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Abstract

Robotics research strives for deploying autonomous systems in popelat@dnments,
such as inner city tfic. Autonomous cars need a reliable collision avoidance, but also
an object recognition to distinguishftiirent classes of tfiac participants. For both tasks,
fast three-dimensional laser range sensors generating multiple aclasateange scans
per second, each consisting of a vast number of laser points, areeoffgioyed. In this
thesis, we investigate and develop classification algorithms that allow us to dig@livia
assign semantic labels to laser scans. We mainly face two challenges: (aysv®lensure
consistent and correct classification results and (2) we nflisiestly process a vast number
of laser points per scan. In consideration of these challenges, we botfe stages of
classification — the feature extraction from laser range scans and tis#ickt®n model
that maps from the features to semantic labels.

As for the feature extraction, we contribute by thoroughly evaluating impbdeate-of-
the-art histogram descriptors. We investigate critical parameters of Hueiplers and ex-
perimentally show for the first time that the classification performance caigbiicantly
improved using a large support radius and a global reference frame.

As for learning the classification model, we contribute with new algorithms thatowepr
the classification ficiency and accuracy. Our first approach aims at deriving a consisten
point-wise interpretation of the whole laser range scan. By combirfiigent similarity-
preserving hashing and multiple linear classifiers, we considerably imgrewensistency

of label assignments, requiring only minimal computational overhead codhfmeesingle
linear classifier.

In the last part of the thesis, we aim at classifying objects representeddmgents. We
propose a novel hierarchical segmentation approach comprising multipessstad a novel
mixture classification model of multiple bag-of-words vocabularies. We dstrate supe-
rior performance of both approaches compared to their single compomanterparts using
challenging real world datasets.






Uberblick

Ziel des Forschungsbereichs Robotik ist der Einsatz autonomer Systaiiriichen Um-
gebungen, wie zum Beispiel inneidtischem Verkehr. Autonome Fahrzeuge digyen
einerseits eine zuveérssige Kollisionsvermeidung und andererseits auch eine Objekterken-
nung zur Unterscheidung verschiedener Klassen von Verkehrsteibra. Verwendung
finden vorallem drei-dimensionale Laserentfernungssensoren, dreragzise Laserent-
fernungsscans pro Sekunde erzeugen und jeder Scan bestbht iex einer hohen Anzahl
an Laserpunkten. In dieser Dissertation widmen wir uns der Untersgalmch Entwick-
lung neuartiger Klassifikationsverfahren zur automatischen Zuweisang@mantischen
Objektklassen zu Laserpunkten. Hierbei begegnen wir hadiplish zwei Herausforderun-
gen: (1) wir mbchten konsistente und korrekte Klassifikationsergebnisse erreiciuef2)
die immense Menge an Laserdatefizéent verarbeiten. Unter Bécksichtigung dieser
Herausforderungen untersuchen wir beide Verarbeitungsschritts &llassifikationsver-
fahrens — die Merkmalsextraktion unter Nutzung von Laserdaten uneigiastliche Klas-
sifikationsmodell, welches die Merkmale auf semantische Objektklassen dbbilde

Beziglich der Merkmalsextraktion leisten wir ein Beitrag durch eine istudithe Evalu-
ation wichtiger Histogrammdeskriptoren. Wir untersuchen kritische Deskpatameter
und zeigen zum ersten Mal, dass die Klassifikatiomsgnter Nutzung von grof3en Merk-
malsradien und eines globalen Referenzrahmens signifikant gesteigert w

Beziglich des Lernens des Klassifikationsmodells, leisten wir Bgérdurch neue Algorith-
men, welche die fizienz und Genauigkeit der Klassifikation verbessern. In unserdaeners
Ansatz nibchten wir eine konsistente punktweise Interpretation des gesamtendzasees-
reichen. Zu diesem Zweck kombinieren wir eédenlichkeitserhaltende Hashfunktion und
mehrere lineare Klassifikatoren und erreichen hierdurch eine erhebltibesserung der
Konsistenz der Klassenzuweisung bei minimalerazieehen Aufwand im Vergleich zu
einem einzelnen linearen Klassifikator.

Im letzten Teil der Dissertation dchten wir Objekte, die als Segmente g@ntiert sind,
klassifizieren. Wir stellen eine neuartiges hierarchisches Segmentieeufagsen und ein

neuartiges Klassifikationsmodell auf Basis einer Mixtur mehrerer bageodls Vokabu-

lare vor. Wir demonstrieren unter Nutzung von praxisrelevanten Datess, dass beide
Ansatze im Vergleich zu ihren Entsprechungen aus einer einzelnen Kompaneethe-

blichen Verbesserungeiitiren.






Acknowledgments

First of all, | would like to thank Prof. Dr. Armin B. Cremers for his suppduring the

years of research and advice during this time. | furthermore want teexpny gratitude
to PD Dr. Volker Steinhage, who often discussed earlier drafts of my wsitivith me and
put my research ideas in perspective.

The presented research in this thesis was mainly funded by the FrauRKdEeand would
not be possible without the technical support of the Unmanned Systemp.gtavould
like to thank Dr. Dirk Schulz for fruitful discussions on the projects. THsato Achim
Konigs, Ansgar Tessmer, TimaRling, Frank Holler, Jochen Welle, and Michael Brunner
for technical support with the Longcross robot and the Velodyne tasgre scanner.

| thank Florian Schler, Dr. Daniel Seidel, and Marcell Missura for long and invaluable
discussions on my research topic. | also want to thank Stavros Mantelati&ndreas
Baak, Marcell Missura, Florian Soker, Shahram Faridani, and Jenny Balfer, who helped
with proofreading of the thesis and gave many, many comments that certainiyviacithe
presentation and structure of the thesis. Thanks to Sakihe KEduard 'Edi’ Weber, and
Dr. Fabian Weber from the Food Technology department, who ofterretieee up and
introduced me to the wonders of food technology. A special thanks gomsr tantastic
technical support of the department, the SGA.

A heartful thank-you to my parents, my brother, and Jenny Balfer for @meouragement
and also patience during the period of writing the thesis.



Vi



Mathematical Notation

In course of the following chapters, we need some mathematical entities, whidenote
consistently throughout the text. Most of these conventions are commastyimgontem-
porary books on machine learning. Therefore, the notation will look fanmdianany read-
ers. In order to enhance the readability, simplifications to the notation will bedinted in
the corresponding chapters.

We often refer to sets, which we denote by calligraphic upper-case |ettets asA, X, Y.
Elements of these set&, = {xi,..., Xy}, are denoted by the corresponding Roman lower-
case letters indexed by a number. The cardinality of a set is denotgd by N, where

N is the number of elements in s&t If we refer to multiple elements of a set, such as
{Xj, Xj+1, Xj+2, - - . » Xk-1, X}, we use the shorthanx}.,,. Common number systems — natu-
ral numbersN including 0O, integer&, and real number® — are denoted by upper-case
blackboard bold letters.

We use bold letters to distinguish scalars from vectors and matrices as exbinithe
following. A matrix is referred to by a Roman upper-case bold letter, sud¥t &sR™™,
wheren x m shows the dimensions of the matrix, i.e.rows andm columns. Vectors are
denoted by Roman lower-case bold letters such asR™™ or v e R™1, where we made
explicit thatu is a row vector and is a column vector. If not stated otherwise in the text, we
use column vectors and therefore write R" instead ofr € R™1. As common in literature,
we useT to denote the transposition of a mathNk™ or a vectorv'. Elements of a matrix
and a vector are indexed b or V). Similar to sets, we use the shorthastld to refer

to a sequence of elements, starting at inflaxd ending with indexk.
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Chapter

Introduction

Many successful applications of industrial and automation robotics retploot-centered
workspaces. In such environments, the robots can perform tasks withdiarigeven with-
out knowledge about their vicinity. For instance, a manufacturing robsgrabling cars
always moves its manipulator in a pre-defined sequence without collisiaandéther ex-
ample, a transport robot in a large warehouse follows specified obstaeleoutes, which
might even be marked by small metal wires in the ground. After arriving atatfyet po-
sition, the package to be transported is identified using a bar code. Inekaswples, the
whole environment is specifically tailored to the abilities of the robot. In cansece, the
robot needs only a rudimentary perception.

In addition, the state of the world changes only if the robot performs amestich as lifting

a part of a car or removing a package from the storage rack. Thysrédl always lie at a
specific location in a certain orientation; packages stay at the same locationsiotage

rack. The environment is static and the intended operation of the robdiecarriously
interfered if something happens outside of the robot’s control.

In contrast to these industrial applications, the aim of modern roboticsréfidia intel-
ligence research is the development of autonomous systems, which ate apkrate in
natural environments without the need to change the entire structure hyeatigg the
environment with robot-suited markers or similar modifications. These systeongdsbe
able to act in highly dynamic environments, where the state not only chaggesibns of
the system, but also externally by other actors. The world state includestaeyomoving
agents, such as vehicles, pedestrians, or other robots. For suchémiesygtems, rich sen-
sor input is essential — the robot needs to detect changes and to updaterital world
state continuously. Thus, a major part of research focuses offtitierst and reliable robot
perception incorporating potentially multiple sources of sensor input.



1 Introduction

Lately, especially the development of self-driving cars attracted inicorgdsterest in the
robotics community. Since the early nineties self-driving cars were dezeltpat can
handle more and more complex tasks and scenarios. The developmepteaityrfurther
intensified by competitions aiming at developing autonomous cars able to dthediesert
[Thrun et al., 2006] or urban environment [Urmson etial., 2008]. Ichsenvironments,
it is self-explanatory that perceiving autonomous systems capable wdtimgein natural,
cluttered, and dynamic environments are needed. Major automobile compsutibsas
BMW, Volkswagen, Mercedes Benz, or Toyota, are working towaetfsdsiving cars and
some of the innovations that were developed in this context found alreaalyplication in

current models.

The main requirement for self-driving cars is the safe and collisionHfesigation — we
must ensure at all times that the system neither harms any otfigc participants nor
destroys itself. Eective collision avoidance needs the distance to objects and roboticists
mainly employ laser range sensors, because of their robustness amlopre The re-
cent emergence of fast three-dimensional laser rangefinders madssible to investi-
gate also other applications, such as mapping and localization [Levinsdrhama,[ 2010,
Moosmann and Stiller, 2010], object tracking [Petrovskava and T 2008, Scbler et al.,
2011] and object recognition [Munoz et al., 2009a, Xiong et al., 20Ttje interest for
other applications using three-dimensional laser range data was mainly dyiike richer
information and the higher update rate of the sensors, which made it passiiain more
than 100000 range measurements in a fraction of a second. Laser range seamsiater-
esting alternative to images, as they are invariant to illumination and direfdy shape
information. Consequently, three-dimensional laser rangefindersuarenty a de facto
standard equipment for self-driving cars.

We investigate robot perception using three-dimensional laser rangie daiathesis, since

we also want to determine the categories of objects visible in the vicinity of an@utmus
system. Thelassificationof the sensor input allows the system to incorporate knowledge
about the object classes into its decision making process. Especially théglbtelynamic
objects, e.g., cars, pedestrians, and cyclists, are of fundamental imgoitethe context of
self-driving cars, since each class shows veffedént kinematics. As we cannot easily de-
scribe heuristic rules to assign classes to objects by hand, we will exégnggse machine
learning to deduce these rules automatically from the data itself. Machinég&ecomes
increasingly important in many application areas, which were dominated lw+drafted
algorithms, such as computer vision, information retrieval, but also robaetias replace
many of these established methods by largely improved algorithms. Especialfiglthof
robotics dfers many fundamental challenges, where machine learning could helpEtoplev
better methods to enable more intelligent behavior of robots. Many of thafleradjes can
only be tackled andféectively learned by carefully designed machine learning models that
capture the essence of the problems by learning on massive datasetshadateachine
learning does not solve these challenges by simply applying out-of-théebming algo-



1.1 Contributions of the Thesis

rithms to a given problem, but needs engineering to specify a suitable matiad arduce

constraints on the problem. The No Free Lunch theorem [Wolpert, 1888] proves that
there is no single method that optimally solves every given supervised mdehimeng

problem.

The goal of this thesis is the development fiéetive and &icient methods for classification
of three-dimensional laser range data. We have to consider mainly twaliegte for
this endeavor: the features derived from the sensor data and thiéichiss® model used
to distinguish object classes represented by these features. Botlisasgebe covered
thoroughly in this thesis. In Chaptel 3, we investigate suitable featuresedBasthese
features, we propose novel models for classifying laser range datzaiot€f 4 and]5.

1.1 Contributions of the Thesis

The thesis investigates the complete processing pipeline of classificationogrudes novel
methods for the classification of three-dimensional laser range data. d-olassification

of three-dimensional laser range data, we must tackle two fundamenitédms First, we
have to process a massive amount of data, since a point cloud consigisg@fl40.000
unorganized three-dimensional points. Second, we encounter a distependent sparsity

of the point clouds representing objects, where we can observe easgedoint clouds
near to the sensor and sparse point clouds at far distances. Caomgideth challenges,
we aim at algorithms that ardfeient in respect to a huge amount of data and also robust
regarding very dterent sparsities of the three-dimensional laser returns. The contribution
of the thesis are as follows:

¢ In Chaptef B, [Histogram Descriptors for Laser-based Classifidatianexperimen-
tally evaluate histogram descriptors in a classification scenario. We showflilre
ence of diferent design decisions using thredf@lient representative datasets and
investigate the performance of two established classification approdesescially,
the selection of an appropriate reference frame turned out to be ebfmrdia efec-
tive classification. The presented results are the first thorough atetraftic investi-
gation of descriptors for laser-based classification in urban enviraismen

e Chaptef 4, [Hicient hash-based Classificafion,” presents a novel algorithm combin-
ing similarity-preserving hashing and a local classification approach thabuapthe
label consistency of the point-wise classification results significantly. éTingsrove-
ments are achieved with little computational overhead compared to the competing
local classification approaches and enables thereftimeat classification of three-
dimensional laser range data.
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e Chapter b, ['Segment-based Classificdtion,” presents a complete apgoraseg-
ment-based classification of three-dimensional laser range data. Wesprap ef-
ficient hierarchical segmentation approach to improve the extraction istent
segments representing single objects. We then develop a new classifiggtioach
that combines multiple feature representations. For filtering of duplicate eeld-ir
vant segments, we also develop diicgent non-maximum suppression exploiting the
aforementioned segment hierarchies. We finally investigate methods to intheve
efficiency of the proposed classification pipeline.

1.2 Structure of the Thesis

In the next part, Chaptél 2] "Fundamentals,” we introduce fundameotalepts and ter-
minology needed for a self-contained presentation of the thesis. We wiltéiver basics
concerning three-dimensional laser range data, the acquisition andobasissing of this
type of data. Then, we will introduce basic terminology of machine learnindglaa soft-
max regression in more detail, since this linear classification model will be eedeéndhe
following chapters.

In the subsequent chapters, we cover our contributions in more detbjirasent experi-
mental results, which show exemplarily the claimed improvements over the stdte-aft
on real world datasets.

In Chaptei B, ['Histogram Descriptors for Laser-based Classifidatoa,investigate suit-
able feature representations using two established classification modetsitithaxsregres-
sion and a more complex graph-based classification approach. Thetsnsighis perfor-
mance evaluation build the foundation for the following chapters, whicharttrate on the
improvement of the simple, but veryfieient softmax regression.

In Chaptef#, [Hicient hash-based Classificafion,” we will improve the softmax regression
to obtain a more consistent point-wise labeling.

The following Chaptelrl5["Segment-based Classification,” is then coademith the classi-
fication of segments of objects relevant for autonomous driving.

In the end of each chapter, we will point to future directions of researchop of the
presented approaches.

Chaptel B, [[Conclusions,” finally concludes the thesis by summarizing the imgights
and by giving prospects of future work and open research questions



Chapter

Fundamentals

This chapter covers basic concepts and formally introduces the terminadeghin the rest
of the thesis. Additional concepts or methods required only in a specifiextonill be
introduced in the corresponding chapters.

In the first part of the chapter, Sectibn]2.[, “Three-dimensional PdmidProcessing,”
we thoroughly discuss the processing of three-dimensional point cldna®urse of this
part, we briefly introduce dlierent data acquisition methods, data structures for fast neigh-
bor search, and introduce the normal estimation using neighboring poinésremaining
chapter introduces in Sectibn 2.2, "Classification,” concepts and terminofogupervised
classification. We first derive a basic discriminative classification modehidtiple classes
— the softmax regression. Afterwards, we discuss another model phtieel opposite end
of the spectrum of classification approaches compared to the softmassegr — thek
nearest neighbor classifier. While discussing these models, we will irtedolasic terms
encountered all over the thesis and lastly cover aspects of model com@exitynodel
assessment.

2.1 Three-dimensional Point Cloud Processing

In robotic applications aiming at deploying autonomous systems in populates] area
need to avoid collisions with people and other obstacles. Consequentlgweadiensure
a safety distance of the robot to the surrounding objects at all times. Riatgas the
prevalent sensory input used for collision avoidance.

Laser rangefinders are favored over other ranging devices, aptbeide precise range
measurements at high update rates. A laser rangefinder or sold&lfse (Light Detection
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(a) (b)

Figure 2.1: The left image (a) shows a sketch of a common two-dimensional lasgefiader with rotating
mirror (yellow). The encoder disk (blue) is used to measure the rotatigle ®f the mirror. In indoor environ-
ments, two-dimensional laser rangefinders are usually mounted warpéathe ground as depicted in the right
image (b).

And Ranging) device measures the distance to an object by emitting andimgdaiser
beams. The range or distance is estimated usingrteof-flight i.e., the time it takes to
receive a previously emitted laser beam again.

Two-dimensional laser rangefinders, depicted in Figure 2.1a, commoalg osrror to re-
fract the laser beam and record two values at tinthe range; and the rotational angle
or azimuthg; of the mirror. If we take measurement paj(g, ¢o), . . ., (rm, dm)} of a mir-

ror revelation and calculate their corresponding Cartesian pairg;, ri cosg;), we get

a range profile of a slice of the environment. In indoor environments, at roloves in
the plane and therefore it is usuallyfiscient to mount a two-dimensional laser rangefinder
co-planar to the ground, as shown in Figuré 2.1b. As long as there anenttanging struc-
tures or staircases, such sensor setup can be used for a safdlsimhefoee navigation,
even in complex and highly dynamic environments, such as museums [Btgar[d1999,
Thrun et al., 1999] or home improvement shaps [Gross|et al., 2009].

In non-flat terrain, the aforementioned co-planar mounting is obviouslffioent. In
such situations, three-dimensional laser rangefinders, which additiorzaifya third de-
gree of freedom to measure ranges, can be used to generate aatadeglicomplete three-
dimensional representation of the environment. These measurements lebdhesense
the complete shape of objects and the appearance of the terrain. As,hedocan derive
from the rangey, inclination6;, and azimuthp; of such a rotating laser sensor the Carte-
sian coordinateg( sin6; cosg, ry sind; sing, ry cosd;). We refer toP = {py, ..., py} With
three-dimensional pointg € R2 aspoint cloud In the following, we assume no particular
ordering of points or a specific data acquisition andseaminstead of point cloud to refer
to the generated laser range data.



2.1 Three-dimensional Point Cloud Processing

Before we introduce the acquisition of laser range scans in the nextrsegédirst discuss
the advantages and disadvantages of laser range data compared to images

In images, colors and appearance of a scene may drastically vary, dtdepptured under
different illumination. Therefore most image descriptors rely on some contrers@tiza-

tion or invariant properties, such as gradient orientation [l.owe, 2@04¢lative intensities
[Calonder et al., 2012]. Extracting segments, which correspond totebfeem an image

is challenging using only image data and usually accomplished with complex-geseial
methods |[Forsyth and Pomce, 2012]. Laser range measurementsrieosérare not af-
fected by diferent lighting, enabling for example the usage at night. Furthermore, we can
usually extract coherent segments from the point cloud with rather simpledssth

However, laser rangefinders have also some notable disadvantagpared to color im-
ages. We only get the distance to the surface and the reflectance of tialnate not any
other multi-spectral information like in images. Laser beams quite often getlsusby
black surfaces or refracted by glass, and therefore 'holes’ withioprange measurement
occur frequently. Another shortcoming is the representation as threesiional point
cloud, since we have no implicit neighboring information like in images. Thuguihigme
of certain operations, such as neighbor queries, is relatively high gechpa the same
operation in images.

In the following sections, we will discussftirent fundamental methods for processing of
laser range data. First, we discuss the acquisition of laser range dagacosimon sen-
sor setups. Then we briefly introductiigient data structures for acceleration of neighbor
searches and finally, the estimation of normals using eigenvectors is didcuss

2.1.1 Data Acquisition

Over the years, dlierent setups for the generation of three-dimensional laser point clouds
were developed. Earlier setups used primarily two-dimensional lasezfiadgr and varied

a third dimension. Until recently, generating a point cloud using such sebliptore than

a second. The recent development of ultra-fast three-dimensiopat#asyefinders produc-

ing detailed points clouds in a fraction of a second stimulated the researigodftams for

the interpretation of this kind of data.

Three-dimensional laser range data is mainly generated using one oflltverfg three
sensor setups: (1) a sweeping planar laser range sensor, (2) a tiimay paser range
sensor, or (3) a rotating sensor.

In the first case, a two-dimensional sensor is fixated on the robot andexdimensional
point cloud of the environment is generated as the robot moves forwaedHiguré 212a).
The laser rangefinder is swept over the surrounding structureshwidkes is necessary to
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driving direction

(@)

(b)

Figure 2.2: Common laser scanner setups: (a) A two-dimensional laser scarmewisted on a car and the
road ahead is scanned as the car moves forward. In this specifi(p&tim sensors are additionally tilted
to increase the covered area in front of the car. Figure (b) show&ting laser range sensor, the Velodyne
HDL-64 E, mounted on a Qinetiq Longcross r&oThe sensor covers the 360 surrounding of the robot
in contrast to the former setup.

move the robot andfers only three-dimensional data for a restricted area in front or side-
ways of the robot. In navigation applications, this sensor setup is mainlytoggst a pre-
cise point cloud in front of the robot and to decide where drivable ruld K )
2013, Thrun et al., 2006] is located. To enlarge the covered arearit dfcthe robot, a
pantilt unit (PTU) can be attached to the sensor and with this setup, the roboleiscab
generate laser range scans without moving [Marder-Eppstein et all]. 201

The second setup uses also a PTU to sweep the sensor over the enmirdnurnbere also
the direction of the sensor is adjusted [Steder et al., 2011a]. A static imblots able
to generate a complete 360iew of the environment by rotating the sensor ifffelient
directions. However, generating a complete point cloud of the vicinity ustaiis several
seconds. Due to the tilting of the sensor, the sensor must be decelerdtadcaterated
repeatedly causing high mechanical forces.

Lastly, the third setup uses a far more stable full rotation of the sensorgwesensor just
keeps spinning and decelerating the sensor is unnecessary (EigoyeRo2ating sensors

1The photo was taken from the website of the Stanford Racing Team, whiclthe& DARPA Grand Challenge:
httpy/cs.stanford.edgrouproadrunnefold/index.html. [Accessed: 10 Oct. 2013]
2Longcross photo by courtesy of Unmanned Systems Group, FréanfgIE.



2.1 Three-dimensional Point Cloud Processing

are currently the preferred setup to generate three-dimensional asg data, since a
complete 360three-dimensional laser range scan can be generated in a fractioacoirals
A common setup is to mount a two-dimensional laser range sensor verticalyiteat the
rotation of the sensor generates vertical slices of the environments. omtiiese slices
finally results in a complete three-dimensional point cloud with a wide field of.view

We are mainly interested in the Velodyne HDL-64E S2 [Velodyne Lidar R@10], which
was lately employed in many outdoor robotics applications, e.g., navigatiorlirleeal.,
2010], trackingl[Sctler et al.| 2011], object recognition [Teichman and Thrun, 2012], and
simultaneous localization and mapping [Moosmann and $filler,2010]. The wedddser
range sensor is equipped with 64 laser diodes organized in two grod@sdiddes, which
are emitted simultaneously, while the sensor is rotating around its main axis (Eidiime
The rotation speed of the sensor can be adjusted from 5 to 15 Hz, bub#ssdt influence
the frequency of the laser beam emissions. Thus, the sensor pradwegs approximately
1.3 million laser range measurements per second, but the number of laseripanesy
revelation varies according to the rotational speed. Nevertheless eak gpthe following

of acomplete scarif one revelation of the sensor is completed. Developed for autonomoomplete scan
driving, this sensor generates only a narrow vertical field of view @°2@&nging from+2°

to —24.8° inclination. Mounted at dticient height on the car roof, the sensors field of view
covers all relevant parts of the street. However, large objects, subbuses or trees, are
often only represented in the point cloud by their lower parts due to thdyrteanizontal
upper boundary of the field of view.

Common for all mentioned setups is the generation of millions of laser range pbimts

ing a distance dependent resolution. At small ranges up to 5 meters,am fieis0vered
densely by range measurements, but at distances larger than 15 metaméperson is
only sampled sparsely by the laser rangefinder. This challenge is racyrtered in in-
door environments, since there the workspace is less than 10 meters. Widrghisange
of distances to objects, we have to ensure some kind of sampling invariadaeaelop

methods, which are capable to work with both very dense and very gpairgeclouds.

