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Introduction

Economists examine extensive cross sectional and time series data. This information allows

them to study economic decision making of households, firms and countries over time or to

produce forecasts of financial time series to support portfolio allocation and risk management.

When analyzing and interpreting these datasets, the linear regression model continues to be

fundamental to sound empirical work. The three chapters in this thesis contribute to solving

several econometric issues in linear regression analysis. In the first two chapters, a potentially

large number of regression parameters arises in two distinct econometric frameworks. Estimat-

ing these parameters to produce accurate forecasts of an economic variable of interest is the

objective in the first chapter. The inferential methods presented in the second chapter enable the

researcher to decide whether estimating a high-dimensional parameter vector is appropriate or

whether a more parsimonious regression model applies. In contrast, chapter 3 shifts attention

to the predictability of economic time series under a general statistical loss function.

In particular, chapter 1 examines forecasting regressions that employ many predictors, leading

to the task of estimating a large number of parameters in a linear regression. Here, many regres-

sors arise naturally due to a frequency mismatch between the series of interest and the series

that is considered to have predictive power. These mixed frequency regression models arise

often in macroeconomics and finance, if, for instance, quarterly g.d.p. or the monthly volatility

of a return index is forecasted with daily observations of macroeconomic leading indicators or

(intra-)daily observations of financial variables. A new estimation procedure for these mixed

data sampling (MIDAS) regression models is proposed. The estimator is a modified ordinary

least squares (OLS) estimator which assumes that the weights assigned to high-frequency re-

gressors are a smooth function and complements the least squares criterion by a smoothness

penalty, resulting in a penalized least squares (PLS) estimator. The estimation method does not

rely on a particular parametric specification of the weighting function, but depends on a smooth-

ing parameter. Several methods are presented to choose this parameter including a variant of

the Akaike information criterion (AIC). A simulation study is conducted to evaluate the esti-
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mation accuracy as measured by the mean squared error of the modified OLS estimator and the

parametric MIDAS approach, which requires estimation by non-linear least squares (NLS). The

simulation results illustrate in which cases the PLS estimator produces more accurate estimates

than the parametric NLS estimator, and in which cases the parametric approach performs better.

The results show that the PLS estimator is flexible alternative method to estimate MIDAS re-

gression models. These MIDAS approaches are then employed to forecast volatility of the Ger-

man stock index (DAX). In addition to the mixed frequency models, the GARCH(1,1) model

is used as a benchmark. Using current and lagged absolute returns as predictors, MIDAS-PLS

provides more precise forecasts than MIDAS-NLS or the GARCH(1,1) model over biweekly or

monthly forecasting horizons. In a companion paper, the PLS estimator is used to forecast the

monthly German inflation rate, see Breitung et al. (2013).

In chapter 2, which is joint work with Jörg Breitung and Nazarii Salish, the linear panel data

model is studied, in which observations are available both in the cross section and in the time

series dimension. When estimating a panel regression, it must be decided whether the eco-

nomic relationship of interest is taken to be homogenous, such that the same parameter vector

applies to all cross sectional units, or whether a heterogeneous empirical model is more appro-

priate, in which the regression parameters differ between cross sectional units. In a classical

panel data setup, in which the cross section dimension is large relative to the time series di-

mension, modelling regression parameters to be indiviudal-specific introduces a large number

of parameters to be estimated in the panel even if only a few explanatory variables are studied

for each cross section unit individually. In this chapter, a statistical test is proposed to deter-

mine whether regression parameters are indiviudal-specific or common to all units in the cross

section. Answering this question is important as a preparatory step in panel data analysis to

select a parsimonious model if possible, and to choose the subsequent estimation procedure

accordingly.

To this end, the Lagrange Multiplier (LM) principle is employed to test parameter homogeneity

across cross-section units in panel data models. The test can be seen as a generalization of the

Breusch-Pagan test against random individual effects to all regression coefficients. While the

original test procedure assumes a likelihood framework under normality, several useful variants

of the LM test are presented to allow for non-normality and heteroskedasticity. Moreover, the

tests can be conveniently computed via simple artificial regressions. The limiting distribution

of the LM test is derived and it is shown that if the errors are not normally distributed, the
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original LM test is asymptotically valid if the number of time periods tends to infinity. A

simple modification of the score statistic yields an LM test that is robust to normality if the time

dimension is fixed. A further adjustment provides a heteroskedasticity-robust version of the

LM test. The local power of these tests LM tests and the delta statistic proposed by Pesaran and

Yamagata (2008) is then compared. The results of our Monte Carlo experiments suggest that

the LM-type test can be substantially more powerful, in particular, when the number of time

periods is small.

Chapter 3, written in collaborative work with Matei Demetrescu, investigates the predictive re-

gression model under a general statistical loss function, including mean squared error (MSE)

loss as a special case. In this predictive regression, the coefficient of a predictor is tested for

significance. While for stationary predictors this task does not pose difficulties, non-standard

limiting distributions of standard inference methods arise once the regressors are endogenous,

such that there is contemporaneous correlation between shocks of the regressor and the de-

pendent variable, and persistent, so that the predictor is reverting very slowly to its long-run

mean, if at all. With a more general loss function beyond squared error loss, endogeneity is

loss-function specific. Thus, no endogeneity under OLS does not imply, and is not implied by,

endogeneity under, say, an asymmetric quadratic loss function. Existent solutions for the endo-

geneity problem in predictive regressions with predictors of unknown persistence are valid for

OLS-based inference only, and thus apply exclusively to MSE-optimal forecasting. An overi-

dentified instrumental variable based test is proposed, using particular trending functions and

transformations of the predictor as instruments. The test statistic is analogous to the Anderson-

Rubin statistic but takes the relevant loss into account, and follows a chi-squared distribution

asymptotically, irrespective of the degree of persistence of the predictor. The forward premium

puzzle is then reexamined by providing evidence for deviations from MSE loss and by con-

ducting robust inference of the rational expectations hypothesis. The analysis provides little

evidence for failure of the rational expectations hypothesis, in contrast to early empirical tests

in this literature.
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Chapter 1

Forecasting volatility with penalized
MIDAS regressions

1.1 Introduction

Increased availability of financial and macroeconomic data enables researchers to forecast eco-

nomic variables with a large number of potential predictors. In particular, predictors may be

observed much more frequently than an economic variable of interest such as gross domes-

tic product, industrial production or inflation. For instance, between two quarters in a given

year, daily observations of a financial time series can be used to construct forecasts of the low-

frequency variable of interest. Two tasks arise in this context. First, a forecasting model is

needed to accommodate variables that are naturally measured at different frequencies. Second,

the potential gains of these mixed frequency models need to be evaluated, usually relative to

forecasts that do not incorporate available high-frequency data.

To deal with mixed frequencies, one can first average high-frequency observations and then

produce forecasts using the implied equal-frequency framework. In this way, high-frequeny

observations are equally weighted. An alternative approach allows weights to differ between

intraperiod observations. For example, when using daily financial data to forecast monthly in-

terest rates, larger weights may be assigned to daily observations that are close to the end of the

current month which may reflect that market participants continuously update their expectations

as new information becomes available; see Mishkin (1981), for example.

To consider these different approaches in a simple forecasting model, let

yt+h = α0 +
P−1∑
p=0

βpxp,t + ut+h,
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for t = 1, . . . , T , where yt+h is the variable to be forecasted at horizon h, and is sampled at

a different frequency than the predictor xt. The disturbance term is given by ut+h. Here, x0,t

denotes the last available observation of the high-frequency predictor in period t, while xP−1,t is

the lag of order P − 1 within this period. For example, if daily predictors are used to forecast a

monthly observed dependent variable, then x0,t corresponds to the last day in the current month

t, while xP−1,t is the daily observation of the predictor P − 1 days before, for P − 1 = 29, say.

The traditional approach replaces the potentially large number of intraperiod regressors by a

single regressor, the sample average, and estimates the model by ordinary least squares (OLS).

Recently, the so called Mi(xed) Da(ta) S(ampling) regression models have been suggested to

explicitly allow for different frequencies at which the dependent variable and the predictor are

observed. In the above MIDAS regression, a large number of parameters has to be estimated

such that OLS estimates may be imprecise, and, as a consequence of the poorly estimated high-

frequency weights βp, the model may produce inaccurate forecasts. It is therefore desireable to

reduce the dimensionality of the estimation problem.

To this end, Ghysels et al. (2007), among others, approximate the high-frequency weights by a

parsimoniously parametrized function, such that the forecasting model becomes

yt+h = α0 + α1

P−1∑
p=0

ωp (θ)xp,t + ut+h,

ωp (θ) =
exp

(
θ1 · p+ . . .+ θK · pK

)∑P−1
j=0 exp (θ1 · j + . . .+ θK · jK)

, (1.1)

where θ = (θ1, . . . , θK)′ is unknown. Clearly, ωj (θ) ∈ [0, 1] and
∑p

j=0 ωj (θ) = 1. The

intraperiod weights thus follow a K parameter exponential Almon lag. The parameters α0, α1,

and θ1, . . . , θK are estimated by non-linear least squares (NLS). A parsimonious specification

results for K = 2. Alternatively, the Beta lag distribution has been introduced by Ghysels et al.

(2007).

This estimation procedure has been applied to forecast macroeconomic and financial time series

to examine the potential improvement in forecast accuracy of mixed frequency models. For in-

stance, Clements and Galvão (2009) use several monthly leading indicators to forecast quarterly

U.S. output growth, showing that the MIDAS approach yields a sizeable reduction in terms of

root mean squared forecast error relative to the autoregressive benchmark. Andreou et al. (2013)

use daily financial variables to forecast output growth, again highlighting the advantage of MI-
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DAS regressions relative to the random walk or autoregressive model.1 In finance, Ghysels et al.

(2006) predict future volatility of the Dow Jones index and thereby point out that forecasts gen-

erated by MIDAS regressions are more precise than forecasts by the autoregressive fractionally

integrated benchmark model.2 More recently, Engle et al. (2013) and Asgharian et al. (2013)

extend the MIDAS approach to forecast volatility over short and long horizons by incorporating

macroeconomic fundamentals as predictors of return variability.

Although the parametric approach described above may account for plausible shapes of the lag

distribution, in a given estimation problem, the class of functions may not be able to represent

the actual weighting function. In this chapter, the high-frequency lag distribution is therefore

estimated without imposing a particular functional form. In this sense, the approach is non-

parametric. The estimation procedure rests on the assumption that the unobserved weighting

function is smooth in the sense that the second differences

∆2βp = βp − 2βp−1 + βp−2, p = 2, . . . , P − 1, (1.2)

are small. If the second differences approximately measure the curvature of the weighting

function, then the estimator suggested in this chapter penalizes large curvature, giving rise to

a smooth estimate of the high-frequency weights. The estimator is conveniently obtained as

a modified OLS estimator. In a companion paper, see Breitung et al. (2013), this estimator

is used to forecast monthly inflation rates using daily observations of an energy price index.

In this chapter, the non-parametric MIDAS regression is employed to forecast stock market

volatility of the German stock index. Future return variability is sampled at a biweekly or

monthly frequency and current and lagged daily absolute returns of the index are considered

as predictors of this medium to long-term volatility measure. In addition to the MIDAS-PLS

and parametric MIDAS-NLS approach, the GARCH(1,1) model is included in the analysis as a

benchmark. Since the GARCH model uses daily observations exclusively, the in-sample fit and

the forecast accuracy of the non-parametric MIDAS approach can be compared to the alternative

parametric MIDAS specification as well as more traditional models that do not employ a mixed

frequency scheme. Using the mean squared forecasting error (MSFE) and the mean absolute

forecasting error (MAFE) as measures of forecast precision, the MIDAS-PLS approach delivers

1Some of the approaches employed in these papers obtain early forecasts of low-frequency variables within a
given time period by incorporating all currently available information, possibly measured at different frequencies,
which is also known as nowcasting. See for example Giannone, Reichlin, and Small (2008).

2See also Ghysels and Valkanov (2012) for a review and extensions of the MIDAS approach to forecast volatil-
ity.
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more accurate forecasts than both the parametric MIDAS regresssion and the GARCH(1,1)

volatility model. This observation holds in particular for forecasts of monthly volatility.

This chapter proceeds as follows. In section 1.2, the MIDAS regression is reviewed and the

penalized least squares estimator is presented. The estimator depends on an a priori unspeci-

fied smoothing parameter and methods to choose this parameter are suggested. In section 1.3,

the performance of the non-parametric approach relative to the parametric MIDAS estimator

is studied by a Monte Carlo simulation for several shapes of weight functions that have been

discussed in the literature. The goal is to examine the mean squared error (MSE) of the non-

parametric and the parametric approach, stressing the relative advantages and shortcomings of

the non-parametric approach to the parametric procedure. Section 1.4 uses the MIDAS-PLS es-

timator to forecast volatility of the German stock index DAX and compares the in-sample fit and

the out-of-sample forecast performance relative to the parametric MIDAS and the GARCH(1,1)

model. Section 1.5 concludes this chapter.

1.2 Penalized least squares in MIDAS regressions

1.2.1 Estimator

In this section, a non-parametric approach for estimating weight functions in MIDAS regression

models is motivated within a distributed lag model as described in, among others, Shiller (1973).

For simplicity, consider a model with a single high-frequency predictor for yt+h and no constant,

yt+h =
P−1∑
p=0

βpxp,t + ut+h, (1.3)

where the total number of high-frequency regressors, P , incorporating current and lagged values

of the predictor, is given. Below, we extend this model to an empirically more relevant setup.

The weights assigned to intraperiod observations are not assumed to be a member of a particular

class of parametric models. However, it is required that these weights do not change abruptly in

a given period of time, such that the weights can be roughly described by a curve. To incorporate

this view on the parameters in (1.3), the penalized least squares objective function is studied

S (λ) =
T∑
t=1

u2t+h + λ
P−1∑
p=2

(
∆2βp

)2
, (1.4)

where λ ≥ 0 is a parameter to be chosen by the researcher and ∆2 denotes the second difference
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operator as in (1.2). In this section, the parameter λ is taken as given. In section 1.2.2 methods

to select λ are discussed.

This objective function trades off a goodness-of-fit criterion with a smoothness requirement for

the high-frequency weights, where smoothness is measured in terms of second differences of

the parameters. For λ = 0, we obtain the OLS estimator, which imposes no smoothness on the

weighting function. In the limit as λ → ∞, the penalty term dominates the sums of squared

residuals in the objective function, forcing the second difference of the weights to equal the same

constant. Hence, the weighting function becomes linear. For intermediate values 0 < λ < ∞,

the weighting function attains a smooth shape between these two extremes.

To rewrite this problem more concisely, let the (P − 2)× P matrix D by given by

D =


1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

· · · · · · · · · · · · · · · · · ·
0 · · · · · · 1 −2 1

 . (1.5)

Let y = (y1+h, . . . , yT+h)
′, and X = [x1, . . . , xT ]′, where xt = (x0,t, . . . , xP−1,t)

′. Then the

minimization problem becomes

min
β∈RP

S(λ) = min
β∈RP

(y −Xβ)′ (y −Xβ) + λ β′D′Dβ, (1.6)

with β = (β0, . . . , βP−1)
′. The solution to (1.6) is given by

β̂λ = (X ′X + λ D′D)
−1
X ′y =

(
(X ′X/T ) + λ D′D

)−1
(X ′y/T ) , (1.7)

with λ = λ/T , provided that (X ′X + λD′D) is non-singular. We refer to estimator as the

penalized least squares (PLS) estimator, or the MIDAS-PLS regression, in contrast to the para-

metric MIDAS-NLS approach. Clearly, for λ = 0, the estimator reduces to the OLS estimator.

Moreover, by an algebraic rule for matrix inversion (see for example Lütkepohl (1996), page

29),

(X ′X + λD′D)
−1

= (X ′X)
−1 − (X ′X)

−1
D′
(
D (X ′X)

−1
D′ +

1

λ
IP−2

)−1
D (X ′X)

−1
.

(1.8)

Thus, as λ→∞, β̂λ approaches the restricted least squares estimator subject toDβ = 0. These
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restrictions in turn imply that the weights lie on a straight line.3 Several additional comments

about this estimator can be made.

First, each component of β̂λ is a weighted sum of the OLS coefficients,

β̂λ =
(
IP + λ (X ′X)

−1
D′D

)−1
β̂, (1.9)

and a larger value of λ imposes more smoothness on the weights. Hence the penalized estimator

can be viewed as a smoothed OLS estimator and λ as a smoothing parameter.

Second, following Shiller (1973), the estimator is conveniently obtained from the regression

y∗ = X∗β̂λ + û∗, (1.10)

with the (T + (P − 2)) × 1 vector y∗ =
(
y′, 0′P−2

)′ and the (T + (P − 2)) × P matrix X∗ =[
X ′,
√
λD′

]′
. Thus, the estimator is easy to compute once the smoothing parameter has been

chosen.

Third, as noted by Anup and Maddala (1984) for example, since the smoothed OLS estimator

arises from the penalized least squares objective function (1.6), it can be viewed as a generalized

ridge estimator in which the matrix D′D replaces the identity matrix of the ordinary ridge

estimator (see Hoerl and Kennard (1970)). In this view, the penalized least squares estimator

is a generalized shrinkage estimator, and λ determines the degree of shrinkage. The shrinkage

terminology stems from the fact that the penalized least squares estimator considered in this

chapter is equivalently characterized as

β̂λ = argmin
β∈RP

(y −Xβ)′ (y −Xβ)

s.t. β′D′Dβ ≤ d, (1.11)

where there is a one-to-one correspondence between λ and d ≥ 0.4 This interpretation may

be useful in MIDAS regressions. Ridge regression is able to reduce the expected squared loss

relative to OLS in particular when the regressor matrix X is nearly collinear (see, for example,

Hoerl and Kennard (1970)). In empirical applications, non-negligible correlation between the

regressors may be encountered in MIDAS regressions, if, for instance, daily or weekly observed

predictors are used. In this case, ridge regression provides more precise, albeit biased, estimates

3See Chipman (2011), page 314-315, for a derivation.
4Problems (1.6) and (1.11) are equivalent in that for each 0 ≤ λ < ∞, there exists a d ≥ 0 such that the

problems have the same solution, and vice versa, see Fu (1998).
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of the weighting function than OLS. Although this reasoning may be used for the ordinary ridge

regression, the Monte Carlo evidence for the generalized ridge estimator considered here agrees

with this notion, see section 1.3.1.

Finally, an extension of the simple model (1.3) to include a constant and lagged variables of the

low-frequency process is easily obtained. In this way, the simple MIDAS regression from above

is extended to the ADL-MIDAS model employed by Andreou et al. (2013). Let L − 1 denote

the number of lags of the dependent variable. Then the MIDAS regression model becomes

yt+h = µ+
L−1∑
l=0

αlyt−l +
P−1∑
p=0

βjxp,t + ut+h.

In matrix notation

y = X1α +X2β + u = Xγ + u,

where the T × (L+ 1) matrix X1 has rows (1, yt, . . . , yt−L+1), α = (µ, α0, . . . , αL−1)
′, X =

[X1, X2] and γ = (α′, β′)′. Consider the problem

min
γ∈Rq

S(λ) = (y −Xγ)′ (y −Xγ) + λ β′D′Dβ, (1.12)

with q = P + L + 1. Notice that only the coefficients of the high-frequency predictors are

penalized. Let M = IT − X1 (X ′1X1)
−1X1 and X̃2 = MX2. Then, using the results in

Farebrother (1978), the solution to the above problem is

γ̂λ =

[
α̂λ

β̂λ

]
=

(X ′1X1)
−1X ′1

(
y −X2β̂λ

)
(
X̃ ′2X̃2 + λD′D

)−1
X̃ ′2y

 .
Hence the weighting function β̂λ is obtained as a shrinkage estimator once the low-frequency

variables have been partialled out. Notice that the estimate of α is affected by the degree

of smoothing via β̂λ. In MIDAS regressions, it is natural to restrict smoothing to the high-

frequency predictors and to estimate the low- frequency parameters simply by OLS. This mod-

ification is achieved by replacing X with X̃ =
[
X1, X̃2

]
.

1.2.2 Choice of the smoothing parameter

In this section, several selection procedures for the smoothing parameter λ are reviewed. These

include a plug-in estimator, information criteria and a simulation-based approach.
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Plug-in estimator

Following Anup and Maddala (1984), in this section we study a departure from the fixed pa-

rameter model we have considered so far to motivate a plug-in estimator for the smoothing

parameter. Suppose that the second differences satisfy

Dβ = v,

v|X ∼
(
0, σ2

vIP−2
)
,

where the regression error u and v are uncorrelated. The above framework can be viewed as an

example of imposing stochastic restrictions on β, such that the second differences are random

quantities.5 Now consider the artificial regression

y∗ = X∗β + ε∗,

with y∗ =
(
y′, 0′P−2

)′, X∗ = [X ′,−D′]′, and ε∗ = (u′, v′)′. Notice that

Ω = E
[
ε∗ε∗ ′

∣∣X] =

[
σ2
uIT 0

0 σ2
vIP−2

]
= σ2

u

[
IT 0

0 λ−1IP−2

]
,

with λ = σ2
u/σ

2
v , and suppose that this ratio is known. Then the generalized least squares

estimator of β coincides with the PLS estimator. To estimate λ in this model, let λ̂ = σ̂2
u/σ̂

2
v ,

with σ̂2
u = û′û/ (T − P ) where û =

(
I −X (X ′X)−1X ′

)
y. Regarding σ2

v , a natural choice is

β̂′D′Dβ̂/ (P − 2).

Information criterion

The fitted values resulting from the smoothed OLS estimation are

ŷλ = X (X ′X + λD′D)
−1
X ′y = Zλy,

with Zλ ≡ X (X ′X + λD′D)−1X ′. Notice that for λ = 0, Zλ reduces to the familiar orthog-

onal projection matrix in a linear regression model. Consquently, its trace is equal to P . In

general, define κλ ≡ tr [Zλ]. It can be shown that κλ is monotonically decreasing in λ and that

κλ approaches two as λ→∞.6 The trace indicates the pseudo dimension of the parameter vec-

5In the sense of Goldberger and Theil (1961), additional information is available about the parameters that is
stochastic in nature.

6This limit is easily established using (1.8).
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tor: for λ = 0, the number of parameters is equal to P . For λ→∞, the number of parameters

reduces to two. If λ > 0, the non-parametric estimator achieves a dimension reduction relative

to OLS. Since non-integer values can occur, the term pseudo dimension is used.

The trade-off between goodness-of-fit (in terms of squared loss) and dimension reduction of

the non-parametric estimation can be exploited to construct an information criterion to choose

the smoothing parameter. Following Hurvich, Simonoff, and Tsai (1998), the modified Akaike

criterion is

AIC (λ) = log [SSR (λ)] +
2 (κλ + 1)

T − κλ − 2
,

where SSR (λ) = (yh − ŷλ)′ (yh − ŷλ). The degree of smoothing is selected by minimizing

this criterion with respect to λ. This task can be attempted by grid search. Alternatively, as

shown in appendix 1.A, by employing brute force minimization, the minimizer λ?AIC results as

the solution to the first-order condition

(
y′hXQ

−1
λ?AIC

(D′D)Qλ?AIC
X ′
((
I − Zλ?AIC

)
yh
))

(SSR (λ?AIC))−1

= (T − 1) tr
[
(X ′X)Q−1λ?AIC

(D′D)Q−1λ?AIC

] (
T − κλ?AIC

− 2
)−2

,

where Qλ = (X ′X + λD′D). This condition can be solved numerically.

Cross validation

Adapting the discussion in Golub et al. (1979), cross validation can be used to estimate the

smoothing parameter and the procedure is summarized briefly. Here, the sample is partitioned

into B blocks. Then a value of the smoothing parameter λ is fixed. Using the observations in

B − 1 blocks, β̂λ is computed, where the b-th block is left out for an out of sample evaluation,

for b = 1, 2, . . . , B. Let

εb (λ, Tb) =
1

Tb

Tb∑
t=1

(
y
(b)
t+h − β̂

′
λx

(b)
t

)2
,

where Tb is the number of observations in block b, y(b)t+h is observation t in block b and analogous

for x(b)t . The cross validation (CV) criterion is

CV (λ) =
1

B

B∑
b=1

εb (λ, Tb) .
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Repeating this procedure for a range of values of the smoothing parameter gives the CV ob-

jective function as a function of these values. The minimizer of this objective function is the

optimal value according to cross validation. Common choices for the number of blocks are

B = 5 or B = 10.

These methods can provide a guideline to selecting the smoothing parameter. The rule-of-thumb

estimator is simple to compute but somewhat ad hoc. The CV method can be computationally

demanding if the range of possible candidates to evaluate is large. The AIC criterion is therefore

selected henceforth. It should be noted however that selecting λ involves some leeway and the

robustness of the results to different choices of λ should be considered in practice.

1.3 Monte Carlo experiments

In this section, we compare the small-sample properties of the non-parametric and parametric

approach to estimating MIDAS regression models.

1.3.1 Simulation design and evaluation criteria

Consider the data-generating process

yt+h =
P−1∑
p=0

βpxp,t + ut+h, (1.13)

βp = α1 ωp(θ), (1.14)

where ut+h is independently standard normally distributed. Several alternative specifications

for the true shape of the weights βp in (1.14) are examined in the following sections and are

presented separately.

The high-frequency predictor is generated by the AR(1) process

xp,t = ψxp−1,t +
(
1− ψ2

)1/2
εp,t,

εp,t
iid∼ N (0, 1) ,

for p = 0, . . . , P − 1 and ψ ∈ {0.2, 0.4, 0.8}. The sample size is T = 100 and the number

of high-frequency regressors is P = 30. This number of intraperiod regressors is taken as

given, assuming that an appropriate choice regarding the lag length in the forecasting model

has been made. Moreover, the uncentered R2 is either 0.3 or 0.15, which intends to illustrate
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the performance of both methods in empirically relevant settings, see for example Breitung

et al. (2013). To do so, the scaling parameter α1 is selected by grid search such that for each

specification the average R2 across simulations is fixed at the desired level.

The MIDAS regression (1.14) is estimated by MIDAS-PLS and by MIDAS-NLS with expo-

nential Almon lag polynomial of order K = 2, which is a popular choice in applications of the

parametric MIDAS approach, see for example Clements and Galvão (2009) or Monteforte and

Moretti (2013). The number of Monte Carlo replications is 200, which is rather small, but due

to the fact that both the non-linear least squares optimization of MIDAS-NLS and determining

the smoothing parameter by AIC repeatedly for MIDAS-PLS can be time consuming. The sim-

ulation results are thus taken as first evidence of the performance of the two procedures and can

be extended in future research.

The estimation methods are compared in terms of their in-sample fit and their out-of-sample

forecasting performance. First, the in-sample fit is is measured by the unconditional MSE, that

is the median MSE across Monte Carlo simulations of MIDAS-PLS relative to the median MSE

of parametric MIDAS. Hence a MSE ratio below one implies that MIDAS-PLS has smaller

MSE than parametric MIDAS. The modified AIC criterion is used for selecting the smoothing

parameter for MIDAS-PLS. In addition, as the true weights in (1.14) are known, simulation

results are reported for the choice of the smoothing parameter that minimizes expected mean

squared error conditional on X . From (1.9),

E
[
β̂λ
∣∣X]− β =

((
IP + λ (X ′X)

−1
D′D

)−1
− IP

)
β = Ψ (λ) β,

with Ψ (λ) =
((
IP + λ (X ′X)−1D′D

)−1 − IP), and since X is independent of u with

E [uu′] = σ2
uIT ,

V ar
[
β̂λ
∣∣X] = σ2

uΨ (λ) (X ′X)
−1

Ψ (λ)′ .

The MSE optimal choice for λ conditional on X is then obtained by minimizing

tr [Ψ (λ) ββ′Ψ′ (λ)] + σ2tr
[
Ψ (λ) (X ′X)

−1
Ψ (λ)′

]
.

The minimizer is obtained numerially and is denoted λMSE. In the simulation experiment the

shrinkage parameter is reported relative to sample size, that is, λMSE = λMSE/T . Similarly,
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λAIC = λAIC/T is computed by minimizing the modified AIC criterion. In addition, a grid of

values of λ is provided that allows to assess the sensitivity with respect to the choice of the

smoothing parameter.

Second, the accuracy of out-of-sample forecasts made by the non-parametric and the parametric

approach in this simple model is evaluated. To this end, we partition the whole sample into an

estimation sample, comprising observations 1, 2, . . . , T e, and a forecasting sample including

observations indexed by T e+1, . . . , T . Let T f denote the sample size of the forecasting sample

such that T = T e + T f . The estimation sample is used to obtain a baseline estimate of the

weights βp,

ŷt+h =
P−1∑
p=0

β̂pxt,p + ût+h,

for t = 1, . . . , T e,where β̂p is a suitable estimator of the weights. The one-step ahead forecast

is

yfT e+1+h =
P−1∑
p=0

β̂pxT e+1,p.

The estimation sample is then enlarged by one observation and the model is reestimated using

observations 1, 2, . . . , T e + 1 to produce the next one-step ahead forecast. Proceeding in this

fashion, a series of one-step ahead forecast errors is obtained. The resulting mean squared

forecasting error (MSFE) is

1

T f

T f∑
t=1

(
yT e+h+t − yfT e+h+t

)2
.

This forecasting exercise is replicated across simulations. The forecasting accuracy is com-

pared via the median mean squared forecasting errors of MIDAS-PLS relative to MIDAS-NLS.

Again, a ratio below one indicates that non-parametric MIDAS yields more precise forecasts on

average.
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1.3.2 Exponentially and linearly declining weights

The first specification fits into the parametric MIDAS framework. The weights are exponentially

declining

ωp =
exp(θ1p)

P−1∑
j=0

exp(θ1j)

, p = 0, . . . , P − 1. (1.15)

Figure 1.2 (see appendix 1.B) shows the true parameter function when θ1 = −0.1 (slow decay)

and θ1 = −0.2 (moderate decay). Table 1.3 in appendix 1.B shows the ratio of MSEs of

the non-parametric estimator relative to the two-parameter exponential Almon specification.

With exponentially declining weights, the relative performance of the non-parametric estimator

hinges on two features: the shape of the weighting function and the signal-to-noise ratio as

measured by R2. For more rapid exponential decay and R2 = 0.3, the parametric approach

performs better than the non-parametric estimator. For slower exponential decay, however, the

non-parametric estimator outperforms the parametric MIDAS approach. For small values ofR2,

the PLS estimator estimates the weights more precisely, in particular if the autocorrelation of

the regressor is large, implying high collinearity. Notice that the AIC criterion suggests choices

that are close to the MSE optimal value for the smoothing parameter. These results illustrate

the potential of this estimation method if the true weighting function declines moderately.

