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III Abstract 

Microglia are the resident immune cells of the central nervous system (CNS). They 

display a whole set of recognition receptors on their cell surface to sense intact or 

lesioned cells in the CNS. A subfamily of these receptors are sialic acid-binding 

immunoglobulin like lectins (Siglecs). Siglecs can either exert activatory or inhibitory 

signals. Siglec-E is a member of this receptor family and has an immunoreceptor 

tyrosine based inhibitory motif (ITIM) in the cytoplasmic tail to suppress activatory 

microglial signals.  

To study Siglec-E transcription and expression profile ex vivo, primary and stem cell-

derived microglia were used. Via RT-PCR and flow cytometry it was shown that 

Siglec-E is expressed on microglia and was up-regulated following IFN-γ treatment. 

To study the functional role of Siglec-E, lentiviral knock-down and overexpression of 

Siglec-E was performed. Lentiviral overexpression of Siglec-E decreased whereas 

knock-down increased the phagocytosis rate of neural debris and its associated 

reactive oxygen burst. The extracellular domain of Siglec-E linked to the Fc-part of 

immunoglobulin bound to the sialic acid residues of the neuronal glycocalyx. 

Therefore, primary hippocampal neurons were co-cultured with the modified 

microglia. Overexpression and knock-down of Siglec-E led to an increase and 

decrease in relative neurite length, respectively. The neuroprotective effect of 

Siglec-E was abrogated after removal of the sialic acid residues on the neuronal 

glycocalyx. Treatment with the anti-oxidant Trolox abolished the neurotoxic effect of 

the Siglec-E knock-down on neurite length.  

In summary, our data suggest an immunomodulatory function of Siglec-E on 

microglia, which leads to a neuroprotective phenotype by decreasing the production 

of reactive oxygen species and a reduced phagocytosis rate of neural debris. 
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1. Introduction 

 

1.1 Microglia 

1.1.1 History of microglia 

The first scientist who described cells of the CNS, which did not show the 

appearance of neurons, in 1846 was the German pathologist Rudolf Virchow (1821 – 

1902). He assumed that these cells fulfil the function of a connective tissue of the 

brain and ascribed them two functions: to support the neurons and to participate in 

the repair of the tissue. Nowadays it is known that two major cell types populate the 

CNS: nerve cells and glial cells. Glial cells consist of astrocytes, oligodendrocytes 

and microglia. The discrimination of microglia against astrocytes and 

oligodendrocytes as a separate cell type was discovered by Rio-Hortega in the early 

20th century by his silver carbonate staining method (Figure 1.1) (del Rio-Hortega 

and Penfield 1927). Rio-Hortega described those cells as a cell population differing 

from other glial cell types like astrocytes and neurons and was the first scientist 

postulating the concept of the mesodermal origin of microglial cells (del Rio-Hortega 

1932).  

 

Figure 1.1: Silver staining of microglial cells by del Rio-Hortega (del Rio-Hortega 1919). With his 

silver carbonate staining del Rio-Hortega was the first scientist who distinguished between glial cell 

types. 
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1.1.2 Origin of microglia 

The recent consensus is that microglia emanate from myeloid cells. Alliot and 

colleagues were able to show microglial progenitors positive for the 

macrophage/microglia markers macrophage-1 antigen (Mac-1), F4/80 and fragment 

crystallisable receptor (Fc-R) at the proto-somitic stage at embryonic day 8 (E8) in 

the neural folds where the embryo consists of 4-8 somites (Alliot et al. 1991).  

A more recent study provides additional evidence that microglia derive from myeloid 

progenitors that arise before E8 from the yolk sac. Furthermore perinatal circulating 

hematopoietic precursors seem not to play a role in the homeostasis of microglia and 

invasion of bone marrow-derived cells only occurs upon injury (Ginhoux et al. 2010). 

Kierdorf and collegues were able to demonstrate that microglia emerge from 

erythromyeloid precursors from the yolk sac which can be identified at 9 days post 

conception as cluster of differentiation (CD) 45- c-kit+ cells. The further development 

seems to be dependent on the transcription factors Pu.1 and Irf8 (Kierdorf et al. 

2013).  

 

1.1.3 Morphology and function of microglia 

Microglia constitute 5-20 % of the adult brain cell population depending on the 

species; in the adult mouse brain approximately 10 % of the cells are microglia 

(Lawson et al. 1990). The whole mouse brain harbours about 3.5 x 106 microglia. Of 

the glial cell population they represent about 20 %. Compared to the other glia they 

are the smallest. 

Microglia are distributed throughout the brain and spinal cord and are more abundant 

in the grey compared to the white matter. Particularly dense populated areas are the 

hippocampus, basal ganglia, substantia nigra and parts of the telencephalon. 

Microglia are found as well in greater numbers in the cerebral cortex, thalamus and 

hypothalamus (Lawson et al. 1990). They form the first line of defence in the CNS. 

Resting ramified microglia of the adult brain have only little or no visible cytoplasm. In 

their cytoplasm they have vacuoles suggesting their phagocytic activity and diverse 

finely-branched processes that have additional protrusions (Ransohoff and Perry 

2009). Microglia concentrate in perivascular and perineuronal positions. On their cell 

surface they only express few surface markers of the monocyte-macrophage line, 

e.g. fragment crystallisable (Fc) and complement receptor whereas amoeboid 
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microglia have surface markers of the monocyte-macrophage lineage and an 

abundant cytoplasm (Barron 1995).  

In vivo two-photon studies showed that microglia occur in two major forms but the 

metamorphosis between these conformational extremes is fluent. The “ramified” 

microglia have highly motile processes and branches (Figure 1.2). By constant 

withdrawal and de novo formation of their processes they are able to scan their 

microenvironment without movement of the cell body. Thereby, they do not disturb 

any fine-wired neuronal structures. Their duty is the homeostatic surveillance 

(Davalos et al. 2005; Nimmerjahn et al. 2005). Resting ramified microglia receive 

inhibitory signals via for example their CX3CR1 receptor. The ligand CX3 chemokine 

ligand 1 (CX3CL1) is secreted by neurons in the CNS (Cardona et al. 2006). Vice 

versa microglia produce immunosuppressive factors like Interleukin (IL) 10 and 

transforming growth factor- (TGF-) as well as neurotrophic factors to support 

neuronal function and survival (Hanisch 2002; Ransohoff and Perry 2009).  

 

 

  

 

Figure 1.2: Different states of microglia. Resting microglia scan their environment and have a highly 

ramified structure. Upon activation they retract their processes and change to the amoeboid stage 

(modified from Perry et al., 2007). 

 

 

If the inhibitory CX3CR1 impulse is absent microglia become neurotoxic. Other 

stimuli can also trigger the activation of microglia such as the bacterial cell wall 

component lipopolysaccharide (LPS), viral ribonucleic acid (RNA) or the exposure to 

plasma proteins (Bechmann et al. 2007; Lehnardt 2010). Receptors recognizing 

these structures are of the Toll-like receptor (TLR) family or complement receptor 

MAC-1 triggered by opsonised bacteria (Stevens et al. 2007). Microglia express TLR 

1-9. Their activation leads to increased secretion of Interferon (IFN)-, IFN-, IL-1 
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and tumour necrosis factor (TNF)- as well as reactive oxygen species (ROS) and 

nitric oxide (NO). After activation microglia regress their processes and undergo a 

metamorphosis to the so-called “amoeboid” state. The expression of specific surface 

receptors is activated and they become motile. Once activated, microglial cells are 

enabled to phagocyte and to present antigens to circulating T cells (Chan et al. 2007; 

Lehnardt 2010). The reorientation can occur in minutes to seconds (Hanisch and 

Kettenmann 2007).  

Microglia eliminate cellular debris and redundant cells, which underwent apoptosis, 

without inducing inflammation. Find-me signals like ATP and UDP on damaged 

neurons enable the movement of microglia via the receptor P2Y6 (Koizumi et al. 

2007). Scavenger receptors perceive the translocation of phosphatidylserine from the 

inner leaflet onto the outer leaflet of the plasma membrane. The translocation leads 

to the recognition of an apoptotic cell (Ravichandran 2003; Ravichandran and Lorenz 

2007). In the end this process triggers the removal of dying cells or their debris. 

 

1.2 ITIM receptors 

 

1.2.1 Microglial carbohydrate receptors in neuroinflammation 

Microglia have different sets of receptors on their surface to fulfil their duties in the 

CNS. Additionally to the before mentioned TLRs, complement, cytokine and 

chemokine receptors microglia express carbohydrate-binding receptors on their 

surface. One family of these carbohydrate-binding receptors are the lectins, which 

can be further subdivided into three different classes: galectins, selectins and Siglecs 

(Schnaar 2004). Siglecs are carbohydrate receptors signalling via either an 

immunoreceptor tyrosine-based activation motif (ITAM) or an immunoreceptor 

tyrosine-based inhibition motif (ITIM). 

 

1.2.2 Definition and function of ITIM receptors 

The first ITIM was identified in the cytoplasmic domain of the receptor FcRIIB (Van 

Den Herik-Oudijk et al. 1994). ITIMs can be traced back to relatively primitive 

metazoa. Genes encoding ITIM-containing molecules belong to the immunoglobulin 

superfamily (IgSF) or the C-type lectin family. They are derived from a common set of 
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ancestor genes having expanded and diverged from fish to mammals (Daeron et al. 

2008). 

Vivier and colleagues defined ITIMs as short sequences harbouring a tyrosine (Y) 

which is followed by a hydrophobic residue (isoleucine (I), valine (V) or leucine (L)) at 

position Y+3 and preceded by a less conserved hydrophobic residue at position Y-2 

(Vivier and Daeron 1997). 

ITIM-containing molecules are involved in the control of a large spectrum of biological 

processes, mostly but not exclusively related to immunity. They act on several cell 

types such as T cells (Nagaishi et al. 2006), macrophages (Takizawa and Manz 

2007) and platelets (Cicmil et al. 2002; Rathore et al. 2003). Only recently it was 

shown that they participate in the promotion of proliferation (Kono et al. 2008) as well 

as apoptosis of cancer cells (Voisin et al. 2008). 

 

1.2.3 Signalling pathway 

ITIMs are the counterpart to activatory ITAM motifs. ITAM receptors are 

phosphorylated at their tyrosine residues by members of the Src kinase family (SKF) 

and then become a binding site for Syk protein kinases. When co-aggregated with an 

ITAM receptor ITIMs become phosphorylated by a tyrosine kinase of the Src-family, 

which enables them to recruit phosphatases, either Src homology 2 domain-

containing inositol polyphosphate 5´phosphatase (SHIP) or more common the Src 

homology 2 domain-containing protein tyrosine phosphatases (SHP)-1 and SHP-2. 

They are recruited via the binding of their SH2 domain(s) to the phosphorylated ITIM. 

The activated SHP1 then dephosphorylates intracellular signalling intermediates 

leading to the termination of an activatory signal generated by an ITAM receptor 

(Figure 1.3).  

The residue at position Y-2 determines the binding of SHP-1 and SHP-2 (Burshtyn et 

al. 1997; Olcese et al. 1996; Vely et al. 1997). For FcRIIB a loss-of-function study 

identified the leucine at position Y+2 as mandatory for recruitment of SHIP-1 and 

SHIP-2 in vitro and in vivo (Bruhns et al. 2000).  
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Figure 1.3: Signalling pathway of ITIM receptors. ITIM receptors inhibit the activatory signals of 

ITAM receptors (Linnartz et al., 2010). 

 

1.3 Siglecs 

 

1.3.1 Sialic acid 

The cell surface is covered by a broad variety of glycans that are attached to proteins 

and lipids. The exposed termini of oligosaccharides are often capped sialic acid-

residues believed to have evolved relatively late in evolution. Fossil records report of 

sialic acid in deuterostome lineage animals such as starfish (Schauer and Kamerling 

1997). 

The term sialic acid is a general term for sugars encompassing nine carbons. 

Mammals possess different types of sialic acids and sialic acid can occur in different 

linkages. Usually, they are exposed at the non-reducing ends of oligosaccharide 

chains attached to the surface of a wide variety of proteins and cell types. One of 

their functions is to act as ligands on the cell surface to mediate selective cell-cell 

communication and interaction. In addition, they prevent cell-cell-interactions by 
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masking subterminal sugars (Kelm and Schauer 1997; Schauer and Kamerling 

1997).  

 

                                     

 

Figrue 1.4: Schema of sialic acid with a nine carbon backbone. In mammals sialic acid is 

commonly modified at the R and R’ positions with the residues indicated in the grey box (modified 

from Crocker et al., 2007).  

 

In some pathogens the expression of sialic acid is essential for pathogenicity and 

survival within the microenvironment of the host. Via sialic acid pathogens mimic the 

surface of host cells and thereby circumvent the detection by the host immune 

system; they prevent complement activation and attenuate antibody (ab) production. 

Some pathogenic bacteria synthesize their own sialic acids, others transfer sialic 

acids from the host cell surface using a trans-sialidase (Crocker and Varki 2001a). 

Another hypothesis is that the sialic acid residues on pathogens interact with the 

inhibitory CD33-related Siglecs to trigger a reduced activation response and as an 

outcome an improved pathogen survival within the host (Crocker and Varki 2001b). 

 

1.3.2 Nomenclature and subfamilies of Siglecs 

I-type lectins are defined as glycan-binding proteins that belong to the 

immunoglobulin superfamily. Among the I-type lectins there is a distinct subfamily of 

surface receptors that share structural and functional similarities - the Siglecs. 

Siglecs were separately discovered by two studies on a macrophage lectin-like 

adhesion molecule named sialoadhesin and a B-cell restricted member of the 
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immunoglobulin superfamily CD22 (Crocker and Gordon 1986; Stamenkovic and 

Seed 1990). Siglecs are characterized by a V-set Ig-like domain mediating sialic acid 

recognition and binding. Following this domain they have one or more C2-set Ig-like 

domains. Criteria for the inclusion of receptors in this specific group are (i) the ability 

to bind sialylated glycans and (ii) a significant sequence similarity within the N-

terminal V-set and joining C2-set domains (Crocker et al. 1998).  

 

 

Figure 1.5: Overview of the Siglec family. The human Siglecs 2, 3 and 5-12 and the murine Siglecs 

2 and Siglec-E, -F and –G have ITIM sequences in their cytoplasmic tail whereas the human Siglecs 

14-15 and murine Siglecs 15 and –H have ITAMs and associate with the adaptor protein DNAX 

activation protein of 12 kDa (DAP12) (modified from Varki et al, 2009). 

 

During the last few years several human and mouse members of the Siglec family 

have been identified through genomic studies and functional analyses. Siglecs can 

be subdivided into two distinct groups: the common Siglecs and the CD33-related 

Siglecs. The former group consists of the human founding members of the Siglec 

family: sialoadhesin (Siglec-1), a macrophage adhesion molecule; CD22 (Siglec-2), a 
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B-cell inhibitory receptor; CD33 (Siglec-3), a marker of myeloid cells and myelin-

associated glycoprotein (MAG or Siglec-4). The latter are highly related to CD33 and 

to each other among this group and share about 50-80 % sequence similarity. They 

are a separate group not only from a functional point of view but concerning 

evolutionary perspectives as well. The nomenclature for CD33-related Siglecs is 

numerical in humans and alphabetical in mice (Crocker 2002) (Figure 1.5). 

 

1.3.3 Composition and expression of Siglecs 

Siglecs are type I transmembrane proteins, which are characterized by an N-terminal 

V-set Ig-like domain, which mediates sialic acid binding. The preference for a certain 

type of sialic acid is determined by a sequence of six amino acids in the C-C´ loop of 

the V-set domain (Yamaji et al. 2002). The V-set is followed by a varying number of 

C2-set Ig-like domains from which is believed that they have evolved through 

repeated gene duplications. In the mouse the number varies between 4 C2-set Ig-like 

domains in Siglec-G and only one in Siglec-H. For the human sialoadhesin even 16 

C2-set Ig-like domains have been reported (Crocker et al. 2007) (Figure 1.5). 

Collectively, the CD33-related Siglecs are expressed broadly in the innate immune 

system, but are strikingly absent from most T lymphocytes (Crocker and Varki 

2001b). Some Siglecs are expressed on a broad range of cells; others are expressed 

in a much more specific pattern, e.g. human Siglec-9 is found on neutrophils, 

monocytes and a fraction of natural killer (NK) and B cells and a subset of T cells 

(Zhang et al. 2000). Quite the contrary is true for Siglec-8, which is expressed on 

circulating eosinophils and hence in a much more restricted pattern (Floyd et al. 

2000). Some cell types express more than one type of Siglec receptors. But of the 

CD33-related Siglecs, every receptor exhibits a specific expression pattern among 

hematopoietic cells. 

