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ZUSAMMENFASSUNG

Die Atmosphäre ist ein von starken Nichtlinearitäten geprägtes, unendlich-
dimensionales dynamisches System, dessen Variablen auf einer Vielzahl verschiedener
Raum- und Zeitskalen interagieren. Ein potentielles Problem von Modellen zur numeri-
schen Wettervorhersage und Klimamodellierung, die auf deterministischen Parametrisie-
rungen subskaliger Prozesse beruhen, ist die unzureichende Behandlung der Interaktion
zwischen diesen Prozessen und den Modellvariablen. Eine stochastische Beschreibung
dieser Parametrisierungen hat das Potential die Qualität der Simulationen zu verbessern
und das Verständnis der Skalen-Interaktion atmosphärischer Variablen zu vertiefen.

Die wissenschaftlich Gemeinschaft, die sich mit stochastischen meteorologischen
Modellen beschäftigt, kann grob in zwei Gruppen unterteilt werden: die erste Gruppe ist
bemüht durch pragmatische Ansätze bestehende, komplexe Modelle zu erweitern. Die
zweite Gruppe verfolgt einen mathematisch rigorosen Weg, um stochastische Model-
le zu entwickeln. Dies ist jedoch aufgrund der mathematischen Komplexität bisher auf
konzeptionelle Modelle beschränkt. Das generelle Ziel der vorliegenden Arbeit ist es, die
Kluft zwischen den pragmatischen und mathematisch rigorosen Ansätzen zu verringern.
Die Diskussion zweier konzeptioneller Klimamodelle verdeutlicht, dass eine stochastische
Formulierung nicht willkürlich gewählt werden darf, sondern aus der Physik des betrachte-
ten Systems abgeleitet werden muss. Ebenso unabdingbar ist eine rigorose numerische
Implementierung des resultierenden stochastischen Modells. Diesem Aspekt wird beson-
dere Bedeutung zu Teil, da dynamische subskalige Prozesse oftmals durch zeitabhängige
stochastische Prozesse beschrieben werden, die nicht mit deterministischen numerischen
Methoden behandeln lassen.

Wir zeigen auf, dass eine stochastische Formulierung der dreidimensionalen pri-
mitiven Gleichungen im mathematischen Rahmen abstrakter stochastischer Fluidmodelle
behandelt werden kann. Dies ermöglicht die Anwendung kürzlich gewonnener Erkenntnis-
se bezüglich Existenz und Eindeutigkeit von Lösungen. Wir stellen einen auf dieser theo-
retischen Grundlage basierenden Galerkin Ansatz zur Diskretisierung der räumlichen und
stochastischen Dimensionen vor. Mit Hilfe sogenannter milder Lösungen der stochasti-
schen partiellen Differentialgleichungen leiten wir quantitative Schranken der Diskretisie-
rungsfehler her und zeigen die starke Konvergenz des mittleren quadratischen Fehlers.
Unter zusätzlichen Annahmen leiten wir die Konvergenz eines numerischen Verfahrens
her, das den Galerkin Ansatz um einer zeitliche Diskretisierung erweitert.
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ABSTRACT

The atmosphere is a strongly nonlinear and infinite-dimensional dynamical system
acting on a multitude of different time and space scales. A possible problem of numeri-
cal weather prediction and climate modeling using deterministic parameterization of sub-
scale and unresolved processes is the incomplete consideration of scale interactions. A
stochastic treatment of these parameterizations bears the potential to improve the sim-
ulations and to provide a better understanding of the scale interactions of the simulated
atmospheric variables.

The scientific community that is dealing with stochastic meteorological models can
be divided into two groups: the first one uses pragmatic approaches to improve exist-
ing complex models. The second group pursues a mathematical rigorous way to develop
stochastic models, which is currently limited to conceptual models. The overall objective of
this work is to narrow the gap between pragmatic approaches and the mathematical rigor-
ous methods. Using conceptual climate models, we point out that a stochastic formulation
must not be chosen arbitrarily but has to be derived based on the physics of the system at
hand. Equally important is a rigorous numerical implementation of the resulting stochastic
model. The dynamics of sub grid and unresolved processes are often described by time
continuous stochastic processes, which cannot be treated with deterministic numerical
schemes.

We show that a stochastic formulation of the three-dimensional primitive equations
fits in the mathematical framework of abstract stochastic fluid models. This allows us to
utilize recent results regarding existence and uniqueness of solutions of such systems.
Based on these theoretical results we propose a Galerkin scheme for the discretization
of spatial and stochastic dimensions. Using the framework of mild solutions of stochastic
partial differential equations we are able to prove quantitative error bounds and strong
mean square convergence. Under additional assumptions we show the convergence of a
numerical scheme which combines the Galerkin approximation with a temporal discretiza-
tion.
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1 Introduction

The atmosphere is a strongly nonlinear and infinite-dimensional dynamical system acting
on a multitude of different time and space scales. Numerical models of the atmosphere
or the climate system can only treat a finite number of degrees of freedom. Due to scale
interactions, the effect of the discretizations is not negligible. Therefore it is necessary
to parameterize the effects of the unresolved scales on the resolved ones. In principle
the stochastic character of the unresolved scales has to be taken into account. However,
due to historic reasons most parameterization of subscale processes are deterministic in
nature. They model conditional expectation values of moments (mostly second moments)
given the resolved scales [1]. A possible problem of numerical weather prediction (NWP)
and climate modeling using deterministic parameterization of subscale and unresolved
processes is therefore the incomplete consideration of interactions between the resolved
and subgrid scale processes. A stochastic treatment of these parameterizations has the
potential to improve the simulations and to provide a better understanding regarding the
stochastic characteristics of the simulated atmospheric variables. Furthermore a stochas-
tic model provides a natural framework to describe the state of a chaotic system using
probability densities instead of absolute values. This in turn is closely connected to the
analysis of stability regimes, tipping points and extreme events, see for instance [2].

The idea of using stochastic climate models has been introduced by Lorenz, who stated:
“I believe that the ultimate climatic models [...] will be stochastic, i.e., random numbers will
appear somewhere in the time derivatives” [3]. However in the same article he made a
note of caution: “If we are truly careful in introducing our random numbers, we can likewise
assure ourselves that the probability of producing an ice age, when one ought not to form,
is some infinitesimally small number ”. In the same year Hasselmann published a path-
breaking article [4], which contains the first mathematical formulation of a climate model
treating weather effects as random forcing terms. Since then there have been various
approaches to incorporate stochastic techniques in existing numerical models for the at-
mosphere and climate. In many cases this was proposed or done without the appropriate
analyses concerning both the numerical implementation and the mathematical and physi-
cal properties of the stochastic variables or processes. Most of the numerical issues arise
since models involving time dependent stochastic fluctuations require specific numerical
schemes. While the numerical flaws are easily avoided in self-contained conceptual mod-
els when handled with proper care, it is a nontrivial challenge to implement a stochastic
parameterization into more complex, high dimensional models, e.g., a global circulation
model (GCM). The second aspect is more subtle but equally important: the occurrence
and the character of a stochastic parameterization have to be physically justified. This is
essential for the validity and credibility of stochastic climate models.

The scientific community dealing with stochastic meteorological or climate models can be
divided into two groups. The first one uses pragmatic approaches to enhance the existing
complex models with stochastic terms which are justified afterwards by means of various
skill scores. The second group pursues a mathematical rigorous way to develop stochastic
models. Due to the complexity of these systems, this approach is currently limited to
conceptual models excluding operative GCMs. The overall objective of this work is to
narrow the gap between pragmatic approaches and the mathematical rigorous methods
with respect to numerical weather prediction and climate models. More specifically we
extensively study two conceptual climate models to crystallize the following statements:

• Stochastic terms must not be arbitrarily chosen, but have to be based on the physics
of the system.

• Stochastic models require a specific numerical treatment, which fundamentally dif-
fers from deterministic schemes.



2 1 INTRODUCTION

Furthermore, we demonstrate that the first claim does not require new mathematical tools.
In fact, suitable methods to derive stochastic characteristics from data are known since
1927 [5, 6]. In contrast, rigorous numerical schemes for meteorologically relevant stochas-
tic partial differential equations have yet to be derived. Recently, significant progress has
been made in the theoretical analysis of stochastic three-dimensional primitive equations
(PE), yielding existence and uniqueness of pathwise solutions [7]. This provides a foun-
dation to utilize recently developed numerical schemes based on so called mild solution
of stochastic partial differential equations [8]. Before going into further details, we give a
brief survey of the current status of research, which serves as both motivation and starting
point of this work.

1.1 State of the Art

1.1.1 Pragmatic Approach

The utilization of stochastic terms in NWP is nowadays widely accepted as a tool to im-
prove forecast quality. There is a variety of different techniques currently implemented
operationally, for instance:

• Ensemble forecasting: multiple numerical simulations are run with slightly varying
initial conditions in order to generate an estimated probability density for the state of
the atmosphere at a future time [9].

• Perturbed physics: a variation of the ensemble forecast technique, where parame-
ters of a numerical scheme are described by random variables, i.e. each numerical
simulation is based on slightly different model physics [10].

• Stochastic backscattering: numerical integration schemes and parameterizations
lead to a systematic unphysical kinetic energy loss. Using autoregressive processes,
a fraction of the dissipated energy is injected back into the model [11, 12].

Although these techniques lead to an improved forecasting skill [13], there are some phys-
ical and mathematical points of criticism. For instance, the concept of random variables
and stochastic processes as well as the application of Itô and Stratonovich calculus is not
clearly distinguished in some papers [14]. This is particularly important since stochastic
processes require a specific numerical treatment, depending on the kind of calculus used.
In a review paper on probabilistic climate predictions at the ECMWF the authors do not
mention any stochastic calculus at all [15]. As an example for a physically questionable
approach consider the following model, which has been implemented operationally in the
ECMWF ensemble weather prediction scheme [15]

∂

∂t
Ψ = AΨ + ǫPΨ.

In this schematic representation Ψ denotes a phase space state variable, e.g., temper-
ature or components of velocity at all grid points, or their projections on specified basis
functions. A describes the resolved dynamical terms, P the parameterized influences of
the subgrid processes and ǫ is a random variable uniformly distributed in [0.5, 1.5]. Moti-
vated by the typical scales for synoptic simulations, the random drawings are constant over
a time period of 6h and a spatial domain of 10◦ × 10◦ in latitude and longitude. Although
Buizza et al. [10] show that this scheme has a positive impact on medium-range probabil-
ity forecast skill scores for precipitation, it is debatable whether this approach is consistent
with the physical conditions. Particularly the spatial autocorrelation structure seems ques-
tionable since an area of 10◦× 10◦ centered at the equator is about 23 times as large as a
10◦ × 10◦ area centered at one of the poles, yet both are treated equally in terms of auto-
correlation. A revised version of this scheme is discussed in [13], where ǫ closely follows
a Gaussian distribution that is driven by stationary Gaussian auto-regressive processes in
the spectral space. However, for perturbations with moderate amplitudes across the entire
atmosphere numerical instabilities were discovered. The authors state: “Further testing
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showed that the cause of the numerical instability are the perturbations in the lowermost
part of the atmosphere. The reason is the delicate balance between model dynamics and
vertical momentum transport which is established in the lowest model levels on timescales
of the order of minutes. As a compromise between numerical stability and high probabilis-
tic skill, the tendency perturbations were reduced towards zero close to the surface” [13,
p.4]. These findings point to two possible underlying problems: first, the numerical inte-
gration scheme, which has been designed to solve a deterministic system, is not be able
to handle the stochastic terms properly. Second, the specific stochastic formulation is not
suited to describe the unresolved processes and is therefore not consistent with the model
physics. We discuss both issues for the case of a conceptual one-dimensional model in
the first half of this work.

1.1.2 Mathematical Rigorous Approach

In the last years awareness for the risks of using stochastic models without careful consid-
eration of physical, mathematical and numerical aspects has grown. Penland and Ewald
state: “Simply replacing the fast term with a Gaussian random deviate with standard devi-
ation equal to that of the variable to be approximated, and then using deterministic numer-
ical integration schemes, is a recipe for disaster ” [16]. The application of mathematical
rigorous methods during the development of stochastic models is of great interest and
importance not only to investigate the validity of existing models but also to gain further
understanding of the model’s stochastic behavior. In the following we give a brief overview
of approaches and results related to the work at hand.

In the paper “An applied mathematics perspective on stochastic modeling for climate”
[17], Majda discusses a few systematic strategies for mathematical rigorous stochastic
climate modeling. In particular a mode reduction technique (MTV) by Majda, Timofeyev
and Vanden-Eijnden [18, 19, 20, 21, 22, 23, 24] used for stochastic modeling of the low-
frequency variability of the atmosphere is presented. Starting with a deterministic system
that can be orthogonally decomposed into subsystems acting on strongly differing time
scales, the fast variables are truncated and represented by nonlinear Itô equations. This
technique assumes ergodicity and mixing for the fast modes with Gaussian low-order
statistics. Notably, the emerging statistics for the slow variables can very well be non-
Gaussian, e.g., Sura applies this technique to explain non-Gaussian sea-surface temper-
ature (SST) variability [25]. Using physically motivated regression fitting strategies [24] the
conclusive additive and multiplicative stochastic processes (SPs) are dictated by the sys-
tems physics. This allows for a physically intuitive interpretation of the occurring stochas-
tics: the additive noise originates from the linear interaction between the fast modes and
the mean state of the slow modes, while the multiplicative noise stems from the advection
of the slow modes by the fast modes, a phenomenon known as stochastic drift. This tech-
nique is a prime example how SPs can – and should – be based on the model’s inherent
physics.

On the topic of stochastic treatment of Rossby waves and their propagation on the sphere,
Sardeshmukh, Penland and Newman [26, 27] discuss spatially homogeneous noise cor-
related in time. Monahan, Imkeller and Pandolfo [28] study the orthogonal case of spa-
tially fluctuating noise that is homogeneous in time. Sardeshmukh, Penland and Newman
thoroughly characterize suitable multiplicative noise terms for differential equations with
a timescale separation ǫ. If the fast variable can be expressed in terms of stationary,
centered and bounded stochastic processes, e.g., Ornstein Uhlenbeck processes, the
system converges to a Stratonovich SDE for ǫ → 0 with a specified amplitude for the
evolving white noise. The barotropic vorticity equation in spherical coordinates, linearized
around the zonal mean flow reads

∂

∂t
ζ′ = −∇ · (v̄ζ′ + v′ζ̄)− rζ′ + SD.

Here ∇ denotes the horizontal gradient operator on the surface of the earth, ζ denotes the
vertical component of absolute vorticity, v is the horizontal velocity, r denotes the frictional
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damping rate, and SD symbolizes a steady Rossby-wave source. Overbars indicate zonal
means, and primes denote deviations from the zonal means, i.e. Rossby waves [26, p.6].
Let u denote the zonal velocity component, Ω the Coriolis parameter, and ae the earth’s
radius. The system is then modified by fluctuations in the superrotational flow by adding
a stochastic contribution to the zonal mean of u:

ū = (u0 + η)Ωae cosΘ,

where η is, for instance, an Ornstein Uhlenbeck process. Comparing the ensemble mean
of several numerical simulations to a deterministic control run shows an additional scale-
dependent damping. In contrast, a stochastic disturbance of the frictional damping pa-
rameter r = r0 + η leads to a scale independent attenuation of damping. The influence of
state dependent fluctuations, i.e. multiplicative noise, on the mean value of a stochastic
system is known as stochastic drift.

Imkeller, Monahan and Pandolfo [28] tackle the phenomenon of a fluctuating background
flow from a different angle by using stationary stochastic processes in the spectral space.
They assume a spatially oscillating autocovariance structure that is constant in time. To
derive the spectral model, the Fourier transformation was truncated to 50 modes. While
sensitivity studies exhibit no change in results for an increased number of modes, a rigor-
ous analysis would require quantitative error bounds for stochastic Galerkin transforma-
tions [29]. This is the starting point for the second half of this work, where we discuss this
issue for the more general case of the three-dimensional primitive equations (PE) on the
sphere.
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After the introduction we construct the mathematical framework necessary for a rigorous
discussion of stochastic climate and weather models in Section 2. Starting from defi-
nitions of time constant random variables and time dependent stochastic processes we
draw our attention to the topic of stochastic integration, with particular consideration of
the differences between the two most common formalisms of stochastic integration: Itô
and Stratonovich. This allows us to introduce ordinary and partial stochastic differential
equations. To conclude the mathematical foundation we examine different concepts of
convergence for numerical schemes in the context of stochastic differential equations.

In Section 3 we study stochastically induced instabilities by example of the most basic
conceptual climate model, i.e. a one-dimensional linear equation for the global mean tem-
perature, depending only on the climate sensitivity parameter. Several different stochastic
formulations for the climate sensitivity are discussed, showing that even the analytical
solutions of such a simple model exhibit instabilities in the case of unphysical stochastic
terms. Therefore, a stochastic formulation that is inconsistent with the physical setting can
result in instabilities regardless of a correct numerical implementation. Conversely, we fo-
cus on an instructive one-dimensional model where a physically reasonable stochastic
system exhibits an unstable behavior due to an inapt numerical treatment. Although the
analyzed scheme is specifically constructed for stochastic differential equations, a seem-
ingly subtle assumption on the growth of its coefficient functions is not met. The so called
“Lipschitz Condition” states that for every pair of points on the graph of a function, the
slope of the line connecting both points is bounded by a global positive constant. The
coefficient functions of a system have to obey this condition for the vast majority of nu-
merical schemes. It is, however, not satisfied for many meteorological relevant systems
– a fact that is often overlooked when choosing a numerical implementation for a given
model. Section 3 should be understood as an extensive motivation emphasizing the two
crucial statements

• Stochastic formulations in numerical weather prediction and climate modeling must
not be arbitrarily chosen but have to be physically based.

• Stochastic models require a specific numerical treatment which fundamentally dif-
fers from deterministic schemes.

7 In Section 4 we focus on the first aspect, i.e. the derivation of a physically based stochas-
tic process. We discuss the construction of specific stochastic terms based on time series
data, utilizing well known results for autoregressive processes and spectral time series
analysis. As an example, we consider a nonlinear energy budget model with zero spatial
dimensions, driven by periodic radiative forcing and subject to varying atmospheric CO2

levels. These fluctuations motivate a stochastic formulation, which is derived from three
different sets of ice core data via a Yule-Walker algorithm for autoregressive processes.
The resulting models are analyzed using their sample paths as well as statistical and
spectral methods. It turns out that the three different sets of data yield three very distinct
model behaviors. This emphasizes that we cannot expect to gain reliable results from
models incorporating arbitrarily chosen stochastic formulations.

The second half of this work addresses the need for rigorous numerical schemes for
meteorological relevant stochastic differential equations. We concentrate on the three-
dimensional primitive equations of the atmosphere (PE), which form the core of virtually
every GCM. Since every numerical simulations is limited by a finite grid and time reso-
lution, the PE are subject to various stochastic parameterization approaches in order to
account for unresolved subgrid processes or other sources of uncertainty. In Section 5 we
derive an abstract operator framework on Hilbert spaces, which allows us to utilize recent
results [7] guaranteeing existence and uniqueness of pathwise solutions for the stochastic
PE. This abstract approach has the advantage to allow the implementation of a wide class
of stochastic terms, including linear, non-linear, additive and multiplicative noise. Based
on these theoretical findings we propose a Galerkin scheme for the discretization of spatial
and stochastic dimensions in Section 6. The formalism to derive quantitative error bounds
is based on the concept of mild solutions, which is the foundation for the recent progress
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in the numerical treatment of stochastic partial differential equations [8]. However, con-
vergence for the resulting schemes has been shown only for Lipschitz continuous coeffi-
cient function, which is not satisfied in the case of the PE. We prove that mean square
convergence of a Galerkin approximation for the PE holds true and provide quantitative
convergence rates in Theorem 6.10. The key to this result lies in the combinations of the
control over the second order derivatives, which is provided by the mild formalism, and
anisotrop Sobolev estimates for the nonlinear advection term. In the aforementioned work
by Imkeller, Monahan and Pandolfo [28] sensitivity experiments were conducted in order
to decide whether a Galerkin approximation using 50 modes yields reliable results. The-
orem 6.10 guarantees the convergence of such an approximation as well as quantitative
convergence rates and therefore provides a rigorous alternative to the practical approach
using sensitivity studies.

In Section 7 we extend the Galerkin approximation by a temporal discretization and derive
mean square convergence for the resulting numerical scheme. However, we have to
postulate a priori bounds for the numerical solution in order to obtain error bounds for
the temporal discretization, which is a well known issue of explicit numerical simulations
of non-Lipschitz continuous systems. Under these assumptions we derive quantitative
convergence rates regarding discretization of spacial, stochastic and temporal dimensions
in Theorem 7.4. We conclude this work with a comprehensive discussion on the realism
of the postulated a priori bounds and possible future extensions that hold the promise to
yield convergent schemes without the need for additional assumptions.
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2 Mathematical Foundation

2.1 Stochastic Processes

In this section we recall the basic vocabulary of probability theory, including random vari-
ables and stochastic processes (SPs), which play a central role throughout this work. After
each block of definitions we provide some intuitive explanations and instructive examples
to illustrate the concept behind the mathematical framework. We start with the classical
framework of measure theory by defining

Definition 2.1. σ-Algebra
Let Ω be a set and P(Ω) its power-set, i.e., the set off all subsets of Ω. A subset F ⊂ P(Ω)
is called a σ-algebra (over Ω) if

• Ω ∈ F (F is not empty )

• A ∈ F ⇒ Ac ∈ F (F is closed under complementation)

• A1, A2, ... ∈ F ⇒
⋃

i∈N
Ai ∈ F (F is closed under countable unions)

Definition 2.2. Measure
Let Ω be a set and F a σ-algebra over Ω. A function µ : F → [−∞,+∞] is called a
measure if

• µ(A) ≥ 0, ∀A ∈ F (nonnegativity )

• µ(∅) = 0 (empty set has measure zero)

• µ

(⋃

i∈I
Ai

)
=
∑

i∈I
µ(Ai), for all countable index-sets I (σ-additivity )

The pair (Ω,F) is called a measurable space.

Definition 2.3. Measurable Function
Let (Ω,F) and (S,S) be measurable spaces. A function f : Ω → S is (F ,S)-measurable
if f−1(A) ∈ F for every A ∈ S.

Definition 2.4. Probability Space
Let (Ω,F) be a measurable space and P : F → [0, 1] a measure satisfying P (Ω) = 1.
Then P is called a probability measure and the triple (Ω,F , P ) is called a probability space.

Definition 2.5. P-almost surely
Let (Ω,F , P ) be a probability space. An event A ∈ F occurs P-almost surely (P-a.s.) if
P (A) = 1.

In the context of probability theory σ-algebras are often identified with the "available infor-
mation"’. Following this line of thought a random variable is measurable if and only if its
value is knowable based on the available information. To gain an intuitive understanding
of the term "P-almost sure"’ we consider the exemplary case of a uniform distribution on
the interval [0, 1]. The probability to hit a single number is zero, since there is an infinite
number of possibilities. Nevertheless the event to hit a single number is of course not im-
possible. As this example suggests, for most finite applications the distinction of "almost
surely"’ and "surely"’ has no practical consequences. However it is important when deal-
ing with infinite systems, e.g. when studying convergence behavior of random variables
or time continuous stochastic processes.
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Definition 2.6. Random Variable
Let (Ω,F , P ) be a probability space and (S,S) be a measurable space. A function X :
Ω → S is called a S-valued random variable if it is (F ,S)-measurable.

Definition 2.7. Stochastic Process
Let (Ω,F , P ) be a probability space, (S,S) a measurable space and T a totally ordered
set.

• Define a stochastic process as a family

X = {Xt|t ∈ T }

of S-valued random variables Xt on Ω, indexed by T .

• A family (Ft)t∈T of σ-algebras is called a filtration if Fs ⊆ Ft for all s, t ∈ T with
s < t.

• A stochastic process X is adapted to a filtration (Ft)t∈T if Xt is (Ft,S)-measurable
for all t ∈ T .

Definition 2.8. Stationarity
Let {Xt}t≥0 be a stochastic process on a probability space (Ω,F , P ).

• X is called weakly stationary if

E [Xt1 ] = E [Xt1+τ ]

E [Xt1Xt2 ] = E [Xt1+τXt2+τ ]

for all t1, t2, τ > 0.

• For τ > 0, 0 ≤ t1 < . . . < tn and x1, . . . , xn ∈ R let FXt+τ (x1, . . . , xn) be the
cumulative distribution function of the joint distribution of {Xt1+τ , . . . , Xtn+τ}, i.e.,

FXt+τ (x1, . . . , xn) = P (Xt1+τ ≤ x1, . . . , Xtn+τ ≤ xn).

X is called (strongly) stationary if

FXt+τ (x1, . . . , xn) = FXt(x1, . . . , xn),

for all n ∈ N, τ > 0, 0 ≤ t1 < . . . < tn and xt1 , . . . , xtn ∈ R.

A stochastic process is a collection of random variables, often used to describe the evo-
lution of a random variable or system in time. The distribution of a (strongly) stationary
process does not depend on time. However, this does not imply that a “realization”, or
“sample path”, of such a process is constant in time, i.e.,

X stationary 6⇒ Xt(ω) = Xt+τ (ω), for ω ∈ Ω.

Weakly stationary processes play an important role in signal theory and time series anal-
ysis. They only require stationarity of the first two moments of a process. In particular,
this leads to a clearly arranged autocovariance structure:

cov (Xt1 , Xt2) = E [Xt1Xt2 ]− E [Xt1 ]E [Xt2 ]

= E [Xt1−t2X0]− E [Xt1−t2 ]E [X0]

= cov (Xt1−t2 , X0) .

Therefore the autocovariance does only depend on the “time lag”, i.e., the difference be-
tween two points in time. An important example for a stationary processes is the Ornstein
Uhlenbeck process, which is the topic of discussion in Section 3.3.2. Another fundamental
stochastic process is the Brownian motion, which is not stationary itself, but has stationary
increments, as defined below.
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Definition 2.9. Brownian Motion
A time continuous stochastic process (Wt)t≥0 on a probability space (Ω,F , P ), adapted

to a filtration (Ft)t≥0, is called a Wiener process or Brownian Motion if the following holds
true P−almost surely:

• W0 = 0

• Wt −Ws ∼ N (0, t− s) is independent of Fs, for all 0 ≤ s < t

• W has continuous sample paths.

Proposition 2.10. Basic Properties of the Brownian Motion
For a Brownian motion W on a probability space (Ω,F , P ), adapted to a filtration Ft, the

following holds true for all s, t > 0:

1. E [Wt] = 0 and E [WsWt] = min(s, t)

2. The process s−
1
2Wst is a Brownian motion with the same distribution as Wt for all

t ≥ 0 (scaling).

3. The process Ws+t−Ws is a Brownian motion, which is independent of (Wu, 0 ≤ u ≤
s) for all t ≥ 0 (shifting).

4. The process Ws−t − Ws has the same distribution as Wt for all 0 ≤ t ≤ s (time
reversal).

The basic statistic properties and a few sample-paths of a Brownian motion are visualized
in Fig. 1. Before we turn our attention onto the topic of stochastic integration we would like
to state Jensen’s inequality, which is an essential tool in stochastic analysis and measure
theory.

Theorem 2.11. Jensen Inequality
Let X be a real valued random variable on the probability space (Ω,F , P ) with

E [|X |] < ∞.

Let f be a convex function. Then

f (E [X ]) ≤ E [f(X)] .

If f is strictly convex equality holds if and only if X is a constant.
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Figure 1: Visualization of a Brownian Motion
The first plot shows three realizations of a Brownian motion with their typical rough
and noisy fluctuations. The path-density in the second plot, which was derived from
10.000 realizations, indicates Gaussian marginal distributions with zero mean and a
variance, which is increasing in time. Finally, the third plot shows that the marginal
distribution at t = 5 is indeed Gaussian.
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2.2 Stochastic Integration

Introducing stochastic processes into differential equations naturally leads to the occur-
rence of stochastic integrals, e.g.

∫
fdWt = ?

Unfortunately the assumptions of the classical deterministic approach are not satisfied
due to the strongly oscillating paths of Brownian motions. We discuss this issue in more
detail to motivate the need for an integral calculus for stochastic processes, which differs
from the deterministic calculus.

Definition 2.12. Bounded Variation
A function g on an interval [a, b] ⊂ R has bounded variation if its total variation

V b
a (g) = sup

τ∈P

n∑

i=1

|g(ti)− g(ti−1)| ,

where

P = {τ = (t0, t1, ..., tn) | τ is a partition of [a, b]}

denotes the set of all possible partitions of the interval [a, b], is finite, i.e.

V b
a (g) < ∞.

For a sequence of partitions

(τn)n≥1, τn = (t0, t1, ..., tn)

and intermediate points

{si}ni=1, si ∈ [ti−1, ti]

we recall the definition of the Stieltje integral

∫
fdg = lim

n→∞

n∑

i=1

f(ti−1)(g(ti)− g(ti−1)),

which converges for continuous f and g with bounded variation. A visual description for
functions of bounded variation is that their graph does not oscillate too strongly. Unfortu-
nately a well known fact for the Brownian motion states

Proposition 2.13. Regularity of the Brownian Motion
For a Brownian motion W on a probability space (Ω,F , P ), adapted to a filtration Ft the

following holds true P-a.s.:

• The paths of W are nowhere differentiable.

• The function W has unbounded variation on every interval.

Therefore we cannot use the deterministic definition without further considerations. It
turns out that the values of the convergent sums depend on the choice of the intermediate
points {si}ni=1, see Section 2.3 for an instructive example. Furthermore, the choice of
intermediate points in such a pathwise integral definition leads to distinct differential calculi
where, for instance, the fundamental chain rule of differentiation does not hold true. In
the following we give a descriptive definition of the two most common stochastic integral
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types: Itô and Stratonovich. For a rigorous (and necessary more technical definition) we
refer to [30] or [31]. Throughout this section, let (Ω,F , P ) be a probability space with
a filtration (Ft)t≥0, and let (S,S) be a measurable space. Before defining the different
integral types, we introduce two concepts from the mathematical field of time continuous
stochastic processes: "stopping times"’ and "martingales"’.

Definition 2.14. Càdlàg Functions
A function f on a set T is called càdlàg (abbreviation for the French expression "continue
à droite, limite à gauche"), i.e., right-continuous with left limits, if

lim
s↑t

f(s) exists, and lim
s↓t

f(s) = f(t)

for all t ∈ T .

Definition 2.15. (Conditional) Expectation
Let X : Ω → [−∞,+∞] be a P -integrable random variable. Then the expectation value

of X with respect to P is defined by

E [X ] =

∫

Ω

X(ω)dP (ω).

Let A ⊂ F be a sub-σ-algebra. A random variable E [X |A] is called conditional expecta-
tion of X given A if

∫

A

E [X |A] (ω)dP (ω) =

∫

A

X(ω)dP (ω)

for all A ∈ A.

The conditional expectation follows the intuition gained by the concept of conditional prob-
ability, e.g. in the context of Bayesian statistics [32]. Let A and B be two events with
P (B) > 0. Then the conditional probability

P (A|B) =
P (A ∩B)

P (B)

induces the conditional expectation value for a random variable X

E [X |B] =
E [1B ·X ]

P (B)
.

However, in the context of stochastic processes we often need a more general definition.
For continuous probability distributions we can observe infinitesimal terms of the form

P (A|X = x), P (X = x) = 0,

as well as events conditioned on a random variable:

P (A|X) or E [Y |X ] .

Therefore the abstract Definition 2.15 is used, where the Radon-Nikodym Theorem [33]
yields the existence of such a conditional expectation value under suitable assumptions
(e.g. the existence of the unconditional expectation of X). The conditional probability for
an event A, given the information A, can then be derived from Definition 2.15 via

P (A|A) = E [1A |A] .
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Definition 2.16. Stopping Time
Let T be a totally ordered set, e.g. [0,∞). A random variable τ : Ω → T is called a
Ft-stopping time if {τ ≤ t} ∈ Ft for all t ∈ T , i.e., {τ ≤ t} is Ft-measurable.

Recall the interpretation of a σ-algebra as the "available information". Then the concept
of stopping times formalizes the notion of a "random time", which satisfies the following
criterion: if a random variable τ is a stopping time one can decide whether or not the
event {τ ≤ t} has occurred based on the information available at time t. A classical and
important example of stopping times are "hitting times": consider a Brownian motion W
and define τ as the point in time when W leaves the interval (−a, a) for the first time, i.e.

τ = inf{t ≥ 0 : |Wt| ≥ a}.

Then τ is a stopping time. On the other hand define for a T > 0

ξ = inf{t ∈ [0, T ] : |Wt| = sup
s∈[0,T ]

Ws},

i.e., the first time at which the Brownian motion obtains its maximum over a set interval.
Then the event {ξ ≤ t} depends on events during s ∈ (t, T ] and is therefore not knowable
based on the information available at time t and consequently no stopping time.

Definition 2.17. Martingale
A Ft-adapted stochastic process X : T × Ω → S is called a martingale if

• E [|Xt|] < ∞ (L1-integrable)

• Xs = E [Xt|Fs] (fair )

for all s < t.

Definition 2.18. Local Martingale
A Ft-adapted stochastic process X : T ×Ω → S is called a local martingale if there exists
a sequence of Ft-stopping times τn such that the following holds true P-a.s.:

• τn−1 < τn, for all n ∈ N (increasing)

• lim
n→∞

τn = ∞ (divergent)

• The stopped process X(min(t, τn)) is a Ft-martingale for all n ∈ N.

The etymology of the word "martingale" is not entirely known, but a plausible trail leads
to the Provencal expression "jouga a la martegalo", which means "to play in an abstract
and incomprehensible way" [34]. This is further supported by a French-English dictionary
from 1611 [35], where the expression "à la martingale" is translated as "absurdly, foolish".
The word "martingale" was first used in a mathematical context by Ville in 1939 [36], who
stated elsewhere [37] that he borrowed the expression from the vocabulary of gamblers.
In fact, the fourth edition of the dictionary of the Académie Francaise, which was published
in 1762, states "to play the martingale is to always bet all that was lost" [38], a strategy that
may indeed seem absurd and foolish. Since then gambling and the mathematical mar-
tingale concept has been closely connected. This lead to important results such as the
"optional stopping theorem" by Doob’s [39] as well as interesting interdisciplinary discus-
sions, see e.g. the "St. Petersburg paradox" [40]. Furthermore, the context of gambling
offers a very intuitive interpretation of a martingale as a "fair game". Consider a game
where the player starts with a capital M0 and the win or loss of each round is described
by a random variable Xi, for i = 1, 2, ..., which are assumed to be pairwise independent.
The capital after n rounds is then given by

Mn = Mo +

n∑

i=1

Xi.
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A game is fair if the expected win/loss in each round equals zero, i.e., E [Xi] = 0 for all
i = 1, 2, .... Suppose we have played n rounds. Then the expected capital after n + 1
rounds is given by

E [Mn+1|Mn] = E [Mn +Xn+1|Mn] = Mn + E [Xn+1] = Mn,

which corresponds to Definition 2.17. Regarding the integrability assumption for martin-
gales note that since the function f(x) = xp is convex for all x ≥ 0 and p ≥ 1 Jensen’s
inequality (Theorem 2.11) implies that any Lp-integrable random variable with p > 1 is
also L1-integrable. The "fairness" characteristic of martingales is very useful for many
calculations involving expectation values of random variables. We note without proof a
well known fact regarding martingales of Brownian motions, which is useful for the study
of the statistic characteristics of stochastic processes.

Proposition 2.19. Three Martingales w.r.t. a Brownian Motion
Let B be Brownian motion adapted to the filtration (Ft)t≥0. Then the following processes
are Ft-martingales

• {Bt| t ≥ 0} (linear martingale)

•
{
(Bt)

2 − t
∣∣ t ≥ 0

}
(quadratic martingale)

•
{
eλBt−λ2t/2

∣∣∣ t ≥ 0
}

(linear martingale)

Square-integrable martingales are the foundation for an abstract framework, which bears
their name and rigorously defines stochastic integrals (including well-posedness and ex-
istence) for very general stochastic processes. We give a more intuitive, pathwise integral
definition, which can be identified with the ones stated within the martingale framework
[31]. To this end we need the following generalization of a martingale, which allows for an
"unfair " but "well behaved" contribution.

Definition 2.20. Semimartingale
A real valued, Ft-adapted stochastic process X is called a semimartingale if there exists
a decomposition

Xt = Mt +At,

with a local martingale M and a càdlàg, adapted process A with bounded variation. An
Rn-valued process is a semimartingale if each of its components is a semimartingale.

Regarding the stochastic integral of a function f with respect to a semimartingale X , this
decomposition leads to

∫
fdXt =

∫
fdMt +

∫
fdAt.

Then the first contribution is well defined by the aforementioned martingale framework,
while the second integral can be defined in a classical pathwise sense due to the bounded
variation of A. We can now finally state

Definition 2.21. Itô Integral
Let X,Y be two real-valued stochastic processes on the time interval [t0, T ] and {τn}n≥1

a sequence of partitions

t0 = tn0 < tn1 < ... < tnn = T

such that supi≤n |tni − tni−1| → 0 for n → ∞. The stochastic Itô integral is defined by
∫ T

t0

XtdYt := lim
n→∞

n∑

i=1

X(ti−1) (Y (ti)− Y (ti−1)) .

One can show that the Itô integral is well defined, i.e., independent of the choice of par-
titions, and converges in probability, if Y : Ω × [t0, T ] → R is a semimartingale and if
X : Ω× [t0, T ] → R is a left continuous, locally bounded and adapted process.
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Definition 2.22. Stratonovich Integral
Under the assumptions of definition 2.21 we define the Stratonovich integral by

∫ T

t0

Xt ◦ dYt := lim
n→∞

n∑

i=1

X

(
ti + ti−1

2

)
(Y (ti)− Y (ti−1)) .

Definition 2.23. Stochastic Differential Equation
The stochastic differential equations

dXt = f(t,Xt)dt+ g(t,Xt)dYt

dXt = f(t,Xt)dt+ g(t,Xt) ◦ dYt

should be understood as an abbreviated notation of the corresponding integral equations

Xt −Xs =

∫ t

s

f(u,Xu)du+

∫ t

s

g(u,Xu)Yu

Xt −Xs =

∫ t

s

f(u,Xu)du+

∫ t

s

g(u,Xu) ◦ dYu

for all s < t, with f, g and Y such that the integrals are well defined, i.e., satisfying the
assumptions in Definition 2.21.

We study the differences between both integral types in more detail during Section 2.3. It
turns out that it is no trivial task to choose the correct integral for a given physical system.
However, for a given SDE, i.e., after the integral type was chosen, the following important
result allows us to freely choose the calculus in which we want to analyze the system.

Lemma 2.24. Equivalence of Itô and Stratonovich
The Stratonovich SDE

dXt = at(t,Xt)dt+ bt(t,Xt) ◦ dWt

has the same solutions as the Itô SDE

dxt = at(t,Xt)dt+ bt(t,Xt)dWt

if and only if

at(t,Xt) = at(t,Xt)−
1

2
bt(t,Xt)

∂

∂x
bt(t,Xt).

Note that the Stratonovich calculus follows the rules of the deterministic differential cal-
culus whereas the Itô integral exhibits a different behavior, which manifests itself in the
famous Itô formula (Theorem 2.28) stated below.

Definition 2.25. Itô Process
Let W be a Brownian motion adapted to the filtration Ft.

1. A Ft-adapted process B is called a H2-process on the interval [0, T ] if
∫ T

0

E
[
B2

t

]
dt < ∞.

2. A stochastic process X is called Itô process (on the interval [0, T ]) if it has a decom-
position

Xt = X0 +

∫ t

0

Asds+

∫ t

0

BsdWs, t ∈ [0, T ]

with an Ft-adapted and Lebesgue-integrable process A and a H2-process B.
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Theorem 2.26. Itô Isometry
Let W be a Brownian motion and X an Itô-process, both adapted to the filtration Ft. Then

E

[(∫ t

0

XsdWs

)2
]
=

∫ t

0

E [Xs]
2
ds,

for all t ∈ [0, T ].

Theorem 2.27. Martingale Characteristic
Let W be a Brownian motion and X an Itô-process, both adapted to the filtration Ft with

Xt = X0 +

∫ t

0

Asds+

∫ t

0

BsdWs, t ∈ [0, T ].

1. Then X is a martingale (relative to the filtration Ft) if and only if As=0 P-a.s. for
almost every t ∈ [0, T ].

2. Consequently every Itô integral of a H2-process B is a martingale. In particular we
have

E

[∫ t

0

BsdWs

]
= 0,

for all t ∈ [0, T ].

Theorem 2.28. One-Dimensional Itô Formula
Let X be an Itô-process with

Xt = X0 +

∫ t

0

Asds+

∫ t

0

BsdWs, t ∈ [0, T ]

and f ≡ f(t, x) a function continuously differentiable in t and twice continuously differen-
tiable in x. Define Yt = f(t,Xt) for all t ∈ [0, T ]. Then Y is an Itô-process satisfying

Yt = Y0 +

∫ t

0

∂

∂t
f(s,Xs) +As

∂

∂x
f(s,Xs) +

B2
s

2

∂2

∂x2
f(s,Xs)ds+

∫ t

0

Bs
∂

∂x
f(s,Xs)dWs,

for all t ∈ [0, T ].

The Itô formula corresponds to the chain rule of the deterministic (and Stratonovich) dif-
ferential calculus, where the difference is given by the term

∫ t

0

B2
s

2

∂2

∂x2
f(s,Xs)ds.

This can be understood as an additional drift contribution due to the stochastic integral
and is therefore known as "stochastic drift". We have encountered a closely related term
in Lemma 2.24 in the drift relation between Itô and Stratonovich systems. The Itô isometry
and martingale characteristics are the reason why the Itô calculus has proven very suc-
cessful in both theoretical framework and numerical applications: the Itô isometry yields
a natural environment for a "mean-square-calculus", offering the derivation of strong con-
vergence results for numerical schemes. Note that there are various generalizations of
these results, most notably the multidimensional case (Theorem 4.2.1 in [30]), general
Lp-norm estimates, e.g. the Burgholder-Davis Gundi inequality (Theorem 74 in [41]), and
semimartingale integrators (Theorem 33 in [41]). The latter together with the martingale
characteristic allows for a "closed" theoretical framework, which is one of the main rea-
sons for the success of the Itô calculus in the mathematical community.
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2.3 Itô, Stratonovich and Beyond

The decision which stochastic integral is appropriate to model a given physical setting
has "attracted considerable attention in the physics community" during the last 30 years
and "is still as elusive as ever " [42]. We present a summarizing discussion on this matter,
briefly mentioning an alternative approach "beyond Ito vs. Stratonovich" [43], which enjoys
some success in complex biological models.
As an instructive example consider the SDE

dXt = f(Xt)dt+ g(Xt)dWt,

where W is a Brownian motion on a probability space (Ω,F , P ). Since Itô and Stratonovich
only differ for nonconstant g, we treat the most basic case, where g is a function of the
noise. This leads to stochastic integrals of the type

∫ T

0

Wt dWt = lim
n→∞

n∑

i=1

Wξi

(
Wti −Wti−1

)
,

where τn is a partition of [0, T ]. The integrand W is evaluated at time

ξi ≡ ξ(α, i) = ti−1 + α (ti − ti−1) ∈ [ti−1, ti], (2.1)

for an α ∈ [0, 1]. Itô corresponds to α = 0 while we obtain the Stratonovich integral for
α = 1/2. Using the basic property of Brownian motions (Proposition 2.10)

E [WtWs] = min(s, t),

we obtain

E

[
n∑

i=1

Wξi

(
Wti −Wti−1

)
]
=

n∑

i=1

(ξi − ti−1) =

n∑

i=1

α(ti − ti−1) = αT.

