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Across the page the symbols moved in grave morrice, in the mummery
of their letters, wearing quaint caps of squares and cubes. Give hands,
traverse, bow to partner: so: imps of fancy of the Moors. Gone too
from the world, Averroes and Moses Maimonides, dark men in mien
and movement, flashing in their mocking mirrors the obscure soul of
the world, a darkness shining in brightness which brightness could not
comprehend. (..)
–It is very simple, Stephen said as he stood up.

(James Joyce, Ulysses)
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Summary

Systems of interest in physics often consist of a very large number of interacting particles. In
certain physical regimes, effective non-linear evolution equations are commonly used as an
approximation for making predictions about the time-evolution of such systems. Important
examples are Bose-Einstein condensates of dilute Bose gases and degenerate Fermi gases.
While the effective equations are well-known in physics, a rigorous justification is very diffi-
cult. However, a rigorous derivation is essential to precisely understand the range and the
limits of validity and the quality of the approximation.

In this thesis, we prove that the time evolution of Bose-Einstein condensates in the Gross-
Pitaevskii regime can be approximated by the time-dependent Gross-Pitaevskii equation, a
cubic non-linear Schrödinger equation. We then turn to fermionic systems and prove that
the evolution of a degenerate Fermi gas can be approximated by the time-dependent Hartree-
Fock equation (TDHF) under certain assumptions on the semiclassical structure of the initial
data. Finally, we extend the latter result to fermions with relativistic kinetic energy. All our
results provide explicit bounds on the error as the number of particles becomes large.

A crucial methodical insight on bosonic systems is that correlations can be modeled by
Bogoliubov transformations. We construct initial data appropriate for the Gross-Pitaevskii
regime using a Bogoliubov transformation acting on a coherent state, which amounts to
studying squeezed coherent states.

As a crucial insight for fermionic systems, we point out a semiclassical structure in states
close to the ground state of fermions in a trap. As a convenient language for studying the
dynamics of fermionic systems, we use particle-hole transformations.

This thesis is based on the articles [BdS12, BPS13a, BPS13b].
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1. Introduction

Systems of interest in physics usually consist of a very large number of particles, starting
at several thousand up to numbers of order 1023 for samples in chemistry and even larger
numbers for astronomical objects like stars. While many of these systems are believed to
be described by versions of the Schrödinger equation and the laws of quantum mechanics,
the derivation of their macroscopic properties from these microscopic laws presents us with
challenging theoretical problems. As a matter of fact, based on heuristic arguments, in
many areas of physics and chemistry effective macroscopic equations are commonly used
to approximately understand the properties of such systems. However, to understand the
range and the limits of validity as well as the quality of these approximations, a rigorous
mathematical derivation is essential.

In this thesis, we derive two important effective theories from the microscopic laws of
quantum mechanics: The Gross-Pitaevskii equation for the dynamics of Bose-Einstein con-
densates and the Hartree-Fock equation for the dynamics of fermionic systems. Furthermore,
we extend the latter result to fermions with relativistic kinetic energy. The mathematical
technique both for the fermionic and the bosonic systems is inspired by the method of coher-
ent states introduced to study the mean-field theory of bosons [RS09, CLS11, GV79, H74].
However, coherent states are not adequate for either of the systems we consider here. To
overcome this problem, we introduce Bogoliubov transformations as a tool for studying the
dynamics of many-body systems. In the dilute Bose gas in the Gross-Pitaevskii regime, it
is essential to find a description of the short-scale correlations in the many-body system. In
the study of fermionic systems, we point out a crucial semiclassical structure in states close
to the ground state.

To conclude this summary, let us give an overview for orientation in this thesis. First, we
proceed to Section 1.1, where we give a short introduction to quantum mechanics and fix
some conventions.

Section 1.2 is a central part of the introduction, where we introduce the idea of effective
evolution equations and explain the physical background of the models considered in this
thesis.

In Section 1.3 we quickly review the mathematics of second quantization to set the back-
ground for the calculations following.

Then in Section 1.4 we review the method of coherent states as used for deriving the
Hartree equation for the bosonic mean-field regime. Since the method of coherent states was
the main inspiration for the work in this thesis, this section conveys important ideas.

In Section 1.5 we then introduce Bogoliubov transformations, which are a crucial tool
in this thesis and a main new ingredient. In Subsection 1.5.1 we explain how Bogoliubov
transformations can be used to construct initial data. Bosonic Bogoliubov transformations
can be used to implement correlations, and fermionic Bogoliubov transformations can be
used to construct Slater determinants.

We conclude Chapter 1 with three appendices. Appendix 1.A compares different conven-
tions for the definition of reduced density matrices and proves a useful lemma. Appendix 1.B

1



1. Introduction

explains in detail the global well-posedness of the effective evolution equations in this thesis.
Appendix 1.C collects some notations.

In Chapters 2–4 we present the new results and their proofs obtained in [BdS12, BPS13a,
BPS13b]; at the beginning of the respective chapters, we give detailed introductions to the
methods and new ideas entering.

1.1. Many-body quantum mechanics

Quantum mechanics as a physical theory was invented at the beginning of the twentieth
century to describe matter on the atomic scale. Nowadays the laws of quantum mechanics
are believed to be fundamental to physics. In the following we will give a short introduction
to the quantum mechanical description of many-body systems. As we are interested in
systems at low energies, we restrict our attention to the non-relativistic theory. The pseudo-
relativistic model of Chapter 4 is a special case: it is not Lorentz invariant, but it includes
the effects of the relativistic dispersion relation.

We start with the description of non-relativistic N -particle systems, ignoring for the mo-
ment the question of quantum statistics (i. e. the bosonic or fermionic nature of the particles).

According to the laws of quantum mechanics the state of a system is identified with a
vector ψ in a complex Hilbert space H. For N particles in three dimensional space, we
have H = L2(R3N ), where we use the convention 〈f, g〉 =

∫
f(x)g(x) dx for the scalar

product of f, g ∈ L2(R3N ). We also call ψ ∈ L2(R3N ) the wave function of the system
and generally assume the normalization ‖ψ‖L2(R3N ) = 1. We routinely use the identification

L2(R3N ) ' L2(R3)⊗N and call L2(R3) the one-particle Hilbert space; vectors ϕ in L2(R3)
normalized to ‖ϕ‖L2(R3) = 1 are also called one-particle wave functions or orbitals. Quantum
mechanics predicts the average of measuring an observable over a large number of repetitions
of the experiment. The average is calculated from the theory as the expectation value〈
ψ,Aψ

〉
, where A is a selfadjoint, possibly unbounded, operator on L2(R3N ) modeling the

observable. Standard examples of observables are the position operator, acting on the j-th
particle as multiplication by the coordinate xj ∈ R3, and the corresponding momentum
operator pj = −i∇xj . A special role is played by the Hamilton operator HN , which models
the total energy of the system: through the Schrödinger equation

i∂tψ(t) = HNψ(t) with initial data ψ(0) ∈ L2(R3N ) (1.1)

it generates the time evolution of the state vector of the system,

ψ : R→ L2(R3N ), t 7→ ψ(t).

We will use the notation ψt = ψ(t) throughout. The solution of the Schrödinger equation is
given through the strongly continuous unitary group e−iHN t as ψt = e−iHN tψ0.

In this thesis, we consider Hamilton operators of the form

HN =
N∑
j=1

(
−∆xj + Vext(xj)

)
+ λ

N∑
i<j

V (xi − xj). (1.2)

Here, −∆xj is the Laplace operator acting on the j-th particle (xj ∈ R3) and the multi-
plication operator given by Vext : R3 → R describes an external potential, which we think
of as modeling a trap. The term

∑N
j=1−∆xj corresponds to the total kinetic energy. The

2



1.2. Effective evolution equations

term λ
∑N

i<j V (xi − xj) describes pair interactions with a coupling constant λ ∈ R and an

interaction potential V : R3 → R. Units were chosen such that Planck’s constant is ~ = 1
and particles have mass m = 1/2.

Next we introduce quantum statistics, the behavior of wave functions under permutation
of indistinguishable particles. We define the symmetrization operator SN by its action on
ψ ∈ L2(R3N ) as

(SNψ)(x1, . . . xN ) :=
1

N !

∑
σ∈SN

ψ(xσ(1), . . . xσ(N))

and the antisymmetrization operator AN similarly by

(ANψ)(x1, . . . xN ) :=
1

N !

∑
σ∈SN

sgn(σ)ψ(xσ(1), . . . xσ(N)).

By sgn(σ) we denote the sign of the permutation σ ∈ SN . The operators SN and AN are
orthogonal projections. As a principle of physics, bosonic indistinguishable particles are
described using wave functions ψ ∈ L2

s(R3N ) := SNL
2(R3N ); fermionic indistinguishable

particles by ψ ∈ L2
a(R3N ) := ANL

2(R3N ). More explicitly, L2
s(R3N ) is the subspace of

L2(R3N ) consisting of all functions which are symmetric with respect to permutation of the
N particles, in formula

L2
s(R3N ) = {ψ ∈ L2(R3N ) : ψ(xσ(1), . . . , xσ(N)) = ψ(x1, . . . , xN ) for all σ ∈ SN}.

Similarly L2
a(R3N ) is the subspace of antisymmetric functions,

L2
a(R3N ) = {ψ ∈ L2(R3N ) : ψ(xσ(1), . . . , xσ(N)) = sgn(σ)ψ(x1, . . . , xN ) for all σ ∈ SN}.

It is a principle of physics that in three space dimensions, particles other than bosons and
fermions do not exist. Since both SN and AN commute with e−iHN t, ψ0 ∈ L2

s(R3N ) implies
ψt ∈ L2

s(R3N ) for all times t ∈ R and analogously for the fermionic case. The well-known
Pauli exclusion principle is a consequence of the antisymmetry of fermionic wave functions.
It can be stated, for example, as

AN (ϕ⊗ ϕ⊗ ϕ1 ⊗ · · · ⊗ ϕN−2) = 0
(
ϕ,ϕ1, . . . ϕN−2 ∈ L2(R3)

)
,

i. e. no two fermions can occupy the same one-particle orbital.
An important notion is the ground state of a system. At zero temperature the ground state

ψ0 is the minimizer of the functional ψ 7→
〈
ψ,HNψ

〉
among the ψ ∈ L2

s(R3N ) or L2
a(R3N )

(for bosonic or fermionic systems, respectively) with normalization ‖ψ‖ = 1. We study only
systems at zero temperature in this thesis.

1.2. Effective evolution equations

Only in some special cases it is possible to solve the Schrödinger equation (1.1) explicitly.
In fact, for large systems of interacting particles — as present in many settings of physical
importance — even the numerical solution of the Schrödinger equation becomes impossi-
ble. Therefore, effective evolution equations which allow one to approximately calculate
expectation values of observables are of great importance.

In systems of indistinguishable particles, the results of measurements are averages over
all particles. To see how the result of such a measurement can be calculated from theory,

3



1. Introduction

let O be a selfadjoint operator on L2(R3), i. e. a one-particle observable. Extending it to
L2(R3N ) as Oj := 1⊗ . . .1⊗O⊗1 . . .⊗1, where the operator O acts only in the j-th factor
of the tensor product, we obtain an observable on the N -particle system. For bosonic wave
functions ψ ∈ L2

s(R3N ) (and in the same way for fermionic wave functions, since the signs
cancel in the expectation value) we find

〈
ψ,O1ψ

〉
=
〈
ψ, SNO1SNψ

〉
=

1

N

N∑
j=1

〈
ψ,Ojψ

〉
,

i. e. explicitly the average over all N particles. In particular, the choice of O1 is merely a
convention and we could just as well have chosen any Oj .

We introduce the one-particle reduced density matrix γ
(1)
ψ by taking the partial trace over

N−1 particles1 of the projection2 |ψ〉〈ψ|

γ
(1)
ψ := tr2,...N |ψ〉〈ψ|.

The one-particle reduced density matrix is a non-negative trace class operator on L2(R3).
In terms of the one-particle reduced density matrix we can write the expectation value as〈

ψ,O1ψ
〉

= trOγ
(1)
ψ .

Thus, to approximately determine the expectation value, it is sufficient to approximately

determine the one-particle reduced density matrix γ
(1)
ψ . More precisely, for γ̃ an operator on

L2(R3) to be thought of as the approximation to γ
(1)
ψ we have

|trOγ(1)
ψ − trOγ̃| ≤ ‖O‖ tr

∣∣∣γ(1)
ψ − γ̃

∣∣∣
if O is a bounded operator, and

|trOγ(1)
ψ − trOγ̃| ≤ ‖O‖HS‖γ(1)

ψ − γ̃‖HS

if O is a Hilbert-Schmidt operator. Our goal is thus the following: Start with an initial
wave function ψN ∈ L2

s(R3N ) or L2
a(R3N ) (bosonic or fermionic, depending on the physical

situation to be described). Let γ
(1)
ψN

be the one-particle reduced density matrix of ψN . Let

ψN,t = e−iHN tψN be the solution to the Schrödinger equation with initial data ψN , and γ
(1)
ψN,t

its one-particle reduced density matrix. We want to find an effective evolution equation for
the one-particle reduced density matrix, i. e. a differential equation for an approximating

one-particle density matrix ωN,t such that the solution with agreeing initial data ωN,0 = γ
(1)
ψN

makes the difference

tr
∣∣∣γ(1)
ψN,t
− ωN,t

∣∣∣ or ‖γ(1)
ψN,t
− ωN,t‖HS

1In general, we use the normalization that for ‖ψ‖ = 1, we have tr γ
(1)
ψ = 1, since then “small” in the

discussion here means “much smaller than one”. However, in Chapters 3 and 4 it is more convenient to
normalize the trace to tr γ

(1)
ψ = N .

2We use the Dirac notation for projection operators, i. e. |ψ〉〈ψ| is the operator acting on f ∈ L2(R3N ) by
|ψ〉〈ψ|f =

〈
ψ, f

〉
ψ.

4



1.2. Effective evolution equations

small, for times t > 0 as long as possible. In other words, we want to arrive approximately

at γ
(1)
ψN,t

, but avoiding to calculate ψN,t and instead solving an effective evolution equation

starting from γ
(1)
ψN

. Schematically in a diagram:

ψN ψN,t

γ
(1)
ψN

ωN,t

γ
(1)
ψN,t

e−iHN t

effective evolution '

Surely we can not expect this to be generally possible in interacting systems, but in certain
physical regimes, modeled through appropriate scaling of the parameters of the system, we
prove that good approximations of this kind can be obtained. In the following, we explain
the regimes considered in this thesis and introduce the respective effective equations. The
scalings will be parametrized with the number of particles N , which is naturally a large
number so that we are interested in the asymptotic behavior as N →∞.

The physical setting for the application of effective evolution equations can be described
by the following steps which constitute a typical experiment.

Step 1 The system with a trapping external potential, e. g. Vext(x) = |x|2, is prepared (ap-
proximately) in the ground state ψN by cooling it to very low temperatures. Since the
ground state is an eigenstate of the Hamilton operator the time evolution is trivial, i. e.
just multiplication with a phase which does not affect any expectation values.

Step 2 The traps are switched off, Vext = 0, so ψN is not an eigenstate of the Hamilton operator
anymore and will thus evolve in a non-trivial way. It is this evolution that we describe
with an effective evolution equation. More generally, the external potential could be
changed instead of being switched off, which also leads to a non-trivial evolution.

The effective evolution equation can be studied analytically and is also numerically more
accessible than the original high-dimensional Schrödinger equation.

1.2.1. The Hartree equation for the bosonic mean-field regime

Let us start with a well-known simple example of an effective evolution equation, which
serves to illustrate the type of results and methods to be presented in this thesis. Consider
the Hamilton operator

HN =
N∑
j=1

(−∆xj + Vext(xj)) +
1

N

N∑
i<j

V (xi − xj) (1.3)

for N indistinguishable bosons, i. e. on L2
s(R3N ). The coupling constant has been cho-

sen to be 1/N , so that the interaction term is formally of order N and thus of the same
order as the kinetic energy. (Considering a vector ϕ⊗N as below, the kinetic energy is〈
ϕ⊗N ,

∑N
j=1(−∆xj )ϕ

⊗N〉 = N
〈
ϕ,−∆ϕ

〉
= O(N), while the double sum of the interaction

term is O(N2).) This means that in the limit N →∞ none of the terms becomes negligible

5



1. Introduction

with respect to the other, giving rise to a non-trivial limiting dynamics. Since the interaction
is weak and its range of order one and thus much larger than the typical distance N−1/3 be-
tween particles (for N particles in a volume of order one, confined by the trapping potential),
in the spirit of the law of large numbers we can think of each particle as interacting with an
effective potential obtained through averaging over all other particles. For this reason, we
call this scaling the mean-field regime.

For bosons, a physically important and mathematically tractable class of initial data is
given by factorized wave functions

ψN = ϕ⊗N ∈ L2
s(R3N ) (1.4)

where ϕ ∈ L2(R3); written more explicitly ψN (x1, . . . , xN ) =
∏N
j=1 ϕ(xj). In fact, for van-

ishing interaction V = 0, the ground state (at zero temperature) is exactly of the form (1.4),
and this form is approximately correct for non-vanishing interaction in the mean-field regime

in the sense that the ground state ψN,g satisfies tr
∣∣∣γ(1)
ψN,g
− γ(1)

ϕ⊗N

∣∣∣ = tr
∣∣∣γ(1)
ψN,g
− |ϕ〉〈ϕ|

∣∣∣ → 0

as N → ∞, with ϕ the minimizer of the Hartree functional given below. A simple proof of
this fact in the case V̂ ≥ 0 can be found in [GS12, Lemma 1]3. This phenomenon is known
as Bose-Einstein condensation and was first predicted in 1924 by Bose and Einstein, who
considered non-interacting bosons at positive temperature.

For a state approximately given by ψN ' ϕ⊗N , the energy in the mean-field regime is
expected to be approximately

〈
ϕ⊗N , HNϕ

⊗N〉 =
〈
ϕ⊗N ,

 N∑
j=1

(−∆xj + Vext(xj)) +
1

N

N∑
i<j

V (xi − xj)

ϕ⊗N〉
= N

〈
ϕ⊗N , (−∆x1 + Vext(x1))ϕ⊗N

〉
+
N(N − 1)

2N

〈
ϕ⊗N , V (x1 − x2)ϕ⊗N

〉
' N

∫
dx
(
|∇ϕ|2 + Vext|ϕ|2

)
+
N

2

∫
dxdy |ϕ(x)|2V (x− y)|ϕ(y)|2

=: NEHartree(ϕ).

Here we introduced the Hartree energy functional EHartree.
Now suppose that, after having prepared the trapped ground state, the confining trap is

switched off, so now Vext = 0. The former ground state ψN ' ϕ⊗N is no longer stationary
and evolves non-trivially. However, we may expect that since in the mean-field regime
the interaction is weak, at any later time t we still have an approximately factorized wave
function,

ψN,t = e−iHN tψN ' ϕ⊗Nt , (1.5)

wherein ϕt should be a one-particle orbital evolved with an appropriate, self-consistent,
effective evolution equation. The evolution equation for ϕt can be obtained as the evolution
equation canonically associated with the Hartree energy functional:

i∂tϕt = −∆ϕt + (V ∗ |ϕt|2)ϕt, ϕ0 = ϕ. (1.6)

This is a non-linear Schrödinger equation for ϕt ∈ L2(R3) instead of a linear Schrödinger
equation for ψN,t ∈ L2(R3N ), so the dimension has been extremely reduced at the cost of a

3Notice that in [GS12] a different indicator of condensation (the number of particles outside the Hartree
ground state) is used, but by [KP10, Lemma 2.3] it implies the convergence of the reduced density.
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1.2. Effective evolution equations

non-linearity which models the interaction. The energy EHartree(ϕt) as well as the L2-norm
of ϕt are conserved with respect to the evolution (1.6).

To give the reader a feeling of the results that we prove in this thesis, we now make (1.5)
more precise citing the following theorem. The theorem holds if the interaction potential
is dominated by the Laplacian (the kinetic energy of one particle) in the sense that V 2 ≤
C(1 −∆) holds as an operator inequality for some C > 0. This is true for example for the
physically important case of the attractive and repulsive Coulomb potential.

Theorem 1.2.1 ([RS09, CLS11]). Suppose V 2 ≤ C(1−∆) for some C > 0. Let ϕ ∈ H1(R3)
with ‖ϕ‖L2 = 1 and let ϕt be the solution to the Hartree equation (1.6) with initial data
ϕ0 = ϕ. Let ψN,t = e−iHN tϕ⊗N be the solution to the Schrödinger equation i∂tψN,t = HNψN,t
with mean-field Hamiltonian (1.3) (with Vext = 0) and initial data ψN,0 = ϕ⊗N . Then there
exist constants D,K > 0 such that

tr
∣∣∣γ(1)
ψN,t
− |ϕt〉〈ϕt|

∣∣∣ ≤ 1

N
DeK|t| for all t ∈ R.

Notice that the projection |ϕt〉〈ϕt| is the one-particle reduced density matrix of ϕ⊗Nt .

Since the method of [RS09, CLS11] was the main inspiration for the work in this thesis, we
review it in detail in Section 1.4. This method has been developed starting in [H74, GV79]
for the study of the classical limit. A remarkable feature of this method is that it provides
explicit strong estimates for the rate of convergence as N →∞. Furthermore it also allows
us to understand the behavior of the fluctuations in the limit, and in particular was used to
prove a central limit theorem [BKS11].

We conclude this subsection with a short overview of rigorous results on the dynamics of
bosonic systems in the mean-field limit. The first rigorous proof of validity of the Hartree

equation in the sense that γ
(1)
N,t → |ϕt〉〈ϕt| as N → ∞ was obtained in [S80], for bounded

interaction potentials. The method of [S80] was extended to particles interacting through a
Coulomb potential [EY01], both in the attractive and repulsive case.

A different approach to obtain control of the rate of convergence towards the Hartree
evolution was developed in [KP10, P11] with the advantage that it can be extended to
potentials with more severe singularities. The convergence towards the Hartree dynamics
was proved as propagation of Wigner measures in [AN11] for regular interaction potentials.
In [FKS09] the convergence towards the Hartree dynamics was proven as an Egorov-type
theorem, for particles interacting through a Coulomb potential.

In [GMM10, GMM11, GM12] it was shown how an approximation in Fock space norm
(instead of the trace norm of reduced densities) can be obtained by considering next-order
corrections to the Hartree dynamics. Many-body quantum dynamics in one and two dimen-
sions in appropriate mean-field limits have been studied in [AGT07, KSS11] and were found
to give rise to Schrödinger equations with local non-linearity.

The study of the spectral properties of bosonic mean-field Hamiltonians also received a
lot of attention in the last years. A first proof of the emergence of a Bogoliubov excitation
spectrum has been found in [S11] for systems of bosons in a box and in [GS12] in the presence
of an external potential. A more general approach to the analysis of the excitation spectrum
of bosonic mean-field systems was given in [LNSS12].

A setting combining mean-field and semiclassical limit for bosonic systems has been con-
sidered in [GMP03] and [FGS07]. This setting is similar to the joint mean-field and semi-
classical limit that naturally emerges in fermionic mean-field systems, as we will explain in
Subsection 1.2.3.

7



1. Introduction

Fig. 1.: Experiment: At t= 0ms a Bose-Einstein condensate is released from (a) an almost
isotropic and (b) an anisotropic trap and expands. Shown is (in false colors) the
absorption of a beam of light by the condensate cloud. The initial condensate consists
of more than 50,000 chromium atoms at a temperature of about 10−6K.
From [GWH+05] with permission of the authors. Copyright 2005 by The American Physical Society.

1.2.2. The Gross-Pitaevskii equation for the dilute Bose gas

In dilute trapped Bose gases at very low temperatures Bose-Einstein condensation can be
observed in experiments, in the sense that a macroscopic fraction of particles is found to
occupy the same one-particle orbital. This is similar to the ground state for the bosonic mean-
field system that we discussed above, despite the physical regime being very different. The
first experimental evidence of this phenomenon was obtained in 1995 [AEM+95, DMA+95]
and it was rewarded with a Nobel prize in 2001.

In typical experiments, the gas of bosonic particles is initially trapped using electromag-
netic fields and cooled down to very low temperatures. At a critical temperature, a phase
transition occurs and a condensate is formed. Afterwards the trapping fields are switched
off or changed and the time evolution of the condensate is observed. We show an example
of data obtained in this way in Figure 1: after releasing the condensate from the trap, the
condensate cloud expands and, in Figure 1(b), also changes its shape. On the fundamental
level, the dynamics are described by many-body quantum mechanics. In the work pre-
sented in this thesis we show rigorously that the dynamics of Bose-Einstein condensates can
be approximated with an effective evolution equation, the time-dependent Gross-Pitaevskii
equation.

We now introduce the theoretical picture for the description of a condensate by Gross-
Pitaevskii theory. We start by making the notion of Bose-Einstein condensation rigorous,
following the idea of using reduced density matrices as hinted at in the mean-field setting in
the previous section. Considering the simplest non-trivial case, a factorized wave function

8



1.2. Effective evolution equations

in L2
s(R3N ) of the form

ψN = SN

(
ϕ⊗k1 ⊗ ϕ⊗k2

⊥

)
,
〈
ϕ,ϕ⊥

〉
= 0, k1 + k2 = N, (1.7)

we can simply count the number of tensor factors ϕ and speak of macroscopic occupation of
the orbital ϕ if k1 is large, close to the total number of particles N . However, for systems
with interaction, the ground state is not factorized. To come up with a more general notion
of macroscopic occupation and Bose-Einstein condensation, let us consider the example of a
sequence (ψN )N∈N of the form (1.7) with k2 = Nα, where α ∈ [0, 1). For the trace norm one
finds

tr
∣∣∣γ(1)
ψN
− |ϕ〉〈ϕ|

∣∣∣ =
2

N1−α . (1.8)

In ψN we have a fraction k1/N → 1 (as N → ∞) of the particles in the condensate orbital
ϕ. Motivated by this example, we speak of complete (or 100%) Bose-Einstein condensation
if

tr
∣∣∣γ(1)
ψN
− |ϕ〉〈ϕ|

∣∣∣→ 0 (N →∞)

for some ϕ ∈ L2(R3). We then say that the one-particle orbital ϕ is macroscopically occupied.

Equivalently, complete Bose-Einstein condensation occurs if the largest eigenvalue of γ
(1)
ψN

converges to one as N → ∞. The definition given in this paragraph is meaningful also for
non-factorized ψN , and thus also in systems with strong interaction.

Bose-Einstein condensation is difficult to prove mathematically, however there is a model
of physical importance in which Bose-Einstein condensation has been rigorously proven. This
model is the trapped Bose gas of N particles in the Gross-Pitaevskii regime, in which the
idea of the scaling is to model diluteness by making the effective range of interaction very
small. More precisely, the Hamiltonian is taken to be

HN =
N∑
j=1

(−∆xj + Vext(xj)) +N2
N∑
i<j

V (N(xi − xj)) (1.9)

on L2
s(R3N ). The interaction potential is repulsive, i. e. V ≥ 0, spherically symmetric and

decaying sufficiently fast at infinity. The scaling of the potential is chosen such that the
range of the interaction4 is of order N−1, much smaller than the typical distance N−1/3

of particles (for N particles trapped in a volume of order one). This means that collisions
are very rare and in this sense the model (1.9) describes a dilute gas. The N2 in front of
the potential is chosen such that collisions are very strong and thus despite diluteness not
negligible, the interaction term being formally5 of order N . Since the interaction is so strong
and short-ranged, the Gross-Pitaevskii regime is very different from the mean-field regime
discussed before, where collisions are frequent but weak. Indeed factorized wave functions
are not sufficient as an approximation in the Gross-Pitaevskii regime. Correlations play an
important role in the Gross-Pitaevskii regime as we will now discuss.

4We will introduce below the scattering length, which measures the effective range of a potential. The
scattering length of the rescaled potential N2V (Nx) appearing in the Hamiltonian (1.9) is a = a0/N .

5To see this, use symmetry of the wave function to write the interaction term as 1
2

∑N
i 6=j N

2V (N(xi−xj)) =
N
2

∑N
j=2 N

2V (N(x1−xj)). The particle at x1 mostly interacts with the particles in a volume of size N−3.

Since in volumes of order one there are N particles, the particle at x1 can interact with N−2 particles, so∑N
j=2 V (N(x1 − xj)) = O(N−2).

9



1. Introduction

Let us introduce f : R3 → R as the solution to the zero-energy scattering equation [LSSY05](
−∆ +

1

2
V

)
f = 0 with boundary condition f(x)→ 1 as |x| → ∞. (1.10)

(For a physical interpretation, notice that this is the stationary Schrödinger equation with
energy eigenvalue E = 0 for two particles in relative coordinates.) The solution satisfies
0 ≤ f ≤ 1 and has the asymptotic form

f(x) ' 1− a0

|x|
for |x| � a0, (1.11)

where

a0 := (8π)−1

∫
V fdx (1.12)

is called the scattering length of the potential V . The scattering length plays a central role
in describing the effect of correlations. In fact, it was proven in [LSY00] that the quantum-
mechanical ground state energy

EN = inf
ψ∈L2

s(R3N )
‖ψ‖=1

〈
ψ,HNψ

〉
(1.13)

is approximated by the Gross-Pitaevskii energy in the sense that

lim
N→∞

EN
N

= min
ϕ∈L2(R3)
‖ϕ‖=1

EGP(ϕ),

where the Gross-Pitaevskii energy functional is defined as

EGP(ϕ) :=

∫
dx
(
|∇ϕ|2 + Vext|ϕ|2 + 4πa0|ϕ|4

)
. (1.14)

Here, the scattering length appears in front of the quartic term. Hence, in leading order
the ground state energy per particle depends on the interaction potential V only through
its scattering length. The importance of correlations in the ground state can now be seen
observing that for factorized, i. e. uncorrelated, wave functions we have〈
ϕ⊗N , HNϕ

⊗N〉 ' N ∫ dx
(
|∇ϕ|2 + Vext|ϕ|2

)
+
N

2

∫
dxdy |ϕ(x)|2N3V (N(x− y))|ϕ(y)|2

→ N

∫
dx

(
|∇ϕ|2 + Vext|ϕ|2 +

b

2
|ϕ|4

)
(N →∞),

where in the last step we took the limit to a delta distribution. The constant in front of the
quartic term is b =

∫
V dx. Since b

2 > 4πa0 (this follows from 1.12 and the fact that f ≤ 1
and not constant), the energy of the factorized state differs from the ground state energy
in leading order! Due to this observation we expect that the ground state has a singular
structure on a short length scale. Rescaling the coordinates one finds that the solution fN
of (

−∆x +
1

2
N2V (Nx)

)
fN (x) = 0 with boundary condition fN (x)→ 1 as |x| → ∞

10



1.2. Effective evolution equations

is fN (x) = f(Nx). In Chapter 2 we use the function fN in a Bogoliubov transformation to
describe the correlations in the Bose-Einstein condensate on length scale 1/N . Notice also in
this context that according to [EMS06], a short-scale structure described by fN forms almost
immediately in an initially uncorrelated state ϕ⊗N under the time evolution generated by
the Hamiltonian (1.9).

Nevertheless, despite the presence of correlations, the notion of complete Bose-Einstein
condensation introduced before still makes sense. In fact, it was proven [LS02] that the
ground state ψN in the Gross-Pitaevskii limit exhibits complete Bose-Einstein condensation,

γ
(1)
ψN
→ |ϕGP〉〈ϕGP| (N →∞),

where the macroscopically occupied orbital ϕGP is the normalized minimizer of the Gross-
Pitaevskii energy functional EGP. The results of [LSY00, LS02] show that the properties of
the ground state are well approximated by Gross-Pitaevskii theory.

Coming back to the experiments discussed above, the question is whether the dynamics
after switching off (or changing) the trap can also be described by Gross-Pitaevskii theory, i. e.
if the evolution governed by the Schrödinger equation i∂tψN,t = HNψN,t with Hamiltonian

HN =

N∑
j=1

−∆xj +

N∑
i<j

N2V (N(xi − xj)) (1.15)

can be approximated by the evolution equation canonically associated with EGP,

i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt. (1.16)

The answer is yes; in a series of articles [ESY06a, ESY06b, ESY10, ESY07, ESYS09] (see
also Subsection 2.1.1 for some details on the method) and by a different method in [P10] the
following result was established: Consider a family of vectors ψN ∈ L2

s(R3N ) with bounded
energy per particle,

〈ψN , HNψN 〉 ≤ CN,

and exhibiting complete condensation in a one-particle orbital ϕ ∈ H1(R3) in the sense

γ
(1)
ψN
→ |ϕ〉〈ϕ| (N →∞).

Then, the solution ψN,t = e−iHN tψN of the Schrödinger equation still exhibits complete

Bose-Einstein condensation, i. e. the reduced one-particle density γ
(1)
ψN,t

associated with ψN,t
satisfies

γ
(1)
ψN,t
→ |ϕt〉〈ϕt| (N →∞) (1.17)

at any fixed time t > 0. Here ϕt is the solution of the time-dependent Gross-Pitaevskii
equation (1.16) with initial data ϕ. This result establishes the stability of complete Bose-
Einstein condensation with respect to the time-evolution, and the fact that the condensate
wave function evolves according to the Gross-Pitaevskii equation.

It is now desirable to obtain explicit bounds on the rate of convergence in (1.17), not least
because in view of (1.8) an explicit bound gives an indication of the number of particles
outside the condensate, but also because in experiments the number of particles is always
finite and it is thus important to know how large the number of particles has to be in order
to obtain a good approximation. The techniques of [ESY06a, ESY06b, ESY10, ESY07,

11



1. Introduction

ESYS09] however do not tell us anything about the rate of convergence, since they conclude
convergence from a compactness argument. We nevertheless discuss these techniques in
Subsection 2.1.1 since they provide us with a better understanding of how to take into
account the effect of correlations.

For an extensive review on Bose-Einstein condensation (in the state of 2007) leading from
the experimental side to the mathematics, we recommend to the reader the thesis [M07].

In Chapter 2 we present our work providing quantitative bounds for (1.17), see Theorem
2.1.1 and Theorem 2.C.1. The method, while inspired by the work [RS09, CLS11] on mean-
field systems, is significantly more involved due to the need of controlling the correlations. In
particular, we introduce Bogoliubov transformations (see Subsection 1.5.1) as a tool to model
correlations in the many-body system. On the mathematical side, the use of Bogoliubov
transformations presents a close link to our work on the Hartree-Fock theory for fermionic
systems, which we introduce next.

1.2.3. The Hartree-Fock equation for the fermionic mean-field regime

Another very important example of an effective evolution equation is the Hartree-Fock equa-
tion, describing the dynamics of systems of fermionic particles (e. g. electrons, neutrons,
protons, some atoms) in the mean-field regime. We consider the Schrödinger equation

i∂tψN,t =

 N∑
j=1

(−∆xj ) + λ
N∑
i<j

V (xi − xj)

ψN,t
for N indistinguishable fermions, i. e. in L2

a(R3N ). As for the bosonic mean-field regime we
choose the coupling constant λ small, such that kinetic and interaction energy are of the
same order as N →∞. To get a heuristic estimate of the order of the kinetic energy let us
consider non-interacting fermions confined to a box of volume of order one and with periodic
boundary conditions (in this example the energy can easily be calculated explicitly). Due to
Pauli’s principle, in fermionic systems particles can easily reach high energies: since no two
fermions can occupy the same one-particle orbital, they fill the eigenstates of the Laplacian
in order of increasing energy until all fermions found a place. As a consequence, already in
the ground state the kinetic energy is of order N5/3, the so-called Fermi energy. We thus
choose λ = N−1/3. Since as a consequence of the high energy, fermions also have a high
velocity — of order N1/3 for the energetically highest occupied orbitals — we can only expect
to follow their dynamics with an effective evolution equation up to times of order N−1/3.
Introducing a new time variable τ (which will be taken to be N -independent, and which is
called the semiclassical time) such that the physical time becomes

t = N−1/3τ,

we obtain the Schrödinger equation

iN1/3∂τψN,τ =

 N∑
j=1

(−∆xj ) +
1

N1/3

N∑
i<j

V (xi − xj)

ψN,τ .
We define a new parameter (we call it the semiclassical parameter)

ε := N−1/3

12



1.2. Effective evolution equations

and multiply the Schrödinger equation by ε2, resulting in

iε∂τψN,τ =

 N∑
j=1

(−ε2∆xj ) +
1

N

N∑
i<j

V (xi − xj)

ψN,τ . (1.18)

We introduce the Hamilton operator

HN =
N∑
j=1

(−ε2∆xj ) +
1

N

N∑
i<j

V (xi − xj), ε = N−1/3, (1.19)

so the Schrödinger equation is iε∂τψN,τ = HNψN,τ . With the factor 1/N explicitly written
now, the interaction term is of the same form as in the bosonic mean-field system, but in
contrast to the bosonic case we also have to deal with the semiclassical regime, the parameter
ε taking the role of Planck’s constant converging to zero. The factor ε in front of the time
derivative makes the analysis much more involved than for the bosonic mean-field regime.

For now, let us heuristically derive the Hartree-Fock equation as the effective equation
associated with the evolution (1.18). Typical initial data is prepared in an external trapping
potential just like for bosons. We expect the ground state of the weakly interacting fermions
in the trap to be close to the ground state of non-interacting fermions in the trap (or in a
box, as above), which has the form of a Slater determinant

ψN = AN (f1 ⊗ . . .⊗ fN ).

Here f1, . . . fN ∈ L2(R3) are orthonormal one-particle orbitals6. Now suppose the trap is
switched off. The idea of the Hartree-Fock approximation is to approximate the evolved
wave function ψN,τ = e−iHN τ/εψN with a Slater determinant

AN (f1,τ ⊗ . . .⊗ fN,τ ), (1.20)

where the orbitals evolve with an effective evolution equation. Calculating the energy of a
Slater determinant we find〈
ψN , HNψN

〉
=

∫
dx

N∑
j=1

ε2|∇fj |2 +
1

2N

∫
dxdy

N∑
i,j=1

V (x− y)|fj(x)|2|fi(y)|2

− 1

2N

∫
dxdy

N∑
i,j=1

V (x− y)fj(x)fj(y) fi(x)fi(y)

=: EHF(f1, . . . , fN ),

(1.21)

where in the last step we defined the Hartree-Fock energy functional EHF. The first summand
containing the interaction potential V is called the direct term, the second term containing
the interaction potential is called the exchange term. The self-consistent effective evolution
equation (to be precise, N coupled equations, one for each orbital) is obtained as the evolution
equation canonically associated with the Hartree-Fock energy functional EHF:

iε∂τfi,τ = −ε2∆fi,τ +
1

N

N∑
j=1

(
V ∗ |fj,τ |2

)
fi,τ −

1

N

N∑
j=1

(
V ∗ (fi,τfj,τ )

)
fj,τ . (1.22)

6The non-interacting Hamilton operator can be written as HN =
∑N
j=1 hj , where h is a one-particle Hamil-

tonian −∆ + Vext on L2(R3) (the subscript j meaning that it acts on the j-th particle). In this notation,
the fi would be the eigenvectors of h in order of increasing eigenvalues.
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The evolution defined by (1.22) conserves the energy EHF and the orthonormality of the
orbitals. The Hartree-Fock equations can be rewritten in a convenient form by introducing
the one-particle reduced density matrix

ωN,τ =
1

N

N∑
j=1

|fj,τ 〉〈fj,τ | (1.23)

associated with the Slater determinant (1.20). The Hartree-Fock equation (1.22) then be-
comes

iε∂τωN,τ = [−ε2∆ + V ∗ ρτ −Xτ , ωN,τ ]. (1.24)

Here we have introduced the commutator [A,B] = AB − BA of operators A and B. Fur-
thermore, we introduced the configuration space density of particles ρτ (x) = ωN,τ (x, x), the
multiplication operator (V ∗ρτ ), and the exchange operator Xτ , which is defined through its
integral kernel Xτ (x, y) = V (x− y)ωN,τ (x, y).

Conversely, if the initial data ωN,0 is a projection of rank N , so is ωN,τ for all τ (see
Section 1.B), and thus we can decompose it in the form (1.23) to obtain the equations in the
orbital form (1.22) again.

In Chapter 3 we present our work providing quantitative bounds on the difference of the
one-particle reduced density matrix of the Schrödinger evolution and the Hartree-Fock evo-
lution, for initial data satisfying certain semiclassical commutator bounds, see Theorem 3.3.1
and Theorem 3.3.2. As an important ingredient, we prove that the Hartree-Fock equation
preserves the semiclassical properties of the initial data. In Chapter 4, we present similar
results (Theorem 4.2.1) for the fermionic setting with relativistic dispersion relation, known
to physicists as relativistic degenerate matter.

The method is again inspired by the use of coherent states as initial data in [RS09, CLS11],
but in contrast to the bosonic case there are no coherent states in fermionic Fock space7.
As a replacement for the Weyl operators creating coherent states in the bosonic Fock space,
on fermionic Fock space we find degenerate Bogoliubov transformations that create Slater
determinants. Since correlations are not important in the mean-field case, the Bogoliubov
transformations to be used for fermions are very different from those used to implement
correlations in the Gross-Pitaevskii setting. In fact, the fermionic Bogoliubov transforma-
tions to be used are particle-hole transformations. We would like to stress that the fermionic
Bogoliubov transformations are better compared with the Weyl operator in Chapter 2 and
[RS09, CLS11] (see Section 1.4 for a review) than with the correlation-implementing Bogoli-
ubov transformations in Chapter 2.

The Hartree-Fock equation (1.24) still depends on N , through the semiclassical parameter
ε = N−1/3 and through the initial data. This poses the question whether the Hartree-Fock
equation has a well-defined limit for ε→ 0. The answer is yes: the semi-classical limit of the
Hartree-Fock equation is given by the non-linear Vlasov equation

∂ft
∂t

+ 2v · ∇xft + F (ft) · ∇vft = 0, (1.25)

where ft(x, v) ≥ 0 is a time-dependent density in the classical phase space Γ := R3 × R3,
with x position and v momentum8. The force F is given self-consistenly as the mean-field

7It is possible to define fermionic coherent states by extending Fock space with Grassmann variables (see
e. g. [CR12, FKT02, FK11]), but we found Bogoliubov transformations more convenient for us.

8The factor of 2 appears because we prefer to think of phase space over momentum instead of velocity, the
conversion factor being the mass m = 1/2.
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force F (ft) = −∇(V ∗ ρft ) with ρft (x) =
∫
ft(x, v)dv the configuration space density of

particles. For V the Coulomb potential, (1.25) is called the Vlasov-Poisson equation. The
non-linear Vlasov equation describes the mean-field theory of classical particles [BH77]; it is
of great importance for example in plasma physics [V68, Eq. II] and gives rise to intriguing
phenomena like Landau damping [MV11].

We now present a heuristic argument that the semiclassical limit of the Hartree-Fock
equation is given by the Vlasov equation. A standard tool for analyzing the semiclassical
limit is the Wigner function: For γ a one-particle density matrix, it is defined as a function
on phase space Γ = R3 × R3 through

WN (x, v) :=
1

(2π)3

∫
e−iv·η γ

(
x+ ε

η

2
, x− εη

2

)
dη for (x, v) ∈ Γ. (1.26)

Even though the Wigner function in general is not a probability density on the classical
phase space (Gaussians are the only pure states with non-negative Wigner function [SC83]),
it is nevertheless useful for comparing quantum mechanical theories to classical theories (c. f.
[B98, Chapter 15]).

In Appendix 3.A in Chapter 3 we prove that the exchange term can be neglected, so we
can consider the Hartree equation

iε∂τωN,τ = [−ε2∆ + V ∗ ρτ , ωN,τ ] (1.27)

instead of the Hartree-Fock equation (1.24). To obtain the Vlasov equation, let us look at
the time-derivative of the Wigner function associated with the solution ωN,τ to the Hartree
equation. We find

iε∂τWN,τ (x, v) (2π)3

=

∫
dη e−iv·η

(
−ε2∆1 + ε2∆2

)
ωN,τ

(
x+ ε

η

2
, x− εη

2

)
(1.28)

+

∫
dη e−iv·η

(
(V ∗ ρτ )

(
x+ ε

η

2

)
− (V ∗ ρτ )

(
x− εη

2

))
ωN,τ

(
x+ ε

η

2
, x− εη

2

)
, (1.29)

wherein ∆1 and ∆2 denote the Laplacian acting on the first and the second argument,
respectively, of the integral kernel ωN,τ (x1, x2). We approximate the difference in (1.29) by
expanding it to linear order in ε:(

(V ∗ ρτ )
(
x+ ε

η

2

)
− (V ∗ ρτ )

(
x− εη

2

))
= εη · ∇(V ∗ ρτ )(x) +O(ε2).

We plug this into line (1.29) and use integration by parts to convert the factor of η into a
gradient with respect to v; we obtain

(1.29) = εi∇(V ∗ ρτ )(x) · ∇vWN,τ (x, v) +O(ε2).

Furthermore it is easy to see that

(∆1 −∆2)ωN,τ

(
x+ ε

η

2
, x− εη

2

)
=

2

ε
∇η∇xωN,τ

(
x+ ε

η

2
, x− εη

2

)
.

Plugging this into (1.28), using integration by parts with respect to η and dividing the whole
equation by iε, we finally arrive at

∂τWN,τ (x, v) + 2v · ∇xWN,τ (x, v) = ∇x(V ∗ ρτ )(x) · ∇vWN,τ (x, v) +O(ε). (1.30)
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To conclude, we notice that the configuration space density ρWτ of the Wigner function is

ρWτ (x) :=

∫
WN,τ (x, v)dv = ωN,τ (x, x) = ρτ (x).

Thus (1.30) is indeed the Vlasov equation, up to an error term formally of order ε. The
Vlasov equation has been rigorously derived starting directly from the quantum-mechanical
fermionic system (1.18) in [NS81] for real-analytic potentials and in [S81] for more general
potentials. It has also been derived as a semiclassical limit starting from the Hartree-Fock
equation (1.24) in [GIMS98]. (The latter work is interesting as it shows that the step from
the Hartree-Fock equation to the Vlasov equation also holds for particles interacting via the
Coulomb potential, while the step from many-body quantum mechanics to the Hartree-Fock
equation has not yet been rigorously proven in the Coulomb case.)

We conclude with a review of the literature on the mean-field dynamics of fermionic
systems, which is much more limited than for bosonic systems. As far as we know, the first
rigorous results concerning the evolution of fermionic system in the regime we are interested
in were proven by [NS81] and [S81]. Neither [NS81] nor [S81] give a bound on the rate of
convergence. More recently, in [EESY04] the many-body evolution is compared to the N -
dependent Hartree dynamics described by (1.27): Under the assumption of a real-analytic

potential, it is shown that, for short semiclassical times, the difference between γ
(1)
N,t and ωN,t

is of order N−1 (when tested against appropriate observables). The results that we present
in Chapter 3 are comparable with those of [EESY04]. In contrast to [EESY04] we obtain
convergence for arbitrary times (i. e. for arbitrary, N -independent τ as appearing in (1.18))
and under much weaker assumptions on the regularity of the interaction potential.

A different mean-field regime of fermionic systems, characterized by ε = 1 in (1.18),
has been considered in [BGGM03, FK11], for regular interactions and for potentials with
Coulomb singularity, respectively. This alternative scaling describes physically interesting
situations if the particles occupy a large volume (so that the kinetic energy per particle is
of order one) and if the interaction has a long range (to make sure that also the potential
energy per particle is of order one). In this thesis we are interested in the evolution of initial
data describing N fermions in a volume of order one; correspondingly, we only consider the
scaling with ε = N−1/3 appearing in (1.18).

To conclude our discussion of the Hartree-Fock theory, we would like to point out that
the time-dependent Hartree-Fock equation was adapted to a wide range of applications,
e. g. in nuclear physics [MRSU13, BKN76]. As an example, in Figure 2 and Figure 3 we
show numerical results, obtained by time-dependent Hartree-Fock methods, describing the
collision of two atomic nuclei.

1.3. Second quantization

In this section we quickly review second quantization; see e. g. [RS80, Sections II.4 and
VIII.10] and [RS75, Section X.7] for details. As long as we work with states of exactly N
particles, the formalism of second quantization is just a convenient language for calculations.
In our derivation of the Gross-Pitaevskii equation in Chapter 2 however, second quantization
is indispensable since we consider states that do not have an exact number of particles. We
introduce the fermionic and bosonic setting both at once, pointing out differences only where
necessary.
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1.3. Second quantization

Fig. 2.: TDHF numerics: Excentric collision of a nucleus of Magnesium-24 with a nucleus
of Lead-208. Time from left to right and up to down. Colors correspond to the
total density, contour lines to the density of energetically lowest one-particle wave
functions in Magnesium-24. The Lead-208 nucleus has a radius of about 6fm. From

[M14].

Fig. 3.: TDHF numerics: A nucleus of Carbon-12 collides with a nucleus of Oxygen-16, with
initial relative energy 100MeV. Time from left to right and up to down. From [M14].

17



1. Introduction

Fock space is defined as the Hilbert space direct sum

F :=
⊕
n≥0

SnL
2(R3n) (bosons),

F :=
⊕
n≥0

AnL
2(R3n) (fermions),

where An is the antisymmetrization operator and Sn the symmetrization operator, both as
introduced in Section 1.1. By convention L2(R0) = L2(R3)⊗0 = C. A vector ψ ∈ F can be
written as a sequence ψ = (ψ(0), ψ(1), . . .), where ψ(n) ∈ AnL2(R3n) for the fermionic and
ψ(n) ∈ SnL2(R3n) for the bosonic case. The vector (both in the fermionic and the bosonic
Fock space)

Ω := (1, 0, 0, . . .)

is called vacuum vector and describes a state not containing any particle. The scalar product
on Fock space (with respect to which Fock space is a Hilbert space) is〈

ψ,ϕ
〉

=
∑
n≥0

〈
ψ(n), ϕ(n)

〉
L2(R3n)

, ψ, ϕ ∈ F .

In fact, any sequence ψ = (ψ(0), ψ(1), . . .) with ψ(n) ∈ SnL2(R3n) satisfying

∞∑
n≥0

‖ψ(n)‖2 <∞

is an element of the bosonic Fock space, and analogously for ψ(n) ∈ AnL2(R3n) an element
of fermionic Fock space.

In Fock space we can describe states where the number of particles is not exactly deter-
mined. The vector ψ = (ψ(0), ψ(1), . . . ) ∈ F describes a coherent superposition of states with
different numbers of particles; the n-particle component is described by ψ(n). The probabil-
ity to find n particles in a measurement is given by ‖ψ(n)‖2. We will generally identify states
of exactly N particles, ψN ∈ L2

s(R3N ) or ψN ∈ L2
a(R3N ), with

(0, . . . , 0, ψN , 0, . . .) ∈ F ,

i. e. ψ(n) = 0 for all n 6= N and ψ(N) = ψN .

For calculations it is convenient to use creation and annihilation operators. In the bosonic
case, they are defined for every one-particle orbital f ∈ L2(R3) by their action on the
individual elements of the sequence ψ ∈ F as

(a(f)ψ)(n) (x1, . . . xn) :=
√
n+ 1

∫
f(x)ψ(n+1)(x, x1, . . . xn)dx (annihilation operator),

(a∗(f)ψ)(n) (x1, . . . xn) :=
1√
n

n∑
k=1

f(xk)ψ
(n−1)(x1, . . . x̂k . . . xn) (creation operator).

The notation x̂k means that the argument xk is left out. The sum in the definition of the
creation operator is required to make the result of applying a∗(f) symmetric with respect
to permutation of particles, so that we stay in the bosonic Fock space. The domain of the
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1.3. Second quantization

bosonic creation and annihilation operators is equal to the domain of N 1/2, with N being
the number operator

(Nψ)(n) := nψ(n), D(N ) :=
{
ψ ∈ F :

∑
n≥0

n2‖ψ(n)‖2 <∞
}

(1.31)

on bosonic Fock space. The physical interpretation is that N counts the number of particles
of the Fock space vector ψ. The bosonic creation and annihilation operators are densely
defined and closed, but unbounded. The creation operator a∗(f) is the adjoint of the anni-
hilation operator a(f). Notice that a(f) is antilinear in f while a∗(f) is linear in f . The
bosonic operators satisfy the canonical commutation relations (CCR)

[a(f), a∗(g)] =
〈
f, g
〉
, [a(f), a(g)] = [a∗(f), a∗(g)] = 0 for all f, g ∈ L2(R3). (1.32)

For fermions the definition is similar but taking into account the antisymmetry,

(a(f)ψ)(n) (x1, . . . xn) :=
√
n+ 1

∫
f(x)ψ(n+1)(x, x1, . . . xn)dx (annihilation operator),

(a∗(f)ψ)(n) (x1, . . . xn) :=
1√
n

n∑
k=1

(−1)k−1f(xk)ψ
(n−1)(x1, . . . x̂k . . . xn) (creation operator).

