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SUMMARY   

Ethiopia suffers from economic water scarcity that makes its water utilization difficult. 
In-depth understanding of the hydrological processes is important for balancing 
availability and demand. As part of this basin-wide and national concern, this study 
examines the water balance and water availability on farm and watershed scales in 
different scenarios. The objectives of the study were (1) to evaluate water use and 
water productivity of a small-scale irrigation scheme, (2) to evaluate methods for filling 
gaps in climatic data, (3) to adopt the Soil and Water Assessment Tool (SWAT) 
hydrological model for modeling hydrological processes using different modeling 
setups, and (4) to simulate water demand and water stress status for a period up to 
2050 using different land-use and demographic scenarios. The Gumara watershed 
(1520 km2), a tributary of Lake Tana and source of the Blue Nile in Ethiopia, was 
selected for this study.  
 A case study at a small-scale irrigation scheme shows that there was high 
water loss during water conveyance and application. At the same time, water stress 
was observed during irrigation at the scheme level, as the applied water did not match 
the water needs of different crops. 
 Environmental modeling requires complete climate data sets, which are 
rarely available. Therefore, different gap-filling methods were applied and tested.  
Considering data from neighboring climate stations, the methods arithmetic mean and 
coefficient of correlation weighting methods gave better daily rainfall estimation than 
the normal ratio and inverse distance weighting methods. Multiple linear regression 
methods performed well when filling daily air temperature gaps using data from 
neighboring stations. After seasonal categorization of daily data and optimization of 
parameters, procedures using maximum and minimum temperature for simulating 
solar radiation and relative humidity gave promising performances.  
 For process analysis, SWAT was applied for the watershed with an acceptable 
performance when simulating river flow. The effect of data availability on model 
performance was analyzed using different numbers of climate stations. Using four and 
six stations resulted in better SWAT water flow modeling performance as compared to 
two stations. Penman-Monteith and Hargreaves procedures for potential evaporation 
calculation resulted in comparable river flow modeling in SWAT. Therefore, the 
Hargreaves method that needs only air temperature can be used for modeling when 
other climatic data are not available. 
 Selected watershed management practices shift surface runoff to sub-surface 
and groundwater flows. An irrigation project planned in the watershed and the 
watershed management practices shift surface discharge to base flow and 
evapotranspiration. It will be hard to satisfy the basic human water requirements in 
2050 if the existing water management and water productivity conditions pertain. 
Better green water management and non-consumptive water use options (e.g. hydro 
power, fishery) can minimize the blue water stress at the Nile basin level.   

  



Zusammenfassung 
 
Äthiopien leidet unter ökonomischer Wasserknappheit, was die Wassernutzung 
erschwert. Dieses stellt sowohl für das untersuchte Wassereinzugsgebiet als auch für 
das Land ein großes Problem dar. Aus diesem Grund ist ein vertieftes Verständnis der 
hydrologischen Prozesse für die Abwägung der Wasserverfügbarkeit mit dem 
Wasserbedarf von hoher Bedeutung. Vor diesem Hintergrund untersucht diese Studie 
den Wasserhaushalt und die Wasserverfügbarkeit von der lokalen (Farm) bis zur 
Wassereinzugsskala unter Berücksichtigung verschiedener Szenarien mit folgenden 
Zielen: (1) Bewertung der Wassernutzung und -produktivität in einem kleinbäuerlichen 
Bewässerungssystem, (2) Bewertung von Methoden zur Ergänzung von Lücken in 
Klimadaten, (3) Anwendung des hydrologischen Soil and Water Assessment Tool 
(SWAT) für die Modellierung der hydrologischen Prozesse des Einzugsgebiets unter 
Berücksichtigung verschiedener Modellkonfigurationen und (4) Simulation von 
Wasserbedarf und Wasserstress für den Zeitraum bis 2050 mit verschiedenen 
Landnutzungs- und demographischen Szenarien. Das Gumara-Einzugsgebiet (1520 
km2), ein Zufluss zum Tanasee und Ursprung des Blauen Nils in Äthiopien, wurde für 
diese Studie ausgewählt. 
 Eine Fallstudie in einem kleinbäuerlichen Bewässerungssystem zeigt einen 
hohen Wasserverlust während des Wassertransports und der Wassernutzung. 
Gleichzeitig wurde Wasserstress während des Bewässerungszeitraums beobachtet, da 
die ausgebrachte Wassermenge dem Wasserbedarf der verschiedenen Anbaupflanzen 
nicht entsprach.  
 Umweltmodellierung bedarf vollständiger Datensätze, die jedoch selten 
verfügbar sind. Daher wurden verschiedene Methoden angewandt und getestet mit 
denen die Datenlücken geschlossen werden können. Die Methoden arithmetisches 
Mittel sowie Korrelationskoeffizienten mit Gewichtung ergaben bessere tägliche 
Niederschlagsprognosen als die Methoden gewichtete Mittelwerte (normal ratio) und 
inverse Distanzgewichtung (inverse distance weighting). Lücken in Temperaturdaten 
können gut aus den Daten benachbarter Stationen mittels multipler linearer 
Regressionsmethoden geschlossen werden. Mit einer saisonalen Parametrisierung 
kann aus den Maximum- und Minimumtemperaturen die Solarstrahlung und die 
relativer Luftfeuchtigkeit abgeleitet werden. 
Für die Simulation der hydrologischen Prozesse und des Abflusses wurde SWAT 
erfolgreich eingesetzt. Die Auswirkung der Datenverfügbarkeit auf die Modellgüte 
wurde untersucht, indem unterschiedliche Anzahlen von Klimastationen berücksichtigt 
wurden. Vier bzw. sechs Stationen ergeben eine bessere Simulation des Abflusses 
verglichen mit zwei Stationen. Der Vergleich der Berechnung der potentiellen 
Verdunstung nach Penman-Monteith und nach Hargreaves resultiert in vergleichbaren 
Simulationen des Abflusses mit SWAT. Daher kann die Hargreaves Methode, die nur 
Lufttemperaturdaten benötigt, zur Modellierung eingesetzt werden wenn andere 
Klimadaten nicht verfügbar sind.  
 Bestimmte Bewirtschaftungsverfahren im Einzugsgebiet verändern das 
Verhältnis des Oberflächen- zu unterirdischem und Grundwasserabfluss. Ein geplantes 
Bewässerungsprojekt sowie die vorhandenen Bewirtschaftungsverfahren verändern 



den Oberflächenabfluss zu Basisabfluss und zur Verdunstung. Unter den derzeitigen 
Wasserbewirtschaftungsverfahren und der derzeitigen Wasserproduktivität wird es 
schwer sein, den Wasserbedarf der Bevölkerung im Jahre 2050 zu erfüllen. Ein 
besseres Management des grünen Wassers sowie Optionen für die nicht konsumtive 
Wassernutzung (Wasserenergie, Fischerei, etc.) können die Knappheit an blauem 
Wasser auf der Skala des Nileinzugsgebietes minimieren. 



ማጠቃሇያ 

ኢትዮጵያ ያሊትን የውኃ ሃብት በብቃት ሇመጠቀም እንዳትችሌ የኢኮኖሚ እና የቴክኖልጂ ክህልት ተግዳሮቶች ወስነዋታሌ። 
በአሁኑ ወቅት በተሻሇ መሌኩ የውኃ መሰረተ-ሌማት እየታየ ቢሆንም  ዘሊቂነት ያሇው ሌማት ሇማከናወን በተሻሇ እውቀት ሊይ 
መመስረት አስፈሊጊ ነው። የውኃ ፍሰት ዑዯት ምጣኔን እና ሇመሰረታዊ ፍሊጎት ተዯራሽ የሆነን የውኃ አካሌ መጠን በጊዜ እና 
በቦታ ወሰን በጥሌቀት መረዳት የሚፈሇገውን ክህልት ያዳብራሌ፤ የሚሰሩ ሥራዎችን በመረጃ ይዯግፋሌ። ይህንን አጠቃሊይ 
አስፈሊጊነት መሰረት በማድረግ በእዚህ ጥናት የውኃ ፍሰት ዑዯትንና ሇጥቅም የሚውሌ የውኃ ሌክን በእርሻ መሬት፣ 
በተፋሰስና በተሇያዩ የመሬት አጠቃቀምና የመሰረታዊ የውኃ ፍሊጎት አማራጮች መሰረት የውኃ ምጣኔን ሇመተንተን 
ተሞክሯሌ። ጥናቱ ያተኮረባቸው አሊማዎች፤ (፩) የውኃ አጠቃቀምንና የውኃ ምርታማነትን በናሙና በተመረጠ አነስተኛ 
የመስኖ አውታር ሊይ መገምገም፣ (፪) የተጓዯለ የሚትሪዮልጂ መረጃዎችን ማምዋያ የተሇያዩ ቀመሮችን ማስሊት፣ (፫) የውኃ 
ዑዯትን መተንተን የሚያስችሌ ሞዴሌ ሇጥናቱ ቦታ እንዲያገሇግሌ መሰረታዊ መስፈርቶቹን ማስተካከሌ እና (፬) ሞዴለን 
በመጠቀም የውኃ ፍሰት ምጣኔ ድርሻና የፍሊጎት ጫናን በተሇያዩ አማራጮች ማስሊት ናቸው። በአባይ ወንዝ መነሻ በሆነው 
በጣና ሃይቅ ተፋሰስ ውስጥ የሚገኝ 1520 እስኩየር ኪል ሜትር ስፋት ያሇው የጉማራ ንዑስ ተፋሰስ ሇጥናቱ ቦታ 
ተመርጧሌ።   

 
ጓንታ በተባሇ በተፋሰሱ ውስጥ በሚገኝ አነስተኛ የመስኖ አውታር (90 ሄክታር) ሊይ በተዯረገው ጥናት ውኃን 

ከወንዝ ጠሌፎ ወዯተፈሇገው ማሳ በማጓጓዝና በማሳ ሊይ በሚዯረግ  የውኃ አጠቃቀም ሂዯት ውኃ በብዛት እንዯሚባክን፣ ይህ 
የሚባክነው ውኃ ባሌተፈሇገ መሌኩ ማሳዎችን በማጥሇቅሇቅና በመስረግ የመስኖ ማሳዎችን ከጥቅም ውጪ ማድረጉ፣ የመስኖ 
ቦዮች ጥገና እና ፅዳት በወቅቱ ባሇመዯረጉ ውኃ በተፈሇገው ጊዜ፣ መጠንና ቦታ ማድረስ አሇመቻለና በታችኛው የመስኖ 
ማሳዎች የውኃ እጥረት መከሰቱ ዋና ዋና የሚታዩ ችግሮች ናቸው። በዚህና በተያያዥ ምክንያቶች የሰብልች የማሳና የውኃ 
ምርታማነት ከላልች ቦታዎች ጋር ሲወዳዯር ዝቅተኛ ነው። በመስኖ ቦዮችና ማሳዎች ዳርቻ ሊይ የሚገኝ የሳር ምርት በስርገት 
የሚባክንውን የተወሰነ ውኃ ሇከብቶች መኖ ምርት እንዲሰጥ በማድረጉ፣ የበጋ ወቅት የመኖ እጥረትን በመቅረፍና ጥምር 
የሰብሌና እንስሳት ግብርናን በመዯግፍ ተጨማሪ ጠቀሜታ አሇው፤ የመስኖ ውኃውንም ምርታማነት ከተሇመዯው የሰብሌ 
ምርታማነት ስላት የበሇጠ ያዯርገዋሌ። የምሽት ውኃ ማጠራቀሚያ ጊዜያዊ ኩሬዎች በተሇያዩ አመቺ ቦታዎች በመስራት 
ውኃን በሇሉት ሇመስኖ መጠቀምን ማስቀረት፣ ገበሬዎች መስኖውን እንዲቆጣጠሩ ማብቃት፣ ሇመስኖ ቦታዎች የተሻለ 
ምርታማ የሰብሌና የመኖ ዝርያዎችን ሇይቶ ማቅረብ፣ አዋጭ የሰብልችን የውኃ ፍሊጎት መወሰንና በገበሬዎች አቅም ውኃን 
የመሇኪያ  ዘዴዎችን ማቅረብ የውኃ ብክነትን ሇመቀነስና ምርታማነትን ሇመጨመር ያስችሊሌ።  

 
የተሟሊ የሚትሪዮልጂ መረጃ ሇውኃ አጠቃቀም ጥናትና ውሳኔ አሰጣጥ ወሳኝ ነው። በጥናቱ አካባቢ 

በመሳሪያዎች አሇመሟሊትና ብሌሽት፣ በሰሇጠነ የሰው ሃይሌ እጦትና በመሳሰለት ምክንያቶች ከየሚትሪዮልጂ ጣቢያዎቹ 
ያሌተሟሊ መረጃ ማግኘት የተሇመዯ ነው። ዘሊቂ መፍትሄ የሚሰጡ ጥናቶችና የውኃ አጠቃቀም ሥራዎችን ሇማድረግ እነዚህን 
መረጃዎች ጥቅም እንዲሰጡ በማድረግ የመረጃ ክፍተትን መሙሊት ያስፈሌጋሌ። በዚህ ጥናት አምስተኛ ምእራፍ ሊይ የዝናብ፣ 
የአየር ሙቀት፣ የፀሐይ ሃይሌንና የአየር እርጥበት መረጃ ክፍተቶችን ሇመሙሊት የተሇያዩ አማራጭ ዘዴዎች ተገምግመው 
የተሻለት ዘዴዎች ተመርጠዋሌ። የአንድን መረጃ ማሰባሰቢያ ጣቢያ ክፍተት ከአጎራባች ጣቢያዎች መረጃ በመነሳት 
ሇመሙሊት የሚያስችለ ዘዴዎችን መጠቀሙ የተወሳሰበ ካሇመሆኑም በተጨማሪ በውሃ ፍሰት ትንታኔ ሊይ የተሻሇ ተአማኒ 
ትንታኔ ሇመስጠት አስችልዋሌ። የፀሐይ ሃይሌን እና የአየር እርጥበት መረጃን በቀሊለ መሇካት ከሚቻሌ የአየር ሙቀት መረጃ 
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SWAT Soil and Water Assessment Tool 
TAW   Total available water  
TLU   Tropical livestock unit, (where 1 TLU is 250 kg live weight) 
USBR    United States Bureau of Reclamation  
WAPCOS  Water and Power Consultancy Service 
WCD   World Commission on Dams  
WXGEN Weather generator 
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1 GENERAL INTRODUCTION 

Water is vital for life. On a global scale, it is abundant in quantity, but spatial and 

temporal availability of fresh water is a problem. Water scarcity is considered one of 

the major challenges for livelihoods and the environment in sub-Saharan Africa (SSA; 

Amede et al. 2011). After Nigeria, Ethiopia has the highest population in Africa with 80 

million people (Awulachew et al. 2005). Although the country has abundant water 

supplies and arable land, food insecurity due to the occurrence of frequent droughts 

and famines is one of the main challenges (Ministry of Water Resources, MoWR 2007). 

Water availability is erratic in space and time due to the seasonal variation in rainfall 

and a lack of structures regulating water flow (Awulachew et al. 2005).  

1.1 Problem definition 

Effective water resources development is very important for the Ethiopian Nile in 

particular and for the Nile Basin in general. It is widely recognized as being crucial for 

sustainable economic growth and poverty reduction in developing countries (World 

Bank 2004; Grey and Sadoff 2006). In 2007, MoWR (2007) concluded that promotion 

and expansion of irrigation was urgent in order to increase food and raw materials 

production for agro-industries, thus increasing employment opportunities and foreign 

exchange earnings (MoWR 2007). However, according to Molden et al. (2007), Ethiopia 

is grouped under the countries with economic and technological water scarcity. The 

authors considered Ethiopia a country with a high water availability per capita, but this 

availability may be different at finer space and time scales. It needs to be understood 

when, where and how much water is available and how an intervention plan will be 

suitable both now based on existing weather and land-use variables and in future with 

the expected land-use and climate changes. Meteorological data are generally too 

scarce for detailed analysis of the water balance at the local level where water 

development is to be implemented. These information gaps need to be filled.  

The study area is characterized by a mixed crop-livestock system (Haileslassie 

et al. 2009a;b), and water is important for both crop and livestock components to 

optimize productivity. Peden et al. (2007) proposed a concept of livestock water 

productivity (LWP), a factor not considered previous productivity analyses. It is defined 
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as the ratio of the total net livestock products and services over the total water 

depleted and degraded in the process of obtaining these products and services 

(Descheemaeker et al. 2009). Crop-livestock water productivity is strongly affected by 

the depleted water for each component. Understanding the spatial and temporal 

distribution of the water balance is very important to control water depletion in order 

to improve water productivity. Therefore, a joint project was proposed by the 

International Livestock Research Institute (ILRI) and the International Water 

Management Research Institute (IWMI): “Improving water productivity of crop-

livestock systems of sub-Saharan Africa”. The project was funded by the German 

Federal Ministry for Economic Development Cooperation (Bundesministerium Für 

Wirtschaftliche Zusammenarbeit-BMZ). Its overall objective was the development and 

promotion of options for enhancing water productivity. Evaluating the water balance 

of a pilot site and addressing the percentage of water lost as unproductive evaporation 

and/or runoff and that of productive transpiration were two of the six specific 

objectives. Potential improvement of water productivity will be driven based on the 

vapor shifts for supporting decision making by local and regional development 

planning officers. This research output of the project is the basis of this study, which 

aims to fill information gaps existing for decision making in water development in the 

area such as information on water use for small-scale irrigation schemes and methods 

to improve database development, and to fill missing data. It also evaluates modeling 

approaches and water balance and water availability in the study area. 

 

1.2 Research objectives 

The main research objective of this study was to evaluate the water balance and water 

availability of the Gumara watershed, northwest Ethiopia, on spatial and temporal 

scales. Although spatial and temporal scales can be refined into smaller units, data 

availability at smaller scales is a problem in the area. For example, density of the 

meteorological stations and land-use and soil data can determine the spatial scale of 

the water balance modeling. Since the studied watershed is an agricultural area, rainy 

and dry season time scales can provide meaningful water balance results to identify 
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gaps for development intervention. Therefore, the specific research objectives of the 

research were: 

1) To evaluate the water use and water productivity of a small-scale 

irrigation scheme in the study area. This addresses the water use and 

water productivity in the area in the dry seasons and at irrigation scheme 

scales. 

2) To evaluate different techniques for filling missing meteorological data so 

that the existing database of the area can be exploited better for 

improved hydrological modeling than in previous studies. 

3) To assess the effect of meteorological station density, potential 

evapotranspiration calculation methods and missing data on the 

performance of the hydrological model Soil and Water Assessment Tool 

(SWAT).  

4) To assess the effect of land-use/water-use changes on the water balance 

and water availability in the study area. 

Each specific objective is presented in the following chapters of this 

dissertation.  

 

1.3 Outline of the dissertation 

Chapter 1 comprises general introduction, problem definition and objectives of the 

study. Chapter 2 highlights the study area and water resources of Ethiopia while 

Chapter 3 introduces the theoretical background of water balance modeling and the 

SWAT model. A case study on water balance and water productivity in a small-scale 

irrigation scheme is presented in Chapter 4. Methods for filling spatial and temporal 

missing data are presented in Chapter 5. Effects of meteorological station density and 

potential evaporation methods on SWAT model performance are discussed in Chapter 

6. Chapter 7 presents the results of the study on the effect of land-use and 

demographic changes on water balance and water availability. Chapter 8 summarizes 

the overall findings of the study.  
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2 STUDY AREA 

2.1 Location, topography and demography 

Ethiopia is classified into three physiographic regions: northwestern plateau, 

southeastern plateau and the Rift Valley (Woldemariam 1972). The study area, the 

Gumara watershed, is located on the northwestern plateau in the Lake Tana Basin 

(Figure 2-1). This is considered as the source of Blue Nile River and is located on 

10°57´-12°47´N latitude and 36°38´-38°14´E longitude (Tessema 2006). The basin 

includes the Gojam-Gondor escarpment and the lower plains Dembiya, Fogera (part in 

the study area) and Kunzila surrounding the lake, which are wetlands in the rainy 

season. About 40 rivers drain into the lake (Kebede 2006). Lake Tana is the biggest 

natural water body in Ethiopia. It obtains 93% of its water from four rivers: Gilgel-

Abbay, Reb, Gumara and Megetch (Kebede 2006); Gumera River is in the study area. 

The topography ranges from 1780 m at the lakeshore to 4080 m asl at the top of the 

Guna mountain in the east of the study watershed (Figure 2-2). 

The area is one of the most highly populated highland parts of Ethiopia. The 

Lake Tana Basin has about three million inhabitants (CSA, 2011), where 256,000 live in 

the largest city on the lakeshore, Bahir Dar. About 15,000 people are estimated to live 

on the 37 islands in the lake (CSA, 2003). 

 

2.2 Climate and soil 

The climate is tropical highland monsoon where the seasonal rainfall distribution is 

controlled by the movement of the inter-tropical convergence zone and moist air from 

the Atlantic and Indian Ocean in the summer (June-September) (Kebede 2006). Mean 

annual rainfall over the Lake Tana Basin is 1,326 mm and the average annual 

evaporation of the lake surface is approximately 1,675 mm (SMEC 2008). Rainfall 

distribution is highest in the southern part of the Gilgel Abbay watershed and lowest in 

the northern part of the Megech watershed. In the Gumara watershed, annual rainfall 

varies from 1100 mm to 1600 mm per year (Figure 2-3).  

The area is composed of sedimentary, effusive and intrusive rocks 

(Woldemariam 1972). Alisols, Fluvisols, Leptosols, Luvisols, Nitisols, Regosols and 
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Vertisols are the main soil types found with chromic, eutric, heplic and lithic horizon 

modifiers in the Lake Tana Basin (BCEOM 1998). 

 

 

Figure 2-1 Location of study area: Nile Basin, Lake Tana Basin and Gumara 
watershed. Sources: Wale et al. (2009) and World Resources 
Institute, http://earthtrends.wri.org/text/map_lg.php?mid=299 

 

 

The Nile Basin Lake Tana Basin 

Gumara 
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Figure 2-2 Topography and hydrography of Lake Tana Basin  
Source: (Yilma and Awulachew 2009), where Gumera is synonomus to Gumara in the dissertation 

 

Figure 2-3 Annual rainfall distribution in Lake Tana Basin  
Source: (Yilma and Awulachew 2009), where Gumera is synonomus to Gumara in the dissertation 

 

a 
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2.3 Land-use, agriculture and biodiversity 

About 10.1% of the country is covered by arable land, 0.65% by permanent crops and 

1% is covered by water (MoWR 2002). Haileslassie et al. (2009a) classified the farming 

system of the Gumara watershed into rice-based cash crops, maize-small cereals and 

cereal-pulses. Rainfed mixed farming with a wide range of food crops like cereals, 

pulses and vegetables is the main land-use of the study area, where livestock 

production is also an important component of the livelihoods (Johnston and 

McCartney, 2010). The area is characterized by low crop production (783 to 1234 kg 

ha-1) with fragmented farmland holdings less than 1 ha per household (Erkossa et al. 

2009). 

The economic resources in the study area have great potential. It is the home 

of the well-known Fogera cattle, which are used for milk production. Lake Tana has an 

estimated fish production of 10,000 to 15,000 ton/year (IPMS, 2005). The lake and the 

surrounding wetlands are endowed with rich biodiversity and cultural heritages. The 

lake contains 18 species of barbus fish (Cyprinidae family) and the only large cyprinid 

species flock in Africa (LakeNet 2004). At least 217 bird species are to be found in the 

area, and the lake is estimated to hold a minimum of 20,000 water birds (EWNHS 

1996). Twenty monasteries dating from the sixteenth and seventeenth century are 

located on the lake islands with many cultural and natural assets. The Tis Issat Falls, 

one of Africa’s largest waterfalls, is located on the Blue Nile approximately 35 km 

downstream of the Lake Tana outflow. Around 30,000 domestic and foreign tourists 

visit the area each year (EPLAUA 2006). 

 

2.4 Water resources and development in Ethiopia 

Ethiopia has 12 river basins (Figure 2-4) with a total surface water volume of 122 km3 

and 2.6 to 6.5 km3 groundwater potential (MoWR 2002). The Nile River has three sub- 

watersheds in Ethiopia: Blue Nile, Baro-Akobo and Tekeze. The Blue Nile (called Abbay 

in Ethiopia) watershed is the main sub-watershed starting from the Lake Tana Basin. 

The Baro Akobo sub-watershed is located to the south of the Blue Nile. The country 
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has abundant renewable water resources with 1300 and 2500 m3 per year per capita 

at national and Blue Nile Basin levels, respectively (Johnston and McCartney 2010).  

 

 

  Figure 2-4 River basins of Ethiopia  

Source: (Awulachew et al. 2007) 

 

Most of the surface water resources of the country are shared with 

neighboring nations, which makes water resources development complicated. Figure 

2-5 shows the shares of annual flows and irrigable land potential of the transboundary 

rivers and internal water systems of Ethiopia. More than 90% of the annual water flow 

and the irrigable land potential of the country are located along transboundary river 

basins. About 30% of the area in the Nile Basin contributes 70% and 60% of the annual 

flow and irrigable land, respectively.  
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Figure 2-5  Relative potential of Nile Basin, total transboundary and internal 
watercourse systems with respect to whole Ethiopia  

Source: secondary data taken from (Arsano 2007 ) 

Frequent and sever water shortages due to rainfall variability (CA 2007) are 

one of the factors of the low land productivity in the country. The contribution of per 

capita reservoir water has been very low (about 100 m3) as compared to that of South 

Africa (750 m3) and North America (6150 m3) (World Bank 2006). The World Bank 

(2006) recommended the development of water storage infrastructures as an 

economic priority, since hydrological variability costs 30% of the country’s economic 

development in GDP due to crop failure and livestock deaths. Hence, water shortage 

and other related problems lead to food insecurity, so that 46% of the population was 

undernourished in 2008 (von Grebmer et al. 2008). Rainfed agricultural production is 

vulnerable to seasonal water shortage (Johnston and McCartney 2010), and 75-80% of 

the rainfed production is consumed at the household level (World Bank 2006; Block et 

al. 2007) even in good rainfall seasons and wet years with low surplus production for 

the market. Moreover, the drinking water supply is very low (38% at country level and 

26% in rural areas) (WHO-UNICEF 2010). People in rural areas travel more than a 

kilometer to search for and to fetch drinking water (UN Water 2006). 

There are indications that water development is one of the best entry points 

to avert these problems. Smallholder irrigation can generate higher household 

incomes (U$ 323 per ha) than rainfed systems (U$147 per ha) (Johnston and 
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McCartney 2010). According to recommendations in studies and based on evidence, 

water resources development has taken place throughout the country. The Ethiopian 

government has been developing the water resources infrastructure since the 1980s. 

About 5-6% of the 3.7 million ha potentially irrigable land of the country is covered by 

irrigation. In 2005, this area covered only 30 m2 per capita. This is very low as 

compared to the global level of 450 m2 (Awulachew et al. 2005). 

Therefore, due to frequent droughts and extreme poverty, the Ethiopian 

government is working to develop the water resources of the country to attain 

economic growth and to reduce poverty through the construction of additional 

infrastructure, particularly hydropower and irrigation schemes (MoFED 2006; 

Awulachew et al. 2008; Block et al. 2007; McCartney et al. 2009).  

Water resources assessment for hydroelectric power generation and 

irrigation in 1964 by the U.S. Bureau of Reclamation (USBR) identified four main 

hydropower dam sites along the main Blue Nile River in Ethiopia (USBR 1964). A 

nationwide study in 1990 by the Water and Power Consultancy Service (WAPCOS 

1990) identified 129 potential hydropower sites. The Abbay River Basin Integrated 

Development Master Plan Project (ARBIDMPP) conducted by the MOWR of Ethiopia 

proposed more than 20 projects for irrigation, hydropower, and multipurpose dams 

(MOWR 1998) (Figure 2-6 ).  

Lake Tana Basin is identified as a priority hydro-infrastructure development 

area to attain the Millennium Development Goals (McCartney et al. 2010). In 2009, a 

big multi-functional project was inaugurated that transfers Lake Tana water to the 

nearby Beles catchment through a 12 km-long tunnel (7.1 m diameter) (Salini and Mid-

day 2006). This project generates 460 MW (2,310 GWh) electric power using 3 km3 

water per annum (SMEC 2008). The tail water of this project is planned to be used for 

irrigation. However, the social and environmental costs overweigh the benefits of 

transferring water from one catchment to the other (WCD 2000; King and McCartney 

2007). Two dams are under construction, and a feasibility study concerning another 

three dams at the headwater of the lake for irrigation is in its final stage. Two 

hydropower stations were functioning at the natural outlet of the lake at the time of 
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this study. The Tana-Beles watershed is one of the development corridors of the 

country, and integrated water resources development programs are thus under 

implementation there (World Bank 2008). 

 

 

Figure 2-6  Proposed irrigation and dam sites in Basin  
Source: (Yilma and Awulachew 2009) 

 

This water resource development will result in significant land- and water-use 

changes that may affect the existence of the fresh water body in the lake and in the 

river system. Any expected changes in the Nile River water resources may have effects 

on the economies, production, energy supply and environmental quality of the region 

(NBI 2001; Hulme et al. 2005). Without considering the impact of climate change, 

McCartney et al. (2010) estimated that the planned water development projects in the 

Lake Tana watershed will lead to a decrease in the water level of the lake by 0.81 m 
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(10% of the mean level), and in the lake area by 30-81 km2 (by ca. 1.9-3.6%). According 

to the authors, the existing water resource development for hydropower generation at 

Tis Issat at the outlet of Lake Tana has modified flows downstream of the lake, 

reduced water levels of the lake, and significantly decreased the flow over the Tis Issat 

waterfall.  
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3 WATER BALANCE AND MODEL STRUCTURE 

3.1 Hydrological processes and water balance  

Atmospheric, surface and subsurface/groundwater flows and storages are important 

parts of the hydrological cycle. Water is found in solid, liquid and gaseous states in the 

hydrological cycle. It can be transformed from one component to another either 

naturally (runoff, precipitation, seepage, infiltration, evaporation, condensation, deep 

percolation) or/and artificially (dam, irrigation, diversion, pumping). 

