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1. Introduction 

Midbrain dopaminergic neurons (MbDNs) are involved in regulating many important brain 

functions including motor control, reward behavior and cognitive tasks. Degeneration or 

dysfunction of MbDNs is implicated in several common human disorders. In Parkinson‘s 

disease (PD), degeneration of MbDNs in the substantia nigra pars compacta (SNpc) results in 

severe motor deficits (Hirsch et al., 1988; German et al., 1989; Marsden, 1994). 

Dysregulation of dopamine transmission in the forebrain has been linked to the emergence of 

substance disorders (Kelley et al., 2002; Wightman et al., 2002), depression (Dailly et al., 

2004) and the psychotic and cognitive symptoms in schizophrenia (Sesack et al., 2002; 

Winterer et al., 2004). There is increasing evidence that functional and molecular diversity of 

MbDNs correlates with their relative vulnerability to disorders, for example to cell death in 

PD. 

 

 1.1 Dopaminergic neurons in the mammalian central nervous system 

Dopamine (DA) belongs to the family of catecholamines (CA) and as a modulatory 

neurotransmitter it is involved in regulating diverse brain function. DA neurons are widely 

distributed in the mammalian central nervous system (CNS) with the largest population 

located in the ventral midbrain (vMb). The first study to identify the CA neurons in the brain 

was carried out in the early sixties (Dahlstrom and Fuxe, 1964). Immunohistochemical 

detection of the CA-synthesizing enzyme, tyrosine hydroxylase (TH), made it possible to 

detect and map the DA neurons in the mammalian brain. Thus, nine distinctive cell groups 

(A8-A16), distributed from the midbrain to the olfactory bulb (OB), were identified in the 

adult brain (Dahlstrom and Fuxe, 1964). The A11-A15 groups of DA neurons are located 

within the posterior aspect of the hypothalamus (A11), the arcuate nucleus (A12) and the 

periventricular nucleus (A13-A15). DA neurons of A16 are located in the OB. They play 

crucial regulatory roles in many neural functions, including sensorimotor integration and pain 

control at the spinal level (A11), neuroendocrine hormone release (A12–A14), as well as male 

sexual behavior (A13–A15) (Barraud et al., 2010). The MbDNs constitute about 75% of the 

total number of DA neurons and are categorized as A8, A9 and A10. MbDNs form an 

extensive network of connections throughout the forebrain, including the neocortex and 

striatum, as well as limbic system. MbDNs in group A9 contribute to the neurons of the SNpc 

(Figure 1A). The A10 DA neurons represent the ventral tegmental area (VTA), while the A8 

group of MbDNs forms the retrorubral field (RRF). SNpc MbDNs project predominantly to 

the dorsal striatum and are involved in control of movement. The VTA neurons project to the 
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prefrontal cortex (PFC) and the limbic system, and regulate cognitive function and reward 

behavior, respectively (Figure 1B). 

 

 
Figure 1 MbDN subpopulations and their projections. (A) Plane of section represents 
distinct subpopulations of MbDNs in the vMb. IF: nucleus intrafasciculus; PB: nucleus 
parabrachialis; PN: paranigral nucleus; RLi: rostral linear nucleus; SN: substantia nigra; 
SNpc: SN pars compacta; SNl: SN lateralis; dlVTA: dorsolateral ventral tegmental area; 
vmVTA: ventromedial VTA. (B) MbDN projections of SN and VTA. BLA: basolateral 
amygdala; CAN: central amygdaloid nucleus; LHb: lateral habenular nucleus; CPu: caudate-
putamen complex; NAc: nucleus accumbens; OTu: olfactory tubercle; PrL: prelimbic cortex; 
Cg1: cingular cortex; M: motor cortex; AID: agranular insular cortex. 
 

MbDN subpopulations are diverse on different levels, including somatic localization, axonal 

projections, electrophysiological activity and the susceptibility to death in PD. The different 

levels of diversity are described in the following sections and are summarized in Table 1. 

 

 1.2 Neuroanatomy of MbDNs 

MbDN subpopulations are diverse in their anatomical position. Thus, MbDNs of the SNpc are 

located in the lateral vMb, whereas DA neurons of the VTA can be found in the medial vMb. 

Based on their localization, MbDNs of the VTA can be further divided into five 

subpopulations (Figure 1A, Table 1). The medially located nuclei form the ventromedial VTA 
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(vmVTA): these are the intrafascicular nucleus (IF), the rostral (RLi) and caudal (CLi) linear 

nucleus and the paranigral nucleus (PN). The parabrachial pigmented nucleus (PBP) is 

located laterally and forms the dorsolateral VTA (dlVTA). Both PN and IF, as well as CLi, 

are cell-body-rich zones, whereas PBP and RLi are cell-body-poor zones (Ikemoto, 2010). In 

addition, the MbDNs of the SN can be further divided into the SNpc and the SN lateralis 

(SNl); the SNl forms the most lateral aspect of the SNpc. 

 

 1.3 Morphology of MbDNs 

Cells of different MbDN subpopulations can be defined morphologically. While the cell 

bodies in the SNpc are large, angular and elongated, with an average mean diameter of ~19 

µm, the VTA MbDNs are small, rounded cells, with an average diameter of ~13 µm (Tork, et 

al., 1984; Thompson et al., 2005). In addition, MbDNs in the SNpc and VTA can be further 

distinguished by their dendritic morphology. Whereas the dendrites in the SNpc are organized 

in horizontal and vertical planes, there are no vertical dendrites in the VTA (Phillipson, 1979). 

Interestingly, different cell and dendrite morphology was demonstrated within the SNpc. 

Thus, MbDNs located in the dorsal regions of the SNpc are typically fusiform with 2-5 

dendrites emanating from the pole of the neuron, branching sparsely within the area. In 

contrast, MbDNs located more ventrally are multipolar in shape with dendrites emanating 

from the soma and extending laterally. The neurons in the VTA have also 3-5 dendrites 

emanating radially from the soma (Phillipson, 1979). A recent study showed however no 

differences in dendritic size, complexity and relative extension into SN reticulata (SNr) 

between MbDNs of the SNpc and the VTA (Henny et al., 2012). The morphology of the RRF 

MbDNs has not been described. 

 

 1.4 Molecular marker profile expression of MbDNs 

In addition to their anatomical position and morphology, MbDNs can be further distinguished 

by their expression of distinct molecular markers. It has been shown that MbDNs of the SNpc 

and the VTA differ in their expression of DA receptors. There are two families of G-protein-

coupled DA receptors: the D1 and D2 family. The D1 family, which includes D1 and D5 

receptors, stimulates adenylyl cyclase and activates cyclic AMP-dependent protein kinase, 

whereas receptors of D2 family (D2, D3 and D4) inhibit adenylyl cyclase (Missale et al., 

1998). Both types of DA receptors are found in the MbDNs of the SNpc. However, MbDNs 

of the vmVTA do not have any functional somatodendritic D2 autoreceptors and express very 

low mRNA levels of D2 receptors (Lammel et al., 2008). 
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Furthermore, G-protein-regulated inward-rectifier potassium channel 2 (Girk2) is only 

expressed in MbDNs of the SNpc and in some MbDNs in the lateral VTA. MbDNs in the 

vmVTA, some dlVTA, the RRF as well as RLi and CLi nuclei express the calcium-binding 

proteins calbindin and calretinin (McRitchie et al., 1996). In addition, the DA transporter 

(DAT) is also differently expressed in MbDN subpopulations. DAT is a plasma membrane 

transporter protein controlling extracellular DA concentrations through the recapture of DA 

into nerve terminals of MbDN. MbDNs, located in the PN, IF and RLi have lower DAT 

expression than neurons of PBP and SNpc (Lammel et al., 2008; Di Salvio et al., 2010; 

Simeone et al., 2011). A similar expression pattern was observed for vesicular monoamine 

transporter of the type 2 (VMAT2), which controls synthesis and packaging of DA. 

Finally, orthodentical homeobox 2 (Otx2), which plays an important role in the proper 

development of MbDN (Secsion 1.13) (Prakash et al., 2006) is exclusively expressed in a 

subset of dlVTA (PBP) MbDNs (Di Salvio et al., 2010). Interestingly, it is prevalently 

excluded from those neurons, which express Girk2 and high levels of glycosylated active 

form of DAT (Di Salvio et al., 2010; Simeone et al., 2011). 

 

 1.5 Subpopulation of MbDNs co-release other neurotransmitters 

Accumulating evidence over the last ten years indicates that MbDNs may also release other 

neurotransmitter. It has been shown that a subset of MbDNs is able for co-express the 

vesicular glutamate transporter, vGlut2 (Joyece and Rayport, 2000; Dal Bo et al., 2004; 

Mendez et al., 2008; Berube-Carriere et al., 2009). vGlut2 transports glutamate into synaptic 

vesicles for release at presynaptic terminals in DA neurons. MbDNs co-expressing vGlut2 

(MbDN-vGlut2) are primarily found in the VTA (Kawano et al., 2006; Yamaguchi et al., 

2007). Detailed analysis of the vGlut2 mRNA content showed that only some cell groups in 

the VTA co-express vGlut2. MbDN-vGlut2 neurons were found in the rostral VTA, PBP, IF 

and the RLi (Yamaguchi et al., 2011; Gorelova et al., 2012), while vGlut2 neurons (vGlut2-

only) are located in the PBP and PN (Yamaguchi et al., 2011). 

In addition, recent study has demonstrated that MbDNs in the SNpc projecting to the striatum 

are capable of co-releasing gamma-aminobutyric acid (GABA). Interestingly, these neurons 

use VMAT2 for GABA release instead of the vesicular GABA transporter (VGAT) (Trisch et 

al., 2012). 
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 1.6 Projections of MbDNs 

MbDN subpopulations are diverse in their projections to different target areas. Classically, the 

following projections have been allocated to different MbDN subtypes: MbDNs of the SNpc 

primarily project to the dorsal striatum and form the nigrostriatal pathway (Veening et al. 

1980; Gerfen et al., 1987), VTA neurons send their axons to the limbic structures, mainly to 

the ventromedial striatum (the Nucleus accumbens (NAc), the olfactory tubercle (OTu)), the 

amygdala and the PFC, giving rise to mesolimbic and mesocortical pathways, respectively 

(Berridge and Robinson, 1998; Salamone and Correa, 2002; Schultz, 2002; Wise, 2002; 

Ungless, 2004) (Figure 1B). MbDNs in the RRF primarily project to the SNpc and the VTA, 

but also to the hippocampal formation and the medullary and pontomedullary brainstem 

(Krosigk and Smith, 1991; Gasbarri et al., 1996). Accumulating evidence revealed that this 

type of distinction is oversimplified. Recent studies showed that there is a significant 

intermixing of MbDN subpopulations with different projection targets (Bjorklund and 

Dunnet, 2007; Ikemoto, 2007; Ferreira et al., 2008; Wise, 2009), which results in more 

complicated innervation of striatal and cortical areas. 

A more detailed analysis of the VTA projections based on anatomical and functional criterion 

(Ikemoto, 2010) shows a mediolateral gradient in their innervation. Thus, vmVTA (IF and 

PN) MbDNs primarily project to the ventromedial striatum, consisting of the medial 

accumbens shell, as well as to the medial OTu, whereas the dlVTA (PBP) innervates the 

ventrolateral striatum, consisting of the lateral shell and core of NAc, and the lateral tubercle 

(Ikemoto, 2005 and 2010). Retrograde tracing studies revealed that the RLi provides inputs to 

the lateral shell of the NAc as well (Swanson, 1982; Hasue and Shammah-Lagnado, 2002). In 

addition, MbDNs of the RLi project into the diagonal band, as part of the septal nuclei, as 

well as into the pallidal zone of the OTu (Del-Fava et al., 2007; Ikemoto, 2010). Del-Fava et 

al. showed that most of the mesocortical projections originate from the RLi MbDNs. Thus, 

the RLi innervates the infralimbic, prelimbic and anterior cingulate cortices, as well as the 

agranular insular and orbital areas (Table 1) (Del-Fava et al., 2007). 

In addition, MbDN subpopulations differ in their afferent connectivity, which subserves 

different behavioral functions. Areas projecting to MbDNs of the SNpc and the VTA are 

strongly segregated. Thus, MbDNs of the SNpc receive their inputs preferentially from dorsal 

regions, such as dorsal striatum, globus pallidus and entopeduncular nucleus, whereas 

projections to the VTA MbDNs originate from ventral areas, such as ventral striatum, OTu 

and ventral pallidum (Lammel et al., 2012; Watabe-Uchida et al., 2012). 
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 1.7 Physiology of MbDN subpopulations 

Electrophysiological studies using ex vivo brain slice preparation and in vivo recording show 

that MbDNs are spontaneous pacemakers that generate regularly spaced action potentials 

(AP) in frequencies between 1 and 10 Hz (Grace et al., 2007). However, MbDNs operate 

within two distinct frequency bands: tonic and phasic. Tonically firing MbDNs discharge at 

low frequencies individual AP without bursts (Grace and Bunney, 1984), whereas phasic 

MbDNs fire bursts of near 20 Hz and greater (Robinson et al., 2004). Patch-clamp recording 

from in vitro brain slices revealed that MbDNs of the SNpc and the dlVTA fire in tonic mode 

with typically broad single AP (1–3 Hz), while spontaneous discharge frequencies of the 

vmVTA neurons are much faster with the range upper limit of 10 Hz (Lammel et al., 2008). 

Interestingly, the vmVTA MbDNs with low DAT and VMAT2 mRNA expression are the 

fast-firing neurons (Lammel et al., 2008). 

Furthermore, several studies have highlighted the important role of voltage-gated L-type 

calcium channels for creating the basic subthreshold membrane potential oscillations that 

underlie pacemaker activity (Puopolo et al., 2007). However, the calcium dependence of the 

spontaneous pacemaker is not a homogenous property of all MbDNs (Chan et al., 2007; 

Puopolo et al., 2007). When Ca2+ is replaced by equimolar concentration of cobalt, or when 

calcium channels are blocked, MbDNs of the SNpc completely stop firing (Puopolo et al., 

2007; Khallq and Bean, 2010). In contrast, the inhibition of calcium channels does not 

prevent firing in MbDNs of the VTA (Chan et al., 2007). Moreover, it has been suggested that 

this difference in calcium currents between SNpc and VTA MbDNs is a possible mechanism 

for the selective vulnerability of SNpc MbDNs in PD (Section 1.9) (Chan et al., 2007). 

The presence of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the 

neurons of SNpc has been used in many studies as a functional criterion to identify and define 

MbDNs (Grace et al., 2007). The activation of HCN channels can be caused in response to 

injections of hyperpolarizing currents and leads to a so-called „sag-component“ (Seutin et al., 

2001; Neuhoff et al., 2002; Zolles et al., 2006). In contrast, MbDNs in the medioposterior 

VTA possess only few functional HNC channels, indicating that their electrophysiological 

properties might be very different from that of the MbDNs in the SNpc (Neuhoff et al., 2002). 

It has been also confirmed in in vitro study, that mesocortical MbDNs in vmVTA demonstrate 

no obvious „sag components“, which correspond to a lack of functional HCN currents (Table 

1) (Lammel et al., 2008, 2011). Moreover, mesocortical neurons also lack apamin-sensitive 

small-conductance calcium-activated potassium (SK) channel-mediated AP 

afterhyperpolarization compared to mesostriatal MbDNs (Wolfart et al., 2001). 
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Interestingly, it has been demonstrated, that VTA MbDNs display two different electrical 

activities. Thus, MbDNs in the vmVTA exhibit a smaller hyperpolarization-activated current 

than MbDNs in the dlVTA (Hnasko et al., 2012). dlVTA MbDNs also show larger and more 

prolongated afterhypopolarization than vmVTA MbDNs. 

 

 1.8 Functions of MbDNs 

Because of their position and the target structure the MbDN subpopulations innervate, they 

can be further separated into functionally distinct subgroups. Since neurons of the SNpc 

almost exclusively innervate the dorsolateral striatum, the SNpc serves mainly as an input to 

the basal ganglia circuit and supplies the striatum with DA. The basal ganglia circuit is 

involved in enabling practiced motor acts and in gaiting the initiation of voluntary movements 

by modulating motor programs stored in the motor cortex. Inputs from the cortex enter this 

circuit via the striatum. There are two pathways, which have opposite effect on cortical 

neurons. The direct pathway excites the cortex via the globus pallidus external, whereas the 

indirect pathway inhibits the cortex through the nucleus subthalamicus and globus pallidus 

internal. The role of the nigrostriatal projections is to keep those two pathways in balance. 

Direct pathway striatal neurons have D1 receptors, which depolarize the cell in response to 

DA. In contrast, indirect pathway striatal neurons possess D2 receptors, which hyperpolarize 

the cell in response to DA. Thus, SNpc MbDN projections have the dual effect of exciting the 

direct pathway while simultaneously inhibiting the indirect pathway. Loss of SNpc MbDNs 

causes an imbalance by increasing the activity of indirect pathway and decreasing the activity 

of direct pathway. This imbalance results in motor symptoms of PD (Section 1.9). 

VTA neurons, via projections onto forebrain structure such as the NAc, PFC, and amygdala, 

play a key role in operant conditioning (Pavlovian learning based on association of 

environmental stimuli with reward) and motivation. Electrophysiological and lesion studies 

have demonstrated that activation of MbDNs in the VTA have positive reinforcing properties, 

because pharmacological or electrical stimulation tends to facilitate reward seeking. In 

contrast, inhibition or lesion of the VTA MbDNs results in a reduced reward seeking (Cheer 

et al., 2007; Fields et al., 2007). Behavioral and pharmacological studies have identified 

different zones within the VTA, based on their projections to the striatal areas, which are 

differently responsible for rewarding effects or for drug abuse. For example, rats rapidly learn 

to self-administer psychomotor stimulants such as cocaine, amphetamine or DA receptor 

agonist into the medial OTu and medial accumbens shell, suggesting that axonal projections 
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from the vmVTA are involved in drug reward (Carlezon et al., 1995; Ikemoto et al., 1997; 

Rodd-Henricks et al., 2002; Ikemoto, 2003; Ikemoto et al., 2005). 

A number of studies revealed a critical involvement of DA in the modulation of neuronal 

activity related to cognitive processing. Electrophysiological studies on rodent and non-

human primates showed that VTA MbDNs innervation in the PFC potentiates the firing of 

delay-active neurons thought to be critical for working memory (Williams and Goldman-

Rakic, 1995; Goldman-Rakic, 1998). Moreover, MbDN projections from the VTA to the 

amygdala are implicated in learning and memory processes, particularly those involving 

behavioral responses to rewarding or aversive stimuli (Maren and Fanselow, 1996; Everitt et 

al., 1999; Koob, 1999). 

 

 1.9 Neurodegeneration of MbDNs in Parkinson’s disease 

Because of their different functions and involvement in several common human neurological 

disorders, MbDNs have been the focus of clinical interest and a subject of intensive studies 

for a long time. Degeneration of the SNpc MbDNs is associated with PD, which is 

characterized by the cardinal motor features of rigidity, bradykinesia and tremor at rest along 

with non-motoric symptoms like autonomic, cognitive and psychiatric problems (Marsden, 

1994). The classical neuropathological hallmark of PD is the pathogenetic fibrillization of the 

protein α-synuclein and the accumulation of abnormal cytoplasmatic inclusions, known as 

Lewy bodies that are present in the surviving MbDNs in SNpc (Spillamtini et al., 1997; 

Mezey et al., 1998). In the following decade numerous studies have established that the motor 

symptoms are attributed to the loss of MbDNs in the SNpc and the decline of DA in the 

striatum, which are responsible for most, if not all, motor symptoms (Fearnley and Lees, 

1991; Marsden, 1994). Intensive research of PD revealed that the majority of cases are 

sporadic and thought to be caused by environmental factors, a genetic causation or a 

combination of the two, while less that 10% of PD has a strict familial etiology. Numerous 

studies indicate that oxidative stress, inflammation, aberrant protein degradation and, in 

particular, mitochondrial dysfunction may be involved in the PD-associated neuronal 

degeneration (Moore at al., 2005; Abou-Sleiman et al., 2006). In recent years, mutations or 

polymorphisms in numerous nuclear genes (α-synuclein, parkin, UCHL1, DJ-1, LRRK2, 

Pink1, tau, HTRA2, NR4A2 and ATP13A2) have been identified as associated with familial 

PD (Ramirez et al., 2006; Klein and Schlossmacher, 2006; Schapira, 2006). 

Elevated intracellular Ca2+ concentrations and lack of intrinsic Ca2+ buffering capacity in the 

MbDNs SNpc create mitochondrial oxidant stress (Guzman et al., 2010). Furthermore, in 
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vitro studies demonstrated that DAT activity depends on its glycosylation status, with the 

glycosylated DAT form transporting DA more efficiently than the non-glycosylated form 

(Torres et al., 2003; Li et al., 2004). Interestingly, it has been shown that somata and terminals 

of the nigrostriatal compartment (ventrocaudal SNpc and dorsal striatum) have higher 

expression levels of glyco-DAT than those of the rostromedial SNpc (Afonso-Oramas et al., 

2009). In PD MbDNs located in ventrolateral and caudal region of the SNpc are more 

vulnerable than those in the rostromedial and dorsal region (German et al., 1989; Damier et 

al., 1999), suggesting that differences in DAT post-transcriptional regulation may be involved 

in the differential vulnerability of MbDNs (Gonzales-Hernandez et al., 2004). 

 

 1.10 MbDNs in psychiatric and neurological disorders 

The other important role of DA as a neuromodulator has been shown in abnormal 

neurotransmission of VTA MbDNs, which is thought to occur in a variety of psychiatric and 

neurological disorders, such as schizophrenia, attention-deficit/hyperactivity disorder 

(ADHD) and reinforcing effects of drug abuse. 

Schizophrenia is one of the most common mental disorders characterized by a breakdown of 

thought processes and by poor emotional responsiveness. Common symptoms include visual 

and auditory hallucinations, disorganized speech and thinking, or paranoid delusions. It has 

been proposed that an imbalance in DA levels in the PFC and ventral striatum underlie the 

symptoms in schizophrenia (“DA hypothesis”). It is thought that a functional excess of DA or 

oversensitivity of certain DA receptors contributes to the psychotic symptoms such as 

delusions and hallucinations (Birtwistle and Baldwin, 1998; Sesack and Carr, 2002). In 

schizophrenic patients the number of D1 receptors is decreased in PFC (Kaplan and Sadock, 

1995). This occurrence explains certain cognitive deficiencies and is thought to be responsible 

for the negative symptoms of schizophrenia such as restrictions in range intensity of emotion 

fluency and productivity of thought and speech, and goal-directed behavior. In contrast, DA 

receptors of the D2 family seemed to be abnormally increased in the basal ganglia and limbic 

system of schizophrenic patients (Sedvall and Farde, 1995; Kaplan and Sadock, 1995). 

Additional evidence for the DA hypothesis is that most antipsychotic drugs act by blocking 

the D2 receptor. 

Dysregulation of the DA transmission in the limbic system has been linked to development of 

the drug addiction (Kelley and Berridge, 2002; Wightman and Robinson, 2002) and 

depression (Dailly et al., 2004). The involvement of DA in drug reinforcement is well 

established, however its role in drug addiction is much less clear. Interestingly, it has been 
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demonstrated that increase of DA in the striatum can be caused by drug conditioned cues in 

cocaine-addicted subjects. Moreover, the magnitude of the DA increase was correlated with 

the subjective experience of craving (Wong et al., 2006; Volkow et al., 2010). However, the 

molecular mechanism of addiction might involve impaired serotonin or noradrenalin 

neurotransmission. Mice in which DAT was disrupted, failed to alter baseline extracellular 

DA levels and to induce behavioral effects such as enhanced locomotor activity (Giros et al., 

1996). However, these mice still can be trained to self-administer cocaine despite persistently 

high levels of DA in the striatum, suggesting a more complex basis for the reinforcement 

(Rocha et al., 1998). 

Not only dysregulation of DA neurotransmitter, but also dysfunction of some proteins 

involved in DA synthesis, release or uptake, have been shown to be implicated in a number of 

DA-related disorders, including ADHD, bipolar disorder, clinical depression, and alcoholism. 

ADHD is a psychiatric and a neurobehavioral disorder, characterized by either significant 

difficulties of inattention or hyperactivity and impulsiveness. There is converging evidence 

that increased DAT plays a major role in the pathophysiology of ADHD (Krause et al., 2003; 

Spencer et al., 2005; Krause, 2008). Knockout studies with mice lacking D2 receptor have 

demonstrated the reduction of hyperactivity, suggesting that D2 receptor-selective agonist is 

good candidate for a specific therapeutic approach that could provide better mechanistic 

resolution that psychostimulants in the treatment of ADHD (Fan et al., 2010). 

 

 1.11 Diversity of MbDNs 

The diversity of MbDNs can be described on many levels, ranging from classical anatomical 

and histological categories to molecular marker profiles, connectivity and functional 

electrophysiological properties (Liss et al., 2007; Lammel et al., 2008 and 2012). However, 

only little is known about whether and how these different levels of diversity are connected. 

There is evidence that the functional diversity is predominantly mediated by their specific 

inputs. For example, MbDNs in the dlVTA projecting to the lateral shell of NAc receive their 

afferents from the laterodorsal tegmentum and are involved in the reward behavior. Neurons 

of the lateral habenula form synapses with mesocorticolimbic neurons of the vmVTA, which 

project to the medial PFC and elicit aversion (Lammel et al., 2012). Furthermore, specific 

molecular profiles of MbDNs correlate with their projections and electrophysiological 

properties (Lammel et al., 2008). In addition, MbDNs show large differences in their 

susceptibility to cell death in PD, which is linked to their distinct molecular profiles. 
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Table 1 Distinct identities of MbDN 
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However, it still unclear how and when this diversity is established. To better understand the 

MbDN diversity in the vMb, there is still the need to gain deeper insights into the 

developmental and phenotypic characteristics of distinct subpopulations of MbDNs, based on 

their axonal projections and circuitry, synaptic connectivity and functional properties. 

Knowledge about how and when this diversity is established during development might help 

to connect the different levels of diversity. 

 

 1.12 Development of MbDNs 

A number of recent studies have conclusively shown that MbDNs arise from neuronal 

progenitors in the ventral midline (floor plate: FP) of the embryonic midbrain (Andersson et 

al., 2006; Ono et al., 2007; Kittappa et al., 2007; Bonilla et al., 2008; Joksimovich et al, 2009; 

Blaess et al., 2011). The development of MbDNs from proliferating neural precursors can be 

broadly divided into three stages (Figure 2) (Abelovich et al., 2007). 

 

 
Figure 2 The timescale of MbDN development. During regionalization vMb tissue is 
determined and self-renewing precursors at the ventricular zone (VZ) give rise to MbDN 
precursors (MbDNp, yellow). In the specification stage MbDNp exit the cell cycle, enter the 
intermediate zone (IZ) and become immature MbDNs (orange). In the differentiation stage 
immature MbDNs migrate into the mantel zone (MZ) and establish appropriate connections. 
The curved arrow indicates proliferating cells. v: ventricle; vMb: ventral midbrain. 
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First, precursors at the ventral ventricular zone (VZ) of the anterior neural plate that have self-

renewing properties and give rise to multiple cell types arise at embryonic day 7.5 (E7.5). In a 

second step, these are specified to a MbDN precursor (MbDNp) cell fate, and several 

molecular markers are associated with this population. In a third stage, the MbDNp exit the 

cell cycle, migrate into the mantel zone (MZ) and begin to display early MbDN markers 

(Figure 2). Finally, the early-differentiated MbDNs mature functionally, express mature 

MbDN markers, and establish appropriate connectivity. The development of MbDNs requires 

a complex combination of transcriptional regulators and diffusible signals to control both the 

acquisition and maintenance of the neurotransmitter-specific phenotype. However, little is 

known when and how different subgroups of MbDNs are specified during development. 

