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Introduction

In 2001, Akerlof, Spence and Stiglitz won the Nobel prize for their work on adverse selection,

signalling and screening. The prize was in recognition of their foundational contribution

to information economics, a revolution in economic research that brought the underlying

idea of information asymmetries to the heart of many emerging fields of economic research

(Stiglitz 2000); for instance, economics of privacy, auctions with information revelation and

mechanism design. This dissertation contributes to these three areas of microeconomic

research.

Chapter 1.2 The first chapter is a contribution to the literature on the economics of

privacy. During the last decade, an increasing number of economists have researched the

economics of privacy. This economic literature reports an apparent dichotomy between a

high degree of privacy concerns across the US population and a low degree of data protecting

actions (see Acquisti 2004, Acquisti and Grosklags 2005 for an overview). This dichotomy

has been called the ’privacy paradox’. In a natural environment with demand uncertainty

and customer entry, I identify customer entry as a new explanation for the behavior of firms

and the privacy paradox.

I investigate a two-period model with two monopolists and two buyers. One monopolist

sells her good 1 only in period 1 and one monopolist sells her good 2 only in period 2. In

period 1, one buyer demands good 1 and then goes on to demand good 2 with positive

probability. In period 2, players learn whether this buyer has demand for good 2, and

2This chapter is based on the paper "On the Value of Purchase Histories - Type-dependent Demand
Uncertainty and Consumer Entry", Litterscheid 2014.
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there is a second buyer with demand for good 2. Seller 1’s purchase history contains her

customer’s purchases and name/identity. I am interested in the first monopolist’s incentives

to sell information about her customer’s characteristics to the monopolist of a second good

and whether seller 1 prefers a disclosure or a confidential policy. I provide conditions for

the parameters so that the first monopolist prefers the disclosure policy and profitably sells

the purchase history to seller 2. Given that a second buyer enters, seller 2 is willing to

pay more for buyer 1’s purchase history than she would have been willing to pay if she had

expected no other buyer to enter. The reason is that the purchase history, containing the

buyer’s identity, enables seller 2 to distinguish between the two buyers and to make targeted

offers. In other words, the intuition for my main result lies in the new additional value of the

purchase history. Consumer entry allows me to evaluate a value of the purchase history that

stems from the second seller’s ability to identify and target the customer. This additional

value is generated by the new entrant since the optimal offer is distorted if the seller cannot

distinguish between the customers.

Chapter 2.3 The second chapter is a contribution to the literature on public informa-

tion revelation prior to an auction. A typical example is a situation where the owner of

a company announces the sale of this company (target) via an auction (takeover auction).

All bidders share a common interest in the quality of the target, e.g. the target’s future

cash flows. The potential bidders are asymmetrically and imperfectly informed about the

target’s quality. Potential bidders are also heterogenous and have some additional private

interest in the company, e.g. potential synergies that arise when the buyer merges with the

target. Before the auction, the seller can open her books and disclose private and common

value information. Private value information that drives synergies may arise in many areas,

for example in procurement, research and development, production, human resources, sales

and marketing etc. Common value information is related to quality, e.g. cash flow forecast.

While one potential bidder’s strength is his marketing environment, another potential bidder

3This chapter is based on the paper "Revealing Independent Private Value Information When Bidders
Have Interdependent Values", Litterscheid 2014.
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may have technological know-how that helps to decrease production costs (see Szech 2011 for

a similar argument or Gärtner and Schmutzler 2009). The seminal paper that inspired most

of the related research is Milgrom and Weber 1982a who showed that a seller prefers public

disclosure of affi liated information in an interdependent value auction setting. This is the

so-called linkage principle. The main question I address in this chapter is whether the seller

also prefers public disclosure of private value information over concealing her information.

I restrict attention to disclosure of private value information prior to an interdependent

value second-price auction with two bidders who hold preliminary private information about

the good. To investigate the main research question and to disentangle the effect of public

common value information from public private value information, I assume that the seller

does not hold common value information. The key aspect is the extent to which disclosure

affects the bidders’bidding strategies in equilibrium. Unlike Milgrom and Weber 1982a,

the disclosed information affects bidders idiosyncratically allowing to enhance the bidders’

exposition to the winner’s curse. I find that the linkage principle (see Milgrom and Weber

1982a) holds if the seller’s information is suffi ciently informative, but it does not hold if the

information contains little information.

Chapter 3.4 The third chapter is a contribution to several branches of the literature on

mechanism design: literature on optimal contracts in a principal-agent model with asym-

metric information about the agent’s type, literature on sequential screening, and literature

on multi-dimensional screening. The principal is the buyer and the agent is the seller.

Together with Dezsö Szalay, I analyze a screening problem where the agent produces

an object consisting of multiple items and has a multi-dimensional type that he learns over

time. The principal would like to buy this object from the agent and contracts with an

agent to trade a bundle of services. Moreover, the agent has private information about the

costs of producing one item in the bundle from the outset and privately learns the cost of

producing the other item later on. When the principal and the agent write the contract

4This chapter is based on the paper "Sequential, multidimensional screening", Litterscheid and Szalay
2014.
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after the agent knows part of his information but before he perfectly knows his cost type,

then the known part of his cost type is called his ex-ante type and the other type is called

his ex-post type. The optimal sequential mechanism or optimal contracting is dynamic and

consists of a menu of n submenus each of which contains m contracts; where n is the number

of ex-ante types andm is the number of ex-post types. Principal and agent get together both

at the outset, when the agent picks one of the n submenus, and later on, when the agent

knows his ex-post type and picks one of the m contracts of the submenu he selected. Only

afterwards is the object produced and the agent paid. The seminal paper of the sequential

screening literature that considers the same type of dynamic contracting is Courty and Li

2000. Our work differs from the current literature in that our allocation problem is two-

dimensional and that we allow for interdependencies, substitutionality or complementarity

between the two dimensions of the object. This two-dimensional screening problem lacks

structure and thus is potentially very complicated to solve. To derive an explicit solution,

we consider a simplified situation and restrict the agent’s type to the realization of a vector of

two binary random variables. We provide a solution method to derive the optimal contract

and a characterization of the optimal contract. We find that the distortions of the optimal

two-dimensional allocation depends on the strength of complementarity/substitutionality of

the two components of the object. For mild complements or substitutes, a simple solution

procedure picks up the optimum. For substitutes or strong complements upward distortions

are possible. Thus, we provide a natural setting in which upward distortions may arise as a

feature of the optimal mechanism.
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On the Value of Purchase Histories -
Type-dependent Demand Uncertainty
and Consumer Entry

1.1 Introduction

The ability to predict a customer’s valuation and future demand has high economic value

because it may enable a monopolist to reduce a customer’s information rent. There is ample

evidence for synergies firms generate by sharing information about their customers. For

instance, there is evidence that hospitals profit from exchanging information with each other

(Miller and Tucker 2009). Profit-oriented companies such as Google, Facebook or Amazon

collect huge data sets about their customers. Google and Facebook then sell the service of

behavior-based/targeted advertisement to other companies.

During the last decade, an increasing number of economists have researched the economics

of privacy. This economic literature reports an apparent dichotomy between a high degree

of privacy concerns across the US population and a low degree of data protecting actions

(see Acquisti 2004, Acquisti and Grosklags 2005 for an overview). This dichotomy has been

called the ’privacy paradox’.

So, on the one hand there are firms that collect and sell large amounts of data about

customers and on the other hand there is the privacy paradox. One important question in

this context is how the two motivating phenomena fit together (Taylor 2004). To answer

5



this question, most relevant papers analyze a seller’s privacy policy in a variant of a simple

two period model and compare the optimality of two privacy policies, the confidential policy

and the disclosure policy, from the sellers’perspectives. Selling customer purchase histories

is forbidden by the confidential policy and allowed by the disclosure policy. The confidential

policy does not allow the seller(s) to exchange the information a buyer has revealed about

himself. The disclosure policy allows the seller(s) to exchange, and to sell, personalized

information, but introduces the ratchet effect.1 To justify the privacy paradox, environments

or conditions that imply that the seller prefers the disclosure policy have to be found.

Most papers on the economics of privacy find that a confidential policy outperforms the

disclosure policy when customers are rational and positively correlated (see e.g. Taylor 2004,

Dodds 2003, Calzolari and Pavan 2006; for a survey, see Fudenberg and Villas-Boas 2006,

2012, Hui and Png 2006, Zhan and Rajamani 2008).2 The main challenge is to enlarge the

contractual space so that there is a contract that sets both, sellers and buyers, better off. In

the spirit of Fudenberg and Tirole 1983, Dodds 2003 finds that the principal’s joint surplus

is higher under the disclosure policy than under the confidential policy if the principal’s

discount factor is suffi ciently higher than the worker’s discount factor, but he does not

characterize the contract explicitly. Calzolari and Pavan 2006 provide conditions so that in

the presence of negatively correlated valuations and changing support, the seller benefits from

a disclosure policy. The intuition in this setting is that there are countervailing incentives.

The first seller may also profit from disclosure in the case of direct externalities on seller 1’s

1The ratchet effect is present in models where the buyer has a persistent type and the seller has perfect
memory but no commitment power to long term contracts (see e.g. Fudenberg and Tirole 1983 ). The
ratchet effect describes the idea that a buyer who has persistent information cannot undo the revelation of
his private information once he has revealed it. Since he will never again receive any information rent for
revealed information, he might refrain from potentially revealing actions such as purchasing a good. This
might inhibit trade and lower the seller’s expected revenue. Fudenberg and Tirole 1983 consider sequential
bargaining without commitment in a two period model between a seller and a buyer.

2For a broader overview of the economic literature on privacy, we recommend a survey by Hui and Png
2006. See also Zhan and Rajamani 2008. For a general overview of the economic literature on behavior-
based pricing, see Fudenberg and Villas-Boas 2006. For a recent contribution, overview and a discussion
of different types of behavior-based pricing models, see Fudenberg and Villas-Boas 2012. The literature
on privacy policies is related to the literature on dynamic pricing (see e.g. Baron and Besanko 1984),
which shows that the optimal long-term contract implements a sequence of the solution to the short-term
contracting problem.
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payoff (Calzolari and Pavan 2006).

I depart from the assumptions of these related papers in the following dimensions. First,

I assume that there is a customer with uncertain, type-dependent future demand. Second, a

new customer enters in the second period. Third, I restrict attention to persistent valuations

(as true for the examples from the introduction). In particular, two monopolistic sellers

(in this chapter either called monopolist or seller) trade sequentially with two buyers: One

incumbent (in this chapter also called buyer 1) and one entrant (in this chapter also called

buyer 2). The incumbent customer has unit demand for the first monopolist’s good 1 in

period 1 and with positive probability a unit demand for the second monopolist’s good 2 in

period 2. The entrant buyer has a unit demand for the second monopolist’s good 2 in period

2. In my model the incumbent customer’s type determines his time-persistent valuation and

his probability to demand one unit of the good 2. The incumbent privately knows his type

at the outset of the game, information that seller 2 does not have but could gain from seller

1. So, the first seller’s purchase history can be informative about her customer’s type and

enables seller 2 to distinguish the incumbent from the new buyer.

This chapter provides a new explanation for the privacy paradox and extends existing

results to a very natural setting with persistent valuation, type-dependent demand uncer-

tainty, and customer entry. To the best of my knowledge, the paper on which this chapter

is based is the first paper addressing the privacy paradox and considering a dynamic pricing

model with persistent valuation, type-dependent demand uncertainty, and customer entry.

In the presence of demand uncertainty for good 2, the second monopolist updates her belief

about the incumbent buyer’s true valuation conditional on the event that the buyer has

positive demand for the object. A typical example for such preferences with demand uncer-

tainty is a customer’s status preference. Some customers have a higher probability to buy

further status goods in the future. One can find many more applications for preferences that

have an underlying persistent type but demand uncertainty: Add-on products, applications

for mobile devices, insurances, media and newspapers, portfolio management, health care,

schooling, etc.

7



My main insight concerning the privacy policy of the first monopolist is that she some-

times prefers the disclosure policy. I find that the first seller prefers to sell the purchase

history at a strictly positive price if the second seller cannot identify the buyers and is suf-

ficiently more pessimistic about her incumbent’s type than she is about the entrant’s type.

Why is the purchase history more valuable if a new customer enters seller 2’s market?

When the new customer, buyer 2, enters the market and the first monopolist’s former cus-

tomer, buyer 2, comes to the second monopolist to buy good 2, then the second monopolist

cannot distinguish the two customers. The purchase history of the first monopolist’s former

customer provides two types of information. First, it provides the second monopolist with

information about the valuation of the first monopolist’s former customer. Second, it informs

about the identity of the first monopolist’s former customer. The latter type of information

implies that the second monopolist then can distinguish the two customers if she buys the

purchase history from the first monopolist. This purchase history provides her with some

additional value that would not be present without the entry of the buyer 2. One can find

conditions under which the first monopolist’s total revenue from committing to a disclosure

policy, which is the sum of first period profits and the price of the purchase history, exceeds

her total revenue under the confidential policy, which is equal to her first period profits.

Section 2 presents the main assumptions of the model with customer entry and my

approach to derive the main result. Section 3 presents the analysis of the model. Subsection

3.1 considers seller 2’s contracting problem if she bought the purchase history of the first

monopolist’s customer. Subsection 3.2 considers seller 2’s contracting problem if she did not

buy the purchase history. Subsection 3.3 presents seller 1’s offer of the purchase history to

seller 2. Subsection 3.4 presents seller 1’s contracting problem under the confidential policy.

Subsection 3.5 presents the last step of the analysis, seller 1’s contracting problem, and my

main result. Section 4 presents the conclusion. Proofs are relegated to Appendix 1.
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1.2 Model and Approach

1.2.1 The Model

I consider a two-period bargaining model. There are two sellers (in this chapter, always

female, i.e. in the "she" form) and two buyers (in this chapter, always male, i.e. in the "he"

form). Seller 1 sells good 1 and seller 2 sells good 2. One buyer has unit demand for good

1 in period 1 and lives with certainty in period 1. I will often refer to him by calling him

buyer 1. His valuation of one unit of either of the two goods is determined by his persistent

type i ∈ {A,B}. If his type is A (B), then his valuation, θ1, is θA (θB) and his probability to

have unit demand for good 2 in period 2 is δA (δB); θA > θB and δA ∈ [0, 1] and δB ∈ [0, 1].

Buyer 2 has only unit demand for good 2 in period 2. I assume without loss of generality

that he enters at the beginning of period 2. Buyer 2’s type is his valuation θ2 ∈ {θA, θB}.
Nature draws both buyers’types at the beginning of the game. The type of any of the

two buyers is the respective buyer’s private information; that is, none of the other players,

including sellers 1 and 2, can observe his type. Buyer 1 learns his type when at the beginning

of period 1. Buyer 2 privately learns his type at the beginning of period 2, when he enters

the market. It is common knowledge that buyer 1’s type i is a binary random variable

with probability α ≡ P (i = A) and (1− α) ≡ P (i = B). Similarly, with probability β

buyer 2’s type is θA and with probability 1 − β his type is θB. From the other players’

perspectives, buyer 2’s type θ2 is a binary random variable with probability β ≡ P (θ2 = θA)

and (1− β) ≡ P (θ2 = θB).

Payment p denotes the price set by seller 1 for x units of good 1. Let t denote the price

set by seller 2 for y units of good 2. x and y can be chosen from the unit interval. Then

x denotes a buyer’s consumption of good 1 and y denotes the buyer’s consumption of good

2. A buyer’s utility of purchasing good 1 (or 2) with probability x (or y) at price p (or

t) is quasilinear in the payment xθ − p (or yθ − t). Let P denote the price for seller 1’s

customer information. Both sellers’valuations and production costs are normalized to 0,

9



which is common knowledge. Seller 2’s willingness to pay is denoted by WTP and is the

additional expected payoff that she can earn by making use of the information contained in

the purchase history. I assume that seller 1 has full bargaining power with respect to this

additional expected payoff. Seller 1’s offers are publicly observable to all players. Seller 1

can generate revenue p from trade with the buyer and P from trade with seller 2. Seller

2 can generate revenue t from trade with each buyer. She may set different prices for the

incumbent and the entrant if she can distinguish them. She can only distinguish them under

disclosure.

Like Taylor 2004 I assume that seller 1 possesses a device that saves the buyer’s purchase

decision, and which she cannot manipulate. In my setting, the purchase history contains the

buyer’s identity and his purchase decisions3.

Seller 1 can commit to a privacy policy, which is either a disclosure policy or a confidential

policy as in Taylor 2004. The confidential policy does not allow seller 1 to use the information

that she has learnt about her customers. She commits in particular to not selling the purchase

history. The disclosure policy allows seller 1 to choose to sell the purchase history to seller

2.

The exact timing of the game is the following:

Period 1:

1. Nature selects buyer 1’s type. Buyer 1 enters and learns his type. Seller 1 commits to

a privacy policy and makes offer to buyer 1. If offer accepted: Buyer 1 receives good

and pays price.

2. Only under disclosure policy: Seller 1 offers purchase history to seller 2. If seller 2

accepts seller 1’s offer, then seller 2 receives the purchase history and pays price. If

seller 2 rejects seller 1’s offer, then seller 2 does not receive the purchase history and

pays nothing.

3I will assume that the list contains reports instead of purchase decisions, since I restrict attention to
direct mechanisms.
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Period 2:

3. Nature draws demand for good 2 of buyer 1 and type of buyer 2. Buyer 2 enters and

learns his type. Seller 2 makes offer to each of her customers. If seller 2’s offer accepted

by a customer, then customer receives good and pays price.

It is helpful to explicitly describe the buyers’demand for seller 2’s good in detail. At the

beginning of period 2 nature draws buyer 1’s demand. With probability δi buyer 1’s demand

is 1 and with 1− δi it is 0. Buyer 2’s demand is 1. Thus, there are either one or two buyers

active in period 2. If buyer 1’s demand is 0, then seller 2 faces a single customer. If buyer

1’s demand is 1, then seller 2 faces two customers.

Seller 1’s strategy consists of several actions: a decision on the privacy policy, an offer to

buyer 1 under the confidential policy, an offer to buyer 1 under the disclosure policy and the

price P for the purchase history under the disclosure policy. I can formulate seller 1’s offer

to seller 2 in short form if I allow her to choose P =∞, implying that she does not want to
sell the purchase history.

Keep in mind that seller 2’s belief when she buys the purchase history is different from

her posterior belief conditional on the buyer’s actual purchase decision. Seller 2’s strategy

consists of several actions: her reply to seller 1’offer, an offer to buyer 2 if she can identify

her, an offer to buyer 1 if he has unit demand and she can identify him and an offer to both

buyers if she cannot distinguish between them.4

1.2.2 The Approach

Before I begin the analysis, I briefly outline my approach. I apply the Perfect Bayesian

equilibrium solution concept (Fudenberg and Tirole 1991). The main goal of the analysis

is to derive suffi cient conditions for a Perfect Bayesian equilibria (PBE) in which the seller

chooses the privacy policy and her expected revenue exceeds the total payofffrom committing

to a confidential policy. I solve the game backwards. In order to solve for the sellers’optimal

4Note that seller 2 can only distinguish the buyers if she purchases buyer 1’s purchase history.
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offers at each of their information sets, I apply the adequate revelation principle, which

allows attention to be restricted to the set of direct mechanisms when solving for seller 1’s

and seller 2’s optimal offers. Then seller 1’s customer’s purchase history contains buyer 1’s

reported type and his identity.

The proof of my main result is done in five main steps.

First, I consider seller 2’s decision problem in period 2 after seller 2 bought the purchase

history, state her optimal play after she bought the purchase history given the purchase

history contains full information about the valuation of seller 1’s customer and derive seller

2’s expected revenue provided she did not buy the purchase history.

The second step is the analogue to step 1 for the case when seller 2 did not buy the

purchase history.

Third, I derive the price for the purchase history if the purchase history of the first

monopolist’s customer fully reveals the customer’s type to seller 2.

Fourth, I derive seller 1’s expected revenue from committing to the confidential policy.

Fifth, I need to show in a final step that there are conditions under which seller 1 prefers

the disclosure policy. I do this by showing that the sum of the revenue from selling good

1 to her customer and the revenue from selling the purchase history to seller 2 exceeds the

revenue from committing to the confidential policy, which I derived in step 4. In particular,

I derive a lower bound for seller 1’s expected revenue and show that this lower bound can

be higher than her revenue under the confidential policy. In order to do so, I consider a

particular mechanism of seller 1. I show that this mechanism is incentive compatible and

individual rational; that is, the mechanism induces buyer 1 to fully reveal his valuation and to

participate. I provide conditions under which seller 1’s total expected revenue from offering

this mechanism under the disclosure policy exceeds her revenue from selling to the customer

under the confidential policy. Since the buyer’s behavior is consistent with the postulated

beliefs, this is a PBE unless seller 1 can generate higher expected revenue by offering another

mechanism that is also incentive compatible and individual rational. I conclude that seller

1 strictly prefers the disclosure policy under the provided conditions. Note that in principle
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there could be another incentive-compatible and individual rational mechanism that seller 1

would prefer under the disclosure policy.

1.3 Analysis

1.3.1 Seller 2’s Contracting Problem After She Bought the Pur-

chase History

In this subsection, I consider the second monopolist’s contracting problem after she bought

the purchase history from seller 1. If she bought the purchase history from seller 1, then

she has the possibility to identify the customers. I have to distinguish two branches of the

game tree. In the first case she faces two buyers and in the second case only one buyer

demands her good. The former case occurs with probability δAα+ (1− α) δB and the latter

case occurs with probability (1− (δAα + (1− α) δB)).

If she faces only one customer, then she knows that this is buyer 2 which implies that

the purchase history does not contain any valuable information. Therefore seller 2’s optimal

offer to buyer 2 is independent of buyer 1’s purchase history in the latter case.

Since the posterior about the buyer is always valuable, her optimal offer to the new

customer solves

max
yA,yB ,tA,tB

βtA + (1− β) tB (1.1)

subject to

θjyj − tj ≥ 0, (1.2)

θjyj − tj ≥ θjyi − ti, (1.3)

yj ∈ [0, 1] (1.4)

for i, j ∈ {A,B},j 6= i,

where constraint (1.2) is the individual rationality condition of type j of a buyer, con-

straint (1.3) is the incentive compatibility condition of type j of a buyer and constraint (1.4)

is the feasibility condition since the allocation is restricted by the unit demand of a buyer.
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Constraint (1.4) must be imposed because the buyer has unit demand in my setting.

If seller 2 observes that the incumbent customer has unit demand, then her optimal

offer to buyer 1, seller 1’s former customer, conditions on the information in the purchase

history and is a function of seller 2’s posterior. Let si denote the probability with which

the incumbent buyer with type i reports type A to seller 1, i ∈ {A,B}, i.e. 1 − si is the
probability that the incumbent buyer of type i reports type B. By Bayes’rule, seller 2’s

belief that buyer 1’s type is A conditional on report A and positive demand for good 2 is

equal to

µA (sA, sB) =
sAαδA

sAαδA + sB (1− α) δB
. (1.5)

Analogously, seller 2’s belief that buyer 1’s type is A conditional on report B and positive

demand for good 2 is equal to

µB (sA, sB) =
(1− sA)αδA

(1− sA)αδA + (1− sB) (1− α) δB
. (1.6)

Then her optimal offer to buyer 1 who reported k, k ∈ {A,B}, solves

max
yA,yB ,tA,tB

µk (sA, sB) tA + (1− µk (sA, sB)) tB (1.7)

subject to

(1.2) , (1.3) , (1.4)

for i, j ∈ {A,B},j 6= i.

The purchase history can have positive value only in the former setting. In order to

derive seller 2’s willingness to pay for the purchase history, I can restrict attention to the

branch of the game with two buyers in period 2.

Proposition 1.3.1 If seller 1’s customer reported A to seller 1 with probability 1 if he has

type A and with probability 0 if he has type B, then seller 2’s posterior beliefs are µA (1, 0) = 1

and µB (1, 0) = 0. If seller 1’s customer demands good 2, then seller 2’s expected revenue
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conditional on the report h is equal to{
max (βθA, θB) + θA, if h = A

max (βθA, θB) + θB, if h = B

Proof. In Appendix 1.

If the first monopolist’s buyer fully reveals her type to seller 1, then the second monopolist

can perfectly discriminate this customer. Moreover the purchase history has another value,

which is the value from being able to distinguish the two customers.

1.3.2 Seller 2’s Contracting Problem If She Did Not Buy the Pur-

chase History

In this subsection, I discuss seller 2’s contracting problem if she cannot condition on seller

1’s purchase history.

It is obvious that seller 2 knows that her customer was not the customer of seller 1, if she

has only one customer. This event occurs with probability (1− (αδA + (1− α) δB)). The

purchase history provides no valuable information about buyer 2 in this situation. Therefore

the purchase history is valuable only with probability δAα + δB (1− α).

Next, I consider the case with two customers. In principle, her posterior belief that buyer

1’s type is A conditional on the event that he has positive demand for good 2 is given by

λ ≡ αδA
αδA + (1− α) δB

.

Note that λ ≥ α if and only if δA ≥ δB. Therefore the probability that seller 2 will be serving

buyer 1 who has a valuation θA is given by

αδA.

However, she cannot distinguish the two customers and only knows that one of the two

customers must be seller 1’s former customer. Her belief that a customer’s type is A is then
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equal to 1
2
λ+ 1

2
β. Her optimal offer to buyer 1 solves

max
yA,yB ,tA,tB

(
1

2
λ+

1

2
β

)
tA +

(
1−

(
1

2
λ+

1

2
β

))
tB (1.8)

subject to

(1.2) , (1.3) , (1.4)

for i, j ∈ {A,B},j 6= i.

Proposition 1.3.2 From the perspective of stage 2 at period 1, seller 2’s expected revenue

under the confidential policy is equal to{
(1− (αδA + (1− α) δB)) max (βθA, θB)

+ (αδA + (1− α) δB) 2 max
((

1
2
λ+ 1

2
β
)
θA, θB

) } .
Proof. In Appendix 1.

1.3.3 Seller 1’s Optimal Offer to Seller 2 Under the Disclosure

Policy

After trading with the buyer, seller 1 maximizes her revenue from selling the purchase history

at a price P to seller 2 and has to respect that seller 2 rejects any price above her willingness to

pay (WTP ). WTP is a function of seller 2’s posteriors, since seller 2’s expected revenue after

having purchased the purchase history is a function of her posterior about buyer 1. From the

perspective of stage 2 at period 1, WTP is the difference between seller 2’s expected revenue

conditional on the information provided by the purchase history and seller 2’s expected

revenue without this information.

From the perspective of stage 2 at period 1, seller 2’s expected revenue conditional on the

information provided by the purchase history is equal to the sum of the expected revenue

from selling to buyer 2 and the expected revenue from selling to buyer 1. The expected

revenue from selling to buyer 2 depends on her belief about buyer 2’s type, β. The expected

revenue from selling to buyer 1 depends on her belief about buyer 1: the posterior belief
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about buyer 1’s type and about buyer 1’s type-dependent probability to demand good 2.

From the perspective of stage 2 at period 1, seller 2’s belief that buyer 1 will have positive

demand is equal to

αδA + (1− α) δB.

From the perspective of stage 2 at period 1, seller 2’s belief that buyer 1 sends a report A

conditional on positive demand is given by

sAαδA + sB (1− α) δB
αδA + (1− α) δB

. (1.9)

The posterior belief that buyer 1 has type A, conditional on positive demand and report h,

h ∈ {A,B}, is given by (1.5) and (1.6). Therefore, from the perspective of seller 2 at the

beginning of stage 2, the probability that buyer 1 has type A, sent report A to seller 1 and

will have demand for good 2 is given by

sAαδA.

Seller 1 maximizes the price for the purchase history P subject to

P ≤ WTP (µA (sA, sB) , µB (sA, sB)) . (1.10)

Since seller 1 has the full bargaining power with respect to the additional information rent

that her purchase history provides to seller 2, seller 1 can set the price equal to seller 2’s

willingness to pay for the purchase history. Then seller 2’s optimal price is a function of the

buyer’s reporting behavior in equilibrium and the posterior

P ∗ (sA, sB, µA (sA, sB) , µB (sA, sB)) = WTP (sA, sB, µA (sA, sB) , µB (sA, sB)) .

I would like to consider the case where the value of the purchase history reaches its upper

bound and derive seller 2’s WTP . Suppose buyer 1 reports his type truthfully to seller 1,

i.e. buyer 1 reports A with probability sA = 1 and B with probability sB = 0. Substitution
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into (1.5) and (1.6) gives that seller 2’s posteriors are µA (1, 0) = 1 and µB (1, 0) = 0. Then

seller 2 will be able to perfectly screen buyer 1 provided she buys the purchase history. The

purchase history also provides seller 2 with the identity of the buyers.

Proposition 1.3.3 sA = 1 and sB = 0. At stage 2 of period 1, seller 1 offers the purchase

history to seller 1 for a price equal to

P ∗ (1, 0, 1, 0) (1.11)

= (δAα + δB (1− α))

(
max (βθA, θB) + λθA

+ (1− λ) θB −max ((β + λ) θA, 2θB)

)
.

Proof. In Appendix 1.

1.3.4 Seller 1’s Contracting Problem Under the Confidential Pol-

icy

If seller 1 commits to the confidential policy, then her optimal offer is a myopic decision. I

can apply the standard revelation principle. Her optimal offer to her customer solves

max
xA,xB ,pA,pB

αpA + (1− α) pB (1.12)

subject to

θjxj − pj ≥ 0, (1.13)

θjxj − pj ≥ θjxi − pi, (1.14)

xj ∈ [0, 1] (1.15)

for i, j ∈ {A,B},j 6= i.

Proposition 1.3.4 Seller 1’s revenue from committing to the confidential policy is equal to

max (αθA, θB).

Proof. In Appendix 1.
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This result implies the following threshold (1.16), which is very important for the deriva-

tion of my main result.

Corollary 1.3.1 Seller 1 chooses the disclosure policy if and only if the expected revenue

exceeds

max (αθA, θB) . (1.16)

In the next section, I will consider a mechanism that is implementable with reporting

strategies sA = 1 and sB = 0. I will provide conditions so that seller 1’s expected revenue

under disclosure policy exceeds this threshold (1.16).

1.3.5 Seller 1’s Contracting Problem Under the Disclosure Policy

In this section, I state seller 1’s optimal mechanism under the disclosure policy. Clearly, the

solution to this problem is the same as if seller 1 sold also good 2 but had no commitment

power to the prices for good 2. I can solve the hypothetical game in which seller 1 sells both

goods and has perfect memory but cannot write long-term contracts. This hypothetical

game can be solved by applying the revelation principle by Bester and Strausz 2001.

Assumption 1.3.1 αθA > θB.

By the revelation principle of Bester and Strausz 2001, the optimal mechanism under

the disclosure policy satisfies feasibility, individual rationality and incentive compatibility,

sequential rationality, and Bayes’rule. Therefore seller 1 takes into account that her choice

of a mechanism affects the optimal mechanism of seller 2 via the sale of the purchase history

and seller 2’s updated posteriors µA and µB.

Before I state seller 1’s contracting problem, I make one simplifying assumption. A buyer

of type B can never profit since he never receives a positive rent. However a buyer of type

A may profit from rejecting seller 1’s offer. Therefore I assume µoffθA ≥ θB, where µoff

denotes a seller’s off path posterior about the buyer conditional on the event that the buyer

does not participate in mechanism 1 or rejects seller 1’s offer.
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Note that I restrict attention to the case in which seller 1 always sells the purchase

history under the disclosure policy. Seller 1’s optimal mechanism ((x∗A, p
∗
A) , (x∗B, p

∗
B)) under

the disclosure policy solves

max
xA,xB ,pA,pB ,sA,sB

(
(sAα + sB (1− α)) pA + ((1− sA)α + (1− sB) (1− α)) pB

+P ∗ (sA, sB, µA (sA, sB) , µB (sA, sB))

)
(1.17)

subject to

xAθA − pA + δ (y∗AAθA − t∗AA) ≥ 0, (1.18)

xBθB − pB + δ (y∗BBθB − t∗BB) ≥ 0, (1.19)

xAθA − pA + δA (y∗AAθA − t∗AA)

≥ xBθA − pB + δA (y∗BAθA − t∗BA)
, (1.20)

xBθB − pB + δB (y∗BBθB − t∗BB)

≥ xAθB − pA + δB (y∗ABθB − t∗AB)
, (1.21)

sA ∈
{1} if (1.20) is slack,

(0, 1] if (1.20) binds
, (1.22)

sB ∈
{0} if (1.21) is slack,

[0, 1) if (1.21) binds
, (1.23)

(1.5) , (1.6) ,

xi ∈ [0, 1] , i ∈ {A,B} . (1.24)

Note that
((
y∗jA, t

∗
jA

)
,
(
y∗jB, t

∗
jB

))
is seller 2’s equilibrium offer conditional on having pur-

chased the purchase history of buyer 1 who reported j. In the PBE, seller 1’s conjecture

about seller 2’s optimal offer in period 2 to the customer who reports h is correct. Constraints

(1.18) and (1.19) are the individual rationality constraints of types A and B, respectively.
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Constraints (1.20) and (1.21) are the incentive compatibility constraints of type A and B,

respectively. Constraints (1.22) and (1.23) are consistency conditions that make sure that

a buyer with type A or B, respectively, lies about his type only if the respective incentive

compatibility constraint binds, which implies that he is indifferent between reporting A or

B. Moreover, conditions (1.22) and (1.23) imply that a buyer does not lie with probability 1.

As explained above, conditions (1.5) and (1.6) define seller 2’s posterior beliefs conditional

on observing the buyer’s report and given that the buyer reports A with probabilities sA and

sB. Condition (1.24) is the technological feasibility, i.e. a seller cannot sell more to a buyer

than he demands. Moreover, x can be interpreted as a probability.