Concerning their cytosolic tail, Siglecs vary in sequence and length, although most of 

the CD33-related Siglecs share regions of sequence similarity surrounding their two 

conserved ITIMs. The genes encoding human Siglecs are on chromosome 20p 

(sialoadhesin) or 19q (all other Siglecs) and those encoding the murine Siglecs are 

on chromosomes 2 and 7 (Crocker 2002). 
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1.3.4 Function in the immune system 

Siglecs recognize different forms and linkages of sialic acids that are commonly 

found on the cell surface. Siglec binding sites can be masked by cis interactions with 

sialic acids on the same cell, which then prevent them from mediating cell-cell 

interactions. Studies indicate that most Siglecs on resting cells indeed exist in a 

masked form. Unmasking them may occur during cellular activation (Crocker et al. 

1995; Crocker and Gordon 1986). Therefore, cis interactions could potentially 

regulate Siglec functions (Figure 1.6). 

 

                               

 

 

Figure 1.6: Cis and trans interactions of Siglecs.  Most Siglecs found on cells are in a masked form 

due to cis-interactions with sialic acids expressed on the cell surface of the same cell. Treatment with 

sialidase or cellular activation leads to unmasking of the Siglecs and enables them to bind to their 

ligand in trans (modified from Crocker et al., 2007). 

 

In case the receptor becomes unmasked it can bind to its target in trans on another 

cell surface; the signalling cascade via the cytosolic ITIM gets activated and the 

inhibitory effect that antagonizes the ITAM receptor is executed. It is believed that 

Masked 
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Siglecs could play a role in the regulation of the innate immune system. For example, 

CD22 is a B-cell inhibitory receptor and contains three ITIMs. The ITIMs associate 

with the B-cell receptor (BCR) and inhibit cellular activation (Crocker 2002). In 

contrast, another study could show that a sialic-acid-based CD22-specific inhibitor 

caused heightened activation of B cells in response to BCR cross-linking, which is 

accompanied by hypophosphorylation of CD22 and reduced recruitment of SHP-1 

(Kelm et al. 2002).  

Artificially cross-linking of FcRI with antibodies results in reduced Ca2+ influx 

(Ulyanova et al. 2001). Similarly, when clustering Siglec-7 with a cross-linking 

antibody, cytotoxicity of NK cells can be inhibited (Falco et al. 1999). Addition of an 

antibody against human CD33 or against Siglec-7 to haematopoietic cell cultures 

leads to reduced cell growth and inhibition of dendritic cell development (Ferlazzo et 

al. 2000; Vitale et al. 1999).  

Additionally sialic acids might act as broadly expressed “self” ligands that interact 

with CD33-related Siglecs on myeloid cells. Thereby, they could prevent 

inappropriate self-reactivity.  

 

1.3.5 Siglec-E 

Siglec-E was first identified by Ulyanova and colleagues in 2001. In the beginning 

Siglec-E was called MIS (a myeloid inhibitory siglec) (Ulyanova et al. 2001). Siglec-E 

consists of seven exons spanning approximately 9.1 kilobases (kb). The messenger 

ribonucleic acid (mRNA) transcript has a length of 2.0 kb and the encoded protein is 

467 amino acids long and has a molecular weight of ~80-85 kilo Dalton (kDa). In vivo 

it exists as a disulfide-linked oligomeric complex with at least two molecules of 

Siglec-E (Yu et al. 2001). From the sequence, an extracellular domain composed of 

331 amino acids, a hydrophobic transmembrane domain containing 27 amino acids, 

and a cytoplasmic tail of 93 amino acids was predicted. The sequence starts with a 

hydrophobic signal peptide and harbours ten potential N-glycosylation sides 

(asparagine (N)-X-serine (S)/threonine (T)) in the extracellular region of the protein. 

By its migration properties in a SDS-PAGE it was confirmed that Siglec-E is indeed 

glycosylated. It most closely resembles the human Siglecs 7 and 9 with an overall 
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sequence identity of 52 % and 53 % and exhibits combined features of both (Zhang 

et al. 2004) (Figure 1.5 and 1.7). 

Siglec-E binds alpha2-8 linked sialic acid preferentially to alpha2-3 and alpha2-6- 

linked sialic acid (Zhang et al. 2004). The amino acids, which are indispensable for 

binding of sialic acid, are conserved in Siglec-E at position 126 (arginine), at position 

25 (phenylalanine) and at position 134 (tyrosine). Additionally, cysteine residues, 

which are conserved in the Siglec family, are found in Siglec-E (Yu et al. 2001). 

 

 

                                                            

 

Figure 1.7: Murine Siglec-E. The murine receptor Siglec-E is a type I transmembrane protein with 

three extracellular domains. The N-terminal domain mediates sialic acid binding and is followed by two 

Ig-like domains. In its intracellular part it harbours one ITIM sequence and one ITIM-like sequence 

(modified from Crocker et al., 2007). 

 

Siglec-E is highly expressed in the spleen and on mature cells of the innate immune 

system, including the cell types that express either hSiglec-7 and/or -9 such as 

phagocytic cells and on antigen-presenting cells including macrophages and 

dendritic cells (DCs) (Zhang et al. 2004). 

The ITIMs of Siglec-E recruit SHP-1 and SHP-2. SHP-1 is recruited either through its 

membrane-proximal ITIM (centred at Y-432) or the membrane-distal ITIM (centred at 

Y-455) (Ulyanova et al. 2001). The membrane-proximal ITIM alone is sufficient for 

binding of SHP-1 (Zhang et al. 2004). Each SH2 domain of SHP-1 is capable of 

binding to the membrane-proximal ITIM, whereas only the first (N-terminal) SH2 

domain is able to bind to the membrane-distal ITIM. The degree of association with 
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Siglec-E correlates with the extent of Siglec-E tyrosine phosphorylation (Ulyanova et 

al. 2001). 

A study of Boyd and colleagues demonstrated that the expression of Siglec-E is 

induced after stimulation with TLRs in a MyD88-specific manner. Once up-regulated, 

it can control/inhibit TLR-induced NF-κB and the induction of the antiviral cytokines 

Interferon-β (IFN-β) and RANTES (regulated on activation, normal T cell expressed 

and secreted). Hence Siglec-E seems to be capable of controlling the antiviral 

response to TLRs and thereby helps to maintain a healthy cytokine balance following 

infection (Boyd et al. 2009). 

In a recent publication another functional aspect of Siglec-E was shown. Siglec-E 

deficient mice showed a higher neutrophil recruitment to the lung in an acute lung 

inflammation model induced by aerosolised LPS (McMillan et al. 2013). This effect 

was mediated by negative regulation of the adhesive function of the integrin CD11b 

by Siglec-E, indicating an important role of Siglec-E in the regulation of the 

inflammatory response to lung inflammation to prevent an over-activation of the 

immune system. 
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1.4 Aim of the study 

Microglia are cells of the innate immune system and build the first line of defence in 

the CNS. Their duty is on the one hand homeostasis and defence against pathogens 

on the other. To be able to fulfil their duties, they have immune receptors on their 

surface, recognizing pathogen and disease-associated molecular patterns, but have 

molecules to sense intact tissue, too. Siglecs are one of these receptor families on 

microglia. One member of this family is the murine Siglec-E.  

So far there are no data about Siglec-E on microglial cells. Therefore, the aim of this 

study was to investigate the role of Siglec-E on microglia in neuroinflammation. The 

questions to be answered were, which regulatory role Siglec-E might play on 

microglia in the CNS and what are the consequences for neurons in the brain in a co-

culture setting. 

For this purpose, we first had to prove that there is indeed Siglec-E expression on 

microglia. To get an idea about the functional role, we performed lentiviral knock-

down and overexpression studies. The modified microglia were analysed for changes 

in cytokine transcription and surface marker expression. We looked for differences in 

phagocytic behaviour and the associated burst of reactive oxygen species in these 

modified microglia. 

After we discovered that a recombinant Siglec-E:Fc fusion protein is able to bind to 

sialic acids on neuronal surfaces, we started co-culture experiments with primary 

neurons in which we mimicked the state of neuronal damage. Scavenging 

experiments were done with an anti-oxidant. By measuring the neurite length we 

evaluated the effect of Siglec-E knock-down and overexpression.  
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2. Materials and Methods   

  

2.1 Materials  

2.1.1 Chemicals and Reagents  

 

Chemical Company 

Agarose   Biozym, Germany 

Ampicillin Sigma, Germany 

Amplex Red Invitrogen, Germany 

Avertin (2, 2, 2-tribromoethanol) Sigma, Germany 

B-27® Supplement Gibco, Germany  

Basal Medium Eagle (BME) (1x), liquid Gibco, Germany 

Boric Acid (H3BO3) Sigma, Germany 

Bromophenol Blue Sigma, Germany 

CellTracker™ CM-Dil, 1 mg Life Technologies, Germany 

Chloroquine diphosphate salt   Sigma-Aldrich, Germany  

DABCO   Sigma, Germany 

4',6-diamidino-2-phenylindole (DAPI) Sigma Aldrich Chemie GmbH, 

Germany 

ddH2O Roth, Germany 

dihydroethidium (DHE)   Invitrogen GmbH, Germany 

D-Glucose (45 %) Sigma, Germany 

DMEM/F12 (1:1) Gibco, Germany 

DMSO for molecular biology, >= 99.9 % Sigma, Germany 

dNTP Mix (10 mM)   Sigma, Germany 

DTT (10 mM) Invitrogen, Germany 

Dulbecco’s Modified Eagle Medium (D-MEM) 

(1x), liquid (4.5 g/L D-glucose)  

Gibco, Germany  

 

Ethanol (C2H6O) Roth, Germany 

Ethidium Bromide (10g/l) Roth, Germany 

Ethylendiamintetraacetate (EDTA) Roth, Germany 
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Fetal Bovine Serum (FBS) Gibco, Germany  

Fetal Bovine Serum, ultra-low IgG Gibco, Germany  

Ficoll-400 Bio-Rad, Germany 

First Strand Buffer (5x) Invitrogen, Germany  

Glycerol Sigma, Germany 

Hank’s Balanced Salt Solution (HBSS) (1x) Gibco, Germany  

HBSS (10x) Gibco, Germany  

Hexanucleotide Mix (10x) Roche, Germany 

L-Glutamine (200 mM) Sigma, Germany 

LB Agar Sigma, Germany 

LB Broth Sigma, Germany 

Lipofectamine™ Transfection Reagent Gibco, Germany  

MEM nonessential amino acid solution (100x) Gibco, Germany  

MEM sodium pyruvate solution (100 mM) Gibco, Germany  

Mowiol Kremer Pigmente, Germany 

okadaic acid Sigma, Germany 

Opti-MEM® I Reduced-SerumMedium (1x), liquid  Gibco, Germany  

Paraformaldehyde (PFA) Sigma, Germany  

Penicillin/Streptomycin (100x) Gibco, Germany  

Percoll™ GE Healthcare, Germany 

Polybrene Sigma, Germany 

poly-L-Lysine   Sigma, Germany  

Sodium chloride (NaCl) Roth, Germany  

Sodiumhydrogenphosphate (NaH2PO4*H2O)  Roth, Germany  

Sodiumhydrogenphosphate (NaH2PO4*7H2O)     Roth, Germany  

Sodium hydroxid (NaOH) Roth, Germany  

Sucrose Roth, Germany 

SYBR Green Master Mix (2x) Applied Biosystems, Germany  

tert-amyl alcohol (2-methyl-2-butanol) Fisher, Germany 

Tris base Roth, Germany  

Tris buffer, 0.2 M Roth, Germany  

Trypan Blue Gibco, Germany  

Xylene Cyanole Sigma, Germany  

Zeocin InvivoGen, USA 
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2.1.2 Buffers and solutions  

  

10x (0.125 M) Phosphate  0.007 M NaH2PO4*H2O  

buffered saline (PBS), pH 7.3  0.034 M NaH2PO4*7H2O  

     0.6 M NaCl 

 up to 1 litre ddH2O 

   

2x HBS  8 g NaCl 

 0.38 g KCl 

 0.1 g Na2HPO4 

 5 g Hepes 

 1 g glucose 

 up to 500 ml ddH2O  

 adjust pH to 7.05 

   

4% Paraformaldehyde (PFA),  20 g    PFA 

pH 7.3   30 ml    NaOH 

 50 ml    PBS (10x) 

 up to 1 litre ddH2O   

   

Mowiol    4.8 g    mowiol 

    12 g    glycerol 

    12 ml    ddH2O 

    24 ml    0.2 M tris buffer 

 1.32 g    DABCO 

   

   

10x Tris/Borate/EDTA (TBE)  1.78 M    tris-Base 

buffer   1.78 M    boric Acid 

 0.04 M    EDTA 

 up to 2 litres ddH2O 
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6x Loading buffer         0.5 M EDTA 

    60 % (w/v) sucrose 

 0.04 % (w/v) bromophenol blue 

 0.04 % (w/v)  xylene cyanole 

      2 % (v/v)  Ficol-400 

   

1% Agarose gel 0.5 g agarose 

    4 µl ethidium bromide 

  50 ml TBE (1x) 

   

Real time polymerase chain       3 µl cDNA (200 ng/µl)  

reaction (RT-PCR) mix 12.5 µl SYBR Green Master Mix (2x)  

      2 µl  primer Mix (10 pmol/µl)  

   7.5 µl ddH2O  

   

Reverse transcription (RT) mix 5 µg total RNA 

 1 µl hexanucleotide Mix (10x) 

 1 µl dNTP Mix (10 mM) 

 2 µl DTT (10 mM)  

 4 µl 5x RT first strand buffer  

 1 µl reverse transcriptase (200 U/ml)  

 up to 20 µl ddH2O  

   

Avertin stock solution     25 g avertin (2, 2, 2-tribromoethanol) 

 15,5 ml tert-amyl alcohol (2-methyl-2-

butanol) 

 

 2.1.3 Cell culture media and reagents  

 

N2 medium     500 ml DMEM/F12 (1:1) 

 0.048 mM L-Glutamine (200 mM) 

 15.3 µg/ml  D-Glucose (45%) 

 1 % (v/v) Penicillin/Streptomycin (100x) 
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MEF medium       450 ml DMEM high glucose 

 10 % (v/v) Fetal Bovine Serum 

   1 % (v/v) L-Glutamine (200 mM)  

   1 % (v/v) MEM nonessential amino acid solution (100x)  

   1 % (v/v) MEM sodium pyruvate solution (100 mM)  

   

Trans-MEF medium       500 ml DMEM high glucose 

   5 % (v/v) Fetal Bovine Serum 

   1 % (v/v) L-Glutamine (200 mM)  

   1 % (v/v) MEM nonessential amino acid solution (100x)  

   1 % (v/v) MEM sodium pyruvate solution (100 mM)  

      50 nM chloroquine 

   

Primary microglia       450 ml BME 

medium  10 % (v/v) Fetal Bovine Serum 

   1 % (v/v) L-Glutamine (200 mM)  

   2 % (v/v) D-Glucose (45%) 

   1 % (v/v) Penicillin/Streptomycin (100x)  

   

Neuron medium     500 ml BME 

   1 % (v/v) Fetal Bovine Serum 

   1 % (v/v) D-Glucose (45%) 

   2 % (v/v)  B-27 

 

2.1.4 Cell lines and bacterial strains  

 

Cell line/Bacterial Strain  Source 

Chinese Hamster Ovary (CHO) cells Jerome Mertens (AG Brüstle)  

Embryonic Stem Cell-derived Microglia (ESdM)      Clara Beutner (AG Neumann)  

GL261 Hertie-Institute for clinical 

neurology, Germany 

HEK293FT Invitrogen, Germany 

OneShot® Top10 Chemically Competent E. coli     Invitrogen, Germany  
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SMA560 Hertie-Institute for clinical 

neurology, Germany 

 

2.1.5 Antibodies, enzymes, recombinant proteins and stimulants  

2.1.5.1. Primary Antibodies  

Antibody Host Reactivity Company 

anti-mouse-Fc rabbit mouse Dianova, Germany 

βIII-tubulin mouse mouse Sigma, Germany 

CD11b-biotinylated rat mouse BD Biosciences, Germany 

CD11b-phycoerythrin (PE) rat mouse eBioscience, USA 

CD11c-biotinylated hamster mouse BD Biosciences, Germany 

CD16/32 rat mouse BD Biosciences, Germany 

CD18-biotinylated rat mouse BD Biosciences, Germany 

CD31-biotinylated rat mouse BD Biosciences, Germany 

CD34-biotinylated rat mouse BD Pharmingen, Germany 

CD45-biotinylated rat mouse BD Biosciences, Germany 

CD45-V450 rat mouse BD Biosciences, Germany 

CD68 rat mouse AbD serotec, USA 

CD80-biotinylated hamster mouse BD Biosciences, Germany 

CD86-biotinylated rat mouse BD Biosciences, Germany 

F4/80-biotinylated rat mouse Serotec, Germany 

GFAP mouse mouse abcam 

Iba1 rabbit mouse Wako, Germany 

Siglec-E   rat mouse MBL International, Japan  

       

