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ABSTRACT 
Dementia is the progressive decline in cognitive function due to 

damage or disease in the body beyond what might be expected from 

normal aging. Based on neuropathological and clinical criteria, 

dementia includes a spectrum of diseases, namely Alzheimer's 

dementia, Parkinson's dementia, Lewy Body disease, Alzheimer's 

dementia with Parkinson's, Pick's disease, Semantic dementia, and 

large and small vessel disease. It is thought that these disorders result 

from a combination of genetic and environmental risk factors. 

Despite accumulating knowledge that has been gained about 

pathophysiological and clinical characteristics of the disease, no 

coherent and integrative picture of molecular mechanisms underlying 

neurodegeneration in Alzheimer’s disease is available. Existing 

drugs only offer symptomatic relief to the patients and lack any 

efficient disease-modifying effects. The present research proposes a 

knowledge-based rationale towards integrative modeling of disease 

mechanism for identifying potential candidate targets and biomarkers 

in Alzheimer’s disease. Integrative disease modeling is an emerging 

knowledge-based paradigm in translational research that exploits the 

power of computational methods to collect, store, integrate, model 

and interpret accumulated disease information across different 

biological scales from molecules to phenotypes. It prepares the 

ground for transitioning from ‘descriptive’ to “mechanistic” 

representation of disease processes.  

The proposed approach was used to introduce an integrative 

framework, which integrates, on one hand, extracted knowledge 

from the literature using semantically supported text-mining 
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technologies and, on the other hand, primary experimental data such 

as gene/protein expression or imaging readouts. The aim of such a 

hybrid integrative modeling approach was not only to provide a 

consolidated systems view on the disease mechanism as a whole but 

also to increase specificity and sensitivity of the mechanistic model 

by providing disease-specific context. This approach was 

successfully used for correlating clinical manifestations of the 

disease to their corresponding molecular events and led to the 

identification and modeling of three important mechanistic 

components underlying Alzheimer’s dementia, namely the CNS, the 

immune system and the endocrine components. These models were 

validated using a novel in-silico validation method, namely 

biomarker-guided pathway analysis and a pathway-based target 

identification approach was introduced, which resulted in the 

identification of the MAPK signaling pathway as a potential 

candidate target at the crossroad of the triad components underlying 

disease mechanism in Alzheimer’s dementia. 
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CHAPTER 1. Introduction to Scientific 
Challenge 
	  

1.1. Complexity of the human brain 
	  
The human brain is the most complex organ in the human body that 

processes thought, action, memory, cognition and feeling. More than 

thousand years ago, the Persian polymath – Avicenna – whose book 

“Canon of Medicine” provides a complete system of medicine 

(known as systems medicine today; 

http://en.wikipedia.org/wiki/Avicenna) extensively described the 

brain function, brain diseases and a five-cell profile of human head 

including common sense, retentive imagination, and cognitive 

faculties such as thinking, estimation and memory, both separately 

and interconnected [1],[2].      
That ancient five-dimensional anatomy of the human brain has been 

nowadays transformed into a more modern schema with seven scales 

(Figure 1). 

Today, the complexity of the human brain can be viewed from two 

perspectives: anatomical complexity and functional complexity. 

Anatomically, brain has approximately 1011 neurons that 

communicate together via about 1014 synapses [3]. Surprisingly, 

there is no quantitative information on the number of brain structural 

parts in the public domain but as I report in details in Chapter 5, 

currently the total number of brain anatomical parts based on known 
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Figure 1. A schematic representation of dimensions of 
complexity in the functioning brain. With advancements in 
neurology, a more complex picture of the interconnected brain 
structure and its functioning appears, which poses the challenge of 
dealing with high-dimensional, high-order data sets at various 
biological levels and scales. (Taken from 
[http://questioneverything.typepad.com/]; last accessed: 22.10.2013).  

different cell types amounts to 737. From the interconnectivity of 

such a complex anatomy then arises high-order functioning of the 

brain, which has been recently characterized based on anatomical 

and functional connectivity and synchronisation of their interactions 

[4]. Advanced neuroimaging technologies have revealed the 

existence of functional connectivity profiles of different brain 

regions, defined and visualized as complex functional networks [5]. 

Such a complexity is inherited by neurological diseases as well. 

Therefore, understanding the complexities of the brain is essential 
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for understanding pathologies of brain disorders, including 

neurodegenerative diseases.	  

1.2. Neurodegeneration and dementia 
	  
Since this work is focused on neurodegeneration and dementia, 

provisioning their definitions will be helpful for understanding the 

rest of the chapters in this thesis. The term neurodegeneration has 

been defined as “any pathological condition in which the nervous 

system or nerve cell loses its function, structure, or both [6]. The 

neuronal cell degeneration and death is quite devastating (due to 

limited brain’s ability to replace lost neurons) and observed in the 

progressive neurological disorders such as Alzheimer’s disease.  

Dementia by definition is “the loss of intellectual functions, such as 

thinking and memory, which interferes with daily function” [7]. It 

should be noted that the term dementia does not indicate a disease in 

itself, but rather a group of symptoms that are dependent on a 

particular condition and result in cognitive decline and significant 

deterioration of memory.  	  

1.3. Research motivation 
Despite the tremendous advancement of the technology in 

contemporary times, there is little known about the complexity of the 

brain and its disorders resulting from neurodegeneration; hence, 

brain and central nervous system disorders remain the world's 

leading cause of disability with no proper diagnosis and very limited 

symptomatic treatment options. This very fact is reflected in Figure 

2: while modern science has been successful in reducing the 
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mortality of patients suffering from cancers or cardiovascular 

diseases during the past decade, it has failed to control the high death 

rate associated with neurodegenerative diseases (NDDs) such as 

Alzheimer’s disease (AD). Unfortunately, this high rate of mortality 

has been coupled with a wave of high prevalence and incidence of 

Alzheimer’s disease, at least in the US population when compared to 

other NDDs. Moreover, although the worldwide prevalence of AD is 

estimated to quadruple by 2050, currently there exists no means to 

prevent, slow down, or cure AD. A very recent study indicates that, 

despite of reduced total mortality of people aged 55-74 years old in 

developed countries, total neurological deaths (due to nervous 

diseases and Alzheimer’s) increased significantly over the period 

1979-2010 [8]. Thus, the social pressure is rising as patients ask their 

physicians “why does research take so long? Why don’t we have 

effective therapies for such a devastating disease?” [9].      

Since 1960, many features of this fatal disease have been elucidated 

and many potentially disease-modifying compounds have made their 

way to initial human clinical trials. However, more than 200 AD 

drug candidates have failed to date [10]. These failures on the side of 

clinical application – despite significant successes on the side of 

molecular findings - uncover the fact that there is a deep 

“translational gap” between basic research and clinical application in 

Alzheimer’s disease. Some authors have attributed these problems to 

the failure of the translation of research in animal studies or the use 

of wrong animal model [11]. But repetitive failure of amyloid-

targeting clinical trials has led to growing skepticism that the 

hypothesis on which AD trials are based might not be valid [12]. 
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Indeed there are important questions about pathogenic mechanism of 

AD to be answered; for instance, “are different pathways leading to 

the manifestation of AD?”, “are plaques and tangles secondary 

events or downstream effects?”, or “what role is the dimension of 

time playing in the pathophysiology of AD?”. The current situation 

urges for a better understanding of the disease mechanism as it 

progresses over time and highlights the pressing need for correct and 

precise prediction of efficient mechanistic targets right at the 

beginning of the drug discovery pipeline. 

 

	  
Figure 2. Changes in selected causes of death between 
2000 and 2008. The figure shows the overall mortality (in 
the given timeframe of 8 years) in selected disease areas. Note 
that there is substantial controversy about speaking of a “AD 
mortality”, as AD is not the cause of death but rather an 
accompanying condition.  

(Taken from [http://www.alzheimersanddementia.com /article/ 
S15525260(13)00076-9/abstract]; last accessed: 22.10.2013). 
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Currently no coherent and integrative picture of molecular 

mechanisms underlying neurodegeneration in Alzheimer’s disease is 

available. The AD research community is now beginning to realize 

that AD is a complex multifactorial disease and other non-amyloid 

targets, pathways, and processes should be investigated to identify 

novel treatment strategies [13]. Existing drugs only offer 

symptomatic relief to the patients and lack any efficient disease-

modifying effects [14].	  

1.4. The goal of this thesis 
The goal of the research presented in this thesis is: 

a. to propose an integrative knowledge- and data-driven 

approach for identification of novel target candidates by 

addressing the problem of complexity underlying the 

neurodegenerative mechanisms in Alzheimer’s disease.  

b. to demonstrate that knowledge-based computational 

models and maps of Alzheimer’s disease progression 

enable the identification of mechanistic pathways and 

improve the understanding of the correlations between 

genotypes and phenotypes at the molecular level. 
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CHAPTER 2. Complex Biology Underlying 
Neuro-degeneration in Alzheimer’s Disease 
	  

2.1. Classification of neurodegenerative disorders 

(NDDs) 
Neurodegeneration represents a large group of heterogeneous 

disorders in which the neuronal damage and death occurs within 

specific anatomical and functional areas of the brain. The exact 

number of NDDs is not clear but it is estimated to be a few hundred 

[15]. Due to the inherent anatomical and functional complexity of the 

brain, classification of NDDs is a challenging and complicated task, 

which has so far remained controversial. This is because many 

NDDs show clinical and pathological overlap with one another and 

several regions of the brain are affected simultaneously. For 

example, multiple system atrophy (MSA) in which several areas of 

brain are affected by degeneration of neurons, parkinsonism is a 

prominent feature but it may be accompanied with other symptoms 

such as sever ataxia or autonomic failure, depending on the affected 

area of the brain. Another example is the clinical overlap between 

Parkinson’s disease with dementia and Alzheimer’s disease 

dementia. Since classification of these two neurodegenerative 

diseases is merely based on their clinical signs, early diagnosis of 

Parkinson’s disease (PD) is hampered. The extent of clinical overlap 

between these two conditions is so much greater than chance that 
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even some authors propose that AD and PD belong to a spectrum of 

neurodegenerative disorders with common disease mechanism but 

triggered by different etiological factors [16]. Moreover, even many 

diseases with neurodegeneration as their major element such as 

epilepsy, multiple sclerosis and schizophrenia are not classified as 

degenerative. To date, categorization of neurodegenerative disorders 

is still based on clinical features (symptomatology) or the topography 

of lesions (as revealed by imaging techniques). Accordingly, 

Przedborski and coworkers (2003) have proposed a high-level 

classification for NDDs (Figure 3).   

Traditionally, the current nosology of NDDs follows the “one 

disease, one pathology” paradigm which is based on the notion of a 

discrete and clear correlation between disease states and certain 

pathological markers. For instance, early findings in autopsies of AD 

patients showed the presence of amyloid plaques and neurofibrillary 

tangles and similarly, abnormal protein aggregates of Lewy bodies 

were identified in the postmortem brains of Parkinson’s patients. 

However, this kind of nosology poses several problems. 

Firstly, the progressive nature of NDDs highlights the point that 

neurological changes are “time-dependent” and for this reason, it is 

difficult to distinguish disease stages or decide about the associated 

neuropathology. Due to this long “latency period” in NDDs 

generally, and in dementias particularly, which can take several 

decades as long as 22 years before the diagnosis of dementia, 

clinically it is not possible to operationalize poor cognitive 

performance in elderly [17]. Secondly, problems relate to labeling 

the disease when more than one possible diagnosis exists for a set of 
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symptoms. Disease labeling may change over time as the disease 

progresses and this can be misleading for patients [18].  

 

 
Figure 3. High-level classification schema for grouping 
NDDs based on anatomical structure. This schema reflects the 
conventional anatomically guided classification system, which does 
not take into consideration the disease mechanism. Reproduced from 
[15]. 

As mentioned before, the overlapping symptomatology of NDDs 

suggests that single pathological markers can poorly correlate with 

clinical symptoms and perhaps, multiple markers or molecular 

features can better represent separate NDD etiologies. Recent 

initiatives have been launched to develop a new taxonomy of 

diseases based on their underlying molecular and environmental 

causes rather than on physical signs and symptoms [19],[20]. 

Therefore, NDDs should be seen as a spectrum of diseases with 

overlapping symptoms and mixed pathologies.     
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2.2. Dementias and Alzheimer’s disease 
	  

2.2.1. Nosology 

Today, several classification systems for dementia subtypes exist, 

taking into account the etiological specifications, anatomic location, 

course of disease and prognosis (http://www.ninds.nih.gov/disorders/ 

dementias/detail_dementia.htm). Figure 4 summarizes all three 

classifications in a single schema with detailed categorization based 

on subcortical subtypes. This schema integrates the entire concept of 

“clinical vs. histopathological vs. mechanism-based classification”. 

The limitation of this classification schema is that it does not provide 

sufficient granularity at the etiological level.    

In contrast, an etiology-based classification schema provides a better 

granularity and more complete list of dementia subtypes. Table 1 

depicts this classification system [22]. However, this classification 

system is heavily biased towards anatomical etiology of dementias 

and does not include the knowledge of molecular basis underlying 

dementias. 
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Figure 4. An integrated classification system for grouping 
dementia subtypes. Reproduced from [21]. 

 
The lack of proper classification of diseases with high resolution at 

the molecular and mechanism level has led to the ignorance of 

disease heterogeneity. Unfortunately, disease heterogeneity is not 

considered in the design and conduct of clinical trials and 

consequently, the likelihood of success in clinical trials for an 

effective drug will probably reduced. For this reason, Kola and Bell 

(2011) have called for reformation of the human disease taxonomy 

by moving away from traditional diagnostic-based criteria to 

molecular-based stratification of patients with multiple disease 

subtype [23].   
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Table 1. Etiology-based classification system for dementia 
subtypes based on anatomy 

Etiology-
based 
dementias 

Primary cortical Alzheimer’s disease  
Frontotemporal dementia  
Pick’s disease  
Primary progressive aphasia  
Agryophilic grain disease  
Lewy body dementia Diffuse 

Mixed 
Cerebral 

Primary 
subcortical 

Parkinson’s disease  
Corticobasal degeneration  
Progressive supranuclear 
palsy 

 

Multiple system atrophy  
Lewy body dementia Transitional 

Brainstem 
Cerebrovascular  Vascular dementia Large/small vessel strokes 

Multiple lacunar infarcts 
Binswanger disease 
CADASIL 
Cerebral amyloid 
angiopathy 

Structural/traum
atic injury 

Brain tumors  
Limbic encephalitis  
Traumatic brain injury  
Dementia pugillistica  
Chronic subdural hematoma  
Normal pressure 
hydrocephalus 

 

Postanoxic state  
Postoperative cognitive 
dysfunction 

 

Toxic exposure Substance induced dementia  
Medication induced dementia  
Alcohol dementia  
Inhalant induced dementia  
Wernicke-Korsakoff 
syndrome 

 

Toxic metal exposure  
Wilson’s disease  
Toxic gas exposure  

Nutritional 
deficiency 

Vitamin B12 deficiency  
Folate deficiency  
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Niacin deficiency  
Thiamine deficiency  

Infectious 
disease 

Bacterial Bacterial manengitis 
Whippie disease 

Viral Viral manengitis 
Herpes simplex 
encephalitis 
HIV-associated dementia 
Progressive 
Leukoencephalopathy 
Sleeping sickness 
Neurosyphillis 
Lyme disease 

Fungal Fungal manengitis 
Cryptococcal meningitis 

Prion disease Creutzfeldt-jakob disease 
Kuru 
GSS syndrome 
Fatal familial insomnia 

Parasitic diseases  
Organ failure Uremic encephalopathy  

Hepatic encephalopathy  
Endocrine 
disease 

Diabetes mellitus  
Hypothyroidism  
Hyperparathyroidism  
Cushing syndrome  
Addison disease  

Neurologic/ 
metabolic 
disorders 

Huntington’s disease  
Multiple sclerosis  
Marchiafava-Bignami 
disease 

 

Ataxia syndrome  
Inherited storage diseases Adrenoleukodystrophy 

Metachromatic 
leukodystrophy 
Cerebrotendinous 
xanthomonasis 

Inflammatory 
disease 

Collagen vascular diseases Behcet syndrome 
Sjörgen syndrome 
Systemic lupus 
erythematosus 

Vasculitides Granulomatous angiitis 
Lymphomatoid 
granulomatosis 
Polyarteritis nodosa 

Wegener granulomatosis  
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2.2.2. Epidemiology of dementias and AD 
Epidemiological estimates indicate that the prevalence of AD is 

increasing worldwide. According to the World Health Organization 

in 2001, about 37 million people worldwide had been afflicted by 

dementia out of which 18 million suffered from AD by that time. 

The latest numbers come from the Alzheimer World Report, which 

estimated 35.6 million people with dementia in 2010, the numbers 

nearly doubling every 20 years, to 65.7 million in 2030 and 115.4 

million in 2050 [24]. The global burden of annual incidence of 

dementia is shown in Figure 5. It is noteworthy that in most studies 

the term ‘dementia’ has been used interchangeably with ‘AD’. 

 

 

 

 

 

 
 

Figure 5. The global burden of annual incidence of 
dementia. (Taken from [http://www.who.int/mental_health/ 
publications/dementia_report_2012/en/]; last accessed: 01.11.2013).  
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Epidemiological studies report that the incidence rate of new cases 

increases with age, almost doubling with every five-year increase in 

age (Figure 6). 

 

 

 

 

 

 

 

 

 

 
Figure 6. Projection of the incidence rate of dementia cases 
from 10 studies. As shown in a number of studies, the prevalence 
of Alzheimer's disease doubles with every five-year increase in age. 
(Taken from [http://www2f.biglobe.ne.jp/~boke/ adupdatecu.htm]; 
last accessed: 22.10.2013) 

 
Interestingly, the incidence of dementia is lower in men but women 

enjoy a longer survival time than men for both AD and vascular 

dementia [25].  	  
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2.2.3. Risk factors for AD 

Increased risk of AD has been associated with a large number of 

factors. The main risk factor for AD is advancing age, given that it is 

driven by lifelong accumulation of molecular damage. Mayoux and 

Stern have recently analysed the AD incidence data published in 24 

studies and estimated the age-specific incidence of AD as illustrated 

in Figure 7 [26]. The age of onset in most AD cases is usually 65 and 

above, which is considered as “sporadic” but onset before this age 

suggests involvement of a strong genetic component. Among genetic 

factors, the E4 allele of the APOE gene is the only confirmed risk 

factor for AD, which has been shown to be specific for up to 90 

percent of dementia cases [27].  

 

	  
Figure 7. The annual incidence rate (per 100 person-years) 
for Alzheimer disease. This graph is an estimate of the data 
collected in 24 published studies. 

 
Accumulating epidemiological evidence indicates that various risk 

factors contribute to exacerbation of neurodegenerative diseases 
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including gender, poor education, endocrine conditions, oxidative 

stress, inflammation, stroke, hypertension, diabetes, smoking, head 

trauma, depression, infection, tumors, vitamin deficiencies, immune 

and metabolic conditions, and chemical exposure [28]. Such risk 

factors lead to manifestation of co-morbid conditions in patients with 

neurodegenerative diseases. For instance, it is observed that 

dementia incidence is modulated by factors linked to treatment of 

other diseases such as diabetes [29]. Similarly, retrospective studies 

of clinical and autopsy data revealed that patients with rheumatoid 

arthritis exhibit a reduced prevalence of AD [30]. Reports also 

suggest that patients who take anti-inflammatory drugs or suffer 

from inflammatory diseases like arthritis have reduced risk of 

developing AD. In general, AD is associated with several major co-

morbidities including hypo- and hyper-thyroidism, sleep apnea, 

osteoporosis, glaucoma, and rheumatoid arthritis [31]. Hence, 

identification of those co-morbidities that have strong etiological link 

to the disease may open up new intervention strategies to indirectly 

modify the trajectory of the disease.   

Other major risk factors that modify the risk of AD include 

hypertension, myocardial infarction, coronary heart disease, diabetes, 

atherosclerosis, smoking, high cholesterol concentrations and a 

history of stroke (Table 2) [26]. Of the above-mentioned risk factors, 

age and gender and genotype can not be changed but others can be 

modified to prevent the disease.  
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Table 2. List of major factors that modify the risk of 
Alzheimer’s dementia and their probable mechanism of 
effect. Adopted from [26]. 

 
 

2.2.4. Disease course of AD 

Since AD is a progressive disease, it typically takes 10 years from 

diagnosis to death [32]. Some people on a course of healthy aging 

show only age-related changes in cognition but some other gradually 

move to mild cognitive impairment (MCI), which is the beginning of 

transition to AD. Figure 8 illustrates the natural history of AD based 

on clinical cognition tests. 
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Figure 8. Natural history of Alzheimer’s dementia 
progression based on declining cognitive function over 
time. All AD patients decline similarly through the stages of 
cognitive and functional loss as well as the stage of behavioral 
problems, although at different rates. (Taken from 
[http://www.medscape.org/viewarticle/456034_2]; last accessed: 
22.10.2013) 

 

2.2.5. Diagnosis of AD 

Clinically, AD is diagnosed based on the presence of characteristic 

cognitive, behavioral, and neuropsychiatric symptoms such as 

problems with memory or speech. For research purposes, the 

diagnosis of AD is performed using diagnostic criteria developed and 

published by the DSM-IV-TR and NINCDS-ADRDA working group 

[33]. Given the insufficient diagnostic specificity of conventional 

criteria against other dementia subtypes (23-88%), this framework 

offers revised AD and non-AD diagnostic criteria using not only 

“core diagnostic criteria” but also “supportive features”. The core 
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diagnostic criteria takes into consideration features of early and 

significant episodic memory impairment whereas supportive features 

include test for medial temporal lobe atrophy, abnormal 

concentrations of cerebrospinal fluid (CSF) biomarkers, specific 

patterns on functional neuroimaging with PET and check for 

autosomal dominant mutations.  

CSF biomarkers are not routinely used for evaluation of AD and PET 

biomarkers are extensively being developed to be used as preclinical 

diagnostic markers. To date, there is no molecular and imaging 

biomarkers that could predict onset or progression of AD. However, 

the most popular diagnostic tests in clinic for AD are obtaining 

history of the onset of the patient’s symptoms and their progression, 

physical examination including visual signs, speech, reflexes, eye 

movement, etc., laboratory studies such as blood test, radiological 

studies using ‘functional’ and ‘structural’ imaging, and finally 

neuropsychological tests including the most commonly used tests 

namely Mini-mental State Examination (MMSE) and the Mini-Cog. 

These tests assess mental skills of patient using several items such as 

recall, time and place orientation, writing skills and mental 

calculations.	  

2.2.6. Biomarkers of AD 

Over the past decades, validated and disease-specific biomarkers 

have been introduced to explain the neuropathology of AD. These 

biomarkers play an important role in supporting the challenging task 

of definite diagnosis of AD and can be grouped in two categories: 

pathophysiological and topographical markers [34].  
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Pathophysiological biomarkers include CSF measures of reduced 

amyloid-beta, increased total tau, increased phosphorylated tau, and 

amyloid PET scanning. In contrast, topographical image-based 

biomarkers are less specific but identify the regional patterns of AD 

pathology and include medial temporal lobe atrophy and reduced 

glucose metabolism in temporal lobe regions. Interestingly, these 

imaging biomarkers have been shown to accurately map to the Braak 

stages of neurofibrillary tangle deposition [35].   

In 2010, a hypothetical model of the major biomarkers of AD was 

published in which the temporal evolution of AD biomarkers in 

relation to each other and to the onset and progression of clinical 

symptoms was described. The authors have revised their model using 

the latest biomarker data and proposed that the two major 

proteinopathies underlying AD biomarker changes, Aß and tau, may 

be initiated independently in sporadic AD (Figure 9) [36]. In this 

proposed integrative model, subcortical tauopathy is the first AD 

pathophysiological process to arise in many individuals and is 

detectable only by immunostaining methods. This tauopathy, 

however, does not by itself lead to AD. Amyloid-beta 

pathophysiology arises later and independently from pre-existing 

tauopathy. Acceleration of the initial slowly developing subcortical 

tauopathy occurs after concentrations of Amyloid-beta biomarkers 

become abnormal (biomarker abnormality in Figure 9). Changes in 

imaging biomarkers then occur, followed last by onset of overt 

clinical symptoms. 
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Figure 9. Model integrating tauopathy and amyloid-beta 
pathophysiology. The threshold for biomarker detection of 
pathophysiological changes is denoted by the black horizontal line. 
The grey area denotes the zone in which abnormal 
pathophysiological changes lie below the biomarker detection 
threshold. In this figure, tau pathology precedes A-beta deposition in 
time. A-beta deposition then occurs independently and rises above 
the biomarker detection threshold (purple and red arrows). This 
induces acceleration of tauopathy and CSF tau then rises above the 
detection threshold (light blue arrow). Later still, FDG PET and MRI 
(dark blue arrow) rise above the detection threshold. Finally, 
cognitive impairment becomes evident (green arrow), with a range of 
cognitive responses that depend on the individual’s risk profile (light 
green-filled area). (Adopted from [36]) 

	  

2.2.7. Stages of AD 

There are different descriptions for staging in AD. Perhaps the 

Clinical Dementia Rating (CDR) system was the first staging scale 

for dementia that was developed by Hughes et al. in 1982. CDR is a 

five-point scale as shown in Table 3. 

 



Chapter	  2.	  Complex	  Biology	  Underlying	  AD	  
	  

23	  

Table 3. Representation of the CDR scale for rating 
cognitive performance 

CDR-0 No dementia 
CDR-0.5 = Very 
mild 

Memory problems are slight but consistent; 
some difficulties with time and problem 
solving; daily life slightly impaired. 

CDR-1 = Mild Memory loss moderate, especially for recent 
events, and interferes with daily activities. 
Moderate difficulty with solving problems; 
cannot function independently at community 
affairs; difficulty with daily activities and 
hobbies, especially complex ones. 

CDR-2 = 
Moderate 

More profound memory loss, only retaining 
highly learned material; disoriented with 
respect to time and place; lacking good 
judgment and difficulty handling problems; 
little or no independent function at home; can 
only do simple chores and has few interests. 

CDR-3 = Severe Severe memory loss; not oriented with respect 
to time or place; no judgment or problem 
solving abilities; cannot participate in 
community affairs outside the home; requires 
help with all tasks of daily living. 

 
In 1987, Reisberg introduced the Functional Assessment Staging 

(FAST) system with the focus on levels of functioning and daily 

living activities versus cognitive decline [37]. Table 4 summarizes 

seven stages of the FAST system. 
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Table 4. Representation of the FAST system for 
measurement of cognitive performance 

Stage 1: Normal adult No functional decline 
Stage 2: Normal older adult Personal awareness of some 

functional decline. 
Stage 3: Early Alzheimer's 
disease 

Noticeable deficits in demanding 
job situations. 

Stage 4: Mild Alzheimer's Requires assistance in complicated 
tasks such as handling finances, 
planning parties, etc. 

Stage 5: Moderate 
Alzheimer's 

Requires assistance in choosing 
proper attire. 

Stage 6: Moderately severe 
Alzheimer's 

Requires assistance dressing, 
bathing, and toileting. Experiences 
urinary and fecal incontinence. 

Stage 7: Severe Alzheimer's Speech ability declines to about a 
half-dozen intelligible words. 
Progressive loss of abilities to walk, 
sit up, smile, and hold head up. 

 
The Global Deterioration Scale/Functional Assessment Staging 

(GDS/FAST) system, developed by Auer and Reisberg in 1997 (also 

known as Reisberg scale), is widely used to characterize the stages of 

AD on a seven-stage granularity basis (Table 5) [38].  
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Table 5. Details of the Reisberg rating scale 

Diagnosis Stage Signs & Symptoms 
No 
Dementia 

Stage 1:  
No Cognitive 
Decline 

In this stage the person functions 
normally, has no memory loss, and 
is mentally healthy.  

No 
Dementia 

Stage 2:  
Very Mild 
Cognitive 
Decline 

This stage is used to describe 
normal forgetfulness associated 
with aging; for example, 
forgetfulness of names and where 
familiar objects were left. 

No 
Dementia 

Stage 3:  
Mild Cognitive 
Decline 

This stage includes increased 
forgetfulness, slight difficulty 
concentrating, decreased work 
performance. People may get lost 
more often or have difficulty 
finding the right words. Average 
duration: 7 years before onset of 
dementia 

Early stage Stage 4:  
Moderate 
Cognitive 
Decline 

This stage includes difficulty 
concentrating, decreased memory 
of recent events, and difficulties 
managing finances or traveling 
alone to new locations. People 
have trouble completing complex 
tasks efficiently or accurately and 
may be in denial about their 
symptoms. Average duration: 2 
years 

Mid-stage Stage 5:  
Moderately 
Severe 
Cognitive 
Decline 

People in this stage have major 
memory deficiencies and need 
some assistance to complete their 
daily activities (dressing, bathing, 
preparing meals). Memory loss is 
more prominent and may include 
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major relevant aspects of current 
lives. Average duration: 1.5 years 

Mid-stage Stage 6:  
Severe 
Cognitive 
Decline 
(Middle 
Dementia) 

People in Stage 6 require extensive 
assistance to carry out daily 
activities. They start to forget 
names of close family members 
and have little memory of recent 
events. Many people can 
remember only some details of 
earlier life. They also have 
difficulty counting down from 10 
and finishing tasks. Incontinence 
(loss of bladder or bowel control) 
is a problem in this stage. Ability 
to speak declines. Personality 
changes, such as delusions 
(believing something to be true 
that is not), compulsions 
(repeating a simple behavior, such 
as cleaning), or anxiety and 
agitation may occur. Average 
duration: 2.5 years 

Late stage Stage 7:  
Very Severe 
Cognitive 
Decline (Late 
Dementia) 

People in this stage have 
essentially no ability to speak or 
communicate. They require 
assistance with most activities 
(e.g., using the toilet, eating). They 
often lose psychomotor skills, for 
example, the ability to walk. 
Average duration: 2.5 years 

 
Reisberg and coworkers (2008) have recently provided a 

comparative overview of the above-mentioned staging scales in 
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which the typical time course of normal brain aging, MCI, and AD 

have been mapped to the range of stages in different scales [39].  

It is worth of note that a different staging system based on the 

distribution pattern and packing density of amyloid deposits in 

autopsied brains (i.e. neuropathological staging) was proposed by 

Braak and Braak in 1991, which distinguished six stages [40]. This 

system was able to differentiate initial, intermediate, and late phases 

of the disease in both symptomatic and non-symptomatic individuals. 

This staging schema was revised in 2006 by Braak et al. using more 

advanced techniques with focus on tau hyperphosphorylation, as 

summarized in Table 6. [41]. 

 
Table 6. Updated schema for diagnosis of stages in 
Alzheimer’s disease  

Stage I Lesions develop in the transentorhinal region 
Stage II Lesions extend into the entorhinal region 
Stage III Lesions extend into the neocortex of the fusiform 

and lingual gyri 
Stage IV The disease process progress more widely into 

neocortical association areas 
Stage V The neocortical pathology extends fanlike in 

frontal, superolateral, and occipital directions, and 
reaches the peristrate region  

Stage VI The pathology reaches the secondary and primary 
neocortical areas and, in the occipital lobe, extends 
into the striate area 

 
Given the importance of predictive measures for identification of 

individuals at the risk of developing mild cognitive impairment, 
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characterization of the long preclinical stage of AD opens a crucial 

window of opportunity to intervene with therapy; to this end, 

recently preclinical stages of AD have been described and 

recommended by the National Institute on Aging (Figure 10) [42].  