Lemma 1.3.1 If seller 1 offers a perfectly separating mechanism so that sA = 1 and sB = 0,

then the expected price of the purchase history, P ∗ (1, 0, µA (1, 0) , µB (1, 0)), is given by

{(1− α) δBθB} if (β + λ) θA ≥ 2θB and βθA ≥ θB

{αδA (θB − βθA) + (1− α) δB (2θB − βθA)} if (β + λ) θA ≥ 2θB and βθA ≤ θB{
αδA (βθA + θA − 2θB)

+ (1− α) δB (βθA − θB)

}
if (β + λ) θA ≤ 2θB and βθA ≥ θB

{αδA (θA − θB)} if (β + λ) θA ≤ 2θB and βθA ≤ θB

. (1.25)

Proof. In Appendix 1.

By corollary 1, seller 1’s expected revenue is equal to αθA if she chooses the confidential

policy.

Theorem 1.3.1 Suppose assumption 1 holds. Then seller 1 strictly prefers the disclosure

policy if parameters β, δA, δB, θA, θB satisfy either one of the following parameter regimes:

I) (β + λ) θA ≥ 2θB and βθA ≥ θB and θB − λθA > 0 or

II) (β + λ) θA ≤ 2θB and βθA > θB.

Proof. In Appendix 1.

Theorem 1.3.1 is the main result of the chapter; it constitutes the last step that is needed

to show that firms could profit from a disclosure policy simply because of two reasons;
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personalized information is valuable to a company if there is another clientele. This result

explains the firms’behavior to collect customer information and not to commit to strict

privacy policies when customers are rational.

Theorem 1.3.1 shows that a firm can profit from a privacy policy that allows the sale of

the customer information when the buyer of the purchase history has a slightly different set

of customers. Assuming that seller 2 has a slightly different clientele than seller 1 is natural,

when seller 1 and seller 2 offer different products.

In the case of type-dependent demand uncertainty and customer entry, the identity of

a buyer himself may be valuable to seller 2. Therefore, type-dependent uncertainty differs

from the assumption of discounting. The main difference in terms of trade-offs is that seller

2 may have a positive value for the pure knowledge of buyer 1’s identity.

Note that β ≤ λ implies that the parameter regime characterized by conditions I) of

Theorem 1.3.1 is empty; β ≤ λ implies also that the parameter regime characterized by

conditions I) of Theorem 1.3.1 is empty. The suffi cient conditions I and II can be interpreted

as follows: seller 2 is optimistic about her other clientele and pessimistic about seller 1’s

clientele. Theorem 1.3.1 shows that under conditions I and II there must be an equilibrium

in which seller 1’s customer reveals information about his type. Conditions I and II show

that the value of the purchase history depends on seller 2’s belief about the other customer,

buyer 2. Hence, the purchase history is valuable for seller 1, because informs seller 2 about

the identity of seller 1’s customer.

1.4 Discussion and Conclusion

As in Taylor 2004, the model integrates different dimensions of privacy (information): a

customer’s purchases and his identity. Taylor’s major explanation for firms that collect and

sell large amounts of data about customers and the privacy paradox is that customers do not

understand the ratchet effect. Therefore customers reveal their preferences without receiving

any information rent. However, I derive an explanation for a setting with rational customers.
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The model differs from Taylor 2004 in two dimensions: I allow for type-dependent demand

uncertainty and customer entry in period 2.

The intuition for my main result lies in the new additional value of the purchase history.

This additional value is generated by the new entrant, since the optimal offer is distorted if

the seller cannot distinguish the customers. This is the case when the second monopolist is

suffi ciently more optimistic about his other clientele than about seller 1’s clientele.
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Revealing Independent Private Value
InformationWhen Bidders Have Inter-
dependent Values

2.1 Introduction

2.1.1 Motivation and Main Findings

Suppose the owner of a company announces the sale of her company (target) via an auction

(takeover auction). All bidders share a common interest in the quality of the target, e.g.

the target’s future cash flows. The potential bidders are asymmetrically and imperfectly

informed about the target’s quality. Besides, potential bidders are heterogenous and have

some additional private interest in the company, e.g. because of the potential synergies that

arise when the bidder merges with the target.

It has been shown that the information structure is very important for the outcome of

an auction (see e.g. Milgrom and Weber 1982a or Bergemann and Pesendorfer 2007). If the

seller has more information about the target than the bidders and she can choose how much

of her information she wants to publish, then her incentives to disclose depend on the effect

of disclosure. In the presence of informational externalities, public disclosure of information

may have a variety of effects. First, public disclosure of the seller’s information has a direct

informational effect on a bidder’s estimate of his valuation, which induces him to adjust his

valuation. Second, it may induce a linkage principle if it reduces the winner’s curse of a

24



bidder by providing more information about the common value component (Milgrom and

Weber 1982a). Third, public disclosure of information about all bidders’private values may

induce strategic effects as a reaction to the relative asymmetries among the bidders. This

chapter assumes that the seller’s information only contains private value information; I make

this assumption in order to evaluate the seller’s incentives to publicly disclose private value

information prior to a second-price auction.1 To the best of my knowledge, the underlying

paper to this chapter is the first to evaluate the third effect of disclosed information about

the target’s private value characteristics in the presence of informational externalities.

Private value information that drives synergies may arise in many areas. For example in

procurement, research and development, production, human resources, sales and marketing

etc. While one potential bidder’s strength is his marketing environment, another potential

bidder may have technological know-how that helps to decrease production costs (see Szech

2011 for a similar argument or Gärtner and Schmutzler 2009). Other typical examples for

goods that have interdependent value/common and private value character are financial

assets or houses (Bulow and Klemperer 2002).2 Jehiel, Meyer-ter-Vehn, Moldovanu and

Zame 2006 argue that valuations are interdependent for reasons that are related to the

market structure and the companies’relationships with each other.

In this context, I evaluate the seller’s incentives to disclose information prior to a second-

price auction in the following simple model (a variant of the model of Milgrom and Weber

1982a). The seller has a private source of information containing information about the

bidders’ private values. There are two bidders with interdependent values. The bidders

have a preliminary private signal, which they learn at the beginning of the game, about the

good’s common and private value. The game has two periods. In period 1 the seller chooses

a disclosure policy, either full disclosure or no disclosure. If the seller chose to disclose the

1Although I assume that the seller’s information does not contain common value information, there can
be a positive linkage between the seller’s information and the seller’s expected revenue.

2Restricting attention to common values is overly restrictive since a bidder’s valuation depends not only
on the good’s quality, prestige value or resale value (Milgrom and Weber 1982a) but also on the buyer’s
preference for the good (see e.g. Myerson 1981). Similarly, the assumption of private values has been
criticized as being overly restrictive (Jehiel, Meyer-ter-Vehn, Moldovanu, Zame 2006). Therefore I consider
a setting where bidders have interdependent values.
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information, then she discloses the information in period 2 and both bidders learn all of

the seller’s signals. All signals are independently distributed. Otherwise no bidder learns

the seller’s information. Afterwards, the second-price auction with two bidders takes place.

Since the bidders’information about the common value is incomplete, there are informational

exernalities between the bidders. Note that I abstract from allocative externalities3.

To evaluate the third effect of disclosure, I assume that once the seller discloses informa-

tion publicly all bidders update their beliefs about each other’s valuation in the same way. In

particular, I assume that bidders observe how the good’s published characteristics affect each

bidder’s valuation. This assumption implies that bidders have only one-dimensional private

information4 and can strategically adjust their strategies to their estimate about their rival’s

synergies.

I characterize the seller-optimal Bayesian Nash equilibrium of the game. First, I solve

for the bidders’equilibrium bidding strategies and then for the seller’s equilibrium disclosure

policy. Note that the findings of this chapter are also very relevant for the English auction

since every last stage of an English auction is strategically equivalent to a second-price

auction with two bidders.

The main insight of this chapter is that the linkage principle holds if the seller’s infor-

mation is suffi ciently informative about the bidders’private value information. To derive

this result, I characterize the seller-optimal equilibrium. I show that there are two types of

seller-optimal equilibria where the bidders’bidding strategies are of linear form and contin-

uous and strictly increasing in the bidders’preliminary information. First, there exists an

equilibrium in which the seller publicly discloses her information if the seller’s information

has a high impact. Second, if the seller possesses information that has a low impact on the

bidders’valuations, then an equilibrium exists in which the seller conceals the information. I

3We follow the definition of interdependent values of Jehiel and Moldovanu 2001 but rule out allocative
externalities.

4The seminal papers on effi cient mechanisms where bidders have multidimensional private information
are Maskin 1992 and Jehiel and Moldovanu 2001. We rule out multidimensional private information and
allow bidders to condition their bid strategies on the public information. As a result, effi cient equilibria after
disclosure of private value information may exist.
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also discuss conditions under which each of these two types of equilibria is the seller-optimal

equilibrium in one of two mutually exclusive parameter regimes.

Before being able to give an intuition for the main insight, I discuss the effect of public

disclosure of the seller’s information on the bidders’beliefs. If the seller discloses her infor-

mation, then each bidder updates the estimate of his own valuation and his rival’s valuation,

i.e. of both bidders’private values for the good. Most importantly, bidders may perceive

each other as asymmetric since the seller discloses several independent signals that idiosyn-

cratically affect the bidders’private values. A bidder with a private value advantage is said

to be strong, and a bidder with a private value disadvantage is said to be weak.

Next, I discuss the assumption of interdependent values. Since there are informational

externalities between the bidders, the bidders are exposed to the winner’s curse conditional

on winning. Conditional on losing, bidders are not exposed to the winner’s curse. Compared

with the exposition to the winner’s curse in the auction without disclosure, in the auction

with disclosure, bidders can be asymmetric. The weak bidder’s exposition to the winner’s

curse conditional on winning is stronger and the strong bidder’s exposition to the winner’s

curse is weaker than in a symmetric setting.

The strength of the effect of disclosure on the bidders’exposition to the winner’s curse

depends on the size of the informational externalities and the importance of the seller’s infor-

mation for the bidders’valuations. If the seller’s independent private value information has a

low importance for the bidders’valuations, then the effect of the informational externalities

is low; that is, a bidder’s exposition to the winner’s curse changes only slightly. In this case,

the seller’s incentives are similar to the incentives in an independent private value setting.

In contrast, one can show that the independent private value information has a high impact

on a bidder’s exposition to the winner’s curse if the effect of the informational externalities

is high.

Bidders shade their bids when they are exposed to a winner’s curse. When a bidder’s

exposition to the winner’s curse changes, then the bidder’s bid shading behavior changes.

If the bidders turn out to be asymmetric after disclosure, then the bidders adjust their
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bidding strategies to the disclosed information in the following way. While the strong bidder

increases his bid conditional on winning, the weak bidder shades his bid conditional on

winning. However, if a bidder knows that he will lose, he is willing to bid up to an amount

so that he is sure that he loses. Whether a weak bidder may win in the equilibrium depends

on the degree of informational externality and the informativeness/importance of the seller’s

information.

The strategic effect of disclosure on the bidders’ bidding strategies is weak if the in-

formational externality and the seller’s information are of low importance. Basically, the

strong bidder increases his bid conditional on winning and the weak bidder decreases it. In

comparison to the auction when no information is disclosed, the strong bidder wins more

often and the weak bidder loses more often. Overall the seller’s expected revenue decreases.

Intuitively, the setting and equilibrium behavior resembles very much the independent pri-

vate value setting with the main difference that bidders shade their bids to account for the

winner’s curse.

The strategic effect is strong if the informational externality and the seller’s information

are very high. The weak bidder has to shade his bid conditional on winning so much that he

bids something negative. In equilibrium, the weak bidder never wins. Conditional on losing,

the weak bidder is willing to bid at least his minimal valuation, or some bid that is adjusted

for his rival’s advantage. This effect introduces a linkage between the seller’s information and

the price paid in the auction. Therefore the seller profits from disclosing her information,

or, in other words, the linkage principle holds if the information is very important and the

informational externalities are high.

I also discuss an interesting concept to evaluate the effect of information disclosure: the

allocation effect. Board 2009 defines it as the effect of disclosed information on the rev-

enue triggered by the change of the allocation/winning bidder. The allocation effect is a

consequence of the individual bidder’s adaptation of his bidding strategies to the disclosed

information. Board finds that the allocation effect of public private information on the

expected revenue is always negative. I find that this allocation effect is positive for some re-
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alizations of the bidders’valuations and negative for others when bidders have informational

externalities.

2.1.2 Related Literature

Numerous papers consider disclosure of information prior to auctions, but, again, to the best

of my knowledge, the paper underlying to this chapter is the first one to consider disclosure

of private value information in the presence of informational externalities. Some of the pa-

pers consider public disclosure of information, and the seminal paper (Milgrom and Weber

1982a) mainly analyzes optimal disclosure of common value information in different standard

auctions. The authors find a revenue-ranking in the presence of affi liated signals and show

that public disclosure is optimal. They rule out disclosure of private value information and

asymmetric disclosure. Mares and Harstad 2003 relax the implicit assumption of symmetric

and public disclosure in first-price and second-price auctions. For special valuation functions,

they show that asymmetric or private disclosure can improve revenue under some circum-

stances. Larson 2009 addresses how disclosure of independent information about common

values has no effect on the seller’s expected revenue when bidders have preliminary private

information. Larson rules out disclosure of private value information. Board 2009 considers

public disclosure of private value information but rules out informational externalities.

My setting lies between Milgrom and Weber 1982a and Board 2009. Milgrom and Weber

show that the linkage principle holds for the disclosure of affi liated common value signals

in a second-price auction. Board 2009 shows that the linkage principle fails to hold in an

independent private value second-price auction with two bidders. Notice that Board 2009

considers independently distributed signals, which is a special case of affi liated signals. I

consider an interdependent value second-price auction with independent signals. The seller

can disclose private value signals, as in Board 2009.

Another branch of the literature considers private disclosure of information. Mares and

Harstad 2003 show that private disclosure of common value information may be better than

public disclosure of this information. Ganuza and Penalva 2010 consider optimal costly
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disclosure, but rule out preliminary information and informational externalities. Szech 2011

considers costly disclosure of several private value information packages before an auction

with entry fees but rules out preliminary information and informational externalities.

Other papers apply a mechanism design approach to related questions. Esö and Szentes

2007 address the question of optimal disclosure in an auction with preliminary information,

but rule out informational externalities. Bergemann and Pesendorfer 2007 and Bergemann

and Wambach 2013 consider the optimal information structure in an auction and employ a

mechanism design approach to analyze this question, but rule out informational external-

ities. Gershkov 2009 considers the disclosure of common value information, but rules out

informational externalities of private information. Skreta 2009 considers optimal information

disclosure in an auction when the seller is informed about her information. She shows that

disclosure is irrelevant in a private value setting. Otherwise, it is optimal not to disclose

information.

Further strongly related literature analyses auctions with informational externalities (e.g.

Jehiel, Moldovanu and Stacchetti 1999). The seminal papers on the effi ciency of auctions

with informational externalities are Maskin 1992, Dasgupta and Maskin 2000 and Jehiel and

Moldovanu 2001, which provides general results for general mechanisms, such as the impossi-

bility of ex-post implementation of effi cient allocations with multi-dimensional signals. The

main difference to this chapter is the information structure, which is the reason why the good

may be allocated effi ciently in an equilibrium in which the seller discloses her information.

For more recent contributions, see Birulin 2003 or de Frutos and Pechlivanos 2006. For a

general overview of the literature, I refer the reader to Jehiel and Moldovanu 2006.

This chapter also relates to the papers on almost common value auctions, which are

auctions with informational externalities where valuations are additive in the bidders’private

information (see among others Bikhchandani 1988, Klemperer 1998, Bulow and Klemperer

2002, Levin and Kagel 2005). I basically analyze a symmetric almost common value setting

(Bulow and Klemperer 2002) with an independent private value perturbation. My model

differs from that literature in that I analyze the effect of disclosure.
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Since publishing private value information implies that bidders potentially perceive each

other as asymmetric, the literature on asymmetric auctions is also related. Asymmetries can

prevail in different ways, one bidder may be (more) informed and the other (less) uninformed

(see e.g. Milgrom and Weber 1982b, Harstad and Levin 1985 and Einy et al 2002). Since

the literature on asymmetric auctions is too large to be covered here, I refer the reader to

Rothkopf and Harstad 1994.

The remainder of the chapter is organized as follows. Section 2 presents the model and

the approach. Section 3 derives the characterization of two types of equilibria. Section 4

compares the two types of equilibria and discusses the seller-optimal equilibrium. Section 5

concludes.

2.2 Model and Approach

2.2.1 The Model

I consider a game with three players, one seller and two potential buyers. Bidders are ex-

ante symmetric with respect to the valuation structure and information structure. The seller

intends to sell a single, indivisible object to which she attaches a value zero. The bidders

have interdependent values, but in a slightly different way than in Milgrom andWeber 1982a.

Bidder i has the following valuation

Vi (ti, tj, z) = ati + btj + αzi, a > b ≥ 0, i, j ∈ {1, 2} ,j 6= i, (2.1)

where a, b and α are the weights with which the bidder’s private signal, the opponent’s signal

tj and one of the seller’s signal zi enter the bidder’s valuation. Note that my specification of

bidder i’s valuation (2.1) is not symmetric in (ti, tj), but in (ti, tj, zi).5

Bidder i’s valuation, (2.1), can be rewritten as the sum of the good’s private value

5In contrast to our specification, Milgrom and Weber 1982a assume that the valuation is symmetric in
ti.t−i, i.e. Vi (ti, tj , z) = V (ti, tj , z). Also Board 2009 assumes that valuations are given by v (ti, z) for all
bidders i. See also Krishna 2009 for the definition of symmetric valuations.
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component (PV) and the good’s common value component (CV)6

(a− b) ti + αzi︸ ︷︷ ︸
PV

+ b (t1 + t2)︸ ︷︷ ︸
CV

.

It is common knowledge that T1 and T2, with typical realizations t1 and t2, are indepen-

dently distributed by F on
[
t, t
]
with associated density function f . Let E [T ] denote the

mean of random variable Ti, i ∈ {1, 2}. I define T2:2 ≡ min (T1, T2).

The realization of Ti, ti, is bidder i’s private information at the beginning of the game.

From the other players’perspectives, bidder i’s signal is a random variable that is distributed

by Ti’s true distribution.

The seller possesses information that enters the bidders’idiosyncratic valuation shocks

z1 and z2, but she cannot interpret z1, z2. α can be interpreted as the marginal impact

of the seller’s information Z. It is common knowledge that Z1 and Z2 are identically and

independently distributed binary random variables with typical realizations z1 and z2; zi ∈
{zh, zl} with zh > zl with λ ≡ P (zi = zh). Let E [Z] denote the mean of random variable

Zi, i ∈ {1, 2}. I define Z1:2 ≡ max (Z1, Z2) and Z2:2 ≡ min (Z1, Z2).

At the outset, the realizations of Z1 and Z2 are unobservable to all players. As long as

the seller does not disclose Z, from the perspective of all players, her information is a vector

of random variables with commonly known distributions. The seller can commit to disclose

the information or conceal it. Once the seller discloses Z, the bidders learn the realizations

z1 and z2, but the seller does not. A bidder’s valuation of not participating is zero.

The auction format is a second-price auction, which is strategically equivalent to the

English auction in the case of two bidders who have interdependent valuations (Milgrom

and Weber 1982a, Maskin 1992). The second-price auction here has the same rules as in

Maskin 2001, 2003. The winner is the bidder who submitted the highest bid. The winner

6This preference structure is a subcase of the one defined in Myerson 1981 or Jehiel and Moldovanu
2001. Myerson 1981 argued that a preference structure usually features preference uncertainty and quality
uncertainty. We refer to these two forms by distinguishing private and common value components. The case
of independent private values does not feature quality uncertainty whereas the case of pure common values
does not feature preference uncertainty.
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receives the good and pays his rival’s bid. The loser pays nothing. If only one bidder

participates, then he gets the good and pays nothing. Milgrom and Weber 1982a showed

that these two formats are not strategically equivalent for more than two bidders who have

interdependent valuations. See also Maskin 1992 for a discussion.

The exact timing of the game is the following.

1. Nature draws T1, T2, Z1 and Z2. Bidders learn their private signals. The seller commits

to a disclosure policy. Bidders observe the announced disclosure policy and decide

whether to participate or not.

2. If the seller committed to full disclosure, she discloses Z. The bidders observe z1 and

z2. Bidders announce bids. The seller’s good is allocated to the bidder with the highest

bid. He then pays the loser’s bid. The loser receives nothing and pays nothing.

If the seller committed to concealing Z, she conceals it. Bidders announce bids. The

seller’s good is allocated to the bidder with the highest bid, who then pays the loser’s

bid. The loser receives nothing and pays nothing.

The seller’s strategy is her disclosure policy, which is either full disclosure or no disclo-

sure/concealment. D denotes the full disclosure policy, and N denotes the no disclosure

policy. In this paper, I use "disclosure" and "full disclosure" as synonyms. I do not need

commitment, since the seller cannot observe the realization of Z1 and Z2 at any time in the

game.

Since the seller has no private information and she can either conceal or fully reveal z1 and

z2 to the bidders, bidder i’s information set at the auction stage is equal to his observable

information, which is denoted by hNi = {ti} after concealment, disclosure policy N , and
hDi = {ti, zi, zj} after full disclosure, disclosure policy D. βNi is a mapping from

[
t, t
]
to the

set of positive real numbers. βDi is a mapping from
[
t, t
]
×{zl, zh}2 to the set of positive real

numbers. I denote the bid at information set {ti} in the auction after concealment by βNi (ti)
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and the bid in the auction at the information set {ti, zi, zj} after the seller’s disclosure of Z
by βDi (ti, zi, zj).

A bidder’s expected utility in equilibrium must exceed 0 irrespective of his information

set, hi, since the bidder can always bid 0 which promises a payoff of 0.

2.2.2 The Approach

I consider the set of Bayesian Nash equilibria (see Fudenberg and Tirole 1991) in pure

strategies. The seller’s strategy and the bidders’bidding strategies must be mutually best

responses. It is known that even in asymmetric second-price auctions there may be multiple

equilibria (Krishna 2009). I restrict attention to the equilibria in linear bidding strategies

that are continuous and strictly increasing in the bidders’preliminary private information.

In principle, a unique equilibrium may not exist, but I am merely interested in the seller-

optimal equilibrium and what level of expected revenue the seller may realize in the second

price-auction when she can choose her revelation policy. Thus, I focus on seller-optimal

equilibria and address whether the linkage principle may hold for this type of equilibrium.

I also discuss which equilibria survive the elimination of ex-post weakly dominated strate-

gies. For interdependent values, Chung and Ely 2001 define ex-post weak dominance.

Definition 2.2.1 (Ely and Chung 2001) Let Σ̂j ⊂ Σj be a subset of strategy profiles for the

opponents of j. Strategy βi ∈ Σi ex-post weakly dominates strategy β̂i against Σ̂j if for every

information set profile and every βj ∈ Σ̂j

πi
(
βi (hi) , βj (hj) , hi, hj

)
≥ πi

(
β̂i (hi) , βj (hj) , hi, hj

)
with strict inequality for at least one βj ∈ Σ̂j and t.

In equilibrium, the seller commits to the disclosure policy that maximizes her expected
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revenue. Bidder i’s equilibrium bidding strategy is given by

β∗i ≡
({

βN,∗i

(
hNi
)}

hNi ∈[t,t]
,
{
βD,∗i

(
hDi
)}

hDi ∈[t,t]×{zl,zh}
2

)
, i ∈ {1, 2} ,

To derive the seller’s decision, I compare the expected revenues from disclosure and no

disclosure.

First, I analyze the auction in the benchmark setting, in which the seller does not disclose.

In this case, I derive the revenue-maximizing strategy, which is not always the symmetric

strategy although bidders are symmetric. Sometimes the seller’s expected revenue is higher

if the bidders bid their minimal valuation.

Then, I characterize an equilibrium in which bidders’bidding behaviors are similar to

that in the benchmark setting whenever they are symmetric. However, if the seller discloses

information such that one bidder is advantaged and the other is disadvantaged, then it is

unclear whether the bidders play bids that constitute corner solutions or interior solutions

to their maximization problems. Remember that I call bidder i strong and bidder j weak

if zi = zh and zj = zl. Because of the potential asymmetry of the bidders, the analysis of

the revenue-maximizing bidding strategies when the seller discloses her information is a bit

more involved.

Therefore I split up the characterization of the revenue-maximizing equilibrium in two

steps. In a first step, I analyze the bidding behavior after the seller chose no disclosure.

Second, I characterize the equilibrium in which bidders play the unique interior solution to

their maximization problems. The following partition of the parameter regime is useful. If

the realizations of Z1 and Z2 are not identical, then I distinguish regime A and regime B:

• Regime A is defined by
(a−b)(t−t)

(zh−zl) > α. In this regime, the seller’s information is

uninformative about/not important for the bidders’valuations.

• Regime B is defined by
(a−b)(t−t)

(zh−zl) ≤ α. In this regime, the seller’s information is very

informative about/ important for the bidders’valuations.
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I can show that the interior solution for the auction after disclosure exists only if para-

meters lie in regime A and that the interior solution is unique. Moreover, it turns out that

the equilibrium in which bidders play revenue-maximizing corner solutions if z1 6= z2 only

survives the elimination of ex-post weakly dominated strategies for parameters in regime B.

Therefore I first analyze the equilibrium where bidders play the interior solution if the seller

chose disclosure, and then I analyze the other equilibrium with the corner solution.

Last I have to compare the expected revenues and show that the seller receives a higher

expected revenue in the former equilibrium than in the latter equilibrium.

Note that the discussion of the effi cient allocation is relegated to Appendix 2.B.

2.3 Analysis

2.3.1 Benchmark: No Disclosure

Consider bidder i’s maximization problem at stage 2 when the seller committed to conceal

her information. Let σNi
(
hNi
)
denote bidder i’s reply to bidder j’s bidding strategy featuring

βNj
(
hNj
)
. Then bidder i’s best reply to bidder j’s bidding strategy when i observe hNi solves

the following problem:

max
σNi (hNi )

ETj
[
ati + bTj + αE [Z]− βN,∗j

(
hNj
)∣∣∣ βNi (hNi ) ≥ βN,∗j

(
hNj
)
, hNi

]
.

βN,∗i

(
hNi
)
can be an interior solution or a corner solution, where one bidder wins with

certainty. The first derivative is given by

∂βN,∗
−1

j

(
σNi
(
hNi
))

∂σNi (hNi )

(
ati + bβN,∗

−1

j

(
σNi
(
hNi
))

+ αE [Z]− σNi
(
hNi
))
f
(
βN,∗

−1

j

(
σNi
(
hNi
)))

.

(2.2)

Let σBRi
(
βNj
(
hNj
))
denote bidder i’s best reply bidder j’s bidding strategy such that βNj

(
hNj
)

by , i ∈ {1, 2}.

Proposition 2.3.1 Assume that the seller concealed her information.
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In the class of equilibria where a bidder’s strategy has a linear form, is continuous, strictly

increasing in the bidder’s type and is not weakly dominated, the equilibrium bidding strategies

feature:

βN,∗i (ti) = (a+ b) ti + αE [Z] (2.3)

βN,∗j (tj) = (a+ b) tj + αE [Z]

i, j ∈ {1, 2} , i 6= j.

The seller’s expected revenue is equal to

E
[
RN

(
βN,∗i

(
hNi

)
, βN,∗j

(
hNj
))]

= (a+ b)E [T2:2] + αE [Z] (2.4)

Proof. In Appendix 2.A.

I briefly outline the proof. First, I derive the unique interior solution, which solves bidder

i’s first-order condition, i.e. the reply of bidder i to bidder j’s bidding strategy such that

(2.2) is equal to 0. Since I am interested in equilibria in linear strategies, I will suppose

bidder j’s bid is of the linear form

βN,∗j

(
hNj
)

= xjtj + yj

and then I show that bidder i’s best reply is

σBRi

(
βN,∗j

(
hNj
))

=
xj

xj − b

(
atj − b

yj
xj

+ αE [Z]

)
.

Then I show that bidder j’s best reply to σBRi
(
βN,∗j

(
hNj
))
is

σBRj

(
σBRi

(
βN,∗j

(
hNj
)))

=
axj

(a− b)xj + b2

(
atj +

b2

axj
yj +

a− b
a

αE [Z]

)
,
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which must be equal to his bid in equilibrium so that

σBRj

(
σBRi

(
βN,∗j

(
hNj
)))

= βN,∗j

(
hNj
)
.

This linear system has a unique solution for xj and yj, namely

xj = a+ b

and

yj = αE [Z] .

Substitution into the best reply functions gives that at stage 2 the unique interior solutions in

linear form to the bidders’maximization problems, which are mutually best replies provided

the seller conceals her information are given by

σBRj

(
σBRi

(
βN,∗j

(
hNj
)))

= βN,∗j

(
hNj
)

= (a+ b) tj + αE [Z] , (2.5)

σBRi

(
βN,∗j

(
hNj
))

= (a+ b) ti + αE [Z] .

It can be shown by substitution that the bidders’expected payoffs are positive.

Moreover, there are corner solutions βNi
(
hNi
)
, βNj

(
hNj
)
such that bidder i wins with

probability 1, i.e.

βNi
(
hNi
)
≥ βNj

(
hNj
)

for all hNi and hNj . It is relatively easy to see that this corner solution can be ruled out as

an equilibrium.

Bidder i’s expected utility is positive, i.e.

ETj
[
ati + bTj + αE [Z]− βN,∗j

(
hNj
)]
≥ 0.
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if bidders play

βNi
(
hNi
)

= at+ bti + αE [Z]

βNj
(
hNj
)

= at+ bti + αE [Z] .

However, bidder i’s candidate equilibrium strategy at+ bti +αE [Z] is weakly dominated by

the strategy to bid his true minimal expected valuation ati + bt+ αE [Z] since

ati + bt+ αE [Z] > at+ bti + αE [Z] ,

which is true for all ti.

It remains to be shown that the candidate equilibrium ati+bt+αE [Z] and at+btj+αE [Z],

i 6= j, i, j ∈ {1, 2} cannot be an equilibrium in increasing and continuous strategies. The

reason is that bidder j always wins, but receives negative payoff for some of his types.

In the subsequent part of the chapter I write RN if I want to refer to (2.4).

2.3.2 Equilibrium I

In this subsection, I discuss an equilibrium in which the bidding strategies are interior solu-

tions to the bidders’maximization problems at each information set. It can be shown that

this type of equilibrium exists only if parameters lie in regime A, i.e. with α ≤ (a−b)(t−t)
zh−zl .

In this equilibrium the seller conceals her information. The main intuition is that the weak

bidder’s exposition to the winner’s curse conditional on winning is larger than it would be

in the case without disclosure. Therefore the weak bidder has to shade his bid much more.

Auction Stage After Disclosure in Equilibrium I

If the seller discloses Z, then bidder i’s information set is represented by hDi = {ti, zi, zj},
i, j ∈ {1, 2}, j 6= i. I solve the auction after disclosure for a given information set profile(
hD1 , h

D
2

)
= ({t1, z1, z2} , {t2, z2, z1}). Then bidder i’s maximization problem after disclosure
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is given by

max
βi(hDi )

ETj
[(
ati + btj + αzi − βD∗j (tj, zi, zj)

)∣∣ βi (hDi ) > βD∗
(
hDj
)
, hDi

]
(2.6)

if his type is ti and bidder j bids equilibrium strategy βD∗ (tj, zi, zj) ∀tj.
βD,∗i

(
hDi
)
can be an interior solution or a corner solution, where one bidder wins with

certainty. The first derivative is given by

∂βD,∗
−1

j

(
βDi
(
hDi
))

∂βDi (hDi )

(
ati + bβD,∗

−1

j

(
βDi
(
hDi
))

+ αzi − βDi
(
hDi
))
f
(
βD,∗

−1

j

(
βDi
(
hDi
)))

.

