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Abstract

Advances in genome science and technology offer a deeper understanding

of biology while at the same time improving the practice of medicine. The

expression profiling of some diseases, such as cancer, allows for identi-

fying marker genes, which could be able to diagnose a disease or predict

future disease outcomes. Marker genes (biomarkers) are selected by scor-

ing how well their expression levels can discriminate between different

classes of disease or between groups of patients with different clinical

outcome (e.g. therapy response, survival time, etc.). A current challenge

is to identify new markers that are directly related to the underlying dis-

ease mechanism.

During the last years, an increasing number of tools have been devel-

oped to derive biomarkers from gene expression data. These methods

typically involve machine learning approaches, like support vector ma-

chines, decision trees, neural networks or linear discriminant analysis.

Currently, a general problem is that biomarker gene signatures have

a low reproducibility and are difficult to interpret biologically. It has

been shown that robustness, stability and biological interpretability of

biomarker gene signatures can be significantly improved by incorporat-

ing biological knowledge, such as protein-protein interaction networks.

In this thesis, we first compared a collection of published gene selection

methods, of which some include network information. Our results show

that incorporating prior knowledge of network information into gene se-

lection method in general does not significantly improve classification ac-

curacy, but greatly enhances the interpretability of gene signatures com-

pared to classical algorithms. In a next step we developed a new method,

called stSVM, which integrates both, network information as well as gene

and microRNA expression profiles, into one classifier. This new approach

not only shows superior prediction performance, but also stability and

interpretability of selected features. An open source software, called net-

Class, was developed for implementing the proposed feature selection al-

gorithm.
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Chapter 1

Introduction

“A mathematician is a device for turning coffee into theorems.”

– Paul Erdős.

1.1 Personalized medicine

In the past decades, the topic “personalized medicine” has gained much

attention, and it is defined as “A form of medicine that uses information

about a person’s genes, proteins, and environment to prevent, diagnose,

and treat disease” [NCI13]. Personalized medicine is a rapidly advanc-

ing filed of health care which became relevant after the completion of the

Human genome projects [LLB+01, VAM+01, MMG13]. Genomic varia-

tions (such as mutations in the BRCA1 gene) can lead to an increased

risk to develop disease like cancer. Knowledge of these genomic varia-

tions is therefore useful for risk assessment and optimal therapy design.

The principle aim of personalized medicine is to optimize medical, and to
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a new era: prescribe the right drug combinations for right patient groups

at the right dosage.

Personalized medicine lies in the intersection between three domains:

personal genomics, pharmacogenomics and medicine (Figure 1.1). Per-

sonal genomics deals with the wealth of genomic information of indi-

viduals, For this purpose omics data of various kinds is employed, such

as whole genome sequence, transcriptomics, proteomics, metabolomics,

epigenomics, etc.. Pharmacogenomics is using genomics variabilities as

biomarkers that determine or predict response to drugs. The final goal

of personalized medicine is to transfer the knowledges from personal ge-

nomics and Pharmacogenomics to practice. Genome-based information

amplify our understanding of diseases mechanisms. Moreover, molecular

information enables to implement refined treatment schemes and to as-

sess an individual’s risk for a specified disease. It potentially also allows

for preventing the outbreak of diseases via early prevention

Personalized medicine aims to tailor patients to individualize care based

on patient’s molecular profiles [GW08]. Personalized medicine take the

discovery in biomedicine research to facilitate highly precise health care.

One of the major goals is to identify reliable molecular biomarkers that

predict a patient’s response to therapy, including potential adverse ef-

fects, in order to avoid ineffective treatment and to reduce drug side-

effects and associated costs. A biomarker, or biological marker, is a marker

for a biological state, which is measured and evaluated as an indicator

for a specific status of a biological processes, pathogenic process, or phar-

macologic response to a therapeutic intervention (Biomarker Definitions

Working Group, 2001). In the context of biomedical research, biomarkers

2
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Figure 1.1: Personalized medicine. Adopt from [FCD+11].

can be further distinguished into predictive (allowing to forecast a pa-

tient’s respond to a clinical treatment), prognostic (allowing to forecast

a patient’s disease outcome regardless of the type of treatment). Pre-

dictive, stable and interpretable gene signatures are generally seen as

an important step towards a better personalized medicine. During the

last decade various methods have been proposed for that purpose. Such

approaches highly depend on molecular profiles of patients, which could

be used to precisely predict patient’s risk of disease. Detailed overviews

on current successful approaches in personalized medicine are given by

[GW08, GW+09].

A famous example for a personalized cancer therapy is the application

of Cetuximab. Cetuximab binds to the EGF receptor and, consequently,

prevents activation of the downstream signaling pathway, thus inhibiting

cell proliferation [VCKH+09, VMR+08]. However, it has been found that

3



Cetuximab can only work, if the K-RAS gene is not mutated [VMR+08,

BCR+12]. Testing patients for mutations of this gene in the European

Union is thus prescribed before application of Cetuximab to prevent a

costly and ultimately ineffective therapy. Another example is the anti-

cancer drug Trastuzumab, which is only effective in patients that express

highly the human epidermal growth factor (HER2) at the cell surface, to

which the antibody binds [Hud07]. Recently, next generation sequencing

(NGS) has been applied to cancer patients to identify new markers, and

to uncover the mechanisms of therapy resistance or sensitivity. Prognos-

tic or diagnostic biomarker signatures (mostly from gene expression data,

but more recently also from other data types, such as microRNA, methy-

lation patterns or copy number alterations) have been derived in nu-

merous publications for various disease entities. One of the best known

ones is a 70-gene signature for breast cancer prognosis (mammaprint) by

[vtVDvdV+02], which has gained FDA approval.

Nowadays modern high-throughput technologies allow for screening of

massive amounts of omic-type data, and so one goal is to associate such

data with a patient’s clinical prognosis or with the membership to a cer-

tain disease subtype. Based on omics data it has been even possible to

identify novel disease subtypes. For example, based on gene expression

profiles, five subtypes of breast cancer have been identified [SPT+01].

In 2006, NIH launched The Cancer Genome Atlas (TCGA) for decipher-

ing the genomics and epigenomic landmark of more than 20 cancers.

And later, another big world-wide collaborating project, the International

Cancer Genome Consortium (ICGC), was started with the goal of charac-

tering the molecular profiles of 50 cancers with larger tumor samples.

The samples in these study accompanied with relevant clinical features

generate molecular profiles which contain genomic variations, transcrip-

4



tome microRNAs profiles and epigenomics methylation profiles. Most

data from these two projects are available to public access and could

someday advance clinical practice.

1.2 Machine learning approaches for biomarker

discovery

Recent fast progress in high-throughput technologies have led to an dra-

matic increase of the potential data to find meaningful causalities of dis-

ease mechanisms, including interactions between gene-gene and gene-

environment. In order to mine such large data collections, efficient ma-

chine learning methods are required. Similarly, there is an urgent need

for integration of different kinds of available molecular data of the same

patient to improve and find robust biomarkers for clinical outcomes, which

would translate personalized medicine into reality.

Machine learning is about the design of a system that can learn from

experience and could be expressed as "How can we program systems to

automatically learn and to improve with experience?" according to Tom

MitChell [Mit97]. Statistical learning theory gives a theoretical frame-

work for machine learning, which arises from statistics and functional

analysis. Machine learning has led to lots of applications of text min-

ing, computer vision, natural language process, artificial intelligence and

bioinformatics [Vap00, HTF08, MRT12].

Statistical learning provides tools to understand data and these tools

are general classified into two categories: supervised and unsupervised

5



learning. The most significant difference between unsupervised and su-

pervised learning is that class labels of input data are available or not. In

supervised learning, the goal is to train a model that can predict an out-

come (e.g. a class label) based on available input data; in unsupervised

learning, the goal is to discover patterns from the input data without

class information. Figure 1.2 depicts the learning process of unsupervised

and supervised learning. In Figure 1.2, unsupervised learning discovers

two classes, a and b from the input data; supervised learning learning

uses input data with two known classes, a and b, to make predictions for

data with unknown labels.

Supervised learning generates a function that maps inputs to desired out-

puts (also called labels which are often defined by human experts label-

ing the training examples). For example, in a classification problem, the

learner approximates a function mapping a vector on to classes by looking

at input-output examples of the function. Unsupervised learning models

a set of inputs, based on similarity. Here, labels are not known during

training. In this thesis, we mainly focus on supervised learning. For ex-

ample, we have a gene expression profiles of cancer patients with two

categories (early and late relapse), and by using these dataset, a model is

trained to make prognosis for an individual patient.

To address the construction of biomarker signatures, one typically uses

supervised machine learning methods together with algorithms for vari-

able / feature selection. The microarray technology nowadays enables

measurement of tens of thousands of transcripts at the same time, whereas

the sample size is typically in the order of 100 - 300 patients. This not

only imposes high challenges for the interpretation of such data, but

6
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Figure 1.2: Unsupervised and supervised learning. Adapted from [RG02].

also for robust and stable statistical procedures, which are needed to

detect those genes, which are truly correlated with the clinical pheno-

type. In this context, it should be mentioned that typical machine learn-

ing algorithms operating with far more variables / features than samples

are prone to the so-called “over-fitting” phenomenon: The classifier or

Cox regressor can perfectly explain the data used for model construction,

but fails in making good predictions on new test data [DHS01, HTF08].

Therefore algorithms and statistical procedures for efficient reduction

and selection of relevant features of the data are crucial.

Well known algorithms for this purpose are PAM [THNC02], SVM-RFE

[GWBV02a], Random Forests [DUdA06a] or statistical tests, like SAM

[TTC01], in combination with conventional machine learning methods

(e.g. Support Vector Machines, k-nearest neighbor (k-NN), Linear dis-

7



criminant analysis (LDA), logistic regression, ...). An excellent overview

about these algorithms can be found in [HTF08]. Moreover, several mod-

ifications of Support Vector Machines (SVMs) for embedding gene selec-

tion into this algorithm have been proposed [WZZ08, ZALP06, BTLB11].

For associating gene expression or other high dimensional experimental

or clinical data with patient survival times, typically Cox regression or

variations thereof (multivariate penalized Cox regression) are employed

[Goe10, BS09].

However, retrieved gene signatures are often not reproducible in the sense

that inclusion or exclusion of a few patients can lead to quite different

sets of selected genes. Moreover, these sets are often difficult to inter-

pret in a biological way [Gön09]. For that reason, more recently a num-

ber of approaches have been proposed, which try to integrate prior bio-

logical knowledge on canonical pathways or protein-protein interactions

into gene selection algorithms. The general hope is not only to make

biomarker signatures more stable, but also more interpretable in a bio-

logical sense. This is seen as a key to making gene signatures a standard

tool in clinical diagnosis [BZK11].

1.3 Sources of biological knowledge

A very important source of biological knowledge about individual genes

regarding cellular components, involvement into biological processes and

molecular functions can be obtained from the Gene Ontology database

[ABB+00]. Another important aspect of biological information include

molecular interactions which can be categorized into protein-protein in-

8



teractions (PPI), metabolic pathways, signaling pathways and gene regu-

latory networks.

A protein-protein interaction means that two or more proteins bind to-

gether to carry out their biological function. Interactions betweens pro-

teins are important for most molecular processes, and play a central role

in a living cells. Protein-protein interactions (PPIs) as well as canoni-

cal pathways can be retrieved easily in a computer readable format from

databases, such as KEGG [KAG+08], HPRD [PKP09], PathwayCommons

[CGD+11] or others. These databases contain collections of protein inter-

actions that have been reported in the literature. In this thesis, I mainly

focus on interaction networks from KEGG and PathwayCommons.

Gene regulatory networks represent interactions between transcriptional

regulators (e.g. transcription factors, miRNAs) and their regulated tar-

get genes [BGL11]. In this thesis, I mainly focus on miRNA-target gene

networks.

Integration of biological knowledge, specifically from protein-protein in-

teraction networks and canonical pathways, is widely accepted as an im-

portant step to make biomarker signature discovery from high dimen-

sional data more robust, stable and interpretable. Consequently there

is an increasing amount of methodologies for this purpose. What has

to be mentioned, however, is that usually these interactions have been

observed under differing biological conditions and cell types. Thus a

purely literature based network reconstruction will suffer from a lack

of specificity with respect to the cell or tissue type under study. Moreover,

false interactions can be frequently observed due to technological limi-

tations, which are, for instance, imposed by genome scale two-hybrid or

co-precipitation screens. Hence, confidence measures for interactions are

9



of high value [CKZ+07, GPF+11]. On the other hand it is widely believed

that only a fraction of the true interactome is known so far. Despite these

limitations network reconstructions have turned out to provide valuable

hypotheses for biomarker signature discovery. In Section 2.7, I give a gen-

eral overview about these approaches and grouped them into categories.

1.4 Contribution of this thesis

This thesis is motivated by the employment of feature selection methods

in prognostic / diagnostic biomarker discovery. The main contributions is

the development of a method that allows to integrate in one classification

model :

1. biological knowledge in form of protein-protein interactions;

2. different molecular data entities, namely miRNA and mRNA ex-

pression data.

I also performed a comprehensive study on current state of art feature

selection methods, which employed prior information or not.

The outline of this thesis is as follows:

In Chapter 2, some basics of molecular biology, current techniques for

molecular profiling are explained. Afterwards, classification methods for

high dimension data are presented together with feature selection meth-

ods. Support vector machines illustrate the problem of binary data clas-

sification. The methods for classification model assessment and selection

10



are also described in this section. Finally, I give a overview on current

network-based approaches for gene selection.

In Chapter 3, I investigate whether network-based approach provide an

advantage compared to classical approaches. I compared fourteen pub-

lished gene selection methods (eight methods were network-based ap-

proaches) on six public breast cancer datasets with respect to prediction

accuracy, gene selection stability and the biological interpretability of

gene signatures. Incorporating prior knowledge of network information

into gene selection method in general did not significantly improve clas-

sification accuracy, but could greatly enhance the interpretability of gene

signatures compared to classical algorithms.

In Chapter 4, a new algorithm is proposed to integrating network infor-

mation as well as mRNA and miRNA expression into one classifier. This

is done by smoothing t-statistics of individual genes or miRNAs over the

structure of a combined PPI and miRNA-target gene network. A permu-

tation test is conducted to select features in a highly consistent manner,

and then a SVM is employed to train a classifier. The method shows an

improved on prediction performance, stability and interpretability of se-

lected features compared to RRFE, netRank [JBF+10, WKK+12].

In Chapter 5, I describe my open source software, netClass, for network-

based based feature selection. netClass implements several network-

based classifiers algorithms, which are used in Chapter 3 and Chapter

4, in the R programming language and is freely available on the CRAN

repository at http://cran.r-project.org.

In Chapter 6, I summarize my results on network-based biomarker dis-

covery algorithms. Moreover, possible future research directions are pointed

out.

11



Chapter 2

Background

“Every answer given on principle of experience begets a fresh question.”

– Immanuel Kant.

T HIS chapter focuses on two topics: the first part aims to give a brief

overview about molecular biology and biomarker discovery. The

second part introduces methodologies for high-dimensional data classifi-

cation. The methodology part gives an overview about current classical

classification methods for high dimensional data, with emphasis on sup-

port vector machines methods. Network-based feature selection methods

are also introduced. A review about these methods has been published in

Biology [CF12a].

2.1 Basic molecular biology

Modern molecular biology has remarkable impacted on our understand-

ing of disease, their causes and transmissibility. A cell is the smallest

12



basic building block of life which contains the complete genetics informa-

tion [HL03]. Deoxyribonucleic acid (DNA) is in most organisms, expect

for some viruses, the carrier of the hereditary information. DNA has a

double helical structure, which is encodes the genetic information via four

nucleotides: guanine (G), adenine (A), thymine (T), and cytosine (C).