 

	  
Figure 10. Graphic representation of the proposed staging 
framework for preclinical AD. Note that some individuals will 
not progress beyond Stage 1 or Stage 2. Individuals in Stage 3 are 
postulated to be more likely to progress to MCI and AD dementia. 
Abbreviations: Ab, amyloid beta; PET, position emission 
tomography; CSF, cerebrospinal fluid; FDG, fluorodeoxyglucose, 
fMRI, functional magnetic resonance imaging, sMRI, structural 
magnetic resonance imaging. (Adopted from [42]) 

 
The emerging concept of preclinical AD has great implications for 

identification of predictive biomarkers as well as development of 

disease-modifying treatments. For instance, it is critical to define a 

biomarker that best predicts progression from the preclinical to the 

clinical stages of AD dementia. The long latency period of AD 
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within the preclinical phase opens up a new opportunity for potential 

intervention with disease-modifying therapies. However, more 

studies should be conducted to determine the robustness of the above 

model in terms of the number of individuals transitioning from pre-

clinical to clinical phase of AD. Besides, robust predictive 

biomarkers and preventive disease-modifying treatments are still 

missing and deserve more investigation.     

	  

2.3. Biology/Etiology of AD 

2.3.1. Anatomical patterns of pathology in AD 

Decline in cognitive abilities, learning difficulties and memory 

impairment, particularly the loss of episodic memory, are hallmarks 

of early AD. The first pre-requisite for understanding the pathology 

of AD is to understand the neuroanatomy of human memory and 

cognition because such functional tasks are crucially dependent on 

networks of brain areas and regional connectivity circuits. The 

primary brain region damaged during the course of AD is “limbic 

system”, which consists of several structures, most importantly, 

hippocampus, cingulate gyrus, limbic cortex, amygdala, olfactory 

bulbs, fornix, mamillary body, septum and habenular commisure 

(Figure 11).  
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Figure 11. Neuroanatomy of the limbic system and 
surrounding structures in the human brain. (Taken from 
[http://jobspapa.com/diagram-the-limbic-system-and-surrounding-
structures.html]; last accessed: 22.10.2013) 

 
The pathology associated with AD begins in the entorhinal cortex 

where a decline in its volume is observed. This region plays an 

important role in relaying information between the hippocampus and 

neighboring cortices. The atrophy then spreads to hippocampus and 

moves out to the temporal and parietal cortices. Degeneration of 

entorhinal cortex occurs progressively during aging but its 
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pathological conversion to MCI and to AD begins long before 

manifestation of clinical symptoms [43]. 	  

	  

2.3.1.1. Neuroanatomy of human memory and learning 

It is long known that the medial temporal lobe is involved in 

processing memory. The hippocampus is a central structure for 

memory function and plays an important role in both spatial and 

episodic memories [44]. In coronal section, the hippocampus looks 

like an S-shaped structure and is composed of the cornu ammonis 

and the dentate gyrus. The cornu ammonis is further divided into 

four fields, namely CA1 to CA4 (Figure 12) [45]. 

              
Figure 12. Neuroanatomy of the hippocampus, including 
CA layers. 
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As shown in the figure above, the hippocampus contains three layers 

of densely packed neurons designated CA1, CA2, and CA3. These 

layers can be distinguished based on differences in the density of 

pyramidal cells. CA1 region (also called the Sommer sector) is 

important in neuropathology because the first signs of neuronal death 

due to cerebral hypoxia are observed in this area. Dentate gyrus 

mainly consists of granule cells and is primarily affected during 

normal aging as well as very late phase of AD [46].    

On a cellular network level, the hippocampus has several important 

connections to other brain regions through neural pathways (Figure 

13). The entorhinal cortex is considered the gateway to the 

hippocampus because neurons forming the so called “perforant 

pathway” collect input from many other brain regions and deliver to 

the dentate gyrus of the hippocampus. “Mossy fibers” connect 

granule cells of the dentate gyrus to pyramidal cells of the CA3 area. 

The input is finally sent to the CA1 area for further processing. CA1 

pyramidal cells provide output via subiculum to the entorhinal cortex 

and prefrontal cortex. It has been shown that the dentate gyrus and 

the CA3 networks are involved in pattern recognition whereas the 

CA1 network is involved in learning the environment. The CA1 

region is particularly vulnerable to pathological effects of AD and 

such vulnerability has direct impact on the hippocampal-neocortical 

memory system [47].  
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Figure 13. Schematic representation of the neural 
connections between brain regions. a) Interconnection of 
anatomical regions that support episodic memory, highlighting the 
connections between the hippocampal system, diencephalic 
structures and neocortical regions. b) Diagrammatic representation of 
the unidirectional and bidirectional network connectivity of critical 
structures of the temporal lobe system, diencephalic nuclei and 
neocortical association areas involved in memory processing. c) The 
anatomy of the CA, depicting the trisynaptic pathway as the principal 
feedforward neural circuit involved in the processing of information 
through the hippocampus. Abbreviations: Ant, anterior thalamic 
nuclei; CA, cornu ammonis; DG, dentate gyrus; EC, entorhinal 
cortex; MB, mamillary bodies; Med, medial thalamic nuclei; MTT, 
mamillothalamic tract (bundle of Vicq d'Azyr); SN, septal nuclei. 
(Taken from [47]) 

 

Classically, memory systems of human brain are divided into long-

term and short-term (working) memory. Figure 14 illustrates further 

classification of human memory systems mapped to corresponding 

anatomical brain regions. In AD, both episodic and semantic 

memories are impaired. The role of semantic memory in episodic 

future thinking has been recently reviewed by Bartsch and Butler 

[48].  
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Figure 14. The classic view of memory systems based on a 
temporal scale. Episodic memory represents memory of specific 
events in time and space. Episodic autobiographical memory is 
usually regarded as part of episodic memory although it also 
comprises semantic memory, which includes facts, meanings, 
concepts and knowledge about the external world and refers to 
general factual knowledge. The different memory systems can 
interact and overlap with each other on a temporal scale (for 
example, episodic memory transfers into semantic memory over 
time) and content-wise (procedural learning can be modulated by 
declarative memory). (Taken from [47]). 

	  

2.3.1.2. Neuroanatomy of human cognition 

Cognitive functions can be divided into two broad groups: basic and 

higher-level cognitive functions [49].  

Basic cognitive functions include “attention”, “working memory”, 

“long-term memory”, and “perception”.  

Higher-level cognitive functions include “speech & language”, 

“decision-making” and “executive control”. 

These cognitive functions are processed and regulated by neural 

circuits that interact at the interfaces of the cerebral cortex, thalamus, 
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and basal ganglia. Solari and Stoner (2011) have collated, integrated, 

and visualized the accumulated connectivity data obtained from 

many published studies of primate cerebral cortex on 

neuroanatomical circuitry of cognition and integrated these 

fragmented studies into a single framework [50].   

Based on this integrative model, the authors hypothesized that 

cognitive function follows a pattern of information flow among 

seven neural circuits. The seven circuits described are consolidated 

long-term declarative memory, short-term declarative memory, 

working memory/information processing, behavioral memory 

selection, behavioral memory output, cognitive control, and cortical 

information flow regulation (Figure 15). 
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Figure 15. Summary diagram of proposed flow of cognitive 
information. Generally information flows from left to right 
through the color coded circuits. Long-term memory is split into 
perceptions and associations. Cortical neuron x (Cx), 
Parahippocampal gyrus (PH), Hippocampus (H), Specific thalamus 
(Ts), Layer 1 projecting thalamus (TL1), Intralaminar thalamus (Ti), 
Cerebellum (C), Striatum (S), External segment globus pallidus 
(Gpe), Internal segment globus pallidus (Gpi), Substantia nigra par 
reticulata (Snr), Basal forebrain (BF). (Taken from [ 
http://www.frontiersin.org/files/cognitiveconsilience/ index.html#]; 
last accessed 01.11.2013) 

 
To map cognitive functions to specific brain regions, functional brain 

imaging or electroencephalography can be utilized aiming at 

localization of function [51]. This has led to construction and 

representation of topological brain architecture in form of 

connectivity maps or networks (Figure 16). The nodes of these 

networks are usually inferred during tasks that manipulate one or 

more of cognitive functions. 
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Figure 16. Structural and functional brain networks can be 
studied in four steps. 1: Define the network nodes as 
electroencephalography or multielectrode-array electrodes, or as 
anatomically defined regions of histological, MRI or diffusion tensor 
imaging data. 2: Estimate a continuous measure of association 
between nodes. This could be the spectral coherence between two 
magnetoencephalography sensors, or the connection probability 
between two regions of an individual diffusion tensor imaging data 
set, or the inter-regional correlations in cortical thickness or volume 
MRI measurements estimated in groups of subjects. 3: Generate an 
association matrix by compiling all pairwise associations between 
nodes to produce an undirected graph. 4: Calculate the network 
parameters of interest in this graphical model of a brain network and 
compare them to the equivalent parameters of a population of 
random networks. Taken from [51]. 
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Alterations in the configuration of these connectivity networks 

reflect neural network function or dysfunction because cognitive and 

behavioral functions result from large-scale network interactions. For 

instance, fMRI-based connectivity networks distinguished between 

the Salience Network connectivity associated to behavioral variant 

frontotemporal dementia and the Default Mode Network 

connectivity associated to AD. While the former map represented 

atrophy in frontoinsular, cingulate, striatal, thalamic and brainstem 

nodes, the latter highlighted an atrophy specific to posterior 

hippocampus, medial cingulo-parieto-occipital regions and the dorsal 

raphe nucleus [52]. Therefore, functional and structural network 

mapping methods provide the opportunity to identify anatomically 

predictable patterns of neurodegeneration in the human brain.	  

2.3.2. Main hypotheses on the pathology of dementia 

Since the early description of Alzheimer’s disease made by Alois 

Alzheimer in 1906, and despite remarkable findings and insights into 

this disease, still the accurate mechanism of AD pathogenesis 

remains unclear. Several independent hypotheses have been 

proposed to address the pathogenesis in AD from different angles 

including apolipoprotein E (ApoE) genotyping [53],[54],[55], 

hyperphosphorylation of tau protein [56],[57], oxidative stress 

[58],[59], abnormal cell cycle [60],[61], inflammation [62],[63],[64], 

and Amyloid-beta metabolism [65],[66],[67]. In a recent review by 

Dong et al., these hypotheses have been systematically introduced 

and discussed [68]. Although all these hypotheses are important, 

none of them alone can explain the heterogeneity of pathological 
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abnormalities observed in AD. Here, I focus on three most popular 

hypotheses and briefly explain their proposed mechanisms. 

	  

2.3.2.1. Amyloid hypothesis 

The hallmark of this hypothesis is the clinical observation of amyloid 

plaques and tangles in brains of deceased patients. According to this 

hypothesis, the imbalance between production and clearance of the 

amyloid-beta protein in the brain parenchyma leads to the deposition 

of toxic oligomers of this peptide, amyloid-beta aggregation, 

formation of tau filament aggregates and ultimately neural 

degeneration. Consequently, in both familial and sporadic AD 

production of total amyloid-beta or its 42 variant clearly increases 

but it is unclear whether the clearance of amyloid-beta in sporadic 

AD is disturbed [69]. Figure 17 summarizes downstream events that 

are shared between familial and sporadic AD as proposed by the 

amyloid hypothesis.  
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Figure 17. Diagrammatic representation of the amyloid 
cascade hypothesis in both sporadic and familial AD. An 
increase in production of either total Abeta or the amyloidogenic 
Abeta1–42 isoform is well established in familial AD, but only 
limited evidence exists for a specific disturbance in Abeta clearance 
in sporadic AD. In both familial and sporadic AD, soluble Abeta is 
thought to undergo a conformational change that renders it prone to 
aggregation into soluble oligomers and the larger insoluble fibrils 
found in plaques. Fibrillar Abeta deposited in plaques might be 
neurotoxic; however, synaptic loss and clinical progression of the 
disease mainly correlate with soluble Abeta levels. Soluble Aβ 
oligomers might inhibit LTP in the hippocampus and, hence, disrupt 
synaptic plasticity. Tau phosphorylation and subsequent 
neurofibrillary tangle formation, as well as inflammation and 
oxidative stress, are regarded as downstream events. Abbreviations: 
Aβ, amyloid-β; AD, Alzheimer disease; APOE, apolipoprotein E; 
APP, amyloid precursor protein; LTP, long-term potentiation. 
(Taken from [69]) 
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The amyloid hypothesis explains the pathology mechanism as shown 

in Figure 18. The beta-amyloid precursor protein (APP) is cleaved by 

beta-site APP-cleaving enzyme (BACE) and the gamma-secretase 

complex. Consequently, the large domain of APP (CTF-beta) is 

secreted and binds to the complex of gamma-secretase, presinilin 1 

or 2 (PS1, PS2). These all bind to each other and form a core 

complex required for gamma-secretase activity. The final products of 

gamma-secretase cleavage activity are amyloid-beta protein and the 

APP intracellular domain (AICD). The function of this peptide is not 

well understood [70].     

	  
Figure 18. Cartoon representation of the molecular details 
underlying amyloidogenesis. a) Amyloidogenic processing of 
beta-amyloid precursor protein (APP) by beta-site APP-cleaving 
enzyme (BACE) and the gamma-secretase complex. b) Various 
proposed sites of intramembrane proteolysis by gamma-secretase. 
The amino-acid sequence around the cleavage sites of APP is shown 
(numbers refer to the sequence of Abeta; shaded amino acids are in 
the transmembrane domain). (Taken from [70]) 
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Consequent failure of Alzheimer’s drugs targeting amyloid-beta 

[71], on the one hand, and discovery of amyloid-independent 

neuronal injuries in demented patients [72], on the other hand, have 

recently led to calls for reconsideration of the amyloid cascade 

hypothesis [73],[74]. To this end, concerns have been raised that 

current anti-amyloid interventions in demented patients are too late 

[75]. New findings suggest that the pathological process in 

autosomal dominant AD begins more than 20 years prior to onset of 

dementia [76] and CSF levels of amyloid-beta increase up to 10 

years before onset of late-onset AD [77]. Despite disappointing 

results from clinical trials of anti-amyloid compounds, Michael W. 

Weiner from Elan in his review article believes that “the research 

highlights of 2012 provide new support for the central role of 

amyloid in AD pathogenesis.” [78]. Whether the amyloid-beta 

cascade is primary cause or secondary effect in pathogenesis of AD 

remains controversial.	  

	  

2.3.2.2. Inflammation hypothesis 

Neuroinflammation is a prominent feature of all neurodegenerative 

diseases. Frank-Cannon et al. (2009) provide a comprehensive 

review on neuroinflammation evidence in neurodegenerative 

diseases [79] but here I will focus on the role of inflammation in AD 

pathology. 

First evidence of systematic inflammation involvement in the 

etiology of AD came from a meta-analysis study in 1996, which 

concluded - based on 17 epidemiological studies - that administration 

of non-streoidal anti-inflammatory drugs (NSAIDs) might reduce the 
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risk of AD [80]. Later, clinical observations showed that microglia 

accumulate surrounding amyloid plaques [81]. Thus, 

neuroinflammation is believed to be an early consequence of the 

amyloid beta deposition. Accordingly, aggregates of amyloid-beta 

activate microglia, partly through Toll-like receptors (TLRs), and 

these receptors activate transcription factors such as NFKB and AP-

1, which in turn induce production of the reactive oxygen species 

(ROS) and drive the expression of inflammatory cytokines [82]. 

The rationale behind the inflammation hypothesis of AD is based 

upon the observation that both acute and chronic systemic 

inflammation were found to be clinically associated with accelerated 

cognitive decline in patients with AD [83]. A recent study shows that 

blockade of the IL-12/IL-23 pathway in a mouse model of AD led to 

a reduction in cerebral amyloid load and improvements in cognitive 

function [84]. Known molecular and cellular mediators of 

inflammation in AD pathology are summarized in Table 7.   
 

Table 7.  List of well-known mediators of inflammation in 
AD reported in biomedical literature 

Cellular mediators Microglia 
Astrocytes 
Oligodendrocytes 
Neurons 

Molecular mediators The complement system 
Cytokines and chemokines 
Toll-like receptors 
Cyclooxygenases and Arachidonic Acid 
Metabolites 
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Although Heneka and O’Banion suggest that inflammatory 

mediators may stimulate APP processing, and thus, anti-

inflammatory treatment strategies should be considered for AD 

patients, still the precise molecular mechanism underlying this effect 

is not well understood [85].	  

	  

2.3.2.3. Infection hypothesis 

The first report on direct visualization and isolation of infectious 

agents from postmortem brain tissue of AD patients appeared in 

1986. In this study, MacDonald identified Borrelia spirochetes in 

subculture of autopsy brain tissues from two patents with dementia 

[86]. Since then, there have been reports that hypothesized systemic 

infections may contribute to the pathogenesis of sporadic AD. 

Mawanda and Wallace (2013) now provide a comprehensive 

overview of infectious agents associated with AD and examine the 

latest status of the infectious AD etiology hypothesis [87]. These 

infectious agents include herpes simplex virus type 1 (HSV-1), 

Chlamydophila pneumonia, Borrelia burgdorferi, Helicobacter 

pylori, prions, and other infectious agents. I refer readers to the 

review paper mentioned above for more in-depth information.  

Regarding the mechanism of action of infectious agents associated to 

AD, two possibilities have been proposed: either infectious agents 

directly infect the brain or indirectly promote the pathogenesis of AD 

through various effects of systemic infections [88]. Following 

infection, in addition to the inflammatory response, there is a 

systemic response (i.e. acute-phase response). Launch of this 

response is dependent on the synthesis of pro-inflammatory 
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molecules such as IL-1 beta, IL-6 and TNF. In a series of studies 

with transgenic mice, it was shown that the amyloid-beta protein has 

many of the characteristics of a prion, providing evidence for the 

existence of Abeta prions [89]. The hypothesis that AD might be a 

prion-type disease with possible capability of being spread by 

infectious particles was first raised by Morales and coworkers [90]. 

They injected brain extracts of AD patients into the brains of normal 

mice and were able to induce amyloid-beta deposition as well as the 

typical AD symptoms in control animals. At present, research on the 

impact of systemic infection on chronic neurodegeneration is 

ongoing and aims at better understanding of the communication 

routes between the peripheral immune system and the brain [91].	  

	  

2.3.3. Clinical heterogeneity of AD 

Heterogeneity in presentation and progression of AD has long been 

demonstrated (e.g. [92],[93] and [94].  

There have been three hypotheses to explain such heterogeneity in 

AD: “subtype hypothesis” (distinct clinical variants), “phase 

hypothesis” (variation in the stage of the disease), and 

“compensation hypothesis” (variation in the origin and progression 

of the disease). Subtypes of AD have been classified based on the 

relative density of neurofibrillary tangles into “typical AD”, 

“hippocampal sparing AD”, and “limbic-predominant AD”. 

However, it has been shown that these subtypes are different than 

neurofibrillary tangle-predominant dementia, which might be more 

than a mere variant of AD [95]. Moreover, left parietal atrophy is 

associated with language symptoms in younger age of onset and 
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faster cognitive decline, which is indicative of a ‘language variant’ of 

AD, whereas right parietal atrophy is associated with visuospatial 

symptoms, suggestive of a ‘visuospatial variant’ [96]. The high 

degree of heterogeneity that is observed amongst AD patients can be 

also be attributed to the varying rates of disease progression. In a 

study of 80 AD cases, neuropathological heterogeneity was shown to 

be more consistent with the phase hypothesis [97]. Komarova and 

Thalhauser (2011) have quantified such temporal variations by 

mapping the variations onto the GDS/FAST staging system, and 

found that there is a large heterogeneity in the duration of stages in 

AD. 

Understanding the neurobiological basis of this heterogeneity 

requires strategies that link cognitive and behavioral variations to the 

regional damage of brain cells. Imaging biomarkers have emerged as 

useful means for capturing variations in the distribution of the 

pathologic changes. They can also help clinicians distinguish AD 

from other dementia syndromes.	  

	  

2.3.4. Treatment options for AD 

Despite many years of research and gain of substantial insights into 

the pathology of AD, no disease-modifying drugs yet exist for AD. 

Early treatment studies focused on the inhibition of cholinesterases 

(AChEs) and its positive, but unspecific, effects on memory 

function. Tacrine, introduced in 1992, was the first such inhibitor, 

which was followed by three other inhibitors with better safety 

profiles, namely donezepil, rivastagmine and galantamine. Based on 

their demonstrated ability to stop cognitive decline for 6 to 12 
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months, these drugs were used to treat mild to moderate AD patients. 

The second wave of AD treatment began with memantine in 2003, 

which is an NMDA receptor antagonist and is the first drug approved 

for the treatment of moderate to severe AD. Interestingly, 

investigational drugs target almost all amyloid processing steps, as 

illustrated in Figure 19. 

    

	  
Figure 19. Main steps of sequential cleavage of amyloid 
precursor protein (APP), leading to generation of beta 
amyloid and/or other products with existing therapeutic 
interventions mapped to each stage. A: the cleavage sites for 
alpha-, beta- and gamma-secretase. B: ectodomain shedding of APP 
by alpha-secretase. C: Subsequent intramembrane proteolytic 
cleavage of C83/CTFα by gamma-secretase. D: ectodomain shedding 
of APP by beta-secretase. E: Subsequent intramembrane proteolytic 
cleavage of C99/CTFβ by gamma-secretase. F: Abeta 
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oligomerization and deposition leading to neurodegeneration, both 
directly and through tau hyperphosphorylation. In dashed boxes, 
disease modifying drugs that interfere with each particular step. 
(Taken from [98]) 

 
However, these treatments neither stop the neurodegeneration nor 

reverse the progression of AD. They have only symptomatic effects 

for a short term; e.g. they may improve over the baseline or delay to 

decline cognition but neurodegeneration inevitably continues its 

downward trajectory after 6 to 9 months. Besides, about 30-40% of 

AD patients do not respond to approved AChE inhibitors at all [99].  

Accordingly, in the absence of disease modifying drugs that are able 

to slow or stop the disease, the current challenge of pharmacology is 

to develop the new generation of drugs that prevent AD. In this 

paradigm, it is expected that disease-modifying medications reduce 

the slope of decline or at least stabilize a patient’s condition [100]. 

There are currently over 70 experimental compounds in preclinical 

and clinical trial phases, targeting mostly amyloid cascade or 

downstream responses such as inflammation and apoptosis [101]. 
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CHAPTER 3. State-of-the-art Computational 
Approaches to Disease Modeling 
	  

3.1. Biological models and their types 
In the philosophy of science, a “model” is an idealized structure that 

we use to represent the world, via relations between the model and 

real world target systems. The model is used by scientists to gain 

understanding of a complex real-world system via an understanding 

of simpler, hypothetical system that resembles it in relevant respects 

[102]. In biology, “a model is description of a system” and a system 

is “any collection of inter-related objects” that act as elemental units 

of the system on which observations can be made [103]. Since 

biological systems in the real world experiments are considered as 

complex, models of biological systems have been classified in the 

literature under the mathematical models. According to Barillot et al. 

(2012), two forms of mathematical models for biological systems 

exist: “data-driven models” versus “knowledge-based models” [104]. 

In data-driven models, the structure of model is inferred from the 

biological data whereas in knowledge-based models prior knowledge 

is compiled and incorporated into a model by human expertise. 

Accordingly, models can be categorized based on their types: 

(a) quantitative or qualitative;  

(b) statistical or mechanistic;  

(c) static or dynamic;  
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(d) discrete or continuous;  

(e) deterministic or stochastic.  

These models are usually represented in the form of different 

formalisms as follows: 

-Differential equation models 

-Power law models 

-Boolean models 

-Petri-net models 

-Rule-based models 

-Flux balance analysis models	  

3.2. Modeling biological systems 
Emergence of advanced technologies that enable researchers to 

obtain comprehensive snapshots of biological systems at real time 

and with single molecule resolution has led to the generation of 

unprecedented amount of data. However, the one-dimensional view, 

while useful, will fail to deliver models that are generally predictive 

of complex system behavior. In silico modeling and simulation of 

complex biological systems provides an efficient way to organize 

and integrate multiple data types and ultimately, to generate multi-

dimensional views. Thus, systems biology can be called as 

“integrative biology” with the aim of predicting biological outcomes 

given the interaction of underlying components and elements [105]. 

Systems biology has emerged as a young discipline, which aims to 

investigate the structure and dynamics of biological systems (holistic 

approach) rather than the characteristics of the isolated parts 

(reductionist approach) [106]. Modeling complex biological systems 
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requires a good understanding of their features, amongst which 

hierarchy, complexity, heterogeneity, context-dependency, and 

emergent property are the most important features [107]. In fact, 

these features arise from the enormous interactions amongst 

molecular constituents of cells. As mentioned above, the challenge of 

systems biology is to understand the structure and the dynamics of 

intra- and inter-cellular web of interactions that contribute to the 

function of a living cell. The sum of these interactions forms a 

‘network of networks’, which can be modeled and structurally 

analyzed. Barabasi and Oltvai (2004) were first to adopt the idea of 

network modeling from physics and introduce it to biology as 

‘network biology’ [108]. This notion can be traced back to the 

application of graph theory to representing biological networks by 

Watts and Strogatz in 1998 who characterized the ‘small world 

phenomenon’ and other network properties [109]. More recent 

features and properties of complex biological networks can be found 

in the book entitled “Network science: complexity in nature and 

technology” [110]. 

3.2.1. Bottom-up systems biology 

The bottom-up approach starts from constitutive parts and 

mechanistic details, and uses accurate formulating of each process to 

provide an interconnected view of biological interactions. The aim of 

this approach is to come up with an integrated map of pathway 

models representing the entire system. However, limitations of these 

approaches can be summarized as follows: i) complete dependency 

on experimental studies and data availability; ii) uncontrollable 
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enlargement of models by the incorporation of more data and 

processes; iii) vulnerable to experimental design and tools for model 

analysis. 

Since the bottom-up approach follows the first principles in biology, 

it is not surprising that it requires extensive quantitative data, which 

is not always available particularly when a model of complex disease 

such as AD is going to be built. An example of bottom-up approach 

is modeling of enzyme kinetics, which requires determination of 

kinetic parameters by in-vitro measurements. The Silicon Cell model 

takes advantage of the bottom-up approach to enable online in-silico 

experimentation, for example, about the effect of over-expression of 

an enzyme in the pathway on the productivity of the interaction of 

interest [111].  

Metabolic network models are often built using bottom-up 

approaches and typically include stoichiometry data. Computational 

stoichiometric models have been used to perform metabolic flux 

analysis as well as flux balance analysis including prediction of 

cellular phenotypes using extreme currents and extreme pathways 

[112]. 	  

3.2.2. Top-down systems biology 

The top-down approach originates from large experimental data sets 

or information that provide structure to the model and tries to unravel 

underlying biological mechanism by narrowing the analysis down to 

the bottom. In this approach, the flow of information occurs from 

‘omics’ level to pathway level. The top-down approach starts with 

data analysis and data integration to establish correlations among 



Chapter	  3.	  Computational	  Approaches	  to	  Modeling	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

54	  

molecules, followed by prediction and hypothesis generation. These 

hypotheses can be further tested in the lab and thereby, an iterative 

cycle is formed (Figure 20). The top-down approach uses various 

types of models at different phases of the characterization of the 

system; for example, in the component discovery phase, knowledge-

based qualitative static modeling can be applied and in the later 

phases Bayesian models may be used to decipher the regulatory 

dependencies.   
 

 

 

 

 

 

 

 

 

 

Figure 20. The cycle of modeling, hypothesis generation, 
and experimentation in systems biology. Systems biology is 
an integrated process, which begins with pattern observation in 
experimental data, continues with modeling/simulation of the 
observed pattern and leads to hypothesis generation. Generated 
hypotheses can be further validated by experiments.   

Limitations of this approach include difficulty of dissecting many 

entangled mechanisms, correlation-based rather than cause-and-
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effect-based, and lack of supporting knowledge for interactions. 

However, the advantage of this approach lies in its ability to identify 

network structures that underlie the system behavior through ‘reverse 

engineering’ of the system data. Such an ability allows for isolation 

of ‘mechanistic structures’ that explain the mode of action [113].  

The bottom-up approach has been already applied to amyloid-beta 

accumulation in AD with the aim of elucidating mechanism of 

neurotoxicity [114]. This approach has led to the identification of 

cartoon-like pathways and mechanisms influenced by amyloid-beta 

including pathways in neurons, astrocytes and microglia that are 

implicated in beta-amyloid toxicity. To date, all the endeavors in this 

direction have been limited to generation of molecular disease maps 

such as AlzPathway [115]. However, since bottom-up studies are 

often based on data derived from transgenic animal models, they do 

not provide an accurate representation of therapeutic effectiveness in 

humans [116]. Hence, an integrated top-down approach may provide 

clues to determine pathological pathways that are causally linked to 

the disease phenotypes, on one hand, and are central to disruption of 

neuronal networks underlying the memory and cognitive function, on 

the other hand.        	  
	  

3.3. Network modeling of disease processes 
Since its introduction to the field of biomedicine, network modeling 

has been used to better understand the effects of molecular 

interactions on disease progression. Although network modeling of 

disease pathways has been called differently by different authors 
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such as “network systems biology” or “systems pathology” or 

“network medicine”, it essentially paves the way for transitioning 

from ‘descriptive’, ‘correlative’ associations between molecular 

signatures and clinical phenotypes to ‘mechanistic’, ‘causal’ 

associations. Molecular networks that represent molecular states of 

the perturbed biological system underlying disease (also known as 

‘disease maps’) provide a suitable framework for transitioning from 

descriptive to mechanistic mode by linking genetic information to 

disease processes and clinical phenotypes. 

Based on the nature of data, various types of human interactomes can 

be modeled (genetic networks, RNA networks, protein networks, 

regulatory networks, metabolic networks). There still exist important 

caveats when constructing such network models: interaction data 

remains incomplete, there is bias towards particular interactions, and 

the available data is noisy. However, current interactome models, in 

spite of their incompleteness or biasedness, open up new avenues of 

research towards an integrated understanding of the pathophysiology 

of diseases.	  

3.3.1. Properties of disease network models 

Properties of disease network models show fundamental differences 

compared to other network models such a social or technological 

network models. These properties can be classified into three types 

of modularity (Figure 21). 
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Figure 21. Comparative representation of three modularity 
concepts.	   	   a) Topological modules correspond to locally dense 
neighborhoods of the interactome, such that the nodes of the module 
show a higher tendency to interact with each other than with nodes 
outside the module. b) Functional modules correspond to network 
neighborhoods in which there is a statistically significant segregation 
of nodes of related function. c) A disease module represents a group 
of nodes whose perturbation (mutations, deletions, copy number 
variations or expression changes) can be linked to a particular 
disease phenotype, shown as red nodes. (Taken from [118]) 

 
While Zhu et al. (2007) provide a thorough review of the network 

models and their characteristics [117], I briefly touch the modularity 

feature of networks as follows.	  