As another example of a monotonically declining weight function, consider the linear function

ωp =
a0 + a1p

a0P + a1 (P − 1)P/2
. (1.16)

The weights are normalized to sum up to unity. We consider two examples: a linear declining

weight function and a near-flat weight function, see figure 1.3 in appendix 1.B. Table 1.4

(see appendix 1.B) shows ratios of MSEs in this case. It turns out that the non-parametric

estimator clearly outperforms the parametric MIDAS approach with K = 2. Note that the

PLS estimator approaches a straight line as λ→∞. Accordingly, the nonparametric approach

has an advantage relative to the standard MIDAS approach as the exponential Almon lag is

misspecified in this case.

The ratios of the out-of-sample forecast errors (MSFE) are always close to unity. This suggest

that both approaches perform similarly in this one-step ahead forecasting competition, albeit

the non-parametric approach tends to provide slightly more reliable forecasts.
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1.3.3 Hump-shaped weights

Next, we examine the hump-shaped pattern

ωp =
exp (θ1p− θ2p2)∑P−1
j=0 exp (θ1j − θ2j2)

. (1.17)

The weight function is depicted in figure 1.4 (see appendix 1.B) for different choices of θ1 and

θ2. In both cases, the weight function attains a maximum at lag 5. The two specifications differ

in the degree of curvature of the weight function before and after the peak. Again, the scaling

parameter α1 is selected corresponding to R2 = 0.3 and R2 = 0.15. Table 1.5 in appendix 1.B

shows the MSE ratios in this case.

The non-parametric estimator works well for moderate curvature. If the hump shape is more

pronounced, the parametric approach provides more accurate estimates according to the MSE

ratios. The relative performance of the non-parametric estimator depends on the degree of

smoothing, but the AIC produces useful, although not optimal, choices. Furthermore, the out-

of-sample MSFE of MIDAS-PLS is slightly lower than one.

1.3.4 Cyclical weights

To point out the flexibility of the non-parametric approach, consider a cyclical weight function

that is difficult to tackle within the parametric MIDAS framework,

ωp =
1

P

[
1 + sin

(
2πp

P − 1

)]
. (1.18)

Figure 1.5 in appendix 1.B shows the shape of the weighting function. Table 1.6 displays the

relative performance of the non-parametric estimator in this case, see appendix 1.B. In general,

the non-parametric approach estimates the weight function more accurately, and this observa-

tion holds in particular for R2 = 0.15. Due to the unusual form of the weights, it is examined

whether the three-parameter exponential Almon lag improves upon the two-parameter specifi-

cation. However, the three parameter specification does not yield more accurate estimates. This

example hence illustrates the potential benefits of leaving the functional form unrestricted. As

before, the out-of-sample MSFE are marginally smaller than unity, suggesting a slightly better

performance of the non-parametric approach.
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1.4 Forecasting volatility with MIDAS regressions

In this section, the penalized MIDAS regression is employed to forecast volatility of the German

stock market. Return volatility is a key variable for portfolio allocation and risk management.

For instance, Campbell and Viceira (2001) derive the optimal portfolio weight for an investor

with constant relative risk aversion that chooses between a riskless asset and stocks, showing

that the optimal weight is function of predicted future return volatility. In practice, volatility also

serves as an input variable for assessing market risk; see for example Engle (2004) for a simple

illustration of how estimated future volatility is used to compute the so called value-at-risk, a

widely used measure in risk management.

The volatility forecasting literature is large with theoretical contributions suggesting statistical

models of volatility and empirical applications. We refer the reader to Poon and Granger (2003)

for an extensive review. Here, our focus is on how the MIDAS scheme can be exploited to

forecast volatility and how the estimation procedure suggested in this chapter can be used to do

so.

1.4.1 Data

In this exercise, the German stock index DAX is considered. The observations are daily closing

prices of the DAX stock index. The daily series starts on January 1st 1965 and ends on May

14th 2013 and was obtained from Datastream. Figures 1.6 and 1.7 in appendix 1.C plot the

DAX index and the daily log returns for the entire sample period and table 1.7 presents sample

statistics for the full sample and the subsamples beginning in January 1993 and 2002. These

statistics illustrate some of the typical characteristics of stock return series indicating that the

return distribution is mostly negatively skewed and fat-tailed. One noticeable feature the data is

the larger variability of the series since the mid 1980s.

To illustrate the tools presented in previous sections, attention is restricted to the subsample

starting in January 1993, covering the most recent twenty years of daily return data. In addition

to the post-reunfication sample, the return series starting in 2002, which considers the period

after the stock market bubble in 2001 and the events of 9/11, both which affected the German

economy, is studied as well.
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1.4.2 Sampling scheme and notation

To explain the MIDAS structure in this application, the sampling scheme and measures of return

variability are discussed, following the notation in Alper et al. (2012) and Ghysels et al. (2006)

for ease of comparison. It is important to distinguish the low-frequency process to be forecasted

and the high-frequency predictors. To this end, let time index t denote biweekly or monthly

sampling, respectively. Here, the compounded return from time t − 1 to time t is denoted as

rt,t−1. Within this given time period, there are m equidistant daily returns available, where

m = 10 and m = 20 for biweekly and monthly sampling, respectively.

The return at the end of time t is

rt,t−1 = log
(
P

(m)
t

)
− log

(
P

(m)
t−1

)
, (1.19)

where P (m)
t is the daily closing price of the stock at the end of period t. To define the depen-

dent variable and the predictors in the MIDAS regressions specified below, it is convenient to

introduce daily returns explicitly as

r
(m)
t−(j−1)/m,t−j/m = log

(
P

(m)
t−(j−1)/m

)
− log

(
P

(m)
t−j/m

)
, j = 1, . . . ,m, (1.20)

where P (m)
t−j/m is the closing price of the stock on day m − j in period t. Clearly, rt,t−1 is the

sum of the daily returns

rt,t−1 =
m∑
j=1

r
(m)
t−(j−1)/m,t−j/m, (1.21)

consistent with (1.19) and (1.20).

We aim to predict the variability of future returns for some forecasting horizon h. Following

Brooks and Persand (2003) and Alper et al. (2012) the measure of future variability of the DAX

returns employed in this study is given by

RVt+h,t =
hm∑
j=1

[
r
(m)
t+h−(j−1)/m,t+h−j/m

]2
, (1.22)

which is also known as realized variance (at horizon h).7 We consider RVt+h,t as the dependent

7Conditional on information available up to time t− 1, Et−1
[
rt−(j−1)/m,t−j/m

]
≈ 0, where Et−1 [·] denotes

the conditional expectation given the information set at t − 1, and that returns are conditionally uncorrelated. In
this case V art−1 [rt,t−1] = V art−1

[∑m
j=1 rt−(j−1)/m,t−j/m

]
≈
∑m
j=1 Et−1

[
rt−(j−1)/m,t−j/m

]2
, see Hansen

and Lunde (2005), page 878, for example.
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variables in the MIDAS regressions below.8 For instance, with monthly sampling, rt,t−1 denotes

the monthly return which can be decomposed into m = 20 daily returns as in (1.21). Accord-

ingly, with h = 1, say, RVt+1,t is computed using non-overlapping daily returns as in (1.22) and

serves as a proxy for return varibility in the following month. Andersen and Bollerslev (1998)

or Andersen et al. (2001) argue that although other unbiased estimators of the conditional return

variance are available, realized variance provides a more accurate approximation of the unob-

served return variability. We then run a MIDAS regression using daily predictors, which are

available up to month t, to produce forecasts of this measure of return variability.

1.4.3 MIDAS volatility regressions

We adapt the notation of Ghysels et al. (2006) to formulate the MIDAS regression

RVt+h,t = µ+
P−1∑
p=0

βpx
(m)
t−p/m,t−(p+1)/m + ut+h,t, (1.23)

where RVt+h,t is defined in (1.22) and x(m)
t−p/m,t−(p+1)/m is a potential high-frequency predictor.

In the MIDAS volatility regression, for p = 0, x(m)
t,t−1/m is the latest available observation of the

daily predictor, while x(m)
t−(P−1)/m,t−P/m denotes the daily predictor at lag P − 1. Hence low-

frequency future volatility, measured biweekly or monthly, say, is forecasted using P current

and lagged observations of the high-frequency predictors. Due to the different sampling of the

dependent variable and the predictor, the MIDAS scheme arises.

We investigate one daily predictor, lagged absolute returns, which have been suggested as mea-

sures of past volatility.9 Alternatively, squared returns can be employed as predictors, but build-

ing on the evidence in Ghysels et al. (2006), absolute returns perform better in a mean squared

error sense. Hence the MIDAS regressions is

RVt+h,t = µ+
P−1∑
p=0

βp
∣∣r(m)
t−p/m,t−(p+1)/m

∣∣+ ut+h,t. (1.24)

The daily weights βp can be estimated using the parametric or the non-parametric approach.

When employing the PLS estimator, the smoothing parameter is chosen by the AIC criterion.

For the parametric specification, we follow Ghysels et al. (2006) and Alper et al. (2012) and use

8Other authors stress that realized variance depends on m, as in RV (m)
t+h,t, for example. We use the short-hand

notation RVt+h,t.
9See Forsberg and Ghysels (2007) for a theoretical motivation for using absolute returns as predictors of future

volatility.

20



the two-parameter Beta lag structure

βp = α1ωp,

ωp =
f
(

p
P−1 ; θ1, θ2

)∑P−1
j=1 f

(
j

P−1 ; θ1, θ2
) ,

f (z, a, b) =
za−1 (1− z)b−1

F (a, b)
,

where F (a, b) = Γ (a) Γ (b) /Γ (a+ b) and Γ (·) denotes the Gamma function. This lag struc-

ture allows for various lag distributions, including moderate or fast decay when θ1 = 1 and

θ2 > 1.

1.4.4 In-sample fit

The in-sample fit of the MIDAS regression model using the parametric Beta lag and the non-

parametric penalized least squares approach is compared. In the MIDAS volatility regression,

Ghysels et al. (2006) recommend including up to fifty lags of the predictor, and Alper et al.

(2012) follow this suggestion. Here, we set P = 50 as the default choice. As the estimation

results of these studies suggest that weights assigned to distant lags have a very small magni-

tude, the in-sample fit is also examined when P = 30 and P = 40. Figures 1.1a - 1.1c show the

estimated lag distribtutions βp in (1.24) for lag lengths P ∈ {30, 40, 50} in the sample period

beginning in January 1993. These figures illustrate the differences between the parametric and

non-parametric approach in this application: the parametric estimates (straight black line) put

almost all weight on the most recent 5 to 10 days. The non-parametric approach (straight blue

line) follows the raw OLS estimates (dotted line) more closely. The penalized least squares ap-

proach hence results in somewhat different shapes of the lag distributions with positive weights

assigned to lags as far as 25 or 50 days. For instance, with 30 lagged absolute returns, the non-

parametric lag distribution peaks around days 2 to 4, declines afterwards and rises around days

16 or 17 again. Therefore, in this application the non-parametric approach produces estimates

that lie between the raw, jagged OLS estimates and the relatively fast decaying NLS estimates.

Whether this more flexible non-parametric approach also improves forecasting performance is

studied in the next subsection.

Table 1.1 presents MSE ratios of PLS relative to parametric MIDAS for monthly and biweekly

sampling, such that a ratio below one indicates a lower MSE of the PLS approach. The results

are reported for realized variance RVt+h,t for a h = 1, such that next month’s volatility, say, is
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Table 1.1: In-sample MSE ratios

monthly sampling, h = 1 biweekly sampling, h = 1

Sample P = 50 P = 40 P = 30 P = 50 P = 40 P = 30

1993 - 2013
(T = 255) MSE ratio 0.21 0.97 0.22 0.95 0.96 0.97

κλ 13.2 7.0 8.6 12.1 11.0 8.2

2002 - 2013
(T = 142) MSE ratio 0.91 0.99 0.93 0.92 0.93 0.94

κλ 11.5 5.2 7.6 14.0 10.4 7.6

Note: Entries are the MSE ratios of MIDAS-PLS to MIDAS-NLS based on a regression of (non-
overlapping) realized varianceRVt+h (see (1.22)) on a constant and current and lagged absolute returns.
The smoothness parameter is selected by AIC. Here, κλ denotes the pseudo dimension of MIDAS-PLS:
if the smoothness parameter is zero, κλ = P , while κλ → 2 as the smoothing parameter tends to
infinity.

forecasted by current and lagged absolute returns. Given the differences in the estimated lag

distributions presented in figures 1.1a - 1.1c, the ratios are reported for different lag lengths.

The PLS approach yields a substantially better fit in some cases, with ratios varying between

0.21 and 0.93 depending on the volatility measure and the lag length. The variability in the

relative performance may be explained by the observation that in some cases, the estimated lag

distribution from the parametric approach differs strongly from the shape of the OLS estimates,

in contrast to the non-parametric estimation method, see also figures 1.1a - 1.1c. In addition

to the MSE ratios, the pseudo dimension κλ is reported. The parametric approach is parsimo-

nious as it describes the lag distribution with three parameters (θ1,θ2 and the scaling parameter

α1, excluding the constant) and thus achieves a considerable dimension reduction relative to

OLS with P parameters (excluding the constant). The non-parametric approach also reduces

dimensionality relative to OLS, albeit not as strongly as the parametric procedure. Although

less parsimonious, PLS provides a better fit. In the biweekly case, PLS still provides smaller

in-sample MSE, although differences in the relative performance are smaller.

1.4.5 Out-of-sample forecasting exercise: design

We now turn to forecasting the volatility of the DAX index. The design of the forecast ex-

periment follows Brooks and Persand (2003) and Raunig (2006). The samples are split into an

estimation sample and a forecasting sample. The estimation sample covers the periods from Jan-

uary 1993 to December 2003 and the forecasting period is then January 2004 until May 2013.

Forecasts are obtained recursively with a moving estimation window. Given the estimated lag

22



Figure 1.1a: Estimated lag distributions 1993-2013 with 50 lags

Figure 1.1b: Estimated lag distributions 1993-2013 with 40 lags

Figure 1.1c: Estimated lag distributions 1993-2013 with 30 lags

Note: OLS (dotted line), NLS (straight black line) and PLS (straight blue line)
estimates for monthly sampling with RVt+1,t as the dependent variable and
T = 255 observations.
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distributions obtained from the estimation sample, the first one-period-ahead forecast is pro-

duced. Then the first observation from the estimation sample is dropped while the end of the

sample is extended to include the observations in the next period. The MIDAS regressions are

reestimated and volatility in the next period is forecasted. This forecasting scheme continues

until the penultimate period in the sample is reached and volatility is forecasted for the last

period in the sample.

It is important to recall that a meaningful forecast of future volatility should be non-negative.

One advantage of the parametric approach using the Beta lag distribution is that the estimated

lag distributions are ensured to be non-negative, which in turn leads to non-negative volatility

forecasts. The penalized least squares estimates, however, are unrestricted and can be negative,

leading potentially to useless volatility forecasts. To make sure that the non-parametric ap-

proach generates non-negative forecasts, recall from section 1.2 (see (1.10) and the surrounding

discussion) that for a given value of the smoothing parameter, the PLS estimator can obtained

by regressing y∗ = [y′, 0′P−2]
′ on X∗ =

[
X ′,
√
λD′

]′
, where in this case y denotes the vector

of the volatility measure (realized volatility, say) and X is the matrix of past absolute returns,

while D is the difference matrix introduced in section 1.2. We then complement this auxiliary

regression by a non-negativity constraint

y∗ = X∗βλ + ε∗ (1.25)

s.t. βλ ≥ 0,

and estimate this regression to obtain the non-negative least squares estimator, see for example

Liew (1976), which is readily available in MATLAB, for instance. Alternatively, the inequality

constrained ridge estimator suggested by Toker et al. (2013) can be employed. To incorporate

this scheme into the forecast recursion, we proceed as follows. In each step of the forecasting

exercise, estimation is done by penalized least squares with the smoothing parameter selected by

AIC. If the resulting forecast is negative, the PLS estimator is reobtained with the non-negativity

constrained imposed as explained above, using the smoothing parameter that was selected for

the original unconstrained PLS estimator. The forecast is then recomputed employing the con-

strained PLS estimator. To illustrate this issue, the percentage of negative forecasts produced by

MIDAS-PLS is reported in the following analysis, given by the total number of negative (and

then replaced) forecasts, divided by the total number of forecasts produced. These negative

forecasts do not affect the forecast evaluation, however, as they do not enter relevant measures
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of forecast accuracy.

In addition to evaluating the MIDAS approaches, it is of interest to assess the performance

of the MIDAS models relative to alternative models of conditional volatility. To this end, the

more traditional GARCH(1,1) model is studied as a benchmark, see Bollerslev (1986). The

GARCH(1,1) represents a large class of models of conditional volatility. This model is chosen

due to its simplicity and its good - albeit not best - performance relative to competing models

from this class, see Brooks and Persand (2003). Moreover, Alper et al. (2012) also use the

GARCH(1,1) model as a benchmark in their study of the parametric MIDAS approach. This

GARCH(1,1) model is based on daily observations, and an analogous recursion applies to con-

struct forecasts, using the most recent 1,000 daily observations for estimation. Here, an ARMA

model is estimated to model the conditional mean of the return series in each step. Since the

GARCH model uses daily observations, however, forecasts of volatility in the next period, that

is, the next ten days or the next month, are constructed by summing up multi-step ahead fore-

casts of the daily variance over the relevant forecasting horizon.

Let {σ̂2
t+h,t}

Tf
t=1 denote the series of forecasts formed at period t for horizon h, where Tf is the

total number of forecasts obtained via the recursion described above. These are the forecasts

from the MIDAS regressions or the GARCH model. We follow Raunig (2006) and evaluate

forecasts according to the mean squared forecast error (MSFE)

1

Tf

Tf∑
t=1

(
σ2
t+h,t − σ̂2

t+h,t

)2
,

and the mean absolute forecast error (MAFE)

1

Tf

Tf∑
t=1

∣∣σ2
t+h,t − σ̂2

t+h,t

∣∣,
Here, σ2

t+h,t = RVt+h,t is the proxy for the true conditional variance. The MSFE imposes a

larger penalty on large errors than the MAE.

1.4.6 Out-of-sample forecasting exercise: results

Table 1.2 shows MSFE and MAFE ratios of MIDAS-PLS relative to MIDAS-NLS and

GARCH(1,1), respectively. Again, these ratios vary considerably, depending on the number of

lags employed in the MIDAS regressions and the sampling scheme. Two main conlcusions can

be drawn from this exercise, however. First, the performance of the non-parametric approach is
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promising overall as it delivers more precise forecasts as measured by MSFE or MAFE. This

gain in forecast accuracy is observed both relative to the alternative mixed frequency approach

MIDAS-NLS and the GARCH(1,1) model based entirely on daily observations. The parametric

estimation performs best relative to the non-parametric approach when P = 40, while penalized

least squares offers more accurate forecasts when P = 50 or P = 30. Second, MIDAS-PLS

is particularly advantageous for the monthly case as the ratios are smaller than with biweekly

sampling. In addition, the number of negative (and thus meaningless) forecasts produced by

MIDAS-PLS is small with about 5% of negative forecasts with biweekly sampling and at most

2% with monthly sampling. Taken together, the non-parametric MIDAS regression is a useful

forecasting tool for medium to long-term volatility.

Table 1.2: Out-of-sample forecast comparison

monthly sampling, h = 1 biweekly sampling, h = 1

Sample: 1993-2013 P = 50 P = 40 P = 30 P = 50 P = 40 P = 30

MIDAS-NLS
MSFE 0.78 0.94 0.75 0.97 1.00 0.95

MAFE 0.81 0.97 0.78 0.98 0.98 0.96

GARCH(1,1)
MSFE 0.86 0.95 0.85 0.95 0.96 0.93

MAFE 0.95 0.93 0.93 0.98 0.94 0.94

% negative 0.84 1.68 1.68 5.46 5.04 5.46

Note: Entries are MSFE and MAFE ratios of MIDAS-PLS relative to MIDAS-NLS and GARCH(1,1),
respectively. The sample period has T = 255 (T = 510) monthly (biweekly) observations. Initial
estimation sample from 1993-2003 with Te = 136 (Te = 272) monthly (biweekly) observations. Fore-
casts for MIDAS regressions are obtained with a rolling window of fixed size of Te observations by
successively dropping the first period in the sample and incorporating the following period. Total num-
ber of forecasts is Tf = 119 for the monthly and Tf = 238 for the biweekly case. The GARCH(1,1)
forecast recursion uses a rolling estimation window of 1,000 days. The percentage of negative forecasts
produced by MIDAS-PLS is reported, defined as the total number of negative forecasts divided by Tf .
These negative forecasts do not enter the MSFE or MAFE ratios as they are replaced by the forecasts
obtained from constrained PLS estimation in (1.25).

26



1.5 Concluding remarks

An alternative to parametric estimation of MIDAS regression models is suggested. The es-

timation procedure assumes that the true weighting function is smooth, but does not specify

the functional form of an underlying weighting function explicitly. The estimator requires to

specify a smoothing parameter and suitable methods to do so are presented.

The Monte Carlo experiment considers several empirically relevant weight functions and in

these specifications, the non-parametric approach is able to compete with and has the poten-

tial to improve upon the parametric approach. Although in practice some experimentation with

the degree of smoothing may be necessary, the modified AIC is a helpful guide. The non-

parametric MIDAS regression is then used to forecast realized variance of the German stock

index DAX at biweekly and monthly horizon, showing that the non-parametric MIDAS regres-

sion provides more precise forecasts then the parametric MIDAS with Beta lag structure or the

GARCH(1,1) model using daily observations. In future research, this method may be useful

either for the purpose of forecasting volatility by incorporating the non-parametric procedure

into the GARCH-MIDAS model by Engle et al. (2013) or to produce macroeconomic forecasts

via the ADL-MIDAS model of Andreou et al. (2013).
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Appendix to Chapter 1

1.A First-order condition for minimizing AIC
In this appendix we derive the first-order condition for minimizing the AIC suggested by Hur-
vich, Simonoff, and Tsai (1998). Assuming a minimum exists in the interior of R+, we consider

d

dλ
AIC (λ) =

d

dλ

(
log
[(
yh − ŷhλ

)′ (
yh − ŷhλ

)]
+

2 (κλ + 1)

T − κλ − 2

)
,

where κλ = tr
[
X (X ′X + λD′D)−1X ′

]
. First,

d

dλ

(
log
[(
yh − ŷhλ

)′ (
yh − ŷhλ

)])
=

1

SSRλ

d

dλ

((
yh − ŷhλ

)′ (
yh − ŷhλ

))
,

with SSRλ =
(
yh − ŷhλ

)′ (
yh − ŷhλ

)
. We establish two intermediate results: first,

d

dλ
Zλ =

d

dλ

(
X (X ′X + λD′D)

−1
X ′
)

= X

(
d

dλ
(X ′X + λD′D)

−1
)
X ′

= X
(
− (X ′X + λD′D)

−1
(D′D) (X ′X + λD′D)

−1
)
X ′

= −XQ−1λ (D′D)Q−1λ X ′, (1.26)

with Qλ = (X ′X + λD′D). Second,

d

dλ
(Z ′λZλ) =

(
d

dλ
(Z ′λ)

)
Zλ + Z ′λ

(
d

dλ
(Zλ)

)
=

(
d

dλ
(Zλ)

)′
Zλ + Z ′λ

(
d

dλ
(Zλ)

)
=
(
−XQ−1λ (D′D)Q−1λ X ′

)
Zλ + Z ′λ

(
−XQ−1λ (D′D)Q−1λ X ′

)
. (1.27)

Using (1.26) and (1.27),

d

dλ

((
yh − ŷhλ

)′ (
yh − ŷhλ

))
=

d

dλ

(
−2yh ′Zλy

h + yh ′ZλZ
′
λy

h
)

= −2yh ′
(
d

dλ
(Zλ)

)
yh + yh ′

(
d

dλ
(Z ′λZλ)

)
yh

= 2yh ′XQ−1λ (D′D)Q−1λ X ′
(
yh − ŷhλ

)
. (1.28)

Next,

d

dλ

(
2 (κλ + 1)

T − κλ − 2

)
=

2 d
dλ

(κλ) (T − κλ − 2) + 2 (κλ + 1)
(
d
dλ

(κλ)
)

(T − κλ − 2)2
(1.29)
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and

d

dλ
(κλ) =

d

dλ
(tr [Zλ])

= tr
[
d

dλ
(Zλ)

]
= −tr

[
(X ′X)Q−1λ (D′D)Qλ

]
. (1.30)

Inserting (1.30) into (1.29) yields

d

dλ

(
2 (κλ + 1)

T − κλ − 2

)
= −

2 (T − 1) tr
[
(X ′X)Q−1λ (D′D)Q−1λ

]
(T − κλ − 2)2

.

Taken together, a necessary condition for the minimizer λ?AIC is(
SSRλ?AIC

)−1 (
yh ′XQ−1λ?AIC

(D′D)Q−1λ?AIC
X ′
(
yh − ŷhλ?AIC

))
=

T − 1(
T − κλ?AIC

− 2
)2 tr

[
(X ′X)Q−1λ?AIC

(D′D)Q−1λ?AIC

]
.

A sufficient condition for a minimizer is obtained by checking the second-order derivative at
λ?AIC. Using the same rules for matrix differential calculus as above, we find

d2

dλ2
AIC (λ) = SSR−2λ

{(
2yh ′XQ−1λ (D′D)Q−1λ (X ′X)Q−1λ (D′D)Q−1λ X ′yh−

4yh ′XQ−1λ (D′D)Q−1λ (D′D)Q−1λ X ′
(
yh − ŷhλ

))
SSRλ−(

2yh ′XQ−1λ (D′D)Q−1λ X ′
(
yh − ŷhλ

))2}
+ 4 (T − 1) (T − κλ − 2)−3 ·{

tr
[
(X ′X)Q−1λ (D′D)Q−1λ (D′D)Q−1λ

]
(T − κλ − 2)

+
(
tr
[
(X ′X)Q−1λ (D′D)Q−1λ

])2}
.
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1.B Simulation results

Exponentially and linearly declining weights

Figure 1.2: Slow and moderate exponential decay

Note: Weight function according to (1.14) and (1.15) with θ1 =
−0.1 (solid line) and θ1 = −0.2 (dashed line). The number of
regressors is P = 30.

Table 1.3: MSE ratios for exponentially declining weight function

θ1 = −0.10 θ1 = −0.20

ψ = 0.8 ψ = 0.4 ψ = 0.2 ψ = 0.8 ψ = 0.4 ψ = 0.2
R2 = 0.30 in-sample MSE ratios

λMSE 0.70 0.85 0.86 0.93 1.26 1.30
λAIC 0.70 0.85 0.86 0.94 1.44 1.50
λ = 2.5 1.22 1.12 1.03 1.01 1.26 1.28
λ = 5 1.00 0.95 0.93 0.95 1.26 1.31
λ = 10 0.82 0.85 0.87 0.93 1.40 1.53
λ = 20 0.74 0.85 0.86 1.01 1.73 1.90

out-of-sample MSFE ratios
λMSE 0.98 0.99 0.99 0.99 0.99 0.99
λAIC 0.98 0.99 0.99 0.99 1.00 1.00

R2 = 0.15 in-sample MSE ratios
λMSE 0.52 0.67 0.70 0.68 0.97 1.00
λAIC 0.57 0.67 0.69 0.74 0.99 1.02
λ = 2.5 1.13 1.04 0.96 0.93 1.09 1.07
λ = 5 0.92 0.87 0.85 0.79 1.00 1.00
λ = 10 0.73 0.76 0.75 0.70 0.97 1.00
λ = 20 0.63 0.72 0.69 0.67 1.06 1.12

out-of-sample MSFE ratios
λMSE 0.98 0.97 0.98 0.99 0.99 0.98
λAIC 0.99 0.97 0.98 0.99 0.99 0.99

Note: The sample size is T = 100 and number of regressors is P = 30. The smoothing parameter is
reported relative to sample size λ = λ/T .
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Figure 1.3: Linearly declining and near-flat weights

Note: Weight function according to (1.14) and (1.16) with a0 =
1.5, a1 = −0.05 (solid line) and a0 = 3, a1 = −0.05 (dashed
line). Sample size is T = 100 and number of regressors is P =
30.

Table 1.4: MSE ratios for linearly declining weight function

a0 = 1.5, a1 = −0.05 a0 = 3, a1 = −0.05

ψ = 0.8 ψ = 0.4 ψ = 0.2 ψ = 0.8 ψ = 0.4 ψ = 0.2

R2 = 0.30 in-sample MSE ratios
λMSE 0.40 0.49 0.49 0.43 0.48 0.47
λAIC 0.60 0.60 0.57 0.64 0.59 0.53
λ = 2.5 1.39 1.15 1.09 1.48 1.12 1.03
λ = 5 1.11 1.00 0.95 1.19 0.97 0.90
λ = 10 0.89 0.84 0.78 0.95 0.82 0.74
λ = 20 0.77 0.70 0.66 0.82 0.68 0.63

out-of-sample MSFE ratios
λMSE 0.98 0.98 0.99 0.98 0.98 0.98
λAIC 0.99 0.98 0.99 0.99 0.98 0.99

R2 = 0.15 in-sample MSE ratios
λMSE 0.37 0.49 0.48 0.39 0.46 0.44
λAIC 0.56 0.60 0.54 0.58 0.57 0.51
λ = 2.5 1.28 1.15 1.05 1.33 1.08 0.98
λ = 5 1.03 0.99 0.91 1.07 0.93 0.85
λ = 10 0.82 0.83 0.75 0.86 0.79 0.70
λ = 20 0.71 0.70 0.64 0.74 0.66 0.59

out-of-sample MSFE ratios
λMSE 0.97 0.97 0.98 0.98 0.97 0.97
λAIC 0.98 0.97 0.98 0.98 0.97 0.97

Note: For additional information, see the note in table 1.3.
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Hump-shaped weights

Figure 1.4: Hump-shaped decay

Note: Weight function according to (1.14) and (1.17) with θ1 =
0.105, θ2 = 0.0105 (solid line) and θ1 = 0.175, θ2 = 0.0175
(dashed line). The number of regressors is P = 30.