The fermionic operators satisfy the canonical anticommutation relations (CAR)

{a(f), a∗(g)} =
〈
f, g
〉
, {a(f), a(g)} = {a∗(f), a∗(g)} = 0 for all f, g ∈ L2(R3), (1.33)

where we have introduced the anticommutator {A,B} = AB + BA. In particular, this
means that for fermions a∗(f)2 = 0, implementing Pauli’s exclusion principle. Unlike the
bosonic operators, the fermionic creation and annihilation operators are bounded operators,
a property that we will heavily use in the derivation of the Hartree Fock equation in Chapter
3. Indeed we have, using the CAR (1.33),

‖a(f)ψ‖2 = 〈a(f)ψ, a(f)ψ〉 = 〈ψ, a∗(f)a(f)ψ〉 = ‖f‖22‖ψ‖2 − 〈ψ, a(f)a∗(f)ψ〉 ≤ ‖f‖22‖ψ‖2 ,

which implies that the fermionic operators satisfy

‖a(f)‖ ≤ ‖f‖2 and ‖a∗(f)‖ ≤ ‖f‖2. (1.34)

The fermionic number operator is defined by the same expressions as the bosonic number
operator (1.31), just on the fermionic Fock space.

Both for fermions and bosons, for any annihilation operator a(f), we have

a(f)Ω = 0.

The (anti)commutation relations make it possible to do many calculations in a systematic
way. Both in the fermionic and bosonic case, it is useful to introduce the operator-valued
distributions a∗x and ax. Actually

(axψ)(n) (x1, . . . xn) :=
√
n+ 1ψ(n+1)(x, x1, . . . , xn) (1.35)

defines a densely defined operator (the expression makes sense on continuous wave functions),
which we think of as destroying a particle at x ∈ R3. It is easy to see that

a(f) =

∫
f(x)axdx.
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1. Introduction

On the other hand, a∗x can not be defined in a useful way as an operator, since its domain
would only contain the zero-vector (for a lucid discussion, see [W96]). Nevertheless we can
make sense of it as a quadratic form through〈

ϕ, a∗xψ
〉

:=
〈
axϕ,ψ

〉
, (1.36)

or by considering it as a distribution, since by formally integrating against a test function
f ∈ L2(R3) we can take a∗x back to the well-defined operator∫

f(x)a∗xdx = a∗(f).

In terms of the operator-valued distributions, the canonical commutation relations on bosonic
Fock space read

[ax, a
∗
y] = δ(x− y) and [ax, ay] = [a∗x, a

∗
y] = 0,

where δ is the Dirac delta distribution. The canonical anticommutation relations on fermionic
Fock space read

{ax, a∗y} = δ(x− y) and {ax, ay} = {a∗x, a∗y} = 0.

A product of creation and annihilation operators is called normal-ordered if all creation
operators are to the left of all annihilation operators. From (1.36) and the CCR/CAR
in the distributional sense it is clear that non-normal-ordered products of operator-valued
distributions are often singular, and thus require a more careful treatment than normal-
ordered products.

As an example for the use of operator-valued distributions, let us derive a useful represen-
tation of the number operator N : Interpreting the integral in a weak sense, we have〈

ψ,

∫
a∗xax dxϕ

〉
=

∫ 〈
ψ, a∗xaxϕ

〉
dx =

∫ 〈
axψ, axϕ

〉
dx =

〈
ψ,Nϕ

〉
,

or shorter N =
∫

dx a∗xax.
For a one-particle operator O on L2(R3) with dense domain D(O), let O(n) be the closure

of the operator (restriction to the symmetric/antisymmetric subspace is simple)

n∑
j=1

1⊗ · · ·1⊗ O
j-th factor

⊗ 1⊗ · · ·1 : D(O)⊗n → L2(R3N ).

We then introduce the second quantization dΓ(O) of the one-particle operator O by

(dΓ(O)ψ)(n) := O(n)ψ(n),

which naturally has the domain

D(dΓ(O)) :=
{
ψ ∈ F : ψ(n) ∈ D(O(n)) for all n ∈ N, and

∑
n≥0

‖O(n)ψ(n)‖2L2(R3n) <∞
}
.

If O is essentially selfadjoint on some D ⊂ L2(R3), then dΓ(O) restricted to the subspace{
ψ ∈ F : only finitely many ψ(n) 6= 0, and ψ(n) ∈ D⊗n for all n ∈ N

}
is essentially selfad-

joint, too (using [RS80, Theorems VIII.33 and VIII.3]).
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1.4. Derivation of the Hartree equation using coherent states

If the operator O on L2(R3) has an integral kernel O(x, y) we have

dΓ(O) =

∫
dxdy O(x, y)a∗xay. (1.37)

Expressions like the last one should again be interpreted as quadratic forms. As an example,
we have already discussed the number operator N = dΓ(1). A more complicated example
for the use of the operator-valued distributions is given by the second quantized Hamilton
operator. On the one hand we have the Hamilton operator H defined as an operator on
fermionic or bosonic Fock space by

(Hψ)(n) = H(n)ψ(n), where H(n) =
n∑
j=1

−∆xj +
n∑
i<j

V (xi − xj).

On the other hand, we have

H̃ =

∫
dx∇xa∗x∇xax +

1

2

∫
dxdy V (x− y)a∗xa

∗
yayax

defined as a quadratic form on e. g.

FS0 :=
{
ψ ∈ F : only finitely many ψ(n) 6= 0, and ψ(n) ∈ S(R3n) for all n ∈ N

}
,

with S(R3n) denoting Schwartz space. As discussed in Section 1.B, under general as-
sumptions on the potential, H(n) is essentially selfadjoint on S(R3n) (and on the symmet-
ric/antisymmetric subspace), and consequently, H is essentially selfadjoint on FS0 by the
dense-range criterion [RS80, Theorem VIII.3]9. Now for ϕ,ψ ∈ FS0 , one can use (1.35) to
check that

〈
ϕ,Hψ

〉
=
〈
ϕ, H̃ψ

〉
, so H and H̃ coincide as quadratic forms on FS0 .

Even for bounded operators O, the operator dΓ(O) does not have to be bounded. However,
on fermionic Fock space, if O is trace class then dΓ(O) is a bounded operator. This fact and
other important bounds are shown in Lemma 3.4.1 in Section 3.4. We caution the reader
that this does not hold in the bosonic case.

Finally, let us remark that occasionally we use the notation a](f) for an equation that
holds both for an annihilation operator a(f) and a creation operator a∗(f) in this place.

1.4. Derivation of the Hartree equation using coherent states

Since it inspired the strategies followed in Chapters 2–4, we give a review on the method
of coherent states [RS09, CLS11] for proving Theorem 1.2.1. Our review is based on the
presentation [S08]. The main message we would like to convey in this section is that after
introducing appropriate fluctuation dynamics, the problem is reduced to proving a bound of
the type (1.45). The central object is

〈
UN (t, 0)Ω,NUN (t, 0)Ω

〉
, which we call the number of

fluctuations, and the central task is to bound the number of fluctuations uniformly in N , for
example using Grönwall’s lemma. This idea was the main inspiration for the work in this
thesis.

9Furthermore, since H(n) is selfadjoint on (the symmetric/antisymmetric subspace of) H2(R3n), H is self-
adjoint on

{
ψ ∈ F : ψ(n) ∈ H2(R3n),

∑
n≥0‖H

(n)ψ(n)‖2L2(R3n) <∞
}

.
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We consider the bosonic mean-field regime introduced in Section 1.2.1, i. e. N bosons in
three-dimensional space, described by the Hamilton operator

HN =
N∑
j=1

−∆xj +
1

N

N∑
i<j

V (xi − xj). (1.38)

We consider the time evolution given by the Schrödinger equation i∂tψN,t = HNψN,t with
initial data ψN,0 = ϕ⊗N ∈ L2

s(R3N ), where the one-particle orbital is ϕ ∈ L2(R3) with
‖ϕ‖2 = 1. We would like to prove that for the solution ψN,t = e−iHN tϕ⊗N to the Schrödinger

equation the one-particle reduced density matrix γ
(1)
N,t = tr2,...N |ψN,t〉〈ψN,t| satisfies

γ
(1)
N,t → |ϕt〉〈ϕt| (N →∞ at any fixed t)

in trace norm topology. Here ϕt is the solution to the Hartree equation

i∂tϕt = −∆ϕt + (V ∗ |ϕt|2)ϕt with initial data ϕ0 = ϕ. (1.39)

Furthermore, we would like to obtain quantitative estimates on the rate of convergence.
Here we present the method of Rodnianski and Schlein [RS09], giving

tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C√
N
eKt,

which was later refined by [CLS11] to provide the optimal rate of convergence N−1. This
approach was originally proposed by [H74] for studying the classical limit of quantum me-
chanics; it was later extended by [GV79] to a larger class of potentials. In this approach, the
N -body system is embedded in bosonic Fock space F and coherent states are considered as
initial data. Since coherent states do not have an exact number of particles, in the end one
has to project back from F to the N -particle space L2

s(R3N ). Actually, for the one-particle

density matrix γ
(1)
coh,t of a coherent state with expected number of particles N , Rodnianski

and Schlein prove that the rate of convergence is tr
∣∣γ(1)

coh,t − |ϕt〉〈ϕt|
∣∣ = O(N−1), but in

projecting to the N -particle space they loose a factor N−1/2.
For N -particle vectors ψN ∈ L2(R3N ), the one-particle reduced density matrix can be

expressed as

γ
(1)
ψN

(x, y) =
1

N

〈
ψN , a

∗
yaxψN

〉
.

For vectors in Fock space, ψ ∈ F , this is generalized to

γ
(1)
ψ (x, y) =

1〈
ψ,Nψ

〉〈ψ, a∗yaxψ〉.
Using the operator-valued distributions the Hamiltonian can be lifted to Fock space by

HN =

∫
dx∇xa∗x∇xax +

1

2N

∫
dxdy V (x− y)a∗xa

∗
yayax.

The operator HN restricted to the subspace L2
s(R3N ) of Fock space coincides with HN given

in (1.38). Furthermore, HN conserves the number of particles, i. e. it commutes with N , so
that the n-particle subspaces evolve independently,(

e−iHN tψ
)(n)

= e−iH
(n)
N tψ(n).
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1.4. Derivation of the Hartree equation using coherent states

Here H(n)
N is the restriction of HN to L2(R3n). In particular, starting with initial data in the

N -particle subspace, the evolution stays in the N -particle subspace for all times.
For f ∈ L2(R3) one defines the Weyl operator

W (f) = exp(a∗(f)− a(f)).

One then introduces the coherent state with one-particle orbital f ∈ L2(R3) as

W (f)Ω = e−‖f‖
2
2/2ea

∗(f)Ω = e−‖f‖
2
2/2
∑
n≥0

(a∗(f))n

n!
Ω = e−‖f‖

2
2/2
∑
n≥0

1√
n!
f⊗n ∈ F .

(Here we used the Baker-Campbell-Hausdorff formula eA+B = e−
1
2

[A,B]eAeB (for A, B oper-
ators that commute with their commutator [A,B]) with the canonical commutation relations
(1.32) and then expanded the exponential.) Since W (f) is unitary, coherent states are always
normalized, ‖W (f)Ω‖ = 1. Apparently coherent states are linear combinations of states with
all possible particle numbers. Coherent states have an extremely wide use in quantum me-
chanics. For us, their usefulness is due to the algebraic properties listed in the following
standard lemma:

Lemma 1.4.1 (Bosonic Weyl operators). Let f, g ∈ L2(R3).

(i) Weyl operators satisfy the Weyl relations

W (f)W (g) = W (g)W (f)e−2i Im〈f,g〉L2 = W (f + g)e−i Im〈f,g〉L2 .

(ii) W (f) is a unitary operator on F and W (f)−1 = W ∗(f) = W (−f).
(By a common abuse of notation W ∗(f) = W (f)∗.)

(iii) We have

W ∗(f)a(g)W (f) = a(g)+〈g, f〉 and W ∗(f)a∗(g)W (f) = a∗(g)+〈f, g〉. (1.40)

In terms of the operator-valued distributions

W ∗(f)axW (f) = ax + f(x), W ∗(f)a∗xW (f) = a∗x + f(x).

(iv) Coherent states are eigenvectors of all annihilation operators,

a(g)W (f)Ω = 〈g, f〉W (f)Ω.

(v) The expected number of particles in a coherent state W (f)Ω is〈
W (f)Ω,NW (f)Ω

〉
= ‖f‖22.

Proof of the lemma. The Weyl relations follow from the canonical commutation relations
and the Baker-Campbell-Hausdorff formula. Unitarity is clear since the exponent is anti-
selfadjoint. The identity W ∗(f) = W (−f) follows by taking the hermitian conjugation
into the exponent. The properties (iii) are proved by writing W ∗(f)a(g)W (f) − a(g) as an
integral over the derivative with respect to a dummy variable. Property (iv) follows from
(iii). Finally, (v) is obtained by writing N =

∫
dx a∗xax and using (iii).
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Rodnianski and Schlein study the dynamics of coherent states with expected number of
particles equal to N . Let ϕ ∈ L2(R3) with ‖ϕ‖2 = 1. Consider the Schrödinger equation in
bosonic Fock space, i∂tψN,t = HNψN,t, with initial data chosen to be a coherent state

ψN,0 = W (
√
Nϕ)Ω.

The solution is given by ψN,t = e−iHN tW (
√
Nϕ)Ω. One expects ψN,t to be approximately

coherent again, i. e. of the form W (
√
Nϕt)Ω, where ϕt should be the solution of the Hartree

equation (1.39) with initial data ϕ0 = ϕ. This holds in terms of the reduced densities, and as

the first step of the proof, one expresses the difference between γ
(1)
N,t, the one-particle reduced

density matrix associated with ψN,t, and |ϕt〉〈ϕt|, the one-particle reduced density matrix
associated with ϕ⊗Nt , in terms of a unitary fluctuation dynamics. Consider

γ
(1)
N,t(x, y) =

1

N

〈
Ω,W ∗(

√
Nϕ)eiHN ta∗yaxe

−iHN tW (
√
Nϕ)Ω

〉
.

One then inserts 1 = W (
√
Nϕt)W

∗(
√
Nϕt) on the left and the right of a∗yax. Using Lemma

1.4.1 (iii) and defining the unitary fluctuation dynamics

UN (t, s) = W ∗(
√
Nϕt)e

−iHN (t−s)W (
√
Nϕs) (1.41)

one obtains

γ
(1)
N,t(x, y)− ϕt(x)ϕt(y) =

1

N

〈
UN (t, 0)Ω, a∗yaxUN (t, 0)Ω

〉
(1.42)

+
ϕt(x)√
N

〈
UN (t, 0)Ω, a∗yUN (t, 0)Ω

〉
(1.43)

+
ϕt(y)√
N

〈
UN (t, 0)Ω, axUN (t, 0)Ω

〉
. (1.44)

The N -dependence of the first term on the r. h. s. is already optimal; we can estimate it in
Hilbert-Schmidt norm by∥∥∥∥ 1

N

〈
UN (t, 0)Ω, a∗(.)a(.)UN (t, 0)Ω

〉∥∥∥∥
HS

≤ 1

N

〈
UN (t, 0)Ω,NUN (t, 0)Ω

〉
.

It is now sufficient to prove the key bound〈
UN (t, 0)Ω,NUN (t, 0)Ω

〉
≤ CeK|t|, (1.45)

which can be done using Grönwall’s lemma. We will prove the same bound for a simpler
evolution ŨN (t, 0) in some detail below. The bound for UN (t, 0) is more central (in fact, it
is a key point), but its proof is much more involved (although based on similar ideas), so we
refer the reader to [RS09, S08] for the details.

We could also control (1.43) and (1.44) in this way to obtain a bound of order N−1/2, but
here we will explain the technical argument allowing us to improve the rate (this inspired the
argument used to improve the trace norm estimate in Theorem 3.3.1 from N1/2 to N1/6).
The starting point is to notice that UN (t, s) is a unitary evolution determined by the equation

i∂tUN (t, s) = LN (t)UN (t, s), UN (s, s) = 1

24



1.4. Derivation of the Hartree equation using coherent states

with generator

LN (t) =
(
i∂tW

∗(
√
Nϕt)

)
W (
√
Nϕt) +W ∗(

√
Nϕt)HNW (

√
Nϕt) (1.46)

= HN +

∫
dx (V ∗ |ϕt|2)(x)a∗xax +

∫
dxdy V (x− y)ϕt(x)ϕt(y)a∗yax

+
1

2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a∗xa

∗
y + ϕt(x)ϕt(y)axay

)
+

1√
N

∫
dxdy V (x− y)a∗x

(
ϕt(y)a∗y + ϕt(y)ay

)
ax.

The Hartree equation (1.39) is needed for cancelling the terms linear in a∗x or ax between
the two summands in (1.46). This cancellation is crucial since individually, the linear terms
are of order N1/2, and we must not get anything larger than order one (w. r. t. N) here in
the generator to be able to apply Grönwall’s lemma.

Now, if UN (t, 0) conserved the parity (−1)N , we would immediately know that the ex-
pectation values

〈
UN (t, 0)Ω, a∗yUN (t, 0)Ω

〉
and

〈
UN (t, 0)Ω, axUN (t, 0)Ω

〉
vanish completely.

However, the summand in the last line of the generator violates parity, but we notice that it
is formally of order N−1/2. Therefore one introduces a new dynamics ŨN , generated by

L̃N (t) = HN +

∫
dx (V ∗ |ϕt|2)(x)a∗xax +

∫
dxdy V (x− y)ϕt(x)ϕt(y)a∗yax

+
1

2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a∗xa

∗
y + ϕt(x)ϕt(y)axay

)
,

i. e. the parity-violating term has been dropped. In fact, using the Duhamel formula

UN (t, 0)− ŨN (t, 0) = UN (t, 0)
(

1− UN (t, 0)∗ŨN (t, 0)
)

= −i
∫ t

0
dsUN (t, s)

(
LN (s)− L̃N (s)

)
ŨN (s, 0)

and (1.47) below (and an analogous bound for the expectation of N 4), one can prove that

‖(UN (t, 0)− ŨN (t, 0))Ω‖ ≤ C√
N
eK|t|.

Since ŨN conserves the parity it can be inserted in (1.43) and (1.44), and eventually one
obtains the estimate

‖γ(1)
N,t − |ϕt〉〈ϕt|‖HS ≤

1

N

〈
UN (t, 0)Ω,NUN (t, 0)Ω

〉
+

2√
N
‖(UN (t, 0)− ŨN (t, 0))Ω‖‖(N + 1)1/2UN (t, 0)Ω‖

+
2√
N
‖(UN (t, 0)− ŨN (t, 0))Ω‖‖(N + 1)1/2ŨN (t, 0)Ω‖

≤ 1

N

〈
UN (t, 0)Ω,NUN (t, 0)Ω

〉
+
C

N
eK|t|‖(N + 1)1/2UN (t, 0)Ω‖+

C

N
eK|t|‖(N + 1)1/2ŨN (t, 0)Ω‖.

25



1. Introduction

The next step is to prove that〈
ŨN (t, 0)Ω, (N + 1)ŨN (t, 0)Ω

〉
≤ CeK|t|. (1.47)

Notice that the generator of ŨN (t, s) contains terms not conserving the number of particles,
so it is non-trivial to bound this expectation value. (From a physical point of view, this
is because UN (t, s) describes fluctuations around the Hartree evolution and the fluctuations
are expected to grow in time. For us the important point is that they must not grow with
N .) To obtain a bound, one computes the time derivative using the generator L̃N of ŨN ,

d

dt

〈
ŨN (t, 0)Ω, (N + 1)ŨN (t, 0)Ω

〉
=
〈
ŨN (t, 0)Ω, [L̃N (t),N ]ŨN (t, 0)Ω

〉
= 4 Im

∫
dxdy V (x− y)ϕt(x)ϕt(y)

〈
ŨN (t, 0)Ω, a∗xa

∗
yŨN (t, 0)Ω

〉
,

and estimates the last line using the well-known lemma that creation and annihilation oper-
ators are bounded with respect to the number operator:

Lemma 1.4.2. Let f ∈ L2(R3). Then, for any ψ ∈ F , we have the following bounds for the
bosonic creation and annihilation operators:

‖a(f)ψ‖ ≤ ‖f‖2‖N 1/2ψ‖,
‖a∗(f)ψ‖ ≤ ‖f‖2‖(N + 1)1/2ψ‖,
‖φ(f)ψ‖ ≤ 2‖f‖2‖(N + 1)1/2ψ‖.

(1.48)

Here we introduced the selfadjoint field operator φ(f) := a∗(f) + a(f).

Proof. The first inequality follows by writing out the definition of the annihilation operator
and using the Cauchy-Schwarz inequality on the integrals. The second inequality follows
from the first and the CCR.

Assuming the potential to satisfy V 2 ≤ C(1−∆) for some C > 0, one obtains∣∣∣∣ d

dt

〈
ŨN (t, 0)Ω, (N + 1)ŨN (t, 0)Ω

〉∣∣∣∣ ≤ C〈ŨN (t, 0)Ω, (N + 1)ŨN (t, 0)Ω
〉
.

Applying Grönwall’s lemma, this implies (1.47).
As mentioned before, the proof of (1.45) is similar, but requires extra work to control

terms which are cubic in creation/annihilation operators.
Finally, one obtains

‖γ(1)
N,t − |ϕt〉〈ϕt|‖HS ≤

C

N
eK|t| (1.49)

and according to Lemma 1.A.1, Hilbert-Schmidt norm and trace norm here only differ by at
most a factor of 2. The estimate (1.49) here is for the one-particle reduced density matrix
of a solution to the Schrödinger equation with coherent state as initial data, but one can
project onto the N -particle component to obtain the result for initial data ϕ⊗N , see [CLS11]
for the optimal way.

After this review, we summarize the general strategy: For initial data obtained by applying
a unitary operator to the vacuum, one introduces fluctuation dynamics UN in the spirit
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1.5. Bogoliubov transformations

of (1.41). For a well-chosen unitary (i. e. well-chosen initial data and well-chosen effective

evolution) one can then bound the difference between γ
(1)
N,t and its approximation by the

number of fluctuations
〈
UN (t, 0)Ω,NUN (t, 0)Ω

〉
. The main task is to control this quantity,

which is typically done invoking Grönwall’s lemma.
This general strategy is the basis for the results in Chapter 2 (Derivation of the Gross-

Pitaevskii equation) and Chapter 3 and 4 (Derivation of the Hartree-Fock equation). How-
ever, for the Gross-Pitaevskii setting as well as for the Hartree-Fock setting, coherent states
are not well-adapted initial data. In fact, we use Bogoliubov transformations to define perti-
nent initial data. We then obtain bounds in terms of the number of fluctuations. To control
the number of fluctuations we have to develop new ideas beyond the bosonic mean-field
setting which we will explain in the respective chapters.

1.5. Bogoliubov transformations

In this chapter, we introduce the theory of Bogoliubov transformations. In particular, we
comment on the similarities and highlight the differences between the bosonic and fermionic
Bogoliubov transformations employed in this work.

Let us start with the abstract theory following [S07]. In the most general setting, with an
abstract one-particle Hilbert space h, it is necessary to introduce the conjugate linear map
J : h → h∗ such that (Jg)(f) = 〈g, f〉h (f, g ∈ h). In this thesis we only consider quantum
mechanical systems which have one-particle space h = L2(R3), so we choose to formulate
the theory using explicit complex conjugation.

The appropriate language for studying Bogoliubov transformations is generalized creation
and annihilation operators. We give the bosonic and fermionic definitions at the same time;
unless we point out differences everything holds for bosons as well as for fermions. For
f, g ∈ L2(R3) the generalized operators are defined as

A(f, g) := a(f) + a∗(g), A∗(f, g) := a∗(f) + a(g) = (A(f, g))∗ . (1.50)

Let us define

J =

(
0 J
J 0

)
,

where J : L2(R3)→ L2(R3) is complex conjugation, i. e. Jf = f for f ∈ L2(R3). We observe
that

A∗(f, g) = A(J (f, g)). (1.51)

Notice that A∗ is linear in its arguments whereas A is antilinear in its arguments. The
canonical commutation relations (i. e. for the bosonic operators) take the form

[A(f1, g1), A∗(f2, g2)] =
〈
(f1, g1),S(f2, g2)

〉
L2(R3)⊕L2(R3)

,

where S =

(
1 0
0 −1

)
: L2(R3)⊕ L2(R3)→ L2(R3)⊕ L2(R3).

(1.52)

The canonical anticommutation relations (i. e. for the fermionic operators) take the form

{A(f1, g1), A∗(f2, g2)} =
〈
(f1, g1), (f2, g2)

〉
L2(R3)⊕L2(R3)

. (1.53)

We caution the reader that in general {A(f1, g1), A(f2, g2)} 6= 0 and [A(f1, g1), A(f2, g2)] 6= 0.
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A Bogoliubov transformation is an isomorphism ν : L2(R3)⊕ L2(R3)→ L2(R3)⊕ L2(R3)
such that

A∗(ν(f, g)) = A(νJ (f, g)) (1.54)

and for bosons
[A(ν(f1, g1)), A∗(ν(f2, g2))] =

〈
(f1, g1),S(f2, g2)

〉
, (1.55)

while for fermions

{A(ν(f1, g1)), A∗(ν(f2, g2))} =
〈
(f1, g1), (f2, g2)

〉
. (1.56)

The bosonic property (1.55) is equivalent to

ν∗Sν = S; (1.57)

the fermionic property (1.56) is equivalent to

ν∗ν = 1. (1.58)

In short, a Bogoliubov transformation linearly combines creation and annihilation operators
in such a way that the new operators B(f, g) := A(ν(f, g)) satisfy the CCR or CAR again
and also the property B∗(f, g) = B(J (f, g)). (Physically, one can think of the new operators
as describing quasiparticles.)

The property (1.54) implies that (both for bosons and fermions)

νJ = J ν, (1.59)

which implies that ν can be decomposed into blocks as

ν =

(
u v
v u

)
, (1.60)

where u, v : L2(R3) → L2(R3) are bounded operators. Here we wrote u for JuJ , which is
again a linear operator. If u has an integral kernel u(x, y), then u(x, y) is the integral kernel
of u. As a consequence of (1.57), in the bosonic case the blocks have to satisfy

u∗u = 1 + v∗v and v∗u = u∗v, (1.61)

and for fermions as a consequence of (1.58)

u∗u = 1− v∗v and v∗u = −u∗v. (1.62)

Conversely, if u and v satisfy the appropriate (bosonic or fermionic) condition then a matrix
of the form (1.60) defines a Bogoliubov transformation.

A bosonic or fermionic Bogoliubov transformations ν is called implementable on the
bosonic or fermionic Fock space F , respectively, if there exists a unitary operator Rν : F → F
such that

R∗νA(f, g)Rν = A(ν(f, g)). (1.63)

According to the Shale-Stinespring condition (see e. g. [S07, Theorem 9.5] or [R78]), a Bo-
goliubov transformation is implementable if and only if the block v is a Hilbert-Schmidt
operator.
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1.5. Bogoliubov transformations

The quantum-mechanical time-evolution generated by a quadratic Hamiltonian is an ex-
ample of a Bogoliubov transformation [BD06], explaining why it can be expressed in terms of
the classical evolution. However, the Bogoliubov transformations that we use in this thesis
play a different role, which is to construct initial data for the many-body dynamics. To
elaborate on the role of Bogoliubov transformations, recall that for ψ ∈ F the one-particle
reduced density matrix is the operator on L2(R3) with integral kernel

γ
(1)
ψ (x, y) =

1〈
ψ,Nψ

〉〈ψ, a∗yax〉.
We define the pairing density10 αψ as the operator with integral kernel

αψ(x, y) =
1〈

ψ,Nψ
〉〈ψ, ayaxψ〉.

For ψ ∈ L2(R3N ) the pairing density vanishes; only for Fock space vectors that do not have
an exact number of particles the pairing density can be non-zero.

A vector ψ ∈ F is called a quasifree pure state if it is of the form ψ = RνΩ for some
implementable Bogoliubov transformation ν. (In the language of quasiparticles, RνΩ is
the quasiparticle vacuum.) Quasifree states are particularly useful due to the fact that all
higher-order correlation functions (which includes all k-particle reduced density matrices)〈

ψ, a]x1
· · · a]xkψ

〉
can be expressed using only the one-particle reduced density matrix and the pairing density
by Wick’s theorem [S07, Theorem 10.2]:〈
ψ,A(f1, g1) · · ·A(f2m, g2m)ψ

〉
=
∑
σ∈P2m

(±1)σ
〈
ψ,A(fσ(1), gσ(1))A(fσ(2), gσ(2))ψ

〉
× · · ·

〈
ψ,A(fσ(2m−1), gσ(2m−1))A(fσ(2m), gσ(2m))ψ

〉
.

The expectation values on the r. h. s. are straightforwardly expanded in γ
(1)
ψ and αψ. (Ex-

pectation values with an odd number of creation/annihilation operators vanish. The set of
pairings P2m is defined in (3.77). In the fermionic case (±1)σ = sgn(σ), in the bosonic case
(±1)σ = 1.)

Furthermore, it is an easy calculation to see that for a quasifree pure state ψ = RνΩ with
Bogoliubov transformation ν of the form (1.60), the one-particle reduced density matrix is

γ
(1)
ψ =

1〈
ψ,Nψ

〉v∗v
and the pairing density

αψ =
1〈

ψ,Nψ
〉v∗u.

We have
〈
ψ,Nψ

〉
= ‖v‖2HS, so the Shale-Stinespring condition ensures that the number of

particles in quasifree states (in the quasiparticle vacuum) is finite. As a consequence of (1.61)

10Since in this chapter we adapted the normalization tr γ
(1)
ψ = 1, compared to Chapters 3 and 4 extra factors

appear in the following equations.
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or (1.62) the one-particle reduced density matrix γ = γ
(1)
ψ and the pairing density α = αψ

of a quasifree pure state ψ satisfy

γα = αγ and γ2 − αα = −γ 1〈
ψ,Nψ

〉 (bosons) (1.64)

or

γα = αγ and γ2 − αα = γ
1〈

ψ,Nψ
〉 (fermions), (1.65)

respectively.

1.5.1. Problem-specific constructions

Having introduced the abstract theory, let us now give concrete constructions for the fermionic
and the bosonic Bogoliubov transformations used in this thesis. Afterwards we will also dis-
cuss the differences.

In the fermionic case, we are interested in the mean-field regime, i. e. correlations can be
neglected and the initial data we are interested in is approximately a Slater determinant. We
are therefore interested in finding a unitary operator R on Fock space such that RΩ coincides
with a given Slater determinant. This is indeed possible by choosing R as the unitary
implementor of an appropriate Bogoliubov transformation. We will now give an explicit
construction of R as a particle-hole transformation. Assume (fi)

∞
i=1 to be an orthonormal

basis in L2(R3). Define

RνΩ := a∗(f1) · · · a∗(fN )Ω

(this is exactly the Slater determinant AN (f1 ⊗ . . . ⊗ fN )) and define transformed creation
operators by

Rνa
∗(fi)R

∗
ν :=

{
a(fi) for i ≤ N
a∗(fi) for i > N.

An intuitive way of thinking of this transformation is that the Slater determinant RνΩ
constitutes a Fermi sea, while Rνa

∗(fi)R
∗
ν for i ≤ N creates holes in the Fermi sea. Clearly

the transformed operators satisfy the canonical anticommutation relations and RνΩ is a
vacuum for them. It is easy to see that Rν is isometric and thinking of the occupation
number representation of Fock space, it is clear that Rν is surjective. This implies that
Rν is unitary. Furthermore its action on creation/annihilation operators coincides with the
Bogoliubov transformation given by

ν =

(
u v
v u

)
=

(
1−

∑N
j=1 |fj〉〈fj |

∑N
j=1 |fj〉〈f j |∑N

j=1 |f j〉〈fj | 1−
∑N

j=1 |f j〉〈f j |

)
. (1.66)

It is an amusing exercise to derive identities for particle-hole transformations. For example,
using the representation N =

∑∞
i=1 a

∗(fi)a(fi), we find

RνNR∗ν =

(
N −

N∑
i=1

a∗(fi)a(fi)

)
+

∞∑
i=N+1

a∗(fi)a(fi).

In physical terms, this can be interpreted as the number of holes plus the number of particles,
or in total as the number of excitations w. r. t. the Fermi sea. Restricting to the N -particle
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1.5. Bogoliubov transformations

subspace, we obtain RνNR∗ν = 2
(
N −

∑N
i=1 a

∗(fi)a(fi)
)
, so in this case the number of

excitations is two times the number of holes.
We now turn to the bosonic case. It is a natural question whether it is also possible for

bosons to find a Bogoliubov transformation R such that RΩ = ψN for a given N -particle
wave function ψN , e. g. ψN = ϕ⊗N . However, for states with an exact number of particles
we have α = 0, so if ψN was a quasifree state, by (1.64), its one-particle reduced density
matrix would have to satisfy

γ2 = −γN−1.

But γ2 is clearly a positive operator and so is γ, leading to a contradiction. So bosonic states
with exact number of particles are never quasifree. This is the reason why in the bosonic
case we use Weyl operators and coherent states and go through the extra complications of
leaving the N -particle subspace.

In view of Section 1.4 it is natural to ask if coherent states are quasifree, and if the coherent
states method can be reformulated in the framework of Bogoliubov transformations. For
the definition of quasifree states used in this thesis, one finds that coherent states are not
quasifree: Using Lemma 1.4.1 (iv), one finds that the second formula in (1.64) is not satisfied.

After these negative results, let us now explain the pertinent choice of initial data in
bosonic Fock space for the Gross-Pitaevskii regime. As pointed out in Section 1.2.2 corre-
lations play an important role in the Gross-Pitaevskii regime. On the other hand, we know
from the discussion of the mean-field regime in Section 1.4 that coherent states are useful to
describe condensates. In Chapter 2, we therefore use a Bogoliubov transformation to imple-
ment appropriate correlations on a given coherent state. Concretely, we use the Bogoliubov
transformation implemented by the unitary operator

T (k) := exp

(
1

2

∫
dxdy

(
k(x, y)a∗xa

∗
y − k(x, y)axay

))
. (1.67)

The integral kernel k(x, y) is defined as

k(x, y) := −Nw(N(x− y))ϕ(x)ϕ(y),

where w(x) := 1 − f(x) with f the solution of the zero-energy scattering equation (1.10).
The initial data to be used is of the form

W (
√
Nϕ)T (k)ψ,

for ψ a vector in bosonic Fock space with bounded number of particles and bounded energy.
For ψ = Ω, this vector is a Bogoliubov transformed coherent state. (However, by moving
T (k) to the left of the Weyl operator, the argument of the Weyl operator, i. e. the condensate
wave function, is also transformed.) In quantum optics such states are known as squeezed
coherent states and T (k) is called a squeezing operator.

As shown in Lemma 2.2.1 the operator T (k) acts on creation and annihilation operators
as a Bogoliubov transformation

T ∗(k)a(f)T (k) = a(ch(k)(f)) + a∗(sh(k)(f)),

T ∗(k)a∗(f)T (k) = a∗(ch(k)(f)) + a(sh(k)(f)),

where ch(k) and sh(k) are the bounded operators on L2(R3) defined by the absolutely con-
vergent series

ch(k) :=
∑
n≥0

1

(2n)!
(kk)n and sh(k) :=

∑
n≥0

1

(2n+ 1)!
(kk)nk.
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Products of k and k here have to be understood in the sense of operators.
In Lemma 2.4.3 we show that the bosonic Bogoliubov transformation T (k) only changes

the expected number of particles by order one (small compared to the number N of particles
in the bulk) while it is easy to see that it affects expectation values of the kinetic energy
on order N . The last effect is important to ensure that states of the form W (

√
Nϕ)T (k)ψ

approximate the ground state energy correctly, see Remark (ii) after Theorem 3.3.1. In this
sense the bosonic Bogoliubov transformations T (k) only introduce correlations and do not
create the bulk of the particles.

In our proofs, for the initial data introduced above, we compare the Fock space vec-
tors evolved by the Schrödinger equation with Fock space vectors of the same form as the

initial data, but with parameters fi,t, i = 1, . . . N or ϕ
(N)
t (and kt(x, y) = −Nw(N(x −

y))ϕ
(N)
t (x)ϕ

(N)
t (y)) that are evolved with the Hartree-Fock equation or modified Gross-

Pitaevskii equation11, respectively. More precisely we introduce fluctuation dynamics fol-
lowing this idea, see (2.33) and (3.36).

For comparison, we mention that bosonic Bogoliubov transformations have also been used
in [BKS11] (to describe the limit of the fluctuation dynamics and prove a central limit
theorem) and in [GMM10, GMM11, GM12] (to obtain an approximation for the mean-field
system which holds in Fock space norm, not only for reduced densities). However, in these
works, not only is the goal different, but also the choice of the Bogoliubov transformations:
In [BKS11], it is used that the fluctuation dynamics UN (t, 0) (1.41) in the limit N → ∞
converges to a dynamics U∞(t, 0) with generator

L∞(t) =

∫
dx∇xa∗x∇xax +

∫
dx (V ∗ |ϕt|2)(x)a∗xax +

∫
dxdy V (x− y)ϕt(x)ϕt(y)a∗yax

+
1

2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a∗xa

∗
y + ϕt(x)ϕt(y)axay

)
,

which is quadratic in creation/annihilation operators and thus implements a Bogoliubov
transformation. In [GMM10, GMM11], a Bogoliubov transformation of the form (1.67)
with time-dependent kernel kt is used in defining a fluctuation dynamics, and the kernel is
chosen to satisfy a complicated non-linear equation such that terms of the form a∗a∗ in the
generator are cancelled. The idea of [GM12] is similar, but the interaction potential is scaled
as N3βV (Nβ.) with β < 1/3, which is reminiscent of the Gross-Pitaevskii scaling (β = 1)
but less singular (in fact giving rise to a Gross-Pitaevskii equation with b =

∫
V dx replacing

8πa0 [ESY10]).

1.A. Reduced density matrices and normalization conventions

In this section, we give an overview of the definitions of reduced densities, pointing out the
differences in normalization between Chapters 1 and 2 and Chapters 3 and 4. We also state
a useful lemma concerning bosonic one-particle reduced density matrices.

Chapters 1 and 2, bosonic convention.
In the bosonic case, by the convention usually followed, the reduced density matrices are
all normalized such that their trace is one (for consistency, we also use this convention for

11The modified Gross-Pitaevskii equation is introduced in (2.4). For N → ∞, its solutions converge to the
solution of the Gross-Pitaevskii equation with the same initial data.
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fermions in Chapter 1). The k-particle reduced density matrix associated with ψN ∈ L2(R3N )

is then defined as the non-negative trace class operator γ
(k)
N on L2(R3k) with integral kernel

γ
(k)
N (x,x′) :=

∫
dxk+1 . . . dxN ψN (x, xk+1, . . . , xN )ψN (x′, xk+1, . . . , xN ), (1.68)

where x = (x1, . . . , xk). Since we always assume that wave functions are normalized to

‖ψN‖ = 1, we have tr γ
(k)
N = 1. In more compact notation

γ
(k)
N = trk+1,...,N |ψN 〉〈ψN |,

where |ψ〉〈ψ| is the projection on ψN ∈ L2(R3N ), and trk+1,...,N the partial trace over all but
k particles. For Fock space vectors ψ ∈ F , the k-particle reduced density matrix is defined
as the non-negative trace class operators on L2(R3k) with integral kernel

γ
(k)
ψ (x1, . . . , xk, y1, . . . , yk) :=

〈ψ, a∗y1
. . . a∗ykaxk . . . ax1ψ〉

〈ψ,N (N − 1) . . . (N − k + 1)ψ〉
,

where N is the number operator. Using the definition (1.35) of the annihilation operator ax

it is easy to check that for ψ ∈ L2(R3N ) both definitions of γ
(k)
ψ coincide.

As the standard example of a one-particle reduced density matrix for bosonic systems, we
mention the case of a wave function given as an N -fold tensor product, ψN = ϕ⊗N with

one-particle orbital ϕ ∈ L2(R3), for which we have γ
(k)
N = |ϕ〉〈ϕ|⊗k.

Chapters 3 and 4, fermionic convention.
In the fermionic case, by the convention usually followed, the one-particle reduced density
matrix is normalized such that it is a projection. This normalization is very convenient when
using Bogoliubov transformations.

The k-particle reduced density matrix associated with ψN ∈ L2(R3N ) is then defined as

the non-negative trace class operator γ
(k)
N on L2(R3k) with integral kernel

γ
(k)
N (x,x′) :=

N !

(N − k)!

∫
dxk+1 . . . dxN ψN (x, xk+1, . . . , xN )ψN (x′, xk+1, . . . , xN ). (1.69)

Since we assume that ‖ψN‖ = 1, we have tr γ
(k)
N = N !

(N−k)! . For Fock space vectors ψ ∈ F ,
the k-particle reduced density matrix is defined as the non-negative trace class operator on
L2(R3k) with integral kernel

γ
(k)
ψ (x1, . . . , xk, y1, . . . , yk) := 〈ψ, a∗y1

. . . a∗ykaxk . . . ax1ψ〉.

As the standard example of a one-particle reduced density matrix for fermionic systems,
we mention the case of a wave function given as a Slater determinant of N orthonormal

orbitals, ψN = AN (f1 ⊗ · · · ⊗ fN ), for which we have γ
(1)
N =

∑N
j=1|fj〉〈fj |. A useful property

of fermionic one-particle density matrices is that, while tr
∣∣γ(1)
N

∣∣ = N , in operator norm

‖γ(1)
N ‖ ≤ 1.

Trace norm and Hilbert-Schmidt norm
We close with a Lemma telling us that for the difference of exact one-particle reduced density
matrix and Hartree one-particle density matrix in the bosonic case, the trace norm is at most
twice the Hilbert-Schmidt norm. For comparison, notice that for a general operator A, one
only has the inequality ‖A‖HS ≤ tr|A|.
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Lemma 1.A.1 ([RS09], attributed to R. Seiringer). Let γ ≥ 0 be a trace class operator on
a separable Hilbert space h with tr γ = 1, and let ϕ ∈ h. Then

tr
∣∣γ − |ϕ〉〈ϕ|∣∣ ≤ 2‖γ − |ϕ〉〈ϕ|‖HS.

Proof. We set A := γ − |ϕ〉〈ϕ|, which is trace class and selfadjoint. We claim that A has
at most one negative eigenvalue and this eigenvalue has maximal multiplicity one. Assume
there are two negative eigenvalues µ1 < 0 and µ2 < 0 (possibly µ1 = µ2),

Aψ1 = µ1ψ1, Aψ2 = µ2ψ2.

We can assume the eigenvectors to be orthogonal,
〈
ψ1, ψ2

〉
= 0. Now consider an arbitrary

vector ω ∈ span{ψ1, ψ2}, ω = aψ1 + bψ2. Then〈
ω,Aω

〉
= µ1|a|2‖ψ1‖2 + µ2|b|2‖ψ2‖2 < 0.

By definition of A, this implies

0 ≤
〈
ω, γω

〉
<
〈
ω, |ϕ〉〈ϕ|ω

〉
= |
〈
ω, ϕ

〉
|2.

But given an arbitrary vector, in any two-dimensional subspace one can find a vector which
is orthogonal to it. In particular there exists ω ∈ span{ψ1, ψ2} such that

|
〈
ω, ϕ

〉
|2 = 0.

This contradiction concludes the proof of the claim.
Let us denote the eigenvalues of A by λj , indexed by j ≥ 0, counting the multiplicity.

Since trA = 0 by linearity of the trace, there exists exactly one negative eigenvalue λ0 < 0
(unless A = 0, for which the lemma is trivial). Thus, again from trA = 0, we conclude that
|λ0| equals the sum of all other eigenvalues,

∑
j≥1 λj . Thus

tr|A| =
∑
j≥0

|λj | = 2|λ0| = 2‖A‖ ≤ 2‖A‖HS.

For the last equality in the line we used that ‖A‖ = supλ∈σ(A)|λ| and λj ≤ |λ0|.

1.B. Well-posedness of evolution equations

In this section we comment on the well-posedness both of the linear many-body Schrödinger
equation and the non-linear effective evolution equations that we derive. Generally, no
difficulties appear under the assumptions used in this thesis. In the later chapters we just
assume the equations to be well-posed and do not comment on the background anymore.
We do not strive for the strongest results here.

Hamilton operators and the Schrödinger equation
It is well established that Hamilton operators HN of the form (1.2) are selfadjoint on L2

s(R3N )
and L2

a(R3N ). Indeed, if the potentials Vext and V are real-valued and in L2(R3) +L∞(R3),
then by the Kato-Rellich theorem [RS75, Theorem X.12 and X.15], HN is selfadjoint on the
domain H2(R3N ) and essentially selfadjoint on any core of the Laplacian, e. g. on Schwartz
space S(R3N ) or on the smooth functions with compact support C∞0 (R3N ). Furthermore,
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1.B. Well-posedness of evolution equations

by the Kato-Rellich theorem the Hamiltonian is bounded from below, so the ground state
energy EN = inf‖ψ‖=1

〈
ψ,HNψ

〉
is finite. In particular, the Kato-Rellich theorem allows for

the Coulomb potential. Since the Hamiltonian commutes with the projections SN and AN ,
it is simple to establish selfadjointness also on the symmetric and antisymmetric subspace.

For the preparation of initial data, one typically considers the Hamiltonian with added
external potential that models a trap with Vext(x) → ∞ as |x| → ∞. If Vext ≥ 0, such
a potential can be added under very general assumptions, and the Hamilton operator is
essentially selfadjoint on C∞0 (R3N ) [RS75, Theorem X.29]. For our results however, Hamilton
operators with trapping potentials are not necessary since we consider the initial data to be
given by assumption.

Since the Hamiltonian is selfadjoint, it generates a strongly continuous unitary group,
denoted e−iHN t, which provides us with the unique solution ψt = e−iHN tψ to the time-
dependent Schrödinger equation

i∂tψt = HNψt with initial data ψ ∈ H2(R3N ).

In particular, the Schrödinger equation is globally well-posed.

For the pseudo-relativistic Hamiltonian in Chapter 4, that is (with m > 0)

HN =
N∑
j=1

√
−∆xj +m2 + λ

N∑
i<j

V (xi − xj),

similar statements hold with the domain H2(R3N ) replaced by H1(R3N ). In fact, the kinetic

energy operator
∑N

j=1

√
−∆xj +m2 is selfadjoint on H1(R3N ), and for bounded potentials

as we require in Chapter 4, the interaction is trivial to add.

Generally, for second quantized Hamilton operators corresponding to an (essentially) self-
adjoint Hamilton operator given in first quantization, we also have (essential) selfadjointness;
see Section 1.3.

Hartree- and Gross-Pitaevskii equations

The following results on non-linear Schrödinger equations in Rn are taken from [C96]. We
consider only the case of n ≥ 3 space dimensions.

Consider the wave function ut : Rn → C where t ∈ I, I being an (possibly infinite)
interval. We are interested in global well-posedness for the Cauchy problem of the non-
linear Schrödinger equation,{

i∂tut = −∆ut − g(ut) for almost all t ∈ R;
u0 = ϕ.

(1.70)

Here12 g ∈ C(H1(Rn), H−1(Rn)) (or more generally g = g1 + . . .+ gk, where each gi individ-
ually satisfies the conditions given here for g). Assume that there exists the antiderivative
G, G′ = g, where G ∈ C1(H1(Rn),R). Assume furthermore that there exist exponents
r, ρ ∈

[
2, 2n/(n− 2)

)
such that

12By H−m(Rn) we denote the dual of Hm(Rn), a space of distributions. The test function space D(Rn) is
dense in H−m(Rn). Despite Hm(Rn) being a Hilbert space, one does not identify H−m(Rn) with Hm(Rn),
but rather L2(Rn) with its dual. We have L2(Rn) ⊂ H−m(Rn) ⊂ D′(Rn). As an example, the Laplacian
takes the energy space H1(Rn) to H−1(Rn). For more details, see [C96, Remark 2.3.8].
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• g can be written as a mapping13 H1(Rn) → Lρ
′
(Rn) followed by continuous injection

Lρ
′
(Rn)→ H−1(Rn);

• (local Lipschitz condition) for every M > 0 there exists a constant CM <∞ such that

‖g(v)− g(u)‖ρ′ ≤ CM‖v − u‖r

for all u, v ∈ H1(Rn) with ‖u‖H1 + ‖v‖H1 ≤M .

Moreover, assume that for all u ∈ H1(Rn) we have Im (g(u)u) = 0 almost everywhere in Rn.
For u ∈ H1(Rn), one can define an energy functional

E(u) =
1

2

∫
Rn
|∇u(x)|2dx−G(u).

We then have the following result on local well-posedness for the Cauchy problem of the
non-linear Schrödinger equation (1.70):

Theorem 1.B.1 ([C96, Theorem 4.3.1]). For g as above, the following holds:

(i) For every ϕ ∈ H1(Rn) there exist T1, T2 > 0 and a unique maximal solution u(.) on the
interval (−T1, T2) such that

u(.) ∈ C
(
(−T1, T2), H1(Rn)

)
and u(.) ∈ C1

(
(−T1, T2), H−1(Rn)

)
.

Here, u is maximal in the sense that we have the blow-up alternative: if T2 <∞, then
‖ut‖H1 →∞ as t→ T2−, and analogously for −T1.

(ii) There is conservation of mass and energy, that is

‖ut‖2 = ‖ϕ‖2 and E(ut) = E(ϕ)

for all t ∈ (−T1, T2).

(iii) The solution depends on the initial data in a continuous way, in the sense that T1 and
T2 are lower semicontinuous as functions of ϕ, and that, if we have a sequence of initial
data

ϕm → ϕ in H1(Rn)

and [−T3, T4] ⊂ (−T1, T2), then

um,(.) → u(.) in C
(
[−T3, T4], H1(Rn)

)
.

(Here um,(.) is the maximal solution with initial datum ϕm.)

Here u(.) is a solution in the sense that the differential equation (1.70) is satisfied in the
space of distributions H−1(Rn).

The assumptions of the theorem are in particular satisfied for (see [C96, Remark 4.3.2]):

• The Hartree equation: g(u) = Vextu +
(
V ∗ |u|2

)
u, if we take a real-valued external

potential Vext ∈ Lp(R3)+L∞(R3) for some p > 3/2, and an even, real-valued interaction
potential V ∈ Lq(R3) + L∞(R3) for some q > 3/4.

13We use the notation ρ′ for the conjugate exponent defined through 1/ρ+ 1/ρ′ = 1.
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1.B. Well-posedness of evolution equations

• The modified Gross-Pitaevskii equation (2.25) in Chapter 2: This is a special case of the
Hartree equation, where g(u) =

(
NfNVN ∗ |u|2

)
u, with fNVN (x) = N2f(Nx)V (Nx).

Here f is the solution to the zero-energy scattering equation, and by the assumptions
of Theorem 2.1.1 we have NfNVN ∈ L1∩L3(R3, (1+ |x|6)dx), which implies NfNVN ∈
Lq(R3) + L∞(R3) with q = 3 > 3/4.

• The Gross-Pitaevskii equation: g(u) = Vextu + λ|u|2u, with Vext as in the Hartree
equation and λ ∈ R a coupling constant.

A similar result holds if the external potential has up to quadratic growth at infinity [C96,
Section 9.2]. Since the physically most interesting situation is a vanishing external potential,
we do not give the precise statement here.

A discussion of propagation of regularity and smoothing effects can be found in [C96,
Chapter 5]. However, we are particularly interested in the modified Gross-Pitaevskii equa-
tion (2.25) where the non-linearity depends on N , and, to be able to apply Grönwall’s
lemma to control the expectation of N in Chapter 2, we need estimates on Sobolev norms
that are independent of N . For this reason, in Proposition 2.3.1 in Chapter 2 we reprove
some regularity properties of the Gross-Pitaevskii equation and the modified Gross-Pitaevskii
equation. In particular, we prove that for initial data in Hn(R3) also the solution lives in
Hn(R3); our derivation of the Gross-Pitaevskii equation uses H4(R3). Under the assump-
tions of Theorem 2.1.1 on the potential, it is easy to see that for u ∈ H2(R3) we have
g(ut) =

(
NfNVN ∗ |ut|2

)
ut ∈ L2(R3), so our calculations in Chapter 2 are well-defined (of

particular importance the cancellations in the linear terms of the generator).
Since in Chapter 2 we only study the case of repulsive interaction V ≥ 0 and Vext = 0,

conservation of energy implies that ‖ut‖H1 is bounded uniformly in time. This decides the
blow-up alternative for global existence.

Non-relativistic Hartree-Fock equations
Notice that for the following discussion of the well-posedness of the Hartree-Fock equation,
we use the normalization of the one-particle densities that trωN = N — like in Chapter 3
and Chapter 4, and differing from the convention elsewhere in Chapter 1.

We now discuss well-posedness for the Hartree-Fock Cauchy problem{
i∂tωN,t = [−∆ + V ∗ ρt −Xt , ωN,t],
ωN,0 = ωN .

(1.71)

In the normalization here, the configuration space density of particles is ρt(x) = 1
N ωN,t(x, x),

(V ∗ ρt) is a multiplication operator, and the exchange operator Xt is defined through its
integral kernel Xt(x, y) = 1

N V (x − y)ωN,t(x, y). For the discussion in this section, N is a
fixed parameter, and thus we also set the semiclassical parameter ε = 1 in this section.

