Der Einfluss chronischer Corticosteron-Applikation auf Depressions-assoziiertes Verhalten und die Expression Depressions-relevanter hippocampaler Gene bei C57BL/6 J und N Mäusen

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Hohen Medizinischen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität

Bonn

Mara Lena Sophie Sturm aus Heidelberg 2014 Angefertigt mit der Genehmigung der Medizinischen Fakultät der Universität Bonn

- 1. Gutachter: Prof. Dr. rer. nat. Andreas Zimmer
- 2. Gutachter: Prof. Dr. med. Thomas Schläpfer

Tag der Mündlichen Prüfung: 21.10.2014

Aus dem Institut für molekulare Psychiatrie der Universität Bonn Direktor: Prof. Dr. rer. nat. Andreas Zimmer **Meinen Eltern und Pateneltern**

Inhaltverzeichnis

	Abkürzungsverzeichnis	8
1.	Einleitung	9
1.1	Definition der Depression	10
1.2	Hypothalamus -Hypophysen- Nebennierenrinden-Achse: Physiologie	11
1.3	Dysregulation der HHN- Achse bei depressiven Erkrankungen	13
1.4	Tiermodelle	14
1.5	C57BL/6 J und C57BL/6 N Mäuse	15
1.6	Fragestellung	17
2.	Material und Methoden	18
2.1	Materialien	18
2.1.1	Arbeitsgeräte	18
2.1.2	Chemikalien	19
2.1.3	Verbrauchsmaterial	19
2.1.4	Kits für die Molekularbiologie	20
2.1.5	TaqMan [®] -Assays	20
2.1.6	Enzyme	20
2.1.7	Lösungen	20
2.1.8	Computersoftware und Datenbanken	21
2.2	Versuchstiere	21
2.3	Hormon-Pellet Implantation	22
2.4	Testverfahren zur Verhaltensanalyse	22
2.4.1	3h-Sucrose-Präferenz Test	22
2.4.2	Offenfeld Test	23
2.4.3	"forced swimming test" (FST)	24
2.4.4	Beurteilung der Fellbeschaffenheit	24
2.5	Molekularbiologische Methoden	26

2.5.1	Organentnahme	26
2.5.2	Präparation der Gehirnareale	26
2.5.3	Isolierung und Quantitätsbestimmung der RNA	26
2.5.4	Qualitätsbestimmung der RNA	27
2.5.5	Microarray-Analysen	27
2.5.6	cDNA Synthese	28
2.5.7	Quantitative real-time PCR	29
2.6	Statistik	31
2.7	Zeitverlauf des Experiments	31
2.7.1	Vorversuch	31
2.7.2	Hauptversuch	32
3.	Ergebnisse	34
3.1	Vorversuche	34
3.2	Hauptversuch	35
3.2.1	3h-Sucrose-Präferenz Test	35
3.2.2	Offenfeld Test	38
3.2.3	"forced swimming test"	41
3.2.4	Beurteilung der Fellbeschaffenheit	43
3.2.5	Microarray-Analyse	44
3.2.6	qrt-PCR	53
4.	Diskussion	55
5.	Zusammenfassung	66
6.	Anhang	69
6.1	Abbildungsverzeichnis	69
6.2	Tabellenverzeichnis	70
6.3	Differenziell regulierte Gene	70
6.4	Abstract	81
7.	Literaturverzeichnis	83

8.	Danksagung	95
9.	Lebenslauf	96

Abkürzungsverzeichnis

BDNF	Brain-derived neurotrophic factor (Wachstumsfaktor)
FST	forced swimming test
HCI	Salzsäure
HHN-Achse	Hypophysen-Hypothalamus-Nebennieren-Achse
H_2O_2	Wasserstoffperoxid
min	Minuten
mM/I	Millimol pro Liter
NA	Noradrenalin
NaCl	Natriumchlorid
NR4A2	Nuclear receptor subfamily 4
Ntrk2	Neurotrophic tyrosine kinase receptor, type 2 ; BDNF Rezeptor
PCR	Polymerase Chain Reaction (Polymerase Kettenreaktion)
PVN	Nucleus paraventricularis (hypothalamische Gehirnregion)
qrt-PCR	quantitative real-time PCR
RNA	Ribonukleinsäure
RT	Raumtemperatur
SSRI	selektiver Serotoninwiederaufnahmehemmer
TrkB	Synonym für Ntrk2; BDNF Rezeptor
TGFB1	Transforming growth factor, beta-induced

Einleitung

"Wer nicht an sich selbst gespürt hat, was Schwermut ist, versteht das nicht, ich hatte das Gefühl einer schauerlichen Einsamkeit. Zwischen mir und den Menschen und dem Leben der Stadt, der Plätze, Häuser und Straßen war fortwährend eine breite Kluft. Es geschah ein Unglück, es standen wichtige Dinge in den Zeitungen - mich ging es nichts an." (Hermann Hesse, 1903)

Das im Zitat Hermann Hesses geschilderte Gefühl von Freud- und Interessenlosigkeit beschreibt ein Hauptsymptom eines seit Jahrtausenden bekannten Krankheitsbildes, das heute als "depressive Erkrankung" bezeichnet wird.

Emotionen und Gefühle spielen in unserem Leben eine tragende Rolle. Ohne sie wäre kein Empfinden von Trauer, Freude, Zorn, Angst oder Lust möglich. Negative Affekte wie Niedergeschlagenheit, Lustlosigkeit und Verzweiflung gehören zum menschlichen Leben und sind im Zusammenspiel mit positiven Affekten natürliche und unverzichtbare Komponenten der Emotionalität. Nehmen die negativen Affekte aber zu großen Raum ein und werden sie dauerhaft vorherrschend, besteht die Gefahr eine Depression zu entwickeln.

Innerhalb eines Jahres erkranken in Deutschland zwischen 5 und 6 Millionen Menschen im Alter von 18 bis 65 Jahren an einer Depression (Zwölf-Monatsprävalenz: 11 %) (RKI, 2010), wobei Frauen mit 14 % in allen Altersgruppen ungefähr doppelt so häufig wie Männer (8 %) betroffen sind. Die Wahrscheinlichkeit im Laufe seines Lebens an einer Depression zu erkranken (Lebenszeitprävalenz) liegt mit 19 % noch höher (Frauen: 25 %, Männer: 12 %) (RKI, 2010). Weltweit schätzt die World Health Organisation (WHO) rund 350 Millionen Betroffene (WHO, 2012). Nach einer Studie der WHO war die unipolare Depression bereits im Jahre 2002 die häufigste Ursache für durch Krankheit beeinträchtigte Lebensjahre (Years lived with disability, YLD) und stand weltweit an vierter Stelle der Lebensjahre-raubenden Erkrankungen (Disability- adjusted life years, DALY's) in der Gruppe von Menschen im Alter von 15 bis 44 Jahren (WHO, 2005). Nach Schätzungen der WHO ist zu erwarten, dass die unipolare Depression im Jahre 2020 nach Herz- Kreislauf Erkrankungen die zweithäufigste Entität der DALY's darstellen wird (Murray, 1996). Besonders besorgniserregend ist die hohe Zahl an Suiziden, die im Rahmen einer depressiven Störung begangen werden. Nach Angaben des Statistischen Bundesamtes nahmen sich in Deutschland im Jahr 2010 10021 Menschen das Leben (Statistisches Bundesamt, 2012). Nach Kessler et al. (2005) leidet die überwiegende Mehrzahl (80-90 %) der Erwachsenen mit Suizidgedanken und -Handlungen an einer schweren Depression.

Diese Zahlen zeigen die eminente gesellschaftliche Relevanz dieser Erkrankung. Die Entschlüsselung der Pathophysiologie der Depression stellt somit eine große Herausforderung der medizinischen Forschung dar und ist unabdingbare Voraussetzung für die dringend notwendige Optimierung der Behandlungsverfahren.

Definition der Depression

Das Krankheitsbild der Depression (aus dem Lateinischen "deprimere"= niederdrücken) gehört zu den affektiven Störungen. Nach internationaler Übereinkunft erfolgt die Klassifizierung der depressiven Störungen nach der von der WHO erarbeiteten ICD10 (International Classification of Diseases) und dem DSM (Diagnostic and Statistical Manual of Mental Disorders) der American Psychiatric Association. Abhängig vom Schweregrad der Erkrankung werden eine leichte, eine mittelgradige oder eine schwere Form (Major Depression) unterschieden (ICD10, 2010). Nach den genannten Klassifikationen muss zur Diagnosestellung einer Depression mindestens eines der beiden Hauptsymptome Freud- und Interessenlosigkeit (Anhedonie) und/oder gedrückte Stimmung für einen Zeitraum von minimal zwei Wochen bestehen. Zusätzlich müssen mindestens fünf sogenannte häufige Krankheitszeichen über einen Zeitraum von mindestens zwei Wochen durchgehend nachweisbar sein. Diese beinhalten ausgeprägte Müdigkeit, einen veränderten Schlafrhythmus (Insomnie oder Hypersomnie), Agitiertheit oder deutliche psychomotorische Hemmung (Verlangsamung), Veränderungen des Appetits begleitet von Gewichtszu- oder abnahme, Konzentrationsschwäche und Libidoverlust.

Die Schwere der Symptome und die Zahl der depressiven Episoden sind stark variabel. Im Rahmen der Erkrankung kommt es häufig zu sozialem Rückzug und der Entwicklung von Wertlosigkeits- und Schuldgefühlen, die in schweren Fällen zu Suizidalität führen können. Die mit 18 % sehr hohe Mortalitätsrate depressiver Patienten (Murray et al., 1997) ist nicht nur durch die verglichen mit der gesunden Bevölkerung deutlich erhöhte Suizidrate bedingt, sondern auch durch die gesteigerte Relevanz von Komorbidität. Joukamaa et al. (2001) konnten zeigen, dass die Mortalitätsrate somatischer Erkrankungen wie Diabetes mellitus, Herz-Kreislauf-Erkrankungen oder Neoplasien durch eine zusätzlich vorliegende Depression erhöht wird.

Die Pathophysiologie der Depression ist äußerst komplex und trotz intensivster unzureichend entschlüsselt. Die vergleichsweise hohe Forschung nur Zahl unterschiedlicher Hypothesen weist auf eine multifaktorielle Pathogenese hin. Das Zusammenspiel von genetischer Disposition, psychosozialen Faktoren und Veränderungen der Expression und Transmission von Neurotransmittern und Hormonen scheint für die Entwicklung der Krankheit relevant zu sein (Kalia, 2005; Nestler et al., 2002). So spielen neben einer genetischen Komponente beispielsweise akuter oder chronischer Stress oder traumatische Erfahrungen in der Vorgeschichte eine wichtige Rolle (Claes, 2004; Sullivan et al. 2000).

Die vorgelegte Arbeit fokussiert sich auf Untersuchungen zur Relevanz des Zusammenspiels von genetischer Disposition und chronischem Stress für die Entwicklung einer Depression.

1.2 Hypothalamus -Hypophysen- Nebennierenrinden-Achse: Physiologie

Bei Säugern und Primaten aktivieren akute und chronische Stressoren die Hypothalamus-Hypophysen-Nebennierenrinden-Achse (HHN-Achse) und setzten eine hormonelle Signalkaskade in Gang (Herman und Cullinan, 1997). Eine Aktivierung dieses neuroendokrinen Signalweges durch bedrohliche Situationen führt zu psychomotorischer Aktivierung und erhöhter Reaktionsfähigkeit und verbessert so die Überlebenschancen des Individuums.

Als Reaktion auf einen Stressor setzt der *nucleus paraventricularis* (PVN) des Hypothalamus das Polypeptid Corticotropin-Releasing-Hormon (CRH) frei. Dieses wird über die Portalgefäße zum Hypophsenvorderlappen transportiert und bindet dort an die G-Protein gekoppelten CRH-Rezeptoren 1 und 2, was wiederum zur Sezernierung des Peptidhormons Adrenocorticotropin (ACTH) in das periphere Blut-Kreislaufsystem führt. ACTH gelangt so zu den Nebennierenrinden und bewirkt dort die Produktion und anschließende Freisetzung der Glucocorticoide Cortisol (im menschlichen Organismus) und Corticosteron (im Organismus von Nagetieren) in das Kreislaufsystem. Nach deren Bindung an in der Peripherie lokalisierte Mineralocorticoid- oder Glucocorticoidrezeporen kommt es in verschiedenen Organen zu Änderungen der Genexpression und des Metabolismus. Die Lipolyse wird in Gang gesetzt, verstärkte Guconeogenese und Glycolyse erhöhen die Blutzuckerkonzentrationen. Atem- und Pulsfrequenz steigen an und bieten so dem Körper gesteigerte Ressourcen zur Bewältigung der gefahrvollen Situation (Holsboer, 1999).

Die ausgeschütteten Glucocorticoide induzieren über Rezeptorbindung eine negative Rückkopplung im Hypothalamus, wodurch letztlich die Ausschüttung von Cortison bzw. Corticosteron reduziert und die Antwort auf den Stressor beendet wird (Herman und Cullinan, 1997) (siehe Abb. 1).

Darstellung der HHN-Achse

STRESS RESPONSE SYSTEM

Copyright[©] 2010 Max-Planck-Institut für Kognitions - und Neurowissenschaften, München

Abb.1: Stress- induzierte CRH Produktion im nucleus paraventricularis (PVN) des Hypothalamus führt zu vermehrter ACTH Bildung im Hypophysenvorderlappen, die die Glucocorticoidproduktion der Nebennierenrinde aktiviert. Erhöhte Cortisol/Corticosteronspiegel hemmen über negative Rückkopplung den PVN und begrenzen die Glucocorticoidproduktion.

Dieser negative Rückkopplungsmechanismus scheint in hohem Maße von der ungestörten Funktion des Hippocampus abhängig zu sein, der die Ausschüttung von CRH im PVN inhibiert (Herman und Cullinan, 1997; Jacobson und Sapolsky, 1991). Im Hippocampus werden sowohl Mineralcorticoid- als auch Glucocorticoidrezeptoren exprimiert. Während die Mineralcorticoidrezeptoren eine starke Affinität zu Cortisol/Corticosteron besitzen und schon bei geringen zirkulierenden Mengen des aktiviert werden, werden die Glucocorticoidrezeptoren erst durch Hormons vergleichsweise hohe Konzentrationen aktiviert (de Kloet et al., 1998). Letztere scheinen in der Regulation des Rückkopplungsprozesses eine essentielle Rolle zu spielen. Die Dichte der hippocampalen Glucocorticoidrezeptoren korreliert mit dem inhibierenden Einfluss des Hippocampus auf den PVN und somit die HHN-Achse. Hohe Rezeptordichte verstärkt die hippocampale Inhibition und führt zu einer Verminderung der Cortisol-/Corticosteronbildung, eine niedrige Dichte hat den gegensätzlichen Effekt: der hemmende Einfluss auf die HHN-Achse ist ungenügend und Stressoren bewirken eine höhere Cortisol-/Corticosteronausschüttung (de Kloet et al., 1998).

1.3 Dysregulation der HHN-Achse bei depressiven Erkrankungen

In zahlreichen klinischen Studien konnte gezeigt werden, dass Patienten, die an einer Depression leiden, signifikant erhöhte Plasma-Cortisolwerte aufweisen. Die Ursache scheint eine Überaktivität der HHN-Achse mit konsekutiver Fehlregulation der Cortisolausschüttung durch die Nebennierenrinde zu sein (Nemeroff, 1988; Nestler et al., 2002; Sachar und Baron, 1979; Sapolsky, 2000). In Phasen der Remission oder unter antidepressiver Therapie sinken die Cortisolspiegel wieder, was die oben beschriebene Hypothese stützt (Holsboer, 2001; Wolkowitz et al., 1993). Depressive Patienten weisen erhöhte CRH Konzentrationen im Liquor und erhöhte Konzentrationen von freiem Cortisol im Urin auf. Sie reagieren auf die Applikation des synthetisch hergestellten Glucocorticoids Dexamethason mit einer nur geringen Reduktion der körpereigenen Cortisolfreisetzung (Nestler et al., 2002; Southwick et al., 2005). Bei Gesunden hingegen reprimiert die Gabe von Dexamethason über Bindung an Glucocorticoid Rezeptoren die periphere Sekretion von ACTH und Cortisol signifikant. Neuere klinische Studien, in denen Antagonisten der Glucocorticoidrezeptoren zur antidepressiven Therapie eingesetzt wurden, stützen die Hypothesen zur Relevanz der

Dysregulation der HHN Achse in der Pathophysiologie der Depression (Gallagher und Young, 2006). Hierfür spricht auch, dass Patienten mit Morbus Cushing, d.h. mit chronisch erhöhten Cortisolspiegeln mit einer deutlich erhöhten Depressionsrate belastet sind (Sonino und Fava, 2002).

Die zitierten Befunde stützen die Annahme der Relevanz von Stress für die Entstehung einer Depression. Die Frage, ob die damit im Zusammenhang stehende Überaktivierung der HHN- Achse und die erhöhten Cortisolspiegel letztendlich Auslöser oder Folge der depressiven Stimmungslage sind, ist allerdings noch nicht geklärt.

Tiermodelle

Zur Entschlüsselung der Relevanz von Stress und Stress-assoziierter Glucocorticoid-Ausschüttung für die Entwicklung depressiver Symptomatik wurden in den letzten Jahrzenten verschiedene Modelle entwickelt. Die am Besten etablierten Methoden zur Erzeugung Depressions-ähnlicher Symptome im Tierexperiment sind die ursprünglich an der Ratte entwickelten Stressmodelle von Katz (1981 a, b) und Willner et al. (1987). Hierbei werden die Versuchstiere wiederholt physischen oder psychischen Stressoren ausgesetzt, um deren Einfluss auf ihr Verhalten zu untersuchen.

Die Erfassung und Beurteilung von Depressions-spezifischen Emotionen ist bei Nagern schwierig. Schon beim Menschen sind die Symptome der Depression keinesfalls immer objektiv zu beurteilen, variieren häufig oder stellen sich sogar gegensätzlich dar (beispielsweise zeigen einige Erkrankte agitiertes Verhalten, während andere psychomotorisch verlangsamt sind). Führende Depressionssymptome wie Freudlosigkeit, niedergedrückte Stimmung oder Todeswunsch sind im Tiermodell wenn überhaupt nur äußerst bedingt nachstellbar. Dem Tier ist es nicht möglich, sich bezüglich seines Befindens zu äußern oder Gefühle zu schildern. Im Tiermodell können somit lediglich Depressions-ähnliche Symptome erfasst und quantifiziert werden. Eine weitere Schwäche dieses Stressmodells besteht darin, dass die subjektive Qualität der Stressoren von Tier zu Tier variieren kann und nach mehrmaliger Exposition eine Gewöhnung an die Versuchsbedingungen möglich ist (Galea et al., 1997; Grissom et al., 2007).

Trotz identischer Stress-Exposition der Versuchstiere können die resultierenden Corticosteronspiegel variieren. Um stabilere Plasma-Corticosteronwerte der Versuchstiere zu erzielen und die resultierenden Verhaltensänderungen verlässlicher beurteilen zu können, wurde im Rahmen dieser Arbeit eine andere Methode gewählt: die exogene Gabe von Corticosteron über subkutan implantierte Hormon-Pellets. Dies ermöglichte die Generierung konstanter Corticosteronspiegel über längere Zeiträume und darüber hinaus die Untersuchung des direkten Einflusses des zugeführten Corticosterons auf das Verhalten der Nager.

Bei Mäusen kann Depressions-ähnliches Verhalten in verschiedenen Tests erfasst und quantifiziert werden. So wird beispielsweise eine fehlende oder mangelhafte Präferenz für gesüßte Lösungen als Depressions-ähnliches Symptom gewertet. Weitere wichtige Kriterien zur Beurteilung eines Depressions-ähnlichen Phänotyps sind das Verhalten im "forced swimming test", der auswegslose Situationen modelliert, sowie der Zustand des Felles der Versuchtstiere.

C57BL/6 J und C57BL/6 N Mäuse

Der C57BL/6 Mausstamm wird tierexperimentell am häufigsten verwendet. Das Genom dieses Stammes konnte vollständig sequenziert werden (Waterson et al., 2002) und wird bevorzugt zur Generierung von transgenen oder Knockout-Mäusen sowie als Tiermodell für humane Krankheitsbilder genutzt (Al-Hasani et al., 2004; Tang et al., 2008). Wie auf Abb. 2 dargestellt existiert eine Vielzahl an Unterstämmen des C57BL/6 Stammes, die aus dem C57BL/6 J (J) und dem C57BL/6 N (N) Stamm hervorgehen. Der C578BL/6 J Stamm ist der "ursprüngliche", der 1921 im Jackson Labor von CC Little gezüchtet wurde. Hieraus wurde 1951 am National Institute of Health (NIH) der C57BL/6 N Stamm generiert. Beide Unterstämme sind äußerlich identisch, unterscheiden sich jedoch durch genetischen Drift in wenigen DNA Sequenzen. Aktuell sind 34 Einzelpolymorphismen (SNPs) bekannt, durch die sich das Genom der beiden Unterstämme unterscheidet (Simon et al., 2013). Diese Differenzierung wird von vielen Forschergruppen nicht beachtet. Verallgemeinernd wird von "C57BL/6" Mäusen gesprochen. Trotz der nur geringfügigen genetischen Differenzen zwischen J und N Mäusen, fanden sich in mehreren Studien signifikante Unterscheide im Verhalten der Stämme (Bothe et al.,

2004; Bryant et al., 2008). Dies zeigt die Bedeutung der Wahl des Stammes für die Bearbeitung der jeweiligen Fragestellung. An Nagern wurden Untersuchungen zur Pathogenese depressiver Erkrankungen bislang nahezu ausschließlich an Mäusen des C57BL/6 N Stammes durchgeführt (David et al., 2009; Kajiyama et al., 2009; Strekalova et al., 2004), kaum aber am C57BL/6 J Stamm. Die nur minimalen genetischen Unterschiede der beiden Stämme bei differierendem Phänotyp schaffen gute Voraussetzungen für die Zuordnung bestimmter Gene zu spezifischen Verhaltensvarianten.