Table 1.5: MSE ratios for hump-shaped weight function

θ1 = 0.075, θ2 = 0.0075 θ1 = 0.105, θ2 = 0.0105

ψ = 0.8 ψ = 0.4 ψ = 0.2 ψ = 0.8 ψ = 0.4 ψ = 0.2

R2 = 0.30 in-sample MSE ratios
λMSE 0.69 0.97 0.99 0.79 1.28 1.26
λAIC 0.79 0.99 0.99 0.88 1.25 1.26
λ = 2.5 1.29 1.23 1.21 1.23 1.34 1.28
λ = 5 1.10 1.18 1.14 1.08 1.30 1.26
λ = 10 0.99 1.12 1.10 1.01 1.27 1.24
λ = 20 0.91 1.07 1.06 0.96 1.29 1.26

out-of-sample MSFE ratios
λMSE 0.98 1.00 1.00 0.98 0.99 1.00
λAIC 0.98 1.00 1.00 0.98 1.00 1.00

R2 = 0.15 in-sample MSE ratios
λMSE 0.48 0.67 0.71 0.60 1.00 1.05
λAIC 0.61 0.73 0.74 0.68 1.01 1.05
λ = 2.5 1.18 1.15 1.10 1.00 1.19 1.18
λ = 5 0.98 1.03 1.02 0.89 1.10 1.13
λ = 10 0.83 0.93 0.91 0.81 1.06 1.10
λ = 20 0.73 0.83 0.83 0.75 1.03 1.07

out-of-sample MSFE ratios
λMSE 0.98 0.98 0.98 0.97 0.98 0.98
λAIC 0.99 0.98 0.98 0.98 0.98 0.98

Note: For additional information, see the note in table 1.3.
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Cyclical weights

Figure 1.5: Cyclical weights

Note: Weight function according to (1.14) and (1.18). The num-
ber of regressors is P = 30.

Table 1.6: MSE ratios for cyclical weight function

2-parameter Almon lag 3-parameter Almon lag

ψ = 0.8 ψ = 0.4 ψ = 0.2 ψ = 0.8 ψ = 0.4 ψ = 0.2

R2 = 0.30 in-sample MSE ratios
λMSE 0.82 0.79 0.76 0.67 0.79 0.81
λAIC 0.93 1.00 1.00 0.76 0.99 1.05
λ = 2.5 0.84 0.82 0.84 0.69 0.81 0.88
λ = 5 0.85 0.96 1.02 0.69 0.95 1.08
λ = 10 0.95 1.15 1.21 0.77 1.14 1.28
λ = 20 1.09 1.30 1.34 0.89 1.29 1.41

out-of-sample MSE ratios
λMSE 0.99 0.99 0.98 0.98 0.98 0.98
λAIC 0.99 0.99 0.99 0.98 0.99 0.99

R2 = 0.15 in-sample MSE ratios
λMSE 0.74 0.90 0.86 0.47 0.75 0.79
λAIC 0.79 0.93 0.92 0.49 0.77 0.85
λ = 2.5 0.95 0.90 0.87 0.60 0.75 0.79
λ = 5 0.83 0.90 0.89 0.52 0.75 0.82
λ = 10 0.81 0.93 0.95 0.51 0.78 0.87
λ = 20 0.82 0.99 0.97 0.52 0.82 0.89

out-of-sample MSE ratios
λMSE 0.98 0.99 0.99 0.97 0.98 0.97
λAIC 0.98 0.99 0.99 0.98 0.98 0.98

Note: For additional information, see the note in table 1.3.
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1.C Summary statistics for the DAX index

Figure 1.6: DAX index

Figure 1.7: DAX log returns

Table 1.7: Summary statistics for the DAX log return series

Sample Mean Std. dev. Skewness Kurtosis

Jan 1964 - May 2013 0.000234 0.012 -0.246 10.50

Jan 1993 - May 2013 0.000329 0.015 -0.129 7.41

Jan 2002 - May 2013 0.000165 0.016 0.054 7.62
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Chapter 2

LM-type tests for slope homogeneity in
panel data models

2.1 Introduction

In classical panel data analysis it is assumed that unobserved heterogeneity is captured by

individual-specific constants, whether they are assumed to be fixed or random. In many appli-

cations, however, it cannot be ruled out that slope coefficients are also individual-specific. For

instance, heterogenous preferences among consumers may imply individual-specific income

elasticities. Ignoring this form of heterogeneity may result in biased estimation and inference.

Therefore, it is important to test the assumption of slope homogeneity before applying standard

panel data techniques such as the least-squares dummy-variable (LSDV) estimator for the fixed

effect panel data model.

If there is evidence for individual-specific slope parameters, economists are interested in esti-

mating a population average like the mean of the individual-specific coefficients. Pesaran and

Smith (1995) advocate mean group estimation, where in a first step the model is estimated sep-

arately for each cross-section unit. In a second step, the unit specific estimates are averaged to

obtain an estimator for the population mean of the parameters. Alternatively, Swamy (1970)

proposes a generalized least squares (GLS) estimator for the random coefficients model, which

assumes that the individual regression coefficients are randomly distributed around a common

mean.

In this chapter, we take the random coefficients model as the starting point of our analysis.

We derive the Lagrange Multiplier (LM) for the hypothesis that cross-sectional variance of the

regression coefficients is equal to zero. To prepare the theoretical discussion in the follow-

35



ing sections, we briefly review the random coefficients model and a test suggested therein to

investigate this issue. Following Swamy (1970), consider a linear panel data model

yit = x′itβi + εit, (2.1)

for i = 1, 2, . . . , N , and t = 1, 2, . . . , T , where yit is the dependent variable for unit i at time

period t, xit is a K × 1 vector of explanatory variables and εit is an idiosyncratic error with

zero mean and variance E [ε2it] = σ2
i . The slope coefficients βi are assumed to be randomly

distributed with

βi = β + vi ,

where β is a fixedK×1 vector and vi is a random vector with zero mean andK×K covariance

matrix Σv.1

The null hypothesis of slope homogeneity is

β1 = β2 = · · · = βN = β, (2.2)

which is equivalent to testing Σv = 0. To test hypothesis (2.2), Swamy suggests the statistic

Ŝ∗ =
N∑
i=1

(
β̂i − β̂WLS

)′(X ′iXi

s2i

)(
β̂i − β̂WLS

)
,

with Xi = (xi1, . . . , xiT )′ and β̂i = (X ′iXi)
−1X ′iyi is the ordinary least squares (OLS) estimator

of (2.1) for panel unit i, and t = 1, . . . , T . The common slope parameter β is estimated by the

weighted least-squares estimator

β̂WLS =

(
N∑
i=1

X ′iXi

s2i

)−1( N∑
i=1

X ′iyi
s2i

)
,

where s2i denotes the standard OLS estimator of σ2
i .

Intuitively, if the regression coefficients are identical, the differences between the individual

estimators and the pooled estimator should be small. Therefore, Swamy’s test rejects the null

hypothesis of homogenous slopes for large values of this statistic, which possesses a limiting

χ2 distribution with K(N − 1) degrees of freedom as N is fixed and T →∞.

1For more details and extensions of the basic random coeffient model outlined here, see the thorough review
by Hsiao and Pesaran (2008).
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Pesaran and Yamagata (2008), henceforth referred to as PY, emphasize that in many empirical

applications N is large relative to T and the approximation by a χ2 distribution is unreliable.

PY adapt the test to a setting in whichN and T jointly tend to infinity. In particular, they assume

individual-specific intercepts and derive a test for the hypothesis β1 = · · · = βN = β in

yit = αi + x′itβi + εit.

The analogue of the pooled weighted least squares estimator above eliminates the unobserved

fixed effects,

β̂WFE =

(
N∑
i=1

X ′iMιXi

σ̂2
i

)−1( N∑
i=1

X ′iMιyi
σ̂2
i

)
,

where Mι = IT − ιT ι′T/T , and ιT is a T × 1 vector of ones. A natural estimator for σ2
i is

σ̂2
i =

(
yi −Xiβ̂i

)′
Mι

(
yi −Xiβ̂i

)
T −K − 1

,

where β̂i = (X ′iMιXi)
−1 (X ′iMιyi) and the test statistic becomes

Ŝ =
N∑
i=1

(
β̂i − β̂WFE

)′(X ′iMιXi

σ̂2
i

)(
β̂i − β̂WFE

)
.

Employing a joint limit theory for N and T , PY obtain the limiting distribution as

∆̂ =
Ŝ −NK√

2NK

d→ N (0, 1) , (2.3)

provided that N → ∞, T → ∞ and
√
N/T → 0. Thus, by appropriately centering and

standardizing the test statistic, inference can be carried out by resorting to the standard normal

distribution, provided the time dimension is sufficiently large relative to the cross-section di-

mension. PY propose several modified versions of this test, which for brevity we shall refer to

as the ∆ tests or statistics. In particular, to improve the small-sample properties of the test, PY

suggest the adjusted statistic under normally distributed errors (see Remark 2 in PY),

∆̃adj =
√
N(T + 1)

(
N−1S̃ −K√

2K (T −K − 1)

)
, (2.4)
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where S̃ is computed as Ŝ but replacing σ̂2
i by the variance estimator

σ̃2
i =

(
yi −Xiβ̃FE

)′
Mι

(
yi −Xiβ̃FE

)
T − 1

, (2.5)

where β̃FE =

(
N∑
i=1

X ′iMιXi

)−1( N∑
i=1

X ′iMιyi

)
is the standard ’fixed effects’ (within-group)

estimator. Note that this asymptotic framework does not seem to be well suited for typical

panel data applications where N is (very) large relative to T . Therefore, it will be of interest

to derive a test statistic that is valid when T is small (say T = 10) and N is very large (say

N = 1000), which, for instance, is encountered in microeconomic panels.

In this chapter we derive a test for slope homogeneity by employing the LM principle within a

random coefficients framework, which allows us to formulate the null hypothesis of homogene-

ity in terms of K restrictions on the variance parameters of the parameter disturbances. Hence,

the LM approach substantially reduces the number of restrictions to be tested compared to the

set of K(N − 1) linear restrictions on the coefficients implied by the Swamy-PY approach. To

derive the LM test, we assume that regression disturbances are normally distributed. We then

provide variants of the LM statistic that robustify the original LM statistic to non-normally dis-

tributed and heteroskedastic errors. In addition, it is shown how the proposed LM statistics can

be computed by running a simple artificial regression.

To gain further insight into the relationship between the LM and the ∆ tests, we investigate the

local asymptotic power of these tests in the random coefficient model. We find that the LM

test and the ∆ test have power against alternatives in a N−1/2T−1 neighborhood of the null

hypothesis. The location parameter of the LM test depends on the cross-section dispersion of

the regression variances, whereas the location parameter of the ∆ test depends only on the mean

of the regressor variances. Thus, if the regressor variances differ across the panel groups, the

gain in power from using the LM test may be substantial.

It should be noted that in related work, Juhl and Lugovskyy (2013) derive a test for slope

homogeneity in a likelihood framework with random coefficients. The resulting CLM test is

based entirely on the score of their likelihood function, while the LM test proposed in this

chapter also incorporates the information matrix, leading to a more powerful test.

To evaluate the performance of the LM-type tests in finite samples that are typically encoun-

tered in practice, we conduct several Monte Carlo experiments. The main conclusion in all

experiments is that the LM test provides a sizeable power gain relative to existing procedures
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when the time dimension is small. We emphasize that we restrict attention to static panels, as

adopting the LM approach in a dynamic panel data model is beyond the scope of the chapter.

The outline of the chapter is as follows. In Section 2.2, we describe the random coefficients

model and lay out the assumptions for analyzing the large-sample properties of our test statis-

tics under normality. In Section 2.3 we derive the LM statistic and establish its asymptotic

distribution. Section 2.4 discusses several variants of the proposed test. First, we relax the

normality assumption and extend the result of the previous section to this more general setting.

Second, we propose a regression-based version of the LM test. Section 2.5 investigates the

local asymptotic power of the LM test. Section 2.6 describes the design of our Monte Carlo

experiments and discusses the results. Section 2.7 concludes this chapter.

2.2 Model and assumptions

Consider a linear panel data model with random coefficients,

yi = Xiβi + εi, (2.6)

βi = β + vi, (2.7)

for i = 1, 2, . . . , N , where yi is a is a T × 1 vector of observations on the dependent variable

for cross-section unit i, and Xi is a T ×K matrix of possibly stochastic regressors. To simplify

the exposition we assume a balanced panel with the same number of observation in each panel

unit (see also Remark 2.1 of Lemma 2.1). The vector of random coefficients is assumed to

have two components, the common non-stochastic vector β and a vector of individual-specific

disturbances vi.

Let X = [X ′1, X
′
2, . . . , X

′
N ]′. We impose the following assumptions on the errors and the re-

gressor matrix:

Assumption 2.1 The error vectors are distributed as εi|X
iid∼ N (0, σ2IT ) and vi|X

iid∼ N (0,Σv),

where Σv = diag
(
σ2
v,1, . . . , σ

2
v,K

)
. The errors εi and vj are independent from each other for all

i and j.

Assumption 2.2 For the regressors we assume E|xit,k|4+δ < C < ∞ for some δ > 0, for all

i = 1, 2 . . . , N , t = 1, 2, . . . , T and k = 1, 2 . . . , K. The limiting matrix lim
N→∞

N−1E [X ′X]

exists and is positive definite for all T .
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In Assumption 2.1, the random components of the slope parameters are allowed to have different

variances but we assume that there is no correlation among the elements of vi. This assumption

simplifies the derivation of the LM statistic. Allowing for correlation among the errors would

increase the dimension of the null hypothesis to K(K + 1)/2 restrictions and it is not clear

whether including the covariances in the null hypothesis helps to increase the power of the test.

Note that if all variances are zero, then the covariances are zero as well. We return to this issue

when studying the small-sample properties of the LM test in Section 2.6.

To derive the asymptotic distribution of the LM statistic when N → ∞ and T is fixed, we

assume that errors are normally distributed. For the purpose of applying the LM test when errors

are non-normally distributed, we generalize the setup in Section 2.4. The LM test is applicable

in a framework in which N, T → ∞ jointly once we trade off the distributional assumption

for more specific restrictions on the existence of higher-order moments (see Theorem 2.2).

Moreover, the regression error ui is assumed to be homoskedastic. We propose a variant of the

LM test that is robust to this assumption in Section 2.4.2.

Let ui = Xivi + εi. Stacking observations with respect to i yields

y = Xβ + u, (2.8)

where y = (y′1, . . . , y
′
N)′ and u = (u′1, . . . , u

′
N)′. The NT ×NT covariance matrix of u is given

by

Ω ≡ E [uu′|X] =


X1ΣvX

′
1 + σ2IT 0

. . .

0 XNΣvX
′
N + σ2IT

 .
The hypothesis of fixed homogeneous slope coefficients, βi = β for all i, corresponds to testing

H0 : σ2
v,k = 0, for k = 1, ..., K,

against the alternative

H1 :
K∑
k=1

σ2
v,k > 0, (2.9)

that is, under the alternative at least one of the variance parameters is larger than zero.
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2.3 The LM test for slope homogeneity

Let θ =
(
σ2
v,1, ..., σ

2
v,K , σ

2
)′. Under Assumption 2.1 the corresponding log-likelihood function

results as

` (β, θ) = −NT
2

log(2π)− 1

2
log |Ω (θ)| − 1

2
(y −Xβ)′Ω (θ)−1 (y −Xβ) . (2.10)

The restricted ML estimator of β under the null hypothesis coincides with the OLS estimator

β̃ = (X ′X)−1X ′y in (2.8). Let ũ = y −Xβ̃ denote the corresponding vector of residuals. The

restricted MLE of σ2 is σ̃2 = ũ′ũ/NT .

The following lemma presents the score and the information matrix derived from the log-

likelihood function in (2.10).

Lemma 2.1 The score vector evaluated under the null hypothesis is given by

S̃ ≡ ∂`

∂θ

∣∣∣∣
H0

=
1

2σ̃4



N∑
i=1

(
ũ′iX

(1)
i X

(1)′
i ũi − σ̃2X

(1)′
i X

(1)
i

)
...

N∑
i=1

(
ũ′iX

(K)
i X

(K)′
i ũi − σ̃2X

(K)′
i X

(K)
i

)
0


, (2.11)

where X(k) is the k-th column of X for k = 1, 2, . . . , K.

The information matrix evaluated under the null hypothesis is

I(σ̃2) ≡ − E
[
∂2`

∂θ∂θ′

]∣∣∣∣
H0

=
1

2σ̃4



N∑
i=1

(
X

(1)′
i X

(1)
i

)2
· · ·

N∑
i=1

(
X

(1)′
i X

(K)
i

)2
X(1)′X(1)

N∑
i=1

(
X

(2)′
i X

(1)
i

)2
· · ·

N∑
i=1

(
X

(2)′
i X

(K)
i

)2
X(2)′X(2)

... . . . ...
...

N∑
i=1

(
X

(K)′
i X

(1)
i

)2
· · ·

N∑
i=1

(
X

(K)′
i X

(K)
i

)2
X(K)′X(K)

X(1)′X(1) · · · X(K)′X(K) NT


, (2.12)

where X(k)
i denotes the k-th column of the T ×K matrix Xi, k = 1, 2, . . . , K and i = 1, ..., N .
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Remark 2.1 It is straightforward to extend Lemma 2.1 to unbalanced panel data. Assume that

Xi is a Ti ×K matrix and ũi is a conformable Ti × 1 vector. The score vector is given by

S̃ =
1

2σ̃4



N∑
i=1

(
ũ′iX

(1)
i X

(1)′
i ũi − σ̃2X

(1)′
i X

(1)
i

)
...

N∑
i=1

(
ũ′iX

(K)
i X

(K)′
i ũi − σ̃2X

(K)′
i X

(K)
i

)
0


,

where

σ̃2 =
1

N∑
i=1

Ti

N∑
i=1

ũ′iũi .

The information matrix is computed accordingly.

In the following theorem it is shown that when T is fixed the LM statistic possesses a χ2 limiting

null distribution with K degrees of freedom as N →∞.

Theorem 2.1 Under Assumptions 2.1, 2.2 and the null hypothesis

LM = S̃
′
I(σ̃2)−1S̃ = s̃ ′ Ṽ

−1
s̃

d→ χ2
K , (2.13)

as N →∞ and T is fixed, where s̃ is defined as the K × 1 vector with typical element

s̃k =
1

2σ̃4

N∑
i=1

(
T∑
t=1

ũitxit,k

)2

− 1

2σ̃2

N∑
i=1

T∑
t=1

x2it,k, (2.14)

and the (k, l) element of the matrix Ṽ is given by

Ṽk,l =
1

2σ̃4

 N∑
i=1

(
T∑
t=1

xit,kxit,l

)2

− 1

NT

(
N∑
i=1

T∑
t=1

x2it,k

)(
N∑
i=1

T∑
t=1

x2it,l

) . (2.15)

Remark 2.2 If T is fixed, normality of the regression disturbances is required. If we relax

the normality assumption, an additional term enters the variance of the score vector and the

information matrix becomes an inconsistent estimator. Theorem 2.2 discusses this issue in

more details and derives the asymptotic distribution of the LM test if the errors are not normally

distributed.

Remark 2.3 It may be of interest to restrict attention to a subset of coefficients. For example,

in the classical panel data model it is assumed that the constants are individual-specific and,
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therefore, the respective parameters are not included in the null hypothesis. Another possibility

is that a subset of coefficients is assumed to be constant across all panel units. To account for

such specifications the model is partitioned as

yit = β′1iX
a
it + β′2X

b
it + β′3iX

c
it + uit .

The K1 × 1 vector Xa
it includes all regressors that are assumed to have individual-specific

coefficients stacked in the vector β1i. The K2 × 1 vector Xb
it comprises all regressors that are

supposed to have homogenous coefficients. The null hypothesis is that the coefficient vector β3i

attached to the K3 × 1 vector of regressors Xc
it is identical for all panel units, that is, β3i = β3

for all i, where β3i = β3 + v3i. The null hypothesis implies Σv3 = 0. Let

Z =


Xa

1 0 · · · 0 Xb
1 Xc

1

0 Xa
2 · · · 0 Xb

2 Xc
2

... . . . ...
0 0 · · · Xa

N Xb
N Xc

N

 ,

whereXa
i = [Xa

i1, . . . , X
a
iT ]′ and the matricesXb

i andXc
i are defined accordingly. The residuals

are obtained as ũ = (I −Z(Z ′Z)−1Z ′)y and the columns of the matrix Xc are used to compute

the LM statistic. Some caution is required if a set of individual-specific coefficients are included

in the panel regression since in this case the ML estimator σ̃2 = (NT )−1
∑N

i=1

∑
t=1 ũ

2
it is

inconsistent for fixed T and N → ∞. This implies that the expectation of the score vector

(2.11) is different from zero. Accordingly, the unbiased estimator

σ̂2 =
1

NT −K1 −K2 −K3

N∑
i=1

T∑
t=1

ũ2it (2.16)

must be employed.

As a special case, assume that the constant is included in Xc
i , whereas all other regressors are

included in the matrix Xb
i , and Xa

i is dropped. This case is equivalent to the test for random

individual effects as suggested by Breusch and Pagan (1980). The LM statistic then reduces to

LM =
NT

2 (T − 1)

[
1− ũ′ (IN ⊗ ιT ι′T ) ũ

ũ′ũ

]2
,

where ιT is a T × 1 vector of ones, which is identical to the familiar LM statistic for random

individual effects.
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Remark 2.4 Let s̃i be the K × 1 vector of score contributions of unit i, such that the vector s̃

defined in theorem 2.1 can be decomposed as s̃ =
∑N

i=1 s̃i. By replacing the matrix Ṽ in (2.13)

by the “Outer Product of Gradients” (OPG), the OPG variant of the LM test results as(
N∑
i=1

s̃i

)′( N∑
i=1

s̃is̃
′
i

)−1( N∑
i=1

s̃i

)
.

with

s̃i =
1

2σ̃4

(
ũ′iXiX

′
iũi − σ̃2X ′iXi

)
. (2.17)

This statistic can be related to the CLM statistic proposed by Juhl and Lugovskyy (2013). Their

likelihood framework takes the fixed effects model as given and assumes that the regression

errors are heterokedastic. Moreover, a random coefficients model is adopted with Σv = σ2
vIK

(cf. Assumption 2.1). The general expression for the score contributions in their model is

s̃ clm
i =

(
yi −Xiβ̃FE

)′
MιXiX

′
iMι

(
yi −Xiβ̃FE

)
− σ̃2

i tr [X ′iMιXi] , (2.18)

where tr [·] denotes the trace of a matrix and σ̃2
i is given in (2.5). The resulting test statistic is

CLM =

∑N
i=1 s̃

clm
i(∑N

i=1

(
s̃ clmi

)2)1/2 .
Comparing (2.17) and (2.18), for K = 1, the OPG variant of the LM statistic as given above

can be viewed as the analogue of the CLM statistic in absence of fixed effects and with ho-

moskedastic errors. In general, as shown in theorem 4.2 in Juhl and Lugovskyy (2013), under

the associated null hypothesis σ2
v = 0,

CLM
d→ N (0, 1) , (2.19)

as N →∞ and T is fixed.
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2.4 Variants of the LM test

2.4.1 The LM statistic under non-normality

In this section we consider useful variants of the original LM statistic. First, we analyze the

LM test under the assumption that the errors are not normally distributed. Therefore, we alter

Assumptions 2.1 and 2.2 as follows.

Assumption 2.3 The error vector εi is independently and identically distributed with

E(εi|X) = 0, E(εiε
′
i|X) = σ2IT and E|εit|6 < C < ∞ for all i and t. εi and vj are in-

dependent from each other for all i and j.

Assumption 2.4 For the regressors we assume E|xit,k|4+δ < C < ∞ for some δ > 0, for all

i = 1, 2 . . . , N , t = 1, 2, . . . , T and k = 1, 2 . . . , K. The limiting matrix

Q := lim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

E [xitx
′
it]

exists and is positive definite.

With these modifications of the previous setup, the limiting distribution of the LM statistic is

χ2 distributed as N, T →∞ jointly.

Theorem 2.2 Under Assumptions 2.3, 2.4 and the null hypothesis,

LM
d→ χ2

K , (2.20)

and N →∞, T →∞ jointly.

Generalizing the model to allow for non-normally distributed errors introduces a new term into

the variance of the score: the (k, l) element of the covariance matrix now becomes (see equation

(2.44) in appendix 2.A)

Vk,l +

(
µ
(4)
u − 3σ4

(2σ4)2

)
N∑
i=1

T∑
t=1

(
x2it,k −

1

NT

N∑
i=1

T∑
t=1

x2it,k

)(
x2it,l −

1

NT

N∑
i=1

T∑
t=1

x2it,l

)
,

(2.21)

where µ(4)
u denotes the fourth moment of the error distribution, and Vk,l is as in (2.15) with σ̃4

replaced by σ4. The additional term depends on the excess kurtosis µ(4)
u − 3σ4. Clearly, for
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normally distributed errors, this term disappears, but it deviates from zero in the more general

setup. Under Assumptions 2.3 and 2.4, the first term Vk,l is of order NT 2, while the new

component is of order NT , such that, when the appropriate scaling underlying the LM statistic

is adopted, it vanishes as T → ∞. Therefore, the LM statistic as presented in the previous

section continues to be χ2
K distributed asymptotically.

By incorporating a suitable estimator of the second term in (2.21), however, a test statistic

becomes available that is valid in a framework with non-normally distributed errors asN →∞,

whether T is fixed or T →∞. Therefore, denote the adjusted LM statistic by

LMadj = s̃ ′
(
Ṽadj

)−1
s̃,

where Ṽadj is as in (2.21) with Vk,l, σ4 and µ(4)
u replaced by the consistent estimators Ṽk,l for

k, l = 1, ..., K, defined in (2.15), σ̃4 and µ̃(4)
u = (NT )−1

∑N
i=1

∑T
t=1 ũ

4
it.

As a consequence of Theorem 2.2 and the preceding discussion, we obtain the following result.

Corollary 2.1 Under Assumptions 2.2, 2.3 and the null hypothesis

LMadj
d→ χ2

K ,

as N →∞ and T is fixed. Furthermore,

LMadj − LM
p→ 0,

as N →∞, T →∞ jointly.

As mentioned above, once the regression disturbances are no longer normally distributed, the

fourth moments of the error distribution enter the variance of the score. It is insightful to identify

exactly which terms give rise to this new form of the covariance matrix. According to Lemma

2.1, the contribution of the i-th panel unit to the k-th element of the score vector is

ũ′iX
(k)
i X

(k)′
i ũi − σ̃2X

(k)′
i X

(k)
i =

(
T∑
t=1

x2it,k
(
ũ2it − σ̃2

))
+

T∑
t=1

∑
s6=t

ũitũisxit,kxis,k. (2.22)

The first term has expectation zero whether the null hypothesis is true or not. Moreover, the

variance of this term introduces the fourth moments of the errors into the variance of the score.

Given this observation, the first term can be dropped from the analysis without affecting the

asymptotic size or power of the test. We can then proceed to examine the asymptotic properties
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of the remaining term when T is fixed. Hence, we consider a modified score vector as presented

in the following theorem.

Theorem 2.3 Under Assumptions 2.2, 2.3 and the null hypothesis, the modified LM

statistic

LM∗ = s̃∗ ′
(
Ṽ ∗
)−1

s̃∗
d→ χ2

K ,

as N →∞ and T fixed, where s̃∗ is K × 1 vector with contributions for panel unit i

s̃∗i,k =
1

σ̃4

T∑
t=2

t−1∑
s=1

ũitũisxit,kxis,k, (2.23)

for i = 1, ..., N , k = 1, ..., K, and the (k, l) element of Ṽ ∗ is given by

Ṽ ∗k,l =
1

σ̃4

N∑
i=1

T∑
t=2

xit,kxit,l

(
t−1∑
s=1

xis,kxis,l

)
, (2.24)

for k, l = 1, ..., K.

Remark 2.5 It is important to note that this version of the LM test is invalid if the panel

regression allows for individual-specific coefficients (cf. Remark 3). Consider for example the

regression

yit = µi + x′itβi + uit, (2.25)

where µi are fixed individual effects and we are interested in testing H0 : V ar [βi] = 0. The

residuals are obtained as

ũit = yit − yi − (xit − xi)′β̃ = uit − ui − (xit − xi)′(β̃ − β).

It follows that in this case E(ũitũisxit,kxis,k) 6= 0 and, therefore, the modified scores (2.23)

result in a biased test. To sidestep this difficulty, orthogonal deviations (e.g. Arellano and

Bover (1995)) can be employed to eliminate the individual-specific constants yielding

y∗it = β′x∗it + u∗it t = 2, 3, . . . , T,

with y∗it =

√
t− 1

t

[
yit −

1

t− 1

(
t−1∑
s=1

yis

)]
,
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where x∗it and u∗it are defined analogously. It is well known that if uit is serially uncorrelated so

is u∗it. It follows that the modified LM statistic can be constructed by using the OLS residuals

ũ∗it instead of ũit. This approach can be generalized to arbitrary individual-specific regressors

xait. Let Xa
i = [xai1, . . . , x

a
iT ]′ denote the individual-specific T × K1 regressor matrix in the

regression

yi = Xa
i β1i +Xb

i β2 +Xc
i β3i + ui, (2.26)

(see Remark 3). Furthermore, let

Ma
i = IT −Xa

i (Xa′
i X

a
i )−1Xa′

i ,

and let M̃a
i denote the (T −K1)× T matrix that results from eliminating the last K1 rows from

Ma
i such that (Ma

i M
a′
i ) is of full rank. The model (2.26) is transformed as

y∗i = Xb∗
i β2 +Xc∗

i β3i + u∗i , (2.27)

where y∗i = Ξa
i yi and Ξa

i = (M̃a
i M̃

a′
i )−1/2M̃a

i . It is not difficult to see that E(u∗iu
∗′
i ) = σ2IT−K1

and, thus, the modified scores (2.23) can be constructed by using the residuals of (2.27), where

the time series dimension reduces to T −K1. Note that orthogonal deviations result from letting

Xa
i be a vector of ones.

To review the results of this section, the important new feature in the model without assuming

normality is that the fourth moments of the errors enter the variance of the score. The informa-

tion matrix of the original LM test derived under normality does not incorporate higher order

moments, but the test remains applicable as T → ∞. To apply the LM test in the original

framework when T is fixed and errors are no longer normal we can proceed in two ways. A

direct adjustment of the information matrix to account for higher order moments yields a valid

test. Alternatively, we can adjust the score itself and restrict attention to that part of the score

that does not introduce higher order moments into the variance. In the next section, we further

pursue the second route of dealing with non-normality and thereby robustify the test against

heteroskedasticity.
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2.4.2 The regression-based LM statistic

In this section we offer a convenient way to compute the proposed LM statistic via a simple

artificial regression. Moreover, the regression-based form of the LM test is shown to be robust

against heteroskedastic errors.

