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“For if each star is little more a mathematical
point [...], then all the stars taken together, tho’
innumerable, must [...] in turn represent some
single gigantick equation [...], to us unreadable,
incalculable. A lonely, uncompensated, perhaps
even impossible task - yet some of us must ever be
seeking, I suppose.”

Thomas Pynchon, Mason & Dixon

CHAPTER 1

Introduction

The quest to understand the world we are living in is probably as old as mankind itself. A central part
of this quest has always been the search for the smallest building blocks of matter. In trying to identify
those elementary building blocks, mankind has come a long way: from the ancient idea of the four
primal elements being fire, water, earth and air to what is now called the Standard Model of elementary
particle physics. But the most fundamental changes in our picture of matter did only emerge recently,
in the 20th century. Not only was the theory of atoms finally confirmed - matter being composed
of building blocks which would not allow further decomposition without loss of the characteristical
chemical properties of the respective element - but a much more revolutionary insight was gained:
entities at the scale of atoms or below behave fundamentally different from what commonplace physical
experience suggests. Quantum physics dared to put chance right next to determinism. Greeted with a
lot of skepticism at first, quantum physics and in particular quantum field theory is now accepted as the
most precise description of nature ever formulated and countless experiments have verified its claims
to tremendous precision. The atoms, once believed to be impartible, have long lost their roll to what
we call elementary particles today, but quantum field theory stands firmly and forms the theoretical
basis on which our current understanding of the physical world is built. This understanding is captured
mathematically in the Standard Model of particle physics and will be formally introduced in chapter 2.

The Standard Model has succeeded in answering countless questions about the structure of our uni-
verse, but with every question answered, new questions have arisen and some of them remain un-
answered yet. One of these long-standing questions is about the origin of mass: while the Standard
Model predicts that all constituents of matter should be massless, simple observation proves that they
are not. A possible solution to this dilemma known as the Higgs mechanism was already put forward
by a group of theorists including Peter Higgs in the 1960s. A central claim of this elegant theory is the
extension of the Standard Model by an additional particle which is referred to as the Higgs boson. Prov-
ing or excluding the existence of the Higgs boson has been a major goal for experiments in high energy
physics ever since. The discovery of a new particle with a mass of 126GeV at the Large Hadron Col-
lider in 2012 was hailed as a major breakthrough in this matter, because this particle could indeed be the
sought-after Higgs boson and its discovery could thus finally confirm the theory formulated almost 50
years ago. Identifying and comparing the properties of the recently discovered particle to the theoretical
predictions is therefore a task of utmost importance in the course of probing the Higgs mechanism.

A particularly striking property of the Higgs boson is its highly mass-dependent decay spectrum
which comprises both fermionic and bosonic decay modes. Since the discovery of 2012 was entirely
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1 Introduction

driven by observations in bosonic channels, the focus is now on the technically more involved detection
of fermionic decays. In my thesis I will discuss the search for a Higgs boson decaying to a pair of b-
quarks, which is expected to be the most abundant decay at a Higgs boson mass of 126GeV. The thesis is
organized as follows: as mentioned above, I will review the basics of the Standard Model and the Higgs
mechanism in chapter 2. Chapter 3 discusses some relevant properties of the Higgs boson in more
detail and reviews important results obtained in former Higgs searches. It also serves as an additional
motivation for the investigation of the VH,H → bb̄ channel. The LHC and the ATLAS experiment
which delivered the data employed for this analysis are described in chapter 4, while essential aspects
of event simulation for hadron collider physics are discussed in chapter 5. A detailed account of the
analysis techniques and their application is given in chapters 7 and 8 and the results of the search are
presented in chapter 9. The thesis concludes with a discussion of the results and an outlook on possible
future improvements in chapters 10 and 11, respectively.
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“Sweet is by convention, bitter by convention, hot
by convention, cold by convention, color by
convention; in truth there are but atoms and the
void.”

Democritus

CHAPTER 2

The Standard Model of particle physics

The Standard Model (SM) of elementary particle physics provides the framework in which our current
understanding about the fundamental building blocks of matter is formulated. Its mathematical structure
is imposed by the gauge principle which will be introduced in Section 2.1. The particle content of the
SM is listed in Table 2.1 and consists of fermions (particles with half-integral spin) and bosons (particles
with integer spin).

Fermions

I II III charge

Leptons νe νµ ντ 0
e µ τ −1

Quarks u c t +2/3
d s b −1/3

Bosons

Name Interaction

γ photon electromagnetic
W±,Z heavy gauge bosons weak
g gluon strong
H Higgs

Table 2.1: The particle content of the Standard Model

The fermions can be subdivided further into leptons and quarks and are organized in three so-called
families which have identical properties except for the particle masses. While the fermions constitute
all known matter in our universe, the bosons act as the mediators of forces between them. But only the
quarks take part in all interactions, leptons do not interact strongly and neutrinos only interact weakly.
As dictated by the gauge principle, the interactions and thus also the bosons are closely linked to the
symmetry group SU(3)C⊗SU(2)L⊗U(1)Y of the Standard Model: the eight massless gluons, mediators of
the strong force, correspond to the eight gauge fields associated with the generators of SU(3)C , while the
photon and the W± and Z bosons correspond to mixtures of the gauge fields associated with SU(2)L ⊗

U(1)Y , the symmetry group of the electroweak interaction. The fact that the W± and Z bosons are
massive while the photon is massless can be explained by the fact that the SU(2)L ⊗U(1)Y symmetry is
spontaneously broken. This mechanism also gives rise to the existence of the Higgs boson and will be
discussed in detail in Section 2.3
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2 The Standard Model of particle physics

2.1 The gauge principle

The Standard Model is a gauge theory, which means that the Lagrangian of the Standard Model is
invariant under local gauge transformations. The emphasis is on “local” here, since the requirement
that the invariance should not only remain intact for global transformations but also for transformations
which depend on the space-time coordinates automatically gives rise to the presence of so-called gauge
fields. These fields can be identified with the mediators of the physical forces which is to say that merely
imposing a symmetry requirement on the Lagrangian is enough to define the dynamics of the system.
Since this concept is essential for the formulation of the Standard Model it will be illustrated in the case
of quantum electrodynamics (QED), where the allowed transformations are commutative and can be
identified with the group U(1). The symmetry group underlying the full Standard Model Lagrangian is
SU(3)C ⊗ SU(2)L ⊗ U(1)Y and will be discussed in the following.

2.1.1 Gauge invariance in quantum electrodynamics

Let us begin our discussion of gauge invariance with the Dirac Lagrangian for a free fermion:

L0 = iψ̄(x)γµ∂µψ(x) − mψ̄(x)ψ(x) (2.1)

It can easily be checked that L0 is invariant under global U(1) transformations of the form

ψ(x)→ ψ′(x) = exp{−iα}ψ(x) (2.2)

where α ∈ R is a constant. This is to be expected since the phase of ψ does not bear any physical
meaning. HoweverL0 is not invariant if we promote the phase to a function of the space-time coordinate
x, whereupon L0 transforms like

L0 → L
′
0 = L0 + ψ̄(x)γµψ(x)∂µα(x) (2.3)

The gauge principle now states that the invariance of the Lagrangian should also be intact under local
phase transformations, implying that the physics should not depend on the local phase convention adop-
ted. This makes sense if one considers that any instantaneous propagation of global phase information
would violate the principle of causality. To restore invariance under local phase transformations in
Eqn. 2.1, one has to introduce a gauge field Aµ which cancels the extra term in the Lagrangian when
transformed. In fact, this requirement is sufficient to determine the behavior of the field under the
transformation completely:

Aµ(x)→ A′µ(x) = Aµ(x) +
1
e
∂µα(x) (2.4)

Defining the covariant derivative

Dµψ(x) ≡ [∂µ + ieAµ(x)]ψ(x) (2.5)

one now obtains a modified version of the Lagrangian which is indeed invariant under local U(1) trans-
formations:

L=L0 − eAµ(x)ψ̄(x)γµψ(x) = ψ̄(x)[iγµDµ − m]ψ(x) (2.6)

The new term with respect to L0 represents the interaction between the Dirac fermion and the gauge
field and has arisen naturally from the requirement of local gauge invariance. It can be identified with
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2.1 The gauge principle

the familiar electron-photon vertex of QED. Since the free-field Lagrangian

LA = −
1
4

Fµν(x)Fµν(x) (2.7)

for the gauge field Aµ shares the same invariance properties, one can simply add it to the modified Dirac
Lagrangian to obtain the complete Lagrangian of QED

LQED = ψ̄(x)[iγµDµ − m]ψ(x) −
1
4

Fµν(x)Fµν(x) (2.8)

from which the Maxwell equations can be deduced easily. Note that the derivation of this Lagrangian
was entirely guided by the gauge principle and that the invariance requirement prohibits the addition of
a mass term for the gauge field, predicting that the photon should be massless, just in agreement with
experimental observation. The power of the gauge principle is now evident: requiring that the phase
of the free fermion wave function should be irrelevant when considering any physical observables and
then taking into account causality constraints which forced us to consider not only global but also local
phase transformation, we were automatically led to a complete description of QED.

2.1.2 Non-Abelian gauge symmetry - quantum chromodynamics

The application of the gauge principle to quantum chromodynamics (QCD), the theory of the strong
interaction, works in exactly the same way as demonstrated for quantum electrodynamics - except that
the mathematics involved is more complicated due to the non-commutative nature of the underlying
symmetry group SU(3)C . The invariance underlying the strong interaction is not just simple phase
invariance but invariance with respect to rotations in color space. Mathematically, this can be described
by the group SU(3)C , where the subscript C refers to “color”. Adopting a convenient vector notation for
objects qT

f ≡ (q1
f , q

2
f , q

3
f ) in the color space with qαf representing a quark field of color α and flavor f ,

the resulting Lagrangian is given by

LQCD = −
1
4

(∂µGν
a − ∂

νGµ
a)(∂µGa

ν − ∂νG
a
µ) +

∑
f

q̄αf (iγµ∂µ − m f )qαf

− gsG
µ
a

∑
f

q̄αf γµ

(
λa

2

)
αβ

qβf

+
gs

2
f abc(∂µGν

a − ∂
νGµ

a)Gb
µG

c
ν −

g2
s

4
f abc fadeG

µ
bGν

cGd
µG

e
ν

(2.9)

where λa, a = 1, . . . , 8, denotes the generators of SU(3)C satisfying the commutation relation[
λa

2
,
λb

2

]
= i f abcλ

c

2
(2.10)

and f abc are the structure constants of SU(3)C . The gauge fields Gµ
a can be identified with the gluons of

which there are eight. While it may be instructive to consult a textbook or an introductory article (see
for example [1]) for details on the derivation of the QCD Lagrangian, one can already learn a lot about
the nature of the strong interaction from a careful observation of the resulting terms:

1. The interaction strength is described by a single universal coupling constant gs - the so-called
strong coupling constant.

5



2 The Standard Model of particle physics

2. Quarks can emit gluons, the corresponding vertex is described by the second line of Eqn. 2.9.

3. The terms in the last line of Eqn. 2.9 which arise due to the non-Abelian nature of SU(3)C describe
self-interactions between the gluons - a feature that was not present in QED.

4. Just as in QED, a mass term 1
2 m2

GGµ
aGa

µ for the gauge fields is prohibited by gauge invariance.
Gluons are massless.

Again, the gauge principle led to a complete description of the dynamics and thus to profound in-
sights into the phenomenology of the strong interaction. Before we move on to the discussion of the
theory of electroweak interactions, which is of specific interest in the context of this thesis, let us raise
an important question: if the gauge fields are generally required to be massless, how can the heavy
vector bosons of the Standard Model acquire their mass? Clearly there must be an additional theoretical
concept which allows to preserve symmetry in the presence of massive fields. We shall address this
question in Section 2.3.

2.2 The theory of electroweak interactions

Weak interactions are fundamentally different from the phenomena discussed so far. Unlike for QED
and QCD, we cannot simply follow the Gauge principle to derive a Lagrangian for the theory of weak
interactions since experimental observation reveals several features that call for a more elaborate treat-
ment. Among these observations are:

• The force-mediators associated with the weak interaction are massive, contrary to the observation
that only massless gauge-fields preserve symmetry.

• Only left-handed fermions and right-handed anti-fermions take part in charged current weak in-
teractions. Parity is thus maximally violated.

Ignoring the first point for the moment, and concentrating on the second instead, one finds that a
fermionic current which involves only left-handed states ψL can be written as

ψ̄Lγ
µψL =

1
2
ψ̄γµ(1 − γ5)ψ (2.11)

which reveals the V − A (vector − axial vector) structure of the charged weak current. Since the charged
current interactions raise or lower the charge by one unit, the left-handed fermions taking part in these
interactions should appear in doublets with a charge difference of one while the right-handed fermions
should appear in singlets: (

qu

qd

)
L
,

(
νl

l−

)
L
, l−R, qu

R, qd
R (2.12)

2.2.1 Unification and the symmetry group of electroweak theory

With SU(2)L (the subscript L referring to the left-handed nature of the interaction) being the simplest
group with a doublet representation, one might anticipate that this is indeed the symmetry group associ-
ated with the weak interactions and that the charged currents and the neutral current should form a weak
isospin triplet when combined. The charges T i associated with these currents should then generate the
SU(2)L algebra:

6



2.2 The theory of electroweak interactions

[T i,T j] = iεi jkT k (2.13)

However, measurements have proven that the weak neutral current jNC
µ has a small but non-vanishing

right-handed component and thus does not respect the SU(2)L symmetry. This problem can be resolved
if one incorporates the electromagnetic current jem

µ into the picture: it provides both left- and right-
handed components and can be combined with the weak neutral current jNC

µ to form two orthogonal
combinations with well-defined transformation properties under SU(2)L. This way, one obtains j3µ and
jYµ , the former completing the weak isospin triplet and the latter being a singlet under SU(2)L. The charge
Y associated with jYµ now generates its own symmetry group U(1)Y and is called the weak hypercharge.
It is defined by

Q = T 3 +
Y
2

(2.14)

where Q is the electromagnetic charge and T 3 is the z-component of the weak isospin. Due to this
composite nature of weak and electromagnetic interactions, we may refer to both of them as electroweak
interactions. The corresponding symmetry group is

GEW = SU(2)L ⊗ U(1)Y (2.15)

and one may now impose the familiar gauge principle to obtain the complete Lagrangian. The calcu-
lation will not be outlined here, but one should note that four gauge fields W1

µ ,W
2
µ ,W

3
µ , Bµ have to be

introduced. The interaction of these gauge fields with the fermions is then described by the Lagrangian

LInt = −gψ̄1γ
µσ

i

2
W i
µψ1 − g

′Bµ
3∑

j=1

Y jψ̄ jγ
µψ j (2.16)

where we have introduced a shorthand notation with ψ1 representing a left-handed fermion doublet and
ψ2, ψ3 representing up-/down-type singlets. The SU(2)L coupling strength is given by g and the coupling
strength associated with Y is given by g′. Expanding the terms in Eqn. 2.16 one obtains a description of
the charged current interactions involving the fields

Wµ ≡ (W1
µ + iW2

µ)/
√

2, W†µ ≡ (W1
µ − iW2

µ)/
√

2 (2.17)

plus additional terms containing interactions with the neutral fields W3
µ and Bµ. While the former two can

directly be identified with the W± bosons, the latter two are mixtures of Z and γ as was already pointed
out in the discussion of the electroweak symmetry group. Making this mixing explicit by writing(

W3
µ

Bµ

)
≡

(
cos θW sin θW

− sin θW cos θW

) (
Zµ
Aµ

)
(2.18)

we obtain the Lagrangian describing neutral current interactions:

LNC
Int = −

∑
j

ψ̄ jγ
µ
{
Aµ

[
g
σ3

2
sin θW + g′y j cos θW

]
+ Zµ

[
g
σ3

2
cos θW − g

′y j sin θW

]}
ψ j (2.19)

Using Eqn. 2.14 one can immediately read of the condition under which the familiar QED Lagrangian
can be restored from the first term:
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2 The Standard Model of particle physics

g sin θW = g′ cos θW = e (2.20)

The weak mixing angle θW is thus defined by the ratio of the group coupling constants of U(1)Y and
SU(2)L

tan θW =
g′

g
(2.21)

and the neutral current Lagrangian can finally be decomposed:

LNC
Int = L

QED
Int +LZ

Int

L
QED
Int = −eAµ jµem = −eAµ( j3µ +

1
2

jYµ )

LZ
Int = −

e
2 sin θW cos θW

Zµ( j3µ − sin2 θW jem
µ )

(2.22)

In addition to the terms describing the interactions of the electroweak gauge fields with the fermions,
a multitude of cubic and quartic terms which represent self-interactions among the gauge fields is ob-
tained. We will not discuss those in detail but only note that each of the terms contains at least one pair
of W bosons which means that a neutral vertex containing only Z bosons or photons is not permitted.

At this point one might be tempted to say that careful reasoning about experimental observations,
symmetry groups and the gauge principle has finally led to a complete description of the electroweak
interactions, but we still have to address the severe problem mentioned at the beginning of this section:
the gauge bosons of the electroweak interaction are massive, despite the fact that an explicit mass term is
not permitted if the gauge symmetry is to be preserved. The following discussion of spontaneous sym-
metry breaking will not only help to solve this problem, but will also set the stage for the introduction
of the Higgs boson, which is the central topic of this thesis.

2.3 Spontaneous symmetry breaking

The concept of spontaneous symmetry breaking (SSB) provides an elegant explanation for the origin
of the gauge boson masses in electroweak theory. For a physical system to exhibit SSB the associated
Lagrangian must be invariant under a given group of transformations G and at the same time allow for a
degenerate set of minimal-energy states which form a G-multiplet. The selection of one of these states
as the ground state of the system means that the symmetry is spontaneously broken.

2.3.1 The Goldstone theorem

The degrees of freedom that are associated with transitions between the degenerate states of minimal
energy along flat directions of the potential can be identified with additional massless excitations of the
system. To see this, consider the Lagrangian

L = ∂µφ
†∂µφ − V(φ), V(φ) = µ2φ†φ + λ(φ†φ)2 (2.23)

where φ is a complex scalar field. Assuming that the potential V(φ) is bounded (λ > 0), two distinct
situations are possible:

8



2.3 Spontaneous symmetry breaking

1. µ2 > 0: This describes a massive scalar particle with mass µ. The potential has a single minimum
at φ = 0, see Figure 2.1a.

2. µ2 < 0: All configurations satisfying

|φ0| =

√
−µ2

2λ
≡

v
√

2
> 0 (2.24)

are degenerate states of minimal energy, see Figure 2.1b.

1.1.2 The Higgs mechanism

The Goldstone theorem

Let us start by taking a simple scalar real field φ with the usual Lagrangian

L =
1

2
∂µφ ∂

µφ− V (φ) , V (φ) =
1

2
µ2φ2 +

1

4
λφ4 (1.15)

This Lagrangian is invariant under the reflexion symmetry φ → −φ since there are no cubic

terms. If the mass term µ2 is positive, the potential V (φ) is also positive if the self–coupling

λ is positive [which is needed to make the potential bounded from below], and the minimum

of the potential is obtained for 〈0|φ|0〉 ≡ φ0 = 0 as shown in the left–hand side of Fig. 1.1.

L is then simply the Lagrangian of a spin–zero particle of mass µ.
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Figure 2.1: The scalar potential V(φ) for µ2 > 0 (left, only one minimum) and µ2 < 0 (right, infinitely many
degenerate minima) [2].

The second case deserves more attention: assuming that the Lagrangian is invariant under global
phase transformations

φ(x)→ φ′ = exp{iθ}φ(x) (2.25)

there exist infinitely many states of minimal energy. Promoting any particular choice of θ to the ground
state of the system will break the symmetry. Once a ground state is chosen, it makes sense to parametrize
the field in a way that is suitable to describe small perturbations of this state. Choosing θ = 0 such a
parametrization can be written as

φ(x) =
1
√

2
(v + φ1(x) + iφ2(x)) (2.26)

with real fields φ1 and φ2. The potential now takes the form:

V(φ) = V(φ0) − µ2φ2
1 + λvφ1(φ2

1 + φ2
2) +

λ

4
(φ2

1 + φ2
2)2 (2.27)

While φ1 has a mass of −2µ2, there is no mass term for φ2. The massless particle φ2 can be identified
with excitations along a flat direction in the potential which connects states with the same minimal
energy. This is schematically shown in Figure 2.1b. The appearance of such massless states due to SSB
is a general result known as the Goldstone theorem [3].
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2 The Standard Model of particle physics

2.4 The Higgs mechanism

The Higgs mechanism [4], [5], [6], [7] (also referred to as the Englert-Brout-Higgs-Guralnik-Hagen-
Kibble mechanism due to the fact that other researchers proposed it independently of Peter Higgs at
about the same time) combines the ideas of SSB and local gauge symmetry to finally achieve what has
been missing from the theory outlined so far: the generation of masses for the gauge bosons associated
with weak interactions. To see this, let us introduce a scalar SU(2)L doublet of complex fields

φ ≡

(
φ+

φ0

)
(2.28)

along with a Lagrangian that features the covariant derivative associated with the SU(2)L ⊗ U(1)Y sym-
metry of the electroweak interaction and a potential like the one described in Section 2.3.1:

LS = Dµφ
†Dµφ − V(φ), V(Φ) = µ2φ†φ + λ(φ†φ)2

Dµ = ∂µ + ig
σi

2
W i
µ + i

g′

2
YBµ

(2.29)

As discussed before we can pick a vacuum expectation value for φ:

< φ >0=

(
0

v/
√

2

)
, v =

√
−µ2

λ
(2.30)

While a particular choice of the ground state breaks the SU(2)L ⊗ U(1)Y symmetry, it still preserves a
symmetry under U(1)em as can be easily seen from

Q < φ >0= (T3 +
Y
2

) < φ >0= 0⇒ exp{iαQ} < φ >0=< φ >0 (2.31)

This guarantees that the electric charge is conserved in our model, in agreement with experimental ob-
servation. Moreover it allows the corresponding gauge boson, the photon, to remain massless. With
foresight, the scalar doublet can also be parametrized by four real fields θ1, θ2, θ3,H, where the θi cor-
respond to the three generators that are spontaneously broken by the choice of the ground state:

φ(x) = exp{i
σi

2
θi(x)}

1
√

2

(
0

v + H(x)

)
(2.32)

Since the original Lagrangian is still invariant under SU(2)L, one can now apply an appropriate trans-
formation to eliminate any dependence on θi. This is known as the unitary gauge. In this gauge, the
scalar Lagrangian 2.29 takes the form:

LS =

∣∣∣∣∣∣
(
∂µ + ig

σi

2
W i
µ + i

g′

2
YBµ

)
v + H
√

2

(
0
1

)∣∣∣∣∣∣2 − µ2 (v + H)2

2
− λ

(v + H)4

4
(2.33)

which in terms of the W± and Z0 fields introduced in Section 2.2.1 can be written as:

LS =
1
2
∂µH∂µH +

g2

4
(v + H)2

(
W+
µ W−µ +

1
cos2 θW

ZµZµ
)
− µ2 (v + H)2

2
− λ

(v + H)4

4
(2.34)
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2.4 The Higgs mechanism

Something interesting has happened: quadratic terms in the vector fields have appeared, rendering the
W± and Z0 bosons massive:

mW =
gv

2
, mZ =

gv

2 cos θW
=

mW

cos θW
(2.35)

That means one can generate masses for the gauge bosons of the weak interaction by adding LS to the
SU(2)L⊗U(1)Y model discussed in Section 2.2.1 without breaking the symmetry of the total Lagrangian.
The key to this seemingly contradictory result is the occurrence of spontaneous symmetry breaking:
three of the four generators of SU(2)L ⊗ U(1)Y are broken by the choice of a particular ground state for
φ. The resulting massless Goldstone bosons can in turn be eliminated from the Lagrangian by choosing
an appropriate gauge, as a result of which the W± and Z0 acquire mass. The total number of degrees
of freedom remains of course unchanged: the original massless W± and Z0 bosons have two possible
polarizations each, accounting for 6 d.o.f. in total, plus four real scalar fields with one d.o.f. each.
Through SSB three gauge bosons become massive and acquire an additional d.o.f. for the longitudinal
polarization, while three of the four scalar fields vanish. The remaining scalar field H is associated with
a new particle: the Higgs boson, named after the British physicist Peter Higgs. Although Higgs was
not the only one to propose the specific mechanism for symmetry breaking introduced here, he was,
according to Nature [8],

“the first to postulate the existence of a massive particle”,

which now bears his name.

Z

H

Z

H

HZ

Z

W

H

W

−

H

W H
2MZ

v2

2
Z2M

v

W

+

+

−

2
W

v

2MW

v2

2M

Figure 2.2: The interactions of the Higgs boson with the heavy gauge bosons. Note that the couplings are propor-
tional to the squared boson masses.

Let us investigate the properties of the Higgs boson a bit more by using Eqns. 2.30 and 2.35 to rewrite
the Lagrangian 2.29 in terms of the gauge boson masses:

LS =
1
4
λv4 +LH +LHVV

LH =
1
2
∂µH∂µH −

1
2

(−2µ2)H2 −
(−2µ2)

2v
H3 −

(−2µ2)
8v2 H4

LHVV = m2
WW+

µ W−µ
(
1 +

2
v

H +
H2

v2

)
+

1
2

m2
ZZµZµ

(
1 +

2
v

H +
H2

v2

) (2.36)
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2 The Standard Model of particle physics

We can now identify the mass of the Higgs boson as

mH =

√
−2µ2 =

√
2λv (2.37)

and see that the interactions between the gauge bosons and the Higgs boson bear a very characteristic
form in the sense that the couplings are proportional to the squared boson masses. The fact that the
couplings are entirely determined by v,mH ,mW and mZ allows very precise predictions about Higgs
production and decay (see Section 3.2). The interaction vertices and couplings are depicted in Fig-
ure 2.2.

2.4.1 Generation of fermion masses

With the scalar Higgs doublet at hand, one can also introduce additional Yukawa-type couplings of the
Higgs field to fermions:

LY = −c1(ū, d̄)L

(
φ+

φ0

)
dR − c2(ū, d̄)L

(
φ0

−φ−

)
− c3(ν̄e, ē)

(
φ+

φ0

)
eR + h.c. (2.38)

Writing LY in unitary gauge reveals that this produces mass terms for the fermions after SSB:

LY = −
1
√

2
(v + H)

(
c1d̄d + c2ūu + c3ēe

)
md = c1

v
√

2
, mu = c2

v
√

2
, me = c3

v
√

2

(2.39)

Since the parameters ci are unknown, the fermion masses are not fixed by theory. Measuring them
however immediately determines the couplings of the Higgs boson to fermions which can be expressed
in terms of the masses:

LY = −(1 +
H
v

)
(
mdd̄d + muūu + meēe

)
(2.40)

We have seen that the Higgs mechanism provides an elegant solution to the problem of symmetry
conservation in the presence of massive gauge bosons and can also account for massive fermions, in
agreement with experimental observation. But even far beyond mass generation, the Higgs mechanism
plays a crucial role for the consistency of the Standard Model as will be discussed in Chapter 3.1. It
is thus not surprising that considerable experimental efforts have been made to verify or disprove the
proposal ever since it was put forward in the 1960s. The focus of this work has always been the search
for the Higgs boson, which is the most important fingerprint of the theory. The recent discovery of a
Higgs-like boson at the LHC [9],[10],[11],[12] (see also Section 3.3) was thus met with great interest in
the scientific community and further studies are currently being undertaken to investigate whether this
boson is indeed the sought-after Higgs boson. A more detailed description of the properties of the Higgs
boson and the most important experimental results related to the search for it can be found in Chapter 3.
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“For more than three decades, the Higgs has been
physicists’ version of King Arthur’s Holy Grail,
Ponce de Leon’s Fountain of Youth, Captain
Ahab’s Moby Dick. It’s been an obsession, a
fixation, an addiction to an idea that almost every
expert believed just had to be true.”