Genes are genetic information-bearing sections of DNA that divide a long

DNA sequence into different functional units. A chromosomes is a piece

of DNA that organized DNA, protein and RNA in a cell. Chromosomes are

folded in the nucleus for locating most of the DNA in cell, and different

chromosome associates with certain proteins. The genome of an organism

is compiled of all complement of DNA. The genes commonly contains two

parts: a coding part and a regulatory part. The coding part specifies

a protein’s amino acid sequence and the regulatory part controls when

and where the protein is translated. Transcription is a segment of DNA

copied into RNA, and translation is a process of the transcribed RNAs

create to proteins.

Usually, cells use three complex steps to convert the DNA codes to pro-

teins (Figure 2.1). DNA replication from itself via complementary match-

ing rule, which means A convert to G and C to T, is the first step. The sec-

ond step is transcription into a single-stranded ribonucleic acid (RNA).

RNA is large enzyme that translated from DNA and composed by four

nucleotides: guanine (G), adenine (A), uracil (U), and cytosine (C). The

initial RNA split into smaller message RNA (mRNA) polymerase in eu-

karyotic cells. mRNA will transported to the cytoplasm in the next step.

Ribosome is a complex assemble of RNA and protein that will motivate

the translation process. The mRNA sequence translate amino acids of

protein via the universal genetic code to finish the third step. This pro-
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Figure 2.1: Central dogma in molecular biology. The dogma of molecular
biology is an explanation for how information flow works in biological
system. The solid arrow are flows occur in all cell: DNA replicate from
itself; DNA transcript into RNA; RNA translate to protein. The dotted
arrow show flows are occasionally occur. Images from [BEC+12] under
free copy license CC-BY-SA.

cess is refereed to the central dogma in molecular biology.

The genotype is the summary of the genetic information provided by all

genes in a cell. Phenotype is the observation of an organism’s character-

istics or traits. Phenotypes result from an organism’s genotype as well

as environmental stimulation. In genetics, mutation is defined as the

nucleotide sequence changes in the replication process of an organism’s

genome. Mutation is the source of evolutionary novelty that may produce

harmful or beneficial changes in the phenotype of an organism [CC+10].

Somatic mutation is a change in the genetic sequence that is not inherita-

ble, i.e. occurs during life time, for example due to environmental factors.

Genetic and epigenetic alterations can affect a gene’s function and thus

also indirectly phenotypes.
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2.2 Cancer is a genetic disease

A review by Vogelstein and Kinzler [VK04] states that “The revolution

in cancer research can be summed up in a single sentence: cancer is , in

essence, a genetic disease”. Modern technologies in the area of genome re-

search allowed for significant advances in cancer research [Wei07, SCF09,

GL13, VPV+13]. Changes in genes/genome can be use for tracing human

disease. These variations can cause abnormal transformation of living

cells into malignant neoplasms which overcome the normal cell pathway

to uncontrolled process.

The complex process of the change of normal into cancer cells is called tu-

morgenesis. Tumorgenesis is also sometimes called tumorigenesis, tumor

progression, carcinogenesis or oncogenesis. Some genes can completely or

partially reduce the risk of tumorgenesis. These genes are called tumor

suppressors. A lot of experimental effort has been undertaken to find

such cancer-related genes, for example the Catalogue of Somatic Muta-

tions in Cancer (COSMIC) database [FBB+11]. From 1970s on several

oncogenes (such as SRC and BCR-ABL1 fusion gene) and tumor suppres-

sors (such as TP53, RB) have been discovered. Later studies showed

that these genes operate in canonical signaling pathways. Information

about such pathways can be found in public databases, such as KEGG.

[KAG+08].

Current high-throughput biotechnologies have promoted our understand-

ing of the molecular nature of tumors. Such reteaches require to unravel

the genetics variations at different molecular levels. For example, we

can depict the mutation landscape via whole genome sequencing with

as many samples as possible, or measure the mRNA expression profiles
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of most knowns genes with different conditions. Such exhaustive mea-

surements of molecular profiles often are often called genome-wide tech-

niques.

2.3 Gene expression profiles

Gene expression is a process by which a gene’s hereditary information is

transcribed into RNA in the cell, which is most fundamental process by

which the genotype influences the phenotype. The genetic information

stored in DNA will be “interpreted” via gene expression. Expression of

genes includes two steps: first is the transcription of genomic informa-

tion into messenger RNA (mRNA) and then translated to protein; the

second step is the translation of mRNA into proteins. Measurements of

the expression of mRNA level of given genes in a tissue is widely used

in biomedicine. RNAs which are not translated to protein are non-coding

RNAs which may influence gene expression via post-translational regu-

lation. They are also potential biomarkers.

In the past decades, gene expression profiling has been widely used via

microarray chips that simultaneously measures the activity of thousands

of genes. The transcriptome of a set of patients is widely used for mea-

suring the biological phenomena and for discovering patterns that poten-

tially provide insights into disease mechanisms. Moreover, gene expres-

sion profiles are used to identify diagnostic, prognostic and therapeutic

biomarkers. One of the first studies on gene expression profiling showed

that breast cancers could be clustered into distinct subtypes based on

gene expression patterns [PSE+00]. A few years later a very successful
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study identified a 70-gene signatures for breast cancer prognosis prog-

nostic by using supervised learning [VDVHvV+02, vtVDvdV+02].

Apart from transcriptomics and interactomics, other omic approaches,

such as genome-wide copy number variation (CNV), single nucleotide

polymorphisms (SNPs), DNA methylation (epigenomics) etc, also have

been widely used in oncology research. A comprehensive review on omic

approaches can be found in [GW08].

The Gene Expression Omnibus (GEO) by the National Center for Biotech-

nology Informatics (NCBI) and ArrayExpress by the European Bioin-

formatics Institute (EBI) are two major public gene expression profile

databases. Microarray and other types of high-throughput omics data

are freely open for public download and use by the scientific community.

2.4 MicroRNA expression profiles

MicroRNAs (miRNAs) are small non-coding RNA molecules which were

first found in Caenorhabditis elegans [LFA93]. miRNAs usually con-

tains around twenty nucleotide-long single strand RNA molecular and

serve as master regulators of gene expression via sequence-specific fash-

ion [CR07]. miRNAs target mRNAs through fractional complementarity

with their seed-specific sequence, and then insufficient mRNA transla-

tion and stability will decrease protein expression level. Their alteration

in tumor have important tumor-genesis consequences. Over-expressed

miRNAs in tumor lead to down-regulation of tumor suppressors or onco-

genes and thus influence cancer development (see Figure 2.2).
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Figure 2.2: miRNA in a cancer cell. Any abnormal in miRNA expression
can lead to the target protein improper translated. (A) The decrease ex-
pression or loss of a tumor suppressor miRNA leads to an abnormal high
translation level of the target oncoprotein. (B) The enhance or overex-
pression of a oncogene miRNA leads to sweep of tumor suppressor pro-
tein. Image from [BEC+12] and adopted form [EKS06] under free copy
license CC-BY-SA.
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Current studies of miRNA expression profiles of cancer patients have re-

vealed that miRNAs can server as biomarkers [LGM+05, GM12]. For

example, low expression of miR-324a results in a poor survival prognosis

in non-small cell lung cancer (NSCLC) [VVK+11], and the miRNA-200

family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) are down

regulated during the tumor progression of breast cancer [GBP+08].

The miRBase database is a database for collecting published miRNA se-

quences and a major warehouse for miRNA related annotation informa-

tion [GJSvDE08]. All miRNAs in miRBase are mapped to their genomic

locations. The repeated and annotated transcripts of miRNA sequences

are described. The latest miRBase has 24521 hairpin sequences in over

140 species, and 30424 mature sequences. The growth and development

of the database provides a powerful prior tools for omics data integration.

2.5 Microarray technology

The revolution in biotechnologies has advanced our understanding of in

vivo cellular functional process via in vitro DNA technologies [Mar11].

Microarray technology appeared in 1995, it is based on the principle

of complementary hybridization of nucleotide sequences [BH02, Hel02].

The DNA microarray technology, which is also termed as DNA chip or

biochip, provides microscopic sensor tools to quantify the genome-wide

mRNA or miRNA expression on a tiny slide. Microarray technology has

been widely applied to biological and medical research to find biomarker

in many diseases [GW08].
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Figure 2.3: Chip designs of Affymatrix. The chip carries about 6.5 mil-
lions features. Each feature is composed by millions of identical oligonu-
cleotide probes. Image from [BEC+12] and adopted from [DWWTM06]
under free copy license CC-BY-SA.

The core principle of microarray is hybridization between two DNA strands,

and the complementary property of nucleotide sequences target specifi-

cally pair with each other via forming hydrogen bonds between comple-

mentary pairs. Each probe (DNA, RNA or Protein) attaches to a fixed

slide and has a specific chip, such as glass and silicon [SMS99]. Any

given sequence can be assigned to the probes, so microarrays have been

developed for genome, transcriptome and proteome profiling. For exam-

ple, SNP array and array-comparative genomic hybridization (aCGH) are

used to measure genome-wide SNPs and CNVs. In this thesis, we mainly

focus on microarrays for mRNA expression profiling.

In transcriptomics, the Affymatrix GeneChip® is widely used (Figure 2.3,

[DWWTM06]). The chip can measure about 6.5 million featured in a sin-

gle experiment. The amount of features on a chip has quickly increased
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over time due to the progress in microarray production process. Agi-

lent, Nimblegen and Illumia also provide microarray products that are

widely used. The Affymatrix GeneChip® technique produce light inten-

sities which are proportional to the transcript level.

After scanning the microarray probes, signal light density are transferred

to an image. Higher intensities of spots usually refers to the higher ex-

pression level. The expression value of genes or probes can be extracted

from the image. A background correction has to be used to remove back-

ground noises, and normalization removes the spatial effect on the array

or variance between samples. The normalized expression profiles repre-

sent a gene expression matrix which is can be further used for statistical

analysis and inference. The workflow of expression profiling for miRNA,

SNP, aCGH is similar.

Widely used normalization methods are Factor Analysis for Robust Mi-

croarray Summarization (FARMS) [HCO06] and Robust Multi-array Av-

erage (RMA) [BAAS03]. Finding new methods for effective and robust

normalization remains a very active area in current high-throughput

data analysis.

The microarray technology produces measurements of tens of thousands

of transcripts at the same time, whereas the sample size is typically in

the order of 50 - 300 patients. Hence, classical statistical methods, such

as ordinary least squares regression, are not applicable.
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2.6 Methods for high dimension data classi-

fication

2.6.1 Pattern discovery in gene expression data

Pattern recognition is concerned with developing system that learn to

solve a given problems using input data, represented as a matrix of sam-

ples times features [HTF08]. These problems include clustering that

grouping feature by their similarity; classification that predict the la-

bel to a given instance. These two problems corresponding to unsuper-

vised and supervised learning as described in Section 1.2. In this thesis,

I mainly focus on classification problems.

2.6.2 Classification methods

For high dimension omic data classification, one typically uses supervised

machine learning methods together with feature selection algorithms.

This is, because omics data has typically far more features (p) than sam-

ples (n). This not only imposes high challenges for the interpretation of

such data, but also for robust and stable statistical procedures, which are

needed to detect those genes that are truly correlated with the clinical

phenotype. Well known algorithms for data classification are k-NN, LDA,

Logistic regression. An detail overview about these algorithms can be

found in [HTF08]. In this thesis, I mainly focus on SVMs as classification

methods.

The goal of predictive models is to infer a rule to predict the response

Y = {−1, 1} with given data X. For example, Logistic regression (LR) is
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a classical probabilistic classification model that describes the possibility

that X belongs to a particular class: Pr(Y = 1|X). Logistic regression

model Pr(Y = 1|X) using the logistic function:

Pr(Y = −1|X) =
exp(β0 + β1X)

1 + exp(β0 + β1X)

Pr(Y = 1|X) =
1

1 + exp(β0 + β1X)

where β0 and β1 are two unknown coefficients of regression model, which

can be estimating by maximizing the likelihood function:

L(β0, β1) =
∏

i: yi=1

Pr(yi = 1|xi)
∏

i: yi=0

(1− Pr(yi = 1|xi)).

Logistic regression is a classical method for supervised learning, and par-

ticular efficient when sample size exceeds the number of variables.

2.6.3 Support vector machines

Introduction

SVMs is a series of supervised learning methods that produce a separat-

ing hyperplane for classification or regression problems. The term “SVM”

refers to SVM classification in this thesis. This problem can be summa-

rized as following: Given input data

{(x1, y1), ..., (xn, yn)} ∈ X × Y (2.1)

, where usually {xi} ∈ R
p are input vectors and Y = {±1} are binary

labels. This particular case is called binary pattern recognition or two
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classes classification.

SVM learning is based on ideas from statistical learning theory [Vap00].

The main idea of SVMs is to construct a discriminative hyperplane by

maximizing the so-called margin between the two classes (see below). If

this is not possible in the original input space the so-called kernel trick

can be used to implicitly map the data into a higher dimensional space.

SVMs are widely used for classification problems in computational biol-

ogy due to their ability to deal with high-dimensional data in an elegant

and efficient manner [STV04, BHOS+08].

Hard margin SVMs

Given a training data D = {(x1, y1), ..., (xn, yn)} with {xi} ∈ R
p and yi ∈

{±1}. A hyperplane is defined by

{x : f(x) = wTx+ b = 0}, (2.2)

where {wi : i = 1, ..., n} is a unique coefficient vectors, and b is bias term.

A classification rule for the data{xi} introduced by g(x) is

g(x) = sign(f(x)) = sign(wTx+ b). (2.3)

where sign function is defined as

sign(a) =











1,

−1,

if a > 0

otherwise.
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If the training data are separable, the hyperplane of linear boundary

classifies the data into one or two classes. From the geometrical point

of view, f(x) in Equation (2.2) corresponds to the signed distance of the

given point x to the separating hyperplane f(x) = wTx + b = 0 (see page

418 in [HTF08]). We must have yif(xi) ≥ 1, for all i = 1, 2, ..., n.

There are a lots of separating hyperplanes satisfying Equation (2.2). The

hyperplane with the maximum margin among these hyperplanes is se-

lected as the optimal separating hyperplane (see Fig. 2.4). In Figure

2.4, the optimal margin between line a and line c equals to 2M = 2
‖w‖

.

The optimal separating hyperplane is determined as following procedure.

|f(x)|/ ‖w‖ is the the geometric distance form training points x to the hy-

perplane. Then training data must satisfy

ykf(xk)

‖w‖
≥ δ, for k = 1, ..., p, (2.4)

where δ is parameter for margin. A following constraint was introduced:

δ ‖w‖ = 1 (2.5)

to find the optimal separating hyperplane for Equation (2.4), we have to

look for the ‖ω‖ with minimum that satisfies:

f(x) = wTx+ b = c, for − 1 < c < 1. (2.6)

We construct a optimal separating hyperplane for Equation (2.6) by solv-

ing the following optimization problem:

minimize τ(w, b) =
1

2
‖w‖2 , (2.7)
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Figure 2.4: Optimal hyperplane for in a two dimensional data space. Im-
age adopted from [Abe10].

subject to yi(w
Tx+ b) ≥ 1, for i = 1, ..., n. (2.8)

The function τ in Equation (2.7) is termed as objective function and Equa-

tion (2.8) is termed as inequality constraints. This is a constrained opti-

mization problem. The ‖w‖2 guarantee the optimization of Equation (2.7)

to be a convex problem that can be solved by quadratic programming.

Equivalently one can convert Equation (2.7) and Equation (2.8) to the

so-called dual problem. This can be done by introducing Lagrange multi-

pliers αi > 0:

L(w, b, α) =
1

2
‖w‖2 −

n
∑

i=1

αi{yi(w
Tx+ b)− 1}. (2.9)

The maximization of the Lagrangian L leads to same solution than the

26



minimization of Equation (2.7) with respect to constraints Equation (2.8.