Obviously, the value of the integral depends on the choice of α. It is therefore crucial at
which point in time we evaluate the integrand when dealing with stochastic integrals. A
direct consequence is the zero mean characteristic of the Itô integral, or more precisely:
every Itô integral is a local martingale. This is the fundamental reason for the success of
the Itô calculus in the mathematical community for two reasons: first, it is very convenient
from a technical point of view since every mean value analysis is free of stochastic inte-
grals. Second, it offers the natural and rigorous framework for local martingale integrators.
Nevertheless, the Stratonovich integral has the practical advantage, that the rules of the
deterministic differential calculus apply. Due to Lemma 2.24 we can transform each Itô
system into a Stratonovich system and vice versa. However, when writing down a SDE
as a model for a specific physical system, the coefficient functions f and g are usually
given by the dynamics of the system. Note that the drift coefficient f changes during the
transformation between Itô and Stratonovich, i.e., the choice of α in (2.1) does matter for
a given f . Therefore, the decision which calculus to choose has to be based on physical
(or biological, chemical, etc.) rather than on mathematical considerations.

As indicated above, this dilemma of choice has been subject to debate during the last 30
years. Although there seems to be no universal answer so far, the extensive debate has
yielded some guidelines. Define the linear interpolated approximation of the Brownian
motion Wt by

Wn
t = Wti−1 +

Wti −Wti−1

ti − ti−1
, t ∈ [ti−1, ti], i ∈ {1, 2, ...n}.

Then a theorem of Wong and Zakai (see for instance [44]) states that the sequence
{Xn}n≥1 of approximation processes

Xn
T = Xn

0 +

∫ T

0

f(Xn
t )dt+

∫ T

0

g(Xn
t )dW

n
t
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converges to the solution of the Stratonovich SDE

dXt = f(Xt)dt+ g(Xt) ◦ dWt.

Miller states in a paper on stochastic processes in oceanography that "the Stratonovich
form should be used if the white noise model is derived as the limit of a sequence of
ordinary integrals." [45]. Therefore, Stratonovich seems to be the right choice for many
continuous physical models, see also [46, 47, 48, 49]. However, most of this work concen-
trates on stochastic differential equations in finite dimensions since a rigorous stochastic
calculus for infinite dimensions was not well developed back then. On the other hand
Itô is widely regarded as the right choice for many discrete systems and finance models,
see for instance [50] and [51, 52]. Recently there has been a lively discussion follow-
ing the work of Volpe et al., who published empirical evidence from physical experiments
at nanometer scale supporting the case α = 1. As a result of these findings a further
stochastic integral, the so-called "A-integration" [53, 54, 43], is currently a topic of high
interest in theoretical biology. An advantage of this type of integration is the "correspon-
dence between stochastic and deterministic dynamics, for example, fixed points are not
changed" [43]. Furthermore the authors state that "the new FPE is generally not reach-
able by the α-type integration in higher dimensions", which complicates matters from a
mathematical point of view, since we cannot expect a convenient transformation analo-
gous with Lemma 2.24. However, a recent review paper [42] on this area, where the
authors "discuss critically some of the most recent contributions" states "that some of the
new findings are not well based". Therefore, we restrict the analysis in the present work
to Itô and Stratonovich integrals, while the aforementioned A−integration points out, that
these classical approaches are only two of many possible ways to interpret a stochastic
integral. We would like to emphasize that for any practical application the decision which
calculus to use has to be made individually. The results are valid for either integration
type, although a drift correction may be necessary via Lemma 2.24.

2.4 Convergence of Random Variables

In most meteorological relevant cases we are not able to derive analytical solutions of a
SDE, but have to rely on numerical approximations. This begs the question how accurate
a numerical scheme solves a given equation and, as a prerequisite, how "accuracy" can
be measured in the framework of stochastic processes. Regarding the latter we recall
commonly used types of convergence for a sequence of random variables. This allows
us to give a precise definition of various convergence concepts in the environment of
SDE. Let X and X1, X2, ... be random variables on a probability space (Ω,F , P ). One
of the natural ways to measure the convergence Xn → X for n → ∞ is given by the
"convergence on probability", where the difference |Xn − X |, which itself is a random
variable, should be arbitrarily close to zero with a probability arbitrarily close to one.

Definition 2.29. Convergence in Probability

Xn
P→ X :⇔ P (|Xn −X | > ǫ) → 0, for all ǫ > 0.

The above definition only makes sense if all random variables are defined on the same
probability space. To circumvent this assumption we consider the distribution functions
F (x) = P (X ≤ x) and Fn(x) = P (Xn ≤ x), for n = {1, 2, ...}, which are nondecreasing,
right-continuous and bounded to the interval [0, 1].

Definition 2.30. Convergence in Distribution

Xn
d→ X :⇔ Fn(x) → F (x),

for all x at which F (x) is continuous. This is also known as "convergence in law" and

sometimes denoted by Xn
L→ X .
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These two concepts are very closely related. In fact, convergence in distribution follows
from convergence in probability and both coincide if the sequence of random variables
converges to a constant, see Theorem 2.32. The latter case is of interest in the context
of numerical schemes since the approximation error is usually estimated by a constant
upper bound. Another important concept is the "convergence in mean":

Definition 2.31. Convergence in Mean
Let r be a positive constant. Then

Xn
r→ X :⇔ E [|Xn −X |r] → 0.

Note that this is not equivalent to E [Xn] → E [X ]. Particularly important is the special
case r = 2, which is known as "mean square convergence". First, Theorem 2.26 shows
that this concept is the natural one within the Itô calculus, which implies that it is often
easy to check. Second, as a direct consequence of the Markov inequality, this type of
convergence is stronger then the previous ones, which is summarized in the following
result.

Theorem 2.32. Relations Between the Various Convergence Concepts

1. Xn
P→ X ⇒ Xn

d→ X

2. Xn
d→ c ⇔ Xn

P→ c, for a constant c

3. Xn
r→ X ⇒ Xn

P→ X, for an arbitrary r > 0

2.5 Numerical Treatment of Stochastic Differential Equati ons

We understand a stochastic differential equation as an abbreviatory notation for a stochas-
tic integral equation, as stated in Definition 2.23. For a rigorous numerical treatment it
is indispensable to precisely distinguish between different integral types and their cor-
responding differential equations. First, we have deterministic ordinary differential equa-
tions (ODE) and deterministic partial differential equations (PDE), consisting of Lebesgue-
Stieltje integrals of differentiable functions or vector fields. Second, we denote equa-
tions where the integrand of a Lebesgue-Stieltje integral contains a stochastic process
as “random ordinary differential equations” (RODE) or “random partial differential equa-
tions” (RPDE). Third, “stochastic ordinary differential equations” (SODE) and “stochastic
partial differential equations” (SPDE) may involve stochastic integrals. The difference be-
tween RODE and SODE, and RPDE and SPDE respectively, may seem subtle, but is
very significant in practical applications. Consider the following integrals corresponding to
deterministic, random and stochastic ordinary differential equations:

ODE:
∫ t

0

f(s) ds

RODE:
∫ t

0

g(s,Ws) ds

SODE:
∫ t

0

g(s,Ws) ds+

∫ t

0

h(s,Ws) dWs,

for t > 0, function f, g, h and a Brownian motion W . Random ordinary and partial differen-
tial equations can be solved using deterministic numerical schemes derived for ODE and
PDE. However, these schemes converge converge at slower rate for RODE and RPDE
since the integrand – a stochastic process – is in general not differentiable but only Hölder
continuous, see for instance [55]. Heuristically speaking, the paths of the integrand exhibit
strong oscillations leading to less constrained error terms, and hence to a lower conver-
gence order. Finally, SODE and SPDE involve fundamentally different integrals and can
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not be treated with deterministic numerical schemes. These results are summarized in
Table 1 below.

ordinary differential partial differential

equations equations

ODE PDE

deterministic d
dtXt = f(Xt)

∂
∂tXt = ∆Xt + f(Xt)

RODE RPDE

random d
dtXt = g(Xt,Wt)

∂
∂tXt = ∆Xt + g(Xt,Wt)

SODE SPDE

stochastic dXt = g(Xt)dt+ h(Xt)dWt dXt = [∆Xt + f(Xt)]dt+ h(Xt)dWt

Table 1: Different Kinds of Differential Equations
Examples for different kinds of differential equations, with functions f, g, h, the Laplace
operator ∆ and a Brownian motion W . While random differential equations can be
solved using deterministic numerical schemes, these schemes exhibit a lower con-
vergence order due to the non-differentiable paths of Brownian motions. Stochastic
differential equations require schemes specifically derived depending on the type of
stochastic integral.

In order to obtain convergence of numerical schemes for a given system we need to have
control over the growth of the functions appearing in the differential equation. The most
common assumption is Lipschitz continuity defined as follows.

Definition 2.33. Lipschitz and Hölder Continuity
Let X and Y be two Banach spaces endowed with inner products 〈·, ·〉X and 〈·, ·〉Y ,

respectively. A mapping f : X → Y is called

• Lipschitz continuous if there is a c > 0 such that

‖f(x)− f(y)‖Y ≤ c‖x− y‖X ,

for all x, y ∈ X .

• one-sided Lipschitz continuous if Y ⊆ X and there is a c > 0 such that

〈x− y, f(x)− f(y)〉X ≤ c‖x− y‖2X ,

for all x, y ∈ X .

• locally Lipschitz continuous if for every x ∈ X there is a neighborhood U such that f
restricted to U is Lipschitz continuous.

• Hölder continuous with exponent α if there is a c > 0 such that

‖f(x)− f(y)‖Y ≤ c‖x− y‖αX ,

for all x, y ∈ X .

for a constant c > 0.
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A typical example for Lipschitz continuity are differentiable functions with bounded deriva-
tives. Every Lipschitz continuous function f : X → X is also one-sided Lipschitz continu-
ous due to

〈x− y, f(x)− f(y)〉X ≤ ‖x− y‖X‖f(x)− f(y)‖X ≤ c‖x− y‖2X .

Hölder continuity can be regarded as an intermediate step between continuous and dif-
ferentiable functions. Paths of a Brownian motion are P-a.s. nowhere differentiable but
Hölder continuous with exponent α = 1/2. This is the underlying reason for the slower
convergence of RODE and RPDE using deterministic numerical schemes: for a Brownian
motion W , a time-step size h > 0 and t > 0, we have

|Wt+h −Wt| ≤ c
√
h.

However, a Lipschitz continuous function would yield a discretization error proportional to
h. Since stochastic processes are a family of random variables, the convergence concepts
for SPs are based on the concepts for random variables discussed above. Let Xt, t ∈
[0, T ] be the solution of a SODE or SPDE on the probability space (Ω,F , P ) and Y M

ti a
numerical approximation with equidistant time steps ti = iT/M , for i = 1, . . . ,M and
M ∈ N. Then three important types of convergence are given as follows (see for instance
[44]).

Definition 2.34. Strong Convergence
The numerical solution Y is said to converge with strong order γ if

E
[∣∣XT − Y M

M

∣∣] ≤ cM−γ ,

for a constant c > 0.

Definition 2.35. Weak Convergence
The numerical solution Y is said to converge with weak order β if

∣∣E [g (XT )]− E
[
g
(
Y M
M

)]∣∣ ≤ cM−β,

for a constant c > 0 and every polynomial g.

Definition 2.36. Pathwise Convergence
The numerical solution Y is said to converge pathwise with order α if

sup
i=1,2,...,M

∣∣Xti(ω)− Y M
i (ω)

∣∣ ≤ c(ω)M−α,

for a constant c(ω) > 0 and for almost all ω ∈ Ω.

Intuitively strong convergence implies weak convergence, but which one is more useful for
a given setting depends on whether the realizations or only their probability distributions
are required to be "close". Pathwise convergence is interesting, since most numerical
schemes simulate SODE and SPDE on a path-by-path basis. However, the Itô calculus
is a mean-square calculus, which makes estimates for pathwise convergence more labo-
rious. Note that the constant appearing in the pathwise estimate (Def. 2.36) does depend
on ω and is therefore a random variable. Jentzen and Kloeden state in a recent book
that the "nature of their statistical properties is an interesting question, about which little is
known theoretically so far and requires further investigation" [8]. We study these and other
types of numerical convergence concepts by means of an instructive example, which is
directly related to the setting in Section 6 and 7. Therefore we postpone this discussion
until then.
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3 Climate Sensitivity

In this section, we study some fundamental principles, techniques and problems in the
context of stochastic climate models. After introducing the necessarily abstract mathe-
matical foundation, we discuss a concrete physical system, which serves as an accessi-
ble and instructive showcase model. We study different stochastic formulations including
time-constant random variables, time-continuous stochastic processes with different auto-
correlation structures and a coupled system, where the effects of two interacting stochastic
processes can be observed. Those models are interesting on their own and we will derive
results for each of them. Nonetheless, the focus of this section lies in the implications
these results have on the broader context of stochastic parameterization.

3.1 Introduction

One of the key issues in climate modeling is the analysis of a system’s response to per-
turbations of control parameters or external forces. A prime example is the study of the
climate sensitivity λ, which is defined as the change of (globally and annually averaged)
surface temperature Ts in response to a change of radiative forcing Fr, e.g. due to a
change in CO2 concentration:

λ =
∆Ts

∆Fr
. (3.1)

This parameter enjoys a huge political interest, since it connects the rather abstract atmo-
spheric concentration of green-house gases to the more tangible mean surface temper-
ature. Although it provides no direct information on regional effects or on consequences
on a finer timescale, the directly related "2 Degree Goal", i.e., limiting the emission of
green-house gases in order to "limit effectively the increase in global temperatures below
2 degrees Celsius above preindustrial levels" [56], has become a figurehead in political
and public discussion on climate change. It is in fact the only meteorological variable
mentioned in the declaration of the G8 summit of Deauville - May 26-27, 2011 [56]. Unfor-
tunately it is by no means obvious how to determine its value, since there is no repeatable
experiment where one could change the radiative forcing and measure the response.
Therefore the question arises whether or not we can derive λ from characteristics of the
earth system without the knowledge of the system’s response ∆Ts.1 Promising tools
to a positive answer of this question are the theory of Fluctuation-Dissipation Relation
(FDR) and Response Theory (RT). In the framework of statistical mechanics of Hamil-
tonian systems they yield a quantitative relation between the spontaneous fluctuations
and the response of the system to external fields – the Fluctuation-Dissipation Theorem.
Based on the FDT, the domain of application has been extended from systems near the
thermodynamic equilibrium to chaotic dynamical system, which satisfy certain smooth-
ness assumptions regarding their equilibrium distribution, e.g. mixing or ergodicity. In the
following we give a historic overview, based on a review paper by Marconi et al. [57], on
this field of research. This topic is closely related to the development of the mathematical
field known as stochastic calculus.

3.1.1 Historic Overview

The foundations of the Fluctuation Dissipation Theorem date back to early investigations
of atomic motion. At the end of the 19th century, there was no unquestionable evidence of
the existence of atoms, which lead to a scientific debate if the atomistic hypothesis should
be regarded as an abstract mathematical tool or as an accurate description of nature. One
of the participating physicists was Ernst Mach, who stated: "The atomic theory plays a role
in physics similar to that of certain auxiliary concepts in mathematics; it is a mathematical
model for facilitating the mental reproduction of facts." [58]. Although the expressions

1Note that there are some rough estimates in form of historical climate data and ice-core drillings.
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for the mean square energy fluctuation were known, J. Williard Gibbs correctly stated
that the fluctuations "would be in general vanishing quantities, since such experience
would not be wide enough to embrace the more considerable divergences from the mean
values" [59] and could therefore not be observed. It was in this context that Einstein
and Smoluchowski looked into a phenomenon that was for some decades considered as
a curiosity. In 1827 the Scottish botanist Robert Brown described a continuous jittery
motion of pollen grains suspended in water. Although the Dutch biologist and chemist Jan
Ingenhousz described a similar irregular movement of coal dust on the surface of alcohol
[60], it was not until 1905/1906 that the significance of this discovery was underlined
(independently) by Einstein [61, 62] and Smoluchowski [63]. They found a quantitative
relationship between the diffusion coefficient D, a measurable macroscopic quantity, and
the Avogadro constant NA, which is related to the microscopic description:

D =
RT

mγNA
,

where R is the universal gas constant, T the temperature, and mγ the friction constant.
Langevin extended this work using a more mathematical approach in terms of stochas-
tic differential equations [64], which inspired the mathematical field of continuous time
stochastic processes. The results of Einsteins theoretical work were supported by ex-
periments of Perrin [65] and gave conclusive evidence for the existence of atoms. More
importantly for the application at hand, it can be considered as the first example of a FDR.
To this end, we define the mobility of a particle by µ = 1/mγ and note that R = NAkB,
where kB is the Stefan-Boltzmann constant, leading to

D = µkBT.

Using a modern notation, we can write the Langevin equation of the Brownian particle in
the form of a one-dimensional Itô equation

dv = − 1

µ
vdt+

√
2D

µ2
dWt,

where Wt is a Brownian motion (see Definition 2.9). When considering a system in ther-
modynamic equilibrium, the process defined by this equation is a stationary Ornstein Uh-
lenbeck process, see Section 3.3.2 below. Then Lemma 3.10 yields

cov (vt, vs) =
D

µ
e−µ−1|t−s|.

Defining the time correlation function Cv of v yields

Cv(t) = cov (vt, v0) =
D

µ
e−t/µ,

for t > 0. Comparing this with the expression for D, we obtain

D =

∫ ∞

0

cov (vt, v0) .

Now consider a small perturbing force, which is switched on at t = 0, i.e.

f(t) = FΘ(t),

where Θ(t) is the Heaviside step function. Denote by ∆v the difference between the
perturbed ond the original system. Then average response of the system to the perturbing
force f is given by

E [∆v] = µF,

which can be written as

E [∆v]

F
= µ =

D

kBT
=

1

kBT

∫ ∞

0

cov (Tt, T0) .
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We have thus established a relation between the mobility, which describes the reaction of
the system to small perturbations, and the covariance structure of the unperturbed sys-
tem. If such a relation held true for the climate system, we could calculate the climate
sensitivity in (3.1) without the knowledge about the system’s response to a change in forc-
ing.

Following the work of Einstein and Smoluchowski, Nyquist published the first formal ver-
sion of a Fluctuation-Dissipation Theorem in the context of linear electrical networks in
1928 [66]. A few years later, in 1931, Onsager issued his famous paper on reciprocal re-
lations in irreversible processes stating that (the linear approximations of) a macroscopic
non-equilibrium perturbation follows the same laws that govern the system’s fluctuation
in thermodynamic equilibrium [67, 68]. This approach was the foundation for the FDR
theorem of Callen and Welton [69] who gave a quantum-theoretical deduction of Nyquist’s
theorem and showed that it can be applied to a wider class of linear dissipative systems.
In the concluding discussion of their article they stated: "It would appear that a reason-
able approach to the development of a theory of linear irreversible processes is through
the development of the theory of fluctuations in equilibrium systems." This culminated in
Kubos linear response theory (LRT) of time dependent correlation functions [70] including
the Green-Kubo formula [71, 72].

In the following years, LRT and FDR were used with great success in various fields, sur-
prisingly including applications which did not satisfy the necessary mathematical assump-
tions. In 1971 Van Kampen pointed out that "the basic linearity assumption of linear theory
is shown to be completely unrealistic and incompatible with basic ideas of statistical me-
chanics of irreversible processes" [73]. However it was undisputed that LRT and FDR
provided correct expressions for many real-world applications, leading to Van Kampens
statement: "I assert that it [LRT] arrives at these expressions by a mathematical exercise,
rather than by describing the actual mechanism which is responsible for the response".
Since Van Kampen analyzed single trajectories (whereas the Green-Kubo formula char-
acterizes the behavior of mean values), it was argued by Kubo that the instability of the
trajectories works as a form of mixing in chaotic systems, which in turn stabilizes the distri-
bution functions [74]. This is the underlying idea in the development of a generalized FDR
for non-Hamiltonian systems (see for instance Section 3.2 in [57]) and for the Fluctua-
tion Relation (FR) for nonlinear and non-Gaussian systems arbitrarily far from equilibrium.
This includes the important Fluctuation Theorem (FT) derived by Evans, Cohen, Morris
and Searles in 1993[75, 76, 77]. The FT can be considered as a generalization of the
second law of thermodynamics as it quantifies the probability that the entropy of a system
away from equilibrium flows in a direction opposite to that defined by the second law of
thermodynamics. Note that this is no contradiction since the second law of thermody-
namics, in the context of statistical mechanics, is a statistical statement describing the
tendency for an increase in entropy. Furthermore the FT is consistent with the FDR when
equilibrium is approached, and can be considered as a starting point for the develop-
ment of a theoretical background incorporating complex phenomena such as turbulence
or glassy, i.e., non-ergodic, systems and more general concepts of noise, see for instance
[78, 79, 80] and the references therein.

3.1.2 Application of FDR on Climate

Although the climate system is a chaotic, highly nonlinear, multi-scale problem with a com-
plex and debated equilibrium structure (see for instance [81]), there has been a profound
interest in the application of the FDR in atmospheric and oceanic science, particularly con-
cerning the question of global climate changes. In 1975, Leith [82, 83] emphasized the
fact that the climate system does not exhibit a classical Gaussian equilibrium state. How-
ever he suggested the use of sensible approximations (which are called "quasi-Gaussian"
in [84]) of appropriate variables for which a FDR holds. Following this idea, Bell [85],
Carneval [86] and Gritsoun [87, 88, 89], among others, applied quasi-Gaussian FDRs
to idealized climate models, while Ruelle [90, 91] and Majda [92, 93, 94], extended the
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theoretical framework concerning (hyperbolic) chaotic, dynamic systems far from equilib-
rium. Furthermore, there are many cases where a FDR has been applied to GCMs and
to various data series, see for instance [95, 96, 97]. However, Marconi et al. state that
"in most of these attempts, the FDR has been used in its Gaussian version, which has
been acritically considered a reasonable approximation, without investigating its limits of
applicability" [57, p.55]. In order to counteract this carelessness, let us point out that

1. We do not know whether or not the climate system obeys a FDR.

2. We may have the theoretical framework to decide whether or not a specific climate
model satisfies a quantitative or at least qualitative FDR.

Note that the climate system itself is not ergodic, due to aperiodic external forcing. The
strongly debated question whether or not certain climate models satisfy ergodicity or a
mixing condition is directly related to the first statement. Regarding the application of a
FDR to climate models, we present a brief overview of the discussion in [93]. To this end,
consider a conceptual stochastic dynamic system in Itô notation

dUt = F (Ut)dt+ σ(Ut)dWt,

where Ut ∈ RN , σ ∈ RN×K and Wt is a K-dimensional Brownian motion, with N,K ∈ N,
T > 0 and t ∈ [0, T ]. Denote by ρeq the probability density of the invariant measure. The
mean value of an observable ξ(U) of the equilibrial system is given by

E [ξ(U)] =

∫
ξ(u)ρeq du.

For a small ǫ > 0, we introduce the perturbation term ǫ · w(U)f(t) and consider the per-
turbed system

dU ǫ
t = F (U ǫ

t )dt+ ǫw(U)f(t) + σ(U ǫ
t )dWt.

For sufficiently small ǫ, the FDR and LRT yield that the leading order of the mean response
satisfies

E [ǫξ(U)(t)] =

∫ t

0

R(t− s)ǫf(s) ds, (3.2)

where the linear response operator R is calculated via

R(t) = E [ξ(Ut)B(U0)] , B(U0) = −∇U · (w(U)ρeq)

ρeq
. (3.3)

The linear response operator R only depends on the covariance structure of the unper-
turbed system. For practical applications in the context of climate change, there are two
major obstacles to overcome:

1. The equilibrium probability density ρeq in (3.3) is usually not known.

2. We are often interested in non-infinitesimal perturbations ǫ >> 0, e.g. a doubling of
CO2 concentration, in contradiction to the assumption in (3.2)

The first issue is addressed by the quasi Gaussian approximation, where the mean and
covariance matrix of a Gaussian equilibrium measure is fitted onto the climatology ρeq
and then utilized to calculate (3.3). It is the indiscriminate application of this approxi-
mation Marconi criticized [57, p.55]. In the same paper, the second issue is studied in
detail showing that a qualitative FDR holds even for for non-infinitesimal perturbations. A
quantitative estimate however is usually no longer linear in the perturbation ǫf(t), and it
would require extensive statistics to resolve the rare events [57, p.50-55]. Despite these
difficulties, there exist atmospheric-ocean models, e.g. global quasigeostrophic models,
which satisfy a quantitative FDR approximation for low-frequency climate variables with
high skill [93]. Qualitative relations provide a tool for a deeper understanding of the in-
teractions between different model variables. For instance, in [98] the dissipation of large
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scale variables is analyzed for fluctuating small scale variables in the T21 ECHAM4 at-
mospheric GCM. The author concludes: “The stronger the small-scale fluctuations, the
stronger are the dissipations of the large-scale variables. This result suggests that the
simulation of low-frequency climate variations and the prediction of climate change re-
sponses depend on the model representation of smallscale climate components”. This
statement further motivates a detailed analysis of unresolved sub grid processes, which
is directly connected to stochastic formulations of climate system.

3.1.3 Relaxation Times and Uncertainty

After having evaluated the possibilities and limitations to derive the climate sensitivity by
means of LRT and FDR, we take a look at another aspect of the climate sensitivity. Let us
consider the linear differential equation

dT

dt
= −γT + F0,

which can be regarded as the most basic climate model (see Section 4) and has a stable
state at T = F0/γ. Assuming the system is in equilibrium at t = 0 when we turn on an
additional constant forcing f , we obtain the solution

T f
t =

F0

γ
e−γt +

F0 + f

γ
. (3.4)

This leads to a new stable state at T = (F0 + f)/γ, i.e., the system’s response to the
additional force f is given by f/γ, and we obtain

λ =
∆T

∆F
=

1

γ
.

The system has a relaxation time proportional to the climate sensitivity λ. This behavior
comes as no surprise when dealing with linear differential equations, but, although it is
of great practical consequence when studying climate change, it is often, if at all, treated
peripherally. The significance in the context of climate change stems from the existence of
a multitude of different time scales in the earth system. Due to the huge heat capacity of
the oceans numerical models have to be integrated hundreds or even thousands of years
for the system to reach a new equilibrium. This fact lead to so called "transient climate
simulations", where the concentration of green house gases is changed gradually over an
integration period of a few hundred years, typically 1850-2100 [99, Ch. 9].

Furthermore there is a great amount of uncertainty connected to the parameter of climate
sensitivity. The fourth assessment IPCC report states regarding the expected tempera-
ture change: "It is likely to be in the range 2◦C to 4.5◦C with a best estimate of about
3◦C, and is very unlikely to be less than 1.5◦C. Values substantially higher than 4.5◦C
cannot be excluded, but agreement of models with observations is not as good for those
values" [100, Ch. 2.3]. This significant uncertainty in the context of long relaxation times
emphasizes that the characteristics of the dynamical system during the convergence to a
new equilibrium are as important as the state of the new equilibrium itself.

In the following section we take a closer look at the system’s convergence behavior con-
sidering various mathematical rigorous formulations for the presence of uncertainty in the
climate sensitivity parameter λ. Aside from the relevant aspects of this subject as stated
above, a key purpose of this section is to highlight the imperative of choosing a stochastic
framework adapted to describing the underlying physical processes of the model.
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3.2 Uncertainties Constant in Time

Let us consider a homogeneous system starting in a non-equilibrial state T0 > 0, defined
by

dT

dt
= −γT, T (0) = T0, γ > 0. (3.5)

This setting corresponds to (3.4) with an equilibrium state at T∞ = 0. Throughout this
section, the parameter γ can be considered as the inverse climate sensitivity. We are in-
terested in the dynamics of this system when the exact value of γ is not known, but rather
a stochastic quantity. In the following, different types of stochastic terms are introduced,
which we assume to have equal variance σ2 and mean value µ, to ensure comparability.
To point out the significant differences between solutions of the resulting systems, we cal-
culate the first moments, i.e., the expectation value and the (co-)variance, of the solutions.
This is by no means an extensive analysis of the system’s stochastic behavior but rather a
descriptive way to highlight the importance of choosing a stochastic setting based on the
physical conditions.

In the first step we assume that the exact value of γ is not known but constant in time.
The system can then be described using random variables. To this end let (Ω,F , P ) be
a probability space and define random variables γi : Ω → R, i ∈ {N ,U ,Γ} via their
distributions

γN ∼ N (µ, σ) (Gaussian distribution)

γU ∼ U
(
[µ−

√
3σ, µ+

√
3σ]
)

(uniform distribution)

γΓ ∼ Γ
(µ2

σ2
,
σ2

µ

)
. (gamma distribution)

The probability density functions for these distributions are given by

fN (x;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2

fU(x;µ, σ) = 1[µ−
√
3σ,µ+

√
3σ](x)

fΓ(x; k,Θ) =
1

Θk

1

Γ(k)
xk−1e−x/Θ, with k =

µ2

σ2
, Θ =

σ2

µ
.

Using these expressions, a direct calculation verifies, that E [γi] = µ and var (γi) = σ2 for
i ∈ {N ,U ,Γ}. Denote by Ti the solution of the system

dTi = −γiTidt, Ti(0) = T0, i ∈ {N ,U ,Γ}.

The expectation values of each Ti(t) with respect to the distribution of its defining random
variable can be obtained analytically. Omitting some intermediate steps, we find

Proposition 3.1. Expectation Values of Random Systems

E[TN (t)] = T0 exp
(
− µt+

σ2

2
t2
)

E[TU(t)] = T0 exp(−µt)
sinh(

√
3σt)√

3σt

E[TΓ(t)] = T0

(
1− −µt

µ2/σ2

)−µ2/σ2
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Regarding the long term behavior we get

lim
t→∞

E[TN (t)] = ∞

lim
t→∞

E[TU(t)] =

{
∞ , µ <

√
3σ

0 , else

lim
t→∞

E[TΓ(t)] = 0.

We observe unstable systems for Gaussian distributions and uniform distributions where
µ <

√
3σ. The cause for this behavior is the positive probability for negative values of γi, in

contradiction to (3.5). This is a first (very obvious) example for the importance to choose
a stochastic formalism consistent with the physical setting.

A more interesting observation can be made when comparing the expectation values of
the random solutions to the deterministic system T (t) = T0 exp(−µt). Since sinh(x) > x
and (1 + x/y)y < ex for all x > 0, y > 0, we get

E [TN (t)] , E [TU(t)] , E [TΓ(t)] > T (t), for all t > 0.

In fact a more general result holds true:

Lemma 3.2. Stochastic Drift
Let (Ω,F , P ) be a probability space and γ an integrable real valued random variable on
(Ω,F , P ) satisfying

E [γ] = µ > 0, var (γ) = σ2 > 0.

Let Tγ(t) the solution of a random system and T (t) the solution of a deterministic system
defined by

dTγ(t) = −γTγ(t)dt, Tγ(0) = T0 > 0

dT (t) = −µT (t)dt, T (0) = T0.

Then

E[Tγ(t)] > T (t)

for all t > 0.

Proof. Lemma 3.2
Define the function

f(x) = e−xt.

Since the second derivative satisfies

f ′′(x) = t2e−xt > 0 for all t > 0,

f is strictly convex for all t > 0. Therefore Jensen’s inequality (Theorem 2.11) states

E[Tγ(t)] = T0E
[
e−γt

]
= T0E [f(−γ)] > T0f (E [−γ]) = T0f(−µ) = T0e

−µt = T (t),

where equality is rules out since γ is not constant due to var (γ) = σ2 > 0.

Lemma 3.2 states that it is an intrinsic quality of uncertainty to delay the convergence to
equilibrium in system (3.5). The quantitative effect can be seen in Proposition 3.1, where
terms depending on the variance σ2 introduce an additional drift effect in the expecta-
tion value. Note that the qualitative result of Lemma 3.2 holds true for arbitrary random
variables γ, i.e., it does not depend on the specific characteristics of the stochastic terms.
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Remark 3.3. On the Estimate of the Climate Sensitivity Parameter
The effect of stochastic drift has direct implications for the process of estimating the

climate sensitivity λ. Let {Tt}t∈[0,T ] be a temperature time series, on which the model

dT = −γ̄T dt

is fitted in order to estimate a scalar inverse climate sensitivity γ̄. A common method is
given by linear regression, i.e., choose γ̄ such that ǫ in

log

(
Tt

T0

)
= −γ̄t+ ǫ (*)

is minimized. If we regard λ – and therefore γ – as a random variable, the linearity in (*)
implies

γ̄ = E [γ] .

Comparing the deterministic solution Tt = T0e
−γ̄t with the random variable solution

T γ
t = T0e

−γt, Lemma 3.2 yields

E [T γ
t ] > Tt.

Therefore, neglecting the stochastic character of the climate sensitivity by describing γ
purely by its mean value γ̄, leads to a systematical error.

3.3 Time Dependent Stochastic Processes

3.3.1 White Noise and Exponential Brownian Motion

If the physics of the system give reason to assume that the uncertainty of γ is not con-
stant in time but rather a fluctuating stochastic quantity, we have to use the framework of
stochastic processes. Before we use the mathematically rigorous Itô formalism to define
stochastic differential equation, we introduce a notation widely-used in physical literature,
centered around the Langevin force. For a time dependent stochastic parameter γ, we
rewrite (3.5) as

d

dt
T (t) =

(
− µ+ σΓ(t)

)
T (t), T (0) = T0 (3.6)

where Γ(t) is a Gauss process satisfying E[Γ(t)] = 0 and cov
(
Γ(s)Γ(t)

)
= δ(t−s), where δ

denotes the Dirac-Delta-function. Since Γ(t) is Gaussian, it is uniquely defined by the first
two moments of its distribution. While the physical notation has the advantage to fit nicely
into the familiar notation of ordinary differential equations, there are some serious short-
comings. First of all, it suggests that the occurring stochastic term can be treated in the
same way as any deterministic term, i.e., by means of differential calculus, which is usu-
ally not the case. Therefore, we employ the mathematical rigorous notation of stochastic
differential equations using Itô- or equivalently Stratonovich-calculus. Following the dis-
cussion in Section 2.3, the Langevin equation (3.6) can be written as the Stratonovich
stochastic differential equation

dTt = −µTtdt+ σTt ◦ dWt, T (0) = T0

⇒ Tt = T0 exp
(
− µt+ σWt

)
(3.7)

The process defined by (3.7) is called exponential Brownian Motion. Using the properties
of Brownian motions, we obtain the following statistical quantities.
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Proposition 3.4. Statistical Properties of the Exponential Brownian Motion

i) E [Tt] = T0 exp
(
−
(
µ− σ2

2

)
t
)

ii) var (Tt) = T 2
0

[
exp

(
− 2
(
µ− σ2

)
t
)
− exp

(
− 2
(
µ− σ2

2

)
t
)]

iii) cov (Ts, Tt) = T 2
0 exp

(
−
(
µ− σ2

2

)
(s+ t)

)[
exp

(
σ2 min(s, t)

)
− 1
]
.

Proof. Proposition 3.4
Without loss of generality assume s ≤ t and T0 > 0. As a consequence of the exponential
martingale (Prop. 2.19), we have

E
[
eλWt

]
= eλ

2t/2.

Recall that the increments of a Brownian motion are independent (Def. 2.9) with

Wt −Ws = Wt−s

in a distributive sense (Prop. 2.10). Then for all 0 ≤ s ≤ t

T−2
0 E [TsTt] = E

[
e−µ(s+t)+σ(Ws+Wt)

]

= e−µ(s+t)E
[
eσ(2Ws+(Wt−Ws))

]

= e−µ(s+t)E
[
e2σWs

]
E
[
eσ(Wt−Ws)

]

= e−µ(s+t)E
[
e2σWs

]
E
[
eσWt−s

]

= e−µ(s+t)e2σ
2seσ

2(t−s)/2

For s = 0 we directly receive i). By definition of the covariance

cov (Ts, Tt) = E [TsTt]− E [Ts]E [Tt]

we obtain iii), which yields ii) for s = t.

In analogy to the Gaussian random variable case (Prop. 3.1) we observe a weakened
damping compared to the deterministic case. But contrary to the time constant model,
which shows an unstable long-time behavior for arbitrary µ, σ > 0, this model exhibits
different stability regimes depending on the choice of µ and σ.

Proposition 3.5. Stability Regimes

0 < σ2 ≤ µ =⇒ lim
t→∞

E [Tt] = 0, lim
t→∞

var (Tt) ≤ T 2
0

µ < σ2 ≤ 2µ =⇒ lim
t→∞

E [Tt] ≤ T0, lim
t→∞

var (Tt) = ∞

2µ < σ2 < ∞ =⇒ lim
t→∞

E [Tt] = ∞, lim
t→∞

var (Tt) = ∞

Let us give a heuristic explanation for the first stability regime: for suitable µ, σ, the pro-
cess µt− σWt not only obtains negative values with merely a small probability but is also
likely to leave the negative area soon enough. Therefore the divergent contributions do
not govern the system. For σ2 < µ the drift term −µt dominates the fluctuations σWt and
the variance converges to zero for t → ∞, i.e., the system settles in a stable equilibrium.
Although we criticized the choice of random variables, which allow negative coefficients γ,
as unphysical, this is not necessarily true for the time dependent case. The random vari-
able formulation can be considered as a system with a (properly scaled) time-averaged
stochastic process. The first stability regime would then correspond to a physical system
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which eventually converges into equilibrium, but where short-lived excursions are possi-
ble. An example would be the earth climate starting in the present state. An increase in
radiative forcing would in this case lead to a new equilibrium for the surface temperature.
Although we expect that the temperature tends to rise until it reaches its steady state, it
is likely that we observe a decrease in temperature in the future. This may occur due to
natural fluctuation or due to extreme events such as volcanic eruptions.

On the other side of the spectrum for σ2 > 2µ, both expectation value and variance are
governed by the more pronounced positive deviations of σWt leading to a divergent sys-
tem. Interestingly there exists an interval µ < σ2 ≤ 2µ where the drift is strong enough
to ensure a stable expectation value, but too weak to prevent strong fluctuations at large
t. These heuristic arguments are visualized in form of characteristic sample paths (Fig. 2)
and histograms (Fig. 3) for each stability regime. This conceptual example points out a
significant discrepancy between the expectations on the ability of stochastic meteorolog-
ical models to quantify the probability of extreme events on the one hand, and their low
number of sample paths on the other hand. For instance, consider a meteorological model
the state of the second stability regime, and suppose we are interested in the asymptotic
characteristics of extreme events. Since limt→∞ E [Tt] = 0 we have

∀δ > 0 ∃t0 > 0 ∀t ≥ t0 : δ > E [Tt] .

Let us symbolically regard {Tt > 1} as an extreme event. Then Tt ≥ 0 yields

P (Tt > 1) = E [1;Tt > 1] ≤ E [Tt;Tt > 1] ≤ E [Tt] < δ.

Therefore the probability to witness an extreme event in the longterm behavior is very
small. On the other hand, limt→∞ var (Tt) = ∞ implies that these events have to occur
with a non-vanishing probability. Now consider a model capable of simulating in the order
of 20 sample paths. It is very unlikely that this model captures an extreme event. As a
consequence the statistics of the sample paths would suggest that the system follows the
first stability regime, i.e., the model might suggest an inapplicable asymptotic behavior.
We will encounter a very instructive histogram for this problem in the next section (see
Fig. 6). For a detailed and rigorous treatment of these issues we refer to the mathematical
field of large deviations [101, 102].
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Figure 2: Characteristic Paths for the White Noise System
In the stable case, the system converges to T = 0 and shows no fluctuations once
it reaches the equilibrial state. The second path has significant but not excessive
long term fluctuations. The unstable path shows uncontrollable excursions (note the
different scale of the vertical axis), which lead to a divergent expectation value and
variance.
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Histogram for µ = 1 and σ2 = 0.5 (Stable Case)
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Histogram for µ = 1 and σ2 = 1.5 (Semi-Stable Case)
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Histogram for µ = 1 and σ2 = 5 (Unstable Case)
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Figure 3: Histograms for the White Noise System
The histograms were calculated from 5.000 sample paths. In the stable case only
very few, very weak excursions from the stable state T = 0 occur. In the second plot
there are few but large long term fluctuations. In the unstable case the excursions
grow in frequency and amplitude (note the different scale of the vertical axis) leading
to a divergent expectation value and variance.
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3.3.2 Red Noise and Ornstein Uhlenbeck Processes

We extend the concept of time dependent stochastic processes by allowing nontrivial time
correlations. Time correlated Gaussian processes are often denoted as red or colored
noise. This is not a mathematically well defined term but rather a collective term for
Gaussian processes, which are not white noise, i.e., delta correlated. The term colored is
motivated in analogy with the effects of filtering white light, i.e., all frequencies are present
with equal amplitude. The term red noise takes into account that this type of noise has
more energy at lower frequencies (see for instance Fig. 14 in Section 4.3.3). It is closely
related to long-term memory effects, a notion appearing in various scientific fields. For
an elaborate introduction into this subject, we refer to [103]. In the following, we discuss
a prime example for red noise – the Ornstein Uhlenbeck process (OUP). Define the red
noise model by

dTt = −ǫtTtdt, T0 > 0

dǫt = −Θ
(
ǫt − µ

)
dt+

√
DdWt, ǫ0 ∼ N

(
µ,

D

2Θ

)
. (3.8)

The OUP ǫ = (ǫt)t≥0 with mean value µ, drift coefficient Θ > 0 and diffusion coefficient
D > 0 is defined by an Itô SDE. We choose a normally distributed starting value ǫ0 to
guarantee a stationary Gaussian distribution of ǫ, see Lemma 3.10 below. Before analyz-
ing the statistical characteristics of T = (Tt)t≥0, we further investigate the properties of
the OUP, starting with two representations of ǫ.

Lemma 3.6. Representations of an OUP
The OUP ǫ defined in (3.8) satisfies

ǫt = ǫ0e
−Θt + µ(1− e−Θt) +

√
D

∫ t

0

eΘ(s−t)dWs (3.9)

ǫt = ǫ0e
−Θt + µ(1− e−Θt) +

√
D

2Θ
e−ΘtW (e2Θt − 1). (3.10)

The second representation turns out to be very convenient for the calculation of statistical
quantities of ǫ. In order to prove this lemma we state (without proof) two fundamental
theorems from martingale theory as well as a differential version of the Itô formula.

Theorem 3.7. Dubins-Schwarz (see [104])
Every continuous local martingale M = (Ms)s≥0 can be written as a time-changed Brow-
nian motion (B〈M〉s)s≥0, where 〈M〉 = (〈M〉s)s≥0 is the (continuous) quadratic variation
of M .

Theorem 3.8. Quadratic Variation of Semimartingales (see [31])
Let X be a semimartingale with quadratic variation 〈X〉 and ξ a X-integrable process.

Then the quadratic variation of
∫ t

0 ξ dX is given by
〈∫ t

0

ξ dX

〉
=

∫ t

0

ξ2 d 〈X〉 .