Science News 2012

CHAPTER 3

Higgs physics

The Higgs mechanism introduced in Section 2.4 provides an elegant way to introduce spontaneous
symmetry breaking to the theory of electroweak interactions and thus generate mass terms for the gauge
bosons without giving up on the gauge invariance of the full Lagrangian. No statement is made however
about the mass of the Higgs boson - the parameter that determines most of its properties and is therefore
of great importance in any search for the Higgs boson. On closer examination though, several theoretical
considerations lead to constraints on the Higgs boson mass. I will review some of these arguments in
Section 3.1. In addition, a multitude of even stronger constraints on the Higgs mass has been derived
from higher order corrections to electroweak precision measurements, let alone the direct Higgs searches
at LEP and the Tevatron. A detailed summary of these measurements is clearly beyond the scope of this
thesis, but I may refer to some of the results when it is appropriate in the discussion of the search
presented here. No up-to-date account of Higgs boson physics would be complete however without a
short presentation of the discovery of a Higgs boson at the LHC in 2012. I will address this exciting
matter in Section 3.3.

3.1 Theoretical constraints

In this section I will briefly review some theoretical considerations known under the terms “unitarity”,
“perturbativity”, “triviality” and “stability”. All of them impose constraints on the a-priori unknown
Higgs boson mass. Moreover, some constraints can also be interpreted in the context of new physical
phenomena which would be required to save the predictive power of the Standard Model in the absence
of a Higgs boson. The discussion follows the presentation in [2].

3.1.1 Unitarity and perturbativity

Consider the scattering of W bosons W+W− → W+W− at high energies (s � m2
W). In this regime the

main contribution to the amplitude for this process comes from longitudinal W bosons and can - owing
to the electroweak equivalence theorem [13] - be related to the amplitude of the associated Goldstone
bosons w:

A(W+
L W−L → W+

L W−L ) = A(w+w− → w+w−) + O(
m2

W

s
) (3.1)
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3 Higgs physics

The latter can be written as

A(w+w− → w+w−) = −

2m2
H

v2 +

m2
H

v

2
1

s − m2
H

+

m2
H

v

2
1

t − m2
H

 (3.2)

where s, t are the Mandelstam variables and v = 246 GeV is the vacuum expectation value of the Higgs
field introduced in Section 2.4. To see that this expression yields a violation of unitarity for large m2

H ,
one has to expand A in partial waves al of angular momentum l (given by Legendre polynomials) and
exploit that the cross-section for a 2→ 2 process is related to this expansion via

σ =
16π

s

∞∑
l=0

(2l + 1)|al|
2 (3.3)

For the discussion of unitarity, it is sufficient to take a closer look at the first (l = 0) term of the
expansion, which can be derived from Eqn. 3.2:

a0 =
1

16πs

∫ 0

s
dt|A| = −

m2
H

16πv2

2 +
m2

H

s − m2
H

−
m2

H

s
log

1 +
s

m2
H

 (3.4)

For energies
√

s � mH , a0 behaves like

a0 → −
m2

H

8πv2 (3.5)

Owing to the optical theorem on the other hand, σ can be expressed as

σ =
1
s
=(A(θ = 0)) (3.6)

which, using Eqn. 3.3, leads to the unitarity condition

|al|
2 = <(al)2 + =(al)2 = =(al) ⇒ |<(al)| ≤

1
2

(3.7)

For a0, this condition can only be fulfilled if

m2
H

4πv2 ≤ 1 (3.8)

from which an upper bound mH . 870 GeV for the Higgs boson mass is obtained. Including other
vector boson scattering channels, the bound can even be tightened to

mH . 710 GeV (3.9)

However, this result has to be taken with care since the Higgs self-coupling λ = m2
H/(2v

2) grows with
the Higgs mass and thus leads to large radiative corrections which break perturbativity at some point,
rendering the argument given above invalid.

Turning the argument around by going to the limit of very large Higgs masses mH �
√

s and applying
the unitarity condition from Eqn. 3.7 also leads to a unitarity-violating high-energy behavior of a0. This
can be formulated as an upper limit for

√
s:
√

s . 1.2 TeV (3.10)
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3.1 Theoretical constraints

Since a very heavy Higgs boson is equivalent to a theory without a Higgs boson, this result can be in-
terpreted in the following way: unitarity in vector-boson scattering processes must either be restored by
the existence of a Higgs bosons with mH . 710 GeV or by the appearance of new physics contributions
at a scale of ∼ 1 TeV. The latter point is of great importance with respect to the experiments at the LHC:
even if the Higgs boson would not have been discovered (see Section 3.3), the reachable energies would
have guaranteed the observation of any new phenomena which could possibly restore unitarity.

The warning about large corrections arising from a strong self-coupling λ of the Higgs boson stated
above can also be turned into a further constraint on the Higgs boson mass. Consider the partial decay
width ΓWZ of the Higgs boson into massive gauge bosons. One can include loop corrections involving
the Higgs bosons by expanding the decay width in terms of λ [14]:

ΓWZ ' ΓBorn
WZ

(
1 + 3

(
λ

16π2

)
+ 62

(
λ

16π2

)2
+ (O)(λ3)

)
(3.11)

Since λ ∝ m2
H , the higher order terms quickly surpass the size of the Born term for large mH and

perturbativity is lost. Taking into account other processes and criteria [15], the perturbativity argument
yields an upper bound of ∼ 700 GeV for the Higgs mass, in good agreement with the unitarity argument
already discussed.

3.1.2 Triviality and stability

A different bound for the Higgs boson mass comes from loop corrections to the quartic Higgs coupling
λ. Like other couplings in the Standard Model, λ depends on the energy scale Q. Considering only loop
corrections which involve the Higgs boson itself, the evolution of λ as a function of Q can be described
by the renormalization group equation [16]

dλ(Q)
dQ2 =

3
4π2λ

2(Q2) (3.12)

Choosing Q0 = v this differential equation is solved by

λ(Q2) = λ(v2)
(
1 −

3
4π2λ(v2) log

Q2

v2

)−1

(3.13)

which goes to infinity if the denominator goes to zero, that is at

ΛC = v exp
(
4π2

3λ

)
= v exp

8π2v2

3m2
H

 (3.14)

where the cut-off scale ΛC is called the “Landau pole”. One can interpret this result in the following
way: assuming that new physical phenomena are not encountered below a given scale ΛC , the Higgs
mass must obey

m2
H <

8π2v2

3 log ΛC
v

(3.15)

Setting ΛC to the Higgs boson mass itself one obtains mH . 700 GeV. This is in good agreement with
a result obtained from a more rigorous treatment involving simulations on the lattice [17] which yields
mH . 640 GeV. If there is no new physics at ΛC , the only way to avoid the Landau pole at all scales
is to impose triviality (λ = 0) [18]. However, this would render the Higgs boson massless and prohibit
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spontaneous symmetry breaking - the triviality argument thus ensures that there is an upper bound to
the energy domain where the Standard Model is valid.

Turning to a more complete description of the energy dependence of λ which also takes into account
loop contributions involving top quarks and heavy gauge bosons, one can derive yet another constraint
on the Higgs boson mass. For small values of the quartic coupling λ � λt, g1, g2, where λt = mt/v

denotes the Yukawa coupling to the top quark and g1, g2 are the couplings to the weak bosons, one
obtains an approximate solution to the regularization group equation for the evolution of λ [2]:

λ(Q2) = λ(v2) +
1

16π2

(
−12

m4
t

v4 +
3
16

(2g4
2 + (g2

2 + g2
1)2)

)
log

Q2

v2 (3.16)

If λ(v2) is too small, this expression becomes negative by virtue of the large negative contribution from
the top quark. In order to avoid a scalar potential V(Q2) < V(v) which would destabilize the va-
cuum [19], the Higgs boson mass must thus be bounded from below:

m2
H >

v2

8π2

(
−12

m4
t

v4 +
3
16

(2g4
2 + (g2

2 + g2
1)2)

)
log

Q2

v2 (3.17)

Again, the constraint depends on the choice of the cut-off scale ΛC . For a low ΛC ∼ 103 GeV one
obtains

mH & 70 GeV (3.18)

while a high ΛC ∼ 1016 GeV yields
mH & 130 GeV (3.19)

A graphical representation of the boundaries obtained from triviality and vacuum stability is shown in
Figure 3.1.

Figure 3.1: Constraints on the Higgs boson mass imposed by triviality and vacuum stability considerations. [2]
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3.2 Higgs phenomenology

3.2 Higgs phenomenology

With its charge (0), spin (0), and parity (+) fixed by theory, an interesting property of the Standard
Model Higgs boson is the fact that its behavior in terms of couplings, production mechanisms and decay
channels is entirely determined by a single free parameter: its mass. The mass can be expressed in terms
of the vacuum expectation value of the Higgs field v and the Higgs self-coupling parameter λ:

mH =
√

2λv (3.20)

While v can be related to the Fermi coupling GF via v = (
√

2GF)−1/2 ≈ 246 GeV, which in turn
was measured to high precision in muon decays [20], the self-coupling is unknown and thus no direct
prediction for the Higgs mass is possible. One can however calculate the production rates and branching
ratios of the Higgs boson as a function of mH . The results provide important input to any search for
the Higgs boson as they reveal the most promising decay channels in any given mass range and thus
dictate what decay products to look for. I will shortly review some of these results in the following,
focusing on the mass range 100 GeV . mH . 200 GeV. A more detailed discussion of the production
mechanism/decay channel studied in this thesis is given in Section 3.4.
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Figure 3.2: The Feynman diagrams of the four dominant Higgs production mechanisms at the LHC: gluon-gluon
fusion (bottom left), vector boson fusion (top right), Higgs-strahlung (top left), associated production with tt̄
(bottom right) [2].

3.2.1 Higgs production mechanisms at the LHC

The dominant Higgs production mechanism at the LHC is gluon-gluon fusion gg → H + X. Although
it can only be induced through a quark loop, it is dramatically enhanced by the fact that small parton
momentum fractions x are being most often probed at the LHC’s center of mass energy of

√
s = 7 TeV

(2011) or
√

s = 8 TeV (2012), respectively. Since the Higgs couples to mass, the gluon-gluon fusion
production process is dominated by top and bottom quark loops and has a cross-section which is an
order of magnitude larger than that of vector boson fusion qq → qqH + X, the second most abundant
production process. Other important processes, in particular for a light Higgs with mH . 130 GeV, are
the associated production qq̄ → V + H,V = W,Z with a W or a Z boson - often refered to as “Higgs-
strahlung” - and the associated production gg → tt̄ + H with a tt̄-pair. The Feynman diagrams of all
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four processes are displayed in Figure 3.2 while their cross-sections as a function of mH are shown in
Figure 3.3.
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Figure 3.3: The cross-sections of the most important Higgs production mechanisms at the LHC as a function of
mH for center of mass energies of

√
s = 7 TeV and

√
s = 8 TeV, respectively [21].

3.2.2 Decay channels of the Higgs boson

The short lifetime of the Higgs boson renders a direct observation impossible, which means that it
can only be detected through its decay products. Since the Higgs boson couples to mass, it decays
predominantly to the heaviest particles allowed by the disposable phase space - its partial branching
ratios and its total width are thus highly mass dependent. As can be seen in Figure 3.4, the low mass
region 100 GeV . mH . 130 GeV is strongly dominated by the decay H → bb̄, followed by decays to
τ+τ−, gg and cc̄. The upper half of that mass range also has a significant contribution from H → WW∗

which increases with mH until it finally surpasses H → bb̄ at ∼ 130 GeV to become the prevalent decay
for higher Higgs masses. The uncertainties of the branching fractions in the low mass range which
are shown in Figure 3.4a stem from the uncertainties associated with the quark masses and the strong
coupling constant αs. Note that the relative error on BR(H → bb̄) is small since the b-quark mass is
known more precisely than the c-quark mass and its running is less dramatic.

3.3 First observation of a Higgs boson at the LHC in 2012

On July 4, 2012, both the ATLAS and the CMS collaboration announced the discovery of a new particle
with a mass of ∼ 126 GeV and decay modes indicating that this particle is a boson [9],[10],[11],[12].
The new particle was first observed in decays to pairs of photons and Z bosons with rates compatible to
those predicted for the standard model Higgs boson. The invariant mass spectra of the decay products
in these channels are shown in Figure 3.5 and the observed p-values (probabilities) for the background-
only hypothesis are shown in Figure 3.6.
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Figure 3.4: The decay branching fractions and the total decay width of the Higgs boson as a function of mH [21].

The new particle was immediately suspected to be a1 Higgs boson, although the experimental results
still left room for other explanations at that point in time. In order to allow for more detailed studies, the
data target for 2012 was increased from 15 fb−1 to 20 fb−1 and the projected first long shutdown of the
LHC was postponed by seven weeks from October to December [22]. The first follow-up results were
presented at the Hadron Collider Physics (HCP) Symposium 2012 in Kyoto. The discovery of a new
particle was confirmed with great confidence and the inclusion of different decay channels showed no
significant deviation from the properties expected for a Higgs boson [23],[24].

In the meantime, further studies of the particle’s spin and parity have been published [25],[26]. They
provide strong evidence for the assumption that the observed boson is indeed a Higgs boson as the data
favor spin 0 and strongly prefer a pure scalar hypothesis (positive parity) over a pseudo-scalar (negative
parity) one. The new boson is thus the first elementary scalar particle to be discovered in nature, a
fact that underpins the importance of its discovery. In the words of CERN director general Rolf-Dieter
Heuer:

“All the matter particles are spin-1/2 fermions. All the force carriers are spin-1 bosons.
Higgs particles are spin-0 bosons (scalars). The Higgs is neither matter nor force. The
Higgs is just different.”

At the time of this writing, careful analyses of all LHC data collected in 2011 and 2012 (a total of
∼ 25 fb−1) have firmly established observations of a Higgs boson in the decay channels to γγ, WW and
ZZ. The fermionic decay channels to ττ and bb̄ on the other hand are more difficult to exploit and could
not be confirmed yet. In particular the decay to a pair of b−quarks provides an important handle for
testing the compatibility of the couplings of the new boson with the expectation for the Standard Model
Higgs boson. This decay channel will thus be the subject matter of this thesis and some of its important
properties will be discussed further in Section 3.4.

1 In the discussion of the discovery, I deliberately use the indefinite article, i.e. a Higgs boson, to emphasize that there are
other theories beyond the Standard Model which also predict the existence of one or more Higgs bosons and which cannot
be ruled out at the current time. In this thesis however, I will only be concerned with the Standard Model Higgs boson.
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Figure 3.5: Invariant mass distributions of Higgs candidate decay products in the decay channels first observed at
ATLAS and CMS
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Figure 3.6: Background-only hypothesis p-values in the decay channels where the new bosons was first observed
at ATLAS and CMS

3.3.1 Addendum: 2013 Nobel Prize in Physics

In the light of the evidence presented in the aforementioned publications, the 2013 Nobel Prize in
Physics was awarded to Peter Higgs and Francois Englert

“for the theoretical discovery of a mechanism that contributes to our understanding of
the origin of mass of subatomic particles, and which recently was confirmed through the
discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at
CERN’s Large Hadron Collider.”

- Press release by the Royal Swedish Academy of Sciences, 8 October 2013

3.4 H → bb̄ in associated production with a vector boson

In the light of the Higgs boson discovery in 2012 (see Section 3.3) which was driven by bosonic decay
channels, the interest in searches in the decay channel H → bb̄ has risen - after all this is the dominant
decay channel for a Higgs boson with a mass of 126 GeV. Yet H → bb̄ did not play a role in the 2012 ob-
servation, because this channel is also notoriously difficult to exploit. Although b-jets can be efficiently
distinguished from jets originating from other flavors with the ATLAS detector (see Section 7.3.5), the
rate of di-jet events produced in QCD processes at the LHC is simply too large to allow for any search
in gg → H → bb̄. A similar argument applies to the purely hadronic final state produced by the vector
boson fusion process qq → qqH → qqbb̄ which is by far outnumbered by the irreducible QCD 4-jet
qqbb̄-background [27]. One thus has to resort to the associated production with a vector boson which -
at least in the leptonic decay channels - can be efficiently triggered on.

3.4.1 The cross-sections of Higgs-strahlung processes

The cross-sections for the Higgs-strahlung processes have been calculated to NNLO for the QCD cor-
rections [28], [29] and to NLO for the electroweak corrections [30] leaving a residual uncertainty of
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. 5%. The radiative QCD corrections to NLO are due to the qq̄ vertex being modified by virtual gluon
exchange, quark self-energy corrections and the emission of an additional gluon - they are thus identical
to the corrections to the Drell-Yan process [31], see Figure 3.7.

V∗

q

q̄

g
V∗

q

q̄

g

V∗

q

q̄

g

Figure 3.7: Exemplary Feynman diagrams of the NLO QCD corrections to associated Higgs production. They are
identical to the NLO corrections to the Drell-Yan process [2].

The NNLO corrections comprise a larger set of contributions: two-loop correction to the qq̄ ver-
tex, one-loop corrections to qg → qV∗ and qq̄ → gV∗ and all possible tree-level contributions with
two additional partons. While the Drell-Yan-like corrections are completely known to NNLO both
for integrated and differential observables [21], other contributions have only been computed for the
total cross-section [21]. A notable non-Drell-Yan NNLO correction for the ZH channel is a gluon in-
duced production mechanism via quark loops [32] which yields a non-negligible contribution to the
total cross-section at the LHC due to the high gluon luminosity. The corresponding diagrams are shown
in Figure 3.8.
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g

g

H

Z
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g Z

Figure 3.8: Feynman diagrams of the additional gluon induced NNLO QCD production mechanisms for ZH [2].

The NLO electroweak corrections to the total H → VH cross-section comprise hundreds of Feynman
diagrams [30], a few exemplary ones are shown in Figure 3.9. It turns out that the largest contribution
comes from bosonic one-loop corrections which outweigh both the fermionic loop corrections and the
photonic initial state corrections. Since these bosonic contributions are negative, they reduce the qq̄ →
VH production cross-section at the LHC by 5-10% [2]. Nevertheless the total K-factor for the NNLO
QCD + NLO electroweak corrections is larger than one since the positive QCD corrections dominate
the negative electroweak terms. The total cross-sections and K-factors for both WH and ZH production
are shown in Figure 3.10. For a Higgs boson mass of 126 GeV, one obtains [21]:

σWH = 563.3 fb ± 3.7 fb,
√

s = 7 TeV

σZH = 326.7 fb ± 6.0 fb,
√

s = 7 TeV

σWH = 686.1 fb ± 3.5 fb,
√

s = 8 TeV

σZH = 405.1 fb ± 5.9 fb,
√

s = 8 TeV

(3.21)

The given uncertainties include the residual scale dependence and the PDF uncertainties. The depend-
ence on the renormalization and factorization scales is evaluated by mutually fixing one of them at the
central scale

√
k2 of the calculation, which was chosen to be the mass of the intermediate gauge bo-
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son, and then varying the other one between
√

k2/3 and 3
√

k2. The PDF uncertainties are calculated
according to the PDF4LHC recommendation [29].

•
q
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γ,Z,W
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H •
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Figure 3.9: Exemplary Feynman diagrams of the NLO electroweak corrections to associated Higgs production [2].
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Figure 3.10: Total cross sections and NNLO K-factors for WH and ZH production at the LHC

3.4.2 The H → bb̄ decay channel and its impact on Higgs coupling measurements

As was already pointed out before, the decay H → bb̄ is the most abundant one for a Higgs boson
mass of mH = 126 GeV, but it can only be accessed via a search in the associated production channels.
Taking into account the cross-sections (see Section 3.4.1) of these production mechanisms, one arrives
at the plot shown in Figure 3.11 where total cross-sections and branching ratios for various channels
have been multiplied.
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Figure 3.11: Higgs production cross-sections multiplied by Higgs branching ratios for
√

s = 7 TeV and
√

s =

8 TeV. If not stated otherwise in the plot, the production mechanism is gluon-gluon fusion.

Even though the VH → Vbb̄ channel may not be suited for an immediate discovery, it is indispens-
able for a measurement of the Higgs boson couplings and thus must be studied in order to verify that
the Higgs boson discovered at the LHC in 2012 (see Section 3.3) is indeed the Higgs boson of the
Standard Model. In fact, the sensitivity of the search in the VH → Vbb̄ channel will not only determine
the achievable accuracy for a measurement of the Hbb̄ coupling gHbb̄ but will also strongly affect the
measurement of other Higgs couplings. It can be shown that

σ · BR(H → XX) ∝
ΓprodΓH→XX

Γtot
H

(3.22)

where Γprod is the partial decay width associated with the Higgs coupling in the respective production
process with cross-section σ, and ΓH→XX is the partial width associated with the coupling involved in
the decay H → XX with branching ratio BR(H → XX). That means that any measurement of a given
coupling gHXX through σ · BR (which can be obtained from the rate of signal events) will rely on a
precise knowledge of the overall normalization given by the total width Γtot

H . Since the total width is
dominated by ΓH→bb̄ for a Higgs with a mass of mH = 126 GeV, the Higgs coupling to b-quarks will
be of particular importance in this context. An interesting study of the importance of the VH → Vbb̄
channel for the determination of the Higgs couplings is presented in [33]: on the basis of a simulation
corresponding to 30 fb−1 of data recorded at the LHC at

√
s = 14 TeV, the sensitivity to detect any

deviation from the Higgs couplings predicted by the Standard Model is evaluated. To do this, the
couplings are parametrized according to

gHXX = gS M
HXX(1 + ∆HXX) (3.23)

where ∆HXX , 0 would indicate a deviation from the Standard Model prediction. Using simulated
data generated with gHXX = gS M

HXX , the compatibility of ∆HXX , 0 with the signal event rates observed
in different analysis channels is evaluated. The measure of compatibility for a given value of ∆HXX
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is given by the ratio ∆(χ2) of the (negative log) likelihoods of ∆HXX and the best fit value ∆ML
HXX . By

construction ∆(χ2) = 1 for ∆ML
HXX , which is also the minimal value obtainable. The importance of the

VH → Vbb̄ channel can clearly be seen in Figure 3.12: the top row shows the 1/∆(χ2) distributions
for a measurement which includes information about the coupling gHbb̄ obtained from VH → Vbb̄, the
middle row shows the same distributions with the sensitivity of VH → Vbb̄ reduced by 50%, and the
bottom row relies on gHbb̄ being solely obtained from tt̄H → tt̄bb̄. Multiple solutions (peaks) arise
from the fact that the partial widths depend quadratically on the couplings in some cases, leading to
a degeneracy with respect to the sign of ∆HXX . Without the information from VH → Vbb̄, not only
the determination of ∆Hbb̄ becomes virtually impossible, but also the uncertainties of ∆HWW and ∆HZZ

increase by 50% to 100% [33].

3.5 Important background processes for the search in VH → Vbb̄

The selection of candidate events for the VH → Vbb̄ search is based on the identification of a lepton-
ically decaying heavy vector boson and two b-jets. While the signature required in the ZH channel is
comprised of - apart from the b-jets - two high pT leptons of the same flavor, only one high pT lepton
is required in the WH channel. Any additional high pT leptons and jets are vetoed. A cleaner set of
signal candidates could be obtained in the WH channel by exploiting the fact that the associated neut-
rino shows up in the detector as missing transverse energy Emiss

T , but it has turned out that the analysis
in this channel reaches a higher sensitivity if no explicit requirement regarding Emiss

T is made in the
pre-selection (see Section 7.7 for details). Before any further selection is applied, the signal region is
thus populated by all processes which generate or fake exactly two high pT b-jets and exactly one (WH)
and two (ZH) high pT lepton(s), respectively. The most frequent background processes which can result
in this signature will be discussed in the following.

top-antitop pairs: The tt̄-background contains two real b-jets resulting from the top decays and can
also contain one or two real high pT leptons depending on the decay channel of the W bosons.
Although a large fraction of the tt̄ events is rejected by vetoing a third jet in the signal region,
it is still the most abundant background in the WH channel and also represents an important
contribution in the ZH channel. The cross-section for this background is ∼ 166.8 pb for

√
s =

7 TeV and ∼ 238.1 pb for
√

s = 8 TeV.

single top: All of the three production mechanisms of single top (t-channel gq → qt(b), s-channel
qq → tb and Wt gb → Wt) can fake the signal signature. The t-channel however has by far the
highest cross-section (∼ 64.6 pb for

√
s = 7 TeV and ∼ 87.8 pb for

√
s = 8 TeV) and is thus the

dominant source of background.

W+jets: With 10.46 nb (7 TeV) and 10.97 nb (8 TeV), respectively, the cross section for inclusive pro-
duction of W bosons and subsequent leptonic decays is more than four orders of magnitude higher
than the cross-section of the WH signal. While most of this background can be rejected by jet
multiplicity cuts and b-tagging, there is a sizable amount of events where the W-boson is pro-
duced together with two real b-jets, e.g. through qq → Wg → Wbb̄, resulting in an irreducible
background component for the WH channel. Events involving jets which originate from c-quarks
are also likely to fake the desired signature. In the analysis presented here, the W+jets background
is categorized according to the flavor of the associated jets, and the relative normalization of the
different flavor components is determined from dedicated control regions (see Section 7.8).
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Figure 3.12: Sensitivity to deviations ∆HXX of the Higgs couplings from the Standard Model prediction. Top row:
Including information from all analysis channels, in particular VH → Vbb̄. Middle row: Impact of the sensitivity
in VH → Vbb̄ being reduced by 50%. Bottom row: VH → Vbb̄ excluded from the fit, information about the
coupling gHbb̄ solely obtained from tt̄H → tt̄bb̄ [33].
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Z+jets: The Z+jets background plays a similar role for the ZH search as W+jets does for the WH
search. The cross-section for inclusive Z production followed by a decay to a pair of charged
leptons with an invariant mass of > 40 GeV is ∼ 1.1 nb (

√
s = 7 TeV) and ∼ 1.2 nb (

√
s =

8 TeV), respectively. The heavy flavor component Z + bb̄ constitutes the most important source of
background for the ZH channel and is very difficult to discriminate against. As done for W+jets
in the WH channel, the flavor composition of the Z+jets background is measured using control
regions with different b-tag multiplicities in the ZH channel.

Diboson: The production of heavy gauge boson pairs (WW, WZ, ZZ) forms an important back-
ground source for both the WH and the ZH channel. In particular the decays WZ → Wbb̄
(σ66<mll<116 GeV

WZ,8 TeV ≈ 22.7 pb) and ZZ → Zbb̄ (σ66<mll<116 GeV
ZZ,8 TeV ≈ 7.7 pb) yield irreducible back-

ground components for the Higgs boson search in associated production.

QCD multijet production: The sheer abundance of QCD-induced multijet events produced in proton-
proton collisions renders these processes an important background source. Real production of
heavy flavors followed by semi-leptonic decays, e.g. from gb → bb̄b or gc → bb̄c, contributes
as well as fake leptons and mistagged light flavor jets. Due to the immense cross section and the
low acceptance of these processes, no reliable simulation is available for the multijet background.
In this analysis, it is modeled using shape templates obtained from data which are selected in a
dedicated multijet control region. See Section 7.4 for a detailed description.