2.1.5.2 Isotype controls 

Antibody Host Reactivity Company 

isotype IgG2bκ    rat  BD Biosciences, Germany 

isotype IgG2bκ-PE rat  BD Biosciences, Germany 

isotype IgG2bκ-V450 rat  BD Biosciences, Germany 
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2.1.5.3 Secondary Antibodies      

Fluorophore Host   Reactivity Company 

Alexa488 Goat Rabbit Invitrogen, Germany  

anti-rat-biotinylated goat rat Dianova, Germany 

Cy3 Goat Rat Dianova, Germany 

Cy3 Goat Mouse Dianova, Germany 

FITC Goat Rat Dianova, Germany 

PE Goat Rat JacksonImmuno, USA 

PE-Streptavidin   JacksonImmuno, USA 

Alexa647-Streptavidin   JacksonImmuno, USA 

           

2.1.5.4 Enzymes, recombinant proteins    

Enzyme   Company  

BamHI (10 U/µl) Roche, Germany  

BglII (10 U/µl) New England Biolabs, Germany 

Catalase Serva, Germany 

DNase I, RNase-free, lyophilized Qiagen, Germany 

EcoRI (10 U/µl) Roche, Germany 

EcoRV (10 U/µl) Roche, Germany 

EndoN (EC 3.2.1.129) Abcys, France 

HindIII (10 U/µl) Roche, Germany 

Neuraminidase (Sialidase; EC 3.2.1.18) from 

Arthrobacter ureafaciens  

Roche, Germany 

Neuraminidase (EC 3.2.1.18) from Clostridium 

perfringens 

New England Biolabs, Germany 

Peroxidase from Horseradish Sigma, Germany 

PinAI (AgeI) (10 U/µl) Roche, Germany 

Platinum Taq DNA Polymerase High Fidelity Invitrogen, Germany  

Recombinant mouse Siglec-E Fc chimera, CF R & D Systems, Germany  

Recombinant mouse Siglec-F Fc chimera, CF R & D Systems, Germany  

Reverse Transcriptase (200 U/ml) Invitrogen, Germany 

SfuI (AsuII) (10 U/µl) Roche, Germany  

Superoxide dismutase from bovine Serva, Germany 
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erythrocytes 

T4 DNA Ligase Invitrogen, Germany  

XhoI (10 U/µl) Roche, Germany  

    

2.1.5.5 Stimulants  

Stimulant Company  

LPS S. enterica serotype abortus equi  

(1000 µg/ml) 

Sigma, Germany  

Recombinant  murine  IFN-α,  CHO  derived  

(106 U/ml)  

Hycult  Biotechnology, Netherland  

 

Recombinant  murine  IFN-γ,  CHO  derived  

(106 U/ml)   

Hycult  Biotechnology, Netherland  

Recombinant murine TNF-α (10 µg/ml) R & D Systems, Germany  

 

2.1.6 Primer  

2.1.6.1 Quantitative Real-Time PCR Primer  

Target Orientation Sequence 

GAPDH forward 5’ – ACAACTTTGGCATTGTGGAA – 3’ 

 reverse 5’ – GTCTTGTAGTAGGGACGTAG – 3’  

IL-1β forward 5’ – ACAACAAAAAAGCCTCGTGCTG – 3’ 

 reverse 5’ – TGAAAGCTCTCCACCTCAATGG – 3’ 

iNOS forward 5’ – AAGCCCCGCTACTACTCCAT – 3’ 

 reverse 5’ – TTGGATCAGGAACCTGAAGC – 3’ 

Siglec-E forward 5’ – TCTGAGGGCCAGTCACTGCGT – 3’ 

 reverse 5’ – GGACAGAGGTGTCTCGTCACGTT – 3’ 

TNF- α forward 5’ – TCTTCTCATTCCTGCTTGTGG – 3’ 

 reverse 5’ – AGTTCTATGGCCCAGACCCT – 3’ 
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2.1.6.2 Cloning Primer      

Target Orientation Sequence 

Igκ EcoRI fwd forward 5’ – CATGAATTCACCATGGAGACAGACACA 

CTCCTG – 3’  

SigE flag fw XhoI forward 5’ – CATCTCGAGACCATGCTGCTGTTGCTG 

CTGC – 3’  

SigE flag rv SfuI reverse 5’ – CATTTCGAATCCTCCTCCTCCTCCTCC 

TGGCCATGCGGTCCTTTG – 3’  

SigE pll fw AgeI  forward 5’ – CATACCGGTACCATGCTGCTGTTGCTG 

CTGC – 3’  

SigE pll rv AgeI reverse 5’ – GTTTCCTGGCGTACCGGTCCTCCTCCT 

CCTGGCCATAC – 3’   

       

 2.1.6.3 Sequencing Primer      

Target Orientation Sequence 

hIgG1-Fc rv seq        reverse 5’ –  CGTAGTGTTTAAAGTGTTTATTTCG – 3’  

SigE F1 seq   forward 5’ –  CATCATATGCTGCTGTTGCTGCTGC – 3’  

SigE F2 seq   forward 5’ – GCTCCAAAGAATCTGACTGTGAC – 3’   

SigE R1 seq   reverse 5’ – CGTTGGACTGGACGAGAC – 3’ 

      

 2.1.7 Consumables  

Product Company 

0.22 µm pore size filter stericup Millipore, USA  

100 Sterican 20Gx2 ¾ 0,9x70 mm Braun Melsungen AG 

2 ml, 5 ml, 10 ml, 25 ml plastic pipets Costar, Germany  

5 ml polystyrene round-bottom tubes BD Falcon, Germany  

6-well culture plates Cellstar, Germany  

10 μl, 100 μl, 1000 μl pipette tips Eppendorf, Germany  

10 ml, 50 ml syringe Braun, Germany  

15 ml plastic tubes Greiner, Germany  

24-well culture plates Greiner, Germany  

50 ml plastic tubes Sarstedt, Germany  
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BD 5 ml Syringe Luer-lock Tip BD Syringe, Germany 

BD Discardit™ II Spritze Becton Dickinson GmbH 

BD Microlance™ 3 Becton Dickinson GmbH 

Bottle top filters, 0.25 µm pore Millipore, Germany  

Cell scraper Sarstedt, Germany  

Cell strainer 40 µm Nylon  BD Falcon, Germany  

Cell strainer 70 µm Nylon BD Falcon, Germany 

Chamber slides Nunc, Germany 

Cryovials VWR International, Germany 

Dermaclean Untersuchungshandschuhe   Ansell, Germany 

Erlenmeyer flask, 250 ml Schott-Duran, Germany 

Glass cover slides 24x24 mm VWR International, Germany 

Glas pasteur pipettes Brand, Germany 

Injection needles Braun, Germany  

MicroAmp® 96-well Optical Adhesive Film Applied Biosystems, USA  

MicroAmp® optical 96-well plate Applied Biosystems, USA  

NitraTex® Nitril-Untersuchungshandschuhe Ansell, Germany  

Optical Adhesive Covers Applied Biosystems, USA  

PCR tubes, 500 µl  Biozym Diagnostics, Germany  

Petri dishes 100x15 mm BD Falcon, Germany  

Tissue culture dish 60x15 mm Sarstedt, Germany 

Tissue culture dish 100x20 mm Sarstedt, Germany 

Tissue culture dish 150x20 mm   TPP, Germany  

Tubes 1.5 ml, 2.0 ml   Eppendorf, Germany  

  

2.1.8 Equipment     

Equipment Company 

Agagel Standard   Biometra, Germany  

BD Facs Calibur   BD Bioscience  

BD Facs CantoII BD Bioscience 

Biofuge Fresco   Heraeus, Germany  

BL 610   Sartorius, Germany  

Electrophoresis Power Supply EPS-301   Amersham Bioscience, Germany 

Fluoview1000 Confocal microscope Olympus, Germany 
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Freezer -80°C Herafreeze Heraeus, Germany 

Heating block Stuart Scientific, Germany  

HeraCell 240 Heraeus, Germany  

HI 9321 Microprocessor pH meter Hanna Instruments, Germany  

Kompaktschüttler KS-15 Control Edmund Bühler, Germany  

Mastercycler epgradient S Eppendorf, Germany  

Megafuge, 1.OR.   Heraeus, Germany  

Neubauer chamber Brand, Germany  

Operating microscope OPMI-FR Zeiss, Germany  

Pumpdrive 5001 Heidolph, Germany 

Roto-Shake Genie Scientific Industries Inc., USA  

Shimadzu RF 5001PC spectrofluorimeter Shimadzu, USA 

Sorvall Discovery 90SE Hitachi, Germany  

Standard Power Pack P25 Biometra, Germany  

Thermocycler T3 Biometra, Germany 

Thermomixer compact Eppendorf, Germany  

Vortex Genie2 Scientific Industries Inc., USA  

Waterbath Modell WB 7   Memmert, Germany 

XCell II™ Mini-Cell Blot Module Kit CE Mark   Invitrogen, Germany    

XCell II™ Mini-Cell SureLock® Retrofit Kit   Invitrogen, Germany  

   

2.1.9 Kits, Marker and Vectors     

Name Company 

DNA Molecular Weight Marker XIV (100 bp ladder) Roche, Germany 

pll3.7 U6 removed   Yiner Wang, AG Neumann  

PureLink™ HiPure Plasmid Filter Maxiprep Kit  Invitrogen, Germany  

QIAprep Spin Miniprep Kit  Qiagen, Germany  

QIAquick Gel extraction Kit  Qiagen, Germany   

RNeasy Mini Kit Qiagen, Germany   

RNeasy Lipid Tissue Mini Kit Qiagen, Germany  
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2.1.10 Software    

Software Company 

Adobe Illustrator™CS3 Adobe 

Adobe Photoshop™CS3 Adobe  

ApE M. Wayne Davis 

EndNote X1 Thomson ISI ResearchSoft,  

USA 

FlowJo 6.4.7 Tree Star, USA  

ImageJ 1.43m National Institute of Health, 

USA 

Microsoft Office Microsoft, USA 

Olympus FluoView 1.4 Olympus, Germany  

QuantityOne Bio-Rad, Germany 

SPSS IBM, Germany 
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2.2 Methods  

  

2.2.1 Isolation of primary microglia and neurons 

Primary neuronal cultures were obtained from embryonic mice at day 14 or 15 of 

C57BL/6 mice while primary microglia were prepared from brains of postnatal day 3 

or 4 (P3 or P4) of C57BL/6 mice. In brief, the brains were isolated and only the two 

hemispheres were used. The meninges were removed mechanically and cells were 

dissociated by trituration and cultured in basal medium for 14 days to form a 

confluent mixed glial monolayer. For neuronal cultures only the hippocampus and 

cortex were used, for primary microglia both hemispheres without cerebellum and 

olfactory lobes were prepared. 

To collect microglial cells, the cultures were shaken on a rotary shaker (350 rpm) for 

3 hours. The detached microglial cells were either used directly for flow cytometry 

analysis or seeded on poly-L-lysine (pLL) coated culture dishes at 37°C in 5 % CO2 

for stimulation and RNA isolation.  

 

2.2.2 Ex vivo isolation of brain cells 

Three weeks old C57/BL6 mice were perfused with HBSS and the brain was 

prepared without cerebellum. The brain was homogenized in HBSS and centrifuged 

for 7 minutes at 300g. The pellet was resuspended in 37 % percol and loaded onto a 

percol gradient consisting of HBSS, 30 % percol, 37 % percol and 70 % percol (from 

top to bottom). Via centrifugation in this percol gradient for 40 minutes at 200g 

without brake, mononuclear cells of the brain were enriched in a ring between the 

37 % and 70 % phase. The mononuclear cells were aspirated and washed three 

times with HBSS. After the final washing step the cell pellet was resuspended and 

further stained for flow cytometry with antibodies directed against CD11b, CD45 and 

Siglec-E. Microglia were gated as CD11b+ and CD45low cells. 
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2.2.3 Culturing of microglial cells 

The microglia line was cultivated in N2 medium in an incubator with 5 % CO2 at 

37°C. Upon 80-90 % confluence the cells were splitted 1:10 using a cell scraper until 

they were confluent again. For freezing of cells the N2 medium was supplemented 

with 10 % DMSO and 40 % FBS. Cells were stored for at least three days at -80°C 

and then transferred to liquid nitrogen for long term storage. 

 

2.2.4 Immunocytochemistry of cultured cells   

Cells were fixed on a chamber slide in 4% PFA for 10 minutes, blocked by 10x 

bovine serum albumin (BSA) and immunostained with a primary antibody in 1x BSA 

overnight at 4°C followed by the secondary antibody at room temperature for 2 hours. 

Nuclei of immunostained cells were subsequently labelled with 4', 6-diamidino-2-

phenylindole (DAPI) for 30 seconds and slides covered with cover slips and mowiol.  

Images were collected by confocal laser scanning microscopy (Fluoview 1000, 

Olympus) or fluorescence microscopy.  

  

2.2.5 Flow cytometry analysis    

Microglia were collected from culture dishes by a cell scraper. For flow cytometry 

analysis of ex vivo microglia cells were isolated as described above. After Fc-

receptor blocking for 5 minutes with a CD16/32 antibody cells were incubated with an 

anti-Siglec-E and a biotin-conjugated antibody directed against the Siglec-E antibody. 

This was followed by a triple staining with a PE-conjugated anti-CD11b, a V450-

conjugated anti-CD45 and Alexa647-conjugated streptavidin. Isotype matched 

control antibodies were used as negative controls. Analysis was done with a FACS 

Calibur or FACSCantoII flow cytometer (both BD Bioscience) and FlowJo Software 

(BD Bioscience).  

  

2.2.6 Analysis of gene transcripts by quantitative real-time polymerase chain 

reaction (qRT-PCR)     

Microglia were seeded at a density of 250 000 cells/well in a 6-well plate and for the 

analysis of Siglec-E transcription they were stimulated with either 500 ng/ml LPS, 
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100 U/ml IFN-, 1000 U/ml IFN- or 20 ng/ml TNF-. Unstimulated cells served as a 

control. After 24 hours of stimulation RNA was isolated using the RNeasy Mini Kit. 

Reverse transcription of RNA was performed with SuperScript III reverse 

transcriptase and hexamer random primers according to the Invitrogen protocol for 

SuperScript First-Strand Synthesis. The concentration of transcribed cDNA was 

adjusted to 200 ng/µl.  

Gene transcripts of the housekeeping gene glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) were applied as internal RNA control. qRT-PCR with 

specific oligonucleotides was performed with SYBR Green PCR  Master Mix using 

the ABI 5700 Sequence Detection System and amplification protocol for the ABI 

5700 Sequence Detection System. For quantitative real-time PCR the following mix 

was prepared in a 96-well-plate: 

12.5 µl SYBR Green Mix 

1 µl forward primer (10pmol/µl) 

1 µl reverse primer (10pmol/µl) 

3 µl  cDNA (200 ng/µl) 

7.5 µl aqua destillata (dest.) 

 

For the non-template control the cDNA was replaced with aqua dest. The plate was 

covered with a plastic lid and analysed with the following program: 

 
Cover T° = 105°C  

 

  

Initial denature 95°C 08:30 min 

Denature 95°C 00:15 min 

Annealing 60°C 00:30 min 

Elongation 72°C 00:30 min 

Amplification for 40 cycles  

  
 

To ensure that a specific product was obtained a dissociation curve analysis was 

performed using the following program:  
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 95°C 01:00 min 

 55°C 00:15 min 

 95°C 00:15 min 

ramp rate  20:00 min 

 

Amplification specificity was confirmed by analysis of the melting curves. Results 

were analysed with the ABI 5700 Sequence Detection System v.1. after establishing 

the reaction efficiency for each primer pair. Quantification using the -CT method 

was carried out.   

 

2.2.7 Plasmid construction  

The pll3.7 vector was modified to contain a neomycin resistance gene by replacing 

the U6 promoter with a cassette of phosphoglycerate-kinase (PGK) promoter. 

Plasmids expressing green fluorescent protein (GFP) or Siglec-E (AG Fleischer, 

Hamburg) linked to GFP were cloned based on the modified pll3.7 backbone with a 

cytomegalovirus (CMV) promoter (Figure 2.1).  

 

 

Figure 2.1: Schematic drawing of the vector backbone used for overexpression of Siglec-E.  

The vector pll3.7 has a CMV promotor, a GFP and a neomycin resistance under the PGK promotor.  



2. Materials and Methods 31 

 
Described genes or fragments were obtained from corresponding constructs by PCR 

using primers including restriction sites allowing the product to be inserted into the 

vector by specific digest.  

The standard PCR mix was as follows: 

36.3 µl aqua dest. 