Following the decomposition of the score contribution in (2.22) and the discussion thereafter,

we construct the “Outer Product of Gradients” (OPG) variant of the LM test based on the second

term in (2.22). Rewriting the corresponding elements of the score contributions of panel unit i

as

s̃∗i,k =
1

2σ̃4

T∑
t=1

∑
s 6=t

ũitũisxit,kxis,k =
1

σ̃4

T∑
t=2

t−1∑
s=1

ũitũisxit,kxis,k, (2.28)

for k = 1, ..., K, gives the LM-OPG variant

LMopg =

(
N∑
i=1

s̃∗i

)′( N∑
i=1

s̃∗i s̃
∗′
i

)−1( N∑
i=1

s̃∗i

)
, (2.29)

where s̃∗i =
[
s̃∗i,1, ..., s̃

∗
i,K

]′. An asymptotically equivalent form of the LM-OPG statistic can be

formulated as a Wald-type test for the null hypothesis ϕ = 0 in the auxiliary regression

ũ∗ = Z̃ϕ+ e,

where ũ∗ = (ũ12, . . . , ũ1T , . . . , ũN2, . . . , ũNT )′, Z̃ =
[
Z̃ ′1, . . . , Z̃

′
N

]′
, and Z̃i is a (T − 1) × K

matrix with typical element

z̃it,k =
1

σ̃4
xit,k

t−1∑
s=1

ũisxis,k,

for k = 1, ..., K and t = 2, ..., T . Therefore, with the Eicker-White heteroskedasticity consis-

tent variance estimator, the regression based test statistic results as

LMreg =
(
Z̃ ′ũ∗

)′( N∑
i=1

T∑
t=2

ũ2itz̃itz̃
′
it

)−1 (
Z̃ ′ũ∗

)
, (2.30)

where z̃it =
[
z̃it,1, . . . , z̃it,K

]′
. Since

∑N
i=1 s̃

∗
i = Z̃ ′ũ∗ and the variance estimators in (2.29) and

the middle matrix in (2.30) are asymptotically equivalent, we obtain the following theorem.

Theorem 2.4 Under Assumption 2.2, Assumption 2.3 but allowing for arbitrary variances

E(ε2it) = σ2
i <∞, and the null hypothesis, it holds that

LMreg
d→ χ2

K ,
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as N →∞ and T is fixed.

This result ends our discussion of examining the consequences of non-normal and heteroskedas-

tic errors for our test. We have generalized the classical assumptions in Section 2.3 to set-

tings that are commonly encountered in practice, including non-normal regression errors or

heteroskedastic disturbances. By extending and robustifying the original LM test in these direc-

tions, we have now assembled a collection of test statistics to choose from. To study the power

of the LM test, the following section examines the power of the class of tests against a suitable

sequence of local alternatives.

2.5 Local power analysis

The aim of this section is twofold. First, we investigate the distributions of the LM-type test

under suitable sequences of local alternatives. Two cases are of interest, with T fixed and

N, T →∞ jointly, which are presented in the respective theorems below. Second, we adopt the

results of PY to our model in order to compare the local asymptotic power of the two tests.

To formulate an appropriate sequence of local alternatives, we specify the random coefficients

in (2.7) in a setup in which T is fixed. The error term vi is as in Assumption 2.1 with elements

of Σv given by

σ2
v,k =

ck√
N
, (2.31)

where ck > 0 are fixed constants for k = 1, . . . , K. The asymptotic distribution of the LM

statistic results then as follows.

Theorem 2.5 Under Assumptions 2.1, 2.2 and the sequence of local alternatives (2.31),

LM
d→ χ2

K (µ) ,

as N →∞ and T fixed, with non-centrality parameter µ = c′Ψc, where c = (c1, . . . , cK)′ and

Ψ is a K ×K matrix with (k, l) element

Ψk,l =
1

2σ4
plim
N→∞

 1

N

N∑
i=1

(
T∑
t=1

xit,kxit,l

)2

− 1

T

(
1

N

N∑
i=1

T∑
t=1

x2it,k

)(
1

N

N∑
i=1

T∑
t=1

x2it,l

) .
Similar conclusions hold if we relax normality and adopt Assumption 2.3 for vi, where the
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sequence of local alternatives is now given by

σ2
v,k =

ck

T
√
N
, (2.32)

for k = 1, . . . , K.

Theorem 2.6 Under Assumptions 2.3, 2.4 and the sequence of alternatives (2.32),

LM
d→ χ2

K (µ) ,

as N →∞, T →∞, with non-centrality parameter µ = c′Ψc, where c = (c1, . . . , cK)′ and Ψ

is a K ×K matrix with (k, l) element

Ψk,l =
1

2σ4
plim
N,T→∞

1

N

N∑
i=1

(
1

T

T∑
t=1

xit,kxit,l

)2

.

Remark 2.6 As in Section 2.4.1 above, when the normality assumption is relaxed, local power

can be studied for LM∗ under Assumptions 2.2 and 2.3 when T is fixed. The specification of

local alternatives as in Theorem 2.5 applies. The non-centrality parameter of the limiting non-

central χ2 distribution results as µ∗ = c′Ψ∗c with

Ψ∗k,l =
1

σ4
plim
N→∞

1

N

N∑
i=1

T∑
t=2

xit,kxit,l

(
t−1∑
s=1

xis,kxis,l

)
,

for k, l = 1, ..., K.

Remark 2.7 Given the results for the score-modified statistic LM∗ in remark 2.6, and the fact

that s̃∗ =
∑N

i=1 s̃
∗
i =

(
Z̃ ′ũ∗

)
, we expect a similar result for the regression-based LM statistic

LMreg to hold. Recall that LM∗ uses N−1Ṽ ∗ as an estimator of the variance of s̃∗ (see (2.24)),

while LMreg employs
(
N−1

∑N
i=1

∑T
t=2 ũ

2
itz̃itz̃

′
it

)
. Under the null hypothesis, it is not difficult

to see that these two estimators are asymptotically equivalent, see the proof of Theorem 2.4.

Under the alternative, when studying the (k, l) element of the variance of LMreg, we obtain (see

appendix 2.A for details)

1

N

N∑
i=1

T∑
t=2

ũ2itz̃it,kz̃it,l =

(
1

σ̃4

)2
1

N

N∑
i=1

T∑
t=2

ε2itxit,kxit,l

(
t−1∑
s=1

εisxis,k

)(
t−1∑
s=1

εisxis,l

)

+
1

N

N∑
i=1

T∑
t=2

ε2itv
′
iB

X
it vi + op (1) , (2.33)
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with the K × K matrix BX
it =

(
xit,k

∑t−1
s=1 xisxis,k

) (
xit,l

∑t−1
s=1 x

′
isxis,l

)
. The first term on

the right-hand side in (2.33) has the same probability limit as N−1Ṽ ∗k,l, the limiting covariance

matrix element Ψ∗k,l. In contrast to LM∗, however, the variance estimator of the regression-

based test involves additional quadratic forms such as v′iB
X
it vi, contributing to the estimator.

Since, in a setup in which T is fixed,

1

N

N∑
i=1

T∑
t=2

ε2itv
′
iB

X
it vi = Op

(
N−1/2

)
,

the variance estimator remains consistent. In small samples, however, the additional term results

in a bias of the variance estimator and may deteriorate the power of the regression-based test.

See the appendix for details about the above result and the Monte Carlo experiments in Section

2.6.

We now proceed to examine the local power of the ∆ statistic of PY in model (2.6) and (2.7)

under the sequence of local alternatives (2.32). In our homoskedastic setup, the dispersion

statistic becomes

S̃ =
N∑
i=1

(
β̃i − β̃

)′(X ′iXi

σ̃2

)(
β̃i − β̃

)
,

with β̃ as the OLS estimator in (2.8) as above. Using this expression, the ∆̂ statistic is computed

as in (2.3). The next theorem presents the asymptotic distribution of the ∆̂ statistic under the

local alternatives as specified above. This result follows directly from Section 3.2 in PY.

Theorem 2.7 Under Assumptions 2.3, 2.4, and the sequence of local alternatives (2.32)

∆̂
d→ N (λ, 1) ,

as N → ∞, T → ∞, provided
√
N/T → 0, where λ = Λ′c/

√
2K and Λ is a K × 1 vector

with typical element

Λk =
1

σ2
plim
N,T→∞

1

NT

N∑
i=1

T∑
t=1

x2it,k,

for k = 1, . . . , K.

In Theorem 2.7, the mean of the limiting distribution of ∆̂ is slightly different from the result

in Section 3.2 in PY. Here, vi is random and independently distributed from the regressors and,

therefore, the second term of the respective expression in PY is zero.
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Remark 2.8 Theorems 2.5 and 2.6 imply that the local power is driven by the second moments

of the regressors since

Ψk,l =
1

2σ4
lim

N,T→∞

1

N

N∑
i=1

E

(
1

T

T∑
t=1

xit,kxit,l

)2

.

To illustrate the above findings, consider the simplest framework with only a single regressor.

Then, according to Theorem 2.6, the non-centrality parameter becomes

µ =

(
c2

2σ4

)
lim

N,T→∞

1

N

N∑
i=1

E

( 1

T

T∑
t=1

x2it

)2
 .

Suppose xit is i.i.d. over time and independently distributed across i with uniformly bounded

fourth moments. Let E [xit] = 0 and E [x2it] = σ2
i,x. That is, the regressor is assumed to have a

unit-specific variation which is constant over time for a given unit. We then obtain

E

( 1

T

T∑
t=1

x2it

)2
 =

(
σ2
i,x

)2
+O

(
T−1

)
,

implying µ = c2/2σ4 limN→∞N
−1∑N

i=1

(
σ2
i,x

)2. To gain further insight, we think of
(
σ2
i,x

)2 as

being randomly distributed in the cross-section such that

µ =
c2

2σ4
E
[(
σ2
i,x

)2]
=

c2

2σ4

(
V ar

[
σ2
i,x

]
+
(
E
[
σ2
i,x

])2)
. (2.34)

Similarly, under these assumptions, we find

λ =
c

σ2
√

2
E
[
σ2
i,x

]
. (2.35)

Comparing the mean of the normal distribution of the ∆ statistic in (2.35) with the non-centrality

parameter of the asymptotic χ2
1 distribution of the LM statistic in (2.34), we see that the main

difference between the two tests is that the variance of σ2
i,x contributes to the power of the LM

statistic but not to the power of the ∆ test. If V ar
[
σ2
i,x

]
= 0 such that σ2

i,x = σ2
x for all

i, the LM test and the ∆ test have the same asymptotic power in this example. If, however,

V ar
[
σ2
i,x

]
> 0, so that there is variation in the variance of the regressor in the cross-section, the

LM test has larger asymptotic power. To illustrate this point, we examine the local asymptotic

power functions of the LM and the ∆ test for two cases, using the expressions in (2.34) and

(2.35). Figure 2.1 shows the local asymptotic power of the LM (solid line) and the ∆ test (da-
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Figure 2.1: Asymptotic local power of the LM and the ∆ test when σ2
i,x ∼ χ2

1

Note: Solid line: local power of LM test according to (2.34). Dashed line: local
power of ∆ test according to (2.35). Here, σ2 = 1 and the variances σ2

i,x are dis-
tributed independently across i.

Figure 2.2: Asymptotic local power of the LM and the ∆ test when σ2
i,x ∼ χ2

2.

Note: Solid line: local power of LM test implied by (2.34). Dashed line: local power
of ∆ test implied by (2.35). Here, σ2 = 1 and the variances σ2

i,x are distributed
independently across i.
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shed line) as a function of c when σ2
i,x has a χ2

1 distribution. Figure 2.2 repeats this exercise

for σ2
i,x drawn from a χ2

2 distribution. In both cases, the LM test has larger asymptotic power.

The power gain is substantial for the first case, but diminishes for the second. This pattern is

expected, as the variance of σ2
i,x contributes relatively more to the non-centrality parameter in

the first specification.

This discussion exemplifies the difference between the LM-type tests and the ∆ statistic in

terms of the local asymptotic power in a simplified framework. The analysis suggests that

the LM-type tests are particularly powerful in an empirically relevant setting in which there is

non-negligible variation in the variances of the regressors between panel units.

Having studied the large samples properties of the LM tests under the null and the alternative

hypothesis in our model, we now evaluate the finite-sample size and power properties of the

LM-type tests in a Monte Carlo experiment.

2.6 Monte Carlo experiments

2.6.1 Design

After deriving LM-type tests in the random coefficient model, we now turn to study the small-

sample properties of the proposed test and its variants. The aim of this section is to evaluate

the performance of the tests in terms of their empirical size and power in several different

setups, relating to the theoretical discussion of Sections 2.3 - 2.5. We consider the following

test statistics: the original LM statistic presented in Theorem 2.1, the adjusted LM statistic

that adjusts the information matrix to account for fourth moments of the error distribution (see

Corollary 2.1), the score-modified LM statistic (see Theorem 2.3) and the regression-based,

heteroskedasticity-robust LM statistic (see Theorem 2.4). As a benchmark, we consider PY’s

statistic ∆̃adj given in (2.4). Following the notes in Table 1 in PY, the test using ∆̃adj is carried

out as a two-sided test. In addition, the CLM test in (2.19) is included, which is also a two-sided

test.

We consider the following data-generating process with normally distributed errors as the stan-

55



dard design:

yit = αi + x′itβi + εit, (2.36)

εit
iid∼ N (0, 1) , (2.37)

αi
iid∼ N (0, 0.25) ,

xit,k = αi + ϑxit,k, k = 1, 2, 3,

ϑxit,k
iid∼ N

(
0, σ2

ix,k

)
,

βi
iid∼ N3 (ι3,Σv) ,

Σv =

0.03 0 0

0 0.02 0

0 0 0.01

 , (2.38)

where i = 1, 2, . . . , N , t = 1, 2, . . . , T . As discussed in Section 2.5 the variances of the

regressors play an important role. In our benchmark specification we generate the variances as

σ2
ix,k = 0.25 + ηi,k

ηi,k
iid∼ χ2

1, (2.39)

The choice of the χ2 distribution for σ2
ix,k is made analogous to the Monte Carlo experiment in

PY, see page 63 in PY. We then consider variations of this specification below. All results are

based on 5,000 Monte Carlo replications. We choose

N ∈ {10, 20, 30, 50, 100, 200} ,

T ∈ {10, 20, 30} ,

as we would like to study the small-sample properties of the test procedures when the time

dimension is small.

In our first set of Monte Carlo experiments the errors are normally distributed; therefore we

focus on the standard LM test. We also include their respective heteroskedasticity-robust re-

gression variants for this exercise.

2.6.2 Results: normally distributed errors

Panel A of Table 2.1 (see Appendix 2.B) shows the rejection frequencies when the null hy-

pothesis is true. The ∆̃adj test has rejection frequencies close to the nominal size of 5% for
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all combinations of N and T , while the CLM test rejects the null hypothesis too often, in par-

ticular for small N . Deviations from the nominal size for the the standard LM test and the

regression-based test are small and disappear as N increases, as expected from Theorem 2.1.

Panel B of Table 2.1 shows the corresponding rejections frequencies under the alternative hy-

pothesis. The LM test outperforms the ∆̃adj and the CLM test in general. This observation holds

in particular for T = 10 where the power gain is considerable. The LM-OPG variant, although

as powerful as the ∆̃adj test for T = 10, suffers from a power loss relative to the standard LM

test. This power loss may be due to the small-sample bias of the variance estimator, see Remark

2.7.

Following Remark 2.5 the variants of the LM tests according to Theorems 3 and 4 are computed

as follows. First, the individual-specifc fixed effects αi are eliminated by transforming the

data using orthogonal deviations (see Arellano and Bover (1995)). The LM statistics are then

computed using the transformed data. The results for the within transformation (see Panel

A of Table 2.2) and the forward orthogonalization (not reported) indicate that the LM test is

sensitive to the implied serial correlation in the error term when applying the usual within-

group estimator. As illustrated in section 2.5, the power gain of the LM test is directly related

to the variation in the variances of the regressors. We therefore change the above design with

respect to (2.39) as follows:

σ2
ix,k = 0.25 + ηi,k,

ηi,k
iid∼ χ2

2, (2.40)

such that ηi,k has now a χ2 distribution with 2 degrees of freedom. As the empirical size is very

similar to the previous setup, we focus on the rejection rates under the alternative presented in

panel B of Table 2.2. By comparing panel B of Table 2.1 and the rejection rates in panel B of

Table 2.2, this exercise illustrates the analysis underlying Figures 2.1 and 2.2 in small samples.

We see that the power gain of the LM test is still sizeable for T = 10. As T increases, however,

the gap between the LM test and the ∆̃adj test in term of their empirical power becomes smaller.

2.6.3 Results: non-normal errors

We now investigate the LM test when the errors are no longer normally distributed, thereby

building on the results of Section 2.4.1. The errors in (2.37) are generated from a t-distribution

with 5 degrees of freedom, scaled to have unit variance. All other specifications of the standard
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design remain unchanged. In addition to the statistics already considered, we now include the

adjusted LM statistic (see corollary 2.1) and the score-modified statistic (see Theorem 2.3).

Panel A in Table 2.3 (see Appendix 2.B) reports the rejection frequencies under the null hypoth-

esis in this case. We notice that the LM test has substantial size distortions when T is fixed and

N increases, which is expected from Theorem 2.2. However, the adjusted LM statistic LMadj

and the modified score statistic LM∗ are both successful in controlling the type-I error.

Panel B of Table 2 shows rejection frequencies under the alternative hypothesis. The power

gain of the LM test relative to the ∆̃adj test is noticeable when T = 10 or T = 20. Qualitatively,

we draw the same conclusions when the errors are χ2 with two degrees of freedom, centered

and standardized to have mean zero and variance equal to one. These results are presented in

Table 2.4. Here, the size distortions of the LM test for small values of the time dimension are

more pronounced, and the adjusted versions are again able to provide reliable inference.

2.6.4 Additional simulation results

When we first introduced the LM test in Section 2.3, we made the simplifying assumption that

the random components of the coefficients have a diagonal covariance matrix. To study the

properties of the test for correlated random coefficients we now allow for non-zero off-diagonal

elements in the matrix Σv given in (2.38) above. The covariances are chosen such that the

first and second component of vi have correlation equal to 0.5, the second and third component

have correlation 0.25 and the first and third have correlation equal to zero. The variances are

as above. All other parameters are chosen as in the standard design. Rejection frequencies

under this specification of the alternative are presented in Table 2.5. Since the results are very

similar to the previous results when Σv is diagonal, the LM test remains powerful under such

alternatives.

2.7 Concluding remarks

In this chapter we examine the problem of testing slope homogeneity in a panel data model.

We develop testing procedures using the LM principle. Several variants are considered that

robustify the original LM test with respect to non-normality and heteroscedasticity. By studying

the local power we identify cases where the LM-type tests are particularly powerful relative to

existing tests. In sum, our Monte Carlo experiments suggest that the LM test are powerful

testing procedures to detect slope homogeneity in short panels in which the time dimension is
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small relative to the cross-section dimension. The LM approach suggested in this chapter may

be extended in future research by allowing for dynamic specifications with lagged dependent

variables and cross sectionally or serially correlated errors.
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Appendix to Chapter 2

2.A Proofs

To economize notation we use
∑
i

and
∑
t

instead of full expressions
N∑
i=1

and
T∑
t=1

throughout this

appendix. Moreover, tr [A] denotes the trace of the square matrix A.

Preliminary results
We first present an important result concerning the asymptotic effect of the estimation error
β̃ − β on the test statistics. Define

A
(k)
i = X

(k)
i X

(k)′
i −

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)
IT .

Lemma 2.2 Let R(k)
XAX =

∑
i

X ′iA
(k)
i Xi and R(k)

XAu =
∑
i

X ′iA
(k)
i ui for k = 1, ..., K. Further-

more let

R
(k)
N =

(
σ̃4

σ4

)
1

2σ2

((
β̃ − β

)′
R

(k)
XAX

(
β̃ − β

)
− 2

(
β̃ − β

)′
R

(k)
XAu

)
,

for k = 1, ..., K. Under Assumptions 2.1, 2.2 and the null hypothesis the following properties
hold if T is fixed:

(i) R(k)
XAX = Op (N),

(ii) R(k)
XAu = Op

(
N1/2

)
,

(iii) R(k)
N = Op (1),

for k = 1, ..., K.

Proof. (i) Using the definition of A(j)
i yields

R
(k)
XAX =

∑
i

X ′i

(
X

(k)
i X

(k)′
i

)
Xi −

1

NT

(∑
i

∑
t

x2it,k

)(∑
i

X ′iXi

)
.

The first term is a K ×K matrix with typical (l,m) element

∑
i

(∑
t

xit,lxit,k

)(∑
t

xit,mxit,k

)
= Op (N) ,

as a consequence of Assumption 2.2, while
∑

i

∑
t x

2
it,k/NT = Op (1) and

∑
iX
′
iXi = Op (N).

(ii) Recall that under the null hypothesis, ui = εi. Thus

R
(k)
XAu =

∑
i

(
X ′iX

(k)
i

)(
X

(k)′
i ui

)
− 1

NT

(∑
i

∑
t

x2it,k

)(∑
i

X ′iui

)
.
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The first and the second term are Op

(
N1/2

)
by a the central limit theorem (CLT) for indepen-

dent random variables and Assumption 2.2.
(iii) Combining (i) and (ii) together with the fact that

√
N
(
β̃ − β

)
= Op(1) yields the result.

Lemma 2.3 Under Assumptions 2.3, 2.4 and the null hypothesis the following properties hold
for N →∞ and T →∞:

(i) R(k)
XAX = Op (NT 2),

(ii) R(k)
XAu = Op

(
N1/2T 3/2

)
,

(iii) R(k)
NT = Op (T ) , which is defined as R(k)

N in Lemma 2.2,

for k = 1, ..., K.

Proof. Following the proof of Lemma 2.2 the element of the first term of R(k)
XAX is Op (NT 2),

whereas the second term is Op (NT ) by Assumption 2.4 which proves statement (i). Notice in
(ii) R(k)

XAu has two terms as in Lemma 2.2, where the first one has zero mean and variance of or-
der T 3. Therefore by Lemma 1 in Baltagi, Feng, and Kao (2011) we have that X ′iX

(j)
i X

(j)′
i ui =

Op(T
3/2) and by Lemma 2 in PY that

∑
i

(
X ′iX

(j)
i

)(
X

(j)′
i ui

)
= Op

(
N1/2T 3/2

)
and

(∑
i

X ′iui

)
= Op

(
N1/2T 1/2

)
. Using these results and the fact that

√
NT

(
β̃ − β

)
= Op (1) implies (iii).

Proofs of the main results
Proof of Lemma 2.1

We use the following rules for matrix differentiations:

∂`

∂θk
= −1

2
tr
[
Ω−1

∂Ω

∂θk

]
+

1

2

[
u′Ω−1

∂Ω

∂θk
Ω−1u

]
, (2.41)

−E
[

∂`

∂θk∂θl

]
=

1

2
tr
[
Ω−1

(
∂Ω

∂θk

)
Ω−1

(
∂Ω

∂θl

)]
, (2.42)

for k, l = 1, 2, . . . , K + 1, see, e.g., Harville (1977) and Wand (2002).
First,

XiΣvX
′
i =

∑
k

σ2
v,kX

(k)
i X

(k)′
i ,

with X(k)
i denoting the k-th column vector of Xi. Hence X1ΣvX

′
1 0

. . .
0 XNΣvX

′
N

 =
∑
k

σ2
v,kAk,
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with the NT ×NT matrix ,

Ak =

 X
(k)
1 X

(k)′
1 0

. . .
0 X

(k)
N X

(k)′
N

 ,
for k = 1, . . . , K, and X(k)

i denotes the k-th column of the T ×K matrix Xi. Thus,

Ω =
∑
k

σ2
v,kAk + σ2INT ,

and
∂Ω

∂θk
=

{
Ak, for k = 1, 2, . . . , K,

INT , for k = K + 1.

Under the null hypothesis we have Ω = σ2INT . Using (2.41) we obtain

∂`

∂θk

∣∣∣∣
H0

=

{
− 1

2σ̃2 tr [Ak] + 1
2σ̃4 ũ

′Akũ, for k = 1, 2, . . . , K,

0, for k = K + 1.

where

σ̃2 =
1

NT
ũ′ũ,

ũ =
(
INT −X (X ′X)

−1
X ′
)
y.

The representation of the score vector follows from

tr [Ak] =
∑
i

∑
t

X2
it,k = X(k)′X(k),

where X(k) denotes the k-th column of the NT ×K matrix X .
Similarly, (2.42) yields

−E
[

∂`

∂θk∂θl

]∣∣∣∣
H0

=


1

2σ4 tr [AkAl] , for k, l = 1, 2, . . . , K,
1

2σ4X
(k)′X(k), for k = 1, 2, . . . , K, and l = K + 1,

NT
2σ4 , for k = l = K + 1.

Using the fact that Ak and Al are block-diagonal,

tr [AkAl] =
∑
i

tr
[(
X

(k)
i X

(k)′
i

)(
X

(l)
i X

(l)′
i

)]
=
∑
i

(
X

(k)′
i X

(l)
i

)2
,

where X(k)
i denotes the i-th column of Xi, which yields the form of the information matrix

presented in the lemma.
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Proof of Theorem 2.1

Recall that

A
(k)
i = X

(k)
i X

(k)′
i −

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)
IT ,

and rewrite the elements of the scores as

s̃k =

(
σ̃4

σ4

)
1

2σ4

∑
i

ũ′iA
(k)
i ũi,

for k = 1, ..., K. Since ũi = ui −Xi(β̃ − β) we have

1√
N
s̃k =

1√
N

(
σ4

σ̃4

)
1

2σ4

∑
i

u′iA
(k)
i ui +

1√
N
R

(k)
N ,

where R(k)
N = Op (1) from Lemma 2.2. Since

∑
i tr
[
A

(k)
i

]
= 0 it follows that E(u′iA

(k)
i ui) = 0

and, therefore,

lim
N→∞

E
(

1√
N
s̃

)
= 0.

The covariances are obtained as

Cov
(
u′iA

(k)
i ui, u

′
iA

(l)
i ui

∣∣ X) = 2σ4tr
[
A

(k)
i A

(l)
i

]
= 2σ4

(
X

(k)′
i X

(l)
i

)2
−

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)(
X

(l)′
i X

(l)
i

)
−

(
1

NT

∑
i

X
(l)′
i X

(l)
i

)(
X

(k)′

i X
(k)
i

)
+ T

(
1

NT

∑
i

X
(k)′
i X

(k)
i

)(
1

NT

∑
i

X
(l)′
i X

(l)
i

)
,

and since u′iA
(k)
i ui is independent of u′jA

(l)
i uj for all i 6= j conditional on X ,(

1

2σ4

)2

Cov

(∑
i

u′iA
(k)
i ui,

∑
i

u′iA
(l)
i ui

∣∣∣∣ X
)

=
1

2σ4

(∑
i

(
X

(k)′
i X

(l)
i

)2
− 1

NT

(∑
i

X(k)′X(k)

)(∑
i

X
(l)′
i X

(l)
i

))
= Vk,l.

The Liapounov condition in the central limit theorem for independent random variables (see
White (2001), Theorem 5.10) is satisfied by Assumption 2 and therefore(

1

N
Ṽ

)−1/2(
1√
N
s̃

)
d→ N (0, IK) ,

where Ṽ replaces σ4 in V by σ̃4. By the formula for the partitioned inverse{
I(σ̃2)−1

}
1:K,1:K

= Ṽ −1,
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where {·}1:K,1:K denotes the upper-left K ×K block of the matrix, it follows finally that

S̃ ′I(σ̃2)−1S̃ = s̃ ′Ṽ −1s̃
d→ χ2

K .

Proof of Theorem 2.2

The proof proceeds in three steps: (i) we derive the variance-covariance matrix of the score
vector, (ii) we establish the asymptotic normality of the score and (iii) we use these results to
establish the asymptotic distribution of the LM statistic.
(i) Define the K × 1 vector s with typical element

sk = u′iA
(k)
i ui. (2.43)

Using standard results for quadratic forms (see for example Ullah (2004), appendix A.5),

E
[
u′iA

(k)
i ui

∣∣X] = σ2tr
[
A

(k)
i

]

E
[(
u′iA

(k)
i ui

)(
u′iA

(l)
i ui

)∣∣X] = 2σ4tr
[
A

(k)
i A

(l)
i

]
+ σ4tr

[
A

(k)
i

]
tr
[
A

(l)
i

]
+
(
µ(4)
u − 3σ4

)
a
(k)′
i a

(l)
i ,

where a(k)i is a vector consisting of the main diagonal elements of the matrix A
(k)
i and µ

(4)
u

denotes the fourth moment of uit. Since

E
[
u′iA

(k)
i ui

∣∣X]E [u′iA(l)
i ui

∣∣X] = σ4tr
[
A

(k)
i

]
tr
[
A

(l)
i

]
,

we have

Cov
(
u′iA

(k)
i ui, u

′
iA

(l)
i ui

∣∣X) = 2σ4tr
[
A

(k)
i A

(l)
i

]
+
(
µ(4)
u − 3σ4

)
a
(k)′

i a
(l)
i .

Due to the independence of u′iA
(k)
i ui and u′jA

(l)
j uj for i 6= j, it follows that

Cov

(∑
i

u′iA
(k)
i ui,

∑
i

u′iA
(l)
i ui

∣∣∣∣X
)

= 2σ4
∑
i

tr
[
A

(k)
i A

(l)
i

]
+
(
µ(4)
u − 3σ4

)∑
i

a
(k)′
i a

(l)
i .

Inserting the expression for tr
[
A

(k)
i A

(l)
i

]
, we determine the (k, l) element of the covariance

matrix of s as

V s
k,l =

1

2σ4

∑
i

(∑
t

xit,jxit,l

)2

− 1

NT

(∑
i

∑
t

x2it,k

)(∑
i

∑
t

x2it,k

)
+

(
µ
(4)
u − 3σ4

(2σ4)2

)∑
i

∑
t

(
x2it,k −

1

NT

∑
i

∑
t

x2it,k

)(
x2it,k−

1

NT

∑
i

∑
t

x2it,l

)
= V s

1,k,l + V s
2,k,l. (2.44)

(ii) To verify that a central limit theorem applies to s, let λ ∈ Rk, ||λ|| = 1. Following Jiang
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(1996), note that

uiA
(k)
i ui − σ2tr

[
A

(k)
i

]
=

∑
t

a
(k)
i,tt

(
u2it − σ2

)
+
∑
t

∑
s 6=t

a
(k)
i,tsuisuit

=
∑
t

a
(k)
i,tt

(
u2it − σ2

)
+ 2

∑
t

(
t−1∑
s=1

a
(k)
i,tsuis

)
uit,

and
1

2σ4

∑
i

(
uiA

(k)
i ui − tr

[
A

(k)
i

])
=

1

2σ4

∑
i

∑
t

Z
(k)
i,t ,

where

Z
(k)
i,t ≡ a

(k)
i,tt

(
u2it − σ2

)
+ 2

(
t−1∑
s=1

a
(k)
i,tsuis

)
uit,

with a(k)i,tt = x2it,j − x
(k)
NT and x(k)NT = 1

NT

∑
i

∑
t

x2it,k. Let Fi,t be the sigma-field generated by

(ui1, . . . , uit). Then
(
Z

(j)
i,t ,Fi,t

)
is a martingale difference sequence for k = 1, . . . , K. Using

the Cramer-Wold device for the properly normalized elements of the score vector,

1

T
λ′s =

∑
k

λk
2σ4

(∑
i

1

T

∑
t

Z
(k)
i,t

)
=
∑
i

ξi,N ,

with ξi,N = 1
T

∑
t

∑
k (λk/2σ

2)Z
(k)
i,t = 1

2σ4
1
T
λ′Zi,N . Note that (ξi,N ,Fi,N) is an md array where

Fi,N = σ(ξi−1,t, ξi−2,t..., ξi−1,t−1, ..) for all t = 1, ..., T and

E
[
ξ2i,N
]

=
1

4σ8
E
[
Z ′i,Nλλ

′Zi,N
]

=
1

4σ8T 2
λ′V s

i λ. (2.45)

Then the CLT for md arrays (Davidson (1994), Thm. 24.3) applies to the normalized sequence

ζi,N :=

1√
N

2σ4ξi,N√
VN,T

, (2.46)

where VN,T = 1
NT 2λ

′V sλ, and V s =
∑

i V
s
i , if two conditions are satisfied:∑
i

ζ2i,N
p−→ 1,

max
1≤i≤N

|ζi,N |
p−→ 0.