The solution ωN,t to the Hartree-Fock equation should for all times t be a fermionic one-
particle density matrix, i. e. a selfadjoint trace class operator on L2(R3) with 0 ≤ ωN,t ≤ 1.

Typical initial data is given as a rank-N projection, ωN =
∑N

i=1|fi〉〈fi|, which is the one-
particle reduced density matrix of the Slater determinant AN (f1 ⊗ · · · ⊗ fN ) ∈ L2

a(R3N ).
Here (fj)

N
j=1 is an orthonormal system in L2(R3).

Let us now define the appropriate Banach spaces to rigorously solve the Cauchy problem,
following [BdF76] and [BdF74]. Denoting by S1(L2(R3)) the trace class operators on L2(R3),
we define

H−∆
1 :=

{
T ∈ S1(L2(R3)) : T is selfadjoint and (−∆ + 1)1/2T (−∆ + 1)1/2 ∈ S1(L2(R3))

}
.
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This is analogous to Sobolev spaces for functions, and should be understood as the space of
one-particle density matrices T with finite kinetic energy (formally the kinetic energy can be
rewritten as tr(−∆)T = tr(−∆)1/2T (−∆)1/2 by cyclicity of the trace). Equipped with the
norm ‖T‖1,−∆ := tr|(−∆ + 1)1/2T (−∆ + 1)1/2)|, H−∆

1 is a Banach space. We can consider
the commutator with the Laplacian as an operator a, (formally) acting on T ∈ H−∆

1 by
aT := i[−∆, T ]. We denote by D(a) ⊂ H−∆

1 the domain of the operator a, as defined in
[BdF76, Equation (4.2)], and equip D(a) with the graph norm of a to make it a Banach
space. One can easily check that e. g. for T =

∑N
i=1|fi〉〈fi| with all fi ∈ H3(R3) we have

T ∈ D(a).
We have the following result for global well-posedness.

Theorem 1.B.2 ([BdF76, Proposition 5.5 and Section 6]). Assume V : R3 → R is almost
everywhere differentiable and satisfies V 2 ≤ C(−∆ + 1), for some C > 0.

If 0 ≤ ωN ≤ 1 and ωN ∈ H−∆
1 , then there exists a unique mild solution14 ωN,(.) to the

Cauchy problem (1.71) defined on all the positive real axis.
Furthermore, if ωN ∈ D(a), then the solution is the unique global classical solution, in the

sense that

• we have ωN,(.) ∈ C1
(
[0,∞), H−∆

1

)
and ωN,(.) ∈ C

(
[0,∞), D(a)

)
;

• the Hartree-Fock equation (1.71) is explicitly satisfied.

The assumption V 2 ≤ C(−∆ + 1) is easily checked to be satisfied with our assumptions of
Theorem 3.3.1 on the potential. Consequently, for initial data ωN ∈ D(a), all our calculations
in Chapter 3 are valid. We notice that the earlier result of [BdF74], while it requires the
potential V to be bounded (which is satisfied in Chapter 3), requires less regularity from the
initial data. The result for Coulomb interaction given here is nevertheless of interest to us,
since it shows that Hartree-Fock theory also in this case is well-defined, while we can not yet
provide a proof of its validity.

The Hartree-Fock energy functional (1.21) can be generalized to

EHF(ωN ) = tr(−∆)ωN +
1

2N

∫
dxdy V (x− y)ωN (x, x)ωN (y, y)

− 1

2N

∫
dxdy V (x− y)|ωN (x, y)|2.

For ωN =
∑N

i=1|fi〉〈fi| this coincides with EHF(f1, . . . , fN ) given in (1.21). One has the
well-known conservation laws of energy and number of particles,

EHF(ωN,t) = EHF(ωN,0), and trωN,t = trωN,0.

Furthermore, for initial data being a projection, also ωN,t is a projection. This can be proven
noticing that

i∂t(ωN,t)
2 = [−∆ + V ∗ ρt −Xt, ωN,t]ωN,t + ωN,t[−∆ + V ∗ ρt −Xt, ωN,t]

= [−∆ + V ∗ ρt −Xt, (ωN,t)
2]

14Mild solution means a solution to the variation-of-constant integral equation

ωN,tx = eit∆ωNe
−it∆x+ i

∫ t

0

ei(t−s)∆[ωN,s, V ∗ ρs −Xs]e−i(t−s)∆xds for all x ∈ L2(R3).
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1.B. Well-posedness of evolution equations

and (ωN,0)2 = ωN,0; i. e. (ωN,t)
2 solves the same Cauchy problem as ωN,t. Consequently, by

uniqueness of the solution, we have (ωN,t)
2 = ωN,t for all times t. In particular, we obtain

the useful fact that 0 ≤ ωN,t ≤ 1 for all times t.

Pseudo-relativistic Hartree-Fock equations
In Chapter 4 we consider the pseudo-relativistic Hartree-Fock equation of the form{

i∂tωN,t = [
√
−∆ + 1 + V ∗ ρt −Xt, ωN,t],

ωN,0 = ωN ,
(1.72)

As explained when we introduced the non-relativistic Hartree-Fock equation (1.24), for initial
data given as a finite-rank projection (i. e. ωN =

∑N
i=1|φi〉〈φi|, which is the class of initial

data relevant in this thesis), the density matrix formulation of the Hartree-Fock equation is
equivalent to the Hartree-Fock equation for the orbitals, i∂tfi,t =

√
−∆ + 1fi,t +

1

N

N∑
j=1

(
V ∗ |fj,t|2

)
fi,t −

1

N

N∑
j=1

(
V ∗ (fi,tfj,t)

)
fj,t,

fi,0 = φi for all i = 1, . . . , N

(1.73)

The properties of the Hartree-Fock equation in orbital form (with Coulomb potential) are
established in the literature [FL07, L07] and the methods can easily be applied to the equation
with regular potential.

We first establish local well-posedness. Global well-posedness will be obtained from the
conservation laws. Local well-posedness for the semi-relativistic Hartree-Fock equations with
Coulomb interaction was proven as a side-result in [FL07], essentially reducing it to proving
a local Lipschitz condition on the non-linearity, which in turn follows along the lines of [L07].
We assume

V ∈ L1(R3) and

∫
|V̂ (p)|(1 + |p|)2dp <∞, (1.74)

which makes the problem less delicate than it is for the Coulomb potential. The case s = 1
of the following theorem is needed in Chapter 4.

Theorem 1.B.3. Suppose s ≥ 1/2 and that (1.74) holds. Let φ = (φk)
N
k=1 be a collection

of initial data with φk ∈ Hs(R3) for all k = 1, . . . , N .

Then there exists a unique solution f (.) =
(
fk,(.)

)N
k=1

to the orbital Hartree-Fock equations
(1.73) with fk,0 = φk such that

fk,(.) ∈ C0
(
[0, T ), Hs(R3)

)
∩ C1

(
[0, T ), Hs−1(R3)

)
for all k = 1, . . . , N.

Here T ∈ (0,∞] is the maximal time of existence, and we have the blow-up alternative: If
T <∞, then limt→T−

∑N
k=1‖fk,t‖H1/2 =∞.

Additionally, f (.) depends continuously on the initial data φ and we have the conservation
laws that for all 0 ≤ t < T

• EHF(f t) = EHF(φ) (where EHF was defined in (1.21)),

•
〈
fk,t, fl,t

〉
=
〈
φk, φl

〉
for all k, l ∈ {1, . . . , N}.

Here f (.) is a solution in the sense that (1.73) is satisfied in the space of distributions

Hs−1(R3), the relevant case for us being s = 1.
The proof of Theorem 1.B.3 follows the strategy of [FL07] and reduces the problem to

proving the following local Lipschitz condition:
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Lemma 1.B.4. Suppose that (1.74) holds. Let F := (F1, . . . , FN ) be a Hartree-Fock-like
non-linearity, i. e. for f = (fk)

N
k=1

Fk(f) :=
N∑
j=1

(
V ∗ |fj |2

)
fk −

N∑
j=1

(
V ∗

(
fkfj

))
fj .

Let s ≥ 1/2. Then for all f , g ∈ Hs,N and r = max(s− 1, 1/2) we have

‖F (f)− F (g)‖Hs,N ≤ C
(
‖f‖2Hs,N + ‖g‖2Hs,N

)
‖f − g‖Hs,N ,

‖F (f)‖Hs,N ≤ C‖f‖2Hr,N ‖f‖Hs,N .
(1.75)

Here Hs,N is the N -fold cartesian product of Hs(R3) equipped with the norm ‖f‖Hs,N :=(∑N
k=1‖fk‖2Hs

)1/2
.

The proof of this lemma follows the strategy of [L07, Lemma 1] but is slightly simpler
since we have ‖(1−∆)αV ‖∞ <∞ for all 0 ≤ α ≤ 1.

For the regular potentials we consider, the pseudo-relativistic Hartree-Fock equation is
always globally well-posed. In fact, direct and exchange term in the Hartree-Fock energy
functional both are bounded below since ‖V ‖∞ < ∞. This provides a bound on the H1/2-
norm in terms of the conserved total energy and thus global well-posedness. (In the repulsive
case, even with a singular potential, global well-posedness follows from local well-posedness
due to the fact that the sum of direct and exchange term in the energy is non-negative if
V ≥ 0, so that the conserved energy (4.4) provides a bound on the H1/2-norm.)

Notice however that there has been interest in the pseudo-relativistic Hartree-Fock equa-
tion with attractive Coulomb potential, in which case the equation has blow-up solutions.
These solutions describe stars collapsing under gravitational attraction [HS09]; see also
[FL07]. Under our assumptions on the potential there is no blow-up.

1.C. Remarks on notation

Generally we use a plain ‖x‖ when we use the norm of the space in which x lives. In this
thesis, these are typically L2 spaces of wave functions, L2(R3) or L2(R3N ), or fermionic or
bosonic Fock space. Norms of Lp spaces are denoted by ‖·‖p, where 1 ≤ p ≤ ∞.

We denote by Hs(Rn) the Sobolev space of functions that have s derivatives in L2(Rn),
and s ≥ 0 is allowed to have non-integer values. The Sobolev norms are denoted by ‖·‖Hs .

The operator norm is also denoted by ‖·‖. Important other norms on operators are the
Hilbert-Schmidt norm, denoted by ‖·‖HS, or by ‖·‖2 when we think about the integral kernel
of the operator. The trace norm is denoted by tr|·|. In general ‖A‖ ≤ ‖A‖HS ≤ tr|A|. We
also have the useful estimates tr|AB| ≤ ‖A‖ tr|B|, ‖AB‖HS ≤ ‖A‖‖B‖HS. We caution the
reader that in general, even if A has a sufficiently regular integral kernel a(x, x) to define
the integral, nevertheless tr|A| 6=

∫
dx|a(x, x)|.

We use the Dirac notation for projection operators, i. e. for ψ a vector in a Hilbert space h,
|ψ〉〈ψ| is the operator acting on f ∈ h by |ψ〉〈ψ|f =

〈
ψ, f

〉
ψ. For multiplication operators,

we use the same letter to denote the operator as for the corresponding function.

The time-dependence is generally denoted with a subscript, i. e. ut instead of u(t). Deriva-
tives are explicitly written as ∂t or d/dt. We sometimes write u(.) and similar expressions
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when we want to highlight that we consider u as a function of the argument in the place
indicated by (.).

We use the symbol C (and sometimes K and D) for constants that can change from step
to step. Dependencies on other quantities are mentioned when relevant. If it is necessary to
fix a specific constant, we introduce the constant explicitly and denote it by e. g. C1, C2, . . .

For tensor products we use the shorthand ϕ⊗N to mean
⊗N

i=1 ϕ, and similarly L2(R3)⊗N

for
⊗N

i=1 L
2(R3) and |ϕ〉〈ϕ|⊗k for |ϕ〉〈ϕ| ⊗ |ϕ〉〈ϕ| ⊗ · · · ⊗ |ϕ〉〈ϕ|.

We use [A,B] = AB−BA for the commutator of two operators A and B (domain questions
should be clear from the context) and {A,B}AB +BA for the anticommutator.
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2. Quantitative Derivation of the
Gross-Pitaevskii Equation

In this chapter we prove that the evolution of the condensate of a dilute Bose gas can be
described with the time-dependent Gross-Pitaevskii equation. This chapter closely follows
the article [BdS12].

We use the bosonic convention tr γ
(k)
N = 1 for the normalization of density matrices, see

Section 1.A.

2.1. Introduction

To give the reader a heuristic understanding of the difficulties of the problem, we start
by reviewing the BBGKY hierarchy method, on which the first derivations of the Gross-
Pitaevskii equation were based. As a key idea, this discussion suggests to not directly
compare to the Gross-Pitaevskii equation but to use the modified Gross-Pitaevskii equation
(2.4) in a first step and obtain cancellations from the zero-energy scattering equation.

Afterwards, in Subsection 2.1.2, we explain our new approach, based on modeling the
correlation structure with Bogoliubov transformations, and then give the statement of our
main results.

2.1.1. The BBGKY hierarchy

The use of the BBGKY hierarchy for deriving effective evolution equations from many-body
quantum mechanics goes back to the derivation of the Hartree equation for the mean-field
limit. The first rigorous derivation of the Hartree equation (1.39) was obtained by this
method in [S80] for bounded interaction potentials. The basic idea is to study directly the

time-evolution of the family of reduced densities γ
(k)
N,t, k = 1, 2, . . . , N .

Rewriting the Schrödinger equation (with mean-field Hamiltonian (1.3), with Vext = 0) in

terms of the density matrix γ
(N)
N,t = |ψN,t〉〈ψN,t| as

i∂tγ
(N)
N,t = [HN , γ

(N)
N,t ]

and taking the partial trace, one derives a hierarchy1 of N coupled equations, known as the
Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy:

i∂tγ
(k)
N,t =

k∑
j=1

[
−∆j , γ

(k)
N,t

]
+

1

N

k∑
i<j

[
V (xi − xj), γ(k)

N,t

]

+
N − k
N

k∑
j=1

trk+1

[
V (xj − xk+1), γ

(k+1)
N,t

]
,

1The system is called a hierarchy because the equation for γ
(k)
N,t depends on γ

(k+1)
N,t .
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for k = 1, . . . N , with the convention that γ
(k)
N,t = 0 for k > N , and with trk+1 the partial

trace over the (k + 1)-th factor of the tensor product.
As N → ∞, the BBGKY hierarchy converges, at least formally, towards an infinite hier-

archy of coupled equations. The limiting hierarchy is solved by tensor products |ϕt〉〈ϕt|⊗k of
the projection on the solution ϕt of the Hartree equation (1.39). Thus the problem of prov-

ing the convergence towards the Hartree dynamics in the sense γ
(1)
N,t → |ϕt〉〈ϕt| essentially

reduces to showing the uniqueness of the solution of the infinite hierarchy.
This scheme was later extended to potentials with Coulomb singularities in [EY01] (and

in [ES07] to bosons with relativistic dispersion relation).
In [ESY06b, ESY10, ESY07, ESYS09], the same strategy was then applied to analyze the

dynamics in the Gross-Pitaevskii regime (1.15) and to obtain a rigorous derivation of the
Gross-Pitaevskii equation (1.16).

The BBGKY hierarchy nicely shows the effect of correlations in the dynamical setting, as
we will discuss in the rest of this subsection. Writing (1.15) as

HN =
N∑
j=1

−∆xj +
1

N

N∑
i<j

N3V (N(xi − xj)), (2.1)

one can formally interpret the Gross-Pitaevskii regime as a very singular mean-field scaling,
where the interaction potential N3V (N.) converges to a delta distribution as N → ∞.
However, as explained on the level of energies (see Eq. (1.14) and the discussion following
it), unlike in the mean-field regime correlations play a crucial role in the Gross-Pitaevskii
regime. To understand the role of correlations for the dynamics, let us consider the evolution

of the one-particle reduced density γ
(1)
N,t according to the BBGKY hierarchy:

i∂tγ
(1)
N,t(x, x

′)

= (−∆x + ∆x′) γ
(1)
N,t(x, x

′)

+

∫
dx2

(
(N − 1)N2V (N(x− x2)− (N − 1)N2V (N(x′ − x2))

)
γ

(2)
N,t(x, x2, x

′, x2).

(2.2)

Assuming that the initial data exhibits complete condensation and that condensation is

preserved by the time evolution, we expect γ
(1)
N,t and γ

(2)
N,t to be approximately factorized. In

γ
(2)
N,t, however, one also wants to take into account the two-particle correlations. Describing

the correlations through the solution f of the zero-energy scattering equation (1.10), we use
the ansatz

γ
(1)
N,t(x, x

′) ' ϕt(x)ϕt(x
′),

γ
(2)
N,t(x1, x2, x

′
1, x
′
2) ' f(N(x1 − x2))f(N(x′1 − x′2))ϕt(x1)ϕt(x2)ϕt(x

′
1)ϕt(x

′
2).

(2.3)

Plugging this into (2.2), we obtain a new non-linear equation for ϕt (we call it the modified
Gross-Pitaevskii equation), given by

i∂tϕt = −∆ϕt +
(
N2(N − 1)V (N.)f(N.) ∗ |ϕt|2

)
ϕt. (2.4)

Since 8πa0 =
∫
V fdx, we formally have N2(N − 1)V (Nx)f(Nx) → 8πa0δ(x) as N → ∞.

Therefore, in the limit, ϕt should be a solution of the Gross-Pitaevskii equation (1.16),
complementing the results for the ground state energy (c. f. (1.14)).
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The presence of the factor f(N.) is crucial in this argument to understand the emergence
of the scattering length in the Gross-Pitaevskii equation. We conclude that any derivation
of the Gross-Pitaevskii equation must take into account the correlation structure. In fact,
understanding the correlations and adapting the techniques of [S80, EY01, ES07] to deal
with them was one of the main challenges in [ESY06a, ESY06b, ESY10, ESY07, ESYS09].

2.1.2. Strategy and main results

Before stating the main result of this Chapter, let us discuss the strategy followed.
In view of Section 1.4 we intend to use coherent states to obtain a derivation of the Gross-

Pitaevskii equation (1.16) and bounds on the rate of the convergence. Recall the approach
to the mean-field regime explained in Section 1.4. From (1.46), we notice that there are two
contributions to the generator LN (t), one arising from the derivative of the Weyl operator
W ∗(
√
Nϕt), the other from the derivative of e−i(t−s)HN :

LN (t) =
(
i∂tW

∗(
√
Nϕt)

)
W (
√
Nϕt) +W ∗(

√
Nϕt)HNW (

√
Nϕt).

The second contribution, given by W ∗(
√
Nϕt)HNW (

√
Nϕ), can be computed recalling that

Weyl operators act as shifts on creation and annihilation operators (see (1.40)). It turns out
that this contribution contains a term, linear in creation and annihilation operators, which
has the form √

N

∫
dx
[
−∆ϕt(x) + (V ∗ |ϕt|2)(x)ϕt(x)

]
a∗x + h.c. (2.5)

This term is large (of order N1/2) and does not commute with the number operator. With
such a term in the generator, it would be impossible to show uniform (in N) bounds for the
growth of the number of particles〈

UN (t, 0)Ω,NUN (t, 0)Ω
〉
.

In the mean-field regime however, (2.5) is exactly canceled by the contribution proportional
to the derivative of W ∗(

√
Nϕt), which contains the term

−
√
N

∫
dx (i∂tϕt(x))a∗x − h.c. = −

√
N

∫
dx
[
−∆ϕt(x) + (V ∗ |ϕt|2)(x)ϕt(x)

]
a∗x − h.c.

where we used the Hartree equation (1.39). As a result, the generator LN (t) in (1.46)
contains only terms which, at least formally, are order one or smaller.

To adapt this approach to the Gross-Pitaevskii regime, we lift the Hamiltonian to Fock
space F as

HN =

∫
dx∇xa∗x∇xax +

1

2

∫
dxdyN2V (N(x− y))a∗xa

∗
yayax (2.6)

and, following (1.41), we naively introduce the fluctuation dynamics

UGP(t, s) = W ∗(
√
Nϕ

(N)
t )e−i(t−s)HNW (

√
Nϕ

(N)
t ). (2.7)

As discussed in Subsection 2.1.1, we choose ϕ
(N)
t to solve the modified Gross-Pitaevskii

equation2

i∂tϕ
(N)
t = −∆ϕ

(N)
t +

(
N3V (N.)f(N.) ∗ |ϕ(N)

t |2
)
ϕ

(N)
t (2.8)

2From now on we use the notation ϕ
(N)
t to distinguish the solution of the modified Gross-Pitaevskii equation

(2.8) from the solution ϕt of the Gross-Pitaevskii equation (1.16).
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where f is the solution of the zero-energy scattering equation (1.10). Since the solution of
the modified Gross-Pitaevskii equation (2.8) can be shown to converge towards the solution
of the Gross-Pitaevskii equation (1.16) with an error of order N−1 (see Proposition 2.3.1
(iv)), control of the fluctuations around the modified Gross-Pitaevskii equation also implies
control of the fluctuations around the Gross-Pitaevskii equation. Let LGP

N (t) denote the
generator of (2.7), given by

LGP
N (t) =

(
i∂tW

∗(
√
Nϕ

(N)
t )

)
W (
√
Nϕ

(N)
t ) +W ∗(

√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t ). (2.9)

As in the mean-field regime, the term W ∗(
√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t ) contains a large con-

tribution which is linear in creation and annihilation operators and given by

√
N

∫
dx
[
−∆ϕ

(N)
t (x) + (N3V (N.) ∗ |ϕ(N)

t |2)(x)ϕ
(N)
t (x)

]
a∗x + h.c.

On the other hand, the term (i∂tW
∗(
√
Nϕ

(N)
t ))W (

√
Nϕ

(N)
t ) contains the linear summand

−
√
N

∫
dx
[
(i∂tϕ

(N)
t (x))a∗x + h.c.

]
= −
√
N

∫
dx
[
−∆ϕ

(N)
t (x) + (N3V (N.)f(N.)|ϕ(N)

t (x)|2ϕ(N)
t (x)

]
a∗x − h.c.

In contrast to the mean-field regime discussed above, here there is no complete cancellation
between the two large linear terms (because of the factor f in the second term). Hence, the
generator LGP

N (t) of (2.7) contains a large contribution which is linear in the creation and
annihilation operators and of the form

√
N

∫
dx
(
N3V (N.)(1− f(N.)) ∗ |ϕ(N)

t |2
)

(x)
(
ϕ

(N)
t (x)a∗x + h.c.

)
. (2.10)

Due to this term it seems impossible to obtain a uniform (in N) bound on the growth of the
number of particles w. r. t. the fluctuation dynamics (2.7).

From a physical point of view, the reason for this failure is that we are trying to con-
trol fluctuations around the wrong evolution. When we approximate e−itHNW (

√
Nϕ)ψ by

an evolved coherent state W (
√
Nϕ

(N)
t )ψ, we completely neglect the correlation structure

developed by the many-body evolution. As a result, fluctuations around the coherent ap-

proximation W (
√
Nϕ

(N)
t )ψ are too strong to be bounded uniformly in N . Since correlations

are in first order an effect of two-body interactions, we are going to approximate them using
the unitary operator

T (k) = exp

(
1

2

∫
dxdy

(
k(x, y)a∗xa

∗
y − k(x, y)axay

))
for an appropriate k ∈ L2(R3 × R3), which will be interpreted as the integral kernel of a
Hilbert-Schmidt operator (again denoted by k) on L2(R3). Recall from Section 1.5 that the
operator T (k) acts on creation and annihilation operators as a Bogoliubov transformation

T ∗(k)a(f)T (k) = a(ch(k)(f)) + a∗(sh(k)(f)),

T ∗(k)a∗(f)T (k) = a∗(ch(k)(f)) + a(sh(k)(f)),
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where ch(k) and sh(k) are the bounded operators on L2(R3) defined by the absolutely con-
vergent series (where products of k and k are in the sense of operators)

ch(k) =
∑
n≥0

1

(2n)!
(kk)n and sh(k) =

∑
n≥0

1

(2n+ 1)!
(kk)nk.

(For a heuristic picture, it is often sufficient to think of the leading terms only, i. .e. ch(k) ' 1

and sh(k) ' k, and in fact we will treat the higher powers as error terms. In particular

T ∗a∗xT ' a∗x + a(k(, x)),

showing that the contribution of the creation operator is singular while the annihilation
operator is regularized by k.)

Inspired by the discussion in Section 2.1.1, where correlations were successfully described
by the solution of the zero-energy scattering equation, we define the time-dependent kernel

kt(x, y) = −Nw(N(x− y))ϕ
(N)
t (x)ϕ

(N)
t (y), (2.11)

where ϕ
(N)
t is the solution of the modified Gross-Pitaevskii equation (2.8), and where

w(x) = 1− f(x),

with f the solution of the zero-energy scattering equation (1.10). We will consider a ini-
tial data of the form W (

√
Nϕ)T (k0)ψ, for ψ ∈ F with bounded number of particles and

bounded energy (think of the vacuum, ψ = Ω), and we will approximate its time evolution
by W (

√
Nϕt)T (kt)ψ, leading to the fluctuation dynamics

U(t, s) = T ∗(kt)W
∗(
√
Nϕt)e

−i(t−s)HNW (
√
Nϕs)T (ks). (2.12)

In this way, the approximating dynamics takes into account the correlation structure and
we expect that the fluctuations are bounded. Indeed, we will show in Section 2.4 that it is
possible to obtain a uniform (in N) control for the growth of the number of particles〈

U(t, 0)Ω,NU(t, 0)Ω
〉
.

To understand this, notice that the evolution U(t, s) has the generator

LN (t) = T ∗(kt)
[(
i∂tW

∗(
√
Nϕ

(N)
t )

)
W (
√
Nϕ

(N)
t ) +W ∗(

√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t )

]
T (kt)

+ (i∂tT
∗(kt))T (kt).

We will show that the summand (i∂tT
∗(kt))T (kt) does not play a role, see Proposition

2.6.10. Notice that the first line in the generator is of the same form as the generator (2.9),
just conjugated with the Bogoliubov transformation T (kt). In particular, the large linear
(in creation/annihilation operators) contribution (2.10) still appears, but it is compensated
by a contribution arising from conjugating the cubic (in creation/annihilation operators)

term in W ∗(
√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t ) with the Bogoliubov transformation. More precisely,

after conjugating with the Bogoliubov transformation, some of the cubic terms will not be
in normal-order. By the canonical commutation relations, bringing them into normal-order
produces terms which are linear in creation and annihilation operators; some of these terms
cancel exactly the large contribution (2.10). Other important cancellations will emerge
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between the quadratic and the non-normal-ordered quartic terms; see Section 2.6 for the
details. The control of the growth of the number of particles w. r. t. (2.12) will imply con-
vergence of the one-particle reduced density matrix associated with the fully evolved Fock
space vector e−iHN tW (

√
Nϕt)T (kt)ψ towards the orthogonal projection onto the solution of

the Gross-Pitaevskii equation (1.16), with a bound on the rate of the convergence.

The main theorem. Recall that the one-particle reduced density associated with a Fock
space vector Ψ is defined by the integral kernel

γ
(1)
Ψ (x, y) =

1

〈Ψ,NΨ〉
〈
Ψ, a∗yaxΨ

〉
. (2.13)

We are now ready to state our main result.

Theorem 2.1.1. Let ϕ ∈ H4(R3), with ‖ϕ‖2 = 1. Let HN be the Hamilton operator
defined in equation (2.6), with a non-negative and spherically symmetric interaction potential
V ∈ L1 ∩ L3(R3, (1 + |x|6)dx). Let ψ ∈ F (possibly depending on N) be such that

〈ψ,Nψ〉, 1

N
〈ψ,N 2ψ〉, 〈ψ,HNψ〉 ≤ D (2.14)

for a constant D > 0. Let γ
(1)
N,t denote the one-particle reduced density associated with the

evolved vector e−iHN tW (
√
Nϕ)T (k0)ψ. Then there exist constants C, c1, c2 > 0, depending

only on V, ‖ϕ‖H4 and on the constant D appearing in (2.14), such that

tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C exp(c1 exp(c2|t|))
N1/2

(2.15)

for all t ∈ R and N ∈ N. Here ϕt denotes the solution of the time-dependent Gross-Pitaevskii
equation

i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt (2.16)

with the initial condition ϕt=0 = ϕ.

Remarks.

(i) Let us point out that we insert the correct correlation structure in the initial data. Our
result implies the approximate stability of vectors of the form W (

√
Nϕ)T (k0)ψ with

respect to the many-body evolution (in the sense that the evolution of W (
√
Nϕ)T (k0)ψ

has approximately the same form, just with evolved ϕt, up to a small error). It does
not imply, on the other hand, that the correlation structure is produced by the time-
evolution. This is in contrast with the results of [ESY06b, ESY10, ESY07, ESYS09],
which can also be applied to completely factorized initial data. It remains unclear,
however, if it is possible to obtain convergence with a N−1/2 rate (or with any rate)
for initial data with no correlations (the problem of the creation of correlations was
studied in [EMS06]).

(ii) Initial data of the form W (
√
Nϕ)T (k0)ψ, with ψ satisfying (2.14), arise naturally as

approximation for the ground state of the Hamiltonian

Htrap
N =

∫
dx a∗x (−∆x + Vext(x)) ax +

1

2

∫
dxdy N2V (N(x− y))a∗xa

∗
yayax ,
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describing a Bose gas trapped by a confining potential Vext, when the chemical po-
tential is tuned so that the expected number of particles is N (the number of parti-
cles in W (

√
Nϕ)T (k0)ψ concentrates around N , up to errors of order

√
N). Hence,

W (
√
Nϕ)T (k0)ψ models the state prepared in experiments by cooling the trapped

Bose gas to very low temperatures. In fact, combining the results of Propositions
2.6.1, 2.6.3, 2.6.5 and 2.6.6, and assuming ψ ∈ F to satisfy (2.14) (with HN replaced
by Htrap

N ), one can easily show that〈
W (
√
Nϕ)T (k0)ψ,Htrap

N W (
√
Nϕ)T (k0)ψ

〉
= N

[∫
dx
(
|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2 + 4πa0|ϕ(x)|4

)]
+O(

√
N)

= NEGP(ϕ) +O(
√
N)

with the Gross-Pitaevskii energy functional defined in (1.14). Choosing ϕ as the nor-
malized minimizer of EGP, it follows from [LSY00] that W (

√
Nϕ)T (k0)ψ has, in leading

order, the energy of the ground state.

(iii) The time dependence on the r. h. s. of (2.15) deteriorates fast for large t. This however
is just a consequence of the fact that, in general, high Sobolev norms of the solution
of (2.16) can grow exponentially fast. Assuming a uniform bound for ‖ϕt‖H4 , the time
dependence on the r. h. s. of (2.15) can be replaced by C exp(K|t|).

(iv) To simplify a little bit the computations, we did not include an external potential in the
Hamiltonian (2.6) generating the evolution on the Fock space. In contrast to [ESY06b,
ESY10, ESY07, ESYS09], the approach presented in this paper can be extended with
no additional complication to Hamilton operators with external potential. This remark
is important to describe experiments where the evolution of the condensate is observed
after tuning the traps, rather than switching them off.

(v) The convergence (2.15) and the fact that the limit is a rank-one projection immediately

implies convergence of the higher order reduced density γ
(k)
N,t associated with the evolved

vector ΨN,t = e−iHN tW (
√
Nϕ)T (k0)ψ. Following the arguments in [KP10, Section 2],

the bound (2.15) implies that, for every k ∈ N,

tr
∣∣∣γ(k)
N,t − |ϕt〉〈ϕt|

⊗k
∣∣∣ ≤ C k1/2

N1/4
exp

(c1

2
exp(c2|t|)

)
.

To obtain bounds for the convergence of the k-particle reduced density with the same

N−1/2 rate as in (2.15), following the same approach used below to study γ
(1)
N,t would

require to control the growth of higher powers of the number of particle operator with
respect to the fluctuation dynamics (2.12). This may be doable, but the analysis
becomes more involved.

(vi) Theorem 2.1.1 and the method used in its proof can also be applied to deduce the
convergence towards the Gross-Pitaevskii dynamics for certain initial data with exact
number of particles. In Appendix 2.C, we consider initial N -particle wave functions
of the form PNW (

√
Nϕ)T (k0)ψ, for ψ ∈ F satisfying (2.14), assuming that we have

‖PNW (
√
Nϕ)T (k0)ψ‖ � N−1/2 for large N (it is explained in Appendix 2.C why

this is a reasonable condition). Here PN denotes the orthogonal projection onto the
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N -particle sector of F . It remains to be understood which class of N -particle vectors
can be written as PNW (

√
Nϕ)T (k0)ψ, for a ψ ∈ F satisfying (2.14).

2.2. Lifting the evolution to Fock space

To define an evolution on Fock space, we lift the Hamilton operator to Fock space like in
Section 1.3. We define

(HNψ)(n) = H(n)
N ψ(n)

with the operator on the n-th sector defined as

H(n)
N =

n∑
j=1

−∆xj +
n∑
i<j

N2V (N(xi − xj)).

Note that the subscript N in the notation HN is not related to the number of particles
(which is not fixed on Fock space), but only reflects the scaling of the interaction potential.
Of course, we will relate the number of particles in the initial Fock space vector to N by
choosing the initial Fock space vector to have expected number of particles close to N ;
otherwise, there would be no relation with the regime discussed in Section 2.1. Since HN
commutes with N , the evolution generated by HN leaves each n-particle sector invariant
and we have

e−iHN t(0, . . . , 0, ψN , 0, . . . ) = (0, . . . , 0, e−iHN tψN , 0, . . . )

where HN is the N -particle Hamiltonian defined in (1.15). In this sense, the N -body dy-
namics is embedded in the Fock space representation.

As discussed in Section 1.3, the Hamilton operator HN can be written as

HN =

∫
dx∇xa∗x∇xax +

1

2

∫
dxdy N2V (N(x− y))a∗xa

∗
yayax. (2.17)

The first term in the Hamiltonian is the kinetic energy; since it will play an important role
in our analysis, we introduce the notation

K =

∫
dx∇xa∗x∇ax.

Note that, like HN , K leaves every n-particle sector invariant, and for ψ ∈ F

(Kψ)(n) =

n∑
j=1

−∆xjψ
(n).

The kinetic energy operator can also be written as K = dΓ(−∆).

2.2.1. Bogoliubov transformations implementing correlations

As explained before, we are interested in Bogoliubov transformations implemented by oper-
ator exponentials with exponent quadratic in creation and annihilation operators. We think
of these Bogoliubov transformations as implementing two-particle correlations. We will now
give a rigorous discussion of the Bogoliubov transformations we use.
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For a kernel k ∈ L2(R3 × R3) with k(x, y) = k(y, x), we define the operator

T (k) = exp

(
1

2

∫
dxdy

(
k(x, y)a∗xa

∗
y − k(x, y)axay

))
(2.18)

acting on the Fock space F .

Lemma 2.2.1. Let k ∈ L2(R3 × R3) be symmetric, in the sense that k(x, y) = k(y, x).

(i) The operator T (k) is unitary on F and

T (k)∗ = T (k)−1 = T (−k).

(ii) For every f, g ∈ L2(R3), we have

T (k)∗A(f, g)T (k) = A(νk(f, g)) (2.19)

where νk : L2(R3)⊕L2(R3)→ L2(R3)⊕L2(R3) is the Bogoliubov transformation defined
by the matrix

νk =

(
ch(k) sh(k)

sh(k) ch(k)

)
.

Here ch(k), sh(k) : L2(R3)→ L2(R3) are the bounded operators defined by

ch(k) =
∑
n≥0

1

(2n)!
(kk)n and sh(k) =

∑
n≥0

1

(2n+ 1)!
(kk)nk,

where products of k and k have to be understood in the sense of operators.

(iii) We decompose
ch(k) = 1 + p(k), sh(k) = k + r(k), (2.20)

where 1 denotes the identity operator on L2(R3). Then p(k) and r(k) (and therefore
sh(k)) are Hilbert-Schmidt operators, with

‖p(k)‖2 ≤ e‖k‖2 , ‖r(k)‖2 ≤ e‖k‖2 , ‖sh(k)‖2 ≤ e‖k‖2 . (2.21)

(Here ‖p(k)‖2 denotes the L2(R3×R3) norm of the kernel p(k)(x, y), which agrees with
the Hilbert-Schmidt norm of the operator p(k).)

(iv) Suppose now that k ∈ L2(R3×R3) is s.t. ∇1k ∈ L2(R3×R3). Then, by symmetry, also
∇2k ∈ L2(R3 ×R3). (We use the notation (∇1k)(x, y) = ∇xk(x, y) and (∇2k)(x, y) =
∇yk(x, y); note that ∇1k and ∇2k are the integral kernels of the operator products ∇k
and −k∇.) Moreover

‖∇1p(k)‖2, ‖∇1r(k)‖2 ≤ e‖k‖2‖∇1(kk)‖2,
‖∇2p(k)‖2, ‖∇2r(k)‖2 ≤ e‖k‖2‖∇2(kk)‖2.

(v) If the kernel k depends on a parameter t (later, it will depend on time), and if deriva-
tives w. r. t. t are denoted by a dot, we have

‖ṗ(k)‖2, ‖ṙ(k)‖2 ≤ ‖k̇‖2 e‖k‖2

and

‖∇1ṗ(k)‖2, ‖∇1ṙ(k)‖2 ≤ Ce‖k‖2
(
‖k̇‖2‖∇1(kk)‖2 + ‖∇1(k̇k)‖2 + ‖∇1(kk̇)‖2

)
,

‖∇2ṗ(k)‖2, ‖∇2ṙ(k)‖2 ≤ Ce‖k‖2
(
‖k̇‖2‖∇2(kk)‖2 + ‖∇2(k̇k)‖2 + ‖∇2(kk̇)‖2

)
.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

Proof. (i) is clear. To prove (ii), we observe that, setting

B =
1

2

∫
dxdy

(
k(x, y)a∗xa

∗
y − k(x, y)axay

)
,

we have, for any f, g ∈ L2(R3),

e−BA(f, g)eB = A(f, g) +

∫ 1

0
dλ1

d

dλ1
e−λ1BA(f, g)eλ1B

= A(f, g)−
∫ 1

0
dλ1 e

−λ1B[B,A(f, g)]eλ1B.

Iterating, we find a BCH formula with error term

e−BA(f, g)eB = A(f, g) +

n∑
j=1

(−1)j

j!
adjB(A(f, g))

+ (−1)n+1

∫ 1

0
dλ1

∫ λ1

0
dλ2 . . .

∫ λn

0
dλn+1 e

−λn+1Badn+1
B (A(f, g)) eλn+1B

(2.22)

where ad1
B(C) = [B,C] and adn+1

B (C) = [B, adnB(C)]. A simple computation shows that

ad1
B(A(f, g)) = [B,A(f, g)] = −A

((
0 k

k 0

)(
f
g

))
and therefore that

adjB(A(f, g)) = (−1)jA

((
0 k

k 0

)j (
f
g

))
.

We have(
0 k

k 0

)2m

=

(
(kk)m 0

0 (kk)m

)
and

(
0 k

k 0

)2m+1

=

(
0 (kk)mk

(kk)mk 0

)
for every m ∈ N (the products of ks and ks are in the sense of operators, which means in
terms of integral kernels (k1k2)(x, y) =

∫
dz k1(x, z)k2(z, y)). Inserting all this in (2.22), we

obtain (2.19), if we can show that the error converges to zero. We claim, more precisely,
that the error term on the r. h. s. of (2.22) vanishes, as n→∞, when applied on the domain
D(N 1/2). To prove this claim, we start by observing that

‖(N + 1)1/2e−λB(N + 1)−1/2‖ ≤ e|λ|‖k‖2 (2.23)

for every λ ∈ R. Assuming for example, that n is odd, (2.23) implies that∥∥∥∫ 1

0
dλ1

∫ λ1

0
dλ2 . . .

∫ λn

0
dλn+1 e

−λn+1Badn+1
B (A(f, g)) eλn+1B(N + 1)−1/2

∥∥∥
≤ e‖k‖2

(n+ 1)!
‖A
(

(kk)(n+1)/2f, (kk)(n+1)/2g
)

(N + 1)−1/2‖

≤ (‖f‖2 + ‖g‖2) e‖k‖2
‖(kk)(n+1)/2‖2

(n+ 1)!
≤ C ‖k‖n2

(n+ 1)!
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2.2. Lifting the evolution to Fock space

which vanishes as n → ∞. The case n even can be treated similarly. To prove (2.23), we
observe that

d

dλ
‖(N + 1)1/2e−λBψ‖2

= 〈e−λBψ, [B,N ] e−λBψ〉

= −
∫

dxdy k(x, y)〈e−λBψ, a∗xa∗y e−λBψ〉 −
∫

dxdy k(x, y)〈e−λBψ, axay e−λBψ〉

≤ 2

∫
dx ‖axe−λBψ‖ ‖a∗(k(x, .))e−λBψ‖

≤ 2‖k‖2 ‖(N + 1)1/2e−λBψ‖2.
Grönwall’s Lemma implies (2.23).

To prove (iii), we notice that

‖p(k)‖2 =

∥∥∥∥∥∥
∑
n≥1

(kk)n

(2n)!

∥∥∥∥∥∥
2

≤
∑
n≥1

‖(kk)n‖2
(2n)!

≤
∑
n≥1

‖k‖2n2
(2n)!

≤ e‖k‖2

where we used that, by Cauchy-Schwarz, for any two kernels K1,K2 ∈ L2(R3 × R3)

‖K1K2‖22 =

∫
dxdy

∣∣∣∣∫ dz K1(x, z)K2(z, y)

∣∣∣∣2
=

∫
dxdydz1dz2K1(x, z1)K1(x, z2)K2(z1, y)K2(z2, y)

≤
∫

dxdydz1dz2 |K1(x, z1)|2 |K2(z2, y)|2

= ‖K1‖22 ‖K2‖22.

(2.24)

The bounds for r(k) and sh(k) can be proven similarly.
To show (iv) we write, using the fact that the series for p(k), r(k) and sh(k) are absolutely

convergent,

∇1p(k) = ∇1(kk)

[ ∞∑
n=1

1

(2n)!
(kk)n−1

]
,

∇1r(k) = ∇1(kk)

[ ∞∑
n=1

1

(2n+ 1)!
(kk)n−1k

]
.

Applying (2.24), we find the desired bounds. The bounds for the derivative ∇2 can be
obtained similarly.

Finally, to show (v), we remark that

‖ṗ(k)‖2 ≤
∑
n≥1

1

(2n)!
2n‖k̇‖2‖k‖2n−1

2 ≤ ‖k̇‖2 e‖k‖2 .

The bound for ṙ(k) can be proven analogously. From the product rule, we also find that

‖∇1ṗ(k)‖2 ≤
∞∑
n=2

n− 1

(2n)!
‖k‖2(n−2)

2 ‖∂t(kk)‖2 ‖∇1(kk)‖2 +
∞∑
n=1

1

(2n)!
‖k‖2(n−1)

2 ‖∇1∂t(kk)‖2

≤ e‖k‖2
(
‖k̇‖2 ‖∇1(kk)‖2 + ‖∇1(kk̇)‖2 + ‖∇1(k̇k)‖2

)
.

The other bounds are shown similarly.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.3. Construction of the fluctuation dynamics

In this section, we will construct an approximation to the full many-body evolution of initial
data of the form W (

√
Nϕ)T (k0)ψ, as considered in Theorem 2.1.1. Our approximation will

consist of two parts. First of all, the evolution of a (approximately) coherent state will be
approximated by a coherent state with evolved one-particle wave function. We will take care
of the correlation structure later.

For a given ϕ ∈ H1(R3), we define ϕ
(N)
t as the solution of the modified Gross-Pitaevskii

equation

i∂tϕ
(N)
t = −∆ϕ

(N)
t +

(
N3f(N.)V (N.) ∗ |ϕ(N)

t |2
)
ϕ

(N)
t , (2.25)

where f denotes the solution of the zero-energy scattering equation (1.10). As will become

clear later on, it is more convenient to work with the solution ϕ
(N)
t of the modified Gross-

Pitaevskii equation (2.25), rather than directly with the solution ϕt of the Gross-Pitaevskii

equation (2.16). Since N3f(Nx)V (Nx) → 8πa0δ(x), the solution ϕ
(N)
t converges towards

the solution ϕt, as N → ∞. This is proven, together with other important properties of
the solutions of the Gross-Pitaevskii and modified Gross-Pitaevskii equation, in the next
proposition.

Proposition 2.3.1. Let V ∈ L1 ∩L3(R3, (1 + |x|6)dx) be non-negative and spherically sym-
metric. Let f denote the solution of the zero-energy scattering equation (1.10), with boundary
condition f(x) → 1 as |x| → ∞. Then, by Lemma 2.3.2 below, 0 ≤ f ≤ 1 and therefore
V f ≥ 0 with V f ∈ L1 ∩ L3(R3, (1 + |x|6)dx). Let ϕ ∈ H1(R3), with ‖ϕ‖2 = 1.

(i) Well-posedness. There exist unique global solutions ϕ(.) and ϕ
(N)
(.) ∈ C(R, H1(R3))

of the Gross-Pitaevskii equation (2.16) and of the modified Gross-Pitaevskii equa-
tion (2.25), respectively, with initial data ϕ. These solutions are such that ‖ϕt‖2 =

‖ϕ(N)
t ‖2 = 1 for all t ∈ R. Moreover, there exists a constant C > 0 such that

‖ϕt‖H1 , ‖ϕ(N)
t ‖H1 ≤ C (2.26)

for all t ∈ R.

(ii) Propagation of higher regularity. If we make the additional assumption that ϕ ∈
Hn(R3), for some integer n ≥ 2, then ϕt, ϕ

(N)
t ∈ Hn(R3) for every t ∈ R. More-

over there exists a constant C > 0 depending on ‖ϕ‖Hn and on n, and a constant
K > 0, depending only on ‖ϕ‖H1 and n, such that

‖ϕt‖Hn , ‖ϕ(N)
t ‖Hn ≤ CeK|t| (2.27)

for all t ∈ R.

(iii) Regularity of time derivatives. Suppose ϕ ∈ H4(R3). Then there exist a constant
C > 0, depending on ‖ϕ‖H4, and a constant K > 0, depending only on ‖ϕ‖H1, such
that

‖ϕ̇(N)
t ‖H2 , ‖ϕ̈(N)

t ‖2 ≤ CeK|t|

for all t ∈ R.
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2.3. Construction of the fluctuation dynamics

(iv) Comparison of dynamics. Suppose now ϕ ∈ H2(R3). Then there exist constants
C, c1, c2 > 0, depending on ‖ϕ‖H2 (c2 actually depends only on ‖ϕ‖H1) such that

‖ϕ(N)
t − ϕt‖2 ≤

C exp(c1 exp(c2|t|))
N

for all t ∈ R.

The proof of Proposition 2.3.1 can be found in Appendix 2.A.

Using the solution ϕ
(N)
t of (2.25), we are going to approximate the coherent part of the

evolution. As explained in the introduction, however, this approximation is not good enough.
The many-body evolution develops a singular correlation structure, which is completely
absent in the evolved coherent state. As a consequence, fluctuations around the coherent
approximation are too strong to be controlled. To solve this problem, we have to produce
a better approximation of the many-body evolution, in particular an approximation which
takes into account the short-scale correlation structure. To reach this goal, we are going

to multiply the Weyl operator W (
√
Nϕ

(N)
t ), which generates the coherent approximation

to the many-body dynamics, by a Bogoliubov transformation T (k) having the form (2.18).
The kernel k ∈ L2(R3 × R3) has to be chosen so that T (k) creates the correct correlations
among the particles. Since correlations are, in good approximation, two-body effects, we
can describe them through the solution f of the zero-energy scattering equation (1.10). We
write

f(x) = 1− w(x) (2.28)

with lim|x|→∞w(x) = 0. The scattering length of V is defined as

8πa0 =

∫
dxV (x)f(x).

Equivalently, a0 is given by
a0 = lim

|x|→∞
w(x)|x|.

Note that, if V has compact support inside {x ∈ R3 : |x| < R}, then a0 ≤ R and w(x) =
a0/|x| for |x| > R. In general, under our assumptions on V , one can prove the following
properties of the function w.

Lemma 2.3.2. Let V ∈ L1 ∩ L3(R3, (1 + |x|6)dx) be spherically symmetric, with V ≥ 0.
Denote by f the solution of the zero-energy scattering equation (1.10) and let w = 1 − f .
Then

0 ≤ w(x) ≤ 1 for all x ∈ R3.

Moreover, there is a constant C > 0 such that

w(x) ≤ C

|x|+ 1
and |∇w(x)| ≤ C

|x|2 + 1
. (2.29)

Proof. Standard arguments show that 0 ≤ f(x) ≤ 1 holds for every x ∈ R3 (f(x) ≤ 1 follows
from V ≥ 0, because of the monotonic dependence of f on the potential; see [LSSY05,
Appendix C]). This implies that 0 ≤ w(x) ≤ 1 for all x ∈ R3. From the zero-energy
scattering equation, we have −∆w = V f/2. This implies that

w(x) = C

∫
dy

1

|x− y|
V (y)f(y) and ∇w(x) = C

∫
dy

x− y
|x− y|3

V (y)f(y)
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

for an appropriate constant C ∈ R. Using |x| ≤ |x − y| + |y|, the fact that f ≤ 1, and the
Hardy-Littlewood-Sobolev inequality, we find

|(1 + |x|)w(x)| ≤ C
∫

dy

(
1

|x− y|
+ 1 +

|y|
|x− y|

)
V (y)f(y)

≤ C(‖V ‖3/2 + ‖V ‖L1 + ‖|y|V (y)‖3/2)

and, analogously,∣∣(1 + |x|2)w(x)
∣∣ ≤ C ∫ dy

(
1

|x− y|2
+ 1 +

|y|2

|x− y|2

)
V (y)f(y)

≤ C
(
‖V ‖3 + ‖V ‖1 + ‖|y|2V ‖3

)
.

The right hand side of the last two equations is bounded under the assumption V ∈ L1 ∩
L3((1 + |x|6)dx).

The zero-energy scattering equation for the rescaled potential N2V (Nx) is solved by
f(Nx). We define w(Nx) = 1− f(Nx). Clearly

lim
|x|→∞

w(Nx)|x| = a0

N
,

showing that the scattering length of N2V (Nx) is a0/N . Equivalently, this follows from∫
dxN2V (Nx)f(Nx) = 8πa0/N .
It follows immediately from Lemma 2.3.2 that 0 < w(Nx) < c for some c < 1 and for all

x ∈ R3, and that there exists C with

w(Nx) ≤ C

N |x|+ 1
and |∇xw(Nx)| ≤ C N

N2|x|2 + 1
. (2.30)

We will use the solution f(Nx) of the scaled zero-energy scattering equation to approx-
imate the correlations among the particles, arising on the microscopic scale. It is however
important to keep in mind that these correlations are also modulated on the macroscopic

scale. We describe the macroscopic variation by the solution ϕ
(N)
t of the modified Gross-

Pitaevskii equation (2.25). We define therefore the kernel3

kt(x, y) = −Nw(N(x− y))ϕ
(N)
t (x)ϕ

(N)
t (y) (2.31)

and the corresponding unitary operator

T (kt) = exp

(
1

2

∫
dxdy

(
kt(x, y)a∗xa

∗
y − kt(x, y)axay

))
.

In the next lemma, we collect several bounds for the kernel kt which will be useful in the
following.

Lemma 2.3.3. Let w(Nx) = 1− f(Nx), where f solves the zero-energy scattering equation
(1.10). Let

k(x, y) = −Nw(N(x− y))ϕ(x)ϕ(y)

with ϕ ∈ H1(R3). (This lemma holds for general ϕ, not requiring it to be a solution of the
modified Gross-Pitaevskii equation. Nevertheless, the application is to the solution of the
modified Gross-Pitaevskii equation, and so in view of (2.26) we treat ‖ϕ‖H1 as a constant.)

3Some typos in the following part of the section in [BdS12] were corrected here.

56



2.3. Construction of the fluctuation dynamics

(i) There exists a constant C, depending only on ‖ϕ‖H1 such that

‖k‖2 ≤ C,

‖∇1k‖2, ‖∇2k‖2 ≤ C
√
N,

‖∇1(kkt)‖2, ‖∇2(kkt)‖2 ≤ C.

Defining p(k) and r(k) as in (2.20), so that ch(k) = 1 + p(k) and sh(k) = k + r(k), it
follows from Lemma 2.2.1, part (iii) and (iv), that

‖p(k)‖2, ‖r(k)‖2, ‖sh(k)‖2 ≤ C,
‖∇1p(k)‖2, ‖∇2p(k)‖2 ≤ C,
‖∇1r(k)‖2, ‖∇2r(k)‖2 ≤ C.

(ii) For almost all x, y ∈ R3, we have the pointwise bounds

|k(x, y)| ≤ min

(
N |ϕ(x)||ϕ(y)|, 1

|x− y|
|ϕ(x)||ϕ(y)|

)
,

|r(k)(x, y)| ≤ C|ϕ(x)||ϕ(y)|,
|p(k)(x, y)| ≤ C|ϕ(x)||ϕ(y)| .