This is true due to the convexity of the optimization problem. According

to the Karush-Kuhn-Tucker (KKT) theorem the solution has to fulfill the

saddle point conditions:

∂L(w, b, α)

∂b
= 0, and

∂L(w, b, α)

∂w
= 0. (2.10)

Furthermore at the saddle point it has to hold that:

αi{yi(w
Tx+ b)− 1} = 0, αi ≥ 0, for i = 1, ..., n. (2.11)

In Equation (2.11), either αi or {yi(w
Tx + b) − 1} have to equal 0. Thus,

if αi > 0 then y(wTx + b) = 1. In case that αi, the training points that

yi(w
Tx + b) = 1 are called support vectors (SVs). They lie exactly on the

margins (see the the filled circles on margin a and the triangles on the

margin c, 2.4). Solving Equation (2.10) leads to

n
∑

i=1

αiyi = 0, (2.12)

and

w =

n
∑

i=1

αiyixi. (2.13)

By replacing Equation (2.12) and Equation (2.13) into the Lagrangian

Equation (2.9), the following dual optimization problem is obtained:

maximize W (α) =

n
∑

i=1

αi −
1

2

n
∑

i, j=1

αiαjyiyj 〈xi, xj〉 , (2.14)

subject to
n
∑

i=1

αiyi = 0 and αi ≥ 0, for i = 1, ..., n. (2.15)
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So the decision function in Equation (2.3) can be written as

g(x) = sign(
∑

i∈S

αiyi 〈xi, xj〉+ b). (2.16)

Soft margin SVMs

We described hard margin SVMs for the linear separable case, but the

hard-margin SVMs is unsolvable when the training data is linear non-

separable. In order to solve this problem, [CV95] extend hard margin to

soft margin SVMs by introducing a set of slack variables,

ξi > 0, for i = 1, ..., p, (2.17)

and the separation constraints in Equation (2.6) are relaxed to

yi(w
Tx+ b) ≥ 1− ξi, for i = 1, ..., p. (2.18)

To avoid insignificant solution of all slack variables ξi, a penalty on ξi

is needed in the objective function (see Fig. 2.5). With respect to this

consideration, a term
∑n

i ξi is introduced into Equation (2.7) for the linear

non-separable case, termed as soft margin SVMs:

minimize τ(w, ξ) = 1
2
‖w‖2 − C

q

∑p
i=1 ξ

q
i

subject to yi(w
Tx+ b) ≥ 1− ξi, ξi > 0, for i = 1, ..., p,

(2.19)

where C > 0 is the cost parameter that balances between maximizing the

margin and minimizing the classification error, and C = ∞ refers to the
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Figure 2.5: Soft margin SVM for the linear non-separable case. Image
adopted from [Abe10].

linear separable case. If ξi = 0, there is no margin error for the corre-

sponding point, and a non-zero ξi relates to a fractional margin error. q

is the parameter for norm on ξi. The optimization problem in Equation

(2.19) is similar to linear separable case. By defining the Lagrange mul-

tipliers α and β , the Lagrange function with respect to the optimization

problem in Equation (2.19) is:

L(w, b, α, β) =
1

2
‖w‖2+C

n
∑

i=1

ξi−
n
∑

i=1

αi{yi(w
Tx+b)−1−ξi}−

n
∑

i=1

βiξi. (2.20)

In order to find the optimal solution, we employ the Karush-Kuhn-Tucker

(KKT) complementarity conditions to solve Equation (2.20):

∂L(w, b, ξ, α, β)

∂ξ
= 0,

∂L(w, b, ξ, α, β)

∂b
= 0,

∂L(w, b, ξ, α, β)

∂w
= 0 (2.21)
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αi{yi(w
Tx+ b)− 1 + ξ} = 0,

βiξi = 0,

αi ≥ 0, αi ≥ 0, αi ≥ 0,

for i = 1, ..., n. (2.22)

Equation (2.21) can be reduced to

w =
n
∑

i=1

αiyixi., (2.23)

n
∑

i=1

αiyi = 0, (2.24)

αi + βi = C, for i = 1, ..., p. (2.25)

And then, by replacing Equation (2.25 - 2.19), the Lagrangian dual prob-

lem can be written as:

maximize W (α) =

p
∑

i=1

αi −
1

2

n
∑

i, j=1

αiαjyiyj 〈xi, xj〉 (2.26)

subject to

p
∑

i=1

αiyi = 0, C > αi > 0, for i = 1, ..., n. (2.27)

Compared to hard margin SVMs, soft margin SVMs are more flexible due

to the constraint C on αi. From Equation (2.23) to Equation (2.25), αi can

be categorized into three case: 1) αi = 0 leads to ξi = 0, and then the

correspond xi is correctly classified; 2) if C > αi > 0, the corresponding xi

is termed as in-bound support vector; 3) if αi = C, the corresponding xi is

termed as bound support vector. In the third case, xi is correctly classified

when 0 < ξi < 1 and not correctly classified when ξi ≥ 1.

The decision function of soft margin SVMs is defined by

g(x) = sign(
∑

i∈S

αiyi 〈xi, xj〉 ,+b), (2.28)
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here S is a series index of the support vectors to guarantee that only

support vectors are summarized. Given an new data without labels, the

data is classified to






1, if f(x) > 0,

−1, if f(x) < 0.
(2.29)

When f(x) = 0, there is no unique decision possible.

Kernel methods for non-linear SVMs

The hard and soft margin SVMs find linear separating boundaries be-

tween the training data. In case of low dimensional data, a linear sepa-

rating hyperplane may not exist. A way out is to convert the original in-

put space to high dimensional feature space in which a linear separating

SVM hyperplane can be constructed (see Figure 2.6). A kernel function

k : X ×X → R can be thought of as a special similarity measure between

objects x ∈ X (X being the input space), which fulfills additional math-

ematical requirements, namely symmetry (i.e. k(x, y) = k(y, x) for all

x, y ∈ X ) and positive semi-definiteness (i.e. k(x, y) = 〈φ(x), φ(y)〉 for all

x, y, where 〈·〉 denotes the dot product in a Hilbert space H and φ : X → H

is some arbitrary function mapping objects from input space to the (pos-

sibly higher dimensional) Hilbert space H [SS02].

By employing a mapping function φ , the discriminant function Equation

(2.2) can be written as:

f(x) = 〈w, φ(x)〉+ b (2.30)

By using the kernel trick, the dual problem of L1 soft margin SVMs in

feature space is
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Figure 2.6: Example of kernel methods to mapped input data into feature
space. Image adopted from [SS02].

maximize W (α) =
∑n

i=1 αi −
1
2

∑pn
i, j=1 αiαjyiyjK(xi, xj),

subject to
∑n

i=1 αiyi = 0, C > αi > 0, for i = 1, ..., p.
(2.31)

where k(xi, xj) =< φ(xi), φ(xj) >. That means kernel function k implicitly

defines the map φ. This is the so called kernel trick. That means φ has

never to be defined explicitly as long as k is known. The following kernel

functions are frequently used in SVMs:

• the linear kernel: k(x, x′) = 〈x, x′〉,

• the polynomial kernel: k(x, x′) = 〈x, x′〉degree,

• the Radial Basis Function (RBF) kernel: k(x, x′) = exp(−σ ‖x− x′‖2).

Another popular used kernel is diffusion kernel. Diffusion kernel is also

called graph kernel and defines a similarity measure between nodes in a
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graph. Since the diffusion kernel is a valid kernel which corresponds at

the same time to a dot product in some Hilbert space [KL02]. Suppose we

are given an undirected graph G with adjacency matrix A and diagonal

degree matrix D. If node i connect to node j, Ai,j = 1, otherwise Ai,j = 0.

Di,i =
∑

j∈GAi,j . The diffusion kernel matrix is defined as

KD = exp(−βL), (2.32)

where L = D−A is of the graph Laplacian L and exp(−β∗Λ) =Diag[e−β∗λ1 ,

..., e−β∗λn ]. λ1, ...λn are the eigenvalues of L. The parameter β control the

degree of diffusion and a kernel with stronger off-diagonal effects when β

increase [KL02]. We will discuss the use of diffusion kernels in Chapter

4. Diffusion kernel can be computed as:

KD = Uexp(−β ∗ Λ)UT , (2.33)

where U is the matrix with columns being the eigenvectors of L. Another

method for computing kernels from graph structures is pstep random walk

kernel:

KRWK = (aI − L)pstep, (2.34)

where a and pstep are two positive integer parameter. Random walks tends

to ramble about to their original state. In case of a = 2 and pstep = 1

, KRWK = 2I − L, that converts the off-diagonal dissimilarities in L to

off-diagonal similarities.

2.6.4 Feature selection

SVMs are powerful tools for pattern classification, but have the major dis-

advantage that all input variables / features are used during the training
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process. Especially in high dimension data, redundant and irrelevant fea-

tures would inappropriately add noise to the construction of a separating

hyperplane. Moreover, this would make it difficult to investigate whether

specific features or feature group are related to class membership or not.

Feature selection methods aim to select a specific subgroup from all fea-

tures based on feature selection criteria. Moreover, the classifier using

only the subset of relevant features should perform better than the one

using all features.

How to choose the relevant feature sets is an important issue in statisti-

cal learning. [BL97] defined the relevance of a feature, with respect to the

class label, as follows: a feature Si is relevant to label c when the removal

of Si will influence the classification results with respect to label c. Gener-

ally, feature selection methods help to improve prediction performance by

dimension reduction and thus make computation faster. Usually, feature

selection methods can be categorized into three classes: filter, wrapper

and embedded methods [GE03, SIL07]. The work-flow of these methods

are show in Figure 2.7.

Filter methods use the relevance of a feature via a defined selection

criterion. Then the selected features are used to train a classification

algorithm (see Figure 2.7). Each feature is assigned a score by filter al-

gorithm, such as student t-statistics or Wilcoxon sum-rank statistic, and

the low-scoring features are filtered out. This procedure is fast and flex-

ible because the feature selection procedure is independent of the classi-

fier model. The student t-statistics, χ2 test, Markov blanket filter (MKF)

[KS96], correlation-based feature selection (CFS) [Hal99, YL03]. are fre-

quently used techniques to filter features. However, many filter methods

ignore dependencies among features. Moreover, most filter feature selec-
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Figure 2.7: Work-flow of three feature selection methods.

tion algorithms need a threshold above which a feature is selected, which

is arbitrary (see Table 1 in [SIL07]).

Wrapper methods search an optimal subset of features by evaluating

the prediction performance of the classifier model (see Figure 2.7). Each

selected subset is thus evaluated by classifier model, and thus highly

depends on classifier algorithm itself. A search algorithm is “wrapped”

around the classifier algorithm during finding the best subset among all

features. Heuristic methods are employed to guide the search in high

dimensional feature space. A main drawback of the wrapper methods is

that they are computationally intensive. An example of wrapper methods

is the recursive feature elimination (RFE) algorithm for support vector

machines [GWBV02b]. RFE is based on the following steps:
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1. Train a SVM.

2. Rank features based on w2
i coefficient of the hyperplane.

3. Eliminate the feature with lowest ranking score from the training

data

4. If more than one feature is left, then go to step 1; otherwise stop.

Embedded methods search through feature space during the optimiza-

tion of the classifier. Thus they usually achieve better computational

performance compared to wrapper methods (see Figure 2.7). Embedded

methods include random forests [DUDA06b], penalized logistic regres-

sion [MH05] and penalized SVMs [ZRHT04]. A detailed review about

recent developments in penalized feature selection as embedded meth-

ods for high dimensional omics data classification is given in Ma et al.

[MH08].

In some cases, different feature selection methods also can work together

with aims to build a better classifier model. Apart from these approaches,

ensemble feature selection methods are also popular in machine learning

that use one or all three feature selection mechanisms to achieve a better

model for classification [SIL07, AHVdP+10].

Penalization methods for SVMs

The technique described in this section is an extension of the standard

SVMs by using penalty functions that allow for feature selection. Given
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f(x) = h(x)Tw + b with a linear separable input space, the soft margin

optimization for linear SVMs can be described in the “loss + penalty”

form:

minimize
w,b

n
∑

i=1

[1− yif(xi)]+ +
λ

2
‖w‖2 , (2.35)

where [1−yif(xi)]+ = max(1−yif(xi), 0) is the so-called Hinge loss function

(that means a function penalizing training errors in a defined way), and

λ
2
‖w‖2 is the so-called penalty function. The solution of Equation (2.35)

and Equation (2.19) is same whenλ = 1/C. Equation (2.35) convert the

SVMs to a problem of regularized function estimation, where coefficients

w are shrunken towards zero. The concept of penalized / regularized func-

tion estimation is very general. Apart from the L2 penalty for coefficients

ω described above one can consider general Lq − norm penalties.

The Lq − norm penalty has form:

Lq(w) =

(

p
∑

j=1

|wj |
q

)1/q

. (2.36)

Several forms of such penalty are known in literature [Abe10, HTF08]:

• L0(w) = (
∑p

i=1 I(wj 6= 0),

• L1(w) =
∑p

i=1 |wj|, (LASSO),

• L2(w) =
∑p

i=1 |wj|
2, (RIDGE).

The Lq−norm family can be interpreted as a soft threshold penalty when

q ≤ 1 [BM98]. This leads to the consequence that many of the coefficients

37



in w become exactly 0. The corresponding input variables thus have no

influence on the decision function and are practically discarded. With the

L2 penalty the situation is different. In this case many of the coefficients

in w become small, but not exactly 0. Hence, the solution is not sparse

in terms of used input variables / features. For q < 1 the optimization

problem (Equation 2.35) becomes non-convex. L1 penalty is continues

and sparse, but has limits:

1. L1 penalty selects at maximum n features if p > n cases;

2. In case of a group of highly correlated features the L1 penalty ar-

bitrarily picks one of them. In contrast, the L2 penalty would dis-

tribute non-zero weights among them. Correlations among features

are specifically observed for gene expression microarray data.

In order to overcome the limits of L1 penalty, Zou and Hastie [Hui05]

proposed the elastic net penalty that integrate the L2 to the L1 penalty to

one combined penalty:

penen = λ1 ‖w‖1 + λ2 ‖w‖
2
2 , (2.37)

where the λ1 and λ2 are constant parameters that balance the cost be-

tween L2 to the L1 penalty. So the elastic net penalty combines sparse-

ness properties of the L1 penalty with the property of the L2 penalty to

distribute non-zero weights between highly correlated features. The elas-

tic net penalty is thus expected to be more robust in cases, where one

has high dimensional data with significant correlations between features
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[WZZ08, LL08, BTLB11]. Apart from the Lq and elastic net penalties

there exist also other penalty schemes. Smooth clipped absolute devia-

tion penalty (SCAD, [ZALP06]) is a non-convex penalty function:

penλ =

p
∑

j=1

pλ(ωj), (2.38)

where

pλ(ωj) =



























λ|ωi| if |ωi| ≤ λ,

− |ωi|2−2aλ|ωi|+λ2

2(a−1)
if λ < |ωi| ≤ aλ,

(a+1)λ2

2
if |ωi| > aλ,

where ω are coefficients defined by hyperplanes of SVM and a > 2 and

λ > 0 are tuning parameters.

2.6.5 Model assessment and selection

The generalization performance of a classifier model is defined as the

model’s ability to predict the class label of a new observation in an in-

dependent dataset that was not used for training the classifier. Evalua-

tion of such performance is important to get an estimate of the quality of

a model. In this section, we describe cross-validation for model assess-

ment. Moreover, the span bound technique for computational efficient

model selection for SVMs is explained.
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Cross-Validation

Cross-Validation (CV) is a widely used technique for estimating the pre-

diction performance of a classifier model. This technique divides the

given data into two parts: one part for training called training set; an-

other part for validation the model called validation set. Generally, cross-

validation has two goals:

• Model selection: several trained models with the same classifier

models but different features are compared by their estimated per-

formance in order to select the best one.

