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Abstract

We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-
condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein con-
densates confined in a finite size double-well trap and the non-trivial time evolution of a coherent
state placed at the center of a two dimensional optical lattice. For the Josephson oscillations
three time scales appear. We find that Josephson junction can sustain multiple undamped
oscillations up to a characteristic time scale τc without exciting atoms out of the condens-
ates. Beyond the characteristic time scale τc the dynamics of the junction are governed by
fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between
non-condensed particles. In the non-condensed particles dominated regime we observe strong
damping of the oscillations due to inelastic collisions, equilibrating the system leading to an
effective loss of details of the initial conditions. In addition, we predict that an initially self-
trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent
state released at the center of a two dimensional optical lattice shows a ballistic expansion with
a decreasing expansion velocity for increasing two-body interactions strength and particle num-
ber. Additionally, we predict that if the two-body interactions strength exceeds a certain value,
a forerunner splits up from the expanding coherent state. We also observe that this system,
which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.

v





CHAPTER 1

Introduction

The concept of a Bose-Einstein-Condensate (BEC) dates back to 1925 when A. Einstein pre-
dicted a temperature driven phase transition in a gas of non-interacting bosons [1]. Einstein’s
work was based on a paper by the indian physicist S. N. Bose [2], which was devoted to the
quantum statistical description of light. The phase transition is characterized by a macroscopic
number occupying the lowest energy state. The atoms in this quantum coherent state have the
same phase and can be described by a single, macroscopic wave function. Below the transition
temperature, the thermal de Broglie wavelength of the atoms becomes comparable or even lar-
ger than the average distance between the atoms. Consequently, the individual wave functions
of the atoms overlap and the gas has to be treated as a highly correlated quantum gas. The
macroscopic wave function, which describes the BEC, can be thought of as the order parameter
of this phase transition.
Due to experimental difficulties, it took about seven decades to verify Einstein’s prediction.

The first attempts to realize a BEC were in the early 1970s. Those involved techniques based on
magnetic and optical trapping as well as cooling mechanisms. These first studies were focused
on the spin polarized hydrogen, since it appeared to be the most obvious candidate because
of its light mass. The experiments on hydrogen atoms were unsuccessful due to the high rate
of recombination of the individual atoms to molecules [3, 4]. Later, advances using techniques
based on lasers such as laser cooling and magneto-optical trapping, made it possible to cool
alkali atoms to very low temperatures because of their favorable internal energy level structure.
Once the atomic gas is trapped, the temperature can continue to be lowered by evaporative
cooling [5, 6]. Naively, one would expect that the equilibrium configuration of the system
produced in this manner could be a solid phase. In order to observe BEC, one has to maintain
the system in a metastable gas phase for a sufficiently long time. An additional requirement is
that the gas should be dilute enough, since three-body collisions could lead to a transition into
a solid or molecular phase. All these complications were successfully overcome by Cornell and
Wieman [5] and Ketterle [6] in 1995. They reported the experimental realization of a BEC of
Rubidium atoms, which were cooled down to 170 nK in an atomic trap. They were awarded
the Nobel prize for this work in 2001.
Since the early days, the experimental and theoretical research on this unique phenomenon

has involved different areas of physics. Immediately after the discovery of superfluidity in 4He
in 1938 [7, 8], F. London had the intuition that it could be a manifestation of Bose-Einstein con-
densation [9]. In particular, the experimental achievement of a BEC was very exciting for con-
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1 Introduction

densed matter physicists. In the 1950s and 1960s, Bose-Einstein condensation was extensively
studied for a weakly interacting uniform Bose gas in the context of many-body calculations as
a possible model for the superfluid behavior in liquid Helium. Although theoretical approaches,
which assume weak interactions in the bosonic gas are not applicable to the strongly interact-
ing liquid Helium, these studies played an important role in the development of the theoretical
framework for describing Bose superfluids. Landau proposed a phenomenological theory of
superfluids in terms of the spectrum of elementary excitations of the fluid [10]. However, he
argued that Bose statistics obeyed by the 4He atoms were irrelevant and that his theory could
be applied to any low temperature quantum liquid. For this reason, the role of Bose-Einstein
condensation as the underlying basis for superfluid phenomena remained controversial for many
years [11]. Later, the two-fluid hydrodynamic description formulated by Landau was proven to
be related to the thermodynamic Green’s function formulation of the many-body problem [12].
One of the key features of experimentally realized BECs is that they are inhomogenous

finite-size systems, with fixed number of particles ranging from a few thousands to millions.
The inhomogeneity arises as a consequence of the external trapping potential that confines
the atoms in coordinate space. In addition, a trapped atomic gas can be regarded (in a very
good approximation) as being completely isolated. These features open new possibilities for
interesting studies from the experimental and theoretical point of view. They allow the system-
atic study of physical quantities and new phenomena which have not been accessible before,
e.g. temperature dependence of the condensate, energy and density distribution, interference
phenomena, etc.
Since the experimental achievement of a BEC in 1996 [5, 6], a new branch of physics has

been opened. It is devoted to the study of coherence effects and fluctuation phenomena in
many-body systems. There has been a huge grow in literature on the theory of Bose-Einstein
condensation since then, addressing a variety of questions. Some of these questions have been
answered in an extensive way. In particular, the mean field description has positioned itself as
a well established theory able to provide a satisfying description of many physical phenomena
exhibited by cold bosonic gases. The mean field theory is expressed in terms of a non-linear
partial-differential equation for the order parameter (Gross-Pitaevskii equation). Its solutions
allow the study of a diversity of physical effects such as vortices [13], solitons [14], interference
[15], etc. However, experiments have achieved regimes where the standard mean field description
is not applicable, revealing an incomplete understanding of the dynamics [16]. In addition, the
experimental realization of colliding and collapsing condensates has attracted a lot of interest.
A detailed description of the temporal dynamics of these non-equilibrium situations requires a
new, different approach.
In this thesis we present a non-equilibrium field theoretical approach to situations involving

inhomogeneous, weakly interacting Bose-condensed gases out of equilibrium. This theoretical
description is based on the generalization of the Keldysh technique to interacting Bose gases at
low temperatures and allows to treat the single particle excitations and the condensate separ-
ately. The non-equilibrium theory is expressed in terms of integro-partial-differential equations
for the single particle excitations Green’s function and for the order parameter. The two-
particle processes described by these equations are contained in the self-energies, which are
obtained from conserving approximations. The numerical analysis of this type of equations
is very demanding and time consuming. This restricts their analysis to small systems and
to short evolution times. The first step beyond the mean field description is the Bogoliubov-
Hartree-Fock approximation. In this approximation quantum fluctuations are included and
only the processes to the first order in the interatomic interaction are take into account, so
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that the equations of motion reduce to system of coupled partial-differential equations for the
quantum fluctuations propagator and for the order parameter. This approximation neglects
multiple scatterings and is only suitable for the study of short time dynamics and weak inter-
action strengths. However, we have applied this approximation to various systems and have
discovered very interesting effects, which are confirmed by the short time dynamics obtained
from the full second-order approximation. In spite of the predicting power of the Bogoliubov-
Hartree-Fock approximation, it does not take the correlations between the initial state and the
intermediate states into account. In order to include these “memory effects”, we take second
order processes in the two-particle interactions into account. In doing so, we expect an effective
loss of the initial conditions, and eventually the observation of thermalization.
In chapter 2 we review the non-equilibrium field theory formulation based on the Keldysh

technique. In the subsequent chapter, this theory is generalized for Bose-condensed gases. We
also discuss the conserving approximations and the self-energies derived from them. We explain
how the Gross-Pitaevskii equation is obtained from the mean-field approximation and derive the
equations of motion for an inhomogeneous Bose-condensed gas in a non-equilibrium situation
within the framework of the Bogoliubov-Hartree-Fock approximation and the full second-order
approximation. At the end of the chapter we will show how this description is connected to the
semi-classical quantum Boltzmann equation.
Having the theoretical tools needed to study the temporal dynamics of a Bose-condensed

gas out of equilibrium, we proceed to study non-equilibrium oscillations between two BECs.
In chapter 4, we first review the mean-field description for the tunneling of particles between
the condensates. The experimental realization of the Josephson junction is a non-equilibrium
situation. This requires a detailed study of the temporal dynamics, including the interatomic
interactions as well as the single particle excitations. In order to do so, we introduce a model
which takes all these effects into account. The numerical analysis of this model within the
Bogoliubov-Hartree-Fock approximation reveals the existence of a time scale at which the sys-
tem undergoes a transition to a regime dominated by fast dynamics. A systematic study of this
time scale depending on the system parameters is performed. Afterwards, possible mechanism
of thermalization and equilibration are discussed using the full second-order approximation.
In chapter 5 we introduce the Bose-Hubbard model and some of its aspects in the case of

thermodynamic equilibrium. The model is used to study cold atoms of bosonic nature placed on
an optical lattice. The underlying equations of motion are derived within Bogoliubov-Hartree-
Fock approximation and full second-order approximation. As a first exercise, we solve the
two-site Bose-Hubbard model with the same initial conditions as the Josephson junction in
chapter 4. Afterwards, we consider a coherent state released in the center of a 2-dimensional
lattice. Similar systems were considered in [17, 18] for one dimension and in [19] for two
dimensions.
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CHAPTER 2

Non-Equilibrium Field Theory

Before we proceed to develop a theory for bosonic gases at low temperatures out of equilibrium,
we first have to study how non-equilibrium situations in quantum system can be treated. In
the present chapter, we will introduce the Keldysh technique, which was introduced by P. C
Martin and J. Schwinger [20], J. Schwinger [21] and L. V. Keldysh [22]. Further contributions
to the theory were made by Kadanoff and Baym [23–25]. A detailed review of the method can
be found in [26, 27]. In this chapter we will follow closely the review provided in [26, 28].

2.1 The Closed Time Path

The standard construction of the equilibrium many-body theory (see e.g., [29–31]) involves
switching “on” the interactions adiabatically in the distant past, and “off” in the distant future.
The crucial assumption in this case is that starting from the ground (or equilibrium) state of
the system at t = −∞ one reaches the same state at t = +∞ (up to some phase that was
acquired along the way).
This is not necessarily the case for a non-equilibrium situation. In general one starts with

an arbitrary initial state, then switches on the interactions and after a while turns them off.
There is no warranty that the system will evolve into the state it was in prior the switching
on of the interactions, i.e. the final state will depend on the switching procedure. The lack
of knowledge about the final state spoils completely the field theoretical formulation, since the
physical observables are described in terms of averages (or traces) of physical operators. In
order to overcome this difficulty, one needs to find a field theoretical formulation that avoids
the reference to the final state at t = ∞. Nonetheless, one still has to compute averages and
therefore, knowledge about the final state is still needed. J. Schwinger suggested to take the
final state to be the initial one, which would allow to compute averages (or traces) of products
of operators associated to the physical observables. This approach is based on the idea of letting
the quantum system evolve forward in time and then rewind its evolution back in time. At the
end, one has to construct a field theory with the time evolution along the two-branch contour
C, depicted in fig. 2.1.
In other words, independently of the final state at t = +∞, the system will evolve backwards

to the known initial state at t = −∞. In this construction there is no switching off of the
interactions in the far future, instead the interactions are switched on in the upper branch
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2 Non-Equilibrium Field Theory

C

t

t0

Figure 2.1: The closed time path contour C.

of the contour, which evolves forward in times, and off in the lower branch, which evolves
backwards.
Now we proceed to construct a theory along the closed time path contour (CTP). With this

aim, let us consider a quantum system at thermal equilibrium, which is described by the time
independent Hamiltonian Ĥ. The non-equilibrium problem can be formulated as follows: For
times far in the past and prior an arbitrary time t = t0 the system is assumed to be in equilibrium
and described by Ĥ. Then, at t = t0 a time-dependent mechanical perturbation, associated to
Ĥ ′(t), is turned on, and the Hamiltonian describing the full time dependent problem becomes

Ĥ(t) = Ĥ + Ĥ ′(t). (2.1)

The non-equilibrium theory concerns the computation of statistical averages of operator products
related to physical quantities for times t > t0. The time evolution of an operator in the situation
described above is given in terms of the unitary transformations related to Heisenberg pictures
of the Hamiltonian Ĥ(t) and Ĥ:

ÔH(t) = Û(t, t0)†ÔS(t0)Û(t, t0), Û(t, t0) = T e
−i
∫ t
t0

dt Ĥ(t)
, (2.2)

and
ÔH(t) = eiĤ(t−t0)ÔS(t0)e−iĤ(t−t0), (2.3)

where T is the time ordering operator. Here ÔS is the operator in the Schrödinger picture.
Now, solving eq. 2.3 for ÔS and then inserting into eq. 2.2 we obtain

ÔH(t) = Û(t, t0)†e−iĤ(t−t0)ÔH(t)eiĤ(t−t0)Û(t, t0)

=
[
T e

i
∫ t
t0

dt Ĥ′H(t)
]
ÔH(t)

[
T e
−i
∫ t
t0

dt Ĥ′H(t)
]
. (2.4)

In other words, the interaction picture with respect to H is equivalent to the Heisenberg picture
with respect to H.
Now we proceed to show how the transformation between the two Heisenberg pictures H

and H can be expressed in terms of the CTP. The fact, that all times t occur later that the
reference time t0, permits us to parametrize as follows

T−→
C
e−i

∫
−→
C

dτ Ĥ′H(τ) = T e
−i
∫ t
t0

dt Ĥ′H(t)
, (2.5)

T←−
C
e−i

∫
←−
C

dτ Ĥ′H(τ) = T̃ e−i
∫ t0
t

dt Ĥ′H(t), (2.6)
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2.1 The Closed Time Path

where τ(t) = t, t ∈ [t0, t] and T̃ is the anti-time ordering operator, that rearranges all operators
with arguments referring to earlier times to the left, in contrast to the time ordering operator
T , which arranges them in the opposite order.
Inserting eq. 2.5 and 2.6 into eq. 2.4 and using the Cauchy product and the Binomial

theorem, we can write

ÔH(t) =
[
T←−
C
e−i

∫
←−
C

dτ Ĥ′H(τ)
]
ÔH(t)

[
T−→
C
e−i

∫
−→
C

dτ Ĥ′H(τ)
]

=
( ∞∑
k=0

(−i)k

k!

∫
←−
C
dτ T←−

C

[
H ′H(τ1) . . . H ′H(τk)

])
OH(t)

×
( ∞∑
m=0

(−i)m

m!

∫
−→
C
dτ T−→

C

[
H ′H(τ1) . . . H ′H(τm)

])

=
∞∑
k=0

k∑
m=0

(
(−i)m

m!
(−i)k−m

(k −m)!

∫
←−
C
dτ T←−

C

[
H ′H(τ1) . . . H ′H(τm)

]
ÔH(t)

×
∫
−→
C
dτ T−→

C

[
H ′H(τ1) . . . H ′H(τk−m)

])

=
∞∑
k=0

(−i)k

k!

k∑
m=0

(
k

m

)∫
←−
C
dτ T←−

C

[
H ′H(τ1) . . . H ′H(τk)

]
ÔH(t)

×
∫
−→
C
dτ T−→

C

[
H ′H(τ1) . . . H ′H(τk−m)

]
=

∞∑
k=0

(−i)k

k!

∫
−→
C+←−C

dτ T−→
C+←−C

[
H ′H(τ1) . . . H ′H(τk)OH(t)

]
. (2.7)

T−→
C+←−C is the time-ordering operator along the contour −→C +←−C . In the last equality, we joint

the forward and the backward contours, in order to obtain the closed time path C = −→C +←−C .
This yields the expression

ÔH(t) = TC

[
e−i

∫
C

dτ Ĥ′H(τ)OH(t)
]
, (2.8)

which is equivalent to eq. 2.4. In the following we will see that the time-ordering operator Tc is
a key tool in order to study non-equilibrium situations, as it will allow us to formulate a theory
that resides on the CTP.
While constructing a theory along the CTP, we have to consider Green’s functions because

they allow us to calculate physical quantities. We start by introducing the “lesser” and “greater”
Green’s functions:

G<(1, 1′) = ∓i〈Ψ̂†H(1′)Ψ̂H(1)〉, (2.9)

G>(1, 1′) = i〈Ψ̂H(1)Ψ̂†H(1′)〉, (2.10)

where the minus(plus) sign refers to the Bose(Fermi) statistics. Ψ̂H and Ψ̂†H are the field
operators in the Heisenberg picture of the Hamiltonian Ĥ and the short hand notation 1 ≡
(r1, t1) and 1′ ≡ (r1′ , t1′) is being used. It is noteworthy that it is possible to express the
average probability density of the particle species described by the field Ψ̂ in terms of the lesser
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2 Non-Equilibrium Field Theory

Green’s function, i.e., n(1) = ±iG<(1, 1). Other physical quantities, such as the particle current
and the energy density, can be expressed in terms of the lesser Green’s function, as well.
Now, we define the closed time path Green’s function

G(1, 1′) = −i〈TC
[
Ψ̂H(1)Ψ̂†H(1′)

]
〉, (2.11)

which plays an analogous role in the non-equilibrium formalism as the causal Green’s function
plays in the equilibrium theory. As we will discuss below, it also can be studied by the means
of perturbation theory using Wick’s theorem. The difficulty now resides on the fact that time
labels not only lie on a forward, but also on the backwards propagating time contour. This
results in a doubling of the degrees of freedom. Proper treatment of the two time labels yields
four different functions:

G(1, 1′) =


G−→
C

(1, 1′), t1, t1′ ∈
−→
C

G>(1, 1′) t1 ∈
←−
C , t1′ ∈

−→
C

G<(1, 1′) t1 ∈
−→
C , t1′ ∈

←−
C

G←−
C

(1, 1′), t1, t1′ ∈
←−
C

. (2.12)

Here, we introduced the “casual” or time-ordered Green’s function G−→
C
,

G−→
C

(1, 1′) = −i〈T
[
Ψ̂H(1)Ψ̂†H(1′)

]
〉,

and the anti-time-ordered Green’s function,

G←−
C

(1, 1′) = −i〈T̃
[
Ψ̂H(1)Ψ̂†H(1′)

]
〉.

The “lesser” and “greater” were already defined in eq. 2.9 and 2.10.
Since G−→

C
+ G←−

C
= G> + G<, there are only three linearly independent functions, making

one of the four Green’s functions redundant. There exists a variety of representations in the
literature, which are all similar to each other1, but for our discussion below and in the upcoming
chapters, we will keep using G≷ and will define the advanced and retarded Green’s functions as

Gadv = −θ(t1′ − t1)
[
G>(1, 1′)−G<(1, 1′)

]
, (2.13)

Gret = θ(t1 − t1′)
[
G>(1, 1′)−G<(1, 1′)

]
, (2.14)

where θ is the Heaviside step function. In this representation we observe that Gret − Gadv =
G> − G<. As a side remark, we want to mention that the lesser-greater formulation is very
advantageous and widely used on strongly correlated electron systems at non-equilibrium when
using the non-crossing approximation [32, 33].

After all these definitions, we return to the closed time path Green’s function. We need to
find a more tractable way to deal with eq. 2.11, and transform it, such that Wick’s theorem
can be used. The first step towards this aim is to perform a similar analysis to the one done in
order to derive the relation between the closed time contour and the two Heisenberg pictures

1 One can introduce a 2 × 2-matrix representation of the closed contour Green’s function. Using similarity
transformations one can find various types of representations.
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2.2 Real-Time Formalism

for H and H. Inserting eq. 2.8 into eq. 2.11 yields

G(1, 1′) = −i〈TC1

[
e
−i
∫
C1

dτ Ĥ′H(τ)Ψ̂H(1)
]
TC1′

[
e
−i
∫
C1′

dτ Ĥ′H(τ)
Ψ̂†H(1′)

]
〉,

= −i〈TC1+C1′

[
e
−i
∫
C1+C1′

dτ Ĥ′H(τ)
Ψ̂H(1)Ψ̂†H(1′)

]
〉

= −i〈TC
[
e−i

∫
C

dτ Ĥ′H(τ)Ψ̂H(1)Ψ̂†H(1′)
]
〉, (2.15)

where the contour C1(C1′) starts at t0, propagates forward in time, passes through t1(t1′), and
returns to t0. In the last equality we introduced the combined contour C = C1 + C1′ , which
starts at t0, stretches till max (t1, t1′) (or all the way to +∞), and goes back again to t0.
In order to obtain the perturbation theory expressions for the contour-ordered Green’s

functions, we need to performe one additional transformation. Recall that the Hamiltonian
Ĥ = Ĥ0 + Ĥi consists of a term quadratic in the fields, Ĥ0, which describes the non-interacting
particles, and a complicated term Ĥi, describing the interactions. However, Wick’s theorem
only works for Ĥ0 (i.e., quadratic Hamiltonians). After carrying out the transformation, the
contour-ordered Green’s function reads

G(1, 1′) = −i〈TC

[
e
−i
∫
C

dτ
[
Ĥi
H0

(τ)+Ĥ′H0
(τ)
]
Ψ̂H0(1)Ψ̂†H0

(1′)
]
〉. (2.16)

This is an important result, since it is exact. The fact that the field operators appear in terms
of the quadratic Hamiltonian allows us to use Wick’s theorem and in particular to construct
Feynman diagrams for the non-equilibrium problem.
Comparing eq. 2.16 with its equilibrium field theory analog, we observe the absence of the

expectation value 〈TC

[
e
−i
∫
C

dτ
[
Ĥi
H0

(τ)+Ĥ′H0
(τ)
]]
〉 in the denominator. This suggest that the

non-equilibrium perturbation theory has a simpler structure than standard equilibrium theory,
since there is no need for canceling unlinked or disconnected diagrams
Finally, it is worth mentioning that the equilibrium and non-equilibrium theory are struc-

turally equivalent. Their only difference resides on the time integration, which is carried out
along the real time axis in the equilibrium case and along the closed time contour in the non-
equilibrium case.

2.2 Real-Time Formalism

In spite of the fact, that eq. 2.16 is an exact result and it is possible to compute it perturbatively,
like in the equilibrium case, it lacks physical transparency. For this reason, our approach requires
a way to bring back all the quantities to “real time”. In the literature one can find many different
formulations. For a review see [27] and the referred literature therein. Here, we will follow the
analytical continuation procedure, which in the literature is also referred to as the “Langereth
rules” (see [34]).
In the previous section we discussed that the contour-ordered Green’s function has the same

perturbative expansion as the corresponding time-ordered Green’s function. Hence, provided
that we can define a self-energy Σ[G] that contains the interactions between particles, the

9



2 Non-Equilibrium Field Theory

contour-ordered Green’s function will satisfy the non-equilibrium Dyson equation

G(1, 1′) = G0(1, 1′) +
∫
C
d2G0(1, 2)U(2)G(2, 1′) +

∫
C
d2
∫
C
d3G0(1, 2)Σ(2, 3)G(3, 1′), (2.17)

where we assumed, that the non-equilibrium external force can be represented as a one-body
potential. Here

∫
C d2 ≡

∫
dr2

∫
C dt2, and the subscript C refers to the time integration along

the CTP.
An alternative formulation of eq. 2.17 is the equation of motion for the Green’s function,

which can be derived by the means of the Heisenberg equation of motion for the field operators.
Making use of conserving approximations, which will be discussed in the next chapter in the
context of Bose-condensed gases, we can replace the many-particle correlation function on the
right hand side by a convolution of the self-energy and the one-particle Green’s function. Thus,[

i
∂

∂t1
+ ∇2

1
2m − Vtrap(r1)− U(1)

]
G(1, 1′) = δC(1− 1′) +

∫
C
d2 Σ(1, 2)G(2, 1′), (2.18)

where H0 = −∇2/2m+Vtrap is the non-interacting a Hamiltonian, and Vtrap is a time independ-
ent trapping potential. While deriving the equation of motion, we have to take into account
the four different cases originating from the proper treatment of the time arguments of the field
operators. This results in the modified delta distribution

δC(1− 1′) = δ(r1 − r1′) ·


δ(t1 − t1′), t1, t1′ ∈

−→
C

−δ(t1 − t1′), t1, t1′ ∈
←−
C

0, else
, (2.19)

with −→C (←−C ) being the forward(backwards) evolving branch of the closed contour.
An alternative way to obtain eq. 2.18 is to multiply eq. 2.17 by G−1

0 (1, 1), then integrate
over “1”, and use

∫
C d1G−1

0 (1, 1)G0(1, 1′) = δC(1− 1′).
If we are not interested in the initial correlations, we can set t0 → −∞, and end up with

the contour CK, which was introduced by Keldysh (1964). The contour CK, depicted in fig.
2.2, consists of two branches: one extending from −∞ to ∞ and one from ∞ to −∞. The
information lost by this procedure is related to the initial correlations.

CK

t

Figure 2.2: The Keldysh closed time path or real-time closed contour.

In the following chapters we will consider various non-equilibrium setups, which we will
study by the means of the equation of motion for the Green’s function. Evaluating eq. 2.18 we
encounter terms with the structure C = A⊗B, or more explicitly

C(t1, t1′) =
∫
CK

dτ A(t1, τ)B(τ, t1′) (2.20)
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2.2 Real-Time Formalism

and their generalizations involving convolutions of three or even more correlators. For simplicity,
we will exclude the spacial dependence in following analysis, since we are presently concerned
with the temporal dynamics.
Now let us assume that in eq. 2.20 t1 is on the upper(lower) branch of the Keldysh con-

tour CK and t1′ resides on the lower(upper) branch. This means that we are analyzing the
“lesser”(“greater”) function of C. As it is explained in Appendix A, after the deformation of
the integration contour CK, one obtains

C≶(t1, t1′) =
∞∫
−∞

dt
[
Aret(t1, t)B≶(t, t1′) +A≶(t1, t)Badv(t, t1′)

]
. (2.21)

Notice, that we use greek letters for the integration variable along the closed contour and latin
letters for the real time integration. We will keep this notation for the rest of this section.
Apart from the lesser/greater components, one often needs the retarded and advanced com-

ponent of the convolution of two functions defined on the Keldysh contour. The required
expression is obtained by using the definitions 2.13 and 2.14, and the result 2.21, and reads

Cadv/ret(t1, t1′) =
∞∫
−∞

dt Aadv/ret(t1, t)Badv/ret(t, t1′). (2.22)

While considering various terms in the diagrammatic expansion, one may come across terms
where two propagator lines run anti(parallel). In this case we have to compute the lesser/greater
and the advanced/retarded components of the structures

D(τ, τ ′) = A(τ, τ ′)B(τ, τ ′) (2.23)
E(τ, τ ′) = A(τ, τ ′)B(τ ′, τ), (2.24)

where τ and τ ′ are contour variables. The derivation for the lesser/greater and advanced/retarded
expressions is similar to the analysis done for the convolution 2.20. In table 2.1, we give the
results for these expressions together with other “Langereth rules”.

Using eq. 2.21 and 2.22, we can compute the equations of motion for the lesser/greater
Green’s functions[
i
∂

∂t1
+ ∇2

1
2m − Vtrap(r1)− U(1)

]
G≶(1, 1′) =

∞∫
−∞

d2
[
Σret(1, 2)G≶(2, 1′) + Σ≶(1, 2)Gadv(2, 1′)

]
,

(2.25)
and for the retarded Green’s function[
i
∂

∂t1
+ ∇2

1
2m − Vtrap(r1)− U(1)

]
Gadv/ret(1, 1′) = δ(1− 1′) +

∞∫
−∞

d2 Σadv/ret(1, 2)Gadv/ret(2, 1′).

(2.26)
Eq. 2.25 and 2.26 form a set of closed integro-partial-differential-equations (IPDE), and are
the main tool we will later apply to a variety non-equilibrium situations.
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2 Non-Equilibrium Field Theory

Contour Real Time

C =
∫
C
AB C≶ =

∫
t

[
A≶Badv +AretB≶

]
Gret =

∫
t
AretBret

D =
∫
C
ABC

D≶ =
∫
t

[
AretBretC≶ +AretB≶Cadv +A≶BadvCadv

]
Dret =

∫
t
AretBretCret

D(τ, τ ′) = A(τ, τ ′)B(τ, τ ′)
D≶(t, t′) =A≶(t, t′)B≶(t, t′)
Dret(t, t′) =A<(t, t′)Bret(t, t′) +Aret(t, t′)B<(t, t′)

+Aret(t, t′)Bret(t, t′)

E(τ, τ ′) = A(τ, τ ′)B(τ ′, τ)
E≶(t, t′) =A≶(t, t′)B≷(t, t′)
Eret(t, t′) =A<(t, t′)Badv(t′, t) +Aret(t, t′)B<(t′, t)

Table 2.1: Langereth rules.
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CHAPTER 3

Non-Equilibrium Theory of a Bose Gas at Low
Temperatures

In this chapter we consider a bosonic gas at low temperature, which is subject to a time-
dependent trapping potential. In order to describe the dynamics of such a system, we will
make use of the Keldysh formalism, which was presented in chapter 2 and has proven to be a
useful approach to study non-equilibrium situations. After deriving the general set of equations
of motion describing such a system, we will discuss the conserving approximations, which will
provide a tractable way of dealing with the infinite hierarchy of correlators involved in the
equations of motion. Towards the end of this chapter, we will introduce further approximations
based on physical reasoning in order to make a connection between the general equations of
motion describing a Bose-condensed gas and the Boltzmann-like equation derived by Griffin et
al [35, 36].

3.1 The Kinetic Equations

A system of weakly interacting atoms of bosonic nature, which are subject to a trapping po-
tential, is most generally described by the Hamiltonian

Ĥ =
∫

dr Ψ̂†(r, t)
(
− 1

2m∇2 + Vext(r, t)
)

Ψ̂(r, t) + g

2

∫
dr Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t), (3.1)

where Ψ̂(r, t) is a bosonic field operator and Vext the time-dependent trapping potential. Ad-
ditionally, we have assumed a contact interaction between the bosons with g = 4πas/m (as is
the s-wave scattering length).
At low temperatures most of the bosons occupy the lowest state of energy. As a consequence,

averages of normal products of the bosonic field operator Ψ̂(r, t) are not only non-vanishing,
but can actually be arbitrarily large, and this should be taken into account when constructing
a field theoretical approach. Therefore, the generalization of the methods of quantum field
theory to the case of a system of interacting bosons at temperatures below the temperature of
Bose-Einstein condensation contains large difficulties. Nevertheless, the appropriate formalism
for equilibrium situations has been developed by S. T. Beliaev [37].
The treatment of non-equilibrium dynamics of a Bose-condensed gas involves the formalism
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

developed by Beliaev and the Schwinger-Keldysh close-time path formalism (see chapter 2). A
detailed review on this approach can be found in [38] and we will follow it in this chapter.

We start by denoting the mean field or the expectation value of the operator by Ψ0(r, t) =
〈Ψ̂(r, t)〉 and the fluctuation operator by ϕ̂(r, t) = Ψ̂(r, t) − Ψ0(r, t). Physically, |Ψ0(r, t)|2 is
the condensate density at position r and time t. The bosonic propagator splits into C + G,
where

C(1, 1′) = −i
(

Ψ0(1)Ψ∗0(1′) Ψ0(1)Ψ0(1′)
Ψ∗0(1)Ψ∗0(1′) Ψ∗0(1)Ψ0(1′)

)
(3.2)

is the propagator related to the condensate fraction of the gas, and

G(1, 1′) =− i
(
〈TCϕ̂(1)ϕ̂†(1′)〉 〈TCϕ̂(1)ϕ̂(1′)〉
〈TCϕ̂†(1)ϕ̂†(1′)〉 〈TCϕ̂†(1)ϕ̂(1′)〉

)

=
(
G(1, 1′) F (1, 1′)
F (1, 1′) G(1, 1′)

)
, (3.3)

the non-condensate particle Green’s function. Here we used the short hand notation 1 ≡ (r, t),
1′ ≡ (r′, t′), which was introduced in chapter 2, TC denotes the time ordering along the Keldysh
contour, i.e., both Green’s functions G and F become 2 × 2 matrices in Keldysh space with
their time arguments lying on the real time contour.

