heavily relied on water resources. 

Irrigation expansion accompanied by unproductive water uses led to unprecedented environmental 

problems of which the desiccation of the Aral Sea, once the fourth largest fresh water lake in the 

world, is only the most prominent and well-known example.  

 

1.2.1 Causes and consequences of the “Aral Sea syndrome”: a revisit 

Despite increased employment rates in agriculture, typical mindset of considering water as a free 

good and thus the lack of incentives to efficient use of water was the main reason of unproductive 

water uses. The dominance of unlined earthen canals and the surface and furrow irrigation 

techniques have caused extravagant water and energy losses. In the post-independence period, the 

conflicts over sharing common water resources among the five Central Asian countries - 

Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan (Dukhovny and Schluetter 

2011) - also contributed to increased water losses. Regular investments in the operation and 

maintenance of the irrigation and water regulation infrastructure ceased shortly after independence 

due to reduced government budgets and disagreements about sharing related infrastructure. 

Administrative management approach provided insufficient incentives for efficient and sustainable 

use of water resources and cooperation among the countries of the region. Due to the enormous 

damage to the environment, social and cultural values, agricultural productivity, as well as the 

health of people in the circum-Aral region
1
 (Micklin 1988), the desiccation of the Aral Sea has 

been called one of the worst manmade environmental disasters on the planet (The Telegraph 2010, 

UN 2010). Despite arguments that these environmental damage costs are likely lower than the 

additional income from irrigation expansion as noted by some (e.g. Morozov n.d.), recent studies 

emphasized ecological sustainability of water uses and production activities in the region and thus 

popularized the occurrence and the consequences of the shrinkage as “the Aral Sea Catastrophe” 

(Micklin 1988, Micklin 2010). 

Although many studies have addressed the options for the water challenges in the ASB, the 

solutions offered are highly controversial, with each pitting one set of interests against the other. 

One ambitious plan forsaw the divertion of up to 60 km
3 

of water from other river basins such as 

the Ob and Irtysh in Siberia (Micklin 2011), or from the Indus and Ganges in Southwest Asia 

(Khamraev 1996a) not only for refilling the sea but in addition for extending the area of irrigated 

croplands further. This and other plans exceed the current combined economic potential of the five 
                                                           
1
 Territories adjacent to the Aral Sea 
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Central Asian states to bring to fruition. Alternatively, adopting efficient modern irrigation 

technologies such as drip irrigation or improving water distribution systems through measures such 

as lining canals have huge potential for increasing water use efficiency at much lower costs 

compared to the large-scale diversion of rivers into the ASB. However, according to the former 

reports of World Bank (1992), even these solutions remain financially infeasible given the 

economic conditions of the affected countries. Mainguet and Rene (2001) even proposed a return to 

some sort of nomadic lifestyle as a solution to avoid conflicts over water distribution. In contrast to 

majority of studies, Varis and Rahaman (2008) argued that there is no physical water scarcity in the 

ASB because water availability per person (4522 m
3
) in the Central Asian countries are much 

higher than in many countries with similar geomorphologic and climatic conditions. Therefore, 

these authors concluded that temporal and spatial water scarcity and environmental problems in the 

region is a consequence of ineffective institutions rather than physical limitedness of water 

resources. Varis and Rahaman (2008) suggested hence the implementation of an Integrated Water 

Resources Management (IWRM) approach to deal with water issues in the ASB but without 

offering concrete measures and action steps. For reducing the influence of the dust-borne winds, 

the forestation of the dried bed of the Aral Sea was also initiated (UNECE 2011). In contrast, some 

studies recommended addressing the root causes of the water use and environmental problems in 

the ASB rather than dealing with the consequences of the problem (Mirzaev and Valiev 2000, 

Morozov n.d.). 

It is sure that the implementation of efficient water management measures is essential to improve 

the livelihoods in the ASB. Furthermore, the measures should target a balanced use of water 

resources for both economic and environmental needs concurrently using a holistic approach to 

water management at country and basin scale. However, given the controversial background of 

water issues and their potential solutions in the ASB, before proceeding to offer any relevant 

solutions for the water problems in the ASB, it is necessary to diagnose correctly the actual 

situation of water use in the basin by investigating the following questions: 

1) What is the level of water availability in the ASB?  

2) What are the main water consuming sectors of the economy and what are their contributions 

to national welfare? 

3) What are key legal and institutional challenges in the existing water management system? 

4) What are the main economic and technical causes and consequences of the decreased water 

availability and the desiccation of the Aral Sea? 

5) What are the known solutions of dealing with water scarcity, improving water use 

efficiencies and even restoring the Aral Sea? 

6) What are the implementation costs of these water management measures? 

7) Which non-financial barriers may prevent the realization of water use reduction measures? 

Based on the geographic, socio-economic, and institutional background of the water and land use 

situation in the ASB, developing a consistent map of the relationships between water-land use, 

production, environment, and institutions, eventually revealing the root causes and consequences of 

the Aral Sea disaster and water scarcity, is one of the aims of this study. 

 

1.2.2 Options for sustainable economic restructuring 

Despite the fact that cotton fiber export is one of the main sources of hard cash revenues for 

regional governments such as Uzbekistan in Central Asia (Rudenko 2008), excessive water demand 

and even overuse is inherent to cotton production, preventing the sustainable use of this scarce 

resource. Governmental intervention in agriculture has been high, as reflected by state control over 

cotton production and state regulation of cotton prices, particularly in Uzbekistan (Rudenko 2008). 
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Comparisons of the costs and benefits of cotton production in Uzbekistan showed very low benefits 

to both farmers and governments, even losses due to low global cotton prices in some years (Müller 

2008). Low prices for raw cotton and the obligation to fulfill production mandates without regard 

to the volume of irrigation water delivered to produce cotton do not provide any incentives for 

farmers to increase the efficiency of water use. The massive scale of cotton production with its 

enormous demand for water prevents water flow for environmental needs and intensifies tensions 

over water use in the basin. 

Perhaps the prominence of cotton production in Central Asia was justifiable in consideration of the 

economic, political, and military realities of the SU in the last century, and that is why it became 

revered to as “white gold” at the level of national policy in the region. However, does a continued 

production of cotton on such a massive scale really serve the best interests of Central Asian nations 

in the twenty-first century? Considering the substantial technological and structural changes in the 

global economic system over the last five-to six decades (Baffes 2007), does it have comparative 

advantages over other alternative economic activities at the moment? Are not there alternative 

economic activities with lower water requirements and higher potential for economic benefits? 

Therefore, another aim of this study is to determine the potential of different economic sectors for 

sustainable economic growth by comparing their economic growth impacts and total (direct plus 

indirect) water use requirements. 

 

1.2.3 Market-based water allocation for efficient water use 

Competition between upstream and downstream users over water use is also a common problem in 

Central Asia, often resulting in inefficient water distribution. During water scarce years upstream 

farmers have access to sufficient water for irrigation needs, whereas downstream farmers do not 

and consequently face huge economic losses (Abdullaev et al. 2008). However, since the marginal 

productivity of water is spatially heterogeneous, even if upstream farmers have more productive 

land than downstream farmers, their combined benefit will be sub-optimal under traditional 

(administrative) or absolute rights (Harmon rule) based water allocation when water is scarce. This 

type of problem between upstream and downstream water users does also apply to the water 

distribution at basin level. Since river basin waters are common resources, selfish behavior unduly 

decreases the water availability for downstream users and concurrently results in suboptimal basin-

wide benefits. Therefore, encouraging the water users to cooperate to additionally gain and 

equitably share basin-wide economic benefits is of utmost importance for efficient water use and 

sustainability in the ASB. 

Although cooperation among all water users has been postulated as a precondition of attaining 

environmental sustainability and economic stability (Dukhovny and Schutter 2011), incentives for 

reaching such cooperation have been rarely investigated. The current practices of water distribution 

which are based on administrative (command-and-control) management principles inherited from 

the Soviet Union Era, prevent cooperation incentives and do not allow for a rapid adaptation to 

environmental and water demand changes. Establishing water markets and allowing water rights 

trading can be effective measures for enhancing cooperation and efficient water use (Howe et al. 

1986, Dinar and Wolf 1994, Rosegrant and Binswanger 1994, Dinar et al. 1998, Ringler 2001), but 

there are not yet any studies on the feasibility and potential benefits of introducing water markets in 

the ASB. With respect to this research gap, important questions therefore are: 

1) Could the introduction of a water market also enhance efficient water use in the ASB?  

2) What are opportunity costs of increased quantities of water being set aside for 

environmental needs (e.g., flows to the Aral Sea) when water rights trading is allowed?  
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3) How would transaction costs of establishing water markets influence the benefits from 

water rights trading?  

The third aim of this study therefore is to evaluate cooperation incentives of introducing tradable 

water use rights in the ASB and relevant economic and environmental benefit changes. Indeed, 

non-economic and non-environmental barriers (cultural, religious, legal, institutional, etc.) may 

prevent or at least delay the implementation of the necessary measures of improving water use 

efficiency. Thus, an attempt is made to analyze also the means of overcoming potential barriers as 

well as roles of the stakeholders that are the direct beneficiaries of the reforms and the government 

organizations during and post-reform periods for maintaining the success of these reforms. 

 

1.2.4 The effect of infrastructural improvements in irrigation and hydroelectricity generation 

Poor conditions of the irrigation infrastructure and conflicts over regulating these infrastructural 

resources have been accused of preventing an efficient use of water resources. Very low rates of 

irrigation and conveyance efficiencies across the ASB (Cai 2003a) contribute to the overall 

unproductive use of water. Frequent disputes and conflicts between up-stream and down-stream 

regions over an appropriate regime of the existing water reservoirs complicated the water scarcity 

challenge. Recent proposals by upstream countries in Central Asia such as Tajikistan and 

Kyrgyzstan to construct several new dams to store water for hydropower generation were strictly 

opposed by downstream countries such as Uzbekistan, Turkmenistan, and Kazakhstan (Dukhovny 

2011). Downstream countries suspected reduced water supply for their irrigation needs if the 

upstream regions use the water reservoirs solely for energy production. In contrast, the upstream 

countries argue that the construction of new reservoirs will increase overall water storage capacities 

and thus will be beneficial for downstream irrigation during periods of water scarcity. Despite 

many debates and controversial arguments by both parties over the results of the construction of the 

dams the impact of these projects on agricultural production and livelihoods in the downstream 

regions has not been assessed in detail.  

Regarding the infrastructural development issues, several questions should be answered to 

determine the optimal levels of technological improvements and find a compromise between the 

irrigation, energy sector, and environment. These include:   

1) What are the optimal levels of irrigation technology adoption and conveyance efficiency 

improvement in each irrigation zone throughout the ASB? 

2) What is the impact of irrigation technology improvement on agricultural revenues? 

3) How does the construction of new reservoirs for regulating river flow in upstream countries 

affect water availability in downstream? 

4) Are there mutually acceptable options that do not make any riparian region worse off if new 

reservoirs for regulating river flow are built? 

Thus, the fourth aim of the study is to determine optimal rates of infrastructural improvement and 

derive conclusions on comprisable solutions for all parties from the construction of new water 

regulation facilities in the upper reaches of the ASB rivers. 

 

1.3 Contributions 

Given the controversial study results on water availability and relevance and implementability of 

efficient water management options in the ASB, this study systematizes the causes and 

consequences of inefficient water management and ecological problems in the region at first. 
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Moreover, based on the comprehensive analysis and historical overview of water management and 

economic development issues in the ASB, the root drivers of the potential environmental, 

economic and social change are identified. Innovative water management approaches from 

economic, institutional, and technological perspective are offered to enhance water use efficiency 

that is urgently needed to maneuver the regional economy onto a sustainable development path. 

 

1.4 Hypotheses 

The three main hypotheses regarding the three key empirical questions on alternative options to the 

currently dominant cotton production, potentials of market-based water allocation, and benefits 

from infrastructural improvements are: 

1) There is much room for reduced water demand, through either partially replacing the 

currently dominant cotton sector with less water intensive crops, or expanding agro-

processing industries while reducing high water intensive agriculture, or investing in non-

agricultural sectors. 

2) Market-based water allocation can provide substantial improvements in basin-wide water 

use efficiency and considerable increase of irrigation incomes by creating incentives for 

water users to cooperate in the sharing of common resources if the necessary legal, 

institutional, and political support for water rights trading is maintained. 

3) Improvements in irrigation and conveyance efficiency would allow substantial gains in the 

ASB. Construction of new reservoirs do not cause worse offs to any riparian region in the 

basin if the reservoir regulation regimes are set considering optimal basin-wide benefits yet 

neither the risks of flooding and use of large reservoirs for geopolitical purposes should be 

forgotten.  

 

 

1.5 Methodical approaches 

The study employs a step-by-step approach to analyze each issue at hand by gradually expanding 

the scope and details of the research.  The “diagnosis of the Aral Sea syndrome” was based on both 

quantitative and qualitative descriptive analysis. Finding feasible solutions, e.g., the “surgery” of 

the problem, was based on three analytical tools that are implemented step-by-step while expanding 

the scope and depth of the research in each step. Either sectoral, or regional, or seasonal aspect of 

water management is emphasized in any investigation step. Thus, at a first step of the empirical 

analysis sectoral aspects of water use was addressed by comparing water use requirements and 

economic importance of the production sectors. This analysis was based on Environmentally 

Extended Input-Output Model and was completed only for Uzbekistan. Uzbekistan, accounting for 

more than half of the population and the same amount of the irrigated croplands in the ASB, is 

representative of the remaining countries in the basin. 

At the second step, special attention was paid to regional aspects of water management. Thus, this 

analysis considered the entire ASB and also administrative regions instead of countries. Since 

irrigated agriculture requires more than 90% of all water resources in the basin (UNDP 2007), the 

water use by the remaining sectors was considered as fixed and only options for water allocation 

among the agricultural demand sites were analyzed. Aggregated irrigation benefit functions by 

different agricultural demand sites were combined with river node model to develop an aggregated 

hydro-economic model. 
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In the third step, a focus was on the analysis of the seasonal aspects of water management and 

seasonal scarcities. Thus, water use and flows were considered by months instead of ayear while 

filling the gaps at the previous two steps. The consideration of monthly water uses and flows 

allows for analyzing seasonal water scarcity and marginal value of water uses by seasons. It is 

essential since seasonal water scarcity is a serious threat to the yields in addition to annual scarcity, 

particularly in downstream regions like Khorezm, as was noted earlier (Müller 2008). Moreover, 

water reservoir regimes, hydropower generation and trade-offs between agricultural and energy 

sectors can be analyzed only considering monthly water flows in the model. The regional 

dimension during the third step is the same as the dimension at the second step. The agricultural 

sector was further disaggregated into detailed crop production activities. Disaggregated hydro-

economic model including the components related to water-crop yield relationships, groundwater 

balance, irrigation technologies, drainage water re-use, reservoir regulation, and electricity 

production was developed to analyze the impact of the infrastructural improvements on water 

availability and irrigation revenues. 

 

1.6 The structure of the thesis 

The organization of the remainder of the thesis is as follows: Chapter 2 includes a description of 

the study area, including the main geographic and demographic features and the socio-economic 

and environmental issues in the ASB (Table 1.1). The role of water and agriculture in regional 

livelihoods are discussed along with the structure of the economy and water use. Furthermore, the 

root causes and consequences of the Aral Sea desiccation are clarified, since it is strongly 

connected to many other water use problems in the basin. Potential solutions that have been 

suggested for restoring the Aral Sea and their costs are analyzed based on the findings of previous 

studies. In addition, historical aspects of water management institutions that led to the desiccation 

of the Aral Sea and prevented the implementation of restorative processes are presented. The main 

conclusion of Chapter 2 is that there is a great need for the rapid and timely implementation of 

economic transformation (restructuring) measures, for cooperation to increase the efficiency of the 

use of basin resources through improved water allocation institutions, and for technological and 

infrastructural developments in irrigation system. Therefore, a combined analysis of all three 

options was expected to be an appropriate way of dealing with the root causes of desiccation and 

enhancing the improvements of water use efficiency and environmental conditions in the ASB. 

Chapters 3-5 include the main analytical discussions derived from the need to deal with the root 

causes of water issues in the ASB. Chapter 3 includes an evaluation of the sustainable economic 

development potential of different sectors as alternatives to cotton production. Chapter 4 highlights 

cooperation incentives among the riparian regions to gain additional income and to improve water 

use efficiency through tradable water use rights. Chapters 3 and 4 begins with a literature review on 

modeling sectoral transformation and water allocation in the ASB respectively, while pointing out 

research needs. Chapter 5 is a continuation of Chapter 4, but considers a more detailed analysis of 

water uses and crop production systems. Therefore, the focus is on opportunities for technical 

improvement of conveyance and irrigation systems and the effect of the constructing new water 

regulation facilities in the ASB.  

According to the results, agricultural sub-sectors such as the production of melons, other fruits, 

vegetables, and livestock have higher economic growth impact and lower water use requirements. 

Agricultural processing industries are even more favorable than other agricultural sub-sectors in 

terms of economic development impact and water use intensity. In terms of these two criteria, non-

agricultural processing industries are even better than processing industries. Additional indicators 

such as water quality, investment availability, and institutional settings are expected to be part of 
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more comprehensive analysis of determining the key sectors for sustainable growth. In contrast to 

the general belief that the impediment to necessary economic restructuring is related to the role of 

cotton in the economy, it is shown that improving human and technological capacity are primary 

factors for the success of the necessary structural changes. 

In addition to the potential benefits from economic restructuring and consequent inter-sectoral 

water reallocations, inter-regional water reallocations through tradable water use rights can also 

provide substantial economic gains in the ASB. Cooperation among the regions of the basin 

through the establishment of tradable water use rights would serve as a key for more efficient and 

sustainable water use in the ASB. Water markets were analyzed only for the agricultural sector, 

since this sector consumes approximately 90% of the total water demand in the basin, and because 

industrial and municipal water use have higher priority than irrigation. It is shown that lower 

transaction costs of water rights trading should be maintained by improving technical 

infrastructure, improving the existing legal framework, and establishing productive relationships 

among the basin countries for effective performance of these institutional changes. Furthermore, 

the success of institutional changes permitting water rights trading necessitates concurrent changes 

in the traditional mindsets, which may require time to achieve. 

Substantial benefits are also found from increasing irrigation and conveyance efficiencies 

throughout the ASB. Wide-scale technological developments in the irrigation system can be 

enhanced by maintaining incentives for producers and securing land use rights. According to the 

results, the construction of new dams does not have considerable impact on downstream water 

availability if the regulation of all reservoirs follows the rule of optimizing benefits for all water 

users in the basin. Benefits of electricity generation largely depend on the investment costs of 

constructing new reservoirs for regulating river flow. Reservoir constructions most likely lead to 

substantial improvements of national and regional energy securities when assuming riparian states 

cooperate to gain the highest basin-wide benefits. However, high risks of dams’ destruction 

because of their location in highly seismic zones and the possibility of using them as a tool for 

geopolitical influence eliminate the estimated benefits. 

Chapter 6 includes a summary of the study and general conclusions. The major conclusions of this 

study are that water use efficiency can be substantially improved and that environmental damages 

from the desiccation of the Aral Sea can be effectively reduced through economic transformation, 

water rights trading, and technological-infrastructural improvements. However, these changes also 

require the participation of stakeholders in decision making, governmental involvement in legal 

and human capacity development, and transparency. 
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2 GEOGRAPHIC BACKGROUND, SOCIO-ECONOMIC CONDITIONS 

AND WATER MANAGEMENT PROBLEMS IN THE ARAL SEA BASIN 

2.1 Introduction 

The ASB is characterized by a diversity of natural landscapes including mountains, valleys, deserts, 

lakes, and rivers. An arid and continental climate in the lowlands of the basin necessitates irrigation 

for agricultural production during the growing season. Historically, a nomadic way of life was 

common in the desert zones of Central Asia, whereas irrigated agriculture and related rural 

settlements emerged over the centuries on the banks of the Amu Darya (Oxus) and Syr Darya 

(Yaksart)
1
, the two main rivers in the basin. The dominance of rural lifestyles has been culturally 

retained to the present and the majority of the population lives in rural areas and derives their 

livelihoods from agricultural activities, primarily producing cotton, wheat, rice, fruit, and 

vegetables. Agriculture plays a key role in the regional economy with substantial contributions to 

incomes and employment in the countries of the region. 

Because of the heavy dependence of a majority of the population on irrigated agriculture, 

livelihoods, particularly in downstream areas, are vulnerable to the variability of the water supply 

at the river nodes (Cai et al. 2003b), which is influenced by climate, geographic location and 

conditions as well as the socio-institutional environment. Meanwhile increasing demand for water 

by irrigation, hydroelectric power production, residential use, industry, and environmental needs 

across the basin fuels the tensions over limited water resources. The tremendous expansion of 

irrigated agriculture beginning in the 1960s due to the cotton self-sufficiency policies of the Soviet 

Union is one of the main causes of the severe ecological problems such as the drastic shrinkage of 

one of the world’s biggest lakes, the Aral Sea. Moreover, due to the uneven distribution of water 

resources across the basin, the emergence of new independent states in the territory of the basin 

after the collapse of the SU in the 1990s led to intensified interstate water conflicts and worsened 

economic and environmental conditions.  

Following the metaphor by Sachs (2005:74) comparing empirical economic analysis to medical 

diagnosis and prescription, this chapter includes a diagnosis of “the Aral Sea syndrome.” Thus, the 

chapter provides a detailed description of geographical, climatic and demographic conditions, and 

the socio-economic and hydro-infrastructural development processes and institutional changes in 

the ASB, while concurrently overviewing the past, present, and future water management issues in 

the region and determining the root causes of the Aral Sea desiccation and evaluating the 

investment costs of potential solutions.  

 

2.2 Geographic outline 

2.2.1 Location 

The ASB coincides with most of Central Asia (Figure 2.1). The basin includes the entire territories 

of Tajikistan and Uzbekistan, the majority of Turkmenistan (excluding the Balkan region), two-

thirds of Kyrgyzstan (the Osh, Jalalabad, and Naryn regions), the southern part of Kazakhstan (the 

South Kazakhstan and Kyzylorda regions), parts of northern Afghanistan and northeastern Iran 

(Figure 2.2, Table 2.1). The territory of the basin lies between 56
o
 and 78

o
 eastern longitude and 

between 33
o 
and 52

o
 northern latitude over an area of 1.55 million km

2
. 

                                                           
1
 Oxus and Yaksart are ancient names for the Amu Darya and Syr Darya used by the classical Greek geographers (such 

as Herodotus) 



 

29 
 

The western and central parts of the basin are desert plains, called Kyzylkum in the north and 

Karakum in the south; the eastern part of the basin is covered by mountain ranges. Occupying 

about 20% of the ASB, mountainous zones generate about 90% of the total water supply that flow 

towards the Aral Sea through the Amu Darya and Syr Darya Rivers (SANIIRI 2004). Irrigated 

areas and the main population settlements are located along these two rivers (Figure 2.2). Irrigated 

agriculture has been practiced in the basin since ancient times (Tolstov 2005). Small-scale irrigated 

agriculture in the western parts of the ASB (in the Kopet-Dag) dates back to 5000 DC and larger 

irrigation schemes were initiated in different parts of the basin since 2000 DC (Sala 2003; 

Dukhovny and Schutter 2011:25). 

 

Figure 2.1 Geographic location of the Aral Sea basin 

 

Note: the parts of northern Afghanistan and northeastern Iran are not shown 

Source: Based on maps from SIC-ICWC (2012) 

 

 

Table 2.1 Aral Sea basin area distribution 

Country 
Area, 

km2 

Country’s share of the 

total basin area (%) 

Basin’s share of the 

total country area (%) 

Water supply 

(km3) 

Country’s share of 

total ASB water 

supply (%) 

Kazakhstan* 344400 22% 13% 2.4 2% 

Kyrgyzstan* 124900 8% 62% 29.2 25% 

Tajikistan 143100 9% 100% 56.7 49% 

Turkmenistan* 348830 31% 71% 1.5 1% 

Uzbekistan 448840 28% 100% 11.2 10% 

Afghanistan and Iran* 36000 2% 6% 14.5 12% 

Total 1585340 100% 34% 116.5 100% 

 

* Only provinces within the Aral Sea basin are included. 

Note: since the shares of China and Pakistan in total area of the Aral Sea basin are negligible these areas are not 

included in the table  

Source: Based on Sokolov and Dukhony (2002) and UNEP (2005). 
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Figure 2.2 Map of the Aral Sea basin 

  

Source: PA Consortium Group and PA Consulting (2002) 
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2.2.2 Climate 

Owing to the isolated location of Central Asia within the Eurasian continent and its remoteness 

from the world’s oceans, the ASB has a distinctly continental climate (UNEP 2005). Seasonal and 

daily temperatures in the basin are highly variable, with high solar radiation and relatively low 

humidity. An average temperature in the basin in July is 26  C in the north and 30  C in the south, 

with a maximum of 45  to 50  C (SANIIRI 2004). In January, the average temperature varies 

between 0  C in the south and –8  C in the north with a minimum of –38  C. Annual precipitation is 

1,500–2,500 mm at the glacial belt of Tien Shan and Pamir in eastern parts of the basin, 500–600 

mm at the foothills, and 80–200 mm in the lowlands in the west (UNEP 2005:20). Annual 

precipitation is less than 200 mm in about 40% of Central Asia, 200–300 mm in 30%, and 300–400 

mm in almost 20% (de Pauw 2007). Precipitation mainly occurs during winter and spring, outside 

of the annual growing season. The rate of evapotranspiration is greater than precipitation during the 

summer in most parts of the basin making crop cultivation possible reliant on irrigation. In contrast 

to the global significance of rain fed areas, accounting for over 80% of the world’s total crop lands 

and contributing to 60–70% of the annual global food production (Falkenmark and Rockström 

2004:67), the share of “green water use” (e.g., direct use of precipitation by crops) in the ASB is 

low. For instance, the share of “green water use” in cotton and rice production is less than 7% in 

Tajikistan, less than 4% in Turkmenistan, and less than 6% in Uzbekistan (Aldaya et al. 2010). 

 

2.2.3 Water resources availability and distribution  

Two main rivers—the Amu Darya and Syr Darya—are the lifelines of the economies of the ASB 

countries, where irrigated agriculture plays a pivotal role in providing food security, hard cash 

revenue, and employment opportunities. The Amu Darya is the largest river in Central Asia with a 

catchment area of 309,000 km
2
. The length of the river is 2,574 km from the headwaters of the 

Pyanj River on the Afghan-Tajik border to the Aral Sea. The Syr Darya is the second largest river 

with an overall catchment area of the 219,000 km
2
. The river stretches approximately 2,337 km 

from the Naryn River headwaters in Kyrgyzstan to the Aral Sea, sequentially crossing the Ferghana 

Valley, the Hunger Steppe and the Kyzylkum desert (SANIIRI 2004). These rivers are mainly fed 

by snowmelt and glaciers. Therefore, water discharges are maximal in summer and minimal in 

winter, creating favorable conditions for the use of river flow for irrigation needs. The estimated 

combined annual flow of the two rivers averages 110 km
3
, of which 73 km

3 
comes from the Amu 

Darya and 37 km
3 

from the Syr Darya (Figure 2.3 and Figure 2.4). 

 

Figure 2.3 Annual amount (a) and distribution function (b) of the Amu Darya flow 

   

(a)        (b) 

Source: Based on Dukhovny et al. (2008) 
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Figure 2.4 Annual amount (a) and distribution function (b) of the Syr Darya flow 

   

   (a)       (b) 

Source: Based on Dukhovny et al. (2008) 

 

Annual flow variation is high for both rivers, increasing risks for water intensive irrigated 

agricultural production, industrial development, and daily drinking water supplies, primarily in 

downstream regions if the regulation of the rivers is not properly coordinated (Dukhovny and 

Schutter 2011). Many water reservoirs and dams were constructed
1
 in the mountainous zones of 

upstream countries—Tajikistan and Kyrgyzstan—during the Soviet period in order to distribute 

water flows more evenly within the ASB over years and seasons, and thus provide stable water 

supply for irrigating croplands, especially in midstream and downstream areas. However, after 

independence of the five Central Asian countries reservoir operations have prioritized energy 

production rather than downstream irrigation needs. Although average annual water resources are 

generally sufficient to meet the non-environmental needs of ASB countries, uneven distribution of 

water resources across the basin in space and time has created serious conflicts among the riparian 

states over common water resources following the dissolution of the SU. Indeed, conflicts over 

water sharing among the countries of the region existed before 1990s, but the unified coordination 

and inter-country ‘water use-energy compensation’ schemes restricted their intensification. 

Almost 90% of the basin water resources are formed in the mountains within the territories of 

Kyrgyzstan and Tajikistan, whereas 10% comes from Uzbekistan, and 1% each come from 

Kazakhstan and Turkmenistan (Figure 2.5). However, the availability of labor and arable land 

resources, and the favorable soil and climatic conditions in the midstream and downstream river 

areas have led to the development of irrigated agriculture principally in the downstream territories 

of Uzbekistan and Turkmenistan (Wegerich 2010). As a result more than 50% of the total water 

withdrawals in the basin was allocated to Uzbekistan during the Soviet period and more than 20% 

to Turkmenistan.  

In the aftermath of independence, upstream water-rich countries retained greater water use since 

vast amounts of water are formed within their territories. In contrast, downstream countries have 

emphasized the need for water allocation in the basin according to population size or irrigated area 

(UNEP 2005). Controversial opinions on water sharing were also reflected in the survey of national 

water experts (Valentini et al. 2004:100). Experts from Kyrgyzstan and Tajikistan have contrasting 

opinions to their counterparts from the remaining Central Asian countries, believing that historical 

water distribution schemes should be abandoned and that the countries should have greater rights to 

freely use water resources that originate in their territory. Concurrently, the majority of the experts 
                                                           
1
 Total storage capacity of the reservoirs increased from 4 km

3
 to 76 km

3
 during the period between 1950 to 1990 with 

a dramatic shift from 17 km
3
 to 56 km

3 
in the late 1970s  (Dukhovny and Schutter 2011:174)  
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from Kazakhstan and Uzbekistan have indicated that such an approach is unacceptable (Valentini et 

al. 2004:100). They claimed that water should be managed as a common resource and distribution 

decisions should take into account the interests of all riparian states. 

 

Figure 2.5 Distribution of runoff, water use, land, and population in the Aral Sea basin 

 

Note: Northern parts of Afghanistan and Iran were not included 

Source: Based on McKinney (2004) 

 

Resource-poor but water-rich Kyrgyzstan and Tajikistan attempt to reserve water during the 

summer time to release it for generating hydroelectric power to meet increased energy demands for 

heating during the winter (UNDP RBEC 2005). However, water-dependent but resource-rich 

countries such as Uzbekistan, Kazakhstan, and Turkmenistan have a peak water demand for 

irrigation during the summer. As a result of water release from the upstream reservoirs during the 

winters, less water is available for irrigation during summer seasons and flooding is frequent in the 

winter, eroding irrigated lands and damaging irrigation infrastructure in the downstream areas
1
 

(Dukhovny and Schutter 2011:290). Moreover, all countries in the region except Kazakhstan have 

planned to increase the areas of irrigated lands. The “use it or lose it” management approach 

resulting from the failure to arrive at mutually beneficial coordination over water distribution has 

caused a “tragedy of commons” situation (Hardin 1968). Upper-reach regions have access to 

abundant water but not lower-reach regions (Figure 2.6 and Figure 2.7). According to the 

observations of water consumption between 1980 to 2008, the gap between water use levels in 

upper-, middle-, and lower reaches of the basin rivers widened. High variation in water use levels 

among different river zones was more pronounced after 1990, which led to inefficient water 

allocation. Inefficient water distribution is very common, particularly in the Amu Darya basin 

during dry years. In 2000, 2001, and 2008, when overall water supply dramatically decreased, 

upstream regions were only slightly affected, while the downstream regions took the main brunt of 

the drought. It has been previously reported that water abundance (the ratio of total water 

withdrawal to the total required water) was 90% in upstream regions of Tajikistan but only 40% 

and 45% in downstream regions—Dashauz (Turkmenistan) and Karakalpakstan (Uzbekistan)—

respectively (Dukhovny and Schutter 2011:277). Thus, there is an indispensable need for improved 

water management institutions to provide more efficient and equitable water sharing in the basin. 

                                                           
1 A detailed discussion of this topic is provided in section 2.6.1. 
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Figure 2.6 Water withdrawals in upstream, midstream, and downstream reaches and water 

availability during the growing season in the Amu Darya basin, 1980–2008 

 

Source: Data on water availability (river runoff) is from Dukhovny et al. (2008); Water supply (source) for 2008 was 

extrapolated based on Dukhovny et al. (2008) and water flow observations at Kerki station (UzHydromet 2009); water 

withdrawals in upstream (the regions of Tajikistan), midstream (Kashkadarya region of Uzbekistan), and downstream 

(AO Karakalpakstan) are based on SIC-ICWC (2009) and  SIC-ICWC (2011) 

 

Figure 2.7 Water withdrawals in upstream, midstream, and downstream reaches and water 

availability during the growing season in the Syr Darya basin, 1980–2008 

 

Source: Data on water availability (river runoff) is from Dukhovny et al. (2008); Water supply (source) for 2008 was 

based on Dukhovny et al. (2008) and water flow observations at Kal station (UzHydromet 2009); water withdrawals in 

upstream (the regions of Kyrgyzstan), midstream (Jizzakh region of Uzbekistan), and downstream (Kyzylorda region 

of Kazakhstan (1980-1990) Kyzylkum canal (1991-2006) are based on SIC-ICWC (2009) and  SIC-ICWC (2011) 
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2.3 Socio-economic situation 

2.3.1 Key socio-economic indicators 

As part of the former SU the Central Asian countries were governed under a command-and-control 

system for more than 70 years before obtaining their independencies in 1991. Currently, a wide 

range of socio-economic and political reforms is under way with the intention of transforming the 

regional economies to market-based systems and establish civil society norms. Present socio-

economic development levels in Central Asian countries are moderate, as evidenced by the fact that 

their ranks among 169 countries in terms of the Human Development Index (HDI) vary between 66 

(Kazakhstan) to112 (Tajikistan) (Table 2.2). Kazakhstan and Turkmenistan are the richest countries 

in the region in terms of per capita income, presented here as per capita Gross Domestic Product 

(GDP). Hard cash revenues from oil and gas exports play a key role in the wealth of these two 

nations. However, this income is unevenly distributed among their respective populations, as 

shown by high Gini index values (41) and poverty rates (as of 1998 about 30% of population lives 

below national poverty line) for Turkmenistan though the conditions in Kazakhstan are better. 

Analysis based on the survey of more than 7500 households across Kazakhstan also indicated that 

most of the high-income households are located in two urban centers and areas of resource 

extraction while poverty is common in the rest of the country (O’Hara and Gentile 2009).   

 

Table 2.2 Main socio-economic development indicators of Central Asian countries 

Socio-economic development indicators Year 
Countries 

KAZ KGZ TAJ TRM UZB 

Human Development Index (HDI)                     2010 0.71 0.60 0.58 0.67 0.62 

HDI rank among 169 countries of the world  2010 66 109 112 87 102 

GDP per capita (USD)  2008 8,513 958 751 3,039 1,023 

Consumer price index (%) 2000–2008 8.3 6.1 13.0 8.8
a 

16.1
a 

Life expectancy at birth (years) 2010 65 68 67 65 68 

Income Gini coefficient 2000-2010 31 34 34 41 37 

Population living below national poverty line (%) 2000–2008 15.4 43.1 53.5 29.9
b 

27.2 

Remittance inflows (% of GDP) 2007 0.1
 c
 24.4

 c
 49.6

 c
 3.2

d 
14

e 

Population without access to safe water services (%) 2008 5 10 30 n.a. 13 

Population without access to improved sanitation 

services (%) 
2008 3 7 6 2 0 

Population affected by natural disasters (per million 

people) 
2000–2009 571 518 100,709 0 2,431 

Population living on degraded land (%) 2010 24 10 10 11 27 

Employment to population ratio (% of population 

aged 15–64) 
2008 64 58 55 58 58 

Adult literacy rate (% of population aged over 15) 2005–2008 99.7 99.3 99.7 99.5 99.3 

Decentralization index
f
 (1-4) 2008 2.3 2.3 2.3 1.7 1.85 

Notes: KAZ- Kazakhstan, KGZ-Kyrgyzstan, TAJ-Tajikistan, TRM-Turkmenistan, UZB-Uzbekistan, AFG-

Afghanistan, n.a. – not available. 

Sources: UNDP (2012) unless otherwise shown; 
a
-IMF (2012); 

b
 –ADB (2012) as of 1998;

 c
 –UNDP (2012); 

d
-author's 

estimates based on CER (2010); 
e
-CER (2010); 

f
-UNDP (2008) 

 

The poorest countries in the basin are Kyrgyzstan and Tajikistan, where the shares of population 

under poverty are 43.1% and 53.5% respectively (Table 2.2). The incomes of the majority of the 
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population in these two countries are also highly dependent on remittances (equivalent to a quarter 

of the GDP in the former and a half of the GDP in the latter) from immigrant workers who are 

usually employed in low-skilled jobs in Russia or Kazakhstan. The poverty of the majority of the 

population does not allow improved access to water services despite abundant water availability in 

Tajikistan. Environmental poverty, meaning living in unhealthy environmental conditions is also a 

serious problem. About 10% of the population was affected by natural disasters in Tajikistan 

during the period between 2000 and 2009. Due to decreased water quality and soil salinization, 

about one fourth of populations in Kazakhstan and Uzbekistan must live on degraded lands. 

Poverty is substantially influenced by low employment opportunities in domestic job markets. 

Though unemployment rates are very low according to official statistics, the employed share of the 

population aged 15–64 is only about 60% in Central Asian countries. The poorest country, 

Tajikistan (53.5% of population lives under poverty), has the lowest employment rates (55%), 

while the richest country, Kazakhstan (15.5% of population lives under poverty whereas GDP per 

capita is about $8,500 USD), has the highest employment rates (64%). Despite low employment 

rates, income inequality, poverty, high reliance on external remittances, and limited capacity to 

cope with environmental problems, education level is high in all Central Asian countries and  more 

than 99% of population is literate. Considering the abundance of natural resources in the region 

(ADB 2010), the high literacy rate provides hope for gradual economic development and more 

equal income distribution through thorough coordination of human, capital, and natural resource 

allocation. To maintain the success of economic development reforms, the empowerment of 

ordinary people for decision making is of utmost importance since all spheres of the economy and 

society is overcentralized as evidenced by low decentralization indexes (UNDP 2008, OECD 

2011). Active participation of all members of society in planning, monitoring and evaluating public 

policy reforms is crucial for steady progress, which is facilitated in a decentralized system (von 

Braun and Grote 2002). 

 

2.3.2 Population growth and employment 

Population growth creating an increasing burden on natural resources is one of the main reasons for 

increased poverty and intensified conflicts over resources. High rates of population growth during 

the pre-independence period in all Central Asian countries resulted in an overall population of 

about 34 million in the ASB in 1990. Uzbekistan had the largest population at 20.4 million at that 

time, which increased to about 28 million by 2009 (Table 2.3). At present, the overall population 

living in the basin is over 46 million, of which more than 60% lives in Uzbekistan, and about 16% 

and 11% in Tajikistan and Turkmenistan respectively. The remaining 12% lives in southern 

Kazakhstan and Kyrgyzstan. The highest population growth rates were in Tajikistan (1.82% per 

annum over the last 10 years) and Turkmenistan (an average of 1.76% per annum). The economic 

crisis during the post-Soviet era increased emigration from Central Asian countries, particularly 

from Kazakhstan. However, after the recovery of the economy in Kazakhstan due to increased oil 

production, shifts in global oil prices and increased grain harvests beginning in 2000, population 

growth rates have stabilized at 1–2%. 

Rural lifestyles are common throughout the ASB as evidenced by the fact that about 64% of the 

population lives in rural areas (Table 2.4). The average domestic shares of rural populations in the 

ASB regions of Kazakhstan and Kyrgyzstan were about 55% and 73% respectively, with slightly 

increasing trends during the period between 1990 and 2009. However, since the birth rates in rural 

areas were higher than in urban areas, substantial shifts in the share of rural populations from 

68.3% in 1990 to 78.7% in 2009 occurred in Tajikistan. Similar demographic changes were also 

observed in Uzbekistan, where the rural share of the population increased from 59.9% in 1990 to 
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63.3% in 2009. Although urbanization increased as evidenced by reduction in the rural population 

share in Turkmenistan from 54.9% to 51.4% over the same period, the rural share is still high. 

 

Table 2.3 Population in the Aral Sea basin, 1990–2009 (in millions) 

Country 1990 1995 2000 2005 2006 2007 2008 2009 
Population share 

of ASB total
 

Average growth 

(1991–2009) 

Kazakhstan* 2.5 2.5 2.7 2.8 2.9 2.9 3.0 3.1 6.7% 1.05 

Kyrgyzstan* 2.0 2.2 2.3 2.4 2.5 2.5 2. 6 2.6 5.8% 1.23 

Tajikistan 5.3 5.7 6.2 6.9 7.0 7.1 7.3 7.5 15.6% 1.82 

Turkmenistan 3.7 4.2 4.5 4.8 4.9 5.0 5.0 5.1 11.1% 1.76 

Uzbekistan 20.4 22.7 24.7 26.2 26.5 26.9 27.3 27.8 60.7% 1.64 

ASB 33.9 37.4 40.3 43.1 43.8 44.5 45.2 46.0 100% 1.62 

*Only provinces within the Aral Sea basin are included 

Source: Data for Kazakhstan and Kyrgyzstan 1990–2000 is from SIC-ICWC (2011); Data for Tajikistan, 

Turkmenistan, Uzbekistan 1990–2009 is from ADB (2011); Data for Kazakhstan and Kyrgyzstan 2001–2009 was 

estimated based on SIC-ICWC (2011) and ADB (2011) 

 

Table 2.4 The rural shares (%s) of national populations in the Aral Sea basin, 1990–2009 

Country 1990 1995 2000 2005 2009 

Kazakhstan* 54.1 53.3 55.5 55.3 55.5 

Kyrgyzstan* 72.4 72.7 73.3 73.2 73.3 

Tajikistan 68.3 71.1 73.5 73.6 73.7 

Turkmenistan 54.9 54.7 54.2 52.7 51.4 

Uzbekistan 59.9 61.6 62.7 63.3 63.3 

ASB 61.0 62.4 63.5 63.8 63.7 

*Only provinces within the Aral Sea basin are included 

Source: Data for Tajikistan, Turkmenistan, and Uzbekistan is from ADB (2011); Data for Kazakhstan and Kyrgyzstan 

was estimated based on Dukhovny and Sokolov (2000), SANIIRI (2004), and ADB (2011). 

 

Most of the rural population in the ASB is engaged in the agricultural sector (Table 2.5). In 1995, 

44% of all labor resources were engaged in agriculture in the ASB, reaching almost 60% in 

Kyrgyzstan and Tajikistan. Between 1995 and 2008 employment in agriculture rose from 59% to 

66% in Tajikistan, from 45% to 53% in Turkmenistan, and from 29% to 40% in southern 

Kazakhstan. Reduced mechanization of agricultural production may have increased manual labor 

activities such as cotton and wheat harvesting. Although the share of agricultural employees 

decreased from 60% to 45% in the ASB provinces of Kyrgyzstan, and from 41% to 24% in 

Uzbekistan between 1995 and 2008 due to denationalization and privatization policy reforms, these 

shares are still high considering that engagement in agriculture is typically less than 5% in 

developed countries (World Bank 2008). Dominance of the rural population and high employment 

rates in the agricultural sector make livelihoods highly dependent on irrigated agriculture, which is 

very vulnerable to changes in river flows and prices for energy required for pumping. 
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Table 2.5 Employment in agriculture in the Aral Sea basin  

 
1990 1995 2000 2005 2006 2007 2008 

 Employment in agriculture (millions) 

Kazakhstan* 0.3 0.3 0.4 0.5 0.5 0.5 0.5 

Kyrgyzstan* 0.4 0.5 0.6 0.5 0.5 0.5 0.5 

Tajikistan 0.8 1.1 1.1 1.4 1.4 1.4 1.3 

Turkmenistan 0.6 0.8 0.9 1.3 1.3 1.3 1.4 

Uzbekistan 3.1 3.5 3.1 3.0 2.9 2.7 2.6 

Total Aral Sea basin 5.2 6.2 6.2 6.7 6.6 6.6 6.3 

 Share of the agricultural sector of total employment (%) 

Kazakhstan* 26 29 41 41 41 42 40 

Kyrgyzstan* 44 60 66 52 50 48 45 

Tajikistan 46 59 65 67 67 67 66 

Turkmenistan 42 45 48 53 53 53 53 

Uzbekistan 39 41 34 29 27 25 24 

Total Aral Sea basin 40 44 42 40 38 37 35 

*Only provinces within the Aral Sea basin are included 

Source: Most data is from ADB (2011) unless otherwise mentioned. The data from the ASB area of Kazakhstan for 

2003–2007 is from KazStat (2011); the data for the other years was estimated using ADB (2011) data at the national 

level. Kyrgyzstan ASB area data for 1995–1998 is from KyrStat (2011); data from the other years was estimated using 

ADB (2011) at the national level. 

 

2.3.3 Economic structure and performance 

Being a main employer for the majority of population, the contribution of irrigated agriculture to 

the overall income generation and rural livelihoods is also substantial (Figure 2.8). However, the 

agricultural share of GDP is decreasing in Kazakhstan, Turkmenistan, and Uzbekistan due to 

industrialization and privatization processes, and the increasing role of the services sector in the 

aftermath of independence. For instance, between 1995 and 2008, the agricultural share of the total 

GDP declined from 21% to 11% in Kazakhstan, from 36% to 25% in Tajikistan, and from 32% to 

26% in Uzbekistan. Decreased prices for agricultural commodities in the international market and 

liberalized prices for industrial commodities in national markets have also reduced the share of the 

agriculture in GDP (Dukhovny and Schutter 2011:234). In Turkmenistan, the share of agriculture 

in the GDP decreased from 26% to 22% between 1998 and 2006, and dropped to 12% in 2008. 

This sudden reduction in agricultural share of GDP and production can be explained by decreased 

water runoff of the Amu Darya River, which is main supplier of water to most irrigation zones and 

downstream settlements of Turkmenistan. In contrast, despite Kyrgyzstan’s rapid privatization and 

liberalization reforms, the share of its agricultural sector increased from 37% to 50%, while the 

share of industry in its GDP decreased from 33% to 12% between 1995 and 2008. The decline in 

industrial output was caused by decreased capacity in most sectors (except gold mining) due to 

reduced raw materials supply, increased prices for imported energy commodities, and the shrinkage 

of consumer’s market after the breakdown of the SU (LC 2012). 

 

 

 

http://www.adb.org/
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Note: GDP95—Gross Domestic Product at factor prices (at fixed prices of 1995), AGR—Agriculture, IND—Industry, 

CNS—Construction, TRD—Trade, TRC—Transport and communications, OTS—Other services. 

Source: Most data is from ADB (2011) unless otherwise mentioned. The Kazakhstan (Kyzyl-Orda and Southern-

Kazakhstan provinces) data for 2002–2006 was from KazStat (2008). Data for 1995–2001 and 2007–2008 was 

estimated using ADB (2011). GRP of Kyrgyz provinces (Jalalabad, Osh, and Naryn provinces) for 2005–2008 came 

from KyrStat (2011), the sectoral shares for 2000–2008 from UNDP (2010); and other data was estimated based on 

ADB (2011). The data for Turkmenistan 2008 is from WB (2011). 

 

Although at first sight the dynamic increase in the share of industry within the overall economies of 

Kazakhstan and Uzbekistan during the last decade seems to be a promising achievement towards 

economic prosperity, these changes mainly occurred due to increased volumes of oil and gas 

extraction rather than the development of processing industries with high value added. Exporting 

non-renewable natural resources is not sustainable in the long-run unless the exporting revenues are 

invested in technological, infrastructural and social welfare improvements since this activity leaves 

less resources for the economic development in future (Ostrom et al. 1993, Thomas et al. 2000).  

Despite the picture of the economic structure at national level shows rapid industrialization this 

industrialization took place in the countable number of central cities while vast areas of the Central 

Asian countries still excessively rely on the irrigated agriculture and thus on irrigation water 

availability from rivers as reflected in the case of Uzbekistan (Box 2.1). According to the 

observations in 2009, if the share of agriculture was about 21% in GDP at national level the 

Figure 2.8 GDP structure and changes in the Aral Sea basin, 1995–2008 
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average share of agriculture in Gross Regional Products was 40% across the districts. Despite 

industry’s share of GDP was 26% at national level average share of industry in Gross Regional 

Products across the districts was less than 13%. While for the majority of the population agriculture 

is low income and labor intensive (Box 2.2), the development of the mining industry benefits only 

a minority of the population employed in this sector, consequently expanding the income gap 

between the rich and the poor.  

As evidenced by the very low industrial output share of private industry-based small businesses, 

large government-owned enterprises such as cotton gins in rural areas and few metallurgy, mining 

and machinery factories in urban areas dominate the industrial production of Uzbekistan, fueling 

the gap between the rich and poor (Box 2.3). Alternatively, development of private industrial small 

enterprises is an engine for establishing a middle class. Countries with a large middle class are 

more likely to be well administered and less likely to suffer social conflict
1
 (Easterly 2001). 

Unification of a society by the development of a strong middle class helps create a consensus on 

equitable economic growth in contrast to social polarization fostered by unequal income 

distribution, which eliminates incentives for economic growth (Easterly 2001). 

Development of industry–based small enterprises would serve for upgrading the agricultural value 

chains and improving irrigation infrastructure. Industrial modernization would allow increasing 

capital intensity of production, which is currently highly labor intensive as evidenced by high labor 

elasticity values for production that varied between 0.54 and 0.96 across Uzbekistan (Box 2.2). 

Upgrading the agricultural and industrial sectors, particularly agricultural processing industries 

(including livestock) through maintaining small businesses and entrepreneurship, particularly in 

rural areas, can reduce dependence on risky water resources and provide more sustainable and 

equitable development. The success of these development policies is in turn largely dependent on 

improvements in production and trade infrastructure as well as intensification of cooperation and 

integration with the global economy (Box 2.3). 

 

Box 2.1 Sectoral structures of the economies at regional level: the case of Uzbekistan
2
 

Given priority of industrial sectors at national development policies, the share of the industrial sector in 

GDP gradually increased while the contribution of agricultural sector decreased in Uzbekistan during the 

transition period (Figure 2.8). The industry’s share of GDP rose up to 26% while the agriculture’s share 

of GDP decreased to 21% coming to 2006 (UzStat 2010). In contrast to the high share of the industrial 

sector in GDP, the share of the industry in total regional output was less than 20% in most administrative 

districts indicating additional room for industrial development in vast areas of the country (Figure 2.9). 

Meantime, agriculture is a dominant sector with a share of more than 40% in total regional output in most 

of the districts despite its share of GDP hardly reaches 20%. 

High share of the industrial sector in GDP despite underdevelopment of the industrial sector in most of 

the districts in Uzbekistan, can be explained by the fact that 10 cities with the highest industrial 

production provides more than 65% of national industrial output (Table 2.6). Particularly, the capital 

city-Tashkent specialized in multiple types of industrial activities including food processing, textile, 

machinery, electro-mechanics, etc., produces one fourth of total industrial output. National center of 

automotive industry – Asaka contributes one eighth of national industrial output. Muborak where gaz 

mining is a main industrial activity produces one tenth of total industrial output. Other cities such as 

Ferghana and Guzar which are specialized in gas and oil mining and extraction as well as cities such as 

Navoi, Almalik and Bekabad which are specialized in chemical industry and metallurgy are also among 

the top-ten cities with the highest levels of industrial output. 

                                                           
1
 Aristotle (306 B.C.), Politics. 

2 Based on Bekchanov and Bhaduri (2012) 
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Figure 2.9 Sectoral structure of Gross Regional Products across the districts of Uzbekistan 

grouped by administrative regions (in 2009) 

  

Notes: Sh_Agr_GDP – agricultural share of GDP; Sh_Ind_GDP  – industry’s share of 

GDP; And-Andizhan; Buh-Bukhara; Ferg-Ferghana; Jiz-Dzhizzakh; Kar-

Karakalpakstan AO; Kas-Kashkadarya; Kho-Khorezm; Nam-Namangan; Nav-Navoiy; 

Sam-Samarkand; Sird-Syrdarya; Sur-Surkhandarya; Tsho-Tashkent province; Tshq-

Tashkent city   

Source: based on UzStat 2010b 

 

 

Table 2.6 Top 10 cities that produce most of the national industrial output 

Rank City 
Industrial output 

(billion UZS) 

Share in total 

industrial output (%) 

1 Tashkent city 4415 19 

2 Asaka 2340 10 

3 Muborak 1756 8 

4 Ferghana 1498 7 

5 Guzar 1252 5 

6 Almalik 1057 5 

7 Navoi 663 3 

8 Samarkand 625 3 

9 Bekabad 602 3 

10 Andizhan 574 3 

 

Total of 10 top cities 14782 65 

Note: According to National Bank of Uzbekistan, average exchange rate in 2009 – 1 USD = 1,500 UZS 

Source: based on UzStat 2010b 
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Box 2.2 Is the national economy labor intensive or capital intensive in Uzbekistan? 

The regression results based on a Cobb-Douglass production model (Method is described in Appendix 

A) showed that capital elasticity estimates were significant for nine out of 13 regions/provinces (Table 

2.7). Nevertheless, the average capital elasticity values were below 0.5 for all regions, varying between 

0.04 and 0.46 (in parallel, labor elasticity values varied between 0.54 and 0.96 under constant returns of 

scale). Under the assumptions of the unitary elasticity of substitution between capital and labor, perfect 

markets, and constant returns of scale, the capital elasticity values below 0.5 or labor elasticity values 

above 0.5 can be interpreted as labor intensiveness of the national economy in Uzbekistan. Indeed heavy 

reliance of the economy in the majority of districts of Uzbekistan on agriculture (Box 2.1), which is a 

very labor intensive sector due in part to rapid technological deterioration in recent years, determined 

overall labor intensiveness of the entire economy. 

 

Table 2.7 Estimated values for capital elasticity of total production across the regions of 

Uzbekistan 

 

Variable Coefficient Standard error t-Statistics Probability 

D_Andizhan 0.34 0.078 4.33 0.000 

D_Bukhara 0.19 0.096 2.00 0.047 

D_Jizzakh 0.12 0.185 0.67 0.502 

D_Kashkadarya 0.43 0.091 4.67 0.000 

D_Navoi 0.04 0.128 0.30 0.765 

D_Namangan 0.23 0.106 2.21 0.028 

D_Samarkand 0.22 0.091 2.37 0.019 

D_Surkhandarya 0.26 0.137 1.92 0.057 

D_Syrdarya 0.20 0.128 1.54 0.125 

D_Tashkent 0.15 0.101 1.50 0.136 

D_Ferghana 0.40 0.074 5.41 0.000 

D_Khorezm 0.32 0.111 2.90 0.004 

D_Karakalpakstan 0.46 0.078 5.86 0.000 

Constant 1.63 0.051 31.93 0.000 

Number of observations 188 F-statistic 7.49 

R-squared 0.359 Probability (F-statistic) 0.000 

Adjusted R-squared 0.311    

Source: Based on UzStat (2010b) 
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Box 2.3 The role of industry-based small businesses in equitable growth of rural areas 

The role of small business enterprises
1
 in economic welfare were analyzed by estimating their shares in 

total sectoral output across the districts and constructing respective kernel density functions 

(frequencies) for each sector (Figure 2.10). The small businesses’ share of total output varied with the 

smallest value in the industrial sector and the highest value in the construction sector. Because the share 

of small business in the total industrial output was less than 40% in most of the districts, big enterprises 

were dominant in the industrial sector. Likewise, in most districts the share of small business in the total 

sectoral output was between 30% and 70% in the retail sector, between 40% and 90% in the service 

sector, between 50% and 90% in the agricultural sector, and more than 70% in the construction sector. 

Thus, the sectors can be ranked according to the concentration of small business in the overall 

production across the districts as follows: 1. Construction; 2. Agriculture; 3. Services; 4. Retail; 5. 

Industry. 

   

Figure 2.10 Kernel density functions of small business shares of the total output of all 

economic sectors across 112 districts of Uzbekistan in 2009 

 

Source: Based on UzStat (2010b) 

 

Despite significant shifts in total production volumes of the industrial sector and maintenance of small 

business and private entrepreneurship in all spheres of the economy through government policies, in the 

aftermath of independence the share of small business in the total industrial output has been very low 

across Uzbekistan. Considering that cotton gins are widespread throughout the districts, it can be 

concluded that cotton gins dominate industrial production in most administrative districts. Further 

development of small business and private entrepreneurship in the industry sector would assist the 

establishment of the middle class and the emergence of competitive markets that are cornerstones for 

equitable economic growth. Claims on the importance of non-agricultural activities for higher 

employment, poverty eradication, and consequent economic growth in rural areas of developing 

countries are also appropriate to the case of transition countries. 

                                                           
1 Small businesses are usually classified based on the number of employees and/or the size of fixed 

assets. Uzbek legislation on the classification of enterprises according to the size and the type of activity 

has been changed several times in recent years. Currently companies classified as small business 

enterprises include: companies with up to 100 employees in light industries, the food industry, metal 

working, instrument making, wood processing, furniture making, and construction industries. This 

includes companies with up to 50 employees in machinery, metallurgy, fuel and energy, chemicals, and 

agricultural processing, and companies with up to 25 employees in science, transportation, information 

technologies, all other types of services, trade, public catering, and other nonproductive sectors. 
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2.4 Irrigation expansion and agricultural policies 

2.4.1 Irrigated lands expansion and cotton production policies 

The reasons for the high dependence on irrigated agriculture in parallel to the underdevelopment of 

the processing and infrastructural sectors in the ASB need to be viewed from a historical context of 

the socio-economic and institutional processes that occurred over the past century. Attaining self-

sufficiency in cotton production in the Soviet period led to a tremendous expansion of irrigated 

area in the ASB. Labor intensive cotton production was a massive labor sink that also facilitated 

social control in the densely populated settlements of the ASB through the complex hierarchical 

management structure and patronage relationships of the command-and-control system (Weinthal 

2002). Thus through expanding cotton production the Soviet leaders at the Kremlin intended to 

‘hitting two birds with one bullet.’ As a result of these policies, irrigated areas almost doubled 

between 1960 and 2000, increasing employment of the rural population and thus dependence of 

rural livelihoods on agriculture. Currently the ASB is one of the largest irrigated areas in the world 

with about 8.5 million hectares of irrigated cropland (Table 2.8). The increase in irrigated areas 

occurred primarily in the downstream countries of Uzbekistan and Turkmenistan. Irrigated lands 

stabilized after the 1990s in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan, but the 

government of Turkmenistan further expanded irrigated areas by about 40% between 1990 and 

2009 (Table 2.8) despite increased conflicts over water in the region after the dissolution of the SU. 

Being the core regional producer of raw cotton, Uzbekistan contained more than half of all irrigated 

lands in Central Asia and produced more than 60% of the total cotton output in the SU during the 

period between 1940 and 1990 (Figure 2.11).  

 

Table 2.8 Irrigated areas in the Aral Sea basin (in 1000s of hectares), 1965–2009 

 
1965 1970 1975 1980 1985 1990 1995 2000 2005 2009 FAO 1997 

a)
 

Kazakhstan 493 523 588 696 706 752 758 770 714 745 786 

Kyrgyzstan 374 383 395 423 425 419 428 429 411 407 422 

Tajikistan 463 518 567 671 710 751 747 750 763 810 719 

Turkmenistan 514 643 855 1,080 1,340 1,523 1,967 2,046 2,142 2,188 1,735 

Uzbekistan 2,787 2,978 3,254 3,688 4,085 4,325 4,466 4,439 4,404 4,346 4,233 

Aral Sea basin 4,631 5,045 5,659 6,558 7,266 7,770 8,366 8,434 8,434 8,496 7,895 

 

Notes: 
a)

 The data (as of 1994) of this column is from FAOSTAT (1997; cited in Petrov and Ahmedov 

2011:11) and is presented here to validate the data from Dukhovny (2010) and extrapolated results.  

Source: Dukhovny (2010), FAOSTAT (1997), author‘s estimates using extrapolation method 
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Figure 2.11 Cotton production in the former Soviet Union 

 

Source: Based on SSU (1990) 

 

Cotton has long been integral to life in Central Asia, particularly in Uzbekistan. Therefore, the 

dynamics of the cotton industry in Uzbekistan since the 1890s serve as a broader reflection of the 

history of political events, economic and technological changes, and the agricultural reforms in the 

region (Figure 2.12). Understanding cotton production policies is also important for understanding 

the water management legacy and issues (Weinthal 2002:104) that developed around cotton 

expansion.  

The availability of land, water, and cheap labor for cotton production in Central Asia was one of 

the main motivations behind the invasion of the region by Tsarist Russia. The civil war in the USA 

in the 1860s and consequent reductions in cotton exports from “the cotton belt” to Russia increased 

demand for cotton from Central Asia and accelerated expansion of the cultivation of this crop, 

which became colloquially referred to as “white gold” (Spoor 1993). As a result, Central Asia 

became a main provider of raw material to textile plants in Russia and the Ukraine (Spoor 1993). 

The area under cotton production in 1888 was about 74,700 ha, and by 1916 it had increased by 

about eight times, reaching 580,000 ha. During World War I and the Russian Civil War, the supply 

of bread and industrial goods from Russia decreased, which increased food prices in the region. 

The drastic decrease of the food supply and constant prices for raw cotton lead to reduced cotton 

production areas that in 1918 were only one-fifth of the area under cultivation in 1917. During the 

period between 1922 and 1928, the Soviet government reverted to the pre-revolutionary policies of 

expanding cotton cultivation and the areas under cotton increased to the pre-war levels of 1913. By 

the early 1930s, cotton self-sufficiency of the SU had been virtually reached, with the largest area 

of cotton cultivation in the pre-World War II period. However, the subsequent collectivization and 

consequent establishment of production cooperatives (kolkhozes) and state farms (sovkhozes) in the 

agricultural sector lead to slight decreases in cotton production. 
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Figure 2.12 Cotton cultivation area and harvest yields in Uzbekistan, 1888–2009
1
 

 

Note: The cotton cultivation area for 1888, 1902, 1912, 1914 is for Central Asia (Turkestan), but most irrigated lands in 

that period were located in the territory of current Uzbekistan (Arapov 2011).  