Regarding the first condition, from Lemma 1 in Hansen (2007)

1

NT 2

∑
i

(ξi,N)2
p−→ 1

4σ8
lim

N,T→∞

1

NT 2
λ′V sλ =

1

4σ8
lim

N,T→∞
VN,T , (2.47)

provided that E
[
|ξi,N |3

]
< C <∞ for all i, N and T . To study wether E

[
|ξi,N |3

]
is uniformly
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bounded it suffices to consider ξi,N elementwise, i.e.,

(
1

2σ4

)3

E

 1

T 3

∣∣∣∣∣∑
t

Z
(k)
i,t

∣∣∣∣∣
3


=

(
1

2σ4

)3

E

 1

T 3

∣∣∣∣∣∑
t

(
a
(k)
i,tt

(
u2it − σ2

)
+ 2

(
t−1∑
s=1

a
(k)
i,tsuis

)
uit

)∣∣∣∣∣
3
 .

Using Hölders inequality we also have

(
1

2σ4

)3

E

 1

T 3

∣∣∣∣∣∑
t

Z
(k)
i,t

∣∣∣∣∣
3
 ≤ ( 1

2σ4

)3
(∑

t

1

T

∥∥∥Z(k)
i,t

∥∥∥
3

)3

.

Making use of independence of the uit and the triangle inequality

1

T

∥∥∥Z(k)
i,t

∥∥∥
3
≤ 1

T

∥∥∥a(k)i,tt∥∥∥
3

∥∥(u2it − σ2
)∥∥

3
+

1

T

∥∥∥∥∥2

(
t−1∑
s=1

a
(k)
i,tsuis

)∥∥∥∥∥
3

‖uit‖3 .

With E (u6it) being finite and uniformly bounded, ‖(u2it − σ2)‖3 and ‖uit‖3 are uniformly bounded

in i and t. From Assumption 2.4 we have that
∥∥∥a(j)i,tt∥∥∥

3
is uniformly bounded. Finally, notice

that
1

T

∥∥∥∥∥
(

t−1∑
s=1

a
(k)
i,tsuis

)∥∥∥∥∥
3

≤ 1

T

t−1∑
s=1

∥∥∥a(k)i,tt∥∥∥
3
‖uit‖3 ,

is also uniformly bounded by the same argument. Putting these results together E
[
|ξi,N |3

]
is

uniformly bounded as well.
Therefore, by (2.47) ∑

i

ζ2i,N
p−→ plim

N,T→∞

(
2σ4

√
λ′V sλ

)2

ξ2i,N = 1.

Regarding the second condition notice that since VN,T is uniformly bounded it is sufficient to

prove that max
1≤i≤N

∣∣∣ 1√
N
ξi,N

∣∣∣ p−→ 0. Now for any ε > 0,

Pr

(
1√
N

max
1≤i≤N

|ξi,N | > ε

)
≤

∑
i

Pr

(
1√
N
|ξi,N | > ε

)
≤ 1

ε3N3/2

∑
i

E
[
|ξi,N |3

]
= O

(
N−1/2

)
,

where the first inequality follows from Bonferroni’s inequality, the second uses the generalized
Markov inequality and the last equality is due to the uniform boundnes of E

[
|ξi,N |3

]
, as shown

above. This completes the proof of (ii).
(iii) Rewrite the first K elements of the score as

s̃ =

(
σ̃4

σ4

)
s+RNT ,
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where RNT is given in Lemma 2.3 and s has typical element as defined in (2.43).
By (ii),

s′ (V s)−1 s
d→ χ2

K , (2.48)

as N →∞, T →∞, where V s has (k, l) element V s
k,l as in (2.44).

Under Assumptions 2.3 and 2.4

V s
1 = Op

(
NT 2

)
,

V s
2 = Op (NT ) ,

where V s
1 and V s

2 are specified elementwise in (2.44). Given the expression for Ṽ in Theorem
1,

Ṽ

NT 2
− V s

1

NT 2

p→ 0

and hence
s′Ṽ −1s− s′ (V s)−1 s

p→ 0 (2.49)

as N →∞, T →∞.
The LM statistic can be expanded as

LM = s̃ ′Ṽ −1s̃

=

((
σ̃4

σ4

)
s+RNT

)′
Ṽ −1

((
σ̃4

σ4

)
s+RNT

)
=

(
σ̃4

σ4

)(
s′Ṽ −1s

)
+Op

(
N−1/2

)
. (2.50)

where the last line follows from Lemma 2.3. The theorem follows by combining (2.48), (2.49)
and (2.50).

Proof of Corollary 2.1

The result follows immediately from the proof of Theorem 2.2 and the fact that

µ̃(4)
u = (NT )−1

∑
i

∑
t

ũ4it

is a consistent estimator of µ(4)
u .

Proof of Theorem 2.3

Using similar arguments as in the proof of Theorem 2.1,

1√
N
s̃∗ =

1√
N

(
σ4

σ̃4

)


1
σ4

∑
i

∑
t

t−1∑
s=1

xit,1uitxis,1uis

...
1
σ4

∑
i

∑
t

t−1∑
s=1

xit,Kuitxis,Kuis

+ op(1). (2.51)

Let u∗it = uit/σ and z∗itj = xit,ju
∗
it. Clearly, E

[∑
t

∑t−1
s=1 z

∗
itkz

∗
isk

]
= 0. Since conditional on

X ,
∑

t

∑t−1
s=1 z

∗
it,kz

∗
is,k and

∑
t

∑t−1
s=1 z

∗
jtlz
∗
jsl are independent for i 6= j, the covariances for two

67



elements k and l of the vector (2.51) are

E
[
s∗ks
∗
l

∣∣∣ X] =
1

σ4

∑
i

E

[(
T∑
t=2

t−1∑
s=1

z∗itjz
∗
isj

)(
T∑
t=2

t−1∑
s=1

z∗itlz
∗
isl

)∣∣∣∣∣X
]

=
1

σ4

∑
i=1

(
T∑
t=2

xit,jxit,l

)(
t−1∑
s=1

xis,jxis,l

)
= V ∗j,l.

since all cross terms have zero expectation and E
[
(u∗it)

2] = 1. The central limit theorem for
independent random variables and Slutsky’s theorem imply(

1

N
V ∗
)−1/2(

1√
N
s∗
)

d→ N (0, IK)

and the result follows.

Proof of Theorem 2.4

Using the arguments in Theorem 2.3, LMopg is asymptotically χ2
K . Regarding the (k, l) element

of the covariance matrix of s̃∗i , note that(
1

σ4

)2∑
i

E

[(∑
t

xit,kuit

(
t−1∑
s=1

xis,kuis

))(∑
t

xit,luit

(
t−1∑
s=1

xis,luis

))∣∣∣∣∣X
]

=
1

σ4

∑
i

(∑
t

xit,kxit,l

)(
t−1∑
s=1

xis,kxis,l

)
.

Next let

zit,k = σ−4xit,k

t−1∑
s=1

uisxis,k,

and notice that

E

[∑
i

∑
t

u2itzit,kz
′
it,l

∣∣∣∣∣X
]

=

(
1

σ4

)2

E

[
xit,kuit

(
t−1∑
s=1

xis,kuis

)
xit,luit

(
t−1∑
s=1

xis,luis

)∣∣∣∣∣X
]

=
1

σ4

∑
i

(∑
t

xit,kxit,l

)(
t−1∑
s=1

xis,kxis,l

)
.

Furthermore

1

N

∑
i

∑
t

ũ2itz̃it,kz̃it,l −
1

N

∑
i

∑
t

u2itzit,kzit,l
p→ 0.

Since LMopg and LMreg differ only in their variances matrices which vanishes asymptotically,
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the result follows.

Proof of Theorem 2.5

As in Honda (1985) the proof of the theorem proceeds in three steps: (i) first we show that σ̃2

remains consistent under the local alternative; (ii) second, we incorporate the local alternative
into the score vector and (iii) establish the asymptotic distribution of the LM statistic.
(i) Note first that with MX = INT −X (X ′X)−1X ′

ũ = MXu = MX (DXv + ε) ,

where

DX =


X1 0

X2

. . .
0 XN

 .
Hence,

ũ′ũ

NT
=

1

NT
(ε′ε− ε′PXε+ v′D′XMXDXv + v′D′XMXε+ v′MXDXε) .

Using Assumptions 2.3 and 2.2, it is straightforward to show that

ε′PXε = op (N) ,

v′D′XMXDXv = Op

(√
N
)
,

v′D′XMXε = op (N) .

and, thus,
σ̃2 = σ2 + op (1) .

(ii) Since ui = Xivi + εi and

ũi = Xivi + εi −Xi

(
β̃ − β

)
,

we obtain

1√
N
s̃k =

1√
N

(
σ4

σ̃4

)
1

2σ4

∑
i

ε′iA
(k)
i εi

+
1√
N

(
σ4

σ̃4

)
1

2σ4

∑
i

v′i

(
X ′iA

(k)
i Xi

)
vi + op(1), (2.52)

for k = 1, ..., K, where the order of the remainder term follows by similar arguments as in
lemma 2.2.

(iii) Using the same arguments as in the proof of Theorem 2.1, the first term of s̃/
√
N in (2.52)

is asymptotically normally distributed. Regarding the second term

1√
N

∑
i

v′i

(
X ′iA

(k)
i Xi

)
vi =

1

N

∑
i

(
N1/4vi

)′ (
X ′iA

(k)
i Xi

) (
N1/4vi

)
,
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and by standard results for quadratic forms,

E
[(
N1/4vi

)′ (
XiA

(k)
i Xi

) (
N1/4vi

)∣∣∣X] = tr
[(
XiA

(k)
i Xi

)
Dc

]
.

with

Dc =


c1 0 · · · 0
0 c2 · · · 0
· · · · · · · · · · · ·
0 0 · · · cK

 .
Thus by the law of large numbers for sums of independent random variables,
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Define the K × 1 vector ψ elementwise by

ψk ≡
K∑
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cl plim
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 1
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By Slutsky’s theorem theorem we obtain(
1

N
Ṽ

)−1/2(
1√
N
s̃

)
d→ N (ψ, IK) ,

and the theorem follows by the definition of the non-central χ2 distributed random variable,
using ψ = Ψc, where c = (c1, . . . , cK)′.

Proof of Theorem 2.6

The proof is analogous to the proof of Theorem 2.5. To show that σ̃2 remains consistent under
the sequence of alternatives we note that

ε′PXε = Op (1) ,

v′D′XMXDXv = Op

(
N1/2T

)
,

v′D′XMXε/NT = Op

(
T−1/2

)
+Op

(
N−1T−1/2

)
.

Using the same arguments as in the proof of Theorem 2.2, s̃/T
√
N has a limiting normal

distribution with nonzero mean which is determined by applying the law of large numbers to
the second term in (2.52) with proper normalization.

Proof of Theorem 2.7
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With the Swamy statistic as described in the text, the proof follows the steps outlined in Ap-
pendix A.6 in PY.

Details for Remark 2.7

We study the (k, l) element of
(
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∑T
t=2 ũ

2
itz̃itz̃

′
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under the sequence of alternatives in
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First, from the first term on the right hand sides of (2.53) and (2.54), we obtain(
1

σ̃4

)2
1

N

N∑
i=1
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t=2

ε2itxit,kxit,l

(
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s=1
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εisxis,l

)
.

Notice that this term has the same probability limit as Ṽ ∗k,l/N , which is equal to Ψ∗k,l. Next,
from the first term on the right-hand side in (2.53) and the second term on the right-hand side
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in (2.54),(
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Since εit and vi are independent conditional on X ,
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Using the properties of εit, vi and the fact that

(
β̃ − β

)
= op (1), it can be shown in a similar

manner that all of the remaining terms are of lower order.
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2.B Tables

Table 2.1: Monte Carlo experiments with normally distributed errors

A) Size B) Power

∆̃adj CLM LM LMreg ∆̃adj CLM LM LMreg

T = 10
N = 10 6.3 11.8 2.6 4.7 5.5 5.4 11.3 4.1
N = 20 5.6 12.0 3.2 4.3 8.4 4.2 24.8 7.0
N = 30 5.5 11.4 3.7 4.3 11.5 6.3 35.2 10.4
N = 50 5.2 8.9 3.7 4.1 18.9 15.9 51.2 19.6
N = 100 5.4 8.3 4.7 4.8 36.1 46.5 77.5 47.0
N = 200 4.6 7.5 4.9 4.6 65.6 87.3 96.9 83.1

T = 20
N = 10 5.3 15.1 2.6 6.3 17.1 3.4 28.1 12.4
N = 20 5.7 14.2 3.4 5.7 35.0 9.5 53.0 25.8
N = 30 5.9 12.8 3.8 5.8 50.7 23.4 70.5 43.2
N = 50 5.1 10.8 4.1 5.3 74.6 53.5 88.9 71.8
N = 100 4.5 8.3 4.3 4.7 95.7 90.1 99.1 96.5
N = 200 5.1 7.1 5.2 5.5 99.9 98.8 100.0 100.0

T = 30
N = 10 4.7 15.6 2.4 7.0 34.4 4.6 43.0 22.4
N = 20 4.5 14.5 3.5 6.2 64.8 19.7 74.3 50.9
N = 30 5.2 13.2 3.9 5.6 81.9 42.5 88.9 73.3
N = 50 5.3 11.6 4.5 5.9 96.3 76.9 98.2 94.5
N = 100 5.2 8.9 4.3 4.7 100.0 96.0 100.0 99.9
N = 200 5.2 7.4 5.0 5.8 100.0 99.3 100.0 100.0

Note: Rejection frequencies (in %) under the null (panel A) and the alternative hypothesis (panel B). Nom-
inal size is 5%. The model is given in (2.36) for K = 3.
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Table 2.2: Monte Carlo experiments for variations of the standard design

A) Size B) Power

LM LMreg ∆̃adj CLM LM LMreg

T = 10
N = 10 4.5 4.4 8.5 3.8 22.1 6.8
N = 20 6.3 4.0 18.5 8.0 43.1 13.4
N = 30 7.1 3.8 27.1 19.0 58.1 23.8
N = 50 8.5 4.9 45.7 45.7 79.5 46.8
N = 100 11.9 8.1 77.8 86.5 96.8 85.0
N = 200 17.5 13.6 97.3 98.8 99.9 99.2

T = 20
N = 10 3.4 5.5 39.2 6.4 51.9 25.4
N = 20 5.0 4.9 70.9 30.8 81.2 57.1
N = 30 5.3 4.9 87.6 59.5 93.2 79.5
N = 50 6.2 4.7 98.4 88.6 99.6 97.2
N = 100 7.3 4.8 100.0 98.8 100.0 100.0
N = 200 8.5 5.8 100.0 99.8 100.0 100.0

T = 30
N = 10 2.8 6.8 66.8 11.4 71.2 47.1
N = 20 4.5 5.5 93.8 52.3 94.4 85.2
N = 30 4.9 5.3 98.9 80.1 99.1 96.9
N = 50 5.8 5.2 100.0 95.4 100.0 99.9
N = 100 5.9 4.4 100.0 99.2 100.0 100.0
N = 200 6.8 5.5 100.0 99.9 100.0 100.0

Note: Left panel: rejection frequencies (in %) under the null hypothesis with same design
as in Table 2.1 and within transformation to eliminate fixed effects. Right panel: rejec-
tion frequencies (in %) under the alternative hypothesis in model (2.36) when σ2

ix,k is
distributed as χ2 with two degrees of freedom, see (2.40).
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Table 2.3: Monte Carlo experiments with t-distributed errors

A) Size ∆̃adj CLM LM LMadj LM∗ LMreg

T = 10
N = 10 6.3 9.0 3.5 2.9 4.0 3.9
N = 20 6.1 10.5 5.4 4.0 6.1 4.5
N = 30 5.6 10.2 6.9 5.0 6.2 4.9
N = 50 5.1 8.9 7.5 5.3 6.6 4.4
N = 100 5.0 7.5 9.8 6.2 7.2 4.9
N = 200 5.5 6.9 10.7 5.7 7.6 5.2

T = 20
N = 10 5.5 13.2 3.5 2.8 3.6 6.0
N = 20 5.8 13.0 5.1 4.0 4.6 6.3
N = 30 5.4 11.7 5.5 4.3 4.8 5.6
N = 50 5.2 10.4 6.7 4.8 5.1 5.3
N = 100 4.9 8.0 8.0 5.5 5.9 5.1
N = 200 5.1 7.0 8.9 5.5 5.4 4.8

T = 30
N = 10 5.8 15.0 3.0 2.6 3.0 7.0
N = 20 5.0 13.6 4.5 3.5 3.9 5.7
N = 30 4.7 12.4 5.2 4.3 4.2 5.5
N = 50 5.1 11.3 5.9 4.7 5.1 5.9
N = 100 5.0 8.5 6.4 5.0 4.8 5.1
N = 200 5.3 7.7 7.3 5.0 5.2 4.9

B) Power ∆̃adj CLM LM LMadj LM∗ LMreg

T = 10
N = 10 5.9 3.4 12.4 10.9 11.8 4.9
N = 20 9.7 3.9 25.6 22.7 22.9 7.5
N = 30 13.6 6.9 36.1 31.8 32.4 11.9
N = 50 24.1 16.0 52.4 46.7 47.9 22.6
N = 100 45.3 44.4 78.9 71.8 73.9 49.4
N = 200 76.1 83.1 95.7 92.6 93.8 83.2

T = 20
N = 10 20.0 3.2 30.5 28.6 29.4 13.7
N = 20 39.5 10.1 53.6 50.0 52.5 29.7
N = 30 57.3 22.8 70.5 67.3 68.5 46.7
N = 50 80.0 51.5 88.3 85.5 86.7 72.2
N = 100 97.8 89.5 99.0 98.4 99.0 96.4
N = 200 100.0 98.8 100.0 100.0 100.0 100.0

T = 30
N = 10 37.5 3.7 45.8 43.8 45.1 25.4
N = 20 67.7 19.6 74.3 71.9 73.3 54.3
N = 30 85.4 43.0 88.6 86.6 87.4 74.4
N = 50 97.3 76.2 98.0 97.2 97.7 93.8
N = 100 100.0 95.9 100.0 100.0 100.0 99.9
N = 200 100.0 99.4 100.0 100.0 100.0 100.0

Note: Rejection frequencies (in %) under the null (panel A) and the alternative hypothesis
(panel B) with the same design as in Table 2.1 but εit is drawn from a t-distribution with
five degrees of freedom, scaled to have unit variance.
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Table 2.4: Monte Carlo experiments with χ2 distributed errors

A) Size ∆̃adj CLM LM LMadj LM∗ LMreg

T = 10
N = 10 6.8 6.8 4.6 3.1 5.1 3.4
N = 20 5.4 8.8 7.3 4.6 6.7 4.3
N = 30 5.4 9.6 7.8 4.8 7.0 3.7
N = 50 5.1 8.8 9.4 5.6 7.0 4.5
N = 100 5.3 8.0 12.3 6.5 7.7 4.6
N = 200 4.9 6.9 13.6 6.4 7.7 3.9

T = 20
N = 10 4.9 11.3 4.2 3.1 4.2 5.1
N = 20 5.3 12.6 5.4 3.9 5.3 5.2
N = 30 5.4 12.0 6.8 4.4 4.8 4.9
N = 50 4.9 9.0 7.2 4.6 5.4 5.1
N = 100 5.3 8.6 9.3 5.5 6.3 5.2
N = 200 4.9 7.2 9.6 5.3 6.1 4.9

T = 30
N = 10 5.2 13.6 3.7 2.9 3.4 6.5
N = 20 5.2 13.2 4.7 3.5 3.9 5.7
N = 30 4.9 12.7 6.1 4.4 4.8 5.5
N = 50 4.9 10.3 6.1 4.4 5.4 4.8
N = 100 5.0 9.5 7.6 5.2 5.4 5.4
N = 200 4.8 7.1 9.2 5.6 6.2 5.2

B) Power ∆̃adj CLM LM LMadj LM∗ LMreg

T = 10
N = 10 6.6 3.2 13.8 11.5 13.2 4.9
N = 20 11.3 4.3 27.8 22.2 23.9 8.8
N = 30 17.9 6.7 36.4 29.4 32.1 12.8
N = 50 29.2 14.7 53.6 43.2 47.7 23.6
N = 100 58.7 43.1 78.4 68.7 72.2 50.4
N = 200 87.8 81.4 95.5 91.7 93.7 83.1

T = 20
N = 10 21.5 3.3 29.8 26.1 28.4 15.4
N = 20 44.2 10.7 56.0 51.0 54.5 31.6
N = 30 62.7 23.5 71.5 66.3 69.3 49.4
N = 50 85.4 51.9 88.9 85.3 87.7 74.9
N = 100 98.9 89.5 99.3 98.8 98.9 96.2
N = 200 100.0 98.7 100.0 100.0 100.0 99.9

T = 30
N = 10 39.4 4.5 44.1 41.3 43.6 27.2
N = 20 71.1 20.7 73.7 70.6 73.0 55.3
N = 30 88.4 42.0 89.0 86.6 88.2 75.9
N = 50 98.1 75.1 97.9 97.1 97.8 94.1
N = 100 100.0 96.0 100.0 100.0 100.0 99.9
N = 200 100.0 99.2 100.0 100.0 100.0 100.0

Note: Rejection frequencies (in %) under the null (panel A) and the alternative hypothesis
(panel B) with the same design as in Table 2.1 but εit is drawn from a χ2-distribution with
two degrees of freedom, centered at zero and scaled to have unit variance.
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Table 2.5: Monte Carlo experiments with non-diagonal matrix Σv

Power ∆̃adj CLM LM LMreg

T = 10
N = 10 5.6 5.3 11.4 4.4
N = 20 8.8 3.8 24.7 6.6
N = 30 11.5 6.5 34.7 10.4
N = 50 18.5 15.7 50.5 19.5
N = 100 35.7 46.3 77.8 46.4
N = 200 65.3 86.6 96.8 83.2

T = 20
N = 10 17.5 3.4 28.3 11.7
N = 20 34.3 9.3 53.6 25.8
N = 30 50.0 22.8 70.0 42.4
N = 50 74.1 51.8 88.8 71.6
N = 100 95.3 89.7 99.2 96.6
N = 200 99.9 98.8 100.0 100.0

T = 30
N = 10 34.1 4.6 42.6 21.8
N = 20 64.3 19.5 74.1 50.4
N = 30 81.5 42.5 88.4 73.0
N = 50 96.1 76.1 98.3 94.2
N = 100 100.0 96.0 100.0 99.9
N = 200 100.0 99.3 100.0 100.0

Note: Rejection frequencies (in %) under the alternative hypoth-
esis with the same design as in Table 2.1 but Σv being no longer
diagonal, see section 2.6.4.
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Chapter 3

Predictive regressions with possibly
persistent regressors under asymmetric
loss

3.1 Introduction

Inference in predictive regressions is an ongoing topic in economics and finance. For instance,

forward premium regressions test whether current forward rates are unbiased predictors of fu-

ture spot exchange rates, while stock return regressions examine if economic fundamentals

predict future stock returns.1 With the exception of Maynard et al. (2011) and Lee (2012),

who consider a quantile regression approach, the vast majority of this research is confined to

inference using ordinary least squares (OLS) estimation. Therefore, existing analyses adopt the

mean squared error (MSE) criterion to construct forecasts and, consequently, test the rational

expectations or efficient market hypotheses in an MSE framework.

There is a significant body of evidence, however, that forecasters do not rely exclusively on

squared error loss. In a macroeconomics, Artis and Marcellino (2001) find systematic over-

and underpredictions in IMF and OECD forecasts of the deficit in G7 countries. Elliott et al.

(2005) discuss a method to estimate the degree of asymmetry of a loss function; using this

method, Christodoulakis and Mamatzakis (2008, 2009) analyze series of g.d.p. growth forecasts

of EU institutions and countries to reveal asymmetric preferences of forecasters.2 In addition,

Capistrán (2008) even finds evidence of time-varying asymmetric preferences. More recently,

1The empirical research in either of these areas is enormous. For economic background and early reviews of
the empirical evidence of forward premium regressions, see Engel (1996) and Welch and Goyal (2008) for stock
return regressions.

2See also Clements et al. (2007).
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Pierdzioch et al. (2012b) find evidence of asymmetry in the loss function of the Bank of Canada,

and Komunjer and Owyang (2012) extend the work of Elliott et al. (2005) to a multivariate

setting. In finance, Clatworthy et al. (2012) and Aiolfi et al. (2010) argue that financial analysts

bear different costs for over - or underpredicting firms’ earnings and are hence likely to have an

asymmetric loss function.

Using a certain loss function to obtain optimal forecasts leads directly to estimation under the

relevant loss function (see Granger (1969) and Weiss (1996)); that is, one should estimate rel-

evant parameters by minimizing the observed loss to obtain an estimate of the forecast optimal

under that loss function. The reason to do so is illustrated by the difference between OLS

and least absolute deviations (LAD) estimation of a predictive regression (cf. Maynard et al.

(2011)). Suppose a regression disturbance term has zero conditional mean given the regressor,

yet is conditionally heteroskedastic. Under the mean squared error criterion, the optimal pre-

diction is zero and the predictor useless; an OLS based test of predictability has power equal to

size. Under LAD, however, the optimal prediction is the conditional median, which depends on

the predictor via the conditional variance whenever the distribution of the shocks is not sym-

metric.3 LAD estimation and testing will consequently detect predictability. Using the relevant

loss function for estimation and subsequent predictability testing is therefore essential when

evaluating the power to predict with respect to a given loss function.

Two features characterize statistical inference in predictive regressions. First, it is often the case

that the shocks occurring to the predictor and the dependent variable are contemporaneously

correlated (the predictor is then called endogeneous in the predictive regressions literature).

Second, many predictors display (very) slow mean reversion, if at all (the predictor is then said

to be persistent).

It is this combination of endogeneity and persistence that invalidates standard OLS-based infer-

ence in predictive regressions. For instance, in case of nearly integrated regressors, Elliott and

Stock (1994) show the distribution of the usual OLS t statistic to depend on both the degree of

endogeneity and the persistence of the regressor.4

If the regressor is stationary, however, the limiting null distribution is standard normal as ex-

pected. This discontinuity poses problems when the degree of persistence of the regressor is

unknown: Cavanagh, Elliott, and Stock (1995) show pretesting to fail in the presence of nearly

3See Christoffersen and Diebold (1997), for example.
4See also Stambaugh (1999) and Phillips and Lee (2013) for a recent review of inference in predictive regres-

sions.
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integrated regressors, for which the mean reversion parameter cannot be consistently estimated.

Exclusively for nearly integrated regressors, Jansson and Moreira (2006) propose a conditional

likelihood approach based on a sufficient statistic for the local-to-unity parameter. Alternatively,

Hjalmarsson (2010) uses panel data to reduce the effects of endogeneity, again, in an OLS setup.

The complexity of the inferential problem gains an additional dimension under asymmetric loss.

In case of stationary predictors, the asymptotics of estimation and testing under asymmetric loss

(which can be cast as M estimation, cf. Huber (1981)) is standard, and poses no additional diffi-

culties compared to quasi-maximum likelihood. A standard normal asymptotic null distribution

emerges for the t statistic of the slope parameter in question, provided that weak regularity

conditions on the loss function and the data generating process are fulfilled Amemyia (1985,

Chapter 4). Empirical work, however, investigates the predictive ability of economic variables

that are persistent. How do estimators under the relevant loss behave in the presence of such

stochastically trending variables? While it is expected that asymptotics similar to the OLS case

arise even when estimating under an asymmetric loss (intuition confirmed by our asymptotic

and small-sample simulation results given in Section 3.2.1), the relevant notion of endogeneity

turns out to depend on the specific loss function. In a perhaps extreme, yet not unlikely scenario,

there may be no endogeneity at all under OLS estimation, whereas the degree of endogeneity

might be quite substantial under an asymmetric loss function.

Furthermore, the magnitude of the distortions depend on the type of persistence exhibited by

the predictors. The workhorse model for persistent regressors has been the near unit root frame-

work. Maynard and Phillips (2001) argue however that persistence can equally well be modelled

in terms of a fractionally integrated process. As pointed out by Müller and Watson (2008), it is

difficult to distinguish between the two persistent data generating processes in small samples;

worse yet, they are not the only data generating processes exhibiting high persistence.5 To allow

for these different possibilites, we consider a potential predictor to be persistent if the regressor,

suitably normalized, converges weakly to a continuous-time process.

To provide correct inference, we draw on an instrumental variable (IV) approach as studied by

Breitung and Demetrescu (2013) and propose in Section 3.2.2 a generalized M testing procedure

that applies under asymmetric loss and that conveniently leads to a chi-square distribution under

the null, irrespective of the degree and type of integration of the predictor.

We then reexamine the well-known forward premium puzzle in Section 3.4. Evidence for de-

5Even a short-memory process with a break in the mean can mimic persistence; see among others Davidson
and Sibbertsen (2005).
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viations from MSE loss is presented for a collection of exchange rates, and the rational ex-

pectations hypothesis is tested allowing for asymmetric loss functions. The testing procedure

uses the robust IV approach and shows little evidence for failure of the rational expectations

hypothesis.

Before proceeding to the main part of this chapter, let us introduce some notation. Let 1(·)

denote the indicator function, 1(A) = 1 if proposition A is true and 1(A) = 0 otherwise. The

lag or backshift operator is denoted by L, L{yt} = {yt−1}. The Lp norm of a random variable yt

is denoted as ||yt||p = (E|yt|p)1/p. Weak convergence on a space of cadlag functions endowed

with a suitable norm is denoted by “⇒.” Finally, “
p→” stands for convergence in probability

and “ d→” stands for convergence in distribution. All proofs of the theorems are relegated to the

appendix.

