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Abstract

In this thesis we will examine two different problems. The first is the computation
of vacuum expectation values of Wilson loop operators in ABJM theory, the other
problem is finding the instanton series of the refined topological string on certain
local Calabi–Yau geometries in the Nekrasov–Shatashvili limit.

Based on the description of ABJM theory as a matrix model, it is possible to find
a description of it in terms of an ideal Fermi gas with a non–trivial one–particle
Hamiltonian. The vacuum–expectation–values of Wilson loop operators in ABJM
theory correspond to averages of operators in the statistical–mechanical problem.
Using the WKB expansion, it is possible to extract the full 1/N expansion of the
vevs, up to exponentially small contributions, for arbitrary Chern–Simons coupling.
We will compute these vevs for the 1/6 and 1/2 BPS Wilson loops at any winding
number. These can be written in terms of the Airy function. The expressions we
found reproduce the low genus results previously obtained in the ’t Hooft expansion.
In another problem we use mirror symmetry, quantum geometry and modularity

properties of elliptic curves to calculate the refined free energies, given in terms of an
instanton sum, in the Nekrasov–Shatashvili limit on non–compact toric Calabi–Yau
manifolds, based on del Pezzo surfaces. Quantum geometry here is to be understood
as a quantum deformed version of rigid special geometry, which has its origin in the
quantum mechanical behavior of branes in the topological string B-model. We will
argue that in the Seiberg–Witten picture only the Coulomb parameters lead to
quantum corrections, while the mass parameters remain uncorrected. In certain
cases we will also compute the expansion of the free energies at the orbifold point
and the conifold locus. We will compute the quantum corrections order by order on
~ by deriving second order differential operators, which act on the classical periods.
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CHAPTER 1

Introduction

Instantons in gauge theories are of long standing interest to physicists. One well known example
was given by Belavin, Polyakov, Schwartz and Tyupkin in [1], where the authors analyzed the
solutions of the pure Yang–Mills Lagrangian. This is relevant for the correct definition of QCD,
because it is a solution to the U(1)–problem [2], which describes the apparent existence of an
U(1) symmetry in QCD that is not realized in the real world. The relevant solutions are called
instantons [3], which are topologically non–trivial stationary points of the Yang–Mills action.
They give nonperturbative contributions to the functional integral, which means they are not
visible in the perturbative expansion in the coupling. The result described above shows us, that
it is necessary to consider the nonperturbative structure of a quantum field theory in order to
properly analyze it.
This problem is generally very difficult, but the introduction of supersymmetry restricts the

structure of gauge theories in a manner so that their exploration is often possible in an exact way.
Especially N = 2 supersymmetric gauge theories in four dimensions attracted a lot of interest,
because they exhibit non–perturbative effects, while it is possible to find exact results due to
the work of Seiberg and Witten [4, 5]. At first their work was only about SU(2) theories, but it
was extended to different gauge groups and those of higher rank since then. The information
about the instanton sum is encoded in an elliptic curve C which we call Seiberg–Witten curve,
and a meromorphic differential λ, defined on this curve. More precisely, the prepotential of
such a gauge theory is encoded in the tuple (C, λ). Later the relation to topological string
theory was studied. The Seiberg–Witten curve also appears in the topological string theory
as a mirror geometry in the B–model [6, 7]. It is possible to construct a topological string
theory on certain local Calabi–Yau manifolds, which, when taking a suitable limit, correspond
to Seiberg–Witten theories. The genus zero amplitudes of the topological B–model amplitudes
on this local Calabi–Yau manifold is captured by the Seiberg–Witten curve. Furthermore the
topological B–model on local Calabi–Yau threefolds is dual to matrix models [8, 9] in the large
N limit. In this approach the spectral curve corresponds to the curve C and the differential λ
encodes the filling fractions and the one point function.
One way to obtain the instanton sum is a localization computation on the moduli space of

instantons, invented by Nekrasov [10]. He proposed the Ω–background, which introduced the
two deformation parameters ε1 and ε2 in order to regularize the moduli space of instantons
in N = 2 supersymmetric gauge theories. The work of [11, 12] anticipated a geometrical
interpretation of this in terms of a refined counting of Bogomol’nyi–Prasad—Sommerfield (BPS)
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1 Introduction

states corresponding to D0–D2 branes in the large volume limit of rigid N = 2 theories in four
dimensions. The multiplicities Nβ

jL,jR
∈ N of the refined BPS states lift the degeneracy of the

jR spin–multiplets that is present in the corresponding BPS index nβg ∈ Z of the topological
string, which corresponds to the specialization igs = ε1 = −ε2. A mathematical definition of the
refinement of cohomology of the moduli space of the BPS configurations was recently given [13]
starting with the moduli space of Pandharipande–Thomas invariants.
The free energies F = log(Z) of the topological string at large radius in terms of the BPS

numbers Nβ
jLjR

are obtained by a Schwinger-Loop calculation [14, 15] and read

F hol(ε1, ε2, t) =
∞∑

jL,jR=0
k=1

∑
β∈H2(M,Z)

(−1)2(jL+jR)N
β
jLjR

k

jL∑
mL=−jL

qkmLL

2 sinh
(
kε1
2

)
jR∑

mR=−jR
qkmRR

2 sinh
(
kε2
2

) e−k β·t ,
(1.0.1)

where
qL = exp 1

2(ε1 − ε2) and qR = exp 1
2(ε1 + ε2) . (1.0.2)

This expression admits an expansion in ε1, ε2 in the following way

F (ε1, ε2, t) = log(Z) =
∞∑

n,g=0
(ε1 + ε2)2n(ε1ε2)g−1F (n,g)(t) . (1.0.3)

This defines the refinement of the free energies as a two parameter deformation of the unrefined
topological string. The usual genus expansion of the unrefined string is just encoded in F 0,g,
which we obtain by setting ε1 = −ε2.
Techniques to compute this instanton series already exist. Starting with the mathematical

definition one can now do a direct localization calculation [13]. Alternatively one can use the
refined topological vertex [14], or the holomorphic anomaly equation, which was generalized for
the use in the refined case in [15, 16, 17].
Another point of view was introduced in [18], where the topological B–model on manifolds

which are the mirror of local Calabi–Yau threefolds were analyzed. This geometry is described
by

eu+v = H(ex, ep; zI), (1.0.4)

where u, v, x, p ∈ C and zI are complex structure moduli. The equation H(ex, ep; zI) = 0 defines
a Riemann surface Σ. By considering branes, touching Σ in only one point, the Riemann surface
itself can be identified with the moduli space of the branes. In this case the coordinates x and
p become noncommutative

[x, p] = igs, (1.0.5)

which suggests that H can be interpreted as the Hamiltonian describing the brane. The con-
jecture is that the open amplitudes corresponding to these branes are encoded into a quantum
mechanical problem. One result of the refinement is, that we do not only find branes in the
coupling gs, but two kinds of branes corresponding to ε1 and ε2, respectively. In the Nekrasov–
Shatashvili limit one of these branes decouples, depending on which parameter we send to zero.
This was used in [19] to show that the Nekrasov–Shatashvili limit ε1 = 0 [20] provides an even
simpler quantization description of special geometry in which the rôle of ~ is now played by ε1
(or equivalently ε2) and the rôle of the configuration space is played by the moduli space of a
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brane, which is identified with the B–model curve itself.
There exist various different string theories, namely type I, type IIA, type IIB and heterotic

string theories, which are connected by a set of dualities [21]. A theory unifying all these string
theories was proposed in [22]. It is called M–theory. M–theory is an eleven–dimensional theory
having so called M2– and M5–branes as its fundamental objects. Its low energy–limit is given
by eleven–dimensional supergravity. There is strong evidence that M–theory reproduces the
different string theories in various compactification limits. For string theory the effective action
of its degrees of freedoms, e. g. branes, are known. In case of M–theory this structure is not
as clear yet. One interesting question about the structure of the M–theory membranes is –
analogous to a stack of D–branes: What is the world–volume theory of a stack of coincident M–
branes? Here we want to concentrate on the analysis of the case of M2–branes. The worldvolume
theory is known to have N ≥ 6 superconformal invariance. Such theories were constructed
in [23], leading to the Bagger–Lambert-Gustavsson (BLG) model. Finally in [24] Aharony–
Bergman–Jafferis–Maldacena (ABJM) theory was found. This is an N = 6 supersymmetric
Chern Simons matter (CSM) theory in three dimensions with gauge group U(N)× U(N) and
integer coupling (k,−k). This theory is consistent with the worldvolume theory of a stack of
N M2–branes put on the orbifold R8/Zk.

A powerful conjecture which had a huge impact was made in [25], which related type IIB
string theory on a background AdS5 × S5 to a N = 4 supersymmetric Yang–Mills (SYM)
theory in d = 4. This is a famous example for dualities in string theory and was extensively
studied since it was first proposed. This conjecture is called the AdS/CFT conjecture and is an
implementation of the holographic principle [26, 27], as the physics of the (d+ 1)–dimensional
bulk theory is encoded in the d dimensional boundary gauge theory. The N = 4 SYM theory
with gauge group U(N) is the low energy limit of a stack of N D3–branes in type IIB string
theory.
This duality is also a weak–strong coupling duality in the sense, that the weakly coupled field

theory is dual to strongly coupled string theory and vice versa. We can see, for example, the
N = 4 SYM–theory as a nonperturbative definition of type IIB string theory on the background
AdS5 × S5.
In the case of ABJM theory this dual is M–theory on AdS4×S7/Zk, hence AdS/CFT allows us

to give a nonperturbative definition of M–theory on this geometry in terms of a CFT without
gravity. In order for this duality to hold we send N to infinity while keeping k finite. For
weakly coupled ABJM theory this becomes AdS4 × CP3, where k controls the size of the M–
theory circle. For more general cases the AdS–dual is given by AdS4 ×X, where X is a seven
dimensional Tri–Sasaki Einstein space [28, 29, 30]. In this case the field theory duals are N ≥ 3
superconformal U(N)p Chern–Simons theories with bifundamental matter. They have quartic
superpotentials and the Chern–Simons levels k1, k2, . . . , kp sum up to zero.
Lately localization techniques were extended [31], showing that Wilson loops in N = 4 and
N = 2 SYM theories in four dimensions localize to matrix integrals with an operator insertion.
In [32] these techniques were extended for the use in CSM theories in three dimensions. Based
on these results, localization formulas for the 1/2 and 1/6 BPS Wilson loop in ABJM theory
were derived and analyzed [33, 34]. The matrix models we find here are much more complicated
than the matrix models found for the SYM theories in four dimensions. Still, it is possible to
compute it to every order in 1/N [35, 36] in a recursive way. This is achieved by using the
holomorphic anomaly equations of topological string theory [37] as adapted to matrix models
and local geometries in for example [38, 39, 40].
Based on this matrix model description ABJM theory was related to topological string theory
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1 Introduction

on local P1 × P1 [41] and was subsequently further analyzed in [36]. One notable property of
M2–branes is that their degrees of freedom scale with N3/2 [42]. This behavior was also derived
from the field theory side via localization in [36]. The relation of the matrix model description to
topological strings and the holomorphic anomaly equation was used [43] to resum the ’t Hooft
expansion of ABJM theory, which yielded an expression in terms of the Airy function.

Natural observables in Chern Simons theories are the partition function and Wilson loops.
In terms of matrix models these were studied before in [44, 45, 46, 47]. The information of
their vacuum expectation values (vevs) is encoded in period integrals on the spectral curve of
the matrix model. In [41, 36] this connection was used to solve ABJM theory using its matrix
model description. The vevs of the 1/6 and 1/2 BPS Wilson loops can be written in terms of
contour integrals on the spectral curve of the ABJM matrix model.

1.1 Fermi gas

In case of more than three supercharges the partition function of these matrix models can be
rewritten as a partition function of a non–interacting one–dimensional Fermi gas of N particles
[48]. This is a systematic approach for solving N ≥ 3 CSM theories in the M–theory expansion.
In the Fermi gas the coupling of the Chern–Simons theory k becomes the Planck constant ~ and
the M–theory expansion corresponds to the thermodynamic limit of the quantum gas in the
grand canonical ensemble. This is a statistical physics problem which we solved successfully
by already well understood and established techniques. By neglecting exponentially small
corrections the partition function of the gas could be computed to all orders in 1/N via the
Wentzel—Kramers—Brillouin (WKB) expansion. Once again the N3/2–behavior was derived
and it can be interpreted as the scaling for a Fermi gas with a linear dispersion relation and a
linear confining potential [48]. If one disregards worldsheet instantons, the partition function is
given by

ZABJM = C−1/3eA(k) Ai
[
C−1/3

(
N − k

24 −
1
3k

)]
, (1.1.1)

where we again see that it can be written in terms of the Airy–function.

Here we are extending this approach to also include Wilson loops. We already introduced
two types of Wilson loops for ABJM theory. They were analyzed in terms of matrix models
before in [41, 36] and here we we compute the vevs of these Wilson loop operators using the
Fermi gas approach. In order to compare the results obtained in this manner to results in
M–theory, we extract the large N expansion of correlators corresponding to the Wilson loops.
In the statistical mechanical formulation these are averages of n–body operators. Since we are
dealing with a non–interacting gas, the computation of these can be reduced to a quantum-
mechanical one–body problem. This can basically be done in a semiclassical expansion, but in
this case the determination of the expectation value demands that we resum an infinite number
of quantum corrections. This resummation leads to a very simple form. Namely, similar to the
partition function we can write the result up to exponentially suppressed terms in terms of Airy
functions. This was already shown for the free energy, but this structure even holds for Wilson
loop operators. In case of the 1/2 BPS Wilson loop operator in the fundamental representation
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1.2 Quantum Geometry

this has the simple form

〈W 1/2〉 = 1
4 csc

(2π
k

) Ai
[
C−1/3

(
N − k

24 −
7
3k

)]
Ai
[
C−1/3

(
N − k

24 −
1
3k

)] . (1.1.2)

Another important aspect of this computation is that the semiclassical expansion of the Fermi
gas corresponds to an expansion of the CSM theory in the strongly coupled regime, where we
can make actual contact with the AdS dual. This is generally a very hard problem because the
perturbative region of one theory is the strongly coupled region of its dual theory.
While we were able to completely resum the large N expansion, lower order perturbative

results computed via the Eynard–Orantin recursion directly from the matrix model, already
existed and are in perfect agreement with our results. Even though results already exist for the
strongly coupled regime, our formalism to compute expectation values is very efficient.

1.2 Quantum Geometry

In chapter 4 we will use a conjecture made in [19] about the computation of the free energy of
the refined topological string in the Nekrasov–Shatashvili limit. The authors take the structure
discovered in [18] about the behavior of branes in the topological B–model and extend it to the
refined case. Using this method we are able to apply a quantum deformed version of special
geometry [49, 50] in order to compute the instanton series (1.0.1) on local Calabi–Yau manifolds,
given by a del Pezzo surface as a base, in the Nekrasov Shatashvili–limit. This limit is given by
setting ε1 or ε2 to zero and picks exactly the terms F (n,0) with n ≥ 0 in the expansion (1.0.3).
For the topological string A–model on these manifolds there exist a dual geometry, described

by a Riemann surface in the topological string B–model. One can generally show that branes
ending on one point of this Riemann surface, act like quantum mechanical objects [18]. Moving
branes around cycles of the geometry leads to monodromies, which can be used to extract the
closed amplitudes. But generally a problem exists, namely we have no control over the higher
order corrections in gs to the Hamiltonian. This means taking the defining equation of the
Riemann surface as the Hamiltonian is only correct to leading order in the WKB expansion.
This problem disappears if we are taking the Nekrasov–Shatashvili limit, giving us a way to
use the fact that branes ending on Riemann surfaces is a basic quantum mechanical problem,
to compute the instanton series of the closed amplitudes [19]. Now we can write down a time
independent Schrödinger equation, based on the defining equation of the Riemann surface. This
Schrödinger equations is solved by wavefunctions of the εi branes that did not decouple in the
Nekrasov–Shatashvili limit.
We consider two different ways of solving this Schrödinger equation. The first is the WKB

expansion, which yields a perturbative expansion in the Planck constant ~, while being exact
in the complex structure moduli. The alternative is to set up a difference equation, which can
be solved perturbatively in the moduli, while being exact in ~. In both cases we extract a
meromorphic differential and the periods of this differential obey the usual special geometry
relations between.
Finding the right contours and parameterizations of the curve to obtain the periods is not

an easy task, therefore we introduce differential operators of order two in the moduli, which
result in higher order contributions to the periods when applied to the classical part of the
period. We find the classical part of the periods by the standard method of solving the Picard–
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1 Introduction

Fuchs equations related to the geometry we consider. This approach is also useful for going to
different points in the moduli space, because in this picture everything is exact in the moduli.
We will make use of this to compute the Nekrasov–Shatashvili limit of topological string theory
on geometries with del Pezzos as a base. For the local P2 and local F0 we also derive the closed
amplitudes at different points in the moduli space.

1.3 Structure
We start with giving a general introduction to some concepts necessary in order to understand
the techniques used in chapter 2. These include an introduction to matrix models in section 2.1
together with methods to solve them to all orders of N in the ’t Hooft expansion. In section 2.2
we briefly introduce ABJM theory, its field content and the relation to the AdS/CFT conjecture.
Afterwards, in section 2.3 we show, how it is possible to rewrite the partition function of ABJM
theory and certain Wilson loop operators to a matrix model.
In section 3 we use the Fermi gas approach to compute the vevs of the 1/2 and 1/6 Wilson

loop operators in ABJM theory.
Then, in section 4 we first introduce the necessary concepts needed to work with the quantum

geometry of branes ending on a Riemann surface and use this to compute the instanton series
of a selection of local geometries with a del Pezzo–surface as a base.
In section 5 we conclude the Fermi gas computations as well as the quantum geometry

computations and give an outlook about possible future work on these topics.
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CHAPTER 2

Preliminaries

2.1 Matrix Models

In this section we will give an introduction to matrix models, which will mainly follow the
references [51, 52]. First we will define what we mean by a matrix model and give some general
definitions for important quantities. In the next step we will present some means of solving
matrix models in different ways. A basic case is the computation of correlators in the Gaussian
matrix model. In the next step will will introduce the saddle point method, leading to a
geometric solution of matrix models, in order to find the leading order contribution in the 1/N
expansion of general hermitian matrix models. Finally we extend the geometric method via a
topological recursion of Eynard and Orantin [53, 54].

2.1.1 Definitions

The partition function of an hermitian matrix model is given by

Z = 1
vol(U(N))

∫
dMe

− 1
gs
V (M)

, (2.1.1)

where we V is a polynomial of degree n+ 1 given by

1
gs
V (M) = 1

2gs
TrM2 + 1

gs

n+1∑
p=3

,
gp
p

TrMp, (2.1.2)

where gs and gp are coupling constants. This polynomial has the gauge symmetry

M → UMU †, (2.1.3)

where U is an U(N) matrix. This is the reason for the volume factor in the partition function
(2.1.1). The differential dM is the Haar measure of the gauge group.

Matrix models basically are quantum gauge theories in zero dimensions, where we have (2.1.2)
as an action and the matrix M is the field.
The simplest example of such a matrix model is the Gaussian matrix model where the poly-
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2 Preliminaries

nomial is just given by
1
gs
V (M) = 1

2gs
TrM2 . (2.1.4)

We also define normalized expectation values by

〈f(M)〉 =
∫

dMf(M)e−
1
gs
V (M)∫

dMe
− 1
gs
V (M)

. (2.1.5)

This is useful in particular because it enables us to make power series expansion of correlators
for matrix models of general actions (2.1.2) in terms of correlators 〈f(M)〉G of the Gaussian
matrix model, which can be solved exactly. The correlators in the representation basis are

〈TrRM〉G = c(R) dimR (2.1.6)

for even |R|, where R denotes a representation. Here

c(R) = (−1)
A(A−1)

2

∏
f odd f !!

∏
f ′ even(f ′ − 1)!!∏

f odd,f ′ even(f − f ′) , (2.1.7)

where A = l(R)/2, with even l(R) to have a non-vanishing result.

If we now expand the partition function (2.1.1) with general potential (2.1.2) in terms of
the Gaussian matrix model, we obtain a perturbative expansion in the couplings gs and gp,
which can be interpreted in terms of Feynman diagrams. The perturbative expansion of the
free energy

F = logZ (2.1.8)

will only receive contributions from connected vacuum bubbles. This is a quantum field theory
of a field in the adjoint representation, therefore we are able to express this expansion in terms
of ’t Hooft’s double line notation [55]. But the perturbative expansion of these matrix models
does not only depend on the couplings gs and gp, but also on the rank N of the gauge group.
The Feynman diagrams are good at keeping track of powers in the coupling constants, but
are lacking in keeping track of powers of N . But there is a way to organize the perturbative
expansion in a meaningful way in terms of N . If we split the diagrams in the correct way, we
obtain fatgraphs which we can associate with Riemann surfaces with holes, where each closed
loop represents the boundary of a hole. This surface has a genus g which is related to the
diagram by the relation

2g − 2 = E − V − h, (2.1.9)

where E counts the number of propagators or edges, V counts the number of vertices and h
the number of closed loops. Using this knowledge, we can write the factor associated with a
fatgraph like

g2g−2
s th

∏
p

gVpp , (2.1.10)

where the ’t Hooft parameter
t = Ngs (2.1.11)

was introduced. We will call the fatgraphs with g = 0 planar and the ones with g > 0 nonplanar,
for which examples are depicted in figure 2.1. In the end we find that the free energy admits
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2.1 Matrix Models

Figure 2.1: This figure depicts two cubic vertices. On the left–hand side a genus zero diagram is depicted,
while the diagram shown on the right–hand side is of genus one.

an expansion in gs and t as

F =
∞∑
g=0

∞∑
h=1

Fg,hg
2g−2
s th, (2.1.12)

where we define
Fg(t) =

∞∑
h=1

Fg,ht
h (2.1.13)

so that we can finally write down the genus expansion

F =
∞∑
g=0

Fg(t)g2g−2
s . (2.1.14)

This model has the gauge symmetry (2.1.3), which is the transformation of a matrix M by
a unitary matrix. This can be used to gauge fix the matrices M in the integral like

M → UMU † = D, (2.1.15)

whereD = diag(λ1, . . . , λN ). Using this as our choice of gauge and applying the Faddeev–Popov
techniques in order to compute the gauge–fixed integral, we are able to write the partition
function (2.1.1) in terms of eigenvalues of the hermitian matrices

Z = 1
N !

∫ dλN

(2π)N ∆2(λ)e−
2
gs

∑N

i=1 V (λi), (2.1.16)

where
∆(λ) =

∏
i<j

(λi − λj) (2.1.17)

is the Vandermonde determinant.

2.1.2 Perturbative solutions of matrix models

There exist various of ways of solving matrix models. The Gaussian matrix model has been
solved in [44, 51] by means of e. g. orthogonal polynomials. Here we will introduce another
possibility presented in e. g. [56].
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2 Preliminaries

If we insert a total derivative into (2.1.16) like in

∑
k

∫
dλN ∂

∂λk

λp+1 ∏
i 6=j

(λi − λj) exp
(
− 1

2gs

∑
i

V (λi)
) = 0 , (2.1.18)

we are able to derive a recursive relation for the correlation functions of this matrix model.
First we notice that

〈Tr1〉 = N (2.1.19)

and then we deduce from (2.1.18), the recursion relation

p∑
j=0
〈TrM j TrMp−j〉 = 1

2gs
Tr(Mp+1V ′(M)) , (2.1.20)

which, for the Gaussian matrix model, just becomes
p∑
j=0
〈TrM j TrMp−j〉 = 1

gs
Tr(Mp+2) . (2.1.21)

This result can be used to compute all correlators with a single trace. We present a generalized
formula in appendix A.1.

2.1.2.1 Spectral curves

The description (2.1.16) leads to a method of obtaining the genus zero free energy F0 by solving
a Riemann-Hilbert problem [57]. This method is based on the saddle point analysis of the matrix
integral and will be extended in section 2.1.3 to a procedure which allows us to compute also
higher order corrections of the free energy Fg.

In the next step we write the partition function like

Z = 1
N !

∫ dλN

(2π)N e
N2Seff(λ), (2.1.22)

where we defined the effective action

Seff = − 1
tN

N∑
i=1

V (λi) + 2
N2

∑
i<j

log |λi − λj | . (2.1.23)

This effective action is of order O(1), because the sums over the eigenvalues are roughly of order
N . This means for N →∞ the integral will be dominated by a saddle-point configuration that
extremizes the effective action. Variation of (2.1.23) with respect to the eigenvalue λi gives the
equation

1
2tV

′(λi) = 1
N

∑
j 6=i

1
λi − λj

, i = 1, . . . , N. (2.1.24)

Let us define the eigenvalue distribution for finite N as

ρ(λ) = 1
N

N∑
i=1

δ(λ− λi), (2.1.25)
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2.1 Matrix Models

where the λi are such that they solve the saddle point equation (2.1.24). We expect ρ to become
a continuous function in the large N limit, so that we can describe the sums over eigenvalues
in terms of continuum quantities by replacing

1
N

N∑
i=1

f(λi)→
∫
C
f(λ)ρ(λ)dλ, (2.1.26)

where ρ is normalized like ∫
C
ρ(λ)dλ = 1 , (2.1.27)

and the path C surrounds cuts introduced by the condensation of eigenvalues. In this expression
ρ can be considered an eigenvalue density.

Using this eigenvalue density, in the planar limit we can write correlators of the matrix model
as

1
N
〈TrM `〉 =

∫
C

dλλ`ρ(λ) . (2.1.28)

In order to find this eigenvalue density we introduce an auxiliary function we call the resolvent.
It is defined as the generating function of the correlators (2.1.28)

ω(p) = 1
N
〈Tr 1

p−M
〉 . (2.1.29)

which can be seen by rewriting this expression formally as a geometric series

ω(p) = 1
N

∞∑
k=0
〈TrMk〉p−k−1 . (2.1.30)

The resolvent admits an expansion of the form

ω(p) =
∞∑
g=0

g2g
s ωg(p) (2.1.31)

as this is the generating functional of connected correlators. Using (2.1.28), the resolvent at
genus zero just becomes

ω0(p) =
∞∑
k=0

p−k−1
∫

dλ ρ(λ)λk =
∫

dλ ρ(λ)
p− λ

. (2.1.32)

From this, we can extract the eigenvalue density

ρ(λ) = − 1
2πi (ω0(λ+ iε)− ω0(λ− iε)), (2.1.33)

which means that, if we know the resolvent at genus zero, we can use it to find the eigenvalue
density.

The solutions of the matrix model can be encoded in the equation

y(p) = V ′(p)− 2tω0(p), (2.1.34)
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2 Preliminaries

which leads to
y2 = V ′(p)2 −R(p) , (2.1.35)

where
R(p) = 4t

∫
dλρ(λ)V

′(p)− V ′(λ)
p− λ

. (2.1.36)

This defines the classical spectral curve of the matrix model.

2.1.3 The topological recursion of Eynard and Orantin

A simple loop equation has the form∮
C

dω
2πi

V ′(ω)
p− ω

W (ω) = (W (p))2 + 1
N2W (p, p) . (2.1.37)

In the large–N limit we can expand this equation in gs and write, by extracting the expressions
order by order,

(K̂ − 2W0(p))Wg(p) = Wg−1(p, p) +
g−1∑
k=1

Wk(p)Wg−k(p), (2.1.38)

where we defined the operator

K̂f(p) =
∮
C

dω
2πi

V ′(x)
p− ω

f(ω) . (2.1.39)

We see that the one–point function Wg(p), when acted upon by the the operator on the l. h. s.
in (2.1.38), can be written in terms of two–point and one–point functions of lower genus. If
we could invert the operator, we would have a recursive prescription for finding higher genus
corrections to the resolvent. We can make use of the meromorphic forms on the Riemann
surface defined by the spectral curve and invert operators of the form(

K̂ − 2W0(p)
)
f(p) = φ(p) . (2.1.40)

This is inversion is given [53, 58, 59] in terms of contour integrals around the cuts as

f(p) =
∮
C

(dS(p, q)
y(q) φ(q)

)
=

2s∑
i=1

Resq=xi
(dS(p, q)

y(q) φ(q)
)
, (2.1.41)

where dS are unique meromorphic differentials which only have two simple poles in q, located
at q = p and q = p̄ with the conditions

dS(q, p) ∼
q→p

dq
q − p

+ finite, (2.1.42a)

dS(q, p) ∼
q→p̄

dq
q − p

+ finite (2.1.42b)
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2.1 Matrix Models

and the condition that the integral w.r.t. q over the A cycles vanishes∮
q∈Aj

dS(q, p) = 0 j = 1, . . . , s− 1 . (2.1.43)

By using the loop insertion operator [60]

d
dV (p) = −

∞∑
k=1

k

pk+1
∂

∂gk
(2.1.44)

we are able to generally write a recursive equation for the many–point functions of genus g [53,
54]

W
(g)
h+1(p, p1, . . . , ph) = Res

q=qi

dEq(p)
Φ(q)− Φ(q̄)

(
W

(g−1)
h+2 (q, q̄, p1, . . . , ph) (2.1.45)

g∑
l=0

′∑
J⊂H

W
(g−l)
|J |+1(q, pJ)W (l)

|H|−|J |+1(q̄, pH\J) ) . (2.1.46)

In the following text we want to compute Wilson loop operators in the matrix model description,
which only require one–point resolvents Wg(p). However, in order to go to higher genus, we
need contributions coming from many–point resolvents. For g = 2 this involves contributions
with up to three legs.

In the next step, we introduce the so called kernel differentials [61, 53] which are an important
tool in solving the recursion

χ
(n)
i = Res

q=xi

(dS(p, q)
ỹ(q)

1
(q − xi)n

)
. (2.1.47)

Using these kernel differentials we are able to systematically write down expressions formed by
multiplying an expression f(q, pi, xi) by dS(p,q)

y(q) and taking the sum of the residua at q = xi.
Let us denote the operator that applies this by Θ(p, q), and define

Θ(p, q)f(q, pi, xi) =
∑
i

Res
q=xi

(dS(p, q)
ỹ(q) f(q, pi, xi)

)
. (2.1.48)

To start the recursion we do not only need the resolvent µ0(x) at genus zero, but also another
initial condition, namely the annulus amplitude

W0(p, q) = − 1
2(p− q)2 + σ(p)

2(p− q)2
√
σ(p)

√
σ(q)

− σ′(p)
4(p− q)

√
σ(p)

√
σ(q)

+ A(p, q)√
σ(p)

√
σ(q)

,

(2.1.49)
which is related to the Bergman kernel by

B(p, q) =
(
W0(p, q) + 1

(p− q)2

)
dpdq . (2.1.50)

We are considering an elliptic curve and in this case A(p, q) as well as the kernel differentials

15



2 Preliminaries

are given in terms of elliptic integrals:

A(p, q) = (p− x1)(p− x2) + (p− x3)(p− x4) + (x1 − x2)(x4 − x2)G(k), (2.1.51)

where
k2 = (x1 − x2)(x3 − x4)

(x1 − x3)(x2 − x4) (2.1.52)

is the elliptic modulus and
G(k) = E(k)

K(k) (2.1.53)

is the ratio between the two complete elliptic integrals

E(k) =
∫ π

2

0

√
1− k2 sin2 θdθ, K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

. (2.1.54)

2.1.3.1 local P1 × P1

As explained in [62] the ordering of the branch points here follows the one appropriate for local
P1 × P1, which is obtained from the one in [61] by the exchange

x2 ↔ x4 . (2.1.55)

The kernel differentials appear in this formalism by expanding

dS(p, q)
ỹ(q) = 1

M(q)
√
σ(p)

( 1
p− q

+N (1)(q)
)
dp (2.1.56)

with an adjacent function f(q, p, xi) around the branch points. We introduce the function

N (1)(q) = KC(1)(q) = π
√

(x1 − x3)(x2 − x4)
2K(k) C(1)(q) , (2.1.57)

which is a normalization of the C (or equivalently the A) cycle integral

C(1)(q) =
∫
C

1
2πi

dx

(q − x)
√
σ
, (2.1.58)

so that the property (2.1.43) holds. Note that, if q approaches the branch points of the cuts
defining the C cycle, this integral has to be regularized,

C(1)(xi) =


1

2πi
∫
C

dx
(q−x)

√
σ

∣∣∣
q=xi

if xi is not a branch point defining C
1

2πi
∫
C

dx
(q−x)

√
σ
− 1√

σ(q)

∣∣∣∣
q=xi

if xi is a branch point defining C .
(2.1.59)

This definition of the regularization ensures that one can move the contour from the x1 − x2
cut to the x3 − x4 cut without getting a contribution from the poles. As a consequence the so
defined integrals C(xi) obey a symmetry under certain permutations of the branch points. We

16



2.1 Matrix Models

can evaluate e. g. the manifestly regular integral1

α4 = N (1)(x4) = 1
x4 − x3

[(x3 − x1)
(x1 − x4)G(k) + 1

]
(2.1.60)

and obtain from the symmetrization the evaluation at the other branch points

N (1)(x1) = N (1)(x4)|x1↔x4
x2↔x3

, N (1)(x2) = N (1)(x4)|x1↔x3
x2↔x4

, N (1)(x3) = N (1)(x4)|x1↔x2
x3↔x4

.