5 µl 10x High Fidelity PCR buffer 

2 µl dNTP mix (10 mM) 

2 µl MgSO4 (50 mM) 

2 µl forward primer (10pmol/µl) 

2 µl reverse primer (10pmol/µl) 

0.5 µl  cDNA (1 µg/µl) 

0.2 µl Platinum Taq High Fidelity 

  

The following PCR program was used: 

Initial denature 94°C 02:00 min 

Denature 94°C 01:30 min 

Annealing according to primer 01:00 min 

Elongation 68°C 1 min/1000 bp 

Final elongation 68°C 10:00 min 

Amplification for 40 cycles  

 

The subsequent ligation was performed in a molecular ratio from vector:insert of 1:1, 

1:2 and 1:4. The ligated vectors were transformed into Top10 competent bacteria. 

Positive colonies selected by antibiotics were inoculated in a small volume. Plasmid 

DNA was isolated and digested using the corresponding restriction enzymes. 

Colonies having the insert were expanded and purified using PureLink™ HiPure 

Plasmid Filter Maxiprep Kit. The sequence of each plasmid was verified further by 

sequencing.  

For knock-down of Siglec-E the vectors including the target sequence were obtained 

by AG Hornung, Bonn (Figure 2.2). 
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Figure 2.2: Schematic drawing of the vector backbone used for knock-down of Siglec-E. For the 

production of short hairpin constructs the vector pLKO.1 was used (source: addgene). 

 

2.2.8 Viral particle production   

For the production of lentiviral particles 6.5 x 106 HEK293FT cells were seeded on 

15 cm-dishes pre-coated with pLL. The HEK293FT packaging cell line was kept 

overnight in MEF medium at 37°C in 5 % CO2. The following day 25 μg of targeting 

plasmid together with 25 μg pLP1, 12.5 µg pLP2 and 15 µg pLP/VSVG were 

incubated with 1047.5 µl ddH2O, 125 µl 2.5 M CaCl2 and 1250 µl 2x HBS for 25 

minutes at room temperature. The transfection mix was added dropwise to the cells. 

Cells were transfected in Trans-MEF medium containing only 5% FBS and 50 nM 

chloroquine. Medium was replaced by fresh MEF medium the following day. Viral 

supernatant was collected at 48 and 72 hours post-transfection and either 

immediately applied to transduce cells or stored at -80°C.  

  

2.2.9 Lentiviral transduction of the microglia line ESdM   

Microglia were seeded at 250 000 cells/well into 6-well plates. In total, 5 ml of 

lentiviral supernatant was added to the culture and after spinfection at 1500g for 30 

minutes at 32°C incubated at 37°C and 5% CO2. Medium was changed the day after 
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lentiviral transduction and was replaced by fresh N2 culture medium. The 

transduction procedure was repeated three times.  

 

2.2.10 Phagocytosis of neural debris 

Primary neural cultures were treated with 40 nM okadaic acid for 24 hours, 

centrifuged, washed three times with PBS and the pellet was frozen at -20°C. After 

thawing, neural debris was incubated with 1 µM Dil (Derivates for Long-Term cellular 

Labelling) for 5 minutes at 37°C followed by an incubation time of 15 minutes at 4°C 

and three washing steps with PBS. Microglia were incubated with neural debris for 2 

hours at 37°C and subsequently washed three times with PBS. Cells were fixed with 

4 % PFA, washed three times with PBS and blocked with 10 % BSA for 30 minutes. 

Cells were then incubated with a primary antibody directed to iba1 in 1 % BSA over 

night at 4°C. The following day cells were washed three times with PBS and stained 

with a secondary Alexa488-conjugated antibody for 2 hours at room temperature. 

After DAPI-staining the cells were covered in mowiol. The stainings were stored at 

4°C in the dark. For analysis images (normal or z-stack, randomly selected areas) 

were obtained with a confocal laser scanning microscope. For quantification of the 

phagocytosis rate seven images per condition per experiment and 21 images per 

condition in total were taken maintaining the same settings. Quantification was 

performed using ImageJ software comparing phagocytosing to non-phagocytosing 

cells. 

 

2.2.11 Microglial-neuronal co-culture and immunocytochemistry 

Primary hippocampal neuronal cultures were either untreated or treated with 

25 mU/ml Neuraminidase for 2.5 hours at 37°C to remove sialic acids from the cell 

surface and were washed three times subsequently. For the ROS scavenging 

experiments, 40 nM Trolox was added to the medium before starting the co-culture 

experiment. Transduced microglia were added and both cell types were co-cultured 

for 48 hours at 37°C, 5 % CO2. Cells were fixed with 4 % PFA for 10-15 minutes and 

washed three times with PBS. Cells were incubated in 10 % BSA for 30 minutes for 

blocking, followed by an incubation with the primary monoclonal antibody directed to 

βIII-tubulin over night at 4°C. The next day cells were washed three times with PBS 
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and stained with the secondary Cy3-conjugated antibody followed by additional three 

washing steps and then incubated in the second primary antibody directed to iba1 

over night at 4°C. Cells were again washed three times with PBS and stained with an 

Alexa488-conjugated secondary antibody. Cells were stained with DAPI to visualise 

the nuclei and then covered in mowiol. Five images per condition per experiment (in 

total 15 images per condition) were collected by confocal laser scanning microscopy 

or fluorescent microscopy. The mean length of III-tubulin positive neurites or the 

density of III-tubulin positive cell bodies were analysed versus iba1 positive cells 

using ImageJ/NeuronJ software. 

 

2.2.12 Detection of ROS and cytokine transcript analysis during phagocytosis 

of neural debris 

Cultured microglia were incubated with 5 µg/µl neural debris for either 1 hour for 

dihydroethidium (DHE) staining or 16 hours for RNA isolation and qRT-PCR. For 

ROS scavenging experiments either 20 µg/ml superoxide dismutase (SOD1) or 

40 nM trolox were added at the same time as the neural debris. DHE is cell-

permeable and exhibits blue-fluorescence in the cytosol until oxidized. After oxidation 

it intercalates in the cell’s DNA and stains the nucleus in a bright red fluorescence. 

For detection and quantification of superoxide anion radical production 30 µM DHE 

were added and incubated at 37°C for 15 minutes. Cells were fixed with 4 % PFA 

plus 0.25 % glutaraldehyde (GAD) and analysed by confocal laser scanning 

microscopy. For the quantification of DHE staining intensity six images of each 

condition per experiment were obtained and analysed with the ImageJ software. The 

level of background staining was subtracted and the mean values of the staining 

intensities were compared. Quantification of gene transcripts was done by qRT-PCR 

(see chapter 2.2.6). 

 

2.2.13 Detection of superoxide by Amplex Red 

Analysis was done by AG Kunz, University of Bonn. Quantitative rates of superoxide 

generation of microglial cells incubated with 10 µg/ml neural debris were determined 

using a spectrofluorimeter with the Amplex Red/peroxidase-coupled method (1 µM 

Amplex Red (ex = 560 nm, em = 590 nm) + 20 units/ml horseradish peroxidase) in 



2. Materials and Methods 35 

 
the additional presence of 60 units/ml superoxide dismutase. Presence of an excess 

superoxide dismutase allows a quantification of superoxide production in hydrogen 

peroxide equivalents. All measurements were performed at 35 C in oxygen-

saturated PBS. The reaction was stopped by addition of 12000 U/ml catalase. The 

fluorescent signal was calibrated by known H2O2 concentrations as described 

previously (Malinska et al. 2009), allowing to express the superoxide production rate 

in hydrogen peroxide equivalents. In the calculations of quantitative superoxide 

generation rates the catalase (12,000 U/ml)-insensitive Amplex Red oxidation rates 

were always subtracted. 

 

2.2.14 Binding of Siglec-E:Fc fusion protein to primary neurons, astrocytes and 

microglia 

Neurons were either untreated or treated with 25 mU/ml Neuraminidase (A. 

ureafaciens), primary microglia and astrocytes with a combination of 1.4 µl/ml EndoN 

and 25 U/ml Neuraminidase (C. perfringens) for 2.5 hours at 37°C to remove sialic 

acids from the cell surface. After 2.5 hours cells were washed three times with PBS 

and then incubated with recombinant Siglec-E:Fc fusion protein or recombinant 

Siglec-F:Fc fusion protein as a positive control at a final concentration of 2.5 µg/ml 

(neurons) or 0.1 µg/ml (astrocytes and microglia) for 1 hour at 37°C. Cells were fixed 

with 4 % PFA, followed by three washing steps with PBS and blocking with 10 % 

BSA for 30 minutes. The primary monoclonal antibody was directed to βIII-tubulin 

(neurons), CD68 (microglia) or glial fibrillary acidic protein (GFAP; astrocytes) and 

applied in 1 % BSA over night at 4°C. The secondary Cy3-conjugated antibody was 

applied after three washing steps with PBS for 2 hours at room temperature in the 

dark. After another washing step the primary antibody directed to mouse IgG Fc was 

added over night at 4°C to the stainings with Siglec-E:Fc. An Alexa488-conjugated 

secondary antibody for Siglec-E:Fc or primary antibody directed to human IgG Fc-

FITC against Siglec-F:Fc was applied. Images were collected by confocal laser 

scanning microscopy. 
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2.2.15 Statistical analysis 

Data are presented as mean  SEM of at least three independent experiments. Data 

were analysed by ANOVA followed by Bonferroni using SPSS computer software. 

*p<0.05; **p0.01; ***p0.001. 
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3. Results 

 

The topic of the present study was to characterize the role microglial Siglec-E plays 

in neuroinflammatory processes in the brain. 

The first steps were to identify Siglec-E transcription and expression on microglia. To 

get an idea about the function of Siglec-E on microglia, lentiviral overexpression and 

knock-down constructs were designed and cloned. A microglia line was transduced 

and further characterized. We used these microglia to study the influence of Siglec-E 

expression on phagocytic behaviour and the associated burst. After it was proven 

that the Siglec-E:Fc fusion protein is able to bind sialic acids in the neuronal 

glycocalyx, co-culture experiments with primary neurons and the modified microglia 

line  were performed. Thereby the implication of the receptor Siglec-E on microglia in 

neuroinflammatory processes was analysed. 

 

3.1 Siglec-E is a regulator of the immune response 

Recent data of gene expression profiles from distinct mouse tissue macrophages 

suggest that Siglec-E can be also found in microglia (Gautier et al. 2012). Other 

studies demonstrated the regulatory function on Siglec-E in the immune system. 

Stimulation with TLRs induced Siglec-E expression and once upregulated it was 

enabled to control TLR-induced NF-κB and the induction of the antiviral cytokine 

IFN-β and RANTES. Thereby Siglec-E participated in the regulatory part of the 

antiviral response to TLRs and maintenance of cytokine levels in state of infection 

(Boyd et al. 2009). Siglec-E knock-out in mice led to an increased neutrophil 

recruitment to the lung in an acute lung inflammation model induced by LPS which 

was mediated by negative regulation of the integrin CD11b by Siglec-E (McMillan et 

al. 2013). 
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3.2 Detection of Siglec-E transcription and expression in microglia 

3.2.1 Siglec-E expression in ex vivo and primary microglia 

So far, expression of Siglec-E on microglia in the CNS has not been described. 

Therefore the first aim was to investigate the expression of Siglec-E on ex vivo and 

primary mouse microglia. To identify ex vivo microglia in a cell population enriched by 

a percol gradient cells were labelled and gated for CD45low/CD11b+ cells. The same 

labelling was done for primary microglia and both were then stained for Siglec-E. 

Both ex vivo and primary microglia showed low constitutive Siglec-E expression 

when compared to isotype matched control antibodies (Figure 3.1). In detail the 

median Siglec-E fluorescence intensity for ex vivo microglia was 133.67  40.74 and 

452.50  46.62 for primary microglia, respectively. 

Therefore, ex vivo isolated and primary microglia do both express Siglec-E. 

 

        

Figure 3.1: Expression of Siglec-E in ex vivo and primary microglia. CD45
low

/CD11b
+
 ex vivo and 

primary microglia were analysed for Siglec-E expression. Both cell types showed low Siglec-E 

expression on their surface. Representative data out of at least three independent experiments are 

shown. 
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3.2.2 Siglec-E transcription in microglia 

Primary microglia or the microglia line ESdM were stimulated for 24 hours with either 

LPS, IFN-, IFN- or TNF-. mRNA was isolated from primary microglia, the 

microglia line, spleenocytes and neurons. Spleenocytes are known to have high 

levels of Siglec-E and were used as a positive control whereas neurons are known to 

have no Siglec-E and were used as negative control (Zhang et al. 2004). 

 

   

Figure 3.2: Detection of Siglec-E mRNA in microglia by RT-PCR. Siglec-E transcripts were 

detected in unstimulated primary microglia and in the microglia line ESdM (unstim). Stimulation with 

LPS, IFN-, IFN- or TNF- did not alter the transcription level of Siglec-E. The house-keeping gene 

Gapdh was used as an internal loading control. Spleenocytes (spleen) are known to highly express 

Siglec-E and served as a positive control, in contrast neurons do not express Siglec-E. Representative 

data out of three independent experiments are shown. Control: reaction mix without cDNA. 

 

PCR of the transcribed cDNA clearly showed that primary microglia and the microglia 

line ESdM both transcribed Siglec-E (Figure 3.2). Upon stimulation there was no 

significant difference in the level of Siglec-E transcripts in primary microglia and the 

microglia line. As expected, the spleenocyte cDNA showed the highest transcription 

level of Siglec-E mRNA whereas the neuron cDNA had no Siglec-E transcripts.  

The outcome of the reverse transcription was further confirmed by quantitative real-

time PCR. This method enabled us to quantify changes in the Siglec-E transcription 

level upon stimulation when compared to unstimulated cells. The values were 

normalized to the house-keeping gene Gapdh. As seen before using RT-PCR, 

stimulation with the different cytokines IFN-, IFN-, TNF- or LPS for 24 hours did 

not result in any significant changes in the mRNA transcription levels of Siglec-E in 

the microglia line ESdM (Figure 3.3). 
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Figure 3.3: Quantitative real-time PCR of stimulated ESdM. Stimulation with LPS or the cytokines 

IFN-γ, IFN-α or TNF-α did not result in a significant change in the transcription levels of Siglec-E 

mRNA after 24 hours stimulation. Data was normalized to the gene Gapdh.  

 

In conclusion, primary microglia and the microglia line have a detectable level of 

Siglec-E mRNA of Siglec-E.  

 

3.2.3 Siglec-E expression in microglia upon stimulation 

After it was shown that the expression of Siglec-E can be detected in ex vivo, primary 

microglia and the transcription in the microglia line ESdM, the next step was to show 

Siglec-E expression on the cell surface of microglia. For this purpose primary 

microglia and ESdM were stimulated with LPS, IFN-, IFN-α or TNF-α for 24 hours 

and then Siglec-E quantified using flow cytometry.  

In primary microglia and ESdM, low Siglec-E expression was detected by flow 

cytometry in unstimulated cells. Upon stimulation with IFN-, primary microglia 

showed an upregulation of Siglec-E on their surface whereas the other cytokines and 

LPS had no effect on the Siglec-E expression level (Figure 3.4). In ESdM both IFN- 

and IFN- increased the Siglec-E expression levels on the cells, but not the other 

stimulants. 

In summary, only IFN- and IFN- had an impact on the expression level of Siglec-E 

in primary microglia and the microglia line. 
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Figure 3.4: Flow Cytometry analysis for Siglec-E expression upon stimulation. Siglec-E was 

detected on unstimulated (unstim) microglia at low levels. A 24 hour treatment with IFN- or -α 

slightly increased the expression of Siglec-E on the microglia line, while treatment with LPS or TNF-α 

showed no effect. Representative data out of three independent experiments are shown. unstim: 

unstimulated cells; isotype: isotype control antibody. 

 

3.3 Lentiviral overexpression and knock-down of Siglec-E in ESdM 

Since there are hardly any functional data about Siglec-E, one of the main goals was 

to achieve a basic understanding of the role Siglec-E plays in microglia. For this 

purpose a microglia line was transduced with lentiviral particles to overexpress or 

knock-down Siglec-E. After characterization of these modified cells they were used 

for further experiments. 

 

3.3.1 Lentiviral over-expression or knock-down of Siglec-E does not change 

the microglial phenotype 

 

3.3.1.1 Siglec-E overexpression and knock-down constructs 

Siglec-E was tagged with GFP under the control of the CMV promotor (abbreviated 

later as „SigE vector“). It was cloned into the pll3.7 vector with a PGK-neomycin 

selection gene in front of the Siglec-E related expression cassette. The 
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corresponding control was the empty vector containing only GFP (abbreviated as 

“control vector”).  