 The hydrological processes are too complex to illustrate them through exact 

measurements everywhere and every time. The simplified representation of some of 

the important hydrological processes can be done to conceptualize the hydrological 

system in the form of a model (Anderson & Woessner 1992). A hydrological system 

model approximates the actual system and transforms input variables to hydrological 

output variables (Chow et al. 1988; Dooge 1968). It can be generally described as in 

equation 3-1. 

 

)()( tItQ                                                               (3–1) 

 

where Q and I are output and input variables, respectively, as a function of time t, and 

  is a function transferring the input to the output. This function can be expressed by 

an algebraic equation (algebraic operator) or differential equation (differential 

operator).  Parameters in a model are quantities that characterize some parts in the 

system and attain constant values in time, space and condition. 

Chow et al. (1988) classified hydrological models into three categories 

according to the way they treat randomness, space and time. Stochastic models are 

models whose variables are probabilistic in nature and random in distribution. If the 

variables of the models are free from randomness, the models are said to be 

deterministic. If we consider the spatial nature of models, we can group them as 

lumped or distributed. Lumped models ignore the spatial variability of hydrological 

processes, input variables or parameters, while distributed models try to address 

spatial variability using more input data.  
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Models are also classified as conceptual/empirical and physical with respect 

to how they equate the real processes within the hydrological system. Conceptual 

models express the relationships of processes in the hydrological system based on 

laboratory or field measurement data as done by using regression models, without 

understanding the real physical process that is done behind. Physically based models, 

on the other hand, try to equate and represent the processes based on some 

understanding of their physics. Since physically based models have different 

parameters related to one or more space coordinates, they can also be grouped under 

distributed or semi-distributed models (Beven 1985). 

Hydrological processes include canopy interception, infiltration, evaporation, 

transpiration, overland flow, canal flow, unsaturated subsurface flow and saturated 

subsurface flow. The processes are generally grouped into storages (surface, 

subsurface and groundwater), inflows and outflows from the system. These processes 

can be estimated using a series of empirical and hydraulic equations (Arnold et al. 

1998) in the model. These equations have parameters that are dependent on 

biophysical inputs, measured water outputs and management interventions. Model 

parameters have to be optimized with respect to input-output data of the area. This is 

known as parameter optimization (parameterization or calibration). Some parameters 

influence the output of the model more than the others do. Identification of these 

parameters will help to select very important parameters for model calibration 

(Vandenberghe et al. 2002 cited in Alamirew 2006). The identification process is known 

as sensitivity analysis. Verification is important by comparing the estimated output of 

the calibrated model with measured data that are not used during the calibration 

process. Models are calibrated and verified using standard statistical measures like 

percent difference between measured and simulated values, coefficient of 

determination (r2) to measure the trends of fitness of both measured and simulated 

results, and Nash-Suttcliffe efficiency (Nash and Suttcliffe 1970) to compare how much 

similar the average simulated result is to the average measured value within a given 

period. Santhi et al. (2001) assumed an acceptable calibration for hydrology at percent 
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difference less than 15%, coefficient of determination greater than 0.6 and Nash-

Sutcliffe efficiency greater than 0.5.   

3.2 Hydrological models for data-scarce areas 

Model selection is determined by the availability of data, purpose of application and 

the accuracy of the output needed. Physically based distributed models need more 

data to calibrate a watershed. However, they are good for ungauged watersheds, 

effectively saving time for measuring every parameter of the watershed once they are 

calibrated.  Studies advise to take care when using these models for data-scarce areas 

(Legesse et al. 2003; Andersen et al. 2001). Lumped models are quite robust for these 

areas although they result in less detailed output for climatic and land-use impacts. 

Bormann and Diekkrueger (2003 and 2004) applied lumped hydrological models that 

require less input data. However, they recommend applying detailed models to 

address the effect of land-use and climate on the environment for relatively better 

understanding.  

3.3 Soil and Water Assessment Tool (SWAT) 

SWAT is a continuation of about three decades of modeling efforts conducted by the 

United States Department of Agriculture - Agricultural Research Service (USDA-ARS). It 

has gained international acceptance as a robust interdisciplinary watershed-modeling 

tool. More information is available from international SWAT conferences, hundreds of 

SWAT-related papers presented at numerous scientific meetings, and dozens of 

articles published in peer-reviewed journals (Gassman et al. 2007).  SWAT is a basin-

scale, continuous-time model that operates on a daily time step. It is designed to 

predict the impact of different watershed management on water, sediment, and 

agricultural chemicals transportation for ungauged watersheds. It is physically based, 

computationally efficient, and capable of continuous simulation over long periods.  

Applications of SWAT have expanded worldwide over the past decade 

(Gassman et al. 2007). Many of the applications have been driven by the needs of 

various government agencies, particularly in the United States and the European 

Union. These applications were done for assessments of anthropogenic, climate 

change, and other influences on a wide range of water resources or exploratory 
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assessments of model capabilities for potential future applications. SWAT was selected 

as an important tool for this study for the following reasons.  

(1) It considers many components of the hydrologic balance like precipitation, 

surface runoff, infiltration, evapotranspiration, lateral flow from the soil profile, and 

return flow from shallow aquifers (Gassman et al. 2007).  

(2) It considers sediment yield, crop biomass, crop rotations, 

grassland/pasture systems, forest growth, planting, harvesting, tillage, nutrient 

applications, pesticide applications, biomass removal and manure deposition of grazing 

operations, continuous manure application options to confined animal feeding 

operations, conservation and water management practices, and pollutants transport 

(Gassman et al. 2007). These applications of SWAT can be used in the future once its 

hydrological application to the area is verified.  

(3) It has automated sensitivity, calibration, and uncertainty analysis 

components, data generator and Geographic Information System (GIS) interface 

(Gassman et al. 2007). The weather generator routine of SWAT considers the problem 

of missing data for the area. 

(4) It is physically based and can model ungauged watersheds that have no 

monitoring data and can quantify the impact of changes in management practices 

(Neitsch et al. 2011).  

(5) It is computationally effective and can simulate processes in very large 

basins or a variety of management strategies without excessive investment in time and 

money (Neitsch et al. 2011).  

(6) It enables users to study long-term impacts to address gradual impacts on 

downstream water bodies (Neitsch et al. 2011).  

In SWAT, a watershed is divided into multiple sub-watersheds and then into 

hydrologic response units (HRUs) that consist of homogeneous land-use, management, 

and soil characteristics (Gassman et al. 2007). The SWAT2009 version (Neitsch et al. 

2011) under ArcSWAT2.5 in the ArcGIS interface of ArcGIS9.3 version is used for this 

study. The Gumara River basin was partitioned in sub-watershed, and a refined stream 

network layer was formed based on the threshold minimum drainage area required to 
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start a stream. These sub-watershed and stream network layers were done using the 

digital elevation model (DEM). The smallest unit of spatial discretization was produced 

based on a unique combination of land-use, slope and soil layers overlay. This spatial 

unit is assumed to respond similarly for hydrological inputs in SWAT (Neitsch et al. 

2011). It is called hydrologic response unit (HRU). 

 

3.4 Water balance and parameters in SWAT 

SWAT simulates the hydrologic cycle using the water balance equation 3-2: 
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                             (3–2) 

                           

where SW
t 
is the final water content (mm H

2
O), SW

0 
is the initial water content in time 

i (mm H
2
O), t is the time (in days, months, or years), R

t 
is the amount of rainfall in time 

i (mm H
2
O), Q

surf 
is the amount of surface runoff in time i (mm H

2
O), E

a 
is the amount of 

evapotranspiration in time i (mm H
2
O), w

seep 
is the amount of water entering the 

vadose zone from the soil profile in time i (mm H
2
O), and Q

gw 
is the amount of return 

or baseflow in time i (mm H
2
O). The time scales depend on the concern of the analysis, 

since SWAT can simulate at daily, monthly and annual scales. Each term of the water 

balance equation has detailed physical processes that are interlinked in a harmony 

related to the atmosphere-vegetation-soil consortium. The details of these processes 

and physical phenomena are well presented in the SWAT input/output and theoretical 

documentations and literature (http://swatmodel.tamu.edu/ Cited 27/06/2011).  The 

main terms in the water balance equation 3-2 are discussed below from these 

documents.  

1. Surface runoff: Also known as overland flow, the part of the rainfall flowing 

along the slopes. SWAT uses the Soil Conservations Service (SCS) curve number 

(CN) method to calculate surface runoff. Surface runoff is expressed using the 

equation 3-3 (SCS, 1972): 

http://swatmodel.tamu.edu/
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where S is soil storage or retention, Rday is daily precipitation, and Ia initial surface 

abstraction that includes surface storage, interception and infiltration to moist soil 

surface up to runoff generation, all in mm water (mm H2O). Soil storage or retention 

volume is expressed in terms of curve number CN as in equation 3-4:  

 


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By substituting Ia and S in equation 3-5, surface runoff is expressed as: 
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Surface runoff will occur when the amount of rainfall exceeds the initial abstraction 

and infiltration to the root zone. Therefore, CN is a function of land-use, soil and 

antecedent soil moisture content. These functional relationships and CN values are 

provided in the SWAT manual and user guide (Neitsch et al. 2011).  

The soil bulk density ( b ,) and saturated hydraulic conductivity ( satK ) of a soil play an 

important role in the water movement through the soil profile, and also make water 

accessible for surface runoff and evapotranspiration. The effects of b and satK  are 

explained with the relationships of soil-water constants. Field capacity (FC), available 

soil water content (AWC) and permanent wilting point (WP) are the three constants of 

soil-water content of a given soil that determine water fluxes in the soil profiles. They 

are related in the expression given in equation 3-6: 
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lylyly AWCWPFC                                                          (3–6) 

 

where FCly is the water content of a given soil layer at field capacity, WPly is the water 

content of a given soil layer (ly) at permanent wilting point, and AWCly is the available 

soil water content of the layer, all expressed as a fraction of the total soil volume. 

SWAT estimates PW using equation 3-7: 

 

100

*
*40.0 bc

ly

m
PW


                                                      (3–7) 

 

where mc is the percent clay content (%), and b is the bulk density of the soil layer 

(Mg m-3). Actual water content of the given soil layer is the forcing input of 

percolation. Water percolates to the next layer if the water content of the given layer 

exceeds its field capacity by SWly,excess as expressed by equations 3-8 and 3-9: 

 

lylyexcessly FCSWSW ,
  if  

lyly FCSW                               (3–8) 

0, excesslySW    if  
lyly FCSW                                  (3–9) 

 

where SWly,excess is the drainable volume of water in a given soil layer on a given day, 

SWly is the soil layer water content on a given day, and FCly is the field capacity water 

content of the soil layer on the same day, all in mm water (mm H2O). The amount of 

water that moves from a given soil layer to its underlying layer is calculated using the 

storage routing equation 3–10: 

 

])exp[1(*,,

perc

excesslylyperc
TT

t
SWw


                                             (3–10) 

 

where wperc,ly is the amount of water (mm H2O) that percolates from a given soil layer 

on a given day, t is the length of the time steps (hrs) and TTperc is the travel time of 

percolation in the soil layer (hrs). 
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The travel time of percolation (TTperc) is a function of the saturation water content 

(SATly) in mm H2O, and saturated hydraulic conductivity (Ksat) in mm h-1 of the given 

soil layer as in equation 3-11: 

 

sat

lyly

perc
K

FCSAT
TT


                                                             (3–11) 

 

Water that percolates in the underlying soil layer can flow to the nearby reach as a 

subsurface flow and/or percolates to the next soil layer. Water that percolates from 

the lowest soil layer enters to the vadose zone, i.e., the unsaturated zone between the 

lowest soil layer and the top of the aquifer (Figure 3-1). 

 

Figure 3-1 Schematic representation of hydrologic cycle. 
Source: Neitsch et al. (2011) 

 

A portion of the surface runoff will reach the outlet of large watersheds 

where the time of concentration is greater than one day. The surface storage 

coefficient (SURLAG) in SWAT is incorporated to lag the portion of the runoff for more 

than a day. The portion of the runoff generated that is calculated using the CN 
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procedure and reached at the main channel on a given day is calculated in equation 3-

12: 
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where 
surfQ is the runoff portion discharged to the main channel on a given day (mm 

H2O), '

surfQ is the portion of runoff generated on that day (mm H2O), 
1, istorQ is the 

surface runoff lagged from the previous day (mm H2O), and tconc is time of 

concentration of the sub-watershed (hrs). Time of concentration is the total time 

needed for a drop of rain from the remotest point in the sub-watershed to the reach. 

This parameter consists of time of overland flow-tov, i.e., the time needed to take the 

water upstream to the outlet of the sub-watershed, and time of channel flow-tch, all in 

hours. It is given by equation 3-13: 

 

chovconc ttt                                                                      (3–13) 

 

2. Evapotranspiration: This is a term collectively used for the water in a given 

watershed that is converted to water vapor. It is the interaction of water from soil-

vegetation surface and atmosphere. Evapotranspiration exceeds the runoff generated 

at continental levels (Dingman 1994). Potential evapotranspiration, PET, is defined as 

the amount of water transpired by a green 30-50 cm high alfalfa crop completely 

shading the ground with unlimited soil water supply (Thornthwaite 1948; Jensen et al. 

1990). This amount is the base to calculate actual evapotranspiration of any given day 

for a given land-use and soil water supply. Two of the three methods used by SWAT 

that are used in this study to calculate PET are the Penman-Monteith (Monteith 1965; 

Allen 1986; Allen et al. 1989) and Hargreaves (Hargreaves et al. 1985) methods. The 

Penman-Monteith method uses the parameters solar radiation, maximum and 

minimum air temperature, relative humidity and wind speed to calculate potential 



WATER BALANCE AND MODEL STRUCTURE 

22 

 

evapotranspiration, while the Hargreaves method requires only maximum and 

minimum air temperature. The Hargreaves method can be used in a study area where 

solar radiation, relative humidity and wind speed data are not available.  

The Penman-Monteith method combines energy, aerodynamic and surface 

resistance terms that account for water vapor removal to the atmosphere. It is given 

by the equation 3-14: 
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where E is the latent heat flux density in MJ m-2 d-1, E is potential evapotranspiration 

(PET) rate in mm d-1,   ( )(/)( Tded in kPa °C-1) is the slope of the saturation vapor 

pressure-temperature curve, Hnet is the net radiation in MJ m-2 d-1, G is the heat flux 

density to the ground in MJ m-2 d-1, air is the air density in kg m-3, 
pc  is the specific 

heat at constant pressure in MJ kg-1 1C , o

ze is the saturation vapor pressure of air at 

height z in kPa, ez is the water vapor pressure of air at height z in kPa,  is the 

psychrometric constant in kPa 1C , rc is the plant canopy resistance in s m-1, and ra is 

the diffusion resistance of the air layer or aerodynamic resistance in s m-1. 

The Hargreaves method uses equation 3-15: 

 

)8.17.().(.0023.0 5.0  avmnmxo TTTHE                                          (3–15) 

 

where  is the latent heat of vaporization in MJ kg-1, E is potential evapotranspiration 

(PET) rate in mm d-1, Ho is the extraterrestrial radiation in MJ m-2 d-1, Tmx is the 

maximum air temperature in C , Tmn is the minimum air temperature in C , and avT is 

the mean air temperature in C . Details and relationship of terms given in equations 

3-14 and 3-15 are well described in Allen et al. (1998). 

After PET is calculated, SWAT quantifies the actual evapotranspiration (AET) that is 

composed of surface evaporation and transpiration through plant cells. SWAT first 
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calculates evaporation from the canopy and then evaporation from the soil surface 

and sublimation from snow, if any, at hydrological response unit (HRU) level. All these 

components of the actual evapotranspiration are calculated as a function of PET with 

some additional parameters. For example, SWAT uses leaf area index (LAI) to calculate 

transpiration and a soil evaporation compensation coefficient (ESCO) to adjust the 

evaporative demand distribution through soil depth.  

3. Lateral flow: This is the subsurface water flow for soils with high hydraulic 

conductivity. The saturated soil zone is formed through water that ponds above a local 

impermeable soil layer (perched water). This water is under atmospheric or less 

pressure. SWAT uses the kinematic storage model developed by Sloan and Moore 

(1984) to simulate subsurface flow in a two-dimensional section along a hillslope.  The 

saturated hydraulic conductivity of the soil plays a role in controlling the lateral flow as 

indicated in the equation 3-16: 
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where Qlat is lateral flow discharged at a hillslope outlet on a given day (mm H2O), 

SWly,excess is the volume of drainable water stored in a saturated soil layer for a given 

day (mm H2O), Ksat is saturated hydraulic conductivity of the soil layer (mm h-1), slp is 

slope of the soil layer given by )(tan hill , hill is hillslope segment angle to the 

horizontal, d is the drainable porosity of the soil layer (mm/mm), and Lhill is the 

hillslope length (m). The drainable volume of water stored in a saturated soil layer for a 

given day is calculated as excess soil water from the field capacity as in equation 3-17: 

 

lylyexcessly FCSWSW ,
  if SWly>FCly ; SWly,excess=0                             (3–17) 

 

where SWly,excess is the stored portion of drainable water in a saturated soil layer (ly) for 

a given day (mm H2O), SWly is soil moisture content of a soil layer at on a given day 
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(mm H2O), and FCly is the field capacity soil water content of the given soil layer (mm 

H2O). 

4. Groundwater: This is water in the saturated zone under a pressure higher than 

atmospheric pressure (i.e., positive pressure). Water can join the groundwater system 

by infiltration, percolation or/and seepage from the water bodies. It mainly leaves this 

system by discharge into rivers or water bodies (return flow or baseflow). It can also 

move upward to the unsaturated zone and then evapotranspires through the capillary 

fringe.  

Groundwater in SWAT is divided into two aquifer systems. The first is a 

shallow, unconfined aquifer that contributes return flow to streams (groundwater flow 

or baseflow). The second is a deep, confined aquifer that does not contribute return 

flow to streams inside the watershed. Water is deep percolated into the confined 

aquifer and is assumed lost from the given watershed.  

The time needed to recharge the shallow aquifer through the vadose zone 

through bypass flow or percolation is important to partition water as surface and 

groundwater flow. The hydraulic properties of the geologic formation determine this 

value. SWAT uses an exponential decay weighing function (Sangrey et al. 1984) to 

quantify the time delay of the aquifer recharge. Water passing the soil layer and 

recharging the two aquifers is given by equation 3-18: 

 

1,, ]./1exp[])./1exp[1(  irchrggwseepgwirchrg www                        (3–18) 

 

where wrchg,i is the recharge amount entering the aquifers on i day (mm H2O), 
gw  is 

the groundwater delay time or drainage time of the overlaying geologic formation 

(days), Wseep is amount of water existing at the bottom of the soil profile on day i (mm 

H2O), and wrchrd,i-1 is the recharge amount entering the aquifers on i-1 day (mm H2O). 
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Part of the recharged water is routed to the deep aquifer as in equation 3-19: 

 

rchrgdeepdeep ww .                                                                   (3–19) 

 

where wdeep is the water amount passing to the deep aquifer on a given day 

(mm H2O), 
deep is the aquifer percolation constant, and wrchrg is the recharge amount 

entering the aquifers on a given day (mm H2O). The groundwater delay time, 
gw , and 

the aquifer percolation constant, 
deep , are important parameters (SWAT parameters 

GW_DELAY and RCHRG_DP, respectively) and were used to adjust the water balance 

during the calibration stage of this study. Groundwater delay time is varied with 

respect to depth of the water table and the hydraulic properties of the soil and 

geological structure. It is estimated indirectly by simulation of aquifer recharge of a 

given watershed or optimizing simulation of the groundwater level with measured 

values. Once the GW_DELAY value is calibrated for a given watershed, it can be used 

for other watersheds within similar geomorphic areas (Sangrey et al. 1984). 

GW_DELAY can shift the hydrograph limbs of simulation to adjust lagging curves. 

The Hooghoudt (1940) steady-state ground water response to a given 

recharge is used to quantify baseflow to a given reach (equation 3-20): 
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where Qgw is the baseflow into the given reach on a given day (mm H2O), Ksat is 

saturated hydraulic conductivity of the shallow aquifer (mm day-1), Lgw is the distance 

from the sub-watershed divide to the reach (m), and hwtbl is the water table height (m). 

The groundwater discharge during no recharge time can be simplified as given by 

equation 3-21: 

].exp[., tQQ gwogwgw       if aqsh>aqshthr,q  otherwise Qgw=0                   (3–21) 
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where Qgw,o is the baseflow into the given reach at the beginning of the recession curve 

(mm H2O), 
gw is the baseflow recession constant (vary from 0 to 1) in days, aqsh is 

amount of water stored in the shallow aquifer on a given day (mm H2O), and aqshthr,q is 

the threshold water level in the shallow aquifer for which groundwater starts to 

contribute baseflow (mm H2O). 
gw  and aqshthr,q are important parameters in SWAT 

(ALPHA_BF and GWQMN, respectively). 

Baseflow alpha factor in days (ALPHA_BF) is the baseflow recession constant 

of proportionality between groundwater flow and recharge changes to the aquifer 

(Smedema and Rycroft 1983). ALPHA_BF varies from 0.1 to 0.3 for watersheds that 

respond slowly to groundwater change and from 0.9 to 1.0 for fast response 

watersheds. It can be estimated by analyzing the recession curve of the measured 

discharge hydrograph of a watershed during the no-recharge period.  

If the water table in the shallow aquifer exceeds GWQMN, baseflow to a 

reach has occurred, otherwise there is no baseflow. Altering this value can control the 

amount of water fluxes to baseflow directly, and to AET as “revap” flow indirectly. That 

means that increasing GWQMN can decrease baseflow, and vice versa. 

When the overlying soil surface is dry and the underlying layer is wet, water 

will diffuse upward and evaporate. Water is also removed from the shallow aquifer by 

deep-rooted plants. SWAT models this removal; the process is called “revap”. It occurs 

only if the water content in the shallow aquifer exceeds a certain revap threshold level 

during a dry period. The maximum amount of water that can pass through the revap 

process is given by equation 3–22: 

 

Ew revmxrevap .,                                                         (3–23) 

 

where wrevap.mx is the maximum amount of water moving into the soil zone (mm H2O), 

rev is the revap coefficient (GW_REVAP in SWAT), and E is the potential 

evapotranspiration (PET) of the given day (mm H2O). The actual amount of revap is 

then calculated as in equation 3–24: 
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rvpshthrmxrevaprevap aqww ,,      if aqshthr,rvp>aqsh<(aqshthr,rvp+wrevap,mx) 

wrevap=wrevap,mx         if                      aqsh>(aqshthr,rvp+wrevap,mx)                                 

Otherwise, wrevap  = 0                                                                 (3–25) 

where wrevap is the actual amount of water moving into the soil zone (mm H2O), aqsh is 

the amount of water stored in the shallow aquifer for a given day (mm H2O), and 

aqshthr,rvp  (REVAPMN in SWAT) is the threshold water level in the shallow aquifer for a 

revap to take place (mm H2O).  

GW_REVAP is a coefficient that governs revap flow. There is no revap flow if 

GW_REVAP is zero and revap is equal to PET when its value is 1.0. GW_REVAP varies 

from 0.02 to 0.20. 

5. Channel flow:  Effective hydraulic conductivity in the main channel alluvium 

(mm/hr) (CH_K(2) in SWAT) controls the amount of water lost or gained within a given 

reach according to whether the type of the reach bed materials is effluent or influent. 

Values of CH_K(2) as initial condition for different bed materials are given in Lane 

(1983); they can also be obtained during calibration of SWAT. The SWAT parameters 

discussed above are listed in Table 3-1. 

Table 3-1 SWAT parameters used for calibration  

 Parameter Code Description 

1 CN2 Initial SCS curve number value for moisture condition 2  
2 ALPHA_BF Baseflow alpha factor  
3 SOL_AWC Available water capacity 

4 SOL_K Saturated hydraulic conductivity  
5 RCHRG_DP Deep aquifer percolation fraction  
6 GWQMN Threshold water depth in the shallow aquifer for flow  
7 GW_REVAP Groundwater revap coefficient 
8 REVAPMN Threshold water depth in the shallow aquifer for revap  
9 ESCO Soil evaporation compensation factor  

10 GW_DELAY Groundwater delay  
11 SURLAG Surface runoff lag coefficient  
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4 WATER USE AND PRODUCTIVITY OF SMALL-SCALE IRRIGATION SCHEME 

4.1 Summary 

In Ethiopia, irrigation is mainly implemented in small-scale irrigation schemes, and 

these are often characterized by low water productivity. This part of the study analyzes 

the efficiency and productivity of a typical small-scale irrigation scheme in the 

highlands of the Blue Nile, Ethiopia. Canal water flows and the volume of irrigation 

water applied were measured at field level. Grain and crop residue biomass and grass 

biomass production along the canals were also measured. To triangulate the 

measurements, irrigation farm management, effects of water logging around irrigation 

canals, farm water distribution mechanisms, effects of night irrigation, and water 

losses due to soil cracking created by prolonged irrigation were closely observed. The 

average canal water loss from the main, secondary and field canals was 2.58, 1.59 and 

0.39 l s-1 100 m-1, representing 4.5, 4.0 and 26% of the total water flow, respectively. 

About 0.05% of the loss was attributed to grass production for livestock, while the rest 

was lost through evaporation and canal seepage. Grass production for livestock feed 

had a land productivity of 6190.5 kg ha-1 and a water productivity of 0.82 kg m-3. Land 

productivity for straw and grain was 2048 and 770 kg ha-1, respectively, for tef, and 

1864 kg ha-1 and 758 kg ha-1, respectively, for wheat. Water productivity of the crops 

varied from 0.2 to 1.63 kg m-3. A significant volume of water was lost from the small-

scale irrigation systems mainly because farmers’ water application did not match crop 

needs. The high price incurred by pumped irrigation positively affected water 

management by minimizing water losses, and forced farmers to use deficit irrigation. 

Improving water productivity of small-scale irrigation requires integrated interventions 

including night storage mechanisms, optimal irrigation scheduling, and empowerment 

of farmers to maintain canals and to have proper irrigation schedules.  

 

4.2 Introduction  

Ethiopia, where recurrent drought affects agriculture, has 12 river basins and 19 

natural lakes (see section 2.4). The mean annual surface water flow in Ethiopia is 

estimated at 122 km3 (MCE 2001; MoWR 1999), and the potential irrigable land is 
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reported to be about 3.7 million ha. Despite the huge potential of water and land 

resources, only 5% was actually under irrigation (Awulachew et al. 2005). In view of 

the increasing population and the corresponding demand for food, improvement of 

irrigation water management and intensification of agricultural practices are 

important. This has triggered the Ethiopian government to embark on developing 

small-scale irrigation schemes (Awulachew et al. 2007; MoFED 2006; Lambiso 2005). 

Different studies (e.g., Turner 1994; Vincent 1994; 2003) have advocated that more 

emphasis needs to be placed on the design, implementation, performance and 

hydrology of small-scale irrigation schemes. On the other hand, investments in large-

scale irrigation schemes have often failed with regard to their anticipated performance 

(Faulkner et al. 2008). According to MoWR (1999) small-scale irrigation schemes are 

defined as those covering less than 200 ha. These constituted 67.5% (5718.7 ha) of the 

irrigated area in Amhara National Regional State. 

In the mixed farming systems of sub-Saharan Africa in general, and of 

Ethiopia in particular, irrigation farming produces large amounts of livestock feed in 

the dry season. The feed includes grasses growing near the canals and the field borders 

as well as crop residues. Crop residue accounts for 60% of the annual feed in the study 

area (Descheemaeker, personal communication, 2010). Therefore, in mixed farming 

systems, it is crucial to consider water productivity of irrigation water with respect to 

both food and feed production. 

Studies in different parts of the world have evaluated and monitored 

irrigation performance using adequacy, efficiency, dependability and equity as 

indicators (Molden and Gates 1990; Molden et al. 1998; Unal et al. 2004). All these 

performance indicators are based on the water balance of the system and were used 

to identify spatial and temporal trends. According to Unal et al. (2004), performance 

evaluation is used to assess the impact of interventions, to diagnose constraints, to 

understand factors that increase performance, to compare performance both within 

and outside the studied irrigation system, and to improve the irrigation system’s 

overall productivity. Perry (1996) also conceptualized the components of the water 

balance in agricultural systems in terms of inflows (as canal/diverted supplies and 
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rainfall) and outflows (as crop transpiration, non-beneficial evaporation, drainage, and 

net groundwater flow) and their interactions. 

Data on the performance of small-scale irrigation schemes are scarce in 

Ethiopia in particular (Awulachew et al. 2007) and in Africa in general (Faulkner et al. 

2008). This study was designed to establish water depletion and food and feed water 

productivity, and in order to assess which, where and when interventions could be 

applied to improve the water productivity of such schemes. Therefore, the objectives 

of this study were:  

(i) To quantify irrigation water loss and water needed and used to produce 

biomass, 

(ii)   To quantify feed and food water productivity, and  

(iii) To identify opportunities for improving irrigation efficiency and 

productivity. 

4.3 Materials and methods  

4.3.1 Study area  

The study area, the Guanta small-scale irrigation scheme, is located in the 

highlands of the Blue Nile basin 11◦50´N and 37◦39´E at 1797 m asl in Ethiopia (Figure 

4-1; Figure 2-1). It was selected based on accessibility, representativeness of small-

scale irrigation in the study watershed, and availability of information. A stone 

masonry diversion structure and a 1555 m main canal (conveying water from the 

diversion) were constructed by the local government in 2001; 850 m of the main canal 

and 1341 m of the secondary canal conveying water from the main canal were not yet 

lined. The layout of field canals (conveying water from the secondary canals to the 

individual fields) varied from time to time, and it was difficult to map them. Other land 

units in the scheme were drainage basins and wetlands. Drainage basins were 

enclosed gully-like natural flood basins during the main rain rainy season. Farmers 

released excess irrigation water to these basins after irrigating their plots. On the other 

hand, wetlands were irrigated lands in the first years of the scheme. These land units 

were changed to wetlands due to the overflow of water from the secondary canals and 
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drainage basins. In 2009, the irrigation scheme had an area of 90 ha, of which 21 ha 

were covered by pump irrigation at the upstream side of the main canal.  