2.1.2 Neighbor Search

A fundamental operation needed by many approaches using point dtotidssearch for

neighboring points of a poinp. We denote the set afdius neighborof a pointp € £ radius neighbors
inside a radiug by Ng = {qe®Plllp-al<d}). Let N5 = {4,...,0qy} be the partially

ordered set of points, whefig; — p|| < [|ci.1 — p|. The set ofk-nearest neighbors/ is  k-nearest

given by the firsk elements ofV5. Note that thek nearest neighbors are not unique, sinceeighbors

there can be multiple neighbors with the same distance to the query point.
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(b)

Figure 2.3: First iterations of the subdivisions of octree (a) and k-d tree (b) buildtfe Standford bunny
point dataset. Every picture shows non-empty nodes at a certain favel vee. The subdivision of the space
progresses faster in case of the octree, since every node in the catréave3 children. Subdivision in the
k-d-tree is performed in the dimension with largest extend and the meardsta split the point set.

Both types of neighbor searches, radius and k-nearest neigtdrahsean be performed ef-
ficiently using space partitioning trees [Pharr and Humphreys, 2010k pa&tial data struc-
tures that avoid linearly searching all point<3tN). Two spatial subdivision data structures
are commonly used to accelerate the neighbor search, the octree [MeEB# and the
k-d tree [Friedman and Bentley, 1977]. While k-d trees can be used éteaate search for
neighbors in arbitrary dimensions, an octree is restricted to three-dimahdmta sets.

octree Theoctreeconstruction starts with an axis-aligned bounding box, which enclosesiatkp
of the point cloud. The bounding box is recursively splitted into 8 equddigesoctants,
where we split the point cloud into subsets according to the boundaries saf tdutants.
The subdivision is repeated until the size of the octants reaches a lowad boa minimal
number of points is reached.

k-d tree Thek-d treeconstruction also starts with an axis-aligned bounding box enclosing the poin
cloud. However, the cuboid is subdivided along a single dimension suthlthast equally
sized partitions are formed. Then every subset itself is subdivided ag#ie dimension
with maximal extent until a certain number of points are left. Hence the resuliéegigr
binary, where every node contains a threshold and a dimension parateeiging which
path to follow to reach a leaf containing points.

Figure[2.8 visualizes some stages of the construction of an octree andraekahd shows
the non-empty nodes at every level of the data structures. The figuiretslagdaster pro-
gression of the subdivision for the octree due to a higher number obp@ssildren in the
resulting tree.

Searching for radius neighbors in both trees is accomplished by deterraihiragles in the
tree that overlap with a ball of radidsand midpointp. Inside each node, the list of points

10



2.1 Three-dimensional Point Cloud Processing

(a) (b)

Figure 2.4: In figure (a) a mesh of a torus is depicted and corresponding norbiaé.(Also shown are tangen-
tial vectors (red and green) of a surface point and the correspgpndirmal (yellow). In (b) a two-dimensional
point set and the eigenvectors(green) andi (red) are shown. The eigenvectors are scaled according to the
corresponding eigenvalug, and,. The iso-contour of the covariance is shown as purple dashed ellipse.

is then finally examined for neighbors inside the desired radiusiearest neighbors can
be searched similarly, but here the maximal distance is dynamically reducesldistance
of thek-th neighbor. For small radii, we can achieve significant accelerati@tsuse we
only have to examine a very small set of points compared to the overall naohpeints.

In summary, both data structures are heavily used to accelerate pointhdigldbor search
and recent results of Elseberg et al. [2012] suggest that the batsigstis highly data-de-
pendent. We opt for using an octree for radius neighbor search ie-tlingensional point
clouds and we use a k-d tree [Arya et al., 1998] for higher dimensi@tal &or our datasets
of urban environments, octrees showed faster retrieval times than the inmpétimie of the
exact search of Arya et al. [1998] using a k-d tree.

2.1.3 Normal Estimation

In many approaches, the (surface) normal is used as additional informzesides the
location of the point. The normal can be defined by the cross praduaif two nonparallel
tangent vectorss andt, at a particular point on a surface (cf. Figlirel2.4). The orientation
of the normal is usually chosen such that the normal points outside of thet.obje

However, we only observe point-wise range measurements as refle€somfaces. We
usually cannot easily generate a representation such as a triangulafromghese three-
dimensional points, which allows us to calculate directly the normal orientatiog tso
sides of a triangle [Pharr and Humphreys, 2010]. Thus, we are ofdytakestimate the
surface normal at a poirgusing the neighboring poinVs(g. Principle component analysis

11



2 Fundamentals

(PCA) of the covariance matri@ is a common method for estimating the normal orientation
of a pointp.

covariance matrix Thecovariance matrixC € R of a neighborhood\/‘g of point p € R3 is defined by

1
C=r—52,@-9'@-9 (2.1)
|Np’ qug
1 _
== >.dq-7'q (2.2)
NG oemt

with g = ’Ng|_12qug g, i.e., the mean vector of the neighboring points. The covariance
contains inC; j the covariances between dimensiand j, and thus represents the change
of the point distribution in these dimensions. In additi@ris symmetric and positive semi-
definite by construction. Therefore, all eigenvalugs> 1; > 1o > 0 are positive real
valued and the corresponding eigenvectarss, andvg are orthogonal to each other.

Intuitively, the eigenvaluel; expresses the change of the distribution in the direction of
the eigenvector;. Thus, if we think of a point cloud of a surface patch, as shown in
Figure[Z.4, we have the largest changes in direction of the surface patchangential to
the surface. The smallest change is orthogonal to these tangential diseatio therefore a
good estimate of the normal direction.

However, the eigenvector orientation is ambiguous and therefore the sne@iesvectors
Vo for neighboring points can be orientated contrary. Hence, we might toaflo the
orientation of the normal vectorsy = —Vp, such that all normals; point towards the
known sensor location for a consistent normal orientation.

Depending on the environment and applicatiorffedent values of neighbor radidsare
appropriate. In indoor environments or for retrieval tasks, a small sadiappropriate,
since we are usually interested in very fine details and operate in small.sthaéeapplica-
tion area of our approaches is the outdoor environment, where wermecdarge surfaces
and objects and objects are generally scanned at larger distancesednwpiadoor appli-
cations. Therefore, we usually choose a large radius to allow the estimétionaymal
direction for sparsely sampled surfaces.

2.2 Classification

We are interested in assigning each laser range point a pre-determisgdrclabel, which
corresponds to a specific category, suctpedestrian car, building, ground etc. Since
we cannot easily write down a heuristic rule — such as using some numeaicalsvof a

12



2.2 Classification

point and determining from this a label — we employ techniques from machingdgao

extract such rules using labeled data. For this purpose, we specifyel amatithen 'fit’ the

model parameters to the dataset with inputs and given targets values untiletierfodel

explains the given data. This learning paradigm is catlegervised learningnd will be supervised
discussed in more detail in the following section. learning

In supervised learning, we are interested in a function or probabilistic metealh relates

an inputx € RP to a target valug. We supervise the learning algorithm by an appropriately
labeledtraining set X = {(Xo,Yo),- - -, (Xn, YN)}, representing the task we intend to solvéraining set
This chapter discusses particularly supervised classification, i.e., thet alapsor label

ye VY ={1,...,K}is discrete.

In particular, we want a probabilistic representatiR{gx), where we get the predicted class

y and additionally an estimate of the uncertainty of this prediction. As we get tinibdison

P(yIx) after seeing the data, P(y|x) is also called th@osterior distribution posterior

Using Bayes’ rule, Equatidn A.4, we can derive the following equivaleptesentation: distribution

P(xly)P(y)
P(x)

_ PXxly)P(y)
2y P(y. %)

_ _PXIy)P®Y)
2y P(XIy)P(y)

P(yIx) (2.3)

using (A1) (2.4)
using [A.3) (2.5)

Theprior distribution Ry) encodes our belief about the label distribution before seeing gmjor distribution
input data. In addition, we refer t®(x|y) aslikelihood, since it encodes how likely it is to likelihood
observe datx given a certain labg}.

Thus, we can decide on modeling eitiéix|y) and P(y), or P(y|x) directly. In case of generative and
modelingP(x]y) andP(y), we refer to this paradigm asgenerative modednd we estimate discriminative
P(y|x) using Equation 2]5. We can actually generate new data by samplingFely). If  classification
we modelP(y|x) directly, we call this adiscriminative modeand can usually save many

parameters. In the following, we prefer a discriminative approach, gimeasually harder

to specify a model of the daf(x|y) than specifying how the datdfacts the labelP(y|x).

Using the discriminative approach, we now have to decide on a suitable fiood&ly|x).

Over the recent years, a multitude offdrent models were proposed [Barber, 2012, Bishop,

2006, Prince, 2012], which have venfidirent properties and also model complexities. In

this context, we use the termodel capacityto refer to the kind of dependencies, whichmodel capacity
can be modeled and consequently learned from data. If the model capdggher, we are

usually able to model more complex relationships between labels and datarthééess,

13
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(@) (b) (c)

Figure 2.5: Classification example. Subfigure (a) depicts a training set Yithasses with clearly visible
clusters, but some data points are outside of these clusters. Sublipanel(c) graphically show the probability
P(yx) for every possible point of two classification models learned with this dagse Hhe intensity of every
label color corresponds to the probability — the brighter the color, the oeitain is the classification model
that the feature vectors belongs to the corresponding class. The elaggifi) shows linear decision boundaries,
whereas (b) shows more complex non-linear decision boundaries.

increasing the model capacity is a double-edged sword as we will seewhtar, we will
discuss overfitting in Sectidn 2.2.3.

Suppose we get the simple two-dimensional training set given in Figure Btaicmg
three classes indicated byfiirent colors and shapes of the points. Each point corresponds
to an input vectorx; and the corresponding labgl is indicated by its color. The input

is also calledfeature vectorsince the raw data is preprocessed commonly to generate an
intermediate representation with features or characteristics relevantefaagk. In the
following, we will usefeature spacéo refer to the vector spad® of all feature vectors.

Typically we do not have precise knowledge about the generating ggqueducing the
data and consequently any information about possible feature valuese Hege have to
decide on an appropriate model for modeling the dependencies betweatugefvectox

and the corresponding labgl These model assumptions induce a certain label assignment
§ for an unseen feature vectkr The set of feature vector§ = {Xo, ..., Xy} for which we

are interested in predicting the lalyg) is calledtest set

Using diferent model assumption, we might get the depicted assignments in Eiguré 2.5 (b
and (c). Here, colors indicate the class assignments, where the puritplairacorresponds

to the certainty of the assignment, i.e., the brighter and purer the color is, tieecerain

or larger isP(y|X) for this class. Adecision regioE Dy = {X|IP(y = kIxX) = P(y = l|x)} of
classk is now the region of feature vectoxs whereP(y = k|x) is maximal. Thedecision

3 The definition is suited, if we aim at minimizing the misclassification rate.| SeeoBif2006], chapter .5,
for a more detailed discussion of decision theory.
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2.2 Classification

boundaryis defined a®9D = Uy ey k21 Dk N D) and therefore separates all classes depicted
by black strokes in Figule 2.5.

In (b) the model assumes a linear dependency between feature ¥ectbpredicted labgl,

and hence the decision boundaries are straight lines. The model iro(e3 siery diferent

decision boundaries and models a non-linear dependency betweee festitors and label.
Depending on the task and expert knowledge, either the first model eetiomd model is

closerto the truth. The linear model treats some feature vectors of the tragtiagbutliers,  outliers
i.e., data that was generated by an unknown randéecte but not by the generating process

itself. The more complex decision regions of subfigure (c), adjusted thelrpadameters

to include some of these points. Thus, we can see inside the blue and ggéemngmall

decision regions, where the model predictsféedént class label.

Until now, we just described that we have to decide dfedent paradigms to model our
supervised learning task, but we have not explained how to actuallydeaodel given the

labeled training set. Every model is parameterized by a setoafel parameterd, which model
can be adjusted to change the output of the probabilistic model. As stated, eagleam at parameters
finding parameters, which best fit to the given training détand are therefore interested

in the probability distributiorP(6|X).

As before we can apply Bayes’ rule to derive a more accessible angmi expression.

POX) = o 26)
_ _ P(X16)P()
[ P(X10)P(6) do @9

We can introduce prior knowledge usif§d) and determine the likelihood bB9(X]6). As-
suming that the data is independent and identically distributed E,imie) can further sim-
plify EquationZ.¥ and substitute the training datdy its elements;; andy;:

P(XIO)P(6) = | | POxi.%i6)P(6) using (A7) (2.8)
= H P(yilxi, B)P(xil6)P(6) using [A3) (2.9)
= ]I_[ P(yilxi, 8)P(x;)P(6) (2.10)
= ]:_[ P(yilxi, 6)P(6) (2.11)

4 All elements of the training set are independently drawn from the sanerafary distribution, i.e., we did
not select any training sample accounting the selection of another traixangpée.
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2 Fundamentals

In Equatiori 2.10 we exploit the independence of the feature vextérsm the parameters
0, i.e.,P(xil8) = P(x;). Finally, in Equatio Z. 111 we can candg(x;) with the denominator
from Equatio 2.17.

Bayesian approach In a full Bayesian approachwe would now have to estimate the likelihood of all possible

maximum a
posteriori

maximum
likelihood

linear separable

model parameter® and use these values to infer the posteR@IX, X) using marginaliza-
tion:

PyIX, X) = f P(yIX, 8)P(61X) d6 (2.12)

However, determining the distributid?(6|X) over the parametefsis usually computation-
ally intractable due to the integral in the denominator and can only be computedpeith
cific distributions in closed form [Prince, 2012]. Thus, we usually wankyavith the best
parameterg* and simply usé’(y|X, 8*) instead of Equation 2.12 for inference. Estimating
the best parameters is achieved by maximizing Equéafion 2.11 and yields

0* = arg rr;axl?[ P(yilxi, 8)P(6). (2.13)

If we incorporate prior knowledge about the parameters, this kind @npeter estimation

is calledmaximum a posterio(MAP) estimation. A suitable prior regularizes the solution
and can reduce thefects of lack in data evidence. A quite common approach is to use
a uniform or flat prior, where all model parametérare equally likely. This approach is
calledmaximum likelihooa:stimation.

Next, we will introduce two basic models for multi-class classification with vefiegnt
capacities. The first model has only very few parameters and is resttictbe class of
linearly separable classes. A feature spadmear separableif we can choose arbitrary
feature vectors;, x; belonging to the same clagsind then all other vectors

Xk =AX +(1-2)x;,0<2<1 (2.14)

on a straight line are also in the same chass

Since some classification problems show classes that are not lineartdepas have to
enrich our model with some flexibility. The second model discussed in thigehiapmore
flexible, but still easy to describe. However, we will later discuss thelpnob with too
much flexibility, if we only have limited amount of data available to learn the modamar
eters.

The classification models discussed in this chapter are at opposite ends sgetttrum
of classification models and there are many other possible choices [Ba@ier, Bishaop,
2006, Prince, 2012] in between. The first model, the softmax regressidiscussed more
deeply, since it will be extensively used in the rest of the thesis and it iartitplar interest
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2.2 Classification

in our application as it enables very fast inference at prediction time inasinio other
more complex models. The second model, kheearest neighbor classifier, was chosen
because of its simplicity and will be later used in context of point-wise classificéor
comparison purposes.

2.2.1 Softmax Regression

Assuming a linear relationship between the feature vectmd the clasyg, we can model
P(y|x) as follows:

exp@ - x
Ply = ki) = Pl ) R ) (2.15)
2iexp@i’ - x)
This model is usually called multi-class logistic regressiosaitmax regressiofBishap, softmax
2006/ Prince, 2012]. The term regression
@)
exp( a
= # (2.16)
2 exp(al)

of a vectora € RP corresponds to a smooth approximation of the maximum, which returns

the largest value over all entries @for the maximum ofa, and is therefore callesbftmax  softmax
The results of the softmax satisfy<0s < 1 and sum up to 1P(y|x) is therefore a valid

probability distribution.

Let the model be specified by model parametees (64,0, ...,6) € RXP*L Ag intro-
duced earlier, we are interested in determining the param@tevkich best explains the
training setX = {(Xo, Yo), - - - » (Xn, Yn)}. Introducing the model parameters, we aim at max-
imizing the likelihoodL(6#) = P(8|X). We prefer a MAP learning approach and choose
a normal-distributed prior foé ~ N(0,X) with circular covarianc& € RKP*KD je. a
diagonal matrix with entriea~%. By adjustingd we can regularizé such that the length
611> = 679 is constrained. Thus, this type of model is also called L2-regularized softma
regression. Assuming again i.i.d. training examphgsx(), we maximize the following
objective:

arg rrg}axl_(e) =arg n;axn P(y = vilxi, 8) - P(6) (2.17)
= arg max 1_[ Zi);z(z@k ) Tk DIZI exp(—}()T): 10) (2.18)
= arg max l_[ Zixe‘j((p(e exp( %GT): 10) (2.19)
- arg maxl_[ Zixei(z:oTxi) exp( % ) (2.20)
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2 Fundamentals

We exploited the maximization in the last two lines and dropped the constantsfaxtor
the Gaussian. Unfortunately, there is no closed-form solution of Equdiifih and thus
we have to optimize iteratively. Nevertheless, one can show that the resultiactive is
concavel[Barber, 2012] and therefore shows only a global maximusmuimerically more
stable to use the log of the likelihood, where some of the terms reduce to simpker on

INL(6) = In l]T[ % - exp(—%OTO)l (2.21)
S [Zek);i(p@ E )l nexo{-51070)| (222
= Z In[exp@}, - x)| - In lZ exp@] - Xi )} _Lg7q (2.23)
- Z o7 - % —In l; exp@; - xi)] - §0T0 (2.24)
= Za; X —In Zk:exp(a; : xi)] —gzklelok (2.25)

This transformation using the logarithm can be safely applied, as the logdsitammono-
tone function and therefore does not change the location of the maximumeceP2012].
We can use gradient descent [Boyd and Vandenberghe, 2004¢ oedgiative log likelihood
to optimize Equatiof Z2.25, where we need the gradient and hence the periiatistes in

respect td;:
dInL(e) _ - T T )% — 1.6
76, _Zl{y,_J}x, Zkexp(OT-x-) exp@; - Xi) - Xi — 4 - 0 (2.26)
exp@] - i)
- =) - Xi— -0 2.27
G eeereni | 220
Z[ i = j} = Py = jIx)] - xi -2 6, (2.28)

indicator function Here, 1{s} refers to theindicator function which returns 1 if statemert is true and 0
otherwise. A more fcient optimization method is L-BFGS [Byrd et al., 1995], which
approximates the Hessian and therefore can scale the gradient foictastergence.

However, optimizing the objectile 225 using the gradient is usually proneneerical
overflows, if the arguments of the exponentiation gets too large. Far mbie s#o exploit
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2.2 Classification

the following equivalence:

exp(a®) exp(a®) - exp@
exp(x; ad) B exp(2; ad) - expl)
exp(a® + 2)

(2.29)

(2.30)

We setz = —max alV, resulting in smaller arguments for the exponentiation, even if the
weight vectord; get large.

Using the derivations of the objective, Equation 2.25, and the gradiengtieg[2.28, we

can optimize the model parametésising labeled training data with the help of L-BFGS.
For inference, we only have to compute Equafion2.15 with the optimal para@étéo
determine the probability for a given claks In Chaptef B, we will show that such a lin-
ear model can be adfective as more complex models using suitable features. We will
then extend the veryfigcient softmax regression in Chapiér 4 and Chdgter 5 to improve the
label consistency and get furthermore a more flexible approach foresggbased classifi-
cation.

2.2.2 k-Nearest Neighbor Classification

Thek-nearest neighbor (knn) classifiera diferent approach, which allows more compleknn classifier
dependencies between features and the class label. Despite this flexibditiidtsimplest
model to learn — we just have to store the entire training data set including #is!lab

Let X = {(Xo, Yo)s - - - » (XN, YN)} b€ the training set anglan unseen feature vector for which
we want to estimat®(y|X). The k-nearest neighbor classifier mode($/x) as follows:

con L -
PEIR) = = |{x € NIy = 9 (2:31)
Thus, the probability of assigning a certain class does only depend onsthibution of
class labels of th& nearest neighbors. As shown earlier in Secfion 2.1.2, we can build a
k-d tree storing the training feature vectors to considerably accelerate#nest neighbor
search.

2.2.3 Model Assessment

In the previous chapters, we introduced two models for classification withdierent
properties. Softmax regression induces linear decision boundarieseand a quite com-
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2 Fundamentals

plicated optimization for fitting the model parameters. On the other hand-tiearest
neighbor can model arbitrary distributed datasets and the learning is asyyt@ imple-
ment.

It might appear that using-nearest neighbor classifier is a good choice, but this is not al-

ways true K-nearest neighbor is far more flexible, but this flexibility also introduceigla h

variance in the resulting decision regions — small variations in the training datdras-

tically change the decision boundaries. Softmax regression is fiiesseal by the specific

distribution of the training data, but imposes rather strong restriction to thee sbfathe

decision boundaries. Thus, softmax regression shows a large biaslsotlva appearance

of the decision regions, but a small variance in decision regions due ngesan the train-

ing data. Whereas thenearest neighbor shows an opposite behavior, small bias and high
biagvariance variance for smalk. This so-callethiagvariance trade-¢f occurs generally in supervised

trade-df classification — having a higher bias incurs usually low variance, and &y

Another problem might be the amount of training data needed to get a gooel nsidg

a k-nearest neighbor classifier. Suppose, we try to ledtmearest neighbor classifier of

a dataset, where the class of feature vectors is locally consistent. Fuotiegrsuppose it

is suficient to regularly sample data points in each dimension — say only 10 samples per

dimension. If we now have a 1 dimensional feature vector, we need qoaisty only 10

examples to model the data perfectly; feature vectors of 2 dimensionsadd &0 = 100

examples, and so on. With only 12 dimensions, we would need in this thougétient

10'? training examples, which is more than the number of stars in the Milky Way Galaxy

[Swift et al.,120183]. It should be obvious that this amount of data is simplynamageable

curse of and this &ect is usually known asurse of dimensionalityNonetheless, real world data

dimensionality is usually restricted to a subspace and might show dependencies betadar fvalues,

which can be exploited to get reasonable results even with smaller training sets

Despite these considerations, which of the aforementioned approacio@srisore &ective
in a certain scenario? As already seen, we can perfectly predict tleeatlasery training
case, if we use an 1-nn classification model. Hence, we are unable to eradikls conclu-
sions about the quality of a model, i.e., how well the model represents it@aluging only
training data. Consequently, training error is a bad estimate of the quality arwve to
rely on other measures.

A good starting point to estimate the quality of a learned model is the usage oéladab
validation set validation set which is not used to train the model. Since we know the label of every in-

stance in the validation set, we can determine the predicted labels of ourdeaodel and

compare the prediction with our expected label. The ratio of wrongly pretiostances
validation error divided by the overall number of classified instances is now#iielation error. The vali-

dation error is an estimate of the resulting test error, but is strongly infaemg the choice

of the validation set. The influence of a specific choice of the validation seinisnized
cross-validation in the cross-validation where we randomly split the labeled data into multiple parts and
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take every part as separate validation set. The average of the resaliitgtion errors is

a more accurate estimate of the test error. However, the validation erooledbld might

be strongly influenced by the class distribution in the f@tratification is a common prac-  stratification
tice to reduce the influence of a dominating class and therefore reducesridugce in the

validation errors. Here, the labeled data is split into parts with the same clasisutiisn,

i.e., every validation set contains the same number of instances of eacinaassy fold.

Thus, the classification error is less influenced by the composition of theatialdset.

A discrepancy between training error and (cross-)validation erroftes @n indicator for

over-fitting Over-fitting happens when we fitted our model parameters such thateveoser-fitting
only able to predict the training set correctly. Over-fitting can be combatetbing larger

training sets, learning models with higher bias and therefore smaller modddityae

regularizing the model parameters.

2.3 Summary

In this chapter, we briefly introduced concepts needed for the unddistpof the rest of the
thesis. We first discussed several aspects of three-dimensionakpmidtprocessing and
showed some essential procedures. The main part of this chapteedalfégrent concepts
of supervised classification and introduced the terminology. We introdwaetasic clas-
sification models with very dierent capabilities — the softmax regression andkthearest
neighbor classifier. In particular, we presented the softmax regresgjoeater detail, since
it will be the basis for our own extensions in later chapters. Last, we outhitettiods for
assessing the quality of such models including cross-validation and sttadifica

This chapter covers only machine learning concepts relevant for therstadding of the
next chapters. Our aim was to introduce these concepts in a very conaizeer. We
refer tol Prince [ZOJE]for a more detailed discussion of logistic regression arfiint
variants of this model. Another thorough introduction t&felient aspects of probabilistic
classification is given by Bishop [2006], from a more statistical view pointbgtie et al.
[ZOOS)E and more bayesian way of an introduction is used by Barber [ﬁOM]:ontext of
computer vision applications, Prince gives a very good introduction toifitag®n in his
book [Prince, 2012]. An excellent introduction to general convex opétiun is given by
Boyd and Vandenberghe [2064]

5 See httpywww.computervisionmodels.cgrfAccessed: 10 Oct 2013] for a free online version.

6 Available at http/www-stat.stanford.edutibs/ElemStatLearn[Accessed: 10 Oct 2013]

’See httyy/web4.cs.ucl.ac.yktat/D.Barbefpmwiki/pmwiki.php?r=Brml.Online [Accessed: 10 Oct 2013]
8 Available at httg/www.stanford.ed+boydcvxbook [Accessed: 10 Oct 2013].
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Next Chapters. In upcoming chapters, we investigatdéfdient aspects of the classifica-
tion of three-dimensional laser range data in outdoor environments. Watarested in
assigning the objects visible in the laser range scan a semantic label. Forrffosguve
apply descriptors to get a descriptive representation of a laser pdaiiitsameighbors. Such
feature vectors are then used to determine the object classes by usiéngsen classifica-
tion models.