The description of all the background processes - except multijet production - relies on simulated
events which are generated with so called “Monte Carlo generators”. Since these simulations play a
crucial role for the analysis presented here, I will discuss some important technical aspects of event
generation in Chapter 5. A complete list of the Monte Carlo samples used in this analysis can be found
in Section 5.5.
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“Any sufficiently advanced technology is
indistinguishable from magic.”

Arthur C. Clarke

CHAPTER 4

The Large Hadron Collider and the ATLAS
experiment

The search for new particles like the Higgs boson requires the use of particle accelerators, where heavy
particles can be produced resonantly from two colliding particles if the center-of-mass energy

√
s in

the collision exceeds the rest mass of the particle in question. Apart from the energy, also the rate
at which the collisions take place is an important characteristic to describe the capacity of a particle
accelerator, since the observation of particles with small couplings (and thus small production cross-
sections) requires a large number of recorded collisions. On the other hand, a high event rate poses
a challenge for the detectors, requiring very fast and radiation-hard electronics. The Large Hadron
Collider (LHC) and the ATLAS1 detector are designed to meet the requirements that arise in the search
for new physics up to the range of several TeV. They define the experimental frame in which the data
for this thesis have been recorded. I will shortly discuss the technical key features of the LHC and the
ATLAS detector in the following.

4.1 The Large Hadron Collider

The LHC, situated at the European Laboratory for Particle Physics (CERN) near Geneva, Switzerland,
is a circular proton-proton2 collider with a circumference of 26.7 km. It is installed in an underground
tunnel which previously hosted the Large Electron Positron Collider (LEP). The LHC provides a rich
physics potential, which is exploited by four major experiments at four different sites where the particle
beams are brought to collision: ALICE, a detector designed to study the properties of quark-gluon
plasma, and LHCb, investigating b-quark physics and matter-antimatter asymmetries, are two experi-
ments with dedicated tasks. ATLAS and CMS on the other hand are so-called multi-purpose detectors
which are intended for an extensive investigation of physics phenomena in the TeV range, including the
search for the Higgs boson. A schematic view of the LHC and the four major experiments is shown in
Figure 4.1.

The LHC was designed to reach a center-of-mass energy of
√

s = 14 TeV, which makes it the most
powerful particle accelerator ever constructed, surpassing the second most powerful accelerator (the

1 A Torodial LHC ApparatuS
2 There also exists the possibility to collide lead ions for specific experiments which are not of interest in the context of this

thesis
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Figure 4.1: Overview of the LHC and the four major experiments [34].

Tevatron at Fermilab with
√

s ≈ 2 TeV) by a factor of seven. The LHC started operation in late 2008,
but had to be shut down merely a week later due to a severe malfunction. The restart did not happen
until late 2009. Since then, the LHC has been running with a reduced center-of-mass energy to avoid
any risk of further technical failure. The data analyzed in this thesis were taken with a center-of-mass
energy of

√
s = 7 TeV in 2011 and

√
s = 8 TeV in 2012, respectively. At the time of this writing,

the LHC is undergoing a shutdown for maintenance and upgrades, it will be operational again in 2015,
presumably reaching its design center-of-mass energy.

The highly energetic proton beams in the LHC circulate in two ultrahigh vacuum (1 × 10−13 bar) tubes
to avoid collisions with gas atoms. They are forced on their circular trajectories by powerful dipole
magnets which create field strengths of up to 8 T. This is achieved by superconducting coils whose
operation requires the accelerator to be cooled to 1.9 K using liquid helium. The accelerating cavities,
which provide a field of 5 MV m−1, are also superconducting. Since the LHC accelerates protons in both
directions, two magnet systems with opposite orientation - one for each beam - have to be enclosed in a
common cryostat vessel. The complete construction comprising two vacuum tubes, the bending dipole
magnets and the surrounding cryostat is often referred to as “a dipole”, each of which is 15 m long and
weighs ∼35 t. The LHC consists of 1232 of these dipoles, a diagram of their cross-section is shown in
Figure 4.2.

4.1.1 Luminosity

The LHC is designed as a discovery machine, not only by virtue of its high center-of-mass energy,
but also by virtue of its formidable luminosity, which allows for reasonable event rates even for many
processes with very low cross-sections. For a given process with cross-section σ, the luminosity L is
defined as

L =
Ṅ
σ

(4.1)
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Figure 4.2: Cross-section of a LHC dipole magnet [35].

where Ṅ is the event rate of that process. While the cross-section is entirely determined by the center-
of-mass energy, the luminosity and thus the event rate can be deliberately tuned with an appropriate
accelerator design. At the LHC, the protons are not accelerated in a continuous beam but are stored
in packets, so called bunches. Labeling the rate at which these bunches collide f , and the number of
protons inside a bunch n, the luminosity is given by

L =
f n2

Aint
(4.2)

where Aint is the effective area in which the beams are brought to collision. It is obvious that a highly
focused beam (i.e. small Aint) is desirable in order to reach a high luminosity. The LHC can support
up to 2808 bunches being accelerated at the same time, each one containing about 1011 protons. This
corresponds to a bunch spacing of only 25 ns or 7 m. Operating at its design values, the LHC reaches a
luminosity of Ldesign = 1 × 1034 cm−2 s−1. The data analyzed in this thesis however have been collected
with different luminosity settings: the bunch spacing was only gradually lowered from 75 ns to 50 ns,
reached by mid 2011. On the other hand, the number of protons inside each bunch and the beam focus
were constantly improved until both parameters finally exceeded the design values, so that the peak
luminosity provided in the second half of 2012 was very close to the LHC design value, see Figure 4.3.

A very high luminosity is not only beneficial in terms of high event rates for rare processes (like
Higgs boson production), it also poses a serious challenge when it comes to the detection and selection
of interesting events: high bunch crossing frequencies require a short response and processing time, or
the following events will be lost. A high number of interactions per bunch crossing requires a robust
suppression of pile-up. The ATLAS detector was designed with these requirements in mind, and I will
present a short overview of the detector components that are crucial for the Higgs boson search in the
VH → Vbb̄ channel in the following.
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Figure 4.3: Luminosity delivered to the ATLAS experiment by the LHC in 2010-2012.

4.2 The ATLAS experiment

ATLAS is a multi-purpose particle detector at the LHC, designed to operate in the high energy and
high particle multiplicity regime provided by the LHC. ATLAS is barrel-shaped, 42 m long and 22 m
high, providing almost full coverage of the azimuthal angle and a large acceptance in the polar angle. Its
appearance is dominated by the large toroid magnet system which provides the field for the muon system
(see Section 4.2.3). The detector encloses the beam-pipe with the interaction point at which the proton
bunches are brought to collision. Particles created in the collisions thus traverse the detector from the
innermost layer outwards. This is reflected in the design of ATLAS, with different sub-detectors being
arranged in concentric layers around the beam-pipe. The subsystem which is closest to the interaction
point is the inner detector, followed by the electromagnetic calorimeter, the hadronic calorimeter and
finally the muon system. A computer-generated cross-section of ATLAS is shown in Figure 4.4, it
illustrates both the concentric design and the immense size of the detector. A more detailed description
of the ATLAS detector and its subsystems can be found in [36].

The right-handed coordinate system in which physical processes in the ATLAS detector are described
is defined as follows: the z-axis is aligned with the beam-pipe, the y-axis points towards the center of
the LHC ring and the x-axis points upwards. The origin of the coordinate system is defined as the
nominal interaction point. The azimuthal angle φ is the angle to the x-axis, measured around the beam,
and the polar angle θ is measured to the beam-axis. The latter is usually replaced by the so-called
pseudo-rapidity

η = − ln
(
tan

θ

2

)
(4.3)

which has the advantage that differences in η are invariant under longitudinal Lorentz-boosts for mass-
less objects, an approximation that typically holds for most objects produced at LHC energies. Particles
that traverse the detector perpendicular to the beam have η = 0, while the beam itself is at η = ±∞.
Using φ and η, three-dimensional distances in the ATLAS coordinate system can be defined as

∆R =

√
(∆φ)2 + (∆η)2 (4.4)
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Figure 4.4: Computer generated cross-section of the ATLAS detector, illustrating the concentric arrangement of
the sub-detectors [37].

4.2.1 The inner detector

The inner detector (ID) is a so-called tracking device which serves to measure the trajectories of elec-
trically charged particles, called tracks. It is ∼6.2 m long and ∼2.1 m in diameter and covers the range
|η| < 2.5. The inner detector is surrounded by a solenoid magnet which immerses it in a 2 T magnetic
field, causing the tracks of charged particles to bend. This allows to measure the momentum and the
sign of the electric charge of the particles via the curvature of the track. Tracks can also be used to
determine the position of the interaction vertex - this is particularly important if one aims to identify
long-lived particles (like hadrons with b-quarks, as in this analysis), since their decay may lead to the
presence of secondary vertices which are displaced from the primary one.

The inner detector itself consists of three subsystems with different granularities: the closer to the
interaction point, the higher the resolution of a given detector component has to be in order to resolve
single tracks. A computer generated cross-section of the inner detector components is shown in Fig-
ure 4.5, while Figure 4.6 displays a more detailed diagram of the subsystems.

Pixel detector

The innermost sub-detector is the pixel detector, surrounding the beam-line at a distance of only ∼5 cm.
It provides the highest granularity of all ATLAS systems, consisting of three layers of silicon sensors
(“pixels”) with a total of 80 million readout channels. The first layer, which is particular important for
precise impact parameter measurements which in turn play a crucial role in the identification of long-
lived particles, is called the b-layer. The pixel sensors are segmented in R−φ and z with individual pixel
cells as small as 50 µm× 400 µm. This allows for a measurement accuracy of 10 µm (R−φ) and 115 µm
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Figure 4.5: Computer generated cross-section of the inner detector [38].

(z), respectively. The cells are diodes which are depleted by a high voltage when in operation. Charged
particles passing through the cells create free charge carriers in the form of electron-hole pairs, which
are then collected to generate an electric signal.

Semi conductor tracker

The semi conductor tracker (SCT) is a second silicon-based tracking device which encloses the pixel
detector. Consisting of strips with a width of 80 µm and a length of 12.8 cm arranged in four (barrel)
and nine (end-cap) double-layers, respectively, it provides ∼6.3 million readout channels. The double-
layers consist of sensors which are installed back to back at a stereo angle of 40 mrad to provide a
two-dimensional position measurement. The SCT delivers a measurement accuracy of 17 µm (R − φ)
and 580 µm (z), covering the range |η| < 2.5.

Transition radiation tracker

The transition radiation tracker (TRT) constitutes the outermost layer of the inner detector. It consists
of ∼ 300000 so-called straw-tubes with a diameter of 4 mm each. The tubes in the barrel region have
a length of 144 cm and are aligned with the beam axis, while the 37 cm long tubes in the end-caps are
radially aligned. In contrast to the pixel detector and the SCT, the TRT only covers the range |η| < 2.0.
Each tube of the TRT is filled with a mixture of xenon, carbon-dioxide and oxygen and has a wire
running trough it at the center, which is kept at a high positive voltage with respect to the shell of the
tube. Charged particles traversing the tubes ionize the gas, creating free electrons which drift to the
wire. Due to the high acceleration voltage, an avalanche of secondary electrons is produced, amplifying
the original signal.

Compared to the pixel detector and the SCT, the TRT delivers a rather low intrinsic resolution, al-
lowing only measurements in the R − φ-plane with an accuracy of 130 µm per straw. However, the high
number of measurements - on average there are 36 hits in the TRT for each charged particle - and the
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long lever arm render the TRT an important component for the overall momentum resolution of the
inner detector.

Moreover, the TRT also facilitates particle identification via so-called transition radiation, which
gives the TRT its name: ultra-relativistic particles crossing the boundary between a radiator material
surrounding the tubes and the tubes itself emit transition radiation photons due to the different refractive
indices of the two materials. These photons produce an additional signal when they ionize the gas in the
tubes. This mechanism helps to distinguish electrons from charged pions since electrons have a much
smaller mass and thus typically a higher Lorentz γ than pions.
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Figure 4.6: Diagram of a quarter section of the ATLAS inner detector [36].

4.2.2 Calorimetry

The ATLAS calorimeter system is designed to determine the energy of particles and jets and provide
an accurate measurement of the missing transverse energy Emiss

T . The latter requires almost complete
hermeticity - in fact, the ATLAS calorimeter provides coverage for the range |η| < 4.9, which corres-
ponds to angles as close as ∼ 1 degree to the beam axis. To measure the energies of particles in the TeV
range precisely, it is also important that the electromagnetic and hadronic showers resulting from the
interaction of the particles with the calorimeter material are contained within the respective subsystem
of the calorimeter. Escaping energy would both severely degrade the energy resolution and result in
possible punch-throughs to the muon system, generating a false signal. The calorimeter thus has to be
sufficiently thick: the material in the ATLAS calorimeter corresponds to ∼ 10 interaction lengths λ.

As can be seen in Figure 4.7, the ATLAS calorimeter consists of different types of sampling calori-
meters with varying granularity, optimized for either electromagnetic or hadronic showers.
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Figure 4.7: Cut-away view of the ATLAS calorimeter components [36].

Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) is a sampling calorimeter using liquid argon as the active me-
dium and lead as an absorber. Electrons traversing the absorber emit photons (bremsstrahlung) which in
turn convert to electron-positron pairs. An electromagnetic cascade forms and the charged particles de-
posit energy in the active medium via ionization. The free charge carriers originating from the ionization
are then collected and a signal is generated.

The ECAL is subdivided into a barrel segment (|η| < 1.475) and two end-cap components: an inner
wheel covering the region 2.5 < |η| < 3.2 and an outer wheel covering 1.375 < |η| < 2.5. The
characteristic accordion-shaped structure of the calorimeter allows for a complete azimuthal coverage
without cracks. In the range covered by the inner detector, the EM calorimeter is segmented in three
layers in depth, allowing for a precise measurement of electrons and photons. Energy losses of these
particles in the inner detector are accounted for by a so-called pre-sampler consisting of an active liquid
argon layer which precedes the ECAL.

Hadronic calorimeters

The hadronic calorimeter consists of three different systems in different regions of |η|:

Tile calorimeter: A sampling calorimeter placed directly outside the ECAL which covers the range
|η| < 1.7. The tile calorimeter uses scintillating tiles as the active material and steel as the absorber.
Inelastic hadronic interactions with the material initiate hadronic showers, secondary particles
excite the scintillator material which then emits light. The light is guided to photomultipiers by
wavelength shifting fibers, where it is converted to an electrical signal. The tile calorimeter is
segmented in three layers in depths and divided in 64 modules in azimuthal direction.
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LAr hadronic end-cap calorimeter: The hadronic end-cap calorimeter (HEC) is located behind the
end-caps of the EM calorimeter. Since it has to withstand higher radiation doses than the tile
calorimeter, it uses liquid argon as the active material, sharing the cryostats with the EM end-
cap calorimeter. The HEC consists of two wheels per end-cap, each one constructed from 32
identical wedge-shaped modules and segmented in two layers in depth. The HEC covers the
range 1.5 < |η| < 3.2, thereby overlapping slightly with both the tile calorimeter and the forward
calorimeter (FCal). This way the total material density is almost constant over the entire η-range.

LAr forward calorimeter: The forward calorimeter (FCal) covers the region 3.1 < |η| < 4.9. Like
the HEC, it has to withstand considerable radiation doses and thus uses liquid argon as the active
material. It is divided into three modules for each end-cap, which makes it a kind of dual-use
calorimeter for both electromagnetic and hadronic interactions: the first module, intended for
electromagnetic measurements, is made of copper, while the two other modules are made of
tungsten, measuring mostly hadronic energy deposition.

4.2.3 Muon spectrometer

Highly energetic muons are among the most important indicators of interesting physics signatures at
the LHC. The muon system of the ATLAS detector is thus designed as a completely independent sub-
detector, which ensures both the efficient identification of muons and a precise measurement of muon
momenta even at high energies when the curvature of the track in the inner detector is small.

The ATLAS muon system forms the outermost shell of the detector - virtually all particles which
are not stopped in the preceding calorimeters are muons, which allows for an easy identification. The
long lever arm with respect to the inner detector also greatly improves the resolution of momentum
measurements, which are - like in the inner detector - performed by measuring the curvature of the
muon tracks. The magnetic field which bends the tracks is generated by the huge toroid magnets which
dominate the overall appearance of the ATLAS detector. The so-called muon chambers, which provide
the position information for the momentum measurement, employ a range of different technologies
described below. They are arranged in concentric layers around the beam axis in the barrel and in four
wheels perpendicular to the beam in the end-cap regions. The different components of the muon system
are shown in Figure 4.8.

Monitored drift tube chambers: MDTs contain tubes with pressurized gas and a central wire at a
high positive voltage which is used to collect free charge carriers from ionization. MDTs have a
limited count rate of ∼ 150 Hz cm−2.

Cathode strip chambers: CSCs are multi-wire proportional chambers which can handle higher count-
ing rates of up to ∼ 1000 Hz cm−2. They are thus used instead of MDTs in the first layer of the
end-cap at |η| > 2.

Resistive plate chambers: RPCs consist of two parallel plates with a gas mixture in between. Charged
particles traversing the 2 mm wide gap between the plates ionize the gas, initiating an electron ava-
lanche in the strong electric field in the gap. RPCs provide fast tracking information for the muon
trigger system in the barrel.

Thin gap chambers: TGCs are a variant of multi-wire proportional chambers with good time resolu-
tion and high rate capability. They provide input to the trigger system in the end-cap region.
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Figure 4.8: Cut-away view of the ATLAS muon system indicating the different muon chamber technologies [36].

4.2.4 Trigger system

The vast majority of bunch crossings does not yield an event that is considered “interesting” in the sense
that the particles produced comprise a signature which could indicate a rare physics process. Storing
and analyzing all events would thus be a major waste of resources. Apart from that, no readout or
storage system available today could possibly cope with the gigantic rate at which data is generated
by the ATLAS detector. To deal with this difficulty, a so-called “trigger system” is employed to select
interesting signatures on-the-fly, discarding most events without the need to write them to disk.

The ATLAS trigger system has three levels, each one refining the selection made at the previous
level by considering more detector information. The Level-1 (L1) trigger uses reduced-granularity
information from the muon trigger chambers and the calorimeter to identify candidates for high pT
muons, electrons, photons, jets and τ-leptons and events with large Emiss

T . Since is does not use any
information from the tracking system one cannot select b-jet candidates at this level. The L1 trigger
is entirely hardware based and reaches a decision in . 2.5 µs. It also defines one or more regions-of-
interest (RoI) - that is the η and φ coordinates where interesting features have been identified - which in
turn seed the higher level trigger algorithms. The event rate after L1 trigger selection is ∼75 kHz.

The Level-2 (L2) trigger and the event filter (EF) are based on regular computing hardware and
perform a refined event selection by taking into account more event information. The L2 trigger has
access to the full detector granularity, but considers only data from within the RoIs generated by L1. It
reaches a decision in ∼ 40 ms, reducing the event rate to ∼ 3.5 kHz. The final decision on the event is
taken by the event filter, considering the full detector information and an improved event reconstruction.
Typical processing times are on the order of four seconds and the final event rate is ∼200 Hz.
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4.3 Event reconstruction in ATLAS

Physics analyses like the one presented in this thesis rely on mappings which allow to identify certain
patterns in the detector’s electronic response with physical objects like electrons, muons or particle
jets. Such mappings are provided by the so-called reconstruction algorithms which transform energy
depositions or pixel cell hits into higher-level physics objects. For the analysis at hand, a multitude of
different objects has to be considered and I will briefly review the reconstruction algorithms associated
with those objects in the following. It should however be noted that the ATLAS reconstruction software
is not static, but undergoes constant evolution.

4.3.1 Track reconstruction

Charged tracks are reconstructed from inner detector measurements (see Section 4.2.1) - a task known
as “tracking” which consists of three stages:

Pre-processing: Raw data from the pixel and SCT detectors are converted into clusters, TRT timing
information is converted into drift circles and SCT clusters are in turn converted to space-points.

Track-finding: Tracks are seeded by clusters in the first three pixel layers and the first SCT layer.
First track candidates are formed by extending the seeds through the SCT, these candidates are
then fitted and ambiguities are removed. Fake tracks are rejected by quality cuts requiring a
certain number of associated clusters. The remaining candidates are extrapolated to the TRT and
associated with matching drift circles. The track is finally refitted using the information from all
three sub-detectors.

Post-processing: A vertex-finder algorithm is used to identify primary vertices, followed by a dedic-
ated algorithm for secondary vertex reconstruction.

A track is usually parametrized by its impact parameters in the transverse plane (do) and in the longit-
udinal direction (z0), and by its momentum vector, defined by φ, θ and q/p, the charge associated with
the track divided by its momentum. A detailed study of the ATLAS tracking performance and efficiency
is presented in the ATLAS publication on proton-proton scattering [39].

4.3.2 Clustering

Calorimeter clusters form the input for both electron and jet reconstruction. Simply speaking, a calori-
meter cluster is a collection of neighboring cells whose combined energy deposition reflects the energy
loss of a particle in the calorimeter. Two different algorithms are relevant for the creation of calori-
meter clusters, which is often called “clustering”: sliding-window clustering and topological clustering.
While the former algorithm creates clusters of fixed size, the latter one aims at the three-dimensional
reconstruction of shower shapes which leads to clusters of variable size and form. These are called
“TopoClusters”. A detailed description of both algorithms can be found in [40].

4.3.3 Electron reconstruction

The reconstruction of electrons is based on sliding window clusters and tracks. The most general de-
scription of an electron candidate is a cluster in the electromagnetic calorimeter with an associated inner
detector track pointing at it. Candidate clusters are required to have a transverse energy of at least
3 GeV, they have a size of 5 × 5 cells in the middle layer of the electromagnetic calorimeter. For track

39



4 The Large Hadron Collider and the ATLAS experiment

matching, a search window of 0.2×0.4 in ∆η×∆φ is constructed around the barycentre of the cluster. To
be considered, tracks within that window are required to have at least three silicon hits, an E/p < 10 and
must lie within a smaller window whose position depends on the track charge. The corners defining the
windows for negative and positive tracks in terms of ∆η×∆φwith respect to the cluster center are placed
at (−0.05,−0.01), (0.05, 0.05) and (−0.05,−0.05), (0.05, 0.1), respectively. The asymmetry accounts for
the track curvature.

Starting from the cluster-track candidates the identification of electrons defines three quality levels
with increasing jet rejection and decreasing efficiency:

Loose: Loose electron identification delivers a high efficiency but a low background rejection. Selec-
tion criteria are based on the hadronic leakage (ratio of ET of the first sampling in the hadronic
calorimeter to electromagnetic cluster ET) and on the shower shape in the middle layer of the EM
calorimeter.

Medium: On top of the criteria for loose electrons, the medium identification employs information
from the first layer of the EM calorimeter, using its longitudinal segmentation to reject photons
from neutral pion decays. It also requires additional track quality cuts and a tighter cluster-track
match.

Tight: In addition to the medium criteria, tight electron identification requires a vertexing-layer hit to
further reject photon conversions and a large fraction of high-threshold hits in the TRT. The latter
are due to transition radiation and thus help to reject pions. Compared to medium, the cluster-track
matching requirements are tightened even further.

For all quality levels there also exist more recent variants labeled loose++, medium++, tight++.
These include additional quality cuts to mitigate the influence of pile-up in the 2011 and 2012 data
which would otherwise strongly degrade the electron efficiency.

4.3.4 Jet reconstruction

Constructing jets is a complicated task: a good jet algorithm should be theoretically well-founded in the
sense that it is insensitive to the details of the hadronization model and provide answers that are both
infrared and collinear safe. The anti-kT algorithm [41] used in ATLAS meets these requirements. It is
a sequential combination algorithm which merges objects based on a distance measure defined in terms
of their relative pT. The objects that are used as inputs to the jet-finding algorithm are the TopoClusters
discussed in Section 4.3.2. For each pair of objects i, j one defines:

di j = min(k2p
ti , k

2p
t j )

(∆R)2
i j

R2

diB = k2p
ti

(∆R)2
i j = (φi − φ j)2 + (yi − y j)2

(4.5)

where kti is the transverse momentum of the object with respect to the beam direction and y is the
rapidity, which can be approximated by the pseudo-rapidity η in the massless limit. R is a fixed distance
measure which determines the size of the jets - in the analysis presented here, a value of R = 0.4 is used.
The parameter p switches between the kt (p = 1) and the anti-kT (p = −1) algorithm. Both algorithms
form jets by searching for the minimal entry in the list of all di j and diB and then adding the four-vectors
of the objects i, j with minimal di j. If diB < di j for all objects j, the object i is considered a complete jet.
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The kt algorithm is somewhat easier to interpret: for p = 1, diB is just the squared transverse momentum
of an object with respect to the beam and di j is the (scaled) squared relative transverse momentum of
the objects i, j. The drawback of the kt algorithm is that it produces jets with irregular shapes, making
the calibration of the jet energy difficult. The anti-kT algorithm on the other hand produces well-defined
jets which evolve to a conical form if they are isolated. It is now the default algorithm for jet-finding in
ATLAS.

4.3.5 Muon reconstruction

Muons are probably the most important tagging objects to identify interesting event signatures. In AT-
LAS, several different methods for the identification of muons are used, relying on different subsystems
of the detector. On top of that, there exist two families of algorithms in ATLAS which both implement
the aforementioned methods: MuID and Staco. Usually only one algorithm is used for a given analysis,
the other one is possibly employed for cross checks. The analysis presented in this thesis uses muons
reconstructed with algorithms from the MuID family and additional “CaloMuons” (see below). I will
briefly discuss the different approaches to muon identification in the following.

Moore and MuID standalone

The algorithms “Moore” and “MuID standalone” are used to reconstruct so-called standalone muons,
which means that only information from the muon spectrometer is used. Moore creates muon spectro-
meter segments (two connected hits) and tracks (which consist of at least two segments) which are then
extrapolated to the primary vertex by MuID standalone. Standalone muons can be constructed up to
|η| < 2.7 but holes in the acceptance exist around η = 0 and |η| = 1.2.

MuID combined

So-called combined muons result from the combination of muon spectrometer and inner detector tracks.
The MuID algorithm performs a global refit of the two tracks, combining vectors and covariance
matrices of both measurements. Combined muons not only have a superior impact parameter resol-
ution with respect to standalone muons, they also help to reduce the acceptance for secondary muons
from pion or kaon decays in the calorimeter.

MuTagIMO and MuGirl

Using an (extrapolated) inner detector track as a seed, MuGirl searches for muon spectrometer segments
and tracks. If a combination is found that yields a successful refit, a combined muon is created. If the
refit is not successful, a tagged muon, where the track parameters are only taken from the inner detector
track, is created. MuTagIMO aims to find muons with low transverse momentum which do not create
hits in all muon spectrometer stations. A matching inner detector track is combined with a Moore
segment to form a tagged muon.

CaloMuons

Although muons are minimal ionizing particles, they deposit some energy in the calorimeter along their
flight trajectory. This is exploited to create so-called CaloMuons from an inner detector track and a
matching extrapolated trajectory in the calorimeter. CaloMuons are usually used in the region η ≈ 0
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where no measurements from the muon spectrometer are available.

As for electrons, there exist different quality levels for muons (loose, medium, tight) which provide
different efficiencies and background suppression factors. A recent measurement of the ATLAS muon
reconstruction efficiency is presented in [42].