Source: Cultivation area and yields from 1922 to 1972 are from MA UzSSR (1973). Data for 1974–1977 are from MA 

UzSSR (1975–1978). Data for 1980–1994 are from SIC-ICWC (2011). Data for 1995–2009 are from UzStat (1999), 

UzStat (2003), UzStat (2007), and UzStat (2010a). Data for 1889–1901, 1903–1911, 1913, 1915–1916, 1917–1921, 

and 1973 were interpolated based on the documented values. 

 

Further expansion of cotton cultivation continued until the 1970s during Khrushchev’s “Virgin land 

campaign,” and as a consequence the area under cotton production reached 1.78 million ha by 

1970. Although the virgin land campaign mainly concentrated on the expansion of irrigated land in 

Kazakhstan and western Siberia, Khrushchev also promoted increasing irrigated lands in the ASB. 

The construction of the Karakum canal in Turkmenistan with a length of more than 1,400 km (a 

water discharge of 10–12 km
3
 per year and the capacity to irrigate more than 800,000 ha of land) 

and the construction of the Bukhara and Kashkadarya pumping stations in Uzbekistan with 

discharge rates of 270 m
3
/second and 350 m

3
/second (at elevations of 57 m and 170 m) respectively 

reflect the extensive scope of water management projects of that period (Nanni 1996, Wegerich 

2010:59). 

However, the combination of consistent orders from Moscow to increase cotton production and 

yields year after year while neglecting soil quality decreases due to over irrigation and over 

fertilization of the cultivated lands, led Uzbek and other Central Asian country’s officials to 

misreport record improvements in yield and production volumes over the course of the 1970s. 

Indeed,  In the late 1970s, Andropov’s “anti-corruption” policy campaign following the Brezhnev 

era stopped the practice of falsified reporting that caused the so-called “cotton scandals” that 

coincided with the purges of thousands of cadres in Uzbekistan and other Central Asian countries 

(Spoor 1993, Micklin 2000). This resulted a decline in reported yields during this period. 

                                                           
1
 Although Uzbekistan was formally established in 1924, most of the irrigated lands in the ASB were located in the 

territory of the current borders of Uzbekistan at the beginning of 20
th

 century. 
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The dissolution of the Soviet system in the early 1990s loosened trade relationships between the 

economically interdependent commonwealth countries and resulted in sharp decline of the 

economies in these countries. Wheat supplies from Russia and the Ukraine to Central Asia 

dramatically decreased during this period. Market channels for cotton exportation to traditional 

importers such as Russia and the Ukraine were discontinued. Consequently the newly independent 

countries of Central Asia (with the exception of Kazakhstan), implemented food self-sufficiency 

policies that led to reductions in the cotton production areas of Uzbekistan from 1.9 million ha in 

1990 to 1.5 million ha in 1995. Despite these changes, cotton cultivation continues to be the 

backbone of the agricultural sector in Uzbekistan and dominates in terms of cultivated area relative 

to other crops. 

 

2.4.2 Cropland pattern changes and crop specialization across administrative provinces 

Cotton is the main cash crop not only in Uzbekistan, but also in the other ASB countries (Figure 

2.13). In 1990 cotton occupied about 44% of the cultivated lands in Uzbekistan, and its share in 

total croplands were 47% and 40% in Turkmenistan and Tajikistan respectively. As previously 

mentioned, following the post-Soviet food self-sufficiency policies in all ASB countries except 

Kazakhstan, the cultivation of cereals increased, partially reducing cotton production (Micklin 

2007). According to estimates based on official statistics, in 2009 the cereal production share of 

total croplands was about 38% in Uzbekistan, 47% in Turkmenistan, 53% in Tajikistan, and 47% in 

Kyrgyzstan. Despite the substantial reductions, the current share of cotton is still high, occupying 

about 35% of the total cultivated areas of Uzbekistan, 30% in Turkmenistan, and 20% in Tajikistan. 

In contrast to the major trends, the cotton share of total cultivation area increased from 16% in 

1990 to 22% in 2009 in the southern provinces of Kazakhstan. Considering the substantial 

contribution of cotton fiber exports to hard currency revenues for the ASB countries and the 

availability of inherited cotton processing infrastructure, the expansion of wheat cultivation was 

primarily at the expense of fodder crop production in Uzbekistan. On one hand, the changes in crop 

area patterns as a result of governmental reforms reflect efforts to improve public welfare by 

achieving grain self-sufficiency. However, these changes also indicate the intentions of these 

countries to establish closed (autarkic) economies rather than seeking to increase gains through 

improving cooperation, liberalizing trade, and thus take advantage of the relative strengths of each 

country in the production of a particular commodity. 
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Figure 2.13 Cropland structural patterns by country in the ASB, 1990–2009 

 

Source: Based on data for 1990–2000 from SIC-ICWC (2011); data for 2005-2008 from each country’s statistical 

organization (KazStat (2010), KyrStat (2010), TajStat (2010), TurkmenStat(2012), UzStat (2010a)) 

 

Cotton is not only the dominant crop at the national level, but also at the provincial level in the 

ASB as illustrated by the shares of cotton in total cropland in the provinces of the ASB countries 

(Figure 2.14). Comparison of the cropland share of cotton across the 26 administrative regions of 

the Central Asian countries shows that cotton shares exceeded 30% in most regions, and reaching 

as high as 60% in regions of Turkmenistan (Dashauz, Lebap, Mary) during the pre-independence 

period. Cotton’s share considerably decreased in most regions but remained high in the aftermath 

of independence (1995-1998) but did not change much after 2000 (2005-2008). In parallel, the 

cropland share of cereals increased substantially in the post-independence period and cereals 

occupied more than 20% of the total cropland area in most regions during the period between 1995 

and 1998 (Figure 2.15). Further expansion of the cereals production occurred in all regions of 

Kyrgyzstan and Turkmenistan, in the Kazakh region of South Kazakhstan, and Tajik region of 

GBAO. As in the case of cotton, the cropland shares of cereals vary widely across the ASB.  
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Figure 2.14 Comparison of the share of cotton of total cultivated area by regions 

(provinces) in the ASB in the periods of 1995–1998, 1981–1984 and 2005-2008 

 

Notes: KAZ-Kazakhstan, KGZ-Kyrgyzstan, TAJ-Tajikistan, TRM-Turkmenistan, UZB-Uzbekistan 

Source: Data for all countries for 1980-2000 are from SIC-ICWC (2011); data for 2005-2008 are from each country’s 

statistical organization (KazStat (2010), KyrStat (2010), TajStat (2010), TurkmenStat(2012), UzStat (2010a)) 

 

Figure 2.15 Comparison of the cropland share of cereals by regions (provinces) in the ASB 

in the periods of 1995–1998, 1981–1984 and 2005-2008 

 

Notes: KAZ- Kazakhstan, KGZ-Kyrgyzstan, TAJ-Tajikistan, TRM-Turkmenistan, UZB-Uzbekistan 
Source: Data for all countries for 1980-2000 are from SIC-ICWC (2011); data for 2005-2008 are from each country’s 

statistical organization (KazStat (2010), KyrStat (2010), TajStat (2010), TurkmenStat(2012), UzStat (2010a)) 

 

Based on the cropland shares of different crops, crop specialization in the region is described in 

Table 2.9. Kyzyl-Orda, Kazakhtan’s downstream region, is highly dependent on rice production, 
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complemented by a substantial share of fodder crops. Cotton is a major crop in South Kazakhstan. 

Cotton is the dominant crop in the Kyrgyz region of Jalalabad, fodder dominates in Naryn, and 

crops from household plots dominate in Osh. Tajikistan is mainly dependent on cereal production. 

In all Turkmen regions cotton and cereals each occupy more than 30% of the total croplands. The 

predominance of cotton and cereals was observed in most of the regions of Uzbekistan. Khorezm 

and Karakalpakstan, located in the lower reaches of the Amu Darya, primarily depend on cotton 

and rice production. Fruits and grapes occupy more than 20% of the total cultivated area in the 

Ferghana and Namangan regions of the Ferghana Valley, as well as in the regions located in the 

midstream reaches such as Tashkent, Samarkand, Surkhandarya, Navoi, and Syrdarya.  

 

Table 2.9 Crop specialization by regions (provinces) in the ASB in 2000  

Regions Cotton Fodder 
Fruit & 

Grapes 

Cereals & 

Maize 

Household 

Plots 
Cords Rice 

Potato & 

Vegetables 
Other  

Share of total 

area (%) 

Kazakhstan 

Kyzylorda 
 

++ 
 

+ 
  

+++ 
  

1.9 

South Kazakhstan +++ + 
 

+ 
     

5.0 

Kyrgyzstan 

Jalalabad ++ 
  

+ + 
   

++ 1.5 

Naryn 
 

+++ 
  

+ 
  

+ 
 

0.6 

Osh 
  

+ + ++ 
   

++ 1.8 

Tajikistan 

Hatlon ++ + 
 

+++ 
     

3.9 

Sugd + + + +++ 
     

3.4 

RRT ++ + + +++ 
     

1.1 

GBAO 
 

++ 
 

++ + ++ 
   

0.4 

Turkmenistan 

Dashauz +++ 
  

++ 
  

+ 
  

4.9 

Mary +++ 
  

+++ 
     

5.6 

Lebap +++ 
  

+++ 
     

3.4 

Ahal ++   +++      5.0 

Uzbekistan 

Andizhan +++ 
  

++ + 
    

3.4 

Bukhara +++ 
  

++ + 
    

3.5 

Jizzah ++ 
  

+++ 
     

4.8 

Kashkadarya +++ 
  

+++ 
     

6.6 

Navoi ++ 
 

++ ++ 
     

2.0 

Namangan ++ 
 

++ ++ + 
    

4.4 

Samarkand + 
 

++ +++ + 
    

6.9 

Surkhandarya ++ 
 

++ ++ + 
    

5.6 

Syrdarya +++ 
 

++ ++ 
     

4.7 

Tashkent ++ 
 

++ ++ 
     

5.9 

Ferghana ++ 
 

++ ++ + 
    

5.5 

Khorezm +++ + 
  

+ 
 

+ 
 

+ 3.3 

Karakalpakstan +++ + 
  

+ 
 

+ 
 

+ 5.0 

Note: Crop shares of total cropped area was denoted by y; “+++”if y>30%, “++”if y >20%, “+”if y >10%. 

Source: based on SIC-ICWC 2011 



 

51 
 

The total cropland area and cropland structure are key determinants of total irrigation water 

demand and in turn on environmental flow availability. Replacing water intensive crops with less 

water demanding crops would allow substantial reductions in overall irrigation water demand, part 

of which can be retained for natural ecosystems (Levintanus 1992). However, crop pattern changes 

in the ASB have mainly been driven by either national food self-sufficiency initiatives or efforts to 

maximize export revenues, rather than environmental concerns. Despite huge environmental 

damage (see section 2.6 for details) and relatively low profitability to farmers, Central Asian 

governments still maintain high levels of cotton production because of the substantial revenues that 

it generates. It is important to note that rice production, which requires 4–5 times more water than 

cotton production, dominates the tail reach zones of the ASB where water scarcity is frequent. 

Though pursuing cotton self-sufficiency was a main factor in determining crop specialization in the 

region during the Soviet period, rice was promoted as an appropriate crop at the tail reach zones of 

the ASB due to its ameliorative function in areas with high soil salinity. However, due to its huge 

water use requirements current rice production in the downstream regions should be carefully 

reconsidered by both farmers and policy makers under conditions of increased pressure on water 

resources. Policies should not address only the economic benefits of agricultural choices but also 

lower resource use intensity and environmental sustainability should be emphasized in order to 

prevent environmental, social, and political conflicts in the ASB. 

 

2.5 Water use by sectors 

2.5.1 Irrigation 

Due to the dominance of water intensive crops such as cotton across the entire territory and rice in 

downstream regions irrigation demands almost 90% of the total water withdrawals in the ASB 

(Figure 2.16; SANIIRI 2004). During the period between 2000 and 2010 slight decrease of the 

share of irrigation in total water withdrawals was observed in Kyrgyzstan, Tajikistan, 

Turkmenistan, and Uzbekistan but remained about 90% or more. In this period, agriculture’s share 

of total water withdrawals decreased from 81% to 68% in Kazakhstan. Reduced water withdrawals 

in Kazakhstan’s regions are due to their downstream location. Using the Tokhtogul reservoir in 

energy production mode increased artificial water scarcity in growing season that prevented water 

to reach the downstream regions. Since there was no possibility of building large reservoirs that can 

provide stable water supply to irrigation in downstream regions water releases from the upstream 

reservoirs in winter could not be stored in downstream but wastefully released to the Arnasay 

depression (Mirzaev and Khamraev 2000). 

In addition to the massive scope of the irrigation system, excessive water losses in delivering water 

to the fields and irrigating crops also determine high share of the agricultural sector in total water 

use. Water losses are enormous because of the poor efficiency of the outdated irrigation and 

drainage (I&D) network (Kyle and Chabot 1997, Purcell and Currey 2003), which has been in 

operation without any modernization for more than three decades. Due to the predominance of 

unlined earthen canals, the average efficiency of water delivery is about 60% (Figure 2.17). 

Particularly in the downstream regions of the Amu Darya, approximately half of the water diverted 

from the river for irrigation purposes does not reach to the fields. A small proportion of water is 

lost through evaporation during conveyance, but most is lost by seepage and percolation along the 

main inter-farm and on-farm canals. In addition, substantial operational water losses due to 

overflows from these canals into the drainage system occur regularly. Because conventional 

irrigation methods are common at the field level, 50% more water than the actually required 

volume is applied to irrigate crops. 
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Figure 2.16 Sectoral water withdrawals in the countries of the Aral Sea basin, 1998–2012  

 

Source: FAO (2012) 

 

Figure 2.17 Water use efficiency in the Aral Sea basin 

 

Notes: *Conveyance efficiency is the ratio of the water volume delivered to the field to the volume diverted from the 

source river. **In-field application efficiency is the ratio of water volume used for crop growth to the volume 

delivered to the field. 

Source: Based on GEF (2003) 
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Except the delivery of water through unlined earthy canals and using conventional irrigation 

techniques such as furrow and basin irrigation (Bekchanov et al. 2010), free supply of irrigation 

water to the fields caused careless use and waste of these precious resources. Night irrigations and 

irrigation duration longer than the time that the field is irrigated adequately are just some few 

examples for unwanted unproductive use of water. As a consequence of careless use of water 

resources, farmers (former agricultural enterprises—kolkhozes and sovkhozes) were using much 

more water than the required amounts, consequently wasting about 44 km
3
 of water annually in the 

ASB in the early 1980s (Figure 2.18; Glazovsky 1990). While wasteful use of water was only 1300 

m
3
/ha in Kyrgyzstan, this amount was more than 5500 m

3
/ha in the other ASB countries, reaching 

up to 7000 m
3
/ha in Turkmenistan. Since there were no substantial investments to modernize the 

irrigation infrastructure over the last three decades water overuse due to inefficient water 

application practices has been perpetuated to the present. Although recently established Water User 

Associations (WUAs) are assumed to provide efficient water use through charging fees for its 

water delivery and canal maintenance services (Bobojonov 2008) in reality these water fees are 

based on the cropland area rather than water used by the farmers and thus do not give any 

incentives for careful use of the scarce resources. 

 

Figure 2.18 Irrigation water wastage in the Aral Sea basin, 1980 

  

Source: Based on Glazovsky (1990:76) 

 

2.5.2 Hydro-electricity production 

In contrast to the long-term history of irrigation practices in the ASB, hydro-electricity generation 

has been mainly established at the second half of the last century. Numerous reservoirs were built 

mainly in mountainous up-stream countries to provide stable water supply for growing irrigation 

needs (Table 2.10). Nurek and Tokhtogul are the largest reservoirs with energy production 

capacities of over 3,000 and 1,200 MW respectively. Rogun and Kambarata reservoirs with energy 

production capacity of 3,600 and 1,900 MW, respectively, are under the way of construction. 

Numerous other hydropower plant construction projects are planned particularly in the upper 

reaches of the Amu Darya River. 
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Table 2.10 Operating, emerging, and planned hydropower stations (HPS) in the Amu and 

Syr Darya river basins 

Hydropower station 

Capacity of reservoir 

(million m
3
) 

Installed 

capacity 

(MW) 

Annual 

power 

generation 

(1000 

MWh) 

Location 

(River) 

Status (O-

operating; UC-

Under 

construction; 

P-Planned) Full Useful 

Chardara 5700 4700 100 516 Syr Darya O 

Farkhad 350 20 126 870 Syr Darya O 

Kairakum 4160 2600 126 691 Syr Darya O 

Charvak 2000 1580 620.5 2000 Chirchik O 

Andijan  1750 1600 140 435 Karadarya O 

Tokhtogul 19500 14000 1200 4400 Naryn O 

Kambarata 4650 3430 1900 4580 Naryn UC 

Other in the SDB (O) 650 87 1955 7028 

 

O 

Other in the SDB (UC) 70 8 360 1000 

 

UC 

Other in the SDB (P) 816 491 1004 3203 

 

P 

Total of the SDB (O) 34110 24587 4268 15940 

 

O 

Total of the SDB (UC) 4720 3438 2260 5580 

 

UC 

Total of the SDB (P) 816 491 1004 3203 

 

P 

Total of the SDB 39646 28515 7532 24723 

         Rogun 11800 8500 3600 13300 Vakhsh UC 

Nurek 10500 4500 3000 11200 Vakhsh O 

Rushan 5500 4100 3000 14800 Panj P 

Dashtijum 17600 10200 4000 15600 Panj P 

Upper Amudarya 15200 11400 1000 4400 Amu Darya P 

Tuyamuyun 7300 5100 150 550 Amu Darya O 

Other in the ADB (O) 320 40 885 4700 

 

O 

Other in the ADB (UC) 325 17 890 3670 

 

UC 

Other in the ADB (P) 16650 3950 12250 59200 

 

P 

Total of the ADB (O) 18120 9640 4035 16450 

 

O 

Total of the ADB (UC) 12125 8517 4490 16970 

 

UC 

Total of the ADB (P) 54950 29650 20250 94000 

 

P 

Total of the ADB 85195 47807 28775 127420 

         Total of the ASB 124841 76322 36307 152143     

 

Notes: Amu Darya basin - ADB; Syr Darya basin - SDB; Aral Sea basin - ASB  

Source: Based on Jigarev (2008) 

 

Hydropower contributes more than one fourth of total electricity production in the ASB (Table 

2.11). In contrast to small share of hydropower production in downstream countries 

hydroelectricity generation plants provide 82 and 96% of total energy production respectively in 

upstream countries such as Kyrgyzstan and Tajikistan. These two countries together produce more 

than two thirds of total hydroelectricity outputs despite they are using only less than 10% of their 

potential capacity. If the full potential of hydroelectricity production was reached in Central Asia, 
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Tajikistan would produce about 70% of regional hydroelectricity production whereas Kyrgyzstan 

22%. Most of the electricity produced are consumed domestically in the Central Asian countries 

except Kyrgyzstan as evidenced by high ratios of consumption to production. Despite the lowest 

per capita energy consumption, Kyrgyz government prefers to export most of its electricity outputs. 

 

Table 2.11 Actual and potential levels of hydroelectricity production in the ASB 

Description KAZ KGZ TAJ TRM UZB CA 

Reservoir storage capacity (million m
3
)

a
 6

b
 20 29 3 19 77 

HPP installed capacity (MW) 2248 2910 4037 1 1420 10616 

Total electricity production (billion kWh) (2010) 82.6 11.4 16.4 16.7 51.7 178.8 

The share of hydropower production (HPP) in 

total electricity production (%) 
10 91 97 0 21 25 

Actual HPP (billion KWh) (2010) 8 10 16 0 11 45 

Potential HPP (billion KWh) 27 99 317 2 15 460 

Utilization of HPP potential (%) 30 10 5 0 73 10 

The country's share of total hydroelectricity 

production (%) 
18 22 36 0 24 100 

The country’s share of total regional HPP 

potential (%)  
6 22 69 0 3 100 

Energy consumption (billion kWh) (2010) 77 7 14 12 47 158 

The ratio of energy consumption on production 0.93 0.66 0.84 0.73 0.91 0.88 

Energy consumption per capita (kWh per capita) 4728 1375 1808 2403 1648 2627 

 

Notes: 
a 
Including reservoirs without hydropower plants; 

b 
Only reservoirs in southern parts of Kazakhstan are included; 

KAZ- Kazakhstan, KGZ-Kyrgyzstan, TAJ-Tajikistan, TRM-Turkmenistan, UZB-Uzbekistan, CA-Central Asia. 

S.: Based on World Bank (2013) if not mentioned; reservoir volume for Southern regions of Kazakhstan from Jigarev 

(2008) and for the other countries from Rakhmatullaev (2010); HPP capacity from EADB (2008). 

Although hydro-electricity production does not require considerable water consumption, changed 

reservoir mode depending on seasonal electricity demand can be in conflict with irrigation water 

uses in growing season unless there are possibilities to build reservoirs in downstream. Recent 

trends in the operation mode of the reservoirs located in Kyrgyzstan and Tajikistan indicate that 

both countries are increasing winter water releases to produce electricity for increased heating and 

export demands while increasing water storage in summer period and thus decreasing water 

availability to irrigation (Dukhovny and Schuetter 2012). Considering substantial potential for 

developing hydropower plants, these countries also attempt to extend their hydroelectricity 

production capacity by constructing additional reservoirs. Increased electricity output is planned to 

export to the Russian and South Asian markets (Rizk and Utemuratov 2012). However, since 20-

30% of lands is isolated from electricity in cold winter months domestic electricity scarcity should 

be solved first before planning any exports (Rizk and Utemuratov 2012). Increasing electricity 

production potential in upstream countries should not neglect the interests of downstream regions 

as well since water is common resource for the entire region.  



 

56 
 

2.5.3 Environmental flows 

Despite improved employment and welfare opportunities for a growing population and elimination 

of the dependence of the SU on expensive cotton imports, the tremendous development of irrigated 

agriculture in the ASB reduced water availability for the environmental systems and caused severe 

ecological problems. As a consequence of excessive diversion of water for irrigation, ever smaller 

fractions of river water reached the Aral Sea, leading to its gradual desiccation (Figure 2.19 and 

Figure 2.20). In 1960, the Aral Sea was the fourth largest freshwater lake in the world with a depth 

of 53 m, a volume of 1,064 km
3
, and a surface area of 66,000 km

2 
(Mirzaev and Khamraev 2000). 

Inflows to the sea were about 50 km
3 

annually
1
. The sea was vital for regional fisheries and water-

based transportation, and integral to maintaining favorable climatic conditions for living and 

agricultural production in the circum-Aral region. As a result of the reduced inflows and 

consequent desiccation, the Aral Sea was divided into two parts–the Large Aral Sea in the south 

and the Small Aral Sea in the north. By 2006, levels had lowered to depths of 30 m in the Large 

Aral Sea and 40.5 m in the Small Aral Sea, and the combined volume had decreased to 108 km
3
 

with a reduced surface area of 17,400 km
2
. The decreased volume of the lake led to increased 

salinity levels that reached more than 30 g/l
 
(Micklin 2007). 

 

Figure 2.19 The desiccation of the Aral Sea 

 

Source: Based on Kartenwerkstatt (2008) 

Note: Initial area of the Aral Sea in the 1960s was more than 60,000 km
2
, which is equivalent to the approximate area 

of the territories of the Netherlands and Belgium together. 

 

                                                           
1
 Cai et al. (2003b) erroneously reported that annual inflows to the Aral Sea from the Amu Darya and Syr Darya rivers 

were 72 and 37 km
3
 respectively. These figures indicate total annual volumes of these rivers, but not inflows to the sea. 
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Figure 2.20 The state of the Aral Sea and annual inflow volumes, 1962–2010 

 

Source: Based on data for 1962–2000 from INTAS (2006), data on the sea level for 2002–2007 from Zonn et al. 

(2009), data for the Small and Large Aral Sea levels for 1987–2010 from Micklin (2010), data on annual inflows and 

surface area was extrapolated based on river flow observations at the hydroposts (Farkhad GES in the Syr Darya and 

Chatli in the Amu Darya) 

Although diverting all water resources of the Amu and Syr Darya rivers for irrigating desert lands 

and increasing cotton production primarily occurred during the Soviet period the idea was already 

popular during the Tsarist period (Ashirbekov and Zonn 2003). In his report on Russia’s rivers, the 

geographer Voyejkov (1882) wrote that, “the existence of the Aral Sea in its current boundaries 

while availability of huge area of drylands suitable to cropping in the lower and middle reaches of 

the Amu and Syr Darya is a proof of our ignorance and unskillfulness to manage water resources 

efficiently. In the country which can manage natural resources efficiently, the Aral Sea should 

serve as a sink only for winter flows and high summer floods.” This plan was supported by 

Masalsky, the head of the water sector during the tsarist period, and was implemented during the 

Soviet period without consideration of environmental flow needs.  

Although the desiccation of the Aral Sea was intentionally planned by policy makers, its 

environmental and socio-economic costs were not expected to be enormous. Because of the 

worsening environmental and health conditions, the circum-Aral Sea region
1
 was declared an 

ecological catastrophe zone in the late 1980s during the late Soviet period by decree of the supreme 

court of the USSR on October 27, 1989 (Levintanus 1992, Mirzaev and Valiev 2000). Though 

there was a plan to gradually increase guaranteed annual flows to the sea from 8.7 km
3
 in 1990 to 

21 km
3
 by 2005,

2
 these plans were never realized because of the economic and political problems 

that occurred after the break-up of the SU (Weinthal 2002:111). 

 

                                                           
1
 The circum-Aral region includes the Karakalpakstan republic and the Khorezm region of Uzbekistan, the Dashhauz 

region of Turkmenistan and the Kyzyl-Orda province of Kazakhstan. 
2
 A decree of the communist party on “Measures for the radical improvement in the ecological and sanitary situations 

in the circum-Aral Sea region and for raising the effectiveness of use and strengthening the protection of water and 

land resources in the ASB,” issued on  September 19, 1988. 
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2.6 Water management institutions in the Aral Sea basin: historical outline 

The lingering dominance of cotton production, high reliance on irrigated agriculture, and 

consequent environmental degradations were the result of the continuity of formal and informal 

institutions based on a command-and-control management principle. Reducing cotton dominance 

and improving water productivity and environmental conditions should go hand in hand with more 

effective institutions that can support economic restructuring. Considering the path dependence of 

institutional change (North 1990), understanding the historical roots of the current water 

management institutions in the ASB is important for the consideration of any future institutional 

improvements. The main changes in the ASB water management institutions occurred in parallel to 

the governmental regime changes. Four distinct historical periods can be differentiated:  

1) Water management institutions during the mid-centuries, which were based on Islamic law 

and were being practiced before the Russian invasion of Central Asia; 

2) Water management institutions under Tsarist Russia, which was characterized by a mix of 

colonial and traditional management styles; 

3) Water management institutions under Soviet rule, when water resources were fully owned 

by the government and enormous changes in the regulation of water use occurred; 

4) Water management institutions in the aftermath of independence under intensified conflicts 

over water and energy resources use among the five newly emerged CA states. 

 

2.6.1 Water management during the Mid-Centuries 

Before the Russian invasion of Central Asia, water management in the region followed rules based 

on the Koran and Sharia, and water relationships were regulated based on traditions and customs 

formed over centuries (Mirzaev 2000). A Water Code, The Book on Ariks
1
, was prepared by 

Muslim scholars and theologians from Khorasan
2
 and Iraq, and served to regulate water 

distribution and solve water conflicts in Central Asia over centuries (Dukhovny and Schutter 

2011:54). Though the original text of the code did not survive, its rules were reflected in the Sharia 

and daily customs and traditions. The Sharia, a collection of Islamic laws, required adherents to 

avoid polluting and wasting water resources. According to the Koran, nobody but Allah (God) has 

the right to own water resources. Water was considered as a sacred gift from Allah given to all 

people and intended for the general welfare. Rotational methods of distributing water among the 

users to increase water productivity were established by Sharia centuries ago and continue to be 

practiced effectively.  

In addition to treating water as a common good and recommending rotational water distribution, 

the Sharia regulations required fair and equal distribution of water resources under water scarcity 

conditions and obligatory participation of water users in constructing, repairing, and cleaning 

irrigation canals and facilities (Dukhovny and Schutter 2011:56). Obligatory compensation for the 

damages incurred due to canal construction through the land of another user were also stated in 

these religious law collections. Mirabs (water managers) elected by local communities were 

responsible for the proper implementation of the Sharia rules in water use, distribution, and 

conflicts resolution, while Imams (priests in the mosque) were entrusted with general supervision. 

Despite its long history of practice, Sharia rules do not explicitly clarify legal rights on the 

distribution of common river basin resources. Particularly, the opinions of Muslim scholars vary 

regarding the benefit sharing based water allocation through treating water as an economic good 

(Kadouri et al. 2001).  

                                                           
1
 Arik means canal in Central Asia  

2
 Historical region, the majority of which lies in the current territory of northeastern Iran, parts of Afghanistan and parts 

of the Central Asain countries: Turkmenistan, Uzbekistan, and Tajikistan 
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2.6.2 Water management under Tsarist Russia 

After the invasion of Central Asia (formerly Turkestan
1
) the colonization campaign began to 

transform the region into the production center of raw cotton supplies for the Russian empire. In 

consequence, the tremendous expansion of irrigated areas was achieved through massive diversions 

of water from the rivers. These developments in turn required the construction of large-scale water 

management infrastructure, the development of massive water management measures, a new legal 

basis for water distribution, and institutions to manage water resources (Mirzaev 2000). Three main 

policy documents were adopted during this period: “Temporary rules on the irrigation works in 

Turkestan” (1878), “Article on governing Turkestan region” (1886), and “The instruction on the 

rights and obligations of irrigation ranks, district heads, aryk-aksakals and mirabs
2
 responsible for 

irrigation in the Turkestan region” (1886). These documents legalized government ownership of 

water resources and established that farmers were to share and use their approved water quotas 

according to government laws, Sharia, and traditional customs. To take over the overall control of 

water resources and strengthen the role of government for reallocating water resources towards 

higher cotton production, the authorities established the Turkestan Administration of Water Works 

(IRTUR) subordinated to the Central Directorate of Land Management in 1907 (Dukhovny and 

Schutter 2011:109). This water department was responsible for the control of water management at 

the level of Turkestan Governor-General as of 1910. Later the colonial government developed the 

“Legislation system of water resources management in Turkestan,” which became the basis of 

developing the subsequent “Principles of water law in the former SU.” 

 

 

2.6.3 Water management under Soviet rule 

A decree “On the organization of irrigation work in Turkestan” issued by Lenin in May 1918 was 

the basis for large-scale expansion of irrigation to attain self-sufficiency in cotton production 

during the Soviet period (Weinthal 2002:72). Since the economy had fallen into a desperate state 

during the civil war and peasants had abandoned cotton production for grain to reduce the effects 

of famine,
3
 several resolutions were adopted to incentivize producers for increased cotton 

cultivation through restoring the largely deteriorated irrigation system and offering credits to 

rebuild irrigation facilities. In contrast to the small-scale farming that existed in the pre-Soviet 

period where local authorities supervised water withdrawals, maintenance, and the cleaning of 

irrigation canals, large-scale farming through the establishment of collective farms were promoted 

during the 1930s. These changes in turn necessitated the centralized coordination of water 

distribution among multiple users with competing interests and mitigating potential conflicts over 

water quantity and quality (Weinthal 2002:90). 

Although the organizational structure of water management institutions during the Soviet period 

was slightly different from the Tsarist structure, its scope widened to the entire SU (Mirzaev 2000). 

The Soviet structure of water distribution and use institutions was established at the end of 1950s 

along with the Ministry of Melioration and Water Management (Minvodkhoz). This institution 

governed the entire water fund within SU territory and determined the strategies for ameliorative 

and irrigation construction. Multiple scientific bodies and construction companies belonged to the 
                                                           
1
 Turkestan (or Turkestanski Krai in Russian) was the name of the Central Asian territory when governed by Tsarist 

Russia  
2
 aryk-aksakals are officials appointed for regulating and monitoring water use along main irrigation canals, mirabs are 

elected by local community to manage water in the canal branches 
3
 Dukhovny and Schutter (2011) indicated in the preface to their book that the Central Asian region had never 

experienced famines; however, famines were actually common due to production collapses as a result of political crises 

and wars, though land and water resources were always sufficiently abundant to feed the existing population in the 

region. 
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ministry, which ordered, developed, established and implemented projects, and distributed water 

resources on the basis of overall benefits to the entire SU. Regional and sub-regional branches of 

the ministry operated in each SU country and in their respective provinces. The main 

responsibilities of the regional branches were restricted to fulfilling orders from the central offices 

in Moscow. 

Two important international agreements over river management between the SU and Afghanistan 

were signed on 13 June 1946
1
 and on 18 January 1958.

2
 The 1946 agreement concerned water 

diversions and runoff, and provided for the establishment of a joint commission (Nanny 1996). 

Under the 1958 treaty, the two states agreed to carry out joint measures to prevent water pollution, 

to exchange water level information, and to establish a flood warning system. 

During the 1960’s the policy treatise “Schemes of integrated use and protection of water resources 

in the Amu Darya and Syr Darya basins” was prepared, which describes the principles of water 

distribution among the riparian states and the development of new irrigation zones in Central Asia. 

Considering its negligible share of overall irrigated area and water diversions in the ASB, 

Afghanistan was not included in this general water development program despite the country’s 

20% share of the overall water resources in the Amu Darya basin. The recommendations of this 

document have been perpetuated until the present. Each country and irrigation zone had a fixed 

share (quota limit) of the total available water (Table 2.12). According to the water limits 

distribution, the share of Uzbekistan in total water withdrawals was the highest at about 40% and 

50% from the Amu Darya and Syr Darya River basins respectively. These limits were determined 

based on existing land resources, cropland structure, crop water requirements, and the respective 

irrigation development plans of each zone (Nanni 1996). The actual volumes of water used were 

corrected regularly based on actual water availability. 

 

Table 2.12 Water use limits (%) of the Central Asian countries in the Aral Sea Basin 

 Kazakhstan Kyrgyzstan Tajikistan Turkmenistan Uzbekistan 

Amu Darya - 0.3 15.2 42.3 42.3 

Syr Darya 42.0 0.5 7.0 - 50.5 

 

Source: Dukhovny and Schutter (2011: 272–273) 

 

Despite the centralized water management system’s success in developing massive irrigation 

systems and hydrological management infrastructure, considering water needs of the ecosystems 

and maintaining appropriate environmental water flows were neglected. Instead, the ideology of 

“conquering the nature” was propagated (Sehring and Diebold 2012). As a consequence, 

environmental disasters such as the Aral Sea desiccation made this conventional development path 

unsustainable. Additionally, there was poor coordination among the different agencies of the 

central MinVodKhoz that had overlapping tasks. Furthermore, a lack of economic incentives to use 

water resources efficiently and absence of stakeholder participation, resulted in inconsistencies and 
                                                           
1
 Frontier Agreement Between Afghanistan and the Union of Soviet Socialist Republics, June 13, 1946, Afghanistan-

USSR. 
2
 Treaty Between The Government of the Union of Soviet Socialist Republics and the Royal Government of 

Afghanistan Concerning the Regime of the Soviet-Afghan State Frontier, January 18, 1958, Afghanistan-U.S.S.R. 
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water overuse (Sehring and Diebold 2012). Farmers (members of the collective farms-kolkhozes) 

did not have any incentives to use water more efficiently since they were rewarded only for 

meeting production targets (Weinthal 2002:93). Thus centralized water governance and state 

ownership of all water resources during the Soviet period was inefficient and unsustainable with 

respect to water use, leading to water wastage in irrigation systems and water scarcity in 

environmental water demand sites. 

During the last period of the Soviet era in 1986, two river basin management organizations (the 

Basin Water Management Organizations (BVOs) of the Amu Darya and Syr Darya Rivers) were 

established to manage water resources within watershed boundaries instead of administrative 

boundaries and to make integrated decisions for the entire river basins. The establishment of 

Automatic Systems of Managing Basins (ASUBs) were also initially tasked to the BVOs, but could 

not be fulfilled. The BVOs were later tasked with organizing the distribution of interstate water 

resources and coordination of the hydrological management infrastructure (Mirzaev 2000). After 

the break-up of the SU none of the emerging CA countries favored BVO control of infrastructure 

located in their territories and only the responsibilities of the BVOs related to the regulation of 

water distribution in the Amu and Syr Darya basins were assumed by the newly independent states. 

 

2.6.4 Water management institutions following independence 

Parallel to the disintegration of the SU and the emergence of new independent states in Central 

Asia, new issues over water management surfaced that required new institutional settings to solve 

the problems associated with sharing water resources and the use of related infrastructure. In the 

beginning the need for cooperation on water management among the five Central Asian states was 

recognized and they agreed to establish the Interstate Commission for Water Management 

Coordination (ICWC) with the mandates: to determine and approve annual water withdrawal limits 

for each state, to approve the reservoir operation regimes, and to regulate rational use and 

protection of ASB water resources.
1
 The two BVOs, Amu Darya and Syr Darya, were made 

subordinate to the ICWC. Together these organizations were responsible for water allocation plans, 

water quality control, and environmental protection in the ASB (Vinogradov and Langford 2001).  

According to the agreement the rules of water allocation adopted during the Soviet period remained 

temporarily valid despite the fact that the five new republics had different interests regarding water 

resource use (Mirzaev 2000). Later some of the newly independent states noted that the historical 

water distribution rights did not consider their own needs for irrigation development and energy 

generation fairly, and decided to take greater control over the water resources formed within their 

respective territories rather than releasing these water resources for the benefit of the other ASB 

countries. Consequently, a new round of agreements took place between 1993 and 1995, and four 

other intergovernmental water management organizations were established for maintaining 

regional cooperation (Vinogradov and Langford 2001): 

1) The Interstate Council on the ASB (ICAS), with the task of establishing water management 

policies and providing intersectoral water use coordination; 

2) The Executive Committee of the ICAS (EC-ICAS), with the purpose of implementing the 

Aral Sea Program financed by the World Bank, the UNDP, and the UNEP; 

3) The International Fund for Saving the Aral Sea (IFAS), with the purpose of coordinating 

financial resources provided by member countries and donors; 
                                                           
1
 Agreement on cooperation in joint management, use and protection of interstate sources of water resources, 18 

February 1992, five Ministers of Water Resources of Central Asian states (N. Kipshakbayev, M. Zulpuyev, A. Nurov, 

А. Ilamanov, R. Giniyatullin) signed in Almaty. 
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4) The Sustainable Development Commission (SDC), established to ensure equal importance 

of economic, social, and environmental factors in development decision making. 

The “Agreement on Joint Activities for Addressing the Crisis of the Aral Sea and the Zone around 

the Sea, Improving the Environment and Ensuring the Social and Economic Development of the 

Aral Sea Region” was signed by representatives of the five Central Asian states on March 26, 

1993. This document was adopted to maintain cooperative management of the water resources in 

the basin and to combine efforts to solve the Aral Sea desiccation crisis. The agreement set rules 

that established a minimal flow into the Aral Sea and the river deltas, and to prevent the discharge 

of municipal and industrial wastewater, agricultural return flows, and other pollution sources into 

the rivers (Nanni 1996). 

Later in 1997 the new International Fund for the Aral Sea (IFAS) was established as the successor 

to the former ICAS and the previous structure of the IFAS (Figure 2.21). The IFAS is the highest 

political authority that is led by a board composed of five deputy prime ministers from each of the 

five member states, with portfolios comprising agriculture, industry, and the environment and its 

decisions are approved by the heads of the states (Vinogradov and Langford 2001). The board 

makes decisions on policies and proposals recommended by a permanent working body of the fund 

(Executive Committee of IFAS) in meetings that take place at least three times a year. While IFAS 

is responsible for policy and financial decisions, the ICWC and its organs function as the 

implementing agency (Vinogradov and Langford 2001). Specifically, ICWC controls compliance 

with the interstate agreements on water distribution, distributes annual water quotas (limits) to 

users and the Aral Sea, and develops measures to maintain water supply and distribution regimes. 

One of the main activities of IFAS was to implement the Aral Sea Basin Program (ASBP; 1993–

2002) as a joint action plan with the WB, UNDP, and UNEP. This plan proposed to maintain a 

sustainable environment in the ASB, restore the environmentally devastated zones adjacent to the 

sea, promote improved water management on the transboundary rivers, and maintain the capacity 

of the regional and local water management organizations responsible for the implementation of 

the plan (Sehring and Diebold 2012). In 2003, IFAS prepared a second phase of the ASBP (ASBP-

II; 2011–2015). The second phase of the program included several economic development and 

environmental protection plans, such as: developing comprehensive water management 

mechanisms in the ASB, rehabilitating hydro-economic and irrigation facilities, improving 

environmental monitoring and flood management systems, combating desertification, promoting 

rational use of return flows, and maintaining cooperation among the riparian states to effectively 

implement the action plan (IFAS 2003). Although cooperation among the states to share common 

water, environmental, and infrastructural resources was partially reached in some years, failures in 

finding compromises were more common because of unilateral actions that neglected the interests 

of the other water users. Moreover, high dependence of IFAS on international funds and the 

irregularity of payments from the member countries did not allow to this organization to fulfill 

most of its initially planned tasks concerning improvements of the environmental and economic 

situations in the circum-Aral Sea region (Weinthal 2002:153). Currently a third phase of the 

program (ASBP-III; 2011–2015) approved in 2010 is an ongoing process; the primary objectives of 

the ASBP-III are to implement IWRM principles and develop mutually beneficial agreements on 

water use among the basin states in order to maintain sustainable socio-economic development in 

the ASB (Dukhovny and Schutter 2011). 
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Figure 2.21 Organizational structure of water resource management in the Aral Sea basin 

 

Source: Sokolov and Dukhovny 2002 

Considering the issues that arose over the reservoir regime of the Syr Darya basin, several 

agreements on the rational use of water and energy resources were adopted in late 1990s. The 

agreements, “On the use of water and energy resources of the Syr Darya basin,” “On joint and 

complex use of water and energy resources of the Naryn Syr Darya cascade reservoirs,” and “On 

cooperation in the area of environmental protection and rational utilization of natural resources,” 

were signed by the governments of the Republic of Kazakhstan, the Kyrgyz Republic, and the 

Republic of Uzbekistan on 17 March 1998. These agreements provide the legal basis for 

cooperation of the CA states on water and energy resources in the ASB. 

None of these agreements mentioned the maintenance of hydrological management infrastructure, 

the introduction of innovative water saving technologies, the exchange of information, and the 

coordination of joint activities in response to extreme events (Vinogradov and Langford 2001). 

Water problems were viewed from the perspective of water consumption (i.e., each member state 

attempted to increase its water use share, neglecting efficient water use), which resulted in a 

“tragedy of the commons” situation (UNEP 2005). Incentives for efficient water use under 

conditions of increasing water scarcity were not considered or discussed. Despite an agreement
1
 

among all Central Asian governments to consider the Aral Sea as an independent user and to 

guarantee at least some minimum inflow to the sea, river discharges have not often met stipulated 

volumes (UNEP 2005). Under conditions of increased drought risk, particularly in downstream 

reaches, the CA governments are challenged to develop more effective institutions, change the 

organizational structure of water management, and develop innovative water allocation 

mechanisms that provide incentives to water users for cooperation with one another for more 

efficient water use, ecosystem protection, and sustainable economic development. 
                                                           
1
 Agreement on joint activities for addressing the Aral Sea crisis and the surrounding zone, improving the environment, 

and ensuring the social and economic development in the Aral Sea basin, March 26, 1993. 
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2.7 Socio-economic and technical reasons of water allocation problems in the Aral 

Sea basin and potential solutions 

2.7.1 Causes and consequences of the “Aral Sea syndrome” 

Based on the above discussion of socio-economic conditions, irrigation development, cropland 

patterns, water use and water management institutions, several water management problems in 

different parts of the ASB and at different levels of water management hierarchy can be implied. 

As all the water users within a single basin is interrelated to each other (Ringler 2003) problems 

related to water management in different parts of the basin are also correlated with one to another 

(Figure 2.22). Apparently, the most vivid consequence of inefficient water management in the ASB 

is the desiccation of the one of the largest lakes of the world - Aral Sea within short period. 

Irrigation expansion accompanied by the dominance of high water consuming crops and lack of the 

adoption of advanced irrigation technologies as well as ineffective coordination of water 

distribution at basin level were the root causes of this ecological catastrophe.   

Since the Central Asian economies experienced a change from the centralized economic system 

towards market-based economy in the last decade of the 20
th

 century, economic reasons of 

transformations in the water management system should be divided by two main periods: 1) 

changes under the administrative system before 1990s and 2) changes in transition period after 

1991. Consequently, economic reasons for the emergence of the conditions for irrigation expansion 

before 1991 and for the continuation of inefficient water management practices even aftermath of 

1991 should be also differentiated. 

As noted earlier in this study, irrigation expansion in Central Asia was mainly driven by the 

increasing needs of the Soviet Union and its satellite states for cotton commodities in the last 

century. Political and economic costs of importing cotton from the US were extremely high. 

Meantime, Central Asia had very good climatic conditions, sufficient land and water resources, and 

cheap labor for growing cotton. Although land, water and labor resources were also abundant in 

eastern parts of Russia, cold temperature in these territories were not suitable to cultivate cotton. 

Irrigation expansion would also provide additional job opportunities and food supply in the densely 

populated region with high population growth rates. Damage costs incurred due to the cease of 

fish-processing plants and recreational cites located in the cities around the Sea such as Muynak 

and Aralsk were estimated lower than the benefits from irrigation expansion (Ashirbekov and Zonn 

2003). Despite its huge environmental burden, high export revenues from raw cotton export and 

lack of technologies and skilled human resources to develop alternative production resulted in the 

continuation of cotton production practices even aftermath of independence. 

Economic reasons for the dominance of inefficient conventional irrigation practices were mainly 

related to the lack of incentives to implement modern irrigation technologies. Water was not 

considered as scarce as now at the initial stages of irrigation expansion and thus there were no 

plans or incentives to use water efficiently. Considering environmental degradation which was 

serious after 1970s, the previous governments developed plans for irrigation modernization. 

However, since water delivered free of charge and the command-and-control based management 

was interested in only meeting production targets at whatever cost there were no incentives for 

farmers for efficient water use. The government started investing in improving irrigation 

infrastructure in late 1990s but these investments discontinued following the fall of the Soviet 

Union and consequent political and economic crisis. In early periods of independence, lack of 

sufficient investments in irrigation sector was a main reason of the accelerated deterioration of the 

infrastructure. Low incomes from state controlled cotton and wheat production and insecure land 

rights prevented the farmers to make any technological improvements. Water was not also charged 

sufficiently for giving incentives for more efficient use of water.  
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Figure 2.22 Causes and consequences of the Aral Sea desiccation 

 

Source: author’s presentation 
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Currently, water prices based on volume have been introduced only in Kazakhstan and Kyrgyzstan. 

In contrast, agriculture is still heavily controlled by the government and water delivery costs are 

subsidized by governmental funds in Turkmenistan. Uzbekistan opted for a mediocre solution—the 

newly established Water User Associations (WUAs)—that only require payments from farmers to 

cover costs of local water management, but operation and maintenance costs of primary canals, 

pumping stations, reservoirs, and dams are not included in this water payment scheme (Bobojonov 

2008). Charges that cover partial costs of water delivery through WUAs also exist in Tajikistan. 

Therefore, water use charges are only symbolic in these countries and water prices do not create 

sufficient incentives for the efficient use of water resources. Furthermore, funds collected through 

water use charges are not sufficient to improve water use efficiency. 

Conflicting interests of five Central Asian countries complicated sharing common resources in the 

ASB. Coordination of the basin resources which was previously conducted by a unified water 

management system has been a hard task confronted by the water managers and policy makers of 

the region. Old mid-set based on administrative management principles, lack of understanding 

market-based principles of water management, and reluctance of the riparian countries for 

cooperation were main reasons for the failure of effective coordination of the common basin 

resources. 

The root causes of the Aral Sea desiccation has also additional accompanied consequences which 

will be described here one-by-one. Irrigation expansion combined with inefficient water 

conveyance and application techniques resulted in huge water losses (Figure 2.22). These water 

losses have raised groundwater levels, which are highly polluted due to the seepage of 

agrochemicals and salt from cotton fields. High groundwater tables, in turn, caused waterlogging 

and salinization of irrigated lands, the degradation of drinking water quality, and accelerated the 

deterioration of rural and urban infrastructure. Waterlogging and soil salinization gradually 

decreased crop yields. For instance, over the period between 1976 and 1992 yields decreased in 

Karakalpakstan by 1.77 ton/ha
 
for cereals, 0.98 ton/ha for cotton, 5.4 ton/ha for potato, 5.68 ton/ha

 

for vegetables, 5.75 ton/ha
 
for grapes, and 0.32 ton/ha

 
for rice (Mirzaev and Khamraev 2000:361). 

Decreased quality of drinking water from wells due to the seepage of chemicals from the cotton 

fields also increased the number of water-borne illnesses such as typhoid, hepatitis A, and diarrheal 

diseases (Glantz 1999). 

Because of high percolation losses during conveyance and irrigation, the volume of return flows 

has also increased and the greatest proportion of return flows end up in desert depressions at the 

tails of the irrigation zones, damaging natural landscapes (Chembarisov 1996, Mirzaev and 

Khamraev 2000). In 1990 the total area of these tail-end desert sinks reached 6,289 km
2
 with a total 

water volume of about 51 km
3
 or 1/6 of the total volume of the Aral Sea (Chembarisov 1996). 

Particularly in Turkmenistan, drainage water discharge into natural depressions resulted in the 

formation of about 275 lakes with the total combined area of 4,286 km
2 

(Mansimov 1993), causing 

long-term flooding over 80,000 ha of formerly productive rangelands, periodical flooding of 

another 150,000 ha, and waterlogging of 2,300,000 ha (Babaev and Babaev 1994). Some of the 

return flows were released back in the rivers, consequently contaminating river flows and creating 

external costs to the downstream water users and the environment. It is estimated that the total 

drainage flow in the ASB accounts for 46–47 km
3
, of which, 25–26 km

3
 is discharged into rivers, 

11–12 km
3
 into lakes, and 14–15 km

3
 into the desert (Levintanus 1992:63). 

Diverting excessive amounts of water to irrigated lands in upstream and midstream sites decreases 

water flow to downstream reaches (Figure 2.22). This has become so severe that the riverbed in 

some parts of the lower reaches of the Syr Darya River has been replaced by buildings and crop. 

Some sections of the river in downstream has been blocked by several small dams to supply water 

to small lakes in the delta. Consequently, by the 1990s the river had practically lost its capacity to 
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deliver floods and excess multiannual outflows from the reservoirs to the Aral Sea. For instance, in 

1995, when winter-water releases from the Tokhtogul reservoir were excessive, 19 km
3
 (50% of 

average annual flow of the Syr Darya) water was wastefully discharged into the Arnasay 

depression due to the impossibility of conveying water to the Aral Sea through the narrow and 

frozen downstream riverbed (Mirzaev and Khamraev 2000:360). Increased water levels in the 

depression in turn destroyed the landscape surrounding the lake aggravating environmental 

problems. 

The desiccation of the sea as a result of irrigation expansion and unproductive use of water caused 

the collapse of the fishing industry and water-based transportation in the lower reaches of the Amu 

Darya, increasing unemployment in the circum-Aral region (Figure 2.22). The reduction of river 

flows into deltaic zones decreased the area of tugai forests
1
 from 1,000,000 ha in 1950 to only 20–

30,000 ha in 2000 (Micklin 2007) and damaged habitats for a diverse array of animals, including 

60 species of mammals, about 3,000 species of birds, and 20 species of amphibians (Micklin 2010). 

In addition, storms blow toxic salts and dust from the dried seabed onto the surrounding irrigated 

areas, water bodies, and pastures, increasing soil salinization and further degrading natural 

ecosystems (Micklin 2010). Airborne salt and dust are the main factors associated with the 

increased frequency of a host of health issues in the circum-Aral region including illnesses of the 

respiratory organs, eye problems, and cancers of the throat and esophagus (Micklin 2007).  

Due to changes in regional humidity, climatic conditions have also changed significantly, causing 

hotter summers and longer and colder winters in the circum-Aral region (Micklin 2010). In result, 

the annual growing season was shortened by 10 to 15 days (Mirzaev and Khamraev 2000). Annual 

precipitation has decreased. Additionally, desiccation of the Aral Sea and the complete exposure of 

the seabed unified Vozrozhdeniya Island with the mainland increasing the threat of exposure to 

biological weapons (Micklin 2007). Since Vozrozhdeniya Island was once an experimental site of 

the Soviet military for the development of secret biological weapons it is commonly feared that 

harmful organisms could have survived the decontamination measures and now more easily 

disperse to the mainland via infected terrestrial animals (Micklin 2007). 

The Aral Sea shrinkage and related problems were aggravated by ineffective coordination of basin 

resources after the emergence of five independent Central Asian countries with contradictory 

purposes following the disintegration of the SU (Figure 2.22). On one hand, the collapse of the 

union provided important opportunities for the new Central Asian states to restore their sovereignty 

over the use of natural and capital resources within their territories (Dukhovny 2007, Dukhovny 

and Schutter 2011). On the other hand, the disappearance of a centralized government eliminated 

federal financial support and the previous socio-economic organization and production systems that 

tied Central Asia with the remaining Soviet countries.  

Under the centralized management system, a comprehensive energy production and delivery grid 

was developed that provided a stable energy supply throughout the basin. This energy production 

and supply system allowed mutual compensation mechanisms among the hydroelectric power 

stations of Kyrgyzstan and Tajikistan, and the fossil-fuel power stations of Kazakhstan, 

Turkmenistan, and Uzbekistan. The emergence of five Central Asian countries with different 

interests after the disintegration of the SU in 1991 raised the issues of sharing common water 

resources and related infrastructural facilities in the basin. The limited availability of water 

resources, in contrast to its necessary role in the maintenance and development of the Central Asian 

economies, increased competition among these countries over common water resources. Conflicts 
                                                           
1
 Tugai is the name for riparian forests that emerge in the arid steppes and lowlands of Central Asia that are 

periodically inundated by floodwater. Euphratic poplar (Populus euphratica) is the dominant tree specy of tugai forests 

(Schlüter et al. 2006). 
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of interest between the irrigated agriculture and hydroelectric power generation sectors and the 

resulting change in the reservoir operation mode by prioritizing energy production have reduced 

water availability to downstream countries and environmental needs.  

After the collapse of the SU determining property rights to the hydroelectric and other power 

generation infrastructure that wound up within the borders of the new states also became a 

problem. Currently the locations of 12 rivers, eight water reservoirs, 16 primary collectors, eight 

hydroelectric power stations and more than 60 small rivers and irrigation canals are shared between 

two or three countries (Medvedov no date). Sharing the operational costs of transboundary 

infrastructural facilities and regulating them to satisfy the interests of all of the ASB states is an 

elusive task. Because of the shortages of financial support for the rehabilitation, routine operations, 

and maintenance of water infrastructure, their functionality and efficiency have gradually 

decreased. 

Since the reservoirs in the ASB were built to supply irrigation needs to downstream reaches, the 

changes to the seasonal reservoir storage regime and winter water releases for hydroelectric power 

generation have increased downstream flooding risks (Mirzaev and Khamraev 2000). In November 

to January 2003–2004, winter floods destroyed water control structures and damaged some 

settlements in the Kyzylorda region of Kazakhstan (UNEP 2005) and more than 2,000 people 

evacuated and more than 55,000 ha were flooded, causing  $2.4 million USD worth of damages 

(Dukhovny and Schutter 2011). Flooding occurred again in 2005 and caused in excess of $7.2 

million USD of damages (Dukhovny and Schutter 2011:290). Only after 2005 with the support of 

the World Bank, the Kazakhstan government initiated complex measures to improve the 

conveyance capacity of the Syr Darya riverbed located between the Aral Sea and Shardara 

reservoir, and to restore partially the northern part of the Aral Sea (the Small Aral Sea). 

 In order to prevent the inflows of the Syr Darya into the southern part of the Aral Sea (the Large 

Aral Sea), where it was lost by evaporation, the government constructed the 13 km-long Kok-Aral 

dike to replace previous dikes (Aladin et al. 2006, Sehring and Diebold 2012). The previous dikes 

made of local sand were washed away because of the water level rise in the Small Aral Sea. As part 

of the project, Aklak and Aitek weirs were rehabilitated to increase the conveyance capacity of the 

riverbed and reduce the risk of flooding in the lower reaches of the Syr Darya River. As a result, in 

the last five years water levels in the Small Aral Sea rose by 2 m and the surface of the watershed 

increased by 18% (Sehring and Diebold 2012). Furthermore, water salinity decreased, and fish 

production and harvesting improved, positively influencing the living standards of residents 

adjacent to the Small Aral Sea (including the city of Aralsk with a population of over 30,000). On 

the other hand, despite frequent flooding and excess water supply in downstream reaches during 

the winter and improved environmental conditions in the Small Aral Sea, farmers face severe water 

scarcity during the summer and irrigation areas are decreasing in the southern parts of Kazakhstan. 

Despite the rise of Small Aral Sea levels inspired hope for the improvement of the situation in the 

southern Large Aral Sea, in reality the construction of the dike disconnecting the two seas 

accelerated the shrinkage of the Large Aral Sea. Recently launched campaigns by Uzbekistan 

(Uzbekneftigas), Russia (Lukoil), China (CSEC), Malaysia (Petronas), and South Korea (KNOS) to 

excavate oil and gas on the dried seabed could also decrease desire of decision makers to increase 

water inflow and restore the Large Aral Sea (Aladin et al. 2006, Dukhovny and Schutter 2011:361).  

 

2.7.2 Perspectives of water availability and use in the Aral Sea basin 

Although future water use and tensions over water resources are not entirely predictable, 

expectations for the future are not favorable for the improvement of the regional situation. As noted 

earlier “the potential for conflict over the use of natural resources nowhere in the world is as 
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strong as in Central Asia” (Smith 1995:351). Despite many current environmental and water 

sharing problems, the intentions of the ASB countries are to develop even greater water diversion 

capacity from the rivers. As mentioned above, all countries except Kazakhstan have plans to 

increase the amount of irrigated lands to provide for the demands of growing populations 

(Medvedov no date, Antonov 1996, Sarbaev 1996, Shodiev 1996, O’Hara 1999, Antonov 2000). 

Kyrgyzstan and Tajikistan are particularly interested in building additional dams and in extending 

the capacity of existing reservoirs to increase hydroelectric production and export capacity. If the 

current Afghan government is successful in establishing a peaceful and functional nation-state in 

that country, it will likely want to develop its agrarian sector and thus may claim greater water 

rights. The construction of the Golden Century Lake in the Karakum desert of Turkmenistan in 

order to further re-use return flows to irrigate desert lands would also cause increased water 

diversions from the rivers, as has happened in the case of Sarykamish Lake which was built for a 

similar purpose.  

At present the Karakum canal, which was the longest and largest canal in the territory of the former 

SU with a length of about 1,400 km and annual water discharge of 10–12 km
3
, is already a vivid 

example of wasteful water use in Turkmenistan (Wegerich 2010). This open and unlined canal was 

constructed in 1950s following the Stalin’s proclamation of “Man’s Conquest of Nature” (Sehring 

and Diebold 2012). It delivers water through the Karakum desert to the capital city Ashkhabad and 

other main rural settlements along with the irrigated areas of Turkmenistan. Due to enormous 

losses of precious water resources to the sands of the Karakum, the operation of this waterway 

substantially contributes to the Aral Sea desiccation. Despite these facts the Turkmen government 

intends to further extend this canal.  

Natural levels of river runoff are expected to decrease due to global warming and particularly by 

the diminishment of the glaciers in the water accumulation zones of Central Asia, exacerbating 

existing water conflicts (Chub 2007, IPCC 2007, Savitsky et al. 2007, Dukhovny et al. 2008). Since 

the 1950s, 14–30% of the glaciers in Tian Shan and Pamir have been lost and continue to disappear 

at an annual rate of 0.2–1% (Sehring and Diebold 2012). Glacial melting in turn may increase river 

volumes in the short run, but decreases glacial mass and thus the long-term availability of water 

resources (Chub 2002). By the year 2050, it is predicted that river flow in the tributaries of the 

Amu Darya basin may decrease by 10–15%, while in the Syr Darya basin by 6–10% (Chub 

2007:101). Water availability, particularly during the growing season, is expected to decrease more 

than during the non-growing season (Sehring and Diebold 2012; Figure 2.23 and Figure 2.24). 

Moreover, due to temperature increases plants would require more water to maintain productivity, 

increasing water demands even more in the midstream and downstream reaches (Dukhovny et al. 

2008). Evaporation of rivers and other water bodies would accelerate further desertification and 

desiccation of the Aral Sea (Dukhovny and Schutter 2011). In order to deal with current and future 

water scarcity and thus prevent potential conflicts over water use rights, the timely implementation 

of appropriate technical, economic and institutional measures for efficient utilization of water 

resources is of utmost importance. 

 



 

70 
 

Figure 2.23 Average seasonal flow of the Amu Darya river (at the Kerki gauging station) 

 

Source: Shiklomanov 2009 

 

Figure 2.24 Average seasonal flow of the Syr Darya river (at the Tumen-Aryk gauging 

station) 

 

Source: Shiklomanov 2009 

 

2.7.3 Potential solutions to reduce water demand and save the Aral Sea 

Several approaches have been suggested to either partially or entirely solve the Aral Sea 

desiccation problem. Though the unwanted ecological consequences of the Aral Sea desiccation 

became recognized as early as the 1970s, the problem of the Aral Sea desiccation became widely 

known to the public only in the mid-1980s, during the glasnost
1
 period of Gorbachev (Weinthal 

2002). Initial attempts to solve the intensifying environmental problem began with the 

establishment of the “Government Commission on the Development of Measures for Maintaining 

Ecological Sustainability in the Circum-Aral Sea Region” in the late 1980s. The commission 

organized a contest for the best solutions for restoring the Aral Sea and prepared a “Concept of 

Conservation and Restoration of the Aral Sea and Improving Ecological, Sanitary, Medical, 
                                                           
1
 A policy that called for openness and transparency in politics by permitting public discussion of government activities 

and freer dissemination of information. 
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Biological, and Socio-Economic Conditions in the Circum-Aral Sea Region” based on the results 

of the contest (Weinthal 2002:112). Attempts to improve the conditions in the ASB were continued 

with the support of international donors in the post-Soviet period (Weinthal 2002:152).  

Generally, the options to combat water scarcity issues in the ASB can be grouped into one of two 

categories. One category of measures attempt to increase water supply, which involves activities to 

locate, develop, or exploit new water sources. The other category of measures involves 

mechanisms and incentives for water demand reduction through improving water use efficiency. 

