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1   Introduction 

 

1.1   New perspectives in salt and fluid balance 
 

In the 19th century, the French physiologist Claude Bernard (1878) introduced the 

physiological concept of homeostasis. He described the importance of maintaining the 

internal environment (“milieu intérieur”) in a steady state of nearly constant conditions. In 

contrast to the fluid contained inside the cells, about one third of the body fluid is present as 

extracellular fluid in the internal environment.  

Salt and fluid homeostasis is achieved by keeping the concentration of osmotically active 

electrolytes within narrow ranges (Cannon 1929, 1932). In the extracellular space, sodium is 

the predominating ion and acts together with its accompanying anions to hold water (Walser 

1992). Conversely, potassium has the equivalent role in the intracellular space. This 

particular distribution is maintained by the Na+/K+-ATPase pump which moves sodium and 

potassium ions across the plasma membrane and thus controls cellular volume. Electrolyte 

imbalances disturb the extracellular fluid volume and affect circulation and blood pressure, 

for instance resulting in edema (Walser 1992; Katzarski et al. 2003; Guyton and Hall 2010). 

The fundamental physiological concept in extracellular volume regulation is the two fluid 

compartment model: Intravascular and interstitial space equilibrate rapidly to keep body fluid 

volume and electrolytes within narrow limits. For sodium, the general accepted view is that 

sodium is mainly present in the extracellular space (140 mM) and that an accumulation of 

sodium will inevitably result in a simultaneous accumulation of water in order to maintain iso-

osmolality and isotonicity in the body (Strauss et al. 1958; Rose 1994). According to this 

notion, there is no notable difference between sodium concentration in the blood and in the 

interstitium (Pitts 1974). Also, the kidney is thought to be the main organ to regulate these 

constant levels of sodium and water in the blood and thus in the extracellular space (Smith 

1953).  

These fundamental principles were challenged by an experiment performed with an 

astronaut on board the MIR space station, which showed that sodium can be stored in the 

skin without accompanying water retention (Gerzer and Heer 2005). Subsequent long-term 

studies investigating human sodium and water balance confirmed the concept of osmotically 

inactive sodium storage in the skin (Heer et al. 2000; Titze et al. 2002; Palacios et al. 2004; 

Rakova et al. 2013). Earlier studies in animals revealed that due to a higher interstitial 

sodium concentration compared to plasma, a local hypertonic environment exists in the skin 
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interstitium (Haljamae 1970; Haljamae et al. 1974; Haljamae 1978) and in lymph organs 

(Szabo and Magyar 1982). When rats were fed a high salt diet, their sodium concentration in 

the skin increased, while plasma levels remained constant (Titze et al. 2003; Titze et al. 

2005; Schafflhuber et al. 2007; Machnik et al. 2009). In addition, no simultaneous increase in 

water could be found in these studies, which prompted the authors to conclude that contrary 

to the widely accepted notion, there is no fast compensation between interstitial and plasma 

sodium levels. Instead, excess sodium eludes excretion through the kidney by accumulating 

in the skin interstitium. This sodium reservoir can be visualized by 23Na magnetic resonance 

imaging (Kopp et al. 2012). MRI scans revealed elevated sodium content in the skin of salt-

sensitive hypertensive patients, as well as a general increase with age and in men as 

compared with women. Interestingly, age-dependent water-free sodium storage in muscle 

tissue was found in men with increasing age, but not in women (Kopp et al. 2012; 2013). 

Recently, a long-term study that simulated a space flight to Mars (Mars 500) allowed a 

unique possibility to investigate sodium metabolism following constant salt intake in 

controlled conditions for 105 and 250 days. In this study, Rakova et al. (2013) found that 

sodium is rhythmically stored and released in the interstitium completely independent from 

salt intake. Under constant salt intake, a weekly rhythm of urinary sodium excretion emerged. 

This circaseptan variability in sodium excretion was also found earlier in rats under a 

constant high salt diet (Uezono et al. 1987). Although the underlying mechanism is not 

completely resolved, an inverse relationship of free cortisol and aldosterone levels indicates 

hormonal control: Sodium excretion was paralleled by elevated free cortisol (possibly due to 

sodium-sensitive changes in 11β-HSD2 activity) and was inversely correlated to aldosterone 

levels. Furthermore, the variability in total body Na+ was reflected by a several weeks long 

(infradian) rhythm that was not accompanied by changes in water content or blood pressure. 

However, the systolic blood pressure in the test subjects significantly decreased 3-4 mmHg 

over several weeks when the salt intake was reduced from 12 g to 6 g NaCl per day. These 

findings are inconsistent with the view that sodium levels in the body are kept at narrow limits 

by rapid urinary excretion. 

How is sodium stored without water retention in the skin? Experiments with rats showed that 

changes in glycosaminoglycan metabolism enable osmotically-inactive sodium storage in the 

skin interstitium (Titze et al. 2004; Schafflhuber et al. 2007). Glycosaminoglycans are 

negatively charged polyanions, which comprise of repeating disaccharide units (uronic acids 

and amino sugars). The negative charge density and therefore cation binding capacity 

correlates with the degree of sulfatation, as found by Volpi (1999). The fact that 

glycosaminoglycans, for instance chondroitin sulfate, are able to bind sodium was observed 

more than 50 years ago by Farber et al. (1957) and Farber (1960). In cartilage, 



1   Introduction  
 

7 
 
 

glycosaminoglycans locally increase sodium concentration to 250 – 350 mmol/l which is 

beyond the mean sodium concentration in the serum of 142 mmol/l (Mobasheri et al. 1997; 

Mobasheri 1998; Silbernagl and Despopoulos 2012). Similarly, sodium concentration in the 

skin of rats rose from 140 mM to 190 mM without a simultaneous increase in skin water 

content following a high salt diet (Titze et al. 2004). The authors found that gene expression 

of enzymes involved in glycosaminoglycan chain elongation like chondroitin synthase were 

increased after 8 weeks of high salt diet compared to low salt diet animals. According to Titze 

et al. (2004), glycosaminoglycan content and polymerization were significantly elevated. 

Schafflhuber et al. (2007) further showed that dietary salt intake is directly linked with the 

polyanionic character of the extracellular matrix due to polymerization and sulfatation of 

glycosaminoglycans, providing additional binding capacity for sodium. 

Taken together, novel evidence suggests that the classical concept of a tightly-regulated 

sodium metabolism resulting in iso-osmolality in the two compartment model is not adequate. 

The skin acts as a sodium reservoir and thus creates a local hypertonic environment, which 

is not readily equilibrated. Instead, macrophage-driven lymphangiogenesis which is mediated 

by vascular endothelial growth factor C (VEGF-C) secretion is responsible for the removal of 

osmotically inactive stored salt (Machnik et al. 2009). Consequently, osmolality in the 

lymphatic system exceeds serum osmolality (Szabo et al. 1982), indicating that the 

interstitium including the lymph capillary network acts as a third separate and locally 

regulated compartment.  

 

 

1.2   A new role for macrophages in salt balance regulation 
 

1.2.1   Macrophages and chemotaxis in the immune system 
 
Together with dendritic cells, blood-circulating monocytes and bone marrow precursor cells, 

macrophages form the mononuclear phagocytotic system and are present in every peripheral 

tissue of the body (van Furth 1982; Wiktor-Jedrzejczak and Gordon 1996). Macrophages are 

derived from common myeloid progenitor cells in the bone marrow, which give rise to blood-

circulating monocytes depending on the presence of Colony Stimulating Factor (CSF) (Hume 

2006, 2008; Geissmann et al. 2010). Continuous extravasation establishes tissue-specific 

subpopulations of macrophages, including skin Langerhans cells, lung alveolar 

macrophages, microglia in the brain, or serosal peritoneal macrophages (Gordon and Taylor 

2005).  
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Macrophages play important roles in both innate and adaptive immune responses 

(Medzhitov and Janeway 2000; Murray and Wynn 2011). One major function of 

macrophages is to monitor their environment for invading pathogens like bacteria or viruses 

and consequent elimination by phagocytosis. In addition, phagocytosing macrophages are 

essential for the clearance of apoptotic cells and cell debris (Elliott and Ravichandran 2010).  

Foreign antigens are identified and internalized by pattern-recognition receptors on the cell 

surface, including scavenger receptors and Toll-like receptors (Medzhitov et al. 1997; Kawai 

and Akira 2011). In order to promote an adequate immune response, antigens are processed 

in the phagosome and presented to other immune cells like antigen-specific T lymphoctyes 

by major histocompatibility complex (MHC) molecules (Ramachandra et al. 2009). 

Furthermore, activated macrophages modulate immune responses by expression of 

cytokines like TNF-α, IL-6 and IFN-γ, and costimulatory molecules, respectively (Sieff et al. 

1998; Dale et al. 2008).  

Macrophages consist of several subclasses. Additionally to classically activated M1 

macrophages functional subsets like anti-inflammatory M2 (Mantovani et al. 2002; Gordon 

2003; Mosser 2003; Mantovani et al. 2004), “regulatory” macrophages (Sutterwala et al. 

1997, 1998), and tumor-associated macrophages (Mosser and Edwards 2008) have been 

described. It seems likely that even more polarized macrophage types will be classified in the 

future. 

During acute infections, circulating monocytes are recruited from the bloodstream into 

inflamed tissues by chemokines like CCL2 (Serbina et al. 2009; Shi et al. 2011). Specifically, 

monocytes expressing the chemokine receptor CCR2 and high levels of the myeloid marker 

lymphocyte antigen 6C (LYC6hi) follow a CCL2 gradient and extravasate into the infected 

tissue, where they develop into inflammatory macrophages (Geissmann et al. 2010; Kim et 

al. 2011). This directional migration response in a gradient of chemotactic molecules is 

termed chemotaxis, in contrast to chemokinesis, which is involves stimulated, but random, 

cell movement toward a chemical stimulus (Becker 1977). Monocytes and macrophages 

recognize to a variety of extracellular chemotactic signals, including bacterial and viral 

components, chemokines, cytokines and inflammatory mediators (Foxman et al. 1999; 

Turner et al. 1999; Moser et al. 2004). 

 

 

1.2.2   Chemotaxis and cell migration are promoted by Rho Family GTPases  
 

The processes underlying cell migration can be described by a five step cycle (Lauffenburger 

and Horwitz 1996; Rafelski and Theriot 2004; Parsons et al. 2010): First, the cell polarizes 
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into the direction of movement, where reorganization of the actin cytoskeleton forms a 

protrusion called lamellipodium. Subsequently, the protrusion is adhered to the surrounding 

extracelluar matrix proteins by cell-surface intregrins. The next step is the forward movement 

of the cell body due to actomyosin contraction, which is followed by loosing adhesion at the 

rear of the cell.  

Macrophages form a large number of weak adhesions, which are not classical stress-fiber 

associated dynamic adhesions (Pixley 2012). Normally, strong focal adhesions link 

contractile actin and myosin-II-containing filaments to extracellular matrix proteins by 

integrins (Critchley et al. 1999). Instead, macrophages seem to gain increased dynamic 

adhesion by a multitude of point contacts and focal complexes, providing a higher traction 

force and responsiveness during cell migration (Beningo et al. 2001; Gallant et al. 2005). In 

addition, macrophages form podosomes during migration, which consist of a dense F-actin 

array enclosed by adhesion proteins (Linder and Aepfelbacher 2003). During interstitial 

migration, podosomes are sites of extracellular matrix degradation (Evans et al. 2003; 

Murphy and Courtneidge 2011), as has also been shown in human primary macrophages by 

Van Goethem et al. (2011).                 

Cell motility highly depends on rapid reorganization of the actin cytoskeleton. Therefore, 

chemotactic signaling intracellularly converges on pathways that modulate the actin 

cytoskeleton. The majority of the chemoattractive signals are recognized by seven 

transmembrane spanning G-protein coupled receptors (GPCRs) and transduced by 

heterotrimeric G proteins (Boulay et al. 1997). Experiments with pertussis toxin revealed that 

these GPCRs are associated with Gαi, but also G12/13 and the Gβγ-subunit are important 

mediators (Xu et al. 2003). In addition, chemoattractants interact with receptor tyrosin 

kinases (RTKs) (Weiss et al. 1997).  

Eventually, signaling pathways converge on Phosphatidylinositide 3-kinase (PI3-K) and the 

subsequent activation of small GTPases of the Rho family. PI3-K is responsible for 

production of phosphatidylinositol 3-phosphate (PIP3), which interacts with a variety of other 

effector proteins including protein kinases, guanine nucleotide-exchange factors (GEFs) and 

GTPase-activating factors (GAPs) (Shaw 1996; Bottomley et al. 1998). GEFs and GAPs in 

turn are essential regulators of the small GTPases of the Rho family, which are also 

activated by chemokine and cytokine receptors and control polymerization of actin 

(Machesky and Insall 1999). Furthermore, these small GTPases of the Rho family might be 

directly activated by PI3-K and following src-related kinase Lyn activity (Benard et al. 1999; 

Jones 2000).   

Figure 1-1 shows a graphical summary of known RhoGTPases, their downstream mediators 

and actin nucleators involved in the actin cytoskeleton response. In macrophages, actin 
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polymerization is mediated by RhoA, RhoB, Rac1, Rac2 and Cdc42 (Ridley 2008). RhoA, 

Rac1 and Cdc42 were found in the leading edge of migrating cells, allowing a spatiotemporal 

integration of chemotactic signals (Machacek et al. 2009; Pertz 2010).   

 

 

 
 

Figure 1-1: Downstream signaling events in cell migration converge on different Rho 
                    GTPase-dependent actin cytoskeleton responses 

RhoGTPases Cdc42, Rac and Rho are regulated by GEF and GAP activity and can also be 
directly activated by receptor signaling following interaction with chemoattractive signals. The 
mediator complexes WASP and WAVE initiate actin polymerization by activating the actin 
nucleator complex Arp2/3, resulting in differentiated formation of filopodia, podosomes, or 
lamellipodia. In addition, the effects of Rho on actomyosin contractility are transduced by 
ROCK and MLCK. (from Pixley 2012).  

 

Activation of Cdc42 leads to podosome and filopodia formation, while Rac promotes 

lamellipodia spreading (Allen et al. 1997). In addition, Cdc42 is important for macrophage 

polarization and chemotactic sensing (Allen et al. 1998). It has been shown that the effects of 

Cdc42 on actin polymerization and chemotaxis are mediated by the WASP complex (Park et 

al. 2010). Together with its N-terminal binding protein WIP, WASP activates the actin 

nucleator complex Arp2/3, which is present at the leading edge and in podosomes (Tsuboi 

2007; Monypenny et al. 2011). Rac signaling also results in Arp2/3 activation, but uses the 

downstream effector WAVE2 in macrophages (Kheir et al. 2005; Takenawa and Suetsugu 
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2007). The Arp2/3 complex binds to sides of existing actin filaments, where it promotes 

branched polymerization and cross-linking of the actin cytoskeleton (Mullins et al. 1998; 

Mullins and Pollard 1999; Takenawa and Suetsugu 2007). Linear growth of actin filaments 

seems to be initiated by Rho-dependent activation of the formin family of actin nucleators 

(Goode and Eck 2007). In addition, Rho triggers Rho-kinase (ROCK) 1 and 2, which together 

with Ca2+ phosphorylate myosin-light-chain kinase (MLCK) to increase actomyosin 

contractility and retraction of the trailing edge (Riento and Ridley 2003; Vemula et al. 2010). 

Furthermore, the same small GTPases are regulators of cell adhesion during migration: Rho 

and Cdc42 mediate integrin-based focal complex formation, while for instance 

phosphorylated paxilin in adhesions also recruits Rac downstream effectors to initiate 

lamellipodium formation (Zaidel-Bar et al. 2007; Vicente-Manzanares et al. 2009). 

However, it would be an oversimplification to consider these pathways as completely 

independent. On the one hand, there is a crosstalk between them: For instance, Cdc42 can 

trigger Rac-dependent lamellipodium formation, which in turn increases stress fibers 

mediated by Rho (Ridley and Hall 1992) . On the other hand, these signaling pathways are 

further influenced by several other pathways before integration converges on the actin 

cytoskeleton response.  

 

 
1.2.3   Tissue macrophages control salt balance, interstitial volume and blood    
           pressure 
 
In addition to their prominent functions in the immune system, evidence over the last decade 

emerged how macrophages are responsible for interstitial volume and blood pressure 

homeostasis. A correlation between macrophage-derived growth factors and 

lymphangiogenesis was described previously in association with an inflammatory immune 

response. Schoppmann et al. (2002) identified tumor-associated macrophages as the major 

source of lymph vessel growth-promoting VEGF-C and VEGF-D in human cervical cancer 

samples. A direct contribution of macrophages was shown by Maruyama et al. (2005) in a 

mouse corneal transplant model: In addition to secretion of VEGF-C, macrophages 

transdifferentiated into lymphatic endothelial cells which integrated into existing lymph 

vessels.  

When Machnik et al. (2009) investigated the lymph capillary system following a high-salt diet 

in rodents, they found that the local hypertonic sodium storage in the skin induced 

lymphangiogenesis. The authors could show that the lymph vessel proliferation depends on 

tissue-infiltrating macrophages, but is not accompanied by an inflammatory response. 

Further analysis of the infiltrated macrophages revealed that the signal of osmotic stress 
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caused by the hypertonic salt-storage environment is translated into an increased tonicity-

responsive enhancer binding protein (TonEBP) expression in these cells. TonEBP (also 

termed NFAT5, nuclear factor of activated T-cells 5) is the only known mammalian 

transcription factor directly related to osmotic stress and protects cells by inducing 

expression of osmoprotective genes, like heat-shock proteins and betaine transporter 

(Takenaka et al. 1994; Miyakawa et al. 1999). In macrophages, TonEBP additionally binds to 

two sites of the Vegfc promoter and thus regulates vascular endothelial growth-factor C 

(VEGF-C) expression (Machnik et al. 2009). VEGF-C release by macrophages resulted in a 

local lymphangiogenesis of preexisting lymph capillaries by binding VEGFR3 receptors. In 

addition, VEGF-C increased interstitial endothelial nitric oxide synthase (eNOS) expression 

via activation of VEGFR2 receptors. The subsequent release of nitric oxide is thought to 

compensate blood pressure following a dietary high salt loading (Tolins and Shultz 1994; 

Leonard et al. 2006; Kang et al. 2007).  