The associated Dyson’s equations on the CTP for C and G read∫
C
d2
[
G−1

0 (1, 2)− SHF (1, 2)
]
C(2, 1′) =

∫
C
d2S(1, 2)C(2, 1′), (3.4)

∫
C
d2
[
G−1

0 (1, 2)−ΣHF (1, 2)
]
G(2, 1′) = 1δC(1− 1′) +

∫
C
d2 Σ(1, 2)G(2, 1′), (3.5)

where
∫
C d1 ≡

∫
dr1

∫
C dt1, 1 is the 2× 2 identity matrix and the subscript C denotes the time

integration along the CTP. Moreover, we have decomposed the self-energies into their Hartree-
Fock local parts SHF and ΣHF and their non-local part S and Σ, respectively. The non-local
parts contain the information about collisions. Here, the bare 2 × 2 propagator G0 is defined
by

G−1
0 (1, 1′) =

[
iτ 3

∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1
]
δ(1− 1′), (3.6)

where
τ 3 =

(
1 0
0 −1

)
. (3.7)

The self-energies can be obtained within the framework of conserving approximations [12, 25,
36, 38]. We will discuss the choice of the approximation in the next section, but for the moment
we will keep them unspecified.

Now, making use of real-time formalism in eq. 3.4 and 3.5 we obtain

∞∫
−∞

d2
[
G−1

0 (1, 2)− SHF (1, 2)
]
C(2, 1′) = −i

t1∫
−∞

d2γ(1, 2)C(2, 1′), (3.8)
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3.1 The Kinetic Equations

∞∫
−∞

d2
[
G−1

0 (1, 2)−ΣHF (1, 2)
]
G≷(2, 1′) = −i

t1∫
−∞

d2 Γ(1, 2)G≷(2, 1′)+i
t1′∫
−∞

d2Σ≷(1, 2)A(2, 1′),

(3.9)
where the time integrations now performed along the intervals specified at the boundaries. The
single particle excitations spectral function A is defined as

A(1, 1′) = i
[
G>(1, 1′)−G<(1, 1′)

]
=

(
AG(1, 1′) AF (1, 1′)
AF (1, 1′) AG(1, 1′)

)
, (3.10)

and the for the non-local self-energies given by

Γ(1, 1′) = i
[
Σ>(1, 1′)−Σ<(1, 1′)

]
=

(
ΓG(1, 1′) ΓF (1, 1′)
ΓF (1, 1′) ΓG(1, 1′)

)
(3.11)

and

γ(1, 1′) = i
[
S>(1, 1′)− S<(1, 1′)

]
=

(
γG(1, 1′) γF (1, 1′)
γF (1, 1′) γG(1, 1′)

)
. (3.12)

It convenient to express the evolution equation 3.9 in terms of two independent two-point
functions, which can be associated to the commutator and anticommutator of the field operators
ϕ̂ and ϕ̂† [39–41]. The reason for this will become clear in section 3.5, when we explain how
to treat the terms including the non-local self-energies. Now, we introduce the single particle
excitations statistical function

F (1, 1′) =1
2
[
G>(1, 1′) +G<(1, 1′)

]
=
(
FG(1, 1′) FF (1, 1′)
FF (1, 1′) FG(1, 1′)

)
. (3.13)

The whole evolution of the dynamics of the non-condensed particles can be encoded in the
spectral function 3.10 and the statistical propagator 3.13, which contain the information about
the spectrum and the occupation number, respectively. Taking the difference and sum of eq.
3.9 for the lesser (<) and greater (>) component of G, we obtain the evolution equations in
terms of the spectral function and statistical propagator,

∞∫
−∞

d2
[
G−1

0 (1, 2)−ΣHF (1, 2)
]
A(2, 1′) = −i

t1∫
t1′

d2 Γ(1, 2)A(2, 1′), (3.14)
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

∞∫
−∞

d2
[
G−1

0 (1, 2)−ΣHF (1, 2)
]
F (2, 1′) = −i

 t1∫
−∞

d2 Γ(1, 2)F (2, 1′)−
t1′∫
−∞

d2 Π(1, 2)A(2, 1′)

 ,
(3.15)

where Π is the statistical function related to non-local self-energy and is defined as

Π(1, 1′) =1
2
[
Σ>(1, 1′) + Σ<(1, 1′)

]
=
(

ΠG(1, 1′) ΠF (1, 1′)
ΠF (1, 1′) ΠG(1, 1′)

)
. (3.16)

After a careful evaluation of the integrals on the left hand sides of eq. 3.14 and 3.15, we obtain

[
iτ 3

∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1−ΣHF (1)

]
A(1, 1′) = −i

t1∫
t1′

d2 Γ(1, 2)A(2, 1′), (3.17)

[
iτ 3

∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1−ΣHF (1)

]
F (1, 1′) = −i

t1∫
−∞

d2 Γ(1, 2)F (2, 1′)

+ i

t1′∫
−∞

d2 Π(1, 2)A(2, 1′), (3.18)

where we have used the fact that ΣHF is local, i.e. ΣHF (1, 1′) = ΣHF (1)δ(1− 1′). These two
equations describe the full time dynamics of the non-condensed particles and are coupled to
the equation of motion for the condensate propagator,

[
iτ 3

∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1− SHF (1)

]
C(1, 1′) = −i

t1∫
−∞

d2γ(1, 2)C(2, 1′), (3.19)

which was obtained by carrying out the integral on the left hand side of eq 3.8 and using the
locality of SHF .
Now, having a general system of equations describing the temporal dynamics of a Bose-

condensed gas in a trapping potential, we will proceed with the classification of the self-energy
approximations which are needed in order to make the equations more tractable.

3.2 Self-Energy Approximations

In the previous section, we derived a general set of equations describing the time dependent
dynamics of an interacting Bose gas at low temperatures. In the derivation we did not specify the
approximations used for the self-energies. Since the progatorsA, F andC are traced quantities,
it is not possible to obtain a closed set of equations, and one gets complicated equations for an
infinite hierarchy of the correlation functions [27]. In order to find a tractable way to deal with
the equations of motion, one has to truncate the diagrammatic expansion for the propagators.
In addition, it is necessary to treat the condensed and non-condensed particles at equal footing
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3.2 Self-Energy Approximations

[41]. This can be done using the so-called “Φ-derivable” (or conserving approximation).

3.2.1 Conserving Approximations and the Generating Functional

Before we proceed to give the self-energies corresponding to the the interatomic interactions,
we review some general aspects of conserving approximations. Conserving approximations are
based on self-consistent approximations for the one-particle propagator. One assumes that it
is possible to find a functional, such that from its functional derivative with respect to the
one-particle propagator one can obtain the self-energy function , i.e.

S(1, 1′) = δΦ
δC(1, 1′) and Σ(1, 1′) = δΦ

δG(1, 1′) (3.20)

If one requires the intrinsic conservations laws at each vertex in the diagrammatic expansion,
the existence of such a Φ is guarantied. In addition, one can prove that the density response
functions related to the one-particle propagator satisfy all the over-all conservation laws [24,
25]. We now proceed to illustrate the conserving character of a “Φ-derivable” approximation
by showing how the overall particle number conservation arises as consequence of requiring the
existence of such a Φ.
Under variation of C and G the generating functional transforms as

δΦ = 1
2

∫
d1
∫

d1′Tr
[

δΦ
δC(1, 1′)δC(1′, 1) + δΦ

δG(1, 1′)δG(1′, 1)
]
, (3.21)

where Tr denotes the trace and the pre-factor 1/2 appears as a consequence of the spinor
representation that is used.
The first-order change in Φ induced by the gauge transformation

C(1, 1′) −→C̃(1, 1′) ≡ e−iθ(1)τ3C(1, 1′)eiθ(1′)τ3

G(1, 1′) −→G̃(1, 1′) ≡ e−iθ(1)τ3G(1, 1′)eiθ(1′)τ3 (3.22)

is

δΦ =− i

2

∫
d1
∫

d1′Tr
[
S(1, 1′)

(
θ(1′)τ 3C(1′, 1)− θ(1)C(1′, 1)τ 3

)]
− i

2

∫
d1
∫

d1′Tr
[
Σ(1, 1′)

(
θ(1′)τ 3G(1′, 1)− θ(1)G(1′, 1)τ 3

)]
= i

2

∫
d1 θ(1)

∫
d1′Tr

[
τ 3
(
S(1, 1′)C(1′, 1)−C(1, 1′)S(1′, 1)

)]
+ i

2

∫
d1 θ(1)

∫
d1′Tr

[
τ 3
(
Σ(1, 1′)G(1′, 1)−G(1, 1′)Σ(1′, 1)

)]
, (3.23)

where in the last equality we used the fact that the trace Tr is invariant under cyclic permuta-
tions.
The particle number conservation at each vertex in φ requires that the number of ingoing

lines must equal the number of outgoing lines. As a consequence the functional Φ must be
invariant under the transformation 3.22 and therefore the coefficient of θ(1) in eq. 3.23 must
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vanish. Thus, we obtain

0 =
∫

d1′Tr
[
τ 3
(
S(1, 1′)C(1′, 1)−C(1, 1′)S(1′, 1)

)]
+
∫

d1′Tr
[
τ 3
(
Σ(1, 1′)G̃(1′, 1)−G(1, 1′)Σ(1′, 1)

)]
. (3.24)

Finally, making use of the equations of motion 3.4 and 3.5 (or their realtime versions 3.8 and
3.9) for C and G and their hermitian conjugated versions, we get

0 =
∫

d1′Tr
[
τ 3
(
G−1

0 (1, 1′)C(1′, 1)−C(1, 1′)G−1
0 (1′, 1)

)]
+
∫

d1′Tr
[
τ 3
(
G−1

0 (1, 1′)G(1′, 1)−G(1, 1′)G−1
0 (1′, 1)

)]
. (3.25)

Carrying out the integrations, using G−1
0 (1, 1′) = [iτ 3∂t1 + ∇2

1/2m − Vext(1)]δ(1 − 1′) =
[−iτ 3∂t1′ + ∇2

1′/2m−Vext(1′)]δ(1− 1′) and substituting at 1′ = 1+, the continuity equation for
the particle number n(1) and the particle current j(1) arises,

∂

∂t1
n(1) + ∇1 · j(1) = 0, (3.26)

where

n(1) = 1
2Tr[iC(1, 1+) + iG(1, 1+)], (3.27)

j(1) = −i
2m(∇1 −∇1′)Tr[τ 3(iC(1, 1′) + iG(1, 1′))]

∣∣∣∣
1=1′

= vθ(1)n0(1) + −i
2m(∇1 −∇1′)Tr[τ 3iG(1, 1′)]

∣∣∣∣
1=1′

, (3.28)

and vθ(1) = ∇1θ(1)/m is the superfluid velocity and n0(1) is the particle density of the condens-
ate. The additional conservation laws can be proven in a similar way, provided the self-energy is
defined via a generating functional Φ, which is a functional of the fully renormalized propagator.
In the next section we will give the self-energies corresponding to the interatomic interaction
in a Bose-condensed gas.

3.2.2 Self-Energies

Now that we have discussed the existence of a functional Φ from which we can derive the
self-energies, we proceed to discussed the two approximations relevant to our work, i.e., the
Bogoliubov-Hartree-Fock (BHF) approximation and the full second-order approximation. Note,
that there is a variety of approximations accounting two particle interactions, which can be
obtained from the functional Φ. This approach is equivalent to the Two-Particle-Irreducible
(2PI) effective action [38, 41]. In this thesis we will not give the exact expression for the
functionals Φ generating the self-energies. Instead we refer to the literature [36, 38, 39, 41] and
limit ourselves to just giving the expressions.

The BHF approximation corresponds to a truncation of Φ retaining only the two-particle-
irreducible diagrams first order in the interaction g. Alternatively, it can also be obtained
by using cumulant expansions up to second order, in which the cumulants containing three
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3.2 Self-Energy Approximations

or four field operators are neglected. This approximation violates the Goldstone’s theorem,
but conserves energy and particle number density [41–43]. The BHF approximation neglects
multiple scatterings and can be interpreted in terms of the parameter gt < Etrap (where t is
the time of evolution and Etrap bare energy expectation of trap) and is, therefore, suitable for
the description of short time dynamics or weak interactions strengths [41, 44].
The self-energies within the BHF approximations are

SHF (1, 1′) = ig

(1
2Tr

[
C(1, 1′)

]
+
{1

2Tr
[
G(1, 1′)

]
1 +G(1, 1′)

})
δ(1− 1′) (3.29)

for the condensate fraction,

1′1

1′11′1

Figure 3.1: The solid and dashed lines represent the 2 × 2 non-condensed particles propagator and the
condensate propagator, respectively. The wavy are associated to the interatomic potential gδ(1− 1′).

and

ΣHF (1, 1′) = ig

({1
2Tr

[
C(1, 1′)

]
1 +C(1, 1′)

}
+
{1

2Tr
[
G(1, 1′)

]
1 +G(1, 1′)

})
δ(1− 1′).

(3.30)
for the non-condensed particles.

1 1 1′

1 1 1′
1′

1′

Figure 3.2: The solid and dashed lines represent the 2 × 2 non-condensed particles propagator and the
condensate propagator, respectively. The wavy lines are associated to the interatomic potential gδ(1−1′).

The Feynman diagrams representing the first order BHF approximation are shown in fig. 3.1
and 3.2 for the condensate self-energy and the non-condensate self-energy, respectively. Their
analytical expressions are given in eq. 3.29 and 3.30. The order of the contributing terms in
those equations matches the order of the diagrams in fig. 3.1 and 3.2.
To obtain the full second-order contributions to the self-energy, the terms second-order in g

must be included in the functional Φ. In doing so, one obtains the following expression for the
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

self-energy related to the non-condensed particles

Σ(1, 1′) =− g2

2
{
G(1, 1′)Tr

[
C(1′, 1)G(1, 1′)

]
+G(1, 1′)Tr

[
C(1, 1′)G(1′, 1)

]
+C(1, 1′)Tr

[
G(1, 1′)G(1′, 1)

]
+G(1, 1′)Tr

[
G(1, 1′)G(1′, 1)

]
+ 2G(1, 1′)G(1′, 1)C(1, 1′) + 2C(1, 1′)G(1′, 1)G(1, 1′)
+ 2G(1, 1′)C(1′, 1)G(1, 1′) + 2G(1, 1′)G(1′, 1)G(1, 1′)

}
. (3.31)

111

111

1

1

1′1′1′1′

1′1′1′1′

Figure 3.3: The solid and dashed lines represent the 2 × 2 non-condensed particles propagator and the
condensate propagator, respectively. The wavy lines are associated to the interatomic potential gδ(1−1′).

The diagrammatic representation of equation 3.31 is shown in fig. 3.3. Again, the order of
the terms entering eq. 3.31 corresponds to the order of the diagrams in the figure.
Finally, the condensate self-energy is given by

S(1, 1′) = −g
2

2
{
G(1, 1′)Tr

[
G(1, 1′)G(1′, 1)

]
+ 2G(1, 1′)G(1′, 1)G(1, 1′)

}
, (3.32)

where the first term in the brackets corresponds to the fourth diagram in the upper row and
the second term to the fourth diagram in the lower row of fig. 3.3.
In spite of the fact that only terms up to second order in g are kept, one can go beyond

the second-order truncation by solving the equations in a self-consistent way. The second order
contributions lead to a system of IPDE, which depend on the time history of the system. Taking
all these memory effects into account is equivalent to the self-consistent solution of the problem.

3.3 Gross-Pitaevskii Equation
As it was pointed out in section 3.1, at low temperatures most of the atoms in a bosonic gas
occupy the lowest energy state. This implies that the expectation value of the field operator
Ψ0(1) = 〈Ψ̂(1)〉 does not vanish and can take arbitrary large values. We will refer from now on
to Ψ0(1) as the macroscopic condensate wave function. At the same time Ψ0 is the associated
order parameter describing the phase transition to Bose-Einstein condensation.
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3.3 Gross-Pitaevskii Equation

Now let us consider the situation, where a trapped, weakly interacting bosonic gas is at zero
temperature. In this case, it is a good approximation to neglect the quantum fluctuations and
constrain our analysis to the macroscopic wave function Ψ0. The equation of motion for the
order parameter can be obtained from eq. 3.19 for the condensate propagator by neglecting all
terms involving the quantum fluctuations,[

iτ 3
∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1− SHF (1)

]
C(1, 1′) = 0. (3.33)

The upper left component of equation 3.33 reads[
i
∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1) + g|Ψ0(1)|2

)]
Ψ0(1)Ψ∗0(1′) = 0. (3.34)

Since there is no differential operator acting on the function Ψ∗0(1′), we can divide both sides
of the equation by it and obtain the Gross-Pitaevskii-equation (GPE)[

i
∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1) + g|Ψ0(1)|2

)]
Ψ0(1) = 0. (3.35)

This equation was derived independently by Gross and Pitaevskii and is one of the most fre-
quently used theoretical tools for investigating non-uniform dilute Bose gases at low temper-
atures [45]. Coherence and interaction effects can be investigated within the framework of the
GPE. It has the form of a mean field equation where the order parameter must be calculated
in a self-consistent way. The GPE can also be obtained from the functional integral formalism
by requiring that the action is stationary with respect to variations of the mean field Ψ0 [46].
As we discussed in section 3.1, the macroscopic wave function Ψ0(1) is related to the con-

densate particle density n0(1). Thus, it is normalized to the total condesate particle number

N0(t1) =
∫

dr1 |Ψ0(r1, t1)|2. (3.36)

This implies that the order parameter Ψ0(1) is equal to the square root of the condensate
density n0(1) up to a multiplicative factor, i.e.

Ψ0(1) = eiθ(1)
√
n0(1), (3.37)

where θ(1) is the phase of the condensate wave function.
This mean field approximation is also a conserving approximation. The overall conservation

laws are guaranteed. We want to illustrate the conserving character of the GPE by proving the
particle number conservation.
Inserting the definition of the order parameter 3.37 into eq. 3.35 and equating the real and

imaginary parts, we obtain

∂

∂t1
n0(1) + ∇1 · (n0(1)vθ(1)) = 0, (3.38)

∂

∂t1
θ(1) + 1

2mvθ(1)2 + Vext(1) + gn0(1)− ∇2
1
√
n0(1)

2m
√
n0(1)

= 0 (3.39)

where vθ is the superfluid velocity as defined at the end of section 3.2.1. It is also worth noticing
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

that the continuity equation for the condensate at the mean field level can be recovered by
neglecting the quantum fluctuations in eq. 3.26. Moreover, the equations for n0 and θ form
a closed set of coupled hydrodynamic equations, exactly equivalent to the GPE. The term
proportional to the gradient of the density in eq. 3.39 is called the “quantum pressure” and is
a consequence of the Heisenberg uncertainty principle [45].
The small oscillations of the condensate are sound waves, according to the set of hydro-

dynamic equations 3.38 and 3.39 and the Goldstone’s theorem. Quantum mechanically, these
oscillations correspond to phonons and can be well described by a proper quantization of the
dynamical variables of the system, which are the density n0 and the phase θ. At the semi-
classical level the hydrodynamic equations can be obtained by making use of the Hamilton
formalism. Equating the Poisson bracket of the overlying Hamilton function with the corres-
ponding dynamical variable, one gets the hydrodynamic equations 3.38 and 3.39. This means
that the Poisson bracket of n0 and θ is non-zero and these variables are canonical conjugated.
After proper quantization one obtains

n̂0(r1, t1)θ̂(r1′ , t1′)− θ̂(r1′ , t1′)n̂0(r1, t1) = iδ(r1 − r1′). (3.40)

Here we used the “hat” in order to differentiate the quantized operators n̂0 and θ̂ from the
dynamical variables n0 and θ. The quantization has the advantage of making the theory
applicable to highly-correlated systems.

3.4 Bogoliubov-Hartree-Fock Approximation

The first step going beyond the mean-field approximation described in the previous section, is
to include the quantum fluctuations and retain only the terms first order in g. In doing so, one
ends up with a system of coupled partial-differential equations[

iτ 3
∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1−ΣHF (1)

]
A(1, 1′) = 0, (3.41)

[
iτ 3

∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1−ΣHF (1)

]
F (1, 1′) = 0 (3.42)

for non-condensed particles and[
iτ 3

∂

∂t1
−
(
− 1

2m∇2
1 + Vext(1)

)
1− SHF (1)

]
C(1, 1′) = 0 (3.43)

for the condesate. The equations are coupled via the BHF self-energies SHF and ΣHF , which
are given by eq. 3.29 and 3.30, respectively. Expressing the self-energies in terms of the spectral
and statistical function on the real time contour, one gets

SHF (1) ≡
(
SHF (1) WHF (1)
W

HF (1) S
HF (1)

)

=ig
(1

2Tr
[
C(1, 1+)

]
1 +

{1
2Tr

[
F (1, 1+)

]
1 + F (1, 1+)

})
, (3.44)
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3.4 Bogoliubov-Hartree-Fock Approximation

ΣHF (1) ≡
(

ΣHF (1) ΩHF (1)
ΩHF (1) ΣHF (1)

)

=ig
({1

2Tr
[
C(1, 1+)

]
1 +C(1, 1+)

}
+
{1

2Tr
[
F (1, 1+)

]
1 + F (1, 1+)

})
. (3.45)

It is worth mentioning that these self-energies only contain the symmetrized two-point propag-
ators evaluated at equal points in time and space instead of the time-ordered Green’s functions
G< and F<. Expressing the time ordered propagator G< in terms of the spectral function A
and statistical function F at equal times, one obtains

G<(1, 1′)
∣∣
t1=t1′

= F (1, 1′)
∣∣
t1=t1′

+ i
δ(r1 − r1′)

2 1 (3.46)

This introduces terms proportional to δ(r1 − r1) = δ(0) in the diagonal components of the
self-energies SHF and ΣHF when inserting into eq. 3.29 and 3.30. These terms can be made to
disappear by shifting the energy scale in the Hamiltonian, leading to the expressions eq. 3.44
and 3.45 for the selfenergies.

Taking a closer look at the equations 3.42 and 3.43, we observe that they decoupled from the
equation for the spectral function 3.41, since the A does not appear in the self-energies 3.44 and
3.45. We therefore restrict our further analysis within the framework of BHF approximation
to the equations for statistical function F and the condensate propagator C. In addition, all
the appearing quantities in the selfenergies are evaluated at equal coordinates, so that it is not
necessary to evolve the equations of motion for different arguments 1 and 1′. Equating the
evolution of the statistical function F for equal arguments requires special attention. In order
to find the equations that describe the time evolution of the components of F , we equate the
difference and sum of eq 3.42 with its hermitian conjugated version and then evaluate them at
equal arguments. This yields,

i

(
τ 3

∂

∂t1
F (1, 1′) + ∂

∂t1′
F (1, 1′)τ 3

)∣∣∣∣
1=1′

= ∇1 ·
(
− 1

2m [∇1 −∇1′ ]F (1, 1′)
)∣∣∣∣

1=1′

+ ΣHF (1)F (1, 1)− F (1, 1)ΣHF (1), (3.47)

i

(
τ 3

∂

∂t1
F (1, 1′)− ∂

∂t1′
F (1, 1′)τ 3

)∣∣∣∣
1=1′

= ∇1 ·
(
− 1

2m [∇1 + ∇1′ ]F (1, 1′)
)∣∣∣∣

1=1′

+ 2Vext(1)F (1, 1) + ΣHF (1)F (1, 1) + F (1, 1)ΣHF (1).
(3.48)

Due to the fact that the statistical function is a symmetrized two-point correlation function,
we only need to consider two of its for components. The remaining two can be expressed in
terms of the initial ones by making use of the symmetries of F . In section 3.5, where we go
beyond the BHF approximation, we will exploit these symmetries in order find a tractable way
to deal with the higher-order terms and, therefore, will also give a complete review on these
symmetries. For the moment we just refer to them, and equate the evolution equations for the
upper-left and upper-right components of F . The equation for FG(1, 1) is obtained by taking
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

the upper-left component of eq. 3.47,

i
∂

∂t1
FG(1, 1) = ∇1 ·

(−1
2m [∇1 −∇1′ ]FG(1, 1′)

)∣∣∣∣
1=1′
− ΩHF (1)FF (1, 1)∗ − FF (1, 1)ΩHF (1)∗,

(3.49)

and the equation for FF (1, 1) is extracted from the upper right component of eq. 3.48,

i
∂

∂t1
FF (1, 1) = ∇1 ·

(−1
2m [∇1 + ∇1′ ]FF (1, 1′)

)∣∣∣∣
1=1′

+ 2
(
Vext(1) + ΣHF (1)

)
FF (1, 1)

− ΩHF (1)FG(1, 1)∗ + FG(1, 1)ΩHF (1), (3.50)

with

ΣHF (1) =2g|Ψ0(1)|2 + 2igFG(1, 1), (3.51)
ΩHF (1) =g (Ψ0(1))2 + gFF (1, 1). (3.52)

The equations of motion for FG and FF are coupled to the GPE, which is now modified due
to the presence of the non-condensate particles. This modified GPE is extracted from the
upper-left component of eq. 3.43 ,

i
∂

∂t1
Ψ0(1) =

(
− 1

2m∇2
1 + Vext(1) + g|Ψ0(1)|2 + 2igFG(1, 1)

)
Ψ0(1) + igFF (1, 1)Ψ∗0(1). (3.53)

Eq. 3.49, 3.50 and 3.53 form a closed set of evolution equations. They can be used, as it
was pointed out before, to study of a weakly interacting Bose gas. The smaller the interaction
parameter, the further in time the BHF approximation will be valid.

3.4.1 Conservation Laws

For any closed system, the particle number and the energy are conserved quantities. The
particle number conservation arises as a consequence of the invariance of the Hamiltonian with
respect to a global phase change. The mean density of particles can be expressed in terms of
the condensate wave function Ψ0 and the statistical function FG, as follows

n(1) = |Ψ0(1)|2 + i

(
FG(1, 1) + i

2

)
. (3.54)

The particle number conservation arises as a consequence of self-consistency of the equations of
motion. Now we proceed to prove the conservation of the particle number within the framework
of the BHF approximation. In order to do so, we take the time derivative of 3.54 and make use
of the eq. 3.49 and 3.53,

∂

∂t1
n(1) =− ∇1 ·

( −i
2m [∇1 −∇1′ ] Ψ∗0(1′)Ψ0(1)

)∣∣∣∣
1=1′
− ∇1 ·

( −i
2m [∇1 −∇1′ ] iFG(1, 1′)

)∣∣∣∣
1=1′

=− ∇1 ·
(
n0(1)vθ(1) + −i2m [∇1 −∇1′ ] iFG(1, 1′)

)∣∣∣∣
1=1′

, (3.55)

where in the last equality we expressed Ψ0 in terms of the phase θ and the density n0, according
to eq. 3.37. Note that all term proportional to g cancel with each other and the expression in
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3.4 Bogoliubov-Hartree-Fock Approximation

the brackets in the last equality corresponds to the particle current density.
It is known that the solution of an isolated system excludes dissipation. However the consid-

eration of a non-conserving approximation may introduce some dissipation into the system. If
the self-energies SHF and ΣHF are derived by the means of a conserving approximation (see
section 3.2.2), for instance from a “φ-derivable” functional, the mean energy

〈H〉 = 〈H〉c + 〈H〉exc (3.56)

can be proven to be conserved. The mean energy of the condensate fraction is given by

〈H〉c = i

2Tr
[∫

dr1

{(
−∇2

1
2m + Vext(1)

)
1 + 1

2S
HF (1)

}
C(1, 1+)

]
, (3.57)

and the single particle excitations energy by

〈H〉exc = i

2Tr
[∫

dr1

{(
−∇2

1
2m + Vext(1)

)
1 + 1

2ΣHF (1)
}
F (1, 1+)

]
. (3.58)

In section 3.5 we will extend these results to the full-second order approximation. But now,
before we proceed to include the higher order terms in g, we will discuss the BHF approximation
for a system at equilibrium.

3.4.2 Equilibrium Properties

Within the BHF approximation, there is only one situation in which we expect an equilibrium
solution: when the system has never been disturbed and it remains in its equilibrium state.
We will discuss now how this solution looks like and how it can be obtained from our previous
considerations.
For the equilibrium situation the time dependence of the order parameter is given by

Ψ0(r, t) = Ψ0(r)e−iµt, (3.59)

with µ being the chemical potential. This becomes clearer once we take the average over
stationary states in Ψ0 = 〈Ψ̂〉, whose time dependence is governed by the law e−iEt. Then
the chemical potential reads µ = E(N) − E(N − 1) ∼ ∂E/∂N . In addition, the energies of
the non-condensed particles are measured with respect to the ground state energy, which is µ.
Hence,

ϕ̂(r, t) −→ ϕ̂(r, t)e−iµt. (3.60)

All this corresponds to using the grand canonical Ensemble instead of the canonical, as we have
done so far. In the equilibrium case, the propagator F depends on the difference of the two
time arguments rather than on each of them individually. This allow us to take the Fourier
transform of 3.42 with respect to the time difference.[

τ 3ω −
(
− 1

2m∇2
r + Vext(r)− µ

)
1−ΣHF (r)

]
F (r, r′;ω) = 0, (3.61)

where F (r, r′;ω) =
∫∞
−∞ d(t1−t1′) e−iω(t1−t1′ )F (1, 1′). The appearance of µ in 3.61 is due to the

time evolution of the quantum fluctuations, described in eq. 3.60. Notice that neither Vext(r)
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nor ΣHF (r) are time dependent.

The quasiparticle energy spectrum can be obtain from the zeros of the inverse of the Green’s
function

G−1(r;ω) =

ω − µ+ ∇2
r

2m − Vext(r)− ΣHF (r) −ΩHF (r)
−ΩHF (r)∗ −ω − µ+ ∇2

r
2m − Vext(r)− ΣHF (r)

 . (3.62)

The additional argument related to the coordinate r′ was dropped, because G−1(r, r′) =
G−1(r)δ(r− r′). In order to close the system of equations, we insert eq. 3.59 into the modified
GPE (eq. 3.53) and get

µΨ0(r) =
(
− 1

2m∇2
1 + Vext(r) + g|Ψ0(r)|2 + 2igFG(r, r)

)
Ψ0(r) + igFF (r, r)Ψ∗0(r), (3.63)

where FG(r, r′) =
∫
dωFG(r, r′;ω)/2π and similarly for FF . Eq. 3.62 and 3.63 form a system

of self-consistent equations. At each iteration the chemical potential µ is fixed by equation 3.63
and then inserted into the eigenvalue problem defined by eq. 3.62.

According to the Hungenholtz-Pines theorem, an interacting Bose gas does not exhibit an
energy gap. However, the BHF approximation violates this theorem, because the single-particle
Green’s function G does not have the required phonon-like spectrum at long wavelengths.

This violation of the Hungenholtz-Pines and Goldstone’s theorems can be overcome by im-
plementing the Popov-Hartree-Fock (PHF)- or “gapless”-aproximation, where the anomalous
density FF (r, r′) is neglected [35, 36]. It is intensely studied in the context of Bose-Einstein
condensation in atomic gases and has been applied to the equilibrium density profile of the gas
below the critical temperature. The PHF theory describes the condensate in the presence of a
static cloud of non-condensed particles.