 

Figure 4-1 Location of Guanta and other small-scale irrigation schemes in 
Gumara watershed 

 
 A Water Use Association (WUA) was formed, and rules for water price, 

canal maintenance, and water allocation were established with the help of the 
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government. However, no rules were functional. The canals were not maintained on 

time. Water allocation was done randomly mainly through agreements among some 

influential and wealthy farmers. In an in-depth analysis, Deneke et al. (2011) reported 

on the effect of group/village power on water allocation, lack of transparency in 

scheme boundaries and land redistribution, rule enforcement mechanisms, and theft 

and corruption with respect to water allocation.  

 

Figure 4-2 Average monthly rainfall (mm), monthly potential 
evapotranspiration (PET) (mm), daily maximum temperature 
(Tmax) and minimum temperature (Tmin) (◦C) for Guanta irrigation 
scheme (1991-2009).  

(weather data from nearby climatic station in Bahir Dar, (11°35´N, 37°23´E; 1798 m asl) and Woreta (14°40´N, 37°42´E; 1825 m 
asl). 

 

The main soil types in the scheme were Eutric Fluvisols and Eutric Vertisols 

(MoWR, 2008). Soil samples were taken at 0-50 cm and 50-100 cm depths for 

laboratory analysis and average soil characteristic values of each soil type were 

reported (MoWR 2008). The mean annual rainfall over the period 1991-2009 was 1248 

mm, and mean maximum and minimum daily temperatures were 27 °C and 12 °C, 

respectively. Climate data were obtained from the nearby meteorological stations at 

Bahir Dar and Woreta (Figure 4.2).  
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Figure 4-3 Guanta small-scale irrigation scheme, highlands of the Blue Nile 
Basin, Ethiopia.    

‘Ms’ shows the position of the canal discharge measurement stations. 

Farmers at the study site have mixed crop-livestock production systems. The 

average livestock holding was 3.2 TLU (tropical livestock unit, where 1 TLU is 250 kg 

live weight) per family, and the stocking rate was 2.3 TLU per ha (Descheemaeker, 

personal communication, 2010). There is a severe feed shortage in the flooded period 

of the main rainy season (Haileslassie et al. 2009b) when farmers commonly store crop 

residue to feed their livestock. Rice (Oryza sativa), finger millet (Eleusine coracana), 

Maize (Zea mays) and tef (Eragrostis tef) were the main crops cultivated during the 

rainy season (June to September). After harvesting rice, rough pea (Lathyrus hirsutus) 

and chick pea (Cicer arietinum) were grown between October and December using the 

residual soil moisture. Onion (Allium cepa) was the main irrigated crop in the dry 

season (from January to May). Other crops like emmer wheat (Triticum dicoccum), 

called wheat hereafter, tef, maize and tomato (Lycopersicon esculentum) were of 

secondary importance in the irrigation scheme (Figure 4-3 and Table 4-1). The cropping 
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pattern in the irrigation scheme strongly depended on the availability of water and the 

market price. Thus, the farmers’ decision on what crop type and when to grow was 

based on their evaluation of the market conditions at harvest time. For example, in 

2009 farmers opted for wheat (low yielding and high market valued variety) due to the 

fear of market failure for onions as occurred in the previous year (data not given). Tef 

is a special crop in Ethiopia accounting for 25% of the cereal production and 66% of the 

protein in the national diet (NAS 1996). In addition, tef has soft, nutritious and palatable 

straw for use a livestock feed. 

Table 4-1 Land-use in Guanta small-scale irrigation scheme in 2009 irrigation 

season (January to June).  

Crop or land-use type Area (ha) % 
Emmer wheat 9.92 11.0 
Maize 0.41 0.5 
Onion 71.31 79.2 
Rough pea-maize 0.97 1.1 
Tef 6.29 7.0 
Tomato 0.87 1.0 
Wetland 0.28 0.3 
Total 90.03 100.0 
Maize* 22.90 25.4 

*Maize planted as a relay crop in onion fields before onion harvest 

 

A short-maturing tef variety (locally called Bukri and harvested within 47 

days) was used by farmers during this study. About 79% of the scheme was covered by 

onion, 18% by wheat and tef, and 2% by grasslands around canals and wetlands during 

the 2009 irrigation season. About 25% of the scheme was covered by maize as a relay 

crop with onion. After the onion was harvested, the maize crop used the rain of the 

wet season until its maturity.  

4.3.2 Sampling and data collection  

The fields, wetlands and canals of the scheme were mapped before determining the 

number and position of the sampling points. A Garmin e-trax Geographical Positioning 

System (GPS) and Satellite Pour l’Observation de la Terre (SPOT) satellite imagery from 

Google Earth (www.googleearth.com) were used to locate the study plots and to 

formulate a land-use map of the scheme. Wetlands and drainage basins (Figure 4-4) 

http://www.googleearth.com/
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were delineated and their dimensions were measured. Irrigation canals were 

characterized as main (Figure 4-5), secondary or field canals. All fields were 

characterized as fed either by pump or gravity irrigation. Unlined main and secondary 

canals had average grassland borders of 6.6 m width (range 2.5-10.2 m). Throughout 

the irrigation season (January to May), canal layout, canal maintenance, water 

distribution and water availability across the command area of the scheme were 

monitored and mapped. Informal surveys were conducted using participatory rural 

appraisal tools, particularly informal group and individual discussions, to understand 

the major causes of water shortage and water loss, and upstream-downstream 

complexities from the perspective of local farmers. 

 

Figure 4-4 Drainage basin (left) and wetland (right)  
 

To estimate biomass production, 11 irrigated fields (4 wheat fields, 3 onion 

fields and 4 tef fields) were selected to represent the major crops cultivated in the 

scheme and to represent spatial distribution. At each selected field, a plot of about 400 

m2 was delineated and pegged, and the amount of applied water was measured (as 

described later) for each irrigation event from planting to harvesting. Crop biomass 

samples were taken at harvest time from three 1-m2 plots distributed along the central 

line of each plot of tef and wheat. One of the wheat fields was very large, and half of it 

missed one irrigation event. Therefore, six sample plots were taken from this field to 

address the farm size and irrigation variation within the field, i.e., a total of 15 sample 

plots for wheat. Onion biomass was taken from 5-m furrow segments at 24 positions in 

each field from two gravity-irrigated fields and at 12 positions from one pump-irrigated 

field with a total of 60 sample furrow segments. Four fields were selected for 
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collection of data on maize relay cropping; however, the crop was destroyed by hail on 

1 July 2009. Grass biomass, dominated by Cyprus rotundus and Cynodon dactylon, was 

sampled in ten 1-m2 plots along canals and within wetlands. During the irrigation 

season (about 120 days), the grass was repeatedly mowed on the sample plots (32 

samples from canal boundaries, 38 samples from drainage basins, and 14 samples 

from wetlands) when grass height reached about 0.2 m. Each sample was dried to 

constant weight, and grain, straw and grass biomass production determined using a 

0.001-kg sensitive balance. Crop residue production from grass, wheat and tef 

(covering about 20% land of the scheme) was calculated. Based on an assessment 

study on TLU-dry matter (DM) need by FAO (1993), 8.5 kg DM per TLU per day was 

used to quantify the number of TLU that could be fed during 60 days, assuming a high 

feed shortage due to flooding for the whole main rainy season. 

 

Figure 4-5 Grass production along main canal (left), Replogle-Bos-
Clemmens flume (center) and cutthroat flume (right) 

 
Canal flow measurements were taken at two points of a canal (100 m apart) 

to determine the amount of water lost through evaporation and seepage using inflow-

outflow methods as described below. Continuous manual recordings of water levels 

were done twice monthly for four months, and every measurement took five hours. 

Replogle-Bos-Clemmens (RBC) flumes (Clemmens et al. 1984) were used to measure 

field canal loss and amount of water used to irrigate farm plots at every event 

throughout the irrigation season. Cutthroat flumes (Skogerboe et al. 1973) of 0.91 m 

length and 0.41 m width were used to measure the water flow in the main and 

secondary canals (Figure 4-5). Manual water levels measured with the cutthroat 

flumes were transformed to flow rates using theoretical rating equations according to 

the manufacturer’s manual (Eijkelkamp, undated). Although field installation and 
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construction errors are always present, the flumes used for this study were selected 

for their greater accuracy (Clemmens et al. 1984; Eijkelkamp, undated; Skogerboe et 

al. 1973) compared to other methods, such as Parshall flumes or the ponding method. 

 

4.3.3 Data preparation and analysis 

Potential evapotranspiration (PET) and crop water requirements were calculated using 

the Penman-Monteith and crop coefficient procedures described in Allen et al. (1998). 

The database was formulated to use this procedure in order to minimize the 

uncertainty of the Bahir Dar station data. Therefore, rainfall and temperature data 

from Woreta and relative humidity, wind speed and sunshine hours from Bahir Dar 

meteorological stations were used to calculate reference evapotranspiration. 

The water balance of irrigated fields was calculated using the water balance 

equation (4-1) for the growing season at field level. 

 

    (         )                                       (4–1) 

 

where ∆SM is the change in soil moisture content before the first irrigation 

and after harvest, Peff  is effective rainfall, I is total irrigation water applied, AET is 

actual evapotranspiration, D is drainage loss, and Qr is capillary rise.  

All quantities were defined within the same time domain (growing period) 

and units (mm H2O). Total irrigation need was computed using climate, crop and soil 

data with FAO CROPWAT version 8.0 (FAO, 2009). ∆SM was calculated as the 

difference between soil moisture content before the first irrigation and soil moisture 

content after harvest. Soil moisture data were determined using a gravimetric method 

with dry bulk density data adopted from MoWR (2008). Peff was calculated using the 

empirical formula of the United States Department of Agriculture’s Soil Conservation 

Service. It was selected from the three options found in CROPWAT 8.0 software as it 

was developed for long-term climatic and soil moisture data (FAO 1978). Actual 

evapotranspiration (AET) was calculated by multiplying the crop coefficient, Kc, with 

the water stress factor, Ks. Ks is a function of total available water, TAW, readily 
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available water and root zone depletion. It was estimated from the daily water balance 

computation (Allen et al. 1998). The crop parameters crop growth stages, allowable 

depletion factor and rooting depth were adopted from Allen et al. (1998). Length of 

cropping season was taken from the field data. Since tef is a local crop where these 

important parameters are not given in the literature, grass values were adopted. Grass 

Kc values are also almost similar to average values of cereal crops. The crop coefficient 

for the grasslands around canals, drainage basins and wetlands was formulated using 

the mean values of legumes and grasses previously reported (Haileslassie et al. 

2009a;b). Drainage loss was calculated as the sum of irrigation water that was applied 

above field capacity at every irrigation event. It should be noted that drainage loss 

here is not the difference between irrigation water applied and irrigation water 

required. Capillary rise was not considered, as the groundwater table was more than 2 

m deep (Allen et al. 1998; MoWR 2008). Soil physical characteristics, such as bulk 

density and TAW content, were adopted from MoWR (2008), as the data were 

generated from the same scheme. Field capacity was calculated from TAW and root 

depth. 

Canal or conveyance loss (in l s-1 100 m-1 canal length) was calculated as 

presented in equation 4-2 using the inflow-outflow method.  

 

                                               (4–2) 

 

where Qin is water flow rate at the upper side of 100-m long canal segment 

(measured), and Qout is water flow rate at the lower end of 100-m long canal segment 

(measured). 

Canal water loss was calculated as the percentage of conveyance loss to the 

average of Qin and Qout within 100-m canal segments. From field observations, data on 

total canal length and water loss per 100 m, an average of 30 l s-1 water was reached at 

the end of the secondary canals and distributed to many field canals at the same time. 

Therefore, measured canal loss was calculated based on this 30 l s-1 for comparison. 

outin QQlossConveyance 
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Water productivity along canals and in irrigated fields was calculated using 

equations 4-3 and 4-4: 

                              
                   

                            
 

              (4–3) 

                       
                   

                                     
 

        (4–4) 

 

Irrigation and actual ET water productivity were calculated for both grain and 

dry straw biomass using two approaches. The traditional approach considered all the 

water supplied by irrigation and depleted by AET to compute grain or straw (but not 

for both) biomass water productivity. A new approach (Haileslassie et al. 2009a;b) used 

the water supplied by irrigation and depleted by AET for all biomass (both grain and 

straw) production. Therefore, yield of the system at the numerator side of the water 

productivity equations is larger than the traditional way of calculation. This can reflect 

the real situation in the farming system that both straw and grain were produced using 

the same AET water and that both were important for feed and food, respectively. 

Both approaches, hereafter termed as “traditional” and “new” water productivity, 

were used for comparison purposes.  

Relative water supply (RWS), a performance indicator, was calculated using 

equation 4-5 taken from Levine (1982). It is the ratio of total water supplied by 

irrigation (I) and rainfall (P) to total water demanded by crop (i.e., actual crop 

evapotranspiration, AET).  

    
   

   
 

                                                          (4–5) 

 

RWS was calculated for the growing season for selected crops for both gravity 

and pump irrigation.  

After the field data had been processed using the above procedures, 

statistical analysis was conducted using descriptive statistics, one-way analysis of 
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variance, which compares groups sample means with one factor at a time (SPSS Inc. 

2007), for the 3 crop types, and t-test for gravity and pump irrigation types. Means 

were compared using the least significant difference test at significance level p ≤ 0.05. 

 

4.4 Results  

4.4.1 Water loss and grass production around canals and wetlands 

The highest water loss rate in l s-1 100 m-1 was from the main canal while the lowest 

was from field canals (Table 4-2). The highest daily volume of water was lost from the 

field canals when a 30 l s-1 flow rate was assumed for all canal types. Calculations of 

the loss for the total flowing rate (30 l s-1) showed that about 26% of the water in the 

field canals was lost. This loss was much lower for the main and secondary canals at 

4.49% and 4.00%, respectively (Table 4-2).  

 Grasslands and wetlands were part of the irrigation scheme and 

consumed irrigation water while producing biomass. The grasslands produced grass 

biomass using seepage water from the canals. Wetlands were formed under the 

influence of excess drainage water, and freely released water from the irrigated fields. 

Wetlands and drainage basins were not observed in the motor pump irrigation area. 

The ET water productivity of grassland varied with farm position from 0.4 to 1.2 kg m-3, 

which was below the productivity of the rain-fed wetlands (Table 4-3). The grassland in 

the drainage basin was the most productive, while the wetland showed the lowest 

productivity. Land productivity was quite high, ranging from 3000 to 9000 kg ha-1 

(Table 4-3). Although grass production can be considered as a productive use of the 

water lost through canal seepage, only about 0.05% of the water lost from the canals 

was actually used for grass production. The other part was lost through canal storage, 

deep drainage, water surface evaporation and flow back to the river system. 
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 Table 4-2 Canal water losses due to water surface evaporation and seepage 

from Guanta small-scale irrigation scheme 

Canal type N† 

Average 

flow rate 

(l/s) 

Std. 

Error 

Loss 

(l/s/100m) 

Std.  

Error 

% loss  

(100 

m−1)‡ 

Std. 

Error 

% loss/ 

100m/30l/s 

Main canal 121 43.2
a
 0.4 2.4

a
 0.4 6.5

a
 1.0 4.5

b
 

Secondary 

canal  

57 33.0
b
 0.7 1.6

b
 0.6 4.4

b
 2.2 4.0

b
 

Field canal 49 2.9
c
 0.3 0.4

c
 0.3 2.5

c
 12.9 25.9

a
 

†Number of observations 
‡Percentage with respect to the seasonal average flow rate within each canal type 
Values indicated by different superscript letter (a, b, and c) are significantly different at p ≤ 0.05 
 
 

Table 4-3 Seasonal water productivity and land productivity of grasslands 

along earthen canals, in drainage basins, and in wetlands in Guanta irrigation scheme 

for the 2009 irrigation season 

 Seasonal water productivity (kg m-3) 

 

 

Seasonal land productivity (kg ha-1) 

 

 
 

Canal 

boundaries† 

Drainage 

basin‡ Wetland§ 

Canal 

boundaries† 

Drainage 

basin‡ Wetland§ 

N† 32 38 14 32 38 14 

Total area (ha) 1.19 0.34 0.28 1.19 0.34 0.28 

Mean 0.8b 1.2a 0.4b 6225.9b 9207.4a 3174.2b 

Std. Error 0.1 0.1 0.1 641.9 1031.8 654.8 

Literature values  

(Haileslassie et al. 2009b) 0.5-0.65 0.61-0.79 1835-2386 3326-3866 

†Grassland along canals; ‡wetland due to drainage water; •wetland due to overflow of irrigation water; †number of 
biomass samples. Values indicated by the different superscript letter (a, b, and c) are significantly different at p ≤ 0.05. 

 

4.4.2 Comparative performance 

Relative water supply, reflecting the availability of water in relation to crop demand, 

was 1.04 and 1.18 for wheat and onion, respectively (Table 4-4), indicating that the 

total water applied was similar to the crop needs. With a significantly different RWS 

value of 4.1, the average water applied for tef was four times (up to seven times in 

some plots) higher than the requirements. Tef had a much higher variation in RWS as 

compared to wheat and onion (p ≤ 0.05.) 

Relative water supply was significantly lower (p ≤ 0.05) for motor pump than 

for gravity irrigation. Values were 0.5 and 1.35 under pump and gravity irrigation, 
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respectively, for onion. Wheat and tef were not planted in either gravity or pump 

irrigation types, thus a comparison was not possible. This indicates that farmers under-

irrigated their farms when using pumps and over-irrigated when using gravity 

irrigation. 

Table 4-4 Relative water supply for different crops and irrigation types 

Parameter Type N† Mean Std. Error 
Relative Water Supply (-) 

 

 

Wheat 4 1.0b 0.1 
Onion 3 1.2b 0.1 
Tef 4 4.1a 0.6 

Relative Water Supply (-) Pump 5 0.8b 0.1 
Gravity 6 1.9a 0.2 

†Number of observations. 
Values indicated by different superscript letter (a and b) are significantly different at p ≤ 0.05 

 

4.4.3 Crop production and productivity 

The productivity analysis revealed that grain biomass yield for tef and wheat 

was very similar at 770 and 759 kg ha-1, respectively, whereas straw yield was slightly 

higher for tef at 2048 kg ha-1 compared to 1864 kg ha-1 for wheat (Table 4-5). The 

onion yield was 5903 kg ha-1. Water productivity was higher for onion than for the 

cereals. On the other hand, irrigation water productivity (IWP) of crops was lower than 

evapotranspired water productivity (EWP) due to irrigation water application losses for 

both water productivity approaches for all crops, and for grain/bulb and crop residues. 

Due to high application losses, onion and tef had statistically similar EWP but 

statistically different IWP. Conventional IWP ranged from 0.18 to 1.39 kg m-3, while 

improved IWP ranged from 0.68 to 1.78 kg m-1 (Table 4-5). 

In addition to RWS, a comparison of the amount of irrigation water applied to 

the amount of crop water needed showed that the total amount of irrigated water did 

not match that needed by the crops, especially for tef. The water input was much 

higher than the evapotranspiration water requirement. The irrigation water 

requirement and water application varied greatly among the selected crops. The 

irrigation water requirements of the crops were significantly different (p ≤ 0.05), but 

farmers applied almost equal amounts of water for wheat and onion. As a result, a 

strong variation (p ≤ 0.05) in irrigation water losses (ranging from 0 to 78% of the 
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required water) due to over-irrigation was observed between the crop types (Table 

4-6). Wheat was not irrigated beyond field capacity, and no irrigation loss was 

observed. Farmers irrigated wheat and tef two to three times in the growing season, 

while onion was irrigated seven to eight times. The short-maturing tef variety can 

produce grain and straw within 47 days, requiring the lowest irrigation water amount. 

However, farmers applied most water to tef fields resulting in the highest water loss 

(78% of the required water or 30% of the applied water was lost through drainage). 

Thus, the lowest irrigation water productivity was observed here (table 4-6). The high 

water application for tef was due to the flood irrigation method and crack formation at 

each irrigation event. 

Table 4-5 Yield and water productivity of main crops in Guanta irrigation 

scheme 

 Crop type N† Mean Std. Error 

Grain/bulb yield  

(kg ha
-1

) 

 

 

Wheat 15 758.7
b
 60.9 

Onion 60 5903.0
a
 352.1 

Tef 12 770.8
b
 56.7 

Straw biomass yield  

(kg ha
-1

) 

 

 

Wheat 15 1864.0
a
 210.4 

Tef 12 2048.3
a
 170.0 

Conventional straw EWP  

(kg m
−3

)‡ 

 

Wheat 15 0.8
b
 0.1 

Tef 12 1.1
a
 0.1 

Conventional grain/bulb EWP 

(kg m
−3)

 

Wheat 15 0.3
b
 0.04 

Onion 60 1.5
a
 0.09 

Tef 12 0.4
b
 0.03 

Conventional straw IWP  

(kg m
-3

 )§ 

 

 

Wheat 15 0.5
a
 0.05 

Tef 12 0.5
a
 0.10 

Conventional grain/bulb IWP 

(kg m
-3

) 

 

 

Wheat 15 0.2
b
 0.02 

Onion 60 1.4
a
 0.09 

Tef 12 0.2
b
 0.03 

Improved rain/bulb/straw 

EWP (kg m
-3

) 

 

 

Wheat 15 1.2
b
 0.13 

Onion 60 1.8
a
 0.10 

Tef 12 1.5
a
 0.10 

Improved grain/bulb/straw 

IWP (kg m
-3

) 

 

 

Wheat 15 0.7
b
 0.07 

Onion 60 1.6
a
 0.11 

Tef 12 0.7
b
 0.12 

†N: number of observations; ‡EWP: evapotranspired water productivity; •IWP: irrigation water productivity 
Values indicated by different superscript letter (a and b) are significantly different at p ≤ 0.05 
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Table 4-6 Irrigation water application and requirement for different crops in 

Guanta irrigation scheme 

 

Irrigation water applied (mm) Irrigation requirement (mm) Drainage loss (% of requirement) 

Wheat Onion Tef Wheat Onion Tef Wheat Onion Tef 

No. of 

cases 4 3 4 4 3 4 4 3 4 

Mean 388.9b 484.3b 541.2a 370.6b 452.0a 143.3c 0.0c 17.1b 77.8a 

Std. Error 19.1 21.4 82.5 2.0 4.2 4.0 0.0 0.8 11.4 

Values indicated by different superscript letter (a, b, and c) are significantly different at p ≤ 0.05 

Farmers at the upstream side of the gravity-fed scheme invested in motor 

pumps, fuel and technicians to pump water to their fields. Farmers with land but 

without pumps shared half of their produce with those providing pumped water. 

However, water from gravity irrigation was free. As a result, strong differences in 

amounts of applied water were observed for pump and gravity irrigation (Table 4-7). 

Even though crops needed similar amounts of water independent of whether they 

were irrigated by pump or gravity (a small difference was observed due to difference in 

crop type and plantation and harvest time), farmers applied more water to gravity-

irrigated crops than to pump-irrigated. Consequently, pump-irrigated crops were 

under-irrigated while gravity-irrigated crops were over-irrigated (Table 4-7). Even 

though there was overall under-irrigation during pump irrigation, in some cases excess 

water was applied above soil field capacity. As such, about 3.4% of the applied water 

or 2.5% of the required water was lost due to drainage. 

 

Table 4-7 Irrigation water application and requirement for pump and gravity 

irrigation  

 Irrigation water applied 

(mm) 

Irrigation water 

requirement (mm) 

Drainage loss (% 

of requirement) 

  Pump Gravity Pump Gravity Pump Gravity 

No. of cases 5 6 5 6 5 6 

Mean 309.2
b
 550.6

a
 429.1

a
 380.2

a
 2.5

b
 31.6

a
 

Std. Error  20.4 19.8 12.9 15.7 0.6 3.8 

Values indicated by different superscript letter (a and b) are significantly different at p ≤ 0.05 
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Discussions with farmers revealed that there was an increasing irrigation 

water demand (data not presented). The diversion and main canal capacity was 

designed for 46 ha. However, about 20 ha of additional farmland were included by the 

farmers at the tail end of the scheme. In addition, farmers in the upstream irrigated 21 

ha of land using motor pipes, which was not originally part of the scheme. Increasing 

water demand by both upstream and downstream communities aggravated the water 

shortage leading to prolonged irrigation intervals. As a result, the soil was deeply 

cracked in many locations, leading to high losses of irrigation water due to water 

percolation through the cracks. 

 

4.5 Discussion  

The results of this study indicate that irrigation cost had implications for water 

management decisions and variations in water productivity. Production costs 

associated with pump irrigation forced farmers to save water and to maintain canals 

frequently, which were evidenced by the absence of water draining away from the 

fields. Farmers minimized water losses by using deficit irrigation and by transferring 

water immediately to the next plot. On the other hand, over-irrigation and high water 

losses were observed on fields irrigated by gravity-fed water. In this part of the 

irrigation scheme, farmers were reluctant to maintain canals appropriately, and water 

was released to the drainage basin in spite of the high water need at the tail. The 

difference in water requirement for the same crop came from differences in planting 

and maturity time in different fields. 

 

4.5.1 Irrigation water losses and shortage 

Higher small-scale irrigation canal water losses were observed in this study when 

compared to the findings of Akkuzu et al. (2007), who reported an average loss from 

lined field canals of about 9.3% and 1.1% loss from lined secondary canals in Turkey at 

a similar flow capacity (30 l s-1). Bakry and Awad (1997) reported 0.17 to 0.70% losses 

per 100 m canal in Egypt for a canal capacity of 2000 to 12 100 l s-1, which was also 

lower than the findings in this study. Here the canal water loss was highest from the 
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main canal due to its higher capacity (43.21 l s-1) and proximity to the riverbank as 

compared to the other canal types. Expressed as percentage of the water flow capacity 

of the canals, the canal loss was highest for the field canals, since these were 

destroyed during tillage, so that the canal banks were not stabilized like the main and 

secondary canals. The negative impact of seepage on production was more 

pronounced in the case of field canals, as it led to more water logging than the 

seepage from other canals. 

In addition, the field canal network covered the largest area in the scheme. 

Farmers preferred field canals because they allowed them to keep their plot sizes. 

Apart from high seepage losses, field canals dried and cracked before the next 

irrigation event. Field canals overtopping during night irrigation was common and 

increased water logging and unmeasured canal water loss. These factors resulted in 

high irrigation water loss, water logging and production losses. Therefore, large 

farmlands within 8-15 m from the field canals were out of production. Although 

farmers thought secondary canals occupied more land than field canals, in practice 

field canals rendered more land unproductive and resulted in higher water losses than 

secondary canals. The total volume of water lost from the 3077-m long canal system 

(comprising all canal types) could have irrigated 9 ha of land at 50 mm irrigation depth 

per day for the irrigation season. 

The increasing water demand due to the extension of tail and pump irrigation 

have made management of the irrigation water more complicated. The duration of the 

irrigation intervals increased, which resulted in crop water stress and cracks in the 

vertic soils. In addition, due to decreased canal flow capacity, the time needed for 

sufficient irrigation increased, and farmers were forced to conduct nighttime irrigation, 

resulting in large losses due to inefficiency and unpredicted canal flow rate during the 

night. 

Water was a more constraining factor than land around the scheme during 

the irrigation season. Ample downstream plain land was out of production six months 

a year (December to June). On the other hand, water from night stream flow, springs 

and shallow groundwater was still not used properly. Night water storage will increase 
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water use efficiency. It is possible to use the stream bank for this temporary storage. A 

simple profile leveling survey of the Guanta stream bank showed great potential for 

night water storage (up to 20 000 to 45 000 m3), which could be used during the day. 

Farmers invested about 50% of their produce in kind for pump irrigation, with an 

increasing trend of pumping activities. 

However, because of higher production costs, pump irrigation typically 

resulted in lower financial water productivity than downstream gravity irrigation. This 

means that there is a greater possibility to improve water productivity in downstream 

gravity irrigation than in upstream pump irrigation. 

The variation in RWS indicates that more water was lost for tef and under 

gravity irrigation. Values ranged from 0.8 to 4.0, where 0.8 indicates deficit irrigation 

to maximize water productivity (Molden et al. 1998). In a public surface irrigation 

scheme in Mexico, RWS was higher than 2.0 and showed differences with respect to 

water access and water cost (Kloezen and Garcés-Restrepo 1998). Compared to the 

above study that used RWS at scheme level, RWS for tef was extremely high. 

 

4.5.2 Production and productivity   

Area and water productivity of selected crops was comparable with findings of other 

studies around the study area. Haileslassie et al. (2009b) reported yields of 892-972 kg 

ha-1 for wheat and 981-1312 kg ha-1 for tef produced in rain-fed conditions in the same 

watershed. The EWP values were 0.21-0.23 kg m-3 for wheat and 0.24- 0.33 kg m-3 for 

tef in the study of Haileslassie et al. (2009b), which used the improved approach of 

water productivity calculation. In this study, land productivity was relatively lower 

while the water productivity was three times higher as compared to values in the study 

of Haileslassie et al. (2009b). The difference observed between these rain-fed and 

irrigation values arose from differences in crop varieties and water management 

practices. On the one hand, short-maturing tef and wheat varieties with lower ETc 

values than for rain-fed production were used for irrigation. On the other hand, 

irrigation intervals were too long to create acceptable soil water stress conditions 

whereby the water stress coefficient was reduced to 0.3 during some irrigation 
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intervals. Bekele and Tilahun (2007), using experimental deficit irrigation at Sekota, 

Ethiopia obtained onion yields of 5500-25000 kg ha-1 with 9-10 kg m-3 water, which is 

about eight times higher than the observations in this study. This shows that 

opportunities exist to increase onion production and productivity in the area. Flood 

irrigation using a very low flow rate (less than 1 l s-1 during the night or day) and 

irrigating deep cracks after prolonged irrigation intervals decreased the water 

productivity of tef and wheat as compared to the field observations on water 

application. For example, tef irrigation water was almost half as productive as ET water 

compared to wheat and onion productivity due to higher drainage water losses. 