3.2 Estimation and inference under asymmetric loss

Consider the prototypical predictive regression model

yt = β0 + β1xt−1 + ut, (3.1)

where the null of interest is β1 = 0. The regressor xt−1 exhibits serial dependence, and is either

highly persistent or stationary. To allow for a more precise definition of high persistence versus

stationarity, we cast the data generating process in a time-varying linear process framework,

xt = vt +
t∑

j=1

ψj,Tvt−j. (3.2)

The shocks ut and vt are taken to satisfy standard regularity conditions, see Assumption 3.2

below; in particular they are allowed to be contemporaneously dependent at time t to capture

endogeneity in the predictive regression model (3.1). Deterministic components for the regres-

sor can be introduced additively.

Depending on the values of the coefficients ψj,T , different behavior arises for the regressor in

the limit. For instance, ψj,T = (1− c/T)j leads to a nearly integrated regressor, while ψj,T = ρj

with |ρ| < 1 fixed leads to an asymptotically stationary regressor.6 See Example 3.1 below. At

the same time, short-run dynamics is allowed for; e.g. in the near-integrated case by letting ψj,T
6The term asymptotically stationary is used if the difference to a stationary process vanishes as t→∞; e.g. for

fixed |ρ| < 1,
∑∞
j=1 ρ

jvt−j is stationary and the difference to xt,
∑∞
j=t+1 ρ

jvt−j , converges to zero in probability.
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be the convolution of a near-integrated AR(1) filter and a stationary AR component.

The framework allows for other data generating processes than fractional or near integration.

We shall denote xt as being highly persistent if the following definition is met.

Definition 3.1 A process xt is highly persistent in our framework if the coefficients ψj,T in (3.2)

are of such nature that

(i) ∆xt is uniformly L2-bounded such that supt ||∆xt||2 < C <∞.

(ii) there exists a sequence nT → ∞ satisfying nT/T → 0, and a continuous-time Gaussian

process X (s), continuous in quadratic mean, such that

1

nT
x[sT ] ⇒ σvX (s) , (3.3)

jointly with the convergence of the partial sums of ut and vt (regularity conditions on ut,

vt provided).

(iii) lim sup
T→∞

1
n2
T

∑T
j=1 ψ

2
j,T <∞.

The analogy to the classical definition of an integrated process is quite strong: the differences

of xt are not trending, whereas the levels are nonstationary and nonergodic. At the same time,

the weak limit of x[sT ] is not restricted to be a Wiener process.

To deal with the case where the regressor is not highly persistent, we employ the following

definition.

Definition 3.2 A process xt is weakly persistent in our framework if the coefficients ψj,T in

(3.2) are of such nature that

lim
T→∞

T∑
j=1

ψ2
j,T = C <∞. (3.4)

This condition ensures uniform L2-boundedness of the regressor xt in the limit and excludes

trending behavior. Our derivations will rely on the above representations, so our findings apply

whenever (3.3) or (3.4) holds.

Example 3.1 Let vt be an iid sequence.
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1. If xt is generated according to ψj,T = (1− c/T)j and x0 = op

(√
T
)
, then

1√
T
x[sT ] ⇒ σvJc (s) ,

with Jc (s) = V (s)− c
´ s
0
e−c(s−r)V (r) dr a standard Ornstein-Uhlenbeck (OU) process

initialized at 0.

2. If ∆d
+xt = vt, where d ∈ (0.5, 1.5) and ∆d

+ = 1 (t > 0) ∆d is the truncated version of

the fractional difference operator given by the usual series expansion (1− L)d = ∆d =∑
j≥0 δjL

j , then, with Bd (s) a type-II fractional Brownian motion,

1

T d−0.5
x[sT ] ⇒ σvBd (s) .

3. If ∆d
+xt = vt and d < 0.5, then xt is asymptotically stationary.

Let us now turn our attention to the loss function. According to Granger (1969), loss func-

tions are quasi-convex functions minimized uniquely at zero. We shall adopt the more specific

proposal of Elliott et al. (2005), and require that

Assumption 3.1 The loss function L (u) 7→ R+ is given by

L (u) = ((1− 2α)1(u < 0) + α) |u|p,

where p ∈ {2, 3, . . .} and α ∈ (0, 1).

Compared with Elliott et al. (2005), we do not consider the case p = 1 as it has already been

discussed by Maynard et al. (2011).7 The sign-based test proposed by Campbell and Dufour

(Campbell and Dufour) is in effect inference on the conditional median, and as such intimately

related to LAD estimation.

The derivatives of the loss function will play an important role in the asymptotic analysis and in

pinning down the notion of endogeneity. Assumption 3.1 makes L strictly convex and smooth

with first-order derivative given by

L(1) (u) = p (α− 1(u < 0)) |u|p−1,
7Maynard et al. (2011) discuss a Bonferroni-based solution to the endogeneity problem under persistence.
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and second-order derivative

L(2) (u) = p (p− 1) ((1− 2α)1(u < 0) + α) |u|p−2.

Note that L, L(1) and L(2) are homogenous of orders p, p − 1 and p − 2. The pth derivative is

discontinuous, and the p− 1st derivative satisfies a uniform Lipschitz condition.

The natural choice when considering inference under an asymmetric loss function is to base

predictability tests on estimation of (3.1),

yt = β̂0 + β̂1xt−1 + ût, (3.5)

with “̂·” standing for estimates under the relevant loss L, i.e.

(
β̂0, β̂1

)′
= arg min

(β∗0 ,β∗1)
′

T∑
t=2

L (yt − β∗0 − β∗1xt−1) . (3.6)

Note that the intercept β̂0 in (3.5) would not converge to β0 under a general loss function;

it rather captures the mean together with the so-called forecast bias under the relevant loss

(Granger, 1969). Regularity conditions provided (e.g. Assumption 3.2 below), it actually has as

probability limit the M-measure of location (Huber, 1981) of the shocks ut, so we may redefine

without loss of generality

β0 = arg min
β∗0

E (L (ut − β∗0)) . (3.7)

It is merely a shift that does not affect inference on β1, as was already noted by McDonald and

Newey (1988) in the context of M-estimation of linear regression models with iid disturbances.

Assumption 3.2 The series yt and xt, t = 1, . . . , T, are generated as in (3.1) and (3.2) such

that either (3.3) (high persistence) or (3.4) (low persistence) hold true, where the sequence

(ut, vt)
′ is an iid sequence with finite moments of order 2p. If p = 2, the distribution of ut has

no atom at β0.

The natural choice for a test of the null β1 = 0 is the t statistic of β1,

tβ1 =
β̂1

s.e.
(
β̂1

) , (3.8)
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where the standard error of β̂1 is given by the usual “sandwich” estimator,

s.e.
(
β̂1

)
=
√[

B−1T MTB
−1
T

]
2,2
,

with

BT =

 ∑T
t=2 L(2)

(
yt − β̂0 − β̂1xt−1

) ∑T
t=2 xt−1L(2)

(
yt − β̂0 − β̂1xt−1

)
∑T

t=2 xt−1L(2)
(
yt − β̂0 − β̂1xt−1

) ∑T
t=2 x

2
t−1L(2)

(
yt − β̂0 − β̂1xt−1

)  ,
and

MT =

 ∑T
t=2

(
L(1)

(
yt − β̂0 − β̂1xt−1

))2 ∑T
t=2 xt−1

(
L(1)

(
yt − β̂0 − β̂1xt−1

))2
∑T

t=2 xt−1

(
L(1)

(
yt − β̂0 − β̂1xt−1

))2 ∑T
t=2 x

2
t−1

(
L(1)

(
yt − β̂0 − β̂1xt−1

))2
 .

Should xt be stationary, usual M estimators inference can be shown to apply, and β̂1 is
√
T -

consistent and asymptotically normal distributed. The t statistic tβ1 is itself standard normally

distributed under the null of no predictability, β1 = 0. See e.g. Amemyia (1985, Chapter 4).

We show in the following, however, that the limiting behavior of β̂ and of tβ1 is nonstandard

if xt is highly persistent whenever there is endogeneity. The actual distribution depends on the

limit of xt (and is e.g. different when xt is fractionally or near integrated). Moreover, what

endogeneity stands for is loss-function specific; in other words, if ut and vt are uncorrelated,

the usual OLS estimator is not biased and its t statistic has a standard normal distribution, but,

unless ut and vt are independent, one cannot guarantee that estimation under the relevant loss

function leads to a standard normal t statistic.

3.2.1 Asymptotics in the highly persistent case

In the nonstationary case, the behavior of the estimators under the relevant loss parallels that of

the OLS estimators under near or fractional integration, and β̂1 is consistent with a convergence

rate depending on the persistence of the regressor, as indicated by the following theorem giving

the asymptotic distributions of β̂0 and β̂1. It becomes clear from the exposition, however, that

endogeneity is only governed by the correlation ω = corr (ut, vt) when the loss function is the

squared-error one, and the general condition depends on the given loss function. So let

ũt = L(1) (ut − β0) , (3.9)
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such that (
ũt

vt

)
iid∼

(
0, Σ̃

)
,

Σ̃ =

(
σũ 0

0 σv

)(
1 ω̃

ω̃ 1

)(
σũ 0

0 σv

)
.

(The fact that ũt has zero expectation comes form the fact that β0 has been redefined as the

M-measure of location of ut under L.) Under Assumption 3.2,

1√
T

[sT ]∑
t=1

(
ũt

vt

)
⇒

(
σũ 0

0 σv

)(
W̃ (s)

V (s)

)
,

jointly with (3.3) whenever xt is highly persistent, where
(
W̃ (s) , V (s)

)′
is a bivariate Brow-

nian motion with covariance matrix

(
1 ω̃

ω̃ 1

)
.

Also, let κ̃(2) = E
(
L(2) (ut − β0)

)
and note that κ̃(2) > 0 due to the strict convexity of L.

Theorem 3.1 Under Assumptions 3.1 and 3.2, as T →∞,

√
T
(
β̂0 − β0

)
d→ σũ

κ̃

W̃ (1)
´ 1

0
X2 (s) ds−

´ 1
0
X (s) ds

´ 1
0
X (s) dW̃ (s)

´ 1
0
X2 (s) ds−

(´ 1
0
X (s) ds

)2
nT
√
T
(
β̂1 − β1

)
d→ σũ

κ̃σv

´ 1

0
X (s) dW̃ (s)− W̃ (1)

´ 1
0
X (s) ds

´ 1

0
X2 (s) ds−

(´ 1
0
X (s) ds

)2 .

The persistence of the regressor increases, expectedly, the convergence rate of the estimator β̂1.

Also,
√
T -consistency of β̂0 follows, although its distribution is nonstandard too.

In what concerns the main interest when testing the predictive power, the t statistic of β1, we

have the following result.

Theorem 3.2 Under the assumptions of theorem 3.1, as T →∞,

tβ1
d→
´ 1
0
X (s) dW̃ (s)− W̃ (1)

´ 1

0
X (s) ds√´ 1

0
X2 (s) ds−

(´ 1
0
X (s) ds

)2 .

Remark 3.1 For L (u) = u2 and near integration, the usual distribution of the OLS-based t

statistic established by Elliott and Stock (1994) is recovered. If ω̃ = 0, the numerator is mixed

Gaussian and the distribution of tβ1 is standard normal irrespective of the type of persistence

86



xt exhibits. Otherwise, the distribution may depend on nuisance parameters, e.g. when X is an

OU process (where the nuisance parameter is the mean reversion parameter – which cannot be

consistently estimated).

Remark 3.2 If vt ≡ ut and ψj,T = 1, the distribution derived by Lucas (1995) for M estimation

of unit root processes are obtained.

Remark 3.3 The quantile regression result of Lee (2012) for near integration can formally be

derived from theorem 3.2 using the method of Phillips (1991) and letting X be an OU process.

Remark 3.4 Extensions allowing for other types of deterministic components are straightfor-

ward. The distributions remain nonstandard as long as there is non-zero correlation between ũt

and vt and high persistence.

Since endogeneity is given in terms of correlation of vt and ũt rather than in terms of correlation

of vt and ut, we may encounter situations where endogeneity is not an issue if the loss function

is of suitable nature. But this is not a guarantee, in fact chances are that endogeneity remains

a problem as long as ut and vt are not independent. Existing solutions are typically suggested

for near-integrated regressors, or for a particular L (OLS or LAD). The following subsection

considers a simple solution which still has power.

3.2.2 Inference under uncertainty about persistence

As pointed out by Elliott and Stock (1994), standard OLS inference is invalid if the regressor xt

is endogenous and highly persistent at the same time. This result holds analogously under the

loss function studied here, see theorem 3.2. A simple way out is variable addition as proposed

by Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996). But as emphasized by Bre-

itung and Demetrescu (2013) for the OLS case, this leads to a severe power loss, reducing the

convergence rate of β̂1 to
√
T , and a similar argument can be made here.8 To avoid such a loss,

we follow Breitung and Demetrescu (2013) and resort to overidentified estimation and testing.

We adapt in the following their Anderson-Rubin (AR) type statistic to M estimation and testing

under the relevant loss in (3.6).

Breitung and Demetrescu (2013) consider two types of instruments. The first replaces the highly

persistent regressor xt−1 by a less persistent one, that is still correlated strongly enough with

8This is a tedious, yet straightforward extension of the results of Section 3.2.1.
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the original variable to qualify as a valid instrument. The second is strictly exogenous but

persistent. In the nearly integrated framework, several ways to construct such an instrument

are offered, including the mildly integrated process (1− γTL)−1+ ∆xt−1 for γT = 1 − a/T δ,

with a > 0, and 0 < δ < 1. This type of instrument is also studied by Lee (2012) for the

quantile regression procedure when the predictors are nearly integrated. We refer to such type-I

instruments as z(I)t−1,T . The second type of instruments z(II)t−1,T should be statistically independent

of ut to guarantee exogeneity, and the class includes, for example, randomly generated random

walks or functions of (scaled) time.

Model (3.2) allows predictors to be either weakly or highly persistent (including nearly or frac-

tionally integrated processes, for example), so we look for a pair of instruments that is correlated

strongly with the predictor and is able to mimic the persistence of the process, irrespective of

whether it is highly or weakly persistent. Assumption 3.3 (i) below defines the first instrument

as ∆xt−1, which is a convenient choice for our purpose since the first differences of xt are

not themselves highly persistent according to our definition of the predictor. While it is true

that Breitung and Demetrescu (2013) allow for a wider class of type-I instruments when xt is

near-integrated, this is the price to pay for having any kind of persistent behavior of xt.

Assumption 3.3 Let the instruments be given by zt,T =
(
z
(I)
t,T , z

(II)
t,T

)′
. Then

(i) z
(I)
t−1,T = z

(I)
t−1 = ∆xt−1.

(ii) E
∣∣z(I)t−1

∣∣4 < C <∞, and E
[
L(2) (ut − β0)

∣∣z(I)t−1, z
(I)
t−2, . . .

]
= η2 <∞.

(iii) z
(II)
[rT ],T ⇒ Z (r), jointly with T−1/2

∑[rT ]
t=1 (ũt vt)

′.

(iv) as T → ∞, plim T−1
∑T

t=2

(
1, z′t−1,T

)′ (
1, z′t−1,T

)
= Σz, for a finite and positive definite

matrix Σz.

Several options are available for the second type of instruments, and to fix ideas, let

z
(II)
t−1,T = sin (π (t− 1) /2T ) .

Of course, other choices are possible, but the sine function above is the leading term in a Loève-

Karhunen expansion of X; see Phillips (1998).

With these choices, we test predictability using the Anderson-Rubin (AR) type statistic be-

low. Intuitively, the test statistic checks whether generalized forecast errors under the null are

correlated with the potential predictor, but does so by means of instruments. In this respect

we are building on the work of Elliott, Komunjer, and Timmermann (2005). Concretely, the
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predictability test is conducted with

T = λ′Λλ (3.10)

with

λ =
T∑
t=2

z̃t−1,TL(1)
(
yt − β̂0

)

where β̂0 is the estimator of β0 under the null hypothesis β1 = 0,

β̂0 = arg min
β∗0

T∑
t=2

L (yt − β∗0) ,

and z̃t−1,T is a 2 × 1 vector

z̃t−1,T =

[
z
(I)
t−1,T − 1

T

∑T
t=2 z

(I)
t−1,T

z
(II)
t−1,T − 1

T

∑T
t=2 z

(II)
t−1,T

]
.

Its properties under the null are summarized in the following result.

Theorem 3.3 Under Assumptions (3.1) - (3.3) and the null hypothesis, as T →∞,

τ
d→ χ2 (2) ,

irrespective of whether xt−1 is weakly or highly persistent.

Hence the AR statistic provides valid inference under asymmetric loss that is robust to the

degree of persistence of the predictors. As Phillips and Lee (2013) emphasize, in predictive

regressions it is of further interest to investigate the distribution of the test statistic if the null

hypothesis does not hold to examine the ability of the test to detect predictability if it is indeed

there. To this end, the local asymptotic power of the AR statistic is studied. Depending on the

persistence of the predictor, we consider the sequence of alternatives

H1,T : β1 =
b

nT
√
T
, (3.11)

for highly persistent regressors and

H1,T : β1 =
b√
T
, (3.12)
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for weakly persistent regressors, and obtain the following result.

Theorem 3.4 (i) If the predictor xt−1 is persistent, then under Assumptions 3.1 - 3.3 and the

sequence of local alternatives (3.11), as T →∞,

T d→ χ2 (2, λp) ,

with non-centrality parameter

λp = b2
(
κ̃(2)
)2
σ2
v

σ2
ũ

(
lim
T→∞

1
T

∑T
t=2

(
z̃
(II)
t−1

)2) (ˆ 1

0

Z̃ (s)X (s) ds

)2

,

where Z̃ (·) = Z (·)−
´ 1

0
Z (r) dr.

(ii) If the predictor xt−1 is stationary, then under Assumptions 3.1 - 3.3 and the sequence of

local alternatives (3.12), as T →∞,

T d→ χ2 (2, λs) .

with non-centrality parameter

λs = b2
(
κ̃(2)σ2

v

)2
σ2
ũ

(
lim
T→∞

1
T

∑T
t=2 E

[(
z̃
(I)
t−1

)2])
(
∞∑
j=0

(
ψ2
j,T − ψj,Tψj+1,T

))2

.

Thus, the test is powerful in a n−1T T−1/2 neighborhood around the null hypothesis under persis-

tence, and in a T−1/2 neighborhood under stationarity. It should be stressed that the n−1T T−1/2

neighbourhood is where the naive M test would have power (considering the convergence rate

of the M estimator β̂1), should one be able to fix its size problem in the general setup of Defini-

tion 3.1. With a persistent predictor, local power is determined by the type II instrument while

the type I instrument is asymptotically negligible. The converse result holds if the predictor is

stationary.

3.3 Endogeneity under asymmetric loss

To illustrate how endogeneity affects inference under asymmetric loss, we study a simple pre-

dictive regression model with a highly persistent regressor. Consider the the following regres-
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sion system,

yt = βxt−1 + ut, (3.13)

xt = ρTxt−1 + vt,

for t = 1, . . . , T , with a nearly integrated predictor characterized by ρT = 1 − c/T for some

small nonnegative constant c and x0 = 0. We are interested in testing the null hypothesis β = 0

if a quadratic, but asymmetric loss function applies,

L (ut) = ((1− 2α)1(ut < 0) + α) |ut|2. (3.14)

This framework directly extends a widely used empirical model to an asymmetric treatment

of prediction errors and contrasts with inference under the standard, symmetric quadratic loss

function which leads to OLS estimation and inference in a possibly endogeneous regression

system.

As has been pointed out in section 3.2.1, endogeneity under asymmetric loss is determined

by the correlation parameter ω̃ = E [ũtvt] which need not coincide with correlation between

the disturbance terms in the linear model (3.13). To discuss this distinction, suppose ut is

characterized by multiplicative heteroskedasticity,

ut = σtεt = σ
√
f (vt)εt. (3.15)

where εt and vt are iid standard normally distributed and are independent of each other, and

f (·) is a function to be specified below. Here, shocks to the potential predictor affect the

volatility of the variable of interest, which could arise in a stock return predictabiliy context, if

current shocks to the dividend yield or interest rates affect the variability of the return series,

say. However, this model does not intend to translate a particular empirical characteristic of

a given time series, but serves rather as a stylized framework to examine endogeneity under

symmetric and asymmetric loss.

Clearly, (3.15) implies ω = E [utvt] = 0, so even if the predictor of interest is persistent,

standard inference applies in (3.13). In contrast, ω̃ may differ from zero, which, although

analytically intractable, is exemplified for the following choice of f (·)

f (vt) = (|vt| − γvt)2 , (3.16)
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Figure 3.1: Densities of t-statistics for loss function parameter α = 0.2

Note: The d.g.p. is given in (3.13) with ρT = 1, β = 0 and T = 100 and f (vt) as in (3.16).
Top row: γ = 0.95, bottom row: γ = −0.95. Left column: estimated densities of the OLS
t statistic (straigt line) and the t statistic under asymmetric loss (dotted line). Right column:
densities of the χ2 (2) distribution (straight line) and the estimated density of the AR statistic
(dotted line).

which is an adaptation of the family of variance models suggested by Hentschel (1995). Here,

the asymmetric nature of the shocks vt implies that negative shocks receive a weight of 1 + γ,

while a weight of 1−γ is assigned to positive shocks, where |γ| ≤ 1. This asymmetric treatment

allows positive and negative shocks of vt to have a different impact on ut as determined by the

asymmetry parameter γ. The asymmetric response of many financial time series to positive and

negative shocks to economic fundamentals has been documented (see, among others, Nelson

(1991)), and the above specification incorporates this feature.

We generate 20,000 samples from this d.g.p. when T = 100, c = 0 and β = 0. We test pre-

dictive ability by computing the standard OLS t-statistic as well as the appropriate test statis-

tic under asymmetric loss according to (3.8). In the asymmetric case, recall that L (ut) =

L (yt − βxt−1), such that, say, for β ≥ 0, which arises naturally for predictors in return pre-

dictability studies, overprediction (yt < βxt−1) is more costly if α < 0.5. For this exercise, we

set α = 0.2.

Figure 3.1 illustrates the consequences of an asymmetric loss function for inference in predictive

regressions when f (vt) is given in (3.16) with γ = 0.95 (top row) and γ = −0.95 (bottom row).
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Regarding the left column of the figure, in absence of endogeneity the OLS t statistic is standard

normally distributed, and the estimated density of the OLS t statistic (straight line) approaches

the density of the standard normal distribution (not shown). However, the induced error ũt =

L(1) (ut) and vt may be correlated, and this correlation affects the asymptotic distribution of

the t statistic under asymmetric loss (dotted line) as pointed out in theorem 3.2. For example,

the combination of negative correlation between ũt and vt with an integrated regressor shifts

the density of the statistic under asymmetric loss to the right. A naive use of normal critical

values for a one-sided test of a common null hypothesis in a return predictability example of

β = 0 against β > 0 under the asymmetric quadratic loss function may lead a researcher to

falsely reject the null hypothesis of no predictability. The AR statistic provides inference with

valid size in either case. The right column displays the densities of the AR statistic (dotted line)

which approaches the density of the χ2 (2) distribution (straight line) as expected from theorem

3.3.

3.4 Robust inference in forward premium regressions

3.4.1 The forward premium puzzle under asymmetric loss

The foreign exchange rate market provides an opportunity to test the rational expectations hy-

pothesis: if Et [St+k] denotes the spot price of a given currency that is expected to prevail at

time t + k, it is natural to postulate Et [St+k] = F t+k
t , where F t+k

t denotes the k-period ahead

forward exchange rate available at time t, and Et [·] is the conditional expectation with respect

to the information available up to time t. Under the null hypothesis of rational expectations,

then, in a regression of future spot rates on current forward rates, the coefficient attached to the

forward rate is equal to one.9 The forward rate is then said to be an unbiased predictor of future

spot rates. A more widely used empirical model to examine this issue does not consider the

formulation in levels, but rather the changes in the spot rates as in

st+k − st = γ0 + γ1
(
f t+kt − st

)
+ ut+k, (3.17)

where st is the logarithm of a given spot exchange rate at time t, f t+kt is the logarithm of the

forward exchange rate for time t + k formed at time t and ut+k is an idionsyncratic error, see,

among others, Fama (1984). If agents are risk neutral, the rational hypothesis corresponds

9See Geweke and Feige (1979), for example.
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to testing γ0 = 0 and γ1 = 1. A deviation from this pure form of the rational expectations

hypothesis allows for an intercept different from zero and focuses on testing γ1 = 1, and we

follow this approach (see for example Liu and Maynard (2005)). It is convenient in our case to

consider the transformed regression

st+k − f t+kt = β0 + β1
(
f t+kt − st

)
+ ut+k, (3.18)

with β0 = γ0 and β1 = γ1−1. Accordingly, the hypothesis of interest is β1 = 0. This regression

can also be viewed as as a test of the efficient markets hypothesis: if exchange rate markets are

efficient, in the sense that market participants fully exploit all currently available information

when forming expectations of future prices, then the forecast error st+k − f t+kt is uncorrelated

with any variable available at time t. Hence the coefficient β1 is equal to zero; see Hansen and

Hodrick (1980), for example.

A typical finding in the literature is that the estimated slopes in regression (3.17) differ signifi-

cantly from one and often have a negative sign, which is therefore evidence against the rational

expectations hypothesis; see Lewis (1995) for further details.

It should be noted that it is implicitly assumed that agents face a quadratic loss function. A

different loss function implies that a test of the rational expectations hypothesis is conducted

under the relevant loss, that is, the parameters in (3.17) or (3.18) are estimated taking into

account the respective loss function, and hypothesis tests in these models are carried out using

these estimates.

In fact, Pierdzioch, Rülke, and Stadtmann (2012a) examine individual exchange rate forecast-

ers and find that the symmetric, quadratic loss function does not apply to all market partici-

pants. More recently, Christodoulakis and Mamatzakis (2013) find evidence for the so called

Quad-Quad loss function in monthly exchange rate series of G7 countries. This specification

corresponds to p = 2 and α potentially different from 0.5 in our setup, as in

L
(
st+k − f t+kt

)
=
(
(1− 2α)1

(
st+k − f t+kt < 0

)
+ α

)
|st+k − f t+kt |2, (3.19)

which imposes a higher penalty for overprediction of the exchange rate if α < 0.5, while

underprediction is more costly if α > 0.5. Furthermore, it has been pointed out by Liu and

Maynard (2005) or Gospodinov (2009) that the forward premium is a possibly persistent process

and shocks to the spot and forward rates are correlated. The standard t statistic to test β1 = 0

in (3.18) may thus be biased resulting in unreliable inference. Combining this evidence for
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asymmetric loss and persistent regressors allows us to test the rational expectations hypothesis

with the inferential methods developed in the previous sections. We restrict attention to the

quadratic case p = 2 and allow α 6= 0.5, which is a natural extension of the quadratic, symmetric

loss functions considered in the literature.

To investigate possible asymmetries, we consider weekly data for a collection of exchange rates,

expressed as the price of foreign currency for one US dollar. These exchange rates are the end-

of-week spot and one month forward rates taken from the Barclays Bank index and are obtained

from Datastream. We study a four week horizon such that k = 4 in the above regressions.

The sample period is 01/03/1992 - 05/24/2013. Given the evidence in Christodoulakis and

Mamatzakis (2013) who present evidence for asymmetric loss in the post 2002 period, we also

consider the subsample beginning on 01/08/2002.

Table 3.1 presents summary statistics of the spot and forward rates and the relevant regression

variables used in (3.18). The first order autocorrelations of the predictor f t+4
t − st is large for

many exchange series, in particular in the 2002 subsample, indicating that the forward premium

is a persistent predictor in these cases.

Next, we estimate endogeneity in the regression system by

ω̃ =
σũv
σũσv

, (3.20)

with

σ2
v =

1

T

T∑
t=2

v̂t+kt ,

σ2
ũ =

1

T

T∑
t=2

(
L(1)

(
ût+k − β̂0

))2
,

σũv =
1

T

T∑
t=2

L(1)
(
ût+k − β̂0

)
v̂t+kt .

Here, v̂t+kt are the residuals from an estimated autoreggressive model for the forward premium

with lag selection by the BIC criterion, while ût+k are the residuals in (3.18). Table 3.2 reports

the estimated correlation parameter for a range of loss function parameters α. For the Australian

Dollar the correlation is moderately large, although for other series endogeneity may be less

important. Hence, for comparison, inference is carried out with both the M test based on (3.8)

and the AR statistic.
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Table 3.1: Summary statistics for exchange rate data (1992 - 2013)

st+4 − f t+4
t f t+4

t − st st+4 f t+4
t

AUS
mean -0.0025 0.0017 0.3003 0.3017
std. dev. 0.0315 0.0015 0.1912 0.1905
AC(1): 1992-2013 0.096 0.778 0.983 0.983
AC(1): 2002-2013 -0.047 0.908 0.959 0.959

CAD
mean -0.0005 0.0001 0.2315 0.2316
std. dev. 0.0208 0.0011 0.1531 0.1529
AC(1): 1992-2013 0.009 0.730 0.987 0.987
AC(1): 2002-2013 -0.035 0.887 0.968 0.967

CHF
mean -0.0002 -0.0011 0.2420 0.2409
std. dev. 0.0302 0.0023 0.1815 0.1813
AC(1): 1992-2013 0.057 0.621 0.981 0.981
AC(1): 2002-2013 -0.097 0.945 0.954 0.954

EUR
mean -0.0004 -0.0002 -0.1809 -0.1811
std. dev. 0.0298 0.0014 0.1626 0.1626
AC(1): 1999-2013 0.027 0.628 0.982 0.982
AC(1): 2002-2013 0.013 0.945 0.933 0.933

GBP
mean -0.0004 0.0011 -0.4942 -0.4932
std. dev. 0.0266 0.0013 0.0929 0.0927
AC(1): 1992-2013 0.067 0.725 0.956 0.956
AC(1): 2002-2013 0.021 0.812 0.950 0.950

YEN
mean 0.0016 0.0023 4.6738 4.6715
std. dev. 0.0302 0.0029 0.1445 0.1437
AC(1): 1992-2013 0.002 0.462 0.976 0.975
AC(1): 2002-2013 -0.065 0.973 0.973 0.973

Note: AC(1) denotes the first-order autocorrelation coefficient. The sample for EUR begins on
01/03/1999.
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Table 3.2: Estimated correlation parameters ω̃

Loss function parameter α

0.30 0.40 0.50 0.60 0.70

Jan. 3 1992 - May 24 2013
AUS -0.189 -0.199 -0.203 -0.203 -0.199

CAD -0.032 0.027 -0.024 -0.020 -0.016

CHF -0.062 -0.053 -0.049 -0.048 -0.050

EUR -0.070 -0.070 -0.067 -0.062 -0.056

GBP -0.150 -0.153 -0.155 -0.155 -0.152

YEN -0.058 -0.066 -0.074 -0.082 -0.091

Jan. 8 2002 - May 24 2013
AUS -0.034 -0.034 -0.035 -0.36 -0.031

CAD -0.144 -0.126 -0.106 -0.082 -0.056

CHF -0.161 -0.145 -0.126 -0.104 -0.076

EUR -0.186 -0.188 -0.185 -0.174 -0.156

GBP -0.035 -0.034 -0.037 0.041 -0.048

YEN -0.272 -0.251 -0.232 -0.212 -0.192

Note: The correlation parameter is estimated according to (3.20). The sample for EUR
begins on 01/03/1999.