One special case of the PHF approximation is the Bogoliubov theory. In this theory all
the cubic and quartic terms of the quantum fluctuations ϕ̂ in the Hamiltonian are neglected.
This approach is only valid for small fluctuations of the condensate and can not be applied to
liquid helium, but it is expected to be valid for a weakly interacting atomic gas at sufficiently
low temperatures. The Bogoliubov theory can not only make predictions for the condensate
density n0(1) = |Ψ0|2, but also for the collective modes of the condensate. Theoretically, the
eigenfrequencies of the collective modes are again determined by the poles of the one particle
Green’s function G. In order to understand more clearly how this can be done, we limit our
study to a homogeneous Bose gas [30, 45].

For a homogenous gas we can exploit that the Green’s function 3.62 depends on the relative
space coordinate, instead on the two arguments independently. We, therefore, obtain for the
Fourier coefficients of 3.62

G−1(k;ω) =
(
ω − k2

2m − g|Ψ0|2 −g(Ψ0)2

−g(Ψ∗0)2 −ω − k2

2m − g|Ψ0|2

)
, (3.64)

where we used that eq. 3.63 within the framework of the Bogoliubov theory for a homogenous
gas reduces to

µ = g|Ψ0|2. (3.65)
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3.5 Beyond Bogoliubov-Hartree-Fock Approximation

The energy spectrum of the system is given by the zeros of eq. 3.64:

ωk =

√( k2

2m

)2
+ 2g|Ψ0|2

( k2

2m

)
. (3.66)

This is the so called “Bogoliubov dispersion relation” of the collective modes.
For small momenta |k| � mc the dispersion law of the quasiparticle takes a phonon-like

form ωk ≈ c|k|, with c =
√
g|Ψ0|2/m as the sound velocity. This means that the Bogoliubov

approximation predicts that the long wave excitations of a weakly interacting Bose gas are
sound waves. They can be regarded as the Goldstone’s modes associated to the breaking of the
gauge symmetry caused by the Bose-Einstein condensation. In the opposite limit, |k| � mc,
the dispersion relation approaches the free particle law ωk ≈ k2/2m + g|Ψ0|2. With this we
conclude our discussion of the BHF approximation. In the following we will extend our analysis
and include higher order terms.

3.5 Beyond Bogoliubov-Hartree-Fock Approximation

At the begining of this chapter, we introduced the spectral function A and the statistical
function F , defined in eq. 3.10 and eq. 3.13. Similar definitions followed for the non-local
self-energies (see eq. 3.11, 3.12 and 3.16). The reason we expressed the equation of motion in
the language of symmetrized and antisymmetrized two-point correlation functions, instead of
the commonly used time-ordered propagators, is that we can exploit the bosonic commutation
relations. This will become clearer when we explain how do we propagate in time the correlation
functions evaluated at equal times while solving the equations of motion numerically. Moreover,
in section 3.4 we pointed out that it is possible to give the whole system of equations in terms of
the upper-left and upper-right components of A and F , because the remaining two components
can be expressed in terms of the upper ones. Making use of these symmetries, it is only necessary
to consider the two upper components of the self-energies, because the remaining two can be
also expressed in terms of the upper ones. This allows us to finally rewrite the terms involving
higher order processes as a sort of “memory integral”. All this will become clearer in our
discussion below.
Consider now the function AG,

AG(1, 1′) = i
(
G
>(1, 1′)−G<(1, 1′)

)
= −i

(
G>(1, 1′)−G<(1, 1′)

)
= −AG(1, 1′). (3.67)

Similar relations can be found using the bosonic commutation relations in the statistical aver-
ages in the definitions of the time-ordered correlators. A list of these relations is provided in
table 3.1.
Now expressing the full second-order self-energies 3.32 and 3.31 in the language of the spec-

tral and statistical functions and using the symmetry relations listed in the table 3.1, for the
components of spectral function γ of the non-local condensate self-energy (see eq. 3.12) we
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Spectral Function A Statistical Function F

G-component AG(1, 1′) = −AG(1, 1′)∗

= −AG(1′, 1)
FG(1, 1′) = −FG(1, 1′)∗

= FG(1′, 1)

F -component AF (1, 1′) = −AF (1, 1′)∗

= AF (1′, 1)∗
FF (1, 1′) = −FF (1, 1′)∗

= −FF (1′, 1)∗

Table 3.1: Symmetry relations for the symmetrized and antisymmetrized two-point correlation functions.

obtain

γG(1, 1′) = g2
(
FG(1, 1′)

{
4Λ[F, F ∗](1, 1′) + 2Λ[G,G∗](1, 1′)

}
+ AG(1, 1′)

{
4Ξ[F, F ∗](1, 1′) + 2Ξ[G,G∗](1, 1′)

})
, (3.68)

γF (1, 1′) = g2
(
FF (1, 1′)

{
4Λ[G,G∗](1, 1′) + 2Λ[F, F ∗](1, 1′)

}
+ AG(1, 1′)

{
4Ξ[G,G∗](1, 1′) + 2Ξ[F, F ∗](1, 1′)

})
. (3.69)

Analogously, for the spectral function Γ of the non-condesate self-energy we get

ΓG(1, 1′) = 2ig2 (2Ψ∗0(1)Ψ∗0(1′)Λ[F,G](1, 1′) + Ψ∗0(1)Ψ0(1′)Λ[G,G](1, 1′)
−2Ψ0(1)Ψ0(1′)Λ[F ∗, G](1, 1′)− 2Ψ0(1)Ψ∗0(1′)

{
Λ[G,G∗](1, 1′) + Λ[F, F ∗](1, 1′)

})
+ g2

(
FG(1, 1′)

{
4Λ[F, F ∗](1, 1′) + 2Λ[G,G∗](1, 1′)

}
+ AG(1, 1′)

{
4Ξ[F, F ∗](1, 1′) + 2Ξ[G,G∗](1, 1′)

})
, (3.70)

ΓF (1, 1′) = 2ig2 (2Ψ∗0(1)Ψ0(1′)Λ[F,G](1, 1′) + Ψ∗0(1)Ψ∗0(1′)Λ[F, F ](1, 1′)
−2Ψ0(1)Ψ∗0(1′)Λ[F,G∗](1, 1′)− 2Ψ0(1)Ψ0(1′)

{
Λ[G,G∗](1, 1′) + Λ[F, F ∗](1, 1′)

})
+ g2

(
FF (1, 1′)

{
4Λ[G,G∗](1, 1′) + 2Λ[F, F ∗](1, 1′)

}
+ AG(1, 1′)

{
4Ξ[G,G∗](1, 1′) + 2Ξ[F, F ∗](1, 1′)

})
(3.71)

with the definitions

Λ[f, g](1, 1′) = Af (1, 1′)F g(1, 1′) +Ag(1, 1′)F f (1, 1′) (3.72)

Ξ[f, g](1, 1′) = F f (1, 1′)F g(1, 1′)− 1
4A

f (1, 1′)Ag(1, 1′), (3.73)

where g, f ∈ {G,F,G∗, F ∗}, and Ag∗ = (Ag)∗.

Similarly, for the components of the statistical function Π of the non-condensate self-energy
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3.5 Beyond Bogoliubov-Hartree-Fock Approximation

we obtain

ΠG(1, 1′) = 2ig2 (2Ψ∗0(1)Ψ∗0(1′)Ξ[F,G](1, 1′) + Ψ∗0(1)Ψ0(1′)Ξ[G,G](1, 1′)
−2Ψ0(1)Ψ0(1′)Ξ[F ∗, G](1, 1′)− 2Ψ0(1)Ψ∗0(1′)

{
Ξ[G,G∗](1, 1′) + Ξ[F, F ∗](1, 1′)

})
+ g2

(
FG(1, 1′)

{
4Ξ[F, F ∗](1, 1′) + 2Ξ[G,G∗](1, 1′)

}
− 1

2A
G(1, 1′)

{
2Λ[F, F ∗](1, 1′) + Λ[G,G∗](1, 1′)

})
, (3.74)

ΠF (1, 1′) = 2ig2 (2Ψ∗0(1)Ψ0(1′)Ξ[F,G](1, 1′) + Ψ∗0(1)Ψ∗0(1′)Ξ[F, F ](1, 1′)
−2Ψ0(1)Ψ∗0(1′)Ξ[F,G∗](1, 1′)− 2Ψ0(1)Ψ0(1′)

{
Ξ[G,G∗](1, 1′) + Ξ[F, F ∗](1, 1′)

})
+ g2

(
FF (1, 1′)

{
4Ξ[G,G∗](1, 1′) + 2Ξ[F, F ∗](1, 1′)

}
− 1

2A
G(1, 1′)

{
2Λ[G,G∗](1, 1′) + Λ[F, F ∗](1, 1′)

})
. (3.75)

Like in the case of the spectral and statistical functions AG/F and FG/F , the additional two
components of the spectral and statistical functions of the self-energies can be expressed in
terms of their upper-left and upper-right components. They satisfy similar symmetry relations
to those satisfied by the components of A and F . In table 3.2 we summarize them all.

Spectral Self-energy Function Γ (γ) Statistical Self-energy Function Π

G-component

ΓG(1, 1′) = −ΓG(1, 1′)∗

= −ΓG(1′, 1)

γG(1, 1′) = −γG(1, 1′)∗

= −γG(1′, 1)

ΠG(1, 1′) = −ΠG(1, 1′)∗

= ΠG(1′, 1)

F -component

ΓF (1, 1′) = −ΓF (1, 1′)∗

= γF (1′, 1)∗

γF (1, 1′) = −γF (1, 1′)∗

= γF (1′, 1)∗

ΠF (1, 1′) = −ΠF (1, 1′)∗

= −ΠF (1′, 1)∗

Table 3.2: Symmetry relations for the symmetrized and antisymmetrized two-point correlation functions.

The equations of motion involving the non-local self-energies were already given at the be-
gining of this chapter (see eq. 3.17, 3.18 and 3.19). In the BHF approximation, one does not
have to keep track of any “memory effects” and spacial correlation, and the underlying system
of equations reduces to a system of coupled, non-linear partial-differential equations for the
condensate wave function and for the two-point functions evaluated at equal points in space
and time. Unlike BHF approximation, once we include the terms of higher order in g, we
have to evolve the equations taking into account the correlations between the initial and the
intermediate states as well as spacial correlations.
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

Taking the upper-left and upper-right components of eq. 3.17, we obtain

i
∂

∂t1
AG(1, 1′) =

[
− 1

2m∇2
1 + Vext(1) + ΣHF (1)

]
AG(1, 1′)− ΩHF (1)AF (1, 1′)∗

−i
t1∫
t1′

d2
[
ΓG(1, 2)AG(2, 1′) + ΓF (1, 2)AF (2, 1′)

]
, (3.76)

i
∂

∂t1
AF (1, 1′) =

[
− 1

2m∇2
1 + Vext(1) + ΣHF (1)

]
AF (1, 1′)− ΩHF (1)AG(1, 1′)∗

−i
t1∫
t1′

d2
[
ΓG(1, 2)AF (2, 1′) + ΓF (1, 2)AG(2, 1′)

]
. (3.77)

The equations for FG and FF are extracted from eq. 3.18 in the same way:

i
∂

∂t1
FG(1, 1′) =

[
− 1

2m∇2
1 + Vext(1) + ΣHF (1)

]
FG(1, 1′)− ΩHF (1)FF (1, 1′)∗

−i
t1∫
−∞

d2
[
ΓG(1, 2)FG(2, 1′) + ΓF (1, 2)FF (2, 1′)

]
+i

t1′∫
−∞

d2
[
ΠG(1, 2)AG(2, 1′) + ΠF (1, 2)AF (2, 1′)

]
(3.78)

i
∂

∂t1
FF (1, 1′) =

[
− 1

2m∇2
1 + Vext(1) + ΣHF (1)

]
FF (1, 1′)− ΩHF (1)FG(1, 1′)∗

−i
t1∫
−∞

d2
[
ΓG(1, 2)FF (2, 1′) + ΓF (1, 2)FG(2, 1′)

]
+i

t1′∫
−∞

d2
[
ΠG(1, 2)AF (2, 1′) + ΠF (1, 2)AG(2, 1′)

]
. (3.79)

And finally, the “generalized” GPE reads

i
∂

∂t1
Ψ0(1) =

(
− 1

2m∇2
1 + Vext(1) + g|Ψ0(1)|2 + 2igFG(1, 1)

)
Ψ0(1) + igFF (1, 1)Ψ∗0(1)

−i
t1∫
−∞

d2
[
γG(1, 2)Ψ0(2) + γF (1, 2)Ψ∗0(2)

]
. (3.80)

Notice, that with the help of the symmetry relations in table 3.1 and 3.2 we can rewrite all
appearing two-point functions in the integrals on the right hand side of eq. 3.76 - 3.80 with the
argument related to the later time on the left side (see Appendix B). This implies, that we only
need to know the solution of the previous steps while evolving the equations in time. We will
take advantage of this property in the numerical implementation of the equations of motion for
a system of two Bose-condensed gases trapped in a double well potential and the non-trivial
time evolution of an expanding Bose-condensed gas on an optical lattice in chapters 4 and 5,
respectively.
Time propagation of the eq. 3.76 - 3.79 for the two-point correlation functions AG/F and

FG/F evaluated at equal times requires additional care, as it was pointed out in section 3.4. In
the case of the spectral functions AG/F , it is rather simple. The spectral functions involve the
expectation value of the commutator of the quantum fluctuations field operators ϕ̂ and ϕ̂†. For
equal time arguments these commutators have fixed values due to the bosonic commutation
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3.5 Beyond Bogoliubov-Hartree-Fock Approximation

relations. Hence, we get

i
∂

∂t1
AG(1, 1′)

∣∣∣∣
t1=t1′

= 0, (3.81)

i
∂

∂t1
AF (1, 1′)

∣∣∣∣
t1=t1′

= 0. (3.82)

The equations of motion for the statistical function FG/F are obtained in the same way as eq.
3.49 and 3.50 in the BHF approximation. The only difference is that we have to keep track of
the spacial correlations while evolving for equal times and include the integrals involving higher
order terms in g on the right hand side of the equations.

Now that we have derived the full set of coupled IPDE that describe the dynamics of a
bosonic gas in a non-equilibrium situation within the full second-order approximation, we will
proceed to the following section to show that they satisfy the conservation laws.

3.5.1 Conservation Laws

In section 3.4.1 we proved that the particle number within the framework of the BHF approx-
imation is conserved and gave the expression for the mean energy of the isolated gas confined
in a trapping potential. Now we want to prove the particle number conservation within the
framework of the full second-order approximation and finally provide the general expression for
the mean energy of the bosonic gas.

While deriving the continuity equation (see eq. 3.55) in the BHF approximation, we argued
that all the terms first order in g cancel with each other, what becomes clear after inserting
the expressions for the self-energy components ΣHF and ΩHF into the equation of motion for
FG evaluated at equal points in time and space. At first sight, it is not obvious that all the
terms second order in g will cancel when inserting the expressions for the full-second-order self-
energies. In order to demonstrate that this is the case, we start with the equation of motion
for the particle density of the non-condensed particles

i
∂

∂t1
FG(1, 1) = ∇1 ·

(−1
2m [∇1 −∇1′ ]FG(1, 1′)

)∣∣∣∣
1=1′
− ΩHF (1)FF (1, 1)∗ − FF (1, 1)ΩHF (1)∗

+ i

t1∫
−∞

d2
[
ΓG(1, 2)FG(1, 2)∗ + ΓF (1, 2)FF (1, 2)∗ + ΠG(1, 2)AG(1, 2)∗ + ΠF (1, 2)AF (1, 2)∗

]

− i
t1∫
−∞

d2
[
FG(1, 2)ΓG(1, 2)∗ + FF (1, 2)ΓF (1, 2)∗ +AG(1, 2)ΠG(1, 2)∗ +AF (1, 2)ΠF (1, 2)∗

]
,

(3.83)

where we used the symmetries listed in tables 3.1 and 3.2 to rewrite all quantities appearing
in the integrals such that the arguments are in the same order. Inserting the expressions for
the full second-order self-energies, 5.52 - 5.55, and collecting the terms proportional to Ψ0Ψ∗0,
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

Ψ∗0Ψ∗0 and similar, we obtain

i
∂

∂t1
FG(1, 1) = ∇1 ·

(−1
2m [∇1 −∇1′ ]FG(1, 1′)

)∣∣∣∣
1=1′
− ΩHF (1)FF (1, 1)∗ − FF (1, 1)ΩHF (1)∗

+
t1∫
−∞

d2
[
{4Λ[G,G∗] + 2Λ[F, F ∗]}FF + {4Ξ[G,G∗] + 2Ξ[F, F ∗]}AF

]
Ψ∗0(2)Ψ∗0(1)

+
t1∫
−∞

d2
[
{4Λ[F, F ∗] + 2Λ[G,G∗]}FG + {4Ξ[F, F ∗] + 2Ξ[G,G∗]}AG

]
Ψ0(2)Ψ∗0(1)

+
t1∫
−∞

d2
[
{4Λ[G,G∗] + 2Λ[F, F ∗]}

(
FF
)∗

+ {4Ξ[G,G∗] + 2Ξ[F, F ∗]}
(
AF
)∗]

Ψ0(2)Ψ0(1)

+
t1∫
−∞

d2
[
{4Λ[F, F ∗] + 2Λ[G,G∗]}

(
FG
)∗

+ {4Ξ[F, F ∗] + 2Ξ[G,G∗]}
(
FG
)∗]

Ψ∗0(2)Ψ0(1),

(3.84)

where the arguments of all two-point correlation functions are (1, 2), which were omitted for
simplicity. Taking a closer look at the integrals, we observe that the terms contained in the
square brackets can be identified with the full second-order condensate self-energies. Thus,

i
∂

∂t1
FG(1, 1) = ∇1 ·

(−1
2m [∇1 −∇1′ ]FG(1, 1′)

)∣∣∣∣
1=1′
− ΩHF (1)FF (1, 1)∗ − FF (1, 1)ΩHF (1)∗

+
t1∫
−∞

d2
[
γFΨ∗0(2)Ψ∗0(1) + γGΨ0(2)Ψ∗0(1) +

(
γF
)∗

Ψ0(2)Ψ0(1) +
(
γG
)∗

Ψ∗0(2)Ψ0(1)
]
.

(3.85)

Again, we omitted the arguments of the quantities related to the non-condensate particles in
the integrals.
Using the generalized GPE (eq. 3.80) to compute the equation of motion for the condensate

density, we get

∂

∂t1
Ψ∗0(1)Ψ0(1) = −∇1 ·

( −i
2m [∇1 −∇1′ ] Ψ∗0(1′)Ψ0(1)

)∣∣∣∣
1=1′

+
(
g(Ψ∗0(1))2FF (1, 1) + c.c.

)

−
t1∫
−∞

d2
[(
γG
)∗

Ψ∗0(2)Ψ0(1) +
(
γF
)∗

Ψ0(2)Ψ0(1) + γGΨ0(2)Ψ∗0(1) + γFΨ∗0(2)Ψ∗0(1)
]
,

(3.86)

where c.c. refers to the complex conjugated quantity of the other term in the brackets.
Adding eq. 3.85 and 3.86 all the terms of first order in g or higher cancel. The remaining

terms yield the continuity equation for the mean density of gas

∂

∂t1
n(1) =− ∇1 ·

( −i
2m [∇1 −∇1′ ] Ψ∗0(1′)Ψ0(1)

)∣∣∣∣
1=1′
− ∇1 ·

( −i
2m [∇1 −∇1′ ] iFG(1, 1′)

)∣∣∣∣
1=1′

,

(3.87)
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which agrees with the continuity equation derived previously in section 3.4.1.
Including terms of higher order in g also for the mean energy yields,

〈H〉c = i

2Tr
[∫

dr1

{(
−∇2

1
2m + Vext(1)

)
1 + 1

2S
HF (1)

}
C(1, 1+)

]

+ 1
4Tr

 t1∫
−∞

d2γ(1, 2)C(2, 1+)

 (3.88)

and

〈H〉exc = i

2Tr
[∫

dr1

{(
−∇2

1
2m + Vext(1)

)
1 + 1

2ΣHF (1)
}
F (1, 1+)

]

+ 1
4Tr

 t1∫
−∞

d2
{
Γ(1, 2)F (2, 1+)−Π(1, 2)A(2, 1+)

} . (3.89)

for the mean energy of the condensate fraction 〈H〉c and the energy of the single particle
excitations 〈H〉exc, respectively. Their sum can be proven to be constant by inserting the
expressions for the second-order self-energies.

3.6 Quantum-Boltzmann Equation

From the previous considerations, it is clear that the full non-equilibrium quantum dynamics
of a Bose gas are described by a closed set of coupled IPDE, which are very difficult to solve.
As an alternative, one can introduce approximations based on physical considerations. In order
to make some progress, one can use time scale separations, if they are well justified. This can
break the hierarchy of coupled equations, and one obtains a quantum kinetic equation, which
resembles the classical Boltzmann equation, but additionally includes quantum features. This
equation is commonly called Quantum-Boltzmann equation (QBE). For the derivation of the
QBE we will follow the approach used by Zeremba, Nikuni and Griffin [35, 47] and we will
therefore use throughout this section the time-ordered non-condensate propagators G≷ instead
of the spectral function A and statistical function F .
Assuming that we can separate the fast from the slow processes, we can use the “Wigner-

coordinates” and write the correlation function in terms of the center-of-mass coordinate (R, T )
and the relative coordinate (r, τ) given by

R = 1
2 (r1 + r1′) , T = 1

2 (t1 + t1′) (3.90)

r = r1 − r1′ , τ = t1 − t1′ . (3.91)

The center-of-mass coordinates describe the macroscopic properties of the system, governed by
the non-equilibrium features of the state under consideration, as result of an applied external
force, while the relative coordinates describe the microscopic properties of the system.
If the external force applied to the system causes perturbances with a wavelength much longer

than the thermal wavelengths, the propagators G≷(1, 1′) ≡ G≷(R, T ; r, τ) are supposed to vary
slowly as a function of (R, T ) and to be dominated by small values of (r, τ). This assumption
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

means that the system is slightly perturbed away from equilibrium. As we will see, this is an
important assumption for the derivations of the QBE.
However, in the presence of a condensate the order parameter 〈Ψ̂〉 = Ψ0 can be express in

terms of the condensate density n0 and the phase θ, according to eq. 3.37. In equilibrium the
gradient of the phase is related to the superfluid velocity and its time derivative to the chemical
potential. Extending these relations to non-equilibrium yields

∇1θ(1) = mvθ, (3.92)
∂

∂t1
θ(1) = −

(
µ(1) + 1

2mv
2
θ

)
. (3.93)

It can be seen that θ(1) is a rapidly varying function of the center-of-mass coordinates (R, T ),
what induces strong variations in the off-diagonal elements of the propagators C and G≷. We,
therefore, need to remove this strong dependence on the center-of-mass coordinates associated
to the phase θ. In order to do so, we apply the gauge transformation

C(1, 1′) −→C̃(1, 1′) ≡ e−iθ(1)τ3C(1, 1′)eiθ(1′)τ3 ,

G≷(1, 1′) −→G̃≷(1, 1′) ≡ e−iθ(1)τ3G≷(1, 1′)eiθ(1′)τ3 , (3.22)

which was introduced in section 3.2.1. In this gauge the non-condensed particles are moving
with the average velocity vθ with respect to the static condensate and we expect the quantities
C̃, G̃≷ and vθ to be slowly varying with respect to the coordinates (R, T ). Notice that the
gauge-transformed condensate propagator now reads

C̃(1, 1′) = −i
√
n0(1)n0(1′)

(
1 1
1 1

)
, (3.94)

and the equations of motion 3.8 and 3.9 remain invariant if we replace G−1
0 by

G̃
−1
0 (1, 1′) =

[
iτ 3

∂

∂t1
− ∂θ(1)

∂t1
−
(
− 1

2m [∇1 + iτ 3∇1θ(1)]2 + Vext(1)
)

1
]
δ(1− 1′). (3.95)

Since throughout the rest of this section we will use the gauge-transformed functions exclusively,
we will drop the “tildes” to simplify the notation.
We now focus on the single particle excitations and will derive the QBE for the quasiparticles.

The QBE for the quasiparticles is coupled to a “generalized” GPE. Under the slow varying
perturbances approximation, which we are considering in this section, this GPE will look slightly
different with respect to the equation derived in section 3.5.
Now let us proceed to derive the QBE for the quasiparticles. We first take the difference of

eq. 3.9 with its hermitian conjugated version

[
G−1

0 −ΣHF⊗, G≷
]

(1, 1′) = −i
t1∫
−∞

d2 Γ(1, 2)G≷(2, 1′) + i
t1′∫
−∞

d2 Σ≷(1, 2)A(2, 1′)

−i
t1′∫
−∞

d2G≷(1, 2)Γ(2, 1′) + i
t1∫
−∞

d2A(1, 2)Σ≷(2, 1′) (3.96)

where we introduced the notation
[
A⊗, B

]
= A⊗B−B⊗A with ⊗ refering to the convolution
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of two two-point functions, (A⊗B) (1, 1′) =
∫∞
−∞ d2A(1, 2)B(2, 1′).

We now express the the correlation functions in terms of the center-of-mass and relative
coordinates, as given by eq. 3.90 and 3.91. Since Σ≷ is a function of G≷, it happens to be
dominated by small values of the relative coordinates (r, τ) (or high momenta and frequencies).
Using these properties we can write 3.96 in terms of the center-of-mass and relative coordinates,[

G−1
0 −ΣHF⊗, G≷

]
(R, T ; r, τ) ≈ 1

2

∞∫
−∞

dt
∫
dr
[
Σ>(R, T ; r− r, τ − t)G<(R, T ; r, t)

−Σ<(R, T ; r− r, τ − t)G>(R, T ; r, t)
]

+1
2

∞∫
−∞

dt
∫
dr
[
G<(R, T ; r− r, τ − t)Σ>(R, T ; r, t)

−G>(R, T ; r− r, τ − t)Σ<(R, T ; r, t)
]
. (3.97)

Taking the Fourier transform of eq. 3.97 with respect to the relative coordinates (r, τ), we
obtain [

G−1
0 −ΣHF⊗, G≷

]
(R, T ; p, ω)

= 1
2
[
Σ>(R, T ; p, ω)G<(R, T ; p, ω)−Σ<(R, T ; p, ω)G>(R, T ; p, ω)

]
+ 1

2
[
G<(R, T ; p, ω)Σ>(R, T ; p, ω)−G>(R, T ; p, ω)Σ<(R, T ; p, ω)

]
, (3.98)

with G≷(R, T ; p, ω) =
∫∞
−∞ dτ

∫
dr ei(ωτ−p·r)G≷(R, T ; r, τ), and analogously for the self-energy

Σ≷. The Fourier transformation of the bracket
[
·⊗, ·
]
was computed within the “gradient ap-

proximation”1, and is given by[
A⊗, B

]
(R, T ; p, ω)

=
[
1 + i

2

(
∂1

∂ω

∂2

∂T
− ∂1

∂T

∂2

∂ω
−∇1

p ·∇2
R + ∇1

R ·∇2
p

)]
(AB −BA) (R, T ; p, ω). (3.99)

Since A and B do not commute, we have to differentiate on which of the matrices the derivative
is acting. This is done by the superscript appearing in the derivatives, i.e. 1 refers to the case
where the differential operator acts on the matrix appearing left in the multiplication and 2 to
the matrix appearing on the right [27].
Now we take the trace of eq. 3.98,

Tr
[
∂

∂ω

(
G−1

0 −ΣHF
) ∂G≷
∂T

− ∂

∂T

(
G−1

0 −ΣHF
) ∂G≷
∂ω

]
− Tr

[
∇p

(
G−1

0 −ΣHF
)
·∇RG

≷ −∇R
(
G−1

0 −ΣHF
)
·∇pG

≷
]

=(−i)Tr
[
Σ>G< −Σ<G>] , (3.100)

where we omitted the arguments (R, T ; p, ω) of all correlation functions for readability, and the

1 In this approximation, we expand the correlation functions in the bracket
[
·⊗, ·
]
around small values of the

relative coordinates (r, τ) and keep the terms up to first order.
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Fourier transform of the inverse of the non-interacting propagator reads

G−1
0 (R, T ; p, ω) = [ω − p · vθ(R, T )] τ 3 −

p2

2m − Vext(R, T ) + µ(R, T ). (3.101)

Inserting eq. 3.101 in 3.100 and expressing the left hand side in terms of the components of
G≷ and ΣHF , we obtain

LG≷ + LG≷ + ∂ΩHF

∂T

∂F
≷

∂ω
+ ∂ΩHF

∂T

∂F≷

∂ω
−∇RΩHF ·∇pF

≷ −∇RΩHF ·∇pF
≷

= (−i)Tr
[
Σ>G< −Σ<G>] , (3.102)

where

L =
(
∂

∂T
+ ∂

∂T
(ε̃p + p · vθ)

∂

∂ω
+ ∇p (ε̃p + p · vθ) ·∇R −∇R (ε̃p + p · vθ) ·∇p

)
, (3.103)

L =
(
− ∂

∂T
+ ∂

∂T
(ε̃p − p · vθ)

∂

∂ω
+ ∇p (ε̃p − p · vθ) ·∇R −∇R (ε̃p − p · vθ) ·∇p

)
.