• Model assessment: after selecting a model, estimate performance of

the model on unseen test data.

In this thesis, cross-validation was mainly used for the model assessment.

K-fold Cross-Validation process works as follows: Given a classifier

model on the training set X = {xi|xi ∈ R, i = 1, ..., n} with labels Y =

{yi|i = 1, ..., n}, the loss function to measure the prediction errors is de-

noted by L(Y, f̂(X). Taken k : {1, ..., N} 7→ {1, ..., K} as an indexing func-

tion that allocates samples to one of the k randomly partitions, then the

cross-validation technique estimates the prediction error as:

CV (f̂) =
1

N

n
∑

i=1

L(Y, f̂−k(i)(X), (2.39)

where f̂−i(X) is a classification function fitted on data from which fold

k(i) was eliminated. 5-fold or 10-fold cross-validation are frequently used
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in practice (see Figure 7.9 of [HTF08]). If K = n, the cross-validation is

called leave-one-out (LOO) cross-validation. The LOO-CV usually has a

low bias accompanied with high variance as only one observation is take

as validation data at each step. Moreover, LOO-CV is computationally in-

tensive compared to 5-fold or 10-fold cross-validation (see Chapter 7.10.1

in [HTF08]).

Generally, the K-fold cross-validation process should be repeated 5 or

more times in order to estimate the variance resulting from a random

split of the whole dataset into k distinct folds. In this thesis we take

10-fold cross-validation with 10 repeats for each algorithm.

Prediction error measurement

Several methods can be used to measure the prediction error of classifi-

cation and regression models. Here use ŷi as the predicted class label for

the individual i with the true value yi. As described before, a classifier

usually outputs a label +1 or −1. Given two classes, a classifier can create

the following assignments:

• True Positive (TP): algorithm predicts a positive instance as posi-

tive.

• False Negative (FN): algorithm predicts a positive instance as neg-

ative.

• True Negative (TN): algorithm predicts a negative instance as neg-

ative.
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Figure 2.8: A 2 by 2 confusion table.

• False Positive (FP): algorithm predicts a negative instance as posi-

tive.

A contingency table shows these class assignments (Figure 2.8). Using

this information, a variety of quality measures are used to compute the

prediction performance of a classifier algorithm:

• Accuracy (ACC) is the ratio of the number of correctly prediction

among all predictions:

ACC =
TP + TN

(FP + TN) + (TP + FN)
.

• Sensitivity or true positive rate (TPR) is the probability / ratio
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of the positive sample that are correctly predicted:

TPR =
TP

(TP + FN)
.

• Specificity or true negative rate (TNR) is the probability / ratio

of the negative sample that are incorrectly predicted:

TNR =
TN

(FP + TN)
= 1− FPR.

• False positive rate (FPR) is the ratio of the negative sample that

are incorrectly predicted:

FPR =
FP

(FP + TN)
.

• False negative rate (FNR) is the ratio of the positive sample that

are correctly predicted:

FNR =
FN

(FN + TP)
.

• AUC/AUCROC: Area Under the ROC (Receiver Operating Char-

acteristic) Curve.

An area under the ROC (Receiver Operating Characteristic) plot is de-

picts FPR versus TPR and thus shows the relative balance between true

positives and false positives [Bra97]. In the ROC plot, each point corre-

sponds to a defined threshold of a real valued decision function, giving

rise to a specific fraction of false positives and false negatives. The area

under the ROC curve (AUC) is a common way to summarize whole ROC

curves into one number. As the AUC is based on a unit square of the
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ROC space, its value is always between 0 and 1, and a bigger AUC value

indicates better prediction performance. If a model’s AUC < 0.5, it is

worse than random. In this thesis, R package ROCR ([SSBL05]) is used

for calculating AUC values of classification models.

Model selection via span bound

As introduced in the previous section, cross-validation is a re-sampling

technique to estimate the generalization performance of a classifier. In or-

der to get a well optimized model, most learning algorithms need to tune

more than one parameter. For example, a tuning parameter for SVMs

is the constant C in Equation (2.19) for penalizing margin and train-

ing errors. Hence, the best among a number of candidate models (each

defined via a specific value of parameter C) needs to be found. Model

selection can then be performed by cross-validating each of these candi-

date models. However, this nested cross-validation procedure would be a

time-consuming method. The span bound technique has been proposed

to address this problem. The span bound defines an upper bound for the

leave-one-out cross-validation error of a SVM classifier [VC00, CVBM02].

Here I focus on the span bound technique in the hard margin case.

Given any fixed support vector xp and α0 = (α0
1, · · · , α

0
n) is the vector of

Lagrange multipliers for the optimal hyperplane, a set 2p is defined as a

constrained linear combination of the support vectors {xi}i 6=p :

2p =

{

n
∑

i=1,i 6=p

λixi :
n
∑

i=1,i 6=p

λi = 1, and α0
i + yiypα

0
iλi ≥ 0

}

, (2.40)

whereλi is constrained parameter and can be negative. The span of the

support vectors xp is defined based on the the distance between xp and
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Figure 2.9: Example of the span set 21 of the support vectors x1. The
two real lines are boundary of SVM. As the support vector x1 belong to
the span set 21, the distance form x1 to 21 is equal to zero. The set 21 is
computed by α1 = α2 = α3 = α4. Image adopted from [VC00].

the set 2p:

S2
p = d2(xp, 2p) = min

x∈2p

(xp − x)2. (2.41)

As shown in Figure 2.9, Sp = d(xp, 2p) = 0 when xp ∈ 2p .

The smaller Sp = d(xp, 2p), the smaller the LOO cross-validation error on

the support vectors xp. The span rule estimates the number of errors via

LOO cross-validation via:

T =
1

n

n
∑

p=1

Ψ(α̂pS
2
p − ypf(xp)), (2.42)

where the value of the span can be computed in closed form as S2
p =

1
(K−1

S
V )pp

. Here KSV denotes the kernel matrix restricted to the support
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vectors. Ψ is the step function:

Ψ(x) =







1, if x > 0

0, otherwise
.

The span rule provides an upper bound of the leave-one-out error. The

practical advantage stems from the fact that it can be computed very

efficiently, provided that the number of samples is small (which is the

typical case for omics data). We use the span bound for choosing multiple

parameters for SVM in this thesis.

2.6.6 Limitations of purely data driven classification

methods

A common approach to obtain a signature for diagnostic or prognostic

purposes is to put patients into distinct groups and then construct a clas-

sifier that can discriminative patients in the training set and is able

to predict well unseen patients. In the past a large number of classi-

fication algorithms have been developed or adopted from the machine

learning field, like PAM, SVM-RFE, SAM, Lasso and Random Forests

[Tib96, Bre01, THNC02, GWBV02b]. Several adaptations of Support Vec-

tor Machines(SVM) [Vap00] have been suggested for gene selection in ge-

nomic data, like L1-SVMs, SCAD-SVMs and elastic net SVMs [FM04,

ZALP06, WZZ08]. Although these methods show reasonably good pre-

diction accuracy, they are often criticized for their lack of gene selection

stability and the difficulty to interpret obtained signatures in a biological

way [EDKG+05, DD11]. These challenges provide opportunities for the

development of new gene selection methods.
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To overcome the disadvantages of conventional approaches Chuang et

al. [CLL+07] proposed an algorithm that incorporates of protein-protein

interaction information into prognostic biomarker discovery. Since then

a number of methods going into the same direction have been published

[CLL+07, RZD+07, LCK+08, BS09, TLWF+09, ZSP09, JBF+10]. In the

next section, I give a brief overview on current network based approaches

for biomarker discovery.

2.7 Network centric approaches

2.7.1 Overview

Nowadays knowledge on protein-protein interactions (PPIs) as described

in Section 1.3. Various network based approaches have been proposed

to integrate prior knowledge on canonical pathways, Gene Ontology (GO)

annotation or protein-protein interactions into feature selection algorithms

[GZL+05, CLL+07, RZD+07, LCK+08, TLWF+09, BS09, ZSP09, JBF+10].

A recent review on such approaches can be found in [CF12a]. The general

hope of these approaches is that biological knowledge can lead to better

interpretable and more stable signatures. Whether network based classi-

fication methods automatically also lead to higher prediction accuracies

is still a matter of debate [CF12c, SCK+12].

In general one may divide existing methods integrating network knowl-

edge broadly into two main classes:

On one hand there are network centric approaches, which map gene ex-

pression data onto a molecular network reconstructed from the literature
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and then either try to identify discriminative / differential sub-networks

between patient groups, or directly compute summary statistics (path-

way activity) for pre-defined sub-networks (e.g. canonical pathways). Af-

terwards often a conventional classifier (e.g. logistic regression, k-NN)

or Cox regressor is applied to make predictions based on the expression

profiles of sub-network genes.

On the other hand data centric approaches are closer to traditional ma-

chine learning methods. Here the idea is to bias the gene selection pro-

cess within a machine learning framework in such a way that connected

genes are preferably selected. There are two main techniques for this

purpose: One is to construct a mathematical embedding of gene expres-

sion data into a network graph space via the so-called kernel trick [SS02].

Afterwards existing kernel-based feature selection algorithms, such as

SVM-RFE [GWBV02a], can be applied. Another approach is to modify

the feature selection process itself, e.g. by imposing specific restrictions

on the learnable parameters (so-called regularization) [TA77].

In the following, I give a more detailed overview about these methods.

2.7.2 Network features

An approach, which is possibly most focusing on the network structure

itself, is to purely select genes based on topological features of the PPI

network. An example is the method proposed in [TLWF+09]. Here the

idea is to concentrate on hubs in the network, i.e. proteins with an ex-

traordinary high degree of interactions. In their paper Taylor et al. show

that the average Pearson correlation of the expression of a hub protein
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and its interacting partners can be used to reliably predict survival of

breast cancer patients without any further machine learning based vari-

able or feature selection procedure.

2.7.3 Pathway activity

Another method to integrate network knowledge is to summarize the ex-

pression level of predefined canonical pathways obtained from databases,

such as KEGG [KAG+08], into one value, for instance by taking the mean

or the median. These newly constructed interpretable features are then

correlated with the clinical phenotype to be predicted using conventional

machine learning techniques.

Guo et al. [GZL+05] report that “functional expression profiles” obtained

by taking the average expression of genes annotated to significantly en-

riched Gene Ontology (GO, [The04]) categories could increase the robust-

ness of a classifier trained to discriminate four cancer types.

Rather than simply looking at mean or median expression [VBS+10] pro-

pose a probabilistic approach based on a factor graph model for path-

way activity inference from both, gene expression and copy number alter-

ations. In contrast to many others, this method is completely probabilistic

and takes the topology of the pathway into account.

Teschendorff et al. [TGA+10] further decompose pathways into coherent

modules based on the correlation structure in gene expression data. For

each module an activation metric is proposed, which specifically takes

into account the network architecture.
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Another approach following the same direction is proposed by Trey Ideker

and co-workers [LCK+08]. In their paper an activity score is derived

from the normalized expression of most discriminative genes within each

pathway. Logistic regression is applied to discriminate between “good” or

“bad” prognosis breast cancer patients based on these scores. In their

paper Lee et al. show that their “combined optimal response genes”

(CORGs) approach yields better prediction performance than if pathway

activity is simply estimated via the mean or median expression level. A

further improvement of the method with respect to the selection of dis-

criminative genes within each pathway is proposed in [YDPD12].

Bild et al. [BYC+06] estimate pathway activity by so-called “meta-genes”,

which are obtained by computing the first principal components of the ex-

pression of pathway genes. The authors use their method to cluster sev-

eral tumor entities and identify coordinated patterns of pathway dereg-

ulation, which distinguish between specific cancers and tumor subtypes.

Bild et al. show that estimated pathway activities are predictive for the

respective patient subgroups, and that in cell lines pathway activity also

predicts the sensitivity to therapeutic compounds. An extension of the

pathway activity classifier to identify oncogene-inducible modules is de-

scribed in [BWS+08].

Yu et al. [YSZ+07] propose to first detect pathways that are significantly

associated with the phenotype via a global test strategy [GVDV04]. Af-

terwards genes annotated to these pathways are selected based on their

individual differential expression. Using their approach the authors suc-

cessfully establish an interpretable signature for predicting metastasis of

lymph node negative breast cancer patients.

The paper by [KLH+11] focuses on functional gene groups defined by GO.
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Rather than computing an explicit measure of group activity, the authors

first identify group representatives via PAM clustering [KR90].

2.7.4 Differential sub-networks

Rather than looking at predefined canonical pathways or GO groups an-

other idea, which puts a little bit more emphasis on measured data, is

to reconstruct a protein-protein interaction network for all gene prod-

ucts and then use experimental data to identify differentially expressed

sub-networks. One of the first approaches in this direction is described

in [CLL+07]. The algorithm starts from “seed” proteins in the network,

which are highly differentially expressed. Then around each seed pro-

tein neighbors are added in a greedy hill climbing fashion until the dis-

criminative power of the corresponding sub-network (measured via the

mutual information of the average normalized gene expression together

with the clinical outcome variable) reaches a local maximum. In their pa-

per Trey Ideker and co-workers show that their method not only leads to

clearly interpretable signatures for discriminating “poor” and “bad” prog-

nosis breast cancer patients, but also improves prediction performance

compared to a conventional machine learning setup. Similar greedy algo-

rithms for identification of differential sub-networks have been proposed

by other authors, e.g. [CK10, FKJ10, SYD10, AYP+11].

A particular interesting variant has recently been introduced by [DI11].

They modify Random Forests [Bre01], which contain a large ensemble of

decision trees, such that individual trees only use neighboring genes in

the PPI network. This allows them to draw conclusions about the inher-

ent logic by which stably selected sub-networks are dis-regulated. The
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authors show that their method leads to a much better reproducibility of

selected markers compared to using a conventional Random Forest.

It has to be mentioned that despite their good performances all so far

mentioned approaches are heuristic and thus cannot guarantee to find

the optimal differential sub-network. Attempts to obtain an optimal sub-

network are described in [CNCK11] via branch and bound and in [DCS+10]

via exhaustive search. A elegant solution is proposed by [DKR+08]. After

calculating a score for differential expression of each node in the protein-

protein interaction network, the authors interpret the problem of iden-

tifying the optimal differential sub-network as an instance of the prize-

collecting Steiner tree problem, which they solve to optimality via integer

linear programming (ILP). The authors show that their obtained optimal

sub-networks generally correlate well with the clinical phenotype of dif-

fuse large B-cell lymphomas, however no rigorous validation in terms of

prediction accuracy is performed.

In general, identification of an optimally discriminative sub-network is

an NP-hard problem [DKR+08, DWC+11] and thus algorithms have to

face a super-polynomial run time complexity, which can make them in-

tractable for larger datasets. An interesting compromise between com-

putational speed and the goal to obtain a well separating sub-network

has thus recently been proposed in [DWC+11]. Their algorithm is based

on the color coding paradigm [ADH+08], which allows for identifying op-

timally discriminative sub-networks up to a certain error rate. Dao et

al. use a randomized approximation algorithm to obtain polynomial run

time complexity. Afterwards the authors employ a 3-NN classifier on av-

eraged expression levels of each sub-network to discriminate response to

chemotherapy in breast cancer.
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2.7.5 Data centric approaches

Mathematical embedding

All previously mentioned approaches deal with a PPI network as the cen-

tral entity. In contrast, data centric approaches focus on the experimental

data. Kernel techniques [SS02] allow for a mathematically elegant way

of combining network information with experimental data.