3.3.1.1. Topological modularity 

Molecular interactions are mathematically represented by graphs 

whose topological characteristics have been subject of extensive 

research to find shared design principles. Initially it was thought that 

the independence of scale or scale-freeness is indicative of networks 

that evolve gradually based on preferential attachment of nodes [108] 
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and accordingly, attempts were dedicated to matching topologies of 

molecular interaction networks such as gene co-expression, protein-

protein interaction networks and metabolic networks to the 

topologies observed in other real-world networks (e.g. social 

networks). However, it was later figured out that properties of 

random network models are not consistent with properties of 

molecular networks in terms of statistical and biological meaning 

[119][120]. In parallel to these top-down analyses using degree 

distribution metrics, a bottom-up approach was utilized to find 

motifs and modules to describe the functional significance of 

biological networks but these descriptors are criticized for having no 

characteristic behavior when considered as a dynamic system [121].   

In the context of disease representation, topological metrics attempt 

to answer the question whether disease genes/proteins are distributed 

randomly in the interactome or whether there are correlations 

between their locations and their network topological features. One 

special topological feature is the emergence of high-degree nodes or 

“hubs”, which govern the regulatory processes in biological 

networks [122]. Based on biological role and dynamic behavior, 

hubs have been classified into “party hubs” and “date hubs”, which 

function inside modules and between modules, respectively [123]. 

Dense connections between nodes with the same functionality form 

the so-called ‘clusters’ and are observed in highly modular networks. 

These clusters provide the basis for introduction of the concept of 

functional modules [124].    

Although the current trend in topological network analysis is slowly 

moving from global to local analysis to couple topological properties 
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to biological knowledge, the main caveat associated to topological 

features is that they may not reflect the real biological modularity as 

a network model is assumed to be always incomplete. Given this and 

other above-mentioned reasons, for the rest of this thesis work, I am 

cautious to rely on topological metrics in my analysis and will only 

focus on the functional modularity concept.	  

3.3.1.2. Functional modularity 
	  
A functional module is defined as “an aggregation of nodes of 

similar or related function in the same network neighborhood.” 

[125]. Functional modules carry out cellular functionality and are 

hierarchically organized [126]. The aim of functional module 

analysis techniques is to identify functional pathways that regulate 

sub-processes.  

Early functional analysis algorithms were focused on mapping out 

the gene ontology (GO) concepts to nodes and testing the enrichment 

of annotation terms iteratively. This approach, which suffers from 

the large linear output of annotations terms was further developed 

into the widely used gene set enrichment analysis (GSEA) approach. 

The main advantage of GSEA is that it is a ‘knowledge-based’ 

approach, in the sense that it focuses on manually curated gene sets 

that share common biological functions [127]. Modular enrichment 

analysis approach takes advantage of traditional ontological analysis 

but incorporates extra network discovery algorithms [128]. Since 

disease-specific networks generated and presented in this thesis work 

are large, the GSEA algorithm will be applied to perform functional 

analysis. 	  
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3.3.1.3. Disease modularity 

Disease modules are disease components or subnetworks whose 

dysregulation leads to disease phenotypes. In the context of network 

models of diseases, disease-related components are inter-related. The 

key difference of the disease modules compared to the topological 

and/or functional modules- despite their possible overlap- is that they 

are specific to the disease they represent, meaning that each disease 

can have its unique module. Since disease modules include disease-

modifying genes, they are likely to explain multiple disease 

phenotypes in both sporadic and hereditary diseases [118]. 

Disease module-based methods start with building a disease-specific 

cellular interactome, identifying subnetworks with most of the 

disease-associated genes, and validating the functional role of the 

module in the pathology of the disease using functional annotations 

or expression patterns [129][130]. Often the limitation of these 

methods is the low coverage of disease-specific maps in the vicinity 

of the known disease components. However, such methods help us 

dig into disease mechanisms and develop rationales and hypothesis 

that could be used to guide experimental research towards more 

objective outputs.	  

3.3.2. Applications of disease-specific network models 

Analysis of disease network models can provide a rationale approach 

to guiding systems interpretation in the context of prior physiological 

or pharmacological knowledge along with incorporation of both 

specific (target) and non-specific (off-target) effects. Besides 
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provisioning an integrative view, disease models can be used for 

biomarker and drug discovery purposes, as I briefly highlight below.	  

	  

3.3.2.1. Disease mechanism discovery 

Despite the availability of huge body of information and knowledge 

on human diseases, the molecular mechanisms underlying complex 

human diseases remain largely unexplained. The challenge of linking 

clinical outcomes to their underlying molecular events has been long 

of interest to the scientific community and to the pharmaceutical 

industry as well. This is because it will help to obtain better 

understanding of the disease mechanism at molecular level. Thus, 

disease-specific models may be used to support translation of 

molecular findings into the development of new therapeutic 

strategies. 

Traditionally, disease-specific maps are built based on correlation 

network models. Such models are routinely built using high-

dimensional data such as protein-protein interactions or gene 

expression data by establishing pairwise relations (i.e. edges) for all 

variables (i.e. nodes) but they confound direct and indirect 

associations and do not distinguish between cause and effect. 

Alzheimer’s disease map [115] and Parkinson’s disease map [131] 

are good examples of disease-specific networks in the area of NDDs. 

In contrast, causal network models aim at representing response 

variables and covariates and, thus, the directionality of associations 

between cause and effect. When relationships between variables 

represent conditional dependencies (e.g. given disease symptoms, 

compute the probabilities of the presence of various diseases), the 
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model is a Bayesian network, which requires information on prior 

distribution. In the absence of such information, Biological 

Expression Language (BEL) offers an alternative. BEL is the state-

of-the-art causal network modeling language that integrates 

literature-derived ‘cause and effect’ relationships into a data-driven 

platform and produces casual network models (The Biological 

Expression Language [http://www.openbel.org]). The models 

developed by this means represent a high-resolution and 

comprehensive view not only on the core established pathways but 

also on peripheral events that lead to clinical readouts seen in 

patients. A prime example is development of mechanistic disease 

models for identification of patients with ulcerative colitis who could 

be potential responders to targeted anti-TNF therapy with Infliximab 

[132]. Based on the prior knowledge in the literature, a causal 

network model was constructed that described mechanistic 

knowledge underlying ulcerative colitis in the form of the “cause-

relationship-effect” pattern. Next, gene expression profiles of 

responders and non-responders were incorporated into the causal 

model and a mechanistic strength value was calculated on the gene 

expression network activity signature of TNF signaling for each 

patient in the population. The model demonstrated that non-

responders have different TNF signature compared to responders, 

which was due to sustained TNF-like downstream signaling in non-

responders after treatment with Infliximab, controlled by alternative 

upstream controllers (Figure 22). 
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Figure 22. Stratification of patient population based on 
disease mechanism. A BEL model was successfully built and 
applied to a cohort of patients with ulcerative colitis disease – based 
on TNF signature - to stratify responders from non-responders to 
Infliximab.   

 
It is noteworthy that a computer-readable disease model should be 

readily amenable to computational reasoning for disease mechanism 

discovery and furthermore, in the absence of models that represent 

normal cellular processes in healthy state, any attempt to derive 

mechanistic interpretations is inconclusive. Realizing this necessity, 

Westra et al. (2011) constructed a computable BEL model to capture 

normal, non-diseased biology of cell proliferation in lung cells [133].     

“Differential network analysis” (also known as “differential network 

biology”) methods have been devised and used for cross-species, 

cross-condition network analysis since the 1990s [134]. However, 

despite the fact that biological systems are highly dynamic and 

change depending on environment, tissue type, disease state or 

developmental stage, to date, almost all network models have 

represented the cellular interactions under single static condition 

(mostly under disease condition). Although conventional approaches 
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try to map out dynamic changes in gene expression or metabolic 

fluxes on static network models, they are unable to capture changes 

in wiring of the network model. To tackle this limitation, several 

studies have begun to use disease-specific models for modeling 

changes across disease states. A prominent example is the analysis of 

dynamic modules in the human protein interaction network that was 

shown to be useful for the prediction of breast cancer outcomes 

[135].  

Network perturbation amplitude (NPA) measurement is an up-to-

date and elegant approach that enables modeling of mechanistic 

network re-wiring and quantitative measurement of network 

perturbation in response to external stimuli [136]. The NPA scoring 

method integrates high-throughput experimental data (e.g. gene 

expressions) into curated literature-derived knowledge in the form of 

BEL models, provides an scoring function for quantification of 

causally affected biological processes, and quantifies the changes of 

disease state in comparison to control (non-perturbed) state. 

Although the applicability of this scoring function to other areas has 

not yet been demonstrated independently since its introduction in 

2012, it promises to compute the amplitudes of treatment-induced 

perturbations in biological networks. 	  

3.3.2.2. Drug-target identification 

Low productivity of drug discovery pipelines in recent years has 

been largely attributed to insufficient efficacy of failed drugs [137]. 

Failure of drugs in phase II and III clinical trials in fact reflects the 

poor understanding of the mode of action of such drugs at the 
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molecular level. Network-based knowledge of disease mechanism 

can be used to identify disease modules and prioritize drug targets. 

This approach is essentially a top-down approach, which aims at 

providing a network-based view of drug action (polypharmacology) 

while keeping the focus on node-based target prediction. Such 

methods have been successfully applied mostly to cancer and 

metabolic diseases [138],[139] and are currently under investigation 

for NDDs [140],[141].  

Earlier approaches considered topological characteristics of disease 

networks for target identification such as hub nodes, bridging nodes, 

etc. However, knockout studies revealed an unprecedented 

‘robustness’ in biological networks that leads to masking phenotypes 

due to functional compensation of neighboring pathways. For this 

reason, drug target prediction algorithms shifted towards the 

identification of perturbations rather than single genes [142]. The 

latest network-based target identification methods rely on targeting a 

particular group of proteins, being complexes, modules or pathways 

[143].   

Given the above background, two network-based strategies for target 

identification has been proposed [144]: 

1) “The central hit strategy”, which aims at targeting hubs, 

central nodes, or master-regulators of infectious disease 

networks [145] as well as cancer (e.g. in ovarian cancer 

[146]), and the goal is to selectively hit the network 

integrity of the infectious agent or the malignant cell; and 

2) “The network influence strategy”, which relies on the 

systems-level knowledge of both healthy and diseased states 
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to identify target candidates in polygenic complex diseases 

so that the ultimate object is to reverse the disease network 

malfunctioning to its normal functioning.   

Methods of the network influence strategy are much less developed 

than the single hit strategy as they deal with the dynamics of the 

disease network and it is a difficult task to overcome the robustness 

of networks. Beside nodes, edges of disease networks can be targeted 

to enforce the rewiring of the disease modules. The so-called 

“edgetic drugs” open up new opportunities to modify or modulate 

interactions of multifunctional proteins with a larger selectivity 

[147]. Current efforts in relation to targeting edges have been mostly 

concentrated on protein-protein interactions (PPIs) and it is expected 

that these efforts extend to signaling as well as gene interaction 

networks.	  

	  

3.3.2.3. Biomarker discovery 

Disease-specific network models play a substantial role in both data-

driven and knowledge-driven methods of biomarker discovery. In the 

data-driven approach, similarities between data points (typically 

gene expression data) are computed in order to identify network 

clusters, which can suggest mechanisms of regulation. In contrast, 

knowledge-based approaches take advantage of the expert 

knowledge embedded in context-specific curated PPIs, functionally 

annotated pathways, and biomedical publications. Given the unique 

advantages of both data- and knowledge-driven approaches, 

therefore, a combined approach to network-based biomarker 

discovery is preferred [148].  
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Azuaje et al. (2012) suggest two integrative biomarker discovery 

strategies: a) linking network structure properties to clinical 

phenotypes, and b) identification of subnetworks with differential 

molecular response [149]. For instance, integration of gene 

expression profiles obtained from primary breast tumors into a 

protein interaction network model led to identification of sub-

network biomarkers that represent metastatic tumor progression 

[150]. The philosophy behind using subnetwork-based versus node-

based biomarker discovery is that molecular changes of individual 

nodes represent different outcomes in different network contexts of 

different patients. On the basis of the same philosophy, differential 

network analysis methods are being devised to identify subnetwork 

biomarkers (biomarker modules) by integrating stage-specific 

microarray data into disease-specific and control-specific PPI 

networks; for example, Liu et al. (2012) present a novel approach to 

predicting rewiring of network interactions in three stages of gastric 

cancer [151].    

The advantage of network-based biomarker discovery methods is 

that they have greatly facilitated the paradigm shift from “signature-

based biomarkers” to “multi-panel (multiplex) biomarkers”. By this 

means, gene expression information is linked to proteomics and 

pathophysiology of disease so that many different types of 

biomolecules (i.e. a panel of biomarkers) are being associated to 

pathological processes [152]. For instance, Dudley and Butte (2009) 

created two biomarker networks by linking genomic profiles from 

human diseases to detectable biomarker protein in blood plasma and 

in urine, respectively [153]. They found that in both networks, over 
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80% of the putative biomarkers are linked to multiple disease 

conditions. Thus, the vast combinatorial space of candidate 

biomarkers could be computationally investigated using a top-down 

approach, compared to the conventional bottom-up approach. 	  

3.3.2.4. Classification of diseases	  

The contemporary classification of human diseases is based on 

observational correlations between anatomical, symptomatic and 

epidemiological criteria, which does not take the etiological 

mechanism into account and thus, lacks sufficient sensitivity and 

specificity. This has led to the problem of misdiagnosis due to the 

overlap of symptoms. Consider Parkinson’s disease with dementia 

and Alzheimer’s disease dementia. Since classification of these two 

neurodegenerative diseases is merely based on their clinical signs, 

early diagnosis of Parkinson’s disease (PD) is hampered. The extent 

of clinical overlap between these two conditions is so much greater 

than chance that even some authors propose that AD and PD belong 

to a spectrum of neurodegenerative disorders with common disease 

mechanism but triggered by different etiological factors [154]. 

However, at the molecular level, these two conditions can be 

distinguished based on diagnosis between synucleinopathy from 

tauopathy.  

Another shortcoming of the current disease classification system is 

ignorance of inter-connected nature of many diseases, including 

comorbidities. Mechanistic disease models can be used to reveal 

inter-dependencies between the disease and risk mechanisms (Figure 
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23). Such interdependencies are reflected in comorbidities that co-

occur with the disease and increase the disease risk. 

           

	  
Figure 23. Deterministic factors involved in shaping the 
disease phenotype. Complex interactions between causative 
molecules, disease modifying molecules and environmental factors 
lead to an intermediate phenotype response (e.g. as comorbidity), 
which contributes to the manifestation of disease endophenotype.  

Thus, integrative disease modeling provides a systems-based 

network framework for incorporation of both conventional 

reductionism and non-reductionism approaches and allows for re-

definition of the current nosology [155]. In 2011, National Academy 

of Sciences committee recommended NIH to develop a new 

taxonomy of diseases based on their underlying molecular and 

environmental causes rather than on physical signs and symptoms 

[156]. The idea is to create a so-called Knowledge Network 

information system that integrates molecular data, medical histories, 
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and health outcomes of individual patients. In Europe, the Innovative 

Medicines Initiative (IMI) - Europe's largest public-private 

partnership aiming to improve the drug development process – 

launched a call that addresses the topic of developing an aetiology-

based taxonomy for human diseases. The aim of this call is to 

propose new etiological mechanism-based taxonomy in 

immunoinflammatory diseases and neurodegeneration with focus on 

AD and PD by developing knowledge frameworks that represent 

clinically relevant mechanistic knowledge of the pathophysiology 

underlying neurodegeneration.	  

3.3.2.5. Drug side-effect prediction 
	  
Mapping drugs onto the target space of disease networks provides a 

system-wide view of the target landscape, which can be used for the 

investigation of polypharmacology as well as side effects of off-

targets. Network pharmacology has been proposed to aid selection of 

those compounds that maximize modulation of disease networks 

while minimizing side effects [157]. In a polypharmacological 

analysis, Keiser et al. (2009) computed chemical similarities among 

FDA-approved drugs and predicted new off-targets that explained 

drug’s adverse reactions [158]. In fact, both drug-target networks and 

drug-disease networks can be used for the prediction of side effects 

[159],[160]. A landmark paper by Campilus et al. (2008) showed that 

computing phenotypic side-effect similarities could predict targets 

that are shared between drugs and can be used for drug repositioning 

[161]. Mitzutani et al. (2012) analyzed correlations between drug 

target-binding profiles and side effect profiles in the context of a 
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drug-protein interaction network and found that correlated sets were 

significantly enriched with proteins that are involved in the same 

biological pathways [162]. In summary, network prediction methods 

may help to decipher novel side-effects when analyzing the disease-

specific mechanistic networks for identification of potential drug 

targets. 
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CHAPTER 4. Setting an In-Silico Strategy for 
Optimizing Early Drug Target Identification 
and Validation 
	  

4.1. Target selection in drug discovery 
Target identification in drug development is a crucial step for follow-

up medicinal chemistry studies. A target in the context of drug 

discovery can be defined as disease-associated proteins that are 

functionally involved in the pathology of interest. Distinctions are 

typically made as to whether a target is ‘novel’, ‘established’, or 

‘validated’. Briefly, novel targets are proposed targets with 

speculative involvement in the disease process and no clear 

indication of its clinical benefit whereas established targets are those 

with a good scientific support on functionality in both normal and 

disease states but unknown clinical benefit. In contrast, validated 

targets have shown a clear clinical benefit with a well-understood 

mechanism of action.     

Specific biological hypotheses based on which targets are selected 

possess varying degrees of confidence, depending on the origin of 

those hypotheses. Given that targets have been historically identified 

on the basis of genetic studies or biological observations, Sams-

Dodd from Boehringer Ingelheim Pharma (2005) divides targets into 

three classes: “physiological targets” that characterize physiological 

effects at the level of whole organism in animal models;  “genetic 
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targets” that represent genetic mutations; and “mechanistic targets” 

that represent receptors, enzymes, or other biological molecules and 

are linked to molecular mechanism [163]. Accordingly, genetic 

targets are specific to those diseases that arise from a genetic 

mutation or the increased disease risk by a single gene. Moreover, 

the gene or its product must be the main modulator of the disease at 

the time of intervention. These two conditions for genetic targets 

imply that multifactorial complex diseases that develop over time 

can not be treated by such an approach. Instead, mechanistic targets 

go beyond the ‘single gene, single disease’ paradigm by engaging 

environmental factors in addition to causative biological 

components, and therefore, can be applied to multifactorial 

progressive diseases. Since mechanistic targets affect multiple 

molecular mechanisms, their validation is a complex task and 

depends on the availability of predictive models.    

In general, there are three complementary approaches to target 

identification: biochemical methods, genetic interaction methods, 

and computational prediction methods [164]. Amongst these three 

methods, computational target identification methods have the 

advantage of the least bias compared to other methods because they 

rely on a combination of experimental data generated by others. A 

high-priority task for computational target identification methods is 

to address the issue of clinical efficacy; i.e. in the absence of clinical 

data, a model is required to integrate both the experimental data and 

expert knowledge in the context of the disease of interest so that 

ultimately the clinical efficacy of a target can be predicted in silico in 

the form of a set of relevant hypotheses [165]. A success story in this 
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regard is the instrumental role of computational data integration and 

model analysis in identification of Aurora kinase A as the key target 

of dimethylfasudil in acute megakaryoblastic leukemia. In this case, 

integrating transcriptomic and proteomic data led to generation of 

testable hypothesis, which identified relevant target of 

dimethylfasudil [166].	  

4.2. Model-driven approach to target identification 

and validation for neurodegenerative diseases 
The pressing need for treatment of neurodegenerative diseases has 

not yet met due to complexity of disease mechanism and multiple 

unknown genes and pathways. The majority of existing treatments 

were discovered empirically and, for this reason, the mode of action 

of most of these drugs was unknown when they were introduced to 

the market. Consequently, the conventional target-based approach 

has not been much successful in the area of NDDs as was for other 

disease indications [167]. This fact is supported with the current and 

subsequent failures of Alzheimer’s drugs, as discussed in Chapter 1. 

Therefore, a better and deeper understanding of the 

neurodegeneration mechanism is needed, if the target-based 

approach continues to play its role in the CNS drug discovery and 

development. In response to this need, pharmaceutical industry has 

already taken steps towards applying systems biology approaches to 

deciphering disease mechanism and identifying therapeutic targets 

for CNS disorders, including NDDs, as discussed by Mei et al. from 

GlaxoSmithKline in their seminal review [168].  
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Normally, a research process starts with an exploration of the 

problem domain by collecting relevant data, information, and 

previous knowledge, which are often hidden in scientific 

publications. Accordingly, referring to the scientific literature is 

usually the first step towards drug target selection and validation 

process [169] because it provides a valid and proper framework for 

drug target identification purposes. When merged with network-

based disease models, the information extracted from text enhances 

the confidence about druggability of the candidate target(s). 

Moreover, it would be possible to generate informative profiles for 

each candidate target using information extracted from the text; i.e. 

literature-based annotation of target nodes on the network model of 

disease provides enormous insight about drug candidate efficacy and 

toxicity. Such profiles will be of high value for ranking or 

prioritizing target candidates. 

4.2.1. The overall strategy 

To address the motivation and mission of this research, and to 

improve our current understanding about pathophysiological 

mechanisms underlying AD, an “integrative disease modeling” 

approach is proposed, which takes advantage of the complementary 

nature of data-driven and knowledge-driven methods, combines 

them under a single framework, and produces knowledge-based, yet 

mechanistic disease models. The models generated by this approach 

could represent correlation or cause and effect, depending on the 

type of associations between pairs of variables in the network model. 

The general strategy is depicted in Figure 24.    
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Figure 24. Model-driven approach to integrating biological 
data. Proposed model-driven approach combines biomedical 
knowledge and data into a single disease model, which could 
represent correlations (left) or cause and effect (right).  

4.2.2. The methodology 

In the following, I discuss the workflow that was implemented 

according to the above strategy. It is a biphasic approach, meaning 

that knowledge-driven and data-driven methods are applied in two 

independent phases (Figure 25). Network models built from protein 

interaction data are used as model backbones or integration templates 

for addition of literature-derived information as well as overlay of 

experimental data. As discussed in Chapter 3, correlation-based 

networks including PPI networks have both advantages and 

disadvantages to be used as the model backbone: while PPI networks 
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lack the directionality on edges and suffer from incompleteness, their 

biggest advantage over the other types of networks is that they 

enable us to link data-derived information to literature-derived 

knowledge. Moreover, PPI networks offer the flexibility required for 

mapping other biological data types such as gene expression. 
 

	  
Figure 25.  Diagrammatic sketch of the workflow applied 
to the modeling approach. Domain-specific terminologies were 
plugged into the ProMiner software and the results of named entity 
recognition on PubMed abstracts were deployed in the SCAIView 
environment, appearing as highlighted text. The harvested 
knowledge from ontology-supported queries was manually 
integrated with protein interaction data using a brain-specific 
network model to isolate brain region-specific subnetworks for 
further analysis. 
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4.2.2.1. Knowledge-driven approach 

Text mining has been defined as “the computational discovery of 

new, previously unknown information, by automatically extracting 

information from different written sources” [170]. Text mining 

technologies have been broadly used for the identification of disease-

related knowledge on potential targets, biomarkers and the disease 

mechanism.  

Generally, text-mining methods consist of two steps [171]: 

information retrieval (IR) and information extraction (IE). IR is 

performed with the aid of search engines via two approaches: rule-

based (knowledge-based) and statistical (machine-learning). The 

former uses pattern recognition to find a meaningful biological 

pattern such as ‘<brain> and <pathway>’ whereas the latter uses 

classifiers to classify abstracts or sentences. IE relies on named entity 

recognition (NER), which enables detection and extraction of 

biological entities such as genes, SNPs, proteins, drugs, or other 

entities. Numerous tools have been developed on the basis of NER 

techniques: iHop [172] annotates a subset of PubMed sentences 

containing at least two proteins in conjunction with interaction-

specific keywords. AliBaba [173] aggregates results of a PubMed 

query and visualizes them as a graph. EbiMed [174] retrieves co-

occurring entities and ranks them by frequency. UKPMC [175] 

annotates and highlights entities in PubMed Central abstracts by 

using Whatizit [176]. GoPubMed [177] recognizes entities such as 

genes, gene ontology terms and MeSH terms. GeneView [178] is 

rather a recent NER-based tool, which recognizes a broader set of 
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entity types than genes but not gene ontology terms, provides search 

facilities using unique database identifiers and also finds 

relationships between proteins in text. ProMiner [179] is one of the 

systems for gene normalization, which performed very well in 

BioCreAtIvE I and II assessments, reaching an F-score of 0.8 for the 

recognition and normalization of human genes and proteins. The 

ProMiner system has been designed for the semi-automated 

generation of dictionaries and the recognition of spelling variants, as 

well as the disambiguation of acronyms and common word 

synonyms. ProMiner uses extensive dictionaries for various 

biological entities, including genes/proteins, SNPs, chemical names, 

disease terms, and any other relevant vocabulary.  

IE methods aim at extraction of relevant entities from the retrieved 

documents in a tabulated form. The simplest IE approach identifies 

co-occurrence of entities in the text whereas a more complex IE 

method attempts to extract relations between entities such as protein-

protein interactions, drug-target interactions or biological pathways. 

Several IE tools have been developed, which analyze search results 

and present summarized knowledge of semantics: MedEvi [180] 

provides concept variables of major biological entities (e.g. gene) to 

be used in semantic queries and prioritizes search results based on 

keywords that occur in original queries. EBIMED [181] extracts 

proteins, GO annotations, drugs and species from retrieved 

documents and identifies relationships between extracted concepts 

based on co-occurrence analysis. CiteXplore [182] provides 

integrated access to both literature and biological data and also 

contains abstract records from patent applications from the Europe 
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Patent office and from the Chinese Academy of Sciences. MEDIE 

[183] provides semantic search in the format of triples (subject, verb, 

object) and returns abstract sentences that match the queried 

semantic relations. PubNet [184] parses the XML output of standard 

PubMed queries and creates different kinds of networks. Nodes can 

be representatives of article, author or some database IDs and edges 

are constructed based on shared authors, MeSH terms or location. 

Ontology-based information extraction systems have been emerged 

as a subfield of IE, which make the use of ontologies and their 

explicit conceptualization to semantically guide the extraction of 

classes [185].  

The literature retrieval system used in this thesis is composed of two 

software components: the named entity recognition tool ProMiner 

and the knowledge discovery framework SCAIView [186]. The 

retrieval terminologies are incorporated into ProMiner, followed by 

ProMiner's annotation of all Medline abstracts using the dictionaries. 

The resulting entity annotations are stored in an Apache Lucene(TM) 

- based search index, together with the documents and their meta-

information. SCAIView incorporates the Lucene-based index and 

allows for searches that include exact matches, wildcard options, and 

Boolean operations. The document visualization within SCAIView 

provides highlighting for all the entity classes with tooltips 

containing available linkouts, descriptions, and depictions. The 

annotations are organized in the form of hierarchies (semantic trees) 

and can be navigated by the user via selecting full classes (e.g. 

‘genes’ or ‘diseases’), selecting certain subclasses (e.g. ‘Nervous 

Systems Diseases’), or singular dictionary entries (e.g. ‘Alzheimer’s 
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Disease’). For Boolean operations, either single entity class or 

complete tree classes could be selected. The system returns the 

results according to statistical ranking of found entities based on 

Kullback-Leibler divergence (relative entropy), meaning that the 

more relevant entities (e.g. gene names) appear in the top of the 

ranking list. 

Ontologies go beyond the mere providers of a common terminology 

for a knowledge domain by taking into consideration the semantic 

relationships among the concept classes. Such relationships help to 

model the knowledge domain in a well-organized hierarchy of 

concepts, which add to the value of ontologies when it comes to the 

real world applications. In contrast to philosophical ontologies, 

computational ontologies aim to represent a scientific knowledge 

domain in a machine-readable taxonomy-based manner with the 

maximum proximity to the natural language expressions in the real 

world. Computational ontologies form the basis for knowledge-

driven drug discovery approaches. To this end, I have integrated 

dictionary-based text mining technologies and ontological search 

capabilities to retrieve and extract relevant information for disease 

modeling and drug target identification (Figure 26). 
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Figure 26. Schematic workflow of ontology-driven 
literature search. Various resources were used to build ontologies 
and their controlled vocabularies, which ultimately were plugged 
into the SCAIView advanced search engine to allow for semantic 
search.   

 
The advantage of this approach is that a combination of domain 

ontologies and their dictionaries can be used in SCAIView to narrow 

down the search in the vast space of the knowledge cube. Therefore, 

the user is able to perform targeted, advanced search and export 

entities together with their annotation (Figure 27). The Entity View 

displays a table with the aggregated list of entities found in the 

documents ranked by relative entropy, as explained before. In the 
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Entity table, the following columns are shown by default: Entity, 

Relative Entropy, Reference Documents Count, Documents Count, 

and Link-outs to databases. However, this table can be expanded by 

adding more annotation columns to include additional information 

such as links to KEGG or Reactome pathways as well as Gene 

Ontology, InterPro family and domain information, ATC 

(Anatomical Therapeutical Chemical Classification) code, etc. The 

full table as well as selected entities can be exported the text file 

(CSV format). It is possible to export the list of all the extracted 

entities (e.g. gene names) along with their corresponding PubMed 

identifier so that there is a means for tracing back the reference from 

which the entity has been extracted. Exporting co-citations as well as 

PPIs out of the selected entities are other potential IE functionalities 

of SCAIView.   

 

 
Figure 27. Ontology-driven IR and IE using SCAIView 
facilitates targeted search.  
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The published knowledge in the literature contains complex 
biomedical information that can be represented as a multi-
dimensional cube. Controlled vocabularies derived from ontologies 
are used in combination to explore the knowledge cube in multiple 
dimensions and perform targeted search for informative documents.   
	  

4.2.2.2. Data-driven approach 

With the availability of novel high-throughput methods, large 

amounts of data about the interactions among proteins are available 

in various databases. Aggregation of PPIs under a single interactome 

is necessary because there is a small overlap amongst PPI databases 

in terms of their data content [187],[188]. For this reason, several 

tools have been devised to capture, collect, and unify PPI data from 

existing PPI databases. For instance, BIANA (Biologic Interactions 

and Network Analysis) integrates multiple sources of biological 

information, including proteins and their relationships, and attempts 

to manage the biological information as a network where proteins are 

nodes and interactions are edges [189]. The PPI networks generated 

by means of such automatic methods, however, contain noise (e.g. 

incomplete parsing of data points, erroneous normalization of node 

names, etc.) and must undergo expert curation process. During this 

process, additional annotations on nodes and edges of the network 

model are performed using the knowledge-driven approaches. For 

instance, nodes that are already targeted by approved drugs can be 

highlighted or edges representing interactions in specific tissue or 

cell type can be filtered. The visualization, statistical analysis, and 

filtering of PPI networks is carried out in the environment of the 

Cytoscape software [190].   
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4.2.2.3. Model building workflow 

Both the information retrieved and extracted from the knowledge-

driven approach and the data aggregated from data-driven approach 

are subjected to a dedicated workflow with curation, quality control 

and model assembly steps (Figure 28). For instance, the protein 

interaction data are curated for any possible parsing error during the 

process of automatic data collection, aggregation and ID conversion. 