(2.7)

Bidder i solves (2.13) for each information set hDi provided that his opponent plays the

equilibrium candidate.

Proposition 2.3.2 Assume (a+ b) t + αazl−bzh
a−b ≥ 0 and α <

(a−b)(t−t)
(zh−zl) . There exists an

equilibrium of the game in which the bidders play

βN,∗i (ti) = EZi [vi(ti, ti, Zi)] , i, i ∈ {1, 2}

after the seller committed to no disclosure and

βD,∗i (ti, zi, zj) = vi(ti, ti, zi)− α
b (zj − zi)
a− b , j 6= i, i, j ∈ {1, 2} (2.8)

after the seller committed to disclosure.

Proof. In Appendix 2.A.

For some parameters, there is an equilibrium where a bidder plays an interior solution

to his maximization problem. Clearly, the intuition for the bidders’bidding strategies after

disclosure is identical to the intuition in the benchmark setting for the bidders’symmetric

bidding strategies in Proposition 2.3.1. Therefore I focus on the equilibrium strategies after

disclosure, for which I sketch the main part of the proof.
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Suppose a bidder plays a linear strategy β̂j = wjtj +xjzj +yjzi+ej. Let σi denote bidder

i’s reply to this linear strategy and σBRi
(
β̂j

)
i’s best reply to β̂j, i, j ∈ {1, 2} , j 6= i. If

bidder j play β̂j, then the first-order condition of bidder i’s maximization problem is satisfied

if and only if

∂β̂
−1

j (σi)

∂σi

(
ati +

b

wj
(σi − xjzj − yjzi − ej) + αzi − σi

)
f

(
β̂
−1

j (σi)

)
= 0

which implies that bidder i’s best reply to β̂j is equal to

σBRi

(
β̂j

)
=

awj
wj − b

ti + zi

(
αwj − yjb
wj − b

)
− bxj
wj − b

zj −
bej

wj − b
.

Then the first-order condition of bidder j’s maximization problem is satisfied if

∂σBR
−1

i (σj)

∂σj

atj +
bwj − b2

awj

 σj +
bxj
wj−bzj +

bej
wj−b

−zi
(
αwj−yjb
wj−b

) + αzj − σj

 f
(
σBR

−1

i (σj)
)

= 0

which implies that bidder j’s best reply σBRj
(
σBRi

(
β̂j

))
to bidder i’s best reply σBRi

(
β̂j

)
against bidder j′s linear strategy is given by

σBRj

(
σBRi

(
β̂j

))
=

a2wj
(a− b)wj + b2

tj +
b2xj + awjα

(a− b)wj + b2
zj

+
b2ej

(a− b)wj + b2
− zi

αbwj − yjb2

(a− b)wj + b2
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The strategies are mutually best replies if σBRj
(
σBRi

(
β̂j

))
= β̂j which implies

b2

(a− b)wj + b2
ej = ej ⇐⇒ (a− b)wj = 1 or ej = 0,

a2wj
(a− b)wj + b2

= wj ⇐⇒ (a+ b) = wj for a 6= b ot wj = 0,

b2xj + awjα

(a− b)wj + b2
= xj ⇐⇒

aα

a− b = xj,

− bαwj − yjb2

(a− b)wj + b2
= yj ⇐⇒ − bα

a− b = yj.

Note that wj > 0, since β̂j is increasing and continuous in tj. This implies ej = 0. Then β̂j =

σBRj

(
σBRi

(
β̂j

))
= (a+ b) tj+

a
a−bαzj−

b
a−bαzi.Substitution into σ

BR
i

(
β̂j

)
gives σBRi

(
β̂j

)
=

a(a+b)
(a+b)−bti + zi

(
α(a+b)+ bα

a−b b

(a+b)−b

)
− b aα

a−b
(a+b)−bzj, which simplifies to σ

BR
i

(
β̂j

)
= (a+ b) ti +αzi

a
a−b −

b
a−bαzj. Hence the equilibrium in linear strategies that are increasing and continuous in the

bidders’preliminary private information is unique and symmetric. Assumption (a+ b) t +

αazl−bzh
a−b ≥ 0 guarantees that the bids are nonnegative.

Then the seller’s expected revenue from disclosure is equal to

E
[
RD
I

(
βD,∗1

(
hD1
)
, βD,∗2

(
hD2
))]

= EZi,Zj
[∑2

i=1
j 6=i

∫
{ ti,tj |βD,∗∗i (hDi )≤βD,∗∗j (hDj )}

[
vi(ti, ti, Zi)− α b

a−b(Zj − Zi)
]
dF (ti, tj)

]
,
(2.9)

In the subsequent part of the section, I will write RD
I referring to (2.9).

If the parameters lie in regime B i.e. α <
(a−b)(t−t)
zh−zl , then the strong bidder would always

win with this strategy. In this parameter regime, the derived strategies do not characterize

an interior solution.

The Seller’s Incentives in Equilibrium I

I have seen that when bidders bid according to (2.8) after disclosure, then both bidders win

with positive probability in the auction following disclosure, provided that the parameter

values are in regime A.
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For regime A, I can rewrite the seller’s expected revenue after disclosure, (2.9) as

RD
I =



∑2
i=1
j 6=i

λ (1− λ)



∫
{ ti,tj |tj>ti+α zh−zla−b }

(
(a+ b) ti + αzh − α b(zl−zh)

a−b

)
dF (ti, tj)

+

∫
{ ti,tj |tj<ti+α zh−zla−b }

(
(a+ b) tj + αzl − α b(zh−zl)a−b

)
dF (ti, tj)


+λ2∑2

i=1
j 6=i

∫
{ ti,tj |ti≤tj} [(a+ b) ti + αzh] dF (ti, tj)

+ (1− λ)2∑2
i=1
j 6=i

∫
{ ti,tj |ti≤tj} [(a+ b) ti + αzl] dF (ti, tj)


.

(2.10)

If RD
I exceeds the seller’s revenue without disclosure, RN , then the seller commits to

publicly disclosing Z at the beginning of the game.

Theorem 2.3.1 Assume (a+ b) t + αazh−bzl
a−b ≥ 0 and 0 < α <

(a−b)(t−t)
zh−zl . Suppose bidders

bid according to (2.8). Then the seller’s expected gain from publicly disclosing Z is equal to

WI = RD
I −RN (2.11)

=

λ (1− λ) (a+ b)

·



∑2
i=1
j 6=i

∫ t−α zh−zl
a−b

t

t∫
ti+α

zh−zl
a−b

(ti − tj) dF (tj) dF (ti)

+2(zh−zl)
a−b


a−b
zh−zl (E [T ]− E[T2:2])

+α

 ∫ t−α zh−zla−b
t F (ti) f

(
ti + α zh−zl

a−b
)
dti

−1
2





. (2.12)

Then the seller prefers to conceal Z.

Proof. In Appendix 2.A.

This result shows that the seller prefers no disclosure if her information is very uninfor-

mative (in regime A, i.e. α <
(a−b)(t−t)
zh−zl ).

43



The Allocation Effect of Disclosure in Equilibrium I

The allocation effect is the change of the revenue in reaction to the information. There is

no allocation effect if the public information does not change the winning bidder, i.e. if

z1 = z2 (see Board 2009 for a similar argument). If z1 6= z2, then the strong bidder bids

more aggressively than the weak bidder and the weak bidder bids less than his expected

value conditional on winning, because he fears the winner’s curse much more. The effect of

public information here is that the strong bidder wins more often than the weak bidder and

that the weak bidder bids less than under disclosure.

Allocation with

Disclosure.

Allocation without

disclosure.

Figure 2.1.

Figure 2.1 illustrates the allocation effect of disclosure compared to the auction after no

disclosure for z1 = zh and z2 = zl. The equilibrium allocation is effi cient. For allocations

above the red line in the left graph of figure 2.1 bidder 2 has the highest valuation and wins.

For all allocations below the red line, he has the lowest allocation and loses. One can easily

see that the strong bidder, bidder 1, wins more often. The reason is that bidder 1 is the

strong bidder who bids more than in the auction without disclosed information. The weak

bidder shades his bid much more. Together this implies that bidder 2 loses more often than

under no disclosure. On average the bids decrease.
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Discussion of Equilibrium I

Clearly, the unique best reply to the strategy of player j in the equilibrium with the interior

solution for α <
(a−b)(t−t)
zh−zl is playing the symmetric strategy. This equilibrium behavior in

the auction after no disclosure does not constitute an interior solution for α >
(a−b)(t−t)
zh−zl .

Furthermore, it can be shown that there are other Bayesian equilibria in which the seller’s

expected revenue is at least weakly higher than RN . Therefore I can ignore this solution

candidate for regime B.

One can show that bidder i’s equilibrium bidding strategy is not weakly dominated by

any bidding strategy that features to bid his true minimal valuation by a strategy adjusted

to ati + bt+ αzl for zi < zj or by ati + bt+ αzh for zi > zj respectively.

2.3.3 Equilibrium II

In this subsection, I derive a Bayesian Nash equilibrium of the game where bidders bidding

strategies involve corner solutions if z1 6= z2 after the seller disclosed her information. In this

corner solution the advantaged bidder wins with certainty if z1 6= z2 and the seller discloses

if the informational externalities are suffi ciently high. The characterization will show that

in the class of equilibria that I consider this equilibrium only exists if the parameters of the

model lie in regime B. For this, we must check robustness of the equilibrium strategies to

the elimination of weakly dominated strategies.

Since it can be shown for parameter regime A, α <
(a−b)(t−t)
zh−zl , that the seller conceals her

information in the revenue-optimal equilibrium involving such corner solutions, I can restrict

attention to regime B with α ≥ (a−b)(t−t)
zh−zl .

The Auction Stage After Disclosure in Equilibrium II

Assume α ≥ (a−b)(t−t)
zh−zl . For parameter regimeA the equilibria are ruled out by the elimination

of ex-post weakly dominated strategies, which I will show later.

If the seller discloses Z, then bidder i’s information set is represented by hDi = {ti, zi, zj},
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i, j ∈ {1, 2}, j 6= i. Bidder i’s maximization problem after disclosure is given by

max
βi(hDi )

ETj
[(
ati + btj + αzi − βD∗j (tj, zi, zj)

)∣∣ βi (hDi ) > βD∗
(
hDj
)
, hDi

]
(2.13)

if his type is ti and bidder j bids equilibrium strategy βD,∗ (tj, zi, zj) ∀tj.
βD,∗i

(
hDi
)
can be an interior solution or a corner solution, where one bidder wins with

certainty. The first derivative is given by

∂βD,∗
−1

j

(
βDi
(
hDi
))

∂βDi (hDi )

(
ati + bβD,∗

−1

j

(
βDi
(
hDi
))

+ αzi − βDi
(
hDi
))
f
(
βD,∗

−1

j

(
βDi
(
hDi
)))

.

(2.14)

Denote a best reply of bidder i to some bid βDj
(
hDj
)
by σBRi

(
βDj
(
hDj
))
, i ∈ {1, 2}.

Let γ be some real number between t and t.

Proposition 2.3.3 Assume α ≥ (a−b)(t−t)
zh−zl . If the seller discloses her information, then

there exists an equilibrium in which the bidders’ equilibrium bidding strategies β∗1 and β
∗
2

satisfy

βD,∗i

(
hDi
)

=


(a+ b) ti + αzi if zi = zj

at+ bti + αzh if zi < zj

(a− b) t+ bt+ bti + αzh if zi > zj

,∀ti ∈
[
t, t
]
, (2.15)

βD,∗j

(
hDj
)

=


(a+ b) tj + αzj if zi = zj

at+ btj + αzh if zi > zj

(a− b) t+ bt+ btj + αzh if zi > zj

,∀tj ∈
[
t, t
]
,

i, j ∈ {1, 2} , j 6= i.

The seller’s expected revenue from concealing is given by (2.4). The seller’s expected

revenue from disclosing is given by

E
[
RD
(
βD,∗1

(
hD1
)
, βD,∗2

(
hD2
))]

= (1− 2λ (1− λ)) (a+ b)E [T2:2] + 2λ (1− λ) (at+ bE [T ]) + αE [Z1:2]
. (2.16)

Proof. In Appendix 2.A.
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This equilibrium where the bidders’bidding strategies constitute corner solutions when-

ever z1 6= z2 provided the seller disclosed her information exists if the parameters lie in

parameter regime B. The only difference to the auction after without disclosed information

is that zi and zj will be known to both bidders if the seller publicly discloses her informa-

tion. The solution for the case z1 = z2 are derived in a fashion similar to the solution to the

bidders’problems in the auction following no disclosure, since both bidders are symmetric

in these two situations. In the case of zi = zj, the bidders are symmetric. I provided an

in-depth intuition for the bidding strategies in the benchmark case in the previous section,

which is the reason why I do not provide an intuition for the equilibrium bids in case the

bidders are symmetric here.

However, I provide an intuition for the bidders’equilibrium bidding behaviors in case of

zi 6= zj provided the seller disclosed. Consider without loss of generality the case zi = zl and

zj = zh, where bidders bid for β
D
i (ti, zl, zh) = at+ bti + αzh, β

D
j (tj, zh, zl) = (a− b) t+ bt+

btj + αzh. Bidder j is the strong bidder and always wins since

at+ bti + αzh ≤ (a− b) t+ bt+ btj + αzh ∀ti, tj

It is relatively easy to see that bidder j’s expected utility must be positive, i.e.

ETi [atj + bTi + αzh − (at+ bti + αzh)] ≥ 0 ∀tj.

Moreover, bidder j’s expected revenue for a slightly higher expected bid of bidder i is negative

for tj ∈
[
t, t+ ε

a

)
with arbitrarily small ε > 0, since

ETi [atj + bTi + αzh − (at+ bti + αzh + ε)] < 0

⇐⇒

a
(
tj − t−

ε

a

)
< 0.

This implies that there is no other solution of linear form such that one bidder wins for
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certainty, so that the seller would gain more.

The weak bidder i can bid anything as long as he loses without having to fear the potential

winner’s curse. By deviating from (a− b) t+ bt+ btj + αzh to a higher bid bidder j cannot

change his expected probability of winning. By decreasing his bid, he can only decrease

his probability of winning and thereby decrease his expected payoff. By deviating upwards,

bidder i can only decrease his expected revenue, by winning with positive probability and

paying (a− b) t + bt + btj + αzh, which exceeds his expected valuation. If bidder i deviates

downwards, he still loses and receives payoff0. Therefore none of the bidders has an incentive

to deviate in the case zi = zl and zj = zh, which holds for all i, j ∈ {1, 2} , i 6= j.

In the subsequent part of the section I write RD
II if I want to refer to (2.16).

The Seller’s Incentives to Disclose in Equilibrium II

The seller’s expected net utility from publicly disclosing Z, which I denote by WII for

α ≥ (a−b)(t−t)
zh−zl , is equal to the difference between the expected revenue with disclosure and

without disclosure

WII = RD
II −RN .

Substitution gives

WII = 2λ (1− λ)

(
b
(

(E[T ]−E[T2:2])
(E[T2:2]−t) −

a
b

)
(E [T2:2]− t)

+α(zh−zl)
2

)

if α ≥ (a−b)(t−t)
zh−zl . If RD

II exceeds the seller’s revenue without disclosure, R
N , then the seller

commits to publicly disclosing Z at the beginning of the game.

Theorem 2.3.2 If α ≥ (a−b)(t−t)
zh−zl and bidders play strategies satisfying (2.3) and (2.15),

then the seller publicly discloses her information if and only if

α ≥ max

(
2

(
a− b(E [T ]− E [T2:2])

(E [T2:2]− t)

)
(E [T2:2]− t)

(zh − zl)
,
(a− b)

(
t− t

)
zh − zl

)
(2.17)
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holds true; otherwise she conceals her information.

Proof. In Appendix 2.A.

Condition (2.17) says that the seller discloses if the impact of her information on the

bidders’valuations is suffi ciently important.

The shape of the distribution influences (E [T ]− E [T2:2]) and (E [T2:2]− t).

Example 2.3.1 7For instance, if t ∼ tk on [0, 1] , k > 0, with associated density f (t) > 0

for all t ∈ [0, 1], then
E [T ]− E [T2:2]

E [T2:2]− t =
1

2k
.

For the uniform distribution, i.e. for k = 1, condition (2.17) reduces to

α ≥ (a− b)
zh − zl

The Allocation Effect of Disclosure in Equilibrium II

There is no allocation effect if the realizations satisfy z1 = z2. Therefore I only discuss the

potentially positive effects for the case z1 6= z2. In these cases the strong bidder always wins.

From the characterization of the effi cient allocation, I know that the auction is effi cient in

regime B.

7Levin and Kagel 2005 mention the power distribution as an example for which it can be shown that an
auctioneer may profit from having an advantage bidder with valuation v (t1, t2) + αz, z > 0 and a regular
bidder with v (t1, t2) instead of having two regular bidders with valuations v (t1, t2) and v (t2, t1).
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Allocation with

disclosure.

Allocation without

disclosure.

Figure 2.2.

Figure 2.2 (regime B) depicts the allocations in equilibrium I in case of asymmetric

realizations of z1 = zh and z2 = zl. In both graphs of Figure 2.2, the red line separates the

equilibrium allocation conditional on the realizations of t1 and t2. For (t1, t2) below the red

line in the blue area, bidder 1 wins the second-price auction, and for (t1, t2) above the red

line in the green area, bidder 2 wins the second-price auction. The left graph illustrates the

equilibrium allocation of the second-price auction after disclosure, and the right graph shows

the equilibrium allocation of the second-price auction without disclosure. If no information

is disclosed, then a bidder wins if he is the bidder with the highest preliminary private signal

(right graph). If the information is disclosed, then bidder 1, the strong bidder wins (left

graph). The light blue area in the left graph marks the allocation effect. Comparing the

equilibrium allocations, one easily sees that disclosure induces an allocation effect for all

type profiles such that t2 > t1, since bidder 2 would receive the good in the auction after no

disclosure.

Disclosure induces the weak bidder to lose more often (always). As a consequence, the

weak bidder loses having the higher preliminary signal and the seller’s expected revenue is a

function of E [T ] instead of E [min (T1, T2)] whenever z1 6= z2, where E [T ] > E [min (T1, T2)].
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This is a positive allocation effect on the seller’s expected revenue. Moreover, a comparison of

the seller’s expected revenues from disclosure and no disclosure shows the higher b, relative to

a, the higher the positive allocation effect; that is the higher the informational externality of

the winning bidder’s private information, relative to the losing bidder’s private information,

the more profitable is disclosure.

The winning bidder does not receive an information rent with respect to the seller’s

information, since the losing bidder always bids at least the winning bidder’s idiosyncratic

shock. Since the losing bidder does not want to be subject to the winner’s curse, he must

shade his bid suffi ciently. The higher α, the higher the losing bidder’s bid.

Discussion of Equilibrium II

Proposition 2.3.3 and Theorem 2.3.2 describe equilibrium II. I characterize an equilibrium,

where bidders bid the seller-optimal corner solution for regime B. In this section I show that

this equilibrium is not robust to the elimination of ex-post weakly dominated strategies if

the parameters of the model satisfy regime A.

Suppose the bidder wins with β∗i ∈
[
v (ti, t, zi) , v

(
ti, t, zi

)]
against β∗j with probability

1 and that he bids β̂i 6= β∗j . We can show that the following holds true. If, for a given

information set, bidder i’s equilibrium bid lies in the interval between his minimal valuation,

v (ti, t, zi), and his maximal valuation, v
(
ti, t, zi

)
, i.e. in β∗i ∈

[
v (ti, t, zi) , v

(
ti, t, zi

)]
, then

the effect of a deviation always depends on his rival’s true type tj.

First, I show that βD,∗i (ti, zh, zl) ∈
[
v (ti, t, zh) , v

(
ti, t, zh

)]
. Two conditions must hold

(a− b) t+ bt+ bti + αzh ≤ ati + bt+ αzh∀ti

⇐⇒

(a− b) t ≤ (a− b) ti∀ti
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and

(a− b) t+ bt+ bti + αzh ≥ ati + bt+ αzh∀ti

⇐⇒

b
(
t− t

)
≥ (a− b) (ti − t)∀ti.

The former condition is true. The latter condition holds true if

2b > a.

Next, I show that βD,∗i (ti, zl, zh) ∈
[
v (ti, t, zl) , v

(
ti, t, zl

)]
. Two conditions must hold

at+ bti + αzh ≤ ati + bt+ αzl∀ti

⇐⇒

α ≤ (a− b) ti + bt− at
(zh − zl)

∀ti

and

at+ bti + αzh ≥ ati + bt+ αzl∀ti

⇐⇒

α ≥ (a− b) (ti − t)
(zh − zl)

∀ti.

These conditions hold true for α such that

α ∈
[

(a− b)
(
t− t

)
(zh − zl)

,
b
(
t− t

)
(zh − zl)

]
, (2.18)

which implies again that 2b > a is a necessary condition.

Therefore the seller-optimal equilibrium in the considered class of equilibria is unique if

it exists.
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2.4 Disclosure and the Seller-optimal Equilibrium

In this section, I would like to discuss the revenue-maximizing equilibrium. Together with

Example 2.3.1 the discussions of the equilibria about the robustness to the elimination of

ex-post weakly dominated strategies imply that there is a nonempty parameter regime such

that there exists and equilibrium in which the seller discloses her information.

In the equilibrium of regime B, the seller discloses if her information is suffi ciently infor-

mative, provided the equilibrium exists.

Equilibrium I exists if (a+ b) t + α (azl − bzh) ≥ 0 and α <
(a−b)(t−t)

(zh−zl) . The seller always

conceals her information. If t = 0, then the former condition is equivalent to a zl
zh
≥ b.

Equilibrium II is the unique seller-optimal equilibrium of the considered class of equilibria if

conditions (2.17) and (2.18) hold true. The reason is that the seller prefers disclosure over

no disclosure if and only if (2.17), which implies that the expected revenue is strictly higher

than in the first equilibrium. Moreover, if (2.17) is not true and α <
(a−b)(t−t)

(zh−zl) holds true,

then the seller conceals the information in both equilibria and the seller’s expected revenue

is identical in both equilibria.

We considered the robustness to the elimination of ex-post weakly dominated strategies.

The second equilibrium is robust to the elimination of ex-post weakly dominated strategies

if
(a−b)(t−t)

(zh−zl) ≤ α ≤ b(t−t)
(zh−zl) implying that the informational externality must be suffi ciently

strong, b > a
2
. Therefore the first equilibrium is unique in the considered class of equilibria

if α <
(a−b)(t−t)

(zh−zl) , provided it exists.

2.5 Conclusion

I have studied the seller’s incentives to publicly disclose a set of signals about the bidders’

private valuations precedent to a second-price auction with two bidders. I assume that

bidders have preliminary information with informational externalities on other bidders. An

important aspect is how disclosure affects the bidders’bidding strategies.
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I characterize the revenue-maximizing/seller-optimal Bayesian Nash equilibrium of the

second-price auction with two bidders. The seller publicly discloses her information if the

impact of her information is very high, meaning it is informative about the bidders’valua-

tions.

The individual bidder’s exposition to the winner’s curse conditional on winning with

positive probability is stronger for weak bidders after disclosure of the information. Only

if the weak bidder loses with certainty is he willing to bid more carelessly. Disclosure may

have two effects: an informational effect and a strategic effect.

My result that the linkage principle holds if the seller’s information is suffi ciently informa-

tive about the bidders’private value information relates to the linkage principle for positively

affi liated signals in Milgrom and Weber 1982a. The common intuition is that the linkage

principle holds whenever the public information reduces the bidder’s winner’s curse. In my

model, this reduction is not a direct effect of the public information but an indirect effect,

because it only occurs endogenously in the equilibrium. I show that the linkage principle

may hold if the public information has a suffi ciently high impact on the bidders’valuations,

and in equilibrium the advantaged winner wins whenever bidders are asymmetric.

I consider the case of a two bidders second-price auction. For the case of two bidders the

second-price auction is equivalent to the English auction, but not for more than two bidders

(Milgrom and Weber 1982a and Maskin 1992). However, the English auction with two

bidders occurs at the final stage of each English auction. Moreover, Perry, Wolfstätter and

Zamir 2000 show that a two-stages auction with two bidders at the second stage is equivalent

to the English auction of Milgrom and Weber 1982a. They report the use of such an auction

mechanism for the privatization of an Italian conglomerate. A recent paper proposed the

indicative auction mechanism (Ye 2007). In the numerical examples provided by Ye 2007 for

the case with initial private value knowledge and additional common value component, the

optimal number of bidders in the second stage is two. Variants of the English auction have

been reported to be the oldest and probably most commonly used systems (Cassady 1967,

Krishna 2009).
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Sequential, Multi-dimensional Screen-
ing1

3.1 Introduction

3.1.1 Motivation

Consider a landowner contemplating to construct a house on her land. A constructor is

contacted to build the house. The plans for the house are relatively complex; a variety of

decisions have to be taken. To fix ideas, suppose there are two broad issues relating to the

exterior and the interior design. The landowner’s ideas for the exterior design are relatively

standard, but her tastes for interior designs are quite particular. As a result, the constructor

knows the costs of completing the exterior parts, but he only has a vague idea about the

costs relating to the interior parts. However, he will learn these costs as time goes by.

This is a natural situation, in particular in large scale procurement environments, but the

situation arises equally naturally in the context of price discrimination. Consumers thinking

about buying a (new generation) smart phone know quite well how they value the services

and applications they have already been consuming on their old phones. However, they

may only have a vague idea about their valuation for new applications. Broadly speaking, a

customer switching from a standard mobile phone to a smart phone knows how many calls

he needs to make, but only time will tell how much data he will download with the phone.

1This chapter is based on the paper "Sequential, multidimensional screening", Litterscheid and Szalay
2014.
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Moreover, casual evidence suggests that firms respond to this information structure.2

This chapter is based on a paper, in which we would like to advance our understanding

of contracting solutions in these types of environments. We study a two-period model where

a principal contracts with an agent to trade a bundle of services. At the beginning of the

game, the agent has private information about the costs of producing one item in the bundle.

He privately learns the costs of producing the other item in the second period. Optimal

contracting is dynamic; principal and agent get together both at the outset of the game as

well as later on, i.e. in period 2, when more information is available. At the beginning of

period 1, the agent decides whether or not he will eventually deliver the bundle of services,

but the precise terms of the contract may still be left open at this time. At the second

get-together, the remaining details of the contract are specified. The services are produced

when all information is available and the agent is paid when all services have been produced.

The literature has analyzed problems that share some but not all the ingredients of our

problem. In a nutshell, our problem is a convex combination of a two-dimensional screening

problem with a two-dimensional allocation à la Armstrong and Rochet 1999 and a sequential

screening problem à la Courty and Li 2000. The main difference to Armstrong and Rochet

1999 is the sequential information structure. The main difference to Courty and Li 2000

is that we assume that the object has two components and that the agent’s ex-ante type

informs about the cost of production of both components; in particular, the agent’s ex-ante

type contains perfect information about the costs of producing the first component and

imperfect information about the costs of producing the second good. To the best of our

knowledge, the underlying paper to this chapter is the first to takes this approach. We

2E.g., service provider Orange UK offers a choice of pay as you go services and monthly plans. Moreover,
selecting into one of these plans limits the options to choose from later on. In particular, conditional on
the selected plan a consumer has the possibility to buy one out of a given variety of additional bundles of
services.
Specific examples of such options include plans Dolphin and Monkey http://www.best-mobile-

contracts.co.uk/networks/orange.html. Dolphin offers different bundles of classical services with modern
services, i.e. texts, minutes and data volume. Monkey offered bundles of free music and texts.
The key properties for our purposes are that a bundle of services is traded and that the choice from options

is made sequentially.
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describe the relevant literature in much greater depth below.

We raise and answer the following questions. What constraints does incentive compatibil-

ity impose in this environment; put differently, what is the set of implementable allocations in

the present context? Moreover, what are the qualitative properties of an optimal allocation

from the principal’s perspective? Is it natural to expect the classical downward distortions

in economic activity due to asymmetric information? Can the principal profit from starting

construction works on her house before all information is available?

3.1.2 Main Findings

To answer the first question, we provide a detailed analysis of the set of binding incentive and

participation constraints. It is instructive to analyze the principal’s design problem in two

steps. In the first step, the allocation is taken as given and we search for the least cost way

of implementing the given allocation. In the second step, we optimize over the allocations.

Since our sequential screening problem involves a two-dimensional allocation, the problem

of implementing given allocations is rich. One needs to derive the rent-minimizing transfer

payments as a function of the allocations, which is equivalent to identifying the set of binding

constraints. If the allocation is one-dimensional, then the sequential screening problem is

regular and easily solved. However, if the allocation is multi-dimensional, then, as is well

known, the set of binding constraints at the optimum changes with the allocation.

Since the problem involves a sequential information structure, the agent’s information

rent depends on his optimal deviations off the equilibrium path. One needs to understand

systematically which deviations are most tempting for the agent as a function of the alloca-

tion that the principal wishes to implement. The revelation principle for multi-stage games

(Myerson 1986) keeps silent about the agent’s optimal deviations off the equilibrium path.

However, the timing of the agent’s learning process can simplify the buyer’s problem

if we put structure on the information structure; that is, we can derive a relaxed problem

by assuming that the agent’s cost parameters are positively correlated, which is a common

assumption in the sequential screening literature. We identify for any incentive compatible
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allocation two constraints that must be binding in any optimal contract. In particular, the

agent with a high cost of constructing the exterior parts of the house is indifferent between

participating and not participating; the agent with the low cost of exterior construction is

indifferent between reporting this parameter truthfully or not and moreover obtains a rent.

The level of this rent depends on what the agent with an initial low cost realization would

report in the second round of communication, had he falsely reported his cost of constructing

the exterior parts as high.

Then substituting for the expected transfer payments, we consider a relaxed problem

where we assume that the incentive compatibility constraint of the ineffi cient ex-ante type

holds and show at the end that the solution to the relaxed problem solves the original

problem. It is straightforward to derive the rent-minimizing transfer payments and optimal

deviations off the equilibrium path. That is, we characterize the set of binding incentive

compatibility constraints for the relaxed problem and the agent’s optimal deviations off the

equilibrium path as a function of the allocation.

Substituting for the ex-post transfer payments and the agent’s information rents, we can

optimize the relaxed problem with respect to the allocation. The buyer’s optimal allocation

depends on his preferences over the allocations and the agent’s information rent as a function

of the allocation.

Our main qualitative finding is that the optimal mechanism can induce overproduction if

the two items of the object are either weak substitutes or strong complementarities. To the

best of our knowledge, this is a new reason for overproduction; that is, the optimal allocation

can feature overproduction if, from the buyer’s perspective, the two different components of

an object in a sequential screening problem are either substitutes or strong complements.

To understand the economics behind our main qualitative result, one needs to understand

the trade-offs that are introduced by the interaction between the different dimensions of the

object. The interactions determine the buyer’s preferences over the agent’s cost types.

For instance, consider the case when the two dimensions of the object are strong comple-

ments. In this case, the buyer has strong preferences for a bundle of homogenous goods/an
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object with components of homogenous quality; that is, the marginal value of increasing the

quality of one component is increasing in the quality of the other component. Therefore

the buyer would like to design a mechanism that features homogenous allocations, even for

heterogenous costs of producing the two goods. In a perfect world he would do so. How-

ever, the buyer must pay the seller’s effi cient ex-ante type some information rent to induce

incentive compatible reports. To minimize the information rent of the seller, the buyer can

distort the allocations of the seller’s ineffi cient ex-ante type for a given transfer payment.

Then he chooses the optimal distortions by choosing the rent-minimizing pattern of bind-

ing constraints given the agent’s optimal deviation off the equilibrium path. This choice is

influenced by the positive correlation of the cost parameters. Consider the distortions of

the second good for which the agent learns his production costs later. Relaxing one ex-post

type’s incentive constraint by downward distorting his allocation means tightening another

ex-post type’s incentive compatibility constraint. The tightened incentive constraint can be

slightly relaxed by slightly upward distorting the other type’s allocation. The buyer can

save more information rent by downward distorting the second allocation of the most ineffi -

cient ex-post type for two reasons: the quantity of the ineffi cient ex-ante type is downward

distorted, and the ex-ante and the ex-post type are positively correlated.