Stammbaum der C57BL/6 Mäuse

Copyright [©] 2008 M Scott Buffy

Abb.2: Der C57BL/6 J Stamm wurde 1921 gezüchtet. Aus diesem wurde 1951 der C57BL/6 N Stamm generiert (linke Bildhälfte), aus dem, wie aus dem ursprünglichen J Stamm, mehrere Unterstämme hervorgingen. J und N Stamm sind äußerlich identisch, weisen aber geringe genetische Unterschiede auf.

Fragestellung

Im unserem Labor durchgeführte Arbeiten mit beiden Mausstämmen wiesen darauf hin, dass die C57BL/6 N Mäuse sensibler auf aversive Stimuli reagieren als der C57BL/6 J Stamm (Becker, unpublizierte Daten). Erstes Ziel der vorliegenden Arbeit war daher die definitive Klärung der Frage, ob sich die Unterstämme J und N in ihrer Anfälligkeit, Stress-induziertes Depressions-ähnliches Verhalten zu entwickeln, signifikant unterscheiden.

Neben der HHN-Achse scheint der Hippocampus in der Pathogenese der Depression eine wesentliche Rolle zu spielen (Caetano et al., 2004; Drevets, 2001; Lorenzetti et al., 2009). Zum einen ist die hippocampale Formation, die die Areale CA 1-4, den Gyrus dentatus und das Subiculum einschließt, als zentrale Struktur des limbischen Systems neben der Bewertung und Speicherung von Gedächtnisinhalten für die Generierung und Verarbeitung von Emotionen ("emotional processing") von großer Bedeutung. Zum anderen ist der Hippocampus Zielregion für die Effekte von chronischem Stress beziehungsweise erhöhten Cortison/Corticosteronspiegeln und insofern mit hoher Wahrscheinlichkeit für die Entstehung depressiver Erkrankungen besonders relevant.

Im Rahmen der vorgelegten Arbeit wurden folgende Fragen bearbeitet:

- 1) Verursacht die langfristige Gabe von Corticosteron bei Mäusen Depressionsähnliches Verhalten?
- 2) Sprechen die Tiere des C57BL/6 N und C57BL/6 J Stammes unterschiedlich auf chronische Corticosteronapplikation an?
- 3) Gibt es für den postulierten depressiven Phänotyp molekulargenetische Korrelate in der hippocampalen Formation?

Material und Methoden

Materialien

Arbeitsgeräte

Affymetrix Station	Hybridisierungsofen 645, Fluidics Station 450 und Scanner 3000 7G, Affymetrix, High Wycombe, UK
Analysenwaage	BP 121 S, Sartorius AG, Göttingen, D
Bewegungsdetektoren	Infra-e-motion, Henstedt-Ulzburg, D
CCD Kamera	KY-F75U, JVC, Friedberg, D
Gefrierschrank -80°C	Heraeus Instruments GmbH, Hanau, D
Homogenisator	Precellys 24, peqlab GmbH, Erlangen, D
Kryostat	CM3050S, Leica GmbH, Wetzlar, D
Mikroplattenlesegerät	MRX Dynex Technologies, Denkendorf, D
Offenfeld	TSE Systems GmbH , Bad Homburg, D
Pipetten	Research, Eppendorf, Hamburg, D
Real- time PCR System	TaqMan [®] 7900HT, Applied Biosystems, Darmstadt, D
Rotationsmischer	Vortex Genie 2, Bender& Hobein, Zürich, CH
Thermocycler	UNO II, Biometra, Göttingen, D
Thermomixer	Thermomixer Compact, Eppendorf, Hamburg, D
UV Spektrometer	ND-1000, Thermo Scientific GmbH, Schwerte, D
Zentrifugen	5415R, Eppendorf, Hamburg, D
Multifuge 3SR	Heraeus Instruments GmbH, Hanau, D

Chemikalien

dNTPs Mix (10 mM)	Invitrogen GmbH, Karlsruhe, D
DTT (0,1M und 2M)	Invitrogen GmbH, Karlsruhe, D
Kochsalzlösung (0,9%)	Deltaselect GmbH, Dreieich, D
Oligo (dT) ₁₂₋₁₈ Primer (0,5 μg/ μl)	Invitrogen GmbH, Karlsruhe, D
Superscript II	Invitrogen, Darmstadt, D
TaqMan [®] Universal Master Mix	Applied Biosystems, Darmstadt, D
Ultrapure Wasser (H ₂ O)	Gibco/ Invitrogen GmbH, Karlsruhe,D

Verbrauchsmaterial

Eindeckmedium	Tissue Tek, Compound Sakura Finetek, USA
GeneChip®	Mouse Genome 430 2,0 Array Affymetrix, High Wycombe, UK
Kanülen	14 G Vasofix [®] und 27 G Sterican [®] , B. Braun Melsungen AG, Melsungen, D
Keramikkügelchen	MagNA Lyser Green Beads, Roche Diagnostics GmbH, Mannheim,
Nahtmaterial	Prolene 3.0
Reaktionsgefäße	Safelock 0,5 und 2 ml, Eppendorf, Hamburg, D 0,2 ml Sarstedt, Nümbrecht, D
TaqMan [®] PCR Platten	Applied Biosystems, Darmstadt, D

Kits für die Molekularbiologie

Corticosteron EIA KIT	IDS GmbH, Frankfurt am Main, D
Gene Chip [®] Hybridization Wash und Stain Kit	Affymetrix, High Wycombe, UK
Gene Chip [®] TwoCycle Target Labeling Kit	Affymetrix, High Wycombe, UK
RNeasy [®] Micro Kit	Qiagen, Hilden, D

TaqMan[®]-Assays

Gen	Assay-Nummer
beta- Actin	Mm 00607939_s1
Ntrk2	Mm 01341751_m1
TGFB1	Mm 00441724_m1
NR4A2	Mm 00443056_m1

Enzyme

Ribonuclease H (2 U/µl)	Invitrogen GmbH, Karlsruhe, D
RNase OUT ™ (40 U/ μl)	Invitrogen GmbH, Karlsruhe, D
Superskript ™ II (200 U/μI)	Invitrogen GmbH, Karlsruhe, D
Reverse Transkriptase	

Lösungen

Isopentan

Sigma-Aldrich, Hamburg, D

Computersoftware und Datenbanken

Actimot	TSE Systems GmbH, Bad Homburg, D
Expression Console 1.1	Affymetrix, High Wycombe, UK
GeneSpring GX 10.01	Agilent Technologies GmbH, Waldbronn, D
Mouse-e-motion	Infra-e-emotion, Henstedt-Ulzburg,D
NIS Elements Version AR 3.0	Nikon GmbH, Düsseldorf, D
Office 2011 (Excel, Word)	Microsoft Corporation, USA
Revelation 4. 22	Dynex Technologies, Denkendorf, D
SDS 2.2	Applied Biosystems, Darmstadt, D
Statistica	StatSoft Inc., USA
Videomot	TSE Systems GmbH, Bad Homburg, D

Versuchstiere

Insgesamt wurden 42 männliche Mäuse des Inzuchtstammes C57BL/6 J und 42 männliche Mäuse des Inzuchtstammes C57BL/6 N der Firma Charles River (Charles River Laboratories, Sulzfeld) verwendet. Davon wurden jeweils 18 Tiere jedes Stammes für orientierende Vorversuche und 24 Tiere für den Hauptversuch verwendet. Zu Beginn der Testphase waren alle Tiere 14 Wochen alt. Die Haltung erfolgte einzeln in Makrolonkäfigen Typ I. Wasser und Futter stand den Mäusen *ad libitum* zur Verfügung. Die Temperatur im Haltungsraum lag bei 22 °C, die Luftfeuchtigkeit bei 45 +/- 5 %. Der Tag-Nacht-Rhythmus der Tiere lag bei 12:12 h, wobei die Dunkelphase von 7:00 bis 19:00 andauerte. Die Tierhaltung erfolgte gemäß den Richtlinien des deutschen Tierschutzgesetzes (Tierschutzgesetz v 18.5.2006 BGBI. I S. 1206, 1313; letzte Änderung Art. 20 G 9.12.2010 (BGBI. I S. 1934, 1940 f.)).

Hormon-Pellet Implantation

Im Rahmen des Hauptversuches wurden den Mäusen beider Unterstämme im Alter von 12 Wochen Hormon-Pellets der Firma *Innovative Rresearch of America* (Sarisota, Florida) implantiert. Die Pellets hatten eine Größe von 0,5 X 0,5 cm und setzten über eine Dauer von 21 Tagen kontinuierlich Corticosteron frei. Die akkumulierte Gesamtdosis betrug 20 mg/kg. Den Tieren der Kontrollgruppen wurden entsprechende Placebo-Pellets implantiert, die bis auf das Corticosteron aus derselben Matrix (Cholesterol, Zellulose, Lactose, Phosphat und Stearat) bestanden.

Zur Implantation wurden die Versuchstiere kurzzeitig mit Isoflurangas betäubt. Nach Lagerung der Tiere in Bauchlage erfolgte ein 0,6 cm langer Hautschnitt auf Höhe des linken Schulterblattes. Die Pellets wurden in einer kleinen nach distal präparierten subkutanen Tasche unter Vermeidung direkten Kontaktes mit dem Hautschnitt platziert. Die Wunde wurde anschließend mit atraumatischem Nahtmaterial (Prolene 3-0, 2 Einzelknopfnähte) verschlossen. Zur Verhinderung entzündlicher Prozesse im Wundbereich wurden jeweils 250 ml Carprofen (4 mg/1kg Körpergewicht) subkutan injiziert. Der Pellet-Implantation schloss sich eine 2-wöchige Erholungsphase an.

Testverfahren zur Verhaltensanalyse

3h-Sucrose-Präferenz Test

Der 3h-Sucrose-Präferenz-Test zeigt, ob Mäuse süße Lösungen reinem Wasser vorziehen. Der Test wurde einmal vor und ein zweites Mal 15 Tage nach der der Hormon-Pellets durchgeführt. Zum Ausschluss Implantation möglicher Verfälschungen der Präferenzwerte durch Angst vor der unbekannten Trinklösung wurde bereits ein Tag vor Durchführung des Tests eine Trinkflasche mit einer 2,5%igen Sucroselösung anstelle der mit Wasser gefüllten Trinkflasche für 2,5 h im Käfig platziert. Dies ermöglichte eine Gewöhnung an die süße Lösung. Am Test-Tag wurde über einen Zeitraum von 3 h allen Mäusen in ihren Heimkäfigen zusätzlich zu reinem Wasser eine 1% ige Sucroselösung angeboten. Um Seitenpräferenzen auszuschließen, wurde die Anordnung der Trinkflaschen für Sucrose und Wasser jeweils nach 1,5 h gewechselt. Die Flaschen wurden vor der Präsentation und unmittelbar nach dem Entfernen aus dem Käfig gewogen und die Differenz der beiden Messwerte ermittelt. Für jede Maus wurde die Sucrose-Präferenz als prozentualer Anteil der konsumierten Sucroselösung zur gesamten, innerhalb der 3 h konsumierten Flüssigkeit errechnet.

Offenfeld Test

Mäuse und viele andere Säugetiere meiden zum Schutz vor Fressfeinden offene Flächen ohne Rückzugsmöglichkeiten. Konfrontation mit einer unbekannten Umgebung verursacht Stress und beeinflusst das Verhalten der Tiere. Das resultierende Verhaltensmuster ist durch Ambivalenz bestimmt. Einerseits treibt sie ihre Neugier dazu, die unbekannte Situation zu erkunden, andererseits besteht Angst vor der neuen Umgebung und möglichen lauernden Gefahren.

Der ursprünglich von Calvin Hall entwickelte Offenfeld Test (Hall und Ballechey, 1932) gibt Aufschluss über Bewegungs- und Erkundungsverhalten sowie das Angstniveau der Versuchstiere in ungewohnter Umgebung. Die zurückgelegte Distanz und die Anzahl der Aufrichtungen auf die Hinterbeine *(rearings)* sind Maß für die lokomotorische Aktivität und werden als Messgrößen für exploratives Verhalten und Ängstlichkeit gewertet. Die Aufrichtungen auf die Hinterbeine dienen einer "Risiko-Einschätzung" der für die Tiere unbekannten Umgebung. Sie signalisieren das Zögern der Maus sich von der aktuellen Position fortzubewegen um die Umgebung zu erkunden (Blanchard et al., 2001). Eine hohe Anzahl an Besuchen im Zentrum der Arena und eine lange im Zentrum verbrachte Zeitspanne sprechen für gesteigertes exploratorisches Verhalten und ein geringes Angstniveau.

Katz et al. konnten bereits 1981 demonstrieren, dass chronisch gestresste Ratten eine gemindertes exploratives Verhalten im Offenfeld zeigten und deuteten dies als Ausdruck des Interessenverlusts der Tiere, ein Verhaltensmuster, das auch bei depressiven Menschen bekannt ist (Katz et al.,1981 b).

Für die Durchführung wurde eine am Boden mit 5 lux beleuchte rechteckige Arena (45x25x22 cm) aus Acrylglas verwendet. Jede Maus wurde einzeln in die linke untere Ecke der Offenfeld Arena gesetzt. Die horizontale und die vertikale Aktivität jedes Tieres wurden innerhalb der Testzeit von 15 Minuten über Infrarotdetektoren aufgezeichnet. Mit Hilfe eines automatischen Meßsystems (Actimot, TSE Systems GmbH) wurden alle Unterbrechungen der Infrarot-Schranken wahrgenommen und gespeichert. Nach Ablauf

der Testzeit wurden die Mäuse in Ihren Käfig zurückgesetzt und die Arena mit einer 70%igen Ethanollösung sorgfältig gesäubert.

"forced swimming test" (FST)

Der 1977 von Porsolt et al. entwickelte Test dient der quantitativen Erfassung der Passivität in einer für das Versuchstier ausweglosen Situation. Hierzu wurden die Mäuse einzeln bei Raumbeleuchtung von 5 lux in einen bis zur Hälfte mit ca. 23° C warmen Wasser gefüllten Plastikzylinder (25×19×13 cm) gesetzt.

Nach einer initialen Eingewöhnungsphase von 2 Minuten wurde das Schwimmverhalten der Tiere für 4 Minuten beobachtet und mit einer Videokamera aufgezeichnet. In der ersten Versuchsphase versucht die Maus der aversiven Situation durch Schwimmbewegungen mit den Pfoten und dem Schwanz zu entkommen. Dann jedoch verharrt sie regungslos und lässt sich auf dem Wasser treiben. Die Zeit, in der die Maus in dieser immobilen Haltung verbleibt, wird mittels einer Stoppuhr gemessen. Da sich diese Zeit durch die Gabe von antidepressiver Medikation verringert, wird sie als Maß für den Grad der Verzweiflung des Tieres gewertet und als Depressions-ähnliches Verhalten interpretiert (Porsolt et al., 1977). Nach Ablauf der für den Test vorgesehenen 6 Minuten wurden die Versuchstiere aus dem Wasserzylinder herausgenommen, trocken gerieben und unter einer Rotlichtlampe gewärmt.

Beurteilung der Fellbeschaffenheit

Der Zustand der Fellbeschaffenheit einer Maus spiegelt deren allgemeines physisches und psychisches Befinden (Surget et al., 2008). 21 Tage nach der Implantation der Hormon-Pellets wurde jede einzelne Maus von einer Mitarbeiterin des Labors beurteilt, die weder in das Projekt involviert, noch über den jeweiligen Unterstamm oder die jeweilige Behandlungsform der Tiere informiert war. Für jeden der in **Tab. 1** aufgelisteten Körperteile wurden 2 Punkte (bei sehr gutem Zustand), 1 Punkt (bei befriedigendem Zustand) oder 0 Punkte (bei schlechtem Zustand) vergeben. Für jedes einzelne Tier wurde die Gesamtpunktzahl als Maß für die Beschaffenheit des Fells gewertet.

<u>Körperpartie</u>	Punkte
Kopf	0-2
Nacken	0-2
Rücken	0-2
Bauch	0-2
Vorderpfoten	0-2
Hinterpfoten	0-2
Schwanz	0-2
Gesamtpunktzahl	Σ

Beurteilung der Fellbeschaffenheit

Tab. 1: Die in der Tabelle aufgelisteten Körperteile der Mäuse wurden nach ihrem äußeren Erscheinungsbild beurteilt und je Körperpartie ein Punktwert von 0-2 (0 Punkte: schlechter Zustand; 1 Punkt: befriedigender Zustand; 2 Punkte: sehr guter Zustand) vergeben. Für jedes einzelne Tier wurde so mittels der erreichten Gesamtpunktzahl ein Maß für dessen äußeres Erscheinungsbild bestimmt.

Molekularbiologische Methoden

Organentnahme

Nach der Dekapitation wurden den Versuchstieren die Gehirne, die Nebennieren, ein Teil der Bauchhaut sowie der Thymus entnommen und bei - 80 °C bis zur weiteren Verwendung gelagert.

Präparation der Gehirnareale

Zur Entnahme der Gehirne wurden die Kalotten vorsichtig mit Präparierbesteck eröffnet, die Gehirne von der Schädelbasis gelöst und in -40 °C kaltem Isopentan schockgefroren. Zur Isolierung der interessierenden Hirnregionen wurden die Hirne zunächst mit Eindeckmedium fixiert und anschließend in 200 µm feinen, koronaren Scheiben bis zu den Zielregionen abgetragen (MICROM, Techno-Med GmbH, Bielefeld). Mit Hilfe einer abgestumpften Vasofix• Kanüle (Innendurchmesser: 1,75 mm) wurden anschließend folgende Gehirnareale präpariert: Bulbus Olfactorius, medialer präfrontaler Cortex, Nucleus Accumbens, Amygdala und Hippocampus. Zur Lokalisation verwendeten wir den Hirnatlas von Paxinos und Franklin (Paxinos und Franklin, 2001).

Isolierung und Quantitätsbestimmung der RNA

Zur Isolierung der RNA verwendeten wir das RNeasy[•] Mikro Kit von Qiagen gemäß den Herstellerangaben. Quantitätsbestimmungen von DNA oder RNA beruhen auf der Eigenschaft konjugierter Basenpaare der RNA, UV-Licht bei etwa 260 nm zu absorbieren. Dies ermöglicht die Quantifizierung der Konzentration von RNA mittels UV Spektroskopie. Dabei entspricht eine optische Dichte von 1 bei 260 nm einer Konzentration von 50 ng/ml für DNA oder 40 ng/ml für RNA. Die Reinheit der gemessenen Nukleinsäure wird über den Quotienten 260 zu 280 nm bestimmt und sollte für RNA bei 2,0 (reine RNA) liegen. Werte um 1,8 sprechen für eine Verunreinigung der RNA durch DNA. Wird ein Wert unter 1,8 gemessen, ist eine Kontamination der Probe wahrscheinlich. Für die im Rahmen der vorgelegten Arbeit durchgeführten Experimente wurde für die UV Spektroskopie der ND-1000 verwendet.

Qualitätsbestimmung der RNA

Die Analyse der RNA-Qualität erfolgte mit dem Agilent Bioanalyser 2100. Der hierzu verwendete RNA 6000 Nano LabChip (die maximale Ladungskapazität des Chips beträgt 12 Proben) enthält eine Gelmatrix, die mit einem fluoreszierenden Farbstoff versehen ist. Dieser Farbstoff interkaliert zwischen die Basenpaare der RNA und dient der Qualitätsbeurteilung. In jede Vertiefung des Chips wurde je 1 µl Proben- RNA pipettiert. Zusätzlich wurde dem Chip ein Längenstandard (ladder) hinzugefügt. Jede Probe und der Ladder wurden nun mit einem internen Nukleinsäurestandard bekannter Größe (marker) beladen. Dieser ist Referenz für die Quantifizierung des Längenstandards und der RNA Probe. Anschließend wurde im Bioanalyser die Kapillarelektrophorese durchgeführt und die Daten ausgewertet. Aus dem Verhältnis von 18s rRNA (Peak bei ca. 40 sec.) und 28s rRNA (Peak bei ca. 46 sec.) können Rückschlüsse auf den Grad der Degradierung der RNA gezogen werden. Das als "RNA integrity number" (RIN) bezeichnete Verhältnis zwischen 18s RNA und 28s RNA sollte bei guter Qualität der getesteten RNA bei 2:1 liegen. Eine gänzlich intakte RNA ist durch *RIN* Werte von 10 gekennzeichnet, Werte um 1 sprechen für völlig zerstörte RNA.