Supply management options primarily focus on water transfers from the other river basins to 

compensate for water scarcity in the ASB and to restore the Aral Sea. The delivery of water from 

outside Central Asia is technically feasible. In the 1980s water managers from Moscow and Central 

Asia proposed to divert up to 60 km
3
 water from the Ob and Irtish rivers in Siberia to the basin as a 

panacea to water shortage issues (Micklin 2010). Although implementation of this project began 

with a plan to divert about 27 km
3
 water at the initial stage, it was soon stopped by order of 

Gorbachev in 1986 due to possible ecological threats and the enormous investment costs of this 

large-scale project. There are still some supporters of this proposal, despite the fact that the 

realization of the project would cost at least $40 billion USD even without the enormous political 

costs that would be incurred due to increased dependence of the Central Asian states on Russia. 

Moreover even if the project was implemented as planned, less than 15 km
3 

would actually reach 

the Aral Sea due to losses during conveyance (Micklin 2010).  

Another proposal is water transfer from the Indus and Ganges rivers to the Amu Darya river 

(Khamraev 1996a, Khamraev 1996b, Zonn et al. 2009) through the establishment of a Arabian Aral 

Water Transportation Route (AAWTR). This scheme is a part of larger program of establishing a 

United Asian Water Management System (UAWMS), which proposes the unification of a 

hydrographic set of the ASB watershed with the rivers (Ob and Irtish) of the Kara Sea basin in the 

north and with the rivers of the Arabian Sea in the south (Khamraev 1996a). This grandiose project 

would not only divert water to the Aral Sea, but also develop a Central Asian-South Asian 

transportation corridor that would provide access to the world’s oceans for the landlocked Central 

Asian states. However, institutional and political costs of this projection would be even costlier 

than the proposed Siberian water transfer project since its implementation would require 

agreements and cooperation among several states, including: Iran, Afghanistan, India, Pakistan, the 

Central Asian states, and some Arabian countries. Given growing water scarcity in the Indus and 

Ganges, it would be highly unlikely that either India or Pakistan would agree to such transfers 

(Claudia Ringler, personal communication 2012). 

A more practical proposal, although with much less potential in terms of water delivery volume and 

still costly, would be a diversion from the Zaysan Lake of Kazakhstan to the Syr Darya (Micklin 

2010). The feasibility of getting this project implemented is higher compared to the other proposals 

because its costs would be lower due to the relatively shorter water transfer route and the fact that 

water would flow by gravity to its destination in the Syr Darya. However, building a large diameter 

tunnel through 100 km of mountains would be quite costly. Moreover, removing water from the 

lake would expose several kilometers of the bed of the Irtish River, with negative impacts on the 

environment and ceasing hydroelectric power generation at the Buhtarma dam (Micklin 2010). 

There was also a proposal to mitigate the negative impacts of the Aral Sea desiccation by diverting 

water from the Caspian Sea (UNESCO 2000). Like the other proposed solutions this measure 

would require a huge technical and financial effort to construct a canal between the two seas and 

gigantic pumping stations with high energy demands for lifting the water. The expected economic 

and environmental performance of this proposed inter-sea water transfer project is dubious. The 

water of the Caspian Sea is very saline and would not allow the restoration of the fishery in the 
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Aral Sea. In addition, the realization of this project may have additional negative impacts on the 

already deteriorated ecological conditions of the Caspian Sea.  

Since the implementation of inter-basin water transfer schemes would incur enormous costs and 

may further raise already high groundwater levels in the ASB, it would be more rational to use the 

capital resources and efforts to improve the productivity of water resources already available within 

the basin rather than importing more water from other areas (Micklin 2010). For example, 

considering the fact that huge amounts of return flows are evaporating in the multiple desert 

depressions scattered at the tail ends of irrigation zones within the basin, one potential solution 

would be the diversion of these flows back to the Aral Sea via a system of canals running parallel 

to the rivers (Chembarisov 1996). However, some authors (Morozov n.d., Mirzaev and Khamraev 

2000) have criticized this proposal stating that because of the high salinity levels of these returning 

flows, the sea would become a hazardous waste water sink that would be unsuitable for animal and 

plant life. Moreover, this and all the other proposals discussed above are designed to alleviate the 

consequences of the problems in the basin rather than focusing on resolving the root causes of the 

problem. From a water supply management perspective, more viable measures are augmenting 

water availability by building additional small reservoirs, improving irrigation networks, and 

increasing rain catchment capacity by expanding rainfed lands (Khamraev 1998). However, the 

implementation costs of these supply-oriented proposals would also be prohibitive. 

Considering the high investment costs of water supply enhancement and the currently poor 

economic conditions of the Central Asian states (World Bank 1992), water demand management 

measures are more likely to be economically feasible than water supply management measures in 

order to reduce current water consumption and increase water availability for environmental flows. 

Higher water use per capita and per hectare in Central Asia than water use rates in the dryland 

regions such as Spain, Pakistan, Turkey, Mexico, North African countries and Middle Eastern 

countries (Varis and Rakhamanan 2008) also indicates the essentiality of reducing water demand 

rather than augmenting water supply. 

Water demand management measures focus on obtaining more production gains or benefits per 

unit of available water (GEF 2003), which can be achieved through introducing water saving 

technologies (Bekchanov et al. 2010), replacing water intensive crops with the crops that use less 

water (Bobojonov et al. 2013), and developing low water consuming production activities. Water 

saving technologies such as drip and sprinkler irrigation, and laser guided land leveling allow to 

use of less water to obtain the same or higher yields. The introduction of high efficiency irrigation 

technologies would not only decrease demand in the field, but also demand at water diversion 

nodes and thus would reduce the conveyance and pumping costs. Cultivating crops with lower 

water requirements such as vegetables, fruits, and sunflower instead of rice and cotton permit 

substantial reductions in overall water use. Developing industrial and services sectors instead of 

relying on irrigated agriculture may also allow substantial reductions in water demand while 

providing higher income levels.  

Decreasing water overuse due to inefficient water management institutions is another option to 

reduce water demand and increase water productivity. Water overuse can be prevented by 

enforcing water use quotas (limits) or charging fees for water use (GEF 2003). Enforcing water use 

and return flow quotas limit water withdrawals, making it sufficient to meet original demand. 

However, based on the low effectiveness of administrative and bureaucratic mechanisms and high 

costs of control, this option is limited to influence on the attitude of water users. Alternatively, 

water pricing would incentivize water users to use water more carefully as they do not want 

excessive payments for water services and thus try to use only abundant water for their needs. 

Treating water as an economic good would also signal the value of the resource and foster broader 

implementation of water saving technologies. 
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2.7.4 Investment costs of restoring the Aral Sea 

Since there are several solutions that can enhance the restoration of the Sea one must conceptualize 

the options based on some criteria. Despite technical feasibility of these options their practical 

implementation has been less successful due to unpredictable environmental and political risks and 

mainly due to their enormous financial costs. Therefore, the investment costs of different options 

were compared to assess their financial viability based on McKinsey marginal cost curve (Addams 

et al 2009) which will be described in the following. Different measures were ranked according to 

the ratio of their average investment requirement to the potential amount of water they would make 

available to the Aral Sea (Figure 2.25). Data on investment costs and improved water availability 

under each option were obtained from relevant studies (Levintanus 1992, Khamraev 1996a, 

Micklin 2010, Badescu and Cathcart 2011). Since some of these studies were conducted before 

1990s and some in more recent years investment values were presented at the prices of different 

years. Considering inflation rates, the investment levels at the prices of different years were re-

estimated at the price levels of 2006.  

The ranking of the investment options showed that restricting rice production is the least costly 

measure of reducing water demand (Figure 2.25). Due to the high water consumption needs of rice 

(which are 5–6 time greater than cotton), reducing rice production areas by 150–200,000 ha would 

decrease water need for at least 4–5 km
3
 annually (Levintanus 1992). The reduction in rice 

production could be compensated for by imports from countries with abundant water supplies at a 

cost of about $80 million USD (estimated originally at 1990 price levels but converted to the price 

levels of 2006 considering the inflation rate; Levintanus 1992). The second best option would be 

reducing cotton fiber production while increasing the share of chemical fiber production by 50% 

(Levintanus 1992). This option would require a total investment of $1.2 billion USD (Levintanus 

1992). Diverting drainage flows from desert sinks is another option that would return 15 km
3
 of 

water to the Aral Sea at a cost of about $2.5 billion USD (Levintanus 1992). The introduction of 

water payments that require the installation and operation of water measurement equipments at an 

investment cost of around $2.5 billion USD would reduce water demand by 8 km
3
 (Levintanus 

1992). Upgrading agricultural supply chains by improving the infrastructure for after-harvest 

transportation, storage, and processing would require investing $1.3 billion USD and would 

eliminate production losses and reduce water demand by 2 km
3 

(Levintanus 1992). Investing $5.5 

billion USD in afforestation efforts and the development of mountain horticulture could augment 

runoff by 5 km
3 

(Khamraev 1996a). Investing $6.3 billion USD in the development of cotton-

processing industries while reducing cotton production areas would decrease water demand by 5.2 

km
3
 (Levintanus 1992). Last but not least, modernization of existing irrigation systems over 5.2 

million ha of irrigated lands at an investment cost of about $25.4 billion USD (16 billion USD in 

1990 prices) could reduce water use requirements by 12 km
3 

(Micklin 2010).  

More than 35 km
3
 of additional water would be available only with the investment costs of less 

than $6.5 billion USD. Implementation of all of the proposed water demand management measures 

would reduce water use by about 60 km
3
 at an investment cost of less than $45 billion USD. 

Meantime, the investment costs of the water supply management measures are much higher than 

those of demand management measures. Water supply management options through water 

diversion from the other rivers and seas such as the Caspean Sea (Badescu and Cathcart 2011), the 

Indus rivers (Khamraev 1996a), and the Siberian rivers (Micklin 2010) to refill the Aral Sea would 

require investment costs of more than $121 billion USD and provide about 35 km
3
 of additional 

water for the environment. 

An annual inflow of 53 km
3
 is required to restore the Aral Sea to its pre-1960 level in 50-60 years, 

and an annual inflow of 35 km
3
 is enough to stabilize the sea level at 40–41 m as observed in 1985 

(Micklin 1992). Therefore, water demand management measures alone can effectively deal with 
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water scarcity problems in the ASB without water transfers from the outside basins that require 

exorbitant investment costs. 

 

Figure 2.25 Investment costs of incremental water supply to the Aral Sea (at 2006 price 

levels) based on McKinsey abatement cost curve 

 

Note: Numbers in the white text boxes represent the total required capital investment costs, B = billions. The costs at 

the price level of 1990 were inflated by factor of 1.58 to evaluate the costs in prices of 2006. 

Source: Based on the techno-economic review and summary papers of Levintanus (1992), Khamraev (1996a), Micklin 

(2010), and Badescu and Cathcart (2011) on restoring the Aral Sea 

 

 

2.7.5 Implications for dealing with scarcity of water for irrigation and environment needs 

Although many corrective measures for the Aral Sea problem have become known in the 1980s, 

several political, institutional, and technological barriers in addition to financial hurdles prevented 

their implementation. Summarizing the points discussed above, the main causes of the water 

scarcity problems in the ASB, the constraints on implementation of appropriate water management 

measures, and the caveats in the reforms (or the reasons for the failure of the efforts) will be 

described in the following (Table 2.13). 

The primary constraints on the implementation of improved water management options were the 

scarcity of financial resources, the lack of incentives for efficient water use, a traditional mindset 

based on expectations of the initiatives and orders from a central authority, and reluctance for 

cooperative management of common basin resources. High investment costs combined with 
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enormous environmental and political risks prevented the construction of massive water transfer 

schemes and the implementation of other water supply augmentation measures. Despite higher 

financial feasibility and substantial contribution to environmental water availability, wide 

implementation of measures of water demand reduction did not take place because of the lack of 

incentives for efficient water use under the centralized water management system based on 

command-and-control principles. 

In the aftermath of independence, ASB countries attempted to establish decentralized water 

management institutions through formal changes in legislation, but only with limited success. Since 

the bureaucratic water management system could not provide meaningful incentives to use water 

efficiently but was still perpetuated to the present days, visible positive changes in the Aral Sea 

level and improvements in environmental conditions in the circum-Aral Sea region remained 

negligible. Incentives can be effective means for improving compliance with rules designed to 

contribute to the broader good (Easterly 2001). Lansdburg (1993) put it more concisely by saying 

that, “people respond to incentives; all the rest is commentary.” Therefore, establishing more 

decentralized water management institutions that can create incentives for water users to increase 

water use efficiency and productivity is essential for the success of any project concerned with the 

water issues in the ASB. Furthermore, the interdependence of all water uses and production 

activities, and the importance of preserving the basin ecosystems for all regional stakeholders 

necessitate cooperation in sharing the costs and benefits of using scarce resources rather than 

individualistic approaches to water use by each country through neglect of the interests of 

neighboring states. Any self-serving attempts by one of the ASB countries to improve their own 

water access at the neglect of the interests of the others may cause conflicts and provoke 

countermeasures that may harm that country. To avoid tensions and mistrust among the ASB 

countries, workable and reliable mechanisms that incentivize cooperation on efficient water 

allocation need to be developed. 

Some projects to improve environmental situations such as reforestation of the dried seabed of the 

Aral Sea and constructing channels along the rivers to divert return flows to the sea were initiated, 

but did not provide the expected results. These projects were not much successful since they only 

addressed the consequences (symptoms) of the Aral Sea desiccation but ignored the root causes of 

the problem. For example, the projects that focused on afforestation of the seabed aimed at 

reducing the impacts of windborne spread of the salts and dust (Morozov n.d.). The established 

forest would demand a continuous water supply, especially during the summer months, which 

could be possible through the cooperation and agreement of the all riparian regions. The other 

project intended to divert return flows back into the sea through canals running parallel to the rivers 

which was started but ultimately was not completed. Refilling the Aral Sea with highly saline 

return waters and investing scarce financial resources in excavating the canals, pumping water, and 

conveyance would not provide sufficient benefit since quality of water would limit the restoration 

of the animal and plant life in the Aral Sea and its delta. Thus, the policies of improving 

environmental sustainability and water use efficiency should first address the root causes of the 

Aral Sea desiccation to effectively cope with environmental degradation. From this perspective, 

sectoral transformation by prioritizing sectors with higher economic growth potential but less water 

demand, instead of currently dominant cotton cultivation, and changing command-and-control 

based water management institutions to more liberal and decentralized water allocation institutions 

that can create incentives for cooperation in water use are more promising. Considering very low 

efficiencies of irrigation systems a huge potential for hydropower production in the ASB, 

improvements of irrigation and conveyance efficiency through the implementation of modern 

technologies and infrastructural developments for better coordination of the basin resources may 

also enhance efficient water use. These three options and their roles in efficient water use will be 

analyzed in detail in the chapters that describe the empirical results. 
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Table 2.13 Causes of water problems, constraints to improve water use efficiency, and the caveats in water reforms in the Aral Sea basin 

  Causes of decreasing water use efficiency, 

increasing water scarcity and worsening 

environmental conditions 

 Constraints to the adoption of the 

prevention/improvement measures 

 Caveats led to the failure of the 

attempts to change 

 Causes Relevance
a)

  Constraints Relevance
a)

  Caveats Relevance
a)

 

Socio-

economic 
 Population growth 

 Industrial development 

 Irrigation expansion 

 Inadequate investments in 

technological improvements 

 Dominance of water intensive 

production activities 

+ 

+ 

+++ 

+++ 

 

+++ 

 

  Low financial capability of 

the farmers/governments  

 High implementation and 

maintenance costs 

++ 

 

+++ 

  Unseen costs 

 Lower benefits than 

expected 

 Discontinuation of 

donor support 

+ 

+ 

 

++ 

Environmental  Climate change 

 Water pollution 

 Groundwater depletion 

 Land salinization 

+ 

+ 

0 

++ 

   Irrelevance to the local 

conditions 

0     

Technical  

  
 Deterioration of the irrigation 

infrastructure  

+++ 

 

  

  

    

  
 Neglecting the root 

causes, focus on the 

symptoms of the 

problem 

+++ 

 

Technological 

(Knowledge) 
 Lack of environmental 

consciousness 

+   Lack of technologies 

 Lack of experts 

--- 

-- 

   

Institutional 

  
 The 'command-and-control' 

based system 

+++ 

 

  

  
 Lack of incentives 

 Traditional mindset 

 Religious perceptions 

+++ 

+++ 

+ 

  

 
 Inefficient 

coordination 

+++ 

Political  Inter-state conflicts over 

sharing water and 

infrastructural resources 

+++    Lack of cooperation 

 The role of cotton in social 

control 

+++ 

+ 

    

Notes: 
a)

 Very weak - “---“; Weak – “--”; Fairly weak – “-”; Neutral – “0”; Fairly strong – “+”; Strong – “++”; Very strong – “+++”   
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3 SECTORAL TRANSFORMATION OPTIONS FOR SUSTAINABLE 

DEVELOPEMENT IN THE ARAL SEA BASIN: THE CASE OF 

UZBEKISTAN
1
 

3.1 Introduction 

This chapter describes potential sectoral transformation options for sustainable growth to address 

the issues of overdependence on irrigated agriculture, particularly lingered dominance of cotton 

in crop cultivation, which is one of the root causes of Aral Sea desiccation. Due to the lack of 

appropriate data for the rest of the ASB, only the case of Uzbekistan is illustrated in this chapter. 

Nevertheless, considering the similarity of environmental and economic conditions throughout 

the whole ASB and the facts that Uzbekistan accounts for more than half of both the irrigated 

croplands, and the population in the basin, the country is representative of the rest of the ASB.  

Hard-cash revenues from the exports of cotton is a main reason for the continuation of water 

intensive cotton production practices even aftermath of independence in Uzbekistan (Box 3.1). 

Using input-output model in combination with multi-criteria assessment methods alternative 

production activities that has higher economic growth impact but less water requirement in 

contrast to cotton are analyzed in this chapter.  

After the review of literature on the role of sectoral transformations in both international and the 

study area contexts and justification of the research needs, the methods used for the empirical 

analysis of potential sectoral transformation options are demonstrated. Next section illustrates 

the results of (i) ranking economic sectors to determine relevant options for sustainable sectoral 

transformation according to economic growth potential and total (direct plus indirect) water use 

by each sector. First, intersectoral relationships of the Uzbek economy based on IO model 

calculations are discussed. Intersectoral economic and water use linkage indexes are also 

demonstrated. Then, the results of the rankings of sectors according to the linkage indexes and 

water use levels are presented. Final section includes a detailed discussion of the results and 

conclusions.  

 

3.2 Modeling the role of structural transformations for sustainable development: 

literature review 

3.2.1 Sectoral transformations as an engine for growth: international perspective  

As previously postulated in the three-sector hypothesis, the sectoral structure of an economy 

plays a pivotal role in economic development (Clark 1940, Fourastie 1949). According to the 

hypothesis, the GDP shares of primary sectors such as agriculture and mining industries shrink, 

while the shares of secondary (manufacturing) and tertiary sectors (services) are expected to 

increase along with improvements in national welfare. Sir W. Lewis Arthur (1954) conducted a 

seminal study on the role of sectoral transformations on economic development. Lewis’s two-

sector economy model explored how transformation of the labor forces from an overpopulated 

rural subsistence sector characterized by zero-marginal labor productivity to a modern industrial 

sector characterized by high labor productivity can lead to increased employment and expand 

overall economic production.  

 

                                                           
1
 This chapter was published as a ZEF Discussion Paper in modified form (Bekchanov et al. 2012). Some results 

were published in a peer-reviewed journal  (Rudenko et al. 2013). 
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Box 3.1 Exports and imports in Uzbekistan 

Before the 1990s Uzbekistan produced more than 60% of the total cotton fiber (“white gold”) outputs in the 

SU and the cotton’s share of export revenues were more than 45%. Reforms initiated after 1991 to facilitate 

a transition towards a market-oriented economy changed the structure of the exports. The cotton’s share of 

total export revenues decreased from 28% to 10% between 2000 and 2008 (Figure 3.1) though physical 

amount of the cotton exports did not decrease. During the pre-independence period about 60% of 

Uzbekistan’s total petroleum consumption was imported from other SU countries. Since independence 

Uzbekistan has not only become energy self-sufficient, but gradually turned into a net exporter of energy 

by increasing development of its oil and gas resources. The share of fossil fuels in total export revenues 

increased from 10% to 25% and export revenues increased from $3.2 billion to $11.6 billion USD. The 

export share of metallurgy did not exceed 13% during the period of 2000–2008 according to UzStat (2008), 

however, other studies indicate that the share of metallurgy was 25% to 30% (CEEP, 2006, Müller 2006, 

UNDP 2006). 

Figure 3.1 Change in exports structure of Uzbekistan, 2000–2008 

 

Source: Based on UzStat (2008) 

 

Because industrialization and modernization of the different economic sectors were prioritized between 2000 

and 2008, export revenues were often used to import capital goods (Figure 3.2). As a consequence, the import 

share of machinery among total annual imports increased from 36% to 53%. The import share of food products 

and commodities exhibited a parallel decrease from 12% to 8% despite slight increases in absolute volume. 

Guided by policies and strategies that led to robust growth in grain and energy production (import substitution) 

and decreased dependence on cotton export revenues, Uzbekistan became less vulnerable to “resource curse” 

dynamics (McKinley 2008). 

Figure 3.2 Change in imports structure of Uzbekistan, 2000–2008 

 

Source: Based on UzStat (2008) 
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Empirical investigations of the ‘patterns of development’ through analysis of sectoral shares, 

market sizes and their impacts on production outputs across several countries also showed the 

importance of sectoral transformations in economic growth (Chenery 1960). It was also noted 

that the availability of natural and labor resources, suitable environmental-climatic conditions, 

technological access, and trade relationships with other countries all influence a country’s path 

with respect to sectoral structural changes and eventual specialization in particular activities 

(Chenery 1960). Development of the IO model (Leontief 1951) was important contribution to the 

empirical analysis of the structural change and economic development since the method allowed 

to consider the interdependence of all the economic sectors. 

The early phase of development studies in the 1960s and 1970s accepted economic development 

as economic growth in terms of increases in outputs and the capacity of the economy to generate 

annual increases in GDP. Prioritization of the sectors for further expansion was discussed, 

mainly considering their economic growth potential, which is usually based on intersectoral 

linkage indexes (Rasmussen 1956, Hirschmann 1958). Increased welfare levels accompanied by 

environmental degradation, including: air pollution, depletion of water sources, desiccation of 

watersheds, deforestation, and land degradation, lead economists to differentiate the quality of 

economic growth rather than purely focusing on the maximization of the economic outputs. The 

Brundtland Commission report (WCED 1987) had a substantial impact on the emergence of 

environmentalist movements and thus to additional development research on the need to take 

into account environmental aspects of growth for providing sustainability. A broadly agreed 

definition of sustainability is “practices and development that meet the needs of the present 

without compromising the ability of future generations to meet their needs” (WCED 1987). 

Improving sustainability through sectoral transformation reforms typically intends to reduce the 

production of resource intensive activities, while expanding activities with higher resource use 

efficiency and high economic value added.  

Sustainability is not limited to improved energy efficiency, but also includes improved efficiency 

of the use of other natural resources such as water (Markard et al. 2012). Efficient water use in 

this case is reached through reallocating water from its lower to higher value uses. Such 

reallocations require prioritizing sectors in accordance to their economic performance and water 

use requirements. Prioritization of lower water use as well as higher income is of utmost 

importance, particularly for economies in dryland regions (Rosegrant et al. 2002) where water 

scarcity used to be a primary constraint for economic development. Although only relatively 

smaller areas within dryland regions are suitable for irrigated crop production, they are vital for 

livelihood security and public welfare. The magnitude of water resource management urgency is 

illustrated by the facts that dryland regions account for about 40% of global irrigated areas and 

hosts a third of the present world population (Millennium Ecosystem Assessment 2005:1). 

The integration of economic and environmental indicators into strategic national livelihood and 

welfare plans allows to determining options (economic activities) with higher potential for 

sustainable growth (Ekins 2000, UNESCAP 2009). For addressing not only economic growth 

but also environmental sustainability issues, the IO analysis was further extended by 

incorporating environmental accounts. IO approaches are ideally suited for integrating 

incommensurable physical indicators into a unified and consistent framework (Vardon et al. 

2006). Indeed the United Nations has recognized the need for such integrated economic-

environmental frameworks in their System of Environmental-Economic Accounting (UNSD 

2011). Thus, IO models have been an essential part of sustainable consumption and production 

policy designs (Daniels et al. 2011). 

Environmentally extended IO models have been widely used to analyze intersectoral water use 

and economic relationships (Velazquez 2006, Dietzenbacher and Velázquez 2007), and to 

determine key sectors based on economic and environmental performance indicators (Lenzen 
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and Foran 2001, Lenzen 2003). These models were used also to estimate the virtual water 

embedded in international trade flows (Lenzen et al. 2012) and national water footprints (Zhao et 

al. 2009, Feng et al. 2011b). Gallego and Lenzen (2005) applied an IO model to estimate virtual 

water content and determine water consumption responsibilities of consumers and 

workers/investors according to their final demand and primary input use respectively. In their 

‘Triple Bottom Line’ analysis of the Australian economy, Foran et al. (2005) used an IO model 

to compare economic sectors according to their socio-economic and environmental indicators 

such as virtual water consumption, greenhouse gas emissions, land disturbance, employment, 

family income, and government revenues.  

The results of the sectoral performance according to multiple criteria are used to recommended 

undertaking the necessary changes in tax and subsidy policy reforms to influence the course of 

sectoral transformations (UNDESA 2010). For instance, environmental tax reform intends to 

shift the tax base from the traditional taxes, such as the ones based on labor, to the taxes with 

environmental relevance. Similarly, environmental subsidy reform intends to redirect subsidies 

from less environmentally attractive economic activities to more environmentally friendly ones. 

A detailed review and summary of the application of IO modeling tools on different policy 

purposes were provided by Daniels et al (2011). 

Several multi-country, IO databases (WIOD1, EXIOPOL2, EORA3, GTAP4) were developed to 

analyze global economic structure and resource use linkages. These databases are intended to 

help determine sectoral specialization of different countries considering their comparative 

advantages in the global market, while diminishing the disturbance of environmental resources. 

The main shortcomings of these databases are that they do not have data for all countries and 

some sectoral accounts are highly aggregated. Therefore, further improvements in the quality 

and usability of the databases are required. 

 

3.2.2 Sectoral transformation options in the context of the Aral Sea basin 

Sectoral transformations such as developing alternative options to raw cotton production and 

meeting domestic food demands in the context of the ASB were analyzed using different 

approaches. Based on cost-benefit analysis techniques it was argued that increased cotton 

processing, while reducing cotton production, can enhance additional incomes while reducing 

water consumption (Levintanus 1990, Rudenko 2008). Partial equilibrium models were used to 

assess crop structure changes due to population and income growth, as well as under different 

trading scenarios. IMPACT (International Model for Policy Analysis of Agricultural 

Commodities and Trade), a global partial equilibrium model
5
, was applied to estimate food 

demand and supply, and thus respective agricultural production pattern changes in Central Asia 

(Pandya-Lorch and Rosegrant 2000). IMPACT projections showed that Central Asia would be 

self-sufficient in cereals and meat between 1995 and 2020 (Pandya-Lorch and Rosegrant 2000): 

the proportion of cereals consumption met through the net imports would be 2–3%; the 

proportion of meat consumption met through net imports was forecasted to increase from 8 to 

13%. These favorable consumption levels would be balanced with annual increase rates of 

1.15% and 1.33% in cereals and meat production respectively. However, as mentioned in the 

paper (Pandya-Lorch and Rosegrant 2000), attaining food self-sufficiency not only at national 
                                                           
1
 www.wiod.org 

2
 www.feem-project.net 

3
 www.worldmrio.com 

4
 www.gtap.org 

5
 The model allows different estimates of the changes in supply, demand, and prices for agricultural commodities 

due to changes in income, population size, yield, crop area/herd size, and irrigation (Rosegrant et al. 2005). Country 

and regional agricultural sub-models are linked to each other through trade (Rosegrant et al. 2005). 
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level but also at household level would depend on food availability at local/community markets, 

which requires well-functioning infrastructure, stable food prices, and free flow of information 

(von Braun et al. 1992). Despite its very well structured economic subcomponent the IMPACT 

model is highly aggregated at the Central Asian level and thus does not consider sub-regional 

differences in demography, economy, agriculture, and water use.  

Another dynamic partial equilibrium model—WATERSIM
1
—was applied to analyze the impact 

of different agricultural market liberalization scenarios (‘business as usual’, ‘regulated trade plus 

internal market liberalization’, and ‘full internal plus external market liberalization’) on water 

use and crop production patterns in Uzbekistan (Abdullaev et al. 2009). ‘The full market 

liberalization’ scenario predicted the expansion of cotton production, occupying 52% of total 

crop croplands by 2020. Total water withdrawal increases by 8% under the ‘full market 

liberalization’ in contrast to 18% under the ‘business as usual’ scenario. The model results 

predicted an increasing role of cotton production in income generation and reduced water use 

under the ‘trade liberalization’ scenario. Despite potentially positive impacts of the liberalization 

on water use and incomes, increasing cotton production and supporting the dominance of cotton 

do not sound consistent with sustainable development objectives. The results ignore the fact that 

economic reliance on cotton did not improve irrigation efficiency, but led to environmental 

degradation during the Soviet era despite the fact that cotton fiber at that time had more than 

twice its current value in the world market (Baffes 2004). Furthermore, if the dramatic decline of 

the agriculture productivity in transition countries after 1990s are considered (von Braun and 

Bonilla 2008:14), the comparative advantages of producing cotton in Uzbekistan must be 

decreased. 

The impact of cotton market liberalization on national income, governmental budget, and private 

sector revenues in Uzbekistan was tested also using a Computable General Equilibrium (CGE) 

modeling approach (Müller 2006). It was an influential contribution to rare studies of structural 

changes in the Central Asian countries based on IO modeling tools. The model showed that 

despite positive impact of the liberalization on governmental revenues it would reduce private 

sector revenues and total national income. Later, this CGE model was updated and applied to the 

case studies of both Uzbekistan and the Khorezm region within the country for comparing the 

macroeconomic effects of agricultural policies at national and regional levels (Bekchanov et al. 

2012). The incorporation of water as a factor into the agricultural production function allowed 

estimates of the changes in water demand due to agricultural policy changes. The impact of total 

factor productivity improvements in livestock rearing and primary crop (cotton, wheat, and rice) 

production on water uses, the production patterns, and incomes were examined. The models 

indicated that the improvements of the productivity in livestock production sector would provide 

higher income growth than investing in crop production. Fodder production and thus water 

demand for fodder crops would be increased under the improved livestock productivity and 

consequent favorability of livestock sector expansion. However, no comprehensive studies were 

found that compare all economic activities within a single modeling framework according to 

their economic importance and environmental influence. Under increasing water scarcity 

conditions, comparing direct and indirect water uses and the economic importance of all sectors 

based on a comprehensive analytical framework such as IO model would allow an additional 

insight into water-economy relationships, facilitating decisions about sectoral transformation for 

sustainable growth in Uzbekistan and the ASB.  

 

                                                           
1
 The model consists of two sub-models: the “food demand and supply” model adapted from IMPACT (Rosegrant et 

al. 2005) and the “water demand and supply model” including combined elements of the PODIUMSIM (Yakubov et 

al. 2009) and IMPACT-WATER models (Abdullaev et al. 2009). The key drivers for the changes in the model are 

population growth and income. 
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3.2.3 Input-output modeling framework as a tool for analyzing sectoral interlinkages 

Prioritizing the sectors for effective economic growth policy in arid countries with considerable 

water supply challenges can be supported by comparing total (direct plus indirect) water use 

requirements of all sectors in addition to the commonly used economic linkage indicators 

(Lenzen 2003). Although cost-benefit analysis tools, including: net benefit, net present value, 

and internal rate of return (EC 2008) allow ranking economic activities in terms of their 

economic growth potential, these methods ignore the fact that the sector under examination is 

interdependent with other sectors of the economy. In reality, the expansion of a particular sector 

may indirectly impact the growth of the other sectors by demanding commodities of these 

sectors as inputs or supplying its outputs to other sectors. The IO model of Leontief (1951) 

permits the analysis of these sectoral interdependencies (Hirschman 1958, Bharadwaj 1966, 

Hazari 1970, Jones 1976). The unique structural features of IO models also provide an 

opportunity to integrate the use of water and other resources in the analysis (Lenzen 2003).  

IO models of resource chains are based on a top-down approach which provides some 

advantages over more common bottom-up approaches of estimating virtual water content 

discussed by Chapagain and Hoekstra (2003, 2004, 2007). The top-down approach is based on 

aggregated data on sectoral water consumption and production levels on a country-wide basis, 

while bottom-up approaches consider water use and production at the local level. In contrast to 

bottom-up approaches that allow analysis of individual production processes and only partially 

cover virtual water use, top-down approaches simultaneously consider production 

interrelationships among all economic sectors (Van Oel et al. 2009, Feng et al. 2011a, 2011b). 

For instance, a bottom-up approach based analysis of the virtual water content of raw cotton will 

indicate the amount of water directly consumed in cotton cultivation, but is limited in the sense 

that it does not include information on how much water is used to produce cotton production 

inputs such as seed, agrochemicals, and fuel during field operations. Water requirements in 

upstream sectors are especially relevant in cases where intermediate inputs into production are 

produced domestically. A top-down approach employing IO models allows the calculation of 

total (direct plus indirect) water use  by considering not only water use by the sector and all 

intermediate inputs used in this sector, but also water use along the entire supply chain (Lenzen 

2009, Duarte and Yang 2011). Thus mainstream bottom-up approaches of calculating virtual 

water tend to systematically underestimate virtual water contents. 

Additionally, the conventional bottom-up approach of measuring the virtual water content as a 

physical water requirement per physical output is limited and inadequate if the intention is to 

compare commodities from different sectors. For example, a comparison of the virtual water 

content of 1 kg of meat to 1 kg of wheat neglects the fact that these two commodities have very 

distinct economic values. Due to the fact that values of different commodities in monetary terms 

are comparable to each other, estimating and comparing water use per unit relative to economic 

value is more relevant than simply water use per physical unit for this kind of analysis.  

IO models can be also applied to identify so-called key sectors and sequentially formulate 

economic development strategies (Rasmussen 1956, Hirschman 1958). A key sector is one 

whose growth will promote above average expansion in the economy (Rasmussen 1956, 

Hirschman 1958). Impulses of growth from one sector can stimulate supplying sectors 

(backward linkage) or other end-use sectors (forward linkage) (Rasmussen 1956, Hirschman 

1958). Considering sectors with stronger-than-average backward and forward linkages as “key 

sectors,” Hirschmann (1958) postulated that investments in such key sectors are an efficient way 

to improve overall economic development.  

Chenery and Watanabe (1958) used the column and row sums of a technical production 

coefficients matrix as backward and forward linkages respectively. In contrast, Rasmussen 

(1956) and Hirschmann (1958) suggested using the column and raw sums of a Leontief inverse 
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matrix as backward and forward linkages, since the inverse matrix based sums describe full 

linkage relationships. Hazari (1970) introduced a weighting scheme for backward and forward 

linkage measures, considering the relative importance of each sector in accordance with its final 

demand or value added. Another approach for estimating the importance of any economic sector 

is the hypothetical extraction method (HEM). This approach is characterized by the hypothetical 

elimination of a sector followed by estimating the impacts on multipliers (Strassert 1968). 

Different HEM forms were proposed by Hewings (1982), Cella (1984), and Sonis et al. (1995). 

A more recent linkage measure was proposed by Oosterhaven and Stelder (2002) in which the 

output generated by all sectors as a response to the final demand of a certain sector is normalized 

for the output generated in the sector. Despite substantial improvements, all alternative 

approaches to measuring intersectoral linkages have advantages and disadvantages and should be 

considered as complementary rather than mutually exclusive (Lenzen 2003). The approach 

introduced by Rasmussen (1956) and Hirschman (1958) is commonly used by practitioners and 

considered a standard way of estimating intersectoral linkages (Midmore et al. 2006).  

Beyers (1976) and Jones (1976) identified several shortcomings of the Leontief inverse model 

for measuring forward linkages. For example, a raw sum of Leontief’s inverse matrix is “the 

result of demand generated by user’s backward linkage” (Jones 1976), and thus cannot be used 

to measure forward linkages. Therefore, these and other authors (Miller and Lahr 2001) 

recommended using the Ghosh inverse matrix (1958) as the only reasonable candidate for 

calculating forward linkage indices. However, the Ghosh model is heavily criticized for its 

implausibility in capturing causal relationships between primary inputs and economic growth 

(Oosterhaven 1988, 1989, 1996; de Mesnard 2009). Considering these efforts and also 

Dietzenbacher (1997), a Ghosh model can be used as a price model to capture the price effects 

without quantity effects. Consequently, a Ghosh inverse model can be used as a static and 

descriptive tool to measure forward linkages that are interpreted as the amount of output required 

to absorb primary inputs (Lenzen 2003). Non-causal interpretation of forward linkages discussed 

above can also be applied to environmentally extended IO models (Gallego and Lenzen 2005). 

 

3.3 Data sources and methods for the analysis of alternative economic activities  

3.3.1 Estimation of the input-output table of the Uzbekistan economy 

Analyzing intersectoral linkages starts with estimation of input-output table (IOT). During the 

Soviet era, government statistical organizations were entrusted with the development of national 

and regional IOTs for Uzbekistan. After independence, IOTs have not been reported by national 

statistical organizations. Müller (2006) developed a national social accounting matrix (SAM) 

with twenty sectors for 2001 (referred to hereafter as SAM-2001). A more recent IOT of 

Uzbekistan including thirteen sectors was developed for 2005 (referred to hereafter as IOT-2005) 

by researchers at the Center for Effective Economic Policy (CEEP), the Center for Economic 

Research (CER), the Ministry of the Economy (MoE) and Colorado University (UNDP 2006). In 

contrast to SAM-2001, agriculture and agro-processing industries in IOT-2005 are aggregated.  

Because IOT-2005 represents the most recent complete database, it served as the basis for 

calculations of IOT values in this study. Because the objective was a thorough analysis of the 

water intensive agricultural sector, an IOT with disaggregated agriculture and agro-processing 

industries accounts was developed based on IOT-2005. The disaggregation was based on the 

proportional shares of intermediate inputs derived from the SAM-2001 by Müller (2006). 

Secondary data on production values, GDP, added value, exports and imports, and consumption 

levels across the sectors of the economy were obtained from the Asian Development Bank (ADB 

2008), the National Statistical Committee of Uzbekistan (UzStat 2008), and CEEP (2006). 
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Disaggregated calculations resulted in an IOT with unbalanced column and row sums, therefore 

it was transformed to a balanced national IOT with twenty sectors for 2005 using the standard 

maximum entropy approach (Golan et al. 1996, Wehrheim 2003, Müller 2006). Calculations 

based on maximum entropy approach were conducted using General Algebraic Modeling System 

(GAMS) software (Brooke et al. 2006). The values of the input-model components were 

estimated in Uzbek soum. Since the official exchange rates for Uzbek soum (UZS) to USD 

varied between 1080 and 1180 throughout 2005 (CEEP 2006), an average exchange rate of 1128 

UZS per USD was used. 

 

3.3.2 Estimation of direct water use by sectors 

In water footprint analysis, “blue” and “green” water uses for crop production are differentiated. 

“Blue” water is related to water delivered to the crops through rivers and irrigation canals; 

“Green” water concerns with direct use of rainfall by crops. Considering low precipitation in the 

ASB and the heavy reliance of agriculture on irrigation water, (Section 2.2.2) only the “blue” 

water use was considered in the analysis. Aggregated water use data (UNDP 2007) was used to 

estimate water consumption by agricultural and industrial subsectors based on existing water 

consumption requirements per number of livestock, per hectare of cropped land, or per unit of 

production output. For instance, water consumption for livestock production was estimated based 

on the number of head of each type of livestock (cattle, sheep, goats, pigs, horses, and poultry) as 

derived from official statistics (UzStat 2008) and annual water consumption requirements per 

head of livestock (CRIIWRM 1980). To estimate water use for crop cultivation, the 

recommended water consumption for each agricultural subsector was based on cultivated land 

area (UzStat 2008) and recommended water use per hectare for each crop (Müller 2006). Then, 

each subsector’s relative shares of total agricultural water consumption were calculated. Finally, 

water use by crop production subsector was derived by multiplying the relative shares by the 

difference between actual total agricultural water use and total livestock water consumption 

requirement. 

The same procedure was repeated to estimate water use by industrial subsectors. Physical 

production volumes of industrial products were obtained from UzStat (2006), and water 

consumption norms per unit of product from the State Construction Office (1978). The prior 

water consumption for each industrial subsector was calculated based on total commodity 

production and recommended water consumption per unit of product. Next, the shares for prior 

water use for each industrial subsector in the total recommended industrial water consumption 

were calculated. These shares were multiplied by actual total industrial water use to estimate the 

actual water uses by industrial subsectors. 

 

3.3.3 Leontief model 

The intersectoral flows in a given economy were calculated using an IO system (Leontief 1951): 

            (3.1) 

where   is a nx1 vector of the total production volume for each sector,   is a nx1 vector of final 

demand including private and government consumption, investments, changes in inventories, 

and exports.   is a nxn matrix of technical production coefficients.  
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With simple transformations, final demand is treated as an exogenous variable that determines 

the level of total production: 

                  (3.2) 

where    is an nxn identity matrix and   is the nxn Leontief inverse matrix. The element     of the 

Leontief inverse   reflects the total requirements from sector   to provide a unit of the final 

demand for the commodities of sector   . 

 

3.3.4 Ghosh model 

A Ghosh (1958) model was used to estimate intersectoral allocations of primary and intermediate 

inputs: 

               (3.3) 

where   is a nxn matrix of allocation coefficients that is calculated as a ratio of intersectoral 

intermediate inputs to the total inputs (raw sums of IO table) and    is a 1xn vector of primary 

factors which include capital, labor, and imports. The prime symbol (   ) denotes matrix 

transposition. 

Similar to Eq. 3.2,  the relationship between the primary factors and the level of total production 

is obtained with simple transformations: 

             = v G    (3.4) 

where   is an nxn Ghosh inverse matrix. The element     of the Ghosh matrix   reflects the total 

required outputs from sector   to absorb a unit of the primary factors of sector   . 

 

3.3.5 The backward and forward linkage indices 

The Leontief inverse matrix (Eq. 3.2) allows the measurement of direct and indirect effects of a 

change in the final demand over production, as well as the calculation of a backward linkage 

index (BLI). The BLI of sector   shows how much sector   influences the output of all other 

sectors through its purchases (input uses), and is calculated following the approach by 

Rasmussen (1956) and Hirschman (1958): 

          ⁄          (3.5) 

where    is the mean of all elements of the Leontief inverse matrix   (Eq. 3.2) and     is the 

associated column sum of elements of the matrix   for sector  . 

Considering the relevance of the Ghosh model (Eq. 3.4) for calculating the forward linkage 

index (FLI) (Beyers 1976, Jones 1976), the FLI of sector  , which indicates how much sector   
influences the output of all sectors through its sales (output supplies) is elaborated based on the 

Ghosh model instead of the Leontief model as follows: 

              
 
     (3.6) 

where    is the mean value of all elements of the Ghosh inverse matrix   (Eq. 3.4) and     is the 

associated raw sum of the elements of matrix   for sector  . 
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BLIs and FLIs are useful for comparing sectors according to their influence and dependence on 

the remaining sectors, and through this their effects on the overall economy.      >1 indicates 

strong backward linkages of sector  , which means that a unit increase in the final demand of 

sector   would result in a greater-than-average increase in total economic output. In parallel     
 >1 shows strong forward linkages of sector  , meaning that a unit increase in primary inputs of 

sector   would require a greater-than-average increase in total economic output. If both 

conditions,      >1 and     
 
>1, are fulfilled for any sector it is considered a ‘key sector’ that 

exhibits both greater-than-average influence and dependence on the other sectors (Lenzen 2001). 

  

3.3.6 Total (direct and indirect) water use 

Integration of the total (direct and indirect) water uses of products with BLIs and FLIs allows 

more rational decision making on economic restructuring as water is a main limiting factor in the 

economic development of countries in arid regions such as Uzbekistan. To estimate total (direct 

and indirect) water consumption (TWC), direct water input coefficients (   ) are initially 

estimated as the ratio of total direct water use (  ) to the total production volume of a given 

sector   (  ): 

               (3.7) 

Based on these direct water use coefficients and the Leontief inverse matrix elements, TWCs 

(   ) or backward linkage based total (direct and indirect) water uses that indicates the total 

amount of water required to produce a unit of final demand in sector  , are calculated as (Lenzen 

2003):  

    ∑             (3.8) 

Similarly, forward linkage based TWCs indicate the total water use that is required to absorb a 

unit of primary factors in sector  , and are calculated as (Lenzen 2003): 

   
  ∑             (3.9) 

 

3.3.7 Multi-criteria ranking 

Since the ranks of the sectors according to each economic linkage index or water use based 

criteria are different, multi-criteria decision analysis (MCDA) is used for ranking and selecting 

the most efficient options (sectors) based on economic/environmental analyses (Wang et al. 

2009). Within a MCDA framework, usually multiple indexes are integrated into a composite 

indicator for ranking the sectors, concurrently considering the tradeoffs between economic 

efficiency and environmental sustainability of different options. A single composite indicator 

based on BLI, FLI, and TWC was developed in this study for prioritizing the options and 

choosing the most appropriate ones. 

Apparently, there are several methods of multi-criteria ranking or choice making, including but 

not limited to the weighted sum method (CLG2009, Simonovich 2009), Analytical Hierarchical 

Processes (AHP; Saaty 1980), and outranking methods (Roy 1991). Since none of the methods 

are strictly preferable over other methods, the weighted sum method was used in this study due 

to its ease of use. Before calculating the weighted sums indicators under each option were 

normalized considering their average value. Inverse values of total water use indexes were 

considered in calculations since higher water use is less favorable and should be adjusted 
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properly for estimating multiple criteria based composite indicator. To rank the sectors according 

to economic importance and water use requirement, a composite indicator (   ) was calculated 

based on weighted averages of the separate linkage indicators as (CLG 2009): 

          (

    
∑      

  
    

∑      

 
)    (

     
∑         

 
     

 

∑       
   

 
)  (3.10) 

where   is a weight for water requirement that is a proxy for environmental sustainability and 

varies between 0 and 1.  

 

3.4 Analysis of the intersectoral linkages and determination of activities with 

higher economic importance and lower water requirement 

3.4.1 Sectoral and intersectoral structure of the Uzbek economy 

According to the balanced IOT, the highest intermediate input uses were observed for the 

products of fossil fuel industry, trade, and the transportation and communications sectors (Table 

3.1). These sectors are considered metaphorically as the “lifeblood” of the economy since 

production and inter-sector commodity exchanges in the economy cannot occur without them. 

Private consumption was dominated by livestock products. This fact can be explained by high 

prices for milk, eggs, and meat and the popularity of livestock rearing among rural households 

(Djanibekov 2008), which account for more than 60% of the total population. Private 

consumption expenditures on the commodities from transport and communications sector were 

also high, which can be explained by the recent widespread use of cell phones and increased 

mobility of seasonal labor (CER 2010). Concurrently, private consumption of the electrical 

power and food industry sectors was also high because these sectors provide products that meet 

basic needs. 

Products of the machinery and construction sectors are typically considered investments. 

Government expenditures were mostly spent for purchasing the public services such as 

education, health care, and banking. As explained earlier, most export revenues were generated 

from the metallurgy, cotton, and fossil fuel sectors, while imports were dominated by machinery 

goods. 

Intersectoral flows of intermediate inputs, as well as labor and capital resources (including 

operations surplus) across the sectors are given in Table 3.2. Commodities from agriculture 

contributed substantially to the intermediate use of the cotton and food processing industries. In 

turn, agricultural activities mostly relied on goods from the fossil fuel sector, which can be 

explained by extensive mechanized agriculture and high prices for fuel. The construction sector 

depended heavily on other industrial sectors that contained the production of timber, bricks, and 

glass. The most labor intensive sectors turned out to be the ‘transportation and communications’ 

and ‘other services’ sectors that includes all state service organizations such as schools, 

hospitals, banks, etc. The technical production and allocation coefficients as well as Leontief and 

Ghosh inverse matrices were estimated based on the IOT. The Leontief and Ghosh inverse 

matrices were then used to calculate BLIs, FLIs, and TWCs. 



 

88 
 

Table 3.1 Input-Output Table (Quadrant II) of the Uzbekistan economy in 2005 (in billions of Uzbek soums) 

    Intermediate use   Private 

consumption 

  Investment 

expenditures 

  Government 

expenditures 

  Exports   Imports   Total output 

 Sectors   Amount 
Share

(%) 
  Amount 

Share

(%) 
  Amount 

Share

(%) 
  Amount 

Share

(%) 
  Amount 

Share

(%) 
  Amount 

Share

(%) 
  Amount 

Share

(%) 

ACOT20 Cotton 1135 6.5 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

1135 3.5 

AGRN20 Grains 310 1.8 
 

438 5.6 
 

0 0.0 
 

200 9.4 
 

0 0.0 
 

63 1.3 
 

886 2.7 

ARIC20 Rice 23 0.1 
 

41 0.5 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

64 0.2 

AGAR20 Gardening 67 0.4 
 

447 5.8 
 

0 0.0 
 

0 0.0 
 

77 1.2 
 

0 0.0 
 

592 1.8 

AFOD20 Fodder 301 1.7 
 

49 0.6 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

350 1.1 

AOTH20 Other crops 54 0.3 
 

476 6.1 
 

0 0.0 
 

0 0.0 
 

12 0.2 
 

0 0.0 
 

542 1.7 

AANM20 Livestock 169 1.0 
 

2600 33.5 
 

60 1.5 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

2829 8.6 

APOWE20 Energy industry 1287 7.3 
 

46 0.6 
 

0 0.0 
 

0 0.0 
 

22 0.4 
 

24 0.5 
 

1332 4.1 

AFUEL20 Oil and gas 3192 18.2 
 

114 1.5 
 

0 0.0 
 

0 0.0 
 

712 11.4 
 

102 2.1 
 

3916 11.9 

AMETL20 Metallurgy 1025 5.8 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

1736 27.8 
 

472 9.5 
 

2290 7.0 

ACHEM20 Chemical industry 818 4.7 
 

54 0.7 
 

0 0.0 
 

0 0.0 
 

338 5.4 
 

452 9.1 
 

757 2.3 

AMAEQ20 Machinery 1390 7.9 
 

132 1.7 
 

1624 39.6 
 

0 0.0 
 

536 8.6 
 

1976 39.8 
 

1706 5.2 

ACTPR20 Cotton processing 596 3.4 
 

54 0.7 
 

0 0.0 
 

0 0.0 
 

1375 22.0 
 

0 0.0 
 

2025 6.2 

ALGHT20 Light industry 374 2.1 
 

584 7.5 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

119 2.4 
 

839 2.6 

AFOOD20 Food industry 310 1.8 
 

516 6.7 
 

0 0.0 
 

0 0.0 
 

562 9.0 
 

338 6.8 
 

1050 3.2 

AOIND20 Other industries 1281 7.3 
 

363 4.7 
 

0 0.0 
 

0 0.0 
 

180 2.9 
 

520 10.5 
 

1304 4.0 

ACON20 Construction 0 0.0 
 

0 0.0 
 

2329 56.8 
 

0 0.0 
 

0 0.0 
 

14 0.3 
 

2314 7.0 

ATRD20 Trade 2122 12.1 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

0 0.0 
 

231 4.6 
 

1891 5.8 

ATCM20 Transport and communication 2105 12.0 
 

732 9.4 
 

0 0.0 
 

192 9.0 
 

611 9.8 
 

526 10.6 
 

3113 9.5 

AOTS20 Other services 1012 5.8 
 

1112 14.3 
 

89 2.2 
 

1733 81.5 
 

77 1.2 
 

121 2.4 
 

3902 11.9 

TOT Total 17572 100 
 

7758 100 
 

4101 100 
 

2125 100 
 

6239 100 
 

4958 100 
 

32837 100 

 

Source: Based on CEEP (2006), Müller (2006), UNDP (2006), ADB (2008), and UzStat (2008) 

Note: Average exchange rate for 2005 was 1,128 UZS = $1 USD 
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Table 3.2 Input-Output Table (Quadrants I and III) of the Uzbekistan economy in 2005 (in billions of Uzbek soums) 

 

 

ACOT20 AGRN20 ARIC20 AGAR20 AFOD20 AOTH20 AANM20 APOWE20 AFUEL20 AMETL20 ACHEM20 AMAEQ20 ACTPR20 ALGHT20 AFOOD20 AOIND20 ACON20 ATRD20 ATCM20 AOTS20 

ACOT20 0 0 0 0 0 0 0 0 0 0 0 0 1135 0 0 0 0 0 0 0 

AGRN20 0 18 0 0 0 0 79 0 0 0 0 0 0 0 208 0 0 2 0 3 

ARIC20 0 0 2 0 0 0 0 0 0 0 0 0 0 0 21 0 0 1 0 1 

AGAR20 0 0 0 26 0 0 0 0 0 0 0 0 0 0 33 0 0 4 0 5 

AFOD20 0 0 0 0 15 0 287 0 0 0 0 0 0 0 0 0 0 0 0 0 

AOTH20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 

AANM20 0 0 0 0 0 0 34 0 0 0 0 0 0 34 99 0 0 0 0 2 

APOWE20 27 26 0 17 0 0 81 56 170 161 172 44 54 9 10 112 25 50 140 132 

AFUEL20 134 144 0 96 58 0 235 724 743 135 49 30 0 0 9 108 79 34 313 302 

AMETL20 0 0 0 0 0 0 0 0 0 652 88 162 0 0 0 37 86 0 0 0 

ACHEM20 61 62 5 41 21 43 4 26 18 76 159 24 11 38 6 82 58 1 38 44 

AMAEQ20 7 9 1 6 3 8 16 32 32 167 18 652 25 9 3 56 76 7 146 116 

ACTPR20 19 0 0 0 0 0 8 0 0 0 0 0 404 110 41 14 0 0 0 0 

ALGHT20 0 0 0 0 0 0 3 0 0 7 3 9 9 253 83 8 0 0 0 0 

AFOOD20 0 0 0 0 0 0 171 0 0 0 0 0 0 0 138 1 0 0 0 0 

AOIND20 4 4 0 3 2 0 22 7 18 16 5 18 10 0 3 115 719 67 126 142 

ACON20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ATRD20 40 44 3 28 16 25 132 102 170 229 84 297 155 71 76 217 143 0 31 257 

ATCM20 5 19 2 15 6 18 54 15 264 26 13 21 25 10 14 100 333 214 606 344 

AOTS20 6 17 2 13 6 15 49 22 54 54 6 84 21 17 21 67 36 126 92 302 

Labor 275 75 10 130 19 143 381 73 628 166 59 124 44 40 42 56 517 459 978 1493 

Capital 556 467 40 216 204 290 1273 274 1819 600 102 241 134 248 190 329 243 927 643 758 

Total  1135 886 64 592 350 542 2829 1332 3916 2290 757 1706 2025 839 1050 1304 2314 1891 3113 3902 

 

Source: Based on CEEP (2006), Müller (2006), UNDP (2006), ADB (2008), and UzStat (2008) 

Note: Average exchange rate for 2005 was 1,128 UZS = $1 USD/sectoral abbreviations are defined above in Table 3.1 
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3.4.2 Identifying key sectors of the economy 

Economic linkage measures such as BLI and FLI values and environmental performance indicators 

such as direct and indirect water consumption were integrated to compare different economic 

activities and identify key sectors. The industrial sector generally had higher BLIs compared to the 

agricultural sector. The BLIs for agriculture varied between 0.7 and 1.0, while BLIs for the 

industrial sector varied between 0.9 and 1.4 (Figure 3.3). The fruit and vegetables subsector had the 

highest BLI among all crop production subsectors (1.0). The BLIs of all industrial sectors except in 

the fossil fuels and machinery sectors were higher than average. 

 

Figure 3.3 Estimated backward and forward linkages of the Uzbekistan economy in 2005 

 

Source: Author’s calculations 

 

The FLIs of industrial sectors were also generally higher than those in the agricultural sector 

(Figure 3.4). The FLIs for all agricultural sectors varied between 0.6–1.4, while for industrial 

sectors they varied between 0.7–1.6. The FLI for cotton production was the highest of all 

agricultural subsectors because cotton processing plants, which are the greatest consumer of raw 

cotton, are widespread throughout the country. The highest FLIs (1.6) were for the fossil fuel and 

energy sectors. The FLIs for the trade and for the transportation and communication sectors, with 

values of 1.5 and 1.2 respectively, were also higher than FLIS of most of the agricultural and 

industrial sectors. The key sectors based on both BLI and FLI values higher than one were the 

energy, chemical, and “other” industries, which mainly considered construction materials 

production. 

The comparison of water uses across sectors was based on the direct and indirect water 

consumption requirements for producing any commodity or product equivalent to 1,000 Uzbek 

soums (UZS) (Figure 3.4). Comparisons of direct water use coefficients across the sectors showed 

that in general, agricultural commodities required substantially higher amounts of water per 1,000 

UZS than the goods produced by all other sectors. Within the agricultural sector, rice required the 

highest amount of water at 39 m
3
 to produce goods worth of 1,000 UZS (34.5 m

3
/USD). The direct 

water use requirement per unit of output in cotton and winter wheat production sectors was about 

20 m
3
 (18.0 m

3
/USD). Although the water requirement per hectare for winter wheat was 
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comparatively lower than for the other crops examined, its direct water use coefficient is likely 

influenced by low prices for grain imposed by the national administration; whereas this is not the 

case with crops other than wheat and cotton. The production of fruit and vegetables required only 

10 m
3 

(8.9 m
3
/USD) of water per unit of output worth of 1000 UZS, while the value was 11 m

3 

(10.2 m
3
/USD) per unit of fodder crops. Lower water uses and thus higher water productivities for 

these goods are likely because of their higher prices due to the lack of government production 

quotas and procurement mandates for these crops. Among the industrial sectors the highest direct 

water consumption per 1,000 UZS unit was in the energy industry, with a value of 3.0 m
3
 (2.7 

m
3
/USD). Although the non-agricultural sectors produced about 75% of the GDP in 2005, their 

share of total water consumption was less than 10%. Hence, their direct water use per unit of 

production is negligible compared to the crop production sectors. 

  

Figure 3.4 Direct and total water consumption by economic sectors of Uzbekistan in 2005  

 

Note: The average exchange rate in 2005 was UZS 1.128/$1 USD 

Source: Author’s calculations 
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TWCs to produce a unit of the final demand in crop production (except ‘other crops’) were higher 

than in the other sectors except cotton processing (Figure 3.4). The TWC of livestock production 

was substantially lower than the TWCs of crop production subsectors except ‘other crops’. The 

TWCs for most sectors were considerably higher than the direct water input coefficients for these 

sectors. The most noticeable differences between these two indicators were observed for livestock, 

chemical industry, cotton processing, light industry, and food processing. The large differences 

between the TWCs and direct water use values for livestock, cotton processing, light industry, and 

food processing are due to a high water demand for producing the intermediate inputs consumed by 

these sectors. However, TWCs of these sectors in general were still lower than those of crop 

production sectors. For instance, light industry and food processing required about 3 m
3
 and 5.7 m

3
 

per economic output worth of 1000 UZS (2.7 and 5.1 m
3
/USD) of total water use respectively, 

whereas cotton and the fruit and vegetables production required 21 m
3
 and 11 m

3 
per economic 

output worth of 1000 UZS (18.4 and 9.5 m
3
/USD) respectively. 

Concurrently, forward linkage based TWCs were substantially larger than the direct water use for 

sectors such as energy, fossil fuels, chemical industry, and trade (Figure 3.4). In general, TWCs 

based on forward linkages for all crop production activities except other crops were higher than for 

the remaining sectors. Yet, insignificant differences were found between backward and forward 

linkage based TWC levels for crop production activities. 

 

3.4.3 Multi-criteria ranking of economy sectors 

Ranking the sectors according to their backward and forward linkages, and TWCs separately 

resulted in different rankings (Table 3.3). An integration of the separate indicators resulted in a 

composite measure which allowed assessment of the sectors based on their economic importance 

and TWCs. According to the multi-criteria ranking, the construction sector was ranked first, while 

rice production turned out to be the worst when equal weight was considered for both economic 

importance and water use intensity. Although it seems quite reasonable that paddy rice production 

is unfavorable due to its huge water requirements (ranked 20) and low backward linkage indexes 

(ranked 19), the construction sector turned out to be the most favorable due to its extremely low 

forward linkage-based water use (ranked 1), despite the lowest forward linkage index (ranked 20). 

Thus, the highest rank of the construction sector is primarily due to its very negligible water use 

requirement per unit of its economic output in comparison with the remaining sectors (Figure 3.4). 

To reduce this outlier impact since extremely large differences between the water use requirements 

of the sectors may reduce comparability of the normalized indicators consequently showing biased 

results, the rankings were re-assessed without considering the construction sector. When allotting 

equal weights to both economic importance and environmental influence, machinery, metallurgy, 

and other services (e.g., education, health, sport, culture, etc.) became the most favorable sectors. In 

general, all agriculture related sectors ended up at the bottom half according to multi-criteria 

ranking. The livestock sector ranked higher than all crop production activities. Agro-processing 

industries such as cotton processing, light industry, and food processing were more favorable than 

any other agricultural subsectors. When increased weights were considered to environmental 

influence criteria, the regional dominant crop cultivation activities such as cotton and grain 

production kept its initial low rank or ranked even further down, while the ranks of agricultural 

activities such as the production of fruit and vegetables and livestock went up. 