 

 

Figure 1-2: Homeostatic role of tissue macrophages 

Following high salt intake, excess Na+ is bound to proteoglycans in the skin interstitium in an 
osmotically inactive state. Macrophages accumulate in areas of hypertonic sodium storage 
and express TonEBP, which induces VEGF-C production. Secreted VEGF-C stimulates 
lymphangiogenesis in order to remove excess sodium and to decrease blood pressure, 
counteracting the development of salt-sensitive hypertension (Marvar et al. 2009). 
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Machnik et al. (2009) proposed that TonEBP-induced secretion of VEGF-C from 

macrophages modifies lymph capillary density and thus augments lymphatic drainage to 

remove excess sodium from the interstitium (see Figure 1-2). When signaling pathways were 

abrogated by VEGF receptor inhibition and depletion of macrophages, the interstitial 

electrolyte concentrations and fluid volume increased. Furthermore, the mean arterial blood 

pressure rose significantly, suggesting that this system buffers the development of salt-

sensitive hypertension. These experiments documented a homeostatic function of macro-

phages in the skin interstitium (Machnik et al. 2009; Machnik et al. 2010). However, in 

contrast to earlier reports of a stimulation of macrophages by osmotic stress (Lang et al. 

2002), these authors found no sign of an inflammatory response, as was indicated by 

unchanged TNF-α expression levels in the skin and serum following the high salt diet.  

The newly discovered TonEBP/VEGF-C mediated regulation mechanism was termed 

extrarenal, since it does not directly involve blood pressure or volume regulation by the 

kidney. Instead, macrophages were recognized to control local tissue environment and blood 

pressure in the skin interstitium by driving lymphatic vessel hyperplasia and increasing 

interstitital eNOS expression (see Figure 1-2). Failures in this regulatory axis are associated 

with the development of salt-sensitive hypertension in both rodents (Machnik et al. 2009; 

Machnik et al. 2010) and humans, as elevated VEGF-C serum levels in hypertensive patients 

(Machnik et al. 2009) or following a high-salt diet (Slagman et al. 2012) were reported. These 

results emphasize clinical importance of a homeostatic macrophage function, which might be 

beneficial for prospective treatment of hypertension. 

 

 

1.3   Hypertension poses a threat to global public health  
 

Hypertension is a chronic disease defined by a systolic blood pressure exceeding 140 mmHg 

and/or diastolic blood pressure above 90 mmHg, compared to normal 120 mmHg and 

80 mmHg, respectively. Since elevated blood pressure does not cause any specific 

symptoms apart from headaches or heart palpitations, it often remains undiagnosed until 

damages to blood vessels lead to severe conditions like stroke or heart disease. 

Hypertension is characterized by a rise in total peripheral resistance in the arteries, which is 

probably due to decreased elasticity and diameter of arterioles (Folkow 1982; Torres et al. 

2013) as well as changes in the microcirculation of the capillaries (Struijker Boudier et al. 

1992; Jung et al. 2013) and also normally occurs with age. The underlying mechanism might 
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involve a chronic activation of the sympathetic nervous system (Esler 2010; Parati and Esler 

2012) or abnormal activation of the renin-angiotensin system (Navar 2010). In addition, the 

contribution of a multitude of factors including a proinflammatory role for Angiotensin II 

(Marchesi et al. 2008) or a dysbalance between nitric oxide (NO) and endothelium-derived 

contracting factors (Versari et al. 2009) is discussed. However, in more than 95 % of 

hypertensive patients, the primary cause for the high blood pressure is unknown (Harrison et 

al. 2005). A genetic predisposition is very likely, but is not suffiecient for manifestation of the 

disease. Instead, behavioral risk factors including an unhealthy diet containing high salt and 

fat, alcohol and tobacco abuse, physical inactivity and persistent stress, or metabolic factors 

like diabetes and obesity play an important role (World Health Organization report "A global 

brief on hypertension" , WHO 2013).  

According to the WHO report “Causes of death” (2008), hypertension accounts for more than 

51 % of deaths due to stroke and at least 45 % of deaths due to heart disease. Because it is 

responsible for the estimated deaths of 9.4 million people every year, the WHO refers to high 

blood pressure as a “silent killer”. When hypertension is not diagnosed and treated early on, 

it is a major risk factor for cardiovascular disease (CVD), stroke and kidney failure, which are 

leading causes for mortality worldwide (WHO report “Global health risks”, 2009).                

The increasing incidence of hypertension, which is attributed to population growth, ageing 

and lifestyle risk factors, also poses a huge economic burden. Costs for treatment and its 

associated complications like cardiac bypass surgery or dialysis have to be accounted for. By 

the year 2008, about one billion people suffered from hypertension (WHO report “Global 

status report on noncommunicable diseases”, 2010), creating immense healthcare costs with 

approximately 76.6 $ billion per year in the US alone (Lloyd-Jones et al. 2009, 2010). 

Referring to the WHO report “A global brief on hypertension” (2013), about 40 % of the 

worldwide population over age 25 are diagnosed with hypertension, but more than 80 % of 

hypertension-related deaths occur in middle- and low-income countries. High blood pressure 

either remains undiagnosed or uncontrolled because of extremely high health care costs in 

these countries. In contrast, early detection and treatment as well as raised awareness have 

declined the mortality due to hypertension in high-income countries. However, the WHO 

predicts that mortality due to CVD will increase by at least 5 % until 2030 (WHO report “A 

global brief on hypertension”, 2013). On the economic level, the losses due to CVD will 

exceed public health spending by the year 2025. These dramatic expectations make it clear 

that huge efforts have to be undertaken worldwide to counteract this development.  
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1.4   The influence of sodium intake on blood pressure  
 
The hypothesis of a connection between salt intake and blood pressure was first proposed in 

1904 (Ambard and Beauchard 1904). However, their findings were quickly questioned 

(Löwenstein 1907) and from then onward the debate concerning a potential effect of high salt 

intake on hypertension has been going on for decades (Graudal 2005). Early findings already 

led to a recommendation of salt-reduction for treatment of hypertensive patients in 1925 

(Allen 1925). On the other hand, by this time there were no anti-hypertensive drugs available 

for treatment like diuretics, beta blockers or ACE-inhibitors. However, Allen´s theory 

remained disputed and was almost forgotten in the following years until 1948. At that time, 

the idea of salt reduction was reinforced by Kempner (1948) by successfully treating 

hypertensive patients with a strict low-salt rice diet (0.3 g salt/day). In the 1960s, Lewis Dahl 

was the first to realize a positive correlation between salt intake of different populations 

worldwide and the prevalence of hypertension among different cultures (Dahl 1960).  

 

Figure 1-3: Correlation of average daily salt (NaCl) intakes with prevalence of  
                  hypertension in different geographic areas and among different human     
                  populations (from Dahl, 1960).  
 

Figure 1-3 from Dahl (1960) shows how mean salt intake ranges from 4 g/day (68 mmol 

sodium) in the Inuit population to an average of up to 27 g (462 mmol) in Japanese, which 

was mainly attributed to extensive seasoning with soy sauce in this culture. These 

epidemiological studies in more than 20 different populations were continued by  
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Gleibermann (1973) and (Froment et al. 1979). Subsequently, internationally cooperated 

INTERSALT (1985-87; Pietinen et al. (1988)) and INTERMAP (1996-1999; Stamler et al. 

(2003)) studies estimated sodium intake worldwide by standardized 24-hour sodium urinary 

excretion. INTERSALT (Pietinen et al. 1988; Rose and Stamler 1989; Elliott et al. 1996) 

collected data from more than 10,000 individuals in 52 populations and 32 countries, making 

it the most extensive study until today. It found the lowest sodium consumption in native 

Indian populations of Brazil, Papua New Guinea and Kenya, with a mean sodium intake 

below 50 mmol/day (2.9 g salt). 

Conversely, the highest sodium intake was again found in Asia with the People’s Republic of 

China and Japan consuming 11.8 – 15.2 g salt/day (200-259 mmol). In general, sodium 

intake was higher in men (150-199 mmol/day) than women (100-149 mmol/day) and 

increased with age (Brown et al. 2009). The INTERSALT study calculated a mean urinary 

sodium excretion of 170 mmol (9.9 g NaCl) per day, which is nearly twice the amount 

recommended by the current WHO guideline of 90 mmol (5 g NaCl) per day to prevent CVD 

(WHO report “Prevention of cardiovascular disease: guidelines for assessment and 

management of cardiovascular risk”, 2007).  

Animal studies reported that a chronic high salt diet induces hypertension in rats and 

primates (Dahl, 1960, Denton et al. 1995; Elliott et al. 2007). In their experiments, Dahl et al. 

(1962) observed that not all rats developed hypertension following a high salt diet and 

therefore proposed the involvement of genetic factors. Breeding salt-sensitive hypertensive 

rats (so-called ´Dahl rats´) led to an animal strain that is still used today to find hypertension-

responsive genes and genetic markers of salt sensitivity. Concerning humans, after many 

years of clinical studies there is a broad agreement that a reduction in salt intake leads to a 

beneficial decrease in systolic blood pressure of about 4 mmHg, while diastolic blood 

pressure is reduced about 2 mmHg in hypertensive patients (Cutler et al. 1997; Graudal et al. 

1998). In addition, even healthy subjects with a normal blood pressure show a decrease of at 

least 1 mmHg for both systolic and diastolic values. The recently issued WHO review (“Effect 

of reduced sodium intake on blood pressure, renal function, blood lipids and other potential 

adverse effects”, 2013) summarized 35 studies that investigated dietary effects of salt intake 

on blood pressure and other health parameters (until August 2011). The report found that 

overall systolic blood pressure was reduced 4-5 mmHg, whereas diastolic blood pressure 

decreased 1-2 mmHg in individuals with hypertension. In line with earlier studies, the 

decrease was lower in normal healthy individuals (1-2 mmHg reduction). Although the effect 

of reduced salt intake was not always statistically significant, the overall tendency of a blood 

pressure reduction cannot be ignored (He and MacGregor 2004, 2008). Since hypertension 

increases the risk of CVD, studies also analyzed the long-term effects of salt-reduction on 
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the incidence of CVD. Cook et al. (2007, 2008, 2009) found a linear direct effect of reduced 

sodium intake on CVD, with a significant 25% lower risk after 10 – 15 years. 

However, a reduced salt diet does not necessarily lead to a significant decrease in blood 

pressure in all individuals, and all the factors influencing salt-sensitive hypertension are not 

completely resolved. For instance, a genetic component for salt-sensitivity as known in 

animal models is discussed (Beeks et al. 2004; Sanada et al. 2011). Furthermore, various 

parameters including other food components such as potassium and calcium might have a 

potentially greater influence on blood pressure development than sodium alone (He and 

MacGregor 2008; Cook et al. 2009). This raises the question whether the effect of salt 

reduction is negligible compared to other dietary impacts (Appel et al. 1997; WHO report 

“Effect of reduced sodium intake on blood pressure, renal function, blood lipids and other 

potential adverse effects”, 2013). For instance, a study by Chang et al. (2006) using 

potassium-enriched salt as a substitute for sodium chloride described a 41 % reduction in 

CVD mortality. On the other hand, excess sodium intake has deleterious effects on the heart, 

kidneys and blood vessels completely independent of its effects on blood pressure (Frohlich 

2007).  

The high amount of sodium that is consumed especially in processed or restaurant-prepared 

food in the developed countries dramatically exceeds the 10 – 20 mmol/day our body 

physiologically needs (Brown et al. 2009; Table 1-1). As Table 1-1 shows, the worldwide 

daily sodium intake is well above the limits that are recommended by health organizations 

like the WHO and the American Heart Association. However, the question is to which level 

the amount of sodium intake needs to be reduced and if it is implementable. Since most of 

the consumed sodium is hidden in processed foods, a population-wide decrease in sodium 

intake is only possible in cooperation with the food industry. In addition, consumer 

willingness and inconvenience to get accustomed to low sodium levels has to be overcome.  

In summary, a multitude of studies over several decades suggest a beneficial effect of salt 

reduction on blood pressure and risk for CVD. Growing evidence that a high salt intake will 

lead to increasing health and economic problems throughout the world emphasizes the need 

for an individual awareness of salt intake in the population.  
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Table 1-1: Mean amount of sodium intake recommended and consumed in selected  

                  countries worldwide according to INTERSALT/INTERMAP study      
        

Country Sodium intake 
[mmol/d] 

Corresponding NaCl intake 
[g/day] 

Physiologically needed 10 – 20 0.6 -1.2 
American Heart 
Association < 64 3.8 

Tanzania ≈ 69 4.1 
Cameroon ≈ 71 4.2 
Venezuela ≈ 77 4.5 
WHO  90 5.3 
Spain ≈ 93 5.5 
EU mean* ≈ 136 – 204 8 -12 
Canada ≈ 135 8 

Germany ≈ 139 
≈ 107* 

8.2 
6.3 

Australia ≈ 144 8.5 
USA ≈ 163 9.6 
Brazil ≈ 171 10 
Japan ≈ 189 11.1 
China ≈ 272 16 

 
            from Brown et al. (2009) and *European Union salt-reduction framework (2012) 
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1.5   Aims of this study  
 

In addition to their established roles in immune defense, macrophages were recently found to 

regulate interstitial salt and fluid balance, as well as blood pressure (Machnik et al. 2009). 

The authors of that study found an accumulation of macrophages in the skin interstitium of 

rats that were fed a high salt (NaCl) diet. These results raised questions about a possible 

chemotactic response of macrophages toward a hypertonic salt environment, which would be 

present in the skin interstitium due to excess stored Na+ (Titze et al. 2004; Schafflhuber et al. 

2007). Therefore, the study at hand investigated and characterized the novel concept of salt-

dependent chemotaxis of macrophages by means of in vitro transwell migration assays.  

Migration of RAW264.7 macrophages, peritoneal macrophages and bone marrow-derived 

macrophages in a hypertonic NaCl environment was analyzed to confirm specificity of the 

chemotactic response toward NaCl. In order to unravel the responsible molecular 

mechanism for salt-dependent chemotaxis, the effects of excess NaCl on cell morphology 

and migration machinery like the actin cytoskeleton were investigated. In addition, a potential 

NaCl-dependent chemokine expression was studied as previous studies demonstrated for 

instance for CCL-2 (Kojima et al. 2010). Since the osmoprotective transcription factor 

TonEBP is activated during osmotic stress, the present study aimed at elucidating the 

involvement of TonEBP in salt-dependent chemotaxis.  

Such investigations should give further insight into the development of salt-sensitive 

hypertension and might lead to prospective new drug targets for hypertension therapy. 
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2   Material and Methods 

 

2.1   Material 
 

2.1.1   Laboratory equipment 
 

Centrifuges 

 

BioFuge primo R , Fresco 21, Heraeus, Hanau 

Developing machine SRX-101A, Konica Minolta, Langenhagen 

Digital heatblock 

Electroporator 

Flame photometer  

Flow cytometer 

VWR, West Chester, USA  

GenePulser Xcell, Biorad, Hercules, USA 

EFOX 5053, Eppendorf, Hamburg 

FACS Canto II, BD Biosciences, Franklin 

Lakes, USA 

 

Freezing container Nalgene Thermo Scientific, USA 

Horizontal shaker WS-5, Edmund Bühler, Hechingen 

Incubator  

 

Laminar flow hood for cell culture 

Magnetic stirrer 

Microliter centrifuge  

Microplate reader GloMaxMulti+ 

C60 / C200, Labotect, Göttingen 

Binder, Tuttlingen 

Telstar Bio-II-A, Labotect, Göttingen 

Roth, Karlsruhe 

Hermle Labortechnik, Wehingen 

Promega, Madison, USA 

Microscopes (inverted) Nikon ECLIPSE TE-2000E, Nikon, Tokyo, 

Japan 

 

 

Nikon ECLIPSE i80, Nikon, Tokyo, Japan 

Confocal laser-scanning FV-1000, Olympus, 

Tokyo, Japan 

Axiovert 10, Zeiss, Jena 

Neubauer hemocytometer 

Osmometer 

pH-meter 

Pipettes 

Roth, Karlsruhe 

Vogel Löser Messtechnik, Gießen  

Schott Instruments, Mainz 

Eppendorf, Hamburg 

Gilson, Middleton, USA 

Shaker KL2 Bühler Laborgeräte, Tübingen 
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Roll mixer 

Vortex 

VWR, West Chester, USA 

Vortex Genie, Roth, Karlsruhe 

Water bath Köttermann Labortechnik, Germany 

Wet Blot System (Mini-Trans Blot Cell) Biorad, Hercules, USA 

  

 

2.1.2   Consumables 
 

Cell culture dishes 60 mm2 

Cell culture plates (6-well /  24-well) 

Nunc, Penfield, USA 

Corning Costar Corporation, New York, USA 

Cell culture flasks (vented) 

Cell scraper 

Cryovials 

Electroporation cuvettes (2 mm / 4 mm) 

FACS tubes 

Falcon tubes 

Filter paper 

BD Falcon, Franklin Lakes, USA 

Sarstedt, Nümbrecht 

Nunc, Penfield, USA 

Biorad, Hercules, USA 

Sarstedt, Nümbrecht  

Greiner Bio-one, Frickenhausen 

Whatman Nr. 4, Schleicher & Schuell 

Bioscience, Dassel 

Lab-Tek chamber slides 

Membrane inserts, 8 µm pore filter 

Membrane inserts, 5 µm pore filter 

Microtiter plates (96-well, clear, flat bottom) 