(2.1.61)
Higher kernel differentials are therefore given by

χ
(n)
i = 1

(n− 1)!
1√
σ(q)

dn−1

dqn−1

[ 1
M(q)

( 1
p− q

+N (l)(q)
)]

q=xi
. (2.1.62)

Here N (l)(q) = KC(l)(q), and since the normalization factor K is independent of q, the only
nontrivial task is to calculate the derivatives

C(n)(q) = dn−1

dqn−1C
(1)(q). (2.1.63)

There are various ways to do this. One fast way is to compute

C(n)(q) = (−1)n−1(n− 1)!
2πi

∫
C

dx
(q − x)n

√
σ
. (2.1.64)

These integrals have poles at finite points and are very similar to the ones with poles at infinity.
By similar formulas they can be expressed by linear expressions inK(k) and E(K) with rational
coefficients in the moduli. In particular the normalized integrals N (n)(q) depend only on the
ratio of elliptic functions G(k) defined in (2.1.53). To get expressions which are valid at all
branch points one calculates first N (n)(x4), which is regular, and then uses (2.1.61) to get
N (n)(xi). These derivatives have symmetric expressions in terms of the branch points and the
αi. The first two derivatives are

N (2)(xi) = 1
3
∑
j 6=i

αj − αi
xj − xi

,

N (3)(xi) = 2
15

 1∏
j 6=i(xj − xi)

+
∑
j 6=i

 7αj − αi
(xj − xi)2 + 3

∑
j 6=k

1
(xj − xi)2(xk − xi)

 . (2.1.65)

Eventually one needs integrals over meromorphic forms with mixed poles

ωn,k = xn

(x− p)k
√
σ(x)

dx , (2.1.66)

which are obtained from the obvious relations

ωn,k = ωn−1,k−1 + pωn−1,k . (2.1.67)

1 Here we make contact with the shorthand notation αi introduced in [61].
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The genus one differential is then determined by evaluating

W1(p) = Θ(p, q)W0(q, q) (2.1.68)

using (2.1.49,2.1.47), as well as the explicit formulas for the kernel differentials for elliptic
curves. It was first calculated explicitly in [61]. One can order W1(p) according to its poles at
the branch points

W1(p) = 4√
σ(p)

4∑
i=1

(
Ai

(p− xi)2 + Bi
p− xi

+ Ci

)
, (2.1.69)

where

Ai = 1
16

1
M(xi)

, Bi = − 1
16

M ′(xi)
M2(xi)

+ 1
8M(xi)

2αi −
∑
j 6=i

1
xi − xj

 ,

Ci = − 1
48

1
M(xi)

∑
j 6=i

αi − αj
xj − xi

− 1
16

M ′(xi)
M2(xi)

αi + αi
8M(xi)

2αi −
∑
j 6=i

1
xi − xj

 .

(2.1.70)

To obtain the form
W2(p) = Θ(p, q) (W1(q, q) +W1(q)W1(q)) (2.1.71)

one needs W1(p, p1) from

W1(p, p1) = Θ(p, q) (W0(q, q, p1) + 2W1(q)W0(q, p1)) (2.1.72)

and W0(p, p1, p2) from

W1(p, p1, p2) = 2Θ(p, q)W0(q, p1)W0(q, p2) . (2.1.73)

By repeated application of the recursion, one expresses any amplitude through a calculation of
repeated residues of products of the annulus amplitude. The functionW2(p) can be for example
written like

W2(p) =2Θ(p, q)Θ(q, q1)Θ(q1, q2)W0(q2, q)W0(q2, q1)+
2Θ(p, q)Θ(q, q1)Θ(q1, q2)W0(q1, q)W0(q2, q2)+
Θ(p, q)Θ(q, q1)Θ(q, q2)W0(q1, q1)W0(q2, q2) .

(2.1.74)

It is easy to derive that for amplitude with genus g and h holes all terms will be of the general
form

Wg,h ∼ Θ2g−2+hW g+h−1
0,2 . (2.1.75)

However the number of terms grows exponentially with g and h. A few examples for the number
of contributions counted with multiplicity is given in the table below.

Since W ∼ G, and each Θ increases the power of G by one, we get for the leading power
Wg,h ∼ G3g+2h−3. More precisely, the Wg,h are meromorphic differentials with the following
pole structure

Wg,h(p1, . . . , ph) = 1∏h
l

√
σ(pl)

3g−2+h∑
j=0

h∑
k=1

4∑
i=1

A
(j)
i,k

(pk − xi)3g−2+h−j

 , (2.1.76)
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2.2 ABJM theory

g 0 1 2 3 4 5
h
1 disk 1 5 60 1105 27120
2 1 4 50 960 24310
3 2 32 700 19200
4 12 384 12600

Table 2.1: Number of terms involved in the recursive definition of Wg,h.

where

A
(j)
i,k =

j∑
p=0

Gpa
(p)
i,k (xi) (2.1.77)

are polynomials in the ratio of the complete elliptic integrals. For Wg(p), g = 2, 3 we found a
explicit expressions for general moment functions. To write down all A(j)

i,k takes however several
pages. We display the coefficient of the leading pole

A
(0)
i,1 = 105

27M(xi)3∏
k 6=i(xi − xk)

. (2.1.78)

and a(3g−2+h)
1 :=

∑
i a

(3g−2+h)
i,1 multiplying the highest power of G3g−2+h in Wg,h(p). For h = 1

we find

a
(3g−2+1)
1 = cg,1

( 4∑
i=1

1
M(xi)

∏
j 6=i(xi − xj)2

)2g−1

[(x1 − x3)(x2 − x4)]3g−1, (2.1.79)

where c2,1 = − 5
16 , c3,1 = 7

8 . The other expressions are available on request.
All the results above are valid for any spectral curve of genus one. The calculation of the

higher genus functions Wg(p) is obviously quite involved.

2.2 ABJM theory

By considering the different dualities connecting the various string theories, Witten conjectured
the existence of a theory, unifying all these into one [22]. We know its low energy limit, namely
eleven dimensional supergravity, which was defined in [63], from which one can deduce that the
fundamental objects of M–theory are membranes.
The construction of the low–energy field theory of a stack of M2–branes has been a long-

standing problem. To achieve this it has been found, that one needs to explore conformal
Chern–Simons theories in three dimensions [64]. But it turned out that they do not possess
enough supersymmetry. Usually CSM theories in three dimensions only have N = 2 or N = 3
supersymmetry. This is not enough to describe the low–energy field theory of such a stack of
M2–branes. A theory with more supersymmetry, namely N = 8, has been constructed later
on [65, 66, 67, 23], which was conjectured to correspond to a certain setup of M2–branes.
Additionally there needs to exist a sensible interpretation in the context of AdS/CFT. All

the problems mentioned here were solved in [24] where a N = 6 Chern–Simons matter theory
in three dimensions has been constructed, which fulfills the necessary conditions. It is a quiver
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U(N) U(N)

Figure 2.2: A gauge quiver describing the field content of ABJM theory.

gauge theory with two nodes, i. e. it has the gauge group U(N) × U(N), with bifundamental
matter. The relevant quiver diagram can be found in figure 2.2. In this diagram is encoded that
the field content is given by four complex scalar fields and four complex fermions transforming
in the (N̄ ,N) and (N, N̄)–representation of U(N) × U(N). The gauge fields have a Chern–
Simons action with opposite integer levels k and −k for the two gauge groups. A specific scalar
potential is chosen in a way such that supersymmetry is enhanced to N = 6 in the general case
or even N = 8 for k = 1, 2. With N = 6 this theory has a total of 12 real supercharges. This
theory is weakly coupled for large k (k � N).

It is possible to set up a brane construction in type IIA string theory which has ABJM as its
low energy limit. This setup can be lifted to M–theory on the orbifold C4/Zk. The AdS dual
of ABJM is M–theory on

AdS4 × S7/Zk , (2.2.1)

where k is given by the coupling constant k of the CSM theory. In the limit N � k5 this
geometry is weakly curved and the theory is described by type IIA string theory on AdS4×CP3.

2.3 Localization

A very useful property appearing in supersymmetric gauge theories is called localization. This
property makes it possible to reduce the full path integral, defining the theory, to lower–
dimensional integrals. In the case we are considering the path–integral of CSM theories in
three dimensions will reduce to common integrals, meaning we will effectively reduce the prob-
lem to a zero dimensional QFT, like e. g. a matrix model. Let us look a simple example
presented in [68] and explain the basics of localization following this reference.
Let us consider a very simple example with one bosonic field X and two fermionic fields ψ1

and ψ2. We consider the partition function defined by the path integral

Z =
∫
e−S(X,ψ1,ψ2)dXdψ1dψ2, (2.3.1)

where the action is given by

S(X,ψ1, ψ2) = 1
2(∂h)2 − ∂2hψ1ψ2 , (2.3.2)
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2.3 Localization

with ∂h = ∂Xh(X). Consider the transformations

δX = ε1ψ1 + ε2ψ2, (2.3.3a)
δψ1 = ε2∂h, (2.3.3b)
δψ2 = −ε2∂h, (2.3.3c)

where εi and ψi are Grassmann odd variables. These transformations leave the action invariant
and exchange bosons and fermions, i. e. these define a supersymmetry.

If we assume ∂h 6= 0 for all X the partition function (2.3.1) just vanishes. This can be shown
by applying the transformation

X̂ = X − ψ1ψ2
∂h(X) , (2.3.4a)

ψ̂1 = α(X)ψ1, (2.3.4b)
ψ̂2 = ψ1 + ψ2, (2.3.4c)

where α(X) is an arbitrary function. The action is invariant under the transformation

(X,ψ1, ψ2)→ (X̂, 0, ψ̂2) . (2.3.5)

Therefore we can write
S(X,ψ1, ψ2) = S(X̂, 0, ψ̂2) (2.3.6)

and have effectively eliminated one fermionic field. Using this in the Grassmanian integration
and noting that the remaining term is a total derivative, we can show that Z = 0.
In the next step, we will extend this to the case where ∂h vanishes for some X. For such

h the change of variables (2.3.3) is singular. Let us therefore integrate over the set where
∂h = 0 is deleted. If ∂h = 0 we also have δψi = 0 in (2.3.3). At these point we cannot trade
the supersymmetry–transformation variable with one of the fermionic fields. Hence the points
where ∂h are fixed points of the symmetry (2.3.3) and the computation localizes to the vicinity
of the set of fixed points. Or in other words, the path–integral is localized at loci where the
r.h.s. of the fermionic transformation in (2.3.3) under supersymmetry vanishes. This principle
holds for any QFT with supersymmetry.
Let us analyze our simple setup at the critical points now. In order to do that, let us assume

h is a polynomial of order n with isolated critical points. Then it has at most n − 1 critical
points. Near a critical point Xc we write h as

h(X) = h(Xc) + αc
2 (X −Xc)2 + · · · . (2.3.7)

We saw before that the partition function localizes at the critical points and we only have
to consider infinitesimal small regions around them. As a result we only have to keep the
leading order terms in the action, expanded around the critical point, corresponding to some
infinitesimal neighborhood. Finally, the partition function (2.3.1) becomes, with a suitable
normalization,

∑
Xc

∫ dXdψ1dψ2
√

2π
e−

1
2 (X−Xc)2+αcψ1ψ2 =

∑
Xc

αc
|αc|

=
∑
Xc

h′′(Xc)
|h′′(Xc)|

, (2.3.8)
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so that we can write
Z =

∑
x0:∂h|x0=0

∂2h(X)
|∂2h(X)| . (2.3.9)

More generally, if we have a quantum field theory with a symmetry, then the correlation
functions of quantities that are variations of other fields under the symmetry vanish. Let us,
for example, consider f = δg, where δg is the variation of g under a symmetry. Then we can
write

〈f〉 =
∫
fe−S =

∫
δg e−S =

∫
δ(ge−S) = 0, (2.3.10)

if we can discard boundary terms. This principle applies to bosonic symmetries as well as
fermionic symmetries. Let us consider

g = ∂ρ(X)ψ1, (2.3.11)

which yields, when we apply the symmetry–transformation (2.3.3) where we set ε1 = ε2 = ε,

f = δεg = ε(∂ρ∂h− ∂2ρψ1ψ2) . (2.3.12)

As we know, the expression 〈f〉 vanishes, thus we have

〈∂ρ∂h− ∂2ρψ1ψ2〉 = 0 . (2.3.13)

Let us now transform the action (2.3.2) by applying h 7→ h+ρ to it. The variation of the action
is

δρS = ∂ρ∂h− ∂2ρψ1ψ2 (2.3.14)

and by looking at (2.3.13) we see, that the vev of this expression vanishes. Hence the partition
function is invariant under this transformation

〈δρS〉 = 0 . (2.3.15)

This can also be used to compute the partition function. Let us rescale h → λh with λ � 1.
In this case the action S is very large, while exp(−S) is very small, except for points nearby
the critical points of h. Using this method the problem reduces to the computations presented
earlier in this section.
Supersymmetry enables us to define nilpotent operators Q, meaning Q2 = 0, which is a

property that can be used to localize the path integral to zero–loci of the supersymmetric
transformations along the lines described before.
An important results was derived in [31] where the vevs of certain Wilson loops in N = 4 and
N = 2 SYM theories in four dimensions were localized to simple matrix integrals. The results
extracted from these matrix models were in agreement with the AdS/CFT correspondence.
New techniques in localization were presented in [32] which made it possible to localize the

partition functions and expectation values of Wilson loops of N ≥ 3 CSM theories to matrix
integrals. ABJM theory is such a CSM theory and can therefore be localized by applying this
formalism.
Let us show this procedure for the gauge sector of a CSM theory. A general CSM theory

without matter can be described by an N = 2 multiplet which consist of the gauge field Aµ, two
real auxiliary scalars σ and D, auxiliary fermion λ which is a two–component complex spinor.
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2.3 Localization

The Lie algebra of the gauge group G is denoted by g. All of the above fields are valued in
this Lie algebra g. The kinetic term we will be using is a supersymmetric Chern–Simons term,
which in flat Euclidean space is given by

S =
∫

d3xTr
(
AdA+ 2i

3 A
3 − λ†λ+ 2Dσ

)
, (2.3.16)

where Tr denotes some inner product on g.

We actually do not consider flat Euclidean space but transfer the above action, which is
conformally invariant, to the unit three-sphere S3. Therefore we have to include the measure
factor √g and have to change the supersymmetry transformations in a way that they are
covariant with respect to both, the gauge field an the metric on S3.

The transformations of the fields, which leave the action on the S3 invariant are given by

δAµ = i
2(η†γµλ− λ†γµε) (2.3.17a)

δσ = −1
2(η†λ+ λ†ε) (2.3.17b)

δD = i
2(η†γµ(Dµλ)− (Dµλ

†)γµε)

− i
2(η†[λ, σ]− [λ†, σ]ε) + i

6(∇µη†γµλ− λ†γµ∇µε) (2.3.17c)

δλ = −1
2γ

µνFµνε−Dε+ iγµDµσε+ 2i
3 σγ

µ∇µε (2.3.17d)

δλ† = 1
2η
†γµνFµν −Dη† + iη†γµDµσ −

2i
3 σ∇µη

†γµ, (2.3.17e)

where ε and η are two–component complex spinors, which are independent as we are in euclidean
space. The γµ here are the Pauli matrices which we use to define

γµν = 1
2[γµ, γν ] . (2.3.18)

The expression
Dµ = ∂µ + i[Aµ, ·] (2.3.19)

is the gauge covariant derivative. If we only consider the gauge part, ε and η can be arbitrary.
However, if we add matter it is necessary to take ε and η to be Killing spinors.

By means of the fermionic symmetry δ we can construct the term

tδV = tδTr′
(
(δλ)†λ

)
, (2.3.20)

where Tr′ is some positive definite inner product on the Lie algebra. The bosonic part of
this term is positive definite. The reason for adding this term is that for any δ-invariant
observable this does not change the expectation value, as we saw in (2.3.10). Hence by sending
t→∞ we do not change the partition function and also do not change the vevs of for example
supersymmetric Wilson loops.
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We find the localization conditions

1
2εµνρF

νρ = Dµσ (2.3.21a)

D = −σ . (2.3.21b)

We also see that Fµν = 0, meaning the solution consists of flat connections of the gauge field
on S3. The only flat connection on S3 is Aµ = 0, leaving us with the relation Dµσ = ∂µσ = 0,
so that σ = σ0 = const. from which follows that D = −σ0 is also constant. All other fields are
vanishing.

The localization locus only consists of configuration where σ and D are constant, hence the
path integral localizes to

Z =
∫

dσ0e
Scl[σ0]Zg1−loop[σ0], (2.3.22)

which is the saddle point approximation for t→∞. The classical part of the action reduces to
just

Scl[σ0] = −4iπ2 Tr
(
σ2

0

)
, (2.3.23)

leaving us with the factor Zg1−loop coming from the quadratic fluctuations. Everything else will
be suppressed.

Now we will explicitly introduce the zero modes of σ and D, by setting

σ → σ0 + 1√
t
σ′, (2.3.24a)

D → −σ0 + 1√
t
D′, (2.3.24b)

Aµ, λ, c→
1√
t
Aµ, λ, c , (2.3.24c)

where c is the ghost field we have to introduce to gauge fix the action. The factor t in front
of the fields has been introduced in order to eliminate an overall factor in the action. All the
fields except σ and D do not have zero modes.

If we take t large and drop the quadratic terms, we are left, after some calculations, with

S =
∫ √

gd3x
∑
α

(
Bµ

α(−∇2 + α(σ0)2)Bµα + λ†α

(
i /∇+ iα(σ0)− 1

2

)
λα

)
, (2.3.25)

where Bµ is defined by splitting the gauge field Aµ in divergenceless and pure divergence part

Aµ = ∂µφ+Bµ . (2.3.26)

Now we decompose Bµ as
Bµ =

∑
α

Bµ
αXα + hµ, (2.3.27)

where Xα are representatives of the root spaces of G, α runs over the roots of G and hµ is the
component of Bµ along the Cartan.

Knowing the eigenvalues [69] of the vector laplacian acting on divergenceless vector fields we
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find the determinant of the bosonic part

det(bosons) =
∏
α

∞∏
l=1

((l + 1)2 + α(σ0)2)2l(l+2) (2.3.28)

and analogously for the fermions

det(fermions) =
∏
α

∞∏
l=1

((l + iα(σ0))(−l − 1 + iα(σ0)))l(l+1) . (2.3.29)

Using these expressions one can show that the one–loop contribution is just given by

Zg1−loop[σ0] =
∏
α

(sinh(πα(σ0))
πα(σ0)

)
, (2.3.30)

where α runs over the roots of G. Now we can plug this result into (2.3.22).
This is the story for the gauge sector. When adding matter we can follow a similar approach

to localize the path integral, but let us state here only the results without going into detail
about the computation.
For convenience we introduce the notation

detRf(a) =
∏
ρ

f(ρ(a)), (2.3.31)

where R is some representation and the product runs over the weights of R. Considering a
CSM theory with gauge group G and chiral multiplets in a representation R⊕R∗, we are able
to write the partition function as

Z = 1
|W|

∫
da exp(−4iπ2 Tr(a2))detAd(2 sinh(πa))

detR(2 cosh(πa)) , (2.3.32)

where |W| denotes the order of the Weyl group of G and Tr is an invariant inner product on g.
A standard Wilson loop operator in a theory is defined by

W = 1
dimS

TrS
(
P exp

(∮
dτ(iAµẋµ + σ|ẋ|)

))
. (2.3.33)

Here xµ(τ) is the closed world–line of the Wilson loop and P denotes the path–ordering operator.
The vev of this Wilson loop operator is just given by a simple insertion into the partition

function

〈W 〉 = 1
Z|W| dimS

∫
da exp(−4iπ2 Tr(a2)) Tr(e2πa)detAd(2 sinh(πa))

detR(2 cosh(πa)) (2.3.34)

with an additional normalization.

2.3.1 ABJM as a Matrix model

As stated in section 2.2, the matter content of ABJM theory consists of two chiral multiplets
in the bifundamental (N, N̄) representation and two chiral multiplets in the dual (N̄ ,N) rep-
resentation.
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If we set a to
a = diag(λ1, . . . , λN , λ̂1, . . . , λ̂N ) (2.3.35)

we can write the roots as

ρ
(N,N̄)
i,j (a) = λi − λ̂j , (2.3.36a)

ρ
(N̄,N)
i,j (a) = −λi + λ̂j (2.3.36b)

and the inner product we use is
Tr = k

4π (tr−t̂r), (2.3.37)

where tr and t̂r are traces in the fundamental representation of the two U(N) factors and k is
an integer. Plugging this into (2.3.32) yields

ZABJM(N) = 1
N !2

∫ dNµ
(2π)N

dNν
(2π)N

∏
i<j

[
2 sinh

(
µi−µj

2

)]2 [
2 sinh

(
νi−νj

2

)]2
∏
i,j

[
2 cosh

(
µi−νj

2

)]2 e
− 1

2gs (
∑

i
µ2
i−
∑

i
ν2
i ) ,

(2.3.38)
where the coupling gs is related to the Chern–Simons coupling k of ABJM theory as

gs = 2πi
k
, (2.3.39)

which can be interpreted as an hermitian two-matrix model where the Vandermonde deter-
minant is replaced like

∏
i<j(λi − λj) =

∏
i<j sinh(λi − λj), so that we have a sinh-deformed

Vandermonde determinant.
A BPS Wilson loop has been analyzed in [70, 34] which is explicitly given by

W
1/6
R = TrR P exp

∮ (
iAµẋµ + 2π

k
MJ
I CIC̄

J |ẋ|
)

ds. (2.3.40)

Here XA denote the four scalar fields of the theory and XA denotes their adjoints. MB
A is

a constant hermitian matrix and it can be chosen to be diag(1, 1,−1,−1), which makes this
operator 1/6 BPS.
From the localization approach we know that the normalized vev of the 1/6 BPS Wilson loop

is given by inserting ∑
i

e2πλi = Tr e2πλ . (2.3.41)

Therefore we have
〈WR〉 = 1

dimR(U(N1))〈TrR(eµi)〉ABJM (2.3.42)

and analogously for the second gauge group

〈ŴR〉 = 1
dimR(U(N2))〈TrR(eνi)〉ABJM . (2.3.43)

One can obtain (2.3.43) from (2.3.42) by exchangingN1 ↔ N2 and sending the coupling constant
from gs to −gs. From now on we will focus, without loss of generality, on the Wilson loop
associated to the first node, and we will also assume that k > 0 in the first node.
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These Wilson loops break the symmetry between the gauge groups. But in [33] an operator
has been derived (see also [71]), which handles the gauge groups in a more symmetric way.
There the quiver gauge group U(N1)×U(N2) has been promoted to the super group U(N1|N2)
due to the supergroup structure, that these Wilson loop possess. We denote the representations
of these supergroups by R. The operator localizes to the matrix model correlator

〈WR〉 =
〈

Str
(
eµi 0
0 −e−νj

)〉
ABJM

(2.3.44)

in the ABJM matrix model. Str denotes a super–trace in the super–representation R. By
noting that a representation of U(2N) induces a super–representation U(N |N) defined by the
same Young tableaux R we can also write [72]

StrR

(
eµi 0
0 −eνj

)
=
∑

k

χR(k)
zk

∏
`

Str
(

eµi 0
0 −eνj

)`k`

=
∑

k

χR(k)
zk

∏
`

(
tr
(
e`µi

)
− (−1)` tr

(
e`νj

))k`
.

(2.3.45)

This is the supergroup generalization of Frobenius formula and here k = (kl) is a vector of
non–negative, integer entries, which can be regarded as conjugacy classes of the symmetric
group. χR(k) is the character of this conjugacy class in the representation R, and

zk =
∏
`

`k`k`! . (2.3.46)

Here we will consider Wilson loops with arbitrary winding number n. In the representation–
basis these are defined by

W 1/6
n =

n−1∑
s=0

(−1)sW 1/6
Rn,s

, (2.3.47)

where Rn,s is a hook–representation with n boxes in total, n− s boxes in the first row, and one
box in the remaining rows. The case n = 1 corresponds to the Wilson loop in the fundamental
representation. In terms of matrix model vevs this is given by

〈W 1/6
n 〉 = 〈tr (enµi)〉ABJM . (2.3.48)

The 1/2 Wilson loop with winding n, as we can deduce from (2.3.45), given by

〈W 1/2
n 〉 = 〈W 1/6

n 〉 − (−1)n〈Ŵ 1/6
n 〉. (2.3.49)

This means in general, as it is clear from (2.3.45), that the vevs of 1/2 BPS Wilson loops can
be obtained form computing the 1/6 BPS Wilson loops.
Here we showed that the partition function as well as the operators for the 1/6 BPS Wilson

loop and the 1/2 BPS Wilson loop can be written in terms of matrix models. These matrix
models were used in [41, 36] to solve this problem at different coupling strength, by making use
of the tools known for topological string theory. We will use these result and map them to a
free Fermi gas which admits an expansion corresponding to the string coupling limit in ABJM
theory.
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In [44, 45] a matrix model describing Chern–Simons theory in L(p, 1) = S3/Zp has been
derived. This matrix model is large N–dual to the topological string A–model on local P1×P1.
The mirror geometry is encoded in the elliptic curve

y = z1x
2 + x+ 1−

√
(1 + x+ z1x2)2 − 4z2x2

2 (2.3.50)

where z1, z2 are the complex structure moduli. This moduli space has previously been analyzed
in [45, 40].
The way [41] made use of this is by realizing the connection

ZABJM(N1, N2, g) = ZL(2,1)(N1,−N2, g) (2.3.51)

so that we are able to use the tools already available for the topological string to solve ABJM
theory.

2.3.2 The geometry of ABJM theory

In [41, 36] the partition function and the Wilson loop vevs of ABJM theory are mapped, via
the spectral curve of the lens space matrix model, to geometric invariants of the elliptic curve

H(X,Y ) = X + 1
ϕ2

1X
+ Y + 1

ϕ2
2Y

+ 1 = 0, (2.3.52)

which are in turn related to meromorphic differentials of the third kind2. In particular, in the
planar limit, the partition function and the Wilson loop vevs are related to periods of these
differentials. The higher N corrections are related to these periods by a recursive procedure,
which amounts to integration of the loop equations of the matrix model, described in section
2.1.3. In (2.3.52) X,Y are C∗ variables and (2.3.52) is the mirror curve of the local Calabi–Yau
geometry of the B–model, namely Mcy = O(−KP1×P1) → P1 × P1, which is the total space of
the anti canonical line bundle over P1 × P1.
After multiplying (2.3.52) with XY , homogenizing it to a cubic with W , swapping W with
−Y and rescaling X 7→ Xϕ1, one obtains the curve

H̃(X,Y ) = Y 2 − Y
(

1 +Xϕ1 +X2ϕ
2
1

ϕ2
2

)
+X2 = 0 . (2.3.53)

A common parameterization of the C∗ variables arising in the definition of the curve is X = eu
and Y = ev. Then the relevant meromorphic differentials of the third kind are given by

µk = vekudu = log(Y )Xk−1dX, k = 0, 1, . . . , (2.3.54)

where
Y = a(X)

2 ± 1
2

√
σ(X) . (2.3.55)

This form is typical of local mirror geometries. With the above parameterization the discrimi-

2 see [72] for a review.
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nant is given as

σ(X) =
4∏
i=1

(X − xi) = a(X)2 − 4X2, with a(X) = 1 +Xϕ1 +X2ϕ
2
1

ϕ2
2
. (2.3.56)

The branch points involve square roots of the ϕi, but with an appropriate ordering one has

ϕ1 = −1
2

4∑
i=1

xi,
ϕ1
ϕ2

= 1
4(x1+x2−x3−x4), x1 = 1

x2
=: a, x4 = 1

x3
=: −b . (2.3.57)

Note that (2.3.53,2.3.55) defines the same family of (hyper) elliptic curves as

y2 = σ(x) , (2.3.58)

where we identified X,Y with x, y. This identification amounts to a compactification of the C∗
variables X,Y and does not affect integrals over closed cycles, up to one important subtlety:
at X →∞, µ0 behaves like

µ0(X) = 2
X

(log
(
ϕ1
ϕ2

)
+ log(X)) + 1

X2
ϕ2

2
ϕ1
− 1
X3

(
ϕ4

2
ϕ4

1
− ϕ4

2
2ϕ2

1
+ ϕ2

2
ϕ2

1

)
+O

( 1
X4

)
. (2.3.59)

In the compactification one has to regularize the form µ0 to

µ0(x) = µ0(X)|x=X −
2
x

log(x). (2.3.60)

Derivatives of µ0(x) w.r.t. to ϕi are related to standard elliptic integrals on (2.3.58).
When the ranks of the nodes in ABJM theory are not identical (this is the so-called ABJ

theory [73]), there are two ’t Hooft parameters defined by

λi = Ni

k
, i = 1, 2. (2.3.61)

In the Calabi–Yau picture, these parameters are mirror coordinates and as such they are iden-
tified with the periods

λi = 1
4πi

∫
Ci
µ0, (2.3.62)

where the cycles have the geometry

C1 = (1/a, a), C2 = (−b,−1/b) . (2.3.63)

The homology relations imply that the Ci periods are non identical because of the pole in the
µk. In particular for µ0 it is clear from figure 2.3 and (2.3.59) that there is an exact relation
between the periods (2.3.62)

exp(2πi(λ1 − λ2)) = ϕ1
ϕ2

. (2.3.64)

For this reason, the ABJM slice
λ1 = λ2 mod Z (2.3.65)

can be identified with an algebraic submanifold of the complex deformation space of (2.3.52).

29



2 Preliminaries

−b −1/b 1/a a

12

γ

Figure 2.3: The cycles in the ABJM geometry in the x-plane. The non-vanishing residua of the forms
at x =∞

This submanifold is simply given by

ϕ1 = ϕ2 = ϕ = iκ. (2.3.66)

In particular, in the slice one has

∂ϕµk = ωk = xk√
σ(x)

dx , (2.3.67)

i. e. all closed integrals of µk on (2.3.53,2.3.55) are determined up to a constant by standard
elliptic integrals on (2.3.58). For latter reference we note that the parameterization of the
branch points by κ is

a(κ) = 1
2

(
2 + iκ+

√
κ(4i− κ)

)
, b(κ) = 1

2

(
2− iκ+

√
−κ(4i + κ)

)
. (2.3.68)

On the slice (2.3.53) is an algebraic family of elliptic curves with monodromy group Γ0(4)
and j-invariant

j = 16− 16ϕ2 + ϕ4

1728ϕ2(16− ϕ2) . (2.3.69)

This family is related to the Γ0(2) curve of pure SU(2) SW-theory

y2 = (x2 − u)2 − Λ4 (2.3.70)

by identifying

u = ±
(

1− ϕ2

8

)
Λ2. (2.3.71)

Indeed, the period integrals of µ0 are annihilated by a single Picard–Fuchs differential operator
for Mcy, after identifying the Kähler classes of the P1 i. e. T1 = T2 (in the notation of [36]). It
reads3

D = (ϕ2θ2
ϕ − 16(2θϕ − 1)2)θϕ = ϕ(ϕ2(θϕ + 1)2 + 16θ2

ϕ)∂ϕ = ϕDhol∂ϕ, (2.3.72)

where θx = xd/dx is the logarithmic derivative. Dhol annihilates the periods over the holomor-

3 The formulas θx = aθy if y = xa and [θx, xz] = axa make the comparison with [74] trivial.

30



2.3 Localization

phic differential ω0 on (2.3.58), as a consequence of (2.3.67). The differential equation (2.3.72)
has three critical points: ϕ2 = 0, ϕ2 = 16 and ϕ2 = ∞. Let us describe the behavior of the
periods at these points and determine the analytic continuations and the monodromy action.
The weak coupling point of ABJM theory is the point ϕ = 0. In the w = ϕ2 variable the period
basis looks like

Π =


∫
γ µ0∫
B µ0∫
C µ0

 =

 1
∂λF

0

λ

 , with

 1
λ

F̃λ

 =

 1√
w

8πi [1 + w
192 +O(w2)]

2λ
πi log(w) +

√
w

4π2i [
5

588w +O(w2)]

 .

(2.3.73)
where

∂λF
0 = F̃λ − (2 + ib)λ− 1

2 , b = 4 log(2) + 1
π

. (2.3.74)

The recursion defining λ can be summed up to yield [48]

λ = κ

8π 3F2

(
1
2 ,

1
2 ,

1
2; 1, 3

2;−κ
2

16

)
. (2.3.75)

This function plays the role of the mirror map at the orbifold, while ∂λF 0
w is the dual period.

This pair defines the genus zero prepotential F 0
w, by special geometry, as well as the polarization

on the ABJM slice.

The point ϕ2 = ∞ is the strong coupling point of ABJM theory, λ → ∞. It corresponds to
the large radius point of topological string theory. The topological string basis is obtained by
the local limit of a compact Calabi–Yau manifold, and it is half integral in the homology of the
curve (2.3.53)

Π =

 1 0 0
−1 1 0
0 −1

2 1

Πts . (2.3.76)

In the coordinates z = ϕ−2 the topological string basis reads

Πts =

 1
T

∂TF
0
gw

 =


1

1
2πi [log(z) + 4z +O(z2)]

−1
2

(
1

2πi

)2
[log2(z) + 4z log(z) + 8z +O(z2)]− 1

12

 . (2.3.77)

Here, Q = exp(2πiT ), and ∂TF 0
gw can be integrated to obtain the genus 0 prepotential

F 0
gw(Q) = −1

6T
3 − 1

12T + c+
∞∑
d=1

n9
dLi3(qd). (2.3.78)

This is the generating function of g = 0 BPS invariants, summing over the degrees d1 + d2 = d
w.r.t. to both Kähler classes of the P1’s4. Near the conifold point, and in the u = (1 − 16

ϕ2 )

4 Up to a constant c = χ
2(2πi)3 , which depends on the regularized Euler number of the local geometry for χ = 4.
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coordinates, the basis reads 5

Πts =

 1
∂TcF

0
c

Tc

 =

 1
1

2π2i [4πTc log(u) + 9
16u

2 +O(u3)] + 2biTc + c
1

4π [u+ 5
8u

2 +O(u3)]

 . (2.3.79)

From this we get the Γ0(4) monodromies in the Π basis

Mϕ=0 =

 1 0 0
−1 −1 −4

0 0 −1

 , Mϕ2=−16 =

 1 0 0
0 3 4
0 −1 −1

 , Mϕ=∞ =

 1 0 0
1 1 0
−1 −1 1

 .