Theorem 3.9. Differential, Time-Dependent Itô Formula (see [105])
Let f(x, t) : R× R+ → R be a twice differentiable function and

dXt = atdt+ btdWt

an Itô process. Then f(Xt, t) is an Itô process and satisfies

df(Xt, t) =
( ∂

∂t
f + at

∂

∂x
f +

b2t
2

∂2

∂x2
f
)
dt+ bt

∂

∂x
fdWt.
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Proof. Lemma 3.6
Applying Itô’s chain rule to the function f(x, t) = xeΘt yields

df(ǫs, s) =
( ∂
∂s

f(ǫs, s)−Θ(ǫs − µ)f ′(ǫs, s) +
D

2
f ′′(ǫs, s)

)
ds+

√
Df ′(ǫs, s)dWs

=
(
Θǫse

Θs −Θ(ǫs − µ)eΘs
)
ds+

√
DeΘsdWs

= ΘµǫΘsds+
√
DeΘsdWs.

Integration from 0 to t leads to

f(ǫt, t)− f(ǫ0, 0) = Θµ

∫ t

0

ǫΘsds+
√
D

∫ t

0

eΘsdWs

ǫte
Θt − ǫ0⇒ = Θµ

( 1

Θ

(
eΘt − 1

))
+
√
D

∫ t

0

eΘsdWs

ǫt⇒ = ǫ0e
−Θt + µ

(
1− e−Θt

)
+
√
D

∫ t

0

eΘ(s−t)dWs,

which is (3.9). Regarding (3.10) note that since the Itô integral in (3.9) is a local martingale,
Theorem 3.8 applies and we obtain

〈∫ t

0

eΘ(s−t)dWs

〉
=

∫ t

0

e2Θ(s−t)d 〈Ws〉 =
∫ t

0

e2Θ(s−t)ds =
e−2Θt

2Θ

(
e2Θt − 1

)
.

Using Dubins-Schwarz gives us
∫ t

0

eΘ(s−t)dWs = W

(〈∫ t

0

eΘ(s−t)dWs

〉)

= W

(
e−2Θt

2Θ

(
e2Θt − 1

))

=
e−Θt

√
2Θ

W
(
e2Θt − 1

)
,

which proves (3.10).

Lemma 3.10. Statistical Properties of the OUP

i) For an arbitrarily distributed, real valued random variables ǫ0 we have

E [ǫt] = µ+ e−Θt
(
E [ǫ0]− µ

)

var (ǫt) =
D

2Θ
+ e−2Θt

(
var (ǫ0)−

D

2Θ

)

cov (ǫs, ǫt) =
D

2Θ
e−Θ|t−s| − e−Θ(s+t)

(
var (ǫ0)−

D

2Θ

)
.

ii) The stationary case, i.e., ǫ0 ∼ N (µ, D
2Θ ), obeys

E [ǫt] = µ

var (ǫt) =
D

2Θ

cov (ǫs, ǫt) =
D

2Θ
e−Θ|t−s|.

Proof. Lemma 3.10
The stationary case is a trivial consequence of i), which follows from a direct calculation
using expression (3.10) and basic properties of Brownian Motions.
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Figure 4: Visualization of an Ornstein Uhlenbeck Process
For an OUP with µ = 1, Θ = 1 and D = 1 starting in ξ = −2 we simulated 10.000
realizations. The upper two plots point out the mean-reverting drift, which steers the
process into a stationary distribution. The convergence to this stationary distribu-
tion can be observed in the second plot. The third plot shows that this is indeed a
Gaussian distribution centered at µ = 1.
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Lemma 3.11.
For ǫ0 ∼ N

(
µ, D

2Θ

)
the stationary OUP is given by

ǫt = µ+

√
D

2Θ
e−ΘtW (e2Θt) (3.11)

Proof. Lemma 3.11
It is easily verified, that the first and second moment of (3.10) and (3.11) are identical.
The lemma follows since both processes are Gaussian and therefore completely defined
by their first two moments.

In analogy to the cases with random variables and white noise, we assume that E [ǫt] =
µ and var (ǫt) = σ2. While this has been a unique characterization for the stochastic
variables and processes discussed so far, the time correlated structure of an OUP offers
an additional degree of freedom. When we fix the quotient D

2Θ = σ2 by setting D = 2σ2Θ,
Lemma 3.11 shows that for every Θ > 0 the process

ǫt = µ+ σe−ΘtW (e2Θt)

satisfies the statistical demands. Since Θ appears in the exponential time argument of the
Brownian motion, it can be understood as a measure for the timescale, or inner speed,
of the stochastic process. This becomes more concrete when looking at the time lagged
covariance (see Lemma 3.10)

cov (ǫt, ǫt + τ) = σ2e−Θτ .

For large Θ the covariance between two points in time is small even if their distance in
time τ is small. For small Θ, however, this expression is significantly greater than zero
for long time distances, i.e., the process exhibits a long-term memory. In this heuristic
sense, red noise can be understood as a crossover between the random variable case,
i.e., infinitely long time correlations corresponding to Θ → 0, and white noise, i.e., delta
correlated noise which corresponds to Θ → ∞. We will further discuss this interpretation
with respect to the statistical properties of Tt. Before we can calculate these properties we
need some technical preparations. For greater clarity during the following computations,
define

s ∨ t := max(s, t)

s ∧ t := min(s, t)

ϕt :=
1− e−Θt

Θ
,

for s, t,Θ > 0.

Lemma 3.12. Statistical Properties of T
Consider system (3.8) driven by a stationary OUP ǫ with parameters µ,Θ, D. Then

E [Tt] = T0 exp
(
− µt+

D

2Θ2

(
t− ϕt

))
(3.12)

var (Tt) = T 2
0 exp

(
− 2µt+

D

Θ2

(
t− ϕt

))[
exp

( D

Θ2
(t− ϕt)

)
− 1
]

(3.13)

cov (Ts, Tt) = T 2
0 exp

(
− µ(s+ t) +

D

2Θ2

(
s+ t− (ϕs + ϕt)

))

×
[
exp

( D

2Θ2

(
2(s ∧ t)− (1 + e−Θ|t−s|)ϕs∧t

))
− 1
] (3.14)

Proof. Lemma 3.12
Due to its technical nature this proof is carried out in Appx. A.
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Let us take a closer look at the results of Lemma 3.12, particularly with consideration
of the long-term memory effect mentioned above. Recall that we can fixate a stationary
OUP with mean value µ and variance σ2 and still retain a degree of freedom in form of the
parameter Θ. This parameter is directly related to the relaxation time of the time lagged
covariances

cov (ǫt, ǫt + τ) = σ2e−Θτ .

Without loss of generality assume T0 = 1. Then the expectation values of the systems
considered so far read:

E
[
TR
t

]
= exp

(
− µt+

σ2

Θ

(
t− ϕt

))
(red noise driven)

E
[
TW
t

]
= exp

(
− µt+

σ2

2
t
)

(white noise driven)

E
[
TN
t

]
= exp

(
− µt+

σ2

2
t2
)
. (Gaussian random variable)

Since we aim to analyze stability regimes analogous with the white noise case, we take a
look at the asymptotic behavior of ϕ. Note that ϕ is monotonically increasing in t. For a
fixed Θ > 0 we have

ϕΘ(0) = 0

ϕΘ(t) =
1− e−Θt

Θ
−→ 1

Θ
for t → ∞.

Θ is inversely proportional to the amplitude of the stochastic drift, and it induces a time
lag, which is (for large t) equal to 1/Θ as well. For fixed variance, the relaxation time of
the covariance structure - or heuristically: the memory - of the noise process ǫ therefore
determines the stochastic drift. Following this interpretation, consider the scaling limes,
where Θ → 0 and D = 2σ2Θ, such that D/2Θ = σ2 remains constant. Using representa-
tion (3.10) of ǫ immediately gives us ǫt ≡ ǫ0 for all t > 0. Since we are in the stationary
case, ǫ0 has to be normally distributed with mean µ and variance σ2. Indeed, using this
scaling we obtain

1

Θ
(t− ϕt(Θ)) −→ t2

2
,

for all t > 0. This leads to consistent expectation values for the scaling limes of the red
noise system and the system defined with a Gaussian random variable. In this heuristic
sense we can interpret red noise as a conjunction of the rapidly varying white noise (no
memory) and the time constant random variable case (infinite memory). We refer to Fig. 5
for a graphical representation of these interpretations. It comes as no surprise to find
familiar stability regimes.

Proposition 3.13. Stability Regimes

0 <
D

Θ2
≤ µ =⇒ lim

t→∞
E [Tt] = 0, lim

t→∞
var (Tt) < ∞

µ <
D

Θ2
≤ 2µ =⇒ lim

t→∞
E [Tt] ≤ T0, lim

t→∞
var (Tt) = ∞

2µ <
D

Θ2
< ∞ =⇒ lim

t→∞
E [Tt] = ∞, lim

t→∞
var (Tt) = ∞
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Figure 5: Sample Paths for the Red Noise System
For the simulation of these realizations we used the same set of random numbers
for each path and fixed the variance of the underlying multiplicative noise process,
i.e., we chose the parameter D depending on the value of Θ. Both the smoothing
characteristic as well as the time lag for small Θ can be easily recognized.

Naturally these regimes are not solely determined by the relation between mean value and
variance, but include the memory effect through 1/Θ. Since the heuristic interpretation
follows the one given for the white noise system, we omit further discussions and refer
directly to the histogram plots (Fig. 6). The histogram for the semi-stable regime is an
excellent example for the issue of large deviations for models which are only capable of
simulating a small number of sample paths. As mentioned in the concluding discussion
of the white noise model, there is a high probability for such a model to miss the large
excursions, which would wrongly imply a stable asymptotic behavior.
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Histogram for µ = 1, Θ = 1 and D = 0.5 (Stable Case)
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Histogram for µ = 1, Θ = 1 and D = 1.5 (Semi-Stable Case)
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Histogram for µ = 1, Θ = 1 and D = 5 (Unstable Case)
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Figure 6: Histograms for the Red Noise System
The histograms were calculated from 5.000 sample paths. Completely analogous
with the white noise model, in the stable case only very few, very weak excursions
from the stable state T = 0 occur. In the second plot there are few but large long term
fluctuations. In the unstable case the excursions grow in frequency and amplitude
(note the different scale of the vertical axis) leading to a divergent expectation value
and variance.
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3.4 Coupled Noise

Thus far we have discussed the essential cases of systems driven by random variables
and white noise, as well as a more elaborate system driven by time-integrated red noise.
For these models we were able to find exact analytical solutions and statistical properties.
However most meteorologic applications are too complex to be treated analytically, forcing
us to derive suitable numerical methods. In this section we discuss a system based on the
previous considerations, which is complex enough to justify a numerical treatment and to
show some interesting effects. Furthermore it is a prime example for the failure of explicit
numerical schemes for non-Lipschitz continuous systems (see Definition 2.33), which is
discussed in Section 3.5.1.

The stability regimes of the models driven by white or red noise show a clear discrepancy
between the statistical results on the one hand and our physical notion on the other hand:
we expect that even a strongly fluctuating system has a finite mean temperature. This
suggests that the mathematical formulation of these models is not well suited to describe
the underlying physical processes. The root of these unphysical results is the strictly
positive probability for the occurrence of a negative climate sensitivity, i.e., reducing the
radiative forcing would increase the temperature. However, we would like to include the
possibility of short-term fluctuations with arbitrary sign both during the convergence to
equilibrium and in the equilibrial state. To this end we identify the multiplicative process
γ with a nonnegative, non-delta correlated Gaussian process: the square of a stationary
Ornstein Uhlenbeck process. The short-term fluctuations f are described by an additive
white noise process, where we implicitly assume that they occur on a time scale much
smaller than the time scale of γ. In order to determine a suitable coefficient, suppose
that we have knowledge of the amplitude of these fast paced, zero mean stochastics in
equilibrial state, for instance, in form of temperature time series of ice core drillings

E
[
∆T 2

]
= σ2.

Due to the time scale separation, it is an acceptable approximation to consider γ = γ̄ as
constant during a small time interval. This leads to the abstract equation

dTt = −γ̄Ttdt+ f,

for all t in a small interval during equilibrium. The short term stochastics f now result in
temperature fluctuations

∆T =
f

γ̄
.

Since we do not know the value of γ̄, f has to be a function of γ in the fully time de-
pendent model. This motivates the term "coupled noise system", which we define, using
Stratonovich calculus, by

dTt = −γTtdt+ σγt ◦ dW 1
t︸ ︷︷ ︸

=̂f

dγt = −2Θγtdt+ 2
√
Dγt ◦ dW 2

t , γ(0) = ǫ20, ǫ0 ∼ N
(
0,

D

2Θ

)
,

(3.15)

where γ = (γt)t≥0 is the square of the OUP ǫ defined in (3.8) with µ = 0, and W 1,W 2

are two independent Brownian Motions on the probability space (Ω,F , P ). We derived the
Stratonovich equation for γ from the Itô equation for ǫ by using Lemma 2.24, which implies
that an OUP has the same drift in its Itô and Stratonovich representation due its constant
diffusion coefficient

√
D. Note that we made a technical simplification by assuming µ = 0

in the definition of γ, which is synonymous with the fact that the positive mean value of
γ is based solely on the squared fluctuations of the centered OUP ǫ (see Lemma 3.16).
This choice was made for greater clarity especially during the discussion of a numerical
treatment of this model (see section 3.5). All results of this model can easily be modified
for the cases where µ > 0.
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Remark 3.14. The abstractness of the model
In this very abstract setting we use major simplifications, which do not necessarily corre-
spond to the physical conditions. First we assume that the timescales of the state variable
and the additive noise process can be separated. The permissibility of this approximation
depends on the the (hypothetical) data describing the equilibrial temperature fluctuations.
In this context another question arises: which physical processes are represented by
an additive noise? Most processes within the earth system depend on the temperature,
which suggests a multiplicative noise structure to describe their fluctuations. Strictly addi-
tive forces would therefore be external, e.g. (fluctuations of) the Milankovich cycles [106]
describing variations in solar forcing. Another conceivable possibility is to treat the additiv-
ity itself as an approximation. Consider for instance a process with very weak dependence
on the temperature, i.e., its response to small temperature changes is negligible. Follow-
ing this line of thought, we perceive both the time scale separation and the additivity of the
white noise process as mathematical idealizations for a strongly abstracted model.

This abstracted model is well suited to showcase the two main aspects of this section:

• The development of a basic method to derive a stochastic process from given data.

• The derivation of basic numerical methods including a typical issue of SODE.

More precisely, we derive the parameters Θ and D of the OUP-square γ for (hypothet-
ically) given time series in the following Section 3.4.1. We simulate sample paths, i.e.,
solutions for a single realization of the stochastic quantities, using explicit and implicit Mil-
stein schemes. In this context, we encounter in Section 3.5 a typical and descriptive issue
of explicit numerical schemes for systems which do not satisfy Lipschitz conditions.

3.4.1 The OUP-Square Process

Suppose a set of data γ̂ for the parameter γ is given, indicating stationarity and yielding
sample expectation value Ê and variance V̂ as well as an estimate for the decorrelation
time τ̂ , i.e., the time at which cov (γ̂t, γ̂t+τ̂ ) = 1

2var (γ̂t). In order to simulate sample
paths of the coupled noise model, we have to derive the parameters Θ and D for the
OUP-square process. To this end, based on a given OUP ǫ, the statistical properties of
γ = ǫ2 are calculated. Since the OUP ǫ is Gaussian, it is uniquely defined by its first two
moments. Therefore we may identify the statistical values of the abstract OUP-square γ
with the ones obtained from data γ̂ to derive the necessary parameters for our model.

Lemma 3.15. Statistical Properties of an OUP-Square Process
Let ǫ be a stationary OUP with parameters µ,Θ and D. Then the square process
(γt)t≥0 = (ǫ2t )t≥0 satisfies

i) γt is a stationary process

ii) E [γt] = µ2 + D
2Θ

iii) var (γt) = 2D
Θ µ2 + D2

2Θ2

iv) cov (γs, γt) = 2D
Θ µ2e−Θ|t−s| + D2

2Θ2 e
−2Θ|t−s|

v) τ = − 1
Θ ln

(√
4Θ2

D2 µ4 + 2Θ
D µ2 + 1

2 − 2Θ
D µ2

)
.

Proof. Lemma 3.15
Due to its technical nature this proof is carried out in Appx. A.

To gain an better idea of the basic characteristics of this process, we refer to Fig. 7 and
the remarks in the caption.
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Figure 7: Visualization of an OUP-Square Process
The inverse climate sensitivity is represented by an OUP-square process with expec-
tation value E = 1, variance var = 0.5 and decorrelation time τ = 1. The upper two
plots outline the stationary distribution based on 10.000 simulated realizations, while
the third plot shows paths with exceptional deviation from the mean value. The paths
with maximal negative and positive deviation are the ones with the largest pointwise
difference between the realization and the mean value. They differ from the paths
with maximal and minimal mean-square deviation.
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We are now in a position to derive the OUP parameters µ,Θ and D from the aforemen-
tioned values Ê, V̂ and τ̂ obtained from data.

Lemma 3.16. Derivation of OUP-Square Parameters from Data
Let Ê, V̂ , τ̂ > 0 such that 2Ê2 ≥ V̂ . Then the parameters µ,Θ and D of an OUP square

process (γt)t≥0 are given by

i) µ =
√
Ê − c

2

ii) Θ = − 1
τ ln

(√
4µ4

c2 + 2µ2

c + 1
2 − 2µ2

c

)

iii) D = cΘ,

where c := 2Ê −
√
4Ê2 − 2V̂ .

Proof. Lemma 3.16

i) Follows directly from iii) and Lemma 3.15 ii).

ii) Using iii) and Lemma 3.15 v) one gets

Θ = − 1

τ
ln

(√
4Θ2

D2
µ4 +

2Θ

D
µ2 +

1

2
− 2Θ

D
µ2

)

= − 1

τ
ln

(√
4

c2
µ4 +

2

c
µ2 +

1

2
− 2

c
µ2

)

iii) Lemma 3.15 ii) and iii) yield

c = 2E −
√
4E2 − 2V

= 2µ2 +
D

Θ
−
√(

2µ2 +
D

Θ

)2
−
(
4µ2

D

Θ
+

D2

Θ2

)

= 2µ2 +
D

Θ
−
√
4µ4 + 4µ2

D

Θ
+

D2

Θ2
− 4µ2

D

Θ
− D2

Θ2

=
D

Θ

Since this result allows us to construct the stochastic process from a given set of data, we
are now in a position to numerically treat the coupled noise system (3.15).
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3.5 A Numerical Example

Before we begin with a numerical treatment of the coupled noise system, we recall Defi-
nitions 2.21 and 2.22 of stochastic integrals

∫ t

0

GsdWs = lim
|τn|→0

n∑

i=1

G(ti−1 + α(ti − ti−1)) [W (ti)−W (ti−1)] ,

for a Brownian motion W . As we have seen in Section 2.3 and contrary to the case of
Lebesgue-Stieltjes integrals, the choice of α changes the value of the stochastic integral.
This has immediate consequences for the numerical treatment of SDE. Not only do we
need different numerical schemes for different values of α, we also have to expect the
failure of deterministic numerical schemes. The most basic scheme for SODE is the
Euler-Maruyama scheme, followed by the Milstein scheme and more elaborate methods
such as stochastic Runge-Kutta schemes. For an extensive treatment regarding SODE,
we refer to [44]. In the following, we discuss the two-dimensional explicit Milstein scheme
[44, p. 346f]. We point out a critical failure of this numerical scheme and introduce the
implicit Milstein scheme, which prevents this error. For a system of SODE

dξi = hi(ξ, t)dt+
m∑

k=1

gik(ξ, t) ◦ dW k
t , ξ = (ξk)

m
k=1, i ∈ {1, ..., d}, m, d ∈ N

define for k ∈ {1, ...,m}, n ∈ {1, ..., N}, N ∈ N and T > 0

tn =
n

N
T

∆n = tn+1 − tn

∆W k
n = W k(tn+1)−W k(tn)

ξn = (ξkn)
m
k=1, ξ

k
n = ξk(tn)

hk
n = hk(ξn, tn)

gijn = gij(ξn, tn)

Jj1,j2
n =

∫ tn+1

tn

∫ s2

tn

◦ dW j1
s1 ◦ dW j2

s2

Then the explicit Milstein scheme is given by

ξkn+1 = ξkn + hk
n∆n +

m∑

j=1

gijn ∆W j
n +

m∑

j1,j2=1

d∑

i=1

gij1n

∂

∂xi
gkj2n Jj1,j2

n . (3.16)

One can well imagine that especially the multiple integration terms J are a potential source
of problems. Applying this scheme to the coupled noise system (3.15), we obtain m =
d = 2 and

h1
n = −ξ2nξ

1
n

h2
n = −2Θξ2n

G = (gijn )2ij=1 =


ξ2nσ 0

0 2
√
Dξ2n


 ,

which leaves only the terms containing J2,1
n and J2,2

n = 1
2 (∆W 2

n)
2 in the last sum and

yields the discretized model

ξ1n+1 = ξ1n − ξ2nξ
1
n∆n + σξ2n∆W 1

n + 2
√
Dξ2nσJ

2,1
n (3.17)

ξ2n+1 = ξ2n − 2Θξ2n∆n + 2
√
Dξ2n∆W 2

n +D(∆W 2
n)

2.
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A detailed derivation for a suitable approximation of the multiple Stratonovich integral Jj1,j2
n

via Fourier expansions is given in [44, Ch. 5.8]. This leads to

J i,j
n,p =

1

2
∆W i

n∆W j
n +

√
ρp∆n

(
µi,p
n ∆W j

n − µj,p
n ∆W i

n

)

+
∆n

2π

p∑

r=1

1

r

[
ζi,rn

(√ 2

∆n
∆W j

n + ηj,rn

)
− ζj,rn

(√ 2

∆n
∆W i

n + ηi,rn

)]

ρp =
1

12
− 1

2π2

p∑

r=1

1

r2

with N (0, 1) distributed random variables µi,p
n , ηi,rn , ζi,rn . Since the Fourier expansion is

truncated at p ∈ N, this parameter defines the quality of the approximation.

Given initial values ξ10 = T0 > 0 and ξ20 = ǫ20, ǫ0 ∼ N (0, 2D/Θ), we are now in a position
to simulate sample paths for the coupled noise system (3.15). However, it turns out that
the numerical scheme constructed above fails. The reason for this failure is the infraction
of a Lipschitz continuity requirement for drift- and diffusion coefficients, i.e.,

√
Dξ2 is not

Lipschitz continuous in ξ2 at zero. The reasons why we still present this inappropriate
scheme are twofold:

• The implicit Milstein scheme discussed below does not fail and is easy to derive
from the explicit Milstein scheme.

• In the majority of nonlinear meteorological applications, the assumption of Lipschitz
continuity is not satisfied, e.g. for the primitive and Navier-Stokes equations. How-
ever this issue is seldom raised, even if explicit schemes for SODE are used. The
coupled noise model is therefore a good showcase why the Lipschitz condition is
not just a mathematical sophistry but essential in order to guarantee convergence.

3.5.1 The Failure of the Explicit Milstein Scheme

Due to the simplicity of this showcase model, we are able to pinpoint the term which
causes the explicit Milstein scheme to fail. We can even give a failure probability for each
time step. To this end, recall that we defined the process γ ≡ ξ2 as the square of an OUP,
which is naturally a nonnegative process. However, one gets from (3.17)

ξ2n+1 = ξ2n − 2Θξ2n∆n + 2
√
Dξ2n∆W 2

n +D(∆W 2
n)

2

= ξ2n − 2Θξ2n∆n + 2
√
Dξ2n∆nη +D∆nη

2, η ∼ N (0, 1)

=
(√

D∆nη +
√
ξ2n

)2
− 2Θ∆nξ

2
n.

This leads to

ξ2n+1 < 0

⇔
∣∣∣
√
D∆nη +

√
ξ2n

∣∣∣ <
√

2Θ∆nξ2n

⇔

∣∣∣∣∣∣
η +

√
ξ2n

D∆n

∣∣∣∣∣∣
<

√
2Θξ2n
D

.

Since η is a N (0, 1) distributed random variable, the probability P (ξ2n+1 < 0 | ξ2n) can be
expressed as

P (ξ2n+1 < 0 | ξ2n) = P

(
|η̃| <

√
2Θξ2n
D

)
, where η̃ ∼ N



√

ξ2n
D∆n

, 1


 , (3.18)

which does not vanish for ξ2n > 0.
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Figure 8: Failure Probability for the Explicit Milstein Scheme
The plot shows the failure probability of the (n + 1)st time step for distinct time-
step sizes, where the value of all other variables, including the stochastic processes
up to time-step n, are assumed to be known. Smaller time-step sizes lead to a
rapidly decreasing failure probability. Note that this interpretation only applies to the
conditional probabilities for fixed ξ2n.

Therefore, the discretization (3.17) has the potential to yield negative values for ξ2. This is
particularly problematic because one has to use the square root

√
ξ2, resulting in the fail-

ure of the explicit Milstein scheme. The distribution of η̃ in (3.18) depends on the time-step
size ∆n, which might lead to the idea that it becomes small enough to ignore in practical
application for sufficiently small time-step size. We discuss in the following that this is not
the case. Although the schematic diagram for the failure probability (Fig. 8) seems to sup-
port this idea, we have to consider that this diagram assumes a fixed ξn, which is a random
variable in the numerical scheme. Furthermore, for a fixed time interval a finer time-step
size implies that the scheme has more "chances" to fail, which potentially cancels the ef-
fect of a smaller failure probability. Numerical experiments for 10.000 realizations, which
are stopped at the first time the numerical scheme failed, show that the aforementioned
effects indeed cancel each other. This leads to a median of the "first-error time", which is
independent of the time-step size (Fig. 9).

3.5.2 The Implicit Milstein Scheme

The issue (3.18) for non-Lipschitz continuous systems does not occur if the following im-
plicit Milstein Scheme [44, p. 400] is used:

ξkn+1 = ξkn +
(
αkhk

n+1 + (1− αk)hk
n

)
∆n

+

m∑

j=1

gijn ∆W j
n +

m∑

j1,j2=1

d∑

i=1

gij1n

∂

∂xi
gkj2n Jj1,j2

n ,

where the parameters αk ∈ [0, 1] indicate the degree of implicitness. Note that, compared
to the explicit Milstein scheme (3.16), only the deterministic drift terms of the discretization
are modified. Using this scheme yields the discretized model

(
1 + α1∆nξ

2
n+1

)
ξ1n+1 =

(
1− (1− α1)∆nξ

2
n

)
ξ1n + σξ2n∆W 1

n + 2
√
Dξ2nσJ

2,1
n(

1 + 2α2Θ∆n

)
ξ2n+1 =

(
1− 2(1− α2)Θ∆n

)
ξ2n + 2

√
Dξ2n∆W 2

n +D(∆W 2
n)

2.
(3.19)
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First-Error Time for dt = 0.1, D = 0.8, Θ = 1, σ = 0.1
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Figure 9: First-Error Time for the Explicit Milstein Scheme
The explicit Milstein scheme 3.17 was used to simulate 10.000 realizations of the
coupled noise model. The plots show the empirical distribution of the first-error time
step, i.e., the time step at which a realization of ξ2 obtains a negative value for the
first time. Note that the time-step size size of the lower plot is smaller by a factor of
100. The first-error time coincides with a median of 0.7 for the first, and 0.72 for the
second case. The failure of the explicit Milstein scheme does not depend strongly
on the time-step size.
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In analogy to the previous section the second equation yields

ξ2n+1 < 0

⇔
(
1− 2(1− α2)Θ∆n

)
ξ2n + 2

√
Dξ2n∆W 2

n +D(∆W 2
n)

2 < 0

⇔
(√

Dη +
√
ξ2n

)2
− ξ2n +

(
1− 2(1− α2)Θ∆n

)
ξ2n < 0, η ∼ N (0, 1)

⇔
∣∣∣η +

√
ξ2n
D

∣∣∣ <
√

2(1− α2)Θ∆nξ2n
D

.

Therefore, the probability P (ξ2n+1 < 0 | ξ2n) vanishes if and only if α2 = 1, i.e., if one uses
a Milstein scheme fully implicit in the second component. Due to the one-sided coupling
of the two SDE (3.19), i.e., ξ1 does not appear in the equation defining ξ2, the implicit
scheme can be implemented instead of the explicit one without additional computation
costs. We would like to emphasize that this analysis only shows that one particular issue
(3.18) is solved by an application of the implicit scheme. It does in no way guarantee
the actual convergence of the Milstein scheme. Note however, that we can rewrite the
coupled noise model to obtain the form

dTt = −ǫ2tTtdt+ σǫ2t ◦ dW 1
t

dǫt = −Θǫtdt+
√
D ◦ dW 2

t , ǫ0 ∼ N
(
0,

D

2Θ

)
.

The coefficients −Θǫt and
√
D in the defining equation of the OUP ǫ are Lipschitz contin-

uous. We can thus use an explicit or implicit Milstein scheme to simulate sample paths of
ǫ. Furthermore, the coefficients −ǫ2tTt and σǫ2t of the state variable T are Lipschitz contin-
uous in T , which again allows the application of the aforementioned numerical schemes
[44]. We are in an unusually comfortable position, since the equations are only coupled
in one direction, permitting the Lipschitz conditions to be considered separately. For more
complex models, it is a highly nontrivial task to derive convergent numerical schemes,
which is discussed in detail in Sections 6 and 7.

Using the implicit Milstein scheme (3.19), we can simulate sample paths of the coupled
noise model. Fig. 10 shows a single realization of the temperature process and the two
driving noise processes, i.e., the multiplicative inverse climate sensitivity and the additive
Brownian motion. Since the multiplicative process is nonnegative, it can only cause a con-
vergence to the equilibrial state T = 0. The additive noise, however, is not restricted in this
way and can lead to positive and negative temperature fluctuations. The coupling of the
additive and multiplicative process, i.e., the strength of the additive process depends on
the value of the multiplicative one, exhibits two interesting results. First, we can observe
time windows, in which the system is virtually force free, resulting in "plateaus" of constant
temperature, see for instance the interval t ∈ [2.1, 2.5] in Fig. 10. This is the case if the
inverse climate sensitivity is very small. Second, if the multiplicative process is very large,
the system is pushed in the direction of its equilibrium. Simultaneously, the strength of the
additive process is proportionally large, resulting in strong fluctuations in either direction.
For a constant inverse climate sensitivity, this behavior corresponds exactly to the one we
observe for an OUP: a mean-reversing drift combined with an additive white noise. It is
therefore no surprise to find a similar stationary distribution for the temperature process,
see Fig. 10. Although the marginal distribution is Gaussian, the aforementioned plateaus
cannot be observed for an OUP. This emphasizes the importance to consider both path-
wise and statistical analysis of a stochastic dynamic system in order to understand its
characteristics.
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Sample Path for dt = 0.001, D = 2, Θ = 1, σ2 = 0.5
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Figure 10: Histogram and Marginal Distribution for the Coupled Noise Model
Using the implicit Milstein scheme (3.19) with parameters µ = 0, Θ = 1, D = 2,
σ2 = 0.5 and time-step size dt = 0.001, we simulated 10.000 realizations of the
coupled noise model. The first plot shows a sample path, including temperature
and both driving stochastic processes. The lower two plots show the convergence
of the temperature process into an equilibrial state at T = 0. Furthermore, the
resulting marginal distribution in equilibrium at t = 8 is Gaussian.
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3.6 Conclusion

We studied various formulations for uncertainties of the climate sensitivity parameter dur-
ing convergence to equilibrium. Climate sensitivity and the resulting equilibrial states are
two of the most discussed topics in the debate of climate change and the convergence
process towards new equilibria is of great importance in this context. There is a close con-
nection to the analysis of transient climate projections, which incorporate the fact that, due
to the large heat capacity of the oceans, the convergence process takes hundreds or even
thousands of years [99, Ch. 9]. The convergence process itself is therefore crucial for dis-
cussions centered around political decision making concerning the next decades. One of
the reasons for the popularity of the climate sensitivity parameter is its easy accessibil-
ity due to a very basic mathematical structure, i.e., a one-dimensional linear differential
equation. In the context of this work, the simple structure allows us to point out some
fundamentally important phenomena arising during the treatment of stochastic meteoro-
logical systems.

The analytical results in Sections 3.2 and 3.3 show the occurrence of a stochastic drift in
systems where uncertainties are present in a multiplicative way. Furthermore, Lemma 3.2
demonstrates that the mere presence of uncertainties leads to a slower convergence into
equilibrium (in a mean value sense), regardless of the particular characteristics of the
stochastic terms. For non-delta correlated noise, i.e., for systems where the fluctuations
exhibit a time dependent correlation structure, we observe a time lag in the stochastic
drift term as well as memory effects. The occurrence of different stability regimes for
the different stochastic models emphasizes the importance to choose stochastic terms
(including the type of stochastic integral) very carefully, see Propositions 3.1, 3.5 and 3.13.
This decision-making process already begins with the basic mathematical formulation of
a model. Consider the following models:

dT = − 1

λ
Tdt and dT = −γTdt,

using the climate sensitivity λ and its inverse γ, respectively. Although the climate sen-
sitivity seems to be the physically more meaningful parameter, the first representation
automatically excludes many stochastic formulations, e.g., ones with a positive probability
for λ = 0. While this seems to be a trivial observation in this simple case, it may not be
so obvious in more complex models. Conclusively, a stochastic formulation must not be
arbitrarily chosen but has to be based on the physics of the system at hand.

Regarding the numerical simulation of stochastic models, we have addressed the discrep-
ancy between the wish to capture extreme events and the usually low number of simulated
sample paths. Furthermore, we have seen that the numerical implementation of the rather
simple coupled noise model has to be done carefully, see Section 3.4. Even the explicit
Milstein scheme – a numerical scheme specifically designed for SODE – produces insta-
bilities, because a seemingly subtle condition is not satisfied: the Lipschitz continuity of all
coefficient functions. The fact that this is a very simple model compared to meteorologi-
cal relevant system, e.g., Navier-Stokes equations or Primitive equations, emphasizes the
necessity to use a numerical implementation based on the type of the occurring stochas-
tic integrals, which is capable to deal with the – often nonlinear – coefficients. This is
particularly problematic in systems involving stochastic partial differential equations (see
Sections 6 and 7). It should go without saying that this excludes any and all integration
schemes designed for deterministic differential equations.

In the following Section 4 we propose a concrete method to fit a stochastic process on a
given set of ice core data. This is illustrated by means of an energy budget model, which
can be considered as a natural extension of the linear system studied above. In Sections 6
and 7 we address the mathematically demanding issue of a rigorous numerical scheme
for the three-dimensional primitive equations of the atmosphere. These equations are of
high meteorological relevance, since they constitute the dynamical core of virtually every
GCM.



53

4 An Energy Budget Model

In the previous section we have discussed the importance of carefully choosing stochastic
terms representing physically meaningful processes. In the following we present a method
to do this on the basis of a concrete example using carbon dioxide data from ice core
drillings to derive a stochastic formulation of an energy budget model by Budyko and
Sellers [107, 108], describing the evolution of the global mean temperature. The one-
dimensional differential equation

c
dTt

dt
= St(1 − α(T ))− kB(Tt −∆T )4,

which is studied in Section 4.2, can be considered the natural nonlinear extension of the
linear climate sensitivity system. Instigated by Hasselmann’s paper [4], it was Fraederich,
who introduced stochastic forcing in form of an additive white noise term into this model
[109]. Since then it has been an active field of research, highlighted in the review papers
[110, 111] and closely connected to the phenomenon of stochastic resonance [112].

After defining the deterministic framework in Section 4.2 we point out physical issues of
the model derived from a white noise ansatz in Section 4.3.1. A different approach using
physically based stochastics is proposed with a focus on spectral ice core data analysis in
Section 4.3.2. It turns out that the six different sets of ice core data lead to three distinct
parameter classes for the stochastic terms. We consider one exemplary set of data for
each parameter class. The simple mathematical structure of the model allows very cost ef-
fective numerical simulations of the nonlinear stochastic terms in Section 4.3.4, paving the
way for comprehensive statistical evaluations in Section 4.4. Particular emphasis is placed
on the pathwise analysis of the model since basic statistical properties are unable to cap-
ture some of the system’s crucial characteristics, i.e., bifurcation structure, timescales of
crossings between stable states and correlation between insolation and temperature. We
develop a basic understanding of the model’s behavior by studying single realizations and
marginal distributions of the temperature at local insolation extrema. A coherence analysis
in Section 4.4.3 yields solid evidence on the differences between the three models, i.e.,
depending on the choice of ice core data we obtain fundamentally differing temperature
processes. Since there is no reason why a particular set of data should be preferred, we
come to the conclusion that the model is inapt to be fitted on the type of data available,
which is discussed in detail in Section 4.5. This emphasizes once more the importance
of choosing the stochastic terms very careful even in such a basic framework. We would
like to underline that the main focus of this section does not lie in the concrete results for
the stochastic EBM, but rather in the methods used to derive them:

1. Identification of a variable suited to be described stochastically

2. Spectral analysis of data to determine the distribution of the stochastic process (SP)

3. A rigorous numerical implementation

4. Statistical and pathwise analysis of the stochastic dynamic model

This methodical framework can and should be used for stochastic formulations of more
complex models. However, we discuss in Sections 6 and 7, that the development of
rigorous numerical schemes is a challenging task in the context of nonlinear stochastic
partial differential equations.

4.1 A Method to Derive Physically Based Stochastic Models

In most cases the starting point for the development of a stochastic model is a determinis-
tic one, which captures the governing dynamics. Time dependent SPs bear the potential
to describe the dynamics of fluctuations and uncertainties of model variables, for instance
due to unresolved sub grid processes, with an emphasis on the word “dynamics”. While
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stochastic parameterizations can be used to represent uncertainties of model parameters,
initial values and other time independent variables, stochastic processes provide a tool to
lay a hand on time and state dependent interactions between sub grid fluctuations and
model variables. It is indispensable to carefully choose a SP based on the physics of a
given model. In a more recent article Penland and Ewald state, that "simply replacing
the fast term with a Gaussian random deviate with standard deviation equal to that of the
variable to be approximated, and then using deterministic numerical integration schemes,
is a recipe for disaster "[16]. While the use of a correct stochastic numerical approach is
equally important we focus on the problem of finding a physically based SPs in this sec-
tion. As the first step we have to identify unresolved physical processes which may have
an effect on the model variables. To this end we take a look at each occurring physical
variable whose dynamics are not captured by the model, especially the ones which are
approximated by constant values. For two kinds of physical quantities a stochastic rep-
resentation is uncalled-for: “true” constants, e.g. the Stefan-Boltzmann-constant kB, and
nonconstant variables that can accurately be described in a deterministic way, e.g. incom-
ing solar radiation depending on Milankovich cycles. The interesting variables are inexact
approximations of processes that cannot be described in a deterministic way within the
models framework. Stochastic representations are also limited by the models space and
time scales, providing another criterion in the selection process. When a eligible variable,
or a set of eligible variables, is found we need input on the distribution of the stochastic
process. This may be information based on finer resolved models, theoretical insights or
data. Deducing the complete distribution of the SP can be a nontrivial task and should be
done carefully, since even small variations may lead to significant changes in the dynamic
structure of the system in the context of chaotic systems.

4.2 Deterministic Framework

The deterministic energy budget model (EBM) is given by an ordinary differential equation
(ODE) for the global mean temperature T , characterizing the radiation balance between
net short wave radiation and outgoing long wave black body radiation

c dTt =
[
(1− α(T ))St − kB(Tt −∆T )4

]
dt. (4.1)

Here c = 3 ∗ 108J/(m2K) denotes the global heat capacity, St the (time dependent) inso-
lation, α(T ) the albedo, kB = 5.67 ∗ 10−8W/(m2K4) the Stefan-Boltzmann-constant and
∆T = 32.6K the temperature offset between surface and the top of the atmosphere. Since
we are dealing with a model with spatial dimension zero, obliquity and precession are not
accounted for and the solar forcing is solely dependent on the eccentricity of the earth
orbit (right plot of Fig.11). Note that the absolute value of St only varies within the small
interval between 341.5W/m2 and 342.0W/m2. We choose an albedo parameterization so
that the model to reproduces stable states at typical ice age and warm age temperatures
obtained from ice core data (for instance [113]). More specifically we set:

• α(T1) = 0.3901 for T1 = 278.9K (ice age)

• α(T2) = 0.2950 for T2 = 288.0K (present state)

• α(T3) = 0.2676 for T3 = 290.3K (warm age)

with a linear interpolation in between, as shown in the left plot of Fig.11. Regarding the
systems dynamic structure, our primary interest lies in the study of equilibria, i.e., the roots
of the right hand side of equation (4.1):

St(1− α(T ))− kB(Tt −∆T )4 = 0.
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As a result of the specific albedo parameterization we have three stable and two insta-
ble equilibria. The outer two stable equilibria are located at Tice = 278.9K and Twarm =
290.3K, as shown in Fig. 12. The location of these two equilibria is insusceptible to varia-
tions in insolation. However, the location of the third stable equilibrium strongly depends
on the solar forcing and varies within the interval [283.5K, 288.0K]. Note that a more
strongly fluctuating insolation would create areas where one or more of these equilib-
ria would not exist, which would cause the system to “jump” to the nearest existing stable
state. However, in this deterministic setting the variations in solar forcing are weak. There-
fore the system eventually settles in one of the stable states without the possibility to cross
between these states.
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Figure 11: Albedo Parameterization and Insolation Cycle
Albedo parameterization (left) and insolation cycle (right) used in the deterministic
framework. The albedo was derived from stable ice- and warm-age states as well
as the intermediate current state, indicated by circles in the plot on the left hand
side.
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Figure 12: Equilibrial Structure of the EBM
The three stable equilibria of the EBM system are plotted against the insolation St

with values in the interval [341.5, 342.0]W/m2 , marked by vertical grid lines. Obvi-
ously the outer equilibria are insusceptible to the fluctuations in insolation, whereas
the location of the intermediate steady state strongly depends on the value of the
solar forcing.
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4.3 A Stochastic EBM

4.3.1 Motivation

Contrary to the aforementioned steady state behavior, time series from ice core data re-
veal that the temperature is not constant but rather a strongly fluctuating process, varying
between ice- and warm-ages. This motivates a stochastic formulation, since the determin-
istic framework is inapt to capture this dynamic. One common approach is the addition of
stochastic forcing in form of an additive white noise term [109]. While being a reasonable
first step, this ansatz is disputable concerning

• additivity
There is no temperature independent variable in the model, begging the question
what kind of physical process would be described by a temperature independent
noise term.

• whiteness
Since the physical processes described by this model act on large space- and
timescales it is hard to imagine why a non-correlated noise should adequately cap-
ture the occurring fluctuations.

Therefore we follow a different approach: rather than using a purely mathematical tool to
modify the model in order to produce the desired effect, we take a look at the physical vari-
ables, which are already present in the deterministic EBM, with the intention to describe
one of them as a SP. For a successful stochastic formulation a variable has to satisfy the
following conditions: foremost there has to be a significant fluctuation of the global mean
since the model does not resolve spatial dimensions. These fluctuations have to act on
a timescale that can be covered by the model, i.e., not smaller than one year. Finally we
need evidence on the distribution of the SP. This can be achieved by means of a more
sophisticated model, which resolves the variable in question, or through data analysis.
Due to the simplicity of the deterministic model our choices are very limited and we iden-
tify ∆T as a suitable candidate, where its variations correspond, for instance, to varying
concentrations of greenhouse gases.