 

 1.13 Induction and regionalization of the ventral midbrain 

Regionalization of the vMb begins early in neural plate development. During neurulation the 

lateral edges of the neural plate roll up along its anteroposterior axis to form the neural tube 

(Gale et al, 2008). Neuronal induction and pattering start around E7.5 and are mediated by a 

precise molecular coding along the anteroposterior and dorsoventral axis, which provides 

positional cues that are crucial in pattern formation. The anteroposterior axis is set up before 

the dorsoventral axis dividing the developing CNS into forebrain, midbrain, hindbrain and 

spinal cord. Dorsoventral patterning subdivides the neural tube from spinal cord to midbrain 

into the FP, basal plate, alar plate and roof plate (RP) (Liu and Joyner, 2001; Prakash and 

Wurst, 2006). Induction of the vMb is refined by local organizer, which provides vMb cells 

with positional information by expression of different diffusible signals (Figure 3). 

The vMb (FP and alar plate) is induced by Sonic hedgehog (Shh) (Jessel, 2000; Lupo et al., 

2006). Shh is secreted first from the notochord, which underlies the neural plate, and later on 

from the FP. Shh as a long-range morphogen is critical for the induction of ventral cell fates 

in many parts of the nervous system and directs the pattern of neurogenesis by conferring 

positional information to ventral progenitors (Jessell, 2000; Lupo et al., 2006). The crucial 

role of Shh in MbDNp induction is apparent in Shh-null mutant mice, in which MbDNs are 

completely missing (Agarwala et al., 2002; Fedtsova et al., 2001; Ishibashi et al., 2002; Blaess 

et al., 2006). Furthermore, conditional inactivation of Shh signaling by depletion of 

Smoothened (Smo), a Shh receptor, at E9.0 results in severe reduction of MbDNs (Blaess et 

al., 2006). 

 



Introduction 
 

 14 

 
Figure 3 Expression of molecules involved in the regionalization and induction of 
MbDNp. Schematic of sagittal section through the mouse embryo. The region in the 
developing CNS where MbDNs develop is indicated in red. Shh (yellow line) is expressed in 
the FP along the neural tube, Fgf8 (green line) is expressed at the mid-hindbrain border 
(MHB) and Wnt1 (purple line) is expressed in the FP and RP of the midbrain, and at the 
MHB. Tel: telencephalon, Mes: mesencephalon, Hb: hindbrain. 
 
Anteroposterior pattering is regulated by a neuroepithelial signaling center localized at the 

mid-hindbrain boundary (MHB) or isthmus. The isthmus is characterized by the expression of 

fibroblast growth factor (Fgf) 8 (Hynes et al., 1995a; Hynes et al., 1995b; Ye et al., 1998; Lee 

and Jessell, 1999; Andersson et al., 2006; Prakash et al., 2006). Conditional inactivation of 

Fgf8 in the midbrain and anterior hindbrain (aHb) results in cell death and failure in the 

midbrain development (Chi et al., 2003). Moreover, conditional inactivation of Fgf receptors, 

particularly Fgf receptor 1, results in midbrain and aHb defects (Trokovic et al., 2003 and 

2005). Interestingly, explant culture experiments have demonstrated that both, Shh and Fgf8 

are required for the induction of MbDNp before E9.5 (Ye et al., 1998), meaning that 

intersection of these secreted factors determines where the MbDNp domain will arise (Hynes 

et al., 1995; Jessel et al., 2000; Briscoe et al., 2001). 

Along with Fgf8 and Shh, Otx2 and gastrulation brain homeobox 2 (Gbx2) are essential for 

the correct positioning of the MbDNp domain. Gbx2 and Otx2 are transcriptional repressors, 

which are expressed in the presumptive hindbrain and in the presumptive mid- and forebrain, 

respectively (Prakash et al., 2004; Ono et al., 2007; Liu et al., 2001). Otx2 mutant mice show 

a complete depletion of the forebrain and midbrain (Ang et al., 1996). Furthermore, a subtle 

shifting of the Otx2 caudal expression boundary effects MbDN population in size (Acampora 

et al., 1997; Brocolli et al., 1999). Thus, expanded Otx2 expression in the caudal midbrain – 

aHb leads to a shift of MHB caudally and an increase of MbDNs (Brodski et al., 2003). 
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Furthermore, secreted molecule Wingless-type MMTV integration site family, member 1 

(Wnt1) is expressed at the rostral border of the MHB and is known to regulate midbrain 

morphogenesis (Figure 3). Wnt1 mutant mice show an abnormal posterior midbrain, isthmus 

and aHb, revealing its essential role in MHB formation (McMahon et al., 1990; Chilov et al., 

2010). Moreover, a temporal requirement for Wnt1 in the induction of distinct MbDNp 

domains was demonstrated. Thus, inactivation of Wnt1 at E9.0 results in almost complete loss 

of the medially positioned MbDNp domain (Yang et al., 2013). Furthermore, it has been 

shown that Wnt1 and Fgf8 cross-regulate each other (Matsunaga et al., 2002; Chi et al., 

2003). Since Fgf8 failed to induce ectopic MbDN in Wnt1 mutant embryos, it has been 

suggested that Wnt1, which can be induced by Fgf8, is a more direct regulator of initiation of 

the MbDNp field (Prakash et al., 2006). 

 

 1.14 Specification of MbDNs 

While vMb precursor identity is established, the most ventrally located precursors start to be 

specified towards a MbDN fate. The neuroepithelium of the vMb first thickens by cell 

proliferation and then becomes layered. The cells in narrow band adjacent to the VZ maintain 

their proliferative precursor properties while other cells move out into the intermediate zone 

(IZ) (Figure 2). The induction of the MbDNp identity occurs within the VZ of the ventral 

midline. A network of transcriptional factors such as Foxa1/2 (forkhead/winged helix 

transcription factor 1 and 2), Lmx1a/b (LIM homeobox transcription factor 1, alpha and beta), 

Msx1/2 (homeobox msh-like 1) as well as Wnt1 signaling regulate the induction of MbDNp 

(Figure 4). Diffusible signaling molecules described above mediate the activation of these 

factors. Thus, Shh secreted from the notochord has been shown to directly induce the Foxa1/2 

expression (Sasaki et al., 1997). Foxa2, in turn, directly induces vMb Shh expression through 

well-conserved Foxa2 binding sites in the Shh gene (Jeong and Epstein, 2003). Moreover, 

Foxa1/2 act downstream of Shh to alter a cell’s competence to respond to Shh signaling by 

directly repressing Gli2 expression (a main activator of Shh signaling, Section 1.17). In 

addition, Foxa1/2 regulate the pattering of vMb precursors by inhibiting the expression of 

Nkx2-2 (Figure 4) (Mavromatakis et al., 2011). 
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Figure 4 The genetic network regulating development of the MbDN. Arrows indicate the 
effect on expression: green = positive regulation, purple = autoregulatory loop, black = 
negative regulation. The factors are color-coded to indicate their role listed on the left side. 
VZ: ventricular zone; IZ: intermediate zone; MZ: mantel zone. 
 
Several lines of evidence indicate that Wnt1 not only regulates the induction of MbDNp, but 

is also involved in MbDNp specification (Figure 3). ES cell culture studies identified that 

Wnt1 directly regulates the expression of the transcriptional factors Lmx1a/b and that removal 

of Lmx1a results in complete loss of Wnt1 expression, revealing an autoregulatory loop 

between Wnt1 and Lmx1a (Chung et al., 2009; Yang et al., 2013). Lmx1a defines the MbDNp 

domain along with the aristaless related homeobox (Arx), transcriptional factor, which is 

expressed in the FP (Andersson et al., 2006; Joksimovic et al., 2009; Blaess et al., 2011; 

Hayes et al., 2011). Lmx1b null mice show a severe reduction in the number of MbDNs 

(Smidt et al., 2000), due to early loss of the midbrain (Guo et al., 2007). Furthermore, loss of 

Lmx1a results in pronounced loss of MbDNs (Andersson et al., 2006; Ono et al., 2007; Deng 

et al., 2011). Conditional inactivation of both transcriptional factors results in severe 

reduction in the MbDNp, suggesting that these two factors can compensate for each other’s 

function (Deng et al., 2011). Furthermore, it has been shown that Lmx1a indirectly regulates 

neurogenesis by inducing expression of Msx1/2 transcriptional factors. Msx1/2 appear to 

induce neurogenesis by activating the proneural factor Ngn2 (neurogenin 2) (Andersson et al., 

2006; Chung et al., 2009). Msx1 null mice exhibit a 40% reduction in the normal number of 

MbDNs, likely as a result of the downregulation of Ngn2 expression (Andersson et al., 2006). 

Moreover, premature expression of Msx1 in the vMb in transgenic mice also leads to the 
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precocious expression of Ngn2, and to the downregulation of Shh in the FP (Chung et al., 

2009) (Figure 4). 

The transition of cells from the proliferation to differentiation is mediated by Ngn2. Ngn2 is 

severely reduced in double mutant mice for Lmx1a/b (Yan et al., 2011). Loss-of-function 

studies show that Ngn2 is the major proneural factor required for MbDN neurogenesis. 

Inactivation of Ngn2 dramatically delays and reduces the number of MbDNs in the IZ (Kele 

et al., 2006; Andersson et al., 2006). Further findings suggest that Ngn2 controls 

differentiation of MbDNs through the regulation of Notch pathway genes, known to maintain 

precursor fate such as Hes5 (an effector of Notch signaling) and Dill1 (a Notch ligand) (Kele 

et al., 2006). Wnt1 regulates the development of MbDNs by controlling the cell cycle 

progression in the MbDNp. Thus, constitutive activation of Wnt/β-catenin (an intracellular 

signal transducer in the canonical Wnt pathway) results in an expansion of early MbDNp. 

However, it perturbs cell cycle progression in the progenitors and reduces the generation of 

MbDNs in vMb. Interestingly, further insights into the role of Wnt1/β-catenin pathway 

revealed that it is also required to maintain the integrity of radial glia, which actually give rise 

to MbDNs and provide scaffolds for newly generated MbDNs to migrate towards their final 

destination (Tang et al., 2009). Removal of β-catenin in MbDNp leads to a complete loss of 

cell polarity, which results in ectopic cell death and loss of MbDNs (Tang et al., 2009). 

 

 1.15 Differentiation of MbDNs 

After MbDNp exit the cell cycle, they migrate ventrally along radial glia towards the MZ and 

begin to differentiate (Figure 2). These postmitotic MbDNp are not yet fully differentiated 

and continue to express a large set of genes from early MbDNp specification, but start to 

express the orphan nuclear receptor Nurr1 (nuclear receptor subfamily 4, group A, member 2) 

(Zetterstrom et al., 1997). In Nurr1 knockout mice MbDNs fail to express genes, which are 

involved in DA synthesis, axonal transport, storage and release or reuptake of DA 

(Zetterstrom et al., 1997; Saucedo-Cardenas et al., 1998). Lmx1a/b directly regulate the 

expression of Nurr1 (Figure 4) (Chung et al., 2009). 

The next step in the differentiation of MbDNs is characterized by the expression of pituitary 

homeobox 3 (Pitx3) transcriptional factor and TH, the rate limiting enzyme of DA synthesis. 

Lmx1b is involved in the initiating the expression of TH and Pitx3. Thus, in Lmx1b null mice, 

medially derived MbDNs are lost and the majority of remaining MbDNs fail to express TH 

and Pitx3 (Deng et al., 2011). Pitx3 is required for the proper differentiation of MbDNs by 

regulating TH expression (Maxwell et al., 2005). Interestingly, MbDN diversity is apparent 



Introduction 
 

 18 

already during development. MbDNs located at the ventrolateral position of the MZ express 

Pitx3 prior to TH, whereas the dorsomedial MbDNs express TH ahead of Pitx3 at E12.5 

(Maxwell et al., 2005). Later on, Pitx3 is expressed in all MbDN subpopulations. However, 

Pitx3 deficient mice display severe reduction of the SNpc MbDNs, whereas the VTA neurons 

are relatively intact (Smidt et al., 1997 and 2004; Zhao et al., 2004). 

A number of genes regulated by Pitx3 have been identified (Smits et al., 2006). One of these 

genes encodes the enzyme aldehyde dehydrogenase family 1 (Aldh 1a1: also known as 

Raldh1 or Ahd2). Ahd2 is under the transcriptional control of Pitx3, which binds to a highly 

conserved region of Ahd2 gene (Jacobs et al., 2007). Ahd2 is involved in the production of 

retinoic acid (RA) from retinol, which is crucial for neuronal pattering and differentiation 

(McCaffery et al., 2003) and it is exclusively expressed in the lateral parts of the MbDN area. 

Prenatal RA treatment (E10.5-E13.5) of Pitx3 deficient mice can rescue the phenotype and 

results in increased Ahd2 expression in the lateral parts of MbDNs at E14.5 (Jacobs et al., 

2007). 

Recent study suggested that Otx2 is also involved in the controlling of postmitotic aspects of 

MbDN differentiation and crucial for proper functioning of MbDNs in the adult brain (Di 

Salvio et al., 2010). Interestingly, Otx2 is expressed exclusively in a subset of MbDNs of the 

VTA and is completely excluded from the SNpc MbDNs in the adult brain. 

 

 1.16 Molecular heterogeneity of MbDNp domain 

The diversity of MbDN system is created by a controlled ontogenetic process of their 

specification, migration and differentiation. The Lmx1a expression defines the MbDNp in the 

ventral midline. Medial progenitor cells express, besides Lmx1a, the transcription factors 

Msx1/2 and the cell surface molecule Corin, whereas laterally located progenitor populations 

express only Lmx1a (Andersson, 2006; Ono, 2007; Deng, 2011; Mavromatakis et al., 2011; 

Blaess et al., 2011). Analysis of Lmx1a- and Lmx1b deficient mice confirmed that there are at 

least two distinct MbDNp domains, which might contribute to discrete MbDN subtype 

populations. Thus, deletion of Lmx1a results in a specific loss of the medial MbDNp domain, 

whereas the lateral MbDNp domain is not established in Lmx1b null mutants, suggesting a 

selective requirement for Lmx1a/b in the specification of two distinct MbDNp. It has 

previously been demonstrated that Shh expression is dynamic in the vMb (Joksimovic et al., 

2009; Blaess et al., 2011; Hayes et al., 2011 and 2013). First, Shh is released by cells in the 

notochord and induces Shh expression in the narrow medial domain overlying the notochord 

around E8.5. Gli1 expression is a well-established readout for high levels of Shh signaling 
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and precedes Shh expression by about a day. Thus, Gli is initially expressed in the ventral 

midline of the neural tube at E7.5, while Shh is expressed by the cells of notochord (Hui et al., 

1994). Once Shh expression is present in ventral midline cells around E8.5, Gli1 expression is 

downregulated in the Shh-expressing cells and excluded from the midline, indicating that Shh-

expressing cells cease responding to Shh signaling. The Shh domain expands more laterally 

until E10.5 and Shh expression begins to be downregulated medially (Ye et al., 1998; Prakash 

and Wurst, 2006; Blaess et al., 2011). The lateral expansion of Shh-expressing cells in the 

vMb over time results in gradually shifted lateral expression of Shh-responding cells (Gli1-

expressing). At later developmental stages (E11.5 and E12.5) weak Shh expression is still 

detected in the medial domain (Blaess et al., 2011; Hayes et al., 2011). Genetic inducible fate 

mapping (GIFM) studies have demonstrated that the spatiotemporally dynamic Shh 

expression defines multiple progenitor pools and can potentially give rise to the distinct 

neuronal cell populations (Blaess et al., 2011; Hayes et al., 2011). In addition, conditional 

inactivation of Shh signaling pathway demonstrates that the crucial time period for Shh 

signaling in establishing MbDNs is between E8.0 and E10.0 (Blaess at al., 2006 and 2011). 

Making use of the changing Shh-expressing domains, GIFM sequentially defined two 

spatially distinct vMb progenitor domains that give rise to different subpopulations of MbDNs 

(Blaess et al., 2011; Hayes et al., 2011) (Figure 5). 

 

Figure 5 Distinct MbDN precursor domains give rise to different MbDN subpopulations. 
(A) Schematic of medial (yellow) and lateral (orange) MbDNp domains at E9.5-E10.5. (B) 
The medial domain contributes preferentially to the MbDNs of the SNpc (yellow dots) and 
dlVTA. The lateral MbDNp give rise to the MbDNs of the vmVTA and RLi. 

After E9.5, precursor cells that continue to respond to Shh (express Gli1) are located in the 

lateroposterior aspects of the MbDNp domain and appear to adopt a certain fate of MbDN, 

since they preferentially give rise to MbDN in the vmVTA. Whereas MbDNp located at the 

ventral midline, which responds to Shh prior E9.5, show a bias to contribute to the SNpc 

(Blaess et al., 2011; Hayes et al., 2011). In addition, cells responding to Shh at E9.5 to E10.5 

give rise to other vMb neurons, including the neurons in the oculomotor nucleus (OM) and 
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the non-MbDNs in the SNr (Figure 7). These data further support the idea that there are 

distinct subsets of MbDNp and suggest that the time or length of exposure to Shh signaling 

might be involved in pre-determining MbDN subset fate. 

 

 1.17 Shh pathway transduction 

The transduction of Shh signaling occurs via the interaction of two cell surface receptors, the 

12-transmembrane-domain protein patched (Ptch) and the seven-pass G-protein-coupled 

receptor smoothened (Smo) (Marigo et al., 1996; Stone et al., 1996; Goodrich et al., 1997; 

Ingham and McMahon, 2001) (Figure 6). Genetic and biochemical data indicate that in 

absence of Shh ligand, Ptch constitutively represses Smo activity (Chen et al., 1996). When 

bound by Shh, the inhibition of Smo by Ptch is relieved, allowing Smo to transduce Shh 

signaling intracellularly (Alcedo et al., 1996). Smo acts intracellularly by activating or 

repressing Gli family zinc-finger transcriptional factors. In mouse, there are three Gli proteins 

that transduce the Shh signal. Gli3 functions primarily as a transcriptional repressor whereas 

Gli1 and Gli2 function as activators (Matise et al., 1998; Bai et al., 2002, 2004; Pan et al., 

2006). In the absence of Shh, Gli3 is proteolytically processed to generate a transcriptional 

repressor (Figure 6) and Gli2 is completely degraded (Pan et al., 2006). 

 

 
Figure 6 Schematic of canonical Shh signaling pathway. Shh signaling occurs in primary 
cilia. (A) In absence of Shh, the activity of Smoothened (Smo) is repressed by Patched (Ptch). 
Gli2 is degraded. Gli3 is processed into a Gli3 repressor (Gli3-R), which blocks the 
expression of Shh target genes. (B) Binding of Shh releases inhibition of Smo by Ptch and 
allows it to enter the cilium. Consequently, Gli2 and Gli3 are activated (Gli2A and Gli3A). 
Gli2A induces Shh target genes (e.g. Gli1 and Ptch). 
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Presence of Shh induces the formation of Gli2 and to a lesser extent Gli3 activators (Bai et al., 

2002; Persson et al., 2002). Moreover, Shh inhibits the proteolytic processing of Gli3 into a 

repressor form and decreases its expression on a transcriptional level. Gli2 activator function 

is essential for the induction of the ventral most cell types, including the FP, whereas the 

proper regulation of Gli3 repressor levels controls the patterning of more dorsal region. Gli1 

expression is completely dependent on Gli2/Gli3 activator function and is readout for high 

levels of Shh signaling. A number of recent in vivo and in vitro studies have shown that Shh 

signaling occurs in primary cilia. In the absence of Shh, Ptch is localized to the primary 

cilium, whereas Smo is localized to the plasma membrane of the cell body (Figure 6). Upon 

Shh exposure, Ptch allows Smo to enter the cilium, where it promotes the activation of Gli2 

and inhibits the formation of Gli3 repressor, resulting in the activation of target genes (Corbit 

et al., 2005). The formation of Gli3 in the absence of Shh signaling also requires primary cilia 

(Haycraft et al., 2005; Liu et al., 2005; May et al., 2005). 

 

 1.18 Other ventral midbrain cells regulated by Shh signaling 

A number of developmental studies have shown that the VZ of the vMb can be divided into 

three molecularly distinct domains at E10.5 (Figure 7A). As described previously, cells at the 

ventral midline express Lmx1a and give rise to MbDNs. Oculomotor (OM) and red nucleus 

(RN) neurons are generated immediately lateral to the Lmx1a positive MbDNp domain from 

cells that express Foxa2, Sim1, Nkx6-1 and Nkx6-2. Progenitors located lateral to the Foxa2 

domain express Nkx2.2 and differentiate into GABAergic neurons (Figure 7A) (Kala et al., 

2009). The neurons of the RN and OM complex are involved in the control of movement. The 

OM nucleus gives rise to the third (nIII) cranial nerve and innervates the ipsilateral 

extraocular muscles and ciliary ganglion, thereby controlling most eye movements, eye 

accommodation and pupil contraction (Figure 7B). The neurons of OM complex are 

characterized by expression of the LIM homeodomain transcriptional factor islet1 (Isl1) and 

the homeobox gene Mnx1 (motor neuron and pancreas homeobox 1), generic motor neuron 

markers (Ericson et al., 1992; Agarwala and Ragsdale, 2002). The crucial role of Isl1 for 

survival of motor neurons in the spinal cord was demonstrated in the loss-of-function study 

(Pfaff et al., 1996), but its function in OM development remains unknown. 

The RN consists of the anterior parvocellular and the posterior magnocellular part (Evinger, 

1988). Both parts of the RN contain excitatory glutamate and inhibitory GABA-synthesizing 

neurons, which project to the cerebellum, brainstem and spinal cord (Keifer and Houk, 1994). 

Together with the corticospinal tract, the rubrospinal tract plays a fundamental role in the 
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control of limb movements (Kennedy, 1990). The neurons of the RN can be identified by 

expression of the POU homeobox transcription factor Pou4f1 (also known as Brn3a), which is 

required for survival of postmitotic RN neurons (Turner et al., 1994; Fedtsova and Turner, 

1995; McEvilly et al., 1996; Xiang et al., 1996; Agarwala and Ragsdale, 2002). 

A       B 

 
Figure 7 vMb precursor domains give rise to different neurons. (A) Schematic view of 
vMb precursor domains at E10.5. Lmx1apos/Shhpos/Foxa2pos domain (orange) gives rise to 
MbDNs. Medial Lmx1apos/Corinpos/Msx1/2pos domain (red) gives rise to the VTA MbDNs, 
whereas Lmx1apos/Corinneg/Msx1/2neg domain (orange) gives rise to the SNpc MbDNs. 
Shhpos/Foxa2pos/Nkx6-1pos precursors (yellow) give rise to the neurons of the red nucleus 
(RN). The oculomotor nucleus (OM) is derived from the Foxa2pos/Nkx6-1pos domain (green), 
whereas GABAergic neurons arise from the Nkx2.2pos/Nkx6-1pos domain (blue). (B) RN (red) 
and OM (blue) projections into the cerebellum (Cb), pons and spinal cord (SC). 
 

Birthdating experiments demonstrated that OM neurons develop between E9.2 and E9.7, 

whereas RN neurons are generated between E10.2 and 10.7 (Prakash et al., 2009). Shh plays a 

crucial role in the induction of these neurons (Watanabe and Nakamura, 2000; Fedtsova and 

Turner, 2001; Agarwala and Ragsdale, 2002; Blaess et al., 2006; Bayly et al., 2007; Fogel et 

al., 2008). Nkx6-1 null mutant mice display a severe reduction in the number of RN and OM, 

demonstrating that Nkx6-1 is intrinsically required for the generation and identity of those 

neurons (Prakash et al., 2009). In addition, Otx2 plays an important role in the development 

of RN and OM nuclei. Conditional inactivation of Otx2 in the midbrain results in a complete 

loss of the RN and hypoplasia of the OM (Puelles et al., 2004). In contrast, ectopic expression 

of Otx2 results in ectopic expression of Nkx6-1 and ectopic generation of RN, suggesting an 

important role of Otx in induction and maintenance of Nkx6-1 expression in the vMb 

(Prakash et al., 2009). Notably, only ectopic RN neurons were detected in the rostral 

hindbrain, but not OM neurons, meaning that Otx2 is sufficient for the generation of RN but 

not of OM complex. 

Lmx1b and Foxa2 are also involved in the generation of OM and RN neurons (Deng et al., 

2011), since Lmx1b null and Foxa2 null mutants display an almost complete loss of OM 

neurons and a significant increase in the number of RN cells. The imbalance in Lmx1a and 
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Foxa2 expression determines the fate of these neurons. Thus, Lmx1b is necessary for the 

generation of OM and for the suppression of RN neurons at early developmental stages, 

whereas inactivation of Foxa2 results in a loss of OM and striking overproduction of RN 

neurons (Deng et al., 2011). 

 

 1.19 Shh signaling and its role in the development of the central nervous system 

In the nervous system, Shh has been studied in detail in the induction of different ventral cell 

types in the spinal cord (Fuccillo et al., 2006; Dessaud, et al., 2007). Shh acts as a morphogen 

in a concentration-dependent manner and determines spatially distinct progenitor domains 

along the ventrodorsal axis (Jessel, 2000). Distinct concentration levels of Shh induce 

expression of specific sets of homeobox transcription factors. Each progenitor domain 

generates one or more distinct neuronal subtypes, the identity of which is determined by the 

combination of transcription factors expressed by the precursors (Lupo et al., 2006). The 

progenitor domain in the ventral midline of the developing spinal cord receives the highest 

concentration of Shh from the notochord and develops into the FP. Once FP cells are 

determined, they begin to express Shh. Overall, six different progenitor domains/neuronal cell 

types are generated in response to different levels of Shh (Briscoe, et al., 2000). In Shh-

deficient mice neither the FP domain, nor six distinct cell types are generated (Wijgerde et al., 

2002). A number of recent studies in the spinal cord have demonstrated that Shh does not 

only elicit a concentration-dependent response (as expected from a morphogen), but that the 

duration of Shh signaling can also influence the cell’s fate decision (Dessaud, 2007 and 2008, 

Balaskas et al., 2012). A “temporal adaptation” model has been proposed, that relies on a 

progressive decrease in the sensitivity of receiving cells to ongoing Shh signaling (Dessaud et 

al., 2007). First, cells appear to be highly sensitive to Shh signaling and low concentration of 

Shh is sufficient to evoke high levels of Gli activity. With increasing time, cells become 

desensitized to ongoing Shh signaling and only high concentration of Shh can evoke the 

highest levels of Gli activity increases. Consistent with this model, gain-of-function 

experiments suggest that progressive changes in the level of Gli activity are sufficient to 

recapitulate the patterning activity of graded Shh signaling (Li et al., 2004). As a result, 

changes in the concentration or the duration of Shh have an effect on intracellular signaling in 

the spinal cord. 
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2. Aim of the thesis 

MbDNs play pivotal roles in the regulation of many important brain functions including 

motor control, emotion and cognition. They form several subpopulations, which are divergent 

in their physiological and functional features as well as vulnerability to neurodegeneration in 

PD. The diversity of these subpopulations is partially correlated with their anatomical 

organization and incoming and outcoming connectives. However, little is known about how 

this diversity is established during development. Shh signaling is required for the generation 

of MbDNp between E8.0 to E10.5 (Andersson et al., 2006; Blaess et al., 2006). However, 

after E9.5 only precursors located in the lateroposterior aspects of the MbDNp domain 

continue to respond to Shh and preferentially give rise to MbDNs in the vmVTA (Blaess et 

al., 2011; Hayes et al., 2011). These data suggest that distinct subsets of MbDNp exist, and 

that their generation is governed by the temporospatial dynamics of Shh signaling. 