(2.3.80)
One checks (Mϕ2=−16Mϕ=∞)−1 = Mϕ=0.

In topological string theory orN = 2 4d supersymmetric gauge theory, the coupling constants
are complex. At the various critical points one has to chose appropriate coordinates, which are
either invariant or reflect invariances of the theory under the local monodromy. For example,
at large radius or the asymptotic free region of the gauge theory, one can chose T as the
appropriate variable and the monodromy T → T + 1 is understood as a shift in the NS B
field of topological string or the θ-angle of Yang-Mills theory. The canonical choices of other
coordinates in different regions in the moduli space correspond to a change of polarization.
Because in ABJM theory the coupling constant is real, there is a priori no need to consider

the action of the monodromy. The polarization is picked once and for all at the weak coupling
point. The choice made here is identical to the one made in topological string theory at this
point in moduli space. However, as pointed out in [41], this polarization is not the one of
topological string theory at large radius. The coupling of the ABJM theory λ behaves at large
radius like

λ = ∂TF
0
gw −

1
2T = −1

2T
2 − 1

2T −
1
12 +O(Q) . (2.3.81)

To obtain the famous N3/2 scaling of the genus zero free energy F (0), it is crucial to integrate
the B-cycle integral ∂λF (0) with respect to λ [36]. This yields6

F = g−2
s F (0) = π

√
2

3 k2λ̂
3
2 +O(λ̂0, e−2π

√
2λ̂) . (2.3.82)

The relation of the topological string theory to the ABJM theory at this point is therefore given
by a change of polarization.
What is remarkable is that, despite the fact that the action of the monodromy does not have a

clear interpretation in ABJM theory, the higher genus contributions to the partition function of
the theory have the same modular invariance under Γ0(4) that they have in topological string
theory. One might speculate that the monodromy at the strong coupling region reflects an
invariance of the theory, so far not understood, which involves non-perturbative effects. Note
that this monodromy does not change the leading N3/2 behavior. A related issue concerns the
1/6 BPS Wilson loop vev itself. This vev is obtained as an integral over the C cycle. However,
the integral of the same differential over the dual B-cycle has no interpretation in ABJM theory.
If the monodromy action had a meaning in ABJM theory, it would mix the two types of cycles.

5 The irrational constant c = .3712268727 . . . is fastest iterated using the Meijers function [74].
6 As further explained in [36] it is natural to shift λ and consider instead λ̂ = λ− 1

24 .
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2.3.3 Wilson loops in the geometric description

The Wilson loop vevs have a genus expansion of the form,

〈W 1/6,1/2
n 〉 =

∞∑
g=0

g2g−1
s 〈W 1/6,1/2

n 〉g, (2.3.83)

and of course the ABJM matrix model correlators (2.3.48) have the same type of expansion.
The first term in this expansion corresponds to the genus zero or planar vev. The exact planar
vevs of 1/2 BPS and 1/6 BPS Wilson loops (for winding number n = 1) were obtained in
[41], from the exact solution of the ABJM matrix model at large N . We will now review these
results.

The planar limit of the matrix model is completely determined by the densities of eigenvalues
in the cuts, which were also obtained explicitly in [41]:

ρ1(X)dX = 1
2iπ2λ

tan−1

√αX − 1−X2

βX + 1 +X2

 dX
X
,

ρ2(Y )dY = 1
2iπ2λ

tan−1

√βY + 1 + Y 2

αY − 1− Y 2

 dY
Y
,

(2.3.84)

where
α = a+ 1

a
, β = b+ 1

b
. (2.3.85)

These densities are normalized in such a way that their integrals over the cuts are equal to one.
In (2.1.28) we defined the planar correlators in terms of integrals over a eigenvalue density,
therefore here we have the relation

g−1
s 〈tr enµi〉g=0 = N

∫
C1
ρ1(X)XndX. (2.3.86)

Keeping track of the residue atX =∞, analogously to (2.3.59), we can write simpler expressions
for the densities which are valid in the compactified variables x, y. The planar 1/6 BPS Wilson
loop vevs read in terms of those

g−1
s 〈W 1/6

n 〉g=0 = k

2π2

∫
C1
µn, g−1

s 〈Ŵ 1/6
n 〉g=0 = (−1)n k

2π2

∫
C2
µn . (2.3.87)

The planar 1/2 BPS Wilson loops is given by the γ-period, i. e. the residue at infinity,

g−1
s 〈W 1/2

n 〉g=0 = k

2π2

∮
γ
µn . (2.3.88)

Since the forms ωn defined in (2.3.67) are not independent elements of the cohomology of the
curve, one can relate all Wilson loop vevs to the integrals of µ0. Let us denote by

Rn(ϕ) =
∮
γ
µn (2.3.89)
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the residue of µn at x =∞. Then we get a relation in homology of the form

Lnω0 − ωn = ∂ϕRn(ϕ)x3dx , (2.3.90)

where
Ln = p1

n(ϕ)∂ϕ + p0
n(ϕ) . (2.3.91)

The coefficients p0
n(ϕ) and p1

n(ϕ) are polynomials in ϕ and can be obtained by the Griffiths
reduction method. For the first few we get,

p0
1 = ϕ

4 , p1
1 = 0, R1 = 1

2ϕ,

p0
2 = 1, p1

2 = 4ϕ− ϕ3

4 , R2 = 1
4ϕ

2,

p0
3 = 9ϕ

4 −
ϕ3

8 , p1
3 = 6ϕ2 − 3ϕ4

8 , R3 = 1
2ϕ−

ϕ3

6 ,

p0
4 = 1 + 10ϕ2

3 − 5ϕ4

24 , p1
4 = 16ϕ2

3 + 7ϕ3 − 11ϕ5

24 , R4 = ϕ2 + ϕ4

8 .

(2.3.92)

This relates 〈W 1/6
n 〉g=0 to λ, e.g.

〈W 1/6
1 〉g=0 = 1

4

∫
κλ(κ)dκ+ 1

2κ . (2.3.93)

The integration constant is zero as µ1 has no constant residue.

The relations (2.3.90) are homological relations. They imply a differential relation between
the B-cycles integrals over µn and ∂λF

0. Since λ and ∂λF
0 are related by special geometry,

the relations (2.3.90) imply, for each n, differential relations between the Wilson loop integrals
over the C and the B cycles. These can be viewed as an extension of special geometry to the
Wilson loop integrals.

We will now compute the vev (2.3.86) for any positive integer n, at leading order in the
strong coupling expansion, extending the result for n = 1 obtained in [41]. In the form (2.3.86),
these correlators are difficult to compute, but as in [75], their derivatives w.r.t. κ are easier to
calculate and given by

g−1
s

∂

∂κ
〈W 1/6

n 〉g=0 = k

2π2In, (2.3.94)

where

In = 1
2

a∫
1/a

XndX√
(αX − 1−X2)(βX + 1 +X2)

, (2.3.95)

which can be calculated in terms of elliptic integrals. The computation for n = 1 was done in
[41], and in appendix B.1 we compute them for a positive integer n. In order to make contact
with the Fermi gas approach, where subleading exponential corrections are neglected, we want
to extract their leading exponential behavior in the strong coupling region κ� 1. One finds,

In ≈
inκn−1

2

(
log κ− πi

2 −Hn−1

)
, κ� 1, (2.3.96)

where
Hn =

n∑
d=1

1
d

(2.3.97)
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are harmonic numbers (for n = 1, we set H0 = 0). It then follows that

g−1
s 〈W 1/6

n 〉g=0 = (iκ)nk
4π2n

(
log κ− πi

2 −Hn

)(
1 +O

( 1
κ2

))
. (2.3.98)

From this we deduce that the vev for the 1/2 BPS Wilson loop in terms of κ is

g−1
s 〈W 1/2

n 〉g=0 = − ik(iκ)n

4πn

(
1 +O

( 1
κ2

))
. (2.3.99)

This agrees with a result obtained in section 8.2 of [36], where the generating function of these
vevs, with an extra 1/n factor, was shown to be a dilogarithm in the variable iκ.
The regime of large κ corresponds to the regime of large ’t Hooft coupling [41], and one has

from (2.3.75),

λ(κ) = log2(κ)
2π2 + 1

24 +O
( 1
κ2

)
, (2.3.100)

which is immediately inverted to

κ = eπ
√

2λ
(
1 +O

(
e−2π

√
2λ
))
. (2.3.101)

It follows that the 1/6 Wilson loops go like,

〈W 1/6
n 〉 ≈ enπ

√
2λ, (2.3.102)

and for n = 1 this is in agreement with the AdS calculation in terms of fundamental strings
[34, 76, 70].

Coming back to the results of section 2.1.3 we can make a general statement about the
logarithmic structure of Wilson loop integrals at strong coupling. Since

G(κ) ∼ 1
log(κ) +O(κ−1) (2.3.103)

we see that the highest inverse powers of 1/ log(κ) at leading order in κ go as

1
(log(κ))3g−1 . (2.3.104)

For the 1/6 Wilson loop there will be a positive power of log(κ) at leading order due to the
integration of the meromorphic differential ωg(p) over the C cycle. The structure can be checked
e. g. at genus two, in the expression obtained from the Fermi gas approach in (3.3.117).
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CHAPTER 3

ABJM Wilson loops in the Fermi gas approach

3.1 Introduction
In section 2.1 we introduced matrix models and showed some ways to solve them. We also gave
a short overview to ABJM theory in section 2.2 and showed in section 2.3 how localization
techniques can be used to localize the partition function and certain Wilson loop operators
in ABJM theory (or more generally CSM theories) to matrix integrals. Here we will use the
formalism developed in [48] to compute the vevs of the 1/2 and 1/6 in the strong coupling
limit. Wilson loops can already be computed in the matrix model picture and the exact planar
result was obtained in [41]. Afterwards the first 1/N correction was computed in [36] by making
use of the results in [61]. This could be extended to even higher genus by using the topological
recursion presented in section 2.3.2, but it is computationally very hard to do these calculations.
In the context of ABJM theory it is very important to understand the full 1/N expansion, since
it gives quantitative information about the M–theory AdS dual.
These matrix models can, if all gauge groups are of equal rank, be rewritten in terms of a

gas of free fermions. This is a statistical physics problem and can be solved by already well
understood techniques, like the Wigner–Kirkwood and the Sommerfeld expansion. In order
to compare the results obtained in this manner to results of M-theory, we need to obtain
the large N expansion of the correlators we are considering. In terms of quantum statistical
mechanics the grand canonical ensemble is a convenient way to extract this limit. Since the
gas is non-interacting, this problem can be reduced to a quantum mechanical computation in
the one–body problem, which can be done in a semiclassical expansion. First one needs to
quantize the system via the Wigner phase space quantization, giving us a lot of control over the
semiclassical expansion, which is what we are interested in. The reason is, that this expansion
corresponds to the expansion in the Chern–Simons level of ABJM theory. The expectation
values can be computed in this semiclassical expansion by means of the Wigner–Kirkwood
expansion. One computes everything in the grand canonical ensemble, which is related to the
canonical ensemble via an integral transform. This integral transform can be computed in a
saddle point expansion, leading to a series in large N . Putting everything together, one is able
to resum the whole series in N , up to exponentially suppressed terms. We extended this setup
to include Wilson loops in the ABJM theory. In order to compute the expectation values of this
operator, we need to perform a low temperature expansion, i. e. a Sommerfeld expansion, in the
grand canonical ensemble. The resulting expressions in terms of number operators now need to
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be extracted using the Wigner–Kirkwood expansion, which yield results in terms of integrals
over the Fermi surface. In contrast to the computation of the free energies we now have an
infinite series of quantum corrections. Even though it is a lot harder now, we were able to resum
this up to exponentially suppressed corrections. We analyzed Wilson loop operators in ABJM
theory, and showed that the expectation values can be written in terms of the Airy function.
An interesting point is that the semiclassical expansion in the Fermi gas picture corresponds
to an expansion in large coupling of the gauge theory. This could, in principle, be compared
to computations on the gravity side of AdS/CFT. Genus by genus these results were already
derived directly from the Matrix model via the topological recursion of Eynard and Orantin
and we were successfully able match our results.
In section 3.2 we will review the basic tools needed for our formalism. We start with reviewing

phase space quantization and give the definitions of statistical physics relevant for our purposes.
After having these definitions set up, we show how to write a matrix model for a CSM theory
in terms of the Fermi gas.
Section 3.3 is the core of this chapter. There we will do the actual computation of the vevs of

the 1/2 and 1/6 Wilson loop operators in ABJM theory. In section 3.3.1 we show how we can
include Wilson loops in the Fermi gas formalism. In order to conduct the computation of the
vevs we need the full quantum corrected Hamiltonian of the fermionic system. Knowing this
we then are able to calculate the corresponding Wigner–Kirkwood corrections for the quantum
mechanical averages. This will be done in section 3.3.2. In 3.3.3 we will explain how to
compute the integration over the quantum corrected Fermi surface in the presence of a Wilson
loop operator. Finally, in section 3.3.4, we present the explicit results for Wilson loop vevs and
a detailed comparison with the ’t Hooft expansion in the string coupling regime. In appendix
B.1, we present the details of the matrix model computation for the 1/6 BPS Wilson loop
correlator at arbitrary winding. Appendix B.2 summarizes the results of the ’t Hooft expansion
at genus three and genus four.

3.2 The Fermi gas approach

3.2.1 Quantum mechanics in phase space

The following section is mainly based on the description given in [77, 78, 79] Usually, when
using quantum mechanics, we introduce some kind of distribution on the configuration space.
But generally, if we start quantizing systems, given by a Hamiltonian, i. e. quantizing a

system that is most naturally given by a set of conjugated variables qi and pi, because H is
defined on the phase space. Having established that we are interested in distribution functions
we might ask, why we do not introduce a distribution function ρQ(q, p) which is defined on the
whole phase space and not just some slice of it. This distribution should have the properties∫

dp ρQ(q, p) = ρ(q) = 〈q|ρ̂|q〉 (3.2.1)

and ∫
dq ρ(q, p) = ρ(p) = 〈p|ρ̂|p〉, (3.2.2)

in order to be natural. Furthermore it should be nonnegative

ρQ(q, p) ≥ 0 , (3.2.3)
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in order to be interpreted as a probability distribution. Two approaches fulfill some of these
conditions are the Wigner distribution and the Husini distribution. The former one does not
fulfill (3.2.3), while the latter one does not fulfill the conditions (3.2.1) and (3.2.2). During the
remainder of this thesis we are only interested in the Wigner–distribution, therefore we are not
pursuing the development of the Husini–distribution any further. The Wigner distribution is
in some sense an intermediate between the position–space representation and the momentum-
space representation. For a single particle in one dimension it is defined as

ρW (q, p) =
∫ ∞
−∞

dq′eipq′/~
〈
q − q′

2

∣∣∣∣ ρ̂ ∣∣∣∣q + q′

2

〉
. (3.2.4)

More generally for any operator Â we define

AW (q, p) =
∫ ∞
−∞

dq′eipq′/~
〈
q − q′

2

∣∣∣∣ Â ∣∣∣∣q + q′

2

〉
, (3.2.5)

as its Wigner transform.
The Wigner transform of a product of two operators is given by

(ÂB̂)W = AW ? BW , (3.2.6)

where the star operator is defined as

? = exp
[
i~
2 (∂q∂p − ∂p∂q)

]
. (3.2.7)

Having defined the Wigner transformation, we are able to introduce the phase-space equivalent
of the trace over an operator in the phase–space quantization formalism

Tr Â =
∫ dqdp

2π~ AW (q, p) . (3.2.8)

For only two operators the star product simplifies to a common multiplication under the inte-
gral [80]

Tr ÂB̂ =
∫ dqdp

2π~ AW (q, p) ? BW (q, p) =
∫ dqdp

2π~ AW (q, p)BW (q, p) . (3.2.9)

The commutator is also easily extended to this formalism and one even immediately sees that
the first order of its semiclassical expansion actually is the well known Poisson-bracket.

[A,B]? = A ? B −B ? A = i~ {A,B}+O(~2). (3.2.10)

If we compute the commutator of p and q we find the usual relation

[q, p]? = i~ . (3.2.11)

3.2.2 Quantum Statistical Mechanics in phase space

We continue now with the description of quantum statistical mechanics of N–particle systems.
The first step is the introduction of the Hilbert space of bosons and fermions, respectively. The
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starting point is the basis
|λ1, · · · , λN 〉 (3.2.12)

of the space of eigenstates for an N–particle system of distinguishable particles.
In order to construct the Hilbert space of indistinguishable particles, we introduce a projection

operator for totally (anti)symmetric states.

Pη = 1
N !

∑
σ∈SN

ηε(σ)σ, (3.2.13)

where
η = ±1 (3.2.14)

for bosons and fermions, respectively. As a projection operator, it has the property

P 2
η = Pη. (3.2.15)

We obtain the appropriately (anti)symmetrized states by applying the (anti)symmetrization-
operator to a state (3.2.12) and introduce therefore

|λ1, · · · , λN} =
√
N !Pη|λ1, · · · , λN 〉 = 1√

N !
∑
σ∈SN

ηε(σ)|λσ(1), · · · , λσ(N)〉, (3.2.16)

which forms a basis of the Hilbert space of bosons/fermions, depending on the choice of η. In
this basis the resolution of the identity reads

1
N !

∫
dλ |λ1, · · · , λN} {λ1, · · · , λN | = 1. (3.2.17)

An n–body operator O is an operator which is invariant under any permutation of the particles.
It acts on a state of the Hilbert space HN of distinguishable particles as follows

O|λ1 · · ·λN 〉 = 1
k!

∑
1≤i1 6=···6=ik≤N

O(λi1 , · · · , λik)|λ1 · · ·λN 〉 . (3.2.18)

For a one–body operator this simplifies to

O|λ1 · · ·λN 〉 =
N∑
i=1
O(λi)|λ1 · · ·λN 〉, (3.2.19)

where O(λ) is an operator on the Hilbert space of a single particle.
A quantum mechanical statistical ensemble is described by a density matrix ρ̂. The canonical

partition function in terms of the density matrix is given by a trace

ZN = Tr(ρ̂), (3.2.20)

while the thermal average of an n–body operator O in the canonical ensemble is defined by

〈O〉N = Tr(ρ̂O) . (3.2.21)

Here we are using unnormalized vevs. The partition function therefore is just the thermal
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average over the identity.
After this definition, let us consider the canonical density matrix for a system of indistin-

guishable particles. It is given by

ρD({x1, · · · , xN}, {x′1, · · · , x′N};β) = 〈x1 · · ·xN |e−βĤ |x′1 · · ·x′N 〉, (3.2.22)

where Ĥ is the total Hamiltonian of the N particles. Depending on what system we look at,
namely bosons or fermions, we have to symmetrize or antisymmetrize the system appropriately
in order to obtain [81]

ρ({x1, · · · , xN}, {x′1, · · · , x′N};β) = 1
N !

∑
σ∈SN

ηε(σ)ρD({x1, · · · , xN}, {x′σ(1), · · · , x
′
σ(N)};β)

= 1
N !{x1 · · ·xN |e−βĤ |x′1 · · ·x′N}.

(3.2.23)
We want to compute vevs of a many–body operator in the canonical ensemble and because

sometimes the operator in consideration only depends on a subsystem of the complete system,
we need to introduce density submatrices or reduced density matrices1. The reduced n–particle
density matrix is defined by integrating out a certain number of states in an integral over the
density matrix of indistinguishable particles

ρn({x1, · · · , xn}, {x′1, · · · , x′n};β) =
N !

(N − n)!

∫
dxn+1 · · · dxN ρ({x1, · · · , xN}, {x′1, · · · , x′N};β) . (3.2.24)

The vev of an operator acting on such a reduced subsystem can be computed in terms of the n–
reduced density matrix by using the reduced density matrix and integrating over the remaining
n variables like

〈O〉N = 1
n!

∫
dx1 · · · dxnO(x1, · · · , xn)ρn({x1, · · · , xn}, {x′1, · · · , x′n};β). (3.2.25)

We note that, in a system of non–interacting particles, the density matrix (3.2.22) factorizes,

ρD({x1, · · · , xN}, {x′1, · · · , x′N};β) =
N∏
i=1

ρ(xi, x′i), (3.2.26)

into a product of canonical density matrices ρ(x, x′) of the one–particle problem.
In our case it is more useful to work in the grand-canonical ensemble, because we want to

extract the large N–behavior of the considered statistical mechanics system. In the grand
canonical ensemble the reduced density matrix is defined as2

ρGC
n ({x1, · · · , xn}, {x′1, · · · , x′n};β, z) =

∞∑
N=n

zNρn({x1, · · · , xn}, {x′1, · · · , x′n};β) . (3.2.27)

1 For further information see for example [81, 82]
2 See for example [82]
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Here
z = eβµ (3.2.28)

denotes the usual fugacity. The vev of an n–body operator in this ensemble can be expressed
in terms of a sum of canonical vevs over all particle numbers,

〈O〉GC =
∞∑
N=n
〈O〉NzN . (3.2.29)

The grand partition function is given by a sum over N–particle partition functions, weighted
with the N–th power of the fugacity

Ξ = 1 +
∑
N=1

zNZN . (3.2.30)

According to [82, 83] the grand–canonical density matrix has a very simple form in the case
of non–interacting gases:

ρGC
n ({x1, · · · , xn}, {x′1, · · · , x′n};β, z) = Ξ

∑
σ∈Sn

ηε(σ)
n∏
i=1

n(xi, x′σ(i);β, z), (3.2.31)

where Ξ is the grand–canonical partition function, and

n(x, x′;β, z) =
〈
x

∣∣∣∣∣ 1
z−1eβĤ − η

∣∣∣∣∣x′
〉

(3.2.32)

is the occupation number operator in the position representation
The relationship (3.2.31) can be derived by using creation and annihilation operators [83].

Using the Landsberg’s recursion relation the case n = 1 can also be derived. This relation is
based on the analysis of the sum over permutations in terms of conjugacy classes, and it was
originally derived for the canonical partition function of ideal quantum gases3. Generalizing
this to density matrices is straightforward [85], and it yields

ρ1(x, x′;β) =
N∑
`=1

η`−1ρ(x, x′; `β)ZN−`, (3.2.33)

where ρ(x, x′;β) is the density matrix for the one–particle problem. We now sum over all N
with the fugacity zN to obtain the grand-canonical, reduced density matrix

ρGC
1 (x, x′;β, z) =

∞∑
N=1

ρ1(x, x′;β)zN = η
∞∑
N=1

N∑
`=1

ZN−`z
N−`

〈
x
∣∣∣e−`βĤ ∣∣∣x′〉 (ηz)`

= η

( ∞∑
M=0

ZMz
M

)〈
x

∣∣∣∣∣
∞∑
`=1

(ηz)` e−`βĤ
∣∣∣∣∣x′
〉

= Ξ
〈
x

∣∣∣∣∣ 1
z−1eβĤ − η

∣∣∣∣∣x′
〉
.

(3.2.34)

3 see for example [84]
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We conclude from this that the vev of a one–body operator in the grand–canonical ensemble is
given by

1
Ξ〈O〉

GC = tr
(

O
z−1eβĤ − η

)
(3.2.35)

where the operator O appearing inside the trace is understood as the operator restricted to the
one–particle Hilbert space.

3.2.3 Large N expansion from the grand canonical ensemble

Sometimes it is easier to analyze a system in terms of the grand canonical ensemble. We for
instance want to extract the large N expansion of the Fermi gas which is most conveniently
done in the grand canonical ensemble. Here we will present how to use the definition of the
grand canonical ensemble to extract the large N expansion.
We already introduced the grand canonical partition function in (3.2.30). Based on this we

define is the grand-canonical potential which is given by the logarithm of the grand partition
function

J(µ) = log Ξ . (3.2.36)

If we want to find the canonical partition function for a given N from the grand partition
function we can use the integral expression

Z(N) =
∮ dz

2πi
Ξ

zN+1 . (3.2.37)

This is a very convenient definition, if we want to analyze the large N behavior, because in this
case we can apply the saddle-point method to this problem by writing

Z(N) = 1
2πi

∫
dµ exp[J(µ)− µN ]. (3.2.38)

The saddle point of this expression is determined by the equation

N = ∂J

∂µ
, (3.2.39)

which defines a function µ∗(N). Plugging this in, the free energy in the limit N →∞ is given
by

F (N) = J(µ∗)− µ∗N. (3.2.40)

In [48] the following representation of the grand canonical potential J(µ) in terms of ρ(E)
has been shown to hold

J(µ) =
∫ ∞

0
dEρ(E) log(1 + ze−E) . (3.2.41)

3.2.4 Quantum corrections

The next step is to analyze the quantity (3.2.35). The idea is to find the semiclassical expansion
of the vev and a way to achieve this is to first make a low temperature expansion in order to
write this vev as an expansion in terms of ensembles at zero temperature. This is done via
the Sommerfeld expansion. The zero–temperature vevs themselves now admit a semiclassical
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expansion in ~ which is captured by the Wigner–Kirkwood series [86]. This is the reason why
introducing the Wigner–transform is useful for our formalism.

3.2.4.1 Wigner–Kirkwood expansion

Let Ĥ be the Hamiltonian of our problem and HW be the Wigner transform of it, which we
defined in (3.2.5). If we have a quantity f , depending on Ĥ, we can formally Taylor expand it
like

f(Ĥ) =
∞∑
r=0

1
r!f

(r)(HW )(Ĥ −HW (q, p))r . (3.2.42)

Having introduced this we can compute the Wigner transform

f(Ĥ)W =
∞∑
r=0

1
r!f

(r)(HW )Gr (3.2.43)

of this expression, where
Gr =

[
(Ĥ −HW (q, p))r

]
W

(3.2.44)

for r ≥ 2 and
G0 = 1,G1 = 0 . (3.2.45)

Here the Wigner transform is evaluated at the same point q, p. These quantities can be com-
puted by applying (3.2.6). The general expansion of this has the structure

Gr =
∞∑

n=[ r+2
3 ]

~2nG(n)
r , r ≥ 2 . (3.2.46)

This expansion tells us, that for any given order in ~ only a finite number of Gr contribute.
The first few orders are given by

G2 = −~2

4

∂2HW

∂q2
∂2HW

∂p2 −
(
∂2HW

∂q∂p

)2
+O(~4) (3.2.47)

and

G3 = −~2

4

[(
∂HW

∂q

)2 ∂2HW

∂p2 +
(
∂HW

∂p

)2 ∂2HW

∂q2 − 2∂HW

∂q

∂HW

∂p

∂2HW

∂q∂p

]
+O(~4). (3.2.48)

We will call the Gr appearing here Wigner–Kirkwood corrections and the expansions Wigner–
Kirkwood expansions. This expansion can be applied to any function of the Hamiltonian.
One operator, which is very important in the following, is the number operator

n̂(E) = Θ(E − Ĥ) , (3.2.49)

where Θ(x) is the Heavyside step function. The trace of this operator counts the number of
states up to a given energy E. We will denote this number by

n(E) = Tr n̂(E) . (3.2.50)
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This number corresponds to the Fermi-distribution at zero temperature. We then apply the
Wigner–Kirkwood expansion (3.2.42) to (3.2.49) and find

n̂(E)W = Θ(E −HW ) +
∞∑
r=2

(−1)r

r! Grδ
(r−1)(E −HW ) . (3.2.51)

Having this expression, we can compute the trace over n̂ by virtue of (3.2.8), which results in

n(E) = Tr n̂(E) =
∫ dqdp

2π~ n̂W (q, p) =
∫
HW (q,p)≤E

dqdp
2π~ +

∞∑
r=2

(−1)r

r!

∫ dqdp
2π~ Grδ

(r−1)(E −HW ) .

(3.2.52)
In the semiclassical limit the number of eigenstates is given by

n(E) ≈
∫ dqdp

2πk Θ(E −H(q, p)) = Vol(E)
2π~ , (3.2.53)

which is just the volume of the phase space. The surface of this volume is defined by

H(q, p) = E (3.2.54)

and is called the Fermi surface of the system.
Applying the expansion (3.2.43) to to the canonical density matrix, yields

(
e−βĤ

)
W

=
( ∞∑
r=0

(−β)r

r! Gr

)
e−βHW , (3.2.55)

where β is the inverse temperature. The expression (3.2.55) can be viewed in the sense that
the Wigner transform of the canonical density matrix is the generating function of the Wigner–
Kirkwood corrections, defined in (3.2.44).

3.2.4.2 Sommerfeld expansion

In the problem of computing statistical-mechanical averages in the Fermi gas, we will have to
perform a low–temperature expansion of expressions, involving the Fermi–distribution function.
Let us say we have an integral of the form

I =
∫ ∞

0

g(E)
eβ(E−µ) + 1

dE, (3.2.56)

where g(E) is some C∞-function, and want to expand it in a low temperature. This amounts
to a power expansion in large β and will result in

I =
∫ µ

0
g(E)dE +

∞∑
n=1

1
β2n

(
2− 1

22n−2

)
ζ(2n)g(2n−1)(µ) , (3.2.57)

which we will call the Sommerfeld expansion. What this does for us is, it expresses quantities in
a finite temperature distribution as a power series of terms in a zero-temperature distribution.
Which means, we obtain an expression in the eigenvalue distribution operator defined in (3.2.49)
after performing the Sommerfeld expansion. In (3.2.43) we showed how to expand the vev of
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such an operator by means of the Wigner–Kirkwood expansion. This makes it clear how to
approach a computation in a Fermi-distribution.
We also want to mention that the Sommerfeld expansion can also be written as the operator

expansion
1

eβ(Ĥ−µ) + 1
= π∂µ

β
csc

(
π∂µ
β

)
Θ(µ− Ĥ) . (3.2.58)

Let us now come back to the expression (3.2.35). Here we will only consider η = −1 and set
β = 1 for simplicity. We can use (3.2.8) to write (3.2.35) as

1
Ξ〈O〉

GC = tr
( O
eĤ−µ + 1

)
= π∂µ csc(π∂µ)nO(µ) , (3.2.59)

where

nO(µ) =
∫ dqdp

2π~ Θ(µ− Ĥ)WOW

=
∫ dqdp

2π~ Θ(µ− ĤW )WOW +
∞∑
r=2

(−1)r

r!

∫ dqdp
2π~ Grδ

(r−1)(µ−HW )OW . (3.2.60)

Here we used, in the first line, the fact (3.2.9), that the star product drops out if there are only
two operators under the trace. The second line is obtained by the Wigner–Kirkwood expansion
of the number operator (3.2.51).

3.2.5 Fermi Gas for Chern Simons Matter theories

We will now review the Fermi gas approach to N ≥ 3 Chern–Simons–matter theories, developed
in [48]. But let us start with showing how it works for ABJM theory, before we generalize it
afterwards. The partition function of ABJM theory can be written as a matrix model [32] given
by the partition function

ZABJM(N) = 1
N !2

∫ dNµ
(2π)N

dNν
(2π)N

∏
i<j

[
2 sinh

(
µi−µj

2

)]2 [
2 sinh

(
νi−νj

2

)]2
∏
i,j

[
2 cosh

(
µi−νj

2

)]2 , (3.2.61)

as we have shown in section 2.3.1.
We relate the rank of the gauge group N and the Chern–Simons level k by

λ = N

k
. (3.2.62)

Now we use the Cauchy identity∏
i<j

[
2 sinh

(
µi−µj

2

)] [
2 sinh

(
νi−νj

2

)]
∏
i,j 2 cosh

(
µi−νj

2

) = detij
1

2 cosh
(
µi−νj

2

)
=
∑
σ∈SN

(−1)ε(σ)∏
i

1
2 cosh

(
µi−νσ(i)

2

) . (3.2.63)

In this equation, SN is the permutation group of N elements, and ε(σ) is the signature of the
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k1

k2

k3

kr

kr-1

Nf2

Nf1

Nf3

Nfr

Nfr-1

Figure 3.1: Necklace quiver

permutation σ. By using this it is possible to bring (3.2.61) into the form

Z(N) = 1
N !

∑
σ∈SN

(−1)ε(σ)
∫ dNx

(2πk)N
1∏

i 2 cosh
(xi

2
)

2 cosh
(
xi−xσ(i)

2

) . (3.2.64)

This suggests the definition of

ρ(x1, x2) = 1
2πk

1(
2 cosh x1

2
) 1

2

1(
2 cosh x2

2
) 1

2 2 cosh x1−x2
2

, (3.2.65)

so that we can write (3.2.61) as

Z(N) = 1
N !

∑
σ∈SN

(−1)ε(σ)
∫

dNx
∏
i

ρ(xi, xσ(i)). (3.2.66)

We will consider the generalization of ABJM theory given by necklace quivers with r nodes
[87, 88], and with fundamental matter in each node, as depicted in figure 3.1. These theories
have a gauge group

U(N)k1 × U(N)k2 × · · ·U(N)kr (3.2.67)

and each node will be labeled with the letter a = 1, · · · , r. There are bifundamental chiral
superfields Aaa+1, Baa−1 connecting adjacent nodes, and in addition we will suppose that there
are Nfa matter superfields (Qa, Q̃a) in each node, in the fundamental representation. We will
write

ka = nak, (3.2.68)
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and we will assume that
r∑

a=1
na = 0. (3.2.69)

According to the general localization computation in section 2.3, the matrix model computing
the S3 partition function of a necklace quiver is given by

Z(N) = 1
(N !)r

∫ ∏
a,i

dλa,i
2π

exp
[

inak
4π λ

2
a,i

]
(
2 cosh λa,i

2

)Nfa
r∏

a=1

∏
i<j

[
2 sinh

(
λa,i−λa,j

2

)]2
∏
i,j 2 cosh

(
λa,i−λa+1,j

2

) . (3.2.70)

The building block of the integrand in (3.2.70) is the following N–dimensional kernel, associated
to an edge connecting the nodes a and b:

Kab(λ1, · · · , λN ;µ1, · · · , µN ) = 1
N !