Our main result also depends on the agent’s incentives to report his ex-post type truth-

fully, once he lied about his ex-ante type. Depending on how sensitive the allocation variables

respond to information that arrives late, the agent’s best deviation features truthtelling or

lying after a false report in the first round of communication.3 The solution depends crucially

on the nature and strength of interactions between the items in the bundle in the principal’s

3It is important to point out that an appropriate version of the revelation principle (Myerson (1986))
applies in our environment. However, the principle implies only that the agent finds it optimal to announce
both parameters truthfully, which implies in particular, that he will report the second parameter truthfully
once he has been truthful about the first parameter. The dynamic literature has termed this behavior
truthfulness on equilibrium path. The revelation principle has no implications whatsoever on what the agent
does off equilibrium path, that is after a first period lie. Clearly, the agent has by definition an incentive
to remain on equilibrium path. However, the utility loss to the principal to ensure such remaining on path
depends on the agent’s best alternative to truthtelling. Therefore, the off-path behavior becomes a crucial
ingredient to the analysis.
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payoff function. Consider the case of strong complements. For strong complements, the

optimal allocation triggers a second period lie after a first period lie, because the buyer’s

preferences are shaped by the agent’s ex-ante type. Then the buyer’s willingness to pay for

the object with homogenous dimensions is higher than for an object with rather different

dimensions. For instance, we find that, due to the positive correlation of the two cost pa-

rameters, it is cheaper to induce the seller to report that the ex-post type is effi cient if he

reported his ex-ante type to be effi cient, irrespective of his ex-post type.

Which of these cases are economically most relevant? What are reasonable assumptions

on the strength of interactions between the items in the bundle the principal consumes?

We obtain guidance from the comparative statics properties of the first-best allocation if we

are willing to impose that changes in marginal costs of producing one item have more of an

impact on the level of that item rather than the other one. If moreover the support of second

period information is at least as wide as the support of first period information, then only

the case of mild complements and substitutes is relevant. Even for weak substitutes upward

distortions are possible. For applications in which these assumptions make sense, we provide

a strikingly simple cook-book recipe: optimal contracts can be found by imposing truth-

telling constraints on and off equilibrium path and the procedure picks up the optimum

even if the truthtelling constraints off path are binding. In the case of weak complements,

the off-path incentive compatibility constraints are slack, while these constraints are binding

in the case of weak substitutes.4

Last, although waiting enables the agent to deviate in more complicated ways, there is a

strictly positive option value of waiting if the exterior and the interior of the house are either

strict complements or substitutes for the landowner; that is, the added flexibility is always

valuable to the landowner. If, from the buyer’s point of view, there is some interdependency

between the goods, then the effi cient quality level of one item depends on the quality level of

the other item, and thereby the effi cient quality level of one item depends on the production

4This latter result strikes us as pretty surprising, because - as cannot be stressed enough - it has nothing
to do with the revelation principle but rather emerges from the solution of the overall maximization problem.
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costs of both items. As a consequence, beginning construction works before the constructor

has all information about the costs of the interior of the building comes at a loss to the

landowner, unless the landowner values each item in the bundle independently of the other

item.

3.1.3 Related Literature

Our analysis builds on two branches of the literature: multi-dimensional screening on the

one hand and sequential screening on the other hand.

The closest related paper on multi-dimensional screening is Armstrong and Rochet 1999.

Armstrong and Rochet analyze a tractable model of two-dimensional screening (for fur-

ther static multi-dimensional screening problems with two-dimensional information and two-

dimensional allocation, see Dana 1993 and Severinov 2008). Armstrong and Rochet assume

that the agent knows all his information from the outset, the information is two-dimensional,

the allocation problem is two-dimensional, the agent’s type is two-dimensional and the mech-

anism is static. Our paper differs in several aspects from Armstrong and Rochet 1999. First,

we assume that, at the beginning of the game, the agent learns one dimension of his type,

and, later on, he obtains the other dimension. Second, we consider a sequential screening

mechanism; that is, a mechanism with two stages. Third, we allow for substitutability and

complementarity between the goods but restrict attention to positive correlation between the

informational parameters, while Armstrong and Rochet consider neutral goods but allow for

arbitrary correlations. We clearly do not do justice to the multi-dimensional literature in this

short account. For an in depth survey, see Rochet and Stole 2003; for general approaches,

see Armstrong 1996 and Rochet and Choné 1998.

The seminal paper of the literature on sequential screening is Courty and Li 2000. Se-

quential screening problems are characterized by a sequential information structure; that is,

as in our model, the agent is initially endowed with his privately known, so-called ex-ante

type, which is a vague idea about his preferences, and later on refines this idea to his ex-post

type, which is his posterior estimate of his preferences. The main difference to Courty and
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Li 2000 is that, in their model, the allocation is one-dimensional, while we assume that both,

the allocation is two-dimensional and that the ex-ante type determines the cost of producing

one allocation and also contains some information about the costs od producing the other

item.

To the best of our knowledge, our paper is the first one to consider a setting where the

agent’s ex-post type is two-dimensional and the allocation is two-dimensional. Our assump-

tions captures a different set of problems and allows to analyze screening problems where the

principal and the agent trade an object that features substitution effects or complementarity

effects between its two dimensions.

In the context of sequential screening problems, dynamic lying strategies determine the

agent’s information rent; where an agent lies a second time, if he lies a first time, arise nat-

urally if the object’s two dimensions are strong substitutes or strong complements. Sequen-

tially optimal lies are also analyzed in Eső and Szentes 2007a,b, 2013. The main difference is

that they assume that the ex post type is drawn from the full support and one-dimensional.

In this setting, an agent who misreported early information will always be able to undo his

lie by reporting his ex-post type truthfully (see also Li and Shi 2013). The main difference

to our setting is that the ex post type and the allocation are two-dimensional. Therefore the

ex-post type does not satisfy the full support assumption. Hence, optimal allocations reflect

different trade-offs.

A paper where the optimal mechanism induces a second lie after a first lie is Krähmer and

Strausz 2008. The main difference between these two papers is that Krähmer and Strausz

analyze a setting where the support of the ex-post type depends on the realization of the

ex-ante type. The optimal mechanism induces the agent to lie off the equilibrium path if his

ex-ante type is effi cient and is suffi ciently more important than the ex-post type. In Krähmer

and Strausz 2008, the relative importance of ex-ante and ex-post types is an inherent feature

of the distribution of these types. The main difference to Krähmer and Strausz 2008 is that we

consider a two-dimensional allocation problem with interactions between the two dimensions.

The economic intuition why a second lie occurs is very different. If the interactions between
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the object’s two dimensions is weak, then the optimal mechanism does not induce a second

lie. However, if the interactions are suffi ciently strong, then the second dimension will be

designed very closely to the first dimension, irrespective of the realization of the costs of

producing the second dimension.

A question related to our timing application is addressed in Krähmer and Strausz 2012,

where it is shown that ex post participation constraints eliminate the value of sequential

screening in that there is bunching with respect to early information. In that sense, the

principal could simply wait for definite information to arrive and not screen until then. Note

that this is different in our context where early information is directly payoff relevant; not

screening early would expose the principal to a static multi-dimensional screening problem

later on; hence, this is suboptimal in our model.

For more recent analyses of sequential screening models, see also Boleslavsky and Said

2012, Krähmer and Strausz 2012, 2013 and Li and Shi 2013; for a combined model of moral

hazard and adverse selection, see Garrett and Pavan 2013. Bhaskar 2013 analyzes dynamic

deviation strategies in the pure moral hazard model.

Closely related to sequential screening are the papers on dynamic mechanism design.5

Baron and Besanko 1984 and Battaglini 2005 provide the first general analysis of optimal

contracts in this dynamic framework. Battaglini 2005 studies monopolistic selling to cus-

tomers whose tastes follow a Markov process. Pavan, Segal and Toikka 2014 provide a

general model of dynamic mechanism design. In each period, new information arrives and

the designer chooses a set of allocation variables as a function of current information and past

reports. In each period, the agent’s private information is captured by a one-dimensional

parameter. This is the key difference to our problem, where there are two payoff relevant

parameters that simultaneously affect the agent’s payoff. Under this assumption, we obtain

a natural taxonomy of cases featuring binding constraints with respect to one-shot deviations

or double, dynamic deviations, respectively. The latter case, by definition, fails to satisfy

the version of the one-stage-deviation principle by Pavan, Segal and Toikka 2014, which

5See Pavan et al. (2014) for a much more extensive survey of the literature on dynamic mechanism design.
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applies precisely when the best deviation for the agent is to lie once and then to return to

truthful reporting strategies forever after. So, ultimately the qualitative differences of our

contracting solutions as compared to those in Pavan, Segal and Toikka 2014 are due to the

one-stage-deviation principle applying or failing, respectively. In turn, multi-dimensionality

provides a natural reason for the failure of the one-stage-deviation principle.

Complementary to this chapter is contemporaneous work by Battaglini and Lamba 2013

who argue that there are important interactions between the regularity conditions imposed on

the screening problem and the length of the time horizon. In the dynamic screening problem

separation may not be feasible even though it would be feasible in the static counterpart of

the model. In particular, Battaglini and Lamba 2013 provide natural examples where locally

optimal contracts fail to satisfy global incentive constraints. Unlike in our model it is the

within period incentive constraints that become binding beyond the local ones; in our model,

within period incentive compatibility is standard, but the dynamic incentive constraints

become binding beyond the local ones. Similar to the present approach, their analysis allows

them to explain allocations that could not be rationalized using local constraints only, in

particular, dynamic pooling: initial separation followed by pooling in later periods.

Chapter 3 is organized as follows. In section two, we present the model and state the

buyer’s problem. Section three presents and solves the buyer’s problem. Section four discusses

the structure of optimal allocations in regular cases where the strength of complementar-

ity/substitutability of goods in the buyer’s utility function is limited. Section five gives an

example that is outside this regular structure. In section six, we discuss the optimal timing

of productive decisions in our model. The final section concludes. Proofs are relegated to

Appendix 3.
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3.2 The Model

3.2.1 Setup

A buyer contracts with a supplier to obtain two goods in quantities x and y. The buyer’s

utility is

V (x, y)− T,

where T is a transfer made to the seller. The seller’s payoff is

T − θx− ηy,

where θ and η are cost shifters.

Contracting is a sequential process. At date 1, the seller knows the realization of θ (but

not of η) and the conditional distribution of η given θ, whereas the buyer only knows the joint

distribution of types. The cost realizations are binary, so that θ ∈
{
θ, θ
}
and η ∈

{
η, η
}
,

where θ > θ > 0 and η > η > 0. The joint distribution is completely characterized by

Pr (θ = θ) = α and λ (θ) ≡ Pr
{
η = η |θ

}
. At date 2, η becomes known to the seller but not

to the buyer. Also, goods are produced and traded in exchange for the transfer T at that

date. The game and the information structure is common knowledge.6

We place no assumptions on V (x, y) for the time being except that V (x, y) is jointly

concave in x and y and that the first unit of consumption is extremely valuable to the buyer,

that is limx→0 V1 (x, y) =∞ for all y and limy→0 V2 (x, y) =∞ for all x.7 Further assumptions

will be discussed as we go along.

6In our model there are two choice variables, x and y, that interact with two informational variables, θ
and η. The essential difference to Courty and Li (2000) is that θx enters the agent’s payoff function.

7Throughout the paper, Vi (x, y) and Vij (x, y) for i, j = 1, 2 denote partial and cross derivatives of the
function V with respect to its arguments.
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3.2.2 The Buyer’s Problem

Invoking the appropriate revelation principle (Myerson 1986), it is without loss of generality

to analyze optimal contracting in terms of direct, incentive compatible mechanisms, where

the agent announces each piece of information when it arrives. Thus, the contracting game

is dynamic and involves two rounds of communication. In the first round at date 1, the seller

reports a value θ̂ ∈
{
θ, θ
}

; in the second round at date 2, the seller reports a value η̂ ∈
{
η, η
}
.

The seller is given incentives to announce these values truthfully. This implies in particular,

that truthfulness about η is optimal after a truthful report about θ. To rule out all feasible

deviations by the seller, we need to analyze also what the seller would announce about η

off equilibrium path, that is, had he falsely reported θ in the first round of communication.8

Since the optimal behavior of the agent in the second round depends on the first round

report, θ̂, the first round true type, θ, and the second round true type, η, we need to

distinguish between the incremental information that arrives in round two and the agent’s

private information. That is, in the second period, the agent privately knows which node,

identified by the triple
(
θ, θ̂, η

)
, in the game tree has been reached. We let η̂∗

(
θ, θ̂, η

)
for

θ̂ 6= θ denote the optimal report at node
(
θ, θ̂, η

)
and treat these reports as choice variables

(subject to incentive compatibility constraints) of the principal.

It is easy to show that the optimal mechanism is nonstochastic. This is because the

principal is risk averse (with respect to lotteries over x and/or y) while the agent only cares

about the expected values of such lotteries. Even though the equilibrium concept is a bit

different, the proof essentially follows from Myerson 1986.

We can now state the buyer’s problem:

max
x(·,·),y(·,·),T (·,·),η̂∗(·,·,·)

EθEη|θ [V (x (θ, η) , y (θ, η))− T (θ, η)] (3.1)

8It is important to notice that the revelation principle does not have any implications on reporting off
equilibrium path, except for the fact that the agent chooses the optimal report to send as part of his strategy.
So, to assess the value of a deviation in the first round of communication, we need to consider the possibility
that the optimal thing to do in the second round after a first round lie is to lie again.
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s.t.

T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)
≥ T

(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)
, (3.2)

T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)
≥ T

(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)

(3.3)

T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)
≥ T (θ, η)− θx (θ, η)− ηy (θ, η) (3.4)

T (θ, η)− θx (θ, η)− ηy (θ, η) ≥ T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)

(3.5)

Eη|θ [T (θ, η)− θx (θ, η)− ηy (θ, η)] (3.6)

≥ Eη|θ
[
T
(
θ, η̂∗

(
θ, θ, η

))
− θx

(
θ, η̂∗

(
θ, θ, η

))
− ηy

(
θ, η̂∗

(
θ, θ, η

))]
,

Eη|θ
[
T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)]

(3.7)

≥ Eη|θ
[
T
(
θ, η̂∗

(
θ, θ, η

))
− θx

(
θ, η̂∗

(
θ, θ, η

))
− ηy

(
θ, η̂∗

(
θ, θ, η

))]
,

Eη|θ [T (θ, η)− θx (θ, η)− ηy (θ, η)] ≥ 0, (3.8)

Eη|θ
[
T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)]
≥ 0, (3.9)

and for θ 6= θ̂

η̂∗
(
θ, θ̂, η

)
∈ arg max

η̂
T
(
θ̂, η̂
)
− θx

(
θ̂, η̂
)
− ηy

(
θ̂, η̂
)

(3.10)

for all θ, θ̂ ∈
{
θ, θ
}
and η ∈

{
η, η
}
.

Constraints (3.2) through (3.5) are the second period constraints after a truthful report

in the first period: after such a truthful report in period one, the seller must find it optimal

to be truthful about η as well. We term these constraints “on-path constraints” for the

obvious reason. (3.6) and (3.7) are the first period incentive constraints. As of date one,

the seller anticipates that after having misreported θ in the first period, he chooses the

second period report optimally, as captured by (3.10) . Since nodes
(
θ, θ̂, η

)
for θ 6= θ̂ are off

the equilibrium path (on equilibrium path, the first report is truthful), we term constraints

ensuring any particular behavior at such off-path nodes “off-path incentive constraints”.
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(3.8) and (3.9) are the participation constraints.

Before diving into the quite intricate analysis, it is useful to take a bird’s eye view of the

problem. At the first time of contracting, there are only two possible types - because the

seller only knows θ but not yet η. Moreover, the seller decides whether or not he wishes to

participate at that date. He anticipates optimal behavior at date 2, so each report gives rise

to a continuation value. Due to this structure, our model has much in common with the

simple (static) binary model of screening, so much of the logic of that model will carry over.

The essential complication relative to the static counterpart is that the continuation values

are endogenous and there is no simple shortcut to determine these values.

It is instructive to understand the properties of the first-best allocation.

3.2.3 The First-best

If the buyer and the seller both know θ at the outset and both learn η at date two, then

both (3.8) and (3.9) are binding at the optimum and the optimal allocation satisfies

V1 (x (θ, η) , y (θ, η)) = θ (3.11)

and

V2 (x (θ, η) , y (θ, η)) = η (3.12)

for θ ∈
{
θ, θ
}
and η ∈

{
η, η
}
.

To sharpen our intuition for “relevant”cases in the second-best, it proves useful to ask

how the first-best solution depends on the cost parameters. Obviously, x and y move in

the same direction in response to changes in the parameters if x and y are complements

and move in opposite directions if x and y are substitutes. Beyond that, it is important to

understand how strongly these choices respond to information that is learned in period 2.

Lemma 3.2.1 If x and y are complements (V12 (x, y) ≥ 0 for all x, y), then the first-best
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allocation, defined by (3.11) and (3.12), satisfies

y
(
θ, η
)
− y (θ, η) ≥ (≤)x

(
θ, η
)
− x (θ, η)

for arbitrary η − η > 0 if and only if V12 (x, y) ≤ (≥)− V11 (x, y) for all x, y.

If x and y are substitutes, (V12 (x, y) ≤ 0 for all x, y), then the first-best allocation satisfies

y
(
θ, η
)
− y (θ, η) ≥ (≤)−

(
x
(
θ, η
)
− x (θ, η)

)
for arbitrary η − η > 0 if and only if V12 (x, y) ≥ (≤)V11 (x, y) for all x, y.

Proof. In Appendix 3.

If the utility function of the buyer features interactions that are not too strong, then a

change in η has a stronger impact on y than on x. We believe this is the natural case, but

other cases are possible.9

We now address the buyer’s problem under asymmetric information.

3.3 Analysis

We assume that the low cost producer in the first period is better to the buyer than the high

cost producer in the sense of a weakly positive correlation

Assumption 1: θ and η are weakly positively correlated, that is λ (θ) ≥ λ
(
θ
)
.

First-order stochastic dominance is a regularity condition that is commonly used in the

sequential screening literature. Assumption 1 implies the following Lemma:

Lemma 3.3.1 If λ (θ) ≥ λ
(
θ
)
, then (3.8) is automatically satisfied if (3.9) is.

9In the context of strategic interactions, the natural case would generate stability of a system of best
replies; see, e.g., Tirole (1988) for a discussion. Note moreover that joint concavity with respect to x and y
requires that V11V22 − V 212 ≥ 0, so a concave function cannot be “irregular”both with respect to changes in
η and θ.
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Proof. In Appendix 3.

The argument is essentially the same as in a static two-type model. We can use the first

period incentive constraint (3.6) to show that an allocation that satisfies (3.9) automatically

also satisfies (3.8) .

Clearly, at least one participation constraint must be binding; otherwise all payments

could be lowered and the buyer’s payoffcould be increased. From Lemma 3.3.1 we can deduce

that constraint (3.9) is binding at the optimum. Likewise, at least one of the first period

incentive constraints must be binding. Otherwise we could again reduce some payments in a

way that keeps incentive compatibility satisfied and increases the buyer’s expected payoff. It

is easy to see that the critical constraint is (3.6) .Which other constraints bind is a relatively

complex matter. The reason is that the implications of optimal off-path reporting are quite

intricate. We begin with a discussion of the implications of the on-equilibrium path incentive

constraints.

Lemma 3.3.2 η̂∗
(
θ, θ, η

)
= η for x

(
θ, η
)
≥ x

(
θ, η
)
and η̂∗

(
θ, θ, η

)
= η for x

(
θ, η
)
≥

x (θ, η) . Likewise, η̂∗
(
θ, θ, η

)
= η for x

(
θ, η
)
≤ x

(
θ, η
)
and η̂∗

(
θ, θ, η

)
= η for x

(
θ, η
)
≤

x (θ, η) .

Proof. In Appendix 3.

The on-path constraints have some, however limited, implications for the optimal reports

offpath. In particular, it is never the case that the agent finds it optimal to lie at all off-path

nodes in the second period. Depending on the monotonicity properties of the x−allocation,
there are always some nodes at which truthtelling about the second period incremental

information is automatically - by implication of the on-path constraints - induced. The

intuition is quite simple. E.g., the on-path constraints of type
(
θ, η
)
make reporting η̂ = η

optimal for that type. At node
(
θ, θ, η

)
, the agent has an even stronger incentive to report

η̂ = η if x
(
θ, η
)
≥ x

(
θ, η
)
, because that boosts his extra rent from having exaggerated θ in

round one.

The diffi culty at this stage is of course that the monotonicity of the x−allocation with
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respect to η is not known and endogenous. Our solution strategy is as follows. Building on

the insights from static models of screening, we aim for a reduced problem, where constraints

(3.9) and (3.6) hold as equalities, while (3.7) (in addition to (3.8)) is slack. We solve this

reduced problem and provide suffi cient conditions such that its solution satisfies the neglected

constraint (3.7) . In turn, the reduced problem is tackled in a two step procedure, where we

determine at step one the cheapest way to implement a given allocation and then determine

the optimal allocation in step two. In the first step problem we simultaneously optimize over

payments and off-path reports.

3.3.1 The Reduced Problem

If the agent with first period cost θ is indifferent between participating and not, the agent

with first period type θ is indifferent between being truthful and lying about θ, and the

remaining first period constraints are slack, then the principal faces the standard trade-off

between the effi ciency of the allocation and the rent that needs to be given to ex ante type θ.

Denote this rent as ∆. It is useful to split the principal’s problem into two steps. In the first

step, we take the allocation as given and determine optimal payments that implement the

allocation. Implementability of the allocation includes that the incentive constraint of the

ex ante type θ needs to be satisfied as well. Formally, letting Ω denote the expected profit

ex ante type θ can make by mimicking type θ, we require that Ω ≤ 0. Once the optimal

payments are known, we maximize with respect to the allocation that the principal wishes

to implement.

Identifying the minimal payments, while straightforward in the static model, is pretty

involved in the present context. The reason is that implementation is much more flexible

in the multi-dimensional context and so the pattern of binding constraints is not obvious.

The reader who is not interested in the details of this step can skip subsection 3.3.1, consult

Lemma 3.3.3 for the solution to the problem, and continue reading from subsection 3.3.1

onwards on a first go. However, to ultimately understand the structure of optimal allocations

in sections 3.4 and 3.5 below, the reader needs to go back to subsection 3.3.1 to relate the
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pattern of binding constraints to the underlying model primitives.

Implementing Given Allocations at Lowest Cost

For a given allocation (x, y)10, payments to types
(
θ, η
)
and optimal off-path reporting at

nodes
(
θ, θ, η

)
for η ∈

{
η, η
}
solve the following problem:

∆ ≡ min
{T(θ,η),η̂∗(θ,θ,η)}

η∈{η,η}

Eη|θ
[
T
(
θ, η̂∗

(
θ, θ, η

))
− θx

(
θ, η̂∗

(
θ, θ, η

))
− ηy

(
θ, η̂∗

(
θ, θ, η

))]
(3.13)

s.t.

η̂∗
(
θ, θ, η

)
∈ arg max

η̂
T
(
θ, η̂
)
− θx

(
θ, η̂
)
− ηy

(
θ, η̂
)
for η ∈

{
η, η
}

Eη|θ
[
T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)]

= 0,

(3.2) , and (3.3) .

The buyer minimizes the rent that needs to be given to the seller with ex ante type θ, taking

into account that the optimal reporting strategy of this type in period two can be to misreport

his parameter η when he has misreported his parameter θ in the first period. However, if

the buyer wishes to implement such a sequential lying strategy - because expected payments

can be reduced this way - then he needs to explicitly make sure that the strategy is optimal

from the seller’s perspective as well.

Once the solution to the first program is found, we can choose payments to types (θ, η)

and the optimal reporting at nodes
(
θ, θ, η

)
for η ∈

{
η, η
}
to render constraint (3.7) as slack

as can be. Formally, given the payments and reports
{
T
(
θ, η
)
, η̂∗
(
θ, θ, η

)}
η∈{η,η} that solve

10Throughout the paper we denote by (x, y) the allocation for all types (θ, η) ∈
{
θ, θ
}
×
{
η, η
}
.
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program (3.13), payments and reports
{
T (θ, η) , η̂∗

(
θ, θ, η

)}
η∈{η,η} solve the problem:

Ω ≡ min
{T (θ,η),η̂∗(θ,θ,η)}

η∈{η,η}

Eη|θ
[
T
(
θ, η̂∗

(
θ, θ, η

))
− θx

(
θ, η̂∗

(
θ, θ, η

))
− ηy

(
θ, η̂∗

(
θ, θ, η

))]
(3.14)

s.t.

η̂∗
(
θ, θ, η

)
∈ arg max

η̂
T (θ, η̂)− θx (θ, η̂)− ηy (θ, η̂) for η ∈

{
η, η
}

Eη|θ [T (θ, η)− θx (θ, η)− ηy (θ, η)] = ∆,

(3.4) , and (3.5) ,

Notice that we solve problem (3.14) only after having solved problem (3.13) . This procedure

reflects our solution strategy that is based on reduced problems where constraint (3.7) is

slack. As long as (3.7) is slack - formally, as long as Ω ≤ 0 - only the solution of problem

(3.13) is directly payoff relevant. For this reason, we focus primarily on program (3.13) in the

main text and relegate the solution to program (3.14) entirely to Appendix 3. We come back

to these results only when we verify that the neglected constraint, (3.7) , is indeed satisfied.

The solution to the programs depends on the allocation that the buyer wishes to imple-

ment. In particular, define ∆x (θ) ≡ x
(
θ, η
)
− x (θ, η) , ∆y (θ) ≡ y

(
θ, η
)
− y (θ, η) , and the

following sets

Xi (θ) ≡
{
{(x (θ, η) , y (θ, η))}η∈{η,η} |

(
η − η

)
∆y (θ) ≥

(
θ − θ

)
∆x (θ) ≥ 0

}
;

Xii (θ) ≡
{
{(x (θ, η) , y (θ, η))}η∈{η,η} |

(
η − η

)
∆y (θ) ≥ −

(
θ − θ

)
∆x (θ) ≥ 0

}
;

Xiii (θ) ≡
{
{(x (θ, η) , y (θ, η))}η∈{η,η} |

(
θ − θ

)
∆x (θ) ≥

(
η − η

)
∆y (θ) ≥ 0

}
;

Xiv (θ) ≡
{
{(x (θ, η) , y (θ, η))}η∈{η,η} | −

(
θ − θ

)
∆x (θ) ≥

(
η − η

)
∆y (θ) ≥ 0

}
.

For future reference, also define Xintj (θ) for j = i, . . . , iv as these same sets when all the

defining inequalities are strict, Xj ≡ Xj (θ) ∪ Xj
(
θ
)
for j = i, . . . , iv, and finally X (θ) ≡

∪ivj=iXj (θ) . These sets are depicted in the following graph:
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Figure 3.1. The space of implementable allocations is divided into four regions, i through

iv, for each type θ ∈
{
θ, θ
}
. The cost minimizing payments that implement allocations

within each regime depend on the regime itself.

Only y-allocations that are monotonic in η are incentive compatible. Hence, we only need

to consider such allocations. From Lemma 3.3.2 we know that depending on the monotonicity

of the x-allocation, truthful reporting is automatic at some nodes off path. Whether it is

optimal to induce truthful reporting at the remaining nodes offpath depends on which of the

sets Xj (θ) for θ ∈
{
θ, θ
}
and j = i, . . . , iv contain the allocation x, y that is implemented.

Note that the sets Xj (θ) for j = i, . . . , iv are defined for both values of θ. The solution to

program (3.13) depends on which set Xj
(
θ
)
contains the allocation offered to ex ante type

θ; the solution to (3.14) depends on Xj (θ) . Very conveniently, the dividing lines between

the sets have isomorphic representations. The complete set of implementable allocations is

thus given by Xj (θ)×Xk
(
θ
)
for j, k = i, ii, iii, iv, leaving us with 16 possibilities. However,

it turns out that under very natural conditions, the solution of the overall problem has the

property that j = k, so there are only 4 cases economically relevant in our model. Therefore,

to economize on space, we just present our result anticipating this result:
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Lemma 3.3.3 For (x, y) ∈ Xi

∆ = ∆i ≡ Eη|θ
[(
θ − θ

)
x
(
θ, η
)]

+
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)

incentive compatibility constraints (3.2) and (3.5) are binding and all types report truthfully

off path;

for (x, y) ∈ Xii

∆ = ∆ii ≡ Eη|θ
[(
θ − θ

)
x
(
θ, η
)]

+
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)

all types report truthfully off path and the agent is indifferent between truthfully reporting

and lying at nodes
(
θ, θ, η

)
and

(
θ, θ, η

)
;

for (x, y) ∈ Xiii

∆ = ∆iii ≡
(
θ − θ

)
x
(
θ, η
)

+
(
1− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
− (1− λ (θ))

(
η − η

)
y
(
θ, η
)

incentive compatibility constraints (3.2) and (3.5) are binding and η̂∗
(
θ, θ, η

)
= η̂∗

(
θ, θ, η

)
=

η and η̂∗
(
θ, θ, η

)
= η̂∗

(
θ, θ, η

)
= η;

for (x, y) ∈ Xiv

∆ = ∆iv ≡
(
θ − θ

)
x
(
θ, η
)

+ λ (θ)
(
η − η

)
y
(
θ, η
)
− λ

(
θ
) (
η − η

)
y
(
θ, η
)

incentive compatibility constraints (3.3) and (3.4) are binding and η̂∗
(
θ, θ, η

)
= η̂∗

(
θ, θ, η

)
=

η and η̂∗
(
θ, θ, η

)
= η̂∗

(
θ, θ, η

)
= η.

Proof. In Appendix 3.

Allocations in Xi induce truthtelling off path automatically in the sense that we can

naïvely assume truthtelling off path. Solving program (3.13) under this hypothesis, we find

that payments are minimized if constraint (3.2) is binding. In turn, for these payments, it

is straightforward to verify that η̂∗
(
θ, θ, η

)
= η. Taken together with Lemma 3, this implies

the result. Intuitively, suppose that x is independent of η. In this case, truthtelling about η
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is simply a question of monotonicity of y in η. This intuition generalizes to all allocations in

Xi that share the property that x and y move in the same direction and y is more sensitive

to changes in η than x is.

For allocations in Xii conjecturing truthtelling naïvely would prove to be false; the seller

would not report truthfully off path if we simply took such behavior as given. While the

optimal report off path at nodes
(
θ, θ, η

)
and

(
θ, θ, η

)
is indeed to tell the truth, this needs

to be ensured explicitly with the appropriate constraints at nodes
(
θ, θ, η

)
and

(
θ, θ, η

)
.

Moreover, these constraints are binding at the optimum. Finally, when the dependency of the

x−allocation on information η becomes strong, it becomes too costly to insist on truthtelling
at all nodes off path. Instead, the cheapest way to implement any given allocation in sets

Xiii and Xiv induces some type to lie off path. Intuitively, take again the extreme cases

within sets Xiii and Xiv and suppose y is independent of η. Clearly, there is no way to induce

truthtelling about η in period 2 in this case. Instead, the seller chooses the report that

maximizes his rent from being able to produce x at lower cost, so he chooses the report that

maximizes x (θ, η̂). For example, for (x, y) ∈ Xiii the seller always reports η̂
(
θ, θ, η

)
= η,

regardless of his true η.

The functional form of the minimal rents that the agent with first period type θ depends

on which of the regimes i through iv prevails. The cases are ordered by increasing complexity.

Case i (where (x, y) ∈ Xi) is the standard one, where the agent announces η truthfully in
period two regardless of the report about θ. The expected rent of an agent with parameter

θ = θ consists of two parts. First, the agent has a lower cost of producing x than the agent

with θ = θ. The expected cost advantage is Eη|θ
[(
θ − θ

)
x
(
θ, η
)]
, because η (which will be

announced truthfully) is not yet known when θ is announced. Secondly, type θ has a higher

probability of being relatively more effi cient at producing y.Moreover, in period two, an agent

with a parameter η = η receives a higher utility than an agent with parameter η, because this

agent could always overstate his cost of producing y. At the optimum, the agent of type
(
θ, η
)

is exactly indifferent between reporting the truth and mimicking type
(
θ, η
)
, so the difference

between type
(
θ, η
)′
s and type

(
θ, η
)′
s utility is exactly

(
η − η

)
y
(
θ, η
)
. The expected
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additional gain - due to having a low type θ in period one - from this rent arising from having

a low rather than a high value of η is exactly equal to
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
.11

Case ii still features truthtelling on and off equilibrium path, but the agent must be kept

indifferent between reporting honestly and exaggerating his η parameter at two nodes; in

particular at node
(
θ, θ, η

)
.We can again split the agent’s expected rent as of the first period

into the expected direct gain from misreporting θ, Eη|θ
[(
θ − θ

)
x
(
θ, η
)]
, and the expected

additional gain arising from the combined facts that an agent with a low parameter η obtains

a rent in period two and that an agent with parameter θ = θ forms expectations based on

a more favorable distribution of η than an agent with parameter θ = θ does. Formally,

the difference in utilities between types
(
θ, η
)
and

(
θ, η
)
is set so as to keep the agent who

has exaggerated θ in the first period from exaggerating η in the second period and so this

difference equals
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
))

+
(
η − η

)
y
(
θ, η
)
. Multiplying this term by the

difference in distributions,
(
λ (θ)− λ

(
θ
))
, and simplifying, we obtain ∆ii.