 

 

 



 

93 
 

 

Table 3.3 Single and multi-criteria rankings of the economic sectors in Uzbekistan 

Sectors   

Ranking the sectors due to 

single criterion 
 

Multi-criteria ranking 
 

Multi-criteria ranking 

without considering 

construction sector 

 

 

SBL SFL SBWC SFWC 

 

  0.2   0.5   0.8 

 

  0.2   0.5   0.8 

Cotton 

 

17 4 18 18 
 

12 13 16 
 

13 15 15 

Grains 

 

13 15 19 19 
 

16 18 19 
 

17 17 18 

Rice 

 

19 12 20 20 
 

19 20 20 
 

19 19 19 

Gardening 

 

11 17 15 16 
 

18 19 18 
 

18 18 17 

Fodder 

 

15 8 16 17 
 

14 15 17 
 

14 16 16 

Other crops 

 

20 18 10 11 
 

20 16 10 
 

16 14 12 

Livestock 

 

9 19 11 8 
 

17 17 15 
 

15 12 10 

Energy 

industry 

 

3 1 13 15 
 

4 10 11 
 

8 13 14 

Oil and gas 

 

14 2 3 14 
 

2 4 4 
 

2 6 7 

Metallurgy 

 

6 10 7 2 
 

9 7 7 
 

1 2 2 

Chemical 

industry 

 

7 5 9 13 
 

7 9 9 
 

10 11 13 

Machinery 

 

16 9 1 7 
 

6 3 2 
 

4 1 1 

Cotton 

processing 

 

1 14 17 3 
 

11 11 13 
 

7 8 8 

Light industry 

 

2 11 12 9 
 

13 12 12 
 

11 10 11 

Food industry 

 

5 16 14 4 
 

15 14 14 
 

12 9 9 

Other 

industries 

 

8 7 8 5 
 

8 8 8 
 

6 7 6 

Construction 

 

4 20 6 1 
 

1 1 1 
 

- - - 

Trade 

 

18 3 2 12 
 

3 2 3 
 

3 5 5 

Transport and 

communication 

 

10 6 4 10 
 

5 5 5 
 

5 4 4 

Other services   12 13 5 6 
 

10 6 6 
 

9 3 3 

Notes: SBL-Standardized backward linkages, SFL-Standardized forward linkages, SBWC- Standardized backward 

linkage based total water consumption, SFWC-Standardized forward linkage based total water consumption, and 

weights of 0.2, 0.5, and 0.8 were used for environmental sustainability 

Source: Author’s calculations 
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The results discussed here are useful only comparing the sectors to each other according to 

economic and efficient water use criteria defined by BLI, FLI, and TWC. Prioritizing any sector to 

the other should depend on the weight to the criteria given by decision makers and thus the results 

obtained here should be carefully considered while not forgetting weighting and other factors. The 

indicators discussed here are not only measures to select the key sectors for sustainable growth. 

International comparative advantages, technology access, human capital, innovation and 

knowledge interactions, social networks, institutional settings, income distribution, and many other 

economic and ecologic indicators play important role to determine key sectors for economic 

growth (Bryan et al. 2005). Nevertheless, our analysis can be complementary to more 

comprehensive, multi-criteria, multi-sectoral, quantitative, and qualitative analysis of determining 

key sectors for economic growth mentioned by Bryan et al. (2005). 

 

3.5 Discussion of the options for sustainable economic restructuring and conclusions 

Achieving sustainable growth is dominating worldwide discussions on economic development, and 

there is some debate on (i) which production technologies can be adjusted and (ii) how to decouple 

economic growth from the consumption of critical natural resources such as land and water. This is 

particularly challenging in arid regions such as the ASB, which are heavily dependent on irrigated 

agriculture for economic development. The combined effects of the expected climate change (Chub 

2000, 2007) and increased hydroelectric generation by upstream countries (Eshchanov et al. 2011) 

will undoubtedly decrease water availability for irrigation. This poses challenges for implementing 

economic transformation policies guided by the prioritization of sectors with relatively high 

economic growth potential but low water demand.  

The findings based on the indicators derived from the IO model for the case study of Uzbekistan 

showed that crops such as cotton, wheat, and rice dominated its agricultural sector posing a high 

demand of water per economic output under current technological levels. In spite of its low water 

productivity, cotton production continues on at least 40% of the total irrigated cropland under strict 

government quotas for cotton production (Djanibekov 2008) to maintain export revenues. 

Obviously, cotton production has been acknowledged for increasing the welfare of rural inhabitants 

and securing livelihoods over the past four decades in Central Asia (Rudenko et al. 2012). 

Nevertheless, past cotton production practices have also contributed to the desiccation of an entire 

sea-sized lake - the Aral Sea that was accompanied by unemployment, land degradation, and health 

deterioration in the deltaic zones (WBGU 1998, Micklin 2010). Continued reliance on increasingly 

scarce water resources that are also in excessive demand for environmental needs and dependence 

on revenues from the exports of primary commodities that are subject to high price volatility in the 

global market (Rudenko et al. 2009) would lead Uzbekistan to face an environmental-economic 

dilemma unless measures are taken to follow a path of long-term sustainability and real income 

growth. 

Fruit and vegetable production turned out to have a much higher potential than the present state-

ordered crops cotton and wheat when higher weight is given to water use intensity (environmental) 

criteria in comparing these economic activities. An increased development of fruit and vegetable 

production, however, must go hand-in-hand with the creation of appropriate storage and processing 

facilities that have deteriorated since independence (Bobojonov and Lamers 2008). The pursuit of 

improving the storage and processing systems can lead a stabilization of fruit and vegetables prices 

simultaneously reducing the hidden hunger in winter and spring periods (Bekchanov and Bhaduri 

2013). However, the present practice of differential crop support in Uzbekistan creates 

disincentives for farmers to use water resources more efficiently for example through crop 

diversification and rotation (Djanibekov 2008; Bobojonov et al. 2012, 2013). To reach sustainable 
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resource use, this differential support to cotton and wheat should either be phased out, or else equal 

importance should be given to other crops as well.  

Although it is generally argued that the production of livestock products such as meat, milk and 

eggs requires much more water per physical output than the production of crops such as cereals 

(Chapagain and Hoekstra 2003, 2004, Mekonnen and Hoekstra 2010), amount of meat is not 

comparable to the same amount of crop commodities. With this regard, the TWC per unit of 

economic output is more meaningful measure than the TWC per physical output to compare water 

use intensities of different products. According to the results, the TWC per economic output of 

livestock products in Uzbekistan was lower than the TWCs of the crop production. Therefore, the 

maintenance and further development of the livestock production sector has a higher potential than 

the production of cotton, wheat, rice, vegetables, and fruits in the region to enhance higher 

economic growth with less use of water. Previous analyses of regional agricultural production 

using partial and general equilibrium models also postulated a higher profitability and better 

environmental sustainability when intensifying the livestock production sector rather than the crop 

production sector (Müller 2006, Djanibekov 2008, Bekchanov et al. 2012). 

From a pure water use reduction perspective, an obvious choice for a development path could 

include the promotion of agro-processing industries rather than solely concentrating on the 

production of raw agricultural commodities which fact is in line with previous conclusions 

(Rudenko et al. 2009). Particularly supporting the development of the entire cotton value chain and 

increasing the production of the products with high added value has the potential for increasing 

income for producers while reducing water needs. However, the current lack of sufficient 

investment resources, limited access to up to date technologies, and the lack of qualified personnel 

(Weinthal 2002) may impede a further development of a stable and profitable agro-processing 

sectors.  

Indeed, in terms of economic growth impacts and total water use only, the non-agricultural 

processing industries and service sectors has higher potential for sustainable development than the 

agricultural or agro-processing industries since water is not a driving factor for industrial and 

services sectors. In general, according to a multi-criteria assessment of ranks of the sectors while 

considering equal weight for both economic growth impact and water use intensity, construction, 

machinery, metallurgy, and ‘other services’ sectors ranked as the most important sectors with high 

potential for sustainable development. 

The findings based on the input-output model analysis are not only relevant for Uzbekistan, but 

also for the four other countries in Central Asia—Kazakhstan, Kyrgyzstan, Tajikistan, and 

Turkmenistan— at least partially, due to the many similarities in economic conditions, legal-

political environments, and geographical location, as well as due to their common historical 

background. Turkmenistan, a country mostly covered by desert and located at the lower reaches of 

the Amu Darya River, perceived the opportunity for more productive water use through economic 

restructuring and already developed its cotton processing sector by increasing the share of 

domestically processed cotton from 6% to 42% between 1991 and 2001 (Dukhovny and Schutter 

2011). The cotton value chain improvements in Turkmenistan indicate the importance and 

possibility of sectoral transformation in the rest of the Central countries as well for achieving more 

sustainable economic growth.  

Although several alternative crop and non-agricultural production options have huge income 

growth and water use reduction potential than the currently dominant cotton production, Weinthal 

(2002) argued that diversifying crop production is not a priority interest of the national 

administration because of the important role of cotton production in social control, particularly in 

Uzbekistan. That explains also the continuation of the dominance of cotton production in crop 
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portfolio and preservation of state control over cotton production even in the aftermath of 

independence. Even though such conclusions bear much truth during the first decade of 

independence, the reason for a continued reliance on cotton was since then more likely due to the 

lack of qualified employees and reduced access to technological innovations to initiate the 

development of the non-cotton industries. Therefore, efforts to maintain adequate human and 

knowledge resources are essential at present for further economic and institutional reforms. 

Indeed, economic growth and water use reduction potential are necessary, but not sufficient 

determinants of the key sectors for economic growth. Although water requirements in the industrial 

sector are currently much lower than those in the agricultural sector, return water from industrial 

processes is often much more hazardous than agricultural return flows (Chapagain and Hoekstra 

2004). Thus, when developing the industrial sector, this issue should be taken into account and 

means to minimize the negative influences of industrial effluent on the environment should be 

reflected. In addition to return flows, hazardous atmospheric emissions from the industrial sector 

are also much more harmful to the environment than those from the agricultural sector. Since the 

present analyses excluded environmental performance indicators other than total (direct plus 

indirect) water consumption, the inclusion of more environmental indicators in multi-criteria 

decision making analysis would enable more robust conclusions on the sustainable development 

potential of the sectors in Uzbekistan. Moreover, international comparative advantages, 

technological upgrading, institutional and governance settings, and many other factors as well as 

the weights for these criteria which are subject to the decision makers are also essential elements 

(Bryan et al. 2005). Therefore, the findings in this study can be seen as a first step towards more 

broader multi-criteria evaluation framework. 

The findings for Uzbekistan together with the studies by Lenzen (2003) for Australia, 

Dietzenbacher and Velázquez (2007) for Andalusia (Spain), Zhao et al. (2009) for China, and Feng 

et al. (2011b) for the United Kingdom illustrate that the IO model approach is a powerful tool for 

estimating and comparing direct and indirect water use requirements of different economic sectors. 

It has clear advantages over cost-benefit methods and bottom-up approaches of estimating water 

footprints, allowing the analysis of the economic impacts and water use intensities of the sectors 

while considering the interdependence of all economic sectors. Despite its advantages over several 

methods because of a comprehensive analysis of economic and water use interlinkages across the 

sectors (Dudu and Chumi 2008), the IO model is not free of limitations for making economic 

decisions over water allocation. One shortcoming of this method is rooted in the assumption of 

linear relationships among consumption and production patterns, and a fixed amount of water use 

per unit of outputs. Marginal water productivity, which is based on a non-linear water-output 

response function, is more decisive for economic decision making over the allocation of scarce 

water resources (ANWC 2008). The model also does not consider the availability and cost-benefits 

of technical innovations for improving water use efficiencies in crop production. Therefore, the 

results of the model are valid only under the assumption of constant amount of water requirement 

per unit of economic output, linear relationships between consumption and production variables, 

and lack of technical innovations. Furthermore, this method does not capture the more detailed 

hydrological and biogeochemical processes (Brouwer and Hoffkes 2008) and does not allow 

solving for spatial or temporal water allocation problems (Mukherjee 1996). Additionally, since IO 

datasets are usually available for the entire country rather than its regions another modeling 

approach is needed for analyzing water resource allocation among different water demand sites 

within the basin. More detailed water use and economic relationships within a river basin and 

spatial water allocation are usually formulated based on hydro-economic river basin management 

models which will be discussed in the next chapter. 
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4 THE POTENTIAL OF WATER MARKETS FOR IMPROVED WATER 

MANAGEMENT IN THE ARAL SEA BASIN
1
 

4.1 Introduction 

This chapter describes market-based water allocation as an option to deal with water sharing 

conflicts and consequent inefficiency of water allocation in the ASB. Water allocation practices 

based on current administrative management in the ASB do not create incentives for efficient water 

use, as discussed in Chapter 2 in the study area description. Under conditions of water scarcity, 

measures of treating water as an economic good such as water pricing or institutional arrangements 

such as market-based water allocation schemes creates incentives for improving water use 

efficiency (Dublin Conference 1992). Market-based water allocation under clearly defined legal 

access for a specific amount of water withdrawal for each user enables efficient distribution of 

water resources by allowing water rights trading. Additional water transfers can occur when users 

with higher water productivity acquire voluntarily relinquished water rights of other users for 

compensation (Dinar et al. 1997). Trading can increase general welfare and water productivity for 

the entire basin because water is generally transferred from lower-value to higher-value uses (Howe 

et al. 1986, Rosegrant and Binswanger 1994, Easter et al. 1998, Ringler 2001). In addition to 

considering water as an economic resource, adopting holistic approaches such as the 

implementation of the IWRM paradigm that combines social and economic development with 

ecosystem protection through the coordinated management of land and water resources also 

improves water management efficiency. River basins are generally accepted as an appropriate unit 

of spatial water allocation analysis considering the interdependence of all water users and 

hydrologic systems within a basin (Keller and Keller 1995, Keller et al. 1996, Rosegrant 1997, 

Ringler et al. 2004). Moreover, increased competition for water among different users and 

anthropogenic environmental interventions can only be effectively addressed on a basin-wide basis 

(Ringler 2001). 

This chapter begins with a detailed review of the river basin management models to identify 

research gaps. Next, comparisons of different water management institutions are presented and the 

justifications for water markets as appropriate tools for efficient water allocation are discussed. The 

incentives for water users to cooperate under tradable water use rights such as to gain additional 

revenues are demonstrated based on a theoretical hydro-economic model. Evidence on how the 

implementation of tradable water rights has worked in different countries such as the US, Australia, 

Chile, and India, and a discussion on their relevance for the case of the ASB are provided. Then, an 

analytical hydro-economic model of optimal water allocation and water rights trading is 

demonstrated. It is followed by a hydro-economic model based analysis of the potential economic 

and environmental effects of introducing water rights trading in the ASB. The chapter ends with the 

discussion of the results and some concluding remarks. 

 

4.2 Hydro-economic river basin management modeling: literature review 

4.2.1 International research experiences on hydro-economic modeling 

4.2.1.1 Historical overview of hydro-economic river basin management modeling practices 

The development of hydro-economic river basin management models has a long history (Harou et 

al. 2009). In the early 1800s, Charles Navier introduced cost-benefit analysis methods to estimate 
                                                           
1
 This chapter was published as a ZEF Discussion Paper in modified form (Bekchanov et al. 2013a). 
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the financial viability of engineering works (Lund et al. 2006). Later the French engineer Jules 

Dupuit (1844) introduced the fundamental economic concept of consumer surplus, recognizing not 

only the need to consider construction and operating costs, but also the benefits of public 

hydrological structures and operating schemes (Harou et al. 2009). Throughout the 19
th

 and 20
th

 

centuries economists and engineers have incorporated economic principles in the context of the 

analysis of hydrological systems. In 1955, a group of professors with engineering, economics, and 

political science backgrounds joined the Harvard Water Program for developing an integrated 

approach to water resource planning and management by combining engineering practices with 

economic theory (Maas et al. 1962, Mirchi et al. 2010). The researchers of the program introduced 

the river node based hydro-economic modeling approach in water management studies.  

Early applications of economic water demand curves to optimize water allocation were made by 

Jacob-Bear et al. (1964, 1966, 1967, 1970), Rogers and Smith (1970), and Gisser and Mercado 

(1972) to analyze water issues in arid regions such as Israel and the southwestern United States 

(Harou et al. 2009). Hartman and Seastone (1970) theoretically demonstrated the potential 

economic gains of water markets. Howe and Orr (1974) analyzed tradable water rights while 

considering water quality. Several studies (Vaux and Howitt 1984, Howe et al. 1986, Booker and 

Young 1994, Becker 1995, Easter et al. 1998) quantified the potential gains from the reallocation of 

water through voluntary transfers. Recently hydro-economic river basin models have been 

improved extensively in order to portray complex hydrologic, economic, and institutional 

relationships more precisely. A CALVIN model developed by the researchers of the University of 

California is an example that includes many modern features of theoretical and empirical hydro-

economic modeling techniques and addresses a wide range of water management problems (Lund 

et al. 2012). 

 

4.2.1.2 Hydro-economic river basin modeling approaches: limitations and advantages 

Currently hydro-economic river basin models are available that represent complex hydrological, 

agricultural, institutional, and economic aspects of water management systems. Linking relevant 

hydrological and agricultural processes to economic laws of demand and supply within integrated 

hydro-economic models would facilitate assessment of complex river basin management system 

(McKinney et al. 1999, Brouwer and Hofkes 2008). These models aim to identify more efficient 

water management schemes and examine water use policy strategies in order to provide sustainable 

use of water resources (Harou et al. 2009). 

Traditionally there are two main approaches to hydro-economic modeling (Table 4.1):  

1) Modular (compartmental) approach in which model components run separately, usually 

using outputs of one sub-model as an input (exogenous variable) in the next sub-model  

2) Holistic (integrated) approach in which all subcomponents run within a single modeling 

framework that includes all variables endogenously 

Each approach has its advantages and limitations resulting from model structure. The modular 

approach allows analysis of each sub-field in greater detail, but each model component should be 

updated and developed independently (Harou et al. 2009). Alternatively, holistic models can reveal 

causal relationships and interdependencies more effectively. Scenarios such as climate change 

impacts on water availability and economic outputs are easier to execute with holistic models since 

each sub-model does not need to be run separately as a result of changing policies or conditions 

(Harou et al. 2009). One limitation of this latter approach is the application of simpler formulation 

due to the complex nature of the linkages between the economy and water use. However, it should 

be noted that neither approach to combined modeling can provide an in-depth analysis of the 
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economic sub-components and intersectoral interlinkages, which is relevant within IO modeling 

frameworks as discussed in earlier chapters. 

 

Table 4.1 Hydro-economic river basin modeling approaches and their properties 

  Options Description  Advantages Limitations  

1  Modular  Components of final 

model are developed 

and run separately  

Easier to develop, 

calibrate and solve 

individual models; 

allows detailed analysis 

of each sub-field 

Each model must be 

updated and run 

separately; difficulty 

exists in connecting 

models with different 

scales 

2  Holistic  All components are 

housed within a 

single modeling 

framework  

Effective representation 

of causal relationships 

and interdependencies; 

easy performance of 

scenario analyses  

Increased complexity of 

the holistic models 

requires simpler model 

components  

Source: Adapted from Brouwer and Hofkes (2008) and Harou et al. (2009) 

 

4.2.1.3 Empirical implementation of hydro-economic models  

Hydro-economic river basin management models were applied to analyze a wide variety of water 

issues in different river basins throughout the world, including: spatial and intersectoral water 

allocation, water quality control, environmental management, flood damage and regulation, 

introduction of water markets, infrastructural development, and climate change adaptation. More 

detailed reviews of these studies were documented by Lee and Dinar (1996), McKinney et al. 

(1999), Lund et al. (2006), Heinz et al. (2007), Brouwer and Hofkes (2008), Cai (2008), Harou et 

al. (2009), Mayer and Munoz-Hernandez (2009), and Mirchi et al. (2010). In this study, the review 

was restricted to examples that address efficient water allocation and improved water management 

institutions. 

Several hydro-economic models have addressed efficient water allocation in river basins. Ringler 

(2001) and Ringler et al. (2004) investigated the impacts of upstream hydroelectric power 

development and interbasin water transfer on the economies of upstream and downstream water 

users in the Mekong River basin. Bhaduri and Barbier (2008) analyzed the potential of cooperation 

on water sharing and negotiable transfers between upstream-India and downstream-Bangladesh in 

the Brahmaputra and Ganges river basins. Changes in long-term profits due to crop-mixing 

strategies were estimated using a modular model with three separate components—economic, 

hydrological, and agricultural—in the case of the Arkansas Valley of southeastern Colorado 

(Lefkoff and Gorelick 1990).  

The benefits of introducing alternative water management institutions such as water use rights 

trading and water pricing have been also investigated by several studies. Booker and Young (1994), 

Draper et al. (2003), and Walter (2010) compared benefits under inter- and intra-state water rights 

trading. Ringler and Huy (2004) evaluated the economic efficiency and potential water transfers 

under brokerage and market clearing mechanisms. Rosegrant et al. (2000) and Cai et al. (2006) 

developed an integrated hydro-economic framework to analyze interactions between water rights 

trading and water technology adoption in the Maipo River Basin of Chile. Heidecke et al. (2008) 



 

100 
 

and Heidecke and Heckelei (2010) applied hydro-economic models to assess the impact of water 

pricing on surface and groundwater demand and agricultural income in the Middle Draa river basin 

of Morocco. While considering the role of geographic dimensions and associated political 

sovereignties, White et al. (2008) analyzed the potential, institutional structure, and implementation 

mechanisms of benefit sharing based water allocation. In contrast to mainstream approaches of 

optimizing water allocation based on the assumption of an omniscient social planner, a recent study 

by Cai et al. (2011) addressed decentralized river basin management within a multi-agent system 

framework. Overcoming the shortcomings of the mathematic optimization method in multi-agent 

based models, Kuhn and Britz (2012) offered a method of converting decentralized water allocation 

problems into a Mixed Complementary Programming (MCP) model. Despite the originality of the 

approach, the model is applied to the case of a hypothetical basin with oversimplified hydrological 

and production relationships. Possibilities of applying the model to the case of real basins with 

complex water uses and production relationships should be addressed further. 

 

4.2.1.4 Issues in basin management modeling 

In spite of rapid advancements in hydro-economic modeling, the integration of economic and 

hydrologic components within a single modeling framework is not an easy task (Cai 2008). 

Problems occur when different spatial scales, time intervals, and time horizons are relevant for 

economic and hydrological analyses. For instance, usually economic variables such as crop 

outputs, cropland areas, and prices are available for administrative regions, but water use and 

distribution variables are available for the area within the hydrological or sub-basin boundaries. 

Appropriate adjustments to match the spatial boundaries of both economic and hydrological 

systems is an important but difficult task. Aggregation of water user sites for modeling purposes 

may also reduce the robustness of results. In contrast, inclusion of detailed and disaggregated 

spatial scales may complicate finding solutions to these problems. Furthermore, economic models 

usually consider larger temporal intervals and longer time horizons than hydrological planning. 

Temporal intervals in economic analyses are usually one year. The period required for the long-

term impacts of salinization on the benefits and deterioration of irrigation infrastructure and 

machinery to manifest should be considered in choosing the appropriate time horizon in economic 

modeling. In hydrological planning, considering weekly or monthly time intervals for crop water 

use and ground and surface water exchange processes is required. Time horizons should capture the 

climate driven cycles of water availability. However, data for detailed analysis of all these 

hydrologic processes and economic activities are not always available. 

Despite comprehensive analyses of water markets, the incorporation of environmental benefit 

values into the allocation process is a common challenge in hydro-economic modeling research 

(Colby 1990a, Griffen and Hsu 1993). Most studies integrate environmental water needs via 

minimum inflows and thus do not consider the economic aspects of environmental water needs 

(Draper et al. 2003, Harou et al. 2009). Some studies estimate the value of environmental water 

indirectly, such as by assessing the alternative costs of increasing minimum environmental flow 

while reducing off-take water use and benefits (Green and O’Connor 2001, Qureshi et al. 2007). 

However, the direct inclusion of economic benefits of environmental systems in models is rarely 

found and evaluating the benefits of ecosystem services is subject to considerable debate (Harou et 

al. 2009). Difficulties in the evaluation of environmental benefits are due to the lack of markets for 

ecosystem services and the implicitness of their contributions to public welfare. 

Another issue in hydro-economic modeling is the consideration of transaction costs that are 

incurred due to the establishment and maintenance of water management institutions. Since 

transaction costs are substantial, accounting for these costs will affect the optimal choice of policy 

instruments (McCann et al. 2005). To include these costs in modeling and policy analyses they 
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must be measured (McCann et al. 2005). Despite this pressing need, only few studies have tried to 

quantify transaction costs because “the measurement of transaction costs poses formidable 

difficulties” (Williamson 1996:5). Difficulties arise because the magnitude of transaction costs 

depends on many factors, including the physical attributes of water use, the capabilities of water 

management institutions, and general institutional environments such as the legal system (Easter et 

al. 1998, 1999; Saleth and Dinar 2004; McCann and Easter 2004). In water market modeling 

practices, transaction costs are usually estimated with scenario-based analyses and considered as 

fixed amounts per unit of water volume traded (Challen 2000:42, Cai et al. 2006, Pujol et al. 2006b, 

Wang 2012). For example, Cai et al. (2006) considered scenarios with transaction costs that varied 

between $0.00 to 0.20 USD per m
3 

to analyze their impacts on total net benefits, gains from water 

rights trading, and the volume of water transfers. Similarly, Wang (2012) assessed the influence of 

the transaction costs on the changes in gains of water rights trading and water use efficiency 

assuming a range of transaction costs from 0 to 10 Yuan per m
3
. 

 

 

4.2.2 River basin management modeling in the context of the Aral Sea basin 

4.2.2.1 General overview 

River basin management models were also widely used to address water allocation and irrigation 

development issues in the ASB. Despite a considerable amount of research conducted on water 

management in the ASB by Soviet researchers, the results of these efforts were mainly available for 

internal use within water management organizations. The SU’s cotton self-sufficiency policy 

motivated the expansion of irrigated areas in the ASB by gradually transforming desert areas with 

advanced irrigation networks, and early water management modeling efforts focused on the 

minimization of capital and labor costs of irrigation development. In the post-Soviet period, interest 

in water management issues in the ASB among the international academic community increased, 

and together with local scientists, foreign researchers actively participated in research projects, 

contributing to the improvement of water management modeling practices.. 

Water management models applied for the ASB case study can be categorized into two groups: 1) 

simulation; and 2) optimization. Simulation models deal with “what if…?” type questions, while 

optimization models search for answers to “what is the best…?” type questions (Harou et al. 2009). 

Simulation models were applied to estimate water needs for different activities such as food 

production, and residential and industrial uses under different scenarios of population growth, 

income increases, climate change, and technological progress. Concurrently, optimization models 

intended to maximize economic proceeds or minimize production and water delivery costs through 

the optimal allocation of resources. It should be mentioned that despite the differences in the 

objectives of these two types of models, simulation models can be transformed into optimization 

models with minor changes in their equation systems, or conversely optimization models can be 

transformed into simulation models with few changes and then be used for simulation purposes. 

Furthermore, simulation models sometimes can be also developed as part of multi-component 

optimization models. 

The historical development of different water management models is briefly discussed in this 

section, beginning with descriptions of simulation models followed by optimization models. Brief 

descriptions of the models and their purposes are presented in Table 4.2. The historical 

development of water management approaches in the ASB and their interdependencies are 

presented in Figure 4.1. 
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Table 4.2 Water allocation models applied to the case of the Aral Sea basin 

Model 
Modeling approaches Major problem(s) 

addressed 
Location 

Novelty/approach/striking 

results 
Citation 

Hyd HE Sim Opt Dyn Sta 

AralMod x - x - x - 
Water demand and 

supply simulation 

Syr Darya 

basin 

Modeling hydrological 
processes with more 

detailed temporal steps 

Heaven et al. (2002) 

SEM-Socio 
Economic 

Model 

- x x - x - 
Water demand and 

supply forecasting 

Aral Sea 

basin 

Adapted version of the 

Globesight; Food self-

sufficiency in the ASB until 
2020 

Ruziev and 

Prikhodko (2007) 

WEAP21 - x x - x - 

Water demand and 

supply 
management 

measures 

Syr Darya 
basin 

Integrated 
quantitative/qualitative 

approach to modeling water 
scarcity and adoption of 

mitigation measures 

Savoskul et al. 
(2003) 

EPIC x - - x - x 

Water, salt, and 

energy 

management 

Amu and 

Syr Darya 

basins 

User-friendly computer 

software that incorporates 

GIS with multiple-objective 
optimization model 

McKinney and 

Savitsky (2000) 

Water and 
Energy 

Optimization 

Model 

x - - x - x 

Irrigation and 

energy production 
trade-offs 

Naryn-Syr 

Darya 
Cascade 

In-detail analysis of energy 

production and trade 
relationships 

Antipova et al. 

(2002) 

AmuEPIC x - - x x - 

Long-term water 

allocation; delta 

ecosystem 
sustainability 

Amu Darya 

basin 

Detailed analysis of Amu 

Darya River delta and 

impacts of water availability 
on ecosystems;  

Schlüter et al. 
(2005); Schlüter 

(2003) 

Integrated 

hydrological-
agronomic-

economic 

model 

- x - x - x 

Economically 

optimal 
intersectoral 

interspatial water 

allocation 

Syr Darya 

basin 

Endogenous modeling of 
investment costs and 

irrigation efficiencies; crop 

patterns and irrigation 
efficiency should change for 

sustainability  

Cai et al. (2003a) 

Long-term 

water 

management 
model        

- x - x x - 
Sustainable water 
resources 

management 

Syr Darya 

basin 

Multi-disciplinary approach; 

Sustainability indicators; 

salt accumulation impact on 
yield 

Cai et al. (2002); Cai 

et al. (2003b)  

Notes: Hyd-hydrologic; HE-hydro-economic; Sim-simulation; Opt-optimization; Dyn-dynamic; Sta–static 

 

Figure 4.1 River basin management models in the Aral Sea basin 

  

Source: Author’s presentation 
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4.2.2.2 Simulation models 

Shortened time intervals allowing simulation of more detailed and realistic hydrological 

relationships were the focus of “a real-time mass balance river/reservoir model” called AralMod 

developed by Heaven et al. (2002). The model was developed for the Syr Darya basin with time 

intervals of six days and a time horizon of 20 years. AralMod is a hydrological dynamic 

simulation model similar to WEAP. The model estimates the overall water balance for the river, 

the main reservoirs, the North Aral Sea and the irrigation zones, and enables planners to analyze 

the impacts of different water management measures on water availability in the different river 

nodes. In addition, the model calculates irrigation efficiency in all irrigation schemes and 

indicates the zones with lower water use efficiency that can be as low as 20%. It was also shown 

that the amount of water flowing to the North Aral Sea under the existing irrigation water use 

regime would not be sufficient to restore the sea to 1960s levels. 

The Globesight model (UNESCO 2000) was used to analyze sustainable development 

opportunities in Kazakhstan (Kenzheguzin and Yessekina 2004). In this case a water deficit of 

about 6 km
3
 and energy demand that was almost two times higher than the supply were predicted 

by 2030. Later Ruziev and Prikhodko (2007) adapted another version of Globesight for the entire 

ASB and called it the “Socio-Economic Model” (SEM). Since the targeted values for population 

growth, income increase, and consumption are comparatively lower in this study than in the Irina 

and Gundo models, water scarcity in the ASB was not predicted until at least 2020. 

Savoskul et al. (2003) applied WEAP21, an improved version of WEAP (Raskin et al. 1992), to 

analyze the impacts of climate change on water availability, water use, growing season length, 

crop yields, and food production in the Syr Darya basin. The authors found insignificant impacts 

of climate change on water flows, duration of growing period, and cropland and pasture 

productivity during the 2010–2030 period. However, increased probability of droughts and 

floods, less water availability despite increasing growing period length in the middle parts of the 

basin, and decreased productivity of the rangelands in semi-arid and alpine areas in the period 

2070–2090 were predicted. The authors also analyzed the potential of different adaptation 

measures and strategies to cope with climate change impacts from environmental, food security, 

and industrial perspectives. As environmental options they suggested developing dikes, 

preventing desertification, and establishing sewage treatment plants. From food security 

perspective they examined improving water use efficiency, changing crop patterns, increasing 

water storage capacity, decreasing water losses in the irrigation network, increasing crop area, 

and reviving cattle breeding. Building new reservoirs and hydroelectric power plants and 

generating hydroelectric power in winter were tested from an industrial development standpoint. 

Based on different mixes of these measures, four strategic options featuring particular types of 

measures were developed: environmental, food, industry, and mixed. Under the implementation 

of any strategies, no considerable additional flows to the Aral Sea were predicted although 

considerable increases in food production, farm incomes, and energy production were possible. 

 

4.2.2.3 Optimization models 

Extending single-objective optimization models, McKinney and Karimov (1997) constructed a 

multi-objective water allocation model for the Amu Darya and Kashka Darya River basins with 

detailed water (linear) and salt (non-linear) balances. The main objectives of this model are to 

satisfy projected water demands, to minimize the difference between water deficits for all water 

user sites, and to minimize salt concentrations in the river. It was the basis for the model called 

the EPIC (abbreviation of Environmental Policies and Institutions for Central Asia) which 

considers energy, irrigation, and salt management for the entire ASB (McKinney and Savitsky 

2000, 2001a, 2001b). The model focused on water use and distributional relationships between 
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the water rich (hydroelectric energy producing upstream countries) and water dependent 

(irrigated agriculture oriented downstream) countries. The main criteria in the model are to 

minimize water deficits for all water users, to minimize energy production costs, and to minimize 

‘energy supply-internal demand’ gaps in the Central Asian countries.  

A shortened version of EPIC, but with detailed account of the energy production system in the 

Syr Darya Naryn Cascade was developed by Antipova et al. (2002) to estimate the compensation 

required for reduced energy production in upstream countries in favor of irrigation production in 

downstream countries. Though the shortcomings of the model such as summing indicators with 

different dimensions in the objective function, emphasis on the interests of Kyrgyzstan, and 

neglect of the downstream flooding/drought effects are obvious, based on the model results the 

authors argued that increased amounts of compensation from downstream countries are needed 

for the long-term and balanced use of water.  

Schlüter et al. (2005) applied a spatially expanded EPIC model (AmuEPIC) for a detailed 

analysis of water management and environmental systems in the deltaic zones of the Amu Darya 

River. AmuEPIC facilitates the development of future water management simulations for the 

Amu Darya River “on a rather large spatio-temporal scale as the basis for evaluation of their 

potential ecological effects in the delta region” (Schlüter et al. 2005). Schlüter and Rüger (2007) 

combined AmuEPIC with spatially explicit statistical models of landscape change and estimated 

groundwater levels and flooding/drought frequencies and their impacts on the riverine forests in 

the delta regions under different levels of river runoff. This model was also used to analyze the 

impacts of a guaranteed annual supply of water to the Aral Sea (10 km
3
) and annual decreases of 

irrigation demand (1% per annum) on environmental sustainability in delta zones (Schlüter et al. 

2006). The authors found worsening environmental conditions due to reduced water availability, 

improved environmental conditions along the river under the guaranteed minimum water 

delivery to the Aral Sea, and improved habitat quality for wildlife in the central and northeastern 

parts of the delta under the reduced irrigation demand through implementing water-saving 

technologies. 

A comprehensive analysis of the water management system in the ASB based on total economic 

benefit optimization was conducted by Cai et al. (2002, 2003a, 2003b). The authors (2003a) 

applied the short-term (annual) integrated hydrologic-agronomic-economic model for the case of 

the Syr Darya basin to maximize the total benefits of water use in irrigation, hydroelectric power 

generation, and environmental systems. This model was based on a river basin network, 

including several supply nodes such as reservoirs, aquifers, river reaches, and demand sites such 

as irrigation zones, industrial, and municipal water use sites. The main components of the model 

are: water and salinity balance in the river basin network and crop root zone, irrigation and 

drainage processes, crop yield functions in response to water stress and soil salinity, production 

functions for each sector, tax and subsidy schemes, and infrastructural investment. The model 

results under the optimization scenario indicated that additional investments amounting to $366 

million USD were necessary, that help increase conveyance efficiencies from 0.5–0.6 to 0.7–0.8 

and irrigation efficiencies from 0.5–0.65 to 0.8–0.85, with different changes across the irrigation 

regions.   

Considering the limitations of a short-term hydro-economic model for capturing environmental 

factors that decrease yield in the long-term such as the degradation of groundwater quality and 

soil salinization, Cai et al. (2002, 2003b) extended the Syr Darya model and developed a “long-

term water resources management model” for analyzing sustainability. The modeling framework 

consists of an “inter-year control program” and a sequence of yearly models. The focus of the 

inter-year model is to maximize the long-term objective function, which is a linear combination 

of different sustainability indicators that includes risk (agricultural and environmental water 
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supplies), environmental integrity, equity (temporal and spatial), and economic acceptability. The 

findings indicated that increasing water flows to the Aral Sea up to the level of the 1960s would 

diminish irrigation benefits unless appropriate infrastructural improvements and crop pattern 

changes take place (Cai et al. 2002, 2003b). Cotton areas would be largely replaced by other 

crops to attain optimal sustainability in contrast to the results of the WATERSIM model, which 

showed that cotton production expansion was necessary to increase income (Abdullaev et al. 

2009). Despite many methodological contributions to hydro-economic modeling studies, the 

main limitations of these integrated hydrologic-agronomic-economic models are that spatial 

scales were aggregated at the irrigation zone level and only a limited number of crops were 

considered (Cai et al. 2002, 2003a, 2003b). 

 

4.2.2.4 Limitations of the Aral Sea basin water management models and research needs 

Based on the discussion of models applied to deal with water management issues in the ASB and 

according to their interrelationships with each other, five major groups of the models that use 

different approaches in water allocation can be differentiated: 

1) Hydrological simulation models (e.g., similar to AralMod and WEAP) which estimate water 

demand, supply, and environmental water availability, and usually use equal or priority-

based water allocation considering fixed proportional shares; 

2) Socio-economic hydrologic simulation models (e.g., similar to SEM and Globesight) which 

examine water availability under specified food, feed and energy demand using a similar 

approach to water allocation as in the previous case; equal distribution of water scarcity by 

reducing water use limits of all users proportional to the water scarcity level is assumed;  

3) Multi-objective demand-supply gap minimization models (e.g., similar to EPIC) that 

minimize water scarcity levels across demand sites through minimization of energy scarcity 

and energy production costs; 

4) Integrated hydrologic-agronomic-economic models (e.g., Cai et al. 2002) that optimize water 

use benefits and consider water use and yield relationships in efficient water allocation. 

Despite the gradual improvements in water allocation modeling, review of the studies at ASB 

level showed that there is no study addressed the potential role of market-based water allocation 

for efficient water distribution rather than continuing  the current practices based on 

administrative management. Integration of the concept of water value on the basis of economic 

demand and supply functions to currently used river basin models would increase the 

applicability and value of hydro-economic models (Hoekstra et al. 2001). Since the social 

optimum for the entire basin in terms of economic benefits would be attaining the highest 

possible benefit at the basin level, this option requires reallocations of the water rights from the 

users with lower water productivity to the users with higher productivity. However, since users 

have different and often conflicting interests over common water resources the social optimum 

concept does not work in reality—the users with lower productivity do not sacrifice their private 

benefits for the overall benefits to society at the basin scale. This is particularly true when the 

user with lower productivity is located in an upstream region. Compensation mechanisms that 

incentivize both higher and lower water productivity users to cooperate in order to attain basin 

scale (synergetic) benefits and share them equitably are required for improving overall water 

productivity. Water pricing and market-based water allocation are recommendable tools for 

incentivizing water users for more efficient water use, both through cooperation and adopting 

efficient water management technologies. Before moving to the empirical analysis of the 

potential gains from water markets in the case of the ASB, the functioning mechanisms of these 

market-based water allocation institutions from both conceptual and theoretical point of view, as 
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well as empirical evidence from existing water markets in other parts of the world are discussed 

in the next chapter.  

 

4.3 Theoretical-conceptual aspects of water allocation and water markets 

4.3.1 Conceptual aspects of market-based water allocation  

4.3.1.1 Water allocation institutions 

The existence of multiple water users sharing river basin water resources necessitates setting 

water allocation rules among these users to avoid conflicts. This task is particularly challenging 

under conditions of water scarcity and should consider social and environmental impacts of water 

allocation decisions. Water allocation options can be grouped as centralized (top-down) and 

decentralized (bottom-up) approaches according to the type of governance. In centralized water 

allocation a single administrative unit (usually a government) takes control over water resources 

use and allocation. In contrast, the decentralized approach provides more opportunities to water 

users to participate in decision making processes and to cooperate with each other in water 

sharing and management. However, this is not the only way of classifying water allocation 

options. Dinar et al. (1997) distinguished four types of water allocation mechanisms and 

described their advantages and disadvantages (Table 4.3): 

1) Marginal cost pricing; 

2) Public (administrative) water distribution; 

3) Water markets; 

4) User-based allocation. 

Marginal cost pricing is characterized by charging for water use based on the marginal cost of 

each additional unit of water. Since this option equates the marginal value of water with its 

marginal cost, it is considered an economically efficient way of determining water allocation. 

Marginal cost pricing can be applied to develop differential prices based on water quality and 

reliability (i.e., higher prices for higher quality or higher reliability). Advantages of this approach 

are its theoretical efficiency, its ability to reflect the scarcity of water and prevent overuse, and its 

implementability and compatibility with efforts to collect pollution and tax charges. 

Disadvantages include the difficulty of estimating marginal cost values, the neglect of equity 

issues, and implementation difficulty due to the volumetric monitoring requirement; and in the 

case of canal irrigation systems, a general lack of reliability of water supplies. 
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Table 4.3 Water allocation mechanisms 

Water allocation 

mechanism 
Description 

Centralized (CD) or 

Decentralized (DCD)? 
Advantages Disadvantages 

Marginal cost 

pricing 

Targets a price for water 

equal to the marginal cost of 

water supply 

CD 

Theoretically efficient; 

prevents water overuse under 

conditions of drought 

Difficult to estimate correct marginal 

cost; neglects equity; requires 

volumetric monitoring (which is very 

costly) 

Public 

(administrative) 

water allocation 

State decides what water 

resources should be used and 

allocates and distributes 

water among users 

CD 

Can be used to promote 

equity; can protect the poor; 

can consider environmental 

needs 

Does not take into account the value of 

water in time and space, and generally 

fails to allocate water to the highest 

value 

Water markets 
Referred to as a trade of 

water (use) rights 
DCD 

Induces efficient water 

management; empowers 

water users 

Difficulties in measuring water, 

defining water rights when flows are 

variable, and investing in conveyance 

systems; third party effects; need for 

and difficulty of considering 

transaction costs 

User-based 

allocation 

Based on collective action 

institutions with authority to 

make decisions on water 

rights 

DCD 

Flexible to adapt water 

delivery patterns to meet 

local needs; administratively 

feasible and sustainable; 

politically acceptable 

Requires a very transparent 

institutional structure; effectiveness for 

inter-sectoral water allocation is 

limited 

 

Source: Adapted from Dinar et al. (1997) 
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Public water allocation is characterized by the dominant role of government intervention in 

granting permits to use different water sources, and allocating and distributing water. Public 

distribution is usually associated with physical water use norms and political influence. Public 

intervention in water resources development and management is justified since water is a 

common resource that belongs to an entire community and the investment costs of water 

development are usually beyond the capacity of private sector actors. Advantages of this 

approach are that public water allocation can promote equity objectives, can help protect the 

poor, and can help to ensure water supply for environmental needs. Disadvantages of public 

options are that water prices, if charged, often do not reflect the real value of water, leading to 

water overuse or misallocation, and the option, unless linked with economic objectives, does not 

create incentives for users to use resources efficiently. 

Market-based water allocation operates based on tradable water use rights. Water markets can 

provide additional water supply for high value uses without developing new sources and create 

incentives for more efficient water use by compensating for sales of water normally used for less 

valued applications. The necessary conditions for establishing formal water markets generally 

include government intervention, such as: (1) defining initial water use rights for each user, (2) 

organizing the institutional and legal frameworks for trading, (3) and building necessary basic 

infrastructure for water transfers (Holden and Thobani 1995). Rosegrant and Binswanger (1994) 

enumerated several advantages of market-based water allocations, such as: (1) empowering water 

users by considering their interests in water reallocation and compensating for sales, (2) 

increasing water rights tenure security, which incentivizes investment in water-saving 

technologies, (3) providing opportunities to gain additional benefits through the sale of water 

saved through increased efficiency, (4) providing incentives for water users to consider external 

costs caused by their water use, and (5) greater acceptability among water users relative to 

volumetric pricing, which is generally seen as expropriation of traditional water use rights. Water 

rights trading can occur among the users at the scale of the small sub-catchment as well as at the 

entire river basin scale. Additionally market-based water allocation is more responsive to climate, 

crop price, and water supply changes than centralized water allocation (Dinar et al. 1997). 

Disadvantages of market based systems are derived from the difficulty of measuring water 

volume, difficulty of defining initial water use rights when water flows are variable, the necessity 

to invest in water delivery infrastructure, and third party effects of changes in return flows. 

User-based allocation of water resources requires collective action institutions with the authority 

to regulate water use rights as evidenced by farmer-managed irrigation systems (Dinar et al. 

1997). A wide variety of rules for water distribution exists within such systems, such as rules 

based on timed rotation, water depth, land area, or flow share restrictions (Yoder 1994). The 

effectiveness of the system largely depends on social norms and the power of local institutions 

(Dinar et al. 1997). The advantages of the system are its adaptability for meeting local needs, the 

feasibility of administrative regulation, and acceptability to governments. Disadvantages include 

the size limitation of farmer-based systems, usually restricted to local communities, the challenge 

of dealing with inter-sectoral water allocation, and the need for very transparent institutions. Elite 

capture is a potential problem in such systems.  

Summing up, although all water allocation institutions have advantages and disadvantages while 

being relevant at different scales (local, national, basin), water markets have the potential to 

improve allocation efficiency and are particularly relevant for basin level water management. 

 



 

109 
 

4.3.1.2 Conceptual framework: water market mechanism, initial water rights, and transaction 

costs 

Increased competition among water users for limited water supplies in river basins necessitates 

effective water allocation institutions that provide efficient, equitable, and sustainable 

distribution of water resources (Ringler 2001). Unilateral water abstractions by upstream water 

users will not be efficient for the entire system under water scarcity conditions as it prevents 

equal marginal water productivity for all water users. An equitability criterion requires that any 

reallocation of water resources should increase overall basin-wide benefits without diminishing 

the welfare of any water user, and ensures compensation for the lost benefits to less productive 

water users. Environmental sustainability suggests that future water users will be able to enjoy 

the same benefits and similar levels of ecosystem and environmental services as current users do. 

Maintaining the efficiency, equitability, and sustainability of water allocation at the basin level in 

turn depends on several factors, such as the relative power balance among water users, 

prioritization of the specific sectors within national economies, and national strategies on food 

security or export revenue earnings (Ringler 2001). 

Traditional administrative methods of water allocation have been based on the consideration of 

water as a public good emphasizing on equitability of water sharing. However, water overuse and 

misallocation, increased costs of developing new sources, and the poor quality of public agency 

services point to the need for alternative ways of efficient water allocation and management. 

Water markets offer a mechanism for incentivizing water users to increase water use efficiency. 

Additional gains from water rights trading are feasible because of the heterogeneity of the 

economic value of water, variation of marginal water profitability across the water user sites, and 

the differential water needs by sectors across space and time. In addition to economic efficiency, 

equity in water distribution can also be addressed through compensation to users with low water 

use efficiency who voluntarily transfer their water (use) rights to more productive users. In river 

basins shared by several states such as the ASB, upstream users generally divert abundant water 

resources to meet their internal demands, releasing less water to downstream users and the 

environment in dry years (Sokolov and Dukhovny 2002, Müller 2006). Tradable water use rights 

under these conditions may lessen the burden of scarcity by compensating less productive water 

users through sales and benefiting more productive water users through increased water 

availability. As a result, the overall benefit to water use in the basin can be increased without 

adversely affecting any user. 

While markets have strong advantages for incentivizing to use resources more efficiently under 

scarcity conditions, the function of markets depends on specified and transferable property rights 

(Coase 1960). In the case of water markets, their establishment requires clear, secure, and 

transferable water use rights. Despite several attempts to develop general rules for sharing river 

basin resources based on principles of equity, reasonability, sustainability, and optimality (ILA 

1966, UNECE 1992, UN 1997), there is no universal guideline or legal treatment for establishing 

initial water use rights. The following major principles of water use rights are practiced in 

different river basins (Wolf 1999): 

1) The doctrine of absolute territorial sovereignty (or the Harmon Doctrine): often claimed 

by upstream regions this policy reserves state rights to control water resources within 

national territory without regard for effects on other regions/users; 

2) The doctrine of natural water flow (or absolute riverine integrity): bases access rights on 

natural river flow crossing users territory; 

3) The principle of prior appropriation (first come, first serve): bases water use rights on 

historical use; 
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4) The principle of community of interests: treats river basin as a unified economic system 

and implies allocation of water to maximize benefits of all user regions in an integrated 

manner; 

5) The principle of equitable utilization of river waters: bases water access rights on 

equitable allocation through mutual agreements, usually with regards to the size of user 

populations. 

The selection and implementation of these rules depend on hydrography, historical water use 

patterns, social values, and the political authority of distinct users. 

The transaction costs of establishing and maintaining water markets are also essential for 

evaluating overall economic gains from trading and choosing policy instruments. Transaction 

costs occur due to conducting research, seeking information on potential buyers and sellers, 

designing and implementing water rights trading rules, coordinating and administering water 

transfers, monitoring water use and distribution, and enforcing agreements (McCann and Easter 

2004). The level of transaction costs varies depending on physical attributes of water use, water 

related institutions, and the general institutional environment (McCann and Easter 2004). 

Physical attributes include the availability and conditions of irrigation infrastructure, reliability of 

the water supply, the size of transfers, effects on third parties, and water attributes (quality, 

quantity, temporal, and spatial). Water related institutions that impact transaction costs include: 

existing (initial) water rights regimes, the power and rent seeking behavior of participating 

parties, and the existence of conflict resolution and contract enforcement mechanisms. 

Transaction costs are also influenced by general institutional environment factors such as the 

governance system, the legal system, social norms, and social capital.  

Due to heterogeneous physical and institutional conditions, and due to the inclusion of different 

elements into the calculation, transaction costs vary by country and study. Transaction costs in 

the western United States averaged 6% of the price paid for water transfers (Colby 1990b). The 

overhead costs paid by the State Department of Water Resources for the California Water Bank 

were nearly 8% of the total costs of purchased water (Howitt 1994). Water transaction costs 

incurred by farmers in Chile were 7–23% of the price of water transfers (Hearne and Easter 

1995). In Australia, expenditures on water transfers varied from 3% to 12% of the price of water 

entitlements (Challen 2000, ACG 2006). Water rights trading is only justifiable if transaction 

costs are lower than the additional gains by water market participants. Once transaction costs are 

low enough and the initial water rights are established consensually, water markets can provide 

mutually beneficial water transfers. 

 

4.3.2 Theoretical models of efficient water allocation and water rights trading 

Before considering the potential gains of introducing market-based water allocation mechanisms 

in real life conditions based on extensive data analysis it is better understand the availability of 

potential gains of market-based water allocation through a simplified theoretical framework of 

mathematical equations and geometrical illustrations. The theoretical models address water 

allocation between upstream and downstream users in a hypothetical river basin with two water 

users (agents). Initial model considers optimization of water use benefits for the entire basin 

while the other subsequent models include additional components of water rights trading, 

asymmetric distribution of power in the water market, and transaction costs of water rights 

trading.  
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4.3.2.1 Efficient water allocation scheme 

For simplicity and explanatory purposes, the theoretical framework is based on a hypothetical 

river basin where common water resources are shared by two users—water user A and water user 

B. Without loss of generality, water user A is designated as an upstream agent and water user B is 

designated as a downstream agent along a shared riparian system. Several assumptions must be 

made about the users, the features of benefit functions, and resource availability. The first 

assumption is that each water user has a single aggregated economic sector. The second 

assumption is that water benefit functions to users follow concave, quadratic-like functions. 

Quadratic functions satisfy most of the properties of the theoretical benefit function commonly 

described in microeconomics textbooks. Due to their simplicity, their results are also relatively 

simple to calculate and interpret (Booker and Young 1994). The third assumption is that water 

resource availability is restricted in the hypothetical river basin. The fourth assumption is that 

there is only one shared resource—water—and that profit levels depend only on the availability 

of water. The last assumption considers absolute riparian rights that provides priority to upstream 

region in initial water rights distribution. Although some of these assumptions are too restricted 

to encompass all real life situations, they are still adequate to explain the efficient resource use 

concept under scarcity conditions. 

Let’s define    and    as actual water withdrawals by agents A and B respectively. Let 

       and        be the quadratic benefit functions of agent A and agent B with respect to 

water consumption respectively.   
   and   

   are optimal water consumption levels that accord 

the maximum individual benefits to agent A and agent B respectively. Agents try to use as much 

water as possible to attain the greatest benefit, but they do not use more water than the optimal 

water consumption level because increased water use above this point decreases benefit. If we 

define water availability in the entire basin with    the following total water use constraint comes 

into force: 

                (4.1) 

 

According to the third assumption, water availability should be less than the sum of optimal 

water use values: 

    
     

         (4.2) 

 

  
   and   

   are defined as the maximum individual benefits from optimal water consumption for 

agents A and B respectively. Now the problem can be presented in a graphical format.  

The graph below (Figure 4.2) was developed in a manner similar to the popular “Edgeworth 

Box” graph in microeconomic theory. The benefit of agent A (  ) lies on the OY axis, in contrast 

to its water consumption level    ) on the OX axis. The benefit function of agent B is similar to 

the coordination plot of the benefit function for agent A, but in reversed order. The maximum 

available water to either agent, thus the full length of the OX axis, is equal to total basin water 

availability ( ). However, both water users prefer to consume the amount of water that provides 

maximum individual profit. Thus, the most favorable water consumption level (  
  ) to user A is 

at point (  
     

  ), when it maximizes its benefit at   
  . Similarly, the most favorable water use 

level    
    to user B is at point (  

     
  ) when the agent maximizes its benefit at   

  . If water 

resources are abundant these two points coincide with each other, allowing both agents to have 

their optimal profit. However, due to water scarcity total benefit is always less than the sum of 

individual optimal benefits. 



 

112 
 

Figure 4.2 Hypothetical scheme of efficient water allocation 

 

Notes: Dark blue lines are for describing benefit functions of the water users A and B under 

optimization scenario; Water uses lie on the OX axis while benefits lie on the OY axis.  

Source: Author’s presentation 

 

The full length of the OY axis is considered as equal to the sum of individual optimal benefits 

(  
  +   

  ) of both agents. The total basin-wide benefit ( ) is equal to the sum of individual 

benefits (         ): 

                (4.3) 

 

Knowing that additional water use above the optimal level decreases benefits, agents do not use 

more water than the optimal water consumption level: 

       
   and       

        (4.4) 

 

Considering conditions (4.1) and (4.4), water consumption of the user A is higher than   
  (or 

    
  ) but lower than    

  . Similarly, water use by agent B is higher than   
  (or     

  ) but 

lower than   
  . 
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The location of the water user is important for achieving the most favorable individual benefit. 

Without strong institutions managing the distribution of water in the basin or without power of 

agent B to influence agent A to consider its needs, agent A will prefer to consume the amount of 

water (  
  ) that allows optimal individual benefit (  

  ) while neglecting the interests of agent B. 

However, overall benefit in this case would be less than optimal basin-wide benefit level. As can 

be seen from Figure 4.2, when agent A agreed for the cooperation, the benefits lost by agent A 

(  
     

 ) by reducing water consumption from   
   to   

  to release water for meeting the needs 

of agent B is less than the additional profit (  
    

 ) gained by agent B by increasing its water 

consumption from   
  to   

 . In other words, the marginal productivity of water for agent B is 

greater than marginal productivity of water for agent A: 

  
    

 

  
    

    
  

     
 

  
     

        (4.5) 

It can be mathematically proven that optimal basin-wide benefit is attained when the 

marginal benefits of the water users are equal to each other:                  . The 

task in this case is to find water consumption levels for agent A and agent B (  
    

 ) that provide 

the maximum overall basin-wide benefit: 

                     

s.t.:                  (4.6) 

 

A Lagrangian function to solve this mathematical optimization problem is: 

                                       (4.7) 

 

Taking derivatives from this equation (4.9) allows the following series of equations: 

            

    
  

        

    
       

            

    
  

        

    
                 (4.8) 

            

   
             

 

The condition that allows optimal overall basin benefit under cooperation can be derived from 

the first and second components of the system of equations (4.7) above: 

  
        

    
 

        

    
      (4.9) 

In the graphical illustration, the optimal basin-wide benefit level matches the points of (  
    

 ) 

and (  
    

 ) for each water user, respectively, when the slopes of the tangent lines to the benefit 

functions are equal to each other. As the objective function was              , the 

problem can be alternatively reformulated as   
  +  

        , where   is basin-wide water 

benefit and   is the sum of actual benefit deviations from individual optimal benefits for each 

user. Considering that   
  +  

   is fixed,   
  +  

         is equivalent to      . The 

latter in turn is equivalent to finding the shortest distance between the two benefit functions on 
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the graph. The shortest distance between these two production functions is reached when the 

slopes of the tangent lines to these functions are equal to each other which is the case at water use 

level of   
  for agent A and water use level of   

  for agent B when marginal water productivities 

to the both users are equal to each other.  

However, when an omniscient decision maker for the entire basin is assumed, individual profit 

(  
 ) of agent A at the optimal basin-wide benefit level is lower than its profit level (  

  ) when 

the agent acted egotistically. If agent B agrees to compensate agent A for reduced benefit (agent 

A’s) and additionally offers some portion of its increased (agent B’s) benefit, agent A would be 

more likely to participate in the cooperation arrangement of achieving optimal basin-wide 

benefit. Alternatively, agent B can purchase water use rights (  
     

 ) from agent A at a price 

per unit of water ranging between 
  

    
 

  
    

  and 
  

     
 

  
     

 . Thus, cooperation to achieve optimal basin-

wide benefit would provide additional benefits to both agents if cooperative basin-wide gains 

were fairly shared among the users. Necessary water re-allocations to reach optimal basin-wide 

gains through introducing tradable water use rights will be discussed in the next section. 

 

4.3.2.2 Water market mechanism 

In the case of establishing a water market, the benefit functions of the water users would also be 

dependent on the amount of water sold or bought and the market price of water. However, before 

establishing a water market, the initial water rights of each water user should be clearly defined. 

Although, for simplicity, we assume absolute riparian rights in the theoretical examples in reality 

it can be based on population size, irrigated area, or mix of the options. Initial water rights 

distribution also depends on the political power of the riparian countries and water users. 

Considering specific characteristics of water such as its liquidity, the importance for basic needs 

of humans and other living beings it is important that the initial water rights distribution is based 

on the principles of equitability and morality. Moreover, when multiple users are considered it is 

better considering a single basin organization that coordinates water rights transfers knowing the 

demand by each user. For instance, at first knowing approximate annual water availability in the 

basin this organization distributes the water use rights or limits for each user as it is presently 

done by ICWC in the ASB. Then, each water user site evaluates and delivers its willingness to 

sell or purchase water use rights at different price levels based on its production functions and 

water demand curves. Based on the water demand curves across the water user sites the basin 

coordination unit decides about the amount and prices of water rights transfers within the basin. 

Under the conditions of free market for water use rights, when we consider water user A is a 

seller of the rights based on the assumption of absolute riparian rights rule for initial water use 

rights distribution, total benefit (  
  and   

  for agents A and B respectively) of the water users 

will consist of production benefit (       for agent A and        for agent B) and the water 

trading turnover (                   
    for agent A or              

      
    for agent B): 

 

  
                                      

     (4.10) 

and 

  
                                     

    (4.11) 
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where      and      are the willingness to trade water use rights of user A and B 

respectively,    and    are the amounts of water use rights bought and sold while   
   and   

   

are the initial water use rights for agents A and B respectively. The willingness to trade water use 

rights is evaluated based on water demand curves (marginal water productivities) for each water 

user site. The difference between actual water use and water use rights (     
  ) equals to 

water trading transfer, e.g. if      
   the value of (     

  ) indicates the amount of water 

use rights bought by the user I while if      
  the value of (  

      ) indicates the amount of 

water use rights sold by the user I. 

The following condition is true for initial water use rights: 

  
     

       
    

      (4.12) 

 

Under market equilibrium conditions, the amounts of water use rights sold and bought should be 

also equal to each other: 

          (4.13) 

 

If agent B purchases additional water use rights           
     , the agent will be able to 

increase its production benefits (      ) due to increased water use but decrease water trading 

turnover (                   
    ) as it must pay the price of      per unit of the 

purchased water. In contrast, when agent A sells water use rights       
          its 

production benefits decrease due to reduced water use but trading turnover increases because of 

revenue from selling water use rights. 

Total basin-wide benefit under market conditions can be formulated as:  

                                                     
 

     s.t.:          

          

             
     

      
 

             
    

      
 

      
        

    
 

 

                 
        

    
  

 

                         
 

                  

(4.14) 
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Under market equilibrium, willingness to pay and sell of the water use rights of the users should 

be equal to each other. These values are simultaneously equal to the market price for water use 

rights (  ): 

   
        

    
  

        

    
     (4.15) 

 

Once this relationship and the equality of the amounts of the water use rights sold and bought are 

considered the problem described in the system of equations 4.14 will be equivalent of the 

equation 4.8 in the case of the optimal water allocation. The equation 4.15 indicates that water 

use levels under the conditions of free market for water use rights are the same as in the 

case of optimal water allocation scenario. Thus, the water allocation levels except the state 

when marginal productivities of water uses for both users are equal to each other cannot be 

optimal under market-based water allocation. Indeed, in our hypothetical example, hydrological 

constraints including water use capacities, minimum water use requirements because of the social 

and environmental needs that cannot be easily monetized, maximum/minimum land availability, 

and return flows were not considered. However, in real life these constraints exist and may 

prevent the coincidence of the market equilibrium and optimization solutions as also previously 

postulated (Ringler et al. 2004 and Cai et al. 2006). 

Additional gain (   ) from introducing tradable water use rights can be formulated as a 

difference between the optimal benefit (   ) when water use rights trading is considered and the 

benefit (    
     

   ) under the initial water rights distribution: 

          
    

        
    

    =   
     

     
     

        
         

   (4.16) 

 

For a graphical presentation of the solution, the initial water use rights were assumed based on 

the “absolute sovereignty” doctrine of water sharing as in the case of the model formulation. 

Thus because of its upstream location user A is considered as a seller of water use rights (Figure 

4.3). In this case if there is no market, upstream agent A would use the amount of water (  
  ) 

that maximizes its benefit (  
  ) leaving agent B in the least favorable condition at the point of 

(  
     

 ). However, as soon as there is a possibility to trade water agent A may wish to release 

some amount of water if agent B is willing to pay for additional water appropriately.  

Based on the formulations described above, under the known water prices that is equal to market 

equilibrium level one may derive the water-benefit curves        
   and        

   for agents 

A and B respectively (Figure 4.2): 

 

  
                        

                     
     (4.17) 

and  

       
                       

                      
        (4.18) 

 

These equations 4.17 and 4.18 indicate that the graph of    
      lies above        when 

       
    while the graph of    

      lies below        when   
       

   . 
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Furthermore, based on the equation 4.15, maximum values of these benefit functions are attained 

at the water use levels of   
   and   

 . Relying on these facts water benefit functions for both 

users can be illustrated graphically (Figure 4.2). 