4.3.2 Time Series Data

In order to derive the characteristics of the fluctuations we use the following sets of ice
core data: Vostok [113], DomeFuji [114], Byrd [115], EPICADome [116], TaylorDome[117],
TaylorDome2 [118], which were chosen due to their good resolution and large time span.
Graphs of Vostok, Byrd and Taylor data (Fig.13) exemplary show that the scale-demands
are met and provide direct input on the distribution of the SP. Since there is a strong cor-
relation between CO2 concentration and temperature, we face the danger of predefining
the models equilibrium structure if the data contains crossings between warm- and ice-
ages. This issue arises primarily from the simplicity of the model, which results in very
few degrees of freedom. Hence the SP should describe the “natural” small fluctuations of
∆T excluding feedback effects with the temperature, i.e., a distribution independent of the
state variable T . Therefore we study detrended, dimensionless time series in time inter-
vals containing as few crossings between ice- and warm-ages as possible. The first step
is the conversion of CO2 data to temperature anomalies, which directly involves the cli-
mate sensitivity parameter. Here we assume that a doubling in CO2 concentration yields a
constant and deterministic ∆T increase of 2K and note that this value is obviously subject
to large uncertainty (see Section 3).
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Figure 13: Ice Core Time Series
The plots show the CO2 concentration from three exemplary ice core time series:
Vostok, Byrd and TaylorDome. Note the different horizontal and vertical scales.
Obviously both amplitude and frequency of the fluctuations are not homogeneous
among the different sets of data.

We obtain

∆T ′ =
2

log 2
log
(
1 +

detrend(CO2)

mean(CO2)

)
,

where ∆T ′ is the desired data of temperature fluctuations, detrend(CO2) the lineary de-
trended data from ice core drillings and mean(CO2) the sample mean value of the CO2

time series. In order to characterize the SP we use a spectral analysis of the ∆T ′ time
series. It turns out that the distribution closely follows an OUP

d∆Tt = −Θ
(
∆Tt − µ

)
dt+

√
D dWt,

with parameters Θ, µ and D depending on data. Therefore, the distribution of the SP is
(close to) a stationary Gaussian distribution (see Fig. 14), which we discuss in more detail
in Section 4.3.3. Note that Ito and Stratonovich calculus are identical in this case, due
to the constant diffusion coefficient

√
D, see Lemma 2.24. For a stationary process the

expectation value µ should naturally be equal to the value of ∆T used in the deterministic
model. The remaining parameters, which are responsible for the fluctuations, are fitted to
the spectral data in order to confirm the validity of the red noise assumption. Note how-
ever that the confidence interval for the parameter values of each time series is quite large
due to low data size. In addition the parameters calculated from different time series differ
strongly and it is not obvious which parameters we should trust. We denote the sample
decorrelation time by τ and the sample variance of each time series by var.
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Data τ [ka] var ·10−3 timespan [ka] # data points

Vostok 16.7 10.8 410 283

DomeFuji 14.0 10.6 340 290

Byrd 2.2 11.2 70 171

TaylorDome2 2.3 7.2 42 73

EPICADome 2.0 11.4 12 72

TaylorDome 0.6 1.0 11 69

Table 2: Statistical Properties of Ice Core Data
Statistical properties of dimensionless, detrended ice core data, which can be divided
into three distinct classes depending on decorrelation time and variance. One repre-
sentative of each class was chosen for further analysis: Vostok, Byrd and TaylorDome.

Following Table 2, we can divide these time series into the three classes [DomeFuji and
Vostok], [Byrd, EPICADome and TaylorDome2] and [TaylorDome]. There are pro and con-
tra arguments for each class: the first one consists of very large data sets covering long
time periods. While the high amount of data points is certainly a positive aspect it implies
the problem of embedded crossings between ice- and warm-ages. The second class con-
tains the majority of time series where each member yields similar parameters. The third
class consists of only one scarce set of data with only 69 data points. Nevertheless it
leads to the weakest noise signal, so one would be “on the safe side” using these param-
eters. Since there is no good argument to exclude either class we analyzed the system
for one time series of each category: Vostok,Byrd and TaylorDome.

4.3.3 Deriving the Parameters of the OUP

We have already discussed one possible method to fit an OUP onto given data by di-
rectly calculating its parameters from the statistical characteristics of the time series (see
Lemma 3.16). However this approach needs the rather utopian assumption of a station-
ary Gaussian distributed set of data. In practical applications we might be lucky enough
to have access to time series, which are “close to” a Gaussian distribution. Therefore we
need a method, which works equally well in the ideal case of Gaussian distributions, but
also yields solid results for other types of data. We observe that an OUP can be consid-
ered as the continuous time analog to a discrete-time first order autoregressive process.

Definition 4.1. AR(p) Process
The autoregressive process of order p ∈ N is denoted by AR(p) and defined by

Xn = c+

p∑

k=1

φkXn−k + σεn, n ≥ 0

for constants c, φ1, ..., φp, σ ∈ R and independent, identically distributed (iid) random vari-
ables εn with E [ε] = 0 and var (ε) = 1.

Remark 4.2. OUP as an AR(1) Process
The parameter p in Def. 4.1 determines the memory of the process. For p = 1 the

next step of the process only depends on its current value, but not on the past, which
is known as “Markov property”. A famous result by Doob states that every OUP is a
Markov process. Vice versa, every stationary Gaussian process (Yt)t≥0, which satisfies
the Markov property and is continuous in probability, i.e.

P (|Yt − Ys| > ǫ) → 0 as s → t,
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for all ǫ, t > 0, is an OUP [119]. Rewriting Def. 4.1 for p = 1 yields

Xn = c+ φ1Xn−1 + σεn

⇔ Xn −Xn−1 = −(1− φ1)

(
Xn−1 −

c

1− φ1

)
+ σεn.

For Θ := 1− φ1 and µ := c/(1− φ1) we obtain

∆Xn = −Θ(Xn−1 − µ) + σεn,

which is the discrete analog to the defining SDE of the OUP

dYt = −Θ(Yt − µ) dt+ σdWt.

Since AR(p) models play an important role in time series analysis, we can take advantage
of a rich theoretical and numerical knowledge from meteorology [120], physics [121] and
economics [122]. In order to derive the parameters of the OUP from ice-core data we use
a method named after Yule [5] and Walker [6], which has lost none of its appeal since its
publication 80 years ago. Without loss of generality we assume c = 0 for greater clarity
during the following discussion. Then an AR(p) process X satisfies

p∑

k=0

φkXn−k = σεn, n ≥ 0

with φ0 := 1. This leads to

E [Xnσεn] = E

[
Xn

p∑

k=0

φkXn−k

]
=

p∑

k=0

φkck,

where ck = E [XnXn−k] is the autocovariance of X with time lag k. On the other hand we
have

E [Xnσεn] = E

[(
σεn −

p∑

k=1

φkXn−k

)
σεn

]

= σ2E
[
ε2n
]
− σ

p∑

k=1

φkE [Xn−kεn]

= σ2E
[
ε2n
]
− σ

p∑

k=1

φkE [Xn−k]E [εn] = σ2,

where we used the independence of εn and Xn−k for all k ≥ 1. Following this line of
thought yields for l ≥ 1

0 = E [Xnσεn+l] = E

[
Xn

p∑

k=0

φkXn+l−k

]
=

p∑

k=0

φkcl−k.

Writing these identities for l = 1, . . . , p in matrix form, we obtain the “Yule-Walker equa-
tions”




c0 c1 . . . cp

c1 c0 . . . cp−1

...
... . . .

...

cp cp−1 . . . c0







1

φ1

...

φp




=




σ2

0

...

0




. (4.2)
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Let Σp denote the (p+1)×(p+1) covariance matrix in (4.2). Note that Σp is a nonnegative
definite Toeplitz matrix, since

v⊤Σp v =

p∑

j=0

p∑

k=0

vjcj−kvk

=

p∑

j=0

p∑

k=0

vjvkcov (Xn−j , Xn−k)

= var

(
p∑

k=0

vkXn−k

)
≥ 0.

As a consequence we have access to numerical schemes solving (4.2) in very cost effec-
tive way. Note that the last calculation does not require that X is an AR(p) processes. This
motivates the question how well the Yule-Walker algorithm performs for arbitrary (weakly)
stationary processes. To this end let (Xn)n≥0 be a weakly stationary zero mean process
with autocovariance sequence {ck}. Identifying Xn−p, . . . , Xn−1 with time series data, we
want to find the best linear predictor of the process X . Defining the predictor

X̂n = −
p∑

k=1

vkXn−k

and v0 = 1, we obtain the mean square prediction error

E

[(
Xn − X̂n

)2]
= E



(

p∑

k=0

vkXn−k

)2



= E




p∑

j=0

p∑

k=0

vjXn−jXn−kvk




= E




p∑

j=0

p∑

k=0

vjcj−kvk


 = v⊤Σpv.

In the following we show that the expression v⊤Σpv is minimized for v = φ, where φ is the
solution of the Yule-Walker equation (4.2), and that the minimal value of the mean square
prediction error equals σ2. For an arbitrary v with v0 = 1 we have

v⊤Σpv = (φ+ (v − φ))⊤Σp(φ+ (v − φ))

= φ⊤Σpφ+ 2(v − φ)⊤Σpφ+ (v − φ)⊤Σp(v − φ).

Due to (4.2) we get Σpφ = (σ2, 0, . . . , 0)⊤ and hence the first term equals σ2. For the
second term we obtain

2(v − φ)⊤Σpφ = 2(v − φ)⊤(σ2, 0, . . . , 0)⊤ = 0

since the first entry v0 − φ0 = 1− 1 = 0 vanishes. This yields

v⊤Σpv = σ2 + (v − φ)⊤Σp(v − φ).

Due to the definiteness of Σp the last term is nonnegative and equals zero for v = φ.
Obviously this leads to a minimal value of the mean square error equal to σ2. This rather
elementary fact is one of the main reasons for the success of the Yule-Walker method:
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Remark 4.3. Effectiveness of the YW-Algorithm
By solving (4.2), which can be done in very cost efficient ways, we obtain the coefficients
of the best linear predictor of Xn based on the past Xn−p, . . . , Xn−1 with a corresponding
minimal mean square error of σ2, even if X itself is no AR(p) process.

However, we would like to mention that there are some cases where the YW method fails.
The issue arises since – in practical applications – the parameter p is not given but has to
be estimated, for instance, using Akaike’s criterion [123]. For nearly periodic signals the
combination of Akaike and Yule-Walker can lead to incorrect parameter estimates [124].
De Hoon et al. [124] suggest the use of the closely related Burg algorithm [125, 126]
to avoid this issue. Fortunately MatLab has build-in functions for both methods, yielding
nearly indistinguishable parameters for the present sets of data. Using the results of
Rem. 4.2 and the MatLab function “aryule”, i.e., equation (4.2), we obtain the following
parameters for the fitted OUP (Table 3), which are visualized in Fig. 14.

Data Θ · 10−6 D · 10−6 # data points

Vostok 41.5 8.99 283

Byrd 312.7 6.98 171

TaylorDome 1079.4 2.23 69

Table 3: Parameters for an OUP fitted on Ice Core Data
Parameters of the fitted OUP and number of available data points for each time series
data. Obviously the three corresponding stochastic processes differ strongly.

4.3.4 Numerical Aspects

The stochastic EBM is a two-dimensional system containing one RODE for Tt and one
SODE for ∆Tt

c dTt =
[
St(1 − α(Tt))− kB(Tt −∆Tt)

4
]
dt

d∆Tt = −Θ
(
∆Tt − µ

)
dt+

√
D dWt.

We already solved the equation defining the OUP analytically in Lemma 3.6, yielding

∆Tt = ∆T0e
−Θt + µ(1− e−Θt) +

√
D

2Θ
e−ΘtW (e2Θt − 1).

This allows us to simulate the process ∆Tt in a direct and computational cost effective way
by generating Gaussian random variables with variances corresponding to the exponential
time scale e2Θt. The remaining RODE can be solved by common deterministic numerical
schemes, although they converge at a slower rate, since the process ∆Tt is only Hoelder
continuous and not differentiable [55]. We used a fourth order Runge-Kutta scheme with
a time step of one year.
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Figure 14: Power Spectrum for OUP fitted on Ice Core Data
Spectral plots of time series data and the corresponding fitted OUP using a Yule-
Walker algorithm. Despite the small number of data points the derived OUP are
within the 0.95 confidential interval.
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4.4 Results

4.4.1 Sample Paths
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Figure 15: Sample Paths for Three Different EBM
Sample paths for temperature (blue) and insolation (red) of three models based on
different ice core data. Since we already observed different fluctuations among the
original data (Fig. 13), which resulted in inhomogeneous OUP parameters (Table 3),
it comes as no surprise to find strongly differing sample paths.

The plots in Fig.15 show a single realization of the temperature process (blue line) and
insolation (red line) for each model. We obtain a first intuitive impression of the models
characteristics:

• There are at least two stable equilibria for the temperature, coinciding with the de-
terministic ones.

• The system can perform jumps between these equilibria.

• The models differ strongly regarding decorrelation times of Tt and strength of corre-
lation between Tt and St.

The sample paths suggest a correlation between solar forcing and temperature depending
on the strength of the SP. The coupling of solar and stochastic forcing with the temperature
can be explained on a heuristic level, i.e., ignoring the systems inertia, by looking at
schematic potential plots (Fig.16).
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Figure 16: Heuristic Potentials for a Stochastic EBM
Heuristical visualization of the interaction between solar and stochastic forcing. De-
pending on the value of the stochastic forcing and the insolation, which is respon-
sible for the different potential structures, the system stays in its current state, or
jumps to another steady state.

Exemplary we consider positive fluctuations of ∆Tt where the system, which is illustrated
by a black ball, occupies an ice-age. Positive fluctuations of insolation St and offset tem-
perature ∆Tt cause the potential to tilt towards the warm stable state. Since the insolation
variations are not capable of causing crossings between ice- and warm-ages on their own,
we have to take a closer look at ∆T . Qualitatively the values of ∆T can be broken down
into three categories:

• a area close to the mean value (green)

• a one-sided area further away from the mean, i.e., a “weak” extremum (yellow)

• a one-sided area far away from the mean, i.e., a “strong” extremum (red)

While ∆T occupies the first area (green) the system stays in its current state insusceptible
to the fluctuations of the solar forcing, which corresponds to the deterministic dynamics.
When ∆T adopts a weak extremum (yellow) the system follows the course of insolation,
e.g. it jumps from an ice-age to a warm-age if and only if the insolation is strong at that
point in time. In this case the stochastic forcing amplifies the solar forcing but is not strong
enough to provoke state changes on its own. This changes when ∆T reaches a strong
extremum (red): the system jumps regardless of the insolation level, e.g. it jumps from
an ice- to a warm-age even if the insolation is minimal. In this case the stochastic forcing
is strong enough to cause crossings between stable states even against the effect of the
solar forcing. Since the OUP is a Gaussian process, the probability for extremes corre-
sponds to e−(∆Tt−〈∆Tt〉)2 . Therefore a system with small fluctuations in ∆Tt, e.g. Taylor
with var (∆Tt) ≈ 10−3K2, has a much higher probability for jumps, which follow the inso-
lation, than for jumps regardless of insolation. However, for a system with strongly varying
∆T , e.g. Byrd or Vostok with var (∆Tt) ≈ 10−2K2, crossings of the second kind become
more common. This behavior can be observed for the sample paths in Fig. 15.

Both Vostok and Byrd do not follow the insolation closely, yet they exhibit fundamentally
different sample paths. We recall that both sets of time series data have almost the same
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variance, but strongly differing decorrelation times (Table 2). The small decorrelation time
of the Byrd system generates a rapidly fluctuating sample path, whereas the large decor-
relation time yields a more ponderous Vostok model. Note that these effects are so domi-
nant because the driving noise processes are very strong. Elsewise the insolation would
play a bigger role and systems with large decorrelation times would “miss” some jumps at
extremal insolation levels. Fig. 16 points out that the system is unaffected by the time a
SP spends in the green area, i.e., it is close to its mean value. However, a short time span
within the area of a weak extremum (yellow) at the time of an insolation extremum is suf-
fice to initiate a jump to a new equilibrium. Naturally, for rapidly fluctuating SPs it is more
likely to occupy a weak extremum at least once during a short time interval of extremal
insolation. Following this line of thought we can consider the fast but weak fluctuations
in the Taylor model as a “scanner ” for jump opportunities. The combination of a small
decorrelation time and weak variance leads to a system with high correlation between
temperature and solar forcing. This heuristically derived idea is supported by statistical
evidence in the upcoming sections 4.4.2 and 4.4.3.

4.4.2 Marginal Distributions at Local Extrema of the Solar F orcing
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Figure 17: Marginal Distributions for Three EBM
Marginal distributions calculated from 4.000 realizations at local extrema of the
solar forcing St. The plots support the impression, that the Taylor model closely
follows the insolation, whereas Vostok and Byrd systems exhibit smaller solar influ-
ences on the temperature state.
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Following the intuition gained by the heuristic consideration of sample paths and poten-
tials, we take a first step to describe statistical characteristics of the models by analyzing
marginal distributions of Tt at local extrema of the solar forcing St. We expect the Tay-
lor model to follow the course of insolation and show one-sided distributions, whereas
the Byrd and Vostok models should exhibit closer to uniform distributions. In Fig.17 the
temperature for 4000 realizations of each model has been divided into three intervals
corresponding to ice-ages and warm-ages and to a intermediate state.

4.4.3 Coherence
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Figure 18: Crosscorrelation and Coherence for Three EBM
The upper plot shows the time lagged crosscorrelation between temperature and
insolation. Since the crosscorrelation is maximal at τ = −8ka, the insolation pre-
cedes the temperature. The deterministicity of the insolation signal then (heuris-
tically) allows to consider the coherence as a measure for causality. As expected
the Taylor system has hight crosscorrelation and coherence values than Byrd and
Vostok. The maxima of the coherence correspond to the spectral peaks of the
insolation, further supporting the causal connection between insolation and tem-
perature in the Taylor model.
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Obviously neither a single sample path nor marginal distributions at fixed points in time
are sufficient to capture the characteristics of a stochastic dynamic system. Therefore we
analyze the crosscorrelation and coherence between insolation and temperature based
on the 4000 realizations of each model. The impression gained thus far are verified by
the crosscorrelation (Fig.18), which is much higher in the Taylor system than it is in Byrd
and Vostok systems. A maximal crosscorrelation of 0.8 at a time lag of 8ka and the peaks
at time lags of about 400ka, which relates to the eccentric cycle (see [127]), suggests that
the Taylor system is dominated by its insolation. The same periodic structure can be ob-
served for the Byrd and Vostok model but with a much smaller amplitude. In these models
a maximal crosscorrelation of about 0.2 indicates only slight influences of the insolation
on the temperature but a dominance of the stochastic forcing.

The periodic crosscorrelation structure advises further analysis in the frequency domain.
To this end we define the (quadratic) spectral coherence of two signals x, y by

C2
xy =

|Gxy|2
GxxGyy

,

where Gxy(f) = E [X∗(f)Y (f)] is the cross-spectral density of the Fourier transformed
signals X,Y . Note that for ergodic, linear systems the coherence is a measure for the
causality between the input x and the output y. Although we are not dealing with a linear
system, we can identify the insolation St as a deterministic input signal, which precedes
the output signal Tt in the sense of the aforementioned time lag for maximal crosscor-
reletation. Therefore the causal interpretation of high coherence values is sensible but
not rigorous. Denoting by S and T the Fourier transforms of insolation and temperature,
yields

C2
ST =

|E [S∗T ] |2
E [|S|2]E [|T |2] =

|S|2|E [T ] |2
|S|2E [|T |2]

=
|E [T ] |2
E [|T |2] =

(
var(T )

|E [T ] |2 + 1

)−1

,

for E [T ] 6= 0. Therefore the coherence between S and T does not depend on the inso-
lation S. This counterintuitive result derives from the fact that St is a deterministic signal.
As a consequence the coherence CST ∈ (0, 1] can be interpreted as a measure for the
deterministicity of the temperature T : a system with no fluctuations has var(T ) = 0 and
therefore C2

T = 1. However, if the normalized variance is large, CT is close to zero. The
advantage of the Fourier analysis becomes obvious in Fig.18, where we can observe the
impact of the stochastic forcing on each individual frequency. All models show peaks at
periodic times of 95ka and 125ka, which coincides with the leading terms in the spec-
trum of the eccentric cycle [127]. As expected the peaks of the Taylor model are close to
one, whereas Byrd and Vostok models produce significant lower values. In summary, the
results of the spectral analysis involving crosscorrelation and coherence supports the pre-
viously gathered insights: the Taylor model exhibits a strong (causal) connection between
insolation and temperature. On the other hand the Byrd and Vostok systems are largely
dominated by their strong stochastic forcing.
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4.5 Conclusion

We derived three stochastic energy budget models based on three different sets of ice
core data. Although the occurring SPs are based on physical data for each model, the
emerging systems differ fundamentally. While the Taylor system yields the most realistic
results, there is no solid ground to utterly dismiss the other data sets. The underlying prob-
lem is the discrepancy of spatial dimensions between data sets and model space. Ideally
we would need data that allows the derivation of global mean fluctuations of ∆T rather
than spatially pointwise ice core drillings. Another factor are feedback effects between
CO2 levels and temperature, which are included in the data but not accounted for in the
model. A third obstacle is the large amount of data points one would need to determine
the SPs with high accuracy and confidence. Of course we cannot expect such an abstract
and simplified model to yield realistic results. We would like to emphasize that it is not the
aim of this section to study the question whether or not glacial cycles can be explained by
the eccentricity. In fact the diversity of the three systems shows that this basic model is
inapt to produce any solid arguments on this topic. I further emphasizes the importance of
choosing stochastic terms very carefully, even in the case of such a simple model. After
all, if the three EBM models differ that strongly although their stochastics were derived
from physical data, how can one expect realistic or even sensible results from models with
arbitrarily chosen stochastic terms? In particular, this puts uncritically used additive white
noise approaches into question, regardless of the models complexity.

In this section we presented a methodology to deduce physically based stochastic terms.
To this end, starting from a deterministic framework, we identify a physical variable or
subgrid process that is not accurately described by the model. Furthermore statistical
information on this variable, e.g., sets of data or results from a high-resolution model, is
necessary to derive the characteristics of a suitable stochastic formulation. The spectral
fitting via Yule-Walker or Burg algorithms (see Section 4.3.3) onto suitable physical data
then provides a powerful tool to implement physically meaningful stochastic formulations
for unresolved or subgrid processes into a model.
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5 Three-Dimensional Primitive Equations

The analysis of weather and climate is inextricably linked with the study of fluid dynamics,
first and foremost regarding the atmosphere and ocean. At the core of this physical field
are the Navier-Stokes equations (NSE), consisting of momentum, continuity and thermo-
dynamic equations. They were formulated independently by Navier [128] and Stokes [129]
in the first half of the 19th century based on the Euler equations governing inviscid flow
[130], which were published in 1757. Despite their immense importance and mathematical
elegance the theoretical understanding of these equations is still incomplete. In particular
the existence of smooth solutions in space dimension three is still an open question and
one of the "Millennium Prize Problems" of the Clay Mathematics Institute [131]. In two
dimensions a positive answer was given by Ladythenskaya [132] in 1969 and there has
been some success proving the existence of "local" solution in three dimensions, i.e., so-
lutions that exist up to a finite (and possible small) "blow up time" T < ∞, which depends
on the smallness of initial conditions.

The primitive equations (PE) are based on the so-called hydrostatic approximation (5.6),
which simplifies the equation for the conservation of vertical momentum assuming equilib-
rium (in the vertical) between the pressure gradient force and the gravitational force. For
many meteorological application this is a good approximation, since the vertical acceler-
ation is very small compared to the gravitational acceleration [133]. While the PE were
formulated in 1922 by Richardson [134], it took until 1992 for the first rigorous mathemat-
ical framework to be developed by Lions, Temam and Wang [135]. We closely follow this
work during Section 5.1 and 5.2. In order to use recent results in a stochastic environment
[7] however, we use an abstract framework based on infinite-dimensional Hilbert spaces
and operators in Section 5.3, which follows the review paper by Temam and Ziane [136].
Although, from a physical point of view, the PE are of lower complexity then the Navier-
Stokes equations, this behavior does not transfer to their mathematical treatment. Quite
the contrary, the PE are technically even more evolved then the NSE: in Section 5.2.4 we
point out that the vertical velocity can be considered as a function of the divergence of the
horizontal velocity. This leads to a nonlinear advection term of the form

PE: (first-order derivative of the velocity ) × (first-order derivative of the velocity )

whereas for the NSE the corresponding term has the form

NSE: (velocity ) × (first-order derivative of the velocity ).

It is precisely this additional derivative, that is investigated in the remainder of this work.
Using Sobolev estimates it can be controlled to some extend via suitable Lp-norms (see
Lemma 5.20). Since the exponents of these norms depend on the spatial dimension, solid
results regarding existence and smoothness for space dimension two were soon available
[137], whereas the three-dimensional case proved to be more defiant. Analogous with
the NSE there were some results showing local existence of strong solution for the three-
dimensional PE [136], but it was only in the last decade, that finally the global existence of
smooth solution with physical boundary conditions in space dimension three was proved
by Cao and Titi in 2007 [138].

Since the PE are the core of virtually every GCM, which are limited by their finite grid res-
olution, they are a subject of various stochastic parameterization approaches in order to
account for unresolved subgrid processes or other sources of uncertainty. Consequently
there has been a sharply growing interest among the meteorological and geophysical so-
ciety [139, 140, 16, 141, 142, 11, 143, 144] to incorporate stochastic processes into the
equations. However the mathematical rigorous analysis of the stochastic PE is lagging
behind compared to the deterministic framework or even the results for stochastic NSE.
Naturally there are solid results for space dimension two [145, 146, 147], and for the
additive white noise case with mathematically idealized boundary conditions for three di-
mensions [148]. Unfortunately these results do not apply to physically reasonable cases.
Recently Debussche et al. [7] proved the local existence for the three-dimensional PE
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with physical boundary conditions and very general multiplicative noise using an abstract
operator framework. While their work is concentrated on abstract fluid models, and there-
fore assumes incompressibility of the medium, we show that their results hold true for the
global, compressible atmosphere.

5.1 General Equations of the Atmosphere

In this section we introduce the general equations of the atmosphere. Since we are in-
terested in the equations of motion for the three-dimensional system, it is sensible to
describe these equations in a non-inertial coordinate system rotating with the earth. In
the Euclidean space the atmosphere is then characterized by the three-dimensional ve-
locity field V3, the pressure p, the density ρ and the temperature T .

Momentum equations

dV3

dt
= pressure gradient + gravity + Coriolis force +dissipative force

= −1

ρ
∇3p+G− 2Ω× V3 +D. (5.1)

Continuity equation

dρ

dt
+ ρ div3V3 = 0. (5.2)

The first law of thermodynamics

cp
dT

dt
− RT

p

dp

dt
=

dQ

dt
. (5.3)

The equation of state

p = ρRT, (5.4)

where the viscosity term D in (5.1) is specified below. The heat flux per unit density in a
unit time interval dQ/dt represents molecular, turbulent and solar heating, including the
albedo of the earth, as well as heating due to evaporation. These equation are trans-
formed into spherical coordinates, which are defined as follows.

Definition 5.1. Coordinate System
The spherical coordinate system consists of

Θ ∈ [0, π] (colatitude)

ϕ ∈ [0, 2π] (longitude)

r ∈ [0,∞) (radial distance)

with unit vectors eΘ, eϕ, ez. Define furthermore the sea level radius a and the height above
sea level z = r − a.

We obtain the following relations between euclidean and spherical coordinates

~r =




x

y

z


 =




r cosΘ sinϕ

r sinΘ sinϕ

r cosϕ


 ,
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which yields

eΘ =
∂
∂Θ~r∣∣ ∂
∂Θ~r

∣∣ =




− sinΘ

cosΘ

0




eϕ =

∂
∂ϕ~r∣∣∣ ∂
∂ϕ~r

∣∣∣
=




cosΘ cosϕ

sinΘ cosϕ

− sinϕ




ez =
∂
∂r~r∣∣ ∂
∂r~r
∣∣ =




cosΘ sinϕ

sinΘ sinϕ

cosϕ


 .

Using this representation, the derivatives of the spherical unit vectors can be calculated.
Then the velocity vector can be written as

V3 = vΘeΘ + vϕeϕ + vrez = rΘ̇eΘ + r sinΘ ϕ̇eϕ + ṙez

and we obtain

d

dt
=

∂

∂t
+

vΘ
r

∂

∂Θ
+

vϕ
r sinΘ

∂

∂ϕ
+ vr

∂

∂r
.

Using D := (DΘ, Dϕ, Dr) finally allows us to translate the general equations (5.1)-(5.4)
into the spherical coordinate system, yielding

dvΘ
dt

+
1

r

(
vrvΘ − v2ϕ cotΘ

)
= − 1

ρr

∂

∂Θ
p+ 2Ω cosΘvϕ +DΘ

dvϕ
dt

+
1

r
(vrvϕ + vΘvϕ cotΘ) = − 1

ρr sinΘ

∂

∂ϕ
p− 2Ω cosΘvΘ − 2Ω sinΘvr +Dϕ

dvr
dt

+
1

r

(
v2Θ − v2ϕ

)
= −1

ρ

∂

∂r
p− g + 2Ω sinΘvϕ +Dr

dρ

dt
+ ρ

(
1

r sinΘ

∂

∂Θ
(vΘ sinΘ) +

1

r sinΘ

∂

∂ϕ
vϕ +

1

r2
∂

∂r
(r2vr)

)
= 0

cp
dT

dt
− RT

p

dp

dt
=

dQ

dt

p = ρRT.

5.2 The Deterministic 3d Primitive Equations

In order to derive the primitive equations from the general equations of the atmosphere
we identify terms of small magnitude via scale analysis, and approximate or omit them.
The following scales, which are strongly based on observations and not so much on a
theoretical deduction, are valid for midlatitude synoptic systems [133].
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Variable Scale Unit Description

vΘ, vϕ 10 ms−1 horizontal velocity

vr 10−2 ms−1 vertical velocity

L 106 m horizontal length

H 104 m vertical hight

t 105 s synoptic time
∂
∂Θ , ∂

∂ϕ 10−6 m−1 horizontal derivative
∂
∂r 10−4 m−1 vertical derivative
∂
∂t 10−5 s−1 time derivative

ρ 1 kg m−3 density

p 105 Pa pressure

2Ω sinΘ 10−4 s−1 Coriolis term

g 10 ms−2 gravity acceleration

r 107 m earth radius

Table 4: Typical scales for the daily perturbations in midlatitude synoptic systems.

Note that the typical scales for the derivatives correspond to the inverse length and time
scales. The most notably result is the "hydrostatic approximation", which reduces the
vertical equation of motion

∂

∂t
vr

︸ ︷︷ ︸
10−7

+ vΘ
∂

∂Θ
vr

︸ ︷︷ ︸
10−7

+ vϕ
∂

∂ϕ
vr

︸ ︷︷ ︸
10−7

+ vr
∂

∂r
vr

︸ ︷︷ ︸
10−8

+
1

r

(
v2Θ − v2ϕ

)
︸ ︷︷ ︸

10−5

= −1

ρ

∂

∂r
p

︸ ︷︷ ︸
10

− g︸︷︷︸
10

+2Ω sinΘvϕ︸ ︷︷ ︸
10−3

+ Dr︸︷︷︸
10−4

(5.5)

to the clearly arranged form

∂

∂r
p = −ρg. (5.6)

This approximation exhibits a high accuracy, due to the gap of four order of magnitudes
between the resolved and omitted scales. Supplementing this heuristic derivation of the
hydrostatic approximation we refer to [149] for a mathematical justification, which is based
"on the fact that the ratio [ǫ−1] between horizontal and vertical scales leads to very different
sizes for the horizontal and vertical eddies" [149, p. 847]. The authors show that, for small
ǫ, weak solutions of the NSE converge to weak solutions of a system with hydrostatic
pressure. Note that hydrostatic does not imply small vertical velocities but rather vertical
accelerations, which are small compared to the gravitational acceleration.
Since the radius of the earth is large compared to the height of the atmosphere we further
replace r = a+ z, where z is the altitude above sea level, by the constant earth radius a in
terms were r is not differentiated. This is known as "shallow atmosphere approximation"
and, combined with scale analysis for the remaining equations analogous with (5.5), finally
yields:
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Definition 5.2. The PE of the Atmosphere in Spherical Coordinates

dvΘ
dt

− v2ϕ
a

cotΘ = − 1

ρa

∂

∂Θ
p+ 2Ω cosΘvϕ +DΘ

dvϕ
dt

+
vΘvϕ
a

cotΘ = − 1

ρa sinΘ

∂

∂ϕ
p− 2Ω cosΘvΘ +Dϕ

∂

∂r
p = −ρg

dρ

dt
+ ρ

(
1

a sinΘ

∂

∂Θ
(vΘ sinΘ) +

1

a sinΘ

∂

∂ϕ
vϕ +

∂

∂r
vr

)
= 0

cp
dT

dt
− RT

p

dp

dt
=

dQ

dt

p = ρRT.

Where the material differentiation is now given by

d

dt
=

∂

∂t
+

vΘ
a

∂

∂Θ
+

vϕ
a sinΘ

∂

∂ϕ
+ vr

∂

∂r
.

Note that of the three-dimensional, geometric terms

1

r

(
vrvΘ − v2ϕ cotΘ

)
and

1

r
(vrvϕ + vΘvϕ cotΘ) ,

only the horizontal contributions survived:

−v2ϕ
a

cotΘ and
vΘvϕ
a

cotΘ.

Therefore we effectively reduced the three-dimensional geometry of the atmosphere to
the two-dimensional surface of the sphere with radius a.

5.2.1 Pressure Coordinates

The hydrostatic approximation (5.6) implies that the pressure p is decreasing monotoni-
cally with respect to the vertical coordinate z. This motivates the idea to use pressure as
vertical coordinate and permits the following transformation

(t,Θ, ϕ, z) → (t∗,Θ∗, ϕ∗, p = p (t,Θ, ϕ, z))

with

t∗ = t, Θ∗ = Θ, ϕ∗ = ϕ.

Since the inverse transformation is given by

(t,Θ, ϕ, z) → (t,Θ, ϕ, z = z (t∗,Θ∗, ϕ∗, p))

we have

p = p (t,Θ, ϕ, z (t∗,Θ∗, ϕ∗, p)) . (5.7)

While z was defined on [0,∞), the pressure p lives on the interval [ps, 0], where ps is the
(unknown) surface pressure and 0 the pressure in the (infinitely) high atmosphere. Since
there are technical difficulties for p = 0, which are for instance studied in [150], we restrict
p to the interval [p0, P ] with an approximated surface pressure P and a small p0 > 0.
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Differentiating (5.7) with respect to p,Θ∗, ϕ∗, and using the hydrostatic approximation (5.6)
leads to

∂

∂p
(gz) = −1

ρ

∂

∂Θ∗ (gz) =
1

ρ

∂

∂Θ
p

∂

∂ϕ∗ (gz) =
1

ρ

∂

∂ϕ
p.

Furthermore we have

∂

∂z
=

∂

∂z
p
∂

∂p

∂

∂Θ
=

∂

∂Θ∗ +
∂

∂Θ
p
∂

∂p

∂

∂ϕ
=

∂

∂ϕ∗ +
∂

∂ϕ
p
∂

∂p
.

The material differentiation for a function F in the new coordinate system is given by

Ḟ =
d

dt∗
F =

(
∂

∂t∗
+ Θ̇∗ ∂

∂Θ∗ + ϕ̇∗ ∂

∂ϕ∗ + ṗ
∂

∂p

)
F

=

(
∂

∂t∗
+ Θ̇

∂

∂Θ
+ ϕ̇

∂

∂ϕ
+ ṗ

∂

∂p

)
F.

Using these expression we can deduce the horizontal (two-dimensional) gradient of a
scalar function T and the horizontal (two-dimensional) divergence of a vector u, where
the indices p and z denote the coordinate system of the nabla operator:

∇pT = ∇zT +
∂

∂p
T

∂

∂z
p∇pz

∇p · u = ∇z · u+
∂

∂p
u
∂

∂z
p · ∇pz

Defining the geopotential Φ = gz then yields

− 1

ρ
∇zp = −∇pΦ.

While the horizontal momentum equations of the PE take the form

d

dt∗
vΘ − v2ϕ

a
cotΘ∗ = −1

a

∂

∂Θ∗Φ + 2Ω cosΘ∗vϕ +DΘ

d

dt∗
vϕ +

vΘvϕ
a

cotΘ∗ = − 1

a sinΘ∗
∂

∂ϕ∗Φ− 2Ω cosΘ∗vΘ +Dϕ

we combine the hydrostatic approximation and the equation of state to obtain

∂

∂p
Φ+

RT

p
= 0.

Regarding the continuity equation we substitute ρ = ∂
∂zp and use the product rule to get

d

dt

(
∂

∂z
p

)
=

∂

∂t

(
∂

∂z
p

)
+ vΘ

∂

∂Θ

(
∂

∂z
p

)
+

vϕ
a sinΘ

∂

∂ϕ

(
∂

∂z
p

)
+ vr

∂

∂r

(
∂

∂z
p

)

=
∂

∂z

(
dp

dt

)
− ∂

∂z
vΘ

1

a

∂

∂Θ
p− ∂

∂z
vϕ

1

a sinΘ

∂

∂ϕ
p− ∂

∂z
vr

∂

∂r
p.
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Some basic calculations using the transformations of the various differential operators
mentioned above lead to

∂

∂p

(
dp

dt

)
+

1

a sinΘ∗
∂

∂Θ∗

(
vΘ sinΘ∗ +

∂

∂ϕ∗ vϕ

)
= 0.

Note that the total derivative is independent of the coordinate system allowing us to define
a (generalized) vertical velocity

ω =
d

dt
p =

d

dt∗
p = ṗ.

Omitting the asterisk gives us

Lemma 5.3. PE of the Atmosphere in p-Coordinates
The PE in the coordinate system (t,Θ, ϕ, p) are given by

d

dt
vΘ −

v2ϕ
a

cotΘ = −1

a

∂

∂Θ
Φ+ 2Ω cosΘvϕ +DΘ

d

dt
vϕ +

vΘvϕ
a

cotΘ = − 1

a sinΘ

∂

∂ϕ
Φ− 2Ω cosΘvΘ +Dϕ

∂

∂p
Φ +

RT

p
= 0

∂

∂p
ω +

1

a sinΘ

∂

∂Θ

(
vΘ sinΘ +

∂

∂ϕ
vϕ

)
= 0

cp
dT

dt
− RT

p
ω =

dQ

dt
,

where

d

dt
=

∂

∂t
+

vΘ
a

∂

∂Θ
+

vϕ
a sinΘ

∂

∂ϕ
+ ω

∂

∂p

and

vr =
dr

dt
=

dz

dt
=

∂

∂t
z +

vΘ
a

∂

∂Θ
z +

vϕ
a sinΘ

∂

∂ϕ
z − ω

ρg
.

Remark 5.4. Quasi-Incompressibility
One of the most notable advantages of the p-coordinate PE is their "quasi- incompress-

ibility": although the atmosphere is evidently a highly compressible fluid, the continuity
equation in p-coordinates takes the same form as that of an incompressible fluid. This
proves to be a crucial condition for the existence of solutions for stochastic PE.

5.2.2 Approximations involving Temperature and Diffusion

In order to make the viscous PE more accessible from a mathematical point of view we
give a simplification of the term RTω/p and characterize diffusion and heating terms
DΘ, Dϕ, dQ/dt, which remained unspecified so far. As we are interested in the large
scale behavior of the atmosphere we assume that the surface of the earth is isobaric
with a surface pressure of P . The upper boundary of the atmosphere is given by the
isobaric surface p = p0 > 0. Let us define vertical distributions T̄ , Φ̄ of temperature and
geopotential in order to derive equations for the difference processes

T ′ := T − T̄ and Φ′ := Φ− Φ̄.
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This decomposition allows us to identify terms of small magnitude. To this end define a
vertical temperature distribution T̄ = T̄ (p) ∈ C∞ ([p0, P ]) such that

R

(
RT̄

cp
− p

∂

∂p
T̄

)
= constant =: C2, (5.8)

which can be understood as the climate mean temperature on isobaric surfaces. As the
next step we define a vertical geopotential distribution Φ̄ = Φ̄(p) by

RT̄

p
− p

∂

∂p
Φ̄ = 0. (5.9)

Furthermore the difference processes

T ′ = T − T̄ and Φ′ = Φ− Φ̄

satisfy

∂

∂Θ
Φ =

∂

∂Θ
Φ′

∂

∂ϕ
Φ =

∂

∂ϕ
Φ′

∂

∂p
Φ+

RT

p
=

∂

∂p
(Φ′ + Φ̄) +

R

p
(T ′ + T̄ ) =

∂

∂p
Φ′ +

RT ′

p
.

These facts allow us to rewrite the PE with exception of the first law of thermodynamics,
which is treated using

∂

∂t
T̄ =

∂

∂Θ
T̄ =

∂

∂ϕ
T̄ = 0.

This implies

dT̄

dt
= ω

∂

∂p
T̄

and therefore by definition of T̄

dT̄

dt
=

RT̄

cpp
ω − C2

pR
ω.

For the thermodynamic part of the PE we obtain

dQ

dt
= cp

dT

dt
− RT

p
ω = cp

dT ′

dt
+ cp

dT̄

dt
− RT

p
ω = cp

dT ′

dt
− cpC

2

pR
ω + (T̄ − T )

Rω

p

In order to simplify the PE we omit the last term. This is in fact the first approximation
to the PE we made since the transformation to pressure coordinates. To give a (brief)
justification for this approach note that |T − T̄ | is small compared to p/Rω [151]. This
leads to

|T − T̄ |Rω

p
= |T − T̄ |

( p

Rω

)−1

<< 1.

Variations of this approximation enjoy great popularity among the mathematical papers on
the PE. It is for instance used in the review paper on PE by Temam and Ziane [136], where
the authors refer to [150] for a more elaborate approximation. Furthermore they state
that the occurring mathematical problems are of technical nature so that "with addition
precautions, and using the maximum principle for the temperature as in [152], we could
keep the exact term RTω/cpp" [136, p. 565]. Since our focus lies in a stochastic treatment
of the PE, we accept

(T̄ − T )
Rω

p
≈ 0
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as a good first order approximation to avoid additional (albeit technical) complications.
This gives us a modified version of the PE

d

dt
vΘ − v2ϕ

a
cotΘ = −1

a

∂

∂Θ
Φ′ + 2Ω cosΘvϕ +DΘ

d

dt
vϕ +

vΘvϕ
a

cotΘ = − 1

a sinΘ

∂

∂ϕ
Φ′ − 2Ω cosΘvΘ +Dϕ

∂

∂p
Φ′ +

RT ′

p
= 0

∂

∂p
ω +

1

a sinΘ

∂

∂Θ

(
vΘ sinΘ +

∂

∂ϕ
vϕ

)
= 0

cp
dT ′

dt
− cpC

2

pR
ω =

dQ

dt
,

which leaves the diffusion and heating terms to be specified. To allow for a more con-
cise representation of the PE we introduce the following differential operators on the two-
dimensional sphere S2

a. The covariant derivative of a vector field u = uΘeΘ + uϕeϕ and a
scalar function T respectively, w.r.t. v = vΘeΘ + vϕeϕ, is given by

∇vu =
(vΘ

a

∂

∂Θ
uΘ +

vϕ
a sinΘ

∂

∂ϕ
uΘ − vϕuϕ

a
cotΘ

)
eΘ

+
(vΘ

a

∂

∂Θ
uϕ +

vϕ
a sinΘ

∂

∂ϕ
uϕ − vϕuΘ

a
cotΘ

)
eϕ

∇vT =
vΘ
a

∂

∂Θ
T +

vϕ
a sinΘ

∂

∂ϕ
T.