In cases iii and iv, the allocation and the associated cost minimizing payments induce the

agent to lie off equilibrium path. To avoid repetition, we focus on case iii only. In this case,

the most tempting deviation to the agent with θ = θ is to exaggerate θ and to underreport η at

node
(
θ, θ, η

)
. Put differently, a double deviation involving both parameters is strictly better

to the agent with type θ than a single deviation. As a result, the expected cost advantage

due to having a low rather than a high value of θ is simply equal to
(
θ − θ

)
x
(
θ, η
)
, because

the agent reports η̂
(
θ, θ, η

)
= η for both realizations of η. Moreover, he obtains the utility

level that type
(
θ, η
)
obtains,

(
1− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
, minus the expected loss in case he

has a higher η realization in period two than the type he imitates, (1− λ (θ))
(
η − η

)
y
(
θ, η
)
.

The stronger the complementarities, the stronger is the buyer’s incentive to design a

mechanism that features homogenous goods, even for heterogenous costs of producing the

two goods. However, the buyer also has an incentive to minimize the information rent

11Pavan et al. (2013) have termed the latter expression an “impulse response function”, because the term
measures the impact of the agent’s current information on future allocation choices.
In our problem, both x and y are determined at date two, so things are slightly different, but the intuition

is similar.
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and the costs that he pays. The buyer must pay the buyer with the effi cient ex-ante type

some information rent. Since the buyer prefers the most effi cient cost types
(
θ, η
)
and

(θ, η) to produce effi ciently. Therefore she can minimize the seller’s information rent only

by distorting the allocation of the ineffi cient ex-ante type θ. To minimize the rent of ex-

ante type θ, the buyer can must distort the allocations of
(
θ, η
)
or of

(
θ, η
)
, such that these

types’incentive compatibility holds. Relaxing type
(
θ, η
)
’s incentive constraint by downward

distorting y
(
θ, η
)
means tightening the incentive constraint of

(
θ, η′

)
, η 6= η′. The tightened

incentive constraint of type
(
θ, η′

)
can be relaxed by upward distorting y

(
θ, η
)
. Relaxing

the incentive constraint of
(
θ, η
)
and tightening the incentive constraint of

(
θ, η
)
is cheaper,

although the buyer downward distorts both x
(
θ, η
)
and x

(
θ, η
)
. So the buyer should profit

from the strong complementarities The reason here is that the positive correlation of θ and

η.

The optimal payments and the value of the second minimization problem can be found

in Appendix 3. The reason we do not state these things in the main text is that we do not

need these results for the discussion of the reduced problem that we now solve.

Optimal Allocations in the Reduced Problem

We can now turn to the design of the optimal allocations in the reduced problem(s). Since

we are neglecting constraint (3.7) , we allow for any {(x (θ, η) , y (θ, η))}η∈{η,η} ∈ X (θ) .

Formally, the reduced problem for each constraint set is

Wj ≡ max
{(x(θ,η),y(θ,η))}

η∈{η,η}
∈Xj(θ)

{(x(θ,η),y(θ,η))}η∈{η,η}∈X(θ)

EθEη|θ [V (x (θ, η) , y (θ, η))− θx (θ, η)− ηy (θ, η)]− α∆j,

(Pj)

where ∆j is defined in Lemma 3.3.3. The principal faces a classical trade-off between ef-

ficiency and rent extraction, with the complication that the functional form of the rent

expression depends on the qualitative features of the allocation that is being implemented,

as explained in Lemma 3.3.3.
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The overall optimum for the buyer is

W = max {Wi,Wii,Wiii,Wiv} .

The solution has the following simple structure:

Proposition 3.3.1 Suppose that either V12 (x, y) ≥ 0 for all x, y or V12 (x, y) ≤ 0 for

all x, y. If in addition V12 (x, y) ∈
[
V11 (x, y)

η−η
θ−θ ,−V11 (x, y)

η−η
θ−θ

]
for all x, y,then W =

max {Wi,Wii} . Moreover, Wi ≥ Wii if V12 ≥ 0 for all x, y and Wii > Wi if V12 < 0 for all

x, y.

Proof. In Appendix 3.

The intuition is straightforward and easiest to understand with the help of figure 3.2.

Figure 3.2. Along the dividing line between any two regimes, payoffs from adjacent

programs are equal.

The idea to prove the results is as follows. The payoffs in the various regimes have a

continuity structure that is displayed in the figure. For allocations that are feasible in two

regions, say region i and region ii, the payoffs from programs Pi and Pii are identical for a

given allocation. Formally, we have Wi = Wii for a given allocation that satisfies x
(
θ, η
)

=

x
(
θ, η
)
. Moreover, none of the programs Pj is ever so constrained that an allocation in
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the origin of the diagram is implemented. Hence, we can use simple revealed preference

arguments to prove payoff dominance in the cases described in the proposition. For V12 < 0,

the solution to program Pi satisfies x
(
θ, η
)

= x
(
θ, η
)
, whereas the solution to program Pii

does not. Since, the allocation that maximizes program Pi is feasible also under program

Pii, but is not chosen, it follows by strict concavity of the problem that the value of the

objective under program Pii is strictly higher. Likewise, for V12 ≥ 0, the solution to program

Pii satisfies x
(
θ, η
)

= x
(
θ, η
)
, so the same argument can be made. However, the subtle

difference in this case is that the optimal allocation under program Pi might also lie on the

feasibility constraint x
(
θ, η
)

= x
(
θ, η
)
. However, since programs Pi and Pii are identical on

the feasibility constraint x
(
θ, η
)

= x
(
θ, η
)
, we have payoff dominance in the weak sense.

Essentially the same arguments can be used to compare payoffs from programs Pi and Piii

and between programs Pii and Piv.

Complements versus substitutes are enough to determine whether program Pi or program

Pii gives a higher payoff. The reason is as follows. We know from Lemma 3.3.3 that the rent

expression ∆j is identical in cases i and ii except for differences in λ (θ) and λ
(
θ
)
. Thus, the

question is simply which set Xj
(
θ
)
matches better with the complementarity/substitutability

between the goods. If x and y are complements, then both x and y should be allowed to

move in the same direction in response to changes in η. If x and y are substitutes, then x and

y should be allowed to vary in opposite directions in response to changes in η. Moreover, the

proposition not only compares payoffs between programs Pi and Pii but between all programs

Pj. Recall the conditions from Lemma 3.2.1 that make y more responsive to changes in η than

x. The conditions in Proposition 3.3.1 simply adjust the earlier conditions for differences in

the supports of early and late information. In particular, the conditions are identical if the

supports of the parameters have the same width. A pattern of relatively larger variation in

y than in x matches better with the sets Xi
(
θ
)
and Xii

(
θ
)
than with the sets Xiii

(
θ
)
and

Xiv
(
θ
)
. Consequently, under the condition given in the proposition, the maximum of the

reduced problem is attained either by problem Pi or Pii.

The reader may verify that the suffi cient condition in the proposition captures a relevant
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parameter restriction with the help of the following example:

Example 3.3.1 V (x, y) = β2 − 1
2

(x− β)2 − 1
2

(y − β)2 + δxy.

In the example, the condition is satisfied for V12 (x, y) = δ ∈
[
−η−η
θ−θ ,

η−η
θ−θ

]
. Note that the

utility function is jointly concave in x and y for δ ∈ [−1, 1] . Thus, for
η−η
θ−θ ≥ 1, the set of

parameter values that violate the condition becomes empty. Conversely, there is always a

nonempty set of parameter values that generate a concave buyer problem and satisfy the

suffi cient condition even if
η−η
θ−θ < 1. In this sense - at least in this example - the suffi cient

condition isolates the important case rather than the pathological one. Therefore, we impose

henceforth

Assumption 2: either V12 (x, y) ≥ 0 for all x, y or V12 (x, y) ≤ 0 for all x, y and in

addition V12 (x, y) ∈
[
V11 (x, y)

η−η
θ−θ ,−V11 (x, y)

η−η
θ−θ

]
for all x, y.

We solve the full problem under this assumption. However, there are clearly cases that

violate Assumption 2. For that reason, we discuss a particular case that violates Assumption

2 in section 5 below.

3.3.2 The Solution to the Full Problem

Obviously, the reduced problem is of interest only if it solves the overall problem; that is, if

the solution of the reduced problem satisfies the neglected constraint, (3.7) . Checking the

neglected constraint requires knowing the set Xj (θ) that contains the allocation offered to

the ex-ante type θ, {x (θ, η) , y (θ, η)}η∈{η,η}. Note that this allocation corresponds simply
to the first-best allocation for that type. Since intuition and proof for the following result

are essentially the same as for Lemma 1, we state without further discussion:
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Lemma 3.3.4 The first-best allocation defined by (3.11) and (3.12) satisfies (x, y) ∈

Xi if 0 ≤ V12 (x, y) ≤ −η−η
θ−θV11 (x, y) for all x, y;

Xii if 0 ≥ V12 (x, y) ≥ η−η
θ−θV11 (x, y) for all x, y;

Xiii if V12 (x, y) ≥ −η−η
θ−θV11 (x, y) for all x, y;

Xiv if V12 (x, y) ≤ η−η
θ−θV11 (x, y) for all x, y.

Moreover, the first-best allocation is in the interior of these sets if the corresponding inequal-

ities are strict.

Proof. In Appendix 3.

Combining Proposition 3.3.1 and Lemma 3.3.4, we observe that the solution to the re-

duced problem satisfies {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xj (θ) if and only if
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η}
∈ Xj

(
θ
)
for j = i, ii. Obviously, this was the reason to economize on space in Lemma 3.3.3 in

the first place. The reduced problem picks up the overall optimum under natural conditions.

Proposition 3.3.2 The solution to the reduced problem solves the overall problem under

Assumption 2 if in addition either

I) goods are independent (V12 (x, y) = 0 for all x, y) or

II)

max
x,y

∣∣∣∣ V12

V11V22 − V 2
12

(x, y)

∣∣∣∣ ≤ θ − θ
η − η min

x,y

∣∣∣∣ V22

V11V22 − V 2
12

(x, y)

∣∣∣∣ , (3.15)

and either

a) (x, y) ∈ Xinti (which holds in particular for α small enough if x, y are strict complements

for all x, y), or

b) (x, y) ∈ Xintii (which holds in particular for α small enough if x, y are strict substitutes

for all x, y) and in addition λ (θ) = λ
(
θ
)
.

Proof. In Appendix 3.

For independent goods, Assumption 2 is enough to guarantee that the reduced problem

picks up the overall optimum. For strict complements or substitutes we need to impose
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additional structure. For strict complements (substitutes) and α suffi ciently small, the entire

allocation is an element of Xinti (Xintii ). The reason is that in the limit where α tends to zero,

the second best allocation converges to the first-best allocation, whose properties we have

described in Lemma 3.3.4. Building on this insight, we can go back to Lemma 4 (to be

precise to the proof of Lemma 4 in Appendix 3) and check the precise functional form of

the neglected constraint, (3.7), and verify whether it is true that Ω ≤ 0. Indeed, we have

Ω ≤ 0 for complements if condition (15) holds; we have Ω ≤ 0 for substitutes if condition

(15) holds and on top of this the cost parameters are independent, λ (θ) = λ
(
θ
)
.12

Condition (15) restricts V12 relative to V22. The new condition is imposed because Ω

depends on the allocation offered to both ex ante types, not just the one offered to one

particular type. The condition is satisfied in our example for δ ∈
[
− θ−θ
η−η ,

θ−θ
η−η

]
.The set of

parameters that satisfy both Assumption 2 and condition (3.15) is always nonempty. If
θ−θ
η−η = 1, then the conditions are identical; otherwise, one set is a strict subset of the other.

3.4 The Structure of Optimal Allocations

We can now investigate how the optimal allocation depends qualitatively on the interaction

between goods in the buyer’s utility function. To discuss this question in the simplest

possible case, we simply state the result for the case where the optimum for ex ante type θ

is an allocation in Xinti
(
θ
)
and Xintii

(
θ
)
. In this case, the optimal allocation for ex ante type

θ satisfies

V1

(
x
(
θ, η
)
, y
(
θ, η
))

= θ +
α

(1− α)

λj

λ
(
θ
) (θ − θ)

V2

(
x
(
θ, η
)
, y
(
θ, η
))

= η

12Note that the conditions in part II of the proposition are far from necessary. E.g., one can also derive
suffi cient conditions for the case of substitutes and strictly positive correlation.
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and

V1

(
x
(
θ, η
)
, y
(
θ, η
))

= θ +
α

(1− α)

(1− λj)(
1− λ

(
θ
)) (θ − θ)

V2

(
x
(
θ, η
)
, y
(
θ, η
))

= η +
α

(1− α)

(
λ (θ)− λ

(
θ
))(

1− λ
(
θ
)) (

η − η
)
,

where j = i, ii and by convention λi = λ (θ) and λii = λ
(
θ
)
. The optimal allocation for ex

ante type θ is given by (3.11) and (3.12) .

For the case of complements, the optimal allocation for ex ante type θ displays the stan-

dard downward distortions relative to the first-best. For strictly positive complementarities,

all allocation variables are strictly below the first-best optimal levels. This is quite differ-

ent for the case of substitutes, which displays both upward and downward distortions. In

particular, x
(
θ, η
)
is distorted downwards and as a result, y

(
θ, η
)
is distorted upwards.

Building on the discussion following Lemma 3.3.3, the intuition for the first-order con-

ditions is straightforward. The first-order conditions for x
(
θ, η
)
display the trade-off be-

tween effi ciency and extraction of rents due to lower costs of producing x. (1− α)λ
(
θ
)
and

(1− α)
(
1− λ

(
θ
))
, respectively, are the probabilities that the cost realizations equal

(
θ, η
)

and
(
θ, η
)
, respectively. These are the weights attached to the effi ciency motive. On the

other hand, a change in the x allocation affects the agent’s expected rent by λj
(
θ − θ

)
and (1− λj)

(
θ − θ

)
, respectively. A change in the y

(
θ, η
)
allocation does not affect the

agent’s rent, whereas a change in the y
(
θ, η
)
allocation affects the agent’s expected rent by(

λ (θ)− λ
(
θ
)) (

θ − θ
)
. These effects are weighted by α, the probability that θ = θ.

3.5 The Case of Strong Interactions

So far, we have characterized optimal allocations for regular cases, where the strength of

interactions between the goods is relatively mild. If the ratio
η−η
θ−θ is relatively large, then

“most”utility functions will display relatively mild interactions between the goods in this

sense. This loose statement can be given a very precise meaning in the concrete example
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of negative quadratic utility. For that case, all concave utility functions satisfy Assumption

2 if the support of second period information is wider than the support of first period

information. On the other hand, if the reverse is true, then one can give natural examples,

where an allocation outside the sets Xi ∪ Xii becomes optimal. Specifically, we have the
following result:

Proposition 3.5.1 Suppose that η−η
θ−θ < 1 and consider the quadratic utility function of

Example 1 with δ ∈
(
η−η
θ−θ , 1

)
. For that utility function, for α suffi ciently close to zero, the

overall optimal allocation satisfies (x, y) ∈ Xiii.

Proof. In Appendix 3.

For δ ∈
(
η−η
θ−θ , 1

)
, it follows from Lemma 5 that the solution of the reduced problem is

an element of Xintiii for α close to zero. Moreover, it is straightforward to verify that Ω ≤ 0

in the example. Hence, we have shown that it can be strictly optimal to induce lying off

equilibrium path.

Consider now the structure of the optimal allocation for the case where (x, y) ∈ Xintiii .
The first-order conditions for the allocation offered to ex ante type θ are as follows:

V1

(
x
(
θ, η
)
, y
(
θ, η
))

= θ +
α

(1− α)

1

λ
(
θ
) (θ − θ)

V2

(
x
(
θ, η
)
, y
(
θ, η
))

= η − α

(1− α)

(1− λ (θ))

λ
(
θ
) (

η − η
)

and

V1

(
x
(
θ, η
)
, y
(
θ, η
))

= θ

V2

(
x
(
θ, η
)
, y
(
θ, η
))

= η +
α
(
1− λ

(
θ
))

(1− α)
(
1− λ

(
θ
)) (η − η) .

This allocation displays upwards distortions in the quantity y
(
θ, η
)
, for given quantity

x
(
θ, η
)
. Since we are considering complements, this upwards distortion does not arise simply

as a compensating effect due to a downward distortion in x
(
θ, η
)
, but rather reflects the par-
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ticular structure of binding incentive constraints for this particular case. Recall from Lemma

3.3.3 that the best deviation of an agent with θ = θ is to report θ̂ = θ in period one and

η̂ = η in period two, regardless of the actual realization of η. Hence, the reduction in x
(
θ, η
)

reflects the fact that the conditional probability of receiving report η̂ = η is one; vice versa,

there is no rent reduction motive when choosing x
(
θ, η
)
at all, because the agent with θ = θ

is never going to imitate type
(
θ, η
)
. Recall moreover, that in addition to the rents from

producing x more effi ciently, the agent with type θ = θ obtains rents from producing y more

effi ciently; in particular, the agent would obtain (when deviating to θ̂ = θ), the utility level

that type
(
θ, η
)
obtains,

(
1− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
, minus the expected loss in case he has

a higher η realization in period two than the type he imitates, (1− λ (θ))
(
η − η

)
y
(
θ, η
)
. As

a result, all else equal (that is, for a given x-allocation), the principal reduces y
(
θ, η
)
below

the first-best level and increases y
(
θ, η
)
beyond the first-best level. Whether the overall

production levels are above or below first-best depends on the specific utility function.

3.6 Discussion: Sequential Screening and the Value of

Waiting

What if x needs to be determined already in period one? We can obtain the optimal mech-

anism with sequential production from our problem if we add the requirement that

x
(
θ, η
)

= x (θ, η) for θ ∈
{
θ, θ
}
. (3.16)

Technically, (3.16) is a consistency requirement in the sense that the level of x can only

depend on information that is available when the level of x is chosen.

It is straightforward to see that off-path lies are not an issue under this constraint. The

reason is that θx
(
θ̂
)
is sunk by the time the report about η needs to be made and moreover

enters the seller’s profit in an additively separable way. So, seller types who have lied in

the past correspond to types with different fixed costs of producing the y good. However,

fixed costs do not change the seller’s incentive to report about η. So, the on-path incentive
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constraints automatically ensure that reporting is truthful also off path.

It is also obvious that sequential production cannot do better than delaying production

of both goods until all information is there. The reason is that we are simply adding an-

other constraint, (3.16) , to the buyer’s problem and thereby eliminate some flexibility off

equilibrium path (precisely because the on-path constraints automatically imply a particular

off-path behavior).

Solving the transfer minimization problems (3.13) and (3.14) for given allocation choices

x and y, under the consistency condition (3.16) and its implication of truthfulness of path,

we find that at the solutions to these problems constraints (3.2) and (3.9) and (3.6) and

(3.5) are binding. Using the optimal payments, the buyer’s problem of finding an optimal

allocation can be written as

max
x(θ),y(θ,η)

EθEη|θ [V (x (θ) , y (θ, η))− θx (θ)− ηy (θ, η)]

−α
[(
θ − θ

)
x
(
θ
)

+
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)]

Moreover, the neglected incentive constraint (3.7) is equivalent to

(
λ (θ)− λ

(
θ
)) (

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))
≥
(
θ − θ

) (
x
(
θ
)
− x (θ)

)
.

The following proposition is now obvious:

Corollary 3.6.1 Delayed and early production achieve the same payoff only for indepen-

dent goods. If V12 (x, y) > (<) 0 for all x, y, delayed production is strictly better than early

production.

The proof of the statement follows from the discussion in an obvious way and is therefore

omitted. The logic is simply that the allocation under sequential production is always feasible

under delayed production of both goods but is not chosen at the optimum, except for the

case of independent goods.

It is instructive to take a closer look into the losses associated to sequential production.
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The allocation offered to ex ante type θ is first-best effi cient; that is, there is no distortion

at the top. The allocation offered to ex ante type θ satisfies the first-order conditions

Eη|θ
[
V1

(
x
(
θ
)
, y
(
θ, η
))]

= θ +
α

1− α
(
θ − θ

)
,

V2

(
x
(
θ
)
, y
(
θ, η
))

= η,

and

V2

(
x
(
θ
)
, y
(
θ, η
))

= η +
α

1− α
λ (θ)− λ

(
θ
)

1− λ
(
θ
) (

η − η
)
.

The expected marginal benefit of x
(
θ
)
is equal to θ + α

1−α
(
θ − θ

)
. For given allocation

y
(
θ, η
)
, this corresponds to the standard result that x

(
θ
)
is distorted downwards relative

to the first-best. Likewise, for given allocation x
(
θ
)
, y
(
θ, η
)
is set effi ciently, while y

(
θ, η
)

is distorted downwards. Whether the entire allocation is higher or lower than first-best

depends on the nature of interactions between the goods. For the case of independent

goods, the overall allocation relates exactly as stated to the first-best allocation.

For nonzero interactions between the goods, there are two sources of losses for the prin-

cipal due to choosing x early on. Firstly, it is simply the case that both allocation choices

should be adjusted to both cost conditions. Secondly, as we have explained at great lengths,

it is sometimes not optimal to insist on truthtelling off path when both x and y are chosen

late. Intuitively, it becomes easier to screen the information in the second round of reporting

when the principal has more screening instruments available.

Note that in the case of weak substitutes in the sense of Proposition 2, the first-order

conditions differ only in that the marginal utilities interact with each other; the virtual

cost expressions on the right hand side are identical for both timing configurations.13 It is

then straightforward to see how the optimal allocations differ from each other in the more

flexible regime with delayed production and in the regime with early production of x. For an

allocation in the regime with delayed production in Xintii
(
θ
)
, we have that y

(
θ, η
)
> y

(
θ, η
)

13In the case of complements, the virtual marginal cost of x
(
θ, η
)
is increased while the virtual marginal

cost of x
(
θ, η
)
is decreased for given level of y.
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and x
(
θ, η
)
> x

(
θ, η
)
. If the x−allocation is now forced to take the common value x

(
θ
)
,

then, heuristically, x
(
θ, η
)
is reduced while x

(
θ, η
)
is increased. Since the marginal utility

of consuming y still must take on the same value, the y−allocation has to respond more to
η than it does in the flexible regime. Hence, the variation in the level of y is increased in

response to the reduction in the variation in the level of x.

Thus, if the buyer has a choice, then starting production before all information is avail-

able is never strictly better than waiting until all information is available. In other words,

our model features a nonnegative option value of waiting. The timing of production is irrel-

evant only in the case where the buyer’s utility is additively separable in the utilities from

consuming x and y.

3.7 Conclusion

This chapter solves a tractable two-dimensional model of screening where the agent produces

two goods, knows the cost parameter of producing one good from the outset, and learns

the cost parameter of producing the second good at some later date. We assume positive

correlated cost parameters. Depending on whether the goods are complements or substitutes

and on how strongly the goods interact, a different pattern of binding constraints arises at

the optimum. For weak complements, we obtain a standard solution, where the allocations

of the ineffi cient types are downward distorted, and the principal only needs to worry about

single deviations. Note that the solution to the full problem could also be obtained by a

naive procedure that imposes truthtelling at all nodes of the game, even at those that are

not reached if the agent is truthful early on in the game, but all off-path constraints are

slack. Therefore, we can simply ignore the off-path incentive compatibility constraints. For

weak substitutes, it is still true that the solution can be obtained by imposing truthtelling

on and off equilibrium path. In this case, upward distortions may arise. However, now

a truthtelling constraint off the equilibrium path is binding at the optimum. As a result,

the solution displays both upward and downward distortions. Finally, in the case of strong

89



interactions between the goods, inducing the agent to lie again after a first may be rent-

minimizing for the principal. In this case, upward distortions may arise even in the case of

complements.

As a simple by-product of our work we compare our solution to the literature by varying

the timing of production in our model. It is always desirable to postpone all decisions until

all information is available, if that is feasible. The comparison to the static model of two-

dimensional screening is done in companion work. An interesting set of questions that we

do not address in this work relates to repeating the interaction between the buyer and the

seller.

Clearly, multi-dimensional problems are more complex than one-dimensional ones. How-

ever, the timing of the information process imposes quite some structure on our problem.

Part of the analysis of sequential screening problems has no grounds whatsoever in the rev-

elation principle per se, but emerges from implementing given allocations at lowest cost (see

also Krähmer and Strausz 2008). However, the buyer’s preferences impose structure on this

problem so that the complicated problem becomes tractable.

We provide a natural setting in which upward distortions may arise as a feature of the

optimal mechanism.
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Appendix 1

I can formulate this problem for a belief γ = P (i = A) , γ ∈ (0, 1). ((rγA,m
γ
A) , (rγB,m

γ
B))

denotes the optimal mechanism provided the seller’s belief is γ. For a given belief γ, the

monopolist’s optimal mechanism ((rγA,m
γ
A) , (rγB,m

γ
B)) is the solution to

max
rA,rB ,mA,mB

γmA + (1− γ)mB (3.17)

subject to

θjrj −mj ≥ 0, (3.18)

θjrj −mj ≥ θjri −mi, (3.19)

rj ∈ [0, 1] (3.20)

for i ∈ {A,B}, j ∈ {A,B},j 6= i,

where constraint (3.18) is the individual rationality condition of a buyer j, constraint

(3.19) is the incentive compatibility condition of buyer j, and constraint (3.20) is the feasi-

bility condition that restricts the quantity to less than 1. Constraint (3.20) must be imposed

because the buyer has unit demand in my setting.

This static problem has been investigated in more generality by many authors like Mussa

and Rosen 1978 or Maskin and Riley 1984. Applying standard methods I can derive the

following well-known solution.

Lemma 3.7.1 The solution to the static problem (3.17) is given by

Mγ ≡
{

((1, θA) , (0, 0)) if γθA ≥ θB

((1, θB) , (1, θB)) if γθA ≤ θB
. (3.21)
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The seller’s expected revenue is given by

max (γθA, θB) . (3.22)

Proof of Lemma 3.7.1. The proof builds on the solution to the optimal nonlinear pricing

with two types in Bolton and Dewatripont 2005 pp. 52. I restate their proof in my notation.

Let ((rA,mA) , (rB,mB)) be the optimal mechanism.

Step 1: At the optimum the individual rationality constraint of type A does not bind.

Note that the following relation holds

θArA −mA ≥ θArB −mB ≥ θBrB −mB ≥ 0.

The first inequality holds by the incentive compatibility constraint of A. The second inequal-

ity holds since θA > θB. The last inequality holds by the individual rationality constraint of

B. Thus, the individual rationality constraint of A is satisfied automatically.

Step 2: The individual rationality constraint of type B must bind.

At the optimum at least one individual rationality constraint must be binding.

Suppose not. Then one can increase both transfers mA and mB by the same amount

without a violation of any constraint. This is a contradiction to ((rA,mA) , (rB,mB)) being

the optimal.

Step 3: Solve the relaxed problem without the incentive compatibility constraint of type

B.

There are only two constraints; the binding individual rationality constraint θBrB−mB =

0 and the incentive compatibility constraint of A, which is equivalent to

θArA − (θA − θB) rB ≥ mA.

Since there is no other constraint, this has to be binding.

The relaxed problem is given by

max
rA,rB

γ (θArA − (θA − θB) rB) + (1− γ) θBrB (3.23)
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One solution candidate is rA = 1 and rB = 1 with transfers mA = θA and mB = 0. The

expected revenue is γθA. The other solution candidate is rA = 1 and rB = 0 with transfers

mA = mB = θB. The solution candidate is given by (3.21) providing expected revenue (3.22).

Step 4: Check whether the solution candidate satisfies the neglected constraint.

Substituting for the transfers, the neglected constraint is satisfied if

(θA − θB) rA ≥ (θA − θB) rB,

which is satisfied at both solution candidates.

Hence the solution candidate solves (3.17).

Proof of Proposition 1.3.1. If seller 2 buys the purchase history, then she will be able

to distinguish the new customer from the old customer. Given that knowledge her expected

revenue is the sum of the expected revenue from selling good 2 to the new customer, buyer

2, and the expected revenue from selling good 2 to buyer 1.

Her expected revenue from making buyer 2 an optimal offer{
((1, θA) , (0, 0)) if βθA ≥ θB

((1, θB) , (1, θB)) if βθA ≤ θB
(3.24)

is equal to max (βθA, θB), since (3.24) is the solution to problem (1.1) is given by Lemma

3.7.1 for prior β and r = y and m = t.

Denote seller 2’s equilibrium offer to seller 1’s customer, buyer 1, who reported h by

((y∗hA, t
∗
hA) , (y∗hB, t

∗
hB)). If she does not condition the offer on the buyer’s report to seller 1,

then seller 2’s offer is independent of the report to seller 1, i.e. ((y∗AA, t
∗
AA) , (y∗AB, t

∗
AB)) =

((y∗BA, t
∗
BA) , (y∗BB, t

∗
BB)).

If sA = 1 and sB = 0, then the purchase history will be fully revealing. In that case she

can perfectly discriminate buyer 1; that is, she offers one unit of her good at θA if the history
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is A and at θB if the history is B so that her optimal offer to buyer 1 is

((y∗hA, t
∗
hA) , (y∗hB, t

∗
hB)) =

{
((1, θA) , (0, 0)) if buyer 1 reported h = A

((1, θB) , (1, θB)) if buyer 1 reported h = B
.

Then seller 2’s expected revenue, provided she bought a perfectly revealing purchase

history, is equal to {
max (βθA, θB) + θA if h = A

max (βθA, θB) + θB if h = B
.

Proof of Proposition 1.3.2. If seller 2 does not possess the purchase history, then he

does not know the customers identity and cannot identify the two buyers. From the main

text I know that the probability that a buyer has a type A is equal to λ+β
2
. The solution

is equal to the solution of the static problem for γ = λ+β
2
and r = y and m = t. Then

by Lemma 3.7.1 her expected revenue from trading with one of her customers is equal to

max
(

(β+λ)
2
θA, θB

)
. Her total expected revenue is equal to max ((β + λ) θA, 2θB).

Proof of Proposition 1.3.3. The probability that seller 1’s former customer will have

demand for good 2 is δAα + δB (1− α). If seller 1’s offer is fully separating so that her

customer reports with sA = 1 and sB = 0, then µA (1, 0) = 1 and the probability that

buyer 1 reports A given he has positive demand is αδA
δAα+δB(1−α)

. Therefore αδA
δAα+δB(1−α)

is the

probability that the type of seller 1’s former customer is A if he has positive demand. If the

purchase history contains the information that enables seller 2 to fully separate the types

according to the reports, then by Proposition 1.3.1 the revenue of seller 2 is equal to{
max (βθA, θB) + θA if h = A

max (βθA, θB) + θB if h = B
.
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Then her expected revenue under disclosure policy is equal to

(δAα + δB (1− α))

 max (βθA, θB) + αδA
δAα+δB(1−α)

θA

+
(

1− αδA
δAα+δB(1−α)

)
θB


+ (1− (δAα + δB (1− α))) max (βθA, θB)

(3.25)

provided she bought the purchase history. If she does not purchase the purchase history,

then by Proposition 1.3.2 her expected revenue is max ((β + λ) θA, θB). The willingness to

pay for the purchase history of seller 2 is her expected revenue from buying it that exceeds

max ((β + λ) θA, 2θB). Therefore WTP (1, 0) is equal to

(δAα + δB (1− α))

 max (βθA, θB) + αδA
δAα+δB(1−α)

θA

+
(

1− αδA
δAα+δB(1−α)

)
θB −max ((β + λ) θA, 2θB)

 .

Proof of Proposition 1.3.4. Since the seller faces a myopic problem the solution to her

problem is equal to the solution to the static problem provided by Lemma 3.7.1 for belief

γ = α and r = x and m = p. Therefore her expected revenue is equal to max (αθA, θB).