To investigate whether Shh signaling plays an instructive role in determining different subsets 

of MbDNp, high level Shh signaling shall be inactivated between E8.5-E9.0, about a day after 

MbDNp start to respond to Shh signaling and day before lateral MbDNp cease to respond to 

Shh. This shall be achieved by conditional removal of Gli2, the main downstream activator of 

Shh signaling. Immunohistochemical and RNA In Situ hybridization analysis of MbDNp shall 

provide important insights into the mode (direct or indirect) and timing of Shh signaling in 

specification of MbDNs. Examination of MbDNp domain in the developing vMb and MbDNs 

in the adult brains shall identify whether and which subpopulation of MbDNs is affected by 

Shh inactivation. In addition, optogenetic and immunohistochemical approaches shall 

ascertain whether loss of specific MbDN subpopulations disturbs innervation of the target 

area in adult brain. 

It is well known that MbDNs and their target structures are involved in the neural circuit 

modifications that underlie a variety of adaptive and pathological behaviors (Zhang et al., 

2001; Wiese et al., 2004; Lammel et al., 2012; Stamatakis et al., 2012). To examine whether 

and how the preferential reduction of MbDN subpopulations impacts on the formation of 

dopaminergic circuitry, MbDN-derived projections shall be examined using viral tracing, 

optogenetics and physiological approaches. 

Finally, to determine the temporal requirement of Shh signaling for the RN neuron 

specification, precursors in the ventral midline of the developing midbrain shall be analyzed 

using immunohistochemical and RNA In Situ hybridization approaches. 
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3. Materials and Methods 

 3.1 Technical equipment 

Appliance Name Manufacturer Registered office 

Autoclave DX-150 Systec Wettenberg, Germany 

Balance Atilon Sartorius Göttingen, Germany 

Block heater Dry bath Typ15103 Thermo Scientific Waltham, USA 

Centrifuge Labofuge 400R  Thermo Scientific Waltham, USA 

Centrifuge Pico 17 Thermo Scientific Waltham, USA 

Confocal microscope Fluoview 1000 

Dualscan 

Olympus Tokyo, Japan 

Cryostat CM3050S Leica Wetzlar, Germany 

Fluorescence lamp Illuminator HXP120C Zeiss Jena, Germany 

Galvanometer based 

scanning system 

UGA-40, DL-473 Rapp 

Optoelectronics 

Hamburg, Germany 

Gel chamber Model 41-1525 Peqlab Erlangen, Germany 

Horizontal puller Model P-97 Sutter Instruments Novato, USA 

Hotplate HI12220 Flattening 

Table 

Leica Wetzlar, Germany 

Hotplate Flattening Table 

OTS40 

Medite Burgdorf, Germany 

Hybridization oven InSlide Out 241000 Boekel Scientific Feasterville, USA 

Incubator AL01-07 Advantage-Lab Schilde, Belgium 

Laser 473 nm Omicron Rodgau-Dudenhofen, 

Germany 

Light fiber BF-22 Thorlabs New Jersey, USA 

Magnetic stirrer AGE 1200RPM VELP Scientifica Usmate, Italy 

Microscope Axio Observer. Z1 Zeiss Jena, Germany 

Microscope DM1000LED Leica Wetzlar, Germany 

Microscope camera AxioCam MRm Zeiss Jena, Germany 

Microscope camera AxioCam MRc Zeiss Jena, Germany 

Microwave R-939-A SHARP Electronic 

GmbH 

Hamburg, Germany 

Multiclamp amplifier 700 B Molecular Devices Sunnyvale, USA 
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PCR cycler DNA engine PTC-

200 

Biorad München, Germany 

pH Meter FE20 FiveEasy Mettler Toledo Gießen, Germany 

Pipettes horizontal 

puller 

P-97 Sutter Instruments Hofheim, Germany 

Power supply Power supply 231 Zeiss Jena, Germany 

Refrigerator/Freezer 

4°C and -20°C 

G 2013 Comfort Liebherr Lindau, Germany 

Reverse phase 

column 

C18 Thermo Scientific Waltham, USA 

Shaker Nutation mixer VWR Darmstadt, Germany 

Slides boxes Micro slide box 

(plastic) 

VWR Darmstadt, Germany 

Spectrophotometer Nanodrop 1000 Peqlab Erlangen, Germany 

Stereo microscope Modular 

stereomicroscope 

MZ10F 

Leica Wetzlar, Germany 

Thermal Shaker Thriller Peqlab Erlangen, Germany 

Ultrafast Ti:Sa laser 810 nm, Chameleon 

Ultra 

Coherent Santa Clara, USA 

Water bath WB Type 1012/1013 GFL Burgwedel, Germany 

Vacuum pump Vacuubrand Brand Wertheim, Germany 

Vibratome VT 1200 S Leica Wetzlar, Germany 

Vortex Vortex genius IKA Staufen, Germany 

 

 3.2 Consumables 

Appliance Name Manufacturer Registered office 

Butterfly needles Butterfly-25 Venisystems, 

Hospira 

Lake Forest, USA 

Dissection tools  Fine Science Tools Heidelberg, Germany 

Embedding cassettes Histosette 

embedding cassettes 

VWR Darmstadt, Germany 

Embedding molds Peel-A-Way Polysciences Inc. Warrington, USA 
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embedding molds 

Glass capillaries GB150F-8P Science Products Hofheim, Germany 

Hybridization cover 

slips 

HybriSlip HS 60 Sigma Aldrich  St. Louis, USA 

Beveled needles NanoFil NanoFil, WPI Sarasota, USA 

Injection needles 27G x ¾´´-Nr.20 

Microlance 3 

BD Bioscience Heidelberg, Germany 

Microinjection 

syringe 

0.001µL/hr-

21mL/min 

NanoFil, WPI Sarasota, USA 

Microscope Cover 

Glasses 

40 mm/ 60 mm Labomedic Bonn, Germany 

Microscope slides Superfrost Menzel-Gläser Braunschweig, 

Germany 

Microscope slides Superfrost ultra plus Menzel-Gläser Braunschweig, 

Germany 

Mini-pump Micro4MicroSyringe 

Pump Controller 

WPI Sarasota, USA 

Parafilm Laboraty film `M Pechiney Plastic 

Packaging 

Chicago, USA 

PCR tubes PCR strip tubes 0,2 

mL 

VWR Darmstadt, Germany 

Perfusion tools  Fine Science Tools Heidelberg, Germany 

Petri dishes Falcon petri dishes 

(15 mm) 

BD Biosciences Heidelberg, Germany 

Pipettes Pipetteman 

P10/20/200/1000 

Gilson Middleton, USA 

Pipetteboy Accu Jet Pro Brand Wertheim, Germany 

Pipette tips Gilson pipette Tipps 

(0,5-20 µL, 20-200 

µL, 200-1000 µL) 

Greiner Bio-One Frickenhausen, 

Germany 

Reagent tubes Eppendorf tubes (0,5 

mL; 1,5 mL; 2 mL) 

Eppendorf Hamburg, Germany 

Serological pipettes Costar plastic Sigma Aldrich St. Louis, USA 
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serological pipettes 

Syringes Plastipak 1 mL BD Bioscience San Jose, USA 

 

 3.3 Chemicals and reagents 

Chemicals Manufacturer Registered office 

2-Mercaptoethanol Sigma Aldrich St. Louis, USA 

Acetic anhydride (Ac2O) VWR International Darmstadt, Germany 

Acetone Roth Karlsruhe, Germany 

Acetonitrile Sigma Aldrich St. Louis, USA 

Agarose (ultrapur) Life Technologies Carlsbad, USA 

Albumin Boviene Serum (BSA) Sigma Aldrich St. Louis, USA 

Ampicillin VWR International Darmstadt, Germany 

Anti-DIG-AP Fab fragments Roche Applied Science Penzberg, Germany 

Aqua-PolyMount Polyscience Inc. Eppelheim, Germany 

Atipamezol Provet AG Lyssach b. Burgdorf, 

Switzerland 

Biocytin Sigma Aldrich St. Louis, USA 

Boric acid VWR International Darmstadt, Germany 

BM Purple Poche Applied Science Penzberg, Germany 

Bromodeoxyuridine (BrdU) Sigma Aldrich St. Louis, USA 

Bromphenol blue Sigma Aldrich St. Louis, USA 

Chloroform (CHCl3) VWR International Darmstadt, Germany 

Culture medium (LB) AppliChem Darmstadt, Germany 

ddH2O Ampuwa, Fresenius Bad Homburg, Germany 

dH2O MilliQ, Merch-Millipore Billerica, USA 

Deoxycholate AppliChem Darmstadt, Germany 

Dextran sulfate AppliChem Darmstadt, Germany 

Digoxigenin-labeled NTPs Roche Applied Science Penzberg, Germany 

Disodium phosphate (Na2HPO4) VWR International Darmstadt, Germany 

DMSO Sigma Aldrich St. Louis, USA 

DNA Ladder 1 kb plus Life Technologies Carlsbad, USA 

DNA loading buffer Life Technologies Carlsbad, USA 

dNTPs Peqlab Erlangen, Germany 
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DPBS Life Technologies Carlsbad, USA 

Eosin Solution Sigma Aldrich St. Louis, USA 

Ethidium bromide (EtBr) Life Technologies Carlsbad, USA 

Ethanol (EtOH) VWR International Darmstadt, Germany 

Ethylenediaminetetraacetic acid 

(EDTA) 

VWR International Darmstadt, Germany 

Ethylenediaminetetraacetic acid 

(EDTA) (HPLC grade) 

Sigma Aldrich St. Louis, USA 

Formamide Life Technologies Carlsbad, USA 

Glycerol Fisher Scientific Schwerte, Germany 

Hydrochloric acid (HCl) VWR International Darmstadt, Germany 

Hoechst 33258 Life Technologies Carlsbad, USA 

Isoflorane  Abbott Mumbai, India 

Isopropanol Sigma Aldrich St. Louis, USA 

Ketamine Bela-Pharm Vechta, Germany 

Levamisole Sigma Aldrich St. Louis, USA 

Lithium chloride (LiCl) Sigma Aldrich St. Louis, USA 

Magnesium chloride (MgCl2) VWR International Darmstadt, Germany 

Medetomidine Provet AG Lyssach b. Burgdorf, 

Switzerland 

Normal donkey serum (NDS) Sigma Aldrich St. Louis, USA 

Normal goat serum (NGS) Sigma Aldrich St. Louis, USA 

Octanesulfonic acid Sigma Aldrich St. Louis, USA 

OGB-1-AM dye Life Technologies Carlsbad, USA 

Orthophosphoric acid Sigma Aldrich St. Louis, USA 

Paraffin McCormick Scientific Richmond, USA 

Paraformaldehyde (PFA) VWR International Darmstadt, Germany 

PCR run buffer (10x) Life Technologies Carlsbad, USA 

Perchloric acid Sigma Aldrich St. Louis, USA 

Phenol AppliChem Darmstadt, Germany 

Phenol-Chloroform AppliChem Darmstadt, Germany 

Pluronic Life Technologies Carlsbad, USA 

Polymerase buffer (19x) Life Technologies Carlsbad, USA 
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Polysorbate 20 (Tween 20) VWR International Darmstadt, Germany 

Potassium chloride (KCl) VWR International Darmstadt, Germany 

Restriction enzyme New England Biolabs Ipswich, USA 

Restriction enzyme Roche Applied Science Penzberg, Germany 

RNase away Life Technologies Carlsbad, USA 

RNase inhibitor Roche Applied Science Penzberg, Germany 

Sodium acetate (NaOAc) Merck Darmstadt, Germany 

Sodium azide (NaN3) Sigma Aldrich St. Louis, USA 

Sodium citrate VWR International Darmstadt, Germany 

Sodium chloride (NaCl) VWR International Darmstadt, Germany 

Sodium dihydrogen phosphate 

monohydrate 

Sigma Aldrich St. Louis, USA 

Sodium diphosphate VWR International Darmstadt, Germany 

Sodium hydroxide (NaOH) VWR International Darmstadt, Germany 

Sodium tetraborate decahydrate VWR International Darmstadt, Germany 

Sucrose Sigma Aldrich St. Louis, USA 

Taq DNA polymerase GE Healthcare Buckinghamshire, UK 

RNA (SP6, T3, T7) polymerase Roche Applied Science Penzberg, Germany 

Tissue Tec O.C.T. Sakura Finetek Inc.  Torrance, USA 

Transcription buffer Roche Applied Science Penzberg, Germany 

Triethanolamine (TEA) VWR International Darmstadt, Germany 

Triethylamine Sigma Aldrich St. Louis, USA 

Tris-aminomethane (TRIS) Merck Darmstadt, Germany 

Triton X-100 Merck Darmstadt, Germany 

Xylol Arcos Organics Geel, Belgium 

 

 3.4 Buffer and solutions 

Acetylation solution 

125 µL acetic anhydride (Ac2O) 

650 µL HCL 

130 µL Triethanolamine (TEA) 

49 mL dH2O 

freshly prepared 
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Artificial cerebrospinal fluid (ACSF) 

60 mM NaCl 

100 mM sucrose 

2.5 mM KCl 

1.25 mM MaH2PO4 

26 mM NaHCO3 

1 mM CaCl2 

5 mM MgCl2 

20 mM glucose 

 

Blocking solution 

3 mL/10 mL NDS/NGS 

97 mL/90 mL PBS 

For the immunohistochemistry 0.1-0.2% triton is added, for RNA In Situ hybridization 0.1% 

Tween is added. The blocking solution is prepared freshly before use. 

 

Borate Buffer 

3.1 g boric acid 

4.8 g Sodium tetraborate decahydrate 

1 L dH2O 

stored at room temperature 

 

Ca2+-free Ringer 

150 mM NaCl 

2.5 mM KCl 

10 mM Hepes 

 

Citrate Buffer 

1.92 g Citric acid (anhydrous) 

1 L dH2O 

pH adjust to 8.0 

stored at room temperature 
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Hybridization Solution 

50 mL Formamide (deionized) (50%) 

20 mL 50% Dextran sulfate  

1 mL 100x Denhardt’s (1%) 

2.5 mL yeast tRNA (10 mg/mL) (10%) 

6 mL 5M NaCl (0.3 M) 

2 mL 1M Tris-HCl, pH 8 (20 mM) 

1 mL 0.5M EDTA (5 mM) 

1 mL 1M NaPO4 (pH 8) (10 mM) 

5 mL 20% Sarcosyl (1%) 

11.5 mL DEPC-H2O (1%) 

stored in 5 mL aliquots at -20°C 

 

Intracellular solution 

140 mM K-gluconate 

5 mM HEPES-acid 

0.16 mM EGTA 

0.5 mM MgCl2 

5 mM phosphocreatine 

0.3% biocytin 

 

LB medium 

10 g Tryptone/Peptone 

5 g Yeast extract 

10 g NaCl 

800 mL dH2O 

pH adjust to 7.5 

 

Loading buffer (10x) 

50% glycerol 

1xTE Buffer 

0.25% bromphenol blue 

0.25% xylene cyanol 
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Lysis Buffer 

2.5 mL 1M Tris pH 8.8 

0.1 mL 0.5M EDTA 

2.5 mL 10% Tween 

44.9 mL dH2O 

stored at room temperature 

 

NTMT 

2 mL 5M NaCl (100 mM) 

10 mL 1M Tris-HCl pH 9.5 (100 mM) 

5 mL 1M MgCl2 (50 mM) 

0.1 mL Tween-20 (0.1%) 

82.9 mL dH2O 

freshly prepared 

 

PBS (5x) 

40 g NaCl 

1 g KCl 

17,9 g Na2HPO4 * 12 H2O 

1.36 g KH2PO4 

1 L dH2O 

pH adjust to 7.4 

stored at room temperature 

 

PBS (1x) 

200 mL PBS (5x) 

800 mL dH2O 

stored at room temperature 

 

PBS-azide (0.1%) 

1 g Sodium azide 

1 L PBS (1x) 

stored at room temperature 
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PBS-Triton (0.1%) 

1 mL Triton X-100 

1 L PBS (1x) 

stored at room temperature 

 

PBS-Tween (0.1%) 

1 mL Tween-20 

1 L PBS (1x) 

stored at room temperature 

 

PFA (20%) 

500 g PFA 

2.0 L ddH2O 

8.0 mL NaOH 

stored in 5 mL aliquots at -20°C 

To prepare 2 L of 20% PFA, 500 mL of ddH2O was heated to 80°C under the hood. While 

stirring, 500 g PFA was added. 8 mL NaOH was added drop-wise until PFA crystals were 

dissolved. pH was adjusted to 7.4 with NaOH and the volume was filled up to 2 L with 

ddH20. Subsequently, the 20% PFA solution was filtered and aliquoted in 50 mL Falcon tubes 

(10 mL per tube), and stored at -20°C. To prepare 4% PFA, 5 mL of 20% PFA was heated up 

in a water bath at 65°C. 1xPBS was added to a total volume of 50 mL. 

 

RNase Buffer 

100 mL 5M NaCl (0.5M) 

10 mL 1M Tris-HCl, pH 7.5 (10 mM) 

10 mL 0.5M EDTA, pH 8 (5 mM) 

880 mL dH2O 

stored at room temperature 

 

SSC (20x) 

88.2 g Sodium citrate 

174 g NaCl 

1 L dH2O 

pH adjusted to 7.0 
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stored at room temperature 

 

SSC (5x) 

250 mL SSC (20x) 

750 mL dH2O 

stored at room temperature 

 

SSC (2x) 

100 mL SSC (20x) 

900 mL dH2O 

stored at room temperature 

 

SSC (0.1x) 

5 mL SSC (20x) 

995 mL dH2O 

stored at room temperature 

 

TAE (50x) 

242 g Tris-base 

57.1 mL Glacial acetic acid 

100 mL 0.5M EDTA, pH 8.0 

stored at room temperature 

 

TE Buffer 

1 mL 1M Tris-HCL pH 8.0 

200 µL 0.5 M EDTA 

98.8 mL dH2O 

 

 3.5 Primary antibodies 

ms = mouse, rb = rabbit, gt = goat, gp = guinea pig, rt = rat 

Epitope and origin Dilution Order # Manufacturer 

α-activated-Caspase-3 (rb) 

IgG 

1:200 9664 Cell Signaling, Danvers, USA 

α-BrdU (ms) IgG 1:50 555627 BD Bioscience, San Jose, USA  
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α-Calbindin (rb) IgG 1:2500 CB38 Swant, Bellinzona, Switzerland 

α-DAT (rt) IgG 1:1000 AB369 Merch-Millipore, Billerica, USA 

α-Foxa2 (gt) IgG 1:100 SC-6554 Santa Cruz Antibodies, Santa Cruz, 

USA 

α-GFP (gt) IgG 1:1000 AB5449 Abcam, Cambrige, UK 

α-GFP (rb) IgG  1:500 A11122 Life Technologies, Carlsbad, USA  
α-GFP (rt) IgG 1:2000 04404-26 Nacalai, San Diego, USA 

α-Girk2 (rb) IgG 1:100 APC-006 Alomone Labs, Jerusalem, Israel 

α-Lmx1a (rb) IgG 1:2500 AB10533 Merch-Millipore, Billerica, USA 

α-Ngn2 (gt) IgG 1:50 SC-19233 Santa Cruz Antibodies, Santa Cruz, 

USA 

α-Nkx6-1 (ms) IgG 1:50 F55A10 Developmental Studies Hybridoma 

Bank, Iowa-City, USA 

α-Nurr1 (ms) IgG 1:200 SC-990 Santa Cruz Antibodies, Santa Cruz, 

USA 

α-Pitx3 (rb) IgG 1:250 38-2850 Life Technologies, Carlsbad, USA 

α-Pou4fl (ms) IgG  1:100 SC-8429 Santa Cruz Antibodies, Santa Cruz, 

USA 

α-Tyrosine hydroxylase 

(TH) (ms) IgG 

1:500 MAB318 Merch-Millipore, Billerica, USA 

α-Tyrosine hydroxylase 

(TH) (rb) IgG 

1:500 MAB152 Merch-Millipore, Billerica, USA 

 

 3.6 Secondary antibodies 

Epitope and origin Dilution Order # Manufacturer 

anti-mouse, Alexa 488 1:500 A21202 Life Technologies, Carlsbad, USA 

anti-rabbit, Alexa 488 1:500 A21206 Life Technologies, Carlsbad, USA 

anti- guinea pig, Biotin 1:200 706-065-

148 

Jackson Immuno, West Grove, USA  

anti- mouse, Biotin 1:200 715-065-

150 

Jackson Immuno, West Grove, USA 

anti-goat, Cy3 1:200 715-165-

147 

Jackson Immuno, West Grove, USA 
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anti-mouse, Cy3 1:200 715-165-

150 

Jackson Immuno, West Grove, USA 

anti-rabbit, Cy3 1:200 715-165-

152 

Jackson Immuno, West Grove, USA 

anti-goat FITC 1:500 705-095-

147 

Dianova, Hamburg, Germany 

streptavidin Alexa 555  1:500 S323555 Life Technologies, Carlsbad, USA 

 

 3.7 Oligonucleotides 

Primer Sequence Tm °C: 

CreF 5´-TAAAGATATCTCACGTACTGACGGTG-3´ 58.4 

CreR 5´-TCTCTGACCAGAGTCATCCTTAGC-3´ 61.6 

Gli2-floxC 5´-AGGTCCTCTTATTGTCAGGC-3´ 57.8 

Gli2-floxD 5´-GAGACTCCAAGGTACTTAGC-3´ 55.4 

Gli2-AS 5´-CACCCCAAAGCATGTGTTTT-3´ 57.4 

Gli2-S 5´-AAACAAAGCTCCTGTACACG-3´ 55.6 

Gli2neo-pA 5´-ATGCCTGCTCTTTACTGAAG-3´ 54.7 

SmoM2-wt1 5´-TCCTTGAAGAAGATGGTGCG-3´ 58.8 

SmoM2-wt2 5´-GGAGCGGGAGAAATGGATATG-3´ 59.6 

SmoM2-mt1 5´-AAGTTCATCTGCACCACCG-3´ 58.8 

SmoM2-mt2 5´-TCCTTGAAGAAGATGGTGCG-3´ 58.8 

 

 3.8 Kits 

Name Manufacturer Registered office 

Hi Pure Plasmid Filter 

Maxiprep Kit 

Life Technologies Carlsbad, USA 

Innuprep Plasmid Mini Kit Analytik Jena Jena, Germany 

QIAquick PCR Purification 

Kit (50) 

Qiagen Hilden, Germany 

 

 3.9 Software 

Name Manufacturer Registered office 

Adobe Illustrator CS6 Adobe System Inc. San Jose, USA 
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Adobe Photoshop CS6  Adobe System Inc. San Jose, USA 

Axio Vision Rel 4.7 Zeiss Jena, Germany 

Excel for Mac 2011; Version 

14.2.3 

Microsoft Corporation Redmond, USA 

Fiji NIH Bethesda, USA 

IGOR WaveMetrics Portland, USA 

ImageJ NIH Bethesda, USA 

Keynote ’09; Version 5.1.1 Apple Inc. Cupertino, USA 

pClamp Software Molecular Devices Sunnyvale, USA 

Word for Mac 2011; Version 

14.2.3 

Microsoft Corporation Redmond, USA 

 

 3.10 Mouse keeping and breeding 

All mice were bred on a CD1 background. Experimental animals were housed in an animal 

facility with a 12 hrs dark/light cycle with lights on at 6 am and had access to food and water 

ad libitum. No more than 6 animals were kept in one cage. The room was temperature- and 

humidity-controlled. For maintenance of the lines as well as for experiments, two females (5-

40 weeks old) were bred with one male (6-40 weeks old). Timed embryos were obtained from 

overnight matings and noon of the day that a vaginal plug was detected was designated as 

E0.5. Pups were genotyped at postnatal (P) stage P14 and were separated from the mother at 

P21. Animal studies were approved by the local University of Bonn Animal Care and Use 

Committee, as well as the Animal Care and Use board of the country of Nordrhein-Westfalen. 

 
 3.11 Mouse lines 

  3.11.1 En1Cre/+ 

The En1Cre/+ mice were generated by Kimmel et al. (2000). To generate the mutant allele, the 

first 111 amino acids of the target gene were replaced by the Cre cDNA (Kimmel et al., 

2000). The insertion of the Cre cDNA interferes with the expression of the endogenous gene 

product. Therefore the En1Cre/+ allele is a null allele. Heterozygous mice are viable and fertile. 

Breeding En1Cre/+ mice with mice containing an allele with loxP-flanked sequence of interest 

results in the Cre-mediated recombination of the floxed sequences in En1-expressing tissues, 

particularly in the vMb and aHb around E9.0 (Li et al., 2002). 
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  3.11.2 Gli2zfd/+ 

Gli2zfd/+ (Gli2 zinc finger-deleted) mouse line was generated in the laboratory of A. Joyner by 

replacing the exons encoding for zinc fingers 3 to 5 with 2.5 kb of the 5’ and 5.0 kb of the 3’ 

Gli2 genomic sequences and a PGK neo cassette (Matise et al., 1998). The deletion results in 

an out-of-frame mutation, which causes disrupted transcription from the deletion site to the 3’ 

end of the Gli2 gene. The zinc fingers 4 and 5 are essential for DNA binding, therefore 

deletion of the sequence encoding for zinc fingers 3 to 5 results in translation of truncated 

protein, which is unable to bind to DNA (Pavletich and Pabo, 1993). 

 

  3.11.3 Gli2flox/flox 

The Gli2flox/flox mouse was generated in the laboratory of A. Joyner in 2006 (Corrales et al., 

2006). Two loxP sites flank exon 7 and 8 upstream exon encoding for the zinc finger exons. 

Gli2flox/flox mice show a wild-type phenotype. Gli2flox/flox mice were used in this study to 

generate conditional knockout mice. 

 

  3.11.4 R26SmoM2 

The R26SmoM2 allele contains a constitutively active mouse Smo (W539L, SmoM2) fused to 

the enhanced yellow fluorescent protein (EYFP) under the control of the endogenous Rosa26 

ubiquitous promoter. However, expression of SmoM2 and EYFP is normally blocked by a 

loxP-flanked stop cassette, which can be removed upon Cre-mediated recombination, 

allowing tissue-specific expression of SmoM2. The constitutively active W539L point 

mutation has been found in human basal cell carcinoma (Xie et al., 1998) and is a tryptophan-

to-leucine mutation, which results in translation of the correspondingly mutated protein 

capable of ligand-independent activation of the Hedgehog pathway (Taipale et al., 2000). 

Homozygous mice are viable, fertile and do not display any abnormalities (Jeong et al., 2003). 

 

  3.11.5 The Gli2 conditional knockout mouse (Gli2ΔMb>E9.0) 

To create viable mutant mice in which Gli2 was deleted from midbrain precursors, the 

En1Cre/+ knock-in mouse line was crossed with Gli2zfd/+ to generate En1Cre/+:Gli2zfd/+ mice. 