The horizontal gradient of a scalar function T and the horizontal divergence of a vector
field u = uΘeΘ + uϕeϕ have the form

∇T =
1

a

∂

∂Θ
T eΘ +

1

a sinΘ

∂

∂ϕ
T eϕ

∇ · u =
1

a sinΘ

( ∂

∂Θ
(uΘ sinΘ) +

∂

∂ϕ
uϕ

)
.

This leaves the horizontal Laplace-Beltrami operators acting on a scalar function T and a
vector field u = uΘeΘ + uϕeϕ, respectively. They are defined by

∆T = ∇ · (∇ T ) =
1

a2 sinΘ

[
∂

∂Θ

(
sinΘ

∂

∂Θ
T
)
+

1

sinΘ

∂2

∂ϕ2
T

]

∆u = ∆

(
uΘ

a

∂

∂Θ
+

uϕ

a sinΘ

∂

∂ϕ

)

=
(
∆uΘ − 2 cosΘ

a2 sin2 Θ

∂

∂ϕ
uϕ − uΘ

a2 sin2 Θ

)
eΘ

+
(
∆uϕ − 2 cosΘ

a2 sin2 Θ

∂

∂ϕ
uΘ − uϕ

a2 sin2 Θ

)
eϕ.

We can now introduce the following viscosity terms Dv, DT for v = (vΘ, vϕ)

Dv = (DΘ, Dϕ) = µv∆v + νv
∂

∂p

[( gp

RT̄

)2 ∂

∂p
v

]

DT = µT∆T ′ + νT
∂

∂p

[( gp

RT̄

)2 ∂

∂p
T ′
]
,

which are extensively discussed in [153, 154]. Note that T was approximated by T̄ , since
the coefficients νv, νT are small. The heating term is specified by

1

cp

dQ

dt
= DT + FT ,

where FT denotes the diabatic heating, consisting of radiative heating, which includes
solar heating and the albedo effect, as well as evaporative heating. We can now state
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Lemma 5.5. The Viscous PE
The PE of the atmosphere with horizontal viscosity and heating terms in the coordinate

system (t,Θ, ϕ, p) are given by

∂

∂t
v +∇vv + ω

∂

∂p
v + 2Ω cosΘ k × v +∇Φ′ −Dv = Fv

∂

∂p
Φ′ +

RT ′

p
= 0

∇ · v + ∂

∂p
ω = 0

∂

∂t
T ′ +∇vT

′ + ω
∂

∂p
T ′ − C2

pR
ω −DT = FT ,

where FT stands for diabatic heating, while the term Fv, which vanishes in reality, was
added to allow for a greater mathematical generality. The diffusion terms are defined by

Dv = µv∆v + νv
∂

∂p

[( gp

RT̄

)2 ∂

∂p
v

]

DT = µT∆T ′ + νT
∂

∂p

[( gp

RT̄

)2 ∂

∂p
T ′
]
.

Furthermore T ′ = T − T̄ and Φ′ = Φ − Φ̄ are the difference processes characterized in
(5.8) and (5.9), respectively.

Remark 5.6. A Note on Vertical Viscosity
The vertical diffusion term Dr vanished due to the hydrostatic approximation. As a result
of the coordinate transformations, that were employed to deal with the compressibility of
the atmosphere, it is not obvious how one could introduce effects of vertical viscosity into
the PE. This setting is extensively studied [135, Ch. 4-7] using the ansatz of a "weaker"
hydrostatic approximation

∂

∂z
p = −ρg + ρDr,

where Dr is small. This is used to make the transformation to pressure coordinates omit-
ting any arising terms of small order of magnitude. While we won’t pursue this topic any
further in this thesis it might be interesting for future extensions.

5.2.3 Boundary Conditions

The horizontal boundary conditions Γh are obviously given by periodicity due to the spher-
ical geometry of our setting. Regarding the top of the atmosphere Γu we assume

∂

∂p
v = 0, ω = 0,

∂

∂p
T ′ = 0. (5.10)

The lower boundary however is more complex, since it contains the interaction between
the surface of the earth and its atmosphere. Since the surface is distinctively inhomoge-
neous there is a multitude of possible formulation to describe these interaction. A widely
accepted characterization in meteorological applications is as follows [155, 154, 136].

Above land surface Γl

v = 0, ω = 0

νT
∂

∂p
T = −αT (T − Tl)

(5.11)
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Above oceanic surface Γo

νv

( gp

RT̄

)2 ∂

∂p
v = τv − αv(v − vo), ω = 0

νT

( gp

RT̄

)2 ∂

∂p
T ′ = −αT (T

′ − To).

(5.12)

We assume that the temperature on land surface Tl, and the velocity and temperature of
the ocean vo and To are given C∞(S2

a) functions. Furthermore, for the sake of simplicity
we assume that τv and the coefficients αv > 0 and αT > 0 are known constants and refer
to Lions et al., who state that "the non-constant [case] can be treated in exactly the same
way" [135, p. 250]. Although there exist a multitude of viable formulations for the boundary
conditions, the results of this section hold true for any alternative formulation based on first
order linear differential equations of horizontal velocity and temperature, since we have to
homogenize the boundary conditions for symmetry reasons later on, see Lemma 5.11.

5.2.4 Prognostic and Diagnostic Variables

In order to take a closer look at the generalized vertical velocity we integrate the continuity
equation in Lemma 5.5

∇ · v + ∂

∂p
ω = 0.

The boundary conditions on ω then yield

ω = ω(v) = −
∫ p

p0

∇ · v dp′ (5.13)

with

∫ P

p0

∇ · v dp = 0.

Therefore ω is a function completely defined by the horizontal velocity v. The geopotential
is obtained in an analog way based on the second equation of the PE Lemma 5.5

Φ′ = Φ′(p, T ′) = Φ′
s +

∫ P

p

RT ′

p′
dp′, (5.14)

where Φs is the geopotential at the surface p = P , which equals g times the height of
the isobar p = P . We can now group the unknown functions into two sets: the prog-
nostic variables U = (v, T ) for which we define the initial value problem, and the diag-
nostic variables ω and Φ, which can be determined, at each instant in time by evaluating
the prognostic variables using the PE and the boundary conditions. This reduction of
(prognostic) variables is a distinct advantage of the PE compared to the Navier-Stokes
equations. However, we encounter the aforementioned disadvantage of this technique
when trying to control the advection term (U · ∇)U , where we have to deal with additional
horizontal derivatives on one hand and vertical averaging (integration) on the other, see
Lemma 5.20. This leads to the necessity of so-called "anisotrop Sobolev estimates" in the
proof of Lemma 5.20.

These considerations together with the boundary conditions (5.10), (5.11), (5.12) and the
viscous PE (Lemma 5.5) conclude the classical deterministic framework. The next step
is the derivation of an abstract framework using infinite-dimensional Hilbert spaces and
operators, which finally allows us to use the results of Debussche et al [7] to conclude the
existence of solutions of the PE in a stochastic framework.
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5.3 An Abstract Operator Framework for the PE

Before diving straight into the mathematical construction of an operator framework, we
motivate this approach by means of an illustrative example, showcasing the underlying
idea of the upcoming proof of existence.

5.3.1 Variational Formulation of the Stokes-Equation - A Mo tivation

The Stokes equations are the stationary linearized form of the full Navier-Stokes equa-
tions. They are therefore far less complex than the PE but exhibit a similar fundamental
structure. We refer to [156] for rigorous proofs of the following conceptual statements. Let
M be an open bounded set in Rn with boundary ∂M, let f ∈ L2(M) be a given vector
function in M and let ν > 0 be the constant viscosity coefficient. We can then state

Proposition 5.7. The Stokes Problem
Find a vector function u (the velocity) and a scalar function p (the pressure) defined in M,
which satisfy

−ν∆u+∇p = f in M
∇ · u = 0 in M

u = 0 on ∂M.

We introduce the concept of Hilbert spaces, which can be regarded as a natural general-
ization of the Euclidean space for systems with any finite or infinite number of dimensions.

Definition 5.8. Hilbert Space
A Hilbert space H is a vector space endowed with an inner product 〈·, ·〉 such that the
norm ‖ · ‖ =

√
〈·, ·〉 turns H into a complete metric space, i.e., a metric space in which

every Cauchy sequence is convergent.

Let us define the Hilbert space

V =
{
u ∈ H1(M)

∣∣ ∇ · u = 0
}

endowed with the inner product

((u, v)) =

n∑

i=1

(∇ui,∇vi) , u, v ∈ V.

Note that H1(M) can be understood as a space of suitable smooth functions on M for
this conceptual argument and are rigorously defined in the next section. The crucial point
is that V consists only of divergence free vector fields. Taking the scalar product of the
first equation with a v ∈ V yields

− (ν∆u, v) + (∇p, v) = (f, v)

and, integrating by parts, we obtain

−ν (∆u, v) = ν

n∑

i=1

(∇ui,∇vi) = ν ((u, v))

(∇p, v) = (p,∇ · v) = 0 by definition of V .

For this calculation we used the characteristics of V as well as the boundary conditions
on ∂M. We can now state the

Proposition 5.9. Variational formulation of the Stokes problem
Find a u ∈ V satisfying

ν ((u, v)) = (f, v) for all v ∈ V.
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Following up on the idea presented here by using elaborate topological arguments one can
show (see Lemma 2.1 in [156]) that the variational formulation is equivalent to the Stokes
problem in a weak sense. Therefore we have reduced the classical problem (Prop. 5.7) to
the task of finding only u, while the existence of p follows from the fact

(w, v) = 0 for all v ∈ V ⇒ ∃p with w = ∇p

for w = ν∆u − f (see Prop.1.1 and Prop.1.2. in [156]). The existence of an u satisfying
Proposition 5.9 can be approached by the abstract arguments of various fix-point theo-
rems. In the case of a finite-dimensional Euclidean space Brouwers Theorem [157] states
that every continuous function f from the closed n-dimensional Ball Bn into itself has a fix
point, i.e.

∀f ∈ C(Bn, Bn) : ∃x ∈ Bn : f(x) = x.

The extension to more general sets M in Banach spaces was given by Schauder and
Leray [158] and is also referred to as the "Leray-Schauder principle". Naturally the main
issue in the application of these statements is the implied boundedness of the function f .
This is particularly true for the PE due to their highly nonlinear advection term.

5.3.2 The Mathematical Framework

During the construction of an abstract framework for the PE we follow the notation of [136],
starting with the definition of the domains

M = M0 × (p0, P ) =
{
(Θ, ϕ, p)

∣∣ Θ ∈ (0, π), ϕ ∈ (0, 2π), p ∈ (p0, P )
}
.

The boundary of M is then characterized using the definitions of the previous section

Γh = ∂M0 × (p0, P ) (horizontal)

Γu = M0 × {p0} (top)

Γl ∪ Γo = M0 × {P}. (surface)

Let Lp(M) denote the space of p-integrable functions on M for all 1 ≤ p < ∞. Define the
Sobolev spaces W k,p(M) for k ∈ N and 1 ≤ p < ∞ by

W k,p(M) =
{
u ∈ Lp(M)

∣∣ Dαu ∈ Lp(M) for all |α| ≤ k
}
.

Here α is a multi-index and Dαu denotes the weak partial derivative of u. Therefore W k,p

is the space of all Lp-functions on M whose weak partial derivatives of up to order k are
p-integrable as well. The following notation is motivated by the fact that W k,p is a Hilbert
space in the case of p = 2,

Hk(M) = W k,2(M), k ∈ N.

Using this mathematical groundwork we introduce spaces

H = Hv ×HT and V = Vv × VT

with

Hv =

{
v(Θ, ϕ, p) ∈ L2(M)2

∣∣∣∣ v periodic in Θ and ϕ, ∇ ·
∫ P

p0

v dp = 0

}

HT =

{
T (Θ, ϕ, p) ∈ L2(M)

∣∣∣∣ T periodic in Θ and ϕ

}

and

Vv =

{
v(Θ, ϕ, p) ∈ H1(M)2

∣∣∣∣ v periodic in Θ and ϕ, ∇ ·
∫ P

p0

v dp = 0, v = 0 on Γl

}

VT =

{
T (Θ, ϕ, p) ∈ H1(M)

∣∣∣∣ T periodic in Θ and ϕ

}
.
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We endow H with the classical L2 inner product

〈U, Ũ〉 =
∫

M
U · Ũ dM, U, Ũ ∈ H

and denote the corresponding norm by ‖·‖H . We define the inner product of V by
((
U, Ũ

))
=
((
v, ṽ
))

v
+
((
T, T̃

))
T
, U = (v, T ), Ũ = (ṽ, T̃ ) ∈ V

with
((
v, ṽ
))

v
=

∫

M
µv∇v · ∇ṽ + νv

( gp

RT̄

)2 ∂

∂p
v
∂

∂p
ṽ dM−

∫

Γo

αvv · ṽ dΓo

((
T, T̃

))
T
=

∫

M
µT∇T · ∇T̃ + νT

( gp

RT̄

)2 ∂

∂p
T

∂

∂p
T̃ dM

−
∫

Γo

αTT · T̃ dΓo −
∫

Γl

αT

( gp

RT̄

)2
T · T̃ dΓl.

Finally we define a space V(2) as the closure of V in the H2(M)3 norm and equip it with
the classical H2(M) inner product. While H can be considered as the space containing
the basic geometry of our problem, the subspaces V(2) ⊂ V ⊂ H additionally demand the
boundedness of derivatives of the vector field (in a Sobolev sense).

Remark 5.10. Meteorological Interpretation of H- and V -norms
Considering the typical bilinear term

v · v (H − norm) and ∇v · ∇v (V − norm),

we can identify the H-norm with the kinetic energy and the V -norm with the entropy of
the system. Furthermore Lemma 5.18 below shows a close connection between diffusion
terms and entropy norm ‖·‖V .

5.3.3 The PE in Operator form

We are now in a position to give an operator representation for the PE. To this end let U
be a square integrable vector field with horizontal periodicity, i.e.

U ∈
{
u ∈ L2(M)3

∣∣ u periodic in Θ and ϕ
}
.

Define the Leray projection PH as the orthogonal projection of U onto the space of square-
integrable, horizontal periodic, divergence free vector fields H , i.e., PHU ∈ H . We define
the linear operator A by merging all linear terms of second order derivatives, i.e.

AU = PH


 −µv∆v − νv

∂
∂p

[(
gp
RT̄

)2 ∂
∂pv
]

−µT∆T ′ − νT
∂
∂p

[(
gp
RT̄

)2 ∂
∂pT

′
]

 , U = (v, T ) ∈ D(A) (5.15)

with

D(A) =





U = (v, T ) ∈ V(2)

∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂pv = 0, ∂

∂pT
′ = 0 on Γu

νT
∂
∂pT

′ = −αT (T
′ − Tl) on Γl

νv
(

gp
RT̄

)2 ∂
∂pv = τv − αv(v − vo)

νT
(

gp
RT̄

)2 ∂
∂pT

′ = −αT (T
′ − To)

}
on Γo





.

While the spaces V(2) ⊂ V ⊂ H primarily contain information regarding differentiability
and geometry, the boundary conditions are accounted for in the definition of D(A). In the
next step we turn to the bilinear advection term and define

B(U, Ũ) = PH


 (∇vv) ṽ + ω(v) ∂

∂p ṽ

(∇vT
′) T̃ ′ + ω(v) ∂

∂p T̃
′


 , U = (v, T ), Ũ = (ṽ, T̃ ) ∈ D(A).

(5.16)
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Note that we often use the abbreviatory notation B(U) := B(U,U). Recall the diagnostic
nature of the generalized vertical velocity ω(v) and the geopotential Φ′

ω = ω(v) = −
∫ p

p0

∇ · v dp′ (5.13)

Φ′ = Φ′(p, T ′) = Φ′
s +

∫ P

p

RT ′

p′
dp′, (5.14)

which are combined in the pressure operator

ApU = PH



∫ P

p
RT ′

p′ dp′

−C2

pRω(v)


 , U = (v, T ) ∈ V.

While the Coriolis term is captured in

CU = PH


 2 cosΘk × v

0


 , U = (v, T ) ∈ V,

we merge the forcing terms

FU = PH


 Fv

FT




and finally set

F (U) = ApU + CU + FU . (5.17)

The viscous PE than have the clearly arranged form

dU + (AU +B(U,U) + F (U)) dt = 0. (5.18)

Before we conclude the discussion of the deterministic setting we homogenize the bound-
ary conditions, which is important for the symmetry of the linear operator A (see
Lemma 5.18 and Remark 5.19).

Lemma 5.11. Homogenization of the Boundary Conditions A
Without loss of generality we may assume homogeneous boundary conditions, i.e.

νT
∂

∂p
T = −αTT on Γl

νv

( gp

RT̄

)2 ∂

∂p
v = −αvv on Γo

νT

( gp

RT̄

)2 ∂

∂p
T = −αTT on Γo

Proof. Lemma 5.11
Since the reduction of the system to homogeneous boundary conditions is a common
technique, we present the main idea and refer to [136, p. 574ff.] for a rigorous proof. Let
U∗ be the solution of the deterministic linear system, i.e.,

dU

dt

∗
+AU∗ + F (U∗) = 0, U(0) = U0 (#)

using the same boundary conditions (5.10), (5.11), (5.12) as the fully nonlinear system.
The existence and uniqueness of this system follows from the Lax-Milgram theorem, which
gives us the existence of weak solutions for very general systems, see Section 4.4.1
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"Weak formulation of the Stokes problem" [136, p. 640ff.]. Furthermore it is shown that
the solution belongs to H2(M), which ultimately allows to control U∗ as follows

sup
t∈[0,T ]

‖U∗
t ‖2V +

∫ T

0

‖U∗‖2H2(M)ds ≤ k2, (##)

with a bounded expression k2, which is governed by the initial values and the vector field
of the linear stationary system, see (3.18), (3.22) and (3.23) in [136, p. 576f.]. We can
now use the decomposition U = U∗ + U ′ on the (fully nonlinear) PE and obtain

dU

dt

′
+AU ′ +B(U ′, U ′) +B(U∗, U ′) +B(U ′, U∗) +B(U∗, U∗) + F (U ′) = 0, U ′(0) = 0,

where we used (#) and the (bi-)linearity of the involved terms. The arising bilinear terms
containing U∗ can be controlled easily using (##), see [136, p. 578ff.]. Since the boundary
conditions are in fact a linear PDE, we conclude that U ′ = (v′, T ′) satisfies homogeneous
boundary conditions. Exemplarily the temperature over land surface obeys

νT
∂

∂p
T ′ = νT

∂

∂p
T − νT

∂

∂p
T ∗ = −αT (T − Tl) + αT (T

∗ − Tl) = −αT (T − T ∗) = −αTT
′.

As a consequence we obtain for the homogenized system

D(A) =





U = (v, T ) ∈ V(2)

∣∣∣∣∣∣∣∣∣∣∣∣

∂
∂pv = 0, ∂

∂pT
′ = 0 on Γu

νT
∂
∂pT

′ = −αTT
′ on Γl

νv
(

gp
RT̄

)2 ∂
∂pv = αvv

νT
(

gp
RT̄

)2 ∂
∂pT

′ = −αTT

}
on Γo





. (5.19)

5.4 The Stochastic 3d Primitive Equations

We are finally in a position to introduce stochasticity into the PE by stating the stochastic
Itô evolution system, which is the subject of investigation for the remainder of this work

dU + (AU +B(U,U) + F (U)) dt = σ(U)dWt, U(0) = ξ (5.20)

where the stochastic term is given by

σ(U)dWt =


 σv(v, T )dW

1
t

σT (v, T )dW
2
t


 .

Here W 1
t = (W 1,1

t ,W 1,2
t ) and W 1,1

t ,W 1,2
t ,W 2

t are independent white noise processes de-
fined below. Although we have to constrain the coefficient σ to abide certain growth con-
ditions (see (5.24) and (5.25)), which are needed to guarantee the existence of solutions,
this formulation allows for a wide variety of stochastic influences, e.g., white, colored, addi-
tive, multiplicative, linear and nonlinear noise. In order to prove the existence of solutions
we aim to use the results of Debussche et al. [7], where criteria for the existence of local
martingale (Definition 5.13) and unique maximal pathwise solutions (Definition 5.14) are
given for an abstract operator evolution equation. Therefore we verify that the operators
defined for the PE satisfy the assumptions specified therein, starting with some necessary
definitions and the statement of the main thesis.
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5.4.1 The Stochastic Framework

Before we can define various solutions of stochastic evolutions systems, let alone give
criteria for the existence of such solutions for (5.20), we have to characterize the mathe-
matical structure of the stochastic terms.

Definition 5.12. Stochastic Basis
S = (Ω,F , {F}t≥0, P, {W k}k≥1) is called a stochastic basis if (Ω,F , P ) is a probability

space and {W k}k≥1 a sequence of independent standard 1d Brownian motions adapted
to the filtration {Ft}t≥0. To avoid unnecessary complications we assume that the filtration
Ft is complete and right-continuous.

We fix a stochastic basis S = (Ω,F , {F}t≥0, P, {W k}k≥1) and a separable Hilbert space
G with an orthonormal basis {gk}k≥1. We can now define the "cylindrical Brownian motion
(evolving over G)"

W =
∑

k≥1

W kgk.

Let X be a separable Hilbert space with the associated inner product 〈·, ·〉X and norm
| · |X . Denote the set of all operators from G to X by L(G,X). Then the collection of all
"Hilbert-Schmidt operators" from G to X is given by

HS(G,X) =



A ∈ L(G,X)

∣∣∣∣∣∣
∑

k≥1

|Agk|2X < ∞



 .

By endowing this collection with the inner product

〈A,B〉HS(G,X) =
∑

k≥1

〈Agk, Bgk〉X , A,B ∈ HS(G,X)

HS(G,X) is itself a Hilbert space. Furthermore define a space G0 ⊃ G via

G0 =



v =

∑

k≥1

vkgk

∣∣∣∣∣∣
∑

k≥1

v2kk
2 < ∞





and endow it with the norm

|v|2G0
=
∑

k≥1

v2k
k2

.

Then it is a well known fact that W hast almost surely continuous sample paths in G0, i.e.,
W (ω) ∈ C([0, T ], G0) for almost every ω ∈ Ω, see for instance [159]. Based on this setting
one can obtain the well-posedness of (5.20) and the occurring stochastic Itô integrals

∫ t

0

G dWt =
∑

k≥1

∫ t

0

G dW k
t ,

for all X-valued predictable processes G ∈ L2(Ω, L2
loc([0,∞), HS(G0, X))), see for in-

stance [160, Ch. 2.2 and 2.3]. Let us specify two types of solutions for stochastic evolution
systems, which are necessary to state the main result of this section.



86 5 THREE-DIMENSIONAL PRIMITIVE EQUATIONS

Definition 5.13. Local and Global Martingale Solutions

1. A triple (S,U, τ) is a local Martingale solution of

dU + (AU +B(U,U) + F (U)) dt = σ(U)dWt, U(0) = ξ (5.20)

if

• S = (Ω,F , {F}t≥0, P, {W k}k≥1) is a stochastic basis

• τ is a stopping time relative to Ft

• U(·) = U(· ∧ τ) : Ω× [0,∞) → V is a Ft adapted process such that

U(· ∧ τ) ∈ L2(Ω;C([0,∞);V )

U1t≤τ ∈ L2
loc(Ω;C([0,∞);D(A)), (5.21)

the law µ0 of U(0) satisfies
∫

V

‖U‖qV dµ0(U) < ∞ (5.22)

with q ≥ 8, and U satisfies

U(t ∧ τ) = U(0)−
∫ t∧τ

0

AU +B(U) + F (U) ds+

∫ t∧τ

0

σ(U) dW, (5.23)

with equality understood in H .

2. A Martingale solution (S,U, τ) is global if τ = ∞ P-a.s.

Definition 5.14. Local, Maximal and Global Pathwise Solutions and Uniqueness
Let S = (Ω,F , {F}t≥0, P, {W k}k≥1) be a fixed stochastic basis and let ξ ∈ L2(Ω;V ) be a
F0-measurable, V -valued random variable.

1. A pair (U, τ) is a local pathwise solution of (5.20) if τ is a strictly positive stopping
time and U(· ∧ τ) is an Ft-adapted process in V satisfying (5.21) and (5.23).

2. A pathwise solutions (U, τ) is (pathwise) unique up to a stopping time τ > 0 if for
any two pathwise solutions (U1, τ) and (U2, τ) which coincide at t = 0 on a subset
Ω ⊃ Ω̄ = {(U1(0) = U2(0)} it holds true that

P
(
1Ω̄

(
U1(t ∧ τ)− U2(t ∧ τ)

)
= 0; ∀t ≥ 0

)
= 1.

3. Let ζ be a (possibly infinite) stopping time and assume that U is a predictable pro-
cess in H . Then the pair (U, ζ) is a maximal pathwise solution if there exists a strictly
increasing sequence of stopping times{τn}n≥1 converging to ζ, where (U, τn) is a
local pathwise solution for every n and

sup
t∈[0,ζ]

‖U‖2V +

∫ ζ

0

‖AU‖2H ds = ∞

P-a.s. on the set {ζ < ∞}.

4. A maximal pathwise solution (U, ζ) is global if ζ = ∞ P-a.s.

Definition 5.15. Boundedness and Lipschitz Continuity
Let X,Y be Banach spaces.

1. We denote by Bnd(X,Y ) the set of all continuous mappings

Ψ : [0,∞)×X → Y

satisfying

‖Ψ(x, t)‖Y ≤ c (1 + ‖x‖X) , x ∈ X, t ≥ 0

with a constant c independent of x and t.

2. We define Lip(X,Y ) to be the set of all Ψ ∈ Bnd(X,Y ) such that

‖Ψ(x, t)− Ψ(y, t)‖Y ≤ c (‖x− y‖X) , x, y ∈ X, t ≥ 0.
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5.4.2 Existence of Solutions of the Stochastic 3d Primitive Equations

After this preliminary work we may now state the main result, which guarantees the exis-
tence of solutions of (5.20) for suitable constrained coefficients σ. In order to prove this
statement we aim to use Theorem 2.1. in [7], which yields the existence of solutions for
an abstract evolution system in operator form. We then show in Lemma 5.18,5.20 and
5.21 that the the operators A,B and F of the PE, defined in Section 5.3.3, satisfy the
necessary assumptions.

Theorem 5.16. Existence of Solutions for the Stochastic 3d PE
Let ξ = (v0, T0) take values in V and let µ0 satisfy (5.22) with q ≥ 8. Regarding the forcing
terms we assume

Fv, FT ∈ L2
loc

(
[0,∞), L2(M)

)
.

Furthermore suppose that σ satisfies

σ ∈ Bnd(H,L2(G,H)) ∩Bnd(V, L2(G, V )) ∩Bnd(D(A), L2(G,D(A))). (5.24)

Then:

1. There exists a local martingale solution of the stochastic three-dimensional PE (5.20).

2. If σ additionally satisfies

σ ∈ Lip(H,L2(G,H)) ∩ Lip(V, L2(G, V )) ∩ Lip(D(A), L2(G,D(A))), (5.25)

and the initial conditions satisfy (5.22) for all q ≥ 2, then there exists a unique
maximal, pathwise solution of the stochastic three-dimensional PE (5.20).

Remark 5.17. Uniqueness of Pathwise Solutions
We would like to emphasize, that Theorem 5.16 not only yields the existence of pathwise
solution for suitable "tame" noise, but also guarantees the uniqueness of this solution. This
in turn is a necessary prerequisite for the construction of convergent numerical schemes,
which is the subject of our study in the following Sections 6 and 7.

The assumptions on the linear operator A, particularly the existence of a complete or-
thonormal basis of eigenvectors for the Hilbert space H , which is used for a Galerkin
approximation, are a direct consequence from the following Lemma.

Lemma 5.18. Characteristics of the Linear Operator A
For all U ∈ D(A) and Ũ ∈ V we have

〈
AU, Ũ

〉
=
((
U, Ũ

))
.

This implies that A is a symmetric operator. Furthermore we have

‖AU‖H ∼= ||U ||H2 .

Proof. Lemma 5.18
Since H is equipped with the classical L2 inner product we have

〈
AU, Ũ

〉
=

∫

M
AU · Ũ dM

= −
∫

M
µv∆v · ṽ dM−

∫

M
νv

∂

∂p

[( gp

RT̄

)2 ∂

∂p
v

]
· ṽ dM

−
∫

M
µT∆T · T̃ dM−

∫

M
νT

∂

∂p

[( gp

RT̄

)2 ∂

∂p
T

]
· T̃ dM

=: J1
v + J2

v + J1
T + J2

T
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These terms are treated by splitting the integral in horizontal and vertical directions fol-
lowed by integration by parts using the homogeneous boundary conditions, i.e., the char-
acteristics of the spaces D(A) and V . The horizontal derivatives J1

v,T satisfy

J1
v + J1

T = −
∫

M
µv∆v · ṽ + µT∆T · T̃ dM

= −
∫ p0

P

∫

M0

µv∆v · ṽ + µT∆T · T̃ dM0 dp

= −
∫ p0

P

[
µv∇v · ṽ + µT∇T · T̃

]
∂M0︸ ︷︷ ︸

=0 due to horizontal periodicity

dp

+

∫ p0

P

∫

M0

µv∇v · ∇ṽ + µT∇T · ∇T̃ dM0 dp

=

∫

M
µv∇v · ∇ṽ + µT∇T · ∇T̃ dM.

Regarding the vertical derivatives J2
v,T we get

J2
v = −

∫

M
νv

∂

∂p

[( gp

RT̄

)2 ∂

∂p
v

]
· ṽ dM

= −
∫

M0

∫ p0

P

νv
∂

∂p

[( gp

RT̄

)2 ∂

∂p
v

]
· ṽ dM0 dp

= −
∫

M0

[
νv

( gp

RT̄

)2 ∂

∂p
v · ṽ

]p0

P

dM0 +

∫

M0

∫ p0

P

νv

( gp

RT̄

)2 ∂

∂p
v · ∂

∂p
ṽ dM0 dp

= −
∫

Γu

νv

( gp

RT̄

)2 ∂

∂p
v · ṽ dΓu +

∫

Γo

νv

( gp

RT̄

)2 ∂

∂p
v · ṽ dΓo

+

∫

Γl

νv

( gp

RT̄

)2 ∂

∂p
v · ṽ dΓl +

∫

M
νv

( gp

RT̄

)2 ∂

∂p
v · ∂

∂p
ṽ dM

Note that the homogeneous boundary conditions (5.19) lead to

∂

∂p
v = 0 on Γu

νv

( gp

RT̄

)2 ∂

∂p
v = −αvv on Γo.

Furthermore we have ṽ = 0 on Γl by definition of V , yielding

J2
v = −

∫

Γo

αvv · ṽ dΓo +

∫

M
νv

( gp

RT̄

)2 ∂

∂p
v · ∂

∂p
ṽ dM.

In an analog way but using the slightly different boundary conditions for T we obtain

J2
T = −

∫

Γo

αTT · T̃ dΓo −
∫

Γl

αT

( gp

RT̄

)2
T · T̃ dΓl

+

∫

M
νT

( gp

RT̄

)2 ∂

∂p
T · ∂

∂p
T̃ dM,

yielding

〈
AU, Ũ

〉
=

∫

M
µv∇v · ∇ṽ + νv

( gp

RT̄

)2 ∂

∂p
v · ∂

∂p
ṽ dM−

∫

Γo

αvv · ṽ dΓo

+

∫

M
µT∇T · ∇T̃ + νT

( gp

RT̄

)2 ∂

∂p
T · ∂

∂p
T̃ dM

−
∫

Γo

αTT · T̃ dΓo −
∫

Γl

αT

( gp

RT̄

)2
T · T̃ dΓl

=
((
U, Ũ

))
.
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The second statement ‖AU‖H ∼= ||U ||H2 follows from the same line of thought, but re-
quires some additional technical considerations. For a rigorous proof see for instance
[136, Ch. 4].

Remark 5.19. The Necessity of Homogeneous Boundary Conditions
The necessity for homogeneous boundary conditions derives from the fact, that

((
U, Ũ

))

is an inner product and therefore has to be symmetric. Using inhomogeneous boundary
conditions would however lead to terms of the form

−
∫

Γo

αv(v − vo) · ṽ dΓo,

when calculating 〈AU,U〉. Obviously the symmetry would be broken for vo 6= 0 falsifying
Lemma 5.18. For a slightly different approach to this problem we refer to [135, p. 264],
where smooth cut-off functions in a small area around the boundaries are used to enforce
homogeneity.

Lemma 5.20. Characteristics of the Bilinear Advection Operator B
The trilinear form

〈
B(U,U#), U b

〉

is continuous on V ×D(A) × V and on D(A)×D(A) ×H with

〈
B(U,U#), U#

〉
= 0, ∀U ∈ V, U# ∈ D(A)

|
〈
B(U,U#), U b

〉
| ≤ c0 ‖U‖V

∥∥AU#
∥∥
H

∥∥U b
∥∥
V
, ∀U,U b ∈ V, U# ∈ D(A)

|
〈
B(U,U#), U b

〉
| ≤ c0 ‖U‖

1
2

V ‖AU‖
1
2

H

∥∥U#
∥∥ 1

2

V

∥∥AU#
∥∥ 1

2

H

∥∥U b
∥∥
H
, ∀U b ∈ H, U,U# ∈ D(A)

Proof. Lemma 5.20
The advection term can be considered as the key element of the PE, due to the interde-
pendence of nonlinearity and horizontal as well as vertical derivatives. This is particularly
true for terms involving the vertical velocity, e.g.

ω(v)
∂

∂p
v = −

∫ p

p0

∇ · v dp′
∂

∂p
v.

As we mentioned earlier during the discussion on diagnostic variables, it is precisely the
appearance of this additional horizontal derivative that makes the technical treatment of
the advection term so challenging. Consequently these terms have been intensively stud-
ied and proofs of the statement can be found in literature, see for instance Lemma 2.1
and Lemma 3.1 in [136]. However, we sketch the proof for the third inequality by exam-
ple of the above equation in order to present the basic ideas. We have to estimate the
expression

∣∣∣∣
∫

M
ω(v)

∂

∂p
v#vbdM

∣∣∣∣ =
∣∣∣∣∣

∫

M0

∫ P

p0

ω(v)
∂

∂p
v#vbdp dM0

∣∣∣∣∣

using Hölder’s inequality separately on the horizontal and vertical integral. Denote by
‖·‖Lq

p
the Lq-norm in vertical direction and by ‖·‖Lq

M0
the Lq-norm in horizontal directions.

Note that

‖ω(v)‖L∞
p

=

∥∥∥∥
∫ p

p0

∇ · v dp′
∥∥∥∥
L∞

p

≤ (P − p0)
1
2 ‖∇ · v ‖L2

p
,
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which leads to

∣∣∣∣
∫

M
ω(v)

∂

∂p
v#vbdM

∣∣∣∣ =
∣∣∣∣∣

∫

M0

∫ P

p0

ω(v)
∂

∂p
v#vb dp dM0

∣∣∣∣∣

≤
∫

M0

‖ω(v)‖L∞
p

∥∥∥∥
∂

∂p
v#
∥∥∥∥
L2

p

∥∥vb
∥∥
L2

p
dM0

≤
∫

M0

‖ω(v)‖L∞
p

∥∥∥∥
∂

∂p
v#
∥∥∥∥
L2

p

∥∥vb
∥∥
L2

p
dM0

≤ (P − p0)
1
2

∫

M0

‖∇ · v ‖L2
p

∥∥∥∥
∂

∂p
v#
∥∥∥∥
L2

p

∥∥vb
∥∥
L2

p
dM0

≤ (P − p0)
1
2 ‖∇ · v ‖L4

M0
L2

p

∥∥∥∥
∂

∂p
v#
∥∥∥∥
L4

M0
L2

p

∥∥vb
∥∥
L2

M0
L2

p
.

For the last term we have

‖ · ‖L2
M0

L2
p
= ‖ · ‖L2

M
.

Note that the horizontal norms act on space dimension two and therefore satisfy the fol-
lowing Sobolev inequality

‖ · ‖L4
M0

≤ c(M0) ‖ · ‖
1
2

L2
M0

‖ · ‖
1
2

H1
M0

,

see for instance equation (3.36) in [136, p. 582]. After some technical considerations
[136, p. 582f.] this yields

‖ · ‖L4
M0

L2
p
≤ c(M0) ‖ · ‖

1
2

L2
M
‖ · ‖

1
2

H1
M
.

Denoting c0 = c(M0)(P − p0)
1
2 we obtain

∣∣∣∣
∫

M
ω(v)

∂

∂p
v#vbdM

∣∣∣∣ ≤ c0‖∇ · v‖
1
2

L2
M
‖∇ · v‖

1
2

H1
M
‖ ∂

∂p
v#‖

1
2

L2
M
‖ ∂

∂p
v#‖

1
2

H1
M

∥∥vb
∥∥
L2

M

≤ c̃0‖v‖
1
2

H1
M
‖v‖

1
2

H2
M
‖v#‖

1
2

H1
M
‖v#‖

1
2

H2
M

∥∥vb
∥∥
L2

M
,

where we used the definition of the H1 and H2 norms in the last step. Along the lines of
Lemma 5.18 one can conclude that the norms ‖U‖V and ‖AU‖H are equivalent to ‖U‖H1

M
and ‖U‖H2

M
respectively.

Lemma 5.21. Characteristics of the Forcing Operator F
Let the forcing terms Fv and FT appearing in the definition of the viscous PE (Lemma 5.5)
satisfy

Fv, FT ∈ L2
loc

(
[0,∞), L2(M)

)

Then we have

F ∈ Bnd(V,H) and F ∈ Lip(V,H).

Proof. Lemma 5.21
Using the fact that the norm ‖·‖V is equivalent to ‖ · ‖H1

M
, the statement follows directly by

definition (5.17) of F .
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5.5 Conclusion

During this section we derived an abstract formulation of the three-dimensional PE both
in a deterministic and a stochastic framework. This approach allows us to use the fun-
damentally important results on existence and uniqueness of solutions (Theorem 5.16),
which is the basis for the numerical consideration in the remainder of this work.

Starting from general equations of the atmosphere (Section 5.1), we obtained the viscous
PE using the concepts of coordinate transformation and scale analysis. The first aspect in-
cludes the transformation of the system from Cartesian into spherical coordinates (Section
5.1). The subsequent transformation into pressure coordinates (Section 5.2.1) allowed us
to treat the system as an incompressible fluid from a mathematical point of view (Re-
mark 5.4). The importance of this property is demonstrated by the conceptual example of
Stokes equations (Section 5.3.1). The hydrostatic and shallow atmosphere approximation
(Section 5.2) together with diffusion parameterization and an approximation on vertical
temperature distributions (Section 5.2.2) produces mathematically more accessible equa-
tions while preserving a high accuracy on synoptic scales (5.5). The resulting viscous PE
(Lemma 5.5) were completed by a setting of boundary conditions (Section 5.2.3) allowing
the simultaneous treatment of land and oceanic surfaces.

In order to take account of the growing complexity of the equations in a stochastic setting
we defined an abstract operator framework, which leads to the clearly arranged represen-
tation of the viscous PE

dU + (AU +B(U,U) + F (U)) dt = 0. (5.18)

In Section 5.4 we introduced the stochastic PE

dU + (AU +B(U,U) + F (U)) dt = σ(U)dWt. (5.20)

The homogenization of boundary conditions (Lemma 5.11) enabled us to utilize recent re-
sults of Debussche et al [7], which guarantee local existence and uniqueness of pathwise
solutions for suitable bounded initial conditions and forcing terms F, σ (Theorem 5.16).
Drawing on these findings we derive a Galerkin scheme for the discretization of spa-
tial and stochastic dimensions in the following Section 6. Furthermore, under additional
assumptions, we discuss an approach for a complete numerical scheme, i.e., including
temporal discretization, in Section 7.
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6 Galerkin Approximation for an Abstract Fluid Model

In the last section we derived local existence and uniqueness of pathwise solutions for
the PE (Theorem 5.16). As a result, we now in a position to start the development of a
numerical scheme for these equations aiming at quantitative convergence rate estimates.
While the numerical framework for SODE is well developed (see for instance [44]), the
“state of development of numerical schemes for SPDEs compares with that for SODEs in
the early 1970s and most of the numerical schemes that have been proposed to date have
a low order of convergence, especially in terms of an overall computational effort” [29].
Most higher order schemes for SODE are derived by iterated application of the Itô formula,
yielding so-called stochastic Taylor expansions. Unfortunately, we have no access to an
Itô formula in a general, infinite-dimensional environment for SPDE, which is the main
obstacle for the development of an extensive numerical framework. The theoretical un-
derstanding of SPDE is further complicated by the multitude of different solution-concepts
and function spaces. We refer to [161] and [160] for a comprehensive treatment of this
topic. During the last 15 years the interest in the numerical treatment of SPDE has grown,
which resulted in a variety of different approaches. Most notably are the linear-implicit
Euler scheme and the Crank-Nicolson scheme, which combine a spatial discretization
via finite elements or Galerkin approximations with time discretization methods for stiff
SODE. For an extensive overview and list of publications we refer to [29, Ch. 3.2]. In
1999, Gyöngy [162, 163] showed that these schemes converge with order 1

2 in space and
1
4 in time, resulting in the overall convergence rate of 1

6 with respect to the computational
effort. One year later, Davie and Gaines published a highly esteemed paper [164], where
they studied the linear system

dUt =
∂2

∂x2
Utdt+ dWt,

which can be considered as one of the most basic SPDE. Their results state that every
numerical scheme of this type, which uses only equidistant values of the noise Wt, has
a maximal overall convergence order of 1

6 . However they stated that “it is still reasonable
to hope that by generating suitable linear functionals of the noise (which will be normally
distributed) one may be able to improve the order of approximation”. It was not until
2009 that this thought was followed up by Jentzen and Kloeden [165], who considered the
stochastic evolution equation

dUt = (AUt + F (Ut))dt + dWt, U(0) = U0,

defined on a Hilbert space H with an unbounded linear operator A and a smooth function
F . This equation is interpreted in the mild sense, i.e.

Ut = eAtU0 +

∫ t

0

eA(t−s)F (Ut)dt+

∫ t

0

eA(t−s)dWt.

The mild solution is then spatially approximated by a Galerkin scheme using the eigenvec-
tors of A as an orthonormal basis for the projection of operators and processes onto finite-
dimensional subspaces. For the temporal discretization, an approach analogous with the
Euler-Maruyama scheme for SODE is used, leading to the denotation “exponential Euler
scheme”. This scheme has a temporal convergence order of 1 − ǫ for an arbitrary small
ǫ > 0. The spatial convergence order depends on the specifics of the nonlinear operator
F . Hence, using the functional of the noise instead of a equidistant evaluation leads to a
remarkable improvement in the temporal convergence rate. While this is already valuable
in itself, the approach with mild solutions bears the potential to derive even higher order
schemes using Taylor expansions without the need of an Itô formula [166, 167]. However,
these expansions require bounded derivatives of the nonlinear terms, which is not sat-
isfied by the system studied in this work. Nevertheless, the framework of mild solutions
provides an elegant way to treat the linear operator A and allows us to utilize existing
bounds on the nonlinear terms (see Assumption 6.4 and 6.5).

We aim to discretize the state space using a Galerkin approximation based on the eigen-
functions of the linear operator A. The noise term can be controlled in a similar way under
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some quantitative assumption on the operator σ. It turns out that we have to postulate
an additional a priori estimate regarding the boundedness of the numerical solution (see
Assumption 7.3) in order to prove the convergence for the time-discretization model. This
is a common issue for explicit schemes in the context of non-Lipschitz continuous differ-
ential equations, particularly in the case of infinite-dimensions. We refer to Section 7 for a
more elaborate discussion of this subject, where we focus on the construction of a time-
discretized numerical scheme. In the following we draw our attention on rigorous Galerkin
approximations for spatial and stochastic dimensions, which are valid without additional
assumptions.