Among many other applications kernel functions have been proposed for

nodes in a graph or network based on the notion of random walks. A

random walk is a stochastic process that consists of a sequence of moves

that are taken along the graph structure according to some defined prob-

ability distribution. The diffusion kernels [KL02] is a specific similarity

measure for nodes in a graph that considers all random walk paths con-

necting nodes x and y, but weights each path in dependency on the path

length (see Chapter 4). This is done in an exponentially decreasing way.

Diffusion kernels are mathematically equivalent to the fundamental so-

lution of the heat equation in physics, which describes the evolution of

heat in a region under certain boundary conditions. If instead of expo-

nentially decreasing weights for path lengths a linear weighting scheme

is preferred, one arrives at the pseudo-inverse of the graph Laplacian

[GDCW09]. In the same paper also a random walk kernel is proposed,

which simply bounds the number of random walk steps to p (see in Chap-

ter 4).

The afore mentioned graph kernels allow for easily incorporating mea-

surement data, such as gene expression. This is done by weighting each

edge x → y in the network by the similarity of the gene expression of
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x and y (using the dot product). This is equivalent to defining a kernel

function between x and y as:

k(x, y) = xTQy

where x and y are the vectors of gene expression values for genes x and

y, and Q is the graph kernel matrix between nodes in the network. Con-

sequently the expression data is linearly mapped via the graph kernel

matrix Q to some different space.

Combining gene expression data with network information in such a way

has been described by [RZD+07] and [GDCW09]. In general the intuition

of these methods is that genes which are closely connected in the net-

work should also have similar expression levels. Rapaport et al. (2007) in

particular emphasize the possibility to conduct unsupervised clustering

analysis of gene expression data in this way besides more common su-

pervised classification, which yields to biologically interpretable results.

Several other authors have used graph kernels to identify possibly dis-

ease causing genes [NTT+09, QZZC10].

Recently, [CXR+11] have introduced a variation of the kernel idea us-

ing the pseudo-inverse of the graph Laplacian. In their paper the au-

thors compute an explicit mapping of gene expression data by a matrix

square root of Q, which is calculated via singular value decomposition.

An ordinary linear Support Vector Machine is then trained on the trans-

formed data. Afterwards the solution is back-transformed to the original

space and a permutation test executed for assessing the significance of

genes and identifying sub-networks. With their approach the authors

successfully predict early vs. late recurrence of ER positive breast can-

cer patients with comparably high accuracy. Moreover, the obtained sub-
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network markers appear to be biologically plausible.

Biased feature selection

Instead of augmenting the similarity measure of each pair of genes with

network information via embedding techniques, another approach is to

directly integrate network information into conventional variable/feature

selection techniques. [ZSP09] describe a modified Support Vector Ma-

chine (SVM) algorithm with embedded feature selection, which strongly

prefers to select genes, which are connected to each other. Via their

method the authors successfully obtain sub-networks associated to Parkin-

son’s disease and to breast cancer metastasis.

Johannes et al. [JBF+10] introduce a modification of the frequently used

SVM-RFE algorithm, called SVM-RRFE (Reweighted Recursive Feature

Elimination). They use the GeneRank approach [MBHG05], which is

based on Google’s famous PageRank algorithm [PBMW99] to identify

genes that on one hand exhibit a high fold change and on the other hand

are central in the PPI network. With this ranking they re-adjust the

SVM decision hyperplane, which is learned at each step of the SVM-RFE

algorithm. This way they give preference to selecting genes, which have

a high GeneRank. It can be shown that this approach is equivalent to

run the conventional SVM-RFE algorithm on data that is transformed

in a specific way, i.e. embedded into a different space. In their paper

the authors demonstrate that SVM-RRFE is not only superior to the con-

ventional SVM-RFE algorithm in predicting an early relapse in breast

cancer patients, but can also compete with several other network based
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gene selection approaches. Moreover, the stability and interpretability of

the obtained gene signatures are significantly improved.

Binder et al. [BS09] propose a component-wise likelihood boosting ap-

proach (pathBoost) for integrating network information. The idea is to

decrease the penalty for selecting variables / genes that are connected

in the PPI network. The authors demonstrate on two gene expression

datasets, diffuse large B-cell lymphoma and ovarian cancer, that their

approach is able to improve survival time predictions via a multivari-

ate penalized Cox regression model compared to conventional likelihood

boosting for the same purpose.

In a recent paper [GPF+11] extend the method by Binder and Schu-

macher by considering a miRNA-mRNA interaction graph rather than a

PPI network. Gade et al. show that this way miRNA and mRNA expres-

sion data can be combined in a straight forward way for predicting the

risk of a relapse in prostate cancer via penalized Cox regression. More-

over, they demonstrate that their approach enhances prediction perfor-

mance and gene selection stability compared to several other methods.

Lasso regression models [Tib96] have gained a particular attention for

high dimensional data analysis during the last years. [LL08] propose a

modification of this approach, which down-weights the penalty for select-

ing genes that are in proximity to each other. They demonstrate that

their method can improve over the conventional lasso for predicting sur-

vival of glioblastoma patients. Despite the elegance of the approach it

has to be mentioned that the authors do not consider the possible censor-

ing of patient survival times in their study. Hence, the application of a

conventional regression framework in this context has to be seen critical.
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2.8 Summary

Integration of biological knowledge, specifically from protein-protein in-

teraction networks and canonical pathways, is widely accepted as an im-

portant step to make biomarker signature discovery from high dimen-

sional data more robust, stable and interpretable. Consequently there is

an increasing amount of methodologies for this purpose. In this chapter,

I gave a general overview about these approaches and grouped them into

categories.

In conclusion we see that all approaches that have been proposed so far

have specific advantages and disadvantages. Thus there is a strong need

for systematic empirical comparisons. In Chapter 3, I conducted a com-

parison of 14 classification algorithms (8 using network knowledge) for

predicting early vs. late relapse of breast cancer patients in 6 microar-

ray datasets. In this context it has to be emphasized that most published

methods have been evaluated for one specific clinical questions (e.g. early

relapse prediction) in one disease (mostly breast cancer), only. To get a

more complete picture, more comprehensive studies including more clini-

cal questions and more disease entities are needed in order to guide prac-

titioners, under which conditions which method would be a good choice.

In Chapter 4, a new algorithm is developed to not not only integrate more

molecular interaction information, but also more molecular data types.

Nonetheless, there will be always a dataset specific dependency of an al-

gorithm’s performance, which can never we resolved. Careful checking of

assumptions is therefore a prerequisite for the successful application of

any algorithm.
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Chapter 3

Comparison of Current

Feature Selection Methods in

Terms of Accuracy, Stability

and Interpretability

“It is by logic that we prove, but by intuition that we discover. To know how to

to criticize is good, to know how to create is better.”

– Jules Henri Poincaré.

I N this chapter, we compare fourteen published gene selection methods

(eight using network knowledge) on six public breast cancer datasets

with respect to prediction accuracy, biomarker signature stability and

biological interpretability in terms of an enrichment of disease related

genes, KEGG pathways and known drug targets.

The comparison done here is thus multi-dimensional and goes beyond

the typical studies focusing purely on prediction accuracy. The reason is

that - as pointed out in section 2.6 - the limitation of current biomarker
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signatures is their low reproducibility coupled with the difficulty to in-

terpret them in the context of existing biological knowledge. Hence, the

questions, which we address in this chapter, are:

1. Do network based gene selection methods yield a higher prediction

accuracy than purely data based ones?

2. Does biological knowledge help to obtain better reproducible and

interpretable gene signatures?

3. Which of the tested network based algorithms is most successful

with respect to prediction accuracy, reproducibility and interpretabil-

ity of signatures?

The content of this chapter is based on a previous publication in BMC

Bioinformatics[CF12c].

3.1 Materials and methods

3.1.1 Gene selection methods

We employed fourteen published gene selection methods in this chapter.

As already described in section 2.6.4, feature selection methods can be

classified into three categories [GE03]: filters, wrappers and embedded

methods. Filter methods select a subset of features prior to classifier

training according to some measure of relevance for class membership,
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e.g. mutual information [Bat94]. Wrapper methods systematically as-

sess the prediction performance of feature subsets, e.g. recursive feature

elimination (RFE, [GWBV02b]); and embedded methods perform features

selection within the process of classifier training. The methods we em-

ploy in this chapter covered all three categories. Furthermore we can

classify feature selection methods according to whether or not they in-

corporate biological network knowledge (conventional vs. network-based

approaches).

As one of the most basic approaches, we considered here a combination

of significance analysis of microarrays (SAM) [TTC01] as a filter prior

to SVM or Naïve Bayes classifier learning [Ris01]. More specifically,

only genes with FDR < 5% (Benjamini-Hochberg method) [BH95] were

considered as differentially expressed. As further classical gene selec-

tion methods we considered prediction analysis for microarrays (PAM)

[THNC02], which is an embedded method, and recursive feature elimina-

tion (SVM-RFE) [GWBV02b], an SVM-based wrapper algorithm. More-

over, we included SCAD-SVMs [ZLS+06] and elastic-net penalty SVMs

(HHSVM) [WZZ08] as more recently proposed embedded approaches (see

section 2.6.3) that particularly take into account correlations in gene

expression data. In this chapter, we used SAM+SVM (significant gene

SVM), SAM+NB (significant gene Naïve Bayes classifier), PAM, SCAD-

SVM, HHSVM and SVM-RFE as “conventional” feature selection meth-

ods that do not employ network knowledge.

The following network-based approaches for integrating network or path-

way knowledge into gene selection algorithms were investigated: Mean

expression profile of member genes within KEGG pathways (aveExp-

Path) [GZL+05], graph diffusion kernels for SVMs (graphK; diffusion ker-
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nel parameter δ = 1) [RZD+07], p-step random walk kernels for SVMs

(graphKp; parameters p = 3, a = 2, as suggested by Gao et al. [GDCW09]),

pathway activity classification (PAC) by CROGs gene sets of each path-

ways [LCK+08], gradient boosting (PathBoost, [BS09]) and network-based

SVMs (parameter sd.cutoff = 0.8 for pre-filtering of probesets according

to their standard deviation) [ZSP09].

In case of avgExpPath whole KEGG-pathways were selected or not se-

lected based on their average differential expression between patient groups.

This was done based on a SAM-test with FDR cutoff 5% (see above). In

case of diffusion and p-step random walk kernels the SVM-RFE algo-

rithm was adopted for gene selection using the implementation in the

R-package pathClass [JFSB11]. Furthermore, pathClass was used to

calculate the diffusion kernel. This implementation is directly based on

[RZD+07] and only keeps the 20% smallest eigenvalues and correspond-

ing eigenvectors of the normalized graph Laplacian to compute the kernel

matrix.

PAC and PathBoost come with an own mechanism to select relevant

genes. PathBoost incorporates network knowledge directly into the gra-

dient boosting procedure to perform gene selection, whereas PAC first se-

lects genes within each KEGG-pathway based on a t-test and then sum-

marizes gene expression in each pathway to a pathway activity score.

According to the original paper by Lee et al. [LCK+08] only the top

10% pathways with highest differences in their activity between sample

groups were selected.

Recently, Taylor et al. [TLWF+09] found that differentially expressed

hub proteins in a protein-protein interaction network could be related to

breast cancer disease outcome. We here applied their approach (called
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HubClassify) as follows: the random permutation test proposed in Taylor

et al. [TLWF+09] was used to select differentially expressed hub genes

with FDR cutoff 0.5%. Hubs were here defined to be those genes, whose

node degree fell into the top 1% percentile of the degree distribution of

our protein interaction network.

Afterwards a SVM was trained using only those differential hub genes.

Finally, we also include Reweighted Recursive Feature Elimination (RRFE)

algorithm [JBF+10], which combines GeneRank [MBHG05] and SVM-

RFE as implemented in the pathClass package [JFSB11]. In summary

average pathway expression (aveExpPath), graph diffusion kernels for

SVMs (graphK), p-step random walk graph kernels for SVMs (graphKp),

PAC, PathBoost, networkSVM and HubClassify are considered in our

comparison of network-based gene selection methods.

For all linear SVM classifiers used in this study the soft-margin param-

eter C was tuned in the range 10−4, 10−3, . . . , 104 on the training data.

For that purpose the pathClass package was employed, which uses the

span-bound for linear SVMs as a computationally attractive and proba-

bly accurate alternative to cross-validation (see section 2.6.5, [CVBM02]).

For elastic net SVMs and SCAD-SVMs we used the R-package penal-

izedSVM [BWT+09], which allows for tuning of hyperparameters (elas-

tic net: λ1 ∈ [2−8, 214], λ2 set in a fixed ratio to λ1 according to [WZZ08];

SCAD-SVM: λ ∈ [2−8, 214]) based on the generalized approximate cross-

validation (GACV) error as another computationally attractive alterna-

tive to cross-validation. The EPSGO algorithm described in [FZ05] was

used for finding optimal hyper-parameter values within the defined ranges.

Note that in any case only the training data were used for hyper-parameter

tuning.
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It should be mentioned that for conventional approaches all probesets on

the chip were considered. This is in agreement with a typical purely data

driven approach with no extra side information. Please note that an a-

priori restriction to probesets, which can be mapped to a pre-defined net-

work, would already include a certain level of extra background knowl-

edge with corresponding assumptions.

3.1.2 Classification performance and stability

In order to assess the prediction performance of all tested methods we

performed a 10 times repeated 10-fold cross-validation on each dataset.

That means the whole data was randomly split into 10 fold, and each fold

sequentially left out once for testing, while the rest of the data was used

for training and optimizing the classifier (including selection of relevant

genes, hyper-parameter tuning, standardization of expression values for

each gene to mean 0 and standard deviation 1, etc.). The whole process

was repeated 10 times. It should be noted extra that also standardization

of gene expression data was only done on each training set separately and

the corresponding scaling parameters then applied to the test data.

The area under receiver operator characteristic curve (AUC) was used

to measure the prediction accuracy via the R-package ROCR [SSBL05].

To assess the stability of gene selection, we computed the selection fre-

quency of each gene within the 10 times repeated 10-fold cross-validation

procedure. That means a particular gene could be selected at most 100

times In order to summarize the selection frequencies for all genes we

defined a so-called stability index (SI) as

SI =
1

|P |

∑

s∈P

h(s) (3.1)
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where P is the set of selected genes that had been selected at least once

and h(s) is the actual number of times that s was selected. SI represents a

weighted histogram count of selection frequencies. Obviously, the larger

SI the more stable the algorithm is. In the optimal case SI = 100. The SI

has to be seen together with the size of gene signature, because trivially

a classifier selecting all genes would always achieve SI = 100.

3.1.3 Functional analysis of signature genes

To interpret a signature gene in terms of biological function, we per-

formed an enrichment analysis in terms of cancer-related disease genes,

KEGG pathways and known drug targets for the prognosis biomarkers

via Fisher’s exact test. We employed FunDO [OFH+09] to look for en-

richment of disease related genes. FunDO uses a hyper-geometric test to

find relevant diseases. Multiple testing correction was done using Bon-

ferroni’s method [BA95]. Furthermore, an analysis of enriched KEGG

pathways based on a hypergeometric test was done (multiple testing cor-

rection via Benjamini-Yekutieli’s method [Ben01]). We also carried out an

enrichment analysis for known targets of therapeutic compounds against

breast cancer. For that purpose, we retrieved a list of 104 proteins and

respective therapeutic compounds in breast cancer, which are either in

clinical trials (also withdrawn ones), FDA approved or on the market

with the help of the software MetaCore™. Fisher’s exact test was then

used to assess statistical overrepresentation of drug targets within each

signature.