(iii) Suppose further that ϕ ∈ H2(R3). Then

sup
x∈R3

‖k(., x)‖2, sup
x∈R3

‖p(k)(., x)‖2, sup
x∈R3

‖r(k)(., x)‖2, sup
x∈R3

‖sh(k)(., x)‖2 ≤ C‖ϕ‖H2 .

The proof can be found in Appendix 2.B. We will also need bounds on the time derivative
of the kernels kt, p(kt), r(kt). These are collected in the following lemma.

Lemma 2.3.4. Let ϕ ∈ H4(R3), and ϕ
(N)
t ∈ H4(R3) be the solution of (2.25), with initial

data ϕ. Let w(Nx) = 1 − f(Nx), where f is the solution of the zero-energy scattering
equation (1.10). Let the kernel kt be defined as in (2.31), so that

k̇t(x, y) = −Nw(N(x− y))
(
ϕ̇

(N)
t (x)ϕ

(N)
t (y) + ϕ

(N)
t (x)ϕ̇

(N)
t (y)

)
. (2.32)

Then there are constants C,K > 0, where C depends on the ‖ϕ‖H4 and K only on ‖ϕ‖H1

such that the following bounds hold:

(i)

‖k̇t‖2, ‖k̈t‖2, ‖ṗ(kt)‖2, ‖ṙ(kt)‖2 ≤ CeK|t|,

(ii)

‖∇1ṗ(k)‖2, ‖∇2ṗ(k)‖2, ‖∇1ṙ(k)‖2, ‖∇2ṙ(k)‖2 ≤ CeK|t|,

(iii)

sup
x
‖k̇t(., x)‖2, sup

x
‖ṗ(kt)(., x)‖2, sup

x
‖ṙ(kt)(., x)‖2, sup

x
‖ṡh(kt)(., x)‖2 ≤ CeK|t|.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

The proof can be found in Appendix 2.B.

As explained in the introduction, we are going to approximate the many-body evolution

e−iHN tW (
√
Nϕ)T (k0)ψ

of a initial data which is almost coherent but has the correct short-scale structure, with

the Fock space vector W (
√
Nϕ

(N)
t )T (kt)ψ, which is again almost coherent and has again

the correct short-scale structure. Here ϕ
(N)
t is the solution to the Gross-Pitaevskii equation

with initial data ϕ
(N)
0 = ϕ (the same ϕ appearing in the Weyl operator of the initial data).

(We remark that in this ansatz the correlation structure, modeled by the time-independent
−Nw(N(x − y)) in (2.31), is static.) This leads us to the fluctuation dynamics, defined as
the two-parameter group of unitary transformations

U(t, s) := T ∗(kt)W
∗(
√
Nϕ

(N)
t )e−iHN (t−s)W (

√
Nϕ(N)

s )T (ks) (2.33)

where U(s, s) = 1 for all s ∈ R.
The fluctuation dynamics satisfies the Schrödinger-type equation

i∂tU(t, s) = LN (t)U(t, s)

with the time-dependent generator

LN (t) = T ∗(kt)
[
i∂tW

∗(
√
Nϕ

(N)
t )

]
W (
√
Nϕ

(N)
t )T (kt)

+ T ∗(kt)W
∗(
√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t )T (kt) + [i∂tT

∗(kt)]T (kt).

The next theorem, whose proof is deferred to Section 2.6, is the main technical ingredient
of this paper. It contains important estimates for the generator LN (t), which will be used in
the next section to control the growth of the expectation of the number of particles operator
with respect to the fluctuation dynamics U(t, s).

Theorem 2.3.5. Define the time-dependent constant (of order N ; the precise form is not
of importance4)

CN (t) := L(0)
0,N (t) +

∫
dxdy |∇xsh(kt)(y, x)|2 (2.34)

+

∫
dxdy(N3V (N.) ∗ |ϕ(N)

t |2)(x) |sh(kt)(y, x)|2

+

∫
dxdydz N3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)sh(kt)(z, x) sh(kt)(z, y)

+ Re

∫
dxdydz N3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)sh(kt)(z, x)ch(kt)(z, y)

+

∫
dxdyN2V (N(x− y))

×

[∣∣∣∣∫ dz sh(kt)(z, x) ch(z, y)

∣∣∣∣2 +

∣∣∣∣∫ dz sh(kt)(z, x) sh(z, y)

∣∣∣∣2
+

∫
dz1dz2 sh(kt)(z1, x) sh(kt)(z1, y)sh(kt)(z2, x) sh(kt)(z2, y)

]
4In fact, CN (t) just collects all terms of the generator LN (t) which are constant in the sense that they do

not contain creation or annihilation operators. The form of these terms does not matter for our study of
the dynamics. However, if one attempts to use initial data without the squeezing operator T (k0), CN (t)
causes the constant of t = 0 in Grönwall’s lemma to be of order N , which is too large.
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2.4. Growth of fluctuations

and define the generator without constant terms by

L̃N (t) := LN (t)− CN (t). (2.35)

Then we have, for some K > 0 depending only on ‖ϕ‖H1,

L̃N (t) ≥ 1

2
HN − C

N 2

N
− CeK|t| (N + 1) (2.36)

and

L̃N (t) ≤ 3

2
HN + C

N 2

N
+ CeK|t| (N + 1) . (2.37)

Moreover,

±
[
N , L̃N (t)

]
≤ HN + C

N 2

N
+ CeK|t|(N + 1) (2.38)

and

± ˙̃LN (t) ≤ HN + CeK|t|
(
N 2

N
+N + 1

)
. (2.39)

The proof of Theorem 2.3.5 can be found in Subsection 2.6.6. The preceding parts of
Section 2.6 provide the necessary explicit estimates of the terms of the generator LN (t) of
the dynamics U(t, s).

2.4. Growth of fluctuations

The goal of this section is to prove a bound, uniform in N , for the growth of the expectation
of the number of particles operator with respect to the fluctuation dynamics. The properties
of the generator LN (t) of the fluctuation dynamics, as established in Theorem 2.3.5, play a
crucial role.

Theorem 2.4.1. Suppose ψ ∈ F (possibly depending on N) with ‖ψ‖ = 1 is such that〈
ψ,

(
N 2

N
+N +HN

)
ψ

〉
≤ C (2.40)

for a constant C > 0. Let ϕ ∈ H4(R3), and let ϕ
(N)
t be the solution of the modified Gross-

Pitaevskii equation (2.25) with initial data ϕ. Let U(t, s) be the fluctuation dynamics defined
in (2.33). Then there exist constants C, c1, c2 > 0 such that

〈ψ,U∗(t, 0)NU(t, 0)ψ〉 ≤ C exp(c1 exp(c2|t|)).

The strategy to prove Theorem 2.4.1 consists in applying Grönwall’s inequality. The
derivative of the expectation of N is given by the expectation of the commutator i[N ,LN (t)],
where LN (t) is the generator (2.51) of the fluctuation dynamics5. By (2.38), this commutator
is bounded in terms of the energy, of (N + 1), and of N 2/N . The growth of the energy is
controlled with the help of (2.39). What remains to be done in order to apply Grönwall’s
inequality is to bound the term N 2/N . In the next proposition, we show that the expectation
of N 2/N at time t can be controlled by its expectation at time t = 0 (a harmless constant,
by assumption (2.40)) and by the expectation of (N + 1) (which fits well in the scheme of
Grönwall’s inequality).

5clearly the constant (2.34) can be ignored in this argument
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

Proposition 2.4.2. Let the fluctuation dynamics U(t, s) be defined as in (2.33). Then there
exists a constant C > 0 such that

U∗(t, 0)N 2 U(t, 0) ≤ C
(
N U∗(t, 0)N U(t, 0) +N(N + 1) + (N + 1)2

)
.

The next lemma is useful in the proof of Proposition 2.4.2.

Lemma 2.4.3. Let kt ∈ L2(R3 × R3) be as defined in (2.31). Then there exists a constant
C, depending only on ‖kt‖2, such that

T ∗(kt)N T (kt) ≤ C(N + 1), (2.41)

T ∗(kt)N 2 T (kt) ≤ C(N + 1)2 (2.42)

for all t ∈ R.

Proof. We use the decomposition ch(kt) = 1 + p(kt) and the shorthand notation cx(z) =
ch(kt)(z, x), px(z) = p(kt)(z, x) and sx(z) = sh(kt)(z, x). We have

〈ψ, T ∗(kt)NT (kt)ψ〉 =

∫
dx 〈ψ, (a∗(cx) + a(sx))(a(cx) + a∗(sx))ψ〉

=

∫
dx ‖(ax + a(px) + a∗(sx))ψ‖2

≤ C
∫

dx ‖axψ‖2 +

∫
dx ‖a(px)ψ‖2 +

∫
dx ‖a∗(sx)ψ‖2

≤ C(1 + ‖p(kt)‖22 + ‖sh(kt)‖22)‖(N + 1)1/2ψ‖,

and (2.41) follows by Lemma 2.2.1 (since ‖p(kt)‖2, ‖sh(kt)‖2 ≤ e‖kt‖2). To prove (2.42), we
observe that

〈ψ, T ∗(kt)N 2T (kt)ψ〉 =

∫
dxdy 〈ψ, T ∗(kt)a∗xaxa∗yayT (kt)ψ〉

=

∫
dx 〈ψ, T ∗(kt)a∗xNaxT (kt)ψ〉+ 〈ψ, T ∗(kt)NT (kt)ψ〉

=

∫
dx 〈(a(cx) + a∗(sx))ψ, T ∗(k)NT (k)(a(cx) + a∗(sx))ψ〉+ 〈ψ, T ∗(kt)NT (kt)ψ〉.

Then, applying (2.41), we obtain

〈ψ, T ∗(kt)N 2T (kt)ψ〉

≤ C
∫

dx ‖(N + 1)1/2(a(cx) + a∗(sx))ψ‖2 + C〈ψ, (N + 1)ψ〉

≤ C
∫

dx (‖axN 1/2ψ‖2 + ‖a(px)N 1/2ψ‖2 + ‖a∗(sx)(N + 2)1/2ψ‖2) + C〈ψ, (N + 1)ψ〉

≤ C(1 + ‖p(kt)‖22 + ‖sh(kt)‖22)〈ψ, (N + 1)2ψ〉.

The bounds from Lemma 2.2.1 imply (2.42).

Proof of Proposition 2.4.2. From Lemma 2.4.3, we find

〈ψ,U∗(t, 0)N 2U(t, 0)ψ〉 ≤ C〈ψ,U∗(t, 0)T ∗(kt)N 2T (kt)U(t, 0)ψ〉. (2.43)
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2.4. Growth of fluctuations

We now show how to bound the r. h. s. of the last equation. Using the definition of the

fluctuation dynamics U(t, 0) = T ∗(kt)W
∗(
√
Nϕ

(N)
t )e−iHN tW ∗(

√
Nϕ)T (k0), we find

〈ψ,U∗(t, 0)T ∗(kt)N 2T (kt)U(t, 0)ψ〉

= 〈N T (kt)U(t, 0)ψ,W ∗(
√
Nϕ

(N)
t ) (N −

√
Nφ(ϕ

(N)
t ) +N)e−iHN tW (

√
Nϕ)T (k0)ψ〉

= 〈N T (kt)U(t, 0)ψ,W ∗(
√
Nϕ

(N)
t )N e−iHN tW (

√
Nϕ)T (k0)ψ〉

−
√
N 〈N T (kt)U(t, 0)ψ,W ∗(

√
Nϕ

(N)
t )φ(ϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ〉

+N〈ψ,U∗(t, 0)T ∗(kt)NT (kt)U(t, 0)ψ〉

(2.44)

where we used the notation φ(f) = a(f) + a∗(f), and the property (1.40) to show that

W ∗(
√
Nϕ

(N)
t )NW (

√
Nϕ

(N)
t ) = N −

√
Nφ(ϕ

(N)
t ) +N.

In the first term on the r. h. s. of (2.44), we use now the fact that N commutes with HN . In

the second term, on the other hand, we move the factor φ(ϕ
(N)
t ) back to the left of the Weyl

operator W (
√
Nϕ

(N)
t ), using that

W ∗(
√
Nϕ

(N)
t )φ(ϕ

(N)
t ) =

(
φ(ϕ

(N)
t ) + 2

√
N
)
W ∗(
√
Nϕ

(N)
t ) .

We conclude that

〈ψ,U∗(t, 0)T ∗(kt)N 2T (kt)U(t, 0)ψ〉

= 〈N T (kt)U(t, 0)ψ,W ∗(
√
Nϕ

(N)
t ) e−iHN tW (

√
Nϕ)(N +

√
Nφ(ϕ) +N)T (k0)ψ〉

−
√
N 〈N T (kt)U(t, 0)ψ,

(
φ(ϕ

(N)
t ) + 2

√
N
)
W ∗(
√
Nϕ

(N)
t ) e−iHN tW (

√
Nϕ)T (k0)ψ〉

+N〈ψ,U∗(t, 0)T ∗(kt)NT (kt)U(t, 0)ψ〉

= 〈N T (kt)U(t, 0)ψ,W ∗(
√
Nϕ

(N)
t ) e−iHN tW (

√
Nϕ)N T (k0)ψ〉

+
√
N〈N T (kt)U(t, 0)ψ,W ∗(

√
Nϕ

(N)
t ) e−iHN tW (

√
Nϕ)φ(ϕ)T (k0)ψ〉

−
√
N 〈N T (kt)U(t, 0)ψ, φ(ϕ

(N)
t )W ∗(

√
Nϕ

(N)
t ) e−iHN tW (

√
Nϕ)T (k0)ψ〉.

(2.45)

By Cauchy-Schwarz, we obtain

〈ψ,U∗(t, 0)T ∗(kt)N 2T (kt)U(t, 0)ψ〉
≤ ‖N T (kt)U(t, 0)ψ‖

×
(
‖N T (k0)ψ〉‖+

√
N‖φ(ϕ)T (k0)ψ‖+

√
N‖φ(ϕ

(N)
t )T (kt)U(t, 0)ψ‖

)
≤ 1

2
‖N T (kt)U(t, 0)ψ‖2

+ C
(
‖N T (k0)ψ‖2 +N‖φ(ϕ)T (k0)ψ‖2 +N‖φ(ϕ

(N)
t )T (kt)U(t, 0)ψ‖2

)
.

Subtracting the first term appearing on the r. h. s., and using the bound from Lemma 1.4.2
that ‖φ(f)ψ‖ ≤ 2‖f‖2‖(N + 1)1/2ψ‖, we find that

〈ψ,U∗(t, 0)T ∗(kt)N 2T (kt)U(t, 0)ψ〉

≤ C
(
‖N T (k0)ψ‖2 +N‖(N + 1)1/2T (k0)ψ‖2 +N‖(N + 1)1/2T (kt)U(t, 0)ψ‖2

)
.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

By Lemma 2.4.3 we conclude that

〈ψ,U∗(t, 0)T ∗(kt)N 2T (kt)U(t, 0)ψ〉
≤ CN‖N 1/2U(t, 0)ψ‖2 + C‖Nψ‖2 + CN‖(N + 1)1/2ψ‖2.

With (2.43), this concludes the proof of the proposition.

We are now ready to show Theorem 2.4.1. The basic idea is to apply the Grönwall lemma.
Unfortunately we can not control d

dt〈ψ, Ũ
∗(t, 0)NŨ(t, 0)ψ〉 with 〈ψ, Ũ∗(t, 0)NŨ(t, 0)ψ〉; how-

ever, we can bound it using L̃N (t) + N . Similarly we can bound the derivative of the
expectation of L̃N (t) using L̃N (t) + N . Consequently, we can bound the derivative of the
expectation value of L̃N (t) +N using L̃N (t) +N , and thus apply the Grönwall lemma. We
then use a lower bound for L̃N (t) to derive a bound for the expectation of N . The precise
calculation looks a bit more complicated since we have to keep track of the constants (and
the exponential factors).

Proof of Theorem 2.4.1. Let CN (t) be defined as in (2.34) and define

Ũ(t, s) = ei
∫ t
s CN (τ)dτU(t, s).

Then Ũ(t, s) satisfies the Schrödinger type equation

i∂tŨ(t, s) = L̃N (t)Ũ(t, s), with Ũ(s, s) = 1

for all s ∈ R, and with generator L̃N (t) = LN (t)−CN (t), as defined in (2.35). On the other
hand, since the two evolutions only differ by a phase, we have

〈ψ,U∗(t, 0)NU(t, 0)ψ〉 = 〈ψ, Ũ∗(t, 0)NŨ(t, 0)ψ〉.

We now use the properties of L̃N (t), as established in (2.36)–(2.39). Eq. (2.36) implies

HN ≤ 2L̃N (t) + C
N 2

N
+ CeK|t|(N + 1). (2.46)

From Proposition 2.4.2, we conclude that there exists a constant C1 (which depends on
〈ψ, (N 2/N +N + 1)ψ〉), such that

0 ≤
〈
ψ, Ũ∗(t, 0)HN Ũ(t, 0)ψ

〉
≤
〈
ψ, Ũ∗(t, 0)

(
2L̃N (t) + C1e

K|t|(N + 1)
)
Ũ(t, 0)ψ

〉
. (2.47)

From (2.38), combined with (2.46) and Proposition 2.4.2, there exists moreover a constant
C2 > 0 (depending on 〈ψ, (N 2/N +N + 1)ψ〉) such that

d

dt

〈
ψ, Ũ∗(t, 0)NŨ(t, 0)ψ

〉
≤
〈
ψ, Ũ∗(t, 0)

(
2L̃N (t) + C2e

K|t|(N + 1)
)
Ũ(t, 0)ψ

〉
.

We now estimate the growth of the expectation of the generator L̃N (t). Using (2.39) together
with (2.46) and Proposition 2.4.2, we conclude that there exists a constant C3 > 0 (again,
depending on 〈ψ, (N 2/N +N + 1)ψ〉), with

d

dt

〈
ψ, Ũ∗(t, 0)L̃N (t)Ũ(t, 0)ψ

〉
=
〈
ψ, Ũ∗(t, 0)

˙̃LN (t) Ũ(t, 0)ψ
〉

≤
〈
ψ, Ũ∗(t, 0)

(
2L̃N (t) + C3e

K|t|(N + 1)
)
Ũ(t, 0)ψ

〉
.
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2.5. Proof of the main theorem

We now fix D := max(C1 + 1, C2, C3,K). Then, we have

d

dt

〈
ψ,Ũ∗(t, 0)

(
L̃N (t) +DeK|t|(N + 1)

)
Ũ(t, 0)ψ

〉
≤
〈
ψ, Ũ∗(t, 0)

[
(2 + 2DeK|t|)L̃N (t) + (DeK|t| +DKeK|t| +D2e2K|t|)(N + 1)

]
Ũ(t, 0)ψ

〉
≤ 4DeK|t|

〈
ψ, Ũ∗(t, 0)

(
L̃N (t) +DeK|t|(N + 1)

)
Ũ(t, 0)ψ

〉
.

By Grönwall’s lemma, we conclude that〈
ψ, Ũ∗(t, 0)

(
L̃N (t) +DeK|t|(N + 1)

)
Ũ(t, 0)ψ

〉
≤ e4D

K
eK|t|

〈
ψ,
(
L̃N (0) +D(N + 1)

)
ψ
〉

≤ e4D
K
eK|t|

〈
ψ,

(
3

2
HN + C

N 2

N
+ C(N + 1)

)
ψ

〉
where in the last inequality, we used the upper bound (2.37). From assumption (2.40) we
then obtain〈

ψ, Ũ∗(t, 0)
(
L̃N (t) +DeK|t|(N + 1)

)
Ũ(t, 0)ψ

〉
≤ C exp(c1 exp(c2|t|)). (2.48)

Furthermore, from (2.47) we have

−C1

2
eK|t|

〈
ψ, Ũ∗(t, 0)(N + 1)Ũ(t, 0)ψ

〉
≤
〈
ψ, Ũ∗(t, 0)L̃N (t)Ũ(t, 0)ψ

〉
.

Inserting this in (2.48) as a lower bound for L̃N (t) and recalling D − C1 ≥ 1, we obtain the
intended bound for the expectation of N .

2.5. Proof of the main theorem

Using the bounds established in Theorem 2.4.1, we proceed now to prove our main result.

Proof of Theorem 2.1.1. Let ΨN,t = e−iHN tW (
√
Nϕ)T (k0)ψ. Recall that the one-particle

reduced density matrix of ΨN,t has the integral kernel

γ
(1)
N,t(x, y) =

1

〈ΨN,t,NΨN,t〉
〈ΨN,t, a

∗
yaxΨN,t〉. (2.49)

We start by computing the denominator. Since HN commutes with the number of particles
operator we find

〈ΨN,t,NΨN,t〉 = 〈ψ, T ∗(k0)W ∗(
√
Nϕ)NW (

√
Nϕ)T (k0)ψ〉

= 〈ψ, T ∗(k0)
(
N −

√
Nφ(ϕ) +N

)
T (k0)ψ〉

= N +
〈
ψ, T ∗(k0)

(
N −

√
Nφ(ϕ)

)
T (k0)ψ

〉
.

By Lemma 2.4.3

〈ψ, T ∗(k0)NT (k0)ψ〉 ≤ C〈ψ, (N + 1)ψ〉 ≤ C
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

and

|〈ψ, T ∗(k0)φ(ϕ)T (k0)ψ〉| ≤ C〈ψ, T ∗(k0)(N + 1)1/2T (k0)ψ〉 ≤ C〈ψ, (N + 1)ψ〉 ≤ C.

Hence, there exists C > 0 with

|〈ΨN,t,NΨN,t〉 −N | ≤ CN1/2. (2.50)

On the other hand, with ϕ
(N)
t denoting the solution of the modified Gross-Pitaevskii equation

(2.25), the numerator of (2.49) can be written as

〈ΨN,t, a
∗
yaxΨN,t〉

= 〈ψ, T (k0)W (
√
Nϕ)eitHNa∗yaxe

−iHN tW (
√
Nϕ)T (k0)ψ〉

= N ϕt(x)ϕt(y)

+
√
N ϕt(x) 〈ψ, T ∗(k0)W ∗(

√
Nϕ)eitHN

(
a∗y −

√
Nϕ

(N)
t (y)

)
e−iHN tW (

√
Nϕ)T (k0)ψ〉

+
√
N ϕt(y) 〈ψ, T ∗(k0)W ∗(

√
Nϕ)eitHN

(
ax −

√
Nϕ

(N)
t (x)

)
e−iHN tW (

√
Nϕ)T (k0)ψ〉

+
〈
ψ, T ∗(k0)W ∗(

√
Nϕ)eitHN

(
a∗y −

√
Nϕ

(N)
t (y)

)
×
(
ax −

√
Nϕ

(N)
t (x)

)
e−iHN tW (

√
Nϕ)T (k0)ψ

〉
.

Recognizing that

(a∗y −
√
Nϕ

(N)
t (y)) = W (

√
Nϕ

(N)
t )a∗yW

∗(
√
Nϕ

(N)
t )

(ax −
√
Nϕ

(N)
t (x)) = W (

√
Nϕ

(N)
t )axW

∗(
√
Nϕ

(N)
t )

we obtain

〈ΨN,t, a
∗
yaxΨN,t〉

= Nϕ
(N)
t (x)ϕ

(N)
t (y)

+
√
N ϕ

(N)
t (x) 〈ψ, T ∗(k0)W ∗(

√
Nϕ)eitHNW (

√
Nϕ

(N)
t )

× a∗yW ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ〉

+
√
N ϕ

(N)
t (y)〈ψ, T ∗(k0)W ∗(

√
Nϕ)eitHNW (

√
Nϕ

(N)
t )

× axW ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ〉

+ 〈ψ, T ∗(k0)W ∗(
√
Nϕ)eitHNW (

√
Nϕ

(N)
t )a∗yaxW

∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ〉.

Combining the last equation with (2.50) and inserting in (2.49), we have that∣∣∣γ(1)
N,t(x, y)− ϕ(N)

t (y)ϕ
(N)
t (x)

∣∣∣
≤ C√

N
|ϕ(N)
t (x)||ϕ(N)

t (y)|

+
1√
N
|ϕ(N)
t (y)| ‖axW ∗(

√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖

+
1√
N
|ϕ(N)
t (x)| ‖ayW ∗(

√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖

+
1

N
‖ayW ∗(

√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖

× ‖axW ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖.
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2.6. Key bounds on the generator of the fluctuation dynamics

Taking the square and integrating over x, y, we find∥∥∥γ(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

∥∥∥
HS
≤ C√

N
‖(N + 1)1/2W ∗(

√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖2.

Lemma 2.4.3 implies that∥∥∥γ(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

∥∥∥
HS
≤ C√

N
‖(N + 1)1/2 T ∗(kt)W

∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖2

=
C√
N
‖(N + 1)1/2 U(t, 0)ψ‖2

with the fluctuation dynamics U(t, s) defined in (2.33). From Theorem 2.4.1 we conclude
that ∥∥∥γ(1)

N,t − |ϕ
(N)
t 〉〈ϕ

(N)
t |

∥∥∥
HS
≤ C exp(c1 exp(c2|t|))√

N
.

By Lemma 1.A.1 this implies

tr
∣∣∣γ(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

∣∣∣ ≤ C exp(c1 exp(c2|t|))√
N

.

Theorem 2.1.1 now follows because, if ϕt denotes the solution of the Gross-Pitaevskii equation
(2.16), Proposition 2.3.1 implies that

tr
∣∣∣|ϕt〉〈ϕt| − |ϕ(N)

t 〉〈ϕ
(N)
t |

∣∣∣ ≤ 2‖ϕt − ϕ(N)
t ‖2 ≤

Cec1|t|

N
.

2.6. Key bounds on the generator of the fluctuation dynamics

In this section, we prove Theorem 2.3.5, concerning the generator LN (t) of the fluctuation
dynamics

U(t, s) = T ∗(kt)W
∗(
√
Nϕ

(N)
t )e−iHN (t−s)W (

√
Nϕ(N)

s )T (ks)

as defined in (2.33). We write

LN (t) = T ∗(kt)
[
i∂tW

∗(
√
Nϕ

(N)
t )

]
W (
√
Nϕ

(N)
t )T (kt)

+ T ∗(kt)W
∗(
√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t )T (kt) + [i∂tT

∗(kt)]T (kt)

= T ∗(kt)L(0)
N (t)T (kt) + [i∂tT

∗(kt)]T (kt)

(2.51)

with

L(0)
N (t) =

[
i∂tW

∗(
√
Nϕ

(N)
t )

]
W (
√
Nϕ

(N)
t ) +W ∗(

√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t ).

A simple computation shows that[
i∂tW

∗(
√
Nϕ

(N)
t )

]
W (
√
Nϕ

(N)
t ) = −a(

√
Ni∂tϕ

(N)
t )− a∗(

√
Ni∂tϕ

(N)
t )−N

〈
ϕ

(N)
t , i∂tϕ

(N)
t

〉
.
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On the other hand, using (1.40), we find

W ∗(
√
Nϕ

(N)
t )HNW (

√
Nϕ

(N)
t )

= N

[
‖∇ϕ(N)

t ‖22 +
1

2

∫
dx (N3V (N.) ∗ |ϕ(N)

t |2)(x)|ϕ(N)
t (x)|2

]
+
√
N
[
a∗
(

(N3V (N.) ∗ |ϕ(N)
t |2)ϕ

(N)
t

)
+ a

(
(N3V (N.) ∗ |ϕ(N)

t |2)ϕ
(N)
t

)]
+

[∫
dx∇xa∗x∇xax +

∫
dx (N3V (N.) ∗ |ϕ(N)

t |2)(x)a∗xax

+

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xay

+
1

2

∫
dxdyN3V (N(x− y))

(
ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xa

∗
y + ϕ

(N)
t (x)ϕ

(N)
t (y)axay

)]
+

1√
N

∫
dxdy N3V (N(x− y))a∗x

(
ϕ

(N)
t (y)a∗y + ϕ

(N)
t (y)ay

)
ax

+
1

2N

∫
dxdyN3V (N(x− y))a∗xa

∗
yayax.

Combining the last two equations and using (2.25), we conclude that

L(0)
N (t) = N

∫
dx

(
N3V (N.)

(1

2
− f(N.)

)
∗ |ϕ(N)

t |2
)

(x)|ϕ(N)
t (x)|2

+
√
N
[
a∗
(

(N3w(N.)V (N.) ∗ |ϕ(N)
t |2)ϕ

(N)
t

)
+ a

(
(N3w(N.)V (N.) ∗ |ϕ(N)

t |2)ϕ
(N)
t

)]
+

[∫
dx∇xa∗x∇xax +

∫
dx (N3V (N.) ∗ |ϕ(N)

t |2)(x)a∗xax

+

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xay

+
1

2

∫
dxdyN3V (N(x− y))

(
ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xa

∗
y + ϕ

(N)
t (x)ϕ

(N)
t (y)axay

)]
+

1√
N

∫
dxdy N3V (N(x− y))a∗x

(
ϕ

(N)
t (y)a∗y + ϕ

(N)
t (y)ay

)
ax

+
1

2N

∫
dxdyN3V (N(x− y))a∗xa

∗
yayax

=: L(0)
0,N (t) + L(0)

1,N (t) + L(0)
2,N (t) + L(0)

3,N (t) + L(0)
4,N

where L(0)
j,N (t), for j = 0, 1, 2, 3, 4, is the part of L(0)

N (t) containing the products of exactly j
creation and annihilation operators. Recall here that w(x) = 1− f(x), as defined in (2.28).

From (2.51), we find that the generator of the fluctuation dynamics is given by

LN (t) = L(0)
0,N (t) +

4∑
j=1

T ∗(kt)L(0)
j,N (t)T (kt) + [i∂tT

∗(kt)]T (kt). (2.52)

In the next subsections, we study separately the different terms on the r. h. s. of (2.52). The
final goal of this analysis, a proof of Theorem 2.3.5, will be reached in Subsection 2.6.6.

Remark. The reader is invited to convince himself first of the cancellations explained in
Subsection 2.6.6 and of their necessity. For understanding the estimates of the remaining
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terms of the generator LN (t) without going through all the technical estimates below, we

recommend to think of a](cx) as a]x and of a](sx) as a](kx), neglecting p and r. Expand
the generator completely (which gives a large number of terms) and consider the individual
terms as inside an expectation value of a general vector in Fock space. The goal is to obtain
bounds on their expectation value in terms of

CεN , Cε
N 2

N
, εK and ε

1

2

∫
dxdy N2V (N(x− y))a∗xa

∗
yayax,

where ε > 0 is to be chosen small later, and Cε > 0 is a N -independent constant possibly
diverging as ε → 0. The terms originating from the kinetic energy contain derivatives but
are few and can be estimated one at a time. For the other terms, we have the following
receipe. First, the singular operator a∗x has to be moved to the other argument of the scalar
product as ax. The operator a∗(kx) can be kept and will be estimated by Lemma 1.4.2.
Also, we distribute the operators such that there are no more than two in either argument
of the scalar product. We then estimate scalar products by the Cauchy-Schwarz inequality
and use

∫
dxdyV (x−y)f(x, y)g(x, y) ≤

∫
dxdyV (x−y)|f(x, y)|2 +

∫
dxdyV (x−y)|g(x, y)|2,

if necessary with a weight ε and 1/ε inserted for the two summands. Finally, we can use

supx‖kx‖2, ‖ϕ(N)
t ‖∞ and the L1-norm of NVN , which is N -independent. The procedure for

˙̃LN (t) is similar but due to the even larger number of terms tedious. (Actually,
˙̃LN (t) is less

singular, because a∗(ċx) = a∗(ṗx), where ṗx is in L2.)

Notation. In the rest of this section, we will use the shorthand notation

cx(y) = ch(kt)(y, x), sx(y) = sh(kt)(y, x), px(y) = p(kt)(y, x), rx(y) = r(kt)(y, x). (2.53)

Moreover, ‖p‖2, ‖r‖2, ‖sh‖2 will denote the L2-norms of the kernels p(kt)(x, y), r(kt)(x, y),
and sh(kt)(x, y) over R3×R3 (in other words, they denote the Hilbert-Schmidt norms of the
corresponding operators). The norms ‖px‖2, ‖rx‖2, ‖shx‖2, on the other hand, indicate norms
over R3. Finally, the notation 〈., .〉 will denote the L2 inner product. We will abbreviate
T (kt) by T .

2.6.1. Analysis of the linear terms T ∗L(0)
1,N(t)T

Conjugating the linear term L(0)
N,1(t) with T produces again linear terms. From Lemma 2.2.1,

we obtain

T ∗L(0)
1,N (t)T (2.54)

=
√
N

∫
dxdy N3V (N(x− y))w(N(x− y))|ϕ(N)

t (y)|2
(
ϕ

(N)
t (x)T ∗a∗xT + ϕ

(N)
t (x)T ∗axT

)
=
√
N

∫
dxdy N3V (N(x− y))w(N(x− y))|ϕ(N)

t (y)|2 ϕ(N)
t (x) (a∗(cx) + a(sx))

+
√
N

∫
dxdy N3V (N(x− y))w(N(x− y))|ϕ(N)

t (y)|2 ϕ(N)
t (x) (a(cx) + a∗(sx)).

These terms are potentially dangerous because they are large (of order
√
N) and do not com-

mute with the number of particles. We will see however that they cancel with contributions

arising from the cubic part L(0)
3,N (t).
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2.6.2. Analysis of the quadratic terms T ∗L(0)
2,N(t)T

We split L(0)
2,N (t) into a kinetic and a non-kinetic part, writing

L(0)
2,N (t) = K + L̂(0)

2,N (t),

with K =
∫

dx∇xa∗x∇xax being the kinetic energy operator, and we consider separately the

effects of K and of the other quadratic terms collected in L̂(0)
2,N (t).

Properties of the kinetic part T ∗KT

We have

T ∗KT =

∫
dx∇x(a∗(cx) + a(sx))∇x(a(cx) + a∗(sx))

=

∫
dx∇xa∗(cx)∇xa(cx) +

∫
dx∇xa∗(cx)∇xa∗(sx)

+

∫
dx∇xa(sx)∇xa(cx) +

∫
dx∇a∗(sx)∇xa(sx) +

∫
dx‖∇xsx‖22.

Following (2.20), we decompose cx(y) = δ(x− y) + px(y) and sx(y) = k(x, y) + rx(y). Hence

T ∗KT = K +

∫
dxdy |∇xshkt(y, x)|2+ (2.55)

+

∫
dx∇xa∗xa(∇xpx) +

∫
dxa∗(∇xpx)∇xax +

∫
dxa∗(∇xpx)a(∇xpx)

+

∫
dx∇xa∗xa∗(∇xkx) +

∫
dxa∗(∇xpx)a∗(∇xkx) +

∫
dx∇xa∗xa∗(∇xrx)

+

∫
dxa∗(∇xpx)a∗(∇xrx) +

∫
dx a(∇xkx)∇xax +

∫
dxa(∇xrx)∇xax

+

∫
dxa(∇xkx)a(∇xpx) +

∫
dxa(∇xrx)a(∇xpx) +

∫
dx a∗(∇xkx)a(∇xkx)

+

∫
dx a∗(∇xrx)a(∇xkx) +

∫
dx a∗(∇xkx)a(∇xrx) +

∫
dx a∗(∇xrx)a(∇xrx).

The properties of T ∗KT are summarized in the next proposition.

Proposition 2.6.1. We have

T ∗KT =

∫
dxdy|∇xshkt(y, x)|2 +K

+N3

∫
dxdy(∆w)(N(x− y))

(
ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xa

∗
y + ϕ

(N)
t (x)ϕ

(N)
t (y)axay

)
+ EK(t)

(2.56)

where the error EK(t) is an operator such that for every δ > 0 there exists a constant Cδ > 0
with

±EK(t) ≤ δK + Cδe
K|t| (N + 1),

± [N , EK(t)] ≤ δK + Cδe
K|t| (N + 1),

± ĖK(t) ≤ δK + Cδe
K|t| (N + 1).

(2.57)
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2.6. Key bounds on the generator of the fluctuation dynamics

To prove Proposition 2.6.1, we will use the next lemma.

Lemma 2.6.2. Let j1, j2 ∈ L2(R3 × R3). Let ji,x(z) := ji(z, x) for i = 1, 2. Then we have∣∣∣∣∫ dx〈ψ, a](j1,x)a](j2,x)ψ〉
∣∣∣∣ ≤ C‖j1‖2‖j2‖2 ‖(N + 1)1/2ψ‖2. (2.58)

Here and in the following a] can be either the annihilation operator a or the creation operator
a∗. Moreover, for every δ > 0, there exists Cδ > 0 such that∣∣∣∣∫ dx〈ψ,∇xa∗xa](j1,x)ψ〉

∣∣∣∣ ≤ δK + Cδ‖j1‖22‖(N + 1)1/2ψ‖2 and, by conjugation∣∣∣∣∫ dx〈ψ, a](j1,x)∇xaxψ〉
∣∣∣∣ ≤ δK + Cδ‖j1‖22 ‖(N + 1)1/2ψ‖2.

(2.59)

Terms where the argument of a creation and/or annihilation operator is the kernel ∇xkx
(whose L2-norm diverges as N → ∞) can be handled with the following bounds. For every
δ > 0 there exists Cδ > 0 s.t.∣∣∣∣∫ dx〈ψ, a∗(∇xkx)a](j1,x)ψ〉

∣∣∣∣ ≤ δK + Cδ(1 + ‖j1‖22)‖(N + 1)1/2ψ‖2 and, by conjugation∣∣∣∣∫ dx〈ψ, a](j1,x)a(∇xkx)ψ〉
∣∣∣∣ ≤ δK + Cδ(1 + ‖j1‖22)‖(N + 1)1/2ψ‖2.

(2.60)

Moreover, we have ∣∣∣∣∫ dx〈ψ, a∗(∇xkx)a(∇xkx)ψ〉
∣∣∣∣ ≤ C‖N 1/2ψ‖2. (2.61)

To control the time derivative of EK(t), we will also use the following bounds. For every
δ > 0 there exists Cδ > 0 such that∣∣∣∣∫ dx〈ψ, a∗(∇xk̇x)a](j1,x)ψ〉

∣∣∣∣ ≤ δK + Cδe
K|t|(1 + ‖j1‖22) ‖(N + 1)1/2ψ‖2. (2.62)

Moreover, ∣∣∣∣∫ dx〈ψ, a∗(∇xk̇x)a(∇xkx)ψ〉
∣∣∣∣ ≤ CeK|t|‖N 1/2ψ‖2. (2.63)

Proof. To prove (2.58), we compute∣∣∣∣∫ dx〈ψ, a](j1,x)a](j2,x)ψ〉
∣∣∣∣ ≤ ∫ dx‖a](j1,x)ψ‖ ‖a](j2,x)ψ‖

≤
(∫

dx‖j1,x‖2‖j2,x‖2
)
‖(N + 1)1/2ψ‖2

≤ ‖j1‖2‖j2‖2 ‖(N + 1)1/2ψ‖2.

Eq. (2.59), on the other hand, follows by∣∣∣∣∫ dx〈ψ,∇xa∗xa](j1,x)ψ〉
∣∣∣∣ ≤ ∫ dx‖∇xaxψ‖ ‖a](j1,x)ψ‖

≤ δ〈ψ,Kψ〉+ Cδ

∫
dx‖j1,x‖22 ‖(N + 1)1/2ψ‖2

≤ δ〈ψ,Kψ〉+ Cδ‖j1‖22 ‖(N + 1)1/2ψ‖2.

(2.64)
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

To show (2.60), we need to integrate by parts. We write∫
dxa∗(∇xkx)a](j1,x) =

∫
dxdy∇xk(y, x) a∗ya

](j1,x)

and we observe that

∇xk(y, x) = −∇yk(y, x)−Nw(N(y − x))
(
∇ϕ(N)

t (x)ϕ
(N)
t (y) + ϕ

(N)
t (x)∇ϕ(N)

t (y)
)
.

Hence ∫
dxa∗(∇xkx)a](j1,x) =

∫
dxdyk(x, y)∇ya∗ya](j1,x)

−
∫

dxdyNw(N(x− y))∇ϕ(N)
t (x)ϕ

(N)
t (y) a∗y a

](j1,x)

−
∫

dxdyNw(N(x− y))∇ϕ(N)
t (y)ϕ

(N)
t (x) a∗y a

](j1,x).

This implies, using Lemma 2.3.2 to bound Nw(N(x− y)),∣∣∣ ∫ dx〈ψ, a∗(∇xkx)a](j1,x)ψ〉
∣∣∣

≤
∫

dxdy |k(x, y)|‖∇yayψ‖ ‖a](j1,x)ψ‖

+ C

∫
dxdy

1

|x− y|

(
|∇ϕ(N)

t (x)||ϕ(N)
t (y)|+ |∇ϕ(N)

t (y)||ϕ(N)
t (x)|

)
‖ayψ‖ ‖a](j1,x)ψ‖

≤ δ
∫

dxdy|ϕ(N)
t (x)|2‖∇yayψ‖2 + Cδ

∫
dxdy

1

|x− y|2
|ϕ(N)
t (y)|2‖j1,x‖22‖|(N + 1)1/2ψ‖2

+ C

∫
dxdy

1

|x− y|2
|ϕ(N)
t (y)|2‖j1,x‖22‖|(N + 1)1/2ψ‖2 + C

∫
dxdy|∇ϕ(N)

t (x)|2‖ayψ‖2

+ C

∫
dxdy

1

|x− y|2
|ϕ(N)
t (x)|2‖ayψ‖2 + C

∫
dxdy|∇ϕ(N)

t (y)|2‖j1,x‖22‖(N + 1)1/2ψ‖2.

Using Hardy’s inequality, we conclude that for every δ > 0 there exists Cδ > 0 (depending

on ‖j1‖2, δ, ‖ϕ(N)
t ‖H1) such that∣∣∣∣〈ψ,∫ dx a∗(∇xkx)a](j1,x)ψ〉

∣∣∣∣ ≤ δ〈ψ,Kψ〉+ Cδ(1 + ‖j1‖22) 〈ψ, (N + 1)ψ〉.

To show (2.61), we write∫
dx a∗(∇xkx)a(∇xkx) =

∫
dxdy1dy2∇xk(y1, x)∇xk(y2, x) a∗y1

ay2

=:

∫
dy1dy2 g(y1, y2)a∗y1

ay2 .

We have∣∣∣ ∫ dy1dy2 g(y1, y2)〈ψ, a∗y1
ay2ψ〉

∣∣∣
≤
∫

dy1dy2|g(y1, y2)|‖ay1ψ‖ ‖ay2ψ‖

≤
(∫

dy1dy2|g(y1, y2)|2
)1/2(∫

dy1dy2 ‖ay1ψ‖2 ‖ay2ψ‖2
)1/2

= ‖g‖2 ‖N 1/2ψ‖2.
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2.6. Key bounds on the generator of the fluctuation dynamics

Moreover, from the definition (2.31) of the kernel kt and from the bounds of Lemma 2.3.2,
we find

‖g‖22 ≤ C
∫

dy1dy2dx1dx2
|ϕ(N)
t (x1)|2|ϕ(N)

t (x2)|2|ϕ(N)
t (y1)|2|ϕ(N)

t (y2)|2

|x1 − y1|2|x1 − y2|2|x2 − y1|2|x2 − y2|2

+ C

∫
dy1dy2dx1dx2

|∇ϕ(N)
t (x1)|2|∇ϕ(N)

t (x2)|2|ϕ(N)
t (y1)|2|ϕ(N)

t (y2)|2

|x1 − y1||x1 − y2||x2 − y1||x2 − y2|

≤ C
∫

dy1dy2dx1dx2
|ϕ(N)
t (x1)|6|ϕ(N)

t (x2)|2

|x1 − y1|2|x1 − y2|2|x2 − y1|2|x2 − y2|2

+ C

∫
dy1dy2dx1dx2

|∇ϕ(N)
t (x1)|2|∇ϕ(N)

t (x2)|2|ϕ(N)
t (y1)|2|ϕ(N)

t (y2)|2

|x1 − y1|2|x2 − y2|2

≤ C
∫

dx1dx2
1

|x1 − x2|2
|ϕ(N)
t (x1)|6|ϕ(N)

t (x2)|2

+ C

(
sup
x

∫
dy

1

|x− y|2
|ϕ(N)
t (y)|2

)2

‖ϕ(N)
t ‖4H1

≤ C

for a constant C depending only on the H1-norm of ϕ
(N)
t . The last two bounds prove (2.61).

The inequalities (2.62), (2.63) can be proven similarly to (2.60) and (2.61); this time,

however, the bounds will contain the norm ‖ϕ̇(N)
t ‖H1 , which is bounded by CeK|t|, as proven

in Proposition 2.3.1.

Proof of Proposition 2.6.1. We prove the first bound in (2.57). To this end, we observe
that Lemma 2.6.2 can be used to bound all factors on the r. h. s. of (2.55) (using the uniform
estimates for ‖∇1p(kt)‖L2(R3×R3), ‖∇1rkt‖L2(R3×R3) from Lemma 2.3.3), with two exceptions,
given by the term ∫

dx∇xa∗xa∗(∇xkx) (2.65)

and its hermitian conjugate. To control (2.65), we use that, from (2.31),

∇xkt(y, x) = −N2∇w(N(x− y))ϕ
(N)
t (x)ϕ

(N)
t (y)−Nw(N(x− y))∇ϕ(N)

t (x)ϕ
(N)
t (y).

Hence∫
dx∇xa∗xa∗(∇xkx) =−N2

∫
dxdy∇w(N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)∇xa∗xa∗y

−N
∫

dxdy w(N(x− y))∇ϕ(N)
t (x)ϕ

(N)
t (y)∇xa∗xa∗y.

(2.66)

The last term can be written as ∫
dx∇xa∗xa∗(jx) (2.67)

with j(y, x) = −Nw(N(x − y))∇ϕ(N)
t (x)ϕ

(N)
t (y). Combining Lemma 2.3.2 and Proposi-

tion 2.3.1, we find that j ∈ L2(R3 × R3), with uniformly bounded norm. Hence, Lemma
2.6.2 implies that, for every δ > 0, there exists Cδ > 0 with∣∣∣∣∫ dx 〈ψ,∇xa∗xa∗(jx)ψ〉

∣∣∣∣ ≤ δ‖K1/2ψ‖2 + Cδ‖(N + 1)1/2ψ‖2. (2.68)
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The first term on the r. h. s. of (2.66), on the other hand, can be written as

−N2

∫
dxdy∇w(N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)∇xa∗xa∗y

= N3

∫
dxdy(∆w)(N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xa

∗
y

+N2

∫
dxdy∇w(N(x− y))∇ϕ(N)

t (x)ϕ
(N)
t (y)a∗xa

∗
y.

The first contribution on the r. h. s. of the last equation is large and appears explicitly on the

r. h. s. of (2.56) (it will cancel later, when combined with terms arising from L̂(0)
2,N and L(0)

4,N ).
The second term, on the other hand, is an error; integrating by parts, it can be expressed as

N2

∫
dxdy∇w(N(x− y))∇ϕ(N)

t (x)ϕ
(N)
t (y)a∗xa

∗
y

= −N
∫

dxdyw(N(x− y))∇ϕ(N)
t (x)∇ϕ(N)

t (y)a∗xa
∗
y

−N
∫

dxdyw(N(x− y))∇ϕ(N)
t (x)ϕ

(N)
t (y)a∗x∇ya∗y

= −
∫

dx∇ϕ(N)
t (x)a∗xa

∗(Nw(N(x− .)∇ϕ(N)
t ) +

∫
dy∇ya∗ya∗(jy)

with j(x, y) = −Nw(N(x− y))∇ϕ(N)
t (x)ϕ

(N)
t (y). The second term is bounded as in (2.68).

The first term, on the other hand, is estimated by∣∣∣ ∫ dx∇ϕ(N)
t (x)〈axψ,a∗(Nw(N(x− .))∇ϕ(N)

t )ψ〉
∣∣∣

≤ C sup
x
‖Nw(N(x− .))∇ϕ(N)

t ‖2‖(N + 1)1/2ψ‖2

≤ C‖ϕ(N)
t ‖H2‖(N + 1)1/2ψ‖2

(2.69)

and (2.27).

Also the second bound in (2.57) follows from Lemma 2.6.2. In fact, when one takes the
commutator of N with the terms on the r. h. s. of (2.55) one either finds zero (for all terms
with one creation and one annihilation operators, which therefore preserve the number of
particles), or one finds again the same terms (up to a possible change of sign). This follows
because by the canonical commutation relations

[N , a(f)] = −a(f) and [N , a∗(f)] = a∗(f)

for every f ∈ L2(R3). Finally, the third bound in (2.57) is a consequence of Lemma 2.6.2 as
well. In fact, the time derivative ĖK(t) is a sum of terms very similar to the terms appearing
on the r. h. s. of (2.55), with the difference that one of the appearing kernels contains a time-
derivative. Combining the estimates from Lemma 2.6.2 (including, in this case, also (2.62),
(2.63)) with the bounds for ‖∇1ṗkt‖2, ‖∇1ṙkt‖2 from Lemma 2.3.4 and with the bound for

‖ϕ̇(N)
t ‖H1 from Proposition 2.3.1 (needed to control terms similar to (2.66), (2.69), with a

factor of ϕ
(N)
t replaced by ϕ̇

(N)
t ), we obtain the last inequality in (2.57).
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Properties of the non-kinetic part T ∗L̂(0)
2,N (t)T

We consider now the other quadratic terms, collected in L̂(0)
2,N (t), defined by L(0)

2,N (t) =

K + L̂(0)
2,N (t). We have

T ∗L̂(0)
2,N (t)T =

∫
dx
(
N3V (N.) ∗ |ϕ(N)

t |2
)

(x)(a∗(cx) + a(sx))(a(cx) + a∗(sx))

+

∫
dxdy N3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)(a∗(cx) + a(sx))(a(cy) + a∗(sy))

+
1

2

∫
dxdy N3V (N(x− y))

×
[
ϕ

(N)
t (x)ϕ

(N)
t (y)(a∗(cx) + a(sx))(a∗(cy) + a(sy)) + h.c.

]
.

Expanding the products, and bringing all terms to normal-order, we find

T ∗L̂(0)
2,N (t)T

=

∫
dx
(
N3V (N.) ∗ |ϕ(N)

t |2
)

(x)

× [a∗(cx)a(cx) + a∗(sx)a(sx) + a∗(cx)a∗(sx) + a(sx)a(cx) + 〈sx, sx〉]

+

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)

× [a∗(cx)a(cy) + a∗(sy)a(sx) + a∗(cx)a∗(sy) + a(sx)a(cy) + 〈sx, sy〉]

+
1

2

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)

× [a∗(cx)a∗(cy) + a∗(cx)a(sy) + a∗(cy)a(sx) + a(sx)a(sy) + 〈sx, cy〉]

+
1

2

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)

× [a(cx)a(cy) + a∗(sy)a(cx) + a∗(sx)a(cy) + a∗(sx)a∗(sy) + 〈cy, sx〉] .

(2.70)

The properties of T ∗L̂(0)
2,N (t)T are summarized in the following proposition.

Proposition 2.6.3. We have

T ∗L̂(0)
2,N (t)T

=

∫
dx(N3V (N.) ∗ |ϕ(N)

t |2)(x)〈sx, sx〉

+

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)〈sx, sy〉 +

+ Re

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)〈sx, cy〉

+
1

2

∫
dxdyN3V (N(x− y))

[
ϕ

(N)
t (x)ϕ

(N)
t (y) a∗xa

∗
y + ϕ

(N)
t (x)ϕ

(N)
t (y) axay

]
+ E2(t)
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where the error E2(t) is such that, for appropriate constants C,K > 0,

±E2(t) ≤ CeK|t| (N + 1),

± [N , E2(t)] ≤ CeK|t| (N + 1),

±Ė2(t) ≤ C eK|t| (N + 1).

(2.71)

To show Proposition 2.6.3, we will make use of the next lemma.

Lemma 2.6.4. Let j1, j2 ∈ L2(R3 × R3). Let ji,x(z) := ji(z, x) for i = 1, 2. Then there
exists a constant C such that∫

dxdyN3V (N(x− y))|ϕ(N)
t (x)||ϕ(N)

t (y)|‖a](j1,x)ψ‖ ‖a](j2,y)ψ‖

≤ C‖ϕ(N)
t ‖2H2 ‖j1‖2 ‖j2‖2 ‖(N + 1)1/2ψ‖2.

(2.72)

Moreover,∫
dxdyN3V (N(x− y))|ϕ(N)

t (x)||ϕ(N)
t (y)|‖a](j1,x)ψ‖‖ayψ‖

≤ C‖ϕ(N)
t ‖2H2 ‖j1‖2‖(N + 1)1/2ψ‖2

(2.73)

and∫
dxdyN3V (N(x−y))|ϕ(N)

t (x)||ϕ(N)
t (y)| ‖axψ‖ ‖ayψ‖ ≤ C‖ϕ(N)

t ‖2H2 ‖(N+1)1/2ψ‖2. (2.74)

The bounds remain true if both creation and/or annihilation operators act on the same
variable, in the sense that∫

dxdyN3V (N(x− y))|ϕ(N)
t (x)|2‖a](j1,y)ψ‖ ‖a](j2,y)ψ‖

≤ C‖ϕ(N)
t ‖2H2‖j1‖2‖j2‖2 ‖(N + 1)1/2ψ‖2,∫

dxdyN3V (N(x− y))|ϕ(N)
t (x)|2‖a](j1,y)ψ‖ ‖ayψ‖ ≤ C‖ϕ(N)

t ‖2H2‖j1‖2‖(N + 1)1/2ψ‖2,∫
dxdyN3V (N(x− y))|ϕ(N)

t (x)|2‖ayψ‖2 ≤ C‖ϕ(N)
t ‖2H2‖N 1/2ψ‖2.