(3.104)

The Hartree-Fock selfenergies in the language of the time-ordered two-point functions are given
by

ΣHF (1) =2g|Ψ0(1)|2 + 2igG<(1, 1), (3.105)
ΩHF (1) =g (Ψ0(1))2 + giF<(1, 1). (3.106)

Here ε̃p is the renormalized single particles excitation energy and is defined as

ε̃p(R, T ) = p2

2m + Vext(R, T ) + ΣHF (R, T )− µ(R, T ). (3.107)

A bosonic gas can either be described in terms of the distribution functions of the physical
atoms directly or in the language of the quasiparticle excitations. In section 3.4.2 we discussed
the properties of a trapped Bose gas at equilibrium and mentioned that is possible to describe
the system in terms of quasiparticles by solving the eigenvalue problem constituted by eq. 3.62.
Similarly, we can transformed the equation of motion for the single particle excitations into a
kinetic equation for the quasiparticle distribution. This appears to be a convenient description,
if one is dealing with a Bose gas at low temperatures. In the Bogoliubov theory for trapped Bose
gases at low temperature, one introduces the quasiparticles by expressing the field operators ϕ̂
related to the quantum fluctuations as a coherent superposition of the creation and annihilation
operators, b̂†p and b̂p associated to Bose quasiparticles, with the weights up and vp being the
eigenvectors of the eigenvalue problem posed, for instant, by eq. 3.62 and usually referred to
in the literature as the Bogoliubov coherent factors:

ϕ̂(R, T ) =
∫ dp

(2π)2

[
up(R, T )b̂pe

−iEpt − v∗p(R, T )b̂†peiEpt
]
. (3.108)

The annihilation and creation operators of the Bogoliubov quasiparticles satisfy the bosonic
commutation relations and their distribution can be express in terms of the statistical average
[30, 35, 45], i.e. fq(p) = 〈b̂†pb̂p〉. The distribution function of the physical atoms is related to
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3.6 Quantum-Boltzmann Equation

the diagonal term of the non-condensate propagator (see eq. 3.27 and 3.54), namely

f(R, T ; p, ω) = iG<(R, T ; p, ω). (3.109)

The distribution function entering in the usual Boltzmann equation is the Wigner distribution
fW (R, T ; p). The fact that the Wigner distribution is associated to the position and momentum
of the atoms at same time confines the treatment to a semiclassical approximation. Since we
are deriving a kinetic equation for quasiparticles at low temperatures, where the semiclassical
limit is no longer valid, we have to include quantum effects in the formalism. This is done by
adding an additional variable ω to the quasiparticle distribution fq(R, T ; p, ω), according to
[12, 23, 35]:

G<(R, T ; p, ω) = −iA(R, T ; p, ω)fq(R, T ; p, ω) (3.110)
G>(R, T ; p, ω) = −iA(R, T ; p, ω) [1 + fq(R, T ; p, ω)] , (3.111)

where A is the spectral function defined in eq. 3.10. The semiclassical Wigner distribution
function can be recovered by integrating over ω.
Taking the difference of the greater and lesser component in equation 3.102, we obtain

LAG +LAG + ∂ΩHF

∂T

∂AF

∂ω
+ ∂ΩHF

∂T

∂AF

∂ω
−∇RΩHF ·∇pA

F −∇RΩHF ·∇pA
F = 0. (3.112)

Using 3.102 and 3.112, we can rewrite the the original kinetic equation for G<, in order to
obtain the a new kinetic equation of the quasiparticle distribution fq(R, T ; p):

AG Lfq +AG Lfq +AF
∂ΩHF

∂T

∂fq
∂ω

+AF
∂ΩHF

∂T

∂fq
∂ω
−AF ∇RΩHF ·∇pfq

−AF ∇RΩHF ·∇pfq = (−i)Tr
[
f Σ>A− (1 + f) Σ<A

]
(3.113)

It is worth mentioning that the additional variable ω in the distribution function results in the
appearance of terms involving the derivative with respect to ω itself. According to [23], this
is the result of the change in the average energy of a particle at (R, T ) caused by the time
variation of the potential field through which it moves.
In the derivation of eq. 3.113, the only approximation made was that the external per-

turbation varies slowly in time and space, what allowed us to make a time scale separation.
Moreover, we found out that all physically relevant quantities vary slowly as functions of the
centre-of-mass-coordinates (R, T ). In addition, it was also necessary to assume that one can
define a distribution function fq for the quasiparticles.
In section 3.4.2 we explained that within the framework of a conserving approximation, such

as the BHF, the Hungelholtz-Pines theorem is violated and one needs to assume a vanishing
anomalous density F<(1, 1+) in order to get a gapless quasiparticle spectrum. Now we proceed
according to the “Popov-Bogoliubov”-approximation and require that the anomalous density
equals zero. Within this approximation the quasiparticle spectral densities read

AG(R, T ; p, ω) = 2π
[
u2

pδ(ω − p · vθ − Ep)− v2
pδ(ω − p · vθ + Ep)

]
, (3.114)

AF (R, T ; p, ω) = 2πupvp [δ(ω − p · vθ − Ep)− δ(ω − p · vθ + Ep)] . (3.115)
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

The additional two components can be given in terms of AG and AF , according to the table 3.1.
From the Bose commutation relations for the quasiparticle field operators, we see u2

p−v2
p = 1. It

is therefore not necessary to give the expression for both factors, because each can be expressed
in terms of the other one. The Bogoliubov coherent factor up is given by

u2
p = ε̃p(R, T ) + Ep(R, T )

2Ep
(3.116)

and the quasiparticle energy by

Ep(R, T ) =
√
ε̃p(R, T )− (gn0(R, T ))2. (3.117)

Inserting 3.114 and 3.115 into the general kinetic equation 3.113 and integrating over
∫
dω/(2π),

we get(
∂

∂T
+ ∇p (Ep + p · vθ) ·∇R −∇R (Ep + p · vθ) ·∇p

)
fq(R, T ; p, ω)

∣∣∣∣
ω=Ep+p·vθ

= I[fq]

(3.118)
after some algebra. This is the so called Zeremba-Nikuni-Griffin equation (ZNG), which is
named after the authors [35, 47]. Similar quasiparticle kinetic equations have been derived
before [12, 48, 49].

The collision integral I[fq] is given by

I[f ] = −2g2n0(R, T )
∫ dp1dp2dp3

(2π)2 |S(2, 3; 1)|2δ(p1 − p2 − p3)δ(E1 − E2 − E3)

[δ(p− p1)− δ(p− p2)− δ(p− p3)] [(1 + fp1)fp2fp3 − fp1(1 + fp2)(1 + fp3)] , (3.119)

where we used the simplified notation fq(R, T ; p, ω = Ep +p ·vθ) = fp. The quantity S(2, 3; 1)
is the scattering amplitude and is given in terms of the coherence factor up and vp

S(2, 3; 1) = (up3 − vp3)(up1up2 + vp1vp2) + (up2 − vp2)(up1up3 + vp1vp3)
−(up1 − vp1)(up2up3 + vp2vp3). (3.120)

Notice, that the collision integral involves only terms containing three quasiparticles distri-
bution functions and one condensate density. The reason is that at very low temperatures we
can neglect processes where two incoming quasiparticles result in two outgoing quasiparticles.
In addition, we used that for a slowly varying external disturbance the Fourier transform of the
condensate propagator 3.94 reads

C(R, T ; p, ω) = −i(2π)4n0(R, T )δ(p)δ(ω)
(

1 1
1 1

)
, (3.121)

if we neglect second derivatives of the density n0(R, T ).

The appearance of the condensate density in the quasiparticle energy Ep and the collision
integral I[fq] implies that eq. 3.118 is coupled to an equation of motion for the condensate
density. In order to derive the equation of motion for the condensate density, we consider the
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3.6 Quantum-Boltzmann Equation

general GPE (see eq. 3.80) for the order parameter Ψ0(r, t) in the local rest frame(
i ∂∂t1 −

∂θ(1)
∂t1

+ 1
2m [∇1 + imvθ]2 − Vext(1) + g|Ψ0(1)|2 + 2igG<(1, 1+)

)
Ψ0(1)

= −i
t1∫
−∞

d2
[
γG(1, 2)Ψ0(2) + γF (1, 2)Ψ∗0(2)

]
. (3.122)

Here the anomalous density F<(1, 1+) was neglected according to the Popov-Bogoliubov ap-
proach and the spectral functions of the condensate self-energies γG/F are expressed in terms
of the time ordered two-point correlation functions.

Working in the slow varying disturbances approximation, we can assume that the correla-
tion functions γG/F appearing in the integral are dominated by small values of their relative
coordinates 1− 2 ≡ (r1− r2, t1− t2), thus making it possible to approximate γG/F in eq. 3.123
by γG/F (1− 2, 1). In addition, since we are working in the local rest frame, we have Ψ0 = Ψ∗0,
which yields(

i
∂

∂T
− ∂θ(R, T )

∂T
+ 1

2m [∇R + imvθ]2 − Vext + g|Ψ0(R, t)|2 + 2igG<(R, T )
)

Ψ0(R, T )

= −iΨ0(R, T )
T∫

−∞

dt dr
[
γG(R − r, T − t; R, T ) + γF (R − r, T − t; R, T )

]

= −iΨ0(R, T )
∫ dp dω

(2π)4

[
γG(R, T ; p, ω) + γF (R, T ; p, ω)

] T∫
−∞

dtdr ei(p·(R−r)−ω(T−t) (3.123)

after relabeling (r1, t1) −→ (R, T ).

Now using the identity

lim
ρ→0+

T∫
−∞

dt e−i(ω+iρ)(T−t) = πδ(ω) + iP
( 1
ω

)
, (3.124)

with P referring to the principal value, we can evaluate the right hand side(
i
∂

∂T
− ∂θ(R, T )

∂T
+ 1

2m [∇R + imvθ]2 − Vext + g|Ψ0(R, t)|2 + 2igG<(R, T )
)

Ψ0(R, T )

= −iΨ0(R, T )
[
γG(R, T ; p = 0, ω = 0) + γF (R, T ; p = 0, ω = 0)

]
(3.125)

where we keep only the real part of eq. 3.124. Keeping in mind that in the local rest frame we
have Ψ0(R, T ) =

√
n0(R, T ), we finally obtain the equation for the condensate density

i
∂

∂T

√
n0(R, T ) =

(
−∂θ(R, T )

∂T
+ 1

2m [∇R + imvθ]2 − Vext

+g|Ψ0(R, t)|2 + 2igG<(R, T )− iR(R, T )
)√

n0(R, T ). (3.126)

This equation contains a dissipative term R(R, T ), which is related to the collision integral
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3 Non-Equilibrium Theory of a Bose Gas at Low Temperatures

I[fq] in the ZNG equation and reads

R(R, T ) =
∫ dp

(2π)3
I[fq]

2n0(R, T ) . (3.127)

This term is associated to the damping of the condensate cloud due to collisions with thermally
excited atoms.
In this thesis we will not study the solutions of the ZNG equation, instead we refer to [35]

and the citations therein.
With this we conclude our review of the non-equilibrium approach for Bose-condensed gases.

In the following chapters we will proceed to apply the techniques developed in this chapter to
Bose gases at low temperatures in different non-equilibrium situations.
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CHAPTER 4

Non-Equilibrium Josephson Oscillations in
Bose-Condensed Gases

A remarkable manifestation of quantum mechanics at a macroscopic scale is the particle current
induced by the phase difference between two coherent wave functions connected by a weak link,
known as the Josephson effect [50]. This effect was originally predicted for superconductors
separated by a thin insulating layer, and subsequently observed in between two superfluid 3He
as well as 4He reservoirs coupled through nano-apertures [51, 52]. However, the experimental
realization of a BEC, and the possibility to cool down atoms and manipulate them in atomic
traps, opened the possibility to study the Josephson effect in gaseous BEC of cold atoms.
An oscillatory exchange of particles between two weakly linked BECs was described already

in 1986 [53]. Due to the stringent cooling conditions and the technical difficulties manipu-
lating cold atoms, the experimental realization remained elusive until 2005 [54]. In addition
to the oscillatory behavior of the particle density, a wide range of new curious effects, such
as macroscopic quantum self-trapping, were successfully confirmed in this experiment. Two
condensates were prepared in a double-well potential with different initial population imbal-
ances. This resulted in different oscillatory regimes. The left panel of fig. 4.1 shows the time
evolution of the atomic density distribution in a symmetric Bose Josephson junction for two
different initial population imbalances. For an initial population imbalance chosen well below
a critical value, Josephson oscillations occur, i.e., the particles tunnel left and right over the
time. The discrepancy between the period of the oscillations observed in the experiment and
the period expected from non-interacting atoms in a double-well potential is a consequence of
the interatomic interactions. A different manifestation of the interactions is the macroscopic
self-trapped state, which exhibits an unchanged population imbalance over the evolution time.
Even though the Josephson effect in atomic gases is very similar to the one exhibited by

superconductors, there are important physical differences. The conventional Josephson junction
in superconductors is an open quantum many-body system driven by a bias voltage. In contrast,
a Bose Josephson junction is (to a good approximation) a closed system with fixed total number
of atoms and is not necessarily in the thermodynamic limit. Nevertheless, a direct equivalent
of a superconducting a.c. Josephson effect was realized in a single BEC Josephson junction in
2007 [55, 56] (see also discussion in [57]).
In the experiments [54–56] the Josephson junctions are prepared in a non-equilibrium situ-

ation by ramping up the barrier between the condensates suddenly, in a non-adiabatic way.
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4 Non-Equilibrium Josephson Oscillations in Bose-Condensed Gases

Figure 4.1: The left panel shows the time evolution of the particle density of a BEC trapped in a
double-well potential for two different initial interwell population imbalances. For an initial population
imbalance below a critical value the system displays Josephson oscillations and particles tunnel left and
right. Above the critical value the particle imbalance remains unchanged over the time. The right panel
summarizes the dynamics in the phase-space portrait of the two variable describing the system. Figures
take from [54].

The behavior of the system when the two condensates are connected presents a fundamental
problem in non-equilibrium macroscopic quantum mechanics. Previous theoretical studies [58,
59] suggest a damping of the Josephson oscillations due to quasiparticle excitations, which is
not observed in small traps [54, 60]. Much is known about the equilibrium states in the weakly
and strongly interacting regimes. However, it remains a challenge to probe the dynamics by
which these equilibrium states are reached.
The canonical description of a Bose Josephson junction is given in terms of the eigenstate |z〉,

referring to the interwell population imbalance. This eigenstate can be written as the coherent
superposition of all possible relative phases θ between the left and right condensates,

|z〉 =
−π∫
π

dθ
2πe

izθ|θ〉. (4.1)

As long as the condensates are completely isolated from each other and the particle tunneling
is suppressed, the system poses no problems1. The situation changes when the condensates are

1 Hofferberth et al. [61] presented a detailed experimental study of the time evolution of the phase randomization
of a BEC. As initial setup, they considered a BEC, which was abruptly splitted into two fractions separated by
a barrier. The barrier was chose high and broad enough to completely suppressed the tunneling and sufficiently
low to provide a weak link between the condensates. After some time they released the trap, permitting the
condensates to mix. Taking pictures of the matter waves interference patters, they were able to extract the
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4.1 Two-Mode or Mean-Field Approximation

linked by changing the shape of the trapping potential. This induces a Josephson-like tunneling
of particles from one condensate to the other. Consequently, decoherence sets in and the relative
phase can be measured.
The bosonic Josephson oscillations have been already studied in the context of the two-mode

approximation [62–64] and the two-site Bose-Hubbard model (TSBH) [65]. The two-mode
approximation is restricted to the low-energy regime and is expressed in terms of the GPE. The
dynamics of the system are well described in terms of the interwell population imbalance and
the relative phase. Smerzi et al. [62] showed that the underlying equations of motion can be
mapped onto equations describing a “mathematical pendulum” (see also sec. 4.1). The results
were experimentally confirmed by Oberthaler et al. [54] and can be nicely summarized in a
phase-space portrait of the canonical conjugated variables (see right panel of fig. 4.1 and both
panels of fig. 4.4). Moreover, studies of the TSBH described the quantum nature of the system.
Without any further approximation, this approach is limited to small particle numbers. In
this thesis, we will also study the TSBH using the non-equilibrium extension of the Bogoliubov
theory for Bosons below the critical temperature.
An understanding of how the Bose Josephson junctions work is crucial for various applica-

tions, such as quantum optics with interacting matter waves [66–68], atomic circuits [69], which
is an important step towards the realization of an atomic superconducting quantum interference
device (SQUID). The realization of Josephson junctions and its physics is also relevant for the
merging of BECs, and the production of a continuous source of condensed atoms [70–72].
In this chapter we present a detailed study of the temporal non-equilibrium dynamics of two

Josephson-coupled BECs after non-adiabatically switching on the Josephson coupling, including
interatomic interactions as well as single particle excitations. Now, we proceed to discuss the
two-mode approximation, which provides the ground for our non-equilibrium extensions.

4.1 Two-Mode or Mean-Field Approximation

Now, we proceed to investigate the coherent tunneling of particles between two BEC’s with
very large number of atoms (∼ 103 − 105) at zero temperature. In order to do so, we consider
two completely isolated condensates, that were brought adiabatically in contact, permitting the
exchange of particles. Lets say the condensates are initially trapped in the separated wells of
a double-well potential. The barrier separating them is assumed to be infinitely high, so that
they can be regarded as isolated. Then, we lower the barrier adiabatically and end up with a
system consisting of two BECs separated by finite potential barrier. The tunneling of particles
between two BEC’s is represented by the overlap of their macroscopic wave functions. This
overlap is exponentially suppressed in the region of the barrier, but it still has a finite value.
In this section we want to develop a theory that describes the coherent exchange of particles

between the condensates. This description is based on the mean-field approximation introduced
in section 3.3. We consider condensates with a large number of particles that are brought into
contact adiabatically. This allows us to regard the density of quantum fluctuations as negligible
small, and justifies the replacement of the bosonic field operator Ψ̂(r, t) with its expectation
value Ψ0 = 〈Ψ̂〉 in the Hamiltonian 3.1. As we are concerned with the temporal dynamics of

relative phase between the condensates. Repetition of the experiment yielded a phase randomization, which
increased with the time waited before mixing the condensates and with the heights and widths of the barrier.
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4 Non-Equilibrium Josephson Oscillations in Bose-Condensed Gases

the junction, we use the Ansatz

Ψ0(r, t) =
∑
α=1,2

φα(r)aα(t)

= φ1(r)a1(t) + φ2(r)a2(t), (4.2)

for the order parameter, with aα(t) =
√
Nα(t)eiθα(t) as the uniform amplitudes of the condens-

ates. Note that the subscript 0 on the left side of the equation refers to the order parameter,
and 1 and 2 on the right side to the left and right condensates, respectively. φ1(r) and φ2(r)
are linear combinations of the symmetric and antisymmetric solutions of the stationary double-
well trap, which correspond to the lowest eigenvalues, i.e.

∫
drφαφβ = δαβ. For simplicity we

assume these functions to be real. Throughout this chapter, we will use greek indices to refer to
the left (1) and right (2) condensates. The reason for this will become clear in the succeeding
section, when we extent our analysis in order to include the quantum fluctuations.

Inserting the Ansatz 4.2 into the Hamilton operator 3.1, we obtain the mean-field Hamilto-
nian,

H =
∑
α,β

Eαβ a
∗
αaβ + 1

2
∑
α,β

∑
γ,δ

Uαβγδ a
∗
αa
∗
βaγaδ, (4.3)

where
Eαβ =

∫
drφα(r)

(
−∇2

2m + Vext(r)
)
φβ(r), (4.4)

and
Uαβγδ = g

∫
drφα(r)φβ(r)φγ(r)φδ(r). (4.5)

From now on, we will assume the trap to be symmetric and set the on-site energies E11 =
E22 = 0. Additionally, we will consider only on-site repulsion, i.e. Uαβγδ = U , for α = β = γ =
δ. Thus, we obtain

H = −J (a∗1a2 + a∗2a1) + U

2
[
(a∗1a1)2 + (a∗2a2)2

]
(4.6)

= −J (a∗1a2 + a∗2a1) + U

4 (a∗1a1 + a∗2a2)2 + U

4 (a∗1a1 − a∗2a2)2 , (4.7)

where E12 = E21 = −J is the “Josephson coupling”. Notice that the Hamiltonian 4.6 is
equivalent to the TSBH Hamiltonian within the mean-field approximation. We will discuss the
TSBH in more detail in chapter 5. Replacing the uniform amplitudes aα(t) by

√
Nαe

iθα(t), we
get

H = −J
√
N2 − (N1 −N2)2 cos θ + U

4 N
2 + U

4 (N1 −N2)2 , (4.8)

where N = N1 +N2 is the total particle number and θ = θ1− θ2 is the relative phase difference
between the condensates. In order to absorb the large factors due to the large particle number,
we introduce the dimensionless mean-field Hamiltonian,

H ≡
(
H

JN

)
= −

√
1− z2 cos θ + u

4 z
2, (4.9)
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with u = UN/J and
z = N1 −N2

N
(4.10)

as the dimensionless interaction parameter and the normalized interwell population imbalance,
respectively.
Note that the term proportional N2 does not appear in eq. 4.9. The conservation of the

total particle number allows us to perform an adequate rotation of the amplitudes aα in order
to get rid of the terms proportional to N .
The variables z and θ are canonically conjugated and their time evolution can be computed

from the Hamilton’s equations,

ż = −∂H
∂θ

, and θ̇ = ∂H

∂z
, (4.11)

which are given by

ż = −
√

1− z2 sin θ, (4.12)
θ̇ = z√

1− z2
cos θ + u

2 z. (4.13)

In a simple classical mechanics analogy, this system of non-linear coupled differential equations
for θ and z corresponds to a “non-rigid pendulum”, of tilt angle θ and a length proportional to√

1− z2, that decreases with the “angular momentum” z [62]. Moreover, these equations for
the dynamical variables resemble (apart from their non-linear generalizations) the equations
describing a superconductor Josephson junction [63]. There are, however, differences between
the physics of Bose Josephson junctions and superconductor Josephson junctions. The su-
perconductor Josephson junctions are often discussed in terms of a rigid pendulum analogy,
while the description of Bose Josephson junctions requires the extension of this analogy to the
non-rigid pendulum. Nevertheless, the question arises, wether a boson Josephson junction can
exhibit the full range of effects of a superconductor Josephson junction or not. For a brief
summary on the different effects exhibited by the superconductor Josephson junctions we refer
to [63]. At the first glance, it appears not to be the case, because of the charge neutrality of
the atoms trapped in the double-well potential. Nonetheless, the experimentalist’s ability to
customize atomic traps and the interactions between the condensate particles compensates the
electric neutrality of the atoms, i.e., an initial asymmetric preparation of the population of the
two wells can be regarded as the analogous to the applied bias voltage in a superconductor
Josephson junction. In addition, the non-linear interatomic interaction ∼ uz2 plays the role of
a junction capacitance energy [63].
A detailed analysis of eq. 4.12 and 4.13 requires the study of the interplay between the three

parameters: the initial interwell population imbalance z(0) and relative phase between the two
condensates θ(0), and the dimensionless on-site repulsion u. The analytic solutions for θ and z
can be given in terms of the Jacobian and Weierstrassian elliptic function [63]. In the following,
we will consider three different regimes for an initial relative phase θ(0) = 0. We refer to [63]
for a review on the π-junctions (θ(0) = π),

Non-interaction regime
In this limit we consider negligibly small interatomic interaction (u ≈ 0). Rabi-like
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Figure 4.2: Interwell population imbalance z as function of time t for increasing interactomic interactions
parameter u and fixed initial imbalance z(0) = 0.6.

oscillations in the population of each trap with the frequency

ωR = J (4.14)

are exhibited by eq. 4.12 and 4.13. These oscillations are equivalent of a single-atom
dynamics, rather than a Josephson effect arising from the interaction between BECs.

Linear regime
For small amplitude oscillations (|z| � 1 and |θ| � 1), the eq. 4.12 and 4.13 become

ż ≈ −θ, (4.15)

θ̇ ≈
(

1 + u

2

)
z. (4.16)

These equations describe small amplitude or plasma oscillations for a sinusoidal z(t) with
frequency

ωL =

√
J2 + NUJ

2 , (4.17)
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4.1 Two-Mode or Mean-Field Approximation

and show interwell atomic tunneling dynamics with a zero time-averaged phase across the
junction, i.e. 〈θ(t)〉 = 0 and 〈z(t)〉 = 0.

Moreover, we can justify the neglect of the spatial variations of the z and θ, since the
Josephson-like length λJ = 1/

√
2mJ , which governs the spatial variations along the junc-

tion, is much larger than the length that characterized by the junction area.

Non-linear regime
Numerical solutions of eq. 4.12 and 4.13 show a non-sinusoidal behavior for the interwell
population imbalance z, which can be understood as an anharmonic generalization of the
sinusoidal Josephson effec that is exhibited in the regime of small amplitude oscillations.
The anharmonicity in the solutions increases with the initial population imbalance z(0)
for a fixed interatomic interaction u (fig. 4.3), or with u for a fixed z(0) (fig. 4.2). In the
non-rigid pendulum analogy these anharmonic oscillations correspond to large amplitude
oscillations of the pendulum.

In addition to these large amplitude oscillations, other remarkable effects happen in Bose
Josephson junctions. For instance, if the interaction parameter u exceeds a critical value uc
for a fixed initial population imbalance, the junction will exhibit a “self-locked” population
imbalance. In other words, the populations become “macroscopically self-trapped” with
a non-zero time-averaged population imbalance, i.e., 〈z〉 6= 0.

The macroscopic self-trapped state can be understood in terms of the pendulum analogy.
Assume, that the initial population imbalance is prepared such, that it corresponds to an
initial kinetic energy uz(0)2 that exceeds the potential barrier represented by the vertically
displaced (θ = π) pendulum orientation. In this the case, a steady self sustained pendulum
rotation will happen with a non-vanishing time-averaged angular momentum 〈z〉.

We will use the pendulum analogy to formulate an expression for the critical value uc of
the interaction parameter. According to the pendulum analogy the system can only be
macroscopically self-trapped, if its total energy is larger than the hopping energy, i.e., if
it is larger than the energy corresponding to the Josephson junction effect. Consequently,
we can write

H(z(0), θ(0)) = −
√

1− z(0)2 cos θ(0) + u

4 z(0)2 > 1, (4.18)

where we used the energy conservation and H(z(0), θ(0)) is the energy at t = 0. Finally,
the condition for the macroscopic self-trapping in terms of the interactions parameter
reads

u > uc ≡
1 +

√
1− z(0)2 cos θ(0)
z(0)2/4 . (4.19)

The macroscopic self-trapped state can be achieved by preparing a series of experiments
with fixed initial population imbalance z(0) and relative phase θ(0) for different interaction
parameters u. This can be done by changing the geometry of the trap or varying the total
number of atoms involved in the experiments [54].

Alternatively, for fixed trap geometry, total number of particles and relative phase differ-
ence, the macroscopic self-trapped state can be realized by varying the initial interwell
population imbalance. This procedure defines a critical population imbalance zc, that
describes the transition from large amplitude oscillations with 〈z〉 = 0 to the macroscopic
self-trapped state for increasing initial population imbalances.
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Figure 4.3: Population imbalance z between the two wells as a function of time for increasing initial
imbalance z(0) for a fixed interaction parameter u = 20.

The dynamical behavior of a Bose Josephson junction can be summarized quite conveniently
in terms of a phase-space portrait of the two dynamical variables, z and θ, as shown in fig.
4.4. The upper panel shows the trajectories for different interaction parameters u and fixed
initial population imbalance z(0) = 0.6. The closed trajectories (violet, orange and green lines)
show the dynamics of the system for the phase θ and imbalance z oscillating around zero.
The violet line (u = 5) corresponds to the linear regime, when the amplitude oscillations are
small, i.e. |θ| � 1 and |z| � 1. Increasing the interaction parameter the trajectories become
anharmonic (orange and green line for u = 15 and u = 19.5, respectively) until we observe
large amplitude oscillations in the dynamical variables. The blue trajectory corresponds to
the critical interactions parameter uc = 20, and describes the transition to the self-trapped
state for increasing u. We observe that above uc that the trajectory is not closed. The time
average of the population imbalance has a non-zero value and the relative phase increases
as function of time. In the pendulum analogy, this corresponds to a self-sustained rotation.
Similarly, in the lower panel we show the phase-space portrait for fixed interaction u = 20 for
different initial population imbalances z(0). The closed trajectories describe the linear regime
for small amplitude oscillations (violate line for z(0) = 0.3) and the anharmonic Bose Josephson
oscillations between the condensates (orange and green lines for z(0) = 0.55 and z(0) = 0.58).
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Figure 4.4: Phase-space portraits of the dynamical variables z and θ. In the upper panel the trajectories
are given for fixed initial population imbalance z(0) = 0.6 and increasing interaction parameter u. In
the lower panel the interaction parameter u = 20 is kept fix for increasing initial population imbalance
z(0).

The blue line (z(0) = 0.6) shows the large amplitude oscillations of the interwell population
imbalance around zero, and describes the transition into the self-trapped regime. The critical
initial population imbalance zc(0) is obtained by solving eq. 4.19 in favor of z(0). The three
red trajectories at the top of the lower panel correspond to macroscopic self-trapped states.

4.2 Beyond the Two-Mode Approximation
The two-mode approximation, which we reviewed in the previous section, provides a good a
description of the dynamics of Bose Josephson junctions. However, experimentally the Joseph-
son junction is prepared in a non-equilibrium situation by suddenly ramping up the barrier
between the condensates, in a non-adiabatic way. The damping of the Josephson oscillations
due to quasiparticle excitations has been estimated for this situation [59]. Nevertheless, this
damping has not been observed for small traps [54, 56], revealing an incomplete understanding
of the non-equilibrium dynamics.
Now we proceed to develop a detailed theory of the temporal dynamics of two non-adiabatically
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4 Non-Equilibrium Josephson Oscillations in Bose-Condensed Gases

Josephson-coupled BECs. Interactomic interactions and single particle excitations are included
in our analysis. Initially, the experiment is prepared, such that the barrier between two wells
can be regarded as infinitely high, so that the coherent tunneling of particles is completely
suppressed. Moreover, we assume all the bosons to be condensed, and both condensates to
be in the equilibrium state. Suddenly, at time t = 0 the barrier is lowered and the Josephson
weak link between the two wells is established. This non-adiabatic switching on of the interwell
tunneling drives the system out of thermodynamic equilibrium.

In order to develop a general non-equilibrium theory for this situation and analyze its dynam-
ics, we represent the Hamiltonian 3.1 in a complete basis of the exact single particle eigenstates
of the double-well potential Vext(t, t > 0) after switching on the Josephson coupling J . In this
basis the field operator reads

Ψ̂(r, t) = φ1(r)a1(t) + φ2(r)a2(t) +
∑
n6=0

ϕn(r)b̂n(t), (4.20)

where φ1(r), φ2(r) are linear combinations of the symmetric and antisymmetric solutions, which
correspond to the lowest eigenvalues of the stationary double-well trap after lowering the barrier.
They were introduced in the previous section in the context of the two-mode approximation.The
“c-numbers”, aα(t) =

√
Nα(t)eiθα(t), α = 1, 2, are the corresponding condensate amplitudes.

This semiclassical treatment of the BECs neglects phase fluctuations and is justified for the
experiments [54] with fixed phase relation and sufficiently large number of particles. The
single particle excitations dynamics will be treated quantum mechanically. The index n 6= 0
enumerates the exact single particle excited states, with ϕn(r) and b̂n(t) as the corresponding
eigenfunctions and bosonic destruction operators, respectively. Including the single particle
excitations, we go beyond the two-mode approximation (see Section 4.1).

Inserting the field operator 4.20 into the Hamiltonian 3.1, we get

Ĥ = HBEC + Ĥqp + Ĥmix, (4.21)

for t > 0. HBEC describes the condensate particles,

HBEC =
∑
α,β

Eαβ a
∗
αaβ + 1

2
∑
α,β

∑
γ,δ

Uαβγδ a
∗
αa
∗
βaγaδ, (4.3)

where Eαβ are Uαβγδ are defined by eqs. 4.4 and 4.5, respectively. Note, that the hat is missing,
because HBEC only involves the condensate amplitudes, which are c-numbers. Ĥqp corresponds
to the single particle excitations,

Ĥqp =
∑

n,m 6=0
Enm b̂

†
nb̂m + 1

2
∑
n,m

∑
`,s

Vnm`s b̂
†
nb̂
†
mb̂`b̂s, (4.22)

where
Enm =

∫
drϕn(r)

(
−∇2

2m + Vext(r)
)
ϕm(r) = Enδnm (4.23)

are the (bare) energy levels of the excited states, and

Vnm`s = g

∫
drϕn(r)ϕm(r)ϕ`(r)ϕs(r) (4.24)
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4.2 Beyond the Two-Mode Approximation

is the repulsive interaction between non-condensed particles. The mixing between the BECs
and the excited states is described by

Ĥmix = 1
2
∑
α,β

∑
n,m

Kαβnm

[(
a∗αa

∗
β b̂nb̂m + h.c.

)
+ 4a∗αb̂†naβ b̂m

]
+
∑
α

∑
n,m,s

Rαnms
[
a∗αb̂
†
nb̂mb̂s + h.c.