The En1Cre/+:Gli2zfd/+ were generated in the laboratory of A. Joyner. Those mice were crossed 

with Gli2flox/flox homozygotes to generate the conditional knockout mice En1Cre/+:Gli2flox/zfd, 

termed Gli2ΔMb>E9.0 throughout this study (Figure 8B). Gli2flox/+ littermate mice were used as a 

control. 
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  3.11.6 The SmoM2 conditional overactivation (SmoM2↑Mb>E9.0) 

To constitutively activate the Shh pathway in the midbrain precursors, the R26SmoM2 mouse 

line was crossed with the En1Cre/+ knock-in mouse line (Jeong et al., 2003). As a result, 

En1Cre/+:R26SmoM2 mice were generated (termed SmoM2↑Mb>E9.0 throughout this study), in 

which Shh signaling was permanently activated upon Cre-mediated recombination in the 

midbrain precursor cells expressing En1. These mice have enlarged midbrain and die at birth. 

En1Cre/+ littermates were used as control. 

 
 3.12 Genotyping of knockout mice 

For deoxyribonucleic acid (DNA) analysis, small pieces of tissue from the mouse tail (about 5 

mm) for E12.5-18.5, from the ear (ear punch) for postnatal mice and from yolk sac for E9.5-

11.5 embryos were obtained. To digest the tissue, 100 µL lysis buffer with 1 µL proteinase K 

was added and briefly vortexed. The samples were incubated at 60°C for 8 hrs or longer and 

subsequently heated at 95°C for 15 min to inactivate the proteinase K. Afterwards, the 

digested solution was centrifuged for 1 min at 13000 rpm to bring down moisture on sides of 

tubes and to precipitate digested tissue fragments. 1 µL of the supernatant was used for 

polymerase chain reaction (PCR). 

 
 3.13 Molecular biological methods 

  3.13.1 Polymerase chain reaction 

To determine the genotypes of the mice, polymerase chain reaction (PCR) approach was used. 

The first step (denaturation) requires high temperatures of 94°-96°C to denature double 

stranded DNA. It is a cyclic process based on the elongation of DNA strands in between two 

reverse oligonucleotide primers by a DNA polymerase. With repeated cycle of DNA melting 

and enzymatic replication of the DNA sequences in between the two primers, an amplification 

of the desired DNA sequence is achieved. 

 

  3.13.2 PCR Programs 

  3.13.2.1 Cre PCR 

PCR Sample solution  Program for Thermal Cycle  

2.00 µL PCR Buffer (1x)   

0.16 µL dNTPs (25 nM)  Step   Temp.  Time (min) 

1.00 µL P1: Cre-F (5 µM)  1. First Denaturing  95°C	
   	
   	
  2:00 

1.00 µL P2: Cre-R (5 µM)  2. Denaturing   95°C	
   	
   	
  0:40 

0.60 µL MgCl2 (1.5 mM)  3. Annealing   59°C	
   	
   	
  1:00 
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14.04 µL dH2O   4. Extension   72°C	
   	
   	
  0:50 

0.20 µL Taq Polymerase (1U) 5. Incubation     8°C	
   	
   	
  ∞	
  

19.00 µL Solution (total)  35 x Cycles step 2-4 

Agarose gel: 1.5% 

Mutant band: 300 nt 

 
  3.13.2.2 Gli2 flox PCR 

PCR Sample solution  Program for Thermal Cycle  

2.00 µL PCR Buffer (1x)   

0.16 µL dNTPs (25 nM)  Step   Temp.  Time (min) 

1.00 µL P1: Gli2-flox C (5 µM) 1. First Denaturing  94°C	
   	
   	
  5:00 

1.00 µL P2: Gli2-flox D (5 µM) 2. Denaturing   94°C	
   	
   	
  1:00 

0.60 µL MgCl2 (1.5 mM)  3. Annealing   58°C	
   	
   	
  1:00 

14.04 µL dH2O   4. Extension   72°C	
   	
   	
  1:30 

0.20 µL Taq Polymerase (1U) 5. Last Extension  72°C   10:00	
   	
  

19.00 µL Solution (total)  6. Incubation    8°C	
  	
   	
   	
  ∞  

     35 x Cycles step 2-4 

Agarose gel: 1.5% 

Wildtype band: 231 nt, mutant band: 247 nt 

 

  3.13.2.3 Gli2 zfd PCR 

PCR Sample solution  Program for Thermal Cycle  

2.00 µL PCR Buffer (1x)   

0.16 µL dNTPs (25 nM)  Step   Temp.  Time  (min) 

1.00 µL P1: Gli2-S (5 µM)  1. First Denaturing  94°C	
   	
   	
  5:00 

1.00 µL P2: Gli2-AS (5 µM)  2. Denaturing   94°C	
   	
   	
  1:00 

1.00 µL P3: Gli2 neo-pA (5 µM) 3. Annealing   58°C	
   	
   	
  1:00	
  	
  

0.60 µL MgCl2 (1.5 mM)   4. Extension   72°C	
   	
   	
  1:30 

13.04 µL dH2O   5. Last Extension  72°C   10:00	
    

0.20 µL Taq Polymerase (1U) 6. Incubation    8°C	
  	
   	
   	
  	
  ∞ 	
  

19.00 µL Solution (total)  35 x Cycles step 2-4 

Agarose gel: 1.5% 

Wildtype band: 300 nt, mutant band: 550 nt 
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  3.13.2.4 SmoM2 PCR 

PCR Sample solution  Program for Thermal Cycle  

2.00 µL PCR Buffer (1x)  

0.16 µL dNTPs (25 nM)  Step   Temp.  Time (min) 

1.00 µL P1: SmoM2-mt1 (5 µM) 1. First Denaturing  94°C	
   	
   	
  3:00 

1.00 µL P2: SmoM2-mt2 (5 µM) 2. Denaturing   94°C	
   	
   	
  0:30 

1.00 µL P3: SmoM2-wt1 (5 µM) 3. Annealing   60°C	
   	
   	
  1:00	
  	
  

1.00 µL P3: SmoM2-wt2 (5 µM) 4. Extension   72°C	
   	
   	
  1:00 

0.60 µL MgCl2 (1.5 mM)  5. Last Extension  72°C   2:00	
    

12.04 µL dH2O   6. Incubation   10°C	
  	
   	
   	
  ∞ 	
  

0.20 µL Taq Polymerase (1U) 35 x Cycles step 2-4 

19.00 µL Solution (total) 

Agarose gel: 2% 

Wildtype band: 410 nt, mutant band: 173 nt 

 
  3.13.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is a method to determine the presence and size of PCR products 

by separating DNA/RNA based on the rate of movement while under the influence of an 

electric field. The DNA/RNA to be analyzed is forced through the pores of the gel by the 

electrical current. Under an electrical field, DNA/RNA moves away from the negative 

towards the positive electrode. The speed of DNA/RNA movement is influenced by the 

strength of the electrical field, the concentration of agarose gel and the size of the DNA/RNA 

molecules. Smaller DNA/RNA molecules move through the agarose faster than larger 

molecules. The DNA/RNA is visualized in the gel by addition of ethidium bromide (EtBr). 

EtBr is fluorescent meaning that it absorbs invisible UV light and transmits the energy as 

visible orange light. To prepare a 1.5% agarose gel, 2.25 g agarose powder was dissolved in 

150 mL 1xTAE Buffer. For 2% or 0.5% agarose gel, 3 g or 0.75 g of agarose powder was 

dissolved in 150 mL 1xTAE buffer, respectively. The solution was boiled in the microwave 

until the agarose dissolved and became clear. The agarose solution was cooled at room 

temperature and 0.5 µg/mL of EtBr was added to it. The agarose solution was poured into a 

gel-casting tray fitted with a well-forming comb. Agarose gel was submersed in a chamber 

containing a buffer solution (1xTAE) and a positive and negative electrode. The DNA/RNA 

samples were mixed with the gel tracking dye (DNA loading buffer) and loaded into the 
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sample wells. The gel with the samples was run at 120 V for 30 min at room temperature. 0.5 

and 1 kb marker was used to identify fragments between 0.1 kb and 0.6 kb. 

 
  3.13.4 Generation of RNA In Situ Probes 

  3.13.4.1 Transformation of E. coli 

To amplify a specific vector, medium competent bacteria (DH5α) were transformed with a 

DNA plasmid containing a cassette with ampicillin resistance. 50 µL of competent cells of E. 

coli (DH5α) were thawed on ice or briefly warmed in hand and 1 µg of the DNA plasmid was 

added. Next, the bacteria were incubated on ice for 5 min and heat-shocked at 42°C for 30 sec 

allowing the DNA plasmid to enter the cells. Finally, the bacteria were chilled on ice for 2 

min and 10 µL of the bacteria were plated on LB agar plates, containing 20 µL/mL ampicillin 

and incubated at 37°C overnight. 

 

  3.13.4.2 Maxi-preparation 

To obtain a bigger amount of pure plasmid, a single colony was picked and first transferred 

into a 10 mL falcon tube containing LB-medium with ampicillin (20 µL/mL). The bacterial 

culture was incubated for 7-8 hrs at 37°C on a shaker (starter culture). After that, the 10 mL 

culture was transferred to a flask containing 100 mL of LB-medium (+ 20 µL/mL ampicillin). 

The culture was incubated at 37°C on a shaker overnight. The bacteria were centrifuged at 

8000 rpm at 4°C for 60 min. The pellet was processed for the maxi-preparation carried out 

with a HiPure Plasmid Maxiprep Kit from Invitrogen according to the manufacturer’s 

instruction. The concentration of the DNA was determined by Nanodrop measurement. The 

plasmid was stored at 4°C. 

 

  3.13.4.3 Digest of plasmid 

Plasmid containing the DNA inserts for creating the anti-sense RNA probes for the RNA In 

Situ hybridization had to be linearized by restriction enzymes before in vitro transcription 

could be performed. In order to do this, solution mix to digest the plasmid was prepared: 

A digestion mix:   20 µg Plasmid 

10 µL 10xNEB1-4 Buffer 

10 µL 10xBSA 

5 µL restriction enzyme (100 U) 

x µL dH2O                    

100 µL Solution (final) 
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The digestion mix was incubated at 37°C for 3 hrs. To ensure that the plasmid was cut 

properly, 5 µL of the digestion mix was run on an agarose gel with 1 µg of undigested 

plasmid. To purify the DNA of interest from other nucleic acids, phenol-chloroform 

extraction was performed. 100 µL of phenol-chloroform was added to the digestion mix (100 

µL) and centrifuged at 13000 rpm for 10 min. The upper (aqueous) phase (containing DNA) 

was transferred to a new 1.5 mL tube. Next, 0.3 M sodium acetate (pH 5.2) was added to the 

tube containing the DNA and vortexed. Then 220 µL of ice cold 100% EtOH was added and 

mixed. The DNA was then precipitated at -80°C for 30 min and centrifuged at 13000 rpm for 

10-15 min at 4°C. Afterwards, the supernatant was discarded and the pellet was washed with 

100 µL 70% EtOH and centrifuged at 13000 rpm for another 15 min at 4°C. After discarding 

the supernatant, the pellet was air-dried for 10-15 min. Subsequently, the pellet was 

resuspended in 50 µL RNase free H2O with 0.5 µL RNAse inhibitor and stored at -20°C. 

 

  3.13.4.4 In vitro transcription 

To generate the labeled anti-sense (AS) RNA probes (riboprobes), the digested and purified 

plasmid (containing the marker gene sequence) was transcribed to the AS RNA probe by in 

vitro transcription. To this end, DIG-labeled NTP mix was used, which includes UTP labeled 

with DIG (Digoxigenin-11-uridine-5’-triphosphate) and can be detected with anti-DIG-AP 

Fab fragments. The in vitro transcription solution mix (20 µL) contained: 

1.5 µL Purified DNA (1-2 µg) 

2 µL (10x) Transcription Buffer 

2 µL (10x) DIG-NTP labeling mix 

0.5 µL RNase inhibitor (10 U) 

1.5 µL RNA polymerase (30 U) 

12.5 µL dH2O 

The transcription solution mix was incubated at 37°C for 2 hrs. Next, 1 µL of DNase was 

added to remove the plasmid DNA and the solution was incubated at 37°C for another 15 

min. The RNA was precipitated at -80°C by adding 2 µL of EDTA (4 mM), 2.5 µL LiCl (100 

mM) and 75 mL of 100% EtOH. The suspension was centrifuged at 13000 rpm for 15 min at 

room temperature, washed with 70% EtOH and centrifuged again for another 10 min. The 

pellet was air-dried at room temperature for 3-5 min and resuspended in 50 µL ddH2O + 1% 

RNase inhibitor. Subsequently, the RNA concentration was measured with Nanodrop and the 

RNA was stored at -20°C. 
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 3.14 Histology 

  3.14.1 Dissection of embryos 

Embryos at different embryonic stages (E9.5-E12.5, E14.5 and E18.5) were dissected. 

Pregnant mice were anesthetized with isoflurane and sacrificed by cervical dislocation. A 

midline skin incision was made from the thorax to the pelvis and the uterus was exposed. The 

embryos were removed from the uterus and transferred to a petri dish filled with chilled 

1xPBS on ice. By using fine forceps, the muscular wall of the uterus and visceral yolk sac 

was removed. At stages E9.5-E11.5 whole embryos were collected, while at stages E12.5 and 

E14.5 the heads were dissected. At stage E18.5 the brains were dissected out by removing the 

skin from the head and the skull. Tissue was fixed in 4% PFA (E9.5-E10.5 for 30 min, E11.5-

E12.5 for 60 min and E14.5 and E18.5 for 2 hrs) at 4°C. 

 

  3.14.2 Perfusion of postnatal mice 

Three and six week old animals were used for intracardial perfusion. First at all, mice were 

anesthetized by lethal dose of intraperitoneal injection of Ketamine-Rompun mixture (50:10 

mg/kg of body weight) or by exposure to a tissue soaked with isoflorane. To assure adequate 

depth of anesthesia, the withdrawal reflex was checked by pinching the toes or tip of tail until 

no response was observed. Then, the animal was placed on a corked surface on its back and 

each limb was taped down with a needle. A midline skin incision was made from the thoracic 

inlet to the pelvis, so that the abdomen was open and the liver was exposed. To expose the 

heart, further incision of the sternum was done. The butterfly needle was placed into the left 

ventricle toward the aorta. Using scissors a small cut in the right atrium was made to allow the 

perfusate to exit the circulation. At the same time, using syringe 1xPBS was injected with a 

flow no higher than 0.5 mL/min. When the fluid exiting the mouse was clear and when the 

liver became a light color, the syringe with 1xPBS was exchanged to a syringe with 4% PFA. 

Perfusion was complete when all muscle contractions stopped and the mouse became stiff. 

Afterwards, the mouse was decapitated at the level of the shoulders. The skin of the head was 

cut up to the eyes and the skull was carefully removed with scissors. After most of the skull 

was removed, the brain was dissected by cutting the olfactory and optical nerves as well as 

spinal cord at the level of the brain stem. Subsequently, the brain was postfixed in 4% PFA at 

4°C overnight. 

 

 

 



Materials and Methods 
 

 46 

  3.14.3 Cryo-embedding 

After fixation in 4% PFA tissue was washed in 1xPBS three times for 10 min. To cryoprotect 

tissue, the brains were incubated in 15% sucrose at 4°C for at least 6-12 hrs, or until tissue 

was submerged. Afterwards the tissue was incubated in 30% sucrose at 4°C overnight or until 

the brains were submerged. All procedures were carried out on a rocking platform. The cryo-

molds were filled with tissue-tek O.C.T. compound medium and placed on dry ice. Once the 

O.C.T. medium starts to solidify (turn white) at the bottom, the cryo-molds were removed 

from dry ice and the brain, heads or embryos were placed in the center of the mold. 

Embryonic tissue (E9.5-18.5) was immediately frozen on dry ice. The blocks with the 

embryos as well as the postnatal brains imbedded in the cryo-molds were stored at -80°C. 

 

  3.14.4 Cryo-sectioning 

About 30 min prior the sectioning, blocks were removed from the -80°C freezer and placed in 

the cryostat to allow them to warm up to the sectioning temperature. The temperature of the 

cryostat was set to -25°C. Embedded tissue was removed from the plastic molds and attached 

to the cryostat object holder with a small amount of O.C.T. The blocks were sectioned 

coronally at a thickness of 12 µm (E10.5-E12.5), 16 µm (E18.5), 20 µm (P21) or 40 µm (P21 

and P48). The 12 µm, 16 µm and 20 µm slices were collected on „superfrost ultra plus“ 

adhesion slides in series of ten slides, in such a way that the slide contained every tenth 

section from the anterior to posterior axis. After cutting, the sections were dried at room 

temperature for 60 min and processed for further immunohistochemistry/RNA In Situ 

hybridization or stored in slide boxes at -20°C. 

40 µm thick slices (P21 and P48) were collected in 96 well plates filled with 1xPBS with 1% 

(final concentration) Sodium azide (free floating sections). The plates were stored at 4°C. 

 

  3.14.5 Paraffin embedding 

 For embedding tissue in paraffin the tissue (E9.5 and E10.5 embryos and E14.5 heads) was 

washed in 1xPBS three times for 5 min. All steps were carried out at room temperature. The 

tissue was dehydrated as follows: (2x) in 70% EtOH, (1x) in 80% EtOH, (2x) in 95% EtOH 

and (2x) in 100% EtOH. Each dehydration step was 10 min for E9.5, 15 min for E10.5 and 20 

min for E14.5 embryos. Next, the tissue was cleared with 1:1 100% EtOH: 100% Xylol two 

times for 10-20 min. Afterwards, tissue was placed in embedding cassettes and transferred 

into 100% Xylol and incubated three times (E9.5: 5 min, E10.5: 10 min, E14.5: 15 min). 

Subsequently, the specimens were transferred into paraffin heated to 58°C in water bath and 
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processed in to fresh paraffin for two more times (E9.5: 10 min, E10.5: 15 min and E14.5: 20 

min). The embedding molds were filled with heated paraffin and the tissue was transferred 

into the molds on a heating plate at 64°C. Using heated forceps, the tissue was properly 

oriented in the mold. Once the tissue was oriented as desired, the mold was covered with the 

labeled embedding cassette and removed from the heating plate. Paraffin blocks with 

embedded embryos or heads were stored at room temperature till they were sectioned at the 

microtome. 

 

  3.14.6 Paraffin sectioning 

After paraffin was solidified hard, block was removed from the mold and attached to the 

microtome chuck. The specimens were sectioned coronally at 7 µm. To unroll the sections, 

they were picked up with a fine paintbrush and floated in water at 37°C. The sections were 

floated onto „superfrost ultra plus“ adhesion slides. The sections were arranged on slides in 

pairs of one (E9.5), two (E10.5) or three (E14.5), in series of ten, in this way adjacent slices 

on every slide had the same spacing on the anteroposterior axis. The slides were allowed to 

dry on a flattening plate at 38°C overnight to bind the tissue to the glass. The sections were 

stored in slide boxes at room temperature or processed further for RNA In Situ hybridization 

and/or immunohistochemistry. 

 

  3.14.7 Immunohistochemistry on frozen and free-floating sections 

Frozen section were thawed at room temperature for 5 min and rinsed with PBS for 5 min to 

remove the O.C.T. Next, the tissue was re-fixed with 4% PFA for 5 min at room temperature. 

After washing two times with PBS and one time with PBT (0.1% TritonX-100 in PBS), 

sections were blocked in 10% normal donkey serum (NDS) in PBT for 1 hr at room 

temperature. After that, they were incubated with primary antibody in 3% NDS/PBT (300 µL 

per slide) for 2 hrs at room temperature or at 4°C overnight. Afterwards, the sections were 

washed again three times in PBT and incubated with secondary antibody 3% NDS/PBT for at 

least 1 hr at room temperature. To visualize the cell nuclei, a Hoechst fluorescent 

counterstaining (Hoechst 33258, 1:10000) was added to the solution with secondary antibody. 

Finally, the sections were washed three times with PBT for 5 min, mounted with 

AquaPolymount and covered with coverslips. The immunostained sections were stored at 

4°C. 

Free-floating sections were washed in 1xPBS for 5 min and blocked in 10% NDS in PBT for 

1 hr at room temperature. All procedures were carried out in 12 or 24 well plates and on the 
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rocking platform. Next, they were incubated with primary antibodies in 3% NDS/PBT (500 

µL per well) overnight at 4°C. Afterwards, the sections were washed three times in PBT for 

10 min and incubated with secondary antibody in 3% NDS/PBT for at least 2 hrs at room 

temperature. To the secondary antibody mixture, Hoechst was added to visualize the cell 

nuclei. Subsequently, sections were washed again in PBT three times for 10 min. Sections 

were placed in a petri dish filled with 1xPBS and floated with a fine paintbrush onto 

„superfrost“ adhesion slides. Afterwards, slides were dried for 5 min. Finally, sections were 

mounted with AquaPolymount and covered with coverslips. The immunostained sections 

were stored at 4°C. 

For detection of transcription factors, frozen section were thawed and washed in 1xPBS as 

described above. Next, they were fixed in 4% PFA for 10 min followed by three washing 

steps with 1xPBS for 5 min each, then incubated in 0.1 mM EDTA for 10 min at 65°C water 

bath prior to the immunostaining. The free-floating sections were washed in 1xPBS for 5 min 

and then incubated in 0.1 mM EDTA for 1hr at 65°C. 

 

  3.14.8 Immunohistochemistry on paraffin sections 

Sections were de-waxed and rehydrated as follows: (3x) in 100% Xylol for 3 min, (2x) in 

100% EtOH for 1 min, (2x) in 95% EtOH for 1 min, (1x) in 70% EtOH for 1 min and (2x) in 

1xPBS for 1 min. To break the protein cross-links formed by PFA and paraffin fixation, an 

antigen retrieval method was used. The slides were placed in a coplin jar with citrate buffer 

and boiled in the microwave for 1-2 min. This step was repeated with fresh buffer for two 

more times. Afterwards the slides were cooled to room temperature in the same buffer for 20 

min and then rinsed twice with dH2O. Next, the sections were washed twice with 1xPBS and 

once with PBT for 5 min. Blocking solutions and antibodies were applied as described in 

Subsection 3.14.7. 

For BrdU and Caspase-3 immunostainings, after the antigen-retrieval step, the DNA was 

denatured by treating the tissue with 4 M HCL for 10 min and neutralized afterwards with 0.1 

M borate buffer (pH 8.5) for 5 min. Before applying primary antibodies, sections were 

washed two times with PBS and one time with PBT for 5 min as described above. 

 

  3.14.9 RNA In Situ hybridization 

RNA In Situ hybridization was used to analyze gene expression in the developing mouse 

vMb. Paraffin sections were de-waxed with xylol and rehydrated with 100%, 95% and 70% 

EtOH, as described in Subsection 3.14.8. Frozen sections were thawed at room temperature 
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and washed in 1xPBS for 5 min. Afterwards both kind of sections were postfixed in 4% PFA 

for 10 min, followed by two washing steps with 1xPBS. The slides were incubated in 50 mL 

1xPBS with 4 µL proteinase K (frozen section) for 5 min or with 8 µL proteinase K (paraffin 

sections) for 10 min. Then slides were again fixed in 4% PFA for 5 min and washed three 

times with 1xPBS. Afterwards, only paraffin sections were acetylated in 50 mL acetylation 

solution for 10 min, followed by three washing steps in 1xPBS for 5 min each. Subsequently, 

the sections (paraffin and frozen) were dehydrated in 70% EtOH for 5 min and afterwards in 

95% EtOH for a few seconds. The sections were placed horizontally in a humid box filled 

with 50 mL Formamide/water (in ratio 1:1) and preheated in a hybridization oven at 55°C. 

Approximately 1 µg of the desired RNA probe was added to 1 mL of hybridization solution 

and heated at 80°C for 2 min to denature RNA. 300 µL of riboprobe/hybridization solution 

was applied on the sections and then they were covered with RNase-free hybridization 

coverslips. The humidified box with the slides was inserted into the preheated oven and 

hybridized overnight at 55°C. On the next day, coverslips were removed in pre-warmed 5x 

SSC and washed in pre-warmed 1xFormamide and 2xSSC (in ratio of 1:1) for 30 min in a 

65°C water bath. Afterwards, they were washed three times with RNase Buffer at 37°C and 

incubated in the same Buffer with RNase A (in ratio of 1000:1) for 30 min. Then the slides 

were washed one more time with RNase Buffer for 15 min and washed twice in pre-warmed 

1xFormamid:2xSSC solution for 20 min in 65°C water bath. Two additional washing steps in 

2xSSC and 0.1xSSC for 15 min at 37°C were followed by a washing step with PBT (1xPBS 

with 0.1% Tween-20) for 15 min at room temperature. The slides were placed horizontally in 

a humidified box with H2O soaked tissue (to avoid drying-out of the slides) and blocked with 

10% normal goat serum (NGS) in PBT for 1hr at room temperature. After that, blocking 

solution was removed and the sections were incubated with anti-DIG-AP Fab fragments 

(1:3000) in 1% NGS/PBT for 3 hrs at room temperature. After removal of the antibody, slides 

were washed four times with PBT for 15 min at room temperature, following by two washing 

steps with freshly prepared alkaline phosphatase buffer (NTMT) containing 0.5 mg/mL 

levamisole for 10 min at room temperature. Finally, sections were incubated in BM purple 

solution containing 0.5 mg/mL levamisole at room temperature overnight or till a signal was 

visible. Then the sections were washed with PBS, briefly postfixed with 4% PFA, followed 

by additional PBS and dH2O washing steps. The slides were mounted in AquaPolymount and 

covered with coverslips. Sections were stored in slide boxes at room temperature. 
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  3.14.9 List of RNA In Situ probes 

Probe Description Provided by 

Ahd2 Aldehyde dehydrogenase 
family 1, subfamily A1 

Martin P. Smidt (Rudolf 
Magnus Institute of 
Neuroscience, Utrecht, The 
Netherlands) 

Arx Aristaless related homeobox 
gene 

ImaGenes/SourceBioscience, 
UK 

Corin  ImaGenes/SourceBioscience, 
UK 

Foxa2 Forkhead box A2 
transcription factor 

Alexandra L. Joyner 
(Memorial Sloan Kettering 
Cancer Center, New York, 
USA 

Lmx1a LIM homeobox 
transcriptional factor 1 alpha 

Alexandra L. Joyner 
(Memorial Sloan Kettering 
Cancer Center, New York, 
USA 

Msx1/2 Homeobox, msh-like 1 
transcriptional factor 

Alexandra L. Joyner 
(Memorial Sloan Kettering 
Cancer Center, New York, 
USA 

Shh Sonic hedgehog Alexandra L. Joyner 
(Memorial Sloan Kettering 
Cancer Center, New York, 
USA 

Sim1 Single-minded homolog 1 Jacques Michaud (University 
of Montreal, Canada) 

vGlut2 Solute carrier family 17 
(sodium-dependent inorganic 
phosphate cotransporter) 
member 

Robert Edwards (University 
of California, San Francisco, 
USA) 

 

  3.14.10 Combined RNA In Situ hybridization and Immunohistochemistry 

For combined RNA In Situ hybridization and immunohistochemistry the protocol was 

modified according to Eisenstat (Eisenstat et al., 1999). 20 µm thick frozen sections were 

used. The slides were thawed at room temperature and washed in 1xPBS for 5 min. After 

fixation in 4% PFA for 5 min, slides were washed three times in 1xPBS and then one more 

time in Ampuwater for 5 min each. The sections were incubated for 5 min stirring and for 

another 5 min still in acetylation solution. After washing the sections for 5 min with 

Ampuwater, sections were dehydrated in as follows: 1 min in 70% EtOH, 1 min in 80% 

EtOH, 2 min in 95% EtOH, 1 min in 100% EtOH, 5 min in chloroform, 1 min in 100% EtOH, 

1 min in 95% EtOH. The slides were drained on paper towel and air dried. 2 µL of probes 

(approximately 1 µg) in 1 mL of hybridization solution was heated at 80°C for 5 min and then 
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cooled on ice for another 2 min. The slides were placed horizontally in humidified box filled 

with 50 mL Formamide/Ampuwater (in ratio of 1:1), 300 µL riboprobe/hybridization solution 

mix was applied on each slide and sections were covered with RNase free coverslips. The 

humidified box with the slides was placed in the hyboven at 55°C overnight. Next day 

washing, antibody staining and visualization were carried out as described above (Subsection 

3.14.8). When the signal was visible, the reaction was stopped in TE Buffer. Then, the 

sections were postfixed in 4% PFA for 20 min and washed with 1xPBS three times for 5 min. 