The conventional way of quantifying water productivity underestimated 

water productivity values, since the total water transpired was used to produce total 

biomass while the estimation considered either grain or straw. This approach has more 

a practical application in mixed crop-livestock systems where the straw biomass is a 

very important livestock feed.  

 

4.5.3 Implications for livestock production 

As the importance of crop production for livestock is worth considering, it is also 

important to stress the importance of crop residue as livestock feed during the 

irrigation season. About 11428 kg grass, 18490 kg wheat straw and 12884 kg tef straw 

(42884 kg DM in total) were produced from 18 ha (20%) land of the scheme during the 

irrigation season. Based on 8.5 kg DM per day maintenance need for one TLU, 84 TLU 

can be fed for 60 days. This can cover TLU from 26 households or TLUs on 37 ha 

according to the livestock holding and stocking rate of the area studied determined by 

Descheemaeker (personal communication, 2010). Dry matter production from the 

relay maize cropping and other minor crops in the scheme was not considered in this 

calculation, and the potential of the scheme to support livestock feed is expected to 

exceed the above indicated figures. Therefore, increasing the biomass productivity of 

each drop of irrigation water and on each plot of land within the scheme has strong 

implications for livestock water productivity of the mixed crop-livestock systems. 
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4.6 Recommendations  

1. Based on the above findings, recommendations for improving water use 

efficiency and productivity in the irrigation scheme include careful design and 

construction of secondary canals and decreasing the use of field canals to minimize 

canal water loss. Careful planning of the cropping pattern and irrigation scheduling 

could result in more efficient water distribution. Given the fact that over-irrigation is 

less common with pumped irrigation, allocating a water price to gravity-fed water 

could positively influence water management. However, water pricing has to be based 

on accurate water flow data as well as on equitable, adequate and reliable water 

distribution rules governed by the water user associations. Water flow measurements 

can be conducted using cement, wooden or iron sheet cutthroat flumes by trained 

farmers. 

2. Production of high-value crops (e.g., fruits) and/or high quality feeds along 

canals and drained water could maximize water productivity for livestock, and there is 

an opportunity to increase irrigation water productivity. 

3. In order to improve water productivity of these system, farmers, water 

users associations and development agents should receive training on canal water 

management, crop water requirement, and equitable and efficient water distribution. 

4. Different alternatives for improved water management, such as water 

pricing and facilities for night water storage need to be considered in policy 

development. 

5. Considering the trade-offs between downstream gravity irrigation and 

upstream pump irrigation needs further research for supporting policy articulations. 

6. Shallow and frequent irrigation of tef using sprinkler or border irrigation 

could minimize water loss and increase irrigation water productivity, but needs further 

research on the applicability in the local context. 
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5 HANDLING MISSING METEOROLOGICAL DATA  

5.1 Summary   

The Penman-Monteith equation is a commonly used method to estimate potential 

evapotranspiration in most of the hydrological models and for water management 

design. The equation is more input demanding compared to other approaches. Spatial 

distribution of rainfall and temperature data is very important for hydrological 

modeling. However, missing data is common in the measurements of meteorological 

stations, e.g., solar radiation and relative humidity are not measured by most 

meteorological stations in the study area. These problems are common in the Blue Nile 

Basin in Ethiopia. Methods to fill rainfall and temperature data were developed and 

compared in this study. Solar radiation and relative humidity data were derived from 

temperature data.  The estimation performance was done using statistical values. The 

results of the estimation are promising for exploiting the existing database of the area 

for better understanding and decision making. 

 

5.2 Introduction 

Meteorological variables, especially rainfall and temperature, are important for 

hydrological modeling and for the design of water resources developments. Lack of 

long-term and continuous data has been a challenge for water resources development 

in Ethiopia. These data gaps have an impact on the value of environmental time series 

(Presti et al. 2010) and hydrological modeling.  Inconsistent and biased hydrologic 

analysis and conclusions can affect water development planning (Kim and Ahn 2009). 

Missing values have to be considered and filled before using the data for further 

investigations. Temporal and spatial regression and interpolation methods were used 

to fill the missing data of a selected station through values from the neighboring 

stations.  

Rainfall is an important factor in climate and agriculture studies (Ayoade 

1983) that are conducted on problems related to floods, drought, and landslides, etc.. 

It has a strong influence on relative humidity, temperature and solar radiation (Neitsch 

et al. 2011). An incomplete rainfall record (missing data) influences the consistency 
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and continuity of the data (De Silva et al. 2007). Computational methods starting from 

the simplest sample mean method to the complex multiple imputation method have 

been used to fill missing data (Presti et al. 2010). Presti et al. (2010) used the strengths 

of both simple and complex methodologies in Italy to achieve better estimations using 

rainfall data of neighboring stations.   

Different methods have been used to fill missing temperature data. Allen and 

DeGaetano (2001) grouped these methods into within-station, between-station and 

regression types. Average measured values prior to and following a missing date were 

used to fill the missing values in the within-station method. This method is temporal 

and depends only on data from one station, but is not suitable for stations with 

consecutive days of missing data as observed in the study area.  The between-station 

method uses measured values of neighboring stations to fill the missing temperature 

values of a given station. Regression models can be developed using one or more 

neighboring stations to fill missing temperature data. Regression techniques such as 

multiple regression and weighted regression (Eischeid et al. 1995) and optimized 

regression (Allen and DeGaetano, 2001; Kotsiantis et al. 2006) have given more 

accurate estimates of missing data as compared to the within-station and between-

station methods.   

Relative humidity and solar radiation data are further inputs for Penman-

Monteith potential evapotranspiration calculation, but such values are scarce for the 

study area. Data on sunshine hours have only been collected at sparsely distributed 

class-one meteorological stations. In addition, the data are full of gaps due to failure of 

the Campbell-Stokes recorder or/and lack of the treated card or/and lack of personnel. 

Most of the stations in the area are of class-three or -four. For such stations, no 

instruments are installed to measure relative humidity and sunshine hours. Allen 

(1998) suggested that the missing data could be adopted from the nearby stations or 

generated from daily temperature data. 

Rainfall, maximum and minimum temperature, relative humidity, wind speed 

and sunshine hour data are recorded in class-one stations. These stations have been 

monitored more seriously and have better data availability than others. However, they 
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only cover a limited area and show a considerable amount of missing data due to lack 

of personnel for fixing the measuring instruments and due to political unrest in the 

country. Most stations have only been equipped with rainfall and temperature 

recording instruments (class-three stations) and some only for rainfall (class-four 

stations).  

The objective of this study is to identify and to evaluate methods to fill 

missing rainfall, temperature, solar radiation and relative humidity data of 

meteorological stations around Gumara watershed in the Blue Nile Basin of Ethiopia. 

 

5.3 Materials and methods 

5.3.1 Study area 

The study area, the Gumara watershed, is located in the Lake Tana Basin of the Blue 

Nile in Ethiopia.  Lake Tana, covering about 3000 km2, is considered as the source of 

the Blue Nile River. The lake basin contributes 7% of the Blue Nile water at the Sudan 

boarder (Kebede et al. 2006). It has four main rivers that contribute 93% of the inflow 

of the lake (Kebede et al. 2006). The climate of the area is tropical highland monsoon. 

Seasonal rainfall distribution is controlled by the movement of the inter-tropical 

convergence zone and moist air from the Atlantic and Indian Ocean in summer (June-

September) (Kebede et al. 2006). The four seasons in the country are winter (January-

March with some rain; called “bulg” in some parts of Ethiopia), spring (April–June, dry), 

summer (July-September, main rainy season) and autumn (October–December, dry air) 

(Latron et al. 2008). The rainfall in the study area is uni-modal with the main rainfall 

occurring during June to September. There are nine meteorological stations within and 

around the Gumara watershed: Debre Tabor (class-one), Wanzaye (class-three), Arb 

Gebeya (class-four) and Luwaye (class-four) stations in the watershed, and Gassay 

(class-three), Mekane Eyesus (class-three), Bahir Dar (class-one), Woreta (class-three) 

and Amed Ber (class-three) around the watershed.   
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Figure 5-1 Distribution, classes and altitudinal categories of meteorological 
stations around and inside the Gumara watershed.  

(For details see Table 5-1) 

 

5.3.1 Database 

Meteorological stations are distributed along the boundaries of the watershed since 

they are located along the road. Daily data over 22 years (1987-2008) from nine 

meteorological stations were taken from the National Meteorological Services Agency 

(NMSA) of Ethiopia. However, data availability is different from station to station 

(Table 5-1). The stations are distributed along different elevations. Data from Bahir Dar 

and Debre Tabor have been frequently used for water development studies (MoWR 

2008; Setegn et al. 2008). Data from the other stations have not been used for study 

and water resource planning due to missing data. However, Bahir Dar is located 

relatively far from the watershed as compared to the other stations (Figure 5-1).  
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Table 5-1 Location of meteorological stations and their database status 

No. Name ID Latitude 

(UTM) 

Longitude 

(UTM) 

Elevation 

(m) 

Database Class 

1 Amed Ber amb 1340550.3 367213.4 1940 2004-2008 3 

2 Arb Gebeya arg 1286558.9 362767.0 2247 2003-2008 4 

3 Bahir Dar bdr 1282807.4 321159.1 1798 1987-2008 1 

4 Debre Tabor dbr 1310581.5 394163.9 2684 1987-2008 1 

5 Gassay gsy 1303967.2 406458.9 2794 2004-2008 3 

6 Luwaye lwy 1295542.0 399349.2 2733 2004-2008 4 

7 Mekane Eyesus mky 1283935.6 397645.7 2403 1994-2008 3 

8 Wanzaye wnz 1303243.7 355606.8 1824 1987-2008 3 

9 Woreta wor 1318594.6 357948.9 1825 1987-2008 3 

UTM = Universal Transverse Mercator 

Some meteorological stations have data for less than five years. Days with 

missing data were excluded before evaluating to estimate daily rainfall data. Scrutiny 

of the data was conducted, and systematic errors were adjusted using graphical and 

statistical checks. Predictor stations for a given predictand station were selected based 

on long-term data availability, correlation between stations, and spatial proximity 

criteria. Best stations combination was finally selected using trial and error and least 

error of estimation. Monthly and annual totals were also compared with the statistical 

criteria to evaluate the methods for these time scales.  

 

5.3.2 Spatial interpolation methods for rainfall data  

Spatial interpolation methods are classified as global or local, exact or inexact, 

deterministic or stochastic and gradual or abrupt depending on the range of variation, 

measured value, assessment of error factor and spatial smoothness, respectively. Li 

and Heap (2008) present details of these classifications. Inverse distance weight (IDW) 

and spline are among the deterministic methods, and kriging is a stochastic method. 

Interpolation methods like kriging and cokriging are also called geostatistical 

interpolation methods. The basic interpolation principles of geostatistical methods is 

to optimize weights assigned to neighboring data points to give interpolation results at 

different un-sampled points in space (Phillips et al. 1992). These geostatistical methods 
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were found superior to the deterministic models for precipitation (Phillips et al. 1992). 

They are best when correlation between precipitation and other topographic auxiliary 

variables like elevation, relief and leeward direction are used to model the 

interpolation at uniform grid levels of the area. Therefore, geostatistical methods of 

interpolation of meteorological variables are very important for hydrological methods 

that use uniform grids of the given watershed. Since SWAT uses hydrologic response 

units (HRU) rather than uniform grid cells, the following four deterministic 

interpolation methods were compared to fill the missing rainfall data of the Gumara 

watershed for this study. 

1) Arithmetic (local) mean (AM) method 

The arithmetic mean can be used when the annual normal rainfall of the 

neighboring stations varies within 10% of the rainfall of station to be modeled (Chow 

et al. 1988; Tabios & Salas 1985). The method was used in this study for filling the 

missing rainfall values of the selected station 

2) Normal ratio (NR) method- 

The normal ratio method is used when the variation of the normal annual 

rainfall of the surrounding stations exceeds 10% of the values of the station under 

consideration (De Silva et al. 2007). This method assigns weights of each surrounding 

station (Sing 1994). The missing data of station n,  , was calculated using equation 5-

1: 

 

                                  (5–1) 

     

where  is estimate of missing data for gauged station n,  is measured 

rainfall values of surrounding station i,  is normal annual rainfall of station ,  is 

normal annual rainfall of surrounding stations i, is the observed value at station i, 

and r is number of surrounding stations. 
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3) Inverse distance weighting (IDW) method 

Inverse distance weighting is derived based on the assumption that sample or 

station measurement values are inversely proportional to the distance from the point 

being estimated (Lam 1983). It is also known as a reciprocal-distance method. It is the 

most commonly used method to estimate missing data at place n using the 

neighboring measured data. It is mathematically expressed as equation 5-2:  

 

                           (5-2) 

      

where, is the value of missing data at station n, r is the number of stations 

with measured data at a given time, is the observed value at station , is the 

distance between station i and station n, is the weighting factor. The equation is 

sometimes known as the distance ratio method. The exponent k is mostly used as 2 

but varies from 1.0 to 6.0 (Teegavarapu and Chandramouli 2005). However, in this 

study, the k value was optimized using the solver program in Microsoft Excel.  

4. Coefficient of correlation weighting (CCW) method  

The weighting factor is derived from correlation of the historical data 

between stations rather than the distance between them as explained above for the 

IDW method. CCW is mathematically expressed using equation 5-3. 

 

                (5–3) 

      

where is the coefficient of correlation between stations n and i. According 

to Teegavarapu and Chandramouli (2005), testing the existence of correlation of data 
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between any two stations is very important. This method has given better results in 

studies (e.g., Teegavarapu and Chandramouli 2005) than the IDW method, since 

distance is not the only case to detect correlation of measurements.  

 

5.3.3 Regression models for temperature 

Data selection and handling regression models 

Class-one and class-three meteorological stations (Table 5-6) with daily minimum and 

maximum temperatures were selected in the Upper Blue Nile Basin of Ethiopia. The 

data were checked for problems like spurious zeros and digital point places before 

regression equation development.  Neighboring stations are selected considering 

geographic distance, correlation coefficient between stations and elevation with 

respect to station with missing data. The correlation coefficient (R) was also used as a 

criterion to choose regressor stations. 

Multiple linear regression models of equation 5-4 were used for each station: 

                                                    (5–2) 

where is the value of missing data at station n, r is the number of stations 

with measured data at a given time, is the coefficient of the repressor , is the 

constant term of the regression model, and is the error term associated with the 

model. Although regression models are considered the best to model temperature 

values of a given station using measured values of the neighboring stations, collinearity 

(linear dependency) between regressors is a problem causing inflation of the variance. 

Variance inflation changes the sign of regression coefficients during linear multiple 

regression.  Marquardt’s variance inflation factor (VIF) (Marquardt 1970) was used to 

identify collinear explanatory stations. Studies suggest that a VIF greater than 10 has 

multicollinearity problems (e.g., Neter et al. 1996; Weisberg 2005). Miles and Shevlin 

(2001) suggest VIFs equal to 4 as a cutting point. Regression models with explanatory 

variables that create VIFs less than 4 are selected as regressors in this study.   
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After regressor station selection and data screening, multiple regression was 

done using SPSS software. Standard error of coefficients and coefficient of 

determination (R2) statistics were used as statistical measures for error and accuracy. 

5.3.4 Estimation of relative humidity using temperature data 

Relative humidity expresses the relative degree of saturation of the air. It is the ratio of 

vapor pressure at actual and saturated water levels of the air at a given temperature T 

(equation 5-5 and 5-6).  

 

                                                                                           (5-5)  

where                                                           (5–3)  

 

where  is the actual vapor pressure of the air in kilo Pascal (kPa), is 

the saturated vapor pressure (kPa) of the air at a temperature T in °C, and Exp *…+ is 

base of natural logarithm (2.7183) raised to *…+. 

 

Relative humidity indicates what proportion of the air holds water at a given 

temperature relative to the maximum amount it can hold at this temperature. Values 

vary over time of the day due to variations of that can vary with T from sunrise 

to sunset. The daily average  value can be calculated using minimum ( ) and 

maximum daily temperature ( ) using equation 5-7: 

 

                                                     (5–4) 

 

The actual vapor pressure of the air can be calculated using the dew point 

temperature (Equation 5-8). Dew point is the temperature at which air needs to be 

cooled to reach saturation with the existing amount of water content. Allen (1998) 
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recommends using  in place of  when data for dew point temperature is not 

available (equations 5-8 and 5-9): 

                                    (5-8)  

                              (5–9) 

The substitution of by  is used for the condition when the cover crop 

is well watered. is greater than for arid climates and the minimum 

temperature used needs to be adjusted by subtracting 2-3 °C Therefore, -a was 

used in this study where the value of a (°C) was optimized using the solver program for 

the best fit of estimated and measured RH time series data of the area that varies from 

season to season. RH in terms of Tmin and Tmax is given in equation 5-10: 

 

 

                          (5–5) 
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constant, extraterrestrial radiation ( ).  is the amount of solar radiation reaching a 

horizontal surface on the earth atmosphere in KJ m-2 day-1. Its value changes with 

latitude, with day of the year and with time of the day. Part of this radiation is 

scattered, emitted or absorbed by the atmosphere (gases, clouds or dust), and the rest 

reaches the earth surface. The part reaching the earth surface is called solar radiation, 

global radiation or shortwave radiation ( ). From this radiation, part ( ) is 

reflected back to the atmosphere, and only 1- is retained on the surface. Some of the 

long-wave radiation is emitted and retained within the atmosphere, where is known 

as the albedo. 

  {

                                               
                                                        
                                    
                                        

                                                (5-11) 

 

Pyranometers, radiometers or solarimeter sensors can measure solar 

radiation directly. However, solar radiation can be estimated using the duration of 

daily bright hours in the absence of these sensors as observed in the area of this study 

where Campbell-Stokes sunshine hour recorders burned holes in a specially treated 

card. 

The daily values in the study area were calculated from solar constant, 

solar declination, and day number in the given year (equation 5-12): 

 

                      (5-12)                

where  is extraterrestrial radiation [MJ m-2 day-1],  is solar constant = 

0.0820 MJ m-2 min-1,   inverse relative distance Earth-Sun (equation 5-13),  

sunset hour angle (equation 5-15) [rad],  is latitude [rad] given by 

, and is solar declination (equation 5-14) [rad]. 
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                                               (5-13) 

 

                                             (5-14) 

      

                                              (5-15) 

 

where J is the day number in the year (e.g., 1 for January 1st). Solar constant is 

the solar radiation reaching the earth surface perpendicular to the solar rays at the top 

of the earth’s atmosphere, and  is the radiation on a horizontal surface at the upper 

layer of the earth’s atmosphere. The solar radiation, , is estimated using equation 5-

16. 

 

                                                                             (5-16) 

 

where =0.25 and =0.50 for areas without any and data. On clear-

sky days, =  (clear-sky radiation). The daylight hour for day of the year is 

calculated using equation 5-17: 

 

                                                                              (5-17) 
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Allen (1998) suggested transferring solar radiation data from the nearby 

stations or deriving radiation from temperature differences. According to the author, 

three basic things need to be considered before transferring radiation data from 

nearby stations. First, the region under study has to be small. Second, there has to be 

identical air mass movement and cloudiness. Third, relative solar radiation ( ) 

and relative sunshine duration ( ) have to be identical for the given stations. The 

author also suggested checking the physiographic homogeneity of stations like similar 

side of a mountain and north-south distances. If north-south distance between 

stations exceeds 50 km, the equation 5-18 is better to use than transferring other 

station data. 

 

                                                             (5-18) 

 

where is solar radiation at station  [MJ m-2 day-1], and is 

extraterrestrial radiation at station  [MJ m-2 day-1]. 

The second option to fill gaps in measured solar radiation data is deriving 

solar radiation from temperature differences. The maximum and minimum daily 

temperature difference is directly related to cloudiness of the day, i.e., maximum 

temperature is low during a cloudy day, as solar radiation is reflected by the cloud 

during the day on the one hand. On the other hand, the daily minimum temperature is 

relatively higher on a cloudy day, since outgoing long-wave radiation is retained in the 

air by the cloud cover at nighttime. This principle is formulated for solar radiation by 

Hargreaves and Samani (1982) as given by equation 5-19: 

 

                                                (5-19) 
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movement from water bodies influences weather conditions). This method is used 

when imported radiation data are not good due to lack of climate similarity between 

stations like the rugged topography of the study area.   

 

5.3.6 Comparison methods for estimates 

Estimated and actual values can be compared by measuring how close the estimated 

values are to the actual values by descriptive statistics of error criteria. These are error 

mean (μ), standard deviation (S), correlation coefficient (R), root mean square error 

(RMSE) and mean absolute error (MAE). Error mean indicates the deviation of mean of 

estimated value from mean of measured value. RMSE, MAE and R are used to measure 

the performances of the methods to estimate missing values in this study (equations 5-

20, 5-21 and 5-22). RMSE measures the average magnitude of daily estimation error 

using the quadratic square score, while MAE indicates the deviation of estimated 

values from measured values using the linear square score. RMSE uses higher weights 

for days with greater estimation errors, since the error of every single value is squared 

before the average is analyzed; MAE gives equal weights for individual errors. 

Therefore, RMSE can indicate the occurrence of large errors in the time series together 

with MAE. If the time series of error is composed of the same magnitude, both RMSE 

and MAE will have almost equal values. 

 

                                            (5-20)  
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                                                (5-21)  

                                       (5-22) 

 

where is the ith day value measured at station n, is the ith day 

estimated value, is the mean of measured rainfall values of station n, is the 

mean of estimated values of station n, r is the number of days with measured and 

estimated rainfall values of a given station. Correlation statistics, R, is a dimensionless 

index that indicates the relationship of measured and estimated values. RMSE and 

MAE measure model errors that have similar units of the variable they measured 

(Morid et al. 2002). MAE is a robust measure, since it is less sensitive to outliers (Allen 

and DeGaetano 2001).  

 

5.4 Results   

5.4.1 Rainfall 

The results of the comparison of four methods to model daily rainfall data are 

discussed below. Monthly and annual sum of rainfall for each method are compared 

across stations. Error values are discussed with respect to results of similar studies. 

Daily rainfall  

There was no clear relation between distance between stations and the 

correlation coefficient of their daily rainfall values. For example, meteorological 

stations more far apart like the stations Bahir Dar (bdr) and Debre Tabor (dbr) or Arb 

Gebeya (arg) and Bahir Dar (bdr) had more correlated daily rainfall data than those 

closer like Bahir Dar and Woreta or Arb Gebeya and Wanzaye. This indicates that other 

factors like orographic factors are more influential than distance between stations. The 

CCW method gave the best performance for most stations for estimating daily rainfall 

data as compared to the other three methods with the exception of three stations 

where IDW and AM performed best (Table 5-2). The NR method gave the poorest 
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estimation, because this method is based on annual rainfall value as a weighing factor. 

As there is occurrence of successive missing values for as much as a year, NR is not 

suitable for this case.   

 

Table 5-2 Combination and error results for meteorological stations  

Predictand (N) Predictor 

Distance 

from 

predictand 

(km) 

Correlation 

Statistical model  performance 

Stat. measures AM NR IDW CCW 

bdr (6258) 

wnz 40.0 0.468 R 0.538 0.385 0.527 0.532 

wor 51.5 0.388 MAE 3.696 10.170 3.720 3.720 

dbr 78.4 0.420 RMSE 8.359 29.986 8.582 8.415 

dbr (6307) 

bdr 78.4 0.420 R 0.557 0.463 0.558 0.558 

wnz 38.9 0.448 MAE 3.533 9.844 2.599 2.598 

wor 37.3 0.440 RMSE 7.626 25.767 6.437 6.294 

wnz (6258) 

dbr 38.9 0.448 R 0.569 0.391 0.512 0.570 

bdr 40.0 0.468 MAE 3.725 10.020 3.957 3.725 

wor 15.4 0.429 RMSE 8.131 29.987 8.745 8.123 

wor (6259) 

dbr 37.3 0.440 R 0.538 0.481 0.480 0.541 

bdr 37.3 0.388 MAE 3.752 9.384 4.066 3.488 

wnz 15.4 0.429 RMSE 8.376 23.350 9.314 8.120 

mky (5089) 

dbr 26.8 0.449 R 0.505 0.505 0.499 0.508 

wnz 46.3 0.404 MAE 3.468 6.330 3.508 2.832 

   RMSE 7.560 13.941 7.710 6.562 

gsy (1523) 

dbr 13.9 0.630 R 0.653 0.657 0.617 0.692 

mky 21.8 0.535 MAE 3.189 8.533 3.315 2.868 

wnz 50.4 0.418 RMSE 6.441 17.947 7.522 6.004 

wor 50.5 0.432      

amb (990) 

dbr 17.2 0.641 R 0.720 0.716 0.729 0.706 

mky 38.3 0.510 MAE 2.619 8.514 2.630 2.654 

wor 20.6 0.529 RMSE 5.894 18.058 5.938 6.022 

lwy (1400) 

dbr 15.7 0.470 R 0.593 0.600 0.597 0.623 

gsy 10.9 0.536 MAE 3.202 9.684 3.165 2.161 

mky 11.6 0.501 RMSE 7.370 19.562 7.329 4.794 

arg (1497) 

dbr 39.5 0.379 R 0.471 0.557 0.411 0.468 

bdr 41.9 0.470 MAE 3.405 5.440 3.421 3.385 

wnz 18.3 0.360 RMSE 6.765 12.133 7.369 6.709 

AM is arithmetic mean, NR is normal ratio, IDW is inverse distance weighting, CCW is coefficient of correlation weight. 
Stations: Bahir Dar (bdr), Debre Tabor (dbr), Wanzaye (wnz), Woreta (wor), Mekane Eyesus (mky), Gassay (gsy), Amed Ber 
(amb), Luwaye (lwy) and Arb Gebeya (arg). Bold figures are the results of the best models. 
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Values of upstream stations like Debre Tabor, Gassay, Mekane Eyesus and 

Luwaye were estimated better than those of the downstream stations with relatively 

low error values. RMSE values are about three times higher than MAE values, 

indicating occurrence of low estimation performance for some daily rainfall events. 

The time series curves show that these events occurred sometimes when there was no 

or very low rainfall at a given station while high rainfall was recorded by the 

neighboring station(s).  

Meteorological stations with class-one standard have better daily rainfall data 

availability (Table 5-2). They are also situated at different topographical locations 

surrounded by class-three and class-four stations (Figure 5-1).  

Table 5-3  Descriptive statistics of daily rainfall values before and after filling missing 

data 

  

  

Station 

N 

Missed 

data (%) 

Min Max Mean Std. 

error 

Std.  

Dev. 

Skewness 

Statistics 

Std. 

error 

B
ef

o
re

 f
ill

in
g 

m
is

si
n

g 
d

at
a 

amb 1762 78.1 0.00 82.60 3.73 0.197 8.283 3.283 0.058 

arg 1579 80.4 0.00 56.70 2.48 0.130 5.146 3.696 0.062 

dbr 7309 9.0 0.00 104.30 4.06 0.098 8.420 3.357 0.029 

bdr 7869 2.1 0.00 124.70 3.95 0.108 9.597 4.044 0.028 

gsy 1623 79.8 0.00 62.10 4.00 0.202 8.125 2.861 0.061 

lwy 2007 75.0 0.00 90.00 3.99 0.187 8.360 3.767 0.055 

mky 5288 34.2 0.00 84.80 3.59 0.103 7.470 3.280 0.034 

wnz 7531 6.3 0.00 134.20 3.96 0.109 9.438 3.738 0.028 

wor 7176 10.7 0.00 115.00 3.93 0.112 9.492 3.937 0.029 

A
ft

er
 f

ill
in

g 
m

is
si

n
g 

d
at

a 

amb 7769 3.3 0.00 82.60 3.59 0.077 6.788 2.926 0.028 

arg 7740 3.7 0.00 84.80 3.12 0.075 6.601 3.581 0.028 

dbr 7837 2.5 0.00 104.30 4.00 0.094 8.331 3.365 0.028 

bdr 7918 1.5 0.00 124.70 3.95 0.108 9.575 4.050 0.028 

gsy 7769 3.3 0.00 69.88 3.90 0.083 7.360 2.787 0.028 

lwy 7738 3.7 0.00 90.00 3.71 0.079 6.929 3.148 0.028 

mky 7740 3.7 0.00 84.80 3.12 0.075 6.601 3.581 0.028 

wnz 7744 3.6 0.00 134.20 3.96 0.107 9.378 3.733 0.028 

wor 7858 2.2 0.00 115.00 3.82 0.104 9.189 4.021 0.028 

where N is number of days included in the analysis, Min (minimum), Max (maximum), std. (standard), Dev. (deviation), 
Bahir Dar (bdr), Debre Tabor (dbr), Wanzaye (wnz), Woreta (wor), Mekane Eyesus (mky), Gassay (gsy), Amed Ber (amb), 
Luwaye (lwy) and Arb Gebeya (arg). 

 

From the database of 1987 to 2008 (8036 days), 2% to 80% data were 

missing. Four stations (bdr, wnz, dbr and wor) had lost less than 11% of daily rainfall 
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data. Mekane Eyesus (mky) had about 34% missing data and the remaining four 

stations had 75% to 80% missing data (Table 5-3). Optimization of the exponent k for 

equations 4-2 and 4-3 resulted in around 2.0 for this study. 