N∏
i=1

e−Ua(λi)
∏
i<j 2 sinh

(
λi−λj

2k

)
2 sinh

(
µi−µj

2k

)
∏
i,j 2 cosh

(
λi−µj

2k

) . (3.2.71)

Here,
Ua(λ) = − ina

4πkλ
2 +Nfa log

(
2 cosh λ

2k

)
(3.2.72)

and will be interpreted as a one–body potential for a Fermi gas with N particles. We denoted
by λi the variables corresponding to the a node, and by µi those corresponding to the b node,
after rescaling them as µ, λ→ µ/k, λ/k.

We now want to interpret the kernel (3.2.71) as a matrix element

Kab(λ1, · · · , λN ;µ1, · · · , µN ) = 1
N ! {λ1, · · · , λN | ρ̂ab |µ1, · · · , µN} , (3.2.73)

in terms of a non-symmetrized density matrix ρ̂ab (i. e. a density matrix for distinguishable
particles). We first notice that

1
N ! {λ1, · · · , λN | ρ̂ab |µ1, · · · , µN} = 1

N !
∑
σ∈SN

(−1)ε(σ)ρab
(
λ1, · · · , λN ;µσ(1), · · · , µσ(N)

)
.

(3.2.74)
We also look at (3.2.71) and use the Cauchy identity (3.2.63) on it

Kab(λ1, · · · , λN ;µ1, · · · , µN ) = 1
N !

N∏
i=1

e−Ua(λi)detij

(
1

2 cosh λi−µj
2k

)

= 1
N !

∑
σ∈SN

(−1)ε(σ)
N∏
i=1

e−Ua(λi)
N∏
i=1

t

(
λi − µσ(j)

k

) (3.2.75)

where we denoted
t(x) = 1

2 cosh x
2
. (3.2.76)
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By comparing with (3.2.74), it follows that

ρab (λ1, · · · , λN ;µ1, · · · , µN ) =
N∏
i=1

e−Ua(λi)
N∏
i=1

t

(
λi − µi
k

)
. (3.2.77)

Since the density matrix is completely factorized, the N–particle system is an ideal gas, albeit
with a non-trivial one–particle Hamiltonian. By taking the Wigner transform of this expression,
with

~ = 2πk, (3.2.78)

we see that ρab defines an N–body Hamiltonian

ρW
ab = e

−Hab
N,W

? , (3.2.79)

where

Hab
N,W =

N∑
i=1

Hab
W(i). (3.2.80)

The one–particle Hamiltonian Hab
W is defined by

e−H
ab
W

? = e−Ua(q) ? e−T (p) (3.2.81)

and
T (p) = log

(
2 cosh p2

)
. (3.2.82)

We can now repeatedly use the resolution of the identity (3.2.17) to write the matrix integral
(3.2.70) as

Z(N) = tr(ρ̂), (3.2.83)

where ρ̂ is the density matrix
ρ̂ = ρ̂12ρ̂23 · · · ρ̂r−1rρ̂r1, (3.2.84)

and this defines the one–particle Hamiltonian HW by

e−HW
? = e−H

12
W

? ? e−H
23
W

? ? · · · ? e−H
r−1r
W

? ? e−H
r1
W

? . (3.2.85)

For necklace theories without fundamental matter it is easy to see that the total, one–particle
Hamiltonian is given by [48]

e−HW
? = 1

2 cosh p
2
?

1
2 cosh p−n1q

2
?

1
2 cosh p−(n1+n2)q

2
? · · · ? 1

2 cosh p−(n1+···+nr−1)q
2

. (3.2.86)

3.2.5.1 The Fermi Surface

Here will will briefly present the computation the free energy of ABJM theory as it was done
in [48]. Later, in section 3.3.3, we will go into more detail about this and conduct the com-
putation with the relevant operator insertion to obtain the vev of a Wilson loop operator. In
the case of ABJM theory the Hamiltonian is written in terms of the functions U(q) and T (p),
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p∗

q∗

Figure 3.2: The regions in the Fermi surface.

which have the asymptotic behavior

U(q) = log 2 cosh q2 = q

2 +
∞∑
k=1

(−1)k+1

k
e−kq , (3.2.87a)

U ′(q) = 1
2 tanh q2 = 1

2 +
∞∑
k=1

(−1)ke−kq (3.2.87b)

U ′′(q) = 1
4 cosh2 q

2
=
∞∑
k=1

k(−1)k+1e−kq. (3.2.87c)

This is analogous for T , where only q and p have to be exchanged. Higher derivatives of
these functions are zero up to exponentially suppressed terms when going to infinity. This will
lead to a great simplification of the expressions at large E. Let us now present the relevant
computations to find the phase space volume.
We want to compute the volume defined in (3.2.53), which is given by the area enclosed by

the curve
HW (q, p) = E . (3.2.88)

Let us fix a point (q∗, p∗) on the curve in such a way that

p∗ = E . (3.2.89)

Then, by considering the asymptotics of H, the relation

q∗ = E +O(e−E) (3.2.90)

holds. This point divides the curve (3.2.88) in a manner described in section 3.2.5.1 in which
we also use the division shown in figure 3.2. Once again, we are able to use the the asymp-
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totics (3.2.87) to solve the curve for q and p in the correct regions. The full volume will be
pieced together like

Vol(E) = 4 VolI(E) + 4 VolII(E) , (3.2.91)

where

VolI(E) =
∫ q∗(E)

0
p(E, q)dq and VolII(E) =

∫ p∗(E)

0
q(E, p)dp− p∗q∗ . (3.2.92)

Here p(E, q) and q(E, p) are the local solutions of the curve.

Let us now consider region I, where we can write

T (p) = p

2 +O(e−E), T ′(p) = 1
2 +O(e−E) (3.2.93)

and
T (n)(p) = 0 +O(e−E) . (3.2.94)

This shows that, up to exponentially suppressed corrections, there are no contributions from
derivatives of T (p) which are of higher order than one in this region. We should only keep the
terms (T ′(p))n with n ≥ 1 and are therefore left with a Hamiltonian of the form

HW (q, p) = p

2 + U(q)− ~2

48U
′′(q) + 1

2

∞∑
n=1

~2ncnU
2n(q) +O(e−E) . (3.2.95)

In this region we can solve the equation (3.2.88) for p in terms of q. Doing this also for the
case where q and p are exchanged and integrating the expressions in (3.2.92) yields the full
volume

Vol(E) = 8E2 − 4π2

3 + ~2

24 +O(Ee−E) . (3.2.96)

We now need to further analyze the terms containing

δ(E −HW (q, p)) (3.2.97)

and higher order derivatives, which appear in the Wigner–Kirkwood expansion of n(E). The
result is that, up to exponentially suppressed contributions, they do not give any further terms.

Putting everything together we conclude

n(E) = Vol(E)
2π~ +O(Ee−E) = 2E2

π2k
− 1

3k + k

24 +O(Ee−E). (3.2.98)

The grand canonical potential of ABJM theory, when using the formula (3.2.41) while noting
the relation

ρ(E) = dn(E)
dE , (3.2.99)

can be put into the form

JABJM(µ) = 2µ3

3kπ2 + µ

( 1
3k + k

24

)
+A(k) + Jnp(µ) (3.2.100)
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where Jnp(µ) denotes the nonperturbative expansion an A(k) is

A(k) = 2ζ(3)
π2k

− k

12 + π2k3

4320 +O(k5) (3.2.101)

which can be interpreted as the resummation of the constant map contribution expanded around
k = 0 (see [89, 48]). Using the integral representation of the Airy function

Ai(z) = 1
2πi

∫
C

dt exp
(
t3

3 − zt
)
, (3.2.102)

where C is a contour in the complex plane going from e−iπ/3∞ to eiπ/3∞ and (3.2.38) it finally
follows that the partition function can be written as the Airy function

ZABJM = C−1/3eA(k) Ai
[
C−1/3

(
N − 1

3k −
k

24

)]
, (3.2.103)

where C is
C = 2

π2k
, (3.2.104)

which is a result first derived in [43] for ABJM theory and then rederived in the Fermi gas
approach in [48] for a class of N ≥ 3 theories.

3.2.5.2 Derivation of the N3/2 behaviour of ABJM theory

Having introduced the formalism so far is quite useful in order to derive the N3/2 scaling
behavior of M2-branes described in [42]. From (3.2.98) we know that the leading behavior of
n(E). Using the relation (3.2.99) and plugging the result into (3.2.41), we find

J(µ) ≈ 4
πk

∫ ∞
0

log(1 + ze−E)EdE = − 2
πk

Γ(s+ 1) Li3(−eµ) . (3.2.105)

Using the relation for the saddle point (3.2.39), we find

N(µ) ≈ 2
πk

Γ(s+ 1) Li2(−eµ) . (3.2.106)

As large N corresponds to large µ, we have

J(µ) ≈ 2
3π2k

µ3, N(µ) ≈ 2
π2k

µ2 . (3.2.107)

Using (3.2.40) we find for the free energy

F (N) ≈ −π
√

2k
3 N3/2, (3.2.108)

which concludes our derivation of the N3/2–behavior of ABJM theory. This behavior also holds
for more general CSM theories as shown in [48].
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3.3 Wilson loops in the Fermi gas approach

3.3.1 Incorporating Wilson loops

In this section we will show how it is possible to map the calculations of vevs of Wilson loop
operators to the calculation of statistical–mechanical averages in the Fermi gas approach. For
simplicity, we restrict ourselves to ABJM theory. The general N ≥ 3 quiver can be obtained
by a straightforward generalization.

The ABJM quiver is defined by two nodes with Chern–Simons levels k and −k (as we men-
tioned before, and without loss of generality, we will take k, the level in the first node, to be
positive). The one–body Hamiltonians associated to the edges are given by

e−H
12
W

? = e
iq2
2~ ?

1
2 cosh p

2
, e−H

21
W

? = e−
iq2
2~ ?

1
2 cosh p

2
. (3.3.1)

Let us consider a 1/6 BPS Wilson loop with winding number n for the first node. As shown in
[32] and reviewed above, this corresponds to inserting

On =
N∑
i=1

enλi/k (3.3.2)

into the matrix integral, after rescaling λ→ λ/k. The unnormalized vev can be written, in the
language of many–body physics, as

〈On〉 = 1
N !2

∫
dλdµ{λ1 · · ·λN |Onρ̂12|µ1 · · ·µN}{µ1 · · ·µN |ρ̂21|λ1 · · ·λN}. (3.3.3)

If we integrate over µ by using the resolution of the identity, we find

〈On〉 = 1
N !

∫
dλ{λ1 · · ·λN |Onρ̂12ρ̂21|λ1 · · ·λN} = tr (Onρ̂12ρ̂21) , (3.3.4)

which is the vev of the one–body operator (3.3.2) in an ideal Fermi gas of N particles with a
one–body Hamiltonian given by

e−HW
? = 1

2 cosh p−q
2

?
1

2 cosh p
2
. (3.3.5)

Notice that this Hamiltonian is not Hermitian. This stems from the fact that the vev of a 1/6
BPS operator is not real. After a canonical transformation,

q → q + p, p→ p, (3.3.6)

we obtain a more convenient form,

e−HW
? = 1

2 cosh q
2
?

1
2 cosh p

2
= e−U(q)

? ? e−T (p)
? (3.3.7)
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where T (p) is given in (3.2.82) and

U(q) = log
(

2 cosh q2

)
. (3.3.8)

After this canonical transformation, the insertion of the 1/6 BPS Wilson loop corresponds to
considering in the Fermi gas a one–body operator of the form

On = exp
(
n(q + p)

k

)
, (3.3.9)

which we have written already in the one–particle sector.
Since the vev of a 1/2 BPS Wilson loop can be computed by considering the vev of the 1/6

BPS Wilson loop and its conjugate, as we can see from (2.3.49), we will only analyze the case
of the 1/6 BPS Wilson loops, and deduce the vev of the 1/2 BPS Wilson loops from (2.3.49).

3.3.2 Quantum Hamiltonian and Wigner–Kirkwood corrections

In the Fermi gas approach of [48], the full quantum Hamiltonian contains ~ corrections and it
is not known in closed form. Its semiclassical expansion can be obtained by using the Baker–
Campbell–Hausdorff (BCH) formula as applied to the ?–product in (3.3.7). It was shown in
[48] that, in the calculation of the grand potential of the system, up to exponentially small
corrections in the chemical potential, only the first quantum correction is needed. For the the
calculation of the Wilson loop vev on the other hand, we will need an infinite series of terms
appearing in the semiclassical expansion. These terms are of the form

U (n)(q)
(
T ′(p)

)n
, T (n)(p)

(
U ′(q)

)n
. (3.3.10)

The coefficients of these terms can be determined in closed form by exploiting some particular
cases of the BCH formula (see [90] for examples of such calculations). We will now determine
these coefficients.
In our problem we will analyze the behavior of the ? product

eA? ? eB? , (3.3.11)

where
A = −U(q), B = −ap, (3.3.12)

and a being some constant is the case relevant for our analysis. The function U(q) is arbitrary
in this analysis. Here we choose the representation of p so that, B acts as the derivative ia~∂q,
hence the commutator reads

[A,B]? = ia~U ′(q). (3.3.13)

Further nesting of this commutator with B yields only terms proportional to higher derivatives
of U . As a result we can use a simpler version of the BCH formula which is given [90] by

Z = log?
(
eA? ? eB?

)
= B +A

B]?
1− e−B]?

, (3.3.14)

where B]? is to be understood as the operation of performing a ?–commutator with B (acting
on the left), and its n-th power is obtained by nesting the the ?–commutator n times in the
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above manner4. The function appearing in this expression is given by the generating function
of the Bernoulli numbers

x

1− e−x =
∞∑
n=0

cnx
n = 1 + x

2 + x2

12 + · · · (3.3.15)

where
cn = Bn(−1)n

n! (3.3.16)

depends on the Bernoulli numbers Bn. The Bernoulli numbers have the property, that they are
only non–vanishing for even numbers, with the exception of B1. Hence all the powers in this
series are even except for the second term. Using this expansion, we then conclude that

Z = −ap−
∑
n≥0

cn(−i~a)nU (n)(q). (3.3.17)

In our case the asymptotics of the Hamiltonian tell us that we should analyze the case T (p) =
p/2. In this case only the terms of the form

U (n)(q)
(
T ′(p)

)n (3.3.18)

survive in the BCH expansion, which can easily be seen by analyzing the nested commutators.
This choice corresponds to taking a = 1/2 in the above formula. Putting all of this together we
find that for the choices made in (3.3.12) these terms appear in the Hamiltonian in the form

T (p) + U(q) +
∑
n≥1

Bn
n! (i~)nU (n)(q)

(
T ′(p)

)n
. (3.3.19)

The case
A = −T (p), B = −aq, (3.3.20)

can be calculated in a similar way by exchanging p and q.
Here, where U(q) is given by (3.3.8), the derivatives of U(q) can be written in terms of

polylogarithms. For the second derivative a calculation yields

U ′′(q) = 1
4 cosh2 q

2
= −Li−1(−eq) . (3.3.21)

Generally higher order derivatives of U can be written in terms of polylogarithms in the following
way

U (m)(q) = −Li1−m(−eq), m ≥ 2. (3.3.22)

We will now compute all the Wigner–Kirkwood corrections for the simplified Hamiltonian
considered above, which is obtained from the equation

e−HW
? = e−U(q) ? e−ap. (3.3.23)

In section 3.2.4.1 we introduced the Wigner–Kirkwood expansion, where we derived an ex-
pression for the generating function of the Wigner–Kirkwood corrections. These corrections are

4 Like A(B]?)N = [[A,B]?, · · · , B]?
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obtained by computing the Wigner transform of the canonical density matrix

e−tHW
? , (3.3.24)

presented in (3.2.55). To calculate (3.3.24), we use the following trick, inspired by similar
calculations in [90]. Assuming the general asymptotic structure appearing in the integration
over the Fermi surface, let us suppose that we can write (3.3.24) as

e−tHW
? = e−tG(q)

? ? e−tap? (3.3.25)

by using the BCH formula. If this assumption holds, the ?-product can be evaluated by the
usual shift of the derivative into the arguments,

e−tHW
? = e−tG(q)

? e
i~
2
←−
∂ q
−→
∂ p e−tap? = exp

(
−tap− te

ξt
2 ∂G(q)

)
. (3.3.26)

where we have defined
ξ = −ia~. (3.3.27)

On the other hand, we can use the BCH formula (3.3.14) to find an alternative and explicit
expression for G(q),

e−tG(q)
? ? e−tap? = exp?

−tap− t ∑
m≥0

cm(tξ)mG(m)(q)

 . (3.3.28)

By construction, this equals e−tHW? in (3.3.26). On the other hand, we already derived (3.3.17),
which states

HW = ap+
∑
n≥0

cnξ
nU (n)(q). (3.3.29)

Comparing these results we deduce

ξt∂

1− e−ξt∂G(q) = ξ∂

1− e−ξ∂U(q), (3.3.30)

which we formally solve for G(q) and for which we find

G(q) = 1
t

1− e−ξt∂

1− e−ξ∂ U(q). (3.3.31)

Plugging this back into (3.3.26), we conclude that

e−tHW
? = exp

−tap− e
ξt
2 ∂ − e−

ξt
2 ∂

1− e−ξ∂ U(q)

 . (3.3.32)

The second term in the exponent can, as done before, be computed by using, the generating
function of the Bernoulli polynomials,

ze−zt

1− e−z =
∑
n≥0

Bn(t)(−1)n z
n

n! . (3.3.33)
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Applying this definition we find,

1
t

e
ξt
2 ∂ − e−

ξt
2 ∂

1− e−ξ∂ U(q) =
∑
m≥0

Bm+1(t/2)−Bm+1(−t/2)
t

(−1)m

(m+ 1)!ξ
mU (m)(q). (3.3.34)

Let us make some consistency checks. Comparison with (3.2.55) we conclude that exponent in
(3.3.32) should be of the form

− tHW +O(t2), (3.3.35)

due to vanishing G0 = 1, G1 = 0.

And indeed, because

Bm+1(t/2)−Bm+1(−t/2)
m+ 1 = Bmt+O(t3) (3.3.36)

a direct computation yields the result

ap+ 1
t

e
ξt
2 ∂ − e−

ξt
2 ∂

1− e−ξ∂ U(q) = HW(q, p) +O(t2) , (3.3.37)

we expected. The expression (3.3.32) generates all the functions Gr by expanding in t, and
one can verify the results, at the very first orders, against the explicit expression in terms of
?-products given in (3.2.46).

Let us further analyze the expression given in (3.3.32). The operator appearing in this
expression can be written as

e
ξt
2 ∂ − e−

ξt
2 ∂

1− e−ξ∂ U(q) = 1
1− e−ξ∂

[
U

(
q + ξt

2

)
− U

(
q − ξt

2

)]
, (3.3.38)

by shifting the exponentials of derivatives into the argument of U(q). The denominator can
again be formally expanded in terms of Bernoulli numbers

∑
`≥0

B`(−1)`

`! ξ`−1∂`−1
[
U

(
q + ξt

2

)
− U

(
q − ξt

2

)]
, (3.3.39)

but we have to be careful, since in this expansion the expression ∂−1 appears in the term ` = 0.
This term has to be properly interpreted and defined. We already expressed the operator
in (3.3.38) in terms of Bernoulli numbers in (3.3.34). Comparing the two expressions, we see
that this terms stands for

1
ξ
∂−1

[
U

(
q + ξt

2

)
− U

(
q − ξt

2

)]
= t

∞∑
g=0

1
(2g + 1)!

(
tξ

2

)2g
U (2g)(q). (3.3.40)
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Writing this as an integral gives us
∞∑
g=0

1
(2g + 1)!

(
tξ

2

)2g
U (2g)(q)

= 1
tξ

∫ q

Λ

[
U

(
q′ + ξt

2

)
− U

(
q′ − ξt

2

)]
dq′ +

∞∑
g=0

1
(2g + 1)!

(
tξ

2

)2g
U (2g)(Λ),

(3.3.41)

where Λ is an appropriate reference point.

As we will see in the next subsection, we need the expression of the canonical density matrix
for the value

t = 2n
k
, (3.3.42)

where n is the winding of the Wilson loop operator. This can be evaluated in principle with
(3.3.32) and (3.3.39). In this case we have

ξt/2 = −nπi (3.3.43)

and if we analyze U(q), which can be written like

U(q) = q

2 + log(1 + e−q) (3.3.44)

and also analyze the shift in (3.3.32) like it is done in (3.3.39) we find

U (q − nπi)− U (q + nπi) = −nπi sgn(q) q 6= 0, (3.3.45)

due to the identity
U(q ± nπi) = ±nπi + log(1 + (−1)n), (3.3.46)

which is singular for odd n.

This analysis implies that we are resumming the series of semiclassical corrections beyond its
radius of convergence, and a regularization is needed. In order to resolve this, we first, notice
that, in the polygonal limit |q| → ∞, we can use the asymptotics of U(q) as given in (3.2.87a)

U(q) ≈ |q|2 +O
(
e−|q|

)
. (3.3.47)

In this limit, the second term in the exponent of (3.3.32) is given, for q 6= 0, by

− t|q| − tξ

2 sgn(q), (3.3.48)

since only U(q) and its first derivative survive. Therefore, we want to calculate the correction
to this polygonal limit for the value of t given by (3.3.42). In fact, this correction is given by a
distribution supported at q = 0. We will show now how it can be obtained. The first term of
(3.3.39) can be split like shown in (3.3.44) in the following way, for q > 0

U(q) = q

2 + Ũ(q), Ũ(q) = log(1 + e−q). (3.3.49)
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We have to calculate the sum appearing in the r. h. s. of (3.3.40), which we write as

q

2 +
∞∑
g=0

1
(2g + 1)!

(
tξ

2

)2g
Ũ (2g)(q). (3.3.50)

Since this function, as well as all its derivatives, vanish at infinity, we take Λ =∞ as a reference
point. For the particular value (3.3.43), we obtain from (3.3.41)

∞∑
g=0

1
(2g + 1)!

(
tξ

2

)2g
Ũ (2g)(q) = 1

tξ

∫ q

∞

[
Ũ

(
q + ξt

2

)
− Ũ

(
q − ξt

2

)]
= 0 (3.3.51)

since the integrand vanishes. We conclude that the term with ` = 0 in (3.3.39) is given by

t

2q, q > 0. (3.3.52)

A similar reasoning for q < 0 shows that the first term in (3.3.39), for the value (3.3.42) of t, is

− nπi
ξ
|q|. (3.3.53)

The second term in (3.3.39) involves the derivative of this first term. Equivalently, it can be
computed as the monodromy of U(q),

U

(
q + ξt

2

)
− U

(
q − ξt

2

)
= −nπi sgn(q). (3.3.54)

We then see from (3.3.39) that the full series of corrections involves the distribution S(q) defined
as

S(q) =
∑
`≥0

B`(−1)`

`! ξ`−1∂`−1 sgn(q) = 1
1− e−ξ∂ sgn(q) = |q|

ξ
+ 1

2sgn(q) +O(ξ). (3.3.55)

To calculate S(q), we take a derivative w. r. t. q, and we multiply both sides by 1 − e−ξ∂ . We
obtain the equation

T (q)− T (q − ξ) = δ(q) + δ(−q), (3.3.56)

where
T (q) = S ′(q). (3.3.57)

The Fourier transform of (3.3.56) gives

T̂ (ω) =
√

2
π

1
1− eiξω . (3.3.58)

We now set
ξ = −iϑ, ϑ = πk, (3.3.59)

and solve for T (q) by doing an inverse Fourier transform. This transform is in principle ill–
defined due to the pole at ω = 0, but we can regularize it in a standard way by taking a
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principal value at the origin (or an extra derivative w. r. t. q). We obtain in this way

T (q) = − P
2π

∫
dω e−iωq e−ωϑ/2

sinh
(
ωϑ
2

) = i
ϑ

coth
(
πq

ϑ

)
. (3.3.60)

We now integrate w.r.t. q to obtain S(q). The result is, after fixing the appropriate value for
the integration constant,

S(q) = 1
2 + i

π
log

(
2 sinh

(
πq

ϑ

))
. (3.3.61)

To see that this is a natural regularization, and to fix the integration constant, we note that
for q > 0 this can be written as

S(q) = q

ξ
+ 1

2 + i
π

log
(
1− e−2πq/ϑ

)
, (3.3.62)

while for q < 0 we find,

S(q) = −q
ξ

+ 1
2 + i

π
log(−1) + i

π
log

(
1− e2πq/ϑ

)
, (3.3.63)

i. e.
S(q) = |q|

ξ
+ 1

2sgn(q) + i
π

log
(
1− e2π|q|/ϑ

)
, (3.3.64)

so that, for q 6= 0, and ξ small, we find,

S(q) ≈ |q|
ξ

+ 1
2sgn(q), (3.3.65)

which is consistent with (3.3.55) and also gives the polygonal limit we need, cf. (3.3.48).
Even though it might not be clear at a first glance that an infinite sum of distributions

(3.3.55) can be resummed to a smooth function of q, but this is common in the context of
the semiclassical approximation of Wigner functions. It is performed by means of Fourier
transforms, as we have just done [91]. For example, the ground state of a harmonic oscillator
in the Wigner formulation involves the Gaussian

fW(q, p) = f(q)f(p), f(q) = 1√
π~

e−q2/~. (3.3.66)

But
f̂(ω) = 1√

2π
e−~ω2/4 = 1√

2π

∞∑
`=0

(−1)`~`

4``! ω2` (3.3.67)

which has inverse Fourier transform
∞∑
`=0

(−1)`~`

4``! δ2`(q). (3.3.68)

In the classical limit ~→ 0 we have a localized particle at the origin, and the ~ corrections give
an infinite sum of distributions which can be obtained from the smooth Gaussian in (3.3.66).
We conclude that, for the simplified Hamiltonian (3.3.23), the canonical density matrix with
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t given in (3.3.42) is

e−
2n
k
HW

? = exp
[
−n
k
p+ nπi

2 − n log
(

2 sinh
(
q

k

))]
, (3.3.69)

at least with the natural regularization procedure explained above.

3.3.3 Integrating over the Fermi surface

We are now ready to calculate the vev of the 1/6 BPS Wilson loop with winding number n in
the Fermi gas approach. The corresponding one–body operator is given in (3.3.9) The first step
is then to calculate (3.2.60) for this operator, i. e.

nOn(µ) =
∫ dqdp

2π~ Θ(µ−HW)e
n(q+p)
k +

∑
r≥1

(−1)r

r!
dr−1

dµr−1

∫ dqdp
2π~ δ(µ−HW)Gre

n(q+p)
k . (3.3.70)

Notice that, since the Hamiltonian is complex, the Fermi surface

HW(q, p) = µ (3.3.71)

is in principle a surface in complex space. However, up to exponentially small corrections, we
can recover a real Hamiltonian by a Wick rotation of the Planck constant, ~→ −i~, so that i~
is real. After this rotation, the integration process is well defined, and we can rotate back at
the end of the calculation. Equivalently, it can be easily seen from our computations, that this
can be done ny integrating over appropriate paths in the complexified phase space.
The first integral is over the region enclosed by the Fermi surface. However, by integrating

w. r. t. p or q one can reduce the integral to a boundary integral over the Fermi surface, plus
a bulk contribution which is easy to calculate. As in [48] and briefly described in section
3.2.5.1, we will divide the boundary of the Fermi surface in appropriate regions. The quantum
Hamiltonian reads,

HW = T (p) + U(q) + i~
4 U

′(q)T ′(p) + · · · (3.3.72)

where the corrections are exponentially small. The point in the Fermi surface with p coordinate

p∗ = µ+ i~
8 (3.3.73)

has a q coordinate of the form
q∗ = µ+ i~

8 +O(e−µ). (3.3.74)

It is easy to see that the leading contribution to the Wilson loop is obtained by subtracting the
contribution of the bulk region

− p∗ ≤ p ≤ p∗, −q∗ ≤ q ≤ q∗ (3.3.75)

to the contribution of the boundary (of course, in writing this inequalities, we assume that we
have performed a Wick rotation and that i~ is real). But, if we restrict ourselves to terms which
are proportional to exp(2nµ/k), the only contribution comes from the boundary shown in red
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in 3.2. This region can be divided in turn in two regions: a region where

p > p∗, −q∗ ≤ q ≤ q∗, (3.3.76)

and the region obtained by exchanging p and q,

q > q∗, −p∗ ≤ p ≤ p∗. (3.3.77)

They give the same contribution, so we will restrict ourselves to the first region and then
multiply the result by two. Along the curve bounding the region (3.3.76) we can neglect
exponentially small terms in p, i.e. we can assume that T (p) = p/2. We can then write

p(µ, q) = 2µ+ (2HW − p) , (3.3.78)

where
2HW − p = U(q) + i~

4 U
′(q) + · · · (3.3.79)

only depends on q and it has been computed in (3.3.19), with T (p) = p/2. We want to calculate
the first term in (3.3.70),∫ dqdp

2π~ e
n(q+p)
k Θ(µ−HW) = k

n

∫ dq
2π~e

q
k

(
e
np(µ,q)

k − 1
)

(3.3.80)

and we restrict to terms which are proportional to exp(2nµ/k), so we keep only the first term.
After plugging in the value of p(µ, q), we find

k

2πn~e
2nµ
k

∫ q∗

−q∗
dq e

n(p+q)
2k e−

2n
k
HW . (3.3.81)

Notice that the p dependence in this and similar expressions cancels trivially. It is easy to
see that all ~ corrections to the Hamiltonian contribute to this integral, even if we neglect
exponentially small corrections.

Let us now consider the Wigner–Kirkwood corrections to (3.3.70) along the curve bounding
the region (3.3.76). By writing

δ(µ−HW(q, p)) = 1∣∣∣∂HW(q,p)
∂p

∣∣∣δ(p− p(µ, q)) = 2δ(p− p(µ, q)) (3.3.82)

we obtain
2
∑
r≥1

(−1)r

r!
dr−1

dµr−1 e
2nµ
k

∫ q∗

−q∗

dq
2π~Gre

n(q+p)
k e−

2n
k
HW

= k

n
e

2nµ
k

∑
r≥1

(−1)r

r!

(2n
k

)r ∫ q∗

−q∗

dq
2π~Gre

n(q+p)
k e−

2n
k
HW .

(3.3.83)

This combines with (3.3.81) to produce,

k

2πn~e
2nµ
k

∑
r≥0

(−1)r

r!

(2n
k

)r ∫ q∗

−q∗
dq Gre

n(q+p)
k e−

2n
k
HW = k

2πn~e
2nµ
k

∫ q∗

−q∗
dq e

n(q+p)
k e−

2n
k
HW

? .

(3.3.84)
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Using (3.3.69) we find that this integral equals

k

2πn~ ine
2nµ
k

∫ q∗

−q∗
dq enq/k(

2 sinh
( q
k

))n , (3.3.85)

where
q∗ ≈ µ+ πik

4 . (3.3.86)

There is a singularity of the integrand for q = 0. However, as we will see, this can be avoided in
a natural way. Also notice that, as q∗ →∞, the integral diverges due to the upper integration
limit, but it is not divergent when we send the lower integration limit to infinity. In fact, doing
this only introduces exponentially small corrections (which we are neglecting anyway), and up
to these corrections we can just compute,

k In =
∫ q∗

−∞−πik
4

dq enq/k(
2 sinh

( q
k

))n . (3.3.87)

To calculate this integral, we make the following change of variables

u = eq/k, (3.3.88)

so that
In =

∫ u∗

0
du un−1

(u− u−1)n . (3.3.89)

It is actually simpler to calculate the generating functional,

I =
∞∑
n=1

Inz
n =

∫ u∗

0
du zu

u2(1− z)− 1 ≈
1
2

z

1− z log(−u2
∗) + 1

2
z

1− z log(1− z), (3.3.90)

where
− u2

∗ = e2µ/ke−
iπ
2 (3.3.91)

and we have again neglected exponentially small corrections. We now take into account that

− log(1− z)
1− z =

∞∑
n=1

Hnz
n, (3.3.92)

where Hn are harmonic numbers, to obtain

kIn = µ− iπk
4 −

k

2Hn−1. (3.3.93)

Notice that the integrand above has poles at u2 = (1− z)−1, and we have chosen an integration
contour in the complex u-plane which avoids these poles. This is natural since the upper limit
of integration, u∗, is in fact complex.

Putting all together, we obtain

k

2πn~e
2nµ
k in

(
µ− πik

4 −
k

2Hn−1

)
. (3.3.94)
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As we explained above, there is an identical contribution from the region obtained by exchanging
p↔ q. Finally, one has to subtract the contribution from the bulk region, which gives

−
∫ q∗

−q∗

∫ p∗

−p∗

dqdp
2π~ e

n(p+q)
k = − k2

2πn2~
e

2nµ
k

+ in~
4k + · · · = − ink2

2πn2~
e

2nµ
k + · · · (3.3.95)

where the dots denote subleading exponentially small corrections. Therefore, up to these cor-
rections, we find

nOn(µ) ≈ k

2πn~e
2nµ
k in

(
2µ− πik

2 − kHn

)
. (3.3.96)

As we will see in a moment, this is in precise agreement with the result obtained in the ’t Hooft
expansion at genus zero.