In the next Chaptdrl 3] “"Histogram Descriptors for Laser-based fiagon,” we evaluate
different choices for such descriptors with the aim to determine suitable paraarejes
and reference frames. We additionally compare the softmax regressioa withie com-
plex graph-based model, the Functional Max-Margin Markov Netwolkghe following
Chaptef#, Hicient hash-based Classificafion,” we use the insights from the compé&wison
develop a new classification model combining nearest neighbor classtifieattbsoftmax
regression. Chaptél 5] "Segment-based Classifi¢ation,” presentsookiron a segment-
based classification approach further improving the consistency of thewise classifica-
tion results.
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Chapter

Histogram Descriptors for
Laser-based Classification

The classification of three-dimensional laser range data comprises tw@nentp — the
classificationmodeland thedata Recently, much scientific work concentrated on the de-
velopment of more complex and expressive models, such as ConditiondbRaFields
[Agrawal et al., 2009, Anguelov et al., 2005, Munoz etlal., 2009&bHl et al., 2006], or
stacked classification [Xiong etlal., 2011]. Nonetheless, we also havangider the data
part for the development of a robust classification approach, namegxtracted features.
The classification model and the features are two sides of the same coineaomaplex
model can compensate for irfBaient features, and better features can compensate a too
simplistic model. Put dferently, a linear classifier with features capable of linearly sepa-
rating the diferent classes should be ideally d&eetive as more complex and non-linear
classifier with very simple features.

In this and the following chapter, we aim at predicting the class of every fasge point,

as we do not only want to classify distinct objects with well-defined bounslaliat also
surfaces with less clearly defined boundaries, such as groundatiegeand tree canopies.
However, we cannot expect to get sensible conclusions about tieeficdas a single three-
dimensional point. Hence, we always build a more descriptive featuterugging the point

and its neighboring points — the so-calleapport A feature vector contains properties osupport
statistics of the support and in this chapter we are particularly interestedaogtams, since

this type of descriptors is prevalent in current research.

As introduced in Chaptér 2.1, “Three-dimensional Point Cloud Proag$sintails the us-
age of laser range data some specific challenges. One of these challetige distance
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3 Histogram Descriptors for Laser-based Classification

dependent coverage with laser range measurements of the scanred; atgeusually en-
counter very dense point clouds near the sensor and contrariwisspasse point clouds at
far distances. We therefore have to ensure range invariance ofribeated feature vector
and consequently normalize the feature vector to get a distance indepdedeription.

We thoroughly investigate critical parameters dfelient histogram-based features for the
classification of rigid outdoor objects. As stated earlier, we are particuladyested in a
point-wise classification to distinguish surface properties or objects withevagundaries,
such as vegetation. Hence, we cannot exploit the range data in termst afdiirerating

a segmentation and then classifying the segments [Himmelsbach et al., 208@&nause
tracks to segment dynamic objects of interast [Teichman et al.| 2011].

More precisely, we are interested in answering the following questionsw(tat do we

expect from feature representations to get a robust and state-afttblassification result?
(2) Which feature representations are in this sense suitable to classifydage data of
an urban environment? And (3), which parameters are required to attteno$ithe-art

classification results?

In this chapter, we show experimental results on three urban datasetsigehusing sensor
setups introduced in Sectibn 2.11.1 — sweeping 2D lasers, tilting 2D lasera,\é&iddyne
3D laser range scanner. Furthermore, we propose a novel histdgsamptor, which relies
on the spectral values infirent scales. We employ softmax regression (see Séctioh 2.2.1)
and a more complex collective classification approach [Munoz et al..e2088 discussed
earlier, the softmax regression facilitates vefiyogent dficient inference, but uses only the
feature representation of a single point to deduce a label — this condspm a local clas-
sification. The second approach uses label information of neighborimgspgo smooth
the individual classification results of a laser point and implements the moskywided
state-of-the-art approach for point-wise classification. However,siitisalled collective
approach needs a graph defining the neighbor relations and furtteen@eds a more com-
plex inference scheme to propagate label information through the grayuth i8 also more
time consuming than a local classification approach. TheEereint capabilities motivates
also the investigation of the duality mentioned in the beginning: Do more complexdsa
enable a local classifier to attain results that are similar to the results of a nmopeso
collective classification approach using simple features?

The contents of this chapter were partially published in [Behley et al.,| 284@]will be
presented in more detail in this thesis. In addition to these earlier evaluaticalsovelis-
cuss the classifier performance more detailed and evaluate the runtimenzerée of the
descriptors.

In the computer vision community several studies on the quality of descrimtoradtch-
ing and object recognition were conducted [Kaneva et al., 2011, Mikkjand Schmid,
2005]. Three-dimensional point cloud descriptors were mainly investgateontext of
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shape retrieval [Johnson and Hebert, 1999, Tangelder and Velti2088]. However, for
the purpose of (point-wise) classification of three-dimensional lasgerdata, only a very
few studies were conducted [Rusu etlal., 2008]. To the best of owlkdge is this the
first thorough experimental investigation of descriptors in the contextaskification of
three-dimensional laser range data.

The rest of the chapter is organized as follows. In Sed¢fioh 8.1, "Relate®,Wve intro-
duce recent work in the context of the performance evaluation of hatodrased features.
In Section[3.2, ['Histogram Descriptors,” we describe the evaluated histegased de-
scriptors concentrating on descriptors used in previous work on pasat-glassification.
Then in Section 3]3["Reference Frame and Reference Axis,” we disliftsrent reference
frames, a local and a global variant. The next Sedfioh 8.4, "Experim8atap,” specifies
the methodology of the performance evaluation, the evaluated datasetiseameestigated
classification approaches. In Section| 3[5, "Results and Disclissiordisgass the exper-
imental results and present the main findings of our performance evaluadtioally, in
Sectior 3.6, ['Summaly,” we summarize the main contributions of the chapteruiieo
future work.

3.1 Related Work

Local three-dimensional shape descriptors, as used in this chapteespecially evaluated
in context of shape retrieval applications. In shape retrieval, one iesitsf in retrieving
similar objects to a selected query object from a large database of threesitoma objects,
either represented by meshes or point clouds. See the survey ofld@naed Veltkamp
[2008] for an extensive overview of the field. A whole workshop sgrtbe Eurograph-
ics Workshop on 3D Object Retrieval, covers three-dimensional obgégeval. In con-
junction with this workshop, the Shape Retrieval Contest (SHREC) complagecurrent
state-of-the-art in shape retrieval inffdrent categories, such as “Generic 3D Model Re-
trieval” [Liet al!,|12012]. However, the contest aims at comparing the retrigerformance
of complete methods, which includes features, but also specifically tumachpters by the
competing researchers.

While some of these methods could be applied to extract useful featuesegpations for
the classification of laser range data, we generally pursuffexetit objective. The object
retrieval from shape databases aims at finding an instance of the datalbash is very
similar to the queried object. Therefore, the employed methods aim at devigmgde-
tailed representations that enables a matching approach to distingtieskmtiinstances of
the same category. In our application, we are more interested in derivaajad represen-
tation enabling us to distinguishftirent categories rather then single instances.
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3 Histogram Descriptors for Laser-based Classification

In recent years, many approaches for the classification of three-gliomathlaser range data
[Agrawal et al.| 2009, Anguelov etlal., 2005, Munoz etlal., 2009a bétiet al., 2006] and
[Spinello et al., 2011, Teichman et al., 2011, Xiong et al., 2011] prapdskerent local fea-
tures. These features usually are chosen to suit the specific applicatiam, évaluation on
the influence of parameter choices is missing. Most approaches combinelenfeléifures,
ranging from simple statistical properties to more complex shape histogranssi eRal.
[2008] compared their method withftBrent other classifiers — SVMs withftérent kernels,

k nearest neighbors akkdmeans with dierent distance metrics. Hence, their experimental
evaluation concentrates mainly on the performance fééidint classification methods, but
not on the parameters of the employed descriptors.

Recently, Arbeiter et al! [2012] evaluatedidrent local descriptors for the classification
of surface properties, i.e., planar, edge, corner, cylindrical ahérg@al. They evalu-
ated the Fast Point Feature Histograms [Rusulet al.,| 2009], Radiusc&ubescriptors
[Marton et al., 2010], and so-called Principle Curvatures using cluttierdaor environ-
ments. In contrast to the evaluation presented in this chapter, they foouseduracy and
runtime with two fixed parameter settings for close and far range, resplgctiv

3.2 Histogram Descriptors

descriptor In the following, we use the termiescriptorto denote a vectorized feature representation,
which is a discriminative representation of a laser point and its neighbdrimstead of
histogram a single shape property. We focus herehistogram descriptor§Tombari et al., 2010]
descriptors maintaining a histogram of neighboring points or their properties. For thegh#stes, we
reference axis and need aeference axisr reference framé which we determine the bin index of the property
frame we want to measure.

Over the last years, a variety of descriptors for matching of point clffRdsu et al., 2009,
Tombari et al.| 2010], object recognition [Johnson and Hebert,| 1S8%er et all, 2011b]
and point-wise classification [Agrawal et al., 2009, Munoz et al., 20D09abel et al., 2006,
Xiong et al., 2011] representing properties of the support of a poirg weposed. In this
section, we briefly introduce histogram descriptors used in recent, wdrich emerged
to be a good choice for a descriptive representation of laser points in tdratmpe and
geometry.

requirements We have some special requirementen descriptors for point-wise classification of three-
dimensional laser range data. We want to distinguish betweereafit classes or cate-
gories, but not single instances like in shape retrieval. In addition, theiggsn should
result in well separated and localized clusters in the feature space, arabies the usage
of simpler and therefore mordieient classification approaches. We furthermore want a
robust feature representation, which is only marginafifg@ed by partial occlusions often

26



3.2 Histogram Descriptors
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Figure 3.1: Normal histogram for curved and flat surfaces. In both images tég/qint and the corresponding

reference axis, i.e., the normal of the point, is highlighted in red. Aedisurface leads to a more uniform

distribution of histogram entries, whereas a flat surface induces apeated histogram as shown in (a) and
(b), respectively.

encountered in real-world laser range scans. Last, we are lookirdg$oriptors that can
handle diferent sparsities of object point clouds. This requirement is seldonuatered

in shape retrieval applications, where we find similar sampling rates in theasatabnd
indoor object recognition applications, as there we usually encounterarege scans.

The descriptors that we present in the following sections were selectegpeat to these

requirements and we investigate their capabilities to produce generaiptiessrand also

well separated clusters in feature space ficient point-wise classification of rigid outdoor

objects. Following the taxonomy bf Tangelder and Veltkamp [2008], theserigéors can

be classified alocal featuressince they represent the local neighborhood of a point instdadal features
of determining a global description of the whole segmented object. Thusete lgcal
representation, which is lesffected by partial occlusions and additionally independent of

a given segmentation. As all descriptors use a radius neighbovk{épde get a sampling

invariant representation by a proper normalization of the feature vectors

Thenormalization constanwill be denoted by and calculated separately for each featum@ormalization
vector. We empirically determined that normalizing the feature vectith the maximal constant
entryn = max V) is superior to a normalization by the sum of all entries. We nuseR3

to refer to the reference axis aRde R¥* to denote the reference frame used to determine

the histogram indices.

Histogram of Normal Orientations. [Triebel et al.|[2006] used mormal histogranstor- normal
ing the angle between the reference axmd the normal of a neighboring poim, g € A5, histogram
as depicted in Figufie 3.1. The histogram descripter R? with b entries is defined as fol-

lows:
hi = UHQ

cos(%) <r-ng< COS(W)}I (3.1)
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Regions with a strong curvature result in a uniformly distributed histograrite ¥t areas
lead to a peaked histogram (see Fiduré 3.1). The histogram is parancktarites number
of binsb and the size of the support regiéon

Spin Image. The spin imageby |[Johnson and Hebert [1999] is the most prominent his-
togram descriptor and is used in several retrieval, matching or classificapjproaches
[Patterson et all, 2008, Teichman et al., 2011, Xiongetal.,|2011]. A spigdman be
imagined by spinning a grid around the reference axisvhere grid cells “collect” or
“count” the neighboring pointg| € Ng. An entry of the spin imag&! e R™P with in-
dexes {, j) is calculated using the distance to the line defineglya - r with parameter

A € R, and the distance to the plane originatingpand normalr. The local coordinates
(a,B) in respect to the reference axis are giverwby ||[r x (q— p)llandB =r-(q— p). The
indices {, j) in the image are calculated frosrandg by i = |[p~1-a] andj = | 3p71- (8+6)],
wherep = b~ is the grid resolution of the spin image. We bilinearly interpolate the contri-
butions to avoid quantization artifacts. The spin image is parameterized by iteenof
binsb (width and height of the spin image) and the radius of the su@port

Note that we search for radius neighbors using the maximum nornyg ef, is a neighbor

of p, if max; |p® — @] < &, since we need all neighbors in a cylinder. We approximate this
with our euclidean neighbor data structures form Se¢fionl2.1.2 by incoeth&madius by

a factor of V3, which corresponds to the diagonal of a cube with side lefigth

Distribution Histogram. The distribution histogramby |Anguelov et al.|[[2005] tries to
capture the shape around a point in a cube defined by the referameRre R*“. In order
to transform a neighboring point € N9, the reference frame is inverted, i.g,,= R™'q.
The distribution histograrh € R®*®*® s then defined as follows:

) i
S B L] [ j ]} , @2)
k

wherel e R2 denotes the vector that contains only ones.

The only parameter of the distribution histogram is the number of biper dimension.
Similar to the Spin Image, we approximate the search for neighbors inside tkebgub
multiplying the support radius by V3.

Signature of Histograms of Orientations (SHOT). RecentlyTombari et al.|[[2010] pro-
posed to use a combination of histograms and signatures. Their descubtlivides the
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3.2 Histogram Descriptors

Figure 3.2: In the first image, dferent point distributions are shown and their corresponding eigersvalue
are depicted by appropriately scaled vectors. For a point-like distributeresulting eigenvalues are almost
equal. In case of a linear distribution of the points, we can see a signifidargsr eigenvalug, compared to
A1 andJy. Lastly, we can observe in flat distributions of points a very siaéind almost equally largs and
2. Subdivisions used by panel (b) the SHOT descriptor and panelgspitctral histogram. The inner sectors
or shells are depicted in blue. In panel (b) one sector of the SHOTIg&sds highlighted in light gray.

space around the query poipinto sectors (see Figufe_B.2b). Then, for every sector a his-
togram of normal orientations between the neighboring point inside the sextdhe query
point is calculated.

More precise, the histogram indéewf a neighboring point € Ng inside a sector is calcu-
lated by%(l + I - Ng)b, whereb denotes the number of bins in the histogram agds the
estimated normal of poirg. A point also contributes to histograms in neighboring sectors
of the subdivision using a quadrilinear interpolation to reduce quantizatiorse

The authors suggested to use 8 azimuth divisions, 2 elevation divisio@yadil divisions
for the subdivision. The remaining parameters of interest are the rathes support region
¢, and the number of bins in the sector histogrdms

Spectral Histogram. Motivated by the results of experiments with spectral shape signa-

tures, we propose to useSpectral HistograniBehley et al.| 2012]. Similar to the SHOT Spectral
descriptor, we calculate for every sector of a subdivision three signaalues based on Histogram
spectral values of points falling inside the sector.

The eigenvalues of the covariance mattix R¥3, as introduced in Sectidn 2.1.3, encode

the general distribution of the points (see Fidure 3.2a).lbet 1; < A, be the eigenvalues

of the covariance matriC andli = 1;/1, the normalized eigenvalues. A measure of

“point-ness” is then defined byp, “surface-ness” byl; — Ao, and “linear-ness” byl, — A1

[Medioni et al., 2000, Munoz et al., 2009a]. We will refer to these privge asspectral  spectral shape
shape featureim the following. features

From these spectral shape features we build a descriptive representathe support as
follows. We subdivide the space around a point ifiedent shells and slices, as shown in
Figure[3.2c. Lets be the number of radial shellsthe number of slices, ang, v, v, the
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Figure 3.3: Panel (a) depicts a local reference frame depending on the logabhorientation for two query
points. Panel (b) shows the same query points using a global re¢eframae that is always pointing upwards.

base vectors of the reference frame. Then we add to the local caxaoésectori( j) the
pointg’ = R72q, if i = [ £(q® +6)l] andj < |lq’ x vlIs]. Hence, every shell collects
all points up to its radius. For every radial shell in every slice, we geftardint scale of
the point distribution. The descriptor is rotation invariant aroundzteveis of the reference
frame and parameterized by the number of slicgee number of radial shells and the
support radius.

3.3 Reference Frame and Reference Axis

The only question left is the choice of the reference frame or the referaxis, which are
required to calculate the indices in the histograms. We evaluated two cancimicets—
the local reference frame based on eigenvectors and a globalneddrame based on the
global z-axis (see Figute_3.3).

Thelocal reference fram®qcq € R¥*4 of a pointpis based on the normalized eigenvectors
Vo, V1, V2 Of the covariance matrix of neighboring poirdse Ng. From the eigenvectors
with eigenvaluesly < 1; < A2 we can build the following homogeneous transformation:

V2 V1 Vo P

RIocalz[ 0 0 0 1 (3.3)

A local reference axisiocal € R is given byvp, which corresponds to the point nornrgyy
of point p.

The global reference framean be constructed using the global z-axis denoted. bye
decided to use the norma}, to get a rotation invariant reference frame. Following from
this we get the global reference fraRgiopa € R¥4:

(npx2z)xz NpxZ z D
Rgloba|= [[(npx2)xZ]|  |[npx7| II(Z)H ) (3.4)
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Figure 3.4: Panel (a) depicts a laser range scan from Pittsburgh, panel (b)Rreiturg, and panel (c) from
Wachtberg, respectively. Theftérent labels are colored as follows: purpiground blue = building facades
green=vegetationorange= poles vellow = vehicles cyan= wire. The distribution of laser returns per distance
to the laser scanner is depicted below every scan. The red solid cyrietsdée number of laser points pef

at this distance. The green dashed curve is the fraction of laser refutnghe distance.
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Tombari et al.|[2010] proposed to use a weighted version of the coxarifmr determining
the eigenvectors, thus getting a more stable reference frame in point clgtidslutter
and also a disambiguation scheme of the directions of the eigenvectorsdmagezpoint

density. We applied this weighted covariance and the disambiguation schéyre tme
SHOT descriptor.

3.4 Experimental Setup

In the upcoming sections, we introduce the framework of our evaluatimrédefe discuss
the experimental results. Starting with the datasets, we will introduce the tualgate-
rion and finally briefly introduce the evaluated classification approaches.

Datasets. In the following evaluation we use datasets generated by three common 3D
laser rangefinder setups—a pan-tilting 2D laser rangefinder, 2D gvedaper rangefinders,
and a Velodyne HDL64-E laser rangefinder [\Velodyne Lidar Inc.020dhich we already
encountered in Sectidn 2.1.1, "Data Acquisifion.” Figurg 3.4 depicts exaroplessfrom
these datasets and the distribution of laser returns for the specific setup.
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The first dataset was recorded at the University of Freiburg, Gernuiaing a SICK LMS
laser rangefinder mounted on a pan-tilt unit. The point clouds were mariahéje&] as
pavement, sidewalk, lawn, pole, shrub, bush, foliage, tree trunk, bgifditade, window,
door, bicycle, and car. For the evaluation we only used a subset & thesses and com-
bined subclasses into more general classesgrdynd consisting of pavement, sidewalk,
and lawn, (2\vegetatiorcontaining shrub, foliage, and bushes,f@@adesubsuming build-
ing facades, doors, and windows, (@lescombined with tree trunks.

We chose these more general classes because they contain thessan@aebjects most
relevant for outdoor applications. Furthermore, the distinction of pavermlewalk and
lawn is often only possible by using contextual knowledge. Poles are ticyar inter-
esting, because they allow to reveal registration errors and thus caseh#e 10 assess the
performance of SLAM approaches.

The second dataset was acquired on the campus of the Carnegie Mellensidy in Pitts-
burgh with a Jeep equipped with SICK laser scanners facing sidewdys.ddtaset con-
tains the same labels as the Freiburg dataset, but we additionaNehméesandwire like
Xiong et al. [2011]. The dataset was filtered and registered to get aletengwint cloud
and chunks of approximately 1@DO0 laser points were extracted.

The last dataset was recorded at the Fraunhofer FKIE in Wacht@engnany, using a
Velodyne HDL-64E S2 laser range scanner mounted on a vehicle. Wmalaaally labeled
the dataset with the classgmund vegetationfacadesvehicles andpoles

All three datasets show fiierent characteristics. Figure B.4 depicts the point density and
the number of laser points per square meter. In case of the Pittsburgletdatasfind
homogeneous sampling of the surfaces and nearly linear increase td pemndistance
(green dashed curve in the plots). The Freiburg and Wachtberg tatedeariwise show

a significant drop in the sampling rate at larger distances, which is commaaviodata
without a specific preprocessing. As the Velodyne HDL-64 rotates tergéna full 360
scan, we also see a ring pattern with points in the same ring much closer totkacthan
points in adjacent rings.

All these artifacts in the data acquisition must be considered, while designiagsification
approach. A normalization of the feature vectors to account féeréinces in the number

of laser returns at flierent distances is essential to get similar feature vectors of the same
object.

1 The registered laser range scans of the Freiburg campus with the odbatetry are available at
httpy/ais.informatik.uni-freiburg.derojectgdataset$r360/ [Accessed: 10 Oct 2013]. Our annotations of
the point clouds can be downloaded at Hftpavw.iai.uni-bonn.dg-behleydatd.[Accessed: 10 Oct 2013]
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Evaluation Criterion. In Section 2.2.3,["Model Assessment,” we introduced cross vali-
dation to evaluate a classification approach and also the concept of stiatifjovhere we

split the data into folds of similar class distributions. As we want to keep the shogles
spatially separated, we can not simply Stauthe feature vectors of fiierent scans to en-
sure equal class distributions in every fold. But we still want to get amaseld evaluation
measure, which is noti@cted by the mere count of a single class, such as ground, like the
classification accuracy. To this end, we will use hereffegént evaluation measure, which

is now formally defined.

Let X = {Xi}, |/\A’| = M be a set of test instances with corresponding ground truth labels
Y* = {y*},1¥*| = M, andy; the predicted label of a classifier trained on a separate training

setX = {(xi, YL, 1X| = N,X N X = 0.

The class-wise precisionyof a class or labéek is given by the ratio of correctly classified
instancesk; with §; = y* of the test set and all instances classified as #ass

|{>zi eX|%=knyr = k}|
|{Xi eX |9 = k}|

Pk = (3.5)

Theclass-wise recallyis given by the ratio of correctly classified instances and all instances
with reference labei:

|{>‘<i eX|f=knyr= k}|

rg = (3.6)

’{xi eX |yt = k}|

TheF; measuras defined as the average over the class-wise precigipasd recallsy:

1 2Pk
Fi= _§ Z K K 3.7
1 K - Pk + g (3.7)

whereK is the number of classes. Tlg measure is independent of the actual number
of instances, because it uses only relative measures, and penalizgsdtgion with low
recall.

Classification Approaches. We evaluated the descriptor performance using tvi@dint
classification approaches — the already introduced softmax regressl@ore complex
approach based on a Conditional Random Field (CRE}élty et al.| 2001], which is the
most prominent method to classify three-dimensional laser range data.

The softmax regressidantroduced in Section 2.2.1 acts as a baseline approach in this stiedal
The main advantage of softmax regression is the fast inference givamadeweight vector, classification
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which is of particular interest if we want to classify millions of laser range messents.
However, it is a local classification approach that uses only informatieodsd in the
descriptor. Thus, the overall posteriBfy1.n|X1:n) Of @ laser range scan factors into inde-
pendent part®(yj|xj) assuming independence between labels fiédint points given the
descriptor.