Next, the slides were incubated with blocking solution 10% NDS in PBT (PBS-0.2% Triton 

x100) for 4 hrs and afterwards with primary antibody diluted in 3% NDS/PBT at 4°C 

overnight. Next day, sections were washed with 1xPBS three times for 5 min and incubated 

with secondary antibody in 3% NDS/PBS for at least 2 hrs at room temperature. Finally, 

slides were washed again with 1xPBS three times for 5 min and coversliped with 

AquaPolymount. The sections were stored in slide boxes at 4°C. 

 

 3.15 BrdU injection 

Timed pregnant females were injected intraperitoneally (i.p.) with 100 µg bromodeoxyuridine 

(BrdU) in 1xPBS per g body weight. Pregnant females (E10.5) were injected one hour prior to 

the dissection. 

 
 3.16 High performance liquid chromatography analysis* 

6 week old control and mutant mice were used for high performance liquid chromatography 

(HPLC) analysis. PFC and CPu were quickly dissected following cervical dislocation. To 

extract catecholamine, tissue was placed in 0.4 M perchloric acid. Afterwards it was 

homogenized by sonification and centrifuged at 15000 rpm (4°C). The concentrations of DA 

and 3,4-dihydroxyphenylacetic acid (DOPAC) were determined by reverse phase HPLC, 

coupled with electrochemical detection as described (Kilpatrick et al., 1986). The samples 

were injected into a guard column, connected to a reverse phase column of C18. DA and 

DOPAC were separated at a flow rate of 0.6 mL/min. The composition of mobile phase was 

as follows: 10% acetonitrile, 75 mM sodium dihydrogen phosphate monohydrate, 0.17 mM 

octanesulfonic acid, 2.5 mM triethylamine and 25 mM EDTA, adjusted to pH 3.0 with 

orthophosphoric acid. All reagents were HPLC grade. Catecholamine concentrations are 

                                                
* Isolation of PFC and CPu tissue as well as HPLC analysis was performed by Dr. Ruth 
Musgrove, laboratory of Prof. Donato A. Di Monte, DZNE, Bonn 
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expressed per mg of protein. 

 

 3.17 Viral transduction and Optogenetics 

Cell-type selective expression of Channelrhodopsin-2 (ChR2) and enhanced yellow 

fluorescent protein (EYFP) was achieved using a recombinant adeno-associated virus (rAAV) 

harboring a ChR2-EYFP fusion gene with an inverted open reading frame, flanked by two 

incompatible loxP sites and driven by an EF1α promoter. In the presence of Cre recombinase, 

the ChR2-EYFP fusion gene is inverted, with subsequent deletion of a loxP site leading to 

irreversible Cre-dependent expression of ChR2-EYFP (Cardin et al., 2009; Sohal et al., 2009). 

 

 3.18 Stereotaxic injections of rAAV into the VTA, brain slice preparation  

   and histological analysis of the section* 

Under sterile conditions, three to four week old control (En1Cre/+) and mutant (Gli2ΔMb>E9.0) 

mice were anesthetized (0.1 mL/10 mg body weight) with a cocktail of 0.1 mg/mL 

medetomidine and 10 mg/mL ketamine. After achieving deep anesthesia, animals were 

secured in a stereotaxic frame. Holes the size of the injection needle were drilled into the skull 

(Fine Science Tools) and the rAAV harboring a ChR2-YEFP fusion gene was injected into 

the medial VTA (anteroposterior (AP): -3.44 mm, mediolateral (ML): 0.48 mm and 

dorsoventral (DV): 4.4 mm) (Franklin and Paxinos, 2007) using a 34 g beveled needle. 1 µL 

of viral suspension containing 108 transducing units was injected unilaterally. The injection 

syringe delivered vector at a constant volume of 100 nL/min using a microprocessor 

controlled mini-pump. The needle was left in place for 3 to 5 min after each injection to 

minimize upward flow of viral solution after raising the needle and then slowly retracted over 

a course of 1 to 3 min. Finally, the incision was sutured and the animal was given atipamezole 

(0.05 mg/10 mg body weight). For immunohistochemical quantification of the VTA 

projections to the NAc and the PFC the virus was allowed 14 days to incubate before the 

analysis was carried out. For electrophysiological experiments mice were sacrificed 2 to 6 

weeks post-injection. 

For immunohistochemical analysis, mice were anesthetized and perfused (Subsection 3.14.2). 

Overnight post-fixed brains were processed for cryo-embedding (Subsection 3.14.3). 20 µm 

thick brain sections were collected on „superfrost ultra plus” adhesion slides in series of ten 

slides (Subsection 3.14.4) and processed for combined RNA In Situ hybridization and 

                                                
* Stereotaxic injections of rAAV were performed by Milan Pabst, laboratory of Prof. Heinz 
Beck, Department of Epileptology, University of Bonn, Medical Center 
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immunostaining (Subsection 3.14.11). 40 µm thick free-floating sections were immunostained 

for TH and GFP (Subsection 3.14.7) to analyze the MbDN axonal projections. 

 

 3.19 Electrophysiological analysis* 

For cell-type specific light-based stimulation of VTA neurons mice were sacrificed 2 weeks 

post virus injection. The brain was removed and transferred into cold artificial cerebrospinal 

fluid (ACSF). 300 µm coronal slices of the VTA or the PFC were made using a vibratome. 

Slices were incubated for 30 min at 37°C and subsequently transferred into ASCF. For 

electrophysiology, slices were transferred one at a time into a submerged chamber and 

superfused with ACSF at 35°C. EYFP-expressing neurons were identified using an upright 

fluorescence microscope (filter settings: excitation, 500/24; dichroic, 520; emission, 542/27). 

Whole-cell patch-clamp recordings were then achieved from identified cells using IR-DIC 

microscopy. Voltage- and current clamp experiments were carried out with a Multiclamp 

700B amplifier. Data were sampled at 50 kHz or 100 kHz with a Digidata 1322A interface 

controlled by pClamp Software lowpass filtered at 10 Hz and stored on a hard disk for offline 

analysis. Pipettes were made using a horizontal puller and borosilicate glass capillaries and 

filled with an intracellular solution. Electrode resistance in the bath ranged from 3-5 MΩ and 

series resistance ranged from 17 -24 MΩ for VTA neurons and 12-22 MΩ for PFC neurons. 

Light stimulation of individual neurons in the VTA was carried out via the microscope 

objective using a galvanometer based scanning system coupled to a 473 nm diode-pumped 

solid state laser. EYFP-expressing neurons in the VTA were targeted with brief flashes of 

light (4-15 ms) that caused clear light-evoked responses. For light-based stimulation 

experiments in the medial PFC (mPFC), an identical laser was coupled into a customized light 

fiber that was positioned just above the mPFC slice surface. 

 

3.20 Reconstruction of the morphology of medial PFC neurons and VTA 

neurons† 

For reconstruction of mPFC and VTA neuron morphology, slices were incubated in 4% PFA 

overnight. Next day, slices were washed 3x in PBS (0.1 M) and incubated with α-gt GFP at 

4°C overnight and accordingly incubated with α-gt FITC and streptavidin for 1-2 hrs at room 

                                                
* Electrophysiological analysis and reconstruction of medial PFC and VTA neuron 
morphology were performed by Milan Pabst, laboratory of Prof. Heinz Beck, Department of 
Epileptology, University of Bonn, Medical Center 
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temperature. Imaging was carried out using a confocal microscope and Z-stacks were 

analyzed using ImageJ (1.37c). 

 

 3.21 Image acquisition and optogenetic stimulation* 

To monitor neuronal activation following optogenetic stimulation time series were acquired 

using two-photon excitation fluorescence microscopy using an ultrafast Ti:Sa laser coupled to 

a microscope equipped with a galvanometer-based scanning system and a 20x Objective. 

Videos were acquired with an average frame rate of >3 Hz and duration of approximately 5 s. 

Optogenetic stimulation was achieved using a 473 nm laser coupled to a multimode light 

fiber, which was placed directly above the slice illuminating the entire mPFC. A flash of 20 

ms duration and 50 mW was triggered 2 s following the beginning of image acquisition. 

Blockers were bath applied cumulatively in the following order with three to four videos 

acquired for each of the conditions: 10 µM SCH-23390 and 100 nM L-741.626; 10 µM 

CNQX. 

 

 3.22 Calcium imaging† 

For Ca2+-imaging experiment 300 µm slices were obtained (Section 3.19). Slices were 

perfused in a submerged chamber with carbogen-saturated ACSF (3 mL/min) at 32°C and 

loaded with the Ca2+ indicator dye OGB-1-AM (Oregon green 488 BAPTA-1 AM) as 

described previously (Garaschuk et al., 2006). 50 µg OGB-1-AM was dissolved in 4.5 µL 

20% Pluronic in DMSO. 45 µL simplified Ca2+-free Ringer was added to obtain a final 

concentration of 1mM. The dye was filtered and pressure injected using a patch pipette with a 

resistance of 4 MΩ at four evenly spaced sites within the mPFC. Imaging was commenced at 

least 30 min after dye loading procedure. Standard ACSF was used for recording. 

 
 3.23 Quantification 

  3.23.1 Progenitor domains 

To determine the progenitor domains in control and mutant animals, every tenth section of 

E9.5, E10.5 and E11.5 embryos was processed for fluorescent immunostaining (Lmx1a) or 

RNA In Situ hybridization (Arx, Corin, Msx1). The sections were imaged on a Zeiss Axio 

observer using a 20x objective. For immunostained sections the Apotome setup was used. The 

                                                
* Calcium imaging was performed by Oliver Braganza, laboratory of Prof. Heinz Beck, 
Department of Epileptology, University of Bonn, Medical Center 
† Image acquisition and optogenetic stimulation was performed by Milan Pabst, laboratory of 
Prof. Heinz Beck, Department of Epileptology, University of Bonn, Medical Center 
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domains were outlined in the acquired images and measured using Fiji software (ImageJA 

1.45e). The medial domain was defined as the Corinpos/Lmx1apos progenitor domain, whereas 

lateral domain was defined as the Lmx1apos/Corinneg domain. Sections from three mutants and 

three control animals were analyzed. 

To analyze the proliferation, neurogenesis and cell death in control and knockout mice, the 

total number of BrdUpos/Lmx1apos, Ngn2pos/Lmx1apos and cleaved Caspase3pos/Lmx1apos cells 

was counted in every tenth section using Photoshop Software. The number of BrdUpos, 

Ngn2pos, Caspase3pos cells was normalized for the size of the Lmx1a domain measured by Fiji 

Software (ImageJA 1.45e). Sections were counted from at least three mutant and three control 

animals. The sections were imaged on a Zeiss Axio observer using a 20x objective and an 

Apotome setup. 

 

  3.23.2 MbDN subsets in postnatal brains (P21) 

To quantify the number of MbDNs, sections from four rostrocaudal levels (from Bregma -

2.92, -3.28, -3.64 and -3.88 mm; Franklin and Paxinos, 2007) were immunostained with TH. 

To determine two subpopulations of MbDNs, adjacent sections were immunostained for 

Girk2 and Calbindin, which are expressed in MbDNs of the SNpc and the VTA, respectively. 

Sections from at least three control and three mutant animals were imaged on a Zeiss Axio 

observer using 20x objective and the Zeiss MosaiX Software as well as an Apotome setup to 

assess double labeling (Axiovision, Zeiss). Double-labeled cells for TH and Girk2, and TH 

and Calbindin were counted bilaterally for each level using Photoshop Software. 

 

  3.23.3 MbDN projections to the forebrain, the amygdala and the striatum 

Projections were quantified in sections in three control and three mutant animals at P48. 

Animals were injected with rAAV harboring a ChR2-EYFP fusion gene. To visualize the 

projections, sections were immunostained for TH and GFP. To quantify projections to the 

PFC, TH or GFP positive area in the mPFC (infralimbic cortex) from three rostrocaudal levels 

was selected (H x W: 0.47 mm x 0.36 mm) in coronal sections (AP: 2.58-2.10 mm; ML: ± 0.5 

mm from Bregma; DV: 2.2-2.5 mm from dura; Franklin and Paxinos, 2007). Z-stack images 

(TH and GFP) of the selected areas were acquired on a Zeiss Axio observer using a 40x 

objective and an ApoTome Setup. To quantify projections to the amygdala, TH positive areas 

(H x W: 0.47 mm x 0.36 mm) in the amygdala were selected from three rostrocaudal levels in 

coronal sections (AP: -1.82 to -2.54 mm; ML: ±2.6-3.3 mm from Bregma: DV: 4.6-5.1 mm 

from dura; Franklin and Paxinos, 2007). For each animal, Z-stack images of selected areas 



Materials and Methods 
 

 56 

were acquired on a Zeiss Axio observer using a 20x objective and an ApoTome Setup. The 

acquisition parameters were kept the same for all images. To identify axonal structures for 

both PFC and amygdala as foreground objects pixel-based segmentations were produced 

using a segmentation algorithm (Advanced Weka Segmentation Plugin, Fiji Software). 

Potential axonal structures (TH or GFP positive) were assigned as class 1 and background 

(TH or GFP negative area) as class 2. The parameters were kept constant across images of 

control and mutant samples. The number of pixels in class 1 was quantified per selected area 

for each image (Fiji Software). MbDN projections to the PFC and amygdala were quantified 

unilaterally for each level. 

Projections to the striatum (CPu, NAc and OTu) were analyzed on four rostrocaudal levels 

(AP: +1.54 to -0.22 mm). Images were acquired using a 10x objective on a Zeiss Axio 

observer and an ApoTome setup. To analyze the projections, Fiji Software was used. The area 

of interest was outlined and average raw integrated intensities or pixels of TH or GFP positive 

MbDN projections were quantified for the three areas (Fiji Software). The average integrated 

intensity above background was normalized for the area. MbDN projections to the striatum 

were quantified bilaterally for each level. 

 

  3.23.4 Quantification of rAAV injections in the VTA 

To analyze injection sites and EYFP expression in the vMb, rAAV harboring a ChR2-EYFP 

fusion gene injected mice were sacrificed two weeks after injections. To visualize EYFP 

expression in MbDNs, TH and GFP immunohistochemistry was performed on coronal 

sections. Four rostrocaudal levels (Bregma: -2.92,  -3.28, -3.64, -3.88; Franklin and Paxinos, 

2007) were analyzed. TH and GFP positive area in the anterior VTA, RLi, CLi, IF and PN 

nuclei were imaged on a Zeiss Axio observer using 40x oil objective and an Apotome setup. 

Cells positive for GFP, as well as double positive cells for TH and GFP were counted for all 

four levels and then normalized to the total number of GFPpos cells. 

 

  3.23.5 Quantification of vGlut2/TH and vGlut2/TH/GFP positive cells in 

     the ventral midbrain 

To analyze co-expression of vGlut2 and TH, and vGlut2, TH and GFP, combined RNA In 

Situ hybridization/Immunohistochemistry was performed on coronal sections. The expression 

of vGlut2 was visualized by RNA In Situ hybridization, while expression of TH and/or GFP 

was detected by immunohistochemistry. The vGlut2/TH expression was analyzed on three 

mutants and three wildtypes (Gli2flox/+) at P21. The number of MbDN (THpos/vGlut2neg), 
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vGlut2-only (THneg/Glut2pos) cells was counted on four rostrocaudal levels (from Bregma: -

2.92 mm, -3.28 mm, -3.64 mm, and -3.88 mm; Franklin and Paxinos, 2007). Cells were 

counted in the entire TH positive areas (SNpc, VTA, RLi, CLi) for each level. 

EYFPpos cells co-expressing TH (MbDN), vGlut2 (vGlut2-only) or vGlut2 and TH (MbDN-

vGlut2) were counted on two rostrocaudal levels and normalized for the total number of cells 

counted (from Bregma: -3.28 mm, -3.64 mm; Franklin and Paxinos, 2007) for three control 

and three mutant animals at P48. The histological analysis was performed two weeks after 

mice were injected with rAAV harboring a ChR2-EYFP fusion gene. Sections were imaged 

on a Zeiss Axio observer, using a 20x objective and a Bright Field Setup for vGlut2 

expression and the Zeiss MosaiX Setup to assess an immunohistochemical labeling for TH 

and GFP (Axiovision Zeiss). For each level, cells were counted in the VTA (RLi, IF, PN and 

PBP).  

 

 3.23.6 Quantification of Calcium imaging data* 

Imaging data were preprocessed in ImageJ and analyzed using Igor. Videos were registered 

and translated to the reference image in order to remove movement artifacts and drift. 

Regions of interest were manually placed on OGB1 positive cell somata. Only cells visible 

over the course of the entire experiment were included. Raw fluorescence intensity traces over 

time of individual cells were extracted and further processed using Igor. Traces of individual 

cells were normalized to baseline. 

 

 3.24 Statistical analysis 

To determine statistical significance between control and mutant animals, unpaired Student’s 

t-test (Excel Software) was used. Statistical significance levels were set at: *p<0.05, 

**p<0.01, ***p<0.001. Error bars indicate Standard error of the mean (SEM). All results are 

expressed as mean ± SEM. 

Statistical analysis of electrophysiological data† was performed as appropriate using paired 

and unpaired Student’s t-test, as well as Mann-Whitney tests, Friedman test with Dunn’s 

multiple comparison, Kruskal-Wallis test with Dunn’s multiple comparison and repeated 

measures ANOVA with Newman-Keuls post test. 

                                                
* Quantification of Ca2+ imaging data was performed by Oliver Braganza, laboratory of Prof. 
Heinz Beck, Department of Epileptology, University of Bonn, Medical Center 
† Statistical analysis of electrophysiological data was performed by Milan Pabst, laboratory of 
Prof. Heinz Beck, Department of Epileptology, University of Bonn, Medical Center 
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4. Results 

 4.1 Inactivation of Gli2-mediated Shh signaling after E9.0 in the midbrain 

GIFM and conditional inactivation studies have demonstrated that the crucial time period for 

Shh signaling in establishing MbDNs is between E8.0 and E10.0 (Blaess et al., 2006 and 

2011; Hayes et al., 2011). As described previously, the timing and duration of Shh signaling 

plays a role in the specification of MbDNp into SNpc versus VTA progenitors (Figure 5) 

(Section 1.16). After E9.0, medially located precursors cease to respond to Shh signaling, 

whereas laterally located precursors continue to respond to Shh signaling up to E10.0. 

Importantly, GIFM studies have shown, that the lateral precursors contribute preferentially to 

MbDN in the vmVTA (Blaess et al., 2011; Hayes et al., 2011), whereas medial precursors 

give rise to all MbDNs. To assess whether Shh signaling plays an instructive role in subset 

specification of MbDNs, mice in which Shh signaling was inactivated during the Shh-

responsive period of MbDNp were analyzed. To this end conditional knockout mice were 

generated in which the zinc finger transcription factor Gli2 was inactivated using Engrailed1 

En1Cre/+:Gli2flox/zfd (further referred to as a Gli2ΔMb>E9.0) (Figure 8) (Kimmel et al., 2000; 

Blaess et al., 2006). 

 

 
Figure 8 Conditional inactivation of Shh signaling. (A) Timeline of Shh expression in the 
vMb. Shh signaling is inactivated at E9.0 in Gli2ΔMb>E9.0 mice. (B) Schematic of the 
conditional inactivation of Gli2 in Gli2ΔMb>E9.0 mice. Cre-recombinase is driven by the En1 
promoter. Cre mediated recombination leads to the exclusion of exons 7 and 8 of Gli2, which 
are flanked by loxP sites. (C) Inactivation of Gli2 results in no transcription of Shh target 
genes. 
 

In these mice, Cre-mediated recombination occurs specifically in the midbrain and the aHb 

starting around E8.5 (Li et al., 2002). Gli2 was inactivated instead of the Shh receptor Smo, 
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since Gli2 is the primary activator downstream of Shh signaling and the main mediator of 

Shh-mediated MbDN induction (Matise et al., 1998; Bai et al., 2001 and 2002; Blaess et al., 

2006). Gli2ΔMb>E9.0 mice have a reduced number of MbDNs at E18.5 (Blaess et al., 2006). 

Despite these defects, Gli2ΔMb>E9.0 mice are viable, allowing the analysis of MbDNs in the 

postnatal and adult brains. In contrast, conditional inactivation of Shh receptor Smo results in 

increased cell death in the vMb and aHb and early postnatal lethality (Blaess et al., 2006). 

 

 4.2 Medial but not lateral MbDNp are induced when Shh signaling is inactivated 

at E9.0 

To investigate whether the inactivation of Gli2-mediated Shh signaling results in altered 

MbDNp generation, the expression domains of the genes known to be involved in MbDNp 

induction and specification of MbDNs were analyzed (Section 1.13 and 1.14). First, the 

expression of Lmx1a in the Gli2ΔMb>E9.0 mice between E9.5 and E14.5 was assessed. In E9.5 

Gli2ΔMb>E9.0 embryos, the Lmx1apos area was not significantly smaller than in control embryos 

(Figure 9A). However, the Lmx1apos domain was significantly reduced in size in E10.5 

Gli2ΔMb>E9.0 embryos compared to wildtype littermates (56.5% ± 4% of wildtype) (Figure 9A, 

10A-B). The expression domain of Arx, another transcription factor expressed in the MbDNp 

domain was only slightly reduced (95.9% ± 5.3% of wildtype) in E9.5 Gli2ΔMb>E9.0 embryos, 

while in E10.5 Gli2ΔMb>E9.0 embryos the Arxpos area was significantly smaller than in the 

control littermates (56.9% ± 3.5% of wildtype) (Figure 9B, 10C-D). These data suggest that 

after E9.0, Shh signaling is required for the expansion of the MbDNp domain. 

 

 
Figure 9 MbDNp domain is significantly decreased in Gli2ΔMb>E9.0. (A) Quantitative 
analysis of the size of the Lmx1apos precursor domain in the vMb of E9.5 and E10.5 embryos. 
(B) Quantitative analysis of the size of the Arxpos precursor domain in the vMb of E9.5 and 
E10.5 embryos. Error bars indicate SEM. Significance (p***<0.001) was determined by 
Student’s t-test. 
 
To investigate whether the remaining MbDNp domain is properly specified in Gli2ΔMb>E9.0 

mutants, the expression of further markers expressed within the MbDNp domain, Shh and 
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Foxa2, was analyzed (Figure 10E-H). In the wildtype vMb, Shh and Foxa2 expression is 

initially restricted to the Lmx1apos domain, but their expression then expands laterally to 

Lmx1aneg precursors between E9.5 and E10.5 (Joksimovic et al., 2009; Blaess et al., 2011). At 

E11.5, Shh expression then starts to be downregulated in the medial MbDNp domain (Figure 

11C) (Joksimovic et al., 2009; Blaess et al., 2011). In E9.5-E10.5 Gli2ΔMb>E9.0 embryos, 

MbDNp in the Lmx1apos domain expressed Foxa2 and Shh (Figure 10E-H, Figure 11A-B; 

E9.5 data for Foxa2 expression not shown). 

 

 
Figure 10 Shh is required for induction of lateral MbDNp domain after E9.0. (A-B, G-
H) Immunofluorescent staining and RNA In Situ hybridization (C-F, I-L) on E10.5 coronal 
sections for markers of MbDNp domain (Lmx1a, Arx, Corin, Msx1/2, Shh, Foxa2) and Nkx6-
1. The dashed line indicates Lmx1apos domain. Scale bar 100 µm. (M) Quantitative analysis 
of the size of the medial (Lmx1apos/Corinpos, yellow) and lateral (Lmx1apos/Corinneg, orange) 
precursor domain in the vMb of E9.5 and E10.5 embryos. Error bars indicate SEM. 
Significance was determined by Student’s t-test. (N) Table indicating significant changes for 
the size of the medial and lateral domains for E9.5 and E10.5 control and mutant embryos. 
(O) Schematic of the medial (yellow) and lateral (orange) MbDNp (green) domains in E9.5-
E10.5 wildtype embryo. 
 
These data show that the remaining Lmx1apos progenitor domain appears to be properly 

specified in Gli2ΔMb>E9.0 mutants. However, at E11.5, Shh expression was still detectable in 
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the medial MbDNp domain in Gli2ΔMb>E9.0 embryos (Figure 11C-D). The lateral 

Lmx1aneg/Foxapos/Shhpos expression domain, which gives rise to non-MbDN (Section 1.18), 

was almost entirely missing in the mutants (Figure 10B, F, H, 11B, D). Furthermore, the data 

indicate that Shh signaling prior to E9.0 is sufficient to induce Shh and Foxa2 in the ventral 

midline, and is not required for the maintenance of their expression. However, Shh signaling 

is required after E9.0 for the further expansion of the Foxa2 and Shh domain into the 

ventrolateral midbrain. 

In the wildtype vMb, Nkx6-1 expression overlaps with Lmx1a up to E9.5, but it is excluded 

from the Lmx1a domain at later stages (Andersson et al., 2006). In E10.5 and E11.5 

Gli2ΔMb>E9.0 embryos, Nkx6-1 expression was shifted ventrally, but as in control animals it did 

not overlap with the Lmx1apos precursor domain (Figure 10 A-B). These results demonstrate 

that the regulation of gene expression in the remaining MbDNp domain of Gli2ΔMb>E9.0 

embryos occurred normally. 

The Lmx1apos MbDNp domain can be further subdivided into a medial and a lateral domain 

based on gene expression and GIFM studies (Joksimovic et al., 2009; Blaess et al., 2011) 

(Section 1.16). The medial MbDNp domain expresses Msx1/2 and Corin, while laterally 

located MbDNp express only Lmx1a (Andersson et al., 2006; Ono et al., 2007; Blaess et al., 

2011; Yan et al., 2011). To examine whether reduction of the Lmx1apos domain can be 

ascribed to a specific loss of either the medial or lateral MbDNp population, the expression of 

Corin and Msx1/2 in E9.5-10.5 control and Gli2ΔMb>E9.0 embryos was analyzed (Figure 10I-

L). Interestingly, in E9.5 and E10.5 Gli2ΔMb>E9.0 embryos, Corin and Msx1/2 domain filled 

almost the entire Lmx1apos domain in the vMb, indicating that the lateral domain 

(Lmx1apos/Corinneg/Msx1/2neg) was lost in the mutant (Figure 10I-L). Indeed, quantification of 

the Corinpos and Lmx1apos areas on adjacent sections of the posterior vMb showed that the 

Lmx1apos/Corinneg domain was severely reduced, in both E9.5 (31.7% ± 12.4% of wildtype) 

and E10.5 (11.2% ± 6.5% of wildtype) Gli2ΔMb>E9.0 embryos (Figure 10M). In contrast, the 

medial domain (Lmx1apos/Corinpos/Msx1/2pos) was not reduced at E9.5 in the mutants. 