Proof of Lemma 1.3.1. This proof derives the price of the purchase history in the model

provided that seller 1 offers a fully separating mechanism. I substitute sA = 1 and sB = 0

into (1.11) which gives{
αδA (βθA + θA − (β + λ) θA)

+ (1− α) δB (βθA + θB − (β + λ) θA)

}
if (β + λ) θA ≥ 2θB and βθA ≥ θB{

αδA (θB + θA − (β + λ) θA)

+ (1− α) δB (θB + θB − (β + λ) θA)

}
if (β + λ) θA ≥ 2θB and βθA ≤ θB{

αδA (βθA + θA − 2θB)

+ (1− α) δB (βθA + θB − 2θB)

}
if (β + λ) θA ≤ 2θB and βθA ≥ θB{

αδA (θB + θA − 2θB)

+ (1− α) δB (θB + θB − 2θB)

}
if (β + λ) θA ≤ 2θB and βθA ≤ θB

.

95



I can simplify this to

{(1− α) δBθB} if (β + λ) θA ≥ 2θB and βθA ≥ θB

{αδA (θB − βθA) + (1− α) δB (2θB − βθA)} if (β + λ) θA ≥ 2θB and βθA ≤ θB{
αδA (βθA + θA − 2θB)

+ (1− α) δB (βθA − θB)

}
if (β + λ) θA ≤ 2θB and βθA ≥ θB

{αδA (θA − θB)} if (β + λ) θA ≤ 2θB and βθA ≤ θB

.

Proof of Theorem 1.3.1. Seller 1’s expected payoff is equal to the sum of revenue from

selling to the buyer and seller 2’s expected willingness to pay. From Lemma 1.3.1 seller 2’s

expected willingness to pay is known. It remains to plug the expected revenue from offering

mechanism (1, θA − δA (θA − θB) , (0, 0)) and the price of the purchase history in seller 1’s

expected revenue and to compare it with the threshold provided in Corollary 1.3.1.

Assume 1 > δA.

Step 1: Show that (1, θA − δA (θA − θB) , (0, 0)) satisfies all constraints.

Substitution of (1, θA − δA (θA − θB) , (0, 0)) into the constraints gives:

The mechanism satisfies the individual rationality constraint of type B, (1.19), with

equality

0θB − 0 = 0.

The incentive constraint of type B, (1.21) is slack

0θB − 0 > 1θB − (θA − δA (θA − θB))

= − (1− δA) (θA − θB)

if δA < 1. The individual rationality constraint of type A is slack

1θA − (θA − δA (θA − θB)) > 0.
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The incentive compatibility constraint of type A binds

1θA − (θA − δA (θA − θB)) = 0θA − 0 + δA (θA − θB) .

Since all constraints are satisfied, I can set sA = 1 and sA = 0.

Step 2: If seller 1 offers the screening contract (1, θA − δA (θA − θB) , (0, 0)), then she

receives an expected revenue from selling to the buyer of α (θA − δA (θA − θB)). Then her

expected revenue is equal to

{αθA − αδA (θA − θB) + (1− α) δBθB} if (β + λ) θA ≥ 2θB and βθA ≥ θB{
αθA − αδA (θA − θB) + αδA (θB − βθA)

+ (1− α) δB (2θB − βθA)

}
if (β + λ) θA ≥ 2θB and βθA ≤ θB{

αθA − αδA (θA − θB) + αδA (βθA + θA − 2θB)

+ (1− α) δB (βθA − θB)

}
if (β + λ) θA ≤ 2θB and βθA ≥ θB

{αθA − αδA (θA − θB) + αδA (θA − θB)} if (β + λ) θA ≤ 2θB and βθA ≤ θB

which simplifies to

{αθA + (αδA + (1− α) δB) (θB − λθA)} if (β + λ) θA ≥ 2θB and βθA ≥ θB{
αθA

+ (αδA + (1− α) δB) (2θB − (β + λ) θA)

}
if (β + λ) θA ≥ 2θB and βθA ≤ θB

{αθA + (αδA + (1− α) δB) (βθA − θB)} if (β + λ) θA ≤ 2θB and βθA ≥ θB

αθA if (β + λ) θA ≤ 2θB and βθA ≤ θB

.

Comparing this expected revenue with αθA, I conclude that seller 1 strictly prefers the

disclosure policy if either

I) (β + λ) θA ≥ 2θB and βθA ≥ θB and θB − λθA > 0 or

II) (β + λ) θA ≤ 2θB and βθA > θB.
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Appendix 2

Appendix 2.A

Lemma 3.7.2 For i ∈ {1, 2} bidder i′s maximization problem is given by

max
βi(hi)

∫
{tj :βi(hi)≥β∗j (hj)}

(
ati + btj + αE [Zi|hi]− β∗j (hj)

)
f (tj) dtj. (3.26)

If E [Z1|h1] = E [Z2|h2], then there is an equilibrium in which bidder 1 and bidder 2 bid,

respectively,

β∗ (h1) = (a+ b) t1 + αE [Z1|h1] ,

β∗ (h2) = (a+ b) t2 + αE [Z2|h2] .

Proof of Lemma 3.7.2. The bidder’s equilibrium bidding strategies can be derived by

solving a set of first-order conditions in an analogue fashion to Milgrom and Weber 1982a or

Maskin 1992. The equilibrium characterization is derived by applying the same techniques

and since the bidders are symmetric the equilibrium bidding strategies do not differ from the

equilibrium bidding strategies found in Milgrom and Weber 1982a. I provide a derivation

for the sake of completeness.

Suppose E [Z1|h1] = E [Z2|h2]. The first-order condition for problem (3.26) is given by{
∂β∗−1j (βi(hi))

∂βi(hi)

(
ati + bβ∗−1

j (βi (hi)) + αE [Zi|hi]− β∗j
(
β∗−1
j (βi (hi))

))
·f
(
β∗−1
j (βi (hi))

) }
= 0.
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By the symmetry of Z1 and Z2 this is only true when the seller conceals Z or if z1 = z2.

In both cases h1 = h2 ⇐⇒ t1 = t2. Since I am interested in symmetric Bayesian Nash

equilibria in continuous strategies which are increasing in t

βi (h) = βj (h)

for all ti ∈
[
t, t
]
. Substitution gives{

∂β∗−1j (βi(hi))

∂βi(hi)
((a+ b) ti + αE [Zi|hi]− β (hi))

·f
(
β∗−1
j (βi (hi))

) }
= 0,

which implies that the equilibrium satisfies

β∗ (hi) = (a+ b) ti + αE [Zi|hi]

for i ∈ {1, 2} provided that this constitutes a maximum.
The second-order condition at this point is given by

∂β∗−1
j (βi (hi))

∂βi (hi)

1

β∗
′
(hi)

(b− (a+ b)) f
(
β∗−1
j (βi (hi))

)
< 0

which is true.

Moreover the winning bidder’s payoff is positive, since

(ati + btj + αE [Zi|hi]− (a+ b) tj + αE [Zj|hj]) > 0

⇐⇒

ti > tj

⇐⇒

β (hi) > β (hj)

which is true whenever bidder i wins.

99



Proof of Proposition 2.3.1. First, I derive the unique inner solution in linear strategies,

which are strictly increasing and continuous in the bidders’types. Since I am interested in

equilibria in linear strategies, I suppose bidder j’s bid is of the linear form

βN,∗j

(
hNj
)

= xjtj + yj.

Substitution into the first-order condition of bidder i gives
∂β∗−1j (σNi (hNi ))

∂σNi (hNi )

(
ati + b 1

xj

(
σNi
(
hNi
)
− yj

)
+ αE [Z]− σNi

(
hNi
))

·f
(

1
xj

(
σNi
(
hNi
)
− yj

))
 = 0,

which is equivalent to

σNi
(
hNi
)

=
xj

xj − b

(
ati − b

yj
xj

+ αE [Z]

)
.

σNi
(
hNi
)
is bidder i’s best reply to bidder j’s linear strategy βN,∗j

(
hNj
)
and is linear in ti. I

denote bidder i’s best reply by σBRi
(
βN,∗j

(
hNj
))
.

Let σNj
(
hNj
)
denote bidder j’s reply to bidder i’s σBRi

(
βN,∗j

(
hNj
))
. Substitution into

bidder j’s first-order condition gives
∂σBR

−1
i (βN,∗j (σNj (hNj )))

∂σNj (hNj )

·
(
atj + b 1

a

(
xj−b
xj
σNj
(
hNj
)

+ b
yj
xj
− αE [Z]

)
+ αE [Z]− σNj

(
hNj
))

·f
(

1
xj

(
σNi
(
hNi
)
− yj

))
 = 0,

which is equivalent to

σNj
(
hNj
)

=
axj

axj − bxj + b2

(
atj +

b2

a

yj
xj

+
a− b
a

αE [Z]

)
.
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This solution is bidder j’s best reply to bidder i’s best reply to bidder j’s linear strategy

βN,∗j

(
hNj
)
. The bidders’strategies must be mutually best replies, i.e. I must have

σBRj

(
σBRi

(
βN,∗j

(
hNj
)))

= βN,∗j

(
hNj
)
.

This linear system has a unique solution for x2 and y2, namely

x2 = a+ b

and

y2 = αE [Z] .

Substitution into the best reply functions gives that at stage 2 the unique inner solutions in

linear form to the bidders’maximization problems, which are mutually best replies provided

the seller conceals her information are given by

σBRj

(
σBRi

(
βN,∗j

(
hNj
)))

= βN,∗j

(
hNj
)

= (a+ b) tj + αE [Z] , (3.27)

σBRi

(
βN,∗j

(
hNj
))

= (a+ b) ti + αE [Z] .

It can be shown by substitution that the bidders’ expected payoffs are positive (see also

Lemma 3.7.2).

There is another equilibrium candidate. There are corner solutions βN,∗i

(
hNi
)
and

βN,∗j

(
hNj
)
such that bidder i wins with probability 1, i.e.

βN,∗i

(
hNi
)
≥ βN,∗j

(
hNj
)

for all hNi and h
N
j . It is relatively easy to see that bidder i’s expected utility must be positive,

i.e.

ETj
[
ati + bTj + αE [Z]− βN,∗j

(
hNj
)]
≥ 0
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if bidders play

βN,∗i

(
hNi
)

= at+ bti + αE [Z] ,

βN,∗j

(
hNj
)

= at+ bti + αE [Z] .

However, bidder i’s candidate equilibrium strategy at+bti+αE [Z] is weakly dominated by

the strategy (see Definition 2.2.1) to bid his true minimal expected valuation ati+bt+αE [Z]

since

ati + bt+ αE [Z] > at+ bti + αE [Z] ,

which is true for all ti. This implies that he wins more often and receives a potentially

positive payoff against bidder j by bidding his minimal true valuation.

It remains to be shown that the candidate equilibrium ati+bt+αE [Z] and at+btj+αE [Z],

i 6= j, i, j ∈ {1, 2}, cannot be an equilibrium in increasing and continuous strategies. The

reason is that bidder j always wins, but receives negative payoff for some of his types.

Then the seller’s expected revenue is given by

2∑
i=1
j 6=i

∫
{ti,tj :β(ti)≥β(tj)}

[(a+ b) tj + E [Z]] f (tj) dtjf (ti) dti

=
2∑
i=1
j 6=i

∫
ti≥tj

[(a+ b) tj + E [Z]] f (tj) dtjf (ti) dti

= (a+ b)E [T2:2] + E [Z] .

Proof of Proposition 2.3.2. a > b ≥ 0 and (a+ b) t + αzl − α b(zh−zl)
a−b . In the main

text I provide an argument for the uniqueness of this equilibrium in the sense that there is

no other equilibrium in linear strategies in which each bidder’s strategy is a solution to the

first-order condition of the respective bidder’s maximization problem. The proof provided
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here only establishes that there is an equilibrium with strategies

β∗1 (t1, z1, z2) = (a+ b) t1 + αz1 − α
b (z2 − z1)

a− b (3.28)

and

β∗2 (t2, z2, z1) = (a+ b) t2 + αz2 − α
b (z1 − z2)

a− b (3.29)

if a > b by proving that these strategies are mutually best responses. I do this in the first

two steps of the proof. In the third step I prove that the (3.28) and (3.29) are nonnegative

if (a+ b) t + αzl − α b(zh−zl)
a−b holds true and in the last step I show that the equilibrium is

effi cient if a > b. The last step is only given for completeness. Actually I already know that

the equilibrium is effi cient by Maskin 1992, since the single-crossing condition is satisfied.

Step 1: Assume that 2 plays (3.29) and suppose that bidder 1 has private signal t1 such

that

β∗1 (t1, z1, z2) ≥ β∗2 (t, z2, z1) ,

which is equivalent to

t1 ≥ t+ α
(zj − zi)
(a− b) .

Bidder i’s maximization problem is given by maximizes over β̂

max
β̂

∫
{t2:β̂>β∗2(t2,z2,z1)}

[at1 + bt2 + αz1 − β∗2 (t2, z2, z1)] dF (t2) .

I want to show that (3.28) solves this problem.

The first-order condition with respect to β̂ of bidder 1’s problem is given by

∂β∗−1
2

(
β̂, z2, z1

)
∂β̂

 at1 + bβ∗−1
2

(
β̂, z2, z1

)
+αz1 − β∗2

(
β∗−1

2

(
β̂, z2, z1

)
, z
)  f (β∗−1

2

(
β̂, z
))

= 0.
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The second derivative is given by

∂β∗−1
2

(
β̂, z2, z1

)
∂β̂


[
b
∂β∗−12 (β̂,z2,z1)

∂β̂
− 1

]
f
(
β∗−1

2

(
β̂, z2, z1

))
+

 at1 + bβ∗−1
2

(
β̂, z2, z1

)
+ αz1

−β∗2
(
β∗−1

2

(
β̂, z2, z1

)
, z2, z1

)  f ′ (β∗−1
2

(
β̂, z2, z1

))
∂β∗−12 (β̂,z2,z1)

∂β̂


I first solve the unconstrained problem and then check the constraint. The solution to

the first-order condition is given by

β∗−1
2

(
β̂, z2, z1

)
=

1

a+ b

[
β̂ − αz2 + α

b

a− b (z1 − z2)

]
The first-order condition is given by

1

a+ b

[
at1 + b

a+b

[
β̂ − αz2 + α b

a−b (z1 − z2)
]

+αz1 − β̂

]
f
(
β∗−1

2

(
β̂, z2, z1

))
= 0

which is equivalent to

at1 + αz1 +
b

a+ b

[
−α a

a− bz2 + α
b

a− bz1

]
= β̂

a

a+ b
.

Solving this equation for β̂ gives

β̂ = (a+ b) t1 + αz1 − α
b

a− b (z2 − z1)

= β∗1 (t1, z1, z2) .

The prove for bidder 2 is performed in the same manner and therefore neglected.
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I simplify the notation and write β∗−1
2

(
β̂
)
instead of β∗−1

2

(
β̂, z2, z1

)
. The second-order

condition is satisfied if∣∣∣∣∣∣∣∣∣
∂β∗−1

2

(
β̂
)

∂β̂


[
b
∂β∗−12 (β̂)

∂β̂
− 1

]
f
(
β∗−1

2

(
β̂
))

+

[
at1 + bβ∗−1

2

(
β̂
)

+αz1 − β̂

]
f ′
(
β∗−1

2

(
β̂
))

∂β∗−12 (β̂)
∂β̂


∣∣∣∣∣∣∣∣∣
β̂=β∗1(t1,z1,z2)

< 0.

Substitution gives∣∣∣∣∣∣∣∣
1

a+ b


[
b 1
a+b
− 1
]
f
(
β∗−1

2

(
β̂
))

+

[
at1 + b

[
t1 + α z1−z2

a−b
]

+ αz1

−
(
(a+ b) t1 + αz1a

a−b −
αbz2
a−b
) ] f ′ (β∗−1

2

(
β̂
))

∂β∗−12 (β̂)
∂β̂


∣∣∣∣∣∣∣∣
β̂=β∗1(t1,z1,z2)

=
1

a+ b

(
− a

a+ b
f

(
t1 + α

(z1 − z2)

a− b

))
< 0.

since
∂β∗−12 (β̂)

∂β̂
= 1

a+b
and β∗−1

2

(
β̂
)

= 1
a+b

[(
(a+ b) t1 + αz1

a
a−b − α

b
a−bz2

)
− αz2 + α b(z1−z2)

a−b

]
=
[
t1 + α z1−z2

a−b
]
. I conclude that the candidate maximizes bidder i’s expected utility given

that bidder j bids β∗2 (t2, z2, z1) since a > 0.

Note that bidder 1 has a positive probability to win since β∗1 (t1, z1, z2) ≥ β∗1 (t, z1, z2).

In the next step I prove that this strategy is also a best reply to β∗2 (t2, z2, z1) for all other

types t1 such that β
∗
1 (t1, z1, z2) ≤ β∗1 (t, z1, z2) , who have a probability to win of 0 playing

β∗1 (t1, z1, z2).

Step 2: Assume z2 > z1. I show that (3.28) is also bidder 1’s best response to (3.29) if

his type t1 satisfies β
∗
1 (t1, z1, z2) ≤ β∗1 (t, z1, z2) ⇐⇒ t1 ≤ t+ α (zh−zl)

a−b .

Clearly, bidder 1 loses with certainty if he uses a bid β, which satisfies β < β∗2 (t, z2, z1).

Thus, he is indifferent between any of these bids. Ties occur with probability 0 as F is

atomless. Thus, I need to show that any β > β∗2 (t, z2, z1) gives a negative payoff.

If bidder 1 plays (3.28), then his probability of winning is zero. Suppose bidder 1 deviates

to a strategy β′ = β∗2 (t, z2, z1) + ε, ε > 0 so that 1 wins with positive probability. Then his
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expected value of playing that strategy β′ is negative for all t1 ∈
[
t, t
]

at1 + bt+ αzl −
(

(a+ b) t+ αzh − α
b (zl − zh)
a− b

)
≤ 0

if and only if

t1 ≤ t+
1

a− bα (zh − zl) ,

which is true.

Step 3: Bids are positive if for all t1, t2, z1, z2 if the following system of inequalities defines

a nonempty regime

(a+ b) t+ αz1 − α
b (z2 − z1)

a− b ≥ 0,

(a+ b) t+ αz2 − α
b (z1 − z2)

a− b ≥ 0.

These conditions can be rewritten as

(a+ b) t+ α
az1 − bz2

a− b ≥ 0,

(a+ b) t+ α
az2 − bz1

a− b ≥ 0,

Bids are positive if

(a+ b) t+ αmin

{
az2 − bz1

a− b ,
az1 − bz2

a− b

}
≥ 0

for all realizations of z1 and z2. min
{
azl−bzh
a−b , azh−bzl

a−b
}
, which is equal to azl−bzh

a−b by the single

crossing property and

azl − bzh ≤ azh − bzl

⇐⇒

(a+ b) zl ≤ (a+ b) zh
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Then bids are positive if

(a+ b) t+ α
azl − bzh
a− b ≥ 0.

Step 4: The equilibrium is effi cient if β∗1 (t1, z1, z2) ≥ β∗2 (t2, z2, z1) if and only if at1 +bt2 +

αz1 ≥ at2 + bt1 + αz2.

β∗1 (t1, z1, z2) ≥ β∗2 (t2, z2, z1)

⇐⇒

(a+ b) t1 + αz1 − α
b

a− b (z2 − z1) ≥ (a+ b) t2 + αz2 − α
b

a− b (z1 − z2)

⇐⇒

(a+ b) t1 + α (z1 − z2)
a+ b

a− b ≥ (a+ b) t2

⇐⇒

at1 + bt2 + αz1 ≥ at2 + bt1 + αz2.

Proof of Theorem 2.3.1. Assume (a+ b) t + αazl−bzh
a−b ≥ 0. I split up the proof in three

steps. First, I evaluate the seller’s gains from publicly disclosing Z at α = 0 and show that

the gains are 0 at α = 0. Second, I evaluate the derivative of RD − RN at α = 0. Third, I

show that the derivative is negative everywhere.

Assume parameters lie in regime A:
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By t− t > α 1
a−b (zh − zl), the expected revenue is given by (2.10), which can be rewritten

as

=



∑2
i=1
j 6=i

λ (1− λ)



∫ t−α zh−zl
a−b

t



t∫
ti+α

zh−zl
a−b

(
(a+ b) ti+

αzh − α b(zl−zh)
a−b

)
dF (tj)

+

ti+α
zh−zl
a−b∫

t

(
(a+ b) tj+

αzl − α b(zh−zl)a−b

)
dF (tj)

+

t∫
t

(
(a+ b) tj+

αzl − α b(zh−zl)a−b

)
dF (tj)

−
t∫
t

(
(a+ b) tj+

αzl − α b(zh−zl)a−b

)
dF (tj)



dF (ti)

+
∫ t
t−α zh−zl

a−b

t∫
t

(
(a+ b) tj+

αzl − α b(zh−zl)a−b

)
dF (tj) dF (ti)


+
(
λ2 + (1− λ)2)E [T2:2] + λ2αzh + (1− λ)2 αzl



.

Then the impact on the seller’s expected revenue is given by

RR −RN

=



∑2
i=1
j 6=i

λ (1− λ) (a+ b)
∫ t−α zh−zl

a−b
t


t∫

ti+α
zh−zl
a−b

(
(ti − tj)
+α zh−zl

a−b

)
dF (tj)

 dF (ti)

+2λ (1− λ)
(

(a+ b)E [T ] + αzl − α b(zh−zl)a−b

)
+ [1− 2λ (1− λ)] (a+ b)E [T2:2] + λ2αzh + (1− λ)2 αzl

− [(1− λ)αzl + λαzh + (a+ b)E[T2:2]]
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which can be rewritten as

= λ (1− λ) (a+ b)



∑2
i=1
j 6=i

∫ t−α zh−zl
a−b

t


t∫

ti+α
zh−zl
a−b

(ti − tj) dF (tj)

 dF (ti)

+2 (E [T ]− E [T2:2])

+2α zh−zl
a−b

∫ t−α zh−zla−b
t

t∫
ti+α

zh−zl
a−b

dF (tj) dF (ti)− 1
2




. (3.30)

Evaluating RD −RN at α = 0 gives

∣∣RD −RN
∣∣
α=0

= λ (1− λ) (a+ b)


∑2

i=1
j 6=i

∫ t
t

t∫
ti

(ti − tj) dF (tj) dF (ti)

+2 (E [T ]− E[T2:2])

 .

With some tedious calculation one can show that

2∑
i=1
j 6=i

∫ t

t

t∫
ti

(ti − tj) dF (tj) dF (ti) = (E [T2:2]− E [T1:1]) .

Therefore

∣∣RD −RN
∣∣
α=0

= λ (1− λ) (a+ b) {2E [T ]− E [T2:2]− E [T1:1]}

which is equal to 0 since −E [T2:2] = −2E [T ] + E [T1:1].

Next, I show that the derivative of RD −RN at α = 0 is 0.
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The derivative of RD −RN is equal to

∂RD −RN

∂α

= λ (1− λ) (a+ b)

∂



∑2
i=1
j 6=i

∫ t−α zh−zl
a−b

t


t∫

ti+α
zh−zl
a−b

(ti − tj) dF (tj)

 dF (ti)

+2 (E [T ]− E [T2:2])

+2α zh−zl
a−b

∫ t−α zh−zla−b
t

t∫
ti+α

zh−zl
a−b

dF (tj) dF (ti)− 1
2




∂α

.

Since λ (1− λ) (a+ b) > 0, by assumption, it suffi ces to derive
∂RD−RN

∂α

λ(1−λ)(a+b)
, which simplifies

to

∂RD−RN
∂α

λ (1− λ) (a+ b)

=



∑2
i=1
j 6=i

 − zh−zl
a−b

∫ t−α zh−zl
a−b

t

(
tif
(
ti + α zh−zl

a−b
)
f (ti)

)
dti

+ zh−zl
a−b

∫ t−α zh−zl
a−b

t

( (
ti + α zh−zl

a−b
)

·f
(
ti + α zh−zl

a−b
)
f (ti)

)
dti



+2 (zh−zl)
a−b

 α

 − zh−zl
a−b F

(
t− α zh−zl

a−b
)
f
(
t
)

+
∫ t−α zh−zl

a−b
t F (ti) f

′ (ti + α zh−zl
a−b

)
zh−zl
a−b dti


+
∫ t−α zh−zl

a−b
t F (ti) f

(
ti + α zh−zl

a−b
)
dti − 1

2




,

which can be simplified to

2
zh − zl
a− b

(∫ t−α zh−zl
a−b

t

F (ti) f

(
ti + α

zh − zl
a− b

)
dti −

1

2

)
.

Clearly, the first derivative is 0 at α = 0, since
∫ t−α zh−zl

a−b
t F (ti) f

(
ti + α zh−zl

a−b
)
dti

∣∣∣∣
α=0

=

1
2

∫ t
t

2F (ti) f (ti) dti = 1
2
. This implies that there is an extreme point or a saddle point at
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α = 0. Moreover if f
(
t
)
> 0, then

∂
∫ t−α zh−zl

a−b
t F (ti) f

(
ti + α zh−zl

a−b
)
dti

∂α

=

 − zh−zl
a−b F

(
t− α zh−zl

a−b
)
f
(
t
)

+ zh−zl
a−b

∫ t−α zh−zl
a−b

t F (ti) f
′ (ti + α zh−zl

a−b
)
dti


= −zh − zl

a− b

∫ t−α zh−zl
a−b

t

f (ti) f

(
ti + α

zh − zl
a− b

)
dti.

This is negative since a− b > 0.

The second derivative,
∂2(RD−RN)

(∂α)2
, is negative iff

∂2(RD−RN)
(∂α)2

λ(1−λ)(a+b)
is negative.

∂2(RD−RN)
(∂α)2

λ (1− λ) (a+ b)

= 2
zh − zl
a− b

∂ ∫ t−α zh−zla−b
t F (ti) f

(
ti + α zh−zl

a−b
)
dti

∂α

 .

Substitution gives

= −2

(
zh − zl
a− b

)2 ∫ t−α zh−zl
a−b

t

f (ti) f

(
ti + α

zh − zl
a− b

)
dti,

which is negative for all α ≥ 0.

It follows that the expected revenue is maximized at α = 0.

Assume parameters lie in regime B: (a− b) (t−t)
(zh−zl) < α.

If (a− b) (t−t)
(zh−zl) < α, then the strong bidder always wins if z1 6= z2 and the expected

price conditional on z1 6= z2 is equal to

(a+ b)E [T ] + αzl − α
b (zh − zl)
a− b .
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This implies that the bid of the losing bidder is much lower than v (ti, ti, zl). The expected

revenue is equal to{
(a+ b)E [T2:2] + αE [Z]

+2λ (1− λ)
(

(a+ b)E [T ] + αzl − α b(zh−zl)a−b − ((a+ b)E [T2:2] + αE [Z])
) } .

The expected revenue from disclosure is larger than the expected revenue from no disclosure

if and only if

(a+ b)E [T ] + αzl − α
b (zh − zl)
a− b > (a+ b)E [T2:2] + αE [Z]

which can be rewritten as

(a+ b)
(E [T ]− E [T2:2])(
b

a−b + λ
)

(zh − zl)
> α.

Since parameters are in regime B, α > (a− b) t−t
zh−zl . Together these conditions on α imply

(a+ b)
(E [T ]− E [T2:2])(
b

a−b + λ
)

(zh − zl)
> (a− b) t− t

zh − zl

which is equivalent to

a
(
(E [T ]− E [T2:2])− λ

(
t− t

))
> b

(
(1− λ)

(
t− t

)
− (E [T ]− E [T2:2])

)
.

Hence if a
(
(E [T ]− E [T2:2])− λ

(
t− t

))
> b

(
(1− λ)

(
t− t

)
− (E [T ]− E [T2:2])

)
, then the

seller commits to disclosure.

Proof of Proposition 2.3.3. Step 1: Equilibrium bidding strategies when the seller

conceals her information.

If the seller conceals her information, then the bidders’ optimal bidding behaviors at

stage 2 is characterized in Proposition 2.3.1.

Step 2: Equilibrium bidding strategies when the seller discloses her information.
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Bidder 1’s information set is given by hD1 = {t1, z1, z2} and bidder 2’s information set is
given by hD2 = {t2, z2, z1}.

I want to show that bidder i’s best reply to β∗j (tj, zj, zi) =


(a+ b) tj + αzi

at+ btj + αzh

at+ btj + αzh

if zi = zj

if zi > zj

if zi < zj

is βi (ti, zi, zj) =


(a+ b) ti + αzi

at+ bti + αzh

at+ bti + αzh

if zi = zj

if zi < zj

if zi > zj

. I split up the proof in two cases: z1 = z2

and z1 6= z2.

Step 2.1: If z1 = z2 = z, then I can apply Lemma 3.26 to solve the bidder’s maximization

problem for E [Z1| t1, z, z] = E [Z2| t2, z, z] = z. Then the equilibrium bids satisfy

βD∗i (ti, z, z) = (a+ b) ti + z, i ∈ {1, 2} , z ∈ {zl, zh} .

If z1 = z2 = z, then the revenue is equal to

(a+ b)E [T2:2] + αz.

Step 2.2: If z1 6= z2, then, without loss of generality, I can restrict attention to z1 > z2.

The proof for z1 < z2 works analogously and is omitted. I restrict attention to equilibria in

which one bidder wins with positive probability.

Consider the candidates

β∗1 (t1, zh, zl) = at+ bt1 + αzh,

β∗2 (t2, zl, zh) = at+ bt2 + αzh.

Note that bidder 1 wins with probability 1 if the bidders play these strategies.

Bidder 1’s expected payoff is positive which one can check by substitution of the candi-

dates into bidder 1’s payoff, that is

at1 + bt2 + αzh − (at+ bt2 + αzh) > 0.
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Bidder 2’s payoff is zero, but would be negative if bidder 2 tried to outbid bidder 1 by bidding

β̂2 > β∗1 (t1, zh, zl) for some t1:

max
β̂2

∫
{t1:β̂2>β

∗
1(t1,zh,zl)}

[
at2 − at

]
dF (t1) < 0

for all β̂2 > β∗1 (t1, zh, zl) = at+ bt1 + αzh and t2 < t. Since at+ bt1 + αzh ≥ at+ bt2 + αzh,

β2 (t2, zl, zh) = at+bt2 +αzh is a best reply to β
∗
1 (t1, zh, zl). Therefore bidder i’s best reply to

β∗j (tj, zj, zi) =


(a+ b) tj + αzi

at+ btj + αzh

at+ btj + αzh

if zi = zj

if zi > zj

if zi < zj

is βi (ti, zi, zj) =


(a+ b) ti + αzi

at+ bti + αzh

at+ bti + αzh

if zi = zj

if zi < zj

if zi > zj

.

If z1 = zh and z2 = zl, then the expected revenue condition on z1 = zh and z2 = zl is given

by ∫
T

(at+ bt+ αzh) f (t) dt = at+ bE [T ] + αzh.

This implies together with the first step of the proof that the overall expected revenue

after disclosure is given by

RD =


λ2 ((a+ b)E [T2:2] + αzh)

+ (1− λ)2 ((a+ b)E [T2:2] + αzl)

+2λ (1− λ) (at+ bE [T ] + αzh)


=

{
(a+ b)E [T2:2]

+2λ (1− λ) (at+ bE [T ]− (a+ b)E [T2:2]) + E [Z1:2]

}
.

Proof of Theorem 2.3.2. Substituting RD from Proposition 2.3.3 and RN into W gives{
λ2 ((a+ b)E [T2:2] + αzh) + (1− λ)2 ((a+ b)E [T2:2] + αzl)

+2λ (1− λ) (at+ bE [T ] + αzh)− ((a+ b)E [T2:2] + αE [Z])

}
,

which simplifies to

λ (1− λ) (2 (at+ bE [T ]− (a+ b)E [T2:2]) + α (zh − zl)) .
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Then W > 0 if and only if

α >
2 ((a+ b)E [T2:2]− (at+ bE [T ]))

(zh − zl)
. (3.31)

Appendix 2.B: Effi ciency

Appendix 2.B is based on Maskin 2003. Consider a second price auction with two bidders.

βi (hi) denotes bidder i’s bid for a given information set hi.

Definition 3.7.1 An equilibrium is effi cient if the bidder with the highest valuation wins the

auction and is allocated the good.

Superscript ∗ denotes an equilibrium bidding strategy. The following Lemma follows

directly from the definition of an effi cient equilibrium of the second price auction and is

obvious. I state it for completeness.

Lemma 3.7.3 Suppose that the bidders’ preferences satisfy (2.1). In an effi cient equilib-

rium of the second price auction, β∗1 (h1) , β∗2 (h2), the bidder with the highest private value

component wins if and only if

β∗i (hi) ≥ β∗j (hj) ⇐⇒ (a− b) ti + αzi ≥ (a− b) tj + αzj. (3.32)

Proof of Lemma 3.7.3. Consider an effi cient equilibrium of the English auction with

equilibrium bids β∗1 (t1, z1, z2) and β∗2 (t2, z2, z1).