 

Figure 4.3 Scheme of efficient water allocation under water rights trading 

 

Notes: Dark blue lines are for describing benefit functions of the water users A and B under 

optimization scenario; Red lines express the respective benefit functions under free market scenario 

without considering transaction costs; Water uses lie on the OX axis while benefits lie on the OY 

ordinates axis.  

Source: Author’s presentation 

 

As shown in Figure 4.2, the slopes of tangent lines to the benefit functions are equal to each other 

at the water use levels of   
  and   

  for agents A and B respectively. These water consumption 

levels are also the optimal values for providing maximum basin-wide benefit under cooperation. 

Introducing a tradable water use rights allows additional benefits     
 

 and     
 

 for each user 

respectively compared to the benefits under the initial water use rights allocation. Therefore, the 

introduction of water rights markets creates incentives for cooperation and the optimal use 

of water. As shown from equations (4.17) and (4.18), the size of the additional benefit and 
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thus distribution of the overall additional benefit among the water users are dependent on 

initial distribution of the water use rights. 

Despite its mutually favorable conditions for all users, free competitive markets are rare in 

the real world, including the water sector. The location, political power of the agents, and 

degree of information asymmetry among agents influence the market price, creating 

favorable conditions for upstream users to seek optimal individual benefit. Thus, how 

would water uses and benefit levels under asymmetric power diverge from the levels under 

free markets and also from the optimization scenario? In the following section these issues 

are analyzed further by assuming that agent A has more power to influence the water price level 

due to its strategic geographic location. 

 

4.3.2.3 Water market mechanism under asymmetric power 

Using the advantage of its geographical position, agent A has more power to influence benefit 

sharing and can get a greater proportion of the cooperative benefit. Based on the assumption of 

absolute priority rights that allows to withdrawing abundant water to user A, this user can be 

considered as a seller of water use rights which can influence on the course of water trading 

when asymmetric power in the water market is specified. Therefore, agent A can set the price for 

water which can provide higher benefit to agent A than the benefit under the case of a symmetric 

power distribution while leaving less benefit to agent B from cooperation. This situation is 

discussed in this subsection using a hypothetical example. However, it must be cautioned that 

when multiple users with a willingness to sell or buy water use rights exist in the river basin it is 

hard that any user can regulate the price of water use rights. To make a decision on water use 

levels and consequent water price (   ) agent A must first be aware of the water benefit function 

of agent B: 

  
                                     

     (4.19) 

 

As derived from the total benefit function in equation (4.19), the marginal productivity of water 

and thus willingness to pay water of agent B depends on the price (   ) for water use rights 

offered by user A: 

    
       

    
 

        

    
             (4.20) 

 

Based on this relationship, the total benefit of agent A is: 

  
                          

        

    
       

          (4.21) 

 

Agent A can gain maximum benefit when its marginal water productivity is equal to 0:  

    
       

    
 

        

    
 

         

       
       

     
        

    
     (4.22) 
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Equations (4.20) and (4.22) allow to assessing market price level for water use rights under 

asymmetric power that permits the greatest benefit to agent A: 

     
        

    
 

         

       
       

     
        

    
    (4.23) 

 

Since water user A is a seller in this hypothetical example, its actual water use is lower than its 

water use rights (     
   ). Moreover, since benefit function of water user B is a 

monotonous and concave function as initially assumed, 
        

    
   and 

         

   
   . 

Considering the total water use constraint (       ) where   is total fixed water amount, 

water use of user A equal to the difference between total water use and water use of the user 

A:        . Thus, 

         

       
  

    (
    (  )

    
)

    
  

    (
        

        
)

    
  

         

   
  

      (4.24) 

 

Given the fact that actual water use of agent A is lower than its water use rights and based on the 

equation (4.24): 

 
         

       
       

            (4.25) 

This equation 4.25 indicates that the marginal water productivity of agent A (
        

    
) is lower 

than the marginal productivity of agent B (
        

    
) when asymmetric distribution of power in 

water rights markets is considered. Thus, considering the assumed concave shape of the water 

benefit functions, the water user A uses more water than the amount in the case of market 

equilibrium under symmetric power. Moreover, the price that the user A asks the user B to pay 

for water use rights also will be higher than the free market price of the rights.  

After determining the water price levels under conditions of asymmetric power as discussed, the 

fact that agent A can gain even higher benefit than in the case of free water rights market by 

controlling the price of water use rights can be also illustrated graphically (Figure 4.4). The 

condition that the water price level is higher than the price level under a free water market 

determines the moving direction of the water-benefit relationship curves under asymmetric 

power distribution:  
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(4.26) 

Likewise, 

  
                      

                      
        

      
 

when       
        

   since       . 

(4.27) 
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Figure 4.4 Water allocation scheme under water rights trading with monopolistic power 

held by one of the participating agents (agent A in this hypothetical example) 

 

Dark blue lines are for describing benefit functions of the water users A and B under 

optimization scenario; Red lines express the respective benefit functions under free market 

scenario without considering transaction costs; Dark green lines stands for the respective benefit 

functions under water rights market with asymmetric power; Water uses lie on the OX axis while 

benefits lie on the OY axis. 

Source: Author’s presentation 

 

Implying from the equation (4.25), when user A has monopolistic power over determining water 

rights prices, the user A uses more water than the case of free market at the optimal level. Based 

on this implication and equations (4.26) and (4.27), the water benefit functions of each user under 

the conditions of the asymmetric power in water rights market while considering the known 

prices of the water use rights can be graphically demonstrated (Figure 4.4). Higher prices for 

water use rights under asymmetric power distribution result in an upward shift of the profit 

function curve for agent A (       
          

    and a downward shift of the profit 

function curve for agent B (        
           

   ). As seen in the figure, under conditions 

of asymmetric power distribution agent A can gain an additional benefit     
   , which is even 

higher than its additional gains under free market (   
 

), while consuming   
   amount of 
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water and selling    
    

  
) amount at price    . Although agent B gains additional benefit 

at the level of    
  

, it is less than the benefit     
 

 under free market conditions. Thus, even 

under a water market scenario with asymmetric power distribution, water users are still in 

a better condition than in the case of being without a market institution. However, agent 

B’s inability to prevent the user A of influencing on the water price level in a way that 

would maximize individual total benefit of the user A does not allow to achieving the 

highest overall basin benefit. 

Among many other factors heterogeneous distribution of power to control water resources among 

the users incurs transaction costs. Transaction costs are not only due to power asymmetry, but 

also to other factors such as the legal environment, the general condition of physical 

infrastructure, information costs, and human and social capital (Williamson 2000; Saleth and 

Dinar 2004), which are important considerations for unbiased estimation of the potential 

economic gains from water rights trading (see subsection 4.3.1.2 for more details). 

 

4.3.2.4 Water markets considering transaction costs 

Despite economic gains can be achieved from market-based water allocations, this trading 

process will not be without cost (Coase 1937, 1960). Neglecting the transaction costs that occur 

due to the design and establishment of any kind of market institutions, collection of information, 

monitoring, and enforcement of the rules may not ensure positive economic outcomes (North 

1989, 1990). According to the market-based explanation of adopting institutional innovations in 

public choice theory, institutional change should be initiated only if benefits exceed the 

(transaction) costs of undertaking the change (Demsetz 1967, Saleth and Dinar 2004:37). 

Therefore, consideration of the transaction costs is essential for evaluating gains from water 

rights trading. 

The impact of transaction costs on the outcomes of water rights trading can be also explained 

with the employment of the simplified model with two agents. Absolute riparian rights rule in the 

distribution of initial water use rights is assumed here as well. Under the conditions of this rule 

agent A is able to divert as much water as it wants and may decrease its consumption or transfers 

its water use rights to agent B if its benefit losses due to water use reduction are compensated by 

agent B. Here, we additionally assume that power in the market is equally distributed and thus 

free market functions in water allocation. Based on these assumptions the profit functions of the 

water users under the consideration of transaction costs (  
   and   

   for agent A and agent B 

respectively) will be: 

 

  
                                          

             
    (4.28) 

and 

  
                                          

             
    (4.29) 

 

where    are the transaction costs per unit of traded water. Transaction costs related to 

identifying legal characteristics of water use (ability to transfer, return flow obligations, and 

timing of transfers) and complying with the national and international laws regarding transfer 

application are paid only by the sellers of the water use rights. Meantime transaction costs for 

administrative establishment such as marketing and negotiating the trade terms occur for both the 
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sellers and buyers (Archibald and Renwick 1998). Thus, both the buyer and seller of water use 

rights pay the transaction costs. For simplicity, the transaction costs were assumed to be equally 

split between the agents (Challen 2000). Furthermore, the transaction costs were assumed to be 

proportional to the size of the transfer and fixed per unit of transferred water. 

Total basin-wide benefit under free market conditions while considering transaction costs can be 

formulated as:  

                                                                
 

     s.t.:          

          

             
     

      
 

             
    

      
 

      
        

    
    

 

                 
        

    
     

 

                          
 

                  

(4.30) 

 

Considering the equilibrium market price for both seller and buyer, the objective function of the 

water market model considering transaction costs (Equation 4.30) can be also reformulated as 

follows:  

                                       (4.31) 

This objective function differs from the objection function of the optimization model and the 

model for the free market of water use rights without considering transaction costs. Moreover, 

under the price level of market equilibrium, the following functional relationship between the 

market price and marginal water productivities of the users holds true: 

 

    
        

    
     

        

    
       (4.32) 

This equation indicates that the trading price (   ) and water use levels under water rights 

trading while considering transaction costs are different from levels under trading without 

considering transaction costs. It also indicates that water market price is a function of 

transaction costs. Like in the case of water market under asymmetric power, marginal 

water productivity of user A is lower than marginal productivity of user B. This means 

higher water consumption by user A when transaction costs of water trading is considered 

than the water use levels of water rights market without considering transaction costs. 

Furthermore, this higher water consumption by the user A indicates lower amounts of 

water rights transfers in the market. Due to the increased transaction costs, the price for a 

unit of water use rights also will be higher than the water rights market price without 

considering transaction costs. 



 

123 
 

Knowing the water market price under consideration of transaction costs (   ), we can plot the 

total water-benefit curves        
       and        

       for agents A and B respectively 

(Figure 4.5). The following relationships allows to determining the possible shift of benefit 

functions of the water users under the consideration of transaction costs of introducing water 

rights market:  
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(4.33) 

 

and 
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    (4.34) 

 

when       
        

   since       . 

 

(4.34) 

 

Based on these equations, we can conclude that the benefit curves in the case of water rights 

markets considering transaction costs lies below the benefit curves in the case of free water rights 

market without considering transaction costs (Figure 4.5). Furthermore, optimal water use levels 

for water user A is higher when transaction costs are considered than the case without the 

consideration of the transaction costs implies that this water use level is higher than   
  but 

lower than   
  . Thus, optimal water use points will shift to   

   and   
   when transaction costs 

are considered.  

If water rights trading without transaction costs provided economic benefits of   
  and   

  for 

agents A and B, respectively, considering transaction costs can decrease the availability of 

additional economic gains from water rights trading. In our example agent A and agent B obtain 

reduced additional gains of    
  

 and     
  

, respectively, due to transaction costs (    and 

    for agent A and agent B, respectively). Additional gains here were calculated based on the 

benefit levels under the baseline scenario that is the case of initial water use rights distribution. 

Thus, the level of transaction costs determines the availability of additional gains from water 

rights trading. 

The hypothetical model discussed here and the theoretical and empirical models of other studies 

(Challen 2000) indicated considerable economic gains and improvements in water use efficiency 

through water rights markets compared to an alternative water allocation based on administrative 

management when the transaction cost of water rights trading is sufficiently low. Besides this 

and other theoretical justifications, water markets are already being practiced formally or 

informally in arid regions of several countries at present. Lessons on the drivers of success and 

causes of failure of water market mechanisms in real life situations are the topic of the next 

section. 

 



 

124 
 

Figure 4.5 Water allocation scheme considering transaction costs 

 

Notes: Dark blue lines are for describing benefit functions of the water users A and B under 

optimization scenario; Red lines express the respective benefit functions under free water market 

scenario without considering transaction costs; Sky blue lines stands for the respective benefit 

functions under free water rights market considering the transaction costs; Water uses lie on the OX 

axis while benefits lie on the OY axis.  

Source: Author’s presentation 

 

4.3.3 Review of water rights trading practices across the selected countries and their relevance to 

the case of the Aral Sea basin 

Different forms of water rights trading are being practiced in water scarce regions of several 

countries, such as the USA, Australia, Spain, Chile, South Africa, India, and China. Water 

markets were successful in some countries, while they failed in others. Water rights trading in 

China is in its infancy (Grafton et al. 2010). Well developed markets are found in India, but they 

operate at local levels and remain informal. In Chile, despite the fact that legislation of water 

rights is well designed, the scale of the formal and permanent sales of water rights is small, but 

the temporary, non-recorded market is much larger. Despite some institutional problems water 
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markets are well developed in parts of developed countries such as the USA and Australia. In this 

section four case studies from Chile, India, the USA and Australia are discussed to explore the 

conditions that allow additional gains from water rights trading. Chilean water markets were 

selected as an example of the controversial effects of water rights trading. The Indian case 

illustrates informal water rights trading at the local level of water distribution. The western USA 

and Australian cases are examples of success stories that help determine the factors that provide 

additional benefits from water rights trading. Relevant lessons are derived for the successful 

design and implementation of a water market mechanism in the ASB and other shared river 

basins in developing countries.  

  

4.3.3.1 Water markets in Chile 

In Chile transferable water rights that are separate from land use and ownership were established 

by the National Water Code of 1981. The main purposes of this law were to strengthen private 

property rights in agriculture and other sectors, and to maintain free-market relationships over 

water use and allocation. The most common way of water rights trading in Chile is “renting” 

water between neighboring farmers in which one farmer leases a portion of his or her water rights 

for a brief period of time and the other compensates in kind or in another form of monetary or 

non-monetary benefit (Dinar et al. 1997).  

Despite the law allows water rights trading nationwide in Chile, market-based water allocation 

was common only in north-central part of the country. In an analysis of water transfers in four 

Chilean river valleys, Hearne and Easter (1995) found that water transactions were rare in the 

Maipo and Azapa valleys and infrequent in the Elqui valley. Frequent water transactions 

occurred mainly in Limari valley which has a well-equipped irrigation network. Substantial net 

economic gains from water rights trading were found for the cases in the Limari and Elqui 

valleys (Hearne and Easter 1995). However, almost a decade later Bauer (2004) reported that the 

idea of the relevance of water market forces for supporting Chilean peasants and poor farmers by 

improving their access to water supplies had generally failed. In most parts of Chile, the 

hydrological constraints, complications in institutional framework, and cultural resistance by 

farmers prevented successful implementation of water rights trading. He argued that previous 

studies had exaggerated the success of water markets by neglecting a more balanced outcome of 

mixed results and placing heavy emphasis on the economic gains of water rights trading with less 

attention on social equity, environmental protection, and conflict resolution. Countable number 

of water transactions occurred mainly within the agricultural sector and among rich land owners 

while people with small land plots lost their access to water or could not engage in water rights 

trading because of lack of transparency and high transaction costs. Protection of environmental 

ecosystems was often neglected in water allocation decisions. 

The Chilean case of introducing water market rules can be a lesson to the Central Asian water 

users and managers of mistakes not to repeat in designing water markets in the region. In 

addition to efficiency, equity and sustainability should be inevitable targets of water management 

decisions and water market reforms. 

 

4.3.3.2 Water markets in India 

In contrast to the case of Chile, the groundwater markets observed in the Gujarat region of India 

are highly advanced, but remain informal and operate at local levels (Dinar et al. 1997). Water 

selling is an old tradition and a specialized subsidiary (part-time) occupation in Gujarat (Dinar et 

al. 1997). Richer farmers who can afford large wells equipped with diesel/electric pumps sell 
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water to smaller farmers who do not have sufficient financial capacity to construct a well with 

pumping system. Since competition among water sellers is so high, farmers substantially invest 

in water extraction technologies (e.g., modern pumps) and improve conveyance networks for 

increasing the sales of water. This example proves the high potential of water markets for 

incentivizing water use efficiency among farmers through regular improvement of irrigation 

technologies at local levels. 

Although the majority of the population perceives water as free natural good, informal trading of 

water also frequently occurs at the local level in water scarce years in Central Asia (personal 

observation). Since gravity irrigation does not work under limited water supplies, especially in 

areas that are remote from the main water conveyance systems, the owners of pumps and 

irrigation wells deliver water to the fields of the farmers who pay an appropriate charge. 

However, since the number of suppliers of such services is limited in the market, there is less 

competition among them and they can usually obtain much higher prices than the incurred costs. 

Establishing competitive markets for this kind of water delivery service such as exist in India 

would decrease the costs that are being paid by water users. Moreover, the existence of a system 

of payment for water delivery at the local level shows that despite the perception of water as a 

free public good by the majority they are ready to pay for water delivery under scarcity 

conditions. This indicates that the possibility also exists for water users to agree to water rights 

trading at the basin level through well-established institutions to lessen the burden of water 

scarcity. 

 

4.3.3.3 Water markets in the USA 

The western states of the US has a long history of market-based water transfers (NPC 1992). 

Water distribution is based on the rule of prior appropriation rights which is based on the 

principle of “first in time, first in use”. The rule of prior appropriation emerged in mid-19
th

 

century during the California Gold Rush since newly came miners were diverting water to extract 

and filter ore while diminishing downstream flow needed to earlier-established irrigation and 

mining activities (Kenney 2005). To prevent growing conflicts, prior appropriations rule 

provided senior rights to the earlier-water-users while restricting water use by latecomers. Water 

rights trading was also allowed in parallel to the introduction of the prior appropriation rule but 

did not become common till 1980s (Brown 2006).  

Because of its arid climate, rapid population growth, and regional development, water scarcity 

became a serious problem in the southwestern USA (Kenney 2005). Supply augmentation 

measures exhausted to meet increasing water demands by 1970s consequently necessitating 

water demand management measures while allowing reallocation of water from its lower to 

higher value uses. Despite many opponents of the market-based water transfers, water rights 

trading increased since 1980 (Brown 2006). Dairy farming, horticulture, and non-agricultural 

industries were main beneficiaries of tradable water use rights, particularly in dry years. Water 

transfers from irrigation sites to the municipal needs occurred more often than “irrigation-to-

irrigation” or other types of transfers (Brown 2006). Furthermore, transactions of temporary 

water use rights rather than permanent transfer of water use rights took place more frequently 

(Brown 2006). 

Studies (Grafton et al. 2010, Libecap 2010) report that intra-state water markets are more 

common than inter-state ones, as rules and consequently potential for water rights trading are 

different in each state. Moreover, intensity and price traded water rights transfers are 

geographically variable: markets are very active in some areas of western states but infrequent in 

the other areas whereas average price of water is very variable both within and across states 
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(Brown 2006). In the western USA, the greatest ratios of water rights transfers over total water 

withdrawals are found in Arizona (33%), Texas (27%), and New Mexico (14%). The average 

annual value of gains from water rights trading through transfers from the agriculture sector to 

urban settlements across twelve states during the period from 1987 to 2008 was estimated at 

$406 million USD (Figure 4.6; Grafton et al. 2010). Annual benefits from water transactions 

varied from less than $1 million USD in Montana and Wyoming to about $40 million USD in 

Arizona, Colorado, Nevada, and Texas, and more than $200 million USD in California.  

Environmental flows and benefits are considered in market-based water allocations in dry years. 

Independent agencies like the Texas Water Trust can buy water use rights for environmental 

needs. Following this example, establishing an organization that buys water for the needs of the 

Aral Sea and its deltaic zones in parallel to the establishment of tradable water use rights would 

improve environmental conditions in the basin since there is currently very limited water flow to 

the Aral Sea, especially to its southern part, in extremely water scarce years. 

  

Figure 4.6 The amounts and gains of water rights trading in the western United States of 

America 

 

Source: Based on Libecap (2010). 

 

4.3.3.4 Water markets in Australia 

In Australia water rights transfers occur at the national (inter-state) level and the introduction of 

transferable water entitlements dates back to the 1980s (Dinar et al. 1997). Decreased willingness 

of governments to invest in large water infrastructural facilities, doubts on the effectiveness of 

government-based water allocation, increased competition in agricultural sector due to increased 

integration to the global economy, raising awareness of the increasing impacts of dam 

construction on environmental systems gave impetus to introduce market-based water allocations 

(NWC 2011).   

The traded water volumes and their shares of total water withdrawals increased between 1983 

and 2010. For instance, if the water trade share of the total water withdrawals was in average 

10% between 2000 and 2005, it increased to more than 30% by 2011 (NWC 2011). Considering 
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the dynamic changes in the volume of water rights transfers, three phases of Australian water 

market development are distinguished: (1) the emergence of water markets (1980s to 1994), (2) 

water market expansion (1995-2006), and (3) transition to sustainable water markets (2007 and 

afterwards). 

Water rights trading provided an additional tool to water users to cope with water scarcity and to 

be more flexible in their water use and production decisions. Particularly, horticultural crops, rice 

and irrigated dairy farming as well as urban settlements benefited from water rights trading 

during the driest periods. Substantial economic gains were available due to the reallocation of 

water from its lower to higher value uses which would not be reached under the bureaucratic 

water management system. 

The lessons learned from two decades of experience in establishing water markets in Australia 

are as follows (NWC 2011):  

- well-organized markets can provide substantial benefits under water scarcity conditions 

by signalling the value of water; 

- water rights trading is most beneficial in places where water resources are fully exploited 

for consumption, seasonal water availability is variable, and water demands for 

residential, industrial, and environmental uses are increasing.  

Furthermore successful and effective performance of water markets requires good planning 

considering the sustainability of extraction, clear specification of initial water rights 

(entitlements), organization of a sound governance framework, and the establishment of water 

metering and accounting. 

 

4.4 Analytical framework for market-based water allocation 

Despite substantial improvements in water productivity under marker-based water allocation as 

evidenced by both theoretical and case-study based analyses, the potential benefits of water 

markets in the ASB were not yet empirically investigated. This section describes the 

development of an analytical model to implement the theoretical concepts of water rights trading 

(section 4.3.2) under the conditions found in the ASB. 

 

4.4.1 River network scheme 

To model river flow and off-takes along the river system, a river network scheme was developed. 

Tributaries and irrigation water intake nodes along the two largest rivers (Amu Darya and Syr 

Darya) which flow from the east to the west towards the Aral Sea are delineated in the ASB river 

network scheme (Figure 4.7). 

Despite introduction of management schemes based on basin boundaries in the system 

administrative units (regions) are still responsible for water intake from the rivers and internal 

distribution. Therefore, administrative regions rather than hydrologic irrigation units are used as 

water demand sites (water users) in the model. River network scheme of the model considered 12 

regions and 19 river tributaries in the Syr Darya basin and 14 regions and 13 river tributaries in 

the Amu Darya basin. These regions were grouped into separate water catchments (river nodes; 

Syr1…Syr4; Amu1…Amu5) according to their proximity to one another. 
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Figure 4.7 The Aral Sea basin river network scheme 

 

Source: Author’s presentation 

Due to the priorities of municipal and industrial sectors in water use and allocation, and the fact 

that agriculture accounts for almost 90% of total water consumption (SANIIRI 2004), water 

allocation to municipal and industrial use is considered as exogenous and fixed, and trading of 

water use rights is analyzed only among the irrigation zones. Since the purpose of the study is the 

analysis of market-based water allocation at the basin level to distribute water among different 

irrigation zones and environmental uses rather than real-time reservoir operation and crop water 

use scheduling, monthly or weekly time intervals were not considered and the model was applied 

to the time horizon of one year. Furthermore, trading of water use rights is allowed only among 

irrigation regions within each river basin of the ASB since irrigation water users in the different 
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rivers are not connected to each other through a conveyance system. It was assumed that there is 

a basin management organization (BMO) that organizes trading of water use rights (e.g., all 

water transaction agreements occur through this organization), which buys and sells water use 

rights after taking into account the willingness of individual water users to pay for or sell water 

use rights given their demand function. Alternatively, a model that considers direct trading of 

water use rights and implies face-to-face agreements was also developed, but the results were not 

reported here because they were only slightly different from the results of the model with a BMO 

that acts as an intermediary betwen different water users. This kind of model also allows 

analyzing trading of water use rights under asymmetric power (see subsection 4.3.2.3) through 

the availability of higher than free market prices for water selling agents in which case water 

buyers accept the price offered by the sellers. However, since we have multiple water users the 

results of decentralized trading with asymmetric power did not differ much from the results of 

centrally organized trading assuming a single (BMO) that buys and sells water use rights. 

 

4.4.2 Data sources 

The model uses different types of data related to river flow, water use across irrigation regions, 

and crop production costs and benefits that were collected from different sources. Data on 

cultivated land area, irrigation water use, and yields were obtained from the CAREWIB database 

(SIC-ICWC 2011, Appendix B and tables B.1, B.2, and B.3), which is a single source that provides 

detailed data on crop production systems across the ASB. Prices of the agricultural 

commodities/products and input costs were estimated based on market survey results of the ZEF 

project (2010), data by OblSelVodKhoz (2010), and SIC-ICWC (2008). Cotton prices were 

based on SIC-ICWC (2008) and Anderson and Swinnen (2008:40). Data on water delivery 

(conveyance) costs were taken from MAWR (2007; Appendix B and Table B.4). All economic 

cost and benefits were estimated at 2006 prices considering that most of the data related to the 

costs and benefits were available for that year. 

Data on water supplies in the source nodes (tributaries) is from SIC-ICWC (2011) and return 

flow rates were estimated based on EC-TACIS (1997; Appendix B and tables B.5 and B.6). 

Municipal and domestic water uses were assumed as fixed amounts equal to 10% of the total 

withdrawals (FAO 2012). Data on rainfall, evaporation, and inflows to the Aral Sea were 

obtained from INTAS project reports (2001, 2004, 2006). Economic benefit levels and losses of 

ecosystem services at different levels of the Aral Sea volume and inflows to the Sea were 

estimated based on INTAS (2001, 2004, 2006) and TEEB (2011). 

 

4.4.3 Objective function 

It is assumed that omniscient decision maker (e.g., WMO that is in charge of introducing water 

rights trading) maximizes overall basin-wide benefit that is the sum of annual economic benefits 

from irrigation, environmental systems, and water rights trading: 

        ∑      

  

                                     

                     

(4.35)  

 

where       is irrigation benefit per hectare across the demand sites (  ),      is the total 

cultivated area in the region,      is conveyance and pumping costs to deliver one cubic meter 
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of water from the river (water intake) node to the irrigation site,      is the total irrigation 

water withdrawal,    is the environmental benefit,       is the marginal willingness to pay for 

water by water users given their demand function and considered as an endogenous variable, 

     and      are the amounts of water rights sold and bought by irrigation regions 

respectively, and     is the transaction cost per unit of water traded, which was assumed to be 

shared equally by both the buyers and sellers. 

 

4.4.4 River water balance 

Water flow relationships among the tributaries, water withdrawals to the irrigation regions, and 

flows from one river node to other nodes are modeled as: 

∑          

                 

         ∑         

              

    

(4.36) 

  ∑          

                 

 ∑          

              

    ̅̅ ̅̅ ̅̅
        

 

where           is river water flow to the node (  ) from the upper node (    ) and           is 

river flow from the node    ) to the next lower node (     ) if a link between the nodes 

(      ) exists,       is the source flow in the tributary node, and         ,          and 

   ̅̅ ̅̅ ̅̅
      are return flows from irrigation demand sites (  ) to the river node (  ), and water 

withdrawal from node (  ) to the irrigation water user site (  ) and municipal-domestic water 

use respectively if a link between the node and the water user site (      ) exists. 

Total water application in the field depends on water withdrawals to the irrigation regions 

(    ): 

      ∑                     

  

 (4.37) 

where     is water use (withdrawal) per hectare. 

  

4.4.5 Regional irrigation benefit functions 

Deductive and inductive methods of estimating irrigation benefit functions are differentiated in 

the literature (Harou et al. 2009). Deductive methods are based on mathematical optimization 

models of the agricultural sector at each irrigation zone. Simulating the model under different 

levels of irrigation water availability, optimal values of benefit are generated and these simulated 

values are regressed to estimate the relationship between total water use and irrigation benefits. 

The deductive method is usually used to evaluate irrigation benefit functions when necessary 

time-series data on water use and crop production outputs are not available. In contrast to this 

normative approach, the inductive method is based on real observations of water use and benefits 

to estimate regression based irrigation benefit functions, but requires data based on observations 

in the long term. Inductive method based on real observations is preferred over the normative 

method since the former provides more realistic functional relationships between water uses and 

benefits.  
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Regression functions based on real observations were applied in this study. Quadratic functions 

were chosen to estimate the empirical relationship between water use and irrigation benefits. 

Quadratic functions are commonly used to evaluate the relationships between the value of crop 

production and water use in the literature (Zilberman et al. 1994, Ringler et al. 2006, Qureshi et 

al. 2007). Crop output and thus benefit per hectare increase in parallel to water use at lower water 

application rates, but decrease beyond a certain threshold of water application rate due to the lack 

of aeration in the root zone (Qureshi et al. 2007). These properties of benefit functions are well 

captured through concave-down (umbrella-shape) quadratic functions. Irrigation benefit 

functions were developed for each water user site by regressing the total regional crop production 

benefits with the total water withdrawals using the Ordinary Least Squares (OLS) method 

(Greene 2003): 

                               
     (4.38) 

where     is water use per hectare, and     ,     , and      are the parameters of the benefit 

function. Because in most irrigated areas of the ASB precipitation plays a lesser role since it 

mainly occurs outside of growing season and is much lower than the evaporation rate (de Pauw 

2007; see also section 2.2.3), its impact on the yields are assumed to be negligible. The necessary 

parametrical conditions for concave-down quadratic functions are:     >0 and     <0. 

The parameters of irrigation benefit functions were evaluated considering annual water 

withdrawals across the regions for the period between 1980 and 2000 and aggregated regional 

crop production benefits for the same period. Regional crop production benefits or profits were 

calculated as the sum profits for each crop. Profit for each crop is evaluated as a difference 

between total revenue of selling the crop product and its production costs. Annual regional crop 

production benefits were estimated at the constant crop price levels of 2006 since it is the most 

recent year for available data. Considering constant prices for crop production allows the 

reflection of crop yield fluctuations due to water availability over the years in aggregated 

regional irrigation benefits. Indeed, updating the database of the model while considering crop 

production levels and water uses for the period after 2000 once this data is released will improve 

the results of the model.    

Estimated parameters of the irrigation benefit functions and their statistical significance are 

shown in Table 4.4. Graphical illustrations of the regression based irrigation benefit functions are 

given in Figure 4.9 and Figure 4.10. Determination coefficients are sufficiently high for most of 

the regional benefit functions, but were low in Jizzakh and South Kazakhstan. The estimated 

regression parameters of most of the regions are statistically significant as shown by low p-

values for the coefficients of linear and quadratic variables. However, regression coefficients 

were not significant for the regions Bukhara, Narin, Syr Darya, and Jizzakh. According to F-

tests, fittedness of all regression models to observed data was statistically significant. Due to the 

lack of data, the number of observations for Samarkand and Narin was low. Despite the fact that 

some regression functions have deficiencies due to the low statistical significance of some 

coefficients and a low number of observations, these results are potentially estimable based on 

available data. Since the econometric approach to estimating the relationships between water use 

and irrigation benefits at disaggregated levels for the entire basin is the first experience there is 

still a room for improving the benefit function results by increasing observation periods as well 

as including non-water use inputs such as fertilizer, labor, and capital. Nevertheless, the models 

still can be used for further water reallocation analyses considering the high significance of the 

regression coefficients in most of the models and the reliance of agricultural production primarily 

on irrigation water use across the ASB. 
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Figure 4.8 Estimated irrigation benefit functions by regions in the Amu Darya basin 

 

Source: Author’s calculations 

 

Figure 4.9 Estimated irrigation benefit functions by regions in the Syr Darya basin 

 

Source: Author’s calculations 
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Table 4.4 Parameters of the regional irrigation benefit functions 

 

Region 

 

 

Node 

 

Constant - a0  Linear coefficient - a1  Quadratic coefficient - a2 

R2 F-test F-significance N 
Coeff St Dev t-stat p-value  Coeff St Dev t-stat p-value  Coeff St Dev t-stat p-value 

GBAO Amu1 -1.2 16.56 -0.07 0.945  15.5 2.60 5.94 0.000  -0.5 0.12 -4.29 0.000 0.71 23.78 0.000 21 

Khatlon Amu1 -111.4 35.39 -3.15 0.005  40.1 8.98 4.47 0.000  -0.9 0.44 -2.12 0.047 0.92 115.03 0.000 21 

RRT Amu1 2.2 22.57 0.10 0.922  72.5 9.75 7.44 0.000  -4.8 1.19 -4.08 0.001 0.87 66.21 0.000 21 

Surkhandarya Amu2 -752.8 289.18 -2.60 0.017  210.6 72.69 2.90 0.009  -9.4 4.47 -2.11 0.049 0.75 28.58 0.000 21 

Mary Amu3 -1477.1 329.98 -4.48 0.000  295.4 63.79 4.63 0.000  -12.0 3.06 -3.92 0.001 0.79 35.27 0.000 21 

Ahal Amu3 -231.5 64.51 -3.59 0.002  64.5 13.55 4.76 0.000  -2.2 0.71 -3.09 0.006 0.84 49.91 0.000 21 

Lebap Amu4 3.6 60.46 0.06 0.954  38.7 8.82 4.39 0.000  -0.7 0.34 -2.18 0.042 0.74 27.07 0.000 21 

Kashkadarya Amu4 -0.3 22.93 -0.01 0.991  69.5 12.37 5.62 0.000  -4.8 1.66 -2.91 0.009 0.85 55.00 0.000 21 

Samarkand Amu4 0.4 13.54 0.03 0.977  63.6 9.49 6.71 0.000  -5.8 1.66 -3.49 0.005 0.93 73.55 0.000 13 

Navoi Amu4 1.0 16.55 0.06 0.952  47.7 5.14 9.26 0.000  -2.3 0.45 -5.16 0.000 0.92 96.32 0.000 18 

Bukhara Amu4 -414.7 259.40 -1.60 0.126  120.5 47.09 2.56 0.019  -3.0 2.14 -1.39 0.179 0.69 20.89 0.000 21 

Khorezm Amu5 3.8 35.32 0.11 0.916  41.9 5.49 7.63 0.000  -1.2 0.24 -5.21 0.000 0.83 45.05 0.000 21 

Karakalpakstan Amu5 -158.7 40.69 -3.90 0.001  29.4 5.70 5.16 0.000  -0.5 0.20 -2.36 0.031 0.86 52.46 0.000 19 

Dashauz Amu5 -165.0 66.03 -2.50 0.022  38.5 8.30 4.64 0.000  -0.7 0.26 -2.61 0.017 0.85 55.01 0.000 21 

Narin Syr1 -85.5 50.29 -1.70 0.120  23.7 10.47 2.26 0.047  -0.6 0.52 -1.17 0.270 0.77 16.82 0.001 12 

Osh Syr1 0.8 16.87 0.05 0.963  14.3 2.82 5.09 0.000  -0.3 0.13 -2.02 0.059 0.86 54.18 0.000 19 

Jalalabad Syr1 0.1 6.87 0.01 0.992  66.6 3.27 20.36 0.000  -3.3 0.29 -11.46 0.000 0.99 1103.80 0.000 21 

Ferghana Syr2 -264.7 90.52 -2.92 0.009  117.2 22.53 5.20 0.000  -4.2 1.33 -3.16 0.005 0.90 82.72 0.000 21 

Andizhan Syr2 4.6 21.16 0.22 0.831  55.2 4.15 13.31 0.000  -1.9 0.22 -8.54 0.000 0.95 158.69 0.000 18 

Namangan Syr2 -390.0 158.93 -2.45 0.024  138.1 36.51 3.78 0.001  -4.9 1.99 -2.46 0.024 0.84 49.44 0.000 21 

Sugd Syr2 -449.6 43.68 -10.29 0.000  109.0 9.69 11.25 0.000  -3.8 0.51 -7.49 0.000 0.97 355.22 0.000 21 

Tashkent Syr3 -122.8 52.63 -2.33 0.031  75.5 11.69 6.46 0.000  -2.2 0.62 -3.57 0.002 0.91 96.99 0.000 21 

Syrdarya Syr3 -778.2 323.34 -2.41 0.026  251.8 110.47 2.28 0.034  -14.2 9.40 -1.52 0.146 0.74 27.74 0.000 21 

Jizzah Syr3 -162.9 129.93 -1.25 0.225  106.4 65.44 1.63 0.120  -7.2 8.27 -0.87 0.394 0.52 10.20 0.001 21 

South Kazahstan Syr3 16.7 30.73 0.54 0.593  25.8 6.43 4.01 0.001  -0.9 0.35 -2.59 0.018 0.63 16.26 0.000 21 

Kyzylorda Syr4 -191.9 90.01 -2.13 0.046  24.5 7.03 3.49 0.002  -0.3 0.13 -2.08 0.051 0.75 29.09 0.000 21 

Notes: R
2
 – coefficient of determination/ N-number of observations; Source: Author’s calculations 
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4.4.6 Environmental benefit function 

4.4.6.1 Overview of approaches to model economic benefits from environmental systems 

Despite the increased importance of incorporating environmental values of water use for 

sustainable development analyses, measuring environmental benefits is a challenging task. Since 

most of the environmental services are not marketable several methods such as contingent 

valuation, hedonic pricing, choice modeling, travel cost methods, and meta-analysis exist to 

estimate the economic value of environmental benefits (Young 1996). Contingent valuation is 

based on directly surveying consumers’ willingness to pay for particular ecosystems services 

such as water quality or recreation. Hedonic pricing is based on the differences in property prices 

and salaries between locations and isolation of the values of the attributes ascribed to wetland 

existence or quality. Choice modeling is based on a survey of respondents requesting their 

preferences for particular services or goods with different attributes. The travel cost method 

considers the expenditures to visit wetlands, which includes transport, food, accommodation, 

time, etc. Meta-analysis tools are based on regressing already investigated ecosystem service 

values to different characteristics of the study area such as population density or GDP per capita, 

and extrapolating the ecosystem values in uninvestigated study areas based on their known 

attributes, which is included as an independent variable in the regression function. With the 

exception of meta-analysis, these methods have some shortcomings since they may provide 

biased estimates and require expensive surveys. They may also work better for estimating 

environmental benefits at small scales rather than larger scale basin level environmental benefits.  

Additional approaches for evaluating environmental benefits include the replacement costs, 

effects on production, and avoided damage costs (Barbier 1994). The replacement costs method 

considers the costs of marketable commodities that are alternatives to products which are freely 

available from an ecosystem. The effects on production can be exemplified by the role of 

ecosystems as inputs to some production activities. The avoided damage costs method is reflected 

by the impact of environmental degradation on reduced productivity of economic sectors. 

Usually estimations based on ecosystem evaluation methods provide ecosystem value per land or 

surface area of the watershed or particular land cover types. These values can be later used to 

estimate environmental flow-benefit relationships to incorporate into the hydro-economic 

modeling. Simplified approaches from hydro-economic modeling research based on minimum 

environmental flows (Colby 1990) or fixed benefit per unit of water use (Cai 2002) were also 

used. More sophisticated approaches include non-linear functional relationships between flow 

and environmental benefits. For instance, in their study of the Mekong River basin Ringler and 

Cai (2006) used an arctan function to evaluate relationships between flows and benefits from 

fisheries, and a quadratic function to estimate the relationship between deviations in water flow, 

lake volume, and wetland benefits. However, the authors acknowledged that there is no standard 

functional forms to evaluate ecosystem service benefits. In this study, different types of 

ecosystem services (fishery, wetlands, etc.) were selected for evaluation based on previous 

studies and different functional forms were chosen to regress these benefits to the environmental 

flows based on data availability. 

Several studies discussed the benefits from the Aral Sea and deltaic zones, while emphasizing the 

value of fish production, water transportation, biodiversity, wetlands, and public health (Micklin 

1988, 2007, 2010, Mirzaev 2000). However, only a few studies (INTAS 2001, 2004, TEEB 2011) 

quantified approximate economic losses due to environmental degradation. An approximate 
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general environmental benefit function was estimated by combining the benefit functions of 

different ecosystem services such as wetlands, recreation, prevention of storms (prevention of 

damage to agriculture and health), fishing, and water-based transportation. The area of wetlands 

located in the delta zone is assumed to be dependent on river flows, while the benefits from the 

remaining ecosystem services are dependent on the volume of the Aral Sea. The benefit functions 

of separate ecosystem services were estimated by regressing the literature-survey based economic 

benefits from the inflows to the Aral Sea. In order to find relationships between river flow and 

the benefits of volume-dependent ecosystem services, the relationship between the sea volume 

and the inflow amount required to stabilize this volume was initially estimated. Due to the data 

limitations only bounded linear relationships for the most of the environmental benefit functions 

were assumed. Therefore, environmental flow estimations are rough estimates based on the 

limited available dataset and thus further improvement would increase the validity of the model. 

Nevertheless, since the dataset used is the most adequate to date and this study is one of the initial 

attempts to evaluate environmental benefits from the flows to the Aral Sea, this analysis should 

be accepted as an important first step to catalyze further research and discussions. 

 

4.4.6.2 Aggregated environmental benefit function 

As the environmental benefit estimates based on the literature survey were available at the price 

levels of different years, they were converted to 2006 prices considering annual inflation rates. A 

linear relationship between the environmental flow (  ) and its economic benefit (  ) is 

elaborated as: 

                       (4.39) 

where    and    are parameters of the regression function and the environmental flow (  ) is 

the sum of the inflows from the Amu Darya (the node link “Amu5   THE ARAL SEA”) and Syr 

Darya (the node link “Amu5   THE ARAL SEA”) rivers into the Aral Sea (               and 

               respectively). The procedure of estimating values of different ecosystem services 

such as wetlands, recreation, dust and salt storm protection, fisheries, and water-based 

transportation as well as combining them to evaluate the aggregate environmental benefit 

function in equation 4.33 was shown in the following sub-sections. 

 

4.4.6.3 Stabilizing environmental flow 

The water balance in the Aral Sea stipulates that the annual change in volume ( ) is the 

difference between the sum of environmental inflow and rainfall (  ), and evaporation (  ) in 

year  : 

  

  
           (4.40) 

It was assumed that rainfall over the sea does not depend on the Aral Sea volume and that 

evaporation is a function of sea volume. Considering the stability of the Sea volume over the long 

term ( 
  

  
   ), the relationship between volume and stabilizing inflow (   ) is estimated as: 

                                          (4.41) 
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4.4.6.4 Wetlands value based on the ‘meta-analysis’ method 

The area of wetlands decreased from 550,000 ha to 27,500 ha during the period between 1960 

and 1990 (TEEB 2011). According to a meta-analytic value function analysis (Brander et al. 

2006), the estimated annual economic loss due to the decreased size of wetlands was around $190 

USD per hectare or $100 million USD in total (TEEB 2011). The meta-analytic function analysis 

is based on the comparability of ecosystem values in the regions with similar wetland types and 

sizes, GDP per capita, and population density. Estimated ecosystem values across different 

project sites around the globe were regressed on physical and socio-economic parameters of the 

wetlands and this model was used to extrapolate unknown wetland values in non-investigated 

sites. Based on this meta-analytic function from the literature and wetland area data, wetland 

economic values over the years in the ASB were first assessed. Then these values were regressed 

with annual environmental flows in order to estimate the relationship between environmental 

flow and wetland economic values (       , in millions of USD). Maximum wetlands areas and 

threshold inflow levels (   , in km
3
) in the 1960s were the basis for estimating potential 

wetland benefits and thus build a bounded linear function: 

 

        {
                                   

                                 
  (4.42) 

 

4.4.6.5 Recreation values based on the ‘effects on production’ approach 

Tourism was well developed on the shores of the Aral Sea in the 1960s. About 50,000 people 

were visiting the site with an average stay of five days, during which they spent around $45 USD 

(at price levels of 2006) per day in 1960 (INTAS 2004). These numbers were used as the basis to 

calculate potential income from tourism in the surroundings of the Aral Sea. Substantial losses in 

tourism income occurred due to the desiccation of the sea. By 1990 the number of tourists had 

decreased to about 5,000 people, yet their expenses had doubled. Based on tourism incomes in 

1960 and 1990, a piece-wise linear function of recreation (touristic) benefits (      ) that 

depends on environmental inflow was estimated as follows: 

       {

                                     
                                                
           

                         
 

 (4.43) 

 

4.4.6.6 Dust and salt storm protection benefits to human health (based on the ‘avoided damage 

cost’ approach) 

Health benefits were assessed based on benefit losses due to health degradation as a result of the 

desiccation of the Aral Sea and consequent spread of dust and salt from the dried seabed through 

the storms. Health benefits were assumed to be zero in 1999, and equal to the average annual 

benefit losses due to health degradation between 1960 and 1999. It was also assumed that health 

status in 1960 cannot be influenced by further increase in the volume of the Aral Sea. Annual 

benefit losses due to health degradation amounted to $5.2 million USD (at price levels of 2006), 

of which $1.7 million USD were due to increased frequency of illness and $3.5 million USD 

were due to reductions in life expectancy in the Amu Darya River delta (INTAS 2001, 2004). 

The benefit losses due to increased illness were estimated based on the loss of working days and 

associated income, while the benefit losses due to reduced life expectancy were quantified based 
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on per capita GDP losses and shortened life duration (INTAS 2001, 2004). Estimations based on 

the proportional relationships between social benefit losses in Uzbekistan and Kazakhstan 

showed total health benefit losses of $14.0 million USD for the entire delta zone. Based on these 

figures and assumptions, the approximate bounded linear relationships for health benefit 

(        ) and environmental flow were estimated as: 

         {

                          
                                                
            

                        
 

 (4.44) 

 

4.4.6.7 Dust and salt storm protection benefits to irrigated lands (based on the ‘avoided 

damage cost’ approach)  

The spread of toxic salts from the dried seabed of the Aral Sea is one of the main causes of 

degraded lands, reduced yields, and decreased crop production in the surrounding regions. A total 

of $22 million USD (at price levels of 2006) in annual agricultural benefit losses occurred in 

1997 compared to 1970 according to INTAS (2001, 2004). As in the case of the health benefit 

assessment, agricultural impact benefits were evaluated on the basis of benefit losses due to yield 

reduction. No benefits were assumed in 1997 and the benefits in 1970 were equal to the amount 

of annual average benefit losses. A bounded linear relationship between stabilizing inflow and 

agricultural benefits (     ) were estimated as: 

      {

                          
                                              
           

                       
 

 (4.45) 

 

4.4.6.8 Fishery benefits based on the ‘effects on production’ approach 

The Aral Sea’s commercial fishery was the backbone of the regional economies in the Amu 

Darya and Syr Darya deltas in the past, employing about 40,000 people and producing more than 

15% of the SU’s seafood catch. The average annual harvest was reached 50,000 metric tons 

before the 1960s. However, the fishery collapsed in the southern Aral Sea by the mid-1980s and 

decreased to 2,000 metric tons in the northern Aral Sea due to the shrinkage of the sea (UNEP 

and ENVSEC 2011). Fishery benefit functions were built by regressing annual stabilizing inflow 

and total fish harvest benefits, while considering average profits of $264 USD per metric ton in 

the fishing sector, which was estimated based on fish production cost-benefit data (Timirkhanov 

et al. 2010). A bounded exponential function was found to be the most appropriate to illustrate 

the relationship between water inflows and fishery benefits (      ): 

       {
                      

                         

                      
 
                     

 
} (4.46) 

  

4.4.6.9 Water transportation 

Marine transportation was well developed in the deltaic regions of the ASB. Annual cargo traffic 

between the ports of Aralsk and Muynak was about 2.5 million ton/km in the 1960s (Zonn 2010). 

The value added per ton of transportation was around $0.5 USD (INTAS 2005). Due to the 
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desiccation of the sea, marine transportation decreased by a factor of eight by 1978, and the ports 

were closed in 1979 (INTAS 2004). Approximate water transportation benefits were calculated 

based on the cargo traffic volume and value added per unit of transportation. A bounded 

quadratic relationship between shipping benefits (       ) and environmental inflow was 

estimated as: 

        {

                              
 

                                                               

            
               

                         
 

 (4.47) 

 
 

 

4.4.6.10 Estimated overall benefits from inflows to the Aral Sea and deltaic zones (environmental 

flow) 

Environmental water use benefits from different ecosystem services were simulated depending on 

different levels of water inflows to the Aral Sea and deltaic zones, and these simulated values 

were combined to obtain an aggregate environmental benefit (   ) function at the end (Figure 

4.8): 

                                                 (4.48) 

 

According to the estimations the contribution of wetlands to total environmental benefits is 

substantial, while benefits from water transportation in the sea were negligible in comparison 

with other ecosystem values. Crop yield improvement due to increased protection from wind-

borne salt and the revival of tourism can provide annual revenues of $26 million USD and $21 

million USD respectively if average annual inflows to the Aral Sea are at least 50 km
3
. 

Based on an environmental benefit function, the damage costs due to the reduced environmental 

flow over the certain period also can be estimated. The average flow into the Aral Sea decreased 

from 61 km
3
 to about 17 km

3 
during the period between the 1950s and 1990s (INTAS 2006). As a 

result the annual environmental benefits related to the inflows to the Aral Sea decreased from 

$211.4 million USD to $42.8 million USD, consequently causing annual economic losses of 

almost $170 million USD (at 2006 prices). This estimation is comparable with the previous 

estimation of $144 million USD (at 2000 prices) by INTAS (2001) if inflation rates between 

2000 and 2007 are considered. 

Based on different levels of environmental flows and simulated values of environmental benefits, 

linear regression function parameters were estimated and further used in the hydro-economic 

model (Eq. 4.33). The linear functional form was chosen for further modeling calculations due to 

its simplicity and high determination coefficient (R
2
 = 0.98). Although S-shape functions like the 

arctan function are preferred for estimating environmental flow and benefit relationships (Ringler 

and Cai 2006), the linear function was a still better fit to reflect the estimated environmental 

benefits in the ASB when environmental flows are below 60 km
3
. To determine if the probability 

of more than 60 km
3
 of water inflow to the Aral Sea is negligible, the probabilities of inflow to 

the Aral Sea being more than a certain amount was also computed. Normal distribution of the 

observed series of environmental flow was assumed. According to the computations, when the 

probabilities are based on the observations from the period between 1950 and 2000 the 

probability of 30 km
3
 of inflow is at least 50%, while the probability of inflow higher than 60 
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km
3
 is 10%. If we consider that most of the irrigation developments in the ASB occurred after the 

1960s and therefore shorten the observation period of the computations to the period between 

1970–2000, the probability of inflows at a level of 15 km
3
 is 50%, more than 30 km

3
 is 10%, and 

more than 60 km
3
 is practically 0%. Thus, a linear function can be used in further modeling 

analysis. 

The average economic benefit from each additional m
3
 of water (marginal water productivity) to 

the Aral Sea is about $0.0036 USD as derived from a linear environmental benefit function. Cai 

et al. (2002) assumed the value of environmental flow equal to $0.1 USD per m
3 

(Cai 1999), 

which is much higher than the estimates made in this study. Unfortunately, the analysis of Cai et 

al. (2002) was based on previous reports (Anderson 1997) that do not mention anything about the 

methods used to calculate environmental benefits. Moreover, the report showed values of 

$0.025–0.05 USD per m
3
 of environmental flow not $0.1 USD per m

3
. According to the report, 

environmental flow value is slightly lower than the values of water for irrigation and industry. 

For instance, the value of 1 m
3
 water was $0.06–0.1 USD for cotton, $0.0–0.04 USD for wheat, 

$0.0–0.12 USD for rice, and $0.1 USD for industrial uses. Assuming that the value of 

environmental flow is equal to the value of water for industrial use does not appear sound. 

 

Figure 4.10 Environmental benefit function for the Aral Sea and its deltaic zone 

 

Source: Author’s calculations 
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4.4.6.11 Limitations 

In contrast to the assumptions on environmental benefits from the Aral Sea from previous studies, 

which are likely overestimations of real values (Cai et al. 2002), it is important to note that 

environmental flow benefit in this study is perhaps underestimation since the values of direct use 

of the inflows to the Aral Sea and its delta were primarily relied upon. In addition to the values of 

direct use of environmental flows such as fisheries and shipping, values of indirect use such as 

wildlife reservation is also important for sustainability (Dziegielewska et al. 2009). Overall 

environmental benefits also include the non-utilitarian values of water (Dziegielewska et al. 

2009) such as option values, existence values, and bequest values. Option values, which can also 

be grouped with direct use values, reflect the potential use of environmental resources in the 

future and can be exemplified by the will to have the goods in the future for biodiversity 

preservation. Existence value is existent, as many people want and are ready to pay for the 

protection of habitats of endangered species and other wildlife. The bequest value is related to the 

will of preserving certain environmental goods for future generations at the same quality as their 

current state. The share of non-utilitarian values of ecosystem services in total environmental 

benefit usually are over 50%, but in some cases reach 80–98% (Dziegielewska et al. 2009). 

Therefore, considering the limitedness of the available datasets for estimating indirect 

environmental benefits in the ASB, additional scenario analyses assuming higher value of water 

for environmental uses or alternatively increasing minimum environmental release are 

recommendable for determining the optimal volumes of environmental release or the alternative 

costs of additional environmental flow. Furthermore, due to data limitation the differences 

between the values of water inflow into the Aral Sea and deltaic zone are not separated in this 

study. Separation of these environmental flow benefits would allow improved results since the 

share of the value of wetlands is substantial in total environmental benefits, while requiring lower 

water use than the ecosystem benefits that directly depend on the volume of the sea.  

 

4.4.7 Water rights trading component 

Based on Eq. (4.30), the shadow price of water was derived directly from the water benefit 

function considering transaction costs (  ) of water rights trading: 

 

      
       

      
    

         

         
 

 

(4.49) 

or 

                          
         

         
 (4.49') 

 

Moreover, additional constraints were introduced regarding water rights trading. 

A water user site either buys or sells water use rights: 

            (4.50) 
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Total water use rights sold are equal to the total water use rights bought for either river system: 

∑     

  

  ∑    

  

 

 

(4.51) 

Water intake to the water user region should be lower than the sum of its water use rights and the 

additional water bought if the user buys water, or than the difference between water use rights 

and the amount of water sold if the user sells water:  

                            (4.52) 

where       is the water use right of the demand site (  ), which is determined here 

according to proportional fixed water use shares calculated based on water distribution in the 

baseline year (Cai et al. 2006). 

Total expenditures to buy water use rights should be sufficient to cover the value of the rights 

offered by the potential sellers, i.e., total benefits from selling water use rights should be less than 

total expenditures for buying water use rights:  

∑           

  

  ∑          

  

 

 

(4.53) 

In addition, to prevent the model from the elimination of water deliveries to any irrigation zone, 

minimum water use constraints in each region that is 50% of the initially observed level is 

considered. This constraint is needed to prevent unrealistic and socially or politically 

unacceptable optimal solutions which imply elimination of the irrigation in some regions with the 

lowest water productivity and thus imply full migration from these zones. 

 

4.4.8 Scenarios 

4.4.8.1 Baseline (fixed water use rights) and optimization scenarios under different levels of 

water availability 

The model was calibrated to the real conditions of land and water use and hydrologic flow in 

1999, a year with normal water supply. The year was chosen based on the average value of the 

observed water supplies between 1980 and 2008. For analyzing the impact of water availability 

on water distribution among the water users, two alternative water supply scenarios were 

assumed to be equivalent to 90% and 80% of the normal supply. 

The baseline scenario is based on water distribution on fixed water use rights, which were 

derived according to fixed water use shares as of 1999. An optimization scenario was run to show 

ideal water distribution in economic terms as a target for water users. The latter scenario did not 

consider water market conditions, thus the objective function (4.35) was changed accordingly: 

            ∑          

  

 ∑          

  

           

 

(4.35a) 
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Guaranteed minimum environmental flow (        ,         ) restrictions were included 

considering the intergovernmental agreement
1
 on preventing environmental degradation in the 

Aral Sea delta: 

                                  (4.54) 

                                 (4.55) 

Minimum environmental flows were considered as equal to 1.5 km
3
 and 3.5 km

3
 from the Syr 

Darya and Amu Darya rivers respectively based on the intergovernmental agreement. 

 

4.4.8.2 Fixed water use rights vs. intra- and inter-catchment water rights trading 

The water rights trading scenario allows water users to sell or buy water rights, thus increasing 

the scope of water withdrawal beyond the fixed water rights and boosting additional benefits in 

the regions with higher marginal water benefits. Intra-catchment (intra-node) and inter-catchment 

(inter-node) water rights trading are differentiated from each other considering that the 

introduction of water markets is easier between the irrigation sites that are geographically closer 

to each other. These two main water rights trading scenarios were compared to the fixed water 

use rights distribution (baseline scenario) for analyzing the effects of water rights trading on 

income levels of different water users. Trading scenarios were also compared to the results of the 

optimization scenario to show how much they distort from the ideal case. Intra-catchment or 

restricted (RWT) water rights trading means that water transfers are allowable only among the 

water users within a catchment (a node, see Figure 4.7). Inter-catchment or unrestricted (UWT) 

water rights trading can occur freely among the water users located in different catchments. 

The impacts of introducing “within catchment” boundaries on full water rights trading were 

tested by including additional model restrictions that allow water rights trading only within 

individual water catchments. Under this restriction, total water withdrawals should be equal to the 

total water use rights within each catchment: 

 

∑        

              

        ∑        

              

 (4.56) 

 

Moreover, the amount of water bought and sold within the catchment are equal to each other:  

∑     

              

 ∑     

              

        (4.57) 

 

                                                           
1
 The “Agreement on Joint Activities for Addressing the Crisis of the Aral Sea and the Zone around the Sea, 

Improving the Environment and Ensuring the Social and Economic Development of the Aral Sea Region”, March 26 

1993 
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These water rights trading scenarios were run assuming zero transaction costs for water market 

institutions, therefore the objective function did not include a transaction costs component: 

          ∑      

  

                                   

          

(4.35b)  

 

Additional constraints on regional irrigation benefits were also considered that imply not to worse 

off the benefits of any water user with the introduction of tradable water use rights compared to 

the benefit levels initially observed under the baseline scenario (fixed water use rights). 

  

4.4.8.3 Alternative costs of increased environmental flow under water rights trading 

Considering increased need to improve environmental conditions, payment schemes to the 

irrigation farmers for reducing irrigation water withdrawal would allow increased water supply 

into the delta. Knowing the costs of additional water supply to the Aral Sea and its delta, IFAS 

may decide to purchase water for increased environmental flow based on the willingness of 

donors and the riparian governments to pay for it. 

The objective function of the model was changed to estimate the alternative costs of increased 

inflows to the Aral Sea, while allowing water rights trading among the water users as well as 

considering compensation to irrigators for reduced water use: 

where      is the purchase costs of additional water for environmental needs,     is the 

amount of purchased water delivered to the Aral Sea and its delta. 

Appropriate changes were also introduced to water rights trading balance conditions: 

∑     

  

  ∑     

  

      

 

(4.51c) 

Since benefits from the environmental system were estimated to be very low in this study, 

additional water supply to the Aral Sea through purchasing irrigation water rights were 

considered based on a scenario analysis. In each scenario the minimum level of purchased water 

delivered to the Aral Sea and its delta was gradually increased. Twenty-one scenarios were run 

considering minimum purchased environmental flow of 0 to 20 km
3
 differentiated by 1 km

3
 

increments in each scenario. 

 

            ∑      

  

                                   

                                      –                 

(4.35c) 
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For comparison purposes, the same procedure was repeated neglecting water rights trading 

opportunities among the irrigation zones and only allowing water rights sales for environmental 

needs. The objective function and trading balance restrictions were changed accordingly as: 

and 

∑     

  

       

 

(4.51c') 

 

4.4.8.4 Transaction costs 

The impact of transaction costs on the economic profitability of water rights trading was assessed 

based on a scenario analysis. Transaction costs were varied between $0.012 USD and $0.125 

USD per cubic meter or alternatively 3% to 30% of the water prices in Australia as previously 

reported (Challen 2000). In this study, twenty-one simulations of transaction costs varying 

between $0.0 USD and $0.1 USD per m
3 

of water volume were considered. Similar to the case in 

the theoretical model of Challen (2000), transaction costs were assumed to be shared equally 

between the buyer and seller. 

 

4.4.9 Model solution 

The model was coded in GAMS and solved using CONOPT 3 non-linear programming solver 

(Brooke et al. 2006). Detailed description of the GAMS code for analyzing water rights trading 

and the scenarios of increasing transaction costs is provided in Appendix C.  

 

4.5 Results of optimal water allocation and water rights trading 

The benefit functions developed and the hydrological river basin model were combined into a 

single modeling framework to evaluate optimal water allocation in the ASB economically. First, 

the benefits under fixed water rights and optimization scenarios were compared. Next, because 

optimization is not favorable to some water users, particularly upstream ones, optimal water 

allocation was estimated when water rights trading is allowable among the users and the 

environment. Considering that water rights trading is more feasible among neighboring regions 

that share a single water catchment, the benefits from intra-catchment water rights trading were 

also assessed. Furthermore, alternative costs of additional water supply to the Aral Sea due to 

reduced water availability to irrigation were estimated. Higher gains were predicted under water 

allocation with water rights trading than without water rights trading among irrigation zones. In 

the end the impacts of different transaction cost scenarios on the gains from water market were 

analyzed. 

           ∑      

  

                             

                                      –                 

(4.35c') 
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4.5.1 Baseline (fixed water use rights) vs. optimization 

Although the costs of establishing an omniscient decision maker who optimizes water use 

benefits for the entire basin is too high and unrealistic considering the multiple number of 

independent water users involved, optimization results can still serve as a target point for 

comparing the benefits from alternative water management institutions. The results indicated that 

the potential annual basin-wide benefits (from irrigation and environmental demand sites) of 

optimal water use in the ASB vary between $1,680 million USD and $2,000 million USD 

depending on water availability (Figure 4.11). This signifies additional economic benefits of 

$450 million USD to $610 million USD compared to the baseline (fixed water use rights) 

benefits.  