4.3.6 Missing transverse energy

Neutrinos provide an important fingerprint for many interesting physics processes. Unfortunately they
are not directly detectable since they do hardly interact with the material in the detector. However,
the conservation of the total transverse momentum in the proton-proton collisions at ATLAS allows
for an indirect measurement of the neutrino momenta from the negative sum of all other momenta.
The resulting quantity is called “missing transverse energy” and denoted as Emiss

T . Since a reliable
measurement of Emiss

T requires almost full detector coverage with regard to the solid angle, it is rather
based on energy depositions in the calorimeter than on tracking information from the inner detector.
The actual calculation of Emiss

T is somewhat involved due to many corrections (calibration for different
objects, muons escaping the detector, dead material,...) that have to be taken into account. See [36]
and [43] for details.
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“Reality leaves a lot to the imagination.”

John Lennon

CHAPTER 5

Selected aspects of event simulation and QCD

Simulation plays a crucial role on several levels in the analysis of LHC data. First and foremost, sim-
ulated collision events - often referred to as “Monte Carlo” for reasons that will become clear later
- serve as theoretical references for most measurements and are thus vital for the understanding and
interpretation of the data. In this chapter, I will introduce some key concepts of Monte Carlo event gen-
eration in the context of hadron collider physics and describe in short the samples that are used in the
analysis at hand. A comprehensive and up-to-date review of Monte Carlo event generation is provided
by the MCnet collaboration [44], a somewhat shorter and pedagogically motivated introduction is given
in [45], from where much of the material presented here has been adapted.

5.1 Numerical integration with random numbers

The evaluation of phase-space integrals plays an important role in the calculation of (differential) cross-
sections or detector count rates. Since the dimensionality of the phase-space increases rapidly with
the number of final state particles, standard (non-random) numerical integration methods quickly break
down in such situations due to convergence rates that depend on the dimensionality of the problem.
Integration techniques which make use of random sampling - called Monte Carlo methods - on the other
hand exhibit a stochastic convergence rate of 1/

√
n with n being the number of evaluations independ-

ent of the dimensionality of the problem. Random numbers and sampling tasks are thus an important
ingredient in simulation problems: random phase-space points generated according to specific distri-
butions are not only vital to perform integrations and make predictions for (differential) cross-sections,
they also drive the simulation of individual events and observables. A discussion of specific sampling
techniques and their usage in event generators is beyond the scope of this thesis. A general introduction
to the topic is given in [46], a more detailed description of the algorithms employed in current Monte
Carlo generators can be found in [44].

5.2 Essential QCD for the simulation of hadron-hadron collisions

To understand the simulation of events at hadron colliders, a discussion of specific aspects of QCD
calculations performed in Monte Carlo generation is inevitable. I will thus sketch the key ideas of
factorization, parton showers, matching and hadronization. The material is largely drawn from the
review in [45].
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5.2.1 Factorization

The difficulty in simulating events at hadron colliders like the LHC is that the simulation must address
processes at various energy scales, including soft-QCD phenomena like the interactions of the partons
inside the proton as well as perturbative QCD phenomena like hard scattering in parton collisions.
Fortunately the two regimes can be separated by virtue of the factorization theorem [47], which allows
to tackle the task by calculating the perturbative part on its own and then combining it with an almost
universal non-perturbative part which is obtained from auxiliary measurements and fits to data. The idea
of factorization can be understood from the following reasoning [45]: interactions among the partons
inside the proton must be limited to momentum transfers below the confinement scale Λ, which means
that they typically happen on timescales ∼ 1

Λ
. Hard interactions between partons from different protons

on the other hand typically involve momentum transfers of the order Q � Λ and happen on timescales
∼ 1

Q �
1
Λ

. The structure inside the colliding hadrons thus appears to be static over the time of the hard
interaction.

Adopting a particular factorization scheme called collinear factorization [48], the cross-section for a
hadron-hadron interaction can be expressed as:

dσh1,h2 =
∑
i, j

∫ 1

0
dxidx j

∑
f

∫
dΦ f f h1

i (xi, µ
2
F) f h2

j (x j, µ
2
F)

dσ̂i, j→ f

dxidx jdΦ f
(5.1)

where the first sum runs over the partons i, j inside the colliding hadrons h1, h2, the second sum runs
over the possible final states f and dΦ f denotes the usual differential phase-space element. Note that
the partonic cross-section σ̂ can now be calculated in fixed-order perturbation theory. The parton dis-
tribution functions (PDFs) fi, f j on the other hand cannot be computed from first principles. They are
typically constrained by measurements at lower energies - mainly deep inelastic scattering, see for ex-
ample [49] - and then extrapolated by means of the appropriate renormalization group equation [50].
However, a useful event simulation must not only be able to predict cross-sections for partonic final
states but provide estimations for observables that can be measured. This means that the simple factor-
ization approach seems to fail in situations where the final state contains quarks and gluons as it is the
case in typical LHC processes. The reason is that the experimental observables in such processes are
based on hadrons in jets rather than partons. Perturbative QCD simply breaks down in the presence of
scale hierarchies as they are encountered in jets. One inevitably runs into situations where a further res-
olution of substructure leads to divergent terms in the perturbative series. One must therefore introduce
a fragmentation function (FF) D f which describes the transition from a partonic final state to a hadronic
observable. For a particular hadronic observable O, the differential cross-section then reads:

dσ
dO

=
∑
i, j

∫ 1

0
dxidx j

∑
f

∫
dΦ f f h1

i (xi, µ
2
F) f h2

j (x j, µ
2
F)

dσ̂i, j→ f

dÔ
D f (Ô → O, µ2

F) (5.2)

where Ô denotes the same observable in the partonic final state. Just like the PDF, the fragmentation
function D f includes both resummations of perturbative corrections to all orders and non-perturbative
corrections. Again this is a parametrized function that is independent of the hard-scattering process and
can therefore be regarded as an ingredient to factorization. The distinction between the hard process on
one hand and the PDF and FF on the other hand is made by the choice of an arbitrary scale called the
factorization scale µF . A discussion of various choices for µF can be found in [51].
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5.2 Essential QCD for the simulation of hadron-hadron collisions

5.2.2 Fixed-order calculations

The cross-sections of hard partonic interactions can be calculated with a perturbative approach as an
expansion in the strong coupling constant αS . Calculations at the lowest or leading order (LO) can
be carried out according to specific algorithms and have been automated in so-called matrix element
generators like MadGraph [52]. Going beyond LO is typically difficult and has not been accomplished
for every process. Such calculations at NLO, NNLO (next-to-leading order and so forth) are referred
to as fixed-order calculations. If a NLO cross-section calculation for a given process is available the
so-called K-factor may be defined as:

KNLO =
σNLO

σLO
(5.3)

Higher order K-factors may be defined in analogy. These K-factors are typically used to calculate
approximations of the differential cross-sections/distributions according to

dσNLO = KNLO · dσLO (5.4)

Kinematical corrections introduced at NLO are of course neglected in this approach, but since their
calculation is difficult and the approximation is valid in the absence of additional real emissions it is a
common compromise.
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Figure 5.1: An illustration of the perturbative series calculated to fixed order. Left: Complete LO calculation for
F. Right: LO calculation of F + 2 in the non-divergent region of the phase-space [45].

Let us introduce the notation convention from [45] for a short discussion of fixed-order calculations:
a given final state is denoted as F, and k and l are the additional numbers of legs and loops with respect
to the LO diagram for which k = l = 0. This is illustrated by the green square in the left pane in
Figure 5.1. Very often, the LO diagram will not contain any loops and is thus called a “tree-level”
diagram. With this convention, a LO estimate for the process F + n jets can be obtained from F by
setting k = n and l = 0. A complete NnLO result for F on the other hand must contain all contributions
from combinations of k and l which fulfill k + l ≤ n. The former (LO for F + n) can only be calculated
in specific regions of the phase-space: when at least one of the n additional partons becomes soft or
collinear, infrared singularities yield infinite answers in the phase-space integration. The half-shaded
box in the right pane of Figure 5.1 illustrates this restriction. A proper NnLO calculation for F (which by
construction includes LO terms for F +1, . . . , F +n) on the contrary is guaranteed to give a finite answer
as stated by the KLN1 theorem [53], [54]: the divergent terms which arise from additional legs are
exactly canceled by divergent terms appearing in additional loops, rendering the complete answer finite

1 Kinoshita-Lee-Nauenberg theorem: a complete perturbative expansion of the Standard Model must be infrared finite
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up to order k+l = n. Unfortunately it is not straightforward to obtain a finite answer for such higher-order
calculations in practice: correct canceling of the infinite contributions calls for a delicate arrangement
of the divergent terms. Since we cannot restrict ourselves to the well-behaved (non-infrared) region
of the phase-space when making QCD calculations for event simulation, efficient approximations of
multi-leg/multi-jet scenarios - typically using resummation strategies - are indispensable. We will thus
discuss the parton shower approach to leading-logarithmic resummation in Section 5.2.3.

5.2.3 Parton showers

A successful approach to approximating the infinite-order resummations enclosed in the FFs mentioned
in Section 5.2.1 is called “parton shower”. It allows for the description of the evolution of the partonic
final state beyond the regime which can be covered with a fixed-order matrix element (ME) calculation.
For the latter to give a reasonable answer for the process F+n legs/jets, one must assert that all additional
legs are sufficiently hard and well-separated (see Section 5.2.2) - a condition that is certainly not fulfilled
in jet formation, where numerous emissions of soft and collinear partons take place. The matrix element
may thus be interfaced with a parton shower algorithm which facilitates an approximate description of
“infinite legs” and “infinite loops” [45].

The theoretical foundation is as follows: Given the squared amplitude |MF |
2 for the final state F it

can be shown [45] that the squared amplitude for F + 1 leg factorizes according to

|MF+1|
2 = AF · |MF |

2 (5.5)

in the phase-space region where additional radiation is enhanced. The power of this ansatz stems from
the fact that it can be used recursively and thus can be used to obtain an approximation for the leading-
order cross-section σ(0)

F+n for processes with an arbitrary number of legs n. The poles that would cause
the tree-level matrix element for F + n to diverge in the soft/collinear regime are now separated off

and included in the so-called antenna-function AF (5.5). The expression that follows from repeated
application of this procedure can in turn be rearranged in a way that allows for the cancellation of
the infrared divergent terms against the divergent terms from loop corrections at so-called leading-
logarithmic precision. See [45] for details.

The parton shower formalism realizes this idea in terms of an evolution operator which generates
the all-order leading logarithmic corrections to the fixed-order matrix element by iteratively resolving
more structure in the event. The evolution of successive 1 → 2 splittings is driven by an evolution
parameter QE which may represent the parton virtuality, the relative transverse momentum of the parton
or the angle between the two partons, depending on the algorithm. See [44] for a detailed review of the
implementations in current MC generators. The probability to observe no split between two given scales
QE1 > QE2 is then defined by a so-called Sudakov factor. The evolution stops at the hadronization scale
µhad below which the current set of partons is passed to a hadronization algorithm (see Section 5.2.5).

A more technical discussion of parton shower algorithms, including an explanation of how random
numbers are used to generate the evolution parameters employed for the determination of the splitting
probabilities can be found in [55].

5.2.4 Matching matrix elements and parton showers

The parton shower approach to resummation is only well-defined in the regime of collinear and soft
emissions. If we want to promote a LO×LL description of the process F (that is leading order ME for
F plus leading logarithmic shower) to a description of F + 1 with an additional “hard leg”, we need to
include the LO matrix element for F + 1 as well and use F + 1 as a starting point for a new shower.
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5.2 Essential QCD for the simulation of hadron-hadron collisions

However, a problem arises: double-counting occurs for the LL terms in the inclusive F + 1 cross-
section, since they were already included in the shower that started at F. The problem is illustrated in
Figure 5.2: the left pane represents the LO cross-section calculation for F (green) with an additional
LL shower (yellow). In order to improve the prediction for F + 1 from LL to LO, we try to add the LO
ME for F + 1 and use this as a starting point for a new shower (middle pane). Since the LO ME for
F + 1 is infrared divergent, we cannot cover the full phase-space in the calculation, as indicated by the
half-shaded boxes. The problem of double-counting occurs if we try to combine both MEs which have
a different number of legs (right pane).

Adding more legs (=more MEs) and showers leads to even more severe double-counting since one
effectively sums up inclusive cross-sections where one should sum exclusive ones. Strategies to avoid
the aforementioned problems are known as “matching”.

Different approaches to matching exist, here I will just briefly mention the schemes used by several
popular Monte Carlo generators. More details can be found in [55] or at a less technical level in [45].

Slicing: A popular approach used amongst others in the generator Herwig [56]. The phase-space is
divided into regions which are exclusively described by the ME or the shower. This is done by
introducing a “matching scale” above which the shower is truncated and the higher-multiplicity
MEs come into operation. Technical details on how to avoid discontinuities at the matching scale
are important in practical implementations [57].

Subtraction: The difference of a LO calculation plus shower (LO×LL) and a NLO calculation plus
shower (NLO×LL) is taken and used as a correction to the LO calculation. This approach provides
NLO precision corrections to the Born level. An undesirable property of the subtraction approach
is that negative event-weights occur which poses a problem in certain analysis tasks. Subtraction
is used in MC@NLO [58].

Unitarity This approach aims at a point-wise correction of the shower prediction in phase-space by
multiplicative factors which represent the ratio of the ME calculation to the shower at this point.
The corrected shower associated to the process F will thus automatically reproduce the results
for the F + 1 matrix element. Pythia [59] uses the original version of the algorithm, which only
allows for one additional hard emission. An extension which includes NLO corrections to the
Born level is used in Powheg [60].
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Figure 5.2: Illustration of the double-counting problems that occur when combining MEs and showers for different
numbers of legs [45].

5.2.5 Hadronization

When the parton shower terminates at the hadronization scale µhad, the current set of partons must
be converted into a set of colorless hadrons. This process is called hadronization and is strictly non-
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perturbative which means one has to resort to phenomenological approaches. Two popular models
for the parton-hadron transition exist: the cluster model [44] used by the generators Herwig [56] and
Sherpa [61] and the string model [62], which is built on “linear confinement” - the observation that the
potential of the color-field between two color-charges grows linearly with the separation of the charges.
The string model is used in Pythia [59] and will briefly be discussed below.

Figure 5.3: The string model of hadronization: a quark pair is created from fluctuations in the color field [45].

The string model of hadronization

Consider a color-connected quark-antiquark pair qq̄ moving apart. According to the model of linear con-
finement, the potential between the quarks can be described by a one-dimensional string. As the quarks
move apart and their kinetic energy decreases, the tension of the string increases as it is stretched. The
string finally breaks up and its potential energy powers the creation of a real qq̄-pair from fluctuations
in the color field (see Figure 5.3). The process repeats until a collection of color-neutral hadrons is
obtained. A more detailed discussion of the string model including aspects like the influence of gluons,
baryon production or assignment of the quarks to hadron multiplets can be found in [45]. An in-depth
explanation of the Lund model implemented in Pythia is given in [63].

5.3 Other aspects of hadron collisions that are relevant to simulation

Pile-up

Very often, the collision of two proton bunches at the LHC gives rise to more than one proton-proton
interaction. Since hard scattering processes with high pT are very unlikely in general, most of these
interactions only yield low pT particles/jets which are independent of a possible hard event within the
same bunch collision. These processes are called “pile-up events”. The correct description of these
additional interactions is important in order to understand their influence on experimental observables
that are relevant to a given analysis task. Another common name for pile-up events is “minimum-bias
events”. Strictly speaking, the latter term refers to all events that are selected with minimum trigger
requirements (thus introducing minimal bias) to be as inclusive as possible. By definition this would
also include hard processes, but since their share in minimum bias events is negligible, minimum-bias
samples can be used to study the properties of pile-up. An account of the models used in Monte Carlo
generators to describe pile-up/minimum-bias events can be found in [44].

Underlying event

The underlying event (UE) refers to additional interactions that involve partons from the same hadrons
(“beam remnants”) which give rise to the hard process. Although these interactions mostly result in low-
pT scattering processes, multiple parton interactions (MPI) which yield observable energy depositions
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in the detector are common and need to be quantified. It has been observed that the activity in the UE
is higher and less evenly distributed than in the average minimum-bias event. This is known as the “jet
pedestal effect”. A detailed study of UE characteristics at the ATLAS experiment can be found in [64],
a more general review of UE properties at the LHC is given in [65]. Finally, a description of the MPI
model implemented in Pythia is found in [66].

5.4 Detector simulation

A comparison of simulated and measured events cannot take place without a proper description of the
measurement process, in particular the response of the detector to all particles produced in a proton-
proton collision. The description of the physical system after parton shower and hadronization must
thus be fed into a realistic detector simulation. For this purpose, a detailed geometrical model of the
ATLAS detector is constructed using Geant4 [67]. This model provides a simulation of all interactions
with the detector, including energy loss and the generation of secondary particles. It is based on a
macroscopic parametrization of particle-matter interactions which facilitates the simulation of particles
traversing the detector without having to calculate all fundamental interactions on particle level. The
simulation of a given event comes to a halt when all particles have left the detector volume or have been
stopped in the material. After a subsequent digitization of the detector response in which the energy
depositions are assigned to the fundamental detector components, the output format of the simulation
is identical to that delivered by the ATLAS detector in response to a real proton-proton collision. The
simulated output can thus be treated in the same way as real data and undergoes the same reconstruction
process which then defines the objects that serve as an input to the analysis.

The complete simulation of the particle-detector interactions in Geant4 is very time-consuming, in
particular for the calorimeter where most of the detector material is present. Since the analysis presented
here relies on high statistics Monte Carlo samples, several processes were simulated with the ATLFAST-
II [68] detector simulation, reducing the computation time by a factor of ∼ 20. ATLFAST-II replaces
the full calorimeter simulation of Geant4 with a parametrized version of the calorimeter response (Fast-
CaloSim [68]) which was tuned by matching the results to the Geant4 response.

5.5 Monte Carlo samples used in the VH,H → bb̄ analysis

The signal and all relevant background processes for this analysis - except multijet - are modeled by
Monte Carlo simulation, generated at the same center-of-mass energy and with the same amount of
pile-up as the corresponding data samples. Whenever possible, a NLO generator was chosen, devi-
ating choices are motivated below. All Monte Carlo samples undergo the same event reconstruction
algorithms as the data, see Section 4.3 for details.

5.5.1 VH → Vbb̄ signal samples

The signal samples used in this analysis are generated with Pythia 8.165 [59], which is interfaced to
Photos [69] to model QCD final state radiation and to Tauola [70] to model τ-lepton decays. The
V → τν decays are considered to account for the small fraction of signal events which arises from
τ → ντlνl decays with l = µ, e in the WH channel. To facilitate a mass-sensitive analysis, separate
samples are generated for different Higgs boson masses between 100 GeV and 150 GeV in intervals
of 5 GeV. The use of the NLO generator Powheg was impeded due to a problem with low b-tagging
efficiencies. As described in Section 3.4.1, the cross-section for the signal processes is calculated with
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NNLO QCD corrections and NLO electroweak corrections. Uncertainties on the signal cross-section
are treated as systematic errors, see Section 7.10.

5.5.2 Background samples

For the simulation of the background samples, several different Monte Carlo generators have been used.
Nevertheless, the choice is consistent within different groups of background, i.e. for V + jets, di-boson
and tt̄/single-top.

The generation of the W/Z+ ≥ 1b/c/light-jet samples calls for so-called multi-leg generators like
Sherpa or Alpgen, with Sherpa being the preferred choice due to its superior matching algorithm. It
is used in combination with the CT10 parton distribution functions. Specific heavy-flavor filters on
generator level allow for increased statistics of the V + heavy flavor contribution which is particularly
important for the analysis. Additional filters are also used to enrich the sample in high pV

T events which
tend to look more signal like than events with low pV

T .
The WW, WZ and ZZ background samples are simulated with the Herwig generator, interfaced to the

CTEQ6L1 PDFs and using the AUET2 tune [71] for the parton shower and hadronization model. The
statistics of the ZZ sample is increased using an Emiss

T filter. Attempts to use other generators were not
successful.

The top-related backgrounds (tt̄ and single-top) are generated with Powheg, which is preferred over
the alternative choice MC@ANLO since it can be combined with the more recent Pythia8 as opposed
to MC@NLO which can only be used with Herwig. The single-top t-channel forms an exception, since
it can only be correctly described by AcerMC. Both generators rely on the “Perugia2011C” tune [71]
and the CTEQ6L1 PDFs.

To avoid large uncertainties due to insufficient background statistics, the number of simulated back-
ground events was increased compared to earlier VH → Vbb̄ searches [72]. This guarantees that the
statistical uncertainty is < 5% in the sensitive region of the phase-space. A summary of the Monte
Carlo samples used in this analysis is presented in Table 5.1.

Process Generator σ × BR Nevt

WH Pythia 8.160 300000 (for each mH)
ZH Pythia 8.160 300000 (for each mH)
W → lν Sherpa 1.4.1 10.97 nb 168M
Z/γ∗ → ll,mll > 40 GeV Sherpa 1.4.1 1.24 nb 42M
WW Herwig 6.510 55.43 pb 10M
WZ, 66 GeV < mll < 116 GeV Herwig 6.510 22.69 pb 20M
ZZ, 66 GeV < mll < 116 GeV Herwig 6.510 7.697 pb 7.5M
tt̄ Powheg 238.06 pb 75M
single-top Wt-channel Powheg 22.37 pb 20M
single-top s-channel Powheg 5.61 pb 6M
single-top t-channel AcerMC 87.76 pb 9M

Table 5.1: Overview of the Monte Carlo samples used for the analysis
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“The main lesson of thirty-five years of AI
research is that the hard problems are easy and
the easy problems are hard. The mental abilities
of a four-year-old – recognizing a face, lifting a
pencil, walking across a room, answering a
question – in fact solve some of the hardest
engineering problems ever conceived. It will be
the stock analysts and petrochemical engineers
who are in danger of being replaced by machines.
The gardeners, receptionists, and cooks are
secure in their jobs for decades to come.”

Steven Pinker

CHAPTER 6

Machine learning and boosted decision trees

An exceptionally demanding task in many high energy physics analyses is the identification of inter-
esting events in a vastly background-dominated regime. The problem is most often tackled using a
sequence of filters with increasing sophistication. At the LHC, where the event rates are particularly
high, a first very coarse selection suitable for many subsequent tasks is performed online by dedicated
trigger algorithms (see Section 4.2.4). The next level of filtering, which is analysis-specific, usually
rejects any event whose signature is not in agreement with what is expected from the signal process
under consideration. But even at that point, many rare processes are hardly detectable due to the over-
whelming number of background events which either share the same signature as the signal process or
have a non-vanishing probability to fake it if one or more final-state particles go undetected or are misid-
entified. The search for the Higgs boson in the VH → Vbb̄ channel is particularly challenging in this
respect: a large number of different background processes (see Section 3.5) with cross-sections much
higher than that of the signal process can produce almost indistinguishable final states. Two approaches
can be followed in a situation like this - both of them rely on accurately simulated event samples for
signal and background which underlines the importance of Monte Carlo simulation in the context of
this analysis (see Section 5). In the first approach, one seeks to develop a very sophisticated set of se-
lection criteria by hand. This requires the investigation and comparison of a large number of final state
observables for signal and background both on theoretical level and on reconstruction level. Since it is
very hard to visualize correlations between different observables beyond the two-dimensional case, one
cannot guarantee that an optimal solution is found. The second approach relies on dedicated algorithms
for statistical learning: a set of final state observables which convey as much information as possible is
selected and their joint distribution is fed into a so-called “machine learning” algorithm which optimizes
the selection with mathematical rigor.

In this thesis, the second approach - based on statistical learning - is adopted. However, before the
learning algorithm is applied, a great deal of time is spent to make sure that the distributions presented
to it correctly describe the data and that the observables chosen for the optimization indeed convey
sufficient information to discriminate the signal candidates against the background. This is detailed in
Sections 7.5 and 7.7.

In this chapter, I will discuss the foundations of statistical learning and describe a particularly appeal-
ing algorithm which is used in the analysis presented here: boosted decision trees (BDT).
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Figure 6.1: The bias-variance trade-off in classification illustrated by two different algorithms. Left: a linear
model with low variance and strong model bias. Right: k−nearest neighbors with k = 1 shows a high variance but
no model bias [73].

6.1 Inference, classification and the bias-variance trade-off

Optimally separating signal and background events amounts to solving an inference task with respect to
the event class, based on the underlying probability distributions for the final state observables. If the
joint distribution of all final state observables was analytically known for both signal and background,
one could easily construct an optimal hypothesis test from the likelihood-ratio of the two hypotheses
(signal vs. background) as described by the Neyman-Pearson-lemma [74].

The problem that arises in high energy physics analyses however, is that the probability distributions
of the final state observables are not known analytically - at least not after reconstruction. One thus
has to extract the necessary information from the simulated Monte Carlo samples. This can be easily
done in the limit of infinite statistics: a multi-dimensional histogram with sufficiently fine binning is just
as good as the underlying probability density itself. Unfortunately, this approach will hardly work in
practice since the available number of simulated events will usually not suffice to populate a histogram
of the final state observables with more than two dimensions: the volume of the so-called feature space
increases exponentially with the number of observables considered. This is known as the “curse of
dimensionality”: as the dimensionality of the problem increases, the available data become sparse.

Machine learning based classification seeks to mitigate this problem by imposing additional structure
in the feature-space, often making assumptions about the underlying model and its parametrization: so-
called training data, for which the correct class label is known, is inspected by the algorithm and the
parameters of the assumed model are adjusted until optimal separation for the chosen model is achieved
on the training data. This approach is known as “supervised learning” or “learning by example”. After
the training step is finished, the performance of the classifier is measured on a second, independent data
set - the test data - whose class labels are also known. In high energy physics, both the training and the
test data usually consist of Monte Carlo samples.

There exists a multitude of different algorithms for supervised learning problems, the main difference

52



6.2 Boosted decision trees

between them being how they compromise on bias versus variance. A very rigid approach, like a linear
model, is of course robust, i.e. has small variance, but will introduce a strong bias if the true model is not
linear. A very flexible classifier on the other hand, like k-nearest neighbors, will hardly introduce any
bias but may adopt “too well” to the training data - a behavior known as “overtraining”, similar in type
to over-fitting. This is illustrated in Figure 6.1: a linear classifier and a k−nearest neighbor classifier
with k = 1 are applied to a two-dimensional problem which is defined by the differently colored training
data points shown in the plot. The black line indicates the so-called decision boundary, the contour
which provides optimal separation between the two classes for a given classification model. For a more
general discussion of machine learning and statistical inference, I refer the reader to one of the excellent
introductory textbooks [73], [75], [76] available.

Two learning algorithms are particularly popular in high energy physics: artificial neural networks
and, more recently, boosted decision trees. Both algorithms feature so-called “unparametrized” models,
although there are of course parameters, albeit a very large number of them. These algorithms are very
flexible and hardly impose any restrictions on the underlying model which makes them suitable for a
large number of problems.

Artificial neural networks were among the first supervised learning algorithms employed in high
energy physics and are still used for a wide range of different tasks, e.g in the b-tagging algorithm used
for this analysis. Their strength lies in the flexibility to describe very complex classification scenarios,
but in many cases they demand either a fair amount of manual tuning or require a lot of computing time
to achieve optimal performance. A thorough discussion of neural networks is beyond the scope of this
thesis, but a pedagogical introduction which is motivated from a high energy physics point of view can
be found in [77].