The local classifier is compared with a state-of-the-art collective classificapproach us-
ing a CRF—the Functional Max-Margin Markov Networks (FM3N) [Mureizl.,l 2009a].
Collective classification approaches, which take labels of neighborimspato account

to estimate a laser point label, have shown to be quitectve [Anguelov et al., 2005,
Munoz et al., 2009e, Triebel etial., 2006]. These approaches try dathim joint assign-
ment of all labelsP(y1:.n|X1:n), Which maximizes the posterior of the joint assignment of
classes tg; given the features;:

1
Z(Xl:N)

P(Vi, %) Vi, Yj» Xi» Xj), (3.8)
[

VieV vi,yj)eé

P(y1nIX1N) =

where the underlying grapkl = (V, &) is given by verticey; representing random vari-
ables for labels ang for feature vectors of every laser point, and edyey/() € € between
them, if there exist a direct dependenayy;, x;) refers to the node potential, which encode
the compatibility of the labey and the feature vector;, andy(y;, y;, Xi, X;) to the edge
potential, which encodes the compatibility of labglsindy; regarding the corresponding
featuresx; andx;. Z(xy:n) denotes the partition function and is a normalizer depending on
the feature vectors, and the computation of the normalizer is usually thenrfEasapprox-
imate inference. We refer to Koller and Friedman [2009] for more detailsrobgbilistic
graphical models.

The edges are given by tlkenearest neighbors of a laser pomti.e., §i,yj) € &, if p; €
N'Igi. As proposed by Xiong et al. [2011], we use a “similarity” edge potegifgl y;, Xi, X;)
computed from the node featunes x;:

w(Yi,Yi» Xi, Xj) = Uyi = yj} - expEw! - i), (3.9)

where thek-th entry ofxi(}‘) € RMis calculated as

1
xi(;‘) = (1+ ‘xi(k) - ng)|) , (3.10)

i.e., the more similar the node features, the larger the entries in the edge feature

An edge between individual labejs andy; encourages smooth label assignments over
parts of the graph. This can help to correct failures in the label assigrandriurthermore
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3.5 Results and Discussion

Table 3.1: Parameters of the descriptors. Values used for node and edge fetargibold.

Descriptor Parameter values
Normal Histogram (NH) b ={5,10,15
Distribution Histogram (DH) b=1{357}
Spin Image (SI) b = {5, 10, 20}
Signature of Histograms of Orientations (SHOTD = {5, 10, 15}
Spectral Histogram (SH) | ={3,5,7},s=5

ensures consistent labels for a segment, but also causes errorsvwameninformation is
propagated through the graph.

Compared to local classification models, we additionally have to determine tbie gfraic-
ture and this involves the time consuming construction of a nearest neiglambr. grurther-
more, the edge potential must be calculated for every edge and alsatsfpatored for
learning of the model. Thus, the overall preprocessing and also leasiggy time con-
suming compared to local classification approaches, which only take th@&ghborhood
into account.

3.5 Results and Discussion

We performed a 5-fold cross validation (cf. Section 2.2.3) in all experimeRts this
purpose, we selected 5 representative and non-overlappirfgl8&r range scans from
every dataset. We only evaluated a subset of parameters with the CRIR allowed
us to store the networks with node and edge potentials in memory. Hence,re/alole to
evaluate the CRF using large support radii in reasonable time. [Table 3v 8tedescriptor
parameters and bold parameter values indicate the subset of paramedicr tise CRF.

In this chapter, we present only a subset of the results for the sakeuitiyb We concentrate
here on our main findings and defer more detailed plots of the experimesidisréo the
AppendixB, fAdditional Results.”

Implementation details. The histogram descriptors were implemented usirg @nd
we adapted the available implementation of the SHOT descriptor from the Poiad Clo
Library(PCL) [Rusu and Cousins, 2011]. We used an octree to detertménearest neigh-
bors and the normals were estimated (cf. Se¢tion2.1.3) using a radiu&mf 0

35



3 Histogram Descriptors for Laser-based Classification

(= NH mmm DH  mEW S| mEW sHOT W SH](EZA local BN global |
Freiburg Pittsburgh Wachtberg
LO o s
N R s
e g I
T 06
Z iy
T 04 ; Y
7 g
02 7 §
§ i
S S

Figure 3.5: Influence of the reference frame. The performance of the evaluddscriptors using the local
reference frame and the global reference frame are shown. ébaéts show a clear advantage of the global
reference frame over the local reference frame with both classificatiproaches.

The regularization parameteérof the softmax regression (cf. Section 212.1) was setQa 0
and the intercept was fixed to0l The FM3N implementati@wwas adapted to our needs
and used only pair-wise potentials with linear regressors. We chooserafoits to learn
linear regressors with learning rate oftl0 We usedk = 5 nearest neighbors in all our
experiments and restricted the radius to 2m, i.e., we add at most 5 edges irgttigone
graph and all of neighbors must be inside a radius of 2m. The relativeglg lmanmber of
nearest neighbors compared to other works using CREs [Munoz|e®@8a2Xiong et al.,
2011] was motivated by the ring pattern of Velodyne laser scans. Weierped that less
then 5 neighbors adds only edges inside a ring, but not between adjagsrand increasing
k helps to propagate label information between rings. All experiments weferped on
an Intel Xeon X5550 with 7 GHz and 12 GB memory.

Reference frame. In a first set of experiments, we evaluated the influence ©émint
reference frames and axes on the classification performance of genfed classifications
approaches. For the matching task, Tombari et al. [2010] showed thegfdrence frame
and its stability significantly fiects the matching performance. Is this also true for the
classification of three-dimensional laser range data?

Figure[3.5 shows the performance of the descriptors using the locallabal geference
frame. We show here the results using a support radi<0.5m and a medium number
of bins, i.e., 10 bins or 5 bins, respectively. We see a significant impraviensing the
global reference frame over the local reference frame with almostsdriggors regardless
of the employed classification approach. In particular, the distribution hatogr strongly
affected by the choice of the reference frame with improvements up to 40%. orheah
histogram only shows a smalffect if the reference frame is changed.

2 Available at httg/www.cs.cmu.edi-vmr/software. [Accessed: 14 Oct 2013]
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Figure 3.6: Influence of the support radius on classification performance usgigbal reference frame. We
see an improvement of the classification performance with an incresisimmprt radius in all datasets.

The presented results show a significant influence of the choice offdremee frame and
confirm our hypothesis that a global reference frame is more stable tomalaeference
frame. For a robust and stable local reference frame, we have toeeaseproducible
calculation of the eigenvectors. However, the direction of the eigenweiaftected by
the distribution of the points and this might change drastically in the presendettsr.
Another explanation for the observable strong performance of the Igletemence frame
might be the occurring object classes in the datasets. All datasets are n@imppsed
of man-made structures and objects, which show only a restricted numbgepfations.
For instance, cars never appear up-side down and building walls allaaye a vertical
orientations. Thus, a z-axis based reference frame is nfteetige than a normal-based
reference frame, since we do not have to cope with arbitrary rotatiottseobbjects in
urban environments. Additionally, we get more discriminative histogramsrfarngl and
facade points, which improves the distinction between these flat surfaces.

In the following discussion, we will use a global reference frame ang ealy the remain-
ing parameters. Results for the local reference frame can be found ipihendix[B,
“Additional Results.”

Support radius. Figure[3.6 shows an increase in classification performance with increas-
ing support radius for most descriptors. The improvements are notges dar with the
reference frame, but using a larger support radius increasesiagpthe performance of

the softmax regression.

An explanation for this result might be an increasing support radius,iwhaudes more
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Figure 3.7: The figure shows thef®ect of changing the number of bins for each descriptor using a suaohus

r = 2m and a global reference frame. We see a small gain in classificati@ripance with an increasing
number of bins, but thisfeect is only considerable for few bins. The increase is negligible with memeli®
or5 bins, respectively.

contextual information of the vicinity. For example, all classifiers perforivetter in clas-
sifying cars if we increased the support radius. This consequeneei@rkable, because
cars are obviously rather complex objects with both flat and curvedcasfNevertheless,
vehicles are usually parkgttiven on flat ground, which seems to be the discriminating
property of cars especially in the Pittsburgh dataset. Thus, we can itlgieecode—to
some extent—the context in the descriptor, which helps to learn correstasaggnments
even with local classifiers. This is explicitly achieved in a collective apgrdmsca more
complex model, but can be also directly incorporated by stacking with multipletiogis
regressions [Xiong et al., 2011].

In the Wachtberg dataset, such contextual information does not alvay/sddetter perfor-
mance of the classification approach, as there are shusgises on flat lawn. Hence, in this
dataset the classe&ghicleandvegetationare more often confused with other classes than
for instance in the Pittsburgh dataset. We also experimented with larger mdR€m, but
these turned out to entail no significant improvement, or even decreaspdrfiormance of
the classification approaches.

In conclusion, the results indicate that a large support radius increasststently the per-
formance of most descriptors. Therefore, it is beneficial to use laggeriptors in the

context of urban environments. However, this advantage comes at shefcimcreased
computation time of the descriptors, since increasing the radius of the neigitubalso

increases the search time of the octree neighbor search.

Number of Bins. The number of bins is the last dimension we varied for tiféedknt
descriptors. Figurie 3.7 shows the classification performance udiiegedit number of bins
and a support radius = 2m. We can also observe an increase of the overall accuracy
using more bins, but thisfiect is not as strong as the other evaluated dimensions. The
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Table 3.2: Precision and recall on the Freiburg dataset.

C Feature b ) F1 ground facade pole vegetation
NH 15 2.0 70.3 985 9488 1224 8286
. DH 7 15 77.7 9909 9082 5756 7779
n Sl 10 2.0 76.2 999 8481 5562 7974
SHOT 10 2.0 82.3 999 9391 6063 8584
SH 7 2.0 80.8 988 9387 5166 8483
NH 15 2.0 69.7 985 9688 610 8387
z DH 5 15 79.2 99 9284 5366 8082
g Sl 10 2.0 77.9 999 9083 4671 8180
L sHOT 10 2.0 83.3 999 9490 6168 8587
SH 5 2.0 82.2 1008 9487 4778 8488

Table 3.3: Precision and recall on the Pittsburgh dataset.

C Feature b ¢ F1  wire pole ground vegetation facade vehicle

NH 5 15 533 183 125 9998 9290 8972 2541
DH 7 20 69.2 242 5559 9999 9487 7981 6569

% Sl 10 2.0 67.8 245 5764 9999 9484 7480 6964
SHOT 15 2.0 68.7 283 4056 99100 9692 8885 7471

SH 7 15 650 28B4 5673 9999 9185 7974 4060

NH 15 20 559 M@ /20 10098 9790 8280 6762

zZ DH 5 05 732 3K0 7066 9999 9790 8486 5374
% Sl 10 2.0 749 3Ak5 6472 99100 9892 8889 7473

SHOT 10 1.0 552 482 4350 9991 9885 1259 4972
SH 5 10 73.0 453 6%71 100100 9690 8983 5778

largest improvement in classification performance is visible, if we use 10ahste5 or 5
instead of 3 bins. Further increasing the number of bins does not impomgéderably the
classification performance. The SHOT descriptor is |&&cted by the number of bins than
the other descriptors and the distribution histogram benefits from an siegeaumber of
bins the most.

Class-wise Performance. Tabled 3.P] 3]3 arid 3.4 show the precision and recall per class
with the global reference frame. In this tables, we only show the beslsesuevery
descriptor and the class-wise precision and recall.
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Table 3.4: Precision and recall on the Wachtberg dataset.

C Feature b ¢ F1 vehicle ground facade pole  vegetation

NH 15 20 520 &7 9387 9485 223 7169
DH 7 15 687 455 9692 8077 5066 7473

(D/:) Sl 10 20 734 o®4 9794 7681 58570 7874

SHOT 15 2.0 715 556 9692 9190 4055 7678

SH 7 15 687 257 9793 7977 6380 7970

NH 15 2.0 517 28 9985 9687 020 7372

z DH 5 10 708 366 9§91 8474 6176 7979

°§0 Sl 10 15 725 4&%5 9893 8684 4177 8278
T

SHOT 10 15 739 5%8 9§89 9290 4960 7981
SH 5 15 686 3kl 9792 7975 5269 7372

The class-wise precision and recall reveal the deficiency of ffereint descriptors. Gener-
ally, the classeground facadesandvegetatiorcould be well distinguished from the other
classes. These classes show consistent appearances iffehentidatasets and are there-
fore easily to distinguish from other classes even locally. Vegetation is mésthacterized
by a scattered point distribution.

Classifyingpoles vehicles andwire is far more challenging as the results indicate. Poles
and wires are sometimes only represented by a few laser range pointseaticbigfore
often confused with scatter from vegetation. Vehicles are the most comipjest® in the
datasets and show veryfiirent surfaces, which are locally indistinguishable from walls or
sometimes vegetation. As discussed earlier, a larger support radiuskateinaluable con-
textual information, but can also lead to wrong classifications. Especiatlyei/achtberg
dataset, vehicles were often confused with vegetation, since the framfecar is similar

to lower bushes and shrubs. In all datasets, windows in the facaddseainduced sparsity

of laser returns in these areas leads to a misclassification of building poirggetstion.

In summary, the softmax regression showed the best results with the Spi@image and
distribution histogram using the global reference frame and a supmbusraf 15m and
2.0m. Interestingly, the softmax regression is close to the performance of tleecomoplex
FM3N with large support radii regardless of the employed feature septation. This con-
firms the intuition formulated in the beginning of this chapter: more complex featae
compensate a simple classification model. Thus, the advantage of collectisdictdion
approaches seems to appear only with small support radii.

Classifier performance. Figure[3.8 shows the best results of the local and the collective
classification approach with the Wachtberg dataset. We see in generakacarmistent
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Figure 3.8: Qualitative results of the evaluated classifiers with the Wachtberg datasefafi¢is are colored
as follows: purple= ground blue = building facadesgreen= vegetation orange= poles yellow = vehicles
In subfigure (a) the softmax regression results are shown and steé(tg) depicts the Functional Max-Margin
Markov Networks results.

classification result of the collective classification approach. The FM@dggates label
information through the graph and label assignments of a point can baeditwpneighbor-
ing points. In contrast to the labeling of the collective approach, chahgdsabel assign-
ment in the local classifier regardless of the neighboring points and ¢inei@ore diverse
labeling is observable. However, we can also observe regions, Wdiskpropagation
leads to wrong classifications, shown in the third example of Figute 3.8. Aestogfident

label outvotes neighboring labels if these have a smaller value in the nodeiglote

The softmax regression is unable to separate the diverse appeavbaaestain class from
other classes. For example, the pole shows vegetation labels at the tope dowdtdm part

41



3 Histogram Descriptors for Laser-based Classification

i I

250 |{mmm NH . Dr - s B sHoT R

— 200 {CJ neighbors reference frame MMM binning |~~~ oo

'@ 150 e -
£

e | - mall-

0.5

support radius

Figure 3.9: Average time needed to calculate the evaluated descriptors for evarptase We separated the
neighbor search, reference frame calculation, and actual calcuddttbe bin indices for each descriptor. The
increase in neighbor search time for the spin image and distribution histagsalts from the increased search
radius.

(see Figuré_318a, example 1). This is mainly caused by the végreint feature represen-
tation of the middle part compared to the upper and lower part. We essentialbbsarve
here three parts of the pole, which aréeliently encoded in the descriptors. In these cases,
it is certainly not possible to achieve well localized clusters of feature k&dioa single
class in the feature spaces, which would enable the linear classifier teefiadasing deci-
sion boundaries. The FM3N shows better and more consistent classifioagialts in this
case due to the flexibility in the decision boundaries.

Runtime performance. In Figure[3.9, we show the average computation time of the his-
togram descriptors measured on the Wachtberg dataset. In this diagraseparated the
different processing steps of the descriptor calculation, i.e., the neaigidboesearch, the
calculation of the reference frame, and the actual calculation of the biresdiocreasing
the support radius increases the number of neighboring points anequenly the overall
computation time. Note, in case of the neighbor search of the spin image arilutistr
histogram, we increase the search radiusv®yto get all neighbors inside a cube instead of
a sphere, which directlyfBects the time needed to search for neighbors.

If we only account for the computation time, then the normal histogram andrepies are
the most éicient descriptors. The distribution and spectral histogram are more cotople
compute and show the wordfieiency. But if we also consider the quality of the classifica-
tion results, then the spin image is the ma&t@ent descriptor combining fast computation
with high accurate classification results.

Generally, increasing the support radius leads to better performaribe tafcal classifier,
but this increase must be payed with more complex feature computations. étowey
computation time of the descriptors of at least 3 seconds for the smallestldastogram
is still too high for real-time processing. But we are certain that the ovevatipcitation
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time can be significantly reduced by a more careful implementation using centeom-
putation of the descriptors andhieient sub-sampling strategies.

3.6 Summary

In this chapter, we evaluated several histogram-based descriptdisefatassification of
three-dimensional laser range data in urban environments. We usedtdaeguired with
different state-of-the-art sensor setups and showed that the choeatafels dramatically
influences the performance of all investigated classification approdérms the presented
results and the discussion in the last chapter, we can draw the followintus@mns:

1. A proper choice of the reference frame significantly improves thepaghnce of all
evaluated classification approaches; the global reference frameupasas to the
usual normal-based reference frame, since we get more stablenefdrames and
can furthermore distinguish very similar surface classes, e.g., grouhdualling
facades.

2. The performance strongly correlates to the support radius; a laoggort radius
improved the descriptiveness significantly and usually leads to a bettermparice,
since we implicitly encode contextual information, which leads to more discrimina-
tive features.

3. The number of bins showed no significant influence on the classifiqatidormance,
but the influence increases at larger support radii, since a too fimgizaton of the
surrounding leads to instable feature representations.

4. Taking both the classification accuracy and the computation time in cortgigethe
spin image and the SHOT descriptor are the mésicive and ficient descriptor.

5. The spectral histogram showed competitive performance in most, dageis too
costly to compute compared to the other approaches.

In the next chapters, we will use these insights for the development otlamsification
models for point-wise and segment-based classification. The choice aférence frame
is the most important finding: Independent of the classification approaelglobal refer-
ence frame improves the descriptiveness of all descriptors significantly.

Future Work.  One next step in the investigation of suitable features for three-dimensional
classification is certainly the investigation of the combination of histogramigésa. The
general feature computation is currently simply nfiiceent enough for real-time compu-
tation in our implementation. An investigation of strategies to enhance the runtirice-per
mance is therefore mandatory to apply such point-wise classification in gradfeexpect
significant reductions in overall computation time by removing irrelevant paimisthe us-

age of concurrent computation, since each descriptor evaluation iseindept of all other
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3 Histogram Descriptors for Laser-based Classification

descriptor computations. Combining both strategies, i.e., reducing the owvenalier of
points and concurrent computation, should enable a near real-time poathassification
in urban environments. The recent work of Pastuszka [2013] shthagthe overall compu-
tation time can be significantly reduced by sub-sampling of the point cloudreintkdligent
reduction of descriptor computations without sacrificing classification acgur

Next Chapter. Our analysis showed that the classification of most classes is plagued by
a diverse local appearance of these objects. For example, the plaet tapp of a pole is
different from the appearance at the bottom near the ground. Thus, dasstandable that

a linear classifier, such as the softmax regression, faces considprablems in finding
hyperplanes, which separates both appearances together fronealtiattses. We showed
that an increased support radius can alleviate these problems by ingréses similarity

of both feature vectors, but this is dearly bought by computation time. Ingkeanapter,

we propose an approach resolving appearance ambiguiffeseditly and develop a novel
model combining ficient softmax regression and ideas from nearest neighbor classifica-
tion.
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Chapter

Efficient hash-based Classification

Supervised classification usingfieient linear models, such as softmax regression, is only
possible if we encounter classes showing linearly separable clustense@eently, if fea-
ture vectors of a single class are scattered over the whole featurevgpaam not expect

to learn a linear classifier enabling us to accurately predict the classpsintiawise clas-
sification of three-dimensional laser range data, scattering of featatersds prevalent
rather than exceptional. For instance, local appearance of complextxlgech as cars,
varies drastically for dferent parts of the object. Every part induces féedént cluster in
feature space and might make it impossible to find linearly separating hypest@tween
different classes.

As discussed in the previous chapter, increasing the support radpsstbealleviate this
problem by making feature vectors offfdirent object parts more similar. Alternatively,
projecting feature vectors into high-dimensional spaces can also leadddyiseparable
classes — support vector machines, for example, use this (kernel) Amckher option is

to use more complex classification models that are able to learn non-lineapddmsind-
aries. One of these alternative classification models is the collective clagsifithat takes

the vicinity of a laser point into account: intuitively, class labels should grafasmoothly
among neighboring points. All solutions, however, come at the expertsglur computa-
tion time for learning anfr inference and the vast number of available laser range points
might render such approaches impossible.

A recent development in the machine learning community has been the insighiassive
datasets are not only challenging, but can also be seen as an oppdioniatba et al.,
2008a]. Instead of developing more complex classification models, matsiasets allow
to move in the opposite direction: How much can the data itself help us in solving the
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problem? Halevy et al. [2009] describe this concept as exploiting “theasonable féec-

tiveness of data.” Massive datasets are likely to capture even ragetasy the problem
at hand. Does this also hold for our classification task? Can we learn dingotéristics of
objects from very dense scans without learning complex models?

Nearest neighbor classifiers exploit this data-centered view in its pfforest simply store
all available data and use that data for prediction. Although conceptuallyesiagplying
nearest neighbor classifiers on three-dimensional laser range dateesehighly éicient
ways of (1) storing millions of training examples in memory and (2) quickly finaiamh-
bors at prediction time. Our main contribution is to address both issues Bsesiing each
feature vector by a compact binary code that is constructed so that sigalard vectors
have similar binary codes. In turn, similar neighbors have codes within a staalming
distance of the code. Then we learn a softmax regression model locatlglbvectors with
the same binary code word. More precisely, we use Weiss et al.'s apleahing to com-
pute compact binary codes [Weiss etlal., 2008]. Using codes learnsgegyral hashing,
retrieval can be very fast — millions of queries per secondfdithe-shelf PCs. Our experi-
ments show that the resulting approach, called spectrally hashed sofgnessien (SHSR),
can dficiently represent very flierent appearances of objects and improve the softmax re-
gression results significantly without sacrificing computatiofiediency. Spectrally hashed
softmax regression works very well in our application: identifying casbage, walls and
load bearing areas in three-dimensional laser range data. To ournmegliekige, we are
the first to apply spectral hashing to a robotics task and combine this wittrassofegres-
sion.

This chapter is mainly based on our work published in Behleylet al. [20fhGjontrast to

this earlier work, we adapted the model to incorporate prediction of locaklmdelarned
using softmax regression as introduced in Sedfion 2.2.1, "Softmax RemiéssVe fur-
thermore extended the experimental evaluation and evaluated our dpprotiee datasets
presented in Chaptét 3, "Histogram Descriptors for Laser-basedifidation).” These ad-
ditional results strengthen the earlier findings on the superior perfomartbe proposed
combination of similarity-preserving hashing and local classification modedscall show

a more extended andftirentiated view on the performance of the evaluated classification
approaches.

The rest of the chapter is structured as follows. First, we discuss relar&dn Section 4.11,
“Related Work.” In Sectiofi 412] "Spectrally Hashed Softmax RegreSsianintroduce the
proposed classification approach employing spectral hashing, whidkoidaefly intro-
duced in this section. Sectibn 4.8, "Experimental Evaluation,” presentsiexpntal results
on the datasets presented in the previous chapter and finally Secliop drdima8y,” con-
cludes the chapter and outlines future work.
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4.1 Related Work

The recent advent of fast three-dimensional laser sensors jpngdudlions of laser range
measurements in a fraction of a second lately attracted increasing interestrivbtitics

community. Particularly in outdoor applications, precise range measurementiigtas in

the vicinity are essential for a safe and collision-free navigation.

Mostly, approaches based on Conditional Random Fields (CRE¥|thaet al.| 2001] have
been used to classify three-dimensional point clouds. Anguelov ett5]2pplied Asso-
ciative Markov Networks| [Taskar etlal., 2004] for this purpose, andtrbthe following
approaches were based on this collective classification approactevidgwhese techniques
require quadratic and linear programming for learning and inferenspectively, which is
almost intractable for massive datasets. Several methods have beesquttpspeed up the
overall processing, either by employing data reduction [Lim and 'Sutéi7,Zriebel et al.,
2006] or by using moref@cient learning and inference methods [Lu and Rasmussen, 2012,
Munoz et al.| 2009&, 2008, 2009b]. In the following, we will briefly menttbe most
recent approaches for supervised three-dimensional classificdtiaren range data and
summarize their main ideas. We explicitly concentrate on approaches aimiregattiog
the class of every point instead of using segmented point clouds [Himmblsbat:, 2009,
Spinello et al.| 2011] or exploiting track informatian [Himmelsbach and Wuesns2612,
Teichman et all, 2011, Teichman and Thrun, 2012].