3.1.4 Datasets

Microarray gene expression data

We collected six public breast cancer Affymetrix HGU133A microarray
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(22,283 probesets) datasets [WKZ+05, PBA+05, SBvT+08, SWL+06, IGS+06,

DPL+07], which are further described in Table 3.1. The six datasets were

obtained via Gene Expression Omnibus [BTW+11], and normalization

was carried out using FARMS [HCO06]. As clinical end points we con-

sidered metastasis free (datasets by Schmidt et al [SBvT+08]., Ivshina et

al [IGS+06].) and relapse free (other datasets) survival time after initial

clinical treatment, depending on the availability of the corresponding in-

formation in the original data. Time information was dichotomized into

two classes according whether or not patients suffered from a reported

relapse / metastasis event within 5 years. Patients with a survival time

shorter than 5 years without any reported event were not considered and

removed from our datasets.

Protein-Protein interaction (PPI) network

A comprehensive protein interaction network was compiled from the Path-

way Commons database [CGD+11], which was downloaded in tab-delimited

format (September 2012). All SIF interactions INTERACTS_WITH and

STATE_CHANGE were taken into account1 and self loops removed, re-

sulting in a large network with 11,361 nodes and 610,185 edges.

The R package, hgu133a.db [CFPL09], was employed to map probe sets

on the microarray to nodes in the PPI-network. Accordingly, expression

values for probesets on the microarray that mapped to the same gene

in the network were averaged. In order to consider genes with avail-

able probesets on the array but no corresponding network information

1

http://www.pathwaycommons.org/pc/sif_interaction_rules.do
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Table 3.1: Employed breast cancer data sets. The data in () means pa-
tients with dmfs/rfs ≥ 5 years.
GEOid patients dmfs/rfs < 5 years

GSE2034 [WKZ+05] 286 93 (183)

GSE1456 [PBA+05] 159 34 (119)

GSE2990 [SWL+06] 187 42 (116)

GSE4922 [IGS+06] 249 69 (159)

GSE7390 [DPL+07] 198 56 (135)

GSE11121 [SBvT+08] 200 28 (154)

we added for all these genes unconnected nodes to our initial network,

resulting in 9,186 nodes for all breast cancer datasets.

3.2 Results and discussion

3.2.1 Predictive power and stability

We assessed the prediction performance of prognostic biomarker gene

signatures obtained by fourteen gene selection methods on six gene ex-

pression datasets in terms of area under ROC curve (AUC) (see Figure

3.1). The gene selection stability of each gene selection method is de-

picted in Figure 3.3 (fraction of constantly selected probe sets). Here are

the abbreviations used for the 14 tested methods: PAM (prediction anal-

ysis of microarray data), sigGenNB (SAM + Naïve Bayes), sigGenSVM

(SAM + SVM), SCAD-SVM, HHSVM (Huberized Hinge loss SVM), RFE

(Recursive Feature Elimination), RRFE (Reweighted Recursive Feature
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Elimination), graphK (graph diffusion kernels for SVMs), graphKp (p-

step random walk graph kernel for SVMs), networkSVM (Network-based

SVM), PAC (Pathway Activity Classification), aveExpPath (average path-

way expression ), HubClassify (classification by significant hub genes),

pathBoost. In the following graphs of this Chapter, A represents data

GSE2034 [WKZ+05]; B represents data GSE11121 [SBvT+08]; C repre-

sents data GSE1456 [PBA+05]; D represents data GSE2990 [SWL+06]; E

represents data GSE4922 [IGS+06]; F represents data GSE7390 [DPL+07].

In general, we observed a large variability of prediction performances of

individual methods between different datasets. This is not necessarily

surprising, since it is known that the performance of any machine learn-

ing algorithms is dependent on the data at hand. Moreover, each dataset

under study here contains different patients with unique characteristics

and also clinical end points were slightly different (relapse free versus

metastasis free survival after treatment). We are convinced that a com-

parison on a larger number of datasets reveals more of the true variabil-

ity of an algorithm than a typical comparison on few selected ones.

In order to get a more objective and comprehensive view we conducted

a ranking of all methods in each dataset according to the median cross-

validated AUC value. We then calculated a consensus ranking based on

the average rank of each method (Table 3.2). Interestingly enough, ave-

ExpPath was ranked highest here. Two penalized SVM methods, SCAD

and HHSVM, were ranked second, together with RRFE as a network

based approach.

Some network-based methods (specifically network-based SVM, hub-based

classification, pathBoost) revealed significantly higher gene selection sta-
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Figure 3.1: Prediction performance in terms of AUC.
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Figure 3.2: Signature stability.
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Table 3.2: Ranking of different algorithms with respect to the median
AUC in a 10 times repeated 10-fold cross-validation procedure.

Method G2034 G11121 G1456 G2990 G4922 G7390 consensus

PAM 9 9 1 5 5 10 4

sigGenNB 11 5 4 9 3 13 5

sigGenSVM 4 7 12 12 7 9 7

SCAD 1 4 5 1 11 7 2

HHSVM 2 1 6 4 8 8 2

RFE 8 11 11 3 14 5 8

RRFE 3 3 8 11 2 2 2

graphK 6 10 9 7 12 11 10

graphkKp 5 12 7 6 10 6 6

networkSVM 13 6 14 13 9 12 11

PAC 14 14 13 14 13 14 12

aveExpPath 7 2 2 8 1 3 1

HubClassify 12 8 3 2 4 9 3

pathBoost 10 13 10 10 6 4 9
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bility (Figure 3.2). Network-based SVMs performed clearly outstanding

here. The reason might be two-fold: On one hand network-based SVMs

come with a pre-filtering step of probesets according to their standard de-

viation, which already drastically reduces the set of considered probesets

for the later learning phase and thus naturally enhances stability.

Network-based SVMs have a very effective mechanism for grouped selec-

tion of network connected genes via the infinity norm penalty [ZSP09].

Nonetheless, we found network-based SVMs to show a comparably poor

prediction performance. This underlines that an improved gene selection

stability does not necessarily coincide with better prediction performance.

The reason for this behaviour could be that many genes reveal a high cor-

relation in their expression. If such highly correlated genes are itself

correlated with the patient group, then picking any of these genes leads

to a similar prediction performance.

Picking preferentially one particular gene out of the correlated group (as

tried by network-based approaches) increases gene selection stability, but

does not necessarily increase prediction performance, either. This is ex-

actly the behaviour we can observe in our datasets: Some network-based

approaches (specifically networkSVM) have significantly improved gene

selection stability, but do not perform consistently better than “conven-

tional” methods, like PAM. We would like to point out that the high sta-

bility of network based SVMs and hub based classification is not at all

associated to a higher number of selected genes (Figure 3.2).

As shown in Figure 3.2 and 3.3, which highlighted the much different be-

havior of networkSVM compared to all other approaches, which, given

our previously discussed findings, was not very surprising. Most network-
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Figure 3.3: Number of selected genes per method. Y-axis is scaled by
natural logarithm.
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based method with respect to good gene selection stability. The high sta-

bility of this approach can be explained by the a-priori restriction on hub

genes.

3.2.2 Cross datasets comparison

In order to the test the cross prediction performance, we selected the 4 top

ranked gene selection algorithms according to Table 3.2 on the six breast

cancer datasets. These methods are two network-based methods, namely

RRFE and aveExpPath, and two classical approaches are HHSVM and

SCAD. For each method, we trained in one datasets and tested on the

other one. In consistency with our previous findings we observed RRFE

and aveExpPath to show a better prediction performance than the two

other methods here. (see Figure 3.4).

A consensus ranking based on the average rank of the prediction accuracy

(AUC value) of each comparison study showed that aveExpPath ranked

best in the cross dataset comparison, RRFE ranked second, and HHSVM

and SCAD ranked as third (Table 3.3). This suggests that prior informa-

tion might help to find better predictive biomarker signatures.

3.2.3 Biological interpretability of signatures

To investigate the biological interpretability of our found signatures, we

performed an enrichment analysis with respect to KEGG pathways, Dis-

ease Ontology terms and known drug targets. For that purpose we trained
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Figure 3.4: Cross comparison of 4 methods on 6 datasets. A > B indicates
training on dataset A and predicting on dataset B.
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Table 3.3: Ranking 4 selected algorithms according to AUC. A > B indi-
cates training on dataset A and predicting on dataset B.

cross comparison aveExpPath RRFE HHSVM SCAD
A > B 2 1 3 4
B > A 1 4 2 3
A > C 2 3 4 1
C > A 1 3 2 4
A > D 2 4 3 1
D > A 2 1 4 4
A > E 2 3 4 1
E > A 1 2 3 4
A > F 4 3 2 1
F > A 1 3 4 2
B > C 3 2 1 4
C > B 3 4 2 1
B > D 2 1 3 4
D > B 4 3 2 1
B > E 2 1 3 4
E > B 1 2 3 4
B > F 1 3 4 2
F > B 1 2 4 3
C > D 1 4 2 3
D > C 1 4 2 3
C > E 3 4 2 1
E > C 1 2 3 4
C > F 4 3 1 2
F > C 1 2 3 4
D > E 4 1 3 2
E > D 1 4 3 2
D > F 4 1 3 2
F > D 1 2 3 4
E > F 1 3 2 4
F > E 1 2 3 4

consensus rank 1 2 3 3
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each of the above described methods once on a whole dataset to retrieve

a final gene signature.

In generally, this analysis revealed a high enrichment of disease related

genes, KEGG pathways and known drug targets in signatures selected

by network-based approaches (Figure 3.5, Figure 3.6, Figure 3.7). Specif-

ically, RRFE (and partially also AveExpPath with regard to pathways)

yielded an extremely high enrichment with respect to all three categories

on all datasets. The overrepresentation of known drug targets for genes

selected by RRFE was absolutely outstanding on all datasets. Consis-

tently enriched KEGG-pathways for gene signatures selected by RRFE

and aveExpPath were “Pathways in cancer”, “MAPK signaling pathway”,

“ErbB signaling pathway”, “Adherens junction” and “Focal adhesion”, which

have all been related to breast cancer [DYF+03, ONLH00, PBB99, PT00].

The reason for the good interpretability of pathways selected by AvgExp-

Path is directly clear, since this method focuses on selection of whole

pathways. The outstanding interpretability of genes selected by RRFE

can be explained as follows: RRFE uses a modification of Google’s PageR-

ank algorithm (GeneRank – [MBHG05]) to compute for each gene a rank

according to its own fold change and its connectivity with many other

differentially expressed ones (guilt by association principle). This rank

is then used to re-scale the hyperplane normal vector of a SVM. This

method automatically leads to a preference of genes which are central in

the network (c.f. [JBF+10]). These central genes are often well studied

and directly known to be disease related [CBKB10].

76



������ ������

��

��������

����

���������

� �

Figure 3.5: Interpretability of signatures (enriched disease genes). For
AveExpPath and PAC the enrichment of the particular disease category
within selected pathway genes is shown.
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Figure 3.6: Interpretability of signatures (enriched KEGG pathways).
For AveExpPath the adjusted p-value for differential expression from the
SAM-test is shown. For all other methods we tested pathway enrichment
within the set of selected genes. 78



������������������������������������������������� �������������������������������������������

��

���������������������������������������

����

������������������������������������������

��������������������������������������� �����������������������������������������

Figure 3.7: Interpretability of signatures (enriched drug targets). For
AveExpPath and PAC the enrichment of drug targets within selected
pathway genes is shown.
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3.3 Conclusion

In this chapter, we performed a comprehensive and detailed comparison

of fourteen gene selection methods (eight integrating network informa-

tion) in terms of prediction performance, gene selection stability and in-

terpretability on six public breast cancer datasets.

In general we found identify aveExpPath and RRFE to perform well with

respect to all three categories. Moreover, we found that incorporating net-

work or pathway knowledge into gene selection methods in general did

not significantly improve classification accuracy compared to classical al-

gorithms. Much more, the choice of the individual algorithm had a signif-

icant influence. Most network-based approaches not only drastically en-

hanced gene selection stability, but also showed a good prediction perfor-

mance, such as aveExpPath and RRFE. Relatively simple gene selection

methods, like average pathway expression, revealed a good prediction

accuracy. Similar results have been reported in Haury et al. [HGV11].

Nonetheless, it is worth mentioning that the crucial assumption made

by average pathway expression, namely that the mean pathway activity

is altered significantly between two patient groups, might not always be

fulfilled, for instance, if only few genes in a pathway are differentially

expressed. Thus this method should be applied with care.

We found HHSVM and SCAD-SVM in most cases to show a better predic-

tion performance than SVM-RFE. This is, for instance, in agreement with

[WZZ08] and [BTLB11], who explained that by the fact that elastic net

and SCAD penalties can better deal with correlated features, which are

typically observed in gene expression data. In our comparison HHSVM,

together with average pathway expression and RRFE, revealed the high-
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est prediction performance.

Integrating additional experimental data, such as microRNA measure-

ments, SNP or CNV data in addition to protein-protein interaction in-

formation might offer an alternative route to enhance prediction perfor-

mance as well as stability and interpretability of biomarker signatures in

the future.

To our knowledge this work is one of the most detailed and largest com-

parisons, which has been conducted so far to assess the performance

of network-based gene selection methods in a multi-dimensional way.

Whereas most previous approaches concentrated only on one aspect of

gene selection methods, namely prediction performance, we have here

also looked into stability and interpretability of the tested algorithms.

Prognostic and diagnostic gene signatures are applied in a biomedical

context. Thus, the classical machine learning based perspective of fo-

cusing only on prediction performance might be too narrow. Indeed we

believe that stability and interpretability of gene signatures will strongly

enhance their acceptance and practical practice for personalized medicine.

Here we see the largest potential for methods, which incorporate biolog-

ical background knowledge, for example in form of pathway knowledge,

known disease relations or other approaches. This does not, of course, im-

ply that prediction performance should be sacrificed for reproducibility or

interpretability, but seen as an additional goal to achieve.
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Chapter 4

Network and Data Integration

for Biomarker Signature

Discovery via Network

Smoothed T-Statistics

“Essentially, all models are wrong, but some are useful.”

– George E. P. Box.

I N this chapter, we propose a new filter feature selection method, which

integrates network information by smoothing gene wise t-statistics

over the graph structure using a random walk kernel.

Various network based approaches have been proposed to integrate prior

knowledge on canonical pathways, Gene Ontology (GO) annotation or

protein-protein interactions into feature selection algorithms [GZL+05,

CLL+07, RZD+07, LCK+08, TLWF+09, BS09, ZSP09, JBF+10]. A recent

review on such approaches can be found in [CF12a]. The general hope
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of these approaches is that biological knowledge can lead to better inter-

pretable and more stable signatures. Whether network based classifica-

tion methods automatically also lead to higher prediction accuracies is

still a matter of debate [CF12c, SCK+12].

Another line of research focuses on the integration of different entities of

experimental data for the same patient, e.g. mRNA and miRNA expres-

sion [VLV+10, GSMK+10, ZYK+11, GPF+11]. The increasing amount

of different kinds of molecular data from the same patient, for instance

within the TCGA database (www.cancergenome.nih.gov), now opens the

door to a broader disease understanding [CHGM11, BBB+11, HAA+10].

Moreover, the integration of data capturing different molecular mecha-

nisms could also lead to improved molecular signatures.

Our approach allows for a straight forward integration of different data

entities, like mRNA and miRNA expression. Comparisons of our smoothed

t-statistic SVM (stSVM) with several competing approaches on one of pre-

viously introduced breast cancer, two prostate cancer and an ovarian can-

cer dataset demonstrate a favorable prediction performance of early ver-

sus late relapse and a high signature stability. Moreover, obtained gene

lists are highly enriched with known disease genes and KEGG pathways.

The content of this chapter is based on a previous publication in PloS

ONE[CF13].