According to (3.2.59), in order to find the full statistical-mechanical average, we just have to
take into account the finite temperature corrections encoded in the Sommerfeld expansion. We
then find,

1
Ξ〈On〉

GC = π∂µ csc(π∂µ)nOn(µ), (3.3.97)

with the value obtained in (3.3.96), which we will write as

nOn(µ) ≈
(
A(k)µ+B(k)

)
e

2nµ
k . (3.3.98)

Here A(k) and B(k) are given by

A(k) = in

2π2n
, B(k) = − k

4π2n
in+1

(π
2 − iHn

)
. (3.3.99)

Putting things together, we find

1
Ξ〈On〉

GC = 2πn
k

csc 2πn
k

[(
µ+ k

2n − π cot 2πn
k

)
A(k) +B(k)

]
e

2n
k
µ , (3.3.100)

where Ξ is the grand-canonical partition function calculated in [48], which is given by

Ξ = exp
( 2µ3

3π2k
+ µ

3k + µk

24
)
, (3.3.101)

up to exponentially small corrections and an overall, µ-independent constant. (3.3.100) gives
then the exact grand canonical correlator at all k, up to exponentially small corrections in
µ. To get the original normalized Wilson loop correlator, we have to perform the inverse
transformation

〈W 1/6
n 〉 = 1

2πiZ

∫
dµ e−µN 〈On〉GC , (3.3.102)

where Z denotes the partition function of the theory, which is itself given by

Z(N) = 1
2πi

∫
dµ e−µNΞ(µ). (3.3.103)

Given the definition of the Airy function in (3.2.102) and the explicit form of the partition
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function (3.2.103), we are able to rewrite the integral (3.3.102), due to the exponential form of
(3.3.100), in terms of quotients of Airy functions,

〈W 1/6
n 〉 = −C−1/3A1(k)

Ai′
[
C−1/3

(
N − k

24 −
6n+1

3k

)]
Ai
[
C−1/3

(
N − k

24 −
1
3k

)]
+A2(k)

Ai
[
C−1/3

(
N − k

24 −
6n+1

3k

)]
Ai
[
C−1/3

(
N − k

24 −
1
3k

)] ,

(3.3.104)

where the prime denotes the derivative of the Airy function, and

C = 2
π2k

. (3.3.105)

The functions A1(k) and A2(k) are defined as

A1(k) = 2πn
k

csc 2πn
k

A(k) , (3.3.106)

A2(k) = 2πn
k

csc 2πn
k

[( k
2n − π cot 2πn

k

)
A(k) +B(k)

]
. (3.3.107)

Once the answer for the 1/6 BPS Wilson loop correlator is found, we can obtain the expectation
value of the 1/2 BPS Wilson loop via (2.3.49)

〈W 1/2
n 〉 = 1

4 csc 2πn
k

Ai
[
C−1/3

(
N − k

24 −
6n+1

3k

)]
Ai
[
C−1/3

(
N − k

24 −
1
3k

)] . (3.3.108)

Notice that the Airy functions in the denominators of (3.3.104) and (3.3.108) come from the
partition function [43, 48].
We should emphasize that (3.3.104) and (3.3.108) are exact results at all orders in the 1/N

expansion, up to exponentially small corrections. We will now extract from it some results on
the ’t Hooft genus expansion and test it with known results at low genus.

3.3.4 Genus expansion

In order to extract the ’t Hooft expansion of the Wilson loop correlator, we have to expand
(3.3.104) in powers of 1/k. Since we are working in the 1/N expansion and k is generic, the
results we will obtain are valid in the strong ’t Hooft coupling regime

λ� 1 . (3.3.109)

The ’t Hooft expansion of the Wilson loop vevs from the ABJM matrix model has been reviewed
and extended in section 2.3.1. Therefore, we can compare the genus expansions we obtain from
(3.3.104) with the results known from these computations. We will do the expansions explicitly
for genus zero, genus one, and genus two. In appendix B.1, we will summarize the results for
few more higher genus expansions.
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— Genus zero

To test the agreement between the results of ABJMmatrix model and the Fermi gas approach,
it will be more convenient to expand the Airy functions in (3.3.104) in terms of the κ–variable
(2.3.100) where only positive powers of κ are relevant at strong coupling. From (3.2.39) we find
the relation

N = 2µ2

π2k
+ k

24 + 1
3k (3.3.110)

for the saddle point. Furthermore the κ–parameter in the matrix model is given by eµ in the
Fermi gas. Knowing this, we are able to compare our results.
For genus zero we find,

g−1
s 〈W 1/6

n 〉g=0 = inκnk
4π2n

(
log κ− iπ

2 −Hn

)
. (3.3.111)

This agrees with the result (2.3.98) obtained with standard matrix model techniques.
The strong coupling expansion of this result can be obtained by expanding the Airy functions

in (3.3.104) in terms of the ’t Hooft coupling λ in the regime (3.3.109),

〈W 1/6
n 〉g=0 = 2πin+1

( √
λ

2
√

2πn
−
( Hn

4π2n
+ i

8πn + 1
96
)

+
( i

192 + πn

4608 + Hn−1
96π

) 1√
2λ

−
( iπn

18432 + π2n2

663552 + nHn−1
9216

) 1
λ

+O(λ−3/2)
)

eπn
√

2λ . (3.3.112)

Once we have obtained the result for the expectation value of the 1/6 BPS Wilson loop, the
result for the 1/2 BPS Wilson loop follows from (2.3.49) by incorporating the result of the other
node of the ABJM quiver gauge theory.

— Genus one

As the next step of our checks, we would like to compare the results of the Fermi gas approach
and the ABJM matrix model at genus one. Expanding (3.3.104) in terms of κ, we find the
following expression

〈W 1/6
n 〉g=1 = −in+1κn

[
n log κ

12π − in
24 −

2nHn + 3n− 3
24π

+
( 3n+ 1

24 log κ −
1

8 log2 κ

)( i
2 + Hn−1

π

)]
.

(3.3.113)

Using (2.3.49) we obtain for the vev of the 1/2 BPS Wilson loop at genus one,

〈W 1/2
n 〉g=1 = −inκn

[
2n log2 κ− (3n+ 1) log κ+ 3

24 log2 κ

]
. (3.3.114)

The genus one result for the 1/6 Wilson loop correlator with winding one was first found in [36]
by analyzing the ABJM matrix model. If we set n = 1 in (3.3.113), we find precise agreement
between our results and those of [36]. We can also easily compute the genus one, 1/2 BPS
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Wilson loop correlator with arbitrary winding from the ABJM matrix model, using (2.1.69),
and the result is in agreement with the general expression (3.3.114).

Expanding the Airy functions in (3.3.104) directly in terms of the ’t Hooft coupling λ in the
region (3.3.109), we find the following expansion for the 1/6 BPS Wilson loop expectation value

〈W 1/6
n 〉g=1 = − in+1λ

2π

(
πn

3
√

2λ
−
(2nHn + 3n− 3

12 + iπn
12 + π2n2

144
) 1
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+
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+n(n− 1)π
96 + (3n+ 1)Hn−1
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144

) 1
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√
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+π2n2(n− 1)
9216 + iπ3n3

27648 + iπ4n4
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576 + Hn−1

8π2 + π2n3Hn−1
13824

) 1
λ2

+O(λ−5/2)
)

eπn
√

2λ . (3.3.115)

Similar to the genus zero result, the expansion of the 1/2 BPS Wilson loop correlator with
winding n is automatically obtained by applying (2.3.49).

— Genus two

As our last check, we consider ABJM Wilson loop correlators at genus two. Expanding
(3.3.104) in terms of κ, we have

g−1
s 〈W 1/6

n 〉g=2 = − inκnk
2πn
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−7n4 log κ

720π + 7in4
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288 + 11
576π + 5n
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)

+ n2

log2 κ

(
i

1152 + in
64 + in2

128 −
7

96π −
n

96π + Hn−1
576π + nHn
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. (3.3.116)

For n = 1, the above expression specializes to

g−1
s 〈W

1/6
n=1〉g=2 = − iκk

2π

[
−7 log κ

720π + 7i
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log κ
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]
. (3.3.117)
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The ’t Hooft expansion at strong coupling at genus two is found from (3.3.104),

〈W 1/6
n 〉g=2 = in+1λ

(2π)3

(
7π3n3

45
√

2λ
−
(π2n2(7nHn + 15n− 23)

90 + 7iπ3n3

180 + 7π4n4
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) 1
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+
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+π3n3(7nHn + 15n− 30)
2160 + 7iπ4n4

4320 + 7π5n5

103680
) 1
λ
√

2λ
+O(λ−2)

)
eπn
√

2λ .

The result for the 1/2 BPS Wilson loop is immediately obtained by applying (2.3.49) to
(3.3.116), as in the previous cases.

We can now use the results of sections 2.1.3 and 2.3.3 for the ’t Hooft expansion of 1/2
BPS Wilson loops, and study the expression derived there for genus two in the strong coupling
region. We have checked explicitly that the strong coupling expansion of W2(p) agrees with the
vev for the 1/2 BPS Wilson loop obtained from the Fermi gas result (3.3.116).

Since we have the exact result (up to exponentially small corrections) for the Wilson loop
correlator (3.3.104), we can extract the leading and next to the leading terms of the ’t Hooft
expansion at arbitrary genus and strong coupling, as it was done in [92] for the 1/2 BPS Wilson
loop of N = 4 SYM theory. For the 1/6 BPS Wilson loop correlator with arbitrary winding n,
we find

〈W 1/6
n 〉g = −in+1n

2g−1
√

2
ag
√
λ eπn

√
2λ

+in+1n
2g−2

2π

[(
nHn−1 + iπn2 + π2n2

24
)
ag + 3n+ 1

12 ag−1 + cg

]
eπn
√

2λ
√
λ

+O(λ−3/2)eπn
√

2λ , (3.3.119)

where ag and cg are given by

ag = 2(22g−1 − 1)
(2g)! B2g , (3.3.120)

cg =
g∑

m=0

2(22m−1 − 1)22(g−m)

(2m)!(2g − 2m)! B2mB2g−2m . (3.3.121)

Using (2.3.49), the leading and next to the leading terms of the 1/2 BPS Wilson loop corre-
lator are found

〈W 1/2
n 〉g = −n

2g−1

4 ag eπn
√

2λ

+n2g−2

2π
(π2n2

48 ag + 3n+ 1
24 ag−1

)eπn
√

2λ
√

2λ
+O(λ−2)eπn

√
2λ . (3.3.122)

It turns out that the 1/2 Wilson loop correlator does not involve cg coefficients. At every genus,
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the ratio of the leading terms of the 1/6 and 1/2 Wilson loop expectation values is given by

〈W 1/6
n 〉g

〈W 1/2
n 〉g

= in+1√λ
4
√

2
+O(λ0) . (3.3.123)

This ratio was first found in [41] at genus zero for the trivial winding, and (3.3.123) generalizes
this result for arbitrary genus and winding.
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CHAPTER 4

Quantum Geometry of del Pezzo surfaces in
the Nekrasov–Shatashvili limit

4.1 Introduction

In this chapter we will consider the Nekrasov–Shatashvili limit, i.e. we set one of the deformation
parameters, say ε1, in (1.0.3) to zero and expand in the remaining one ε2 = ~. In [20] Nekrasov
and Shatashvili conjectured that this limit leads to a description of the presented setup as
a quantum integrable system. Looking at the expansion given in (1.0.3), we see that the
Nekrasov–Shatashvili limit is encoded in the terms F (n,0) of the full free energy.
We base our calculation on the results of [19], where branes were studied in the context of

refined topological strings. Branes probe the geometry in a quantum mechanical way, which
was analyzed in [18] for the B–model on Calabi–Yau geometries given by

uv = H(x, p; z) , (4.1.1)

where H(x, p; z) = 0 defines a Riemann surface. The wave function Ψ(x) which describes such
branes satisfies the operator equation

ĤΨ(x) = 0 (4.1.2)

where Ĥ is defined via the position space representation of p if interpreted as the momentum

Ĥ = H(x, i~∂x) . (4.1.3)

Ĥ reduces to the Riemann surface (4.1.1) in the semiclassical limit. In case of the unrefined
topological string one obtains further corrections in gs to Ĥ, so that the relation (4.1.2) is only
true to leading order.
In the refined topological string two types of branes exist which correspond to M5 branes

wrapping different cycles in the M-theory lift. The way these branes probe the geometry is a
key ingredient for deriving the results in this article.
A refinement of the topological B–model in terms of a matrix model has been conjectured

in [93]. This refinement, based on the matrix model description of the topological B–model,
amounts to deforming the Vandermonde determinant in the measure by a power of β = − ε1

ε2
.
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By virtue of this matrix model the time dependent Schrödinger equation

ĤΨ = ε1ε2
∑

fI(t)
∂Ψ
∂tI

(4.1.4)

can be derived. ~ is either identified with ε1 or with ε2, depending on which brane the wave-
function describes.

In the Nekrasov–Shatashvili limit we have gs → 0, therefore this picture simplifies immensely
and relation (4.1.3) is true up to normal ordering ambiguities. This can be seen from the
Schrödinger equation (4.1.4)

From the result of moving the branes around cycles of the geometry one can deduce that
the free energy in the Nekrasov–Shatashvili limit can be computed via the relation of special
geometry between A- and B-cycles. We will have to introduce a deformed differential over
which periods of these cycles are computed.

This setup is conjectured to be true generally and in this paper we want to check it for
more general geometries. Furthermore we aim to clear up the technical implementations of
this computation. This means we want to identify the right parameters of the models and
compute the free energies in a more concise way. In case of local Calabi–Yau geometries,
we find two different kind of moduli. These are normalizable and non-normalizable moduli.
In order to successfully compute the free energies, we have to keep this difference in mind,
especially because the non-normalizable moduli will not obtain any quantum corrections.

In the context of Seiberg-Witten theory an interpretation of these distinction exists in the
sense that the normalizable moduli are related to the Coulomb parameters while the non-
normalizable are identified as mass parameters of the gauge theory, which appear as residues
of the meromorphic differential defined on the Seiberg-Witten curve.

We use the relations introduced in [19] and apply them to the case of mirror duals of toric
varieties. In order to compute higher order corrections to the quantum deformed meromorphic
differential, we derive certain differential operators of order two. Based on [94] this method
has been used in [19] for the cubic matrix model and it has been applied in [95] to the case of
toric geometries. We find that these operators act only on the normalizable moduli. There are
some advantages in using these operators, one is that we are able to compute the free energies
in different regions of the moduli space, another is that we do not have to actually solve the
period integrals. This method of computing the higher order corrections also clears up their
structure. Namely, the mass parameters will not obtain any quantum corrections, while the
periods, do.

We will compute the free energies in the Nekrasov–Shatashvili limit of the topological string
on local Calabi–Yau geometries with del Pezzo surfaces or mass deformations thereof as the
base. For the local P2 we also compute it at different points in moduli space namely, not only
the large radius point, but also at the orbifold point and the conifold locus. For local F0 we
also will not only solve the model at large radius, but also at the orbifold point.

In section 4.2 we will provide an overview of the geometric structures we are using. In 4.3
we introduce the Nekrasov–Shatashvili limit and motivate a quantum special geometry, which
we use to finally solve the topological string in the Nekrasov–Shatashvili limit in section 4.4.
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4.2 Geometric setup

4.2.1 Branes and Riemann surfaces

We want to strengthen the conjecture made in [19] and clear up some technical details of
this computation along the way. Let us therefore briefly review the geometric setup which we
consider here.

Similarly to computations that were performed in [96] we want to compute the instanton
series of the topological string A-model on non-compact Calabi-Yau spaces X, which are given
as the total space of the fibration of the anti-canonical line bundle

O(−KB)→ B (4.2.1)

over a Fano variety B. By the adjunction formula this defines a non-compact Calabi-Yau d-fold
for (d − 1)-dimensional Fano varieties. Del Pezzo surfaces are two-dimensional smooth Fano
manifolds and they enjoy a finite classification. These consists of P2 and blow-ups of P2 in up
to n = 8 points, called Bn, as well as P1 × P1.

As a result of mirror symmetry we are able to compute the amplitudes in the topological
string B-model, where the considered geometry is given by

uv = H(ep, ex; zI) (4.2.2)

with u, v ∈ C, ep, ex ∈ C∗ and zI are complex structure moduli. Furthermore H(ep, ex; zI) = 0
is the defining equation of a Riemann surface.

The analysis in the following relies heavily on the insertion of branes into the geometry and
their behavior when moved around cycles. Let us continue along the lines of [18] with the
description of the influence branes have if we insert them into this geometry. In particular
let us consider 2-branes. If we fix a point (p0, x0) on the (p, x)-plane these branes will fill the
subspace of fixed p0, x0, where u and v are restricted by

uv = H(p0, x0). (4.2.3)

The class of branes in which we are interested, corresponds to fixing (p0, x0) in a manner so
that they lie on the Riemann surface, i. e.

H(p0, x0) = 0 . (4.2.4)

By fixing the position of the brane like this, the moduli space of the brane is given by the set
of admissible points, meaning it can be identified with the Riemann surface itself.

Following from an analysis of the worldvolume theory of these branes, one can argue that
the two coordinates x and p have to be noncommutative. Namely, this means that they fulfill
the commutator relation

[x, p] = gs , (4.2.5)

where gs is the coupling constant of the topological string, which takes the role of the Planck
constant.
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The leading order part of such a brane’s partition function is given by

Ψcl.(x) = exp
( 1
gs

∫ x

p(y)dy
)
. (4.2.6)

This looks a lot like the first order term of a WKB approximation if we would identify H(x, p)
with the Hamiltonian of the quantum system. All of this suggests that Ψ(x) is a wave-function
for the quantum Hamiltonian H. As a result, we are expecting a relation of the form

Ĥ(x, p)Ψ(x) = 0 , (4.2.7)

which can be considered as H(x, p) = 0 written as a condition on operators. Unfortunately it
is generally not possible to derive this Hamiltonian, because we do not have control over the
higher order gs-corrections to it. But this is the story for the unrefined case. In the Nekrasov-
Shatashvili limit of the refined topological string this problem disappears as we will show later
on.

4.2.1.1 Mirror symmetry for non-compact Calabi-Yau spaces

We want to analyze toric del Pezzo surfaces and mass deformations thereof. These kind of
geometries are related to Riemann surfaces defined by equations like (4.2.2) via mirror symme-
try. Given the toric data of a non-compact Calabi-Yau space, there exists a construction which
gives the defining equation for the Riemann surface.

The A-model geometry of a noncompact toric variety is given by a quotient

M = (Ck+3 \ SR)/G, (4.2.8)

where G = (C∗)k and SR is the Stanley-Reisner ideal. The group G acts on the homogeneous
coordinates xi via

xi → λ
lαi
α xi (4.2.9)

where α = 1, . . . , k and λα ∈ C∗, lαi ∈ Z. The Stanley-Reisner ideal needs to be chosen in
a way that the variety M exists. The toric variety M can also be viewed as the vacuum
field configuration of a 2d abelian (2,2) gauged linear σ-model. In this picture the coordinates
xi ∈ C∗ are the vacuum expectation values of chiral fields. These fields transform as

xi → eilαi εαxi (4.2.10)

under the gauge group U(1)k, where again lαi ∈ Z and α = 1, . . . , k, while εα ∈ R.

The vacuum field configurations are the equivalence classes under the gauge group, which
fulfill the D-term constraints

Dα =
k+3∑
i=1

lαi |xi|2 = rα, α = 1, . . . , k (4.2.11)

where the rα are the Kähler parameters. In string theory rα is complexified to Tα = rα + iθα.
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The Calabi-Yau condition c1(TM) = 0 is equivalent to the anomaly condition

k+3∑
i=1

lαi = 0, α = 1, . . . , k . (4.2.12)

Looking at (4.2.11), we see that negative entries in the l-vectors lead to noncompact directions
in M .
But we are going to do computations in the topological string B-model defined on the mirror

W of M . We will now describe briefly how W will be constructed. Let us define xi := eyi ∈ C∗,
where i = 1, · · · , k + 3 are homogeneous coordinates. Using the charge vectors lα, we define
coordinates zα by setting

zα =
k+3∏
i=1

x
lαi
i , α = 1, . . . , k . (4.2.13)

These coordinates are called Batyrev coordinates and are chosen so that zα = 0 at the large
complex structure point. In terms of the homogeneous coordinates a Riemann surface can be
defined by writing

H =
k+3∑
i=1

xi . (4.2.14)

Using (4.2.13) to eliminate the xi and setting one xi = 1 , we are able to parameterize the
Riemann surface (4.2.14) via two variables, which we call X = exp(x) and P = exp(p). Finally,
the mirror dual W is given by the equation

uv = H(ex, ep; zI) I = 1, . . . , k . (4.2.15)

4.3 The refinement

This was the story for the unrefined case, but we actually are interested in the refined topo-
logical string. Let us therefore introduce the relevant changes that occur when we consider the
refinement of the topological string. According to [97], the partition function of the topological
A-model on a Calabi-Yau X is equal to the partition function of M-theory on the space

X × TN × S1 (4.3.1)

where TN is a Taub-NUT space, with coordinates z1, z2. The TN is fibered over the S1 so
that, when going around the circle, the coordinates z1 and z2 are twisted by

z1 → eiε1z1 and z2 → eiε2z2. (4.3.2)

This introduces two parameters ε1 and ε2 and unless ε1 = −ε2 supersymmetry is broken. But
if the Calabi-Yau is non-compact we are able to relax this condition, because an additional
U(1)R-symmetry, acting on X, exists.

General deformations in ε1 and ε2 break the symmetry between z1 and z2 of the Taub-NUT
space in (4.3.1). As a result we find two types of branes in the refinement of the topological
string. In the M-theory setup the difference is given by the cigar subspaces C×S1 in TN ×S1

of (4.3.1), which the M5-brane wraps.
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4 Quantum Geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit

The classical partition function of an εi-brane is now given by

Ψi,cl.(x) = exp
( 1
εi
W (x)

)
, (4.3.3)

where W (x) is the superpotential of the N = (2, 2), d = 2 world-volume theory on the brane
and which is identified with the p-variable in (4.2.15) as

W (x) = −
∫ x

p(y)dy . (4.3.4)

This is quite similar to (4.2.6) and still looks like the leading order contribution of a WKB
expansion where only the coupling changed.
This suggests that the ε1/2-branes themselves also behave like quantum objects and if we

have again say an ε1-brane with only one point lying on the Riemann surface parameterized by
(p, x) then the two coordinates are again noncommutative, i. e.

[x, p] = ε1 = ~ . (4.3.5)

We will show later that the free energy of the refined topological string can be extracted from
a brane-wave function like this in a limit where we send either one of the ε-parameters to zero.
The limit of εi to zero means that one of the branes of the system decouples. In the next section
we will describe the relevant limit.

4.3.1 The Nekrasov-Shatashvili limit

In [20] the limit where one of the deformation parameters is set to zero was introduced. The
free energy in this so called Nekrasov-Shatashvili limit is defined by

W(~) = lim
ε2→0

ε1ε2F. (4.3.6)

where W is the called the twisted superpotential. This W can be expanded in ~ like

W(~) =
∑
n=0

~2nW(n) (4.3.7)

where the W(i) can be identified like

W(i) = F (i,0) (4.3.8)

with the free energy in the expansion (1.0.3).
Because we are only computing amplitudes in this limit, we present a convenient definition

of the instanton numbers, tailored for usage in this limit. We define the parameters

εL = ε1 − ε2
2 , εR = ε1 − ε2

2 (4.3.9)

and accordingly
q1,2 = eε1,2 , qL,R = eεL,R . (4.3.10)
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Using this definition the free energy at large radius has the following expansion

F hol(ε1, ε2, t) =
∞∑

jL,jR=0
k=1

∑
β∈H2(M,Z)

(−1)2(jL+jR)N
β
jLjR

k

jL∑
mL=−jL

qkmLL

2 sinh
(
kε1
2

)
jR∑

mR=−jR
qkmRR

2 sinh
(
kε2
2

) e−k β·t
(4.3.11)

in terms of BPS numbers Nβ
jLjR

.
By a change of basis of the spin representations

∑
gL,gR

nβgL,gRI
gL
L ⊗ I

gR
R =

∑
jL,jR

Nβ
jL,jR

[
jL
2

]
L
⊗
[
jR
2

]
R

(4.3.12)

we introduce the instanton numbers nβgR,gL , which are more convenient to extract from our
computations. With the sum over the spin states given by the expression

j∑
m=−j

qkm = qj+
k
2 − q−j−

k
2

q
k
2 − q−

k
2

= χ(q
k
2 ) (4.3.13)

we write down the relation between Nβ
jLjR

and the numbers nβgR,gL defined in (4.3.12) explicitly
[15, 98]

∑
jL,jR

(−1)2(jL+jR)Nβ
jLjR

χ(q
k
2
L )χ(q

k
2
R) =

∑
gL,gR

nβgL,gR(q
1
2
L − q

− 1
2

L )2gL(q
1
2
R − q

− 1
2

R )2gR . (4.3.14)

Since we do not consider the full refined topological string we want to see how this expansion
looks like in the Nekrasov-Shatashvili limit. Writing (4.3.11) in terms of nβgL,gR and taking the
Nekrasov-Shatashvili limit (4.3.6), we find

W(~, t) = ~
∞∑
g=0
k=1

∑
β∈H2(M,Z)

n̂βg
k2

(q
k
4 − q−

k
4 )2g

2 sinh
(
k~
2

) e−k β·t (4.3.15)

where ~ = ε1 and
n̂βg =

∑
gL+gR=g

nβgL,gR . (4.3.16)

4.3.2 Schrödinger equation from the β-ensemble

In [18] the authors described the behavior of branes by analyzing the relevant insertions into
the matrix model description of the topological string B-model. In [93] a conjecture has been
made about a matrix model description of the refined topological B-model, which we now want
to use as described in [19] to derive a Schrödinger equation for the brane-wavefunction of an
ε1 or ε2-brane. This matrix model takes the form of a deformation of the usual matrix model,
describing the unrefined topological string where the usual Vandermonde-determinant is not
taken to the second power anymore, but to the power 2β where

β = −ε1
ε2
. (4.3.17)
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4 Quantum Geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit

This clearly has the unrefined case as its limit, when ε1 → −ε2. Matrix models of this type are
called β-ensembles.
The partition function of this matrix model is

Z =
∫

dNz
∏
i<j

(zi − zj)−2ε1/ε2e
− 2
ε2

∑
i
W (zi). (4.3.18)

The free energy of this matrix model can be expanded in gs and β in the following way

F =
∑
n,g=0

γ2ng2n+2g−2
s Fn,g (4.3.19)

where we defined
γ =

√
β −

√
β−1 . (4.3.20)

Here we used
ε1 = i

√
βgs ε2 = −i gs√

β
. (4.3.21)

This gives the expansion (1.0.3) in terms of ε1 and ε2 if we identify

Fn,g = (−1)nF (n,g) . (4.3.22)

Based on this matrix model description the following equation for brane wave-functions has
been derived in [19](

−ε2α
∂2

∂x2 +W ′(x)2 + f(x) + g2
s

g∑
n=0

xn∂(n)

)
Ψα(x) = 0 . (4.3.23)

Now let us take the Nekrasov-Shatashvili limit. Here we consider the case

~ = ε1, and ε2 → 0. (4.3.24)

Due to the identity g2
s = −ε1ε2, the term containing g2

s vanishes leaving us with a time inde-
pendent Schrödinger equation. (For a more detailed explanation of what is meant by this see
[19].) We are left with a time-independent Schrödinger equation for the ε1-brane, where the
ε2-brane decouples.

If we now interpret
i~ ∂
∂x

= p̂ (4.3.25)

as the position-space representation of the momentum operator p̂ this yields the form

(p̂2 + (W ′(x))2 + f(x))Ψ(x) = 0 , (4.3.26)

where Ψ(x) = Ψ2(x) is the brane partition function of the brane which does not decouple
when taking the Nekrasov-Shatashvili limit.
In the limit ~→ 0 this equation becomes classical and we are left with the defining equation

of the Riemann surface
p2 +W ′(x)2 + f(x) = 0 . (4.3.27)

Having such a matrix model description, we are able to describe the effect the insertion of
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branes into the geometry has. In the unrefined case, the meromorphic differential λ acquires
a pole with residue gs at the point the brane was inserted. Therefore by going around the
position x0 of this brane, we pick up ∮

x0
λ = gs . (4.3.28)

This behavior is captured by the Kodaira-Spencer scalar field φ on Σ by the relation

δλ = ∂φ . (4.3.29)

Via bosonization we can relate this to the insertion of the brane insertion operator

ψ(x) = eφ/gs (4.3.30)

which is a fermion. In terms of periods this means∮
x0
∂φψ(x0) = gsψ(x0) . (4.3.31)

In analogy to (4.3.3) we define the brane insertion operator in the refined case as

ψα(x) = exp(φ(x)/εα) α = 1, 2 (4.3.32)

and the Riemann surface is deformed in a similar manner by an εi-brane inserted at the point
x0 ∮

x0
∂φψi(x0) = g2

s

εi
ψi(x0) . (4.3.33)

4.3.3 Special geometry

Up to now we learned that the branes we are considering act like quantum theoretic objects. In
order to make use of this, we derived Schrödinger equations for the wave functions of ε1- and
ε2-branes, respectively. However we are actually interested in deriving free energies.

This will be achieved by a deformed version of special geometry. But to make things more
clear let us put this into a more general context and give a very short introduction to special
geometry. Via special geometry we are able to derive the genus zero contribution of the full
free energy which we will call the prepotential.
We start with introducing the periods of the holomorphic three-form Ω of a Calabi-Yau

threefoldX. The first step is choosing a basis of three cycles AI and BJ , where I, J = 0, . . . , h2,1,
with intersection numbers

AI ∩BJ = −BJ ∩AI , AI ∩AJ = BI ∩BJ = 0 . (4.3.34)

The dual cohomology basis spanning H3(X,Z)

(αI , βI), I = 0, 1, · · ·h2,1(X) (4.3.35)

is given by Poincaré duality ∫
AI
αI = δJI ,

∫
BJ

βJ = −δJI (4.3.36)
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and satisfies the relations ∫
X
αI ∧ βJ = δJI and

∫
X
βJ ∧ αI = −δJI (4.3.37)

while all other combinations vanish.

Now we are able to define the periods of the holomorphic 3-form Ω by

XI =
∫
AI

Ω, FI =
∫
BI

Ω . (4.3.38)

These periods carry information about the complex structure deformations. The holomorphic
three-form Ω, as an element of H3(X,C), can be expressed in terms of the basis (4.3.35) in the
following way

Ω = XIαI −FIβI . (4.3.39)

The XI can locally serve as homogeneous coordinates of the moduli spaceM. From these we
choose a nonzero coordinate, e. g. X0 and define

ta = Xa

X0 , a = 1, · · · , h2,1(X) (4.3.40)

which are flat coordinates for the moduli space M. The XI and FI are not independent and
we can derive from the fact∫

X
Ω ∧ ∂

∂XI
Ω = 0,

∫
X

Ω ∧ ∂

∂XI

∂

∂XJ
Ω = 0 (4.3.41)

that a holomorphic function F exists, which we will call the prepotential. This prepotential
obeys the relations

F = 1
2X

IFI , FI = ∂XIF , (4.3.42)

which imply that F is homogeneous of degree two in XI . In flat coordinates we define

F(XI) = (X0)2F (tI) , (4.3.43)

which fulfills the relations
FI = ∂F

∂tI
. (4.3.44)

Since we are analyzing local Calabi-Yau spaces we have to consider rigid special geometry. Here
we will analyze only the B-model topological string on local Calabi-Yau threefolds X which are
given by the equation

uv = H(ex, ep; zI) (4.3.45)

as we stated before in section 4.2. The holomorphic three-form Ω in this case is given by

Ω = du
u
∧ dx ∧ dp. (4.3.46)

The three-cycles on X descend to one-cycles on the Riemann surface Σ given by the equation

H(ex, ep; zI) = 0 . (4.3.47)
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Furthermore we find the relation that the periods of the holomorphic three form on the full
Calabi-Yau threefold descend to periods of a meromorphic one-form λ, on only the Riemann
surface Σ. This one-form is given by

λ = pdx . (4.3.48)

Hence we can concentrate on the geometry of Riemann surfaces. There are 2g compact one-
cycles on a genus g surface. These form a basis with the elements Ai and Bi, where i runs from
1 to g. We demand their intersections to be

Ai ∩Bj = δij (4.3.49)

or more generally equal to nij , with nij being an integer.
Having found this basis, we define the periods of the meromorphic one-form

xi =
∮
Ai
λ, pi =

∮
Bi

λ, (4.3.50)

analogously to (4.3.38). Here the xi are normalizable moduli of the Calabi-Yau manifold.
But we are considering non-compact Calabi-Yau manifolds and the non-compactness leads to
additional non-normalizable moduli. These are mere parameters, not actual moduli of the
geometry.
The normalizable moduli are related to the Coulomb parameters in Seiberg-Witten theory,

e. g. pure SU(N) Seiberg-Witten theories have anN−1 Coulomb parameters, which correspond
to the g = N − 1 period integrals over the A-cycles of the genus g Seiberg-Witten curve.
We already introduced the meromorphic differential λ coming from a reduction of the holo-

morphic three-form on the Riemann surface Σ. In Seiberg-Witten theory one can have addi-
tional periods on Σ for theories with matter. These periods arise because λ has poles in this
case and the residues correspond to mass parameters. This explains why we need to separate
two types of moduli in terms of a physical interpretation.