While the idea of using Galerkin approximations can certainly be considered a stan-
dard approach when dealing with PDE, it exhibits some nontrivial issues in the context
of stochastic non-Lipschitz systems:

• The presence of noise leads to more irregular paths

• Non-Lipschitz operators make it hard to control the growth of the solution

• The infinite-dimensional framework prohibits the use of many standard techniques
and results

Each of these aspects would not be critical on its own but in combination they are the
source for serious technical obstacles that are discussed in more detail during the outline
of the proof for Theorem 6.10.

6.1 Setting and Assumptions

Our aim is to derive a numerical scheme to solve the viscous PE. The aforementioned
work by Debussche et al. [7] provides the existence and uniqueness of solutions for a
more general abstract fluid model, which includes the viscous PE, see Theorem 5.16.
Therefore we consider the abstract evolution equation

dU = (AU +B(U,U) + F (U)) dt+ σ(U)dW, U0 = ξ. (6.1)

Note that this equation corresponds to the abstract PE 5.20 with inverted signs of the
operators A,B and F . Since the assumptions on B and F involve only absolute values,
the change of sign is trivial. Regarding the linear operator A this is purely a matter of
convenience for the later technical calculations, and is balanced by the sign of the eigen-
values in Assumption 6.3. Let (Ω,F , P ) be a probability space with a filtration (Ft)t∈[0,T ]

for a 0 < T ≤ τ , where the stopping time τ is specified in Corollary 6.9 below. Let
(H, 〈·, ·〉H , ‖ · ‖H) and (G, 〈·, ·〉G, ‖ · ‖G) be two real valued Hilbert spaces. Denote by
Vr := D((−A)r) the real valued Hilbert spaces of domains of fractional powers of the
linear operator (−A) defined below, equipped with the norm ‖v‖Vr := ‖(−A)rv‖H for all
v ∈ Vr and all r ∈ [0,∞), where we use the abbreviation V := V1/2. In order to specify the
stochastic framework, we need the following definition for infinite-dimensional Brownian
motions.

Definition 6.1. Q-Wiener Process
A stochastic process {Wt}t≥0 on a probability space (Ω,F , P ) with values in a Hilbert

space U is called a Q-Wiener process, if

• W (0) = 0,

• W has P-a.s. continuous sample paths,

• the increments of W are independent and have the following Gaussian distribution

Wt −Ws ∼ N (0, (t− s)Q)

for all 0 ≤ s ≤ t.
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Assumption 6.2. Stochastic Framework
Let Q : G → G be a trace class operator, i.e.

Tr(Q) =
∑

k

〈Qek, ek〉 < ∞

for all orthonormal bases of G. Let Wt be a standard Q-Wiener process with respect to
the filtration (Ft)t∈[0,T ]. For a finite or countable set J let (gj)jJ ⊂ G be a orthonormal
basis of eigenfunctions of Q with the corresponding eigenvalues (µj)jJ ⊂ [0,∞). Such a
basis exists since Q is a trace class operator, see Prop. 2.1.5 in [160]. Then we have for
all u ∈ G

Qu =
∑

j∈J
µj〈gj , u〉G gj.

Denote by (G0, 〈·, ·〉G0 , ‖ · ‖G0) the separable real valued Hilbert space G0 := Q
1
2 (G) with

〈u, v〉G0 = 〈Q−1/2u,Q−1/2v〉G for all u, v ∈ G0 (see for instance [160, Ch. 2.3.2]). Here
for an arbitrary linear operator S ∈ L(G) we denote by S−1 : im(S) ⊂ G → G the pseudo
inverse of S (see [160, Appx C]). Then we have Wt : [0, T ]× Ω → G0 with

Wt(ω) =
∑

j∈J , µj 6=0

〈gj ,Wt(ω)〉G gj =
∑

j∈J , µj 6=0

√
µjgjβ

j
t (ω),

where βj : [0, T ] × Ω → R, j ∈ J , µj 6= 0 is a family of independent standard Brownian
motions.

Assumption 6.3. Linear Operator A
Let I be a finite or countable set and let (φi)iI ⊂ H be a orthonormal basis of H with the
corresponding increasing sequence of eigenvalues (λi)iI ⊂ (0,∞) satisfying infi∈I λi ∈
(0,∞). Let A : D(A) ⊂ H → H be a linear operator with

Av =
∑

i∈I
−λi〈v, φi〉Hφi

for every v ∈ D(A) with D(A) = {w ∈ H | ∑i∈I |λi|2|〈v, φi〉H |2 < ∞}.

Assumption 6.4. Drift Term F
Let F : V → H be a continuous mapping with

∀u, v ∈ V
∥∥∥(−A)−ϑ

(
F (u)− F (v)

)∥∥∥
H

≤ c ‖u− v‖H (Lipschitz)

∀u ∈ V ‖F (u)‖H ≤ c(1 + ‖u‖V) (Bounded)

for a ϑ ∈ [ 12 , 1) and c ≥ 0.

Assumption 6.5. Bilinear term B
Let the form B : H ×H → H be bilinear continuous with

|〈B(u, v), v〉| = 0 ∀u ∈ V, v ∈ D(−A) (6.2)

|〈B(u, v), w〉| ≤ c0 ‖u‖H ‖v‖
1
2

V ‖Av‖
1
2

H ‖w‖
1
2

V ‖Aw‖
1
2

H ∀u ∈ H, v, w ∈ D(−A) (6.3)

|〈B(u, v), w〉| ≤ c0 ‖u‖
1
2

V ‖Au‖
1
2

H ‖v‖
1
2

V ‖Av‖
1
2

H ‖w‖H ∀w ∈ H, u, v ∈ D(−A). (6.4)

Remark 6.6. PE and Equation (6.4)
Note that, in the context of PE, (6.3) implies (6.4) via partial integration, essentially com-
bining the strategies of proof used in Lemma 5.18 and 5.20. An independent proof for an
advection operator on a smooth horizontal vector field with vanishing vertically integrated
divergence is for instance given in [168].
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Assumption 6.7. Diffusion term σ
Let σ : V → H be a continuous mapping with

∀u, v ∈ V
∥∥∥(−A)−ϑ/2

(
σ(u)− σ(v)

)∥∥∥
HS(G0,H)

≤ c ‖u− v‖H (Lipschitz)

∀u ∈ V
∥∥∥(−A)−ϑ/2σ(u)Q−α

∥∥∥
HS(G0,H)

≤ c
(
1 + ‖u‖V

)
(Q-bounded)

∀u ∈ V ‖σ(u)‖HS(G0,V ) ≤ c
(
1 + ‖u‖V

)
(V -bounded)

for an α ∈ (0,∞) and ϑ ∈ [ 12 , 1), c ≥ 0 from Assumption 6.4. Furthermore let the assump-
tions of Theorem 5.16 be satisfied, i.e.

σ ∈ Bnd(H,L2(G,H)) ∩Bnd(V, L2(G, V )) ∩Bnd(D(−A), L2(G,D(−A)))

σ ∈ Lip(H,L2(G,H)) ∩ Lip(V, L2(G, V )) ∩ Lip(D(−A), L2(G,D(−A))).

Assumption 6.8. Initial Value
Let the initial condition ξ be a F0-measurable V -valued random variable such that

ξ ∈ L2(Ω, V ).

Corollary 6.9. Existence of Local Mild Solutions for the PE
Let L be the solution of the linear deterministic system

d

dt
Lt = ALt, L0 = ξ0. (6.5)

Define the stopping time

τ = inf
s>0

{
‖U − L‖V ≥ 1

64c0

}
,

where c0 is the constant occurring in Assumption 6.5 on the bilinear form. Then there
exists an (up to modification) unique mild solution of (6.1) satisfying

Ut = eAtU0 +

∫ t

0

eA(t−s)
(
F (Us) +B(Us)

)
ds+

∫ t

0

eA(t−s)σ(Us)dWs, (6.6)

for all t ∈ [0, τ ].

Proof. Corollary 6.9
The existence of local, unique, pathwise solution up to the stopping time τ is shown in [7],
which we used in the previous section to obtain the existence of a solution for the PE. A
well known result (see Theorem 6.5 in [161, p. 156]) states, that this implies the existence
of a mild solution.

Although a formal proof of this fact is given in [161] we would like to point out the idea
behind mild solutions by informally using Itô’s formula, which is not guaranteed to hold
in this infinite-dimensional environment. To this end define the function f(x, t) = xe−At.
Then Itô’s formula yields

df(Ut, t) =

(
∂

∂t
f(Ut, t) +

∂2

∂x2
f(Ut, t)

)
dt+

∂

∂x
f(Ut, t)dUt

= −AUte
−Atdt+ e−At (AUt +B(Ut) + F (Ut)) dt+ e−Atσ(Ut)dWt

= e−At (B(Ut) + F (Ut)) dt+ e−Atσ(Ut)dWt

⇒ f(Ut, t) = f(U0, 0) +

∫ t

0

e−As (B(Us) + F (Us)) ds+

∫ t

0

e−Asσ(Us)dWs

⇒ e−AtUt = U0 +

∫ t

0

e−As (B(Us) + F (Us)) ds+

∫ t

0

e−Asσ(Us)dWs
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Mild solutions obviously allow us to substitute the linear additive term AUt by multiplicative
exponential terms eAUt . Although, at first sight, this seems to complicate matters, due to
the more interwoven mathematical structure, the advantages of this formulation become
obvious considering the strictly negative, unbounded eigenvalues of A. The unbounded-
ness of eigenvalues in an infinite-dimensional environment makes it hard to control the
growth of the term AUt. The corresponding term eAUt for mild solutions is strictly bounded
due to the elementary characteristics of the exponential function. We utilize this behavior
in the technical Lemma 6.13 stated below.

6.2 Galerkin Approximation

In this section we formulate a finite-dimensional Galerkin approximation of the full solution
(6.6). To this end let (IN )N∈N and (JK)K∈N be sequences of finite subsets of I and J .
Define the linear projection operator PN : H → H , N ∈ N, by

PNv :=
∑

i∈IN

〈φi, v〉Hφi,

for all v ∈ H and N ∈ N. Furthermore define for U ∈ V the projected operators

FN(U) := PNF (U), BN (U) := PNB(U), σN (U) := PNσ(U)

and let the Wiener processes WK : [0, T ]× Ω → G0, K ∈ N, be given by

WK
t (ω) :=

∑

j∈JK ,µj≤0

〈gj ,Wt(ω)〉Ggj, (6.7)

for all t ∈ [0, T ], ω ∈ Ω and all K ∈ N. [7] yields the existence of an up to modifications
unique mild solution of the finite-dimensional system

UN,K
t = eAtPNξ +

∫ t

0

eA(t−s)
(
FN (UN,K

s ) +BN (UN,K
s )

)
ds

+

∫ t

0

eA(t−s)σN (UN,K
s )dWK

s ,

(6.8)

P-a.s. for all t ∈ [0, T ] and N,K ∈ N. We are now in a position to state the main result of
this section.

Theorem 6.10. Convergence Rates of the Galerkin Approximation
Let Assumptions 6.2-6.8 be satisfied. Then there exists a constant c < ∞ independent of
N,K,α, β with

E

[∥∥∥Ut − V N,K
t

∥∥∥
2

H

] 1
2

≤ ecβ
3

g(β−1, N)

((
inf

i∈I\IN

λi

)− 1
2

+

(
sup

j∈J\JK

µj

)α)
,

where

g(β−1, N) = exp


 1

β


1− e−λ1t +

N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)




for all N,K ∈ N and all β > 0.
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Remark 6.11. The Parameter β
Galerkin estimates for SPDE with Lipschitz coefficients usually have a similar structure,

but satisfy

ecβ
3

g(β−1, N) < c̃,

with a constant c̃ < ∞ independent of N,K,α, β. In the present system this holds true
only if the eigenvalues of A grow fast enough, i.e., the sum in g(β−1, N) converges for
N → ∞. Unfortunately the PE do not satisfy this assumption, which is discussed in
Section 6.4.1. However, we may choose β > 0 freely and therefore achieve a convergence
rating arbitrarily close to (inf i∈I\IN

λi)
− 1

2 in the spacial-dimension. This variable error
term arises due to the ill-behaved bilinear advection term, which leads to an integral of the
form

∫ t

0

∥∥−AeAs
∥∥ 3

4

L(H)
‖AUs‖

1
2

H ds

in the proof of Theorem 6.10. It turns out that ‖AUs‖2H is P-a.s. integrable, see Lemma 6.18.
We apply Hölder’s inequality:

∫ t

0

∥∥−AeAs
∥∥ 3

4

L(H)
‖AUs‖

1
2

H ds ≤
(∫ t

0

∥∥−AeAs
∥∥
L(H)

ds

) 3
4
(∫ t

0

‖AUs‖2H ds

) 1
4

.

Furthermore, based on estimates of the exponential function (see Lemma 6.18), we have

∥∥−AeAs
∥∥
L(H)

≤ 1

s
.

This approximation would lead to a divergent integral. Therefore, we have to use a more
delicate estimate for the operator norm. In fact we derive the function g(β−1, N) as the
exact solution of the problematic integral. Introducing the parameter β allows us to min-
imize the undesired contribution of the sum of eigenvalues in g on the convergence rate
at the cost of a greater constant ecβ

3

. In particular this yields convergence in the spatial-
dimensions if the sum of eigenvectors in g is bound by a polynomial of the maximal eigen-
value λN . It is a typical side effect of Gronwall-type arguments, which are applied in the
upcoming proof, to yield very pessimistic constants. Since the present case is no excep-
tion, the importance of the estimated value of the resulting constant ecβ

3

should not be
overrated. To summarize: Theorem 6.10 guarantees the convergence of a Galerkin ap-
proximation, but concrete numerical experiments are needed for reasonable statements
regarding the actual error for a specific finite number of dimensions N .

6.3 Technical Lemmata

For the upcoming proof of Theorem 6.10 we have to make some technical preparations.

Corollary 6.12. Anticommutativity of the Trilinear Form
For all u ∈ H , v, w ∈ D(−A) we have

〈B(u, v), w〉 = −〈B(u,w), v〉

Proof. Corollary 6.12

〈B(u, v), w〉 = 〈B(u,w), w〉 + 〈B(u, v − w), w〉
= 〈〈B(u,w), w〉 +B(u, v − w), w − v〉+ 〈B(u, v − w), v〉
= 〈B(u,w), w〉 − 〈B(u, v − w), v − w〉+ 〈B(u, v), v〉︸ ︷︷ ︸

=0 due to (6.2)

−〈B(u,w), v〉
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Lemma 6.13. Estimates on the Propagator
For r ∈ [0, 1) and all t > 0

∥∥(−A)reAt
∥∥
L(H)

≤ t−r

∥∥(−A)−r
(
1− eAt

)∥∥
L(H)

≤ tr

Proof. Lemma 6.13
Since A is a diagonal matrix with negative eigenvalues, basic exponential inequalities yield

∥∥(−A)reAt
∥∥
L(H)

= t−r
∥∥(−At)reAt

∥∥
L(H)

≤ t−r sup
x>0

xre−x ≤ t−r

∥∥(−A)−r
(
1− eAt

)∥∥
L(H)

= tr
∥∥(−At)−r

(
1− eAt

)∥∥
L(H)

≤ tr sup
x>0

x−r(1 − e−x) ≤ tr.

Lemma 6.14. A “Mild” Itô Formula
Let X : [t0, T ] × Ω → VM be a stochastic-process in a M -dimensional setting, M ∈ N,

with

XM
t = eA(t−t0)XM

t0 +

∫ t

t0

eA(t−s)
(
FM (XM

s ) +BM (XM
s )
)
ds+

∫ t

t0

eA(t−s)σM (XM
s )dWM

s

P-a.s. for all t ∈ [t0, T ]. Then, for a twice continuously differentiable function
ϕ : VM → HM , we have

ϕ(XM
t ) = ϕ(eA(t−t0)XM

t0 ) +

∫ t

t0

ϕ′(eA(t−s)XM
s )eA(t−s)

(
FM (XM

s ) +BM (XM
s )
)
ds

+

∫ t

t0

ϕ′(eA(t−s)XM
s )eA(t−s)σM (XM

s )dWM
s

+
1

2

∑

j∈JM

∫ t

t0

ϕ′′(eA(t−s)XM
s )〈eA(t−s)σ(XM

s )gj , e
A(t−s)σ(XM

s )gj〉ds.

A more general version of this lemma in an infinite-dimensional setting is given in [169].
Unfortunately the bilinear term in the present system does not satisfy the Lipschitz condi-
tion required in [169]. Therefore we restrict the statement on finite-dimensional subspaces
to ensure the well posedness of all occurring integrals and give a brief outline of the proof
given in [169] to present the main idea.

Proof. Lemma: 6.14
The central difficulty is the fact, that the solution process XM is, in general, no semimartin-
gale since the integrands depend on eA(t−s) and therefore on t. As a consequence we
cannot apply Itô’s formula in a direct manner. In order to circumvent this issue, we fix the
time variable t and define a family of stochastic processes Y t : [t0, t]×Ω → VM , t ∈ [t0, T ],
by

Y t
u = eA(t−t0)XM

t0 +

∫ u

t0

eA(t−s)
(
FM (XM

s ) +BM (XM
s )
)
ds+

∫ u

t0

eA(t−s)σM (XM
s )dWM

s .
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for all u ∈ [t0, t] P-a.s. and all t ∈ [t0, T ]. Using Itô’s formula and noting that Y t
t = Xt and

Y t
t0 = eA(t−t0)Xt P-a.s. for all t ∈ [t0, T ] then yields

ϕ(Y t
u ) = ϕ(Y t

t0) +

∫ u

t0

ϕ′(Y t
s )e

A(t−s)
(
FM (XM

s ) +BM (XM
s )
)
ds

+

∫ u

t0

ϕ′(Y t
s )e

A(t−s)σM (XM
s )dWM

s

+
1

2

∑

j∈JM

∫ u

t0

ϕ′′(Y t
s )〈eA(t−s)σ(XM

s )gj , e
A(t−s)σ(XM

s )gj〉ds.

Furthermore a straightforward calculation gives us

Y t
s = eA(t−s)Xs,

for all s ∈ [t0, T ] P-a.s. and all t ∈ [t0, T ], which directly leads to Lemma 6.14. For a
rigorous proof we refer to the more general case in [169].

Corollary 6.15. Squared Norm and Itô
Using the setting of Lemma 6.14 we have for the squared norm of HM

∥∥XM
t

∥∥2
H

=
∥∥∥eA(t−t0)XM

t0

∥∥∥
2

H
+ 2

∫ t

t0

〈eA(t−s)XM
s , eA(t−s)

(
FM (XM

s ) +BM (XM
s )
)
〉ds

+ 2

∫ t

t0

〈eA(t−s)XM
s , eA(t−s)σM (XM

s )〉dWM
s

+

∫ t

t0

∥∥∥eA(t−s)σ(XM
s )
∥∥∥
HS(G0,H)

ds

Lemma 6.16. A Stochastic Gronwall Lemma
Let Ψ,Φ, χ and G be real-valued stochastic processes satisfying

Ψt ≤ Ψ0 +

∫ t

0

ΦsΨsds+

∫ t

0

χsds+

∫ t

0

GsdWs,

P-a.s.. Then we have

E
[
e−

∫
t
0
ΦsdsΨt

]
≤ E [Ψ0] + E

[∫ t

0

χse
−

∫
t
0
Φududs

]
.

Proof. Lemma: 6.16
For a convenient notation we define

ht := e−
∫

t
0
Φsds.

Then Itô’s lemma and a differential formulation of the assumption yield

d(htΨt) = Ψtdht + htdΨt

= −ΦtΨthtdt+ htdΨt

≤ −ΦtΨthtdt+ htΦtΨtdt+ htχtdt+ htGtdWt

= htχtdt+ htGtdWt

⇒ htΨt ≤ h0Ψ0 +

∫ t

0

χshsds+

∫ t

0

GshsdWs

Since h0 equals one and the stochastic integral is a martingale, taking the expectation
value gives us

E [htΨt] ≤ E [Ψ0] + E

[∫ t

0

χshsds

]
.
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Corollary 6.17. A version of Young’s inequality
Let a, b > 0 and 1/p+ 1/q = 1. Then, for all β > 0

ab ≤ ap

β
+

(
β

p

)q/p
bq

q
.

Proof. Corollary: 6.17
Using the classical version of Young’s inequality gives us

ab = a

(
p

β

)1/p(
β

p

)1/p

b

≤
(
a

(
p

β

)1/p
)p

1

p
+

((
β

p

)1/p

b

)q
1

q

=
ap

β
+

(
β

p

)q/p
bq

q
.

Lemma 6.18. P-a.s. Bounds on Finite-Dimensional Solutions
Let V N,K

t be a solution of the finite-dimensional mild system (6.8). Then there exists a
constant k > 0 with

sup
s∈[0,t]

∥∥V N,K
s

∥∥4
V
+

∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds ≤ k

P-a.s. for all t ∈ [0, T ] and all N,M,K ∈ N.

Proof. Lemma 6.18
Since this Lemma is one of the central statements of the work by Debussche et al. [7] with
a rather arduous proof, we present the main ideas but omit the technical details. As a first
step we introduce a smooth, Lipschitz continuous cutoff-function ΘM : V → [0,∞) with

ΘM (u) :=

{
1,

∥∥PM (u− LM
s )
∥∥
V
≤ 1

64c0

0,
∥∥PM (u− LM

s )
∥∥
V
≥ 2

64c0

for all u ∈ V and M ∈ N. The constant c0 is defined through the estimates on the bilinear
form in Assumption 6.5. Following the proof of Proposition 5.1 in [7, p. 16] the local mild
solution V N,K

t of the finite-dimensional setting (6.8) is a global solutions of the “tamed”
system

V N,K
t = eAtPNξ +

∫ t

0

eA(t−s)
(
FN (V N,K

s ) + ΘN (V N,K
s )BN (V N,K

s )
)
ds

+

∫ t

0

eA(t−s)σN (V N,K
s )dWK

s

(6.9)

Note that, due to the characteristics of the stopping time τ in Corollary 6.9 and by defini-
tion of ΘM , the solutions of the tamed systems are identical to the corresponding finite-
dimensional solutions of (6.8) for all t ∈ [0, T ]. Define a sequence of stopping times

τn := inf
t≥0

{
sup

s∈[0,t]

∥∥V N,K
s

∥∥4
V
+

∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H

≥ n

}
,

with n ∈ N. This is an increasing sequence satisfying limn→∞ τn = ∞ since V N,K
t is a

global solutions of (6.9), see Lemma 3.1 in [7]. Therefore there is a n0 ∈ N with τ < τn0

and

sup
s∈[0,t]

∥∥V N,K
s

∥∥4
V
+

∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥UM,M

s

∥∥2
V

∥∥AUM,M
s

∥∥2
H
ds ≤ n0

P-a.s. for all t ∈ [0, T ].
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6.4 Proof of Theorem 6.10

Due to the ill-behaved bilinear term B, we cannot use the standard approach to derive
convergence rates for systems with smooth coefficients, i.e., Taylor expansions and di-
rect mean square estimates for each operator. We aim to use Itô’s formula to exploit the
assumptions on B, which requires a finite-dimensional setting, see Lemma 6.14. There-
fore we project the full system on a finite-dimensional subspace and apply a result by
Debussche et al [7] used in the proof of existence of solution, yielding L2-convergence
of these projections. Using Itô’s formula on the projected discretization error allows us to
derive uniform estimates, i.e., error estimate that do not depend on the dimensions of the
projection. Finally, the Gronwall Lemma 6.16 and some elaborate technical calculations
complete the proof. Indeed, as a result of [7, Ch. 7.2] we have

UM,M → U for M → ∞ P-a.s. in L2([0, T ], V ).

Therefore we can use uniform estimates of the finite-dimensional error
∥∥UM,M

t −V N,K
t

∥∥2
H

in order to proof the theorem. We have

∥∥∥Ut − V N,K
t

∥∥∥
2

H

≤ sup
M>N

∥∥∥UM,M
t − V N,K

t

∥∥∥
2

H

≤ sup
M>N

(
2
∥∥∥(1 − PN )UM,M

t

∥∥∥
2

H
+ 2

∥∥∥PNUM,M
t − V N,K

t

∥∥∥
2

H

)

≤ sup
M>N

(
2
∥∥∥(−A)

1
2UM,M

t

∥∥∥
2

H

∥∥∥(−A)−1/2(1− PN )
∥∥∥
2

L(H)
+ 2

∥∥∥PNUM,M
t − V N,K

t

∥∥∥
2

H

)

≤ sup
M>N

(
2
∥∥∥UM,M

t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥∥PNUM,M

t − V N,K
t

∥∥∥
2

H

)

≤ sup
M>N

(
2 sup
t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥∥PNUM,M

t − V N,K
t

∥∥∥
2

H

)
. (6.10)

The second term can be estimated using the mild Itô formula for the squared H-norm.
Corollary 6.15 yields for an arbitrary M > N

∥∥∥PNUM,M
t − V N,K

t

∥∥∥
2

H
= (U0) + (F ) + (B) + (WK) + (WM−K) + (Itô K) + (Itô M-K)

(6.11)

with

(U0) =
∥∥∥eAtPN

(
UM,M
0 − V N,K

0

)∥∥∥
2

H

(F ) = 2

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PN

(
FM (UM,M

s )− FN(V N,K
s )

)〉
ds

(B) = 2

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PN

(
BM (UM,M

s )−BN (V N,K
s )

)〉
ds

(WK) = 2

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PN

(
σM (UM,M

s )− σN (V N,K
s )

)〉
dWK

s

(WM−K) = 2

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PNσM (UM,M

s )
〉
d(WM

s −WK
s )

(Itô K) =
∑

j∈JK , µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PN

(
σM (UM,M

s )− σN (V N,K
s )

)
gj

∥∥∥
2

H
ds

(Itô M-K) =
∑

j∈JM\JK , µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PNσM (UM,M
s )gj

∥∥∥
2

H
ds
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We aim to use the stochastic Gronwall Lemma 6.16. To this end we successively estimate
the terms above. Regarding the initial values (U0) we have

(U0) =
∥∥∥eAtPN

(
UM,M
0 − V N,K

0

)∥∥∥
2

H

=
∥∥eAtPN

(
PMξ − PN ξ

)∥∥2
H

=
∥∥eAt

(
PN ξ − PN ξ

)∥∥2
H

= 0 (6.12)

The nonlinear drift term (F ) can be estimated using ‖PN‖L(H) ≤ 1 and
∥∥eA(t−s)

∥∥
L(H)

≤ 1

for all N ∈ N and 0 ≤ s ≤ t.

(F )

2
=

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PN

(
FM (UM,M

s )− FN (V N,K
s )

)〉
ds

≤
∫ t

0

∥∥∥eA(t−s)PN (UM,M
s − V N,K

s )
∥∥∥
H

∥∥∥eA(t−s)PN

(
FM (UM,M

s )− FN (V N,K
s )

)∥∥∥
H
ds

≤
∫ t

0

∥∥PN (UM,M
s − V N,K

s )
∥∥
H

∥∥∥eA(t−s)
(
F (UM,M

s )− F (V N,K
s )

)∥∥∥
H
ds

≤
∫ t

0

∥∥PN (UM,M
s − V N,K

s )
∥∥
H

∥∥∥(−A)ϑeA(t−s)
∥∥∥
L(H)

×
∥∥∥(−A)−ϑ

(
F (UM,M

s )− F (V N,K
s )

)∥∥∥
H
ds

Lemma 6.13, Assumption 6.4 and the basic inequality ab ≤ a2

2 + b2

2 yield

(F )

2
≤
∫ t

0

c(t− s)−ϑ
∥∥PN (UM,M

s − V N,K
s )

∥∥
H

∥∥UM,M
s − V N,K

s

∥∥
H
ds

≤
∫ t

0

c(t− s)−ϑ
∥∥PN (UM,M

s − V N,K
s )

∥∥
H

×
(∥∥(1− PN )UM,M

s

∥∥
H
+
∥∥PN (UM,M

s − V N,K
s )

∥∥
H

)
ds

≤
∫ t

0

c(t− s)−ϑ

[ ∥∥PN (UM,M
s − V N,K

s )
∥∥2
H

+
∥∥UM,M

s

∥∥
V

(
inf

i∈I\IN

λi

)−1/2 ∥∥PN (UM,M
s − V N,K

s )
∥∥
H

]
ds

≤
∫ t

0

c(t− s)−ϑ
(1
2

∥∥UM,M
s

∥∥2
V

(
inf

i∈I\IN

λi

)−1

+
3

2

∥∥PN (UM,M
s − V N,K

s )
∥∥2
H

)
ds

≤
∫ t

0

c(t− s)−ϑ

[
2 sup
t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥PN (UM,M

s − V N,K
s )

∥∥2
H

]
ds

(6.13)

For the bilinear term (B) we obtain

(B)

2
=

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PN

(
BM (UM,M

s )−BN (V N,K
s )

)〉
ds

=

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PN

(
B(UM,M

s )−B(V N,K
s )

)〉
ds

=

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PNB

(
UM,M
s − V N,K

s , UM,M
s

)〉
ds

+

∫ t

0

〈
eA(t−s)PN (UM,M

s − V N,K
s ), eA(t−s)PNB

(
V N,K
s , UM,M

s − V N,K
s

)〉
ds

=

∫ t

0

〈
e2A(t−s)PN (UM,M

s − V N,K
s ), B

(
UM,M
s − V N,K

s , UM,M
s

)〉
ds

+

∫ t

0

〈
e2A(t−s)PN (UM,M

s − V N,K
s ), B

(
V N,K
s , UM,M

s − V N,K
s

)〉
ds
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Corollary 6.12 and Assumption 6.5 yield

(B)

2
=

∫ t

0

〈
e2A(t−s)PN (UM,M

s − V N,K
s ), B

(
UM,M
s − V N,K

s , UM,M
s

)〉

+
〈
UM,M
s − V N,K

s , B
(
V N,K
s , e2A(t−s)PN (UM,M

s − V N,K
s )

)〉
ds

≤
∫ t

0

c0

∥∥∥e2A(t−s)PN (UM,M
s − V N,K

s )
∥∥∥

1
2

V

∥∥∥Ae2A(t−s)PN (UM,M
s − V N,K

s )
∥∥∥

1
2

H

×
∥∥UM,M

s − V N,K
s

∥∥
H

∥∥UM,M
s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

+ c0
∥∥UM,M

s − V N,K
s

∥∥
H

∥∥V N,K
s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H

×
∥∥∥e2A(t−s)PN (UM,M

s − V N,K
s )

∥∥∥
1
2

V

∥∥∥Ae2A(t−s)PN (UM,M
s − V N,K

s )
∥∥∥

1
2

H
ds

≤
∫ t

0

c0

( ∥∥V N,K
s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H
+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)∥∥UM,M
s − V N,K

s

∥∥
H

×
∥∥∥e2A(t−s)PN (UM,M

s − V N,K
s )

∥∥∥
1
2

V

∥∥∥Ae2A(t−s)PN (UM,M
s − V N,K

s )
∥∥∥

1
2

H
ds

Since ‖u‖V = 〈Au, u〉 1
2 ≤ ‖Au‖

1
2

H ‖u‖
1
2

H , for all u ∈ V , we have

∥∥∥e2A(t−s)PN (UM,M
s − V N,K

s )
∥∥∥

1
2

V

∥∥∥Ae2A(t−s)PN (UM,M
s − V N,K

s )
∥∥∥

1
2

H

≤
∥∥∥e2A(t−s)PN (UM,M

s − V N,K
s )

∥∥∥
1
4

H

∥∥∥Ae2A(t−s)PN (UM,M
s − V N,K

s )
∥∥∥
3/4

H

≤
∥∥PN (UM,M

s − V N,K
s )

∥∥ 1
4

H

∥∥∥Ae2A(t−s)PN

∥∥∥
3/4

L(H)

∥∥PN (UM,M
s − V N,K

s )
∥∥3/4
H

=
∥∥∥(−A)e2A(t−s)PN

∥∥∥
3/4

L(H)

∥∥PN (UM,M
s − V N,K

s )
∥∥
H

As before, we use

∥∥UM,M
s − V N,K

s

∥∥
H

≤
∥∥(1− PN )UM,M

s

∥∥
H
+
∥∥PN (UM,M

s − V N,K
s )

∥∥
H

≤
∥∥UM,M

s

∥∥
V

(
inf

i∈I\IN

λi

)−1/2

+
∥∥PN (UM,M

s − V N,K
s )

∥∥
H
,

and ab ≤ a2

2 + b2

2 , which leads to

(B)

2
≤
∫ t

0

c0

( ∥∥V N,K
s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H
+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)

×
∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

∥∥PN (UM,M
s − V N,K

s )
∥∥
H

×
(∥∥UM,M

s

∥∥
V

(
inf

i∈I\IN

λi

)−1/2

+
∥∥PN (UM,M

s − V N,K
s )

∥∥
H

)
ds

≤
∫ t

0

c0

( ∥∥V N,K
s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H
+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

×
(1
2

∥∥UM,M
s

∥∥2
V

(
inf

i∈I\IN

λi

)−1

+
3

2

∥∥PN (UM,M
s − V N,K

s )
∥∥2
H

)
ds

≤
∫ t

0

c0

( ∥∥V N,K
s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H
+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

×
(
2 sup
t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥PN (UM,M

s − V N,K
s )

∥∥2
H

)
ds (6.14)
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Since the stochastic integrals (WK) and (WM−K) vanish when taking the expectation
value for the L2-error, we draw our attention to the Itô terms by using Assumption 6.7.

(Itô K) =
∑

j∈JK , µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PN

(
σM (UM,M

s )− σN (V N,K
s )

)
gj

∥∥∥
2

H
ds

≤
∑

j∈J, µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PN

(
σM (UM,M

s )− σN (V N,K
s )

)
gj

∥∥∥
2

H
ds

=

∫ t

0

∥∥∥eA(t−s)PN

(
σM (UM,M

s )− σN (V N,K
s )

)∥∥∥
2

HS(G0,H)
ds

≤
∫ t

0

c
∥∥∥eA(t−s)(−A)ϑ/2

∥∥∥
2

L(H)

∥∥∥(−A)−ϑ/2
(
σM (UM,M

s )− σN (V N,K
s )

)∥∥∥
2

HS(G0,H)
ds

≤
∫ t

0

c(t− s)−ϑ
∥∥UM,M

s − V N,K
s

∥∥2
H
ds

≤
∫ t

0

c(t− s)−ϑ
(
2
∥∥UM,M

s

∥∥2
V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥PN (UM,M

s − V N,K
s )

∥∥2
H

)
ds

≤
∫ t

0

c(t− s)−ϑ
(
2 sup
t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥PN (UM,M

s − V N,K
s )

∥∥2
H

)
ds

(6.15)

The second Itô term deals with the error due to the reduction of stochastic dimensions.

(Itô M-K) =
∑

j∈JM\JK

µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PNσM (UM,M
s )gj

∥∥∥
2

H
ds

≤
∑

j∈J\JK

µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PNσM (UM,M
s )gj

∥∥∥
2

H
ds

=
∑

j∈J\JK

µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PNσM (UM,M
s )Q−αQαgj

∥∥∥
2

H
ds

=
∑

j∈J\JK

µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)PNσM (UM,M
s )Q−αµα

j gj

∥∥∥
2

H
ds

≤ sup
j∈J\JK

µ2α
j

∑

j∈J\JK

µj 6=0

µj

∫ t

0

∥∥∥eA(t−s)(−A)ϑ/2
∥∥∥
2

L(H)

∥∥∥(−A)−ϑ/2σM (UM,M
s )Q−αgj

∥∥∥
2

H
ds

≤ sup
j∈J\JK

µ2α
j

∑

j∈J, µj 6=0

µj

∫ t

0

(t− s)−ϑ
∥∥∥(−A)−ϑ/2σM (UM,M

s )Q−αgj

∥∥∥
2

H
ds

= sup
j∈J\JK

µ2α
j

∫ t

0

(t− s)−ϑ
∥∥∥(−A)−ϑ/2σM (UM,M

s )Q−α
∥∥∥
2

HS(G0,H)
ds

≤ sup
j∈J\JK

µ2α
j

∫ t

0

c(t− s)−ϑ
(
1 +

∥∥UM,M
s

∥∥2
V

)
ds (6.16)

At this point, we have estimates for all temporal integrals in (6.11). Recall that we did not
apply Itô’s formula on the whole Galerkin error, but only on its finite-dimensional projection,
i.e., the last term on the right hand side of

∥∥∥Ut − V N,K
t

∥∥∥
2

H
≤ sup

M>N

(
2 sup
t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥∥PNUM,M

t − V N,K
t

∥∥∥
2

H

)
.

(6.10)
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However, we recognize terms corresponding to the entire right hand side in (6.13), (6.14)
and (6.15). Using the notations

Ψs := 2 sup
t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+ 2
∥∥PNUM,M

s − V N,K
s

∥∥2
H

Gs := stochastic integrands

and combining (6.12)-(6.16), we get for arbitrary M > N

Ψt ≤ 2 sup
t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

(
inf

i∈I\IN

λi

)−1

+

∫ t

0

(
4c(t− s)−ϑ + 2c0

(∥∥V N,K
s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H

+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

)
Ψs ds

+

∫ t

0

c(t− s)−ϑ
(
1 +

∥∥UM,M
s

∥∥2
V

)
sup

j∈J\JK

µ2α
j ds+

∫ t

0

GsdWs.

Note that the first summand corresponds to Ψ0. We introduce the abbreviations

Φs := 4c(t− s)−ϑ + 2c0

∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

×
(∥∥V N,K

s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H
+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)

χs := c(t− s)−ϑ
(
1 +

∥∥UM,M
s

∥∥2
V

)
sup

j∈J\JK

µ2α
j ,

and obtain

Ψt ≤ Ψ0 +

∫ t

0

ΦsΨsds+

∫ t

0

χsds+

∫ t

0

GsdWs.

We can now apply the stochastic Gronwall Lemma 6.16, which leads to

E
[
e−

∫ t
0
ΦsdsΨt

]
≤ E [Ψ0] + E

[∫ t

0

χse
−

∫ s
0
Φududs

]
. (6.17)

On the other hand (6.10) gives us

E

[∥∥∥Ut − V N,K
t

∥∥∥
2

H

]
≤ E [Ψt] . (6.18)

Therefore we have to split E[Ψte
−

∫
t
0
Φsds], for instance, by finding a P-a.s. lower bound

for e−
∫

t
0
Φsds. To this end we use a stopping time argument (Lemma 6.18) to obtain a

P-a.s. upper bound for
∫ t

0 Φsds. A version of Young’s inequality, given by Corollary 6.17
with Hölder exponents p = 4/3, q = 4, gives us for all β > 0

∫ t

0

Φsds = 4c

∫ t

0

(t− s)−ϑds+ 2c0

∫ t

0

∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

×
(∥∥V N,K

s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H
+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)
ds

(6.19)

≤ 4c
t1−ϑ

1− ϑ
+

2

β

∫ t

0

∥∥∥(−A)e2A(t−s)PN

∥∥∥
L(H)

ds

+
(2c0)

4

4

(
3β

8

)3∫ t

0

(∥∥V N,K
s

∥∥ 1
2

V

∥∥AV N,K
s

∥∥ 1
2

H
+
∥∥UM,M

s

∥∥ 1
2

V

∥∥AUM,M
s

∥∥ 1
2

H

)4
ds

≤ 4c
t1−ϑ

1− ϑ
+

2

β

∫ t

0

∥∥∥(−A)e2A(t−s)PN

∥∥∥
L(H)

ds

+ c40β
3

∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥UM,M

s

∥∥2
V

∥∥AUM,M
s

∥∥2
H
ds,
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where (a+ b)2 ≤ 2a2 + 2b2 was applied twice in the last line. Lemma 6.18 then yields
∫ t

0

Φsds ≤
2

β

∫ t

0

∥∥∥(−A)e2A(t−s)PN

∥∥∥
L(H)

ds+ 4c
t1−ϑ

1− ϑ
+ c40kβ

3 (6.20)

P-a.s. for all t ∈ [0, T ]. Unfortunately, a direct estimate of the remaining integral via
Lemma 6.13 would lead to a divergent expression, see Remark 6.11. Therefore we need
a tighter bound on

∫ t

0

∥∥∥(−A)PNeA(t−s)
∥∥∥
L(H)

ds =

∫ t

0

sup
i∈IN

λie
−λi(t−s)ds =

∫ t

0

sup
i∈IN

λie
−λisds. (6.21)

To this end, recall that the eigenvalues of (−A)PN are a strictly increasing sequence
λ1 < λ2 < ... < λN . Furthermore, for a fixed t ∈ [0, T ], the function

x 7→ xe−xt

is maximal at x = 1/t. Therefore, the index of the supremum in (6.21) increases when t
decreases. We divide the integral into disjunct time intervals, in each of which the index
of the supremum is fixed. More precisely, for j ∈ {2, ..., N}, denote by tj the time at which
the index of the supremum changes from j − 1 to j. Then tj satisfies

λje
−λjtj = λj−1e

−λj−1tj

⇒ λj

λj−1
= e(λj−λj−1)tj

⇒ tj =
lnλj − lnλj−1

λj − λj−1
.

Due to ln(x) < x− 1, for x > 1, we have

(λj+1 − λj︸ ︷︷ ︸
>0

)(λj − λj−1︸ ︷︷ ︸
>0

)(tj+1 − tj)

= (λj − λj−1) ln
λj+1

λj
− (λj+1 − λj) ln

λj

λj−1

< (λj − λj−1)

(
λj+1

λj
− 1

)
− (λj+1 − λj)

(
λj

λj−1
− 1

)

= λj+1 − λj −
λj−1λj+1

λj
− λj−1 +

λj+1λj−1

λj
− λj+1 − λj−1 + λj

= 0,

and hence

tj+1 < tj .

Consequently, {tj}Nj=1 is a strictly decreasing sequence with

0 < tN < tN−1 < ... < t1.

This gives us the aforementioned disjunct decomposition

[0, t) =

N⋃

j=1

[tj+1, tj),

for tN+1 := 0 and t1 := t. Define the abbreviatory notation

Sj(s) := λje
−λjs,

and fix an arbitrary j ∈ {1, ..., N}. Then, for all k ∈ {0, ..., N−j−1} and all s ∈ [tj+k+1,∞),
we have by definition of tj+k+1

Sj+k+1(s)

Sj+k(s)
=

Sj+k+1(tj+k+1)

Sj+k(tj+k+1)

e−λj+k+1(s−tj+k+1)

e−λj+k(s−tj+k+1)
= e(λj+k−λj+k+1)(s−tj+k+1) ≤ 1.
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Therefore, Sj+k ≥ Sj+k+1 on [tj+k+1,∞). Since [tj+1,∞) ⊂ [tj+k+1,∞), we get

∀s ∈ [tj+1,∞) ∀k ∈ {j + 1, ..., N} : Sj ≥ Sj+k. (*)

On the other hand, for k ∈ {0, ..., j − 1} and all s ∈ [0, tj−k), we obtain

Sj−k(s)

Sj−k−1(s)
=

Sj−k(tj−k)

Sj−k−1(tj−k)

e−λj−k(s−tj−k)

e−λj−k−1(s−tj−k)
= e(λj−k−1−λj−k)(tj−k−s) ≥ 1,

leading to Sj−k ≥ Sj−k−1 on [0, tj−k). Since [0, tj) ⊂ [0, tj−k) we get

∀s ∈ [0, tj) ∀k ∈ {0, ..., j − 1} : Sj ≥ Sj−k. (**)

Combining (*) and (**) yields

∀s ∈ [tj+1, tj) : sup
i∈IN

λie
−λis = λje

−λjs,

which finally gives us
∫ t

0

∥∥∥(−A)PNeA(t−s)
∥∥∥
L(H)

ds

=

∫ t

0

sup
i∈IN

λie
−λisds

=

∫ t

0

N∑

j=1

1[tj+1,tj) λje
−λjsds

=
N∑

j=1

∫ tj

tj+1

λje
−λjsds

=

N∑

j=1

e−λjtj+1 − e−λjtj

= e−λN tN+1 − e−λ1t1 +
N∑

j=2

e−λj−1tj − e−λjtj

= 1− e−λ1t +

N∑

j=2

e−λj−1tj
(
1− e−(λj−λj−1)tj

)
.