Für die im Rahmen dieser Arbeit durchgeführten weiteren Untersuchungen wurden ausschließlich RNA Proben mit *RIN* Werten > 9 und einem 260/280 Quotienten um 2 verwendet.

Microarray-Analysen

Das Microarray-Verfahren macht es möglich, sowohl mehrere tausend differentiell regulierte Gene einer Probe zu detektieren, als auch deren Expressionsstärke zu bestimmen (Marcotte et al., 2001; Mirnics und Pevsner, 2004). Die in dieser Arbeit verwendeten Microarray-Chips der Firma *Affymetrix* verfügen über mehr als 45000 Oligonukleotidsonden, die durch *in situ* Hybridisierung auf einen Glasobjektträger innerhalb der Chips aufgetragen wurden. Diese Oligonukleotidsonden sind 25 Basenpaare lang und repräsentieren insgesamt mehr als 34000 Gene des Mausgenoms. Mehrere identische Sonden sind auf einer exakt determinierten Stelle auf dem Chip lokalisiert. Diese Stellen werden als Spots bezeichnet. Sie besitzen eine spezifische zur Ziel-mRNA komplementäre Sequenz und binden im folgenden Hybridisierungsprozess die komplementären Oligonukleotide der Ziel- mRNA. Im

Anschluss kann mit Hilfe einer speziellen Computersoftware jedem Spot ein Gen zugeordnet werden. Darüber hinaus ist es möglich, anhand des Anteils an hybridisierter RNA an einem Spot Rückschlüsse auf die Quantität der Expression dieses Gens zu ziehen.

In der vorgelegten Arbeit wurden RNA-Proben des Hippocampus von jeweils 4 Tieren der N Cort-, der N Placebo-, der J Cort- und der J Placebo-Gruppen mit den beschriebenen Gen-Chips analysiert. Zur Genexpressionsanalyse der insgesamt 16 Proben wurden pro Chip je 100 ng RNA aus hippocampalem Gewebe verwendet.

Die zur Hybridisierung der Proben erforderliche Vorbereitung erfolgte mittels des *Gene Chip*[®] *Twocycle Target Labeling Kits* (*Affymetrix*).

Das im Anschluss an die Hybridisierung durchgeführte Wasch- und Färbeverfahren erfolgte mit Hilfe der *Fluidics Station 450 (Affymetrix)*. Die behandelten Chips wurden mit *dem Gene Chip*[®]*3000 7G Scanner (Affymetrix)* in den Computer eingelesen. Mittels der *Software Expression Console 1.1 (Affymetrix)* wurde die Qualität überprüft und die Zuordnung der Spots zu den entsprechenden Zielsequenzen durchgeführt. Im Folgenden wurden die Daten unter Verwendung der *Software Gene SpringGX 10.01* ausgewertet und mit Hilfe des RMA Algorithmus nach Expressionsstärke und signifikanter Expressionsveränderung gefiltert. Mittels einer ANOVA wurde die differentielle Expression der einzelnen Kandidatengene bestimmt und nur solche ausgewählt, deren p-Werte < 0,05 und deren Expressionswerte oberhalb einer 1,5-fachen Grenze lagen.

cDNA Synthese

Zur Durchführung der quantitativen *real-time polymerase-chain-reaction* (qrt-PCR) muss zunächst die RNA in komplementäre DNA (cDNA) umgeschrieben werden. Hierzu wird das Enzym *Reverse Transkriptase* verwendet. Zum Synthesestart, der ausschließlich an doppelsträngigen Nukleinsäuren möglich ist, benötigt das Enzym *Oligo(dt)*₁₂₋₁₈ *Primer*, die sich komplementär an die mRNA anlagern und so als Startpunkt für die *Reverse Transkriptase* (Superskript II, Invitrogen) dienen.

Tab. 2 zeigt eine Auflistung der verwendeten Reagenzien und Reaktionsbedingungen.

Reagenzien	Volumen	Temperatur	Zeit
RNA (min 250 ng)	10 µl		
Oligo(dT) ₁₂₋₁₈ Primer	1 µl		
		70 °C	10 min
		4 °C	3 min
5x first strand buffer	4 µl		
DTT, 0,1 M	2 µl		
dNTPs (je 10 mM)	1 µl		2 min
RNase OUT	1 µl		3 min
		42 °C	
		4 °C	60 min
			15 min
Superscript II	1 µl	42 °C	10 min
		70 °C	
		4 °C	

Reagenzien und Reaktionsbedingungen der cDNA Synthese

Tab. 2: Die Synthese der cDNA erfolgte unter Anwendung der hier dargestellten Reagenzien, Volumina und Reaktionsbedingungen.

Quantitative real-time PCR

Die quantitative real-time PCR (qrt-PCR) dient der Detektion der in der Microarray-Analyse ermittelten Ziel-RNA. Sie ist eine Vervielfältigungsmethode für Nukleinsäuren, die auf dem Prinzip der herkömmlichen Polymerase-Kettenreaktion (PCR) beruht, wobei zusätzlich die Menge an entstandener cDNA über Fluoreszenzfarbstoffe markiert wird. Dies ermöglicht die Quantifizierung der gewonnenen DNA.

Im Rahmen der vorgelegten Arbeit wurden spezifische Sonden in Form von *TaqMan*[®] - Assays zur Durchführung der qrt-PCR verwendet. Die qrt-PCR ermöglicht eine schnelle und sensitive *in vitro* Amplifizierung spezifischer DNA Abschnitte und somit die Detektion kleinster DNA Mengen. Beim *TaqMan*[®]-Assay liegt zwischen den zwei

spezifischen Oligonukleotid- Primern ein zusätzliches fluoreszensmarkiertes Oligonukleotid, die *TaqMan*[®]-Sonde. Diese Sonde ist am 5'-Ende mit einem Fluoreszenzfarbstoff und am 3'- Ende mit einem Quencher markiert. Bei der intakten *TaqMan*[®]-Sonde wird die Reporterfluoreszenzemission durch die Nähe zum Quencher unterdrückt. Bei der Neustrangsynthese wird die *TaqMan*[®] Probe durch die 5'-3'-Exonucleaseaktivität der Taq-Polymerase in Fragmente geschnitten. Dies führt zu einer Trennung von Reporter und Quencher und ermöglicht somit die Erfassung der Reporterfluoreszenz. Nach abgeschlossener PCR wurde jede cDNA Probe in Triplikaten unter Verwendung des folgenden Mastermix-Ansatzes bestimmt (

Tab. 3):

Reaktionsanstatz für die qrt-PCR

Reagenzien	Volumen
TaqMan [®] Universal PCR Master Mix (2x)	5,0 µl
20x TaqMan [®] Gene Expression Assay Mix	0,5 µl
H2O	2,5 µl
cDNA	2,0 µl

Tab. 3: Nach abgeschlossener PCR wurden die cDNA Proben unter Verwendung des abgebildeten Mastermix-Ansatzes bestimmt.

Zum Schutz vor Degeneration der empfindlichen Nukleinsäuren erfolgte die Pipettierung der Reaktionsansätze in eine 384er Mikrotiterplatte auf Eis. Nachfolgend wurde die Platte luftdicht mit einer Folie (*optical adhesive covers*) verschlossen und in einer für die Platte geeigneten Zentrifuge für 60 s zentrifugiert. Im Anschluss erfolgte die qrt-PCR Messung mit dem *ABI Prism 7000 Sequence Detection System*. Dabei wurde das in Tab.4 dargestellte Temperaturprogramm angewandt.

Zeit (Minuten)	Temperatur (°C)	Zyklusanzahl
2	50	1
10	95	1
1/6	95	
1	60	40
×	4	1

Reaktionsprogramm der qrt-PCR

Tab. 4: Für die qrt-PCR wurde das hier dargestellte Reaktionsprogramm angewandt.

Statistik

Alle normalverteilten Daten wurden mittels einer Einweg- oder Zweiweg-Anova gefolgt von Bonferroni Post-hoc-Test analysiert, nicht normalverteilte Daten wurden mit Hilfe einer Kruskall-Wallis- Anova gefolgt von Dunn's Post-hoc-Test ausgewertet.

Zeitverlauf des Experiments

Vorversuch

Im Vorfeld wurde eine Testreihe mit 18 männlichen C57BL/6 J und 18 C57BL/6 N Mäusen durchgeführt, um die Basiswerte der beiden Inzuchtstämme bezüglich des Sucrose-Konsums, des explorativen Verhaltens, des Verhaltens in ausweglosen Situationen zu bestimmen.

Das Verhalten der Tiere wurde nach einer Eingewöhnungszeit von 14 Tagen im Offenfeld Test, im 3h-Sucrose-Präferenz Test und im *"forced swimming* test" bestimmt. Um eine ausreichende Erhohlungszeit zwischen den einzelnen Versuchen zu gewährleisten, betrug das Zeitintervall zwischen den Tests mindestens 24 h.

Alle Versuche wurden standardisiert und zur jeweils selben Tageszeit durchgeführt. Am Ende der Versuchsreihe wurden die Tiere durch zervikale Dislokation getötet. Die Gehirne wurden entnommen, in Isopentan schockgefroren und bei -80 °C gelagert. Der zeitliche Ablauf des Vorversuches ist in Abb. 3 dargestellt.

Abb.3: Nach einer Eingewöhnungsphase von 14 Tagen wurden die Verhaltenstests in der oben dargestellten Reihenfolge durchgeführt. Der 3h-Sucrose-Präferenz-Test wurde mehrmals mit unterschiedlichen Sucrose-Konzentrationen wiederholt, um die von den Mäusen am stärksten präferierte Sucrose- Konzentration (1%ige Lösung) zu ermitteln, die dann im Hauptversuch zur Durchführung des SPT verwendet wurde. An Tag 23 wurden die Mäuse getötet und die Organe entnommen.

Hauptversuch

Im Anschluss an die im Vorversuch durchgeführte Datenerhebung wurde eine weitere Testreihe mit insgesamt 24 männlichen Mäusen des Stammes C57BL/6 J und 24 männlichen Mäusen des Stammes C57BL/6 N durchgeführt, um den Einfluss konstanter Corticosteronerhöhung im Blutserum auf das Verhalten der Tiere zu erfassen.

Bei Testbeginn waren alle Tiere 14 Wochen alt. Das Verhalten der Mäuse wurde im 3h-Sucrose-Präferenz Test, im Offenfeld Test und im "forced swimming test" beurteilt. Außerdem wurde am Ende der Testreihe die Fellbeschaffenheit jeder einzelnen Maus bewertet. Die Verhaltenstests wurden in einer Versuchskaskade durchgeführt, die in Abb. 4 dargestellt ist. Zwischen den einzelnen Testungen lag jeweils mindestens ein Zeitraum von 24 h um ausreichende Erholung der Tiere zu gewährleisten und eine mögliche Beeinflussung der jeweiligen Testergebnisse durch Interferenz der Verhaltensversuche auszuschließen.

Nach Durchführung des letzten Tests (Beurteilung der Fellbeschaffenheit) wurden die Tiere durch zervikale Dislokation getötet. Danach wurden Hirne, Nebennieren, Augen, Bauchhaut und Thymus der Tiere entnommen, in Isopentan schockgefroren und bei -80 °C verwahrt.

Zeitlicher Ablauf des Hauptversuchs

Tag	Experiment
- 28	Eingewöhnungsphase
- 4	Basiswerte: Sucrose-Präferenz Test
0	Pellet-Implantation
14	3h-Sucrose-Präferenz Test
16	Offenfeld Test
17	"forced swimming test"
21	Beurteilung der Fellbeschaffenheit Dekapitation Hirnentnahme

Abb.4: Nach einer Eingewöhnungsphase von 24 Tagen wurden die Basiswerte im 3h-Sucrose-Präferenztest bestimmt. Am Tag 0 wurden die Versuchstiere in 4 Gruppen eingeteilt (J Cort, J Placebo, N Cort und N Placebo) und die entsprechenden Corticosteron bzw. Placebo Pellets implantiert. Nach einer Erholungsphase von 14 Tagen begannen die Verhaltenversuche in der in Abb. 4 dargestellten Reihenfolge. An Tag 21 wurden die Mäuse getötet und die Organe entnommen.

Ergebnisse

Vorversuche

In den Vorversuchen wurde untersucht, ob das Verhalten der beiden Mausstämme C57BL/6 J und C57BL/6 N in ungestresstem Zustand differiert.

Im 3h-Sucrose-Präferenz Test und im "forced swimming test" zeigten die Mäuse des C57BL/6 J und des C57BL/6 N Stammes keine signifikanten Verhaltensunterschiede (siehe Abb. 5 und 6). Die Auswertung der Daten im OFT ergab einen signifikanten Unterschied zwischen dem J und dem N Stamm(Abb. 7).

Abb. 5: Die Graphik zeigt, dass die Sucrose-Präferenz beider Linien keine Unterschiede aufweißt (t_{15} =1,596; p > 0,05).

Basalwerte beider Mausstämme im "forced swimming test"

Abb. 6: Die Graphik zeigt, dass beide Maus-Linien keine unterschiedlich hohen Immobilitäts-Zeiten aufweisen (t_{18} =0,992; p > 0,05).

Horizontale Aktivität beider Mausstämme im Offenfeld Test

Abb. 7: Die Graphik zeigt, dass die lokomotorische Aktivität des N Stammes gegenüber dem J Stamm etwas geringer ist [F 1,33=30,75; p < 0,001)].

Hauptversuch

3h-Sucrose-Präferenz Test

Der 3h-Sucrose-Präferenz Test wurde zur Erfassung anhedonischen Verhaltens durchgeführt. Die Präferenz der Tiere für die gesüßte Lösung wurde erstmals 4 Tage vor

Implantation der Corticosteron-Pellets und ein zweites Mal 14 Tage postoperativ ermittelt (Abb. 8 und Abb. 9)

Vor Einsetzen der Corticosteron-Pellets tranken sowohl die Tiere des C57BL/6 J als auch die des C57BL/6 N Stammes eine größere Menge der gesüßten Flüssigkeit als Wasser und zeigten somit eine Präferenz für die Sucrose-Lösung. 14-tägige kontinuierliche Corticosteron-Applikation beeinflusste das Präferenzverhalten der Versuchstiere signifikant aber stammesspezifisch. Bei Mäusen des C57BL/6 J Stammes führte die Corticosteronapplikation zu keiner signifikanten Veränderung des Präferenzverhaltens [F(1,22) =1,871; p > 0,05] (Abb. 8).

Bei den mit Corticosteron behandelten C57BL/6 N Mäusen beobachteten wir jedoch einen signifikant anhedonischen Phänotyp [F(1,22) = 8,478; p < 0,001]. Bei der Placebo-Gruppe ergaben sich keine maßgeblichen Änderungen des Präferenzverhaltens (Abb.9).

Abb. 8 und Abb. 9 zeigen die Varianzanalysen mit Messwertwiederholungen der Sucrose-Präferenz der C57BL/6 J und N Mäuse vor und nach 14-tägiger chronischer subkutaner Corticosteron- bzw. Placebo Applikation.

Es wurden jeweils 24 Tiere beider Mausstämme untersucht. Pro Stamm erhielten 12 Tiere Corticosteron- und 12 Tiere Placebo-Pellets. Die Graphiken zeigen die Mittelwerte der Sucrose-Präferenz an den beiden Messzeitpunkten. Die grauen Linien zeigen die Präferenzwerte der mit Placebo behandelten, die schwarzen die der mit Corticosteron-Pellets implantierten Mäuse.

Abb.8: Mit Corticosteron-Pellets implantierte C57BL/6 J Mäuse zeigen keinen signifikanten Unterschied zu den mit Placebo- Pellets implantierten C57BL/6 J Mäusen.

3h-Sucrose-Präferenz Test (N Stamm)

Abb. 9: Verglichen mit der Placebo-Gruppe zeigen die mit Corticosteron behandelten C57BL/6 N Mäuse eine signifikante Abnahme der Sucrose-Präferenz.

[F(1,22) = 8,478; p < 0,001]

* p < 0,05 (Zweiweg-Anova mit wiederholten Messungen gefolgt von Bonferroni Posthoc-Test)

3h-Sucrose-Präferenz Test (J Stamm)

Offenfeld Test

Im Offenfeld Test wird das explorative Verhalten von Mäusen in einer für die Tiere fremden Umgebung erfasst. Hierzu werden sowohl horizontale Aktivität (zurückgelegte Distanz), vertikale Aktivität (Aufrichten der Nager auf die Hinterbeine), die Anzahl der Besuche im Zentrum der Offenfeld Arena und die im Zentrum verbrachte Zeit quantitativ erfasst.

Horizontale Aktivität

Eine Analyse mittels Zweiweg-Anova ergab für die Interaktion zwischen Stamm und Behandlung keinen signifikanten Effekt. Es zeigte sich jedoch ein signifikanter Effekt des Stammes: [F(1,38=23,95; p < 0,0001)] und ein signifikanter Effekt der Behandlung auf die lokomotorische Aktivität der Versuchstiere: [F(1,38=37,24; p < 0,0001)]. Nach Anwendung des Bonferroni Post-hoc-Tests ergab sich für die mit Corticosteron-Pellets implantierten C57BL/6 J Mäuse eine signifikant geringere lokomotorische Aktivität als für die mit Placebo- Pellets implantierten Tiere dieses Zuchtstammes (Abb.10). Die mit Corticosteron behandelten Mäuse des C57BL/6 N Stammes legten im Vergleich mit ihrer Kontrollgruppe ebenfalls eine deutlich geringere Distanz zurück (Abb. 10).

Es wurden jeweils 24 Tiere beider Mausstämme untersucht. Pro Stamm erhielten 12 Tiere Corticosteron- und 12 Tiere Placebo-Pellets. Die horizontale Aktivität wurde für den Zeitraum von Minute 1-5 ermittelt.

Horizontale Aktivität der Mauslinien im Offenfeld Test

Abb.10: Die schwarzen Balken symbolisieren die mit Corticosteron-Pellets implantierten Mäuse des J bzw. N Stammes, die weißen Balken zeigen die mit Placebo-Pellets versehenen Tiere.

Die in Minute 1-5 zurückgelegte Distanz der mit Corticosteron-Pellets implantierten C57BL/6 J Mäuse (JCort) ist verglichen mit der Placebo-Gruppe dieses Stammes (JPla) signifikant geringer. Auch die mit Corticosteron-Pellets implantierten C57BL/6 N Mäuse (NCort) leisten eine signifikant geringere Distanz als die Kontrollgruppe (NPla).

**** JC/JP : p < 0,0001; ** NC/NP: p < 0,01 (Zweiweg-Anova gefolgt von Bonferroni Post-hoc-Test)

Vertikale Aktivität

Die Anzahl der Aufrichtungen der Mäuse auf ihre Hinterbeine wurde von Minute 1-5 ermittelt und ausgewertet.

Die Auswertung der Anzahl der Aufrichtungen der Versuchstiere ergab keine signifikanten Unterschiede zwischen den Stämmen [F(1,38)=1,792; p > 0,05)], den Behandlungen [F(1,38)=0,603; p > 0,05)] und in der Interaktion zwischen Behandlung und Stämmen [F(1,38)=0,161; p > 0,05)].

Abb.11 zeigt die vertikale Aktivität beider Stämme. Es wurden jeweils 24 Tiere beider Mausstämme untersucht. Pro Stamm erhielten 12 Tiere Corticosteron- und 12 Tiere Placebo-Pellets. Die vertikale Aktivität wurde für den Zeitraum von Minute 1-5 ermittelt. Die schwarzen Balken symbolisieren die mit Corticosteron-Pellets implantierten Mäuse des J bzw. N Stammes, die weißen Balken zeigen die mit Placebo-Pellets versehenen Tiere.

Vertikale Aktivität der Mauslinien im Offenfeld Test

Abb.11: Die Auswertung der Anzahl der Aufrichtungen der Versuchstiere aller vier Gruppen ergibt keine signifikanten Unterschiede zwischen den Stämmen [F(1,38)=1,792; p > 0,05)], den Behandlungen [F(1,38)=0,603; p > 0,05)] und in der Interaktion zwischen Behandlung und Stämmen [F(1,38)=0,161; p > 0,05)].

Anzahl der Besuche im Zentrum des Offenfeldes

Die Anzahl der Besuche im Zentrum des Offenfeldes ist ein Maß für das Erkundungsverhalten und das Ängstlichkeitsniveau der Versuchstiere. Eine hohe Frequenz an Zentrumsbesuchen spiegelt ein gesteigertes Erkundungsverhalten und ein niedriges Maß an Ängstlichkeit.

Abb.12 zeigt die Analyse der Anzahl der Besuche des Zentrums durch die J und N Mäuse im Zeitintervall von Minute 1-5.