Table 5-4 Statistical performance of monthly rainfall estimation  

Stations 
Stat. 

measures 
AM NR IDW CCW 

bdr 

R 0.92 0.91 0.92 0.92 

MAE 34.37 257.80 33.51 34.85 

RMSE 59.54 420.93 61.20 60.35 

dbr 

R 0.93 0.90 0.92 0.93 

MAE 35.70 252.44 38.50 35.42 

RMSE 58.70 416.98 62.11 58.30 

wnz 

R 0.94 0.88 0.93 0.94 

MAE 30.81 253.80 47.31 36.51 

RMSE 56.44 415.87 81.66 67.15 

wor 

R 0.90 0.93 0.90 0.90 

MAE 39.21 234.51 39.02 39.56 

RMSE 72.27 374.75 72.22 72.46 

mky 

R 0.93 0.92 0.93 0.93 

MAE 36.37 138.03 38.21 36.30 

RMSE 58.80 235.46 61.28 58.77 

gsy 

R 0.97 0.97 0.98 0.97 

MAE 24.91 225.23 34.95 23.19 

RMSE 37.30 355.65 53.23 35.00 

amb 

R 0.98 0.92 0.98 0.98 

MAE 16.59 242.74 20.32 18.82 

RMSE 24.50 379.79 34.03 30.22 

lwy 

R 0.95 0.96 0.96 0.83 

MAE 25.63 254.08 25.06 17.56 

RMSE 42.32 388.72 41.02 32.28 

arg R 0.83 0.97 0.81 0.83 

MAE 57.23 131.84 57.02 57.44 

RMSE 93.49 220.65 91.06 93.63 

where , figures shown in bold are results of the best models. Bahir Dar (bdr), Debre Tabor (dbr), Wanzaye (wnz), Woreta 
(wor), Mekane Eyesus (mky), Gassay (gsy), Amed Ber (amb), Luwaye (lwy) and Arb Gebeya (arg). 
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After filling the missing data with the best method for each station, the 

percent of missing data decreased to less than 4%. Descriptive statistics before and 

after filling missing daily rainfall values show that the structure of the database is not 

altered, especially the mean and maximum daily rainfall values.  

Monthly rainfall 

Better correlation coefficients for monthly than daily rainfall data can be 

observed for all meteorological stations. The AM and CCW methods showed 

comparable performance with values of monthly estimated rainfall close to 

corresponding measured values (Table 5-4). Monthly comparison of model 

performance reveals the weakness of R to identify the best model. The value of R is the 

same for most methods while RMSE and MAE values are different. For example, CCW 

and AM provided comparable and better estimates for daily rainfall at wnz. However, 

AM was the best for monthly rainfall estimation for wnz even if the value of R (R=0.94) 

for both AM and CCW is the same. The higher R value was not the best as seen in the 

case of gsy where IDW gave the best R value on a monthly time scale, while CCW 

performed best for both RMSE and MAE values (Table 5-4). AM showed the best 

estimation at both daily and monthly time scales at the downstream meteorological 

stations and CCW the best at the upstream stations.  

The time series of average monthly measured and estimated rainfall shows 

how close the estimation is to the measures data (Figure 5-2). It makes clear the effect 

of small statistical differences in MAE and RMSE as shown, for example, for wnz. NR 

values are not included in Figure 5-2, since they are much more overestimated as 

compared to the other methods.  
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Figure 5-2  Time series of estimation methods as compared to measured 
(thick blue line) averaged monthly rainfall (mm).   

AM is arithmetic mean, IDW is inverse distance weighting and CCW is coefficient of correlation weighting.  
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Where, (a)is for Bahir Dar (bdr), (b) is for Debre 

Tabor (dbr), (c) is Wanzaye (wnz), (d) is for 

Woreta (wor ), (e) is for Mekane Eyesus (mky), (f) 

is for Gassay (gsy), (g)is for Amed Ber (amb), (h) is 

for Luwaye (lwy) and (j) is Arb Gebeya (arg). The 

blue line indicated measured values. 
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Annual rainfall 

The mean annual rainfall value was estimated well except at one station (arg) 

as shown in Table 5-5 and Figure 5-3. The statistical performance is also improved. AM 

is the best method for downstream stations and CCW is best for upstream stations 

(data not presented) as observed on daily and monthly time scales. However, the CCW 

method is identified as best for mky and gsy where CCW and AM were almost equally 

good for monthly time scales.  

Table 5-5 Statistical performance of annual rainfall estimation 

    AM NR IDW CCW 

bdr R 0.92 0.97 0.92 0.92 

MAE 147.41 2484.05 153.45 149.36 

RMSE 194.44 2583.89 191.56 198.29 

dbr R 0.89 0.84 0.88 0.89 

MAE 157.63 2367.91 156.14 156.98 

RMSE 245.61 2576.75 255.64 243.63 

wnz R 0.93 0.80 0.91 0.93 

MAE 134.51 2449.15 355.59 242.15 

RMSE 188.76 2608.79 412.20 306.77 

wor R 0.86 0.98 0.86 0.85 

MAE 187.28 2268.81 187.04 187.13 

RMSE 274.99 2505.50 275.27 278.80 

mky R 0.93 0.80 0.92 0.93 

MAE 171.87 1395.31 199.02 169.72 

RMSE 208.59 1326.26 235.25 207.11 

gsy R 0.90 0.95 0.94 0.91 

MAE 96.77 2291.74 259.14 90.14 

RMSE 114.70 2435.56 275.50 112.50 

amb R 1.00 1.00 1.00 1.00 

MAE 28.71 2330.28 147.54 120.21 

RMSE 34.55 2395.45 164.94 131.15 

lwy R 0.88 0.86 0.89 0.96 

MAE 76.24 2388.38 73.27 118.66 

RMSE 97.03 2439.46 92.89 133.29 

arg R 0.60 0.99 0.54 0.58 

MAE 455.08 1081.20 434.75 456.41 

RMSE 549.29 1232.24 541.02 553.55 
Correlation coefficient( R), root mean square error (RMSE), mean absolute error (MAE), Bahir Dar (bdr), Debre Tabor 

(dbr), Wanzaye (wnz), Woreta (wor), Mekane Eyesus (mky), Gassay (gsy), Amed Ber (amb), Luwaye (lwy) and Arb Gebeya 
(arg). Measured data from 1987 to 2008 was used. Figures shown in bold are results of the best models. 
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Figure 5-3  Annual rain fall (mm) at meteorological stations indicating 

measured and estimated values  

Bahir Dar (bdr), Debre Tabor (dbr), Wanzaye (wnz), Woreta (wor), Mekane Eyesus (mky), Gassay (gsy), Amed Ber 
(amb), Luwaye (lwy) and Arb Gebeya (arg) Error bar indicates standard deviation. Measured data from 1987 to 
2008was used. 

 

The time series of the annual total rainfall shows that there is less variation 

estimated as compared to variation of individual cases from their mean (Figure 5-3). 

Data before 1991 were still not improved after filling missing data. This is because at 

this particular time, the country was under political unrest hence data at most stations 

were not recorded. The class-four station (Arb Gebeya) showed overestimated values 

(Figure 5-2). The results for Arb Gebeya were not good, as less data were available and 

also a lack of measured rainfall values as compared to the neighboring stations.  
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Figure 5-4 Annual rainfall time series after and before filling missing data.   

 Bahir Dar (bdr), Debre Tabor (dbr), Wanzaye (wnz), Woreta (wor), Mekane Eyesus (mky), Gassay (gsy), Amed Ber 
(amb), Luwaye (lwy) and Arb Gebeya (arg). The data in 1991 is not good since most stations were not functional due to 
political unrest.  

 

5.4.2 Maximum and minimum temperature 

The maximum temperatures of the study stations show higher positive correlation to 

each other than minimum temperature values (Figure 5-5). Minimum temperature 

values have low positive correlation with each other. The correlation between 

minimum and maximum temperature is low and negative for most of the times. This 

correlation behavior indicates that regression models based on within minimum 

temperature and within maximum temperature provide better estimation results than 

regression models based on minimum and maximum temperature. Furthermore, 

multicollinearity problems are expected with regression models between maximum 

temperature values, since multiple regressions between regressors with high 

correlation coefficients within themselves are liable for collinearity and erogeneity.  
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Figure 5-5  Correlation coefficients of maximum (max) and minimum (min) 

temperature data between stations 

bdr is Bahir Dar, dbr is Debre Tabor, wnz is Wanzaye, wor is Woreta, mky is Mekane Eyesus, gsy is Gassay, amb is 
Amed Ber, lwy is Luwaye, and arg is Arb Gebey) 

 

Table 5-6 shows maximum and minimum temperature data availability of 

seven climate stations used for developing the regression model. Four stations have 

better data availability and spatial distribution along the watershed to fill the other 

stations that have relatively short-term databases. The standard deviation of each 

station indicates that minimum temperature is more variable than maximum 

temperature.  
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Table 5-6 Descriptive statistics of daily maximum and minimum temperature used to 

develop regression models  

 Station N 
Missed 

(%) 
Min Max Mean 

Std. 

deviation 
Skewness 

M
ax

im
u

m
 

te
m

p
er

at
u

re
 

amb 2125 73.6 18.0 38.0 27.7 2.8 -0.1 

bdr  7842 2.4 2.6 35.0 27.1 2.5 0.0 

dbr  7227 10.1 1.0 30.0 21.9 2.6 -0.4 

gsy  1623 79.8 13.5 28.0 21.5 2.3 -0.2 

mky  5098 36.6 15.5 36.9 26.3 3.2 -0.4 

wnz  6266 22.0 18.0 40.0 28.6 2.9 0.0 

wor  6441 19.8 13.4 37.8 28.0 2.9 -0.2 

M
in

im
u

m
 

te
m

p
er

at
u

re
 

amb 1761 78.1 1.0 18.0 11.3 2.6 0.0 

bdr  7835 2.5 1.0 23.3 12.7 3.0 -0.6 

dbr  7266 9.6 -9.0 19.0 9.6 1.8 -0.3 

gsy  1622 79.8 -1.0 16.0 7.2 2.4 -0.3 

mky  4982 38.0 -6.3 19.9 8.4 3.3 -0.5 

wnz  5537 31.1 1.0 23.0 12.1 3.1 -0.2 

wor  6399 20.4 1.0 20.5 11.1 3.4 -0.3 

N= number of days with available data (total N=8036) from 1987-2008, Min=minimum and Max=maximum. 

 

Multiple linear regression models performed well for maximum temperature 

for most of the stations (Table 5-7). The standard errors of the estimates are less than 

two and the coefficient of regression (R2) is more than 0.7 for most of the stations. The 

model performed relatively less good for Wanzaye station, which is located in a pocket 

area and near to Gumara riverbed.  
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Table 5-7 Regression models for daily maximum temperature 

Predictand 
Predictors 
(constant) 

* &  Std. errors  R
2
 

bdr 

(n=1075) 

Constant 7.447 0.32 
0.78 wor 0.388 0.02 

dbr 0.394 0.02 

dbr 

(n=2698) 

Constant -2.217 0.26 

0.80 
mky 0.35 0.01 

bdr 0.423 0.02 

wor 0.131 0.01 

wor 

(n=1027) 

 

Constant 0.183 0.50 

0.79 
bdr 0.477 0.03 

wnz 0.316 0.03 

mky 0.216 0.02 

wnz 

(n=2696) 

Constant 4.027 0.43 

0.59 
bdr 0.435 0.03 

wor 0.301 0.03 

mky 0.186 0.02 

mky 

(n=2698) 

 

Constant -0.134 0.33 

0.74 
dbr 0.727 0.02 

wor 0.229 0.02 

wnz 0.133 0.02 

amb 

(n=1534) 

Constant 0.927 0.34 
0.83 dbr 0.647 0.02 

bdr 0.451 0.02 

gsy 

(n=1081) 

Constant 2.872 0.28 

0.02 

0.81 

 
dbr 0.587 0.02 

mky 0.21 0.02 

*Significant at p<0.05, n is number of daily data used and for description of codes of the stations see Table 5-1 

 

However, the model developed for minimum temperature showed poor 

performance (Table 5-8). The R2 is less than 0.7 and the standard error is around 2. The 

Amed Ber station, which is located in the transition from low-plain land to high 

elevation in the watershed showed poor performance for minimum temperature. 

 

 

 

 

 

i oi
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Table 5-8 Regression models for daily minimum temperature 

Predictand Predictor(s) 
/constant 

* & 

 

Std.  
error 

R 
2
 

 

bdr 

(n=3886) 

Constant 3.753 0.25 

0.63 

 

mky 0.375 0.02 

wor 0.303 0.02 

wnz 0.150 0.02 

mky 

(n=2451) 

 

Constant -6.251 0.24 

0.02 0.61 

 

bdr 0.306 0.02 

dbr 0.447 0.03 

wnz 0.247 0.02 

wor 0.275 0.02 

dbr 

(n=2451) 

Constant 4.703 0.16 

0.51 
mky 0.239 0.01 

wor 0.147 0.01 

wnz 0.074 0.01 

wor 

(n=2451) 

 

Constant 3.815 0.24 

0.50 
mky 0.299 0.02 

bdr 0.269 0.02 

dbr 0.298 0.03 

wnz 

(n=2451) 

 

Constant 2.100 0.22 
0.56 

 

bdr 0.333 0.02 

wor 0.302 0.01 

dbr 0.236 0.03 

amb 

(n=1136) 

 

Constant 5.512 0.40 

0.34 
wor 0.389 0.04 

dbr 0.351 0.04 

bdr -0.165 0.03 

gsy 

(n=991) 

 

Constant 0.280 0.31 

0.57 
mky 0.332 0.03 

dbr 0.246 0.03 

wor 0.148 0.03 

*Significant at p<0.05, n is number of daily data used and for description of code of the station see Table 5-1  

Multiple regression models developed for daily temperature data were used 

to fill missing data of each meteorological station. Time series of daily maximum 

temperature before and after filling the missing data are shown in Figure 5-6. Since 

data availability of gsy and amb stations are from 2003 to 2008, the relation of these 

stations with their regressor meteorological stations is assumed the same for 1992 to 

2002. Missing values are assigned -20 as shown on the top time series curve in Figure 

5-6 to indicate how much missing data occurred in each station and was treated after 

i

oi
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filling. All missing data from 1992 to 2008 is filled using the regression models. The 

relative structure of the time series curves are maintained after filling missing data. 

 

 

 Figure 5-6   Maximum temperature before (top) and after (bottom) filling 

missing data 

 
Data before 1991 was still not improved after filling missing data. This is 

because at this particular time the country suffered from political unrest and civil war, 

and hence at most stations data were not recorded. 

 

5.4.3 Relative humidity 

Three seasonal relative humidity categories were found using a trial and error method 

of optimization on a spreadsheet (Table 5-9). The first category was the season with 

low relative humidity values in the dry winter season of the area. It covers January to 

May. The second category was with highest relative humidity values in the rainy 

season from June to September. The relative humidity category is for a short time in 

June during the transition from the low humidity to high humidity period.  
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Table 5-9 Seasonal categorization of relative humidity (RH) values  

Category value Description 

1 Low RH values from February to May 

2 Medium RH values in June and October to January 

3 High RH values from July to September 

 

The dew point temperature adjustment factor, a, was optimized both with 

and without seasonal categories. The statistical parameters Nash-Sutcliffe coefficient 

(NSE), R and root mean square error (RMSE) were used to measure modeling 

performance. Both Bahir Dar and Debre Tabor stations have the same adjustment 

factor when without seasonal category. However, they have different factors for each 

seasonal category (Table 5-10). Error is minimized and NS and R are improved during 

seasonal categorization. The model performs better for the Bahir Dar station than for 

the Debre Tabor.  

 

Table 5-10 Optimized dew point adjustment temperature, a, and optimized statistical 

values 

Without seasonal categorization With seasonal categorization 

bdr dbr Category bdr Dbr 

Dew point 

adjustment factor, 

a 

1.12 1.1 
1 4.0687 3.4386 

2 0.6067 1.2894 

3 -0.6986 -1.1956 

Calibration (N=2803) 

NSE 0.45 0.43  0.71 0.61 

R 0.72 0.79  0.84 0.80 

RMSE 0.10 0.14  0.08 0.12 

Validation (N=2811) 

NSE 0.46 0.40  0.67         0.59 

R 0.64 0.75  0.78 0.83 

RMSE 0.19 0.26  0.15 0.22 

Nash-Sutcliffe coefficient (NSE), correlation coefficient ( R) and  root mean squared error (RMSE) 

The time series of measured and simulated relative humidity for the Bahir 

Dar and Debre Tabor stations are shown in Figure 5-7 and Figure 5-8, respectively. The 

difference in seasonal categorization can be clearly observed. Seasonal categorization 

estimates minimum and maximum relative humidity values better than without 

categorization.    
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Figure 5-7 Time series of relative humidity for Bahir Dar meteorological station with (b) 

and without (a) seasonal categorization 

 

 

Figure 5-8   Time series of relative humidity for Debre Tabor meteorological 

station with (b) and without (a) seasonal categorization 
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5.4.4 Solar radiation 

The correlation coefficient, R, is used to identify the relation between different 

derivative temperature parameters with Rs/Ra as shown in Figure 5-9. Parameters like 

Tm-Td, , , N and Tmn have low and negative correlation, while those derived forms 

like Tm, Tmx and Td have high and positive correlation. Variables with high correlation 

coefficients are selected and used in equation 5-17 to optimize the solar radiation (Rs) 

of the given station. 

 

  Figure 5-9 Correlation of different parameters with relative solar radiation, 

Rs/Ra. 

Tm,is  mean temperature, Td is difference of maximum and minimum temperature, is solar declination, is 
sunset hour angle, N is daylight hour, J is day number in the year, Tmx is maximum temperature, Tmn is minimum 
temperature, SQRT is square root, ^ is power of, dr is inverse relative distance earth-sun and log is logarithm. Rs/Ra 

is the ratio of extraterrestrial radiation ( ) and shortwave radiation ( ). 

 

 

Four seasonal categories arose during optimization of equation 5-17 (Table 

5-11). Many trial and error categorization efforts showed low performance of 

optimization during the process (results not shown here). Seasonality for solar 

radiation is different from that of relative humidity as shown by two peaks (Figure 5-

10). This is also the case for different months for lowland and highland areas.  

 s

 s

aR sR



HANDLING MISSING METEOROLOGICAL DATA 

81 

 

Table 5-11 Seasonal categories with best solar radiation estimation 

Season Bahir Dar Debre Tabor 
1 March and April April, May 
2 July and August June, July and August 
3 October, November, and 

December 

September, October and November 
4 January, February, May, June 

and september 

December, January, and February 
 

Table 5-12 Performance of estimation without seasonal categorization at Bahir Dar 

station 

 Calibration Validation 
NSE 0.40 0.35 
R 0.65 0.63 
RMSE 2.85 3.08 

Nash-Sutcliffe coefficient (NSE), correlation coefficient ( R) and  root mean squared error (RMSE) 

 

Results of the statistical performance when estimating solar radiation from 

other meteorological parameters are shown in Table 5-12, 5-13, and 5-14. Estimation 

performance without seasonal categorization is lower as compared to seasonal 

categorization. The square root function of Td leads the estimation of solar radiation at 

both meteorological stations (Table 5-12 and Table 3-13). The estimation performance 

of the station located in the cold and highland part of the area is lower as compared to 

that of the station in the hot and lowland part of the area.  

 

Table 5-13 Performance of modeling solar radiation using seasonal categories and 

different functions of Td for Bahir Dar station 

  (Td)1/2 (Td)1/3 Log(Td) 

NSE Val 0.50 0.47 0.47 
Cal 0.51 0.45 0.45 

R Val 0.71 0.68 0.69 
Cal 0.72 0.67 0.69 

RMSE Val 7.43 7.93 7.82 
Cal 6.55 7.38 7.28 

Td= Tmax-Tmin 

Nash-Sutcliffe coefficient (NSE), correlation coefficient ( R) and  root mean squared error (RMSE) 
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Table 5-14 Performance of modeling solar radiation using seasonal categories and 

different functions of Td for Debre Tabor station 

  (Td)1/2 (Td)1/3 Log(Td) 

NSE Val 0.30 0.24 0.27 
Cal 0.40 0.33 0.34 

R Val 0.57 0.50 0.53 
Cal 0.63 0.59 0.59 

RMSE Val 10.39 11.37 10.86 
Cal 8.72 9.76 9.58 

Td= Tmax-Tmin 
Nash-Sutcliffe coefficient (NSE), correlation coefficient ( R) and  root mean squared error (RMSE) 

 

Table 5-15 Seasonal optimized adjustment coefficient (KRS) 

Season  Bahir Dar Debre Tabor 
1 0.156090 0.161129 
2 0.139151 0.153889 
3 0.167163 0.165440 
4 0.155991 0.161093 

 

The solar radiation adjustment coefficient (KRS) for each season at each station 

varies from 0.14 to 0.16 (Table 5-15). Although the variation seems small, the effect of 

the optimized adjustment coefficient is relatively high on performance of estimation 

(Table 5-12 and Table 5-14).  Therefore, the KRS values are given with six significant 

digits in Table 5-15. 
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Figure 5-10 Time series showing measured and estimated daily solar radiation 

(MJ/m2/day) in calibration and validation period  

 

The weakness of the developed solar radiation model can be clearly observed 

in the time series graph (Figure 5-10) and scatter plots (Figure 5-11). Upper and lower 

peak radiation values are not properly addressed as compared to relative humidity. 

The lower peaks of the coldest highland station, Debre Tabor, are not addressed very 

well as compared to those of the hot lowland station Bahir Dar.  

 

    

Figure 5-11 Scatter plots of measured and estimated daily solar radiation 

(MJ/m2/day) of Bahir Dar and Debre Tabor stations 
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5.5 Discussion  

Two rainfall estimation methods, AM and IDW, have comparable performance with 

respect to filling missing daily rainfall values for the area. The results match studies in 

other parts of the world. For example, Tang et al. (1996) obtained similar results in 

Malaysia, where NR and IDW performed best as compared to ten other methods for 

estimating monthly and annual rainfall. De Silva et al. (2007) also identified IDW as 

being the best compared to AM, NR and two other methods to estimate monthly 

rainfall values. However, CCW was not included in the studies by Tang et al. (1996) and 

De Silva et al. (2007). Teegavarapu and Chandramouli (2005) found CCW and artificial 

neural networks (ANN) the best. CCW, however, was recommended due to its 

practicality, spatial implication, and simplicity. Different rainfall estimation methods 

showed different performances at different elevation positions of the study 

watershed. Similar findings also exist for a study in Sri Lanka. De Silva et al. (1997) 

compared AM, NR, IDW and aerial precipitation ratio methods using monthly rainfall 

where AM was found to be the best for upstream locations. They also reported about 

RMSE values of 90 to 100, which are higher than those in this study. The statistical 

estimation performance in this study is comparable with that in a study by 

Teegavarapu and Chandramouli (2005) in Kentucky, USA, with 7801 data days that 

resulted in an average value of 1.93 mm MAE and 5.78 mm RMSE values. Although the 

methods in this study generally showed poorer performance, they are still promising, 

especially when compared to findings for the technically superior meteorological 

stations in the USA. 

However, after filling missing data all descriptive statistics (Table 5-3) showed 

lower values, thus indicating the problem of underestimation and minimizing the real 

variability from the mean. Data for the class-four station (Arb Gebeya) were 

overestimated. The reason may be the inaccuracy of measurements, since the station 

was not managed with skilled manpower, and there were no frequent observation and 

data quality checks as at other stations (personal observation during fieldwork).  
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The relationship between maximum and minimum temperature shows 

negative and low correlation. That means that very hot days have very cold nights. This 

extreme fluctuation has impacts on agricultural productivity, since plants need a 

smooth shift from hot to cold temperature events (Zinn et al. 2010). The performance 

when estimating daily minimum temperatures is poorer than that for daily maximum 

temperatures. This is due to the fact that minimum temperatures are highly locally 

variable, which resulted in low correlation with respect to neighboring station. 

Kotsiantis et al. (2006) used temperature data of previous years of a given station to fill 

missing data of a given year of the same station using the regression equation. The 

correlation coefficient of 0.9 between estimated and measured air temperature is 

comparable with the estimation of maximum daily air temperature in this study.   

Maximum and minimum temperatures are used to estimate relative humidity 

and solar radiation. Seasonal categorization improves estimation performance for 

relative humidity better than for solar radiation. The dew-point temperature 

adjustment coefficient varies greatly when compared to the adjustment coefficient for 

solar radiation. 

Measured solar radiation values vary for successive days especially at the lower 

peak value days as compared to relative humidity. Therefore, the performance of the 

temperature-based solar radiation estimation method is poorer than for relative 

humidity. Low peak values occurred during the main rainy season where there is a high 

cloud cover. This indicates that other variables like occurrence of cloud may be 

important together with daily temperature values to estimate solar radiation. On the 

other hand, higher peaks during the clear-sky dry seasons are underestimated. 

Calibration using hourly time-scale measured data may improve addressing the peaks.  

 of a given day is better for the estimation of daily solar radiation than 

other temperature derivatives as equated by Hargreaves and Samani (1982) for the 

study area. However, these authors produce the same adjustment coefficient 

throughout the year in the relationship between  and / . Morid et al. 

(2002) derived the adjustment coefficient using maximum and minimum temperature 

minmax TT 

minmax TT  aR sR
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at an alpine catchment in Iran, and the resulting 0.16 is within the range of the value in 

this study.  

 

5.6 Conclusions   

Different approaches and methods were used to estimate missing daily meteorological 

variables, i.e., rainfall, maximum temperature, minimum temperature, relative 

humidity and solar radiation. Data from nine stations that ranged from 5 to 22 years 

coverage were used to compare spatial daily rainfall estimation methods at the 

headwater of the Blue Nile basin in Ethiopia. The statistical performance of the 

estimation methods showed results comparable with other similar studies done 

elsewhere. The methods arithmetic mean (AM) and coefficient of correlation 

weighting (CCW) provided better daily rainfall estimation than normal ratio (NR) and 

inverse distance weighting (IDW) in most of the stations. Different estimation methods 

performed best for different locations of the meteorological stations with respect to 

elevation. AM performed best for stations at downstream locations, while CCW was 

best at upstream locations.  

It is very important to establish additional representative meteorological 

stations so that interpolation and extrapolation of measured relative humidity and 

solar radiation values are possible using the methods discussed above. The estimation 

of relative humidity and solar radiation values using air temperature data from several 

stations as in this study is promising when compared to estimations using data from 

only two meteorological stations for local water management planning.  

Further research is recommended that includes more stations and a larger 

area cover for better water resources management. Altitude can be included as one 

factor if more meteorological stations at different elevation are considered for better 

performance with respect to filling missing data. This methodology will help to make 

stations with low quality and quantity databases suitable for water resources 

management of the area, as these stations have been excluded under the existing 

water development. The importance of using every database in the area can be 

evaluated further regarding efficiency of hydrological models.  
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6 EFFECT OF CLIMATE STATION DENSITY AND POTENTIAL 

EVAPOTRANSPIRATION CALCULATION METHODS ON WATER BALANCE 

MODELING     

 

6.1 Summary 

Water balance modeling increases our understanding to make decisions on using 

water resources effectively and sustainably. However, hydrological modeling needs a 

meteorological database with reliable time series. Obtaining reliable data for these 

meteorological variables is difficult at spatial and temporal scales in developing 

countries. Therefore, it is of utmost importance to study the effect of data availability 

on hydrological modeling to be able to quantify uncertainty caused by boundary 

conditions. Different modeling setups were used for the Soil and Water Assessment 

Tool (SWAT) to quantify the performance of the water balance simulation.  They 

considered meteorological station density, different methods for calculating potential 

evapotranspiration (PET) (Penman-Monteith and Hargreaves) and different 

approaches for handling missing data. Penman-Monteith and Hargreaves PET 

calculation methods gave comparable river flow modeling performance. Modeling 

using six and four stations gave better performance concerning the water balance 

patterns as compared to using two stations. It is important to have a minimum density 

of meteorological stations in the mountainous highland parts of the Blue Nile to 

manage the water resources at micro- and meso-watershed scales. 

 

6.2 Introduction 

Spatially distributed meteorological variables are highly important for hydrological 

modeling and design of water resources projects. Rainfall is the major driving force for 

runoff and solute transport as compared to the other meteorological variables (Cho et 

al. 2009; Bormann et al. 1999). Gassman et al. (2007) reviewed previous SWAT 

applications and identified inadequate representation of meteorological input 

variables, especially rainfall. The representation can be inadequate due to lack of rain 

gauges in the watershed or due to a sub-watershed configuration that is too coarse to 
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capture all spatially distributed stations. This inadequacy caused weak or incorrect 

hydrological simulation results.  

Some studies investigated the effects of spatial resolutions of input data on the 

accuracy of hydrological modeling (Chaplot et al. 2005; Chaubey et al. 2005; Wang and 

Melesse, 2006; Cho et al. 2009). Cho et al. (2009) performed a study on the effect of 

spatially variable rainfall data on the uncertainty of SWAT output. SWAT takes climate 

input data that is nearest to each sub-watershed centroid (Neitsch et al. 2002). 

Therefore, the SWAT algorithm causes a sharp difference in rainfall and other water 

balance components at the boundary of each sub-watershed. 

River master plans, irrigation and hydropower projects have been developed 

and implemented throughout Ethiopia to reduce poverty and to mitigate climatic 

change effects. These water development projects need accurate hydrometeorological 

analysis methodology and tools. In many countries, not only is the station density too 

low and the period of measurements too short but data is also missing due to the 

effect of device failure during the collection of climate data. The missing values affect 

environmental time series (Presti et al. 2010) and hydrological modeling.  Inconsistent 

and biased hydrologic analysis and conclusions in water resources development 

planning are the result of missing data (Kim and Ahn 2009). Missing values have to be 

filled before using the data for further investigations.  

Hydrological modeling is crucial for planning water development activities as 

well as for controlling and implementing water use during and after implementation of 

the projects. Previous studies in the study area used coarse databases, so that 

evaluation of the results at the local scale, e.g., the Gumara watershed, is very difficult. 

For example, Setegn et al. (2008) used only five stations for the 15,000 km2 Lake Tana 

Basin; Gumara watershed is one of its sub-basins. This means that station density is 

one station for an area of 3,000 km2. For planning irrigation water requirement and for 

flood frequency analysis for the Gumara irrigation project (GIP), the MoWR (Ministry 

of Water Resources of Ethiopia, 2008) use data from a station located 50 km away 

(Bahir Dar). This may create discrepancies, since the physical status of the area of 

interest (dam catchment of GIP) is different from that of the total catchment. 
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In this chapter, the effects of different setups in water balance modeling using SWAT 

hydrological models are compared for the following objectives. 

 

6.3 Objectives  

The general objective is to calibrate the SWAT model for the Gumara watershed in the 

Blue Nile Basin. This is guided by the following specific objectives: 

1. To identify the effect of the meteorological station density on the water balance 

modeling of the watershed. 

2. To evaluate the effect of Penman-Monteith and Hargreaves potential 

evapotranspiration methods on model performance. 

3.  To identify the effect of methods for filling missing spatial and temporal data on 

SWAT modeling results. 