Nunc, Penfield, USA 

BD Biosciences, Franklin Lakes ,USA 

Corning Costar Corporation, New York, USA 

Roth, Karslruhe  

Greiner Bio-one, Frickenhausen 

Nylon cell strainers (40 µm) BD Biosciences, Franklin Lakes, USA 

reaction tubes 0.5 – 2 ml 

Pasteur pipettes 

Pipette tips (10 µl, 200µl, 1000µl) 

PVDF (polyvinylidene difluoride) membrane 

Eppendorf, Hamburg and Starlab, Hamburg 

Roth, Karlsruhe 

Roth, Karlsruhe and Eppendorf, Hamburg 

Biorad, Hercules, USA 

Serological pipettes  

Sterile filters (0.2 µm) 

Syringes (1 ml, 5 ml) 

X-ray film 

VWR, West Chester, USA 

Schleicher & Schuell Bioscience, Dassel 

B.Braun, Melsungen 

Amersham Hyperfilm MP, GE Healthcare, 

Pittsburgh, USA   
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2.1.3   Chemicals and biochemical reagents 
 
Acetic acid 

Acrylamid/Bisacrylamid-Mix 30% 

Ammonium persulfate (APS) 

Autoradiography film Cleaner D 

Bovine serum albumin (BSA) 

Bromphenol blue 

Complete Protease Inhibitor Cocktail Tablets 

Coomassie Brillant Blue 

DABCO (1,4-Diazabicyclo[2.2.2]octane) 

Dimethyl sulfoxide (DMSO) 

Dithiothreitol (DTT) 

EDTA (ethylene diamine tetraacetic acid) 

Ethanol 

Roth, Karlsruhe  

Roth, Karslruhe 

Roth, Karlsruhe  

Fujifilm, Tokyo, Japan 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roche Applied Science, Mannheim 

Sigma-Aldrich, Taufkirchen 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Sigma-Aldrich, Taufkirchen 

Roth, Karlsruhe 

Fibronectin 

FluoroShield 

Harbor Bio-Products Norwood, USA 

ImmunoBioscience Corp., Mukilteo, USA 

FuGENE HD transfection reagent 

Hydrochloric acid 

Isopropanol 

Roche Applied Science, Mannheim 

Roth, Karlsruhe 

Merck, Darmstadt 

L-glutamine 

Lipofectamin 2000 Transfection Reagent 

Lipopolysaccharide (LPS) E.coli 

PAA, Cölbe 

Invitrogen, Carlsbad, USA 

Sigma-Aldrich, Taufkirchen  

Liquichek urine chemistry control 

Mannitol  

Methanol 

Milk powder 

N-(1-naphthyl)ethylenediamine (NED) 

Ortho-phosphoric acid 

Biorad, Hercules, USA 

Sigma-Aldrich, Taufkirchen 

Roth, Karlsruhe 

Roth, Karlsruhe  

Roth, Karlsruhe  

Roth, Karlsruhe 

Oligofectamine transfection reagent Invitrogen, Carlsbad, USA 

Osmometer standard 

Polymyxin B 

Ponceau S 

Paraformaldehyde (PFA) 

Pertussis toxin from Bordetella pertussis 

Löser Messtechnik, Gießen 

Sigma-Aldrich, Taufkirchen 

Roth, Karsruhe 

Merck, Darmstadt 

Sigma-Aldrich, Taufkirchen 
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Precision Plus Protein Standard Biorad, Hercules, USA 

RotiQuant 5x 

Sodium chloride (NaCl) 

Sodium dodecyl sulfate (SDS) 

Sodiumhydroxide 

Sulfanilamide 

Tetramethylethylendiamin (TEMED) 

Tris-[hydroxymethyl]aminomethan (Tris) 

Triton-X 100 

Trypan blue staining solution 0,4% 

Tween 20 

Roth, Karlsruhe, 

Merck, Darmstadt 

Roth, Karlsruhe 

Roth, Karlsruhe 

Roth, Karlsruhe 

Sigma-Aldrich, Taufkirchen 

Roth, Karlsruhe 

Roth, Karlsruhe 

Sigma-Aldrich, Taufkirchen 

Roth, Karlsruhe 

Urea 

Urine Standard 

Roth, Karlsruhe  

EFK-diagnostic, Magdeburg 

Vybrant CFDA-SE 

 

 

Invitrogen, Carlsbad, USA 

 

 

2.1.4   Media, sera and buffers 

 
 

Dulbecco´s Modified Eagle Medium low 

glucose (DMEM)  

PAA, Cölbe  

Fetal Calf Serum (FCS)  Biochrom, Berlin ;Sigma Aldrich, Taufkirchen 

Iscove's Modified Dulbecco's Medium  

(IMDM) 

PAA, Cölbe  

Opti-MEM 

Penicillin-Streptomycin  

Phosphate buffered saline (PBS)  

Trypsin/EDTA 10x (0,5% / 0,2%) 

Very low endotoxin-RPMI 1640 (VLE-RPMI) 

Invitrogen, Carlsbad, USA 

Biochrom, Berlin  

PAA, Cölbe 

Biochrom, Berlin 

Biochrom, Berlin 

 
2.1.5   Commercial kits 
 
Apoptotic/necrotic/healthy cells staining kit Promokine, Heidelberg 
CCL2 ELISA R&D Duoset, Minneapolis, USA 
Cell Titer-Blue Cell Viability Assay  Promega, Madison, USA 
ECL Western Blotting Substrate Kit  Pierce, Rockford, USA 
Leukotriene B4 EIA kit Cayman, Ann Arbour, USA 
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2.1.6   siRNA oligonucleotides 
 
ON-TARGETplus Mouse Nfat5 siRNA:             

L 058868-09    5´- GGGCAAUGAUUCUGGUCGA - 3´     Dharmacon, Chicago, USA 
L 058868-10    5´- AGAGUAACUGGGCGAAAUA - 3´         “ 
L 058868-11    5´- CGGCAGGAGUGGAAGCGUU - 3´        “ 
L 058868-12    5´- CCACUCAUAUCAAGCAGUA - 3´          “ 

AllStars Negative siRNA #1027281                        Qiagen, Hilden, Germany  

 

2.1.7   Antibodies and fluorescent agents 

2.1.7.1   Unconjugated antibodies 

 

Name Dilution      Host species  Manufacturer 

NFAT5-anti-human  1:1000          rabbit  Thermo Fisher Scientific, 
Waltham, USA 

β-Actin-anti-mouse  1:1000          rabbit Sigma-Aldrich, Taufkirchen 
CCL2-anti-mouse  3 µg/ml          rat RD Systems, Minneapolis, USA 
IgG2B isotype control 3 µg/ml          rat   RD Systems, Minneapolis, USA 
   

 

2.1.7.2   Conjugated antibodies 

Name (conjugation) Dilution    Manufacturer 

stabilized goat-anti-rabbit (HRP) 1:800      Pierce, Rockford, USA 

CD86 rat-anti-mouse (PE)  1:100    
(FACS)  eBioscience, San Diego, USA 

CD25 rat-anti-mouse (APC)  1:100    
(FACS) 

BD Biosciences, Franklin Lakes, 
USA 

 
 
2.1.7.3   Fluorescent agents 

Name Dilution Manufacturer 
TRITC-Phalloidin 1:50 Sigma-Aldrich, Taufkirchen 
DAPI 1:1000 Sigma-Aldrich, Taufkirchen 
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2.1.8   Chemokines 

Murine CXCL12, CCL2, CCL19, GM-CSF, and C5a were purchased from Peprotech, Rocky 

Hill, USA 

 

 

2.1.9   Buffers and solutions 
 
 
10x PBS (pH 6.8) 
 
 

1.37 M NaCl 

27 mM KCl 

101 mM Na2HPO4 

18 mM KH2PO4 

 

Coomassie Staining Solution 
 
 

0.025 g Coomassie Brillant Blue  

25 ml Isopropanol 

10 ml Acetic acid 

ad 100 ml H2O dest. 

 

Erythrocyte lysis buffer 
 

 

Ponceau S Staining Solution 

150 mM NH4Cl 

10 mM KHCO3 

                                                            

0.1 g Ponceau S 

5 ml Acetic acid 

ad 100 ml H2O dest. 

 

SDS-sample buffer, 5x 

 

 

 

 

 

0.28 M Tris-HCl pH 8 

30 % (w/v) Glycerol 

10 % (w/v) SDS 

60 mM DTT 

0.0012 % (v/v) Bromphenol blue 

3.4 ml A. bidest 
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Stacking SDS gel, 5% 

 

 

 

 

 

Resolving SDS gel, 10 % 

 

 

 

 

1x Tris buffered saline with Tween (TBST) 

630 µl 1.0M Tris-HCl, pH 6.8 

830 µl 30 % (v/v) Acrylamide 

50 µl 10 % (v/v) SDS 

50 µl 10 % (v/v) APS 

5 µl TEMED 

 

 

1.9  ml A. bidest 

1.3 ml 1.5M Tris-HCl, pH 8.8 

1.7 ml 30 % (v/v) Acrylamide 

50 µl 10 % (v/v) SDS 

50 µl 10 % (v/v) APS 

2 µl TEMED 

 

0.5 M Tris-HCl, pH 7.5 

1.5 M NaCl 

0.06 % (v/v) Tween 

 

Western Blot Running Buffer, 10x       
(Laemmli) 

 

25 mM Tris 

200 mM Glycin 

0.1 % (w/v) SDS 

 

Western Blot transfer buffer, 20x 

 

200 mM Glycin 

25 mM Tris 

20 % (v/v) Methanol 

0.002 % (w/v) SDS 

  

2.1.10   Software  

Cell Profiler 

Corel Draw X4 

Graph Pad Prism 

Broad Institute, Cambridge, USA 

Corel, Ottawa, Canada 

Graph Pad Software Inc., La Jolla, USA 

Image J with ImageJ1.38 plugin National Institutes of Health, USA 

FACS Diva BD Biosciences, Franklin Lakes, USA 
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FlowJo 

NIS Elements 

SPSS Statistics 20 

Tree Star, Ashland, USA 

Nikon, Tokyo, Japan 

IBM, Armonk, USA 

 
 

 

2.2   Methods 
 

2.2.1   Animals 

All animal experiments were conducted in a licensed animal facility in accordance with the 

German law on the protection of experimental animals and were approved by local 

authorities of the state of North-Rhine-Westphalia (Landesamt für Natur, Umwelt und 

Verbraucherschutz NRW). Mice were sacrified by cervical dislocation. 

 

2.2.1.1   Ton(flox/flox)LysM(wt/cre) mice 

Bone material for isolation of bone marrow-derived macrophages (BMDMs) from 

Ton(flox/flox)LysM(wt/cre) mice with a C57BL/6 background in which the TonEBP gene had 

been disrupted specifically in the myeloid cell population were a kind gift from Prof. Dr. Jens 

Titze, Erlangen University, Germany and Vanderbilt University, USA. These mice were 

generated by inGenious Targeting Laboratory, Inc. (Ronkonkoma, USA) as described in Wiig 

et al. (2013). Briefly, the LysM-Cre (Clausen et al. 1999) deleter mouse strain was crossed 

with Nfat5fl/fl mice that harbor two loxP sites which target exon 4 of the Nfat5 gene. Knockout 

construct control mice (Ton(flox/flox)LysM(wt/wt)) and wildtype C57BL/6 mice were used as 

controls.  

 

2.2.2   Cell culture 

 
2.2.2.1   Cultivation of RAW264.7 cells 

The murine macrophage-like cell line RAW264.7 (ATTC #TIB-71) was a kind gift from Dr. 

Agnes Schröder, University of Erlangen, Germany. Cells were cultivated in 75 cm² cell 

culture flasks in Dulbecco’s modified Eagle´s Medium (low glucose) supplied with 10 % FCS 
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(Biochrom) and 1% Penicillin/Streptomycin in a 5 % CO2 atmosphere with 95 % humidity at 

37 °C. Subcultivation occurred twice a week when reaching 90 % cell confluence with the 

following procedure: First, the old media was aspirated and cells washed with pre-warmed 

phosphate buffered saline (PBS). Cell detachment was accomplished by incubation with 5 ml 

of pre-warmed Trypsin/EDTA at 37 °C for 5 to 10 minutes. Trypsin activity was stopped with 

10 ml of DMEM containing 10 % FCS and the cell suspension was transferred into a falcon 

tube, centrifugated at 180 g for 5 minutes and the cell pellet solved in 10 ml DMEM. 

According to cell number determination from a sample of 20 µl in a hemocytometer 

(Neubauer), the cell suspension was diluted 1:20 or 1:10 (equaling 2-4x106 cells) in 25 ml 

medium in a new cell culture flask. Cells were used for up to 25 passages.  

 

2.2.2.2   Freezing of RAW264.7 cells 

Cells were harvested from an up to 90 % confluent-grown cell culture flask as described 

above and the cell pellet was resolved in 1- 1,5 ml DMEM. 500 µl each (equaling 1 -1.5 x 107 

cells) were transferred into a cryovial containing 500 µl FCS (Biochrom) with 10 % DMSO to 

avoid cell damage during the freezing process. Quickly, cryovials were transferred to a Mr. 

Frosty Freezing Container and stored in a -80 °C freezer, therefore ensuring the temperature 

decreased by 1 °C per minute. On the following day, cryovials were transferred into the liquid 

nitrogen container for long-term storage.  

 

2.2.2.3   Recultivation of frozen RAW264.7 cells 

Aliquots of RAW264.7 stored in liquid nitrogen were slowly thawed by room temperature until 

the liquid could be transferred into a falcon tube containing 15 ml of 4 °C cold DMEM. After 

15 minutes adaptation, the cell suspension was centrifugated at 180 g for 5 minutes and the 

media replaced with fresh culture medium. Cells were seeded in a 75 cm² cell culture flask 

and the medium was replaced to remove residues of toxic DMSO not later than 24 hours.  

 

2.2.2.4   RAW264.7 cells with a stable TonEBP overexpression  

RAW264.7 macrophages with a stable TonEBP (Tonicity-responsive enhancer binding 

protein) overexpression were a kind gift from Professor Dr. Jens Titze, University of 

Erlangen, Germany and Vanderbilt University, USA. Generation of stable TonEBP 

overexpression was established by Wolfgang Neuhofer as described previously (Machnik et 

al. 2009; Phd thesis Schröder 2010), RAW264.7 macrophages were transfected with a 
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construct of murine TonEBP cDNA in the mammalian expression vector pCMV-Tag2 

(Stratagene, La Jolla, USA; Figure 2-1) and selected by addition of 800 µg/ml Kanamycin to 

the DMEM culture medium.  

 

Figure 2-1: Plasmid chart of pCMV-TonEBP-tag2 
TonEBP was cloned behind the cytomegalovirus (CMV) promoter to gain constitutive protein 
expression. In order to allow selection of clones, the plasmid contains a resistance against 
kanamycin (from PhD thesis Agnes Schröder). 
 

 

2.2.2.5   Generation of bone marrow-derived dendritic cells (BMDCs) and 
macrophages (BMDMs) 

Murine bone marrow-derived dendritic cells (BMDCs) were differentiated from hematopoietic 

stem cells as described previously by Quast et al. (2011). Seven week old C57BL/6 wildtype 

and LysMCreTonEBP (flox/flox) mice were sacrificed by cervical dislocation and the femurs 

and tibiae retrieved. The bones were opened at both ends and washed with PBS several 

times under sterile conditions to remove the cells. Filtration with 40 μm pore nylon cell 

strainers separated cells from the remaining tissues. Following centrifugation (400 g, 10 min),  

hematopoietic stem cells were plated into 10 cm non-treated petri dishes at a concentration 

of 5x106 cells in 10 ml VLE-RPMI 1640 supplemented with 10 % heat-inactivated FCS 

(Sigma-Aldrich), 100 u/ml Penicillin, and 0.1 mg/ml Streptomycin. Differentiation into BMDCs 

was achieved by addition of 10 ng/ml recombinant murine GM-CSF. The cell culture medium 

was half-renewed every three days until cells could be used for functional assays after 7 – 10 
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days. In order to stimulate maturation of BMDCs, 200 ng/ml LPS was added to the cells for 

48 h. 

For differentiation into bone marrow-derived macrophages (BMDMs), hematopoietic stem 

cells were plated into 10 cm non-treated petri dishes at a concentration of 5x106 cells in 

IMDM, supplemented with 10% FCS (Sigma-Aldrich), 2 mM L-glutamine, 100 u/ml Penicillin, 

0.1 mg/ml Streptomycin and 10 ng/mL recombinant murine M-CSF. 

 

2.2.2.6   Isolation of murine peritoneal macrophages 

Peritoneal macrophages were isolated from C57BL/6 mice by peritoneal lavage with 2 mM 

EDTA/PBS, kept on ice and centrifuged (400 g, 8 min). In order to remove the remaining 

erythrocytes, the cell pellet was resuspended in erythrocyte lysis buffer and incubated for 5 

min at 37 °C. The reaction was stopped by addition of 35 ml ice-cold PBS and the remnants 

washed twice with PBS following centrifugation at 400 g for 5 min. Next, cells were plated 

into 10 cm non-treated petri dishes in IMDM supplemented with 1 % Penicillin/Streptomycin 

and 10 % FCS. Once macrophages had adhered to the surface, the cell culture medium was 

replaced after several hours in order to remove remaining non-adherent B-cells and other 

cells.  