Es wurden jeweils 24 Tiere beider Mausstämme untersucht. Pro Stamm erhielten 12 Tiere Corticosteron- und 12 Tiere Placebo-Pellets. Die Besuche im Zentrum wurden für den Zeitraum von Minute 1-5 ermittelt. Die schwarzen Balken symbolisieren die mit Corticosteron-Pellets implantierten Mäuse des J bzw. N Stammes, die weißen Balken zeigen die mit Placebo-Pellets versehenen Tiere.

Die Zweiweg-Anova zeigt, dass es keinen Unterschied in der Interaktion zwischen Stamm und Behandlung gibt: [F(1,38)=0,542; p > 0,05)]. Die Corticosteron Behandlung führte zu einer signifikant verminderten Anzahl an Zentrumsbesuchen

[F(1,38)=14,42; p < 0,001)]. Weiterhin zeigte sich ein signifikanter Stammeffekt: [F(1,38)=10,74; p < 0,01)]; Obwohl es keine Interaktion zwischen Stamm und Behandlung gibt, zeigt der Bonferroni Post-hoc-Test, dass die Anzahl der Zentrumsbesuche nur im N Stamm und nicht im J Stamm signifkant vermindert war (Abb.12).

Anzahl der Besuche im Zentrum des Offenfeldes

Abb.12: Die mit Corticosteron-Pellets implantierten Tiere des C57BL/6 N Stammes (NCort) zeigen eine signifikant geringere Anzahl an Besuchen im Zentrum der Plattform als die Kontrolltiere dieses Stammes (NPIa). Dagegen ist kein Effekt des Corticosterons auf das Verhalten der C57BL/6 J Mäuse erkenntlich.

** p < 0,01 (Zweiweg-Anova mit nachfolgendem Bonferroni Post-hoc-Test)

"forced swimming test"

Um den Grad der Passivität der Versuchstiere in einer für sie scheinbar ausweglosen Situation zu erfassen, wurde die Zeit gemessen, in der die Tiere in immobiler Haltung im Wasserzylinder verharrten. Nach einer Gewöhnungsphase von 2 Minuten wurde die Immobilität additiv für weitere 4 Minuten mittels Stoppuhr bestimmt.

Die Zweiweg-Anova zeigt, dass es keinen Unterschied zwischen den Stämmen gibt (Stammeffekt: [F(1, 43=0,514; p > 0,05)]. Die Behandlung mit Corticosteron führte zu einer signifikant erhöhten Immobilität [F1, 43= 5,301; p < 0,05)]. Obwohl es keine

Interaktion zwischen Stamm und Behandlung gibt [F(1,43=2,894; p > 0,05)], zeigt der Bonferroni Post-hoc-Test, dass die durch Corticosteron induzierte Immobilität beim N Stamm, nicht aber beim J Stamm signifikant gesteigert ist (Abb.13).

Abb.13 zeigt die additiven Zeitspannen, in denen die Mäuse jeder Gruppe beider Stämme in immobiler Haltung im Wasserzylinder verharrten.

Es wurden jeweils 24 Tiere beider Mausstämme untersucht. Pro Stamm erhielten 12 Tiere Corticosteron- und 12 Tiere Placebo-Pellets. Die schwarzen Balken symbolisieren die mit Corticosteron-Pellets implantierten Mäuse des J bzw. N Stammes, die weißen Balken zeigen die mit Placebo-Pellets versehenen Tiere.

Immobilität der beiden Mausstämme im "forced swimming test"

Abb.13: Bei den Tieren des C57BL/6 J Stammes führt die chronische Corticosterongabe zu keiner Änderung der Mobilität. Die mit Corticosteron-Pellets implantierten C57BL/6 N Mäuse (NCort) reagieren dagegen mit signifikant erhöhter Immobilität im Vergleich mit der Placebo-Gruppe (NPIa).

*p < 0,05(Zweiweg-Anova und nachfolgendem Bonferroni Post-hoc-Test)

Beurteilung der Fellbeschaffenheit

Die äußere Erscheinung von Mensch und Tier kann deren psychisches Befinden spiegeln. Die durch Corticosteron verursachten anabolen Reaktionen des Organismus führten vor allem bei den C57BL/6 N Mäusen (NCort) zu einem deutlich reduzierten Erscheinungsbild, das sich in einer struppigen und stumpfen Fellbeschaffenheit manifestierte. Im Vergleich mit der Pacebo-Gruppe ihres eigenen Stammes (NPIa) war die Fellbeschaffenheit der NCort Mäuse deutlich reduziert (NCort) [Kruskal-Wallis-Anova U= 32,63; p < 0,001]. Die mit Corticosteron behandelten C57BL/6 J Mäuse (JCort) unterschieden sich dagegen kaum von den mit Placebo behandelten Tieren ihres Stammes (JPIa).

Abb.14 zeigt die Analyse der Beurteilung der Fellbeschaffenheit verschiedener Körperpartien der C57BL/6 J und C57BL/6 N Mäuse nach chronischer Corticosteronbzw. Placebo-Applikation.

Es wurden jeweils 24 Tiere beider Mausstämme untersucht. Pro Stamm erhielten 12 Tiere Corticosteron- und 12 Tiere Placebo-Pellets. Die schwarzen Balken zeigen die mit Corticosteron-Pellets implantierten Mäuse des J bzw. N Stammes, die weißen Balken zeigen die mit Placebo-Pellets versehenen Tiere.

Fellbeschaffenheit der Mauslinien

Abb. 14: Im Vergleich mit ihrer Placebo- Gruppe (JPla) zeigen die mit Corticosteron behandelten C57BL/6 J Mäuse (JCort) kein signifikant reduziertes äußeres Erscheinungsbild. Das Fell der Tiere beider Gruppen erscheint glänzend und kaum struppig.

Das Fell der mit Corticosteron-Pellets implantierten Tiere des C57BL/6 N Stammes (NCort) dagegen ist glanzlos, stumpf und struppig und zeigt einen signifikanten Unterschied zu den Placebo Tieren des C57BL/6 N Stammes (NPIa).

Maximale Punktzahl: 14= normaler Zustand; minimale Punktzahl: 0=sehr schlechter Zustand.

***p < 0,001 (Kruskal-Wallis-Anova gefolgt von Dunn's Test)

Microarray-Analyse

Die erheblichen phänotypischen Unterschiede der mit Corticosteron behandelten N und J Stämme legten die Frage nach möglichen molekulargenetischen Korrelaten der unterschiedlichen Verhaltensänderungen nahe. Mit Hilfe der Microarray-Technologie ist es möglich, die relative Genexpression von mehr als 34000 Genen aus einer Probe zu untersuchen und so Rückschlüsse auf besonders stark oder auch gering exprimierte Gene innerhalb dieser Probe zu ziehen. Hierzu wurde die RNA hippocampalen Gewebes von jeweils 4 Tieren einer Testgruppe unter Verwendung jeweils eines Microarray-Chips analysiert. Zur Identifizierung von differentiell regulierten Transkripten wurden folgende Kriterien angewandt: die Grenze der differentiellen Expression liegt in allen Gruppen oberhalb einer 1,5-fachen Mindestsignalität. Das Signifikanzniveau für alle Gruppen liegt bei p < 0,05.

Zunächst untersuchten wir, ob durch die Corticosteron-Behandlung im C57BL/6 J Stamm ein anderes Muster an Genen aktiviert wurde als im C57BL/6 N Stamm. Hierfür werteten wir die Daten aller Versuchstiere (C57BL6/ J und N) unabhängig vom Behandlungsmodus (Corticosteron-oder Placebo-Gabe) aus. Es wurden 94 Gene identifiziert, die in den beiden Stämmen unterschiedlich stark exprimiert wurden (Abb.15). Von diesen 94 Genen wurden im J Stamm 60 Gene verstärkt exprimiert (63,8 %), bei 34 Genen (36,2 %) lag eine verminderte Anzahl an Transkripten vor.

Zum Ausschluss des Effektes des Genotyps betrachteten wir im Folgenden die beiden Unterstämme getrennt. Abb.16 zeigt die Genexpression der Tiere des C57BL/6 N Stammes, also jenes Stammes der unter Corticosteroneinfluss einen depressiven Phänotyp entwickelte. Die ersten vier Säulen repräsentieren die mit Corticosteron behandelten Tiere, die zweiten vier Säulen die der Placebo-Gruppe. Hier fanden sich 56 Gene, die unter Einfluss von Corticosteron signifikant unterschiedlich exprimiert wurden. Bei 26 Genen (46 %) waren die Transkripte vermehrt, bei 30 Genen (54 %) lag eine verminderte Anzahl an Transskripten vor. Die 56 signifikant regulierten Gene scheinen somit im Zusammenhang mit dem depressiven Phänotyp zu stehen.

Beim Vergleich der mit Corticosteron- und Placebo- Pellets behandelten Tiere des J Stammes fanden sich 179 signifikant unterschiedlich regulierte Gene (Abb.17: Teil 1-4). Davon wiesen 159 Gene (89 %) eine vermehrte und 20 Gene (11 %) eine verminderte Expressionsstärke auf. Da die mit Corticosteron behandelten Tiere dieses Unterstammes keinen depressiven Phänotyp erkennen ließen, könnte die Regulation dieser Gene mit der Resistenz des J Stammes gegenüber der Depressions-induzierenden Wirkung von Corticosteron in Zusammenhang zu stehen.

In den Abbildungen 15-17 sind die Kandidatengene in einem Kluster dargestellt, deren Transkripte im Vergleich der respektiven Gruppen (Abb.15: J(Cort+Pla) vs. N(Cort+Pla); Abb.16: NCort vs. NPla; Abb.17 (Teil 1-4): JCort vs. JPla) signifikant reguliert wurden. Die Bezeichnung aller Transkripte und ihre differentielle Regulation sind im Anhang

aufgelistet. Anmerkung: In der Gruppe der Placebo-Tiere des J Stammes konnte die Probe einer Maus aufgrund technischer Komplikationen nicht ausgewertet werden und entfällt somit im Kluster der Abb.17 und Abb.18 (JPla).

Unterschiede im Genotyp N (Cort+Pla) vs. J (Cort+Pla)

Abb.15: Im obigen Kluster sind die signifikant regulierten Gene aus der Microarray-Analyse dargestellt, die in den beiden Stämmen unabhängig vom Behandlungsmodus unterschiedlich stark exprimiert wurden. Jede Zeile entspricht einem Kandidatengen. Jede Spalte entspricht einer Maus. Die Farben codieren die jeweilige Expressionsstärke des Gens bei jeder einzelnen Maus. Blau signalisiert eine erniedrigte, rot eine erhöhte Expression des Gens.

Die Grenze der differentiellen Expression liegt in allen Gruppen oberhalb einer 1,5fachen Mindestsignalität. Das Signifikanzniveau für alle Gruppen ist p < 0,05.

Corticosteron-Effekt auf den N Stamm

Abb.16: Im obigen Kluster sind die signifikant regulierten Gene aus der Microarray-Analyse dargestellt, die bei den Tieren des N Stammes durch die Corticosteron-Behandlung unterschiedlich stark exprimiert wurden. Jede Zeile entspricht einem Kandidatengen. Jede Spalte entspricht einer Maus. Die Farben codieren die jeweilige Expressionsstärke des Gens bei jeder einzelnen Maus. Blau signalisiert eine erniedrigte, rot eine erhöhte Expression des Gens.

Die Grenze der differentiellen Expression liegt in allen Gruppen oberhalb einer 1,5fachen Mindestsignalität. Das Signifikanzniveau für alle Gruppen ist p < 0,05.

Corticosteron-Effekt auf den J Stamm

Abb.17: Im obigen Kluster sind die signifikant regulierten Gene aus der Microarray-Analyse dargestellt, die bei den Tieren des J Stammes durch die Corticosteron-Behandlung unterschiedlich stark exprimiert wurden. Jede Zeile entspricht einem Kandidatengen. Jede Zeile entspricht einem Kandidatengen. Jede Spalte entspricht einer Maus. Die Farben codieren die jeweilige Expressionsstärke des Gens bei jeder einzelnen Maus. Blau signalisiert eine erniedrigte, rot eine erhöhte Expression des Gens. Die Grenze der differentiellen Expression liegt in allen Gruppen oberhalb einer 1,5fachen Mindestsignalität. Das Signifikanzniveau für alle Gruppen ist p < 0,05.

Ein wesentliches Ziel der vorgelegten Arbeit war die Untersuchung Corticosteroninduzierter molekulargentischer Veränderungen in hippocampalem Gewebe mit möglicher Relevanz für die Pathophysiologie von Stress und Depression. Daher wählten wir aufgrund einer umfassenden Litertaturrecherche aus der Gesamtzahl der in der Microarray-Analyse regulierten Kandidatengene jene aus, deren Bedeutung für die Pathogenese von Depressionen bereits gezeigt wurde. Diese Gene wurden zur Validierung der Microchip Ergebnisse mittels qrt-PCR erneut getestet. Ziel der Validierung war es, mögliche methodisch bedingte Fehler und Artefakte bei der Microarray Untersuchung auszuschließen. Es handelte sich um die Gene Ntrk2, TGFB1, NR4A2.

Ntrk2 Regulation

Abb.18: Ntrk2 wurde in der Gruppe der C57BL/6 J Mäuse signifikant differentiell reguliert (Abb. 17). Im Vergleich zur Placebo- Gruppe zeigen die mit Corticosteron behandelten Tiere dieses Stammes eine signifikant erhöhte Expressionsstärke von Ntrk2 (differentielle Regulation von 1,56).

TGFB1 Regulation

Abb.19: TGFB1 wurde in der Gruppe der C57BL/6 N Mäuse signifikant reguliert (Abb. 16). Im Vergleich mit der Placebo-Gruppe wird in der Microarray-Analyse bei der Corticosteron-Gruppe eine signifikant verminderte Expressionsstärke dieses Gens ermittelt (differentielle Regulation von 1,59).

NR4A2 Regulation

Abb.20: Auch NR4A2 wurde bei den Mäusen des C57BL/6 N Stammes differentiell reguliert (Abb. 16). Die N Cort Gruppe zeigt im Vergleich zur Placebo-Gruppe eine erhöhte Expressionsstärke dieses Gens (differentielle Regulation von 1,71).

qrt-PCR

Bei den untersuchten Kandidatengenen handelte es sich um Ntrk2, TGFB1, NR4A2. Als *Houskeeping*-Gen wurde Beta Actin verwendet.

Konkordanz der mit beiden Verfahren erzielten Ergebnisse, d.h. die Übereinstimmung der mit Microarray und qrt-PCR (TaqMan[®]) erzielten Befunde, fand sich bei Ntrk2, nicht aber bei NR4A2 und TGFB1.

In Abb.18, 19 und 20 werden die mit beiden Methoden erzielten Ergebnisse für Ntrk2, NR4A2 und TGFB1 vergleichend dargestellt.

Expressionsänderung von Ntrk2 nach Corticosteron-Applikation bei J und N Mäusen analysiert in Affymetrix und qrt-PCR

Abb. 21: Die Expression von Ntrk2 ist sowohl in der Microarray Analyse als auch in der qrt-PCR bei den JCort signifikant erhöht.

Haupteffekt Gruppe: [F(3,23)=5,193; p < 0,01];Haupteffekt Methode: [F(1,23)=0,485; p > 0,05]; Interaktion: [F(3,23)=0,679; p > 0,05]** = p < 0,01 Zweiweg- Anova mit Bonferroni Posthoc Test Expressionsänderung von NR4A2 nach Corticosteron-Applikation bei J und N Mäusen analysiert in Affymetrix und qrt-PCR

Abb. 22: Taq Man und Affymetrix zeigen keine signifikanten Unterschiede zwischen den Gruppen.

Haupteffekt Gruppe: [F(3,23)=0,884; p > 0,05)];Haupteffekt Methode: [F(1,23)=1,664; p > 0,05];Interaktion: [F(3,23)=0,927; p > 0,05]

Expressionsänderung von TGFB1 nach Corticosteron-Applikation bei J und N Mäusen analysiert in Affymetrix und qrt-PCR

Abb. 23: Taq Man und Affymetrix zeigen keine signifikanten Unterschiede in der Expression von TGFB1 zwischen den Gruppen. Haupteffekt Gruppe: [F(3,23)=2,596; p > 0,05)];Haupteffekt Methode: [F(1,23)=0,285; p > 0,05);Interaktion: [F(3,23)=0,811; p > 0,05]

Diskussion

Stress und stressbedingt erhöhte Cortisolspiegel scheinen beim Menschen maßgeblich an der Pathogenese der Depression beteiligt zu sein (Caspi et al., 2003). Vielfache tierexperimentelle Studien (Gourley et al., 2008; Murray et al., 2008; Stone und Lin, 2008; Zhao et al., 2008) zeigten, dass sich die chronische Gabe von Corticosteron, dem Äquivalent von Cortisol bei Nagern, in besonderem Maße eignet, bei Mäusen Depressions-ähnliches Verhalten zu generieren. So ließ sich in mehreren Studien durch langfristige Behandlung mit Glucocorticoiden bei Nagern Angst- und Depressionsähnliches Verhalten auslösen (Gourley et al., 2008; Murray et al., 2008; Stone und Lin, 2008).

Experimentelle Untersuchungen zu der Bedeutung von Stress bzw. chronischer Corticosteroid Applikation für die Pathogenese der Depression wurden bislang zumeist an Mäusen des C57BL/6 Stammes durchgeführt, aus dem mehrere Unterstämme gezüchtet wurden. Hierbei werden hauptsächlich Mäuse des C57BL/6 N Stammes verwendet (Strekalova et al., 2004, Zhao et al., 2008). Der mit dem N Stamm genetisch fast identische C57BL/6 J Stamm wurde bisher in diesem Zusammenhang noch kaum untersucht.

Ziel der vorgelegten Arbeit war es, das Ansprechen der beiden Mausstämme auf chronische Corticosteronapplikation zu untersuchen und insbesondere die Frage zu klären, ob wie von uns aufgrund der Ergebnisse von Vorversuchen (Becker et al., in Vorbereitung) postuliert, der C57BL/6 N Stamm auf chronische Corticosteronapplikation mit deutlicheren Depressions-ähnlichen Symptomen reagiert als der C57BL/6 J Stamm. Bei Verifizierung dieser Hypothese sollte durch molekulargenetische Expressionsanalysen hippocampalen Gewebes beider Stämme untersucht werden, ob durch die chronische Corticosteronapplikation das Expressionsmuster Depressions-relevanter Gene ver-ändert wird. Die weitgehende genetische Übereinstimmung beider Stämme (Zurita et al., 2010) erleichtert hierbei die Detektion auch geringfügiger aber Depressions-relevanter molekularer Veränderungen.

Die Ergebnisse der von uns durchgeführten Verhaltenstests bestätigen unsere oben genannte Hypothese. Die langfristig mit Corticosteron behandelten Mäuse des C57BL/6 N Stammes zeigten einen signifikant depressiven Phänotyp, während die Mäuse des

C57BL/6 J Stammes nach chronischer Corticosteronapplikation allenfalls geringes oder kein Depressions-ähnliches Verhalten entwickelten.

Diese Tendenz wurde zunächst im 3h-Sucrose-Präferenz Test (SPT) evident, der den Grad der Anhedonie, eines Hauptsymptoms depressiver Erkrankungen, spiegelt (Hamilton, 1967; Kessler et al., 1994; Klein, 1974). Die mit Corticosteron behandelten Mäuse des N Stammes entwickelten ein deutlich anhedonisches Verhalten, wohingegen die Mäuse des J Stammes nach Applikation von Corticosteron keine nennenswerte Abnahme der Präferenz für die Sucroselösung erkennen ließen.

Die Arbeitsgruppen um Strekalova et al. (2004) und Gourley et al. (2008) untersuchten die Wirkung von chronischem Stress auf das Verhalten von C57BL/6 Mäusen. Strekalova et al. (2004) setzten Mäuse des C57BL/6 N Stammes vier Wochen lang unterschiedlichen psychischen Stressoren aus. Gourley et al. (2008) verabreichten zwei Wochen lang Corticosteron im Trinkwasser. Anders als bei Strekalova et al. (2004) wird hier nicht zwischen Mäusen des N und des J Stammes differenziert, sondern allgemein von C57BL/6 Mäusen gesprochen. Sowohl aversive Stimuli als auch pharmakologische Stressoren induzierten eine Verminderung der Sucrose-Präferenz als Hinweis auf Anhedonie.

Im Anschluss an die im Rahmen der vorgelegten Arbeit analysierten Experimente wurden von Schröder (2011) in unserem Labor weiterführende Untersuchungen an J und N Mäusen durchgeführt, in denen der anhedonische Phänotyp der N Cort Mäuse wiederholt gezeigt werden konnte. Auch in dieser Versuchsreihe führte die Corticosteronbehandlung bei den J Mäusen nicht zu Anhedonie. Das von uns beobachtete anhedonische Verhalten der mit Corticosteron behandelten N Mäuse steht somit in Einklang mit den Ergebnissen von Strekalova et al. (2004) sowie von Schröder (2011). Da Gourley et al. (2008) nicht zwischen N und J Mäusen differenzierten, können diese Ergebnisse nur eingeschränkt als Bestätigung unserer Befunde gewertet werden.