4.3.4 Quantum special geometry

In [19] it was derived that the free energies of the topological string in the Nekrasov-Shatashvili
limit can be derived by taking the defining equation for the Riemann surface and use it as the
Hamiltonian of the system, which is then quantized. In this case the non-vanishing ε-parameter
will take the role of the Planck constant. Which parameter we choose does not affect the
computation, so let us set

~ = ε1 . (4.3.51)

The ε2-parameter will be sent to zero, which amounts to the decoupling of the ε2-branes. In
order to quantize this system we interpret x and p as canonically conjugated coordinates and
lift them to operators x̂ and p̂. On these operators we impose the commutation relation

[x̂, p̂] = i~ (4.3.52)

so that p̂ will be
p̂ = i ∂

∂x
(4.3.53)
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in x-space. The reasoning behind this is that the εi-branes still behave like quantum mechanical
objects.

We quantize the system as described above by letting the defining equation for the Riemann
surface become the differential equation

H(x, i~∂x)Ψ(x) = 0 . (4.3.54)

One way to solve this differential equation is the WKB method, where we use the ansatz

Ψ(x, ~) = exp
(1
~
S(x, ~)

)
, (4.3.55)

where S has an ~ expansion by itself

S(x, ~) =
∞∑
n=0

Sn(x)~n . (4.3.56)

We solve this equation order by order in ~. This structure is very reminiscent of what we
described in section 4.3. The Schrödinger equation constructed there was solved by brane wave
functions and comparing this to (4.3.3) we see that to leading order we can identify

S0(x) = −
∫ x

p(x′)dx′ (4.3.57)

so that the derivative of the leading order approximation of S can be identified as being the
momentum

S′0(x) = −p(x) . (4.3.58)

Following this logic, we can use the derivative of S to define a quantum differential by setting

∂S = ∂xS(x, ~)dx . (4.3.59)

But now we need to interpret the meaning of this quantum deformation and in order to do that,
we need to analyze the behavior of brane monodromies on the Riemann surface. We define the
combination of A and B cycles of the Riemann surface

γA =
∑
I

lIAI , γB =
∑
I

mIB
I (4.3.60)

around which we will move the branes. These monodromies change the phase of the partition
function as

MγA : Ztop(a)→ exp
(

1
εα

∑
I

lIaI

)
Ztop(a) (4.3.61)

if we move the brane around the A-cycle while it changes in the manner

MγB : Ztop(a)→ Ztop(a + g2
s

εα
m) = exp

(
g2
s

εα

∑
I

mI
∂

∂aI

)
Ztop(a) (4.3.62)

if we move the brane around the B-cycle.
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The monodromy around γB acts on Z as a multiplication of

exp(
∑
I

1
εα

mIa
I
D) (4.3.63)

so that a comparison yields
aID = g2

s

∂

∂aI
. (4.3.64)

From observation made in [18], we have

Ψ2(x) = 〈e−
1
~φ(x)〉 = e

1
~

∫ x
∂S (4.3.65)

and therefore
Ztop(a)→ e

1
~

∮
γB

∂S
Ztop(a) . (4.3.66)

The partition function itself is given by

Ztop(a; ε1, ε2) = exp

 ∞∑
g=0

g2g−2
s F (g)(a; ~)

 (4.3.67)

which can be written as

Ztop(a; ε1 = 0, ε2 = ~) = exp(W(a; ~)) (4.3.68)

in the Nekrasov-Shatashvili limit. We consider this as a deformation in ~ of the genus zero
amplitude of the unrefined topological string. As a result we can see now how the monodromy
acts on the partition function

Ztop(a)→ exp
(∑

I

mI∂aIW(a; ~)
)
Ztop(a) . (4.3.69)

This has to be consistent with (4.3.66) and leads to the relations∮
BI
∂S = ∂aIW(a; ~) (4.3.70)

where ∮
AI

∂S = aI(~) . (4.3.71)

These are ~ deformed quantum periods. This coincides with the special geometry relations
presented in 4.3.3.
Doing this suggests that we are able to extend special geometry to a quantum deformed

special geometry by lifting the classical periods to quantum periods by means of the quantum
differential ∂S. We therefore define

aI(zJ ; ~) =
∮
AI

∂S and aID(zJ ; ~) =
∮
BI

∂S I = 1, . . . , n , (4.3.72)

which contain the classical periods as the leading order term of the semiclassical expansion.
The argument above leads us to conjecture that the relations between the quantum periods
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are just the common special geometry relations, although with quantum deformed differential
∂S and prepotential W(~)

∂W(~)
∂aI(zJ ; ~) = aID(zJ ; ~) . (4.3.73)

Using the WKB ansatz we plug (4.3.55) into (4.3.54). This results in a sequence of S′n, which
are the corrections to the quantum periods

a
(n)
I (zJ ; ~) =

∮
AI

S′n(x) dx and aID
(n)(zJ ; ~) =

∮
BI

S′n(x) dx, I = 1, . . . , n . (4.3.74)

Another method to solve eq. (4.3.54) is the use of so called difference equations to solve for Ψ,
which has been done in [19]. This solves the problem perturbatively in the moduli zJ , while it is
exact in ~. On the other hand the WKB ansatz is exact in the moduli zJ , while perturbative in
~. Solving the Schrödinger equation via a difference equation is best shown by giving examples,
which can be found in sections 4.4.1, 4.4.2 and 4.4.4.
At large radius the A-periods can be expanded like

a(n)(zJ ; ~) =
∑
m

Resx=x0(∂mS
′
n(x; zJ))zm

m! (4.3.75)

for n > 0 and a suitably chosen point x0. In the case n = 0 the leading order of the integrand
has a branch cut so that we cannot just take the residues.
After having explained how the WKB expansion is used, some comments about the quanti-

zation of this system are in order. The perturbative quantization condition for this problem is
given by (see [94]) ∮

B
∂S = 2π~

(
n+ 1

2

)
n = 0, 1, 2, · · · . (4.3.76)

However in [99] it was shown that this is not a sufficient condition, because the B-periods have
poles at infinitely many values of the coupling constant. Hence this condition has to be extended
to a nonperturbative condition. The authors made the conjecture that the nonperturbative part
is actually controlled by the unrefined topological string, somewhat dual to the observations
made in [98].
Another approach has been suggested in [100], where the condition

exp(∂aIW(a, ~)) = 1 (4.3.77)

was used as the starting point for defining a nonperturbative completion.

4.3.5 Genus 1-curves

4.3.5.1 Elliptic curve mirrors and closed modular expressions

The next step would be to actually compute the genus zero amplitudes. In order to do that a
method has been developed in [101], based on the work of [102][103]. The B-period is given in
this formalism via the relation

∂

∂a
aD(a,m) = − 1

2πiτ(t,m) (4.3.78)
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and the prepotential F (0,0) can be calculated by making use of the relation

∂2

∂a2F
(0,0)(t,m) = − 1

2πiτ(a,m) (4.3.79)

between F (0,0) and the τ -function of an elliptic curve. This function is defined by

τ =
∫
b ω∫
a ω

(4.3.80)

where a and b are an integer basis of H1(C,Z) of the elliptic curve.

The elliptic curve needs to be given in Weierstrass form

y2 = 4x3 − g2(u,m)x− g3(u,m) (4.3.81)

which is achieved by applying Nagell’s algorithm. Here u is the complex structure parameter
of the curve and m are isomonodromic deformations.

The local flat coordinate at a cusp point in the moduli space is the period over a vanishing
cycle µ. It can be obtained near such a point u,m by integrating

dt
du =

√
E6(τ)g2(u,m)
E4(τ)g3(u,m) . (4.3.82)

Here the functions E4 and E6 are the Eisenstein series. Note that the gi, while not invariants
of the curve, can be rescaled by

gi → λi(u,m)gi . (4.3.83)

However the scaling function λ(u,m) is very restricted by the requirement not to introduce
new poles, zeros or branch cuts for the periods in the u,m parameter space. In practice the
remaining freedom is easily fixed, by matching dt

du to the leading behavior of the period integral
at the cusp. E.g. near the large complex structure cusp, we match the leading behavior

dt
du = 1

2πi

∫
µ

dx
y

= 1
u

+ · · · . (4.3.84)

and use the fact that the integration constant vanishes. This yields the period that is usually
called a(u,m) in Seiberg-Witten theory. Similarly at the conifold cusp, we can match similarly
t to the vanishing period aD(u,m) at that cusp.

We find the relation between τ and t,m by the fact that the j function has the universal
behavior

j = 1728 E3
4(τ)

E3
4(τ)− E2

6(τ)
= 1
q

+ 744 + 196 884q + 21 493 760q2 +O(q3) (4.3.85)

where q = exp(2πiτ) which can then be inverted to obtain τ(j) . The function j on the other
hand can also be written in terms of t,m

j = 1728g
3
2(t,m)

∆(t,m) (4.3.86)
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with ∆(t,m) = g3
2(t,m)− 27g2

3(t,m), so that we can easily find an expression of τ in terms of
t,m.

With the formalism described above it is hence possible to write for all B-model curves
and Seiberg Witten curves of genus one the classical vanishing period as well as the classical
dual period (see [102, 103] for more details regarding the latter period) at each cusp point.
Alternatively one can write a differential operator, which is of third order in the derivatives
w.r.t. u [96]

D(3)(u,m)
∫
a,b
λ = 0 . (4.3.87)

4.3.5.2 Special geometry

In this article we are only concerned with Riemann surfaces of genus one. As mentioned above
this means effectively we only have two compact cycles. We will denote the periods around
these a and aD. The special geometry relation is given by

aD = ∂F

∂a
. (4.3.88)

At large radius we choose the periods in such a manner that we have a single logarithm in
u for the a-period, while we get squares of logarithms for the aD-period. In this paper ũ will
correspond to the the compact toric divisors inside the diagram. Generally, we have to rescale it
to find the moduli u which gives the leading log-behavior of the periods at large radius. But we
are considering local Calabi-Yau manifolds which generally have additional non-normalizable
parameters. We will associate these parameters with the remaining noncompact toric divisors
and call them mass parameters, denoted by mi Let us give an example. In figure 4.1, we

m2

~u

m1

νi l(1) l(2) l(3)

Du 1 0 0 −1 −1 −1 ũ
D1 1 1 0 −1 1 0 m2
D2 1 1 1 1 −1 1
D3 1 0 1 0 1 −1 m1
D4 1 −1 0 0 0 1
D5 1 0 −1 1 0 0

Figure 4.1: local B2. In the first column we denote the divisors and in the fourth column the moduli and
parameters associated with them.

have given the data for local B2, which will be analyzed later on in (4.4.6). Here we have one
normalizable moduli ũ and two mass parameters m1,m2. Looking at Batyrev’s coordinates, we
find three coordinates

z1 = x2x5
x0x1

, z2 = x1x3
x0x2

, z3 = x2x4
x0x3

(4.3.89)

where x0 is associated with Du and therefore with ũ. Analogously for the two mass parameters.
Setting the remaining xi to one and defining u = 1/ũ, we obtain the relation

z1 = u

m2
, z2 = um1m2, z3 = u

m1
. (4.3.90)
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The definition of u follows from demanding the behavior given in (4.3.84). The operator Θu =
u∂u can also be written in terms of Batyrev coordinates which leads to

Θu = Θz1 + Θz2 + Θz3 . (4.3.91)

4.3.5.3 Quantum Geometry

In [104] the connection between the dual toric diagrams which show the base of an T 2 × R-
fibration to (p, q)-branes was interpreted. The result was that moving the external lines in R2

requires an infinite amount of energy compared to the internal lines. The degrees of freedom
related to the external lines are the mass parameters or non-normalizable moduli. Thus it
makes sense to consider them as being non-dynamical. We assume that the quantum deformed
periods remain non-dynamical, meaning that they do not obtain quantum corrections and for
genus one only a and aD will be quantum corrected.

As mentioned already, the quantum corrections to the periods can be extracted from the
meromorphic forms, derived by the WKB ansatz which we use to solve the Schrödinger equation.
For the A-periods, this reduces to residues, except for the logarithmic part of the classical
contribution. Often it is possible to match the contributions from the residues to the different A-
periods, but in some examples even this is not easily possible. For the B-periods it is even harder,
because we generally have to find different parameterizations, giving different contributions,
which have to be summed up in order to find the full result. The local P2 like it was solved
in [19], is a good example for this, as well as the local F1, see section 4.4.4.2. Actually, this
problem even appears for the local F0 (see section 4.4.2, but because it is very symmetric we
do not actually have to do any additional computations in order to solve this problem).
We want to avoid this complications, therefore we use a different approach. It is possible to

derive differential-operators that give quantum corrections by acting on the classical periods.
It turns out, that these operators are only of second order.
Having found these operators, the strategy is to apply them to the solution of the Picard-

Fuchs system and build up the quantum corrections. The idea is that the operator is exact
under the period integral, so that we can use partial integration to derive it.
The quantum periods a(u,m; ~) will be build up from the classical one a(u,m) in the manner

a(u,m; ~) = [1 +
∞∑
i=1

~2iD2i]a(u,m) =: D(2)(u,m, ~)a(u,m) . (4.3.92)

The individual Di are second order differential operators in u given by

Di = ai(u,m)Θu + bi(u,m)Θ2
u (4.3.93)

where Θu = u∂u and ai(u,m) and bi(u,m) are rational functions in their arguments. We do
not have proven that this is always true, but for the examples we considered it has always been
a viable ansatz. We derive such operators by taking the full WKB function under an integral
with a closed contour and then applying partial integration.
The same holds for the dual period

aD(u,m;h) = D(2)(u,m, h)aD(u,m) . (4.3.94)

This approach has been introduced in [94] and used in [19] for the geometry corresponding
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to a matrix model with a cubic potential. It also has been applied to the local F0 and local P2

in [95]. We are going to apply in even more examples while assuming that the operator is, at
least at order ~2, always of order two. It would be very interesting to provide a proof for this
conjecture.

4.4 Examples

4.4.1 The resolved Conifold

Let us start with a simple example, namely the resolved conifold. Its charge-vector is given by

l = (−1,−1, 1, 1) . (4.4.1)

Using the given charge vector we find for the Batyrev coordinate

z = x3x4
x1x2

(4.4.2)

which leads to the mirror curve

uv = 1 + ex + ep + zexe−p . (4.4.3)

Due to the adjacency of x and p in the last term of the sum we have quantum corrections in
the Hamiltonian, due to the normal ordering ambiguities. The quantum Hamiltonian is

H = 1 + ex + ep + ze−~/2exe−p . (4.4.4)

This Hamiltonian leads to the difference equation

V (X) = −1−X − z Xe−~/2

V (x− ~) (4.4.5)

where X = ex and V (x) = ψ(x + ~)/ψ(x). The A-period does not obtain any quantum
corrections and is therefore given by

a = log(z) . (4.4.6)

After defining Q = ea we can invert this and find for the mirrormap z = Q. The B-period up
to the fourth order in Q is

ãD = q1/2 log q
q − 1 Q+ 1

2
q log q
q2 − 1Q

2 + 1
3
q3/2 log q
q3 − 1 Q3 + 1

4
q2 log q
q4 − 1 Q

4 +O(Q5) (4.4.7)

where q = e~. The structure is very suggestive and leads us to assume the full form to be

aD = log q
∞∑
i=1

1
i

Qi

qi/2 − q−i/2
. (4.4.8)

The resolved conifold does not have a compact B-cycle and therefore only has a mass-
parameter. But according to [105] the double-logarithmic solution can be generated by the
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Frobenius method. The fundamental period for the resolved conifold is

$(z; ρ) =
∞∑
n=0

zn+ρ

Γ(1− n− ρ)2Γ(1 + n+ ρ)2 (4.4.9)

and
∂2
ρ$(z; ρ)

∣∣∣
ρ=0

= log2(z) + 2z + z2

2 + 2z3

9 + z4

8 +O(z5) (4.4.10)

generates the B-period. The non-logarithmic part of this is indeed given by the semiclassical
limit of (4.4.7). Therefore, we define

aD = 1
2 log2(z) + ãD (4.4.11)

and use this formally as our dual period. Integrating the special geometry relations gives us
the free energy in the Nekrasov-Shatashvili limit

W = ~
∞∑
i=1

1
i2

Qi

qi/2 − q−i/2
. (4.4.12)

The full free energy can by computed via the refined topological vertex and is

FRTV = −
∞∑
i=1

1
i

Qi

(q
i
2 − q−

i
2 )(t

i
2 − t−

i
2 )

(4.4.13)

with
q = eε1 and t = eε2 . (4.4.14)

The Nekrasov-Shatashvili limit is defined in (4.3.6) and plugging in the free energy of the refined
conifold into this, we find

WRTV = −ε2
∞∑
i=1

1
i

Qi

t
i
2 − t−

i
2

(
lim
ε1→0

ε1

q
i
2 − q−

i
2

)
= −ε2

∞∑
i=1

1
i2

Qi

t
i
2 − t−

i
2

(4.4.15)

which is exactly the result we found using the quantum periods. This also fits nicely in the
expansion presented in (4.3.15) with the only nonvanishing instanton number being n̂0 = 1.

4.4.2 local F0

We begin with presenting the Mori cone for the toric geometry depicted in fig. (4.2)

 u
 ~

m

Figure 4.2: Polyhedron 2 depicting the toric geometry F0.
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νi l(1) l(2)

Du 1 0 0 −2 −2
D1 1 1 0 1 0
D2 1 0 1 0 1
D3 1 −1 0 1 0
D4 1 0 −1 0 1

. (4.4.16)

From the toric data we find the complex structure moduli at the large radius point

z1 = m

ũ2 , z2 = 1
ũ2 . (4.4.17)

After setting u = 1
ũ2 the mirror curve in these coordinates is given by

− 1 + ex + ep +mue−x + u e−p = 0 . (4.4.18)

Hence the Schrödinger equation for the brane wave function corresponding to this reads

(−1 + ex +mue−x)Ψ(x) + Ψ(x+ ~) + uΨ(x− ~) = 0 . (4.4.19)

The coefficients of the classical Weierstrass normal form are

g2(u,m) = 27u4(1− 8u− 8mu+ 16u2 − 16mu2 + 16m2u2) , (4.4.20a)
g3(u,m) = 27u6(1− 12u− 12mu+ 48u2 + 24mu2 + 48m2u2

− 64u3 + 96mu3 + 96m2u3 − 64m3u3) . (4.4.20b)

4.4.2.1 Difference equation

Defining the function
V (x) = Ψ(x+ ~)

Ψ(x) , (4.4.21)

we obtain the difference equation

V (x) = 1− ex +mue−x + u

V (x− ~) , (4.4.22)

which can be expanded around u = 0. Doing this leads to a power series for V (x)

V (x) = 1−X +mue−x + u

1− q−1ex
+O(u2), (4.4.23)

where we defined q = e~.
We see in (4.4.21) that V includes the wavefunction ψ, which includes the quantum differential

we seek. This has been already used in section 4.4.1, when we solved the resolved conifold, but
let us see how we can actually extract it from this expression by integrating over log V∫

log(V (x)) =
∫
S′(x)dx+

∞∑
n=2

~n

n!

∫
S(n)(x)dx (4.4.24)

where we used Ψ(x) = e
1
~
∑∞

i=0 Si(x)~i . Integrating around a closed contour the last part vanishes
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because we have for n ≥ 2 ∮
dxS(n)(x) =

[
S(n−1)

]
, (4.4.25)

so that indeed ∮
∂S =

∮
log(V (X)) (4.4.26)

and we can use this quantity to define the quantum differential for closed contours.

Computing the contour integral around the AI cycles leads to

1
2πi

∮
AI

log(V (x; zI))dx = 1
2πi

∮
AI

log(V (x; 0))dx+
∑
n

1
n!ResX=X0

1
X
∂zn log(V (X; z))

(4.4.27)
∝ log(zI) + ã (4.4.28)

where we defined X = ex and X0 is a appropriately chosen pole.

In this case the A-Period is is given by

a = log u+ 2(m+ 1)u+
(

3m2 + 2m
(
q + 1

q
+ 4

)
+ 3

)
u2 +O(u3) (4.4.29)

The B-periods are more complicated to obtain. Due to the symmetry of this case, we find the
contributions to the B-period by taking an integral and symmetrizing with respect to u↔ um.
This is due to the symmetry of local F0 and as a result we only have to do the integration once
in order to obtain the final result.

We regularize the integrals using the boundaries δ and Λ. Using these we extract the finite
(and real) part of the integral.

The B-period of local F0 is given by

aD = −1
2 log(u) log(mu)− 1

2 log
(
mu2

)
a+ ãD (4.4.30)

where the non-logarithmic part of the B-periods is given by

ãint =
∫ Λ

δ
log(V (x))dx (4.4.31)

= 4
(
q + 1
q − 1 log q

)
z2 + 4z2

1 +
(

4 + 2
(
5q2 + 8q + 5

)
log q

q2 − 1

)
z2

2

+
(

8 + 4(q + 1)3

(q − 1)q log q)
)
z1z2 +O(z3

i ) . (4.4.32)

In this expression we had to symmetrize with respect to ~ → −~ to get rid of the odd sector
in ~. That is expected because we only integrated over a small portion of the surface and are
going to piece together the full period by symmetry considerations. Symmetrizing with respect
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to the variables u and um finally yields

ãD = −(m+ 1)(q + 1) log(q)
q − 1 u− 2(1 +m)2u2+

−
(
m2q

(
5q2 + 8q + 5

)
+ 4m(q + 1)4 + q

(
5q2 + 8q + 5

))
log(q)

2q (q2 − 1) u2 +O(u3) . (4.4.33)

Due to the symmetry of local F0 we only had to compute one integral. But generally we
would have to find the right parameterizations and piece together the results to yield the full
periods. This will also become an issue for the A-periods in more complicated cases. We define
the single valued quantity

Qt = exp(a) . (4.4.34)

The special geometry relations in this variable are

Qt∂QtW(Q1, Q2; q) = ãD(Qt, Qm; q) (4.4.35)

which yields

W(Q1, Q2; q) = 1 + q

1− q (Q1 +Q2)+ 1
4

1 + q2

1− q2 (Q2
1 +Q2

2)+ (1 + q)(1 + q2)
q(1− q) Q1Q2 +O(Q3

i ) , (4.4.36)

if we drop the classical terms.
One advantage of this method is that it is exact in ~ from the beginning. In the following

cases it will be very hard though to extract the correct contributions to the periods from the
quantum differential form. The information we find due to this method can be obtained in any
case, because at the large radius point the BPS numbers have the property

Nβ
jL,jR

= 0 forβ > βmax(jL, jR) (4.4.37)

for finite βmax(jL, jR). As a result we can reconstruct the data, found in this section by a
computation perturbative in ~.
If we want to compute amplitudes at different point in moduli space we also have the problem

that it is quite hard to compute the amplitudes exactly in ~, because we cannot properly
attribute the contours. Hence, for the next section, we will use another approach, namely the
differential operators, which map the classical periods to the higher order corrections.

4.4.2.2 Operator approach

From the Schrödinger equation given above we find for the zeroth order WKB function

S′0(x) = log
(
−e
−x

2

(
−ex + e2x +mu+

√
(−ex + e2x +mu)2 − 4e2xu

))
. (4.4.38)

The operator mapping the zeroth to the second order periods is given by

D2 = 1
6(−u−mu)Θu + 1

12(1− 4u− 4mu)Θ2
u , (4.4.39)
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with θu = u∂u = z1∂1 + z2∂2 in terms of the Batyrev coordinates. Higher order operators are
given in appendix C.2. The form of θu already leads to the conclusion that the m parameter
defined in eq. (4.4.17) does not get any ~ corrections like it was expected for trivial parameters.
Computing the classical A-period as described in section 4.3.5.1 and using the operators to
calculate quantum corrections gives the expression

a = log(u) + 2(1 +m)u+ 3(1 + 4m+m2)u2

+ 20
3 (1 + 9m+ 9m2 +m3)u3 +

(
2mu2 + 20m(1 +m)u3

)
~2 +O(~3, u4) (4.4.40a)

and the B-period is given by

aD = −2 log(u)2 − 2 log(m) log(u)

− 2 log(mu2)
(
2u(1 +m) + 3u2(1 + 4m+m2) + 2mu2~2

)
− 8u(1 +m)

− 2u2(13 + 40m+ 13m2)− 1
3~

2(1 + 2u(1 +m) + 2u2(3 + 32m+ 3m2)) +O(~3, u3) .
(4.4.40b)

Inverting the exponentiated A-period we find for the mirror map

u(Qu) = Qu − 2(1 +m)Q2
u + 3Q3

u(1 +m2)− 4Q4
u(1 +m+m2 +m3)

+ (−2mQ3
u − 4m(1 +m)Q4

u)~2 +O(~3, Q5
u) .
(4.4.41)

To integrate the special geometry relation we need the following relations

Qu = Q2, m = Q1
Q2

, (4.4.42)

which can be checked by calculating the periods as solutions of the Picard-Fuchs equations.
Then we find the instanton numbers given in the tables 4.1, 4.2, 4.3 and 4.4.

d1 0 1 2 3 4 5
d2
0 −2
1 −2 −4 −6 −8 −10 −12
2 −6 −32 −110 −288 −644
3 −8 −110 −756 −3556 −13072
4 −10 −288 −3556 −27264 −153324
5 −12 −644 −13072 −153324 −1252040

Table 4.1: The instanton numbers for local F0 at order ~0.

4.4.2.3 Orbifold point

In this section we solve the problem at the orbifold point of the moduli spaceM. This is very
useful because it would be the point where we could compare our results to a matrix model
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d1 0 1 2 3 4 5
d2
0 −1
1 −1 −10 −35 −84 −165 −286
2 −35 −368 −2055 −7920 −24402
3 −84 −2055 −21570 −142674 −699048
4 −165 −7920 −142674 −1488064 −10871718
5 −286 −24402 −699048 −10871718 −113029140

Table 4.2: The instanton numbers for local F0 at order ~2.

d1 0 1 2 3 4 5
d2
0
1 −6 −56 −252 −792 −2002
2 −56 −1352 −12892 −75016 −322924
3 −252 −12892 −219158 −2099720 −13953112
4 −792 −75016 −2099720 −30787744 −298075620
5 −2002 −322924 −13953112 −298075620 −4032155908

Table 4.3: The instanton numbers for local F0 at order ~4.

d1 0 1 2 3 4 5
d2
0
1 −1 −36 −330 −1716 −6435
2 −36 −2412 −41594 −375052 −2288546
3 −330 −41594 −1209049 −17227788 −157648036
4 −1716 −375052 −17227788 −365040880 −4760491974
5 −6435 −2288546 −157648036 −4760491974 −85253551830

Table 4.4: The instanton numbers for local F0 at order ~6.

description of the refined topological string.
The coordinates around we want to expand at the orbifold point are given by [40]

x1 = 1− z1
z2
, x2 = 1

√
z2
(
1− z1

z2

) . (4.4.43)

Due to the symmetry of local P1×P1 obtaining the quantum periods has not been very hard in
the large radius case. Now we want to find the quantum periods, expanded in the coordinates
at the orbifold point. The problem we are facing in this case is, that we do not know how to
extract the relevant parts from the integrals over the quantum differential. Hence we have to
pursue a different path in order to compute the quantum periods. In [95] certain operators
have been derived which allow us to obtain the higher order corrections in ~ via second order
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differential operators, acting on the classical periods. We list the operators for the second and
fourth order here

t2 = −z1 + z2
6 Θut+ 1− 4z1 − 4z2

12 Θ2
ut (4.4.44a)

t4 = 1
360∆2 {2[z2

1(1− 4z1)3 + z2
2(1− 4z2)3 + 4z1z2(8− 37z1 − 37z2 − 328z2

1 + 1528z1z2

− 328z2
2 + 1392z3

1 − 1376z2
1z2 − 1376z1z

2
2 + 1392z3

2)]Θut+ [−z1(1− 4z1)4 − z2(1− 4z2)4

+ 4z1z2(69− 192z1 − 192z2 − 1712z2
1 + 6880z1z2 − 1712z2

2 + 5568z3
1 − 5504z2

1z2

− 5504z1z
2
2 + 5568z3

2)]Θ2
ut}. (4.4.44b)

In the coordinates z1, z2 the logarithmic derivative Θu is given by

Θu = u∂u = z1∂z1 + z2∂z2 . (4.4.45)

We can transform this operator to the orbifold coordinates and act with it on the classical
period. The expansion of classical periods in the orbifold coordinates can be computed via
solving the Picard–Fuchs system. This has been done in [45] already so that we can build on
the solutions already at hand.

Here we present the periods to zeroth order

ω0 = 1, (4.4.46a)

s
(0)
1 = − log(1− x1) = t1 − t2 (4.4.46b)

s
(0)
2 = x1x2 + 1

4x
2
1x2 + 9

64x
3
1x2 +O(x4

i ) (4.4.46c)

F (0)
s2 = log(x1)s2 + x1x2 + 3

4x
2
1x1 + 15

32x
3
1x2 −

1
6x1x

3
2 +O(x4

i ) . (4.4.46d)

Using (4.4.44a) and (4.4.44b) we are able to compute the periods at order two and four, respec-
tively. As explained, we take the operators (4.4.44a) and (4.4.44b), corresponding to order two
and four, respectively, change the coordinates via (4.4.43) and apply them to (4.4.46) to find

s
(2)
2 = 1

64x1x2 + 1
256x

2
1x2 + 15

8192x
3
1x2 + 35

32768x
4
1x2 +O(x5

i )

and

F (2)
s2 = −1

8x2 + 1
6
x2
x1

+ 3
128x1x2 + 17

1536x
2
1x2 + 189

32768x
3
1x2 + 1387

393216x
4
1x2

− 5
24x

3
2 + 1

6
x3

2
x1

+ 5
128x1x

3
2 + 5

1536x
2
1x

3
2 −

7
24x

5
2 + 1

6
x5

2
x1

+ s
(2)
2 log(x1) +O(x5

i ) (4.4.47)

while s(0)
1 will not get any quantum corrections at all.
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The result we find be using special geometry is

F (1,0) = 1
24 (log(S1) + log(S2)) + 1

576(S2
1 + 30S2S1 + S2

2)

− 1
138 240(2S4

1 − 255S2S
3
1 + 1530S2

2S
2
1 + S1 ↔ S2)

+ 1
34 836 480(8S6

1 + 945S2S
5
1 − 43 470S2

2S
4
1 + 150 570S3

2S
3
1 + S1 ↔ S2) +O(S7)

(4.4.48a)

F (2,0) = − 7
5760

( 1
S2

1
+ 1
S2

2

)
+ 1

2 438 553 600(155S2
1 − 16 988 774S2S1 + 155S2

2)

− 1
5 573 836 800(31S4

1 + 13 093 484S2S
3
1 − 27 178 854S2

2S
2
1 + S1 ↔ S2)

− 1
14 714 929 152 000(4960S6

1 + 3842 949 687S2S
5
1 − 36 703 156 395S2

2S
4
1

+ 82 152 486 440S3
2S

3
1 + S1 ↔ S2) +O(S7) (4.4.48b)

F (3,0) = − 31
161 280

( 1
S4

1
+ 1
S4

2

)
− 1

1 560 674 304 000(2667S2
1 − 3 669 924 266S2S1 + 2667S2

2)

+ 1
1 961 990 553 600(508S4

1 + 4 960 681 415S2S
3
1 − 6 516 516 390S2

2S
2
1 + S1 ↔ S2)

− 1
80 343 513 169 920 000(1 930 654S6

1 − 6 435 720 4136 601S2S
5
1 + 346 657 135 824 060S2

2S
4
1

− 727 232 136 215 170S3
2S

3
1 + S1 ↔ S2) +O(S7) (4.4.48c)

where the constants of integration have been fixed in a manner as to give the resolved Conifold
if we send S1 → 0 or S2 → 0. The data before fixing the constant of integration can be found
in appendix C.2.1.
The relation between the periods in this case and the ’t Hooft parameters of the corresponding

matrix model is, at least in the unrefined case, given by [45]

S1 = 1
4(s1 + s2), S2 = 1

4(s1 − s2) . (4.4.49)

Hence the periods in terms of the ’t Hooft parameters are given by

s1 = 2(S1 + S2), s2 = 2(S1 − S2) . (4.4.50)

The case of S1 = 0 or S2 = 0 specializes to the resolved conifold at the orbifold point which
can be easily computed. Using this result, we are able to fix the remaining constants and obtain
the final result for the NS-limit of local P1 × P1 at the orbifold point.
We have to send ~ → 2i~ and introduce and overall factor of 1/8 in order to compare the

results to the Conifold computation.
This results seem to disagree with the results of [13], but they actually agree, except for the

contribution coming from the constants of integration. However, due to the change (4.4.50) the
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expressions change drastically. The raw data can be found in appendix C.2.1.

4.4.3 O(−3)→ P2

~u

Figure 4.3: Toric diagram of local O(−3)→ P2.