 

 

2.2.3   Cell-based assays 

 
2.2.3.1   In vitro transwell migration assay 

Chemotaxis of the RAW264.7 cells, BMDMs and BMDCs, and peritoneal macrophages was 

analyzed in vitro with a transwell assay (modified Boyden chamber) using cell culture 

membrane inserts with 8 µm pore size (Figure 2-2). 2 x105 cells were placed in duplicates or 

triplicates in serum-reduced (0.5 % FCS) cell culture media in the upper well while the culture 

medium of the lower compartment was supplemented with 200 ng/ml chemokines (25 nM 

CXCL12 or 15 nM CCL2, respectively) or NaCl with concentrations between 10-100 mM 

(reaching a final concentration of 155 to 255 mM NaCl in the media). Following 20 hours 

incubation at 37 °C / 5 % CO2, cells on top of the membrane that had not migrated were 

removed with cotton swabs. Transmigrated cells on the bottom of the membrane were 

stained with 5 µM Vybrant CFDA-SE in PBS according to the manufacturer´s protocol, 

washed in PBS and fixated with 4 % PFA/PBS for 15 min. For quantification of cell migration, 

5-10 random fields were observed and photographed in each sample with an inverted Nikon 
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Eclipse TE 2000-E fluorescence microscope. Later, the number of transmigrated cells in the 

images was counted using Cell Profiler software as described by Carpenter et al. (2006). 

For migration analysis of BMDCs, smaller cell culture inserts with 5 µm pore size (Corning) 

were used and cells were stimulated with 25 nM CCL19 as a migration control. 

Transmigrated BMDCs in the lower compartment were counted after incubation at 37 °C / 5 

% CO2 for 4 hours. 

 

 

 

 

 

 

 

 

Figure 2-2: Transwell migration assay using a cell culture insert 

The cell culture insert (gray) was placed in a 24-well plate (black). Cells (blue) were seeded 
in the upper chamber and migrated through pores (8 µm for macrophages or 5 µm for DCs) 
in the membrane toward a chemotactic stimulus in the lower chamber. After 20 hours (4 h for 
DCs), remaining cells on the top of the membrane were removed and transmigrated cells 
were stained and quantified.  

 

2.2.3.2   Immunofluorescence TRITC-Phalloidin staining 

For microscopical analysis of the actin cytoskeleton, phalloidin-based immunofluorescent 

staining was used. Phalloidin is a phallotoxin isolated from Amanita phalloides that 

specifically binds to and stabilizes F-actin. Coupled to a fluorochrome (here: TRITC), this 

staining allows localization of actin cytoskeleton filaments. In order to stain cell nuclei, DNA-

binding fluorescent DAPI (4',6-diamidino-2-phenylindole) was used.  

5x105 RAW264.7 cells were placed on fibronectin-coated glass coverslips in serum-reduced 

(0.5 % FCS) media. Following adhesion, cells were stimulated with 40 mM NaCl, 10 nM C5a, 

15 nM CCL2 or 25 nM CXCL12, respectively, for 5 min. Subsequently, the coverslips were 

washed twice with PBS and the cells fixated in 4 % PFA in PBS for 20 min. For 

permeabilization, cells were incubated in 0.2 % Triton-X 100 in PBS for 5 minutes. The 

upper well chamber 

lower well chamber 
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staining with TRITC-Phalliodin and DAPI occurred for 45 min in the dark. The remaining 

staining solution was removed by washing three times with PBS and finally once with A. 

bidest. To avoid fading of the fluorescent dyes, the coverslips were mounted in FluorShield 

containing DABCO (1,4-Diazabicyclo[2.2.2]octane), and stored at 4 °C in the dark. 

Microscopic analysis of cell morphology and the actin cytoskeleton was performed with an 

inverted confocal laser scanning microscope (Fluoview 1000, Olympus).   

 

 

2.2.3.3   Dynamics of lamellipodia formation measured by kymograph and     
              line-scan analysis 
 
Lamellipodia are cell membrane protrusions that define the moving edge of the cell. They are 

formed by rapid reorganization and polymersiation of the actin cytoskeleton. In order to study 

lamellipodia dynamics in RAW264.7 cells, cells were adhered on a glass surface of a Lab-

Tek Chamber Slide in DMEM with reduced FCS (0.5 %) for 20 minutes in a 5 % CO2 

atmosphere with 95 % humidity at 37°C. Following stimulation with 40 mM NaCl, 10 nM C5a, 

15 nM CCL2 or 25 nM CXCL12, respectively, RAW264.7 cells were observed over 5 min by 

taking a time series of phase contrast images every 2 s with an inverted Nikon Eclipse TE 

2000-E microscope (supplied with a climate chamber providing 37 °C, 5 % CO2 and 

humidity). For analysis, the area of interest was selected in each image by assigning lines 

that cross the motile lamellipodium of the polarized cell (white line in Figure 3-7 B), resulting 

in 1-pixel-wide areas. These were cut out and aligned in oder to receive time-space-plots 

(Figure 3-7 B), so-called kymographs. Since lamellipodia protrusions are now depicted as 

linear ascending lines, the velocity of lamellipodia movement in µm/min can be determined 

by the slope of these lines (v = dx /dt, yellow lines in Figure 3-7 B). The kymograph and line-

scan analysis was performed using the walking average plug-in for ImageJ1.38 (National 

Institutes of Health; http://imagej.nih.gov/ij/). 

 

2.2.3.4   Cell Viability Assays 
 

2.2.3.4.1   Cell Titer-Blue Viability Assay  

In order to quantify cell viability, the metabolic activity of the cells was measured with Cell 

Titer-Blue Cell Viability Assay from Promega according to manufacturer´s protocol. The Cell 

Titer-Blue Reagent contains the dye resazurin which is reduced to resorufin by living cells. 

Therefore, the amount of resorufin is directly proportional to the number of living cells and 

can be determined in a fluorometer (560 nm excitation/ 590 nm emission). For this assay, 
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1x 104  RAW264.7 cells or BMDMs per well were transferred to a 96 well plate in serum-

reduced media (0.5 % FCS) and following adhesion, Na+ concentration of the media was 

increased by adding 10 to 100 mM NaCl. After 20 hours, the amount of reduced resorufin 

referring to metabolic cell viability was measured with a GloMax-Multi microplate reader.  

 

2.2.3.4.2   Apoptotic/Necrotic/Healthy Cells Detection Kit  

Influence of increased salt concentration on cell viability was additionally quantified with an 

Apoptotic/Necrotic/Healthy Cells Detection Kit from Promokine. FITC-coupled Annexin V 

allows specific staining of phosphatidylserine-covered apoptotic cells, while an ethidium-

based fluorescent dye permeates necrotic cells only and binds to nucleic acid. All nuclei of 

living cells are stained with cell the membrane-permeable dye Hoechst. Therefore, apoptotic, 

nectrotic and living cells can be distinguished specifically within the same cell population. For 

this assay, 1x105 RAW264.7 cells were placed on glass coverslips in serum-reduced DMEM 

(0.5 % FCS) and stimulated with excess 40 mM NaCl. 5 % DMSO stimulus was used as an 

apoptosis-inducing control. Fixation and staining of cells was performed as described in the 

protocol for adherent cells provided by the manufacturer. Microscopic analysis was 

performed with a Nikon ECLIPSE i80. 

 

2.2.3.5   Flow cytometry 
 
Flow cytometry allows analysis and quantification of differently labeled cell populations in a 

single cell solution. The activation status of BMDMs was studied following staining of CD86 

with a PE-conjugated rat-anti-mouse antibody (eBioscience) and staining of CD25 with an 

APC-conjugated rat-anti-mouse antibody (BD Pharmingen). Briefly, 0.5x106 BMDMs were 

placed in FACS tubes and washed with PBS (centrifugation at 300 g for 5 minutes at 4 °C). 

Staining was performed in 50 µl PBS for 30 minutes in the dark. After washing with 150 µl 

PBS for 3 times, cells were suspended in 200 µl PBS and analyzed using a FACS CantoII 

device. 
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2.2.4    Biochemical assays 
 
 
2.2.4.1   Flame photometry 
 
The concentration of alkali and alkaline earth metal elements in a solution can be measured 

by flame photometry. The diluted measuring solution is dispersed into a flame as a fine 

aerosol, following wavelength analysis which corresponds to a specific element.  

For determination of Na+ concentration in cell culture media, samples of both the upper and 

the lower wells of the transwell system were collected at different time points after NaCl 

supplementation (1, 10, 30 minutes, and 1, 2, 4, 8, 12, 16 and 20 hours). The Na+ content in 

the supernatants was measured by flame photometry in an EFOX 5053 device in comparison 

to an urine standard. Liquichek Urine Chemistry Control containing known Na+ 

concentrations was used to ensure the accuracy of the photometer.  

 

2.2.4.2   Osmometer measurements 

 
Osmolality is defined by the number of osmoles of solute per kilogram of solvent (usually 

water) in an aqueous solution (osm/ kg H2O). It can be measured by determination of 

freezing-point depression, since osmotically active particles like salt decrease the freezing 

point of an aqueous solution. To determine osmolality of media solutions applied in the 

transwell migration assays, samples from different osmotic stimuli (+40 mM NaCl, +80 mM 

Urea, +80 mM Mannitol) were analyzed with a freezing point micro-osmometer OM815, after 

the osmometer had been calibrated with a 300 mosm/kgH2O standard solution. A sample of 

0.9 % NaCl-solution (186 mosm/ kg H2O) was used to ascertain the accuracy of the 

measurements.  

 

 

2.2.4.3   Nitrite determination by Griess reaction  

Indirect verification of nitric oxide (NO) production by cells was performed with a Griess 

diazotization reaction to detect organic nitrite, which is formed under physiological conditions 

by spontaneous oxidation of NO. When sulfanilic acid is added to a nitrite-containing sample, 

a diazonium salt is formed. In the second step, binding to N-(1-naphthyl)ethylenediamine 

(NED) results into a pink azo dye that displays an absorbance at 548 nm and can therefore 
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be quantified in a spectrophotometer. In this work, the assay was used to test the ability of 

Polymyxin B to inhibit LPS-dependent NO-production. 

2x 105 cells were placed in a 96 well plate in 200 µl serum-reduced media (0.5 % FCS). After 

adhesion, the cells were stimulated for 24 hours with 10 ng/ml, 200 ng/ml or 1 µg/ml of 

Lipopolysaccharide, in combination with each 1, 10 or 50 µg/ml of Polymyxin B, respectively. 

Supernatants were collected and stored at -20 °C.      

For detection of nitrite according to Griess reaction, 50 µl of supernatants were transferred to 

a 96 well plate in triplicates and 50 µl of Griess reagent 1 (1 % sulfanilamide and 5 % ortho-

phosphoric acid in H2O) were added. Following 5-10 minutes incubation in the dark at room 

temperature, 50 µl of Griess reagent 2 (0.1 % NED) were added. Following incubation in the 

dark, absorbance was measured at 550 nm in the GloMax-Multi microplate reader. As a 

standard for nitrite, concentrations from 1.56 - 100 µM of sodium nitrite were used. 

 

 

2.2.5   RNA interference (RNAi) against TonEBP  

 
In order to diminish the amount of TonEBP protein in RAW264.7 cells, RNA interference was 

used. With this method, introduction of small interfering RNAs (siRNAs) into the cells leads to 

a decreased protein expression by degrading the specific mRNA coding for the target 

protein. Different methods of transfecting RAW264.7 cells with siRNA directed against 

TonEBP were applied: 

 

2.2.5.1   Electroporation 

During electroporation the cell membrane is subjected to a high electrical field stimulus and 

is therefore permeable for entry of siRNA complexes. 10 µg of ON-TARGETplus siRNA 

duplexes directed against the target sequence of murine TonEBP or 10 µg of AllStars 

Negative siRNA were transferred to a 4-mm (2-mm for HL60 protocol) cuvette and 2 x 106 

RAW 264.7 cells in 100μl Opti-MEM were added. After incubation for 3 min, electroporation 

was performed in a GenePulser Xcell using one of the following pulse conditions: 

a) exponential, 400 V, 150 μF,  

b) square wave, 1000 V, 2 x 1 ms pulse 

c) HL60 preinstalled mammalian protocol for adherent cells (square wave, 140 V, 25 ms 

pulse, in 2-mm cuvette)  
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Three days following electroporation, migration behavior of untreated cells, cells that had 

been electroporated without siRNA (mock), electroporated with ns-siRNA and of cells 

electroporated with siRNA duplexes directed against TonEBP was analyzed in a transwell 

assay. Efficiency of the siRNA-mediated silencing was evaluated by Western Blot analysis 

following stimulation with additional 40 mM NaCl for 24 hours. 

 

2.2.5.2   Transfection with Lipofection agents 

Positively charged lipofection agents bind negatively charged nucleic acids and form 

liposomes, which are taken up by the cellular membranes and are therefore used to 

introduce siRNA into cells. FuGENE HD (Roche Applied Science), Lipofectamine 2000 and 

Oligofectamine transfection reagents (both Invitrogen) were tested for transfection with 

aforementioned siRNA duplexes according to protocols listed below, following 48 h and 72 h 

incubation. Evaluation of knockdown efficiency was performed by Western Blot analysis after 

stimulation with additional 40 mM NaCl for 20 hours. 

Transfection with FuGENE HD was performed in 6-well plates comparable to 35 mm petri 

dishes as described by Kawaai et al. (2008) using 30 pmol siRNA in 100 µl Opti-MEM for 

1x105 cells and 6 µl FuGENE reagent. The culture medium was replaced following 6 hours 

incubation. Lipofectamine 2000 and Oligofectamine were used according to the Invitrogen 

Stealth siRNA Transfection protocol in 6 well or 12 well plates, respectively. For transfection 

with Lifpofectamine 2000, 3x105 cells were incubated with complexes of 5 µl LF in 250 µl 

Opti-MEM and 100 pmol siRNA in 250 µl Opti-MEM for 4 hours in DMEM without antibiotics. 

For transfection with Oligofectamine, 1x105 cells were treated with complexes of 100 pmol 

siRNA in 85 µl Opti-MEM and 3 µl OF in 10 µl Opti-MEM in serum-free DMEM without 

antibiotics. Following incubation for 4 hours at 37 °C, cells were washed and the medium 

was replaced with normal DMEM. 

 

 

2.2.6   Protein biochemistry 

 
2.2.6.1   Western blot analysis of protein expression 

For analysis of TonEBP protein expression, 2 x 106 RAW264.7 cells were placed in cell 

culture dishes in serum reduced DMEM (0.5 % FCS) and exposed to additional 40 mM NaCl 

for 20 hours. Afterwards, cells were washed with PBS and lysed in 8 M urea supplied with 
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10 % Complete Protease Inhibitor Cocktail, followed by incubation for 30 min on ice and 

centrifugation for 10 min at 13.000 rpm. The supernatant was used for immunoblot analysis 

and stored at -80 °C. The protein concentration was measured by Bradford assay using Roti-

Quant (5x) and a bovine serum albumin (BSA) standard according to manufacturer´s 

protocol. For immunoblotting, 20 - 40 µg of total protein were separated on 8 % SDS-

polyacrylamide gels under reducing conditions including a prestained protein standard. Wet 

tank electroblotting onto a polyvinylidene diflouride (PVDF) membrane was performed for 2 

hours at 80 V in a 4 °C cold room using previously cooled transfer buffer. The blots were cut 

below the 75 kDa band according to the prestained protein standard and blocked with 5 % 

nonfat milk in PBS and 0.1 % Tween 20, pH 7.5 (PBST) for 1 h at room temperature. The 

upper part of the blot was incubated overnight at 4 °C with a rabbit anti-TonEBP antibody 

diluted 1:1.000 in 5 % nonfat milk in PBST, while the lower part of the blot was incubated 

with rabbit anti-actin antibody under the same conditions. After three washes with PBST, the 

blots were incubated with horseradish peroxidase-conjugated anti-rabbit IgG (Pierce, 

Rockford, USA) diluted 1:1000 in blocking solution for 90 minutes at room temperature. After 

washing with PBST for three times, chemiluminescent signals were detected using ECL 

Western Blotting Substrate on autoradiographic film. 

 

2.2.6.2   Detection of CCL2 production in RAW264.7 cells by ELISA 
 
Analysis of CCL2 production in RAW264.7 cells was performed by enzyme-linked 

immunosorbent assay (ELISA). Following adhesion of 2x105 cells in 96-well plates in serum 

reduced (0.5 % FCS) DMEM, the medium was replaced and cells were stimulated with 

additional 40 mM NaCl. Supernatants of cells cultivated with and without excess NaCl were 

collected after 1, 2, 4, 8, 16, and 20 hours and quickly stored at -20 °C. Later, the amount of 

CCL2 was quantified using mouse CCL2 ELISA according to manufacturer´s instructions 

(R&D Duoset). 

 

2.2.6.3   Detection of Leukotriene B4 production by ELISA 
 
2x105 RAW264.7 cells were placed in a 96-well plate in serum-reduced DMEM (0.5 % FCS) 

and stimulated with additional 40 mM NaCl. Supernatants of untreated and NaCl stimulated 

cells were collected after 8, 16 and 20 hours, while supernatants of cells stimulated with 

1 µg/ml LPS for 20 hours were used as positive control. Also, supernatants of cells 

stimulated with the chemokines CXCL12 and CCL2 (200 ng/ml) for 20 hours were collected. 

All samples were quickly stored at -20 °C until analysis. Concentration of LTB4 in 
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supernatants was determined by ELISA with Leukotriene B4 EIA kit according to the protocol 

provided by the manufacturer (Cayman). 

 

 

2.2.7   Statistical analysis 
 

All experiments were repeated at least three times using duplicates or triplicates. For each 

transwell assay sample, at least 5 visual fields were analyzed microscopically. 

All displayed data are expressed as mean ± standard deviation (SD). Testing for normal 

distribution of sample data was performed with the Kolmogorov-Smirnov test before using 

two-tailed Student’s t-test to compare means. The homogeneity of variances for the t-test 

was tested with the Levene's test. Values of p < 0.05 were considered significant. All tests 

were performed using IBM SPSS Statistics 20.0 software. Assigned p values were p* < 0.05, 

p** < 0.01, p*** < 0.001. 
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3   Results 

 

The results shown in this work describe the process of the discovery and subsequent 

characterization of salt-dependent chemotaxis of macrophages. At first, migration toward 

excess NaCl was investigated using transwell migration assays in RAW264.7 cells. This was 

compared to migration behavior of BMDMs, peritoneal macrophages and BMDCs. On the 

mechanistic level, the early effects of a NaCl stimulus on cell morphology, actin cytoskeleton 

reorganization and lamellipodia formation were studied. This was followed by analysis of late 

processes that require protein synthesis, including the induction of chemoattractant factors 

by a hypertonic NaCl stimulus and the participation of the osmoprotective transcription factor 

TonEBP. 