Constructs for lentiviral knock-down of the receptor Siglec-E in the microglia line 

were obtained from a knock-down library in a pLKO.1 backbone and were kindly 

provided by Prof. Veit Hornung, Bonn (shRNASigE1: TRCN0000094526, target 

sequence 5’-CCCAATTCGTAAAGCAGTGAA-3’, abbreviated as „shRNASigE1“; 

shRNASigE2: TRCN0000094527, target sequence 5’-GCCACAAATAACCCAA 

TTCGT-3', abbreviated as „shRNASigE2“).  

 

3.3.1.2 Confirmation of successful transduction of microglia 

After the transduction of the microglia line with lentiviral particles for either 

overexpression or knock-down of Siglec-E, the outcome of the procedure was 

confirmed by qRT-PCR and flow cytometry. 

The qRT-PCR results showed that after the transduction with lentiviral particles for 

Siglec-E overexpression the transcription level was increased when compared to 

untransduced cells and the control vector. In detail, the transcription was 48.45  

4.06-fold higher than untransduced cells (1.0  0.08; p = 2.2 x 10-5; p = 2.2 x 10-5 

compared to control vector). The control vector showed no significant change in 

Siglec-E mRNA levels (1.12  0.11-fold increase) when compared to untransduced 

microglia (Figure 3.5).  

The knock-down efficiency was analysed in comparison to untransduced microglia 

and microglia having received lentiviral particles of the non-targeting shRNA 

(“NTshRNA”) control construct. Both transductions with the lentiviral particles of the 

knock-down constructs resulted in a significant reduction in Siglec-E transcription in 

the microglia. Siglec-E mRNA levels were decreased from 1.0  0.07 in 

untransduced cells and 1.04  0.01-fold in NTshRNA (p = 1.4 x 10-11) microglia to 

0.14  0.01-fold (p = 2.0 x 10-11; p = xxx to NTshRNA) for shRNASigE1 and 0.15  

0.01-fold for shRNASigE2 (p = 2.2 x 10-11; p = 1.5 x 10-11 to NTshRNA).  

Therefore the modification for Siglec-E in the microglia line was proven on the 

transcriptional level for overexpression and knock-down of Siglec-E. 
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Figure 3.5: Siglec-E transcription level after lentiviral transduction. Microglia were transduced 

with lentiviral particles of vectors expressing either Siglec-E:GFP (SigE vector) or a control vector. 

Furthermore, lentiviral knock-down was performed by two different lentiviral short-hairpin constructs 

targeting Siglec-E (shRNASigE1; shRNASigE2) or a corresponding non-targeting control vector 

(NTshRNA). qRT-PCR confirmed the successful modification of the microglial line by showing an 

increase in Siglec-E cDNA levels after lentiviral overexpression of Siglec-E (left graph) or a reduction 

in gene transcript levels after knock-down of Siglec-E (right graph). Numbers were normalized to the 

house-keeping gene Gapdh.  

 

To analyse the effect of the lentiviral transduction on the protein level as well, flow 

cytometry with an antibody directed against Siglec-E was performed. The 

transduction with the particles of the overexpression vector led to much higher 

Siglec-E expression in the microglia compared to that in untransduced microglia and 

microglia which only received the control vector (Figure 3.6). In contrast, the viral 

particles of both knock-down constructs shRNASigE1 and shRNASigE2 showed a 

diminished Siglec-E surface protein level of the cells when compared to 

untransduced cells and microglia transduced with the NTshRNA. 

Thus, the expression level of Siglec-E was successfully modified in the microglia line. 
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Figure 3.6: Siglec-E surface expression level after lentiviral transduction. Flow cytometry 

confirmed modification of the microglial line. Lentiviral transduction with the construct for 

overexpression of Siglec-E (SigE vector) led to an increase in Siglec-E expression (upper graph) 

compared to untransduced and control vector microglia. Both knock-down vectors (shRNASigE1; 

shRNASigE2) resulted in a clear decrease of Siglec-E surface expression on microglia (lower graph) 

when compared to untransduced cells and microglia having received the NTshRNA viral particles. 

 

3.3.1.3 Lentiviral transduction does not change the microglial phenotype 

After the altered transcription and expression level of Siglec-E in the modified 

microglia line was confirmed, it had to be analysed if the lentiviral transduction 

caused any changes in the microglial phenotype. The microglia were analysed for 

changes in cytokine transcription and surface marker expression after successful 

lentiviral transduction. 

The transcription profile of IL-1, NOS2 and TNF- was analysed by qRT-PCR in the 

modified microglia and the corresponding control cell lines. As an internal control the 

gene Gapdh was used.  

For the Siglec-E overexpressing cells as well as for the Siglec-E knock-down cells, 

the transcription level of all the cytokines and surface markers analysed remained 

unchanged when compared to untransduced cells or the corresponding control 
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vector. In detail, for IL-1 the transcription level after lentiviral overexpression for 

Siglec-E remained quite stable with a non-significant fold increase from 1.0  0.32 

(untransduced cells) to 1.45  0.22 for the control vector and to 1.52  0.51 for 

Siglec-E overexpression (Figure 3.7).  

The same holds true for the knock-down vectors. In this case, the alteration was from 

1.0  0.23 (untransduced) or 1.23  0.38 (NTshRNA) to 0.87  0.47-fold 

(shRNASigE1) and 1.12  0.43 (shRNASigE2), respectively. For NOS2 the mRNA 

levels remained unchanged from 1.0  0.19 (untransduced) to a 1.38  0.37-fold 

change (control vector) and to a 0.9  0.3-fold change (SigE vector). The knock-down 

microglia showed stable transcription levels at a fold change of 1.28  0.35 

(shRNASigE1), 1.55  0.16 (shRNASigE2) and 1.2  0.43 (NTshRNA) when 

compared to untransduced cells (1.0  0.21). TNF- transcription levels for Siglec-E 

overexpressing microglia were not affected by the transduction procedure. They 

remained at a 1.15  0.24-fold change compared to 1.0  0.12 (untransduced) and 

1.05  0.07 (control vector). Similarly, TNF- mRNA levels in Siglec-E knock-down 

microglia were unaffected by lentiviral transduction. The fold change was from 1.0  

0.12 (untransduced) and 1.37  0.41 (NTshRNA) to 1.25  0.65 (shRNASigE1) and 

0.96  0.35 (shRNASigE2), respectively. 
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Figure 3.7: No change in cytokine transcription in modified microglia. The transduced microglia 

were analysed in regard to their inflammatory phenotype. They were analysed for IL-1, NOS2 and 

TNF- mRNA levels by qRT-PCR. Neither Siglec-E overexpressing microglia nor the Siglec-E knock-

down cells had any significant change in the transcription level of the cytokines. Data were normalized 

to the house-keeping gene Gapdh.  

 

In addition, a flow cytometry experiment was performed to display the surface marker 

expression profile of the modified microglia. The expression levels of CD11b, CD11c, 

CD18, CD31, CD34, CD45, CD80, CD86 and F4/80 were measured. CD31 and 

CD34 are markers of not fully differentiated cells and therefore no expression of 

these markers was expected. In contrast, the microglia line is known to express high 

levels of CD11b and CD45 on their surface. Overall the surface marker expression 

profile of the Siglec-E overexpressing microglia was comparable to that of 
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untransduced and control vector transduced cells (Figure 3.8a). The same holds true 

for both of the knock-down constructs shRNASigE1 (Figure 3.8b) and shRNASigE2 

(Figure 3.8c) when compared to the untransduced and NTshRNA microglia. 

In conclusion, the lentiviral transduction procedure did not alter the microglia 

phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See next page: 

Figure 3.8: Microglia surface marker expression profile remains unchanged after lentiviral 

transduction. After the transduction procedure, surface marker expression of the modified microglia 

was analysed. a The expression level of the surface markers was not influenced by overexpression of 

Siglec-E on microglia or by the control vector. b The construct shRNASigE1 showed a comparable 

expression profile to that of untransduced and NTshRNA microglia. c shRNASigE2 transduction did 

not affect marker expression levels on microglia. Representative data out of three independent 

experiments are shown.  
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3.4 Phagocytosis of neural debris by microglia 

Microglia are the phagocyting cells of the brain. They can phagocyte cellular debris 

and secrete anti-inflammatory cytokines. By this mechanism they prevent 

inflammatory processes caused by apoptotic cells and thereby help maintain a 

healthy environment for all the brain cells especially for the neurons in the CNS. 

Since this is one of the key functions of microglia, the modified microglia were 

analysed as to whether the introduced modifications in the expression level of Siglec-

E might influence this main characteristic. 

 

3.4.1 Siglec-E expression levels influence phagocytosis rate of microglia 

The modified microglia were challenged with neural debris and phagocytosis was 

analysed under the microscope. The merged images show overlays of microglia and 

neural debris indicating the event of phagocytosis.  

Microglia expressing GFP display a higher rate of phagocytosis of neural debris 

when compared to microglia overexpressing Siglec-E. In contrast, microglia having 

received the NTshRNA show less overlay events compared to microglia with a 

Siglec-E knock-down. When considering the number of phagocytosed neural debris 

particles per phagocytosing cell, microglia with a knock-down of Siglec-E seem to 

have a higher number of phagocytosed neural debris particles per phagocytosing cell 

compared to microglia, which had been transduced with the NTshRNA control 

(Figure 3.9).   
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Figure 3.9: Phagocytosis of neural debris by modified microglia. Lentiviral transduced microglia 

with different expression levels of Siglec-E were challenged with neural debris. Phagocytosis of the 

neural debris was analysed. Siglec-E overexpressing microglia (SigE vector) showed less 

phagocytosis than their corresponding control (control vector). Siglec-E knock-down microglia 

(shRNASigE1; shRNASigE2) had more phagocytosis events when compared to their control 

(NTshRNA). Representative images out of three independent experiments are shown. Scale bar: 30 

µm. 

 

To prove that the neural debris was indeed in the microglia, three-dimensional 

reconstruction images were taken. The images showed that the neural debris was 

indeed inside the cells. The control lines (control vector; NTshRNA) demonstrated a 

comparable amount of phagocytosed neural debris, whereas Siglec-E 

overexpressing microglia had only few neural debris particles. Siglec-E knock-down 

microglia had the highest number of neural debris when compared to the other cells 

(Figure 3.10a).  
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Figure 3.10: Siglec-E overexpression prevents phagocytosis of neural debris. a Uptake of red 

fluorescent labelled neural debris (red) into microglia (green) was analysed by confocal microscopy 

and 3D-reconstruction. Microglial cells were lentiviral transduced with either the control vector, the 

Siglec-E over-expressing vector (SigE vector), the Siglec-E knock-down constructs (shRNASigE1; 

shRNASigE2) or the non-targeting vector (NTshRNA). Representative images out of three 

independent experiments are shown. Scale bar: 20 µm. b The phagocytosis rate of the microglia was 

quantified. Overexpression of Siglec-E on the cell surface led to a reduction in phagocytosis rate, 

while knock-down of Siglec-E increased the uptake of neural debris. 
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Quantification of neural debris uptake revealed that an overexpression of Siglec-E on 

the microglia resulted in a decrease in phagocytosis rate from 34.17  1.30 % 

(control vector; p = 1.65 x 10-8) down to 17.55  1.30 % of phagocytosing cells. On 

the contrary, knock-down of Siglec-E in the microglia line led to an increase in the 

uptake of neural debris. In detail, microglia transduced with the NTshRNA vector 

showed a phagocytosis rate of 31.0  0.06 % whereas cells being modified with 

shRNASigE1 lentiviral particles had a phagocytosis rate of 44.32  0.86 % 

(p = 6.93 x 10-7) and transduction with shRNASigE2 particles led to 44.03  0.71 % 

(p = 9.86 x 10-7) phagocytosis (Figure 3.10b). 

While Siglec-E overexpressing microglia showed a decreased phagocytosis rate, 

Siglec-E knock-down microglia had a higher phagocytosis rate. 

 

3.4.2 Siglec-E knock-down leads to an increase in superoxide production in 

microglia 

Phagocytosis is frequently associated with a burst of reactive oxygen species. As 

Siglec-E expression levels had an influence on the phagocytosis rate in microglia, it 

was of further interest whether Siglec-E has an impact on the production of reactive 

oxygen species as well.  

Microglia modified with the knock-down constructs shRNASigE1 and shRNASigE2 

displayed the highest fluorescence intensity for DHE ROS staining whereas microglia 

overexpressing Siglec-E (SigE vector) or microglia having been transduced with the 

non-targeting shRNA (NTshRNA) showed lower fluorescent intensities (Figure 

3.11a). Quantification of the fluorescence intensities showed that the increase in 

ROS production after addition of neural debris was strongest in microglia with the 

lowest Siglec-E expression levels (shRNASigE1; shRNASigE2). In detail, the mean 

fluorescence intensity increased from 1.38  0.03 for the NTshRNA microglia treated 

with neural debris to 2.25  0.19 for shRNASigE1 (p = 2.24 x 10-11) incubated with 

neural debris and to 2.44  0.21 for microglia modified by lentiviral particles of the 

construct shRNASigE2 stimulated with neural debris (p = 3.19 x 10-16). Microglia, 

which have been transduced with a control vector, only had a moderate increase of 

superoxide production after challenge with neural debris to 1.26  0.05. Siglec-E 



3. Results 53 

 
overexpressing microglia did not even show a significant increase in ROS production 

after treatment with neural debris (0.98  0.11; Figure 3.11b). 

Since only the knock-down constructs led to a significant increase in ROS production 

after stimulation with neural debris, these cells were chosen for the scavenging 

experiments. While challenging microglia with neural debris, the addition of one of 

the free radical scavenger, SOD1 or trolox, led to comparable levels of ROS 

production as cells which received no neural debris (Figure 3.11c). In detail, ROS 

production after cultivation of NTshRNA microglia in the presence of neural debris 

was decreased from 1.35  0.06 to 0.72  0.10 (p = 1.6 x 10-5) with addition of SOD1 

and to 0.73  0.07 (p = 3.0 x 10-5) with trolox. For shRNASigE1 the reduction was 

from 2.13  0.07 to 0.79  0.09 (SOD1; p = 5.36 x 10-24) and to 0.72  0.10 (trolox; 

p = 2.86 x 10-26), respectively. The shRNASigE2 microglia showed a similar 

diminution of DHE staining intensity from 2.09  0.11 to 0.77  0.07 for SOD1 

(p = 2.89 x 10-23) and to 0.70  0.06 for incubation in the presence of the scavenger 

trolox (p = 1.58 x 10-25). 

Siglec-E has an impact on the microglial phagocytosis rate and the associated 

oxidative burst. This event can be rescued by addition of a scavenger like SOD1 or 

trolox.  

 

See next page: 

Figure 3.11: Siglec-E prevents the phagocytosis associated reactive oxygen burst after 

challenge with neural debris. a DHE staining of modified microglia. Siglec-E overexpressing vector 

(SigE vector), Siglec-E knock-down constructs (shRNASigE1; shRNASigE2), non-targeting vector 

(NTshRNA). Control vector, Siglec-E overexpressing microglia and NTshRNA microglia displayed a 

moderate increase in fluorescence intensity after stimulation with neural debris. In contrast, knock-

down microglia showed an increase of fluorescence intensity after challenge with neural debris. 

Representative images out of five independent experiments are shown. Scale bar: 30 µm. 

b Quantification of superoxide production in microglia after challenge with neural debris. Lack of 

Siglec-E on microglia led to increased levels of ROS production when compared with NTshRNA. 

c Analysis of superoxide levels in Siglec-E knock-down microglia challenged with neural debris in 

either the presence of SOD1 or trolox. Both scavengers were able to restore the elevated ROS 

production after knock-down of Siglec-E in microglia and treatment with neural debris back to the ROS 

production level of untreated cells. 
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To prove the outcome of the experiments with DHE, another method was used. 

Amplex Red is able to react with H2O2 to produce resorufin, which can be measured 

by a spectrofluorimeter. Cells were incubated with neural debris in suspension and 

H2O2 production was quantified by converting superoxide to H2O2 with SOD1. Similar 

to the DHE experiments, incubation with neural debris stimulated ROS production in 

microglia only about 1.1-fold in the control vector transduced microglia, whereas 

knock-down of Siglec-E resulted in a 2 to 3-fold increase in superoxide level (Figure 

3.12). In detail, production of 12.10  1.10 pmol H2O2 equivalents/min/mg protein in 

untreated control cells (NTshRNA) increased to 13.6  1.34 pmol H2O2 

equivalents/min/mg protein after addition of neural debris. In microglial cells with a 

knock down of Siglec-E by shRNASigE1 release of superoxide increased from 15.43 

 0.47 pmol H2O2 equivalents/min/mg protein to 32.39  0.39 pmol H2O2 

equivalents/min/mg protein following stimulation with neural debris (p = 1.89 x 10-26). 