 

6.4 Materials and methods 

6.4.1 Description of the study area  

The study was performed in the Gumara watershed in the Blue Nile Basin of Ethiopia. 

It covers 1,360 km2, and is located between 37˚38' to 38˚ 11' E and 11˚ 35' to 11˚ 54' N 

(Figure 2-1). Gumara River is one of the rivers draining to Lake Tana (Kebede, 2006), 

which is one of the largest water bodies in Africa. The lake receives 93% of drained 

water from four main rivers: Gilgel-Abbay, Reb, Gumara and Megetch (Kebede 2006; 

Vijverberg et al. 2009). The climate is tropical highland monsoon where the seasonal 

rain distribution is dominated by the movement of the inter-tropical convergence zone 

(ITCZ) and by moist air from the Atlantic and Indian Ocean in the summer (June-

September) (Kebede 2006). The mean annual rainfall and mean temperature is 1400 

mm and 20°C, respectively. The study area is characterized by a mixed crop-livestock 

farming system with rice-based cash crops, maize, small cereals and cereal-pulse 

(Haileslassie et al. 2009a). 
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6.4.2 Database development 

SWAT needs spatially distributed data, i.e., digital elevation model (DEM), land-use, 

soil and meteorological data (rainfall, temperature, relative humidity, solar radiation 

and wind speed). These data were collected and checked for consistency before SWAT 

modeling was applied. 

The 30-m resolution Global Digital Elevation Model (GDEM) was downloaded 

free from http://asterweb.jpl.nasa.gov/gdem.asp (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER)).  This DEM was used for watershed and 

sub-watershed delineation, reach identification and slope-class categorization. The 

land-use map and stream network data of the watershed were taken from the MoWR 

database that was organized for the feasibility study of the Gumara irrigation project 

(GIP). The data were checked using ground control points data that had been collected 

during field observations in different seasons in 2009 and 2010.  

Soil physical and chemical data at each soil unit and soil depth layer are 

important spatial data for modeling hydrological balance components in SWAT. It was 

difficult to obtain all soil data in Ethiopia, and different soil databases were used in this 

study. The MoWR did a detailed soil survey study for the downstream side of Gumara 

watershed (MoWR 2008) for the GIP feasibility study. This recent soil database was 

used to fill most of soil physical and chemical properties in the watershed. Soil texture 

and soil layer data were taken from the Abbay River Basin Integrated Development 

Master Plan Project (ARBIDMPP) database of the MoWR, who had performed a semi-

detailed soil survey in the Blue Nile Basin (BCOM 1998). Figure 6-1 shows the DEM, soil 

and land-use database maps. 

 

http://asterweb.jpl.nasa.gov/gdem.asp
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(a) 

(b) 

(c) 

Figure 6-1  DEM and map of meteorological station distribution (a), soil 
map (b) and land-use map (c) of Gumara watershed.  

(Source: Soil data from MoWR (2008) and BCOM (1998), land-use from MoWR (2008), field investigation by the author and 
farming system data from Haileslassie et al. (2009a); DEM downloaded from http://asterweb.jpl.nasa.gov/gdem.asp) 

Meteorological station category: Class 1 (Bahir Dar-bdr and Debre Tabor-dbr), Class 3(Wanzaye-wnz, Werota-wor, Amed Ber-
amb Gasay-gsy and Mekane Eyesus-mky) and Class (Arb Gebeya-arg and Luwaye-lwy) 

SWAT land-use units: Agricultural Land –Close-Grown (AGRC), Agricultural Land – Generic (AGRL), Agricultural Land – Row Crops 

(AGRR), Forest-Mixed (FRST), Pasture (PAST), Range –Bush (RNGB), and WATeR body (WATR). 
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Meteorological data were provided by the Ethiopian National Meteorological 

Agency (ENMA). Four classes of meteorological stations are installed in Ethiopia at 

different geographical locations. First class (synoptic) stations are stations where the 

meteorological observation data are used for synoptic meteorology. Second class 

(principal or indicative) stations are stations providing observation data for the 

purpose of climatology. At third class (ordinary) stations, only maximum temperature, 

minimum temperature and rainfall data are recorded. Forth class stations are used to 

record only rainfall. About 22 and 150 synoptic and principal meteorological stations, 

respectively, are located in Ethiopia 

(http://www.ethiomet.gov.et/stations/regional_information/1#Synoptic (Cited on 

24/04/2012)).   

Of the annual rainfall, 21% and 70% occurred in the second (April-May-June) 

and the third (July-August-September) seasons (Figure 6-2), respectively. Almost 50% 

of the year is dry. The first season is the land preparation season, and the second is the 

main rainy season. Not only rainfall amount, but also its variability and temporal 

occurrence are very important for the crop and livestock productivity of the area. The 

rainfall amount was highly variable in the main rainy season. 

 

Figure 6-2  Seasonal rainfall contribution from 1992 to 2001.  
JFM = January-February-March, AMJ =April-May-June, JAS = July-August-September, OND = October-November-December. 
Basin rainfall data were calculated using the Thiessen polygon method from four stations. 

 

6.4.3 Modeling setup 

Meteorological stations within and around the watershed were categorized into 

groups depending on data availability and on meteorological stations that had been 
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used frequently in other studies. Missing data of all meteorological variables of the 

stations were filled using the weather generator routine of SWAT (WXGEN), which is 

well discussed in the theoretical documentation by Neitsch et al. (2011). The best 

missing meteorological data handling methods (see section 5) were used to compare 

their effect on water balance modeling. Meteorological variables that are not 

measured in Class 3 stations were substituted with measured values from the nearby 

Class 1 stations. The substitution is based on the topographical similarities like relief 

and elevation (i.e., Bahir Dar for Woreta, Amed Ber and Wanzaye and Debre Tabor for 

Mekane-Eyesus and Gassay). The following three groups of meteorological stations 

were formed to observe the effect of station density on modeling performance: 

1. Class 1 stations (Bahir Dar and Debre Tabor): These stations have long-term 

databases of rainfall, temperature, sunshine hours, relative humidity and 

wind speed. Bahir Dar was used for most of the studies done for the 

watershed as it is located far away from Gumara watershed as compared to 

the other stations (Figure 6-1). The Class 1 group is called “two stations” 

hereafter. 

2. The best four stations (Woreta, Wanzaye, Debre Tabor and Mekane Eyesus): 

These stations are called best since they are located at relatively 

representative positions in the watershed. The stations had relatively better 

long-term databases as compared to the others during both the calibration 

and validation period. These stations are grouped together and named “four 

stations”. The data were used during calibration and validation.   

3. Class 1 and Class 3 stations (Debre Tabor, Woreta, Amedber, Gassay, Mekane-

Eyesus and Wanzaye): - Class 3 stations record rainfall and temperature data.  

This setup is named “six stations” hereafter. SWAT excluded Bahir Dar 

automatically as an input since the additional Class 3 stations covered every 

sub-watershed, which was covered by Bahir Dar.  

Discharge data were grouped into two periods: 1992 to 1995 for calibration and 1998 

to 2001 for validation (Figure 6-3). Data within 1990-1991 and 1996-1997 were used 

for model warm-up for calibration and validation, respectively. This grouping for 
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calibration and validation was formed after checking the validity of the meteorological 

and hydrometric time series data.  

 

Figure 6-3 Time series data for calibration and validation 
Note: Data in region (a) and (c) were used for model warm-up, (b) for calibration and (d) for validation. 

 
Two approaches were tested to evaluate the effect of filling missing data on 

SWAT modeling performance, i.e., the SWAT weather generator routine (WXGEN) and 

the regression method (REG) discussed (see section 5). WXGEN uses the Markov chain-

skewed (Nicks 1974) or the Markov chain-exponential (Williams 1995) models to 

generate daily rainfall data for a given station. The first-order Markov chain is used to 

define the day as wet or dry. A skewed distribution or exponential distribution is used 

to generate the precipitation amount. A wet day is defined as a day with 0.1 mm of 

rain or more. The WXGEN needs monthly average meteorological values over many 

years as parameters. These parameters can be easily prepared for SWAT based on 

independent procedures like pcpSTAT for rainfall and dew.exe for dew point 

temperature (Liersch 2003a,b). The WXGEN weather generator model (Sharpley and 

Williams 1990) was developed to generate climatic data or to fill in gaps in measured 

records. The SWAT routine for weather generation of each meteorological variable is 

explained in the SWAT theoretical documentation (Neitsch et al. 2011). Three station 

densities, two missing data filling methods, and two evapotranspiration procedures 
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give 12 combinations. However, Gumara was not the experimental watershed so that 

historical data were not measured in a condition to compare all these combinations. 

Only four stations had relatively better historical data for calibration and validation 

than the other two stations (see section 5). Therefore, only five of the combinations 

were selected for calibration and validation of the SWAT model for the watershed due 

to lack of data from some stations during the calibration and validation periods.  

As the number of climate stations for the watershed increases, the number of 

sub-watersheds and Hydrological Response Unit (HRU) has to be increased to 

incorporate each additional station. Finally, sub-watershed and HRU discretization was 

carried out in order to accommodate all the data layers for the model setups. Thus, 37 

sub-watersheds and 113 HRU were formed for calibration and validation. 

 

6.4.4 Model performance and uncertainty evaluation 

The calibration was performed using the Sequential Uncertainty Fitting _version 2 

(SUFI-2) interface of SWAT-CUP. SWAT-CUP is a separate calibration and uncertainty 

program developed by Abbaspour et al. (2004). SUFI-2 is a frequently used procedure 

for calibration and uncertainty analysis (Setegn et al. 2008). Yang et al. (2008) 

compared different procedures and found SUFI-2 better, as it gives good results even 

with the smallest number of runs as compared to other procedures. 

Graphical and statistical techniques were applied to evaluate model 

performance. Moriasi et al. (2007) recommend one dimensionless and two error 

indices from several statistical model evaluation techniques. These measures were 

used for this study. The dimensionless Nash-Sutcliffe efficiency (NSE) (Nash and 

Sutcliffe 1970) measures normalized magnitude of the residual variance relative to 

measured flow variance. The value of NSE ranges from -  to 1, while the value 1 for 

NSE indicates the perfect fit from the 1:1 line. NSE values less than zero indicate 

unsatisfactory performance. One of the error indices used for this study was percent 

bias (PBIAS) (Gupta et al. 1999). It indicates the average difference between simulated 

and measured discharge. A zero value of PBIAS indicates perfect fit; a negative value 

indicates overestimation while a positive value indicates underestimation of the model 


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(Moriasi et al. 2007). The ratio of root mean square error (RMSE) to observation 

standard deviation (RSR) was recommended by Singh et al. (2004), which benefits the 

additional scaling or normalization factor to the error index given by RMSE. RSR varies 

from 0 to +  where 0 indicates perfect simulation. Table 6-1 shows the mathematical 

representations of these techniques and recommended range of performance for the 

SWAT model. 

Table 6-1  Model performance rating for stream flow at monthly time scale  

P
er

fo
rm

an
ce

 

ra
te

 

Equations 

 
  

Very good 0.75 < NSE < 1.00 ǀPBIASǀ  < 10 0.00 < RSR < 0.50 

Good 0.65 < NSE < 0.75 10 < ǀPBIASǀ  < 15 0.50 < RSR < 0.60 

Satisfactory 0.50 < NSE < 0.65 15 < ǀPBIASǀ  < 25 0.60 < RSR < 0.70 

Unsatisfactory NSE < 0.50 ǀPBIASǀ  > 25 RSR > 0.70 

Source: (Moriasi et al. 2007)where, NSE is Nash-Sutcliffe efficiency, PBIAS is percent bias, RSR is the ratio of root mean square 

error to observation standard deviation, and ,  and  are measured simulated and mean of measured discharge 

values, respectively. 

 

Coefficient of determination (R2) and mean separation statistical techniques 

were used to measure the level of correlation among model variables, and to measure 

mean differences of water balance components using different station densities. 

Coefficient of determination is the square of the correlation between observed and 

simulated values that measures how much measured values variation is explained the 

in simulation (Krause et al. 2005).  It ranges between 0 and 1. The value 1 indicates 

that the variation of the simulation is equal to the variation of the observed time 

series.   

Hydrological modeling produces uncertain predictions due to model structure 

(structural uncertainty), input data (input uncertainty), and parameters (parameter 

uncertainty) (Brown and Heuvelink 2005; Abbaspour 2011). Model uncertainty 

includes uncertainties due to simplifications of hydrological processes, to processes 
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occurring in the watershed but not included in the model, to processes that are 

included in the model where their occurrences in the watershed are unknown to the 

modeler, and to processes unknown to the modeler and not included in the model. 

Input uncertainty is uncertainty due to errors in input data such as rainfall, like 

extension of point data to large areas in distributed models. Parameter uncertainty is 

uncertainty caused by inherent non-uniqueness of parameters in inverse modeling. 

Due to the uncertainty that reflects in hydrological processes, parameters can 

compensate each other giving many sets of parameters that produce the same output 

signal. The occurrence of such sets of parameter non-uniqueness is known as 

equifinality (Beven and Freer 2001).  More details of these prediction uncertainty 

sources are given by Abbaspour (2011).  

SUFI-2 accounts for all the three sources of prediction uncertainties. Two 

uncertainty measures, i.e., p-factor and r-factor, are used in SUFI-2 (Abbaspour 2011). 

The p-factor measures the percentage of observations within 2.5% and 97.5% 

percentiles, or 95% of prediction uncertainty (95PPU). The percentage of observation 

captured (bracketed) by 95PPU measures the strength of the calibration. The higher 

the percent of observations bracketed by 95PPU the more perfect is the model. The r-

factor measures the distance or the thickness of the 95PPU band divided by the 

standard deviation of the measured data. The p-factor ranges from 0-100%, while the 

r-factor ranges from 0 to . A p-factor of 1 or 100% and r-factor of 0 indicate a perfect 

fit of simulation with the measured value. The objective of the uncertainty analysis is 

to get a p-factor > 0.5 and r-factor <1.0 (Abbaspour, 2011).   

 

6.5 Results  

Data from four stations were used to calibrate SWAT for the PET calculation methods 

and missing data filling methods. This is because these stations had better historical 

data than the additional two stations in the calibration period. Penman-Monteith and 

regression methods gave better discharge simulation than Hargreaves and WXGEN. 

Finally, calibration of SWAT for two and six stations was done only using Penman-

Monteith and regression methods to minimize time cost and computer memory.   


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6.5.1 Time series and statistics 

 

 

Figure 6-4 Monthly mean measured and simulated river discharge using 
different meteorological densities. 

(All stations groups were treated using Penman-Monteith PET procedure and regression missing data filling method) 

 

Monthly time series of measured and simulated streamflow (YLD) at the 

outlet of the watershed is shown for the calibration and validation years in Figure 6-4. 

Simulated discharge curves using four and six stations lie one over the other. They 

represent the measured discharge better than the simulation curve using two 

meteorological stations. The rising and recession parts of the hydrograph curve were 

better simulated than the peak. The time to peak was well captured. The simulation 

based on two meteorological stations does not fit measured values for some years 

e.g., the peak of 1995 as compared to simulation results using four and six stations.  

Generally, SWAT could not simulate daily peaks resulting from high local rainfall events 

at the daily level (data not shown) in 1992 and 1995, which resulted in 

underestimation. However, two well identified seasonal peaks at the monthly level in 

1999 were simulated as a single overestimated peak.  

The statistical performance is shown in Table 6-2 using the three statistical 

measures (NSE, PBIAS and RSR) at daily, weekly and monthly scales. The modeling 

performance was very good at every time scale except when using two meteorological 

stations during validation where an overestimation was observed. NSE improved from 

63% to 75% and 87% to 92% at daily and weekly scales, respectively, when station 
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density increased from two to six. PBIAS gave negative values showing overestimation 

during flow simulation using two stations. Statistical performance measures were 

neither good nor stable using two stations. Higher flow modeling performance was 

observed when six meteorological stations were used instead of two and four.   

 

Table 6-2 Statistical performances of modeling monthly river discharge using different 

station density during calibration (cal) and validation (val). 

Time scale Statics Two stations Four station Six stations 

Cal Val Cal Val Cal Val 

Daily NSE 0.63 0.43 0.70 0.66 0.75 0.71 

PBIAS -1.86 -29.90 12.63 8.33 -6.21 10.45 

RSR 0.37 0.57 0.30 0.34 0.25 0.29 

Weekly NSE 0.87 0.64 0.91 0.82 0.92 0.83 

PBIAS -1.75 -29.83 12.85 8.46 -6.32 10.57 

RSR 0.13 0.36 0.09 0.18 0.08 0.17 

Monthly NSE 0.95 0.80 0.96 0.91 0.97 0.92 

PBIAS -2.81 -30.26 11.67 8.88 -4.83 10.79 

RSR 0.05 0.20 0.04 0.09 0.03 0.08 

(All station groups were treated using Penman-Monteith PET procedure and regression missing data filling method) 

 

Table 6-3 Uncertainty of modeling river discharge at daily level using different station 

density 

Uncertainty measures Two stations Four stations Six stations 

WXGEN REG WXGEN REG WXGEN REG 

p_factor 0.79 0.78 0.79 0.76 0.79 0.80 

r_factor 0.47 0.47 0.48 0.35 0.47 0.49 

Note: WXGEN: missing meteorological data was filled using SWAT weather generation; REG: missing data of stations were filled 
using regression models from the neighboring stations. 

 
The uncertainty analysis (Table 6-3) led to acceptable results. About 80% of 

the measured flow values were captured within 95PPU. However, a higher width of 
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the 95PPU band was observed to capture more observations in 95PPU. The same level 

of prediction uncertainty strength was observed for every model setup. 

Table 6-4 Parameters fitted values under different model setups 

No. 
Parameter 
ID 

Modelng setup1  

2_REG_PM 4_WXGEN_PM 4_REG_PM 4_REG_HG 6_REG_PM 

1 CN -9.24 (-13,-6) -2.74(-6,1) -8.52(-11,-6) -7.72(-12,-3) -11.03(-13.18,-8.88) 

2 ALPHA_BF 0.05(0,0.1) 0.18(0.1,0.26) 0.1(0.05,0.2) 0.2(0.1,0.3) 0.15(0.05,0.24) 

3 SOL_AWC 0.16(-0.02,0.34) -0.19(-0.3,-0.09) -0.13(-0.25,-0.01) 0.12(-0.06,0.3) -0.12(-0.29,-0.09) 

4 SOL_K -0.78(-0.88,-0.68) -0.72(-1.5,0.06) -0.81(-0.97,-0.65) -0.86(-0.9,-0.8) -0.78(-0.93,-0.63) 

5 RCHRG_DP 0.06(0.05,0.06) 0.06(0.05,0.07) 0.06(0.06,0.07) 0.04(0.04,0.05) 0.05(0.04,0.06) 

6 GWQMN 53.35(35,72) 47.33(26,69) 35.37(29,42) 41.75(31,53) 27.83(20.32,35.32) 

7 GW_REVAP 0.09(0.02,0.1) 0.03(0.01,0.06) 0.05(0.02,0.05) 0.03(0.01,0.03) 0.06(0.04,0.07) 

8 REVAPMN 30.56(21,40) 25.78(13,38) 29.27(20,39) 47.53(29,66) 26.29(18.29,34.29) 

9 ESCO 0.81(0.41,1.21) 0.26(-0.05,0.58) 0.71(0.57,0.84) 0.28(0.15,0.42) 0.63(0.42,0.828) 

10 GW_DELAY 3.79(1,7) 14.81(7,23) 11.17(5,14) 18.79(11,27) 15.68(5.17,26.17) 

11 SURLAG 0.46(0,0.89) 0.87(0.3,1.4) 0.51(0,1) 0.42(0,0.84) 0.81(-0.98,2.61) 
1Numbers indicate number of stations used for calibration, WXGEN-weather generator, REG-regression, PM-Penma-Monteith 
and HG-Hargreaves. The maximum and minimum fitted values are given in brackets. Descriptions of the parameters and their 
initial values are given in Table 3-1. 

 

 Table 6-4 shows the values of fitted model parameters for the different 

station densities and missing data fitting. It is difficult to obtain a meaningful trend of 

parameter variation. However, CN2 and SOL_K show decreasing values compared to 

the initial values given at the beginning of modeling. CN2 decreased more when six 

and four stations were used. This leads to higher SUR_Q at the expense of actual 

evapotranspiration (AET) when data from two stations were used. Higher ESCO for two 

stations led to low AET simulation due to the low temperature recorded at Debre 

Tabor.  

 

6.5.2 Potential evapotranspiration calculation methods  

The effect of the Penman-Monteith and Hargreaves potential evapotranspiration 

methods on river discharge modeling is presented in scatter plots (Figure 6-5). Both 

methods have comparable performances for modeling river discharge. However, the 

Penmann-Monteith method shows advanced performance compared to the 

Hargreaves method. This is a good opportunity to use Class 3 stations data without 
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solar radiation, relative humidity and wind speed measurements. On the other hand, 

six stations show better performance than four stations. 

 

 

Figure 6-5  Effect of PET calculation methods on modeling river discharge 
(m3/s) at monthly level 

(wwdmpm = 4 stations with Penman-Monteith, wwdmhg = 4 stations with Hargreaves; class13 = 6 stations). 

  

6.5.3 Meteorological station density  

Figure 6-6 shows scatter plots of measured and simulated water yield (YLD) 

considering different station density. Four and six meteorological stations gave 

comparable simulation results. The simulation using two, four and six meteorological 

stations represented about 90% of the measured water yield. Cluster groups can be 

observed on measured and simulated scatter plots. Simulation was weak for water 

yield measurements of less than 100 mm per month, which indicates that low flows 

were not addressed well by any station density experiment. Monthly water yields 

between 100 mm and 300 mm were underestimated and yields more than 300 mm 

overestimated. This indicates underestimation at the rising and recession limb of the 

hydrograph, while the peak was overestimated when using two meteorological 

stations. Modeling using four and six meteorological stations showed close agreement 

with measured data, while modeling using two stations overestimated the measured 

flow at the monthly level.  
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Figure 6-6  Scatter plot of measured and simulated river discharge (in 
mm/month). 

(YLD =  water yield at the outlet of the watershed; numbers are number of stations) 

 

The relationship between simulated discharge using different station 

densities and watershed rainfall at the monthly level is shown in Figure 6-7. All YLD 

values have similar correlation with rainfall observations especially for simulated YLD 

using four and six meteorological stations. Weaker correlation was observed for YLD 

values less than 100 mm. Monthly rainfall less than 100 mm gave almost no YLD. The 

rainfall-YLD relation showed a hysteresis effect. Rainfall at the onset of the rainy 

season resulted in lower YLD than rainfall at the middle and end of the season. The 

slope of the line indicates the average runoff coefficient at the monthly level. This 

runoff coefficient differed for each model setup and for measured flow. Increasing 

meteorological stations decreased the runoff coefficient value. Almost the same runoff 

coefficient (0.53) was achieved during the modeling experiment using six stations and 

with measured river flow as shown by the slope of the trend line. The coefficient of 

determination, R2, shows the proportion of variability of the dependent variable, YLD 

or measured flow (Qmeas), which can be controlled by the independent variable, i.e., 

monthly rainfall. More simulated YLD variability (75% to 80%) was controlled by rainfall 

than measured YLD variation determined by rainfall (68%). 
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Figure 6-7  Scatter plot of river discharge (YLD in mm/month) with rainfall  
(YLD2, YLD4 and YLD6 are simulated discharge using two, four and six meteorological stations, respectively, and Qmeas is 
measured river discharge. All station groups were treated using Penman-Monteith PET procedure and regression missing data 
filling method). 

 

6.5.4 Spatial patterns  

Figure 6-8 shows the spatial pattern of modeled annual water balance components 

using two, four and six meteorological stations. Sharp boundaries were formed along 

the sub-watershed boundaries that were grouped within a Thiessen polygon of each 

meteorological station. There was more spatial variation in water balance components 

due to HRU when two meteorological stations were used as compared to four and six 

stations. This is because the variation due to rainfall was controlled, since most of the 

watershed gets rainfall from one station (Debre Tabor) located at the upstream 

position when two meteorological stations were used. This heterogeneity was found 

for water yield (YLD). Different spatial patterns were observed for each water balance 

component due to densly distributed meteorological stations.  
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Figure 6-8 Spatial patterns of modeled annual discharge using different 
station densities. 

Abbreviations for SWAT water balance (WB) components are: YLD (water yield or river discharge), GW_Q-(ground water flow), 
SUR_Q (surface runoff), AET (actual evapotranspiration), and PET (potential evapotranspiration). All stations groups were 
treated using Penman-Monteith PET procedure and regression missing data filling method.  

 

6.5.5 Water balance  

The effect of methods for filling missing climatic data, i.e., SWAT weather generator 

routine (WXGEN) and the best regression models (REG) (see section 5), on the water 

balance modeling is assessed using SWAT. Six meteorological stations and the 

Penman-Monteith potential evapotranspiration calculation procedure were used 
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during this simulation. The efficiency of runoff modeling (NSE) increased from 0.71 to 

0.75 and from 0.70 to 0.72 at calibration and validation level, respectively, when REG 

was used instead of WXGEN (data not shown). About 20 mm to 60 mm and 120 mm to 

180 mm higher AET and PET, respectively, were modeled by the SWAT weather 

generator (WXGEN) in comparison with the regression method (Table 6-5).  

Table 6-5 Simulated evapotranspiration using different station densities and missing 

data filling methods 

AET/PET 
Two stations Four stations Six stations 

WXGEN REG WXGEN REG WXGEN REG 

AET 623 605 599 637 672 649 

PET 1170 1130 1250 1372 1384 1258 

AET = actual evapotranspiration (mm), PET = potential evapotranspiration (mm). All combinations were treated using Penman-
Monteith PET calculation method.  
 

 

 

Figure 6-9 PET relationships using different climate station densities 

(mm/month). 

AET = actual evapotranspiration (mm), PET = potential evapotranspiration (mm). Numbers with AET and PET are number of 
stations used. All combinations were treated using Penman-Monteith PET calculation method. 

 

 

Higher AET and PET values were observed when two meteorological stations 

were used as compared to four and six stations (Figure 6-9). Using four and six 
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meteorological stations gave almost identical values for all months, while PET values 

were low when only two meteorological stations were used.  

Table 6-6 illustrates the annual water balance modeled using two, four and 

six stations. It shows both the average quantity of the water balance components as 

well as the statistical significant differences of simulated values at 95% level of 

significance. A significant difference was observed for surface runoff (SUR_Q) and 

potential evapotranspiration (PET) of the water balance components between 

modeled results using two stations and the other station densities. Higher values were 

observed for rainfall (RF), surface runoff (SUR_Q), groundwater discharge (GW_Q), 

percolation to the soil layers (PERCO) and river discharge (YLD), while lower values 

were observed for actual and potential evapotranspiration (AET and PET), respectively, 

during simulation using two stations as compared to modeled values using four and six 

meteorological stations.  

 Table 6-6 Annual water balance (mm) using different station densities  

 Rainfall SUR_Q LAT_Q GW_Q AET PET YLD 

Two stations 1,549 326
*
 86 483 589 1,147

*
 759 

Four 

stations 
1,448 261 77 409 655 1,398 738 

Six stations 1,433 209 86 419 670 1,408 707 

Sig. 0.29 0.00 0.63 0.17 0.08 <0.01 0.85 

* The mean difference is significant at the 0.05 level. 

RF = rainfall, SUR_Q = surface runoff, LAT_Q = lateral flow, GW_Q = groundwater flow, AET = actual evapotranspiration, PET = 
potential evapotranspiration, YLD = water yield (all in mm). All combinations were treated using Penman-Monteith PET 
calculation method.  
 

6.6 Discussion  

This study gave better calibration results than other similar studies for the area. 

Setegn et al. (2009a) achieved a p-factor of 0.79 and an r-factor of 0.77 for the 

Gumara watershed. This indicates that the same percentage of observation in the 

present study was captured at 95%PPU within a very wide 95%PPU band in the same 

watershed. Setegn et al. (2009a) used only one meteorological station (Debre tabor) 

with a coarse sub-watershed discretization, soil data, and 90-m resolution DEM. 

Therefore, some prediction uncertainty might originate in uncertain input data. In an 

earlier study, Setegn et al. (2008) concluded that the sub-watershed discretization 
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had a limited impact on flow prediction when only using data from one 

meteorological station. However, it was impossible to capture additional 

meteorological stations without further fine sub-watershed discretization. Schuol et 

al. (2008) studied the water availability at the sub-watershed, country and continental 

level for Africa and gained a p-factor from 0.41 to 0.60 and an r-factor from 0.64 to 

0.80 for the Blue Nile of Ethiopia at the monthly level, which is a lower performance 

than in this study. The reason for the better modeling performance in the present 

study may be due to fine meteorological, soil and land-use data. In addition, careful 

data screening was carried out on the base runoff-rainfall relation prior to calibration. 

In addition to a lower uncertainty obtained in this study, the model efficiency 

resulted in a performance level comparable with that of other studies. Setegn et al. 

(2008), Asres and Awulachew (2010) and Easton et al. (2010) presented 0.62, 0.76 and 

0.87 NSE values for the Gumara watershed, respectively, at the monthly level. All 

studies used different approaches for SWAT modeling, which showed poorer 

performance than the modeling in this study. In addition to coarse databases used in 

the studies, the areas assigned for the watershed were different. Asres and 

Awulachew (2010) and Easton et al. (2010) used 1464 km2 and 1286 km2, respectively, 

while the area was 1369 km2 in this study. The difference in watershed area might be 

from locating the watershed outlet in a different place. Ground control points were 

taken to delineate the water divide at the outlet in this study to obtain more accurate 

results than in the other studies.  

There were two reasons for achieving better modeling performance by using 

regression models (REG) rather than by using the SWAT weather generator (WXGEN) 

for filling missing data. Firstly, WXGEN could not consider spatial attributes to fill the 

missing data of a given station with data from its neighbor. It rather filled the missing 

value at a given time from another time data of the same station. Secondly, data were 

missing for months and years in the study area so the WXGEN approach could not be 

used effectively. Therefore, better modeling performance confirmed the advantage of 

using both spatial and temporal regression techniques to fill missing data.  
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Overestimated stream flow using two meteorological stations might be due to 

the higher rainfall observed at the upstream of the watershed (Debre Tabor station) 

than at the other stations. Cho et al. (2009) observed the same trend of increasing 

simulated stream flow as the level of watershed delineation decreased.  