Munoz et al.|[[2009b] showed how high-order interactions betweenedigustead of pair-
wise couplings and already classified scans can be used for accorbtwam classifica-
tion. Furthermore, they proposed to use functional gradient boostiagiffret al.,[ 2007]
for learning node potentials as weighted sums of linear regressors insthadisually used
log-linear potentials_[Munoz et al., 2009a]. Agrawal et al. [2009]raagted a CRF with
object potentials generated by segmenting the scene into objects and cajdhlatiovari-
ances of the objects’ laser points. Lai and|Fox [2010] use a probab#istimplar-based
approach leveraging three-dimensional models from the web, and apjgiadin adap-
tion in order to remove artifacts not visible in real laser range data. Pattetsd. [2008]
employed a nearest neighbor approach using spin images [Johnsbieled, 1999] and
extended Gaussian images (EGI) [Horn, 1984]. First, a set of referpoints is sampled
from the labeled training scene, spin images are computed and stored inbasgafar
later retrieval. Classifying unseen scans is achieved by calculating spiesnahgampled
points and matching these against the database containing also labels. Hiratlysters
of labeled hypotheses are verified using the EGIs. Xionglet al. [208el tacked softmax
regressions to successively improve the classification results by imetingp contextual
information. An initial point-wise classification and its labeling is used to learriesen
tual models that encode spatial relations such as “tree foliage is abovek& and vice
versa. Later, these relations are used to incrementally improve the cldssifiesults us-

47



similarity-
preserving
hashing

4 Efficient hash-based Classification

ing stacking [Wolpert, 1992]—classification results of earlier stageseatifes of later
stages.. Lu and Rasmussen [2012] smooth classification results of a lagsifier using
distance-based potentials in a CRF.

In summary, a lot of fort has been put into the development of more complex classification
models and most of the presented approaches need a lot of processiEgfpr inference.

As we pointed out in the motivation, we move in the opposite direction, inspiretthdoy
work of Torralba et al/[2008b], who employed the power of a vast remabimages to label
arbitrary scenes according to a very large database of images fronelilenewn LabelMe
[Russell et all, 2008] dataset. In line with their work, we use distanceepring hashing to
enable a fast retrieval of approximate nearest neighbors. Howesexdditionally use local
classification models to avoid the linear search of the best matching neighttedtice a
label.

Finally, we have to mention the well-known locally weighted learning of Atkedaile
[1997], which fits local models usinkg nearest neighbors from the training data for each
query. Our aim is to avoid the need for exact calculatiok néarest neighbors, since this
is intractable for massive datasets.

4.2 Spectrally Hashed Softmax Regression

In our application, we have a huge amount of laser range points andwandaubtedly as-
sume that the induced decision boundaries between classes are nonfrtéés end, near-
est neighbor classifiers are an elegant and flexible tool for classifidatsuch a regime, as
introduced in Sectioh 2.2.2], "k-Nearest Neighbor Classification.” Hewneas we must re-
peatedly find nearest neighbors for every prediction, we needdasest neighbor retrieval
techniques.

Recentlysimilarity-preserving hashinfpr fast approximate nearest neighbor search has re-
ceived considerable interest by researchers within the machine le§@ung et al.| 2012,
Lietall,/2011] Salakhutdinov and Hinton, 2009, Weiss &t al., [2008] asalcomputer vi-
sion communities| [Gong and Lazebnik, 2011, He et al., 2013, Kulis andn&nali2012].
Traditional hashing methods try to embed vectors such that collisions, ikeredit ele-
ments getting the same hash value, are avoided. Similarity-preserving hastingyer,
learn codes, which result in collisions, if the original vectors are similargpeet to some
similarity measure. In our case, the similarity is expressed as euclidean dislamsmaller

the distance between the vectors, the more similar these vectors are.

Similarity-preserving hashing methods learn a mapping from the high-dimexhsigput
data to a low-dimensional Hamming, i.e., binary, space. Note that the fact ¢hairthed-
dings are binary is critical to ensure fast retrieval times, which enablassthef hardware-
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based intrinsic binary comparisons. As Weiss et al. [2008] report, thisdinetrieval can
be very fast; millions of queries per second on standard computers. dinenkthg distance
between two binary codewords can be computed via an XOR operation bandaunt.
Moreover, if the input dimension is very high, hashing methods lead to enrmemory
savings as few bits are often alreadyfsiient to compactly encode the whole dataset. This
beneficial property lead also to increasing interest in the computer visiomaaity for
fast retrieval of similar images from massive image collections [Kulis and i@az1 2012,
Torralba et al., 2008b]. In that application, every image is encoded wsilyga few bits
and the whole collection can be queried using the binary codeword ofrg tjoage. The
retrieved images are then simply ranked according to their hamming distancesjaeity.
Lietall [2011] show that hashing can also be directly used for learoirgassifiers on
large-scale datasets, if feature vectors are binary codes.

Hashing naturally leads to the following point-wise classification approach:

1. (Hashing) Learn a similarity-preserving hash functibrresulting in compact binary
codes for a given set & scans.

2. (Local Classification) Learn a local classification mod@&(y|x, h(x)) on all scan
pointsx sharing the same binary cotéx).

3. (Prediction) For classifying a new scan poirt compute the binary code af look-
up the associated local modefy|x, h(x)) and use it to assign a class lalgel

Indeed, this non-parametric large-scale classification approach icilspese of locally
weighted regression _[Atkeson el al., 1997], since we perform cleasifin around a point
of interest using all training scans that have identical binary codes. é\argue in the
next section, if the lookup of the code for a new scanfigient, this can yield very fast
classification performance. Furthermore, as our experimental evaluaiioshow, this
approximation works surprisingly well in our classification setting — outpetiog nearest
neighbor and softmax regression.

4.2.1 Spectral Hashing

We use spectral hashing from Weiss etlal. [2008] to compute compacy lwodes. The
main benefit of spectral hashing is that the partitioning of the feature s@acée com-
puted in linear time. Recent studies show that spectral hashing is competibitreetamore
complex approaches, if the desired output dimension of the binary coslesilb

Following the original derivation of Weiss etlal. [2008], spectral haghiorks as follows.
To preserve similarities, one is interested in a hash function that maps nepubyectors
Xi andx; to binary hash codes with a small Hamming distance. Thus, the objective for a
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hash functiorh : R" — {0, 1}¥, which helps us to searcfffieiently x; € R"in a large dataset
that is distributed according to a distributi®(x), can be formulated as follows:

minimize fK(xi, xj) - [|h(xi) - h(xj)||2H - P(xi) - P(xj) dx; dx; (4.1)
subject tofh(x)P(x) dx=0 (4.2)
f h(x)h(x)" P(x) dx = Id (4.3)

Here, the functiorK(x;, xj) defines the similarity betweenftirent data points. A natural

choice is the Gaussian kerni€[x;, xj) = exp( |x - xng /€2, i.e., vectors with a small
euclidean distance are assigned values near 1 and the value quicklysfedter increase
the distance. The two constraints encode the requirements thatffibeewli bits of code-
words should be independent (Equatfiond 4.2) and uncorrelated (Exadadp As Weiss et al.
[2008] show, finding such codes is NP hard, but the problem canlidedsim polynomial
time by relaxing the constraint that the codewords need to be bim@agye {0, 1}¥. Indeed,

it has been shown that the solution is given by an eigenfunebipg. If P(x) is separa-
ble, i.e. P(x) = [1; Pj(x"), and the similarity is defined by the Gaussian kernel then the
solution®(x) is given by the product of the one-dimensional eigenfunctions

O, (X(l)) @, (X(Z)) Dy (X(n)) (4.4)

and eigenvaluel; - 1> --- An. Especially, ifPj(x) is a uniform distribution on the interval
[a, ], the eigenfunction®;(x) are given by

®j(x) = sin(g + %x) (4.5)

€2

2

_m

/ljzl—exp( b_a

2
). (4.6)

Assuming that the data is uniformly distributed, we can now calculate the eiggitns
and threshold the values at O to obtain a codeword. This results in the fajj@lgorithm
Spectral Hashing to determine a hash functidnfor data pointsX = {x; € R"}:

1. Calculate thé principle components using eigenvalue decomposition of the covari-
ance matrixC. Rotate vectors; according to thé largest eigenvectors, resulting in
sWo<j<k.

2. Determine for every dimensia) = min; (%) andb() = max; (") and compute
the eigenvalues according fo (4.6).

3. Threshold thé& eigenfunctionsby(x) with smallest eigenvalue at 0 to obtain the hash
code.
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4.2 Spectrally Hashed Softmax Regression

As empirically validated by Weiss et/al. [2008], the algorithm is not restrictechifmrmly
distributed data, and can generate hash codes that are capable @f firgdind partition of

the data, which allows tofciently search for nearest neighbors. In the next section, we
show how the feature space is partitioned using spectral hashing. We fsitthermore,
that the hash function can be learndfiogently, since we do not need to handle every data
point explicitly: computing the covariance isfaient. The computation of the covariance
can be done incrementally (see Equafiod 2.2 in Se€fion]|2.1.3), and we cafotbarven
handle datasets that do not fit into memory. In turn, we only have to deterneimamimum

and maximum of the rotated feature vectors to get a partition of the feature.spa

4.2.2 Combining Spectral Hashing and Softmax Regression

The main idea underlying locally weighted learning is to use local models leé&mrmok
neighboring points of a query point. Learning models for classificatiomeatigtion time

is known as lazy classification and with this paradigm it is also possible to @ppate
non-linear target functions. However, determinkngearest neighbors for each prediction
is inefficient for large training sets and the advantage of local prediction turns idisad-
vantage in terms of computational complexity.

To overcome this, we patrtition the feature space using the hash furcéiod learn local
models directly from the training data, and finally store local models for epariition
induced by the hash functidm when necessaryn particular, we first determine for eachSHSR learning
example &;,y;) € X of the training seiX the binc = h(x;) in a hash table+. For each
occupied entryc of the hash table, we determine the clas§€snside the bin#; and
learn a local softmax regression model on the suf{sey)|h(x) = c}, if |C¢ > 1. If only
feature vectors of a single class are hashed to a codeword, we skiathim¢eof a local
classification model and simply store the class lab&?9n The learning of the spectrally
hashed softmax regression (SHSR) is summarized in Algofifhm 1 on the agat Note
that the proposed method is not restricted to softmax regression, so tieatildesven use
non-linear classifiers for local classification within each partition definethb hashing
function.

To determine the label distributid®(§|X) of an unseen feature vectky we have to distin- SHSR inference
guish several cases. Let"h(X) be the codeword of feature vector

1. If |Cé| > 1, we simply return the label distributid?(y|X, €) of the previously learned
local classification model. Note, that we assup(g = j|X,€) = 0, if j ¢ C°, since we
have not encountered any training example with such a label.

2. If|C%] = 1, we setP(§ = jIX,&) = 1, j € C® andP(y = kIX, &) = 0,k ¢ C® otherwise.
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4 Efficient hash-based Classification

Algorithm 1: Learning spectrally hashed softmax regression
Data: training setX = {(x;, i)}
with featuresx; € RP and labelgj; € Y, |Y| = K
Result hash functiorh,
softmax regressionB(y|x, ¢) with parameters® = {(67, .. ., )},
lookup table of classes® per codewora

learn hashing functioh (cf. Sectioi4.211)
/* build hash table */
foreach (xi,y;) € X do

¢ = h(xi)
HE = HU{(x,Vi)}
end

/% learn local softmax regressions */
foreachce {0,...,2¢1} do
C®={yl(x,y) € H}
if |C° > 1then
minimize Equation 2.25 ott{¢ from Sectiori 2.2]1
end

end

3. If |Cc¥| = 0, we have no model associated with the codeword. And therefore set to a
uniform distribution P(9|%) = |Y|~1. We increase the search radius and determine the
contribution from neighboring hashes with increased hamming distarig&)to

More precisely, we first use models with radius 0, ilB(X) — h(x,)|| = 0. If we are unable

to retrieve such model, we continue with neighboring partitions for hakpe3, where

IIh(X — h(xp)ll = 1. We continue increasing the search radius until we find a neighboring
partition that contains a model.

The final label distributioriP(y|X) is then the mean over all neighboring codewokds

. 1 o
P(§I%) = WCEZNPMX’ c) 4.7)

Note that if we already encounter a model Fg§R), we simply haveP(§|X) = P(¥|X, h(X)).
Since the hashing function is similarity-preserving, using models of codwwith in-
creasing hamming distance lead to predictions in the sense of locally weightathdea
However, since inference in SHSR is a simple lookup of local classificatiatelmdin a
table, we can determine the prediction with only a little overhead compared to treditio
nearest neighbor models.
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0

(b) (©) (d

@ (e)

Figure 4.1: Some examples of the partition of a highly non-linear feature spacei(g)the proposed spectrally
hashed softmax regression. Subfigure (b) is generated 2diitg, (c) uses bits, (d) was trained witR bits
and in (e) we usetl6 bits for the hashing of the feature space. The repetition in class assitgnisieaused by
the sinusoid in the eigenfunction.

Figure[4.1 visualizes some examples of spectrally hashed softmax regréssitiferent
numbers of bitk. With increasing codeword size, the partitioning increases and also the
decision boundaries of the local softmax regressions adapt to the mamf@ature space, as
we have argued in the beginning of this section. Furthermore, smaller parigiad to less
data points inside a partition, thus the learning of the softmax regressioreqaerformed
more dficiently due to the reduced size of the training set. But also a negativefiedeis
visible: as the number of possible bits increases, it gets more likely to pedeenfitting,

as we show in the next section.

4.3 Experimental Evaluation

In this section, we present results on the classification performanceeagti¢iency of our
combination of spectral hashing and softmax regression. We perforxieasere experi-
ments on several datasets to shofiedent properties of our proposed approach. In a first
set of experiments, we present results on thréemint datasets and use the same experi-
mental setup as presented in Secfion 3.4, "ExperimentaliSetup.” Aftersdisouof these
results, we show thefigciency of the inference in comparison to other local classification
approaches — nearest neighbor classification, spectrally hashezkneaighbor classifi-
cation, and softmax regression. We furthermore evaluate the influertbe paarameters

on the classification performance — number of bits used in the spectrahbamid the
maximal search radius.

All classifiers were implemented in4G- and the experiments were performed on an Intel
Xeon X5550 with 267 GHz using a single core and 12 GB memory. If not statéimdi
ently, we used codewords of 8 bits and maximal search radius of hammingadistefor
the spectrally hashed softmax regression. The local softmax regressied a fixed reg-
ularization ofA = 0.01 and the intercept was fixed to01 The parameters of the single
softmax regression were also fixedte- 0.01 and intercept.D.
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Figure 4.2: Comparison between Softmax Regression (SR) and Spectrally Hasfieth$ Regression (SHSR)
using8 bits.

Classification results. In our earlier study/ [Behley et al., 2010], we compared a binary
logistic regression [Komarek and Moore, 2005] and a combination otspémshing and
locally learned logistic regressions, called spectrally hashed logisticssgne using a spin
image with global reference frame. The earlier results evaluated on a&tsitadar to the
Wachtberg dataset presented in Secfion 3.4 indicated a clear advantdgespiectrally
hashed logistic regression over the logistic regression in that setting. Tdredex evalua-
tion using diterent descriptors and support radii in this chapter reveals a mieestitiated
view on the specific performance infidirent conditions.

In this chapter, we used softmax regression, which directly learns a muds-classifier
from a dataset with multiple classes. Another well-established method for Igamulti-
class classifier is to leall separate binary classifielP(y|x) with y = {1, 0} for each of the

K classes, where all oth&— 1 classes are combined into a single auxiliary clas0; we
used this so-called 1-v&-strategy inl[Behley et al., 2010] and a final predictive distribution
P(y|x) over allK classes is calculated by normalizing the vectoPgfy = 1|x) predictions.
Both learning paradigms are capable of learning f@céive multi-class classification ap-
proach as shown hy Rifkin and Klautau [2004] or Daniely et al. [20H2\wever, as argued
by|Bishop [2006], the learning df separate classifiers may lead to ambiguous decision re-
gions, where all binary classifiers predii(y = 1|x) < 0.5, i.e., every classifier is confident
that the feature vectox does not belong to its clags In a real multi-class classification
approach, e.g., softmax regression, the decision boundaries betlaseescare influenced
by every class and consequently, such situations are impossible. lequame, this be-
havior also influences the performance advantage in favor of the ajpetiashed logistic
regression compared to the logistic regression, since a partitioning ofahedespace in
subspaces naturally reduces the occurrence of ambiguous regrmrefdre, the results in
this section do not always show the clear advantage of a partitioning cfaleré space as
stated in our previous work [Behley et al., 2010].

Figure[4.2 show the results of the SHSR using a global reference franoenpacison to
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Table 4.1: Precision and recall on the Freiburg dataset.

C Feature b ) F1 ground facade pole vegetation
NH 15 2.0 70.3 985 9488 1224 8286
. DH 7 15 77.7 9909 9082 5756 7779
n Sl 10 2.0 76.2 999 8481 5562 7974
SHOT 10 2.0 82.3 999 9391 6063 8584
SH 7 2.0 80.8 988 9387 5166 8483
NH 10 2.0 72.8 o®6 9390 2Q27 8185
% DH 7 2.0 77.8 99 8984 4761 8477
I Sl 5 2.0 77.2 9®8 8883 4965 7875
P sHoT 15 2.0 79.9 998 8992 4662 8780
SH 5 15 80.9 9%8 9289 4865 8682

softmax regression usingftiérent support radii. In these results, we can see larger im-
provements especially in the Wachtberg dataset, but only slight improvemehts dather
datasets with small support radius. These improvements are mainly cautbeddtylity of

the SHSR to representftiérent appearances offidirent classes correctly.

In line with the results of Chaptel 3, “Histogram Descriptors for LaseeldaClassificatign,”
the global reference frame significantly improves the performance ofHitsRSMoreover,
we can observe an overall improvement of the classification results cedmeathe softmax
regressioneven even with the local reference frame (cf. AppénddiXt8$ observation can
also be explained by the increase in model capacity of the SHSR. Due to #helodels of
the SHSR, we can expect that the model can disambigu@iteetit classes even if the refer-
ence frame is unstable. The local models adapt to this situation and still allow aovidp
classification performance of the overall classification approach.

Tabled 4.11[ 4]2, arid 4.3 show the classification results for each class indepmezision
and recall. Both classifiers show a similar best performance for each wlasre the classes
ground, vegetation, and facade are consistently better classified thathéreclasses. As
pointed out earlier, the other classes show a more diverse appearaheegetation shows
a more scatter-like appearance, which is often assigned to sparse pdiotsndaries of
partial occlusions. The presented class-wise results do not revisdraadvantage of one
or the other approach, but a visual inspection shows a more considtelm¢pof the SHSR
compared to the results of the softmax regression.

The comparison of the visual results in Figlre] 4.3 shows the improvement afldbsi-
fication results for dferent classes in the Wachtberg dataset. Compared to the softmax
regression, our proposed approach is able to capture the multiple appesiof the pole
and consistently assigns the correct label. As also shown in the closdiapsis a large

55
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Table 4.2: Precision and recall on the Pittsburgh dataset.

C Feature b ¢ F1 wire pole ground vegetation facade vehicle

NH 5 15 533 183 125 9998 9290 8972 2541
DH 7 2.0 692 242 5559 9999 9487 7981 6569

(D/:) Sl 10 2.0 67.8 2/A5 5764 9999 9484 7480 6964
SHOT 15 2.0 68.7 283 4056 99100 9692 8885 7471
SH 7 15 650 284 573 9999 9185 7974 4060
NH 5 20 544 23 529 9998 9692 8980 2637

(0/:) DH 5 15 67.8 34 6059 9999 9386 7777 6561

T Sl 10 2.0 67.0 2828 5862 9999 9084 7672 7268

P SHOT 15 2.0 67.4 226 3851 9999 9691 8686 7371
SH 5 1.0 65.7 4@37 5262 9999 9285 8075 4357

Table 4.3: Precision and recall on the Wachtberg dataset.

C Feature b 6 F1 vehicle ground facade pole  vegetation
NH 15 2.0 520 m7 9387 9485 223 7169

» DH 7 15 687 4555 9692 8077 5066 7473

%) Sl 20 20 734 o®m4 9794 7681 5570 7874
SHOT 15 20 715 556 9692 9190 4055 7678
SH 7 15 687 257 9793 7977 6380 7970
NH 15 20 56.2 282 9188 9191 615 7169

(0/:) DH 7 10 697 4%4 9392 8076 5459 7772

(% Sl 10 20 734 6®k7 9694 7775 5664 7675

SHOT 15 15 69.6 540 9393 9089 3946 8073
SH 7 15 712 560 9694 7978 5261 7774

improvement in the classification of the car. Here the softmax regressiavelhas the
Functional Max-Margin Networks (see Figuirel3.8), assigns the lalggtagon to a large
upper part of the car, but the SHSR manages to assign the correchiieel However,
as noted in Chaptét 3, "Histogram Descriptors for Laser-based C&admf,” these results
also reveal the shortcomings of a local approach compared to colleppveaches. We still
see single points in vicinity to correctly classified points, which are assignta: tarong
class. The borders of scan shadows on buildings are still incorrecteldlas vegetation
and the other example for a car still shows a mix of vehicle and building classifisa

In summary, the presented results confirm our hypothesis that the iadreagacity of the
proposed SHSR improves the classification results of a local classificgwnach. The
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Figure 4.3: Qualitative results on the Wachtberg dataset. The labels are colored agsfolarple= ground
blue = building facadesgreen= vegetation orange= poles yellow = vehicles In subfigure (a) the softmax
regression results are shown and subfigure (b) depicts the specasiigdhsoftmax regression results.

visual results on the Wachtberg dataset clearly show a more consistelihdgadnd that
different appearances are correctly handled by the spectrally hastraebspegression.

Runtime Performance. For comparison to established approaches, we calculated spin
images using a global reference frame using 10 bins and a suppors di0 m. In the
following, we report the average time needed to determine the labeling ofiédl &b the
Wachtberg dataset. These timings do not include the feature calculation tintgertone
needed to estimate the normals.

We implemented a standard nearest neighbor classifier ésihtyees [Arya et &ll, 1998]
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classification approach 1F avg. inference [s]
Nearest Neighboik(= 1) 6932 180559
Nearest Neighbork(= 3) 6954 202620
Nearest Neighboik(= 5) 6962 216833
Spectrally Hashed Nearest Neighbor (4 bits) .968 358019
Spectrally Hashed Nearest Neighbor (8 bits) .263 91698
Spectrally Hashed Nearest Neighbor (16 bits) .765 17864
Spectrally Hashed Softmax Regression (4 bits) 74.23 0.45
Spectrally Hashed Softmax Regression (8 bits) AT3 101
Spectrally Hashed Softmax Regression (16 bits) 587 316
Softmax Regression 25 0.11
Functional Max-Margin Markov Networks 2 8386

Table 4.4: Inference time of dferent classification approaches.

to show in principle the capability of a nearest neighbor classifier. We additjoimple-
mented a spectrally hashed nearest neighbor classifier, where waetkgie spectral hash-
ing to speed-up the search for nearest neighbors. We used a Idakiagfor an éicient
query of nearest neighbors and store for every binary codewerigéture vectors with that
binary codeword from the training data. The spectrally hashed nesgibor uses the
exact same inference procedure of the spectrally hashed softmassigr using neighbor-
ing codewords, as described in Secfion 4.2.2. But instead of applyingkclassification
model, we simply compare the stored feature vectors with the feature vether giery la-
ser range point. We finally compare the inference time of all approachetfhwitfoftmax re-
gression and Functional Max-Margin Markov Networks [Munoz et @09a], which were
already discussed in Chaptér B, “"Histogram Descriptors for Lasaeb@lassificatidn.”

Table[4.4 summarizes the average time needed to estimate a label for evegnpodime av-
eraged It rate overall folds of the Wachtberg dataset. On averagé®0R0aser range points
per scan must be classified and the average training set containsiapietyx 450000 fea-
ture vectors, where ground and vegetation are responsible for the reestéturns.

In line with our argumentation in the beginning of the chapter, the nearedtbwiglas-
sifier shows a competitive classification performance compared to the othercomplex
approaches. However, the average time needed to classify a complets staearly to
high — at least 30 minutes for the classification of a complete scan. Incgethgimumber

of considered neighboksdoes not improve the classification rate significantly, which indi-
cates that the nearest neighbor classifier is not strorfiggtad by overfitting. Nevertheless,
we did not exploit the similarity of a large part of the feature space anduergtsimilar
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feature vectors to reduce the overall number of training examples.

In comparison to thé&-d tree based nearest neighbor search, the search exploiting $pectra
Hashing with large binary codewords is significantly faster. Especially witheasing
number of bits for learning the hashes, the simple linear search in featices/sharing the
same binary codeword turned out to be up to 10 times faster@488/s. 180%9 s) than
thek-d tree. This is remarkable, as we can only see a small drop in the overfalipance

of the spectrally hashed nearest neighbor approach compared tatmeagest neighbor
classifier (6576 compared to 682). However, both approaches are by far not applicable in
real world applications; waiting for 3 minutes for a classification result isanoéptable for

an autonomous system operating in dynamic environments.

Using our proposed approach of learning local classification modelghsets of the train-
ing set sharing the same binary codeword significantly reduces thennoéetiene (45 s vs.
17864 s) and improves the classification rate.gB4vs. 6576) compared to the spectrally
hashed nearest neighbor. Learning a local classifier for a haskdices the influence of
outliers and therefore improves the overall classification performanseveAsimply have
to exponentiate and multiply by the learned weight vector, we additionally savéntie
consuming search for nearest neighbors. Thus, tikn@) learning gets more complicated,
but the (online) inference time is significantly reduced compared to the planestaneigh-
bor approach. As the likelihood of finding a collision reduces with incrgasimber of
bits, we can see an increase in the inference time with increasing number(@f4fits with

4 bits vs. 316's with 16 bits). We observed in our experiments with spectral hashing that
the occupancy of the hash bins reduces significantly with increasing mahbiés. Hence,
as the number of available codes increases, we have to increase terselfus in terms
of hamming distance more often and this consequently increases the ief¢iraedn our
unoptimized implementation.