]
, (4.25)

where

Kαβnm = g

∫
drφα(r)φβ(r)ϕn(r)ϕm(r), (4.26)

Rαnm = g

∫
drφα(r)ϕn(r)ϕm(r)ϕs(r) (4.27)

are the overlap matrix elements involving two and three non-condensed particles, respectively.
Note, that we use greek indices, i.e. α, β = 1, 2 to denote the left and right condensate, and
the latin indices n,m 6= 0 to enumerate the exact single particle excited states. In Fig. 4.5 we
show the elementary processes corresponding to each of the different terms in eq. 4.25, and the
two-particle interaction terms in eqs. 4.3 and 4.22. Note that only terms quadratic, cubic, and
quartic in the single particle operators b̂n and b̂†m appear in eq. 4.21.

n m

α β

m

α

β

n nα

s m

γ δ

α β

ℓ

n

s

m

Figure 4.5: The dotted and solid lines represent the condensate and non-condensate particles, respect-
ively. The greek labels attached to the condensate lines refer to the left and right condensate, and
the latin letters attached to the solid lines to the excited levels. The wavy lines are associated to the
interatomic potential, i.e., Kαβnm for the first two diagrams in the upper row, Rαn`s for the last in the
upper row. Uαβγ and Vnm`s for the left and right diagrams in the lower row.

From now on, we restrict our analysis to symmetric double-well potentials. We set E11 =
E22 = 0, according to section 4.1 and introduce the Josephson coupling E12 = E21 = −J . In
addition, we distinguish between processes involving two condensate particles associated to the
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4 Non-Equilibrium Josephson Oscillations in Bose-Condensed Gases

same condensate and two condensate particles associated to different condensates:

Kαβnm =
{
K/2, α = β

J ′/2, α 6= β
, ∀n,m 6= 0. (4.28)

Here, the coupling constant J ′ can be regarded as a quasiparticle assisted Josephson tunneling,
as well as a pairwise “simultaneous” quasiparticle creation or destruction out both condensates.
K represents the density-density interaction of condensed and non-condensed particles and the
pairwise quasiparticle creation or destruction out of each condensate.
The experimental realization of double-well potential involves the overlap of a three dimen-

sional harmonic confinement and a one dimensional periodic potential with a sufficiently large
period [54, 60]. This allows us to assume that the wave functions of the excited states extend
over both wells, as it is shown in fig. 4.6. For simplicity, we suppose that energy levels of the
excited states coincide with the higher states of the three dimensional harmonic confinement
and are, therefore, equidistant. The level spacing is given by

∆ = En+1 − En. (4.29)

In general, the overlap matrix elementsKαβnm, Uαβγ and Rαnms depend on the trap geometry
and total number of particles. Consequently, they should be computed from the solutions of the
stationary GPE for a double-well trap. Nevertheless, this is not the subject of our discussion
and in order to keep things manageable for our numerical analysis, we will overestimate the
two-body processes described by Kαβnm, Vnm`s and Rαmms by setting them equal to their
respective maximal values2. They will be considered as input parameters of our model. After
these simplifications, the contributions to the Hamiltonian 4.21 read

HBEC = −J (a∗1a2 + a∗2a1) + U

2
∑
α

a∗αa
∗
αaαaα, (4.30)

Ĥqp =
∑
n

En b̂
†
nb̂n + U ′

2
∑
n,m

∑
`,s

b̂†nb̂
†
mb̂`b̂s, (4.31)

Ĥmix = J ′
∑
n,m

[
(a∗1a2 + a∗2a1) b̂†nb̂m + 1

2
(
a∗1a
∗
2b̂nb̂m + h.c

)]

+K
∑
α

∑
n,m

[
a∗αaαb̂

†
nb̂m + 1

4
(
a∗αa

∗
αb̂nb̂m + h.c

)]
+R

∑
α

∑
n,m,s

[
a∗αb̂
†
nb̂mb̂s + h.c.

]
. (4.32)

In order to describe the non-equilibrium dynamics of the system, we proceed according to
the methods presented in chapter 3. Using the bosonic field operator 4.20, we obtain

C(1, 1′) =
2∑

α,β=1
φα(r)φβ(r′)Cαβ(t, t′) (4.33)

2 The solution of the stationary symmetric double-well potential are symmetric and antisymmetric functions.
Inserting these eigenfunctions in the definitions of Kαβnm, Vnm`s and Rαmms will yield forbidden transitions
between some of the levels. A more realistic model requires the computations of the these eigenfunctions prior
solving the time-dependent problem.
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4.2 Beyond the Two-Mode Approximation

Figure 4.6: A BEC in a double-well potential after abrupt decrease of the barrier height. The definitions
of the parameters are explained in the text, see eqs. 4.30 - 4.32. Figure taken from [44]

and
G(1, 1′) =

∑
n,m 6=0

ϕm(r)ϕn(r′)Gnm(t, t′) (4.34)

for the condensate propagator 3.2 and the non-condensate propagator 3.3 , respectively. The
time-depentent parts of the propagators, read

Cαβ(t, t′) = −i
(
aα(t)a∗β(t′) aα(t)aβ(t′)
a∗α(t)a∗β(t′) a∗α(t)aβ(t′)

)
, (4.35)

Gnm(t, t′) = −i
(
〈TC b̂n(t)b̂†m(t′)〉 〈TC b̂n(t)b̂(t′)〉
〈TC b̂†n(t)b̂†m(t′)〉 〈TC b̂†n(t)b̂m(t′)〉

)

=
(
Gnm(t, t′) Fnm(t, t′)
Fnm(t, t′) Gnm(t, t′)

)
. (4.36)

TC was introduced in chapter 2 and denotes the time ordering operator along the CTP. Using
the real-time formalism (see section 2.2) for the associated Dyson’s equations on the real time
contour yields

∞∫
−∞

dt
[
G−1

0,αγ(t, t)− SHFαγ (t, t)
]
Cγβ(t, t′) = −i

t∫
−∞

dtγαγ(t, t)Cγβ(t, t′), (4.37)

∞∫
−∞

dt
[
G−1

0,n`(t, t)−ΣHF
n` (t, t)

]
G≷`m(t, t′) = −i

t∫
−∞

dtΓn`(t, t)G≷`m(t, t′)

+i
t′∫

−∞

dtΣ≷n`(t, t)A`m(t, t′), (4.38)

where we summed over all greek indices appearing twice in every term from 1 to 2, which refer
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4 Non-Equilibrium Josephson Oscillations in Bose-Condensed Gases

to the left and right condensates. The summation over the latin is take over the excited states.
Here we decomposed the self-energies into the Hartree-Fock local parts SHFαβ (ΣHF

nm ) and the
non-local parts Sαβ(Σnm). The inverse propagators on the left side of eq. 4.37 and 4.38 are
given by

G−1
0,αβ(t, t′) =

[
iτ 3δαβ

∂

∂t
− Eαβ1

]
δ(t− t′) (4.39)

and

G−1
0,nm(t, t′) =

[
iτ 3δnm

∂

∂t
− Enm1

]
δ(t− t′) (4.40)

respectively. τ 3 denotes the third Pauli matrix and is defined in eq. 3.7. We also introduced
the non-condensate particles spectral function

Anm(t, t′) = i
[
G>
nm(t, t′)−G<

nm(t, t′)
]

=
(

AGnm(t, t′) AFnm(t, t′)
−AFnm(t, t′)∗ −AGnm(t, t′)∗

)
, (4.41)

and the spectral function of the non-local self-energies are given by

γαβ(t, t′) = i
[
S>αβ(t, t′)− S<αβ(t, t′)

]
=

(
γGαβ(t, t′) γFαβ(t, t′)
−γFαβ(t, t′)∗ −γGαβ(t, t′)∗

)
(4.42)

and

Γnm(t, t′) = i
[
Γ>nm(t, t′)− Γ<nm(t, t′)

]
=

(
ΓGnm(t, t′) ΓFnm(t, t′)
−ΓFnm(t, t′)∗ −ΓGnm(t, t′)∗

)
. (4.43)

Here, we exploited the symmetries listed in the tables 3.1 and 3.2.
In chapter 3 we discussed that it is convenient to express the dynamics of the system in terms

of two-point correlators associated to the commutator and anti-commutator of the bosonic field
operators. Thus, we introduce in addition to the spectral functions the non-condensate particles
statistical function

F nm(t, t′) = 1
2
[
G>
nm(t, t′) +G<

nm(t, t′)
]

=
(

FGnm(t, t′) FFnm(t, t′)
−FFnm(t, t′)∗ −FGnm(t, t′)∗

)
. (4.44)

The non-condensate non-local self-energy statistical function reads

Πnm(t, t′) = 1
2
[
Σ>
nm(t, t′) + Σ<

nm(t, t′)
]

=
(

ΠG
nm(t, t′) ΠF

nm(t, t′)
−ΠF

nm(t, t′)∗ −ΠG
nm(t, t′)∗

)
, (4.45)
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Here, we used the symmetry relations in tables 3.1 and 3.2 in order to express the lower
components in terms of the upper components.
Expressing the Dyson’s equations 4.37 and 4.38 in terms of the spectral and statistical func-

tion 4.41 - 4.45, and carefully evaluating the time integration on the left side, we obtain

[
iτ 3δαγ

∂

∂t
− Eαγ1− SHFαγ (t)

]
Cγβ(t, t′) = −i

t∫
0

dtγαγ(t, t)Cγβ(t, t′), (4.46)

[
iτ 3δn`

∂

∂t
− En`1−ΣHF

n` (t)
]
A`m(t, t′) = −i

t∫
t′

dtΓn`(t, t)A`m(t, t′), (4.47)

[
iτ 3δn`

∂

∂t
− En`1−ΣHF

n` (t)
]
F `m(t, t′) = −i

t∫
0

dtΓn`(t, t)F `m(t, t′)

+i
t′∫

0

dtΠn`(t, t)A`m(t, t′), (4.48)

where we use the fact, that the Hartree-Fock self-energies are local in the time arguments, i.e.
SHFαβ (t, t′) = SHFαβ (t)δ(t − t′), and similar for ΣHF

nm . Moreover, some of the integrals start at 0
instead of −∞. This is due to the choice of boundary conditions. Prior t = 0 the system is
assume to be in equilibrium. These equations of motion describe the dynamics of the system
after switching on of the Josephson coupling.
Before we proceed in the succeeding sections to analyze eqs. 4.46 - 4.48 numerically within

the framework of the BHF and the full second-order approximation, we want to take a closer
look at the conserved quantities. In section 3.4.1, we mentioned that for any isolated system the
particle number and the energy are conserved. The mean particle number is expressed in terms
of the condensate amplitudes and the diagonal components of the single particle excitations
statistical function, i.e.,

N(t) = N1(t) +N2 +
∑
n6=0

N
(n)
b

=
∑
α=1,2

a∗α(t)aα(t) +
∑
n6=0

i

[
FGnn(t, t)− 1

2

]
. (4.49)

It can be proven to be constant by making use of the equations of motion for aα and FGnn. N
is also a convenient quantity for checking the correctness of our numerical calculations.
A closed system (like the double-well potential we considering) excludes dissipation. Working

within the framework of a conserving approximation (see section 3.2.1) we can prove that the
mean energy,

〈Ĥ〉 = 〈Ĥ〉BEC + 〈Ĥ〉qp, (4.50)

is conserved. The energies of the condensate fraction and the single particle excitations are
given by

〈Ĥ〉BEC(t) = i

2Tr
[(
Eαβ1 + 1

2S
HF
αβ (t)

)
Cβα(t, t)

]
+ 1

2Tr

 t∫
0

dtγαβ(t, t)Cβα(t, t)

(4.51)
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and

〈Ĥ〉qp(t) = i

2Tr
[(
Enm1 + 1

2ΣHF
nm (t)

)
F nm(t, t)

]

+1
2Tr

 t∫
0

dt (Γnm(t, t)Fmn(t, t)−Πnm(t, t)Amn(t, t))


+1

2Tr

 t∫
0

dt (F nm(t, t)Γmn(t, t)−Anm(t, t)Πmn(t, t))

 , (4.52)

respectively. Again, we sum over all indices appearing twice in every term according the to the
previous explanations.

4.2.1 The Bogoliubov-Hartree-Fock Approximation and the Critical Time τc

In section 3.4, we discussed the range of validity of the BHF approximation. In spite of its
limitations, such as its failure to include thermalization effects due to the collisions between
single particles excitations, it provides a good insight into the non-equilibrium dynamics of Bose
Josephson junctions for short times and weak interactions. As we discussed in [44], the initially
empty energy levels above the condensates (and the barrier separating them) can be populated
by changing the shape of the trapping potential in a non-adiabatic way. The population of these
higher energy levels may lead, for instance, to the destruction of an initially prepared localized
state due to fast single particle excitations assisted transitions from one well to the other. We
reported that beyond a characteristic time τc, the dynamics of the system are well explained
by rabi-like oscillations between the non-condesate particle levels and the condensates.
In the previous section, we gave a detailed derivation of the Hamiltonian 4.21 describing a

system of two condensates in a double-well potential after being non-adiabatically coupled. In
addition, we summarized the dynamics of the system in terms of the non-condensate particle
spectral function Anm and the statistical function F nm, which provide the information about
the energy spectrum and the occupation number, respectively. The time evolution of the
condensate fraction is characterized by the condensate amplitudes aα, which are contained
in the condensate propagator Cαβ. The derivation of the equations of motion 4.46 - 4.48
was general, since we did not specify the self-energies. In this section we analyze the BHF
approximation and the effects described by it. In order to do so, we retain only the diagrams
first order in the interactions (see figs. 3.1 and 3.2). In section 4.2.2, we will take the higher
order processes into account.
Now, dropping the integrals on the right side of eqs. 4.46 - 4.48, we obtain the equations of

motion for the two-point correlators in the BHF approximation, i.e.,[
iτ 3δαγ

∂

∂t
− Eαγ1− SHFαγ (t)

]
Cγβ(t, t′) = 0, (4.53)[

iτ 3δn`
∂

∂t
− En`1−ΣHF

n` (t)
]
A`m(t, t′) = 0, (4.54)[

iτ 3δn`
∂

∂t
− En`1−ΣHF

n` (t)
]
F `m(t, t′) = 0, (4.55)
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where

SHFαβ (t) ≡
(
SHFαβ (t) WHF

αβ (t)
WHF
αβ (t)∗ SHFαβ (t)∗

)

= i

∑
γ,δ

Uαβγδ
2 Tr [Cγδ(t, t)] 1 +

∑
`,s

Kαβ`s

{
F `s(t, t) + 1

2Tr [F `s(t, t)] 1
}

(4.56)

and

ΣHF
nm (t, t′) ≡

(
ΣHF
αβ (t) ΩHF

αβ (t)
ΩHF
αβ (t)∗ ΣHF

αβ (t)∗

)

= i

∑
α,β

Knmαβ

{
Cαβ(t, t) + 1

2Tr [Cαβ(t, t)] 1
}

+
∑
`,s

Vnm`s

{
F `s(t, t) + 1

2Tr [F `s(t, t)] 1
} (4.57)

are the BHF self-energies. Here, we made use of the symmetry relations in table 3.1 to express
the two lower components of the self-energies in terms of the upper components. Notice that
the only non-condensate related quantity entering the self-energies SHF and ΣHF is the non-
condensate particle statistical function F nm. Consequently, the equation for propagator Cαβ is
only coupled to the equation for F nm and decouples from the equation for the spectral function
Anm. Moreover, due to the absence of the higher order processes, it is not necessary to propagate
the solutions for different time arguments (see discussion in section 3.4). In addition, the time
evolution of the spectral function Anm for equal time arguments is trivial, since it is fixed for
all times due to the bosonic commutation relations. This also justifies the fact, that the system
of equations decouples from the equation for Anm.
The equation of motion for the condensate amplitude is obtained from the upper left com-

ponent of eq. 4.53 and dividing by a∗β(t′). Thus, we get

i
∂

∂t
aα(t) =

[
Eαγ + SHFαγ (t)

]
aγ(t) +WHF

αγ (t)a∗γ(t). (4.58)

Computing the evolution of F nm for equal time arguments requires special attention. Now,
we proceed exactly like in section 3.4, and take the difference and sum of eq. 4.55 with its
hermitian conjugated version:

i

(
τ 3

∂

∂t
F nm(t, t′) + ∂

∂t′
F nm(t, t′)τ 3

)
= ΣHF

n` (t)F `m(t, t′)− F n`(t, t′) + ΣHF
`m (t), (4.59)

i

(
τ 3

∂

∂t
F nm(t, t′)− ∂

∂t′
F nm(t, t′)τ 3

)
= 2EnF nm(t, t′) + ΣHF

n` (t)F `m(t, t′) + F n`(t, t′)ΣHF
`m (t)

(4.60)

where we used Enm = Enδnm, according to eq. 4.23. The symmetry relations for the com-
ponents of F nm listed in tab. 3.1, allow us to describe the full dynamics of the non-condensed
particles in terms of the two upper components of the statistical function. The equation for
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FGnm is obtained from the upper left component of eq. 4.59, evaluated at equal times. Thus, we
get

i
∂

∂t
FGnm(t, t) = ΣHF

n` (t)FG`m(t, t)−FGn`(t, t)ΣHF
`m (t)−ΩHF

n` (t)FF`m(t, t)∗−FFn`(t, t)ΩHF
`m (t)∗. (4.61)

Similarly, taking the upper right component of eq. 4.60 and setting t = t′, we obtain

i
∂

∂t
FFnm(t, t) =2EnFFnm(t, t) + ΣHF

n` (t)FF`m(t, t) + FFn`(t, t)ΣHF
`m (t)

− ΩHF
n` (t)FG`m(t, t)∗ + FGn`(t, t)ΩHF

`m (t)∗, (4.62)

where components of the non-condensate self-energy are given by eq. 4.57, and read

ΣHF
nm (t) = K (N1 +N2) + J ′ (a∗1a2 + a∗2a1) + 2iU ′

∑
s,`

FGs`(t, t), (4.63)

ΩHF
nm (t) = K

2
∑
α

aαaα + J ′a2a1 + iU ′
∑
s,`

FFs`(t, t). (4.64)

Here, we omitted the time arguments of the condensate amplitudes aα and wrote Nα = a∗αaα
for particle number in the condensate α.

The system of equations is closed by inserting the explicit expressions for the condensate
self-energies into the equation of motion for the condensate amplitude. Hence, we get

i
∂

∂t
a1(t) =

[
UN1(t) + iK

∑
n,m

FGnm(t, t)
]
a1(t)−

[
J − iJ ′

∑
n,m

FGnm(t, t)
]
a2(t)

+i
[
K

2 a
∗
1(t) + J ′

2 a
∗
2(t)

]∑
n,m

FFnm(t, t). (4.65)

The equation for the a2(t) is obtained from eq. 4.65 by a1 � a2.

Numerical Analysis and Initial Conditions

Initially the two condensates are completely isolated from each other. Then, at time t = 0
the Josephson link between the condensates as well as the interactions with single particle
excitations are turned on. The initial conditions expressed in the language of the condensate
amplitudes and statistical functions for the non-condensate particles read

aα(0) =
√
Nα(0)eiθα(0), (4.66)

FGnm(0, 0) = − i2δnm, (4.67)

FFnm(0, 0) = 0, (4.68)

where Nα(0) is the initial particle number in condensate α and θα(0) its corresponding mac-
roscopic phase. In addition, we have AGnm(0, 0) = δnm and AFnm(0, 0) = 0 for the spectral
functions.
Taking a look at the different terms in the Hamiltonian describing the system (see eqs.

4.30 - 4.32), we notice that our model is rich in parameters. This makes a systematic study
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4.2 Beyond the Two-Mode Approximation

of all features very extensive. We, therefore, should analyze how the interplay between the
parameters affects the system and if it is possible to fix some of them. According to [41, 44,
62] it is convenient to give all the energies in terms of the Josephson coupling J and absorb
the large particle numbers appearing in the eqs. 4.61 - 4.65 into the dimensionless parameters
u = NU/J , k = NK/J , j′ = NJ ′/J , u′ = NU ′/J and n

(n)
b = N

(n)
b /N , where N is the

total number of particles. The parameter R is excluded in the present discussion, because it
only appears beyond the BHF approximation. It will be included in the next section when we
address the question of thermalization and equilibration. From the eqs. 4.61, 4.62 and 4.65 we
compute the time evolution of the occupation numbers of the bosons out of the condensates,
n

(n)
b (t) and nb(t) =

∑
n

(n)
b (t), the condensate population imbalance z(t) = [N1(t) −N2(t)]/N ,

and the relative phase difference θ(t) = θ1(t) − θ2(t) as well as the condensate mean energy
〈Ĥ〉BEC(t) and single particle excitations mean energy 〈Ĥ〉qp(t).
At the level of the two-mode approximation (k = j′ = u′ = 0) the interplay between the initial

population imbalance z(0) and the interaction parameter u has already been studied [62]. The
dynamics exhibited by Bose Josephson junctions for fixed initial population imbalance z(0) and
varying interactions u are very similar to those observed for fixed u and varying z(0) (section
4.1). This permits us, for instance, to fix z(0) and study the interplay between u and the
other parameters. Neglecting the coupling with the single particle excitations k = j′ = 0,
the system exhibits a macroscopic self-trapped and a delocalized regime, with a Josephson
oscillation frequency of

ωL =

√
J2 + NUJ

2 (4.17)

in the linear regime. When, however, k 6= 0, j′ 6= 0, particles are excited out of the condensates,
Nb(t) > 0, the Josephson tunneling term in Hmix becomes active (J ′ term in equation 4.32).
One then expects an enhanced Josephson frequency, with roughly J replaced by J [1− j′nb(t)]
in equation 4.17. Simultaneously, Rabi-like oscillations of the N (n)

b (t), i.e., of non-condensate
particles pairs between the BECs and the excited levels, with frequencies ωR ≈ 2En set in, c.f.
eq. 4.62. As a result, in this non-condensate particles dominated regime one expects complex,
high-frequency anharmonic oscillatory behavior.
When we discussed the various approximations in our model (see eqs. 4.30 - 4.32), we

explained that the experimental realization of the double-well potential is achieved by the
overlap of a harmonic confinement with a sinusoidal potential with large period, with one of
its maxima placed at the center of the harmonic confinement. Our model assumes that the
wave functions of the excited states extend over the two condensates and the barrier separating
them. We, therefore, assume that the excited energy levels coincide with the energy levels
of the harmonic confinement. Typically, the oscillator frequency of the harmonic trap has
experimental values of ∆ ≡ ωHO ∼ 100Hz [73]. The experimental value of the Josephson
coupling J is roughly 10Hz [62], and therefore the bare single particle excitations level spacing
∆ ∼ 10J in terms of J .

The complete numerical solution of the equations of motion 4.61, 4.62 and 4.65 for a finite-
size trap with N = 5 · 105 particles, taking 5 excited levels into account3 are shown for typical
parameter values in figs. 4.7 and 4.8 for an initially prepared delocalized state and in figs.
4.9 and 4.10 for the initially prepared self-trapped state. In order to get a better insight
3 We have performed similar calculations for 2, 3 and 4 excited levels with fixed ∆. It was verified that generic
behavior described in the text, in particular the values of τc, are essentially independent of the number of
excited levels take into account [44]
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Figure 4.7: Time evolution of condensed and non-condensed particles for initial conditions z(0) = 0.6,
θ(0) = 0, ∆ = 10J and interactions parameters u = u′ = 5, j′ = 60, k = 0 for N = 5 · 105 (delocalized
regime). In the upper left panel, the dynamics of the BEC population imbalance z(t) is shown. The lower
left panel shows the phase-space portrait of the dynamical variables z and θ. The right plot displays the
time evolution of the non-condensate particle population. The orange line shows the particle occupation
of the first excited level n(1)

b , while the black line is the sum of all levels nb.

into the dynamics of the system, we computed the quasiparticle energies by diagonalizing the
Hamiltonian 4.30 - 4.32 at every time step. The time evolution of the eigenenergies is plotted
in the left panels of figs. 4.8 and 4.10. The highest lying level is repulsed upwards in both cases
for initial time t = 0. This effect is similar to the one observed in the two-level model [74].
The results reproduce the expected behavior discussed above in the regime with finite popu-

lation of single particle excitations. The values for the equidistant energy level spacing ∆ were
chosen such that the first excited level lies the above the largest condensate energy eigenvalue,
which is obtained from the diagonalization of the condensate Hamiltonian 4.30 at time t = 0.
This ensures the assumption that the single particle wave functions extend over both condens-
ates and the barrier separating them. The most striking and most important feature observed
in figs. 4.7 and 4.8 for an initially prepared delocalized state and in figs. 4.9 and 4.10 for the
initially prepared self-trapped state is that for times greater than a characteristic time τc the
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Figure 4.8: Time evolution of the instantaneous eigenenergies and mean energies for initial conditions as
in fig. 4.7 (delocalized regime). On the left, we plotted the instantaneous quasiparticle energies obtained
from the diagonalization of the Hamiltonian 4.30 - 4.32 at the every time step. The right plot shows the
mean energies of the condensate fraction 〈H〉BEC (blue line) and the single particle excitations 〈H〉qp
(red line). The black dashed line corresponds to the total mean energy of the system.

highly non-linear dynamics of the system makes the excitation of particles out of the condensate
possible. In this regime the finite occupation number nb(t) of the single particle excitations and
fast oscillations of the BEC population imbalance z(t) stabilize each other mutually: nb(t) > 0
implies an enhancement of the Josephson frequency, and the resulting fast oscillations of z(t)
can efficiently excite particles out of the BECs via the mixing Hamiltonian 4.32.
The fast, non-condensate particles induced dynamics implies two further features. (1) As seen

from fig. 4.7 an initially prepared self-trapped state is destroyed and the system changes to a
delocalized state at the same time when the non-condensate occupation nb(t) becomes sizable.
A similar behavior is observed in the analysis of Bose Josephson junctions in the context TSBH
model , as it is discussed in section 5.3. (2) At the onset of the fast dynamics the system changes
from a θ = 0 to θ = π Josephson junction (see the phase-space portraits in lower left panels
of figs. 4.7 and 4.9). This can be understood qualitatively, in that the large phase difference
θ(t) ≈ π is required to sustain the large Josephson current in the regime with fast dynamics.
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Figure 4.9: Time evolution of condensed and non-condensed particles for initial conditions z(0) = 0.6,
θ(0) = 0, ∆ = 25J and interactions parameters u = u′ = 25, j′ = 60, k = 0 for N = 5 · 105 (self-trapped
regime). In the upper left panel, the dynamics of the BEC population imbalance z(t) is shown. The lower
left panel shows the phase-space portrait of the dynamical variables z and θ. The right plot displays the
time evolution of the non-condensate particle population. The orange line shows the particle occupation
of the first excited level n(1)

b , while the black line is the sum of all levels nb.

Since the transition to the non-condensate particles dominated regime is not described by a
Fermi golden rule, it is hard to analyze the time scale τc analytically. We defined τc numerically
as the time scale where the occupation number of the non-condensate particles, nb(t), first
exceeds 0.05 and extracted it from our solutions4. The fact that the non-condensate particles
dynamics does not become sizable immediately after the switching on of the Josephson coupling
and sets in in an “avalanche” manner, allows us to define τc in this way. The dependence of
(Jτc)−1 on the parameters j′ and k and fixed ∆ = 10J for an initially prepared delocalized
state is presented in figs. 4.11a and 4.11b for total particle numbers N = 5 ·103 and N = 5 ·105,
respectively. We observe that for a given k and increasing j′, the avalanche behavior sets in
earlier. The larger k, the longer is the system able to sustain undamped Josephson oscillations

4 We have defined τc as the time scale where nb(t) first exceeds 0.03, 0.05 and 0.07. It was verified that the
generic behavior of τc as a function of the system’s parameters, is qualitatively the same for all these definitions
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Figure 4.10: Time evolution of the instantaneous eigenenergies and mean energies for initial conditions
as in fig. 4.9 (self-trapped regime). On the left, we plotted the instantaneous quasiparticle energies
obtained from the diagonalization of the Hamiltonian 4.30 - 4.32 at the every time step. The right plot
shows the mean energies of the condensate fraction 〈H〉BEC (blue line) and the single particle excitations
〈H〉qp (red line). The black dashed line corresponds to the total mean energy of the system.

for a given j′, provided the transition to the non-condensate particles dominated regime takes
place for those parameters. The missing data points for small j′ in every curve correspond to
j′ and k values for which τc was not found within the time interval 0 ≤ Jt ≤ 25. In addition,
the comparison of fig. 4.11a with fig. 4.11b yields, that τc increases with the total number of
particles.
In figs. 4.12 and 4.13, we plot the inverse of the time scale τc as a function of the level

spacing ∆ and the parameter j′ for an initially prepared delocalized state and an initially self-
trapped state, respectively. In both cases, τc increases with the level spacing ∆ and decreases
with parameter j′. Again, the missing data points in the curves correspond to j′ and ∆ values
for which τc was not found within the time interval 0 ≤ Jt ≤ 25. For an initially prepared
delocalized state, (Jτc)−1 shows qualitatively a similar behavior as a function of ∆ and j′ for
different particle numbers N (see figs. 4.12a and 4.12b). However, we observed that τc increases
with N . This explains why the sudden drop in (Jτc)−1 happens at smaller values of ∆ for a
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Figure 4.11: Dependence of the inverse time scale (Jτc)−1 on two main parameters j′ and k, for the
initial conditions as in fig. 4.7 and for total particle number N = 5 · 103 and N = 5 · 105. The scatter is
due to the ambiguity in the numerical definition of τc.

10 20 30 40

∆/J

0

0.5

1

1.5

2

2.5

3

(J
τ

c)-1

j’=20

j’=30

j’=40

j’=50

j’=60

j’=70

j’=80

j’=90

(a) N = 5 · 103

10 20 30 40

∆/J

0

0.5

1

1.5

2

2.5

3

(J
τ

c)-1

j’=30

j’=40

j’=50

j’=60

j’=70

j’=80

j’=90

(b) N = 5 · 105

Figure 4.12: Dependence of the inverse time scale (Jτc)−1 on the parameter j′ and the single particle
excitations energy spacing ∆, for the initial conditions as in fig. 4.7 and for total particle number
N = 5 · 103 and N = 5 · 105. The scatter is due to the ambiguity in the numerical definition of τc.

given j′ in a system with a larger particle number. An initially self-trapped state also shows
a larger τc for increasing number of particles, as seen from the comparison of figs. 4.12a with
4.12b. The sudden drop in the inverse of τc occurs for j′ < 60 at similar values of ∆. The
transition to the non-condensate particle dominated regime for an initially self-trapped state
happens simultaneously with its destruction and change to a delocalized state. The smaller
the particle number, the higher the percentage of particles excited out of the condensates for
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Figure 4.13: Dependence of the inverse time scale (Jτc)−1 on the parameter j′ and the single particle
excitations energy spacing ∆, for the initial conditions as in fig. 4.9 and for total particle number
N = 5 · 103 and N = 5 · 105. The scatter is due to the ambiguity in the numerical definition of τc.

given j′ and ∆. Consequently, we expect a larger enhancement of the Josephson frequency,
which is responsible for the transition into the delocalized regime. This explains why the drop
in (Jτc)−1 happens at larger ∆ values for j′ > 60 in systems with larger particle numbers.