 

Figure 4.11 Total water use benefits under baseline and optimization scenarios at 

different levels of water availability 

 

Source: Author’s calculations 

 

Despite substantial increases in basin-wide water use benefits under optimization, benefits were 

not equally distributed for all regions, i.e., while some users got higher benefits from 

optimization of water allocation, some lost benefits due to decreased water use (Figure 4.12). For 

instance, optimal water allocation would be reached by diverting more water resources to 

irrigation in high fertile valleys and oases like Tashkent and Ferghana, at the same time water 

consumption and benefits would decline in Khatlon, Ahal, Kashkadarya, Andizhan, Sugd, South 

Kazakhstan, and Kyzylorda. 
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Figure 4.12 Water use benefits by water user sites of the Aral Sea basin under normal 

water supply 

 

Source: Author’s calculations 

 

Marginal water benefits across the Amu Darya and Syr Darya basins were highly variable under 

the fixed rights based water allocation (baseline), but stabilized under optimization (Figure 4.13). 

Under optimization, marginal benefits varied between $0.004 and $0.027 USD per m
3
 across the 

regions. Particularly in the Syr Darya basin, marginal benefits varied between $0.008 and $0.027 

USD per m
3
, which is comparable to the results by Cai et al. (2003a) that varied between $0.008 

and $0.043 USD per m
3
. Different spatial dimensions of the Syr Darya model (Cai et al. 2003a) 

and the model developed in this study does not allow region-by-region comparisons. Marginal 

benefits were lower in the regions of the Amu Darya basin, indicating higher water availability or 

lower profitability of water use in this basin than in the Syr Darya basin. Theoretically, marginal 

water use benefits should be equal across regions in each river basin under optimization if the 

only restriction is water availability. However, additional restrictions due to differences in 

hydrological, land use, and productivity conditions along the rivers and water catchment zones 

also had impacts on marginal benefits and prevented equal marginal benefits across all regions. 

Under the optimization scenario, marginal water use benefits in each river basin should also be 

equal to each other since inflows to the Aral Sea from both rivers has the same value due to a 

single environmental benefit function for the entire sea. Due to very low marginal benefit from 

environmental flows as estimated compared to marginal benefits to irrigation in the Syr Darya 

basin indicating water scarcity for irrigation needs in the basin, equimarginal benefits in the river 

basins were not observed. Only marginal benefits of irrigation in the Amu Darya basin were very 

close to the marginal environmental benefits of $0.0036 USD per m
3
 since water availability to 

irrigation was close to the level of satisfying potential irrigation water demand in this river basin. 
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Figure 4.13 Marginal irrigation benefits by regions in the Amu Darya and Syr Darya 

basins under normal water supply 

 

Source: Author’s calculations 

 

4.5.2 Intra-catchment and inter-catchment water rights trading 

Despite substantial increases (30%, 39%, and 50% under normal water supply levels, 90% of 

normal, and 80% of normal respectively) in overall basin benefits under optimal water allocation, 

the regions with lower marginal water productivity will only cooperate to achieve optimal basin-

scale benefits if they are compensated for lost income due to reduced water use. Introducing 

tradable water use rights would provide incentives for cooperation by increasing willingness of 

less productive regions to transfer part of their water rights for appropriate compensation to more 

productive regions. Results indicated that although additional gains from water markets were less 

than those of the pure optimization scenario, economic gains were substantially higher than those 

under fixed water rights (Figure 4.14).  Lower benefits of water markets than the optimal benefits 

can be explained by the consideration of initial water use rights and thus additional restrictions on 

maximum water sales of each water user in the model when water rights trading was addressed. 

Impact of initial water rights distribution on basin-wide irrigation benefits were also shown by 

previous studies (Ringler 2001). Moreover, hydrological, return flow, and maximum/minimum 

regional water use constraints also may prevent the distortion of the additional benefits of water 

rights trading from the additional benefits under the optimization scenario (Cai et al. 2006). 

Additional benefits from inter-catchment water rights trading vary between $373 million to $476 

million USD and increased in parallel with the level of water scarcity. Lesser, but still higher than 

baseline gains were available under intra-catchment water rights trading. Furthermore, the scarcer 

water becomes the more beneficial water rights trading is, as reflected in the increased trend of 

additional gains in parallel with decreased water availability. Those results are consistent with the 

findings of Booker and Young (1994) and Cai et al. (2006). 

Amu Darya Basin Syr Darya Basin 
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Figure 4.14 Comparing benefits and additional gains from water rights trading and 

optimal water allocation under various levels of water supply 

 

Source: Author’s calculations 

 

Irrigation benefits across the regions varied between $2 million and $151 million USD under 

normal water availability (Table 4.5). The total irrigation benefit was lowest in upstream regions 

such as the Gorno-Badakhshan (GBAO) and RRT regions of the Amu Darya basin, and in the 

Naryn, Osh, and Jalalabad regions of the Syr Darya basin due to their mountainous landscapes, 

limited irrigated areas, and the high energy (pumping/conveyance) costs to deliver water to fields.  

Additional gains from water rights trading were achieved in all regions. The top gains from 

trading are expected in the Surkhandarya and Mary regions of the Amu Darya basin and in the 

Ferghana and Tashkent regions of the Syr Darya basin. Additional regional gains under intra-

catchment trading (restricted) compared to the benefits under inter-catchment trading 

(unrestricted) depended on the marginal water profitability of the regions within the catchment. 

The results of the analysis of water transfers and willingness to pay illustrate the routes of water 

trade flows and market prices. Major water rights buyers are the Mary, Lebap, and Bukhara 

regions of the Amu Darya basin and the Ferghana, Namangan, Tashkent and Syrdarya regions of 

the Syr Darya basin. Furthermore, allowing tradable rights smoothened marginal water 

productivity values or water prices across regions. Smoothening of the prices was higher under 

unrestricted water rights trading (UWT) than restricted water rights trading (RWT) as expected. 

The average water prices were $0.012 USD per m
3
 in the Amu Darya basin regions and $0.02 

USD per m
3
 in the Syr Darya basin regions. 
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Table 4.5 Benefits, water use, water transfers, and water prices by regions and the Aral 

Sea under fixed water use rights (FWR), intra-catchment (RWT), and inter-

catchment water rights trading (UWT) under normal water supply 

  

Total irrigation 

profit, 10
6
 USD   

Water withdrawal 

(million m
3
)   

Water transfer 

(million m
3
)   

Shadow price of water 

(USD/m
3
) 

 Regions FWR RWT UWT   FWR RWT UWT   RWT UWT   FWR RWT UWT 

Amu Darya basin:       

GBAO 2 2 3 
 

362 335 104 
 

0 -258 
 

-0.001 0.002 0.007 

Khatlon 25 26 43 
 

5115 4262 2461 
 

0 -2654 
 

-0.004 0.002 0.010 

RRT 20 24 25 
 

660 660 596 
 

0 -64 
 

-0.003 0.004 0.010 

Surkhandarya 96 101 120 
 

3075 3075 4131 
 

0 1055 
 

0.056 0.033 0.010 

Mary 115 137 134 
 

4423 5415 5358 
 

993 935 
 

0.054 0.008 0.011 

Ahal 21 25 29 
 

3346 2353 1918 
 

-993 -1428 
 

0.016 0.008 0.011 

Lebap 89 93 100 
 

3151 4034 5040 
 

883 1889 
 

0.019 0.015 0.010 

Kashkadarya 90 116 111 
 

3747 2663 2973 
 

-1083 -774 
 

-0.009 0.017 0.012 

Samarkand 81 99 97 
 

2802 2372 2638 
 

-429 -164 
 

-0.002 0.016 0.011 

Navoi 29 34 32 
 

1390 864 1016 
 

-526 -374 
 

-0.001 0.016 0.012 

Bukhara 104 119 126 
 

2735 3891 4145 
 

1156 1411 
 

0.040 0.017 0.011 

Khorezm 71 81 81 
 

3408 2749 2805 
 

-659 -603 
 

0.001 0.012 0.012 

Karakalpakstan 64 66 65 
 

5956 4654 4824 
 

-1302 -1132 
 

0.013 0.012 0.012 

Dashauz 80 85 87 
 

5203 7164 7364 
 

1961 2161 
 

0.018 0.012 0.012 

               
Syr Darya basin:         

Naryn 3 3 5 
 

646 646 247 
 

0 -399 
 

0.003 0.005 0.013 

Osh 7 10 12 
 

1539 1328 318 
 

0 -1221 
 

-0.001 0.005 0.007 

Jalalabad 16 19 22 
 

585 585 330 
 

0 -255 
 

-0.004 0.006 0.029 

Ferghana 109 129 151 
 

2461 3858 4478 
 

1397 2017 
 

0.060 0.032 0.019 

Andizhan 73 91 86 
 

2490 1133 1385 
 

-1357 -1105 
 

0.010 0.032 0.029 

Namangan 55 75 96 
 

1837 3019 3502 
 

1182 1664 
 

0.067 0.033 0.018 

Sugd 41 60 60 
 

3185 1963 1943 
 

-1222 -1241 
 

0.005 0.032 0.032 

Tashkent 109 115 140 
 

2708 3840 5229 
 

1132 2520 
 

0.046 0.036 0.022 

Syrdarya 72 108 101 
 

2123 3154 3063 
 

1031 940 
 

0.080 0.008 0.015 

Jizzah 57 62 62 
 

1765 1264 2371 
 

-500 607 
 

0.036 0.050 0.023 

South Kazakhstan 42 48 48 
 

2813 1150 1150 
 

-1663 -1663 
 

0.005 0.014 0.014 

Kyzylorda 27 27 34 
 

3133 3133 1268 
 

0 -1865 
 

0.010 0.010 0.018 

The Aral Sea: 45 46 42 
 

15947 16242 15041 
 

0 0 
 

0.003 0.003 0.003 

Total profit 1542 1801 1912 
 

86603 85808 85697 
 

0 0 
    

Note: Total water withdrawals in the ASB varies from each other under different water allocation system because of 

different return flow rates across the demand sites cause different levels of return flow depending on changes in 

regional water withdrawals. 

Source: Author’s calculations 
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Additional gains from water rights trading across all regions were achieved also under drier 

conditions (90% of normal water supply) (Table 4.6). Average water prices under inter-

catchment water rights trading were $0.014 and $0.023 USD per m
3
 in the Amu Darya and the 

Syr Darya basin regions respectively.  

 

Table 4.6 Benefits, water use, water transfers, and prices by regions and the Aral Sea 

under fixed water rights (FWR), intra-catchment (RWT) and inter-

catchment water rights trading (UWT) under 90% of normal water supply 

  

Total irrigation 

profit, 10
6
 USD 

 

Water withdrawal 

(million m
3
) 

 

Water transfer 

(million m
3
) 

 

Shadow price of water 

(USD/m
3
) 

 Regions FWR RWT UWT   FWR RWT UWT   RWT UWT   FWR RWT UWT 

Amu Darya basin:       

GBAO 2 2 2  319 254 104  0 -215  0.001 0.004 0.007 

Khatlon 26 26 43  4512 4110 2018  0 -2494  0.000 0.003 0.013 

RRT 20 24 24  582 582 559  0 -23  0.000 0.011 0.014 

Surkhandarya 73 89 112  2713 2713 4058  0 1345  0.073 0.041 0.013 

Mary 80 120 124  3902 5235 5298  1333 1396  0.082 0.017 0.014 

Ahal 14 33 29  2952 1619 1749  -1333 -1203  0.021 0.017 0.014 

Lebap 81 85 89  2780 3597 4342  817 1562  0.021 0.018 0.014 

Kashkadarya 92 113 108  3306 2272 2731  -1033 -574  -0.001 0.022 0.015 

Samarkand 81 95 93  2472 2073 2441  -398 -30  0.005 0.022 0.015 

Navoi 29 34 31  1227 702 897  -525 -330  0.004 0.021 0.015 

Bukhara 89 103 117  2413 3553 3993  1140 1580  0.048 0.025 0.015 

Khorezm 70 77 78  3007 2453 2435  -554 -571  0.006 0.015 0.016 

Karakalpakstan 54 59 61  5255 3938 3732  -1250 -1522  0.015 0.015 0.015 

Dashauz 68 72 71  4590 6395 5670  1805 1080  0.020 0.015 0.015 

               
Syr Darya basin:         

Naryn 3 3 4  568 567 247  0 -321  0.005 0.005 0.013 

Osh 7 8 11  1353 1052 318  0 -1035  0.000 0.006 0.007 

Jalalabad 16 18 21  514 514 301  0 -213  0.003 0.012 0.032 

Ferghana 90 112 131  2164 3655 4165  1492 2001  0.067 0.036 0.025 

Andizhan 69 81 81  2189 1133 1133  -1056 -1056  0.014 0.032 0.032 

Namangan 40 61 82  1615 2269 3331  654 1716  0.074 0.037 0.023 

Sugd 37 55 66  2800 1710 1433  -1089 -1367  0.016 0.040 0.049 

Tashkent 93 97 109  2381 2629 4196  248 1815  0.050 0.040 0.032 

Syrdarya 49 100 100  1867 3094 3093  1227 1227  0.100 0.012 0.012 

Jizzah 49 50 50  1551 1399 1594  -152 43  0.044 0.045 0.037 

South Kazakhstan 40 43 43  2473 1150 1150  -1323 -1323  0.007 0.014 0.014 

Kyzylorda 23 23 28  2755 2755 1268  0 -1487  0.012 0.012 0.018 

The Aral Sea: 40 40 38  14658 14658 14071  0 0  0.003 0.003 0.003 

Total profit 1335 1624 1746  76917 76081 76330  0 0     

Source: Author’s calculations 
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Similarly, average marginal water use benefits under 80% of the normal water supply were 

$0.016 and $0.025 USD per m
3 

in the Amu Darya and Syr Darya basins respectively (Table 4.7). 

Comparison of marginal benefits under different levels of water availability indicated that 

marginal water use benefits increase in parallel with decreased water availability making water 

rights trading more beneficial. 

Table 4.7 Benefits, water use, water transfers, and water prices by regions and the Aral 

Sea under fixed water rights (FWR), intra-catchment (RWT) and inter-

catchment water rights trading (UWT) under 80% of normal water supply 

  

Total irrigation 

profit, 10
6
 USD 

 

Water withdrawal 

(million m
3
) 

 

Water transfer 

(million m
3
) 

 

Shadow price of water 

(USD/m
3
) 

 Regions FWR RWT UWT   FWR RWT UWT   RWT UWT   FWR RWT UWT 

Amu Darya basin:       

GBAO 2 2 2  277 239 104  0 -173  0.002 0.005 0.007 

Khatlon 25 25 35  3910 3848 2018  0 -1892  0.003 0.004 0.013 

RRT 20 23 23  504 504 534  0 29  0.009 0.019 0.016 

Surkhandarya 43 70 103  2351 2351 4008  0 1657  0.090 0.062 0.016 

Mary 30 98 113  3381 4597 5258  1216 1877  0.110 0.023 0.016 

Ahal 5 32 26  2558 1342 1631  -1216 -927  0.025 0.023 0.017 

Lebap 73 75 80  2409 2858 3842  449 1433  0.023 0.022 0.016 

Kashkadarya 91 107 101  2865 1945 2561  -920 -303  0.007 0.027 0.018 

Samarkand 78 88 87  2142 1824 2302  -318 161  0.012 0.027 0.018 

Navoi 28 33 29  1063 543 812  -520 -251  0.009 0.026 0.018 

Bukhara 73 90 107  2091 3400 3885  1309 1795  0.056 0.029 0.017 

Khorezm 67 71 72  2606 2422 2172  -183 -433  0.010 0.016 0.018 

Karakalpakstan 43 45 53  4554 3873 2952  -348 -1601  0.016 0.015 0.018 

Dashauz 56 62 65  3978 4508 2607  531 -1371  0.022 0.015 0.018 

Syr Darya basin:         

Naryn 2 2 3  490 486 247  0 -243  0.007 0.006 0.013 

Osh 7 8 9  1167 956 318  0 -849  0.002 0.006 0.007 

Jalalabad 16 17 18  443 443 301  0 -143  0.011 0.019 0.032 

Ferghana 69 94 117  1866 3430 4025  1564 2159  0.073 0.041 0.028 

Andizhan 64 69 71  1888 864 1133  -1024 -755  0.019 0.032 0.032 

Namangan 23 50 56  1393 1866 2101  473 708  0.081 0.043 0.033 

Sugd 29 49 50  2415 1402 1349  -1013 -1066  0.027 0.050 0.052 

Tashkent 76 82 84  2054 2118 2627  64 573  0.053 0.046 0.039 

Syrdarya 21 84 103  1610 2579 3139  969 1529  0.121 0.013 0.009 

Jizzah 39 41 41  1338 1288 1516  -50 178  0.052 0.050 0.040 

South Kazakhstan 37 38 38  2133 1150 1150  -983 -983  0.009 0.014 0.014 

Kyzylorda 18 18 21  2376 2376 1268  0 -1108  0.013 0.013 0.018 

The Aral Sea: 36 36 35  13368 13368 13180  0 0  0.003 0.003 0.003 

Total profit 1069 1407 1545 
 

67231 66583 67042 
 

0 0 
    

Source: Author’s calculations 
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As can be seen from tables 4.5–4.7, inflows to the Aral Sea did not change much under water 

rights trading scenarios compared to the baseline scenario. Lack of additional flows to 

environmental needs is mainly because of low marginal productivity of the environmental flow. 

The disclusion of the non-utilitarian values of ecosystem services in the calculations as already 

explained above resulted in low marginal productivity of water use for environmental needs. 

Since no data is available on non-utilitarian values of the flows to the Sea, additional scenarios 

related to the increased amount of the minimum water purchases for environmental needs were 

considered. Potential environmental benefits of water market were tested by assessing reductions 

in total benefit under increased amount of minimum water purchases for environmental needs 

with and without considering water rights trading among the irrigation zones. 

  

4.5.3 Alternative costs of environmental flows with and without tradable water use rights 

Since short-term marginal benefits of environmental flows are lower than marginal irrigation 

water use benefits, increasing the minimum requirements of purchasing water for environmental 

needs would reduce total (irrigation and environmental) benefits (Figure 4.15). According to 

previous estimate, about 33–34 km
3
 of water flow is required to maintain minimal sanitary and 

environmental conditions in the Aral Sea and its delta (GEF 2002:15). Since the baseline year 

already considers 13 km
3
 of water flows to the Sea in normal year, to meet minimum sanitary and 

environmental conditions would require about 20 km
3
 water additionally. Thus, several scenarios 

of increased purchases of water rights from irrigation demand sites were simulated considering 

the purchases up to 20 km
3
. 

 

Figure 4.15 Total (irrigation and environmental) benefit changes in response to increases 

in minimum requirements to purchase water for environmental needs, with 

and without water rights trading among irrigation zones 

 

Source: Author’s calculations 

Note: ‘+’ - Total irrigation and environmental benefits under water rights trading among irrigation zones/ ‘-’ - Total 

irrigation and environmental benefits without considering water rights trading among irrigation zones 
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When the minimum purchase of irrigation water use rights for environmental needs increased 

from 1 to 20 km
3
, overall benefits decreased from $1,901 to $1,608 million USD and from 

$1,644 to $1,496 million USD with and without considering water rights trading among the 

irrigation zones respectively. Likewise, under 80% of normal water availability, overall benefits 

reduced from $1,528 to $999 million USD and from $1,292 to $972 million USD with and 

without considering water rights trading among the irrigation zones respectively. Despite 

decreased total benefits due to increased minimum requirements of purchasing water to the Aral 

Sea and its delta, total benefits when water rights trading among the irrigation zones was allowed 

were higher than the scenario without water rights trading among irrigation sites.  

In normal year, total compensation cost required to purchase 5 km
3
 of additional water for the 

environmental needs is $67.8 million USD when water rights trading among the irrigation zones 

was allowed (Figure 4.16). Meantime, the compensation cost of delivering 20 km
3
 of water into 

the Aral Sea and its deltaic zones is $467 Million USD. Compensation requirements of providing 

additional environmental supply increases in parallel with reduced water availability (river 

runoff).   

 

Figure 4.16 Required compensation payments to the irrigation zones due to increased 

environmental flows to the Aral Sea considering water rights trading among 

irrigation zones 

 

Source: Author’s calculations 

 

Compensation payment per unit of water required for meeting minimum requirements of 

purchasing water for environmental needs increases in parallel with the amount of minimum 

water requirements to be purchased (Figure 4.17). The payments increase since marginal benefits 
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of irrigation water increase in parallel to reduced water availability for irrigation. Under normal 

water supply conditions, if the compensation of $0.004 USD per m
3
 is required to buy 1 km

3
 of  

water for environmental needs this amount reached to $0.023 USD per m
3
 when at least 20 km

3
 

of water are required to buy. Under drier conditions, the required payments to buy additional 

water for the needs of downstream ecosystems will be even higher, for instance, reaching to 

$0.026 USD per m
3
 when only 80% of normal water supply is available. Nevertheless, 

purchasing costs of additional water supply for environmental needs is much less expensive than 

investing in the frequently referenced interbasin-water transfer projects such as diverting water 

from Siberian rivers (Figure 2.25). 

 

Figure 4.17 Compensation payments per unit of water required for meeting minimum 

purchased environmental flow under water rights trading scenario 

 

Source: Author’s calculations 

 

4.5.4 Water rights trading benefits considering transaction costs 

Consideration of the transaction costs of introducing tradable water use rights slightly decreased 

overall irrigation water use, while substantially decreasing water trade volume (Figure 4.18) and 

benefits from water rights trading (Figure 4.19) in both the Amu Darya and Syr Darya basins. 

When transaction costs were not considered, the optimal volume of water traded under normal 

water availability was more than 7.5 km
3
 in each basin. Increase in transaction costs up to $0.05 

USD per m
3
 of traded irrigation water volume practically nullified the potential additional 

economic gains of water rights trading (Figure 4.19). Since there were only five regions whose 

marginal productivity was higher than $0.05 USD per m
3
 (which varied between $0.05 and $0.08 
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USD per m
3 

in the baseline scenario, see Figure 4.13), water rights trading among the remaining 

regions were obviously not beneficial. Meantime trading among these five sectors was mainly 

limited by other land and water use constraints. According to the comparison of total benefits 

under different levels of transaction costs and different levels of water availability, overall 

benefits without considering transaction costs under water rights trading were more than $1,050 

and $800 million USD in the Amu Darya and Syr Darya basins respectively (Figure 4.19). 

However, once transaction costs per cubic meter of water exceed $0.05 USD per m
3
, total 

benefits fell to $950 and $650 million USD in these two river basins respectively. Reduced water 

transfers, decreased net benefits, and lowered gains of water rights trading due to increased costs 

were also found by Cai et al. (2006) in the case of the Maipo River Basin in Chile. 

 

Figure 4.18 Changes in water trade volume due to increases in transaction costs in the 

Amu Darya and Syr Darya basins under different water availability 

 

Source: Author’s calculations 
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Figure 4.19 Changes in total water use benefits due to increases in transaction costs in the 

Amu Darya and Syr Darya basins under different water availability 

 

Source: Author’s calculations 

 

4.6 Discussion of economic and environmental benefits and transaction costs of 

market-based water allocation and conclusions  

Given the heterogeneous distribution of water productivity across the irrigation zones, a 

reallocation of water from less productive water users to the more productive users would result 

in increased economic gains and improved water productivity over the basin. As an alternative to 

the command-and-control based management system, market-based water allocation institutions 

could incentivize the riparian irrigation sites for voluntary cooperation in order to obtain 

additional gains from more efficient water use through reallocation. Findings showed that, under 

market-based water allocation institutions, more productive users would obtain additional water 

and consequently additional economic gains. Part of these gains is paid as compensation for 

forgone water use rights by less productive water users. The findings indicated also that 

additional economic gains from water rights trading, thus its importance, increases in parallel 

with growing water scarcity.  

Alternative formulation of the model considering compensations for the irrigation benefit 

reductions due to additional water for environmental needs showed that overall gains will be 

higher when water rights trading among the irrigation zones are allowed, than when water rights 

trading among the irrigation sites is not allowed. The additional purchase of 20 km
3
 water from 

the irrigation demand site for environmental needs under the assumption of inter-regional water 

rights trading would cost about $0.023 USD per m
3
. This is only a fraction from the costs of often 

cited options of water transferring from other rivers such as Ob and Irtish. Additionally purchased 
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water and natural water inflow in a normal year would yield about 33 km
3
 of water which is quite 

low compared to the annual inflows of 50 km
3 

in 1950s. However, water management in the Aral 

Sea basin should purpose a balanced development of the economy with consideration of 

environmental sustainability rather than pursuing a full restoration of the Aral Sea to its state in 

1950s. Considering the greater benefits from the wetland areas in the Aral Sea delta than the 

direct benefits of shipping and fishery from the sea itself (section 4.4.6), environmental 

restoration policies and projects should prioritize improving the environmental conditions in 

deltaic zone. Considering the limited availability of water resources, particularly in the 

downstream reaches of the Amu Darya and Syr Darya Rivers, the possibilities of improving 

water use efficiency in deltaic zones should be investigated further. 

Newly launched campaigns of oil and gas drilling on the exposed areas of the Aral Sea bed may 

make decision makers reluctant to increase water inflow to the southern Aral Sea, thus 

intentionally preventing restoration efforts of the sea. However, since the environmental 

resources benefit the entire society over generations, unilateral benefits from oil and gas mining 

should be reconsidered. Although environmental benefit estimates provided in this study are 

negligible (Tables 5.4–5.6) and thus seem to justify the lack of governmental interests to increase 

flows into the sea as no additional environmental flows were recommended under the overall 

basin benefit maximization scenarios, these estimates addressed only the partial value of the 

ecosystem services. Avoiding underestimation of the environmental benefits by including the 

non-utilitarian values of environmental inflows, which can be much higher than the utilitarian 

values, in further research efforts may provide better results (Dziegielewska et al. 2009), showing 

the improved balance of water for natural and irrigation needs. 

Market-based water allocation would allow substantial economic gains and environmental 

benefits under the assumption of zero transaction costs. However, establishing and enabling any 

type of market system require additional expenditures (Coase 1960; North 1989, 1990). 

Dependence of additional gains from water rights trading on the level of transaction costs was 

previously argued by several studies (Colby 1990b, Challen 2000, Saleth and Dinar 2004). 

Confirming the claims of these previous researches, this study illustrated an inverse relationship 

between the transaction costs of establishing water markets and additional benefits from water 

rights trading (e.g., the lower the transaction costs, the higher the benefits from water rights 

trading). Lower transaction costs can be achieved by improving irrigation infrastructure and legal 

and governance frameworks (McCann et al. 2005). A maintenance of sufficiently low transaction 

costs for effective performance of water markets must be possible, since increasing trade of water 

use rights in the USA and Australia would occur only if transaction costs were sufficiently low 

(Garrick et al. 2011). The successful performance of relatively productive market institutions 

elsewhere in the world can provide a strong incentive to make relevant institutional changes in 

poorly performing economies (North 1990:137). If this general statement is applied to the case of 

water markets and the specific situation in this study, systems of water rights trading in the USA 

and Australia are good examples to Central Asian countries for maintaining successive 

performance of market-based institutional reforms.  

Even though substantial improvements in water use efficiency and environmental situations are 

possible through introducing tradable water use rights, such changes can confront with not only 

economic, but also institutional and political barriers. For instance, considering the dominance of 

Islamic concepts in the cultures and traditions of Central Asian nations, the possibility that the 

traditional Islam regards water as God’s gift may hinder efforts to establish water as an 
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acceptable “good” for commercial transactions. In turn, it feeds the doubts on the cultural 

acceptability of introducing water markets and pricing water to a majority of the population in 

Central Asia. However, there are different opinions on the tolerance of Islamic acceptance of 

water as an economic good. Although some scholars doubt that Islam can accept water allocation 

through market forces (Webb and Iskandarani 1998), recent studies show that water pricing and 

market-based water allocation established for the benefit of all users and based on fairness and 

social justice is not controversial to Islamic rules (Kadouri et al. 2001). Islamic Law does not 

ignore water pricing or water rights trading if they reflect the costs of water delivery, the costs of 

purification, and the scarcity value of water without speculation. In contrast, public water 

management that neglects economic efficiency and environmental requirements as well as 

preventing fair water distribution due to the unheard voices of downstream water users may be 

even more contrary to Islamic concepts of justice than water markets. 

It has also been argued that because of the inheritance of top-down decision making from the 

former political-economic system, the negotiation of water sharing agreements and formulation 

of water use policies are highly dependent on the will of government authorities (Weinthal 

2002:145), leaving less room for decentralized decision making and market-based water 

allocation. Although the system based on the supremacy and dominance of the government and 

dependence on authorities in all decision making processes can perhaps enhance economic or 

social stability in short-term, empowering the ordinary people to make decisions over their own 

fates can effectively work for long-term social and economic sustainability. The emergence of the 

middle-income class with greater power and knowledge would contribute to better governance 

and thus the stability of institutional changes (Easterly 2001). Under conditions of water rights 

trading, direct government interventions through control of water market prices or intentional tax 

increases on water uses are not allowable. However, the involvement of governmental 

organizations is essential in water rights trading agreements for distributing initial water use 

rights, ensuring the rule of law, and guaranteeing the realization of the agreed compensation and 

water transfers. Moreover, government organizations must participate actively in development 

programs, but indirectly through maintaining research and educational capacities, and by 

establishing necessary institutional and legal frameworks. 

Indeed, differing from the countries in which the economy is closer to market-based systems, the 

transaction costs of introducing tradable water use rights could be relatively high, considering 

that Central Asian economies were under the rule of centralized Soviet governance for more than 

seventy years. Though a market based economy and governance through gradual reforms is the 

selected path for the future in all of these countries, the evolution of market based management 

systems and their performance cannot be fully separated from the early course of institutional 

development processes (North 1990). In other words, institutional changes are path-dependent. 

Furthermore, the necessary institutional changes cannot happen overnight, but will require time 

to realize since institutional transformations occur not only through formal changes in laws and 

organizational structures, but also due to changes in informal cultural rules, behavioral codes, and 

the collective mental construct (North 1990). For instance, Williamson (2000:597) showed that 

changes in the property rights regimes and their potential economic performance may require 10 

to 100 years to realize, involving substantial changes in the thought processes of stakeholders and 

decision makers. The alteration of cultural norms, ideologies, and mental constructs can be 

accelerated through greater transparency and access to information (North 1990:138). The 

recommendations of this study for overcoming the barriers to the necessary institutional changes 

are also valid for the other river basins with similar water issues and institutional settings. 
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5 TECHNOLOGICAL IMPROVEMENTS AND INFRASTRUCTURAL 

DEVELOPMENTS TO COPE WITH WATER ISSUES IN THE ARAL 

SEA BASIN
1
 

5.1 Introduction 

This chapter is the continuation of the previous chapter on hydro-economic modeling analysis of 

intersectoral water allocation. At present, the transformation of the reservoir releases from 

irrigation mode to energy production mode in the upper reaches and the restart of the construction 

of new upstream reservoirs of regulating river flow confronted a strong opposition of downstream 

regions in the ASB. Despite hot debates on the construction of new reservoirs, still no academic 

study objectively estimates the potential changes in water availability and profits due to these 

constructions. Additionally, considering already scarce water resources in the regions even 

without climate change or increased upstream water demand impacts, adoption of water 

conservation technologies is essential to reduce the unproductive water uses. It would in turn 

require preliminary estimations of potential places and magnitudes of adopting irrigation 

technologies across the basin. Indeed, addressing these infrastructural and technological 

developments would require a more detailed modeling framework that considers seasonal water 

flows and water uses by crops. Therefore, an analysis using a hydro-economic model that focused 

on irrigation water allocation based on regional water-benefit functions was further deepened 

now by considering seasonal water withdrawals to irrigation sites and seasonal water releases 

from the reservoirs. Groundwater and return water balances in addition to the river balance were 

considered. Based on the model, water allocation between irrigation, energy sector, and 

environment, and the impact on crop production and incomes of irrigation modernization and 

infrastructural improvements are discussed. The model has similar content to the previous hydro-

economic models that were used for analyzing water uses in the the Mekong (Ringler 2001) and 

Maipo River basins (Cai et al. 2006) but was modified considering special hydrological and 

economic conditions in the ASB. 

The chapter consists of two sections. The first section includes the description of the analytical 

framework of the model. The second section describes the results. 

 

5.2 A disaggregated hydro-economic model of the Aral Sea basin 

5.2.1 River basin scheme  

Since hydropower production component was also included in the disaggregated hydro-economic 

model differing from the previous annual aggregated hydro-economic model reservoirs were also 

considered in the river basin scheme (Figure 5.1). Although there are over 80 reservoirs operating 

or newly planned in the ASB, only the largest and the most important ones that produce most of 

the hydropower were taken into account in this study. Some power production stations such as 

the ones located in the Narin Cascade are run-of-the-river power stations. The remaining parts of 

the scheme are the same as the basin scheme of the aggregated model. 

                                                           
1
 Some results of this chapter were published in the Proceedings of International Conference and Young 

Researchers’ Forum that took place in Giessen (Bekchanov et al. 2013b) 
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Figure 5.1 River basin scheme 

 

Source: Author’s presentation 
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5.2.2 Modeling framework 

Objective function 

In the disaggregated model an omniscient BMO is assumed to optimize benefits of irrigation 

(     ) across the demand sites (   ), hydropower production (    ) by power production 

stations (  ), and environmental system (  )
1
: 

  ∑      

   

 ∑    

  

    (5.1) 

 

Irrigation benefits 

Irrigation benefits were calculated as a difference of total crop production revenues and the costs 

of crop production, technology adoption, water delivery, conveyance improvement, and 

groundwater pumping: 
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(5.2) 

where         is area of a particular crop (  ) in a certain demand site (   ),           is crop 

rice,         is crop yield,            is irrigation technology adoption costs per unit of irrigation 

water use,           is irrigation efficiency,           is baseline (observed) irrigation efficiency, 

          is total water use by crops at field level,           is the cost of improving 

distribution efficiency per unit of regional water intake,          is distribution (conveyance) 

efficiency,           is baseline (present) distribution efficiency,             is regional water 

                                                           
1
 Endogenous variables are written using upper case letters while exogenous variables are written with lower case 

letters in this section 
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intake from river node (  ) by months (  ) if there is a link between the region and the node 

(      ),       is conveyance costs per unit of water delivered,           is water delivered 

to the field in each month,        is costs of reusing return water flows for irrigation, 

            is re-use of return flow,         is groundwater pumping costs, and                

is pumped water from groundwater sources (  ) to irrigate crop. 

Crop yield levels in turn depend on maximum attainable yields (        ) and real yield rate that 

varies between 0.1 and 1 (        ): 

                          (5.3) 

 

Benefits of hydropower production 

Benefits from electricity generation was estimated as: 

     ∑            

  

 

 

(5.4) 

 

where       is price per unit of electricity output and         is the volume of electricity 

generation.  

Electricity production for the stations (       ) accompanied by reservoirs (               ) 

is modeled as (Ringler et al. 2004): 
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(                                    ) 

 

(5.5) 

 

where              is river flow from reservoir (   ) to node (  ) if a link between two of them 

(      ) exists,                  is flow from the reservoir to next reservoir (      ) if there is 

a link (      ) between two of them,         is water level at the reservoir,           is tail-

end level of the reservoir, and       is production efficiency of the reservoir. 

Hydro-electricity generation for run-of-river power stations is estimated as (Ringler 2001): 

              ( ∑  ∑              

                     

)            
(5.6) 

 

 

where               is river flow from the node    ) to the next lower node (     ) at each moth 

(  ) if a link between the nodes (      ) exists and       is reservoir yield that indicates the 

amount of electricity generation per unit of river water flow. 
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Environmental flow 

Economic values of the inflows into the Aral Sea and deltaic zones (  ) are considered as the 

same as in the case of the aggregated annual model but only the annual environmental flow 

(     ) was replaced by the sum of monthly environmental flows (    ):  

         ∑    

  

 
(5.7) 

 

 

where    and    are parameters of the environmental benefit function and      is monthly 

environmental flow from the Amu Darya (the node link “Amu5   THE ARAL SEA”) and Syr 

Darya (the node link “Amu5   THE ARAL SEA”) into the Aral Sea. 

 

River node flow balance 

Water balance in river node was formulated as: 
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(5.8)  
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where               is river flow to the node (  ) from the upper node (     ),          is the 

flow from source node (river tributary),              is river flow from reservoir to node, 

            is return flow from irrigation demand site to the river node,              is water 

seepage to the river from groundwater sources (  ) if a link (       ) between groundwater 

source (  ) and river node (  ) exists,  and            and          are water withdrawals 

from node (  ) to the irrigation water user site (   ) and municipal-domestic water use 

respectively if a link between the node and the water user site (      ) exists. 
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Reservoir storage balance 

Water balances in reservoirs were modeled as: 

 

          ∑             

         

 ∑                 

             

  

(5.9) 
          ∑             

         

 ∑                 

             

 

 

                                         

 

where          is reservoir storage volume,                  is flow to the reservoir (   ) from 

upper reservoir (      ),              is the rate of evaporation from the surface of the 

reservoir,         is the surface area of the reservoir. 

 

Reservoir morphological parameters 

The storage volume and surface area of the reservoir are related to each other following the 

functional relationship of: 

                                
            

  

 

(5.10) 

 

where   ,   ,   , and    are the parameters of the function. 

Water level in the reservoir (       ) also depends on the reservoir storage volume: 

                                         
  

 

(5.11) 

 

where    ,   , and    are the parameters of the function. 
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Groundwater balance 

Groundwater volumes change depending on water percolation from fields and irrigation canals, 

groundwater use and water seepage to the river: 

                 (                 )   
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(5.12) 

 

where        is yield of groundwater aquifer,       is the surface area of groundwater aquifer, 

        is groundwater depth,               is deep percolation from crop fields in each 

month. 

Groundwater discharge to the river system depends on water volume in the groundwater aquifer 

and transitivity coefficient (        ): 

                                          

 

(5.13) 

 

Water use balances in irrigation demand site 

Total water delivered to a demand site (         ) was calculated considering conveyance 

efficiency and water intakes to the region from the river node: 

          ∑            

         

      

 

(5.14) 

 

Additional constraints related to water use at demand site level were included as well. The sum of 

total surface water used for crops (            ) in each site should be balanced with water 

delivered to a demand site (         ):  

∑            

  

           

 

(5.15) 
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Total water applied for the use of each crop (             ) should be equal to the sum of total 

surface water used for crops (            ), water from groundwater aquifers (              ), 

and re-use of return flows (           ): 

                           ∑               

          

             

 

(5.16) 

 

 

Only part of return flows (         ) is re-used for irrigation since full re-use is not acceptable 

due to low quality of return flows: 

∑           

  

                 

 

(5.17) 

 

where         is the rate of return water re-use. 

 

Total seasonal water use by crops in each region (          ) is equal to the sum of total water 

applied for the use of each crop (             ) and total effective rainfall over the months: 

∑                                  

  

             

 

(5.18) 

 

where             is effective rainfall measured in mm. 

 

Total seasonal deep percolation (        ) is the sum of monthly deep percolations 

(              ):  

         ∑              

  

 

 

(5.19) 

 

Monthly deep percolation depends on irrigation efficiency (        ) and total water delivered to 

the field of each crop (             ): 

                                         
 

(5.20) 

 

For each crop, seasonal actual crop evapotranspiration (         ) is lower than the total 

seasonal water use (           ) reduced by total seasonal deep percolation (        ): 

                               

 

(5.21) 
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Water effectively used by crop is equal to the difference between seasonal actual crop 

evapotranspiration and seasonal total effective rainfall: 

         (∑             

  

)            ∑                     

  

 

 

(5.22) 

 

Actual crop evapotranspiration by months (             ) should be less than the sum of 

efficiently used water by crops and total effective rainfall: 

                                                        

 

(5.23) 

 

Actual crop evapotranspiration by months (             ) should be less than total crop 

reference evapotranspiration: 

                                  (5.24) 

where               is crop reference evapotranspiration measured in mm. 

Return flow rates from each irrigation site across the months (        ) depends on evaporation 

losses in drainage networks, water percolation from crop fields and irrigation canals, and the 

proportion of water losses flowed to the drainage networks (      ): 

                      ∑                    
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(5.25) 

 

where           is evaporation loss rates from the drainage networks.   

Part of the return flow (        ) is discharged into the river node (            ) and the 

remaning goes to the tail end lakes (        ): 

          ∑             

         

           

 

(5.26) 

 

Return flows discharged into the river node should be less than the predetermined shares of the 

regional water intake (           ):  

∑             

         

          ∑            

         

 (5.27) 

where          is maximum ratio of return flows discharged into the river to the regional water 

withdrawal. 
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Cropland restriction 

The sum of the cropland areas by crops should be less than total irrigation area (    ) in each 

demand site: 

∑       

  

       (5.28) 

 

 

The impact on crop yield of monthly water deficits 

As previously shown by several studies (Ringler et al. 2004, Cai et al. 2006), real yield rate 

(        ) is related to the maximum stage deficit (          ) as follows: 

                      

 

(5.29) 

 

The maximum stage deficit is in turn estimated based on monthly stage deficits (            ): 
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(5.30) 

 

      or 
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Monthly stage deficits were estimated following popular FAO method (Doorenbos and Kassam 

1979, Ringler 2001): 

                    (  
             

                   
) 

(5.31) 

 

where          is crop coefficient. 

 

The impact on crop yield of seasonal water deficit 

Real yield rate (        ) should be also lower than seasonal relative crop yield (         ): 

                    

 

(5.32) 
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Seasonal relative crop yield (         ) is defined following the FAO formula (Doorenbos and 

Kassam 1979, Ringler 2001): 

                 (  
∑                         

∑                      
) 

 

(5.33) 

 

where       is seasonal crop coefficient. 

 

5.2.3 Database of the model 

Considering huge size of the model and the study area, a large and consistent database were 

elaborated based on multiple sources (Appendix D). Particularly, monthly water flows in the 

supply nodes, water withdrawals for irrigation, industrial, and municipal uses by demand sites 

and over the months were based on CAREWIB database (SIC-ICWC 2011). Cropland patterns 

and crop yields across the irrigation regions were also based on this database. Data on potential 

crop evapotranspiration coefficients and effective rainfall were based on the database of the 

IMPACT model of IFPRI (2013). Crop production costs and benefits across the regions of 

Uzbekistan were based on the reports of the SIC-ICWC (2008). Crop production costs and 

benefits for the other ASB regions of the remaining countries were estimated considering costs 

and benefits in the closest region of Uzbekistan. Conveyance costs across the regions are from 

MAWR (2007). Electricity production capacity, electricity prices, reservoir storage capacity and 

releases are based on Cai (1999) and the databases of BEAM (EC IFAS 2013) and ASBOM 

(SIC-ICWC 2003) models. Parameters of the functional relationships between reservoir head and 

volume and reservoir surface area and volume are from EC IFAS (2013) and SIC-ICWC (2003). 

Costs of improving irrigation, conveyance efficiencies, and using groundwater and return flows 

were reevaluated based on Cai (1999) and considering the inflation rates between 1998 and 2006. 

More detailed description of the data and their sources are provided in Appendix D. Additional 

data used in the model are also provided as a web-source 

(https://www.dropbox.com/s/3hhzfmzb72mrh8q/Data%20for%20seasonal%20ASB%20HEM.XL

S?n=254818113). 

 

5.2.4 Scenarios 

Several scenarios were considered in the study. Similar to the case of the aggregated model, 

water supplies in different tributaries across the basin were calibrated to the water supply levels 

of 1999 since it is a year with normal water supply based on the observations between 1980 and 

2008. Crop production, power generation, and environmental revenues and costs were considered 

at the price levels of 2006 considering data availability. Model is run based on the approach of 

normative mathematical programming. Despite well-known limitations of optimization 

programming due to the assumption of omniscient decision maker for the entire water 

management system yet it is useful to analyze the potential impact of different technological and 

infrastructural changes on social and economic welfare when all stakeholders cooperate towards 

attaining basin-wide gains while equitably sharing the additional gains of cooperation.  
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Since the crop demand and price relationships in agricultural market were not considered in the 

model due to limited data availability, additional restrictions on cropland uses were considered to 

prevent unrealistic solutions that indicate enormous expansion of high valued crops. Thus, like 

the assumptions made in the previous studies (Ringler et al. 2004, Cai et al. 2006), model 

solutions for the cropland areas across the regions can be 20% lower or higher than the initially 

observed cropland areas in 1999. 

The optimization model results are compared first with the observed water and land use 

indicators in order to analyze the differences between the actual and optimal levels of water and 

land use. Irrigation and conveyance efficiency rates were kept constant based on the observed 

efficiency levels in the baseline-optimization scenario. Additionally the effect of the 

constructions of new water reservoirs for regulating river flow was not considered in the baseline 

case. To test the sensitivity of the model and check the impact on water and land use and benefits 

of reduced water supply due to the expected climate change, two more scenarios additional to the 

normal water availability are studied. Thus, 90% and 80% of normal water supply is considered 

under each additional scenario, respectively.  

Policy oriented experiments considered two measures: 1) improvements in efficiency of 

irrigation/conveyance systems and 2) developments of hydro-infrastructural facilities through 

constructing water reservoirs. To determine the place and magnitude of irrigation and conveyance 

improvement measures under reduced water supply, additional scenario was run considering the 

flexible rates for irrigation and conveyance efficiencies. Since the conflicts among the 

neighboring countries of the ASB are intensifying over the construction of the large water 

reservoirs such as the Rogun and Kambarata in upstream locations, their potential impact on 

downstream irrigation and electricity production and benefits was also analyzed. Combinative 

scenario included the analysis of the effects of both irrigation efficiency improvements and 

infrastructural developments. 

 

5.2.5 Model solution 

The disaggregated hydro-economic model was coded in GAMS and solved using CONOPT 3 –– 

non-linear programming solver (Brooke et al. 2006). Detailed description of the GAMS code of 

the model is not provided here because of its enormous size but the description of the model is 

demonstrated through the Equations 5.1-5.33. 

 

5.3 Results and discussion of infrastructural and technological developments 

5.3.1 Baseline vs optimal water and land use indicators 

Based on the modeling framework described in the previous section, optimal levels of water and 

land use in different irrigation demand sites are estimated. According to the results, 4.6% and 

7.1% less land than the observed levels in the Amu and Syr Darya basins, respectively, is 

sufficient for optimal basin-wide gains (Table 5.1).   Particularly, 3.6% and 11.6% less land for 

cotton production, 8.8% and 1.0% less land for wheat cultivation, and 3.6% and 1.8% less land 

for rice in each river basin respectively is abundant for obtaining optimal benefits in the ASB. 
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Table 5.1 Cropland pattern change (in 1000s ha) 

Scenarios 
Cropland areas 

Total 
Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

Amu Darya basin           

Observed 1505 368 299 1617 47 45 48 189 1 99 103 4321 

Optimal 1451 377 308 1475 53 35 44 182 1 98 101 4124 

Change -54.1 8.2 8.5 -142.0 5.6 -9.9 -3.5 -6.8 0.0 -0.6 -2.4 -197 

Change 

(in %) -3.6 2.2 2.8 -8.8 11.8 -22.2 -7.4 -3.6 0.0 -0.6 -2.4 -4.6 

Syr Darya basin           

Observed 929 337 467 839 75 48 55 99 2 107 81 3040 

Optimal 821 289 453 831 62 46 48 97 2 97 79 2825 

Change -107.7 -48.8 -14.5 -8.8 -12.4 -1.9 -7.0 -1.8 0.0 -9.5 -2.2 -214 

Change 

(in %) -11.6 -14.5 -3.1 -1.0 -16.5 -3.9 -12.6 -1.8 0.0 -8.9 -2.7 -7.1 

Source: Author’s calculations 

 

However, irrigation water uses under optimization scenario are expected to be 27.7% and 11.6% 

higher than the observed total water diversions in the Amu and Syr Darya basins respectively 

(Table 5.2). Although total water supply from river tributaries is not changed under optimization 

scenario, increased total irrigation diversions can be explained by increased use of water in the 

regions with high return flow rates and also with high groundwater reservoirs that increased 

water availability to downstream. Higher water uses boost yields for some crops which in turn 

can impose the irrigation income growth. 

 

Table 5.2 Irrigation water uses by months under observed and optimization cases (km
3
) 

Scenarios 
Irrigation water uses by months 

Total 
m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

Amu Darya basin 

          Observed 2.3 2.9 4.0 4.1 6.6 8.7 11.1 10.5 4.4 2.1 1.9 1.0 59.6 

Optimal 4.6 6.4 1.2 5.4 8.9 13.8 13.9 12.2 7.3 2.3 0.1 0.0 76.1 

Change 2.3 3.5 -2.8 1.2 2.4 5.2 2.8 1.6 2.9 0.2 -1.8 -1.0 16.5 

Change (%) 103.2 117.9 -70.7 29.9 36.3 59.7 25.5 15.6 65.4 10.4 -96.7 -96.0 27.7 

Syr Darya basin 

          Observed 0.6 0.6 1.1 2.2 4.4 5.1 6.3 5.2 2.1 1.6 0.8 0.1 29.9 

Optimal 2.0 3.3 0.1 1.4 2.6 6.3 7.7 5.5 3.7 0.8 0.0 0.0 33.4 

Change 1.5 2.7 -1.0 -0.8 -1.8 1.1 1.4 0.3 1.6 -0.8 -0.7 -0.1 3.5 

Change (%) 267.6 481.1 -89.2 -38.1 -40.3 22.3 22.5 5.5 74.9 -48.4 -99.2 -93.1 11.6 

Notes: Indexes m01, … , m12 stands for months January, February, … , December 

Source: Author’s calculations 
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The comparison of the observed and optimal crop yields shows that attaining optimal basin-wide 

benefits would require the enhancement of the crop yields (Table 5.3). Particularly, cotton yields 

are required to increase in most of the regions in the ASB even reaching up to 70% in the sites 

such as Lebap of Turkmenistan. The results for the cereals and rice are mixed: yields are 

expected to decrease in some regions but increase in the others under optimization scenario. 

 

Table 5.3 Main crop (cotton, cereals, and rice) yields across the irrigation sites under the 

baseline and optimization scenarios (in ton per ha) 

Demand sites 
Cotton yield  Cereals yield  Rice yield 

OBS OPT CHN  OBS OPT CHN  OBS OPT CHN 

Amu Darya basin         

GBAO 0 0 0  2 2 24  0 0 0 

Khatlon 3 3 9  7 11 63  4 5 39 

RRT 3 3 10  3 4 50  3 7 154 

Surkhandarya 2 2 13  2 2 20  2 3 76 

Mary 3 3 11  4 7 61  0 0 0 

Ahal 2 2 21  1 1 -49  0 0 0 

Lebap 2 3 69  1 1 -29  3 3 14 

Kashkadarya 3 3 20  5 10 111  0 0 0 

Samarkand 2 2 12  12 14 14  3 3 17 

Navoi 2 2 42  1 1 -41  0 0 0 

Bukhara 2 2 31  1 3 148  0 0 0 

Khorezm 2 2 5  1 1 1  2 1 -28 

Karakalpakstan 2 1 -39  2 4 82  3 2 -47 

Dashauz 2 3 16  2 3 19  2 1 -44 

            

Syr Darya basin         

Narin 0 0 0  2 2 35  0 0 0 

Osh 3 3 16  3 4 18  2 1 -50 

Jalalabad 2 2 21  10 11 7  2 1 -32 

Ferghana 3 3 7  2 1 -32  2 1 -40 

Andizhan 2 3 43  14 19 42  3 8 155 

Namangan 2 1 -40  1 1 -42  3 1 -47 

Sugd 2 3 16  1 1 -33  2 2 7 

Tashkent 2 3 44  1 1 -49  4 2 -55 

Syrdarya 3 3 12  2 2 -34  3 2 -40 

Jizzah 2 1 -45  2 1 -47  0 0 0 

South Kazakhstan 2 3 12  3 1 -47  3 2 -49 

Kyzylorda 0 0 0  10 19 96  3 1 -51 

Notes: OBS-observed; OPT-Optimal; CHN-Change (%). 

Source: Author’s calculations 
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5.3.2 Optimal solution under various levels of water availability 

For analyzing the sensitivity of the model as well as studying the impact of reduced water supply 

that may occur due to climate change, optimization model was formulated under reduced levels 

of water supply. Two additional scenarios were run considering 90% and and 80% of normal 

supply in all source nodes. In general, reduced water diversions to irrigation sites are expected 

when water supply is reduced (Figure 5.2). For providing optimum benefit, substantial water 

intake reduction should take place in the regions such as Surkhandarya, Lebap, Bukhara, 

Tashkent, and South Kazakhstan when water supply reduced to 80% of normal water supply. 

 

Figure 5.2 Annual water withdrawals by demand sites under changing water availability   

 

Source: Author’s calculations 

 

The model also allows to analyzing the water use in more detail by considering monthly water 

diversion rates (Fig 5.3). As expected, main water withdrawals take place during the vegetation 

period, particularly in summer. Water withdrawals are also high in January and February, 

according to the model results since these months are included in the model as the months for 

conducting leaching practices. 

 

90% of normal 80% of normal 
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Figure 5.3 Monthly water withdrawals by demand sites under changing water availability  

 

Source: Author’s calculations 

 

Shadow price (marginal value) of water for irrigation also increases in vegetation period reaching 

up to $0.09 USD per m
3
 in the downstream regions such as Khorezm of Uzbekistan and Dashauz 

of Turkenistan in July (Table 5.4). The lowest marginal values of water decreasing by less than 

$0.006 USD per m
3
 are specific for the late autumn (November) and early winter (December). 

In the Amu Darya basin, marginal values of water varies between $0.01 and $0.21 USD per m
3
 in 

upstream (GBAO, Khatlon, RRT) and midstream (Surkhandarya, Kashkadarya, Mary, Ahal, 

Lebap, Samarkand, Navoi, Bukhara) in vegetation months. Meantime, marginal water 

productivities in downstream (Khorezm, Karakalpaksta, and Dashauz) vary between $0.01 to 

$0.091 USD per m
3
. 

Likewise, in the Syr Darya basin, marginal productivities in upstream (Narin, Osh, and Jalalabad) 

vary between $0.009 to 0.058 USD per m
3
. At the same time, marginal water productivities of 

downstream regions (The South Kazakhstan and Kyzylorda) are higher than $0.009 USD per m
3
 

but lower than $0.069 USD per m
3
. 



 

176 
 

Table 5.4 Shadow prices of water across the irrigation demand sites under normal water supply 

River basin Demand sites 
Shadow prices of water by months 

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

Amu Darya GBAO 0.03 0.03 0.02 0.019 0.019 0.02 0.02 0.016 0.011 0.006 0.006 0.003 

Khatlon 0.03 0.03 0.02 0.019 0.019 0.02 0.02 0.016 0.011 0.006 0.006 0.003 

RRT 0.03 0.03 0.02 0.02 0.02 0.021 0.021 0.016 0.012 0.006 0.006 0.003 

Surkhandarya 0.025 0.025 0.017 0.017 0.018 0.018 0.019 0.015 0.01 0.005 0.005 0.002 

Mary 0.027 0.027 0.018 0.018 0.018 0.019 0.02 0.015 0.011 0.005 0.005 0.002 

Ahal 0.027 0.027 0.018 0.018 0.018 0.019 0.02 0.015 0.011 0.005 0.005 0.002 

Lebap 0.027 0.027 0.018 0.018 0.018 0.019 0.02 0.015 0.011 0.005 0.005 0.002 

Kashkadarya 0.028 0.028 0.018 0.018 0.018 0.019 0.019 0.015 0.011 0.005 0.005 0.002 

Samarkand 0.026 0.026 0.017 0.017 0.017 0.017 0.018 0.014 0.01 0.005 0.005 0.002 

Navoi 0.025 0.025 0.017 0.016 0.017 0.017 0.018 0.014 0.01 0.005 0.005 0.002 

Bukhara 0.025 0.025 0.017 0.016 0.017 0.017 0.018 0.014 0.01 0.005 0.005 0.002 

Khorezm 0.029 0.029 0.019 0.019 0.019 0.02 0.091 0.019 0.011 0.005 0.005 0.005 

Karakalpakstan 0.027 0.026 0.017 0.017 0.018 0.018 0.085 0.018 0.01 0.005 0.005 0.005 

Dashauz 0.027 0.027 0.018 0.018 0.018 0.019 0.089 0.018 0.011 0.005 0.005 0.005 

Syr Darya Narin 0.054 0.054 0.053 0.049 0.051 0.055 0.058 0.058 0.009 0.004 0.004 0.003 

Osh 0.055 0.055 0.055 0.051 0.053 0.055 0.058 0.058 0.01 0.006 0.005 0.004 

Jalalabad 0.055 0.055 0.055 0.051 0.052 0.055 0.058 0.058 0.01 0.005 0.005 0.004 

Ferghana 0.037 0.037 0.037 0.044 0.046 0.048 0.051 0.051 0.008 0.004 0.005 0.004 

Andizhan 0.037 0.037 0.037 0.044 0.046 0.048 0.051 0.051 0.008 0.004 0.005 0.004 

Namangan 0.044 0.044 0.044 0.052 0.054 0.057 0.06 0.06 0.01 0.005 0.006 0.005 

Sugd 0.054 0.054 0.053 0.053 0.055 0.058 0.061 0.061 0.01 0.006 0.006 0.005 

Tashkent 0.042 0.042 0.042 0.049 0.051 0.054 0.057 0.057 0.009 0.004 0.005 0.004 

Syrdarya 0.056 0.056 0.055 0.055 0.057 0.06 0.064 0.064 0.01 0.006 0.005 0.004 

Jizzah 0.056 0.056 0.056 0.056 0.058 0.061 0.065 0.065 0.01 0.006 0.005 0.004 

South Kazakhstan 0.056 0.056 0.056 0.059 0.062 0.065 0.069 0.069 0.011 0.006 0.005 0.004 

Kyzylorda 0.055 0.055 0.056 0.052 0.054 0.056 0.059 0.061 0.009 0.005 0.005 0.005 

Notes: Indexes m01, … , m12 stands for months January, February, … , December. Source: Author’s calculations 



 

177 
 

Increased water demand for irrigation in summer and autumn requires water use from other 

alternative sources to the surface water. For instance, groundwater use for irrigation increases 

from 400-500 mln m
3
 in spring to 500-900 mln m

3
 in summer (Figure 5.4). Overall groundwater 

use in normal year under optimization scenario should be about 4.8 km
3
 while decreasing to 4.4 

km
3 

when water availability reduced by 80%. 

 

Figure 5.4 Groundwater pumping by months under different levels of water availability 

 

Source: Author’s calculations 

 

Due to the dominance of the inefficient furrow and basin irrigations and unlined conveyance 

system, return flows are high in both of the river basins. Return flows also increase in parallel 

with the increase in irrigation water intake, e.g. during the leaching in late winter months and in 

vegetation period in summer (Fig. 5.5). According to the model results, under normal water 

supply overall about 35 km
3
 of total water withdrawals end up in the lakes located at the tail ends 

of the irrigation networks without bringing any benefit. 

Part of return flows is discharged into the rivers (Fig 5.6). Although return flows discharged into 

the rivers increase water availability in downstream, they may harm downstream users due to low 

quality of the return flows. Thus, increased return flows to the river should be carefully treated 

before the discharge into the sea to reduce the externalities to downstream. Total of about 10 km
3
 

water is discharged into the rivers in the ASB. 

   

90% of normal 80% of normal normal 



 

178 
 

Figure 5.5 Estimated values of return flows discharged to the lakes at the tail-ends of the 

irrigation networks by months under various levels of water availability 

 

Source: Author’s calculations 

 

Figure 5.6 Estimated values of return flows discharged to the river by months under 

various levels of water availability 

 

Source: Author’s calculations 
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For providing optimal basin-wide benefits, reservoir releases are also to be adjusted to stabilize 

water supply for irrigation (Fig 5.7). Nurek reservoir releases are substantially high in leaching 

months (January and February) and when there is a peak irrigation demand in vegetation period 

(July and August). Meantime, Tokhtogul reservoir should release large amounts of water between 

May and September for achieving optimal basin-wide benefits. Releases from both reservoirs 

decrease in parallel with reduced water availability. This indicates that reservoirs serve to 

regulate the seasonal water distribution and do not create additional water for meeting irrigation 

demand. 

  

Figure 5.7 Water releases from Nurek and Tokhtogul reservoirs in normal year under 

optimization scenario 

 

Source: Author’s calculations 

 

According to the optimal plan, The Aral Sea should receive about 14 km
3
 water under normal 

water supply but mostly in winter months such as November and December (Fig. 5.8). Although 

winter releases does not seem useful for improving biodiversity in the deltaic zones and 

improving the ecological conditions of the Sea, water discharged into the Sea in winter is stored 

and thus can be used for the improvement of the ecosystems in summer. Lakes and groundwater 

reservoirs in the deltaic zone can be filled in winter months and this water can be used for 

maintaining sustainable ecosystems in this area. The principle of “the Ganges machine” that 
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intends to store water resources in groundwater reservoirs during the flood time and use them 

when necessary was proposed to improve water availability in the Ferghana Valey of the Syr 

Darya Basin (Karimov et al. 2010). This principle also works well to the case of the deltaic 

zones. 

 

Figure 5.8 Environmental flow to the Aral Sea and deltaic zones under optimization 

scenario at various levels of water availability 

 

Source: Author’s calculations 

 

Reduced water supply impacts on irrigation and power generation benefits but at different rates. 

For instance, substantial proportional reductions in irrigation benefits occur in the regions such as 

Surkhandarya, Bukhara, Karakalpakstan, Tashkent, Syrdarya, and South Kazakhstan under 80% 

of normal water supply (Fig 5.9). Significant benefit losses from reduced electricity generation in 

Nurek and Tokhtogul reservoirs are expected as well due to decreased water supply (Figure 

5.10). Overall optimal irrigation benefits decrease from $2,776 mln USD under normal supply to 

$2,213 mln USD when the water availability reduced to the 80% of normal (Fig 5.11). Total 

hydropower generation benefit also decreases from $395 mln USD of normal water supply to 

$320 mln USD under 80% of normal supply. Therefore, according to the model results total 

benefit from irrigation, energy, and environmental system decreases from $3,210 mln USD to 

$2,560 mln USD when water availability is reduced by 80% of normal supply. 
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Figure 5.9 Agricultural benefits across the irrigation demand sites under various levels of 

water availability 

 

Source: Author’s calculations 

 

Figure 5.10 Electricity production benefits by hydropower stations under various levels of 

water availability 

 

Source: Author’s calculations 
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Figure 5.11 Irrigation, hydroelectricity generation, and environmental benefits at various 

levels of water availability 

 

Source: Author’s calculations 

 

5.3.3 Optimal improvements of irrigation and conveyance efficiencies  

Differing from the previous optimization scenarios which assumed fixed rates of irrigation and 

conveyance efficiencies, the model was run also considering flexible irrigation and conveyance 

efficiency rates. According to the model results, optimal irrigation efficiency rates increase in 

parallel with reduced water availability (Table 5.5). When water availability decreased by 80% of 

normal supply, maximum irrigation efficiency improvements in cotton production are required in 

the regions - Khatlon, Ahal, and Kashkadara of the Amu Darya basin and all cotton producing 

regions of the Syr Darya basin except Jizzakh for attaining optimal basin-wide benefits. Irrigation 

efficiency of wheat production should be maximally improved in the regions - Khatlon, RRT, 

Surkhandarya, Ahal, and Kashkadarya of the Amu Darya basin and Namangan, Sugd, and South 

Kazakhstan of the Syr Darya basin. Rice production should be fully upgraded by improving 

irrigation efficiency in all rice producing regions of the ASB for achieving optimal basin-wide 

benefits. 