In this work at the reformatting step, all the protein IDs were 

converted into the official gene symbols as defined by HUGO Gene 

Nomenclature Committee (HGNC). By this means, mapping of other 

data layers such as gene expression levels or expressed biomarkers 

for the purpose of model analysis becomes feasible. Similarly, the 

textual information retrieved and extracted from publications 

undergo a manual curation and quality control process to avoid false 

positives and to ensure the true relevance of extracted information to 

the corresponding query. This step is particularly important as the 

current state-of-the-art IR and IE tools do not produce noise-free 

results and thus, intervention of human expert is still required.  
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Figure 28. Schematic workflow of model building. This 
workflow was used to construct context-specific models using 
curated, quality controlled data types. 

 
Once models are built, they are deposited in a dedicated 

knowledgebase together with proper documentation and meta-

information for the sake of future provenance. During analysis stage, 

functional validation of generated models is performed through 

pathway analysis. As explained in Chapter 3, GSEA methods are 

often used to determine enriched functional modules in the network 

model. Recovery of manually curated pathways from databases such 

as KEGG or BioCarta is another alternative. In the next chapters, I 

introduce a novel network validation method entitled “biomarker-

guided pathway analysis”, which takes advantage of the accumulated 
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knowledge about potential molecular biomarkers of disease and 

makes use of this observational information to guide the pathway 

analysis to the core molecular events already experimentally 

recorded for the pathology of the disease.    

Once the most significant pathway modules are identified in the 

context of tissue- or stage-specific disease network, these modules 

can be prioritized to identify candidate pathway modules as 

described in Chapter 10 (Figure 29). 
 

 

 

 
Figure 29. Workflow for validation, integration, and 
analysis of subnetwork models. Context-specific integrated 
models were subjected to validation by a variety of strategies such as 
biomarker guided analysis and pathway recovery test to establish the 
relevance and specificity of the model. Validated model is then used 
for identification of important disease processes supported by 
evidence attributes.  

 

 



Chapter	  5.	  Multi-‐scale	  Knowledge	  Representation	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

88	  

	  

CHAPTER 5. Multi-scale Knowledge 
Representation using Ontologies 
	  
Biological and medical ontologies are formal representations of 

biomedical knowledge. They have been proven very useful for the 

communication of biomedical information through controlled 

vocabularies, definitions and proper metadata annotation [191]. 

Numerous examples have demonstrated their value for data mining 

and knowledge discovery approaches. Ontologies have been used for 

automated reasoning [192], for large-scale annotation of entire 

genomes [193], for data mining in microarray data [194] and for 

semantic and ontological search in unstructured information sources 

such as scientific text [195],[196]. 

The biological domain has developed a large portfolio of widely 

accepted and widely used ontologies. However, relevant knowledge 

in the pharmaceutical sector has not yet been addressed by the public 

scientific community. Some proprietary efforts to organize the 

knowledge relevant for pharmaceutical industry exist. To our state of 

knowledge, the BioWisdom pharma ontology [197] is the only 

ontological resource representing a substantial part of the pharma 

world. This proprietary ontology comprises substantial evidence 

(extracted from literature) and incorporates a broad spectrum of 

public sources.  

Building context-specific disease models requires domain-specific 

knowledge to be incorporated into the model. Since disease models 
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may span from molecules to cells, tissues, organs and the entire 

physiology of human, there is a need to build up ontologies that map 

to these biological scales [198]. In the absence of such semantic 

resources for NDDs, I developed several ontologies to support the 

knowledge-driven approach for modeling mechanistic disease 

networks, with focus on Alzheimer’s disease (Figure 30). 
 
           

	  
Figure 30. Mapping ontology development efforts to 
various biological scales. Different ontologies and controlled 
vocabularies shown in this diagram were developed to support IE 
and IR process for building context-specific systems models. 
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5.1. Ontology life cycle 
The ontology-building life cycle is a common standard practice and 

is composed of the following five steps, as illustrated in Figure 31 

[199]. 

               

	  
Figure 31. The life cycle of ontology-building consisting of 
five substantial steps. A detailed description of the ontology-
building life cycle is outlined below. 

1) Defining ontology purpose and scope 

The first step in an ontology construction process is the definition of 

an ontology purpose and an ontology scope. In the ideal case, before 

the ontology building process begins, it should be clear why the 

ontology should be built. For defining an ontology purpose, the 
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ontology builder should identify motivating scenarios and 

competency questions. Also the motivating scenarios can help to 

identify the range of possible users. The set of competency questions 

should help to define ontology scope.  

2) Knowledge acquisition 

Knowledge acquisition consists of knowledge gathering from web, 

articles, books and other knowledge resources. An analysis of the 

collected knowledge should be performed with respect to the 

ontology scope.  

3) Conceptualization 

When enough knowledge is aggregated - the conceptualization 

process takes place, which consists of defining concepts and 

relationships between them. During this step, the superclass-subclass 

hierarchy of the ontology concepts is established. Parts of other 

existing ontologies can be reused and integrated into the ontology 

under development.  

4) Encoding 

During encoding step, the concepts are coded into the OWL (Open 

Web Ontology Language) structure format using specialized 

software tools, such as Protégé (Protégé Project 

[http://protege.stanford.edu/]).  

5) Ontology evaluation 

The last step is the evaluation of the ontology. Gangemi et al. (2006) 

have defined three measurements for quality assessment of 

ontologies:  

I. Structural measurement, which measures topological and 

formal semantics of the ontology; 
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II. Functional measurement, which tries to assess the coverage 

and applicability of the ontology to the knowledge domain 

of interest; 

III. Usability profile measurement, which aims to measure the 

extent of efficient accessibility of users to knowledge levels. 

Structural evaluation is performed by calculating features such as 

depth, breadth, and other topological features of the ontology. To 

evaluate the functional quality of the ontology in terms of measuring 

the boundaries of the knowledge domain it captures, precision, 

recall, and F-score values are calculated [200].  

Precision is the number of true positives (TP) divided by the sum of 

TP and false positives (FP).  

Recall is the number of TP divided by the number of results that 

should have been returned (FP + false negatives (FN)).  

The F-score = 2 x (precision x recall) / (precision + recall).  

These values are derived from the longest string match found 

between automatically annotated words using ProMiner and the 

human-curated gold standard annotation for each abstract in the 

selected corpus.	  

	  

5.2. PLIO: Protein-Ligand Interaction Ontology 
The PLIO ontology was built in the course of a Master thesis as a 

groundbreaking effort to practice ontology-based IR and IE and 

calibrate the text-mining machinery and the IR system. This work 

has been published with equal contribution of the author of this 

thesis [201] and it is mentioned here for the sake of scientific 
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completeness of the work done for identification of novel targets at 

the molecular level. 

5.2.1. Purpose and scope 

PLIO is representing knowledge about the interaction of proteins and 

ligands (incl. drugs) and has a different scope and conceptual 

resolution than the Molecular Interaction ontology [202].  An 

important feature of PLIO is that it links directly from an ontology 

framework describing protein-ligand interactions to the mathematical 

formulas relevant for the computation of some of the entities 

represented in the ontology. To our knowledge, this is the first 

example for an ontology, which directly links from a knowledge 

representation to the mathematical building blocks that describe the 

leaves of the ontology in mathematical terms. It is noteworthy that 

we have adopted the top-level formal ontology structure during the 

construction of PLIO, i.e. the principle criteria of the top-level 

ontologies using the Basic Formal Ontology (BFO) upper level 

concepts was followed [203]. However, our attempt was 

concentrated on keeping the concept definitions close to expressions 

in natural language. Thus, the hierarchical structure of the ontology 

can serve as a robust navigation tree for terminology integration and 

text-mining applications.  

5.2.2. Structural characterization: 

Assessment of the quality of PLIO was based on both, structural and 

functional criteria. Table 8 summarizes the structural features of the 

ontology. 
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Table 8. Structural parameters of the PLIO ontology and 
their corresponding values 

 Diameter Depth No. of 

concepts 

No. of 

leaves 

Classes 371 13 371 271 

Properties 13 0 12 12 

   

5.2.3. Functional characterization: 

In order to assess the functional quality of the PLIO, three 

competency questions were sketched. Answering the competency 

questions requires sufficient ontological coverage to capture the 

concepts of the domain. Table 9 represents the competency questions 

that can be answered by the PLIO.  

 
Table 9. List of competency questions, the range of 
concepts that each question covers, and corresponding 
relations defined in the ontology 

	  
Competency question 1 Concepts Relationships 
Find features which reflect 
protein-ligand interactions 
from the viewpoint of  
biophysics, 
chemoinformatics, 
molecular modeling, and 
experiments. 

a) Interaction descriptor  
b) Interaction type 
c) Thermodynamics of 
protein-ligand 
interactions 
d) Interaction detection 
e) Interaction simulation 
 
 

-Interaction “has_a” 
Interaction descriptor 
-Interaction “has_a” 
Interaction type 
-Interaction “described 
by” Thermodynamics of 
protein-ligand interactions 
 -Interaction “part_of” 
Interaction Detection 
-Interaction ”part_of ” 
Interaction simulation 

Competency question 2 Concepts Relationships 
Find features which reflect 
a certain kind of ligand 

a) Intrinsic activity 
b) Binding activity 

-Ligand “has_a” activity 
-Ligand “has_a” ligand 



Chapter	  5.	  Multi-‐scale	  Knowledge	  Representation	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

95	  

activity against its 
biological target. 

c) Biological activity 
d) Conformer 

binding site 
-Ligand “binds to” ligand 
binding site 
-Ligand “is_a” conformer 
-Ligand “has_a” 
conformation 
-Activity “is_a” intrinsic 
activity 
-Activity “is_a” binding 
activity 
-Activity “is_a” biological 
activity 
-Activity “has_a” activity 
landscape 
-Activity “has_a” 
structure-activity 
relationship 
-Activity “is_a” 
biotransformation ability  
-Activity “is_a” reaction 
ability 

Competency question 3 Concepts Relationships 
Find features which reflect 
the properties of protein 
and ligand binding site. 

a) Ligand binding site 
b) Ligand binding site 
properties 

-Ligand Binding site 
“has_a” binding site 
properties 
-Binding Site properties “is 
_a” physicochemical 
properties 
-Binding Site properties “is 
_a” geometrical properties 

 
 
After enrichment analysis of the training set, 81 concepts were 

enriched with synonyms and 25 new concepts were added to the 

protein-ligand interaction ontology. The terminology behind PLIO 

supports 1321 synonyms (on average 3.5 synonyms per concept). 

Evaluation of the terminology showed a satisfactory performance on 

an independent test corpus of 100 Medline abstracts (Table 10). 
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Table 10. Results of the ontology evaluation using NLP-
based approach 

 Precision Recall F-score 

Independent test set of 

100 abstracts 

0.94 0.72 0.8154 

  

5.2.4. Usability profile 

PLIO provides users with 1036 entity annotation axioms for all 

instances and classes.  The coverage of relevant information in the 

ontology has been increased by adding 75 formula annotations and 

several software hyperlinks. Through integration of PLIO in 

SCAIView, we could make the ontology easily navigable as a tree 

and – at the same time – visualize the markup of PLIO concepts 

tagged in PubMed abstracts. 

	  

5.3. BMT: Biomarker Terminology 
During the past years, high-throughput technologies have been 

extensively employed for the study of molecular mechanisms 

underlying different diseases and this has led to the discovery and 

development of a large number of molecular biomarkers. Several 

definitions for biomarkers have been proposed amongst which the 

one by the US National Institutes of Health defines a biomarker as “a 

characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes or 

pharmacological responses to a therapeutic intervention”. 
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Biomarkers have been utilized throughout various stages of drug 

discovery and development. For example, biomarkers play an 

important role in drug target discovery and validation (e.g. as 

quantitative readouts for candidate drugs), in the monitoring of 

toxicity mechanisms (e.g. quantitation of indicators for unwanted 

side-effects), and non-invasive imaging of diseased organs. In the 

process of drug development, biomarkers are considered to be 

pivotal to informed decision-making as they are used to drive critical 

go/no-go decision in the early stages of drug development. 

For target identification purposes, potential biomarkers reported in 

the literature indicate measurable molecular activities under the 

disease condition, which provide more reliable evidence in-vivo at 

the protein level compared to inconsistent gene expression results. 

This has important implications in the study of NDDs because gene 

expression data are often obtained from the post-mortem brain, 

suffer from heterogeneity of cell-types and tissues mixed in the brain 

samples, and are not even disease stage-specific.  Hence, later in the 

course of this thesis, I introduce the novel concept of ‘biomarker 

guided pathway analysis’ by which I guide the disease model 

analysis for target identification in AD to core pathological processes 

underlying disease mechanism. A first step to finding supportive 

evidence for clinically important potential biomarkers is to search the 

accumulated data and knowledge generated from basic research. For 

efficient exploration of the suspected large amount of biomarker 

information contained in the biomedical literature, semantic search 

and information retrieval systems are of utmost importance. Hence, 

development of a biomarker terminology as a semantic resource for 
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systematic harvesting of AD-related potential biomarkers was 

performed and published [204].    

5.3.1. Purpose and scope 

Surprisingly, there exists no ontology for knowledge representation 

of the biomarker domain. The purpose of BMT was to capture all the 

key concept classes in the domain of biomarkers under a single 

classification schema to be used for text-mining applications. The 

scope of BMT covers six classes based on the conventional 

classification of biomarker types as well as the distribution analysis 

of the potential biomarker information in the literature. 

1. Clinical Management: annotates all terms indicating clinical 

investigations in patients, which includes the initial mentioning, 

the clinical study, and finally the treatment 

2. Diagnostics: annotates all diagnostics that are used, which 

includes the initial disease stage, the molecular identification, 

and blood diagnostics 

3. Prognosis: annotates all terms indicating any prognosis, 

outcome, or marker (e.g. clinical or biomarkers, adverse effects, 

resistance, response, disease progression or outcome) 

4. Evidence marker: annotates all changes in gene and protein 

abundance, spanning from expression to mutation, SNP 

variations to phosphorylation status 

5. Antecedent: annotates all risk factors mentioned for the relevant 

disease.  
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5.3.2. Structural characterization 

 The biomarker terminology contains 119 entity classes with 1890 

different synonyms. 

5.3.3. Functional characterization 

The BMT was evaluated against a gold standard list of Alzheimer’s 

disease genes. Genes were ranked based on frequency and evaluated 

against the Alzheimer’s gold standard. For the different selections 

recall, precision, F-score and rank have been estimated for 10, 30, 

and 50 % recall. In addition the maximal recall has been estimated 

(Table 11). 

 

 

 
Table 11. Performance evaluation for Alzheimer’s disease. 
Genes were ranked based on frequency and evaluated against the 
Alzheimer’s gold standard at different ranking positions.  

Selection Rank Recall Precision F-score 
Baseline: Genes / 
Proteins 

60 0.10 0.92 0.17 
230 0.30 0.73 0.42 
469 0.50 0.61 0.55 

Maximal F-score 728 0.67 0.52 0.59 
Baseline + Clinical 
Management 

61 0.10 0.90 0.17 
226 0.30 0.75 0.42 
465 0.50 0.61 0.55 

Maximal F-score 682 0.65 0.54 0.59 
Baseline + Evidence 
Marker 

62 0.10 0.89 0.17 
225 0.30 0.75 0.42 
464 0.50 0.61 0.55 

Maximal F-score 654 0.62 0.54 0.57 
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Baseline +Prognosis 63 0.10 0.87 0.17 
247 0.30 0.68 0.41 
541 0.50 0.52 0.51 

Maximal F-score 740 0.61 0.47 0.53 
Baseline + 
Diagnostics 

64 0.10 0.86 0.17 
237 0.30 0.71 0.42 
494 0.50 0.57 0.53 

Maximal F-score 520 0.52 0.57 0.54 
Baseline + Statistics 64 0.10 0.86 0.17 

227 0.30 0.74 0.42 
678 0.50 0.42 0.45 

Maximal F-score 377 0.41 0.62 0.49 
Baseline + Clinical 
Management 
+ Evidence Marker 

60 0.10 0.92 0.17 
224 0.30 0.75 0.42 
451 0.50 0.63 0.56 

Maximal F-score 555 0.57 0.59 0.58 
Baseline + Clinical 
Management 
+ Evidence Marker 
+ Prognosis 

61 0.10 0.90 0.17 
230 0.30 0.73 0.42 
568 0.50 0.50 0.50 

Maximal F-score 479 0.47 0.56 0.51 

5.3.4. Application scenarios 

To demonstrate the applicability of the biomarker retrieval 

terminology, the performance of retrieval for biomarker-related 

abstracts from Medline was tested in the field of Alzheimer’s 

disease. The system was able to successfully extract candidate 

biomarker genes/proteins relevant to the queried diseases (see table 

12 below). Genes retrieved by the selection of Clinical Management 

and Evidence Marker classes and not mentioned in the AD gold 

standard were checked manually by this author using the SCAIView 

environment. Such genes/proteins might be valuable for 
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identification of novel biomarkers because they represent the yet-to-

be identified biomarkers whereas those already matched with the 

gold standard are candidates that are better known as potential 

indicators of the disease. For this purpose, the abstracts must contain 

at least the information of the gene, which is altered (e.g. 

overexpression or mutation) in a particular state of AD and their 

therapeutic response state. Examples of such information with the 

corresponding PMIDs are given in Table 12. 

	  

Table 12. Examples of articles accepted to contain 
biomarker information. Example evidence for genes retrieved 
via SCAIView for Alzheimer’s disease but not found in the 
corresponding gold standards. 

PMID Gene Alteration Textual Evidence 

17387528 ACAD8 
HMGCS2 

SNP In a European screening sample of 115 
sporadic AD patients and 191 healthy 
control subjects, we analyzed single 
nucleotide polymorphisms in 28 
cholesterol-related genes for 
association with AD. The genes 
HMGCS2, FDPS, RAFTLIN, ACAD8, 
NPC2, and ABCG1 were associated 
with AD at a significance level of P < 
or = 0.05 in this sample.  

17531353 SLC17A7 Protein 
expression 
decrease 

Loss of VGLUT1 and VGLUT2 in the 
prefrontal cortex is correlated with 
cognitive decline in Alzheimer 
disease…We quantified VGLUT1 and 
VGLUT2 in the prefrontal dorsolateral 
cortex (Brodmann area 9) of controls 
and AD patients using specific 
antiserums. A dramatic decrease in 
VGLUT1 and VGLUT2 was observed 
in AD using Western blot 
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19863188 HPX 
SERPINF1 

Cerebrospi
nal fluid 
concentrat
ion 

Five differentially-expressed proteins 
with potential roles in amyloid-beta 
metabolism and vascular and brain 
physiology [apolipoprotein A-1 (Apo 
A-1), cathepsin D (CatD), hemopexin 
(HPX), transthyretin (TTR), and two 
pigment epithelium-derived factor 
(PEDF) isoforms] were identified. Apo 
A-1, CatD and TTR were significantly 
reduced in the AD pool sample, while 
HPX and the PEDF isoforms were 
increased in AD CSF 

 
For AD, out of 400 genes, 158 genes/proteins had at least one 

evidence in the literature as being a potential biological indicator of 

Alzheimer’s disease and thus were considered as true positives (~ 

40%). Evaluation of retrieved genes not existing in the gold standard 

for AD showed that almost half of these genes have probably the 

potential of being considered as candidate biomarkers. This indicates 

that automated text mining using biomarker terminology 

combinations increases recall for biomarker – specific information 

retrieval and makes it possible to systematically explore the 

biomarker space in an efficient way. As I explain in the next chapter, 

I have used the BMT utility to harvest and screen all potential 

biomarkers of AD reported in the literature.  

 

5.4. BRCO: Brain Region and Cell Type Ontology 
Modeling details of disease mechanism in NDDs is challenging due 

to the anatomical complexity of the human brain. To the state of our 

knowledge, preceding to this work, there was no semantic 

framework in the public domain for representing the heterogeneous 
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structure and anatomical granularity of the human brain spanning 

from the gross regions of the brain down to region-specific cell 

types. Building this semantic resource supported knowledge-driven 

model building with the aim of increasing model resolution and 

specificity at the molecular level while maintaining the link to the 

cell type and tissue level.  

5.4.1. Purpose and scope 

Currently there are two ontologies whose knowledge scope is close 

to the human brain anatomy, including Neuroscience Informatics 

Framework Standardized Ontology (NIFSTD) [205] and 

NeuroNames [206]. NIFSTD is a well organized and highly 

standardized ontology which covers a broad range of neuroscience 

domain, but for extensive knowledge retrieval related to a specific 

human brain region or cell type its usage is restricted by its limited 

terminology. On the other hand, although NeuroNames is considered 

as the largest source of brain region names, it does not cover the 

knowledge scope of human brain cell types. Moreover, both of these 

ontologies are not human-specific. In contrary, BRCO is a human-

specific brain anatomical ontology, which enables users to traverse 

through the brain partonomy to cellular level with a coherent 

granularity. 

5.4.2. Structural characterization 

The structural features of BRCO reflecting topological and logical 

properties were measured by means of context-free metrics including 

depth (related to the cardinality of paths in a graph), breadth (related 

to the cardinality of paths), tangledness (No. of multi-hierarchical 
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nodes/ No. of all the nodes, a measurement of organizational fitness), 

and fan-outness (related to the dispersion of leaf node sets). These 

features are summarized in Table 13. 

  
Table 13. Structural parameters of the BRCO ontology 
and their corresponding values 

 No. 
of 
roots 

No. of 
classes 

No. 
of 
syno
nyms 

Max. 
depth 

Average 
width 

Tangled-
ness 

Fanout
-ness 

BRCO 3 3238 9843 16 211.7 0.02 0.85 

	  
High value of Fan-outness factor (0.85) illustrates that BRCO has a 

very broad coverage. Tangledness factor of 0.02 shows presence of 

relatively very few multi-hierarchical nodes, which indicate that 

BRCO is easy to maintain. 

5.4.3. Functional characterization 

Applying ProMiner, evaluation of the terminology showed a 

satisfactory result on an independent test corpus (Table 14), although 

more iteration of ontology enrichment with false negative concepts 

will probably lead to improvement of the complete match.  
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Table 14. Evaluation of functional aspect of the BRCO 
ontology using text-mining approach. Complete match 
indicates capture of the complete concept term whereas partial match 
refers to partially matching concept terms due to their combinatorial 
representation with other words in text. 

BRCO Precision Recall F-score 

Complete 

match 

0.71 0.69 0.69 

Partial match 0.81 0.80 0.80 

 

5.4.4. Application scenarios 

One particular scenario for the application of BRCO is generating 

brain region or cell-type specific gene signatures for NDDs based on 

information retrieved from both literature and microarray databases 

such as GEO. We used an expression profiling study in GEO 

database (GSE5281) characterizing gene expression levels between 

AD vs. normal aged human brains. This study considers 6 distinct 

brain regions with about 14 biological replicates per brain region. 

However, no detailed information on the outcome of the study can be 

found due to the poor description of the gene expression studies in 

the microarray databases. Hence, to further gain mechanistic insight 

into brain region- or tissue-specific biological processes for those 

dysregulated genes, BRCO was used to find lines of evidence from 

literature. Through the literature search, visual cortex (VCX) showed 

to be relatively spared from AD pathologies. Thus, we expect to see 

less expression differences between AD-affected VCX and healthy 
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ones, which are consistent with our observation that statistically 

significant genes identified by comparison of affected VCX and 

healthy ones showed significantly smaller logged fold-changes 

compared to other regions under investigation. The literature-derived 

enriched gene specific to other five regions were compared to their 

corresponding experimentally-derived regional enriched genes and 

common genes signatures were detected, as shown in Table 15. 
 

Table 15. Comparison of literature and experimental 
approach towards regional enriched genes under AD. The 
low number of overlapping genes indicates the wealth of un-
annotated data in microarray data repositories. 

Brain regions No. of 
enriched 
genes 
derived 
from 
literature 

No. of 
enriched 
genes derived 
from 
microarray 
data 

No. of 
overlapping 
genes 

Entorhinal 
cortex 

198 1932 32 

Hippocampus 1020 3839 266 
Middle 
temporal gyrus 

38 5421 17 

Posterior 
cingulate cortex 

14 3457 5 

Superior frontal 
gyrus 

43 979 3 

 
It is noteworthy that despite the great discrepancy observed between 

the literature-derived enriched genes and the genes derived from 
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expression profiling on the single gene level, we observed a better 

similarity at the level of the enriched biological processes (GO 

terms). 

Another application scenario was to demonstrate that BRCO 

ontological search could be used to find confirmatory statements as 

well as experimental evidence supporting the microglia involvement 

in AD pathology. Microglia are often found near damaged tissue in 

Alzheimer's disease patients, but their role in the pathology of AD is 

not well known. Until very recently, the only hypothesis regarding 

the involvement of microglial cells in Alzheimer's disease (AD) 

pathogenesis is centered around the notion that activated microglia 

are neurotoxin-producing immune effector cells actively involved in 

causing the neurodegeneration [207]. Table 16 lists documents 

retrieved based on nested-ontology search with “microglia” concept 

from BRCO and “Alzheimer’s Disease” concept from the disease 

ontology in SCAIView. It could be demonstrated that not only 

established knowledge statements of molecular mechanism within 

microglia under AD were successfully retrieved (proof of concept), 

but also experimental evidence regarding subclasses of microglia 

could be retrieved by such approach.  
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Table 16. Comparative study of established knowledge 
statements and knowledge gained by BRCO for the role of 
microglial cells in AD. The extra knowledge gained with the help 
of BRCO complement the established knowledge for the role of 
microglia in all the given three examples. 

Established knowledge 

recovered from literature 

Supporting knowledge gained 

from literature by BRCO 

Activated microglia have 
contradictory roles in the 
pathogenesis of AD, being either 
neuroprotective (by clearing 
harmful Aβ and repairing 
damaged tissues) or neurotoxic 
(by producing proinflammatory 
cytokines and reactive oxygen 
species). (PMID: 21763676) 
 
Microglial cells play an important 
role in mediating 
neuroinflammation in 
Alzheimer's disease (AD) by 
production of a series of 
proinflammatory mediators and 
clearance of Aβ peptides and 
senile plaques. 
(PMID: 21496499) 
 
Early microglial accumulation in 
Alzheimer's disease (AD) delays 
disease progression by promoting 
clearance of β-amyloid (Aβ) 
before formation of senile 
plaques. However, persistent Aβ 

Our findings using both Iba1 
and antiferritin 
immunostaining of microglial 
cells show that coincident with 
the appearance of tau pathology 
in DS subjects there is 
consistent presence of 
dystrophic microglial cells and 
conspicuous absence of 
activated microglia using both 
markers. (PMID : 21847625) 
 
These results suggest that 
MyD88 deficiency may reduce 
Aβ load by enhancing the 
phagocytic capability of 
microglia through fractalkine 
(the ligand of CX3CR1) 
signaling and by promoting 
apoE-mediated clearance of Aβ 
from the brain. (PMID : 
21763676) 
 
In mouse models of AD, bone 
marrow-derived microglia 
(BMDM) have been shown to 



Chapter	  5.	  Multi-‐scale	  Knowledge	  Representation	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

109	  

accumulation despite increasing 
microglial numbers suggests that 
the ability of microglia to clear 
Aβ may decrease with age and 
progression of AD pathology. 
(PMID: 18701698) 

delay or stop the progression of 
AD and preventing their 
recruitment exacerbates the 
pathology. (PMID: 21418002) 

 

5.5. HuPSON: human Physiology Simulation 

Ontology 
It is foreseen that modeling and simulations will provide a better 

understanding of the human's body functioning and its pathological 

processes and help to develop therapies and tools that can aid disease 

diagnosis, treatment and prevention. In order to support these 

actions, we developed, evaluated and published an initial version of 

the Human Physiology Simulation Ontology (HuPSON) [208] as a 

resource that supports meta-data annotation of simulation as well as 

fundamentals of modeling and links the systems biology work to the 

Virtual Physiological Human (VPH) [209] and the CellML 

initiatives [210]. This ontology has been published with the equal 

contribution of this author. 	  

5.5.1. Purpose and scope 

HuPSON provides a framework for: a) annotation of simulation 

experiments, b) text-mining based retrieval of information required 

for modeling, c) interoperability of algorithmic approaches used in 

biomedical simulation, d) comparability of simulation results and 

interoperability on different structural scales (human anatomy down 

to cells and molecules), and e) linking knowledge-based approaches 
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(such as ontologies) to simulation-based approaches (for instance, 

differential equation-based approaches).  

5.5.2. Structural characterization 

Structural features of HuPSON are summarized in Table 17. 1,067 

(36%) of these classes were added manually whereas the other 64% 

of classes were integrated from related ontologies. Relatively high 

values of class number, leaves and width / average width together 

with a fanout factor of 0.71 are indicative of a broad coverage of the 

ontology, whereas the depth values of 10 (max.) and 5.5 (avg.) are 

indicators of a relatively good specificity of types to the domain. 

 
Table 17. Structural parameters and their corresponding 
values calculated for HuPSON 

 No. 
of 
roots 

No. of 
classes 

No. of 
synonyms 

Max. 
depth 

Average 
width 

Tangled-
ness 

Fanout-
ness 

HuPSON 10 2920 7262 10 270 0.06 0.71 

	  

5.5.3. Functional characterization 

Calculation of the system performance resulted in recall, precision 

and F-score of around 0.66 in the test set. Furthermore, participants 

from different working groups participating in the VPH Network of 

Excellence were asked to provide queries typical for the VPH 

domain. Table 18 shows that both ontology-based queries resulted in 

more true positive hits than their PubMed counterparts. These 

abstracts are considered to represent an “information gain” compared 

to the PubMed query results. 
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Table 18. Functional evaluation of HuPSON through 
answering competency questions as compared to the 
baseline PubMed search 

Query expressed in 
free text 

Hits of SCAIView 
query 

Hits of PubMed 
query 

Search the literature 
for fluid structure 
interaction models of 
the aneurysm 
simulating the pressure 
and its link to rupture 

8 out of 9 abstracts 
TP 

0 out of 0 abstracts 
TP 

Find publications on 
velocity of blood flow 
and rupture outcomes 
of aneurysms 

29 out of 59 abstracts 
TP 

2 out of 3 abstracts 
TP 

 

5.5.4. Application scenario 

In order to show the applicability of HuPSON to independent 

domains, we applied it to Alzheimer’s disease by challenging the 

system to retrieve and semantically filter the published knowledge 

related to simulation and modeling within this domain. Structural 

imaging has been recently shown to be a valuable tool in differential 

diagnosis of most dementias. To identify studies reporting the 

application of image analysis models to the differential diagnosis of 

Alzheimer’s using MRI, we used the MeSH terminology in 

conjunction with HuPSON and performed a query in the SCAIView 

environment. 18 out of the 23 retrieved abstracts were relevant to the 

query and correctly identified such studies. From these documents, 

we were able to extract what specific model types are used in the 
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query context (e.g. “network diffusion models” and “logistic 

regression models”). This kind of information can help model 

developers choose an appropriate model for their research. it should 

be pointed out, that the combination of HuPSON with the AD 

disease ontology (see section 5.7) has the potential to contribute 

largely to the work done in the VPH-DARE project (see 

http://www.vph-dare.eu ) where blood and lymphatic circulation 

simulation plays a major role. 