Boosted decision trees (BDT) on the other hand are a more recent technique, making its first not-
able appearance in high energy physics at the MiniBooNE experiment in 2004 [78]. I will discuss the
algorithm in the following section and motivate why it was chosen for the analysis at hand.

6.2 Boosted decision trees

The BDT algorithm is an amalgam of two simple concepts which yield an exceptionally powerful tool
for statistical learning when combined - decision trees and boosting. A decision tree comes as a natural
extension of classification by binary cuts: consider a list of criteria (cuts) that may be checked to decide
whether an event is signal- or background-like. A large percentage of the events in a typical analysis
will neither be exactly background-like nor exactly signal-like but share properties of both classes. A
decision tree allows to inspect combinations of several criteria instead of discarding an event which fails
one of the cuts right away. This facilitates a more fine-grained selection process. I will discuss the
construction of decision trees below.

Boosting is one of the most powerful concepts for statistical learning available. It relies on the prin-
ciple of “the wisdom of crowds”, forming a powerful “committee” from so-called “weak-learners”.
This means that a very simple algorithm - like a decision tree - can be used as a basis to construct a very
sophisticated classifier.

6.2.1 Growing decision trees

A decision tree partitions the feature-space recursively into rectangular regions as illustrated in Fig-
ure 6.2. It is constructed by consecutively inspecting the available observables and gradually splitting
the training data sample according to a given figure of merit. Assuming that we have two training
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samples, one with simulated signal events and one with simulated background events, which are char-
acterized by a set of observables ~x = (x1, . . . , xn), the algorithm works as follows:

1. Start from the root-node of the tree, which represents the entire training data.

2. If the node currently under consideration satisfies any stopping criterion (see below), make it a
terminal node (“leaf”) and exit.

3. Sort all training events according to each variable in ~x.

4. Iterate through all variables ~x and for each variable xi find the cut value ti which would minimize
the impurity in the two sub-samples that would be created if the cut was applied (see details
below).

5. Select the pair (xi, ti) which minimizes the impurity and split the node - and thus the training
sample - according to (xi, ti), producing two new nodes: one containing all events that pass the
cut (xi, ti) and the other one containing all events that fail it.

6. Apply recursively on each node starting from step (2).

|

R1 R2 R3

R4 R5

X 1 ≤ t1

X 2 ≤ t2 X 1 ≤ t3

X 2 ≤ t4

(a)

t1

t2

t3

t4

R1

R2

R3

R4

R5

X 1

X
2

(b)

Figure 6.2: Illustration of the recursive partition of the feature space induced by a decision tree [73].

Typical stopping conditions in step (2) include:

Leaf size: A node is declared as final if further splitting would reduce the number of events in the
new nodes below a fixed minimum Nmin. The number Nmin can be chosen as an absolute value
or as a percentage of the full training sample, ensuring that the impurity measure is statistically
significant for each leaf.

Perfect separation: A node is declared final if it contains only events from one class.

Fixed tree depth: The depth of the tree may be fixed by the user to avoid complex decision boundaries.
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Insufficient improvement: A node is declared final if no split yields significant improvement. This
criterion is rarely used because even a weak split may allow for a very powerful split of one of
the child nodes later.

Each leaf in the tree is finally assigned to one of the classes (signal or background) according to the
majority of training events associated with it.

The splitting criterion which is used to find the optimal cut in step (3) is based on a measure of sample
impurity. Such an impurity function must fulfill the following requirements:

• The impurity should be minimal for nodes which either contain only signal or only background
events.

• The impurity should be maximal for an equal mix of signal and background.

• The impurity function should be symmetric in signal and background.

• The impurity function should be strictly concave, i.e. purer nodes are preferred.

If we denote the - possibly weighted - number of signal (background) events in a given node by s (b),
we can define the signal purity ps:

ps =
s

s + b
(6.1)

The background purity is then simply given by pb = b
s+b = 1 − ps. From this, one can easily construct

several impurity functions which satisfy the requirements listed above:

Misclassification error: 1 −max(ps, 1 − ps)

Cross entropy [79]: −
∑

i=s,b pi log pi

Gini index [80]: 2ps(1 − ps)

The Gini index is the most popular impurity function in decision tree implementations since it is differ-
entiable and easy to calculate. All three functions are shown in Figure 6.3.
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Figure 6.3: Common impurity functions used in decision tree implementations [73].

The application of a fully trained decision tree to data is straightforward: each event will gradually
be passed down the tree until it reaches a leaf:
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1. Apply the selection criterion t that was associated with the root node during training.

2. Continue to the pass- or fail-node according to the outcome of the test.

3. Apply the criterion associated with the new node and move to the next pass- or fail-node. Repeat
until a leaf is reached.

4. The event is classified according to the class associated with the leaf in which it ends up. One can
either assign a binary output (signal/background) at this stage or return the training purity of the
leaf as a measure of the reliability of the classification.

Decision trees have a lot of desirable properties concerning robustness and the curse of dimensional-
ity:

• Adding more variables, i.e. adding dimensions to the feature-space, will not degrade the perform-
ance of a decision tree since for each split all variables are considered in succession, not at the
same time.

• Duplicate variables will simply lead to the same ordering and thus do not affect the tree at all.

• Non-discriminating variables will never be chosen to induce a split and thus do not add any noise.

• The training will result in the same decision tree regardless of the event order or any monotonous
variable transformation applied.

These features facilitate the usage of � 10 variables in decision trees and even make them suitable
for the identification of powerful variables which will be used for node-splitting more often than weak
ones. A major drawback of decision trees on the other hand is that the recursive splits of the feature-
space quickly reduce the statistics in the resulting regions, increasing the variance of the class estimate.
A small change in the training sample can thus lead to a different split and thereby change the entire
structure of all subsequent nodes. These instabilities prohibit the use of very deep trees, which are prone
to overtraining. Shallow trees on the other hand do not provide very sophisticated rules for classification
and may thus not produce the optimal decision boundary for a given problem - they are “weak learners”.
Their robustness and simplicity however makes shallow decision trees the ideal candidates for boosting
which will be discussed in the next section.

6.2.2 Boosting

Boosting is a committee-based learning approach which aims to form a powerful meta-classifier from a
collection of so-called “weak learners”, i.e. individual classifiers which only slightly exceed the random-
guessing error-rate of 0.5. Rather than selecting the base classifiers for reasons of performance, one can
thus select them for reasons like robustness and immunity to the curse of dimensionality. As discussed
previously, this makes shallow decision trees an ideal candidate for boosting. The following discussion
of different boosting algorithms follows the presentation in [73].

Adaptive boosting

The most popular boosting algorithm is called “AdaBoost” (short for adaptive boosting), proposed by
Freund and Schapire in 1995 [81]. AdaBoost produces a sequence of modified (reweighted) versions
of the original training data and repeatedly applies the base classifier to it, thus creating a collection of
weak classifiers (trees) T1, . . . ,TM, see Figure 6.4.
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6.2 Boosted decision trees

Let us assume that the class label in our training data is encoded in a binary variable y ∈ {−1, 1},
where y = 1 (y = −1) denotes a signal (background) event. Let us further assume that each single
tree Tm returns a discrete response Tm(x) ∈ {−1, 1} when applied to an event with observables x. The
combined class prediction for that event is then given by

T (x) = sign

 M∑
m=1

αmTm(x)

 (6.2)

AdaBoost thus takes a weighted majority vote among the trees Tm to predict the class for an unknown
event. The weights αm are calculated by the algorithm and increase the influence of the more accurate
classifiers.

Figure 6.4: An illustration of the AdaBoost algorithm: a sequence of weak classifiers is trained on reweighted
versions of the original training data and finally combined into a meta-classifier [73].

The reweighting prescription for the training data at iteration m involves a modification of individual
event weights which depends on the class estimate of the tree Tm−1: events correctly classified by Tm−1
have their weights decreased, whereas misclassified events have their weights increased. The next tree
Tm will thus be forced to pay more attention to previously misclassified events, leading to a different
tree structure. The complete AdaBoost algorithms reads as follows:

1. Initialize the weights of all training events to wi = 1/N, where N is the total number of events.

2. For each tree Tm

a) train the tree on the training sample with the current weights.

b) compute the error rate εm =
∑N

i=1 wi·I(yi,Tm(xi))∑N
i=1 wi

, where I(yi , Tm(xi)) evaluates to 1 only if the
argument is true and to 0 otherwise

c) compute the tree weight αm = log 1−εm
εm
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d) update the event weights according to wi ← wi · exp(αm · I(yi , Tm(xi)))

3. Combine all trees: T (x) = sign
(∑M

m=1 αmTm(x)
)

A great advantage of AdaBoost compared to other classification algorithms is that it needs very little
tuning to reach optimal performance: choosing small trees as the base learners, it benefits from all
the desirable features of decision trees mentioned previously. Basically one just needs to choose an
appropriate number of iterations, which is typically between 100 and 1000 - another argument why
decision trees, which can be constructed very fast, are the optimal choice for boosting.

Taking a more technical point of view, AdaBoost can be understood as a basis function expansion
where the basis functions are given by the individual classifiers. To understand this in more detail, let
us rewrite the final estimator T (x) by making the dependence on the tree parameters γm (which denotes
the collection of all cuts (xi, ti) chosen for node-splitting in tree Tm) explicit:

T (x) =

M∑
m=1

αmTm(x, γm) (6.3)

The parameters (αm, γm)m=1,...,M of additive models like this are typically determined by fitting the model
to the training data (x1, . . . , xN) using a so-called loss function L which measures the fit-quality:

(αm, γm)optimal
m=1,...,M = arg min

{αm,γm}
M
1

N∑
i=1

L

yi,

M∑
m=1

αmTm(xi, γm)

 (6.4)

For large M, this is a formidably complicated optimization problem - how does AdaBoost efficiently
find a solution?

The answer is that AdaBoost in fact solves a much simpler problem where only one tree is fitted at
a time - trees which have already been fitted are not modified anymore. This approach is known as
forward stage-wise additive modeling and often provides a reasonable approximation to the solution of
Eqn. 6.4. Formulated as an algorithm:

1. Start with T (0)(x) = 0.

2. For m = 1, . . . ,M:

a) Determine the optimal parameters for Tm:

(αm, γm) = arg min
α,γ

N∑
i=1

L(yi,T (m−1)(xi) + αTm(xi, γ)) (6.5)

b) Set T (m)(x) = T (m−1)(x) + αmTm(x, γm).

An approach like this will typically need many terms (trees) Tm to reach an approximate solution, but
it is computationally much less expensive than trying to determine all parameters at once by global
optimization.

It can be shown that the AdaBoost algorithm is fully equivalent to forward stage-wise additive mod-
eling with an exponential loss function:

L(y, f (x)) = exp (−y · f (x)) (6.6)
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This is a convenient choice since it allows the formulation of the algorithm in terms of the reweight-
ing procedure introduced earlier without the need for explicit minimization of L. However, there are
situations when exponential loss will not provide the optimal solution because its performance may
be degraded by outliers or false class labels in the training data. To understand this, let us introduce
the so-called “margin” y · f (x) which measures the amount of misclassification on the training data:
for training data with binary class labels y ∈ {−1, 1} and a classifier function f (x) with classification
rule T (x) = sign( f (x)) like the tree committee obtained from AdaBoost, a positive (negative) margin
yi · f (xi) > 0 (yi · f (xi) < 0) implies that the event has been classified correctly (incorrectly). Figure 6.5
shows various loss measures as a function of the margin. For a discussion of classification, it is illustrat-
ive to inspect exponential loss and binomial deviance which both can be understood as approximations
to the non-differentiable misclassification loss L(y, f (x)) = I(y · f (x) < 0) which does not penalize
correct classification at all and gives constant penalty for misclassification.
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Figure 6.5: Different loss measures for classification as a function of the margin y · f (x) [73].

The binomial deviance loss function is given by

L(y, f (x)) = log (1 + exp (−2y · f (x))) (6.7)

Like exponential loss it yields an increasing penalty for increasingly negative margins, but while expo-
nential loss grows exponentially, binomial deviance is asymptotically linear for y · f (x) < 0. This means
that an algorithm which uses exponential loss, e.g. AdaBoost, will be strongly influenced by training
events with large negative margin, leading to a possible degradation of the performance in noisy set-
tings. To be fair, one must state that situations like this are rare in high energy physics analyses and that
AdaBoost is thus an appropriate choice for most tasks. However, since one can do better from a theoret-
ical point of view, it makes sense to investigate alternative approaches to provide optimal performance
for the analysis presented here. The major disadvantage of loss functions other than exponential loss is

59



6 Machine learning and boosted decision trees

that they do not allow to express boosting as a simple reweighting prescription like AdaBoost. One thus
has to resort to an approach inspired by numerical optimization: gradient boosting [82], [83].
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Figure 6.6: Illustration of a step function that a regression tree can represent [73].

Gradient boosting - regression trees for classification

Although the motivation for introducing a second boosting algorithm is to use an optimal loss func-
tion for classification, a discussion of gradient boosting requires a short introduction to regression trees.
Regression trees are very similar to decision trees, but instead of event classification they aim at the ap-
proximation of an unknown target function by a step function which is represented by the tree: starting
with a training set composed of observation/target-pairs (xi, yi) the feature space is recursively parti-
tioned and each terminal region R j is assigned a response value which is usually just the mean of the
target values for all observations that fall into that region c j = average(yi|xi ∈ R j). This is illustrated in
Figure 6.6. The splitting criterion used during tree construction is that the sum of squares

∑
(yi − f (xi))2

in the resulting regions should be minimal. This is a computationally difficult task, but efficient approx-
imations exist.

Returning to our problem of suitable loss functions for classification, let us drop the requirement that
the predictor function f (x) must be a sum of trees for a moment. We can then write the total loss on the
training data as

L( f ) =

N∑
i=1

L(yi, f (xi)) (6.8)

and treat the problem as an exercise in numerical optimization: defining f = { f (x1), . . . , f (xN)} ∈ RN as
the parameter vector that contains the values of f evaluated at all training data points, one now seeks for

f̂ = arg min
f

(L(f)) (6.9)

A minimization problem like this can be solved by the method of steepest decent. Starting with an initial
guess f0 one successively constructs fm from fm−1 by calculating the gradient gm with components

gmi =

[
∂L(yi, f (xi))
∂ f (xi)

]
f (xi)= fm−1(xi)

(6.10)

60



6.2 Boosted decision trees

and setting
fm = fm−1 − ρmgm (6.11)

The step length ρm can be determined from

ρm = arg min
ρ

(L(fm−1 − ρgm)) (6.12)

At first sight, this approach seems useless: perfect classification of the training data could easily be
obtained by setting f = { f (x1), . . . , f (xN)} = {y1, . . . , yN}, but this does of course not help in the con-
struction of a function f (x) which also delivers useful prediction for new data not presented in training.
However, the idea of learning by gradient-descent is still useful when combined with the constraint that
f (x) should be a sum of trees. For a sum of trees, the components { f (x1), . . . , f (xN)} are not longer inde-
pendent and the following idea emerges: the complicated step of tree parameter determination (Eqn. 6.5)
in the forward stage-wise additive modeling algorithm discussed earlier is replaced by a gradient descent
step. First, the gradient itself can be calculated easily for any differentiable loss function, but second
it must be approximated by a tree. This is where the regression trees come into play - instead of con-
structing a classification tree at each iteration, a regression tree is fit to the N components of the gradient
which are now the regression targets. Its parameters are simply given by:

γm = arg min
γ

N∑
i=1

L2(−gmi − T (xi, γ)) (6.13)

The complete algorithm for an arbitrary differentiable loss function works as follows:

1. Initialize f0(x) = arg minγ
∑N

i=1 L(yi, γ). This is just a regression tree which consists of a single
root node, returning a constant value for the entire sample.

2. For m = 1, . . . ,M, where M is the total number of trees:

a) Compute the components of the gradient gmi =
[
∂L(yi, f (xi))
∂ f (xi)

]
f (xi)= fm−1(xi)

b) Fit a regression tree using (xi, gmi)i=1,...,N as a training sample. This will result in Jm terminal
regions Rm j.

c) Compute the optimal output for each region of the new tree according to the chosen loss
function cm j = arg minc

∑
xi∈Rm j L(yi, fm−1(xi) + c)

d) Update fm(x) = fm−1(x) +
∑Jm

j=1 cm jI(x ∈ Rm j)

Various modifications of the original algorithm exist, introducing for example additional sub-sampling
to increase the statistical robustness of the tree-growing procedure. See [83] for more details.

Both boosting algorithms discussed in this chapter are used for the VH → Vbb̄ search presented in
this thesis, providing a valuable cross-check for the optimization of the classification performance. The
implementations are provided within the framework of TMVA [84].
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“You can know the name of a bird in all the
languages of the world, but when you’re finished,
you’ll know absolutely nothing whatever about
the bird... So let’s look at the bird and see what
it’s doing – that’s what counts.”

Richard P. Feynman

CHAPTER 7

A BDT-driven search for H → bb̄ in associated
production with a vector boson

7.1 Outline of the analysis strategy

The Higgs boson search described in this thesis is designed to reach maximum sensitivity while at the
same time providing a solid understanding of all features observed in the data. Several key ideas which
will later be discussed in more detail shall be outlined here:

• The definition and selection of all physics objects in the analysis is in agreement with the conven-
tion adopted for earlier VH searches in ATLAS, in particular [85], to facilitate an easy comparison
of results.

• A physically motivated description of the VH system by a minimal yet exhaustive set of Lorentz
invariant quantities and angles is adopted.

• A highly optimized machine learning algorithm based on the statistical paradigm of boosting is
used to reach optimal discrimination between signal and background.

• The pre-selection of candidate events is as wide-meshed as possible to exploit the full statistical
power of the data. At the same time the selection must be able to reduce the phase-space for
the analysis to a region where the selected data is understood to a very high level of detail and
where MC simulation and data match as closely as possible. A strong suppression of the multijet
background for which no appropriate simulation exists should be achieved.

• Whenever possible, data-driven estimates of background rates and shapes are used. A consistent
choice of Monte Carlo generators is made across similar backgrounds, see Section 5.5 for details.

Bearing the aforementioned ideas in mind, the analysis proceeds as follows:

1. Physical objects (leptons, jets) which are of interest to the analysis are identified according to the
criteria described in Section 7.3.

2. A selection of candidate events which complies with the requirements outlined above is per-
formed. This is described in Section 7.7. Further categorization allows for the definition of several
control regions which are used to constrain the most important backgrounds (see Section 7.8).
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7 A BDT-driven search for H → bb̄ in associated production with a vector boson

3. A multivariate classification algorithm based on a Lorentz invariant description of the VH system
is applied to the events in the signal region. For details see Section 7.5 and Section 7.6.

4. The output distribution of the multivariate classification algorithm in the signal region and addi-
tional kinematical distributions from the control regions are used to determine an upper limit on
the Higgs production rate in the VH → Vbb̄ channel. A detailed description of the fit procedure
can be found in Chapter 8.

7.2 Datasets

The analysis presented in this thesis is based on data recorded by the ATLAS experiment during the
2012 run of the LHC which featured a center-of-mass energy of

√
s = 8 TeV. Only data which passed

the criteria defined by the official ATLAS Good Run List were used. This ensures that the detector
systems which are crucial for a correct measurement of the objects defined for the analysis (electrons,
muons, jets, Emiss

T ) were working as expected and that the associated triggers were operational dur-
ing data taking. The amount of data used for the analysis corresponds to an integrated luminosity of
20.3 fb−1 [86].

7.3 Object definition, selection and calibration

To facilitate a fair assessment of the performance of the analysis presented here, the object definitions
and quality requirements are chosen to be in agreement with those used in the latest VH search [85]
published by the ATLAS collaboration. This includes the choice of triggers as well as the cuts imposed
on jets and leptons that are taken into account in the analysis. In addition to the standard kinematical
quantities, additional variables used in the object selection are defined:

• isotrack: sum of the transverse momenta of all tracks in a cone of radius 0.2 around the lepton
divided by the pT of the lepton

• isocalo: sum of energy deposits in the calorimeter in a cone of radius 0.3 around the lepton divided
by the lepton ET

• d0: transverse impact parameter with respect to the primary vertex

• z0: longitudinal impact parameter with respect to the primary vertex

• JVF: sum of the transverse momenta of all tracks that are associated to a jet and that originate
from the primary vertex divided by the sum of transverse momenta of all tracks associated to that
jet

7.3.1 Trigger selection for the 2012 analysis

The analysis is driven by lepton triggers and for both electrons and muons the lowest unprescaled trig-
gers are used. These are e24vhi_medium1 (electrons) and mu24i_tight (muons) which both have a
pT-threshold of 24 GeV and include a track isolation requirement of isotrack < 0.1. Additional trig-
gers with higher pT-thresholds (e60_medium1 at 60 GeV for electrons and mu36_tight at 36 GeV for
muons) are used to compensate for the inefficiency introduced by this isolation requirement. In the ZH
channel, where two charged leptons are required, the aforementioned triggers are supplemented with
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7.3 Object definition, selection and calibration

the di-lepton triggers 2mu13 and 2e12Tvh_loose1, respectively. The trigger efficiencies obtained with
this trigger combination are shown in Figure 7.1 as a function of the mean number of interactions per
bunch crossing 〈µ〉. A fit using a constant function yields the efficiencies listed in Table 7.1.

Trigger efficiencies

electron muon

WH 0.967 ± 0.003 0.780 ± 0.006
ZH 0.998 ± 0.001 0.872 ± 0.005

Table 7.1: Trigger efficiencies for the trigger combination used in this analysis.

Earlier studies [87] have demonstrated that a part of the efficiency which is lost due to limited cov-
erage of the L1 trigger chambers (see Section 4.2.3) in the muon channel can be recovered by using
an additional Emiss

T trigger. While employed for the latest VH search [85] published by the ATLAS
collaboration, this approach is not used in the analysis presented here due to missing trigger information
in the available data. The overall loss of sensitivity should be less than 2%, see [88] for details.

Trigger matching is used for both lepton types to ensure that the offline lepton used in later analysis
steps is indeed the lepton that fired the trigger and to avoid any bias in the estimation of the trigger
efficiency.
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Figure 7.1: Trigger efficiencies estimated from Monte Carlo for different values of 〈µ〉.
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7 A BDT-driven search for H → bb̄ in associated production with a vector boson

7.3.2 Lepton selection

Electrons

Two different quality levels for electrons are defined for the analysis: loose electrons, which are primar-
ily used to reject unwanted events, and tight (or signal) electrons, which are used to identify the possible
decay of a vector-boson which is part of the VH system. The labels “loose” and “tight” used in the ana-
lysis do not coincide with the quality definitions for electron identification discussed in Section 4.3.3:
loose electrons are required to fulfill:

• ET > 10 GeV

• |η| < 2.47

• isotrack < 0.1

• d0 < 0.1 mm

• pass ATLAS LoosePP electron quality requirement (see Section 4.3.3 for a definition of the elec-
tron quality labels)

Tight electrons have to pass all requirements that apply to loose electrons and in addition fulfill:

• ET > 25 GeV

• pass ATLAS MediumPP electron quality requirement

• isocalo < 0.07 (only WH)

• isotrack < 0.04 (only WH)

• pass ATLAS TightPP electron quality requirement (only WH)

Muons

As for electrons, two different quality levels (loose/tight) for muons are defined for veto and signal
selection purposes respectively. The selection criteria for muons are similar to those for electrons with
some subtle differences to improve the acceptance in regions with limited muon chamber coverage.
Loose muons are defined by:

• ET > 10 GeV

• |η| < 2.7

• for |η| < 0.1 : the muon is identified in the calorimeter (CaloMuon) and has an associated inner
detector track

• for |η| < 2.5 : the muon is reconstructed in both the muon spectrometer and the inner detector
(combined or tagged muon)

• for 2.5 < |η| < 2.7 : the muon is reconstructed in the muon spectrometer (standalone muon)

• if muon has an associated ID track: isotrack < 0.1
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• if muon has an associated ID track: d0 < 0.1 mm

• if muon has an associated ID track: z0 < 10 mm

• if not a CaloMuon: pass ATLAS tight MuID criteria

Tight muons fulfill all of the above and in addition:

• ET > 25 GeV

• |η| < 2.5

• must be a combined/tagged muon

• isocalo < 0.07 (only WH)

• isotrack < 0.04 (only WH)

The enumeration of lepton quality criteria shows that the definition of “tight” leptons is stricter for the
WH than for the ZH channel. This is due to the increased level of multijet background in the one-lepton
analysis which has to be suppressed by applying tight isolation cuts for the leptons.

Energy and resolution corrections for leptons

For both electrons and muons, energy scale and resolution corrections are applied on Monte Carlo. The
correction algorithms are provided by the corresponding ATLAS combined performance groups and the
parameters are obtained using tag-and-probe studies and fits to the Z line-shape. Details can be found
in [89] and [90].

7.3.3 Jet selection

The jets used in this analysis are reconstructed with the anti-kT algorithm with a radius parameter of
0.4 (see Section 4.3.4). Also for jets, two object quality classes are defined for the analysis: signal
jets, which are used to reconstruct the Higgs boson candidate, and veto jets, which are used to reject
unwanted events. All jets are required to have pT > 20 GeV. Jets with pT < 50 GeV and |η| < 2.4
are further required to fulfill JVF > 0.5 to reject pile-up. Signal jets must satisfy |η| < 2.5 to facilitate
the application of b-tagging. In the forward region (2.5 < |η| < 4.5) only veto jets are considered.
Since JVF cannot be calculated for these jets due to missing tracking information, the pT cut is raised to
pT > 30 GeV to reduce pile-up. The main purpose of the veto jets is the reduction of the tt̄-background.

7.3.4 Overlap removal

Some objects may pass the selection requirements for more than one category, for example an electron
may also be identified as a jet, or a semi-leptonic heavy flavor decay within a jet may produce a lepton.
To avoid double counting a procedure to remove this so-called overlap must be defined. In this analysis,
the final object classification is done according to the following list of priority criteria:

• Jets which lie within a cone of radius 0.4 with respect to a loose electron with pT > 15 GeV are
discarded.

• Muons which lie within a cone of radius 0.4 with respect to a jet are discarded.
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• Loose electrons with pT < 15 GeV which lie within a cone of radius 0.4 with respect to a jet are
discarded.

• Electrons which lie within a cone of radius 0.2 with respect to a muon are discarded.

7.3.5 b-tagging

An efficient identification of jets originating from b-quarks is crucial for the selection of Higgs candid-
ates. The discrimination of so-called b-jets against jets without heavy-flavor content relies mainly on
the large mass of b-hadrons and on the fact that their lifetime is considerably longer than that of hadrons
which do not contain b-quarks. Both properties affect the impact parameter distribution of such jets and
allows for the identification of secondary decay vertices which are a typical attribute of b-jets.

In this analysis, a more advanced algorithm is used: MV1 [91] combines several observables asso-
ciated with b-jet identification (impact parameter, displacement of the secondary vertex, b → c decay
chain fit) via an artificial neural network and returns a jet-based weight wMV1 which takes values between
zero and one, where high output values indicate a high probability for a jet to originate from a b-quark.
The efficiency of a jet selection based on a given cut on the value of wMV1 is measured in tt̄ events as
a function of the transverse jet momentum. Using this information, the efficiency in simulated events
is calibrated by applying p jet

T -dependent event weights, see [92] for details. Signal candidate events are
required to have exactly two jets for which wMV1 exceeds w70%

MV1. This corresponds to a working point
with a b-jet acceptance of 70%, a c-jet rejection factor of 5 and a light-jet rejection factor of 150. Jets
passing this cut are refered to as “b-tagged jets”. The b-tagging requirement for jets is not included at
object selection level to allow for the construction of control regions later which contain mainly light-
or c-jets (see Section 7.8).