 

 

3.1   Viability of RAW264.7 cells and BMDMs in hypertonicity 
 
Before using functional assays employing excess NaCl as a stimulus, possible cytotoxic 

effects of a high NaCl concentration needed to be excluded. According to the previously 

established data, RAW264.7 cells were stimulated for 24 hours with excess 40 mM NaCl in 

order to investigate the expression of the osmoprotective transcription factor TonEBP 

(Machnik et al. 2009, PhD thesis Agnes Schröder). Flame photometric measurements 

determined that the sodium concentration was raised from 155 mM to 195 mM, which 

reflected the concentration differences observed in the skin of rats following a high salt diet 

(Machnik et al. 2009). For migration experiments in this work it needed to be shown that 

osmotic stress induced by high NaCl concentration does not alter cell viability of 

macrophages. Therefore, in addition to identifying dead cells by trypsin blue staining, more 

specific cell viability assays were performed which determined metabolic activity of cells and 

investigated a possible induction of apoptosis. 

The metabolic activity of RAW264.7 cells referring to cell viability was studied with a 

CellTiter-Blue cell viability assay following application of stimuli from 10 mM to 200 mM NaCl 

for 20 hours (resulting in final sodium concentrations of 165 mM to 355 mM). Figure 3-1 A 

shows that there was no significant difference in cell viability compared to untreated 

RAW264.7 cells following stimuli of 10 mM to 40 mM NaCl. In fact, cell viability of cells 

treated with 40 mM NaCl was approximately 90 % compared to control cells. However, from 

excess 60 mM NaCl onwards, cell viability decreased significantly. At a stimulus of 200 mM 
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NaCl, no more than 15 % of the cells were viable, which was similar to cells treated with 5 % 

DMSO. In addition, the viability tests were performed with BMDMs treated with a NaCl 

stimulus of 40 mM to 200 mM. Figure 3-1 B shows that there was no significant difference in 

cell viability between untreated cells and BMDMs stimulated with 40 mM NaCl. Cell viability 

compared to unstimulated cells decreased from 80 mM NaCl onwards until less than 20 % of 

BMDMs were viable following a stimulus of 200 mM NaCl (Figure 3-1 B).  

 

 

Figure 3-1: Cell Viability of RAW264.7 cells and BMDMs is not disturbed at excess  
                  40 mM NaCl 

Metabolic activity of RAW264.7 cells (A) and BMDMs (B) measured with CellTiterblue assay 
following stimulation with excess 10 mM to 200 mM NaCl for 20 hours. Cell viability index 
indicates NaCl-stimulated cells compared to untreated control cells. RAW264.7 cells 
following stimulation with 40 mM NaCl for 20 hours were quantified with Apoptotic/ necrotic/ 
healthy cell staining kit (C). Data are shown as mean ± SD with *p < 0.05, **p < 0.01, ***p < 
0.001 as compared to unstimulated control cells. n > 3 in triplicates. Partly modified from 
Müller et al. (2013). 
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As shown by others, osmotic stress due to a high NaCl concentration results in cell shrinkage 

and can lead to protein degradation and apoptosis in PBMCs (Gastaldello et al. 2008). In 

order to investigate whether excess NaCl might induce apoptosis in RAW264.7 cells, an 

Apoptotic/necrotic/healthy cell staining kit was used following stimulation with excess 40 mM 

NaCl for 20 hours. Cell staining with specific fluorescent dyes allowed quantification of living, 

apoptotic or necrotic cells, respectively. Figure 3-1 C shows that quantification of stained 

cells revealed no significant increase in apoptotic or dead cells compared to unstimulated 

cells. Altogether, these results indicate that a NaCl stimulus of 40 mM does not alter cell 

viability in RAW264.7 cells and BMDMs. Furthermore, this NaCl concentration does not 

induce apoptosis. Since this stimulus was already established by Machnik et al. (2009) and is 

based on in vivo data, for all following migration studies a stimulus of 40 mM NaCl was 

applied. If not stated differently, “excess NaCl” describes an additional 40 mM NaCl stimulus 

resulting in a final NaCl concentration of 195 mM. 

 

3.2   Characterization of macrophage migration toward excess NaCl          
 
Previous results by Machnik et al. (2009) have shown that macrophages accumulate in the 

skin of rats that were fed a high salt diet. These macrophages proved to be essential for 

regulation of interstitial electrolyte composition and blood pressure. The question remained 

how macrophages sense increasing concentrations of stored sodium in the interstitium and 

subsequently migrate toward these areas of high sodium concentrations. The hypothesis 

underlying this work is that a chemoattraction toward a high sodium concentration similar to 

chemotaxis during immune responses might be the responsible mechanism.  

To test this, migration of RAW264.7 cells toward a stimulus of excess 40 mM NaCl and 

control chemokines was investigated in different cell migration assay systems, including real-

time imaging of single cells during the migration process. 

 

3.2.1   Macrophages recognize excess NaCl as chemotactic stimulus  
 
A transwell migration assay (modified Boyden chamber) was used to investigate whether 

RAW264.7 cells migrate toward an increased NaCl concentration. A stimulus of excess 40 

mM NaCl had been established previously by Machnik et al. (2009), who found that this 

concentration simulates the difference between the combined serum Na+ and K+ 

concentrations and the ratio of the Na+ and K+ content relative to water in skin of rats that 

were fed a high salt diet. 
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Figure 3-2: Salt-dependent chemotaxis is specific to increased osmolality by NaCl 

Transwell migration assay of the murine macrophage cell line RAW264.7 toward the excess 
NaCl, urea or mannitol, respectively (A). The migration index compares the number of 
transmigrated cells to CXCL12-stimulated cells after 20 hours. [-/-] indicates that no stimulus 
was added to the transwells. The stimulus was added to [-/+] = the lower well of the 
transwell; [+/-] = to the upper well of the transwell; [+/+] = to both wells of the transwell (A). 
Osmolality of stimuli determined by osmometer analysis (B). **p < 0.01, ***p < 0.001 as 
compared to control of cells without stimulus. n < 3 in duplicates (modified from Müller et al. 
(2013)) 

 

After raising the NaCl concentration with additional 40 mM in the lower well of the transwell 

assay, a significantly increased migration response was found compared to unstimulated 

control cells after 20 hours (Figure 3-2 A). Quantification and comparison of transmigrated 

cells to cells stimulated with the chemokine CXCL12 (“migration index”) revealed a migration 

capacity of NaCl-stimulated cells of about 60 %. A stimulus of excess 80 mM NaCl led to a 

still significant, but lower migration response compared to excess 40 mM NaCl. Application of 

control osmolytes showed that hyperosmolarity by NaCl was specifically required to elicit a 
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migration response, since RAW264.7 cells did not migrate toward increased hyperosmolality 

by urea or toward increased hypertonicity by mannitol, respectively. This finding was 

confirmed by cryoscopic (freezing point) measurements of osmolality, which revealed an 

equal value of approximately 400 mosm/ kgH2O for all applied osmotically active stimuli 

(Figure 3-2 B). These results led to the question whether an increasing NaCl gradient is 

required to induce RAW264.7 cell migration.  

Therefore, migration behavior in a reverse gradient by application of 40 mM NaCl to the 

upper well of the transwell assay only ((+/-) in Figure 3-2 A) was studied. In addition, the 

NaCl stimlulus was applied to both wells of the transwell in order to analyze migration in an 

uniformly increased NaCl environment ((+/+) in Figure 3-2 A). The results show that an 

increasing gradient is the only setting in which the cells migrated significantly, while both the 

decreasing as well as the abolished gradient did not lead to a directional migration response. 

Altogether, these results indicate that an increasing stimulus of NaCl is a prerequisite for salt-

dependent chemotaxis.  

 

 

3.2.2   Migration of RAW264.7 cells toward excess NaCl is not due to   
           contamination by endotoxin  
 
It has been described previously that macrophages recognize endotoxin as a chemotactic 

stimulus (Tajima et al. 2008). In order to investigate if RAW264.7 migration toward NaCl was 

influenced by contamination with lipopolysaccharides (LPS), all reagents were treated with 

Polymyxin B (PmxB), which binds LPS and therefore neutralizes its cell-activating ability. 

Different concentrations of PmxB were tested for their ability to abrogate LPS-dependent NO 

production in RAW264.7 cells, as was confirmed by Griess test (Griess diazotization 

reaction). Figure 3-3 A shows that although 1 µg/ml of PmxB had an effect on LPS 

concentrations ranging from 10 ng/ml to 1 µg/ml, only 50 µg/ml PmxB were able to 

completely diminish a stimulus of 1 µg/ml LPS. This effect was confirmed in a CellTiter-Blue 

cell viability assay, when addition of 50 µg/ml PmxB rescued LPS-dependent reduction of 

metabolic viability in RAW264.7 cells (Figure 3-3 B). 

When cell migration toward excess NaCl or 25 nM CXCL12 was investigated with and 

without the presence of 50 µg/ml PmxB, no significant differences were found (Figure 3-3 C). 

In addition, migration behavior of LPS-activated BMDMs toward 40 mM NaCl or 15 nM CCL2 

was not altered compared to untreated cells (Figure 3-3 D). When exposed to control media 

without a chemoattractive stimulus, LPS-activated BMDMs showed no increased 
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chemokinesis. Activation of BMDMs was confirmed by upregulation of CD86 by flow 

cytometry analysis (Figure 3-3 E, F).  

Altogether, these results affirm that contamination of cell reagents by endotoxin is not 

responsible for chemotaxis toward an excess salt stimulus.  
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Figure 3-3: LPS-independent migration of macrophages 

Nitrite production of RAW264.7 cells measured by Griess reaction (A) and cell viability 
determined with CellTiter-Blue cell viability assay (B) following stimulation with different 
concentrations of LPS and PmxB. Transwell migration assay of RAW264.7 cells in the 
presence of PmxB (C) and of BMDMs stimulated with 200 ng/ml LPS (D) toward excess 
40 mM NaCl, respectively. CD86 upregulation in LPS-stimulated BMDMs (E, F). Cell viability 
index indicates cell viability compared to untreated control cells (B). Migration index is 
determined by transmigrated cells compared to migration toward CXCL12 (C) or CCL2 (D). 
“+” indicates that the stimulus was added to the lower well of the transwell (C, D). *p < 0.05, 
**p < 0.01, ***p < 0.001 as compared to unstimulated control cells. n = 3 (partly modified from 
Müller et al. (2013)) 
 

 

3.2.3   Migration of RAW264.7 cells toward a hypertonic NaCl stimulus is dose- 
           dependent  

Since the migration response toward excess 80 mM NaCl was lower than toward 40 mM 

NaCl, the question arose whether salt-dependent chemotaxis followed a dose-dependency 

and where the maximum of the cell migration was located. For this reason, migration 

response in a transwell assay was investigated following a stimulus of excess 10 mM to 

100 mM NaCl. Quantification of transmigrated RAW264.7 cells in comparison to CXCL12-

stimulated cells showed that RAW264.7 cells also significantly migrated toward a stimulus of 

excess 10 mM NaCl (Figure 3-4). 

However, the maximum of the migration response was observed at a stimulus of additional 

40 mM NaCl. At higher concentrations, cell migration decreased, and from 100 mM NaCl 
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onward did not differ from the migration response of untreated cells. In order to test if 

decreasing cell viability was responsible for a lower migration response, the same NaCl 

concentrations were used in a CellTiter-Blue cell viability assay (see Figure 3-1 A).  

 

 

Figure 3-4: Dose-dependent migration of RAW264.7 cells toward excess NaCl  

Transwell migration assay of RAW264.7 cells toward excess 10 to 100 mM NaCl in relation 
to migration of CXCL12-stimulated cells (migration index). “+” indicates that the stimulus was 
added to the lower well of the transwell. *p < 0.05, **p < 0.01 n = 3 in duplicates (from Müller 
et al. (2013)). 

 

Figure 3-1 shows that RAW264.7 cells stimulated with additional 40 mM NaCl for 20 hours 

were about 90 % viable compared to untreated control cells. Nevertheless, from 60 mM 

onward cell viability was significantly reduced. These results indicate that it is not possible to 

clearly differentiate between decreased viability and cell migration from 60 mM onward. 

Altogether, since the stimulus of excess 40 mM NaCl elicited the maximum migration 

response (Figure 3-3), had no effect on cell viability (Figure 3-1) and corresponded to 

previously measured in vivo data (Machnik et al. 2009), it was used in all following 

experiments.  
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3.2.4   Migration of primary macrophages and dendritic cells toward excess    
            NaCl 
 
In order to investigate if other macrophages apart from the RAW264.7 cell line also 

recognize a high NaCl concentration as a chemoattractant stimulus, bone marrow derived 

macrophages and peritoneal macrophages were analyzed. After applying a stimulus of 

excess NaCl in a transwell migration assay, a highly significant number of both transmigrated 

BMDM cells and peritoneal macrophages compared to untreated cells could be found. 

Migration capacity of BMDMs was approximately 75 % as compared to CCL2-stimulated 

cells (Figure 3-5 A), while migration capacity of peritoneal macrophages was approximately 

50 % (Figure 3-5 B). With both BMDMs and peritoneal macrophages showing a significant 

and robust migration response toward a high NaCl stimulus which is comparable to 

RAW264.7 data, these results indicate that salt-dependent chemotaxis is not restricted to the 

RAW264.7 cell line. 

Next, the hypothesis needed to be tested whether only macrophages recognize a high NaCl 

concentration as a chemoattractant stimulus or if other migratory cells are also capable of 

salt-dependent chemotaxis. Therefore, migration behavior of both motile immature dendritic 

cells (imDCs) and mature dendritic cells (mDCs) derived from bone marrow stem cells was 

investigated. Upon stimulation with LPS, moderately migrating imBMDCs matured into highly 

motile mBMDCs. Transwell migration assays revealed that both imBMDCs and mBMDCs 

migrated toward the chemokine control (CXCL12 or CCL19), but neither showed a migration 

response toward the excess NaCl stimulus (Figure 3-5 C and D). Therefore, it appears that 

migration toward a hypertonic NaCl concentration remains a specific feature of macrophages 

and is not a common characteristic of migratory cells of the myeloid lineage. 
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Figure 3-5: Migration of primary macrophages and dendritic cells toward excess NaCl 
 
Transwell migration assay of BMDMs (A), peritoneal macrophages (B), mBMDCs matured 
with 200 ng/ml LPS (C) and unstimulated (immature) imBMDCs (D). The migration index was 
determined by the number of transmigrated cells in relation to cells transmigrated toward 
CCL2 (A) and (B), CCL19 (C) or CXCL12 (D). “+” indicates that the stimulus was added to 
the lower well of the transwell. Error bars indicate ± SD, n = 3, ***p < 0.001 as compared to 
cells without stimulus. (BMDM data by Thomas Quast, University of Bonn. Partly modified 
from Müller et al. (2013)). 
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3.2.5   Delayed migration kinetics of macrophages in the Na+ gradient 
 
Since RAW264.7 cells, BMDMs and peritoneal macrophages are slow migrating cells, it was 

unclear whether the NaCl gradient was stable for the duration of the transwell experiment. 

Therefore, media samples from both the upper and lower wells of the transwell assay were 

collected over 20 hours and the Na+ concentration was determined by flame photometry. 

Figure 3-6 shows that although the Na+ gradient started at Δ 40 mM Na+, it dissolved quickly. 

8 hours into the experiment, the difference between the upper and lower well was no more 

than Δ 10 mM Na+. Interestingly, when cell migration kinetics of RAW264.7 cells was 

analyzed, cell migration did not significantly increase until 8 hours. This data indicates that 

per se slow migrating RAW264.7 macrophages display a delayed migration response to a 

chemotactic NaCl stimulus. However, at the time point when cell migration is initiated, the 

Na+ concentration gradient has already disappeared. 

                       

Figure 3-6: Migration kinetics of RAW624.7cells in the Na+ gradient  
Measurement of migration capacity toward excess 40 mM NaCl compared to CXCL12 
(migration index) in a transwell migration assay over 20 hours. Δ Na+ indicates the difference 
in sodium concentration between the upper and lower wells of the transwell chamber as 
determined by flame photometry. Migration index compares transmigrated cells to CXCL12-
stimulated cells. (n = 3 in duplicates) p* < 0.05, p** < 0.01 as compared to migration at 1 min. 
Partly modified from Müller et al. (2013) 
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3.3   Investigation of lamellipodial dynamics in RAW264.7 cells: Excess NaCl   
        has no direct effect on actin cytoskeleton reorganization  
 
One of the first fundamental events in cell migration consists of reorganization of the actin 

cytoskeleton and formation of membrane protrusions (lamellipodia). Because of the delayed 

migration of RAW264.7 cells, the question remained if during salt-dependent chemotaxis, a 

fast reorganization of the actin cytoskeleton and cell polarization would also take place 

during the first minutes following application of the stimulus. This hypothesis was tested in 

RAW264.7 cells by phalloidin-based staining of F-actin following a stimulus of excess NaCl. 

Analysis by confocal laser-scanning microscopy revealed a high variability in cell morphology 

and actin cytoskeleton structure, which did not allow quantification of differences between 

salt-stimulated and untreated control cells (Figure 3-7 A). Moreover, no considerable 

changes in lamellipodia formation in RAW264.7 cells treated with the chemokines CXCL12, 

CCL2 or the complement factor C5a, respectively, could be observed. 