	  

5.6. CTO-NDD: Clinical Trial Ontology for 

Neurodegenerative Diseases 
For a complete disease modeling process, linking clinical outcomes 

to their underlying molecular events is essential. Gaining insight into 

the mode of action of NDD-specific drug targets that were 

successfully evaluated through clinical trials in human populations 

will help to decipher mechanistic details underlying those targets and 

to guide the modeling efforts for target ID in AD. NDD-CTO 

harmonizes clinical readouts and is therefore an essential resource to 

make clinical trial data interoperable. 

5.6.1. Purpose and scope 

Although clinical trials measure the outcomes of a particular 

treatment or a particular biomarker, the knowledge behind the 

molecular mechanism underlying the measured outcomes remains 

implicit or unknown. In fact, the challenge of linking clinical 

outcomes to their underlying molecular events has been long of 

interest to the scientific community. The purpose of developing 
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CTO-NDD was to organize the key concepts of clinical trials and to 

mine the literature for molecular events linked to clinical endpoints. 

Scope of the CTO-NDD is focused on NDDs and covers the 

following areas: Clinical Trial Readouts, Clinical Trial Study, 

Clinical Trial Measurement Units, Clinical Imagings, Clinical trial 

methods, Exploratory Clinical Trials, Multicentered Trials, Pilot 

Trials, Practical Clinical Trials, Preclinical Trials, The Randomized 

Blinded Trial. 

5.6.2. Structural characterization 

Structural features of CTO-NDD are summarized in Table 19. 

 
Table 19. Results of structural evaluation for the CTO-
NDD ontology 

 No. 
of 
roots 

No. of 
classes 

No. of 
synonyms 

No. 
of 
leaves 

Average 
width 

Tangled-
ness 

Fanout-
ness 

CTO-
NDD 

12 483 1451 373 80.6 0.51 0.77 

 
The high number of classes and leaves together with high values for 

avg. width and the fanout factor point towards a broad coverage of 

the ontology, whereas the values for depth can be used to show 

specificity of the types to the domain.  

5.6.3. Functional characterization 

Precision, recall, and F-score were calculated as listed in Table 20. 
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Table 20. Text mining-based evaluation of the CTO-NDD 
functional parameters 

 Precision Recall F-score 

CTO-NDD 0.79 0.70 0.74 

 
Moreover, quality of CTO-NDD was assessed against five expert 

questions (Table 21). The following table summarizes the 

competency questions as well as the percentage of knowledge-

domain coverage by CTO-NDD (the number of relevant documents 

divided by all the retrieved documents multiplied by 100). 

 
Table 21. Functional evaluation of CTO-NDD by 
answering five competency questions 

Competency question by expert Percentage correct 
answer by CTO-NDD 

Return references about clinical trials that 
use rating scales to measure treatment 
outcomes in Alzheimer's disease. 

78% 

Return references that report the application 
of using MRI for measuring clinical outcome 
of patients with relapsing-remitting and 
progressive multiple sclerosis. 

62% 

Return safety and efficacy studies 
mentioning receptor targets of drugs used 
for treatment of Parkinson's disease that 
have been shown to be effective in 
double-blind clinical trials. 

88% 

Return references of phase 3 clinical trials 
for treatment of epileptic seizures that met 
their primary endpoint. 

32% 
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Return the clinical readouts for trials 
aimed at treatment of Alzheimer and 
provide the values for readout 
measurements 

75% 

 

5.6.4. Application scenario 

A knowledge base was created for five NDDs (Alzheimer’s disease, 

Parkinson’s disease, Multiple sclerosis, Epilepsy, Amyotrophic 

lateral sclerosis (ALS)). The purpose was to collect data from 

completed trial documentations and classify them under biomarker 

and therapeutic categories based on endpoints, entities/disease 

phenotypes, and results from publications. The statistical content of 

the knowledge base concepts are shown in Table 22. 
 
Table 22. Summary of documentation statistics published 
on the results of completed trials for 5 NDDs  

Disease Total number of 
complete trial 
documentations 

Number of 
Biomarker 
documentations 

Number of 
therapeutic 
documentations 

Alzheimer’s 
disease 

276 57 219 

Parkinson’s 
disease 

317 8 309 

Multiple sclerosis 
disease 

237 21 216 

Epilepsy 217 1 216 
Amyotrophic 
lateral sclerosis 
(ALS) disease 

54 3 51 
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In the case of AD, the majority of clinical trials have measured safety 

and pharmacokinetics of therapeutics. Since existing clinical trials 

are performed with the aim of either biomarker discovery or 

treatment assessment, the information extracted from trial databases 

were grouped into Biomarker or Therapeutic classes and deposited 

into the knowledgebase. Table 23 exemplifies two entries of clinical 

trials in the knowledgebase for biomarkers and therapeutics of AD. It 

should be noted that NDD-CTO can be extended to capture relevant 

concepts measured in observational or epidemiological trials. 

 
Table 23. Examples of biomarker (B) and therapeutic (T) 
entries found in clinical trial databases. Endpoints as 
identified by the ontology concepts have been related to the results of 
each trial through literature mining.  

B/T Title Endpoints Entities/Disease 
phenotypes 

Results from 
publications 

B Anti-Oxidant 
Treatment of 
Alzheimer’s 
disease 

Safety/ 
Efficacy study 

-Mild to moderate 
Alzheimer’s disease 
-Vitamin E + C + alpha-
lipoic acid 
-Coenzyme Q (CoQ) 
-Beta42 and a-beta40 
protein 
-Probable Alzheimer's 
disease 
-Memory impairment 

Use of vitamin E and 
C supplements in 
combination was 
associated with 
reduced AD 
prevalence (adjusted 
odds ratio, 0.22; 95% 
confidence interval, 
0.05-0.60) and 
incidence (adjusted 
hazard ratio, 0.36; 
95% confidence 
interval, 0.09-0.99). 
(PMID: 14732624) 
 

T Alzheimer’s 
disease: 
therapeutic 
Potential of 

Efficacy Study -Transdermal estradiol 
drug 
-Medroxyprogesterone 
drug 

Women treated with 
estrogen demonstrated 
improved performance 
on a test of semantic 
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Estrogen -Placebo Patch drug 
- Estrogen 
- Cognition decline 
-17-ß-estradiol  
- Estrone 
- FSH 
- ApoE 
- Mild-to-moderate 
dementia 

memory (Boston 
Naming Test) 
compared with 
subjects who received 
a placebo. Estrogen 
appeared to have a 
suppressive effect on 
the insulin-like growth 
factor (IGF) system 
such that plasma 
concentration of IGF 
binding protein-3 was 
significantly reduced 
and plasma levels of 
estradiol and IGF-I 
were negatively 
correlated during 
estrogen treatment. 
(PMID: 11524467) 
 

 
CTO-NDD goes beyond describing the knowledge of clinical trial 

readouts such as: biological readouts, cognitive readouts, physical 

readouts, primary and secondary endpoint measures and also, 

describing concepts related to different study types performed during 

clinical trials. CTO-NDD captures numerical descriptions and 

metrics that are routinely used in clinical trial studies. It also 

described different methods used for predicting clinical trial 

outcomes. 

 

5.7. ADO: Alzheimer’s Disease Ontology 
Placing the context specific to disease characteristics and mechanism 

at the heart of any disease-specific model is a substantial criterion for 

correct and precise representation of disease-specific pathological 
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processes. In the absence of Alzheimer’s-specific semantic 

frameworks such as terminologies or ontologies, which could 

potentially support target identification through modeling the disease 

mechanism in this thesis, there was an apparent need to create such 

semantic resource.  

ADO was developed during the course of the Master thesis of 

Ashutosh Malhotra who was supervised by me in the course of this 

work. ADO has been published and made openly accessible to the 

AD research community [211].    

   

5.7.1. Scope and purpose 

Presently, the main online repository of ontologies, BioPortal 

(http://bioportal. bioontology.org/), contains only one generalized 

disease ontology, namely Human Disease Ontology 

(http://bioportal.bioontology. org/ontologies/1009, Last accessed: 22-

4-2012) that has been designed to link distant datasets through 

disease concepts. However, the broad coverage and the lack of depth 

in this ontology restrict its usage for specific disease domains such as 

AD. Extensive efforts have been undertaken to organize published 

knowledge related to AD in the form of AlzSWAN knowledge base 

(http://www.alzforum.org/), which is supposed to be the reference 

repository for AD-based information available on the web. Still, 

information density or scalability remains a challenge for AlzSWAN. 

A first draft of an ontology representing clinical features, treatment, 

risk factors, and other aspects of the current knowledge in the 

domain of AD was developed. The hierarchical structure of the 
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ontology thus can serve as a robust navigation tree for terminology 

integration 	  

 

5.7.2. Architecture and contents 
 
ADO covers a wide range of key concepts and aims to engineer 

knowledge specific to AD. Modeled heterogeneity in this semantic 

framework tries to touch all relevant concepts but the range varies 

from very general (main ontology classes) to more specific concepts 

(concepts located at the ontology bottom “leaves”). The main views 

(root concepts) in ADO covering aspects of AD knowledge domain 

include: “Clinical”, “Non clinical”, “Etiological” and “Molecular and 

cellular mechanism”. Each of these superclasses has its own 

subclasses (Figure 32, left). Subclasses mentioned under “Clinical 

(thing)” cover concepts that have contributed significantly to our 

understanding of the pathology, diagnosis and possible treatment 

options. Concepts defined under each subclass tend to be more 

domain-specific. For example, concepts representing stages of the 

disease are mentioned under clinical concepts (Figure 32, right). 
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Figure 32. Representation of views incorporated in ADO 
(left) and example of disease stage concept and its 
subclasses (right). The left figure shows the hierarchical 
representation and the right figure illustrates the relational 
representation of the ontology concepts. 
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Currently much of the focus of AD research is devoted to preclinical 

studies that are conducted, typically on animals and has potential to 

play a vital role in drug discovery and development process. 

Concepts mapping all aspects of “Non-clinical” studies (Ex-vivo, In-

silico, In-vitro and In-vivo) have also been incorporated into ADO, 

hence elaborating the knowledge related to animal models and 

bioassays used to better understand biological processes underlying 

Alzheimer’s disease. 

“Etiological view” forms the third root in ADO and it covers all 

aspects that might be responsible for the initiation of AD ranging 

from genetic factors and environmental influences to morphological 

changes whose effect varies from individual to individual. Clinical 

appearance of AD is also marked by anatomical changes as well as 

cellular and molecular cascades, which together manifest the 

neuropathological alterations observed in AD.  

Furthermore, in ADO, the “Molecular and cellular mechanism” view 

is designed to cover all entities and biological mechanisms that find a 

possible role in AD. Studying behavior of neurons and other brain 

cells at the cellular and molecular level during AD can provide 

insights into the processes that mark its progression. The semantic 

relationships ‘is a’ and ‘has a’ and ‘part of’ were used to define 

relation types between pairs of concepts. 

 

5.7.3. Structural characteristics 

The structural features of the ontology reflecting topological and 

logical properties were measured by means of context-free metrics 

including depth and breadth  (related to the cardinality of paths in a 



Chapter	  5.	  Multi-‐scale	  Knowledge	  Representation	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

122	  

graph), tangledness (related to multi-hierarchical nodes), and fan-

outness (related to the dispersion of nodes). Table 24 shows various 

parameters, which were considered in the structural evaluation of 

ADO. 

 
     Table 24. Structural characterization of ADO 

No. of   No. of   No. of        No. of    Max.     Avg.  Tangleness   Fan-
out- 
roots     classes   synonyms   leaves   depth   width                      ness 
factor 
    6    1486     2178           1221       12    302.91       0.16            0.82    
 
The comparably high value of the Fan-outness factor exhibits the 

broad coverage of our ontology consisting of 1486 distinct classes. A 

tangledness factor of 0.16 is indicative for the presence of relatively 

few multi-hierarchical nodes in our hierarchy, which further 

confirms the coverage of the designed ontology. 

5.7.4. Functional characteristics 

The functional dimension of the ontology reflects the main purpose 

of that ontology by specifying a set of contextual assumptions about 

an area of interest. Functional evaluation measures how widely and 

precisely ontological concepts represent the semantic space for the 

indicated knowledge domain. The boundary of the knowledge 

domain addressed by ADO was estimated by calculating its fitness to 

an existing knowledge source (i.e. PubMed). Using our state-of-the-

art text-mining environment, which takes ADO hierarchical structure 

and corresponding dictionary as input, we were able to evaluate 

ADO functionally on the prepared ‘test set’ (see Methods). As a 
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result, the functional metrics reported in Table 25 could be 

calculated. 
 
 Table 25. Results of the ontology evaluation using NLP-
based approach 

Test set corpus size                            Precision     Recall       F-score 
Independent test set of 200 abstracts   0.71            0.74            0.72 

 
The result of this evaluation shows that the ontology in its current 

form can capture a wide range of AD concepts in the knowledge 

domain of AD scattered throughout scientific publications. 

 

 5.7.5. Expert evaluation	  

The expert panel’s revision of the ontological “view” structure is 

considered as a genuine evaluation for disease ontologies. Following 

this, our ontology was manually curated by a clinician expert in the 

field who added certain clinically relevant concepts to ADO, 

increasing its pragmatic usability. 

Two competency questions defined by the expert clinician and one 

from a pharmaceutical expert were selected to evaluate the semantic 

performance of ADO and its capability to return appropriate answers 

as following:  

1. Return references linking amyloid beta to synaptic 

dysfunction in the mild stage of Alzheimer's disease. 

2. Return references that associate the t-tau protein to 

frontotemporal dementia and Alzheimer's disease. 
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3. Return references containing clinical evidences that 

correlate CSF levels of p-tau with CSF Abeta 42 and 

cognitive decline. 

To evaluate the above queries, we manually compared documents 

returned by ADO in SCAIView with documents returned by PubMed 

advanced search using the same queries. The results of this 

evaluation are summarized in Table 26. 

 
Table 26. Results of competency questions evaluation using 
ADO within SCAIView compared to non-ontological 
search of PubMed. 

Question 
No. 

No. of 
SCAIView hits 
in total 

Relevant 
SCAIView        
hits  

No. of PubMed       
hits in total 

Relevant PubMed 
hits 

  1 22 documents 19 
documents 

1 document 1 document 

  2 
 
  3                        

130 documents 
 
12 documents 

14 
documents 
out of top 20 
7 documents 

20 documents 
 
0 document 

7 documents 
 
0 document 
 

 

As shown in Table 26, querying SCAIView with the support of ADO 

in comparison to querying PubMed using comparable query 

formulations for all competency questions returns better results in 

terms of both sensitivity and specificity. These results indicate that 

ADO-supported information retrieval improves the chances for 

gaining better coverage with focused results in the same time as 

compared to naïve PubMed based searches.                               Also 

the knowledge gain in terms of concept recognition and enrichment 

is better when performing ontology based semantic search. To 
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validate this, we used the third competency question and performed 

the query in SCAIView under two conditions: using the MeSH 

dictionary (without using ADO) and using ADO in conjunction to 

the NDD terminology. The reason is that the same corpus is indexed 

behind SCAIView so that the condition for queries remains fairly 

comparable. We then checked the document retrieval under both 

conditions and it turned out that the ontology based search using 

SCAIView (along with all MeSH concepts included as subset), was 

able to highlight approximately 5 times more entities than was 

possible using the MeSH dictionary alone. In this direction, we tried 

to derive inferences about the enrichment of the knowledge space 

surrounding the basic answer with the help of ADO concepts, e.g. 

how entities addressed in the competency questions are linked to 

other biological entities and processes (highlighted in the abstracts 

using ADO) in AD context. 

Additional knowledge gained by means of ontological concept 

enrichment adds higher value to the original answer found by ADO. 

Although ontology based context modeling has been long 

acknowledged as a key aspect in a wide variety of problem domains, 

the full power of semantic search using a disease ontology comes 

with using a combination of the ontology with entity recognition, as 

shown by strategies discussed above. 

5.7.6. Application scenario 

Our motivation for development of ADO was to automatically 

extract domain specific knowledge related to AD, which can be used 

to gain further insights into the disease mechanism. To further 
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demonstrate the utility of ADO, we aimed at capturing knowledge 

beyond Medline abstracts. In an evaluation experiment independent 

from Medline, we used ADO to mine 650 AD-related electronic 

patient health records (EHRs) in order to systematically screen for 

other diseases or disorders that may exist simultaneously but 

independently in patients suffering from AD. In medical terms this 

concept is described as ‘comorbidity analysis’. An example for the 

annotation of relevant terms in electronic patient records using the 

ADO dictionary is shown in Figure 33. 

 

 
Figure 33. Comorbidity information captured in electronic 
health records using ADO. Risk factor concepts (comorbidities) 
included in ADO such as infection, and depression have been 
highlighted in text together with AD-related symptoms. 

 
After analyzing the results obtained by calculation of term 

frequencies, we found that hypertension, diabetes and stroke are 

disorders that are reported to frequently occur in patients already 

suffering from AD. Furthermore, using our NER-driven literature 

mining machinery, we extracted a list of top 300 genes associated to 

these three diseases in the literature and compared it to the list of top 
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300 AD genes extracted from the literature using the same 

methodology. After curation for their relevance to the indication 

area, we found 19 common genes between AD and diabetes, 14 

between AD and hypertension and 46 between AD and stroke 

(Figure 34). 

	  

	  
Figure 34. Four major comorbidities frequently mentioned 
with AD in EHRs and number of genes reported in the 
literature to be commonly involved in Alzheimer’s and 
these comorbid diseases. A higher number of genes were 
retrieved for the overlap of AD with stroke (46) and head traumas 
(42) at the mechanistic level than diabetes (19) and hypertension 
(14).   

	  

5.7.7. Perspective and future outlook	  

With the public release of ADO (http://bioportal. 

bioontology.org/ontologies/ ADO), the hope is to reach out to the 

broader AD research community and to continuously improve the 

quality of the ontology. Furthermore, the project team will continue 

to review articles, abstracts, and other resources relevant for the 
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domain and to update and maintain ADO. A potential application of 

ADO in the future would be improvement of AD-specific models 

through semi-automated model updating process using ADO-driven 

text-mining systems. Moreover, ADO can be used to construct BEL 

models of AD physiopathological aspects. 
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CHAPTER 6. Integrative Modeling of 
Pathological Components associated to 
Alzheimer’s Disease 
	  
In this chapter, I describe the modeling activities related to the AD 

pathology, in response to the key scientific questions of this thesis: 

 

- “are different pathways leading to the manifestation of 

AD?”,  

- “are plaques and tangles secondary events or downstream 

effects?”, or  

- “what role is the dimension of time playing in the 

pathophysiology of AD?”. 

 

 As discussed in Chapter 2, the putative mechanisms underlying the 

AD pathology have been formulated in the form of three major 

hypotheses, including amyloidosis, inflammation, and infection. 

From the systems point of view, these pieces of information need to 

come together and generate a bigger picture of the AD mechanism. 

The amyloidosis hypothesis describes the dysfunction of the CNS 

most important organ, the brain, whereas inflammation and infection 

both form the two sides of the same coin of the immune system 

deregulation. A third perturbed component of the system, which has 

not yet been explicitly put forward as a hypothesis, is the endocrine 

system (what I call “hormone hypothesis”). Interestingly, this 
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component came into the picture after an unexpected observation of 

enriched hormone proteins and their receptors in the literature-

derived data. The importance of the endocrine component is that the 

nervous and immune systems communicate via multiple hormonal 

routes and mechanisms and their interactions provide a finely tuned 

regulatory system, which is disturbed under the disease condition. 

	  

6.1. Exploratory data analysis 
Exploratory data analysis is an analysis approach – often with visual 

methods - that focuses on summarizing the main characteristics of 

data by identifying general patterns in the data and features of the 

data that might not have been anticipated. In fact, the purpose of 

performing exploratory data analysis is to find the right formulation 

of the scientific question or hypothesis. In contrast to confirmatory 

analysis, which involves testing a previously established hypothesis, 

exploratory data analysis involves a broad investigation to explore 

datasets for getting insights into potential new hypotheses. This 

approach, therefore, has important implications for analysis of large 

and high-throughput biological data; for example, biological 

networks have been used for exploratory data analysis to discover 

modular structures in high-throughput data [212] or pathway 

diagrams have been constructed to facilitate exploratory analysis and 

to enhance biological discovery in large datasets [213].        

Accordingly, to explore directions towards answering the scientific 

questions in this thesis and to obtain the very first intuition about the 

available data sources, data qualities and their information value, 
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both literature-derived and database-derived data, after passing 

through expert curation, were subjected to an initial analysis in order 

to get a preliminary insight into their knowledge content and how 

best this knowledge can be used in the modeling process. This 

section reports on the feasibility study on the NDD- and AD-related 

data and knowledge.	  

6.1.1. Molecular overlap between NDDs 

It is well known that NDDs share common disease features [214]. 

Thus, an entry point to understanding the molecular etiology of 

NDDs is analysis of existing knowledge about genes and proteins 

that they share. 

A spectrum of six NDDs - presenting ‘dementia’ as a common 

symptom – was surveyed in the literature using dictionaries for the 

Human Genes/Proteins and MeSH terms in the SCAIView literature 

mining environment, and finally, a list of genes/proteins associated 

to these NDDs was generated. For each disease, the output list was 

manually curated to ensure the association between the gene and the 

disease of interest. The overlap of genes was computed between 

pairs of diseases and presented as a matrix (Figure 35).  
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Figure 35. Matrix containing number of overlapping genes 
between six NDDs. 

 
 The results clearly show that AD shares a significant number of 

genes with Parkinson’s disease (350 genes), followed by Lewy body 

disease (180 genes) and Parkinson’s disease (155 genes). This 

implies that there exists a similar molecular etiology underlying 

these NDDs. The top-ranked common genes among these three 

diseases include APP, APOE, MAPT, SNCA, SNCB, CHAT and 

PRNP. 	  

6.1.2. Potential biomarkers of AD 

In general, there are two categories of biomarkers: “known valid 

biomarkers”, which have been measured experimentally with a well-

established performance and “probable valid biomarkers”, which 

have been measured in an analytic test system but more evidence on 

their performance is needed to be approved [215]. The second 

category represents a vast majority of proposed biomarkers in the 

literature (potential biomarkers), which report a measured indication 

under the disease conditions. This information can be used in guiding 

the pathway analysis as I propose in the next chapter. 

  Huntington 
Lewy 
body Pick 

Creutzfeldt
-Jakob Alzheimer Parkinson 

Huntington   58 39 25 124 100 
Lewy body 

 
  58 31 180 155 

Pick 
  

  27 124 80 
Creutzfeldt-
Jakob 

   
  72 43 

Alzheimer 
    

  350 
Parkinson 

     
  



Chapter	  6.	  Integrative	  Modeling	  of	  AD	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

133	  

In order to obtain a list of potential biomarkers, the following query 

was performed with the help of SCAIView and the biomarker 

terminology: 

 (([MeSH Disease:"Alzheimer Disease"]) AND [BioMarker 

Terminology Node:"Evidence Marker"])      

The long list of retrieved potential AD biomarkers - comprising of 

1009 genes/proteins - was filtered for expression evidence and was 

subjected to manual inspection of sentences. Figure 36 depicts the 

workflow for identification of these markers. Finally, 366 proteins 

reported to potentially act as disease biomarkers were identified and 

underwent the process of pathway enrichment analysis.  
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Figure 36. Diagrammatic workflow used for identification 
of potential AD biomarkers in literature. The biomarker 
terminology was used to query for potential expressed biomarkers of 
AD in PubMed, which were subjected to filtration, manual curation 
and pathway enrichment analysis.  

Table 27 represents the top significant pathways that are enriched 

with potential biomarkers of AD. This exploratory pathway analysis 

indicates that experimentally measured indicators of AD initially 
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point to inflammatory and cell death processes under disease 

condition. 

 
Table 27. Results of pathway enrichment analysis for 
literature-derived list of potential AD biomarkers  

	  

	  

6.1.3. Target receptors of the human brain 
Cell surface receptors and ion channels constitute targets for one-

third of the current medicinal drugs with G-Protein-Coupled 

Receptors (GPCRs) forming the largest group of drug targets (36% 

of the human targets) [216]. The International Union of Basic and 

Clinical Pharmacology Committee on Receptor Nomenclature and 

Pathway p-value 

Amyotrophic lateral sclerosis (ALS) 2.78E-13 
HIV-I Nef: negative effector of Fas 
and TNF 

1.52E-09 

Apoptosis 1.11E-07 
Antigen Dependent B Cell 
Activation 

1.14E-07 

Apoptotic Signaling in Response to 
DNA Damage 

3.71E-07 

Keratinocyte Differentiation 6.41E-07 
Cytokines and Inflammatory 
Response 

8.74E-07 

Prion diseases 9.81E-07 
Stress Induction of HSP Regulation 1.24E-06 
FAS signaling pathway (CD95) 1.30E-06 
Cytokine Network 2.68E-06 
Alzheimer's disease 2.99E-06 
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Drug Classification (NC-IUPHAR) has released guidelines for 

nomenclature and classifying these targets. They also provide the 

IUPHAR-DB database containing peer-reviewed pharmacological, 

chemical, genetic, functional and anatomical information on receptor 

and channel targets for human, rat, and mouse (http://www.iuphar-

db.org). 

Using the annotation fields of the IUPHAR-DB, I was able to 

download all the GPCR and ion channel receptors that were 

annotated to be expressed in the human brain tissue. After the 

manual check, 69 GPCRs and 4 ion channel receptors were identified 

to specifically express in the human brain, some of which have been 

already targeted by approved drugs  (Table 28).  

 

Table 28. List of curated receptors that are expressed 
specifically in the human brain 

GPCRs  KiSS1, MCH2, 5-HT4, RXFP4, PKR2, P2Y6, 5-
HT1B, FZD2, MCH1, A2A, H2, GPR116, RAIG1, α
2C-adrenoceptor, RAIG2, A1, H1, 5-
ht5a, PKR1, P2Y11, 5-
HT1F, NPBW1, NPFF2, NPFF1, GPR125, P2Y12, P
2Y2, α2B-
adrenoceptor, FZD1, GPRC6, sst4, RXFP2, A3, NTS
1, P2Y14, P2Y13, 
NOP, mGlu3, ETB, GPR158, GPR98, ghrelin, 5-
HT2B, 5-HT7, mGlu2, MT1, GLP-
1, BB2, ETA, H4, H3, LH, GABAB2, 
GPR126, GPR179, A2B, α1A-
adrenoceptor, DP2, P2Y4, α2A-
adrenoceptor, GPR56, FFA1, RXFP3, P2Y1, TP, RX
FP1, EP4, VPAC1, GPBA  

Ion channel 
receptors 

 5-HT3C, ZAC, 5-HT3D, 5-HT3E  
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6.1.4. Human brain interactome 

Given the complexity of the human brain structure and in the 

absence of brain-specific molecular interaction models, it seemed 

reasonable to build an interaction model that represents a good 

resolution of protein interactions at the level of brain regions or 

tissue types. Tissue specificity is an important aspect of many 

diseases, which is frequently ignored when disease process models 

are built. Knowing that proteins and pathways play different roles in 

diverse tissues and cell types, functionality and functional 

relationships of molecular interactions should be resolved when 

modeling disease processes for target ID is performed. The rationale 

is that disease phenotypes are caused by tissue-specific pathology 

and thus, building tissue-specific functional networks can support 

prioritization of disease genes and association of disease phenotypes 

to underlying molecular interactions [217]. As demonstrated in 

Chapters 8 and 9, the brain interactome has been applied to modeling 

brain-specific disease pathways that are associated to the damaged 

areas of the brain anatomy. Application of the brain interactome goes 

beyond disease modeling by mapping the pharmacological space of 

CNS drugs to this network and including drug-target and drug-drug 

interactions on top of that. Such a model – called as the Human 

Brain Pharmacome - can be constructed with the aim of 

polypharmacology analysis or feasibility study of drug repurposing.  

In order to construct a context-sensitive network model representing 

possible protein interactions in the human brain - regardless of 

normal or disease conditions - in a tissue-specific manner, a brain-
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specific PPI network representing 15 brain regions was reconstructed 

using the global human protein interaction network [218]. These 

regions have been annotated to the interactions using co-expression 

profiles and include amygdala, cerebellum peduncles, cingulate 

cortex, hypothalamus, medulla oblongata, occipital lobe, parietal 

lobe, pons, prefrontal cortex, subthalamic nucleus, temporal lobe, 

thalamus, caudate nucleus, cerebellum, and globus pallidus. Presence 

or absence of a particular interaction in a brain region has been 

indicated by numbers so that number 1 indicates the presence of that 

interaction in that particular brain region and number 0 indicates the 

absence of a particular interaction in a particular brain region. It 

appears that some interactions occur in several regions and some 

others are region-specific. 

The brain interactome has been constructed based on the PPI 

information from 21 databases and is composed of 7255 proteins and 

47882 interactions. Edges are manually annotated and supported by 

additional attributes including source interaction databases, 

supporting experimental methods and evidence, evidence sentence 

from the literature, and source PMIDs in the literature (if available). 

Figure 37 illustrates an example snapshot of edge annotations in the 

brain interactome, which has been visualized in the Cytoscape 

environment. 
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Figure 37. Visualization of annotated attributes in the 
brain interactome in Cytoscape environment. Protein-protein 
interactions are coded for their presence (1) or absence (0) in 
particular brain regions based on their co-expression and further 
substantiated with additional evidence and information from 
databases and publications.   

	  
Since the brain interactome captures a large amount of PPI 

information in the form of a hairball network with a giant 

component, it is best suited for “top-down” analysis methods. 

Indeed, the attributes embedded in the annotation space of the brain 

interactome will be used to support such a top-down analysis by 

providing the possibility to filter down the network and create 

various facets of the interactome model based on brain regions, e.g. 

generation of subnetworks representing interactions occurring only 

in hypothalamus or in cingulate cortex or both.  

It should be noted that the quality of this network model can be 

improved as more data become available on protein-protein 

interactions. For example, the majority of this interactome is based 

on retrieved data from protein and literature databases, which change 

and update dynamically. Therefore, an automatic survey of new data 
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releases or newly published literature can facilitate regular update of 

both interactions and attributes of the network.  

 

6.2. Modeling of molecular processes underlying AD 
As a first step towards exploratory analysis of disease processes 

underlying AD at the molecular level, the first version of the PPI 

model representing amyloid hypothesis in AD was constructed. The 

purpose was to explore the knowledge space published around 

molecular mechanisms underlying AD, visualize this knowledge 

space as a network model, and analyze it for the kind of pathways 

that are over-represented or enriched in the pathology of AD.  