3.4.2 Estimating loss function parameters

We follow Elliott, Komunjer, and Timmermann (2005) to estimate the paramater α in (3.19).

The loss function parameter is estimated as

α̂ =

[
1

T−5
∑T−4

t=2 wt+3

∣∣st+4 − f t+4
t

∣∣]′Ŝ−1[ 1
T−5
∑T−4

t=2 wt+31
(
st+4 − f t+4

t < 0
)∣∣st+4 − f t+4

t

∣∣][
1

T−5
∑T−4

t=2 wt+3

∣∣st+4 − f t+4
t

∣∣]′Ŝ−1[ 1
T−5
∑T−4

t=2 wt+3

∣∣st+4 − f t+4
t

∣∣] ,

where wt+3 is a vector of instruments, which are specified below, and T denotes the sample

size. Here,

Ŝ =
1

T − 5

T−4∑
t=2

wt+3w
′
t+3

(
1
(
st+4 − f t+4

t < 0
)
− α̂

)2 ∣∣ st+4 − f t+4
t

∣∣2 .
As the matrix Ŝ depends on the estimated parameter, estimation is done iteratively, starting

with Ŝ as the identity matrix. Elliott, Komunjer, and Timmermann (2005) show that for a given

pair of p and α, the optimal forecast f ∗ t+kt under the above loss function satsifies the moment
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condition

E
[
wt
(
1
(
st+k − f ∗ t+kt < 0

)
− α

) ∣∣ st+k − f ∗ t+kt

∣∣p−1] = 0,

and that the solution f ∗ t+kt is uniquely characterized by this conditon. Conversely, then, for

given forecasts, this condition can be used to solve for the asymmetry parameter, and the above

estimator is the finite sample analogue of this solution. Furthermore, hypothesis test regarding

α̂ can be conducted using the limiting distribution of the estimated asymmetry parameter,

√
T (α̂− α)

d→ N (0, V ) ,(
ĥ′Ŝ−1ĥ

)−1 p→ V,

with ĥ = 1/ (T − 5)
∑T−4

t=2 wt+3|st+4 − f t+4
t |. In view of the results of Section 3.2.1, it is

however questionable whether the limiting distribution of α̂ is indeed normal if some of the

instruments, as for instance the forward rate, are persistent, see also table 3.1. The limiting

distribution of the estimated loss function parameter with persistent instruments is not available

and may be subject to future research. We consider the limiting normal distribution as the

best currently available approximation. Given that the differences between the estimates with

possibly persistent instruments such as the forward rate and stationary instruments such as the

forecast error point in a similar direction, the potential bias may considered as tolerable in this

exercise.

Tables 3.3a and 3.3b present point estimates of the parameter α in (3.19) for the different series

using the procedure suggested by Elliott, Komunjer, and Timmermann (2005). The standard

errors and probability values for testing the hypothesis α = 0 against α 6= 0 are also reported.

The estimates are produced using four different sets of instruments, including the lagged spot

rate, the lagged forward rate and the lagged forecast error. These instruments combine the

choices made by Pierdzioch, Rülke, and Stadtmann (2012a), Christodoulakis and Mamatzakis

(2013) and Elliott, Komunjer, and Timmermann (2005).

The estimates vary with the instruments employed. For the Australian Dollar, the results point

towards a loss function parameter around 0.6 in the full sample and an even larger value in the

2002 subsample. Hence, somewhat surprisingly, the estimates suggests that underprediction of

the exchange rate is more costly. A similar conclusion holds for the Canadian Dollar. For the

Swiss Franc and the Yen, the loss function parameters are roughly estimated between 0.3 and

0.5 in the full sample. This range applies to the Yen in the 2002 - 2013 subsample as well,
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Table 3.3a: Loss function parameter estimates (Jan. 3 1992 - May 24 2013)

Instr. AUS CAD CHF EUR GBP YEN

I1
α̂ 0.56 0.51 0.50 0.51 0.51 0.47
s.e. 0.021 0.020 0.019 0.024 0.020 0.019
prob. value 0.00 0.56 0.93 0.71 0.61 0.09

I2
α̂ 0.65 0.59 0.43 0.63 0.63 0.33
s.e. 0.018 0.020 0.019 0.022 0.019 0.017
prob. value 0.00 0.00 0.00 0.00 0.00 0.00

I3
α̂ 0.56 0.53 0.51 0.51 0.53 0.46
s.e. 0.020 0.020 0.019 0.024 0.020 0.019
prob. value 0.00 0.13 0.69 0.62 0.16 0.04

I4
α̂ 0.65 0.57 0.40 0.63 0.63 0.33
s.e. 0.018 0.019 0.018 0.022 0.019 0.017
prob. value 0.00 0.00 0.00 0.00 0.00 0.00

Note: Four sets of instruments are used: a constant and the lagged spot rate (I1), a constant and the
lagged forecast error (I2), a constant and the lagged forward rate (I3), and a constant, the lagged
spot rate, and the lagged forecast error (I4). The p value is reported for the hypothesis test α = 0.5
against α 6= 0.5.

Table 3.3b: Loss function parameter estimates (Jan. 8 2002 - May 24 2013)

Instr. AUS CAD CHF EUR GBP YEN

I1
α̂ 0.62 0.59 0.56 0.57 0.54 0.51
s.e. 0.029 0.029 0.026 0.026 0.027 0.026
prob. value 0.00 0.00 0.02 0.01 0.17 0.80

I2
α̂ 0.73 0.68 0.70 0.74 0.68 0.42
s.e. 0.023 0.025 0.024 0.022 0.024 0.026
prob. value 0.00 0.00 0.00 0.00 0.00 0.00

I3
α̂ 0.66 0.63 0.58 0.61 0.54 0.51
s.e. 0.029 0.028 0.026 0.026 0.028 0.026
prob. value 0.00 0.00 0.00 0.00 0.16 0.69

I4
α̂ 0.75 0.69 0.68 0.74 0.68 0.41
s.e. 0.023 0.024 0.024 0.02 0.024 0.025
prob. value 0.00 0.00 0.00 0.00 0.00 0.00

Note: Four sets of instruments are used: a constant and the lagged spot rate (I1), a constant and the
lagged forecast error (I2), a constant and the lagged forward rate (I3), and a constant, the lagged
spot rate, and the lagged forecast error (I4). The p value is reported for the hypothesis test α = 0.5
against α 6= 0.5.
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while the point estimates for the Swiss Franc are larger in this period. The evidence for the Euro

and the British Pound is a bit more conflicting among the sets of instruments, with some of the

estimates very close to the symmetric case in which α = 0.5.

3.4.3 Inference with the t statistic and the robust AR statistic

Given these estimates of the loss functions, we investigate the rational expectations hypothesis

under asymmetric, quadratic loss. The underlying regression is the transformed model (3.18)

to test β1 = 0. When this regression is actually run to carry out the test with standard infer-

ence, the dependent variable is constructed using non-overlapping time intervals to avoid serial

correlation, and this approach is followed here as well when carrying out the test with the t and

the AR statistic. This results in 280 non-overlapping observations for the full sample and 149

observations for the subsample beginning in 2002. The AR statistic uses the first difference of

the forward premium and the sine trend as instruments.

To accommodate for the variation in the point estimates from the different sets of instruments,

the test is carried out for a range of values of the parameter α, where α = 0.5 serves as a

reference point in which inference is conducted that is robust to the degree of persistence of the

regressor, and assumes a symmetric, quadratic loss function. For α 6= 0.5, robust inference is

made allowing for an asymmetric loss function. Tables 3.4 and 3.5 show the p values of test

β1 = 0 for the t statistic based on the asymptotic standard normal distribution (valid in absence

of endogeneity) and the AR statistic based on the asymptotic χ2 (2) distribution. The results

are reported for the Australian Dollar, the Canadian Dollar, the Swiss Franc and the Yen, as

the symmetric loss function seems be a reasonable approximation for the Euro and the British

pound from our earlier results.

Starting with the M test and taking the results in the symmetric case α = 0.5 as a starting

point, the rational expectations hypothesis is not rejected for the majority of the series. For

the Australian and the Canadian Dollar, however, some further comments can be made in the

full sample. First, table 3.2 provides evidence for correlation in the regression system for the

Australian Dollar, which leads to biased inference using the M test. For the Canadian Dollar, the

estimated correlation is smaller and the M test may thus be considered to yield valid inference.

The null hypothesis is rejected for the symmetric case. Given the evidence for asymmetric loss

with an estimated loss function parameter of about 0.55 or larger, the null hypothesis is bareley

rejected or not rejected in these cases. Next, considering the results for the AR statistic, for the
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Table 3.4: p values for the test of β1 = 0 using the t statistic

Loss function parameter α

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Jan. 3 1992 - May 24 2013
AUS 0.01 0.01 0.02 0.03 0.04 0.07 0.10 0.16 0.24

CAD 0.06 0.05 0.04 0.04 0.04 0.05 0.06 0.09 0.12

CHF 0.11 0.14 0.15 0.19 0.23 0.28 0.33 0.39 0.48

YEN 0.99 0.85 0.73 0.62 0.53 0.45 0.39 0.34 0.29

Jan. 8 2002 - May 24 2013
AUS 0.85 0.96 0.93 0.84 0.76 0.69 0.61 0.54 0.46

CAD 0.88 0.91 0.94 0.96 0.98 0.98 0.97 0.93 0.89

CHF 0.32 0.32 0.32 0.33 0.36 0.39 0.45 0.52 0.60

YEN 0.79 0.78 0.79 0.81 0.85 0.90 0.96 0.97 0.86

Note: The t statistic is given in (3.8).

Table 3.5: p values for the test of β1 = 0 using the AR statistic

Loss function parameter α

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Jan. 3 1992 - May 24 2013
AUS 0.01 0.01 0.03 0.05 0.10 0.17 0.26 0.38 0.52

CAD 0.00 0.00 0.01 0.01 0.02 0.04 0.07 0.12 0.18

CHF 0.98 0.96 0.91 0.84 0.78 0.72 0.68 0.64 0.61

YEN 0.71 0.78 0.84 0.88 0.91 0.93 0.93 0.94 0.93

Jan. 8 2002 - May 24 2013
AUS 0.64 0.63 0.61 0.57 0.53 0.50 0.45 0.41 0.36

CAD 0.46 0.40 0.36 0.34 0.32 0.31 0.30 0.28 0.27

CHF 0.75 0.76 0.77 0.77 0.76 0.76 0.74 0.71 0.67

YEN 0.88 0.86 0.84 0.81 0.76 0.71 0.64 0.56 0.47

Note: The AR statistic is given in (3.10).
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Canadian Dollar, the null hypothesis β1 = 0 is rejected at the 5 % level when α = 0.5. Some of

the estimation results of table 3.3a suggests that the loss function parameter may range between

0.55 and 0.60. For these specifications, the null hypothesis is barely rejected or not rejected by

the test using the AR statistic, such that evidence against the rational expectations hypothesis is

weaker for this range. Hence in this example, even after taking the uncertainty about the degree

of persistence into account, different conclusions are reached for the symmetric case and plausi-

ble asymmetric specifications. A similar observation can be made for the Australian Dollar. The

p values for α = 0.45 and α = 0.5 suggest that the null hypothesis may be rejected or barely

not rejected at the 10% level, while the results for the range of α parameters between 0.55 and

0.65 agree with the rational expectation hypothesis, and this range arises from the estimation

results for the Australian Dollar in table 3.3a.

3.5 Concluding remarks

This chapter extends the linear predictive regression model to incorporate asymmetric loss func-

tions, with the standard mean squared error (MSE) loss as a special case. The main interest is

to test whether current observations of included regressors have predictive ability about the

outcome variable in the next period. As in the standard case, the distribution of the t statistic

depends on the persistence of the predictor and the correlation between shocks to the predictor

and the dependent variable. In contrast to the standard case, however, endogeneity depends on

the adopted loss function and need not coincide with endogeneity under MSE loss. Hence in

some cases the OLS t statistic may be standard normally distributed, while the t statistic under

asymmetric loss has a non-standard distribution and vice versa. In addition, as the degree of

persistence of the predictor is difficult to determine precisely, a test statistic is introduced in this

setup that allows to conduct inference using the χ2 distribution whether the predictor is station-

ary or highly persistent. The predictive regression model under asymmetric loss is employed to

investigate the forward premium puzzle for a collection of currencies. In these time series, a ten-

dency for asymmetric treatment of overpredictions and underpredictions of future spot rates by

forward rates is provided. Given these estimates of the loss function parameters, predictability

is tested with the test statistic that is robust to the degree of persistence of the forward premium,

and there appears little evidence for failure of the rational expecations hypothesis.
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Appendix to Chapter 3

3.A Proofs

Preliminary results
Lemma 3.1 Let Assumptions 3.1 and 3.2 hold true. As T →∞, the following properties hold:

1.

1√
T

[sT ]∑
t=1

(
ũt
vt

)
⇒
(
σũW̃ (s)
σvV (s)

)
,

where the standard Wiener processes V and W̃ correlate with correlation ω̃ = corr (ũt, vt) .

2. Furthermore, under persistence,

1

nT
√
T

T∑
t=2

xt−1ũt ⇒ σvσũ

ˆ 1

0

X (s) dW̃ (s) .

3. supt E
(
x2pt−1

)
<∞.

4. Under persistence, for all 1 ≤ k ≤ p

1

nkTT

T∑
t=2

xkt−1L(2) (ut − β0)⇒ κ̃σkv

ˆ 1

0

Xk (s) ds.

5. Similarly,

1

nkTT

T∑
t=21

xkt−1ũ
2
t ⇒ σ2

ũσ
k
v

ˆ 1

0

Xk (s) ds.

6. Finally, for any β̃0 = β0 + op (1), β̃1 = β1 + op
(
n−1T
)
, and k = 0, 1, 2, we have under

persistence that

1

nkTT

T∑
t=2

xkt−1L(2)
(
yt − β̃0 − β̃1xt−1

)
=

1

nkTT

T∑
t=2

xkt−1L(2) (ut − β0) + op (1) .

Proof.

1. obvious and omitted.

2. Follows from 1. given that ũt is independent of vt−j ∀j > 0; see Kurtz and Protter (1991).

3. We have that

E
(
x2pt−1

)
=

t∑
j1=1

· · ·
t∑

j2p=1

ψj1,T · · ·ψj2p,T E
(
vt−j1 · · · vt−j2p

)
;
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given the zero-mean iid property of vt, the indices j1, . . . j2p must be pairwise equal for
the expectation on the right-hand side (r.h.s.) to be nonzero, so

E
(
x2pt−1

)
=

t∑
j1=1

· · ·
t∑

jp=1

ψ2
j1,T
· · ·ψ2

jp,T E
(
v2t−j1 · · · v

2
t−jp

)
.

Now, the expectation on the r.h.s. is uniformly bounded since vt is iid with finite moments
of order 2p, so

E
(
x2pt−1

)
≤ C

(
t∑

j=1

ψ2
j,T

)p

,

where the r.h.s. is uniformly bounded thanks to Definition 3.1.

4. Recall that κ̃ = E
(
L(2) (ut − β0)

)
and write

1

nkTT

T∑
t=1

xkt−1L(2) (ut − β0) = κ̃
1

nkTT

T∑
t=1

xkt−1 −
1

nkTT

T∑
t=1

xkt−1
(
L(2) (ut − β0)− κ̃

)
.

The result follows if the second summand on the r.h.s. vanishes as T → ∞. But this is
indeed the case. Note that xkt−1

(
L(2) (ut − β0)− κ̃

)
is a martingale difference sequence

given the iid property of (ut, vt)
′ and thus of

(
L(2) (ut − β0)− κ̃, vt

)′
, so

Var

(
1

nkTT

T∑
t=1

xkt−1
(
L(2) (ut − β0)− κ̃

))
=

1

n2k
T T

2

T∑
t=1

Var
(
xkt−1

(
L(2) (ut − β0)− κ̃

))
.

The variances on the r.h.s. satisfy again due to the assumed iid property of the shocks

Var
(
xkt−1

(
L(2) (ut − β0)− κ̃

))
= E

(
x2kt−1

)
E
((
L(2) (ut − β0)− κ̃

)2)
,

where the first expectation is of order n2k
T uniformly (given the finiteness of the mo-

ments of order 2p for vt), and the second is uniformly bounded. The variance of the term
1

nk
TT

∑T
t=1 x

k
t−1
(
L(2) (ut − β0)− κ̃

)
thus vanishes at rate T−1.

5. Analogous to the proof of 4. and omitted.

6. Note first that, due to the weak convergence of xt, we have

sup
t

(xt−1) = Op (nT ) ,

such that supt(β1 − β̃1)xt = op(1).

Then, for p = 3, L(2) is Lipschitz and the result follows immediately.
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For p > 3, use a Taylor expansion for L(2) around ut − β0 to obtain

L(2)
(
yt − β̃0 − β̃1xt−1

)
=
∑p−2

j=2
1

(j−2)!L
(j) (ut − β0)

(
β0 − β̃0 +

(
β1 − β̃1

)
xt−1

)j−2
+ 1

(p−3)!L
(p−1)

(
yt − β̃∗0 − β̃∗1xt−1

)(
β0 − β̃0 +

(
β1 − β̃1

)
xt−1

)p−3
,

for some β̃∗0 between β0 and β̃0, and some β̃∗1 between β1 and β̃1 (which implies β̃∗0−β0 =

op (1) and β̃∗1 − β1 = op
(
n−1T
)
).

The leading term of the expansion (j = 2) gives the desired r.h.s.; furthermore,

sup
t

(
β0 − β̃0 +

(
β1 − β̃1

)
xt−1

)j−2
= op (1) .

Now, ∣∣∣∣∣ 1

nkTT

T∑
t=2

xkt−1L(j) (ut − β0)
(
β0 − β̃0 +

(
β1 − β̃1

)
xt−1

)j∣∣∣∣∣
≤

supt

(
β0 − β̃0 +

(
β1 − β̃1

)
xt−1

)j
nkTT

T∑
t=2

∣∣xkt−1L(j) (ut − β0)
∣∣ = op (1) .

For the last term of the expansion,

1

n−kT T

T∑
t=2

xkt−1L(p−1)
(
yt − β̃∗0 − β̃∗1xt−1

)(
β0 − β̃0 +

(
β1 − β̃1

)
xt−1

)p−1
.

Recall that L(p−1) is Lipschitz, so∣∣∣L(p−1)
(
yt − β̃∗0 − β̃∗1xt−1

)
− L(p−1) (ut − β0)

∣∣∣ ≤ C
∣∣∣β0 − β̃∗0 +

(
β1 − β̃∗1

)
xt−1

∣∣∣ ,
and the same reasoning as above applies, leading to the desired result for p > 2.

For p = 2, L(2) is piecewise constant but discontinuous at 0 when α 6= 0.5. Let ξT =

β̃0 − β0 +
(
β̃1 − β1

)
xt−1 and note that ξT

p→ 0. We then have

L(2)
(
yt − β̃0 − β̃1xt−1

)
= L(2) (ut − β0 − ξT )

(1 (|ξT | ≥ |ut − β0|) + 1 (|ξT | < |ut − β0|)) ,

and note that yt − β̃0 − β̃1xt−1 can only switch sign when |ξT | ≥ |ut − β0|. Thus,
L(2)

(
yt − β̃0 − β̃1xt−1

)
= L(2) (ut − β0) whenever |ξT | < |ut − β0|, and it suffices to

show that

1

nkTT

T∑
t=2

xkt−1L(2)
(
yt − β̃0 − β̃1xt−1

)
1 (|ξT | ≥ |ut − β0|)

≤ sup
t

xkt−1
nkT

sup
t
L(2)

(
yt − β̃0 − β̃1xt−1

) 1

T

T∑
t=2

1 (|ξT | ≥ |ut − β0|)
p→ 0.
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But supt
xkt−1

nk
T

= Op (1), and L(2) is piecewise constant. Since E (1 (|ξT | ≥ |ut − β0|)) =

Pr (|ut − β0| ≤ |ξT |) vanishes when ut does not have an atom at β0, Markov’s inequality
implies that 1

T

∑T
t=2 1 (|ξT | ≥ |ut − β0|)

p→ 0, as required for the result.

Lemma 3.2 For β̂0 and β̂1 from (3.6) it holds under persistence as T →∞ that(
β̂0, β̂1

)′ p→ (β0, β1)
′ ,

such that
β̂1 − β1 = op

(
n−1T
)
.

Proof.
We begin by showing that β̂0 and β̂1 are consistent estimators, and establish the desired conver-
gence rate in a second step.
A theorem of the type “if the target function converges uniformly in probability to determninis-
tic function, minimized at the true values of the parameters, then argmin estimators are consis-
tent” is used; see Chapter 4 of Amemyia (1985).
In order to establish the consistency of β̂1, we distinguish two cases.

1. Let β∗1 = β1. Then,

1

T

∑
L (yt − β∗0 − β∗1xt−1) =

1

T

∑
L (ut − β∗0)

p→ E (L (ut − β∗0)) ,

pointwise in β∗0 , due to the iid assumption on ut and the finiteness of the expected loss.

2. Let β∗1 6= β1. We have immediately that

1

T

∑
L (yt − β∗0 − β∗1xt−1) =

1

T

∑
L (ut − β∗0 + (β1 − β∗1)xt−1) .

But the loss function L is continuous and homogenous of order p, so the CMT leads to

1

npTT

∑
L (yt − β∗0 − β∗1xt−1)⇒

ˆ 1

0

L ((β1 − β∗1)σvX (s)) ds;

because L only takes nonnegative values, it follows that

1

T

∑
L (yt − β∗0 − β∗1xt−1)

p→∞.

Since E (L (ut − β∗0)) is finite, the target function is minimized with probability approaching 1
at β1 as T →∞. Therefore, β̂1

p→ β1 irrespective of the behavior of β̂0 (which does not matter
because of the discontinuity in limiting function).

For β̂0, assume for simplicity that β0 is known to belong to a compact set; then, pointwise
convergence and convexity of the target function impliy uniform convergence Andersen and
Gill (1982, Lemma II.1) to the argmin of E (L (ut − β∗0)). But the argmin is indeed β0 according
to its definition (3.7), so β̂0

p→ β0 as required.
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To establish the desired convergence rate, consider the sequence β∗1 = β1 + b/nT and let
w.l.o.g. β∗0 = β0. Using a Taylor expansion around β1, it follows that

1
T

∑
L (yt − β∗0 − β∗1xt−1) = 1

T

∑
L (ut − β0) + b

T

∑
L(1) (ut − β0) xt−1

nT

+ b2

T

∑
L(2)

(
ut − β0 − b∗

nT
xt−1

)(
xt−1

nT

)2
,

where 0 ≤ b∗ ≤ b. The first term on the r.h.s. converges to E (L (ut − β0)) which is the mini-
mum of the target function; the second converges according to Lemma 3.1 to zero in probability.
For the third, note that, due to the convexity of L, L(2) is bounded away from zero, so there ex-
ists C > 0 such that

b2

T

∑
L(2)

(
ut − β0 −

b∗

nT
xt−1

)(
xt−1
nT

)2

≥ Cb2

T

∑(
xt−1
nT

)2

,

where T−1
∑(

xt−1

nT

)2
⇒
´ 1
0
X2 (s) ds which is positive w.p.1. Hence, unless b = 0, the

minimum of the target function is not achieved under β∗1 = β1 + b/nT and β̂1 must converge at
a rate faster than n−1T , as required.

Lemma 3.3 Under the definition of persistence and assumptions 3.1 - 3.3,

1

nTT

T∑
t=2

z̃
(I)
t−1xt−1

p→ 0,

as T →∞.

Proof. Let S̃t =
∑t

j=1 z̃
(I)
j with S̃0 ≡ 0 such that

T∑
t=2

z̃
(I)
t−1xt−1 =

T∑
t=2

(
S̃t−1 − S̃t−2

)
xt−1 = S̃T−1xT−1 −

T−1∑
t=2

S̃t−1∆xt. (3.21)

With z(I)t−1 = ∆xt−1,

S̃T−1xT−1 =

(
T−1∑
j=1

(
∆xj −

1

T

T∑
t=2

∆xt

))
xT−1

=

(
(xT−1 − x0)−

T − 1

T
(xT−1 − x1)

)
xT−1

= Op

(
n2
T

)
,

under persistence. Regarding the second term on the r.h.s. in (3.21),

T−1∑
t=2

(
t−1∑
j=1

z̃
(I)
j

)
∆xt =

T−1∑
t=2

(
t−1∑
j=1

∆xj

)
∆xt −

(
T−1∑
t=2

t− 1

T
∆xt

)(
T∑
s=2

∆xs

)
.
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Now
∑T

s=2 ∆xs = Op (nT ) =
∑T−1

t=2 (t− 1) /T∆xt such that(
T−1∑
t=2

t− 1

T
∆xt

)(
T∑
s=2

∆xs

)
= Op

(
n2
T

)
.

Next, by rearranging the summation, we obtain

T−1∑
t=2

(
t−1∑
j=1

∆xj

)
∆xt =

1

2

(T−1∑
t=1

∆xt

)2

−
T−1∑
t=1

(∆xt)
2

 = Op

(
max

[
n2
T , T

])
,

using
(∑T−1

t=1 ∆xt

)2
= Op (n2

T ) and
∑T−1

t=2 (∆xt)
2 = Op (T ), where the latter result can be

established by using Markov’s inequality, Minkowski’s inequality and the fact that E
∣∣∆xt∣∣4 is

uniformly bounded by assumption 3.3. Taken together,

1

nTT

T∑
t=2

z̃
(I)
t−1xt−1 = Op

(
max

[
nT
T
,

1

nT

])
,

the result follows since nT/T → 0 by definition 3.1.

Proofs of the main results
Proof of Theorem 3.1

Take the Taylor expansion of the first-order conditions around (β0, β1)
′ and evaluate at

(
β̂0, β̂1

)′
.(

∂
∂β∗0

(
∑
L (yt − β∗1xt−1 − β∗0))

∂
∂β∗1

(
∑
L (yt − β∗1xt−1 − β∗0))

)∣∣∣∣∣β∗0=β̂0
β∗1=β̂1

=

(
∂
∂β∗0

(
∑
L (yt − β∗1xt−1 − β∗0))

∂
∂β∗1

(
∑
L (yt − β∗1xt−1 − β∗0))

)∣∣∣∣∣β∗0=β0
β∗1=β1

+

 ∂2

∂(β∗0)
2 (
∑
L (yt − β∗1xt−1 − β∗0)) ∂2

∂β∗1∂β
∗
0

(
∑
L (yt − β∗1xt−1 − β∗0))

∂2

∂β∗0∂β
∗
1

(
∑
L (yt − β∗1xt−1 − β∗0)) ∂2

∂(β∗1)
2 (
∑
L (yt − β∗1xt−1 − β∗0))

∣∣∣∣∣∣β∗0=β̃0
β∗1=β̃1

(
β̂0 − β0
β̂1 − β1

)
,

where β̃0 and β̃1 lie between β0 and β̂0, and β1 and β̂1, respectively. Evaluated at
(
β̂0, β̂1

)′
, the

gradient is 0, so with ũt = L(1) (ut − β0)( ∑
ũt∑

xt−1ũt

)
=

−

 ∑
L(2)

(
yt − β̃0 − β̃1xt−1

) ∑
xt−1L(2)

(
yt − β̃0 − β̃1xt−1

)
∑
xt−1L(2)

(
yt − β̃0 − β̃1xt−1

) ∑
x2t−1L(2)

(
yt − β̃0 − β̃1xt−1

) ( β̂0 − β0
β̂1 − β1

)
,

Note that, since β̂1 − β1 is op
(
n−1T
)
, so must be β̃1 − β1; also β̃0 − β0 = op (1) .

Using Lemma 3.1 item 5, it follows that
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−

 1
T

∑
L(2)

(
yt − β̃0 − β̃1xt−1

)
1

nTT

∑
xt−1L(2)

(
yt − β̃0 − β̃1xt−1

)
1

nTT

∑
xt−1L(2)

(
yt − β̃0 − β̃1xt−1

)
1

n2
TT

∑
x2t−1L(2)

(
yt − β̃0 − β̃1xt−1

) −1

= −

(
1
T

∑
L(2) (ut − β0) 1

nTT

∑
xt−1L(2) (ut − β0)

1
nTT

∑
xt−1L(2) (ut − β0) 1

n2
TT

∑
x2t−1L(2) (ut − β0)

)−1
+ op (1) ,

where the matrix on the r.h.s. is nonsingular with probability approaching 1. Therefore, up to
an op (1) term, we have √

T
(
β̂0 − β0

)
nT
√
T
(
β̂1 − β1

)  =

−

(
1
T

∑
L(2) (ut − β0) 1

nTT

∑
xt−1L(2) (ut − β0)

1
nTT

∑
xt−1L(2) (ut − β0) 1

n2
TT

∑
x2t−1L(2) (ut − β0)

)−1( 1√
T

∑
ũt

1
nT

√
T

∑
xt−1ũt

)
,

or

nT
√
T
(
β̂1 − β1

)
=

1
nTT 1.5A1T

1
n2
TT

2B1T

+ op (1) ,

with

A1T =
∑
L(2) (ut − β0)

∑
xt−1ũt −

∑
xt−1L(2) (ut − β0)

∑
ũt

B1T =
∑
L(2) (ut − β0)

∑
x2t−1L(2) (ut − β0)−

(∑
xt−1L(2) (ut − β0)

)2
,

and
√
T
(
β̂0 − β0

)
=

1
n2
TT

1.5A0T

1
n2
TT

2B1T

+ op (1) ,

with

A0T =
∑

x2t−1L(2) (ut − β0)
∑

ũt −
∑

xt−1L(2) (ut − β0)
∑

xt−1ũt,

leading with Lemma 3.1 to the desired result.

Proof of Theorem 3.2

Using standard regression algebra, the standard error of β̂1 is easily checked to be given by

s.e.
(
β̂1

)
=
√
M1TB

−2
T ,
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where

M1T =
(∑

L(2)
(
yt − β̂0 − β̂1xt−1

))2∑
x2t−1

(
L(1)

(
yt − β̂0 − β̂1xt−1

))2
+
(∑

xt−1L(2)
(
yt − β̂0 − β̂1xt−1

))2∑(
L(1)

(
yt − β̂0 − β̂1xt−1

))2
− 2

∑
L(2)

(
yt − β̂0 − β̂1xt−1

)∑
xt−1L(2)

(
yt − β̂0 − β̂1xt−1

)
·∑

xt−1

(
L(1)

(
yt − β̂0 − β̂1xt−1

))2
,

such that, using Lemma 3.1 item 5 as before,

M1T =
(∑

L(2) (ut − β0)
)2∑

x2t−1ũ
2
t +

(∑
xt−1L(2) (ut − β0)

)2∑
ũ2t

−2
∑
L(2) (ut − β0)

∑
xt−1L(2) (ut − β0)

∑
xt−1ũ

2
t + op

(
n2
TT

3
)
.