By definition of tj we have

exp (−λj−1tj) = exp

(
−λj−1

lnλj − lnλj−1

λj − λj−1

)

= exp

(
λj−1

λj − λj−1
ln

(
λj−1

λj

))

=

(
λj−1

λj

) λj−1
λj−λj−1

exp (−(λj − λj−1)tj) = exp

(
−(λj − λj−1)

lnλj − lnλj−1

λj − λj−1

)

= exp

(
− ln

(
λj

λj−1

))

=
λj−1

λj
,

and obtain

∫ t

0

∥∥∥(−A)PNeA(t−s)
∥∥∥
L(H)

ds = 1− e−λ1t +

N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)
.
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Returning to the upper bound (6.20) this gives us

∫ t

0

Φsds ≤
2

β


1− e−λ1t +

N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)
+ 4c

t1−ϑ

1− ϑ
+ c40kβ

3

=: 2 ln(g(β−1, N)) + 2 ln(C(β)).

Introducing the notations

g(β−1, N) := exp


 1

β


1− e−λ1t +

N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)




C(β) := exp

(
2c

t1−ϑ

1− ϑ
+

c40kβ
3

2

)
,

gives us the desired lower bound

e−
∫ t
0
Φsds ≥ C(β)−2g(β−1, N)−2 > 0,

P-a.s. for all β > 0. Since Ψt ≥ 0 P-a.s. we have

C(β)−2g(β−1, N)−2E [Ψt] ≤ E
[
e−

∫
t
0
ΦsdsΨt

]
,

and equation (6.17) yields

E [Ψt] ≤ C(β)2g(β−1, N)2
(
E [Ψ0] + E

[∫ t

0

χse
−

∫ s
0
Φududs

])
.

The first expectation value on the right hand side is given by

E [Ψ0] = 2E

[
sup

t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

](
inf

i∈I\IN

λi

)−1

.

Since χs ≥ 0 and Φs ≥ 0, P-a.s. for all s ∈ [0, t], we obtain for the second term

E

[∫ t

0

χse
−

∫
s
0
Φududs

]

≤ E

[∫ t

0

χsds

]

= E

[∫ t

0

c(t− s)−ϑ
(
1 +

∥∥UM,M
s

∥∥2
V

)
sup

j∈J\JK

µ2α
j ds

]

≤ cE

[
1 + sup

t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

](
sup

j∈J\JK

µj

)2α ∫ t

0

(t− s)−ϑds

= c
t1−ϑ

1− ϑ
E

[
1 + sup

t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

](
sup

j∈J\JK

µj

)2α

.

Due to Lemma 6.18, there exists a constant k < ∞ with

E

[
sup

t∈[0,T ]

∥∥∥UM,M
t

∥∥∥
2

V

]
≤ k.

Using equation (6.18) and absorbing all constants into a c > 0, independent of N,M,K
and β, finally gives us

E

[∥∥∥Ut − V N,K
t

∥∥∥
2

H

]
≤ E [Ψt] ≤ e2cβ

3

g(β−1, N)2



(

inf
i∈I\IN

λi

)−1

+

(
sup

j∈J\JK

µj

)2α



completing the proof. �
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6.4.1 Theorem 6.10 and the Primitive Equations

Comparing Assumptions 6.2-6.8 from this section with the abstract framework of stochas-
tic three-dimensional PE in Section 5.4.2 shows that the atmospheric PE on the sphere
are a special case of the abstract fluid model at hand. Since the general formulation
of Theorem 6.10, particularly the structure of the function g, is not very intuitive, we ex-
emplarily discuss the results for the PE. The most complex error term is given by the
eigenvalues of the linear operator A. For the sake of simplicity we consider the classical
three-dimensional Laplace operator on the sphere, which satisfies

λj = j(j + 1) (6.22)

for all j ∈ N. Then, we have for all β > 0

β ln g = 1− e−λ1t +
N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)

= 1− e−2t +

N∑

j=2

(
j(j − 1)

j(j + 1)

) j(j−1)
j(j+1)−j(j−1)

(
1− j(j − 1)

j(j + 1)

)

= 1− e−2t +
N∑

j=2

(
j − 1

j + 1

) j−1
j+1−j+1

(
1− j − 1

j + 1

)

= 1− e−2t +
N∑

j=2

(
1− 2

j + 1

) j−1
2
(

2

j + 1

)

= 1− e−2t +

N∑

j=2

(
1− 2

j + 1

) j+1
2
(
1− 2

j + 1

)−1(
2

j + 1

)

= 1− e−2t +

N∑

j=2

2

j − 1

(
1− 2

j + 1

) j+1
2

.

For large j, we get the following asymptotic behavior

2

(
1− 2

j + 1

) j+1
2

= 2

(
1− 1

(
j+1
2

)−1 ,

) j+1
2

≈ 2e−1

and
1

j − 1
≈ 1

j
.

Therefore, the sum does not converge for N → ∞. However, it is bounded by

β ln g = 1− e−λ1t +

N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)

= 1− e−2t
︸︷︷︸
>0

+2

N−1∑

j=1

1

j

(
1− 2

j + 2︸ ︷︷ ︸
≤1

) j+1
2

≤ 1 + 2 ln(N − 1).

Using this expression, Theorem 6.10 yields the following error bound

E

[∥∥∥Ut − V N,K
t

∥∥∥
2

V

] 1
2

≤ ecβ
3

e
2
β ln(N)

((
inf

i∈I\IN

λi

)− 1
2

+

(
sup

j∈J\JK

µj

)α)

≤ ecǫ
−3

(
N−1+ǫ +

(
sup

j∈J\JK

N
ǫ
αµj

)α)
,
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for all ǫ > 0. Note that we introduced ǫ = 1
β for a more intuitive representation. Regarding

the stochastic dimension we recall, that Q is a trace-class operator, i.e., the sum of its
eigenvalues converges. Assuming, for instance, a polynomial behavior µj = O(j−p), for a
p > 1, it is advisable to set K = N

1
αp , so that the errors due to finite spatial and stochastic

dimensions share the same mean square convergence rate, yielding

E

[∥∥∥Ut − V N,K
t

∥∥∥
2

V

] 1
2

≤ ecǫ
−3

N−1+ǫ, (6.23)

for all ǫ > 0. This motivates the following definition.

Definition 6.19. Convergence Order p−
A numerical scheme converges with order p−, with p > 0, if it converges with order p− ǫ

for all ǫ > 0.

The complex error bound of Theorem 6.10 reduces to the clearly arranged term (6.23) for
the Laplace operator. The crucial information we need to obtain this convergence result
is the quadratical growth of the eigenvalues for the linear operator A.

6.5 Results

Theorem 6.10 provides an upper bound on the mean square error regarding the dis-
cretization of spatial and stochastic dimensions for an abstract fluid model (6.1). Note that
mean square convergence implies strong convergence (Definition 2.34) due to Jensen’s
inequality. Convergence is guaranteed, if the sum

N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)

does not grow faster than ln(N). This assumption is, for instance, satisfied for spatial
eigenvalues λN increasing at least quadratically, which includes the important case of the
Laplace operator, see Section 6.4.1. For practical applications, the spatial operator A is
defined by the system’s physics. In the abstract setting at hand the system’s stochas-
tics are defined by σ and Q. While σ links the physical dynamics and the underlying
stochastic fluctuations, the trace class operator Q describes the correlation between the
different stochastic dimensions. The combination of both arises in the error bound in form
of the term µα

k , where µk are the eigenvalues of Q, and α does depend on σ via Assump-
tion 6.7. A common choice for the stochastic setting are quadratically decreasing µk. This
yields a root mean square convergence order 1− in the spatial and α− in the stochastic
dimensions. For most practical applications – such as the three-dimensional PE – a de-
terministic setting has already been studied prior to a stochastic formulation. Naturally,
the convergence rates are a decisive factor for the success of a specific numerical treat-
ment, particularly in the context of elaborate global models. The efficiency of a stochastic
numerical scheme is therefore directly compared to its deterministic counterpart. Con-
sequently, the parameter α plays a crucial role in practical applications, specifying the
additional computational effort necessary to resolve stochastic dimensions. However, its
value may not be obvious from Assumption 6.7 for a given system. We refer to [166, 167]
for detailed discussions on this topic for various exemplary systems.
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The Galerkin approximation from the previous section allows us to study time discretiza-
tion methods for SPDE (6.1) in the finite-dimensional environment of SODE. Although the
numerical framework for SODE has been extensively studied since the early 1970s, the
vast majority of literature deals with Lipschitz continuous coefficient functions, see Defi-
nition 2.33. To the best of our knowledge the first strong convergence result with weaker
assumptions was established by Hu in 1996 [170]. His results require a one-sided Lips-
chitz continuous drift function f : R → R, i.e. there exists a c > 0 with

〈x− y, f(x)− f(y)〉 ≤ c|x− y|2,

for all x, y ∈ R. This may be regarded as a weak formulation of Lipschitz continuity. Analog
assumptions are used in more recent works by Higham et al. [171] and Hutzenthaler [172].
The more general setting by Higham et al. [171] assumes local Lipschitz continuous drift
functions f . It turns out that the moments of both, the exact solution X and the numerical
solution Y , have to satisfy a priori bounds of the form

E

[
sup

t∈[0,T ]

Xp

]
+ E

[
sup

t∈[0,T ]

Y p

]
< c,

for a c > 0, to achieve convergence. Higham et al. state that in “general, it is not clear
when such moment bounds can be expected to hold for explicit methods” [171]. In the
same paper it is shown that these bounds indeed hold true for an implicit numerical
scheme, whereas Hutzenthaler [172] applies a “tamed” explicit scheme to derive such
bounds under the additional assumption of polynomial growth of the drift function. Al-
though the estimates in Assumption 6.5 on the bilinear advection term B are of similar
structure, they do not follow a one-sided Lipschitz condition due to the involvement of the
linear operator A. In the context of PE the difference becomes obvious, where A is essen-
tially the Laplace operator. Therefore the advection can only be controlled by derivatives
of the velocity and temperature but not by the state vector itself (see Lemma 5.20). As a
consequence it is beyond the scope of this work to prove such a priori bounds. Further-
more the bilinear term B is ill-behaved to an extend that even the exact solution cannot
be controlled in the above sense, i.e., only the local existence of solutions is guaranteed.
Therefore we have to postulate a priori bounds for the numerical solution analogous with
the existing bounds for the exact solution via Lemma 6.18, see Assumption 7.3. The
reason for the specific choice of bounds, their applicability and some ideas for future im-
provements are discussed in Sections 7.2.2 and 7.2.4.

Definition 7.1. Numerical Scheme
The numerical scheme consists of F/B(H)-measurable mappings

Y N,M,K
m : Ω −→ HN ,

for N,M,K ∈ N and m ∈ {0, 1, ...,M}. These are successively defined by

Y N,M,K
0 := PN (ξ)

Y N,M,K
m+1 := PNeAh

{
Y N,M,K
m + hF (Y N,M,K

m ) + hB(Y N,M,K
m ) + σ(Y N,M,K

m )∆WN,K
m

}
,

where h := T
M and

∆WM,K
m : Ω ∋ ω 7→

(
WK

(m+1)T
M

(ω)−WK
mT
M

ω
)
∈ G0,

denote the F/B(G0)-measurable increments of the Wiener process for all N,M,K ∈ N
and m ∈ {0, 1, ...,M − 1}.
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Definition 7.2. Interpolated Numerical Solution
In order to properly use the Itô formula, we need a time continuous representation of the

numerical solution Y N,M,K
t , see Lemma 6.14. To this end we define

⌊s⌋ := max
{
u ∈

{
0, h, 2h, ...,Mh = T

}∣∣∣ u ≤ s
}

for all s ∈ [0, T ]. Using this notation we interpolate Definition 7.1 by

Y N,M,K
t = eAtPN ξ +

∫ t

0

eA(t−⌊s⌋)(FN (Y N,M,K
⌊s⌋ ) +BN (Y N,M,K

⌊s⌋ )
)
ds

+

∫ t

0

eA(t−⌊s⌋)σN (Y N,M,K
⌊s⌋ )dWK

s ,

P-a.s. for all t ∈ [0, T ] and N,M,K ∈ N.

Assumption 7.3. A Priori Bounds of the Numerical Solution
Assume the existence of a constant c > 0 with

∥∥∥Y N,M,K
⌊t⌋

∥∥∥
2

V

∥∥∥AY N,M,K
⌊t⌋

∥∥∥
2

H
≤ c

P-a.s. for all N,M,K ∈ N and all t ∈ [0, T ].

Theorem 7.4. Main Result
Let Assumptions 6.2-6.8 and 7.3 be satisfied. Then there exists a constant c < ∞ inde-

pendent of N,M,K, α, β, γ, δ with

E

[∥∥∥Ut − Y N,M,K
t

∥∥∥
2

H

]1/2
≤ ecβ

3

g(β−1, N)

(
λ
− 1

2

N+1 +

(
sup

j∈J\JK

µj

)α)

+ ecγ
3
(
M− 1

2+
1
γ + ecδλ

1
2δ

N M− 1
2+

1
2γ

)

where

g(β−1, N) = exp


 1

β


1− e−λ1t +

N∑

j=2

(
λj−1

λj

) λj−1
λj−λj−1

(
1− λj−1

λj

)




for all N,M,K ∈ N, β, γ > 0 and δ > 1.

In order to proof Theorem 7.4 we need to estimate the interpolation error.

Lemma 7.5. Interpolation Error
There exists a c > 0 with

E

[∥∥∥Y N,M,K
t − Y N,M,K

⌊t⌋

∥∥∥
2

H

]
≤ ch.

for all t ∈ [0, T ]

Proof. Lemma 7.5
Note that the bilinear form B satisfies

‖B(u, u)‖2H = 〈B(u, u), B(u, u)〉 ≤ c0 ‖B(u, u)‖H ‖u‖V ‖Au‖H
⇒ ‖B(u, u)‖2H ≤ c20 ‖u‖2V ‖Au‖2H
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for all u ∈ V .

E

[∥∥∥Y N,M,K
t − Y N,M,K

⌊t⌋

∥∥∥
2

H

]

≤ E

[∥∥∥eAtPNξ − eA⌊t⌋PN ξ
∥∥∥
2

H

]

+ E



∥∥∥∥∥

∫ t

⌊t⌋
eA(t−⌊s⌋)(FN(Y N,M,K

⌊s⌋ ) +BN (Y N,M,K
⌊s⌋ )

)
ds

∥∥∥∥∥

2

H




+ E



∥∥∥∥∥

∫ t

⌊t⌋
eA(t−⌊s⌋)σN (Y N,M,K

⌊s⌋ )dWK
s

∥∥∥∥∥

2

H




≤ E

[∥∥∥eA⌊t⌋
(
1− eA(t−⌊t⌋)

)
PNξ

∥∥∥
2

H

]

+ E



∥∥∥∥∥

∫ t

⌊t⌋
eA(t−⌊t⌋)(FN (Y N,M,K

⌊t⌋ ) +BN (Y N,M,K
⌊t⌋ )

)
ds

∥∥∥∥∥

2

H




+ E

[∫ t

⌊t⌋

∥∥∥eA(t−⌊t⌋)σN (Y N,M,K
⌊t⌋ )

∥∥∥
2

H
ds

]

≤ E

[∥∥∥(−A)−
1
2

(
1− eA(t−⌊t⌋)

)∥∥∥
2

L(H)
‖PNξ‖2V

]
+ E

[∥∥∥(t− ⌊t⌋)eA(t−⌊t⌋)BN (Y N,M,K
⌊t⌋ )

∥∥∥
2

H

]

+ E

[∥∥∥(t− ⌊t⌋)eA(t−⌊t⌋)FN (Y N,M,K
⌊t⌋ )

∥∥∥
2

H

]
+ E

[
(t− ⌊t⌋)

∥∥∥eA(t−⌊t⌋)σN (Y N,M,K
⌊t⌋ )

∥∥∥
2

H

]

≤ (t− ⌊t⌋)
{
E
[
‖PNξ‖2V

]
+ (t− ⌊t⌋)E

[∥∥∥eA(t−⌊t⌋)BN (Y N,M,K
⌊t⌋ )

∥∥∥
2

H

]

+ (t− ⌊t⌋)E
[∥∥∥eA(t−⌊t⌋)FN (Y N,M,K

⌊t⌋ )
∥∥∥
2

H

]
+ E

[∥∥∥eA(t−⌊t⌋)σN (Y N,M,K
⌊t⌋ )

∥∥∥
2

H

]}

≤ h

{
E
[
‖ξ‖2V

]
+ hc20E

[∥∥∥Y N,M,K
⌊t⌋

∥∥∥
2

V

∥∥∥AY N,M,K
⌊t⌋

∥∥∥
2

H

]

+ chE

[
1 +

∥∥∥Y N,M,K
⌊t⌋

∥∥∥
2

V

]
+ cE

[
1 +

∥∥∥Y N,M,K
⌊t⌋

∥∥∥
2

V

]}

≤ ch

{
E
[
‖ξ‖2V

]
+ E

[
1 +

∥∥∥Y N,M,K
⌊t⌋

∥∥∥
2

V

]
+ E

[∥∥∥Y N,M,K
⌊t⌋

∥∥∥
2

V

∥∥∥AY N,M,K
⌊t⌋

∥∥∥
2

H

]}

≤ ch

{
1 + E

[
‖ξ‖2V

]
+ E

[∥∥∥Y N,M,K
⌊t⌋

∥∥∥
2

V

∥∥∥AY N,M,K
⌊t⌋

∥∥∥
2

H

]}

≤ ch,

where we used Assumption 7.3 for the last estimate.

Corollary 7.6. A Reverse Hölder Inequality
For all 0 ≤ t1 < t2 and all p-integrable functions Lp ∋ f : [t1, t2] → R we have

∣∣∣∣
∫ t2

t1

f(s)ds

∣∣∣∣
p

≤ (t2 − t1)
p−1

∫ t2

t1

|f(s)|p ds

for all p > 1.

Proof. Corollary 7.6
The reverse Hölder inequality for functions g, h on a measurable space (S,Σ, µ) with
µ(S) > 0 with h(s) 6= 0 for µ-almost all s ∈ S and

∫

S

|gh|dµ < ∞,

(∫

S

|h|− 1
p−1 dµ

)−(p−1)

> 0
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states

∫

S

|gh|dµ ≥
(∫

S

|g| 1p dµ
)p(∫

S

|h|− 1
p−1 dµ

)−(p−1)

for all p > 1 (see for instance [173]). Choose g ≡ |f |p, h ≡ 1, S = [t1, t2]

⇒
(∫ t2

t1

|f |ds
)p (∫ t2

t1

1−
1

p−1 ds

)−(p−1)

︸ ︷︷ ︸
=(t2−t1)−(p−1)

≤
∫ t2

t1

|f |pds

7.1 Proof of Theorem 7.4

The first step towards the error estimate in Theorem 7.4 is given by the error bounds on
spatial and stochastic discretization via Theorem 6.10:

E

[∥∥∥Ut − Y N,M,K
t

∥∥∥
2

H

]1/2
≤ E

[∥∥∥Ut − V N,K
t

∥∥∥
2

H

]1/2
+ E

[∥∥∥V N,K
t − Y N,M,K

t

∥∥∥
2

H

]1/2
. (7.1)

The time discretization error is obtained in analogy to the proof of Theorem 6.10, using
characteristics of the semigroup operator eA(t−s). Applying Corollary 6.15, i.e., the mild
Itô formula for the squared H-norm, on the difference process

V N,K
t − Y N,M,K

t =

∫ t

0

eA(t−s)FN (V N,K
s )− eA(t−⌊s⌋)FN (Y N,M,K

⌊s⌋ )ds

+

∫ t

0

eA(t−s)BN (V N,K
s )− eA(t−⌊s⌋)BN (Y N,M,K

⌊s⌋ )ds

+

∫ t

0

eA(t−s)σN (V N,K
s )− eA(t−⌊s⌋)σN (Y N,M,K

⌊s⌋ )dWK
s

yields

∥∥∥V N,K
t − Y N,M,K

t

∥∥∥
2

H
= (F ) + (B) + (W ) + (Itô), (7.2)

with

(F ) = 2

∫ t

0

〈
eA(t−s)

(
V N,K
s − Y N,M,K

s

)
, eA(t−s)FN (V N,K

s )− eA(t−⌊s⌋)FN(Y N,M,K
⌊s⌋ )

〉
ds

(B) = 2

∫ t

0

〈
eA(t−s)

(
V N,K
s − Y N,M,K

s

)
, eA(t−s)BN (V N,K

s )− eA(t−⌊s⌋)BN (Y N,M,K
⌊s⌋ )

〉
ds

(W ) = 2

∫ t

0

〈
eA(t−s)

(
V N,K
s − Y N,M,K

s

)
, eA(t−s)σN (V N,K

s )− eA(t−⌊s⌋)σN (Y N,M,K
⌊s⌋ )

〉
dWK

s

(Itô) =
∑

j∈JK , µj 6=0

µj

∫ t

0

∥∥∥
(
eA(t−s)σN (V N,K

s )− eA(t−⌊s⌋)σN (Y N,M,K
⌊s⌋ )

)
gj

∥∥∥
2

H
ds.
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Regarding the nonlinear drift term (F ) we have

(F )

2
=

∫ t

0

〈
eA(t−s)

(
V N,K
s − Y N,M,K

s

)
, eA(t−s)FN(V N,K

s )− eA(t−⌊s⌋)FN (Y N,M,K
⌊s⌋ )

〉
ds

≤
∫ t

0

∥∥∥eA(t−s)
(
V N,K
s − Y N,M,K

s

)∥∥∥
H

∥∥∥eA(t−s)FN (V N,K
s )− eA(t−⌊s⌋)FN (Y N,M,K

⌊s⌋ )
∥∥∥
H
ds

≤
∫ t

0

∥∥∥eA(t−s)
(
V N,K
s − Y N,M,K

s

)∥∥∥
H

×
(∥∥∥
(
eA(t−s) − eA(t−⌊s⌋)

)
F (V N,K

s )
∥∥∥
H
+
∥∥∥eA(t−⌊s⌋)

(
F (V N,K

s )− F (Y N,M,K
⌊s⌋ )

)∥∥∥
H

)
ds

≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H

∥∥∥eA(t−s) − eA(t−⌊s⌋)
∥∥∥
L(H)

∥∥F (V N,K
s )

∥∥
H
ds

+

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H

∥∥∥(−A)ϑeA(t−⌊s⌋)
∥∥∥
L(H)

×
∥∥∥(−A)−ϑ

(
F (V N,K

s )− F (Y N,M,K
⌊s⌋ )

)∥∥∥
H
ds

≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H

∥∥∥eA(t−s) − eA(t−⌊s⌋)
∥∥∥
L(H)

c
(
1 +

∥∥V N,K
s

∥∥
V

)
ds

+

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H
c(t− ⌊s⌋)−ϑ

∥∥∥V N,K
s − Y N,M,K

⌊s⌋

∥∥∥
H
ds

≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H
(t− s)−

1
4

× (t− s)
1
4 c
(
1 +

∥∥V N,K
s

∥∥
V

)∥∥∥eA(t−s) − eA(t−⌊s⌋)
∥∥∥
L(H)

ds

+

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H
c(t− ⌊s⌋)−ϑ

×
(∥∥V N,K

s − Y N,M,K
s

∥∥
H
+
∥∥∥Y N,M,K

s − Y N,M,K
⌊s⌋

∥∥∥
H

)
ds

≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H
(t− s)−

1
2 ds

+

∫ t

0

c2
(
1 +

∥∥V N,K
s

∥∥
V

)2
(t− s)

1
2

∥∥∥eA(t−s) − eA(t−⌊s⌋)
∥∥∥
2

L(H)
ds

+

∫ t

0

c(t− ⌊s⌋)−ϑ
∥∥V N,K

s − Y N,M,K
s

∥∥2
H
ds

+

∫ t

0

c(t− ⌊s⌋)−ϑ
∥∥V N,K

s − Y N,M,K
s

∥∥
H

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
H
ds

≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H
(t− s)−

1
2 ds

+

∫ t

0

c2
(
1 +

∥∥V N,K
s

∥∥
V

)2
(t− s)

1
2

×
∥∥∥(−A)

1
2 eA(t−s)

∥∥∥
2

L(H)

∥∥∥(−A)−
1
2

(
1− eA(s−⌊s⌋)

)∥∥∥
2

L(H)
ds

+

∫ t

0

3

2
c(t− ⌊s⌋)−ϑ

∥∥V N,K
s − Y N,M,K

s

∥∥2
H
ds

+

∫ t

0

1

2
c(t− ⌊s⌋)−ϑ

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H
ds,
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leading to

(F )

2
≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H

(
(t− s)−

1
2 +

3

2
c(t− ⌊s⌋)−ϑ

)
ds

+

∫ t

0

1

2
c(t− ⌊s⌋)−ϑ

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H
ds

+ c2h

∫ t

0

(
1 +

∥∥V N,K
s

∥∥
V

)2
(t− s)−

1
2 ds

≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H

(
(t− s)−

1
2 +

3

2
c(t− ⌊s⌋)−ϑ

)
ds

+

∫ t

0

1

2
c(t− ⌊s⌋)−ϑ

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H
ds

+ c2h

∫ t

0

(
1 +

∥∥V N,K
s

∥∥
V

)2
(t− s)−

1
2 ds.

(7.3)

The bilinear term (B) is bounded by Assumption 6.5.

(B)

2
=

∫ t

0

〈
eA(t−s)

(
V N,K
s − Y N,M,K

s

)
, eA(t−s)BN (V N,K

s )− eA(t−⌊s⌋)BN (Y N,M,K
⌊s⌋ )

〉
ds

=

∫ t

0

〈
eA(t−s)

(
V N,K
s − Y N,M,K

s

)
,
(
eA(t−s) − eA(t−⌊s⌋)

)
BN (V N,K

s )
〉
ds

+

∫ t

0

〈
eA(t−s)

(
V N,K
s − Y N,M,K

s

)
, eA(t−⌊s⌋)

(
BN (V N,K

s )−BN (Y N,M,K
⌊s⌋ )

)〉
ds

=

∫ t

0

〈
eA(t−s)

(
eA(t−s) − eA(t−⌊s⌋)

) (
V N,K
s − Y N,M,K

s

)
, BN (V N,K

s )
〉
ds

+

∫ t

0

〈
eA(t−s)eA(t−⌊s⌋) (V N,K

s − Y N,M,K
s

)
, BN (V N,K

s − Y N,M,K
⌊s⌋ , V N,K

s )
〉
ds

+

∫ t

0

〈
eA(t−s)eA(t−⌊s⌋) (V N,K

s − Y N,M,K
s

)
, BN (Y N,M,K

⌊s⌋ , V N,K
s − Y N,M,K

⌊s⌋ )
〉
ds

=

∫ t

0

〈
eA(t−s)

(
eA(t−s) − eA(t−⌊s⌋)

) (
V N,K
s − Y N,M,K

s

)
, BN (V N,K

s , V N,K
s )

〉
ds

+

∫ t

0

〈
eA(t−s)eA(t−⌊s⌋) (V N,K

s − Y N,M,K
s

)
, BN (V N,K

s − Y N,M,K
⌊s⌋ , V N,K

s )
〉
ds

+

∫ t

0

〈
V N,K
s − Y N,M,K

⌊s⌋ ), BN (Y N,M,K
⌊s⌋ , eA(t−s)eA(t−⌊s⌋) (V N,K

s − Y N,M,K
s

)〉
ds

≤ c0

∫ t

0

∥∥∥eA(t−s)
(
eA(t−s) − eA(t−⌊s⌋)

) (
V N,K
s − Y N,M,K

s

)∥∥∥
H

∥∥V N,K
s

∥∥
V

∥∥AV N,K
s

∥∥
H
ds

+c0

∫ t

0

∥∥∥eA(t−s)eA(t−⌊s⌋)(V N,K
s − Y N,M,K

s

)∥∥∥
1
2

V

∥∥∥AeA(t−s)eA(t−⌊s⌋)(V N,K
s − Y N,M,K

s

)∥∥∥
1
2

H

×
∥∥∥V N,K

s − Y N,M,K
⌊s⌋

∥∥∥
H

∥∥V N,K
s )

∥∥ 1
2

V

∥∥V N,K
s

∥∥ 1
2

H
ds

+c0

∫ t

0

∥∥∥eA(t−s)eA(t−⌊s⌋)(V N,K
s − Y N,M,K

s

)∥∥∥
1
2

V

∥∥∥AeA(t−s)eA(t−⌊s⌋)(V N,K
s − Y N,M,K

s

)∥∥∥
1
2

H

×
∥∥∥V N,K

s − Y N,M,K
⌊s⌋

∥∥∥
H

∥∥∥Y N,M,K
⌊s⌋ )

∥∥∥
1
2

V

∥∥∥Y N,M,K
⌊s⌋

∥∥∥
1
2

H
ds,
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which gives us

(B)

2
≤ c0

2

∫ t

0

∥∥∥
(
eA(t−s) − eA(t−⌊s⌋)

)∥∥∥
2

L(H)
+
∥∥V N,K

s − Y N,M,K
s

∥∥2
H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

+ c0

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H

∥∥∥V N,K
s − Y N,M,K

⌊s⌋

∥∥∥
H

×
∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)

∥∥∥
3
4

L(H)

∥∥V N,K
s )

∥∥ 1
2

V

∥∥V N,K
s

∥∥ 1
2

H
ds

+ c0

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H

∥∥∥V N,K
s − Y N,M,K

⌊s⌋

∥∥∥
H

×
∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)

∥∥∥
3
4

L(H)

∥∥∥Y N,M,K
⌊s⌋ )

∥∥∥
1
2

V

∥∥∥Y N,M,K
⌊s⌋

∥∥∥
1
2

H
ds

≤ c0
2

∫ t

0

∥∥∥(−A)
1−ǫ
2 eA(t−s)

∥∥∥
2

L(H)

∥∥∥(−A)−
1−ǫ
2

(
1− eA(s−⌊s⌋)

)∥∥∥
2

L(H)
ds

+
c0
2

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

+ c0

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥
H

(∥∥V N,K
s − Y N,M,K

s

∥∥
H
+
∥∥∥Y N,M,K

s − Y N,M,K
⌊s⌋

∥∥∥
H

)

×
∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)

∥∥∥
3
4

L(H)

×
(∥∥V N,K

s

∥∥ 1
2

V

∥∥V N,K
s

∥∥ 1
2

H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥

1
2

V

∥∥∥Y N,M,K
⌊s⌋

∥∥∥
1
2

H

)
ds

≤ c0
2

∫ t

0

(t− s)−1+ǫ(s− ⌊s⌋)1−ǫds

+
c0
2

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

+ c0

∫ t

0

(
3

2

∥∥V N,K
s − Y N,M,K

s

∥∥2
H
+

1

2

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

)

×
∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)

∥∥∥
3
4

L(H)

×
(∥∥V N,K

s

∥∥ 1
2

V

∥∥V N,K
s

∥∥ 1
2

H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥

1
2

V

∥∥∥Y N,M,K
⌊s⌋

∥∥∥
1
2

H

)
ds.

Young’s inequality (Corollary 6.17) and (s− ⌊s⌋) ≤ h yield

(B)

2
≤ h1−ǫ c0

2

∫ t

0

(t− s)−1+ǫds

+
c0
2

∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

+
2

3η

∫ t

0

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

×
(
3

2

∥∥V N,K
s − Y N,M,K

s

∥∥2
H
+

1

2

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

)
ds

+ 2c40

(
18η

16

)3 ∫ t

0

(
3

2

∥∥V N,K
s − Y N,M,K

s

∥∥2
H
+

1

2

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

)

×
(∥∥V N,K

s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)
ds
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We obtain for the bilinear term:

(B)

2
≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H

[
1

η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+ 5c40η
3

(∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)]
ds

+

∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

[
1

3η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+ 5c40η
3

(∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)]
ds

+ h1−ǫ c0
2

∫ t

0

(t− s)−1+ǫds. (7.4)

Since the stochastic integral (W ) vanishes when taking the expectation value, we draw
out attention to the (Itô)-term

(Itô) =
∑

j∈JK , µj 6=0

µj

∫ t

0

∥∥∥
(
eA(t−s)σN (V N,K

s )− eA(t−⌊s⌋)σN (Y N,M,K
⌊s⌋ )

)
gj

∥∥∥
2

H
ds

≤
∫ t

0

∥∥∥eA(t−s)σN (V N,K
s )− eA(t−⌊s⌋)σN (Y N,M,K

⌊s⌋ )
∥∥∥
2

HS(G0,H)
ds

≤ 2

∫ t

0

∥∥∥
(
eA(t−s) − eA(t−⌊s⌋)

)
σN (V N,K

s )
∥∥∥
2

HS(G0,H)
ds

+ 2

∫ t

0

∥∥∥eA(t−⌊s⌋)
(
σN (V N,K

s )− σN (Y N,M,K
⌊s⌋ )

)∥∥∥
2

HS(G0,H)
ds

≤ 2

∫ t

0

∥∥∥(−A)−
1
2

(
eA(t−s) − eA(t−⌊s⌋)

)∥∥∥
2

L(H)

∥∥∥(A 1
2 σN (V N,K

s )
∥∥∥
2

HS(G0,H)
ds

+ 2

∫ t

0

∥∥∥(−A)
ϑ
2 eA(t−⌊s⌋)

∥∥∥
2

L(H)

∥∥∥(−A)−
ϑ
2

(
σN (V N,K

s )− σN (Y N,M,K
⌊s⌋ )

)∥∥∥
2

HS(G0,H)
ds

≤ 2

∫ t

0

∥∥∥(−A)−
1
2

(
1− eA(s−⌊s⌋)

)∥∥∥
2

L(H)

∥∥σN (V N,K
s )

∥∥2
HS(G0,V )

ds

+ 2

∫ t

0

(t− ⌊s⌋)−ϑ
∥∥∥V N,K

s − Y N,M,K
⌊s⌋

∥∥∥
2

H
ds

≤ 2

∫ t

0

(s− ⌊s⌋)c2
(
1 +

∥∥V N,K
s

∥∥2
V

)
ds+ 2

∫ t

0

(t− ⌊s⌋)−ϑ
∥∥∥V N,K

s − Y N,M,K
⌊s⌋

∥∥∥
2

H
ds

≤ 2c2h

∫ t

0

(
1 +

∥∥V N,K
s

∥∥2
V

)
ds+ 4

∫ t

0

(t− ⌊s⌋)−ϑ
∥∥V N,K

s − Y N,M,K
s

∥∥2
H
ds

+ 4

∫ t

0

(t− ⌊s⌋)−ϑ
∥∥∥Y N,M,K

s − Y N,M,K
⌊s⌋

∥∥∥
2

H
ds (7.5)

The initial equation (7.2) and the derived estimates (7.3),(7.4) and (7.5) give us the follow-
ing, slightly unwieldy, error bound
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∥∥∥V N,K
t − Y N,M,K

t

∥∥∥
2

H
− (W )

≤
∫ t

0

∥∥V N,K
s − Y N,M,K

s

∥∥2
H

[
2

η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+ 10c40η
3

(∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)

+ 2

(
(t− s)−

1
2 +

3

2
c(t− ⌊s⌋)−ϑ

)
+ 4(t− ⌊s⌋)−ϑ

]
ds

+

∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

[
2

3η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+ 10c40η
3

(∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)

+
1

2
c(t− ⌊s⌋)−ϑ + 4(t− ⌊s⌋)−ϑ

]
ds

+

∫ t

0

h1−ǫ

[
c0
2
(t− s)−1+ǫ + 2c2

(
1 +

∥∥V N,K
s

∥∥
V

)2 (
1 + (t− s)−

1
2

)]
ds.

Introducing the following abbreviatory notations

Ψs :=
∥∥∥V N,K

t − Y N,M,K
t

∥∥∥
2

H

Φs := 10c40η
3

(∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)

+
2

η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+ 2(t− s)−
1
2 + 7c(t− ⌊s⌋)−ϑ

χs := h1−ǫ

[
c0
2
(t− s)−1+ǫ + 2c2

(
1 +

∥∥V N,K
s

∥∥
V

)2 (
1 + (t− s)−

1
2

)]

+
∥∥∥Y N,M,K

s − Y N,M,K
⌊s⌋

∥∥∥
2

H

[
2

3η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+
c+ 8

2
(t− ⌊s⌋)−ϑ

+ 10c40η
3

(∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)]

Gs := stochastic integrand,

allows us to obtain the clearly arranged integral inequality

Ψt ≤
∫ t

0

ΦsΨsds+

∫ t

0

χsds+

∫ t

0

GsdWs.

Since Ψ0 = 0 P-a.s., an application of the stochastic Gronwall Lemma 6.16 gives us

E
[
e−

∫ t
0
ΦsdsΨt

]
≤ E

[∫ t

0

χse
−

∫ s
0
Φududs

]
. (7.6)

The exponential term on the right hand side is bounded by one, due to Φt ≥ 0 P-a.s. for
all t ∈ [0, t]. Therefore, in order to quantify the mean square discretization error E[Ψt], we
have to find both

• a P-a.s. upper bound for
∫ t

0 Φsds

• an upper bound on E
[∫ t

0 χsds
]
.
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We start with the second task by looking at one of the most problematic terms:

E

[∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

]
(7.7)

= E

[∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2−2δ

H

∥∥APNV N,K
s

∥∥2δ
H
ds

]

≤ E

[∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2−2δ

H

∥∥∥A 1
2 V N,K

s

∥∥∥
2δ

H

∥∥∥A 1
2PN

∥∥∥
2δ

L(H)
ds

]

≤ |λN |δE
[∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥4δ
V

∥∥V N,K
s

∥∥2−2δ

V

∥∥AV N,K
s

∥∥2−2δ

H
ds

]

≤ |λN |δE
[
sup

s∈[0,t]

∥∥V N,K
s

∥∥4δ
V

∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥2−2δ

V

∥∥AV N,K
s

∥∥2−2δ

H
ds

]

for all 0 < δ < 1. Lemma 6.18 infers the existence of a constant k with

sup
s∈[0,t]

∥∥V N,K
s

∥∥4δ
V

+

∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds ≤ k

P-a.s. for all t ∈ [0, T ]. Using Hölder’s inequality with p = δ and q = 1
1−δ leads to

E

[∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

]

≤ k|λN |δ E

[(∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2δ

H
ds

) 1
δ

×
(∫ t

0

(∥∥V N,K
s

∥∥2−2δ

V

∥∥AV N,K
s

∥∥2−2δ

H

) 1
1−δ

ds

)1−δ
]

≤ k|λN |δ E

[(∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2δ

H
ds

) 1
δ
(∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

)1−δ
]

≤ k2|λN |δ E
[(∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2δ

H
ds

) 1
δ

]
.

The reverse Hölder inequality (Corollary 7.6) and the incremental estimate of Lemma 7.5
yield

E

[∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

]

≤ k2|λN |δ E
[
t
1
δ−1

∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H
ds

]

= k2|λN |δt 1
δ−1

∫ t

0

E

[∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

]
ds

≤ k2|λN |δt 1
δ−1

∫ t

0

ch ds

≤ ck2t
1
δ |λN |δh. (7.8)

Remark 7.7. Coupling of Spatial and Temporal Discretization Error
It is precisely term (7.7) that causes the coupling between temporal and spatial discretiza-
tion error in (7.8), and finally in Theorem 7.4. The underlying cause is the barely controlled
bilinear advection term, which is responsible for the occurrence of ‖AV N,K‖2H . This term
would be rather unproblematic on its own, since it is bounded in L1. The multiplicatively
linked interpolation error ‖Ys − Y⌊s⌋‖2H is unfortunately not bounded in L∞. Therefore we
have to take a mathematical detour, relocating a small share of the barely controlled L1

term. This directly involves the maximal eigenvalue of the linear operator APN , which in
turn depends on the spatial dimension N .
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Let us estimate the remaining terms that are necessary for an upper bound on E[
∫
χsds].

Since Φs ≥ 0 P-a.s. for all s ∈ [0, T ], we have exp(−
∫ s

0
Φudu) ≤ 1 P-a.s. for all s ∈ [0, T ].

This gives us

E

[∫ t

0

χse
−

∫ s
0
Φududs

]
≤ E

[∫ t

0

χsds

]

= E

[∫ t

0

10c40η
3
∥∥∥Y N,M,K

s − Y N,M,K
⌊s⌋

∥∥∥
2

H

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds

]

+ E

[∫ t

0

10c40η
3
∥∥∥Y N,M,K

s − Y N,M,K
⌊s⌋

∥∥∥
2

H

∥∥∥Y N,M,K
⌊s⌋ )

∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H
ds

]

+ E

[∫ t

0

∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

(
2

3η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+
c+ 8

2
(t− ⌊s⌋)−ϑ

)
ds

]

+ E

[∫ t

0

h1−ǫ

[
c0
2
(t− s)−1+ǫ + 2c2

(
1 +

∥∥V N,K
s

∥∥
V

)2 (
1 + (t− s)−

1
2

)]
ds

]
.

While the first term is treated by (7.8), we use Assumption 7.3 for a P-a.s. upper bound on
the stochastic parts of the second and fourth term. The remaining terms do not contain
any products of stochastic processes and are therefore comparatively easy to control. We
Combine constants independent of N,M,K, β, η, δ and ǫ into a constant c – which may
change from line to line – and obtain

E

[∫ t

0

χse
−

∫
s
0
Φududs

]

≤ cη3t
1
δ |λN |δh

+ cη3
∫ t

0

E

[∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

]
ds

+
2

3η

∫ t

0

E

[∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

]∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

ds

+ c

∫ t

0

E

[∥∥∥Y N,M,K
s − Y N,M,K

⌊s⌋

∥∥∥
2

H

]
(t− ⌊s⌋)−ϑds

+ ch1−ǫ

∫ t

0

1 + (t− s)−1+ǫ + (t− s)−
1
2 ds

≤ cη3t
1
δ |λN |δh

+ cη3h

∫ t

0

1 ds

+
c

3η
h

∫ t

0

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

ds

+ c2h

∫ t

0

(t− ⌊s⌋)−ϑds

+ ch1−ǫ

∫ t

0

1 + (t− s)−1+ǫ + (t− s)−
1
2 ds

≤ cη3t
1
δ |λN |δh+ c

tǫ

ǫ
h1−ǫ +

c

3η
h

∫ t

0

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

ds. (7.9)

The last integral is almost identical to the one responsible for most of the complications
during the proof of the Galerkin error estimate (Theorem 6.10). Recall that a direct esti-
mate via Lemma 6.13 would lead to the divergent expression

∫ t

0

∥∥∥(−A)eA(t−s)
∥∥∥
L(H)

ds ≤
∫ t

0

(t− s)−1ds = ∞.