Now that we have studied the characteristic time τc until which the system can sustain
undamped Josephson oscillations as a function of the system’s parameter, the question remains
about what is the origin of the transition into the single particle excitations dominated regime.
We also want to understand why does (Jτc)−1 present a sudden drop(increase) as a function
of ∆(j′). In fig. 4.14 we plot the inverse of τc as a function of the single particle energy
level spacing ∆ for j′ = 60. The insets show the time evolution of the lowest quasiparticle
energy level and the two condensate eigenenergies for three different ∆’s along the curve (see
the dots on the curve). The condensate eigenenergies are obtained from the diagonalization of
the BEC part of the Hamiltonian 4.30 - 4.32. We observe that particles get excited out of the
condensates as an avalanche when the lowest quasiparticle energy (orange line in the insets)
becomes equal the highest condensate eigenenergy (green line in the insets). This crossing of the
eigenenergies defines the transition into the non-condesate particles dominated regime. From
the time evolution of the condensate eigenenergies for ∆ = 18J and ∆ = 20.6J , we see that
their unperturbed period of oscillation is roughly JT ≈ 1. We also observed that the sudden
increase(drop) of (Jτc)−1 as a function of j′(∆) in figs. 4.11 and 4.12 happens for Jτc ≈ 1.
This allows us to conjecture that the drop in (Jτc)−1 for increasing ∆ occurs when τc is roughly
the unperturbed period of oscillations of the condensate eigenenergies. In other words, if the
system is able to sustain at least one oscillation in the condensate eigenenergies, it will likely
be able sustain multiple undamped Josephson oscillations.
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Figure 4.14: τ−1
c as a function of the single particle excitations energy spacing ∆ for fixed k = 0 and

j′ = 60, as in fig. 4.12b. The insets correspond to the time evolution of the instantaneous condensates
and first excited level eigenenergies marked by the dots on the curve. τc coincides with the time at which
the higher condensate eigenenergy crosses lowest quasiparticle energy.

4.2.2 Full 2nd-order Approximation and “Thermalization Effects”

In section 4.2, we derived a Hamiltonian 4.21 describing two initially isolated in thermal equi-
librium BECs in a double-well potential, which are subject to a non-adiabatic perturbation that
couples them, allowing the exchange of atoms. In addition we gave the underlying equations
of motion for the condensate propagator and the non-condensate two-point correlation func-
tions Anm and F nm, which describe the single particle spectrum and the occupation number,
respectively. In the derivation of the equations of motion, we did not specify self-energies.
In section 4.2.1, we discussed the solutions of the Hamiltonian 4.21 obtained using the BHF
approximation, and gave the analytical expressions for the local self-energies SHF and ΣHF

(see eqs. 4.56 and 4.57). The numerical analysis showed that after a characteristic time τc,
particles get excited out of the condensates as an avalanche and the behavior changes abruptly
to a regime of fast Josephson and Rabi oscillations. Only in this single particle excitations dom-
inated regime we expect strong damping of the oscillations due to inelastic collisions between
the non-condensed particles, equilibrating and thermalizing the system. Thus, it is necessary
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to include the higher order terms in the interatomic interaction. This will be done according
to the discussion of the full second-order approximation in section 3.5.

Similar to analysis of the BHF approximation in the last section, we can express the full
dynamics of the system in terms of the upper left and upper right components of the spectral
function Anm and the statistical function F nm. The remaining components can be obtained
using the relations listed in table 3.1. Rewriting the γ in the basis 4.20, we obtain

γGαα′(t, t′) =
∑
n,`,s

∑
n′,`′,s′

Rαn`sRn′`′s′α′
(
FGnn′(t, t′)

{
4Λ``′ss′ [F, F ∗](t, t′) + 2Λ``′ss′ [G,G∗](t, t′)

}
+ AGnn′(t, t′)

{
4Ξ``′ss′ [F, F ∗](t, t′) + 2Ξ``′ss′ [G,G∗](t, t′)

})
, (4.69)

γFαα′(t, t′) =
∑
n,`,s

∑
n′,`′,s′

Rαn`sRn′m′s′α′
(
FFnn′(t, t′)

{
4Λ``′ss′ [G,G∗](t, t′) + 2Λ``′ss′ [F, F ∗](t, t′)

}
+ AFnn′(t, t′)

{
4Ξ``′ss′ [G,G∗](t, t′) + 2Ξ``′ss′ [F, F ∗](t, t′)

})
(4.70)

where we used that R is independent of the order of its indices, because the wave functions
appearing in the overlap matrix element 4.27 were assumed to be real. Here, we defined

Λ``′ss′ [f, g](t, t′) = Af``′(t, t
′)F gss′(t, t

′) + F f``′(t, t
′)Agss′(t, t

′), (4.71)

Ξ``′ss′ [f, g](t, t′) = F f``′(t, t
′)F gss′(t, t

′)− 1
4A

f
``′(t, t

′)Agss′(t, t
′), (4.72)

where g, f ∈ {G,F,G∗, F ∗} and Ag∗ = (Ag)∗. It is sufficient to give only the expressions for the
upper components of γ, since the remaining two components are obtained using the symmetry
relations listed in tab. 3.2.

Analogously, for the spectral function Γnm of the non-condensate self-energy we get

ΓGnn′(t, t′) = 2i
∑
α,`,s

∑
α′,`′,s′

Rnα`sR`′s′α′n′
(
2a∗α(t)a∗α′(t′)Λ``

′
ss′ [G,F ](t, t′)

+a∗α(t)aα′(t′)Λ``
′

ss′ [G,G](t, t′)− 2aα(t)aα′(t′)Λ``
′

ss′ [F ∗, G](t, t′)
−2aα(t)a∗α′(t′)

{
Λ``′ss′ [G,G∗](t, t′) + Λ``′ss′ [F, F ∗](t, t′)

})
+
∑
m,`,s

∑
m′,`′,s′

Vnm`sVm′`′sn′
(
FGmm′(t, t′)

{
4Λ``′ss′ [F, F ∗](t, t′) + 2Λ``′ss′ [G,G∗](t, t′)

}
+ AGmm′(t, t′)

{
4Ξ``′ss′ [F, F ∗](t, t′) + 2Ξ``′ss′ [G,G∗](t, t′)

})
, (4.73)

ΓFnn′(t, t′) = 2i
∑
α,`,s

∑
α′,`′,s′

Rnα`sR`′s′α′n′
(
2a∗α(t)aα′(t′)Λ``

′
ss′ [G,F ](t, t′)

+a∗α(t)a∗α′(t′)Λ``
′

ss′ [F, F ](t, t′)− 2aα(t)a∗α′(t′)Λ``
′

ss′ [G∗, F ](t, t′)
−2aα(t)aα′(t′)

{
Λ``′ss′ [G,G∗](t, t′) + Λ``′ss′ [F, F ∗](t, t′)

})
+
∑
m,`,s

∑
m′,`′,s′

Vnm`sVm′`′sn′
(
FFmm′(t, t′)

{
4Λ``′ss′ [G,G∗](t, t′) + 2Λ``′ss′ [F, F ∗](t, t′)

}
+ AFmm′(t, t′)

{
4Ξ``′ss′ [G,G∗](t, t′) + 2Ξ``′ss′ [F, F ∗](t, t′)

})
. (4.74)
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For the components of the statistical function Πnm of the non-condensate self-energy we obtain

ΠG
nn′(t, t′) = 2i

∑
α,`,s

∑
α′,`′,s′

Rnα`sR`′s′α′n′
(
2a∗α(t)a∗α′(t′)Ξ``

′
ss′ [G,F ](t, t′)

+a∗α(t)aα′(t′)Ξ``
′

ss′ [G,G](t, t′)− 2aα(t)aα′(t′)Ξ``
′

ss′ [F ∗, G](t, t′)
−2aα(t)a∗α′(t′)

{
Ξ``′ss′ [G,G∗](t, t′) + Ξ``′ss′ [F, F ∗](t, t′)

})
+
∑
m,`,s

∑
m′,`′,s′

Vnm`sVm′`′sn′
(
FGmm′(t, t′)

{
4Ξ``′ss′ [F, F ∗](t, t′) + 2Ξ``′ss′ [G,G∗](t, t′)

}
+ 1

2A
G
mm′(t, t′)

{
2Ξ``′ss′ [F, F ∗](t, t′) + Ξ``′ss′ [G,G∗](t, t′)

})
, (4.75)

ΠF
nn′(t, t′) = 2i

∑
α,`,s

∑
α′,`′,s′

Rnα`sR`′s′α′n′
(
2a∗α(t)aα′(t′)Ξ``

′
ss′ [G,F ](t, t′)

+a∗α(t)a∗α′(t′)Ξ``
′

ss′ [F, F ](t, t′)− 2aα(t)a∗α′(t′)Ξ``
′

ss′ [G∗, F ](t, t′)
−2aα(t)aα′(t′)

{
Ξ``′ss′ [G,G∗](t, t′) + Ξ``′ss′ [F, F ∗](t, t′)

})
+
∑
m,`,s

∑
m′,`′,s′

Vnm`sVm′`′sn′
(
FFmm′(t, t′)

{
4Ξ``′ss′ [G,G∗](t, t′) + 2Ξ``′ss′ [F, F ∗](t, t′)

}
+ 1

2A
F
mm′(t, t′)

{
2Λ``′ss′ [G,G∗](t, t′) + Λ``′ss′ [F, F ∗](t, t′)

})
. (4.76)

Here, we also used the fact that the functions appearing in the overlap matrix elements are
real, so that R and V are independent of the order of their indices.

Like in the case of the spectral and statistical functions AG/Fnm and FG/Fnm , the additional two
components of the spectral and statistical functions of the self-energies can be expressed in
terms of their upper left and upper right components. They satisfy similar symmetry relations
to those satisfied by the components of Anm and F nm (see table 3.2). This is very convenient,
because we can express all the appearing quantities in the equations of motion with the argument
related to the later time on the left side. In appendix B, we show how one can exploit these
relations in order to simplify the numerical analysis.

Finally, the equations of motion for the components of the single particle excitations spectral
function read

i
∂

∂t
AGnm(t, t′) =

[
En` + ΣHF

n` (t)
]
AG`m(t, t′)− ΩHF

n` (t)AF`m(t, t′)∗

− i
t∫

t′

dt
[
ΓGn`(t, t)AG`m(t, t′) + ΓFn`(t, t)AF`m(t, t′)

]
, (4.77)

i
∂

∂t
AFnm(t, t′) =

[
En` + ΣHF

n` (t)
]
AF`m(t, t′)− ΩHF

n` (t)AG`m(t, t′)∗

− i
t∫

t′

dt
[
ΓGn`(t, t)AF`m(t, t′) + ΓFn`(t, t)AG`m(t, t′)

]
, (4.78)
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for the components of the statistical function

i
∂

∂t
FGnm(t, t′) =

[
En` + ΣHF

n` (t)
]
FG`m(t, t′)− ΩHF

n` (t)FF`m(t, t′)∗

− i
t∫

0

dt
[
ΓGn`(t, t)FG`m(t, t′) + ΓFn`(t, t)FF`m(t, t′)

]

+ i

t′∫
0

dt
[
ΠG
n`(t, t)AG`m(t, t′) + ΠF

n`(t, t)AF`m(t, t′)
]
, (4.79)

i
∂

∂t
FFnm(t, t′) =

[
En` + ΣHF

n` (t)
]
FF`m(t, t′)− ΩHF

n` (t)FG`m(t, t′)∗

− i
t∫

0

dt
[
ΓGn`(t, t)FF`m(t, t′) + ΓFn`(t, t)FG`m(t, t′)

]

+ i

t′∫
0

dt
[
ΠG
n`(t, t)AF`m(t, t′) + ΠF

n`(t, t)AG`m(t, t′)
]
. (4.80)

The equations 4.77 - 4.80 are coupled to equations for the condensate amplitudes

i
∂

∂t
aα(t) =

[
Eαγ + SHFαγ (t)

]
aγ(t) +WHF

αγ (t)a∗γ(t)− i
t∫

0

dt
[
γGαγ(t, t)aγ(t) + γFαβ(t, t)a∗γ(t)

]
.

(4.81)
The equations for the spectral functions do not decoupled from the rest of the equations,

as happens in the BHF approximation. In addition, we have to propagate the equations of
motion for different time arguments, as it was pointed out in section 3.5. The propagation of
the solutions for equal time arguments requires special care.

Numerical Analysis

In section 4.2.1, we studied the BHF dynamics of two initially completely isolated BECs, that
are linked by a Josephson coupling in a non-adiabatic way. Although the BHF approximation
excludes the memory effects that could lead to the establishment of an non-equilibrium steady
state, we found a very interesting behavior: particles do not get excited immediately after
switching on the Josephson coupling. Instead, there is a certain characteristic time τc after which
the system undergoes a transition to a non-condensate particles dominated regime. However,
the high-frequency anharmonic behavior in this regime, hints that the theoretical description
requires an extension in order to able to address the question of “thermalization”.
As it is discussed in [40, 75, 76], the equations of motion derived within the full second-order

approximation can be applied to study thermalization and equilibration in situations away from
equilibrium. In section 4.2.2 we gave a detailed derivation of the full second-order equations of
motion for our model (see eqs. 4.77 - 4.81). Note, that the numerical solution of these equations
requires the knowledge of all previous time steps. Thus, it is necessary to include Anm into our
analysis. In appendix B we explain the numerical scheme used to solve the equations of motion
4.77 - 4.81.
The initial setup is exactly the same as in section 4.2.1 and is expressed in the language of the
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Figure 4.15: Time evolution of condensed and non-condensed particles for initial conditions as in fig.
4.7 for r = uc = 60 (delocalized regime). In the upper left panel, the dynamics of the BEC population
imbalance z(t) is shown. The lower left panel shows the phase-space portrait of the dynamical variables
z and θ, where the dashed blue line corresponds to the trajectory prior τc. The right plot displays the
occupation number n(n)

b of the excited levels as a function of time. The black curve corresponds to their
sum. The inset shows the time average of each occupation number for the time interval 6 ≤ Jt ≤ 10.

two-time correlators and the condensate amplitudes according to eqs. 4.66 - 4.68. Again, all
relevant energies are given in terms of the Josephson coupling J and we absorb the large factors
appearing the eqs. 4.77 - 4.81 into the dimensionless parameters u = NU/J , k = NK/J , j′ =
NJ ′/J , u′ = NU ′/J , r = NR/J and n(n)

b = N
(n)
b /N . In addition we will to treat the two-body

second-order processes between non-condensate particles with the parameter uc = NUc/J 6= u′

and consider it as an additional input parameter of the system5.
From the solutions of the equations of motion we compute the time evolution occupation

numbers for the bosons out of the condensate, n(n)
b (t) and nb(t) =

∑
n

(n)
b (t), the condensate

population imbalance z(t) = [N1(t)−N2(t)]/N , and the relative phase difference θ(t) = θ1(t)−
θ2(t) as well as the real part of the diagonal elements of the single particle excitations spectral
function Re

[
AGnn(t, τc)

]
. We plot all the the quantities for times t ≥ τc, since no sizable

5 uc must be equal to u′ according to the definition of the overlap matrix element Vnms` in eq. 4.24
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Figure 4.16: Time evolution of the single particle excitations spectral function Re
[
AGnn(t, τc)

]
for t > τc

with initial conditions as in fig. 4.15

deviations are observed from the results obtained using BHF approximation for times prior τc.
Figs. 4.15 and 4.17 show the time evolution of the condensate population imbalance z(t) and

the population of the excited levels n(n)
b as well as the phase-space portrait of the variable z(t)

and θ(t) for the initial conditions as in fig. 4.7 and fig. 4.9, respectively. The parameters r and
uc describing the second-order processes were chose equal in each of the figures. We observe in
that in both figures the population imbalance is damped and that the sum of the occupation
numbers of the excited levels has a tendency to saturate with damped oscillations. Those effects
are more pronounced for a larger parameter r = uc. Naively, we expect the occupation number
of the lowest excited level to approach the highest value and the higher levels approach values
in descending order. This is not seen in left panel of fig. 4.15, but a tendency is visible in
fig. 4.17 (see the time average of each occupation number in the insets). The reason for this
could be that we were not able to propagate the solutions long enough in order to observe
thermalization. Unfortunately, the computational cost is so high, that it would require very
long simulation times. The trajectory in the phase-space portrait is contracted after switching
to a π junction. This is due to the damped oscillations of the BEC population imbalance.
The temporal behavior of the real part of the two-time spectral function Re

[
AGnn(t, τc)

]
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Figure 4.17: Time evolution of condensed and non-condensed particles for initial conditions as in fig.
4.7 for r = uc = 60 (delocalized regime). In the upper left panel, the dynamics of the BEC population
imbalance z(t) is shown. The lower left panel shows the phase-space portrait of the dynamical variables
z and θ, where the dashed blue line corresponds to the trajectory prior τc. The right plot displays the
occupation number n(n)

b of the excited levels as a function of time. The black curve corresponds to their
sum. The inset shows the time average of each occupation number for the time interval 6 ≤ Jt ≤ 10.

provides an idea about the correlations between t = τc and the intermediate states for t > τc.
We observe that for smaller parameters r and uc, a damping of the temporal oscillations of the
spectral function is barely evident (see fig. 4.16). This suggest the presence of large memory
effects. In contrast, fig. 4.18 shows a damping of the oscillations for an increased r and uc
for the time evolution of the spectral function. This damping becomes less pronounced for the
higher excited levels. This can be understood as a partial loss of information about the state
at t = τc and a suppression of the correlations between it and the later states.

4.3 Discussion

To conclude, we have presented a detailed quantum dynamical study of the non-linear Joseph-
son dynamics of the BECs confined in a finite-size double-well potential, including the coupling
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Figure 4.18: Time evolution of the single particle excitations spectral function Re
[
AGnn(t, τc)

]
for t > τc

with initial conditions as in fig. 4.17

to the non-condensate particles. Remarkably, the system can sustain multiple, undamped
Josephson oscillations for an extended time period before particles get excited out of the con-
densates and the behavior changes abruptly to a regime of fast Josephson and Rabi oscillations.
The number of undamped Josephson oscillations depends on the trap geometry and number of
particles in the system. We have conducted a quantitative and qualitative study on the time
scale at which the dynamics of the system changes into non-condensate particles dominated
regime. The time scale describes the transition to the high-frequency anharmonic state in a
satisfactory way, despite of the ambiguities in its numerical definition. At the transition, we
observe that particles get excited out of the condensate as an avalanche, as a consequence of
the crossing of the lowest quasiparticle energy and the highest condensate eigenenergy. In the
regime dominated by the single particle excitations we observe two main features. First, a state
initially prepared in the self-trapped regime undergoes a transition to the delocalized regime
simultaneously with the transition to the non-condensate particles dominated regime. Second,
at the onset of the fast dynamics the system changes from a “0” to a “π” Josephson junction
in order to sustain the large Josephson current in the state of fast dynamics.
Only in the non-condensate particles dominated regime we observed strong damping of oscil-
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4 Non-Equilibrium Josephson Oscillations in Bose-Condensed Gases

lations due to inelastic non-condensate particles collisions and a tendency towards equilibration
of the system. The parameters describing the second-order processes were chosen very large
in order to observe a “pre-thermalization”. The study of the two-time spectral function sug-
gests that the lowest excited level has the largest effective loss of information about the initial
reference state.
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CHAPTER 5

Non-Equilibrium Dynamics of the
Bose-Hubbard-Model

Despite of the considerable amount of time many physicists have invested in studying the Bose-
Hubbard model, it remains a source of fascination. Perhaps the fact that the Bose-Hubbard
model is the simplest many-body model one can write down, which cannot be reduced to a
single-particle theory, keeps attracting remarkable amount of interest.
In chapter 3 we presented the theoretical tools to analyze the temporal dynamics of a Bose-

condensed gas. In the following we want to apply them to the Bose-Hubbard model to study
the non-trivial time evolution of a coherent state loaded in the center of an optical lattice,
which is subsequently driven out of equilibrium by suddenly turning on the tunneling between
neighboring sites. But before we proceed to do so, we will first introduce the Bose-Hubbard
model and discuss its equilibrium properties. Then, we will derive the equations of motion
describing non-equilibrium situations of this model. As a first example, we will apply this
non-equilibrium description to the TSBH model, and compare the result with the model we
postulated in chapter 4 to describe non-equilibrium Josephson oscillations between two BECs.
After that, we will proceed to study the expansion dynamics of a coherent state on a two
dimensional optical lattice.

5.1 The Bose-Hubbard Model

We begin our analysis by considering a system of interacting atoms of bosonic nature trapped
in an external potential. The second-quantized Hamiltonian describing such a system in the
grand canonical ensemble is given by

Ĥ =
∫

dr Ψ̂†(r, t)
(
− 1

2m∇2 + Vext(r, t)− µ
)

Ψ̂(r, t) + g

2

∫
dr Ψ̂†(r, t)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t),

(3.1)
where µ is the chemical potential, and all other appearing quantities were introduced in section
3.1. Moreover, throughout this chapter we will consider a trapping potential periodic in space,
i.e., Vext(r) = Vext(r + X) with the periodicity X. According to the discussion in chap. 4, a
periodic potential for an atomic gas can be created using standing waves of laser light [46].
It is well known that according to Bloch’s theorem the eigenstates of a periodic Hamiltonian
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can be represented in form of Bloch waves, φk,n(r) = eik·ruk,n(r), where the components of the
lattice momentum k are restricted to values inside the first Brillouin zone, ka ∈ [−π/Xa, π/Xa],
with Xa being the respective components of X. The index n labels the separated energy bands
of the lattice, and the functions ukn(r) = uk,n(r + X) have the same periodicity as the lattice.
Now let us consider the case where the potential minima located at the sites Xi of the lattice

are well separated. In this case the weight of the atoms moving on the potential are tightly
bound to the lattice minima. Thus, it is convenient to represent the Hamiltonian 3.1 in a basis
that reflects the atomic orbital states of the isolated lattice minima. One can show that for
each energy band n a set of Wannier functions wn(r−Xi) exits, such that the Bloch functions
can be written as

φk,n(r) =
∑
i

eik·rwn(r−Xi). (5.1)

The Wannier functions form a set of orthonormal functions for the different bands n and lattice
sites i, i.e.

∫
drw∗n(r−Xi)wn′(r−Xi′) = δnn′δii′ .

Now we can expand the second-quantized field operators Ψ̂(r, t) in terms of the Wannier
functions as follows,

Ψ̂(r, t) =
∑
n,i

b̂n,i(t)wn(r−Xi), (5.2)

where the b̂n,i(t) are the expansion coefficients and correspond to the annihilation operators of
an atom in the Wannier state represented by the function wn(r−Xi). The Wannier functions of
an optical lattice can be approximated by harmonic oscillator states on each lattice site, provided
we are considering the tight-binding limit. If this is the case, the quantum states at each
lattice site will be represented by the quantum numbers nx, ny and nz, corresponding to three
dimensional harmonic oscillators in Cartesian coordinates. If the system under consideration is
prepared at low temperatures, the atoms will only occupy the lowest energy state, i.e., n = 0, at
each site. Consequently, we can restrict the summation over the quantum states n in equation
5.2 to the n = 0 terms.
Inserting 5.2 into the Hamiltonian 3.1, we obtain

Ĥ =
∑
i

(εi − µ)b̂†i b̂i −
∑
i 6=j

Jij b̂
†
i b̂j + 1

2
∑
i,j

∑
i′,j′

Uiji′j′ b̂
†
i b̂
†
j b̂i′ b̂j′ , (5.3)

with the on-site energies

εi =
∫

drw∗0(r−Xi)
[
− 1

2m∇2 + Vext(r)
]
w0(r−Xi), (5.4)

the tunneling or hopping amplitude between the sites i and j

Jij = −
∫

drw∗0(r−Xi)
[
− 1

2m∇2 + Vext(r)
]
w0(r−Xj), (5.5)

and

Uiji′j′ = g

∫
dr
∫

dr′w∗0(r−Xi)w∗0(r′ −Xj)δ(r− r′)w0(r′ −Xi′)w0(r−Xj′) (5.6)

representing the interactions energy between two atoms. In general it does not only contain the
on-site two-particle interactions, but also interactions between atoms on different sites. The
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later can be neglected, because they are usually exponentially suppressed.

The summation in eq. 5.3 related to the hopping of atoms from one site to another extends
over all possible combinations of i 6= j. Assuming that the lattice is deep enough, the major
contributions will come from the hopping to the nearest neighbor, while the others will be
exponentially suppressed. This allows us to restrict the summation to the nearest-neighbor
hopping terms, which we will denote by

∑
〈i,j〉 and its corresponding hopping amplitude J .

With all these approximations, the Hamiltonian now reads

Ĥ = −J
∑
〈i,j〉

b̂†i b̂j +
∑
i

(εi − µ)b̂†i b̂i + U

2
∑
i

b̂†i b̂
†
i b̂ib̂i

= −J
∑
〈i,j〉

b̂†i b̂j +
∑
i

(εi − µ)b̂†i b̂i + U

2
∑
i

n̂i (n̂i − 1) , (5.7)

where in the last equality we used the bosonic commutation relations in order to rewrite the
term related to the two-particle interactions in terms of the occupation operator n̂i = b̂†i b̂i.

The simplified Hamiltonian 5.7 is known as “Bose-Hubbard model”. It could have been
postulated phenomenologically: atoms that tunnel between the potential minima (εi−µ) of the
optical lattice with the hopping amplitude J , while multiple occupancy of a single site results
in an energy penalty proportional to U .

5.1.1 Superfluid-Mott Insulator Transition

At zero temperature the Bose-Hubbard model features two different phases, the superfluid and
the Mott insulator phase. The former is characterized by a hopping amplitude J that exceeds
the on-site repulsion U , which results in a kinetic energy dominated regime. In contrast to the
superfluid phase, the Mott insulator phase is the result of an on-site repulsion that overwhelms
the tunneling between lattice sites. These two phases can be understood as the competition of
the parameters J and U . The hopping amplitude J , which is related to the kinetic energy, tries
to delocalize the atoms, while the on-site repulsion U tries to localize them and suppresses the
on-site particle number fluctuations.

In the following we want to study the transition between the two phases that characterize
the Bose-Hubbard model at zero temperature [16, 46, 77, 78]. In analogy to the Bogoliubov
approach, we first introduce the superfluid order parameter

Ψ =
√
n0 = 〈b̂†i 〉 = 〈b̂i〉, (5.8)

where n0 is the condensate fraction 〈N0〉/Ns per site, and Ns is the number of sites. Notice,
that Ψ can be chosen to be real, because the model is translational invariant and one can choose
a global gauge transformation to absorb its complex phase.

Now, aiming towards the construction of a consistent mean-field theory, we make the substi-
tution

b̂†i b̂j ≈ 〈b̂
†
i 〉b̂j + b̂†i 〈b̂j〉 − 〈b̂

†
i 〉〈b̂j〉 = Ψ

(
b̂†i + b̂j

)
−Ψ2 (5.9)
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in the hopping term of eq. 5.7. Thus, we obtain the effective Hamiltonian

Ĥeff = zJΨ2Ns + U

2
∑
i

n̂i (n̂i − 1)− µ
∑
i

b̂†i b̂i − zJ
∑
i

Ψ
(
b̂†i + b̂j

)
= zJ

∑
i

[
−µn̂i + U

2 n̂i (n̂i − 1) + Ψ2 −Ψ
(
b̂†i + b̂j

)]
(5.10)

where z is the number of nearest-neighbors. In the last equality we introduced U = U/zJ and
µ = µ/zJ . Note that the summand in the second line is the same for every single site. Hence,
we can drop the index i when studying a single site. In addition, all energies in the summand
are scaled by the factor 1/zJ , making them dimensionless.
With the purpose of deriving the phase diagram analytically, we consider a single site on the

lattice, which is described by the dimensionless Hamiltonian

Ĥ = Ĥ(0) + ΨV̂

=
[
−µn̂+ U

2 n̂ (n̂− 1) + Ψ2
]
−Ψ

(
b̂† + b̂

)
, (5.11)

where we split the Hamiltonian in an exact solvable part Ĥ(0) and a perturbation ΨV̂ .
From perturbation theory analysis of the Hamiltonian, we observe that in the occupation

number basis all the energy corrections with odd powers of Ψ are zero. Denoting the unper-
turbed energy of the state with exactly n particles by E(0)

n , we obtain

E(0)
g = min

{
E(0)
n | ∀n ∈ N

}
(5.12)

for the unperturbed ground state energy. Comparison between the energies E(0)
n and E

(0)
n+1

yields

E(0)
g =

{
0, µ < 0
U
2 g(g − 1)− µg, U(g − 1) < µ < Ug

. (5.13)

Inserting this in the standard formula for the second-order correction to the energy [74], we get

E(2)
g = Ψ2

[
g

U(g − 1)− µ
+ g + 1
µ− Ug

]
. (5.14)

If we write the energy ground state as an expansion in Ψ as

Eg(Ψ) = a
(
g, U, µ

)
+ b

(
g, U, µ

)
Ψ2 +O

(
Ψ4
)

(5.15)

according the usual Landau procedure for second order phase transitions, and minimize it as
a function of the superfluid order parameter, we obtain Ψ = 0 for b

(
g, U, µ

)
> 0 and Ψ 6= 0

for b
(
g, U, µ

)
< 0. This implies that the boundary between the superfluid phase and the Mott

insulator phase is defined by b
(
g, U, µ

)
= 0, which yields

µ± = 1
2
(
U(2g − 1)− 1

)
± 1

2

√
U

2 − 2U(2g + 1) + 1. (5.16)
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5.1 The Bose-Hubbard Model

The subscript ± refers to the upper and lower halves of the Mott insulating regions in the
phase diagram depicted in fig. 5.1. In order to obtain the smallest value U can take in each of
the “lobes”, we set µ+ equal to µ− and solve for U . This critical value will be denoted by U c
and reads

U c = 2g + 1 +
√

(2g + 1)2 − 1. (5.17)
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Figure 5.1: The solid lines depict the transition between the superfluid phase and the Mott insulator
phase as computed from the second order perturbation theory. The vertical dotted lines indicated the
critical values of J for different fillings.

In Figure 5.1 we show the phase diagram of the Bose-Hubbard model as obtained from the
second order perturbation theory. Note that we plotted the chemical potential depicting the
transition between the two phases as a function of the tunneling amplitude J , instead of the
interatomic interactions U . This is easily done by using µ = zJµ and U = zJU . The quantities
on the axis are given in units of U . The dotted lines in the figure indicate the maximal value
Jc that the hopping amplitude J can take in each of the lobes.
Up to this point we have discussed a translational invariant Bose-Hubbard Hamiltonian.

However, in order to describe experiments we need to take the influence of the external trapping
potential into account. In a simple approximation, the effect of the confining potential can
be described by defining a local chemical potential µ(r) = µ − Vext(r), where Vext(r) is the
trapping potential. Assume, for instance, that the change of the mean particle number between
neighboring sites is small. In this case, the system can be treated locally as a homogeneous
system. Since the chemical potential is fixed by the particle density, the system can undergo a
phase transition from superfluid to Mott insulator phase locally by changing the ration J/U .
This provides an insight in the density profile of atoms spread on optical lattice and confined by
an external trapping potential. If the trapping potential looks like a harmonic trap, the density
profile across the full lattice will resemble a “wedding-cake” [79–82]. Moving outwards from
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5 Non-Equilibrium Dynamics of the Bose-Hubbard-Model

the center of the lattice, one will encounter rings of Mott insulating regions with decreasing
particle density.