A similar increase in superoxide production was observed in neural debris treated 

cells after knock down with shRNASigE1 (from 16.13  0.65 pmol H2O2 

equivalents/min/mg protein to 28.15  1.12 ; p = 1.16 x 10-15). 

Thus, the Amplex Red method confirmed the outcome of the DHE method. 

 

 

Figure 3.12: Siglec-E knock-down microglia have increased production of superoxide following 

incubation with neural debris. Quantification of superoxide production in microglia by a 

spectrofluorimeter. Siglec-E knock-down microglia had increased levels of ROS production when 

challenged with neural debris compared with NTshRNA. cells: addition of cells; catalase: addition of 

catalase to stop the reaction 
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3.4.3 Siglec-E overexpression reduces production of proinflammatory 

cytokines triggered by neural debris 

The next question was whether Siglec-E also plays a role in the production of 

proinflammatory cytokines triggered by the 16 hours treatment with neural debris.   

The transcriptional levels of IL-1 and TNF- were significantly increased after 

stimulation with neural debris in Siglec-E knock-down microglia compared to control 

cells (NTshRNA) that have been stimulated with neural debris, while there was no 

effect on the mRNA level of NOS2 (Figure 3.13). In detail, gene transcription of IL-1 

was increased from 10.0  0.13 to 17.42  2.26 after knock-down with shRNASigE1 

(p = 0.001) and to 16.56  1.10 after knock-down with shRNASigE2 (p = 0.003). The 

mRNA level of TNF- was increased from 9.07  1.39 to 14.21  0.73 after knock-

down with shRNASigE1 (p = 0.011) and to 15.27  1.15 after knock-down with 

shRNASigE2 (p = 0.001). Overexpression of Siglec-E had no significant effect on the 

gene transcription of proinflammatory mediators after neural debris challenge when 

compared to control cells (control vector).  

In summary, Siglec-E on microglia acted anti-inflammatory by preventing the 

production of the pro-inflammatory cytokines IL-1 and TNF- after 16 hours 

challenge with neural debris. 
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Figure 3.13: Siglec-E overexpressing microglia show diminished production of 

proinflammatory cytokines after treatment with neural debris. qRT-PCR to detect IL-1, TNF- 

and NOS2 transcription levels after 16 hours incubation of modified microglia with neural debris. 

Microglia with knock-down of Siglec-E (shRNASigE1; shRNASigE2) showed a significant increase in 

gene transcription of IL-1 and TNF- after incubation with neural debris compared to the control 

vector (NTshRNA). n.s. not significant. 
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3.5 Siglec-E:Fc fusion protein binding to primary cells  

It is known that Siglec-E can bind different linkages of sialic acid with a binding 

preference for 2-8 linked sialic acid to 2-6 and 2-3 linked sialic acid. Polysialic 

acid (PSA) is a polymer of 2-8 linked sialic acid, which can be found attached to the 

neural cell adhesion molecule (NCAM). A fusion protein of Siglec-E consisting of only 

the extracellular part of Siglec-E fused to a mouse immunoglobulin domain was used 

to investigate the binding behaviour of Siglec-E to polysialic acids chains in the 

glycocalyx of astrocytes and neurons. 

 

3.5.1 Siglec-E:Fc binds to neurons 

Primary neurons were either treated or untreated with sialidase to remove sialic acid 

from their cell surface. After the treatment, the fusion proteins Siglec-F:Fc and 

Siglec-E:Fc were applied to analyse their binding capacity. For Siglec-F:Fc it has 

been previously shown in our lab that it is capable of binding to neurons and that this 

feature is abrogated after treatment with sialidase (Linnartz et al. 2012a). Therefore it 

was used as a positive control for this experiment. 

Without sialidase treatment both fusion proteins Siglec-F:Fc and Siglec-E:Fc were 

able to bind sialic acid on the neuronal surface as indicated by the co-staining with 

the neurons (Figure 3.14). However, after the enzymatic removal of sialic acid from 

the neuronal glycocalyx none of the fusion proteins was binding to the neurons. 

Thus, sialic acid is a crucial factor in the neuronal glycocalyx to allow the binding of 

Siglec-F and Siglec-E to the cell surface. 
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Figure 3.14: Binding of Siglec-F:Fc and Siglec-E:Fc fusion protein to neurons. Neurons were 

either untreated or treated with sialidase to remove sialic acid from the cell surface. The removal of 

sialic acid resulted in a reduction of the binding capacity of Siglec-F:Fc and Siglec-E:Fc to neurons. 

Representative images out of three independent experiments are shown. Scale bar: 30 µm. 

 

3.5.2 Siglec-E:Fc binds to astrocytes and primary microglia 

Primary astrocytes or microglia were either untreated or treated with a combination of 

neuraminidase and EndoN for 2.5 hours to enzymatically remove sialic acid. 

Subsequently cells were cultured with a recombinant Siglec-E:Fc fusion protein for 

1 hour. The outcome was analysed by confocal microscopy. The analysis revealed 

that Siglec-E:Fc bound to primary astrocytes and microglia (Figure 3.15). Enzymatic 

removal of sialic acid residues by EndoN and neuraminidase treatment resulted in an 

abrogation of the binding capacity of Siglec-E:Fc to both cell types, indicating that 

sialic acid residues in the glycocalyx of the cells were needed for Siglec-E:Fc fusion 

protein to bind to the cells.  
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Figure 3.15: Siglec-E:Fc binds to primary astrocytes and microglia. The fusion protein Siglec-

E:Fc was cultured with astrocytes or primary microglia for 1 hour. Staining showed that Siglec-E:Fc 

was able to bind to astrocytes and primary microglia. Enzymatic removal of sialic acid led to a 

reduction in the binding capacity of the recombinant Siglec-E:Fc fusion protein. Representative images 

out of three independent experiments are shown. Scale bar: 30 µm. 

 

3.6 Co-culture of primary neurons and microglia 

After it had been proven that Siglec-E is indeed capable of binding to the neuronal 

glycocalyx in a sialic acid-dependent manner, the next point of interest was to 

investigate the impact of the modification in Siglec-E expression levels on microglia 

in a neuron-microglia co-culture system. For this purpose primary neurons and 

modified microglia of the microglia line were co-cultured for 48 hours. 

 

3.6.1 Siglec-E is neuroprotective in a neuron-microglia co-culture system 

Primary neurons were either untreated or treated with the enzyme sialidase to 

remove sialic acid from the cell surface. Following the treatment, the neurons were 
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co-cultured with microglia having different expression levels of Siglec-E on their 

surface for 48 hours. Cells were stained by immunocytochemistry and the change in 

relative neurite length was quantified. Overexpression of Siglec-E increased the 

relative neurite length while knock-down of Siglec-E reduced it (Figure 3.16a). In 

detail, the neurite length was increased from 100 %  9.97 % (control vector) to 

150 %  2.19 % following overexpression of Siglec-E on microglia (p = 1.07 x 10-13; 

Figure 3.16b). Siglec-E knock-down on microglia reduced the relative neurite length 

from 100 %  5.31 % (NTshRNA) to 70 %  1.45 % (shRNASigE1, p = 1.62 x 10-9) 

and to 69 %  1.2 % (shRNASigE2, p = 6.06 x 10-10). Enzymatic removal of the 

glycocalyx’s sialic acid abolished both of the effects and led to a reduction in the 

relative neurite length of the neurons in all the control conditions and the microglia 

with the modified Siglec-E expression level. 

To exclude side effects due to changes in the cell-cell ratio, the neuronal cell body 

density with respect to percentage in the co-culture system was quantified. The 

outcome clearly showed that there was no change in the neuronal cell body density 

for all the different settings in this experiment (Figure 3.16c). 

In conclusion, microglia were able to sense sialic acid in the neuronal glycocalyx by 

their Siglec-E receptors. Siglec-E overexpression on microglia led to an increase of 

the relative neurite length in the co-culture system whereas knock-down increased 

the cytotoxicity with respect to the neurons, resulting in a reduction of the relative 

neurite length. 

 

See next page: 

Figure 3.16: Siglec-E overexpressing microglia act neuroprotective in a neuron-microglia co-

culture system. a Neurons were co-cultured for 48 hours with microglia expressing different amounts 

of Siglec-E. In co-culture with Siglec-E overexpressing microglia, neurons seemed to have longer 

neurites, whereas in the presence of Siglec-E knock-down microglia, neurons had shorter neurites. 

Representative images without sialidase treatment out of three independent experiments are shown. 

Scale bar 30 µm. b Quantification of relative neurite length. Siglec-E overexpression led to an increase 

in relative neurite length whereas knock-down of Siglec-E caused a reduction in relative neurite length. 

After enzymatic removal of sialic acid the relative neurite length was significantly reduced when 

compared to untreated neurons. c Neuronal cell body density in relation to microglia was counted to 

exclude side effects due to changes in the cell-cell ratio. There was no significant difference in the 

neuronal cell body density.  
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3.6.2 Siglec-E exerts its neuroprotective effect by attenuation of reactive 

oxygen species release 

Primary neurons were co-cultured with modified microglia either in the presence or 

absence of 40 nM Trolox for 48 hours. Trolox is a vitamin E analogue, which is an 

antioxidant and capable of scavenging superoxide anions. After 48 hours cells were 

stained and analysed for their relative neurite length (Figure 3.17a). In the presence 

of the scavenger trolox, the relative neurite length of neurons in co-culture with 

Siglec-E knock-down microglia was restored to 97 %  2.91 % for knock-down with 

shRNASigE1 (NTshRNA 103 %  1.53 %), and 94 %  2.85 % for shRNASigE2 

(Figure 3.17b). In co-culture with Siglec-E overexpressing microglia the relative 

neurite length seemed to be unaffected by Trolox treatment. Quantification of the 

neuronal cell body density again showed that there was no change in the cell-cell 

ratio in the different experimental settings (Figure 3.17c). 

Thus, the cytotoxicity of Siglec-E knock-down microglia on the relative neurite length 

could be scavenged by addition of 40 nM Trolox in the co-culture system. This 

indicates that Siglec-E participates in the regulation of the microglial oxidative burst. 

 

 

 

 

 

See next page: 

Figure 3.17: Siglec-E exerts its neuroprotective effect by attenuating the production of reactive 

oxygen species. a Neurons were treated with 40 nM Trolox and then co-cultured for 48 hours with  

microglia expressing different levels of Siglec-E on their surface. The neurites of the neurons being co-

cultured with Siglec-E overexpressing microglia had the longest neurites. The other conditions (control 

vector, NTshRNA, shRNASigE1 and shRNASigE2) displayed comparable neurites lengths. 

Representative images with Trolox treatment out of three independent experiments are shown. Scale 

bar 30 µm. b Quantification of relative neurite length. The relative neurite length was restored after the 

treatment with 40 nM Trolox by which the release of ROS and their harmful effect was diminished. 

c Neuronal cell body density in relation to microglia was counted to exclude side effects due to 

changes in the cell-cell ratio. There was no significant difference in the neuronal cell body density.  
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4. Discussion 

4.1 Siglecs in mouse and human  

The mouse Siglec family consists of nine members from which four belong to the 

common Siglecs (Siglec-1, Siglec-2, Siglec-4, Siglec-15) and five to the family of the 

CD33-related Siglecs (Siglec-3, Siglec-E, Siglec-F, Siglec-G, Siglec-H). Among them 

four have an ITIM and ITIM-like motifs in their cytoplasmic tail (Siglec-2, Siglec-E, 

Siglec-F, Siglec-G) whereas Siglec-3 has only an ITIM-like motif in the cytoplasmic 

domain (Pillai et al. 2011). Some Siglecs are expressed on a single cell type of the 

immune system, like Siglec-2/CD22 and Siglec-G, which are exclusively expressed 

on B cells, and Siglec-F, which is expressed solely on eosinophils. Others like 

Siglec-3 and Siglec-E can be found on a different set of cells of the myeloid line, for 

example Siglec-E can be found on neutrophils, monocytes and dendritic cells 

(Crocker et al. 2007). The present study now reveals that Siglec-E is transcribed and 

expressed in mouse microglia as well.  

In contrast, 15 Siglecs can be found in humans. The human common Siglecs have 

the same nomenclature as the mouse ones. The CD33-related Siglecs are Siglec-3, 

Siglec-5 to Siglec-16. Among the human Siglecs, ten have ITIM and ITIM-like motifs 

(Siglec-2, Siglec-3, Siglec-5 to Siglec-12) and three have just an ITIM-like motif 

(Siglec-14 to Siglec-16) (Pillai et al. 2011). The human Siglec-11 is another Siglec, 

which is expressed on microglia in the brain like Siglec-E (Hayakawa et al. 2005). A 

study showed that Siglec-11 is capable of interacting with the neuronal glycocalyx by 

recognizing 2-8-linked sialic acid and thereby prevents neurotoxic effects (Wang 

and Neumann 2010). But Siglec-11 has no homolog in the mouse system.  

Siglec-E is most similar in its sequence to the human Siglec-7, Siglec-8 and Siglec-9 

but in its expression profile Siglec-E mostly resembles Siglec-7 and Siglec-9. 

Siglec-E shows the same preference for 2-8-linked sialic acid like Siglec-7 or 

Siglec-11. However, there is no homolog for Siglec-E in the human system (Wang 

and Neumann 2010; Zhang et al. 2004). A study of gene expression profiles revealed 

that Siglec-11 and Siglec-E are not the only inhibitory Siglecs, which are expressed 

on microglia or macrophages. CD33/Siglec-3 expression can be found in spleen 

macrophages, Siglec-5 is transcribed in microglia, Siglec-1 is expressed in lung and 
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spleenic macrophages and Siglec-F can be found in lung macrophages (Gautier et 

al. 2012). Existing data now suggest that the leukocytes from the innate immune 

system have inhibitory Siglec receptors on their cell surface, which are able to sense 

the sialic acid caps in an intact glycocalyx and by this to distinguish between “self” 

and “non-self” (Varki 2011). Binding of a so-called “self”-ligand leads to the inhibition 

of an immune response via the ITIM counteracting an activating ITAM signal 

(Linnartz et al. 2010). 

Our data now suggest that Siglec-E is a receptor recognizing the intact glycocalyx of 

primary neurons and thereby identifies if the neuron is “healthy” or harmed. This 

function is in line with a previous study of Siglec-11 in a co-culture system with 

primary hippocampal neurons (Wang and Neumann 2010). The study found out that 

Siglec-11 had a neuroprotective function as long as the neurons had sialic acid in the 

glycocalyx. Enzymatic removal of the sialic acid cap resulted in a loss of the 

neuroprotective function of Siglec-11 in microglia. According to our data, Siglec-E 

seems not to belong to either of the microglia receptor groups, which recognize 

pathogen-associated molecular patterns (PAMPs), or to the group, which senses 

danger-associated molecular patterns (DAMPs). Siglec-E rather belongs to a type of 

receptor, which recognizes self-associated molecular patterns (SAMPs) like the sialic 

acid cap (Varki 2011). A study demonstrated that Siglec-E has a preference for the 

sialic acid N-acetyl-neuraminic acid (Redelinghuys et al. 2011). By this property 

Siglec-E on microglia is well adapted for recognizing the microenvironment in the 

mouse brain as the murine brain solely expresses N-acetyl-neuraminic acid (Varki 

and Schauer 2009). 

 

4.2 Siglec-E has anti-inflammatory properties 

Siglec-E has been shown before to play a role in the regulation of the immune 

response. Following stimulation with LPS or other TLR agonists, Siglec-E on 

macrophages was upregulated in a MyD88-dependent mechanism and 

phosphorylated. Cross-linking of Siglec-E on macrophages led to a significantly 

decreased production of the NF-B-dependent cytokines TNF- and IL-6. Further, 

the overexpression of Siglec-E inhibited the TIR domain containing adaptor inducing 

IFN-, (TRIF)-driven IFN- and RANTES whereas the knock-down displayed an 

increase in RANTES production. Therefore, Siglec-E seemed to take part in the 
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control of the antiviral response to TLRs by helping to maintain the cytokine balance 

after infection (Boyd et al. 2009). 

In a more recent publication Siglec-E was demonstrated to be crucial for the 

regulation of neutrophil recruitment to the lung under pathological conditions. A 

knock-out mouse model showed a more rapid and greater migration of neutrophils 

and macrophages in the airways in an aerosolised LPS-induced acute lung airway 

inflammation model. The same holds true for stimulation with zymosan, 

demonstrating that this effect was not exclusively for LPS but it was shown to be 

selective for the lung. Additional investigations revealed that Siglec-E is a negative 

regulator of the integrin CD11b-dependent adhesive function by suppressing the 

phosphorylation and thereby the activation of the Src family kinase Syk and p38 MAP 

kinase (McMillan et al. 2013). 