4.1 Materials and methods

4.1.1 Datasets

We retrieved one previously described breast cancer [SBvT+08], one ovar-
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ian cancer [BBB+11] dataset and two prostate cancer [SG09, TSH+10]

from different data repositories. The breast cancer [SBvT+08] and one of

the prostate cancer datasets [SG09] were measured on Affymetrix hgu133a

microarrays. The purpose for selecting these datasets was on one hand to

have mRNA and miRNA expression data available for the same patient

and on the other hand to cover different tumor entities. It is expected that

different tumor entities exhibit different biological properties, which in

turn may have an effect on the performance of the algorithm that we pro-

pose here. The breast cancer dataset was picked as an arbitrary represen-

tative of the six breast cancer datasets described in the last chapter. The

second prostate cancer dataset (MSKCC, [TSH+10]) and the ovarian can-

cer dataset (TCGA, [BBB+11]) were measured on Affymetrix HuEx 1.0

ST microarrays. The breast and first prostate cancer dataset were nor-

malized via FARMS [HCO06]. The ovarian cancer and MSKCC datasets

were downloaded as ready normalized and gene-wise aggregated data

from the TCGA and MSKCC homepage, respectively. Both datasets, in

contrast to the others, include gene as well as miRNA expression infor-

mation. They are thus of particular interest here to test our proposed

data integration strategy. As clinical end points we considered metasta-

sis free (breast and prostate cancer) and relapse free (ovarian cancer) sur-

vival time after initial clinical treatment. For ovarian cancer only tumors

with stages IIA - IV and grades G2 and G3 were considered, which after

resection revealed at most 10mm residual cancer tissue and responded

completely to initial chemotherapy.

Survival time information was dichotomized into two classes according

whether or not patients suffered from a reported relapse / metastasis

event within 5 years (breast, prostate dataset 1), 3 years (MSKCC prostate

cancer dataset) and 1 year (ovarian), respectively. Patients with a sur-
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vival time shorter than 5/3/1 year(s) without any reported event were not

considered and removed from our datasets. This was done, because these

patients can neither reliably be put into the early nor into the late relapse

class. A summary of our datasets can be found in Table 4.1.

Table 4.1: Overview about employed datasets. msf: metastasis free
survival; rfs: relapse free survival; rec: recurrent.

ID/source patients cancer type classification positive class
GSE4922 228 breast mfs >5y 69

TCGA 135 ovarian rfs >1y 35
GSE21032 79 prostate rsf >3y 29
GSE25136 79 prostate rec vs. non-rec 40

4.1.2 Network information

Protein-Protein Interactions (PPI)

A comprehensive protein interaction network was compiled from the Path-

way Commons database [CGD+11], which was downloaded in tab-delimited

format (September 2012, and already described in Chapter 3). The net-

work includes 11,361 nodes and 610,185 edges. Nodes in this network

were identified with Entrez gene IDs. In order to consider genes with

available probesets on the array but no corresponding network informa-

tion we added for all these genes unconnected nodes to our initial net-

work, resulting in 12,611 nodes for breast and the Sun et al. prostate

cancer dataset; 11,356 nodes for ovarian cancer and 11,322 nodes for the

MSKCC prostate cancer dataset. The reason for these differences is that

not all dataset contain the same number of mappable transcripts.
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KEGG pathways

As an alternative network information we computed a merger of all non-

metabolic KEGG pathways [KAG+08]. For retrieval and merger of KEGG

pathways, we employed the R-package KEGGgraph[ZCLS09]. Only gene-

gene interactions were considered, which resulted in an initial network

with 3,087 nodes and 17,518 edges. As before this initial network was ex-

tended to contain all genes available on the array, resulting in an overall

network with the same number of nodes as described above for the PPI

network but a different number of edges.

miRNA-target gene network

In addition to PPI or KEGG pathway information we optionally included

predicted miRNA-target gene interactions. Target predictions were ob-

tained from the MicroCosm database (version 5) [GJSvDE08] (FDR cut-

off 1%). This increased the number of edges in the PPI network to 11,892

nodes for MSKCC’s prostate cancer and 11,839 nodes for ovarian cancer.

4.1.3 Prediction accuracy, stability and interpretabil-

ity

In order to assess the prediction performance of all tested methods we

performed a 10 times repeated 10-fold cross-validation on each dataset.

That means the whole data was randomly split into 10 fold, and each fold

sequentially left out once for testing, while the rest of the data was used
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for training and optimizing the classifier (including selection of relevant

genes, hyper-parameter tuning, standardization of expression values for

each gene to mean 0 and standard deviation 1, etc.). The whole process

was repeated 10 times. It should be noted extra that also standardization

of gene expression data was only done on each training set separately and

the corresponding scaling parameters then applied to the test data.

The area under receiver operator characteristic curve (AUC) was used to

measure the prediction accuracy via the R-package ROCR [SSBL05]. We

use same gene selection stability index (SI) of Chapter 3 to investigate

gene selection stability in more depth.

In order to check in how far signatures obtained by training the classifier

on the whole dataset could be related to existing biological knowledge,

we looked for enrichment of disease related genes via the tool FunDO

[OFH+09] (hypergeometric test; multiple testing correction: Bonferroni’s

method). Moreover, we calculated the enrichment with KEGG pathways

[KAG+08] via a hyper-geometric test.

4.1.4 Network smoothed t-statistic SVMs (stSVMs)

Network smoothed t-statistics

Given a simple, undirected graph G = (V,E) with adjacency matrix A the

graph Laplacian L is defined as L := D−A, where D = diag(deg(v1), ..., deg(vn))

is a diagonal matrix of node degrees for nodes v1, ..., vn [Chu07]. The

graph Laplacian can be viewed as a discrete approximation of the nega-

tive Laplace operator for functions.

One way of characterizing the degree of relatedness of two nodes (e.g.

proteins) v and w in a graph (e.g. a PPI network) can be obtained via the
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notion of random walks. The p-step random walk kernel is one particular

similarity measure, which can be derived from this notion [GDCW09] and

is defined as in section 2.6.3:

K = (αI − Lnorm)p

= ((α− 1)I +D−1/2AD−1/2)p
, (4.1)

where
Lnorm := D−1/2LD−1/2

= I −D−1/2AD−1/2
,

is the normalized graph Laplacian matrix, α is constant, and p is the

number of random walk steps (here: a = 1, p = 2). The p-step random

walk kernel gives rise to a symmetric, positive semi-definite similarity

matrix between network nodes, capturing their degree of topological re-

latedness. The advantage compared to shortest path distance based mea-

sures is that alternative routes between pairs of nodes are considered.

That means, if v and w are connected via many alternative paths of the

same length this marks a higher similarity than if there exists only one

such path.

Suppose for each network gene we assess its differential expression on

the training dataset via a t-test. This results in an absolute t-statistic |ti|

for network node i. We summarize the |ti|, i = 1, ..., |V | into a vector t and

consider the score vector

t̃ = tTK. (4.2)

Please note that t̃i =
∑

j |tj |Kij. Hence, t̃i is a network smoothed version

of |ti| (Figure 4.1), but does not follow a t-distribution any more. We thus

conduct a permutation test (here: 1000 times) to obtain a p-value for

each gene. For reasons of computation time we restrict this to the 10%
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Figure 4.1: Toy example to demonstrate the network smoothed t-statistic.

genes, which are highest ranked according to the network smoothed t-

score (Equation 4.2). Multiple testing correction is then performed using

the FDR approach by [BH95].

It is worth mentioning that the smoothing of absolute t-statistics par-

ticularly affects nodes with a high number of interaction partners. On

one hand our procedure aggregates the scores of neighboring nodes to in-

crease the score for these central proteins. On the other hand there is

also a reverse effect, which increases the relevance of proteins in close

proximity to hubs.

SVM training

We only select genes with FDR <5%. Subsequently a linear Support

Vector Machine (SVM) is trained using the optimal parameter C from
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{0.0001, 0.001, ..., 10000}. To evaluate each candidate parameter C we

here used the span rule, which provides a theoretical upper bound for

the leave-one-out cross-validation error, but can be computed much more

efficiently for datasets with few samples [CVBM02]. It has been demon-

strated theoretical as well as empirically that the span-rule provides an

excellent mechanism for parameter selection in SVMs [CVBM02]. An

implementation of this procedure can be found in R-packages pathClass

[JFSB11] and netClass [CF14](see next Chapter).

Integration of different experimental data

Besides network information our approach allows for a straight forward

integrating on of different experimental data, e.g. mRNA and miRNA

expression, into one classifier. This can be achieved by extending adja-

cency matrix A to miRNA-mRNA interactions and vector t to absolute t-

statistics for miRNAs. Accordingly, network smoothing is now performed

over protein-protein as well as miRNA-target gene interactions.

4.2 Results

4.2.1 stSVM shows overall best prediction performance

We initial considered our proposed stSVM method using only gene ex-

pression data and PPI network information. We compared the prediction

performance to a number of competing methods, namely PAM [THNC02],

a SVM trained with significant differentially expressed genes (FDR cut-

off 5%) selected by SAM [TTC01] (sgSVM), average gene expression of

KEGG pathways (aepSVM, [GZL+05]), pathway activity classification (PAC,

[LCK+08]), reweighted recursive feature elimination (RRFE, [JBF+10])

and the netRank algorithm [WKK+12, CF12b]. NetRank, similar to RRFE,
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uses a modification of Google’s PageRank method to rank genes accord-

ing to both, expression and network centrality [MBHG05]. The optimal

number of selected genes in both cases was determined via the span-rule

inside the cross-validation procedure [CVBM02].

For stSVM, netRank and RRFE, the same large PPI network was used as

biological background information. The aepSVM and PAC methods use

KEGG pathways. PAC relies on a so-called activity score, which is calcu-

lated per individual pathway and then taken as as a feature for classifica-

tion purposes. For aepSVM we first conducted a global test [GVDV04] to

select pathways being significantly associated with the class label (FDR

cutoff 1%) on the training data and then calculated the mean expression

of each selected pathway as a feature for SVM based classification. The

prediction of all methods was assessed via a 10 times repeated 10-fold

cross-validation procedure, as described in the Materials and Methods

part of this paper.

Generally we observed a large variability of prediction performances of

most tested algorithms across different datasets, which is in agreement

with our previous observations [CF12c]. However, our proposed stSVM

approach showed on all of our four gene expression datasets a consis-

tently high prediction performance with respect to the area under ROC

curve (AUC, Figure 4.2) and significantly outperformed several compet-

ing methods. Notably on two datasets (breast, prostate dataset 1) the

AUC was extremely stable and showed only a very small variance across

the cross-validation procedure.

In order to get a more objective and comprehensive view we conducted a

ranking of all methods in each dataset according to the median cross-

91



Figure 4.2: Prediction performance of stSVM in comparison to other
methods in terms of area under ROC curve (AUC). Breast = GSE11121,
Ovarian (TCGA)= GSE25136, Prostate = GSE25136, Prostate (MSKCC)
= GSE21032.
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Table 4.2: Ranking of different algorithms with respect to the median
AUC in a 10 times repeated 10-fold cross-validation procedure.

breast ovarian prostate prostate MSKCC consensus
stSVM 1 2 3 3 1

netRank 6 3 1 6 4
RRFE 2 5 5 1 3

aepSVM 3 4 2 4 5
sgSVM 4 1 4 2 2
PAM 5 6 6 5 6

validated AUC value. We then calculated a consensus ranking using

Kendall’s τ distance method [PDD09] (Table 4.2). The Kendall’s τ dis-

tance measures the distance between two ordered lists. This confirmed

our impression that stSVM was the overall best performing method. In-

terestingly enough, sgSVM was ranked second highest here, which is in

agreement with our earlier finding that network based approaches do not

consistently outperform classical ones [CF12c].

4.2.2 stSVM yields highly stable classification

We investigated the stability of signatures obtained during the 10 times

repeated 10-fold cross-validation procedure using the concept of the sta-

bility index (Equation 3.1), showing for stSVM an extremely robust be-

havior (Figure 4.3). Most of the signature probesets were selected con-

sistently during the cross-validation procedure. Interestingly enough, at

the same time the number of selected probesets was comparably high for

stSVM, which may be attributed to the fact that the network smoothing

enforces the selection of correlated genes. As expected these genes typi-

cally reveal a high node degree in the PPI network. Many of these hub

genes are well known to play a role in the disease pathology, e.g. BRCA1

for all tumors [GSD+99, PCB+96, FJP+10] and AR for prostate cancer
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[CCWH+99]. Other disease related and consistently selected genes in-

clude p53 (all datasets), EGFR (breast and prostate cancer [CSH99, BSF+04]),

RB1 (breast and ovarian tumors [MV98, CSC+98, TST+99]) and EP300

(prostate cancer [BBL+12]).

4.2.3 stSVM signatures can be related to existing bio-

logical knowledge

In order to test the association with existing biological knowledge more

systematically we trained each of our tested methods on complete datasets

and subsequently tested the resulting signatures for enrichment of dis-

ease related genes and KEGG pathways and known drug targets (see Sec-

tion 3.1.3 for detail description, Figures 4.4, 4.5, 4.6). For testing the as-

sociation with disease related genes we used the FunDO tool [OFH+09],

which is based on a hyper-geometric test.

Our analysis revealed a high enrichment of signatures obtained via stSVM

to known disease genes and drug targets on all datasets. The enrichment

was always higher than for non-network based methods (sgSVM, PAM)

as well as for signatures obtained via the netRank algorithm. The latter

might be attributed to the fact that netRank typically selects only very

few genes, which thus could cause a loss of statistical power for enrich-

ment analysis.

Besides disease related genes we also found a high enrichment of stSVM

derived signatures for several KEGG pathways in all datasets (Figure

4.5). Examples were Pathways in cancer (prostate, breast cancer), Prostate

Cancer (both prostate cancer datasets), Wnt signaling, MAPK signaling

and ERBB signaling. The latter three were significant in breast and
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Figure 4.3: Stability index and signature sizes within the 10 times re-
peated 10-fold CV procedure. A) stability index according to Equation
(3.1); B) Number of selected probesets. Y-axis is scaled by natural loga-
rithms scale.
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Figure 4.4: Enrichment of signatures with disease related genes. The y-
axis shows -log10 p-values computed via a hypergeometric test (Bonferroni
correction for multiple testing). Black horizontal line = 5% significance
cutoff.

prostate cancer and are known to play a role in the respective disease

pathologies [HB04, YB05, YB06, SOC+11, KCMPK+08, SP08, HBH+10].

In ovarian cancer we particularly detected a high enrichment of several

metabolic pathways, such as Fatty acid metabolism. This fits to the fact

that adipocytes were recently found to promote rapid tumor growth in

ovarian tumors [NKP+11]. The significance of enrichment for KEGG

pathways was generally higher for stSVM than for all other methods.

We also tested the enrichment with known drug targets (compare Chap-

ter 3). This revealed for stSVM in all but one dataset (ovarian cancer) a

highly significant result.

Taken together stSVM derived signatures showed a clear association to

existing biological knowledge, which eases their biological understand-

ing.
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Figure 4.5: Enrichment of signatures (KEGG pathways). Only the 10
most significant pathways are shown for clearer visibility.
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Figure 4.6: Enrichment of signatures with known drug targets.

4.2.4 Influence of network structure

We asked the question, in how far the observed good prediction perfor-

mance of stSVM was dependent on the incorporated network structure.

We hence re-ran our cross-validation procedure with a different network

structure, which was compiled from a merger of all non-metabolic KEGG

pathways (see Materials and Methods). It is worthwhile to mention that

both networks contained the same number of nodes, but different num-

ber of edges. The KEGG derived network was much sparser then the

previously used PPI network.

We observed that our original PPI network in all but one case (ovarian

cancer dataset) yielded significantly higher AUCs, which highlights the

principle influence of the network structure (Figure 4.7). We can only

speculate why on the ovarian cancer dataset the KEGG based network

98



Figure 4.7: Classification performance of stSVM on two different network
information.

appeared to work at least as good as the PPI network. Principally KEGG

pathways capture different biological aspects (canonical pathways) than

large scale protein-protein interaction networks. It may be due to the

nature of the disease that KEGG pathways reflect better the relevant

biology for ovarian cancer than for breast and prostate tumors.