Thus,

tβ1 =
1

nTT 1.5A1T√
1

n2
TT

3M1T

+ op (1) ,

and the result follows with lemma 3.1.

Proof of Theorem 3.3

We focus on the case in which xt−1 is persistent. The case of stationary predictors is carried out
by analogous arguments and details are omitted.
Let

DT =

[√
T 0

0
√
T

]
,

and define

qT = D−1T

(
T∑
t=2

z̃t−1,TL(1)
(
ut − β̂0

))
,

QT = D−1T

(
T∑
t=2

z̃t−1,T z̃
′
t−1,T

(
L(1)

(
ut − β̂0

))2)
D−1T .

Then T = q′T (QT )−1 qT . We show (i) that qT converges in distribution to a normal distribution
with asymptotic mean zero and asymptotic covariance matrix Q and (ii) that QT converges
in probability to Q. The result follows then from the properties of the multivariate normal
distribution.
In qT ,

∑T
t=2 z̃

(I)
t−1,TL(1)

(
ut − β̂0

)
, say, can be represented in matrix notation using the pro-

jection matrix IT−1 − ιι′/ (T − 1), with ι being a (T − 1) × 1 vector of ones. Due to the
idempotency of this matrix, we can then replace z̃t−1,T by zt−1 without affecting the asymptotic
results. Regarding (i), note first that by the mean value theorem,

L(1)
(
ut − β̂0

)
= L(1) (ut − β0)−

(
β̂0 − β0

)
L(2)

(
ut − β̂0,t

)
, (3.22)
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with β̂0,t = γtβ0 + (1− γt) β̂0, for some 0 ≤ γt ≤ 1. Hence β̂0,t
p→ β0 uniformly over t.

Moreover,

T∑
t=2

zt−1,TL(1)
(
ut − β̂0

)
=

T∑
t=2

zt−1,T ũt −
(
β̂0 − β0

) T∑
t=2

zt−1,TL(2)
(
ut − β̂0,t

)
,

and

qT =

 1√
T

∑T
t=2 z

(I)
t−1,T ũt −

√
T
(
β̂0 − β0

)
1
T

∑T
t=2 z

(I)
t−1,TL(2)

(
ut − β̂0,t

)
1√
T

∑T
t=2 z

(II)
t−1,T ũt −

√
T
(
β̂0 − β0

)
1
T

∑T
t=2 z

(II)
t−1,TL(2)

(
ut − β̂0,t

) . (3.23)

Note that from (3.22) and the definition of β̂0,

0 =
T∑
t=2

L(1)
(
ut − β̂0

)
=

T∑
t=2

L(1) (ut − β0)−
(
β̂0 − β0

) T∑
t=2

L(2)
(
ut − β̂0,t

)
,

such that

√
T
(
β̂0 − β0

)
=

1√
T

∑T
t=2 ũt

1
T

∑T
t=2 L(2)

(
ut − β̂0,t

) . (3.24)

Let

AT =

[
1 0 −aT,13
0 1 −aT,23

]
.

with

aT,13 =

1
T

∑T
t=2 z

(I)
t−1,TL(2)

(
ut − β̂0,t

)
1
T

∑T
t=2 L(2)

(
ut − β̂0,t

) , (3.25)

aT,23 =

1
T

∑T
t=2 z

(II)
t−1,TL(2)

(
ut − β̂0,t

)
1
T

∑T
t=2 L(2)

(
ut − β̂0,t

) , (3.26)

and let

ξT =


1√
T

∑T
t=2 z

(I)
t−1,T ũt

1√
T

∑T
t=2 z

(II)
t−1,T ũt

1√
T

∑T
t=2 ũt

 .
Then qT = AT ξT . As a consequence of Assumptions 3.2 and 3.3, ξT is asymptotically normally
distributed with asymptotic mean equal to zero and positive definite asymptotic covariance ma-
trix Vξ, say, ξT

d→ ξ, ξ ∼ N (0, Vξ). Furthermore, we show

AT
p→ A, (3.27)
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with

A =

[
1 0 0
0 1 −a23

]
= O (1) ,

where a23 = lim
T→∞

1
T

∑T
t=2 z

(II)
t−1,T .

By Slutsky’s theorem, we then have qT
d→ N (0,Q) with Q ≡ AVξA

′. Regarding (3.27), we
verify that

1

T

T∑
t=2

L(2)
(
ut − β̂0,t

)
p→ κ̃(2), (3.28)

1

T

T∑
t=2

z
(I)
t−1L(2)

(
ut − β̂0,t

)
p→ 0, (3.29)

1

T

T∑
t=2

z
(II)
t−1L(2)

(
ut − β̂0,t

)
p→ κ̃(2)Σ13

z . (3.30)

where Σ13
z = lim

T→∞
1
T

∑T
t=2 z

(II)
t−1,T , with Σz defined in assumption 3.3, implying

a13 = 0

a23 = Σ13
z .

To establish (3.28)-(3.30), we use arguments similar to those in the proof of Lemma 3.1.6. For
p = 2 and p = 3, the facts that the second derivative is piecewise constant and Lipschitz,
respectively, can be employed to establish the necessary results, along the lines of the following
arguments. For p > 3, we make repeated use of the following Taylor expansion around ut−β0,

L(2)
(
ut − β̂0,t

)
= L(2) (ut − β0) +

p−2∑
j=3

1

(j − 2)!
L(j) (ut − β0)

(
β0 − β̂0,t

)j−2
+

1

(p− 3)!
L(p−1)

(
ut − β̂∗0,t

)(
β0 − β̂0,t

)p−3
. (3.31)

for β̂∗0,t between β̂0,t and β0, and thus converging uniformly to β0 as well, implying

T∑
t=2

L(2)
(
ut − β̂0,t

)
=

T∑
t=2

L(2) (ut − β0) +
T∑
t=2

(
p−2∑
j=3

1

(j − 2)!
L(j) (ut − β0)

(
β0 − β̂0,t

)j−2)

+
1

(p− 3)!

T∑
t=2

L(p−1)
(
ut − β̂∗0,t

)(
β0 − β̂0,t

)p−3
. (3.32)

As a consequence of assumption 3.2, 1
T

∑T
t=2 L(2) (ut − β0)

p→ κ̃(2), where, due to convexity of
L (·) and monotonicity of expectation, κ̃(2) = E

[
L(2) (ut − β0)

]
> 0.
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Similarly, since T−1
∑T

t=2 L(j)
(
ut − β̂0

)
p→ κ̃(j) and β̂0,t

p→ β0 uniformly,

(
β0 − β̃0

)j 1

T

T∑
t=2

L(j) (ut − β0) = op (1) ,

for j = 3, . . . , p. Using the Lipschitz continuity of L(p−1),∣∣∣∣∣L(p−1)
(
ut − β̂∗0,t

)
− L(p−1) (ut − β0)

∣∣∣∣∣ ≤ C
∣∣∣β0 − β̂∗0,t∣∣∣ = op (1) ,

and the same argument as above applies to the last term in (3.32). Therefore,

1

T

T∑
t=2

L(2)
(
ut − β̂0,t

)
p→ κ̃(2),

such that (3.28) holds.
Turning to (3.29),

T∑
t=2

z
(I)
t−1,TL

(2)
(
ut − β̂0,t

)
=

T∑
t=2

z
(I)
t−1,TL

(2) (ut − β0)

+
T∑
t=2

z
(I)
t−1,T

(
p−2∑
j=3

1

(j − 2)!
L(j) (ut − β0)

(
β0 − β̂0,t

)j−2)

+
T∑
t=2

z
(I)
t−1,T

(
1

(p− 3)!
L(p−1)

(
ut − β̂∗0,t

)(
β0 − β̂0,t

)p−3)
.

First,

1

T

T∑
t=2

z
(I)
t−1,TL

(2) (ut − β0) =
1

T

T∑
t=2

z
(I)
t−1,T

(
L(2) (ut − β0)− κ̃(2)

)
+ κ̃(2)

1

T

T∑
t=2

z
(I)
t−1,T .

Assumptions 3.2 and 3.3 imply that
{
z
(I)
t−1,T

(
L(2) (ut − β0)− κ̃(2)

)}
is a martingale difference

(md) sequence with E
∣∣∣z(I)t−1,TL(2) (ut − β0)

∣∣∣2= E
∣∣∣(z(I)t−1,T

)2∣∣∣E∣∣∣(L(2) (ut − β0)
)2∣∣∣ < C < ∞,

which follows from assumptions 3.2, 3.3, which says that z(I)t−1,T = ∆xt−1 which in turn implies
that z(I)t−1,T is independent of L(2) (ut − β0). Hence by a law of large numbers for md sequences
(see for example White (2001), section 3.5), we have

1

T

T∑
t=2

z
(I)
t−1,T

(
L (ut − β0)− κ̃(2)

) p→ 0.

Furthermore, as a consequence of assumption 3.3,

1

T

T∑
t=2

z
(I)
t−1,T =

nT
T

(
1

nT
(xT−1 − x1)

)
= Op

(nT
T

)
,
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such that 1
T

∑T
t=2 z

(I)
t−1,TL(2) (ut − β0)

p→ 0 by definition 3.1.
Similarly, for j = 3, . . . , (p− 2), by adding and subtracting

κ̃(j) = plim T−1
T∑
t=2

z
(I)
t−1,TL

(j) (ut − β0) ,

we obtain (
β0 − β̂0,t

)j−2 1

T

T∑
t=2

z̃
(I)
t−1L(j) (ut − β0) = op (1) .

By the Lipschitz condition for L(p−1), the same reasoning applies and we conclude that

(
β0 − β̂0,t

)p−3 1

T

T∑
t=2

z̃
(I)
t−1L(p−1)

(
ut − β̂∗0,t

)
= op (1) .

Combining these arguments yields (3.29).
Exactly analogous arguments apply to (3.30). In particular,

1

T

T∑
t=1

z
(II)
t−1,TL

(2) (ut − β0) =
1

T

T∑
t=2

z
(II)
t−1,T

(
L(2) (ut − β0)− κ̃(2)

)
+ κ̃(2)

1

T

T∑
t=2

z
(II)
t−1,T

converges in probability to κ̃(2)Σ13
z . Proceeding in this fashion gives (3.30), completing the first

part of the proof.
Regarding (ii), let Qij denote the (i, j) element of Q. Here,

Q11 = V11,

Q12 = V12 − a23V13,
Q22 = V22 − 2a23V23 + a223V33,

where Vij denotes the (i, j) element of Vξ. Here,

V11 = σ2
ũ lim
T→∞

1

T

T∑
t=2

E
[(
z
(I)
t−1,T

)2]
= σ2

ũΣ
22
z ,

V22 = σ2
ũ lim
T→∞

1

T

T∑
t=2

(
z
(II)
t−1,T

)2
= σ2

ũΣ
33
z ,

V33 = σ2
ũ,
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which are finite under assumptions 3.2 and 3.3, again using the definition of Σz. Furthermore,

V12 = lim
T→∞

1

T

T∑
t=2

z
(II)
t−1,TE

[
z
(I)
t−1,T ũ

2
t

]
= σ2

ũ lim
T→∞

1

T

T∑
t=2

z
(II)
t−1,TE

[
z
(I)
t−1,T

]
= 0,

V13 = lim
T→∞

1

T

T∑
t=2

E
[
z
(I)
t−1,T ũ

2
t

]
= σ2

ũ lim
T→∞

1

T

T∑
t=2

E
[
z
(I)
t−1,T

]
= 0,

V23 = σ2
ũ lim
T→∞

1

T

T∑
t=2

z
(II)
t−1,T = σ2

ũΣ
13
z ,

where E
[
z
(I)
t−1,T

]
= 0 follows by Assumptions 3.2 and 3.3.

Using (3.22),

QT = Q̃T +RQ
1T +RQ

2T , (3.33)

where

Q̃T =

 1
T

∑T
t=2

(
z̃
(I)
t−1

)2
ũ2t

1
T

∑T
t=2 z̃

(I)
t−1z̃

(II)
t−1 ũ

2
t

1
T

∑T
t=2 z̃

(I)
t−1z̃

(II)
t−1 ũ

2
t

1
T

∑T
t=2

(
z̃
(II)
t−1

)2
ũ2t

 ,
RQ

1T =
(
β̂0 − β0

)2
· 1

T

∑T
t=2

(
z̃
(I)
t−1

)2 (
L(2)

(
ut − β̂0,t

))2
1
T

∑T
t=2 z̃

(I)
t−1z̃

(II)
t−1

(
L(2)

(
ut − β̂0,t

))2
1
T

∑T
t=2 z̃

(I)
t−1z̃

(II)
t−1

(
L(2)

(
ut − β̂0,t

))2
1
T

∑T
t=2

(
z̃
(II)
t−1

)2 (
L(2)

(
ut − β̂0,t

))2
 ,

RQ
2T = −2

(
β̂0 − β0

)
· 1

T

∑T
t=2 ũt

(
z̃
(I)
t−1

)2
L(2)

(
ut − β̂0,t

)
1
T

∑T
t=2 ũtz̃

(I)
t−1z̃

(II)
t−1L(2)

(
ut − β̂0,t

)
1
T

∑T
t=2 ũtz̃

(I)
t−1z̃

(II)
t−1L(2)

(
ut − β̂0,t

)
1
T

∑T
t=2 ũt

(
z̃
(II)
t−1

)2
L(2)

(
ut − β̂0,t

)
 .

We first verify that Q̃T converges in probability to Q. Notice that

z̃
(I)
t−1 = z

(I)
t−1,T − â13,

z̃
(II)
t−1 = z

(II)
t−1,T − â23,

where â13 = T−1
∑T

t=2 z
(I)
t−1,T and â23 = T−1

∑T
t=2 z

(II)
t−1,T . Now

1

T

T∑
t=2

(
z
(I)
t−1,T − â13

)2
ũ2t =

1

T

T∑
t=2

(
z
(I)
t−1,T

)2
ũ2t − 2â13

1

T

T∑
t=2

z
(I)
t−1,T ũ

2
t + (â13)

2 1

T

T∑
t=2

ũ2t .

By assumptions 3.2 and 3.3, E
∣∣∣∣(z(I)t−1,T

)2
ũ2t

∣∣∣∣ < ∞, so
{(

z
(I)
t−1,T

)2
ũ2t − σ2

ũE
[(
z
(I)
t−1,T

)2]}
is
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a md sequence with

E
∣∣∣∣(z(I)t−1,T

)2
ũ2t

∣∣∣∣2 = E
∣∣∣z(I)t−1,T

∣∣∣4E∣∣ũt∣∣4 < C <∞,

which follows by construction of z(I)t−1 and from assumptions 3.2 and 3.3. Hence by a law of
large numbers for md sequences

1

T

T∑
t=2

(
z
(I)
t−1,T

)2
ũ2t =

1

T

T∑
t=2

((
z
(I)
t−1,T

)2
ũ2t − σ2

ũE
[(
z
(I)
t−1,T

)2])

+ σ2
ũ

1

T

T∑
t=2

E
[(
z
(I)
t−1,T

)2] p→ V11.

Similar arguments can be invoked to show T−1
∑T

t=2 z
(I)
t−1,T ũ

2
t

p→ 0 and by combining this
results with â13

p→ 0 and T−1
∑T

t=2 ũ
2
t

p→ σ2
ũ, we have

1

T

T∑
t=2

(
z̃
(I)
t−1

)2
ũ2t

p→ Q11.

Analogous arguments apply to the other elements of Q̃T to obtain

Q̃T
p→ Q.

Consider now RQ
1T . Following the same steps as in (i) making use of a Taylor expansion analo-

gous to (3.31), we have

1

T

T∑
t=2

(
z̃
(I)
t−1

)2 (
L(2)

(
ut − β̂0,t

))2
=

1

T

T∑
t=2

(
z̃
(I)
t−1

)2 (
L(2) (ut − β0)

)2
+ op (1) = Op (1) .

From (3.24) and the preceding results it is easy to see that
(
β̂0 − β0

)
= op (1). Then for the

(1, 1) element of RQ
1T it holds that

(
β̂0 − β0

)2 1

T

T∑
t=2

(
z̃
(I)
t−1

)2 (
L(2)

(
ut − β̂0,t

))2 p→ 0.

Continuing in this manner,

RQ
1T

p→ 0,

RQ
2T

p→ 0,

which completes the proof of the theorem.

Proof of Theorem 3.4

The proof follows the steps of the proof of theorem 3.3. We consider the cases of (i) persistence
and (ii) stationarity of the predictors separately.
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(i) Suppose xt−1 is persistent. By the mean value theorem

L(1)
(
yt − β̂0

)
= L(1) (ut − β0)−

(
β̂0 − β0

)
L(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)

+

(
b

nT
√
T
xt−1

)
L(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
,

for some β̂0,t between β̂0 and β0 and b̂ between b and zero. We then have

√
T
(
β̂0 − β0

)
=

1√
T

∑T
t=2 ũt

1
T

∑T
t=2 L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
+

b
nTT

∑T
t=2 xt−1L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
1
T

∑T
t=2 L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

) .

Therefore, with the scaling matrix DT as defined in the proof of theorem 3.3,

qT = D−1T

(
T∑
t=2

z̃t−1L(1)
(
yt − β̂0

))

=

 1√
T

∑T
t=2 z̃

(I)
t−1,T ũt −

√
T
(
β̂0 − β0

)
1
T

∑T
t=2 z̃

(I)
t−1,TL(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
1√
T

∑T
t=2 z̃

(II)
t−1,T ũt −

√
T
(
β̂0 − β0

)
1
T

∑T
t=2 z̃

(II)
t−1,TL(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
+ b

 1
nTT

∑T
t=2 z̃

(I)
t−1,Txt−1L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
1

nTT

∑T
t=2 z̃

(II)
t−1,Txt−1L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

) .
Making use of the expression for

√
T
(
β̂0 − β0

)
, we can establish the following decomposition,

qT = AT ξT + ∆T ,

where ξT is defined as

ξT =


1√
T

∑T
t=2 z̃

(I)
t−1,T ũt

1√
T

∑T
t=2 z̃

(II)
t−1,T ũt

1√
T

∑T
t=2 ũt

 ,
and

AT =

[
1 0 −aT,13
0 1 −aT,23

]
,
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where now

aT,13 =

1
T

∑T
t=2 z̃

(I)
t−1,TL(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
1
T

∑T
t=2 L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

) ,

aT,23 =

1
T

∑T
t=2 z̃

(II)
t−1,TL(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
1
T

∑T
t=2 L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

) ,

Furthermore,

∆T = b (∆2,T −∆1,T ) .

where

∆1,T =


1
T

∑T
t=2 z̃

(I)
t−1,TL

(2)

(
ut−β̂0,t+ b̂

nT
√
T
xt−1

)
1
T

∑T
t=2 L(2)

(
ut−β̂0,t+ b̂

nT
√
T
xt−1

) (
1

nTT

∑T
t=2 xt−1L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

))
1
T

∑T
t=2 z̃

(II)
t−1,TL

(2)

(
ut−β̂0,t+ b̂

nT
√
T
xt−1

)
1
T

∑T
t=2 L(2)

(
ut−β̂0,t+ b̂

nT
√
T
xt−1

) (
1

nTT

∑T
t=2 xt−1L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

))
 ,

∆2,T =

 1
nTT

∑T
t=2 z̃

(I)
t−1,Txt−1L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

)
+ 1
nTT

∑T
t=2 z̃

(II)
t−1,Txt−1L(2)

(
ut − β̂0,t + b̂

nT

√
T
xt−1

) .
First, AT ξT is asymptotically normally distributed as in the proof of theorem 3.3. To this end,
using a Taylor expansion around ut − β0,

L(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
= L(2) (ut − β0) (3.34)

+

p−2∑
j=3

1

(j − 2)!
L(j) (ut − β0)

(
β0 − β̂0,t +

b̂

nT
√
T
xt−1

)j

+
1

(p− 3)!
L(p−1)

(
ut − β̂∗0,t +

b̂∗

nT
√
T
xt−1

)(
β0 − β̂0,t +

b̂

nT
√
T
xt−1

)p−1

. (3.35)

with b̂∗ between b and b̂. Now due to the weak convergence of xt−1,

b̂

nT
√
T

sup
t

(xt−1) = Op

(
T−1/2

)
.

Using similar reasoning as in the proof of lemma 3.2, it can be shown that β̂ = β0+Op

(
T−1/2

)
,

implying β̂0,t
p→ β0 uniformly, at rate

√
T . Therefore,

sup
t

(
β0 − β̂0,t +

b̂

nT
√
T
xt−1

)j

= Op

(
T−1/2

)
,
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implying

1

T

T∑
t=2

L(j) (ut − β0)

(
β0 − β̂0,t +

b̂

nT
√
T
xt−1

)j

≤ sup
t

(
β0 − β̂0,t +

b̂

nT
√
T
xt−1

)j
1

T

T∑
t=2

L(2) (ut − β0) = op (1) .

Using the Lipschitz continuity of L(p−1),∣∣∣∣∣L(p−1)

(
ut − β̂0,t +

b̂∗

nT
√
T
xt−1

)
− L(p−1) (ut − β0)

∣∣∣∣∣ ≤ C

∣∣∣∣∣β0 − β̂∗0 +
b̂∗

nT
√
T
xt−1

∣∣∣∣∣ = op (1) ,

and we can employ the same reasoning for the last term in the Taylor expansion. Thus

1

T

T∑
t=2

L(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
p→ κ̃(2).

By similar arguments,

1

T

T∑
t=2

z̃
(I)
t−1L(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
p→ 0, (3.36)

1

T

T∑
t=2

z̃
(II)
t−1L(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
p→ 0. (3.37)

Hence qT
d→ N (0,Q), with

Q11 = σ2
ũ lim
T→∞

1

T

T∑
t=2

E
[(
z̃
(I)
t−1

)2]
, (3.38)

Q22 = σ2
ũ lim
T→∞

1

T

T∑
t=2

(
z̃
(II)
t−1,T

)2
, (3.39)

Q12 = 0,

where the first two limits are finite by assumption 3.3.
Second, we argue that ∆1,T

p→ 0 and

∆2,T ⇒ ∆2 ≡ κ̃(2) σv

[
0´ 1

0
Z̃(s)X (s) ds

]
, (3.40)

where Z̃ (s) = Z (s) −
´ 1
0
Z (r) dr with Z (s) = sin (sπ/2), say. The proof of the theorem

follows then by combining (3.39), ∆1,T
p→ 0, and (3.40) and the properties of the non-central

χ2 distribution.

119



Regarding ∆1,T , notice that

1

nTT

T∑
t=2

xt−1L(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
=

1

nTT

T∑
t=2

xt−1L(2) (ut − β0) + op (1) ,

such that the result follows by applying lemma 3.1, item 3, and combining this result with (3.36)
and (3.37).
Finally, for ∆2,T , consider the first component

1

nTT

T∑
t=2

z̃
(I)
t−1,Txt−1L

(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
=

1

nTT

T∑
t=2

z
(I)
t−1,Txt−1

(
L(2) (ut − β0)− κ̃(2)

)
−

(
nT
T

1

nT

T∑
t=2

z
(I)
t−1

)(
1

nTT

T∑
t=2

xt−1
(
L(2) (ut − β0)− κ̃(2)

))

+ κ̃(2)
1

nTT

T∑
t=2

z̃
(I)
t−1,Txt−1 + op (1) ,

where we made use of (3.34). The first term on the r.h.s. converges to zero in probability using
the fact that

{
z
(I)
t−1n

−1
T xt−1

(
L(2) (ut − β0)− κ̃(2)

)}
is a md sequence with uniformly bounded

second moments. Similarly, 1/ (nTT )
∑T

t=2 xt−1
(
L(2) (ut − β0)− κ̃(2)

)
converges in proba-

bility to zero. Moreover, 1/nT
∑T

t=2 z
(I)
t−1 = 1/nT

∑T
t=2 ∆xt−1 = Op (1), so the second term

vanishes using nT/T → 0 by definition 3.1. Finally, the third term converges to zero in proba-
bility by lemma 3.3.
We can invoke analogous arguments for the second component of ∆2,T :

1

nTT

T∑
t=2

z̃
(II)
t−1,Txt−1L

(2)

(
ut − β̂0,t +

b̂

nT
√
T
xt−1

)
= κ̃(2)

1

nTT

T∑
t=2

z̃
(II)
t−1,Txt−1 + op (1) .

The convergence of ∆2,T follows from Lemma 3.3.
(ii) Let us now consider the stationary case. Proceeding analogously as in (i), we have

∆1,T =


1
T

∑T
t=2 z̃

(I)
t−1,TL

(2)
(
ut−β̂0,t+ b̂√

T
xt−1

)
1
T

∑T
t=2 L(2)

(
ut−β̂0,t+ b̂√

T
xt−1

) (
1
T

∑T
t=2 xt−1L(2)

(
ut − β̂0,t + b̂√

T
xt−1

))
1
T

∑T
t=2 z̃

(II)
t−1,TL

(2)
(
ut−β̂0,t+ b̂√

T
xt−1

)
1
T

∑T
t=2 L(2)

(
ut−β̂0,t+ b̂√

T
xt−1

) (
1
T

∑T
t=2 xt−1L(2)

(
ut − β̂0,t + b̂√

T
xt−1

))
 ,

∆2,T =

 1
T

∑T
t=2 z̃

(I)
t−1,Txt−1L(2)

(
ut − β̂0,t + b̂√

T
xt−1

)
1
T

∑T
t=2 z̃

(II)
t−1,Txt−1L(2)

(
ut − β̂0,t + b̂√

T
xt−1

) .
First, ∆1,T

p→ 0. To see this, note that 1/T
∑T

t=2 xt−1L(2)
(
ut − β̂0,t + b̂√

T
xt−1

)
converges to
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zero in probability while the same holds for

1

T

T∑
t=2

z̃
(II)
t−1L(2)

(
ut − β̂0,t +

b̂√
T
xt−1

)
=

1

T

T∑
t=2

z̃
(II)
t−1
(
L(2) (ut − β0)− κ̃(2)

)
+ op (1) .

Moreover, the denominator in both elements of ∆1,T converges in probability to κ̃(2) and

1

T

T∑
t=2

z̃
(I)
t−1L(2)

(
ut − β̂0,t +

b̂√
T
xt−1

)
=

1

T

T∑
t=2

z
(I)
t−1
(
L(2) (ut − β0)− κ̃(2)

)
−

(
1

T

T∑
t=2

z
(I)
t−1

)(
1

T

T∑
t=2

(
L(2) (ut − β0)− κ̃(2)

))
+ op (1) .

The first term on the r.h.s. converges in probability to zero by the law of large numbers for md
sequences while 1/T

∑T
t=2 z

(I)
t−1 = 1/T (xT−1 − x1) with E [xt/T ] = x0/T = O (1/T ) and

V ar [xt/T ] = σ2
v/T

2
∑t

j=0 ψ
2
j,T = O (1/T 2) using

∑∞
j=0 ψ

2
j,T < C < ∞ under stationarity.

Hence xt/T converges in probability to zero.
Since 1/T

∑T
t=2 L(2) (ut − β0)− κ̃(2) converges to zero as well, ∆1,T

p→ 0.
Regarding ∆2,T , notice first

1

T

T∑
t=2

z̃
(II)
t−1,Txt−1L

(2)

(
ut − β̂0,t +

b̂√
T
xt−1

)
=

1

T

T∑
t=2

z̃
(II)
t−1,Txt−1

(
L(2)

(
ut − β̂0

)
− κ̃(2)

)
+ κ̃(2)

1

T

T∑
t=2

z̃
(II)
t−1,Txt−1 + op (1) .

Using the fact that z̃(II)t−1 is deterministic, the first term converges in probability to zero using the
law of large numbers for md sequences.
The second term equals 1/T

∑T
t=2 z̃

(II)
t−1 (xt−1 − x0), which converges in probability to zero as

T →∞. Hence the second component of ∆2,T converges to zero in probability.
Similarly,

1

T

T∑
t=2

z̃
(I)
t−1xt−1L(2)

(
ut − β̂0,t +

b̂√
T
xt−1

)
=

1

T

T∑
t=2

z̃
(I)
t−1xt−1

(
L(2)

(
ut − β̂0

)
− κ̃(2)

)
+ κ̃(2)

1

T

T∑
t=2

z̃
(I)
t−1xt−1 + op (1) , (3.41)

and the first term can be further decomposed into

1

T

T∑
t=2

z̃
(I)
t−1xt−1

(
L(2) (ut − β0)− κ̃(2)

)
=

1

T

T∑
t=2

z
(I)
t−1xt−1

(
L(2) (ut − β0)− κ̃(2)

)
−

(
1

T

T∑
t=2

zt−1

)(
T∑
t=2

xt−1
(
L(2) (ut − β0)− κ̃(2)

)) p→ 0,

using the law of large numbers for md sequences and the fact that 1/T
∑T

t=2 z
(I)
t−1 vanishes as
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T →∞. Finally, turning to the second term in (3.41),

1

T

T∑
t=2

z̃
(I)
t−1xt−1 =

1

T

T∑
t=2

∆xt−1xt−1 −

(
1

T

T∑
t=2

xt−1

)(
1

T

T∑
t=2

∆xt−1

)

=
1

T

T∑
t=2

x2t−1 −
1

T

T∑
t=2

xt−2xt−1 −

(
1

T

T∑
t=2

xt−1

)(
1

T

T∑
t=2

∆xt−1

)
.

Now 1/T
∑T

t=2 xt−1
p→ x0 and 1/T

∑T
t=2 ∆xt−1 = 1/T (xT−1 − x1) which converges in mean

square to zero as argued above. Hence
(

1/T
∑T

t=2 xt−1

)(
1/T

∑T
t=2 ∆xt−1

)
p→ 0. Moreover,

1

T

T∑
t=2

∆xt−1xt−1 =
1

T

T∑
t=2

x2t−1 −
1

T

T∑
t=2

xt−1xt−2,

and, with ψ0,T = 1, 1/T
∑T

t=2 x
2
t−1 = 1/T

∑T
t=2

(
x0 +

∑t
j=0 ψj,Tvt−j

)2
which converges in

probability to x20+σ2
v limT→∞

∑∞
j=0 ψ

2
j,t. An analogous argument applies to 1/T

∑T
t=2 xt−1xt−2

to conclude

1

T

T∑
t=2

∆xt−1xt−1
p→ σ2

v

∞∑
j=0

(
ψ2
j,T − ψj,Tψj+1,T

)
.

The result follows by combining this result with (3.38) and the properties of the non-central χ2

distribution.
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