The softmax regression is the mogli@ent classification approach in comparison to the
other the approaches, as expected. But we have to note that the additishang with 4

bit hash codes increases the time for inference by o34 § and still allows near real-time
application with update rates of 3 Hz, if we neglect the time needed for featumputation.
As argued in Chaptéd 3} “"Histogram Descriptors for Laser-base&i@itagion,”, the Func-
tional Max-Margin Networks visually show the most consistent classificatisalts, but
also an increased inference time. In this computation time the construction ofier&st
neighbor gradﬂ] and the computation of the edge features is included. However, even if we
neglect this additional overhead, i.e., the graph construction and théatadnwof the edge
potentials, compared to the local classification approaches, the infaéretiegraph still
needs 1@0s.

! Note, the graph is constructed usik@iearest neighbor search ¥, which is significantly faster than
searching neighbors in high-dimensional feature spaces like ouifidaten problem, i.e. R1%.
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In conclusion, our proposed approach achieves the best classifigaitormance of all
local classification approaches and still shows a vdligient inference with only a small
overhead compared to softmax regression.

4.4 Summary

In this chapter, we presented a simple afiitent algorithm for classifying three-dimen-
sional laser range scan points of rigid objects, the spectrally hashetbsaiegression. The
combination of spectral hashing and local softmax regressions leamsdbsets sharing
the same binary codeword enabled us to learnfacient classifier outperforming other lo-
cal classification approaches. As shown in the extensive experimeatahgon, our new
approach allows us to use a smaller support radius for the descriptarththaoftmax re-
gression and achieves superior classification accuracy. Despitegtiesan classification
accuracy, we showed that our approach needs only little more time to cladasggr range
scan, which still enables venffeient inference. In summary, the visual inspection of the
classification results revealed that the presented classification appeaaishto more con-
sistent label assignments, because of an increase in model capacitly, emiaicles us to
learn multiple appearances of complex object classes, such as cass gnoleregetation.

Future Work. There are several interesting extensions of the proposed appré&aeh.
cently,[ Xu et al.[[2012] proposed an approach to learn a distanseieg hashing func-
tion for proportional data, which is exactly the kind of representation bgdhke histogram-
based descriptors. In our current approach, we use binary cods\reserving euclidean
distances of the original vectors, but these distances are only arxapptimn of histogram
distances, i.e., vectors close to each other in euclidean space might ligvditdance on
the simplex. Hence, an investigation of other hashing algorithms could lead ®auopf
sistent partitions for learning local models and therefore further impravelssification
accuracy. In our current implementation, we learn the mapping to binagwards and
the classification separately, but research on combination of classificatidals indicate
that jointly learning the classification and the weighting of the classifiers coatbtesub-
stantial performance gains. Therefore, a possible enhancement fetbented approach
might be achieved by learning a hash function enabling the local classdidiscriminate
different object classes.

Next Chapter. In the next chapter, we aim at detecting object classes relevant for au-
tonomous driving and we only need to consider objects that reside on dadyr The
overall setting is dferent, since we are interested in extracting objects with distinct bound-
aries instead of getting a rather general classification of all surfacédeviis the vicinity
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4.4 Summary

of the robot. The presented point-wise classification of this chapter ceulsséd in an
exploration-like application, where we are interested in a general désorgd the environ-
ment.

In the next chapter, we are particularly interested in object classesrthetry similar lo-
cally, such as pedestrians and bicyclists. We use a segment-basedceltassifnstead of
a point-wise classification, since it allows us to encode the overall appeacdh the whole
segment instead of relying on only local cues. The next chapter stillthsedready intro-
duced local descriptors, but combines these into an object-level destgba segment. In
addition, we show how to jointly learn multiple local softmax regressions and éfigiiing

of these local models. This approach is similar to the approach presentes @hapter —
we also partition the classification problem intéfeient parts and learn local classification
models. But instead of averaging each classifier contribution using thewaiglet factor,
we jointly learn a weighting function.
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Chapter

Segment-based Classification

In the previous chapters, we investigated and proposed methods fompséclassification
of three-dimensional laser range data. We showed that two main ingrediengssential
for an dfective classification approach using sparse laser range measureffigritsge

descriptors using a global reference frame and (2) local classifiatdieg the learning of
multiple appearances of the object classes. Combining both approachissayiefective

and dficient approach to point-wise classification, which is superior to other tbessifiers
and on par with more complex collective classification.

In this chapter, we concentrate on the classification of objects that akamel®r au-
tonomous driving — cars, pedestrians, and bicyclists. For this objettizenain challenge
lies in the local appearance similarity of pedestrians and bicyclists, as shdvigure[5.1,
that motivates the segment-based approach of this chapter as followsydidtiand a
pedestrian can only be distinguished if we additionally take the bicycle intcuatcoo-
occurrence of upper body and wheels of a bicycle constitutes the serdassdicyclist. If
we only use local appearance, we must use a very large suppors tadjet a feature rep-
resentation encoding theftlirence between a pedestrian and a bicyclist. Consequently, we
always need the complete object to distinguish both classes. Thus, wasprtpdirectly
use segments, parts of the point cloud corresponding to single objedts, avk extracted
by an dficient segmentation approach. For classification, the segments are éntde
ing a bag-of-words representation with point-wise local features usijigkal reference
frame.

In image-based object recognition, bag-of-word approaches lmaSahde et al., 2011] are
a well-established concept, but rarely applied in laser-based perceilun is remark-

able, since theyfber several desirable properties by design, which are advantagedics p
ularly in laser-based object recognition: (1) bag-of-words aregsbtmipartial occlusions,
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Figure 5.1: The image shows the distance-dependent sparseness of point gkngtated by the Velodyne
HDL-64E laser rangefinder of the exact same bicyclist and pedestridifierent ranges. At a distance®me-
ters, we can observe fine details of the bicyclist and the pedestrian, af@idbst due the sparse sampling with
range measurements at large distances. Highlighted/@asiecd circle) is the apparent local similarity between
bicyclists and pedestrians, which motivates the usage of segmentsibsigad of point-wise classification.

(2) the entries for a certain class should still be visible in a part of the bagyals, even

if we encounter an under-segmentation, (3) point-wise descriptorsecanrhputed inde-
pendently, which makes a concurrent evaluation possible. Thus, fbagrds extracted

from laser range data are a fundamental building block of the appraasiemed in this
chapter. We can profit from our earlier findings and use the previdosigduced his-
togram descriptors as words. Our experimental results indicate that tghtgsef Chap-
ter[3, {Histogram Descriptors for Laser-based Classification,” néyuransfer to the bag-
of-words representation: a global reference frame enables a norst @assification using
smaller vocabularies.

Recent work on object detection [Chen et al., 2012, Felzenszwalb 204l0)] suggests
that it is crucial to consider intra-class variations of objects. It has kbewn that the
performance of an object recognition approach can be improved sagttificby learn-
ing a mixture of classification models, where specific detectors learn vasatfom class.
Felzenszwalb et all. [2010] use a bounding box criterion to initialifiedint mixture com-
ponents of a class. In our approach, we use distance, volume, anxi¢néseof the three-
dimensional bounding box as latent variables and additionally learn evetynmigompo-
nent using dierent parameterizations of a histogram descriptor. This choice is motlwated
the distance-dependency of three-dimensional scans, i.e., we canugiifige details at
small ranges, but get only a sparse point cloud at far distancesitggelB.1). In line with
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Figure 5.2: Overview of our approach. First, we use a hierarchical segmentatthrawoarse-to-fine segmen-
tation. Each level of the segmentation is classified using a mixture of bagmafs with diferent parameteriza-
tions of a local descriptor. In the final stage, we filter duplicate segmeirtg the hierarchy.

the experimental results of Chapfteér - jon,” the combina-
tion of multiple classifiers enables an increase in classification performancentrast to
the last chapter, we learn both the partition or weighting of classifiers, anxdahsification
models depending on the re-weighted training examples.

Overall, our approach is divided in the following three stages: c.f. Fi§#e First, we
propose a hierarchical segmentation approach resulting in coarsetoidrarchies of seg-
ments. Our aim is to reduce thffects of segmentation errors on later stages in the classifi-
cation pipeline. We explicitly include over- and under-segmentations ancelé&ttr stages
filter these additional segments. In the second stage, we employ a mixture oflenodtgp
of-word classifiers to classify all extracted segments. We uBerdnt parameterizations of
a local descriptor for each classifier, which enables the overall apprim adapt to dier-
ent aspects of the data. The results of the specialized classifiers emgey@sing mixture
weights jointly learned with the classifiers. In the final step, we filter duplicateations.
We apply a greedy breadth-first search strategy to ensure consiséiietection hypothe-
ses with maximal confidence.
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5 Segment-based Classification

The main results of this chapter are published. in [Behley et al., 2013] ahisiohapter we
additionally evaluate two strategies to improve the ovefékiency of the approach. Since
we see a vast number of points on near ranges carrying no additiooahation, our first
strategy aims at removing these superfluous points. On the contraryctivelsstrategy re-
duces the number of operations needed to construct a bag-of-vegn@sentation by a uni-
form sub-sampling of descriptor evaluations. This means we still use alispoicompute
the descriptor, but instead of densely evaluating a descriptor at eggnygd the segment,
we use only a reduced set of points to determine the bag-of-words x@umséve evaluation
shows that both strategies reduce the overall runtime of the proposexhapsignificantly
and maintain comparable predictive accuracy on the investigated deteckon tas

The chapter is organized as follows. In the next Sedtioh 5.1, "Relatel Wee discuss
prior work concerning segmentation and segment-based classificatioseofrémge data.
Section 5.R, [Fundamentals,” briefly introduces laser-based segmerdatibthe concept
of bag-of-words. Building on the foundations of a simple segmentation gytate propose
in the next Sectiof 513[ "Approakch,” our hierarchical segmentationcambr. We further-
more describe our multiple bag-of-words learning approach combining muitgsifiers
using diferent vocabularies. In the following Section]5.4, “Tmproving thgdiency,” we
propose two strategies to improve the overall runtime performance of quoagh. In
Section 5.5, [[Experimerits,” we evaluate both the general approachurstrategies to
improve the éiciency. Finally, in Sectioh 516] "Summary,” we conclude this chapter and
outline interesting avenues for future work.

5.1 Related Work

Segmentation is a basic preprocessing step applied in many approaches déh large-
scale three-dimensional point clouds. One goal of segmentation is thetigdof the
overall number of points by discarding irrelevant segments.

The segmentation of laser range data is usually easier than the same task in dunage
the availability of distance measurements, which can be used to determine ludject-
aries. Over the recent yearsffdrent segmentation algorithms — mainly to discriminate
laser returns from drivable area from other obstacle points — weppea. Herein, we
will only reference approaches that directly process three-dimengiomd clouds without
any other information, such as images or map data.

Klasing et al. [[2008] determine segments by &iicent distance-based clustering, where
each cluster is defined by points with a given maximal distance to each othes.taD
this property, the ground must be filtered beforehand. Himmelsbach 20819] use a
two-dimensional elevation map to discriminate between ground and nonejmaints.
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They group adjacent cells with large heighffeliences above a threshold, and finally ex-
tract laser range points using oriented bounding boxes estimated fromocetinates.
Petrovskaya and Thrumn [2009] exploit the smoothness of road ssrfacfilter laser re-
turns from ground in an autonomous driving context. Ground points amifebd using

an angular grid and the following heuristic: a point is labeled as groundeifitiyle be-
tween vectors starting at that point is large enough. Himmelsbach let al][@6d a similar
approach to filter ground points, combine non-ground points using aatelevmap and
further refine segments exceeding a pre-defined height thresholgl thege-dimensional
voxel grids. Douillard et al! [2011] evaluatefidirent approaches for dense and sparse laser
data. For densely sampled data, a voxel-grid based approach is appliepparse laser
range scans are either handled by a mesh-based approach or Gaussasses.

Other solutions explicitly exploit the geometry of the sensor to attain real-timéapa-
lutions with graph-based approaches. Moosmann et al. [2G86jeatly build a mesh by
exploiting the rotation of the Velodyne laser sensor — points in the scan arected, if
they are produced by the same laser diode or if they show a similar yaw afegé. nodes
are combined into a single segment using a region growing approach if dkisfy s lo-
cal convexity criterionl_Klasing et al. [2009] segment a scan incrementaihg a surface
normal criterion, where a two-dimensional laser scanner is vertically tsovep the envi-
ronment._Spinello et al. [2010, 2011] use jump distance clustering overlises of laser
range points sorted by ascending azimuth angles. A segment is extractectdrgecutive
points exceed a given threshold and all points share a similar distancelsatvarsensor.

All approaches share a non-trivial selection of suitable parameterghandelection is
usually specific to the task and object classes of interest [Douillard ei(dll]2 We ap-
ply multiple stages of elevation-based segmentation, |like Himmelsbach et al.] [@009
Teichman et al. [2011], and are therefore more independent of #ispdgwice of param-
eters. Compared to other approaches, our approach is independeatdata acquisition
method, but still real-time capable due to ahotent implementation of the elevation maps.
It generates more segments than really needed, but we rather filter tieéseaint segments
later. The approach of van der Sande etlal. [2011] also generategeaicomplete hier-
archy of segments in images, but they do not exploit the hierarchy to elimioateate
detections.

Classification of three-dimensional laser range data in urban environmasatmainly in-
vestigated for dynamic objects. Himmelsbach et al. [2009] classify segnegmesented by
a histogram of multiple point-based features and remission intensities usipgparsuec-
tor machine. Teichman etlal. [2011] use tracking information to smooth the sedrased
classification results of an AdaBoost-based appraoach [Friedmanh20@), Torralba et al.,
2004]. The segments are represented by multiple spin images [Johnsbielaexd, 1999]
with different resolutions and Histogram of Gradient (HoG) [Dalal and Trig@85] fea-
tures calculated on orthogonal projections of the point cloud. The feattris addition-
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ally enriched by holistic features, which represent track-based grepeand spin im-
ages calculated over accumulated and aligned point clouds from multipleposdions.
Himmelsbach and Wuensche [2012] use tracking information to corre@ruadd over-
segmentations. In their approach, segments are represented by theoéxttenbounding
box and track-based velocity features.

In contrast to these approaches, we aim at learning multiple classifiegsarsindividual
bag-of-word per classifier, where each bag usesfardint descriptor parameterization and
consequently an individual vocabulary. The approach is related to theneiaf-experts
[Jacaobs et all, 1991] and we use classifiers jointly learned using alplisbaweighting of
individual classifiers.

5.2 Fundamentals

We introduce basic concepts needed in context of our approach in thisrseln the first
part, we briefly describe segmentation and a basic approach for lased-lsegmentation
using an elevation map. This simple approach is then extended in later secti@ssilto

in more robust segmentations atfdrent ranges. In the second part of this chapter, we
formally introduce the concept of bag-of-words using local descrptor

5.2.1 Segmentation

Segmentation is often applied as a preprocessing step in large-scaledssémperception.
The goal of laser-based segmentation is the subdivision of a point gleu®, U - - - U Sy
into mutually exclusive subsetS; N S; = 0, called segmentsfulfilling a similarity or
grouping criterion. Often these segments are then categorized into itedadirrelevant
segments using a simple heuristic, and only relevant segments are pdoitetser. Main
application of segmentation is therefore the reduction of the computational catypite
presence of a vast number of laser range points by discarding imélesgments. In our
application of detecting cars, pedestrians, and bicyclists, we are onlgsitgdrin parts of
the point cloud that could potentially correspond to these object classaeseHwve can filter
out every point corresponding to flat drivable areas or groundchamdpecifically interested
in all objects residing on the ground. In contrast to earlier chapters, Waat apply
a classification approach to distinguish relevant and irrelevant pointapply a simple
segmentation approach using a grid representation. Later, we will ussséfielato assign
object classes to the extracted segments.

In the following, we describe anflicient and simple method to extract parts of the point
cloud corresponding to objects that have a certain minimal height. We fitdtdbaimple
grid map and then combine neighboring non-ground grid cells into compleatecsds,.
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5.2 Fundamentals

A grid mapis a regular two-dimensional grig¢ = {Gij},0 < i < N,0 < j < M of grid map
resolution (or grid cell sizej, where each grid cel;; contains all points in a certain
spatial location:

gi,j:{pe?lisr‘l(p(°)+r-g)<i+1 A
jsr‘l(p(1)+r-%)< i+1 } (5.1)

Each three-dimensional point is therefore projected ontatheground plane and assigned
to a distinct grid cell and we assume that the point cloud is given in a locakmte frame
of the autonomous system, i.e., the sensor is always in the center of the gddciRy the
point cloud to a two-dimensional representation enables uffitiemtly identify potential
obstacles and combine parts of the point cloud into coherent segmergspmrding to
objects of interest.

In the second step, we use the grid map to extract all grid gﬂls;hat contain points with
height diferences larger than a given threshgld

G = {gi’j ‘max p® — min p® > 77} (5.2)
PeGij PeGij

This gridG’ is also often denoted asbstacle grid magontaining areas that are likely toobstacle grid

be occupied at the current time. We emphasize that we are interested it m#grat the map
current time and do not perform registration or mapping as in simultanecalizktton and
mapping (SLAM) approaches [Thrun et al., 2005].

Since we might have projected single objects intibedent grid cells, we use the resulting
obstacle grid map and the implicit neighboring relationship to combine adjacempied

grid cells. To this end, we usdfientflood fill on the grid to find connected componentflood fill
in the grid representation:

1. LetR = G’ be the remaining obstacle grid cells to be visited, &rset of the segments
Sy extracted from the obstacle grid map.

2. Take anyg; j from R and initializeQ = {Gij}. Let Sk = 0 be the set of extracted
segment points. Whil@ # 0, repeat the following steps.

a) Remove the first elemegt ; from Q and updatR = R - G ;.

b) Add points inGi j to Sk, Sk = Sk U {p € Gi j}.

c) UpdateQ with neighboring grid cells, i.,e.Q = Q U {Gn¢,j) € R}, where
NG ={0-1]),0+1)).0,]-1).0,j+1).

3. Update segmentatioss,= S U Sk, and repeat step 2 unfil = 0.
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5 Segment-based Classification

() (d)

Figure 5.3: Stages of the laser-based segmentation. On top the correspondingafthgesame scene. In (a),
the original point cloud of a street scene with some cars is shown. @1) tfie points are stored in a regular grid,
where we indicated by colors the corresponding grid cell. (c) Only gilid egth points having a given height
difference §.3 m in the shown example) are considered to finally combine neighboringegllisito segments
(d). In the last image, an under-segmentation of two cars (purple p&nsible.
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The set of segmentS is then reported as final segmentation of point cl@yavhere irrel-
evant ground points were already filtered. Figuré 5.3 exemplarily shoms steps for a
typical point cloud of urban environment (a), where we first show th®liwision of the
point cloud in a regular grid (b), the obstacle grid map (c), and the figheats (d) ex-
tracted by the flood fill approach.

We refer to a segment as over-segmented, if the original object hasskgamented in

too many small segmentdJnder-segmentation is the oppositéeet, where two distinct over- and under-
objects have been assigned to the same segment. Eiglire 5.3d shows ale @famger- segmentation
segmentation, where two cars (purple) get merged into a single segmentfigoth often

occur in laser-based perception of outdoor environments and ardlylicecised by the

fixed grid resolution. We show later how th&exts of over- and under-segmentation can

be alleviated by a hierarchical coarse-to-fine segmentation, wheretemdethe presented

grid-based approach and use multiple grid resolutions.

5.2.2 Bag-of-words Representation

The concept bag-of-words originates in the natural language pgiogesommunity and the
domain of document classification [Manning et al., 2009]. For the parpbsissigning a
document to a given topic, we do not have to really know where exactlywad is located
in the document. In most cases, it is enough to simply take a look at the frega et
certain words to decide on the topic of a document. Words such as ’algoritomiputer’,
or 'memory’ are often used in computer science documents, but rarely scdocuments
about ancient history. Thus, we can reduce documents of arbitragthlema (normalized)
histogram of word counts, which can be used in a classification approach

The same idea can be transfered to other application areas, sucheaslassification using
images [[Csurka et al., 2004, Sivic and Zisserman, 12003,/2009]. In dmtext the term
visual word'’ is often used and it has been shown in numerous studiea theg-of-words
representation is $ficient to attain state-of-the-art results for challenging tasks, such as
object detection [van der Sande et al., 2011] and recognition [Coaaés/2011a,b]. But
how do we get the mentioned visual words and a whole vocabulary oflwgurals to
describe an image?

In almost all approaches, the words consist of single patch-based ilezsgeptors of a
small part of the image. The vocabulary is learned unsupervised fromga d¢allection

of images representing the intended application domain. It is common practiamjibes
descriptors randomly from these images and build the vocabulary by argigss@proach
such ask-means|[Manning et al., 2009]. The cluster centers finally form the wdaap

as they are expected to be representative to describe reoccurriripties. The bag-of-
words is then build using the vocabulary by first extracting descriptora the image and
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5 Segment-based Classification

then encoding these descriptors using the vocabulary. A simple methodciadiag of an
image, called vector quantization, is searching for the nearest vocaldest and counting
the occurrence by increasing the corresponding entry in the histogram.

Thus, the overall classification approach using a bag-of-wordeseptation can be sum-
marized as follows: (1) During training, we learn a vocabulary using alatgnber of
descriptors extracted from the training set. (2) Next, the training set mdedcusing the
learned vocabulary. (3) Finally, we optimize the model of a classifier toidigtate the
labeled classes using the encoded bag-of-words representatioeerUtest data is then
classified by first encoding the data with the vocabulary and applying theeld&lassifier
to this new representation.

Over the last years, a lot of research and evaluations concentrateeliomprovement of this
pipeline. Diterent techniques for learning a representative dictionary [Coatés20h1b]
and diferent encoding methods were developed [Boureau et al., 2010, likatiad | 20006,
Moosmann et all, 2007] and investigated [Chatfield 2t al.,|2011]. Theihgpoha descrip-
tive dictionary has been investigated and simple approachesk-likeans, proved to be
competitive to more advanced methods [Coateslet al., 2011b]. Howesent research in-
dicates that the encoding, i.e., the assignment of a descriptor to dictiondagseseems to
be more important than the learning step [Chatfield et al.,|2011, Coates a2ONg.

In the next section, we will discuss laser-based classification of segrasimg bag-of-
words. We propose an extension of the approach to incorporfiezatit descriptors and
independently learned dictionaries for the purpose of a better repadsarof segments.

5.3 Approach

Our objective is to determine all segments belonging to the classes pedesdtiaand
bicyclist, using only a single three-dimensional laser range scan. To ttijsaenregard
the detection problem as a classification task and learn a classifier to oyipathability
distributionP(y|x) for a segmenk belonging to either the target classes or background. In
a post-processing step, we finally remove segments belonging to bankigaod also non-
maximal detections, i.e., detections that overlap with other detections and sulikédg
than the other detections.

5.3.1 Hierarchical Segmentation
As already discussed in Section 5]2.1, model-free segmentation is usualtpiepkex us-

ing a single laser range scan then using only a single image. This is mainlyddausee
availability of depth information, which separates objects from each othetrenground.
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Hence, in most cases less complex methods dfeisunt to attain very good results. Still,
we have to cope with under- and over-segmentation — especially in outdaioorements,
where distances to objects range from few meters to more than 20 meterse, Hie@
point cloud density varies drastically leading tdfidulties in finding suitable parameters
for distance-based segmentation methods, which result in coherentrgsdorediterent
ranges. Finding a single parameter setting for the segmentation approactl anid estab-
lished segmentation approaches use specific heuristics to post-pracesgitientation.

In this chapter, we are not aiming at generating a single perfect segmantatioather gen-
erate multiple coarse-to-fine segmentations. Later, we will use a classifiegiwoach in

conjunction with an intelligent non-maximum suppression to finally decide wigiginents

are irrelevant.

The basic building block of the proposed hierarchical segmentation agipis the height-
based segmentation introduced in Section 5.2.1.r4 bt the resolution of this initial seg-
mentation and, as beforgthe height threshold to distinguish ground points from obstacle
points. This initial segmentation already discards many ground points anitsrgsa re-
duced set of segments. However, it still contains many under-segmeantisdcpntaining
different objects.

For every segment, we further apply the height-based segmentation,itbua wmaller

resolutionri,1 < rj, until we reach a desired depth. Thus, we get a smaller obstacle grid

map and consequently can subdivide a segment into smaller sub-segmemisestary.

We finally get multiplesegment treesontaining at every level a finer segmentation of theegment trees
original point cloud. Each segment tree contains in the root a single ségerarated with

the largest resolution and each child of a node is generated from the sgmert at a larger

resolution. Later, we will use these hierarchies fidceently winnow out non-maximal or

duplicated detections.