4.2.5 Cross comparison in prostate cancer

In order to the test the prediction performance if our tested methods

across different datasets, we focused on the two prostate cancer datasets.

For each method, we trained in one datasets and tested on the other one.

We observed that our stSVM and netRank revealed a similar good pre-

diction performance across datasets (Figure 4.8).
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Figure 4.8: Cross comparison of 6 methods on two prostate cancer
datasets. Cross test A: training on Prostate (MSKCC) cancer , test on
Prostate. Cross test B: training on Prostate cancer , test on Prostate
(MSKCC).

4.2.6 stSVM for mRNA and miRNA data integration

Our stSVM method allows for a straight forward integration of different

types of experimental data on network level (see Materials and Methods).

We here exemplify this property by using gene expression together with

miRNA expression data for the TCGA ovarian cancer and for the MSKCC

prostate cancer datasets. Correspondingly network information now con-

sisted of a combined PPI and miRNA-target gene network. We call the

corresponding variant of our method stSVM(mi-mRNA). We compared

stSVM(mi-mRNA) to the graph fusion approach by Gade et al. [GPF+11]

(GraphFusion). In their original paper Gade et al. used CoxBoost [BS09]

to make survival risk prediction. In our classification based framework

we replaced CoxBoost by the related PathBoost algorithm [BS09].

Moreover, we compared stSVM(mi-mRNA) to sgSVM trained on mRNA
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data only, on miRNA data only and to a meta-classifier, which combines

classification outputs from the mRNA / miRNA sgSVM classifiers into

one consensus classifier (sgSVM(meta)). This was done as follows: The

sgSVM method was separately trained on both datasets to yield a linear

SVM classifier using significant differentially expressed genes and miR-

NAs, respectively. Each of these SVM classifiers yields a ranking (not

classification) function of the form

f(w) =
n
∑

i=1

αiyiwi + b,

where αi are the fitted Lagrangian multipliers, yi ∈ {−1, 1} the class la-

bels and b the intercept (see section 2.6.3). Note that the corresponding

classification function can be obtained by taking the sign of f(w). Let

f1(x), f2(z) be the SVM ranking functions for mRNA profile x and miRNA

profile z, respectively. Then both rankings can be combined into a meta-

classifier by fitting a logistic regression function

Pr(yi = 1 | f1(x), f2(z)) =
1

1 + exp(−θ0 − θ1f1(x)− θ2f2(z))
,

where θ0, θ1, θ2 are parameters, which can be fitted to the data.

The comparison of our stSVM(mi-mRNA) approach to the graph fusion al-

gorithm same to the above described meta-classifier approach (sgSVM(meta))

revealed a superior performance of our method. GraphFusion was out-

performed with large margin (Figure 4.9), while the gain compared to

sgSVM(meta) was still weakly / moderately significant (p = 0.065 for ovar-

ian and p = 0.041 for prostate cancer; Wilcoxon signed rank test). In that

context it was interesting that only on the prostate cancer dataset a sig-

nificant improvement by integration of mRNA and miRNA data could be

observed at all: The comparison of stSVM(meta) versus stSVM yielded
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Figure 4.9: Prediction performance of stSVM on integrated gene and
miRNA expression data compared to other approaches.

a p-value of 0.008 (Wilcoxon signed rank test). On the ovarian cancer

dataset miRNA expression data did not appear to contribute any useful

classification information. This is also highlighted by the weak perfor-

mance of the sgSVM classifier trained only on miRNA expression data

(sgSVM(miRNA)).

4.2.7 Consistently signatures form disease related mod-

ules

Taking the set of genes and miRNAs, which were consistently selected

by stSVM in the above investigated ovarian and MSKCC prostate cancer

datasets, we asked the question, whether these features were connected

to each other on network level, indicating that stSVM preferentially se-

lected network connected genes and miRNAs.
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To answer this question we looked for the largest sub-network that was

purely formed by consistently selected features. In case of the ovarian

cancer dataset we found 368 genes and 50 miRNAs out of 377 genes and

235 miRNAs to form such a network module. In case of the MSKCC

prostate cancer dataset 384 genes and 96 miRNAs out of 386 genes and

254 miRNAs were inside one network module. This demonstrates that

stSVM preferentially selected features, which were connected to each

other on network level. The fraction of consistently selected genes that

were inside one network module was, however, higher than the corre-

sponding fraction of miRNAs. The reason could be that differential ex-

pression of a miRNA does not automatically imply that its target genes

are also differentially expressed. Consequently miRNA markers do not

always (but still in a significant proportion – see prostate cancer dataset)

cluster together with gene markers on network level.

For both, ovarian and prostate cancer, network modules were highly en-

riched for known disease genes (p = 4.39e − 11 for prostate cancer in

MSKCC prostate cancer case, p = 1.18e− 3 for ovarian cancer in ovarian

cancer case) according to FunDO. Figure 4.10 and Figure 4.11 visualize

sub-networks of these modules centered at the AR (MSKCC prostate can-

cer) and BRCA1 (ovarian cancer), respectively.

4.3 Discussion and conclusion

In this chapter we proposed network smoothed t-statistics as a method to

integrate network information as well as different types of experimental

data into one classifiers for biomarker signature discovery. Our method

smoothed a widely used marginal statistic (the t-statistic) for differential
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Figure 4.10: Sub-graph of disease related module of MSKC (prostate can-
cer), which identified by stSVM. The shown sub-graph consists of consis-
tently selected genes in the interactome of the AR. For better visualiza-
tion edges between neighbors of the AR are omitted. Red: cancer related
genes; yellow: prostate cancer related genes.
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Figure 4.11: Sub-network of disease related module of (ovarian cancer) ,
which identified by stSVM. The shown sub-graph consists of consistently
selected genes in the interactome of the BRCA1. For better visualization
edges between neighbors of the BRCA1 are omitted. Red: cancer related
genes.
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expression over the graph structure of a biological network using random

walk kernels. Our approach has on the technical level certain similarities

with kernel based ranking methods for gene prioritization, which have

been proposed e.g. by Moreau and co-workers to predict putative disease

causing genes in genetic disorders [DTvOM07, GFMM12, MT12]. Note,

that this is a rather different problem than finding prognostic biomarker

signatures.

We showed that our approach overall leads to a highly predictive, sta-

ble and biologically interpretable classifier. We exemplified the straight

forward integration of different types of experimental data here by build-

ing joint classifiers of gene and miRNA expression data. Other kinds of

data (e.g. methylation, copy number variations) could principally be in-

tegrated in a similar manner. This is, however, not necessarily straight

forward and thus subject to future research.

Taken together we think that our method is a step towards the challeng-

ing goal to build integrative classification models, which not only make

use of biological background information, but also allow to combine vari-

ous kinds of molecular data in order to make accurate predictions for an

individual patient. In the light of the TCGA project and other large scale

efforts the time is now ripe to move into this direction.
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Chapter 5

netClass: An R-package for

network based, integrative

biomarker signature discovery

“If the only tool you have is a hammer, you tend to see every problem as

a nail.”

– Abraham Maslow.

I N this chapter, we present our R-package netClass, which implements

five network-based gene selection methods [CF14]. In addition, net-

Class is to our knowledge the first software that allows for integrating

miRNA and mRNA expression data together with protein-protein inter-

actions and predicted miRNA-target gene information [CF13] into one

biomarker signature. netClass thus complements the functionality of

pathClass [JFSB11]. It is worth emphasizing that netClass focuses on

classification algorithms only. A software package that is more tailored

to Cox regression is e.g. CoxBoost [BS09].
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5.1 Packages overview

netClass currently implements five network-based gene selection meth-

ods:

1. Average expression profile of pathways [GZL+05].

2. Pathway activity classification [LCK+08].

3. Classification based on differential expression of hub genes and cor-

related partners [TLWF+09].

4. Filtering of genes according to a modified Google PageRank algo-

rithm [WKK+12, CF12b].

5. Random walk kernel based smoothing of t-statistics over a network

structure [CF13].

Specifically, the latter approach also allows for integrating miRNA and

mRNA expression data. Neither of the five above mentioned methods

have been implemented in pathClass, which mainly focuses on the SVM-

RFE algorithm and variants thereof [JFSB11]. Hence, netClass and path-

Class complement each other.

Pathway activity classification is the only non-SVM based classification

approach in netClass, since it uses logistic regression [LCK+08]. All the

other algorithms internally use (linear) SVM classification. netClass en-

ables to tune the soft margin parameter automatically in a computation-

ally efficient manner using the span rule, which provides a theoretical
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upper bound on the leave-one-out cross-validation error and can be calcu-

lated from training data only[CV99]. Furthermore, to evaluate the pre-

diction performance of classification algorithms, in netClass feature se-

lection and soft margin parameter tuning are embedded into a repeated

k-fold cross-validation scheme. Cross-validation can be started via user

friendly interface functions and allows for parallel computing.

5.1.1 Data and network integration via kernel based

smoothing of t-statistics

A specific feature of netClass is the implementation of our recently pro-

posed stSVM algorithm, which allows for joint integration of network in-

formation together with miRNA and mRNA expression data [CF13]. The

basic idea behind stSVM is to smooth a feature-wise marginal statistic

(like the commonly used t-statistic) over the structure of a joint protein-

protein and miRNA-target gene interaction graph. For this purpose a

random walk kernel is employed [GDCW09]. A permutation test is used

to select features in a highly consistent manner, and then these features

are employed for subsequent SVM training. In our paper we demon-

strated the utility of this approach on four datasets from different tumor

entities and specifically showed that integration of miRNA and mRNA

expression could enhance the prediction power for prostate cancer prog-

nosis [CF13].

5.1.2 Integration of igraph

netClass facilities the post-hoc analysis of obtained feature sets by inte-

grating the R-package igraph [CN06]. Algorithms incorporating network
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Figure 5.1: Workflow of stSVM: Marginal statistics for features in each
-omics dataset are computed and smoothed over the structure of a joined
miRNAPPI network. After re-ranking a permutation test selects the
most relevant features and trains a SVM model. The obtained signature
can be visualized as a network.

structures return the connected sub-graph(s) between selected features.

This enables the full functionality of graph algorithms and plotting rou-

tines (Figure 5.1). In this context specifically Steiner tree methods as e.g.

implemented in our package SteinerNet may provide a useful tool [SF13].

5.1.3 Example usage

To illustrate the use of netClass we show an example for running stSVM

on a small sample dataset. First we get the sample data expr with gene

expression matrix genes, miRNA expression matrix and miRNA class la-

bels y. The adjacency matrix for the network is given in ad.matrix. We

then train stSVM on the whole dataset and plot the sub-graph induced

by selected features as following codes.
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> library(netClass)

> data(expr)

> data(ad.matrix))

> data(EN2SY)

> dk <- calc.diffusionKernelp(L=ad.matrix, p=2,a=1)

>t=train.stsvm(x=cbind(expr$genes,expr$miRNA),y=expr$y,

Gsub=ad.matrix,dk=dk,EN2SY=EN2SY)

> plot(st$trained$graph)

5.2 Conclusion

netClass is an R-package that allows for network and data integration for

biomarker signature discovery. It includes several published approaches

for incorporating network information into gene selection. Moreover, net-

Class contains our recently published stSVM algorithm, which allows for

additional integration of miRNA and mRNA expression data. All imple-

mented methods can perform repeated cross-validation to estimate the

prediction performance. Moreover, integration of igraph facilitates the

follow-up analysis of selected features via graph algorithms and plotting

functions. In summary we believe that netClass provides a useful tool for

biomarker signature discovery in personalized medicine.
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Chapter 6

Summary and Future Plans

“We must know. We will know.”

– David Hilbert.

THE work contained in this thesis can be summarized as development

of algorithms for prognostic / diagnostic biomarker discovery, which

integrate prior knowledge on protein-protein interactions as well as dif-

ferent types of omics data (here: mRNA and miRNA expression data).

6.1 Summary

In order to get a landscape overview on current feature selection algo-

rithms for biomarker discovery, we first compared fourteen recognized

published methods, which include network-based and classical approaches.

The goal was to get a comprehensive overview of current methods in

terms of prediction performance, gene selection stability and interpretabil-

ity on six public breast cancer datasets. In our comparison study, we
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found no methods always performed best on 6 breast cancer datasets, and

incorporating protein-protein interaction network or pathway knowledge

into gene selection methods in general did not significantly improve clas-

sification accuracy compared to classical algorithms. However, signatures

obtained by network based methods could often be better interpreted in

terms of existing biological knowledge. In addition to RRFE, an inter-

esting results was that relatively simple gene selection methods, like

average pathway expression, revealed a good prediction accuracy. Our

comparison study was one of the most detailed and largest investigations

that evaluate the performance between network-based and classical gene

selection methods in a multi-dimensional manner.

In the next step, we developed network smoothed t-statistics as a method

to integrate network information as well as different types of experimen-

tal data, such as microRNA and mRNA expression profiles into one clas-

sifiers for gene selection. Integrating different types of omic data might

generally provide one possible way to improve prediction performance as

well as stability and interpretability of molecular signatures. The method

was named stSVM, it smoothes a widely used marginal statistic (the t-

statistic) for differential expression values over the network structure of

a biological network using random walk kernels. The technical principle

of stSVM has similarities to kernel based ranking methods for disease

gene prioritization [DTvOM07]. We showed that stSVM generally leads

to a highly predictive, stable and biologically interpretable genes signa-

tures. The stSVM allows for integrating gene and microRNA expression

profiles into a joint classifier in a straight forward manner. This is a step

forward towards the challenging goal to integrate multiple omics data to

classification models, which not only employ prior biological information,

but also make use of a combination of various kinds of molecular data of
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individual patient.

In this thesis, we showed that the classical machine learning based ap-

proaches that only focus on prediction performance might be too narrow.

In clinical diagnosis and prognosis, a small set of stable and interpretable

biomarkers will strongly raise their acceptance and practical application

value for personalized medicine. Most biomarkers, which are detected by

current gene selection methods, are hard to functional validate. Integrat-

ing prior knowledge and multiple omics data types may thus be a way to

overcome current problems [BGL11, KL12].

6.2 Personal future plans

Cancer is a complex disease and one of the leading lethal diseases world-

wide, it is a genetic disease and caused by somatic mutations [VK04,

Wei07]. Recent progress in genomics technologies enable to detect ge-

netic or epigenetic alterations in the genomes of tumor cells in a high

resolution resolution in ‘real-time’. This allows to understand genetic

variations in cancer at unprecedented detail. Powerful next-generation

sequencing instruments and the ability of bioinformatics enable to accu-

rately find somatic mutations in clinically characterized cancer samples

[GW08, GW+09, BEC+12, Gin13]. Genomic alterations (mutations, copy

number changes, structure variations, indels, genomic rearrangements,

etc.), which dysregulate key intracellular signal transduction pathways

influence the growth and survival of cells. Characterizing these genomic

alteration events as well as their impact on cellular signal transduction

pathways is thus a crucial step for the development of novel drugs for
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cancer therapy.

The perspective for my future research will focus on the following two

topics in cancer genomics. The first perspective project is developing

computational and statistical tools for characterizing genetic alteration

profiles of individual tumor samples, and identification of driver alter-

ations, which cause oncogenesis or tumor survival. The integrative can-

cer genome analysis of individual tumor samples permit to identify criti-

cal driver or key abnormalities. Such abnormalities converge on a single

molecular target that can be used as therapeutic target [PFCS+12]. The

second step is to employ these discovered alterations in cancer genome

to develop sensitive statistical models that ensure detection of accurate

biomarker(s) for diagnosis and therapeutic application. Such biomarker(s)

will help clinical doctors to tailor individual treatment, which is the aim

of personalized medicine.
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