However, by E10.5, the medial domain was altered in the mutants (60.3% ± 2% of wildtype), 

compared to control embryos, but was not as severely reduced as the lateral domain (Figure 

10M). In summary, these data indicate that, prior to E9.0, Shh signaling is sufficient to induce 

the Lmx1apos MbDNp domain. After E9.0 Shh signaling is required for the further expansion 

of the MbDNp domain and in particular for the induction of the lateral 

(Lmx1apos/Corinneg/Msx1/2neg) MbDNp domain. 

 



Results 
 

 62 

 
Figure 11 Shh signaling is required for Shh domain expansion after E9.0, but not for its 
maintenance. (A-B, C-D) RNA In Situ hybridization for Shh on E9.5 (A-B) and E11.5 (C-D) 
coronal sections. Lmx1a domain is indicated in red. Arrows: medial downregulation of Shh 
expression. Scale bars (A-B) 100 µm, (C-D) 50 µm 
 

Wnt1 has been implicated in an autoregulatory induction loop with Lmx1a (Chung et al., 

2009) (Figure 4, Section 1.14). Since Wnt1 plays an important role in MbDN development 

(Sections 1.13 and 1.14), Wnt1 expression might be affected in Gli2ΔMb>E9.0 mutants.  

 

 
Figure 12 Reduction in Wnt1 expression in Gli2ΔMb>E9.0. (A-F) RNA In Situ hybridization 
for Wnt1 on E9.5 (A-B), E10.5 (C-D) and E11.5 (E-F) coronal sections. Scale bar 100 µm. 
 
Indeed, RNA In Situ hybridization for Wnt1 at E9.5-E12.5 showed that Wnt1 expression 

appeared to be reduced Gli2ΔMb>E9.0 embryos (Figure 12 A-F, E12.5 data not shown). 
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 4.3 Reduction of the lateral MbDN precursor domain in Gli2ΔMb>E9.0 embryos is 

not caused by a decrease in proliferation 

The severe reduction of the lateral MbDNp domain in Gli2ΔMb>E9.0 embryos indicates that Shh 

signaling is required for the expansion of this domain after E9.0. Shh-induced expansion of 

the domain could either be mediated through the regulation of proliferation of pre-existing 

medial Lmx1apos precursors or through the induction of Lmx1a expression in lateral 

precursors previously negative for Lmx1a. To assess proliferation, proliferating cells were 

labeled with an one hour BrdU pulse in E9.5 and E10.5 control and Gli2ΔMb>E9.0 embryos. 

BrdU is an analogue of thymidine and is incorporated into the DNA during the S-Phase of the 

cell cycle. Quantification of BrdUpos cells within the Lmx1apos domain in E9.5 and E10.5 

embryos showed that the proliferation in the MbDNp domain in Gli2ΔMb>E9.0 mutants (E9.5: 

42 ± 4 cells/104 µm2 and E10.5: 55 ± 8 cells/104 µm2) was not significantly different from 

control littermates (E9.5: 70 ± 10 cells/104 µm2 and E10.5: 62 ± 5 cells/104 µm2) (Figure 

13A-B, G; E9.5 data not shown). To exclude that the decrease in MbDNp is caused by an 

increase in cell death, immunostainings for activated Caspase-3 were carried out on E9.5-

E10.5 control and Gli2ΔMb>E9.0 embryos. No changes in the number of apoptotic cells in the 

MbDNp domain in E10.5 Gli2ΔMb>E9.0 mutants (0.95 ± 0.83 cells/104 µm2) were observed 

compared to control littermates (0.97 ± 0.88 cells/104 µm2). These data indicate that the 

reduction in the Lmx1apos domain in Gli2ΔMb>E9.0 mice is likely due to an impaired induction 

of Lmx1a expression in lateral, initially Lmx1aneg precursors, rather than an impaired capacity 

of Lmx1a expressing precursors to proliferate or to survive. 

To assess whether the Lmx1apos cells maintained their proper progenitor fate in Gli2ΔMb>E9.0 

embryos, the expression of hairy and enhancer of split 5 (Hes5) was analyzed. Hes5 is 

downstream of Delta-like 1 in the Notch signaling pathway and suppresses the expression of 

proneural genes (Ohtsuka et al., 1999). Hes5 was expressed in the MbDNp domain in both 

Gli2ΔMb>E9.0 and control embryos at E11.5 (Figure 13 C-D). 

To investigate whether the progenitors in the remaining Lmx1apos domain can undergo normal 

neurogenesis, the expression of the proneural gene Ngn2 was examined (Section 1.14). 

Quantification of the number of Ngn2pos cells within the Lmx1apos domain in Gli2ΔMb>E9.0 and 

control embryos at E11.5 demonstrated that the number of Ngn2pos cells was similar in 

control and mutant embryos when normalized for the size of the MbDNp domain (Figure 

13E-F, H). 
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Figure 13 Proliferation and neurogenesis in the MbDNp domain is not affected in 
Gli2ΔMb>E9.0 mice. (A-B) One hour BrdU pulse to label proliferating precursors in the vMb at 
E10.5. (C-D) RNA In Situ hybridization for Hes5 expressed in the MbDNp domain at E11.5. 
(E-F) Immunofluorescent staining for Ngn2 on E11.5 coronal section. Dashed yellow lines 
indicate the Lmx1apos domain. Scale bars (A-B) 100 µm; (C-F) 50 µm. (G) Quantitative 
analysis of the number of BrdUpos cells normalized to the size of Lmx1apos domain for level of 
section shown in A-B. (H) Quantitative analysis of the number of Ngn2pos cells normalized to 
the size of Lmx1apos domain for level of sections shown in E-F. Error bars indicate SEM. 
Significance was determined by Student’s t-test. 
 

However, analysis at E10.5 showed that the onset of neurogenesis was delayed in the vMb of 

Gli2ΔMb>E9.0 embryos, since Ngn2pos cells were present in the control but not the mutant 

Lmx1apos precursor domain at this stage (data not shown). These results show that the 

remaining MbDNp in Gli2ΔMb>E9.0 embryos are capable of normal neurogenesis. 

 
 4.4 Shh signaling is required after E9.0 for the generation of MbDN 

To investigate how the almost complete loss of the lateral MbDNp domain and the reduced 

size of the medial MbDNp domain affects the generation of differentiated MbDNs, 

immunohistochemistry for TH was performed on coronal sections through the rostrocaudal 

extent of the developing vMb in E10.5, E11.5, E12.5, E14.5 and E18.5 control and 

Gli2ΔMb>E9.0 embryos (Figure 14A-F, 15A-B). The first differentiated MbDNs expressing TH 

appear already at E10.5 in control mice, whereas THpos MbDNs could not be detected in the 

Gli2ΔMb>E9.0 vMb (data not shown). This could be explained by the delayed neurogenesis in 

the Gli2ΔMb>E9.0 embryos (Section 4.3). 
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Figure 14 Shh signaling is required after E9.0 for the proper generation of MbDNs. (A-
F) Immunostaining for differentiating MbDNs (TH) in E11.5 (A-B), E12.5 (C-D) and E14.5 
(E-F) wildtype and Gli2ΔMb>E9.0 embryos. Yellow arrows indicate THpos cells. Red arrows 
indicate loss of MbDNs in the Gli2ΔMb>E9.0 mutants. Scale bar 100 µm. 
 
At E11.5 MbDNs in the Gli2ΔMb>E9.0 vMb were severely reduced (Figure 14A-B). In contrast 

to control embryos, where the newly generated THpos MbDNs are clustered off-midline, THpos 

cells in the mutant were all located medially. At E12.5 and E14.5 MbDNs were still reduced 

and excluded from the ventral midline (Figure 14C-F). In addition, THpos cells were scattered 

and disorganized in Gli2ΔMb>E9.0 mutants. 

At E18.5 vmVTA and dlVTA first can be identified anatomically. MbDNs were severely 

reduced in E18.5 Gli2ΔMb>E9.0 embryos (Figure 15A-B). The decrease in MbDNs was 

particularly obvious in areas that would correspond to the vmVTA and the SNpc in the 

control brains (Figure 15A-F). To exclude that the apparent reduction in MbDNs is due to a 

downregulation of TH expression, rather than a reduction in the number of MbDNs, other 

typical MbDN markers such as Nurr1 and Foxa2 at E18.5 were analyzed (Figure 15C-F). 
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Figure 15 Reduced MbDNs in Gli2ΔMb>E9.0 embryos express MbDN markers. (A-B) 
Immunostaining for differentiated MbDNs (TH) in E18.5 control and Gli2ΔMb>E9.0 embryos. 
Red arrows indicate loss of MbDNs in Gli2ΔMb>E9.0 mutants. (C-F) Immunostaining for Nurr1 
and Foxa2 on E18.5 coronal sections. (C’-F’) Enlarged boxes show co-expression of Nurr1 
and TH, Foxa2 and TH. Scale bar 100 µm. 
 
Nurr1 is expressed in differentiating and mature MbDNs (Section 1.15), whereas Foxa2 is not 

only expressed in MbDNp and MbDNs, but also in the other vMb cells (Kittappa et al., 2007) 

(Section 1.14). Both Foxa2 and Nurr1 are expressed in the MbDNs of Gli2ΔMb>E9.0 mice, 

meaning that remaining MbDNs are properly specified. However, the decrease in 

THpos/Nurr1pos and THpos/Foxa2pos MbDNs was more obvious in areas that correspond to the 

vmVTA and the SNpc in the control animals. Nurr1pos/THneg cells can be found in the 

vmVTA, particularly in RLi. There was no obvious difference between Gli2ΔMb>E9.0 and 

control brains in the amount of THneg, Nurr1pos or THneg, Foxa2pos cells in the RLi (Figure 

15C-F). In summary, these results demonstrate that inactivation of Gli2-mediated Shh 

signaling at E9.0 in the vMb results in severe reduction of MbDNs in Gli2ΔMb>E9.0 mice, 

however the remaining MbDNs are properly specified. 

 
 4.5 Inactivation of Shh signaling at E9.0 results in a preferential loss of Calbindin 

positive VTA neurons 

A detailed anatomical analysis of different subgroups of MbDNs is only possible in the 

mature brain. To quantitatively assess the number and distribution of MbDNs, P21 

Gli2ΔMb>E9.0 and control brains were analyzed. This stage was chosen, since mice 

heterozygous for En1 show degeneration of MbDNs after 8 weeks of age (Sonnier et al., 

2007). In Gli2ΔMb>E9.0 mice (En1Cre/+:Gli2zfd/flox) part of the En1 coding sequence is replaced 
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by the Cre cDNA, making these mice heterozygous for En1 (Kimmel et al., 2000). Therefore, 

THpos MbDNs were counted bilaterally in sections from four rostrocaudal levels 

(approximately from Bregma in mm: -2.92, -3.28, -3.64 and -3.88; Franklin and Paxinos, 

2007) of at least three Gli2ΔMb>E9.0 and three control mice. The total number of THpos MbDNs 

in Gli2ΔMb>E9.0 brains was reduced to 53.5% ± 3.21% of the MbDN number in control brains 

(Figure 16 A-D, E).  

 

 
Figure 16 Severe loss of Calbindin positive cells in Gli2ΔMb>E9.0 mice. (A-D) 
Immunostaining for MbDNs in the SNpc (Girk2pos) and VTA (Calbindinpos) on P21 coronal 
sections. Scale bar 500 µm. (E) Quantitative analysis of the number of THpos cells in sections 
A-D. (F-I) Schematic showing the distribution of Girk2pos (yellow dots) and Calbindinpos 
(orange dots) MbDNs in the vMb (sections in A-D). (J) Plane of section shown in A-D 
represents distinct subpopulations of MbDNs in the vMb. (K) Quantitative analysis of the 
number of Girk2pos and Calbindinpos cells at section levels shown in A-D. Error bars indicate 
SEM. Significance (p**<0.01; p***<0.001) was determined by Student’s t-test. 
 

Interestingly, along the rostrocaudal axis of the vMb the MbDN reduction was more 

prominent rostrally (Bregma -2.92 and -3.28 mm: 48.2% ± 2.09% of MbDNs in control 

brains) than caudally (Bregma -3.64 and -3.88 mm: 61.4% ± 4.3% of the MbDNs in control 
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brains). The distribution of MbDNs in the Gli2ΔMb>E9.0 mutants was comparable to E18.5 

(Figure 15B). Immunohistochemical and morphological analysis revealed that both, SNpc and 

VTA appeared to be affected, but the areas corresponding to the vmVTA (PN and IF) and RLi 

were most severely reduced (Figure 16A-D). 

To investigate whether the reduction in VTA MbDNs was indeed more severe than the 

reduction in SNpc MbDNs in Gli2ΔMb>E9.0 mice, the expression of Girk2 and Calbindin in P21 

brains was analyzed. Girk2 and Calbindin are preferentially expressed in the SNpc and VTA, 

respectively (Section 1.4) (Figure 16A, C). Girk2pos/THpos and Calbindinpos/THpos MbDNs 

were counted bilaterally in sections from four rostrocaudal levels (approximately from 

Bregma in mm: -2.92, -3.28, -3.64 and -3.88; Franklin and Paxinos, 2007) of at least three 

Gli2ΔMb>E9.0 and three control mice. In Gli2ΔMb>E9.0 mice, the number of Calbindinpos/THpos 

MbDNs (41.8% ± 4.6% of wildtype) was significantly more reduced than the number of 

Girk2pos/THpos MbDNs (69.5% ± 7.4% of wildtype) (Figure 16F). Similar to the graded 

reduction of THpos MbDNs along the rostrocaudal axis in Gli2ΔMb>E9.0 brains, the number of 

Calbindinpos/THpos (40.7% ± 5.5% of the MbDNs in control) and Girk2pos/THpos (63.4% ± 

2.9% of the MbDNs in control) MbDNs was more prominently reduced rostrally than 

caudally (Calbindinpos/THpos: 47.7% ± 5.8% and Girk2pos/THpos: 77.06% ± 7.04% of the cells 

in control). These results demonstrate that inactivation of Shh signaling after E9.0 affects the 

generation of Calbindinpos MbDNs in the VTA more severely than the generation of Girk2pos 

MbDNs in the SNpc. 

 

 4.6 Shh signaling is required for the proper distribution of the MbDNs 

Both the SNpc and the VTA appeared to be severely reduced in Gli2ΔMb>E9.0 mutants, however 

MbDNs in the VTA are more affected then MbDNs in the SNpc. To exclude the possible 

change in the cell fates from one population to another, distribution of Calbindinpos and 

Girk2pos MbDNs on four rostrocaudal levels (approximately from Bregma in mm: -2.92, -

3.28, -3.64 and -3.88; Franklin and Paxinos, 2007) in control and Gli2ΔMb>E9.0 animals was 

analyzed. Interestingly, MbDNs located more anteriorly (Bregma -2.92 mm) are distributed 

properly in the mutant mice (data not shown). However, more posterior Calbindinpos/THpos 

MbDNs were mainly located in the area that would correspond to the PN and PBP in the 

wildtype vMb, with only few cells found in the IF (Figure 16D, I). Notably, the RLi nucleus 

appeared to be devoid of MbDNs in the Gli2ΔMb>E9.0 vMb. Interestingly, Girk2pos/THpos 

MbDNs, which can be found in the SNpc in wildtype, were shifted to a more medial position 

in Gli2ΔMb>E9.0 mice that corresponds to the dorsal VTA in the wildtype (Figure 16B, G). 
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MbDNs of the RRF appeared to be localized correctly. These data indicate that in addition to 

a decrease in the MbDN number in Gli2ΔMb>E9.0 mice, remaining MbDNs are disorganized. 

 
 4.7 MbDNs co-expressing vGlut2 are reduced in Gli2ΔMb>E9.0 mice 

In the vmVTA, including the RLi nucleus, MbDNs are intermixed with glutamatergic neurons 

(vGlut2-only) and a subset of MbDNs in the vmVTA even co-expresses vGlut2 (MbDN-

vGlut2), a marker for glutamatergic neurons (Yamaguchi, 2011) (Section 1.5). 

 

 

 
   

Figure 17 MbDN-vGlut2 are reduced in Gli2ΔMb>E9.0 mice. (A-B) RNA In Situ 
hybridization for vGlut2, a marker for glutamatergic neurons. Yellow outlines indicate area 
used for quantitative analysis in E. (C-D) RNA In Situ hybridization for vGlut2 (image color 
was inverted and false colored in green) combined with immunostaining for TH. Scale bar 
500 µm. (E) Quantitative analysis of the number of MbDN, vGlut2-only and MbDN-vGlut2 
cells at the section level shown in A-D. Error bars indicate SEM. Significance (p*<0.05) was 
determined by Student’s t-test. 
 

The developmental origin of these glutamatergic neurons has not been determined, but their 

precursors might also depend on Shh signaling for their induction. Since MbDNs in the 

vmVTA are severely affected in Gli2ΔMb>E9.0 mice, MbDN-vGlut2 could be particularly 

affected in the mutants as well. To this end, RNA In Situ hybridization for vGlut2, followed 

by immunostaining for TH to mark the MbDNs containing areas was performed (Figure 17A-

D). The number of MbDNs (THpos/vGlut2neg) was reduced by 46% in Gli2ΔMb>E9.0 mice 
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(Figure 17E). Interestingly, there were only 30% of MbDN-vGlu2 neurons left in the mutant 

brains (Figure 17E). 

Analysis of the number of vGlut2-only neurons in these areas showed no significant 

difference between Gli2ΔMb>E9.0 and control brains (Figure 17E). These results demonstrate 

that the inactivation of Shh signaling does not affect the generation of glutamatergic neurons 

in the vMb, but leads to a severe reduction of MbDN-vGlut2.  

 

 4.8 Shh signaling is required to establish mesocortical MbDNs 

MbDN, MbDN-vGlut2 and vGlut2-only neurons project to the NAc and the PFC, while SNpc 

MbDNs target primarily the dorsal striatum (Figure 18A) (Section 1.5, 1.6). Since MbDN and 

MbDN-vGlut2 in the vmVTA were severely reduced in Gli2ΔMb>E9.0 mice, it raises a question 

how the preferential reduction of these neurons impacts on the formation of the dopaminergic 

circuitry. First, the projections of MbDNs in control and Gli2ΔMb>E9.0 brains at P48 using 

immunostaining for TH were examined (Pickel et al., 1975). Since En1 drives Cre expression 

and subsequent recombination only in the vMb and aHb, the forebrain targets of MbDNs 

should not be directly affected by the conditional inactivation of Gli2 and any defects in the 

MbDN projections in Gli2ΔMb>E9.0 mutant should be due to changes in the number and/or the 

fate of MbDNs. To quantify the density of the projections, the intensity of TH and glyco-DAT 

fluorescence in the striatum or the number of pixels in the amygdala and PFC were measured 

in wildtype and Gli2ΔMb>E9.0 mutant brains (Figure 18B-K). Glyco-DAT is expressed at high 

levels in MbDN projections to the striatum, but only weakly in projections to the PFC or 

amygdala (Afonso-Oramas et al., 2009). Surprisingly, despite the significant reduction in the 

number of SNpc and VTA MbDNs in Gli2ΔMb>E9.0 brains (Figure 16E), there was no 

significant difference in the fluorescent intensity of TH or glyco-DAT staining in the CPu 

complex of the mutants compared to control brains (Figure 18B-E). Moreover, no difference 

in the number of TH fluorescent pixels in the amygdala between Gli2ΔMb>E9.0 and control 

animals was detected (Figure 18F-H). 
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Figure 18 Mesocortical projections are severely reduced in Gli2ΔMb>E9.0 mice. (A) 
Projections of MbDNs to the forebrain. Levels of sections in B-J are indicated. (B-J) 
Immunostaining for TH to visualize MbDN projections to the striatum (B-C), BLA (F-G) and 
PFC (I-J). (F’-J’) Higher magnification of the boxed area in F-J. White arrows indicate THpos 
fibers in the PFC; yellow asterisks their absence. (D, G, J) Quantitative analysis of relative 
fluorescence (TH) intensity in the striatum (D) and number of fluorescent (TH) pixels above 
background in BLA (H) and PFC (K). (E) Quantitative analysis of relative fluorescence 
(glyco-DAT) intensity in the striatum. The relative fluorescent intensity in the striatum is 
normalized to the area. Error bars indicate SEM. Significance (p**<0.01) was determined by 
Student’s t-test. 
 
MbDN projections to the OTu were only slightly reduced in Gli2ΔMb>E9.0 brains (Figure 18D, 

E). However, quantification of the number of TH fluorescent pixels in the PFC showed that 

the projections to the PFC were severely reduced in the Gli2ΔMb>E9.0 mutants (Figure 18I-K). 

These data demonstrate that despite the significant reduction in the number of MbDNs in 
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SNpc and VTA, MbDN projections to the CPu, NAc and amygdala are not affected in the 

mutants, whereas MbDN projecting to the PFC are severely reduced in Gli2ΔMb>E9.0 mice. 

 
 4.9 Tracing of MbDN axons originating in the ventromedial VTA confirms severe 

reduction in mesocortical projections* 

Since the apparent loss of THpos projections to the PFC could potentially be due to a specific 

downregulation of TH in mesocortical MbDN axons in Gli2ΔMb>E9.0 brains, MbDN axons 

were labeled with a fluorescent protein (EYFP). Strong EYFP expression in MbDN axons 

was achieved through stereotactic injection of rAAV harboring a ChR2-EYFP fusion gene 

into the vmVTA of postnatal brains of Gli2ΔMb>E9.0 and control (En1Cre/+) mice (Figure 19A). 

The rAAV harbors an expression cassette that results in ChR2 and EYFP expression only 

after Cre-mediated recombination (Kravitz et al., 2012). Since En1 drives Cre expression 

primarily in MbDNs in the postnatal vMb (Simon et al, 2001), MbDN cell bodies and axons 

are labeled with EYFP. Immunohistochemical analysis showed that 60% of all EYFPpos cells 

co-expressed TH in both, control and Gli2ΔMb>E9.0 brains (Figure 19B-D). The absolute 

number of EYFP-expressing MbDNs and cells positive for EYFP and TH, was however 

severely reduced in the mutant mice (EYFPpos cells: 34 ± 12; EYFPpos/THpos cells: 22 ± 13) 

compared to control mice (EYFPpos cells: 100 ± 4; EYFPpos/THpos cells: 65 ± 21.9). 

The pixel analysis of EYFPpos fibers in the PFC confirmed that the mesocortical MbDN 

projections are severely reduced in the Gli2ΔMb>E9.0 brains (4.1 ± 0.6 pixels x 105) compared to 

control (14,7 ± 2.2 pixels x 105) (Figure 19G-H, I). As expected VTA MbDN projections in 

control mice innervate only the ventral part of the striatum (NAc and OTu). Interestingly, in 

Gli2ΔMb>E9.0 brains, MbDNs projected into the ventral, as well as the dorsal part of the 

striatum (CPu) (Figure 19E). Since only SNpc MbDNs normally project to the CPu complex, 

these results are consistent with the observation that SNpc MbDN are located in a more 

medial position in the Gli2ΔMb>E9.0 brains. Alternatively, these results could be an indication 

for aberrant projections of the remaining VTA MbDNs in the Gli2ΔMb>E9.0 mice. In 

conclusion, these data show that the population of MbDNs that normally projects to the PFC 

(mesocortical MbDNs) essentially is not formed when Shh signaling is inactivated after E9.0. 

 
 

                                                
* Stereotactic injections of rAAV harboring a ChR2-EYFP fusion gene were performed by 
Milan Pabst, laboratory of Prof. Heinz Beck, Department of Epileptology, University of 
Bonn, Medical Center 
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Figure 19 Tracing of MbDN axons shows severe reduction in mesocortical projections in 
Gli2ΔMb>E9.0 mice. (A) Schematic showing double-floxed rAAV:ChR2-EYFP. Medial 
injection of the virus into the VTA (green area) results in EYFP expression in Cre-expressing 
neurons (red outline) in the VTA. (B-C) Immunostaining for MbDNs (TH, red) injected with 
the rAAV (EYFP, green). (B’-C’) Higher magnification of the boxed area in B-C. Arrows 
indicate cells co-expressing TH and EYFP, asterisks represent cells expressing only TH. (D) 
Quantitative analysis of THpos/EYFPpos cells expressed in percent of all EYFPpos cells. (E-H) 
Immunostaining for projections stained with EYFP (green) and TH (red) into the striatum (E-
F) and PFC (G-H). Arrows indicate presence of MbDN fibers in the PFC, while yellow 
asterisks indicate their absence. Scale bar 500 µm. (I) Quantitative analysis of the number of 
fluorescent (EYFP) pixels in the PFC. (J-L) RNA In Situ hybridization for vGlut2 (image 
color was inverted and false colored in blue) combined with immunostaining for TH (red) and 
EYFP (green) in control. Arrows indicate MbDN positive for TH and EYFP, filled 
arrowheads indicate MbDN positive for TH, vGlut2 and EYFP, arrowheads indicate cells 
positive for vGlut2 and EYFP. Scale bar 30 µm. (M) Quantitative analysis of MbDN (THpos), 
vGlut2-only (THneg/vGlut2pos) and MbDN-vGlut2 (THpos/vGlut2pos) cells co-expressing EYFP 
at this level (J-L). Error bars indicate SEM. Significance (p*<0.05; p**<0.01) was determined 
by Student’s t-test. 
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 4.10 Decreased dopamine content in the prefrontal cortex* 

To determine whether reduction in MbDN projections in the PFC might result in decreased 

DA content in this area, DA level and its metabolites DOPAC were measured using HPLC 

(Section 3.16). Indeed, the levels of DA and DOPAC were reduced to 52.5% and 67.1% of 

control in the PFC of Gli2ΔMb>E9.0 brains, respectively (Figure 20A). Striatal levels of DA 

(81.9% of control) and DOPAC (77.5% of control) were also decreased in Gli2ΔMb>E9.0 mice 

compared to control, but the reduction was less severe than in the PFC (Figure 20B). 

 

 
Figure 20 Dopamine content in the PFC and striatum as measured by HPLC. (A-B) The 
levels of DA and its metabolite DOPAC in the PFC (A) and the striatum (B). Data are 
expressed in ng/mL protein (A-B). Error bars indicate SEM. Significance (p**<0.01; 
p***<0.001) was determined by Student’s t-test. 
 
These data are consistent with the severe reduction observed in mesocortical projections in 

the Gli2ΔMb>E9.0 mice. The mild reduction in DA and DOPAC levels in the striatum indicates, 

that the despite the apparent normal innervation of this region, the remaining MbDNs cannot 

fully compensate for the loss of MbDNs. 