(2.75)

Proof. To prove (2.72), we notice that for any α > 0∫
dxdyN3V (N(x− y))|ϕ(N)

t (x)||ϕ(N)
t (y)|‖a](j1,x)ψ‖ ‖a](j2,y)ψ‖

≤ α
∫

dxdyN3V (N(x− y))|ϕ(N)
t (x)|2‖j2,y‖22‖(N + 1)1/2ψ‖2

+ α−1

∫
dxdyN3V (N(x− y))|ϕ(N)

t (y)|2‖j1,x‖22‖(N + 1)1/2ψ‖2

≤ ‖N3V (N.) ∗ |ϕ(N)
t |2‖∞

(
α‖j1‖22 + α−1‖j2‖22

)
‖(N + 1)1/2ψ‖2.
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Using ‖N3V (N.) ∗ |ϕ(N)
t |2‖∞ ≤ C‖ϕ(N)

t ‖2H2 , and optimizing over α > 0, we obtain (2.72).
Analogously, (2.73) follows from∫

dxdyN3V (N(x− y))|ϕ(N)
t (x)||ϕ(N)

t (y)|‖a](j1,x)ψ‖‖ayψ‖

≤ α
∫

dxdyN3V (N(x− y))|ϕ(N)
t (x)|2‖ayψ‖2

+ α−1

∫
dxdyN3V (N(x− y))|ϕ(N)

t (y)|2‖j1,x‖22‖(N + 1)1/2ψ‖2

≤ ‖N3V (N.) ∗ |ϕ(N)
t |2‖∞(α+ α−1‖j1‖22)‖(N + 1)1/2ψ‖2

for any α > 0. Optimizing over α gives (2.73). Eq. (2.74) follows from Cauchy-Schwarz. The
bounds in (2.75) can be shown similarly.

Proof of Proposition 2.6.3. To prove the first bound in (2.71), we notice that the quadratic
terms on the r. h. s. of (2.70) can be controlled with Lemma 2.6.4, decomposing, if needed,
a(cx) = ax + a(px) and then applying (2.72), (2.73), or (2.74). There are two exceptions,
given by the terms proportional to a∗(cx)a∗(cy) and its hermitian conjugate, proportional to
a(cx)a(cy). For these two terms the bounds from Lemma 2.6.4 do not apply. Instead, using
a∗(cx) = a∗x + a∗(px), we write∫

dxdyN3V (N(x− y))ϕ
(N)
t (x)ϕ

(N)
t (y)a∗(cx)a∗(cy)

=

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xa

∗
y

+

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)a∗(px)a∗y

+

∫
dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)a∗(cx)a∗(py).

(2.76)

The contribution of the last two terms can be bounded by Lemma 2.6.4, because one of the
arguments of the creation operators is square integrable. In fact∣∣∣ ∫ dxdyN3V (N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)〈ψ, a∗(px)a∗yψ〉

∣∣∣
≤
∫

dxdyN3V (N(x− y))|ϕ(N)
t (x)||ϕ(N)

t (y)|‖ayψ‖ ‖a∗(px)ψ‖

≤ C‖ϕ(N)
t ‖2H2 ‖(N + 1)1/2ψ‖2 ≤ CeK|t|‖(N + 1)1/2ψ‖2

by (2.73) and (2.27), and similarly for the last term on the r. h. s. of (2.76). The hermitian
conjugate of (2.76), proportional to a(cx)a(cy), can be handled identically.

The second bound in (2.71) follows similarly, using the fact that the commutator of N
with the terms on the r. h. s. of (2.70) leaves their form unchanged (apart from the constant
terms and the quadratic terms with one creation and one annihilation operators, whose
contribution to the commutator [N , E2(t)] vanishes).

Also the third bound in (2.71) can be proven analogously, using the bounds for ‖ ˙shkt‖2
and ‖ṗkt‖2, as proven in Lemma 2.3.4 . When the time derivative hits the factor ϕ

(N)
t (x) or

ϕ
(N)
t (y), it generates a contribution which is bounded by ‖ϕ̇(N)

t ‖H2 ≤ C‖ϕ(N)
t ‖4H4 ≤ CeK|t|

(for some K depending only on ‖ϕ‖H1 ; here we used Proposition 2.3.1).
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2.6.3. Analysis of the cubic terms T ∗L(0)
3,N(t)T

We consider now the contributions arising from the cubic terms in L(0)
3,N (t). We have

T ∗L(0)
3,N (t)T

=
1√
N

∫
dxdy N3V (N(x− y))

×
[
ϕ

(N)
t (y) (a∗(cx) + a(sx))(a∗(cy) + a(sy))(a(cx) + a∗(sx)) + h.c.

]
=

1√
N

∫
dxdyN3V (N(x− y))ϕ

(N)
t (y)

× [ a∗(cx)a∗(cy)a
∗(sx) + a∗(cx)a∗(cy)a(cx) + a∗(cx)a(sy)a

∗(sx) + a∗(cx)a(sy)a(cx)

+a(sx)a∗(cy)a
∗(sx) + a(sx)a∗(cy)a(cx) + a(sx)a(sy)a

∗(sx) + a(sx)a(sy)a(cx)]

+ h.c.

Writing the terms in normal-order, we find

T ∗L(0)
3,N (t)T

=
1√
N

∫
dxdyN3V (N(x− y))ϕ

(N)
t (y)

× [a∗(cx)a∗(cy)a
∗(sx) + a∗(cx)a∗(cy)a(cx) + a∗(cx)a∗(sx)a(sy) + a∗(cx)a(sy)a(cx)

+a∗(cy)a
∗(sx)a(sx) + a∗(cy)a(sx)a(cx) + a∗(sx)a(sx)a(sy) + a(sx)a(sy)a(cx)]

+
1√
N

∫
dxdyN3V (N(x− y))ϕ

(N)
t (y)

× [〈sy, sx〉(a∗(cx) + a(sx)) + 〈sx, cy〉 (a(cx) + a∗(sx)) + 〈sx, sx〉 (a∗(cy) + a(sy))]

+ h.c.

(2.77)

The properties of T ∗L(0)
3,N (t)T are summarized in the following proposition.

Proposition 2.6.5. We have

T ∗L(0)
3,NT

=
1√
N

∫
dxdyN3V (N(x− y))

×
[
ϕ

(N)
t (y)kt(x, y) (a(cx) + a∗(sx)) + ϕ

(N)
t (y)kt(x, y) (a∗(cx) + a(sx))

]
+ E3(t)

= −
√
N

∫
dxdyN3V (N(x− y))w(N(x− y))|ϕ(N)

t (y)|2ϕ(N)
t (x)(a(cx) + a∗(sx)) + h.c.

+ E3(t)

(2.78)

where we used the definition (2.31) of the kernel kt and where the error term E3(t) is such
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2.6. Key bounds on the generator of the fluctuation dynamics

that for every δ > 0 there exists a constant Cδ > 0 with

±E3(t) ≤ δ
∫

dxdyN2V (N(x− y))a∗xa
∗
yaxay + δ

N 2

N
+ Cδe

K|t| (N + 1) ,

± [N , E3(t)] ≤ δ
∫

dxdyN2V (N(x− y))a∗xa
∗
yaxay + δ

N 2

N
+ Cδe

K|t| (N + 1) ,

±Ė3(t) ≤ δ
∫

dxdyN2V (N(x− y))a∗xa
∗
yaxay + δ

N 2

N
+ Cδe

K|t| (N + 1) .

(2.79)

Notice here that the first term on the r. h. s. of (2.78) cancels exactly with the contribution
(2.54); we will make use of this crucial observation in the proof of Theorem 2.3.5 below.

Proof. To bound the cubic terms on the r. h. s. of (2.77), we systematically apply Cauchy-
Schwarz. This way, we control cubic terms by quartic and quadratic contributions, which
are then estimated making use of Lemma 2.6.4 (the quadratic part) and Lemmas 2.6.7 and
2.6.8 (the quartic part). For example,∣∣∣ 1√

N

∫
dxdyN3V (N(x− y))ϕ

(N)
t (y)〈ψ, a∗(cx)a∗(cy)a

∗(sx)ψ〉
∣∣∣

≤ 1√
N

∫
dxdyN3V (N(x− y))|ϕ(N)

t (y)|‖a(cx)a(cy)ψ‖ ‖a∗(sx)ψ‖

≤ δ

N

∫
dxdy N3V (N(x− y))‖a(cx)a(cy)ψ‖2

+ Cδ

∫
dxdyN3V (N(x− y))|ϕ(N)

t (y)|2‖a∗(sx)ψ‖2

≤ Cδ

N

∫
dxdyN3V (N(x− y))‖ayaxψ‖2 + Cδ‖(N + 1)1/2ψ‖2

where, in the last line, we used (2.87) (from Lemma 2.6.8) and (2.75) (from Lemma 2.6.4).
All other cubic terms can be bounded similarly. We always separate the three creation
and/or annihilation operators putting a small weight δ in front of the quartic term and in
such a way that, in the resulting quartic contribution, two operators depend on the x and
two on the y variable. The corresponding quadratic term depends on x and can always be
bounded by (2.75). It should be noted that the quartic contribution has either the form
‖a(cx)a(cy)ψ‖2 or ‖a(cx)a](jy)ψ‖2 or ‖a](j1,x)a](j2,y)ψ‖2, with square-integrable arguments
j1, j2 (here a] is either a or a∗). These terms can always be controlled using Lemma 2.6.7 or
Lemma 2.6.8. As for the linear contributions on the r. h. s. of (2.77), the first and third can
simply be bounded by N−1/2 (N + 1)1/2, since

|〈sy, sx〉| ≤ C|ϕ(N)
t (x)||ϕ(N)

t (y)|.

To bound the second linear term, we write

1√
N

∫
dxdyN3V (N(x− y))ϕ

(N)
t (y)〈sx, cy〉(a(cx) + a∗(sx))

=
1√
N

∫
dxdyN3V (N(x− y))ϕ

(N)
t (y)kt(x, y) (a(cx) + a∗(sx)) + Ẽ(t)

where ±Ẽ(t) ≤ N−1/2(N + 1)1/2 because, using Lemma 2.3.3,

|〈sx, cy〉 − kt(x, y)| ≤ C|ϕ(N)
t (x)||ϕ(N)

t (y)|.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

From (2.27), this concludes the proof of the first estimate in (2.79). The other two estimates
are proven analogously, using the fact that the commutators of N with the terms on the
r. h. s. of (2.77) have the same form as the terms on the r. h. s. of (2.77) (with possibly just
a different sign), and using the bounds for ‖ ˙shkt‖2 and ‖ṗkt‖2 from Lemma 2.3.4, and the

bound for ‖ϕ̇(N)
t ‖H2 from Proposition 2.3.1.

2.6.4. Analysis of the quartic terms T ∗L(0)
4,NT

We consider next the contributions arising from the quartic part L(0)
4,N of L(0)

N (t). We have

T ∗L(0)
4,N (t)T =

1

2N

∫
dxdy N3V (N(x− y))

× (a∗(cx) + a(sx))(a∗(cy) + a(sy))(a(cy) + a∗(sy))(a(cx) + a∗(sx)).

Expanding the products, we find

2T ∗L(0)
4,N (t)T

=

∫
dxdy N2V (N(x− y))

[
a∗(cx)a∗(cy)a

∗(sy)a
∗(sx) + a∗(cx)a∗(cy)a

∗(sy)a(cx)

+ a∗(cx)a∗(cy)a(cy)a
∗(sx) + a∗(cx)a∗(cy)a(cy)a(cx) + a∗(cx)a(sy)a

∗(sy)a
∗(sx)

+ a∗(cx)a(sy)a
∗(sy)a(cx) + a∗(cx)a(sy)a(cy)a

∗(sx) + a∗(cx)a(sy)a(cy)a(cx)

+ a(sx)a∗(cy)a
∗(sy)a

∗(sx) + a(sx)a∗(cy)a
∗(sy)a(cx) + a(sx)a∗(cy)a(cy)a

∗(sx)

+ a(sx)a∗(cy)a(cy)a(cx) + a(sx)a(sy)a
∗(sy)a

∗(sx) + a(sx)a(sy)a
∗(sy)a(cx)

+ a(sx)a(sy)a(cy)a
∗(sx) + a(sx)a(sy)a(cy)a(cx)

]
.

Writing all terms in normal-order, we obtain

2T ∗L(0)
4,N (t)T (2.80)

=

∫
dxdy N2V (N(x− y))

[
a∗(cx)a∗(cy)a

∗(sy)a
∗(sx) + a∗(cx)a∗(cy)a

∗(sy)a(cx)

+ a∗(cx)a∗(cy)a
∗(sx)a(cy) + a∗(cx)a∗(cy)a(cy)a(cx) + a∗(cx)a∗(sy)a

∗(sx)a(sy)

+ a∗(cx)a∗(sy)a(sy)a(cx) + a∗(cx)a∗(sx)a(sy)a(cy) + a∗(cx)a(sy)a(cy)a(cx)

+ a∗(cy)a
∗(sy)a

∗(sx)a(sx) + a∗(cy)a
∗(sy)a(sx)a(cx) + a∗(cy)a

∗(sx)a(sx)a(cy)

+ a∗(cy)a(sx)a(cy)a(cx) + a∗(sy)a
∗(sx)a(sx)a(sy) + a∗(sy)a(sx)a(sy)a(cx)

+ a∗(sx)a(sx)a(sy)a(cy) + a(sx)a(sy)a(cy)a(cx)
]

+

∫
dxdy N2V (N(x− y))

[
〈cy, sx〉a∗(cx)a∗(cy) + 〈sx, cy〉a(cy)a(cx)

+ 2〈sy, sy〉a∗(cx)a∗(sx) + 2〈sy, sy〉a(sx)a(cx) + 2〈sy, sx〉a∗(cx)a∗(sy)

+ 2〈sx, sy〉a(sy)a(cx) + 2〈sy, sy〉a∗(cx)a(cx) + 2〈sy, sx〉a∗(cx)a(cy)

+ 2〈sx, sy〉a∗(sx)a(sy) + 2〈sy, sy〉a∗(sx)a(sx) + 〈cy, sx〉a∗(cx)a(sy)

+ 〈sx, cy〉a∗(sy)a(cx) + 〈sx, cy〉a∗(sy)a∗(sx) + 〈cy, sx〉a(sx)a(sy)

+ 〈sx, cy〉a∗(sx)a(cy) + 〈cy, sx〉a∗(cy)a(sx)
]

+
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+

∫
dxdy N2V (N(x− y))

[
|〈sx, cy〉|2 + |〈sx, sy〉|2 + 〈sy, sy〉〈sx, sx〉

]
.

The properties of T ∗L(0)
4,NT are summarized in the next proposition.

Proposition 2.6.6. We have

2T ∗L(0)
4,N (t)T =

∫
dxdyN2V (N(x− y))

[
|〈sx, cy〉|2 + |〈sx, sy〉|2 + 〈sy, sy〉〈sx, sx〉

]
+

∫
dxdyN2V (N(x− y))a∗xa

∗
yayax

+

∫
dxdy N2V (N(x− y))

(
k(x, y)a∗xa

∗
y + k(x, y)axay

)
+ E4(t)

(2.81)

where the error E4(t) is such that, for every δ > 0, there exists a constant Cδ > 0 with

±E4(t) ≤ δ
∫

dxdyN2V (N(x− y))a∗xa
∗
yayax + Cδ

N 2

N
+ Cδe

K|t| (N + 1) ,

± [N , E4(t)] ≤ δ
∫

dxdyN2V (N(x− y))a∗xa
∗
yayax + Cδ

N 2

N
+ Cδe

K|t| (N + 1) ,

±Ė4(t) ≤ δ
∫

dxdyN2V (N(x− y))a∗xa
∗
yayax + Cδe

K|t|
(
N 2

N
+N + 1

)
.

(2.82)

To prove Proposition 2.6.6, we will make use of the following two lemmas.

Lemma 2.6.7. Suppose j1, j2 ∈ L2(R3 × R3) are kernels with the property that

Mi := max

(
sup
x

∫
dy |ji(x, y)|2, sup

y

∫
dx |ji(x, y)|2

)
<∞

for i = 1, 2. Let ji,x(z) := ji(z, x) and recall the definition cx(z) = chkt(z, x) from (2.53).
Then there exists a constant C depending only on M1,M2 and on the L2-norms ‖j1‖2, ‖j2‖2
such that ∫

dxdyN3V (N(x− y))‖a](j1,x)ayψ‖2 ≤ CM1‖(N + 1)ψ‖2 (2.83)

and∫
dxdyN3V (N(x− y))‖a](j1,x)a](j2,y)ψ‖2 ≤ C min

(
M1‖j2‖22,M2‖j1‖22

)
‖(N + 1)ψ‖2.

(2.84)
As a consequence∫

dxdyN3V (N(x− y))‖a](j1,x)a(cy)ψ‖2 ≤ CM1 ‖(N + 1)ψ‖2. (2.85)

The inequalities remain true (and are easier to prove) if both operators act on the same
variable. In other words∫

dxdyN3V (N(x− y))‖a](j1,x)axψ‖2 ≤ CM1 ‖(N + 1)ψ‖2,∫
dxdyN3V (N(x− y))‖a](j1,x)a](j2,x)ψ‖2 ≤ C min(M1‖j2‖22,M2‖j1‖22) ‖(N + 1)ψ‖2,∫

dxdyN3V (N(x− y))‖a](j1,x)a(cy)ψ‖2 ≤ CM1‖(N + 1)ψ‖2.

(2.86)

Here a] is either the annihilation operator a or the creation operator a∗.
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Proof. To prove (2.83), we observe that∫
dxdyN3V (N(x− y))‖a](j1,x)ayψ‖2

≤
∫

dxdyN3V (N(x− y))‖j1,x‖22‖(N + 1)1/2ayψ‖2

≤M1

∫
dxdyN3V (N(x− y))‖ayN 1/2ψ‖2

= CM1‖Nψ‖2.

As for (2.84), we notice that (considering for example the case a](j2,y) = a∗(j2,y))∫
dxdyN3V (N(x− y))‖a](j1,x)a∗(j2,y)ψ‖2

≤
∫

dxdyN3V (N(x− y))‖j1,x‖2‖(N + 1)1/2a∗(j2,y)ψ‖2

≤
∫

dxdyN3V (N(x− y))‖j1,x‖22‖a∗(j2,y)(N + 2)1/2ψ‖2

≤
∫

dxdyN3V (N(x− y))‖j1,x‖22‖j2,y‖22‖(N + 1)1/2(N + 2)1/2ψ‖2

≤ CM1‖j2‖22‖(N + 1)ψ‖2.

Eq. (2.85) follows from the first two, by writing a(cy) = ay + a(py) (recall here that we
are using the notation py(z) = p(kt)(z, y) with the kernel p(kt) ∈ L2(R3 × R3) defined
in Lemma 2.3.3). Eq. (2.86) follows similarly; in this case, however, one can immediately
integrate over the variable y, simplifying the proof.

Terms of the form (2.85), but with j1,x replaced by cx (which is not in L2) are treated
differently.

Lemma 2.6.8. Recall the definition cx(z) = chkt(z, x) from (2.53). Then there exists a
constant C > 0 with∫

dxdyN3V (N(x− y))‖a(cx)a(cy)ψ‖2 ≤ C
∫

dxdyN3V (N(x− y))‖axayψ‖2

+ C ‖(N + 1)ψ‖2.
(2.87)

More precisely, we have∫
dxdyN3V (N(x− y))‖a(cx)a(cy)ψ‖2 =

∫
dxdyN3V (N(x− y))‖axayψ‖2 + Ẽ(t) (2.88)

where the error Ẽ(t) is such that, for every δ > 0, there exists a constant Cδ with

±Ẽ(t) ≤ δ
∫

dxdyN3V (N(x− y))‖axayψ‖2 + Cδ‖(N + 1)ψ‖2.

Proof. We write a(cx) = ax + a(px), using the notation px(z) = p(kt)(z, x) introduced in
(2.53). We have

‖a(cx)a(cy)ψ‖ ≤ ‖axayψ‖+ ‖axa(py)ψ‖+ ‖a(px)a(cy)ψ‖.
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2.6. Key bounds on the generator of the fluctuation dynamics

Therefore, using (2.83) and (2.85), we immediately find (using Lemma 2.3.3 to bound ‖p‖2
and supx ‖px‖2)∫

dxdyN3V (N(x−y))‖a(cx)a(cy)ψ‖2 ≤ C
∫

dxdyN3V (N(x−y))‖axayψ‖2+C‖(N+1)ψ‖2.

To prove (2.88), we notice that∫
dxdyN3V (N(x− y))‖a(cx)a(cy)ψ‖2

=

∫
dxdyN3V (N(x− y))〈ψ, a∗(cx)a∗(cy)a(cy)a(cx)ψ〉

=

∫
dxdyN3V (N(x− y))〈ψ, a∗xa∗yayaxψ〉

+

∫
dxdyN3V (N(x− y))

〈
ψ,
[
a∗(px)a∗yayax + a∗(cx)a∗(py)ayax

+ a∗(cx)a∗(cy)a(py)ax + a∗(cx)a∗(cy)a(cy)a(px)
]
ψ
〉

=:

∫
dxdyN3V (N(x− y))‖axayψ‖2 + Ẽ(t)

where

|Ẽ(t)| ≤
∫

dxdyN3V (N(x− y))
[
‖a(px)ayψ‖‖ayaxψ‖+ ‖a(cx)a(py)ψ‖‖ayaxψ‖

+ ‖a(cx)a(cy)ψ‖‖a(py)axψ‖+ ‖a(cx)a(cy)ψ‖‖a(cy)a(px)ψ‖
]

≤ δ
∫

dxdyN3V (N(x− y))
[
‖axayψ‖2 + ‖a(cx)a(cy)ψ‖2

]
+ Cδ

∫
dxdyN3V (N(x− y))

[
‖a(px)ayψ‖2 + ‖a(cx)a(py)ψ‖2

]
≤ δ

∫
dxdyN3V (N(x− y))‖axayψ‖2 + Cδ‖(N + 1)ψ‖2.

Here, in the last inequality, we used (2.83), (2.85) from Lemma 2.6.7 and (2.87).

Proof of Proposition 2.6.6. To prove the first bound in (2.82) we observe that all quartic
terms on the r. h. s. of (2.80) can be bounded using Lemmas 2.6.7 and 2.6.8. For example,
the contribution arising from the first term on the r. h. s. of (2.80) is bounded by∣∣∣ ∫ dxdy N2V (N(x− y))〈ψ, a∗(cx)a∗(cy)a

∗(sy)a
∗(sx)ψ〉

∣∣∣
≤
∫

dxdyN2V (N(x− y))‖a(cx)a(cy)ψ‖‖a∗(sy)a∗(sx)ψ‖

≤ δ
∫

dxdyN2V (N(x− y))‖a(cx)a(cy)ψ‖2

+ Cδ

∫
dxdyN2V (N(x− y))‖a∗(sy)a∗(sx)ψ‖2

≤ Cδ
∫

dxdyN2V (N(x− y))‖axayψ‖2 +
Cδ
N
‖(N + 1)ψ‖2
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

where, in the last inequality, we used (2.87) and (2.84). All the other quartic terms on the
r. h. s. of (2.80), with the exception of the fourth term (the one containing only cx or cy as
arguments of the creation and annihilation operators), can be bounded similarly; the key
observation here is that all these terms have at least one creation or annihilation operator
with square integrable argument (this allow us to apply Lemma 2.6.7). Moreover, in all these
terms, the quartic expression does not contain the annihilation operators a(cx) and a(cy) in
the two factors on the left, nor the creation operators a∗(cx) and a∗(cy) in the two factors
on the right (in Lemma 2.6.7, in particular in (2.85) it is of course important that the factor
a(cy) in the norm appears as an annihilation and not as a creation operator). To bound the
fourth term on the r. h. s. of (2.80), where all the arguments of the creation and annihilation
operators are not integrable, we cannot apply Lemma 2.6.7. Instead, we use (2.88) from
Lemma 2.6.8. We obtain∫

dxdyN2V (N(x− y))〈ψ, a∗(cx)a∗(cy)a(cy)a(cx)ψ〉

=

∫
dxdyN2V (N(x− y))〈ψ, a∗xa∗yayaxψ〉+ Ẽ(t)

where the error Ẽ(t) is such that, for every δ > 0, there exists Cδ > 0 with

|Ẽ(t)| ≤ δ
∫

dxdyN2V (N(x− y))‖axayψ‖2 +
Cδ
N
‖(N + 1)ψ‖2.

The quadratic terms on the r. h. s. of (2.80) can be bounded using Lemma 2.6.4. To this
end, we observe that

|〈sx, sy〉|, |〈sx, cy〉| ≤ CN |ϕ(N)
t (x)||ϕ(N)

t (y)|.

It is therefore easy to check that all the quadratic terms, with the exception of the first two
(the quadratic terms appearing on the eighth line of (2.80)), have a form suitable to apply
one of the bounds in Lemma 2.6.4. More precisely, we apply (2.72), if the arguments of the
two creation and/or annihilation operators are either sx or sy. If, on the other hand, one of

the two arguments is cx or cy and the other one is sx or sy, we write a](cx) = a]x+a](px) and
then we apply (2.72) (to bound the contribution proportional to a](px)) and (2.73) (to bound

the contribution proportional to a]x). Finally, if both arguments are either cx or cy (and we

have exactly one creation and one annihilation operators), we write a](cx) = a]x+a](px) and
we apply (2.72), (2.73) and (2.74). To control the two remaining quadratic contributions,
we observe that, writing a∗(cx) = a∗x + a∗(px),∫

dxdyN2V (N(x− y))〈cy, sx〉〈ψ, a∗(cx)a∗(cy)ψ〉

=

∫
dxdyN2V (N(x− y))〈cy, sx〉〈ψ, a∗xa∗yψ〉

+

∫
dxdyN2V (N(x− y))〈cy, sx〉〈ψ, a∗(px)a∗yψ〉

+

∫
dxdyN2V (N(x− y))〈cy, sx〉〈ψ, a∗(cx)a∗(py)ψ〉.

(2.89)

Since |〈cy, sx〉| ≤ CN |ϕ(N)
t (x)||ϕ(N)

t (y)|, the last two terms can be bounded (in absolute
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value) using (2.73) and (2.74), respectively. We find∣∣∣∣∫ dxdyN2V (N(x− y))〈cy, sx〉〈ψ, a∗(px)a∗yψ〉
∣∣∣∣ ≤ C‖ϕ(N)

t ‖2H2 ‖(N + 1)1/2ψ‖2,∣∣∣∣∫ dxdyN2V (N(x− y))〈cy, sx〉〈ψ, a∗(cx)a∗(py)ψ〉
∣∣∣∣ ≤ C‖ϕ(N)

t ‖2H2 ‖(N + 1)1/2ψ‖2.

As for the first term on the r. h. s. of (2.89), we notice that

〈cy, sx〉 = k(x, y) + g(x, y)

where g(x, y) = r(x, y) + 〈py, sx〉 is such that

|g(x, y)| ≤ C|ϕ(N)
t (x)| |ϕ(N)

t (y)|.

Therefore,∫
dxdyN2V (N(x− y))〈cy, sx〉〈ψ, a∗xa∗yψ〉 =

∫
dxdyN2V (N(x− y))k(x, y)〈ψ, a∗xa∗yψ〉

+

∫
dxdyN2V (N(x− y))g(x, y)〈ψ, a∗xa∗yψ〉.

The second term can be bounded by∣∣∣ ∫ dxdy N2V (N(x− y))g(x, y)〈ψ, a∗xa∗yψ〉
∣∣∣

≤ C
∫

dxdyN2V (N(x− y))|ϕ(N)
t (x)||ϕ(N)

t (y)|‖axayψ‖ ‖ψ‖

≤ δ
∫

dxdyN2V (N(x− y))‖axayψ‖2 + Cδ

∫
dxdyN2V (N(x− y))||ϕ(N)

t (x)|2|ϕ(N)
t (y)|2

≤ δ
∫

dxdyN2V (N(x− y))‖axayψ‖2 + Cδ‖ϕ
(N)
t ‖2H2 .

Proceeding analogously to control the second quadratic term on the r. h. s. of (2.80), we
conclude that∫

dxdy N2V (N(x− y)) [〈cy, sx〉 a∗(cx)a∗(cy) + 〈sx, cy〉 a(cy)a(cx)]

=

∫
dxdy N2V (N(x− y))

[
k(x, y)a∗xa

∗
y + k(x, y)axay

]
+ Ẽ(t)

where the error Ẽ(t) is such that, for every δ > 0 there exists Cδ with

± Ẽ(t) ≤ δ
∫

dxdyN2V (N(x− y))a∗xa
∗
yayax + Cδ‖ϕ

(N)
t ‖2H2 (N + 1).

We then use (2.27) to conclude the proof of the first bound in (2.82).
The proof of the second inequality in (2.82) is analogous, because commuting the terms

contributing to E4(t) with the number of particles operator N either gives zero or leaves the
terms essentially invariant (up to a constant and a possible sign change). Finally, also the
third estimate in (2.82) can be proven similarly, because the time derivative of the terms
contributing to E4(t) can be expressed as linear combination of terms having the same form,
just with one argument cx, cy, sx or sy replaced by its time derivative. These terms can then
be handled as above, using however the bounds for ‖ ˙shkt‖2 and ‖ṗkt‖2 from Lemma 2.3.4

and the bound for ‖ϕ̇(N)
t ‖H2 from Proposition 2.3.1.
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.6.5. Analysis of [i∂tT
∗]T

In this subsection we will show that the term [i∂tT
∗]T is only an error term, in the sense

that it can be controlled with the number operator N , without any need for employing
cancellations. We set

B :=
1

2

∫
dxdy

(
kt(x, y)a∗xa

∗
y − kt(x, y)axay

)
and

Ḃ :=
1

2

∫
dxdy

(
k̇t(x, y)a∗xa

∗
y − k̇t(x, y)axay

)
with

kt(x, y) = −Nw(N(x− y))ϕ
(N)
t (x)ϕ

(N)
t (y)

and
k̇t(x, y) = −Nw(N(x− y))

(
ϕ̇

(N)
t (x)ϕ

(N)
t (y) + ϕ

(N)
t (x)ϕ̇

(N)
t (y)

)
.

Then T = exp(B). Using the BCH formula (2.22), we find

(∂tT
∗)T = −

∫ 1

0
dλ e−λB(t)Ḃ(t)eλB(t) =

∑
n≥0

(−1)n+1

(n+ 1)!
adnB(Ḃ). (2.90)

More precisely, the integral can first be expanded as a finite sum and an error term; the error
term however converges to zero in expectation values on the domain D(N ) of the number
operator (this can be shown as in Lemma 2.2.1). By the estimates in Prop. 2.6.10, the series
is absolutely convergent in expectation values. Since D(N ) is invariant w. r. t. the fluctuation
dynamics U(t, s) (this is proven similarly to Prop. 2.4.2), we can use (2.90) to compute the
expectation of (∂tT

∗)T in the vector U(t, 0)ψ for any ψ ∈ D(N ).
Next, we compute the terms on the r. h. s. of (2.90).

Lemma 2.6.9. For each n ∈ N there exist fn,1, fn,2 ∈ L2(R3 × R3) such that

adnB(Ḃ) =
1

2

∫
dxdy

(
fn,1(x, y)a∗ya

∗
x + fn,2(x, y)axay

)
for all even n and

adnB(Ḃ) =
1

2

∫
dxdy

(
fn,1(x, y)a∗xay + fn,2(x, y)axa

∗
y

)
for all odd n

(2.91)

where
‖fn,i‖2 ≤ 2n‖kt‖n2‖k̇t‖2, (2.92)

for all n ≥ 0 and i = 1, 2,

‖ḟn,i‖2 ≤

{
‖k̈t‖2 if n = 0

4n‖kt‖n−1
2

(
‖k̈t‖2‖kt‖2 + ‖k̇t‖22

)
if n ≥ 1

(2.93)

and∫
dx |fn,i(x, x)| ≤ 2n‖kt‖n2‖k̇t‖2,

∫
dx |ḟn,i(x, x)| ≤ 4n‖kt‖n−1

2

(
‖k̇t‖22 + ‖k̈t‖2‖kt‖2

)
(2.94)

for all n ≥ 1.
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Proof. The proof is by induction in n. For n = 0,

ad0
B(Ḃ) = Ḃ =

1

2

∫
dxdy

(
k̇t(x, y)a∗xa

∗
y − k̇t(x, y)axay

)
.

Hence f0,1(x, y) = k̇t(x, y) and f0,2(x, y) = k̇t(x, y), and the estimates (2.92) and (2.93) are
clearly satisfied. Suppose now the statement holds for some n ∈ N. We prove the step to
(n + 1). We start with the case that n is even: Using the canonical commutation relations
(1.32), we find

adn+1
B (Ḃ)

= [B, adnB(Ḃ)]

=

[
1

2

∫
dxdy

(
kt(x, y)a∗xa

∗
y − kt(x, y)axay

)
,
1

2

∫
dxdy

(
fn,1(x, y)a∗xa

∗
y + fn,2(x, y)axay

)]
=

1

2

∫
dxdz (fn+1,1(x, z)a∗xaz + fn+1,2(x, z)axa

∗
z) ,

where

fn+1,1(x, z) = −1

2

∫
dy
(
kt(x, y) (fn,2(z, y) + fn,2(y, z)) + kt(y, z) (fn,2(x, y) + fn,2(y, x))

)
,

fn+1,2(x, z) = −1

2

∫
dy
(
kt(y, z) (fn,1(x, y) + fn,1(y, x)) + kt(x, y) (fn,1(z, y) + fn,1(y, z))

)
.

(2.95)

By Cauchy-Schwarz (similarly to (2.24)), we have

‖fn+1,1‖2 ≤ 2‖kt‖2‖fn,2‖2 ≤ 2n+1‖kt‖n+1
2 ‖k̇t‖2,

‖fn+1,2‖2 ≤ 2‖kt‖2‖fn,1‖2 ≤ 2n+1‖kt‖n+1
2 ‖k̇t‖2,

(2.96)

where we used the induction assumption. Moreover, again by Cauchy-Schwarz,∫
dx |fn+1,1(x, x)| ≤ 2‖kt‖2‖fn,2‖2 ≤ 2n+1‖kt‖n+1

2 ‖k̇t‖2 .

As for the time-derivative of fn+1,i, we find

ḟn+1,1(x, z) =− 1

2

∫
dy
(
k̇t(x, y) (fn,2(z, y) + fn,2(y, z)) + kt(x, y)

(
ḟn,2(z, y) + ḟn,2(y, z)

)
+ k̇t(y, z) (fn,2(x, y) + fn,2(y, x)) + kt(y, z)

(
ḟn,2(x, y) + ḟn,2(y, x)

))
and similarly for ḟn+1,2. Hence, we find

‖ḟn+1,1‖2 ≤ 2
(
‖k̇t‖2‖fn,2‖2 + ‖kt‖2‖ḟn,2‖2

)
≤ 2

(
2n‖kt‖n2‖k̇t‖22 + 4n‖kt‖n2

(
‖k̈t‖2‖kt‖2 + ‖k̇t‖22

))
≤ (2n+1 + 4n)‖kt‖n2‖k̇t‖22 + 2 · 4n‖kt‖n+1

2 ‖k̈t‖2

≤ 4n+1‖kt‖n2
(
‖k̈t‖2‖kt‖2 + ‖k̇t‖22

)
,
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proving (2.93) for i = 1. The same bound for i = 2 and the second bound in (2.94) for
i = 1, 2 can be proven similarly.

We now prove the case where n is odd: using again the canonical commutation relations

adn+1
B (Ḃ)

=

[
1

2

∫
dxdy

(
kt(x, y)a∗xa

∗
y − kt(x, y)axay

)
,
1

2

∫
dxdy

(
fn,1(x, y)a∗xay + fn,2(x, y)axa

∗
y

)]
=

1

2

∫
dxdz

(
a∗xa
∗
zfn+1,1(x, z) + axazfn+1,2(x, z)

)
where

fn+1,1(x, z) = −
∫

dy kt(x, y) (fn,1(z, y) + fn,2(y, z)) ,

fn+1,2(x, z) = −
∫

dy kt(x, y) (fn,1(y, z) + fn,2(z, y)) .

(2.97)

The bounds (2.92), (2.93), (2.94) follow as above.

Using Lemma 2.6.9, we obtain the following properties of (∂tT
∗)T .

Proposition 2.6.10. There exists a constant C > 0 with

± (i∂tT
∗)T ≤ CeK|t| (N + 1),

± [N , (i∂tT ∗)T ] ≤ CeK|t| (N + 1),

±∂t [(i∂tT
∗)T ] ≤ CeK|t| (N + 1).

(2.98)

Proof. We observe first of all that, for all f1, f2 ∈ L2(R3 × R3) with
∫

dx |f2(x, x)| <∞, we
have∣∣∣∣〈ψ,∫ dxdy

(
f1(x, y)a∗xa

∗
y + f2(x, y)axay

)
ψ

〉∣∣∣∣ ≤ (‖f1‖2 + ‖f2‖2)
〈
ψ, (N + 1)ψ

〉
(2.99)

and ∣∣∣〈ψ,∫ dxdy (f1(x, y)a∗xay + f2(x, y)axa
∗
y)ψ
〉∣∣∣

≤ (‖f1‖2 + ‖f2‖2)
〈
ψ,Nψ

〉
+

∫
|f2(x, x)|dx ‖ψ‖2.

(2.100)

In fact, (2.99) follows because∣∣∣〈ψ,∫ dxdy (f1(x, y)a∗xa
∗
y + f2(x, y)axay)ψ

〉∣∣∣
≤
∫

dx (‖axψ‖‖a∗(f1(x, .))ψ‖+ ‖a∗(f2(x, .))ψ‖‖axψ‖)

≤ ‖(N + 1)1/2ψ‖
∫

dx (‖f1(x, .)‖2 + ‖f2(x, .)‖2) ‖axψ‖

≤ (‖f1‖2 + ‖f2‖2)‖(N + 1)1/2ψ‖2.
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Eq. (2.100) can be proven similarly. Combining the last estimates with Lemma 2.6.9 and
with (2.90), we find

|〈ψ, (∂tT ∗)Tψ〉| ≤
∑
n≥0

1

(n+ 1)!

∣∣∣〈ψ, adnB(Ḃ)ψ〉
∣∣∣

≤
∑
n≥0

1

(n+ 1)!
(‖fn,1‖2 + ‖fn,2‖2) ‖(N + 1)1/2ψ‖2

+
∑
n≥1

1

(2n)!

(∫
dx |f2n−1,2(x, x)|dx

)
‖ψ‖2

≤ C
∑
n≥0

(2‖kt‖2)n

(n+ 1)!
‖k̇t‖2 ‖(N + 1)1/2ψ‖2 +

∑
n≥1

(2‖kt‖2)n

(2n)!
‖k̇t‖2‖ψ‖2

≤ Ce2‖kt‖2‖k̇t‖2 ‖(N + 1)1/2ψ‖2

≤ CeK|t| ‖(N + 1)1/2ψ‖2

using also Lemma 2.3.4. The second inequality in (2.98) follows similarly because, essentially,
the only consequence of taking the commutator with N is to eliminate the terms adnB(Ḃ)
for all odd n. Also the third bound in (2.98) can be proven analogously, taking the time
derivative of the expressions for adnB(Ḃ) given in (2.91), using the bounds for ‖ḟn,i‖2 in (2.93)
and (2.94) and, finally, using the estimate for ‖k̈t‖2 proven in Lemma 2.3.4.

2.6.6. Cancellations in the generator (proof of Theorem 2.3.5)

Proof of Theorem 2.3.5. In this subsection, we combine the results of the previous subsec-
tions to obtain a proof of Theorem 2.3.5. From (2.54) and Propositions 2.6.1, 2.6.3, 2.6.5,
2.6.6 it follows that

LN (t) = CN (t) +K +
1

2N

∫
dxdy N3V (N(x− y))a∗xa

∗
yayax

+
[
N3

∫
dxdy (∆w)(N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y)a∗xa

∗
y

+
1

2

∫
dxdy N3V (N(x− y))

(
1− w(N(x− y))

)
ϕ

(N)
t (x)ϕ

(N)
t (y) a∗xa

∗
y + h.c.

]
+ E(t)

(2.101)

where the constant CN (t) is defined in (2.34) and the error E(t) is such that, for every δ > 0
there exists Cδ > 0 with

±E(t) ≤ δ
(
K +

∫
dxdyN2V (N(x− y))a∗xa

∗
yayax

)
+ Cδ

N 2

N
+ Cδe

K|t| (N + 1) ,

± [N , E(t)] ≤ δ
(
K +

∫
dxdyN2V (N(x− y))a∗xa

∗
yayax

)
+ Cδ

N 2

N
+ Cδe

K|t| (N + 1) ,

±Ė(t) ≤ δ
(
K +

∫
dxdyN2V (N(x− y))a∗xa

∗
yayax

)
+ Cδe

K|t|
(
N 2

N
+N + 1

)
.

(2.102)
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

In deriving (2.101), we made use of the crucial cancellation between the linear contributions
in (2.54) and the linear terms in (2.78). Next, we notice another crucial cancellation. The
terms on the second and third line in (2.101) can be written as

N3

∫
dxdy a∗xa

∗
y

[(
−∆ +

1

2
V

)
(1− w)

]
(N(x− y))ϕ

(N)
t (x)ϕ

(N)
t (y) = 0

since f = 1− w is a solution of the zero-energy scattering equation (−∆ + (1/2)V )f = 0.
We conclude that

LN (t) = CN (t) +K +
1

2N

∫
dxdyN3V (N(x− y))a∗xa

∗
yayax + E(t) (2.103)

where the error E(t) satisfies (2.102). Then (2.36) follows from the first bound in (2.102),
taking δ = 1/2. Also (2.38) and (2.39) follow from the second and third bounds in (2.102),
since both K and the quartic term on the r. h. s. of (2.103) commute with N and are time-
independent.

This concludes the proof of Theorem 2.3.5.

2.A. Properties of the solution of the Gross-Pitaevskii equation

Proof of Proposition 2.3.1. (i) This part of the proposition is standard. One proves first local
well-posedness of the two equations in H1(R3). The time of existence depends only on the
H1-norm of the initial data. Since V, f ≥ 0, the H1-norm is bounded by the energy, which
is conserved. Hence one obtains global existence and a uniform bound on the H1-norm.

(ii) Also this part is rather standard, but since the non-linearity in (2.25) depends on N ,

and we need bounds uniform in N , we sketch the proof of the bound (2.27) for ‖ϕ(N)
t ‖Hn

(the bound for ‖ϕt‖Hn can be proven analogously). We present the proof for the case t > 0.
We claim, first of all, that there exists T > 0 depending only on ‖ϕ‖H1 and n ∈ N such that

sup
t∈[0,T ]

‖ϕ(N)
t ‖Hn ≤ 2‖ϕ‖Hn + sup

t∈[0,T ]
‖ϕ(N)

t ‖3Hn−1 . (2.104)

Introducing the short-hand notation UN (x) = N3V (Nx)f(Nx), we write the solution ϕ
(N)
t

of (2.25) as

ϕ
(N)
t = eit∆ϕ− i

∫ t

0
ds ei(t−s)∆(UN ∗ |ϕ(N)

s |2)ϕ(N)
s .

Differentiating this equation w. r. t. the spatial variables we find that

∂αϕ
(N)
t = eit∆∂αϕ− i

∫ t

0
ds ei(t−s)∆

∑
β≤α

∑
ν≤β

(
α

β

)(
β

ν

)(
UN ∗ (∂νϕ(N)

s ∂β−νϕ(N)
s )

)
∂α−βϕ(N)

s .

Here α is a three-dimensional multi-index of non-negative integers, with |α| ≤ n.
The L∞t ([0, T ], L2

x)-norm of the above expression can be controlled using Strichartz esti-
mates for the free Schrödinger evolution eit∆ (see [KT98, Theorem 1.2]). We find

‖∂αϕ(N)
(.) ‖L∞t L2

x

≤ ‖∂αϕ‖L2 +
∑
β≤α

∑
ν≤β

(
α

β

)(
β

ν

)
‖
(
UN ∗ (∂νϕ

(N)
(.) ∂

β−νϕ
(N)
(.) )

)
∂α−βϕ

(N)
(.) ‖L2

tL
6/5
x

≤ ‖∂αϕ‖L2 + T 1/2
∑
β≤α

∑
ν≤β

(
α

β

)(
β

ν

)
sup
t∈[0,T ]

‖
(
UN ∗ (∂νϕ

(N)
t ∂β−νϕ

(N)
t )

)
∂α−βϕ

(N)
t ‖L6/5

x
.
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2.A. Properties of the solution of the Gross-Pitaevskii equation

By Hölder and Young inequality, we find

‖∂αϕ(N)
(.) ‖L∞t L2

x

≤ ‖∂αϕ‖L2 + CT 1/2
∑
β≤α

∑
ν≤β

(
α

β

)(
β

ν

)
sup
t∈[0,T ]

‖∂νϕ(N)
t ‖Lp1‖∂β−νϕ

(N)
t ‖Lp2 ‖∂α−βϕ

(N)
t ‖Lp3

for p1, p2, p3 ≥ 1 with p−1
1 + p−1

2 + p−1
3 = 5/6. It is important to note that the indices

(p1, p2, p3) can be chosen differently for each term in the summation. In some of the terms

with |α| = n, all n derivatives hit the same ϕ
(N)
t . Since 1/6 + 1/6 + 1/2 = 5/6, these terms

can be bounded by

‖ϕ(N)
t ‖2L6 ‖∂αϕ(N)

t ‖L2 ≤ C‖ϕ(N)
t ‖Hn (2.105)

for C depending only on ‖ϕ‖H1 (recall here that the H1-norm is bounded uniformly in t, by

part (i)). In some of the other terms, one ϕ
(N)
t has n − 1 derivatives, one has at most one

derivative and the last one has no derivatives. Since ‖∂γϕ(N)
t ‖L6 ≤ ‖ϕ(N)

t ‖Hn , if |γ| ≤ n− 1,

these terms are bounded by the r. h. s. of (2.105). In all other terms, the three copies of ϕ
(N)
t

have at most n− 2 derivatives. These terms are bounded by

‖∂γ1ϕ
(N)
t ‖L6‖∂γ2ϕ

(N)
t ‖L6‖∂γ3ϕ

(N)
t ‖L2 ≤ C‖ϕ(N)

t ‖3Hn−1

for all multi-indices γ1, γ2, γ3 with |γi| ≤ n− 2, for i = 1, 2, 3. We conclude that

‖∂αϕ(N)
(.) ‖L∞t L2

x
≤ ‖∂αϕ‖L2 + CT 1/2 sup

t∈[0,T ]
‖ϕ(N)

t ‖Hn + CT 1/2 sup
t∈[0,T ]

‖ϕ(N)
t ‖3Hn−1 .

Summing over all α with |α| ≤ n, we find

sup
t∈[0,T ]

‖ϕ(N)
t ‖Hn ≤ ‖ϕ‖Hn + CT 1/2 sup

t∈[0,T ]
‖ϕ(N)

t ‖Hn + CT 1/2 sup
t∈[0,T ]

‖ϕ(N)
t ‖3Hn−1 .

Choosing T > 0 so small that CT 1/2 ≤ 1/2, we find (2.104).
To show (2.27), we iterate now (2.104). We proceed by induction over n. For n = 1,

the claim follows from part (i). Suppose now that ‖ϕ(N)
t ‖H(n−1) ≤ Cn−1 exp(Kn−1|t|), for

constants Cn−1,Kn−1 depending on ‖ϕ‖H(n−1) and, respectively, on ‖ϕ‖H1 . Let T be as in
(2.104). For an arbitrary t > 0, there exists an integer j ∈ N such that (j − 1)T < t ≤ jT .
Then

‖ϕ(N)
t ‖Hn ≤ sup

s∈[(j−1)T,jT ]
‖ϕ(N)

s ‖Hn

≤ 2‖ϕ(N)
(j−1)T ‖Hn + 2 sup

s∈[(j−1)T,jT ]
‖ϕ(N)

s ‖3Hn−1

≤ 2‖ϕ(N)
(j−1)T ‖Hn + 2C3

n−1e
3Kn−1jT .

Similarly we have

‖ϕ(N)
(j−1)T ‖Hn ≤ 2‖ϕ(N)

(j−2)T ‖Hn + 2C3
n−1e

3Kn−1(j−1)T .

Iterating j-times, we obtain

‖ϕ(N)
t ‖Hn ≤ 2j‖ϕ‖Hn + 2C3

n−1

j∑
`=0

2`e3Kn−1(j−`)T ≤ CneKnt,

89



2. Quantitative Derivation of the Gross-Pitaevskii Equation

for some constant Cn depending on ‖ϕ‖Hn and Kn depending only on ‖ϕ‖H1 .
(iii)6 From the modified Gross-Pitaevskii equation (2.25), letting UN (x) = N3V (Nx)f(Nx),

we find

‖ϕ̇(N)
t ‖2 ≤ ‖ϕ

(N)
t ‖H2 +

∥∥∥(UN ∗ |ϕ(N)
t |2

)
ϕ

(N)
t

∥∥∥
2

≤ ‖ϕ(N)
t ‖H2 +

∥∥∥UN ∗ |ϕ(N)
t |2

∥∥∥
2
‖ϕ(N)

t ‖∞

≤ ‖ϕ(N)
t ‖H2 + C‖UN‖1‖ϕ(N)

t ‖24 ‖ϕ
(N)
t ‖∞

≤ C‖ϕ(N)
t ‖3H2 ≤ CeK|t|

for a constant C depending only on ‖ϕ‖H2 and ‖UN‖1, and for K > 0 depending only on
‖ϕ‖H1 . Here we used part (ii). Applying the gradient to (2.25), we find

i∇ϕ̇(N)
t = −∇∆ϕ

(N)
t +

(
UN ∗ |ϕ(N)

t |2
)
∇ϕ(N)

t

+
(
UN ∗ ϕ(N)

t ∇ϕ
(N)
t

)
ϕ

(N)
t +

(
UN ∗ ∇ϕ(N)

t ϕ
(N)
t

)
ϕ

(N)
t .

(2.106)

Clearly, ‖∇∆ϕ
(N)
t ‖2 ≤ ‖ϕ

(N)
t ‖H3 . The second term on the first line is bounded in norm by∥∥∥(UN ∗ |ϕ(N)

t |2)∇ϕ(N)
t

∥∥∥
2
≤ ‖(UN ∗ |ϕ(N)

t |2)‖∞‖∇ϕ(N)
t ‖2

≤ ‖UN‖1‖ϕ(N)
t ‖2∞‖∇ϕ

(N)
t ‖2 ≤ C‖ϕ

(N)
t ‖3H2 .

The terms on the second line of (2.106) can be bounded similarly. From part (ii), we conclude

that ‖∇ϕ̇(N)
t ‖2 ≤ C exp(K|t|). Analogously, we can also show that ‖∇2ϕ̇

(N)
t ‖2 ≤ CeK|t|. We

conclude that ‖ϕ̇(N)
t ‖H2 ≤ CeK|t|. Finally, (2.25) implies

−ϕ̈(N)
t = −∆iϕ̇

(N)
t +

(
UN ∗ (ϕ

(N)
t iϕ̇

(N)
t )

)
ϕ

(N)
t

+
(
UN ∗ (iϕ̇

(N)
t ϕ

(N)
t )

)
ϕ

(N)
t +

(
UN ∗ |ϕ(N)

t |2
)
iϕ̇

(N)
t .

Plugging in the r. h. s. of (2.25) for iϕ̇
(N)
t , we arrive at

−ϕ̈(N)
t = ∆2ϕ

(N)
t −∆

(
(UN ∗ |ϕ(N)

t |2)ϕ
(N)
t

)
+
(
UN ∗ |ϕ(N)

t |2
)2
ϕ

(N)
t

+ (UN ∗ ϕ(N)
t (−∆ϕ

(N)
t ))ϕ

(N)
t + 2

[
UN ∗

(
|ϕ(N)
t |2(UN ∗ |ϕ(N)

t |2)
)]
ϕ

(N)
t

+ (UN ∗ (−∆ϕ
(N)
t )ϕ

(N)
t )ϕ

(N)
t +

(
UN ∗ |ϕ(N)

t |2
)

(−∆ϕ
(N)
t ).

Proceeding similarly as above, we find that ‖ϕ̈(N)
t ‖2 ≤ C‖ϕ

(N)
t ‖H4 ≤ C exp(K|t|).

(iv) Using (2.16) and (2.25), we find

∂t‖ϕt − ϕ(N)
t ‖22 = −2 Im

〈
ϕt,
(
UN ∗ |ϕ(N)

t |2 − 8πa0|ϕt|2
)
ϕ

(N)
t

〉
= −2 Im

〈
ϕt,
(
UN ∗ |ϕt|2 − 8πa0|ϕt|2

)
ϕ

(N)
t

〉
− 2 Im

〈
ϕt,
(
UN ∗

(
|ϕ(N)
t |2 − |ϕt|2

))
ϕ

(N)
t

〉
.