Requirements for improving conveyance efficiency to attain optimal basin-wide gains also 

increase in parallel to reduced water supply (Table 5.6). Improvements in conveyance efficiency 

are particularly essential in downstream regions of the Amu Darya basin –– Khorezm, 

Karakalpakstan, and Dashauz –– and mid- and downstream regions of the Syr Darya basin –– 

Tashkent, Syrdarya, Jizzakh, South Kazakhstan, and Kyzylorda –– for providing optimal basin-

wide welfare. Dominance of sandy soils with high percolation rates and relatively cheapness of 

conveyance improvement made conveyance improvements more recommendable in downstream 

areas. 
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Table 5.5 Optimal irrigation efficiency rates for main crops (cotton, wheat, and rice) by demand sites under various levels of 

water availability 

  Cotton 

 

Wheat 

 

Rice 

Demand sites 
OBS 

OPT 

 OBS 
OPT 

 OBS 
OPT 

  normal 

90% of 

normal 

80% of 

normal normal 

90% of 

normal 

80% of 

normal normal 

90% of 

normal 

80% of 

normal 

GBAO 0.00 0.00 0.00 0.00 
 

0.62 0.62 0.62 0.62 
 

0.00 0.00 0.00 0.00 

Khatlon 0.62 0.80 0.80 0.90 

 

0.62 0.90 0.90 0.90 

 

0.22 0.90 0.90 0.90 

RRT 0.62 0.62 0.62 0.62 

 

0.62 0.62 0.62 0.90 

 

0.22 0.90 0.90 0.90 

Surkhandarya 0.62 0.62 0.62 0.62 

 

0.62 0.62 0.62 0.90 

 

0.22 0.90 0.90 0.90 

Mary 0.58 0.58 0.58 0.58 

 

0.58 0.58 0.58 0.58 

 

0.00 0.00 0.00 0.00 

Ahal 0.58 0.58 0.90 0.90 

 

0.58 0.65 0.90 0.90 

 

0.00 0.00 0.00 0.00 

Lebap 0.58 0.58 0.58 0.58 

 

0.58 0.58 0.58 0.58 

 

0.18 0.90 0.90 0.90 

Kashkadarya 0.62 0.62 0.90 0.90 

 

0.62 0.62 0.90 0.90 

 

0.00 0.00 0.00 0.00 

Samarkand 0.62 0.62 0.62 0.62 

 

0.62 0.62 0.62 0.62 

 

0.22 0.90 0.90 0.90 

Navoi 0.52 0.52 0.52 0.52 

 

0.52 0.52 0.52 0.52 

 

0.15 0.00 0.00 0.00 

Bukhara 0.52 0.52 0.52 0.52 

 

0.52 0.52 0.52 0.52 

 

0.00 0.00 0.00 0.00 

Khorezm 0.52 0.52 0.52 0.52 

 

0.52 0.52 0.52 0.52 

 

0.15 0.90 0.90 0.90 

Karakalpakstan 0.48 0.48 0.48 0.48 

 

0.48 0.48 0.48 0.48 

 

0.15 0.90 0.90 0.90 

Dashauz 0.53 0.53 0.53 0.53 

 

0.53 0.53 0.53 0.53 

 

0.16 0.90 0.90 0.90 

Narin 0.00 0.00 0.00 0.00 

 

0.55 0.55 0.55 0.55 

 

0.00 0.00 0.00 0.00 

Osh 0.55 0.90 0.90 0.90 

 

0.55 0.55 0.55 0.55 

 

0.17 0.90 0.90 0.90 

Jalalabad 0.55 0.90 0.90 0.90 

 

0.55 0.63 0.55 0.55 

 

0.17 0.90 0.90 0.90 

Ferghana 0.55 0.78 0.90 0.90 

 

0.55 0.61 0.55 0.55 

 

0.17 0.90 0.90 0.90 

Andizhan 0.55 0.76 0.90 0.90 

 

0.55 0.90 0.56 0.63 

 

0.17 0.90 0.90 0.90 

Namangan 0.63 0.90 0.90 0.90 

 

0.63 0.90 0.90 0.90 

 

0.23 0.90 0.90 0.90 

Sugd 0.55 0.90 0.90 0.90 

 

0.55 0.90 0.90 0.90 

 

0.18 0.90 0.90 0.90 

Tashkent 0.55 0.55 0.55 0.90 

 

0.55 0.55 0.55 0.55 

 

0.18 0.90 0.90 0.90 

Syrdarya 0.73 0.73 0.73 0.89 

 

0.73 0.73 0.73 0.73 

 

0.24 0.90 0.90 0.90 

Jizzah 0.63 0.63 0.90 0.76 

 

0.63 0.71 0.69 0.63 

 

0.00 0.00 0.00 0.00 

South Kazakhstan 0.63 0.63 0.63 0.90 

 

0.63 0.63 0.63 0.90 

 

0.23 0.90 0.90 0.90 

Kyzylorda 0.00 0.00 0.00 0.00 

 

0.48 0.48 0.48 0.48 

 

0.15 0.90 0.90 0.90 

Notes: OBS – Observed; OPT - Optimization 

Source: Author’s calculations 
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Table 5.6 Observed (OBS) and optimal (OPT) conveyance efficiency rates across the 

demand sites under different levels of water availability 

Demand sites OBS 
OPT 

normal 90% of normal 80% of normal 

GBAO 0.64 0.64 0.64 0.64 

Khatlon 0.64 0.64 0.64 0.64 

RRT 0.64 0.64 0.64 0.90 

Surkhandarya 0.64 0.64 0.64 0.64 

Mary 0.70 0.70 0.70 0.70 

Ahal 0.70 0.70 0.70 0.90 

Lebap 0.70 0.70 0.70 0.83 

Kashkadarya 0.64 0.64 0.72 0.79 

Samarkand 0.64 0.64 0.64 0.90 

Navoi 0.65 0.65 0.65 0.65 

Bukhara 0.65 0.65 0.65 0.65 

Khorezm 0.65 0.90 0.90 0.90 

Karakalpakstan 0.70 0.90 0.90 0.90 

Dashauz 0.70 0.90 0.90 0.90 

Narin 0.73 0.74 0.76 0.73 

Osh 0.73 0.77 0.83 0.83 

Jalalabad 0.73 0.73 0.79 0.86 

Ferghana 0.73 0.73 0.73 0.77 

Andizhan 0.73 0.73 0.73 0.73 

Namangan 0.62 0.64 0.63 0.63 

Sugd 0.73 0.75 0.74 0.75 

Tashkent 0.73 0.90 0.90 0.85 

Syrdarya 0.71 0.90 0.90 0.90 

Jizzah 0.70 0.90 0.90 0.90 

South Kazakhstan 0.70 0.90 0.90 0.90 

Kyzylorda 0.70 0.90 0.90 0.90 

Source: Author’s calculations 

 

5.3.4 The impact of dam constructions on downstream water availability and 

irrigation/hydropower production benefits 

Comprehensive structure of the model also allows analyzing the effects of developing hydro-

infrastructural facilities such as reservoirs. The upstream countries try to convince increased 

water supply for irrigation because of the construction of the dams in contrast to the fears of 

downstream regions for reduced water availability due to increased use of the reservoirs for 

hydroelectricity generation. Therefore, it would be interesting to see the impact of the upstream 

reservoir constructions on downstream water availability that is considered as equivalent to the 

releases from Tokhtogul and Nurek reservoirs (Table 5.7).   
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Table 5.7 Impact on optimal water releases (in mln m
3
) from Nurek and Tokhtogul reservoirs of constructing the Rogun and 

Kambarata reservoirs 

Water 

availability 
Reservoirs Scenarios 

Monthly water releases 
Total 

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

normal 

  
Nurek OPT 2.3 3.9 0.4 0.9 2.0 0.9 1.8 3.4 2.7 0.7 1.3 1.8 22 

 
OPT+ROG 2.3 3.9 0.4 0.9 2.0 0.9 0.9 3.2 2.7 0.7 1.5 3.5 23 

 
OPT+ROG+KAM 2.3 3.9 0.4 0.9 2.0 0.9 0.9 3.2 2.7 0.7 1.5 3.5 23 

Tokhtogul OPT 1.2 1.7 1.0 0.8 2.1 2.5 2.5 2.5 2.3 0.6 1.0 1.3 20 

 
OPT+ROG 1.2 1.7 1.0 0.8 2.1 2.5 2.5 2.5 2.3 0.6 1.0 1.3 20 

 
OPT+ROG+KAM 1.2 1.9 1.0 0.8 2.1 2.5 2.5 2.5 2.3 0.6 1.0 1.3 20 

    
             

90% of 

normal 

  

Nurek OPT 2.0 3.7 0.4 0.9 2.0 0.9 2.2 3.2 2.6 0.7 0.8 0.9 20 

 
OPT+ROG 2.1 3.8 0.4 0.9 2.0 0.9 2.6 3.4 2.7 0.7 0.8 0.9 21 

 
OPT+ROG+KAM 2.1 3.8 0.4 0.9 2.0 0.9 2.6 3.4 2.7 0.7 0.8 0.9 21 

Tokhtogul OPT 1.2 1.5 1.0 0.8 1.2 2.1 2.5 2.5 2.2 0.6 1.0 1.1 18 

 
OPT+ROG 1.2 1.5 1.0 0.8 1.9 1.6 2.5 2.5 2.1 0.6 1.0 1.1 18 

 
OPT+ROG+KAM 1.2 1.7 1.0 0.8 0.8 2.5 2.5 2.5 2.2 0.6 1.0 1.1 18 

    
             

80% of 

normal 

  

Nurek OPT 2.0 3.6 0.4 0.9 2.0 0.9 0.9 2.6 2.6 0.7 0.8 0.9 18 

 
OPT+ROG 2.2 3.8 0.4 0.9 2.0 0.9 1.1 3.0 2.6 0.7 0.8 0.9 19 

 
OPT+ROG+KAM 2.2 3.8 0.4 0.9 2.0 0.9 1.1 3.0 2.6 0.7 0.8 0.9 19 

Tokhtogul OPT 1.2 1.3 1.0 0.8 0.9 1.8 2.1 2.1 2.2 0.6 1.0 1.1 16 

 
OPT+ROG 1.2 1.3 1.0 0.8 0.9 1.8 2.1 2.1 2.2 0.6 1.0 1.1 16 

  OPT+ROG+KAM 1.2 1.4 1.0 0.8 0.4 1.2 2.5 2.5 2.4 0.6 1.0 1.1 16 

Notes: OPT - Optimal water allocation; ROG – The scenario considering the construction of the Rogun reservoir; KAM - The scenario considering the construction 

of the Kambarata reservoir 

Source: Author’s calculations 
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Table 5.8 Comparing the benefits under different individual and combined scenarios 

Scenarios 

Water availability 
 

Change compared to the  

optimal (baseline) scenario (%) 

Normal 
90% of 

normal 

80% of 

normal 
 Normal 

90% of 

normal 

80% of 

normal 

Irrigation benefits (million USD) 

    OPT 2776 2558 2213 

 

0.0 0.0 0.0 

OPT+ROG 2761 2574 2245 

 

-0.5 0.7 1.5 

OPT+ROG+KAM 2767 2583 2253 

 

-0.3 1.0 1.8 

OPT+TECH 3378 3283 3131 

 

21.7 28.4 41.5 

OPT+TECH+ROG+KAM 3367 3285 3134 

 

21.3 28.4 41.7 

        Hydropower production benefits (million USD) 

    OPT 395 349 320 

 

0.0 0.0 0.0 

OPT+ROG 414 362 331 

 

4.9 3.9 3.3 

OPT+ROG+KAM 503 444 411 

 

27.2 27.1 28.4 

OPT+TECH 413 366 323 

 

4.6 5.0 0.9 

OPT+TECH+ROG+KAM 526 452 408 

 

33.1 29.6 27.3 

        Hydropower production (million KWh)  

   OPT 21.5 19.1 17.1 

 

0.0 0.0 0.0 

OPT+ROG 29.9 26.2 23.5 

 

39.0 37.1 37.0 

OPT+ROG+KAM 35.5 31.6 28.6 

 

65.1 65.2 66.9 

OPT+TECH 22.0 19.5 17.2 

 

2.1 2.1 0.5 

OPT+TECH+ROG+KAM 36.3 31.7 28.3 

 

68.8 65.7 65.3 

        Environmental benefits (million USD) 

    OPT 39 30 27 

 

0.0 0.0 0.0 

OPT+ROG 40 30 27 

 

2.2 -0.4 -0.6 

OPT+ROG+KAM 40 30 27 

 

2.1 -0.4 -0.6 

OPT+TECH 47 36 27 

 

20.8 21.7 2.0 

OPT+TECH+ROG+KAM 43 37 34 

 

9.4 22.7 25.9 

        Total benefit (million USD) 

    OPT 3210 2937 2560 

 

0.0 0.0 0.0 

OPT+ROG 3215 2966 2603 

 

0.2 1.0 1.7 

OPT+ROG+KAM 3310 3056 2690 

 

3.1 4.1 5.1 

OPT+TECH 3839 3685 3481 

 

19.6 25.5 36.0 

OPT+TECH+ROG+KAM 3936 3774 3576 

 

22.6 28.5 39.7 

Notes: OPT - Optimal water allocation; ROG - Construction of the Rogun Dam; KAM - Construction of the 

Kambarata reservoir; TECH - Technological improvements by increasing irrigation and conveyance efficiencies 

Source: Author’s calculations 
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According to the simulation results, the construction of the Rogun dam does not influence much 

on water releases from the Nurek reservoir under normal water supply if optimal basin-wide 

gains are intended. Even when water supply in the source nodes is reduced, water releases from 

the Nurek may only slightly increase if all the riparian countries agree for basin-wide 

cooperation.  The same is true to the case of constructing the Kambarata reservoir. 

Impacts on the benefits of irrigation, electricity generation, and environmental systems of 

constructing the large dams were also analyzed (Table 5.8). Additionally these impacts were 

compared to the impacts of the irrigation and conveyance efficiency improvements. According to 

the model simulations, the construction of the dams under normal water supply does not influence 

much on irrigation benefits but might only slightly improve the irrigation benefits when water 

availability reduced to 80% of normal supply. Since most of the river flow can be already 

controlled by current reservoirs (Dukhovny and Schutter 2011:134; see also footnote in page 33 

and Table 2.10 in this study), benefits of the newly constructed dams for balancing seasonal water 

variability and annual shortages for sustainable irrigation is infinitesimal.  

In contrast to constructing dams, improving irrigation and conveyance efficiencies would 

substantially increase irrigation benefits. As the model simulations indicated, irrigation benefits 

may increase by 20% to 40% when irrigation and conveyance efficiency improvements take place 

throughout the ASB. This option is useful particularly when water supply in source nodes 

decreases.  

Regarding the changes in electricity generation due to the newly build reservoirs, electricity 

generation benefits from constructing the Rogun dam are considerable but much lower than the 

power generation benefits of constructing the Kambarata reservoir because of differences in 

investment costs of the projects. The construction of the Kambarata reservoir in addition to the 

Rogun dam may increase power generation substantially (up to 38% under reduced water supply) 

since the investment costs of the Kambarta is lower than the costs of constructing the Rogun dam. 

Despite lower benefits from the Rogun dam, electricity generation can shift up to 37-39% after 

constructing the dam. Constructing the Kambarata reservoir additionally can increase electricity 

production by 65-67%. Therefore, constructing the dams can be recommendable for improving 

the regional energy security. However, the governments that are sharing the common resources in 

the ASB should cooperate in managing and planning strategically important infrastructural 

facilities in order to reduce their investment, operation, and transaction costs and thus increase 

their financial feasibility. Collaborations over the large constructions that has basin-wide 

significance is also important for creating mutual trust among the countries within the ASB and 

preventing selfish attitude of any user that may harm benefits of all users. Produced energy 

should be used for maintaining normal electricity supply to the domestic households and 

industrial enterprises at first place. Exporting the electricity outside the ASB can be discussed 

only after providing abundant electricity to the internal demands. Functioning of the regional 

market for the increased electricity supply also depends on the cooperation among the ASB 

countries since the establishment of the regional energy market requires normal functioning of the 

electricity grids located in the territories of all ASB countries. 
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5.4 Discussion of the water availability and benefit impacts of irrigation 

modernization and infrastructural developments and conclusions 

According to the analyses, the development of hydro-infrastructural facilities improves energy 

security and the modernization of irrigation systems improve food/income security when the 

riparian water users cooperate with each other to attain basin-wide optimal gains. Substantial 

economic and food security benefits of irrigation and conveyance efficiency improvements can 

be realized if producers and governmental organizations have an incentive for that. For instance, 

liberalization of agricultural markets by abolishing state production targets for wheat and cotton 

production while allowing more freedom to agricultural producers in decision making processes, 

provision of secure land rights and improvement of market infrastructure for agricultural 

commodities may make crop production more profitable to farmers. Therefore, market 

liberalization creates incentives of efficient water use to enhance crop yields and profitability. 

Meanwhile, improving conveyance efficiency of irrigation canals depends on both collective 

actions of the farmers as well as the governmental support since canals serve for the entire 

community of farmers.  

Potential benefits through increased hydropower production from the construction and operation 

of new hydro-infrastructural facilities depend on the cooperation of all riparian countries to gain 

mutual benefits rather than aiming at individualistic and opportunistic gains. At present, under the 

non-existence of new large dams (Kambarata and Rogun), upstream users changed the mode of 

the present dams for producing more hydropower during winter. This caused considerable losses 

to downstream irrigation especially in years with reduced basin-wide water supply. Additionally 

built large dams upstream may help to solve this problem under certain conditions. For instance, 

the newly constructed dams are recommendable if these dams store water during summer and 

release in winter for meeting hydropower demand in cold months while the dams next to them 

(e.g., Tokhtogul in the Syr Darya and Nurek in the Amu Darya) store upstream winter releases 

and discharge more water in summer for downstream needs. However, the risks using the dams 

for geopolitical purposes are extremely high when upstream countries choose different operations 

modes of the reservoirs. If, for instance, Rogun releases more water during summer that is stored 

by Nurek and is released in winter, energy production benefits may be still optimal to upstream 

but the downstream irrigation gets destroyed. Therefore, developing the trust is essential and 

upstream countries interested in hydropower production should initiate the cooperation of the 

stakeholders from downstream to take part in infrastructural developments and sharing the 

cooperative benefits fairly while guaranteeing non-use of the constructed reservoirs as a tool for 

geopolitical influence. Eliciting cooperation rather than following individualistic goals or trying 

to exploit the weaknesses of other parties is a solution for better performance and less conflicts 

(Axelrod 1984). 

There are also other risks from the reservoir constructions that may eliminate potential gains from 

increased hydropower production. Reduced downstream water availability may occur during the 

period of filling the newly build reservoirs. For instance, frequent water shortages were observed 

in mid-1980s when the Nurek reservoir was being filled during and after construction (Dukhovny 

and Schutter 2011). However, due to the static nature of the model used in this study, a possible 

water scarcity downstream during the initial period for filling the new reservoirs was not 

analyzed. Thus the results of the modeling technical aspects of water management in the ASB are 

valid once after the accomplishment of upstream reservoirs. The impact of the constructions 
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during the period of filling the reservoirs should be analyzed further based on a dynamic hydro-

economic modeling framework. 

There are also threats of flooding if the newly build reservoirs are destroyed accidentally as they 

were planned to build in highly active seismic zones and politically unstable countries. The model 

does not allow considering these effects but they should be analyzed in detail by determining the 

places of flooding and potential number of people who can be affected. Appropriate measures of 

evacuation under force-majeure situations should be planned before the constructions start. 

Sharing the costs of these force-majeure events among the riparian countries and responsibilities 

of each party should be mutually agreed and endorsed to prevent potential conflicts among the 

regions.    
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6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

6.1 Summary and conclusions 

Increasing water demands for irrigated agriculture, power generation, and environmental systems 

are the main reasons for aggravating conflicts over water sharing among the riparian countries of 

the ASB. Negative consequences of inefficient water distribution are reflected among others by 

the desiccation of the Aral Sea and frequent occurrence of water shortages in downstream regions 

of the basin, such as Khorezm.  

The enormous expansion of irrigated cotton production since the 1960s in Central Asia was 

triggered by a combination of high costs of cotton imports to the SU and significant, available, 

suitable land and water resources in the ASB. Increased cotton production supported increased 

employment and social control in densely populated settings. However, the imposed, bureaucratic 

top-down management turned out to be ineffective for a rational use of the limited resources. 

After independence, investments in irrigation and conveyance systems declined sharply, further 

increasing water losses in the irrigation system. Ineffective coordination of basin water and 

infrastructural resources among riparian regions following the emergence of the five independent 

countries in Central Asia additionally complicated water sharing in the basin. The lack of 

experience in market-based management approaches combined with a reluctance to cooperate 

with respect to sharing common basin resources prevented more efficient water use. As a result, 

plans are now underway by upstream countries to build new reservoirs to regulate river flow for 

increased power production in winter against the will of downstream regions where agriculture 

heavily relies on water releases of the upstream reservoirs in summer. 

The dominance of water intensive production activities, ineffective coordination of basin 

resources due to ineffective water management institutions, and a reliance on outdated irrigation 

and conveyance systems in the ASB, meantime, imply a huge potential for improvement options. 

This dissertation addressed these core water resource challenges in the ASB, using a step-by-step 

approach that extends the scope and details of the analysis in each additional step. The 

macroeconomic analysis, developed in chapters 3, concluded that a series of less water intensive 

production activities were feasible as comparisons of direct and indirect water uses by all 

economic sectors resulted in. Chapters 4 assessed the potential of efficient water allocation 

among irrigation zones and environmental sites in the ASB while considering market-based water 

management approaches. Additionally, chapter 5 discussed the crucial food, energy, environment, 

and water nexus in the ASB based on a more disaggregated hydro-economic model that considers 

seasonal water allocation, detailed crop production activities, basin infrastructure, and the 

availability of irrigation/conveyance technologies. 

According to the comparison of the economic sectors based on their growth impact and total 

water consumption levels, the production of cotton, wheat, and rice turned out to be least 

attractive when their total (direct and indirect) water use requirements per economic output were 

considered. Despite the dominance and high forward linkage impact of cotton, food security 

relevance of wheat, and high profitability of rice for farmers, they are less recommendable crops 

under water scarce conditions since these crops are the most water intensive crops with total 

water use of 18.4 m
3
/USD, 18.4 m

3
/USD, and 36 m

3
/USD respectively. On the other hand, food 

crops such as fruits and vegetables with total water use requirements of 9.1 m
3
/USD are more 
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recommendable than cotton, rice, or wheat when water scarcity is a key constraint for economic 

development. In contrast to the general perception of the higher water footprint of livestock 

commodities than crop commodities, the livestock sector is rather favorable in terms of water use 

when direct and indirect water uses are measured per economic output rather than per physical 

output. Development of agro-processing sectors was also identified as an important water use 

reduction option. Fostering the growth in non-agro-processing industries and services was shown 

to have even higher potential than agricultural and related industries in reducing water use. 

However, economic restructuring reform options suggested above, in turn, require infrastructural, 

institutional, and legal environmental improvements that may also entail substantial investment 

and operation costs. Furthermore, since water use is only one aspect of the environmental system 

other environmental factors such as impact on water quality and carbon emissions under the 

suggested options should be considered additionally for a more comprehensive analysis of 

sectoral transformation reforms. Extending the scope of the analysis by additionally considering 

institutional, financial, and environmental factors would improve the results and policy 

implications of the study. 

In addition to the economic and water use reduction benefits through sectoral transformation, 

substantial economic gains can be achieved by inter-regional water reallocations. Voluntary water 

reallocation that fosters water flows from lower to higher valued uses and increases basin-wide 

benefits and water productivity can be achieved by allowing tradable water use rights in the ASB. 

According to the results, when the transaction costs of water rights trading are assumed to be 

zero, additional benefit from intercatchment water rights trading compared to the fixed water use 

rights is $370 million USD while this amount is $260 million USD for intra-catchment water 

rights trading, under normal water supply. Additional benefits from introducing tradable water 

use rights increases under growing water scarcity. Total basin-wide benefits under water rights 

trading, considering minimum water flow to the environmental needs (the Aral Sea), increased 

even with compensation of the reduced benefits of the irrigation water users. However, when the 

transaction costs are higher than $0.05 USD per m
3
 of tradable water use right benefits of market-

based water allocation are eliminated. Thus, effectiveness of the tradable water use rights strongly 

depends on transaction costs.  

Considering the dominance of administrative management approaches that are deeply rooted in 

the governance systems in Central Asia, altering the current institutions to the more effective ones 

that are based on the market principles indeed requires time and the transaction costs of this 

reform are likely high. Nevertheless, the experiences of the developed countries such as the US 

and Australia in implementing market ideas for more efficient water allocation can be a good 

lesson also for Central Asian water users and managers to reduce unproductive use of scarce 

resources. Transaction costs of this institutional change can be lowered through improving 

institutional and legal frameworks, empowering water users in decision making processes, 

improving the necessary technical infrastructure, and raising the awareness of the users on 

economic and legal aspects of water use.   

In addition to economic and institutional reforms, technical improvements of irrigation networks 

and basin infrastructure also would have positive impacts on water availability and benefits. 

Since irrigated agriculture is the dominant livelihood form in the ASB, but accompanied by 

enormous water losses, upgrading the irrigation networks and improving water application at 

field level are essential for reducing the pressure of water scarcity. The present lack of 

maintenance of the irrigation networks engraves the on-going deterioration as evidenced by the 
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ever-growing number of silted up and damaged canals, broken gates, outdated pumps, lack of 

spare parts, and so on. Hence, modernizing the irrigation network bears a high potential to 

decrease overall water losses. Improving conveyance efficiency is even more beneficial under 

reduced water supply that may occur due to expected climate change. Substantial potential for 

wide adoption of conveyance efficiency improvement measures exists to attain basin-wide 

optimal gains, particularly in downstream irrigation sites. Furthermore, considering the 

dominance of furrow and basin irrigation techniques in the ASB and their excessive water losses, 

more advanced irrigation techniques such as drip irrigation in cotton production and laser guided 

land leveling in cotton, wheat and rice cultivation are also potential options for reducing water 

use and enhancing yields (Bekchanov et al. 2010). Scarcer water conditions necessitate wider 

adoption of advanced irrigation technologies. According to the results, total basin-wide benefits 

may increase by 20% under normal water supply and by 40% under 80% of normal water 

availability when optimal irrigation efficiencies are achieved in the ASB. The overall basin-wide 

optimal benefits under increased rates of technological adoptions are much higher than the 

potential benefits following the construction of additional reservoirs to regulate river flow in the 

upper reaches of the Amu and Syr Darya Rivers. However, wide adoption of water saving 

technologies is dependent not only on increased access for technologies but also on secure water 

and land use rights and consequent creation of incentives for more productive use of water. 

The construction of the Rogun and Kambarata Dams as proposed by upstream countries can 

slightly decrease downstream water availability under normal water supply in the ASB and may 

only negligibly improve downstream water access even under dry years if the reservoirs are 

operated to maximize basin-wide benefits. Therefore, these hydro-infrastructural developments 

do not have considerable impact on agricultural revenues if the cooperation concurrently takes 

place. Since the capacity of current reservoirs is already sufficient to regulate and balance 

seasonal and annual variability of water supplies in the Amu Darya and Syr Darya basins, the 

construction of additional dams does not seem beneficial for downstream irrigation. However, 

electricity generation volumes would increase and bring substantial economic gains if the 

investment costs were sufficiently low as more vividly exemplified in the case of Kambarata 

reservoir. The results showed that total energy production in the ASB may increase by 65-67% 

with the construction of the proposed reservoirs. Increased energy production may enhance 

energy security in upstream countries where the dams are located and also may partially improve 

energy access in other ASB countries and some South Asian countries if a cooperation among 

these countries is achieved. 

Downstream irrigation sites are not harmed by the operation of new reservoirs (The Kambarata 

and Rogun) when these reservoirs store water in summer and release water to the reservoirs next 

to them in winter while the latter store water in winter but release water to mid- and down-stream 

reaches in summer. This operation mode would also allow stabilizing electricity supply over all 

months of the year for upstream countries. However, cooperation, mutual agreement, and trust 

among the riparian countries are fundamental requirements for attaining this mutually beneficial 

reservoir operation mode that provides optimal basin-wide economic gains. Upstream countries 

that initiated the constructions should foster the involvement of downstream partners in the 

infrastructural development projects, and share the common benefits of the collaboration in order 

to reduce mistrust and make the efforts fruitful for all parties. However, seismic conditions in the 

current construction sites and the impact on downstream water availability of filling the new 

reservoirs at the initial stages of their operation need to be further examined before a final 

decision on the profitability of these gigantic infrastructural facilities can be pronounced. Indeed, 
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the risks of using the reservoirs as a tool for geopolitical purposes are another serious threat that 

makes the constructions unacceptable by downstream regions. Guarantying the non-use of the 

reservoirs for political pressure through sharing the ownership rights and benefits of the massive 

projects among all riparian countries is also important if the gains from the hydro-infrastructural 

developments are still acceptable after considering the destruction risks related to natural 

calamities.  

 

6.2 Recommendations for further research 

The identification of economic sectors with higher growth potential and lower water use 

requirements using an environmentally extended IO modeling framework, and the analysis of 

tradable water use rights and technological/infrastructural improvement using aggregated and 

disaggregated hydro-economic models, provides important suggestions for improving water use 

efficiency and maintaining sustainable prosperity in the ASB. Comparing economic growth 

impact potentials and total (direct plus indirect) water requirements of different activities in 

different countries through estimating and analyzing input-output models with environmental 

accounts for each Central Asian country would additionally reveal the comparative advantages of 

each of the countries to specialize in particular sectors. Integration of CGE/IOT models with 

integrated hydro-economic models framework is another option for further research that would 

allow the simultaneous estimation of not only direct, but also indirect welfare effects of water 

management reforms. Furthermore, establishing dynamic models on the basis of aggregated and 

disaggregated hydro-economic models would allow a more realistic picture of long-term 

sustainable growth in the ASB. Long-term analysis of the possibilities of cooperation among the 

users based on a dynamic model is essential for attaining more stable agreements among the 

users. Gains from establishing a common agricultural market in Central Asia as an alternative to 

the self-reliance policy should be investigated further by incorporating an inter-state commodity 

trade component into the model. Methods of measuring transaction costs of institutional change 

and environmental flow benefits still need much improvement and should be investigated further 

based on a more precise conceptual framework. 
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Appendix A: Methods used to develop the regression models used in 

Chapter 2 

Methods used for the analysis of labor and capital intensities of the Uzbekistan 

economy described in Box 2.2 

After the collapse of the integrated economic system of the former SU, many structural 

transformations occurred in the economy of Uzbekistan and other Central Asian countries. Increased 

cereals production resulting from food self-sufficiency policies, expanded energy commodities 

production to increase export revenues, as well as the collapse of the large agro-processing enterprises 

are among the transformations that occurred during the post-Soviet transition. Despite these 

considerable structural changes, there are no recent econometric studies that analyzed the impacts of 

these changes, particularly considering the role of production factors in the economy, and of the 

capital and labor intensity of production. Therefore labor and capital elasticity values (intensities) of 

production across Uzbekistan are estimated using a cross-sectional regression analysis. Considering 

the similarity among the economies and transition paths of the ASB nations, the results are relevant 

not only to the case of Uzbekistan (the largest country in the region in terms of economy and 

population), but also for the other Central Asian countries.  

A Cobb-Douglas function is commonly used for production elasticity analyses due to the ease of its 

operation. Here using data on annual investments for fixed capital ( ), the number of employees ( ), 

and output volumes (    ) across the districts ( ) in each region (province,  ) of Uzbekistan, the 

Cobb-Douglas function parameters for capital and labor elasticity values (  and   respectively) were 

estimated. Considering the assumption of constant returns of scale, 

          (A.5) 

The Cobb-Douglas function takes the following form: 

                  (A.6) 

where,     is the total factor productivity. 

Dividing both sides of the equation by   and taking logarithms, the following was derived: 

   
 

 
              

 

 
     (A.7) 

or 

                    (A.8) 

where,   is labor productivity and   is capital intensity. 

Considering regional differences in the economy, separate capital elasticity values were assumed for 

each region. Therefore, dummy variables defined for each region (  ) were introduced into the 

model. Consequently, the following model was derived as:   

                ∑                   (A.9) 

where,                       ,                       , and      is residual error. 

Model parameters were estimated using STATA (StataCorp 2009). 
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Appendix B: Datasets used in the aggregated hydro-economic model 

 

 

Table B.1 Cropped land area (1000s ha) 

  Initial (1999) Min Max 

Amu Darya basin:    

GBAO 27.95 18 32 

Khatlon 308 275 316 

RRT 81 81 97 

Surkhandarya 398 318 407 

Mary 442 311 454 

Ahal 405 201 424 

Lebap 262 180 279 

Kashkadarya 550 494 638 

Samarkand 515 507 623 

Navoi 147 128 151 

Bukhara 239 217 255 

Khorezm 217 204 246 

Karakalpakstan 365 279 412 

Dashauz 371 193 398 

 

Syr Darya basin:    

Naryn 46 45 59 

Osh 72 63 133 

Jalalabad 61 57 73 

Ferghana 395 287 399 

Andizhan 244 207 271 

Namangan 311 223 320 

Sugd 266 233 274 

Tashkent 439 338 446 

Syrdarya 356 289 372 

Jizzah 389 360 440 

South Kazakhstan 336 315 394 

Kyzylorda 131 131 249 

Total: 7377 5953 8161 

 

Source: SIC-ICWC (2011) 
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Table B.2 Water use per ha (1000s m
3
/ha) 

 

 

Initial 

(1999) 
Min Max 

 

Amu Darya basin:    

GBAO 12.9 11.4 20.8 

Khatlon 16.6 14.7 17.7 

RRT 8.2 6.0 8.2 

Surkhandarya 7.7 5.6 10.6 

Mary 10.0 9.0 13.2 

Ahal 8.3 7.9 14.1 

Lebap 12.0 10.3 21.5 

Kashkadarya 6.8 5.6 7.5 

Samarkand 5.4 3.1 5.7 

Navoi 9.5 4.6 11.6 

Bukhara 11.4 7.8 16.3 

Khorezm 15.7 8.9 21.6 

Karakalpakstan 16.3 6.9 25.7 

Dashauz 14.0 9.2 25.3 

    

Syr Darya basin:    

Naryn 13.9 10.9 16.0 

Osh 21.3 10.0 21.8 

Jalalabad 9.5 8.2 10.9 

Ferghana 6.2 5.2 13.1 

Andizhan 10.2 8.4 18.1 

Namangan 5.9 5.0 13.7 

Sugd 12.0 11.5 13.7 

Tashkent 6.2 4.9 15.4 

Syrdarya 6.0 4.7 7.5 

Jizzah 4.5 3.3 5.7 

South Kazakhstan 8.4 7.3 17.0 

Kyzylorda 23.9 19.4 39.7 

 

Source: based on SIC-ICWC (2011) 
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Table B.3 Total water use in growing season (mln m
3
)
 

 

 
Initial 

(1999) 
Min Max 

 

Amu Darya basin:    

GBAO 362 347 379 

Khatlon 5115 4535 5216 

RRT 660 559 721 

Surkhandarya 3075 2290 3568 

Mary 4423 3339 5057 

Ahal 3346 2695 3645 

Lebap 3151 2338 4327 

Kashkadarya 3747 2787 4170 

Samarkand 2802 1705 2938 

Navoi 1390 601 1489 

Bukhara 2735 1858 3783 

Khorezm 3408 1813 4581 

Karakalpakstan 5956 2192 7445 

Dashauz 5203 3419 5872 

    

Syr Darya basin:    

Naryn 646 630 725 

Osh 1539 939 1539 

Jalalabad 585 585 704 

Ferghana 2461 2078 3767 

Andizhan 2490 2046 3747 

Namangan 1837 1526 3098 

Sugd 3185 3103 3342 

Tashkent 2708 2074 5209 

Syrdarya 2123 1667 2166 

Jizzah 1765 1405 2059 

South Kazakhstan 2813 2660 5675 

Total: 70655 52324 91706 

 

Source: SIC-ICWC (2011) 
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Table B.4 Conveyance costs (2006) 

 

Amu Darya basin 

Conveyance costs  

(in USD / m
3
) Syr Darya basin 

Conveyance costs  

(in USD / m
3
) 

GBAO 0.00312 

 

Naryn 0.00437 

Khatlon 0.01302 

 

Osh 0.00437 

RRT 0.00312 

 

Jalalabad 0.00725 

Surkhandarya 0.00912 

 

Ferghana 0.00437 

Mary 0.00188 

 

Andizhan 0.00725 

Ahal 0.01222 

 

Namangan 0.01302 

Lebap 0.00188 

 

Sugd 0.01302 

Kashkadarya 0.01263 

 

Tashkent 0.00187 

Samarkand 0.00312 

 

Syrdarya 0.00238 

Navoi 0.00470 

 

Jizzah 0.00536 

Bukhara 0.01222 

 

South Kazakhstan 0.00536 

Khorezm 0.00188 

 

Kyzylorda 0.00122 

Karakalpakstan 0.00122 

   Dashauz 0.00188 

 

  

  

Source: Author’s estimations based on MAWR (2007) 
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Table B.5 Water supply (mln m
3
). Based on data of 1980-2000 

 

 River tributaries Dry (1986) Normal (1999) Wet (1992) 

 

Amu Darya basin: 43433 56720 82230 

Atrek 44 40 222 

Kafirnigan 4818 8688 11909 

Kashkadarya 217 462 1291 

Kunduz 2679 2679 2679 

Murgab 585 724 2912 

Pyandj 19710 26794 39786 

Sherabad 72 100 356 

Surhandarya 677 938 3356 

Tedjen 444 740 1301 

Vakhsh 11103 12130 15344 

Yavansu 547 589 553 

Zarafshan 2539 2836 3521 

 

Syr Darya basin: 23316 24999 24187 

Abshirsay 69 97 100 

Aksu 63 92 149 

Aris 484 274 313 

Bugun 323 439 548 

Chirchik 7102 4498 4824 

Guzardarya  47 56 296 

Isfara 315 385 398 

Isfaramsay 348 526 715 

Karadarya 2317 2453 3377 

Kasansay 1217 149 254 

Kuvasay 149 38 223 

Naryn 8827 13106 9923 

Shakimardan 153 220 196 

Shaydansay 178 178 280 

Sokh 1070 1317 1195 

Akhangaran 330 617 732 

Keles 145 258 308 

Kattasay 29 37 33 

Shirinsay 29 32 30 

Khojabakirgan 120 229 294 

 Total: 66749 84792 107417 

 

Source: SIC-ICWC (2011) 
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Table B.6 Return flow rates as a percentage of total water diversion 

 

Amu Darya basin Return flow rate, % Syr Darya basin Return flow rate, % 

GBAO 0.50 

 

Naryn 0.20 

Khatlon 0.50 

 

Osh 0.20 

RRT 0.50 

 

Jalalabad 0.20 

Surkhandarya 0.24 

 

Ferghana 0.39 

Mary 0.07 

 

Andizhan 0.50 

Ahal 0.44 

 

Namangan 0.25 

Lebap 0.44 

 

Sugd 0.06 

Kashkadarya 0.05 

 

Tashkent 0.25 

Samarkand 0.11 

 

Syrdarya 0.23 

Navoi 0.13 

 

Jizzah 0.01 

Bukhara 0.00 

 

South Kazakhstan 0.09 

Khorezm 0.00 

 

Kyzylorda 0.00 

Karakalpakstan 0.04 

   Dashauz 0.00 

 

  

  

Source: Author’s estimations based on EC TACIS (1997) 
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Appendix C: GAMS code of the hydro-economic model for analyzing the 

scenarios of increasing transaction costs of water rights trading  

$offsymxref 

$offlisting 

option limcol = 0; 

option limrow = 0; 

 

SETS 

 

agdm Agricultural demand sites 

/ 

***********Amudarya demand sites 

GBAO, Khatlon, RRT, Surkhnadarya, Mary, Ahal, Lebap, Kashkadarya,Samarkand, Navoi, Bukhara 

Khorezm, Karakalpakstan, Dashauz 

 

*****Syrdarya demand sites 

Narin, Osh, Jalalabad, Ferghana, Andizhan, Namangan, Sugd, Tashkent, Syrdarya, Jizzah 

South_Kazakhstan, Kyzylorda 

/ 

 

agdm_amu(agdm) 

/ 

***********Amudarya demand sites 

GBAO, Khatlon, RRT, Surkhnadarya, Mary, Ahal, Lebap, Kashkadarya,Samarkand, Navoi, Bukhara 

Khorezm, Karakalpakstan, Dashauz 

/ 

 

agdm_syr(agdm) 

/ 

*****Syrdarya demand sites 

Narin, Osh, Jalalabad, Ferghana, Andizhan, Namangan, Sugd, Tashkent, Syrdarya, Jizzah 

South_Kazakhstan, Kyzylorda 

/ 

 

rn River nodes 

/ 

*******Simple nodes *********** 

Amu1*Amu5 

Syr1*Syr4 

 

*******Supply nodes *********** 

Atrek, Kafirnigan, Kashkadariya, Kunduz, Murgab, Pyandj, Sherabad, Surhandarya, Tedjen, Vakhsh 

Yavansu, Zarafshan, Abshirsay, Aksu, Aris, Bugun, Chirchik, Guzardarya, Isfara, Isfaramsay, Karadarya 

Kasansay, Kuvasay, Naryn, Shakimardan, Shaydansay, Sokh, Akhangaran, Keles, Kattasay, Shirinsay 

Khojabakirgan 

 

*****Outlet****************** 

Aral_Sea/ 

 

rns(rn) supply nodes 
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/ 

*****Amudarya river tributaries (12)************* 

Atrek, Kafirnigan, Kashkadariya, Kunduz, Murgab, Pyandj, Sherabad, Surhandarya, Tedjen, Vakhsh, 

Yavansu, Zarafshan  

 

*****Syrdarya river tributaries (20) ************* 

Abshirsay, Aksu, Aris, Bugun, Chirchik, Guzardarya, Isfara, Isfaramsay, Karadarya, Kasansay, Kuvasay 

Naryn, Shakimardan, Shaydansay, Sokh, Akhangaran, Keles, Kattasay, Shirinsay, Khojabakirgan  

/ 

 

rna(rn) Aral Sea 

/Aral_Sea/ 

 

rns_amu(rn) 

/ 

*****Amudarya river tributaries (12)************* 

Atrek, Kafirnigan, Kashkadariya, Kunduz, Murgab, Pyandj, Sherabad, Surhandarya, Tedjen, Vakhsh 

Yavansu, Zarafshan  

/ 

 

 

 

rns_syr(rn) 

/ 

*****Syrdarya river tributaries (20) ************* 

Abshirsay, Aksu, Aris, Bugun, Chirchik, Guzardarya, Isfara, Isfaramsay, Karadarya, Kasansay, Kuvasay 

Naryn, Shakimardan, Shaydansay, Sokh, Akhangaran, Keles, Kattasay, Shirinsay, Khojabakirgan 

/; 

 

alias(agdm, agdma,agdmb); 

alias(rn_up, rn); 

alias(rn, rn_lo); 

 

 

SET RVLINK(rn_up,rn) node rn releases water to node rn_lo (any node) 

/ 

*****Amu Darya nodes******* 

Vakhsh.Amu1, Pyandj.Amu1, Kafirnigan.Amu1, YavanFSU.Amu1, Amu1.Amu2, Kunduz.Amu2 

Sherabad.Amu2, Surhandarya.Amu2, Amu2.Amu3, Atrek.Amu3, Murgab.Amu3, Tedjen.Amu3 

Amu3.Amu4, Kashkadariya.Amu4, Guzardarya.Amu4, Zarafshan.Amu4, Amu4.Amu5, Amu5.Aral_Sea 

 

 

*****Syr Darya nodes******* 

Naryn.Syr1, Shaydansay.Syr1, Syr1.Syr2, Karadarya.Syr2, Abshirsay.Syr2, Kuvasay.Syr2, Isfara.Syr2 

Sokh.Syr2, Shakimardan.Syr2, Isfaramsay.Syr2, Kasansay.Syr2, Syr2.Syr3, AkFSU.Syr3 

Khojabakirgan.Syr3, Kattasay.Syr3, Keles.Syr3, Chirchik.Syr3, Akhangaran.Syr3, Shirinsay.Syr3 

Aris.Syr3, Bugun.Syr3, Syr3.Syr4, Syr4.Aral_Sea 

/; 

 

 

SET NDLINK(rn,agdm) node n diverts water to agricultural water user site agdm 

/ 
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*****Amu Darya sites******* 

Amu1.GBAO, Amu1.Khatlon, Amu1.RRT, Amu2.Surkhnadarya, Amu3.Mary, Amu3.Ahal, Amu4.Lebap 

Amu4.Kashkadarya, Amu4.Samarkand, Amu4.Navoi, Amu4.Bukhara, Amu5.Khorezm 

Amu5.Karakalpakstan, Amu5.Dashauz 

 

*****Syr Darya sites******* 

Syr1.Narin, Syr1.Osh, Syr1.Jalalabad, Syr2.Ferghana, Syr2.Andizhan, Syr2.Namangan, Syr2.Sugd, 

Syr3.Tashkent, Syr3.Syrdarya, Syr3.Jizzah, Syr3.South_Kazakhstan, Syr4.Kyzylorda 

/; 

 

SET DNLINK(agdm, rn) agricultural water user site agdm returns water to river node rn 

/ 

*****Amu Darya sites******* 

GBAO.Amu1, Khatlon.Amu1, RRT.Amu1, Surkhnadarya.Amu2, Mary.Amu3, Ahal.Amu3, Lebap.Amu4, 

Kashkadarya.Amu4, Samarkand.Amu4, Navoi.Amu4, Bukhara.Amu4, Khorezm.Amu5 

Karakalpakstan.Amu5,  Dashauz.Amu5 

 

*****Syr Darya sites******* 

Narin.Syr1, Osh.Syr1, Jalalabad.Syr1, Ferghana.Syr2,Andizhan.Syr2,Namangan.Syr2,Sugd.Syr2, 

Tashkent.Syr3, Syrdarya.Syr3, Jizzah.Syr3, South_Kazakhstan.Syr3, Kyzylorda.Syr4 

/; 

 

SET lev levels of parameters 

/ 

INITIAL, MIN, MAX 

/; 

 

SET coef profit function coefficinets 

/ 

a0, a1, a2 

/; 

 

PARAMETERS 

Source0(rn, lev) annual water supply (10^6 m^3) 

Reg_Cons0(agdm,lev) overall irrigation zone water consumption (10^6 m^3) 

Per_ha_Water0(agdm,lev) Water use per ha   (1000 m^3 per ha) 

Tot_Land0(agdm,lev) total cropland area 1000 ha 

COEF_PROF_FUNC(agdm,coef) profit function coefficients 

FLOW_TO_ARAL0(lev) flow to the Aral Sea (10^6 m^3) 

ENV_PROF_FUNC_COEF(coef) coefficients of environmental profit function 

Conveyance_cost(agdm) conveyance costs (USD per m^3) 

Ret(agdm, rn) return flow coefficients 

 

 

****************Importing data from excel********************** 

$libinclude xlimport Source0 ASB_Irrigation_profit_functions_4.xls SUPPLY 

$libinclude xlimport Reg_Cons0 ASB_Irrigation_profit_functions_4.xls CONSUMPTION 

$libinclude xlimport Per_ha_Water0 ASB_Irrigation_profit_functions_4.xls Per_ha_Water 

$libinclude xlimport Tot_Land0 ASB_Irrigation_profit_functions_4.xls LAND 

$libinclude xlimport COEF_PROF_FUNC ASB_Irrigation_profit_functions_4.xls COEF_PROF_FUNC 

$libinclude xlimport FLOW_TO_ARAL0 ASB_Irrigation_profit_functions_4.xls FLOW_TO_ARAL 
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$libinclude xlimport ENV_PROF_FUNC_COEF ASB_Irrigation_profit_functions_4.xls 

ENV_PROF_FUNC_COEF 

$libinclude xlimport Conveyance_cost ASB_Irrigation_profit_functions_4.xls Conveyance_cost 

$libinclude xlimport Ret ASB_Irrigation_profit_functions_4.xls Return_flow_rate 

; 

 

********Initial values estimation - calibration of the model to the water use level in 1999**** 

Parameter Ind_Mun_Wat0(agdm) industrial and municipial water use (assumed as 10 % of total water 

consumption_ S.: SANIIRI 2004); 

Ind_Mun_Wat0(agdm)= (1/9) * Reg_Cons0(agdm,"initial")   ; 

 

Parameter Tot_Ind_Mun_Wat Total industrial and municipial water use 

          Tot_Ind_Mun_Wat_Amu Total industrial and municipial water use  in the Amudarya river basin 

          Tot_Ind_Mun_Wat_Syr Total industrial and municipial water use  in the Syrdarya river basin 

; 

 

Tot_Ind_Mun_Wat  = sum(agdm,Ind_Mun_Wat0(agdm)) ; 

Tot_Ind_Mun_Wat_Amu  = sum(agdm$(ord(agdm) lt 15), Ind_Mun_Wat0(agdm)) ; 

Tot_Ind_Mun_Wat_Syr  = sum(agdm$(ord(agdm) gt 14), Ind_Mun_Wat0(agdm)) ; 

 

Parameter retn (agdm); 

retn(agdm) = sum(rn, Ret(agdm, rn)$DNLINK(agdm, rn)) ; 

 

Parameter  Tot_Agr_Ret_Wat   Total return flow 

           Tot_Agr_Ret_Wat_Amu  Total return flow  in the Amudarya river basin 

           Tot_Agr_Ret_Wat_Syr   Total return flow in the Syrdarya river basin 

  ; 

Tot_Agr_Ret_Wat  =  sum(agdm, retn(agdm) *  Reg_Cons0(agdm,"initial") )      ; 

Tot_Agr_Ret_Wat_Amu  =  sum(agdm$(ord(agdm) lt 15), retn(agdm) *  Reg_Cons0(agdm,"initial") )      ; 

Tot_Agr_Ret_Wat_Syr  =  sum(agdm$(ord(agdm) gt 14), retn(agdm) *  Reg_Cons0(agdm,"initial") )      ; 

 

Parameter  Agric_Withdr   Total agricultural withdarawal 

           Agric_Withdr_Amu   Total agricultural withdarawal  in the Amudarya river basin 

           Agric_Withdr_Syr   Total agricultural withdarawal  in the Syrdarya river basin 

 ; 

Agric_Withdr   = sum(  agdm, Reg_Cons0(agdm,"initial") )         ; 

Agric_Withdr_Amu   = sum(  agdm$(ord(agdm) lt 15), Reg_Cons0(agdm,"initial") )         ; 

Agric_Withdr_Syr   = sum(  agdm$(ord(agdm) gt 14), Reg_Cons0(agdm,"initial") )         ; 

 

Parameters  Supply       Total supply 

            Supply_Amu   Total supply in the Amudarya river basin 

            Supply_Syr   Total supply in the Syrdarya river basin 

; 

Supply = sum(rn, Source0(rn, "initial")); 

Supply_Amu = sum(rn$(ord(rn) gt 9 and ord(rn) lt 22), Source0(rn, "initial")); 

Supply_Syr = sum(rn$(ord(rn) gt 21 and ord(rn) lt 42), Source0(rn, "initial")); 

 

 

****Environmental flow value ********** 

Parameters Aral_Flow0     initial flow to the Aral Sea 

           Aral_Flow_Amu0 initial flow to the Aral Sea from Amudarya 

           Aral_Flow_Syr0 initial flow to the Aral Sea from Syrdarya 
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; 

Aral_Flow0 = Supply  - Agric_Withdr - Tot_Ind_Mun_Wat  +  Tot_Agr_Ret_Wat  ; 

Aral_Flow_Amu0 = Supply_Amu  - Agric_Withdr_Amu - Tot_Ind_Mun_Wat_Amu  +  

Tot_Agr_Ret_Wat_Amu  ; 

Aral_Flow_Syr0 = Supply_Syr  - Agric_Withdr_Syr - Tot_Ind_Mun_Wat_Syr  +  Tot_Agr_Ret_Wat_Syr  

; 

 

Parameter Env_prof0 initial total environmental profit; 

Env_prof0 =  ENV_PROF_FUNC_COEF("a0") + ENV_PROF_FUNC_COEF("a1")*Aral_Flow0 ; 

 

Parameter Per_ha_Water0_max(agdm) water use in optimal point of the water-profit function; 

Per_ha_Water0_max(agdm) =  - COEF_PROF_FUNC(agdm,"a1")/(2*COEF_PROF_FUNC(agdm,"a2")); 

 

Parameter Max_Wat_Capacity0(agdm) maximum water intake capacity of the irrigation region; 

Max_Wat_Capacity0(agdm) =  Per_ha_Water0_max(agdm)* Tot_Land0(agdm, "max"); 

 

Parameter Profit_per_ha0(agdm,lev) profit level per ha in USD; 

 

Profit_per_ha0(agdm,"min") = COEF_PROF_FUNC(agdm,"a0") + 

COEF_PROF_FUNC(agdm,"a1")*0.5*Per_ha_Water0(agdm,"min") + COEF_PROF_FUNC(agdm,"a2") 

*0.25*Per_ha_Water0(agdm,"min")*Per_ha_Water0(agdm,"min"); 

Profit_per_ha0(agdm,"initial") = COEF_PROF_FUNC(agdm,"a0") + 

COEF_PROF_FUNC(agdm,"a1")*Per_ha_Water0(agdm,"initial") + COEF_PROF_FUNC(agdm,"a2") 

*Per_ha_Water0(agdm,"initial")*Per_ha_Water0(agdm,"initial"); 

Profit_per_ha0(agdm,"max") = COEF_PROF_FUNC(agdm,"a0") + 

COEF_PROF_FUNC(agdm,"a1")*Per_ha_Water0_max(agdm) + COEF_PROF_FUNC(agdm,"a2") 

*Per_ha_Water0_max(agdm)*Per_ha_Water0_max(agdm); 

 

Parameter Total_prof0(agdm,lev) Total profit in million USD (based on initial level of areas); 

Total_prof0(agdm,lev) = (1/1000)*Profit_per_ha0(agdm,lev)* Tot_Land0(agdm,"initial"); 

 

**************Water rights options ****************************** 

Parameter Water_right_shr1(agdm) water rights share due to "historical water use"; 

Water_right_shr1(agdm)$agdm_amu(agdm) = (1-retn(agdm))*Reg_Cons0(agdm,"initial") / (  

Supply_Amu  - Tot_Ind_Mun_Wat_Amu -3500)     ; 

Water_right_shr1(agdm)$agdm_syr(agdm) = (1-retn(agdm))*Reg_Cons0(agdm,"initial") / (  Supply_Syr - 

Tot_Ind_Mun_Wat_Syr -1500)     ; 

 

Parameter 

*Water_right_shr1_Aral water rights share due to "historical water use" to the Aral Sea (the share of 

historical minus minimum flow) 

          Water_right_shr1_Aral_Amu    Aral Amu part share 

          Water_right_shr1_Aral_Syr    Aral Syr part share 

; 

*Water_right_shr1_Aral = (Aral_Flow0 -FLOW_TO_ARAL0("min"))  / (  Supply + Tot_Agr_Ret_Wat - 

Tot_Ind_Mun_Wat -FLOW_TO_ARAL0("min"))     ; 

Water_right_shr1_Aral_Amu = (Aral_Flow_Amu0 - 3500)  / (  Supply_Amu  - Tot_Ind_Mun_Wat_Amu 

- 3500)     ; 

Water_right_shr1_Aral_Syr = (Aral_Flow_Syr0 - 1500)  / (  Supply_Syr  - Tot_Ind_Mun_Wat_Syr - 

1500)     ; 

 

Parameter TOT_INTAKE0(rn) initial levels of water intake from river node rn; 
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TOT_INTAKE0(rn) =  sum(agdm, Reg_Cons0(agdm,"initial")$NDLINK(rn,agdm) ); 

 

Parameter  Water_right1_0(agdm)    initial water right according to the share without considering 

maximum water use capacity; 

 

Water_right1_0(agdm)$agdm_amu(agdm) =  (Water_right_shr1(agdm)/(1-retn(agdm))) * (  sum(rn, 

Source0(rn, "initial")$rns_amu(rn)) - Tot_Ind_Mun_Wat_Amu - 3500 )       ; 

Water_right1_0(agdm)$agdm_syr(agdm) =  (Water_right_shr1(agdm)/(1-retn(agdm))) * (  sum(rn, 

Source0(rn, "initial")$rns_syr(rn)) - Tot_Ind_Mun_Wat_Syr - 1500 )      ; 

 

Parameters 

Tot_shareable_wat_Amu total shareable water in the Amudarya 

Tot_shareable_wat_Syr total shareable water in the Syrdarya; 

 

Tot_shareable_wat_Amu = sum(rn, Source0(rn, "initial")$rns_amu(rn)) - Tot_Ind_Mun_Wat_Amu - 3500        

; 

Tot_shareable_wat_Syr = sum(rn, Source0(rn, "initial")$rns_syr(rn)) - Tot_Ind_Mun_Wat_Syr - 1500       

; 

 

Parameter trans_c transaction cots USD per m^3; 

trans_c = 0.0; 

 

POSITIVE VARIABLES 

WITHDRAW(rn,agdm)   Water withdrawal from river node rn to agricultural demand site agdm  (10^6 

m^3) 

FLOW(rn,rn_lo) Water flow through river nodes   (10^6 m^3) 

Aral_Flow  Flow to the Aral Sea and its delta  (10^6 m^3) 

TOT_INTAKE(rn)  Total water withdrawal to agriculture from river node rn (10^6 m^3) 

Tot_land(agdm)   Total land area cropped (1000 ha) 

Per_ha_water(agdm) water use per ha (1000 m^3 per ha) 

Profit_per_ha(agdm) Profit per ha (USD) 

Tot_profit(agdm) total profit in agricultural demand site (10^6 usd) 

Envir_profit environmental profit from water flow to the Aral Sea and its delta (10^6 usd) 

 

*Variables related to water markets 

WTP(agdm) water trading price (usd per m^3) 

wsold(agdm) water sold volume  (10^6 m^3) 

wbolt(agdm) water bought volume   (10^6 m^3) 

Water_right1(agdm) water use right of the irrigation site  (10^6 m^3) 

 

Water_right1_Aral_Amu water use right of the Aral Sea (Amudarya part) (10^6 m^3) 

Water_right1_Aral_Syr water use right of the Aral Sea (Syrdarya part)  (10^6 m^3) 

; 

 

VARIABLE 

obj   objective function value; 

EQUATIONS 

N_BAL(rn) river node water balance (10^6 m3) 

Env_flow environmental flow  (10^6 m3) 

Max_Land(agdm) maximum avaiable land  (1000 ha) 

Min_Land(agdm) minimum allowable land  (1000 ha) 

Max_Water(agdm) water use maximum    (1000 m3) 
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Min_Water(agdm) water use minimum  (1000 m3) 

Reg_wat_bal(agdm) Regional water balance  (10^6 m3) 

Prof_ha_wm(agdm)   Profit per ha   (USD) 

Prof_wm(agdm)   Total regional profit   (10^6 USD) 

Env_prof   Environmental profit    (10^6 USD) 

Tot_prof    objective function     (10^6 USD) 

 

*equations related to water trade 

Wat_right_def_Amu(agdm) water rights calculation for the Amudarya   (10^6 m3) 

Wat_right_def_Syr(agdm) water rights calculation for the Syrdarya   (10^6 m3) 

Wat_right_def_Aral1_Amu  water rights of Aral Amu (10^6 m3) 

Wat_right_def_Aral1_Syr  water rights of Aral Syr (10^6 m3) 

 

Wat_right_bal(agdm) water withdrawal under water tading opportunities  (10^6 m3) 

Water_sell_lim(agdm) limit to the amout of water for selling 

Wat_trd_bal_Amu   balance of traded water 

Wat_trd_bal_Syr 

Wat_trd_cond(agdm) water trading conditions 

Wat_trd_prc(agdm)  water trading price - willingness to pay to water 

*Node_rights(rn) intercatchment water trading conditions I 

*Node_lim(rn) intercatchment water trading conditions II 

Water_trd_rev_bal_Amu all revenue from selling water is less than overall revenue from buying in the 

Amu Darya basin 

Water_trd_rev_bal_Syr all revenue from selling water is less than overall revenue from buying in the Syr 

Darya basin 

Profit_lim(agdm)      water users agree for selling water only if it increases their benefit 

; 

 

 

*River node flow balance 

N_BAL(rn)$(ord(rn) ne 42) .. 

*   "river node with an order of 42 should be the Aral Sea" 

 

 SUM(rn_lo$RVLINK(rn,rn_lo), FLOW(rn,rn_lo))+ 

    SUM(agdm$NDLINK(rn,agdm), WITHDRAW(rn,agdm)) +  

SUM(agdm$NDLINK(rn,agdm),Ind_Mun_Wat0(agdm)) 

   =e= 

    SUM(rn_up$RVLINK(rn_up,rn),FLOW(rn_up,rn))  + Source0 (rn, "initial") 

  + SUM(agdm$DNLINK(agdm, rn), Ret(agdm, rn)*WITHDRAW(rn, agdm) ) 

 ; 

 

*Flow to the Aral Sea and its delta 

Env_flow.. 

   Aral_Flow =e= SUM(rn_up$RVLINK(rn_up,"Aral_Sea"), FLOW(rn_up, "Aral_Sea"))  ; 

 

*Environmental flow restriction 

FLOW.lo("Amu5", "Aral_Sea") = 3500    ; 

FLOW.lo("Syr4", "Aral_Sea") = 1500   ; 

Aral_Flow.up = FLOW_TO_ARAL0("max") ; 

 

*********************** 

*Land restriction 
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Max_Land(agdm).. 

Tot_land(agdm) =l= Tot_Land0(agdm,"max"); 

 

Min_Land(agdm).. 

Tot_land(agdm) =g= Tot_Land0(agdm,"min"); 

 

*Water use per ha restriction 

Max_Water(agdm).. 