 
 4.11 Functional assessment of mesocortical MbDN in Gli2ΔMb>E9.0 and control 

mice using optogenetic approaches† 

The mesocortical DA system is essential for cognitive and emotional function. However, 

while the neuroanatomical connectivity of mesocortical system has been extensively studied, 

little is known about its functional properties. To examine this, an optogenetic approach was 

used. To stimulate dopaminergic axons, MbDNs in the VTA were injected with rAAV 

                                                
* HPLC analysis was performed by Dr. Ruth Musgrove, laboratory of Prof. Donato A. Di 
Monte, DZNE, Bonn 
† Optogenetic and electrophysiological analysis was performed by Milan Pabst, laboratory of 
Prof. Heinz Beck, Department of Epileptology, University of Bonn, Medical Center 
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harboring a ChR2-EYFP fusion gene, flanked by two loxP sites and driven by EF1α 

promoter. Therefore, the presence of Cre recombinase in control (En1Cre/+) and Gli2ΔMb>E9.0 

mice results in an irreversible expression of ChR2-EYFP. First, to analyze whether both, 

MbDN (THpos/vGlut2neg) and MbDN-vGlut2 (THpos/vGlut2pos) cells expressed ChR2-EYFP, 

RNA In Situ hybridization for vGlut2 followed by immunostaining for TH and EYFP was 

performed. Both MbDN subpopulations in the VTA area expressed EYFP in control and 

Gli2ΔMb>E9.0 mice: 28% ± 0.5% (control) and 62% ± 27% (Gli2ΔMb>E9.0) of all THpos MbDNs 

co-expressed EYFP and 29.6% ± 11% (control) and 26.2% ± 11.1% (Gli2ΔMb>E9.0) of MbDN-

vGlut2 co-expressed EYFP (Figure 19I-M). Only a low percentage of vGlut2-only cells co-

expressed EYFP in the VTA area in both animals (control: 6.6% ± 3.7% and Gli2ΔMb>E9.0: 

17.8% ± 9.7%). These data demonstrate that despite severe reduction in MbDNs in the 

Gli2ΔMb>E9.0 mutants, the percentage of the cells infected with the rAAV was not different 

from control mice. 

Recording from ChR2-EYFPpos VTA neurons, using the patch-clamp method revealed that 

blue light illumination (473 nm) caused large inward currents in VTA neurons (248 ± 43 pA 

for stimulation durations of 12 ms) (Figure 21B, C, firing behavioral and morphological 

reconstruction in Figure 21A). The expression levels of ChR2 were sufficient to induce 

precisely timed action potentials (AP) in VTA neurons at frequencies up to 33 Hz (Figure 

21D). Next, the effects of light-based stimulation of ChR2-EYFPpos axons originating from 

the VTA on neurons within the mPFC using multicell Ca2+ imaging were examined. Light-

based stimulation elicited Ca2+ transients in a subset of mPFC neurons (Figure 21E, F). To 

analyze whether Ca2+ transients were caused by DA or glutamate release, dopaminergic 

and/or glutamatergic blockers were applied. While Ca2+ transients were unaffected by 

dopaminergic antagonists, the AMPA/kainate receptor blocker CNQX completely blocked 

these transients (Figure 21F, G). These results suggest that mesocortical MbDN projections 

exert their predominant effects via release of glutamate. 

To pinpoint the effects of synaptic release of glutamate by MbDN projections, patch-clamp 

recordings from layer IV/V mPFC pyramidal neurons were obtained (Figure 21H). Light-

based stimulation of ChR2-EYFP expressing axons originating from the VTA always caused 

inhibitory postsynaptic potentials (IPSP) in the mPFC pyramidal neurons (Figure 21J, blue 

bar indicates time of light stimulation, average latency from onset of light stimulation to the 

IPSP onset 28.3 ± 13.8 ms, average magnitude of the light-evoked IPSP 5.1 ± 0.7 mV). 

Moreover, application of GABA-receptor blocker gabazine (10 µm) fully blocked the IPSP. 

These results indicate that the light-evoked response is GABAergic (Figure 21J, K). To 
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examine if recruitment of local interneurons might underlie the inhibitory effects of light-

based stimulation of VTA axons, GABAergic interneurons in the mPFC were analyzed. In 

GABAergic interneurons, light stimulation invariably elicited short-latency evoked 

postsynaptic potentials (EPSP) (average latency from onset of light stimulation to the EPSP 

onset 20.7 ± 3.79 ms, average magnitude of the light-evoked EPSP 6.4 ± 0.82 mV) (Figure 

21I). Moreover, some of the EPSP were large enough to trigger AP (Figure 21L). 

Interestingly, the light-evoked excitation of interneurons was completely blocked by the 

glutamate antagonist CNQX (10 µM, Figure 21L, M). These results indicate that mesocortical 

MbDN projections cause glutamatergic excitation of interneurons, as well as inhibition of 

pyramidal neurons. Next, to examine whether IPSPs in the mPFC are caused by a direct 

release of GABA from VTA neurons, light-evoked IPSP were recorded from mPFC 

pyramidal neurons. Application of CNQX, completely blocked light-evoked IPSP (Figure 

21N, O), indicating that IPSP in the mPFC are most likely not due to a direct release of 

GABA from VTA neurons. These results show that VTA MbDN axons are capable of 

generating fast inhibition in mPFC pyramidal neurons via glutamatergic excitation of 

inhibitory interneurons.  

The amount of MbDN fibers in the PFC of Gli2ΔMb>E9.0 mice was severely reduced, 

suggesting that the inhibition of the mPFC neurons might be impaired. Indeed, expression of 

ChR2-EYFP in VTA neurons in Gli2ΔMb>E9.0 mice revealed that the excitation of the mPFC 

interneurons was strongly impaired in these mice (Figure 21Q). Furthermore, the inhibition 

observed in mPFC pyramidal neurons upon light-based stimulation of VTA afferents was also 

strongly reduced in magnitude (Figure 21P). 
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Figure legend (next page) 
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Figure 21 Functional assessment of mesocortical MbDNs in Gli2ΔMb>E9.0 and control 
(En1Cre+/-) mice using optogenetic approach. (A-C) Morphology and intrinsic firing 
properties of a ChR2-expressing VTA neuron (left panels). Blue light stimulation (473 nm) of 
EYFPpos VTA neurons resulted in large inward currents in VTA neurons (rightmost panels). 
(D) Precise stimulation of ChR2-expressing VTA neurons with brief (20 ms) blue light 
illumination, which reliably triggered AP up to stimulation frequencies of 33 Hz. (E) Image 
of an OGB-1-AM pressure-loaded slice showing OGB-1-positive cells in the mPFC. (F) 
Traces of light stimulated Ca2+ transients in a representative subset of mPFC neurons. The 
dashed blue line indicates the light-based stimulation of ChR2-EYFPpos axons originating 
from the VTA. The transients were not significantly affected by DA antagonists, but were 
completely blocked by additional application of the AMPA/kainite receptor blocker CNQX 
(10 µM). (G) Percentage of neurons that respond to optogenetic stimulation before and after 
application of D1 and D2 receptor blockers and subsequent glutamatergic antagonist CNQX. 
Significance (p***<0.001) was determined by Friedman test with Dunn’s multiple 
comparison test. (H-I) Intrinsic properties and neuronal morphology of a representative PFC 
pyramidal neuron (H) and an interneuron (I). (J) Optogenetic stimulation of the axons 
projecting from the VTA caused IPSPs in layer IV/V mPFC pyramidal neurons (blue bar 
indicates time of light stimulation). (K) Light-evoked IPSP were blocked by the GABA-
receptor blocker gabazine (10 µM). (L) Light-based stimulation of EYFPpos axons originating 
from the VTA on PFC interneurons invariably elicited short-latency EPSPs that intermittently 
triggered AP. (M) The excitation of mPFC interneurons is blocked by the glutamate 
antagonists CNQX (10 µM). Significance (p***<0.001) was determined by Kruskal-Wallis 
test with Dunn’s multiple comparison test. (N-O) The inhibition of mPFC pyramidal neurons 
is also blocked by CNQX. Significance (p*<0.1) was determined by ANOVA with Newman-
Keuls post test. (P-Q) Light-evoked IPSPs in mPFC pyramidal neurons (P), as well as EPSP 
in inhibitory interneurons (Q) are significantly reduced in Gli2ΔMb>E9.0 mice. Significance 
(p*<0.1; p**<0.01) was determined by Mann-Whitney test. 
 

Thus, severe reduction of MbDNs capable of glutamatergic transmission in Gli2ΔMb>E9.0 mice 

causes virtually complete loss of an inhibitory motif that normally inhibits mPFC pyramidal 

neurons. 

 
 4.12 Inactivation of Shh signaling at E9.0 affects the generation of other ventral 

neuronal cell types 

Previously it has been shown that after E9.0 Shh signaling is required for the generation of 

more laterally located precursors such as precursors for the OM complex and RN (Blaess et 

al., 2006; Perez-Balaguer et al., 2009) (Section 1.18). OM and RN neurons are derived from 

the Shhpos/Foxa2pos/Nkx6-1pos progenitor domain located laterally to MbDN Lmx1apos 

domain, whereas motoneurons (GABApos) originate from an even more lateral domain, which 

is positive for Nkx2-2 (Figure 7A). Conditional inactivation of Shh signaling at E9.0 results in 

complete loss of OM neurons (Blaess et al., 2006). To analyze whether development of RN 

neurons is dependent on Shh signaling after E9.0, Nkx6-1 expressing progenitors that give rise 

to RN neurons were examined. The wildtype expression pattern of Nkx6-1 at E10.5, and later 
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at E12.5, consists of two positive domains, a medial Shhpos/Foxa2pos/Nkx6-1pos and a lateral 

Shhneg/Foxaneg/Nkx6-1pos domain (Figure 7, 22A). In E10.5 Gli2ΔMb>E9.0 mice, the expression 

of Nkx6-1 was shifted medially (Figure 22B). Both domains are still present in the 

Gli2ΔMb>E9.0 mice, however, the medial Shhpos/Foxa2pos/Nkx6-1pos domain was dramatically 

reduced in size (Figure 22B). Interestingly, at E11.5 the Foxa2pos/Nkx6-1pos domain was 

absent in Gli2ΔMb>E9.0 mice (Figure 22C-D). Another putative marker for precursors of the RN 

and motoneurons is Sim1. Whereas Sim1 overlaps with Foxa2 and Nkx6-1 in the progenitor 

area (VZ) and forms two vertical stripes in E11.5 wildtype mice, it is expressed outside of the 

VZ in Gli2ΔMb>E9.0 mutants (Figure 22E-F). Thus, these data show that Shh signaling after 

E9.0 is required for the further expansion of Foxa2 and therefore for specification of RN and 

OM precursor domains. 

To examine whether RN neurons are reduced in Gli2ΔMb>E9.0 embryos, immunohistochemical 

analysis of the Pou4f1 (POU domain class 4 transcription factor 1) was carried out on coronal 

sections of E18.5 control and Gli2ΔMb>E9.0 brains. The RN is organized in a parvocellular and a 

magnocellular part, which are located in the anterior and posterior midbrain, respectively 

(Massion, 1967) (Section 1.18). Surprisingly, the most anterior parvocellular part was 

maintained in Gli2ΔMb>E9.0 brains. Interestingly, posteriorly located Pou4f1pos neurons in 

Gli2ΔMb>E9.0 mutants were detected medially, while laterally located cells were completely 

missing (Figure 22G-H). In addition the usual compacted round shape of the nucleus was less 

obvious in Gli2ΔMb>E9.0 brains. 

It has previously been demonstrated that the RN contains neurons secreting different 

neurotransmitters, which participate in corticorubral and/or cerebellorubral transmission. One 

of the neurotransmitter playing a role in cerebellorubral transmission is glutamate. To 

investigate whether the apparent reduction in the RN neurons affects a particular population 

of the neurotransmitter the expression of glutamate transporter was examined. RNA In Situ 

hybridization analysis showed that RN neurons positive for vGlut2 were reduced in P21 

Gli2ΔMb>E9.0 mutants compared to control (Figure 22I-J). Moreover, remaining vGlut2pos RN 

neurons were located medially. These data suggest that there might be a temporal requirement 

of Shh signaling for generating laterally located RN neurons, which require Shh signaling for 

their induction after E9.0. It seems that more anteriorly located RN neurons might require Shh 

signaling for their induction before E9.0, since they were less affected in Gli2ΔMb>E9.0 brains. 

Alternatively, generation of the parvocellular part of RN is controlled by different factors than 

Shh signaling or the RN progenitors might be generated in the diencephalon. 
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Figure 22 Requirement of Shh signaling after E9.0 for proper generation of red nucleus 
neurons. (A-D) Immunostaining for Foxa2 and Nkx6-1 in E10.5 (A-B) and E11.5 (C-D) 
control and Gli2ΔMb>E9.0 embryos. Dashed lines and yellow asterisks (control) indicate medial 
Foxa2pos/Shhpos/Nkx6-1pos and lateral Foxa2neg/Shhneg/Nkx6-1pos domains. White bars indicate 
the size of these domains. (E-F) RNA In Situ hybridization for Sim1 in E11.5 control and 
Gli2ΔMb>E9.0 embryos. (G-H) Immunostaining for RN neurons (Pou4f1) on coronal section in 
E18.5 control and Gli2ΔMb>E9.0 brains. (I-J) RNA In Situ hybridization for vGlut2 in P21 
control and Gli2ΔMb>E9.0 brains. Yellow dashed lines outline the area of RN. Arrows indicate 
the missing neurons in the Gli2ΔMb>E9.0 mutants. Scale bars 50 µm (A-B), 100 µm (C-F), 500 
µm (G-J). 
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4.13 Constitutive activation of Shh signaling after E9.0 results in dramatic 

ectopic expansion of MbDN precursor domain 

To further examine the role of Shh signaling in specification of MbDN subpopulations, mice 

that expressed a constitutively active form of the Shh receptor Smo (SmoM2) were generated 

(Section 3.11.6) (Jeong et al., 2004) (Figure 23A). To induce recombination and thereby the 

expression of SmoM2 specifically in the midbrain and aHb after E9.0 (SmoM2↑Mb>E9.0) the 

En1Cre/+ mouse line was used. Inactivation of high level Shh signaling led to a severe 

reduction in the lateral MbDNp domain and almost complete loss of mesocortical MbDNs in 

Gli2ΔMb>E9.0 mutant mice. To investigate if constitutive activation of Shh signaling after E9.0 

might have an opposite effect, the Lmx1apos domain, which gives rise to all MbDNs was 

examined (Section 1.14). The size of the Lmx1apos area was increased in the vMb of the 

SmoM2↑Mb>E9.0 embryos at E10.5, however, the increase in the size of this domain was more 

prominent caudally (146.2% ± 10.8% of control) than rostrally (125.9% ± 17.3% of control) 

(Figure 23C, I and data not shown for rostral vMb). Furthermore, the Arxpos domain was also 

significantly increased in size in SmoM2↑Mb>E9.0 mutants compared to control embryos 

(131.6% ± 3.3% of control) (Figure 23E). To examine whether the lateral MbDNp can be 

induced in presence of fully activated Shh signaling, expression of Corin in E10.5 

SmoM2↑Mb>E9.0 embryos was analyzed. The quantification of the Corinpos and Lmx1apos areas 

on adjacent sections of the posterior vMb showed that the lateral Lmx1apos/Corinneg domain 

was not significantly increased in size compared to control embryos (Figure 23D, H). 

Interestingly, in contrast to control animals, the medial Lmx1apos/Corinpos domain was 

increased in size by 58.6% ± 5.8% in SmoM2↑Mb>E9.0 mice compared to control littermates 

(Figure 23C, H). 

To assess whether constitutive activation of Shh signaling after E9.0 leads to an increase of 

Shh and Foxa2 domains, the expression of these markers was analyzed in E10.5 control and 

SmoM2↑Mb>E9.0 embryos. The Shh and Foxa2 domains were expanded into the dorsal midbrain 

(Figure 23F,G), resulting in ventralization of the dorsal midbrain. Moreover, the midbrain of 

SmoM2↑Mb>E9.0 was dramatically increased in size compared to control. 

Taken together, after E9.0, only a very restricted population of midbrain precursors close to 

the Lmx1apos domain respond to increased Shh signaling by changing their fate to medial 

MbDNp, while a much larger population of precursors can respond by adopting a 

ventrolateral fate. 
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Figure 23 Constitutive activation of Shh signaling at E9.0 leads to dramatic ectopic 
expansion of MbDNp domain. (A) Schematic of the conditional activation of Shh signaling 
in SmoM2↑Mb>E9.0 mice. (B) Schematic of constitutive activation of Shh signaling. SmoM2 is 
active in absence of Shh. (C-G) Immunofluorescent staining (C, F) and RNA In Situ 
hybridization (D-E, G) on E10.5 coronal sections for markers of MbDNp domain (Lmx1a, 
Arx, Corin, Shh and Foxa2). The Lmx1a domain is outlined in sections C-E (dashed line). 
Red asterisks indicate the dorsal expansion of Foxa2 and Shh. Scale bar 100 µm. (H) 
Quantitative analysis of the size of the medial (Lmx1apos/Corinpos) and lateral 
(Lmx1apos/Corinneg) MbDNp domain in the vMb. (I) Quantitative analysis of the Lmx1apos 
domain in E10.5 control and SmoM2↑Mb>E9.0 embryos. Error bars indicate SEM. Significance 
(p**<0.01; p***<0.001) was determined by Student’s t-test. 
 
 4.14 Expansion of MbDN precursor domain is not caused by increase in cell 

proliferation 

To examine whether the expansion of MbDNp domain is a result of increased proliferation, 

proliferating cells were labeled with an one hour BrdU pulse in E10.5 SmoM2↑Mb>E9.0 and 

control embryos. Quantification of BrdUpos cells within the Lmx1apos domain showed that the 

proliferation in the MbDNp domain in SmoM2↑Mb>E9.0 mutants (56 ± 3.6 cells) was not 
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significantly different from control littermates (62 ± 5 cells), indicating that proliferation of 

MbDNp is not affected in SmoM2↑Mb>E9.0 mutants (Figure 24A-C). 

To analyze whether neurogenesis occurs normally in the mutant mice, the expression of the 

proneural marker Ngn2 was examined. Quantification of the number of Ngn2pos cells within 

the Lmx1apos domain in SmoM2↑Mb>E9.0 and control embryos at E10.5 showed that the number 

of Ngn2pos cells was significantly increased in SmoM2↑Mb>E9.0 mutants (46 ± 10 cells) 

compared to control (20 ± 3.4 cells) embryos when normalized for the size of the MbDNp 

domain (Figure 24D-F). These data suggest that prolongated Shh signaling did not affect the 

proliferation of MbDNp, however leads to the upregulated neurogenesis, meaning that 

constitutively active Shh signaling prompts the cell cycle exit of proliferating cells. However, 

the proliferation was not analyzed at later stages, meaning that increase in the neurogenesis 

might be transient. 

 

 
Figure 24 Proliferation in the MbDNp domain is not affected in E10.5 SmoM2↑Mb>E9.0 

mice, whereas neurogenesis is increased. (A-B) One hour BrdU pulse to label proliferating 
precursors in the vMb at E10.5. (C) Quantitative analysis of the number of BrdUpos cells 
normalized to the size of the Lmx1apos domain. (D-E) Immunostaining for Ngn2 on E10.5 
coronal sections. Dashed lines indicate the Lmx1apos domain. Scale bars 100 µm. (F) 
Quantitative analysis of the number of Ngn2pos cells normalized to the size of the Lmx1apos 
domain. Error bars indicate SEM. Significance (p*<0.05) was determined by Student’s t-test. 
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 4.15 Constitutive activation of Shh signaling after E9.0 results in ectopic MbDNs 

in the dorsal midbrain 

To test whether the expansion of the Lmx1apos domain and the increased neurogenesis at 

E10.5 results in an increased number of MbDNs, immunohistochemistry for TH was carried 

out on coronal sections through the rostrocaudal extent of the developing vMb in E10.5, 

E12.5 and E18.5 control and SmoM2↑Mb>E9.0 embryos (Figure 25A-D, Figure 14C, Figure 

15A). 

 
Figure 25 Activation of Shh signaling after E9.0 results in ectopic MbDNs in the dorsal 
midbrain. (A-F) Immunostaining for differentiated MbDNs (TH) in E10.5 (A-B), E12.5 (C) 
and E18.5 (D) wildtype and SmoM2↑Mb>E9.0 embryos. Yellow arrows indicate THpos MbDNs. 
Scale bars 100 µm (A-C), 500 µm (D). 
 
The first differentiated THpos MbDNs in control and SmoM2↑Mb>E9.0 mice were detected at 

E10.5. MbDNs in SmoM2↑Mb>E9.0 embryos seem not to be increased at this time point. 

However, at E12.5 MbDNs were severely increased and expanded towards the dorsal 

midbrain (Figure 25C, Figure 14C). These results correlate with the increased neurogenesis at 

E10.5. In contrast to the controls, in which the newly generated THpos MbDNs are located at 

the ventral midline, the THpos cells in the mutant were expanded laterally. Notably, the 
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increase in MbDNs was more obvious caudally, while there was no change in the rostral 

MbDN population. This phenotype persisted at E18.5. At this stage, the strong increase in the 

MbDNs became even more evident. The THpos cells were almost completely excluded from 

the midline, areas corresponding to the RLi and vmVTA (Figure 25D, Figure 15A). These 

findings demonstrate that constitutive activation of Shh signaling results in a severe increase 

of MbDN and their expansion towards the dorsal midbrain. 
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5. Discussion 

MbDNs in the adult brain are diverse on a functional and anatomical level, but it is largely 

unexplored how this diversity is established during development. To address this question, 

Shh signaling was inactivated in the midbrain immediately after lateral MbDNp start to 

respond to Shh signaling. The conditional gene inactivation was achieved by the removal of 

Gli2, the main transcriptional activator downstream of Shh signaling. In the mutant mice 

(Gli2ΔMb>E9.0) with inactivated Shh signaling, the lateral MbDNp domain was severely 

reduced in size and MbDNs were disorganized and decreased in number in the developing 

and adult brain. Analysis of MbDN subset markers showed that the majority of the remaining 

MbDNs adopted the fate of SNpc MbDNs in mutant mice. Characterization of MbDN 

connections in control and Gli2ΔMb>E9.0 mutant mice using immunofluorescence and axonal 

tracing, showed that the severe reduction of lateral MbDNp in Gli2ΔMb>E9.0 mutant mice is 

associated with the loss of mesocortical projections from the VTA. Optogenetics and 

electrophysiological analysis showed that mesocortical MbDNs modulate a cortical 

microcircuit by inhibiting cortical pyramidal neurons via release of glutamate. 

Furthermore, constitutive activation of Shh signaling after E9.0 results in a massive increase 

in the number of MbDNs. Analysis of MbDNp domain showed that the medial MbDNp 

domain was significantly increased in size, whereas the lateral domain was only slightly 

affected. Due to the perinatal lethality of the mutant mice, investigation of MbDNp 

specification in the adult brains was not possible. This study shows a causal link between 

early developmental induction mechanisms and the connective and functional properties of 

MbDNs in the mature brain. 

 

 5.1 Establishing of specific circuits in the mesocorticolimbic system 

MbDN cell bodies and their projections to the forebrain display a mediolateral topographic 

arrangement. The most laterally located cells (SNpc and lVTA) project to the dorsal striatum, 

mediolateral MbDNs of the lVTA innervate the lateral part of the striatum and medially 

located MbDNs of the vmVTA send their axons to the medial striatum, the PFC and the 

amygdala (Ikemoto, 2007 and 2010). However, significant intermixing of MbDN populations 

with different projection targets, particularly in the VTA, makes it difficult to assess the 

circuitry that determines the function of particular subsets of VTA MbDNs. Recent studies, 

using optogenetic approach revealed that distinct circuits indeed encode different MbDN 

functions (Lammel et al., 2008 and 2012), but how these circuits are established during 

development is still unclear. 
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After MbDN neuronal identity is specified in the VZ of the ventral midline, MbDNs 

differentiate and migrate to their final position while extending projections to their forebrain 

targets. It has been proposed that the target and functional specificity of MbDNs is established 

at late embryonic stages, through interaction with their target areas or by receiving specific 

inputs (Hu et al., 2004). However, fate-mapping studies suggest that MbDN populations are 

already pre-specified during their precursor phase. Medial MbDNp co-express Corin and 

Msx1/2 along with Lmx1a and give rise to MbDNs of the SNpc and dlVTA, whereas lateral 

MbDNp domain expresses only Lmx1a and preferentially give rise to MbDNs in the vmVTA 

(Blaess et al., 2011; Hayes et. al., 2011). This study demonstrates that inactivation of high 

level Shh signaling at E9.0 results in reduction of the medial (Lmx1apos/Corinpos) MbDNp 

domain and almost complete loss of the lateral (Lmx1apos/Corinneg) MbDNp domain in 

Gli2ΔMb>E9.0 mice. Analysis of postnatal Gli2ΔMb>E9.0 brains shows that axonal projections to 

the PFC are severely reduced, whereas projections to the ventral striatum and amygdala are 

not significantly altered. These data indicate that the MbDNp population that gives rise to 

mesocortical MbDNs is not induced in Gli2ΔMb>E9.0 mutant mice. Thus, mesocortical MbDNs 

have a different profile in their differentiation phase that results in the distinct physiology of 

these MbDNs and determines the formation of the specialized circuitry in the adult brain 

(Lammel et al., 2008 and 2012). 

The developmental specification of neuronal subtypes has been described in other areas of the 

nervous system. Thus, the different subtypes of cortical interneurons are specified before cells 

become postmitotic (Corbit et al., 2011). The fate of spinal cord neurons and cortical 

interneurons is determined by their location and the timing of origin. Moreover, the identity of 

neural progenitors is defined by combinatorial function of specific sets of transcription factors 

during their precursor or differentiation phase. These sets of transcription factors play a role 

by forming proper connectivities as well as functional integration of these neurons (Livesey et 

al., 2001; Polleux and Ghosh, 2002; Berghuis et al., 2004; Molyneaux et al., 2007). 

 

 5.2 Temporal requirement of Shh signaling in the specification of lateral MbDN 

precursors 

The induction of all MbDNp is dependent on Shh signaling. Analysis of the Lmx1a 

expression domain, which is thought to give rise to all MbDNs, revealed that Shh signaling is 

crucial for the induction of Lmx1a domain before E9.0 but not required for its maintenance 

after E9.0 (Andersson et al., 2006; Nakatani et al., 2010). Furthermore, Shh signaling is 

necessary for the further expansion of the Lmx1a domain, since Lmx1a expression domain is 
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severely decreased in Gli2ΔMb>E9.0 mice. These results are consistent with the gain-of-function 

data (SmoM2↑Mb>E9.0 mutant mice), which show an expansion of the Lmx1apos MbDNp 

domain and further confirm that Shh signaling is crucial for the induction of Lmx1a domain. 

However, inactivation of Shh signaling after E9.0 affects the generation of the lateral MbDNp 

in Gli2ΔMb>E9.0 mutant embryos. This raises the question how Shh signaling regulates the 

induction of different MbDNp domains. 

In the spinal cord, Shh is secreted from a fixed population of cells located in the notochord 

and FP (Dessaud et al., 2007; Ribes et al., 2010). It forms a stable morphogen gradient, i.e. 