7.3.6 pT-dependent energy correction for b-jets

The default jet energy corrections provided by the corresponding performance group mitigate the effects
of in-time pile-up, correct for inefficiencies which arise due the sampling structure of the calorimeter
or holes in the acceptance and compensate scale differences between electromagnetic and hadronic
interactions. However, several deficiencies which mainly affect b-jets are not taken into account:

1. The reference for the calorimeter response is derived from the average mixture of particles over
all jets. The different composition of b-jets is not specifically addressed.

2. In case of semi-leptonic decays in a jet, the energy carried away by neutrinos is not taken into
account.

3. The energy corrections are based on truth jets constructed with the anti-kT-algorithm with a size
parameter of 0.4. Gluons emitted at wider angles do therefore not contribute.

These issues are addressed by an additional, specific jet-energy correction for b-jets [93]: using a
tt̄ Monte Carlo sample, reconstructed b-jets are matched to the original partons from the hard process
using a ∆R criterion. The ratio of jet to parton energy is calculated for all events in the sample and
parametrized as a function of p jet

T . In addition, scale factors which account for the difference between
fully hadronic b-decays and semi-leptonic decays are derived. Based on this information, event-by-
event jet energy correction factors for the analysis presented here are obtained, which are applied as
follows: first, nearby muons or electrons are identified and a pT correction factor is applied if a lepton is
matched to the jet. In case of a nearby muon, the energy carried by the muon which eventually escapes
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the detector is also taken into account. This way, the pT scale of the jet is adjusted to that of a jet
with a fully hadronic b-decay. Second, out-of-cone and calorimeter response effects are covered by the
aforementioned jet-to-parton correction function.

The b-jet energy correction improves the scale and the resolution of mbb̄, the invariant mass calculated
from the two signal jets, significantly. Figure 7.2 shows the mbb̄ distribution in a Pythia WH Monte
Carlo sample with mH = 125 GeV before and after the correction, normalized to unit area. Although
the plot was originally created for an earlier version of the analysis aimed at the ATLAS data taken in
2011, it is sufficient to illustrate the influence of the correction for the analysis presented here: the fit-
function shown in the plot is a so-called “Bukin-function”, see [94] and [95] for details. Two parameters
of this function are of interest to evaluate the performance of the correction: the position of the peak
x̂ and its width, which is given by σx̂ = FWHM

2
√

2 log 2
. Applying the correction described above, the peak

position moves from x̂before = 115.4 ± 0.3 GeV to x̂after = 125.4 ± 0.2 GeV and the width reduces from
σbefore

x̂ = 18.2 ± 0.2 GeV to σafter
x̂ = 14.40.1 GeV, which corresponds to an improvement in the relative

mass resolution of 27%. It should be noted that the correction is strictly jet-based and thus does not
shape the mbb̄ distribution of the background samples in an undesirable way.

Since mbb̄ is the most important discriminating variable in the BDT analysis (see Section 7.5), the
resolution improvement translates almost directly into an increased sensitivity for the entire VH → Vbb̄
search.
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Figure 7.2: The effect of the jet energy correction on the mbbarb distribution in the PythiaWH signal Monte Carlo
sample with mH = 125 GeV.

7.3.7 Missing transverse energy

Since the missing transverse energy Emiss
T is calculated indirectly from the four-momenta of all other

objects in the event (see also Section 4.3.6), it is affected by all corrections like lepton momentum
smearing/scaling and jet recalibration. To account for this fact, Emiss

T is reevaluated after all other object
corrections have been applied and before any further event selection is performed.
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7.4 Modeling of the multijet background

While the ZH channel is essentially free of multijet background after the pre-selection (see Section 7.7),
the search in the WH channel suffers from a considerable amount of residual multijet events. The mul-
tijet background is a particular challenging one for two reasons: first, no appropriate Monte Carlo de-
scription of this background is available due to the overwhelming number of contributing processes, and
second, the enormous cross-section and low selection efficiency would require a huge number of events
to be simulated. For this reason, shape templates for the multijet background are derived from data in
a control region where the track isolation requirement on the leptons is reversed. The assumption un-
derlying this strategy is that the lepton isolation is orthogonal to other event properties, so that an event
sample drawn from the multijet-enriched high isotrack region can serve as a template for the multijet
background in the low isotrack region. One should note that the single lepton triggers used in the ana-
lysis of 2012 data (see Section 7.3) already include track isolation requirements to match the increasing
pile-up conditions. At first sight this seems to render the inversion of track isolation impractical, but
since the trigger-based isolation only considers tracks with pT > 1 GeV compared to pT > 0.4 GeV for
the offline isolation, the approach is still valid. In fact, events passing the trigger but failing the offline
isolation cut are more similar to those in the signal region than events that would be selected by a trigger
without isolation requirement. The loss in statistics through the trigger is thus compensated by a better
modeling. The dedicated multijet region is therefore defined by 0.04 ≤ isotrack ≤ 0.1 and a relaxed
electron quality requirement of med++ which enhances the statistics. Furthermore the cut on the calor-
imeter based isolation is tightened to isocalo < 0.04 since it was discovered that the mW

T spectrum falls
very rapidly for multijet events with isocalo > 0.04 and does not provide a good shape estimate for the
multijet background in the signal region [96]. The distributions from the multijet region can directly be
employed to obtain a multijet shape estimate for any variable that is of interest in the analysis. The nor-
malization of these templates in the signal region and in all other control regions defined in the analysis
(see Section 7.8 for details) is obtained in the following way: the multijet templates and the non-multijet
backgrounds obtained from simulation are combined and the normalizations of the different components
are fixed by a maximum-likelihood-fit to data using various variable distributions. See Section 7.9 for
details. Both shape and normalization are determined independently for electrons and muons.

7.5 Choice of discriminating variables for the BDT analysis

The choice of variables which are used as inputs to the multivariate classification algorithm is guided
by the following criteria:

1. Provide optimal discrimination between signal and background.

2. Provide an exhaustive kinematical description of the VH system.

3. Avoid redundancy and strong correlations.

4. Choose only variables which are correctly modeled in Monte Carlo.

5. Prefer variables which are robust with respect to systematic variations.

To determine the optimal performance achievable in terms of discrimination, a large set of possible
variables encompassing variables employed in former multivariate analyses [97] and variables motivated
by theoretical considerations [98] was taken as a starting point and subsequently reduced by removing
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poorly performing variables by repeatedly retraining and evaluating the BDT (see Section 6.2). Finally,
an optimally performing subset comprised of the following fourteen variables was identified:

• mbb̄, ∆R(bb̄)

• pV
T , p jet0

T , p jet1
T , Emiss

T , HT (scalar sum of transverse energies of all objects in the event plus Emiss
T )

• |∆η(bb̄)|, |∆φ(V, bb̄)| where V denotes the four-vector of the vector boson

• |∆φ(lep, Emiss
T )|, |∆φ(lep, jetclosest)| (both only WH)

• mW
T , plep

T (both only WH)

• mll (only ZH)

This variable set - shown in Figure 7.3 - was used to develop the event pre-selection (see Section 7.7)
but not for the BDT which provides the input to the limit calculation. There are several reasons for this
decision:

1. The variables related to the vector boson pT and the angle between the signal jets are not per-
fectly modeled. Using them in the final discriminant would require dedicated correction and an
additional systematic uncertainty.

2. Several variables in the set are very sensitive to systematic variations (see Section 7.10).

3. The variable set exhibits strong correlations and is probably redundant.

While these disadvantages are not of interest for the pre-selection, where one is only interested in a
coarse identification of the signal-enriched part of the phase-space, they need to be taken seriously in the
construction of the final discriminant. Focusing on robustness and to avoid redundancy, it seems prom-
ising to choose a physical description of the VH system which is based on Lorentz invariant quantities
augmented with some angles which determine the orientation of the system. Using Lorentz invariant
variables, the description of the VH system becomes independent of the transverse and longitudinal
boost. This is highly desirable since the transverse boost is influenced by initial state gluon radiation
which is not perfectly modeled and the longitudinal boost is related to the proton PDFs which also bear
considerable uncertainties.

7.5.1 A Lorentz invariant description of the VH system

A complete parametrization of the final state of the system consists of four four-vectors, equalling 16
parameters. Ten of them can be chosen as Lorentz invariants: the pairwise products of the four-vectors
(six) and four invariant masses of the final state particles. The other six parameters are defined by
the Euler angles describing the orientation of the system in space (three) and - optionally - the boost
vector of the system (three). Since the invariant masses of the charged lepton and the neutrino do not
provide any information, they may be dropped. The jet masses may also be dropped since they are not
well-modeled in the simulation. One of the three angles may be discarded since the process should
be invariant with respect to rotation around the beam-line. Using the boost of the system would mean
giving up on some of the desirable invariance properties of a Lorentz invariant parametrization - on the
other hand it can be shown that the boost of the system carries useful discriminating information. Thus a
compromise was adopted: the longitudinal component of the boost, which seems to be well-modeled, is
kept and only the transverse boost is discarded. Following this line of thought, one obtains a description
of the VH system which consists of nine variables:
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Figure 7.3: The set of optimally performing variables (definitions see text) in the WH channel. All distributions
are normalized to unit area.
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7.5 Choice of discriminating variables for the BDT analysis

1. Pairwise four-vector products of all final state particles, denoted as

• p jet0∗p jet1

• p jet0∗plep0

• p jet1∗plep0

• p jet0∗pν(only WH)

• p jet1∗pν(only WH)

• plep0∗pν(only WH)

• p jet0∗plep1(only ZH)

• p jet1∗plep1(only ZH)

• plep0∗plep1(only ZH)

2. The angle between the bb̄-system and the beam-line, denoted as θ1

3. The angle between the plane defined by the bb̄-system and the beam-line on one hand and the
bb̄-system and the charged lepton (WH) or the lepton with the highest pT (ZH) on the other hand,
denoted as θ2

4. The boost of the VH system in the direction of the beam, denoted as γz

While this parametrization can be calculated easily for the ZH channel, the z-component of the four-
vector which corresponds to the neutrino in the WH channel is estimated in the following way [99]:

1. Asserting that both the lepton and the b-quark masses are sufficiently small with respect to the
Higgs and W masses, one may assume that the energy Eν carried by the neutrino corresponds on
average to 25% of the WH mass mWH in the rest frame of the WH system.

2. To arrive at the laboratory frame, one needs to boost along the beam axis:

〈pνz〉 = βγ〈Eν〉 =
pWH

z
mWH
〈Eν〉 = 0.25pWH

z

3. Assuming a uniform distribution of the energy among the decay products, one arrives at

pνz '
0.25
0.75 (plep0

z + p jet0
z + p jet1

z )

While this may seem like a very crude approach at first, it has the advantage of always providing a
unique estimate for pνz , in contrast to a constrained W mass fit which does not always find a solution and
suffers from ambiguities.

Using the parametrization described above, not only is the number of variables for the final dis-
criminant reduced from fourteen to nine, the new variables also exhibit considerably less correlations
(see Figure 7.6) and are well modeled throughout all relevant control regions (see Section 7.8). Be-
fore they are fed to the BDT, all variables x are mapped to the range [0, 1] by a transformation of the
form x′ = x/(c + x), where the constant c is chosen such that < x′ >= 0.5 and a dimensionless quant-
ity is obtained. As discussed in Chapter 6, the performance of the BDT algorithm is not affected by
this. The resulting shapes are shown in Figure 7.5, where both the distributions for the signal (WH for
mH = 125 GeV) and for the sum of the backgrounds have been scaled to unit area. Although it looks
as if some variables in this set do not provide sufficiently different shapes for signal and background,
it turns out that the performance of the classification algorithm is only very slightly diminished by ex-
changing the original set of fourteen-variables for the set composed of Lorentz invariants and angles
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Figure 7.4: Comparison of the BDT performance for the two variable sets considered in the analysis.

(see Figure 7.4). The figure of merit used for this comparison is S/
√

B after the best possible cut that
could be performed on the BDT output wBDT, which is represented by the maximum value attained
by the curves in Figure 7.4. Note that this is a sound measure of the relative performance of differ-
ent BDT configurations, but it does not correspond to the overall sensitivity that the analysis achieves.
Additional studies have shown that the observed information loss can be ascribed to the neglect of the
transverse boost in the Lorentz invariant variable set. However this loss in performance is compensated
by a decreased sensitivity to systematic variations (see Section 7.10), which makes the Lorentz invariant
variable set the superior overall choice.

7.6 Configuration of the final discriminant BDT

The concept of the BDT algorithm was introduced in Section 6.2. The implementation used in this
thesis stems from the toolkit for multivariate data analysis in ROOT, TMVA [84]. The BDT algorithm
is used for two different purposes in this analysis: first, to identify the signal-enriched phase-space to
facilitate the construction of a coarse cut-based pre-selection. This is described in Section 7.7. Second,
to combine the discriminating variables discussed in Section 7.5.1 into a single-valued estimator which
is in turn used to calculate an upper limit on the VH → Vbb̄ cross section.

To make optimal use of the mass dependence of the chosen observables, separate BDT classifiers are
trained for each simulated Higgs mass and for both the WH and the ZH channel. With signal Monte
Carlo samples ranging from mH = 115 GeV to mH = 140 GeV in steps of 5 GeV, this amounts to a total
of 12 classifiers which are evaluated for each candidate event in the analysis.

Both boosting algorithms (adaptive boosting and gradient boosting) introduced in Section 6.2 were
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WH channel.
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Figure 7.6: First order correlations within the two variable sets studied in the WH analysis. Top row: Set based
on Lorentz invariant quantities and angles. Bottom Row: Optimally performing set of variables used for the
pre-selection.
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7.6 Configuration of the final discriminant BDT

considered for the analysis presented here. Although gradient boosting is the superior algorithm from
a theoretical point of view, adaptive boosting was finally chosen to be the default one for this analysis
since the current implementation of adaptive boosting in TMVA provides a consistent treatment of sim-
ulated events with negative weight in the training while the gradient boosting algorithm simply discards
such events. However, the gradient boosting algorithms was independently optimized and used to cross
check the performance obtained with adaptive boosting to ensure that the training reaches optimal con-
vergence. Figure 7.7 shows the ROC (receiver-operator-characteristics, see also [100]) curves for both
algorithms after the training for the discrimination of WH with mH = 125 GeV against the sum of all
backgrounds is completed: one immediately notes that both algorithms perform almost identical which
suggests that the information provided for the training has been optimally exploited. Similar plots are
obtained for all mass points and in both the WH and the ZH channel.

In agreement with the considerations presented in Section 6.2, where it was stated that small trees
should exhibit superior performance, the following configuration was found to deliver the best discrim-
inatory power independent of the Higgs mass:

• Adaptive boosting:

– Number of trees: 400

– Maximum tree depth: 4

– Impurity measure: Gini index

• Gradient boosting:

– Number of trees: 1000

– Maximum number of nodes: 5

– Fraction of events to be sampled at each iteration (see [83]): 0.6

– Impurity measure: Gini index

7.6.1 Optimal usage of the available training statistics

In order to avoid a bias from possible overtraining, the simulated events which are used to train the
BDT must not be reused for data/MC comparisons later in the analysis. Since this requirement would
effectively reduce the Monte Carlo statistics for the limit fit and thus degrade the sensitivity of the
analysis, the following strategy is adopted [101]:

1. The Monte Carlo samples are randomly bisected using the parity of the event number.

2. Two independent BDT classifiers are trained, one on each half of the simulated events.

3. In the application phase of the analysis, each event is evaluated by the classifier which has not
seen this event during training. Two output distributions are obtained, which are then summed to
yield the final discriminant output. This way, the complete sample can be used.

The drawback of this procedure is that the two classifiers do not yield the exact same shape, which
has a similar effect as if the BDT output distribution wBDT would be slightly smeared. However, it
has been demonstrated [101] that the gain in statistics outweighs this effect. This also means that the
entire analysis would benefit from an increase in Monte Carlo statistics which would make the described
procedure obsolete.
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Figure 7.7: Comparison of signal efficiency / background rejection characteristics for the two boosting algorithms
considered.

7.7 Selection of candidate events

Not all events in the data set considered for this analysis are admitted to the BDT discriminant whose
output is used to calculate the upper limit on the VH → Vbb̄ cross section. Besides basic event quality
requirements like a minimum of three tracks associated to the primary vertex, a two-level pre-selection
is used to ensure that the application of the final BDT discriminant is performed only in a region of the
phase-space which is well understood in terms of a reliable description through Monte Carlo simula-
tion. The first part of the pre-selection is directly based on the multiplicities of the objects defined in
Section 7.3 - this is called “signature-selection”. For an event to be considered in the WH branch of the
analysis it must contain exactly one tight lepton, for the ZH analysis it must contain exactly one tight
and one loose lepton. Two b-tagged signal jets are mandatory in both cases. Additional leptons or jets
will trigger a veto, with the exception of a third non-b-tagged jet which is allowed in the ZH channel.

The second part of the pre-selection process is more sophisticated and follows two objectives: first,
suppress the multijet background which cannot be described with simulated samples and is thus estim-
ated from data by means of a separate control region which leads to an increased systematic uncertainty
concerning the shape and normalization of this background. Second, identify the part of the phase-space
which contains the signal events that are the most “typical” ones, i.e. that are most easily identified by
the BDT and will thus yield the highest sensitivity in the final discriminant. A reduction of the analysis
phase-space by additional pre-selection cuts should remove as few of these high-sensitivity events as
possible. At the same time, the pre-selection cuts must be tight enough to ensure a reliable modeling
of the remaining phase-space. To satisfy both requirements, the following strategy is adopted: using
the maximally informative variable set introduced in Section 7.5, a BDT is trained on all (Monte Carlo)
events that pass the signature-selection. The phase-space region which contains mostly events with a
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7.7 Selection of candidate events

high BDT output wBDT
pres will be responsible for the sensitivity of the analysis and must not be discarded

prematurely. Even if the description of the background processes is not perfect after signature-selection,
it is safe to use the BDT output at this stage as a guide to identify cuts which discard only events with
low wBDT

pres and will thus have little effect on the signal region. This can be done by plotting the distri-
butions of the discriminating variables for different ranges of wBDT

pres and deriving cuts on the variables
which show a strong dependence on wBDT

pres . Each time a promising cut is identified and applied, the mul-
tijet reduction and the data/MC agreement in the remaining phase-space is checked and the procedure
is iterated until a satisfying agreement is obtained. The distributions that are considered to judge the
data/MC agreement correspond to the variables that are used in the final discriminant. At the same time,
a rough estimator of the significance based on the would-be optimal cut on wBDT

pres is monitored to ensure
that the sensitivity is actually not reduced more than necessary. This procedure yields the following
pre-selection cuts:

1. p jet0
T > 45 GeV, p jet1

T > 25 GeV

2. HT > 180 GeV

3. mbb̄ > 40 GeV

4. mW
T < 100 GeV (WH only)

5. 71 GeV < mll < 121 GeV (ZH only)

It is interesting to note that no cut is applied on Emiss
T (and no lower cut on mW

T in the WH channel),
contrary to what one would probably have expected for an analysis that aims to identify leptonic decays
of vector bosons. A study of the corresponding distributions in the signal Monte Carlo has shown that
a sizable fraction of the WH signal is in fact found at low values of mW

T and Emiss
T but can still be

identified by the BDT: cutting on these variables would therefore unnecessarily reduce the sensitivity of
the analysis.

The MC/data agreement for the variables defined in Section 7.5.1 in the remaining phase-space is
very good as can be seen in Figure 7.9/ Figure 7.10 (WH channel) and Figure 7.11/ Figure 7.12 (ZH
channel). Here, the cross sections of the Monte Carlo samples have already been scaled according to
the result of the normalization fit described in Section 7.9. For visualization purposes, the signal is
overlayed as a red line with ten times the standard model cross section in all plots. The grey band in
the ratio plot indicates the statistical uncertainty of the Monte Carlo prediction. A large version of the
common legend for all the distributions considered in the analysis is shown in Figure 7.8.

WH/ZH
eQCD

µQCD

Zl
Zc
Zb
Wl
Wc
Wb
singletop
DiBoson
tt
Data

Figure 7.8: Common legend for all data/MC comparison plots.
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Figure 7.9: The Lorentz invariant variables given by the four-vector products of the final state objects in the signal
region of the WH channel. These variables (and the ones on the next page) form the input to the final discriminant
BDT in the WH channel.
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Figure 7.10: The angular variables and the longitudinal boost in the signal region of the WH channel.
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Figure 7.11: The Lorentz invariant variables given by the four-vector products of the final state objects in the
signal region of the ZH channel. These variables (and the ones on the next page) form the input to the final
discriminant BDT in the ZH channel.
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Figure 7.12: The angular variables and the longitudinal boost in the signal region of the ZH channel.
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7 A BDT-driven search for H → bb̄ in associated production with a vector boson

7.8 Definition of control regions

Processes resulting in the production of a vector boson and additional jets (referred to as V+jets) are
one of the most important background sources for the VH → Vbb̄ search. A particular difficulty stems
from the fact that the flavor composition of the jets originating from these processes is not exactly
known. Determining this composition is important in order to obtain a reliable estimate for the expected
background, notably for V + bb̄ which yields an irreducible contribution to the signal region. To get
a handle on the background composition, additional regions of the phase-space are considered on top
of the signal region which is defined by the pre-selection discussed in Section 7.7. These are called
“control regions” and serve to normalize the different background components as well as control the
systematic uncertainties in the global fit (see Section 8.2). Each control region should be sensitive to a
particular kind of background while at the same time being kinematically largely equivalent to the signal
region in order to minimize the impact of systematic uncertainties related to extrapolation. Moreover
the control regions should be statistically independent. An obvious choice which meets this requirement
is to define control regions according to the number of b-tagged jets while keeping the other cuts of the
aforementioned pre-selection: the region without any b-tag is used to constrain the normalization of the
V + light background, while the region with exactly one b-tag mostly constrains V + c. Here V + light
refers to all events with a vector boson and (at least) two jets within the acceptance which are neither
bottom- nor charm-flavored. V + c then refers to all events with at least one charm-flavored jet but
without any bottom flavored jets within the acceptance.

Although the phase-space region with exactly two b-tagged jets (which contains also the signal) is in
principle wide enough to allow for a normalization of V + b using the signal-free part of the BDT output
distribution with low wBDT, ambiguities between the V + b and the tt̄ background lead to an increased
uncertainty on the V + b normalization compared to the other flavors. Due to the signal-like nature of
the V +b background, an increased uncertainty of its normalization immediately degrades the sensitivity
of the analysis. Therefore, an additional control region with exactly three jets, two of them b-tagged, is
introduced. This region is largely dominated by tt̄ and single top production and thus helps to fix the
normalizations for these background which in turn facilitates a more precise determination of the V + b
background normalization from the region with only two jets.

In the following, I will simply name the control regions after their jet and b-tag multiplicity:

2jet/0tag: This control region features events with exactly two jets, none of them b-tagged. It was
originally intended to fix the V + light background but then discarded in favor of the 3jet/0tag
region, see Section 7.8.1 for details.

3jet/0tag: This control region features events with exactly three jets, none of them b-tagged. It is used
to fix the V + light background.

2jet/1tag: This control region features events with exactly two jets, with exactly one of them b-tagged.
Is was originally intended to fix the V +c background but then discarded in favor of the 2jet/1tagsl j
region, see Section 7.8.1 for details.

2jet/1tagsl j: This control region features events with exactly two jets but only the sub-leading one
being b-tagged. It is used to fix the V + c background.

2jet/2tag: The signal region contains events with exactly two jets, both of them b-tagged. The signal-
free part of this region (low wBDT) provides a constraint on the V + b normalization.

3jet/2tag: This control region features events with exactly three jets, two of them b-tagged. Is is largely
dominated by tt̄ and single top.

84



7.8 Definition of control regions

The composition of all regions used in the analysis is illustrated in Figure 7.13. All control regions
are intended for use in the final limit-fit (see Chapter 8) and also in the so-called “pre-fit” which is
needed to initialize the multijet normalization for the limit-fit and to facilitate data/MC comparisons.
See Section 7.9 for details.

WH, 3jet/0tag
slj

WH, 2jet/1tag WH, 2jet/2tag WH, 3jet/2tag

ZH, 3jet/0tag
slj

ZH, 2jet/1tag ZH, 2jet/2tag ZH, 3jet/2tag

Figure 7.13: The background composition in all regions used in the analysis. The color code is explained in
Figure 7.8.

7.8.1 Background modeling in the control regions

Although the sensitivity of the analysis is determined by the 2jet/2tag and - to a lesser extent - the
3jet/2tag region, it is instructive to inspect the distributions of the variables considered for the BDT
also in the control regions which serve to constrain the background contributions. Studying the control
regions helps to detect possible deficiencies in the Monte Carlo simulation and allows to validate the
size of the systematic uncertainties attributed to modeling problems.

Starting with the 2jet/0tag region, it is evident that some of the variables - in particular those in-
volving the four-vector of the sub-leading jet p jet1 - are systematically mismodeled by the simulation
(see Figure 7.14), leading to a prominent slope in the data/MC ratio.

A similar, yet less pronounced effect is also seen in the 2jet/1tag region. The exact source of this
mismodeling is still the subject of intensive discussion in the ATLAS H → bb̄ community at present,
one of the hypotheses being that ISR/FSR is not correctly described by the current V+jets (Sherpa
LO) Monte Carlo simulation. This is substantiated by generator studies which demonstrate that a NLO
Monte Carlo simulation where ISR/FSR jets can also be generated from the matrix element improves
on the description of many observables in V+jets [102], [103]. In the analysis presented here, several
observations indeed suggest that a sizable fraction of the jets in the affected control regions stem from
gluon radiation:

1. Dedicated studies of the 2jet/0tag region [104], [105] have shown that the data in this region is
composed of two distinctive components, which will henceforth be referred to as the “soft” and
the “hard” component. Surprisingly, the two components can be most effectively separated by
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7 A BDT-driven search for H → bb̄ in associated production with a vector boson

a cut on the invariant mass of the sub-leading jet, which suggests that the components may be
characterized by the production mechanism of the sub-leading jet.

2. The jet pairs in the hard sub-sample commonly exhibit a back-to-back topology and are approxim-
ately balanced in pT. In the soft sub-sample, the leading jet is rather back-to-back with the system
formed by the lepton and Emiss

T . No significant correlation between p jet0
T and p jet1

T is observed in
the soft sub-sample.

3. The interpretation of these observations is as follows: the soft component of the data is dominated
by W+1-jet production with an additional jet from gluon radiation. This hypothesis is substanti-
ated by the ∆R( jet0, jet1)-distribution of the soft sub-sample: it shows a distinctive peak at low
∆R and a plateau up to high values of ∆R. The former probably corresponds to events with gluon
FSR emitted by the leading jet, while the latter correspond to events with gluon ISR emitted by
one of the incoming partons. In this case, the emission is to first order independent of the W
production and thus has no bearing with the direction of the leading jet.

Redefinition of the 0tag and 1tag control regions

Assuming that the data/MC agreement in the regions with 0/1 b-tag is mainly degraded by events where
one of the jets stems from ISR/FSR, a strategy to reduce this contribution is developed based on two
observations:

1. If gluon radiation is present, it most likely generates the least energetic jet in an event.

2. Jets from gluon radiation are rarely b-tagged (the exception being gluon-splitting to a bb̄-pair
which is not likely to happen).