Per_ha_water(agdm) =l= Per_ha_Water0_max(agdm); 

 

*Regional water balance 

Reg_wat_bal(agdm).. 

SUM(rn$NDLINK(rn,agdm), WITHDRAW(rn,agdm)) =e=  Tot_land(agdm) * Per_ha_water(agdm)   ; 

 

*Total regional profit without markets 

*Prof_wm(agdm).. Tot_profit(agdm) =e= (1/1000)*Tot_land(agdm)*Profit_per_ha(agdm); 

 

*Total regional profit with markets 

Prof_wm(agdm).. 

Tot_profit(agdm) =e= (1/1000)*(Profit_per_ha(agdm)-Conveyance_cost(agdm) * 

Per_ha_water(agdm)*1000) *Tot_land(agdm) + 

                         WTP(agdm)* wsold(agdm)  - WTP(agdm)*wbolt(agdm) - 

trans_c*(wsold(agdm)+wbolt(agdm)) ; 

 

 

*Profit-water function 

Prof_ha_wm(agdm).. 

Profit_per_ha(agdm) =e= COEF_PROF_FUNC(agdm,"a0") + 

COEF_PROF_FUNC(agdm,"a1")*Per_ha_Water(agdm) + COEF_PROF_FUNC(agdm,"a2") 

*Per_ha_Water(agdm)*Per_ha_Water(agdm); 

 

 

*Environmental flow benefit with water trade 

Env_prof.. 

Envir_Profit =e=  ENV_PROF_FUNC_COEF("a0") + ENV_PROF_FUNC_COEF("a1")*Aral_Flow 

; 

 

*objective function 

Tot_prof.. 

obj =e= sum(agdm, Tot_profit(agdm)) + Envir_Profit; 

*****Equations related to water trading 

 

*Water rights calculation 

Wat_right_def_Amu(agdm)$agdm_amu(agdm).. 

Water_right1(agdm)$agdm_amu(agdm) =e= Water_right1_0(agdm)$(Water_right1_0(agdm) le 

Max_Wat_Capacity0(agdm))  +  Max_Wat_Capacity0(agdm)$(Water_right1_0(agdm) gt 

Max_Wat_Capacity0(agdm)) 

 ; 

 

Wat_right_def_Syr(agdm)$agdm_syr(agdm).. 
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Water_right1(agdm)$agdm_syr(agdm) =e= Water_right1_0(agdm)$(Water_right1_0(agdm) le 

Max_Wat_Capacity0(agdm))  +  Max_Wat_Capacity0(agdm)$(Water_right1_0(agdm) gt 

Max_Wat_Capacity0(agdm)) 

; 

 

 

Wat_right_def_Aral1_Amu.. 

Water_right1_Aral_Amu  =e= 3500 + Water_right_shr1_Aral_Amu * Tot_shareable_wat_Amu + 

sum(agdm$(Water_right1_0(agdm)$agdm_amu(agdm) gt 

Max_Wat_Capacity0(agdm)$agdm_amu(agdm)), (1-retn(agdm))*(Water_right1_0(agdm)-

Max_Wat_Capacity0(agdm)) ) 

 ; 

Wat_right_def_Aral1_Syr.. 

Water_right1_Aral_Syr  =e= 1500 + Water_right_shr1_Aral_Syr * Tot_shareable_wat_Syr + 

sum(agdm$(Water_right1_0(agdm)$agdm_syr(agdm) gt Max_Wat_Capacity0(agdm)$agdm_syr(agdm)), 

(1-retn(agdm))*(Water_right1_0(agdm)-Max_Wat_Capacity0(agdm)) ) 

; 

 

 

Profit_lim(agdm).. 

 

Tot_profit(agdm) =g= (1/1000)*(    COEF_PROF_FUNC(agdm,"a0") + 

COEF_PROF_FUNC(agdm,"a1")* Water_right1(agdm)/Tot_Land0(agdm,"initial") + 

                         COEF_PROF_FUNC(agdm,"a2") *  (Water_right1(agdm)/Tot_Land0(agdm,"initial")) * 

(Water_right1(agdm)/Tot_Land0(agdm,"initial"))   ) *  Tot_Land0(agdm,"initial") 

                                  -Conveyance_cost(agdm) * Water_right1(agdm)     ; 

 

*Water balance considering water rights 

Wat_right_bal(agdm).. 

SUM(rn$NDLINK(rn,agdm), WITHDRAW(rn,agdm)) =l= Water_right1(agdm) -  wsold(agdm) + 

wbolt(agdm) ; 

 

 

*Environmental flow restriction 

FLOW.lo("Amu5", "Aral_Sea") = 3500   ; 

FLOW.lo("Syr4", "Aral_Sea") = 1500   ; 

 

*No user is allowed to sell more water than their water right 

Water_sell_lim(agdm).. 

Water_right1(agdm) =g= wsold(agdm); 

 

 

*Water trading balance - the total volume of water bought equal to the total volume of water sold 

Wat_trd_bal_Amu.. 

sum(agdm, wsold(agdm)$agdm_amu(agdm) )  =e= sum(agdm, wbolt(agdm)$agdm_amu(agdm)) ; 

 

Wat_trd_bal_Syr.. 

sum(agdm, wsold(agdm)$agdm_syr(agdm) )  =e= sum(agdm, wbolt(agdm)$agdm_syr(agdm)); 

 

*Water trading conditions - water user either buys from or sells to another water user 

Wat_trd_cond(agdm).. 

wsold(agdm) * wbolt(agdm) =e= 0; 
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*Water trading price (in USD/m^3)- marginal water productivity for the whole region - derivation of Total 

regional profit by Total regional water use 

Wat_trd_prc(agdm).. 

WTP(agdm) *(wsold(agdm) + wbolt(agdm) +0.000000001)    =e= (1/1000) * (  

COEF_PROF_FUNC(agdm,"a1") + 2*COEF_PROF_FUNC(agdm,"a2") * Per_ha_Water(agdm) 

 - Conveyance_cost(agdm)*1000 ) *(wsold(agdm) + wbolt(agdm) +0.000000001)                                       

+ trans_c * (wsold(agdm) - wbolt(agdm))  ; 

 

 

Water_trd_rev_bal_Amu.. 

sum(agdm, WTP(agdm)$agdm_amu(agdm)* wsold(agdm))  =e= sum(agdm, 

WTP(agdm)$agdm_amu(agdm)*wbolt(agdm)) ; 

 

Water_trd_rev_bal_Syr.. 

sum(agdm, WTP(agdm)$agdm_syr(agdm)* wsold(agdm))  =e= sum(agdm, 

WTP(agdm)$agdm_syr(agdm)*wbolt(agdm)) ; 

 

*Restrictions related to intracatchment water trade 

 

*Total water withdrawal rights from river node 

*Node_rights(rn).. 

*sum(agdm$NDLINK(rn,agdm), WITHDRAW(rn,agdm)) =l=   sum(agdm, 

Water_right1(agdm)$NDLINK(rn,agdm) ); 

 

 

*Total sales and purchases are equal within the subcatchment 

*Node_lim(rn).. 

*sum(agdm$NDLINK(rn,agdm), wsold(agdm))  =e= sum(agdm$NDLINK(rn,agdm), wbolt(agdm))  ; 

 

 

*Initial values for solving the model 

Tot_land.l(agdm) = (Tot_Land0(agdm,"min") + Tot_Land0(agdm,"max"))*0.5; 

Per_ha_Water.l(agdm) = 0.8*Per_ha_Water0(agdm,"initial"); 

 

wsold.l(agdm) = 2 ; 

wbolt.l(agdm) = 1; 

wtp.l(agdm) = 0.01; 

 

MODEL Ann_HEM /all/; 

Ann_HEM.holdfixed=1; 

Ann_HEM.iterlim=100000; 

Ann_HEM.reslim=100000; 

 

*Solving model 

option nlp=conopt3; 

 

************For scenario reporting************** 

Set 

Scenario /Sc0*Sc20/; 

 

Set source_lev 
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/normal, normal_90, normal_80 

/; 

 

Parameters 

trans_cost(scenario) transaction cost per unit of water transaction USD per cubic m; 

 

trans_cost(scenario) = (ord(scenario)-1)/400; 

Display trans_cost; 

 

parameters sav_trans_cost saving trans cost 

 

Sc_Tot_withdraw_Amu(scenario, source_lev) total water withdrawal under scenario (million m^3) 

Sc_Env_flow_Amu(scenario, source_lev) environmental flow (km^3) 

Sc_wat_bolt_Amu(scenario, source_lev) water bought (million m^3) 

Sc_wat_sold_Amu(scenario, source_lev) water sold (million m^3) 

Sc_tot_net_ben_Amu(scenario, source_lev) total benefit (million USD) 

Sc_WTP_Amu(scenario, source_lev) shadow price  USD per m^3 

 

Sc_Tot_withdraw_Syr(scenario, source_lev) 

*Sc_Env_flow_Syr(scenario, source_lev) 

Sc_wat_bolt_Syr(scenario, source_lev) 

Sc_wat_sold_Syr(scenario, source_lev) 

Sc_tot_net_ben_Syr(scenario, source_lev) 

Sc_WTP_Syr(scenario, source_lev) 

; 

 

sav_trans_cost = trans_c; 

 

loop(Scenario, 

trans_c = sav_trans_cost; 

trans_c = trans_cost(scenario); 

 

 

SOLVE Ann_HEM USING NLP MAXIMIZING obj; 

Sc_Tot_withdraw_Amu(scenario, "normal")  = sum(agdm$agdm_amu(agdm), sum(rn, 

WITHDRAW.l(rn,agdm)) ) ; 

Sc_Env_flow_Amu(scenario, "normal")  =   Aral_Flow.l     ; 

Sc_wat_bolt_Amu(scenario, "normal")  =  sum(agdm$agdm_amu(agdm), wbolt.l(agdm) ); 

Sc_wat_sold_Amu(scenario, "normal")  =  sum(agdm$agdm_amu(agdm), wsold.l(agdm) ); 

Sc_tot_net_ben_Amu(scenario, "normal")  = sum(agdm$agdm_amu(agdm), Tot_profit.l(agdm)) ; 

Sc_WTP_Amu(scenario, "normal")   =      (sum(agdm$agdm_amu(agdm), wtp.l(agdm)*Tot_land.l(agdm)) 

) /(sum(agdm, Tot_land.l(agdm))); 

 

Sc_Tot_withdraw_Syr(scenario, "normal")  = sum(agdm$agdm_syr(agdm), sum(rn, 

WITHDRAW.l(rn,agdm)) ) ; 

*Sc_Env_flow_Amu(scenario, "normal")  =   Aral_Flow.l     ; 

Sc_wat_bolt_Syr(scenario, "normal")  =  sum(agdm$agdm_syr(agdm), wbolt.l(agdm) ); 

Sc_wat_sold_Syr(scenario, "normal")  =  sum(agdm$agdm_syr(agdm), wsold.l(agdm) ); 

Sc_tot_net_ben_Syr(scenario, "normal")  = sum(agdm$agdm_syr(agdm), Tot_profit.l(agdm)) ; 

Sc_WTP_Syr(scenario, "normal")   =    (sum(agdm$agdm_syr(agdm), wtp.l(agdm)*Tot_land.l(agdm))) 

/(sum(agdm, Tot_land.l(agdm)))    ; 

); 
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Source0 (rn, "initial") = 0.9*Source0 (rn, "initial") ; 

Water_right1_0(agdm)$agdm_amu(agdm) =  (Water_right_shr1(agdm)/(1-retn(agdm))) * (  sum(rn, 

Source0(rn, "initial")$rns_amu(rn)) - Tot_Ind_Mun_Wat_Amu - 3500 )       ; 

Water_right1_0(agdm)$agdm_syr(agdm) =  (Water_right_shr1(agdm)/(1-retn(agdm))) * (  sum(rn, 

Source0(rn, "initial")$rns_syr(rn)) - Tot_Ind_Mun_Wat_Syr - 1500 )      ; 

 

Tot_shareable_wat_Amu= sum(rn, Source0(rn, "initial")$rns_amu(rn)) - Tot_Ind_Mun_Wat_Amu - 3500        

; 

Tot_shareable_wat_Syr= sum(rn, Source0(rn, "initial")$rns_syr(rn)) - Tot_Ind_Mun_Wat_Syr - 1500       ; 

 

loop(Scenario, 

trans_c = sav_trans_cost; 

trans_c = trans_cost(scenario); 

 

SOLVE Ann_HEM USING NLP MAXIMIZING obj; 

 

Sc_Tot_withdraw_Amu(scenario, "normal_90")  = sum(agdm$agdm_amu(agdm), sum(rn, 

WITHDRAW.l(rn,agdm)) ) ; 

Sc_Env_flow_Amu(scenario, "normal_90")  =   Aral_Flow.l     ; 

Sc_wat_bolt_Amu(scenario, "normal_90")  =  sum(agdm$agdm_amu(agdm), wbolt.l(agdm) ); 

Sc_wat_sold_Amu(scenario, "normal_90")  =  sum(agdm$agdm_amu(agdm), wsold.l(agdm) ); 

Sc_tot_net_ben_Amu(scenario, "normal_90")  = sum(agdm$agdm_amu(agdm), Tot_profit.l(agdm)) ; 

Sc_WTP_Amu(scenario, "normal_90")   =    (sum(agdm$agdm_amu(agdm), 

wtp.l(agdm)*Tot_land.l(agdm)) ) /(sum(agdm, Tot_land.l(agdm))); 

 

Sc_Tot_withdraw_Syr(scenario, "normal_90")  = sum(agdm$agdm_syr(agdm), sum(rn, 

WITHDRAW.l(rn,agdm)) ) ; 

*Sc_Env_flow_Amu(scenario, "normal_90")  =   Aral_Flow.l     ; 

Sc_wat_bolt_Syr(scenario, "normal_90")  =  sum(agdm$agdm_syr(agdm), wbolt.l(agdm) ); 

Sc_wat_sold_Syr(scenario, "normal_90")  =  sum(agdm$agdm_syr(agdm), wsold.l(agdm) ); 

Sc_tot_net_ben_Syr(scenario, "normal_90")  = sum(agdm$agdm_syr(agdm), Tot_profit.l(agdm)) ; 

Sc_WTP_Syr(scenario, "normal_90")   =    (sum(agdm$agdm_syr(agdm), 

wtp.l(agdm)*Tot_land.l(agdm))) /(sum(agdm, Tot_land.l(agdm)))    ; 

); 

 

 

Source0 (rn, "initial") = (0.8/0.9)*Source0 (rn, "initial") ; 

Water_right1_0(agdm)$agdm_amu(agdm) =  (Water_right_shr1(agdm)/(1-retn(agdm))) * (  sum(rn, 

Source0(rn, "initial")$rns_amu(rn)) - Tot_Ind_Mun_Wat_Amu - 3500 )       ; 

Water_right1_0(agdm)$agdm_syr(agdm) =  (Water_right_shr1(agdm)/(1-retn(agdm))) * (  sum(rn, 

Source0(rn, "initial")$rns_syr(rn)) - Tot_Ind_Mun_Wat_Syr - 1500 )      ; 

 

Tot_shareable_wat_Amu= sum(rn, Source0(rn, "initial")$rns_amu(rn)) - Tot_Ind_Mun_Wat_Amu - 3500        

; 

Tot_shareable_wat_Syr= sum(rn, Source0(rn, "initial")$rns_syr(rn)) - Tot_Ind_Mun_Wat_Syr - 1500       ; 

 

 

loop(Scenario, 

trans_c = sav_trans_cost; 

trans_c = trans_cost(scenario); 
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SOLVE Ann_HEM USING NLP MAXIMIZING obj; 

Sc_Tot_withdraw_Amu(scenario, "normal_80")  = sum(agdm$agdm_amu(agdm), sum(rn, 

WITHDRAW.l(rn,agdm)) ) ; 

Sc_Env_flow_Amu(scenario, "normal_80")  =   Aral_Flow.l     ; 

Sc_wat_bolt_Amu(scenario, "normal_80")  =  sum(agdm$agdm_amu(agdm), wbolt.l(agdm) ); 

Sc_wat_sold_Amu(scenario, "normal_80")  =  sum(agdm$agdm_amu(agdm), wsold.l(agdm) ); 

Sc_tot_net_ben_Amu(scenario, "normal_80")  = sum(agdm$agdm_amu(agdm), Tot_profit.l(agdm)) ; 

Sc_WTP_Amu(scenario, "normal_80")   =     (sum(agdm$agdm_amu(agdm), 

wtp.l(agdm)*Tot_land.l(agdm)) ) /(sum(agdm, Tot_land.l(agdm))); 

 

Sc_Tot_withdraw_Syr(scenario, "normal_80")  = sum(agdm$agdm_syr(agdm), sum(rn, 

WITHDRAW.l(rn,agdm)) ) ; 

*Sc_Env_flow_Amu(scenario, "normal_80")  =   Aral_Flow.l     ; 

Sc_wat_bolt_Syr(scenario, "normal_80")  =  sum(agdm$agdm_syr(agdm), wbolt.l(agdm) ); 

Sc_wat_sold_Syr(scenario, "normal_80")  =  sum(agdm$agdm_syr(agdm), wsold.l(agdm) ); 

Sc_tot_net_ben_Syr(scenario, "normal_80")  = sum(agdm$agdm_syr(agdm), Tot_profit.l(agdm)) ; 

Sc_WTP_Syr(scenario, "normal_80")   =     (sum(agdm$agdm_syr(agdm), 

wtp.l(agdm)*Tot_land.l(agdm))) /(sum(agdm, Tot_land.l(agdm)))    ; 

); 

 

***Exporting the results to Excel***************** 

$libinclude xlexport     Sc_Env_flow_Amu         ASB_Irrigation_profit_functions_4.xls   

Env_flow_Amu_transac 

$libinclude xlexport     Sc_Tot_withdraw_Amu     ASB_Irrigation_profit_functions_4.xls      

Tot_withdraw_Amu_transac 

$libinclude xlexport     Sc_wat_bolt_Amu         ASB_Irrigation_profit_functions_4.xls      

wat_bolt_Amu_transac 

$libinclude xlexport     Sc_wat_sold_Amu         ASB_Irrigation_profit_functions_4.xls      

wat_sold_Amu_transac 

$libinclude xlexport     Sc_tot_net_ben_Amu      ASB_Irrigation_profit_functions_4.xls      

tot_net_ben_Amu_transac 

$libinclude xlexport     Sc_WTP_Amu              ASB_Irrigation_profit_functions_4.xls      

WTP_Amu_transac 

$libinclude xlexport     Sc_Tot_withdraw_Syr     ASB_Irrigation_profit_functions_4.xls      

Tot_withdraw_Syr_transac 

$libinclude xlexport     Sc_wat_bolt_Syr         ASB_Irrigation_profit_functions_4.xls      

wat_bolt_Syr_transac 

$libinclude xlexport     Sc_wat_sold_Syr         ASB_Irrigation_profit_functions_4.xls      

wat_sold_Syr_transac 

$libinclude xlexport     Sc_tot_net_ben_Syr      ASB_Irrigation_profit_functions_4.xls      

tot_net_ben_Syr_transac 

$libinclude xlexport     Sc_WTP_Syr              ASB_Irrigation_profit_functions_4.xls      WTP_Syr_transac 

; 
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Appendix D: Database of the disaggregated hydro-economic model  

 

 

 

Table D.1 Distribution efficiency across the demand sites 

Demand sites Distribution efficiency 

Amy Darya basin:  

GBAO 0.64 

Khatlon 0.64 

RRT 0.64 

Surkhandarya 0.64 

Mary 0.70 

Ahal 0.70 

Lebap 0.70 

Kashkadarya 0.64 

Samarkand 0.64 

Navoi 0.65 

Bukhara 0.65 

Khorezm 0.65 

Karakalpakstan 0.70 

Dashauz 0.70 

Narin 0.73 

Syr Darya basin:  

Osh 0.73 

Jalalabad 0.73 

Ferghana 0.73 

Andizhan 0.73 

Namangan 0.62 

Sugd 0.73 

Tashkent 0.73 

Syrdarya 0.71 

Jizzah 0.70 

South Kazakhstan 0.70 

Kyzylorda 0.70 

Source:  Based on GEF (2002) 
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Table D.2 Municipal water use (million m
3
) 

 Demand sites 
Municipial water use by months 

Total 
m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

Amu Darya basin:             

GBAO 2 2 2 2 2 2 2 2 2 2 2 2 24 

Khatlon 20 18 20 20 20 20 21 21 20 20 19 20 238 

RRT 12 11 13 12 13 12 13 13 13 13 12 12 150 

Surkhandarya 12 11 12 12 12 12 13 12 12 11 12 11 142 

Mary 6 6 6 6 6 6 6 6 6 6 6 6 72 

Ahal 9 9 9 9 9 9 9 9 9 9 9 9 102 

Lebap 6 6 6 6 6 6 6 6 6 6 6 6 70 

Kashkadarya 10 11 12 12 12 12 13 13 12 12 11 11 142 

Samarkand 26 28 29 30 30 31 32 32 30 30 28 28 353 

Navoi 3 2 3 2 3 2 3 3 2 3 2 3 30 

Bukhara 3 3 3 3 3 3 3 3 3 3 3 3 34 

Khorezm 6 5 6 6 6 6 6 6 6 6 6 6 71 

Karakalpakstan 4 4 4 4 4 4 4 4 4 4 4 4 47 

Dashauz 1 0 0 0 0 0 0 0 0 0 0 0 6 

Syr Darya basin:             

Narin 0 0 0 0 0 0 0 0 0 0 0 0 1 

Osh 8 8 8 8 8 8 8 8 8 8 8 8 94 

Jalalabad 4 4 4 4 4 4 4 4 4 4 4 4 52 

Ferghana 39 41 43 45 46 47 48 48 45 42 43 43 528 

Andizhan 12 12 13 13 13 13 13 13 14 14 13 13 156 

Namangan 9 8 9 8 9 8 9 9 8 9 8 9 103 

Sugd 14 13 14 14 15 15 15 15 15 14 14 14 172 

Tashkent 82 84 91 93 95 98 101 99 93 92 88 85 1100 

Syrdarya 9 10 10 11 11 11 12 12 12 11 10 10 128 

Jizzah 8 9 9 9 10 10 10 10 9 9 9 9 112 

South Kazakhstan 4 4 4 4 4 4 4 4 4 4 4 4 42 

Kyzylorda 1 1 2 2 2 3 3 3 3 2 1 1 23 

Source: SIC-ICWC (2011) 
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Table D.3 Industrial water use (million m
3
) 

  Demand sites 
Industrial water use by months 

Total 
m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

GBAO 0 0 0 0 0 0 0 0 0 0 0 0 2 

Khatlon 6 5 6 6 8 7 8 7 6 6 6 6 75 

RRT 13 12 13 12 13 12 12 12 12 12 12 13 150 

Surkhandarya 2 2 2 2 2 2 2 2 2 2 2 2 26 

Mary 98 98 98 98 98 98 98 98 98 98 98 98 1173 

Ahal 9 9 9 9 9 9 9 9 9 9 9 9 104 

Lebap 11 11 11 11 11 11 11 11 11 11 11 11 126 

Kashkadarya 4 4 5 4 5 4 5 4 4 4 4 4 51 

Samarkand 2 1 1 2 2 2 2 2 2 2 2 2 19 

Navoi 60 56 65 63 67 66 70 70 67 67 33 63 747 

Bukhara 2 2 2 2 2 2 2 2 2 2 2 2 25 

Khorezm 0 0 0 0 0 0 0 0 0 0 0 0 2 

Karakalpakstan 16 20 35 24 29 31 39 46 45 33 22 27 369 

Dashauz 1 1 1 1 1 1 1 1 1 1 1 1 6 

Narin 0 0 0 0 0 0 0 0 0 0 0 0 0 

Osh 0 0 0 0 0 0 0 0 0 0 0 0 4 

Jalalabad 2 2 2 2 2 2 2 2 2 2 2 2 19 

Ferghana 23 23 24 24 25 26 26 26 24 24 23 23 292 

Andizhan 3 4 4 4 4 4 4 4 4 4 4 4 45 

Namangan 1 1 1 1 2 2 1 2 2 2 2 2 18 

Sugd 10 8 9 10 11 11 12 11 8 9 8 9 116 

Tashkent 168 153 169 169 170 170 171 171 171 171 170 170 2022 

Syrdarya 50 46 51 140 145 140 145 145 140 51 49 51 1152 

Jizzah 0 0 0 0 0 0 0 0 0 0 0 0 5 

South Kazakhstan 3 3 3 3 3 3 3 3 3 3 3 3 42 

Kyzylorda 2 2 2 2 4 5 6 3 2 3 3 2 35 

Source: SIC-ICWC (2011) 
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Table D.4 Irrigation water use in normal year (million m
3
) 

  Demand sites 
Irrigation water use by months 

Total 
m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

GBAO 0 0 0 12 28 112 140 52 19 0 0 0 362 

Khatlon 27 93 128 582 595 825 1184 1197 732 155 67 27 5611 

RRT 0 0 0 12 46 130 233 183 57 14 0 0 674 

Surkhandarya 4 51 230 306 570 563 707 632 298 99 196 112 3768 

Mary 520 520 455 390 520 911 976 1041 585 260 325 7 6510 

Ahal 394 394 344 295 394 689 738 787 443 197 246 5 4925 

Lebap 371 371 324 278 371 649 695 742 417 185 232 5 4639 

Kashkadarya 2 71 499 594 540 648 980 891 94 142 321 147 4929 

Samarkand 12 32 197 221 396 423 800 621 342 197 76 0 3316 

Navoi 101 109 176 166 218 221 296 298 191 113 81 34 2004 

Bukhara 465 229 176 276 324 391 673 705 364 238 110 31 3984 

Khorezm 231 357 263 273 602 718 839 709 267 274 30 0 4563 

Karakalpakstan 124 455 352 256 1041 1264 1643 1491 260 34 143 646 7711 

Dashauz 0 263 856 461 922 1120 1185 1185 329 198 66 0 6586 

Narin 0 0 4 26 96 164 199 122 39 32 25 0 707 

Osh 0 0 48 88 307 363 346 270 164 129 72 0 1787 

Jalalabad 0 0 97 97 97 97 97 97 97 97 0 0 779 

Ferghana 75 170 233 211 355 427 599 584 285 239 148 41 3367 

Andizhan 56 51 152 152 379 492 623 576 269 271 160 14 3194 

Namangan 58 41 111 200 265 318 408 407 239 181 83 17 2329 

Sugd 18 45 54 382 386 459 769 737 452 75 34 9 3420 

Tashkent 6 20 23 213 511 614 681 572 117 80 13 0 2850 

Syrdarya 174 86 123 202 418 362 502 486 153 224 132 38 2900 

Jizzah 128 49 182 202 327 319 412 360 143 205 75 22 2425 

South 

Kazakhstan 44 107 55 275 499 645 775 443 176 22 9 6 3056 

Kyzylorda 0 0 0 154 721 861 857 534 6 0 0 0 3133 

Source: SIC-ICWC (2011) 
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Table D.5 Water supply by source nodes over the months in normal year (million m
3
) 

Supply nodes 
Water supply by months 

Total 
m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

Amu Darya basin:              
Atrek 26 27 30 21 0 10 9 0 0 14 31 17 184 

Guzardarya 8 10 12 25 9 8 5 4 4 6 10 11 112 

Kafirnigan 273 287 635 1481 2259 2139 1576 814 419 321 304 297 10805 

Kashkadariya 83 87 149 172 86 88 63 21 33 37 74 75 968 

Kunduz 122 127 149 272 350 638 616 513 290 193 140 125 3535 

Murgab 92 109 194 233 196 108 72 54 61 82 88 89 1379 

Pyandj 1153 1090 1466 2357 3675 5464 6734 5653 2911 1879 1439 1323 35144 

Sherabad 15 14 17 26 37 24 9 1 3 8 13 8 175 

Surhandarya 143 128 156 245 349 223 84 7 31 76 125 80 1647 

Tedjen 60 86 198 341 327 66 5 0 0 1 4 21 1109 

Vakhsh 1713 1386 1157 1012 1940 1886 2748 2988 1557 942 837 917 19082 

Yavansu 46 39 49 49 78 83 94 192 92 78 77 45 923 

Zarafshan 200 176 178 180 371 814 103 876 492 254 208 201 4054 

Syr Darya basin:              

Abshirsay 3 3 4 6 11 10 10 8 6 5 3 3 71 

Aksu 6 5 5 5 8 17 25 22 15 11 9 7 136 

Aris 26 62 96 63 43 23 41 16 88 81 21 20 580 

Bugun 1 1 47 81 110 72 125 45 5 57 89 3 637 

Chirchik 435 298 411 353 745 903 1022 963 512 440 267 242 6591 

Isfara 14 12 11 11 24 61 120 116 53 27 19 15 484 

Isfaramsay 28 24 23 20 43 104 189 110 61 38 28 29 695 

Karadarya 105 109 163 327 685 597 463 240 139 134 145 147 3256 

Kasansay 5 5 6 8 59 30 37 9 5 5 4 5 179 

Kuvasay 0 0 0 8 0 0 4 22 4 0 0 0 38 

Naryn 540 506 588 854 2133 2892 3470 2472 1284 821 640 1165 17366 

Shakimardan 16 14 15 15 30 35 59 44 37 28 24 16 333 

Shaydansay 9 9 9 13 34 54 55 17 6 10 7 6 228 

Sokh 50 54 54 77 86 207 437 331 179 129 90 58 1752 

Akhangaran 15 27 38 124 282 111 60 26 14 9 11 20 737 

Keles 70 69 86 91 61 25 27 19 35 60 85 75 703 

Kattasay 2 2 1 1 7 10 11 6 1 5 1 1 49 

Shirinsay 5 4 5 5 6 5 6 4 6 5 6 5 62 

Khojabakirgan 14 12 13 14 23 47 63 52 30 21 17 16 322 

The Aral Sea basin 5277 4784 5966 8488 14069 16754 18343 15646 8372 5778 4817 5042 113335 

Source: SIC-ICWC (2011) 
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Table D.6 Irrigation efficiency by crops and across the demand sites 

 Demand sites 
Irrigation efficiency by crops 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.22 0.62 0.62 0.62 

Khatlon 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.22 0.62 0.62 0.62 

RRT 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.22 0.62 0.62 0.62 

Surkhandarya 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.22 0.62 0.62 0.62 

Mary 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.18 0.58 0.58 0.58 

Ahal 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.18 0.58 0.58 0.58 

Lebap 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.18 0.58 0.58 0.58 

Kashkadarya 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.22 0.62 0.62 0.62 

Samarkand 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.22 0.62 0.62 0.62 

Navoi 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.15 0.52 0.52 0.52 

Bukhara 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.15 0.52 0.52 0.52 

Khorezm 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.15 0.52 0.52 0.52 

Karakalpakstan 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.15 0.48 0.48 0.48 

Dashauz 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.16 0.53 0.53 0.53 

Narin 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.17 0.55 0.55 0.55 

Osh 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.17 0.55 0.55 0.55 

Jalalabad 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.17 0.55 0.55 0.55 

Ferghana 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.17 0.55 0.55 0.55 

Andizhan 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.17 0.55 0.55 0.55 

Namangan 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.23 0.63 0.63 0.63 

Sugd 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.18 0.55 0.55 0.55 

Tashkent 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.18 0.55 0.55 0.55 

Syrdarya 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.24 0.73 0.73 0.73 

Jizzah 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.23 0.63 0.63 0.63 

South Kazakhstan 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.23 0.63 0.63 0.63 

Kyzylorda 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.15 0.48 0.48 0.48 

Source: Based on GEF (2002) 
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Table D.7 Cropland area by crops and across the irrigation sites (1000s ha) 

 Demand sites 
Cropland areas 

Total 
Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 0 8 2 9 0 8 1 0 0 0 0 28 

Khatlon 86 32 5 142 7 4 9 9 0 10 5 308 

RRT 16 12 3 35 0 0 4 3 0 4 1 79 

Surkhandarya 119 21 103 113 3 3 5 5 0 9 16 398 

Mary 168 16 5 234 7 2 1 0 0 5 3 442 

Ahal 103 21 6 249 3 2 0 0 0 5 17 405 

Lebap 120 15 5 105 4 2 2 2 0 4 2 262 

Kashkadarya 174 52 14 275 2 4 4 0 1 13 11 549 

Samarkand 99 46 101 197 6 2 9 2 0 20 33 514 

Navoi 44 12 36 43 2 1 1 0 0 3 5 146 

Bukhara 129 4 4 79 0 2 3 0 0 8 9 238 

Khorezm 100 40 6 16 2 2 2 40 0 6 2 217 

Karakalpakstan 145 72 5 28 9 8 2 86 0 8 0 364 

Dashauz 200 16 4 93 3 4 4 42 0 5 0 371 

Narin 0 38 0 2 0 0 4 0 0 1 0 46 

Osh 11 10 14 7 12 2 3 2 0 8 2 72 

Jalalabad 24 0 6 7 14 0 0 2 0 7 1 60 

Ferghana 127 30 111 92 5 2 5 2 0 13 6 394 

Andizhan 110 15 19 70 4 0 5 2 0 13 5 243 

Namangan 100 15 79 79 5 2 4 4 0 10 13 310 

Sugd 54 36 16 111 6 5 10 3 0 11 13 266 

Tashkent 113 40 101 113 9 3 8 14 0 24 14 439 

Syrdarya 141 12 90 90 4 3 1 8 0 5 2 356 

Jizzah 113 22 10 221 4 5 1 0 0 7 6 388 

South Kazakhstan 134 82 21 37 11 18 8 3 2 0 20 336 

Kyzylorda 0 38 0 11 0 9 6 59 0 7 0 129 

The Aral Sea basin 2434 706 767 2456 122 93 103 288 4 205 184 7361 

Source: SIC-ICWC (2011) 
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Table D.8 Maximum crop evapotranspiration by crops and across the demand sites (average of 1980-2000, in mm) 

Demand sites 
Maximum crop evapotranspiration 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 0 732 671 384 0 742 663 0 0 0 0 

Khatlon 687 732 671 384 514 742 663 738 0 742 671 

RRT 687 732 671 384 0 0 663 738 0 742 671 

Surkhandarya 895 952 870 473 686 964 877 978 0 964 870 

Mary 915 976 892 500 693 988 891 0 0 988 892 

Ahal 915 976 892 500 693 988 0 0 0 988 892 

Lebap 915 976 892 500 693 988 891 992 0 988 892 

Kashkadarya 895 952 870 473 686 964 877 0 964 964 870 

Samarkand 895 952 870 473 686 964 877 978 0 964 870 

Navoi 895 952 870 473 686 964 877 0 0 964 870 

Bukhara 895 952 870 473 0 964 877 0 0 964 870 

Khorezm 895 952 870 473 686 964 877 978 0 964 870 

Karakalpakstan 895 952 870 473 686 964 877 978 0 964 0 

Dashauz 915 976 892 500 693 988 891 992 0 988 0 

Narin 0 704 0 349 0 0 646 0 0 713 0 

Osh 664 704 643 349 504 713 646 719 0 713 643 

Jalalabad 664 0 643 349 504 0 0 719 0 713 643 

Ferghana 895 950 869 472 684 962 875 975 0 962 869 

Andizhan 895 950 869 472 684 0 875 975 0 962 869 

Namangan 895 950 869 472 684 962 875 975 0 962 869 

Sugd 687 732 671 384 514 742 663 738 0 742 671 

Tashkent 895 950 869 472 684 962 875 975 0 962 869 

Syrdarya 895 950 869 472 684 962 875 975 0 962 869 

Jizzah 895 950 869 472 684 962 875 0 0 962 869 

South Kazakhstan 856 906 827 431 663 918 844 942 918 0 827 

Kyzylorda 0 923 0 433 0 935 863 964 0 935 0 

Source:  Based on IFPRI (2013) 



 

243 
 

Table D.9 Effective rainfall by crops and across the demand sites (average of 1980-2000, in mm) 

Demand sites  
Effective rainfall by crops 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 0 118 122 138 0 99 90 0 0 0 0 

Khatlon 81 122 123 140 43 102 84 43 0 102 123 

RRT 116 162 163 176 0 0 124 83 0 142 163 

Surkhandarya 42 64 68 92 17 42 38 17 0 42 68 

Mary 26 45 45 71 11 26 23 0 0 26 45 

Ahal 26 46 46 71 12 26 0 0 0 26 46 

Lebap 25 45 45 71 11 25 23 11 0 25 45 

Kashkadarya 40 61 65 90 16 40 36 0 40 40 65 

Samarkand 43 64 68 92 18 43 38 18 0 43 68 

Navoi 43 64 69 92 18 43 39 0 0 43 69 

Bukhara 36 58 62 87 0 36 33 0 0 36 62 

Khorezm 32 51 51 75 17 32 28 17 0 32 51 

Karakalpakstan 37 59 59 83 18 37 33 18 0 37 0 

Dashauz 25 44 44 69 12 25 23 12 0 25 0 

Narin 0 180 0 140 0 0 157 0 0 169 0 

Osh 145 172 172 138 103 161 145 106 0 161 172 

Jalalabad 143 0 180 174 100 0 0 112 0 178 180 

Ferghana 70 92 97 125 35 70 59 35 0 70 97 

Andizhan 75 97 101 135 36 0 64 36 0 75 101 

Namangan 62 84 85 113 31 62 51 31 0 62 85 

Sugd 77 99 103 115 40 79 71 40 0 79 103 

Tashkent 84 108 112 149 39 85 75 39 0 85 112 

Syrdarya 83 107 111 149 38 85 74 38 0 85 111 

Jizzah 84 108 112 149 39 86 75 0 0 86 112 

South Kazakhstan 73 91 95 110 34 73 64 34 73 0 95 

Kyzylorda 0 55 0 55 0 41 36 18 0 41 0 

Source:  Based on IFPRI (2013) 
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Table D.10 Kc - crop coefficients 

Crops 
Crop coefficients by months 

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

Cotton 0.00 0.00 0.00 0.35 0.40 0.87 1.20 1.20 0.99 0.71 0.00 0.00 

Fodder 0.00 0.00 0.41 0.72 0.95 0.95 0.95 0.95 0.94 0.63 0.00 0.00 

Fruit 0.00 0.00 0.50 0.58 0.76 0.90 0.90 0.90 0.80 0.70 0.00 0.00 

Wheat 0.80 0.87 1.05 1.15 0.97 0.40 0.00 0.00 0.00 0.35 0.40 0.60 

Maize 0.00 0.00 0.00 0.00 0.36 0.95 1.10 0.86 0.38 0.00 0.00 0.00 

Cords 0.00 0.00 0.00 0.70 0.76 0.96 1.05 1.05 1.01 0.97 0.00 0.00 

Potato 0.00 0.00 0.00 0.50 0.55 1.15 1.15 0.96 0.75 0.00 0.00 0.00 

Rice 0.00 0.00 0.00 0.00 1.05 1.13 1.20 1.20 0.95 0.00 0.00 0.00 

Beet 0.00 0.00 0.00 0.70 0.76 0.96 1.05 1.05 1.01 0.97 0.00 0.00 

Vegetables 0.00 0.00 0.00 0.70 0.76 0.96 1.05 1.05 1.01 0.97 0.00 0.00 

Grapes 0.00 0.00 0.50 0.58 0.76 0.90 0.90 0.90 0.80 0.70 0.00 0.00 

Source:  Shieder (2011) 
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Table D.11 Ky crop yield response coefficients 

Crops 
Cop yield response coefficients by months 

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

Cotton 0.00 0.00 0.00 0.20 0.40 0.40 0.50 0.50 0.40 0.20 0.00 0.00 

Fodder 0.00 0.00 0.70 0.73 0.92 1.00 1.00 0.90 0.80 0.70 0.00 0.00 

Fruit 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 

Wheat 0.60 0.60 0.60 0.50 0.45 0.40 0.00 0.00 0.00 0.20 0.40 0.60 

Maize 0.00 0.00 0.00 0.00 0.45 0.70 1.30 0.90 0.50 0.00 0.00 0.00 

Cords 0.00 0.00 0.00 0.80 0.80 0.40 0.60 1.20 1.00 0.80 0.00 0.00 

Potato 0.00 0.00 0.00 0.45 0.45 0.60 0.80 0.80 0.70 0.00 0.00 0.00 

Rice 0.00 0.00 0.00 0.00 0.60 1.00 1.20 0.50 1.20 0.00 0.00 0.00 

Beet 0.00 0.00 0.00 0.80 0.80 0.40 0.60 1.20 1.00 0.80 0.00 0.00 

Vegetables 0.00 0.00 0.00 0.80 0.80 0.40 0.60 1.20 1.00 0.80 0.00 0.00 

Grapes 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 

Source:  Shieder (2011) 
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Table D.12 Seasonal crop yield response coefficients 

Crops 
Crop yield response 

coefficient 

Cotton 0.85 

Fodder 0.90 

Fruit 1.10 

Wheat 1.25 

Maize 1.25 

Cords 1.25 

Potato 1.10 

Rice 1.00 

Beet 1.25 

Vegetables 1.00 

Grapes 1.00 

Source:  Based on Cai (1999) and Shieder (2011, p.206) 
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Table D.13 Observed yield levels by crops and across the irrigation sites (average of 1990-2000, in tons per ha) 

Demand sites 
Observed yield levels by crops 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 0.0 4.5 1.8 2.0 0.0 9.7 8.8 0.0 0.0 0.0 0.0 

Khatlon 2.9 25.9 5.0 6.9 5.5 11.5 14.0 3.7 0.0 23.8 3.4 

RRT 2.8 19.5 5.5 2.7 0.0 0.0 8.5 2.8 0.0 18.8 4.8 

Surkhandarya 2.0 5.5 1.0 2.0 4.6 10.4 7.0 1.7 0.0 13.8 4.5 

Mary 2.8 18.6 2.2 4.2 3.5 19.3 12.8 0.0 0.0 19.2 4.1 

Ahal 2.0 2.5 5.4 1.2 3.3 7.1 0.0 0.0 0.0 19.2 4.0 

Lebap 1.6 4.5 3.5 1.1 3.1 7.6 9.1 2.6 0.0 9.4 6.1 

Kashkadarya 2.8 3.0 7.4 4.9 3.5 16.0 10.2 0.0 31.1 18.8 6.4 

Samarkand 2.2 7.4 2.1 11.9 6.5 6.8 6.0 2.8 0.0 6.0 2.9 

Navoi 1.7 2.2 2.4 1.0 2.0 10.5 8.3 0.0 0.0 14.6 1.7 

Bukhara 1.6 0.6 2.5 1.3 0.0 5.3 12.5 0.0 0.0 17.8 9.5 

Khorezm 2.3 1.8 3.4 1.4 2.1 8.7 8.3 1.7 0.0 13.9 2.8 

Karakalpakstan 2.0 8.8 2.9 2.0 2.1 10.6 5.1 3.3 0.0 6.0 0.0 

Dashauz 2.4 8.9 1.8 2.2 3.1 11.7 4.9 1.8 0.0 15.8 0.0 

Narin 0.0 4.8 0.0 1.8 0.0 0.0 6.6 0.0 0.0 11.4 0.0 

Osh 2.7 15.5 2.4 3.3 4.6 17.4 14.9 2.2 0.0 23.0 4.0 

Jalalabad 2.0 0.0 10.9 9.9 3.3 0.0 0.0 2.1 0.0 13.2 4.0 

Ferghana 2.7 12.1 0.5 1.5 2.5 11.7 9.4 1.8 0.0 13.6 2.4 

Andizhan 2.4 5.0 2.7 13.6 11.6 0.0 5.1 3.2 0.0 7.0 4.0 

Namangan 2.1 3.4 6.3 1.2 2.5 4.4 13.7 2.7 0.0 12.2 8.5 

Sugd 2.4 6.7 0.8 1.5 2.9 14.9 12.3 1.8 0.0 22.6 3.5 

Tashkent 1.9 2.8 3.5 1.1 2.6 10.0 12.6 3.5 0.0 16.5 4.0 

Syrdarya 2.9 9.6 0.6 2.4 6.2 24.2 11.1 2.5 0.0 15.4 4.0 

Jizzah 1.7 4.8 0.1 1.8 3.4 18.3 8.2 0.0 0.0 11.8 1.4 

South Kazakhstan 2.4 8.2 1.7 2.7 3.1 15.9 11.1 3.3 29.0 0.0 4.0 

Kyzylorda 0.0 8.5 0.0 9.7 0.0 5.8 5.1 2.7 0.0 17.4 0.0 

Source: SIC-ICWC (2011) 
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Table D.14 Maximum yield levels by crops and across the irrigation sites (average of 1990-2000, in tons per ha) 

 Demand sites 
Maximum yield levels by crops 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 0.0 7.4 2.8 2.4 0.0 22.1 15.1 0.0 0.0 0.0 0.0 

Khatlon 3.2 34.3 9.1 11.3 5.7 14.8 19.5 5.1 0.0 28.7 4.6 

RRT 3.1 26.2 12.5 4.0 0.0 0.0 14.5 7.0 0.0 21.6 7.0 

Surkhandarya 2.3 6.7 1.4 2.4 6.6 18.5 16.9 3.1 0.0 17.4 10.0 

Mary 3.1 23.8 7.4 6.8 4.2 22.6 16.3 0.0 0.0 21.6 5.7 

Ahal 2.4 3.3 11.8 1.6 4.7 11.6 0.0 0.0 0.0 26.4 5.9 

Lebap 2.7 5.6 4.7 1.3 3.5 9.0 11.7 3.3 0.0 13.9 8.2 

Kashkadarya 3.3 3.9 8.5 10.2 4.3 21.6 13.8 0.0 96.7 28.4 8.3 

Samarkand 2.5 9.6 2.1 13.6 6.6 7.0 6.1 3.3 0.0 6.3 3.1 

Navoi 2.4 2.6 3.2 1.5 3.7 11.3 9.5 0.0 0.0 18.2 2.8 

Bukhara 2.1 0.8 3.1 3.2 0.0 7.5 18.4 0.0 0.0 21.2 12.9 

Khorezm 2.4 2.2 4.8 1.7 2.6 10.1 11.6 3.0 0.0 15.8 4.2 

Karakalpakstan 2.4 13.8 4.9 3.6 2.6 14.6 6.7 4.4 0.0 12.6 0.0 

Dashauz 2.8 13.6 2.3 2.6 4.2 14.0 6.8 2.5 0.0 22.9 0.0 

Narin 0.0 7.7 0.0 2.5 0.0 0.0 10.8 0.0 0.0 17.4 0.0 

Osh 3.1 18.6 7.3 4.0 5.6 20.3 18.9 2.8 0.0 27.3 5.3 

Jalalabad 2.4 0.0 14.1 10.7 4.7 0.0 0.0 3.3 0.0 26.0 5.9 

Ferghana 2.8 12.8 0.6 2.6 3.9 13.7 16.7 2.7 0.0 18.0 4.0 

Andizhan 3.5 8.0 3.5 19.3 13.8 0.0 7.5 9.4 0.0 10.4 5.9 

Namangan 2.5 3.9 12.4 1.8 3.7 7.0 20.3 3.6 0.0 15.1 12.2 

Sugd 2.7 7.7 1.1 2.5 3.6 18.0 18.4 4.8 0.0 25.0 4.7 

Tashkent 2.7 3.3 4.0 1.4 3.0 12.0 15.7 4.0 0.0 19.1 4.2 

Syrdarya 3.3 11.0 1.2 3.4 13.8 28.2 16.8 3.8 0.0 19.6 4.6 

Jizzah 2.3 5.7 0.4 2.4 4.8 21.9 11.2 0.0 0.0 19.6 2.4 

South Kazakhstan 2.7 8.9 5.4 3.6 3.9 18.0 15.5 4.2 46.0 0.0 7.6 

Kyzylorda 0.0 10.3 0.0 19.1 0.0 13.2 10.0 3.3 0.0 20.4 0.0 

Source: SIC-ICWC (2011) 
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Table D.15 Crop prices across the irrigation sites (2006, in USD per ton) 

Demand sites 
Crop prices 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 494 49 151 98 98 202 226 478 49 201 224 

Khatlon 453 45 136 90 90 169 210 478 45 158 424 

RRT 494 49 151 98 98 202 226 478 49 201 224 

Surkhandarya 439 65 240 130 130 193 244 478 65 155 319 

Mary 425 52 237 103 103 307 168 478 52 203 203 

Ahal 479 55 146 109 109 212 161 478 55 208 242 

Lebap 479 55 146 109 109 212 161 478 55 208 242 

Kashkadarya 439 65 240 130 130 193 244 478 65 155 319 

Samarkand 425 52 237 103 103 307 168 478 52 203 203 

Navoi 454 46 228 92 92 220 253 478 46 212 408 

Bukhara 439 65 240 130 130 193 244 478 65 155 319 

Khorezm 462 49 339 98 98 297 212 478 49 169 424 

Karakalpakstan 439 65 240 130 130 193 244 478 65 155 319 

Dashauz 494 49 151 98 98 202 226 478 49 201 224 

Narin 494 49 151 98 98 202 226 478 49 201 224 

Osh 468 48 229 96 96 132 285 478 48 117 287 

Jalalabad 425 52 237 103 103 307 168 478 52 203 203 

Ferghana 431 45 228 89 89 180 337 478 45 201 177 

Andizhan 453 45 136 90 90 169 210 478 45 158 424 

Namangan 479 55 146 109 109 212 161 478 55 208 242 

Sugd 479 55 146 109 109 212 161 478 55 208 242 

Tashkent 425 52 237 103 103 307 168 478 52 203 203 

Syrdarya 466 45 304 91 91 127 297 478 45 176 184 

Jizzah 379 45 151 89 89 168 144 478 45 169 347 

South Kazakhstan 447 42 169 83 83 212 254 478 42 221 275 

Kyzylorda 454 46 228 92 92 220 253 478 46 212 408 

Source:  Based on CIS-ICWC (2008) 
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Table D.16 Crop production costs across the irrigation sites (2006, in USD per ha) 

Demand sites 
Crop production costs 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 371 169 192 148 121 1341 1387 796 478 2975 887 

Khatlon 797 894 519 478 380 1631 2473 1400 1819 3130 1242 

RRT 691 738 593 203 351 2152 1346 1047 828 2904 743 

Surkhandarya 534 284 213 205 470 1576 1531 658 647 1702 1155 

Mary 688 715 303 326 266 3795 1479 1226 1536 2533 455 

Ahal 495 123 631 122 330 1231 1717 796 624 3262 772 

Lebap 406 224 416 112 306 1326 1201 994 624 1600 1190 

Kashkadarya 725 156 1525 497 362 2425 2216 1240 1591 2305 1644 

Samarkand 550 285 283 915 497 1329 690 1052 485 800 318 

Navoi 445 92 444 83 163 1895 1714 204 385 2532 544 

Bukhara 427 33 525 132 124 796 2730 505 821 2182 2443 

Khorezm 443 70 628 107 163 1926 1489 633 234 2058 885 

Karakalpakstan 523 450 607 203 214 1608 1114 1245 142 742 363 

Dashauz 586 336 188 168 232 1627 777 665 478 2441 761 

Narin 530 183 321 140 164 1087 1046 796 478 1768 1140 

Osh 676 566 422 245 334 1808 3503 831 1914 2119 937 

Jalalabad 495 203 1491 762 256 2170 1521 796 485 1751 441 

Ferghana 584 425 109 108 173 1678 2498 673 130 2143 331 

Andizhan 661 174 283 941 800 877 900 1229 437 929 1453 

Namangan 517 166 737 120 246 757 1801 1017 624 2063 1645 

Sugd 590 331 98 147 284 2593 1618 677 586 3845 674 

Tashkent 463 109 485 86 202 1968 1462 1344 485 2185 449 

Syrdarya 680 348 128 171 444 2178 2442 953 911 1974 526 

Jizzah 378 163 13 124 233 1659 766 832 599 1378 295 

South Kazakhstan 634 263 183 171 200 1824 1828 1244 924 3254 692 

Kyzylorda 488 350 539 803 170 1053 1061 1029 380 3017 1894 

Source:  Based on CIS-ICWC (2008) 
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Table D.17 Crop production profits across the irrigation sites (2006, in USD per ha) 

Demand sites 
Crop production profits 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 381 50 79 43 36 615 601 207 141 889 411 

Khatlon 519 268 154 143 114 326 475 364 546 635 196 

RRT 710 217 244 60 103 988 583 272 243 868 344 

Surkhandarya 360 77 35 56 128 427 181 171 176 437 275 

Mary 491 246 221 112 91 2140 664 319 529 1363 378 

Ahal 459 13 153 13 36 270 393 207 67 727 188 

Lebap 376 24 101 12 33 290 275 259 67 357 290 

Kashkadarya 488 42 250 135 98 657 262 323 433 592 391 

Samarkand 393 98 206 315 171 750 310 274 167 430 265 

Navoi 320 10 108 9 18 415 392 53 42 565 133 

Bukhara 288 9 86 36 34 216 322 132 223 561 582 

Khorezm 599 17 514 26 40 641 262 165 57 307 295 

Karakalpakstan 352 122 99 55 58 436 131 324 39 191 86 

Dashauz 602 99 77 49 68 747 337 173 141 730 353 

Narin 545 54 132 41 48 499 453 207 141 529 528 

Osh 591 174 119 75 103 481 750 216 588 568 215 

Jalalabad 353 70 1085 262 88 1224 683 207 167 942 366 

Ferghana 559 115 6 29 47 426 667 175 35 600 88 

Andizhan 430 52 84 282 240 175 173 320 131 188 230 

Namangan 479 18 179 13 27 166 412 265 67 460 401 

Sugd 547 36 24 16 31 568 370 176 63 857 165 

Tashkent 330 38 353 30 70 1110 656 350 167 1175 373 

Syrdarya 682 88 46 43 112 900 852 248 231 728 215 

Jizzah 268 51 7 38 72 1414 412 217 186 605 178 

South Kazakhstan 440 81 98 53 62 1554 983 324 284 1429 417 

Kyzylorda 351 38 131 87 18 231 243 268 41 673 462 

Source:  Based on CIS-ICWC (2008) 
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Table D.18 Costs of improving irrigation efficiency (2006, in USD per m
3
) 

Demand sites 
Costs of improving crop irrigation efficiency 

Cotton Fodder Fruit Wheat Maize Cords Potato Rice Beet Vegetables Grapes 

GBAO 0.031 0.031 0.028 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 

Khatlon 0.031 0.031 0.028 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 

RRT 0.031 0.031 0.028 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 

Surkhandarya 0.037 0.037 0.025 0.037 0.037 0.025 0.025 0.025 0.025 0.025 0.025 

Mary 0.037 0.037 0.025 0.037 0.037 0.025 0.025 0.025 0.025 0.025 0.025 

Ahal 0.037 0.037 0.025 0.037 0.037 0.025 0.025 0.025 0.025 0.025 0.025 

Lebap 0.049 0.049 0.025 0.049 0.049 0.025 0.025 0.025 0.025 0.025 0.025 

Kashkadarya 0.037 0.037 0.025 0.037 0.037 0.025 0.025 0.025 0.025 0.025 0.025 

Samarkand 0.031 0.031 0.028 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 

Navoi 0.049 0.049 0.025 0.049 0.049 0.025 0.025 0.025 0.025 0.025 0.025 

Bukhara 0.049 0.049 0.025 0.049 0.049 0.025 0.025 0.025 0.025 0.025 0.025 

Khorezm 0.056 0.056 0.027 0.056 0.056 0.027 0.027 0.027 0.027 0.027 0.027 

Karakalpakstan 0.056 0.056 0.027 0.056 0.056 0.027 0.027 0.027 0.027 0.027 0.027 

Dashauz 0.056 0.056 0.027 0.056 0.056 0.027 0.027 0.027 0.027 0.027 0.027 

Narin 0.031 0.031 0.028 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 

Osh 0.031 0.031 0.028 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 

Jalalabad 0.031 0.031 0.028 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 

Ferghana 0.037 0.037 0.025 0.037 0.037 0.025 0.025 0.025 0.025 0.025 0.025 

Andizhan 0.037 0.037 0.025 0.037 0.037 0.025 0.025 0.025 0.025 0.025 0.025 

Namangan 0.037 0.037 0.025 0.037 0.037 0.025 0.025 0.025 0.025 0.025 0.025 

Sugd 0.043 0.043 0.027 0.043 0.043 0.027 0.027 0.027 0.027 0.027 0.027 

Tashkent 0.043 0.043 0.027 0.043 0.043 0.027 0.027 0.027 0.027 0.027 0.027 

Syrdarya 0.049 0.049 0.025 0.049 0.049 0.025 0.025 0.025 0.025 0.025 0.025 

Jizzah 0.049 0.049 0.025 0.049 0.049 0.025 0.025 0.025 0.025 0.025 0.025 

South Kazakhstan 0.056 0.056 0.027 0.056 0.056 0.027 0.027 0.027 0.027 0.027 0.027 

Kyzylorda 0.056 0.056 0.027 0.056 0.056 0.027 0.027 0.027 0.027 0.027 0.027 

Source:  Based on Cai (1999) and considering inflation rates between 1998 and 2006 
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Table D.19 Irrigation water conveyance costs (2006, in USD per m
3
) 

Demand sites 
Conveyance cost

a
 

(USD per m
3
) 

Costs of improving conveyance 

efficiency
b
 (USD per m

3
) 

Costs of groundwater 

use
b
 (USD per m

3
) 

Costs of re-using return 

flows
b
 (USD per m

3
) 

GBAO 0.0031 0.015 0.0062 0.049 

Khatlon 0.0130 0.015 0.0062 0.049 

RRT 0.0031 0.015 0.0062 0.049 

Surkhandarya 0.0091 0.017 0.0049 0.079 

Mary 0.0019 0.020 0.0087 0.080 

Ahal 0.0122 0.020 0.0087 0.080 

Lebap 0.0019 0.020 0.0087 0.080 

Kashkadarya 0.0126 0.017 0.0087 0.080 

Samarkand 0.0031 0.015 0.0049 0.069 

Navoi 0.0047 0.021 0.0087 0.080 

Bukhara 0.0122 0.021 0.0087 0.080 

Khorezm 0.0019 0.002 0.0074 0.074 

Karakalpakstan 0.0012 0.002 0.0074 0.074 

Dashauz 0.0019 0.002 0.0074 0.074 

Narin 0.0044 0.015 0.0062 0.049 

Osh 0.0044 0.015 0.0062 0.049 

Jalalabad 0.0073 0.015 0.0062 0.049 

Ferghana 0.0044 0.017 0.0049 0.079 

Andizhan 0.0073 0.017 0.0049 0.079 

Namangan 0.0130 0.017 0.0049 0.079 

Sugd 0.0130 0.020 0.0037 0.069 

Tashkent 0.0019 0.020 0.0037 0.069 

Syrdarya 0.0024 0.021 0.0087 0.080 

Jizzah 0.0054 0.021 0.0087 0.080 

South Kazakhstan 0.0054 0.002 0.0037 0.074 

Kyzylorda 0.0012 0.002 0.0074 0.074 

Source:  
a
Based on MAWR (2007); 

b
Based on Cai (1999) and considering inflation rates between 1998 and 2006 



 

254 
 

Table D.20 Evaporation from the reservoirs (in mm) 

Reservoirs 
Evaporation from the reservoirs by months 

m01 m02 m03 m04 m05 m06 m07 m08 m09 m10 m11 m12 

*Rogun 12 20 47 102 157 169 171 143 100 38 27 14 

Nurek 12 20 47 102 157 169 171 143 100 38 27 14 

Tuyamuyun 24 40 94 204 314 338 342 286 200 76 54 28 

*Kambarata 12 20 47 102 157 169 171 143 100 38 27 14 

Tokhtogul 12 20 47 102 157 169 171 143 100 38 27 14 

Andizhan res 12 20 94 204 314 338 342 286 200 76 54 28 

Kayrakum 24 40 94 204 314 338 342 286 200 76 54 28 

Farkhad 24 40 40 100 150 170 170 140 100 38 27 14 

Shardara 24 40 94 204 314 338 342 286 200 76 54 28 

Charvak 24 40 94 204 314 338 342 286 200 76 54 28 

Notes: *Reservoirs planned to build in recent future 

Source: Based on Cai (1999) 
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Table D.21 Reservoir level-storage and area-storage parameters 

 

Minimum 

reservoir 

storage 

(million 

m3) 

Maximum 

reservoir 

storage 

(million 

m3) 

Reservoir area and storage volume 

relationship parameters 

 Reservoir level and storage 

volume relationship 

parameters 

Reservoir 

construction 

costs (million 

USD per 

month) c0 c1 c2 c3  d0 d1 d2 

*Rogun 3040 13300 1 0.021 -0.000001426 0.00000000006  86 0.020 -0.00000064 13 

Nurek 2500 7130 14 0.021 -0.000002850 0.00000000018  10 0.056 -0.00000370 0 

Tuyamuyun 2308 7800 0 0.100 0.000000000 0.00000000000  2 0.002 -0.00000007 0 

*Kambarata 1220 4650 1 0.022 -0.000004581 0.00000000052  85 0.027 0.00000000 7 

Tokhtogul 5500 19500 9 0.038 -0.000002355 0.00000000006  87 0.006 -0.00000008 0 

Andizhan res 150 1900 0 0.036 0.000005769 -0.00000000202  31 0.077 -0.00002169 0 

Kayrakum 750 3350 10 0.375 -0.000118702 0.00000001608  11 0.005 -0.00000043 0 

Farkhad 45 595 0 0.000 0.000000000 0.00000000000  0 0.000 0.00000000 0 

Shardara 970 5200 31 0.326 -0.000065024 0.00000000588  11 0.004 -0.00000027 0 

Charvak 430 2010 1 0.042 -0.000017810 0.00000000324  72 0.055 -0.00000870 0 

Notes: Reservoir surface area (S) and storage volume (V) are related to each other through the following equation: S=c0+c1 V+c2 V
2
+c3 V

3
; 

Reservoir level (H-Htail) and storage volume (V) are related to each other through the following equation: H-Htail=d0+d1 V+d2 V
2
 

Source: EC IFAS (2013) 
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Table D.22 Maximum production capacity and efficiency of the power stations 

Power stations 
Maximum power generation 

capacity (in MW) 

Power station 

efficiency 

*Rogun 3600 0.90 

Nurek 3000 0.80 

Tuyamuyun 150 0.80 

*Kambarata 1900 0.90 

Tokhtogul 1200 0.85 

Kurupsay 800 0.85 

Tashkumir 450 0.85 

Shamaldisay 240 0.85 

Uchkurgan 180 0.85 

Andizhan 140 0.85 

Kayrakum 126 0.80 

Farhad 126 0.85 

Shardara 100 0.85 

Chirchik 621 0.80 

Notes: *Reservoirs planned to build in recent future 

Source: SIC-ICWC (2003) and EC IFAS (2013) 

 

 

 