(2.107)

6Some typos in [BdS12] in this part were corrected here.
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2.A. Properties of the solution of the Gross-Pitaevskii equation

The second term on the r. h. s. can be written as

Im
〈
ϕt,
(
UN ∗

(
|ϕ(N)
t |2 − |ϕt|2

))
ϕ

(N)
t

〉
= Im

〈
ϕt,
(
UN ∗

(
|ϕ(N)
t |2 − |ϕt|2

))
(ϕt − ϕ(N)

t )
〉
.

Hence, by Hölder’s and triangle’s inequality,∣∣∣ Im〈ϕt,(UN ∗ (|ϕ(N)
t |2 − |ϕt|2

))
ϕ

(N)
t

〉∣∣∣
≤ ‖ϕt‖∞

∥∥∥(UN ∗ (|ϕ(N)
t |2 − |ϕt|2

))
(ϕt − ϕ(N)

t )
∥∥∥

1

≤ ‖ϕt‖∞
∥∥∥UN ∗ (|ϕ(N)

t |2 − |ϕt|2)
∥∥∥

2
‖ϕt − ϕ(N)

t ‖2

≤ ‖UN‖1‖ϕt‖∞‖ϕt − ϕ(N)
t ‖2

∥∥∥|ϕ(N)
t |2 − |ϕt|2

∥∥∥
2

≤ ‖UN‖1‖ϕt‖∞
(
‖ϕt‖∞ + ‖ϕ(N)

t ‖∞
)
‖ϕt − ϕ(N)

t ‖22

≤ C
(
‖ϕt‖2H2 + ‖ϕ(N)

t ‖2H2

)
‖ϕt − ϕ(N)

t ‖22.

(2.108)

As for the first term on the r. h. s. of (2.107), we find (since
∫
UN (y)dy = 8πa0)∣∣∣〈ϕt, (UN ∗ |ϕt|2−8πa0|ϕt|2

)
ϕ

(N)
t

〉∣∣∣
=

∣∣∣∣∫ dxϕt(x)ϕ
(N)
t (x)

∫
dy UN (y)

(
|ϕt(x− y)|2 − |ϕt(x)|2

)∣∣∣∣
≤
∫

dxdy UN (y) |ϕt(x)||ϕ(N)
t (x)|

∣∣|ϕt(x− y)|2 − |ϕt(x)|2
∣∣ .

Writing UN (x) = N3U(Nx), with U(x) = V (x)f(x) and changing integration variables, we
find ∣∣∣〈ϕt, (UN ∗ |ϕt|2−8πa0|ϕt|2

)
ϕ

(N)
t

〉∣∣∣
≤
∫

dxdyU(y)|ϕt(x)||ϕ(N)
t (x)|

∣∣|ϕt(x− y/N)|2 − |ϕt(x)|2
∣∣ .

Using ∣∣|ϕt(x− y/N)|2 − |ϕt(x)|2
∣∣ =

∣∣∣∣∫ 1

0
ds

d

ds
|ϕt(x− sy/N)|2

∣∣∣∣
≤ 2|y|N−1

∫ 1

0
ds |∇ϕt(x− sy/N)||ϕt(x− sy/N)|

we conclude that∣∣∣〈ϕt,(UN ∗ |ϕt|2 − 8πa0|ϕt|2
)
ϕ

(N)
t

〉∣∣∣
≤ 2N−1

∫
dxdy

∫ 1

0
dsU(y)|y||ϕt(x)||ϕ(N)

t (x)||∇ϕt(x− sy/N)||ϕt(x− sy/N)|

≤ 2N−1‖ϕt‖2∞
∫

dxdy

∫ 1

0
dsU(y)|y|

(
|ϕ(N)
t (x)|2 + |∇ϕt(x− sy/N)|2

)
≤ CN−1‖ϕt‖2∞

(
‖ϕ(N)

t ‖22 + ‖∇ϕt‖22
)

≤ CN−1‖ϕt‖2H2

(2.109)

91



2. Quantitative Derivation of the Gross-Pitaevskii Equation

where the constant C depends on
∫

dyU(y)|y| and on ‖ϕ‖H1 . Inserting (2.109) and (2.108)
into (2.107), and using the estimate from part (ii) for ‖ϕt‖H2 , we find

∂t‖ϕ(N)
t − ϕt‖22 ≤ CeK|t|‖ϕ

(N)
t − ϕt‖22 +

C

N
eK|t|.

The claim now follows from Grönwall’s inequality, since ϕt=0 = ϕ
(N)
t=0.

2.B. Properties of the kernel kt

This section is devoted to the proof of Lemma 2.3.3 and Lemma 2.3.4.

Proof of Lemma 2.3.3. Recall that the constant C here can depend on ‖ϕ‖H1 .

(i) We will make use of the bounds (2.30). The first bound implies immediately that

|k(x, y)| ≤ min

(
N |ϕ(x)||ϕ(y)|, 1

|x− y|
|ϕ(x)||ϕ(y)|

)
(2.110)

and therefore, by Hardy’s inequality

‖k‖22 ≤ C
∫

dxdy
1

|x− y|2
|ϕ(x)|2|ϕ(y)|2 ≤ C‖ϕ‖2H1‖ϕ‖22 ≤ C .

As for the gradient of k, we have

∇1k(x, y) = −N2∇w(N(x− y))ϕ(x)ϕ(y)−Nw(N(x− y))∇ϕ(x)ϕ(y)

and thus, from the second bound in (2.30),

‖∇1k‖22 ≤ C
∫

dxdy
N4

(N2|x− y|2 + 1)2
|ϕ(x)|2|ϕ(y)|2

≤ CN
∫

dx
N3

(N2|x|2 + 1)2
‖ϕ‖4H1 ≤ CN

where we used Young and then Sobolev inequalities, and for the very last inequality the
substitution Nx 7→ y. Next we compute

∇1(kk)(x, y) = ∇x
∫

dz k(x, z)k(z, y)

= ∇x
[
ϕ(x)ϕ(y)

∫
dzN2w(N(x− z))w(N(z − y))|ϕ(z)|2

]
= ∇ϕ(x)ϕ(y)

∫
dzN2w(N(x− z))w(N(z − y))|ϕ(z)|2

+ ϕ(x)ϕ(y)

∫
dzN3∇w(N(x− z))w(N(z − y))|ϕ(z)|2.
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2.B. Properties of the kernel kt

Using (2.30), we find

‖∇1(kk)‖22 ≤ C
∫

dxdydz1dz2
|∇ϕ(x)|2|ϕ(y)|2|ϕ(z1)|2|ϕ(z2)|2

|x− z1||z1 − y||x− z2||z2 − y|

+ C

∫
dxdydz1dz2

|ϕ(x)|2|ϕ(y)|2|ϕ(z1)|2|ϕ(z2)|2

|x− z1|2|z1 − y||x− z2|2|z2 − y|

≤ C
∫

dxdydz1dz2
|∇ϕ(x)|2|ϕ(y)|2|ϕ(z1)|2|ϕ(z2)|2

|x− z1|2|z2 − y|2

+ C

∫
dxdydz1dz2

|ϕ(x)|2|ϕ(y)|2|ϕ(z1)|2|ϕ(z2)|2

|x− z1|2|z1 − y|2|x− z2|2

≤ C‖ϕ‖3H1‖ϕ‖22.

(ii) The pointwise bound for k(x, y) follows directly from (2.30), as noticed in (2.110). To
bound |r(k)(x, y)|, we observe that, by Hölder’s inequality, (2.30) and part (i),

|(kk)nk(x, y)|
= |kk(kk)n−1k(x, y)|
= |ϕ(x)||ϕ(y)|

×
∣∣∣∣∫ dz1dz2N

2w(N(x− z1))w(N(z2 − y))ϕ(z1)ϕ(z2)k(kk)n−1(z1, z2)

∣∣∣∣
≤ |ϕ(x)||ϕ(y)| ‖k(kk)n−1‖2

×
(∫

dz1N
2w(N(x− z1))2|ϕ(z1)|2

∫
dz2N

2w(N(z2 − y))2|ϕ(z2)|2
)1/2

≤ C|ϕ(x)||ϕ(y)|‖∇ϕ‖22‖k‖2n−1
2 .

Thus

|r(k)(x, y)| ≤
∞∑
n=1

1

(2n+ 1)!
|(kk)nk(x, y)| ≤ C|ϕ(x)||ϕ(y)|e‖k‖2 .

The pointwise estimate for p(k)(x, y) can be proven similarly. This completes the proof of
part (ii). Part (iii) follows easily from the pointwise bounds in part (ii).

Proof of Lemma 2.3.4. In the following proof we will use the bounds ‖ϕ̇(N)
t ‖H2 , ‖ϕ̈(N)

t ‖2 ≤
CeK|t| from Proposition 2.3.1.

(i) From (2.32), we find

‖k̇t‖2 ≤ 4

∫
dxdy

1

|x− y|2
|ϕ̇(N)
t (x)|2|ϕ(N)

t (y)|2 ≤ C‖ϕ̇(N)
t ‖22‖ϕ

(N)
t ‖2H1 ≤ CeK|t| (2.111)

by Hardy’s inequality, and from Proposition 2.3.1, part (iii). Similarly,

‖k̈t‖2 ≤ C‖ϕ̈(N)
t ‖2 + C‖ϕ̇(N)

t ‖2‖∇ϕ̇
(N)
t ‖2 ≤ CeK|t|

by Proposition 2.3.1. Writing p(kt) =
∑

n≥0(ktkt)
n/(2n!), we find immediately

‖ṗ(kt)‖2 ≤
∑
n≥0

1

(2n)!
n‖k̇t‖2‖kt‖2n−1

2 ≤ ‖k̇t‖2 e‖kt‖2 ≤ CeK|t|
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

applying (2.111). The bound for ṙ(kt) can be proven analogously.

(ii) From 2.2.1, part (v), we have

‖∇1ṗ(kt)‖2 ≤ Ce‖kt‖2
(
‖k̇t‖2 ‖∇1(ktkt)‖2 + C‖∇1(ktk̇t)‖2 + C‖∇1(k̇tkt)‖2

)
.

We are left with the task of estimating ‖∇1(ktk̇t)‖2 and ‖∇1(k̇tkt)‖2. We start by applying
the product rule:

‖∇1(ktk̇t)‖22

=

∫
dxdy

∣∣∣∣∇x ∫ dz
(
Nw(N(x− z))ϕ̇(N)

t (x)ϕ
(N)
t (z) +Nw(N(x− z)) ϕ(N)

t (x)ϕ̇
(N)
t (z)

)
×Nw(N(z − y))ϕ

(N)
t (z)ϕ

(N)
t (y)

∣∣∣∣2
≤ 4

∫
dxdy

∣∣∣∣∫ dzN2∇w(N(z − x))ϕ̇
(N)
t (x)|ϕ(N)

t (z)|2ϕ(N)
t (y)Nw(N(y − z))

∣∣∣∣2 (2.112)

+ 4

∫
dxdy

∣∣∣∣∫ dz Nw(N(z − x))∇ϕ̇(N)
t (x)|ϕ(N)

t (z)|2ϕ(N)
t (y)Nw(N(y − z))

∣∣∣∣2 (2.113)

+ 4

∫
dxdy

∣∣∣∣∫ dz N2∇w(N(z − x))ϕ
(N)
t (x)ϕ̇

(N)
t (z)

×ϕ(N)
t (z)ϕ

(N)
t (y)Nw(N(y − z))

∣∣∣2 (2.114)

+ 4

∫
dxdy

∣∣∣∣∫ dz Nw(N(z − y))∇ϕ(N)
t (x)ϕ̇

(N)
t (z)ϕ

(N)
t (z)ϕ

(N)
t (y)Nw(N(y − z))

∣∣∣∣2 .
(2.115)

Next, we estimate the four terms on the r. h. s. of the last equation. For the summands (2.113)
and (2.115) we use that, from (2.30), Nw(Nx) ≤ C|x|−1. Applying Hardy’s inequality, both

terms are bounded by C‖∇ϕ̇(N)
t ‖22 ≤ C exp(K|t|), using Proposition 2.3.1. Since, again by

(2.30), N2∇w(Nx) ≤ C|x|−2, the contribution (2.112) is bounded by

C

∫
dxdy

(∫
dz

1

|x− z|2|z − y|
|ϕ̇(N)
t (x)||ϕ(N)

t (z)|2|ϕ(N)
t (y)|

)2

= C

∫
dxdydz1dz2

|ϕ̇(N)
t (x)|2|ϕ(N)

t (y)|2|ϕ(N)
t (z1)|2|ϕ(N)

t (z2)|2

|z1 − y||z2 − y||x− z1|2|x− z2|2

= C

∫
dx |ϕ̇(N)

t (x)|2
∫

dz1dz2
|ϕ(N)
t (z1)|2|ϕ(N)

t (z2)|2

|x− z1|2|x− z2|2

∫
dy

|ϕ(N)
t (y)|2

|z1 − y||z2 − y|
≤ C‖ϕ̇(N)

t ‖22‖ϕ
(N)
t ‖6H1 ≤ CeK|t|

by Proposition 2.3.1. Analogously, we can also bound the contribution (2.114). This shows
the bound for ‖∇1ṗ(kt)‖2. The bounds for ‖∇2ṗ(kt)‖2, ‖∇2ṗ(kt)‖2, ‖∇2ṗ(kt)‖2 are proven
similarly.

(iii) From (2.32), using Nw(Nx) ≤ C|x|−1, we find immediately that

sup
x
‖k̇t(., x)‖2 ≤ C

(
‖∇ϕ̇(N)

t ‖2‖ϕ
(N)
t ‖∞ + ‖∇ϕ(N)

t ‖2‖ϕ̇
(N)
t ‖∞

)
≤ CeK|t|
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2.B. Properties of the kernel kt

by Proposition 2.3.1. To show the bound for ṗ(kt), we observe that

ṗ(kt)(x, y) = ∂t
∑
n≥0

1

(2n)!

∫
dz1dz2 kt(x, z1)(ktkt)

(n−1)(z1, z2)kt(z2, y)

=
∑
n≥0

1

(2n)!

[ ∫
dz1dz2 k̇t(x, z1)(ktkt)

(n−1)(z1, z2)kt(z2, y)

+

∫
dz1dz2 kt(x, z1)(∂t(ktkt)

(n−1))(z1, z2)kt(z2, y)

+

∫
dz1dz2 kt(x, z1)(ktkt)

(n−1)(z1, z2)k̇t(z2, y)
]
.

(2.116)

The first term in the parenthesis can be bounded in absolute value by∣∣∣ ∫ dz1dz2 k̇t(x, z1)(ktkt)
(n−1)(z1, z2)kt(z2, y)

∣∣∣
≤ C

∫
dz1dz2

1

|x− z1|

(
|ϕ̇(N)
t (x)||ϕ(N)

t (z1)|+ |ϕ(N)
t (x)||ϕ̇(N)

t (z1)|
)

× |(ktkt)(n−1)(z1, z2)| 1

|y − z2|
|ϕ(N)
t (z2)||ϕ(N)

t (y)|

≤ C|ϕ(N)
t (x)||ϕ(N)

t (y)|
∫

dz1dz2
1

|x− z1||y − z2|
|ϕ̇(N)
t (z1)||ϕ(N)

t (z2)| |(ktkt)(n−1)(z1, z2)|

+ C|ϕ̇(N)
t (x)||ϕ(N)

t (y)|
∫

dz1dz2
1

|x− z1||y − z2|
|ϕ(N)
t (z1)||ϕ(N)

t (z2)| |(ktkt)(n−1)(z1, z2)|

≤ C‖(ktkt)n−1‖2
(
|ϕ(N)
t (x)||ϕ(N)

t (y)|‖∇ϕ̇(N)
t ‖‖∇ϕ

(N)
t ‖+ |ϕ̇(N)

t (x)||ϕ(N)
t (y)|‖∇ϕ(N)

t ‖2
)
.

≤ C‖kt‖2(n−1)
2 (|ϕ̇(N)

t (x)|+ |ϕ(N)
t (x)|)|ϕ(N)

t (y)|.

The last term in the parenthesis on the r. h. s. of (2.116) can be bounded analogously. The
middle term, on the other hand is bounded in absolute value by∣∣∣ ∫ dz1dz2 kt(x, z1)(∂t(ktkt)

(n−1))(z1, z2)kt(z2, y)
∣∣∣

≤ C|ϕ(N)
t (x)||ϕ(N)

t (y)|
∫

dz1dz2
|ϕ(N)
t (z1)||ϕ(N)

t (z2)|
|x− z1||y − z2|

|∂t(ktkt)n−1(z1, z2)|

≤ C‖∂t(ktkt)n−1‖2 ‖∇ϕ(N)
t ‖22 |ϕ

(N)
t (x)||ϕ(N)

t (y)|

≤ C‖k̇t‖2 ‖kt‖2n−3
2 |ϕ(N)

t (x)||ϕ(N)
t (y)|.

Inserting the last bounds in (2.116), we find

|ṗ(kt)(x, y)| ≤ CeK|t|e‖kt‖2 (|ϕ(N)
t (x)|+ |ϕ̇(N)

t (x)|)(|ϕ(N)
t (y)|+ |ϕ̇(N)

t (y)|).

Integrating over x and taking the supremum over y gives, as before using (2.27),

sup
y
‖ṗ(kt)(., y)‖2 ≤ CeK|t|.

The bound for ṙ(kt) can be proven analogously. Combining the bound for ṙ(kt) with the one
for k̇t, we also obtain the bound for ˙sh(kt).
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

2.C. Convergence for N-particle wave functions

In this section, we show how the result of Theorem 2.1.1, stated there for initial data of the
form W (

√
Nϕ)T (k0)ψ can be extended to a certain class of data with number of particles

fixed to N .

Theorem 2.C.1. Let ϕ ∈ H4(R3) and suppose ψ ∈ F with ‖ψ‖F = 1 is such that〈
ψ,

(
N 2

N
+N +HN

)
ψ

〉
≤ C (2.117)

for a constant C > 0. Let PN denote the projection onto the N -particle sector of the Fock
space and assume that

‖PNW (
√
Nϕ)T (k0)ψ‖ ≥ CN−1/4 (2.118)

for all N ∈ N large enough. We consider the time evolution

ψN,t = e−iHN t
PNW (

√
Nϕ)T (k0)ψ

‖PNW (
√
Nϕ)T (k0)ψ‖

and we denote by γ
(1)
N,t the one-particle reduced density associated with the N -particle vector

ψN,t. Then there exist constants C, c1, c2 > 0 with

tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C exp (c1 exp(c2|t|))
N1/4

for all t ∈ R and all N large enough. Here ϕt denotes the solution of the time-dependent
Gross-Pitaevskii equation (2.16), with initial data ϕt=0 = ϕ.

Remarks.

(i) If we relax (2.118) to the weaker condition ‖PNW (
√
Nϕ)T (k0)ψ‖ ≥ CN−α, for some

1/4 ≤ α < 1/2, the proof below still implies the convergence γ
(1)
N,t → |ϕt〉〈ϕt| but only

with the slower rate N−1/2+α.

(ii) The assumption (2.118) and its weaker versions mentioned in the previous remark are
very reasonable; let us explain why. The expected number of particles in the Fock
space vector W (

√
Nϕ)T (k0)ψ is given by〈

W (
√
Nϕ)T (k0)ψ,N W (

√
Nϕ)T (k0)ψ

〉
= N +

√
N〈T (k0)ψ, φ(ϕ)T (k0)ψ〉+ 〈T (k0)ψ,NT (k0)ψ〉

(2.119)

with the notation φ(ϕ) = a(ϕ) + a∗(ϕ). Let us introduce the shorthand notation

〈N〉 :=
〈
W (
√
Nϕ)T (k0)ψ,N W (

√
Nϕ)T (k0)ψ

〉
.

From Lemma 1.4.2, Lemma 2.4.3 and the assumption (2.117) we then conclude that
there exists a constant C > 0 with

N − CN1/2 ≤ 〈N〉 ≤ N + CN1/2. (2.120)
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2.C. Convergence for N -particle wave functions

The expectation of N 2, on the other hand, is given by〈
W (
√
Nϕ)T (k0)ψ,N 2W (

√
Nϕ)T (k0)ψ

〉
= 〈T (k0)ψ, (N +

√
Nφ(ϕ) +N)2T (k0)ψ〉

= N2 + 2N3/2〈T (k0)ψ, φ(ϕ)T (k0)ψ〉+ 2N〈T (k0)ψ,NT (k0)ψ〉

+N〈T (k0)ψ, φ(ϕ)2T (k0)ψ〉+
√
N〈T (k0)ψ, (Nφ(ϕ) + φ(ϕ)N )T (k0)ψ〉

+ 〈T (k0)ψ,N 2T (k0)ψ〉.

Subtracting the square of (2.119), and applying again Lemma 1.4.2, Lemma 2.4.3 and
the assumption (2.117), we estimate the variance of the number of particles in the
vector W (

√
Nϕ)T (k0)ψ by〈

W (
√
Nϕ)T (k0)ψ, (N − 〈N〉)2W (

√
Nϕ)T (k0)ψ

〉
≤ CN

for an appropriate constant C > 0. We conclude that〈
W (
√
Nϕ)T (k0)ψ,1

(
|N − 〈N〉| ≥ K

√
N
)
W (
√
Nϕ)T (k0)ψ

〉
≤ CK−2.

(Here 1
(
|N − 〈N〉| ≥ K

√
N
)

denotes the spectral projection defined by applying the
functional calculus of the number operator N to the characteristic function of the set{
x ∈ N : |x− 〈N〉| ≥ K

√
N
}

.)

Choosing K > 0 sufficiently large, we find〈
W (
√
Nϕ)T (k0)ψ,1

(
|N − 〈N〉| ≤ K

√
N
)
W (
√
Nϕ)T (k0)ψ

〉
≥ 1/2.

From (2.120), adjusting the value of K, we obtain〈
W (
√
Nϕ)T (k0)ψ,1

(
|N −N | ≤ K

√
N
)
W (
√
Nϕ)T (k0)ψ

〉
≥ 1/2.

This means that
N+K

√
N∑

j=N−K
√
N

∥∥∥PjW (
√
Nϕ)T (k0)ψ

∥∥∥2
≥ 1/2.

The average value of ‖PjW (
√
Nϕ)T (k0)ψ‖2 for j between N−K

√
N and N+K

√
N is

therefore larger or equal to N−1/2, in accordance with the assumption (2.118). In fact,
this argument shows that for every N there exists an M ∈ [N − K

√
N,N + K

√
N ]

with ‖PM W (
√
Nϕ)T (k0)ψ‖ ≥ N−1/4. Letting

ψN,M,t = e−iHN t
PM W (

√
Nϕ)T (k0)ψ

‖PM W (
√
Nϕ)T (k0)ψ‖

and denoting by γ
(1)
N,M,t the one-particle reduced density associated with ψN,M,t, one

can show, similarly to Theorem 2.C.1, that

tr
∣∣∣γ(1)
N,M,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C exp (c1 exp(c2|t|))
N1/4

The fact that the number of particles M does not exactly match the parameter N
entering the Hamiltonian and the Weyl operator W (

√
Nϕ) does not affect the analysis

in any substantial way, since |M −N | ≤ CN1/2 � N .
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2. Quantitative Derivation of the Gross-Pitaevskii Equation

Proof of Theorem 2.C.1. We write the integral kernel of γ
(1)
N,t as

γ
(1)
N,t(x, y)

=
1

N‖PNW (
√
Nϕ)T (k0)ψ‖2

×
〈
e−iHN tPNW (

√
Nϕ)T (k0)ψ, a∗yaxe

−iHN tPNW (
√
Nϕ)T (k0)ψ

〉
=

1

N‖PNW (
√
Nϕ)T (k0)ψ‖2

×
〈
e−iHN tPNW (

√
Nϕ)T (k0)ψ, W (

√
Nϕ

(N)
t )

(
a∗y +

√
Nϕ

(N)
t (y)

)
×
(
ax +

√
Nϕ

(N)
t (x)

)
W ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ

〉
.

Hence, we find

γ
(1)
N,t(x, y)− ϕ(N)

t (y)ϕ
(N)
t (x)

=
ϕ

(N)
t (x)√

N‖PNW (
√
Nϕ)T (k0)ψ‖2

×
〈
e−iHN tPNW (

√
Nϕ)T (k0)ψ, W (

√
Nϕ

(N)
t )a∗yW

∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ

〉
+

ϕ
(N)
t (y)√

N‖PNW (
√
Nϕ)T (k0)ψ‖2

×
〈
e−iHN tPNW (

√
Nϕ)T (k0)ψ, W (

√
Nϕ

(N)
t )axW

∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ

〉
+

1

N‖PNW (
√
Nϕ)T (k0)ψ‖2

〈
e−iHN tPNW (

√
Nϕ)T (k0)ψ, W (

√
Nϕ

(N)
t )

×a∗yaxW ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ

〉
.

Therefore, for any compact operator J on L2(R3) we find

tr J
(
γ

(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

)
=

1√
N‖PNW (

√
Nϕ)T (k0)ψ‖2

〈
e−iHN tPNW (

√
Nϕ)T (k0)ψ, W (

√
Nϕ

(N)
t )

×
(
a(Jϕ

(N)
t ) + a∗(Jϕ

(N)
t )

)
W ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ

〉
+

1

N‖PNW (
√
Nϕ)T (k0)ψ‖2

〈
e−iHN tPNW (

√
Nϕ)T (k0)ψ, W (

√
Nϕ

(N)
t )

×dΓ(J)W ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ

〉
.

Since ‖dΓ(J)ψ‖ ≤ ‖J‖ ‖Nψ‖, we find, applying Lemma 1.4.2,∣∣∣ tr J (γ(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

) ∣∣∣
≤ ‖J‖√

N‖PNW (
√
Nϕ)T (k0)ψ‖

‖(N + 1)1/2W ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖

+
‖J‖

N‖PNW (
√
Nϕ)T (k0)ψ‖

‖N W ∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖
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2.C. Convergence for N -particle wave functions

where ‖J‖ denotes the operator norm of J . From Lemma 2.4.3, recalling the definition (2.33)
of the fluctuation dynamics, we find∣∣∣ tr J (γ(1)

N,t − |ϕ
(N)
t 〉〈ϕ

(N)
t |

) ∣∣∣
≤ ‖J‖√

N‖PNW (
√
Nϕ)T (k0)ψ‖

‖N 1/2 T ∗(kt)W
∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖

+
1

N‖PNW (
√
Nϕ)T (k0)ψ‖

‖N T ∗(kt)W
∗(
√
Nϕ

(N)
t )e−iHN tW (

√
Nϕ)T (k0)ψ‖

≤ ‖(N + 1)1/2 U(t, 0)ψ‖√
N‖PNW (

√
Nϕ)T (k0)ψ‖

+
‖N U(t, 0)ψ‖

N‖PNW (
√
Nϕ)T (k0)ψ‖

.

Using Proposition 2.4.2, we conclude that∣∣∣tr J (γ(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

)∣∣∣ ≤ C‖J‖ ‖(N + 1)1/2 U(t, 0)ψ‖√
N‖PNW (

√
Nϕ)T (k0)ψ‖

+
C‖(N + 1)1/2 ψ‖√

N‖PNW (
√
Nϕ)T (k0)ψ‖

+
C‖(N + 1)ψ‖

N‖PNW (
√
Nϕ)T (k0)ψ‖

.

From the assumptions (2.117) and (2.118), we obtain∣∣∣tr J (γ(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

)∣∣∣ ≤ C‖J‖
N1/4

‖(N + 1)1/2 U(t, 0)ψ‖+
C

N1/4
.

Finally, Theorem 2.4.1 implies that∣∣∣tr J (γ(1)
N,t − |ϕ

(N)
t 〉〈ϕ

(N)
t |

)∣∣∣ ≤ C‖J‖ exp (c1 exp(c2|t|))
N1/4

. (2.121)

Since the Banach space L1(L2(R3)) is the dual space to the space of compact operators,
equipped with the operator norm, (2.121) (followed by Proposition 2.3.1(iv)) implies the
claim.
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3. Mean-Field Evolution of Fermionic
Systems

In this chapter, we prove that the evolution of a fermionic many-body system in the mean-
field regime can be approximated with the Hartree-Fock equation. This chapter is based on
the article [BPS13a].

We use the fermionic convention tr γ
(k)
N = N !

(N−k)! for the normalization of density matrices,
see Section 1.A.

3.1. Introduction

As explained in Section 1.2.3, the fermionic mean-field regime is naturally linked to the
semiclassical regime. Recall the Schrödinger equation (1.18) on the semiclassical time scale
(for readability, from now on we use t for the semiclassical time that was called τ in Chapter
1; the physical time does not appear anymore)

iε∂tψN,t =

− N∑
j=1

ε2∆j +
1

N

N∑
i<j

V (xi − xj)

ψN,t . (3.1)

The mean-field scaling, characterized by the 1/N coupling constant in front of the potential
energy, is combined with the semiclassical regime characterized by ε = N−1/3 � 1.

Similarly to the bosonic case, typical initial data can be prepared by confining the N
fermions to a volume of order one and cooling them to very low temperatures. In other
words, interesting initial data for (3.1) are ground states of Hamilton operators of the form

Htrap
N =

N∑
j=1

(
−ε2∆xj + Vext(xj)

)
+

1

N

N∑
i<j

V (xi − xj) (3.2)

where Vext is an external trapping potential, confining the N particles to a volume of order
one. Such initial data are well approximated by Slater determinants

ψslater(x1, . . . , xN ) =
1√
N !

∑
π∈SN

sgn(π)f1(xπ(1))f2(xπ(2)) . . . fN (xπ(N))

with a family of N orthonormal orbitals (fj)
N
j=1 in L2(R3) (sgn(π) denotes the sign of the

permutation π ∈ SN ). Slater determinants are quasifree states, so they are completely
characterized by their one-particle reduced density matrix, given by the orthogonal projection

ω =

N∑
j=1

|fj〉〈fj | .
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3. Mean-Field Evolution of Fermionic Systems

In fact, a simple computation shows that 〈ψslater, H
trap
N ψslater〉 is given by the Hartree-Fock

energy1

EHF(ω) = tr
(
−ε2∆ + Vext

)
ω +

1

2N

∫
dxdyV (x− y)ω(x, x)ω(y, y)

− 1

2N

∫
dxdyV (x− y)|ω(x, y)|2.

(3.3)

We expect that the evolution determined by the Schrödinger equation (3.1) of an initial Slater
determinant approximating the ground state of Htrap

N remains close to a Slater determinant
with an evolved reduced one-particle density, given by the solution of the time-dependent
Hartree-Fock equation

iε∂tωt =
[
−ε2∆ + (V ∗ ρt)−Xt, ωt

]
(3.4)

canonically associated with the energy functional (3.3). Here ρt(x) = N−1ωt(x, x) is the
normalized density associated with the one-particle density ωt, while Xt is the exchange
operator, having the kernel

Xt(x, y) = N−1V (x− y)ωt(x, y) .

Of course, we cannot expect this last statement to be correct for any initial state close to
a Slater determinant. We expect minimizers of the Hartree-Fock energy functional (3.3) to
be characterized by a semiclassical structure which is essential to understand the evolution.
In fact, as we will argue next, we expect the kernel ω(x, y) of the reduced density minimizing
(or approximately minimizing) the functional (3.3) to be concentrated close to the diagonal
and to decay at distances |x − y| � ε. To understand the emergence of this semiclassical
structure, and to find good characterizations, let us consider a system of N free fermions in a
box of volume one, for example with periodic boundary conditions. The ground state of the
system is given by the Slater determinant constructed with the N plane waves fp(x) = eipx

with p ∈ (2π)Z3 and |p| ≤ cN1/3, for a suitable constant c (guaranteeing that the total
number of orbitals equals exactly N). The corresponding one-particle reduced density has
the kernel

ω(x, y) =
∑

|p|≤cN1/3

eip·(x−y)

where the sum extends over all p ∈ (2π)Z3 with |p| ≤ cN1/3. Letting q = εp (with ε =
N−1/3), we can write

ω(x, y) =
∑
|q|≤c

eiq(x−y)/ε ' 1

ε3

∫
|q|≤c

dq eiq·(x−y)/ε =
1

ε3
ϕ

(
x− y
ε

)
(3.5)

with

ϕ(ξ) =
4π

|ξ|2

(
sin(c|ξ|)
|ξ|

− c cos(c|ξ|)
)
, ξ ∈ R3. (3.6)

Hence, at fixed N and ε, ω(x, y) decays to zero for |x − y| � ε. Moreover, the fact that ω
depends only on the difference x− y (for x, y in the box) implies that the density ω(x, x) is
constant inside the box (and zero outside). This is of course a consequence of the fact that
we consider a system with external potential vanishing inside, and being infinite outside the

1In this formula in [BPS13a], the factors 1/2 are missing; the typo is corrected here.
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box. More generically, if particles are trapped by a regular potential Vext with Vext(x)→∞
for |x| → ∞, we expect the resulting reduced one-particle density to have approximately the
form

ω(x, y) ' 1

ε3
ϕ

(
x− y
ε

)
χ

(
x+ y

2

)
(3.7)

for appropriate functions ϕ and χ, or to be a linear combination of such kernels. While χ
determines the density of the particles in space (because ϕ(0) = 1, to ensure that trω = N),
ϕ fixes the momentum distribution.

Next we look for suitable bounds, characterizing Slater determinants like (3.7) which have
the correct semiclassical structure. To this end, we observe that, if we differentiate the r. h. s.
of (3.7) with respect to x or y, a factor ε−1 will emerge from the derivative of ϕ (this produces
a kinetic energy of order N5/3, as expected). However, if we take the commutator [∇, ω], its
kernel will be given by

[∇, ω](x, y) = (∇x +∇y)ω(x, y) =
1

ε3
ϕ

(
x− y
ε

)
∇χ

(
x+ y

2

)
. (3.8)

In this case the derivative only hits the density profile χ; it does not affect ϕ, and therefore
it remains of order one (of course, in the example with plane waves in a box, there is the
additional problem that χ is the characteristic function of the box, and therefore that it is
not differentiable; this is however a consequence of the pathological choice of the external
potential). We express the fact that the derivative in (3.8) does not produce additional ε−1

factors through the bound

tr |[∇, ω]| ≤ CN. (3.9)

Similarly, the fact that ω(x, y) decays to zero as |x− y| � ε, suggests that the commutator
[x, ω], whose kernel is given by

[x, ω](x, y) = (x− y)ω(x, y), (3.10)

is smaller than ω by order ε. In fact, one has to be a bit careful here. Going back to the plane
wave example, we observe that the function ϕ computed in (3.6) does not decay particularly
fast at infinity. For this reason, it is not immediately clear that one can extract an ε factor
from the difference (x− y) on the r. h. s. of (3.10). Keeping in mind the plane wave example,
let us compute the commutator of the reduced density ω with the multiplication operator
eir·x, for a fixed r ∈ (2π)Z3. We find[

eir·x, ω
]

=
∑

|p|≤cN1/3

[
|ei(r+p)·x〉〈eip·x| − |eip·x〉〈ei(p−r)·x|

]
.

A straightforward computation shows that∣∣[eir·x, ω]∣∣2 =
∑
p∈Ir

|eip·x〉〈eip·x| (3.11)

where

Ir = (2π)Z3 ∩
{
p ∈ R3 : |p− r| ≤ cN1/3, |p| ≥ cN1/3 or |p− r| ≥ cN1/3, |p| ≤ cN1/3

}
.
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It follows that |[eir·x, ω]| = |[eir·x, ω]|2 is a projection, and therefore that

tr
∣∣[eir·x, ω]∣∣ ≤ CNε|r|. (3.12)

Hence, the trace norm of the commutator is smaller, by a factor ε, compared with the norm
of the operators eip·xω and ωeip·x. The fact that the kernel ω(x, y) is supported close to the
diagonal allows us to extract an additional ε factor from the trace norm of the commutator
[eip·x, ω]. Notice, however, that if we considered the Hilbert-Schmidt norm of [eip·x, ω], we
would find from (3.11) that

‖
[
eir·x, ω

]
‖HS =

(
tr
∣∣[eir·x, ω]∣∣2)1/2

≤ (CNε|r|)1/2.

In other words, the Hilbert-Schmidt norm of the commutator [eip·x, ω] is only smaller than
the Hilbert-Schmidt norm of the two operators eip·xω and ωeip·x by a factor ε1/2. This is
consistent with the fact that, in (3.7), the function ϕ does not decay fast at infinity (which
follows from the fact that ω is a projection corresponding to a characteristic function in
momentum space).

So far, we verified the bounds (3.9) and (3.12) for the ground state of a system of confined
non-interacting electrons. It is natural to ask whether these bounds also hold in systems
with mean-field interaction. Can we still expect the minimizer of the Hamiltonian (3.2) to
satisfy (3.9) and (3.12)? We claim that the answer to this question is affirmative, and we
propose a heuristic explanation2. Semiclassical analysis suggests that the reduced density of
the minimizer of (3.2) can be approximated by the Weyl quantization ω = OpwM of the phase
space density M(p, x) = χ(|p| ≤ (6π2ρ(x))1/3), where ρ is the minimizer of the Thomas-Fermi
type functional

εTF(ρ) =
3

5
(3π2)2/3

∫
dxρ5/3(x) +

∫
dxVext(x)ρ(x) +

1

2

∫
dxdyV (x− y)ρ(x)ρ(y)

over all non-negative densities ρ ∈ L1(R3) ∩ L5/3(R3) normalized so that ‖ρ‖1 = 1. Here,
the Weyl quantization OpwM of M is defined by the kernel

ω(x, y) = OpwM (x, y) =
1

(2πε)3

∫
dpM

(
p,
x+ y

2

)
eip·

x−y
ε

It turns out that the commutators of ω with the position operator x and with the momentum
operator ∇ are again Weyl quantizations. In fact, a straightforward computation shows that

[x, ω] = −iεOpw∇pM , [∇, ω] = Opw∇qM .

Hence, semiclassical analysis predicts that

tr |[x, ω]| ' ε

(2πε)3

∫
dpdq|∇pM(p, q)| = CNε

∫
ρ2/3(q)dq

and that

tr |[∇, ω]| ' 1

(2πε)3

∫
dpdq|∇qM(p, q)| = N

∫
|∇ρ(q)| dq

2We would like to thank Rupert Frank for pointing out this argument to us.
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Under general assumptions on Vext and V , we can expect the integrals on the r. h. s. of the
last two equations to be finite, and therefore, we can expect the bounds (3.9) and (3.12) to
hold true ((3.12) easily follows from the estimate tr |[x, ω]| ≤ CNε). Although one could
probably turn the heuristic argument that we just presented into a rigorous proof, we do
not pursue this question in the present work. Instead, we will just assume our initial data
to satisfy (3.9) and (3.12). We consider these bounds as an expression of the semiclassical
structure that emerges naturally when one considers states with energy close to the ground
state of a trapped Hamiltonian of the form (3.2).

For initial data ψN close to Slater determinants and having the correct semiclassical struc-
ture characterized by (3.9) and (3.12), we consider the time evolution ψN,t = e−itHN/εψN ,
generated by the Hamiltonian

HN = −
N∑
j=1

ε2∆j +
1

N

N∑
i<j

V (xi − xj) (3.13)

and we denote by γ
(1)
N,t the one-particle reduced density associated with ψN,t. Our main

result, Theorem 3.3.1, shows that, under suitable assumptions on the potential V , there
exist constants K, c1, c2 > 0 such that

‖γ(1)
N,t − ωN,t‖HS ≤ K exp(c1 exp(c2|t|)) (3.14)

and
tr
∣∣∣γ(1)
N,t − ωN,t

∣∣∣ ≤ KN1/6 exp(c1 exp(c2|t|)) (3.15)

where ωN,t denotes the solution of the time-dependent Hartree-Fock equation (3.4) with the

initial data ωN,t=0 = γ
(1)
N,0. The bounds (3.14) and (3.15) show that the difference γ

(1)
N,t−ωN,t

is much smaller (both in the Hilbert-Schmidt norm and in the trace class norm) than γ
(1)
N,t

and ωN,t (recall that ‖ω(1)
N,t‖HS, ‖γ(1)

N,t‖HS ' N1/2 while trωN,t, tr γ
(1)
N,t ' N).

It turns out that the exchange term is small compared to the other terms in the Hartree-
Fock equation (3.4); in fact, for the class of regular potential that we consider in this paper,
it is of the relative size 1/N . As a consequence, the bounds (3.14), (3.15) and also all other

bounds that we prove in Theorem 3.3.1 for the difference between γ
(1)
N,t and the solution of the

Hartree-Fock equation remain true if we replace the solution of the Hartree-Fock equation
ωN,t by the solution ω̃N,t of the Hartree equation

iε∂tω̃N,t =
[
−ε2∆ + (V ∗ ρ̃t), ω̃N,t

]
(3.16)

with the same initial data ω̃N,t=0 = γ
(1)
N,0 (here ρ̃t(x) = N−1ω̃(x, x) is the normalized den-

sity associated to ω̃N,t). For more details, see the last remark after Theorem 3.3.1, and
Proposition 3.A.1 in Appendix 3.A.

Observe that both the Hartree-Fock equation (3.4) and the Hartree equation (3.16) still
depend on N , through the initial data and through the semiclassical parameter ε = N−1/3.
In the semiclassical limit ε → 0, the Hartree (and the Hartree-Fock) dynamics can be ap-
proximated by the solution of the Vlasov equation, as we will explain now. We define the
Wigner transform WN,t associated with the solution ωN,t of the Hartree-Fock equation by

WN,t(x, p) =
1

(2π)3

∫
dy ωN,t

(
x+ ε

y

2
;x− εy

2

)
e−ipy.
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3. Mean-Field Evolution of Fermionic Systems

In the limit ε → 0, the Wigner transform WN,t of the solution of the Hartree-Fock equa-
tion (3.4) (or the Wigner transform of the solution ω̃N,t of the Hartree equation) converges
[GIMS98] towards the solution of the Vlasov equation

∂tW
vl
t (x, p) + p · ∇xW vl

t (x, p) = ∇x
(
V ∗ ρvl

t

)
(x) · ∇pW vl

t (x, p) . (3.17)

where ρvl
t (x) =

∫
dpW vl(x, p). The difference between the Wigner transform WN,t of ωN,t

and the solution of the Vlasov equation W vl
t is of the order εN = N2/3, and therefore much

larger than the difference between the reduced one-particle density γ
(1)
N,t associated with the

solution of the many-body Schrödinger equation and the solution ωN,t of the Hartree-Fock
equation (or the solution ω̃N,t of the Hartree equation). In other words, the Hartree-Fock
approximation (or the Hartree approximation) keeps the quantum structure of the problem
and gives a much more precise approximation of the many-body evolution compared to
the classical Vlasov dynamics. Our result is therefore a dynamical counterpart to [B92,
GS94], where the Hartree-Fock theory is shown to give a much better approximation to the
ground state energy of a system of atoms or molecules as compared to the Thomas-Fermi
energy (although in contrast to [B92, GS94] our analysis does not apply so far to Coulomb
interaction).

3.2. Embedding the system in Fock space

We start by embedding the system in Fock space. To define the Hamilton operator HN on

Fock space F , we set (HNψ)(n) = H(n)
N ψ(n), with

H(n)
N =

n∑
j=1

−ε2∆xj +
1

N

n∑
i<j

V (xi − xj),

where, as discussed before, ε = N−1/3. The Hamiltonian HN leaves the n-particle sectors
of Fock space invariant. On the N -particle sector, it agrees with (3.13). Notice that in the
notation HN , the index N does not refer to the number of particles, since HN acts on the
whole Fock space. It reminds instead of the coupling constant 1/N in front of the potential
energy, and of the semiclassical parameter ε = N−1/3. Of course, in order to recover the
mean-field regime, we will consider the time evolution of states in F having approximately
N particles. Observe that, in terms of the operator-valued distributions ax and a∗x, we can
express the Hamiltonian HN as

HN = ε2

∫
dx∇xa∗x∇xax +

1

2N

∫
dxdy V (x− y)a∗xa

∗
yayax. (3.18)

Notice that the kinetic energy ε2
∫

dx∇xa∗x∇xax can also be written as the second quanti-
zation dΓ(−ε2∆).

Since it is more convenient in this and the next chapter to use the normalization tr γ
(1)
ψ = N

for ψ ∈ L2(R3N ) with ‖ψ‖ = 1, we now give some definitions for fermionic systems again
and repeat part of the discussion. Notice also that we simplify the notation by writing γψ

for the one-particle reduced density matrix γ
(1)
ψ .
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3.2. Embedding the system in Fock space

Given a Fock space vector ψ ∈ F , we define the one-particle reduced density γψ associated
with ψ as the non-negative operator with the integral kernel

γψ(x, y) = 〈ψ, a∗yaxψ〉.

Notice that γψ is normalized such that tr γψ = 〈ψ,Nψ〉. Hence γψ is a trace class operator if
the expectation of N in the vector ψ is finite. A very useful property of one-particle density
matrices is that in the sense of operators 0 ≤ γψ ≤ 1, and especially ‖γψ‖ ≤ 1 in operator
norm on L2(R3). This only holds for fermionic, not for bosonic, one-particle density matrices
and allows us to get bounds without loosing factors of N , even if tr γψ = N .

In general, if ψ does not have a fixed number of particles, it is also important to track
the expectations 〈ψ, ayaxψ〉 and 〈ψ, a∗xa∗yψ〉. We define therefore the pairing density αψ
associated with ψ as the one-particle operator with integral kernel

αψ(x, y) = 〈ψ, ayaxψ〉.

Then we also have αψ(x, y) = 〈ψ, a∗xa∗yψ〉. The operators γψ and αψ can be combined into
the generalized one-particle density Γψ : L2(R3) ⊕ L2(R3) → L2(R3) ⊕ L2(R3) defined in
terms of the generalized creation/annihilation operators (1.50) by

〈(f1, g1),Γψ(f2, g2)〉 = 〈ψ,A∗(f2, g2)A(f1, g1)ψ〉 .

A simple computation shows that

Γψ =

(
γψ αψ
−αψ 1− γψ

)
. (3.19)

It is simple to check that 0 ≤ Γψ ≤ 1.

Knowledge of the generalized one-particle density Γψ allows the computation of the ex-
pectation of all observables which are quadratic in creation and annihilation operators. To
compute expectations of operators involving more than two creation and annihilation oper-
ators, one needs higher order correlation functions, having the form〈

ψ, a]x1
. . . a]xkψ

〉
(3.20)

where each a] is either an annihilation or a creation operator. Recall that a quasifree pure
state is a vector in F of the form ψ = RνΩ, where Rν is the unitary implementor of an
implementable Bogoliubov transformation ν. As discussed in Section 1.5 quasifree states
are completely described by the one-particle reduced density matrix γψ and the pairing
density αψ, or in other words by their generalized one-particle reduced density Γψ. If ν is
a Bogoliubov transformation of the form (1.60), it is simple to check that the generalized
one-particle density associated with ψ = RνΩ has the form

Γψ =

(
v∗v v∗u
u∗v u∗u

)
,

and we also denote it by Γν = Γψ. Hence, the reduced density of the quasifree state associated
with the Bogoliubov transformation ν is γν = v∗v, while the pairing density is αν = v∗u. As
ν is by assumption implementable, v is a Hilbert-Schmidt operator and we conclude that γν
is trace class. In particular the expectation value of the number of particles is always finite
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3. Mean-Field Evolution of Fermionic Systems

for quasifree states. Moreover, it follows that Γ2
ν = Γν , i. e. Γν is a projection. Conversely,

for every linear projection Γ : L2(R3)⊕ L2(R3)→ L2(R3)⊕ L2(R3) having the form

Γ =

(
γ α
−α 1− γ

)
for a trace class operator γ, there exists a quasifree state, i. e. an implementable Bogoliubov
transformation ν, such that Γ = Γν , i. e. Γ is the generalized one-particle density associated
with the Fock space vector RνΩ. Restricting the Hamiltonian (3.18) to quasifree states of the
form RνΩ one obtains the Bardeen-Cooper-Schrieffer (BCS) energy functional. BCS theory
plays a very important role in physics. Originally introduced to describe superconductors, it
has been later applied to explain the phenomenon of superfluidity observed in dilute gases
of fermionic atoms at low temperature. In the last years, there has been a lot of progress in
the mathematical understanding of BCS theory; see, for example, [HS08, HHSS08, FHSS11,
HS11] for results concerning equilibrium properties and [HLLS10, HS12] for results about
the time-evolution in BCS theory.

In this thesis we are interested in quasifree pure states without pairing, i. e. with α = 0.
Since Γ must be a projection, the assumption α = 0 implies that γ is a projection. We
require the number of particles to be N , i. e. tr γ = N . Then we know that there exists a
Bogoliubov transformation ν such that γ is the reduced density of RνΩ. In fact, it is easy
to construct such a Bogoliubov transformation. Since we assumed γ to be an orthogonal
projection with tr γ = N , there must be an orthonormal system (fj)

N
j=1 such that γ =∑N

j=1 |fj〉〈fj |. We define v :=
∑N

j=1 |f̄j〉〈fj |. Then we have v∗ = v =
∑N

j=1 |fj〉〈f̄j | and

v∗v =
∑N

j=1 |fj〉〈fj | = γ. We also set u = u∗ := 1 −
∑N

j=1 |fj〉〈fj | = 1 − γ. Then u is a

projection and u∗u = u2 = u = 1− γ. Hence u∗u+ v∗v = 1, and v∗u = 0. It follows that

ν =

(
u v
v u

)
=

(
1− γ

∑N
j=1 |fj〉〈f̄j |∑N

j=1 |f̄j〉〈fj | 1− γ̄

)
(3.21)

is an implementable Bogoliubov transformation, with

Γν =

(
γ 0
0 1− γ̄

)
. (3.22)

Both the quasifree pure state RνΩ and the N -particle Slater determinant ψslater(x) =
(N !)−1/2 det (fj(xi))i,j≤N satisfy the Wick theorem and are therefore fully characterized
by their generalized one-particle density (up to a phase, which is equivalent to a unitary
transformation in the space spanned by (fi)

N
i=1). Since (3.22) coincides with the generalized

one-particle density of ψslater, it follows that RνΩ = (0, . . . , 0, ψslater, 0, . . . ) (again, up to a
phase). Hence, Slater determinants are the only quasifree pure states with vanishing pairing
density.

Although we will not make use of this fact, let us notice that unitary implementors
of Bogoliubov transformations of the form (3.21), generating Slater determinants, can be
also conveniently constructed as particle-hole transformations. This construction has been
demonstrated in Section 1.5.

3.3. Main results

The next theorem is our main result. In it, we study the time evolution of initial data
close to Slater determinants, and prove that their dynamics can be described in terms of the
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Hartree-Fock (or the Hartree) equation. Of course, we cannot start with an arbitrary Slater
determinant. Instead, we need the initial data to have the semiclassical structure discussed
in the introduction. We encode this requirement in the assumption (3.24) below. We do
not expect the result to be correct if the initial data is not semiclassical, i. e. if (3.24) is not
satisfied. Notice however that, as discussed before, we expect the semiclassical structure
to naturally emerge when one tries to minimize the energy. Hence, the assumption (3.24)
is appropriate to study the dynamics of initially trapped fermionic systems close to the
ground state of the trapped Hamiltonian (traps are then released (or changed) to observe
the dynamics of the particles, which would otherwise be trivial).

Theorem 3.3.1. Assume that, in the Hamiltonian (3.18), V ∈ L1(R3) and∫
dp (1 + |p|)2|V̂ (p)| <∞ . (3.23)

Let ωN be a sequence of orthogonal projections on L2(R3), with trωN = N and such that

tr |[eip·x, ωN ]| ≤ CNε (1 + |p|) and

tr |[ε∇, ωN ]| ≤ CNε
(3.24)

for all p ∈ R3 and for a constant C > 0. Let νN denote the sequence of Bogoliubov transfor-
mations constructed in (3.21) such that RνNΩ has the generalized one-particle density

ΓνN =

(
ωN 0
0 1− ωN

)
.

Let ξN ∈ F be a sequence with 〈ξN ,N ξN 〉 ≤ C uniformly in N . Let γ
(1)
N,t be the reduced

one-particle density associated with the evolved vector

ψN,t = e−iHN t/εRνN ξN (3.25)

where the Hamiltonian HN has been defined in (3.18). On the other hand, denote by ωN,t
the solution of the Hartree-Fock equation

iε∂tωN,t =
[
−ε2∆ + (V ∗ ρt)−Xt, ωN,t

]
, (3.26)

with the initial data ωN,t=0 = ωN . Here ρt(x) = N−1ωN,t(x, x) is the normalized density and
Xt is the exchange operator associated with ωN,t, having the kernel Xt(x, y) = N−1V (x −
y)ωN,t(x, y). Then there exist constants K, c1, c2 > 0 such that∥∥∥γ(1)

N,t − ωN,t
∥∥∥
HS
≤ K exp(c2 exp(c1|t|)) (3.27)

and
tr
∣∣∣γ(1)
N,t − ωN,t

∣∣∣ ≤ KN1/2 exp(c2 exp(c1|t|)) (3.28)

for all t ∈ R.