As a consequence of this reasoning, the 2jet/0tag region is replaced with the 3jet/0tag region, as-
suming that a possible contamination with ISR/FSR will now mostly affect the third most energetic jet
which is not used in the calculation of the relevant observables. Figure 7.16 and Figure 7.17 demonstrate
that the data/MC agreement in this region is in fact superior to the description obtained in the 2jet/0tag
region, although a residual slope is observed for the variables p jet1∗plep0 and p jet1∗pν which involve
the sub-leading jet and the leptons. Therefore the 3jet/0tag region is only used to provide an overall
normalization constraint for the global fit to avoid any influence that may be caused by residual shape
mismodeling.

In the 2jet/1tag region, modeling can be improved by requiring that the sub-leading jet must be b-
tagged which virtually rules out that it stems from ISR/FSR. To make this requirement explicit, the
region is now labeled 2jet/1tagsl j. Figure 7.18 and Figure 7.19 demonstrate that this procedure really
yields a decent data/MC agreement which even allows to extract shape information from the 2jet/1tagsl j
region in the limit fit (see Section 8.2).

The data/MC agreement in the 3jet/2tag region (see Figures 7.20 and 7.21) is sufficient to use this
region without any correction.
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Figure 7.14: The Lorentz invariant variables given by the four-vector products of the final state objects in the
2jet/0tag control region of the WH channel. Systematic modeling deficiencies are clearly visible in the observables
which involve the four-vector of the sub-leading jet p jet1 (red frames). The region is therefore not used in the final
fit.
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Figure 7.15: The angular variables and the longitudinal boost in the 2jet/0tag control region of the WH channel.
This region is not used in the global fit due to modeling deficiencies.
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Figure 7.16: The Lorentz invariant variables given by the four-vector products of the final state objects in the
3jet/0tag control region of the WH channel.
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Figure 7.17: The angular variables and the longitudinal boost in the 3jet/0tag control region of the WH channel.
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Figure 7.18: The Lorentz invariant variables given by the four-vector products of the final state objects in the
2jet/1tagsl j control region of the WH channel.
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Figure 7.19: The angular variables and the longitudinal boost in the 2jet/1tagsl j control region of the WH channel.
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Figure 7.20: The Lorentz invariant variables given by the four-vector products of the final state objects in the
3jet/2tag control region of the WH channel.
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Figure 7.21: The angular variables and the longitudinal boost in the 3jet/2tag control region of the WH channel.
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7.8.2 Monte Carlo modeling corrections

Correction of pV
T in tt̄ samples

As discussed in the ATLAS note on the differential tt̄ cross section measurement [106], the pT dis-
tribution of the top quarks is not accurately described by the available Monte Carlo samples. In the
analysis presented here, this affects the modeling of the vector boson pT in the regions with substantial
tt̄ contribution. Although the discriminating variables used in this analysis are deliberately chosen to
avoid a dependency on the transverse boost of the vector boson, a residual correlation remains, most
notably in the two angles. Therefore, a dedicated correction of pV

T which was developed for the cut-
based VH → Vbb̄ search presented in [85] is applied to the tt̄ Monte Carlo. The correction reweights
the Monte Carlo as a function of truth ptop

T , using the unfolded measurement from [106] as a reference.
The systematic uncertainty associated with this correction is obtained by varying the nominal correction
by ±50%.

Test of a ∆φ(bb̄) correction for the V+jets samples

Studies carried out within the scope of the analysis presented in [85] suggest that the mismodeling
observed in the 2jet/0tag and the 2jet/1tag region are due to an inaccurate description of the ∆φ(bb̄)
distribution in the Sherpa V+jets Monte Carlo samples. Carrying out a suitable correction could thus
supersede the redefinition of the control regions. To check this, a corresponding study was carried
out [107], where the recommended correction from the aforementioned analysis was applied. While
the data/MC agreement is indeed improved for some distributions in the original 2jet/0tag and 2jet/1tag
control regions, it is degraded for others [107], in particular in the aforementioned ISR/FSR depleted
control regions. The proposed correction does thus not provide a complete remedy for the mismodeling
observed in the relevant regions and is not used in the analysis presented here. Instead, the modified
regions defined in Section 7.8.1 are kept without any further correction. However, to account for a
possible residual mismodeling of ∆φ(bb̄) which could also affect the variables used in this analysis, the
systematics associated with the proposed correction are implemented according to the recommendations
in [85]. This includes a shape variation which corresponds to 50% of the nominal ∆φ correction, see
also Section 7.10.2.

7.9 Pre-fit of background normalizations and the multijet template

Comparisons between data and Monte Carlo are essential to spot possible modeling inaccuracies which
could degrade both the reliability and the sensitivity of the analysis. Such comparisons are only possible
if the normalizations of all background contributions are accurately known. At least for the multijet
background whose shape is described by templates obtained from a dedicated multijet control region
(see Section 7.4), this requirement is not a priori met. Thus a dedicated fit is performed to determine
its normalization, both to facilitate data/MC comparisons and to obtain a sensible initial value for its
normalization in the limit fit. Since the limit fit allows the normalization of the V+jets and tt̄ samples
to float (see Chapter 8 for details), which in turn affects the multijet estimate, the pre-fit should be
designed in a similar way, but without using any distribution which is sensitive to the possible presence
of a Higgs signal. Therefore, a dedicated fit procedure for the background samples has been developed:
the distribution which is most sensitive to the normalization of the multijet background is plep0∗pν,
which conveys similar physical information as mW

T . Besides this, several other distributions from the
control regions defined in Section 7.8 are used in the fit to constrain the other background components, in
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particular the contributions of the different flavors in the V+jets background. All distributions are fitted
simultaneously to data. A detailed record of the regions and distributions can be found in Table 7.2.
Note that the signal-sensitive p jet0∗p jet1 distribution is not used in the signal region. The scale factors
resulting from this fit only serve to perform detailed data/Monte Carlo comparisons prior to the global
limit-fit: with the exception of the multijet normalization, the scale factors are discarded when then
input for the limit fit is constructed. The multijet normalization is used in the limit-fit, albeit with a large
systematic uncertainty of 30%.

All distributions used in the fit are shown on the following pages (Figures 7.22, 7.23, 7.24, 7.25),
ordered by the number of b-tagged jets: the left column always shows the unscaled (pre-fit) distributions
and the right column the post-fit distributions. While the distributions from the ZH channel mostly help
to constrain the normalization of the Z+jets and tt̄ background, the distributions from the WH channel fix
W+jets, single-top, tt̄ and, most important, the multijet background. The ratio plots clearly indicate that
the description of the data improves significantly after the fit and that the multijet templates described
in Section 7.4 provide a reasonable shape estimate.

One should note that in some control regions more than one observable is used for the fit - this means
that the statistical uncertainty of the scale factors determined in the fit is underestimated. However,
since these scale factors and their uncertainties do not enter the limit calculation, this does not introduce
a bias.

Distributions used in the background fit

2 jet, WH pres. 3 jet, WH pres. 2 jet, ZH pres. 3 jet, ZH pres.

0 b-tags - plep0∗pν - p jet0∗plep0

1 b-tag p jet0∗p jet1 - p jet0∗plep0 -
(sub-leading jet tagged) p jet1∗plep0

plep0∗pν (elec. only)
plep0∗pν (muon only)

2 b-tags p jet0∗plep0 p jet0∗p jet1 p jet0∗plep0 -
p jet1∗plep0 p jet0∗plep0

Table 7.2: Input distributions/regions used in the fit of the background normalizations
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Figure 7.22: Distributions before (left) and after (right) the background normalization fit. Top row: p jet0∗plep0,
3jet/0tag, ZH pre-selection. Middle row: plep0∗pν, 3jet/0tag, WH pre-selection. Bottom row: p jet0∗p jet1,
2jet/1tagsl j, WH pre-selection.

97



7 A BDT-driven search for H → bb̄ in associated production with a vector boson

lep0
 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

lep0
 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.8
1

1.2
1.4
1.6

WH/ZH
eQCD

µQCD
Zl
Zc
Zb
Wl
Wc
Wb
singletop
DiBoson
tt

Data

WH, 2jet/1tagsl j

lep0
 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

lep0
 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.9
1

1.1
1.2

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.5
1

1.5

WH, 2jet/1tagsl j

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.5
1

1.5

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

1
2

WH, 2jet/1tagsl j

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

ν * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

1
2
3

Figure 7.23: Distributions before (left) and after (right) the background normalization fit. Top row: p jet1∗plep0,
2jet/1tagsl j, WH pre-selection. Middle row: plep0∗pν (electron only), 2jet/1tagsl j, WH pre-selection. Bottom row:
plep0∗pν (muon only), 2jet/1tagsl j, WH pre-selection.
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Figure 7.24: Distributions before (left) and after (right) the background normalization fit. Top row: p jet0∗plep0,
2jet/1tagsl j, ZH pre-selection. Middle row: p jet0∗plep0, 2jet/2tag, WH pre-selection. Bottom row: p jet1∗plep0,
2jet/2tag, WH pre-selection.
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Figure 7.25: Distributions before (left) and after (right) the background normalization fit. Top row: p jet0∗p jet1,
3jet/2tag, WH pre-selection. Middle row: p jet0∗plep0, 3jet/2tag, WH pre-selection. Bottom row: p jet0∗plep0,
2jet/2tag, ZH pre-selection.
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7.10 Systematic uncertainties

A wide range of systematic uncertainties is considered in the analysis. Most of them are identical to the
uncertainties considered in the most recently published ATLAS VH → Vbb̄ search [85] and are treated
in exactly the same way to facilitate a fair performance comparison with the approach presented therein.
Technically, all uncertainties enter the final limit fit in the form of additional nuisance parameters which
are incorporated in the overall likelihood used to test the signal/background hypotheses. This procedure
is described in Chapter 8, the names of the parameters are given below. In the following I will discuss
the most important sources of systematic uncertainty and how they affect the shape and/or normalization
of the BDT discriminant. The presentation is based on the latest ATLAS VH → Vbb̄ publication [85].
Three categories are differentiated: first, experimental uncertainties which affect the object properties
and the accuracy with which these can be measured, second, background modeling uncertainties which
account for possible data/MC disagreement, and third, theoretical uncertainties related to the signal
process which mainly affect the signal cross-section and thus the expected number of signal events.

Plots illustrating the effect of all systematic uncertainties on the Monte Carlo prediction in the signal
region can be found in Appendix D.

7.10.1 Experimental uncertainties

Measurement, event reconstruction and object identification all introduce various sources of systematic
uncertainty which are subsumed in this category. As expected, the VH → Vbb̄ search depends mostly
on the subset of uncertainties related to the jet energy scale and the b-tagging efficiency. Furthermore,
different corrections applied to the physics objects (see Section 7.3) have associated uncertainties, too.
Recommendations for the correct treatment of those are usually provided by the correspondent physics
performance groups.

Pile-up and luminosity

To account for uncertainties associated to the modeling of additional proton-proton interactions (pile-
up) in Monte Carlo, a variation of the expected number of pile-up interactions < µ > is performed,
resulting in shape variations of the discriminating variables. The corresponding nuisance parameter is
labeled SysMuScale.

The uncertainty on the integrated luminosity of the 2012 data affects the normalization of all back-
ground samples except multijet, which is directly taken from data. According to the calibration with
beam-separation scans in November 2012 [108], the luminosity scale uncertainty is 2.8%.

Trigger

The trigger efficiencies for both muons and electrons are known to a precision of < 1%, which is the res-
ult of dedicated tag-and-probe studies. The corresponding uncertainties are thus considered negligible.

Lepton identification and selection

Two different sources of uncertainty are considered for the lepton selection: the efficiency of the lepton
identification and the efficiency of the isolation requirement. Both are obtained from tag-and-probe
measurements using the Z mass peak and are on the order of 1%. Since the WH analysis uses a different
isolation cut than the tag-and-probe study, an additional scale factor was introduced. The nuisance
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parameters associated with the lepton selection uncertainties are labeled SysElecEffic, SysMuonEffic
and SysLepIso, respectively

Lepton corrections

The uncertainties associated with the lepton energy and resolution corrections discussed in Section 7.3.2
are determined from the Z mass line shape. Recommendations for their application are provided by
performance groups in charge. The correspondent nuisance parameters are SysMuonEResolMS, Sys-
MuonEResolID and SysElecEResol. All three of them have very little impact on the BDT discriminant.

Uncertainties related to the jet energy scale and resolution

The uncertainties related to the jet energy scale (JES) and resolution form the largest group of uncertain-
ties in the analysis presented in this thesis. Most of them stem from the in-situ JES calibration analysis
which includes studies of the Z+jet balance, the γ+jet balance and the multijet balance, see [109] for de-
tails. The following uncertainties are covered in these studies: differences between generator predictions
from Alpgen, Herwig and Pythia, uncertainties associated with the selection, calibration and modeling
of the physics objects involved and finally also uncertainties which arise from limited statistics in the
calibration samples. The latter ones correspond to the nuisance parameters SysJetStatX (X= 1, 2, 3) in
this analysis, while the object-related uncertainties correspond to SysJetModelX, where X runs from
one to four. In general, each uncertainty from the in-situ study falls in one of the following categories:
detector description, physics modeling, detector/physics modeling mix, statistics and analysis method.
Besides these, the following uncertainties are introduced:

SysJetEtaModel, SysJetEtaStat: Uncertainties associated with the modeling of additional radiation
which affects the pT and η distributions of the di-jet system. Referred to as “η-intercalibration”
uncertainties.

SysJetNonClos: Uncertainty which accounts for the variations in the jet response when using JES
calibration results based on different generators. Referred to as “MC non-closure term”.

JetSysMixed1, JetSysMixed2: Uncertainties accounting for flavor and topology differences between
the JES calibration samples. Evaluated by studying generators with different gluon/quark frag-
mentation functions.

JetSysHighPt: Specific uncertainty for high pT jets (pT > 1 TeV) obtained from studies of single-
particle energy depositions. Negligible in the analysis presented here.

SysJetPilePt, SysJetPileRho: Uncertainties related to pile-up effects.

SysJetFlavB: Uncertainty which accounts for the differences between the jet energy scales for b-jets
and jets originating from other flavors. Obtained by comparing the b-jet response for different
Monte Carlo generators.

JetEResol: The relative jet energy resolution (JER) ranges from ∼ 25% at 20 GeV to ∼ 5% at 1 TeV.
The associated uncertainty accounts for differences in this resolution between data and Monte
Carlo. It is determined in in-situ studies using the di-jet balance and bisector methods. The effect
on the analysis presented here is evaluated by smearing the jet pT according to the uncertainty
and then recalculating all observables.
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SysJetFlavComp, SysJetFlavResp: Since the calorimeter response depends on whether a jet is
gluon- or quark-initiated, the composition of a given sample will have an effect on the JES
and JER that is obtained for it. This can be parametrized by the relative fraction of quark-
and gluon-initiated jets in the sample and the associated uncertainty can be minimized if the
sample composition is well known. As in [85], a 4% uncertainty is assigned to the composition
of the relevant background samples, resulting in separate nuisance parameters for each physics
process: SysJetFlavComp_Diboson, SysJetFlavComp_Top, SysJetFlavComp_Wjets, SysJet-
FlavComp_Zjets, SysJetFlavResp_Diboson, SysJetFlavResp_Top, SysJetFlavResp_Wjets,
SysJetFlavResp_Zjets.

If not stated otherwise, all jet-related uncertainties are evaluated by means of a dedicated “JetUncer-
taintyTool” which is provided by the corresponding performance group. This tool allows for the modi-
fication of jet properties according to the different sources of uncertainty considered here. Each modific-
ation is propagated through the entire analysis, including object and event selection and the application
of the BDT discriminant function. This way, the impact of each uncertainty on the distribution of wBDT

can be studied.

b-tagging uncertainties

The analysis presented here uses the same b-tagging calibration as presented in [85] which is justified
by the conformity of the object definitions in both analyses. The calibration is obtained from tt̄ events
in 2012 data [92] and applied in the form of Monte Carlo scale factors which even out possible discrep-
ancies between data and Monte Carlo. The systematic uncertainties associated with these scale factors
correspond to the uncertainties of the calibration which are explained in [92]. Since the calibration itself
is p jet

T (and in some cases also η jet) dependent, multiple nuisance parameters are introduced to account
for the pT-dependence of the corresponding uncertainties, following the eigenvector method introduced
in [110]. For b-jets, the resulting parameters are labeled SysBtagBXEffic where X runs from 0 to 6,
for c-jets they are labeled SysBtagCXEffic, X= 0, . . . , 5. The parameter associated with the mistag
efficiency is named SysBTagLEffic.

For the Monte Carlo samples where truth tagging is used, additional uncertainties are introduced
which account for the fact that the efficiency maps which are used to calculate the truth tagging weight
depend on the process and on the generator. These uncertainties are associated with the nuisance para-
meters SysBTagSherpaBEffic and SysBTagSherpaCEffic and correspond to an additional scaling un-
certainty of 2% and 10% respectively.

Missing transverse energy

The Emiss
T measurement is mostly affected by the uncertainties associated with the other physics objects,

since any changes on the vectorial sum of these will immediately result in a variation of Emiss
T . See also

section 7.3.7 for a discussion of the re-evaluation of Emiss
T in the presence of object corrections.

In addition to that, the scale and resolution of the Emiss
T contribution originating from unassociated

calorimeter clusters (“soft terms”) are varied within their uncertainties. This produces two additional
nuisance parameters: SysMETResoSoftTerms and SysMETScaleSoftTerms.

7.10.2 Uncertainties related to the Monte Carlo background modeling

As discussed in Section 7.8.2, systematic discrepancies between data and Monte Carlo are observed in
certain control regions and for certain Monte Carlo samples (tt̄ and V+jets). To account for these model-
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7 A BDT-driven search for H → bb̄ in associated production with a vector boson

ing problems and for the uncertainties related to possible countermeasures like reweighting, a multitude
of scale and shape variations is introduced and the effect on the final discriminant is carefully studied.
Almost all modeling systematics that have been studied in [85] are adopted to the analysis presented
here, possible modifications are detailed if necessary. The modeling systematics can be categorized as
follows:

Normalization: Uncertainties related to the normalization of a given background sample. If the sample
normalization is not floating in the final fit (see Chapter 8 for details), its uncertainty is taken from
the corresponding cross-section calculation. For the diboson samples, this yields relative scaling
uncertainties of 5 − 7% and for the single-top samples 4 − 7%, depending on the production
channel. As explained in Section 7.4, the multijet normalization is assigned an uncertainty of
30%. This is in agreement with the conservative approach taken in earlier studies [72], while the
latest ATLAS publication [85] was done with a floating multijet normalization in the final fit.

3-jet/2-jet ratio: As discussed in Section 7.8, three-jet (and a four-jet) control regions are used in
the analysis to constrain the normalization of the tt̄ and single-top contributions. Since the pre-
dicted ratio of 2-jet events to 3-jet events in the tt̄ sample differs between the generators Powheg,
MC@NLO and Alpgen, an additional 5% uncertainty on the normalization in the 3-jet region
(Systtbar3JNorm) is assigned. In the same way, the uncertainties labeled SysStopWt3JNorm
(13%) and SysStopst3JNorm (9%) are introduced for the single-top samples. Finally, since the
flavor composition of the V+jets contribution in the 3-jet control region differs between generat-
ors, one also has to introduce additional flavor-dependent scale factors for these samples to avoid
undesirable tensions between the 3-jet region and the dedicated flavor-control regions. See [85]
for details on the 2-jet/3-jet ratio studies.

mbb̄-modeling: Although mbb̄ is not the final discriminant used in the limit fit, it is still the most power-
ful variable in the BDT. Shape variations developed in [85], which are motivated by different gen-
erator predictions are thus adopted in the analysis presented here and propagated from mbb̄ to the
BDT output distribution. For different background samples, different shape variations are used,
details can be found in Table 7.3.

pV
T -modeling: Analogous to mbb̄, the pV

T distributions found in the tt̄, single-top and diboson samples
are compared among different generators and systematic uncertainties are assigned if required.
As described in Section 7.8.2, a dedicated pV

T -correction is applied to tt̄. An extra uncertainty,
defined as half the correction, is associated with this.

∆φ-modeling: The ∆φ-correction proposed in [85] is not used in this analysis, as discussed in Sec-
tion 7.8.2. However, the systematic variations associated with this correction are still applied,
since they can be translated into a variation of the discriminating variables which accounts for the
residual mismodeling even if the nominal distributions are not changed. To do so, ∆φ-dependent
event weights are calculated and propagated through the entire analysis, resulting in a shape vari-
ation of the BDT output distribution.

7.10.3 Theoretical uncertainties on the signal cross section

The analysis presented here uses the latest signal cross-sections published by the LHC Higgs boson cross
section working group [21], [29]. Associated with these numbers are several sources of uncertainty,
which are taken into account via the respective nuisance parameters:
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SysTheoryHbbBr: Relative uncertainty of the H → bb̄ branching ratio in the relevant mass range
(3.3% for mH = 125 GeV).

SysTheoryWHScale, SysTheoryZHScale: Uncertainties related to the choice of the renormaliza-
tion/factorization scale (∼ 0.5%). More information about the calculation of these uncertainties
is given in Section 3.4.1.

SysTheoryWHPDF, SysTheoryZHPDF: Uncertainty related to the parametrization of the parton dis-
tribution functions (∼ 3.5%). Calculated according to the PDF4LHC recommendation [29].

SysTheoryWHEW, SysTheoryZHEW: Studies in [85] have shown that the size of the NLO elec-
troweak correction to the signal cross section depends strongly on pV

T . Therefore, a pV
T dependent

correction for the cross section provides a better description of the signal processes than the ap-
plication of an inclusive scale-factor. Such a correction is derived in [85] and also used in the
analysis presented here. The uncertainty associated with that correction is also pV

T dependent and
calculated on an event-wise basis. Details can be found in [85]

Background modeling uncertainties

Process Normalization 3jet/2jet ratio pV
T mbb̄ ∆φ-correction

Wl floating SysWMbb SysWDphi
SysWDphi3J

Wc floating SysWc3JNorm SysWccDPhi
SysWccDPhi3J

Wb floating SysWbb3JNorm SysWbbMbb SysWbDPhi
SysWbDPhi3J

Zl floating SysZMbb SysZDPhi
SysZDPhi3J

Zc floating SysZc3JNorm SysZcDPhi
SysZcDPhi3J

Zb floating SysZbb3JNorm SysZbbMbb SysZbDPhi
SysZbDPhi3J

tt̄ floating Systtbar3JNorm SysTopPt SysTopMbb
SysTopPt3J SysTopMbb3J

singletop SysStopNorm SysStop3JNorm
diBoson SysVV3JNorm
mutijet SysMJNorm

Table 7.3: Overview of the systematic uncertainties associated with background modeling and the corresponding
nuisance parameter names. Normalization parameters which are floating in the global fit are marked with “float-
ing”. Some nuisance parameters which are discarded in the final fit due to marginal effect have been omitted, see
also Section 8.3.
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“If your experiment needs a statistician, you need
a better experiment.”

Ernest Rutherford

CHAPTER 8

A fit model for limit setting

The goal of the statistical treatment presented in the following is to infer an upper limit on the Stand-
ard Model Higgs boson production cross-section and to measure the ratio µ of the observed signal
strength to the Standard Model expectation. The corresponding hypothesis test is based on a binned
maximum-likelihood fit which uses four different distributions: the wBDT distribution in the signal re-
gion (2jet/2tag), which provides the sensitivity to the Higgs signal, and one distribution from each of
the control regions, which serve to constrain the scale factors fbg associated with the normalization
of the background components that are floated in the fit (see Sections 8.2 and 8.3). In addition, the
systematic uncertainties discussed in Section 7.10 are incorporated in the fit via a set of nuisance para-
meters θ, which means that the likelihood employed in the fit is a multi-parameter function of the form
L(µ, fbg, θ|x), where x denotes the data.

8.1 The profile likelihood method

Setting an upper limit on the Higgs boson production cross section is a particular variant of hypothesis
test. The hypothesis H0 is represented by the Standard Model without the Higgs boson, while the al-
ternative hypothesis H1 is represented by the Standard Model containing the Higgs Boson and a defined
Higgs boson mass mH . The specification of the mass in H1 is necessary to facilitate a measurement of
the signal strength parameter µ: while the expected signal strength depends strongly on the Higgs boson
mass, the sensitivity of the analysis to the mass is poor due to limited resolution. The hypothesis test
is based on the likelihood function L(µ, θ), where θ denotes additional nuisance parameters. Following
the Neyman-Pearson lemma [74], an optimal test statistic is given by the likelihood ratio:

λ =
L(H1)
L(H0)

(8.1)

Using toy Monte Carlo, one can determine the distributions of the test statistic λ under the two hy-
potheses and compare the observed value λobs to these distributions. Exclusion of the hypothesis H1
is usually announced if the associated (one-sided) p-value is smaller than 5% - this corresponds to a
rejection of H1 at the 95% confidence level. The problem with this theoretically simple approach is that
it is not straightforward to deal with additional nuisance parameters in the likelihood function: strictly
speaking, a hypothesis can only be rejected if the corresponding test is carried out for all possible values
of θ, regardless of the fact that the true value of θ is usually not of interest for the measurement. Obtain-
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8 A fit model for limit setting

ing a valid statement about H1 irrespective of θ can be achieved by marginalizing with respect to θ in a
quasi-Bayesian fashion. This approach is known as the hybrid likelihood approach which was proposed
by Cousins and Highlands. However, carrying out the integration is computationally expensive.

A more effective treatment of the nuisance parameter problem is the profile likelihood method: a new
test statistic λ(µ) is defined

λ(µ) =
L(x|µ, ˆ̂θ(µ))
L(x|µ̂, θ̂)

(8.2)

where µ̂ and θ̂ denote the global best fit values for µ and θ given the observed data x, and ˆ̂θ(µ) denotes
the best fit value for θ that can be found for a fixed value of µ. Note the difference to the first approach:
while the likelihood ratio defined in Eqn. 8.1 tests H1 against H0, λ(µ) tests either of them against the
hypothesis preferred by the data, for which µ = µ̂. This construction has some very desirable properties:

1. As expected, the profile likelihood as a function of µ is broadened with respect to the original
likelihood function with fixed θ. This reflects the loss of information introduced by nuisance
parameters.

2. The profile likelihood construction fulfills the conditions of Wilk’s theorem [111], which states
that the distribution of the quantity

qµ = −2 ln
L(x|θ̂1,H1)
L(x|θ̂0,H0)

(8.3)

asymptotically, i.e. for a sufficiently large data sample, approaches a χ2 distribution with a number
of degrees of freedom that is equal to the difference between the number of free parameters in
L(x|H1) and L(x|H0). Here, θ̂0 and θ̂1 denote the maximum likelihood estimates of θ for the
respective hypothesis. Applied to the profile likelihood, this means that q1 = −2 ln(λ(µ = 1))
follows a χ2 distribution with one degree of freedom under H1.

The second property assures that the profile likelihood approach can handle the presence of nuisance
parameters without the need for numerical integration. Instead, one can simply compute the desired
exclusion significance for a given signal strength µ via

Zµ =
√

qµ =
√
−2 ln(λ(µ)) (8.4)

Several variations of the basic profile likelihood concept which are tailor-made for the LHC experiments
have been proposed and asymptotic approximations which extend Wilk’s theorem accordingly have been
computed. These are discussed in [112].