In line with the former observations, the stimulation with neural debris led in this 

study to elevated levels of the proinflammatory cytokines IL-1 and TNF- in 

Siglec-E knocked-down microglia and to decreased levels in microglia 

overexpressing Siglec-E. This immunoregulatory property of Siglecs under 

pathological conditions is not unknown in literature. Thus, CD22 has been 

demonstrated to be strongly expressed in gastrointestinal lamina propria eosinophils 

in the upper gastrointestinal tract with highest amounts in the jejunum. 

Overexpression of IL-5 was accompanied by downregulation of CD22 expression. In 

a state of gastrointestinal inflammation CD22 expression on eosinophils was reduced 

as well. CD22 knock-out mice showed a higher percentage of eosinophils among 

total lamina propria cells. This negative correlation of CD22 expression levels and the 

percentage of eosinophils in the intestines suggests an important role of CD22 in the 

regulation of tissue eosinophilia in the gastrointestinal tract (Wen et al. 2011). A 

similar property was detected for the murine Siglec-F, which is known to be 

expressed on eosinophils (Zhang et al. 2007). Chronic challenge with ovalbumin 

(OVA) led to an increase in bronchoalveolar lavage (BAL), peribronchial, bone 

marrow and peripheral blood eosinophils in Siglec-F deficient mice. Additionally, the 

OVA treated Siglec-F deficient mice had elevated levels of airway mucus, a higher 

amount of lung collagen, increased smooth muscle peribronchial thickness and the 

area stained for trichome was increased as well suggesting an increase in 

peribronchial fibrosis. Furthermore, mice lacking Siglec-F had more peribronchial 
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cells positive for TGF-1 and levels of eotaxin-1 and RANTES were elevated as well. 

Treatment with the cytokines IL-4 and IL-13 increased the level of Siglec-F ligands in 

WT mice. Summarizing, Siglec-F deficient mice had a stronger immune response 

and displayed altered cytokines levels in favour of pro-inflammatory cytokines similar 

to that demonstrated for the knock-down of Siglec-E in microglia. Taken together, 

these data illustrated once more the importance of Siglec receptors in maintaining 

the balance in the inflammatory response (Cho et al. 2010). 

For the human receptor CD33, which is expressed on peripheral human blood 

monocytes, the release of high levels of the proinflammatory cytokines IL-1, IL-8 

and TNF- was triggered by the challenge with a specific monoclonal antibody 

directed to CD33. The same happened through specific gene silencing of CD33. 

Activation of monocytes led to a downregulation of CD33, suggesting that CD33 has 

repressive properties on human monocytes (Lajaunias et al. 2005).   

Siglec-9 on immature dendritic cells, the human orthologue to Siglec-E, was shown 

to be capable of binding to tumour-produced mucins. Treatment with LPS in the 

presence of tumour mucins or treatment with an anti-Siglec-9 antibody resulted in a 

reduced production of IL-12 (Ohta et al. 2010). In another study with macrophages 

overexpressing Siglec-9, the stimulation with LPS or peptidoglycan only led to 

moderate levels of TNF- production whereas control macrophages reacted with a 

high amount of TNF- production to stimulation of TLRs. The same held true for IL-6 

and IFN- upon stimulation with either LPS or peptidoglycan. Mutations in the ITIM 

motifs of Siglec-9 abolished this effect. In contrast, the expression levels of the anti-

inflammatory cytokine IL-10 induced by TLRs were reduced in Siglec-9 

overexpressing macrophages. In the same study it was found out that Siglec-5 had 

similar effects when overexpressed on macrophages after stimulation with TLR 

agonists, IL-10 production was upregulated whereas TNF- production was 

diminished (Ando et al. 2008). This data is in line with the altered cytokine expression 

levels of stimulated microglia expressing different amounts of Siglec-E on their cell 

surface. 

Altogether, the data of the present study once more proves that ITIM-bearing Siglecs 

like Siglec-E play an important role in the regulation of the immune response to 

different threats such as the stimulation with neural debris. It is important for a 
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healthy microenvironment in the brain that apoptotic cells and debris are removed 

without over-activation of the immune system. Over-activation could lead to the 

overproduction of pro-inflammatory cytokines what in the end could damage the 

neurons in the CNS. The Siglec-E overexpression and knock-down approach on 

microglia showed that Siglec-E is a member of this tightly regulated system to keep a 

balanced cytokine level in the brain to ensure its functionality. This was demonstrated 

by stimulation with neural debris and the quantification of cytokine levels. The data of 

this study suggest that Siglec-E exerts its inhibitory function by negative regulation of 

pro-inflammatory cytokines like IL-1 and TNF- to prevent an over-activation of the 

immune response.  

 

4.3 Siglec-E is a regulator of phagocytosis and the associated 

oxidative burst 

This study shows that Siglec-E overexpression on microglia led to a decreased 

phagocytosis rate of neural debris and attenuation of the associated oxidative burst. 

In contrast, knock-down of microglial Siglec-E resulted in an increased phagocytosis 

rate of neural debris and higher production of superoxide. 

One of the main characteristics of microglia is phagocytosis of either pathogens or of 

cells that underwent apoptosis and cellular debris during development and in 

pathology and regeneration. Microglia are assumed to remove synapses in the 

developing brain and take part in neuronal pruning in the postnatal brain (Stevens et 

al. 2007). In neurodegenerative diseases like Alzheimer’s disease (AD) microglia 

clearance is of great importance as well. Microglia take up the soluble and fibrillar 

amyloid-beta, which is harmful for the neurons in the brain by pinocytosis or 

phagocytosis (Lee and Landreth 2010). Apoptotic cells attract microglia by displaying 

different signals. One prominent so-called “eat-me” signal is phosphatidylserine. 

Phosphatidylserine is transferred from the inner leaflet of the cell membrane to the 

outer leaflet by scramblases and flippases and serves as a signal for the microglia to 

find apoptotic cells (Ravichandran 2003; Ravichandran and Lorenz 2007).  

Changes in the glycocalyx can serve as a signal for phagocytosis as well. The 

induction of apoptosis in lymphoblasts led to a decrease of sialic acids on the cell 

surface (Meesmann et al. 2010). This process increased the binding of sialic acid 
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binding plant lectins to the apoptotic cell-derived membranes and the subsequent 

engulfment by monocyte-derived phagocytes. Furthermore, a sialidase treatment of 

apoptotic cells increased the uptake compared to untreated cells. Even the 

incubation of neuraminidase treated viable lymphoblasts with monocyte-derived 

phagocytes led to an engulfment of the lymphoblasts. Therefore, the glycosylation 

status of a cell can act as a signal for phagocytes (Meesmann et al. 2010).  

The importance of ITAM and ITIM-signalling like from the Siglec receptors and their 

involvement in immune processes like phagocytosis was shown in model organisms 

like Caenorhabditis elegans and Drosophila melanogaster. A study in Caenorhabditis 

elegans showed that the receptor CED-1 is an important component in the 

engulfment of apoptotic cells (Zhou et al. 2001). The mechanism, which lies behind, 

is crucial for the uptake of necrotic cells, developmentally pruned axons and 

dendrites. The CED-1 orthologue in Drosophila is Draper. The phosphorylation of 

Draper was increased by a kinase from Src kinase family, the same kinase family 

that phosphorylates the ITAMs and ITIMs of Siglecs. This phosphorylation step was 

essential for glial phagocytic activity. Phosphorylated Draper associated with the 

tyrosine kinase Shark, which is similar to the mammalian Syk kinase, through an 

ITAM motif in the intracellular domain (Ziegenfuss et al. 2008). The activity of Shark 

was required for Draper-mediated signalling like recruitment of glial membranes to 

damaged neurons and the phagocytosis of axonal debris and neuronal corpses by 

glia (Ziegenfuss et al. 2008). A follow-up study found out that in Drosophila there are 

different splice variants of Draper (Logan et al. 2012). The draper-I isoform seemed 

to be necessary for phagocytosis of axonal debris and is expressed in embryos, 

larval brains and larval body wall tissue whereas the Draper-II isoform is solely 

expressed in adults. Isoform-I is the only splice variant harbouring an ITAM sequence 

in its intracellular part. In contrast, the Draper-II isoform contains an ITIM sequence in 

its intracellular part. Overexpression of splice variant II resulted in a complete block 

of glial clearance function. Furthermore Logan and colleagues discovered that the 

ITIM-bearing isoform-II associates with Corkscrew, the Drosophila homolog of 

vertebrate SHP-1 and SHP-2. Taken together, they proposed a model where 

Draper-II and Corkscrew inhibit glial engulfment activity by diminishing the activity of 

Draper-I and its signalling effectors like Shark by dephosphorylation (Logan et al. 

2012). This present study nicely shows that the same mechanism is conserved in 

Siglec signalling. ITIM-bearing Siglecs like Siglec-E counter-regulate the activatory 
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signals from ITAMs resulting in the inhibition of processes like phagocytosis, as was 

shown for Siglec-E overexpression on microglia in this study. Like ITIM-bearing 

Siglecs the isoform-II associated with a homolog of SHP-1 or SHP-2 to exert its 

inhibitory function. 

Other examples for the counter-regulation of an ITAM and an ITIM motif are the 

human receptors FcRIIA and FcRIIB. The ITIM receptor FcRIIB was shown to 

inhibit the FcR-mediated phagocytic pathways (Huang et al. 2003). Clustering of the 

human FcRIIA and the receptor FcRIIB led to a reduction in the efficiency of 

FcRIIA-mediated phagocytosis of IgG-coated erythrocytes up to 50 %. Co-

transfection of FcRIIB and the phosphatases SHP-1 or SHIP-1 further amplified this 

effect up to 85 % of phagocytosis inhibition. Transfection of FcRIIA with one of the 

phosphatases was capable of decreasing the phagocytosis rate even in the absence 

of FcRIIB by more than 50 %. In contrast, the overexpression of Syk kinase 

enhances phagocytosis in transfected epithelial cells (Huang et al. 2003). Like 

Siglec-E, FcRIIB decreased the phagocytosis rate by counteracting the activating 

signal of the FcRIIA. The association with SHP-1 or SHIP-1 was important as known 

for the ITIM-bearing Siglec receptors.  

The ITIM bearing human Siglec-5 and the mouse Siglec-1/Sn have been shown to be 

capable of binding to sialylated bacteria (Jones et al. 2003). The difference in the 

binding of Siglec-5 to non-sialylated or sialylated bacteria was 30- and 10-fold for two 

Neisseria meningitides strains. Significantly larger numbers of bacteria were taken up 

when they were sialylated. This effect could be inhibited by a Siglec-5 blocking 

antibody. When the uptake of bacteria of wild-type versus macrophages from Sn-

deficient mice was compared, the wild-type macrophages displayed an enhanced 

uptake of sialylated bacteria over a 30 minutes time course. In conclusion, this 

demonstrates that Siglecs can interact with sialylated pathogens and are able to 

engulf them (Jones et al. 2003). 

Thus, in line with these studies, the present experimental results suggest, that the 

microglial ITIM-containing receptor Siglec-E is a negative regulator of phagocytosis 

of microglia probably by counteracting an activatory ITAM signalling receptor and by 

recognition of the sialylation status of a cell. The removal of sialic acid was a 

triggering factor as seen in the co-culture approach with primary hippocampal 
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neurons. Mimicking the state of apoptotic or damaged cells by removal of sialic acid 

resulted in a decrease of the relative neurite length, which was mediated by the 

microglia. The amount of the decrease in the relative neurite length was dependent 

on the level of Siglec-E expression on the microglia. Similar to the Draper isoform II 

and FcRIIB, Siglec-E seemed to have a negative regulating function in the context of 

phagocytosis. Overexpression of Siglec-E resulted in a diminished phagocytosis rate 

of neural debris whereas the knock-down of Siglec-E on microglia led to an increased 

phagocytosis rate. The outcome of the knock-down approach suggests that if the 

inhibitory counterpart of the ITAM-ITIM-regulation is missing, an over-activation of the 

immune response could be the consequence like the one which was seen by the 

increase in the phagocytosis rate.  

 

Associated with phagocytosis is the production of reactive oxygen species. In 

neutrophils and macrophages, double-knock-out of DAP12 and FcR resulted in the 

lack of the ability to mediate the integrin induced respiratory burst by the ITAM-Syk 

pathway (Mocsai et al. 2006). The ITAM-Syk pathway is initiated by the ITAM-

bearing receptor DAP12 and FcR and signals via the Vav family of Rho guanine 

nucleotide exchange factors. This leads to the activation of the NADPH oxidase 

(NOX2) complex and production of reactive oxygen species (Graham et al. 2007). 

Siglecs bearing an inhibitory ITIM motif are thought to counteract the activatory 

signals by ITIM receptors like DAP12, suggesting an involvement on the regulation of 

the NOX2 complex. 

In another approach the participation of SHP-1 in the regulation of superoxide 

formation was investigated. SHP-1 is recruited by phosphorylated Siglec-E to 

counteract activatory signals of ITAM receptors. In the study by Krotz and colleagues 

blocking of SHP-1 in endothelial cells by distinct mechanisms resulted in increased 

basal superoxide release. The same held true for knock-down of SHP-1 with RNA 

interference. This effect was abolished by a nicotinamide adenine dinucleotide 

(phosphate) (NAD(P)H)-oxidase inhibitor and by a phosphatidyl-inositol-3-kinase 

(PI3K) inhibitor, suggesting that SHP-1 negatively regulates PI3K followed by 

attenuation of NAD(P)H-oxidase-dependent superoxide production (Krotz et al. 

2005).  
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The importance of ITAM-Syk and therefore counter-regulating ITIM receptors in ROS 

production has been exemplified by numerous studies. The C-type lectin Dectin-2 is 

crucial for NF-B activation and anti-fungal immune response. Silencing of Dectin-2 

or Syk had the consequence that THP-1 macrophages stimulated with swollen 

conidia of the fungus Aspergillus fumigatus were no more capable to react with a 

respiratory burst, which was seen for control THP-1 cells. Treatment with a Syk 

inhibitor resulted in the same outcome in WT macrophages demonstrating the 

essential role Syk plays in the ROS production mediated by Dectin-2 in response to a 

fungus infection (Sun et al. 2013). 

Another research group took a closer look at the mechanism lying behind the Syk-

pathway and the respiratory burst. Two different phases of the production of ROS 

could be identified. In platelets the first initial phase seemed to be independent of the 

Syk-pathway whereas the second phase involved the Syk-pathway. Furthermore, a 

blocking antibody of the ITAM receptor FcRIIa was able to abolish the FcRIIa-

induced ROS production in platelets indicating that the respiratory burst in platelets 

was dependent on the interaction with FcRIIa. ITIM receptors like Siglec-E could 

have a similar effect on ROS production as the overexpression and knock-down 

studies with Siglec-E showed. Overexpression of Siglec-E and thus the inhibitory 

stimulus for the activating ITAM-Syk pathway led to a remarkable decrease in ROS 

production. The platelet-specific collagen receptor GPVI/FcR is known to trigger 

ROS production in platelets. Generation of ROS induced by agonists of the receptor 

GPVI could be inhibited by a Syk inhibitor. In contrast, co-treatment with a GPVI and 

a FcRIIa agonist increased ROS production, which in turn was inhibited by the same 

Syk inhibitor. In summary, ROS generation in platelets could be induced by either 

GPVI/FcR or FcRIIa agonists but both are involved in the ITAM-Syk-pathway 

(Arthur et al. 2012), which could be regulated by receptors with an ITIM sequence. 

Hyperglycaemic conditions were shown to down-regulate CD33/Siglec-3 expression 

on primary human monocytes. This went along with an increase in the expression of 

proinflammatory cytokines like TNF-, which is in line with the results of the Siglec-E 

knock-down in microglia, showing elevated level of proinflammatory cytokines like 

IL-1 and TNF-. Treatment with the antioxidant -tocopherol reversed the down-

regulation of CD33 and the elevated TNF- production, suggesting a mechanism by 

which ROS generation is induced by high glucose concentrations and the 
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subsequent down-regulation of CD33 linking ROS production to CD33 expression 

levels (Gonzalez et al. 2012). In microglia the level of Siglec-E expression could be 

linked to the amount of ROS production as well. Knock-down of Siglec-E had similar 

results like the down-regulation of CD33/Siglec-3 namely elevated ROS production 

and increased release of proinflammatory cytokines. 

The CD22/Siglec-2 blocking antibody HB22.7 was recently applied in a study with 

Bortezomib treated lymphoma cells. Bortezomib is a proteasome inhibitor with anti-

lymphoma properties exerting its influence by generation of ROS and by induction of 

apoptosis. A sequential treatment of lymphoma cells with HB22.7 and Bortezomib 

reduced the number of viable cells by about 95 % and increased ROS production by   

more than 40 %, suggesting a synergistic cytotoxic effect via raised apoptosis and 

ROS production. This links the blocking of another Siglec to an increase in ROS 

production (Martin et al. 2011) like it was shown for Siglec-E in this study. 