In unserer Versuchsreihe wurde neben anhedonischem das explorative Verhalten der Versuchstiere analysiert. Hierzu verwendeten wir den Offenfeld Test, der von Hall entwickelt (Hall und Ballechey, 1932) und von Walsh und Cummins (1976) kritisch kommentiert wurde. Die Tiere beider Stämme legten unter Corticosteroneinfluss signifikant geringere Distanzen zurück als die mit Placebo behandelten Kontrollen. Dies steht in Einklang mit den Ergebnissen von Katz et al. (1981 b), die bei 21 Tage lang gestressten Ratten ein reduziertes Aktivitätsniveau im Offenfeld Test beobachteten und dies als Depressions-typisch werteten. Diese Autoren interpretieren die Verhaltensänderung vorsichtig translational, d.h. sie postulieren Analogien zwischen dem im Offenfeld durch Stress reduzierten Aktivitätsniveau der Versuchstiere mit der von Klein (1974) als Depressions-typisch gewerteten Interessen-und Antriebslosigkeit depressiver Patienten.

In der im Anschluss an unsere Arbeiten in unserem Labor durchgeführten Versuchsreihe zeigten die mit Corticosteron behandelten C57BL/6 N Mäuse, nicht aber der C57BL/6 J Stamm, wiederholt eine geminderte Aktivität im Offenfeld Test (Schröder, 2011). Dies stützt unsere Ergebnisse. Die von Katz et al. (1981 b) sowie von unserer Arbeitsgruppe getroffene Bewertung der Aktivitätsminderung steht in scheinbarem Widerspruch zu den Beobachtungen von Cryan et al. (2004) und Zueger et al. (2005), die nach Bulbektomie, einem etablierten Depressionsmodell bei Nagern, im Offenfeld eine Aktivitätssteigerung beobachteten und diese als möglicherweise Depressions-induzierende Reaktion auf fehlerhafte Anpassung an eine fremde Umgebung werteten. Das von uns verwendete Depressionsmodell (chronische Erhöhung der Plasma-Corticosteronkonzentration, wie sie auch durch chronischen Stress verursacht wird) kommt m. E. der Pathophysiologie der Depression wesentlich näher als die Bulbektomie, die durch Deprivation des für Nager wichtigsten Sinnessystems zu einer Störung wichtiger Adaptationsmechanismen führen muss. Die von Cryan et al. (2004) und Zueger et al. (2005) nach Bulbektomie Aktivitätssteigerung ist zwanglos beobachtete durch eine verminderte Adaptationsfähigkeit erklärbar und muss nicht in Zusammenhang mit der Pathogenese Depression stehen, weshalb ich von einer weiteren der Diskussion der "Hyperaktivitäshypothese" absehe.

57

Ein weiterer Parameter der im Offenfeld ermittelt wurde, ist die Anzahl der Besuche der Versuchstiere im Zentrum der Arena. Eine geminderte Anzahl an Zentrumsbesuchen wird als Zeichen für ein erhöhtes Angstniveau gewertet (David et al., 2009). Diese Autoren beobachteten bei mit Glucocorticoiden behandelten C57BL/6 N Mäusen im Vergleich mit der Kontrollgruppe eine deutliche Reduktion der Anzahl der Zentrumsbesuche, die durch Behandlung mit Antidepressiva aufgehoben wurde. Auch in unserer Versuchsreihe war die Anzahl der Zentrumsbesuche bei den N Cort Mäusen signifikant geringer als bei den Kontrollen.

Die Anzahl der vertikalen Aufrichtungen auf die Hinterbeine, ebenfalls ein Indikator für gesteigerte Ängstlichkeit und exploratives Verhalten, war jedoch nicht signifikant erhöht. In ihrer Versuchsreihe konnte Schröder (2011) unsere Ergebnisse bestätigen: Die N Cort Mäuse zeigten bei einer signifikant geminderten Anzahl an Zentrumbesuchen keine erhöhte Anzahl an Aufrichtungen auf die Hinterbeine. Zudem konnte bei ihren N Cort Mäusen im Light- Dark-Test, einem etablierten Modell zur Untersuchung ängstlichen Verhaltens bei Nagern (Hascoet et al., 2001), kein ängstlicher Phänotyp beobachtet werden. Damit scheint die geminderte Anzahl an Zentrumsbesuchen eher dem oben diskutierten reduzierten explorativen Verhalten als einem erhöhten Angstniveau zuzuordnen zu sein.

Der Depressions-ähnliche Phänotyp der N Cort Mäuse ließ sich in einem weiteren Verhaltenstest nachweisen. Der "forced swimming test" (FST) zeigt den Grad der Passivität in einer scheinbar ausweglosen Situation. In unserer Versuchsreihe zeigten die Kontrollgruppen beider Stämme geringere Immobilität als die mit Corticosteron behandelten Tiere. Der Unterschied erreichte jedoch lediglich bei den Mäusen des N Stammes statistische Signifikanz. In der Studie von Strekalova et al. (2004) wurde bei den Stressoren ausgesetzten C57BL/6 N Mäusen im FST ebenfalls eine signifikant erhöhte Immobilität beobachtet, allerdings nur bei deutlich anhedonischen N Mäusen (Abnahme der Sucrose-Präferenz im SPT), nicht aber bei Tieren, die diese Verhaltensänderung nicht aufwiesen. Diese Befunde stützen die von uns bei den N Mäusen beobachtete durch Corticosteron induzierte Entwicklung von Anhedonie im SPT, sowie die erhöhte Immobilität im FST.

Strekalova bezeichnet die bei den gestressten N Mäusen beobachtete Trias aus Anhedonie, vermindertem explorativem Verhalten und erhöhter Immobilität als Depressions-ähnliches Syndrom. Wir konnten 2 Symptome der Trias bestätigen: Die von uns beobachtete signifikant reduzierte zurückgelegte Distanz der Cort Mäuse im OFT spricht für ein vermindertes exploratives Verhalten. Weiterhin zeigte sich bei unseren NCort Mäusen eine signifikant erhöhte Immobilität im FST. Unsere Ergebnisse sind aber nicht mit denen von Strekalova et al. (2004) gleichzusetzen, da diese Autoren das geminderte explorative Verhalten im "novel cage test", einem von uns nicht durchgeführten Verhaltenstest zur Beurteilung explorativen Verhaltens in neuer Umgebung, nicht aber im OFT beobachteten.

Werden die Depressions-induzierenden Stressoren durch Corticosteron-Gabe ersetzt, ergeben sich ähnliche Veränderungen des Phänotyps:

Zhao et al. (2008) fanden nach wiederholten Corticosteron-Injektionen eine deutliche Zunahme der Immobilität bei C57BL/6 N Mäusen, allerdings erst in Woche 3 und 5 der Hormongabe. In unserer Versuchsreihe wurde das Hormon über 21 Tage kontinuierlich appliziert. Der Depressions-ähnliche Phänotyp zeigte sich im SPT bereits am Tag 14 nach der Pellet-Implantation. Der zum Erreichen der Corticosteronwirkung erforderliche Zeitraum ist in unserer Versuchsreihe also 7 Tage kürzer als von Zhao et al. (2008) beschrieben.

Gourley et al. (2008) berichten ebenfalls von einer Abnahme der Mobilität von C57BL/6 Mäusen nach 14-tägiger Gabe von Corticosteron im Trinkwasser. Die fehlende Klassifizierung des verwendeten Unterstammes erschwert den Vergleich ihrer Ergebnisse mit unseren Befunden.

Abschließend wurde die Beschaffenheit des Fells beurteilt. Die äußere Erscheinung der Mäuse gilt als verlässlicher Indikator für einen Depressions-ähnlichen Zustand (Griebel et al., 2002; Santarelli et al., 2003). Das Fell unserer N Cort Mäuse war auffällig struppig und ungepflegt, während die N Kontrolltiere und alle Mäuse des J Stammes keine Beeinträchtigungen erkennen ließen.

Das Phänomen der körperlichen Verwahrlosung bei Depression ist auch beim Menschen bekannt. Aus der für die Depression typischen Antriebslosigkeit resultiert oft eine verminderte Selbstfürsorge, die sich im äußeren Erscheinungsbild der Patienten niederschlägt. Es stellt sich die Frage, ob die schlechtere Fellbeschaffenheit unserer N Cort Mäuse durch gemindertes Putzverhalten verursacht wurde oder ob ihr ein im Vergleich mit dem J Stamm unterschiedlicher Metabolismus der zugeführten

Glucocorticoide zu Grunde liegt. David et al. (2009) stellten fest, dass die in ihrem Experiment mit Corticosteron behandelten N Mäuse tatsächlich eine reduzierte Putzfrequenz entwickelten. die durch die Gabe des Selektiven-Serotonin-Wiederaufnahme-Hemmers (SSRI) Fluoxetin wieder deutlich gesteigert werden konnte. Die Autoren schlossen daraus, dass die schlechte Fellbeschaffenheit der N Cort Mäuse Putzverhaltens Ausdruck des geminderten ist. Endokrinologisch bedingte Fellveränderungen scheinen somit weniger wahrscheinlich. Zum definitiven Ausschluss sind jedoch weitere Untersuchungen erforderlich.

Zusammenfassend zeigen die Ergebnisse unserer Verhaltenstests, dass die Mäuse des C57BL/6 N Stammes auf Langzeit-Corticosterongabe deutlich sensibler reagieren als die Mäuse des C57BL/6 J Stammes. Erstere entwickeln nach chronischer Corticosteronapplikation signifikante Depressions-ähnliche Symptome, während der J Stamm keine derartigen Verhaltensänderungen zeigt. Wir konnten somit unsere Hypothese verifizieren, nach der die beiden Inzuchtstämme trotz ihres beinahe identischen Genoms unterschiedlich auf Corticosteron reagieren. Nach unseren Ergebnissen scheinen nur Mäuse des C57BL/6 N Stammes für Stress bzw. Corticosteron-induzierte Depressionsmodelle geeignet zu sein.

Das zweite Ziel der vorgelegten Arbeit war die Untersuchung der Frage, ob der depressive Phänotyp von N Cort Mäusen mit molekulargenetischen Veränderungen in hippocampalem Gewebe assoziiert ist.

Die richtungsweisenden Arbeiten von Papez (1937) setzen den Hippocampus als zentrales Kerngebiet des Papez'schen Regelkreises in engen Bezug zur Regulation von Emotionalität. In den folgenden Jahrzehnten wurde jedoch immer evidenter, dass eine der Hauptfunktionen, wahrscheinlich die wichtigste Funktion des Hippocampus, die Ermöglichung von Gedächtnisleistungen ist (Gold und Squire, 2005; Milner, 1970; Scoville, 1954). Andere Arbeiten belegen aber die Validität der Papez'schen Theorie: Die Hippocampus-Formation einschließlich des entorhinalen Cortex, der wichtigsten afferenten Struktur des Hippocampus, scheint wesentlich an der Entstehung durch emotionale Dysbalancen charakterisierter Erkrankungen wie Schizophrenie (Bogerts et al., 1985), Autismus (Bauman und Kemper, 1985; Kemper und Baumann, 1998) und affektiven Störungen (Pantazopoulos et al., 2007) beteiligt zu sein. Strukturelle kernspintomographische Untersuchungen (MRT) zeigen die besondere Relevanz der Hippocampus-Formation in der Pathogenese der Depression: Caetano et al. (2004), Drevets (2001), und Lorenzetti et al. (2009) fanden bei depressiven Patienten reduzierte hippocampale Volumina.

Die hippocampale Formation zeichnet sich durch eine hohe Sensibilität auf Glucocorticoide aus. Akuter Stress führt über eine Aktivierung der HHN-Achse zu vermehrter Glucocorticoidausschüttung. Bei chronischem Stress werden die Glucocorticoidrezeptoren heruntergeregelt. In mehreren Studien wurde gezeigt, dass unter dieser Bedingung die dendritische Aussprossung pyramidaler Neurone, die Neurogenese und die Expressionsrate der Glucocorticoid-Rezeptor mRNA im Hippocampus vermindert werden (Fuchs, 2007; Fuchs and Gould, 2000; Magarinos and McEwen, 1995; McEwen, 1999, 2005; Pham et al., 2003).

Dies könnte Ausdruck eines gestörten Regelkreises sein: die physiologische Funktion des Hippocampus als inhibierendes Stellglied der HHN-Achse wird durch chronische Glucocorticoid-Einwirkung geschwächt und eine Überaktivität des Regelkreises ausgelöst. Die hierdurch weiter ansteigenden Glucocorticoid-Spiegel könnten zu fortschreitender Apoptose hippocampaler Zellen führen (de Kloet et al., 1998; Nestler et al., 2002).

Hierfür sprechen auch die oben beschriebenen Befunde, nach denen Patienten, die an Depression oder einem Cushing Syndrom leiden, reduzierte hippocampale Volumina aufweisen. Das Volumen des Mandelkerns (Amygdala), des nach Le Doux (2003) wichtigsten limbischen Kerngebiets für Konditionierung und Konsolidierung von Angstverhalten, ist dagegen vergrößert (Brown et al., 2004; Campbell et al., 2004; Hickie et al., 2005; Sapolsky, 2000; Sheline, 2003; Videbech und Ravnkilde, 2004). Der Regelkreis der HHN-Achse wird im Gegensatz zu hippocampaler durch amygdaläre Aktivität aktiviert (Feldman et al., 1995; Herman und Cullinan, 1997; Jacobson und Sapolsky, 1991).

Basierend auf den von uns bestätigten und weiter differenzierten Ergebnissen von Gregus et al. (2005), Hill et al. (2003), Kalynchuk et al. (2004), und Zhao et al. (2008), die zeigten, dass wiederholte Gabe von Corticosteron Depressions-ähnliches Verhalten induziert, erstellten wir die Hypothese, dass Corticosteron-induzierte Depressions-ähnliche Symptome mit einer geänderten Expression Depressions-relevanter Gene im Hippocampus assoziiert sind. Aufgrund ihres unterschiedlichen Corticosteron-abhängigen Phänotyps erwarteten wir in den von uns untersuchten beiden Mausstämmen eine unterschiedliche Genregulation.

Mit Hilfe der Microarray-Analyse konnten wir bei dem Depressions-resistenten C57BL/6 J Stamm insgesamt 179 Gene (siehe Anhang) identifizieren, deren Expressionsmuster durch chronische Corticosteronbehandlung verändert wurde (Fold Change: 1,5). In der durch die Entwicklung eines depressiven Phänotyps nach Corticosteron-Gabe charakterisierten C57BL/6 N Gruppe zeigten hingegen lediglich 56 Gene (siehe Anhang) eine differentielle Expression der Corticosteron- vs. der Kontrollgruppe. Dieses Ergebnis war überraschend, da wir zunächst erwartet hatten, dass die Anzahl der durch Corticosteron regulierten Gene bei den N Mäusen höher wäre als bei dem J Stamm.

Aus der Liste der signifikant regulierten Gene waren folgende Kandidatengene aufgrund ihrer bisher bekannten Rolle in der Pathogenese von depressiven Erkrankungen von besonderem Interesse und wurden daher zusätzlich zur Microarray Technik mit Hilfe der quantitativen Realtime PCR (qrt-PCR) analysiert:

- Ntrk2: (Synonym: TrkB); neurotrophic tyrosine kinase, receptor, type 2; Rezeptor f
 ür die Neurotrophine BDNF und NT4 (Bedeutung siehe unten).
- TGFB1: Transforming Growth Factor, Beta 1; nach Kajiyama et al. (2009) als eines der Zelltod regulierenden Gene in das durch Glucocorticoide induzierte Depressions-ähnlichen Verhalten bei C57BL/6 N Mäusen involviert
- NR4A2 (Synonym Nurr1): nuclear receptor subfamily 4, group A, member 2; nach Rojas et al. (2010) spielt das NR4A2 Protein Produkt im Zusammenhang mit der Verarbeitung von Stress und der Entwicklung Depressions-ähnlicher Symptome eine entscheidende Rolle

Die signifikanten, mit der Microarray-Analyse ermittelten Unterschiede in der durch Corticosteron-induzierten Regulation der untersuchten Depressions-relevanten Kandidatengene waren mittels qrt-PCR nur für Ntrk2, nicht aber für TGFB1 und NR4A2 nachweisbar (Abbildungen 21 bis 23). Dies könnte durch biologische Diversität oder methodisch bedingt sein. Zur Klärung dieser Diskrepanz sind ergänzende Untersuchungen erforderlich.

Wegen der fehlenden Konkordanz der mit beiden Methoden durchgeführten Expressionsanalysen von TGFB1 und NR4A2 werde ich mich auf die Diskussion der Corticosteron-induzierten Veränderungen der Expressionsstärke von Ntrk2 beschränken, der als Rezeptor für die Neurotrophine BDNF und NT4 fungiert.

Die Familie der Neurotrophine umfasst molekular unterschiedliche aber funktionell ähnliche Moleküle, die im zentralen Nervensystem die neuronale Plastizität, die synaptische Aktivität und die Neurotransmitter-Synthese regulieren und für die Regeneration von Neuronen unabdingbar sind (Bonhoeffer, 1996; McAllister et al., 1999; Siegel und Chauhan, 2000). Eine fehlgeleitete Expression der Neurotrophine führt somit nicht nur zu Defekten in Erhalt und Regulation der neuronalen Strukturen, sondern kann sich infolge der beeinträchtigten neuronalen Plastizität auch negativ auf die Stress-Adaption des Organismus auswirken (Dwivedi, 2009). Im Zusammenhang mit der Pathogenese depressiver Erkrankungen sind in den letzten Jahren vor allem das Neurotrophin BDNF und dessen Rezeptor Ntrk2 in den Fokus des Interesses gerückt.

Stress und Depression sind mit einer verminderten Expression von BDNF assoziiert. Tierexperimentell wurde gezeigt, dass sowohl Stress als auch exogen zugeführtes Corticosteron zu einer signifikant geminderten BDNF Expression im Hippocampus führen (Schaaf et al., 1997, 1998; Smith et al.,1995; Ueyama et al., 1997). Antidepressiva können dagegen die Expression dieses Neurotrophins im Hippocampus steigern. So führte in der von Rogoz et al. (2005) durchführten Studie die Gabe des tetrazyklischen Antidepressivums Mirtazapin im Hippocampus gesunder Ratten nach einem Zeitraum von 14 Tagen zu einer signifikant erhöhten BDNF-Expressionsrate. Auch andere Klassen antidepressiver Substanzen wie SSRI's, Trizyklische Antidepressiva oder Noradrenalin-Wiederaufnahme-Hemmer (NRI's) führten zu vermehrter Expression von BDNF im zerebralen Gewebe (De Foubert et al., 2004; Nibuya et al., 1995; Vinet et al., 2004). Die antidepressive Medikation bewirkte erst nach langfristiger Gabe eine Steigerung der Expressionsrate von BDNF. Kurzfristige Gabe antidepressiver Substanzen führte zu keiner Änderung (Balu et al., 2008; Nibuya et al., 1995).

Schaaf et al. (1997) fanden nach akuter Corticosteron-Applikation eine mit steigenden Dosen zunehmende Hemmung der BDNF Expression im Gyrus dentatus und in Teilen des Hippocampus. In unseren chronischen Experimenten wurde jedoch die BDNF Expression nicht beeinflusst.

Neben BDNF scheint auch sein Rezeptor Ntrk2 in der Pathogenese depressiver Erkrankungen eine wesentliche Rolle zu spielen. Nibuya et al. beschrieben schon 1995 nach chronischer (21 Tage) antidepressiver Behandlung männlicher Sprague-Dawley Ratten eine vermehrte Expression des Rezeptors Ntrk2 u.a. in der hippocampalen Region (Nibuya et al., 1995). Rantamäki et al. (2007) zeigten, dass verschiedene Antidepressiva nicht nur die Expression von Ntrk2 erhöhen, sondern auch die Autophosphorylierung des Ntrk2 Rezeptors im Hippocampus und dem medialen präfrontalen Cortex (mPFC) der Versuchstiere (u.a. C57BL/6 Mäuse, nicht näher bezeichnet) steigern. Durch die Autophosphorylierung von Ntrk2 wird eine komplexe intrazelluläre Signalkaskade in Gang gesetzt, die essentielle Voraussetzung für die Wirkung von Ntrk2 ist.

Die topische Spezifität der beschriebenen Wirkung von Antidepressiva ist interessant, weil sowohl der mPFC, insbesondere die Brodmann Area 25 (Mayberg et al. ,2005), als auch der Hippocampus (Caetano et al., 2004; Drevets, 2001; Lorenzetti et al., 2009) erheblich Depressions-relevant sind und Hippocampus, Gyrus parahippocampalis und mPFC über Cingulum bzw. Gyrus cinguli anatomisch und funktionell eng miteinander verbunden sind (Papez, 1937; Shipley und Sorensen, 1975). Die im Vergleich mit anderen Hirnarealen im Hippocampus und dem mPFC vermehrte Expression von Ntrk2 Rezeptoren unter antidepressiver Therapie spricht für die Relevanz nicht nur dieser Hirnareale sondern auch der spezifischen Rolle von BDNF und Ntrk2 Rezeptoren in der Pathogenese der Depression.