8.2 Distributions used in the fit

In addition to the wBDT distribution in the signal region, which delivers the largest sensitivity to the
possible presence of a Higgs signal, one distribution from each of the control regions is used in the
fit. As discussed in Section 7.8, this allows for a measurement of the flavor composition in the V+jets
background which is difficult to model. Moreover, it also helps to fix the normalization of the tt̄ back-
ground in the specific phase-space considered for this analysis where one W boson escapes detection
(WH channel). While the 2jet/1tagsl j region and the 3jet/2tag region can be used to provide shape in-
formation, the 3jet/0tag region is only employed to provide an overall background normalization which
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mostly helps to fix the V+light background fraction. The input distributions used in the WH channel are
shown in Figure 8.1, an overview is presented in Table 8.1. While the wBDT distributions are obviously
chosen for their sensitivity to the possible presence of a Higgs signal, the p jet0∗plep0 distribution in the
2jet/1tagsl j region was found to provide the best constraint on the single-top normalization among the
observables considered.

In principle, the fit model presented here was designed to allow for a combined fit of the WH and
the ZH channel: all regions/distributions are present in both channels, which makes for a total of 8
distributions. However, for the limit-fit this thesis will concentrate on the WH channel only. The ZH
channel has not been fully optimized and a robust combination demands a more detailed study.

Fit input distributions

2 jet 3 jet

0 b-tags - norm only
1 b-tag (sub-leading jet tagged) p jet0∗plep0 -
2 b-tags wBDT wBDT

Table 8.1: Input distributions/regions used in the limit-fit.

8.3 Floating normalizations and nuisance parameters

The use of dedicated control regions allows to determine the final normalization of the most import-
ant background contributions for the WH channel from data - in total, four parameters associated with
sample normalizations are floated in the fit: norm_Wl, norm_Wc, norm_Wb, norm_ttbar. The nor-
malizations associated with the main backgrounds in the ZH channel (norm_Zl, norm_Zc, norm_Zb)
are treated as additional nuisance parameters with priors reflecting the uncertainties of the respective
cross-sections. A combined fit of both channels would allow to determine those from the data, too.

Contrary to the strategy followed in [85], where the normalization of the multijet template is floated
independently for each b-tag and jet multiplicity, a consistent treatment of the multijet normalization
across all regions is adopted for the analysis presented here: the normalization is initialized to the
value obtained from the fit described in Section 7.9 and associated with a nuisance parameter with a
log-normal prior distribution to avoid unphysical negative values.

The other nuisance parameters in the fit control the systematic uncertainties described in Section 7.10.
While some of these uncertainties only affect the normalization of one or more samples, others also af-
fect the shape of the distributions. For the distributions used in the fit, it is thus fair to say that the
content of each bin is a function of the nuisance parameters θ, although the bins are of course correl-
ated. In the fit, the parameters θ are allowed to vary according to their prior distributions: parameters
which are associated with uncertainties that change the normalization are assigned a log-normal prior
(which is only defined for positive values) and parameters associated with shape variations are assigned
a Gaussian prior. The width of each prior is chosen according to the respective size of the associated
uncertainty. The statistical uncertainty of the Monte Carlo prediction is also taken into account by as-
signing a nuisance parameter to each bin for which the relative statistical uncertainty is larger than 5%.
Systematic uncertainties that affect both the shape and the normalization of a given distribution are split
into two separate sources of uncertainty and two parameters are assigned. If either of the two causes
a variation of less than 0.5% it is discarded. For any parameter θi the optimal value found in the fit
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Figure 8.1: The distributions used in the limit fit for the WH channel.
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may differ from the nominal value preferred by the prior - within the given uncertainties this is to be
expected, but large deviations may indicate a mismodeling in the simulation which is not fully corrected
for or which is not covered by the corresponding systematic uncertainty. To spot possible problems,
so-called “pull-plots” are generated, where the post-fit deviation of the nuisance parameters from their
initial values is depicted relative to the associated uncertainties. These pull distributions also allow to
assess the validity of the size of the systematic uncertainties assigned by comparing the post-fit errors
of the nuisance parameters to the pre-fit errors. See Section 9.1 for details.

8.3.1 Correlations among the nuisance parameters

While some sources of uncertainty are common to all processes in the analysis and may thus be para-
metrized consistently across all distributions and samples, others may for example depend on the flavor
composition or the object multiplicity and should thus be treated differently depending on the input
region. The scheme adopted here follows the reasoning presented in [85]:

Systematic uncertainties related to jet flavor composition and response are treated as uncorrelated
across four different groups of processes since the flavor composition may depend on the process. The
four groups are W+jets, Z+jets, tt̄/single-top and diboson/VH. The systematic uncertainty associated
with the top pT modeling is split into two parameters: one for each jet multiplicity in the WH channel.
The ∆φ systematic is parametrized separately for each of the six V+jets samples and both jet multipli-
cities, resulting in twelve nuisance parameters. All other systematic uncertainties are treated as fully
correlated across all regions and samples, for more details see [85].
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“The most exciting phrase to hear in science, the
one that heralds the most discoveries, is not
"Eureka!" (I found it!) but "That’s funny.."”

Isaac Asimov

CHAPTER 9

Results

9.1 Global fit quality

9.1.1 Behavior of nuisance parameters

Using the fit model described in Section 8.2, the floating Monte Carlo scale factors and all nuisance
parameters are adjusted to give the best fit to the data. The resulting nuisance parameter pull distributions
are shown in Figures 9.1- 9.7. While most of the nuisance parameters are well-behaved in the fit in
the sense that they stay close to the value assumed in the corresponding prior, some display a sizable
deviation from their pre-fit value and/or are strongly constrained after the fit:

SysBTagLEffic: This parameter is associated with the b-tagging efficiency for light jets. The fact
that it is shifted downwards can be understood on closer examination of the W+light background
component in the 2jet/2tag and 3jet/2tag regions and its behavior under variation of the relev-
ant parameter (see Figure 9.8): the effective luminosity of the W+light samples is much lower
than the data luminosity, which is compensated by assigning large weights to the events. As a
consequence, the few events which penetrate into the signal region create "spikes" in the wBDT

distribution. Lowering the b-tagging efficiency for light jets, the spikes are attenuated which res-
ults in a smoothened distribution. Given that the W+light component is a minor background, the
pull of this parameter is considered tolerable in this thesis, but a follow-up study with a larger
W+light sample would be needed to settle this question completely.

SysWMbb: This parameter only affects the W+light background, introducing a shape variation in the
m j j distribution which in turn changes the shape of the BDT output. Since the effect of this
variation on the Monte Carlo prediction for W+light is only visible in the regions with two b-
tags (see Figure 9.9), it is very likely that the observed behavior is another artifact resulting from
the low statistics of the W+light sample after b-tagging. As with SysBTagLEffic, the observed
behavior is considered tolerable in the study presented here.

SysStopNorm: This parameter affects the normalization of the single-top background, which is en-
hanced after the fit. The region most affected by the variation of this parameter is the 3jet/2tag
region, where a 1σ deviation of the single-top normalization corresponds to a 2% change in the
overall background normalization. The observed pull is a result of a delicate interplay between the
regions: the reduced b-tagging efficiency for light jets smoothens the distributions in the 2jet/2tag
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and 3jet/2tag regions. At the same time, it affects the background normalization in the 2jet/1tagsl j
region (but leaves the 3jet/0tag region intact). Since the W + c normalization is constrained by
the 3jet/0tag region, the W + b background must account for the change in the 2jet/1tagsl j. This
is indeed the case, the W + b normalization is enhanced (see the discussion of the floating back-
ground normalizations in Section 9.1.2 for details). The increased amount of W + b background
is compensated by a reduction of the tt̄ background in the 2jet/2tag region. Finally, to maintain a
proper normalization in the 3jet/2tag region, the normalization of the single-top background must
increase. The fact that certain background normalizations are correlated in such a delicate way is
reflected in the large uncertainties of these parameters (Section 9.1.2).

SysTopMbbLo: This parameter varies the shape of the mbb̄ distribution in the tt̄ background based on
generator comparisons. A low value of this parameter as it is observed after the fit corresponds
to a broadening of the mbb̄ distribution. This broadening effectively moves tt̄ events away from
the Higgs mass peak and thus also from the high wBDT region to the low wBDT region. This effect
is most pronounced in the 2jet/2tag region where it affects the overall background normalization
in the left tail of the BDT output by up to 5% (see Figure 9.11). Since the data in this region is
slightly above the Monte Carlo prediction (pre-fit), a low value of this parameter is preferred by
the fit.

SysZccNorm: This parameter controls the normalization of the Z +c background, which only makes a
sizable contribution in the 2jet/1tagsl j region. In this region, the Z +c background has a distinctive
peak-like shape (see Figure 9.12). Reducing the height of this shape gives a better description of
the data, as can be seen from a comparison with the top right plot in Figure 8.1.

For the other nuisance parameters which remain close to their nominal values but are strongly con-
strained by the fit (SysJetFlavB, SysJetFlavComp_Wjets, SysJetFlavResp_Wjets, SysMETResoSoft-
Term), an inspection of the fit to the Asimov data set [113] created from the Standard Model background
expectation reveals that their pre-fit uncertainties are overestimated for this particular application. This
applies in particular to the normalization of the multijet background (SysMultijetNorm) which proves
that the 30% uncertainty assigned to the normalization of the corresponding templates is very conser-
vative.

SysBTagB0Effic SysBTagB1Effic SysBTagB2Effic SysBTagB3Effic SysBTagB4Effic SysBTagB5Effic SysBTagB6Effic SysBTagC0Effic SysBTagC1Effic SysBTagC2Effic SysBTagC3Effic SysBTagC4Effic SysBTagC5Effic SysBTagLEffic
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Figure 9.1: Overview of the post-fit nuisance parameter pulls associated with the b-tagging uncertainties obtained
from the global fit in the WH channel.
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Figure 9.2: Overview of the post-fit nuisance parameter pulls associated with the jet energy scale uncertainties
obtained from the global fit in the WH channel.

SysVV3J Norm SysWbb3J Norm SysWc3J Norm SysZbb3J Norm SysZc3J Norm Sysstop3J Norm Systtbar3J Norm

pu
ll

-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 9.3: Overview of the post-fit nuisance parameter pulls associated with the extrapolation between 3jet and
2jet regions obtained from the global fit in the WH channel.
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Figure 9.4: Overview of the post-fit nuisance parameter pulls associated with the modeling of the mbb̄ distribution
obtained from the global fit in the WH channel.
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Figure 9.5: Overview of the post-fit nuisance parameter pulls associated with the modeling of the ∆Φ( jet0, jet1)
distribution obtained from the global fit in the WH channel.
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Figure 9.6: Overview of the post-fit nuisance parameter pulls associated with the modeling of the jet and vector
boson pT distributions obtained from the global fit in the WH channel.
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Figure 9.7: Overview of the post-fit nuisance parameter pulls not associated with any of the other categories
obtained from the global fit in the WH channel.

116



9.1 Global fit quality

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

BTagLEffic Wl 35.67, -30.17%

Wl

σ+

σ-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1R
el
.u

nc
.(

%
)

-50

0

50

wBDT

2jet/2tag

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120
BTagLEffic Wl 41.19, -34.27%

Wl
σ+

σ-

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1R
el
.u

nc
.(

%
)

-50

0

50

wBDT

3jet/2tag

Figure 9.8: The remaining W+light Monte Carlo in the 2jet/2tag and 3jet/2tag regions and its behavior under
variation of the SysBTagLEffic nuisance parameter.
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Figure 9.9: The remaining W+light Monte Carlo in the 2jet/2tag and 3jet/2tag regions and its behavior under
variation of the WMbb nuisance parameter.
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Figure 9.10: The change in the overall background normalization in the 3jet/2tag region under variation of the
StopNorm nuisance parameter.
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Figure 9.11: The change in the overall background shape in the 2jet/2tag region under variation of the TopMbbLo
nuisance parameter.
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9.1 Global fit quality
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Figure 9.12: The change in the Z + c background normalization in the 2jet/1tagsl j region under variation of the
ZccNorm nuisance parameter.

9.1.2 Post-fit background scale factors and data/MC agreement

As described in Section 8.3, the normalizations of the most important background processes for the
WH channel are left floating in the fit. The scale factors which are obtained are listed in Table 9.1,
where also the corresponding scale factors resulting from the multijet pre-fit are shown for comparison.
No uncertainties are quoted for the latter since the multijet pre-fit uses several statistically correlated
distributions, see Section 7.9 for details. It should be noted that only the multijet normalization, which
is assigned an ad-hoc uncertainty of 30%, is propagated from the multijet-fit to the profile-likelihood fit.
All other scale factors are reverted to their nominal values and left floating in the profile-likelihood fit.
Taking into account that the multijet pre-fit does not include any nuisance parameters to cope with the
systematic uncertainties, a good agreement between the two fit results is observed.

It is clear that the uncertainties associated with the background Monte Carlo scale factors have an
immediate impact on the sensitivity of the analysis. The expected limit (see Section 9.2) is in particular
affected by the precision with which the W +b normalization can be determined. Even with the 3jet/2tag
control region, there remains an ambiguity between the W + b and tt̄ scale factors which increases the
corresponding uncertainties. Further constraining the tt̄ background with a 4jet/2tag region has been
tested but this approach was finally discarded due to additional difficulties in the more complicated
extrapolation across three regions of different jet multiplicity. Including the ZH channel in the global
fit would provide further tt̄ control regions which are almost free of W+jets background and would thus
help to constrain the Monte Carlo scale factors further.

Figure 9.13 shows a comparison of the data to the Monte Carlo prediction using the nuisance para-
meter values and scale factors resulting from the maximization of the profile likelihood in the global
fit. Excellent agreement is observed. The dashed blue line indicates the pre-fit Monte Carlo expectation
with all nuisance parameters and scale factors fixed to their nominal values. A list of the post-fit event
counts for data and all Monte Carlo samples can be found in Appendix A.
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9 Results

Monte Carlo scale factors

Background multijet pre-fit global fit

W + light 1.05 1.00 ± 0.08
W + c 0.71 0.79 ± 0.13
W + b 1.30 1.41 ± 0.16
tt̄ 0.99 0.94 ± 0.10

Table 9.1: Monte Carlo scale factors obtained from the global fit and the multijet pre-fit.
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Figure 9.13: The distributions used in the global fit (WH channel) with all post-fit scale factors and optimized
nuisance parameter values applied.
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9.2 Upper limit on the Higgs boson production cross-section and measured signal strength

9.2 Upper limit on the Higgs boson production cross-section and
measured signal strength

Using the profile-likelihood approach introduced in Section 8.1, a one-sided upper limit on the Standard
Model Higgs boson production cross section is calculated at the 95% confidence level (CL) for different
values of mH . The result is shown in Figure 9.14, the corresponding numbers are detailed in Table 9.2.
For mH = 125 GeV, the expected limit in the absence of signal is 2.06 × σSM, while the observed limit
is 3.15 × σSM. The fitted value of the signal strength parameter at this mass is µ = 1.40 ± 0.95. This
excess corresponds to a local p0 of 0.14 (1.10σ) for obtaining a result at least as signal-like as observed
in the absence of a signal. It is thus not significant and no observation of a signal can be claimed.
The corresponding expected value of p0 in the presence of a Standard Model Higgs boson at that mass
is 0.15 (1.04σ). A comparison of the observed/expected local p0 for other values of mH is presented
in Figure 9.15. The seemingly contradictory trends in the curves for observed and expected p0 can
be understood in the following way: the branching fraction for H → bb̄ and thus the expected signal
strength decreases rapidly towards higher mH . Therefore the sensitivity of the analysis is reduced as the
mass of a hypothetical Higgs boson is increased, which is reflected by the curve which represents the
expected p0 in Figure 9.15. If on the other hand an excess is observed in the H → bb̄ channel, it is
visible across the entire mass range considered for this analysis due to the poor bb̄ mass resolution of
∼10% (see Section 7.3.6). Interpreting this excess under different mass hypotheses will now result in a
significance which increases with the mass since the corresponding signal expectation decreases at the
same time. This behavior is demonstrated by the curve which represents the observed p0 in Figure 9.15.

9.2.1 Extrapolation of the Monte Carlo statistics

During the preparation of this thesis, the statistics of the used Monte Carlo samples was increased.
While the latest ATLAS publication [85] already made use of the larger samples, they could not yet be
incorporated in this thesis. As a consequence, the result reported here suffers from an additional system-
atic uncertainty compared to the cut-based ATLAS result due to the limited MC statistics. Extrapolating
the statistical uncertainties assigned to the Monte Carlo to the full sample size employed in [85], the
expected limit at mH = 125 GeV decreases to 1.88 × σSM in the WH channel, which corresponds to
an improvement of 11.3% over the result (2.12 × σSM) presented in [85]. Furthermore, recent studies
with larger Monte Carlo samples indicate that also the performance of the boosted decision trees can be
improved by ∼10% with larger training samples. It is thus fair to say that the method presented in this
thesis has the potential to improve on the results presented in [85] by 10 − 20%.

Expected and observed upper limits on σH
SM

Higgs mass −2σ −1σ exp. +1σ +2σ obs.

115 0.74 1.00 1.39 1.93 2.59 1.35
120 0.92 1.24 1.72 2.39 3.21 1.89
125 1.10 1.48 2.06 2.86 3.84 3.15
130 1.28 1.71 2.38 3.31 4.43 4.20
135 1.38 1.86 2.58 3.59 4.81 4.98
140 2.27 3.05 4.23 5.89 7.90 6.86

Table 9.2: Upper limit on the Standard Model Higgs boson production cross section obtained in the WH channel
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Figure 9.14: The upper limit on the Standard Model Higgs boson production cross section obtained in the WH
channel as a function of the Higgs boson mass mH .
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Figure 9.15: The observed local p0 value obtained in the WH channel as a function of the Higgs boson mass mH .
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“No book can ever be finished. While working on
it we learn just enough to find it immature the
moment we turn away from it”

Karl Popper

CHAPTER 10

Summary

In this thesis, a novel search for the Standard Model Higgs boson in the decay channel H → bb̄ is
presented, using the entire data-set recorded by the ATLAS experiment in 2012 amounting to 20.3 fb−1

of data. The search is focused on Higgs production in association with a leptonically decaying W or Z
boson to allow for an effective event selection based on high pT lepton triggers.

The analysis makes use of a machine learning approach based on boosted decision trees. First, this
algorithm is used to guide the construction of a set of pre-selection cuts which provide high signal
efficiency and good multijet rejection. Second, it is used to infer an optimal discriminant function
which serves as the input to the final hypothesis test from which an upper limit on the Higgs boson
production cross-section is obtained.

The boosted decision trees which are used to compute the final discriminant function operate on a
variable set which is constructed from Lorentz invariant quantities and angles, providing a minimal,
robust and physically interpretable parametrization of the VH system.

The complex background composition in the H → bb̄ decay channel is controlled by dedicated con-
trol regions of different jet and b-tag multiplicities which provide constraints on the normalization of the
V+jets and tt̄ background. Although the event selection is designed to provide a good multijet rejection,
a non-negligible amount of multijet background remains in the WH channel. A data-driven proced-
ure to construct templates for this background is established to overcome the absence of an adequate
simulation. The aptitude of the resulting templates is demonstrated in a multi-parameter fit to data.

All relevant systematic uncertainties, be they of experimental or theoretical origin or motivated by
the observation of deficiencies in the Monte Carlo simulation, are taken into account through additional
nuisance parameters in the global fit model for the signal hypothesis test.

The calculation of an upper limit on the Standard Model Higgs production cross section is performed
for the WH channel of the analysis. No significant excess above the Standard Model background ex-
pectation is observed. For a Higgs boson mass of mH = 125 GeV, the expected limit in the absence
of signal is 2.06 × σSM, while the observed limit is 3.15 × σSM. This excess corresponds to a local
significance of 1.1 standard deviations. The ratio of the measured signal strength to the Standard Model
expectation is µ = 1.40 ± 0.95.

Extrapolating the statistical uncertainties assigned to the Monte Carlo to the full sample size pro-
duced for the latest ATLAS publication [85], the approach presented in this thesis could improve on the
expected limit at mH = 125 GeV by 10 − 20%.
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“Measure what can be measured, and make
measurable what cannot be measured!”

Galileo Galilei

CHAPTER 11

Outlook

The analysis presented in this thesis incorporates many novel ideas that have been developed in the last
two years. However, the full potential of the methods introduced is not yet fully exploited. Several
possible improvements could not be considered in the given time frame:

1. The fit model presented in the analysis was designed with the combination of WH and ZH channel
in mind, but the limit calculation was only performed in the WH channel. Incorporating the ZH
channel in the fit would significantly improve the sensitivity of the search.

2. The optimization of the analysis with regard to the event pre-selection and the choice of the
discriminating variables is mainly driven by studies in the WH channel. A more careful consid-
eration of the ZH channel could probably improve its sensitivity, in particular taking into account
the information about the transverse boost of the ZH system.

3. The modeling problems observed in the 2jet/0tag and 2jet/1tag region should be investigated
further. Although there are good arguments to conclude that ISR/FSR contamination plays an
important role in these effects, this is probably only a part of the explanation.

4. Studies with training data sets of increasing size suggest that the performance of the BDT classifier
used in this analysis could be improved by more than 10% by using a lager Monte Carlo training
sample, in particular for the signal process.

5. Increased Monte Carlo statistics would also benefit the limit calculation as additional nuisance
parameters representing the statistical uncertainty of the Monte Carlo expectation could be dropped.

6. The fit model for the global fit can probably be simplified by removal of insignificant nuisance
parameters, improving stability and speed of computation.

7. Several changes in the analysis are necessary to evaluate the data recorded by ATLAS in 2011. A
combination with the 2012 data is desirable.

8. As a long-term goal, a consistent treatment of the ZH → ννbb̄ channel needs to be developed
to optimally exploit H → bb̄ in associated production. Judging based on the cut-based ATLAS
analysis, this channel is expected to yield a similar sensitivity than the WH channel.
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APPENDIX A

Post-fit event counts in the WH channel

Post-fit event gain WH

process 3jet/0tag 2jet/1tagsl j 2jet/2tag 3jet/2tag

multijet (e + µ ) 123922.0 18346.2 2101.5 2472.2
Z+light 41796.2 1233.8 10.9 0.0
Z + c 19022.4 1292.6 44.7 82.7
Z + b 3238.9 2272.4 326.3 525.9
W+light 444084.0 8027.5 175.9 77.0
W + c 129282.0 23036.9 783.1 798.7
W + b 37930.3 23784.5 3833.2 4686.2
single-top 9456.3 15313.5 3757.0 6896.3
diboson 9571.5 1158.9 261.7 188.8
tt̄ 19091.0 9185.7 6290.7 30653.8∑

bkg. 837394.0 103652.0 17585.0 46381.8

WH 17.5 47.5 108.6 60.6

data 837427.0 103706.0 17677.0 46447.0

Table A.1: Expected and observed number of events in the WH channel after the global fit
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APPENDIX B

Variable distributions in the ZH channel

Just like in the WH channel (see Section 7.8), the distributions of the discriminating variables are stud-
ied in various control regions in the ZH channel. On the whole, a good data/MC agreement is observed.
Using the scale factors determined in the normalization fit described in Section 7.9, the plots in Fig-
ure B.1- B.6 are obtained.
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B Variable distributions in the ZH channel
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Figure B.1: The Lorentz invariant variables given by the four-vector products of the final state objects in the
3jet/0tag control region of the ZH channel.
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Figure B.2: The angular variables and the longitudinal boost in the 3jet/0tag control region of the ZH channel.
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B Variable distributions in the ZH channel

jet1
 * pjet0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

jet1
 * pjet0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.5

1

 10×ZH 
eQCD

µQCD
Zl
Zc
Zb
Wl
Wc
Wb
singletop
DiBoson
tt

Data

ZH, 2jet/1tagsl j

lep0
 * pjet0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

lep0
 * pjet0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.5
1

1.5

lep0
 * pjet0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

lep0
 * pjet0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.5
1

1.5
lep0

 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

lep0
 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.5
1

1.5

lep1
 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

lep1
 * pjet1p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0
1
2

lep1
 * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

lep1
 * plep0p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
at

a 
/ M

C

0.8
0.9

1
1.1
1.2

Figure B.3: The Lorentz invariant variables given by the four-vector products of the final state objects in the
2jet/1tagsl j control region of the ZH channel.

132



1θ

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

1200

1θ

0 0.5 1 1.5 2 2.5 3

D
at

a 
/ M

C

0.6
0.8

1
1.2

2θ

-3 -2 -1 0 1 2 3
0

200

400

600

800

1000

1200

1400

2θ

-3 -2 -1 0 1 2 3

D
at

a 
/ M

C

0.6
0.8

1
1.2
1.4

zγ

0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

zγ

0 1 2 3 4 5 6 7 8 9 10

D
at

a 
/ M

C

0
1
2

 10×ZH 
eQCD
µQCD

Zl
Zc
Zb
Wl
Wc
Wb
singletop
DiBoson
tt

Data

ZH, 2jet/1tagsl j

Figure B.4: The angular variables and the longitudinal boost in the 2jet/1tagsl j control region of the ZH channel.
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Figure B.5: The Lorentz invariant variables given by the four-vector products of the final state objects in the
3jet/2tag control region of the ZH channel.
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Figure B.6: The angular variables and the longitudinal boost in the 3jet/2tag control region of the ZH channel.
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APPENDIX C

Overtraining control plots

As discussed in Chapter 6, flexible classification algorithms like boosted decision trees may exhibit
overtraining if their parameters are incorrectly tuned or if the amount of training events is insufficient.
Although this does not result in a bias if the classifier is evaluated on an independent sample, the per-
formance of the classifier will generally degrade in the presence of overtraining. To detect possible
overtraining in the analysis presented here, the BDT output distribution obtained on the training sample
is overlayed with the BDT output obtained on an independent test sample. The BDT configuration
presented in Section 7.6 is used. Figure C.1 shows the resulting distributions for both BDT training
algorithms that are employed in the analysis. No evidence for overtraining is observed.
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Figure C.1: Overlay of the BDT output obtained for the training sample and an independent test sample in the
WH channel. Top: Adaptive boosting. Bottom: Gradient boosting.
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APPENDIX D

Effect of systematic uncertainties on the BDT
output in the WH signal region

The plots on the following pages show the effect of a ±1σ variation for all nuisance parameters in the
global fit. Note that all Monte Carlo scale factors are fixed at 1.0 here, which means that these plots do
not reflect the actual data/MC agreement achieved.

Figure D.1: First set of systematic variations in the signal region of the WH channel.
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D Effect of systematic uncertainties on the BDT output in the WH signal region

Figure D.2: Second set of systematic variations in the signal region of the WH channel.
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Figure D.3: Third set of systematic variations in the signal region of the WH channel.
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D Effect of systematic uncertainties on the BDT output in the WH signal region

Figure D.4: Fourth set of systematic variations in the signal region of the WH channel.
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Figure D.5: Fifth set of systematic variations in the signal region of the WH channel.
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D Effect of systematic uncertainties on the BDT output in the WH signal region

Figure D.6: Sixth set of systematic variations in the signal region of the WH channel.

144



Figure D.7: Seventh set of systematic variations in the signal region of the WH channel.
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D Effect of systematic uncertainties on the BDT output in the WH signal region

Figure D.8: 8th set of systematic variations in the signal region of the WH channel.
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Figure D.9: 9th set of systematic variations in the signal region of the WH channel.
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D Effect of systematic uncertainties on the BDT output in the WH signal region

Figure D.10: 10th set of systematic variations in the signal region of the WH channel.
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Figure D.11: 11th set of systematic variations in the signal region of the WH channel.
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