Siglec-8 sharing a high sequence homology with Siglec-E is known to induce 

apoptosis in eosinophils via caspase-8 and/or caspase-9 (Nutku et al. 2003). Cross-

linking of Siglec-8 triggered caspase-3, caspase-8 and caspase-9 cleavage and led 

to an increase in annexin-V staining. Caspase inhibitors reduced Siglec-8-induced 

apoptosis in eosinophils. Additionally, Siglec-8 cross-linking resulted in mitochondrial 

dissipation, which is a characteristic of apoptosis. An inhibitor of ROS production was 

capable of completely inhibiting Siglec-8-mediated apoptosis and the associated 

mitochondria dissipation, indicating that ROS production is indispensable for 

Siglec-8-triggered apoptosis and precedes mitochondrial injury (Nutku et al. 2005). 

These results are in line with the analysis of ROS production in microglia with knock-

down of Siglec-E, which had higher ROS production than control cells. This effect 

could be reversed by addition of a scavenger like SOD1 or trolox. Additionally, in the 

co-culture approach of neurons with microglia, trolox was able to abolish the 

neurotoxic effect of Siglec-E knock-down microglia and restore the relative neurite 

length back to control levels.  

Concluding, the ITAM-Syk pathway seems to be of great importance for the initiation 

of ROS production in various cell types. Inhibition or knock-down of either Syk or a 

component bearing an ITAM sequence like the receptor DAP12 leads to a diminished 

respiratory burst. That Siglecs can indeed be linked to the respiratory burst was 

proven by the studies with CD33/Siglec-3, CD22/Siglec-2 and Siglec-8 (Gonzalez et 
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al. 2012; Martin et al. 2011; Nutku et al. 2005). As Siglec-E is an ITIM-containing 

receptor, which counter-balances activatory signals from ITAM receptors, it is not 

surprising to see that overexpression of Siglec-E on microglia resulted in a strongly 

reduced level of ROS whereas the knock-down of the inhibiting receptor Siglec-E led 

to an overproduction of ROS. Another indication for the involvement of Siglec-E in 

ROS production is that the elevated ROS production after knock-down of Siglec-E on 

microglia and treatment with neural debris could be rescued by addition of either the 

scavenger trolox or SOD1 to the system. This suggests, that for the knock-down of 

Siglec-E on microglia, the regulating part of this mechanism was missing, as was 

also shown in a study with SHP-1, leading to the increased amount of ROS 

production (Krotz et al. 2005).  

 

4.4 Microglial Siglec-E has neuroprotective properties in co-culture 

with neurons 

Experiments with a Siglec-E:Fc fusion protein demonstrated that Siglec-E binds to 

ligands on neurons, astrocytes and primary microglia. Overexpression of Siglec-E on 

microglia led to an increase in relative neurite length in a co-culture system indicating 

a neuroprotective function of Siglec-E in the co-culture system whereas knock-down 

of Siglec-E on microglia resulted in a diminished relative neurite length, arguing for a 

neurotoxic influence. Upon removal of sialic acid the binding capacity as well as the 

neuroprotective effect was abolished, demonstrating that the trans interaction with its 

ligands on the neurons was needed for Siglec-E to exert neuroprotection. Strikingly, 

co-culture of Siglec-E knock-down microglia and neurons in the presence of the ROS 

scavenger trolox reversed the neurotoxic effect, demonstrating that the neurotoxic 

effect was mediated via ROS. Thus, the data of this study suggest that microglial 

Siglec-E has neuroprotective properties by preventing ROS production. 

A similar effect was shown for murine microglia being modified to express human 

Siglec-11. Transduction of microglia with human Siglec-11 resulted in an elevation of 

relative neurite length and a higher neuronal cell body density in a co-culture system 

with neurons pointing to an alleviation of microglial neurotoxicity (Wang and 

Neumann 2010). 
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The idea of microglia playing an important role in brain homeostasis is not new. They 

can either be beneficial and neuroprotective or detrimental and neurotoxic. The 

frontier between the two is narrow since acute neuroinflammation can be necessary 

to clear a site of injury and minimize further injury but chronic neuroinflammation can 

be harmful by promoting neurodegenerative diseases like AD, Parkinson’s disease 

(PD) and amyotrophic lateral sclerosis (ALS). Activation of microglia in response to a 

threat includes phagocytosis (Napoli and Neumann 2009), antigen processing and 

presentation (Aloisi 2001), release of pro- and anti-inflammatory cytokines and of 

neurotoxic and neurotrophic factors (Walter and Neumann 2009).  

Microglia are the main source of the proinflammatory cytokine TNF- in the brain 

(Sawada et al. 1989). That TNF- can be harmful in neuropathogenesis has been 

shown before (Abo-Ouf et al. 2013). Rodriguez and colleagues used either the anti-

inflammatory agent minocycline or prednisolone or a combination of minocycline and 

prednisolone to treat the 6-hydroxydopamine hamster model. The treatment led to 

reduced levels of TNF- and iNOS, which resulted in better recovery of dopaminergic 

neurons after the neurotoxic stimulus (Rodriguez et al. 2013). In a co-culture system 

of neurons and p38-deficient microglia neurons were protected against LPS-

induced synaptic loss, neurite degeneration and neuronal death. The p38-deficient 

microglia produced decreased levels of TNF-. Strikingly, addition of TNF- to the 

system re-established LPS-induced neuron damage. Neutralization of TNF- in a co-

culture system with wildtype microglia prevented neuron damage. This demonstrates 

once more that microglia are the key mediators of LPS-induced neuronal and 

synaptic dysfunction partially through upregulation of TNF- (Xing et al. 2011). 

Another study used the immunosuppressive antibiotic rifampicin in co-culture of 

microglia and neurons. Stimulation of microglia with rifampicin led to reduced release 

of iNOS, TNF-, IL-1 and less production of NO. This resulted in reduced 

neurotoxicity and improved neuron survival (Bi et al. 2011). Fluoxetine is a selective 

serotonin re-uptake inhibitor. In a rat neuron-glia culture, fluoxetine was capable of 

attenuating LPS-induced chronic neurodegeneration as it inhibited activation of 

microglia and their release of proinflammatory cytokines like TNF- and IL-1 and 

the neurotoxic factors NO and ROS. Thereby, fluoxetine exerted a neuroprotective 

effect by preventing microglial neurotoxicity (Zhang et al. 2012). The Siglec-E 

expression level on microglia influenced the production of TNF- and IL-1 following 
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stimulation with neural debris. As the results of the before mentioned studies 

revealed, the release of cytokines like TNF- needs a tight control. Therefore, it can 

be assumed that Siglec-E is a regulator of the production of cytokines and thereby 

helps to prevent overproduction of proinflammatory cytokines, which could become 

harmful if not tightly regulated. That IL-1 is another cytokine with devastating 

potential like TNF- was shown in other studies. Ghrelin is a compound, which 

displayed neuroprotective properties in a PD model (Moon et al. 2009). An inducible 

IL-1-overexpressing mouse model showed a significant increase in tau 

phosphorylation and a fourfold to sixfold increase in microglia associating with 

plaques. The microglia at the site of injury seemed more activated (Ghosh et al. 

2013). Long-lasting expression of TNF- in the substantia nigra caused death of 

dopaminergic neurons, irreversible akinesia and microglia activation (De Lella 

Ezcurra et al. 2010).  

That no activation of microglia can be beneficial was demonstrated by a study where 

it was shown, that when there is no activation of microglia in the substantia nigra 

there is no activation of the NADPH oxidase, no ROS production and no production 

of proinflammatory cytokines and that this was advantageous for the dopaminergic 

neurons in the substantia nigra (Chung et al. 2012). Another study showed, that 

application of a free radical scavenger like SOD1 can be protective for dopaminergic 

neurons (Zhang et al. 2009). The study at hand demonstrated the neurotoxic effect of 

microglia using a knock-down of Siglec-E for neurons and showed that this effect 

was mediated by ROS since it could be reversed by the scavenger trolox. These 

results provide new insights to the impact of the Siglec-E expression level in 

microglia for ROS production and thereby its role for determining a neuroprotective or 

neurotoxic phenotype. 

In conclusion, activation of microglia is essential to clear a site of injury. This process 

involves release of cytokines and neurotrophic factors. On the other hand, the 

activation of microglia can become harmful to neurons when this event is not tightly 

regulated by counter-balancing mechanisms. Siglec-E seems to be part of the 

mechanism by which the immune response is regulated by microglia as 

overexpression led to reduced release of pro-inflammatory cytokines and a 

diminished production of free radicals. In a co-culture system, this beneficial effect 

could be demonstrated by an increase in relative neurite length after overexpression 



4. Discussion 78 

 
of Siglec-E on microglia, suggesting that Siglec-E has neuroprotective properties. 

The glycosylation pattern of the neurons was important to mediate the inhibitory 

effect of Siglec-E serving as a signal for the microglia to detect the healthy state of 

the neurons. 

The outcome of this study could be of great importance for diseases that are 

accompanied by chronic inflammation like AD, PD or ALS as the chronic activation of 

microglia promotes the course of the diseases. For CD33/Siglec-3 it was shown that 

a specific CD33/Siglec-3 SNP in AD patients, which was correlated with higher 

expression of CD33 on microglia, was associated with an increase of insoluble A42 

levels and amyloid plaque load. Inactivation of CD33/Siglec-3 enhanced the uptake 

of amyloid beta whereas increase in CD33/Siglec-3 levels inhibited the uptake of 

amyloid beta by microglia (Griciuc et al. 2013). Siglec-E belongs to the CD33-related 

Siglecs and is expressed on microglia in the brain. As shown by this study, Siglec-E 

takes part in the regulation of microglia activity by inhibiting the release of pro-

inflammatory cytokines like TNF- and IL-1 and diminishes phagocytosis and the 

associated production of reactive oxygen species. Therefore, Siglec-E is likely to be 

another Siglec that associates with neurodegenerative diseases and may play an 

important role in the immune response. Further study in the context of 

neurodegenerative diseases might thus be interesting, since Siglec-E appears to be 

a Siglec with neuroprotective properties.  

 

4.5 Outlook 

The present study shows that Siglec-E is a murine Siglec with immunomodulatory 

properties on microglia. Through the influence on the transcription level of 

proinflammatory cytokines and the production of ROS following stimulation, the 

expression level of Siglec-E on microglia seems to be crucial for the phenotype. In a 

co-culture system with neurons, the expression level of Siglec-E determined if the 

microglia were neuroprotective or neurotoxic. The sialic acid cap on the glycocalyx of 

the neurons was important to mediate the binding of Siglec-E. 

As this study provides solely in vitro data, the next interesting step would be to have 

a look into the in vivo situation. A study with Siglec-E knock-out mice already 

demonstrated that Siglec-E is crucial for the regulation of neutrophil recruitment in 

the lung (McMillan et al. 2013). But the impact of the Siglec-E knock-out on microglia 
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in the brain remains unknown so far. Further insights could be gained by analysing 

the influence of a Siglec-E overexpression on a neuroinflammatory disease model 

like experimental autoimmune disease (EAE) for Multiple Sclerosis to see, for 

example, whether pro-inflammatory cytokines are downregulated and whether the 

disease progression is reduced to a slower proceeding paralysis. Since Siglec-E 

overexpression was shown to lead to a more anti-inflammatory phenotype of 

microglia, a Siglec-E overexpressing mouse model might influence the disease 

progression to a milder disease course. 

The level of ROS production by microglia was affected by modulation of Siglec-E 

expression. ALS is a disease, which is linked to elevated ROS production and 

frequently associated with a mutation in SOD1. The NADPH oxidase is a source of 

ROS and was shown to be regulated by SOD1. This regulation is defective in 

mutated SOD1 leading to elevated levels of superoxide (Harraz et al. 2008). Siglec-E 

knock-down resulted in increased levels of ROS production by microglia. Hence, a 

Siglec-E knock-out might enhance the disease course by additional superoxide 

release. Siglec-E under a constitutively higher expressed promoter specific for 

microglia like iba1 might thus be beneficial for the disease course. A similar 

experimental setup is conceivable in a mouse model of PD or AD as ROS production 

is known to play a detrimental role in the progression of these diseases. The ROS 

released by microglia is harmful for the surrounding neurons and thereby accelerates 

the disease course of PD and AD (Shimohama et al. 2000; Wu et al. 2003). A mouse 

model overexpressing Siglec-E in microglia might be beneficial as it might have 

decreased ROS production and therefore less neurotoxicity. 

The process of phagocytosis is essential for a healthy brain. In the study at hand 

Siglec-E was demonstrated to influence the phagocytosis rate of microglia, 

depending on the expression status of Siglec-E on the microglial surface. AD is one 

of the most prominent neurodegenerative diseases where microglial phagocytosis is 

needed to clear amyloid plaques (Nicoll et al. 2006). Therefore, a mouse model of 

AD could be used to study whether Siglec-E knock-out or overexpression of Siglec-E 

leads to alterations in the plaque load in the brain. The human orthologue Siglec-9 

was shown to be expressed on macrophages and an effect of Siglec-E in AD might 

provide indication of a possible involvement of Siglec-9 in AD as well (Ando et al. 

2008). 
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Concluding, Siglec-E is a modulator of the microglial immune response concerning 

the release of proinflammatory cytokines like IL-1 and TNF-, phagocytosis of cell 

debris and the production of ROS. With these features, Siglec-E should be an 

interesting topic for further studies in the context of different diseases involving 

neuroinflammation, phagocytosis and superoxide production. Since Siglec-E was 

shown to have neuroprotective properties in a co-culture system with neurons, it 

might be a promising target in the therapy and treatment of neurodegenerative 

diseases like PD or AD. More knowledge on the function of Siglec-E is needed to 

better understand its role in the modulation of the immune response. The outcome of 

studies concerning Siglec-E might be interesting for its human orthologues Siglec-7 

and Siglec-9 as well. 
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5. Summary  

 

The aim of this study was to investigate and understand the function of the receptor 

Siglec-E on microglial cells under neuroinflammatory conditions. So far, no data 

about Siglec-E on microglia are available. Therefore the initial step was to prove the 

transcription and expression of Siglec-E in microglia. Ex vivo, primary microglia as 

well as the microglial line were shown to express Siglec-E. To gain knowledge on the 

function of Siglec-E, lentiviral transductions were performed to obtain microglia lines 

either overexpressing Siglec-E or expressing less (knock-down) Siglec-E and the 

corresponding controls. The modified microglia did not show any changes in surface 

marker expression or cytokine transcription after the transduction procedure. 

As phagocytosis is one of the main features of microglia, the phagocytic behaviour of 

the modified microglia was the first to be analysed. Microglia overexpressing Siglec-E 

had a decreased phagocytosis rate of neural debris whereas microglia with a knock-

down of Siglec-E had an increased phagocytosis rate when compared to the 

corresponding controls. The phagocytosis-associated oxidative burst was relatively 

mild after stimulation with neural debris in microglia overexpressing Siglec-E and was 

more prominent in Siglec-E knock-down microglia being fed with neural debris. 

Quantification of mRNA levels of IL-1, iNOS and TNF- after stimulation with neural 

debris revealed that the Siglec-E overexpressing microglia showed no change in 

cytokine production while Siglec-E knock-down microglia showed a significant 

increase of IL-1 and TNF- production following the stimulation. 

Since neurons display high levels of the Siglec-E ligand sialic acid on their 

glycocalyx, the binding capacity of a Siglec-E:Fc fusion protein to neurons was 

tested. While the Siglec-E fusion proteins bound to neurons, this effect was abolished 

after enzymatic removal of sialic acid from the neuronal cell surface by sialidase. A 

co-culture experiment with primary hippocampal neurons and the different modified 

microglia showed that neurons, which had been cultured with microglia 

overexpressing Siglec-E, had the highest relative neurite length. In contrast, co-

culture of microglia with knock-down of Siglec-E and neurons resulted in the lowest 

relative neurite length. Enzymatic removal of sialic acid on the neuronal glycocalyx 

led to an overall comparable decrease in relative neurite length. When the ROS 
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scavenger trolox was added to the co-culture system, the decrease in relative neurite 

length after knock-down of Siglec-E on microglia was restored to the level of the 

corresponding control.  

In summary, these data show that Siglec-E is a regulatory receptor, which plays a 

role in phagocytosis and the associated oxidative burst. In the co-culture experiments 

the overexpression of Siglec-E on the microglia resulted in a neuroprotective 

phenotype by preventing the removal of neurites. The knock-down approach 

revealed that the ROS scavenger trolox is capable of restoring the detrimental effect 

in the co-culture system. Therefore, the neuroprotective effect of Siglec-E was 

mediated by attenuation of reactive oxygen species release. Thus, Siglec-E might be 

an interesting target in diseases associated with neuroinflammation and 

neurodegeneration.
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