However, the subtly differing exponent of the integral in (7.9), i.e., we consider the expo-
nent t−⌊s⌋ instead of t− s, allows us to circumvent this issue. Indeed, using Lemma 6.13
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the remaining integral is bounded by

∫ t

0

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

ds

≤
∫ t

0

∥∥∥(−A)eA(t−⌊s⌋)
∥∥∥
L(H)

ds

≤
∫ t

0

(t− ⌊s⌋)−1ds

=

∫ ⌊t⌋

0

(t− ⌊s⌋)−1ds+

∫ t

⌊t⌋
(t− ⌊s⌋)−1ds

=

∫ t

⌊t⌋
(t− ⌊t⌋)−1ds+

⌊t⌋/h−1∑

l=0

∫ (l+1)h

lh

(t− lh)−1ds

Since the first integral vanishes for t = ⌊t⌋ and equals one for t 6= ⌊t⌋, we obtain for all
t ∈ [0, T ]

∫ t

0

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

ds

≤ 1 +

⌊t⌋/h−1∑

l=0

h

t− lh

≤ 1 +

⌊t⌋/h−1∑

l=0

h

⌊t⌋ − lh

= 1 +

⌊t⌋/h−1∑

l=0

1

⌊t⌋/h− l

= 1 +

⌊t⌋/h∑

l=1

1

l

≤ 1 +

M∑

l=1

1

l

≤ c+ lnM

≤ c+
M ǫ

ǫ
. (7.10)

Therefore h = T/M yields

E

[∫ t

0

χse
−

∫
s
0
Φududs

]
≤ cη3t

1
δ |λN |δM−1 + c

tǫ

ǫ
M−1+ǫ +

c

3ηǫ
M−1+ǫ

≤ cM−1

(
η3t

1
δ |λN |δ + M ǫ

ǫ

)
. (7.11)

This is the desired upper bound for the right hand side of

E
[
e−

∫
t
0
ΦsdsΨt

]
≤ E

[∫ t

0

χse
−

∫
s
0
Φududs

]
. (7.6)

Since we are interested in an estimate for E [Ψt], we are still left with the task to find a
P-a.s. lower bound for the left hand side. To this end recall that
∫ t

0

Φsds =

∫ t

0

10c40η
3

(∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
+
∥∥∥Y N,M,K

⌊s⌋ )
∥∥∥
2

V

∥∥∥AY N,M,K
⌊s⌋

∥∥∥
2

H

)

+
2

η

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

+ 2(t− s)−
1
2 + 7c(t− ⌊s⌋)−ϑds.

(7.12)
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As before we summarize constants independent of N,M,K, β, η, δ and ǫ into a single
constant c. While Lemma 6.18 states

∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds ≤ k

P-a.s. for all t ∈ [0, T ], Assumption 7.3 yields an analogous result for the process Y N,M,K
⌊s⌋ ,

which gives us control over the first term in (7.12). The third term is bound by (7.10),
yielding

∫ t

0

Φsds ≤ cη3
∫ t

0

∥∥V N,K
s

∥∥2
V

∥∥AV N,K
s

∥∥2
H
ds+ cη3kt+

2

η

∫ t

0

∥∥∥(−A)eA(t−s)eA(t−⌊s⌋)
∥∥∥
L(H)

ds

+

∫ t

0

2(t− s)−
1
2 + 7c(t− s)−ϑds

≤ cη3 +
2

η
(c+ ln(M))

≤ cη3 +
2

η
ln(M). (7.13)

Therefore a lower bound for the left hand side of (7.6) is given via (7.13), while the right
hand side is controlled by the upper bound (7.11). We obtain

e−cη3

M− 2
η E [Ψt] ≤ E

[
e−

∫ t
0
ΦsdsΨt

]

≤ E

[∫ t

0

χse
−

∫
s
0
Φududs

]
≤ cM−1

(
η3t

1
δ |λN |δ + M ǫ

ǫ

)
.

By definition of Ψt we have

E

[∥∥∥V N,K
t − Y N,M,K

t

∥∥∥
2

H

]
≤ ecη

3

M−1+ 2
η

(
η3t

1
δ |λN |δ + M ǫ

ǫ

)
,

for all η, ǫ > 0 and 0 < δ < 1. The substitutions η = 2γ, ǫ = γ−1 and δ 7→ δ−1 yield

E

[∥∥∥V N,K
t − Y N,M,K

t

∥∥∥
2

H

]
≤ ecγ

3
(
M−1+ 2

γ + tδλ
1
δ

NM−1+ 1
γ

)

≤ ecγ
3
(
M−1+ 2

γ + ecδλ
1
δ

NM−1+ 1
γ

)

for all γ > 0 and δ > 1, completing the proof. �
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7.1.1 Theorem 7.4 and the Primitive Equations

In order to gain a more intuitive understanding of the quite complex error bound in Theo-
rem 7.4, we continue the discussion on the exemplary case of the PE from Section 6.4.1.
Recall that the eigenvalues of the Laplace operator lead to

g(β−1, N) ≤ cN
1
β ,

for all β > 0. Let the eigenvalues of Q, which specify the stochastic processes, satisfy
µj ≤ cj−p, for a p > 0 and all j ∈ J . Then Theorem 7.4 states

E

[∥∥∥Ut − Y N,M,K
t

∥∥∥
2

H

]1/2
≤ ecβ

3

N
1
β

(
λ
− 1

2

N+1 + µα
K+1

)

+ ecγ
3
(
M− 1

2+
1
γ + ecδλ

1
2δ

N M− 1
2+

1
2γ

)
.

Since λN+1 = (N + 1)(N + 2) ≤ cN2 for all N ∈ N, we have

E

[∥∥∥Ut − Y N,M,K
t

∥∥∥
2

H

]1/2
≤ ecβ

3
(
N−1+ 1

β +N
1
β K−pα

)

+ ecγ
3
(
M− 1

2+
1
γ + ecδN

1
δ M− 1

2+
1
2γ

)
.

To unify the exponential constants β, γ and δ, we define for an 0 < ǫ < 1
2

β = ǫ−1, γ = 2ǫ−1, δ = 2ǫ−1,

yielding

E

[∥∥∥Ut − Y N,M,K
t

∥∥∥
2

H

]1/2
≤ ecǫ

−3 (
N−1+ǫ +N ǫK−pα

)

+ ecǫ
−3
(
M− 1

2+
1
2 ǫ + ecǫ

−1

N
1
2 ǫM− 1

2+
1
4 ǫ
)
.

In order to achieve the same order of convergence in spatial-, noise- and temporal-
discretization, we set

M = N2, K = N
1
pα , (7.14)

leading to

E

[∥∥∥∥Ut − Y N,N2,N
1
pα

t

∥∥∥∥
2

H

]1/2
≤ ecǫ

−3

N−1+ǫ,

for all N ∈ N, t ∈ [0, T ] and all 0 < ǫ < 1
2 . The quadratic relation (7.14) between the

dimensions of spatial and temporal discretization is a typical characteristic of stochastic
Euler schemes, which is one topic of discussion in the following section.
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7.2 Results

The Galerkin approximation for an abstract fluid model (6.1) discussed in Section 6 ex-
hibits a rather complex discretization error, see Theorem 6.10. For many practical appli-
cations this reduces to clearly arranged root mean square convergence rates 1− and α−
in spatial and stochastic dimensions, respectively, see Section 6.4.1 and 6.5. Recall that,
due to Jensen’s inequality, mean square convergence implies strong convergence (Def-
inition 2.34). These results hold true for the exponential Euler scheme (Definition 7.1),
allowing us to focus on the temporal discretization. Under the assumption of a priori
bounds (Assumption 7.3), Theorem 7.4 shows that the numerical scheme converges with
strong root mean square order 1

2− in time. It is a typical behavior of basic numerical
schemes for both, ordinary as well as partial SDE, to exhibit only half the convergence
order one would expect from their deterministic counterparts. An intuitive explanation is
offered through the timescale of Brownian motions

∆W ∼
√
∆t,

which directly transfers to the discretization of the corresponding integrals. This can only
be compensated by more elaborate treatments of the stochastic integrals. In the context
of low-dimensional SODE the Milstein scheme and stochastic Runge-Kutta methods [44]
can be used for higher convergence rates. Unfortunately, they require global Lipschitz
continuity and are therefore not applicable for the system at hand. Even if we could over-
come this assumption, the classical approaches would still be impractical: the Milstein
scheme, for instance, evaluates double stochastic integrals, i.e., for an m-dimensional
SODE with d independent stochastic dimensions, we have to discretize the term

∫ tn

tn−1

∫ s

tn−1

Xk
u dW j

udW
i
s ,

with 1 ≤ i, j ≤ d and 1 ≤ k ≤ m, for each time step. This leads to (at least) d2 ×
m additional calculations in each time step. Even for rather low-dimensional systems,
e.g., d = m = 20, this results in 8000 additional arithmetic operations required to go
from Xn−1 to Xn. Obviously, this approach does not work for SPDE, where we have to
approximate infinite dimensions. Recently however, new techniques for global Lipschitz
continuous SPDE were derived by Jentzen and Roeckner [166], and Wang [174]. They are
based on the same mild interpretation of SPDE we used to formulate the exponential Euler
scheme at hand. Unfortunately, like their low-dimensional counterparts they require global
Lipschitz continuous drift operator. In a numerical experiment Jentzen and Roeckner [166,
Ch. 5] apply their “mild Milstein scheme” to the SPDE

dXt(x) =

[
1

100

∂2

∂x
Xt(x)−Xt(x)

∂

∂x
Xt(x)

]
dt+Xt(x)dWt,

known as “stochastic Burgers equation”. This can be considered as a very basic, one-
dimensional example for the fluid model at hand: the second order spatial derivative cor-
responds to A, while the bilinear drift term is the analog of B. This equation satisfies only
a local but no global Lipschitz condition regarding its nonlinear drift. Although we can
not use the rigorously obtained convergence rates for the mild Milstein scheme [166], the
numerical experiment shows a pathwise convergence by a factor 103 faster than for the
traditional linear implicit Euler scheme. We mention this fact not to suggest the uncritical
application of this scheme on the system at hand, but as a motivation for further analysis.
Note that Jentzen and Roeckner consider pathwise instead of mean square convergence,
since “it has been shown in [175] that Euler’s method fails to converge in the root mean
square sense to the exact solution of a SODE with a superlinearly growing drift coeffi-
cient” [166, p. 40], whereas pathwise convergence often holds true [176]. On the other
hand, Theorem 7.4 yields mean square convergence of the exponential Euler scheme,
bearing the question whether or not the postulated a priori bounds (Assumption 7.3) are
consistent with the physical setting and numerical implementation. An in-depth discussion
on this subject is given in the following section.
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7.2.1 Limitation of the Exponential Euler Scheme

A close look at the assumptions and results of this section reveals three major limitations
of the explicit exponential Euler scheme for an abstract fluid model:

1. Galerkin approximations and the numerical scheme can only be applied up to a
stopping time τ , for which the existence of solution of (6.1) is guaranteed.

2. The numerical scheme requires the assumption of a priori bounds, which may not
be consistent with the physical setting.

3. The error bounds in Theorem 6.10 and 7.4 involve mixed terms, i.e., spatial, stochas-
tic and temporal discretization, and cannot be treated independently.

Of these issues, the third one is certainly the least severe. Note that stochastic and tem-
poral terms in Theorem 7.4 are independent from each other, and neither contributes to
the spatial error. However, the spatial dimension affects both, stochastic and temporal
error bound. Therefore, increasing the spatial dimension while keeping stochastic dimen-
sion and time-step size constant, leads to increasing error bounds in Theorem 7.4. On
the other hand, changing stochastic dimension or time-step size for constant spatial di-
mensions, yields the expected decreasing error bound. For practical applications we are
interested in the minimal overall computational effort. This is achieved balancing the aris-
ing error terms, which is discussed by example of the PE in Section 6.4.1 and 7.1.1. In
this case, Theorem 7.4 yields strong mean square convergence, and the coupling be-
tween different error terms is not significant.

The coupling of spatial and stochastic dimensions has its origin in the estimate of the
bilinear term via Assumption 6.5, i.e.

|〈B(u, v), w〉| ≤ c0 ‖u‖H ‖v‖
1
2

V ‖Av‖
1
2

H ‖w‖
1
2

V ‖Aw‖
1
2

H ∀u ∈ H, v, w ∈ D(−A).

During the proof of Theorem 6.10 this leads to the following term in equation (6.19), which
is multiplicatively linked to the discretization error of stochastic dimensions:

∫ t

0

∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

∥∥AV N,K
s

∥∥ 1
2

H
ds.

Due to the involvement of the linear operator A, the second factor is not bounded pointwise
in time, but only in L2. This in turn limits the possible exponents for an application of
Hölder’s or Young’s inequality, finally leading to the complex function of spatial eigenvalues
g, see Theorem 6.10. Analog, the aforementioned estimate on B causes the coupling of
temporal and spatial discretization during the proof of Theorem 7.4, see (7.7), (7.8) and
Remark 7.7. Conclusively, the underlying cause for the coupling of spatial dimensions
with stochastic and temporal discretization lies in the ill-behaved bilinear term. However,
recent results by Debussche et al. [177] hint at a possible way to gain better control over
the bilinear term, which is set out in more detail in Section 7.2.4 below. Suppose we had
an “infinitesimal better ” estimate on B, leading, for instance, to the integral

∫ t

0

∥∥∥(−A)e2A(t−s)PN

∥∥∥
3
4

L(H)

∥∥AV N,K
s

∥∥ 1
2−ǫ

H
ds,

for an arbitrary small ǫ > 0. Then, using Lemma 6.13 and Hölder’s inequality, we could
bound this term by a constant independent of spatial dimension N .
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7.2.2 Discussion on A Priori Bounds

The need for a priori bounds is a common issue for explicit numerical schemes in the case
of non-global Lipschitz continuous systems, see for instance [170, 172] and the references
therein. Usually the assumptions involve moment bounds of the form:

E

[∥∥∥Y N,M,K
⌊s⌋

∥∥∥
p

V

]
< ∞,

for some p ≥ 2. However, for the system at hand we require P-a.s. bounds, since we have
to find an P-a.s. upper bound for

∫ t

0

10c40η
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∥∥2
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+
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2
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⌊s⌋

∥∥∥
2

H

)

during the proof of Theorem 7.4, see equation (7.12). In analogy to Lemma 6.18 we
might use a stopping time argument to derive P-a.s. bounds from moment bounds, up
to the maximal time of existence τ . An alternative approach is used by Debussche et
al. during the proof for the existence of solutions for the abstract fluid model at hand [7].
They apply a different version of Gronwall’s Lemma [178, Lemma 5.3], which circumvents
the requirement of P-a.s. bounds by employing a partition of stopping times on moment
bounds. However, for the present case, the resulting Gronwall-constant would depend ex-
ponentially on the bounds of the multiplicative process Φ in equation (6.17) and (7.6). As
discussed above, the ill-behaved bilinear term leads to estimates depending on the spatial
dimension N for these terms. This in turn would yield a Gronwall-constant exponentially
growing in N . Therefore, this approach requires better control over the bilinear advection
term to be implemented.

For an applicable numerical scheme a priori bounds must not just be postulated, but have
to be derived based on the systems governing equations. This however is a nontrivial task,
even for moment bounds, yet alone, P-a.s. estimates. In the context of one-dimensional
SODE, Hutzenthaler et al. obtain such bounds using a “tamed” explicit Euler scheme
for globally one-sided Lipschitz continuous drift functions with at most polynomial growing
derivatives. Although the bilinear term at hand does not satisfy this assumptions, some of
the employed ideas might be useful for the present system. Conclusively the underlying
cause for both, the restricting structure of the a priori bounds in Assumption 7.3, as well
as the difficulties obtaining more general moment bounds for the system at hand, lies in
the ill-behaved advection term. We would like to emphasize that the postulated a priori
bounds are only necessary for the time discretization in Theorem 7.4 and not for the
Galerkin approximation in Theorem 6.10.

7.2.3 Discussion on the Maximal Time of Existence

The existence of solutions for the abstract fluid model (6.1) is only guaranteed up to a
stopping time τ , defined in Corollary 6.9; see Section 5.4.2 for the PE, or [7] for the
abstract case. Therefore the results of Theorem 6.10 and 7.4 only hold true up to this
maximal time of existence. Since we have no estimate or lower bound on τ , this poses
a serious obstacle for practical applications. A closer look at the proof of existence in [7]
shows that the cause for this limitation is, once again, the barely controlled bilinear term.
In order to control the growth of solutions, Debussche et al. introduced a “tamed” system
(see proof of Lemma 6.18), which coincides with (6.1) as long as the solution stays close
to the solution of the deterministic linear system (6.5). Analogous with the limitations of
mixed discretization errors and postulated a priori bounds, we need a better control over
the advection term in order to solve this issue.
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7.2.4 Outlook

In order to derive a numerical scheme applicable to meteorological relevant systems, we
have to address the aforementioned limitations of the exponential Euler scheme. Since
the common cause of these issues can be found in the lacking control we have over the
advection term, it is sensible to start further investigation at this point. Debussche et al.
consider the special case of incompressible, stochastic PE in a confined, euclidean, cylin-
drical domain with vanishing boundary conditions [177]. They show existence of unique
global pathwise solutions, employing the following advection estimate:
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,

for all U = (v, T ), U# ∈ D(−A) and U b ∈ H . Clearly, the horizontal and vertical directions
are resolved more elaborately than in Assumption 6.5. Since this bound is derived along
the lines of Lemma 5.20, using anisotrop Sobolev estimates, we recall that the central
Sobolev inequality depends on the spatial dimension, i.e.

‖u‖Lq(Rn) ≤ c‖∇u‖Lp(Rn), with q =
np

n− p
.

Note that ‖∇u‖L2 corresponds to ‖u‖V by definition in Section 5.3.2. Therefore ‖u‖V
provides an upper bound for ‖u‖L∞ in space dimension two, but only for ‖u‖L6 in space
dimension three. As we stated above, an “infinitesimal” improvement on the bounds on
B might be sufficient to overcome the limitations of the exponential Euler scheme. The
elaborate calculations in [177] exploit the subtle but important fact, that the surface pres-
sure does not depend on the vertical variable. Debussche et al. explicitly emphasize “the
crucial role played by the two-dimensional spatial dependence of the surface pressure
ps. This insight concerning the importance of the lower-dimensional pressure is key to
the recent breakthroughs for global existence” [177, Rem.4.2, p.14]. Although there are
considerable differences to the global PE of the atmosphere – most notably compress-
ibility and physical boundary conditions, see Section 5.2 – Debussche et al. state: “We
note however that equations of a quite similar structure may be given that describe the
atmosphere and the coupled oceanic atmospheric system. See e.g., [136]. The meth-
ods developed here could thus be extended to treat these systems” [177, p.4]. Following
this line of thought may allow us to utilize the alternative Gronwall approach discussed in
Section 7.2.2, which in turn would yield a stronger convergence result of the form

E

[
sup

t∈[0,T ]

∥∥∥Ut − Y N,M,K
t

∥∥∥
2

H

]
→ 0, for N,M,K → ∞.

Furthermore, it is worth to consider the aforementioned infinite-dimensional Milstein
scheme [166], as well as the Runge-Kutta scheme for SPDE [174], in order to improve
the temporal convergence order.

It is only natural for practical meteorological applications to expect fluctuations that are
correlated in time and space. Therefore a potential extension of the system at hand is
given by the description of spatial correlation via so called “Brownian Sheets”. They can
be considered as the continuous extensions of discrete Gaussian random fields [179], in
analogy to the relation between Brownian motions and random walks. Therefore, Brown-
ian sheets broaden the concept of Brownian motions, or more generally of Itô processes,
using multidimensional “time” parameters, i.e., W ≡ W (t, x1, . . . , xn). For a theoretical
treatment we refer to [180] while numerical schemes for SPDE driven by Brownian sheets
are, for instance, discussed in [181, 162, 163].
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8 Conclusion

This final section is a brief summary of the central results of this work. For more elaborate
discussions we refer to the conclusions at the end of each section. The central statements
of this thesis are as follows:

• Stochastic formulations in numerical weather prediction and climate modeling must
not be arbitrarily chosen but have to be physically based.

• Stochastic models require a specific numerical treatment which fundamentally dif-
fers from deterministic schemes.

These objectives are motivated by the exemplary discussion of a linear system based on
climate sensitivity in Section 3. We observe fundamentally different systems for differ-
ent stochastic formulations, including random variables (Section 3.2), white noise (Sec-
tion 3.3.1), red noise (Section 3.3.2) and a coupled noise approach (Section 3.4). Lemma
3.2 shows that state dependent fluctuations induce a stochastic drift, which has direct
consequences for parameter estimations via time series data (Remark 3.3). Systems that
do not exclude (short term) negative values for the climate sensitivity, exhibit regimes of
instability, depending on the ratio between mean value and variance of the driving stochas-
tic process (Prop. 3.5 and 3.13). The analysis of these regimes points out a significant
discrepancy between the expectations on the ability of stochastic meteorological models
to quantify the probability of extreme events on the one hand, and their low number of
sample paths on the other hand. The importance of a careful numerical implementation
is demonstrated in Section 3.5, where non-Lipschitz continuous coefficients lead to the
failure of an explicit Milstein scheme for the coupled noise system.

Using the example of an energy budget model (EBM), we demonstrate a method to imple-
ment stochastic terms into a formerly deterministic model in Section 4. The characteristics
of the stochastic terms are derived from ice core data using a Yule-Walker technique (Sec-
tion 4.3.3). The three EBM models based on Vostok, Byrd and Taylor ice core data, are
all driven by the same kind of noise, i.e. an Ornstein Uhlenbeck process, where only
the parameters differ. Nevertheless, the resulting models differ fundamentally, particularly
with respect to the interactions between temperature and insolation process (Section 4.4).
This emphasizes the importance to choose a stochastic formulation very carefully. Equally
important, this section shows that we have the necessary mathematical tools to derive
physically based stochastics from data.

Regarding the numerical aspects, there exist rigorous schemes for Lipschitz continuous
SODE [44] and SPDE [8]. Unfortunately many meteorological relevant applications, in-
cluding the primitive equations and Navier Stokes equations, do not satisfy these as-
sumptions. A numerical treatment of SPDE comprises spatial, stochastic and temporal
discretizations. Based on recent theoretical progress [7], we propose a Galerkin scheme
for the atmospheric three-dimensional PE on the sphere (Sections 5 and 6). Theo-
rem 6.10 guarantees strong mean square convergence and quantitative error bounds up
to a maximal time of existence. Furthermore, the results for the discretization of spatial
and stochastic dimensions hold true for abstract fluid models (6.1) with a wide range of
stochastic terms, including white, red, additive, multiplicative, linear and Lipschitz continu-
ous nonlinear noise. Therefore, Theorem 6.10 provides rigorous quantitative error bounds
for Galerkin approximations for a large class of meteorological relevant systems.

Under the additional assumption of a priori bounds (Assumption 7.3), Theorem 7.4 shows
the temporal convergence of an exponential Euler scheme (Section 7). However, for an
applicable numerical scheme, the a priori bounds have to be derived from the system’s
governing equations instead of being postulated. This issue is directly related to the be-
havior of the bilinear advection term. In the context of three-dimensional PE, recent results
[177] indicate that it should be possible to gain a better control over this term, promising
the existence and uniqueness of global pathwise solutions (Section 7.2.4). Simultane-
ously, this approach bears the potential to derive a (possibly implicit) numerical scheme
without the need for postulated a priori bounds.
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A Pending Proofs

For the technical calculations in the remaining proofs we need some results on the mo-
ments of Brownian motions.

Lemma A.1. Mixed Moments of Gaussian Random Variables
Let ξ= (ξi)

r
i=1, r ∈ N be a real-valued multivariate Gaussian distributed random variable

with zero mean. Denote by

σi,j = cov (ξi, ξj) , i, j ∈ {1, 2, ..., r}
the pairwise covariances. Then the mixed moments satisfy

E [ξ1...ξ2n+1] = 0, (2n+ 1) ∈ {1, 2, ..., r}
E [ξ1...ξ2n] =

∑

Pd

σi1,i2 ...σi2n−1,i2n , 2n ∈ {1, 2, ..., r},

where Pd is the set only of those index permutations of (1, ..., 2n) which yield different
products σi1,i2 ...σi2n−1,i2n . Regarding the cardinal number of Pd, one gets

|Pd| =
(2n)!

2nn!
.

Proof. Lemma A.1
Lemma A.1 is a well known result in the field of multivariate Gaussian statistics and is for
instance derived in [182] or [183].

Corollary A.2.
For central moments of a Gaussian distributed random variable X ∼ N (0, σ2), it holds

true that

E [Xn] =

{
Ψkσ

2k , n = 2k

0 , n = 2k + 1
, Ψk :=

(2k)!

2kk!
. (A.1)

Proof. Corollary A.2
Corollary A.2 is a direct consequence of Lemma A.1.

Lemma A.3.
For i+ j = 2m we have

E
[
W i

s∧tW
j
s∨t

]
=

∑

0≤k≤ j
2

(
j

2k

)
Ψm−kΨk(s ∧ t)m−k(s ∨ t− s ∧ t)k,

and

E
[
W i

s∧tW
j
s∨t

]
= 0,

for odd i+ j.

Proof. Lemma A.3

E
[
W i

s∧tW
j
s∨t

]
= E

[
W i

s∧t

(
Ws∧t +

(
Ws∨t −Ws∧t

))j]

= E


W i

s∧t

∑

0≤k≤j

(
j

k

)
W j−k

s∧t

(
Ws∨t −Ws∧t

)k



=
∑

0≤k≤j

(
j

k

)
E
[
W i+j−k

s∧t

]
E
[(
Ws∨t −Ws∧t

)k]
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Where the last equation holds true due to the independence of increments of Brownian
motions. Considering (A.1), the first expectation value vanishes for odd i + j, and the
second one vanishes for odd k. It follows for i + j = 2m

E
[
W i

s∧tW
j
s∨t

]
=

∑

0≤k≤ j
2

(
j

2k

)
E
[
W 2m−2k

s∧t

]
E
[(
Ws∨t −Ws∧t

)2k]
.

Finally, note that Wti −Wtj ∼ N (0, ti − tj).

Corollary A.4.

i) E [Wt] = E
[
W 2

s Wt

]
= 0

ii) E
[
W 2

t

]
= t

iii) E [WsWt] = s ∧ t

iv) E
[
W 2

s W
2
t

]
= st+ 2(s ∧ t)2

v) E
[
W 4

t

]
= 3t2

Proof. Corollary A.4
Corollary A.4 is derived from basic properties of Brownian motions and Lemma A.3.

Proposition A.5.
For all 0 < s ≤ t we have

∫ s

0

∫ t

0

e−Θ|u−r|du dr =
1

Θ

(
2s−

(
1 + e−Θ(t−s)

)
ϕs

)
.

Proof. Proposition A.5

∫ s

0

∫ t

0

e−Θ|u−r|du dr =
∫ s

0

(∫ r

0

eΘ(u−r)du +

∫ t

r

e−Θ(u−r)du
)

dr

=

∫ s

0

(
1

Θ

[
eΘ(u−r)

]r
0
− 1

Θ

[
e−Θ(u−r)

]t
r

)
dr

=
1

Θ

∫ s

0

(
2− e−Θr − e−Θ(t−r)

)
dr

=
1

Θ

(
2s+

1

Θ

[
e−Θr − e−Θ(t−r)

]s
0

)

=
1

Θ

(
2s+

1

Θ

(
e−Θs − 1− eΘ(s−t) + e−Θt

))

=
1

Θ

(
2s+

1

Θ

(
1 + eΘ(s−t)

)(
e−Θs − 1

))

=
1

Θ

(
2s−

(
1 + e−Θ(t−s)

)
ϕs

)
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A.1 Proof: Lemma 3.12

For the convenience of the reader we recall

Lemma 3.12. Statistical Properties of T
Consider system (3.8) driven by a stationary OUP ǫ with parameters µ,Θ, D. Then

E [Tt] = T0 exp
(
− µt+

D

2Θ2

(
t− ϕt

))
(3.12)

var (Tt) = T 2
0 exp

(
− 2µt+

D

Θ2

(
t− ϕt

))[
exp

( D

Θ2
(t− ϕt)

)
− 1
]

(3.13)

cov (Ts, Tt) = T 2
0 exp

(
− µ(s+ t) +

D

2Θ2

(
s+ t− (ϕs + ϕt)

))

×
[
exp

( D

2Θ2

(
2(s ∧ t)− (1 + e−Θ|t−s|)ϕs∧t

))
− 1
] (3.14)

Proof. Lemma 3.12
We aim to derive an expression for the mixed moment E [TsTt], which yields (3.12) for
s = 0. Using these two expressions, the covariance can be calculated, which shows
(3.14) and gives us (3.13) for s = t. We denote the characteristic function of an interval
[a, b] by

I[a,b](x) =

{
1, for x ∈ [a, b]

0, else
.

By means of Taylor expansions and due to the linearity of the Lebesgue integral, we obtain

E [TsTt]T
−2
0 eµ(s+t)

= T−2
0 eµ(s+t)E

[
T 2
0 e

−µ(s+t) exp
(∫ s

0

ǫudu+

∫ t

0

ǫudu
)]

= E

[
exp

(∫ s

0

ǫudu+

∫ t

0

ǫudu
)]

= E

[
exp

(∫ s∨t

0

(
I[0,s](u) + I[0,t](u)

)
ǫudu

)]

=

∞∑

m=0

1

m!
E

[(∫ s∨t

0

(
I[0,s](u) + I[0,t](u)

)
ǫudu

)m]

=

∞∑

m=0

1

m!
E

[∫ s∨t

0

. . .

∫ s∨t

0

(
I[0,s](u1) + I[0,t](u1)

)
ǫu1 × . . .

. . .×
(
I[0,s](um) + I[0,t](um)

)
ǫum du1 . . . dum

]

=

∞∑

m=0

1

m!

∫ s∨t

0

. . .

∫ s∨t

0

(
I[0,s](u1) + I[0,t](u1)

)
× . . .

. . .×
(
I[0,s](um) + I[0,t](um)

)
E [ǫu1 . . . ǫum ] du1 . . . dum.

Since ǫt is a Gaussian process, the m-dimensional random variable (ǫui)
m
i=1 obeys a mul-

tivariate Gaussian distribution with zero mean and

cov
(
ǫui , ǫuj

)
=

D

2Θ
e−Θ|ui−uj | =: σui,uj .

Lemma A.1 yields

E
[
ǫu1 . . . ǫu2n+1

]
= 0

E [ǫu1 . . . ǫu2n ] =
∑

Pd

σui1 ,ui2
...σui2n−1

,ui2n
,
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which leads to

E [TsTt]T
−2
0 eµ(s+t)

=

∞∑

n=0

1

(2n)!

∫ s∨t

0

. . .

∫ s∨t

0

∑

Pd

σui1 ,ui1
. . . σui2n ,ui2n

×
(
I[0,s](u1) + I[0,t](u1)

)
× . . .×

(
I[0,s](u2n) + I[0,t](u2n)

)
du1 . . . du2n

=

∞∑

n=0

∑

Pd

1

(2n)!

∫ s∨t

0

. . .

∫ s∨t

0

σui1 ,ui1
× . . .× σui2n ,ui2n

×
(
I[0,s](u1) + I[0,t](u1)

)
× . . .×

(
I[0,s](u2n) + I[0,t](u2n)

)
du1 . . . du2n

=

∞∑

n=0

∑

Pd

1

(2n)!

∫ s∨t

0

∫ s∨t

0

(
I[0,s](ui2n) + I[0,t](ui2n)

)

×
(
I[0,s](ui2n−1) + I[0,t](ui2n−1)

)
σui2n−1

,ui2n

. . .

∫ s∨t

0

∫ s∨t

0

(
I[0,s](ui2) + I[0,t](ui2)

)

×
(
I[0,s](ui1) + I[0,t](ui1)

)
σui1 ,ui2

du1du2 . . . du2n−1du2n.

These n double integrals are pairwise independent and can therefore be written as a
product. After renaming the integration variables, we obtain

E [TsTt]T
−2
0 eµ(s+t)

=

∞∑

n=0

∑

Pd

1

(2n)!

(∫ s∨t

0

∫ s∨t

0

(
I[0,s](u) + I[0,t](u)

)(
I[0,s](r) + I[0,t](r)

)
σu,r dudr

)n

=
∞∑

n=0

1

(2n)!

(2n)!

2nn!

(∫ s∨t

0

∫ s∨t

0

(
I[0,s](u) + I[0,t](u)

)(
I[0,s](r) + I[0,t](r)

)
σu,r dudr

)n

=

∞∑

n=0

1

n!

(1
2

∫ s∨t

0

∫ s∨t

0

(
I[0,s](u) + I[0,t](u)

)(
I[0,s](r) + I[0,t](r)

)
σu,r dudr

)n

= exp
(1
2

∫ s∨t

0

∫ s∨t

0

(
I[0,s](u) + I[0,t](u)

)(
I[0,s](r) + I[0,t](r)

)
σu,r dudr

)

To calculate the double integral, we use Proposition A.5 and the fact that the double inte-
gral is symmetric in s and t since the integrand is symmetric in u and r. Furthermore, note
that for every symmetric function f it holds true that f(s, t) = f(t, s) = f(s ∧ t, s ∨ t).

∫ s∨t

0

∫ s∨t

0

(
I[0,s](u) + I[0,t](u)

)(
I[0,s](r) + I[0,t](r)

)
σu,r dudr

=

∫ s

0

∫ s

0

σu,r dudr +

∫ s

0

∫ t

0

σu,r dudr

+

∫ t

0

∫ s

0

σu,r dudr +

∫ t

0

∫ t

0

σu,r dudr

=

∫ s

0

∫ s

0

σu,r dudr + 2

∫ s∧t

0

∫ s∨t

0

σu,r dudr +

∫ t

0

∫ t

0

σu,r dudr

=
D

2Θ2

(
2s− 2ϕs + 4(s ∧ t)− 2

(
1 + e−Θ|t−s|)ϕs∧t + 2t− 2ϕt

)
.

This finally yields

E [TsTt] = T 2
0 e

−µ(s+t) exp

(
D

2Θ2

(
s+ t+ 2(s ∧ t)−

[
ϕs + ϕt +

(
1 + e−Θ|t−s|)ϕs∧t

]))
.

We can now calculate (3.12) by using E [Tt] = 1
T0
E [T0Tt]. (3.14) follows since

cov (Ts, Tt) = E [TsTt]− E [Ts]E [Tt], which yields (3.13) for s = t.
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A.2 Proof: Lemma 3.15

For the convenience of the reader we recall

Lemma 3.15. Statistical Properties of an OUP-Square Process
Let ǫ be a stationary OUP with parameters µ,Θ and D. Then the square process
(γt)t≥0 = (ǫ2t )t≥0 satisfies

i) γt is a stationary process

ii) E [γt] = µ2 + D
2Θ

iii) var (γt) = 2D
Θ µ2 + D2

2Θ2

iv) cov (γs, γt) = 2D
Θ µ2e−Θ|t−s| + D2

2Θ2 e
−2Θ|t−s|

v) τ = − 1
Θ ln

(√
4Θ2

D2 µ4 + 2Θ
D µ2 + 1

2 − 2Θ
D µ2

)
.

Proof. Lemma 3.15

i) γt = ǫ2t is a stationary process because ǫt is stationary.

ii) Basic properties of Brownian motions directly yield

E [γt] = E
[
ǫ2t
]

= E

[
µ2 + µ

√
2D

Θ
e−ΘtW (e2Θt) +

D

2Θ
e−2ΘtW 2(e2Θt)

]

= µ2 + µ

√
2D

Θ
e−ΘtE

[
W (e2Θt)

]
+

D

2Θ
e−2ΘtE

[
W 2(e2Θt)

]

= µ2 +
D

2Θ
.

iii) Follows from iv) for s = t.

iv) For a convenient notation, define s̃, t̃ = 1
2Θ ln(s, t) for s, t > 0. Then we have

E [γs̃γt̃] = E
[
ǫ2s̃ǫ

2
t̃

]

= E

[(
µ2 + µ

√
2D

Θ

1√
s
Ws +

D

2Θ

1

s
W 2

s

)(
µ2 + µ

√
2D

Θ

1√
t
Wt +

D

2Θ

1

t
W 2

t

)]

= µ4 + µ2 D

2Θ

(1
s
E
[
W 2

s

]
+

1

t
E
[
W 2

t

] )

+ µ2 2D

Θ

1√
st
E [WsWt] +

D2

4Θ2

1

st
E
[
W 2

s W
2
t

]

= µ4 + µ2D

Θ
+

D2

4Θ2
+ µ2 2D

Θ

s ∧ t√
st

+
D2

2Θ2

(s ∧ t)2

st

Returning to the original time scale via the monotone mappings s 7→ e2Θs and
t 7→ e2Θt, which imply s ∧ t 7→ e2Θ(s∧t), we get

E [γsγt] =

(
µ2 +

D

2Θ

)2

+ µ2 2D

Θ
eΘ(2s∧t−(s+t)) +

D2

2Θ2
e2Θ(2s∧t−(s+t)).

Since cov (γs, γt) = E [γsγt]−E [γs]E [γt] and 2(s∧ t) = s+ t− |s− t|, this proves iv).
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v) By definition of the decorrelation time τ , we have

cov (γt, γt+τ ) =
1

2
var (γt)

⇔ 2D

Θ
µ2e−Θτ +

D2

2Θ2
e−2Θτ =

D

Θ
µ2 +

D2

4Θ2

⇔
(
e−Θτ + µ2 2Θ

D

)2
= µ4 4Θ

2

D2
+ µ2 2Θ

D
+

1

2

⇔ e−Θτ =

√
µ4

4Θ2

D2
+ µ2

2Θ

D
+

1

2
− µ2 2Θ

D

⇔ τ = − 1

Θ
ln

(√
4Θ2

D2
µ4 +

2Θ

D
µ2 +

1

2
− 2Θ

D
µ2

)
.



BONNER METEOROLOGISCHE ABHANDLUNGEN
Herausgegeben vom Meteorologischen Institut der Universität Bonn durch Prof. Dr. H. FLOHN (Hefte
1-25), Prof. Dr. M. HANTEL (Hefte 26-35), Prof. Dr. H.-D. SCHILLING (Hefte 36-39), Prof. Dr. H.
KRAUS (Hefte 40-49), ab Heft 50 durch Prof. Dr. A. HENSE.

Heft 1-39: siehe http://www2.meteo.uni-bonn.de/bibliothek/bma.html

Heft 40: Hermann Flohn: Meteorologie im Übergang Erfahrungen und Erinnerungen (1931-1991).
1992, 81 S. + XII. e 23

Heft 41: Adnan Alkhalaf and Helmut Kraus: Energy Balance Equivalents to the Köppen-Geiger
Climatic Regions. 1993, 69 S. + IX. e 19

Heft 42: Axel Gabriel: Analyse stark nichtlinearer Dynamik am Beispiel einer rei- bungsfreien 2D-
Bodenkaltfront. 1993, 127 S. + XIV. e 30

Heft 43: Annette Münzenberg-St.Denis: Quasilineare Instabilitätsanalyse und ihre Anwendung
auf die Strukturaufklärung von Mesozyklonen im östlichen Weddellmeergebiet. 1994, 131 S.
+ XIII. e 33

Heft 44: Hermann Mächel: Variabilität der Aktionszentren der bodennahen Zirkulation über dem
Atlantik im Zeitraum 1881-1989. 1995, 188 S. + XX. e 48

Heft 45: Günther Heinemann: Polare Mesozyklonen. 1995, 157 S. + XVI. e 46

Heft 46: Joachim Klaÿen: Wechselwirkung der Klima-Subsysteme Atmosphäre, Meereis und Ozean
im Bereich einer Weddellmeer-Polynia. 1996, 146 S. + XVI. e 43

Heft 47: Kai Born: Seewindzirkulationen: Numerische Simulationen der Seewind- front. 1996, 170 S.
+ XVI. e 48

Heft 48: Michael Lambrecht: Numerische Untersuchungen zur tropischen 30-60-tägigen Oszillation
mit einem konzeptionellen Modell. 1996, 48 S. + XII. e 15

Heft 49: Cäcilia Ewenz: Seewindfronten in Australien: �ugzeuggestützte Messungen und Model-
lergebnisse. 1999, 93 S. + X. e 30

Heft 50: Petra Friederichs: Interannuelle und dekadische Variabilität der atmosphärischen Zirkula-
tion in gekoppelten und SST-getriebenen GCM-Experimenten. 2000, 133 S. + VIII. e 25

Heft 51: Heiko Paeth: Anthropogene Klimaänderungen auf der Nordhemisphäre und die Rolle der
Nordatlantik-Oszillation. 2000, 168 S.+ XVIII. e 28

Heft 52: Hildegard Steinhorst: Statistisch-dynamische Verbundsanalyse von zeitlich und räumlich
hoch aufgelösten Niederschlagsmustern: eine Untersuchung am Beispiel der Gebiete von Köln
und Bonn. 2000, 146 S. + XIV. e 25

Heft 53: Thomas Klein: Katabatic winds over Greenland and Antartica and their interaction with
mesoscale and synoptic-scale weather systems: three-dimensional numerical models. 2000, 146
S. + XIV. e 25

Heft 54: Clemens Drüe: Experimentelle Untersuchung arktischer Grenzschichtfronten an der Meereis-
grenze in der Davis-Straÿe. 2001, 165 S. + VIII. e

Heft 55: Gisela Seu�ert: Two approaches to improve the simulation of near surface processes in
numerical weather prediction models. 2001, 128 S. + VI. e 25

Heft 56: Jochen Stuck: Die simulierte axiale atmosphärische Drehimpulsbilanz des ECHAM3-T21
GCM. 2002, 202 S. + VII. e 30

Heft 57: Günther Haase: A physical initialization algorithm for non-hydrostatic weather prediction
models using radar derived rain rates. 2002, 106S. + IV. e 25

Heft 58: Judith Berner: Detection and Stochastic Modeling of Nonlinear Signatures in the Geopo-
tential Height Field of an Atmospheric General Circulation Model. 2003, 157 S. + VIII. e 28

Heft 59: BerndMaurer: Messungen in der atmosphärischen Grenzschicht und Validation eines mesoskali-
gen Atmosphärenmodells über heterogenen Landober�ächen. 2003, 182 S. + IX. e 30



Heft 60: Christoph Gebhardt: Variational reconstruction of Quaternary temperature �elds using
mixture models as botanical � climatological transfer functions. 2003, 204 S. + VIII. e 30

Heft 61: Heiko Paeth: The climate of tropical and northern Africa � A statistical-dynamical analysis
of the key factors in climate variability and the role of human activity in future climate change.
2005, 316 S. + XVI. e 15

Heft 62: Christian Schölzel: Palaeoenvironmental transfer functions in a Bayesian framework with
application to Holocene climate variability in the Near East. 2006, 104 S. + VI. e 15

Heft 63: Susanne Bachner: Daily precipitation characteristics simulated by a regional climate model,
including their sensitivity to model physics, 2008, 161 S. e 15

Heft 64: Michael Weniger: Stochastic parameterization: a rigorous approach to stochastic three-
dimensional primitive equations, 2014, 148 S. + XV. open access1

1Available at http://hss.ulb.uni-bonn.de/fakultaet/math-nat/





Meteorologisches Institut

Mathematisch Naturwissenschaftliche Fakultät

Universität Bonn