 

In order to precisely investigate potential differences in actin cytoskeleton mobilization, a 

more sensitive method was applied that analyzed morphological changes and dynamics of 

lamellipodia formation in RAW264.7 cells by time-lapse phase contrast video microscopy 

(Methods 2.2.3.3). Velocity of membrane protrusion formation was determined by computer-

assisted kymograph and line-scan analysis, using ImageJ software (Figure 3-7 B, C). Figure 

3-7 shows that CCL2, CXCL12 and C5a significantly increased the mean lamellipodia 

formation velocity during 5 minutes following the applied stimuli. Particularly, CCL2 and 

CXCL12 increased lamellipodia formation to approximately 1-2 µm/min, while stimulation 

with C5a resulted in a response of about 1 µm/min. However, a stimulus of excess NaCl was 

unable to induce a significant change in lamellipodial dynamics compared to the untreated 

control. These results indicate that excess NaCl is not directly involved in the early events of 

actin cytoskeleton reorganization during salt-dependent chemotaxis.   
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Figure 3-7: Excess NaCl does not influence dynamics of lamellipodia formation 
 
Microscopic analysis of TRITC-Phalloidin stained F-actin (red) in unstimulated RAW264.7 
cells and cells treated with excess 40 mM NaCl, 10 nM C5a, 15 nM CCL2, or 25 nM CXCL12 
(A). Cell nuclei were visualized by DAPI staining (blue). Images were captured with an 
inverted confocal laser scanning microscope focused to the basal plasma membrane of the 
cells. Microscopic analysis of lamellipodial dynamics in RAW264.7 cells on a glass surface 
stimulated with excess 40 mM NaCl, 10 nM C5a, 15 nM CCL2, or 25 nM CXCL12 (B-D). A 
time-series of lamellipodial dynamics was created using phase contrast over a period of 
5 min at 2 sec per frame. The area of interest in the polarized cell was marked on each 
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image by lines that cross the motile lamellipodium (white line in B), resulting the yellow line in 
the kymograph analysis (C). The slope of the yellow line was analyzed by line-scan analysis 
using Image J to determine the velocity of lamellipodia protrusion formation. Quantification of 
dynamics of lamellipodia formation in motile RAW264.7 cells (D). Three kymographs per cell 
were analyzed; each dot represents the value of one single kymograph (C). Data are 
representative for one experiment out of three. Error bars indicate ± SD. ***p < 0.001. Bars in 
microscopic images represent 10 μm (A, B). 
Data by Thomas Quast, University of Bonn. (from Müller et al. (2013)) 
 
 

 

3.4   Salt-dependent chemotaxis of macrophages depends on protein 
        biosynthesis and Gαi-coupled receptors 
 
Since RAW264.7 macrophages migration occurred with a delay of about 8 hours into the 

transwell migration assay, the question arose whether this observation also reflects the time 

required for de novo protein synthesis preceding the migratory activity of the cells. In order to 

test if salt-dependent chemotaxis relies on de novo protein synthesis, the small molecule 

inhibitor cycloheximide was applied. In addition, the participation of Gαi-coupled GPCRs, to 

which also includes the family of chemokine receptors, was investigated by the presence of 

pertussis toxin during a transwell assay.  

 

 

3.4.1   Cycloheximide inhibits salt-dependent chemotaxis in RAW264.7 cells 

Cycloheximide is derived from the bacterium Streptomyces griseus and is widely used for in 

vitro experiments to arrest eukaryotic protein biosynthesis. In particular, binding of 

cycloheximide to the large ribosomal subunit inhibits the elongation phase of translation by 

blockade of tRNA translocation (Schneider-Poetsch et al. 2010).        

RAW264.7 macrophages were preincubated in 10 µg/ml cycloheximide for one hour before 

the start of the transwell assay. Analysis of the migration behavior in the presence of 

cycloheximide showed that cycloheximide impaired migration of RAW264.7 cells toward 

excess NaCl, as well as migration toward the chemokine CXCL12 (Figure 3-8). Untreated 

cells had a normal migration capacity toward excess NaCl of approximately 50 % compared 

to migration toward the CXCL12 stimulus. These data indicate that de novo protein synthesis 

is a requirement for cell migration toward both chemokines like CXCL12 and toward a high 

NaCl concentration.  
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Figure 3-8: Migration behavior of RAW264.7 cells in the presence of cycloheximide
  
Transwell migration assay of RAW264.7 cells in the presence and absence of 10 µg/ml 
cycloheximide. “+” indicates that the stimulus was applied to the lower well of the transwell 
assay. (n = 3 in duplicates). Error bars indicate ± SD, p** < 0.05, p*** < 0.01 as compared to 
unstimulated control.  
 

 

 

 

3.4.2   Salt-dependent chemotaxis of macrophages requires Gαi - coupled     
           receptors  

The extracellular concentration gradient of chemokines is conveyed into the cell by binding to 

chemokine receptors, which belong to the G-protein-coupled receptor (GPCR) family. 

According to literature (Katada and Ui 1982; Burns 1988), the exotoxin produced by the 

bacterium Bordetella pertussis selectively inhibits the heterotrimeric G-proteins of the 

chemokine receptor by ADP-ribosylation of the Gαi subunit. 

In order to elucidate the role of Gαi-coupled GPCRs and in particular chemokine receptors in 

salt-dependent chemotaxis RAW264.7 macrophages were incubated with pertussis toxin 

during a transwell migration experiment. Migration behavior of RAW264.7 cells toward 
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CXCL12 and NaCl in the presence of 100 ng/ml or 200 ng/ml pertussis toxin was 

investigated in a transwell migration assay. Figure 3-9 shows that both migration toward 

CXCL12 and excess NaCl was inhibited to chemokinesis level of unstimulated cells with 

increasing concentrations of pertussis toxin. This result suggested that a pertussis toxin-

sensitive GPCR with Gαi subunit is involved in salt-dependent chemotaxis.  

 

Figure 3-9: Migration of RAW264.7 cells toward NaCl is inhibited by pertussis toxin 

Transwell migration assay of RAW264.7 cells in the presence of 100 ng/ml or 200 ng/ml 
pertussis toxin, respectively. “+” indicates that the stimulus was applied to the lower well of 
the transwell assay. (n = 3 in duplicates). Error bars indicate ± SD, p** < 0.05, p*** < 0.01 as 
compared to unstimulated control. # compares control with pertussis toxin treated cells under 
the same conditions.  
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3.5   Investigation of protein expression-dependent mechanisms in salt-  
        dependent chemotaxis of macrophages  
 
 

3.5.1   NaCl-dependent induction of CCL2 in RAW264.7 cells  

The data so far indicated that a hypertonic NaCl stimulus had no direct effect on the early 

migration event of actin cytoskeleton reorganization. However, the delayed migration 

response of macrophages (see Figure 3-6) depended on protein expression machinery (see 

Figure 3-8), the participation of Gαi-receptors and thus possibly also chemokine receptors 

(Figure 3-9). Since previous observations showed a NaCl-dependent expression of 

chemokines, especially CCL2 (Kostyk et al. 2006; Kojima et al. 2010), a possible 

involvement of salt-dependent CCL2 induction was investigated in RAW264.7 cells. First, 

CCL2 needed to be confirmed as a chemoattractant stimulus for RAW264.7 cells. 

Subsequently, influence of CCL2 in salt-dependent chemotaxis was studied by measuring a 

CCL2 concentration in supernatants of RAW264.7 cells following stimulation with NaCl. In a 

final approach, RAW274.7 cells were incubated with different concentrations of an anti-CCL2 

antibody and an IgG isotype control during the transwell migration assay. 
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Figure 3-10: CCL2 production in RAW264.7 cells is not increased by excess NaCl 

Transwell assay comparing migration of RAW264.7 cells toward 15 nM CCL2 to 25 nM 
CXCL12 (A). RAW264.7 cells were stimulated with additional 40 mM NaCl over 20 hours and 
CCL2 secretion in supernatants was determined by ELISA (B). “+” indicates that the stimulus 
was applied to the lower well of the transwell assay. Error bars indicate ± SD. p** < 0.05, p*** 
< 0.01 as compared to unstimulated control. ELISA analysis performed by Luisa Klotz and 
Stephanie Hucke, University of Münster. Partly modified from Müller et al. (2013). 
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3.5.1.1   RAW264.7 cells produce CCL2 independently from a NaCl stimulus 

Before investigating a possible role of CCL2 in salt-dependent chemotaxis, the migration 

sensitivity of RAW264.7 cells toward a CCL2 stimulus needed to be confirmed. Figure 3-10 

shows that RAW264.7 cells significantly migrated toward CCL2, although the migration 

capacity was 25% lower than compared to CXCL12. Next, the hypothesis was tested 

whether a NaCl-stimulus leads to an increased CCL2 production, as described by Kojima et 

al. (2010) in NRK52E cells. For this reason, RAW264.7 cells were stimulated with excess 

NaCl and the CCL2 concentration in the supernatant was determined by ELISA 

measurement over 20 hours. However, no difference between NaCl-stimulated and 

unstimluated RAW624.7 cells could be found at all investigated time points, even though the 

amount of CCL2 increased in both settings during the 20 hours (Figure 3-10 B). These 

results indicate that while RAW264.7 cells produce CCL2, it is not induced by a high NaCl 

concentration and therefore cannot be accounted for as responsible mechanism in salt-

dependent chemotaxis. 

 

Figure 3-11: Inhibition of free CCL2 leads to decreased migration of RAW264.7 cells 
 
Transwell migration assay of RAW264.7 cells in the presence of an anti-CCL2 antibody 
including IgG isotype control. “+” indicates that the stimulus was applied to the lower well of 
the transwell assay. Error bars indicate ± SD. p** < 0.05, p*** < 0.01 as compared to 
unstimulated control, # compares control cell migration with anti-CCL2 antibody treated cells 
under the same conditions. 
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3.5.1.2   Inhibition of free CCL2 leads to decreased migration of RAW264.7 cells 

Although no direct influence of a NaCl stimulus on CCL2 production could be found in 

RAW264.7 cells, ELISA measurements revealed that CCL2 is present in increasing amounts 

during salt-dependent chemotaxis. Therefore, an antibody directed against murine CCL2 was 

used to investigate if migration toward a high NaCl concentration might depend on the 

presence of CCL2. Therefore, all cell reagents were incubated with 3 µg/ml anti-CCL2 

antibody or IgG isotype control antibody, respectively, in order to deprive RAW264.7 cells of 

free CCL2 in the media. Figure 3-11 shows that in the presence of an anti-CCL2 antibody, 

migration toward 15 nM CCL2 was reduced to approximately 20 % compared to untreated 

control cells. Furthermore, migration toward CXCL12 decreased to approximately 40 %, 

while migration capacity toward excess NaCl was abrogated to 30 %. RAW264.7 cells that 

had been treated with the IgG isotype control showed no significant differences in migration 

behavior toward all applied stimuli. These data indicate that although CCL2-production is not 

induced by a high NaCl concentration in RAW264.6 cells, migration toward both excess NaCl 

and chemokines depends on the presence of free CCL2.  

 

 

 3.5.2   The role of TonEBP in salt-dependent chemotaxis of macrophages 

Subjecting cells to osmotic stress such as a high NaCl concentration leads to expression of 

the osmosensitive transcription factor TonEBP. It has been shown previously that in addition 

to protecting cells from osmotic stress, TonEBP is involved in a variety of other essential cell 

functions, including cell migration (Jauliac et al. 2002; O'Connor et al. 2007) and transcription 

of chemokines (Kostyk et al. 2006; Kojima et al. 2010). In order to investigate a possible role 

of TonEBP in salt-dependent chemotaxis, cell migration of RAW264.7 cells with a stable 

TonEBP overexpression was analyzed. In addition, RNAi against TonEBP was established in 

RAW264.7 cells to study the influence of a reduced TonEBP protein level during salt-

dependent chemotaxis. For further support of RNAi data, migration behavior of BMDMs 

lacking a functional TonEBP gene was investigated.   

 

3.5.2.1   Overexpression of TonEBP in RAW264.7 cells does not affect cell     
              migration toward excess NaCl 

The first setting to assess whether TonEBP is involved in salt-dependent chemotaxis was 

investigation of migration behavior in RAW264.7 cells with a stable TonEBP overexpression, 
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which were a kind gift from Professor Jens Titze (University of Erlangen/ Vanderbilt 

University, USA). TonEBP protein expression was strongly increased following a high NaCl 

concentration (Figure 3-12 A). TonEBP overexpressing RAW264.7 cells displayed a high 

amount of TonEBP protein without an additional salt stimulus. However, upon stimulation 

with excess NaCl protein expression did not increase much further in these cells. Concerning 

migration behavior, if TonEBP played a positive role in salt-dependent chemotaxis, the 

migration response was expected to be much higher and earlier in TonEBP overexpressing 

than in wildtype RAW264.7 cells. Nevertheless, when comparing migration capacity of 

RAW264.7 wildtype cells to TonEBP overexpressing cells over 20 hours, no significant 

difference in migration kinetics was observed (Figure 3-12 B). These results indicate that 

TonEBP is not responsible for salt-dependent chemotaxis.  

 

 

Figure 3-12: TonEBP overexpression has no influence on salt-dependent chemotaxis  

Western Blot analysis of TonEBP protein expression in RAW264.7 wildtype and TonEBP-
overexpressing cells (TonEBP overexp), with or without an excess 40 mM NaCl stimulus. 
β-actin protein expression as loading control (A). Kinetics of RAW264.7 wildtype and 
TonEBP overexpressing cells toward 40 mM excess NaCl over 20 hours, studied in transwell 
migration assays (B). Migration index indicates the number of transmigrated cells in relation 
to CXCL12 stimulated cells. mean ± SD from 3 experiments performed in duplicate. n.s. = 
non-significant. From Müller et al. (2013). 
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3.5.2.2   RNAi against TonEBP in RAW264.7 cells  

RNAi against TonEBP was applied to investigate any effects of decreased TonEBP protein 

amount on salt-dependent chemotaxis. First, the best method for transfection of RAW264.7 

cells with the adequate siRNA duplexes needed to be established. Therefore, transfer of 

siRNA into cells via different electroporation and lipofection protocols (see 2.2.5) was tested. 

The efficiency of the reduction in protein levels (“knockdown”) was determined in Western 

Blot analysis following a 24 h stimulus of excess NaCl.     

 

 

3.5.2.2a   siRNA transfection using electroporation impairs migration in   
                RAW264.7 cells 

In order to bring siRNA duplexes for RNAi against TonEBP into RAW264.7 cells, various 

electroporation protocols were tested. At first, the most efficient of four different siRNAs (#9, 

#10, #11, #12, and a Mix of #9-12) was identified by varying concentrations of applied siRNA 

and incubation periods (24 to 72 h).  
Initially, an exponential pulse protocol (400 V) was applied and after incubation for 72 h, 

TonEBP protein expression showed that 6 µg of siRNA#12 proved to be most effective, 

resulting in the strongest decrease in protein level (Figure 3-13 A, B). This effect was also 

visible after 48 h of incubation, but less prominent than after 72 h (data not shown). However, 

when cell migration was analyzed in transwell assays, changes in migration ability of 

electroporated RAW264.7 cells were found. Although cell viability and morphology was 

comparable to untreated cells (data not shown), migration toward excess NaCl was 

significantly decreased (Figure 3-13 C). In some cases, migration toward CXCL12 was also 

impaired. Figure 3-14 shows that RAW264.7 cells that had been electroporated without 

siRNA (mock) or non-silencing control siRNA (ns) were unable to migrate toward the excess 

NaCl stimulus, therefore indicating that electroporation conditions were responsible for 

disturbed cell migration. Since the migration data demonstrate that the applied 

electroporation conditions interfered with cell migration, a square wave protocol using two 

pulses of 1 ms and a pre-installed protocol for mammalian adherent cells (HL60) were 

tested.  
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Figure 3-13: RNAi of TonEBP in RAW264.7 cells using exponential electroporation  
                     protocols  

Western Blot analysis of TonEBP protein expression following transfection with TonEBP 
siRNA#9-12 (A) and with non-silencing (ns) siRNA or siRNA#12, respectively (B). Migration 
of electroporated RAW264.7 cells toward CXCL12 and NaCl in a transwell assay (C). For all 
experiments, electroporation with an exponential protocol of 400 V was applied. β-actin 
protein expression served as loading control (A, B). Cells were incubated for 72 h following 
transfection and stimulated with 40 mM excess NaCl for 24 h to assess TonEBP protein 
levels (A, B). mock = electroporation without siRNA transfection. migration data (C) 
exemplary for 5 individual experiments in duplicate. “+” indicates that the stimulus was added 
to the lower well of the transwell. p** < 0.01, p*** < 0.001 as compared to respective 
unstimulated cells. # relates cell migration of electroporated cells to migration of control cells 
toward the NaCl stimulus.  
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Under square wave conditions using two 1 ms long pulses, siRNA#12 and, to a lesser 

degree, siRNA#9 showed the highest knockdown ability in Western Blot analysis, while the 

HL60-protocol revealed the best reduction in TonEBP protein level with siRNA#12 (Figure 

3-14 A, B). The fact that the siRNA Mix containing all four single siRNAs showed comparable 

results to TonEBP knockdown in RAW264.7 cells treated with siRNA#12 only, leads to the 

conclusion that siRNA#12 was the most effective component under these conditions in the 

mix. Again, effects of these square wave electroporation protocols on cell migration were 

investigated in transwell assays using RAW264.7 cells that had been electroporated without 

the presence of siRNA (mock) or in the presence of non-silencing siRNA (ns). Figure 3-14 

shows that following both twice 1 ms pulse and HL60 protocol treatment, RAW264.7 cells 

without transfection of siRNA (mock) migrated toward CXCL12 comparable to untreated 

cells, but did not migrate toward NaCl. Subsequent to application of non-silencing control 

siRNA, RAW264.7 cells additionally failed to migrate toward CXCL12 with both protocols. 