Figure[5.4 shows an example of a three-level hierarchical segmentati@ne wegments
of the same segment tree are depicted by the same color in each level ajrtiensation.
For better visualization, we projected the laser points of a segment into the andgeal-
culated a convex hull of the two-dimensional projections; the segmentatitfrugss only
information from the point cloud. Segments of the first coarse segmentafime row)
were generated with a resolutionmgf = 1.0 m, the second level (middle row) was further
subdivided by a segmentation using= 0.5m, and the final level (bottom row) results
from a subdivision withr, = 0.2m. The first coarse level is modffective at far ranges,
where laser range measurements get sparse and objects are ongddoyeery few laser
range measurements. In the second row, we see that a finer grid etebsegmentation
approach to subdivide the large segments into smaller ones — for instarsbtiigision
of the large red segment into multiple cars in the left of the image. Although wmagag
correct segmentations of cars, we still see some under-segmentationthes gerson on
the right is still not satisfactorily segmented. In the last and finest levelegé® exposure

73



5 Segment-based Classification

Figure 5.4: Exemplary results of the hierarchical segmentation. The first row Shie&vsegmentation using a
grid resolution ofL.0 m, the second row refines the segmentation using a resolutio® of, and the bottom
row using a resolution dd.2m. The coarse resolution Gf0m is best at large distances and produces more
consistent segments of cars at far distances then the finer gridernmrages also under-segmentations visible
on the left side of the image. A finer resolution®% m leads to splitting of the large segment in three distinct
cars, but still is not able to correctly segment the person on the righo$itfee image. The last layer with

a very fine resolution dd.2 m manages to separate the pedestrian and the wall, but generates afsovaran
segmentations.

of the pedestrian near the wall, but also an over-segmentation of cane dahe single
segmentation results alone contains all desired segments — cars and bieyelistst seg-
mented using a moderate grid resolution, and pedestrians using a versidinieager in the
experimental evaluation, we will quantify the improvement in the quality of thegaad
segmentation.
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5.3.2 Learning a mixture of bag-of-words

Given the segment trees, we determine multiple bag-of-word represestasimg only
points from each segment. In particular, we learn multiple vocabularieshsetsuof the
training data using dierently parameterized descriptors. We ultimately aim at learning
context-dependent vocabularies to account fefiedences in the density of the laser range
measurements.

We are interested in a discriminative classification apprd@tx), and for our purposes
we introduce a hidden or latent varialtie

POYX) = D Py, hix) (5.3)
h

= > P(hix)P(yh.x) (5.4)
h

The value of the hidden variable € {1,..., M} depends on the segmextand for each
hidden variable we learn a separate multi-class clas$igh, x), wherey € {1,...,K}.

Each segment classifi€(ylh, X) uses a separately learned bag-of-word representation us-
ing differently parameterized laser featur@gh|x) determines the weighting of the single
segment classifier results regarding the distance, extent, and volumeseftinent bound-

ing box. Similar to the last chapter, where we separated the overall clasifiproblem

into multiple local classification problems on subsets of the feature spacey weeléarn
classifiers specializing on fiierent aspects of the classification problem. But now we ex-
plicitly learn the weighting of the local classification models and additionally use raultip
feature representations.

Since both models map a feature vector to a discrete target value, eitherea kitibble
or a label, we learn a softmax regression for both moé&g¢hsx) and P(ylh, x), cf. Sec-
tion[2.2.1:

P(h = | ——eXp@V’T'X) 5.5

( _”X)_Zlexp@vr-X) (5.5)
exp@vlh - X)

P(y = klh, x) = S x0T, ) (5.6)

Here w, andwy represent the weight vectors for every hidden varidblend classy,
respectively. In the following, we summarize these parameter vectors aicalkls by
0 = (Wi,...,Wm,W11,...,WK1,-...,WiM,-.., Wk M), Wheret denotes the iteration in the
optimization process.

In Sectior 2.2, [*Classification,” we discussed the estimation of model paresfaiven a
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training setX by maximizingd 2.1B:
0* = arg rr;axi_(e) (5.7)
= arg rrg)axP(0|X) (5.8)
= arg rr;axl?[ P(yilx;, 8)P(0). (5.9)

Assuming a uniform prioP(6), we can now replacB(y;|xi, 8) by Equatio 5.4:

0* = arg rr;axl_[ Z P(hix;, 8)P(yilh, xi, 6). (5.10)
i h

In line with Sectiori 2.2]1, we apply our known ’learning machinery’: (1)dea gradient

of the log-likelihood in respect to our parametérand (2) use gradient-based optimization
to find the maximun®*. First, we use the logarithm to get a more accessible expression of
the likelihood:

0* = arg ngaxz log| > P(hixi, O)P(yilh, xi, 6) (5.11)
i h

Unfortunately, this expression is intractable with our basic recipe, sindeawea coupling
between parameters of the model|x;, ) and P(yi|h, x;, 8). This is caused by the sum
over hidden variableh inside the logarithm, which makes it intractable to calculate the
gradient in closed form.

Expectation Fortunately, there exist an approximate afiicent solution known a&xpectation Maxi-
Maximization mization[Dempster et all, 1977]. Instead of maximizing the log-likelihood of Equatiad 5
directly, we maximize a carefully chosen lower bouBgk;:

_ . P(hixi)P(yilh, xi)
Boq = Z Zh: On(Xi. Y1) Iog[ 0y ] (5.12)

sZIog
i

Jensen’s inequality whereJensen’s inequality, P(y) log(y) < log [ P(y) - y] was exploited by adding the prob-
ability distributiongn(x;, y;). Expectation Maximization alternates now the following steps
to improve the lower boungy q iteratively:

> P(hix)PGyilh. Xi)} : (5.13)
h

1. (E-Step)Estimategn(x;, yi) to maximizeBy,_, q with fixed 6.
2. (M-Step) Maximize By, q in respect td; with fixed gn(X;, yi).
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One can show, see e.g. Prince [2012], that this alternating processsesrthe bound
Boq in every step if we us@(h|x;, yi, 6;—1) to estimategy(X;, ;). But we have to note that
Expectation Maximization does not necessarily converge to the global optiireinthe
solution might be only a local optimal solution and depends on the initial parasgter

Continuing the derivation of the parameter estimation for our mixture model, wanmlage
the distributionsgn(Xi, y;) for every training instancex(,y;) by P(h|xi, Vi, 8i—1) using the
parameter$;_; from the last iteration — 1:

(i, yi) = P(hiXi, i, 6;-1) (5.14)
P(h’ Xi 5 yl > 0t—1) .
=277 usin 5.15
PO Y1 1) 9lA2) (519
_ P(ilh. xi, 6-1)P(h, i, 1)

P(i, Yi, 6t-1) using [A.3) (5.16)

P(xi, Yi, 0-1)P(Xi, 6-1) '

P(yl |h’ Xi, Ht—l) P(h|X| s 0t—1) .
= using (A2 5.18
P(yilXi, 6t-1) g ) (5.18)

_ _PWilh. xi, 6-1)P(hixi, 6:-1)
Yk P(ilxi, K, 6_1)P(KIXi, 6¢_1)”
where we replace the denominator in Equalion15.18 by Equifion 5.4. Inqueersee, the

distribution gn(Xi, y;) encodes for each hidden varialiidhow well the current parameter
explains the training examplg with labely;.

(5.19)

The log-likelihoodl(6;) in the M-Step with fixedyh(X;, y;) is given by

P(h|Xi, 0, )P(yi|h, X, 6, )
1(6) = Z ; ah(Xi, i) Iog[ q;(xi,yi) : (5.20)
= D 2, an(xi.y) {log [P(hixi. 8)P(yilh, xi. 6)] ~ log[an(xi. )]} (5.21)
i h
= > > an(xi, yi) log[P(hixi, 8))P(yilh, x;, 6)] (5.22)
i h

where we dropped terms not dependingfdn the last line. Hence, the partial derivatives
in respect to the parametess andwy, are given by:

aa_vxl/j _ Z ;qj(xi,yi) [1h = ) - P(jix)] % (5.23)
6v(3_||<,h _ Z‘ an(%i, i) [Lyi = k) — P(klh, ;)] ;. (5.24)
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Comparing these partial derivatives to the partial derivative of the sgftegression (see
Equation 2.2B), we note that parametersandw are optimized using a weighting of
every training example.

In summary, the complete training of the mixture components involves the followeépg:s

1. Estimateqn(Xi, y;) for every training examplex{,y;) using Equatiori 5.19 and the

parameter#;_, from last iteratiort — 1.

Re-learn vocabularie®y over subseXy = {Xilak(Xi, Vi) = dn(Xi, Yi)}-

3. Maximize Equation_5.22 with respect foafter encoding every segment using the
newly learned vocabularieBy.

N

5.3.3 Hierarchical Non-maximum Suppression

Using the learned mixture model, we classify every segment in all hierarahibgetP(y|x)
for every segment. As we might get contradicting classifications in onerbisrave have
to determine which of the segments are likely to be correct hypotheses ppigess non-
maximal detections.

For this purpose, we use a greedy algorithm starting at the root of éwergrchy and
descend the tree in breadth-first order. Background segments tarepooted. We mark

a segment for the final set of reported segments, when the overlap withaukground
parent nodes is smaller than than a thresholdn this case, we assume that we found a
smaller segment, which for itself is a valid detection, such as a person standegar.

If the overlap between a node and an ancestral node is larget thea suppress the non-
maximal detection, i.e., the hypothesis wheéXg|x) is smaller. Thus, if an ancestral node
classifies a segmentftirently at a coarser level, we only report the detection with larger
confidence. The non-maximum suppression is summarized in Algdrithm 2.

5.4 Improving the Efficiency

The proposed approach needs to calculate a descriptor for evarydage point of the seg-
ments. In Chaptér 3] "Histogram Descriptors for Laser-based Cladsific’ we discussed
that the computation of point-wise descriptors and most descriptors invbjtbd search
for nearest neighbors in a certain radiysand (2) the accumulation of statistics over the
support. The runtime of both processing steps mainly depends on the nafrgmnts N
and the radius of the descriptor. Enlarging the support radiussually entails the inspec-
tion of larger regions in the nearest neighbor data structure, and aspwiote are inside
the neighborhood, more points must be accumulated to derive the descriptor
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Algorithm 2 : Hierarchical Non-maximum suppression
Input: Segment tre@ = {ng, Ny, ..., N}, wheren; = (P(Y|Xi), Xi)
Result set of detection®

Letz(n) : n — nreturn the parent node afor L for the root.
LetC(n) = {niIn = n(n;)} be the children of a node
Let Q = [ng] be a queue containing initially the root nodgof 7.

while Q # 0 do
remove first elememnt; from Q

appendC(n;) to Q
D=DU {nj}
Nk = ﬂ(nj)
while ng # L do
if Overlap betweenyand ny <y then

break

else if ng is not backgroundnd max, P(y|xj) > max, P(y|x) then
D =D\ {ng}

else ifng is not backgroundhen
D =D\ {nj}
break

Nk = 7(Nk)

end

end

The first approach for morefficient processing is the reduction of the number of laser
range points. Our aim is the removal of redundant laser points, whichtd@rry additional
information, such as duplicated or very close points. However, we dgme&move a certain
number of points until we lose information.

Another option to accelerate the the calculation is to reduce the amount afcheachputa-
tions by omitting some of the descriptor evaluations. Instead of estimating dplestor
every laser range point, we just calculate a reduced set of desciapiigenerate from this
set a reduced bag-of-words.

We investigate theffects — benefits and drawbacks — of both options to speed-up the compu-
tation of bag-of-words vectors. Both variants needfacient implementation, i.e., both the
reductions and the computations must be possible in less time than computing af)-desc
tors. Therefore, we will also discuss implementation details needed to acrieticient
preprocessing time.
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5.4.1 Point Sub-Sampling

The point filtering uses a regulaoxel grid with voxel sizep, where a voxeb; jx with
indicesi, j, kis specified by its midpoint- K. For each voxel, we first determine all points
Phik ¢ P inside the voxel:

piik _ {p’“p_ K < g} (5.25)

whereg||-||., denotes the maximum norii||,, = max |x|, and replace these points with their
average

T)i,j,k = |piikL Z p (5.26)
pepiik

in the resulting point clou@®’. Consequently, we only have to store voxel-wise means and
generate from these means the new point cloud. Increasing the vosel sruces the
overall number of points, but reduces also the density of the point cloud.

The naive implementation of the voxel grid is too fiigient, so we have to carefully im-
plement the voxel grid. Depending on the resolufioof the voxel grid, we have to store
a large number of voxels. Allocation of a large number of voxels is usuallynfiicient
and therefore we reuse the data structure by reseting each voxed befonsert new laser
range points. We can additionally reduce the needed resetting operatererynteration
by only resetting voxels containing points. Thus, we store a separate dstapied vox-
els, which is updated on inserting a laser range point into a voxel, allowitmreset only
occupied voxels. Both implementation details improve the overall performdrtlce point
sub-sampling significantly.

5.4.2 Descriptor Sub-Sampling

For reducing the number of descriptor evaluations per segment, we adheislready
introduced voxel grid. But in contrast to the point sub-sampling, we oehegate a voxel
grid for a single segment. For each voxel, we then select a point fronritiea segment
point cloud and calculate the descriptor using all segment points. Thiaregibdivision of
the segment guaranties that we uniformly sub-sample the descriptor calesliati@spect
to the segment. Increasing the voxel size consequently reduces the rmofndescriptor
evaluations, but should allow us to extract a bag-of-words that keepsltitive proportions
between the entries.
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5.5 Experiments

In this section, we experimentally evaluate segmentation and detection on ghvadlesal-
world datasets. First, we compare the proposed hierarchical segmemntétioa single
layer height-based segmentation. Then, we will use the hierarchical s&agioe to extract
segments and classify these segments either with a single bag-of-words mrogfosed
mixture of bag-of-words. Finally, we present results demonstrating tigotational speed-
up using the proposed sub-sampling of laser range points or descriptors

Dataset and evaluation metric. For evaluation of the complete pipeline, we use the
recently published KITTI Vision Benchmark Dataset [Geiger et al., 2002 additionally
use the Stanford Track Collection (STC) [Teichman et al., 2011] forraxgats using the
classification model only. All data was recorded using a car equipped @nitinon sensors
used in autonomous driving context, including a Velodyne laser rangefiadd an inertial
navigation system for odometry information. In both datasets, we have tsifglasrs,
cyclists, and pedestrians in everydayiasituations.

The KITTI dataset contains,#81 annotated images with additional Velodyne scans and
appropriate calibration information. Additionally,548 unlabeled test images with laser
range scans are provided, where the task is to detect dynamic objecisdtating the
image with bounding boxes. We have to emphasize that we solely use theckasgirsthe
following experiments and therefore project scan points into the image usnyekided
calibration matrices to estimate an image-based bounding box.

The detections are evaluated and scored following common image-basetioteteetrics
[Everingham et al, 2010] and must be sent to a server-side evaluatih. sThus, we
present here results forfterent parameter values using the training set only and will report
results on the testset for a specific setting later.

More specific, we have to provide for the (test) imalgesnding boxesontaining the object
classes of interest. Thus, we have to localize the object classes in the iamageturn also
a score for each bounding box, which corresponds to our belief tiabtdunding box

contains the object classes, i.e., we simply return the probaBilitx) in our approach. In

the following derivations, we denote a detection by a gajrdj, whereD corresponds to the
bounding box and its score. An (axis-aligned) bounding b@xis defined by its top-left
(Ip, tp) and bottom-right corner g, bp).

To determine the number of found objects over the whole collection of imagegtaditions
are compared to manually annotated ground truth bounding boxes. All ¢ gr@und
truth bounding boxes are additionally annotated with a class label, an octhasio, i.e., a
qualitative categorization, and a truncation value, i.e., the amount of thealbfech is not
inside the image. Depending on these values, the following bounding Ewutlies were
defined by Geiger et al. [2012]:
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e easy bounding boxes of at least 40 pixels height, fully visible, and up to 15% tru
cated,

e moderate bounding boxes of at least 25 pixels height, at least partial visibleypnd
to 30% truncated,

¢ hard: bounding boxes of at least 25 pixels height, at mofiatilty to see, and up to
30% truncated.

We concentrate omasyandmoderatedifficult bounding boxes in the following discussion,
since bounding boxes classifiedtesd are sometimes incorrectly annotated by humans.

For the evaluation, all detections need to be matched to a correspondimgigroth bound-
ing box. To allow for small inaccuracies in the manual annotation with bourizbrgs, the
detections are matched using the bounding box ové{dp B):

Area(A N B)

Area(A U B)

3 Area(A N B)

~ Area(d) + AreaB) — Area(AN B)’

O(A, B) = (5.27)

(5.28)

whereA, B correspond to bounding boxes. The area Ad¢af a bounding boXA is given

by (ra —Ia) - (ba — ta) corresponding to width and height of the rectangle. The intersection
of two bounding boxe#& N B is given by top-left (mai{ta, I}, maxta, tg}) and bottom-right
corner (minra, rg}, min{ba, bg}). |Geiger et al.|[2012] require a minimal overlap= 0.5
between a detection and an annotated bounding box for pedestrianydistscand a
minimal overlapw = 0.7 for cars. In the following, we say a detectibnis matchedto a
ground truth annotatioB, if the overlap is larger tham, i.e.,O(D, B) > w.

To quantify the class-wise performance of the detection approach tatitiesD; are first
ranked according to their scogeand then matched to ground truth bounding boxes, where
we only consider bounding boxes from a single class. 8et {Bi,...,Bn},|B| = N be

all ground truth annotations of a certain label, i.e., we take only ground truthtations of
single class into account, afdl = {(D1, $1), ..., (Dwm, Sm)} the detection bounding box&s

with corresponding scorg of the same label. Furthermore, we need the following sets,

D(s) ={(Di.s) I's > s} (5.29)

of all detections with score larger thammand

B(s) = B- {B max O(B,D;) > w} (5.30)

(Di,s)eD(s)

of all ground truth bounding boxes, which have not been matched, i.ee, ¢lxest no other
matching detection with score larger thanThese definitions are required to ensure that
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each ground truth annotation is only matched to a single detection. Thusaeditional
matching detection for an already matched ground truth bounding box isezbaa false
positive.

After this preparations, we can now defirmked precision pandranked recall g up to ranked precision
rankk using thek top ranked detection®* = {(Di, s) € D ||D(9)| < k} and ground truth and recall
annotationsB:

’{(D, s) € D | maxgeg(s O(B, D) > w}‘

= 5.31

Pk D (5.31)
|{(D, §) € DX | maxges(y O(B, D) > w}|

k= 3 (5.32)

Similar to the class-wise precision and recall in Equdtioh 3.9 aid 3.6, the nomioate-
sponds to the total number of correctly matched detections up tdkrah& denominator of
the precision is simply the total number of elements up to kaiik.,|D¥| = k and therefore
expresses the rank precisipg i.e., the precision of the firgtdetections. Since we already
filtered the bounding boxes to include only bounding boxes of a single, ¢leesslenomi-
nator is the total amount of annotated bounding bd&ed-rom the precision-recall pairs
(pk. k), we can now get therecision-recall curver(ry) = px, where intermediate values
are linearly interpolated. The precision-recall curve graphs the ipeaiace of the detection
approach, but here we will use only thnderpolated precision-recall curvaefined by

Tinerelr) = maxa(r”). (5.33)

In line with [Everingham et al. [2010], thaverage precisioffAP) [Manning et al.| 2009] average
will be used to asses the performance of the detection approach. Tiageyeecision is precision
the average over equally distant points of the interpolated precisiol-canze mintery(r) at

11 recall levelR = {0.0,0.1,..., 1.0}:

1
AP = 2 > miners(?) (5.34)

We used the provided evaluation script of Geiger et al. [2012] to competavérage preci-
sions for our detections.

The STC dataset contains roughly,@d0 tracks with segments extracted by a height-based
segmentation and &% of all segments are background. Note that we get pre-segmented
laser scans and therefore evaluate only the classification model, eithgrausingle vo-
cabulary or the proposed mixture of multiple vocabularies. We use the sgadragntal
setup as Teichman etlal. [2011] and consequently evaluate the perfmrmsing classifica-
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Figure 5.5: Overlap with ground truth annotations. Shown is the overlap of the single $g&genentation for
‘easy and ‘'medium’ segments. We geffdient optimal grid resolutions depending on class and distance.

resolutions all car pedestrian  cyclist
(0.7) 0.530.45 0.620.46 0.320.30 0.470.43
(1.0,0.5) 0.600.49 0.680.50 0.430.37 0.530.45

(1.0,05,0.2) 0.690.51 0.730.52 0.580.49 0.610.47

Table 5.1: Overlap results for hierarchical segmentation (gasylerate bounding boxes).

tion accuracy, i.e, number of correctly classified segments divided by#ralbnumber of
segments.

Implementation details. We calculated spin images [Johnson and Hebert,|1999], since
these proved to bdiective and alsoféicient for the point-wise classification, see Chapier 3,
“Histogram Descriptors for Laser-based Classification.” All descrg#oe calculated using

a global reference frame, i.e., we use the z-axis to determine the bin in thgrhistonvhich

also significantly improved the descriptiveness of the bag-of-wordsSettior{ 3.6). We
used for all spin images 5 bins per dimension and performed a bilinear itagonoto
calculate the contributions of every neighboring point. Every descrigtotov is finally
normalized using the maximum nonng,.

We learn the vocabularies usingf-the-shelf k-means clustering [Arthur and Vassilvitskii,
2007] and encode the descriptors using a hard vector quantization,d.egaxch in a kD-
tree [Arya et al.| 1998] for the nearest cluster center. Finally, we nigrenthe resulting
bag-of-words vector using tHe norm.

All reported timings were measured on a system equipped with an Intel X6680Xwith
2.67 GHz and 12 GB memory using a single thread implementation.
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5.5.1 Bounding box overlap

In the first experiment, we investigate the performance of the proposextdtiecal segmen-
tation. For this purpose, we generate segments for all provided traintagudimg either

a single-layer, two-layer, or three-layer hierarchy. The laser pokitaaed by these ap-
proaches are then projected into the image and an image-based boundisgétermined.
For all approaches, we used a minimum height 0.3 and discarded segments with fewer
than 50 laser points.

Next, we determine the maximal overlag; = maxg g« O(A;, B) between annotated bound-
ing boxesBX of scark and bounding boxes generated from the laser rangeﬂqcar:ﬂk.The
overall overlap score is then averaged oveNadicans to get the average over@jor each
class:

O=N"Y" AT o). (5.35)
K ,-

Figurd 5.5 depicts the class-wise performance of the single layer segmemtikialifferent
grid resolutions. As motivated in the beginning, we can see that a geneicechf the
resolution parameter isfiicult. While for pedestrians, a smaller grid is preferred to reduce
over- and under-segmentation, the resolution should be larger faamdisy/clists. But also
for different distances, we can observe a dependence: nearby objdotdtaresegmented
using a smaller resolution, while objects at larger distances are better dednosing a
larger resolution. This dependence is hardly surprising, since lasetsEhow a larger
sparsity and distance to each other at large distances.

Table[5.1 shows the best results of the single-, two- and three-layer s&gioes, where

we selected the best configuration for each segmentation approachhesmgderate over-
all overlap. As can be seen from these results, the proposed multi-keyerestation ap-
proaches clearly outperform the single-layer approach. Especialigsiiis for pedestrian
(increase of up t0.@5 overlap) and cyclist (increase of up td@ overlap) are noteworthy.

Despite the significantincrease in performance, we still have a gap ofthar@3 between

image-based and laser-based bounding boxes. A reason for thishtaitlabbjects can not
be detected by the laser range sensor. Therefore, a lot of blacknd@ch can be easily
marked in an image, are simply invisible in the laser range data or only repedsen

non-black parts in the point cloud. Furthermore, glass is sometimes netsleyshe laser
sensor either and hence we get very few points on car windows. Fuithe segments
of cars at larger distance usually do not include the roof part anceqoesitly, only partly

overlap the annotation in the image, which includes also the windows.
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pedestrian car cyclist background
training 20901140 54008844 584401 15215823827
validation 220119 571895 7043 n/a

Table 5.2: Segments per class (easwderate bounding boxes)
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Figure 5.6: Influence of the vocabulary size on single-layer bow witledent parameterizations of spin images
and the proposed mixture of bag-of-words. The upper row depictethdts for ‘easy’ bounding boxes, and
the lower row shows the results for 'medium’ bounding boxes.

5.5.2 Detection performance

As introduced earlier, the results presented in this section are genesatg@uandomly se-
lected validation set. For this purpose, we selected 10% of the training tases gniformly
at random (see Table5.2). For training and validation set, we applied e ldyered hi-
erarchical segmentation witly = 1.0,r; = 0.5, andr, = 0.2 and ignored segments with
less than 50 points and width or length larger than 6 m. In the training datagroacid
segments were discarded if the image-based overlap to ground truth ttometas larger
than 02. We used/ = 0.5 for the hierarchical non-maximum suppression.