By definition of an effi cient equilibrium, we must have

β∗i (hi) ≥ β∗j (hj) ⇐⇒ at1 + bt2 + αz1 ≥ at2 + bt1 + αz2.
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Reformulating this inequality gives

at1 + bt2 + αz1 ≥ at2 + bt1 + αz2 ⇐⇒

(a− b) t1 + αz1 ≥ (a− b) t2 + αz2.

Next, I graphically illustrate the properties of the effi cient allocation (see Lemma 3.7.3)

as a function of the bidders’valuations. The figures shall illustrate realizations of the bid-

ders’valuations as functions of (t1, t2) and for fixed z1 and z2. The support of bidder 2’s

private information t2 lies in the horizontal dimension and the support of bidder 1’s private

information t1 is depicted in the vertical dimension.

For regime A and
(z1, z2) = (zh, zl).

For regime B if
(z1, z2) = (zh, zl).

If (z1, z2) such that
z1 = z2.

Figure 3.1: Figure A2.

For given z1 and z2, the green color in figures 1 to 3 marks those types (t1, t2) for which

bidder 2 has the highest valuation and the blue area highlights the set of type profiles for

which bidder 1 has the highest valuation. Figure 1 depicts the effi cient allocation in regime A

for z1 = zh and z2 = zl. In regime A an allocation is effi cient if and only if weak bidder 2 wins

whenever t2 > t1 + α zh−zl
a−b . Figure 2 depicts the effi cient allocation in regime B for z1 = zh

and z2 = zl. In regime B the allocation is effi cient if the strong bidder always receives the

good. Figure 3 illustrates the effi cient allocation for the symmetric case, z1 = z2, in which

bidder i has the highest valuation if and only if his private signal exceeds his rival’s private
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signal, i.e. ti ≥ tj.
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Appendix 3

Proof of Lemma 3.2.1. The first-best allocation x (θ, η) , y (θ, η) satisfies the system of

first-order conditions (3.11) and (3.12) for θ ∈
{
θ, θ
}
and η ∈

{
η, η
}
. Define a new, artificial

system of equations by

V1 (x (θ, η) , y (θ, η)) = θ (3.33)

V2 (x (θ, η) , y (θ, η)) = η

for θ, η ∈
[
θ, θ
]
×
[
η, η
]
. Note that the domain of the artificial system is obtained by a

convexification of the original domain of definition; hence, by construction, the extreme

points in the convexified domain are the cost types in the model. However, on the convexified

domain, we can use calculus to determine differences between allocation choices. We prove

the claims by direct evaluation of the differences. We focus on claim (i); the proof of claim

(ii) uses the same methods and is therefore omitted.

Proof of claim (i): Since (3.33) is defined on a convex domain, we can write (by the

fundamental theorem of calculus)

x (θ, η)− x
(
θ, η
)

=

η∫
η

∂

∂η
x (θ, η) dη.

Totally differentiating the system (3.33), we have

V11 (x (θ, η) , y (θ, η)) dx+ V12 (x (θ, η) , y (θ, η)) dy = 0
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V21 (x (θ, η) , y (θ, η)) dx+ V22 (x (θ, η) , y (θ, η)) dy = dη

By Cramer’s rule
dx

dη
=

−V12

V11V22 − V 2
12

so

x (θ, η)− x
(
θ, η
)

=

η∫
η

−V12

V11V22 − V 2
12

(θ, η) dη.

So, for any θ ∈
[
θ, θ
]
, x (θ, η) ≤ x

(
θ, η
)
for V12 ≥ 0 and x (θ, η) > x

(
θ, η
)
for V12 < 0. Thus,

these inequalities hold in particular for θ ∈
{
θ, θ
}
.

Again using (3.33) , the fundamental theorem, and Cramer’s rule, we obtain

y (θ, η)− y
(
θ, η
)

=

η∫
η

V11

V11V22 − V 2
12

(θ, η) dη.

By concavity, we have y (θ, η)− y
(
θ, η
)
< 0.

Combining these arguments, we have, for any θ,

(
y
(
θ, η
)
− y (θ, η)

)
≥
(
x
(
θ, η
)
− x (θ, η)

)
≥ 0

iff V12 ≥ 0 and

0 ≥
η∫
η

V11 + V12

V11V22 − V 2
12

(θ, η) dη,

which is satisfied if V12 < −V11 for all (x, y) . Hence, these inequalities hold in particular for

θ ∈
{
θ, θ
}
. Likewise, we have

(
x
(
θ, η
)
− x (θ, η)

)
≥
(
y
(
θ, η
)
− y (θ, η)

)
≥ 0

for θ ∈
{
θ, θ
}
if V12 > −V11 for all (x, y) .
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Proof of claim (ii): Similarly, one shows that for V12 < 0 we have

(
y
(
θ, η
)
− y (θ, η)

)
≥ −

(
x
(
θ, η
)
− x (θ, η)

)
≥ 0

if V12 ≥ V11 for all (x, y) and

−
(
x
(
θ, η
)
− x (θ, η)

)
≥
(
y
(
θ, η
)
− y (θ, η)

)
for V12 ≤ V11 for all (x, y) .

Proof of Lemma 3.3.1. Note first that at least one participation constraint must be

binding; otherwise all payments could be reduced by the same amount, resulting in higher

buyer surplus. To prove the statement, it suffi ces to show the standard result that (3.9)

together with (3.6) imply (3.8). This is true if λ (θ) ≥ λ
(
θ
)
.

Let u (θ, η) denote equilibrium utility.

From (3.6) , we have

Eη|θ [u (θ, η)]

= Eη|θ [T (θ, η)− θx (θ, η)− ηy (θ, η)]

≥ Eη|θ
[
T
(
θ, η̂∗

(
θ, θ, η

))
− θx

(
θ, η̂∗

(
θ, θ, η

))
− ηy

(
θ, η̂∗

(
θ, θ, η

))]
On the other hand

Eη|θ
[
T
(
θ, η̂∗

(
θ, θ, η

))
− θx

(
θ, η̂∗

(
θ, θ, η

))
− ηy

(
θ, η̂∗

(
θ, θ, η

))]
≥ Eη|θ

[
T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)]

since η̂∗
(
θ, θ, η

)
and η̂∗

(
θ, θ, η

)
are chosen optimally. Moreover,

Eη|θ
[
T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)]

= Eη|θ
[
u
(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)]

≥ Eη|θ
[
u
(
θ, η
)]
,
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where the last inequality follows since production is non-negative.

Hence, from (3.6) , we have that

Eη|θ [u (θ, η)] ≥ Eη|θ
[
u
(
θ, η
)]
.

Now, from (3.2) it is straightforward to see that

u
(
θ, η
)
≥ u

(
θ, η
)

+
(
η − η

)
y
(
θ, η
)
,

and thus u
(
θ, η
)
≥ u

(
θ, η
)
. Using λ(θ) ≥ λ(θ), we have moreover that

Eη|θ
[
u
(
θ, η
)]
≥ Eη|θ

[
u
(
θ, η
)]
.

(3.9) written in terms of equilibrium utilities amounts to

Eη|θ
[
u
(
θ, η
)]
≥ 0,

which proves the claim.

Proof of Lemma 3.3.2. The proof is by direct inspection. We consider all four off-path

types in sequence.

Recall that u (θ, η) denotes the equilibrium utility of type (θ, η) .

Consider type
(
θ, θ, η

)
, that is an agent with preference parameters θ, η who has sent a

first period report θ̂ = θ. By reporting η̂ = η, he obtains utility

T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)

= u
(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)

If he reports η̂ = η, then he obtains utility

T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)

= u
(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)
−
(
η − η

)
y
(
θ, η
)
.
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Type
(
θ, θ, η

)
prefers to report η̂ = η if

u
(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)
≥ u

(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)
−
(
η − η

)
y
(
θ, η
)

From the on equilibrium path constraint 3.3, we know that

u
(
θ, η
)
≥ u

(
θ, η
)
−
(
η − η

)
y
(
θ, η
)
.

adding
(
θ − θ

)
x
(
θ, η
)
to both sides we get

u
(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)
≥ u

(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)
−
(
η − η

)
y
(
θ, η
)
,

which implies that η̂∗
(
θ, θ, η

)
= η if

x
(
θ, η
)
≥ x

(
θ, η
)
.

It is easy to demonstrate the other results by the exact same procedure. In particular:

η̂∗
(
θ, θ, η

)
= η follows from the on-path constraint (3.2) if x

(
θ, η
)
≥ x

(
θ, η
)

;

η̂∗
(
θ, θ, η

)
= η follows from the on-path constraint (3.4) if x (θ, η) ≥ x

(
θ, η
)

; and

η̂∗
(
θ, θ, η

)
= η follows from the on-path constraint (3.5) if x

(
θ, η
)
≥ x (θ, η) .

Proof of lemma 3.3.3. We split the proof into two cases, depending on whether x
(
θ, η
)
−

x (θ, η) is nonnegative or nonpositive. For both cases, we first prove the part concerning the

allocations of type θ. Afterwards we turn to the allocation for type θ.

Preliminaries:

For convenience, note that the on-path constraints (3.2) − (3.5) can be rewritten as

follows:

T
(
θ, η
)
− T

(
θ, η
)
≥ θ

(
x
(
θ, η
)
− x

(
θ, η
))

+ η
(
y
(
θ, η
)
− y

(
θ, η
))

(3.34)

T
(
θ, η
)
− T

(
θ, η
)
≤ θ

(
x
(
θ, η
)
− x

(
θ, η
))

+ η
(
y
(
θ, η
)
− y

(
θ, η
))

(3.35)

T
(
θ, η
)
− T (θ, η) ≥ θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
(3.36)
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T
(
θ, η
)
− T (θ, η) ≤ θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
(3.37)

Likewise, the off-path constraints take the following form:

Type
(
θ, θ, η

)
prefers to report η̂ = η if

T
(
θ, η
)
− T

(
θ, η
)
≤ θ

(
x
(
θ, η
)
− x

(
θ, η
))

+ η
(
y
(
θ, η
)
− y

(
θ, η
))
. (3.38)

and prefers to report η̂ = η if

T
(
θ, η
)
− T

(
θ, η
)
≥ θ

(
x
(
θ, η
)
− x

(
θ, η
))

+ η
(
y
(
θ, η
)
− y

(
θ, η
))
. (3.39)

Type
(
θ,θ, η

)
prefers to report η̂ = η if

T
(
θ, η
)
− T

(
θ, η
)
≥ θ

(
x
(
θ, η
)
− x

(
θ, η
))

+ η
(
y
(
θ, η
)
− y

(
θ, η
))

(3.40)

and prefers to report η̂ = η if

T
(
θ, η
)
− T

(
θ, η
)
≤ θ

(
x
(
θ, η
)
− x

(
θ, η
))

+ η
(
y
(
θ, η
)
− y

(
θ, η
))
. (3.41)

Type
(
θ, θ, η

)
prefers to report η̂ = η if

T
(
θ, η
)
− T (θ, η) ≥ θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
(3.42)

and prefers to report η̂ = η if

T
(
θ, η
)
− T (θ, η) ≤ θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
. (3.43)

Type
(
θ, θ, η

)
prefers to report η̂ = η if

T
(
θ, η
)
− T (θ, η) ≤ θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
(3.44)
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and prefers to report η̂ = η if

T
(
θ, η
)
− T (θ, η) ≥ θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
. (3.45)

Now we are ready to begin with the proof of the Lemma.

Suppose that
(
x
(
θ, η
)
− x

(
θ, η
))
≥ 0. By Lemma 3.3.2 this implies that η̂∗

(
θ, θ, η

)
= η.

Adding the expected utility of the high type (which is zero by (3.9)) to the objective, we

obtain the following problem:

∆ ≡ min
{T(θ,η)}

η∈{η,η},η̂
∗(θ,θ,η)


(λ(θ)−λ(θ))(T(θ,η)−θx(θ,η)−ηy(θ,η))+λ(θ)(θ−θ)x(θ,η)

+(1−λ(θ))(T(θ,η̂∗(θ,θ,η))−θx(θ,η̂∗(θ,θ,η))−ηy(θ,η̂∗(θ,θ,η)))

−(1−λ(θ))[T(θ,η)−θx(θ,η)−ηy(θ,η)]


subject to (3.34) , (3.35) , and

either (3.38) if η̂∗
(
θ, θ, η

)
= η

or (3.39) if η̂∗
(
θ, θ, η

)
= η.

Consider now both possible off-path reports. If η̂∗
(
θ, θ, η

)
= η, then the objective is

min
T(θ,η)−T(θ,η)

(
λ (θ)− λ

(
θ
)) [

T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)]

+ λ (θ)
(
θ − θ

)
x
(
θ, η
)

−
(
λ (θ)− λ

(
θ
)) [

T
(
θ, η
)
− θx

(
θ, η
)
− ηy

(
θ, η
)]

+ (1− λ (θ))
(
θ − θ

)
x
(
θ, η
)

subject to the constraints (3.34) , (3.35) , and (3.38) . Note that (3.35) is automatically satis-

fied if (3.38) is. There exists a solution to the problem only if the constraint set is non-empty,

that is, if the right-hand side of (3.38) is weakly larger than the right-hand side of (3.34) .

This is the case for
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xi
(
θ
)
. In this case (3.34) is binding. Using

(3.9) and (3.34) to solve for the optimal payments, we have(
T
(
θ, η
)

T
(
θ, η
)) =

(
θx
(
θ, η
)

+ ηy
(
θ, η
)

+
(
1− λ

(
θ
)) (

η − η
)
y
(
θ, η
)

θx
(
θ, η
)

+ λ
(
θ
)
ηy
(
θ, η
)

+
(
1− λ

(
θ
))
ηy
(
θ, η
) ) . (3.46)
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Substituting back into the objective we have obtain

∆i =
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)

+ Eη|θ
[(
θ − θ

)
x
(
θ, η
)]
.

On the other hand, if η̂∗
(
θ, θ, η

)
= η, then the problem is

minT(θ,η)−T(θ,η)
(
1− λ

(
θ
)) {

T
(
θ, η
)
− T

(
θ, η
)}

+
(
θ − θ

)
x
(
θ, η
)
− (1− λ (θ))

(
η − η

)
y
(
θ, η
)

−
(
1− λ

(
θ
)) (

θ
(
x
(
θ, η
)
− x

(
θ, η
))

+ ηy
(
θ, η
)
− ηy

(
θ, η
))

subject to the constraints (3.34) , (3.35) , and (3.39) . The right-hand side of (3.34) is weakly

larger than the right-hand side of (3.39) for
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xiii
(
θ
)
and the

reverse is true for
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xi
(
θ
)
. Clearly, the right-hand side of (3.35)

is always larger than the right-hand side of (3.34) . Therefore, for
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈
Xiii

(
θ
)
, at the solution of the problem, constraint (3.34) holds as an equality. It follows that

for η̂∗
(
θ, θ, η

)
= η and

{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xiii
(
θ
)
, the transfers can be taken from

(3.46) so that the objective takes value

∆iii =
(
θ − θ

)
x
(
θ, η
)
− (1− λ (θ))

(
η − η

)
y
(
θ, η
)

+
(
1− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
.

For
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xi
(
θ
)
the off-path constraint (3.39) is binding. Substituting

for the transfers implies that in this case

∆̂i =
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)

+ Eη|θ
[(
θ − θ

)
x
(
θ, η
)]
.

Since ∆̂i ≥ ∆i if and only if
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xi
(
θ
)
, for a given allocation{

x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xi
(
θ
)
the optimal payments are given by (3.46), η̂∗

(
θ, θ, η

)
= η

and the information rent by ∆i.

Next consider the second problem for the case where x
(
θ, η
)
≥ x (θ, η) . By lemma 2 this
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implies that η̂∗
(
θ, θ, η

)
= η. So, the problem can be written as

Ω = min
{T (θ,η)}η∈{η,η},η̂

∗(θ,θ,η)


λ(θ)[T(θ,η̂∗(θ,θ,η))−θx(θ,η̂∗(θ,θ,η))−ηy(θ,η̂∗(θ,θ,η))]

+(1−λ(θ))[T (θ,η)−θx(θ,η)−ηy(θ,η)]

−Eη|θ[T (θ,η)−θx(θ,η)−ηy(θ,η)]+∆


subject to

(3.36) , (3.37) , and either

(3.42) if η̂∗
(
θ, θ, η

)
= η, or

(3.43) if η̂∗
(
θ, θ, η

)
= η,

where the objective is obtained from substituting the constraint (3.6) as an equality into the

objective.

Consider first the case where η̂∗
(
θ, θ, η

)
= η. In this case, the problem is

min
T(θ,η)−T (θ,η)

−
(
λ (θ)−λ

(
θ
)) {

T
(
θ, η
)
− T (θ, η)

}
+
(
λ (θ)−λ

(
θ
)) [

θx
(
θ, η
)

+ ηy
(
θ, η
)
− θx (θ, η)− ηy (θ, η)

]
−
(
1−λ

(
θ
)) (

θ − θ
)
x (θ, η)− λ (θ)

(
θ − θ

)
x
(
θ, η
)

+ ∆.

subject to the constraints (3.36) , (3.37) and (3.42) . The right-hand side of (3.36) is weakly

smaller than the right-hand side of (3.42) . Hence, the constraint set is nonempty if the right

hand side of (3.42) is weakly smaller than the right-hand side of (3.37) , which is exactly

true for {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xi (θ) . So, in this case, (3.37) is binding at the solution

to the problem. Solving for the transfers from (3.37) and (3.6) , we obtain(
T
(
θ, η
)

T (θ, η)

)
=

(
∆ + θx

(
θ, η
)

+
(
λ (θ) η + (1− λ (θ)) η

)
y
(
θ, η
)

∆ + θx (θ, η) + ηy (θ, η)− λ (θ)
(
η − η

)
y
(
θ, η
)) . (3.47)

Substituting these transfers back into the objective, we obtain

Ωi = −λ
(
θ
) (
θ − θ

)
x
(
θ, η
)
−
(
λ (θ)−λ

(
θ
)) (

η − η
)
y
(
θ, η
)
−
(
1−λ

(
θ
)) (

θ − θ
)
x (θ, η)+∆.
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For future reference, we note that for (x, y) ∈ Xi, this can be written as

Ωi = Eη|θ
[(
θ − θ

)
x
(
θ, η
)]
−Eη|θ

[(
θ − θ

)
x (θ, η)

]
−
(
λ (θ)−λ

(
θ
)) (

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))
.

Consider next the case where η̂∗
(
θ, θ, η

)
= η. In this case, the problem becomes

min
T(θ,η)−T (θ,η)

−λ (θ)
{
T
(
θ, η
)
− T (θ, η)

}
−
(
θ − θ

)
x (θ, η) + λ

(
θ
) (
η − η

)
y (θ, η)

+ λ (θ)
[
θx
(
θ, η
)
− θx (θ, η) + ηy

(
θ, η
)
− ηy (θ, η)

]
+ ∆.

subject to the constraints (3.36) , (3.37) and (3.43) . The right-hand side of (3.43) is larger

than the right-hand side of (3.37) for {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xiii (θ) . In this case, the
feasible set is nonempty and at the solution (3.37) is binding; hence the transfers are given

by (3.47) and the objective takes value

Ωiii = −λ (θ)
(
η − η

)
y
(
θ, η
)
−
(
θ − θ

)
x (θ, η) + λ

(
θ
) (
η − η

)
y (θ, η)

+ λ (θ) θ
(
x
(
θ, η
)
− x (θ, η)

)
+ ∆.

Again, for future reference, if (x, y) ∈ Xiii, then we can write

Ωiii = −λ (θ)
(
η − η

)
y
(
θ, η
)

+ λ
(
θ
) (
η − η

)
y (θ, η)

+ λ (θ) θ
(
x
(
θ, η
)
− x (θ, η)

)
− (1− λ (θ))

(
η − η

)
y
(
θ, η
)

+
(
1− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
.

For {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xi (θ), the right-hand side of (3.43) is smaller than the right-

hand side of (3.37) . Moreover, the feasible set is always nonempty and thus at the solution

constraint (3.43) is binding. Hence, we can substitute

T
(
θ, η
)
− T (θ, η) = θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
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into the objective and obtain

Ω̂i = −λ (θ)
{(
θ − θ

) (
x
(
θ, η
)
− x (θ, η)

)
+
(
η − η

)
y (θ, η)

}
−
(
θ − θ

)
x (θ, η) + λ

(
θ
) (
η − η

)
y (θ, η) + ∆.

We have Ωi ≤ Ω̂i for {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xi (θ) , so η̂
∗ (θ, θ, η) = η is cheaper to

implement in that case.

Next consider the case where
(
x
(
θ, η
)
− x

(
θ, η
))
≤ 0. By Lemma 3.3.2, this implies that

η̂∗
(
θ, θ, η

)
= η. Adding and subtracting the expected utility of type θ, we can write the

objective as

∆ ≡ min
{T(θ,η)}

η∈{η,η},η̂
∗(θ,θ,η)


λ(θ)(T(θ,η̂∗(θ,θ,η))−θx(θ,η̂∗(θ,θ,η))−ηy(θ,η̂∗(θ,θ,η)))

−(λ(θ)−λ(θ))(T(θ,η)−θx(θ,η)−ηy(θ,η))+(1−λ(θ))(θ−θ)x(θ,η)

−λ(θ)[T(θ,η)−θx(θ,η)−ηy(θ,η)]


subject to

(3.34) , (3.35) and either

(3.40) if η̂∗
(
θ, θ, η

)
= η, or

(3.41) if η̂∗
(
θ, θ, η

)
= η.

Consider first the case where the off-path report is η̂∗
(
θ, θ, η

)
= η. In this case, the objective

is

∆ ≡ min
T(θ,η)−T(θ,η)

 (λ(θ)−λ(θ))(T(θ,η)−θx(θ,η)−ηy(θ,η))+λ(θ)(θ−θ)x(θ,η)

−(λ(θ)−λ(θ))(T(θ,η)−θx(θ,η)−ηy(θ,η))+(1−λ(θ))(θ−θ)x(θ,η)


subject to the constraints (3.34) , (3.35) , and (3.40) . The right-hand side of (3.40) is always

at least as large as the right-hand side of (3.34) (by the fact that
(
x
(
θ, η
)
− x

(
θ, η
))
≤ 0).

Hence, the constraint set is nonempty if the right-hand side of (3.35) is at least as large

as the right-hand side of (3.40) , which is precisely the case for
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈
Xii
(
θ
)
. Since the objective is increasing in T

(
θ, η
)
− T

(
θ, η
)
and we are minimizing ∆,

T
(
θ, η
)
− T

(
θ, η
)
is set as small as possible, implying that (3.40) is binding. We can
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compute the transfers from (3.40) and (3.9) . We obtainT(θ,η)

T(θ,η)

 =

−λ(θ)[(η−η)y(θ,η)−(θ−θ)(x(θ,η)−x(θ,η))]+θx(θ,η)+ηy(θ,η)+θ(x(θ,η)−x(θ,η))+η(y(θ,η)−y(θ,η))

−λ(θ)[(η−η)y(θ,η)−(θ−θ)(x(θ,η)−x(θ,η))]+θx(θ,η)+ηy(θ,η)

 .

(3.48)

Substituting these transfers back into the objective, we obtain

∆ii ≡
(
λ (θ)− λ

(
θ
)) ((

η − η
)
y
(
θ, η
))

+ Eη|θ
[(
θ − θ

)
x
(
θ, η
)]
.

For
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xiv
(
θ
)
, no solution with η̂∗

(
θ, θ, η

)
= η exists.

Suppose thus that η̂∗
(
θ, θ, η

)
= η. In this case, the objective is

∆≡minT(θ,η)−T(θ,η){λ(θ)(T(θ,η)−θx(θ,η)−ηy(θ,η)−[T(θ,η)−θx(θ,η)−ηy(θ,η)])+(θ−θ)x(θ,η)+λ(θ)(η−η)y(θ,η)}

subject to (3.34) , (3.35) , and (3.41) . The right-hand side of (3.35) is weakly smaller than the

right-hand side of (3.41) for (x, y) ∈ Xiv. Since the objective is decreasing in T
(
θ, η
)
−T

(
θ, η
)

and we seek to minimize the objective function, at the optimum (3.35) must be binding.

Thus, we can compute the optimal transfers from (3.35) and (3.9) . We obtain

T
(
θ, η
)

= θx
(
θ, η
)

+ Eη|θηy
(
θ, η
)

(3.49)

T
(
θ, η
)

= θx
(
θ, η
)

+ Eη|θηy
(
θ, η
)
− η

(
y
(
θ, η
)
− y

(
θ, η
))

Substituting these transfers back into the objective, we obtain

∆iv ≡ −λ
(
θ
) (
η − η

)
y
(
θ, η
)

+
(
θ − θ

)
x
(
θ, η
)

+ λ (θ)
(
η − η

)
y
(
θ, η
)
.

For
{
x
(
θ, η
)
, y
(
θ, η
)}

η∈{η,η} ∈ Xii
(
θ
)
, the right-hand side of (3.41) is weakly smaller than

the right-hand side of (3.35). Thus, (3.35) is slack. The right-hand side of (3.34) is smaller

than the right-hand side of (3.41), which implies that constraint (3.41) must be binding and

we obtain rent ∆ii.

Consider next the second problem in case where x
(
θ, η
)
≤ x (θ, η) . By lemma 3.3.2, this
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implies that η̂∗
(
θ, θ, η

)
= η. The objective then becomes

Ω = min
{T (θ,η)}η∈{η,η},η̂

∗(θ,θ,η)

 −(λ(θ)−λ(θ))[T(θ,η)−θx(θ,η)−ηy(θ,η)]−λ(θ)(θ−θ)x(θ,η)

+(1−λ(θ))(T(θ,η̂∗(θ,θ,η))−θx(θ,η̂∗(θ,θ,η))−ηy(θ,η̂∗(θ,θ,η)))

−(1−λ(θ))[T (θ,η)−θx(θ,η)−ηy(θ,η)]+∆


subject to

(3.37) , (3.36) , and either

(3.44) if η̂∗
(
θ, θ, η

)
= η, or

(3.45) if η̂∗
(
θ, θ, η

)
= η.

where we have added the difference between the right- and the left-hand side of (3.6) , which

is zero by the fact that this constraint binds.

Consider first the possibility that η̂∗
(
θ, θ, η

)
= η. In that case the problem becomes

Ω = min
T(θ,η)−T (θ,η)

 −(λ(θ)−λ(θ))[T(θ,η)−θx(θ,η)−ηy(θ,η)]

+(λ(θ)−λ(θ))(T (θ,η)−θx(θ,η)−ηy(θ,η))

−λ(θ)(θ−θ)x(θ,η)−(1−λ(θ))(θ−θ)x(θ,η)+∆


subject to (3.37) , (3.36) and (3.44) .

The right-hand side of (3.44) is always weakly smaller than the right-hand side of (3.37) .

Hence, (3.37) cannot become binding at the optimum. Moreover, the constraint set is non-

empty exactly for {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xii (θ) . Since the objective is decreasing in
T
(
θ, η
)
−T (θ, η) , at the optimum, (3.44) is binding and we can compute the transfers from

(3.44) and (3.6) :

(
T(θ,η)

T (θ,η)

)
=

∆+(1−λ(θ))[θ(x(θ,η)−x(θ,η))+η(y(θ,η)−y(θ,η))]+λ(θ)(θx(θ,η)+ηy(θ,η))+(1−λ(θ))[θx(θ,η)+ηy(θ,η)]

∆−λ(θ)[θ(x(θ,η)−x(θ,η))+η(y(θ,η)−y(θ,η))]+λ(θ)(θx(θ,η)+ηy(θ,η))+(1−λ(θ))[θx(θ,η)+ηy(θ,η)]
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Since (3.44) is binding, we can substitute for

T
(
θ, η
)
− T (θ, η) = θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
into the objective and obtain

Ωii = −Eη|θ
[(
θ − θ

)
x (θ, η)

]
+ ∆−

(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)

If (x, y) ∈ Xii, then this can be written as

Ωii = Eη|θ
[(
θ − θ

)
x
(
θ, η
)]
−Eη|θ

[(
θ − θ

)
x (θ, η)

]
−
(
λ (θ)− λ

(
θ
)) (

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))
.

Consider finally the possibility that η̂∗
(
θ, θ, η

)
= η. In that case the problem becomes

Ω = min
T(θ,η)−T (θ,η)

 (1−λ(θ)){T(θ,η)−θx(θ,η)−ηy(θ,η)−[T (θ,η)−θx(θ,η)−ηy(θ,η)]}
−(1−λ(θ))(η−η)y(θ,η)−(θ−θ)x(θ,η)+∆


subject to (3.37) , (3.36) , and (3.45) .

The right-hand side of (3.36) is weakly larger than the right-hand side of (3.45) exactly

for {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xiv (θ) . Moreover, for such allocations, the constraint set is

nonempty, and at the solution of the problem T
(
θ, η
)
− T (θ, η) reaches its lower bound, so

(3.36) is binding. The transfers can then be computed from (3.6) and (3.36) :(
T
(
θ, η
)

T (θ, η)

)
=

(
∆ + (1− λ (θ))

(
η − η

)
y (θ, η) + θx

(
θ, η
)

+ ηy
(
θ, η
)

∆ + θx (θ, η) +
(
λ (θ) η + (1− λ (θ)) η

)
y (θ, η)

)

Since (3.36) is binding, we can substitute

T
(
θ, η
)
− T (θ, η) = θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
into the objective and obtain

Ωiv = (1− λ (θ))
(
η − η

)
y (θ, η)−

(
1− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
−
(
θ − θ

)
x
(
θ, η
)

+ ∆
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For future reference, if (x, y) ∈ Xiv, then we can write

Ωiv = −λ (θ)
(
η − η

) (
y (θ, η)− y

(
θ, η
))
−
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
))

− λ
(
θ
) (
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))
−
(
η − η

) (
y
(
θ, η
)
− y (θ, η)

)
.

For {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xii (θ) , the right-hand side of (3.45) is weakly larger than

the right-hand side of (3.36). Moreover, since the right-hand side of (3.45) is smaller than the

right-hand side of (3.37) , the constraint set is nonempty. At the solution, (3.45) is binding,

so we can substitute for

T
(
θ, η
)
− T (θ, η) = θ

(
x
(
θ, η
)
− x (θ, η)

)
+ η

(
y
(
θ, η
)
− y (θ, η)

)
into the objective and obtain

Ω̂ii = (1− λ (θ))
(
θ − θ

) (
x
(
θ, η
)
− x (θ, η)

)
−
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)
−
(
θ − θ

)
x
(
θ, η
)
+∆

Since Ωii ≤ Ω̂ii for any {x (θ, η) , y (θ, η)}η∈{η,η} ∈ Xii (θ) , implementing η̂
∗ (θ, θ, η) = η, the

principal cannot gain by implementing this report.

Proof of Proposition 3.3.1. The proof of the first statements is given in three parts. Part

I establishes properties of the solution of program Pii; part II does likewise for program Pi;

finally, part III compares the value of the objectives. The proof of the fact that Wiv ≤ Wii

and Wiii ≤ Wi is not given here but is available upon request from the authors; it uses

essentially the same arguments.

Part I) Consider program Pii. Up to a constant, the Lagrangian of program Pii can be

written as

(1− α)Eη|θ
[
V
(
x
(
θ, η
)
, y
(
θ, η
))
− θx

(
θ, η
)
− ηy

(
θ, η
)]

− α
{
λ
(
θ
) (
θ − θ

)
x
(
θ, η
)

+
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
)

+
(
1− λ

(
θ
)) (

θ − θ
)
x
(
θ, η
)}

+ φ
[
x
(
θ, η
)
− x

(
θ, η
)]

+ µ
{(
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))
−
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
))}
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The conditions of optimality are

(
(1− α)λ

(
θ
) (
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− αλ

(
θ
) (
θ − θ

)
− φ+ µ

(
θ − θ

))
= 0 (3.50)

(
(1− α)

(
1− λ

(
θ
)) (

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− α

(
1− λ

(
θ
)) (

θ − θ
)

+ φ− µ
(
θ − θ

))
= 0

(3.51)(
(1− α)λ

(
θ
) (
V2

(
x
(
θ, η
)
, y
(
θ, η
))
− η
)

+ µ
(
η − η

))
= 0 (3.52)(

(1− α)
(
1− λ

(
θ
)) (

V2

(
x
(
θ, η
)
, y
(
θ, η
))
− η
)
− α

(
λ (θ)− λ

(
θ
)) (

η − η
)
− µ

(
η − η

))
= 0.