Low modeling performance was observed during low flow situations. This is 

because of the weakness of SWAT in addressing soil moisture (saturated excess flow) 

for runoff formation. The curve number (CN) routine for calculating runoff only 

addresses the infiltration excess runoff (Easton et al. 2010). However, a higher share of 

the runoff is generated from the saturated excess rather than from the infiltration 

excess in Ethiopian highland watersheds (Derib 2005; Lue et al. 2008; White et al. 

2011; Easton et al. 2010). Therefore, most small rainfall events generated different 

runoff amounts that varied from 0 to 50 mm.  

Different spatial trends of water balance components (with small differences in 

statistical modeling performances) were achieved when different station density was 

used. Good statistical performance of stream flow modeling at the watershed outlet 

using two stations was at the expense of the accuracy of the spatial distribution of the 

water balance in the watershed. It is possible to use modeling results with low station 

density for runoff management at the outlet of the watershed with relatively better 

confidence than water resources management within the watershed. However, 

Setegn et al. (2009b), Asres and Awulachew (2010) and Easton et al. (2010) used data 

from less than three stations for the Gumara watershed for identifying hotspot areas 

of severe soil erosion. Such studies for spatial details need fine spatial data with 

distributed hydrological models (Bormann & Diekkrueger 2003). For a detailed 

watershed management study, the use of six meteorological stations has shown 

better practical significance than the statistical modeling performance presented in 

this study. 

 

6.7 Conclusions  

In this study, calibration of SWAT with different model setups was performed. The 

modeling setups were based on potential evapotranspiration (PET) calculation 
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methods (Penman-Monteith and Hargreaves), missing data filling methods (WXGEN 

and spatial and temporal regression models), and three levels of meteorological 

station density (two, four and six stations). Very good modeling performance was 

observed with 65% (95%), +5 (+5) and 0.3 (0.06), at daily (monthly) levels for NSE, 

PBIAS and RSR, respectively, using Penman-Monteith PET calculation methods and six 

stations. 

The Hargreaves PET calculation procedure uses only maximum and minimum 

daily air temperature, which could be measured at most meteorological stations in the 

area. However, the Penman-Monteith procedure also needs solar radiation, relative 

humidity and wind speed data, which were hard to find at all climatic stations. The 

Hargreaves procedure showed comparable SWAT modeling performance compared to 

the Penman-Monteith. Therefore, Hargreaves method can be widely used for future 

water resource management by increasing the climate stations that can measure air 

temperature and rainfall. It is also possible to use climatic data from Class 3 stations 

that have been excluded in past studies. As a recommendation, the Meteorological 

Agency of Ethiopia can use elementary schools and health centers that have been 

established in every small administration unit (Kebele) of the country to install Class 3 

stations. Installation of automatic and manual recording stations can improve data 

quality by minimizing personal errors as well as data missing due to failure of 

automatic instrumentation. 

Missing data handled by the SWAT weather generator (WXGEN) and 

regression models using neighboring stations gave comparable modeling performance. 

WXGEN gave values of 0.94, 2.5%, 0.07 and regression models 0.96, -5%, 0.05 for NSE, 

PBIAS, RSR, respectively, at the monthly level. Regression models led to better 

performance than WXGEN. In addition, regression models have a background that is 

more practical, since the spatial correlation of climatic variables between stations is 

not considered within WXGEN. For further SWAT applications, it is recommended to 

incorporate the spatial regression routine. 

Meteorological station density played a crucial role in the SWAT hydrological 

modeling. Similar statistical modeling performance was observed using two, four and 
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six meteorological stations for the Gumara watershed in the Blue Nile Basin, Ethiopia. 

However, the spatial distribution of the water balance components, which is very 

important for water resources management, was very variable. Understanding of 

spatial dynamics is very important for decision making regarding water resources in 

addition to temporal flow modeling performance at the outlet of a watershed. This 

study shows the influence of spatially distributed climatic data on SWAT. Considering 

spatially distributed climatic data is crucial under the conditions of the monsoon 

climate as in the study area.  

 

 

 

 

 

 

 

 

 

 



WATER BALANCE AND WATER AVAILABILITY UNDER LAND-USE AND LAND 

MANAGEMENT SCENARIOS 

111 

 

7 WATER BALANCE AND WATER AVAILABILITY UNDER LAND-USE AND LAND 

MANAGEMENT SCENARIOS 

 

7.1 Summary 

Land-use scenarios were used to identify water flow shift and water availability in the 

Gumara watershed, Ethiopia. Basic water requirements in 2001 and 2050 were used to 

identify water scarcity at a seasonal level. Results show that watershed management 

practices decrease the surface runoff and increase the groundwater flow without 

significantly altering the average annual water yield at the outlet of the watershed. The 

state of existing rainfed production system will not maintain the basic human and 

ecosystem water demands in 2050.  

 

7.2 Introduction 

Sufficient quality and quantity of available water is fundamental for life (Jefferies et al. 

2012). Accessibility of this resource is affected by the spatial and temporal distribution 

of fresh water. About 30% of the world population suffers from lack of water 

availability (IWMI 2007) and water scarcity has become one of the main challenges of 

life. Population growth is among the expected factors that will increase the level of 

water scarcity in the future (Jefferies et al. 2012). The Blue Nile Basin (known as Abbay 

in Ethiopia) is the least managed sub-watershed with high and erratic rainfall of 800 to 

2,200 mm per year with dry spells that reduce crop yields and sometimes lead to total 

crop failure (Erkosa et al. 2009).  

Agriculture is the backbone of the economy and the livelihoods of Ethiopia. It 

supports about 85% of the population in terms of employment and livelihoods; 50% of 

the country’s gross domestic product (GDP) generates about 88% of the export 

earnings, and supplies around 73% of the raw material requirements of agriculture-

based domestic industries (MEDaC 1999). However, agriculture in this area is rainfed 

and is highly vulnerable to droughts and dry spells, and rainfall productivity is low. 

Based on the Agricultural Census Survey of Ethiopia, Diao and Pratt (2007) calculate 

that 37% of the rural population lives in food-deficit areas. Water shortage that is 
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related to the erratic seasonal rainfall is one of the main sources of this problem. Due 

to the rainfall variability and other related factors, the country had to import 0.62 

million tons of grain per year during 1995 to 2004 to feed 7 million people. It has made 

the country the first food aid recipient in Sub-Saharan Africa (Walker and 

Wandschneider 2005). The imported commercial and food aid accounts for 0.3 

km3/year virtual water (Hoekstra and Hung 2002).  

The government of Ethiopia is, therefore, trying to develop the water 

resources, and the Blue Nile Basin is one of the development corridors of the country 

(World Bank 2008; McCartney et al. 2010). The Gumara Irrigation Project (GIP) (MoWR 

2008) is one of many development activities under feasibility evaluation. Outside the 

Gumara watershed, many water resource development studies have been performed 

along the Blue Nile Basin for irrigation and hydropower projects, the first one being in 

1964 (USBR 1964; WAPCOS 1990; MoWR 1998; MoWR 2008).  

Downstream countries have opposed water development in Ethiopia as it 

may hamper their ‘historical’ right to use the Nile water.  It is not the interest of Egypt 

to share the Nile flow with upstream riparian countries especially Ethiopia, as they 

assume that Ethiopia has ample green water from rainfall (Arsano 2007).  However, 

the net green water resource for Ethiopia could not been determined since this water 

can be recycled and double counted again through evaporation and cooling process of 

the hydrological cycle. In addition, the Ethiopian population is increasing, and drought 

occurrence and climate change are becoming an increasing challenge for the existing 

rainfed agriculture. Information on water availability and scarcity is limited in Africa 

(Wallace and Gregory 2002) especially at meso- and micro-watershed levels and on 

seasonal or monthly scales. As explained by Smakhtin et al. (2005) after comparison of 

spatial patterns on maps, an increasing number of sub-watersheds show a higher 

magnitude of water stress when considering ecosystem water requirements.  Schoul et 

al. (2008) recommend performing detailed spatially distributed studies for African 

countries like Ethiopia.  



WATER BALANCE AND WATER AVAILABILITY UNDER LAND-USE AND LAND 

MANAGEMENT SCENARIOS 

113 

 

This study was carried out on the head water of the Blue Nile to identify the 

water availability status in 2001 and 2050 considering the demographic and water 

development options. 

 

7.3 Objectives  

The objectives of this study were: 

1. To model the water balance components in different land-use and 

land management scenarios, and 

2. To identify the effect of land-use and demographic changes on the 

water availability status at seasonal scales. 

 

7.4 Materials and methods 

7.4.1 Study area 

The study was performed in the Gumara watershed in the Blue Nile Basin of Ethiopia, 

which is located at 37˚38' to 38˚ 11' E longitude and 11˚ 35' to 11˚ 54' N latitude 

(Figure 2-1). The study focuses on an area of 1520 km2 in the watershed after 

calibration on the 1360 km2 gauged part. The watershed is tributary of Lake Tana, 

which is considered the source of the Blue Nile. It is located in food-secure districts 

(woredas; Fogera, Farta, Dera and Iste (see Section 10-2 or Appendix 2) in the south 

Gondor administrative zone (FEWS NET 2008). The watershed is also a food balance 

area where the production is similar to the average cereal equivalent production per 

household at country level (Diao and Pratt 2007). The climate of the area is of a 

tropical highland monsoon type with a single rainy season between June and 

September (Alemayehu et al. 2009). The average annual rainfall 1992 to 2001 was 

1444 mm. In the middle and upstream parts, the topography is highly rugged and 

dissected, while the downstream part is flat with gentle slopes and plain topography. 

About 87% of the watershed is intensively cultivated. Rice, tef, maize, wheat and 

barley are the main crops grown. Overgrazed bush or shrubland, grassland, and 

forest/wood land are other land-cover types (WWDSE 2007). Haplic luvisol, Chromic 

luvisol, Lithic leptosol, Eutric vertisol, Eutric fluvisol and Chromic cambisol are the 
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common soil types found in the watershed (FAO classification system; Asres and 

Awulachew 2010). 

 

7.4.2 SWAT model development  

The SWAT model was applied to the Gumara watershed using 1992 to 1995 climate 

and hydrometric data for calibration and 1998 to 2001 for validation (see section 6). 

Sub-watersheds and hydrological response units (HRU) discretization was based on a 

30-m resolution DEM as well as on land-use and soil data. During calibration, 37 sub-

watersheds with 113 HRUs were derived on the 1360 km2 gauged part of the Gumara 

watershed. Daily meteorological data from six stations were used. Missing data were 

filled using different methods as described (see section 5). The model was fitted very 

well for the measured river discharge giving 0.75 Nash-Sutcliffe efficiency (NSE), 6 

percent bias (PBIAS), and 0.3 root mean square error (RMSE) to observation standard 

deviation (SRS) values (see section 6.5.1). After calibration, scenarios were computed 

for the 1520 km2 watershed area using 328 sub-watersheds and 917 HRUs.   

 

7.4.3 Land-use scenario development 

Land-use scenario development was done using field survey data of the author in 2008 

and 2009, scanned maps from the feasibility study of Gumara Irrigation Project (GIP) 

from the library of the Ministry of Water Resources of Ethiopia (MoWR 2008), and 

information from the land-use policy of the country. Two additional land-use scenarios 

were developed: land-use up to 2008 and land-use planned by the government to be 

implemented in the near future (explained further down). Five land-use types were 

identified in the watershed, i.e., cultivated land (87% of the area), grazing bush-

rangelands (7%), pasture (4%), mixed forest woodlands (3%) and water (0.09%) (Figure 

7-2). Cultivated lands were fine-tuned with respect to three farming systems identified 

by Haileslassie et al. (2009a) for SWAT modeling. Small-scale irrigation covered 213.8 

ha (0.14% of the watershed) in 2009. The farming systems have different tillage, 

planting and harvesting schedules, which were identified during the field surveys in 

2008 and 2009. 
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Mixed forestlands are composed of native and exotic tree types. Most of 

these forests are concentrated along riversides, in steep rugged landscapes and in 

churchyards. Some plantation forestlands can be found at the upstream of the 

watershed. Bush rangeland partly covers the steep hillsides (Table 7-1). It is the feed 

source for livestock grazing during the main rainy season, since the cultivated lands are 

covered by crops. 

 

 

Figure 7-1 Hillside bushland (July 2009) 

The second land-use scenario is based on the Gumara Irrigation Project. A dam is 

planned on one of the tributaries of the Gumara River known as Kinti-Gumara covering 

a 3.51 km2 inundated area on the full reservoir level. The stored water will then 

irrigate about 14,000 ha land at the downstream side of the watershed. Details of this 

irrigation project plan study were compiled in five independent volumes of reports 

(MoWR 2008) with detailed watershed development activities. This plan will change 

the land-use such that cultivated land will decrease from 87% to 78% of the 

watershed, and bush rangeland from 7% to 5%. On the other hand, the area covered 

by the water body will increase from 0.1% to 0.8% and forest from 2.5% to 4.3% 

(Figure 7-2 and Table 7-1). Irrigated land coverage will increase from 0.14% to 8%. 

These changes result from the inundation of the area under the dam reservoir and 

some watershed development plans to safeguard the environment and the dam.   
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Figure 7-2 Land-use map of Gumara watershed  

Without (top) and with (bottom) watershed treatment and planned Gumara Irrigation Project (Compiled from field 
survey, Gumara Irrigation Project feasibility study (WoWR 2008) and farming system classification from Haileslassie 
et al. 2009a). 

Watershed development and land-use policy in the country aims at reducing 

land degradation and related production and productivity loses. Therefore, the water 

balance assessment was carried out with and without considering some land 

management practices for the above land-use change scenarios. The land 

management practices are dependent on the steepness of the slopes. Slope categories 

were taken from Federal Democratic Republic of Ethiopia Rural Land Administration 

and Land-Use Proclamation No. 456/2005. Under Part 3 of Article 13 it is stated that 

land with slopes between 31% and 60% can only be used for annual crops if bench 
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terraces are constructed. Slopes above 60% cannot be used for farming or free grazing 

but can be used for trees for wood production, perennial plants and forage production 

for cut-and-carry animal feeding (Federal Negaritgazeta 2005).  

Table 7-1 Land-use area (in %) for three scenarios 

Land-use LU1 LU2 LU3 

Rainfed cultivation 86.4 69.8 77.3 
Irrigation cultivation 0.3 8.1 0.3 

Forest woodland 2.5 11.9 11.9 
Pasture 3.8 4.3 3.6 
Range-bush land 6.8 5.1 6.8 
Water 0.1 0.8 0.1 
Total 100.0 100.0 100.0 

LU1 is baseline land-use scenario, LU2 is land-use with Gumara irrigation project, and LU3 is watershed management 
practices  

 

Table 7-2 Reservoir parameters used in SWAT modeling 

Name Definition Value 

MORES Month the reservoir became operational (1-12) Nov 

IYRES Year the reservoir became operational 1992 

RES-ESA (ha) Reservoir surface area at the emergency spill level 351 

RES-EVOL (10
4
 m

3
) Reservoir volume at the emergency spill level 5969 

RES-PSA (ha) Reservoir surface area at the principal spill level 236 

RES-PVOL (10
4
 m

3
) Reservoir volume at the principal spill level 3400 

RES-VOL (10
4
 m

3
) Initial reservoir volume 5969 

RES-K (mm hr
-1

) Hydraulic conductivity of the reservoir bottom 1.0062 

    

Months of the year 

1 2 3 4 5 6 7 8 9 10 11 12 

Average daily outflow of the month from the reservoir (m
3
s

-1
) (RESOUT) 

4.23 6.18 4.22 0.19 0.05 0.05 1.45 0.32 2.17 0.32 0.24 2.76 

Average daily removal of the month from the reach (m
3
s

-1
) (WRCH) 

4.17 6.13 4.17 0.14 0.00 0.00 1.16 0 1.85 0.00 0.00 2.66 
Source: MoWR 2008: 90-92 

 

Terraces with 12-m slope length have to be installed for the 30-60% slope 

ranges, and parallel contouring is demanded for the 15-30% slope ranges. Land units 

that have slopes more than 60% were delineated as forest land in this study. The 

above information was incorporated to develop land-use scenarios using the ArcGIS 

9.3 interface.  Thus, 3 land-use scenarios were developed and used as inputs for SWAT 
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to see their effect on the water balance of the watershed. The initial curve numbers of 

the newly developed land-uses were selected from the corresponding hydrologic 

conditions (see Appendix 10.1). Parameters calibrated for the existing land-use is 

assumed to have the same effect on water flows as in the land-use scenarios. 

 

7.4.4 Water stress indices development 

Many indices have been developed to evaluate water availability and water stress in 

the past decades. Most of them were calculated using the ratio of water demand and 

water available (equation 7.1) based on human water requirements (Falkenmark 1989; 

Gleick 1996), water withdrawal (Raskin et al. 1997), environmental water requirement 

(EWR) (Smakhtin et al. 2005), and water footprint (Hoekstra et al. 2009; Hoekstra and 

Mekonnen 2011). The International Water Management Institute (CA 2007) used 

physical and economical water scarcity for countries with respect to the proportion of 

water withdrawn from the total blue water and the infrastructure used for accessing 

the water resources. 

 

    
            

               
                                                      (7.1) 

 

Different approaches using water stress indices (WSI; Equation 7.1) are based on 

assumptions on the demand and the available water components. A recent study on 

water stress index development using the water footprint (divided into green, blue, 

grey water scarcity) considers the volume of fresh water used for the whole chain of 

the given product (Hoekstra et al. 2009). These authors recommended correcting 

errors in previous water stress indices development. One of these errors was caused 

by ignoring return water. Another error is when total river discharge is considered as 

available water, since a fraction of the runoff has to be used to maintain the 

environment. The third error is when water stress indices are developed on an annual 

level, since water availability is highly variable within the year. Falkenmark (1989) 

recommends 1700 m3/capita per annum as a threshold for basic human water 

requirements, while above this value there is no water stress.  
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Water availability 

Green water comprises most of the available water for the existing rainfed cultivation, 

forest cover and grazing lands in the watershed. The blue water, which is mainly the 

river discharge from the streams of the watershed, has not been accessible until now 

except for about 0.03% of the watershed that uses springs, river diversions, and hand-

dug wells (see section 4 and Eguavoen et al. 2012). The inaccessibility is due to 

technological limitations and the transboundary water barriers to borrow the 

technology from elsewhere around the world.  

 FAO (1986) defines the green water (part of the rainfall that is available for 

plant growth) as effective rainfall (mm per unit time day, month or growing season; 

Equation 7.2):  

 

                                                           

                                                        (7-2) 

 

It is the part that is stored in the root zone after a rainfall event and that is 

ready for uptake by plant roots or stored as the soil moisture available for plant 

growth. The amount of the effective rainfall is affected by the climate and the soil 

factors like soil texture and structure, and the depth of the root zone.  

The evaporation part represents water evaporated from stagnated water and 

bare soil after rainfall events. The evaporation cannot be avoided since it occurs at the 

pre-germination and early germination stage of cultivation activities (Rost et al. 2009).  

It is difficult to separate this unproductive evaporation from the productive 

transpiration in SWAT as seen in the water balance accounting (see section 3.4). Rost 

et al. (2009) used a reduction factor of 0.85 to consider this unproductive rainfall 

component of the actual evapotranspiration. Therefore, actual evapotranspiration 

simulated using SWAT is used as available green water for the existing rainfed 

production considering the reduction factor for the unproductive evaporation. This 

factor is considered during categorization of the water stress index development. The 

20% rule of a presumptive standard for environmental flow protection (Richter et al. 
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2011) was used to establish the environmental flow requirement. This rule proposed 

that 80% of the natural runoff be allocated for environmental flow with 20% as 

available blue water.  

 Productive cultivated land, pasture and wood lands cover 99% and small-scale 

irrigation 0.1% of the watershed (Figure 7-2 and Table 7-1), i.e., almost the whole of 

the watershed is covered by productive land-use classes. The following water balance 

components are defined as available water options in this study based on the land-use 

scenarios developed (see section 7.4.3). Average actual evapotranspiration (AET) in 

1992 to 2001 with factor of reduction as a green water, green water plus 20% river 

flow and green water plus all river discharge were used as different options of 

available water depending on the land-use scenarios. 

Water demand 

In this study, population data were used to quantify water demand for each water-

scarcity land unit (WSLU) in the dry and wet seasons using data as given in Table 7-3. 

WSLU were formed by overlaying HRU and population density data on the smallest 

administrative units (known as Kebele), which have an average size of 24 km2. Rainfed 

agricultural activities starting from sowing to early harvesting occur in the period from 

June to October. These months were considered as wet season and the rest of the year 

as dry season. Most of the food and feed production of the year was in the wet season. 

All agricultural water demands were distributed equally over these months. Domestic 

and economic (industrial) water needs were also distributed equally over all months of 

the year. Livestock drinking water demand was calculated from the water need for 

different cattle types in different seasons and distributed over both seasons according 

to the data. As observed during the field work in 2008 and 2009, the small rainfall 

events during the dry season are very important to supplement livestock feed. These 

rainfall events make the crop aftermath palatable and also make the grass- and 

bushlands green for a short period of time. 30% of the animal feed production needs 

were distributed equally over the dry months of the year. 
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Table 7-3 Input data for basic water requirement calculation 

Output Input Quantity Units Source 

Domestic  18 m
3
/c/y Calculated 

 Drinking 5 l/c/d Gleick (1996) 
 Bathing 15 l/c/d Gleick (1996) 
 Food preparation 10 l/c/d Gleick (1996) 
 Sanitation 20 l/c/d Gleick (1996) 
 Population   MoWRs database 

Agricultural  1103 m
3
/c/y Calculated 

 Cereal production 401 m
3
/c/y Calculated 

 Energy requirement  Kcal/c/d FAO (2004) 
 Cereal equivalent 4.04 Kcal/gm FAO (2003) 
 Water productivity 0.6 Kg/m

3
 Haileslassie et al. (2009b) 

 Livestock 698 m
3
/c/y Calculated 

 Drinking (dry/wet) (30/4) l/TLU/d Duguma et al. (2012b) 
 Feed from grass 1557 m

3
/TLU/y Tulu et al. (2009b) 

 Population 0.64 TLU/c Haileslassie et al. (2009b) 

Industrial
*
  4 m

3
/c/y Calculated 

 Per cent of agricultural 
water need 

1 % FAO (2013) 

Total 2001 1125 m
3
/c/y Calculated 

*
Industrial water need in 2050 was assumed to be 10% of the agricultural water need. TLU stands for Tropical Livestock Units 

representing 250 kg life weight. 

Of the animal feed, 30% was left as crop residue (Haileslassie et al. 2009b) and 

was not included in the livestock feed calculation, since it was already considered in 

the cereal production water demand. The remaining 70% was considered to be 

supplemented using grass production that needs 1557 m3 water per TLU per year (Tulu 

et al. 2009). Livestock population (TLU/c) was derived from human population and 

livestock per hectare data stated by Haileslassie et al. (2009b; Table 7-3). According to 

these data, the amount of the basic water requirement is 1125 m3/c/y, which is lower 

than the 1700 m3/c/y threshold value given in Falkenmark (1989). About 98 % (1103 

m3/c/y) is attributed to agriculture where 62% is from livestock. The big water share 

for livestock indicates how livestock is important part of the system.  

Figure 7-3 shows the population density (km-2) of the Gumara watershed for 

2001. The population of the country is estimated to increase from 65,891,874 in 2001 

(World fact sheet 2001) to 174,800,000 in 2050 (Population Reference Bureau 2010). 

This national population growth rate was applied on the study Kebele and town levels 

to compute the local population in 2050. The steep and fragile areas of the watershed 

were less populated as compared to the upstream and downstream plain areas. The 

average rural and town population densities are 266 and 4730 km-2, respectively. 
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These values are higher than the national (114), regional (122) and zonal (159) 

averages (CSA 2011). 

 

 

Figure 7-3 Population density (per km2) of the Gumara watershed for 2001. 

(Source: Ministry of Water Resources of Ethiopia)   

Water stress indices  

Although different water availability and water demand definitions are given in 

studies, categorization for defining the water stress level is fairly similar. The most 

frequently used categories used to identify the level of scarcity are 30%, 60% and 100% 

of the available water. Smakhtin et al. (2005) categorized the following water stress 

indices (WSI) using long-term mean annual runoff and considering environmental flow.  

1. WSI > 1:  overexploited (current water use is tapping into EWR)-

environmentally water scarce basins.  

2. 0.6 ≤ WSI < 1:   heavily exploited (0 to 40% of the utilizable water is still 

available in a basin before EWR are in conflict with other uses)-

environmentally water stressed basins. 

3. 0.3 ≤ WSI < 0.6:  moderately exploited (40% to 70% of the utilizable water 

is still available in a basin before EWR are in conflict with other uses). 

4. WSI < 0.3:  slightly exploited.  

However, using these categories for rainfed agriculture and when all river 

discharge is diverted leads to wrong conclusions, since they were designed for blue 

water scarcity considering environmental flow. Considering the erratic nature of the 

rainfall in the area and the unproductive evaporation components in the available 

green water, a water demand exceeding 60% of the actual evapotranspiration is 

considered as highly scarce rainfed sub-watershed in this study.   
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The different scenarios that were used to develop water stress indices are 

listed in Table 7-4.  Two land-uses and three water availability status were used for the 

population of 2001 and 2050 to develop 8 water stress scenarios.  

Table 7-4 Water stress indices scenarios 

Scenario No. Code Scenario No. Code 

1 LU1_ GN01 5 LU2_ GNEWR01  
2 LU1_ GN50 6 LU2_ GNEWR50  
3 LU2_ GN01 7 LU2_ GNYLD01 
4 LU2_ GN50 8 LU2_ GNYLD50 

LU1 is existing land-use practice, LU2 is land-use considering Gumara irrigation project (GIP). Water availability is GN (green 
water), GNYLD (green water plus water yield) and GNEWR (green water plus 20% of water yield that considers environmental 
water requirement-EWR). Total water needed was calculated based on the population in 2001 and 2050 indicated as 01 and 5o, 
respectively.  

 

7.4.5 Assumptions and limitations 

Computing land-use and demographic change scenarios was performed using the 

following assumptions. Different HRU discretization used for model calibration and 

scenario development results in the same water balance and water availability 

modeling values. The basic water requirement for domestic and agriculture per capita 

per year in 2001 was assumed to be the same in 2050, and industrial water demand 

was assumed to be 1% and 10% of the agricultural demand in 2001 and 2050, 

respectively. The availability of groundwater recharge was not considered. The effect 

of climate change on water balance and water availability was not included in this 

study.  

 

7.5 Results  

7.5.1 Water balance shift due to land-use changes 

The annual water balance of the Gumara watershed using six meteorological stations 

and the Penman-Monteith potential evapotranspiration methods for the 328 sub-

watersheds is shown in Figure 7-4 for the period 1992 to 2001 with and without the 

Gumara Irrigation Project (GIP). About 95 % of the annual rainfall left the watershed 

through river discharge or yield (YLD; 752 mm)) and AET (648 mm). The remaining 5% 

was stored in the deep groundwater. This storage was about 61 mm (92 Mm3) per 

annum. River discharge and AET accounted for 51% and 44% of the annual rainfall, 
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respectively, under the existing land-use conditions. A shift from river discharge and 

groundwater storage to AET was observed due to GIP and watershed treatment 

methods. Watershed management and the planned irrigation project shifted an 

additional 99 mm (151 Mm3) of the annual yield to AET. However, 106 mm (161 Mm3) 

water was additionally evapotranspired due to GIP. The balance was filled from deep 

groundwater recharge. Therefore, groundwater storage was decreased by 4 mm (7 

Mm3) when watershed treatment and GIP were implemented in the model. 

(a)  (b) 

Figure 7-4 Annual water flows without and with Gumara irrigation project (GIP): (a) 

annual (b) seasonal. 

Values are average of 1992 to 2001. Numbers in brackets are percent annual rainfall covered by each component. (YLD is total 
river discharge through the outlet of the watershed, AET is actual evapotranspiration, GW_Q is groundwater flow, LAT_Q is 
lateral flow, and SUR_Q is surface water flow to the channel. The numbers 1 and 2 indicate land-use scenarios without and with 
Gumara irrigation project).  
 

Figure 7-5 shows the monthly time series of AET and YLD with and without GIP 

land-use scenarios. The effect of GIP in different parts of the hydrograph is illustrated 

on a monthly scale. The rising limb and the peak of the hydrograph were regulated due 

to GIP. Evapotranspiration increases during the dry period using GIP. An additional 154 

Mm3 water is evapotranspired in the dry season based on 130 Mm3 YLD regulation 

during the wet season. The difference of 24 Mm3 in the AET is from the rainfall in the 

dry season. Both Figure 7-4 and Figure 7-5 show that the natural YLD was altered 

without affecting the 20% presumptive standard for environmental flow requirements.  
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Figure 7-5 Average monthly discharge at the outlet of the watershed with and without 

Gumara irrigation project.  

(YLD is total discharge through the outlet of the watershed, AET is actual evapotranspiration, and PET is potential 
evapotranspiration. The numbers 1 and 2 indicate land-use scenarios without and with Gumara irrigation project) 

7.5.2 Spatial patterns of water flow shifts 

Figure 7-6 shows the patterns of the water balance components with and without the 

Gumara irrigation project (GIP). Watershed treatment practices like contouring of land 

units with slopes between 15% and 30%, terracing of slopes steeper than 30%, and 

afforestation of hillsides steeper than 60% led to differences in surface and 

groundwater flows. These land management practices decreased surface runoff by 

49% on average, and increased groundwater and lateral flows by 27% and 20%, 

respectively.    