Nach Dwivedi (2009) beruht der klinische Effekt von antidepressiver Medikation unter anderem auf der gesteigerten mRNA Expression von BDNF und der Aktivierung dessen Rezeptors Ntrk2. Dies wird durch Arbeiten von Koponen et al. (2005), Shirayama et al. (2002) und Siuciak et al. (1997) gestützt, die zeigten, dass im Tiermodell BDNF Applikation und eine gesteigerte Expression von Ntrk2 Rezeptoren depressionsmindernd wirken.

Die im Rahmen dieser Arbeit durchgeführte Expressionsanalyse mit Affymetrix Gen-Chips zeigte eine gesteigerte mRNA Expression von Ntrk2 im Hippocampus der chronisch mit Corticosteron behandelten C57BL/6 J Mäuse. Interessanterweise war dies in der Gruppe des C57BL/6 N Stammes nicht festzustellen, eben jener Gruppe, die auf die Corticosteronbehandlung mit deutlichen Depressions-ähnlichen Symptomen reagierte. Im Umkehrschluss zeigt also der C57BL/6 J Stamm, der durch chronische Corticosteronbehandlung keinen depressiven Phänotyp entwickelte, eine durch die Hormonbehandlung gesteigerte Ntrk2 Expression.

Die Expressionssteigerung von Ntrk2 bei J Cort Mäusen könnte auf einen durch die primäre genetische Ausstattung des J Stammes bedingten Schutzmechanismus hinweisen, der die Mäuse dieses Stammes befähigt, flexibel auf Corticosteron-Applikation zu reagieren und die potentiell Depressions-auslösende Wirkung zumindest von Corticosteron, möglicherweise auch von anderen endogenen und exogenen Stressoren zu neutralisieren.

Im Rahmen der vorgelegten Arbeit konnten aus dem Pool der in der Microarray-Analyse signifikant regulierten Kandidatengene nur als Depressions-relevant beschriebene Gene mittels qrt-PCR analysiert werden. Dies schränkt die Aussagekraft unserer Ergebnisse ein. Es wäre daher sinnvoll, in weiterführenden Untersuchungen auch die Funktion der durch Corticosteron am stärksten regulierten aber bislang im Zusammenhang mit der Pathogenese depressiver Erkrankungen noch nicht weiter analysierten Gene zu untersuchen. Von besonderem Interesse könnte die Analyse der Funktion von Genen mit Steroid-sensitiver Promoter Region sein.

Die Ergebnisse der von uns durchgeführten Verhaltensversuche sind für das Design weiterer Depressions-Studien am Mausmodell relevant: Sie zeigen, dass trotz weitgehender genetischer Übereinstimmung nicht beide untersuchten C57BL/6 Stämme für Depressions-Studien geeignet sind, sondern nur der N Stamm unter Stress- bzw. Corticosteron-Einfluss manifeste Depressions-ähnliche Symptome entwickelt.

Zusammenfassung

Nach derzeitigem Wissenstand ist chronischer Stress wesentlich an der Pathogenese depressiver Erkrankungen beteiligt, die Pathomechanismen sind jedoch noch weitgehend ungeklärt. Der Hippocampus reagiert hoch sensitiv auf chronischen Stress bzw. auf stressbedingt erhöhte Plasma-Corticosteroid Konzentrationen. Es ist daher wahrscheinlich, dass eine durch chronischen Stress gestörte Funktion der Hippocampus-Formation ursächlich an der Entstehung depressiver Erkrankungen beteiligt ist.

Im Rahmen der vorgelegten Arbeit wurde der Einfluss chronisch erhöhter Corticosteroid-Konzentrationen auf Depressions-assoziiertes Verhalten sowie die Genexpression im hippocampalen Gewebe zweier eng verwandter Mausstämme untersucht. An 14 Wochen alten C57BL/6 J und C57BL/6 N Mäusen wurden Corticosteron (20 mg/kgKG) oder Placebo-Pellets subkutan implantiert. Die Corticosteron-Pellets setzten das Hormon über einen Zeitraum von 21 Tagen kontinuierlich frei. Ab Tag 14 wurde eine Serie Depressions-relevanter Verhaltenstests (Sucrose-Präferenz-Test, "forced swimming test") durchgeführt sowie der Fellstatus der Tiere beurteilt. Zusätzlich wurde das explorative Verhalten der Tiere im Offenfeld-Test analysiert.

Der Einfluss chronischer Corticosteron-Applikation auf Depressions-assoziiertes Verhalten differierte in den beiden Stämmen erheblich. Die Corticosteron-Applikation zeigte bei C57BL/6 J Mäusen nur geringe oder keine Wirkung, sie führte jedoch bei den Tieren des C57BL/6 N Stammes zu signifikanten Depressions-assoziierten Änderungen des Verhaltens.

Die Ergebnisse unserer Verhaltenstests zeigen, dass bei nur minimalen genetischen Unterschieden beider Stämme C57BL/6 J Mäuse gegen chronische Corticosteron-Applikation wesentlich resistenter sind als Mäuse des C57BL/6 N Stammes.

Zur Analyse der molekularen Grundlagen der differierenden Corticosteron-induzierten Verhaltensmuster beider Stämme untersuchten wir nach Abschluss der Verhaltenstests Genexpressionsprofile aus hippocampalem Gewebe der Mäuse mit Affymetrix-Gen-Chips. In Anbetracht des signifikant depressiven Phänotyps der C57BL/6 N Mäuse fand sich bei diesem Stamm eine überraschend geringe Zahl von Genen (n=56), die durch Corticosteron-Applikation reguliert wurde.

Interessanterweise wurde das Expressionsprofil der Mäuse des "Depressionsresistenten" J Stammes durch Corticosteron-Applikation wesentlich stärker beeinflusst. Hier fanden wir 179 Gene mit einem signifikant regulierten Expressionsprofil. Die Unterschiede der transkriptionalen Profile beider Stämme waren trotz ihrer weitgehenden primär genetischen Übereinstimmung erheblich (n=94).

In Ergänzung der primären Microchip-Analyse untersuchten wir aus der Gesamtzahl der regulierten Gene 3 Depressions-relevante Kandidatengene mittels rt-PCR: Ntrk2, TGFB1, NR4A2. Diese Analyse ergab nur für Ntrk2 ein der Microchip-Analyse entsprechendes Ergebnis, d.h. eine signifikante Expressionssteigerung der Ntrk2 mRNA bei mit Corticosteron behandelten C57BL/6 J Mäusen.

Ntrk2 ist Rezeptor für das Neurotrophin BDNF. Verschiedene Studien ergaben, dass unter Einfluss endogener und exogener Depressions-induzierender Stressoren die Expression hippocampaler BDNF- und Ntrk2 mRNA vermindert und durch erfolgreiche antidepressive Therapie gesteigert wird.

Unsere Microchip-Analysen und qrt-PCR zeigten, dass die chronische Corticosteron-Applikation bei dem Depressions-resistenten J Stamm verglichen mit der Placebo-Gruppe ähnlich wie nach erfolgreicher antidepressiver Therapie zu einer signifikant erhöhten Ntrk2 Expression im Hippocampus führte. Die Expression von BDNF wurde nicht beeinflusst. Diese Ergebnisse bestätigen den in der Literatur postulierten Zusammenhang zwischen Expressionsrate von Ntrk2 mRNA und Anfälligkeit für Stressinduzierte Depressionen. Sie weisen auf eine mögliche Assoziation der Resistenz der J Mäuse gegen Corticosteron-induzierte Depression mit der im Vergleich zur Kontrollgruppe erhöhten Ntrk2 Expression hin.

Das Potential, die Ntrk2 Expression als Reaktion auf Stressoren signifikant zu steigern, könnte Teil eines durch die primäre genetische Ausstattung vermittelten Schutzmechanismus sein, der dem C57BL/6 J Stamm im Gegensatz zum C57BL/6 N Stamm weitgehende Resistenz gegen den Depressions-auslösenden Einfluss von Corticosteron verleiht.

Neben der Begründung dieser Hypothese sind unsere Ergebnisse für das Design weiterer Depressions-Studien am Mausmodell relevant, da sie zeigen, dass trotz weitgehender genetischer Übereinstimmung nicht beide untersuchten C57BL/6 Stämme

für Depressions-Studien geeignet sind, sondern nur der N-Stamm unter Stress- bzw. Corticosteron-Einfluss manifeste Depressions-ähnliche Symptome entwickelt.

Anhang

Abbildungsverzeichnis

Abb. 1: Darstellung der HHN-Achse	12
Abb. 2: Stammbaum der C57BL/6 Mäuse	16
Abb. 3: Zeitlicher Ablauf des Vorversuchs	32
Abb. 4: Zeitlicher Ablauf des Hauptversuchs	33
Abb. 5 : Basalwerte beider Mausstämme im 3h-Sucrose-Präferenz-Test	34
Abb. 6 : Basalwerte beider Mausstämme im "forced swimming test	35
Abb. 7: Horizontale Aktivität beider Mausstämme im Offenfeld Test	35
Abb. 8: 3h-Sucrose-Präferenz Test (J Stamm)	37
Abb. 9: 3h-Sucrose-Präferenz Test (N Stamm)	37
Abb. 10: Horizontale Aktivität der Mauslinien im Offenfeld Test	39
Abb. 11: Vertikale Aktivität der Mauslinien im Offenfeld Test	40
Abb. 12: Anzahl der Besuche im Zentrum des Offenfeldes	41
Abb. 13: Immobilität der beiden Mausstämme im "forced swimming test"	42
Abb. 14: Fellbeschaffenheit der Mauslinien	44
Abb. 15: Unterschiede im Genotyp N (Cort+Pla) vs. J (Cort+Pla)	46
Abb. 16: Corticosteron-Effekt auf den N Stamm	47
Abb. 17: Corticosteron-Effekt auf den J Stamm	48
Abb. 18: Ntrk2 Regulation	52
Abb. 19: TGFB1 Regulation	52
Abb. 20: NR4A2 Regulation	53
Abb. 21: Expressionsänderung von Ntrk2 nach Corticosteron-Applikation bei J und	N
Mäusen analysiert in Affymetrix und qrt-PCR	53
Abb. 22: Expressionsänderung von NR4A2 nach Corticosteron-Applikation bei J un	d N
Mäusen analysiert in Affymetrix und qrt-PCR	54
Abb. 23: Expressionsänderung von TGFB1 nach Corticosteron-Applikation bei J un	d N
Mäusen analysiert in Affymetrix und qrt-PCR	54

Tabellenverzeichnis

Tabelle 1: Beurteilung der Fellbeschaffenheit	25
Tabelle 2: Reagenzien und Reaktionsbedingungen der cDNA Synthese	29
Tabelle 3: Reaktionsanstatz für die qrt-PCR	30
Tabelle 4: Reaktionsprogramm der qrt-PCR	31
Tabelle 5: Differenziell regulierte Gene zwischen J Corticosteron und J Placebo	70
Tabelle 6: Differenziell regulierte Gene zwischen N Corticosteron und N Placebo	74
Tabelle 7: Differenziell regulierte Gene zwischen J und N	76

Differenziell regulierte Gene

Tabelle 5: Differenziell regulierte Gene zwischen J Corticosteron und J Placebo

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
Copg2as2		+	3,499039	1427822_a_at	coatomer protein complex, subunit gamma 2, antisense 2
Eif3c		+	2,7610645	1415859_at	eukaryotic translation initiation factor 3, subunit C
1190003M12Rik		-	2,4806523	1429286_at	gastrokine 3
Ankrd11		+	2,4334853	1456110_at	ankyrin repeat domain 11
Serpinb1a		-	2,254312	1416318_at	serine (or cysteine) peptidase inhibitor, clade B, member 1a
Atrx		+	2,2273593	1420946_at	alpha thalassemia/mental retardation syndrome X-linked
Malat1		+	2,2034218	1452378_at	metastasis associated lung adenocarcinoma transcript 1 (non-protein coding
Ttc3		+	2,1748044	1416482_at	tetratricopeptide repeat domain 3
Fmod		+	2,1521924	1456084_x_at	fibromodulin
Pnn		+	2,108911	1423325_at	pinin, desmosome associated protein
Stxbp1		+	2,0916967	1420506_a_at	syntaxin binding protein 1
Smarca4		+	2,0811095	1426805_at	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4
Ddx6		+	2,0802617	1424598_at	DEAD (Asp-Glu-Ala-Asp) box helicase 6
Klk6		-	2,0787077	1448982_at	kallikrein-related peptidase 6
AI314604		-	2,0782175	1442075_at	expressed sequence AI314604
Sf3b2		+	2,0472198	1429362_a_at	splicing factor 3b, subunit 2, 145kDa
Crebbp		+	2,019618	1436983_at	CREB binding protein
Agxt2I1		+	2,0184023	1452975_at	alanine-glyoxylate aminotransferase 2-like 1
Pgm2l1		+	1,9841559	1438774_s_at	phosphoglucomutase 2-like 1
Hsp90b1		+	1,9753231	1438040_a_at	heat shock protein 90kDa beta (Grp94), member 1
Nedd4		+	1,9738963	1421955_a_at	neural precursor cell expressed, developmentally down-regulated 4
Sult1a1		+	1,9641736	1427345_a_at	sulfotransferase family, cytosolic, 1A, phenol- preferring, member 1
Gsk3b		+	1,959869	1437001_at	glycogen synthase kinase 3 beta
Ube2l3		+	1,9531329	1448880_at	ubiquitin-conjugating enzyme E2L 3

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
Eif3a		+	1,9478633	1416661_at	eukaryotic translation initiation factor 3, subunit A
Pdlim2		-	1,9344524	1423946_at	PDZ and LIM domain 2 (mystique)
Eif5		+	1,910654	1454664_a_at	eukaryotic translation initiation factor 5
Opalin		-	1,8916005	1435854_at	oligodendrocytic myelin paranodal and inner loop protein
Kdm5a		+	1,8784263	1452360_a_at	lysine (K)-specific demethylase 5A
Rsf1		+	1,8620961	1438735_at	remodeling and spacing factor 1
Chd4		+	1,8613347	1438476_a_at	chromodomain helicase DNA binding protein 4
Pcdh7		+	1,8585321	1456214_at	protocadherin 7
Atp2b1		+	1,8566777	1428936_at	ATPase, Ca++ transporting, plasma membrane 1
Hspa4I		+	1,8542624	1458385_at	heat shock 70kDa protein 4-like
Rdx		+	1,8505063	1416180_a_at	radixin
Fus		+	1,8427595	1455831_at	fused in sarcoma
Lrrc8a /// Phyhd1		+	1,8344246	1428394_at	leucine rich repeat containing 8 family, member A//phytanoyl-CoA dioxygenase domain containing
Pcdh17		+	1,8335421	1436920_at	protocadherin 17
Kif5c		+	1,8255893	1422945_a_at	kinesin family member 5C
MII5		+	1,8218585	1439108_at	myeloid/lymphoid or mixed-lineage leukemia 5 (trithorax homolog, Drosophila)
Bclaf1		+	1,8215581	1436023_at	BCL2-associated transcription factor 1
Pcf11		+	1,8196127	1456489_at	PCF11, cleavage and polyadenylation factor subunit, homolog (S. cerevisiae)
Tbl1x		+	1,8098606	1434644_at	transducin (beta)-like 1X-linked
Luzp1		+	1,807838	1448352_at	leucine zipper protein 1
Hsp90aa1		+	1,8039241	1437497_a_at	heat shock protein 90kDa alpha (cytosolic), class
Malat1		+	1,8027077	1427285_s_at	metastasis associated lung adenocarcinoma transcript 1 (non-protein coding)
Smarca2		+	1,8010194	1452333_at	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2
Zc3h11a		+	1,8002954	1426360_at	zinc finger CCCH-type containing 11A
Scaper		+	1,7951844	1437657_at	S-phase cyclin A-associated protein in the ER
Zc3h13		+	1,7808573	1430568_at	zinc finger CCCH-type containing 13
Vapb		+	1,7789137	1458501_at	VAMP (vesicle-associated membrane protein)- associated protein B and C
Endod1		+	1,7711083	1426541_a_at	endonuclease domain containing 1
Cit		+	1,7699345	1427669_a_at	citron (rho-interacting, serine/threonine kinase 21)
Prpf40a		+	1,7697452	1450035_a_at	PRP40 pre-mRNA processing factor 40 homolog A (S. cerevisiae)
9630013A20Rik		-	1,7583324	1444071_at	RIKEN cDNA 9630013A20 gene
Wnk1		+	1,7566055	1436746_at	WNK lysine deficient protein kinase 1
Bptf		+	1,7539872	1427311_at	bromodomain PHD finger transcription factor
Creg2		+	1,7511388	1436850_at	cellular repressor of E1A-stimulated genes 2
Hsp90ab1		+	1,749595	1416365_at	heat shock protein 90kDa alpha (cytosolic), class B member 1
Atrx		+	1,7393107	1420947_at	alpha thalassemia/mental retardation syndrome X-linked
Sfrs18		+	1,7365136	1453185_at	PNN-interacting serine/arginine-rich protein
A2m		+	1,7365106	1434719_at	alpha-2-macroglobulin
LOC100048604		-	1,7358749	1420356_at	ninjurin 2
Tbl1x		+	1,7312217	1434643_at	transducin (beta)-like 1X-linked
Cplx2		+	1,7304792	1421477_at	complexin 2