Shh acts at a distance from the point source in a concentration-dependent manner. Different 

concentrations of Shh induce distinct transcriptional factor expression domains, which define 

different neuronal precursors. In addition to different concentrations of Shh, changes in the 

duration of active Shh signaling and in the sensitivity of the receiving cells to ongoing Shh 

signaling determine ventral neuronal cell type in the spinal cord (Dessaud et al., 2007; Ribes 

et al., 2010). In contrast, expression of Shh in the vMb is dynamic. A changing competence 

model for the response to Shh would makes more sense in the vMb, since the dynamic Shh 

expression does not lead to a stable morphogen gradient and with different mediolateral cell 

populations being exposed to high levels of Shh signaling, the expansion of the most medial 

cell fate could go ad infinitum until the entire midbrain is ventralized. How the changes in 

competence are regulated is not clear, it could be due to the memory of low levels of Shh 

signaling and/or could be controlled extrinsically through the interaction with other signaling 

pathways in the vMb, such as Wnts (Joksimovic et al., 2009). 

Based on this study’s data the following model on how Shh induces different precursor 

domains in the vMb can be proposed. Initially, the most medial progenitors are exposed to 

high levels of Shh from the notochord starting around E8.0. Their response to Shh signaling is 

rapidly downregulated once they start to express Shh between E8.5 and E9.0. Simultaneously 

they cease to express Gli transcriptional factors, which are necessary for Shh signal 

transduction. In this short time window ventral midline precursors are specified into medial 

MbDNp fate (Shhpos/Foxapos/Lmx1apos/Corinpos/Msx1/2pos). Induction of the medial MbDNp 

fate is only possible with early exposure (starting at E8.0) to high levels of Shh signaling, 

since the medial MbDNp domain is induced in Gli2ΔMb>E9.0 mice. However, reduction in the 

medial MbDNp domain in Gli2ΔMb>E9.0 mice indicates that the inactivation of Gli2 occurs 

within the time window in which Shh is still required for the medial MbDNp domain 

induction. 
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Precursor cells in a slightly more lateral domain initially receive either no or low levels of Shh 

signaling. Once Shh is expressed in the ventral midline (E8.5-E9.0), lateral domain receives 

high levels of Shh signaling that induces the lateral MbDNp fate 

(Shhpos/Foxapos/Lmx1apos/Corinneg/Msx1/2neg). Thus, delayed exposure to Shh signaling is 

necessary to induce lateral MbDNp. This population is severely reduced in Gli2ΔMb>E9.0 

mutant mice. However, constitutive exposure to high levels of Shh signaling in 

SmoM2↑Mb>E9.0 mutant mice does not lead to the expansion of lateral MbDNp, meaning that 

there might be another mechanism controlling cell fate specification. Thus, initial prolongated 

exposure to low levels of Shh signaling could result in desensitization of lateral precursors in 

their response to Shh. Thereby, following exposure to high levels of Shh would not lead to 

full activation of the pathway. Taken together, these findings suggest that the time point of 

exposure to high levels of Shh or level of Shh expression can determine the induction of a 

specific MbDN fate. 

Taken together, the data show that the timing of Shh expression plays a role in defining 

different MbDNp fates. However, it is still unclear which transcriptional factors determine the 

distinct fates of medial versus lateral MbDNs downstream of Shh. Msx1/2 is a transcription 

factor, which is exclusively expressed in medial MbDNp and excluded from the lateral 

MbDNp domain (Blaess et al., 2011), could be involved in determining the fate of medial 

MbDNp. Moreover, it has been demonstrated, that mice lacking Msx1/2 show a 40% 

reduction of MbDNs at E11.5 (Houzelstein et al., 1997; Andersson et al., 2006). However, it 

has not been investigated whether inactivation of Msx1/2 affects specific MbDN 

subpopulation. In addition, Lmx1a and Lmx1b are possible candidates for the determination 

of different precursor domains in the vMb. Thus, Lmx1a and Lmx1b mouse mutants showed 

that Lmx1a is required to establish the medial MbDNp domain, while Lmx1b determines the 

lateral MbDNp (Deng et al., 2011). 

 

 5.3 Proliferation and neurogenesis in the MbDN progenitor domain are not 

affected in Gli2ΔMb>E9.0 mutants 

It has been demonstrated that Shh is involved in regulating the survival of the basal, young 

neuroblasts as well as in enhancing their proliferation (Dahmane et al., 2001; Ingham and 

Placzeck, 2006). A previous study showed that inactivation of Shh receptor Smo in Shh-

expressing cells affects the proliferation of MbDNp (Hayes et al., 2013). Loss of Shh 

signaling at E9.0 resulted in an increase of cells remaining in a proliferative state and a 

reduction in postmitotic MbDNp, showing the role of Shh signaling in regulating cell cycle 
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exit in the vMb (Hayes et al., 2013). In contrast to these results, no changes in the 

proliferation rates in MbDNp in Gli2ΔMb>E9.0 mice were detected in this study, suggesting that 

the observed effects of Smo inactivation could potentially be mediated by non-canonical Shh 

signaling. In contrast to control mice, no postmitotic MbDNp were found in E10.5 

Gli2ΔMb>E9.0 mice, meaning that there might be a delay in the generation of newly 

differentiated MbDNs. However, the number of Ngn2pos cells in E11.5 Gli2ΔMb>E9.0 mice was 

not different from the wildtype. There might be other mechanism or extrinsic factors 

controlling cell proliferation and neurogenesis in the vMb. It has been shown that canonical 

Wnt/β-catenin signaling pathway regulates cell cycle exit and midbrain FP neurogenesis 

(Tang et al., 2009; Joksimovic et al., 2009; Tang et al., 2010; Yang et al., 2013). Depletion of 

β-catenin in MbDNp led to a perturbation of cell polarity and reduced MbDN neurogenesis 

(Tang et al., 2009). It has been suggested that β-catenin mediated Wnt1 signaling suppresses 

Shh levels at the ventral midline around E10.5, creating an appropriate milieu for normal rates 

of proliferation. However, despite the significant reduction of Wnt1 expression and a lack of 

downregulation of Shh in the ventral midline in Gli2ΔMb>E9.0 mice, proliferation and 

neurogenesis are unaffected. These data suggest that in Gli2ΔMb>E9.0 mice reduced Wnt1 

expression still can activate proliferation and neurogenesis in the vMb. In addition, Msx1/2 

has been suggested to control the timing of MbDN neurogenesis. Premature activation of 

Msx1/2 resulted in upregulation of Ngn2 expression, a loss of FP characteristics, and 

premature induction of MbDNs (Houzelstein et al., 1997; Andersson et al., 2006). 

Depletion of canonical Wnt/β-catenin signaling pathway and/or Smo-mediated Shh signaling 

resulted in an increased cell apoptosis (Blaess et al., 2006; Tang et al., 2009), which 

contributes to the reduction of MbDNs. In contrast, no detectable changes in the cell death 

were observed in this study, meaning that the remaining MbDNs proliferate and differentiate 

properly. 

 

 5.4 Normal innervation of non-cortical forebrain targets, but loss of mesocortical 

projections in Gli2ΔMb>E9.0 mice 

Inactivation of high levels of Shh signaling results in a preferential loss of the lateral MbDNp 

domain, which gives rise to the vmVTA (Blaess et al., 2011; Hayes et al., 2011). However, 

both SNpc and VTA MbDNs were reduced in Gli2ΔMb>E9.0 mice by 30% and 60%, 

respectively compared to control. Anatomical and morphological analysis showed that the 

reduction of VTA MbDNs was mainly restricted to the medially located neurons. Moreover, 

cells of the RLi and IF were almost entirely missing in the Gli2ΔMb>E9.0 mice. Furthermore, the 
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PBP MbDNs were severely reduced and intermixed with the SNpc neurons. Moreover, SNpc 

neurons were found in the lateral region of the VTA, practically replacing the neurons of the 

PBP. 

To examine how the reduction of MbDNs in the vmVTA and the SNpc affects the formation 

of dopaminergic circuitry in Gli2ΔMb>E9.0 mice, their target areas were examined. Thus, 

mesocortical projections were severely reduced in Gli2ΔMb>E9.0 mice. However, no significant 

changes in the density of projections to the dorsal striatum, NAc or amygdala were detected. 

MbDNs have huge terminal axonal arborizations in the striatum (Matsuda, 2009). Each 

MbDN might give rise to approximately 150000 presynaptic terminals in the striatum 

(Oorschot, 1996). 6-OHDA lesion of the SNpc MbDNs during postnatal development leads to 

sprouting and extensive arborization of the remaining MbDN axons in the dorsal striatum 

(Finkelstein, 2000), indicating that there could be compensatory axonal arborization when the 

absolute number of MbDN cell bodies and axons is reduced. In Gli2ΔMb>E9.0 mice MbDNs are 

reduced already during embryonic development. Therefore remaining MbDN axons could 

sprout in the dorsal striatum and amygdala to compensate for reduced innervation. Measuring 

DA levels using HPLC, however, shows that DA content was decreased by almost 20% in the 

striatum in the Gli2ΔMb>E9.0 mice, meaning that the remaining MbDNs cannot fully 

compensate for the loss of MbDNs. 

 
 5.5 Mesocortical MbDNs co-releasing glutamate 

The PFC is the major cortical recipient of DA inputs and DA is believed to play a critical 

modulatory role in several cognitive processes conducted by the PFC network, including 

working memory, attention and decision making. To examine the consequences of the loss of 

mesocortical projections in Gli2ΔMb>E9.0 mice on microcircuits in the PFC, ChR2-EYFP 

expressing VTA neurons were activated in slice preparations of mutant (Gli2ΔMb>E9.0) and 

control (En1Cre/+) brains using an optogenetic approach and recorded the activity in the PFC. 

The optical activation of ChR2-EYFP expressing VTA neurons in the control mice resulted in 

glutamate-mediated EPSPs in local interneurons and GABA-dependent IPSPs in pyramidal 

neurons in the PFC. In contrast, upon optical stimulation of VTA neurons no activity in the 

Gli2ΔMb>E9.0 brains mice was detected. These results suggest that VTA MbDN modulate the 

excitability of PFC neurons via interneurons by release of glutamate. 

The mesocorticolimbic pathway originating in the VTA is classically viewed as 

dopaminergic. However, it has been shown that only 30-40% of mesocortical projection 

neurons are dopaminergic (Swanson, 1982), while the rest of neurons express mRNA for 
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vGlut2 (Kawano et al, 2006; Yamaguchi et al, 2011; Gorelova et al., 2012; Hnasko et al., 

2012). Detailed analysis of vGlut2-expressing neurons in the vMb identified three cell 

populations: MbDN, MbDN-vGlut2 and vGlut2-only neurons (Kawano et al., 2006; 

Yamaguchi et al., 2007; Yamaguchi et al., 2011). These cells are located in the vmVTA, in 

particular in the IF and RLi and project to the NAc and the PFC. Interestingly, the loss of 

MbDN and MbDN-vGlut2 in the Gli2ΔMb>E9.0 mice is mostly apparent in the vmVTA. 

However, vGlut2-only neurons were not affected in Gli2ΔMb>E9.0 mutant mice. In the adult 

brain of En1Cre/+ mice, Cre-mediated recombination occurs primarily in MbDNs, including 

MbDN-vGlut2, but also in a small percentage of vGLut2-only neurons. Therefore, the 

glutamate- evoked activation of local PFC interneurons upon optogenetic stimulation of 

ChR2-EYFP expressing neurons could be mediated by vGLut2-only neurons and/or MbDN-

vGlut2. However, in Gli2ΔMb>E9.0 mice in which MbDN-vGlut2, but not vGlut2-only neurons, 

are severely reduced, glutamate-mediated EPSPs in PFC-interneurons were eliminated upon 

light stimulation of VTA neurons. Taken together, these results provide evidence that the 

glutamate-dependent activation of interneurons in the PFC is predominantly mediated by 

glutamate co-release from MbDN-vGlut2 and not vGlut2-only neurons. 

Optogenetic and conditional gene inactivation studies confirmed the ability of DA neurons to 

release glutamate in the NAc (Stuber et al., 2010; Tecualetla et al., 2010; Tritsch et al., 2012). 

Optical stimulation of dopaminergic terminals in the NAc shell resulted in glutamate-

mediated EPSP (Stuber et al., 2010). Glutamatergic responses were eliminated by glutamate 

but not DA antagonists (Lavin et al., 2005; Stuber et al., 2010). Even more direct support for 

glutamate release from the VTA MbDNs was provided by conditional gene inactivation 

studies, showing that selective removing of vGlut2 expression in MbDNs eliminated the 

EPSP in the NAc spiny neurons (Hnasko et al., 2010; Stuber et al., 2010). 

Considerable efforts have been invested in elucidating the cellular mechanisms by which DA 

modulates PFC function. Electrophysiological stimulation of VTA axons can rapidly 

depolarize PFC neurons or evoke EPSP-IPSP sequences (Lavin et al., 2005). It was suggested 

that the IPSP is mediated by VTA-induced feedforward activation of local PFC interneurons. 

The stimulation of the 6-OHDA-lesioned VTA failed to evoke EPSP in the PFC, confirming 

the idea that VTA MbDNs modulate PFC function by release of glutamate (Levin et al., 2005; 

Gorelova et al., 2012). However, this conclusion is somewhat premature given that vGlut2-

only neurons also die as a secondary consequence of the destruction of MbDNs by 6-OHDA. 

Thus, it still not clear whether the evoked responses in the PFC were due to release of 

glutamate from MbDN-vGlut2 or vGlut2-only cells. 
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 5.6 Functional implication of glutamate co-release in the PFC 

Tracing and immunohistochemical studies demonstrated that between 12% and 30% of 

dopaminergic axons in the PFC contain vGlut2pos varicosities, indicating that only a subset of 

dopaminergic synapses are able to co-release glutamate (Gorelova et al., 2012). However, it is 

still unclear how glutamate acts on cortical interneurons. Sequela et al. (1988) reported that 

between 16% and 22% of MbDN terminals in the PFC made asymmetric synapses, which are 

classically viewed as excitatory or glutamatergic. Forming both symmetric and asymmetric 

synaptic contacts, DA as a neuromodulator modulates acts through DA receptors. It has been 

shown that majority of dopaminergic axons form thin, symmetric synapses on distal dendrites 

of interneurons, but a small number of asymmetric synapses were observed as well (Sesack et. 

al., 1995). These data suggest that the EPSPs elicited in PFC interneurons upon stimulation of 

neurons in the VTA might originate from a subset specialized synaptic contacts. 

However, it is still questionable why VTA MbDNs release glutamate to modulate the PFC 

function. MbDN respond by firing a 200 ms burst of spikes to primary rewards, conditioned 

or secondary rewards, rewards that are not predicted and novel or unexpected stimuli 

(Hollerman and Schultz, 1998; Schultz 1998; Hyland et al., 2002). They generate a prediction 

error about reward by emitting brief bursts in response to events that are better than predicted 

or a brief cessation of firing to events that are worse than predicted (Lavin et al., 2005). 

However, DA may not be ideal to transmit this type of fast signal to the PFC. VTA MbDNs 

encode prediction error by changing their firing on the order of 500 ms or less (Schultz et al., 

1997). This leads to an increased PFC DA levels (Watanabe et al., 1997; Ahn and Phillips, 

1999), due to low levels of DAT and, consequently, slow uptake of DA (Garris et al., 1993; 

Lavin at al., 2005). Furthermore, a negative event such stress, which is presumably worse 

than expected, increases PFC DA levels for prolongated periods (Finlay et al., 1995). Thus, 

within the PFC the DA signal is not temporally precise and slow in its response to events of 

positive and negative valence (Gorelova et al., 2012). In contrast, glutamate is tightly coupled 

to neuronal firing and could provide temporally precise prediction error signal in the PFC, 

whereas the slower DA signal might modulate the state of the PFC (Lavin et al., 2005; Lapish 

et al., 2007; Gorelova et al., 2012). 

 
 5.7 Determining of MbDN identity of embryonic stem cell-derived MbDNs 

The pathological hallmark of PD is the preferential loss of the SNpc MbDNs (Barzilai and 

Melamed, 2003). The transplantation studies demonstrated that only MbDNs that form 

synaptic connections with the host striatum exhibit characteristics of the SNpc, are 
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therapeutically useful in cell replacement therapy in animal models of PD (Hudson et al., 

1994; Thompson et al., 2005). In order to provide a scalable pool of MbDNs for 

transplantation purposes in PD patients continued efforts have been made to direct stem cell 

reprogramming and differentiation towards the dopaminergic phenotype. In recent years, a 

number of protocols have been developed to derive dopaminergic neuron-like cells from 

human embryonic or induced pluripotent stem cells (iPSC) (Elkabetz et al, 2008; Koch et al., 

2009; Soldner et al., 2009; Swistowski et al., 2010; Chung et al., 2011; Kriks et al., 2011; 

Jaeger et al., 2011). A more recent breakthrough has been the direct conversion of fibroblasts 

into DA neuron-like cells (Pfisterer et al., 2011; Caiazzo et al., 2011). However, iPSC-derived 

DA neuron-like cells are heterogeneous and do not all exhibit midbrain identity (Marchetto et 

al., 2010). In addition, the final characterization and validation of MbDNs is mostly based on 

the expression of TH and not on the expression of specific markers to distinguish two MbDN 

subpopulations. In order to improve MbDN induction protocols, it is essential to identify 

signaling pathways and transcriptional factors crucial for MbDNs specification. This study 

provides an additional regulatory means to control the specification of MbDN subpopulations 

by changing the cell competence in response to dynamic changes in Shh signaling to produce 

more specific types of MbDNs. The detailed knowledge about the mechanisms underlying the 

specification of MbDN subpopulations will help to improve the successful differentiation of 

stem/iPSC into transplantable MbDNs that can functionally replace neurons generated in PD. 

 
 5.8 Prolongated Shh signaling is crucial for proper generation of red nucleus 

neurons 

Besides MbDNs, the vMb contains other neuronal populations such as OM and RN neurons. 

Due to the clinical relevance of MbDNs, the SNpc and the VTA are the best characterized 

structures in the vMb, whereas little is known about the cues and mechanisms controlling the 

development of RN neurons. Anatomical studies have demonstrated that RN neurons are 

divided into two populations: the parvocellular and the magnocellular part. While the 

magnocellular part projects to interneurons in the brain stem and spinal cord and forms the 

rubrospinal tract, the parvocellular part gives rise to the central tegmental tract, relaying 

information from the motor cortex to the cerebellum through the inferior olivary complex (ten 

Donkelaar, 1988). Developmental studies showed that Foxa2 and Nkx6-1 play essential roles 

in establishing RN neurons (Prakash et al., 2009; Moreno-Bravo et al., 2010). Surprisingly, 

despite the almost complete loss of Foxa2 and Nkx6-1 domain in Gli2ΔMb>E9.0 mutant mice, 

RN neurons are still generated. Interestingly, the rostrally located RN neurons were 
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unaffected, whereas the caudal part of the RN was severely reduced. These data suggest that 

there might be a spatiotemporal requirement of Shh signaling for the induction of RN 

neurons. However, it remains unclear how these two populations are generated. 

Classically both parts of RN are thought to be located in the midbrain. However, expression 

patterns of early RN markers, in particular Nkx6-1, Nkx6-2 and Pou4f1 showed their 

extension into the posterior diencephalon (Massion, 1967; Moreno-Bravo et al., 2010), 

meaning that neurons of the parvocellular RN might arise from diencephalic precursors. This 

idea is supported by the fact that in order to inactivate Shh signaling, En1 was used as a 

promoter, which is specifically expressed in the vMb and aHb. Thus, removal of Shh 

signaling at E9.0 does not affect the forebrain regions and thereby generation of the 

parvocellular RN neurons. 

Another conditional gene inactivation study, in which Shh was inactivated in the vMb and 

aHb at E9.0, shows no defects in the development of RN neurons (Perez-Balaguer et al., 

2008). Expression of Nkx6.1 and Foxa2 in these mutants was almost unaltered, meaning that 

RN neurons still can be specified in the absence of Shh. It was suggested that the induction of 

the RN neurons is independent of Shh function. However, present loss-of-function study 

demonstrated that inactivation of Shh signaling after E9.0 in the Gli2ΔMb>E9.0 mice results in 

severe loss of RN neurons. The differences in the results might be due to not complete 

removal of functional Shh RNA in Shh conditional knockout mice. 
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6. Summary 

Midbrain dopaminergic neurons (MbDNs) in the ventral tegmental area (VTA) and substantia 

nigra pars compacta (SNpc) modulate cognition, reward behavior and voluntary movement, 

respectively. Recent findings indicate that VTA and SNpc MbDNs form subpopulations that 

are divergent in their electrophysiological features, functions and vulnerability to 

neurodegeneration in Parkinson’s disease. This diversity can be correlated with the 

anatomical organization of these two populations and their afferent and efferent connections. 

However, it is largely unexplored how MbDN diversity is established during development. 

Previous studies have demonstrated that the identity of MbDN subtypes can be directly linked 

to their temporal and spatial origin in the embryonic midbrain (Blaess et al., 2011; Hayes et 

al., 2011). Different subsets of MbDNs are derived from a ventral progenitor pool in the 

developing midbrain that is subdivided into a medial and a lateral domain. The relationship 

between developmental origin and the identity of MbDNs in the adult brain is likely reflected 

by the regulated activity of genes inducing cell fate during embryogenesis. Thus, the timing of 

Sonic hedgehog (Shh) signaling might play a role in the determination of the fate of MbDN 

subpopulations, since MbDN precursors respond differently to Shh. 

To address whether Shh signaling regulates the specification of MbDN subtypes, conditional 

gene inactivation approach was used in this study. Removal of Shh signaling at particular 

time point during MbDN induction results in the selective loss of a specific subset of MbDN 

precursors in the embryo. Using viral tracing and immunohistochemical analysis, this study 

demonstrates that this population of MbDN precursors gives rise to mesocortical projection 

neurons in the VTA. Furthermore, optogenetics and physiological analysis reveals that 

mesocortical MbDNs inhibit prefrontal cortical pyramidal neurons via an inhibitory cortical 

microcircuit. Other MbDN-derived projections are largely unaffected. Thus, temporally 

precise Shh signaling in the midbrain is required for establishing a specific mesocortical 

microcircuit. This is the first study establishing a causal link between early developmental 

induction mechanisms and the functional properties of MbDNs in the adult brain. 

Furthermore, constitutive activation of Shh signaling results in a massive increase in the 

number of MbDNs and the ventralization of the dorsal midbrain. Interestingly, analysis of 

MbDNp domain shows that only medial MbDN precursor domain was significantly increased. 

Due to the perinatal lethality of the mutant mice, investigation of MbDN specification in the 

adult brains was not possible. 

In addition, this study demonstrates that the development of the red nucleus (RN) neuron 

subpopulations is determined by the duration of Shh signaling as well. While inactivation of 
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Shh signaling does not affect the generation of the parvocellular RN neurons, the neurons of 

magnocellular RN are severely reduced and disorganized. 
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8. Appendix 

 8.1 Abbreviations 

AC  adenylyl cyclase 

ACSF  artificial cerebrospinal fluid 

ADHD  attention-deficit/hyperactivity disorder 

aHb  anterior Hindbrain 

Ahd2  aldehyde dehydrogenase family 1, subfamily A1 

AP  action potential 

Arx  aristaless related homeobox gene (Drosophila) 

bHLH  basic-helix-loop-helix 

BLA  basolateral amygdala 

BMP  bone morphogenetic protein 

BrdU  bromodeoxyuridine 

CA  catecholamine 

cDNA  complementary DNA 

ChR2  channelrhodopsin-2 

CLi  caudal linear nucleus 

CNS  central nervous system 

CPu  caudatoputamen complex 

Cre  Cre recombinase 

DA  dopamine 

DAT  dopamine transporter 

DNA  deoxyribonucleic acid 

dNTP  deoxy-A/C/G/T-trisphosphate 

dlVTA  dorsolateral VTA 

DOPAC 3,4-Dihydroxyphenylacetic acid 

E  embryonic day 

EDTA  ethylenediaminetetraacetic acid 

En1  engrailed 1 

EPSP  excitatory postsynaptic potential 

EtBr  ethidium bromide 

EtOH  ethanol 

EYFP  enhanced yellow fluorescent protein 

Foxa2  forkhead box A2 
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Fgf8  fibroblast growth factor 8 

FP  floor plate 

g  gram 

GABA  gamma-aminobutyric acid 

Gbx2  gastrulation brain homeobox 2 

GFP  green fluorescent protein 

GIFM  genetic inducible fate mapping 

Girk2  potassium inwardly rectifying channel, subfamily J, member 6 

Gli1-3  Gli zinc finger transcription factor 1-3 

GliA  Gli protein activator form 

Gli R  Gli protein repressor form 

hrs  hours 

HCl  hydrochloric acid 

HCN  hyperpolarization-activated cyclic nucleotide-gated channel 

Hes5  hairy and enhancer of split 5 (Drosophila)  

HPLC  high-performance liquid chromatography 

Hz  Hertz 

IF  nucleus intrafasciculus 

iPSC  induced pluripotent stem cell 

IPSP  inhibitory postsynaptic potential 

Isl1  LIM homeodomain transcriptional factor islet1 

kb  kilobase 

L  liter 

LB  Luria Bertani Medium 

L-DOPA L-3,4-dihydroxyphenylalanine 

Lmx1a  LIM homeobox transcriptional factor 1 alpha 

M  Mol per liter/molar 

MbDNs midbrain dopaminergic neurons 

MbDNp midbrain dopaminergic precursor 

mfb  medial forebrain bundle 

mg  milligram 

MHB  mid-hindbrain boundary 

min  minute 

mL  milliliter 
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mM  millimolar 

µm  micrometer 

Mnx1  motor neuron and pancreas homeobox 1 

mPFC  medial prefrontal cortex 

MPTP  1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

mRNA  messenger RNA 

ms  millisecond 

Msx1  homeobox, msh-like 1 

NAc  nucleus accumbens 

NDS  normal donkey serum 

ng  nanogram 

Ngn2  neurogenin 2 

NGS  normal goat serum 

Nkx2-2 NK2 transcriptional factor related, locus 2 (Drosophila) 

Nkx6-1 NK6 transcription factor related, locus 1 (Drosophila) 

n.s.  not significant 

nt  nucleotide 

Nurr1  nuclear receptor subfamily 4, group A, member 2 

OB  olfactory bulb 

6-OHDA 6-hydroxydopamine 

OM  oculomotor nucleus  

OTu  olfactory tubercle 

Otx2  orthodenticle homolog 2 (Drosophila) 

P  postnatal stage 

PBP  parabrachial nucleus 

PBS  phosphate buffered saline 

PCR  polymerase chain reaction 

PD  Parkinson’s disease 

PFA  paraformaldehyde 

PFC  prefrontal cortex 

Pitx3  paired-like homeodomain transcriptional factor 3 

PN  paranigral nucleus 

Pou4f1 POU domain, class 4, transcription factor 1 

Ptch  Patched 
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rAAV  recombinant adeno-associated virus 

RA  retinoic acid 

RLi  rostral linear nucleus 

RNA  ribonucleic acid 

RN  red nucleus 

rpm  rounds per minute 

s  second 

SEM  standard error of the mean 

Sim1  single-minded homolog 1 (Drosophila) 

SK  apamin-sensitive small-conductance calcium-activated potassium channel 

Shh  Sonic hedgehog 

Smo  Smoothened 

SNl  substantia nigra lateralis 

SNpc  substantia nigra pars compacta 

SNr  substantia nigra reticulata 

TAE  triethanolamine 

TH  tyrosine hydroxylase 

vGAT  vesicular GABA transporter 

vGlut2 vesicular glutamate transporter 

vMAT2 vesicular monoamine transporter 

vMb  ventral midbrain 

vmVTA ventromedial VTA 

VTA  ventral tegmental area 

VZ  ventricular zone 

Wnt1  wingless-type MMTV integration site family, member 1 
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