An effect of watershed management practices can be seen on surface and 

groundwater flows. However, there was also a small effect on AET and YLD. Only 1.8% 

and -1.2% changes were observed for AET and YLD, respectively, due to the watershed 

management interventions (results not shown here) at the watershed level. As shown 

in Figure 7-6, average annual YLD and AET values were more dependent on climatic 

data (see section 6.5.4) than on land treatment practices, except in the irrigated and 

reservoir area. However, the watershed management interventions modify the surface 

and groundwater flow components even though this results only in a small effect on 
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total YLD. Higher YLD was observed from sub-watersheds covered by the Wanzaye and 

Debre Tabor meteorological stations (see section 6.5).  
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Figure 7-6 Water balance components (mm y-1) without and with Gumara irrigation 

project (GIP) and watershed management interventions.   

(AET is actual evapotranspiration, YLD is discharge through the outlet of the watershed, SUR_Q is surface water flow, GW_Q is 
groundwater flow, and LAT_Q is lateral flow through the soil layer).  

 

The reservoir was planned at a position where it could trap the higher YLD produced 

from upstream steep slopes and high rainfall from sub-watersheds covered by the 

Debre Tabor station. Annual evaporation from the open water surface of the reservoir 

is about 1492 mm. An annual average AET increment by 73 mm (varies from 0 to 962 

mm) and YLD decrement by 74 mm (varies from 0 to 784 mm) at watershed level 
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(results not shown here) was observed where the variations were observed in some 

sub-watersheds due to land management interventions and GIP.  

 

7.5.3 Water availability and scarcity 

Available water was categorized in three groups in this study: Green water 

(approximated by part of actual evapotranspiration), green water plus 20 % of the river 

flow (YLD) and green water plus all the river flow. Figure 7-7 shows the water stress 

indices of the existing land-use scenario using green water as available water during 

dry and wet seasons as well as at an annual level in 2001 and 2050 under basic water 

requirement conditions.  

 Wet season Dry season Annual 
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G
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  GN is  green water; 01 and 50 are water demand  scenarios for the years 2001 and 2050, respectively. 
WSI is water stress index. Average values computed by SWAT were based on values 1992 to 2001. 

Figure 7-7 Water stress index (WSI) using land-use data of 2009.  

Most of the sub-watersheds belong to the class with a WSI lower than 0.6 

under the current rainfed agriculture during the wet season. Water is highly scarce 

(WSI>0.6) at the upstream part of the watershed during this season. However, green 

water is not scarce in this area during the dry season (WSI<0.3). This shows that the 

green water from the existing crop, pasture and wood lands can fulfill the basic water 

demand of the watershed in both wet and dry seasons. All the sub-watersheds will be 

under extremely water scarce conditions (WSI >1.0) in 2050 if the current rainfed land-

use activities are continued with the existing low water productivity.  
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GN is available green water, EW is available after environmental water requirement, 
YLD is available water yield; 01 and 50 indicate basic water requirement in 2001 and 
2050, respectively. WSI  is water stress index 

Figure 7-8 Water stress indices (WSI) based on planned irrigation project and 

watershed management interventions 

The spatial distribution of water stress indices based on watershed 

management and the planned irrigation project interventions is shown in Figure 7-8. 

The water stress level is improved when blue water is withdrawn in addition to the 

green water to fulfill the basic water needs of the population. The addition of 20% of 

the YLD to the green water improved water availability and decreased the water stress 

index from moderately exploited (0.3<WSI<0.6) to slightly exploited (WSI<0.3) for 

some of the sub-watersheds. In this case, much of the available water (40% to 70%) 
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was still there for other water needs beyond the basic water requirements in 2001. 

However, most of the sub-watersheds will still be overexploited (WSI>1) in 2050 if only 

green water is used. The watershed will be environmentally water scarce in 2050 and 

the contribution of the watershed to downstream livelihoods will be limited.  

 

7.6 Discussion  

7.5.4 Impact of watershed management interventions on water balance 

Slight differences in the watershed area and flow simulation results were simulated as 

compared to the results of the GIP feasibility study carried out by MoWR (2008). The 

total size of the sub-watersheds at the diversion and the dam were quantified as 1166 

km2 and 385 km2 in the feasibility study, respectively, while the values were 1152 km2 

and 381 km2 in this study. The annual water yield was 662 mm and 664 mm at the dam 

and diversion sites, respectively, in the feasibility study and 710 mm and 827 mm in 

this study. Potential evapotranspiration (PET) was 1391 mm for the Gumara irrigation 

command area in the feasibility study and 1316 mm in this study. These differences 

can be explained by the use of a different DEM, other meteorological data, and a 

different model discretization in this study. This shows that meteorological data 

refining (see section 5) plays a role in designing water resources. However, 

measurement and interpolation errors and their propagation to the final model results 

always exist. The amount of water evaporated from the water surface of the reservoir 

was about 1492 mm per annum. This was lower than the evaporation from the surface 

of Lake Tana that was estimated at about 1675 mm (SMEC 2008). A higher reservoir 

evaporation value (1818 mm/year) (MoWR 2008) was simulated in the GIP feasibility 

study as compared to the 1492 mm in this study. This PET difference were because the 

meteorological data from the Bahir Dar station were used in the GIP feasibility study, 

which is located in a relatively warm climate and far away from the watershed.  

Water flow shift from one component of the water balance to another due to 

watershed management intervention and the GIP was observed. This shift was not 

only from water yield to AET, but also from deep groundwater recharge to AET. This 

may be due to the lower seepage occurring on the lined irrigation canals compared to 
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the natural river and the revap flow due to the well maintained vegetation covers 

during the watershed management. Such vegetation together with afforestation of the 

steep slopes increases actual evapotranspiration and decreases groundwater recharge. 

Micro-basin water harvesting structures has shown good land-cover and increased 

biomass production by minimizing discharge in the north-east Ethiopia (Derib et al. 

2009). Shrubland was considered the best choice for minimizing runoff and soil erosion 

in China as compared to alfalfa pastureland (Wei et al. 2007). The authors suggest 

grassland and woodland for runoff and soil erosion management rather than large-

scale alfalfa plantations. Around the study area, legume trees, alfalfa, napier and 

vetiver grasses were proposed and used (Gebreslassie et al. 2009). However, careful 

selection of crops and trees has to be done with respect to environmental benefits and 

water productivity optimization.   

 

7.5.5 Water availability and demand 

Green water is the only available water for the existing rainfed agricultural system in 

the study area. Based on the experience of the author and field observations, the most 

productive green water was that of the wet season. The AET during the dry season was 

lost through unproductive evaporation, since the land is bare and there is almost no 

production of food and feed during this season. This is for two reasons. The first and 

most important reason is the small rainfall amount and duration and the resulting low 

soil moisture (green water), which was not enough to supply the required AET for food 

and feed production in the dry season. The second reason was that the farmers had no 

additional technology such as irrigation infrastructure and low-water-demanding crops 

in the dry season. However, the contribution of the existing small amount of available 

blue water from rivers, springs and wells for domestic uses and livestock drinking was 

not considered in the green water analysis.   

Environmental water requirement was considered as the second option for 

calculating water availability. Using the 20% rule of presumptive standard for 

environmental flow protection (Richter et al. 2011), 20% of the YLD was added to the 

green water, and this sum was considered as available water. However, in practice this 
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presumptive standard is difficult to implement in the existing Nile hydropolitics. The 

standard can minimize about 10.5 km3 of the water from Nile flow at Aswan if it is 

implemented on the whole Ethiopian Blue Nile watershed. The sum of green water 

and YLD was the other option used to calculate available water for each sub-

watershed.  

Water availability and water stress status on seasonal scales resulted in 

practical implications of how water and watershed management strategies can be 

derived. Hoekstra and Mekonnen (2011) estimated blue water scarcity on monthly 

levels. However, the results in their study showed similar monthly values within a 

given season, so that seasonal scale can address most of the practical variability of the 

water resources availability and water scarcity status. A monthly level water stress 

analysis requires agricultural water demand data at a monthly level. This is only 

possible with a detailed study of crop water requirements. This was done neither by 

Hoekstra and Mekonnen (2011) nor in this study. However, seasonal analysis can 

provide equivalent information to that based on a monthly scale saving modeling time 

and resources. Nevertheless, a monthly scale analysis can address the impact of water 

stress in the dry spells during the growing season.  

The contribution of YLD to the water stress status was smaller during the dry 

season as compared to the wet season in the watershed. This is due to the low YLD 

occurring in this season. However, shifting 6% of the rainfall from annual YLD to the 

productive evapotranspiration, GIP and associated watershed management 

interventions made another 2% evaporated annual rainfall productive in the dry 

season in the irrigation command area. It played a role in increasing water availability 

for the community without compromising the environmental flow. This indicates that 

water flow regulation structures are important to make water available so that the 

unproductive green water in the dry season can be shifted to productive transpiration 

using supplemental irrigation. Although the contribution of river YLD for available 

water was low during the dry season, water stress level was seen to be better than in 

the wet season. This is because the annual agricultural water need was assigned for 

the productive wet season so that less water was needed during the dry season. Green 
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water was shown to be enough to satisfy the basic water need in 2001 based on the 

existing rainfed agricultural production conditions. However, observations and 

informal discussions during the field study showed that the productivity of this green 

water was not enough to sustain life due to rainfall variability and late entering and 

early onset of the rainfall in the growing season. 

After satisfying the environmental requirements, the available green and blue 

water will not be sufficient to fulfill the basic water requirements of the area in 2050. 

The results of this study show that it is possible to satisfy the basic needs using all the 

environmental water in 2050. However, the watershed is situated in a position to 

sustain downstream life from the nearby Lake Tana to the Mediterranean Sea. 

Therefore, actions have to be taken at both local and basin levels. Some of the key 

issues to increase green water productivity are to mitigate the problems associated 

with intra-seasonal dry spells with supplemental irrigation, maximize infiltration, 

minimize unproductive evaporation, increase soil-water holding capacity, maximize 

root depth, and maximize the water-uptake of crops (Rockström et al. 2003). Selection 

of short-maturing dry season food/feed materials can make evaporation water 

beneficial for the livelihoods in the sub-watersheds.  

 

7.5.6 Implications for the Nile Basin water 

In addition to the physical water stress, Nile water is now in a more political tension 

than ever. The Ethiopian highland contributes about 86 % of the Nile flow at the Aswan 

High Dam while the country is using less than 5% of its total internal renewable water 

(FAO AQUASTAT 2005) and 3% of the Blue Nile runoff (Mason 2004). The largest user 

of this flow, Egypt, is dependent to 98% on the Nile water. However, it contributes 

almost nothing, which means that the livelihoods of the Egyptians are totally 

dependent on the blue water of the Nile that comes from the upstream countries. 

Egypt and Sudan agreed to use the Nile flow in 1929 and 1959, but the agreements are 

not binding for all the riparian countries in the Nile basin.  

Ethiopia gains 936 km3 annual rainfall and discharges 122 km3 (14%) of this 

rainfall, where 90% of this flow is transboundary (FAO AQUASTAT database; 
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http://www.fao.org/nr/water/aquastat/countries_regions/ Cited 12/08/2013; see 

section 2). Per capita, 14,200 (5,300) m3 and 1,800 (698) m3 rain and river flow water, 

respectively, are calculated for 2001 (2050).  The effective rainfall that accounts for a 

total 814 km3 with 12,300 (4,600) m3 per capita in 2001 (2050) is a very large amount 

as compared to Egypt’s total water availability of 68.3 km3 with 979 (504) m3 per capita 

in 2001 (2050). However, as can be observed at the head water of the Blue Nile, about 

53% of the annual rainfall is directed to river flow, and the green water is not enough 

to support the basic water needs in the future if the existing rainfed water productivity 

does not improve. This indicates that there are some sources and sinks of river flow in 

the Blue Nile. For example, the study concerning the Lake Tana basin (15,096 km2) 

showed that about 30% of the rainfall is discharged through the outlet (Setegn et al. 

2008). Another modeling study carried out by Engida (2010) in the same basin using 8 

sub-watersheds (area varies from 103 km2 to 15,120 km2) showed variation of 

discharge contribution from 24% to 60% of the annual rainfall. Green and blue water 

management has to be designed based on these difference.  The rainfed agricultural 

system is not productive enough to support future life due to the large discharge 

contribution, low green water productivity and high population density.  

The integral understanding of the global and the regional water balancing on 

different time scales calls for another way of thinking to alleviate the consumptive 

water scarcity and the existing hydro-political stress. Even watershed management and 

blue water withdrawal can improve water availability in the area; it will not solve the 

water stress in the society and the environment in the future. As recommended by 

many studies (e.g., Waterbury and Whittington (1998); Whittington 2004; Mason 

(2004); Arsano (2007); Martens (2011)), basin-wide integration and efficient water use 

in the Nile Basin can benefit the local livelihoods and environment. Non-water-

consumptive uses like hydropower production, fishery and tourism can benefit the 

local livelihoods while the environmental water is not negatively affected. An extensive 

Blue Nile water development project in Ethiopia, the “Grand Ethiopian Millennium 

Dam Project (GERDP)”, started in April 2011 on the Blue Nile River. It is designed to 

generate 6000 MW electric power making 74 km3 in a reservoir covering 1680 km2 

http://www.fao.org/nr/water/aquastat/countries_regions/
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(EEPC, Ethiopian Electric Power Corporation 2013). The project is non-water 

consumptive, since it is designed only for power generation. As it is located in a 

sparsely populated (19 persons km-2 (CSA 2011); (see Appendix 0; Figure 10-2)) and 

inaccessible river valley area, it will attract human life after completion so that the 

green water burden of the densely populated highland and cities will be alleviated to a 

certain extent. Fish production, navigation and tourism and business activities related 

to the stored water may be livelihood means for the community. There is also a chance 

to use the generated power to develop the groundwater of the Ethiopian lowlands 

outside the Nile basin for irrigation and drinking water infrastructure. Ethiopia has 

ample potentials and diversity of non-water consumptive alternatives without 

appreciably harming the water share of the downstream users.  

The political will of the riparian countries to use diversified water 

development corridors in different parts of the Nile Basin has been a challenge for 

decades. An initiative, the ‘Nile Basin Initiative’, was formed in 1999 to smoothen the 

political tensions so that the riparian countries can be benefited from cooperative 

investments and equitable water sharing. The initiative has developed capacity, 

regional institutions, and networks based on a shared vision and equitable utilization 

of water resources. Promising advancement has been shown like signing of the 

Cooperative Framework Agreement (CFA) by six out of the ten riparian countries 

(Salman 2013; NBI http://www.nilebasin.org/newsite/).  

 

7.5.7 Uncertainties regarding water availability and demand quantification  

Reliability of calculations of water availability and water scarcity depends on the 

quality of the underlining data (Hoekstra and Mekonnen 2011; Brown and Heuvelink 

2005). Generally, model uncertainty is lower in physically based models like SWAT as 

compared to empirical and conceptual models (Giertz et al. 2006). In this study, data 

quality of the SWAT outputs for water availability was improved by using smaller 

hydrological response units as compared to other studies of the area. Soil data were 

improved by using a recent detailed study in the watershed (MoWR 2008). More data 

from the climate stations were considered by using the best missing data filling 

http://www.nilebasin.org/newsite/
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methods among the selected approaches (see section 5). The recent 30-m resolution 

DEM from ASTER and fine soil and climatic data used made it possible to use a fine 

HRU delineation. The combined effect of the above data quality efforts results in 

acceptable error measures of river discharge modeling: 0.49 r-factor and 0.8 p-factor 

on a daily scale, and 65% (95%), +5 (+5) and 0.3 (0.06), on daily (monthly) levels for 

NSE, PBIAS and RSR, respectively (see section 6.5). Errors in climatic variables 

interpolation were discussed (see section 5). However, uncertainty sources from 

inverse water balance modeling still exist. Sharp changes in water balance components 

at the border of sub-watersheds are caused by the structure of the SWAT model. 

Improving SWAT structures to spatial interpolation of point climate data needs further 

research to improve water availability data quality with respect to the scale limit to 

rugged topographical features affecting the local climate. Furthermore, water scarcity 

information quality can be improved by decomposing water availability through 

different crops with high green-water productivity and livestock management 

activities, since about 98% of the basic water requirement is caused by agriculture. 

Partitioning and averaging each component of human basic water needs for the 

population of the smallest administrative units is the additional quality of this research 

to increase our understanding at the local level. However, the effect of dry spells on 

the rainfed agriculture within a growing season was not addressed but may receive 

increasing importance due to climate change. 

 

7.7 Conclusions  

The water availability status with and without the Ethiopian government plan for the 

Gumara watershed with an area of 1520 km2 was modeled at the head water of the 

Blue Nile Basin. The hydrological model Soil and Water Assessment Tool (SWAT) was 

applied at a very fine discretization. Livestock is not only the direct source of human 

food but also a component of production and household assets. Therefore, the water 

requirement of livestock was systematically included in the per capita basic water 

requirement considering the local mixed crop-livestock agricultural production system. 

Finally, the water scarcity status was identified on spatial and seasonal scales for 2001 
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and 2050 population scenarios. The water availability was partitioned into three 

options to consider rainfed and irrigation productions as well as environmental water 

flows. 

 The watershed management interventions modified the hydrological balance, 

especially the ratio of surface runoff to subsurface and groundwater flows. This can 

increase the residence time of water in the watershed that favors the rainfed 

agricultural production. The planned reservoir was designed to retain the discharge 

from the highly contributing sub-watersheds. The dam and diversion structures were 

modeled to minimize the natural flow of the main stream within acceptable ranges 

that favor environmental flow. Both watershed management interventions and 

proposed irrigation project increased water availability in the watershed. The 

aggregated water availability per capita is 1125 m3 per annum: 98% is for agriculture 

and 62% of this portion was used by livestock. High spatio-temporal variations of water 

scarcity were simulated in the watershed. The green water of the rainfed production 

supports the basic water requirement during the growing season using the existing 

land-use and 2001 basic water requirement scenarios. This result could not address 

the effect of dry spells of the growing season on the rainfed productivity that is 

increasingly challenging the livelihoods in the area. Additional exploitation of the river 

flow (blue water) improved the water stress status. However, the green water of the 

existing land-use and climatic conditions will not support the basic water requirements 

of the population in 2050 assuming the current population growth rate of the country 

for the area in 2001. In 2050, water flow will be highly exploited to affect the 

environment and the downstream uses.  

 The current land-use and rainfed production system will not withstand 

demographic pressure. In addition, more and more intensive use of the blue water will 

exploit the environmental flow in 2050 and affect the downstream life of this 

transboundary water. In addition to family planning, improving green water 

productivity by using supplemental irrigation and appropriate food and feed materials 

and management systems, basin-wide cooperation of water use like hydropower 

development, tourism and fish production can improve the local water stress shown in 
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this study. As advised by many studies, these options may also improve the existing 

physical and political water stress at the Nile Basin level.  
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8 GENERAL SUMMARY AND PERSPECTIVES  

Ethiopia suffers from economic and technological water scarcity that makes difficult to 

increase the productivity of available water. In depth understanding of the water 

balance and water availability at different scales and for different scenarios is 

important for future intervention to alleviate the scarcity. As part of this basin-wide 

and national concern, this study examines the water balance and water availability on 

farm and watershed scales at different scenarios. Therefore, the study was carried out 

to attain the following objectives: (1) to evaluate water use and water productivity of a 

small-scale irrigation scheme, (2) to evaluate methods for filling gaps in climatic data, 

(3) to adopt Soil and Water Assessment Tool (SWAT) hydrological model for modeling 

river discharge using different modeling setups, and (4) to simulate water demand and 

water stress status for a period up to 2050 using different land-use and demographic 

scenarios. The Gumara watershed (1520 km2), a tributary of Lake Tana of the Blue Nile 

in Ethiopia, was selected for this study.  

 

 A case study on small-scale irrigation scheme to investigate water balance 

and water productivity. 

After mapping small-scale irrigation schemes in the Gumara watershed,  in-depth field 

measurements (water flow through canals, water application on the field, and biomass 

of grain, crop residue and grass) and close observation (effect of water logging and 

water shortage) were taken on a 90 ha scheme during the irrigation season in 2009. 

Farmlands, canal network, drainage basins and wetlands were mapped using 

geographical information system (GIS), satellite images and field measurements. 

Before selection and distribution of sampling plots in the scheme, classification of 

irrigation system (as pumped and gravity), canals (as main, secondary and field) and 

land-use (as cropland, drainage basin, wetland and grasslands) were performed. High 

water loss was observed during water conveyance and water application while there 

was water shortage to irrigation farms at the downstream side of the scheme. The 

water loss and shortage varies along crop types, location of field in the scheme and 

cost related to pumping. Some irrigation farmlands were out of production due to 
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water logging resulted from canal overflow especially during night irrigation. 

Therefore, water and land productivity was very low as compared to the results of 

other studies. The water application of the farmers did not match the water 

requirement of the crops. Night storage to solve problems associated with night 

irrigation, proper irrigation scheduling and empowering farmers to manage irrigation 

water are some of the recommendation to improve the diverted water productivity.  

 

 Compare and evaluate missing data filling methods to increase the 

number of climate station for hydrological modeling. 

Climatic variables, especially rainfall and temperature, are the forcing factors for 

hydrological flows. Climatic data are very important particularly for data demanding 

and most used Penman-Monteith evapotranspiration method in hydrological 

modeling. However, gaps in climatic data are one of the constraints to have detailed 

spatial water balance analysis in the Blue Nile basin. In this study, gaps climatic data 

(rainfall, temperature, relative humidity and solar radiation) in a given station was 

tried to fill using neighboring station data. This approach was used in SWAT water flow 

modeling to compare its effect on model performance with SWAT weather generation 

(WXGEN) routine. The WXGEN used only within a station relationship to fill missing 

data that is not practical for stations with long and continuous gap in climatic data. 

Four deterministic daily rainfall estimation methods were selected. The statistical 

performance of estimation showed comparable results with similar studies done 

elsewhere. Multiple regression models were developed to fill missing data of daily 

minimum and maximum temperature data. These models perform well for maximum 

temperature for most of the stations. However, the low performance was observed for 

minimum air temperature. Relative humidity and solar radiation data of stations were 

derived from minimum and maximum daily air temperature data. Some parameters 

were optimized based on seasonal categorization of the area that resulted in better 

results as compared to without seasonal categorization. It should be important to 

derive additional relationship of climatic variables with some topographical features 

like altitude. In this case, more stations data at a bigger spatial scale should be 
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considered. As proposed by Oregon State University and Technical University of Delft 

with a project called Trans-African Hydro-Meteorological Observatory (TAHMO) to 

install weather stations every 30 km (available on http://tahmo.info/about-tahmo), 

elementary schools and health centers can be used to install more climate stations. 

The approach used in this study can be, then, used for the future to extrapolate the 

newly installed stations in the watershed using long-term data of the existing stations.  

 

 Assess the effect of different modeling setups on SWAT modeling 

performance.  

Data availability and the way to develop the model setup could have significant effect 

on the performance of a hydrological model. The study explores the effect of different 

model setups on river flow modeling. Number of climate stations used varied (two, 

three and six) according to their data availability and proximity to the watershed after 

filling missing data using different methods. Two stations (one in the watershed and 

the other outside) had frequently been used on academic and water resources 

planning studies for the watershed. Different meteorological stations with varying 

proximity to the study watershed were used to evaluate their relative performances 

on hydrological modeling. Selection of representative climate stations and their 

density affect the performance SWAT model adaptation. Four and six stations have 

given better efficiency of water flow modeling than frequently used Bahir Dar and 

Debre Tabor stations. The performance of stations density is explained not only 

increasing modeling efficiency of estimating river discharge at the outlet of the 

watershed from 60% to 70%, but also, each water balance component is differently 

distributed in the watershed. Penman-Monteith and Hargreaves methods of 

calculating potential evapotranspiration methods have given comparable modeling 

performances. The approach to update and use local climate data has given better 

hydrological modeling results. However, uncertainties from non-uniqueness of model 

parameter, measurement error in class-three stations and errors propagated from 

filling gaps in climate data are still there in the results. Further research should 

consider effect of interpolation of climatic data for each sub-watershed delineated. 

http://tahmo.info/about-tahmo
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The spatial interpolation can be based on the relation with relief and altitude 

especially for rainfall and temperature data.   

 

 Assess the effect of different scenarios on water balance and availability.  

Spatial and temporal water availability status can be used to derive development and 

policy interventions. In this part of the study, land-use scenarios were developed to 

evaluate water balance and water availability based on the results of the case study, 

missing data handling and calibration of SWAT. Both green and blue water availability 

options were considered to analyze the water stress status with respect to the basic 

water requirement of the area in 2001 and 2050. Watershed treatment options 

decreased surface runoff. This surface runoff was shifted to lateral flow, groundwater 

flow and evapotranspiration increasing by 8%, 10% and 0.2%, respectively. Watershed 

treatment and planned Gumara Irrigation Project (GIP) decreased surface runoff, 

lateral flow and groundwater flow by 19%, 33% and 4%, respectively. Spatial basic 

water requirement was quantified using literature values and the population 

distribution. The aggregated basic water requirement per capita is 1125 m3 per annum 

of which 98% is for agriculture. High variation of water scarcity was observed on spatial 

and temporal distributions. Evapotranspired water from the existing rein fed 

production is enough for the demand in 2001 while it will not support the basic water 

requirement of the population in 2050. In 2050, water flow will be highly exploited to 

affect the environment and the downstream uses. However, the existing low water 

productivity wheat crop is used for this analysis. Increasing water productivity, non-

consumptive water uses development and green water management options may 

improve the blue water stress on the Nile Basin level. Further modeling research that 

address climatic change and different crop production is crucial.  
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10 APPENDICES 

10.1 Appendix 1 Initial runoff curve numbers (CN2) for cultivated and non-

cultivated agricultural lands (SCS 1986) 

Table 10-1 Runoff curve numbers for cultivated agricultural lands1  

      ------------Cover description----------------------   Curve numbers for hydrologic soil group 

  Hydrologic     
Cover type Treatment 

2
 condition

3
 A B C D 

Fallow Bare soil — 77 86 91 94 
 Crop residue cover (CR) Poor 76 85 90 93 
  Good 74 83 88 90 
Row crops Straight row (SR) Poor 72 81 88 91 
  Good 67 78 85 89 
 SR + CR Poor 71 80 87 90 
  Good 64 75 82 85 
 Contoured (C) Poor 70 79 84 88 
  Good 65 75 82 86 
 C + CR Poor 69 78 83 87 
  Good 64 74 81 85 
 Contoured & terraced (C&T) Poor 66 74 80 82 
  Good 62 71 78 81 
 C&T+ CR Poor 65 73 79 81 
  Good 61 70 77 80 
Small grain SR Poor 65 76 84 88 
  Good 63 75 83 87 
 SR + CR Poor 64 75 83 86 
  Good 60 72 80 84 
 C Poor 63 74 82 85 
  Good 61 73 81 84 
 C + CR Poor 62 73 81 84 
  Good 60 72 80 83 
 C&T Poor 61 72 79 82 
  Good 59 70 78 81 
 C&T+ CR Poor 60 71 78 81 
  Good 58 69 77 80 
Close-seeded SR Poor 66 77 85 89 
or broadcast  Good 58 72 81 85 
legumes or C Poor 64 75 83 85 
rotation  Good 55 69 78 83 
meadow C&T Poor 63 73 80 83 
  Good 51 67 76 80 
1 Average runoff condition, and Ia=0.2S  
2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.  
3 Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of 

vegetative areas,  (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue 
cover on the land surface (good ≥ 20%), and (e) degree of surface roughness.  

Poor: Factors impair infiltration and tend to increase runoff.  
Good: Factors encourage average and better than average infiltration and tend to decrease runoff. 
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Table 10-2  Runoff curve numbers for other agricultural lands1  

--------------  Cover description------------- 
Curve numbers for  

hydrologic soil group 

 
Hydrologic 

    Cover type condition A B C D 

Pasture, grassland, or range—continuous Poor 68 79 86 89 

forage for grazing
2
 Fair 49 69 79 84 

 
Good 39 61 74 80 

Meadow:-continuous grass, protected 
from grazing and generally mowed for 
hay. — 30 58 71 78 

Brush:-brush-weed-grass mixture with  Poor 48 67 77 83 

brush the major element
3
 Fair 35 56 70 77 

 
Good 30

4
 48 65 73 

Woods:-grass combination (orchard Poor 57 73 82 86 

or tree farm)
5
 Fair 43 65 76 82 

 
Good 32 58 72 79 

Woods
6
 Poor 45 66 77 83 

 
Fair 36 60 73 79 

 
Good 30

4
 55 70 77 

Farmsteads:-buildings, lanes, driveways, — 59 74 82 86 

and surrounding lots. 
     

1
 Average runoff condition, and Ia = 0.2S. 

2
  Poor: <50%) ground cover or heavily grazed with no mulch. 

Fair: 50 to 75% ground cover and not heavily grazed. 
Good: > 75% ground cover and lightly or only occasionally grazed. 

3
  Poor: <50% ground cover. 

Fair: 50 to 75% ground cover. 
Good: >75% ground cover. 

4
  Actual curve number is less than 30; use CN = 30 for runoff computations. 

5
  CN’s shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of 

conditions may be computed from the CN’s for woods and pasture.  
6
 Poor:  Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning. 

Fair:  Woods are grazed but not burned, and some forest litter covers the soil.  
Good:  Woods are protected from grazing, and litter and brush adequately cover the soil. 

 
Initial CN2 values for land-cover change and surface treatment scenarios model calibration were selected 
from this table (section 6.4.2). The hydrologic conditions of the cultivated agricultural and pasture lands 
were observed “poor”. However, the hydrologic conditions of bushlands (brush) and forestlands (woods) 
were fair.  

 
10.2  Appendix 2. Watershed, irrigation and demographic maps.     

Figure 10-1 Gumara watershed with planned irrigation infrastructures (dam, 

canal network and command area).  

Sources: Base map has downloaded from www.arcgis.com free database and the irrigation plan was taken from MoWR (2008). 

 

 

http://www.arcgis.com/
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Figure 10-2 National regional states and city administrations maps of Ethiopia and their relative population density (per km2) 

Addis Ababa and Dire Dawa are city administrations while the rest are regional states. The figures with a multiple of “X” indicate the relative population densities where the value of “X” is 15 
persons per km2. (Sources: Data from Ministry of Water Resources of Ethiopia and CSA (2011)
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