These results emphasize that siRNA transfection by means of electroporation could not be 

used without altering cell migration of RAW264.7 cells.   
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Figure 3-14: RNAi against TonEBP in RAW264.7 cells using square wave   
                   electroporation protocols  

Western Blot analysis of TonEBP protein expression following electroporation according to 
square wave protocol with two 1ms pulses (A) and pre-installed HL60 protocol (B). Migration 
of electroporated RAW264.7 cells toward CXCL12 and NaCl in a transwell assay (C). Cells 
were incubated for 72 h following transfection and stimulated with 40 mM excess NaCl for 
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24 h to assess TonEBP protein levels (A,B). β-actin protein expression served as loading 
control (A, B). mock = electroporation without siRNA transfection. ns = non-specific siRNA. 
“+” indicates that the stimulus was added to the lower well of the transwell. p** < 0.01, 
p*** < 0.001 as compared to respective unstimulated cells. # relates cell migration of 
electroporated cells to migration of control cells toward the CXCL12 stimulus. ‡ compares 
transmigrated electroporated cells to migration of control cells toward the excess NaCl 
stimulus.  

 

 

3.5.2.2b   Optimization of siRNA transfection using lipofection in RAW264.7  
                cells 

In order to establish efficient siRNA transfection without disturbed cell migration, different 

lipofection agents were tested with varying reagent and siRNA concentrations for different 

incubation periods. First, RAW264.7 cells were treated with FuGENE transfection reagent as 

described in the protocol for siRNA transfection by Kawaai et al. (2008). Western Blot 

analysis of TonEBP protein levels following 48 h and 72 h of incubation showed no 

significant changes compared to controls with any of the applied siRNAs (Figure 3-15 A). 

Using Oligofectamine reagent according to the protocol provided by the manufacturer, 

siRNA#12 led to a reduced TonEBP protein level after 72 h, but knockdown efficiency was 

still improvable (Figure 3-15 B).  

Finally, lipofectamine 2000 reagent revealed a significant knockdown for TonEBP protein 

with both siRNA#9 and siRNA#12 after 48 h and 72 h of incubation, with the highest 

knockdown achieved using siRNA#9 after 72 h incubation (Figure 3-15 C). Investigation of 

cell migration following lipofectamine 2000 treatment showed no differences between control, 

lipofectamine-only treated (mock) and RAW264.7 cells treated with non-silencing siRNA. 

Therefore, transfection by lipofectamine 2000 reagent proved to be the most adequate 

method for transfection of TonEBP siRNA in RAW264.7 cells without any influence on cell 

migration behavior.  
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Figure 3-15: RNAi against TonEBP using lipofection in RAW264.7 cells 
 
Western blot analysis of TonEBP protein expression following transfection of TonEBP siRNA 
using FuGene (A), Oligofectamine (B) and Lipofectamine 2000 (C) in RAW264.7 cells after 
72 h of incubation. Cells were stimulated with 40 mM excess NaCl for 24 h to assess 
TonEBP protein levels. β-actin protein expression served as loading control. mock = 
transfection without siRNA. ns = non-specific siRNA. 
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3.5.2.3   Migration following RNAi against TonEBP in RAW264.7 cells and in   
              BMDMs derived from Ton(flox/flox)LysM(wt/cre) mice  

After establishing RNAi against TonEBP in RAW264.7 cells, the influence of a decreased 

TonEBP protein amount on salt-dependent chemotaxis was investigated in a transwell 

assay. Western blot analysis revealed a significant decrease in TonEBP protein following 

transfection of TonEBP siRNA #9 with lipofectamine 2000 (Figure 3-16 A). However, cell 

migration toward CXCL12 and excess NaCl of cells treated with TonEBP siRNA was similar 

to controls (Figure 3-16 B). No significant difference could be found in migration behavior of 

untreated RAW264.7 cells, cells that were transfected with non-silencing control siRNA (ns), 

and cells that were subjected to lipofectamine reagent only (mock).          

These results could be confirmed by investigation of cell migration of BMDMs derived from 

mice in which the TonEBP gene was specifically not functional in myeloid cells 

(Ton(flox/flox)LysM(wt/cre). The material was generously shared by Jens Titze’s group.  

The absence of TonEBP protein in BMDMs isolated from these mice was confirmed by 

Western blot analysis (Figure 3-16 C). Figure 3-16 D shows that BMDMs in which the 

TonEBP gene was disrupted showed no differences in cell migration behavior compared to 

BMDMs derived from knock-out construct control mice (Ton(flox/flox)LysM(wt/wt)) and 

wildtype mice. Therefore, both RNAi and functional knockout experiments illustrate that 

TonEBP has no function in salt-dependent chemotaxis of macrophages. 
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Figure 3-16: TonEBP is not involved in salt-dependent chemotaxis of macrophages  

Western blot analysis of TonEBP protein expression (A) and transwell migration assay (B) of 
RAW264.7 cells transfected with lipofectamine 2000. Lipofection was incubated for 72 h days 
including a 40 mM NaCl stimulus for 24 h to assess TonEBP protein expression. Western 
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blot analysis of TonEBP expression in BMDMs derived from FVB wildtype control mice (wt), 
TonEBP(flox/flox)LysM(wt/wt) control mice and TonEBP(flox/flox)LysM(wt/cre) myeloid cell 
population specific knockout mice following stimulation with excess 40 mM NaCl (C). 
Transwell migration assay of the aforementioned BMDMs toward 15 nM CCL2 or 40 mM 
NaCl,(D). migration index shows transmigrated RAW264.7 cells toward excess NaCl 
compared to migration toward a 25 nM CXCL12 stimulus (B). mock = transfection without 
siRNA, ns = non-specific siRNA (B). β-actin protein expression was used as a loading control 
(A, C). ***p < 0.001 as compared to cells without stimulus. BMDM migration data by Thomas 
Quast. Partly modified from Müller et al. (2013). 

 

 

3.5.3   A possible role for Leukotriene B4 in salt-dependent chemotaxis of           
           macrophages 

Recently published data showed that following autocrine secretion, Leukotriene B4 (LTB4) 

exerts a strong chemotactic response in neutrophils (Chtanova et al. 2008; Lämmermann et 

al. 2013). Since RAW264.7 cells were described to produce small amounts of LTB4 upon 

stimulation with LPS (Hong et al. 2004; Choi et al. 2011), the hypothesis was tested whether 

salt-dependent chemotaxis of macrophages could rely on a similar mechanism. For that 

reason, LTB4 production in RAW264.7 macrophages was determined by ELISA following 

stimulation with 40 mM NaCl over 20 hours.          

Figure 3-17 shows that although LPS-stimulated RAW264.7 cells produced the highest 

amount of LTB4, no differences between NaCl-stimulated and control cells could be 

detected, since all measured data showed no significant differences compared to the media 

controls. In addition, stimulation with CCL2 or CXCL12, respectively, did not induce LTB4 

production. According to the manufacturer, the measured LTB4 concentration was below the 

given detection limit of 13 pg/ml and therefore out of the linear area of the standard curve, 

although internal assay controls were within the optimal parameters. Nevertheless, it can be 

concluded that NaCl has no influence on LTB4 expression in RAW264.7 cells and seems 

therefore unlikely to be involved in salt-dependent chemotaxis.  
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Figure 3-17: LTB4 production in RAW264.7 cells is independent from a NaCl-stimulus  

ELISA measurement of LTB4 concentration in supernatants of RAW264.7 cells following 
stimulation with excess 40 mM NaCl, 25 nM CXCL12, 15 nM CCL2 or 1 µg/ml LPS, 
respectively, for 20 hours. All data points from duplicates. 
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4   Discussion 

 

4.1   Macrophages recognize NaCl as a chemoattractive signal 
 
This work postulates the novel concept of salt-dependent chemotaxis of macrophages, in 

which the migration response is specifically induced by a hypertonic NaCl stimulus. In vitro 

cell migration experiments revealed that RAW264.7 cells perceive a hypertonic NaCl 

stimulus as a chemoattractive signal. Stimuli of the osmolytes urea or mannitol, that raised 

osmolality to the same level of about 400 mosm/ kgH2O as the NaCl stimulus, were unable 

to elicit cell migration. Therefore, hypertonicity and hyperosmolarity in general are not 

responsible for salt-dependent chemotaxis. The specificity of the salt-dependent migration 

response was further emphasized by migration data from LPS-activated BMDMs and 

migration of RAW264.7 cells in the presence of PmxB. These experiments excluded an 

underlying unspecific activation by endotoxin of the migrating macrophages, as described by 

Tajima et al. (2008). 

In addition, cell migration occurred only into the direction of an increasing NaCl-gradient, 

since a decreasing gradient and the absence of a concentration gradient of excess NaCl did 

not induce a migration response in RAW264.7 cells. This directional chemotactic, instead of 

random chemokinetic activity was also found in the same cell type in the migration response 

toward CCL2 (Kanellis et al. 2004; Tajima et al. 2008; Nishimura et al. 2009)).  

Salt-dependent chemotaxis was further characterized by a dose-dependent migration 

response toward various excess NaCl concentrations. The maximum migration response 

was observed toward excess 40 mM NaCl, which is in line with in vivo data described by 

Machnik et al. (2009), who found this concentration difference in skin electrolytes in rats 

receiving a high salt diet.  

However, for increasing NaCl concentrations starting from excess 60 mM NaCl, it was 

impossible to distinguish between effects of reduced cell viability and a possible dose-

dependent decrease in migration sensitivity. A decrease in cell viability is likely, as increased 

hypertonicity leads to cell shrinkage and an osmotic stress response (Gastaldello et al. 

2008). A possible induction of cell death by apoptosis was demonstrated by Malek et al. 

(1998) in endothelial cells following treatment with 300 mosm/ kgH2O NaCl, mannitol and 

urea. This probably occurs due to multimerization of cell surface receptors and subsequent 

activation of c-Jun amino-terminal protein kinase (JNK) by osmotic stress, as shown in HeLa 

cells (Rosette and Karin 1996). Nevertheless, an environment of 400 mosm/ kgH2O following 
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the excess 40 mM NaCl stimulus does not compromise RAW264.7 cells or the used primary 

macrophages, as confirmed by different cell viability experiments. 

In vivo, Na+ is bound by negatively charged polymerized glycosaminoglycans (GAG) in the 

interstitium of the skin (Titze et al. 2004; Schafflhuber et al. 2007). This osmotically inactive 

binding acts as a reservoir for Na+ and creates a local hypertonic microenvironment (Wiig et 

al. 2013). In the present work, investigation of salt-dependent chemotaxis has been restricted 

to the migration of macrophages toward free Na+ in the culture medium by transwell 

migration assays. In order to use a chemotaxis assay that resembles the situation in the 

interstitium in vivo, macrophage migration toward Na+ that is bound to glycosaminoglycans 

should be studied in a follow-up study.  

 

 

4.2   Cell-specificity of salt-dependent chemotaxis in macrophages 
 
The question arose whether other motile cells, or cells closely related to macrophages such 

as dendritic cells could also perform salt-dependent chemotaxis or if it defines a specific 

characteristic of macrophages. For that reason, cell migration of bone marrow-derived 

macrophages and dendritic cells toward an excess NaCl concentration was evaluated. Both 

peritoneal primary macrophages and BMDMs showed that migration toward a hypertonic 

NaCl stimulus was not exclusive to RAW264.7 macrophages. However, not all highly motile 

cells of the myeloid lineage recognize excess NaCl as a chemoattractive signal, since highly 

motile LPS-matured BMDCs did not migrate toward a NaCl stimulus. Therefore, it seems that 

salt-dependent chemotaxis is limited to macrophages and is not a common feature of 

migratory cells.  

On the other hand, it cannot be excluded that other types of motile immune cells or even 

non-immune cells that were not tested might perform salt-dependent chemotaxis. Immune 

cell candidates are for example neutrophil granulocytes, or cells of the lymphoid lineage such 

as T cells. However, for neutrophils it is known that a hyperosmolar environment interferes 

with several cell functions including cell migration (Rosengren et al. 1994), exocytosis of 

granules (Kazilek et al. 1988; Rizoli et al. 2000) and phagocytosis (Hampton et al. 1994). 

Rosengren et al. (1994) reported that cell migration of human neutrophils toward bacterial 

peptides (fMLP) was completely abrogated in hyperosmolar conditions from 350 to 

410 mosm/ kgH2O. In contrast, treatment with additional 40 mM NaCl significantly enhanced 

proliferation rate and interleukin-2 expression in mitogen-stimulated human PMBCs and 

Jurkat T cells (Junger et al. 1994, 1997). Moreover, recent results demonstrated that 
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following stimulation with 40 mM NaCl, naïve CD4+ T cells show an increased differentiation 

into an inflammatory TH17 phenotype that was mediated by p38/MAPK, TonEBP and SGK1 

(Kleinewietfeld et al. 2013). Physiologically, these results imply a correlation of high salt-

intake and autoimmunity. 

Even though a distinct function in hypertonic environments like regulating salt balance for 

macrophages or presumably TH17-differentiation for naïve T cells has not yet been described 

for other cell types, beneficial effects of hypertonicity on other immune cells, especially 

T-cells have been found. In this context, it needs further elucidation whether other cells in 

addition to macrophages might also be attracted to a high salt concentration. 

 

 

4.3   Secondary factors might contribute to salt- dependent chemotaxis 
 

4.3.1   The osmoprotective transcription factor TonEBP 

The investigation of the early process of lamellipodia formation in RAW264.7 cell migration 

revealed that an excess NaCl stimulus does not immediately influence cell polarization and 

formation of membrane protrusions. Therefore, the chemotactic signaling and actin 

cytoskeleton reorganization following the hypertonic NaCl stimulus is likely conveyed by 

secondary factors and is not directly initialized by excess NaCl.  

A promising candidate is the osmoprotective transcription factor TonEBP, being the only 

known mammalian osmosensitive protein which is induced by a hypertonic salt stimulus 

(Küper et al. 2007). The expression of TonEBP takes about 8 hours, which was speculated 

to correlate with the observed delayed migration of the macrophages. Of note, TonEBP has 

also been associated with a variety of other cell functions, including cell migration. Jauliac et 

al. (2002) described the role of TonEBP in integrin-dependent migration and invasion of 

breast carcinoma cells, while O'Connor et al. (2007) observed a positive effect on murine 

myoblast migration by TonEBP-dependent regulation of cysteine-rich CCN (connective tissue 

growth factor) matrix protein Cyr61. In addition, TonEBP-deficient BMDMs from TonEBP +/− 

ApoE−/− mice showed a decreased migration toward M-CSF (Halterman et al. 2012). 

However, in the present work migration toward CXCL12 or excess NaCl was not altered in 

RAW264.7 cells with a stable TonEBP-overexpression or following RNAi against TonEBP. 

Subsequently, the results gained from RNAi against TonEBP were confirmed by cell 

migration studies of BMDMs from TonEBP(flox/flox)LysM(cre/wt) mice that lacked a 

functional TonEBP gene specifically in the myeloid cell population. Migration of these cells 
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was not significantly different from BMDMs derived from knockout-construct control 

(TonEBP(flox/flox)LysM(wt/wt)) or wildtype mice.  

Data from Wiig et al. (2013) support a nonessential role of TonEBP in cell migration, since 

the infiltration of macrophages in the skin of TonEBP(flox/flox)LysM(cre/wt) mice following a 

high salt diet was not changed. In contrast, several non-migratory macrophage functions like 

control of electrolyte composition and VEGF-C expression were affected in these mice (Wiig 

et al. 2013). Altogether, although TonEBP is important for the osmotic stress response and 

the effective clearance of excess sodium in vivo, it is not involved in the induction of cell 

migration during salt-dependent chemotaxis.  

 
 

4.3.2   Autocrine/paracrine loops of chemokine/ chemoattractant soluble   
           factors 

A hypertonic NaCl gradient was essential for migration toward NaCl, but cells did not start to 

migrate until the gradient was reduced to less than 10 mM excess NaCl by diffusion after 8 

hours. This observation may be interpreted as an initial triggering of the migratory response 

of cells by the NaCl gradient, the former of which persists even if the NaCl concentration is 

equilibrated as was described earlier for CSF-1 dependent migration of macrophages in vitro 

(Webb et al. 1996).  

On the other hand, the delayed migration of macrophages probably reflects the requirement 

to perform protein biosynthesis in order to produce pro-migratory or even autocrine/paracrine 

acting soluble factors. The inhibited migration of cycloheximide-treated RAW264.7 cells 

confirms that protein biosynthesis is needed for salt-dependent chemotaxis. Although the 

molecular mechanisms for salt-dependent chemotaxis remain to be determined, the results 

suggest that secondary events in the cell account for a delayed migration response which 

requires protein synthesis.  

It has been shown by several studies that NRK52E cells and human PMBCs produce 

chemokines (CCL2) and cytokines (IL-8) following a hypertonic NaCl stimulus (Shapiro and 

Dinarello 1995; Kojima et al. 2010). This production was without simultaneous expression of 

inflammation marker IL-1α (Shapiro and Dinarello 1995) and significantly increased after 8 to 

9 hours, which is similar to the kinetics of salt-dependent chemotaxis. While RAW264.7 

macrophages migrated toward a CCL2 stimulus and produced CCL2, this chemokine was 

not induced by excess NaCl. A direct autocrine or paracrine function for CCL2 in salt-

dependent chemotaxis can therefore be excluded. However, migration experiments in the 

presence of an anti-CCL2 antibody demonstrated that both migration toward CXCL12 as well 
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as toward the salt stimulus depended on free CCL2, which is produced NaCl-independently 

during the migration process. These results indicate an indirect effect of free CCL2 during 

both salt-dependent and chemokine-related chemotaxis.  

Alternatively, it can be speculated that other chemokines with autocrine or paracrine function 

could be secreted by a population of initially migrating cells followed by a delayed, but 

amplified migration of remaining cells. This migration dynamic of “pioneering” cluster forming 

cells which later attract a massive influx of cells into that cluster has been described for 

neutrophils swarms during infection or in wounded tissues (Chtanova et al. 2008; Ng et al. 