Assume additionally that dΓ(ωN )ξN = 0 and 〈ξN ,N 2ξN 〉 ≤ C for all N ∈ N. Then there
exist constants K, c1, c2 > 0 such that

tr
∣∣∣γ(1)
N,t − ωN,t

∣∣∣ ≤ KN1/6 exp(c2 exp(c1|t|)) (3.29)
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for all t ∈ R. Moreover, under this additional assumption, we obtain that∣∣∣tr eix·q+εp·∇ (γ(1)
N,t − ωN,t

)∣∣∣ ≤ K(1 + |q|+ |p|)1/2 exp(c2 exp(c1|t|)) (3.30)

for every q, p ∈ R3, t ∈ R.

Remarks.

• Using (3.42) below, it is simple to check that R∗νNNRνN = N − 2dΓ(ωN ) + N . The
assumption 〈ξN ,N ξN 〉 ≤ C implies therefore that∣∣∣tr γ(1)

N,0 − tr ωN

∣∣∣ =
∣∣〈ξN , R∗νNNRνN ξN 〉 −N ∣∣ ≤ C

uniformly in N (this bound is of course preserved by the time-evolution). Following
the arguments of Section 3.5 it is also easy to check that

‖γ(1)
N,0 − ωN‖HS ≤ C, and tr |γ(1)

N,0 − ωN | ≤ CN
1/2,

if 〈ξN ,N ξN 〉 ≤ C. Under the additional assumption dΓ(ωN )ξN = 0, one can even show
that

tr
∣∣∣γ(1)
N,0 − ωN

∣∣∣ ≤ C,
uniformly in N (applying the arguments at the beginning of Step 3 in Section 3.5).
This proves that, at time t = 0, the bulk of the particles is in the quasifree state
generated by RνN . The small fluctuations around the quasifree state are described by
ξN . In particular, it follows that the bounds (3.27), (3.28), (3.29) and (3.30) hold at
time t = 0. Results similar to (3.27), (3.28), (3.29), (3.30) also hold if 〈ξN ,N ξN 〉 ' Nα

and 〈ξN ,N 2ξN 〉 ' Nβ, for some α, β > 0, but then, of course, the errors become larger.

• Suppose that the initial data is ωN =
∑N

j=1 |fj〉〈fj | for a family (fj)
N
j=1 of orthonor-

mal functions in L2(R3). Then the condition dΓ(ωN )ξN = 0, required for (3.29) and
(3.30), is satisfied if a(fi)ξN = 0 for all i = 1, . . . , N , meaning that particles in ξN are
orthogonal to all orbitals fj building the quasifree part of the state.

• All our results and our analysis remain valid if we included an external potential in
the Hamiltonian (3.18) generating the time-evolution. This is the case if the exter-
nal potential is not switched off but changed. The external potential would then, of
course, also appear in the Hartree-Fock equation (3.26). (Its contribution would can-
cel completely already in Proposition 3.4.3 and only trivial changes are necessary in
Proposition 3.4.4.)

• Eq. (3.27) is optimal in its N dependence (it is easy to find a sequence ξN ∈ F with

〈ξN ,N ξN 〉 < ∞ such that, already at time t = 0, the difference between γ
(1)
N,0 and

ωN,0 is of order one). On the other hand, we do not expect (3.28) and (3.29) to be
optimal (the optimal bound for the trace norm of the difference should be, like (3.27),

of order one in N). Since the Hilbert-Schmidt norm of γ
(1)
N,t and of ωN,t is of the

order N1/2 (while their trace-norm is of order N), it is not surprising that in (3.27)
we get a better rate than in (3.28) and in (3.29). We point out, however, that we can

improve (3.29) and get optimal estimates, if we test the difference γ
(1)
N,t − ωN,t against

observables having the correct semiclassical structure, even if these observables are not
Hilbert-Schmidt; see (3.30).
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• The bounds (3.27), (3.28), (3.29), (3.30) deteriorate quite fast in time. The emergence
of a double exponential is a consequence of the fact that when we propagate (3.24) along
the solution ωN,t of the Hartree-Fock equation (3.26) we get an additional factor which
is growing exponentially in time. It is reasonable to expect that in many situations, the
exponential growth for the commutators [eip·x, ωN,t] and [ε∇, ωN,t] is too pessimistic.
In these situation, it would be possible to get better time-dependence on the r. h. s. of
(3.27), (3.28), (3.29) and (3.30).

• Let ω̃N,t denote the solution of the Hartree equation

iε∂tω̃N,t =
[
−ε2∆ + (V ∗ ρ̃t), ω̃N,t

]
(3.31)

with the initial data ωN . Under the assumptions of Theorem 3.3.1 on the initial density
ωN and on the interaction potential V , we show in Appendix 3.A that the contribution
of the exchange term [Xt, ωN,t] in the Hartree-Fock equation (3.26) is of smaller order,
and that

tr |ωN,t − ω̃N,t| ≤ C exp(c1 exp(c2|t|)).

It follows from this remark that the bounds (3.27), (3.28), (3.29) and (3.30) remain
true if we replace the solution ωN,t of the Hartree-Fock equation with the solution ω̃N,t
of the Hartree equation (with the same initial data).

We can also control the convergence of higher order reduced densities. Recall that the k-
particle reduced density associated with the evolved Fock space vector ψN,t defined in (3.25)

is defined as the non-negative trace class operator γ
(k)
N,t on L2(R3k) with integral kernel given

by

γ
(k)
N,t(x1, . . . xk, x

′
1, . . . x

′
k) =

〈
ψN,t, a

∗
x′1
. . . a∗x′k

axk . . . ax1ψN,t
〉
.

The k-particle reduced density associated with the evolved quasifree state with one-particle
density ωN,t (obtained through the solution of the Hartree-Fock equation (3.26)) is given,
according to Wick’s theorem, by

ω
(k)
N,t(x1, . . . xk, x

′
1, . . . x

′
k) =

∑
π∈Sk

sgn(π)
k∏
j=1

ωt(xj , x
′
π(j)). (3.32)

Recall also that the normalization is tr ω
(k)
N,t = N !/(N − k)!.

Theorem 3.3.2. We use the same notations and assume the same conditions as in The-
orem 3.3.1 (the condition dΓ(ωN )ξN = 0 is not required here). Let k ∈ N and assume,
additionally, that the sequence ξN is such that 〈ξN , (N + 1)kξN 〉 ≤ C. Then there exist
constants D, c1, c2 > 0 (with c1 depending only on V and on the constant on the r. h. s. of
(3.24), and D, c2 depending on V and on the constants on the r. h. s. of (3.24) and on k)
such that ∥∥∥γ(k)

N,t − ω
(k)
N,t

∥∥∥
HS
≤ DN (k−1)/2 exp(c2 exp(c1|t|)) (3.33)

and

tr
∣∣∣γ(k)
N,t − ω

(k)
N,t

∣∣∣ ≤ DNk− 1
2 exp(c2 exp(c1|t|)). (3.34)
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Remark. The N -dependence of the bound (3.33) is optimal. On the other hand, the N -
dependence of (3.34) is not expected to be optimal, the optimal bound for the trace norm of

the difference γ
(k)
N,t − ω

(k)
N,t should be of the order Nk−1.

In order to show Theorem 3.3.1 and Theorem 3.3.2 we are going to compare the fully
evolved Fock space vector ψN,t = e−iHN t/εRνN ξN with the quasifree state on F with reduced
one-particle density given by the solution ωN,t of the Hartree-Fock equation (3.26). To this

end, we write ωN,t =
∑N

j=1 |fj,t〉〈fj,t| for an orthonormal family (fj,t)
N
j=1 in L2(R3). Recall

that alternatively, the functions fj,t can be determined by solving the system of N coupled
non-linear equations

iε∂tfj,t(x) = −ε2∆fj,t(x) +
1

N

N∑
i=1

∫
dyV (x− y)|fi,t(y)|2fj,t(x)

− 1

N

N∑
i=1

∫
dyV (x− y)fj,t(y)f i,t(y)fi,t(x)

with the initial data fj,t=0 = fj appearing in (3.21). Using this equivalent form of the
Hartree-Fock equation, we can avoid any ambiguity between ωN,t and the decomposition

into orbitals. We define then uN,t = 1−ωN,t and vN,t =
∑N

j=1 |f j,t〉〈fj,t|. Similarly to (3.21),
we define the Bogoliubov transformation

νN,t =

(
uN,t vN,t
vN,t uN,t

)
=

(
1− ωN,t

∑N
j=1 |fj,t〉〈f j,t|∑N

j=1 |f j,t〉〈fj,t| 1− ωN,t

)
. (3.35)

The generalized reduced density matrix associated with the quasifree state RνN,tΩ is given
by

ΓνN,t =

(
ωN,t 0
0 1− ωN,t

)
.

We expect ψN,t to be close to the quasifree state RνN,tΩ. To prove that this is indeed the
case, we define ξN,t ∈ F so that

ψN,t = e−iHN t/εRνN ξN = RνN,tξN,t

for every t ∈ R. Equivalently, ξN,t = UN (t, 0)ξN , where we defined the two-parameter group
of unitary transformations

UN (t, s) = R∗νN,te
−iHN (t−s)/εRνN,s (3.36)

for any t, s ∈ R. We refer to UN as the fluctuation dynamics; it describes the evolution of
particles which are outside the quasifree state.

As we will show in detail in Section 3.5, the problem of proving the convergence of γ
(1)
N,t

towards the solution of the Hartree-Fock equation ωt can be reduced to the problem of
controlling the expectation of the number of particles operator (and of its powers) in the
vector ξN,t, or, equivalently, of controlling the growth of the number of particles operator
with respect to the fluctuation dynamics UN .
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3.4. Bounds on growth of fluctuations

In this section we prove bounds for the growth of the expectation of the number of particles
operator and of its powers with respect to the fluctuation dynamics UN (t, s). To obtain such
estimates, we will make use of the following lemma, where we collect a series of important
bounds for operators on the fermionic Fock space.

Lemma 3.4.1. For every bounded operator O on L2(R3), we have

‖dΓ(O)ψ‖ ≤ ‖O‖ ‖Nψ‖

for every ψ ∈ F . If O is a Hilbert-Schmidt operator, we also have the bounds

‖dΓ(O)ψ‖ ≤ ‖O‖HS ‖N 1/2ψ‖,∥∥∥∥∫ dxdx′O(x, x′)axax′ψ

∥∥∥∥ ≤ ‖O‖HS ‖N 1/2ψ‖,∥∥∥∥∫ dxdx′O(x, x′)a∗xa
∗
x′ψ

∥∥∥∥ ≤ 2‖O‖HS ‖(N + 1)1/2ψ‖.

(3.37)

for every ψ ∈ F . Finally, if O is a trace class operator, we obtain

‖dΓ(O)‖ ≤ 2 tr |O| ,∥∥∥∥∫ dxdx′O(x, x′)axax′

∥∥∥∥ ≤ 2 tr |O| ,∥∥∥∥∫ dxdx′O(x, x′)a∗xa
∗
x′

∥∥∥∥ ≤ 2 tr |O| .

(3.38)

Proof. For any bounded operator O on L2(R3) we have

‖dΓ(O)ψ‖2 =
∞∑
n=1

n∑
i,j=1

〈ψ(n), O(i)O(j)ψ(n)〉 ≤ ‖O‖2
∞∑
n=1

n2‖ψ(n)‖2 = ‖O‖2‖Nψ‖2 .

For a Hilbert-Schmidt operator O on L2(R3), we have, using (1.34),∥∥∥∥∫ dxdx′O(x′, x) a]x′axψ

∥∥∥∥ ≤ ∫ dx ‖a](O(., x))axψ‖

≤
∫

dx ‖O(., x)‖2 ‖axψ‖

≤ ‖O‖HS

(∫
dx ‖axψ‖2

)1/2

≤ ‖O‖HS‖N 1/2ψ‖

(3.39)

where a] is either an annihilation operator a or a creation operator a∗. This proves the first
two bounds in (3.37). The third bound in (3.37) can be reduced to the previous bound as
follows:∥∥∥∥∫ dxdy O(x, y)a∗xa

∗
yψ

∥∥∥∥ = sup
ϕ∈F , ‖ϕ‖=1

∣∣∣∣〈ϕ,∫ dxdy O(x, y)a∗xa
∗
yψ

〉∣∣∣∣
= sup

ϕ∈F , ‖ϕ‖=1

∣∣∣∣〈∫ dxdy O(x, y)axay(N + 1)−1/2ϕ, (N + 3)1/2ψ

〉∣∣∣∣
≤ sup

ϕ∈F , ‖ϕ‖=1
‖O‖HS‖N 1/2(N + 1)−1/2ϕ‖‖(N + 3)1/2ψ‖

≤ ‖O‖HS‖(N + 3)1/2ψ‖.
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Finally, we prove (3.38). Assume first that O is a selfadjoint trace class operator. Then
we have the spectral decomposition

O =
∑
j

λj |fj〉〈fj |

for a real sequence (λj)j of eigenvalues with
∑

j |λj | = tr|O| and an orthonormal family of

eigenvectors fj ∈ L2(R3). We find∥∥∥∥∫ dxdx′O(x, x′) a]xa
]
x′

∥∥∥∥ ≤∑
j

|λj |
∥∥∥∥∫ dxdx′ fj(x

′)f j(x) a]xa
]
x′

∥∥∥∥ =
∑
j

|λj |
∥∥∥a](f̃j)a](f̃j)∥∥∥

where f̃j is either fj or its complex conjugate f j . We conclude from (1.34) that∥∥∥∥∫ dxdx′O(x, x′)a]xa
]
x′

∥∥∥∥ ≤∑
j

|λj |‖fj‖2 = tr |O| . (3.40)

Now, for an arbitrary, not necessarily selfadjoint, trace class operator O, we write

O =
O +O∗

2
+ i

O −O∗

2i
.

Therefore, applying (3.40), we find∥∥∥∫ dxdx′O(x, x′) a]xa
]
x′

∥∥∥
≤
∥∥∥∥∫ dxdx′

(
O +O∗

2

)
(x, x′) a]xa

]
x′

∥∥∥∥+

∥∥∥∥∫ dxdx′
(
O −O∗

2i

)
(x, x′) a]xa

]
x′

∥∥∥∥
≤ tr

∣∣∣∣O +O∗

2

∣∣∣∣+ tr

∣∣∣∣O −O∗2i

∣∣∣∣ ≤ 2 tr |O| .

We are now ready to state the main result of this section, which is a bound for the growth
of the expectation of (N + 1)k with respect to the fluctuation dynamics.

Theorem 3.4.2. Assume (3.23) and (3.24). Let UN (t, s) be the fluctuation dynamics defined
in (3.36) and k ∈ N. Then there exist a constant c1 > 0, depending only on V , and a constant
c2 > 0 depending on V and on k such that〈

ξ,UN (t, 0)∗(N + 1)k UN (t, 0)ξ
〉
≤ exp(c2 exp(c1|t|)) 〈ξ, (N + 1)kξ〉. (3.41)

The first step in the proof of Theorem 3.4.2 is an explicit computation of the time derivative
of the expectation of the evolved moments of the number of particles operator appearing on
the l. h. s. of (3.41). Recall from (3.36) that UN (t, 0) = R∗νN,te

−iHN t/εRνN , where

νN,t =

(
uN,t vN,t
vN,t uN,t

)
is the Bogoliubov transform defined in (3.35), with v∗N,tvN,t = ωN,t and uN,t = 1− ωN,t.

In the rest of this section, we will use the shorthand notation Rt ≡ RνN,t , ut ≡ uN,t, vt ≡
vN,t and vt ≡ vN,t. Moreover, we define the functions ut,x, vt,x, vt,x by ut,x(y) := uN,t(y, x),
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vt,x(y) := vN,t(y, x) and vt,x(y) := vN,t(y, x), where uN,t(y, x), vN,t(y, x) and vN,t(y, x) denote
the integral kernels of the operators uN,t, vN,t and vN,t. Notice that, from (1.63), the action
of the Bogoliubov transformation Rt on the operator-valued distributions ax, a

∗
x is given by

R∗t axRt = a(ut,x) + a∗(vt,x) and R∗t a
∗
xRt = a∗(ut,x) + a(vt,x). (3.42)

Proposition 3.4.3. Let UN (t, s) be the fluctuation dynamics defined in (3.36), ξ ∈ F , and
k ∈ N. Then

iε
d

dt

〈
UN (t, 0)ξ, (N + 1)kUN (t, 0)ξ

〉
= −4i

N
Im

k∑
j=1

∫
dxdy V (x− y)

×
{〈
UN (t, 0)ξ, (N + 1)j−1a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)(N + 1)k−jUN (t, 0)ξ

〉
+
〈
UN (t, 0)ξ, (N + 1)j−1a(vt,x)a(vt,y)a(ut,y)a(ut,x)(N + 1)k−jUN (t, 0)ξ

〉
+
〈
UN (t, 0)ξ, (N + 1)j−1a∗(ut,y)a

∗(vt,y)a
∗(vt,x)a(vt,x)(N + 1)k−jUN (t, 0)ξ

〉}
.

(3.43)

Proof. A simple computation using (3.42) shows that

RtNR∗t = N − 2dΓ(ωN,t) +N

and therefore that

UN (t, 0)∗NUN (t, 0) = R∗0 e
iHN t/ε(N − 2dΓ(ωN,t) +N)e−iHN t/εR0

= R∗0NR0 − 2R∗0e
iHN t/εdΓ(ωN,t)e

−iHN t/εR0 +N.

Hence

iε
d

dt
U∗N (t, 0)NUN (t, 0) = −2R∗0 e

iHN t/ε {dΓ(iε∂tωN,t)− [HN , dΓ(ωN,t)]} e−iHN t/εR0

= −2U∗N (t, 0)R∗t {dΓ(iε∂tωN,t)− [HN , dΓ(ωN,t)]}Rt UN (t, 0).

On the one hand, from the Hartree-Fock equation (3.26) for ωN,t we find

dΓ(iε∂tωN,t) = dΓ
([
−ε2∆, ωN,t

])
+ dΓ ([V ∗ ρt −Xt, ωN,t])

where we recall the definitions of the normalized density ρt(x) = (1/N)ωN,t(x, x) and of the
exchange operator Xt(x, y) = (1/N)V (x− y)ωN,t(x, y). On the other hand

[HN , dΓ(ωN,t)] = [dΓ(−ε2∆), dΓ(ωN,t)] + [VN , dΓ(ωN,t)]

with the interaction term

VN =
1

2N

∫
dxdyV (x− y)a∗xa

∗
yayax.

We conclude that

iε
d

dt
U∗N (t, 0)NUN (t, 0)

= −2U∗N (t, 0)R∗t {dΓ ([V ∗ ρt −Xt, ωN,t])− [VN , dΓ(ωN,t)]}RtUN (t, 0).
(3.44)
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Next, we compute the two terms in the brackets. The first term is given by

dΓ([V ∗ ρt −Xt, ωN,t])

=
1

N

∫
dz1dz2 a

∗
z1az2

∫
dxV (z1 − x)

[
ωN,t(z1, z2)ωN,t(x, x)− ωN,t(z1, x)ωN,t(x, z2)

]
− h.c.

(3.45)

Using (3.42), we find

R∗t dΓ([V ∗ ρt −Xt, ωN,t])Rt

=
1

N

∫
dz1dz2 (a∗(ut,z1) + a(vt,z1)) (a(ut,z2) + a∗(vt,z2))

×
∫
dxV (z1 − x)

[
ωN,t(z1, z2)ωN,t(x, x)− ωN,t(z1, x)ωN,t(x, z2)

]
− h.c.

(3.46)

The integration over z2 can be done explicitly using the property
∫
dz2 ut(y1, z2)ωN,t(y2, z2) =

(ωN,tut)(y2, y1) = 0 and the fact that ωN,tvt = vt. We get

R∗t dΓ([V ∗ ρt −Xt, ωN,t])Rt

=
1

N

∫
dz1 (a∗(ut,z1) + a(vt,z1))

×
∫

dxV (z1 − x)
[
a∗(vt,z1)ωN,t(x, x)− a∗(vt,x)ωN,t(z1, x)

]
− h.c.

=
1

N

∫
dxdy V (x− y)

[
ωN,t(x, x)a∗(ut,y)a

∗(vt,y)− ωN,t(y, x)a∗(ut,y)a
∗(vt,x)

]
− h.c.

(3.47)

where in the last step the contributions containing a(vt,z1) are cancelled by their hermitian
conjugates.

We now consider the second contribution in the brackets on the r. h. s. of (3.44). Using
the canonical anticommutation relations, we obtain

[VN ,dΓ(ωN,t)] =
1

N

∫
dxdydz V (x− y)ωN,t(z, y)a∗za

∗
xayax − h.c.

Conjugating with the Bogoliubov transformation Rt, we find

R∗t [VN , dΓ(ωN,t)]Rt

=
1

N

∫
dxdydz V (x− y)ωN,t(z, y)

× (a∗(ut,z) + a(vt,z)) (a∗(ut,x) + a(vt,x)) (a(ut,y) + a∗(vt,y)) (a(ut,x) + a∗(vt,x))

− h.c.

Integrating over z, using again ωN,tut = 0 and ωN,tvt = vt, we find

R∗t [VN , dΓ(ωN,t)]Rt

=
1

N

∫
dxdy V (x− y)a(vt,y) (a∗(ut,x) + a(vt,x)) (a(ut,y) + a∗(vt,y)) (a(ut,x) + a∗(vt,x))

− h.c.
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Since
〈
vt,y, ut,x

〉
= 0 the operators a(vt,y) and a∗(ut,x) anticommute. Taking into account

the fact that many contributions cancel after subtracting the hermitian conjugate, we find

R∗t [VN ,dΓ(ωN,t)]Rt

= − 1

N

∫
dxdy V (x− y)

[
a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)

+ a(vt,x)a(vt,y)a(ut,y)a(ut,x)− a(vt,x)a(vt,y)a
∗(vt,x)a(ut,y)

]
− h.c.

Normal ordering the last term in the brackets using
〈
vt,y, vt,x

〉
= ωN,t(x, y), we conclude

that

R∗t [VN , dΓ(ωN,t)]Rt

= − 1

N

∫
dxdy V (x− y)

[
a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)

+ a(vt,x)a(vt,y)a(ut,y)a(ut,x) + a∗(ut,y)a
∗(vt,y)a

∗(vt,x)a(vt,x)

]
− h.c.

+
1

N

∫
dxdy V (x− y)

[
ωN,t(x, x)a∗(ut,y)a

∗(vt,y)− ωN,t(y, x)a∗(ut,y)a
∗(vt,x)

]
− h.c.

(3.48)

Combining (3.47) with (3.48), we find

R∗t {dΓ ([V ∗ ρt −Xt, ωN,t])− [VN , dΓ(ωN,t)]}Rt

= − 1

N

∫
dxdy V (x− y)

[
a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)

+ a(vt,x)a(vt,y)a(ut,y)a(ut,x) + a∗(ut,y)a
∗(vt,y)a

∗(vt,x)a(vt,x)

]
− h.c.

From (3.44), we obtain

iε
d

dt
U∗N (t, 0)NUN (t, 0)

= − 4i

N
Im

∫
dxdy V (x− y)U∗N (t, 0)

[
a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)

+ a(vt,x)a(vt,y)a(ut,y)a(ut,x) + a∗(ut,y)a
∗(vt,y)a

∗(vt,x)a(vt,x)

]
UN (t, 0).

Eq. (3.43) now follows from the observation that

iε
d

dt

〈
ξ,U∗N (t, 0)(N + 1)kUN (t, 0)ξ

〉
=

k∑
j=1

〈
ξ,U∗N (t, 0)(N + 1)j−1

× UN (t, 0)

[
iε

d

dt
U∗N (t, 0)NUN (t, 0)

]
U∗N (t, 0)(N + 1)k−jUN (t, 0)ξ

〉
.
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Next, we have to bound the three terms on the r. h. s. of (3.43) by the expectation of
(N + 1)k in the vector UN (t, 0)ξ. A key ingredient to obtain such bounds is an estimate for
the trace norm of the commutator [eip·x, ωN,t]. For t = 0 such an estimate was assumed in
(3.24). In the next proposition, whose proof is deferred to Section 3.6, we show that the
bound can be propagated to all t ∈ R.

Proposition 3.4.4. Let V ∈ L1(R3) such that∫
dp (1 + |p|2) |V̂ (p)| <∞ .

Let ωN be a non-negative trace class operator on L2(R3), with trωN = N , ‖ωN‖ ≤ 1 and
such that

sup
p∈R3

1

1 + |p|
tr |[ωN , eip·x]| ≤ CNε

tr |[ωN , ε∇]| ≤ CNε .
(3.49)

for all p ∈ R3. Let ωN,t be the solution of the Hartree-Fock equation (3.26) with initial data
ωN . Then, there exist constants K, c > 0 only depending on the potential V such that

sup
p∈R3

1

1 + |p|
tr |[ωN,t, eip·x]| ≤ KNε exp(c|t|)

tr |[ωN,t, ε∇]| ≤ KNε exp(c|t|)
(3.50)

for all p ∈ R3 and t ∈ R.

We are now ready to estimate the three terms appearing on the r. h. s. of (3.43).

Lemma 3.4.5. Under the assumptions (3.23) und (3.24) of Theorem 3.3.1, there exists a
constant c1 > 0 depending on V and a constant C > 0 depending on V and on k ∈ N, such
that∣∣∣ 1

N

∫
dxdy V (x− y)

〈
UN (t, 0)ξ, (N + 1)j−1

{
a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)

+ a(vt,x)a(vt,y)a(ut,y)a(ut,x) + a∗(ut,y)a
∗(vt,y)a

∗(vt,x)a(vt,x)

}
(N + 1)k−jUN (t, 0)ξ

〉∣∣∣
≤ Cε exp(c1|t|)

〈
UN (t, 0)ξ, (N + 1)kUN (t, 0)ξ

〉
(3.51)

for all j = 1, . . . , k and t ∈ R.

Proof. We estimate the contributions arising from the three terms in the parenthesis sepa-
rately. Let us start with the first term,

I :=
∣∣∣ 1

N

∫
dxdy V (x− y)

〈
UN (t, 0)ξ, (N + 1)j−1

× a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)(N + 1)k−jUN (t, 0)ξ
〉∣∣∣ .
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Inserting 1 = (N + 3)k/2−j(N + 3)−k/2+j , pulling (N + 3)−k/2+j through the fermionic
operators to the right, and using the Cauchy-Schwarz inequality, we get:

I ≤ 1

N

∫
dp|V̂ (p)|

∥∥∥∥∫ dx a∗(ut,x)eip·xa(ut,x)(N + 3)k/2−j(N + 1)j−1UN (t, 0)ξ

∥∥∥∥
×
∥∥∥∥∫ dy a(vt,y)e

−ip·ya(ut,y)(N + 1)k/2UN (t, 0)ξ

∥∥∥∥ . (3.52)

The first norm can be bounded using that, for any φ ∈ F :∥∥∥∥∫ dx a∗(ut,x)eip·xa(ut,x)φ

∥∥∥∥ =

∥∥∥∥∫ dxdr1dr2 ut(r1, x)eip·xut(x, r2)a∗r1ar2φ

∥∥∥∥
=
∥∥dΓ(ute

ip·xut)φ
∥∥

≤ ‖Nφ‖

(3.53)

where the last line follows from Lemma 3.4.1 together with ‖uteip·xut‖ ≤ 1 (with a slight
abuse of notation, eip·x denotes a multiplication operator). As for the second norm on the
r. h. s. of (3.52), we use that:∥∥∥∥∫ dy a(vt,y)e

−ip·ya(ut,y)φ

∥∥∥∥ =

∥∥∥∥∫ dr1dr2

(
vte
−ip·xut

)
(r1, r2)ar1ar2φ

∥∥∥∥
=

∥∥∥∥∫ dr1dr2

(
vt[e

−ip·x, ωN,t]
)

(r1, r2)ar1ar2φ

∥∥∥∥
≤ 2 tr

∣∣vt[e−ip·x, ωN,t]∣∣ ‖φ‖
≤ 2Kε(1 + |p|)Nec|t|‖φ‖ (3.54)

where the second line follows from vtut = 0 and ut = 1− ωN,t, the third from Lemma 3.4.1
and the last from ‖vt‖ ≤ 1 and Proposition 3.4.4. Using the bounds (3.53), (3.54) in (3.52)
we get:

I ≤ 2Kε

(∫
dp|V̂ (p)|(1 + |p|)

)
ec|t|

∥∥∥N (N + 3)k/2−j(N + 1)j−1UN (t, 0)ξ
∥∥∥

×
∥∥∥(N + 1)k/2UN (t, 0)ξ

∥∥∥
≤ Cεec|t|‖(N + 1)k/2UN (t, 0)ξ‖2 (3.55)

for a suitable constant C > 0 (depending on k). Consider now the second term on the r. h. s.
of (3.51),

II :=
∣∣∣ 1

N

∫
dxdy V (x− y)

〈
UN (t, 0)ξ, (N + 1)j−1

× a(vt,x)a(vt,y)a(ut,y)a(ut,x)(N + 1)k−jUN (t, 0)ξ
〉∣∣∣.

Inserting a 1 = (N + 5)k/2+1−j(N + 5)−k/2−1+j and pulling (N + 5)−k/2−1+j through the
annihilation operators to the right, we get:

II ≤ 1

N

∫
dpdxdy |V̂ (p)|

∥∥∥(N + 1)j−1(N + 5)k/2+1−jUN (t, 0)ξ
∥∥∥

×
∥∥∥∥∫ dxdy a(vt,x)eip·xa(ut,x)a(vt,y)e

−ip·ya(ut,y)(N + 1)k/2−1UN (t, 0)ξ

∥∥∥∥ .(3.56)
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Using that vtut = 0 and that ut = 1− ωN,t, we obtain, for any φ ∈ F :∥∥∥∥∫ dx a(vt,x)eipxa(ut,x)φ

∥∥∥∥ =

∥∥∥∥∫ dr1dr2dx vt(r1, x)eipxut(x, r2)ar1ar2φ

∥∥∥∥
≤ ‖vt[eip·x, ωN,t]‖HS‖N 1/2φ‖

≤
(
2 tr

∣∣[eip·x, ωN,t]∣∣)1/2 ‖N 1/2φ‖
≤ (2Kε(1 + |p|)N)1/2ec|t| ‖N 1/2φ‖ (3.57)

where the second line follows from Lemma 3.4.1, the third from ‖vt‖ ≤ 1, ‖eip·x‖ ≤ 1,
‖ωN,t‖ ≤ 1 and the last follows from Proposition 3.4.4 (the constants K, c > 0 depend on
V but not on k). Applying this bound twice, we can estimate the last norm in the r. h. s. of
(3.56) as:

∥∥∥∫ dxdy a(vt,x)eip·xa(ut,x)a(vt,y)e
−ip·ya(ut,y)(N + 1)k/2−1UN (t, 0)ξ

∥∥∥
≤ (2Kε(1 + |p|)N)1/2ec|t|

∥∥∥∥∫ dy a(vt,y)e
−ip·ya(ut,y)N 1/2(N + 1)k/2−1UN (t, 0)ξ

∥∥∥∥
≤ 2Kε(1 + |p|)Ne2c|t|

∥∥∥N (N + 1)k/2−1UN (t, 0)ξ
∥∥∥

≤ 2Kε(1 + |p|)Ne2c|t|
∥∥∥(N + 1)k/2UN (t, 0)ξ

∥∥∥ . (3.58)

Plugging this bound into (3.56), we conclude that

II ≤ 2Kε

(∫
dp |V̂ (p)|(1 + |p|)

)
e2c|t|

∥∥∥(N + 5)k/2UN (t, 0)ξ
∥∥∥2

≤ Cεe2c|t|
∥∥∥(N + 1)k/2UN (t, 0)ξ

∥∥∥2

where the constant c > 0 depends on V while the constant C > 0 depends on V and on
k. The last term in (3.51) is bounded analogously to term I. This completes the proof of
(3.51).

Proof of Theorem 3.4.2. Combining Proposition 3.4.3 and Lemma 3.4.5, we find∣∣∣∣iε d

dt

〈
UN (t, 0)ξ, (N + 1)kUN (t, 0)ξ

〉∣∣∣∣ ≤ Cεec1|t| 〈UN (t, 0)ξ, (N + 1)kUN (t, 0)ξ
〉
.

Grönwall’s Lemma implies that〈
UN (t, 0)ξ, (N + 1)k UN (t, 0)ξ

〉
≤ exp(c2 exp(c1|t|))

〈
ξ, (N + 1)kξ

〉
where the constant c1 depends only on the potential V , while c2 depends on V and on
k ∈ N.
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3.5. Proof of main results

In this section we prove our main results, Theorem 3.3.1 and Theorem 3.3.2. As in Section
3.4, we will use the notation Rt ≡ RνN,t , ut ≡ uN,t, vt ≡ vN,t, vt ≡ vN,t. Moreover, we define
the functions ut,x(y) = uN,t(y, x), vt,x(y) = vN,t(y, x) and vt,x(y) = vN,t(y, x).

Proof of Theorem 3.3.1. We start from the expression

γ
(1)
N,t(x, y) = 〈ψN,t, a∗yaxψN,t〉

= 〈e−iHN t/εR0ξN , a
∗
yaxe

−iHN t/εR0ξN 〉

= 〈ξN , R∗0eiHN t/εa∗yaxe−iHN t/εR0ξN 〉.

(3.59)

Introducing the fluctuation dynamics UN defined in (3.36), we obtain

γ
(1)
N,t(x, y) =

〈
ξN ,U∗N (t, 0)R∗t a

∗
yaxRtUN (t, 0)ξN

〉
=
〈
ξN ,U∗N (t, 0) (a∗(ut,y) + a(vt,y)) (a(ut,x) + a∗(vt,x))UN (t, 0)ξN

〉
=
〈
ξN ,U∗N (t, 0)

{
a∗(ut,y)a(ut,x)− a∗(vt,x)a(vt,y) + 〈vt,y, vt,x〉

+ a∗(ut,y)a
∗(vt,x) + a(vt,y)a(ut,x)

}
UN (t, 0)ξN

〉
.

Here we used the defining property (3.42) of the Bogoliubov transformation Rt and, in the
third line, the canonical anticommutation relations (1.33). We observe that

〈vt,y, vt,x〉 =

∫
dzvt(z, y)vt(z, x) = (vtvt)(y, x) = ωN,t(x, y).

This implies that

γ
(1)
N,t(x, y)− ωN,t(x, y) =

〈
ξN ,U∗N (t, 0)

{
a∗(ut,y)a(ut,x)− a∗(vt,x)a(vt,y)

+ a∗(ut,y)a
∗(vt,x) + a(vt,y)a(ut,x)

}
UN (t, 0)ξN

〉
.

Step 1: Proof of (3.27). We integrate this difference against the integral kernel of a
Hilbert-Schmidt operator O on L2(R3) and find

tr O
(
γ

(1)
N,t − ωN,t

)
=
〈
ξN ,U∗N (t, 0)

(
dΓ(utOut)− dΓ(vtO∗vt)

)
UN (t, 0)ξN

〉
+ 2Re

〈
ξN ,U∗N (t, 0)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
UN (t, 0)ξN

〉
.

(3.60)

From Lemma 3.4.1, and using ‖ut‖ = ‖vt‖ = 1, we conclude that∣∣∣trO (γ(1)
N,t − ωN,t

)∣∣∣ ≤ (‖utOut‖+ ‖vtO∗vt‖
) 〈
ξN ,U∗N (t, 0)NUN (t, 0)ξN

〉
+ 2‖vtOut‖HS

∥∥∥(N + 1)1/2UN (t, 0)ξN

∥∥∥ ‖ξN‖
≤ C‖O‖HS

〈
ξN ,U∗N (t, 0)(N + 1)UN (t, 0)ξN

〉
.

(3.61)

From Theorem 3.4.2 and from the assumption 〈ξN ,N ξN 〉 ≤ C, we obtain∥∥∥γ(1)
N,t − ωN,t

∥∥∥
HS
≤ C exp(c1 exp(c2|t|))
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3. Mean-Field Evolution of Fermionic Systems

which completes the proof of (3.27).

Step 2: Proof of (3.28). We start anew from (3.60), assuming now O to be a compact
operator on L2(R3), not necessarily Hilbert-Schmidt. Proceeding as in (3.61), we find∣∣∣ trO (γ(1)

N,t − ωN,t
) ∣∣∣

≤ 2‖O‖ ‖(N + 1)1/2UN (t, 0)ξN‖2 + 2‖vtOut‖HS

∥∥∥(N + 1)1/2UN (t, 0)ξN

∥∥∥ ‖ξN‖
≤ 2‖O‖ ‖(N + 1)1/2UN (t, 0)ξN‖2 + ‖O‖ ‖vt‖HS‖(N + 1)1/2UN (t, 0)ξN‖‖ξN‖.

Applying Theorem 3.4.2, the assumption 〈ξN ,N ξN 〉 ≤ C, and ‖vt‖HS = N1/2, we obtain∣∣∣ trO (γ(1)
N,t − ωN,t

) ∣∣∣ ≤ CN1/2 exp(c1 exp(c2|t|)) .

This completes the proof of (3.28).

Step 3: Proof of (3.29). Let us now assume additionally dΓ(ωN )ξN = 0. Let ξ
(n)
N the n-

particle component of the Fock space vector ξN . With a slight abuse of notation, we denote

again by ξ
(n)
N the Fock space vector (0, . . . , 0, ξ

(n)
N , 0, . . . ) ∈ F . The assumption implies that

dΓ(ωN )ξ
(n)
N = 0 for all n ∈ N. Hence

NRνN ξ
(n)
N = RνN (N +N − 2dΓ(ωN ))ξ

(n)
N = RνN (n+N)ξ

(n)
N = (n+N)RνN ξ

(n)
N . (3.62)

In other words, RνN ξ
(n)
N is an eigenstate of the number of particles operator with eigenvalue

n+N . Hence

γ
(1)
N,t(x, y)

=
∑
n≥0

〈e−iHN t/εRνN ξ
(n)
N , a∗yaxe

−iHN t/εRνN ξ
(n)
N 〉

=
∑
n≥0

〈UN (t, 0)ξ
(n)
N , (a∗(ut,y) + a(v̄t,y))(a(ut,x) + a∗(v̄t,x))UN (t, 0)ξ

(n)
N 〉.

Proceeding as in the proof of the first part of Theorem 3.3.1, for a compact operator O on
L2(R3), we end up with:

trO(γ
(1)
N,t − ωN,t)

=
∑
n≥0

〈ξ(n)
N ,U∗N (t, 0)

(
dΓ(utOut)− dΓ(vtO∗vt)

)
UN (t, 0)ξ

(n)
N 〉

+ 2 Re
∑
n≥0

〈ξ(n)
N ,U∗N (t, 0)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
UN (t, 0)ξ

(n)
N 〉

=: I + II .

(3.63)

We estimate separately the two lines in the r. h. s. of Eq. (3.63). Let us start with

I =
∑
n≥0

〈ξ(n)
N ,U∗N (t, 0)

(
dΓ(utOut)− dΓ(vtO∗vt)

)
UN (t, 0)ξ

(n)
N 〉.
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From Lemma 3.4.1, we get

I ≤ (‖utOut‖+ ‖vtO∗vt‖)
∑
n≥0

〈ξ(n)
N ,U∗N (t, 0)NUN (t, 0)ξ

(n)
N 〉

≤ C‖O‖ exp(c1 exp(c2|t|))
∑
n≥0

〈ξ(n)
N ,N ξ(n)

N 〉

= C‖O‖ exp(c1 exp(c2|t|))〈ξN ,N ξN 〉 ≤ C‖O‖ exp(c1 exp(c2|t|))

(3.64)

where we used the fact that ‖ut‖ = ‖vt‖ = 1, Theorem 3.4.2 to control the growth of the
expectation of N w. r. t. the fluctuation dynamics UN , and that by assumption 〈ξN ,N ξN 〉 ≤
C. Therefore, we are left with

II = 2 Re
∑
n≥0

〈ξ(n)
N ,U∗N (t, 0)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
UN (t, 0)ξ

(n)
N 〉 . (3.65)

We now introduce the generator LN (t) through iε∂tUN (t, s) = LN (t)U(t, s). The generator
has a part which commutes with the number operator N ; this operator we call E(t). From
Proposition 3.4.3 we know the part of the generator which does not commute with the
number operator; writing this part explicitly we get

LN (t) =
1

N

∫
dxdy V (x− y)

{
a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)

+
1

2
a(vt,x)a(vt,y)a(ut,y)a(ut,x)− a∗(ut,y)a∗(vt,y)a∗(vt,x)a(vt,x) + h.c.

}
+ E(t).

(3.66)

We are going to compare the dynamics UN (t, s) with a modified dynamics U (1)
N (t, s), whose

generator L(1)
N (t) only contains one of the three explicitly written terms on the r. h. s. of

(3.66), and the term E(t), which commutes with N . We define

L(1)
N (t) :=

1

N

∫
dxdyV (x− y)

{1

2
a(vt,x)a(vt,y)a(ut,y)a(ut,x) + h.c.

}
+ E(t).

Notice that L(1)
N (t) can only create or annihilate four particles at a time. This implies that,

although L(1)
N (t) does not commute with N , it satisfies

1(N ∈ n+ 4Z)U (1)
N (t, 0) = U (1)

N (t, 0)1(N ∈ n+ 4Z) for all n ∈ N. (3.67)

Here 1(N ∈ n+4Z) is the projection defined by applying the functional calculus of N to the
characteristic function of the set n+ 4Z. We will use the shorthand 1n+4Z = 1(N ∈ n+ 4Z)
from now on.

We now rewrite (3.65) as

II = 2 Re
∑
n≥0

{
〈ξ(n)
N ,U (1)∗

N (t, 0)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N 〉

+ 〈ξ(n)
N ,

(
U∗N (t, 0)− U (1)∗

N (t, 0)
)(∫

dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N 〉

+ 〈ξ(n)
N ,U∗N (t, 0)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)(
UN (t, 0)− U (1)

N (t, 0)
)
ξ

(n)
N 〉
}

=: II1 + II2 + II3 .

(3.68)
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The key observation which allows us to improve the rate of convergence with respect to

Eq. (3.28) is that II1 = 0. This follows from the remark that U (1)
N can only create or

annihilate particles in groups of four. Thus, the expectation of a product of two annihilation

operators (or two creation operators) in the vector U (1)
N (t, 0)ξ

(n)
N must vanish. To prove this

fact rigorously, we use (3.67), which implies that for each n ∈ N

〈ξ(n)
N ,U (1)∗

N (t, 0)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N 〉

= 〈1n+4Zξ
(n)
N ,U (1)∗

N (t, 0)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)1n+4Zξ

(n)
N 〉

= 〈ξ(n)
N ,U (1)∗

N (t, 0)1n+4Z

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
1n+4ZU

(1)
N (t, 0)ξ

(n)
N 〉

= 〈ξ(n)
N ,U (1)∗

N (t, 0)1n+4Z1n+4Z+2

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N 〉

= 0, (3.69)

where in the last step we used that the range of the projections is disjoint, 1n+4Z1n+4Z+2 = 0.
We are left with bounding the last two terms in (3.68); let us start with

II2 = 2 Re
∑
n≥0

〈
ξ

(n)
N ,

(
U∗N (t, 0)− U (1)∗

N (t, 0)
)

×
(∫

dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

〉
.

(3.70)

We expand UN in terms of U (1)
N using the Duhamel formula

UN (t, 0)− U (1)
N (t, 0) = − i

ε

∫ t

0
dsU(t, s)L̃N (s)U (1)

N (s, 0), (3.71)

wherein

L̃N (t) = LN (t)− L(1)
N (t)

=
1

N

∫
dxdy V (x− y)

{
a∗(ut,x)a(vt,y)a(ut,y)a(ut,x)

− a∗(ut,y)a∗(vt,y)a∗(vt,x)a(vt,x) + h.c.
} (3.72)

Plugging (3.71) into (3.70) and using (3.72) we end up with

II2 ≤
4

εN

∑
n≥0

{∣∣∣∣〈ξ(n)
N ,

∫ t

0
dsU (1)∗

N (s, 0)

×
(∫

dxdy V (x− y)a∗(us,x)a(v̄s,y)a(us,y)a(us,x) + h.c.

)
× U∗N (t, s)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

〉∣∣∣∣
+

∣∣∣∣〈ξ(n)
N ,

∫ t

0
dsU (1)∗

N (s, 0)

(∫
dxdy V (x− y)a∗(us,y)a

∗(v̄s,y)a
∗(v̄s,x)a(v̄s,x) + h.c.

)
×

124



3.5. Proof of main results

× U∗N (t, s)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)(t, 0)ξ

(n)
N

〉∣∣∣∣}
=: II2.1 + II2.2 . (3.73)

We start by estimating II2.1. We find

II2.1 ≤
2

εN

∑
n≥0

∫ t

0
ds

∫
dp |V̂ (p)|

×
{∣∣∣〈ξ(n)

N ,U (1)∗
N (s, 0)dΓ(use

ipxūs)

×
(∫

dω1dω2 (vse
−ipxūs)(ω1, ω2)aω1aω2

)
U∗N (t, s)

×
(∫

dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

〉∣∣∣
+
∣∣∣〈ξ(n)

N ,U (1)∗
N (s, 0)

(∫
dω1dω2 (v̄se

−ipxus)(ω1, ω2)a∗ω1
a∗ω2

)
× dΓ(use

ipxūs)U∗N (t, s)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

〉∣∣∣} .
Using the Cauchy-Schwarz inequality, we obtain

II2.1 ≤
2

εN

∑
n≥0

∫ t

0
ds

∫
dp|V̂ (p)|

∥∥∥dΓ(use
ipxūs)U (1)

N (s, 0)ξ
(n)
N

∥∥∥
×
∥∥∥∥(∫ dω1dω2 (vse

−ipxūs)(ω1, ω2)aω1aω2

)
U∗N (t, s)

×
(∫

dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

∥∥∥∥
+

2

εN

∑
n≥0

∫ t

0
ds

∫
dp |V̂ (p)|

×
∥∥∥(N + 2)−1/2dΓ(use

ipxūs)

×
(∫

dω1dω2 (vse
−ipxūs)(ω1, ω2)aω1aω2

)
U (1)
N (s, 0)ξ

(n)
N

∥∥∥∥
×
∥∥∥∥(N + 2)1/2U∗N (t, s)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

∥∥∥∥ .
From Lemma 3.4.1, it follows that

II2.1 ≤
2

εN

∑
n≥0

∫ t

0
ds

∫
dp |V̂ (p)|

∥∥∥NU (1)
N (s, 0)ξ

(n)
N

∥∥∥∥∥vse−ipxūs∥∥HS

×
∥∥∥∥N 1/2U∗N (t, s)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

∥∥∥∥
+

2

εN

∑
n≥0

∫ t

0
ds

∫
dp |V̂ (p)|‖vse−ipxūs‖HS

∥∥∥NU (1)
N (s, 0)ξ

(n)
N

∥∥∥
×
∥∥∥∥(N + 2)1/2U∗N (t, s)

(∫
dr1dr2(vtOut)(r1, r2)ar1ar2

)
U (1)
N (t, 0)ξ

(n)
N

∥∥∥∥ .

125



3. Mean-Field Evolution of Fermionic Systems

Using Theorem 3.4.2 to control the growth of N w. r. t. the unitary evolutions, and again
Lemma 3.4.1, we conclude that

II2.1 ≤
C exp(c1 exp(c2|t|))

εN

×
∑
n≥0

∫ t

0
ds

∫
dp |V̂ (p)|

∥∥vse−ipxūs∥∥HS
‖vtOut‖HS

∥∥∥(N + 2)ξ
(n)
N

∥∥∥2
.

(3.74)

Here we also used a bound of the form ‖NU (1)
N (t, 0)ξ‖ ≤ C exp(c1 exp(c2|t|))‖N ξ‖ for the

growth of the expectation of the number of particles w. r. t. the modified dynamics U (1)
N (t, 0).

This bound can be proven exactly as the estimate in Theorem 3.4.2 for the dynamics UN (t, 0),

with the only difference that when we compute the derivative of 〈ξ,U (1)
N (t, 0)(N + 1)kU (1)

N ξ〉
only one of the three terms on the r. h. s. of (3.43) appears.

Since ‖utOvt‖HS ≤ ‖O‖N1/2 and, using Proposition 3.4.4,∥∥vseipxūs∥∥2

HS
≤ tr

∣∣[γs, eipx]
∣∣ ≤ C(1 + |p|)Nε exp(c|s|),

we find that

II2.1 ≤ C‖O‖ε−1/2 exp(c1 exp(c2|t|))
∑
n≥0

‖(N + 2)ξ
(n)
N ‖

2

≤ C‖O‖ε−1/2 exp(c1 exp(c2|t|))‖(N + 2)ξN‖2.

The same strategy is followed to bound II2.2 in (3.73), and II3 in (3.68). Hence, we have
shown that, for every compact operator O,∣∣∣trO (γ

(1)
N,t − ωN,t)

∣∣∣ ≤ C‖O‖N1/6 exp (c2 exp(c1|t|))〈ξN , (N + 2)2ξN 〉

≤ C‖O‖N1/6 exp (c2 exp(c1|t|))

where we used the assumption 〈ξN ,N 2ξN 〉 ≤ C. This completes the proof of (3.29).

Step 4: Proof of (3.30). We consider an observable O = eix·q+εp·∇ with p, q ∈ R3. As in
(3.63) we decompose

trO(γ
(1)
N,t − ωN,t) = I + II.

The bound for I obtained in (3.64) for an arbitrary bounded operator O is already consistent
with (3.30). However, we have to improve the bound for II, using the special structure of
the observable O. Writing II = II1 + II2 + II3 as in (3.68), and noticing again that II1 = 0,
we are left with the problem of improving the bound for II2 and II3. To bound II2, we use
(3.74) and the remark that, for O = eix·q+ε∇·p,

‖vtOut‖2HS =
∥∥vteix·q+εp·∇ut∥∥2

HS

≤ tr
∣∣[ωN,t, eix·q+εp·∇]∣∣ ≤ tr

∣∣[ωN,t, eix·q]∣∣+ tr
∣∣[ωN,t, eεp·∇]∣∣ . (3.75)

Using that

[ωN,t, e
εp·∇] = ωN,te

εp·∇ − eεp·∇ωN,t = −
∫ 1

0
ds

d

ds
esεp·∇ωN,te

(1−s)εp·∇

= −
∫ 1

0
ds esεp·∇[εp · ∇, ωN,t]e(1−s)εp·∇
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we conclude from Proposition 3.4.4 that

tr |[ωN,t, eεp·∇]| ≤ |p| tr |[ε∇, ωN,t]| ≤ C|p|Nε exp(c|t|).

Therefore, using Proposition 3.4.4 also to bound tr |[ωN,t, eix·q]|, (3.75) implies that

‖vtOut‖2HS ≤ C(1 + |q|+ |p|)Nε exp(c|t|).

Inserting this bound in (3.74), we obtain that, for O = eix·q+ε∇·p,

II2 ≤ C exp(c1 exp(c2|t|))(1 + |p|+ |q|)1/2‖(N + 1)ξN‖2.

A similar bound can be found for the contribution II3. Hence∣∣∣tr eix·q+ε∇·p (γ(1)
N,t − ωN,t

)∣∣∣ ≤ C(1 + |p|+ |q|)1/2 exp(c1 exp(c2|t|))‖(N + 1)ξN‖2

≤ C(1 + |p|+ |q|)1/2 exp(c1 exp(c2|t|)),

where we used the assumption ‖(N+1)ξN‖2 < C. This concludes the proof of Theorem 3.3.1.

Next, we proceed with the proof of Theorem 3.3.2.

Proof of Theorem 3.3.2. We start from the expression

γ
(k)
N,t(x1, . . . , xk, x

′
1, . . . x

′
k)

=
〈
e−iHN t/εR0ξ, a

∗
x′k
. . . a∗x′1

ax1 . . . axke
−iHN t/εR0ξ

〉
=
〈
UN (t, 0)ξ,R∗t a

∗
x′k
. . . a∗x′1

ax1 . . . axkRtUN (t, 0)ξ
〉

=
〈
UN (t, 0)ξ,

(
a∗(ut,x′k) + a(vt,x′k)

)
· · ·
(
a∗(ut,x′1) + a(vt,x′1)

)
× (a(ut,x1) + a∗(vt,x1)) · · · (a(ut,xk) + a∗(vt,xk)) UN (t, 0)ξ

〉
.

(3.76)

This product will be expanded as a sum of 22k summands. Each summand will be put
in normal order using Wick’s theorem, which gives rise to contractions. The completely

contracted contribution will be identified with the Hartree-Fock density matrix ω
(k)
N,t, all

other contributions will be of smaller order.