5.2 Equations of Motion

Having introduced the Bose-Hubbard model and its zero temperature phase transition from
superfluid to Mott-insulator, we proceed to derive the kinetic equations necessary to study
non-equilibrium situations of bosonic atoms on an optical lattice. The equations of motion will
be derived within the framework of the self-consistent approximations presented in section 3.2.
Once the mathematical tools are developed, we will apply them to the TSBH model and use
them to describe the temporal dynamics of an expanding coherent state on a two dimensional
lattice.
We begin our analysis considering the Bose-Hubbard Hamiltonian 5.7 in the canonical en-

semble:
Ĥ = −J

∑
i

(
b̂†i b̂i+{1} + b̂†i+{1}b̂i

)
+ U

2
∑
i

b̂†i b̂
†
i b̂ib̂i, (5.18)

where we set all on-site energy to zero, i.e., εi = 0, and ±{1} denotes all jumps to the nearest
neighbors. For simplicity we will write from now on ±1 instead.
Now we proceed similar to the analysis in section 3.1 and denote the mean field or the ex-

pectation value of the field operator by ai(t) = 〈b̂i〉 and the fluctuation operator by ϕ̂i(t) =
b̂i(t) − ai(t). Physically, |ai(t)|2 is related to the condensate population at site i. As a con-
sequence of representing the bosonic operators b̂i in terms of the mean field and the fluctuation
operator, the full bosonic propagator splits into C +G, where

Cij(ti, tj) = −i
(
ai(ti)a∗j (tj) ai(ti)aj(tj)
a∗i (ti)a∗j (tj) a∗i (ti)aj(tj)

)
(5.19)

is the propagator related to the mean field, and

Gij(ti, tj) =− i
(
〈TCϕ̂i(ti)ϕ̂†j(tj)〉 〈TCϕ̂i(ti)ϕ̂j(tj)〉
〈TCϕ̂†i (ti)ϕ̂

†
j(tj)〉 〈TCϕ̂

†
i (ti)ϕ̂j(tj)〉

)

=
(
Gij(ti, tj) Fij(ti, tj)
F ij(ti, tj) Gij(ti, tj)

)
, (5.20)

the propagator related to the fluctuations. TC denotes the time ordering along the CTP, shown
in fig. 2.2. Note that in the time arguments we used the same indices as the subscripts related
to the lattice sites. In fact, it is not necessary to do so, but this allow us to simplify the notation
in our further analysis. For the rest of this chapter, we will write

Gij(ti, tj) ≡ Gij , (5.21)

and similarly for C. When the two time variables are evaluated at equal times for different
lattice sites i 6= j, we will mention it explicitly.
Using the real-time formalism discussed in section 2.2, the associated Dyson’s equations on

80
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the real time contour yields

∑
k

∞∫
−∞

dtk
[
G−1

0,ik − S
HF
ik

]
Ckj = −i

∑
k

ti∫
−∞

dtk γikCkj , (5.22)

∑
k

∞∫
−∞

dtk
[
G−1

0,ik −ΣHF
ik

]
G≷kj = −i

∑
k

ti∫
−∞

dtk ΓikG≷kj + i
∑
k

tj∫
−∞

dtk Σ≷ikAkj , (5.23)

where the k summation is taken over all lattice sites and the integration extends according
to the intervals specified at the boundaries. We also decomposed the self-energies into the
Hartree-Fock local part SHFij (ΣHF

ij ) and its non-local part Sij(Σij). The inverse propagator on
the left side reads

G−1
0,ij ≡ G

−1
0,ij(t, t

′) =
[
iτ 3δij

∂

∂t
+ J (δi,j+1 + δi,j−1) 1

]
δ(t− t′), (5.24)

where the time arguments were used without the indices, in order to avoid misinterpretations.
In accordance to the analysis of chapter 3, we introduce the symmetrized and antisymmetrized
correlation functions

Aij = i
[
G>
ij −G<

ij

]
=

(
AGij AFij
AFij AGij

)
, (5.25)

F ij = 1
2
[
G>
ij +G<

ij

]
=

(
FGij FFij
FFij FGij

)
, (5.26)

related to the fluctuations. Similarly,

γij = i
[
S>ij − S<ij

]
=

(
γGij γFij
γFij γGij

)
(5.27)

for the spectral function of mean field self-energy, and

Γij = i
[
Σ>
ij −Σ<

ij

]
=

(
ΓGij ΓFij
ΓFij ΓGij

)
, (5.28)

Πij = 1
2
[
Σ>
ij + Σ<

ij

]
=

(
ΠG
ij ΠF

ij

ΠF
ij ΠG

ij

)
, (5.29)

for the spectral and statistical functions of the fluctuation’s self-energies.
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5 Non-Equilibrium Dynamics of the Bose-Hubbard-Model

Rewriting the eqs. 5.22 and 5.23 in terms of the symmetrized and antisymmetrized correlators
and carefully evaluating the integral on the left hand side of both equations, we get

iτ 3
∂

∂ti
Cij = −J (Ci+1,j +Ci−1,j) + SHFi Cij − i

∑
k

ti∫
0

dtk γikCkj , (5.30)

iτ 3
∂

∂ti
Aij = −J (Ai+1,j +Ai−1,j) + ΣHF

i Aij − i
∑
k

ti∫
tj

dtk ΓikAkj , (5.31)

iτ 3
∂

∂ti
F ij = −J (F i+1,j + F i−1,j) + ΣHF

i F ij − i
∑
k

ti∫
0

dtk ΓikF kj + i
∑
k

tj∫
0

dtk ΠikAkj .

(5.32)

Here we used the locality of the Hartree-Fock self-energies in time arguments as well as in the
indices related to the lattice sites, i.e. SHFij = SHFi δijδ(ti− tj) and similar for ΣHF . Note, that
the integrals involving higher order terms in U on the right side of eqs. 5.30 and 5.32 start at 0
instead −∞. Similar to the analysis performed in chapter 4, this is a consequence of the choice
of the boundary conditions. In the systems we will be considering later in this chapter, we can
formulate the boundary conditions such, that the system of equations 5.30 - 5.32 becomes an
initial value problem.

Before we proceed to discuss the various approximations that we will consider in this chapter,
we will give the expressions for the conserved quantities that are relevant to us. A bosonic gas
of cold atoms trapped in an optical lattice can be regarded (in a very good approximation) as
being completely isolated. The total particle number conservation arises as a consequence of
the global phase invariance of the system. It can be proven that the total particle number

N =
∑
i

[
N

(0)
i +N

(ϕ)
i

]
=

∑
i

[
|ai|2 + i

(
FGii + i

2

)]
(5.33)

is constant by making use of the eqs. 5.30 and 5.32. N (0)
i and N

(ϕ)
i are the mean field and

fluctuations particle number, respectively, and their sum defines the population at site i. The
total particle number is a suitable quantity to test our numerics.

Although the total energy is conserved for an isolated system, the inclusion of dissipative
terms in the chosen approximation for the self-energies can break the energy conservation. The
particle number conservation can be proven just by using the self-consistency of the equations of
motion without giving any explicit expression for the self-energies. This is however not the case
for the energy. Making use of the full second-order approximation (see fig. 3.3 and eqs. 3.31
and 3.32), we can prove the mean energy of the atoms 〈Ĥ〉 = 〈Ĥ〉c + 〈Ĥ〉exc to be conserved,
where

〈Ĥ〉c = i

2
∑
i

Tr

−J (Ci+1,i +Ci−1,i) + 1
2S

HF
i Cii + 1

2
∑
k

ti∫
0

dtk γikCki

 (5.34)
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and

〈Ĥ〉exc = i

2
∑
i

Tr

−J (F i+1,i + F i−1,i) + 1
2ΣHF

i F ii + 1
2
∑
k

ti∫
0

dtk {ΓikF ki −ΠikAki}


(5.35)

are the mean energies related to the mean field and the fluctuations, respectively.
In addition to the mean energies and the mean field and the fluctuations particle numbers

N
(0)
i and N

(ϕ)
i , we introduce the quasi-momentum distribution of the atoms released on the

optical lattice. This quantity is easily accessible experimentally and is defined as

nk(t) = 1
Id

∑
i,j

eik(i−j)〈b̂†i (t)b̂j(t)〉, (5.36)

where b̂†i = a∗i + ϕ̂†i and b̂i = ai + ϕ̂i are the bosonic creation and annihilation operators, and
the quasi-momentum k ∈ 2π

aIZd . I is the number of lattice sites in one direction and d is the
dimension of the lattice1. Furthermore, the memory effects described within the higher order
approximations can be quantified with the help of the single particle spectral function Aij . The
quantity

AGk (t, 0) = 1
Id

∑
i,j

eik(i−j)AGij(t, 0) (5.37)

is a good measure for the correlations between the states at time t and the initial condition.

5.2.1 Mean-Field Approximation

Having derived the general equations of motion describing the temporal dynamics of the Bose-
Hubbard model, we proceed to study the three approximations we will be considering in the
rest of this chapter. We begin with the simplest approximation. If we neglect the quantum
fluctuations and constraint the analysis to the mean fields ai = 〈b̂i〉, the system of equations
simplify, leaving us only with the equation of motion for the propagator related to the mean
field:

iτ 3
∂

∂ti
Cij = −J (Ci+1,j +Ci−1,j) + SHFi Cij , (5.38)

with the Hartree-Fock self-energy

SHFi = i
U

2 Tr [Cii] 1. (5.39)

The upper right component of equation 5.38, reads

i
∂

∂ti
ai = −J (ai+1 + ai−1) + U |ai|2ai. (5.40)

In other words, the mean field amplitudes satisfy a discrete non-linear Schrödinger equation
(DNLSE).

1 We will only consider equal numbers of lattice sites in every direction for systems with d > 1.
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5 Non-Equilibrium Dynamics of the Bose-Hubbard-Model

5.2.2 Bogoliubov-Hartree-Fock Approximation

The simplest conserving approximation that includes the fluctuations is the BHF approxima-
tion. In section 3.4 we discussed its range of validity and properties. The BHF approximation
encompasses only the processes involving the fluctuations up to first order in the interaction
parameter U . Thus it is equivalent to neglect the integrals on the right side of eqs. 5.30 - 5.32.
In doing so, the equations of motion for the spectral and statistical function of the fluctuations
reduce to

iτ 3
∂

∂ti
Aij = −J (Ai+1,j +Ai−1,j) + ΣHF

i Aij , (5.41)

iτ 3
∂

∂ti
F ij = −J (F i+1,j + F i−1,j) + ΣHF

i F ij (5.42)

where the Hartree-Fock self-energy in terms of the statistical function is given by

ΣHF
i ≡

(
ΣHF
i ΩHF

i

ΩHF
i ΣHF

i

)

= iU

({1
2Tr [Cii] 1 +Cii

}
+
{1

2Tr [F ii] 1 + F ii

})
. (5.43)

The equations for the fluctuations two-time correlators are coupled to an equation for the
mean-field amplitude. This equation is obtained by inserting the self-energy

SHFi ≡
(
SHFi WHF

i

W
HF
i S

HF
i

)

= iU

(1
2Tr [Cii] 1 +

{1
2Tr[F ii]1 + F ii

})
(5.44)

into equation 5.38. The upper right component the reads

i
∂

∂ti
ai = −J (ai+1 + ai−1) +

(
U |ai|2 + 2iUFGii

)
ai + iUFFii a

∗
i . (5.45)

Due to the fact that F ii is the only quantum fluctuations related quantities appearing in
the Hartree-Fock self-energies 5.44 and 5.43, the equations for the components of the spectral
function Aij decouple from the system of equations. In addition, since the integrals containing
the higher order terms in U do not appear in the equations of motions within the framework of
the BHF approximation, it is sufficient to propagate the solutions for the two-time correlation
function evaluated at equal times. Following the discussion in sections 3.4 and 4.2.1, for the
components of the statistical function we obtain

i
∂

∂ti
FGij = −J

(
FGi+1,j + FGi−1,j

)
+ J

(
FGi,j+1 + FGi,j−1

)
+ΣHF

i FFij − FFij ΣHF
j − ΩHF

i

(
FFij

)∗
− FFij

(
ΩHF
j

)∗
, (5.46)

i
∂

∂ti
FFij = −J

(
FFi+1,j + FFi−1,j

)
− J

(
FFi,j+1 + FFi,j−1

)
+ΣHF

i FFij + FFij ΣHF
j − ΩHF

i

(
FGij

)∗
+ FGij ΩHF

j , (5.47)
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where all the two-time quantities are evaluated at equal times and

ΣHF
i = 2U |ai|2 + 2iUFGii , (5.48)

ΩHF
i = U (ai)2 + iUFFii . (5.49)

When solving the system of equations 5.45, 5.46 and 5.47, one exploits that fact that they are
already discrete in space. This reduces the system to a non-linear set of ordinary differential
equations, which can be numerically solved by the means of the Runge-Kutta method.

5.2.3 Full Second-Order Approximation

In the derivation of the equations 5.30 - 5.32, the only assumption made was that we were
working within the framework of a conserving approximation. This allowed us to write the
terms involving higher order processes in the interatomic interactions as a convolution of the self-
energy and the one-particle propagator. In section 3.2.2, we presented the Feynman diagrams
contributing to the full second-order approximation (see fig. 3.3), which were obtained from a
φ-derivable functional.

In sections 3.5 and 4.2.2, it was stated that the full dynamics of the fluctuations can be
described in terms of the upper-left and upper-right component of Aij and F ij , since the
remaining two are obtained from the relations listed in tab. 3.1. Similar symmetry relations
also apply to the self-energies (see tab. 3.2). We therefore only give the expressions for the
upper-left and upper-right components of the spectral function of the mean field self-energy:

γGij = U2
(
FGij {4Λ[F, F ∗]ij + 2Λ[G,G∗]ij}+AGij {4Ξ[F, F ∗]ij + 2Ξ[G,G∗]ij}

)
, (5.50)

γFij = U2
(
FFij {4Λ[G,G∗]ij + 2Λ[F, F ∗]ij}+AGij {4Ξ[G,G∗]ij + 2Ξ[F, F ∗]ij}

)
, (5.51)

where Λ[·, ·]ij and Ξ[·, ·]ij are the discrete version of eqs. 3.72 and 3.73.

The relations for the components of the spectral function of the fluctuations self-energies are
given by

ΓGij = 2iU2
(
2a∗i a∗jΛ[F,G]ij + a∗i ajΛ[G,G]ij

−2aiajΛ[F ∗, G]ij − 2aia∗j {Λ[G,G∗]ij + Λ[F, F ∗]ij}
)

+U2
(
FGij {4Λ[F, F ∗]ij + 2Λ[G,G∗]ij}+AGij {4Ξ[F, F ∗]ij + 2Ξ[G,G∗]ij}

)
, (5.52)

ΓFij = 2iU2
(
2a∗i ajΛ[F,G]ij + a∗i a

∗
jΛ[F, F ]ij

−2aia∗jΛ[F,G∗]ij − 2aiaj {Λ[G,G∗]ij + Λ[F, F ∗]ij}
)

+U2
(
FFij {4Λ[G,G∗]ij + 2Λ[F, F ∗]ij}+AGij {4Ξ[G,G∗]ij + 2Ξ[F, F ∗]ij}

)
, (5.53)
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and similarly the for the components of the statistical function,

ΠG
ij = 2iU2

(
2a∗i a∗jΞ[F,G]ij + a∗i ajΞ[G,G]ij

−2aiajΞ[F ∗, G]ij − 2aia∗j {Ξ[G,G∗]ij + Ξ[F, F ∗]ij}
)

+U2
(
FGij {4Ξ[F, F ∗]ij + 2Ξ[G,G∗]ij} −

1
2A

G
ij {2Λ[F, F ∗]ij + Λ[G,G∗]ij}

)
,(5.54)

ΠF
ij = 2iU2

(
2a∗i ajΞ[F,G]ij + a∗i a

∗
jΞ[F, F ]ij

−2aia∗jΞ[F,G∗]ij − 2aiaj {Ξ[G,G∗]ij + Ξ[F, F ∗]ij}
)

+U2
(
FFij {4Ξ[G,G∗]ij + 2Ξ[F, F ∗]ij} −

1
2A

G
ij {2Λ[G,G∗]ij + Λ[F, F ∗]ij}

)
.(5.55)

Finally, the equations of motion for the components of the fluctuations spectral function read

i
∂

∂ti
AGij = −J

(
AGi+1,j +AGi−1,j

)
+ ΣHF

i AGij − ΩHF
i

(
AFij

)∗
− i

∑
k

ti∫
tj

dtk
[
ΓGikAGkj + ΓFikAFkj

]
,

(5.56)

i
∂

∂t1
AFij = −J

(
AFi+1,j +AFi−1,j

)
+ ΣHF

i AFij − ΩHF
i

(
AGij

)∗
− i

∑
k

ti∫
tj

dtk
[
ΓGikAFkj + ΓFikAGkj

]
,

(5.57)

and for the components of the statistical function

i
∂

∂ti
FGij = −J

(
FGi+1,j + FGi−1,j

)
+ ΣHF

i FGij − ΩHF
i

(
FFij

)∗
−i
∑
k

ti∫
0

dtk
[
ΓGikFGkj + ΓFikFFkj

]
+ i

∑
k

tj∫
0

dtk
[
ΠG
ikA

G
kj + ΠF

ikA
F
kj

]
(5.58)

(5.59)

i
∂

∂ti
FFij = −J

(
FFi+1,j + FFi−1,j

)
ΣHF
i FFij − ΩHF

i

(
FGij

)∗
−i
∑
k

ti∫
0

dtk
[
ΓGikFFkj + ΓFikFGkj

]
+ i

∑
k

tj∫
0

dtk
[
ΠG
ikA

F
kj + ΠF

ikA
G
kj

]
. (5.60)

The equations 5.56 - 5.60 are coupled to the discrete version of the “generalized” GPE

i
∂

∂ti
ai = −J (ai+1 + ai−1) +

(
U |ai|2 + 2iUFGii

)
ai + iUFFii a

∗
i − i

∑
k

ti∫
0

dtk
[
γGikak + γFika

∗
k

]
.

(5.61)
Notice, that in the integrals on the right side we do not used the symmetry relations listed

in tab. 3.1 to express the equations only in terms of the upper components. In appendix B we
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explain how to treat the evolution of the two-time correlation functions numerically, and how
the integrals can be computed.

5.3 Temporal Dynamics of the Two-Site Hubbard Model

As a first exercise we want to consider the TSBH. In section 4.1 we mentioned that the Hamilton
function 4.6 obtained within the two-mode approximation in the context of a BEC loaded on a
double-well potential is equivalent to the mean field approximation of the Hamiltonian 5.18. In
the following we want to study the Bose-Hubbard model in the context of Josephson oscillations
between two condensates. The aim is to compare the dynamics described by TSBH with the
results obtained for the model we proposed in section 4.2 for the non-equilibrium description
of a BEC confined in a double-well trap of finite size.
The situation under consideration is exactly as depicted in section 4.2: two initially com-

pletely isolated BECs, that are suddenly linked by a Josephson coupling. The difference to the
model proposed in section 4.2 resides in the description of the single-particle excitations. While
the model described by the Hamiltonian 4.21 assumes that for a trap of finite size, such as the
one prepared in the experiment [54, 60], the single particle excitations energy levels extend over
the two BECs above the barrier, the single particle excitations in the Bose-Hubbard model are
described in the Wannier basis 5.2, which in the case of a double-well trap correspond to the
symmetrized and antisymmetrized solutions of the potential.
The underlying equations of motion for the TSBH are given by eqs. 5.56 - 5.61 with indices

i, j, k taking only the values 1, 2 corresponding to the left and right condensate2. The initial
conditions for the setup under consideration read

ai(0) =
√
Ni(0)eiθi(0), (5.62)

FGij (0, 0) = −iδij2 , (5.63)

FFij (0, 0) = 0, (5.64)

where Ni(0) and θi(0) are the initial population and macroscopic phase of the condensate in
the well i, respectively. Apart from the relations 5.62 - 5.64, we have the initial values for
components of the non-condensate spectral function, i.e. AGij(0, 0) = δij and AFij(0, 0) = 0.
These values are fixed for AG/F evaluated at equal times, due to the bosonic commutation
relations.
Apart from the initial conditions, the TSBH has two additional input parameters, the tun-

neling amplitude or Josephson coupling J and the interaction parameter U . However, it is
convenient to give all the energies of the system in terms of the Josephson coupling J and
absorb the large particle numbers appearing in the equations of motion 5.56 - 5.61 into the
dimensionless parameter u = NU/J , where N = N1 +N2 is the total particle number.

In the discussion of the two-mode approximation in section 4.1, we pointed out that the sys-
tem displays two different regimes for fixed initial particle imbalance z(0) = [N1(0)−N2(0)]/N
and the relative phase difference θ(0) = θ1(0) − θ2(0) between the condensates, and varying
interaction parameter u. Similar behavior was observe for fixed u and θ(0) and varying z(0).
This permits us to fix the initial population imbalance and relative phase and study the effects

2 The summation index k should not be confused with the quasi-momentum introduced in eq. 5.36
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of varying u, in order to be able to compare directly with the results obtain for the model
presented in section 4.2.

In the following we analyze the effects the inclusion of the quantum fluctuations has on the
dynamics of atoms in a finite size double-well potential. For this purpose we will consider
different initial setups consisting of different number of bosons loaded on a two-site lattice,
such that the initial particle imbalance z(0) and initial relative phase θ(0) is the same for all
these setups. In section 4.1 we discussed within the two-mode approximation that the condition
for the macroscopic self-trapping can be expressed solely in terms of the interaction parameter
u, and depends only on the initial interwell condensate population imbalance and not on the
total particle number for a fixed initial relative phase difference between the condensates (see
eq. 4.19). This allows us to restrict our study to the three different regimes discussed in the
context of the two-mode approximation for different total numbers of atoms, since neglecting the
quantum fluctuations yields the system of equations derived in section 4.1. The dynamics will be
summarized in terms of the time evolution of the interwell condensate particle imbalance z(t),
the fluctuations particle number per site N (ϕ)

i and their sum normalized to the total particle
number N , and the phase space portrait of the dynamical variable z and θ. In addition, the
quasi-momentum distribution nk(t) provides a good insight in the dynamics as well as the single
particle excitations spectral function, which we will use to study the correlations between the
intermediate states and the initial conditions.
The basic features of the results can be summarized as follows:

Initially prepared delocalized state (z(0) = 0.6, θ(0) = 0 and u = 5)
In fig. 5.2 we present the time evolution of the particle imbalance z, the fluctuations
particle number per site N (ϕ)

i and their sum, and the corresponding phase space portraits
for systems consisting of different total number of atoms N = 50, 5000, 50000. The initial
conditions and interaction parameter u = 5 were chosen such that in the two-mode
approximation the results would correspond to the delocalized regime (dashed blue lines
in z vs. Jt and z vs. θ/π plots). We observe that for such a relatively small interaction
parameter u, single particle excitations are immediately excited for the system consisting
of N = 50 particles. After a short time the overall single particle excitations number
keeps oscillating between 10% and 20% of the total particle number of the system. This
depletion of the condensate manifests itself as a damping of the time-oscillations of the
condensate population imbalance z and a deviation from the trajectory obtained in the
two-mode approximation in the phase space plot. We observe that the larger the particle
number N , the longer it takes for the system to excite single particle excitations, and
the smaller the condensates depletion (see the plots for N (ϕ)

i as function of time for
N = 5000, 50000). Consequently, the time-oscillations of the population imbalance are
less damped and the deviations in the phase space trajectories are smaller compared to
those for systems with a smaller total particle number.

The time evolution of the quasi-momentum distribution shows similar behavior for both
large and small total particle number (see upper row in both panels fig. 5.3. For the
lower quasi-momentum mode (k = 0) the distribution nk=0 oscillates in time around
a higher occupation number than the distribution of the higher mode k = π/a, where
a is the distance between the two wells. These oscillations are damped, and the time
this damping sets in coincides with the time the number of single particle excitations
increases abruptly, as it is shown in the lower row of fig. 5.2. Moreover, we observe that
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Figure 5.2: In the first row the population imbalance z is plotted as a function of time for initial total
number of particles N = 50, 5000, 50000 and an initially prepared delocalized state (z(0) = 0.6 and
u = 5). The blue dashed lines correspond to the solutions obtained from the two-mode approximation
and serve as references. In the second row, the phase space portraits of the dynamical variable z and θ
are shown. Again, the dashed blue lines correspond to the two-mode approximation solutions. At the
bottom, the fluctuations particle number per site is plotted as functions of time (blue and orange lines),
as well as the total fluctuations particle number (black line).
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Figure 5.3: In the upper panel the quasi-momentum distribution nk and the real part of the Fourier
components of the two-time single particle excitations spectral function Re[AGk (t, 0)] are plotted as a
function of time for initial total number of particles N = 50 and an initially prepared delocalized state
(z(0) = 0.6 and u = 5). The violet and green lines correspond to the k = 0 and k = π/a ≡ 1 quasi-
momentum, respectively. In the lower panel the same quantities are plotted for initial an particle number
N = 5000.

this damping is stronger for the system with N = 50 than for the system N = 5000
particles.
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The temporal behavior of the real part of the Fourier component of the two-time fluc-
tuations spectral function Re

[
AGk (t, 0)

]
, shown in the lower row of the upper panels in

fig. 5.3), suggests that for the system with N = 50 particles the correlations between
the intermediate states and the initial conditions are damped for both quasi-momentum
modes k = 0, π/a. This is not the case for the system with N = 5000 particles (see the
lower row in the lower panel). Apparently, the memory effects for such a large number of
particles distributed among two sites increases with the time.

Initially prepared critical state (z(0) = 0.6, θ(0) = 0 and u = 20)
In the following, we will refer to a state that is initially prepared at the boundary between
the delocalized and macroscopic self-trapped regimes, as initially prepared critical state.
The time evolution of the condensate population imbalance z, of the fluctuations particle
number per site and of the condensates depletion exhibit a very interesting behavior for an
initially prepared critical state while taking the quantum fluctuations under consideration.
In the two-mode approximation, the condensate particle imbalance oscillates anharmonic
and with a large amplitude around 0 (blue dashed lines in the upper and middle row of
fig. 5.4). Once the quantum fluctuations are taken into account, the initially prepared
critical state undergoes a transition into the delocalized regime, where the relative phase
oscillates around 〈θ〉 = 2π. This transition occurs almost immediately after switching
on the Josephson coupling J and occurs simultaneously to the abrupt increase of the
condensate depletion N (ϕ)

1 +N
(ϕ)
2 (black line in the lower row of fig. 5.4). For the system

with N = 50 particles, the condensate depletion shows damped oscillation and appears
to approach a constant value, unlike the depletion for the systems with N = 5000, 50000
particles, which display a strong anharmonic behavior.

The quasi-momentum distribution shows a repeated crossing of the occupation numbers
of the lower k = 0 and higher k = π/a quasi-momentum mode for the systems with
N = 50, 5000 particles (violet and green lines in the upper row of both panels in fig.
5.5). The distribution of the two quasi-momentum modes is damped, stronger for the
system containing N = 50 particles. Once again, the damping sets in simultaneously
with an abrupt increase of the quantum fluctuations particle number. Furthermore, in
both cases the higher quasi-momentum mode appears to be reaching a higher occupation
number than the lower momentum mode. This tendency is more pronounced for the
N = 50 particles system, than for the system with N = 5000 particles. This behavior
explains the transition into the delocalized regime and can be well understood by taking a
glance at the real part of the Fourier components of the two-time single particle spectral
function (violet and green lines in the lower row of both panels in fig. 5.5). For the
N = 50 particles system, the time oscillations of Re

[
AGk (t, 0)

]
are strongly suppressed for

both quasi momentum modes, reaching a zero value. This means that the correlations
between the initial and the intermediate states decay rapidly for both momentum modes.
Unlike the behavior of the N = 50 particles system, the system with N = 5000 shows
large memory effects. Re

[
AGk (t, 0)

]
does not show any decay at all in the time interval

under consideration, what explains the less pronounced damping in the quasi-momentum
distribution and tendency of the occupation number of the higher mode to reach a higher
value.

Initially prepared self-trapped state (z(0) = 0.6, θ(0) = 0 and u = 25)
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Figure 5.4: In the first row, the population imbalance z is plotted as a function of time for an initial total
number of particles N = 50, 5000, 50000 and initially prepared critical state (z(0) = 0.6 and u = 20).
The blue dashed lines correspond to the solutions obtained from the two-mode approximation and serve
as references. In the second row, the phase space portraits of the dynamical variable z and θ are shown.
Again, the dashed blue lines correspond to the two mode approximation solutions. At the bottom, the
fluctuations particle number per site is plotted as functions of time (blue and orange lines) as well as
the total fluctuations particle number (black line).
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Figure 5.5: In the upper panel the quasi-momentum distribution nk and the real part of the Fourier
components of the two-time single particle excitations spectral function Re[AGk (t, 0)] are plotted as a
function of time for an initial total number of particles N = 50 and initially prepared critical state
(z(0) = 0.6 and u = 20). The violet and green lines correspond to the k = 0 and k = π/a ≡ 1
quasi-momentum, respectively. In the lower panel, the same quantities are plotted for an initial particle
number N = 5000.
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Figure 5.6: In the first row the population imbalance z is plotted as a function of time for initial total
number of particles N = 50, 5000, 50000 and an initially prepared self-trapped state (z(0) = 0.6 and
u = 25). The blue dashed lines correspond to the solutions obtained from the two-mode approximation
and serve as references. In the second row, the phase space portraits of the dynamical variable z and θ
are shown. Again, the dashed blue lines correspond to the two mode approximation solutions. At the
bottom, the fluctuations particle number per site is plotted as functions of time (blue and orange lines)
as well as the total fluctuations particle number (black line).
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Figure 5.7: In the upper panel the quasi-momentum distribution nk and the real part of the Fourier
components of the two-time single particle excitations spectral function Re[AGk (t, 0)] are plotted as a
function of time for an initial total number of particles N = 50 and initially prepared self-trapped
state (z(0) = 0.6 and u = 25). The violet and green lines correspond to the k = 0 and k = π/a ≡ 1
quasi-momentum, respectively. In the lower panel, the same quantities are plotted for an initial particle
number N = 5000.

Similar to the initially prepared critical state, the initially prepared self-trapped state
undergoes a transition to the delocalized regime due to the condensates depletion. This
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is shown in the time evolution of the condensate particle imbalance z and the space
space portrait, depicted in the upper and middle row of fig. 5.6. The dashed blue
lines corresponds to the results obtained in the two-mode approximation and serve as
references. We observe that the system, independent of the number of particles contained
in it, can sustain a couple of time oscillations of the condensate imbalance z around a
non-zero value before it switches to oscillations around zero. This means that the self-
trapped state persists for some time with some deviations from the behavior predicted
by two-mode approximation before it undergoes the transition to the delocalized state.
While the self-trapped state persists, the relative phase difference between the condensates
increases with time as expected and then starts oscillating around an even multiple of π.
The deviations appear as soon as the condensate depletion becomes non-zero (see the
lower row of fig. 5.6). For N = 50000 particles the self-trapped state persists the longest.
Naively one expects that forN = 5000 particles, the self-trapped state should be sustained
longer than for N = 50 particles, which we do not observe. We guess that this is due to
commensurability issues. Unfortunately the time consuming calculations did not allow us
to pursue an investigation in this direction.

The quasi-momentum distribution as a function of time displays a damping for both
momentum modes (upper rows in both panels in fig. 5.7). The repeated crossing of the
occupation numbers appears once the condensate depletion increases, and the tendency
of the occupation number of the higher momentum k = π/a to reach higher number than
the one of the lower momentum k = 0 becomes more pronounce after the transition to
the delocalized state has happened.

Comparing the data for the real part of the Fourier components of the two-time spectral
function for N = 50 and = 5000 particles, we observe that correlations between the initial
and the intermediate states are strongly suppressed for the system with smaller particle
number (lower row in both panels in fig. 5.7). For N = 5000 particles, there is barely a
damping visible, which can be understood as the presence of large memory effects.