2011; Lämmermann et al. 2013). In detail, during the first phase (< 15 min) single neutrophils 

that are close to the lesion respond to chemotactic short-range signals and migrate 

(Lämmermann et al. 2013). The authors observed that LTB4 released by dying neutrophils is 

the responsible factor for this amplification of the initial chemoattractive signal in the late 

phase of the swarming migration behavior. LTB4 has been shown to facilitate neutrophil 

migration by autocrine and paracrine secretion toward fMLP (Afonso et al. 2012). Therefore, 

LTB4 was considered as a chemoattractive candidate in salt-dependent chemotaxis.  

Regarding macrophages, RAW264.7 cells produced LTB4 following stimulation with LPS in 

agreement with literature (Choi et al. 2011). However, the LTB4 amounts were very low 

(3.5 pg compared to at least 15 pg in neutrophils (Oyoshi et al. 2012)) and thereby out of the 

linear range of the applied ELISA assay. In this work, no influence of excess NaCl on LTB4 

production in RAW264.7 cells could be found. However, this result should be proved with an 

assay specifically suited for small amounts of LTB4. 

Since only CCL2 was investigated for NaCl-dependent induction, it is possible that a 

hypertonic NaCl stimulus leads to secretion of other chemokines or chemoattractive factors 

by macrophages. For example, CXCL12 has been shown to act in a NFκB-dependent 

autocrine loop to ensure migration toward HMGB1 in BMDMs and mouse embryo fibroblasts 

(Kew et al. 2012).  
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Figure 4-1: Comparison of LTB4-driven neutrophil swarming to events in salt-         
                 dependent chemotaxis  

Pioneering neutrophil migration through the interstitium toward a tissue lesion (A), and 
following amplification of migration by autocrine and paracrine secretion of LTB4 (B). 
”Pioneering” macrophages migrating toward the hypertonic Na+ stimulus in a transwell assay 
(C). Possible secretion (yellow arrows) of a soluble autocrine/paracrine chemotactic factor 
(CF) leads to enhanced migration of macrophages even after the initial Na+ gradient has 
dissolved. The presence of CCL2 seems to be required (D).  
Blue arrows indicate migration intensity of macrophages toward the lower transwell chamber. 
A, B modified from Lämmermann et al. (2013). 
 
Figure 4-1 provides a mechanism for salt-dependent chemotaxis that is similar to swarming 

migration behavior of neutrophils. Comparable to the individual migration of neutrophils 

toward a lesion (A), single macrophages migrate toward the hypertonic Na+ stimulus during 

the first 8 hours of the transwell migration assay (C). While autocrine and paracrine secretion 

of LTB4 massively enhances neutrophil migration (B), salt-dependent chemotaxis is likely to 

depend on the autocrine/paracrine secretion of a yet unknown chemotactic acting factor (CF) 

(D). This model also takes account of the fact that macrophage migration toward the 
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hypertonic NaCl-stimulus is increased by a time when the original Na+ gradient has already 

dissolved in the transwell assay. 

If the migration of individual pioneering macrophages only depends on the hypertonic Na+ 

environment, the following increased migration into the lower transwell chamber occurs 

primarily toward the autocrine/paracrine acting chemotactic factor. This hypothesis could be 

tested by transferring the upper transwell chambers including the pioneering migrated 

macrophages into fresh unstimulated culture medium after 8 hours. Additionally, fresh, 

differently fluorescence-labelled cells could be placed in the upper transwell chamber after 

16 to 20 hours to study whether the salt-dependent chemotaxis is faster when the pioneering 

macrophages already produce the presumed chemotactic factor.  

Because salt-dependent chemotaxis of RAW264.7 cells was abrogated in the same way as 

migration toward CXCL12 in the presence of pertussis toxin, the participation of a Gαi-

coupled GPCR in salt-dependent chemotaxis can be assumed. The majority of chemokine 

receptors are Gαi protein-coupled receptors; therefore it is likely that a chemokine receptor is 

involved. However, the Gαi-coupled GPCR family is vast and the pertussis toxin results could 

also point to a different non-chemokine receptor using Gαi, for instance a prostaglandine 

receptor.   

All in all, to further elucidate the underlying mechanisms of salt-dependent chemotaxis, the 

following steps could be undertaken: A broad investigation of known soluble chemotactic 

factors that attract macrophages could be performed with supernatants of NaCl-stimulated 

macrophages or supernatants from the transwell migration assay. Alternatively, the 

pioneering migrating cells could be isolated and screened for expression of chemotactic 

factors, for instance using microarray analysis.  

 
 

4.3.3   A potential role for ion channels and transporters 

Since the initial recognition and signal transduction of high extracellular sodium is unclear, 

the possible involvement of a potential member of the sodium ion channel family could be 

proposed. Ion channels and transporters play a prominent role in cell migration by 

modulating cell volume, the actin cytoskeleton and cell polarization (Schwab 2001). For 

example, the epithelial Na+ channel (ENaC) has been described as essential for wound 

healing associated migration in vascular smooth muscle cells (Grifoni et al. 2006) and in 

glioma cells (Vila-Carriles et al. 2006). What makes this ion channel even more interesting in 

respect to cell migration is the fact that the ENaC α-subunit is associated with the actin 

cytoskeleton (Mazzochi et al. 2006). In detail, ENaC is linked to actin-binding protein 
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α-spectrin, and this interaction seems to be important for localization of the ion channel in the 

apical membrane (Rotin et al. 1994). Several authors have reported that short actin filaments 

facilitate ENaC activation (Cantiello et al. 1991; Prat et al. 1993; Berdiev et al. 1996) and that 

direct interaction of actin with the COOH terminus of α-ENaC is required for insertion of 

ENaC into the plasma membrane (Mazzochi et al. 2006).  

So far, ENaC expression has not been observed in macrophages, although for example 

alveolar macrophages are able to decrease ENaC expression and activity in lung endothelial 

cells (Dickie et al. 2000). However, expression of ENaC β- and γ-subunits beyond epithelial 

cells has been found to be involved in mechanotransduction of neurons innervating the aortic 

arch and of vascular smooth muscle cells (Drummond et al. 2001, 2008). Therefore, a 

possible involvement of ENaC or other sodium ion channels in salt-dependent chemotaxis 

needs to be emphasized. This hypothesis could be tested by application of the small 

molecule inhibitor amiloride to specifically block ENaC function during cell migration.  

In respect to ion transporter proteins, the Na+/H+ exchanger (NHE) is essential for cell 

migration of neutrophils (Rosengren et al. 1994; Ritter et al. 1998), human melanoma and 

renal epithelial MCDK-F cells (Klein et al. 2000). NHE localizes at the lamellipodium of 

migrating cells and controls local cell volume (Klein et al. 2000). Consequently, NHE or other 

ion transporters could be investigated for a potential role in salt-dependent chemotaxis.  

 

 

4.4. Salt-dependent chemotaxis of macrophages: Implications for human health 

Elevated blood pressure poses a major risk for cardiovascular disease, stroke and kidney 

failure, which are leading causes for mortality worldwide (WHO report “Global health risks, 

WHO 2009). To summarize, there is growing evidence that increased salt intake, especially 

by rising consumption of sodium-rich fast food, leads to major health and economic problems 

throughout the world (WHO 2009).    

How is salt-dependent chemotaxis involved in this problem? 

When looking closer at blood pressure regulation in the body, evidence has emerged over 

the last years that blood pressure is not only regulated systemically by the kidney, the brain 

or the blood vessels by keeping sodium and volume levels at a narrow range. Instead, a high 

salt loading leads to a sodium storage in the skin interstitium and creates a local hypertonic 

microenvironment (Schafflhuber et al. 2007; Machnik et al. 2009; Wiig et al. 2013). Apart 

from their function in the immune system, macrophages control the removal of excess 

sodium by a TonEBP/VEGF-C-dependent lymphangiogenesis, as reported by Machnik et al. 

(2009). These authors also found that if this regulatory axis is inhibited by deletion of 
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macrophages or blockade of lymphangiogenesis-driving VEGF-C, respectively, blood 

pressure is increased in animals (Machnik et al. 2010). In addition, an elevated VEGF-C level 

has been found in the blood of patients with a salt-sensitive hypertension (Machnik et al. 

2009). A high salt diet also induced VEGF-C in healthy subjects, although blood pressure 

was not affected (Slagman et al. 2012). Human sodium storage in the skin tissue was 

visualized for the first time by use of 23Na magnetic resonance imaging by Kopp et al. (2012, 

2013). These studies showed that sodium accumulates during lifetime in the skin and 

interestingly, this accumulation occurs earlier in hypertensive patients. According to Wiig et 

al. (2013), macrophage homeostatic function was disrupted by genetic depletion of TonEBP 

in the myeloid cell population (TonEBP(flox/flox)LysM(cre/wt)) and by blockade of VEGFR3 

following high salt diet of the mice. This abrogation of the TonEBP/VEGF-C regulatory axis 

resulted in addition to an increase in sodium storage in an accumulation of chloride in the 

skin and the development of salt-sensitive hypertension in the mice. These new findings 

propose a so far undescribed role for chloride in salt-sensitive hypertension, as chloride and 

blood pressure increase was directly correlated (Wiig et al. 2013). All in all, these recent 

studies underline the importance of macrophage homeostatic function in controlling local 

electrolyte composition in the skin and its connection with systemic blood pressure.  

Two important conclusions about the involvement of salt-dependent chemotaxis can be 

drawn: First, any malfunction in salt-dependent chemotaxis of macrophages toward areas of 

high sodium storage might lead to development of hypertension. As the sensing, migration 

toward and resulting accumulation of macrophages in areas of high sodium storage 

precedes the molecular regulating mechanism to remove sodium from the interstitium, 

abrogation of chemotaxis might lead to an accumulation of sodium in the skin and increase 

blood pressure.  

Second, identification of the underlying molecular mechanism of salt-dependent chemotaxis 

might provide new targets for hypertension therapy. Existing antihypertensive treatment 

consists of beta-blockers, aldosterone antagonists (ACE inhibitors), diuretics and calcium 

channel blockers. Most patients have to take high blood pressure medication for many years 

and suffer from side effects like dry cough, asthma or diabetes (Zillich et al. 2008). In 

addition, the majority requires a combination therapy with several agents to effectively lower 

their blood pressure (Chobanian et al. 2003; Mancia et al. 2007). These facts show that a 

small molecule that would specifically act on salt-dependent chemotaxis, or on the sensor for 

the high sodium environment and that would stay immunological inert could be a promising 

lead for new medications against hypertension. 
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4.5   Outlook 
 
The present work characterizes salt-dependent chemotaxis of macrophages and thus 

provides an explanation for the accumulation of macrophages in areas of high salt storage in 

the skin interstitium (Machnik et al. 2009). It could be shown here that macrophages 

specifically recognize a hypertonic NaCl stimulus as chemoattractive signal and the data 

further suggest that salt-dependent chemotaxis is restricted to macrophages.  

However, direct measurements of the lymphoid tissue demonstrated that immune cells in this 

microenvironment are exposed to osmotic stress (Haljamae et al. 1974; Szabo and Magyar 

1982). Several studies described functional effects of osmotic stress for instance on T-

lymphocytes (Bortner et al. 2012; Kleinewietfeld et al. 2013), but it can additionally be 

speculated that immune cells use hypertonic environments for migration into lymphoid 

tissues. Therefore, it would be interesting to investigate in vitro whether T-cells and also 

other non-immune cells are capable of salt-dependent chemotaxis. 

Since the molecular signaling pathway responsible for salt-dependent chemotaxis is 

unknown, it might be useful to systematically screen for NaCl-induced macrophage attracting 

factors such as chemokines and cytokines. In addition, Na+ - selective ion channels like 

ENaC might be involved. Hence, further studies could include high-performance liquid 

chromatography of transwell supernatants or microarray analysis of migrating cells in order 

to identify candidates.  

The next step should also focus on salt-dependent chemotaxis in in vivo model systems. 

Macrophage migration toward excess sodium that is bound to glycosaminoglycans needs to 

be studied. In addition, the clinical relevance of salt-dependent chemotaxis could ultimately 

be verified by the use of mouse models. 
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5   Summary 

Macrophages exert a prominent function in immune system host defense, but in the recent 

years increasing evidence emerged that these cells are in addition potent regulators of salt 

balance. At the outset, this work was based on previous findings that had demonstrated an 

accumulation of macrophages in the skin tissue of rats, which had been fed on a high salt 

diet. The question arose whether this was possibly due to a chemotactic response of the 

macrophages to the hypertonic environment of skin that had sequestered high amounts of 

Na+ to the interstitial glycosaminoglycans.  

Chemotaxis is an essential process of immune defense to attract immune cells to sites of 

pathogenic infection. Monocytes/macrophages have been described to recognize many 

substances among which are chemokines, bacterial components, complement factors and 

leukotrienes as chemoattractive signals. In contrast, cell migration toward a hypertonic NaCl 

stimulus, which might represent a potential harmful environment for the cell by causing 

hypertonic stress, is a completely novel concept.  

In vitro transwell migration assays revealed that RAW264.7 macrophages, peritoneal 

macrophages and bone marrow-derived macrophages, but not bone marrow-derived 

dendritic cells show salt-dependent chemotaxis toward a hypertonic NaCl stimulus. This 

dose-dependent migration response was specific to hypertonicity by excess NaCl, as it could 

not be induced by other osmo-active agents like urea or mannitol. Subsequently, the 

underlying molecular mechanism of salt-dependent chemotaxis was investigated with 

respect to early and late events in cell migration. Many potential candidates were addressed, 

demonstrating that a hypertonic NaCl stimulus did not directly affect actin cytoskeleton 

reorganization and was unable to induce expression of chemoattractive CCL2 or LTB4 in 

RAW264.7 cells. Furthermore, migration toward excess NaCl was abrogated by the 

presence of cycloheximide and pertussis toxin, indicating a dependence on protein synthesis 

and Gαi-coupled GPCRs, respectively. While the osmoprotective transcription factor TonEBP 

is a central regulator in macrophages for the removal of excess Na+ in the interstitium, it was 

not required for salt-dependent chemotaxis. 

Although the complete underlying signaling pathway could not be elucidated, the 

participation of a NaCl-induced chemotactic factor that acts in an autocrine/ paracrine way, 

similar to swarming migration behavior of neutrophils, might underlie theses observations. In 

addition, the role of sodium ion channels in salt-dependent chemotaxis should be 

considered. Taken together, it is proposed that salt-dependent chemotaxis plays a crucial 

role in clearance of excess salt in vivo and that any defects in macrophage migration toward 

areas of high salt storage might result in development of hypertension, as recent studies in 

rodents and also humans imply. 
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11β-HSD2 

µ 

A. bidest 

APC 

APS 

BMDC 

11β-Hydroxysteroid dehydrogenase 

micro 

aqua bidest 

allophycocyanin 

ammonium persulfate 

bone marrow-derived dendritic cells 

BMDM 

BSA 

CCL 

CD 

CFDA 

CVD 

CXCL 

bone marrow-derived macrophages 

bovine serum albumine 

chemokine (C-C motif) ligand  

cluster of differentiation 

carboxyfluorescein diacetate 

cardiovascular disease 

C-X-C motif chemokine ligand 

DABCO 

DAPI 

DMEM 

DMSO 

DTT 

ECL 

EDTA 

ELISA 

ENaC 

1,4-Diazabicyclo[2.2.2]octane 

4',6-diamidino-2-phenylindole 

Dulbecco´s  modified Eagle medium   

dimethyl sulfoxide 

dithiothreitol 

electrochemiluminescence 

ethylene diamine tetraacetic acid 

enzyme-linked immunosorbent assay 

epithelial sodium channel 

EtD-III ethidium-homodimer III 

FACS 

FCS 

fluorescent activated cell sorting 

fetal calf serum 

g 

GAG 

GAP 

gravity (9.81 m/s2) 

glycosaminoglycans 

GTPase-activating factor 

GEF 

GM-CSF 

guanine nucleotide exchange factor 

granulocyte-macrophage colony-stimulating 

factor 

GPCR 

GTP 

G-protein coupled receptor 

guanosine-5'-triphosphate 
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h 

HRP 

hour 

horseradish peroxidase 

IgG 

IL 

Immunglobuline 

interleukin 

IMDM Iscove's modified Dulbecco's medium   

kDa kilodalton 

l liter 

LTB4 leukotriene B4 

LPS 

m 

M 

m/v 

min 

mol 

MCLK 

n 

NED 

NFAT5 

NO 

lipopolysaccharide 

meter; milli 

molarity (mol/l) 

mass per volume 

minutes 

mole 

myosin-light-chain kinase 

nano; number of experiments 

N-(1-naphthyl)ethylenediamine 

nuclear factor of activated T cells 5 

nitric oxide 

p 

PBMC 

PBS 

PE 

PFA 

pico; p-value 

peripheral blood mononuclear cell 

phosphate buffered saline 

phycoerythrin 

paraformaldehyde 

PI3-K 

PIP-3 

PmxB 

Rac1 

Rho 

RNA 

RNAi 

ROCK 

RPMI 

RT 

RTK  

SDS 

phosphatidylinositide 3-kinase 

phosphatidylinositol (3,4,5)-triphosphate 

polymyxin B 

ras-related C3 botulinum toxin substrate 1 

ras homologue gene family  

ribonucleic acid 

RNA interference 

Rho kinase 

Roswell Park Memorial Institute medium 

room temperature 

receptor tyrosin kinase  

sodium dodecyl sulfate 
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siRNA small interfering RNA 

TEMED 

TBS-T 

TNF-α 

TonEBP 

TRITC 

v / v 

VEGF  

VLE 

tetramethylethylendiamin 

tris-buffered saline Tween-20 

tumor necrosis factor alpha 

tonicity-responsive enhancer binding protein  

tetramethylrhodamine 

volume per volume 

vascular endothelial growth factor 

very low endotoxin 

WASP Wiskott Aldrich syndrome protein 

WAVE WASP-family verprolin homologous 

WHO 

WIP 

World Health Organization 

WASP-interacting protein 

wt wildtype 
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