νi l(1)

Du 1 0 0 −3
D1 1 1 0 1
D2 1 0 1 1
D3 1 −1 −1 1

. (4.4.51)

The toric diagram of local P2 is given in fig. (4.3). By use of the toric data given in eg. (4.4.51)
we find

z = 1
ũ3 . (4.4.52)

By defining u = 1
ũ3 we find for the quantum mirror curve

− 1 + ex + ep + ue~/2e−xe−p = 0 . (4.4.53)

The corresponding Schrödinger equation reads

(−1 + ex)ψ(x) + ψ(x+ ~) + ue~/2e−xψ(x− ~) = 0 . (4.4.54)

Because we are not able to compute the full B-periods by only considering the patch given by
this parameterization, we have to use a second one, given by

− 1 + ue−x + e−p + e~/2exep = 0 . (4.4.55)

Therefore it is more convenient to use the operator approach in this case. In [95] operators
have been derived which enable us to write higher order corrections to the periods in terms of
the zero order period. For local P2 up to order four these are

D2 = Θ2
u

8 (4.4.56a)

D4 = 2u(999u− 5)Θu + 3u(2619u− 29)Θ2
u

640∆2 (4.4.56b)
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where ∆ = 1 + 27u. The data for the elliptic curve is

g2 = 27u4
(
24u3 + 1

)
(4.4.57a)

g3 = 27u6
(
216u6 + 36u3 + 1

)
(4.4.57b)

and from this together with the operators the A-period

a = log(u)− 2u3 + 15u6 − 560u9

3 + ~2
(
−u

3

4 + 15u6

2 − 210u9
)

+O(~4, u12) (4.4.58a)

and the B-period

aD = −9
(

1
2 log2 u+ log(u)a− u3 + 47u6

4 − 1486u9

9

)
+O(~2, u12) (4.4.58b)

follow. Having found these, we can easily integrate the special geometry relations to yield

W(0) = 3Q− 45
8 Q

2 + 244
9 Q3 − 12 333

64 Q4 + 211 878
125 Q5 +O(Q6) (4.4.59a)

W(1) = −7
8Q+ 129

16 Q
2 − 589

6 Q3 + 43 009
32 Q4 − 392 691

20 Q5 +O(Q6) (4.4.59b)

W(2) = 29Q
640 −

207Q2

64 + 18447Q3

160 − 526859Q4

160 + 5385429Q5

64 +O(Q6) . (4.4.59c)

4.4.3.1 Orbifold point

The orbifold point is given by the change of coordinates ψ = − 1
3u1/3 , which changes the loga-

rithmic derivative of the large radius coordinate as

Θu → −
1
3ψ∂ψ = −1

3Θψ . (4.4.60)

According to [40] the classical part of the periods at this point can be written as

Πorb =

σDσ
1

 =

−3∂σF orb
0

σ
1

 =

B2
B1
1

 (4.4.61)

where

Bk = (−1)
k
3 +k+1 (3ψ)k

k

∞∑
n=0

[
k
3

]3
n∏3

i=1

[
k+i

3

]
n

ψ3n . (4.4.62)

Here [a]n = a(a+1) . . . (a+n+1) is the Pochhammer symbol. Knowing the operators (4.4.56b)
and (4.4.62), computing the periods σ and σD to higher orders is very easy. We only have to
change the coordinates of the operators to ψ and apply them to (4.4.62).
C.3.1 The quantum periods are defined by the expansion

t = σ =
∑
i

~2iσ2i and σD =
∑
i

~2iσ2i
D . (4.4.63)

98



4.4 Examples

The first few orders can be found in (C.3.6) for the A-period and in (C.3.7) for the B-period.
Inverting t(ψ) and plugging it into aD gives us

σD = ∂FNS
orb
∂σ

(4.4.64)

By integrating this with respect to σ, we finally find the free energies

F (0,0) = c0 + 1
18 t

3 − 1
19 440 t

6 + 1
3 265 920 t

9 − 1093
349 192 166 400 t

12 + 119 401
2 859 883 842 816 000 t

15

(4.4.65a)

F (1,0) = c1 + 1
648 t

3 − 1
46 656 t

6 + 1319
3 174 474 240 t

9 − 10453
1 142 810 726 400 t

12

+ 2 662 883
12 354 698 200 965 120 t

15 (4.4.65b)

F (2,0) = c2 + 1
6480 t

3 − 79
8 398 080 t

6 + 29
65 318 400 t

9 − 423 341
22 856 214 528 000 t

12

+ 1 332 163 447
1 853 204 730 144 768 000 t

15 . (4.4.65c)

Checking this against the results found in [101], we find an exact agreement up to the constants
of integration.

4.4.3.2 Conifold point

In order to find the free energies at the conifold, we have to solve the Picard-Fuchs system at
small ∆, which is defined in terms of the large radius variable by

u = ∆− 1
27 , (4.4.66)

which changes the logarithmic derivative to

θu → θ∆ = (∆− 1)∂∆ . (4.4.67)

The quantum corrections will be computed by making a coordinate transformation to ∆ in
(4.4.56b).

Π =

 atc
3atcD

1

 , where a = −
√

3
2π . (4.4.68)

The flat coordinates with quantum corrections are given in terms of ∆ by equations (C.3.8) in
appendix C.3.2. Plugging this into the B-periods given in (C.3.9) and integrating, we finally
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arrive at the free energies

F (0,0) = c0 + a0tc
3 + t2c

(
a1
6 + log (tc)

6 − 1
12

)
− t3c

324 + t4c
69984 + 7 t5c

2361960 −
529 t6c

1700611200 +O(t7c)

(4.4.69a)

F (1,0) = c1 + log (tc)
24 + 7 tc

432 −
131 t2c
46656 −

19 t3c
314928 + 439 t4c

50388480 −
1153 t5c

1530550080 +O(t6c) (4.4.69b)

F (2,0) = − 7
1920t2c

+ c2 + 1169tc
12597120 −

7367t2c
335923200 + 16153t3c

6122200320 + 7729t4c
881596846080 +O(t5c)

(4.4.69c)

where

a0 = −π3 − 1.678699904i = 1
i
√

3Γ
(

1
3

)
Γ
(

2
3

)G3 3
2 2

(
1
3

2
3 1

0 0 0

∣∣∣∣− 1
)

and a1 = 3 log(3) + 1
2πi .

(4.4.70)
This again matches the results given in [101] up to misprints and constants of integration.

4.4.4 local F1

~um

Figure 4.4: Toric diagram of local F1.

νi l(1) = l(f) l(2) = l(b)

Du 1 0 0 −2 −1
D1 1 1 0 1 0
D2 1 0 1 0 1
D3 1 −1 0 1 −1
D4 1 −1 −1 0 1

. (4.4.71)

The toric data of eq. (4.4.71) together with the definition of the trivial m parameter in fig. (4.4)
leads to the Batyrev coordiantes

z1 = m

ũ2 , z2 = 1
mũ

. (4.4.72)

We define ũ = 1
u and get for the quantum mirror curve

H(x, p) = −1 + ex +mu2 e−x + ep + e−~/2
u

m
exe−p . (4.4.73)
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The coefficients of the classical Weierstrass normal form are

g2(u,m) = 27u4(1− 8mu2 + 24u3 + 16m2u4) , (4.4.74a)
g3(u,m) = 27u6(1− 12mu2 + 36u3 + 48m2u4 − 144mu5 + 216u6 − 64m3u6) . (4.4.74b)

4.4.4.1 Operator approach

The curve (4.4.73) has the following solution at zeroth order

S′0(x) = log
(1

2e
−x
(
ex − e2x − z1 −

√
(−ex + e2x + z1)2 + 4e3xz2

))
. (4.4.75)

Further solutions can be found in appendix C.4.
By partially integrating we find for the first operator

D2 = mu2 (4m− 9u)
6δ Θu + 4m− 3u− 16m2u2 + 36u3m

24δ Θ2
u , (4.4.76)

with δ = (−8m+ 9u). Higher order operators can as well be found in appendix C.4. Calculation
of the nontrivial quantum periods leads to

a = log(u) +mu2 − 2u3 − 1
4u

3~2 +O(~4, u4) , (4.4.77a)

aD = −4 log(u)2 − log(u) log(m)− log(u8m)
(
mu2 − 2u3 − 1

4u
3~2
)

+ u

m
+ u2( 1

4m2 − 4m)

+ 10u3 + 1
9m3u

3 − 1
24~

2
(

4 + u

m
+ u2( 1

m2 + 8m) + u3( 1
m3 − 62)

)
+O(~4, u4) .

(4.4.77b)

With the nontrivial A-period we find for the mirror map

u(Qu) = Qu −mQ3
u + 2Q4

u + 1
4Q

4
u~2 +O(~4, Q5

u) . (4.4.78)

The nontrivial coordinate Qu and the trivial parameter m can be translated back to the usual
description via two logarthmic solutions of the Picard-Fuchs equations. The connection is given
by

Qu = Q
1/3
1 Q

1/3
2 , m = Q

1/3
1 Q

−2/3
2 . (4.4.79)

These relations can be checked perturbativly. Using these relations after integrating the special
geometry relation we find the instanton numbers in the Nekrasov–Shatashvili limit listed in the
tables 4.5, 4.6, 4.7 and 4.8.

4.4.4.2 Difference equation

Another way to handle this problem would be to extract the relevant data directly from the
integrals over the quantum differentials. For the A-periods this is quite straightforward and
the non-logarithmic part is just given by the residues of the expansion around the large radius
coordinates. The computation of the B-periods though is not as straightforward. We have to
change the parameterization of the curve in order to find all contributions. Unfortunately we
are not certain about the way to systematically find these parameterizations. The following
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d1 0 1 2 3 4
d2
0 1
1 −2 3
2 5 −6
3 7 −32 27
4 9 −110 286 −192

Table 4.5: The instanton numbers for local F1 at order ~0.

d1 0 1 2 3 4
d2
0
1 −1 4
2 20 −35
3 56 −368 396
4 120 −2055 6732 −5392

Table 4.6: The instanton numbers for local F1 at order ~2.

d1 0 1 2 3 4
d2
0
1 1
2 21 −56
3 126 −1352 1875
4 462 −12892 55363 −53028

Table 4.7: The instanton numbers for local F1 at order ~4.

d1 0 1 2 3 4
d2
0
1
2 8 −36
3 120 −2412 4344
4 792 −41594 242264 −277430

Table 4.8: The instanton numbers for local F1 at order ~6.

curves yield all the parts needed for getting the correct B-period, at least for zeroth order in ~.

A :− 1 + ep + ex + u2me−x − e~/2u3 e−p−x

B :− 1 + ep + ex + u2me−p − e~/2u3 e−p−x

C :− 1 + ep + ex + u2me−x − e−~/2 u
m
e−p+x . (4.4.80)
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The A-period is

a = log(u) +mu2 −
(
√
q + 1
√
q

)
u3 + 3m2u4

2 +O(u5) (4.4.81a)

while the B-period, after summing up the contributions from A,B and C is given by

aD = − log(u) log
(
mu4

)
− log

(
mu8

)
ã+ ãD (4.4.81b)

where

ãD =
√
qu log(q)
m(q − 1) + u2 (q − 4m3(q + 1)2) log(q)

2m2 (q2 − 1)

+ u3 (6m3 (2q4 + 3q3 + 5q2 + 3q + 2
)

+ q2) log(q)
3m3√q (q3 − 1) +O(u4) (4.4.82)

which can be pieced together from the contributions of the different parameterizations like

ãD = −3IA − 4IB − IC (4.4.83)

after symmetrization with respect to ~→ −~, in order to get rid of the odd sector in ~.
By integrating the B-period with respect to Qt we finally find the free energy

W =
(
(q + 1)Q1 −

√
qQ2

)
1− q +

(
q2 + 1

)
Q2

1 − qQ2
2

4 (1− q2) −
(
4q2 + q + 4

)
Q1Q2

3(1− q)√q +O(Q3
i ) . (4.4.84)

4.4.5 O(−KF2)→ F2

u
~

m

Figure 4.5: Toric diagram of O(−KF2)→ F2.

νi l(1) = l(f) l(2) = l(b)

Du 1 0 0 −2 0
D1 1 1 0 1 0
D2 1 0 1 0 1
D5 1 −1 0 1 −2
D6 1 −2 −1 0 1

. (4.4.85)

This geometry is denoted in [96] as polyhedron 4. The toric diagram is depicted fig. (4.5). The
toric data is given in eq. (4.4.85). With the toric data we find for the moduli

z1 = m

ũ2 , z2 = 1
m2 . (4.4.86)

103



4 Quantum Geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit

With the definition ũ2 = 1
u we find that the elliptic mirror curve does not have any quantum

corrections and looks like

H = 1 + ex + ep +mue2x + 1
m2 e

−p . (4.4.87)

The coefficients of the classical Weierstrass normal form are

g2(u,m) = 27u4
(
(1− 4mu)2 − 48u2

)
, (4.4.88a)

g3(u,m) = −27u6
(
64m3u3 − 48m2u2 − 288mu3 + 12mu+ 72u2 − 1

)
. (4.4.88b)

The zeroth order solution to the resulting Schrödinger equation is

S′0(x) = log
(

1
2

(
−1− ex − e2xmu−

√
(1 + ex + e2xmu2)2 − 4

m2

))
. (4.4.89)

Some higher order WKB functions can be found in appendix C.5.
Partially integrating the WKB functions we find for operators mapping the zeroth order periods
to higher periods

D2 = −1
6(mu)Θu + 1

12(1− 4mu)Θ2
u , (4.4.90a)

D4 = u2

180∆2

(
−4m

(
3m2 + 28

)
u+m2 − 64m

(
m4 − 92m2 + 352

)
u3

+16
(
3m4 − 94m2 + 552

)
u2 + 30

)
Θu

+ u

360∆2

(
−96m

(
m2 + 5

)
u2 + 4

(
4m2 + 61

)
u− 256m

(
m4 − 92m2 + 352

)
u4

+64
(
4m4 − 123m2 + 652

)
u3 −m

)
Θ2
u . (4.4.90b)

where
∆ = 16m2u2 − 8mu− 64u2 + 1 . (4.4.91)

Higher order operators can as well be found in the appendix C.5.
This geometry has a particularly interesting property, namely that one can calculate more than
one A-period by taking the residue at another point. This allows an additional check of the
operators.
Proceeding with the calculation of the nontrivial periods leads to

a = log(u) +mu2 − 2mu3 + 1
6mu

2~2 − 3
2mu

3~2 +O(~4, u4) , (4.4.92a)

aD = −5
2 log(u)2 + log(u)

(
−5mu2 + 10mu3 − 5

6mu
2~2 + 15

2 mu
3~2
)

+ u+ u2

4 − 4mu2 + 4
9u

3

+ 9mu3 + 1
3m

3u3 +
(
− 5

12 + u

12 + u2

12 −
4
3mu

2 + 1
3u

3 + 45
4 mu

3 + 1
4m

3u3
)
~2 +O(~4, u4).

(4.4.92b)
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After exponentiating the A-period we find for the mirror map

u(Qu) = Qu −mQ3
u − 3Q5

u +m2Q5
u − ~2Q5

u −
1
12~

4Q5
u +O(~6, Q6

u) . (4.4.93)

In the following we use the relation

1 +Q2√
Q2

= 1
√
z2

= m, (4.4.94)

which does not get any quantum corrections and is thus like a trivial period. Additionally we
use Qu = Q

1/2
1 Q

1/4
2 to find after integrating the special geometry relation the instanton numbers

listed in the tables 4.9, 4.10, 4.11 and 4.12.

Notice that we see at least a discrepancy in the contribution n̂0,1
n = 1 when comparing this

to results from the (refined) topological vertex. Something along those lines has also been
mentioned in [106].

d1 0 1 2 3 4
d2
0
1 2 2
2 4
3 6 6
4 8 32 8

Table 4.9: The instanton numbers for local F2 at order ~0..

d1 0 1 2 3 4
d2
0
1 1 1
2 10
3 35 35
4 84 368 84

Table 4.10: The instanton numbers for local F2 at order ~2.
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d1 0 1 2 3 4
d2
0
1
2 6
3 56 56
4 252 1352 252

Table 4.11: The instanton numbers for local F2 at order ~4.

d1 0 1 2 3 4
d2
0
1
2 1
3 36 36
4 330 2412 330

Table 4.12: The instanton numbers for local F2 at order ~6.

4.4.6 O(−KB2)→ B2

The toric diagramm of this geometry is given in fig. (4.6). Its toric data is given in eq. (4.4.95).

νi l(1) l(2) l(3)

Du 1 0 0 −1 −1 −1
D1 1 1 0 −1 1 0
D2 1 1 1 1 −1 1
D3 1 0 1 0 1 −1
D4 1 −1 0 0 0 1
D5 1 0 −1 1 0 0

. (4.4.95)

With the toric data we find for the moduli

z1 = 1
ũm2

, z2 = m1m2
ũ

, z3 = 1
ũm1

. (4.4.96)

For the quantum mirror curve for the B2 geometry we have with ũ = 1
u

H = 1 + ex + ep + u

m2
e−

~
2 +x−p + um1m2e

− ~
2 +p−x +m2u

2e−x . (4.4.97)
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m2

~u

m1

Figure 4.6: Toric diagram of O(−KB2)→ B2 with the assigned mass parameters and the modulus ũ.

The coefficients of the Weierstrass normal form are given by

g2 = 27u4(
(
16m2

1 − 16m2m1 + 16m2
2

)
u4 + 24u3 − (8m1 + 8m2)u2 + 1) , (4.4.98a)

g3 = 27u6
(
1− (12m1 + 12m2)u2 + 36u3 +

(
48m2

1 + 24m2m1 + 48m2
2

)
u4

− (144m1 + 144m2)u5 +
(
−64m3

1 + 96m2m
2
1 + 96m2

2m1 − 64m3
2 + 216

)
u6
)
. (4.4.98b)

The zeroth order solution to the resulting Schrödinger equation is

S′0(x) = log

−ex + e2x + u2m2 +
√
−4e2x u

m2
(ex + um1m2) + (ex + e2x + u2m2)2

2(ex + um1m2)

 .

(4.4.99)
Due to an additional pole in the higher order WKB functions stemming from the non–quadratic
term in the root this case and the following are considerably more complicated than the ge-
ometries F0, F1 and F2. Nontheless one finds the operator

D2 = − 1
6δ
(
u2(m2(4m2 − 9u)u+ 4m3

1m2u(m2 + u) +m2
1(−5m2 + 4u+ 4m3

2u− 16m2
2u

2)

+m1(−5m2
2 + 20m2u− 9u2 + 4m3

2u
2))
)

Θu

+ 1
24δ

(
−16m3

1m2u
3(m2 + u) + u(−3u− 16m2

2u
2 + 4m2(1 + 9u3)) + 4m2

1u(6m2u− 4u2

−4m3
2u

2 +m2
2(1 + 16u3)) +m1(24m2

2u
2 − 16m3

2u
4 −m2(5 + 92u3) + 4(u+ 9u4))

)
Θ2
u ,

(4.4.100)

with δ = ((8m2 − 9u)u + 4m2
1m2(2m2 − u)u + m1(−7m2 + 8u − 4m2

2u
2)). Notice that this

operator simplifies to the operator, that maps the classical periods of local F1 (section 4.4.4)
to the second order, if we take the limit m1 → 0 or m2 → 0, as we would expect from (4.4.95).
So we indeed find the correct amplitude when blowing down and passed this consistency check
successfully.
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Calculation of the nontrivial quantum periods leads to

a = log(u) +m1u
2 +m2u

2 − 2u3 − u3

4 ~2 +O(~4, u4) , (4.4.101a)

aD = −7
2 log(u)2 − log(−m1m2) log(u) + u

m1
+ u

m2
+m1m2u

− 1
24

(
5 + u

m1
+ u

m2
+m1m2u

)
~2 +O(~4, u2) . (4.4.101b)

Using this we find for the mirror map

u(Qu) = Qu−(m1+m2)Q3
u+2Q4

u+m2
1Q

5
u−m1m2Q

5
u+m2

2Q
5
u+(1

4Q
4
u−m1m2Q

5
u)~2+O(~4, Q6

u) .
(4.4.102)

Since here we do not have any points sitting on an edge we can invert the relations between z
and u,mi and find for u,mi in dependence of the coordinates Qi

u = Q
1/3
1 Q

1/3
2 Q

1/3
3 , m1 = Q

1/3
1 Q

1/3
2 Q

−2/3
3 , m2 = Q

−2/3
1 Q

1/3
2 Q

1/3
3 . (4.4.103)

After integrating the special geometry relation and plugging this in we find the following free
energy

F (0,0) = (Q1 +Q2 +Q3) +
(
Q2

1
8 − 2Q1Q2 + Q2

2
8 − 2Q2Q3 + Q2

3
8

)

+
(
Q3

1
27 + Q3

2
27 + 3Q1Q2Q3 + Q3

3
27

)
+
(
Q4

1
64 −

Q2
1Q

2
2

4 + Q4
2

64 − 4Q1Q
2
2Q3 −

Q2
2Q

2
3

4 + Q4
3

64

)

+
(
Q5

1
125 + Q5

2
125 + 5Q2

1Q
2
2Q3 + 5Q1Q

2
2Q

2
3 + Q5

3
125

)
+O(Q6) , (4.4.104a)

F (1,0) =
(
−Q1

24 −
Q2
24 −

Q3
24

)
+
(
−Q

2
1

48 −
Q1Q2

6 − Q2
2

48 −
Q2Q3

6 − Q2
3

48

)

+
(
−Q

3
1

72 −
Q3

2
72 + 7Q1Q2Q3

8 − Q3
3

72

)
+
(
−Q

4
1

96 −
Q2

1Q
2
2

12 − Q4
2

96 −
7Q1Q

2
2Q3

3 − Q2
2Q

2
3

12 − Q4
3

96

)

+
(
− Q

5
1

120 −
Q5

2
120 + 115Q2

1Q
2
2Q3

24 + 115Q1Q
2
2Q

2
3

24 − Q5
3

120

)
+O(Q6) . (4.4.104b)

4.4.7 local B1(F2)

νi l(1) l(2) l(3)

Du 1 0 0 −1 −1 0
D1 1 1 −1 0 0 1
D2 1 0 1 1 0 0
D3 1 −1 0 −1 1 0
D4 1 −1 −1 1 −1 1
D5 1 0 −1 0 1 −2

. (4.4.105)

The toric data of this geometry can be found in eq. (4.4.105) and the toric diagramm with the
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~um2

m1

Figure 4.7: Toric diagram of B1(F2) with the assigned masses.

used mass assignement is given in fig. (4.7). The toric data leads to the coordinates

z1 = 1
ũm2

, z2 = m1m2
ũ

, z3 = 1
m2

1
. (4.4.106)

By defining u = 1
ũ we find for the quantum curve

H = 1 + ex + ep +m1u
2e2p + m2

m1
ue−

~
2 +p−x + 1

m2
1
e−x . (4.4.107)

The coefficients of the Weierstrass normal form of this curve are given by

g2(u) = 27u4(1− 8m1u
2 + 24m2u

3 − 48u4 + 16m2
1u

4) , (4.4.108a)
g3(u) = 27u6(1− 12m1u

2 + 36m2u
3 − 72u4 + 48m2

1u
4 − 144m1m2u

5

+ 288m1u
6 − 64m3

1u
6 + 216m2

2u
6) . (4.4.108b)

By solving the Schrödinger equation resulting from the quantum curve perturbatively in ~ we
find for the zeroth order WKB function which is equivalent to the classical differential

S′0(x) = log

−1− e−xm2
m1
u− e−x

√
−4exm1u2(ex + e2x + 1

m2
1
) + (ex + m2

m1
u)2

2m1u2

 . (4.4.109)

For the operator mapping the zeroth order periods to the second order periods we find

D2 = u2(4m2
1m2u(−m2 + u)− 12m2u(m2 + 2u)−m1(5m2 + 4u+ 9m3

2u
2))

6δ Θu

+ 1
24δ

(
4u− 16m1u

3 − 4m2
2(−m1u+ 15u3 + 4m2

1u
3) +m3

2(3u2 − 36m1u
4)

+m2(5− 24m1u
2 − 96u4 + 16m2

1u
4)
)

Θ2
u , (4.4.110)

with δ = (8u + 8m1m
2
2u + 9m3

2u
2 + m2(7 + 4m1u

2)). The three logarithmic solutions of the
Picard-Fuchs equations yield only one nontrivial period. This can be seen by combining them
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in the following way

Qu = Q
1
2
1Q

1
2
2Q

1
4
3 , (4.4.111)

m1 = 1 +Q3√
Q3

, (4.4.112)

m2 = Q
− 1

2
1 Q

1
2
2Q

1
4
3 (4.4.113)

where m1 is not just given by a simple linear combination of the periods. Using the operator
we find for the nontrivial periods in the NS limit

a = log(u) +m1u
2 + (−2m2 −

m2~2

4 )u3 +
(

3 + 3
2m

2
1 + ~2

)
u4

+
(
−12m1m2 −

7
2m1m2~2

)
u5 +O(~4, u6) , (4.4.114a)

aD = −7
2 log(u)2 − log(−m2) log(u)−m1u

2 log(−m2u
7)

+ u

m2
+m1m2u− u2

(
4m1 −

1
4m2

2
+ m2

2
2 −

m2
1m

2
2

4

)

− 1
12~

2
(

5 + u

m2
+m1m2u+ 8m1u

2 + u2

m2
2
− 2m2

2u
2 +m2

1m
2
2u

2
)

+O(~4, u3) .

(4.4.114b)

Exponentiating the nontrivial A-period we find for the mirror map

u(Qu) = Qu−m1Q
3
u+(2m2+m2

4 ~2)Q4
u+(−3+m2

1−~2)Q5
u+2m1m2~2Q6

u+O(~4, Q7
u) . (4.4.115)

Plugging this into the B-period we can integrate the special geometry relation. After inserting
the relations eq. (4.4.111) we get for the free energy

F (0,0) = (Q1 +Q2) +
(
Q2

1
8 − 2Q1Q2 + Q2

2
8 +Q2Q3

)
+
(
Q3

1
27 + Q3

2
27 − 2Q1Q2Q3

)

+
(
Q4

1
64 −

Q2
1Q

2
2

4 + Q4
2

64 + 3Q1Q
2
2Q3 + Q2

2Q
2
3

8

)
+
(
Q5

1
125 + Q5

2
125 − 4Q2

1Q
2
2Q3

)
,

(4.4.116a)

F (1,0) =
(
−Q1

24 −
Q2
24

)
+
(
−Q

2
1

48 −
Q1Q2

6 − Q2
2

48 −
Q2Q3

24

)
+
(
−Q

3
1

72 −
Q3

2
72 −

Q1Q2Q3
6

)

+
(
−Q

4
1

96 −
Q2

1Q
2
2

12 − Q4
2

96 + 7
8Q1Q

2
2Q3 −

Q2
2Q

2
3

48

)
+
(
− Q

5
1

120 −
Q5

2
120 −

7
3Q

2
1Q

2
2Q3

)
.

(4.4.116b)

As for local F2 (section 4.4.5), we see a discrepancy with the computations in the A-model
concerning the instanton number n̂0,0,1

n = 1
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4.4.8 A mass deformation of the local E8 del Pezzo

m2

~um3

m1

Figure 4.8: Toric diagram of the mass deformed local E8 de Pezzo with the assigned masses.

νi l(1) l(2) l(3) l(4)

Du 1 0 0 0 −1 0 0
D1 1 1 0 1 0 0 0
D2 1 0 1 −2 1 0 0
D3 1 −1 2 1 −1 1 0
D4 1 −1 1 0 1 −2 1
D5 1 −1 0 0 0 1 −2
D6 1 −1 −1 0 0 0 1

. (4.4.117)

This geometry is denoted in [96] as polyhedron 10. The diagram can be found in fig (4.8). The
toric data is given in eq. (4.4.117). With the toric data we find for the coordinates

z1 = 1
m2

1
, z2 = m1m2

ũ
, z3 = m3

m2
2
, z4 = m2

m2
3
. (4.4.118)

Defining u = 1
ũ we find for the quantum mirror curve in the u and m coordinates

H = 1 + ex + ep +m3u
2e2p − m1m3

m2
ue

~
2 +p+x + m3

m2
2
e2x + m2

m2
3
e−x . (4.4.119)

The coefficients of the classical Weierstrass normal form are

g2(u,m1,m2,m3) = 27u4(1− 8m3u
2 + 24m1u

3 − 48m2u
4 + 16m2

3u
4) , (4.4.120a)

g3(u,m1,m2,m3) = 27u6(1− 12m3u
2 + 36m1u

3 − 72m2u
4 + 48m2

3u
4 − 144m1m3u

5

− 864u6 + 216m2
1u

6 + 288m2m3u
6 − 64m3

3u
6) . (4.4.120b)

The resulting Schrödinger equation can be solved perturbatively in ~ and gives for the zeroth
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order WKB function

S′0(x) = log

−1 + exz2z3 − e−x
√
ex(ex(−1 + exz2z3)2 − 4z1z2

2z3(ex + e2x + e3xz3 + z4))
2z1z2

2z3

 .

(4.4.121)
The second order WKB function can be calculated by use of the following operator up to exact
terms out of the zeroth order

D2 = 1
6δ
(
u2
(
4m2

3u
2
(
m2m1u+m2

1 − 6
)

+m3
(
−9m1

(
m2

1 − 4
)
u3 + 4m2

2u
2 − 5m1m2u+ 6

)
+ 6u (2m1m2u− 3) (m1 − 2m2u))) Θu

+ 1
24δ

(
4m1

(
4m2

(
m2

3 − 6m2
)
− 9

(
m2

1 − 4
)
m3
)
u5 + 4

(
4m3m

2
2 + 3

(
5m2

1 + 12
)
m2+

+4
(
m2

1 − 6
)
m2

3

)
u4 + 3m1

(
m2

1 − 8m2m3 − 36
)
u3

−4
(
m2

2 +
(
m2

1 − 12
)
m3
)
u2 + 5m1m2u− 6

)
Θ2
u (4.4.122)

where

δ = m1
(
9m2

1 + 4m2m3 − 36
)
u3 − 8

(
m2

2 +
(
m2

1 − 3
)
m3
)
u2 + 7m1m2u− 6 . (4.4.123)

With this we find for the quantum corrected nontrivial periods

a = log(u) +m3u
2 − 2m1u

3 + 3m2u
4 + 3m2

3u
4

2

+
(
−5m1u

3

4 +m2u
4 + 1

2m
2
1m2u

4
)
~2 +O(~4, u5) , (4.4.124a)

aD = −3 log(u)2 − 6m3u
2 log(u) +m1m2u−

m2
2u

2

2 + 1
4m

2
1m

2
2u

2 − 3m3u
2 − 1

2m
2
1m3u

2

+
(
−1

4 + m1m2u

8 + m2
2u

2

12 − 5
72m

2
1m

2
2u

2 − m3u
2

2 + 1
12m

2
1m3u

2
)
~2 +O(~4, u3) .

(4.4.124b)

This leads to the following mirror map after exponentiating the nontrivial A-period

u(Qu) = Qu −m3Q
3
u + 2m1Q

4
u − 3m2Q

5
u +m2

3Q
5
u + 1

12(15m1Q
4
u − 12m2Q

5
u

− 6m2
1m2Q

5
u − 12m1m

2
2Q

6
u + 7m3

1m
2
2Q

6
u + 72m1m3Q

6
u − 12m3

1m3Q
6
u)~2 +O(~4, Q7

u) .
(4.4.125)

Now we can integrate the special geometry relation and plug in the following relations between
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the mass parameters and the coordinates

m1 = 1 +Q1√
Q1

, (4.4.126a)

m2 = 1 +Q3 +Q3Q4

Q
2/3
3 Q

1/3
4

, (4.4.126b)

m3 = 1 +Q4 +Q3Q4

Q
1/3
3 Q

2/3
4

. (4.4.126c)

These relations do not get any quantum corrections as was expected since the mass parameters
mi are trivial parameters. Using additionally Qt = Q

1
2
1Q2Q

2
3
3Q

1
3
4 we find for the refined free

energies in the Nekrasov-Shatashvili limit

W0 = Li(0,1,0,0)
3 + Li(0,1,1,0)

3 + Li(0,1,1,1)
3 + Li(1,1,0,0)

3 + Li(1,1,1,0)
3 + Li(1,1,1,1)

3 −2 Li(1,2,1,0)
3

− 2 Li(1,2,1,1)
3 −2 Li(1,2,2,1)

3 +3 Li(1,3,2,1)
3 +3 Li(2,3,2,1)

3 −4 Li(2,4,2,1)
3 −4 Li(2,4,3,1)

3

− 4 Li(2,4,3,2)
3 +5 Li(2,5,3,1)

3 +5 Li(2,5,3,2)
3 +5 Li(3,5,3,1)

3 (4.4.127a)

−24W1 = Li(0,1,0,0)
1 + Li(0,1,1,0)

1 + Li(0,1,1,1)
1 + Li(1,1,0,0)

1 + Li(1,1,1,0)
1 + Li(1,1,1,1)

1 +4 Li(1,2,1,0)
1

+ 4 Li(1,2,1,1)
1 +4 Li(1,2,2,1)

1 −21 Li(1,3,2,1)
1 −21 Li(2,3,2,1)

1 +56 Li(2,4,2,1)
1 +56 Li(2,4,3,1)

1

+ 56 Li(2,4,3,2)
1 −115 Li(2,5,3,1)

1 −115 Li(2,5,3,2)
1 −115 Li(3,5,3,1)

1 . (4.4.127b)

Here we defined Li(β)
n = Lin(Qβ).