For this purpose, the literature in SCAIView were queried with the 

“MeSH: Alzheimer’s disease” key word and searching for the list of 

“Human Genes/Proteins” associated to AD. In order to provide the 

relevant set of proteins for construction of the network (known as 

‘seed proteins’), 35 AD susceptibility genes were acquired from the 

AlzGene database [219], which is considered to be the gold standard 

for AD-related genes. Out of 35 genes, 31 genes were mapped onto 

the genes retrieved from the literature. These seed proteins were used 

as input to the BIANA tool and after manual curation, a network of 

684 nodes and 893 edges was constructed (Figure 38).  
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Figure 38. A first AD-specific PPI network model 
constructed around AD genes from AlzGene database. 
Nodes in cyan represent hubs and nodes in red represent linker 
(inter-module) proteins.  

 
When submitted to the DAVID tool for functional annotation [220], 

the genes of this network showed significant enrichment for 72 

KEGG pathways. To obtain the modular distribution of pathways, 

the hits were sorted based on the gene memberships in annotated 

pathways (Figure 39). These results show that, in this distribution, 

intracellular signaling pathways that are involved in the cell cycle 

and cell proliferation processes (reflected in the cancer and MAPK 

signaling pathways) are dominant. But the interesting observation is 

the presence of immune system-related pathways, i.e. chemokine 
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signaling pathway as well as natural killer cell signaling. Another 

important observation is the prominent involvement of a hormone-

dependent signaling pathway, namely the insulin-signaling pathway.  

 

	  
Figure 39. Results of functional annotation of genes in the 
AD network model to KEGG pathways. Pathways in cancer 
and MAPK pathway are the predominant pathways in this AD model 
and may point to the dysregulation of immense intracellular 
signaling and perturbation of cell cycle. Alzheimer’s pathway also 
emerges as a part of the bigger picture and indicates the relevance of 
the model. 

	  
Taken all the above observations together, the results of exploratory 

data analysis - as the very first attempt at making sense of available 

data - highlighted the involvement of ‘immune’ and ‘hormone’ 

signaling components in the core pathological processes related to 

AD pathway. It should be noted that because the model generated 

here is an initial draft for obtaining directions and insights into the 
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disease mechanism, its coverage is low and thus, the signal is weak. 

Although these results may not show a clear pattern relevant to 

disease mechanism and the signals are weak, they at least provide a 

hint and further direction for exploring	   relevant hypotheses, for 

example, on the role of the immune and hormone components in 

pathology of AD. In the next chapters, the role of immune and 

hormone signaling pathways in the AD pathology is investigated 

more concretely. 
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CHAPTER 7. Modeling of the Immune 
System Component associated to 
Alzheimer’s Disease 
	  

7.1. Introduction 
Neurodegenerative dementia is the main clinical manifestation in a 

multitude of diseases such as Alzheimer’s, Lewy bodies, 

Huntington’s and Parkinson’s diseases. It is often a feature of other 

pathological conditions including Creutzfeldt-Jakob disease as well 

as a couple of neurodegenerative diseases and syndromes. Moreover, 

several arrays of evidence suggest that infectious agents can induce 

the pathogenesis of dementia in infected people [221]. Among these 

infectious agents, viruses have been hypothesized to play a role in 

the development of dementia and dementia praecox [222],[223].           

It has been shown that HIV infection can cause dementia in at least 

20% of all HIV infected patients [224],[225] and it appears that the 

AIDS dementia complex is confined to the later phases of systemic 

infection by the human immunodeficiency virus [226]. Jang et al. 

(2009) showed that mice infected by the highly pathogenic H5N1 

influenza also manifest neuropathological signs and they suggested 

that any neurotropic influenza virus that activates the immune system 

in the brain can potentially lead to Parkinson’s and Alzheimer’s 

diseases [227].  
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The common observation among virus-induced dementia cases is the 

prolonged inflammatory responses as well as long latency period 

[228]. Interestingly, this time-dependent progression of the disease 

also occurs in age-related neurodegenerative diseases including 

Alzheimer’s. For example it has been proposed that long-term 

accumulation of insults to the immune system leads to the persistent 

activation of microglial cells which mediate progressive 

neurotoxicity [229]. Indeed, several lines of evidence in animal 

models indicate that exposure to bacterial lipopolysaccharide (LPS) 

or selective neurotoxins induces microglial activation which can last 

for years and cause the progressive and cumulative loss of neurons 

over time [230],[231],[232]. Jang et al. observed a similar trend in 

H5N1 infected mice whose CNS showed persistent microgliosis and 

prolonged inflammatory response even after the infection had 

resolved. Although inflammatory responses accompanied by over-

activation of the immune system are hallmarks of neurodegenerative 

diseases [233], neither non-steroidal anti-inflammatory drugs 

(NSAIDs) nor highly active antiretroviral therapy (HAART) have 

led to a definitive therapeutic outcome [234],[235].  

On the other hand, emerging evidence suggest that the current 

amyloid hypothesis may not capture the causative mechanism 

underlying the Alzheimer’s dementia and a rethinking of the 

relationship between amyloid aggregation and neurotoxicity is 

required. Further support to this comes from the recent failures of 

anti-amyloid drugs including 11 investigational drugs for 

Alzheimer’s disease [236]. All these have triggered the idea that the 
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popular amyloid hypothesis may not well explain the cause of the 

disease or even could be a secondary event [237].  

HIV-associated dementia, among the virus-induced dementia types, 

is the best-studied model, which may provide some evidence on 

existing alternate pathogenic pathways in dementia. To gain an 

insight into the disease mechanism underlying AIDS dementia 

complex, we adopt a knowledge-based analysis approach by 

integrating literature data and biological networks.	  

	  

7.2. Methods 
	  

7.2.1. Text mining and information retrieval 

We employed SCAIView and accordingly a sub-corpus of the 

MEDLINE abstracts related to the keywords “infection AND 

neurodegeneration”, and “HIV AND neurodegeneration” were 

defined and queried for the instances of the human genes/proteins. 

The first query is rather general and covers neurodegenerative effects 

of both viral and non-viral infectious agents (including microbes and 

fungi) whereas the second one retrieves entities, which are involved 

in HIV-associated neurodegeneration. The output for each query was 

a list of human Genes/Proteins named entities extracted from 

PubMed abstracts and ranked based on relative entropy measurement 

in descending order. 315 genes/proteins were retrieved for the first 

query and 143 genes/proteins for the second query. For each entity, 

the retrieved abstracts were manually checked for the correct 

relevance of the entity to the disease context and possible false 
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positives were removed. This led to a reduction of the number of 

genes and proteins to 170 and 88 genes/proteins, respectively. A 

third sub-corpus of abstracts using the keywords “virus AND 

infection” was defined and the results were compared to the human-

HIV interacting proteins from the VirusMINT database [238].	  

	  

7.2.2. Calculation of overlapping probabilities 

When comparing two top ranking gene lists obtained from two 

different queries, the overlapping gene set should be tested for the 

probability of this being a chance event. We used the hypergeometric 

probability approximated by Fisher’s exact test as suggested by Fury 

et al. [239] to calculate the p-values for overlaps between gene lists 

(see Results).   	  

	  

7.2.3. Data acquisition 

In order to check for the relevance of the results, all human proteins 

that interact with HIV proteins were downloaded from the 

VirusMINT database. After removing the viral proteins and 

duplicates, 173 proteins were obtained and normalized on their 

corresponding gene official symbols. Incipient (MCI) and acute 

Alzheimer’s disease (AD) gene expression data were obtained from 

the study of Blalock et al. [240]. All the three datasets (i.e. infected 

human proteins and expressed genes under MCI/AD) were compared 

to the Immunome database [241] and the common signatures 

between these datasets and the Immunome-derived dataset were 

extracted.	  
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7.2.4. Interaction network reconstruction 

We mapped our gene list from the query “HIV AND 

neurodegeneration” onto the brain interactome and obtained a 

network with 85 nodes and 58 edges. The network consists of a 

connected giant component with 37 nodes that bears the maximum 

number of total edges (54 out of 58). In order to build a dementia 

network model specific to human on a relevant and scientific basis, 

an OMIM-based dementia network was reconstructed by extracting 

the following descriptions from the OMIM Morbid Map [242] and 

pooling their corresponding genes into one union list after gene name 

normalization: dementia, Alzheimer, Parkinson, Lewy body, 

Huntington, and Creutzfeldt. These genes were fed into our text-

mining system and only 40 of them were found to have 2 or more 

reference publications in PubMed. We used these 40 genes as “seed 

genes” to reconstruct the protein-protein interaction network in the 

BIANA environment. The BIANA tool retrieves all possible 

interactions among these proteins and one or two levels of other 

neighboring proteins from a variety of databases and creates a 

network model around the specified seed genes. This network 

contains 886 nodes and 1264 edges.   	  

7.3. Results	  

7.3.1. Distinction between infection and neurodegeneration 

Dealing with virus-induced dementia raises the important question 

whether the current knowledge space surrounding AIDS-dementia 
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complex represents genes/proteins involved in HIV pathogenesis or 

the subsequent neurodegeneration. Comparison between the results 

of Q2 and human proteins interacting with HIV during the course of 

viral infection (data from VirusMINT database) showed only 7 

genes/proteins in common. This indicates that our query results are 

relevant to the neurodegeneration rather than the infection process. 

Gene list from Q2 was annotated by MSigDB tool 

(www.broadinstitute.org/msigdb) and it was found that this list is 

significantly enriched for the apoptosis, inflammatory pathways, and 

neurodegenerative diseases (Table 29).  

 

Table 29. Annotation results for the 88 genes obtained 
from the sub-corpus of HIV neurodegeneration 

Geneset Name Description No. of 
genes 

p-value 

Apoptosis pathway 
- 9 

1.52E-
08 

IL-10 pathway The cytokine IL-10 inhibits the 
inflammatory response by macrophages 
via activation of heme oxygenase 1. 6 

2.15E-
08 

Chemical pathway DNA damage promotes Bid cleavage, 
which stimulates mitochondrial 
cytochrome c release and consequent 
caspase activation, resulting in 
apoptosis. 7 

2.83E-
08 

Neurodegenerative 
diseases 

Genes involved in neurodegenerative 
diseases 8 

9.58E-
08 

HSP-27 pathway Hsp27 oligomers have molecular 
chaperone activity and protect heat-
stressed cells against apoptosis. 6 

9.60E-
08 

P53 pathway p53 induces cell cycle arrest or 
apoptosis under conditions of DNA 
damage. 6 

9.60E-
08 

CCR5 pathway CCR5 is a G-protein coupled receptor 
expressed in macrophages that 
recognizes chemokine ligands and is 
targeted by the HIV envelope protein 
GP120. 6 

2.16E-
07 
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HIV-NEF pathway HIV-infected CD4 helper T cells may 
express Fas ligand, which binds to the 
Fas receptors of uninfected cells and 
induces apoptosis. 9 

2.31E-
07 

IL1R pathway The cytokine IL-1 stimulates its 
primary receptor, IL-1R1, which 
induces transcription of inflammation-
related genes such as interferons. 7 

6.01E-
07 

Mitochondria 
pathway 

Pro-apoptotic signaling induces 
mitochondria to release cytochrome c, 
which stimulates Apaf-1 to activate 
caspase 9. 6 

6.03E-
07 

 
	  

7.3.2. Relevance to neurodegeneration and dementia 

Currently there is no clear approach to measuring the contextual 

quality of the genes mentioned in the body of literature. For our 

purpose, we constructed a gene-literature bipartite network (out of 

the results of Q2) in which the genes and PMID of their reference 

publications are connected. The Eigenfactor value for each PMID 

was included as the weight of edges. Eigenfactor is a scoring metrics, 

which ranks scholarly journals according to the local citation 

information as well as considering the entire network of citations. 

Filtering out edges with the Eigenfactor values below 0.1 left a 

network of 45 genes, which are cited in the quality publications 

(Figure 40). These genes were submitted to the MSigDB for pathway 

enrichment analysis; the results indicate a significant enrichment for 

neurodegenerative and apoptotic pathways (Table 30).  
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Figure 40. Gene-literature bipartite graph. Nodes in red and 
blue represent genes and their paper references respectively. A 
connection between the red and blue nodes is made if the gene is 
referenced in the corresponding publication.  

 
Table 30. Pathway enrichment analysis of the 45 genes at 
the core of gene-literature bipartite network 

Geneset Name Description No. of 
genes 

p-value 

Neurodegenerative 
diseases 

Genes involved in 
neurodegenerative diseases 6 4.60E-07 

Chemical pathway DNA damage promotes Bid 
cleavage, which stimulates 
mitochondrial cytochrome c 
release and consequent caspase 
activation, resulting in 
apoptosis. 5 6.71E-07 

Apoptosis pathway Genes involved in apoptosis. 6 9.79E-07 
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Pancreatic cancer Genes involved in pancreatic 
cancer: 7 1.52E-06 

Alzheimer’s disease Genes involved in Alzheimer’s 
disease 5 2.40E-06 

D4GDI pathway D4-GDI inhibits the pro-
apoptotic Rho GTPases and is 
cleaved by caspase-3. 4 2.59E-06 

IL-10 pathway The cytokine IL-10 inhibits the 
inflammatory response by 
macrophages via activation of 
heme oxygenase 1. 4 2.59E-06 

HIV-NEF pathway HIV-infected CD4 helper T 
cells may express Fas ligand, 
which binds to the Fas 
receptors of uninfected cells 
and induces apoptosis. 6 5.84E-06 

HSP-27 pathway Hsp27 oligomers have 
molecular chaperone activity 
and protect heat-stressed cells 
against apoptosis. 4 6.45E-06 

To realize the extent of relevance the viral neurodegeneration might 

have to dementia disorders, we compared the gene lists that we had 

obtained from querying PubMed abstracts for Alzheimer’s dementia 

and Parkinson’s dementia with the gene list from Q2. Both gene-lists 

showed high overlaps with the Q2 results (68.18% and 43%, 

respectively) that did not match by chance (hypergeometric p-

values=5.0090e-13, and 9.7188e-22, respectively). Gene set 

enrichment analysis was performed on these overlapped gene sets for 

pathway annotation and for both overlapping sets similar pathway 

annotations were retrieved that include apoptosis, Alzheimer’s 

disease, and IL1 pathway.	  

7.3.3. Relevance to the inflammation and immune system 

activation 

In the pathway annotation of the 88-gene list obtained from the HIV 

neurodegeneration query, a predominant presence of inflammatory 
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pathway elements was observed with the IL10 pathway as the second 

most significant category. It is being discussed that inflammation is 

the hallmark of CNS disorders and its link to the activation of the 

immune system is established. To investigate the extent of relevance 

between neurodegeneration and the inflammatory induced immune 

response, we first determined which pro- and anti-inflammatory 

cytokines are mentioned in the literature to be active in the brain; 

using two keywords namely, “proinflammatory AND brain” and 

“anti-inflammatory AND brain”, the literature corpora were queried 

in SCAIView for those genes/proteins involved in the brain pro-

/anti-inflammatory processes. Both pro- and anti-inflammatory genes 

in the “brain” were identified by comparing the results of SCAIView 

queries against the Cytokina Database (Table 31). To the best of our 

knowledge, this is the first curated list of inflammatory 

genes/proteins reported in the human brain. 

 

Table 31. The list of brain-expressed pro- and anti-
inflammatory genes collected from the literature 

Pro-inflammatory CCL1, CCL17, CCL2, CCL20,CCL27, 
CCL3, CCL4, CCL5, CCL7, CCL8, 
CD40LG, CSF2, CSF3, CX3CL1, CXCL1, 
CXCL10, CXCL12, CXCL2, CXCL5, 
CXCL9, FASLG, IFNA1, IFNB1, IFNG, 
IL12A, IL15, IL17B, IL18, IL1A, IL1B, IL2, 
IL23A, IL6, IL8, LIF, LTA, OSM, TGFB1, 
TNF, TNFSF12 

Anti-inflammatory CSF3, EPO, IFNB1, IL10, IL11, IL13, IL4, 
TGFB1 
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Then, the MCI and AD expression data was used to see the activity 

range of these genes under disease conditions. After projection of 

expressions onto these inflammatory genes it was observed that none 

of the ‘anti-inflammatory’ genes was found amongst the MCI or AD 

over-expressed genes; however from ‘pro-inflammatory’ genes, 

IFNG and IL18 in mild cognitive impairment, and CXCL2, IL1A, 

IFNG, IL15, and TGFB1 in Alzheimer’s disease were found to 

become upregulated. These results imply that the homeostatic 

balance between pro- and anti-inflammatory pathways might be 

perturbed under neurodegenerative conditions.	  

7.3.4. Pathway-pathway interaction map 

In order to get a vision on the structure of the crosstalking pathways 

involved in the HIV-induced dementia, our gene list from the “HIV 

AND neurodegeneration” query was mapped onto the human protein 

interactome network as described in the Methods section. The giant 

component of the network was subjected to the pathway analysis by 

submitting its constituent genes to the MSigDB database. It is 

observed that the network is enriched for DNA damage pathways, 

apoptotic pathways, p53 pathway and neurodegenerative diseases 

pathways. The confirmation for relevance of the giant component to 

neurodegenerative diseases comes from the significant overlap of 

this component with our OMIM-based dementia network (55.88%, 

hypergeometric p-value= 1.2249e-14).        

Visualization of the interconnections among pathways in the giant 

component was performed in the Cytoscape environment using the 

PNmerger plugin [243]. This plugin annotates the network proteins 
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with the KEGG pathway information, extends the network to the full 

pathway membership and also presents the potential crosstalk 

elements among pathways (Figure 41). Identified pathways and their 

crosstalk partners are summarized in the Supplementary Table S8.     

 

	  
Figure 41. Extended network of the pathway crosstalks for 
HIV-induced neurodegeneration. Nodes in red color represent 
crosstalk proteins.	  

7.4. Discussion 
Accumulating evidence suggests the striking similarities between the 

long-term microbial after-effects on memory loss or cognitive 

decline and characteristic symptoms of AD, which is in favor of the 

“infectious agent” hypothesis [244]. Indeed, the results from a 



Chapter	  7.	  Modeling	  of	  the	  Immune	  Component	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

156	  

randomized clinical trial investigating the effects of antibiotics on 

patients with AD indicated that a combination of two common 

antibiotics could delay the cognitive decline [245].   

In this study we applied our text mining technology to disease 

mechanism identification and pathway-pathway map reconstruction 

for virus-induced dementia with the focus on the HIV-associated 

neurodegeneration. The reason for choosing AIDS-dementia 

complex as the case study was two-fold: it is very well studied 

through extensive literature; and the manifestation of dementia in the 

course of disease is time-dependent.  

Dementia is a syndrome which can be commonly seen in a number 

of different neurological disorders and clinical conditions ranging 

from infectious diseases such as AIDS to neurodegenerative diseases 

like Alzheimer’s and Parkinson’s. Neuronal cell death or 

neurodegeneration is widely observed in all these disorders but the 

exact factors or cofactors that initiate this process are not well 

understood. There have been several hypotheses regarding the 

mechanism of the neurodegeneration in dementia including the 

inflammatory hypothesis of dementia, the oxidative stress 

hypothesis, and the cell cycle hypothesis. However, we show here 

that all these hypotheses capture related parts of the same disease 

mechanism, although none has proved to uncover the causative 

factors upstream the disease mechanism. Moreover, we demonstrate 

that Alzheimer’s and infection signaling pathways are connected in 

proximity to each other, which suggests that infection and dementia 

are probably associated at the molecular level.     
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Our knowledge-based approach suggests that all the above-

mentioned hypotheses describe parts of a unified disease mechanism, 

which is initiated within the cytotoxic arm of the immune system. It 

is then speculated that microglia are activated by an unknown cause 

so that these resident innate immune cells in the brain in turn induce 

pro-inflammatory and oxidative stress pathways [246]. The latter 

pathway leads to DNA damage and consequently cell-cycle arrest 

through p53 and CDKNIA signaling pathways, which stimulates 

apoptosis and nerve cell death [247] (Figure 42).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 42. Schematic order of speculative events in HIV-
induced neurodegeneration. This schema represents a 
hypothetical flow of conceptual causes in ADIS-dementia based on 
accumulated evidence in the literature. 
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It should be noted that this inference is highly speculative and is 

meant to elicit new mechanism-based hypotheses that fundamentally 

build on the infectious agent hypotheses of the AD etiology. 

Moreover, this inference does not explain the cause and initiation of 

AD but it merely builds on the molecular and pathway knowledge to 

guide how AD could potentially be initiated. With the availability of 

more data, it would be possible to test the proposed infection 

hypothesis and its link to AD through, e.g. systematic collection of 

external evidence (e.g. from GWAS studies) in the future.  

As shown in Figure 41, the pathway interaction map is enriched by 

the immune response (cytokine-cytokine receptor interaction, 

complementary cascade, leukocyte migration, antigen processing and 

presentation, pathogenic E. coli infection pathway, Toll-like receptor 

signaling pathway, and Natural killer cell mediated cytotoxicity) and 

the DNA-damage apoptotic response (MAPK signaling pathway, cell 

cycle, different types of cancer pathways, and apoptosis). However, 

our approach identified another over-represented, yet hidden 

pathway in the literature known as Kynurenine pathway, which is not 

annotated in any of popular pathway databases. The kynurenine 

pathway is characterized for involvement in neuroprotection and 

regulation of the immune tolerance in human neurons via catabolism 

of L-tryptophan [248]. We found one study that shows decreased 

levels of kynurenic acid in serum and red blood cells of Alzheimer’s 

disease patients [249]. Another earlier study concludes that 

activation of immune system increases the levels of kynurenines in 

the CSF of HIV-infected patients with neurological disorder [250]. 

Therefore, it will be encouraging to study the role and crosstalks of 
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the Kynurenine pathway in the context of neurodegenerative 

diseases.     

One important point that must be taken into consideration is the 

phenomenon of time-dependency in all dementia-spectrum disorders. 

The cumulative evidence indicates that the neurotoxicity mediated 

by overactivated microglia is of a ‘progressive’ nature, so that such 

microglial cells remain overactive for years and continuous yet 

cumulative loss of neurons occurs over time [251],[252],[253],[254]. 

Similarly, virus-associated dementia appears in the late phases of 

infection after many years latency. We hypothesize that an unknown 

mechanism instigates microglia to secrete pro-inflammatory 

elements constitutively, which leads to disruption of the existing 

feedback loops between pro- and anti-inflammatory pathways.  

Future investigations addressing this emerging hypothesis will be 

critical for the understanding of the causative agent or agents of 

dementia-spectrum diseases and the design of effective anti-dementia 

therapeutics.	  

7.5. Conclusion 
Since our text mining and knowledge extraction system outputs a list 

of genes, which are ranked according to their mutual information 

content, the gene list analysis can be treated similar to the gene lists 

obtained from the expression studies. The gene list obtained from 

PubMed abstracts in this way represents two parts of the knowledge 

domain: the well-known intensively-researched part and the less-

established recently-proposed part. Hereby, we used the former part 

as the backbone or layout of our framework to investigate the 
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relationships about the latter part. In this manner, disease-causing 

mechanisms can be studied in the context of pathway interaction 

networks, which may help generate novel hypotheses and identify 

those drug targets that are more likely to be involved in the causative 

effects of the disease. 

While we focused on a case study of HIV-associated 

neurodegeneration in this work, our approach can be applied to 

virtually all kinds of disease. Building integrative models such as the 

one studied here helps researchers bring dispersed pieces of 

knowledge together and get a holistic picture of the problem under 

study. Clearly, elucidating the disease-causing mechanism for a 

certain phenotype or clinical outcome, which is manifested over a 

range of diseases that share similar clinical symptoms, could guide 

researchers to the causative factors underlying the core of diseases in 

question. 
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CHAPTER 8. Modeling of the 
Neuroendocrine Component associated to 
Alzheimer’s Disease 
	  
As explained in Chapter 6, the exploratory data analysis indicated 

that hormone-signaling pathways could be involved in the pathology 

of AD. In this chapter, a first attempt towards modeling the 

neuroendocrine component of the AD mechanism has been 

described, which has been also published in the journal of 

Translational Medicine [255].        

8.1. Background	  
The clinical hallmark of dementia-spectrum diseases including 

Alzheimer’s disease (AD) and frontotemporal dementia is the 

gradual memory loss and impairment of other cognitive functions, 

which has been attributed to the aggregation of amyloid fibrils, a 

process known as amyloidogenesis [256],[257],[258]. However, 

recent findings indicate that many peptide and protein hormones are 

stored in secretory granules in the form of functional amyloid fibrils 

and such an amyloid-like structure is necessary for their natural 

functioning as hormones[259].  

Moreover, observational studies on the beneficial effect of estrogen-

based hormone therapy on cognitive impairment have also reported 

conflicting results [260]. Indeed, gender-specific risk profiles 

observed for dementia in elderly men and women have drawn 
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attention to the impact that sex hormones, as risk factors, may have 

on progression from mild cognitive impairment (MCI) to dementia 

[261],[262]. The higher risk of AD and dementia incidence in 

women has been linked to high serum levels of endogenous estrogen 

[263] and it has been shown to be influenced by hormone 

replacement therapy [264],[265],[266],[267],[268], although a better 

cognitive performance after current hormone therapy was dependent 

on the duration and type of treatment [269].   

On the other hand, both basic and clinical research findings have 

consistently shown influence of a range of hormones on some 

cognitive functions in AD. For example, high levels of leptin in 

blood have been associated to a lower risk of AD [270] and leptin 

replacement therapy has been suggested as a novel therapeutic 

strategy for AD [271]. The loss of melatonin in cerebrospinal fluid 

has been observed in patients with dementia of Alzheimer’s 

suggesting that it may play a role in the pathogenesis of AD 

[272],[273],[274],[275]. A low thyroid hormone level has been also 

associated with AD [276],[277]; the administration of thyroid 

hormone in AD model mice prevented cognitive deficit and 

improved the neurological function [278]. In Alzheimer’s disease, a 

greater cognitive impairment has been found to be associated with 

lower CSF concentrations of corticotropin-releasing hormone 

[279],[280]. There is evidence that growth hormone (GH) declines 

with advancing age or in Alzheimer’s disease [281],[282],[283] and 

that daily treatment of healthy older adults with GH improves the 

cognition independent of gender [284]. A recent study also shows 

that GH can boost memory retention in rats [285].  
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There are several lines of evidence that point to the role of insulin 

signaling in AD; e.g. insulin levels in the CSF of AD patients is 

lower than healthy controls [286],[287], insulin receptor signaling is 

compromised in AD neurons [288], and insulin resistance is 

associated with reductions in cerebral glucose metabolic rate, which 

is a risk factor for developing AD dementia [289]. Interestingly, 

epidemiological findings indicate that type II diabetes mellitus is 

linked to developing and exacerbating AD pathology [290],[291] so 

that Alzheimer’s has been even proposed by some authors to be ‘type 

III diabetes’ [292],[293]. Similar neuroendocrine disturbances have 

been reported for Huntington’s disease under which the thyrotropic, 

somatotropic and gonadotropic axes are altered [294].  

All the above-mentioned evidence, including inconsistent results and 

disparate findings, suggests that there is a gap between the 

knowledge obtained from basic research and findings of clinical 

investigations on the association between hormones and cognition. 

Context-specific networks of molecular interactions provide a 

relevant framework for supporting translation of basic knowledge 

into clinically relevant information through integrative modeling of 

disease mechanism. Current Alzheimer’s disease maps, including the 

recent AlzPathway model [295], lack the focused representation of 

hormone signaling pathways. Therefore, this work describes the first 

attempt to characterize the hormone/hormone-receptor interactions 

relevant to dementia disorders under a unified framework of the 

interconnected hormonal components.	  
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8.2. Methods	  
Figure 43 summarizes the overall strategy used for this study. It 

demonstrates a top-down integrative (knowledge- and data-driven) 

approach to modeling the hormone protein interaction network. 

	  

	  
Figure 43. Schematic representation of the methodology 
used for construction and analysis of dementia-related 
hormonal network. Details on literature mining and model 
construction and analysis have been provided below.  

	  

8.2.1. Literature mining 

Our retrieval system was composed of two software components: the 

dictionary-based text-mining tool, ProMiner, and the semantic search 
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engine, SCAIView. PubMed abstracts were searched for all instances 

of genes and proteins, which are mentioned in the context of 

‘dementia’ as keyword (accessed as of 08.02.2011). The retrieved 

entities were manually checked for their true relevance to both 

hormones and dementia in the context of their abstracts.	  

8.2.2. Network reconstruction and annotation 

The results from text-mining were cross-checked with the contents of 

the EndoNet database [296] and the confirmed entities were used as 

seed proteins in the BIANA tool for reconstruction of the dementia-

related hormonal network (DHN) at level 2. The initial protein-

protein interaction network was constructed around the seed set. In 

order to reduce the dimensionality and increase the confidence, 

interactions that are only supported by the yeast two-hybrid method 

were removed and those interactions that are independently 

confirmed by two or more experimental methods were maintained. 

The network was visualized and statistically analyzed in the 

Cytoscape and Gephi environments [297]. G-lay clustering algorithm 

was used for modularity analysis [298].	  

	  

8.2.3. Pathways used for the recovery test 

For the pathway recovery test, we obtained the following expert-

curated hormonal pathways, used them as gold standard, and mapped 

them onto the network: growth hormone pathway [299], insulin 

signaling pathway [299], leptin signaling pathway [300], thyroid 

hormone signaling [301], regulation of the estrogen receptor pathway 
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[299], corticotropin-releasing hormone pathway [302], and 

Melatonin signaling pathway [303].	  

8.2.4. Statistical analysis 

Gene set enrichment analysis was performed using the Molecular 

Signature Database (MSigDB). The DAVID functional annotation 

tool was used for annotation of differentially expressed genes in the 

network. 

	  

8.2.5. Translational validation 

For establishing the clinical relevance of the core DHN model, 

knockout mouse phenotypes were retrieved from MGI database 

(http://www.informatics.jax.org/). For retrieval and extraction of 

putative biomarker information from the literature, the biomarker 

terminology developed and published by our team [204] was used. 

Pathway membership for each target was obtained from KEGG 

database (http://www.genome.jp/kegg/) and their association to 

disease was determined using genetic association database 

(geneticassociationdb.nih.gov). Information on brain tissue 

specificity of the targets was obtained from Tissue Distribution 

Database (genome.dkfz-heidelberg.de/menu/tissue_db/) but the 

higher resolution information at the cell type level was retrieved 

from the literaure using SCAIView search engine.  DrugBank was 

searched for the proteins of the core DHN as targets of approved 

drugs (http://www.drugbank.ca/). Then PubMed was searched for 

supporting evidence of positive off-target effects of non-dementia 
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drugs that showed potential implication of those drug-targets in 

improvement of dementia.	  

8.3. Results 

8.3.1. Enrichment of dementia-related proteins for hormone 

signaling activity  

Mining the knowledge space of the literature for proteins that are 

shown to play a role in dementia resulted in a list of 1960 entities, 

which were ranked based on their mutual information (see Methods). 