(3.53)

We show by contradiction that at most one constraint binds at the optimum of program ii.

Suppose both constraints bind. If φ, µ > 0, then x
(
θ, η
)

= x
(
θ, η
)

= x
(
θ
)
and y

(
θ, η
)

=

y
(
θ, η
)

= y
(
θ
)
and the conditions of optimality imply that

(
V1

(
x
(
θ
)
, y
(
θ
))
− θ
)
− α

1− α
(
θ − θ

)
= 0 (3.54)

and (
V2

(
x
(
θ
)
, y
(
θ
))

−λ
(
θ
)
η −

(
1− λ

(
θ
))
η − α

1−α
(
λ (θ)− λ

(
θ
)) (

η − η
) ) = 0. (3.55)

Using (3.52) , the Kuhn-Tucker-first-order-optimality-condition for y
(
θ, η
)
and substituting

(3.55) we have for µ 6= 0(
(1− α)λ

(
θ
)(

λ
(
θ
)
η +

(
1− λ

(
θ
))
η +

α

1− α
(
λ (θ)− λ

(
θ
)) (

η − η
)
− η
)

+ µ
(
η − η

))
= 0

which simplifies to

(1− α)λ
(
θ
)((

1− λ
(
θ
))

+
α

1− α
(
λ (θ)− λ

(
θ
)))

= −µ

This implies µ < 0 which contradicts the supposition that both constraints bind at the

optimum. It follows that at most one constraint binds at the optimum of program ii.

Further results require a case distinction between V12 < 0 and V12 ≥ 0.
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Case I) V12 ≥ 0.

First, we show that if V12 ≥ 0, then either constraint x
(
θ, η
)
− x

(
θ, η
)
≥ 0 or constraint(

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))
−
(
θ − θ

)
x
(
θ, η
)
−x

(
θ, η
)
≥ 0 binds at the optimum of program

Pii.

Suppose no constraint binds. Then the first-order conditions with respect to y are given

by

V2

(
x
(
θ, η
)
, y
(
θ, η
))
− η = 0

V2

(
x
(
θ, η
)
, y
(
θ, η
))
− η −

α
(
λ (θ)− λ

(
θ
))

(1− α)
(
1− λ

(
θ
)) (η − η) = 0.

The first-order conditions with respect to x are given by

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ − α

1− α
(
θ − θ

)
= 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ − α

1− α
(
θ − θ

)
= 0

which imply

V1

(
x
(
θ, η
)
, y
(
θ, η
))

= V1

(
x
(
θ, η
)
, y
(
θ, η
))
. (3.56)

By concavity, V11 < 0, and x
(
θ, η
)
− x

(
θ, η
)
> 0, we have

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))

(3.57)

Together conditions (3.56) and (3.57) imply

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))
. (3.58)

By complementarity, V12 ≥ 0, and y
(
θ, η
)
− y

(
θ, η
)
> 0, we have

V1

(
x
(
θ, η
)
, y
(
θ, η
))
≤ V1

(
x
(
θ, η
)
, y
(
θ, η
))

(3.59)

which contradicts (3.58).
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It follows that at least one constraint must be binding at the optimum of program Pii.

Next, we show that if V12 ≥ 0, then the optimal allocation satisfies

(
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))
−
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
))
> 0.

Suppose, contrary to our claim,

(
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))
−
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
))

= 0

and moreover φ = 0 and µ > 0.

The first-order conditions with respect to x are given by

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ −

αλ
(
θ
) (
θ − θ

)
− µ

(
θ − θ

)
(1− α)λ

(
θ
) = 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ −

α
(
1− λ

(
θ
)) (

θ − θ
)

+ µ
(
θ − θ

)
(1− α)

(
1− λ

(
θ
)) = 0

implying that

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))

if and only if

αλ
(
θ
) (
θ − θ

)
− µ

(
θ − θ

)
(1− α)λ

(
θ
) <

α
(
1− λ

(
θ
)) (

θ − θ
)

+ µ
(
θ − θ

)
(1− α)

(
1− λ

(
θ
))

⇐⇒

0 < µ.

However, we must have V1

(
x
(
θ, η
)
, y
(
θ, η
))
≥ V1

(
x
(
θ, η
)
, y
(
θ, η
))
.

To see this, note that by V11 < 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
> V1

(
x
(
θ, η
)
, y
(
θ, η
))
.

135



By V12 ≥ 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
≥ V1

(
x
(
θ, η
)
, y
(
θ, η
))

Together these imply that

V1

(
x
(
θ, η
)
, y
(
θ, η
))
> V1

(
x
(
θ, η
)
, y
(
θ, η
))
,

so that the conditions above would imply that µ < 0, a contradiction.

It follows from these arguments that the optimal allocation for V12 ≥ 0 satisfies x
(
θ, η
)

=

x
(
θ, η
)
.

Case II) V12 < 0.

If V12 < 0, then the solution to program Pii satisfies x
(
θ, η
)
− x

(
θ, η
)
> 0.

Suppose not. We know that φ, µ > 0 is not possible. So, if x
(
θ, η
)

= x
(
θ, η
)
, this would

have to imply that µ = 0. So, we would have x
(
θ, η
)

= x
(
θ, η
)

= x
(
θ
)
, y
(
θ, η
)
< y

(
θ, η
)

and µ = 0. Adding up of conditions (3.50) and (3.51), the first-order conditions for x
(
θ, η
)

and x
(
θ, η
)
, gives(

λ
(
θ
) (
V1

(
x
(
θ
)
, y
(
θ, η
))
− θ
)

+
(
1− λ

(
θ
)) (

V1

(
x
(
θ
)
, y
(
θ, η
))
− θ
)

− α
1−α

(
θ − θ

) )
= 0. (3.60)

V12 < 0 and y
(
θ, η
)
− y

(
θ, η
)
> 0 imply that

V1

(
x
(
θ
)
, y
(
θ, η
))
< V1

(
x
(
θ
)
, y
(
θ, η
))
.

Together with (3.60) , this implies that

V1

(
x
(
θ
)
, y
(
θ, η
))
< θ +

α

(1− α)

(
θ − θ

)
< V1

(
x
(
θ
)
, y
(
θ, η
))
.

Plugging the first of these inequalities into (3.50) , we obtain(
(1− α)λ

(
θ
) α

(1− α)

(
θ − θ

)
− αλ

(
θ
) (
θ − θ

)
− φ+ µ

(
θ − θ

))
> 0.
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Plugging the latter of the inequalities into (3.51) , we obtain(
(1− α)

(
1− λ

(
θ
)) α

(1− α)

(
θ − θ

)
− α

(
1− λ

(
θ
)) (

θ − θ
)

+ φ− µ
(
θ − θ

))
< 0,

which simplifies to

µ
(
θ − θ

)
> φ.

For µ = 0 this implies φ < 0. Hence, V12 < 0 implies that x
(
θ, η
)
− x

(
θ, η
)
> 0.

Part II) Consider program Pi. Up to a constant, the Lagrangian of program Pi can be

written as

(1− α)Eη|θ
[
V
(
x
(
θ, η
)
, y
(
θ, η
))
− θx

(
θ, η
)
− ηy

(
θ, η
)]

− α
{

(1− λ (θ))
(
θ − θ

)
x
(
θ, η
)

+ λ (θ)
(
θ − θ

)
x
(
θ, η
)

+
(
λ (θ)− λ

(
θ
)) (

η − η
)
y
(
θ, η
) }

+ ξ
[
x
(
θ, η
)
− x

(
θ, η
)]

+ ν

[ (
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))

−
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
)) ]

The conditions of optimality are given by(
(1− α)λ

(
θ
) (
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)

−αλ (θ)
(
θ − θ

)
+ ξ − ν

(
θ − θ

) )
= 0 (3.61)

(1− α)λ
(
θ
) (
V2

(
x
(
θ, η
)
, y
(
θ, η
))
− η
)

+ ν
(
η − η

)
= 0 (3.62)(

(1− α)
(
1− λ

(
θ
)) (

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)

−α (1− λ (θ))
(
θ − θ

)
− ξ + ν

(
θ − θ

) )
= 0 (3.63)

(
(1− α)

(
1− λ

(
θ
)) (

V2

(
x
(
θ, η
)
, y
(
θ, η
))
− η
)

−α
(
λ (θ)− λ

(
θ
)) (

η − η
)
− ν

(
η − η

) )
= 0 (3.64)

ξ, ν ≥ 0

ξ
[
x
(
θ, η
)
− x

(
θ, η
)]

= 0

ν
[(
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))
−
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
))]

= 0
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First, we show by contradiction that at most one constraint binds at the optimum of program

Pi.

So suppose both constraints bind at the optimum, i.e. ξ, ν > 0. If ξ, ν > 0, then

y
(
θ, η
)

= y
(
θ, η
)

= y
(
θ
)
and x

(
θ, η
)

= x
(
θ, η
)

= x
(
θ
)
. Then

V1

(
x
(
θ
)
, y
(
θ
))

= θ +
α

(1− α)

(
θ − θ

)
and

V2

(
x
(
θ
)
, y
(
θ
))

= λ
(
θ
)
η +

(
1− λ

(
θ
))
η +

α
(
λ (θ)− λ

(
θ
))

(1− α)

(
η − η

)
.

Using the first-order condition with respect to y
(
θ, η
)
, (3.62) , gives

V2

(
x
(
θ
)
, y
(
θ
))

= η − ν

(1− α)λ
(
θ
) (η − η) .

Substituting for V2

(
x
(
θ
)
, y
(
θ
))
gives

λ
(
θ
)
η +

(
1− λ

(
θ
))
η +

α
(
λ (θ)− λ

(
θ
))

(1− α)

(
η − η

)
= η − ν

(1− α)λ
(
θ
) (η − η)

which simplifies to

−
(
1− λ

(
θ
))

(1− α)λ
(
θ
)
− α

(
λ (θ)− λ

(
θ
))
λ
(
θ
)

= ν,

implying that ν < 0. It follows that at the optimum ξ, ν > 0 is not true.

Further results require a case distinction between V12 < 0 and V12 ≥ 0.

Case I) V12 < 0.

First, we show that if V12 < 0, then x
(
θ, η
)
− x

(
θ, η
)

= 0 at the solution to program Pi.

To show this, we establish first that V12 < 0 implies that at least one constraint binds.

Moreover, we show that
(
η − η

) [
y
(
θ, η
)
− y

(
θ, η
)]

>
(
θ − θ

) [
x
(
θ, η
)
− x

(
θ, η
)]
at the

optimum of program Pi.

Suppose no constraint binds at the optimum, i.e.
(
η − η

) [
y
(
θ, η
)
− y

(
θ, η
)]
>
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(
θ − θ

) [
x
(
θ, η
)
− x

(
θ, η
)]
> 0. Then ξ = ν = 0. The first-order conditions with respect to

x are given by

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ − αλ (θ)

(1− α)λ
(
θ
) (θ − θ) = 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ − α (1− λ (θ))

(1− α)
(
1− λ

(
θ
)) (θ − θ) = 0

Since λ(θ)

λ(θ)
> (1−λ(θ))

(1−λ(θ))
, these conditions imply that

V1

(
x
(
θ, η
)
, y
(
θ, η
))
> V1

(
x
(
θ, η
)
, y
(
θ, η
))
. (3.65)

However, by V12 < 0 and y
(
θ, η
)
− y

(
θ, η
)
> 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))
. (3.66)

By V11 < 0 and x
(
θ, η
)
− x

(
θ, η
)
> 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))
. (3.67)

Taken together (3.66) and (3.67) imply that

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))
.

which contradicts (3.65) derived previously from the first-order conditions.

It follows that at least one constraint must bind at the optimum of program Pi if V12 < 0.

Suppose that contrary to our claim, that the solution of program Pi satisfies(
η − η

) [
y
(
θ, η
)
− y

(
θ, η
)]

=
(
θ − θ

) [
x
(
θ, η
)
− x

(
θ, η
)]
> 0, ξ = 0 and ν > 0. Adding

up (3.61) and (3.63) gives(
(1− α)λ

(
θ
) (
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− αλ (θ)

(
θ − θ

)
+ (1− α)

(
1− λ

(
θ
)) (

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− α (1− λ (θ))

(
θ − θ

) ) = 0.
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By V11 < 0 and x
(
θ, η
)
− x

(
θ, η
)
> 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))

By V12 < 0 and y
(
θ, η
)
− y

(
θ, η
)
> 0

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))
.

Taken together, we have

V1

(
x
(
θ, η
)
, y
(
θ, η
))
< V1

(
x
(
θ, η
)
, y
(
θ, η
))
.

Combining with the implications of the first-order conditions with respect to x we obtain

(
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
<

α

(1− α)

(
θ − θ

)
<
(
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
.

Substituting into (3.61) , using ξ = 0, and simplifying, we have

α
((
λ
(
θ
)
− λ (θ)

) (
θ − θ

))
> ν

(
θ − θ

)
,

which would imply that v < 0, a contradiction.

It follows that for V12 < 0, the optimum of program Pi features x
(
θ, η
)
− x

(
θ, η
)

= 0.

Case II): V12 ≥ 0.

If V12 ≤ −V11
(η−η)
(θ−θ)

, then the optimum of program Pi features
(
η − η

) [
y
(
θ, η
)
− y

(
θ, η
)]
>(

θ − θ
) [
x
(
θ, η
)
− x

(
θ, η
)]
.

We know that both constraints cannot bind simultaneously.

Hence, if
(
η − η

) [
y
(
θ, η
)
− y

(
θ, η
)]

=
(
θ − θ

) [
x
(
θ, η
)
− x

(
θ, η
)]
, then necessarily

x
(
θ, η
)
− x

(
θ, η
)
> 0. Suppose this is the case, so ξ = 0 and ν > 0. Define Y

(
θ, η
)

=

y
(
θ, η
)
− (θ−θ)

(η−η)

[
x
(
θ, η
)
− x

(
θ, η
)]
. For ν 6= 0 the first-order conditions with respect to x
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are given by (1− α)λ
(
θ
) (
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− αλ (θ)

(
θ − θ

)
− (θ−θ)

(η−η)

(
(1− α)

(
1− λ

(
θ
)) (

V2

(
x
(
θ, η
)
, Y
(
θ, η
))
− η
)
− α

(
λ (θ)− λ

(
θ
)) (

η − η
))


= 0

and (1− α)
(
1− λ

(
θ
)) (

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− α (1− λ (θ))

(
θ − θ

)
+

(θ−θ)
(η−η)

(
(1− α)

(
1− λ

(
θ
)) (

V2

(
x
(
θ, η
)
, Y
(
θ, η
))
− η
)
− α

(
λ (θ)− λ

(
θ
)) (

η − η
))


= 0.

These conditions imply(
(1− α)λ

(
θ
) (
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− αλ (θ)

(
θ − θ

)
+ (1− α)

(
1− λ

(
θ
)) (

V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
− α (1− λ (θ))

(
θ − θ

) ) = 0. (3.68)

Define s such that s > 0, s = y
(
θ, η
)
− y

(
θ, η
)
and x

(
θ, η
)

= x
(
θ, η
)

+
(η−η)
(θ−θ)

s. Then by

V1

(
x
(
θ, η
)
, y
(
θ, η
))

= V1

(
x
(
θ, η
)
, y
(
θ, η
))

+

∫ s

0

∂V1

(
x
(
θ, η
)

+
(η−η)
(θ−θ)

k, y
(
θ, η
)

+ k

)
∂k

dk

and

∂V1

(
x
(
θ, η
)

+
(η−η)
(θ−θ)

k, y
(
θ, η
)

+ k

)
∂k

=


(η−η)
(θ−θ)

V11

(
x
(
θ, η
)

+
(η−η)
(θ−θ)

k, y
(
θ, η
)

+ k

)
+V12

(
x
(
θ, η
)

+
(η−η)
(θ−θ)

k, y
(
θ, η
)

+ k

)
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we have V1

(
x
(
θ, η
)
, y
(
θ, η
))
≤ V1

(
x
(
θ, η
)
, y
(
θ, η
))
since V12 ≤ −V11

(η−η)
(θ−θ)

implies

∂V1

(
x
(
θ, η
)

+
(η−η)
(θ−θ)

k, y
(
θ, η
)

+ k

)
∂k

≤ 0 for all k > 0

and x
(
θ, η
)
−x
(
θ, η
)
> 0. V1

(
x
(
θ, η
)
, y
(
θ, η
))
≤ V1

(
x
(
θ, η
)
, y
(
θ, η
))
implies by (3.68) that

(
V1

(
x
(
θ, η
)
, y
(
θ, η
))
− θ
)
≤ α

(1− α)

(
θ − θ

)
(3.69)

By (3.69) into (3.61) (
(1− α)λ

(
θ
)

α
(1−α)

(
θ − θ

)
−αλ (θ)

(
θ − θ

)
+ ξ − ν

(
θ − θ

) ) ≥ 0

which is equivalent to

−α
(
λ (θ)− λ

(
θ
)) (

η − η
)
≥ ν

(
η − η

)
which is true only if ν < 0 since ξ = 0. Hence, we get a contradiction to ν > 0 contradicting

that
(
η − η

) [
y
(
θ, η
)
− y

(
θ, η
)]
≥
(
θ − θ

) [
x
(
θ, η
)
− x

(
θ, η
)]
binds in singularity at the

optimum of program Pi.

Part III) Comparison between the programs.

As a preliminary argument, note that if x
(
θ, η
)
− x

(
θ, η
)

= 0, then the objectives of

programs Pi and Pii become identical. To see this, note that the objectives are identical

up to the costs of implementation, ∆. Moreover, it is easy to verify from Lemma 3 that

∆ii −∆i = 0 for x
(
θ, η
)
− x

(
θ, η
)

= 0.

For V12 < 0, the maximum of program Pi satisfies x
(
θ, η
)
− x

(
θ, η
)

= 0, whereas the

maximum of program Pii satisfies x
(
θ, η
)
− x

(
θ, η
)
> 0. Hence, the solution of program Pi

is feasible but not chosen. By revealed preference, this implies that the solution to program

Pii is preferred.

Likewise, for V12 ≥ 0 the optimum of program Pii satisfies x
(
θ, η
)
− x

(
θ, η
)

= 0. Hence,

the solution is feasible under program Pi. If the solution of program Pi is on the line
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x
(
θ, η
)
− x

(
θ, η
)

= 0, then the objectives are identical and hence the solutions of programs

Pi and Pii are identical. If the solution of program Pi is off the line x
(
θ, η
)
− x

(
θ, η
)

= 0,

then, by revealed preference, the solution of program Pi yields a strictly higher expected

payoff than the solution of program Pii. Taken together, this implies weak payoff dominance

of program Pi.

Proof of Lemma 3.3.4. The result is essentially a corollary to Lemma 3.2.1. By the same

arguments as given there, we have

(
η − η

) (
y
(
θ, η
)
− y (θ, η)

)
>
(
θ − θ

) (
x
(
θ, η
)
− x (θ, η)

)
> 0

iff V12 > 0 and

0 >

η∫
η

V11 +
(θ−θ)
(η−η)

V12

V11V22 − V 2
12

(θ, η) dη,

which is satisfied if V12 < −
(η−η)
(θ−θ)

V11 for all (x, y) .

The proof of the remaining statements uses identical arguments and is therefore omitted.

Proof of Proposition 3.3.2. We show that the neglected constraint is satisfied under the

assumptions.

Preliminaries:

For convenience, recall that the unconstrained solution (in the sense of unconstrained by

the implementation sets Xj for j = i or j = ii, respectively) satisfies

V1 (x, y) (θ, η) = θ (3.70)

V2 (x, y) (θ, η) = η

143



for η ∈
{
η, η
}
and

V1 (x, y)
(
θ, η
)

= θ +
α

(1− α)

λj

λ
(
θ
) (θ − θ) (3.71)

V2 (x, y)
(
θ, η
)

= η

V1 (x, y)
(
θ, η
)

= θ +
α

(1− α)

(1− λj)(
1− λ

(
θ
)) (θ − θ) (3.72)

V2 (x, y)
(
θ, η
)

= η +
α

(1− α)

(
λ (θ)− λ

(
θ
))(

1− λ
(
θ
)) (

η − η
)
,

where j = i, ii and by convention λi = λ (θ) and λii = λ
(
θ
)
. Define the following artificial

systems of equations for θ, η ∈
[
θ, θ
]
×
[
η, η
]

:

V1 (x, y) (θ, η) = θ +
α

(1− α)

λj

λ
(
θ
) (θ − θ) (3.73)

V2 (x, y) (θ, η) = η

and

V1 (x, y) (θ, η) = θ +
α

(1− α)
(θ − θ) (3.74)

V2 (x, y) (θ, η) = η +
α

(1− α)

(
λ (θ)− λ

(
θ
))(

1− λ
(
θ
)) (

η − η
)
.

Note that these systems are defined on convex domains. Moreover, the solution to (3.73) for

θ = θ corresponds to the solution of (3.70) , and for θ = θ and η = η, the solution to (3.73)

corresponds to the solution of (3.71) . Likewise, for θ = θ and η = η, the solution to (3.74)

corresponds to the solution to (3.70) ; for θ = θ and η = η, the solution to (3.74) corresponds

to the solution of (3.71) for λj = λii = λ
(
θ
)

; and for θ = θ and η = η, the solution to (3.74)

corresponds to the solution to (3.72) for λj = λii = λ
(
θ
)
.

So, systems (3.73) and (3.74) are defined on convex domains. Moreover, the solutions
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to the systems at extreme points of the domain correspond to the economically meaningful

solutions of (3.70) , (3.71) , and (3.72) , respectively. Hence, we can conveniently apply cal-

culus to the artificial system (3.73) and (3.74) to determine differences between allocation

choices.

Part I) The case of independent goods: V12 = 0.

From Proposition 3.3.1 we know that program Pi solves the reduced problem for V12 = 0.

Hence, the neglected constraint takes the form

(
λ (θ)− λ

(
θ
)) (

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))

+
(
θ − θ

) (
Eη|θ [x (θ, η)]− Eη|θ

[
x
(
θ, η
)])
≥ 0.

Suffi cient conditions for the neglected constraint to hold are

y
(
θ, η
)
− y

(
θ, η
)
≥ 0

and (
Eη|θ [x (θ, η)]− Eη|θ

[
x
(
θ, η
)])
≥ 0.

Moreover, we know again from Proposition 3.3.1 that x
(
θ, η
)

= x
(
θ, η
)

= x
(
θ
)
at the

solution. So, the relevant first-order conditions describing the optimum simplify to

V1 (x (θ, η)) = θ

and

V2 (y (θ, η)) = η

for η ∈
{
η, η
}
,

(1− α)
[
V1

(
x
(
θ
))
− θ
]

= α
(
θ − θ

)
,

and finally

V2

(
y
(
θ, η
))

= η
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and

V2

(
y
(
θ, η
))

= η +
α

(1− α)

(
λ (θ)− λ

(
θ
))(

1− λ
(
θ
)) (

η − η
)
.

It is easy to see (by concavity of V ), that x
(
θ, η
)

= x (θ, η) > x
(
θ
)
, so(

Eη|θ [x (θ, η)]− Eη|θ
[
x
(
θ, η
)])
≥ 0. is satisfied. By the same argument, we also have

y
(
θ, η
)
− y

(
θ, η
)
≥ 0.

Part II)

1. The case of complements.

For the case of complements with 0 ≤ V12 < −V11
(η−η)
(θ−θ)

for all x, y,, by Lemmas 3 and 4,

the neglected constraint (3.7) is equivalent to

(
λ (θ)− λ

(
θ
)) (

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))

+
(
θ − θ

) (
Eη|θ [x (θ, η)]− Eη|θ

[
x
(
θ, η
)])
≥ 0.

Suffi cient conditions for the neglected constraint to hold are

y
(
θ, η
)
− y

(
θ, η
)
≥ 0

and (
Eη|θ [x (θ, η)]− Eη|θ

[
x
(
θ, η
)])
≥ 0.

We now provide suffi cient conditions such that the unconstrained solution satisfies these

monotonicity restrictions.

We can write

y
(
θ, η
)
− y

(
θ, η
)

= y
(
θ, η
)
− y

(
θ, η
)

+ y
(
θ, η
)
− y

(
θ, η
)
.

Incentive compatibility with respect to η alone requires that y
(
θ, η
)
≥ y

(
θ, η
)
. Hence, a

suffi cient condition for y
(
θ, η
)
− y

(
θ, η
)
≥ 0 is that

(
y
(
θ, η
)
− y

(
θ, η
))
≥ 0. In turn, this

follows trivially from the fact that θ + α
(1−α)

λj

λ(θ)
(θ − θ) is increasing in θ and thus that an

increase in θ reduces x, which by complementarity reduces y.
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A suffi cient condition for
(
Eη|θ [x (θ, η)]− Eη|θ

[
x
(
θ, η
)])
≥ 0 is that

min
η∈{η,η}

x (θ, η) ≥ max
η∈{η,η}

x
(
θ, η
)
,

which in turn holds if

x
(
θ, η
)
≥ x (θ, η) ≥ x

(
θ, η
)
≥ x

(
θ, η
)
.

It is straightforward to see that x
(
θ, η
)
≥ x (θ, η) , since x and y are complements. Sim-

ilarly, x
(
θ, η
)
≥ x

(
θ, η
)
follows from the fact that λ(θ)

λ(θ)
≥ (1−λ(θ))

(1−λ(θ))
and that x and y are

complements. So, we need to show that x (θ, η) ≥ x
(
θ, η
)
. We can write

x (θ, η)− x
(
θ, η
)

= x (θ, η)− x
(
θ, η
)

+ x
(
θ, η
)
− x

(
θ, η
)
.

The differences on the right-hand side of this equation can be conveniently computed from

(3.73) , since we argued above that the types on the right-hand side correspond to extreme

points in the domain of definition of (3.73) . Differentiating the system of equations (3.73) ,

we obtain

x (θ, η)− x
(
θ, η
)

=

η∫
η

−V12

V11V22 − V 2
12

(θ, η) dη =
(
η − η

) −V12

V11V22 − V 2
12

(θ, η̂) .

where the first equality follows from setting θ = θ in (3.73) and applying Cramer’s rule and

the second equality from the mean value theorem, for some η̂ ∈
[
η, η
]
. Likewise, by setting

η = η in (3.73) and j = i so that λj = λ (θ) , and applying Cramer’s rule, we have

x
(
θ, η
)
− x

(
θ, η
)

=

∫ θ

θ

∂x
(
θ, η
)

∂θ
dθ =

(
1 +

α

(1− α)

λ (θ)

λ
(
θ
))∫ θ

θ

V22

V11V22 − V 2
12

dθ

= −
(
θ − θ

)(
1 +

α

(1− α)

λ (θ)

λ
(
θ
)) V22

V11V22 − V 2
12

(
θ̂, η
)
.

for some θ̂ ∈
[
θ, θ
]
, where the last equality follows again by the mean value theorem.
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So, we have x (θ, η) ≥ x
(
θ, η
)
iff

(
η − η

) −V12

V11V22 − V 2
12

(θ, η̂)−
(
θ − θ

)(
1 +

α

(1− α)

λ (θ)

λ
(
θ
)) V22

V11V22 − V 2
12

(
θ̂, η
)
≥ 0.

In turn, this condition is satisfied if(
θ − θ

)(
η − η

) (1 +
α

(1− α)

λ (θ)

λ
(
θ
))min

x,y

−V22

V11V22 − V 2
12

(x, y)

≥ max
x,y

V12

V11V22 − V 2
12

(x, y) .

Since the left-hand side is increasing in α, the condition is hardest to satisfy for α = 0, which

is the condition given in the proposition.

2. The case of substitutes:

For 0 > V12 > V11
(η−η)
(θ−θ)

for all x, y, the neglected constraint is equivalent to

( (
λ (θ)− λ

(
θ
)) (

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))

+
(
θ − θ

)
x
(
θ, η
)
−
(
λ
(
θ
) (
θ − θ

)
x
(
θ, η
)

+
(
1− λ

(
θ
)) (

θ − θ
)
x
(
θ, η
)) ) ≥ 0.

Equivalently, this can be written as( (
λ (θ)− λ

(
θ
)) (

η − η
) (
y
(
θ, η
)
− y

(
θ, η
))

+
(
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
))
− λ

(
θ
) (
θ − θ

) (
x
(
θ, η
)
− x

(
θ, η
)) ) ≥ 0.

Recall that for (x, y) ∈ Xii, we have

(
η − η

) (
y
(
θ, η
)
− y (θ, η)

)
≥ −

(
θ − θ

) (
x
(
θ, η
)
− x (θ, η)

)
≥ 0,

so the third term on the left-hand side is nonnegative. For the case where λ (θ) = λ
(
θ
)
, the

first term is zero and we only need to show that

x
(
θ, η
)
− x

(
θ, η
)
≥ 0.
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We can write

x
(
θ, η
)
− x

(
θ, η
)

= x
(
θ, η
)
− x

(
θ, η
)

+ x
(
θ, η
)
− x

(
θ, η
)
.

The types on the right-hand side correspond to extreme points of the domain of definition

of (3.74) . Therefore, we obtain - by the same arguments as used for the complements case -

x
(
θ, η
)
− x

(
θ, η
)

=
(
η − η

)(
1 +

α

(1− α)

(
λ (θ)− λ

(
θ
))(

1− λ
(
θ
)) )

−V12

V11V22 − V 2
12

(
θ, η̂
)

+
(
θ − θ

) 1

1− α
V22

V11V22 − V 2
12

(
θ̂, η
)

for some values θ̂ ∈
[
θ, θ
]
and η̂ ∈

[
η, η
]
. Hence, we have x

(
θ, η
)
− x

(
θ, η
)
≥ 0, if

η − η
θ − θ

(
1− α + α

(
λ (θ)− λ

(
θ
))(

1− λ
(
θ
)) )

min
x,y

V12

V11V22 − V 2
12

≥ max
x,y

V22

V11V22 − V 2
12

Since (λ(θ)−λ(θ))
(1−λ(θ))

< 1, the expression on the left-hand side of the inequality is smallest for

α = 0, so the condition is satisfied if

η − η
θ − θ

min
x,y

V12

V11V22 − V 2
12

≥ max
x,y

V22

V11V22 − V 2
12

.

Finally, we need to show that the optimal allocations that solve the reduced problems

Pi and Pii, respectively, are elements of Xinti or Xintii , respectively. Recall from Lemma 4

that the first-best allocation is an element of Xinti or Xintii , respectively, precisely under the

conditions that make either program Pi or Pii generate a higher value to the principal. Now

consider, for j = i, ii, iii, iv, the problems

max
(x,y)∈∪jXj

Pj
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The solution to each of these problems converges uniformly to the first-best allocation as α

goes to zero. It follows that the solution of program Pi is in Xinti for α close enough to zero

if 0 < V12 < −
η−η
θ−θV11 and that the solution of program Pii is in Xintii for α close enough to

zero if
η−η
θ−θV11 < V12 < 0.

Proof of Proposition 3. From Lemma 4, we have conditions such that the first-best

allocation is in Xinti . Hence, in the limit as α goes to zero, the allocations that achieve the

maxima Wj are in Xintj . So, we need to show that these maximizers satisfy the neglected

constraint. We focus on the case of strong complements. Exactly the same argument can be

given for strong substitutes.

For the example, for δ ∈ (−1, 1) and β suffi ciently large to generate interior solutions,

the first-best allocation is given by

x (θ, η) = 1
1−δ2 (β (1 + δ)− θ − δη)

y (θ, η) = 1
1−δ2 (β (1 + δ)− η − θδ)

The neglected constraint for (x, y) ∈ Xiii takes the form

0 ≥
(
θ − θ

) (
x
(
θ, η
)
− x (θ, η)

)
+
(
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))

+ λ (θ)
(
η − η

) (
y
(
θ, η
)
− y

(
θ, η
))

+ λ
(
θ
) (
η − η

) (
y (θ, η)− y

(
θ, η
))
.

The first-best allocation is in Xiii for δ >
(η−η)
(θ−θ)

. The buyer’s problem remains concave for

δ < 1. Both conditions are satisfied for a nonempty set of parameters only if (η−η)
(θ−θ)

< 1. For

the example, the neglected constraint is equivalent to

0 ≥
(
θ − θ

)( 1

1− δ2

(
−
(
θ − θ

)
+ δ

(
η − η

)))
+
(
η − η

)( 1

1− δ2

(
−
(
η − η

)))
+ λ (θ)

(
η − η

)( 1

1− δ2

(
−
(
θ − θ

)
δ
))

+ λ
(
θ
) (
η − η

)( 1

1− δ2

((
θ − θ

)
δ
))

,

which is satisfied if δ ≤ (θ−θ)
(η−η)

. Since (θ−θ)
(η−η)

> 1, this condition is automatically satisfied.
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