Step 1: Expanding the product and applying Wick’s theorem. We recall Wick’s theorem.
For j = 1, . . . , 2k, we denote by a]j either an annihilation or a creation operator acting on the

fermionic Fock space F . We denote by : a]j1 . . . a
]
j`

: the product a]j1 . . . a
]
j`

in normal order
(obtained by moving all creation operators on the left and all annihilation operators on the
right, proceeding as if they were all anticommuting operators). Wick’s theorem states that

a]1a
]
2 · · · a

]
2k = : a]1a

]
2 · · · a

]
2k : +

k∑
j=1

∑
n1<···<n2j

: a]1 · · · â
]
n1 · · · â

]
n2j · · · a

]
2k :

×
∑
σ∈P2j

(−1)|σ|
〈
Ω, a]nσ(1)

a]nσ(2)
Ω
〉
· · ·
〈
Ω, a]nσ(2j−1)

a]nσ(2j)
Ω
〉
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where P2j is the set of pairings

P2j =
{
σ ∈ S2j : σ(2`− 1) < σ(2`) ∀` = 1, . . . , j and

σ(2`− 1) < σ(2`+ 1) ∀` = 1, . . . , j − 1
}
,

(3.77)

and |σ| denotes the number of pair interchanges needed to bring the contracted operators

in the order a]nσ(1)
a]nσ(2)

. . . a]nσ(2j)
. We call

〈
Ω, a]ia

]
jΩ
〉

the contraction of a]i and a]j . The
notation with the hats indicates operators that do not appear in the product.

Next, we apply Wick’s theorem to the products arising from (3.76). To this end, we observe
that the contraction of a a](ut,z1)-operator with a a](vt,z2)-operator is always zero because
utvt = vtut = 0. Furthermore, the a](ut,z)-operators among themselves are already in normal
order, so their contractions always vanish. Hence, the only non-vanishing contractions arising
from the terms on the r. h. s. of (3.76) have the form〈

Ω, a(vt,x′i)a
∗(vt,xj )Ω

〉
= ωN,t(xj , x

′
i) . (3.78)

Since each contraction of the form (3.78) involves one x- and one x′-variable, the normal-
ordered products in the non-vanishing contributions arising from Wick’s theorem always have
the same number of x- and x′-variables. So, all terms emerging from (3.76) after applying
Wick’s theorem have the form

±
〈
UN (t, 0)ξ, : a](w1(·, x′σ(1))) · · · a

](wk−j(·, x′σ(k−j)))

× a](η1(·, xπ(1))) · · · a](ηk−j(·, xπ(k−j))) : UN (t, 0)ξ
〉

× ωN,t(xπ(k−j+1), x
′
σ(k−j+1)) · · ·ωN,t(xπ(k), x

′
σ(k))

(3.79)

where j ≤ k denotes the number of contractions, π, σ ∈ Sk are two appropriate permutations,
and, for every j = 1, . . . , k − j, wj , ηj : L2(R3) → L2(R3) are either the operator ut or the
operator vt (the operators are identified with their integral kernels).

Step 2: Estimating (3.79) in the case 0 ≤ j < k. We will use the shorthand notation
xk = (x1, . . . , xk) ∈ R3k and similarly x′k = (x′1, . . . , x

′
k) ∈ R3k. Let O be a Hilbert-Schmidt

operator on L2(R3k), with integral kernel O(xk,x
′
k). Integrating (3.79) against O(xk,x

′
k),

we set

I :=
∣∣∣ ∫ dxkdx

′
k O(xk,x

′
k)
〈
UN (t, 0)ξ, : a](w1(·, x′σ(1))) · · · a

](wk−j(·, x′σ(k−j)))

× a](η1(·, xπ(1))) · · · a](ηk−j(·, xπ(k−j))) : UN (t, 0)ξ
〉

× ωN,t(xπ(k−j+1), x
′
σ(k−j+1)) · · ·ωN,t(xπ(k), x

′
σ(k))

∣∣∣.
(3.80)

We remark that

I =
∣∣∣ ∫ dxkdx

′
k

[
η

(π(1))
1 · · · η(π(k−j))

k−j Ow
(σ(1))
1 · · ·w(σ(k−j))

k−j

]
(xk,x

′
k)

×
〈
UN (t, 0)ξ, : a]

x′
σ(1)
· · · a]

x′
σ(k−j)

a]xπ(1)
· · · a]xπ(k−j)

: UN (t, 0)ξ
〉

× ωN,t(xπ(k−j+1), x
′
σ(k−j+1)) · · ·ωN,t(xπ(k), x

′
σ(k))

∣∣∣
where η

(π(`))
` and w

(σ(`))
` denote the one-particle operators η` and w` acting only on particle

π(`) and, respectively, on particle σ(`). Notice that to be precise some of the operators
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η
(π(`))
` and w

(σ(`))
` may need to be replaced by their transpose, their complex conjugate, or

their hermitian conjugate. In the end, this change does not affect our analysis, since we will
only need the bounds ‖ηj‖, ‖wj‖ ≤ 1 for the operator norms. From Hölder’s inequality, we
get

I ≤
∥∥η(π(1))

1 · · · η(π(k−j))
k−j Ow

(σ(1))
1 · · ·w(σ(k−j))

k−j
∥∥

HS

×
(∫

dxkdx
′
k

∣∣〈UN (t, 0)ξ, : a]
x′
σ(1)
· · · a]

x′
σ(k−j)

a]xπ(1)
· · · a]xπ(k−j)

: UN (t, 0)ξ
〉∣∣2

×
∣∣ωN,t(xπ(k−j+1), x

′
σ(k−j+1))

∣∣2 · · · ∣∣ωN,t(xπ(k), , x
′
σ(k))

∣∣2)1/2

≤ ‖O‖HS‖ωN,t‖jHS

×
(∫

dxπ(1) · · · dxπ(k−j)dx
′
σ(1) · · · dx

′
σ(k−j)

×
∣∣〈UN (t, 0)ξ, : a]

x′
σ(1)
· · · a]

x′
σ(k−j)

a]xπ(1)
· · · a]xπ(k−j)

: UN (t, 0)ξ
〉∣∣2)1/2

.

Since ‖ωN,t‖HS = N1/2 and since the operators in the inner product are normal-ordered, we
obtain

I ≤ C‖O‖HSN
j/2〈UN (t, 0)ξ, (N + 1)k−jUN (t, 0)ξ〉 .

Hence, the contribution of each term with j < k arising from (3.76) after applying Wick’s
theorem and integrating against a Hilbert-Schmidt operator O can be bounded by

C‖O‖HSN
(k−1)/2〈UN (t, 0)ξ, (N + 1)kUN (t, 0)ξ〉 . (3.81)

Step 3: Fully contracted terms, j = k. To finish the proof of Theorem 3.3.2, we consider the
fully contracted terms with j = k arising from (3.76) after expanding and applying Wick’s
theorem. Since

〈
Ω, a(vt,·,yi)a

∗(vt,xj )Ω
〉

= ωN,t(xj , yi) are the only nonzero contractions, only
the term

a(vt,yk) · · · a(vt,y1)a∗(vt,x1) · · · a∗(vt,xk)

on the r. h. s. of (3.76) produces a non-vanishing, fully contracted, contribution. From (3.78)
and comparing with the definition (3.32), this contribution is given by∑

π∈Sk

sgn(π)ωN,t(x1, x
′
π(1)) . . . ωN,t(xk, x

′
π(k)) = ω

(k)
N,t(xk,x

′
k).

Combining the results of Step 2 and Step 3, we conclude that∣∣∣tr O (γ(k)
N,t − ω

(k)
N,t

)∣∣∣ ≤ CN (k−1)/2‖O‖HS〈UN (t, 0)ξ, (N + 1)k−1UN (t, 0)ξ〉

for every Hilbert-Schmidt operator O on L2(R3k). Eq. (3.33) now follows from Theorem
3.4.2.

Step 4: Bound for the trace norm. Eq. (3.34) follows, similarly to (3.33), if we can show
that, for any bounded operator O on L2(R3k), the contribution (3.80) can be bounded by

I ≤ C‖O‖N
k+j

2 exp(c1 exp(c2|t|)) (3.82)
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for all ξ ∈ F with 〈ξ,N kξ〉 <∞, and the number of contractions 0 ≤ j < k. In fact, because

of the fermionic symmetry of γ
(k)
N,t and ω

(k)
N,t, it is enough to establish (3.82) for all bounded

O with the symmetry

O(xπ(1), . . . , xπ(k), x
′
σ(1), . . . , x

′
σ(k)) = sgn(π)sgn(σ)O(x1, . . . , xk, x

′
1, . . . x

′
k)

for any permutations π, σ ∈ Sk. For such observables, (3.80) can be rewritten as

I =
∣∣∣ ∫ dxkdx

′
k O(xk,x

′
k)
〈
UN (t, 0)ξ, : a](w1(·, x′1)) · · · a](wk−j(·, x′k−j))

× a](η1(·, x1)) · · · a](ηk−j(·, xk−j)) : UN (t, 0)ξ
〉

× ωN,t(xk−j+1, x
′
k−j+1) · · ·ωN,t(xk, x′k)

∣∣∣
=
∣∣∣ ∫ dxk−jdx

′
k−j

[
η

(1)
1 · · · η

(k−j)
k−j

(
trk−j+1,...,k O(1⊗ ω⊗jN,t)

)
w

(1)
1 · · ·w

(k−j)
k−j

]
(xk−j ,x

′
k−j)

×
〈
UN (t, 0)ξ, : a]

x′1
· · · a]

x′k−j
a]x1
· · · a]xk−j : UN (t, 0)ξ

〉
where (

trk−j+1,...,k O(1⊗ ω⊗jN,t)
)

(xk−j ,x
′
k−j)

=

∫
dxk−j+1dx′k−j+1 . . . dxkdx

′
k O(xk,x

′
k)

k∏
`=k−j+1

ωN,t(x`, x
′
`)

denotes the partial trace over the last j particles. Using Cauchy-Schwarz, we obtain

I ≤
∥∥∥η(1)

1 . . . η
(k−j)
k−j

(
trk−j+1,...,k O (1⊗ ω⊗jN,t)

)
w

(1)
1 . . . w

(k−j)
k−j

∥∥∥
HS

∥∥∥N k−j
2 UN (t, 0)ξ

∥∥∥2

≤
∥∥∥η(1)

1 . . . η
(k−j)
k−j

∥∥∥
HS

∥∥∥trk−j+1,...,k O(1⊗ ω⊗jN,t)
∥∥∥ ∥∥∥N k−j

2 UN (t, 0)ξ
∥∥∥2

≤ N
k−j

2

∥∥∥trk−j+1,...,k O(1⊗ ω⊗jN,t)
∥∥∥ ∥∥∥N k−j

2 UN (t, 0)ξ
∥∥∥2

where in the second line we used that ‖w(j)
j ‖ = 1 for all j = 1, . . . , k − j. Since∥∥∥trk−j+1,...,k O(1⊗ ω⊗jN,t)

∥∥∥ = sup
φ,ϕ∈L2(R3(k−j))
‖φ‖=‖ψ‖≤1

∣∣∣〈φ,(trk−j+1,...,k O(1⊗ ω⊗jN,t)
)
ϕ
〉∣∣∣

= sup
φ,ϕ∈L2(R3(k−j))
‖φ‖=‖ψ‖≤1

∣∣∣tr O (|ϕ〉〈φ| ⊗ ω⊗jN,t)∣∣∣
≤ (tr|ωN,t|)j ‖O‖ ≤ N j ‖O‖ , (3.83)

we get

I ≤ N
k+j

2 ‖O‖
∥∥∥N k−j

2 UN (t, 0)ξ
∥∥∥2

,

which, by Theorem 3.4.2, proves (3.82).
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3.6. Propagation of semiclassical structure

In this section we prove Proposition 3.4.4, which propagates the bounds (3.24) along the
solution of the Hartree-Fock equation and plays a central role in our analysis.

Proof of Proposition 3.4.4. Let ωN,t denote the solution of the Hartree-Fock equation (3.26).
We define the (time-dependent) Hartree-Fock Hamiltonian

hHF(t) = −ε2∆ + (V ∗ ρt)−Xt

where ρt(x) = (1/N)ωN,t(x, x), (V ∗ρt) is the operator of multiplication with (V ∗ρt)(x) and
Xt is the exchange operator, having the integral kernel Xt(x, y) = V (x− y)ωN,t(x, y). Then
ωN,t satisfies the equation

iε∂tωN,t = [hHF(t), ωN,t].

Therefore, we obtain

iε
d

dt
[eip·x, ωN,t] = [eip·x, [hHF(t), ωN,t]]

= [hHF(t), [eip·x, ωN,t]] + [ωN,t, [hHF(t), eip·x]]

= [hHF(t), [eip·x, ωN,t]]− [ωN,t, [ε
2∆, eip·x]]− [ωN,t, [Xt, e

ip·x]]

(3.84)

where we used the Jacobi identity and the fact that [ρt ∗ V, eipx] = 0. We compute

[ε2∆, eip·x] = iε∇ · εpeip·x + eip·xεp · iε∇

and hence

[ωN,t, [ε
2∆, eip·x]] = [ωN,t, iε∇ · εpeip·x + eip·xεp · iε∇]

= [ωN,t, iε∇] · εpeip·x + iε2∇ · p[ωN,t, eip·x]

+ εpeip·x[ωN,t, iε∇] + [ωN,t, e
ip·x]iε2∇ · p .

From (3.84) we find

iε
d

dt
[eip·x, ωN,t] = A(t)[eip·x, ωN,t]− [eip·x, ωN,t]B(t)

− εpeip·x[ωN,t, iε∇]− [ωN,t, iε∇] · εpeip·x − [ωN,t, [Xt, e
ip·x]]

where we defined the time dependent operators

A(t) = hHF(t) + iε2∇ · p and B(t) = hHF(t)− iε2∇ · p .

Observe that A(t) and B(t) are selfadjoint for every t ∈ R (the factor ±iε2p · ∇ can be
interpreted as originating from a constant vector potential). They generate two unitary
evolutions U1(t, s) and U2(t, s) satisfying

iε∂tU1(t, s) = A(t)U1(t, s) and iε∂tU2(t, s) = B(t)U2(t, s)

with the initial conditions U1(s, s) = U2(s, s) = 1. We observe that, by definition of the
unitary maps U1(t, s) and U2(t, s),

iε
d

dt
U∗1 (t, 0)[eip·x, ωN,t]U2(t, 0)

= U∗1 (t, 0)

{
−A(t)[eip·x, ωN,t] + [eip·x, ωN,t]B(t) + iε

d

dt
[eip·x, ωN,t]

}
U2(t, 0)

= − U∗1 (t, 0)
{
εpeip·x[ωN,t, iε∇] + [ωN,t, iε∇] · εpeip·x + [ωN,t, [Xt, e

ip·x]]
}
U2(t, 0).
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Hence

U∗1 (t, 0)[eip·x, ωN,t]U2(t, 0)

= [eip·x, ωN ]

+
i

ε

∫ t

0
dsU∗1 (s, 0)

{
εpeip·x[ωN,s, iε∇] + [ωN,s, iε∇] · εpeip·x + [ωN,s, [Xs, e

ip·x]]
}
U2(s, 0)

and therefore

[eip·x, ωN,t]

= U1(t, 0)[eip·x, ωN ]U∗2 (t, 0)

+
i

ε

∫ t

0
dsU1(t, s)

{
εpeip·x[ωN,s, iε∇] + [ωN,s, iε∇] · εpeip·x + [ωN,s, [Xs, e

ip·x]]
}
U2(s, t).

Taking the trace norm, we find

tr |[eip·x, ωN,t]| ≤ tr |[eip·x, ωN ]|+ 2|p|
∫ t

0
ds tr |[ε∇, ωN,s]|+

1

ε

∫ t

0
ds tr |[ωN,s, [Xs, e

ip·x]]|.

(3.85)
To control the contribution of the last term, we observe that

Xs(x, y) =
1

N
V (x− y)ωN,s(x, y) =

1

N

∫
dq V̂ (q)eiq·(x−y)ωN,s(x, y) =

1

N

∫
dq V̂ (q)ωq,t(x, y)

where we defined the operator ωq,t = eiq·xωN,te
−iq·x (here x indicates the multiplication

operator). Hence, we get

[ωN,t, [Xt, e
ip·x]] =

1

N

∫
dq V̂ (q)[ωN,t, [ωq,t, e

ip·x]]

and therefore, using ‖ωN,t‖ ≤ 1,

tr |[ωN,t, [Xt, e
ip·x]]| ≤ 1

N

∫
dq|V̂ (q)| tr |[ωN,t, [ωq,t, eip·x]]|

≤ 2

N

∫
dq|V̂ (q)| tr |[ωq,t, eip·x]|

≤ 2

N

(∫
dq|V̂ (q)|

)
tr |[ωN,t, eip·x]|

where in the last line we used that [ωq,t, e
ipx] = eiqx[ωN,t, e

ipx]e−iqx. From (3.85), we conclude
that

tr |[eip·x, ωN,t]| ≤ tr |[eip·x, ωN ]|+2|p|
∫ t

0
ds tr |[ε∇, ωN,s]|+

C

Nε

∫ t

0
ds tr |[eip·x, ωN,s]| (3.86)

and therefore, from (3.49), we find

sup
p

1

1 + |p|
tr |[eip·x, ωN,t]| ≤ CεN + 2

∫ t

0
ds tr |[ε∇, ωN,s]|

+ C

∫ t

0
ds sup

p

1

1 + |p|
tr |[eip·x, ωN,s]|.

(3.87)
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Next, we need to control the growth of tr |[ε∇, ωN,t]|. Consider

iε
d

dt
[ε∇, ωN,t] =[ε∇, [hHF(t), ωN,t]]

=[hHF(t), [ε∇, ωN,t]] + [ωN,t, [hHF(t), ε∇]]

=[hHF(t), [ε∇, ωN,t]] + [ωN,t, [V ∗ ρt, ε∇]]− [ωN,t, [Xt, ε∇]] .

As before, the first term on the r. h. s. can be eliminated by an appropriate unitary conjuga-
tion. Denote namely by U3(t, s) the two-parameter unitary group satisfying

iε∂t U3(t, s) = hHF(t)U3(t, s)

and U3(s, s) = 1. Then we compute

iε
d

dt
U∗3 (t, 0)[ε∇, ωN,t]U3(t, 0) = U∗3 (t, 0)

{
−[hHF(t), [ε∇, ωN,t]] + iε

d

dt
[ε∇, ωN,t]

}
U3(t, 0)

= U∗3 (t, 0) {[ωN,t, [V ∗ ρt, ε∇]]− [ωN,t, [Xt, ε∇]]}U3(t, 0).

This gives

[ε∇, ωN,t] = U3(t, 0)[ε∇, ωN ]U∗3 (t, 0)

+
1

iε

∫ t

0
dsU3(t, s) {[ωN,s, [V ∗ ρs, ε∇]]− [ωN,s, [Xs, ε∇]]}U3(s, t)

and therefore

tr |[ε∇, ωN,t]| ≤ tr |[ε∇, ωN ]|

+
1

ε

∫ t

0
ds tr |[ωN,s, [V ∗ ρs, ε∇]]|+ 1

ε

∫ t

0
ds tr |[ωN,s, [Xs, ε∇]]|.

(3.88)

The second term on the r. h. s. can be controlled by

tr |[ωN,s, [V ∗ ρs, ε∇]]| = ε tr |[ωN,s,∇(V ∗ ρs)]|

≤ ε
∫

dq |V̂ (q)||q||ρ̂s(q)| tr |[ωN,s, eiq·x]|

≤ ε
(∫

dq |V̂ (q)|(1 + |q|)2

)
sup
q

1

1 + |q|
tr |[ωN,s, eiq·x]|

where we used the bound ‖ρ̂s‖∞ ≤ ‖ρs‖1 = 1. As for the last term on the r. h. s. of (3.88),
we note that

[ωN,s, [Xs, ε∇]] =
1

N

∫
dq V̂ (q)[ωN,s, [ωq,s, ε∇]]

where, as above, we set ωq,s = eiq·xωN,se
−iq·x. Hence, we obtain

tr |[ωN,s, [Xs, ε∇]]| ≤ 2

N

∫
dq |V̂ (q)| tr |[ωq,s, ε∇]|

≤ 2

N

(∫
dq |V̂ (q)|

)
tr |[ωN,s, ε∇]|

where in the last inequality we used that

[ωq,s, ε∇] = eiqx[ωN,s, ε(∇+ iq)]e−iqx = eiqx[ωN,s, ε∇]e−iqx .
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From (3.88), we conclude that

tr |[ε∇, ωN,t]| ≤ CεN + C

∫ t

0
ds sup

q

1

1 + |q|
tr |[ωN,s, eiq·x]|+ C

∫ t

0
ds tr |[ωN,s, ε∇]|.

Summing up the last equation with (3.87) and applying Grönwall’s lemma, we find constants
C, c > 0 such that

sup
p

1

1 + |p|
tr |[eip·x, ωN,t]| ≤ CεN exp(c|t|),

tr |[ε∇, ωN,t] ≤ CεN exp(c|t|).

3.A. Comparison between Hartree and Hartree-Fock dynamics

In the next proposition we show that, under the assumptions of Theorem 3.3.1, the solution
ωN,t of the Hartree-Fock equation (3.26) is well-approximated by the solution ω̃N,t of the
Hartree equation (3.31). Since we can show that the difference ωN,t − ω̃N,t remains of order
one in N for all fixed times t ∈ R, this result implies that all bounds in Theorem 3.3.1 remain
true if we replace ωN,t by ω̃N,t.

Proposition 3.A.1. Assume that the interaction potential V ∈ L1(R3) satisfies (3.23) and
that the sequence ωN of orthogonal projections on L2(R3) with trωN = N satisfies (3.24).
Let ωN,t denote the solution of the Hartree-Fock equation

iε∂tωN,t =
[
−ε2∆ + (V ∗ ρt)−Xt, ωN,t

]
and ω̃N,t the solution of the Hartree equation

iε∂tω̃N,t =
[
−ε2∆ + (V ∗ ρ̃t), ω̃N,t

]
with initial data ωN,t=0 = ω̃N,t=0 = ωN (recall here that ρt(x) = N−1ωN,t(x, x), ρ̃t(x) =
N−1ω̃N,t(x, x) and Xt(x, y) = N−1V (x−y)ωN,t(x, y)). Then there exist constants C, c1, c2 >
0 such that

tr |ωN,t − ω̃N,t| ≤ C exp(c1 exp(c2|t|))
for all t ∈ R.

Proof. Let W(t, s) be the unitary dynamics generated by the Hartree Hamiltonian hH(t) =
−ε2∆ + (V ∗ ρ̃t). In other words, W(s, s) = 1 for all s ∈ R and

iε
d

dt
W(t, s) = hH(t)W(t, s) .

Then, we have

iε∂tW∗(t, 0)ω̃N,tW(t, 0) = 0 ,

iε∂tW∗(t, 0)ωN,tW(t, 0) =W∗(t, 0) ([V ∗ (ρt − ρ̃t) , ωN,t]− [Xt, ωt])W(t, 0).

Integrating over time, we end up with

ω̃N,t =W(t, 0)ωNW∗(t, 0) ,

ωN,t =W(t, 0)ωNW∗(t, 0)

− i

ε

∫ t

0
dsW(t, s) ([V ∗ (ρ̃s − ρs) , ωN,s]− [Xs, ωN,s])W∗(t, s)
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and thus

tr |ωN,t − ω̃N,t| ≤
1

ε

∫ t

0
ds {tr |[V ∗ (ρ̃s − ρs) , ωN,s]|+ tr |[Xs, ωN,s]|} =: I + II. (3.89)

Let us first estimate II. We get

II =
1

ε

∫ t

0
ds tr |[Xs, ωN,s]|

≤ 1

εN

∫ t

0
ds

∫
dp |V̂ (p)| tr

∣∣[eip·xωN,se−ip·x, ωN,s∣∣]
≤ 2

εN

∫ t

0
ds

∫
dp |V̂ (p)| tr

∣∣[eip·x, ωN,s]∣∣
≤ C exp (c|t|), (3.90)

where in the last step we used Proposition 3.4.4 (eip·x denotes here the multiplication oper-
ator). We are left with I. Writing

V ∗ (ρ̃s − ρs)(x) =

∫
dp V̂ (p)

(̂̃ρs(p)− ρ̂s(p)) eip·x
we find

I ≤ 1

ε

∫ t

0
ds

∫
dp |V̂ (p)|

∣∣∣̂̃ρs(p)− ρ̂s(p)∣∣∣ tr
∣∣[eip·x, ωN,s]∣∣

≤ CN exp(c|t|)
∫ t

0
ds sup

p∈R3

∣∣∣ρ̂s(p)− ̂̃ρs(p)∣∣∣
≤ C exp(c|t|)

∫ t

0
ds tr |ωN,s − ω̃N,s| (3.91)

where in the second inequality we used again Proposition 3.4.4, while in the last inequality
we used the bound∣∣∣ρ̂s(p)− ̂̃ρs(p)∣∣∣ =

1

N

∣∣tr eip·x(ωN,s − ω̃N,s)
∣∣ ≤ 1

N
tr |ωN,s − ω̃N,s|.

Inserting (3.90), (3.91) into (3.89), and applying the Grönwall lemma, we get

tr |ωN,t − ω̃N,t| ≤ C exp (c1 exp (c2|t|)) (3.92)

for some C, c1, c2 only depending on the potential V .
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4. Mean-field Evolution of Fermions with
Relativistic Dispersion

In this chapter we provide an extension of the derivation of the Hartree-Fock equation in
Chapter 3 to the analogous model with relativistic dispersion law. This chapter is based on
the article [BPS13b].

We use the fermionic convention tr γ
(k)
N = N !

(N−k)! for the normalization of density matrices,
see Section 1.A.

4.1. Introduction

As in the previous chapter, we are interested in the dynamics of a system of N fermions
moving in three spatial dimensions, but now with a relativistic dispersion law. In units
where the Planck constant and the speed of light are ~ = c = 1, the evolution is governed
by the Schrödinger equation

i∂tψN,t =

 N∑
j=1

√
−∆xj +m2 + λ

N∑
i<j

V (xi − xj)

ψN,t (4.1)

for the wave function ψN,t ∈ L2
a(R3N ), in accordance with Pauli’s principle. The constant

m > 0 is the mass and λ ∈ R a coupling constant.

We are interested in the mean-field limit, characterized by N � 1 and weak interaction
|λ| � 1. Notice that in contrast to the non-relativistic case, the kinetic energy of N fermions
in a volume of order one is only of order N4/3, so that we take λN2/3 = 1 fixed. For
technical reasons, we also consider large masses m, keeping mN−1/3 = m0 fixed in the limit.
Introducing the semiclassical parameter ε = N−1/3, we can then rewrite (4.1) as

iε∂tψN,t =

 N∑
j=1

√
−ε2∆xj +m2

0 +
1

N

N∑
i<j

V (xi − xj)

ψN,t. (4.2)

Unlike in the non-relativistic case, the velocity of particles (think of the group velocity for
the free evolution) with relativistic dispersion is always bounded by one, so it is physically
plausible that we have not rescaled time.

From the physical point of view, it is important to understand the dynamics of initial data
which can be easily prepared in labs. Hence, it makes sense to study the evolution of initial
data close to the ground state of a Hamiltonian of the form

Htrap
N =

N∑
j=1

[√
−ε2∆xj +m2

0 + Vext(xj)

]
+

1

N

N∑
i<j

V (xi − xj), (4.3)
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

where Vext : R3 → R is an external potential, trapping the particles in a volume of order
one. It is expected that the ground state of (4.3) can be approximated by the Slater de-
terminant with one-particle reduced density ωN minimizing the (relativistic) Hartree-Fock
energy functional

EHF(ωN ) = tr

[√
−ε2∆ +m2

0 + Vext

]
ωN

+
1

2N

∫
dxdy V (x− y)

(
ωN (x, x)ωN (y, y)− |ωN (x, y)|2

) (4.4)

among all orthogonal projections ωN on L2(R3) with trωN = N (recall that the reduced
density of an N -particle Slater determinant is such an orthogonal projection).

In Chapter 3, we considered the evolution of N non-relativistic fermions, governed by the
Schrödinger equation

iε∂tψN,t =

 N∑
j=1

−
ε2∆xj

2m0
+

1

N

N∑
i<j

V (xi − xj)

ψN,t. (4.5)

In particular, we were interested in the evolution of initial data close to Slater determinants
minimizing a non-relativistic Hartree-Fock energy (similar to (4.4), but with a non-relativistic
dispersion law). To this end, we argued that minimizers of the Hartree-Fock energy satisfy
semiclassical commutator estimates of the form

tr|[x, ωN ]| ≤ CNε, and tr|[ε∇, ωN ]| ≤ CNε, (4.6)

where x denotes the position operator (i. e. multiplication with x). Motivated by this obser-
vation, we assumed initial data to be close to Slater determinants with reduced one-particle
density satisfying (4.6). For such initial data1, we proved that for sufficiently regular inter-
action potential V the many-body evolution can be approximated by the time-dependent
non-relativistic Hartree-Fock equation

iε∂tωN,t =

[
− ε

2∆

2m0
+ (V ∗ ρt)−Xt, ωN,t

]
. (4.7)

Here ρt(x) = N−1ωN,t(x, x) is the density of particles close to x ∈ R3 and Xt is the exchange
operator, having the integral kernel Xt(x, y) = N−1V (x− y)ωN,t(x, y).

In this chapter we proceed analogously but for fermions with relativistic dispersion. Sim-
ilar to the non-relativistic case, the arguments presented in Chapter 3 and semiclassical
analysis suggest that (approximate) minimizers of the Hartree-Fock energy (4.4) satisfy the
commutator bounds (4.6). For this reason, we will consider the evolution (4.2) for initial
data close to Slater determinants, with reduced density ωN satisfying (4.6). For such initial
data, we will show in Theorem 4.2.1 below that the solution of the Schrödinger equation (4.2)
stays close to a Slater determinant with one-particle reduced density evolving according to
the relativistic Hartree-Fock equation

iε∂tωN,t =

[√
−ε2∆ +m2

0 + (V ∗ ρt)−Xt, ωN,t

]
, (4.8)

1In fact, instead of assuming tr|[x, ωN ]| ≤ CNε, we only imposed the weaker condition tr|[eip·x, ωN ]| ≤
CN(1 + |p|)ε, for all p ∈ R. However, here we find it more convenient to work with [x, ωN ].
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4.2. Main result and sketch of its proof

where, like in (4.7), ρt(x) = N−1ωN,t(x, x) and Xt(x, y) = N−1V (x− y)ωN,t(x, y).

For initial data minimizing the Hartree-Fock energy (4.4), the typical momentum of the
particles is of order ε−1, meaning that the expectation of ε|∇| is typically of order one.
Hence, for m0 � 1, we can expand the relativistic dispersion as√

−ε2∆ +m2
0 = m0

√
1− ε2∆

m2
0

' m0

(
1− ε2∆

2m2
0

)
= m0 +

−ε2∆

2m0
.

Since the constant m0 only produces a harmless phase, this implies that in the limit of
large m0, one can approximate the solutions of the relativistic Schrödinger equation (4.2)
and of the relativistic Hartree-Fock equation (4.8) by the solutions of the corresponding
non-relativistic equations (4.5) and, respectively, (4.7). On the other hand, for fixed m0

of order one as we consider it here, the relativistic dynamics cannot be compared to the
non-relativistic dynamics.

If we start from (4.1) and consider the limit of large N � 1 and weak interaction λN2/3 = 1
without scaling the massm, we obtain a Schrödinger equation like (4.2), but withm0 replaced
by εm (recall that ε = N−1/3). In the limit N � 1, this evolution can be compared with
the massless relativistic Schrödinger equation

iε∂tψN,t =

 N∑
j=1

ε|∇xj |+
1

N

N∑
i<j

V (xi − xj)

ψN,t. (4.9)

In this case, we expect the dynamics of initial data close to Slater determinants satisfying
the commutator estimates (4.6) to be approximated by the Hartree-Fock equation

iε∂tωN,t =
[
ε|∇|+ (V ∗ ρt)−Xt, ωN,t

]
. (4.10)

For technical reasons, we do not consider this case in the present work. Proving the conver-
gence of (4.9) towards (4.10) remains an interesting open problem.

4.2. Main result and sketch of its proof

To state our main theorem, we switch to the Fock space representation. In terms of the
operator-valued distributions a∗x, ax we define the Hamilton operator

HN =

∫
dx a∗x

√
−ε2∆x +m2

0 ax +
1

2N

∫
dxdy V (x− y)a∗xa

∗
yayax (4.11)

on fermionic Fock space F . As in the other models discussed, HN commutes with the
number of particles operator N . When restricted to the N -particle sector, HN agrees with
the Hamiltonian generating the evolution (4.2).

Let ωN be an orthogonal projection on L2(R3), with tr ωN = N . Then there are orthonor-
mal functions f1, . . . , fN ∈ L2(R3) with ωN =

∑N
j=1 |fj〉〈fj |. We complete f1, . . . , fN to an

orthonormal basis (fj)j∈N of L2(R3). We introduce a (unitary) particle-hole transformation
RωN : F → F by setting as before

RωNΩ = a∗(f1) · · · a∗(fN )Ω, (4.12)
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

a Slater determinant with reduced density ωN . Moreover we require that

R∗ωNa(fi)RωN =

{
a(fi) if i > N
a∗(fi) if i ≤ N. (4.13)

The operator R∗ωN implements a fermionic Bogoliubov transformation on F . We consider
the time evolution of initial data of the form RωN ξN , for a ξN ∈ F with 〈ξN ,N ξN 〉 ≤ C
uniformly in N (i. e. RωN ξN is close to the N -particle Slater determinant RωNΩ).

We are now ready to state our main theorem.

Theorem 4.2.1. Let V ∈ L1(R3) with∫
|V̂ (p)|(1 + |p|)2dp <∞. (4.14)

Let ωN be a sequence of orthogonal projections on L2(R3) with tr ωN = N , satisfying the
semiclassical commutator bounds (4.6). Let ξN be a sequence in F with 〈ξN ,N ξN 〉 ≤ C
uniformly in N . We consider the time evolution

ψN,t = e−iHN t/εRωN ξN (4.15)

generated by the Hamiltonian (4.11), with ε = N−1/3 and with a fixed m0 > 0. Here RωN
denotes the unitary implementor of a Bogoliubov transformation defined in (4.13) and (4.12).

Let γ
(1)
N,t be the one-particle reduced density associated with ψN,t. Then there exist constants

c, C > 0 such that

tr
∣∣∣γ(1)
N,t − ωN,t

∣∣∣2 ≤ C exp(c exp(c|t|)) (4.16)

where ωN,t is the solution of the time-dependent Hartree-Fock equation (4.8) with initial data
ωN,t=0 = ωN .

Remarks:

(i) The bound (4.16) should be compared with tr (γ
(1)
N,t)

2 and tr (ωN,t)
2, which are both of

order N . The N -dependence in (4.16) is optimal, since one can easily find a sequence

ξN ∈ F with
〈
ξN ,N ξN

〉
≤ C such that γ

(1)
N,0 − ωN,0 = O(1) (for example, just take

ξN = a∗(fN+1)Ω).

(ii) As in Chapter 3, under the additional assumptions that we have dΓ(ωN )ξN = 0 and〈
ξN ,N 2ξN

〉
≤ C for all N ∈ N, we find the trace norm estimate

tr|γ(1)
N,t − ωN,t| ≤ CN

1/6 exp(c exp(c|t|)). (4.17)

(iii) We can also control the convergence of higher order reduced densities. If γ
(k)
N,t denotes

the k-particles reduced density associated with (4.15), and if ω
(k)
N,t is the antisymmetric

tensor product of k copies of the solution ωN,t of the Hartree-Fock equation (4.8), we
find, similarly to 3.3.2,

tr
∣∣∣γ(k)
N,t − ω

(k)
N,t

∣∣∣2 ≤ CNk−1 exp(c exp(c|t|)). (4.18)

This should be compared with tr (γ
(k)
N,t)

2 and tr(ω
(k)
N,t)

2, which are of order Nk.
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(iv) Just like in the non-relativistic model (see Appendix 3.A) the exchange term [Xt, ωN,t]
in the Hartree-Fock equation (4.8) is of smaller order and can be neglected. The bounds
(4.16), (4.17), (4.18) remain true if we replace ωN,t with the solution of the Hartree
equation

iε∂tω̃N,t =

[√
−ε2∆ +m2

0 + (V ∗ ρ̃t), ω̃N,t
]

(4.19)

with the density ρ̃t(x) = N−1ω̃N,t(x, x).

(v) The relativistic Hartree-Fock equation (4.8) and the relativistic Hartree equation (4.19)
still depend on N through the semiclassical parameter ε = N−1/3. As N → ∞, the
Hartree-Fock and the Hartree dynamics can be approximated by the relativistic Vlasov
evolution. If WN,t(x, v) denotes the Wigner transform of the solution ωN,t of (4.8) (or,
analogously, of the solution ω̃N,t of (4.19)), we expect that in an appropriate sense
WN,t →W∞,t as N →∞, where W∞,t satisfies the relativistic Vlasov equation

∂tW∞,t +
v√

v2 +m2
0

· ∇xW∞,t −∇vW∞,t · ∇ (V ∗ ρ∞,t) = 0 ,

where ρ∞,t(x) =
∫

dvW∞,t(x, v). In fact, the convergence of the relativistic Hartree
evolution towards the relativistic Vlasov dynamics has been shown in [AMS08] for
particles interacting through a Coulomb potential. In this case, however, a rigorous
mathematical understanding of the relation with many-body quantum dynamics is
still missing (because of the regularity assumption (4.14), Theorem 4.2.1 does not
cover the Coulomb interaction). In view of applications to the dynamics of gravitating
fermionic stars (such as white dwarfs and neutron stars) and the related phenomenon of
gravitational collapse studied in [HS09, HLLS10], this is an interesting and important
open problem (at the level of the ground state energy, this problem has been solved in
[LY87]). Notice that the corresponding questions for bosonic stars have been addressed
in [ES07, MS12].

Next, we explain the strategy of the proof of Theorem 4.2.1, which is based on the proof
of Theorem 3.3.1. In fact, the main body of the proof can be taken over without significant
changes. There is, however, one important ingredient of the analysis which requires non-
trivial modifications, namely the propagation of the commutator bounds (4.6) along the
solution of the Hartree-Fock equation (4.8). We will discuss this part of the proof of Theorem
4.2.1 separately in Section 4.3.

Sketch of the proof of Theorem 4.2.1. We introduce the vector ξN,t ∈ F describing the fluc-
tuations around the Slater determinant with reduced density ωN,t given by the solution of
the Hartree-Fock equation (4.8) by requiring that

ψN,t = e−iHN t/εRωN ξN = RωN,tξN,t.

This gives ξN,t = UN (t, 0)ξN , with the fluctuation dynamics

UN (t, s) = R∗ωN,te
−iHN t/εRωN,s .

Notice that UN (t, s) is a two-parameter group of unitary transformations. The problem of
proving that ψN,t is close to the Slater determinant RωN,tΩ reduces to showing that the
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

expectation of the number of particles in ξN,t stays of order one, i. e. small compared to the
N particles in the Slater determinant. In fact, it is easy to check (see Section 3.5) the bound
for the Hilbert-Schmidt norm

‖γ(1)
N,t − ωN,t‖HS ≤ C〈ξN,t,N ξN,t〉 = C〈ξN , U∗N (t, 0)NUN (t, 0)ξN 〉 . (4.20)

To bound the growth of the expectation of the number of particles with respect to the
fluctuation dynamics UN (t, s) we use Grönwall’s Lemma. Differentiating the expectation on
the r. h. s. of (4.20) with respect to time gives (see Proof of Proposition 3.4.3)

iε
d

dt
〈ξN , U∗N (t, 0)NUN (t, 0)ξN 〉

= 〈ξN , U∗N (t, 0)R∗ωN,t

(
dΓ(iε∂tωN,t)− [HN , dΓ(ωN,t)]

)
RωN,tUN (t, 0)ξN 〉.

There are important cancellations between the two terms in the parenthesis. In particular,
since [∫

dx a∗x

√
−ε2∆ +m2

0 ax , dΓ(ωN,t)

]
=

[
dΓ

(√
−ε2∆ +m2

0

)
, dΓ(ωN,t)

]
= dΓ

([√
−ε2∆ +m2

0 , ωN,t

])
the contributions of the kinetic energy cancel exactly. The remaining terms are then identical
to those found in the non-relativistic case. Hence, analogously to Proposition 3.4.3, we
conclude that

iε
d

dt
〈ξN , U∗N (t, 0)NUN (t, 0)ξN 〉

= −4i

N
Im

∫
dxdy V (x− y)

{
〈UN (t, 0)ξN , a

∗(ut,x)a(ut,x)a(vt,y)a(ut,y)UN (t, 0)ξN 〉

+ 〈UN (t, 0)ξN , a
∗(vt,x)a(vt,x)a(vt,y)a(ut,y)UN (t, 0)ξN 〉

+ 〈UN (t, 0)ξN , a(vt,x)a(ut,x)a(vt,y)a(ut,y)UN (t, 0)ξN 〉
}

(4.21)

where the functions ut,x and vt,x are defined by2

R∗ωN,taxRωN,t = a(ut,x) + a∗(vt,x).

It is easy to express ut,x (which is actually a distribution) and vt,x (a L2-function) in terms
of ωN,t; see, for example, (1.66). Notice that in Proposition 3.4.3, we also considered the
expectation of higher moments of N . This can be done in the relativistic setting as well,
and is needed to prove the trace norm bound (4.17).

Proceeding as in the proof of Lemma 3.4.5, we can bound the terms on the r. h. s. of (4.21)
to show that∣∣∣iε d

dt
〈ξN , U∗N (t, 0)(N + 1)UN (t, 0)ξN 〉

∣∣∣
≤ CN−1 sup

p∈R3

tr|[eip·x, ωN,t]|
1 + |p|

〈ξN , U∗N (t, 0)(N + 1)UN (t, 0)ξN 〉.
(4.22)

2We changed v to v compared to [BPS13b], to make the notation in this thesis consistent.

142



4.3. Propagation of the semiclassical commutator bounds

Using the integral representation

[eip·x, ωN,t] =

∫ 1

0
ds eisp·x [ip · x, ωN,t] ei(1−s)p·x

we conclude that

sup
p∈R3

tr|[eip·x, ωN,t]|
1 + |p|

≤ tr|[x, ωN,t]|. (4.23)

Hence, (4.22) implies the bound (4.16) in Theorem 4.2.1, if we can show that there exist
constants C, c > 0 with

tr |[x, ωN,t]| ≤ CNε exp(c|t|) (4.24)

for all t ∈ R. We show (4.24) in Proposition 4.3.1 below.

4.3. Propagation of the semiclassical commutator bounds

The goal of this section is to show the estimate (4.24), which is needed in the proof of Theorem
4.2.1. To this end, we use the assumption (4.6) on the initial data, and we propagate the
commutator estimates along the Hartree-Fock evolution. This is the genuinely new part
of the present paper, where the ideas of Chapter 3 need to be adapted to the relativistic
dispersion of the particles.

Proposition 4.3.1. Let V ∈ L1(R3) with∫
|V̂ (p)|(1 + |p|)2dp <∞. (4.25)

Let ωN be a trace class operator on L2(R3) with 0 ≤ ωN ≤ 1 and trωN = N , satisfying the
commutator estimates (4.6). Denote by ωN,t the solution of the Hartree-Fock equation (4.8)
(with ε = N−1/3) with initial data ωN,0 = ωN . Then there exist constants C, c > 0 such that

tr|[x, ωN,t]| ≤ CNε exp(c|t|) and

tr|[ε∇, ωN,t]| ≤ CNε exp(c|t|)

for all t ∈ R.

Proof. We define the Hartree-Fock Hamiltonian

h(t) :=
√
−ε2∆ +m2

0 + (V ∗ ρt)−Xt

where ρt(x) = N−1ωN,t(x, x) and Xt is the exchange operator defined by the integral kernel
Xt(x, y) = N−1V (x − y)ωN,t(x, y) (note that ρt and Xt depend on the solution ωN,t of the
Hartree-Fock equation (4.8)). Then ωN,t satisfies the equation

iε∂tωN,t = [h(t), ωN,t]. (4.26)

Using the Jacobi identity we obtain

iε∂t[x, ωN,t] = [x, [h(t), ωN,t]]

= [h(t), [x, ωN,t]] +

[
ωN,t,

[√
−ε2∆ +m2

0 , x

]]
− [ωN,t, [Xt, x]].

(4.27)
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

We can eliminate the first term on the r. h. s. of the last equation by conjugating [x, ωN,t]
with the two-parameter group W (t, s) generated by the selfadjoint operators h(t), satisfying

iε∂tW (t, s) = h(t)W (t, s) with W (s, s) = 1 for all s ∈ R. (4.28)

In fact, we have

iε∂tW
∗(t, 0)[x, ωN,t]W (t, 0)

= W ∗(t, 0)
([
ωN,t,

[√
−ε2∆ +m2

0 , x
]]
− [ωN,t, [Xt, x]]

)
W (t, 0)

and therefore

W ∗(t, 0)[x, ωN,t]W (t, 0)

= [x, ωN,0] +
1

iε

∫ t

0
ds

d

ds

(
W ∗(s, 0)[x, ωN,s]W (s, 0)

)
= [x, ωN,0] +

1

iε

∫ t

0
dsW ∗(s, 0)

([
ωN,t,

[√
−ε2∆ +m2

0, x
]]
− [ωN,t, [Xt, x]]

)
W (s, 0).

This implies that

tr|[x, ωN,t]| ≤ tr|[x, ωN,0]|+ 1

ε

∫ t

0
ds tr

∣∣∣[ωN,s, [√−ε2∆ +m2
0, x
]]∣∣∣ (4.29)

+
1

ε

∫ t

0
ds tr|[ωN,s, [Xs, x]]|. (4.30)

To control the term (4.30) we observe that

Xs =
1

N

∫
dq V̂ (q) eiq·xωN,se

−iq·x. (4.31)

Since ‖ωN,s‖ ≤ 1 (because of the assumption 0 ≤ ωN,s ≤ 1, as required for fermionic one-
particle density matrices), we find

tr|[ωN,s, [Xs, x]]| ≤ 1

N

∫
dq |V̂ (q)| tr|[ωN,s, [eiq·xωN,se−iq·x, x]]|

≤ 2

N

∫
dq |V̂ (q)| tr|[eiq·xωN,se−iq·x, x]|

=
2

N

∫
dq |V̂ (q)| tr|eiq·x[ωN,s, x]e−iq·x| ≤ 2‖V̂ ‖1

N
tr|[ωN,s, x]|.

(4.32)

To control (4.29) we notice that[√
−ε2∆ +m2

0 , x
]

= −ε ε∇√
−ε2∆ +m2

0

.

Hence[
ωN,s,

[√
−ε2∆ +m2

0, x
]]

= −ε[ωN,s, ε∇]
1√

−ε2∆ +m2
0

− ε2∇

[
ωN,s,

1√
−ε2∆ +m2

0

]
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and thus

tr
∣∣∣[ωN,s, [√−ε2∆ +m2

0, x
]]∣∣∣ ≤ εm−1

0 tr|[ε∇, ωN,s]|+ ε tr

∣∣∣∣∣ ε∇
[
ωN,s,

1√
−ε2∆ +m2

0

]∣∣∣∣∣ .
(4.33)

Here we used the estimate ‖(−ε2∆ + m2
0)−1/2‖ ≤ m−1

0 . To bound the second term on the
r. h. s. we will use the integral representation3

1√
A

=
1

π

∫ ∞
0

dλ√
λ

(A+ λ)−1 (4.34)

and the identity
[(A+ λ)−1, B] = (A+ λ)−1[B,A](A+ λ)−1

for A > 0, B selfadjoint operators. Now consider the j-th component (j ∈ {1, 2, 3}) of the
operator whose trace norm we have to estimate:

tr
∣∣∣ ε∂j [ωN,s, 1√

−ε2∆ +m2
0

] ∣∣∣
≤ 1

π

∫ ∞
0

dλ√
λ

tr

∣∣∣∣ε∂j 1

−ε2∆ +m2
0 + λ

[ωN,s, ε
2∆]

1

−ε2∆ +m2
0 + λ

∣∣∣∣
≤ 1

π

3∑
k=1

∫ ∞
0

dλ√
λ

∥∥∥∥ −ε2∂j∂k
−ε2∆ +m2

0 + λ

∥∥∥∥ tr|[ωN,s, ε∂k]|
∥∥∥∥ 1

−ε2∆ +m2
0 + λ

∥∥∥∥
+

1

π

3∑
k=1

∫ ∞
0

dλ√
λ

∥∥∥∥ −iε∂j
(−iε∇)2 +m2

0 + λ

∥∥∥∥ tr|[ωN,s, ε∂k]|
∥∥∥∥ −iε∂k

(−iε∇)2 +m2
0 + λ

∥∥∥∥ .
Using the bounds ‖(−ε2∆ +m2

0 + λ)−1‖ ≤ (m2
0 + λ)−1,∥∥∥∥ −iε∂k

−ε2∆ +m2
0 + λ

∥∥∥∥ ≤ 1√
m2

0 + λ
and

∥∥∥∥ −ε2∂k∂j
−ε2∆ +m2

0 + λ

∥∥∥∥ ≤ 1,

all of which can be easily proved in Fourier space, we conclude that

tr

∣∣∣∣∣ ε∂j
[
ωN,s,

1√
−ε2∆ +m2

0

]∣∣∣∣∣ ≤ C tr |[ε∇, ωN,s]|
∫ ∞

0

dλ√
λ

1

λ+m2
0

≤ Cm−1
0 tr |[ε∇, ωN,s]|.

Inserting this estimate in (4.33), we obtain

tr
∣∣∣[ωN,s, [√−ε2∆ +m2

0, x
]]∣∣∣ ≤ Cεm−1

0 tr|[ε∇, ωN,s]|.

Plugging this bound and (4.32) into (4.29) and (4.30), we arrive at

tr|[x, ωN,t]| ≤ tr|[x, ωN,0]|+ Cm−1
0

∫ t

0
ds tr|[ε∇, ωN,s]|+ CN−2/3

∫ t

0
ds tr|[x, ωN,s]|. (4.35)

3To check this operator identity, first use the functional calculus and Fubini’s theorem to reduce it to the
analogous identity for A ∈ R. Then substitute λ = t2 and use the residue theorem to calculate the integral.
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4. Mean-field Evolution of Fermions with Relativistic Dispersion

Next, we bound the growth of the commutator [ε∇, ωN,t]. Since the kinetic energy com-
mutes with the observable ε∇, we can proceed here exactly as in the non-relativistic case. For
completeness, we reproduce the short argument. Differentiating w. r. t. time and applying
Jacobi identity, we find

iε
d

dt
[ε∇, ωN,t] =[ε∇, [h(t), ωN,t]]

=[h(t), [ε∇, ωN,t]] + [ωN,t, [h(t), ε∇]]

=[h(t), [ε∇, ωN,t]] + [ωN,t, [V ∗ ρt, ε∇]]− [ωN,t, [Xt, ε∇]] .

As before, the first term on the r. h. s. can be eliminated by conjugation with the unitary
maps W (t, 0) defined in (4.28). Thus we find

tr |[ε∇, ωN,t]| ≤ tr |[ε∇, ωN,0]|

+
1

ε

∫ t

0
ds tr |[ωN,s, [V ∗ ρs, ε∇]]|+ 1

ε

∫ t

0
ds tr |[ωN,s, [Xs, ε∇]]|.

(4.36)

The second term on the r. h. s. of the last equation can be controlled by

tr |[ωN,s, [V ∗ ρs, ε∇]]| = ε tr |[ωN,s,∇(V ∗ ρs)]|

≤ ε
∫

dq |V̂ (q)||q||ρ̂s(q)| tr |[ωN,s, eiq·x]|

≤ ε
(∫

dq |V̂ (q)|(1 + |q|)2

)
sup
q

1

1 + |q|
tr |[ωN,s, eiq·x]|

≤ Cε tr |[x, ωN,s]|

where we used the bound ‖ρ̂s‖∞ ≤ ‖ρs‖1 = 1, the estimate (4.23) and the assumption (4.25)
on the interaction potential. As for the last term on the r. h. s. of (4.36), we note that, writing
the exchange operator as in (4.31),

tr |[ωN,s, [Xs, ε∇]]| ≤ 1

N

∫
dq |V̂ (q)| tr

∣∣[ωN,s, [eiq·xωN,se−iq·x, ε∇]]
∣∣

≤ 2

N

∫
dq |V̂ (q)| tr |[eiq·xωN,se−iq·x, ε∇]|

≤ 2‖V̂ ‖1
N

tr |[ωN,s, ε∇]|.

In the last inequality we used that

[eiq·xωN,se
−iq·x, ε∇] = eiq·x[ωN,s, ε(∇+ iq)]e−iq·x = eiq·x[ωN,s, ε∇]e−iq·x .

From (4.36), we conclude that

tr |[ε∇, ωN,t]| ≤ tr |[ε∇, ωN,0]|+ C

∫ t

0
ds tr |[x, ωN,s]|+ CN−2/3

∫ t

0
ds tr |[ε∇, ωN,s]|.

Summing up the last equation with (4.35), using the conditions (4.6) on the initial data and
applying Grönwall’s lemma, we find constants C, c > 0 such that

tr |[x, ωN,t]| ≤ CNε exp(c|t|) and

tr |[ε∇, ωN,t] ≤ CNε exp(c|t|).
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