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
Gpr17		-	1,7296963	1456833_at	G protein-coupled receptor 17
Zc3h15		+	1,7282805	1453684_s_at	zinc finger CCCH-type containing 15
Ablim1		+	1,7272658	1453103_at	actin-binding LIM protein 1
Cacna2d1		+	1,7230184	1449999_a_at	calcium channel, voltage-dependent, alpha 2/delta subunit 1
Timp2		+	1,7200503	1433662_s_at	TIMP metallopeptidase inhibitor 2
Mbnl2		+	1,7189865	1436858_at	muscleblind-like splicing regulator 2
Thoc2		+	1,7132864	1438736_at	THO complex 2
ltih3		+	1,7065092	1449123_at	inter-alpha-trypsin inhibitor heavy chain 3
Plcb4		+	1,7034004	1425338_at	phospholipase C, beta 4
Agt		+	1,7010134	1423396_at	angiotensinogen (serpin peptidase inhibitor, clade A, member 8)
Plcb4		+	1,7008233	1425339_at	Phospholipase C, beta 4
Lpar1		-	1,7002949	1417143_at	lysophosphatidic acid receptor 1
Rock1		+	1,6977901	1460729_at	Rho-associated, coiled-coil containing protein kinase 1
Esco1		+	1,6907419	1424325_at	establishment of cohesion 1 homolog 1 (S.
Slc5a3		+	1,6886286	1440227_at	solute carrier family 5 (sodium/myo-inositol cotransporter), member 3
Klf7		+	1,6850871	1419356_at	Kruppel-like factor 7 (ubiquitous)
Sfrs12		+	1,6828564	1427135_at	splicing regulatory glutamine/lysine-rich protein 1
Pllp		-	1,6815841	1448945_at	plasmolipin
Malat1		+	1,6759144	1438403_s_at	metastasis associated lung adenocarcinoma transcript 1 (non-protein coding)
Sdccag1		+	1,6710614	1429327_at	nuclear export mediator factor
3300001P08Rik		+	1,6703957	1451485_at	LUC7-like 3 (S. cerevisiae)
Pbrm1		+	1,6687056	1427266_at	polybromo 1
Zc3h15		+	1,6677004	1427877_at	zinc finger CCCH-type containing 15
Luc7l		+	1,6649624	1452708_a_at	LUC7-like (S. cerevisiae)
Gabra2		+	1,6639682	1421738_at	gamma-aminobutyric acid (GABA) A receptor, alpha 2
Cald1		+	1,6633362	1424768_at	caldesmon 1
S3-12		+	1,6628914	1418595_at	perilipin 4
Ankrd11		+	1,6623663	1437633_at	ankyrin repeat domain 11
Ppp1r12a		+	1,6573871	1429487_at	protein phosphatase 1, regulatory subunit 12A
Dbp		-	1,6537372	1418174_at	D site of albumin promoter (albumin D-box) binding protein
Zbtb4		+	1,6496313	1457293_at	zinc finger and BTB domain containing 4
Dzip3		+	1,6455803	1458439_a_at	DAZ interacting protein 3, zinc finger
Pak3		+	1,638526	1437318_at	p21 protein (Cdc42/Rac)-activated kinase 3
Atrx		+	1,6375262	1450051_at	alpha thalassemia/mental retardation syndrome X-linked
Sfrs12		+	1,6364526	1427136_s_at	splicing regulatory glutamine/lysine-rich protein 1
Snw1		+	1,6328499	1429003_at	SNW domain containing 1
Slc8a1		+	1,6302211	1437675_at	solute carrier family 8 (sodium/calcium exchanger), member 1
		+	1,6281301	1420485_at	
Spnb2		-	1,6277363	1444089_at	spectrin beta, non-erythrocytic 1
Ankrd17		+	1,6245879	1436775_a_at	ankyrin repeat domain 17
MII5		+	1,6233616	1439107_a_at	myeloid/lymphoid or mixed-lineage leukemia 5 (trithorax homolog, Drosophila)
RUMIU		+	1,0231148	1423742_at	KINA binding motif protein 10
Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
----------------------------	-----------------	-----------------	------------------------------	--------------	--
Crim1		+	1,6227556	1426951_at	cysteine rich transmembrane BMP regulator 1 (chordin-like)
Hsd11b1		-	1,6206256	1449038_at	hydroxysteroid (11-beta) dehydrogenase 1
Zfp91		+	1,6196988	1426326_at	ZFP91 zinc finger protein
Rgs5		+	1,6195816	1420941_at	regulator of G-protein signaling 5
Isoc1		+	1,6186675	1425050_at	Isochorismatase domain containing 1
Nipbl		+	1,6181642	1430309_at	Nipped-B homolog (Drosophila)
Ddx6		+	1,6178765	1439122_at	DEAD (Asp-Glu-Ala-Asp) box helicase 6
Meg3		+	1,6178286	1428764_at	maternally expressed 3 (non-protein coding)
Rfc1		+	1,6172824	1451920_a_at	replication factor C (activator 1) 1, 145kDa
A930009L07Rik		+	1,616523	1439086_at	RIKEN cDNA A930009L07 gene
Cartpt		+	1,6164123	1422825_at	CART prepropeptide
Syt1		+	1,6164056	1431191_a_at	synaptotagmin I
Flywch1		+	1,6124392	1452267_at	FLYWCH-type zinc finger 1
100039204 /// 100040620		+	1,6085405	1424609_a_at	
Kcnc1		+	1,6057445	1423559_at	potassium voltage-gated channel, Shaw-related subfamily, member 1
Tmem125		-	1,6054878	1434094_at	transmembrane protein 125
Tmod2		+	1,6042266	1451301_at	tropomodulin 2 (neuronal)
Sparc		+	1,601871	1448392_at	secreted protein, acidic, cysteine-rich (osteonectin)
Timp2		+	1,6016812	1450040_at	TIMP metallopeptidase inhibitor 2
Gnai2		+	1,5982064	1419449_a_at	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2
Smc6		+	1,5981783	1417736_at	structural maintenance of chromosomes 6
Kif5b		+	1,5936314	1418431_at	Kinesin family member 5B
Тррр3		+	1,5929581	1416713_at	tubulin polymerization-promoting protein family member 3
Fyttd1		+	1,5925999	1424342_at	forty-two-three domain containing 1
Dbp		-	1,5921758	1438211_s_at	D site of albumin promoter (albumin D-box) binding protein
		+	1,591541	1449042_at	
Bodil		+	1,5880371	1460005_at	like 1
Prpf40a		+	1,5843358	1420917_at	PRP40 pre-mRNA processing factor 40 homolog A (S. cerevisiae)
Nipbl		+	1,5835581	1437158_at	Nipped-B homolog (Drosophila)
S100a6		-	1,5798335	1421375_a_at	S100 calcium binding protein A6
Aadacl1		+	1,5796578	1435135_at	neutral cholesterol ester hydrolase 1
A330076H08Rik		+	1,5787685	1457557_at	RIKEN cDNA A330076H08 gene
2600010E01Rik		-	1,5776901	1429909_at	proline rich 5 like
Lpgat1		+	1,5775955	1424349_a_at	lysophosphatidylglycerol acyltransferase 1
Krit1		+	1,5768688	1428730_at	KRIT1, ankyrin repeat containing
Zc3h13		+	1,5758524	1445499_at	zinc finger CCCH-type containing 13
Thoc2		+	1,5747504	1444004_at	THO complex 2
Gnai1		+	1,5734001	1427510_at	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1
Sparc		+	1,5694602	1416589_at	secreted protein, acidic, cysteine-rich (osteonectin)
Eps15		+	1,5683136	1440729_at	epidermal growth factor receptor pathway substrate 15
		+	1,5676205	1444724_at	

1,565458 1420837_at

Ntrk2

*

+

neurotrophic tyrosine kinase, receptor, type 2

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
Gtpbp4		+	1,5649191	1423143_at	GTP binding protein 4
Dgkq		+	1,5620903	1437000_at	diacylglycerol kinase, theta 110kDa
100039204 /// 100040620		+	1,558758	1424607_a_at	CWC22 spliceosome-associated protein homolog (S. cerevisiae)
Fcrls		-	1,5574105	1448891_at	Fc receptor-like S, scavenger receptor
Syn2		+	1,5572234	1449030_at	synapsin II
Narg1		+	1,5543885	1418024_at	N(alpha)-acetyltransferase 15, NatA auxiliary
Cntf /// Zfp91 /// Zfp91-cntf		+	1,5503328	1426327_s_at	subunit ZFP91-CNTF readthrough (non-protein coding)
Nucks1		+	1,5492316	1444952_a_at	nuclear casein kinase and cyclin-dependent kinase substrate 1
Slc1a2		+	1,548787	1439940_at	solute carrier family 1 (glial high affinity glutamate transporter), member 2
Gsk3b		+	1,5481788	1451020_at	glycogen synthase kinase 3 beta
Eif2c2		+	1,5471348	1426366_at	eukaryotic translation initiation factor 2C, 2
Gm1337		-	1,546356	1443287_at	ankyrin repeat domain 63
Zfml		+	1,5454309	1417792_at	zinc finger protein 638
Lpgat1		+	1,5446513	1424350_s_at	lysophosphatidylglycerol acyltransferase 1
lfngr2		+	1,5446413	1423557_at	interferon gamma receptor 2 (interferon gamma transducer 1)
Akap9		+	1,5441768	1437082_at	A kinase (PRKA) anchor protein (yotiao) 9
Xiap		+	1,5440197	1456088_at	X-linked inhibitor of apoptosis
Cnot4		+	1,5432804	1450083_at	CCR4-NOT transcription complex, subunit 4
1700020I14Rik		+	1,5430405	1437774_at	RIKEN cDNA 1700020I14 gene
Smg6		+	1,5407933	1445418_at	smg-6 homolog, nonsense mediated mRNA decay factor (C. elegans)
Cul5		+	1,5403723	1452722_a_at	cullin 5
Mtap7d2		+	1,5383334	1431403_a_at	MAP7 domain containing 2
Ankrd12		+	1,5379579	1443867_at	ankyrin repeat domain 12
A930041102Rik		+	1,5367409	1445081_at	suppressor of cancer cell invasion
Rbm5		+	1,5319388	1452187_at	RNA binding motif protein 5
Prlr		+	1,5312961	1437397_at	prolactin receptor
ltsn2		+	1,5295292	1423184_at	intersectin 2
Pcdh9		+	1,5281987	1442659_at	protocadherin 9
Mtap1b		+	1,5271738	1421851_at	microtubule-associated protein 1B
Mtap9		+	1,5265888	1441961_at	microtubule-associated protein 9

*Die mit einem Stern gekennzeichneten Gene wurden mit Hilfe der qrt-PCR validiert. Gene, die mit einem Pluszeichen (+) in der Regulierung versehen sind, zeigen einen Anstieg der Genexpression in Gewebeproben der Corticosteron Gruppe im Vergleich mit den Proben der Placebo Gruppe.

Minuszeichen (-) bedeuten dagegen eine verminderte Genexpression bei der Corticosteron Gruppe im Vergleich zur Placebo Gruppe.

Tabelle 6: Differenziell regulierte Gene zwischen N Corticosteron und N Placebo

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
1500015O10Rik		-	2,7317622	1423261_at	RIKEN cDNA 1500015O10 gene

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
1190003M12Rik		-	2,0053785	1429286_at	gastrokine 3
lgsf1		-	1,9976114	1433652_at	immunoglobulin superfamily, member 1
Serpinb1a		-	1,9694748	1416318_at	serine (or cysteine) peptidase inhibitor, clade B, member 1a
Pdlim2		-	1,9583843	1423946_at	PDZ and LIM domain 2
Napb		+	1,8726107	1452444_at	N-ethylmaleimide sensitive fusion protein
Napb		+	1,8567762	1427470_s_at	attachment protein beta N-ethylmaleimide sensitive fusion protein attachment protein beta
		+	1,7899224	1443337_at	
Rbp1		-	1,7685195	1448754_at	retinol binding protein 1, cellular
Pja2		+	1,7572819	1427148_at	praja 2, RING-H2 motif containing
lgfbp2		-	1,7569824	1454159_a_at	insulin-like growth factor binding protein 2
Nr4a2	*	+	1,714023	1447863_s_at	nuclear receptor subfamily 4, group A, member 2
Vcam1		-	1,7062898	1448162_at	vascular cell adhesion molecule 1
Tspan7		+	1,6995406	1417502_at	tetraspanin 7
Malat1		+	1,6923068	1452378_at	metastasis associated lung adenocarcinoma
Klk6		-	1,6723561	1448982_at	transcript 1 (non-coding RNA) kallikrein related-peptidase 6
Tspyl1		+	1,6686629	1460717_at	testis-specific protein, Y-encoded-like 1
Ly86		-	1,6637404	1422903_at	lymphocyte antigen 86
Spnb2		-	1,6531978	1444089_at	spectrin beta, non-erythrocytic 1
		+	1,6434313	1447385_at	
Gdi2		+	1,6389219	1431645_a_at	guanosine diphosphate (GDP) dissociation inhibitor 2
lgf2		-	1,623995	1448152_at	insulin-like growth factor 2
Syt5		+	1,6162385	1422531_at	synaptotagmin V
Tgfbi	*	-	1,5988781	1448123_s_at	transforming growth factor, beta induced
Tspan13		+	1,5944301	1460239_at	tetraspanin 13
Tgfbi	*	-	1,594	1456250_x_at	transforming growth factor, beta induced
Aqp4		-	1,5916349	1434449_at	aquaporin 4
Csrp1		+	1,5859814	1425810_a_at	cysteine and glycine-rich protein 1
Rsph1		-	1,5751433	1417643_at	radial spoke head 1 homolog (Chlamydomonas)
Secisbp2l		+	1,5742021	1456120_at	SECIS binding protein 2-like
1133		-	1,5695784	1416200_at	interleukin 33
Abca8a		-	1,5643139	1427371_at	ATP-binding cassette, sub-family A (ABC1), member 8a
Fabp7		-	1,5620476	1450779_at	fatty acid binding protein 7, brain
lgfbp7		-	1,5490174	1423584_at	insulin-like growth factor binding protein 7
Vwa1		-	1,545397	1426399_at	von Willebrand factor A domain containing 1
Hsp90aa1		+	1,5447503	1426645_at	heat shock protein 90, alpha (cytosolic), class A member 1
Col9a3		-	1,5406064	1460693_a_at	collagen, type IX, alpha 3
Zfp445		+	1,5381918	1427255_s_at	zinc finger protein 445
Tmod2		+	1,5337082	1430153_at	tropomodulin 2
Ednrb		-	1,5304056	1437347_at	endothelin receptor type B
B4galt6		+	1,5295526	1450913_at	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6
Ttyh2		-	1,5270962	1434500_at	tweety homolog 2 (Drosophila)
Cyp4f15		+	1,5258815	1449316_at	cytochrome P450, family 4, subfamily f, polypeptide 15
Prr18		-	1,5256668	1455392_at	proline rich region 18

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
lca1		+	1,5222951	1431644_a_at	islet cell autoantigen 1
Crim1		+	1,5205681	1426951_at	cysteine rich transmembrane BMP regulator 1 (chordin like)
Rarres2		-	1,519554	1428538_s_at	retinoic acid receptor responder (tazarotene induced) 2
Vamp8		-	1,5194308	1420624_a_at	vesicle-associated membrane protein 8
Stambp		+	1,5192943	1416317_a_at	STAM binding protein
Pcolce2		-	1,514814	1451527_at	procollagen C-endopeptidase enhancer 2
Trim2		+	1,5122176	1448551_a_at	tripartite motif-containing 2
Tspan2		-	1,5119116	1424568_at	tetraspanin 2
Gpr17		-	1,5109489	1456833_at	G protein-coupled receptor 17
Pja2		+	1,5065495	1452328_s_at	praja 2, RING-H2 motif containing
C1ql3		+	1,5030367	1425176_at	C1q-like 3
Slc15a2		+	1,5022517	1417600_at	solute carrier family 15 (H+/peptide transporter), member 2

*Die mit einem Stern gekennzeichneten Gene wurden mit Hilfe der qrt-PCR validiert. Gene, die mit einem Pluszeichen (+) in der Regulierung versehen sind, zeigen einen Anstieg der Genexpression in Gewebeproben der Corticosteron Gruppe im Vergleich mit den Proben der Placebo Gruppe.

Minuszeichen (-) bedeuten dagegen eine verminderte Genexpression bei der Corticosteron Gruppe im Vergleich zur Placebo Gruppe.

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
4933439C20Rik		-	33,06215	1453145_at	phosphatidylserine decarboxylase, pseudogene 3
4933439C20Rik		-	25,339275	1429452_x_at	phosphatidylserine decarboxylase, pseudogene 3
4933439C20Rik		-	24,53654	1453144_at	phosphatidylserine decarboxylase, pseudogene 3
100039344 /// 100039909 /// 4933409K07Rik /// EG545605 /// LOC100041516 /// LOC100041599		+	10,586773	1447939_a_at	predicted gene 2172
100039344 /// 100039909 /// 4933409K07Rik /// EG545605 /// ENSMUSG00000 073868 /// LOC100041599		+	6,045587	1447937_a_at	predicted gene 2172
Ccl21a /// Ccl21b /// Ccl21c		+	5,015101	1419426_s_at	chemokine (C-C motif) ligand 21A (serine)
4933439C20Rik /// D030013I16Rik		-	4,087515	1454566_at	phosphatidylserine decarboxylase, pseudogene 3

Tabelle 7: Differenziell regulierte Gene zwischen J und N

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
/// Pisd-ps1					
4933439C20Rik /// Pisd-ps1		-	3,810645	1435353_a_at	phosphatidylserine decarboxylase, pseudogene 1
Wdfy1		-	3,6707041	1437358_at	WD repeat and FYVE domain containing 1
100039344 /// ENSMUSG00000 073868		+	3,3940291	1447938_at	predicted gene 2172
Mid1		+	3,234094	1438239_at	N-methylpurine-DNA glycosylase
Wdfy1		-	3,1144905	1435588_at	WD repeat and FYVE domain containing 1
		+	3,0420835	1435579_at	
		+	2,947202	1457324_at	methyl-CpG binding domain protein 4
Med1		+	2,9058552	1421907_at	methyl-CpG binding domain protein 4
D14Ertd449e /// ENSMUSG00000 072676		+	2,90177	1428738_a_at	transmembrane protein 254a
Mbp		+	2,6655369	1451961_a_at	mannose-binding lectin (protein C) 2
Bat2d		+	2,6591046	1429432_at	proline-rich coiled-coil 2C
4933439C20Rik		-	2,648703	1439069_a_at	phosphatidylserine decarboxylase, pseudogene 3
4933439C20Rik /// Pisd /// Pisd- ps1		-	2,620307	1436944_x_at	phosphatidylserine decarboxylase, pseudogene 3
4933439C20Rik		-	2,5838933	1434975_x_at	phosphatidylserine decarboxylase, pseudogene 3
C1ql3		+	2,3818808	1425176_at	C1q-like 3
Gabra2		-	2,3730986	1455444_at	gamma-aminobutyric acid (GABA) A receptor, subunit alpha 2
4933439C20Rik /// Pisd /// Pisd- ps1		-	2,3484354	1426387_x_at	phosphatidylserine decarboxylase, pseudogene 3
Gng2		+	2,3078947	1418452_at	guanine nucleotide binding protein (G protein), gamma 2
Tmem181		-	2,2317727	1452848_at	transmembrane protein 181A
Gabra2		-	2,2143412	1443865_at	gamma-aminobutyric acid (GABA) A receptor, subunit alpha 2
EG633640		+	2,21119	1426607_at	predicted gene 7120
Cd59a		-	2,2007058	1429830_a_at	CD59a antigen
Pppde1		+	2,1921177	1451621_at	desumoylating isopeptidase 2
2310001H12Rik		+	2,1806903	1424872_at	zinc finger protein 932
Secisbp2l		+	2,1761377	1456120_at	SECIS binding protein 2-like
		-	2,1669075	1455744_at	
Csrp1		+	2,1145132	1425810_a_at	cysteine and glycine-rich protein 1

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
Nnt		-	2,0981176	1456573_x_at	nicotinamide nucleotide transhydrogenase
Dynlt1 /// Dynlt1d /// ENSMUSG00000 056252		-	2,0938704	1453473_a_at	dynein light chain Tctex-type 1B
Jak1		+	2,093224	1433804_at	Janus kinase 1
Cd59a		-	2,0826035	1418710_at	CD59a antigen
		-	2,0365992	1440862_at	
Dynlt1 /// Dynlt1d ///		-	2,0365615	1428116_a_at	dynein light chain Tctex-type 1
056252					
Ube2l3		-	2,0229247	1448880_at	ubiquitin-conjugating enzyme E2L 3
Leprot		+	2,013451	1451350_a_at	leptin receptor overlapping transcript
Malat1		+	1,999936	1452378_at	metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA)
Pja2		+	1,9963137	1427148_at	praja 2, RING-H2 motif containing
lsca1		+	1,9941951	1423652_at	iron-sulfur cluster assembly 1 homolog (S. cerevisiae)
Nnt		-	1,9759848	1416105_at	nicotinamide nucleotide transhydrogenase
Gdi2		+	1,9698905	1431645_a_at	guanosine diphosphate (GDP) dissociation inhibitor 2
Entpd4 /// LOC100048085		+	1,9654628	1449190_a_at	ectonucleoside triphosphate diphosphohydrolase 4
Tmem181 /// Tmem181c-ps		-	1,961277	1435948_at	transmembrane protein 181C, pseudogene
Rtn4		+	1,9595071	1421116_a_at	reticulon 4
Tspan7		+	1,9231901	1417502_at	tetraspanin 7
A230046K03Rik		+	1,9142693	1439450_x_at	RIKEN cDNA A230046K03 gene
Ap2b1		+	1,9126837	1452292_at	adaptor-related protein complex 2, beta 1 subunit
Crhbp		+	1,908743	1436127_at	corticotropin releasing hormone binding protein
B4galt6		+	1,9017318	1450913_at	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 6
Mkrn1		-	1,8916204	1451425_a_at	makorin, ring finger protein, 1
Clic6		-	1,8766881	1434165_at	chloride intracellular channel 6
Entpd4 /// LOC100048085		+	1,8707705	1438177_x_at	ectonucleoside triphosphate diphosphohydrolase 4
		-	1,8667225	1455869_at	
Anks1b		+	1,8633274	1449634_a_at	ankyrin repeat and sterile alpha motif domain containing 1B

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
Slc25a12		-	1,8587204	1444489_at	solute carrier family 25 (mitochondrial carrier, Aralar), member 12
Zfp445		+	1,8310151	1427254_at	zinc finger protein 445
4933439C20Rik /// D030013I16Rik /// Pisd /// Pisd- ps1		-	1,8291728	1439070_x_at	phosphatidylserine decarboxylase, pseudogene 3
Ttc3		+	1,826541	1416484_at	tetratricopeptide repeat domain 3
Arhgap5		+	1,8228135	1423194_at	Rho GTPase activating protein 5
Sult1a1		-	1,8042698	1427345_a_at	sulfotransferase family 1A, phenol-preferring, member 1
Cpd		+	1,7965448	1418018_at	carboxypeptidase D
Prox1		+	1,7804691	1437894_at	nitrogen permease regulator-like 3
Ctnnb1		+	1,7699829	1430533_a_at	catenin (cadherin associated protein), beta 1
Gabra1		+	1,7661847	1421280_at	gamma-aminobutyric acid (GABA) A receptor, subunit alpha 1
S3-12		-	1,7624686	1418595_at	perilipin 4
Tspyl1		+	1,7457879	1460717_at	testis-specific protein, Y-encoded-like 1
Vsnl1		+	1,7333089	1450055_at	visinin-like 1
ENSMUSG00000 043248 /// Plac9		+	1,7311416	1452590_a_at	predicted gene 9780
Prkcc		+	1,728531	1421446_at	protein kinase C, gamma
Slc39a6		+	1,7150999	1424675_at	solute carrier family 39 (metal ion transporter), member 6
Ogn		-	1,7098037	1419663_at	osteoglycin
Pcdh21		-	1,7012773	1418304_at	cadherin-related family member 1
Tmem49		+	1,6974587	1421491_a_at	vacuole membrane protein 1
Ica1		+	1,6883379	1431644_a_at	islet cell autoantigen 1
Khdrbs1		+	1,6809198	1418628_at	KH domain containing, RNA binding, signal transduction associated 1
Pja2		+	1,680389	1452328_s_at	praja 2, RING-H2 motif containing
LOC100046168 /// Ndfip1		+	1,670288	1451493_at	Nedd4 family interacting protein 1
Scn8a		+	1,666648	1439889_at	sodium channel, voltage-gated, type VIII, alpha
Napb		+	1,6648698	1452444_at	N-ethylmaleimide sensitive fusion protein attachment protein beta
lde		+	1,6548582	1423121_at	insulin degrading enzyme
Мbp		+	1,6540492	1425263_a_at	mannose-binding lectin (protein C) 2
Rapgef4		+	1,6535368	1421622_a_at	Rap guanine nucleotide exchange factor (GEF) 4

Gensymbol	Validieru ng	Regulier ung	differenzielle Expression	Probe Set ID	Genbezeichnung
Sec63		+	1,6522042	1424926_at	SEC63-like (S. cerevisiae)
Sntb2		+	1,6423602	1420371_at	syntrophin, basic 2
Trpm3		+	1,6353186	1441966_at	transient receptor potential cation channel, subfamily M, member 3
Sfrs18		+	1,6345655	1429537_at	serine/arginine-rich splicing factor 18
Npy1r		-	1,633023	1421471_at	neuropeptide Y receptor Y1
LOC100045866 /// Tceb1		+	1,6300607	1427915_s_at	transcription elongation factor B (SIII), polypeptide 1

*Die mit einem Stern gekennzeichneten Gene wurden mit Hilfe der qrt-PCR validiert. Gene, die mit einem Pluszeichen (+) in der Regulierung versehen sind, zeigen einen Anstieg der Genexpression in Gewebeproben der Corticosteron Gruppe im Vergleich mit den Proben der Placebo Gruppe.