4.5 Relation to the Fermi Gas

The Fermi Gas can be interpreted as the spectral problem∫ ∞
−∞

ρ(x1, x2)φ(x2)dx2 = e−Eφ(x1) (4.5.1)

with the kernel

ρ(x1, x2) = 1
2πk

1
(2 cosh x1

2 )1/2
1

(2 cosh x2
2 )1/2

1
(2 cosh x1−x2

2k )
. (4.5.2)

which corresponds to the Fermi gas for ABJM theory as it was explained in [99]. The spectral
problem (4.5.1) can be written as a difference equation. In order to show this let us first consider
the operator ρ̂, defined in [48] by

〈x|ρ̂|x′〉 = ρ(x, x′) . (4.5.3)

We can write this operator as

ρ̂ = e−
1
2U(q̂)e−T (p̂)e−

1
2U(q̂), (4.5.4)

where q̂, p̂ are canonically conjugate operators:

[q̂, p̂] = i~ . (4.5.5)
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We repeat that here U and T are given by

U(q) = log
(

2 cosh q2

)
, T (p) = log

(
2 cosh p2

)
(4.5.6)

as defined in (3.2.87a). The spectral problem can now be written as

ρ̂|φ〉 = e−E |φ〉 . (4.5.7)

If we define
|ψ〉 = e

1
2U(q̂)|φ〉 , (4.5.8)

we can derive the relation
eU(q̂)eT (p̂)|ψ〉 = eE |ψ〉 . (4.5.9)

The operator ρ in (4.5.4) can be used to define a quantum Hamiltonian by setting

ρ̂ = e−Ĥ , (4.5.10)

which has the semiclassical limit

HFG
cl (q, p) = T (p) + U(q) . (4.5.11)

We know that the mirror geometry of local P1 × P1 is given by the equation

HRS(z1, z2) = −1 + eu + z1e
−u + ev + z2e

−v = 0 , (4.5.12)

with u, v ∈ C, which was analyzed in section 4.4.2.

If we make the change of variables

u = q + p

2 − E, v = q − p
2 − E (4.5.13)

and specialize the moduli to
z1 = z2 = z, (4.5.14)

where we set
z = e−2E , (4.5.15)

we see that
HRS(u, v; z, z) = 0⇔ HFG

cl (q, p) = E . (4.5.16)

This means that the quantum Hamiltonian of the Fermi gas of ABJM theory and the equation
defining the Riemann surface of the B–model geometry which is the mirror of local P1 × P1,
considered in this chapter, are equivalent for this specialization.

This change of variables preserves the symplectic form up to an overall constant

du ∧ dv = −1
2dq ∧ dp . (4.5.17)

In [48] the fact that the Hamiltonian of the Fermi gas can be considered as a Riemann surface
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has been used to define period integrals after introducing the coordinates

Q = q, P = p+ q . (4.5.18)

In the large E limit one finds the relation

n(E) ≈ 1
2π~

∮
A
PdQ ≈ 8E2 ∝ log2 z, (4.5.19)

which starts with the square of a logarithm in z and corresponds therefore to the B–period in
the quantum geometry considered in this chapter. The other relation is∮

B
PdQ = 8πiE +O(e−cE) ∝ log z (4.5.20)

for some constant c, which corresponds to the A–periods in this chapter.
This relation is very interesting and it was analyzed for this case in [98] and [99]. The

suggestion was that the instanton corrections in ABJM theory coming from the membrane
instantons in the AdS/CFT duals are given by the refined topological string on local P1×P1 in
the Nekrasov–Shatashvili limit. On the other hand, it is suggested that the non–perturbative
sector of the Nekrasov–Shatashvili limit of the refined topological string has information about
the unrefined topological string.
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CHAPTER 5

Conclusions and Outlook

5.1 Fermi gas

In this thesis we used the Fermi gas approach developed in [48] and we computed vevs of Wilson
loop operators in the ABJM matrix model based on the localization computations conducted
in [32]. The matrix model integral is rewritten as the partition function of an ideal Fermi
gas in an exterior potential by means of the Cauchy trick. Using this picture we extracted
the quantities of interest in a semiclassical expansion. Compared to the computation of the
canonical partition function in [48], the computation of vevs of Wilson loop operators is more
difficult, since a resummation of an infinite number of corrections in ~ is necessary. Even though
it is more complicated, we were able to show that such a resummation is possible and we have
obtained expressions valid at all orders in the genus expansion and for strong ’t Hooft coupling.
These expressions are fully M–theoretic because they are valid for finite k and large N .
Let us first say something about the structure of (3.3.104) and (3.3.108). For any winding

number n these expressions are singular if k is a divisor of 2n. In case of

k = 1, 2 (5.1.1)

the expression is singular for any n.
For these values of k, the semiclassical expression for the vev (3.2.35), which is simply an

integral over phase space, is not convergent. This is reflected in the final expression through a
pole in the csc function, from which we conclude that our expression is not valid for these values
of k. The values k = 1, 2 are special, because they correspond to those values of the coupling
constant which lead to the enhancement of supersymmetry from N = 6 to N = 8 [107, 24]. We
found that the Fermi gas resums the genus expansion for k large, which means that k = 2n sets
the radius of convergence of this expansion, leading to the singularities described above in the
resulting expression. Analyzing what happens at these special values would be very interesting.
From the expression (3.3.108) we can deduce that the unnormalized Wilson loop vev is given

by the Fourier transform of an unnormalized disk amplitude at large radius,

∫
dµ e−µNΞ(µ) e

2nµ
k

4 sin 2πn
k

, (5.1.2)
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where n is the multicovering degree. The Fourier transform (3.3.103) for the canonical partition
function can be viewed [48] as the change of symplectic frame from the topological partition
function at the large radius point to the partition function at the orbifold point [108]. The
result (3.3.108) suggests that for the open sector, a similar structure should be valid. More
precisely, the change of frame in the open sector is also implemented by a Fourier transform of
the open string partition function.
Knowing this, we are able to identify the meaning of the csc in this formula. It is the all–genus

bubbling factor for a disk in topological string theory. This was first found in [109] by using
large N duality with Chern–Simons theory and derived in [110] with localization techniques.
Here we have re–derived this factor by using the Sommerfeld expansion of the Fermi gas, i. e.
the low temperature expansion. This bubbling factor resums the genus expansion, as in the
Gopakumar–Vafa representation of the closed topological string free energy [11]. However, we
see that this resummation leads to singularities when k is a divisor of 2n, and this was already
observed in the closed string sector in an attempt to resum worldsheet instantons in ABJM
theory in the sense of Gopakumar–Vafa [111]. This means that the expression (3.3.108) has a
natural interpretation as a generalization of the Fourier transform of [108] to the open sector.
A better understanding of this structure would be very helpful and was analyzed in [112]. In
general it would be worthwhile to develop more efficient techniques for computing topological
open string amplitudes at higher genus.
The computation of Wilson loops via the Fermi gas approach can be generalized in many

different ways. One interesting direction would be to look at the computation of Wilson loop
operators in ABJM theory in higher representations. The Wilson loop operator for a represen-
tation with ` boxes is an `-body operator in the Fermi gas. Let us consider for example a 1/6
BPS Wilson loop in the antisymmetric representation. We can write the corresponding matrix
model operator as

O =
∑
i<j

eλi+λj = 1
2
∑
i 6=j

eλi+λj , (5.1.3)

which is a two–body operator. We then have, schematically,

〈O 〉GC = 1
2

∫
dλdλ′ eλ+λ′ρGC

2 (λ, λ′)

= 1
2

∫
dλdλ′

[
n(λ, λ)n(λ′, λ′)− n(λ, λ′)n(λ′, λ)

]
eλ+λ′

(5.1.4)

which is a sum of direct (Hartree) and exchange (Fock) terms. The first term factorizes into
the product of two one-body operator vevs, which we computed in this paper. However, we
are left with the calculation of the exchange term. This also should be computable by using
semiclassical techniques1. So developing this formalism further to solve this problem would
certainly be of interest.

Here we only considered Wilson loop operators in ABJM theory, but the Fermi gas formalism
also works for more general N ≥ 3 CSM theories [48]. It would also be interesting to extend the
work presented in this thesis for these theories. This is relevant especially because using the
usual techniques for solving matrix models in the ’t Hooft expansion makes it very difficult to
obtain results. Using this formalism seems to be the simplest way to go beyond the largeN limit.
However, a detailed analysis will require computing quantum corrections to the Hamiltonian,

1 See [113] for a closely related example
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5.2 Quantum Geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit

the Wigner–Kirkwood corrections, and finding an appropriate regularization of the resummed
semiclassical expansion. We need to understand the regularization procedure developed in
section 3.3 more thoroughly and extend it for more general theories. In ABJM theory we were
able to successfully compare the results with the ’t Hooft expansion, but for more complicated
N ≥ 3 theories we would need to understand this issue better.

The final result we obtained for the 1/2 BPS Wilson loops in terms of the Airy function
(3.3.108) is an analytic result for finite k 6= 1, 2 and large N to all orders in 1/N up to exponen-
tially suppressed contributions. Such an expression is very well suited for the type of numerical
testing performed in [89]. Numerical calculations conducted in this paper provided verification
of the analytic formulas proposed in [36, 43, 48]. Furthermore they helped in clarifying certain
aspects of the analytic results (like for example the nature of the function A(k) introduced
in [48]). Such a numerical test would also be very useful in understanding what happens when
k = 1, 2, where our formula displays a singular behavior.

5.2 Quantum Geometry of del Pezzo surfaces in the
Nekrasov–Shatashvili limit

By quantizing the special geometry of local Calabi–Yau manifolds related to the del Pezzo
surfaces we solved the topological string in the Nekrasov–Shatashvili limit for many new ge-
ometries. We confirmed the quantization approach in the large radius limit for F0, F1, F2, as
well as for the blown up surfaces B2(P2) and B1(F2) and a mass deformed E8 del Pezzo surface.
The mass deformation parameters mi and the modular Coulomb branch parameter u, also

called non–normalizable moduli and normalizable moduli are clearly distinguished in our ap-
proach. For the relevant genus one mirror curves the structure is encoded in a third order
differential operator in the modular parameter with rational coefficients in the mi determining
the two classical periods a(u,mi) and aD(u,mi). These two periods are the only objects that
get quantum deformed. The quantum deformed periods are defined by applying one differential
operator D(2)(u,mi; ~) to the classical periods. This operator is second order in the modular
parameter with rational coefficients in the mass parameters, but so far we could only determine
it perturbatively in ~. However given D(2)(u,mi; ~) to some order in ~ we can immediately
determine the quantum deformation perturbatively at any point in the (u,mi) space. With
this information we can predict and in some cases check the orbifold and conifold expansions
for the quantum deformed free energy.
We only considered the closed sector though and it would be very interesting to see whether

the wavefunctions which solve the Schrödinger equations also compute correct open amplitudes
or if they are only useful for deriving quantum deformed meromorphic differentials which are
evaluated over closed contours.
The way the quantum special geometry was derived, somewhat suggested that we take the

zeroth order contributions to the periods and deform them by a parameter ~. Considering that
the Picard–Fuchs operators annihilate the zeroth order contributions, maybe also a Picard–
Fuchs operator, that annihilates the quantum deformed periods exists.
We also used the difference equation ansatz to derive the free energies of local F0 and local

F1 at large radius. For the conifold and orbifold point however, we were not able to extract the
necessary data to solve the problem in this way. This computation would lead to an expression
exact in ~, which is an expression we do not yet have for the topological string B–model.
One problem we encountered are certain missing instanton numbers corresponding to Kähler
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5 Conclusions and Outlook

parameters, related to non–normalizable divisors. These are not captured by the Picard–Fuchs
system, like e. g. in the case of the resolved conifold. We still were able to apply our methods by
making use of [105], where it was noted, that we can find the generating series for the B–cycle
via the Frobenius method.
The Schrödinger equation for brane–wavefunctions in the full refined topological string de-

pends on multiple times, which are the Kähler parameters. Having our results in mind, it would
certainly be important to carefully distinguish between normalizable and non–normalizable
moduli when analyzing this problem in full generality.
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APPENDIX A

Matrix Models

A.1 Schwinger Dyson

Here we will provide some details concerning the computation of vevs in hermitian matrix
models. We want to compute correlators for the matrix model given by the integral∫ dNλ

(2π)N
∏
i 6=j

(λi − λj) exp
(
− 1

2gs

∑
i

TrV (λi)
)
. (A.1.1)

We start with the expression with the inserted total derivative

∑
k

∫ dNλ
(2π)N

∂

∂λk

λp+1
k

∏
i 6=j

(λi − λj) exp
(
− 1

2gs

∑
i

V (λi)
) = 0 (A.1.2)

and compute the correlator. The derivative acting on the Vandermonde determinant leads to

∂

∂λk

∏
i 6=j

(λi − λj) =
∑
i 6=k

( 1
λk − λi

− 1
λi − λk

)
(A.1.3)

therefore

∑
k

λp+1
k

∂

∂λk

∏
i 6=j

(λi − λj) =
∑
i 6=k

λp+1
k − λp+1

i

λk − λi
=
∑
i 6=k

p∑
j=0

λjiλ
p−j
k =

∑
i,k

p∑
j=0

λjiλ
p−j
k − (p+ 1)

∑
k

λpk.

(A.1.4)
The derivative on the potential gives

−
∑
k

λp+1
k

1
2gs

V ′(λk). (A.1.5)

Therefore, putting everything together, we find
p∑
j=0

〈
TrM j TrMp−j

〉
= 1

2gs
TrMp+1V ′(M) (A.1.6)
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A Matrix Models

A.1.1 Correlators of the β-ensemble
A more general case is the β–ensemble, which we also used in 4.3.2. The matrix integral is
given by ∫

dλN |∆(λ)|2βe−
β

2gs

∑β

i=1 λ
2
i . (A.1.7)

The Schwinger–Dyson approach yields in the most general case

− (p+ 1)(1− β−1)
〈(

l∏
i=1

trM qi

)
trMp

〉
+ β−1

l∑
j=1

qj

〈 l∏
i 6=j

trM qi

 trMp+qi

〉

+
p∑
j=0

〈(
l∏

i=1
trM qi

)
trM j trMp−j

〉
= 1

2gs

〈(
l∏

i=1
trM qi

)
tr(Mp+1V ′)

〉
. (A.1.8)

Using this result we give a few selected correlators in the Gaussian β–ensemble

〈trM2〉 = gs
(
−γN +N2

)
(A.1.9a)

〈(trM)2〉 = gsβ
−1N (A.1.9b)

〈trM4〉 = gs(−3γ〈trM2〉+ 2N〈trM2〉+ 〈(trM)2〉) (A.1.9c)
〈trM trM3〉 = gs(−2γ〈(trM)2〉+ 2N〈(trM)2〉+ β−1〈trM2〉) (A.1.9d)

〈trM2(trM)2〉 = gs(−γN〈(trM)2〉+ 2β−1〈(trM)2〉+N2〈(trM)2〉, (A.1.9e)

where γ = 1− β−1.
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APPENDIX B

Fermi Gas

B.1 1/6 BPS Wilson loops at arbitrary winding number

In this appendix, we present the details of the matrix model computation which led to (2.3.96).
Our starting point is the integral (2.3.95). This integral can be explicitly evaluated in terms of
elliptic functions [114]

In = 1
2(−b)n 2

√
ab

1 + ab

n∑
j=0

(
−a+ b

b

)j (n
j

)
Vj , (B.1.1)

where the functions Vj are defined recursively, in terms of elliptic integrals, as follows

V0 = K(k),
V1 = Π(α2, k),

V2 = 1
2(α2 − 1)(k2 − α2)

[
α2E(k) + (k2 − α2)K(k) + (2α2k2 + 2α2 − α4 − 3k2)Π(α2, k)

]
,

V3 = 1
2(m+ 2)(1− α2)(k2 − α2)

[
(2m+ 1)k2Vm + (2m+ 1)(α2k2 + α2 − 3k2)Vm+1

+(2m+ 3)(α4 − 2α2k2 − 2α2 + 3k2)Vm+2
]
.

(B.1.2)
In the above expressions, the moduli of the elliptic functions are defined by

k2 = (a2 − 1)(b2 − 1)
(1 + ab)2 , α2 = 1− a2

1 + ab
. (B.1.3)

To understand the strong coupling behavior of the integral (2.3.95), we need to expand the
above functions in the large κ regime. First, we notice that

V0 ≈ 2 log κ,

V1 ≈
κ

16(π − 6i log κ),

V2 ≈
κ2

32

(
1− iπ

2 − 3 log κ
)
,

(B.1.4)
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and the recursion relation becomes, at large κ,

V3+m ≈
1 +m

16(2 +m)κ
2Vm+1 −

i(3 + 2m)
4(2 +m) κVm+2 . (B.1.5)

We can easily find the solution to the above recursion relation. We have

Vj ≈
(
κ

4i

)j (Hj−1
2 + iπ

4 + 3
2 log κ

)
, j ≥ 1 . (B.1.6)

Using the above solution (B.1.6), we then compute the integral (2.3.95) in regime of large κ

In ≈ inκn−1

 n∑
j=1

(
−Hj−1

2 + iπ
4 + 3

2 log κ
)

(−1)j
(
n

j

)
+ 2 log κ

 . (B.1.7)

In order to perform the sum on the harmonic numbers in the above expression, we use the
following integral representation of harmonic numbers

Hj−1 =
∫ 1

0

1− xj−1

1− x dx . (B.1.8)

Using the above representation, we then obtain

n∑
j=1

(−1)j
(
n

j

)
Hj−1 =

∫ 1

0

dx
x

(
1− (1− x)n−1

)
= Hn−1 . (B.1.9)

The sum on the rest of the terms in (B.1.7) is easy to perform

n∑
j=1

(−1)j
(
n
j

)( iπ
4 + 3

2 log κ
)

+ 2 log κ = − iπ
4 + 1

2 log κ . (B.1.10)

Putting things together, we therefore conclude

In ≈ inκn−1
(
−Hn−1

2 − iπ
4 + 1

2 log κ
)
, (B.1.11)

which is the sought-for result (2.3.96).

B.2 Results at g = 3 and g = 4

It is evident from (3.3.104) that extracting higher genus contributions to the expectation values
of the ABJM Wilson loops is more efficient than for instance the topological recursion in the
matrix model approach. To demonstrate this, we summarize the result of the ’t Hooft expansion
for g = 3 and g = 4 in this appendix. It is not be necessary to find the expansions in terms
of κ, as there exists no matrix model computation we can use for comparison yet. It will be
sufficient to directly expand the Airy functions in (3.3.104) in terms of the ’t Hooft coupling at
strong coupling regime.
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B.2 Results at g = 3 and g = 4

For g = 3, we obtain

〈W 1/6
n 〉g=3 = − in+1λ

(2π)5

(
62π5n5

945
√

2λ
−
(π4n4(62nHn + 147n− 323)

1890 + 31iπ5n5

1890 + 31iπ6n6

22680
) 1
λ

+
(π3n3(3n+ 1)(14nHn + 15n− 65)

540 + 7iπ4n4(3n+ 1)
540 (B.2.1)

+π5n5(62nHn + 147n− 385)
45360 + 31iπ6n6

45360 + 31π7n7

1088640
) 1
λ
√

2λ
+O(λ−2)

)
eπn
√

2λ ,

while the g = 4 contribution is given by

〈W 1/6
n 〉g=4 = in+1

(2π)7

(
127π7n7

4725
√

2λ
−
(π6n6(381nHn + 930n− 2738)

28350 + 127iπ7n7

18900 + 127π8n8

226800
) 1
λ

+
(π5n5(3n+ 1)(124nHn + 147n− 819)

11340 + 31iπ6n6(3n+ 1)
5670 (B.2.2)

+π7n7(381nHn + 930n− 3119)
680400 + 127iπ8n8

453600 + 127π9n9

10886400
) 1
λ
√

2λ
+O(λ−2)

)
eπn
√

2λ .

Applying (2.3.49), we can immediately find the result for the 1/2 BPS Wilson loop correlator
at g = 3 and g = 4.
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APPENDIX C

Quantum Geometry

C.1 Eisenstein series

The divisor function σx is defined by

σx(n) =
∑
d|n

dx (C.1.1)

and the Eisenstein series E4 and E6 are defined by

E4(τ) = 1 + 240
∞∑
n=1

σ3(n)qn (C.1.2a)

E6(τ) = 1− 504
∞∑
n=1

σ5(n)qn (C.1.2b)

in terms of it. The parameter q is defined by

q = e2πiτ (C.1.3)

C.2 local F0

The higher order operators are

D2 = 1
6(−u−mu)Θu + 1

12(1− 4u− 4mu)Θ2
u , (C.2.1)

D4 = − 1
180∆2u

2(64m5u3 + (−1 + 4u)3 − 48m4u2(1 + 116u) + 4m3u(3 + 328u+ 1376u2)

− 4m(8− 37u− 328u2 + 1392u3) +m2(−1 + 148u− 6112u2 + 5504u3))Θu

− 1
360∆2u((1− 4u)4 + 256m5u4 − 256m4u3(1 + 87u) + 32m3u2(3 + 214u+ 688u2)

−m(1− 4u)2(−1 + 268u+ 1392u2) + 16m2u(−1 + 48u− 1720u2 + 1376u3))Θ2
u ,
(C.2.2)
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C Quantum Geometry

with ∆ = (1− 8(1 +m)u+ 16(−1 +m)2u2). And some higher WKB functions are

S′0(x) = log
(1

2e
−x(ex − e2x − z1 +

√
(−ex + e2x + z1)2 − 4e2xz2)

)
, (C.2.3a)

S′1(x) = e3x − e4x − exz1 + z2
1

2(−2e3x + e4x − 2exz1 + z2
1 + e2x(1 + 2z1 − 4z2))

, (C.2.3b)

S′2(x) = − 1
12((−ex + e2x + z1)2 − 4e2xz2)(5/2)

ex(e8x + z4
1 − exz3

1(3 + 4z1 − 22z2)

+ e6x(3 + 16z1 − 18z2) + e2xz2
1(3 + 16z1 − 18z2) + e7x(−3− 4z1 + 22z2)

+ 2e4xz1(5 + 15z1 + 34z2)− e5x(1 + 12z2
1 + 4z2 − 32z2

2 + z1(21 + 38z2))
− e3xz1(1 + 12z2

1 + 4z2 − 32z2
2 + z1(21 + 38z2))) . (C.2.3c)

C.2.1 Orbifold point

Here we present the raw data of the computation at the orbifold point in terms of periods st
and sm without having fixed the constants of integration. Also neither the shift in ~ nor the
normalization have been carried out.

F̃ (0,0) = c0(sm) + f6
0 + log sms2

t

2 + s2
t

2 + s4
t

1152 −
1

384s
2
ms

2
t −

31s2
ms

4
t

1474560

+ 73s4
ms

2
t

2949120 + 283s6
t

44236800 +O(s7
i ) (C.2.4a)

F̃ (1,0) = c1(sm) + f6
1 + 7

1152s
2
2 −

253
1 474 560s

2
1s

2
2 + 511

4 423 680s
4
2

+ 2959
594 542 592s

4
1s

2
2 −

1103
148 635 648s

2
1s

4
2 + 29 923

8 918 138 880s
6
2 +O(s7

i ) (C.2.4b)

F̃ (2,0) = c2(sm) + f6
2 + 9631

44 236 800s
2
2 −

8089
424 673 280s

2
1s

2
2 + 1489

79 626 240s
4
2+

+ 9 712 951
8 697 308 774 400s

4
1s

2
2 −

10 152 757
4 348 654 387 200s

2
1s

4
2 + 5 466 903 857

260 919 263 232 000s
6
2 +O(s7

i )
(C.2.4c)

F̃ (3,0) = c3(sm) + f6
3 + 1146853s2

t

62426972160 + 373588141s4
t

91321742131200 −
98735143s2

ms
2
t

30440580710400

− 170286827s2
ms

4
t

200907832688640 + 1031514229s4
ms

2
t

3214525323018240 + 28374740293s6
t

48217879845273600 +O(s7
i ) (C.2.4d)
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C.3 O(−3)→ P2

where

fn0 = −
n∑
i=1

1
4i (2i2 + 3i+ 1)

s2i+2
f

s2i
m

(C.2.5a)

fn1 =
n∑
i=1

1
12i

s2i
f

s2i
m

(C.2.5b)

fn2 = −
n∑
i=1

7(2i+ 1)
360

s2i
f

s2i+2
m

(C.2.5c)

fn3 =
n∑
i=1

31
(
4i3 + 12i2 + 11i+ 3

)
7560

s2i
f

s2n+4
m

. (C.2.5d)

There are some additional terms of order zero in sf/sm, which are suppressed if we go to higher
orders in the expansion, hence we dropped them here.

C.3 O(−3)→ P2

The A-periods:

a(0) = log(u)− 2u3 + 15u6 − 560u9

3 + 5775u12

2 +O(u15) (C.3.1)

a(2) = −u
3

4 + 15u6

2 − 210u9 + 5775u12 +O(u15) (C.3.2)

a(4) = − u3

192 + 13u6

8 − 987u9

8 + 6545u12 +O(u15) (C.3.3)

The mirror map:

u|~0 = Qt + 2Q4
t −Q7

t + 20Q10
t +O(Q13

t ) (C.3.4a)

u|~2 = Q4
t

4 − 4Q7
t + 145Q10

t

2 +O(Q13
t ) (C.3.4b)

u|~4 = + Q4
t

192 −
4Q7

t

3 + 7549Q10
t

96 +O(Q13
t ) (C.3.4c)

The B-periods:

a
(0)
D = 9u3 − 423u6

4 + 1486u9 − 389415u12

16 +O(u13) (C.3.5a)

a
(2)
D = −1

8 + 21u3

8 − 603u6

8 + 8367u9

4 − 458715u12

8 +O(u13) (C.3.5b)

a
(4)
D = 87u3

640 −
3633u6

160 + 485649u9

320 − 607657u12

8 +O(u13) (C.3.5c)
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C.3.1 Orbifold point

The periods σ are given by

(−1)2/3σ(0) = −3ψ − 1
8ψ

4 − 4
105ψ

7 − 49
2700ψ

10 − 245
23 166ψ

13 +O(ψ16) (C.3.6a)

(−1)2/3σ(2) = − 1
24ψ −

1
36ψ

4 − 7
270ψ

7 − 49
1944ψ

10 − 3185
128 304ψ

13 +O(ψ16) (C.3.6b)

(−1)2/3σ(4) = − 23
17 280ψ −

11
1620ψ

4 − 637
38 880ψ

7 − 2107
69 984ψ

10 − 886 067
18 475 776ψ

13 +O(ψ16),
(C.3.6c)

while the dual periods are given by

(−1)1/3σ
(0)
D = −3

2ψ
2 − 1

5ψ
5 − 25

336ψ
8 − 80

2079ψ
11 − 1210

51 597ψ
14 +O(ψ17) (C.3.7a)

(−1)1/3σ
(2)
D = − 1

12ψ
2 − 5

72ψ
5 − 25

378ψ
8 − 110

1701ψ
11 − 605

9477ψ
14 +O(ψ17) (C.3.7b)

(−1)1/3σ
(4)
D = − 1

144ψ
2 − 85

3456ψ
5 − 10

189ψ
8 − 3751

40 824ψ
11 − 16 093

113 724ψ
14 +O(ψ17). (C.3.7c)

C.3.2 Conifold point

t(0) = ∆ + 11 ∆2

18 + 109 ∆3

243 + 9389 ∆4

26244 + 88351 ∆5

295245 +O(∆6) (C.3.8a)

t(2) = 1
36 + ∆

324 + 5 ∆2

4374 + 35 ∆3

59049 + 385 ∆4

1062882 + 7007 ∆5

28697814 +O(∆6) (C.3.8b)

t(4) = 19
139968 −

91 ∆
1259712 −

89 ∆2

2834352 −
3521 ∆3

229582512 −
34265 ∆4

4132485216 −
179179 ∆5

37192366944 +O(∆6) .
(C.3.8c)

The first corrections to the dual period are

t(0)
c D = a0 + a1t

(0)
c −

1
2πi

(
t(0)
c log(∆) + 7∆2

12 + 877∆3

1458 + 176015∆4

314928 + 9065753∆5

17714700 +O(∆6)
)

(C.3.9a)

t(2)
c D = a1t

(2)
c −

1
2πi

(
t(2)
c log(∆) + 1

8∆ + ∆
108 + 211∆2

52488 + 3139∆3

1417176 + 35663∆4

25509168 +O(∆5)
)

(C.3.9b)
t(4)
c D = a1t

(4)
c

− 1
2πi

(
t(4)
c log(∆) + 7

320∆3 −
251

5760∆2 + 247
10368∆ −

691
419904 −

941∆
3779136 +O(∆2)

)
(C.3.9c)
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C.4 local F1

In these expressions we use

a0 = −π3 − 1.678699904i = 1
i
√

3Γ
(

1
3

)
Γ
(

2
3

)G3 3
2 2

(
1
3

2
3 1

0 0 0

∣∣∣∣− 1
)

and a1 = 3 log(3) + 1
2πi .

(C.3.10)

C.4 local F1

The higher order operators are

D2 = mu2 (4m− 9u)
6 (−8m+ 9u) Θu + 4m− 3u− 16m2u2 + 36u3m

24(8m− 9u) Θ2
u , (C.4.1a)

D4 = − 1
2880(8m− 9u)(m− u− 8m2u2 + 36mu3 − 27u4 + 16m3u4)2u

3(27u3(−5 + 999u3)

+ 1536m7u5(−2 + 121u3) + 768m6(u3 + 209u6) + 2m3(53− 23148u3 + 8856u6)
− 2m2u(163− 49113u3 + 52488u6) + 16m4u2(457 + 8802u3 + 58806u6)
+ 4096m8u7 − 64m5(u+ 1292u4 + 12582u7) +m(453u2 − 81972u5 + 87480u8))Θu

− 1
5760(8m− 9u)(m− u− 8m2u2 + 36mu3 − 27u4 + 16m3u4)2u(8192m8u9

+ 1024m7u7(−8 + 363u3) + 768m6u5(4 + 401u3) + 27u5(−29 + 2619u3)
− 36m3u2(−15 + 4060u3 + 1416u6)− 128m5u3(4 + 1673u3 + 12168u6)
+m2(7− 1780u3 + 289260u6 − 136080u9) +mu(7 + 2796u3 − 222264u6 + 174960u9)
+ 32m4(u+ 819u4 + 12114u7 + 58806u10))Θ2

u (C.4.1b)

S′0(x) = log
(1

2e
−x
(
ex − e2x − z1 −

√
(−ex + e2x + z1)2 + 4e3xz2

))
, (C.4.2a)

S′1(x) = − e
xz1 + e3x (2z2 − 1) + e4x − z2

1
2 ((ex (ex − 1) + z1) 2 + 4e3xz2) , (C.4.2b)

S′2(x) = −5
(
ex + e2x − 3z1

) 2 (ex (ex − 1) + z1) 3

32 ((−ex + e2x + z1) 2 + 4e3xz2) 5/2

+ (ex (ex − 1) + z1)
(
−6ex (3ex + 23) z1 + e2x (ex (19ex + 14) + 19) + 171z2

1
)

96 ((−ex + e2x + z1) 2 + 4e3xz2) 3/2

− ex (ex − 1) + 9z1

24
√

(−ex + e2x + z1) 2 + 4e3xz2
. (C.4.2c)
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C.5 local F2

Some higher WKB functions are

S′0(x) = log
(

1
2

(
−1− ex − e2xmu−

√
(1 + ex + e2xmu2)2 − 4

m2

))
(C.5.1a)

S′1(x) = −e
xm2(1 + 3e2xmu2 + 2e3xm2u4 + ex(1 + 2mu2))

2(−4 +m2(1 + ex + e2xmu2)2) (C.5.1b)

S′2(x) = 1
12(−4 +m2(1 + ex + e2xmu2)2)5/2 e

xm5
(

1− 32
m4 + 4

m2 + e8xm4u8

+ e7xm3u6(3 + 4mu2) + e6xm2u4(3 + 16mu2) + 2e4xu2(5m− 86u2 + 15m2u2)

+ e2x(3− 22
m2 + 16(−4 +m2)u2

m
) + ex(3− 18

m2 + 4(−32 + 4m2 +m4)u2

m3 )

+e5xmu2(1 + 21mu2 − 88u4 + 12m2u4) + e3x(1 + (21− 106
m2 )mu2 + 12(−6 +m2)u4)

)
.

(C.5.1c)

Additional operators are

D2 = −1
6(mu)Θu + 1

12(1− 4mu)Θ2
u , (C.5.2a)

D4 = u2

180∆2

(
−4m

(
3m2 + 28

)
u+m2 − 64m

(
m4 − 92m2 + 352

)
u3

+16
(
3m4 − 94m2 + 552

)
u2 + 30

)
Θu

+ u

360∆2

(
−96m

(
m2 + 5

)
u2 + 4

(
4m2 + 61

)
u− 256m

(
m4 − 92m2 + 352

)
u4

+64
(
4m4 − 123m2 + 652

)
u3 −m

)
Θ2
u (C.5.2b)
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D6 = 1
7560∆4u

4
(
45056m8u6 − 32768m9u7 − 2048m7u5(12 + 4883u2)

+ 1280m6u4(5 + 5168u2) + 128m5u3(−5 + 542u2 + 9792u4)

− 16m4u2(3 + 66744u2 + 8158976u4)

− 32mu(−32 + 58757u2 + 8863616u4 + 40161280u6)

+ 8m3u(2 + 40573u2 + 8116224u4 + 59797504u6)

+ 6(7 + 39032u2 + 7728128u4 + 123830272u6)

+m2(−1− 36328u2 − 4319232u4 + 227704832u6)
)

Θu

+ 1
15120∆4u

(
212992m8u7 − 131072m9u8 − 4096m7u6(35 + 9766u2)

+ 1024m6u5(49 + 29990u2) + 256m5u4(−35− 5364u2 + 19584u4)

− 64m4u3(−7 + 81220u2 + 8528768u4)

+ 16m3u2(7 + 120530u2 + 19097600u4 + 119595008u6)

+ 4m2u(−5− 65394u2 − 6316032u4 + 221945856u6)

+ 4u(119 + 398200u2 + 59192320u4 + 790593536u6)

+m(1 + 9320u2 − 10643584u4 − 1288617984u6 − 5140643840u8)
)

Θ2
u ,

(C.5.2c)

with ∆ = (1− 8mu− 64u2 + 16m2u2).
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