Due to the fact that high-dimensional information returned by 

retrieval systems inherits noise, the next step was to observe whether 

signals of hormonal proteins could be detected in this large list of 

entities. The gene set enrichment analysis (GSEA) of these proteins 

revealed under-represented signatures of hormone activities in 

pathway analysis as well as implicit but statistically significant 

presence of hormone-related regulatory gene sets in GO biological 

process annotations. However, at the level of GO molecular function, 

these signatures showed significant over-representation for hormone 

activity, neuropeptide hormones and hormone signaling pathways 

(Table 32). 
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Table 32. Analysis of the retrieved data based on 
enrichment for gene ontology, category of molecular 
function. The top five annotations indicate a significant enrichment 
of the results for hormone activity.  

Gene set name Description of annotation P-value 

Amine receptor activity 

GO:0008227: Combining with a 
biogenic amine to initiate a change in 
cell activity. 3.61E-05 

Hormone activity 

GO:0005179: The action characteristic 
of a hormone, any substance formed in 
very small amounts in one specialized 
organ or group of cells and carried 
(sometimes in the bloodstream) to 
another organ or group of cells in the 
same organism, upon which it has a 
specific regulatory action.  1.46E-04 

Copper ion binding 
GO:0005507: Interacting selectively 
with copper (Cu) ions. 3.40E-03 

Neuropeptide hormone 
activity 

GO:0005184: The action characteristic 
of a neuropeptide hormone, any peptide 
hormone that acts in the central nervous 
system. A neuropeptide is any of several 
types of molecules found in brain tissue, 
composed of short chains of amino 
acids.  6.55E-03 

Serotonin receptor 
activity 

GO:0004993: Combining with the 
biogenic amine serotonin, a 
neurotransmitter and hormone found in 
vertebrates, invertebrates and plants, to 
initiate a change in cell activity. 1.40E-02 

 
The results of this observation led us to raise the hypothesis that an 

endocrine interaction network may exist that substantially 

contributes to the pathology of the dementia-spectrum diseases. To 

investigate this hypothesis, we used text-mining and knowledge 

discovery technologies to narrow down our search for retrieval and 

extraction of instances of hormone proteins and their receptors, 
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which are cited in the literature (Medline abstracts) in relation to 

dementia. The focused search resulted in retrieval of 1329 

documents and 453 protein entities extracted from them. Finally, 89 

hormone/hormone-receptor entities were confirmed to play a role as 

hormone/hormone-receptor after crosschecking the retrieved entities 

with the contents of the EndoNet database as gold standard (see 

Methods). We use this initial set of proteins (seed set) as prior 

knowledge to build upon our integrative model.	  

8.3.2. Dementia-related hormone network (DHN) and its 

biological relevance 

The initial protein-protein interaction network comprises of 6966 

nodes (proteins) and 85997 edges (interactions) but after filtering the 

number of edges in DHN decreased to 83998. 6515 nodes form a 

giant connected component and the rest of 451 nodes are singletons 

without any connection; thus, for simplicity, we only consider the 

giant component for further analyses. Statistical analysis of the giant 

component of DHN shows that its node degree distribution could be 

fitted in the power law of the form y=1092.8x-1.17 with an acceptable 

goodness of fit (R-squared value=0.856, Correlation=0.996). This 

indicates that the network is of biological nature.  

The network clustering coefficient of 0.315 and immense distribution 

of the clustering coefficients around the nodes with more than 100 

neighbors is suggestive of a modular organization consisting of 

several interconnected functional modules. The modularity analysis 

of the network revealed four major modules whose functional 

annotation using GSEA supports the notion of modular organization 
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underlying the network (Figure 44): the largest module with 2037 

nodes (Figure 44A) is significantly enriched for regulation of 

transcription, the second module with 1540 interconnected proteins 

(Figure 44B) is significantly involved in hormone and receptor 

signaling, the third module with 1420 proteins (Figure 44C) is 

significantly annotated for GPCR signaling, and finally the fourth 

module containing 1312 nodes (Figure 44D) is enriched for protein 

translation and induction of apoptosis. These findings are consistent 

with the fact that hormone peptides are major ligands for GPCRs and 

through cellular signaling cascades, they regulate the transcription of 

target genes in the nucleus.	  

	  
Figure 44. An overview of modules detected in DHN. 19 
modules were detected in DHN out of which 4 modules represent ca. 
97% of the network. (A) The largest module is enriched for 
regulation of transcription. (B) The second module with 1540 
interconnected proteins representing hormone and hormone receptor 
signaling pathways. (C) The third module with 1420 proteins 
enriched for GPCR signaling. (D) The fourth module containing 
1312 nodes is enriched for protein translation and induction of 
apoptosis. 
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8.3.3. Evaluation of DHN by pathway recovery 

Both the biological relevance and the modularity were further 

evaluated by mapping the Alzheimer’s disease pathway from the 

KEGG database as well as hormone signaling pathways from other 

resources (see Methods). Mapping the Alzheimer’s disease pathway 

onto the network resulted in the recovery of all the proteins and their 

corresponding interactions in the pathway except for APH1A.  

Regarding hormone signaling pathways, the number of proteins 

involved in the actual signaling and the number of mapped proteins 

for each signaling pathway is shown in Table 33. For two pathways 

with 100% node recovery, i.e. insulin signaling pathway and growth 

hormone pathway, manual extraction of edges (interactions) from 

BioCarta and mapping them onto the network yielded 76% edge 

recovery (16 out of 21) for the growth hormone pathway and 90% 

edge recovery (19 out of 21) for the insulin signaling pathway.  

 
Table 33. List of dementia-related hormone signaling 
pathways that were recovered fully or partially in DHN 

Hormone 
signaling pathway 

No. of proteins 
in the original 
pathway 

No. of proteins present in 
the hormone-dementia 
network 

Estrogen receptor 
pathway 

30 25 (83% recovery) 

Insulin signaling 
pathway 

21 21 (100% recovery) 

Growth hormone 
pathway 

27 27 (100% recovery) 
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Leptin signaling 
pathway 

21 17 (80% recovery) 

Thyroid signaling 
pathway 

11 8 (72% recovery) 

Melatonin 
signaling pathway 

16 16 (100% recovery) 

Corticotropin-
releasing hormone 
signaling pathway 

17 16 (94% recovery) 

 
We also surveyed our network for the presence of hormone receptors 

by comparing them to known hormone receptors of genomic 

neuroendocrine hormones and were able to identify them for 

majority of these hormones. 

	  

8.3.4. Hormonal convergence in DHN	  

After the completion of this individual pathway recovery test, we 

aggregated all the elements of these seven pathways and mapped 

them onto the giant component of DHN. The aim was to detect the 

core of DHN where the majority of hormone crosstalks occur. A 

subnetwork of 73 nodes and 133 edges was formed, representing the 

converged hormonal pathway interactions. Interestingly, 62 of these 

hormone peptides (ca. 86%) are densely interconnected and form the 

core of DHN. Besides, their interactions appeared to occur in 

different regions of the normal brain after adding the context of brain 

region annotations to each edge using the brain interactome (Figure 

45).  
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Figure 45. Elements of the seven hormonal signaling 
pathways form the core connected component of the brain 
interactome (normal state with all possible interactions). 
Pathway memberships are indicated by color codings; Green: 
estrogen signaling pathway; Red: insulin signaling pathway; Light 
blue: leptin signaling pathway; Dark blue: melatonin signaling 
pathway; Gray: thyroid signaling pathway; Brown: corticotropin-
releasing hormone pathway. Yellow color indicates common 
membership to two or more pathways and also embeds the elements 
of the growth hormone signaling pathway. 

 
Analysis of these annotations shows that the majority of the 

hormonal interactions occur in prefrontal cortex (ca. 93%), 

hypothalamus (ca. 92%) and cingulate cortex (ca. 90%), 

respectively. The finding that interactions of the converged network 

mostly occur in prefrontal cortex and cingulate cortex is consistent 
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with the neuroanatomical distribution of neurofibrillary tangles and 

plaques in the cerebral cortex of AD patients [304]. Moreover, the 

relevance of this finding to clinical attributes of the advanced AD 

pathology has been shown in several studies (Prefrontal cortex: 

[305],[306]; Cingulate cortex: [307]; Hypothalamus: [308],[309]. 

For example, it has been shown that prefrontal cortex, an important 

component for working memory, is the site of hormonal effects on 

cognition including estrogen [310], insulin [311], growth hormone 

[312], and thyroid hormone [313]. Thus, collective dysregulation of 

these pathways in prefrontal cortex of AD patients can lead to 

worsened memory impairment.  

As the pathway-wise color codings in the converged hormonal 

network in Figure 45 indicates, a strong convergence and close 

interplay of hormone signals can be observed at the molecular level 

of the brain interactome. The yellow nodes show the common 

membership of proteins in two or more of these pathways and are 

significantly enriched for Neurotrophin/Trk signaling (GSEA p-

value: 0e0, 14 genes in overlap), through which a variety of signaling 

cascades are connected and signals of neuronal development, 

survival as well as additional higher-order signals such as learning 

and memory are transmitted. The extended portion of estrogen 

signaling pathway in the core interactome is also noted.	  

8.3.5. Linking hormone-dementia hypothesis to mechanistic 

evidence 

Apart from above in silico analyses, we provide more solid support 

for the hormone-dementia hypothesis from an Alzheimer’s reference 
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expression data set [314], which has been processed and used for 

identification of a perturbed protein hub network in Alzheimer’s 

disease by Liang et al. (2012) [315]. The Alzheimer’s reference data 

set provides carefully phenotyped expression data set for six brain 

regions from late-onset AD patients (GSE5281) and lends support to 

the hypothesis that most of the differentially expressed genes in these 

six brain regions represent hub proteins in the hub network specific 

to Alzheimer’s disease. We compared the core DHN with the 

Alzheimer’s hub network derived from Alzheimer’s reference 

expression data set and found 18 hormone signaling proteins in the 

core DHN that overlap with the hub genes differentially expressed in 

the hub network of Alzheimer’s disease (Table 34). As table 34 

indicates, all hormone signaling pathways are perturbed in different 

brain regions, with the largest overlap between insulin and growth 

hormone signaling pathways. Among these proteins, ESR1 and IRS1 

exclusively represent two hormone signaling pathways, namely 

estrogen signaling pathway and insulin signaling pathway. 
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Table 34. Putative AD biomarkers in the core DHN 
supported by gene expression data and pathway 
membership. Red color indicates upregulation and green 
indicates downregulation of the corresponding genes, which 
are expressed in particular brain regions. Membership of those 
genes to their corresponding pathways are marked blue.   

 

8.3.6. Translational validation of the core DHN 

To our knowledge, except for hormone therapy with estrogen, there 

is no clinical trial describing the effect of other hormones on 

cognition improvement. Hence, in the absence of clinical trials, we 

propose a strategy for translational validation of the core DHN by 

showing the clinical relevance of the core DHN to dementia in the 

first step and then linking molecular signatures - through mouse 

model phenotypes - to their corresponding clinical manifestations. 

The clinical relevance of the core DHN to dementia can be 

established through biomarker-guided analysis, in which information 
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of putative molecular indicators of dementia is retrieved and 

extracted from the literature and further become enriched with 

pathway membership, disease association and tissue/cell type 

specificity data (Table 35). Of the proteins in the core DHN, four 

were found in the literature to be reported as potential biomarkers 

that show measurable activity under Alzheimer’s condition. These 

four proteins represent four different hormonal signaling pathways, 

namely growth hormone pathway (MAPK3), corticotropin-releasing 

hormone pathway (NOS1), melatonin signaling pathway (CREB1) 

and insulin pathway (JUN), whose measurable activities under AD 

condition suggest their mechanistic involvement in the pathology of 

AD dementia. 

 
Table 35. Clinical relevance of the core DHN to dementia 
through biomarker-guided analysis 

Target 
candidate 

Pathway 
membership 

Disease 
association 

Biomarker 
type 

Brain 
tissue 
specificity  

Cell-type 
specificity  

MAPK3 Alzheimer’s 
disease, Prion 
disease, Type 
II diabetes 
mellitus, 
Insulin 
signaling 
pathway, 
Long-term 
potentiation 

Autism CSF 
increased 
levels AD 
(PMID: 
22145083, 
19625747), 
Phosphorylati
on (PMID: 
19233276, 
16920298, 
17612901), 
Alterations in 
lymphoblasts 
of AD 
patients 
(PMID: 
19158936) 

Left 
ventricle, 
Right 
ventricle, 
Brain stem 

Microglia, 

Astrocytes, 

Neurons 
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NOS1 Alzheimer's 
disease, Long-
term 
depression, 
Calcium 
signaling 
pathway 

Parkinson's 
disease, 
Alzheimer's 
disease, 
Diabetes 
Mellitus 
type II 

Nitric oxide 
overproductio
n  (PMID: 
20804853), 
nNOS 
signaling 
initiated in 
interneurons 
(PMID: 
16758165), 
Increased 
expression of 
nNOS 
isoforms in 
astrocytes 
(PMID: 
12384247) 

Substantia 
nigra, 
Forebrain, 
cerebral 
white 
matter, 
Limbic 
system 

Astrocytes, 

Neurons 

CREB1 Huntington's 
disease, 
Cholinergic 
synapse 

Alzheimer's 
disease 

Impaired 
CREB 
phosphorylati
on 
(PMID:22119
240) 

Substantia 
nigra, Brain 
stem, Sub-
commissura
l organ, 
Brain 
ventricle, 
Cerebral 
gray matter, 
Cerebral 
white 
matter, 
Forebrain, 
limbic 
system 

Hippocamp
al neurons, 

Dendate 
gyrus 

JUN GnRH 
signaling 
pathway, 
Neurotrophin 
signaling 
pathway, 
MAPK 
signaling 
pathway 

Cognitive 
performance 

Prolonged 
expression of 
c-Jun 
(PMID:87744
39), Increased 
immuno-
reactivity 
(PMID:83139
43) 

Sub-
commissura
l organ, 
Brain 
ventricle, 
Cerebral 
gray and 
white 
matter 

Neurons, 
Microglia, 
Substantia 
nigra 

 

        
Next, we sought to investigate the translational value of DHN by 

linking hormone proteins in DHN to their corresponding knockout 
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mouse phenotypes. Table 36 summarizes 19 knockout mouse models 

representing 6 hormonal signaling pathways with phenotypes related 

to the nervous system. It also includes the ratio of knockout studies 

reporting an effect on the nervous system to studies reporting no 

effect on the nervous system.   

 
Table 36. Knockout mouse phenotypes observed for 
several proteins in the core DHN model 

Name Mutation 
category 

Observed effects on the 
nervous system 

Ratio of KO 
studies with CNS 
phenotypes to 
studies without 
CNS phenotypes Estrogen signaling 

Esr1tm1Ksk Targeted 
(knock-out) 

abnormal pituitary gland 
physiology    
abnormal hypothalamus 
morphology  
abnormal innervation 

4:8 (50%) 

Ncor2tm1Kjep Targeted 
(knock-out) 

abnormal cerebral cortex 
morphology  
abnormal neuron 
differentiation 

1:0 (100%) 

Hdac2tm1.2Rdp Targeted 
(knock-out) 

abnormal hippocampus 
CA1 region morphology 
abnormal dentate gyrus 
morphology 
abnormal hippocampus 
pyramidal cell 
morphology 
enhanced long term 
potentiation 

1:3 (34%) 

Ccnd1tm1Wbg Targeted 
(knock-out) 

absent Purkinje cell layer
  abnormal 
cerebellar granule layer
     
small cerebellum 

1:3 (34%) 

Crebbptm1Sis Targeted 
(knock-out) 

abnormal forebrain 
morphology 

3:4 (75%) 

Insulin signaling  
Juntm1Wag Targeted 

(knock-out) 
abnormal forebrain 
morphology 

1:2 (50%) 

Hras1tm1Grnt Targeted reduced long term 1:3 (34%) 
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(knock-out) potentiation 
Csnk2a1 Targeted 

(knock-out) 
abnormal telencephalon 
development 

1:2 (50%) 

Mapk3tm1Gpg Targeted 
(knock-out) 

reduced long term 
potentiation 

2:2 (100%) 

Leptin signaling pathway 
Leprtm1.2Chua Targeted 

(knock-out) 
abnormal inhibitory 
postsynaptic currents 

1:4 (25%) 

Stat3tm1Aki Targeted 
(knock-out) 

abnormal motor neuron 
morphology  
   
abnormal neuron 
physiology 

1:6 (17%) 

Hif1atm1.1Stom Targeted 
(knock-out) 

abnormal cerebrum 
morphology 
abnormal cerebral cortex 
morphology   
loss of cortex neurons  
  
abnormal occipital lobe 
morphology  
  
abnormal temporal lobe 
morphology   
loss of hippocampal 
neurons 

4:7 (57%) 

Thyroid signaling pathway 
Rxrbtm1Rev Targeted 

(knock-out) 
abnormal excitatory 
postsynaptic potential  
reduced long term 
potentiation  
absent long term 
depression 

2:3 (67%) 

Corticotropin-releasing pathway 
Gnaqtm1Soff Targeted 

(knock-out) 
abnormal glutamate-
mediated receptor currents 
absent long term 
depression 

1:2 (50%) 

Braftm1.1Sva Targeted 
(knock-out) 

increased neuron apoptosis
   
     
abnormal innervation  
    
     
thin cerebral cortex 

3:3 (100%) 

Nos1tm1Plh Targeted 
(knock-out) 

abnormal brain wave 
pattern    
   
abnormal long term 
potentiation  

3:4 (75%) 
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reduced long term 
potentiation  
   
absent long term 
depression    
   
decreased synaptic 
glutamate release  
   
abnormal peripheral 
nervous system 
regeneration  

Melatonin signaling pathway 
Gnai1tm1Drs Targeted 

(knock-out) 
abnormal long term 
potentiation 

1:1 (100%) 

Plcb1tm1Hssh Targeted 
(knock-out) 

loss of hippocampal 
neurons 

1:1 (100%) 

Creb1tm1Gsc Targeted 
(knock-out) 

abnormal CNS synaptic 
transmission  
reduced long term 
potentiation 

1:2 (50%) 

 

 
To establish the bridge between the observed mouse phenotypes and 

the clinical disease manifestation in human, we propose the novel 

concept of “mechanism discovery through serendipitous off-target 

effects” based on the secondary positive effect of approved drugs 

that leads to unexpected and serendipitous clinical observations. 

Many approved drugs that are routinely used for treatment of human 

diseases lead to manifestation of so-called ‘hidden phenotypes’ due 

to binding to unknown targets [316]. The revelation of hidden 

phenotypes points to the fact that off-target effects sometimes result 

in positive effects through novel mechanisms of action. The most 

prominent example is the positive effect of Sildenafil on erectile 

dysfunction while the drug had been originally developed against 

angina.   
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Here we have collected a number of drugs with reported 

serendipitous effects on cognition that target several proteins in the 

core DHN (Table 37). Interestingly, all the off-targets of these drugs, 

when compared to the knockouts in Table 36, correspond to a 

nervous system phenotype in mice. Landscape illustration of the off-

target effects in the core DHN model in Figure 46 shows that 

modulation of the estrogen signaling pathway by four drugs was 

more likely to lead to the serendipitous off-target effect on dementia 

and consequently, to improved cognitive functions observed in 

patients treated with these drugs.  

 
Table 37. Drugs with serendipitous off-target effects on 
cognition and memory 

Drug 
name 

Main 
indicati
on 

Positive side 
effect on 
cognition 
and memory 

Study 
subjects/ 
design 

Supporti
ng 
evidence 
(PMID) 

Target 
protein 
in core 
DHN 

Bexarotene 
(Targretin) 

Skin 
cancer 

Rapid 
reversal of 
cognition, 
social and 
olfactory 
deficits 

Mouse model 
of AD 

22323736 RXRA 
RXRB 

Tamoxifen Breast 
cancer 

Higher level 
of 
independence 
in activities 
of daily life 
and decision 
making; 
relationship 
of tamoxifen 
with a lower 
prevalence of 
AD 

Cross-
sectional study 
of women 
receiving 
tamoxifen 

11005221 ESR1 

Raloxifene Breast 
cancer 

Reduced risk 
of cognitive 
impairment in 

The Multiple 
Outcomes of 
Raloxifene 

15800139 ESR1 
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postmenopau
sal women 

Evaluation 
randomized, 
placebo-
controlled trial 
among 
postmenopaus
al women with 
osteoporosis 

Vorinostat Cutaneo
us T cell 
lympho
ma (skin 
cancer) 

Complete 
restoration of 
contextual 
memory 

Mutant 
APPswe/PS1d
E9 mice 

20010553 HDAC2 
HDAC3 

Lovastatin Hyperli
pid-
emia 

Reduction of 
Abeta 
formation and 
slowing the 
progression 
of AD 

Double-blind 
randomized 
study on 
human 
subjects  

11900994 HDAC2 

Resverat-
rol 

Aging Promoting 
clearance of 
Abeta 
peptides 

Various cell 
lines  

16162502 CSNK2
A1 

Sorafenib Renal 
cell 
carcino
ma 

Reversal of 
memory 
impairment 

Transgenic 
APPswe 
mouse model 

20201822 BRAF 

Naloxone Opioid 
overdos
e 

Improvement 
of learning 
and memory 
through 
enhancement 
of long-term 
potentiation 

Aged rats with 
declined 
memory 

14670637 
15805661 

CREB1 
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Figure 46. Schematic off-target landscape of 8 non-
dementia drugs in the core DHN model. This enriched model 
is a proof-of-concept demonstrator for the mechanistic relevance of 
hormone signaling pathways to pathology of dementia. 

To enlighten the usability of the DHN model, we performed a more 

general analysis by systematically searching for non-dementia drugs 

with targets of the core DHN model and retrieving published studies 

that support the positive, negative or neutral effect of those drugs on 

cognition or memory or learning. This analysis demonstrated that of 

62 proteins in the core DHN model, 21 (ca. 33%) have been already 

targeted by at least one drug out of which 18 drugs targeting 13 

proteins have shown positive effect, 3 drugs targeting 1 protein have 
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demonstrated negative effect, and 39 drugs targeting 18 proteins 

have not been investigated in relation to cognitive functions or have 

not been reported in the literature to have any observed effect on 

dementia. 21 proteins (ca. 33%) have been targeted by experimental 

compounds and 20 proteins (ca. 32%) have not been targeted by any 

drug or compound. These findings imply that hormone signaling 

pathways present a promising target space for drug discovery in the 

area of neurodegenerative brain disorders.	  

8.4. Discussion 
Integrative modeling approaches provide a suitable medium for 

fusion of complementary data derived from literature and 

experiments. Given the fact that molecular mechanism of disease 

risk factors is often unclear and the exact mode of action of most 

approved drugs is unknown in most cases, such models can be used 

to interpret disease mechanism and to predict drug mode of action. In 

particular, an integrative model allows for inference of crosstalks 

among components of the system, guidance of analysis to the core 

pathological pathways, and generation of further hypotheses on how 

risk factors or disease-modifying treatments at molecular level lead 

to manifestation of positive or negative clinical effects. Accordingly, 

our in silico approach to modeling hormone signaling pathways that 

underlie dementia pathology provided several novel insights beyond 

what is already known about hormone signaling pathways in 

dementia, as follows.  

The growing number of findings on the role of hormone signaling 

pathways in regulation of cognition and memory raises an immediate 
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question: how these bits and pieces of accumulating knowledge are 

being used to explain the contribution of hormones to improvement 

or exacerbation of dementia? The dementia-related hormonal 

network, presented in this paper, provided a first unified picture of 

the hormonal component underlying cognitive impairment. 

Convergence of genomic hormonal pathways in the DHN model 

uncovered tight molecular interconnections and crosstalks among 

hormone signaling pathways and regulatory pathways of neural 

growth, survival and differentiation. For instance, the observed 

convergence of estrogen and neurotrophin signaling pathways at the 

core of DHN has been shown to regulate an array of cytoskeletal and 

growth-associated genes in cerebral cortex, including tau 

microtubule associated protein, MAPT [317]. The implication of 

such hormone signals in the pathology of dementia is supported by 

the evidence that phosphorylation of MAPT, which leads to 

neurofibrillary tangle formation and ultimately neurodegeneration, is 

regulated by the signaling effects of insulin and estradiol [318],[319]. 

Similarly, the regulatory influence of thyroid hormone, melatonin, 

and corticotropin-releasing factors on hippocampal tau 

phosphorylation has been documented in the literature 

[320],[321],[322].  

The DHN model could guide the mechanism discovery analysis to 

those signaling pathways that constitute the core pathological 

processes. The modularity detected in the network implies that 

hormone receptors and hormone signals in concert with transcription 

factors may play a significant part in the disease mechanism. The 

molecular interconnection of insulin pathway to dementia pathology 
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- revealed by the DHN model – may provide a mechanistic 

explanation for the previous epidemiological studies on the 

contribution of diabetes mellitus and insulin resistance as risk factors 

to exacerbation of dementia (e.g. [323],[324],[325]). For instance, 

very recently, a 9-year prospective study on 3069 elderly adults 

without dementia demonstrated that patients who suffered diabetes 

had significantly worse cognitive decline in comparison with those 

who did not have the disease, suggesting the contribution of diabetes 

mellitus severity to accelerated cognitive impairment [326]. An 

interesting observation in our model is the co-occurrence of diabetes-

related proteins in the convergent core of DHN. Indeed, three 

members of this subnetwork (i.e. MAPK1, INSR, SOCS3) belong to 

the Type II diabetes mellitus pathway, which fall into the bigger 

insulin signaling pathway together with SHC1 and ELK1. As was 

shown by pathway recovery analysis, the insulin signaling pathway 

is present in the network with the highest number of nodes and edges 

amongst other signaling pathways. The presence of 

MAPK1/ELK1/CREBBP axis in the core subnetwork and its direct 

crosstalk to the insulin pathway is consistent with experimental 

observations that link insulin signaling and diabetes risk to the 

regulation of learning and formation of long-term memory 

[327],[328],[329].  

We showed that the DHN model could have more valuable 

implications beyond a sole portrait of networked signaling pathways 

by enabling high-resolution analysis of core molecular events. This 

was achieved through enhancement of the DHN model with 

knockout phenotype data and drug-target information. Genetically 
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engineered mouse models play an instrumental role in studying 

disease mechanism and translating preclinical studies to the clinic 

[330]. Thus, the knockout phenotypes are good candidates for 

establishing the link between the molecular mechanism and the 

disease clinical manifestation. One clear observation from knockout 

phenotypes is the prominent involvement of all hormone signaling 

pathways in long term potentiation (LTP) beside other biological 

processes. It is well known that long term potentiation of synaptic 

transmission substantially contributes to memory formation [331] 

and that LTP inhibitors also block memory and learning [332]. 

Hence, it can be inferred from the model that probably perturbation 

in hormone signaling pathways may affect LTP adversely. 

Interestingly, knockout models of three putative biomarkers for 

dementia, namely MAPK3, NOS1 and CREB1, show reduced LTP, 

which supports the notion, that hormone signaling pathways are part 

of the dementia pathology. It should be noted that these proteins 

generally exert multiple functions in the biology of nervous system 

by participating in different signaling pathways and thus, the core 

DHN model describes their contribution to the hormone-mediated 

signaling in the context of dementia.  

Since mouse knockout phenotypes alone might not be sufficient to 

concretely conclude about the translational value of our DHN model, 

introduction of the “serendipitous off-target effect” for linking DHN 

model to disease mechanism demonstrated to provide further 

validation for the DHN model. It was shown that inhibition of off-

targets belonging to hormone signaling pathways could lead to 

improvement of memory and learning in human or animal models. 
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Therefore, the enhanced DHN model can be used to predict novel 

targets out of off-targtes or to identify disease-modifying targets and 

pathways that partially regulate the pathology of disease. For 

example, HDAC2 knockout mouse models show enhanced LTP, 

which may indicate HDAC2 might be a potential therapeutic target; 

on the other hand, the clinical evidence is provided by the off-target 

effect of Lovastatin on HDAC2: originally designed against 

hypercholesterolemia, Lovastatin was tested during a double-blind, 

randomized clinical study on human subjects for its effect on 

progression of Alzheimer’s disease through reduction of amyloid-

beta formation[333]. The study found that Lovastatin decreases the 

risk of AD progression. Such an inference exemplifies how the novel 

knowledge on the mechanism of drug effect on disease-related risk 

factors can be derived from the enhanced integrative model of DHN. 

Although DHN provides a unified integrative map of possible 

hormone signaling mechanism in the context of dementia, it has its 

limitations. The inherent issue of network biology is that 

completeness of molecular network maps is limited to data 

availability and validity. The DHN model analyzed in this work may 

not cover all the hormone pathways involved in the pathogenesis of 

dementia but rather it focuses on the convergent hormone action by 

the most prominent ones. Furthermore, such models provide only a 

static picture and do not capture the dynamic behavior of the system. 

However, context-specific modeling, as the first step, makes it 

possible to simulate disease-specific perturbations after incorporation 

of quantitative data from high-throughput technologies. Such an 

integrative modeling approach may prove valuable for prediction of 
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potential biomarkers due to the fact that hormones are able to cross 

the blood-brain barrier by transmembrane diffusion or using 

transporters and their brain levels reflect blood levels [334]. We plan 

to keep the DHN model up to date – within the boundaries of 

available resources – by implementing an alert system that 

automatically collects new information published on the role of 

hormone signaling in dementia and enriches the model with the 

emerging knowledge. It is anticipated that, with the availability of 

more data, the resolution (i.e. specificity and sensitivity) of the 

model will increase so that new versions of the model will support 

translational scientists to make informed decisions.	  

8.5. Conclusions 

The integrated hormone interaction model presented in this study can 

be beneficial in correlating the information of genes, proteins, 

signaling pathways and the clinical manifestation of dementia in the 

context of endocrine system. Such models have great potential to 

support the process of identifying new targets and novel biomarkers 

and bear the potential to help pharmaceutical industry to increase the 

efficiency of their pipeline.	  
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CHAPTER 9. Modeling of the CNS 
Component and Temporal Progression of 
Alzheimer’s Disease 
	  
Given the fact that efficient translation of valuable information 

embedded in brain scans into clinical application is of paramount 

scientific and public health importance, a strategy is proposed to 

bridge the current gap between imaging and molecular biology, 

particularly in AD. This work appeared in Nature Scientific Reports, 

November 2013 [335].   

9.1. Introduction 
Recent advancements in structural and functional neuroimaging 

techniques offer unprecedented opportunities to visualize brain 

structure and function, to non-invasively monitor the progression of 

a disease over time, or to track disease trajectories. Different types of 

imaging reveal different aspects of the brain complexity: Magnetic 

Resonance Imaging (MRI), Computerized Tomography (CT) and 

Diffusion Tensor Imaging (DTI) are designed to localize anatomical 

areas and structures (structural imaging techniques) whereas 

functional Magnetic Resonance Imaging (fMRI) and Positron 

Emission Tomography (PET) are used to capture neural activity at 

molecular level (functional imaging techniques) [336],[337]. Such 

imaging technologies have been used to identify structural and 
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functional changes associated with different stages of progressive 

neurodegenerative diseases such as Alzheimer’s disease (AD) [338].  