Minuszeichen (-) bedeuten dagegen eine verminderte Genexpression bei der Corticosteron Gruppe im Vergleich zur Placebo Gruppe.

Abstract

It is widely accepted that stress can be a major factor in the pathogenesis of depression, although the pathomechanisms remain largely unknown. A major brain target for the effects of chronic stress and concomitantly increased corticosteroid levels is the hippocampus. In this study, we have investigated the consequences of long-term increase in corticosterone levels in two closely related strains of mice. Thus, 14 weeks old C57BL/6 J and C57BL/6 N mice were implanted subcutaneously with corticosterone (20 mg/kg) or placebo pellets. The corticosterone pellets released the hormone within 21 days continuously. 14 to 21 days after pellet implantation we performed behavioral tests that are relevant to depression (*sucrose-preference-test, "forced swimming test"*). On day 21 the coat state of the mice has been assessed. In addition the explorative behavior was tested in the *open-field*.

We found that the influence of corticosterone on depression-related behavior is different in the two substrains. Corticosterone treatment had little or no effect in C57BL/6 J mice, but induced a number of behavioral changes that indicate a depression-related behavior in C57BL/6 N animals. These data show that C57BL/6 J are more resistant to the chronic effects of corticosterone than the C57BL/6 N strain, although the genetic differences between the two strains are minimal.

In order to investigate molecular mechanisms underlying these differential behavioral effects of corticosterone, animals were sacrificed and gene expression profiles were established from hippocampal tissues using Affymetrix gene chips. In the face oft the significantly depressive phenotype of C57BL/6 N mice, the number of genes (n=56), which were regulated by corticosterone-application was surprisingly small. Interestingly, animals of the "depression-resistant" J strain displayed a considerably higher number of genes (n=179) regulated by corticosterone- application. In spite of quite extensive genetic similarity between both strains, the differences of their transcriptional profiles were rather profound (n=94).

From the total of genes, which were shown to be significantly regulated using Affymetrix gene-chips, we selected 3 depression-relevant candidate-genes for additional qrt-PCR: Ntrk2, TGFB1, NR4A2.

Using additional qrt-PCR the results of microchip analysis could only be validated for the candidate gene Ntrk2: both methods revealed a significant increase of Ntrk2 mRNA expression in corticosterone implanted C57BL/6 J mice.

Ntrk2 is receptor for the neurotrophin BDNF. Both endogenous and exogenous depression- inducing stressors reduce the expression of hippocampal BDNF and Ntrk2 mRNA while successful antidepressive treatment has been shown to increase the expression-rate. Our results confirm the association of Ntrk2 mRNA expression with susceptibility to stress-induced depression, as postulated in the literature. Moreover, they point to a possible genetically determined association of the demonstrated resistance to corticosterone-induced depression in J mice with increased Ntrk2 expression.

The potential to significantly increase Ntrk2 expression in response to stressors might be part of a protection-mechanism rendering the C57BL/6 J substrain more resistant to corticosterone-induced depression than the N strain.

Moreover the selective resistance of the J strain to chronic corticosterone treatment indicates that not every C57BL/6 strain is equally suited for depression studies and the respective strains should be selected cautiously.

Literaturverzeichnis

American, PA. DSM IV-Diagnostic and statistical manual of psychiatric disorders, 4th edition. American Psychiatric Associacion 1994, Washington , DC, pp.620

Al-Hasani K, Vadolas J, Voullaire L, Williamson R, Iannou PA. Complementation of alpha-thalassaemia in alpha- globin konockout mice with a 191 kb transgene containing the human alpha-globin locus. Transgenic Res 2004; 13: 235-243

Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I. Differential Regulation of Central BDNF Protein Levels by Antidepressant and Nonantidepressant Drug Treatments. Brain Research 2008; 1211: 37–43

Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology 1985; 35: 866-874

Blanchard DC, Griebel G, Blanchard RJ. Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 2001; 25: 205-218

Bogerts B, Meertz , Schonfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenics. Arch Gen Psychiatry 1985; 42: 784-791

Bonhoeffer T. Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol 1996; 6:119–126

Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG. Genetic and behavioral differences among five inbred mouse strains commonly used in the production of transgenic and knockout mice. Genes Brain Behav 2004; 3: 149-157

Brown ES, Woolston DJ, Frol A, Bobadilla L, Khan DA, Hanczyc M. Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy. Biol. Psychiatry 2004; 55: 538–545

Bryant CD, Zhang NN, Sokoloff G, Fanselow MS, Ennes HS, Palmer AA, McRoberts JA. Behavioral differences among C57BL/6 Substrains: Implications for Transgenic and Knockout Studies. J Neurogenetics 2008; 22: 315-331 Caetano SC, Hatch JP, Brambilla P, Sassi RB, Nicoletti M, Mallinger AG, Ellen Frank E, Kupfer DJ,Keshavan MS, Soares JC.Anatomical MRI study of hippocampus and amygdala in patients with current and remitted major depression. Psychiatry Res 2004; 132: 141–147

Campbell S, Marriott M, Nahmias C, MacQueen GM. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 2004; 161: 598–607

Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 2003; 301: 386 –389.

Claes SJ. Stress and Major depression: A Psychobiological Interplay. Vitam Horm 2004; 69:117-150

Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in gegnetically modified mice. Mol Psychiatry 2004; 9: 326-357

David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Douglas AC, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R. Behavioral Effects of Fluoxetine in an animal model of anxiety/depression are mediated by both neurogenesis-dependent and independent mechanisms. Neuron 2009; 62: 479-493

De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O'Neill MJ, Zetterström TS. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004; 128: 597–604

De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 1998; 19: 269-301

Drevets W.C. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001; 11: 240–249

Dwivedi Y. Brain- derived neurotrophic factor: role in depression and suicide. Neuropsychiatric Disease and Treatment 2009; 5: 433–449 Feldman S, Conforti N, Weidenfeld J. Limbic pathways and hypothalamic neurotransmitters mediating adrenocortical responses to neural stimuli. Neurosci Biobehav Rev 1995; 19: 235–240

Fuchs E. Neurogenesis in the adult brain: is there an association with mental disorders? Eur Arch Psychiatry Clin Neurosci 2007; 257: 247-249

Fuchs E, Gould E. Mini-review: in vivo neurogenesis in the adult brain: regulation and functioanl implications. Eur J Neurosci 2000; 12: 2211-2214

Galea LA, McEwen BS, Tanapat P, Deak T, Spencer RL, Dhabhar FS. Sex differences in dentritic athrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 1997; 81: 689-697

Gallagher P,Young AH. Mifepristone(RU-486) treatment for depression and psychosis: a review of the therapeutic implications. Neuropsychiatr Dis Treat 2006; 2: 33-42

Gold JJ, Squire LR. Quantifying medial temopral lobe damage in memory- impaired patients. Hippocampus 2005; 15: 79-85

Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR. Acute Hippocampal Brain-Derived Neurotrophic Factor Restores Motivational and Forced Swim Performance After Corticosterone. Biol Psychiatry 2008; 64: 884-890

Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biological psychiatry 2008; 63: 353–359

Gregus A, Wintink AJ, Davis AC, Kalynchuk LE. Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 2005; 156: 105–114

Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrie P. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Natl Acad Sci USA 2002; 99: 6370–6375

Grissom N, Iyer V, Vining C, Bhatnagar S. The physical context of previous stress exposure modifies hypothalamic-pituitary-adrenal responses to a subsequent homotypic stress. Horm Behav 2007; 51: 95-103

Hall CS, Ballechey EL. A study of the rat's behavior in a field: A contribution to method in comparative psychology. University of California Publications in Psycholgy 1932; 6: 1-12

Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol 1967; 6: 278–296

Hascoet M, Bourin M, Dhonnchadha BA. The mouse light–dark paradigm: a review. Prog. Neuropsychopharmacol. Biol. Psychiatry 2001; 25: 141–166

Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamopituitary-adrenocortical axis. Trends Neurosci 1997; 20: 78–84

Hesse Hermann 1903, Peter Camenzind, Erste Buchausgabe: Berlin 1904, Suhrkamp Verlag Frankfurt am Main 2001, 103

Hickie I, Naismith S, Ward PB, Turner K, Scott E, Mitchell P, Wilhelm K, Parker G. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. Br J Psychiatry 2005; 186: 197–202

Hill MN, Brotto LA, Lee TT, Gorzalka BB. Corticosterone attenuates the antidepressantlike effects elicited by melatonin in the forced swim test in both male and female rats. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 905–911

Holsboer F. The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999; 33: 181-214

Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affec Disord 2001; 62: 77-91

ICD10, 2010: International Classification of Diseases and Related Problems 10 ed. www.dimdi.de/static/de/klassi/icd-10-gm (12.03.2012)

Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocr Rev 1991; 12: 118–134

Joukamaa M, Heliövaara M, Knekt P, Aromaa A, Raitasalo R, Lehtinen V. Mental disorders and cause-specific mortality. The Br J Psychiatry 2001; 179: 498-502

Kajiyama Y, Iijima Y, Chiba S, Furuta M, Ninomiya M, Izumi A, Shibata S, Kunugi H. Prednisolone causes anxiety and- depression-like behaviors and altered expression of apoptotic genes in mice hippocampus. Progress in Neuro-Psychopharmacology & Biological Psychiatry 2009; 34: 159-165

Kalia M. Neurobiological basis of depression: an update. Metabolism 2005; 54: 24-27

Kalynchuk LE, Gregus A, Boudreau D, Perrot-Sinal TS. Corticosterone increases depression-like behavior, with some effects on predator odor-induced defensive behavior, in male and female rats. Behav Neurosci 2004; 118: 1365–1377

Katz RJ. Animal models and human depressive disorders. Neuroscience Biobehavioral Reviews 1981(a); 5: 231–246

Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neuroscience and Biobehavioral Reviews 1981(b); 5: 247-251

Kemper TL, Bauman M. Neuropathology of infantile autism. J Neuropathol Exp Neurol 1998; 57: 645-652

Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Wittchen HU, Kendler KS. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 1994; 51: 8–19

Kessler RC, Berglund P, Demler O. Lifetime prevalence and age onset distributions of DSM-IV disorders in the national commorbidity survey replication. Arch Gen Psychiatry 2005; 62: 593-602

Klein DF. Endogenomorphic depression. A conceptual and terminological revision. Arch Gen Psychiatry 1974; 31: 447–454

Koponen E, Rantamäki T, Voikar V, Saarelainen T, MacDonald E, Castrén E. Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cell Mol Neurobiol 2005; 6: 973–980

LeDoux J. The Emotional Brain, Fear, and the Amygdala. Cellular and Molecular Neurobiology 23 2003; Nos 4/5: 727-738

Lorenzetti V, Allen NB, Fornito A, Yucel M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord 2009; 117: 1-17

Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 1995; 69: 83–88

Marcotte ER, Srivastava LK, Quirion R. DNA microarrays in neuropsychopharmacology. Trends Pharmacol Sci 2001; 22: 426-436

Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: 651-660

McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annu Rev Neurosci 1999; 22: 295–318

McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci 1999; 22: 105–122

McEwen BS. Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 2005; 54: 20–23

Milner B, Pribram KH, Broadbent DE. Memory and the medial temporal regions of the brain. In Biology of Memory, Academic Press 1970; 29-50

Mirnics K, Pevsner J. Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 2004; 7: 434-439

Murray CJL, Lopez AD. The global burden of disease. Harvard University Press, Boston, 1996

Murray CJL, Lopez AD. YLD, Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 17 1997; 349:1436-1442

Murray F, Smith DW, Hutson PH. Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Pharmacol 2008; 583: 115–127

Nemeroff CB. The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiatry 1988; 21: 76-82

Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002; 34: 13-25

Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995; 15: 7539–7547

Pantazopoulos H, Lange N, Baldessarini RJ, Berretta S. Parvalbumin neurons in the entorhinal cortex of subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry 2007; 61: 640-652

Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatry 1937; 38: 725-743

Pham K, Nacher J, Hof PR, McEwen BS. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 2003 17: 879-886

Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Archives Internationales de Pharmacodynamie et de Therapie 1977; 229: 327–336

Paxinos G, Franklin K. The Mouse Brain in Strerotactic Coordinates (Deluxe Edition). Academic Press, 2001

Rantamäki T, Hendolin P, Kankaanpää A, Mijatovic J, Piepponen P, Domenici E, Chao MV, Männistö PT, Castren E. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-C gamma signaling pathways in mouse brain. Neuropsychopharmacology 2007; 32: 2152–2162

Robert Koch Institut (RKI). Gesundheitsberichterstattung des Bundes Robert Koch-Institut in Zusammenarbeit mit dem Statistischen Bundesamt. Heft 51: Depressive Erkrankungen, 2010

Rogóz Z, Skuza G, Legutko B. Repeated treatment with mirtazepine induces brainderived neurotrophic factor gene expression in rats. J Physiol Pharmacol 2005; 56: 661– 671 Rojas P, Joodmardi E, Perlmann T, Ove O[°] gren S. Rapid Increase of Nurr1 mRNA Expression in Limbic and Cortical Brain Structures Related to Coping With Depression-Like Behavior in Mice. Journal of Neuroscience Research 2010; 88: 2284-2293

Sachar EJ, Baron M. The biology of affective disorders. Annu Rev Neurosc 1979; 2: 505-507

Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809

Sapolsky RM. Glucicorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000; 57: 925-935

Schaaf MJM, Hoetelmans RWM, de Kloet ER, Vreugdenhil E. Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus. J Neurosci Res 1997; 48: 334–341

Schaaf MJM, de Jong J, de Kloet ER, Vreugdenhil E. Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res 1998; 813: 112–120

Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, Sorg T, Wong K, Bedu E, Cartwright EJ, Dacquin R, Djebali S, Estabel J, Graw J, Ingham NJ, Jackson IJ, Lengeling A, Mandillo S, Marvel J, Meziane H, Preitner F, Puk O, Roux M, Adams DJ, Atkins S, Ayadi A, Becker L, Blake A, Brooker D, Cater H, Champy MF, Combe R, Danecek P, di Fenza A, Gates H, Gerdin AK, Golini E, Hancock JM, Hans W, Hölter SM, Hough T, Jurdic P, Keane TM, Morgan H, Müller W, Neff F, Nicholson G, Pasche B, Roberson LA, Rozman J, Sanderson M, Santos L, Selloum M, Shannon C, Southwell A, Tocchini-Valentini GP, Vancollie VE, Westerberg H, Wurst W, Zi M, Yalcin B, Ramirez-Solis R, Steel KP, Mallon AM, de Angelis MH, Herault Y, Brown SD. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 2013; 14: R82

Schröder A. C57BL/6 J and C57BL/6 N mice respond differently to corticosterone treatment: The role of locus coeruleus in the depression-like phenotype. Masterarbeit in Neurowissenschaften an der Medizinischen und Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms Universität Bonn; 2011

Scoville WB. Limbic lobe and memory in men. J Neurosurg 1954; 11: 64-66

Sheline YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry 2003; 54: 338–352

Shipley MT, Sorensen KE. Some afferent and intrinsic connections in the guinea pig hippocampal region and a new pathway from subiculum feeding back to parahippocampal cortex. Exp. Brain Res 1975; I: 188-190

Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002: 22: 3251–3261

Siegel GJ, Chauhan NB. Neurotrophic factors in Alzheimer's and Parkinson's disease brain. Brain Res Rev 2000; 33: 199-227

Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brainderived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997; J56: 131–137

Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1768–1777

Sonino N, Fava GA. Residual symptoms in depression and merging therapeutic concept. Prog Neuropsychpharmacol Biol Psyhiatry 2002; 26: 763-770

Surget A, Saxe M, Leman S, Vargas Y, Chalon S, Griebel G, Hen R, Belzung C. Drug-Dependent Requirement of Hippocampal Neurogenesis in a Model of Depression and of Antidepressant Reversal. Biol Psychiatry 2008; 64: 293–301

Southwick SM, Vythilingam M, Charney DS. The psychology of depression and resilience to stress: implications for prevention and treatment. Annu Rev Clin Psychol 2005; 19: 255-291

Statistisches Bundesamt, Destatis, 2012

Stone EA, Lin Y. An anti-immobility effect of exogenous corticosterone in mice. Eur J Pharmacol 2008; 580: 135-142

Strekalova T, Spanagel R, Bartsch D, Henn AF, Gass P. Stress-Induced Anhedonia in Mice is Associated with Deficits in Forced Swimming and Exploration. Neuropsychopharmacology 2004; 29: 2007–2017

Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000; 157: 1552-1562

Tang H, Araki K, Li Z, Yamamura K. Characterisation of Ayu17-449 gene expression and resultant kidney pathology in a knockout mouse model. Transgenic Res 2008; 17: 599-608

Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Toné S, Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 1997; 28: 103–110

Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 2004; 161:1957–1966

Vinet J, Carra S, Blom JM, Brunello N, Barden N, Tascedda F. Chronic treatment with desipramine and fluoxetine modulate BDNF, CaMKKalpha and CaMKKbeta mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology 2004; 47: 1062-1069

Walsh RN, Cummins RK. The open field test: A critical review: Psychological Bulletin 1976; 83: 482-504

Waterson RH, Mouse Genome Sequencing Consortium, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigó R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420: 520-562

WHO, World Health Organisation. Revised global burden of disease (GBD) 2002 estimates. Genf, 2005

WHO, World Health Organisation (2010). The global burden of disease: 2004 an update. WHO Press, Genf, 2010

WHO, World Health Organisation. Fact sheet N°369 October 2012, 2013

Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharm 1987; 93: 358–364

Wolkowitz OM, Reus VI, Manfredi F, Ingbar J, Brizendine L. Ketoconazole administration in hypercortisolemic depression. The American Journal of Psychiatry 1993; 150: 810-812

Zhao Y, Ma R, Shen J, Su H, Xing D, Du L. A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 2008; 581: 113–120

Zueger M, Urani A, Chourbaji S, Zacher C, Roche M, Harkin A, Gass P. Olfactory bulbectomy in mice induces alterations in exploratory behavior. Neuroscience Letters 374 2005; 142-146

Zurita E, Chagoyen M, Cantero M, Alonso R, Gonzalez-Neira A, Lopez-Jimenez A, Lopez- Moreno JA, Landel CP, Benitez J, Pazos F, Montoliu L. Genetic polymorphisms among C57BL/6 mouse inbred strains.Transgenic Res 2010; 20: 481-489

Danksagung

Diese Arbeit wurde am Institut für Molekulare Psychiatrie der Universität Bonn unter der Leitung von Herrn **Prof. Dr. rer. nat. Andreas Zimmer** durchgeführt, dem ich für die Überlassung des Themas und die fortwährende Unterstützung aufs Herzlichste danke.

Mein besonderer Dank gilt Frau **Dr. rer. nat. Astrid Becker**, die mich bei der Durchführung der Experimente sehr unterstützte, sowie Herrn **PD Dr. rer. nat. Andras Bilkei-Gorzo** für seine wertvollen Anregungen zur statistischen Ausarbeitung. Ich danke den **Mitarbeitern** des Instituts für Molekulare Psychiatrie für ihre stete Hilfsbereitschaft und kollegiale Zusammenarbeit.

Herzlich bedanken möchte ich mich ebenfalls bei Herrn **Dipl. Inform. Michael Weber**, Herrn **Dr. med Robert Schueler** und Herrn **Frederik Meyer**, die mir bei der Formatierung und Gestaltung der Arbeit eine große Unterstützung waren.

Zuletzt möchte ich mich bei meinen **Eltern** und **Pateneltern** bedanken, die mich während meines gesamten Medizinstudiums liebevoll unterstützt haben und mich immer ermutigt haben meinen Weg zu gehen.