The performance of bag-of-words (bow) approaches is primarilyenfted by the size of

the vocabulary and the choice of the descriptor. Figure 5.6 shows therinfiLof the size

of the vocabulary and the results fofférent support radii of the spin images§010 and

2.0m radius) with 5 bins in each dimension. The smallest spin image with a bin resolution
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approach car pedestrian  cyclist
LSVM-MDPM-sv [Geiger et al., 2011] 0.68.56 0.470.39 0.3%0.29
LSVM-MDPM-us [Felzenszwalb et al., 2010] 0665 0.4%0.38 0.3%0.27
Mixture of bag-of-words 0.39.23 0.440.31 0.280.21

Table 5.3: Results on the testset (easwpderate).

of 0.1 m clearly outperforms the larger spin images with larger support radhéadetection
of pedestrians. Fine details are more important for the distinction betwek&grbaad and
pedestrian. The performance of the other classes is tissgexr] by a specific choice of the
radius.

In line with earlier studies on bag-of-words in image-based classificatibatfield et al.,
2011, Coates et al., 2011b], we can also conclude that a larger ‘apalize is benefi-
cial in our application. Especially, in case of cyclists and pedestrians &va s@nificant
increase in performance with more words.

The mixture of bag-of-words combines all three descriptor radii and iffitbieiteration
of the EM algorithm we split the training data depending on the distance of tinedbw
box into three subsets. However, the hidden variable mgex) is learned using distance,
volume, and the extent of the three-dimensional bounding box. The mixtbhageof-words
improves the results especially with smaller vocabularies.

Table[5.3 finally shows the resulting detection rates of our approach cethpaimage-
based approaches on the testset. We choose a dictionary size of 830sastted the best
performance in the experiments on the validation set. The other image-hgzedehes

use a latent variable modellof Felzenszwalb et al. [2010] and an extenisiibis approach
by Geiger et al.|[2011]. We have to emphasize again that we solely usedage infor-

mation and compare all approaches with image-based overlap metrics.tAdestracted

segments and consequently the bounding boxesfieeted by the indticiencies of the

laser rangefinder.

We have to acknowledge certain limitations of our laser-based approicHetection of
black objects is not possible due to missing laser range measurementsré&mgss of the
point cloud that limits the féective range of operations up to 30 m, and (3) ambiguities in
appearance often makes it impossible to reliably distinguish certain objeséslas some
poses of a pedestrian are impossible to distinguish from trunks of tregsardinthe shape.
Visual inspection of the resulting bounding boxes shows that we ofterfatsse positive
detections of cars in areas with vegetation. Another reason for falg@vpaketections are
mismatches between the annotated image-based bounding box and the bbordsgen-
erated from the laser data. Particularly, as discussed for the segmerttaioar detections
are strongly fiected by too low overlap values, as we need at least0.7 minimal overlap
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approach car  pedestrian cyclist overall
AdaBoost Teichman et al. [2011] % 983% 984% 931%
Mixture bow 950%  983%  984% 923%
single bow (10 m) 916% 97.8% 977% 878%
single bow (20 m) 917%  975%  968% 867%
single bow (05 m) 894%  978%  963% 838%

Table 5.4: Classification accuracy for the STC dataset.

between ground truth annotation and detections instead ©f 0.5 overlap for the other
classes.

5.5.3 Classification performance

The classification performance of the approach is stronigcted by the overlap of image
bounding boxes and bounding boxes extracted from the laser raage $hus, we show
additional results on a laser only dataset with provided segmentation of nst¢as, the so-
called Stanford Track Collection (STC). In consequence, we evalutéhe classification
model without hierarchical segmentation and non-maximum suppression.

Tabld5.4 show the results on the STC dataset in comparison to an AdaBwestdpproach
presented by Teichman et al. [2011]. In contrast to the other experinveatssed 600
words for each bag-of-words vocabulary, but the other parametenained unchanged.
The results clearly show the advantage of the mixture of multiple vocabulamesimgle
vocabularies and comparable performance to the state-of-the-artibkesed classification
of segments.

5.5.4 Runtime performance

To evaluate the impact of the sub-sampling strategies, we ran the complete roixbag
of-words learning for dferent voxel resolutions and measured the time needed to determine
the label of the segments. We used in both experiments a dictionary size ot@ad6

and fixed the rest of the parameters to the values of the other experimémomplete
classification of a single frontal laser range scan currently ne@fissn average, where

the majority of time (272 s, or 98%) is needed to calculate the descriptors. The hierarchical
segmentation using three layers need$ s on average.

Figure5.7 shows the average inference times for a single scan, wheepamated the time
needed to compute theffiirent descriptors. The other computations include the segmen-
tation, sub-sampling, bag-of-word generation, and classification usinig&éinned mixture
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Figure 5.7: Impact of sub-sampling strategies. The images show the average tadech& infer segment

labels for a single scan and the average precision of moderatégulty bounding boxes. Left plot depicts
the performance gains of the point-based sub-sampling and the righghalavs the results of the descriptor
sub-sampling. Both strategies can reduce the inference time per soditargly, but these reductions usually
entail declines in the classification accuracy.

models. In these plots, it is clearly visible that the overall runtime is mainly infliehge
the time needed for computing the descriptors (shading in the backgrowmdalso plot-
ted the average precision of the moderatgdalilt bounding boxes (lines in the foreground).
The results for bounding boxes of easshidulty show similar trends.

The left plot of Figurd 5J7 shows the reduction in computation time with the poimt su
sampling strategy. With a resolution pf= 0.05m, we already see a significant reduction
of the overall computation time from.Z5s to 170s (3717% reduction), but also see a
decrease in the average precision of thigedent classes. The average precision for the
class “cyclist” decreases with this small resolution by 20%. The same tretgbislaserv-
able with larger resolutions: the overall runtime is further reduced, butltssification
performance is also dropping. These results suggests that denselpoud are vital for
the discrimination of pedestrians and cyclists, but also needed to classifgaraectly. Al-
beit considerable gains in runtime performance can be achieved with aspbisiampling,
we have to balance these gains with the decline in classification accuraeyprésented
results indicate that we should use at most a resolution@¥ ) to achieve competitive
classification results compared to an approach using all laser range data.

The right plot of Figur@ 517 shows the results using the sub-sampling ofiges's to deter-
mine a bag-of-words for the descriptors. For these experiments, wiethisgoint clouds
with all laser range points and varied the size of voxels. The descriptesampling also re-
duces the classification time significantly: a resolutiop ef 0.05 m leads to a reduction of
20.93% (218 s compared t0.25 s) in processing time. This gain is not as large as with the
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Figure 5.8: Detection results of the mixture of bag-of-words for cars (red), pedm (blue), and cy-
clists (green). We show the convex hulls of the projected laser rangespoin

point sub-sampling of the same resolution, but the reduction incurs noauthe eduction

in classification performance. Even with a larger voxel size f0.1 m, we can see a sim-
ilar classification performance of our approach compared to the narceddlassification.
Here, we only observe a slight decrease of the average perforrfamuedestrians and an
slight increase of the average precision of cyclists, which can be erplaiynthe similarity

of both classes. We can reduce the overall computation time on averagafi{i.80 s,
52.949%) using a resolution gf = 0.1 m. We see a decline in classification performance
first with a resolution op = 0.2m.

In summary, the descriptor sub-sampling is capable to reduce the overtathey while at-
taining non considerable declines in classification performance. In sbhdrtnis, the point
sub-sampling is not able to retain comparable overall classification pericen&lowever,
the current implementation does not reuse nearest neighbor queriels wauld further re-
duce the overall computation time considerably. These promising resultsteabwe can
possibly reduce the overall runtime to less than one second. Furtheligawies of parallel
processing of descriptors using multiple threaded implementations could leagctacal

relevant processing times of undet 8 or update rates of 10 Hz.

5.6 Summary

In this chapter, we introduced an approach for segment-based cltésifiasing a mixture
of different bag-of-words vocabularies. The learning of multiple vocabslagiach using
different descriptors as words, was motivated by the characteristics obthadage scans
showing dense point clouds at near range and sparse point cloadgeatdistances.

For segmentation, we proposed a novel hierarchical combination ddest@ifine segmen-
tations, which allowed us to extract suitable segments more reliably. We |ednbatiden
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5.6 Summary

variable model with Expectation Maximization and derived the required egjmes for
learning of softmax regression models. Finally, we proposed to use theesébierarchies

to filter irrelevant, i.e., duplicated or non-maximal detections, by a greedymadmum
suppression. The proposed segment-based mixture of bag-of-mexds to calculate a de-
scriptor for each point of a segment, which motivated the investigation ofipeghAmethods

to improve the #iciency. We proposed to reduce the overall number of laser range points
and the reduction of descriptor evaluations needed to construct aftvegyas. Both ap-
proaches use a voxel grid as di@ent implementation and therefore could be applied with
only negligible computational overhead. Our extensive experimental ati@ushowed
that a mixture of bag-of-word classifiers outperforms a single vocabbky-of-words ap-
proach on a challenging real-world data set.

Future Work. Based on these promising results, we can extend the proposed framework
in different ways. First, we would like to investigate the fusion of laser-bagedti® with

other types of information, such as image and map data, to filter false posteetidns

and improve the detection of 'invisible’ objects. The segmentation would be stfthpned

in laser range data, but additionally refined using the image using a appoée grab cut
[Rother et al., 2004], where we can use the projected points to initialize thesiyeged
segmentation. Regions without laser information could be used to extraesponding
regions in the image, and to derive image descriptors for classification.

The stability and fiiciency of the mixture learning could also be improved. First, we
would like to investigate other methods for learning and encoding [Chatfigll, 011,
Coates et all, 2011b] to further improve the classification accuracyefitly, we relearn
the complete vocabulary in every iteration from scratch and this could fecegpby meth-
ods that change only the relevant parts of the vocabulary. The joint optionzusing
Expectation Maximization is also a critical point in the proposed classificataondwork,
which certainly needs further investigation regardifjceency and stability. Local op-
tima in the optimizations could be avoided by random restarts and simulated annealing
[Prince, 2012]. But also the overalfficiency could be improved by hard negative mining
[Felzenszwalb et al., 2010], i.e., explicitly searching for false positie&d@und segments
to reduce the overall number of needed background segments.
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Chapter

Conclusions

The dissertation covered the classification of three-dimensional laggr data in outdoor
environments. As motivated earlier, a classification approach usually saapf two parts

in traditional machine learning: the features and the classification model.nsegaence,
both parts should be considered if we strive after a robust &ialeat classification ap-
proach. Additionally, the approaches presented in this thesis must be gioteass a mas-
sive amount of data, where the processed point clouds show a disigmeedent sparseness.
Our main contributions and insights on both ends of the pipeline, which resolradre
consistent classification atftkrent ranges, can be recapitulated as follows.

First, we thoroughly investigated the softmax regression and FunctionaMaagin Mar-
kov Networks for point-wise classification using three real-world outdisiasets. Our
extensive experimental evaluation showed that a global referenoe faad large descrip-
tors improve the classification performance significantly. A simple, but higfiigient
softmax regression attained competitive classification performance thamigacable to
the more complex graph-based collective classification by FunctionalN¥agin Markov
Networks. However, regarding label consistency showed the colleafiproach superior
performance compared to the local approach.

Second, we proposed the combination of similarity-preserving hashingadtmax regres-
sion to further improve the classification performance and label consystéiige softmax
regression for object classes showing varying local appearahoékis end, we presented
a two-stage learning algorithm and an inference scheme exploiting thebhast-similari-
ties. Our results indicate that the combination improves the label consistemsigleably
and achieves this improvement with little computational overhead compared itmigrd
softmax regression.
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6 Conclusions

Third, we introduced a novel segment-based classification approith wses multiple
softmax regressions with fierent feature representations taking the distance dependent
sparseness of the point clouds into account. Main ingredient of theogpedpclassifica-
tion approach are bag-of-words and the weighting of multiple models basedgment
properties, which is learned jointly with the individual classifiers. In codijiam, we pre-
sented an féicient and novel hierarchical segmentation method, which allows to extract
complete and consistent segments over a wide range of distances. Firalbgntina-

tion of the hierarchical segmentation and the proposed classification mitmeéd use

to filter irrelevant segments generated by the over-complete segmentatiodirigchyer-

and under-segmentations. We evaluated both approaches, the segmentdtibe novel
classification model, on challenging real-world datasets relevant for @uious driving.

We demonstrated the superior performance of the hierarchical segmemiatipared to a
common segmentation approach and experimentally validated that a combinatioitiof

ple vocabularies outperforms approaches using a single vocabulary.

On the basis of the presented results, there are multiple promising avemdasufe re-
search to further enhance the accuracy and runtime of the propgsexheapes.

GPU-based descriptor computation. In the beginning of this thesis, we also investi-
gated the time needed to compute descriptors and showed that these competatioot
match the high update rates, say 10 Hz, of modern laser range sensstraightforward
solution might be the reduction of the amount of data, but we inevitably losalvialun-
formation at some point. In Chapféer 5, "Segment-based Classifitation hevees! this de-
cline in classification performance in case of the bag-of-words generiétice reduce the
amount of laser returns or the number of descriptor evaluations. Tleulsave to improve
the single descriptor computation itself to attain considerable speed-ups iagb#ication
process. A possible loophole might be the usage of concurrefengd by general-purpose
computing on graphics processing units (GPGPU). In our current impkaiem all de-
scriptors are evaluated sequentially, but all presented approa@hasharently paralleliz-
able: each descriptor can be computed independently of another descHpwever, the
special hardware architecture needs some specifically suited algoritithadsancarefully
designed memory transfers from the host to the graphics device to hahaekull power
offered by GPUs [Owens etlal., 2008, Park etlal., 2011]. Both designderasons can
affect the diciency of the concurrent execution on modern GPUs significantly andsnake
the development of concurrent programs non-trivial, i.e., simple sepa@tiodependent
calculations in threads will not reach the potential speed-ups. Noneth#hespotential
gains in dficiency makes this direction of future research attractive.

End-to-End learning. Driven by the availability of large-scale datasets, so-called end-to-
end classification attracted increasing interest in machine learning rec€oilyes et al.,
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2013,/ Krizhevsky et all, 2012, Le et al., 2012]. Here, the goal is tmigae complete
pipeline of classification: starting with the features to the final model preditkiada-
bels. Multiple layers of increasingly complex features allowed such appesato at-
tain remarkable improvements in the state-of-the-art in image-based objecmniton
[Krizhevsky et al.) 2012]. Recently, several large-scale dataseasmdtated laser range
scans became available [Geiger etlal., 2012, Teichman et al/, 2011] angehis the door
to move in the same direction as with image data retrieved from the web. Insteatiafs
manual feature engineering, one may use the vast amounts of data tovearmiions
of parameters for hierarchies of features. In Chdgter 5, "Segmeegiaassificatign,” we
took a first step in this direction and learned a mid-level feature reprémenta basis of
local descriptors. Extending this to learn also the used local descripersssto be an
obvious next step, which relieves us from the design of suitable feapregentations.

Online learning. All classification approaches in this thesis are trained before their po-
tential application in the real world. In consequence, the trained modetnddpeavily on

the collected training data. However, generating datasets that really edipéuvariety of

the real world in all aspects is surprisingly complicated and prone to inteodataset bias
[Torralba and Efros, 2011]. Indeed, the variability of the appeaafall object classes is
infinite. A solution to this inherent problem might be to adapt the classifier aedrate

new data online, i.e., we use unseen data to modify the classification modelranode
time. We ultimately aim at learning new appearances of objects, which wesvaitable
while training the classification approach.

Combination with Tracking. In the discussion of the previous chapters, we omitted the
circumstance that we usually get a stream of observations from the mokifierpla We
classified the potentially sequential data sequentially and ignored that vedsarve parts
of the laser range scans, which correspond to the exact same olgitent times. The
only difference might be the view onto the object as either the robot or the objewjetha
its position. Another possible change in appearance might result fréieratit articula-
tions of non-rigid objects, like pedestrians. A promising avenue for futesearch is to
exploit the recurrent occurrences of objects. The tracking of objeets association of
past measurements to current measurements constituting tracks of the $achereleals
these recurrences. Since every consistent track must have a didigcita could resolve
inconsistencies in label assignment of the segment classifier.
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Appendix

Probability Theory

In a large part of the derivations of this thesis, we used basic conagptsdrobability
theory. In this part, we will briefly summarize the most important definitions, lemaras
theorems underlying these derivations. This part is mainly based on theextmsive
introduction of Koller and Friedman [2009].

Let Q be theoutcome spacef an event, such gheadtail} for a coin flip, andS the set of outcome space

measurableventswhich are subsets @t including0. events
Definition 1. [Koller and Friedman, 2009] A probability distributioR over (2, S) is a Probability
mapping from events iy to real values that satisfies the following conditions: distribution
1. YVaeS:P(a)=0.
2. P(Q) =1.

3. a,8eS,anB=0:P@uUp)=P)+P@).

Usually, we are not directly interest in outcomes, but other propertiesnietd by these
outcomes.Random variables, denoted by upper case roman letters, are formaltiohsr random variable
that map outcomes € Q to values. We write instead of a functidffa) = x simply X = x

and denote the set of values a random varidbtan take a¥al(X). Note, multiple events

a, B € Q can lead to the same value of a random variable. In robotics, we oftertamrested

in the stateX of an autonomous system and its observatids random variables, which

are all determined by the current world state.

Since random variables are simply functions mapping events to valuesvianafer the
concept of probability distributions to random variables. The probabilityidigion over
X is then defined aBPx(X = X) = P({a € Q|X(a) = x}). From this consideration follows
directly the following properties of probability distributions over randomalales:
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joint distribution

marginalization

conditional
probability

chain rule

Bayes' rule

prior
posterior

A Probability Theory

Corolary 1. Let P be a probability distributionX a random variable, and the probability
distribution overX be Px(X = X) = P({a € Q[X(a) = X}).

1. Vxe Val(X) : Px(X=x) > 0.
2. Px(X e Val(X)) = 1.
3. {xyl cVal(X),x#y: Px(X=xUX=Yy)=Px(X=x)+Px(X=Yy).

In the following, we continue the derivations dropping the decorétisom the probability
distributionP(X) over random variablX. Let X andY be (discrete) random variables over
the same outcome spa€e Thejoint distribution of X andY will be denoted byP(X,Y)
and models the probability of the occurrenceXof x and Y=y. SinceP(X,Y) is a valid
probability distribution, we can g&¥(X) from P(X, Y) by marginalization

POX)= ). P(XY) (Marginalization) (A1)
yeVal(Y)

Theconditional probabilitydistributionP(X|Y) defined by

P(X.Y)
P(Y)

P(X]Y) = (Conditional Probability) (A.2)
models our belief ovekX, if we know thatY has the specific valug and is for itself a valid
probability distribution.

Using the definition of the conditional distribution, EquationlA.2, and the maligatan,
EquatiorfA.1, we can derive easily thiain rulefor joint distributions:

P(X1, ..., %Xn) = P(Xe|Xa, ..., Xn)P(Xa|Xs, . . ., Xn)
-+ P(Xn-11Xn) P(Xn) (Chain Rule) (A.3)

TheBayes'’ rulefollows directly from the definition of conditional probability

PIYIX)P(X)

POIY) = =515

(Bayes’ Rule) (A.4)
Bayes’ rule might look like a trivial formula, but it plays an important role ineirgnce.
Using Bayes’ rule, we can invert the conditional probability and exppéx$Y) by the con-
ditional probabilityP(Y|X). This simple conversion is the key to inference of otherwise com-
plicated and impossible to model probability distributions. In literatB(X) is commonly
calledprior distribution, since it represents our belforewe have any new knowledge.
Likewise, P(X|Y) is often referred to agosteriordistribution, since it represents our belief
after seeing the value of.
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To motivate the importance of the Bayes’ Rule, we shortly present an ex&mpleobotics
and show how the aforementioned rules are applied to manipulate probabilitpudtiens
in practice. Localization is a classical application in robotics and we wanteoR(K;|Z;),
i.e., the first robot statX; given the first observatiod;, without any additional motion.
Imagine, we have a robot with a sensor, which measures the distance ingbeadsrection
at a time and we can therefore improve our estimate of the location over time byningas
other parts of the environment. Directly modeling the distributR§iX;|Z;) using a para-
metric model is very complex, since we have to take multigfeats into account. But if
we apply Bayes'’ rule, we get can express the same probability distribuging quantities
we can &ectively modelP(Z;|X1) andP(Xy).

P(X1/Z1) = —P(21|P>§12)1I;(X1) (A.5)
= nP(Z1|X1)P(Xy) (A.6)

Note, the denominator in Equatién_A.5 does not depen&pand is therefore the same
for all locations. Thus, it is possible to calculate the unnormalized postegtibdition
P(X1/Z1) and normalizing all values afterwardB(Z;|X1) is called the observation model
and is usually simpler to modeR(X3) is our prior belief over all locations without sens-
ing anything. Furthermore, it is usually more natural to model how likely it is ®eoke
something rather than the other way around.

Another important concept fofffective inference is conditional independence.

Definition 2. [Koller and Friedman, 2009] LeX, V, andZ be sets of random variableX¥. (Conditional)
is conditionally independerdf Y given Z, if Independence

P(X,Y1Z) = P(XIZ)P(YIZ) (A7)
for all possible values ok, VY, andZ. We denote conditional independence shortly as

(XLY|Z). We simply sayX andY areindependentif Z = 0.

In robotics, we often exploit conditional independence to simplify the déaw of a proba-
bilistic model. The independence of variables drastically reduces the amwmiopertameters
that need to be represented and, consequently, leads to tractabladefere

We now extend our example for incorporating measurements over fme,., Z; = Ziy.
Hence, we are now interested in modelX:|Z11) and the state depends on all previous
measurements. We can apply Bayes'’ rule and get a quite complicated model:

P(XtlZ1:1) = nP(Zt| X, Z1:4-1) P(XtlZ14-1) (A.8)
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Bayes filter

A Probability Theory

In probabilistic robotics, it is usually assumed that the s¥atenly depends on the previous
state X;_1, the so-called Markov assumption. Furthermore, the current obsentic
conditionally independent of past observatidiag ;1 given the current stat®. Hence, the
stateX; implicitly incorporates already all past observations. Thus, we can simp#fy th
more complex model using these implied conditional independences

P(XtlZ11) = nP(Zd %) P(XlZ1:1-1), (A.9)

and see that the first term corresponds again to our observation modedd@te our belief
of the location at time, our goal is to derive a recursive formula depending on the last belief
P(Xi-1/Z:-1:1) and we can derive this using our previously introduced machinery

P(XilZ1:)

= nP(ZIX)P(Xt|Z11-1) (A.10)
= nP(Z|X) f P(Xt, Xt-1/Z1:t-1) d%-1 using [A2) (A.11)
= nP(Z]%) f P(XtlXt-1, Z1:1-1) P(Xt-1lZ1:4-1) d%-1 using [A.3) (A.12)
~ P [ POGXIPOG-aZ20-1) . (A13)

Equatior A.IB corresponds tdBayes filterand allows us to update our posterior incremen-
tally over time. Note that we included everything not dependingoin the normalization
constant;, which can we determine later to normalize the posterior agR(iX|X;-1) is
usually called motion model and encodes how likely it is to get from one statethem
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Appendix

Additional Results

In this chapter, we present additional results of Chapter 3 and ChapfEnetfollowing
diagrams contain all evaluated dimensions in a more condensed representatio

The first three figures show extended results over all evaluated dimsnfio the fea-
ture evaluation of Chaptér 3, "Histogram Descriptors for Laser-b&$askification,”. Fig-
ure[B.1 shows all results generated on the Freiburg dataset using soéipnession and the
functional max-margin markov networks. Subfigure (a) shows the iggaicperformances
using a local reference frame, and subfigure (b) show the samdplessusing a global
reference frame. Figufe B.2 depicts all results generated on the Pitisthataset. As be-
fore, subfigure (a) shows the performance using a local refeffeance, and subfigure (b)
using a global reference frame. And finally, FiglrelB.3 shows all resfilise Wachtberg
dataset.

The second part of figures show extended results for the spectraletiaoftmax regres-
sion compared to the softmax regression. Fidquré B.4 show the results féirdhmirg
dataset, Figure Bl5 show the results for the pittburgh dataset, and Eiglishd@6the re-
sults for the Wachtberg dataset.
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B Additional Results

1.0 Hmml NH B DH . S B SHOT Em SHH

0.8 - R S R T T

0.6 | -l -

0.4 H
[ |
[ ]
[ |

F1 value

0.2

= j— .

|
|
|
- Hhil
05 1.0 15 2.0

. 1.0 .5
. . Functional Max-Margin
Softmax Regression support radius Markov Networks
CY

F1 value

\

\ \

\ \

\ \

| \

| 1
0.5 1.0 15 2.0 0.5 . lt.,O M }\/'IS ) 2.0

; ; unctional Max-Margin
Softmax Regression support radius Markov Networks
(b)

Figure B.1: Results on the Freiburg dataset. In (a) we used a local reference fraaxis, in (b) the global
reference frame was used. Multiple bars for a feature result frdiereint numbers of bins.
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Figure B.2: Results on the Pittsburgh dataset. In (a) we used a local reference draaxis, in (b) the global
reference frame was used. Multiple bars for a feature result fraiereiht numbers of bins.
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Figure B.3: Results on the Wachtberg dataset. In (a) we used a local referenoe draaxis, in (b) the global
reference frame was used. Multiple bars for a feature result frdiereint numbers of bins.
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