In AD patients, progressive loss of memory and cognitive abilities is 

attributed to the dysfunction and death of nerve cells in specific 

regions of the brain [339]. Imaging techniques have established the 

existence of such link between brain structural and functional 

changes by demonstrating the spatio-temporal patterns of cell death 

across affected brain regions. Differential patterns of brain atrophy 

observed in the brain of AD patients with the help of imaging 

techniques indicate that distribution of particular structural changes 

in specific regions of the AD brain may reflect the underlying 

pathology [340].  

Based on the above-mentioned capabilities of imaging technologies, 

a steadily increasing number of imaging studies has been published 

on diagnosis and prognosis of AD but the reported applications are 

still limited to clinical monitoring of anatomical lesions or injuries of 

brain in the course of the disease. On the other hand, the assessment 

of persons with brain disorders and diagnostic decision-making 

process for such patients is still highly dependent on the skills of 

examiner and the patient’s abilities, which shows the current 

limitations of brain imaging techniques for informing the diagnosis 

beyond the behavioral assessments [341]. Current automated 

methods for diagnosis of neuropsychiatric disorders make use of 

classification algorithms to classify the brain scans of participants 

based on measurements of local variation in the morphological 

features of the brain [342]. Accordingly, the diagnostic information 

derived from such imaging-based methods is often unspecific and the 
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knowledge behind the molecular mechanism underlying the 

measured imaging outcomes remains implicit or unknown. In fact, 

the challenge of linking clinical outcomes to their underlying 

molecular events has been long of interest to the scientific 

community and to the pharmaceutical industry as well. This is 

because it will help to obtain better understanding of the disease 

mechanism at molecular level, particularly for personalized medicine 

applications. The technique of molecular imaging using reporter 

molecules that provide information on particular molecular or 

cellular events has been around for some while but it is not in clinical 

use yet and its diagnostic as well as prognostic application will be 

limited to tracing of single cell or single cellular process [343].   

To the best of our knowledge, there is no suggestion in the scientific 

or patent literature preceding the present study how to facilitate 

diagnosis and prognosis of brain diseases by translating information 

from a plurality of brain scan images to underlying region-specific 

disease pathways. Therefore, it would be desirable to provide a 

method that is able to not only diagnose brain images more 

accurately with higher specificity to the disease but also improve 

prognosis by prescribing efficient and personalized therapies based 

on medical history of individual patients. Such a method could be 

potentially upgraded to a clinical decision-support system that would 

adjoin neuroimaging softwares. It could also support target 

identification and biomarker discovery efforts as well. 

The present work proposes a novel strategy using an integrative 

computational approach, which incorporates the information of 

imaging and potential protein biomarkers specific to disease into a 
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brain-specific protein interaction network. Enrichment analysis for 

known pathways further validated the method and unveiled the high 

impact of immune system on the pathology of AD.	  

9.2. Materials and methods	  

9.2.1. Information retrieval and extraction 

With the help of state-of-the-art text mining and knowledge 

discovery tools, ProMiner and SCAIView, PubMed abstracts were 

searched using our dedicated biomarker terminology. The queries 

were formulated and executed over the complete set of PubMed 

abstracts on 14.05.2013 in SCAIView search engine (accessible 

through http://bishop.scai.fraunhofer.de/scaiview/). An example of 

query formulation is shown below:  

(([MeSH Disease:"Alzheimer Disease"]) AND [BioMarker 

Ontology:"Diffusion tensor imaging"])      

Similarly, with the help of SCAIView and the biomarker 

terminology, the following query was performed to obtain a list of 

potential AD biomarkers: 

 (([MeSH Disease:"Alzheimer Disease"]) AND [BioMarker 

Terminology Node:"Evidence Marker"])      

The long list of retrieved potential AD biomarkers was filtered for 

expression evidence and was subjected to manual inspection of 

statements made in the paper abstracts. 

Imaging abstracts were manually screened so that context (relevance 

to both AD and imaging biomarker) as well as content (information 

detailing the type of imaging biomarker and the affected brain 
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region) of retrieved documents was checked and the relevant 

information was extracted.	  

9.2.2. Reconstruction of the temporal lobe subnetwork 

A brain-specific protein-protein interaction (PPI) network 

representing 15 brain regions was used (i.e. brain interactome). The 

PPI network was then filtered for the affected brain regions to obtain 

region-specific subnetwork for temporal lobe, based on the edge 

attributes using Cytoscape software.	  

9.2.3. Pathway enrichment analysis 

Since the affected region in the early stage was the same in the 

advanced stage, we only analyzed one subnetwork representing 

temporal lobe in this study. The subnetwork and corresponding 

mapped molecular biomarkers were subjected to pathway enrichment 

analysis (GSEA) in MsigDB. In order to normalize the pathway 

matching process, GSEA was performed on both potential 

biomarkers and subnetwork proteins using separate pathway 

annotation sets, namely BioCarta, KEGG, and Reactome. In order to 

make the more specific enrichment results from the small number of 

potential biomarkers comparable to the less specific but high 

dimensional enrichment results from the large number of subnetwork 

proteins, we considered the top 20 enrichment results for subnetwork 

proteins so that the sensitivity of the pathway matching process is 

preserved.	  
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9.3. Results 
The core methodology for translation of imaging readouts to 

molecular pathway maps consists of two steps:  

Step 1 intends to integrate the information of both imaging and 

molecular biomarkers into a brain-specific network model (so-called 

brain interactome), which represents experimentally confirmed 

protein interactions (i.e. network edges) in 15 anatomical regions of 

the human brain9. Since reports on brain imaging contain meta-

information about clinical specifications of patient subjects such as 

stage of the disease and the affected region of the brain, the idea is to 

ultimately generate specific disease subnetworks out of the brain 

interactome that represent protein interactions in affected regions of 

the diseased brain. This is achieved by mapping information of 

imaging outcomes onto the region-specific brain interactome (Figure 

47). For validation purposes, we have used imaging information 

reported in the literature on AD but the source of image-based 

diagnosis could in essence be extended to the clinician’s medical 

report or any other diagnostic annotation attached to images. 
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Figure 47. Generation of brain region-specific subnetwork 
models using imaging readouts. Region-specific diagnosis of 
brain injury can be matched with the region-specific subnetworks of 
the brain interactome to generate an interaction model specific to the 
injured region, in the first step.   

Step 2 involves extraction of identified subnetworks from the brain 

interactome based on the affected regions that are diagnosed by 

imaging and consequently their analysis for underlying pathways. 
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The pathway analysis is performed on both the entire subnetworks 

and potential biomarkers mapped onto these subnetworks separately. 

Afterwards, pathways that are derived from subnetworks and 

pathways that are derived from mapped biomarkers are being 

matched so that potential molecular biomarkers act as “pins” on the 

disease map to guide the analysis to the core biological processes 

deemed to drive the pathology of the disease (Figure 48). 

 

	  
Figure	   48. Enhancement of subnetwork models with the 
information of potential biomarkers. Region-specific 
subnetwork model generated based on the imaging diagnosis in the 
first step is subjected to biomarker-guided analysis by mapping 
potential biomarkers and pathway matching, as detailed below. 

 

9.3.1. Method validation using imaging readouts of 

Alzheimer’s patients 

Our semantic information retrieval system, SCAIView, retrieved 

5698 PubMed abstracts reporting clinical application of imaging 

techniques for diagnosis of AD (MRI: 3458, PET: 1989, DTI: 251) 

and containing information on both AD and affected brain regions 

(see Methods). After manual inspection of these abstracts and 
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information extraction, it turned out that the reported brain regions 

injured in AD could be assigned to three stages of the disease, 

namely early AD/mild cognitive impairment (MCI), moderate 

Alzheimer’s, and advanced Alzheimer’s. It was evident from the 

frequency of AD imaging publications that the majority of these 

studies reported the application of imaging methods to diagnosis of 

the early stage Alzheimer’s disease, reflecting the high priority that 

is assigned to finding early diagnostics for AD. Moreover, these 

efforts were heavily biased toward application of MRI techniques 

amongst others.   

Analysis of the diagnosed anatomical regions in AD brains indicated 

that both structural and functional techniques report limbic system 

and its anatomical components (i.e. temporal lobe, hippocampus, 

cingulate, thalamus and corpus callosum) as the affected regions 

across disease stages. Based on these readouts, a disease progression 

trend is observed so that it appears with progression of the disease 

from early to advanced stage, anatomical lesions extend from 

temporal lobe, entorhinal and precuneus cortices to prefrontal and 

cerebral cortices. These readouts suggest that temporal lobe lesion 

and dysfunction is persistent across disease stages. Therefore, we 

generated a temporal lobe subnetwork model out of the brain 

interactome and validated our proposed method on this model. The 

temporal lobe model is represented by a protein-protein interaction 

(PPI) subnetwork with 2323 nodes and 3587 edges.  	  
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9.3.2. Biomarker-pathway coupling for targeted enrichment 

analysis 

In order to spot pathways causally involved in the progression of AD 

in the temporal lobe subnetwork model, we searched for molecular 

indicators (potential biomarker candidates) of AD in the literature, 

extracted a list of such hypothetical AD biomarkers (see Methods) 

and mapped them onto the temporal lobe subnetwork. Biomarkers 

are molecular alterations that can be measured in human tissue, cells 

or fluids and represent direct steps in the causal pathways of a 

disease. As a result, 144 potential biomarkers, including 

inflammatory and non-inflammatory biomarkers, were mapped onto 

the temporal lobe subnetwork. Since these potential biomarkers 

indicate measurable molecular activities under the AD condition, this 

strategy helps us guide our analysis to those pathways that are more 

likely to be involved in the disease mechanism at the molecular 

level. Moreover, it overcomes the challenge of dealing with the large 

number of significant pathways that often result from pathway 

enrichment analysis algorithms, particularly when a large number of 

proteins participating in network models are submitted for analysis. 

To this end, we performed separate pathway enrichment analyses on 

both, the subnetwork proteins and the list of mapped biomarkers. 

Since the enrichment results from mapped biomarkers are used to 

guide the analysis on the subnetwork model, enrichment analysis on 

the biomarker list was performed using BioCarta, KEGG, and 

Reactome separately. The same analyses were performed on the 

subnetwork proteins. In this way, the same set of pathway 

annotations from each pathway database is used for pathway 
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comparison and the sensitivity of the pathway matching process 

between biomarker-derived pathways and subnetwork-derived 

pathways is maximized. The purpose is to find out which pathways 

are suggested by potential biomarkers to be perturbed in the 

subnetwork model and which pathways in the subnetwork model 

correctly represent the disease mechanism.  

Such a biomarker-guided pathway analysis showed that imaging 

biomarkers point to the involvement of six pathways in progression 

of AD, namely HIV-NEF pathway, FAS signaling pathway, IL2RB 

pathway, keratinocyte pathway, MAPK signaling pathway and 

immune system signaling (Table 38).  
 
Table 38. Matched results of pathway enrichment analysis 
on the temporal lobe subnetwork model 

Source Enriched pathways resulted from 
mapped biomarkers (FDR value) 

Matched pathways in the 
subnetwork (FDR value) 

BioCarta HIV-I NEF pathway (0 e0) 
FAS signaling pathway (2.41 e-14) 
IL2RB pathway (1.33 e-13) 
Keratinocyte pathway (4.94 e-11) 

HIV-I NEF pathway (0 e0) 
FAS signaling pathway (0 e0) 
IL2RB pathway (0 e0) 
Keratinocyte pathway (0 e0) 

KEGG MAPK signaling pathway (1.03 e-

14) 
MAPK signaling pathway (0 e0) 

Reactome Immune system (0 e0) Immune system (0 e0) 

 
Figure 49 illustrates HIV-NEF pathway spotted on the temporal lobe 

subnetwork model. In this model, there are two approved CNS drugs 

that target two proteins within the HIV-NEF pathway: Triflusal, 

which targets NFKB1 and is used for treatment of cerebral infarction 

and prevention of stroke; and Rasagiline, which targets BCL2 and is 

applied for treatment of idiopathic Parkinson’s disease. Such a drug-
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target-disease pathway landscape informs which therapies already 

target a disease pathway in a particular brain region. The specificity 

of the translated model increased even more when the expression 

information of mapped potential biomarkers (i.e. overexpressed or 

underexpressed) under AD conditions was also extracted from the 

literature and incorporated into the subnetwork model.  

 

	  
Figure 49. Representation of recovered HIV-NEF pathway 
and its first neighbor proteins in the temporal lobe 
network model. The model has been enhanced with drug-target 
and biomarker expression information. Circular nodes in yellow 
show membership to the HIV-NEF pathway; square nodes in pink 
are approved drugs targeting the recovered pathway; triangle nodes 
represent potential biomarkers color-coded for their expression levels 
in AD brain (red: over-expression; green: under-expression). 
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9.4. Discussion 
In spite of invaluable contribution of neuroimaging to the 

understanding of disease progression, its outcome can not be directly 

used in the context of molecular systems analyses for translational 

purposes. The presented methodology is a novel approach to 

integrating brain imaging readouts into a network model of brain 

molecular interactions, which was validated using the accumulated 

knowledge on diagnostic neuroimaging of Alzheimer’s disease in the 

literature. In this way, the pictorial information of brain scans that 

are not amenable to molecular analysis can be incorporated in a 

region-specific brain interaction network to analyze the resultant 

mechanistic models and to validate those models in the context of 

molecular pathways. Consequently, application of this approach to 

identifying drug targets can have important implications in CNS drug 

discovery by reducing the risk of drug failure in clinical trials, given 

the fact that it uses human imaging data instead of disease-

mimicking animal data. Even at the level of sample data, a clear 

advantage of imaging biomarkers over gene expression signatures in 

neurodegenerative disease research is that they refer to in-vivo 

observations of regions and tissues in the diseased brain that are 

directly involved in the disease initiation and progression whereas 

gene expression signatures only provide a snapshot of perturbed 

genes, suffer from heterogeneity of cell types and are limited to post-

mortem sampling. 

Pathway enrichment analysis on the image-translated molecular map 

of temporal lobe revealed several pathways that were not previously 

appreciated to be causally involved in the pathogenesis of AD. The 
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advantage of using pathway enrichment analysis is that the collective 

effect of reported molecular biomarkers under the disease condition 

is taken into account in the context of disease pathways. When taken 

together, these pathways unveiled an important aspect of 

Alzheimer’s pathology: immune system-driven apoptosis. 

Significant enrichment of temporal lobe subnetwork model and its 

mapped biomarkers for HIV infection pathway might indicate that 

signaling pathways to neuronal damage and apoptosis are elicited 

from the very early stage of AD, which persist over the period of 

advanced phase. The role of IL2RB and FAS signaling pathway in 

immune system-mediated apoptosis complements accumulated 

evidence that MAPK signaling pathways contribute to the 

pathogenesis of AD through regulation of neural apoptosis 

[344],[345],[346].  

Enhancing these translated models with drug-target and biomarker 

information – as shown for HIV-NEF pathway model in Figure 49 – 

can provide added value to physicians and researchers in several 

ways:  

- it may support more accurate diagnosis based on molecular 

etiology of the disease, particularly when measured biomarkers from 

patient are available and can be mapped onto the model to spot 

disease pathways. This has implications for the mechanistic 

diagnosis of diseases rather than conventional diagnosis solely based 

on often overlapping symptoms and signs.  

- it may improve prognostic tasks using the drug-target information 

that is associated to disease pathways. Patient’s therapeutic history 

can complement the model and support prognostic decision-making 
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through incorporation of individual risk factors such as susceptibility 

background (e.g. APOE genotype) or environmental risk factors (e.g. 

aging). 

- it may guide target identification through prediction of drug mode 

of action in the context of affected tissue, disease stage and perturbed 

pathway. Information of approved drugs and their targets in disease 

pathways that are already incorporated in the model can support the 

concept of polypharmacology for discovery and development of 

next-generation multi-targeting drugs.  

- it may be used for prediction of companion biomarkers that are 

mechanistically linked to disease etiology, on one hand, and to mode 

of action of approved or experimental drugs, on the other hand.       

In summary, the novel integrative methodology presented here 

provides insight into the underlying molecular mechanisms of 

disease progression by linking the clinical readouts of imaging 

techniques to their corresponding molecular events, but this approach 

has limitations. The inherent issue of network biology is that 

completeness of molecular network maps is limited to data 

availability and validity. Therefore, the specificity and sensitivity of 

the translation process is a function of the completeness of the brain 

interactome. Another limiting factor is the low resolution of the 

protein-protein interaction maps in terms of representing other 

molecular species than proteins and also directionality of the 

interactions. However, these shortcomings can be overcome through 

replacement of PPI networks with causal computational models 

based on BEL. BEL-based mechanistic models not only represent all 
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molecular species such as ions or metabolites but also preserve the 

directionality of interactions. 

This method is generic and can be applied to modeling other brain 

disorders. It can be foreseen that the extended algorithm of this 

methodology, when optimized and fully automated, has the potential 

to be used as a clinical decision-support tool for personalized 

diagnosis and prognosis of patients with brain disorders. 
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CHAPTER 10. Model-based Target 
Prediction for Alzheimer’s Disease 
	  

10.1. Targetability versus druggability 
In the book “in silico technologies in drug target identification and 

validation”, Leon and Markel (2006) classify data-driven methods 

such a s expression profiling under the category of ‘target 

identification’ and assign text-mining and network/pathway analysis 

methods to the category of ‘target validation’ [347]. In this work, a 

hybrid approach to in silico identification and validation of drug 

targets in the context of AD has been introduced. The advantage of 

this hybrid approach, which combines data- and knowledge-driven 

strategies, is that it provides a unified framework for simultaneous 

identification and validation of potential target and biomarker 

candidates specific to the context of AD in silico.  

In the opinion of this author, it is important to distinguish between 

“targetability” and “druggability” features. While most of the studies 

have been focused on the druggability properties of the protein 

targets, less attention has been paid to the targetability properties of 

protein targets. This notion is supported by the fact that the primary 

target for 7% of approved drugs is not known and mode of action for 

18% of approved drugs is not defined [348],[349]. Druggability is 

defined as “the ability of a target to be modulated by potent, small 

drug-like molecules” [350], mostly reflects the structured-based 
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physicochemical properties of the target in the binding site [351], 

and is used in the target validation phase [352]. In contrast, there is 

no clear definition for targetability in the literature so far. 

Targetability can be defined as ‘the ability of a target to modify the 

path of disease or modulate disease-related phenotypes’. It is often 

used in the target identification phase [353]. 

The concept of targetability is being transformed from a ‘target-

based’ paradigm into ‘pathway-based’ paradigm, where network 

subgraphs and pathways emerge as targetable entities (e.g. 

[354],[355]). Rising attrition rates of new compounds in the past 

decade, which was highest (62%) during phase II [356], indicates the 

lack of efficacy and reflects the low predictive capacity of target-

based discoveries. Advantages of the pathway-based approach over 

the target-based approach are manifold [357]:  

a) the hypothesis behind a target’s mechanism of action in the 

context of the disease can be disproved (i.e. what if 

manipulation of target X fails to modify the disease process Y);   

b) the functional output of the target pathway can be predicted and 

linked to clinically relevant outcomes; and     

c) positive therapeutic off-target effects of approved or pipeline 

drugs can be predicted. 

Several studies have previously shown the effectiveness of using 

pathways as therapeutic targets in neurobiology. For example, 

measurement of hippocampal neurogenesis pathway by high-

throughput screening for approved drugs on mouse models showed 

that cholesterol lowering drugs can predict the stimulatory effect of 

these drugs on the adult neurogenesis pathway in animal models 
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[358]. In another study by the same group, lipopolysaccharide-

induced microglia proliferation pathway in the rat brain was 

subjected to HTS analysis and drugs were found that ameliorated 

clinical symptoms in the mouse models of Parkinson’s disease [359]. 

In a primary study based on pathway analysis, Cramer et al. (2012) 

found that FDA-approved anti-cancer drug, bexarotene, could 

rapidly reverse cognitive and olfactory deficits in Alzheimer’s mouse 

models [360]. Inspired by these results, Li and Lu (2013) have 

proposed a pathway-based drug repositioning prediction method, 

which considers all possible causal chains connecting drugs to 

diseases through molecular pathways and estimates transition 

likelihood of each causal chain in the network [361]. 

	  

10.2. Application of the hybrid approach to target 

identification and validation for AD	  
As mentioned in Chapter 6, the triad of Brain, Immune, and 

Hormone signaling components create an inter-linked and complex 

system, which is an example of integrated and interactive system 

where nervous, immune/inflammatory, and endocrine components 

preserve complex crosstalks in order to guarantee the maintenance of 

the system’s homeostasis. Due to such a high level of integrity, 

dysregulation or malfunctioning of one component directly affects 

the neighbouring components. Separate hypotheses on the 

involvement of each component in the pathology of AD have been 

proposed but they all describe the impairment in components of the 

same system. Therefore, the collective results from modeling 
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components of the triad system should be taken into account when 

the identification of a targetable pathway is desired.  

The proposed hybrid approach provides a systems view on the 

involvement of the triad system in the pathology of AD. Interplay 

between the immune, nervous and endocrine components has 

attracted attention of researchers for many years and it is now well 

established that this triad interaction is mediated by cytokines, which 

regulate important processes such as cell proliferation and hormone 

secretion [362]. Accordingly, immunotransmitters transmit 

information from the immune component to the CNS component and 

interfere with the neuroendocrine component. This triad interaction 

may explain, at least in part, impairments in immunity against 

infections, reproductive functions, and brain atrophy, which occur in 

the pathophysiology of AD.      

 

 

 

 

 

 

Figure 50. The triad system hypothesized to be involved in 
the pathology of AD and repreentation of their 
interactions. 
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When analyzing the pathway enrichment for literature-derived 

proteins reported to be involved in dementia (Chapter 8), it came to 

the attention that the Biocarta’s cytokines and inflammatory response 

pathway is the most significant overrepresented pathway. On the 

other hand, modeling results from both AIDS-dementia complex and 

AD progression studies (Chapters 7 and 9, respectively) are 

indicative of the prominent role of the immune response signaling 

and cellular regulatory signaling pathways in the core pathology of 

AD. More weight should be given to the results of biomarker-guided 

pathway analysis in the AD staging study because in-vivo imaging 

biomarkers in combination with in-vitro measured molecular 

biomarkers reflect a more realistic picture of the disease 

development in AD patients.  

Comparison of the enriched pathways that resulted from modeling of 

each component implies that MAPK signaling pathway is common 

among all the three components. In the hormone-dementia study 

above, MAPK3, which regulates the growth hormone pathway, 

represents the MAPK signaling pathway. It has been shown that 

MAPK signaling pathway is pathologically involved in various 

human diseases including AD, PD and ALS [363]. This is because 

mitogen-activated protein kinases mediate intracellular signaling and 

regulate a diverse set of cellular activities. Besides, it has been 

shown that extra-cellular amyloid-beta activates MAPK signaling 

cascade via nicotinic receptors [364]. In AD, MAPK pathway 

enforces abnormal re-entry into the cell cycle, which in turn activates 

amyloid production pathways; more specifically, MAPK3 is 

activated by oxidative stress, which is a hallmark of 
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neurodegeneration [365]. MAPK signaling pathway has been 

suggested as a potential therapeutic target for neurodegenerative 

diseases because protein kinases are attractive modulators of brain 

inflammation and gliosis and MAPK inhibitors can be easily 

administered due to good bioavailability [366]. In comparison to the 

field of oncology where half of the drugs in the pipeline are kinase 

inhibitors, CNS disease indications appear to be lagging behind for 

kinase-targeted drugs. For example, Imatinib (Gleevec), which is 

used for treatment of multiple cancers, was first reported for its 

efficacy in 1995-6 and was ultimately approved and introduced to 

the market in 2001 whereas no kinase inhibitor exists to date for 

CNS diseases. In fact, the launch of Imatinib demonstrated the 

success of applying pathway approaches in target validation. 

However, there are several kinase inhibitors that are either at the 

preclinical or clinical phase of investigation for treatment of CNS 

disorders [367].      

Given the above results, however, an ideal therapeutic strategy seems 

to require modulating all the disease pathways underlying the triad 

system. So far, the mainstream of investigation for therapeutic 

interventions in AD has been focused on targeting amyloid 

production, accumulation, clearance, or toxicity associated with 

amyloid-beta plaques. Due to disappointments with these 

approaches, as discussed earlier, alternative approaches are under 

investigation, which include targeting oxidative stress, inflammation, 

and glutamate-mediated neurotoxicity; in addition, neurorestoration 

via neurotrophin pathway and hormone therapies are emerging 

approaches to modifying the path of AD [368]. Unfortunately, these 
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entire alternative approaches have been founded on the same old 

hypothesis of amyloidosis and each one of them represents a piece of 

the same puzzle. Acknowledging the complexity of AD, it becomes 

apparent that targeting single pathways through these approaches 

may not result in effective treatments for AD. Hence, it is proposed 

here that the concept of polypharmacology can be extended from the 

level of “multi-protein” targeting to the level of “multi-pathway” 

targeting.        
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CHAPTER 11. Conclusion and Outlook 
	  
Deciphering disease mechanisms is an important mission in systems 

biology and drug discovery. When dealing with multi-factorial 

progressive diseases such as neurodegeneration, it is of utmost 

importance to firstly get a profound understanding and knowledge on 

molecular mechanisms because this will lend a more support to 

predictive models for target identification and validation.  

One of the biggest hurdles to finding novel biomarkers and 

therapeutics for brain diseases is the lack of deep understanding of 

the “etiological mechanism”. As an example, the current 

classification of diseases is solely based on anatomical, symptomatic 

and epidemiological criteria and does not take the etiological 

mechanism into account. At the same time, neurological disorders 

may share common disease mechanisms despite heterogeneous 

clinical symptoms. Thus, re-defining diseases based on their 

underlying molecular and environmental causes rather than on 

physical signs and symptoms is crucial for development of effective 

therapeutic strategies. In addition, the elucidation of disease 

mechanism may support discovery of new disease-specific 

biomarkers.  

Despite decades of research on various aspects of dementia, the 

mechanisms underlying neurodegeneration are yet far from being 

well understood. The fact is that years of pure data-driven 

approaches to delineating the complexity of disease mechanism in 
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dementia merely based on GWAS or gene expression results has not 

yielded a practical and impactful outcome. Polymorphism studies 

may be underpowered to detect rare variants, gene expression studies 

are highly sensitive to genetic, environmental, demographic and 

technical factors, and proteomic results – particularly in the 

biomarker discovery for dementia – are difficult to reproduce [369]. 

A general problem with most of data-driven methods is that they are 

devoid of proper disease-specific biological context; i.e. they ignore 

cell-type and tissue specificity, disease staging, and patient-specific 

risk factors at the time of sampling. The argument is that data-driven 

approaches alone simply are not amenable to understanding the 

complexity underlying NDDs, in general, and AD, in particular. 

Given the increasing amount of information density in the published 

knowledge space of literature, the task of knowledge-driven 

approaches is to bring context to multi-layered data-driven methods 

based on prior biological knowledge. This prior knowledge spans 

from published pathways and co-expression information to clinical 

parameters including age, comorbidities, and disease progression, to 

name a few.  

As shown throughout this thesis, a knowledge-based integrative 

approach to modeling neurodegenerative disease mechanism in AD 

was designed and utilized successfully to link molecular disease 

states to their corresponding clinical readouts. A substantial amount 

of time and effort was dedicated to groundbreaking work and 

development of semantic frameworks specific to dementia and AD, 

which did not exist before. Various ontologies and controlled 

vocabularies were generated, evaluated, and applied to support the 
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knowledge-driven approach to modeling AD dementia mechanism. 

The complementary nature of knowledge-driven and data-driven 

approaches allowed for combining experimental data with prior 

knowledge under a single modeling framework, which ultimately 

resulted in enhanced sematic resolution at biological scales, 

improved functional sensitivity at the molecular level, and increased 

disease specificity at clinical level.        

The results of disease modeling approach applied to AD in this work 

clearly show a deviation from the conventional amyloid-centered 

results. It appears that amyloid plaque formation and inflammation 

are secondary effects of an earlier damage to the neurons, which can 

be seen as a consequence of dysregulation in the immune system. 

Thus, the next wave of neurodegenerative research should be heavily 

directed towards investigation of the role of the immune system in 

susceptibility to and initiation of the disease. It is predictable that the 

next generation of computational disease models integrate medical 

histories and health outcomes of patients, for example in the form of 

co-morbidity analysis, so that deeper insights into the early events in 

the pathogenesis of NDDs is gained and preventive measures to 

modify the path of disease progression can be taken.  

The capacity of in silico disease models to be augmented with 

annotation of semantic and mechanistic information such as 

anatomic sites, knock-out phenotypes, pathways, drug targets and/or 

potential biomarkers provides a flexible framework for development 

of algorithms that support decision making in drug development, 

clinical diagnosis and prognosis of diseases. The proposed algorithm 

for translation of brain scans to their underlying region-specific 



Chapter	  11.	  Conclusion	  and	  Outlook	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  

217	  

molecular maps is an example of such augmentation efforts, which 

uses the novel “biomarker-guided analysis” method and thereby 

opens a new opportunity to computationally validate the in silico 

models of the disease. In should be noted that the disease models 

presented in this work are correlation, unsigned network models, 

which have been built using protein-protein interaction data. An 

emerging alternative in computational disease model building 

integrates literature-derived ‘cause and effect’ relationships into a 

data-driven platform and produces casual network models. 

Moreover, BEL-based disease models go beyond modeling of 

‘single-entity interactions’ by including more biological entities as 

well as biological processes. An interesting feature of BEL models is 

the ability to identify the information flow between up-stream and 

down-stream of cellular processes [370]. Given this capability, it 

would be interesting to devise a strategy for reasoning over the BEL 

models aiming at simulating effects of hypothetical ligands or 

perturbations at the up-stream points and predicting outcomes at the 

down-stream endpoints. 

By now, the concept of polypharmacology has been restricted to 

targeting multiple proteins in a single unique pathway. However, as 

discussed earlier in this chapter, the paradigm shift from single-target 

to pathway-target strategy demands for extension of the 

polypharmacology concept to the pathway level. The rationale 

supporting this proposition is that NDDs manifest heterogeneous 

clinical symptoms in various pathological locations and, therefore, 

targeting multiple disease pathways at the same time is more likely 

to exert a greater modifying effect on the mechanism of disease. As 
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shown in the present study, pathway-based disease modeling can be 

used for building the bridge from drug discovery to clinical research 

by linking molecular specifications of the disease mechanism to 

corresponding clinical manifestations. There are both advantages and 

limitations associated to this approach. Advantages include offering 

an alternative successful route to the current conventional target 

identification and validation in the context of disease pathway 

models, placing single genes and proteins in the context of pathway 

signatures for development of responder-specific therapeutics, and 

increasing the druggable space. Nonetheless, target relationships 

between pathways due to cross-talk events in the same cell or tissue, 

and different species-specific signaling mechanisms between distinct 

pathway models are among limiting factors. Moreover, in the 

absence of data and with limited "direct" AD knowledge, this sort of 

"loose association mining" is imperative. However, it can be 

foreseen that integrative disease modeling methods will be improved 

with advancement of “concrete association mining” algorithms as 

more data and information becomes available. In addition, it is 

anticipated that these methods will be used in the future to link the 

mode of action for drug candidates to predictable side effects or to 

build connectivity between in-vivo and in-vitro biomarkers.	  
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