5.3.1 Discussion

In the previous sections we studied the non-equilibrium effects of Josephson oscillations between
two BECs in the context of the TSBH. We studied systems that were initially prepared in one of
the three relevant regimes discussed in the context of the two-mode approximation in section 4.1,
and the effects resulting from the inclusion of quantum fluctuations. We treated the quantum
fluctuation within the full-second order approximation, which takes memory effects into account,
unlike the BHF approximation. The systems under consideration were initially prepared with
different total particle numbers, but with the same initial normalized condensate population
imbalance z(0) and relative phase difference between the condensates θ(0). This made a direct
comparison of the dynamics for different total particle numbers possible in the three cases under
consideration. We conducted the analysis by studying the condensate population imbalance,
the total condensate depletion, and the quasi-momentum distribution as functions of time. In
addition the phase space portrait of the condensate imbalance and the relative phase provided
a good point of comparison to the results obtained in the two-mode approximation [62, 63]. We
also used the Fourier components of the fluctuations two-time spectral function as a measure
of the capability of the system to maintain correlations between the initial and intermediate
states.
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For an initially prepared delocalized state, we observe a damping and a slow down of the
Josephson oscillations between of the condensates, which is most pronounce for the system
with the smallest particle number under consideration. A transition from the initially prepared
critical as well as from the self-trapped state to the delocalized state occurs. In the case of the
initially critical state, this happens almost instantaneously after switching on the Josephson
coupling J . The initially prepared self-trapped state was able to sustain macroscopic self-
trapping for a couple of oscillations of the condensate particle imbalance, but it then underwent
the transition to the delocalized state. The transition occurred earlier for the system with the
smallest number of particles under consideration. For both of these cases, the occupation
number of the higher quasi-momentum mode appears to have a tendency to reach a higher
number than the one of the lower momentum mode after the transition to the delocalized state
has occurred. This suggest that Josephson oscillations for the initially prepared critical and
self-trapped state are dominated by the higher quasi-momentum mode.
Studying the correlations between the initial and intermediate states by means of the Fourier

components of the single particle spectral function, we recognize that the system with the
smallest particle number shows a strong decay of these correlations in the time interval under
consideration, unlike the systems with particle number two and three orders of magnitude larger.
We think that for such large particle numbers in a double-well potential, the TSBH is not a
suitable approach to study non-equilibrium effects and one should take the actual geometry of
the trap into account.

5.4 Temporal Dynamics of a BEC Placed on a 2-Dimensional
Optical Lattice

Having discussed the Bose-Hubbard model in the context of non-equilibrium Josephson oscil-
lations in the previous section, we now want to turn our attention to the temporal dynamics
of the Bose-Hubbard model in the context of a BEC placed at the center of a 2-dimensional
lattice with finite and equal number of the lattice-sites in each direction, which is driven out of
equilibrium by suddenly switching on the tunneling amplitude J . The initial condition is shown
by the cartoon in fig. 5.8. Such a system has been experimentally realized in one dimension
[83]. The initial condition is not described by an eigenstate of the Bose-Hubbard Hamiltonian
5.18, and consequently will evolve in time in a non-trivial way after the tunneling is switched
on [41]. At a first sight, one expects the mean field description to provide a good insight into
the dynamics of the system. However, if the kinetic energy is about the same magnitude as
the interaction energy, the interatomic collisions will play a crucial role [41]. Nevertheless, the
mean field description as well as the BHF approximation still provide reliable results for short
times.
A proper description of the quantum dynamics of the situation depicted above requires the

proper treatment of scattering processes between particles. An exact solution of the problem
is possible, but it is restricted to a small number of particles and lattice sites. In section 5.2 we
performed a detailed derivation of the underlying equations of motion for the Bose-Hubbard
model within the framework of conserving approximations. In the succeeding sections we gave
the explicit equations of motion for the mean field description, BHF, and the full second-
order approximation. These approaches allow us to study the temporal dynamics of the of
Bose condensed gases placed on optical lattices. They also have been applied to problems in
gravitation and cosmology [84, 85], particles and fields [86], and condensed matter systems as
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Figure 5.8: BEC initially loaded in a 2-dimensional optical lattice

well as targeting issues of thermalization and quantum phase transitions [75, 76].
Before we proceed to analyze the dynamics of the setup described above, we need to formulate

the initial conditions in the language of the on-site mean field amplitude, the single particle
excitations statistical two-time functions and the spectral two-time functions. Furthermore we
want to constrain our analysis to commensurable systems, i.e., we only consider systems whose
particle numbers equals a multiples of the total number of sites I × I, where I is the number
of sites in one direction, and from now on we assume to be an odd number for simplicity. The
filling factor ρ is defined by N = ρ · I2, where N is the total particle number. The initial
conditions thus read

ai(0) =
√
ρ · I2 δi0, (5.65)

FGij (0, 0) = −iδij2 , (5.66)

FFij (0, 0) = 0, (5.67)

where i, j ∈ {(ix, iy)| ix, iy = −(I−1)/2, . . . , 0, . . . , (I−1)/2}. Similar to the study of the TSBH
in the previous section, we must fix the initial values of the components of the non-condensate
spectral function, i.e., AGij(0, 0) = δij and AFij(0, 0) = 0. This values are fixed for AG/F evaluated
at equal time arguments due to the bosonic commutation relations. Moreover, similar to the
discussion of the TSBH it is convenient to give all energies in units of the tunneling J , and
absorb the large particle numbers appearing in the equations of motion into the dimensionless
parameter u = NU/J , where N is the total particle number.
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In section 4.2.2 as well as in Appendix B, we discussed that the numerical calculations for
the full second-order approximation are time, cpu and memory consuming. Unless we make
any further approximations, systems with large number of lattice sites I × I are not accessible
with this approach. Moreover the on-site repulsion u possess an extra limitation on numerical
analysis of the equations of motions in this approximation, since the non-linearities in the
equations increase with u. This means that large numbers for the interactions parameter u
require a smaller time step in the numerical analysis while solving the equations. For this
reason we will only study the dynamics of a BEC loaded on a lattice with 3 × 3 sites by the
means of the full second-order approximation (see section 5.4.2). But before we do so, we
will present results for systems with larger number of lattice sites obtained using the BHF
approximation.

5.4.1 BHF-Approximation Results for a BEC Loaded on a Lattice

In the following we will discuss the time evolution of a Bose condensed gas on a 2-dimensional
lattice within the BHF approximation. Although this approximation lacks the ability to take
memory effects into account, which could lead to thermalization, we observe very interesting
physics. The initial setup was described above and in the language of the condensate amplitudes
and the two-time correlation functions read according to eqs. 5.65 - 5.67. As we discussed in sec.
5.2.2, it is not necessary to consider the two-time single particle excitations spectral functions
AGij and AFij because they decouple completely from the eqs. 5.44 and 5.45. The dynamics of
the system will be summarized in terms of the density profile of the particles and the quantum
fluctuations N (0)

i + N
(ϕ)
i and N

(ϕ)
i normalized to the total number of particles ρ · I2, as well

as the 2-dimensional quasi-momentum distribution function nk of the atoms. We study the
system for various initial conditions, i.e., different numbers of lattice sites I × I, filling factors
ρ, and interactions u.
In figure 5.9 we depict the time evolution of a Bose-condensed gas on a lattice with 21× 21

sites with filling factor ρ = 1 and on-site interaction u = 3. The left and middle column show
snapshots of the density profile of the particles and quantum fluctuations for increasing time
Jt. The right column shows snapshots of the corresponding 2-dimensional quasi-momentum
distribution. The initial condition is depicted at the top, where all the particles are prepared in
a coherent state in the center of the lattice and the corresponding quasi-momentum distribution
is homogeneous in k-space (Jt = 0). After switching on the the tunneling J , particles tunnel to
the neighboring sites and quantum fluctuations are excited. This can be observed in fig. 5.10c
and 5.10d, where we plotted the time evolution of the single particle excitations population
profile along the iy = 0 axis and diagonal axis, respectively. We see that after releasing the
gas, it expands over the lattice (see the snapshots for 1.0 ≤ Jt ≤ 4.0 in fig 5.9). The cone-like
shape of the condensate population profile along the iy = 0 and the diagonal axes seen in fig.
5.10a and 5.10b suggest that the expansion is ballistic. The edges of the expanding cloud have
a higher density than the center. During the expansion, the shape of the quasi-momentum
distribution changes, becoming a broad distribution with its maximum at the edge of the first
Brillouin zone. The number of single particle excitations per site exhibits a similar pattern.
While the density in the high density regions diminishes, the occupation per site of the quantum
fluctuations becomes indistinguishable in the density scales, under consideration but it is still
finite. This is due to the fact that the appearance of the single particle excitations is linked
to the on-site interaction. As we will explain later, the higher the interaction energy, the more
single particle excitations can be excited out of the coherent state. For times Jt > 4, finite
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Jt

Time interval: 0 ≤ Jt ≤ 4
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Jt

Time interval: 4 < Jt ≤ 8

Figure 5.9: The left and central columns display the time evolution of the density profile of the atoms
N

(0)
i +N (ϕ)

i and quantum fluctuations N (ϕ)
i on a lattice with 21×21 sites, respectively. The right column

shows the time evolution of the 2-dimensional quasi-momentum distribution nk. The arrow on the right
side, beside the plots depicts the time direction. The snapshots on the previous page correspond to the
time interval 0 ≤ Jt ≤ 4, and the ones on this page to 4 < Jt ≤ 8. The data corresponds to interaction
parameter u = 3 and filling factor ρ = 1.

size effects become visible. The particles have reached the boundaries of the lattice and are
reflected. The quasi-momentum distribution shows interference patterns that change in time.
In order to compare the results with a system with different number of sites, we show the time
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(a) Condesate population along the axis iy = 0 (b) Condesate population along the axis iy = ix

(c) Fluctuations population along the axis iy = 0 (d) Fluctuations population along the axis iy = ix

Figure 5.10: On the top: Time evolution of the condensate population profile N (0)
i along the iy = 0 and

diagonal axes on a lattice with 21× 21 sites during the expansion for u = 3 and ρ = 1. On the bottom:
Time evolution of the population profile N (ϕ)

i of the single particle excitations along the same axis.

evolution of a BEC released on a lattice with 15× 15 sites with the same interaction parameter
u and filling factor ρ in fig. C.3 and C.2.
The situation becomes different if we increase the interaction parameter u for the same

number of sites I × I and filling factor ρ. Once again, the initial condition is depicted at the
top of fig. 5.11 for interaction parameter u = 7. Immediately after switching on the coupling
J , atoms tunnel to the neighboring sites and single particle excitations appear, as it is shown
in fig. 5.12c and 5.12d. Comparing the expansion of the atomic cloud for u = 7 and u = 3, we
observe that for the former the expansion is slowed down (see the snapshots for 0 ≤ Jt ≤ 4 in
fig. 5.11). The majority of the atoms reside in an expanding cloud of spherical shape on the two
dimensional plane. The rest of the particles appear to be forming lower density regions outside
the expanding spherical cloud. They can be associated with atoms possessing enough kinetic
energy to tunnel through the high density edges of the expanding cloud. This behavior becomes
more evident in fig. 5.12a and 5.12b, where we plotted the density profile of the condensate
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along, the iy = 0 and the diagonal axis as functions of time. The shape observed in these
plots suggests that for u = 7 the expansion has a diffusive nature. Similar to the lower on-site
interaction case, the single particle excitations are localized in the higher density regions, which
in this case is the expanding spherical cloud (see fig. 5.12c and 5.12d). Unlike the u = 3 case,
the quasi-momentum becomes strongly peaked at the edge of the first Brillouin zone. The
reason for this is that the motion of the majority of the particles coincides with the expansion
of the spherical cloud. This also explains the quasi-stationary shape of the quasi-momentum
distribution after the particles were reflected at the edges of the lattice.
We distinguish between the time during which the expansion takes places and the time after

which the atoms have reached the edge of the lattice and are reflected to the lattice center.
In the former regime we recognize two types of behavior. We observe an initial expansion, for
which the on-site interactions do not play a big role. In this regime, multiple occupation of sites
surrounding the center has not taken place yet, and the kinetic energy of atoms on those sites
overweights the on-site repulsion. Once the sites away from the center are multiply occupied,
the interaction energy becomes comparable to the kinetic energy, and consequently slows down
the expansion of the gas. In case of u = 3, this regime is characterized by the formation of
islands of higher density at the edge of the expanding cloud, which prevent the inner particles
to tunnel outwards to the edges of the lattice. For this interaction parameter u, we observe
that the single particle excitations and condensate particles have a similar density profile. In
u = 7 case, more particles are excited out of the condensate.

In section 5.2 we gave the expression for the mean energy of an interacting bosonic gas. We
argued that in the framework of a conserving approximation the energy is a conserved quantity.
In the following, we regroup the different terms in eqs. 5.34 and 5.35 in order to introduce
mean the interaction energy and the kinetic energy of the atomic gas3,

Eint = E
(0)
int + E

(ϕ)
int

= i

4
∑
i

Tr
[
SHFi Cii

]
+ i

4
∑
i

Tr
[
ΣHF
i F ii

]
, (5.68)

Ekin = E
(0)
kin + E

(ϕ)
kin

= i

2
∑
i

Tr [−J (Ci+1,i +Ci−1,i)] + i

2
∑
i

Tr [−J (F i+1,i + F i−1,i)] , (5.69)

which will be used for the further analysis. The superscripts (0) and (ϕ) refer to the fraction
of the mean energies related to the condensate atoms and the single particles excitations of the
gas, respectively. In fig. 5.13 we show the time evolution of the interaction and the kinetic
energy normalized to the total energy for a Bose-condensed gas on a lattice of 21×21 sites with
filling factor ρ = 1. The upper panel shows the energies corresponding to the time evolution
with an on-site interaction u = 3 that is depicted in the snapshots in fig. 5.9. We see that
initially the interaction energy of the gas equals the total energy. Then, after switching on the
tunneling amplitude J , atoms can tunnel to the neighboring sites. This manifests itself in a
sudden increase of the kinetic energy and a decrease of the interaction energy. While the gas
continues to expand, we observe a crossing of the energies. The kinetic energy increases further,
approaching an asymptotic value close to the total mean energy. This implies that interactions
energy is not strong enough to slow down the expansion anymore. In the proximity of the

3 Throughout this section we are studying the temporal dynamics by the means of the BHF approximation.
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Jt

Time interval: 0 < Jt ≤ 4
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Jt

Time interval: 4 < Jt ≤ 8

Figure 5.11: The left and central columns display the time evolution of the density profile of the atoms
N

(0)
i +N (ϕ)

i and quantum fluctuations N (ϕ)
i on a lattice with 21×21 sites, respectively. The right column

shows the time evolution of the 2-dimensional quasi-momentum distribution nk. The arrow on the right
side, beside the plots depicts the time direction. The snapshots on the previous page correspond to the
time interval 0 ≤ Jt ≤ 4, and the ones on this page to 4 < Jt ≤ 8. The data corresponds to interaction
parameter u = 7 and filling factor ρ = 1.

total mean energy, the kinetic energy presents small amplitude time oscillations, which could
mean that multiple occupancy in some regions of the lattice is possible due to the relatively
small on-site interaction (finite size effects). The inset of the upper panel shows the behavior
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(a) Condesate population along the axis iy = 0 (b) Condesate population along the axis iy = ix

(c) Fluctuations population along the axis iy = 0 (d) Fluctuations population along the axis iy = ix

Figure 5.12: On the top: Time evolution of the condensate population profile N (0)
i along the iy = 0 and

diagonal axes on a lattice with 21× 21 sites during the expansion for u = 7 and ρ = 1. On the bottom:
Time evolution of the population profile N (ϕ)

i of the single particle excitations along the same axis.

of the energy fractions related to the single particle excitations in time. Both kinetic and
interaction energies of the single particle excitations exhibit a sudden rise after switching on
the tunneling amplitude. During this increase, the interaction energy of the single particle
excitations is larger than the kinetic energy, until it reaches a maximum. Then it suddenly goes
down, crosses with the kinetic energy, and decreases further approaching an asymptotic finite
value. On the other hand, the kinetic energy continues to increase slowly. The two energies
continue to be comparable within the time interval under consideration, although the kinetic
energy of the single particles is still larger. This means that the single particle excitations can
be localized or delocalized.
The situation becomes different for on-site interaction u = 7. The kinetic and interaction

energy of the atoms qualitatively show a similar behavior to the u = 3 case (lower panel of fig.
5.13). The small amplitude oscillations in the kinetic energy are not visible at the energy scales
we are considering, but they are still there and can be linked to the formation and decay of the
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Figure 5.13: In the upper panel, the interactions and kinetic energy normalized to the total energy of
a gas loaded on a lattice with 21 × 21 sites with filling factor ρ = 1 and on-site interaction u = 3 are
plotted as a functions of time (orange and green). The inset displays the time behavior of the energy
fractions corresponding to the single particle excitations, according to eqs. 5.68 and 5.69. The black
dashed line in the inset corresponds to the total mean energy of single particle excitations. The lower
panel shows the same quantities, but for u = 7.
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high density islands (finite size effects). The difference resides in the time evolution of the kinetic
and the interaction energy of the single particle excitations (inset of the lower panel). Similar
to case with a smaller u, both energies related to the single particle excitations increase in time
after switching on the tunneling. Initially, the interaction energy take larger values. Then, its
increase slows down until E(ϕ)

int reaches a maximum, while the kinetic energy increases further
and becomes larger than the interaction energy. The interaction energy decreases rapidly,
approaching a value close to zero. The kinetic energy reaches a maximum and then decreases,
approaching a finite value about two orders of magnitude larger than the one approached by
the interaction energy.
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Figure 5.14: Time evolution of the overall quantum fluctuations particle number N (ϕ) as a function of
the interaction parameter u, number of lattice site in on direction I, and filling factor ρ.

In order to compare the results for systems with different numbers of sites I × I, filling
factors ρ and interaction parameters u, in fig. 5.14 we plotted the time evolution of the overall
condensate depletion normalized to the total number of particles N = ρ · I2 as a function of
these parameters. We observe that for u = 3 the overall number of single particle excitations
increases in time for lattices with 15 × 15 and 21 × 21 sites (see the left column of fig. 5.14).
However, the overall depletion of the condensate decreases with the number of lattice sites and
the filling factor ρ. The single particle excitations appear immediately after turning on the
tunneling amplitude J and the condensate depletion shows a sudden increase. Then it appears
to saturate, until it presents a bend. After it, the condensate depletion increases further and
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almost linearly in time. The slope decreases with the filling factor ρ. For all interaction
parameters u, the condensate depletion qualitatively shows a similar behavior, apart from the
fact that the bend occurs later in time and the the slope is smaller (middle column of fig. 5.14).
This is due to the stronger on-site repulsion, since for a smaller u the system is more likely to
allow multiple occupancy of a single site, which leads to the excitation of quantum fluctuations.
A further increase of the on-site parameter u poses an even higher energy penalty for multiple
occupancy. As we have seen in fig. 5.13, for u = 7 the interaction energy for both condensate
and non-condensate fraction of the gas approaches a value close to zero, which reflects the fact
that multiple occupancy of sites is less likely to occur. The decrease of the particle number
of quantum fluctuations for u = 7 (right column in fig. 5.14) is well explained by the lower
probability to encounter multiply occupied sites on the lattice.

5.4.2 BEC Loaded on a Lattice with 3× 3 Sites and Memory Effects

In the previous section we studied the BHF dynamics of an expanding BEC cloud on a 2-
dimensional lattice of finite size. In spite of the very interesting behavior discussed in the
previous section, the BHF approximation excludes the memory effects. Even though we ob-
served that for very large on-site repulsion u the quasi-momentum distribution for a relative
large number of sites I × I tends to reach a stationary shape (see 5.11), the question remains
wether or not this would be the case for smaller systems. Previously we mention that the BHF
approximation does not take memory effects into account, and we expect that the finite size
effects will prevent the quasi-momentum distribution function become stationary. However,
the inclusion of higher order terms in u according to the full second-order approximation will
eventually drive the system into a stationary state despite of the finite size effects. In addition
we explained before that the numerical analysis of the equations of motion in the framework
of the full second-order approximation is time consuming. This limits the calculations. We
therefore constrain our numerical analysis to the study of the dynamics of a Bose-condensed
gas on a lattice of 3 × 3 sites. The initial setup is exactly the same as the one used in the
previous section in the context of the BHF approximation (see fig. 5.8): ρ · I2 bosonic atoms
loaded on the center of a lattice with I × I sites, where ρ ∈ N+ is the filling factor. For times
t < 0, the system is prepared such that the atoms in the center of the lattice are in a coherent
state. Then, at t = 0 the tunneling amplitude J is non-adiabatically turned on, permitting the
atoms to tunnel to all neighboring sites. As we have mentioned previously, this initial condition
is not an eigenstate of the system and, consequently, it will evolve in time in a non-trivial way.
The initial condition in the language of the condensate amplitudes and the two-time correlation
functions are described by eqs. 5.65 - 5.67. In sections 5.2.2 and 5.4.1, we explained that is
not necessary to consider the components of the single particle excitations spectral function
Aij while solving the equations of motion within the BHF approximations. On the contrary,
the numerical analysis within the full second-order approximation requires the knowledge of all
previous steps. Thus, we have to include the equations forAij into our analysis. In addition, we
also have to propagate the solutions for time for two different time arguments for the two-time
correlations functions. In appendix B we summarize the numerical scheme used to solve the
equations of motion in the full second-order approximation.
In the following we summarize the temporal dynamics of the system for different filling factors

ρ and on-site interaction parameters u. In order to do so, we plot the time evolution of the
atom and condensate population N (0)

i +N
(ϕ)
i and N (0)

i at every site i. In addition we plot the
overall condensate depletion N (ϕ) =

∑
iN

(ϕ)
i as a function of time. All these quantities are
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Figure 5.15: In the upper and middle row the population and condensate population N (0)
i + N

(ϕ)
i and

N
(0)
i per site on a 3× 3-sites lattice with interaction parameter u = 3 are plotted as a functions of time

for different filling factors ρ = 1, 2, 3 from left to right. The black lines correspond to the center of the
lattice with i = 0 ≡ (0, 0), the blue lines to the corners with i = C ≡ (−a,−a), (−a, a), (a,−a), (a, a),
and the orange lines to the edges with i = E ≡ (−a, 0), (0,−a), (a, 0), (0, a). In the lower row the plots
correspond to the time evolution of the overall fluctuations particle number for the different ρ’s. The
dashed lines correspond to the solutions obtained within the BHF approximation, and serve as reference.

given in units of the total particle number ρ · I2. In fig. 5.15 we show the time evolution for
u = 3 and different filling factors ρ. We observe, that after turning on the tunneling J , the
sites at the edges of the lattice, i = E ≡ (−a, 0), (0,−a), (a, 0), (0, a), are populated (orange
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Figure 5.16: In the upper and middle row the population and condensate population N (0)
i + N

(ϕ)
i and

N
(0)
i per site on a lattice with 3× 3 sites with interaction parameter u = 7 are plotted as a functions of

time for different filling factors ρ = 1, 2, 3 from left to right. The black lines correspond to the center of
the lattice with i = 0 ≡ (0, 0), the blue lines to the corners with i = C ≡ (−a,−a), (−a, a), (a,−a), (a, a),
and the orange lines to the edges with i = E ≡ (−a, 0), (0,−a), (a, 0), (0, a). In the lower row the plots
correspond to the time evolution of the overall fluctuations particle number for the different ρ’s. The
dashed lines correspond to the solutions obtained within the BHF approximation, and serve as reference.

line in the upper row). The thick solid lines in the plots correspond to the results obtained
from the full second-order approximation and the thin dashed lines to the results obtained from
the BHF approximation. While the population in the center of the lattice i = 0 ≡ (0, 0) goes
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down to nearly zero (black lines), the atoms start to accumulate at the corners of the lattice
i = C ≡ (−a,−a), (−a, a), (a,−a), (a, a) (blue lines). Then, the atoms are reflected back over
the edges to the center of the lattice. We observe that the majority of the atoms repopulate
the center of the lattice at Jt ≈ 2.5 and this repopulation increases with the filling factor ρ.
In the next cycle the center of lattice is not completely depopulated. This feature becomes
more pronounce with increasing ρ. In the middle row we show the condensate fraction N

(0)
i

per site. N (0)
i shows a behavior similar to the atom population per site, which suggests that

at every site the temporal dynamics are dominated by the condensate fraction, even though
the overall depletion of the condensate takes values up to 60% of the total number of particles
(bottom of fig. 5.15). Although the overall depletion of the condensates accounts for such
a large fraction of the total number of atoms, we observed that for u = 3 the dynamics of
the system are still well described within the framework of the BHF approximation, and the
accordance between the two approximations increases with the filling factor ρ. Unfortunately,
the time scales reached within the BHF approximation are numerically not accessible by the
means of the full second-order approximation without making any additional approximations.
Naively, we expect the congruence between the results obtained from the two approximations
to decrease in time due to the memory effects. This effect will become more visible for an
increased interaction parameter u.
In contrast to the dynamics observed for u = 3, the overall condensate depletion saturates for

u = 7 within the time interval that is accessible with the numerical analysis in the full second-
order approximation (lower row of fig. 5.16). The overall depletion approaches a constant
value. For a filling factor ρ = 1, the condensate fraction is depleted almost completely. The
depletion decreases with the filling factor ρ. Taking a closer look at the atom population per
site, N (0)

i +N
(ϕ)
i , we see that the initially prepared coherent state is locked in the center of the

lattice (black lines in the upper row in fig. 5.16). Once again the thick solid lines correspond to
the results obtained from the full second-order approximation and the thin dashed lines to the
ones obtained from the BHF approximation. Upon switching on the tunneling J , only a few
atoms tunnel to the neighboring sites, to the edges of the lattice. Unlike in the case of a smaller
u, the atoms leaving the center do not appear to be accumulating at the corners (orange and blue
lines). The amplitude of the time oscillations in the occupation number of site i = 0 ≡ (0, 0)
decreases with time and for increasing filling factor ρ. For ρ = 1, the oscillations are almost
completely suppressed, while for larger filling factors only a tendency can be observed (within
this time interval). Moreover, the situation depicted by the condensate atom number per site
N

(0)
i is quite different. We have argued before, that the larger the interaction parameter u and

the more particles are confined on a site, the more likely the system will be to generate single
particle excitations. This explains the decrease of the condensate fraction on site i = (0, 0)
with the time (middle row). Since only a small fraction of the particles initially placed in the
center of the lattice is able to tunnel to the neighboring sites, the effective on-site energy on
those sites will be small. Consequently we will observed a smaller depletion of the condensate
there. In agreement with the overall depletion observed for different filling factors ρ, we note
that the depletion of the condensate fraction on every site increases with ρ.
Comparing the results obtained from the two approximations under consideration, we ob-

served that the larger the filling factor ρ, the better the agreement between the two approx-
imations. The memory effects, that could lead to thermalization of the system or drive it into
a steady state, increase with the interaction parameter u, decrease with ρ, and become more
evident with increasing time. In order to get a better insight into the dynamics, we consider
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Figure 5.17: The upper row shows the time evolution of quasi-momentum distribution of atoms nk loaded
on a lattice with 3 × 3 sites with interaction parameter u = 3 and different filling factors ρ = 1, 2, 3
from left to right. The green line corresponds to the quasi-momentum k = 0 ≡ (0, 0), the violet to
k = E ≡ (0, 2π

3a ), (0, 4π
3a ), ( 2π

3a , 0), ( 4π
3a , 0), and the orange to k = C ≡ ( 2π

3a ,
2π
3a ), ( 2π

3a ,
4π
3a ), ( 4π

3a ,
2π
3a ), ( 4π

3a ,
4π
3a ).

In the lower row the same quantities are plotted for u = 7. The dashed lines correspond to the solutions
obtained within the BHF approximation, and serve as reference

the quasi-momentum distribution nk defined by eq. 5.36. In fig. 5.17 we plotted the time
evolution of nk for different interaction parameters and filling factors. The thick solid lines
correspond to the solutions obtained from the full second-order approximation and the thin
dashed lines from the BHF-approximation. In agreement with the discussion above, we observe
a bigger accordance between the two approximations for decreasing u and increasing ρ. For
u = 3 the momentum modes are more equally distributed than for u = 7. We observed a
similar behavior in the previous section as shown in fig. 5.9 and 5.11. The repeated crossing
between the occupation number of the different quasi-momentum modes corresponds to the
interference patterns observed in fig. 5.9. Unlike for the systems with large number of lattice
sites, the quasi-momentum distribution does not become stationary for u = 7 within the BHF
approximation (thin dashed lines in the lower row of fig. 5.17). Consequently, we can attribute
the tendency of the occupation of the different quasi-momentum modes to reach a constant
value solely to the higher order processes (thick solid lines). Even though this tendency is
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very pronounced for the filling factor ρ = 1, we can not tell for sure if the quasi-momentum
distribution will remain constant.

5.4.3 Discussion

In section 5.2 we introduced an extensive mathematical apparatus to study non-equilibrium
situations in systems consisting of an interacting Bose-condensed gas loaded on an optical
lattices. Using these mathematical tools, we study in particular the non-trivial time evolution
of a coherent state placed in the center of a 2-dimensional lattice. In the non-equilibrium
formulation used to described the system, quantum fluctuations were included and treated
within the BHF and the full second-order approximations. The analysis was done systematically
for systems with different numbers of sites I × I, numbers of atoms ρ · I2, and interatomic
interaction parameters u. Unfortunately, the numerical analysis within the full second-order
approximation is restricted to systems with a small number of sites due cpu and memory
limitations. In addition, the memory integrals on the right side of the equations of motion
pose an additional restriction on the time scales accessible by numerics. For this reason, we
first studied the expansion of a coherent state on lattices of 21 × 21 and 15 × 15 sites for
different filling factors ρ and on-site interaction parameters u. Then, in the succeeding section
we presented a detailed numerical analysis of a system with 3 × 3 sites with the same initial
condition as those studied by the means of BHF approximation. The results obtained within
the full second-order approximation were discussed and compared to those obtained from the
BHF approximation.
The BHF-approximation provided us a good insight into the dynamics of the expanding

gas. We observed that the expansion of the gas has a ballistic nature for a fixed filling factor,
unless the interatomic interaction u exceeds a critical value. In this case the expansion occurs
diffusively, as the outwards motion of the atoms is slowed down due to the relatively high
interaction. Moreover, the Bogoliubov prescription allowed us to treat the coherent state and
the quantum fluctuations separately. We found out that regions of high density lead to increased
number of atoms excited out of the condensate, which follow the density profile of the majority of
the atoms. We also observed that for increasing interaction parameters, the quasi-momentum
distribution becomes strongly peaked at the corner of the first Brillouin zone, and the peak
becomes more pronounce, the larger the interactions parameter gets. For the number of sites,
filling factors, and interaction parameters under consideration, the overall depletion of the
condensate accounted for 10% or less, and it decreases with the filling factor, as it is expected.
All this implies that the larger the system and the number of atoms, the better the predictions
by BHF approximation and its agreement with the GPE description.
Due to the restrictions impose by the memory integrals to the numerical analysis of the full

second-order equations of motion, we constrained our analysis to a lattice with 3 × 3 sites.
Comparing the results to those obtained from the BHF for such a system, we found out that
the quasi-momentum distribution as well as the overall condensate depletion show a tendency
to reach a constant shape and value due to the inclusion of memory effects. This effect becomes
more pronounced, the smaller the filling factor and the bigger the interactions parameter gets.
For such a small system, the BHF is only a good a approximation for small time scales, and it
is necessary to include the higher order terms.
Despite having the capability to describe an expanding coherent state on a lattice and being

able to study the condensate amplitude and the quantum fluctuations separately, the approach
we used lacks the ability to describe a time dependent transition between the Mott-insulating
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and the superfluid phase.
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CHAPTER 6

Conclusion

In this work we have generalized the field theoretical description for an interacting Bose gas at
low temperatures using the Keldysh formalism to study situations away from equilibrium. The
theory is expressed in terms of integro-partial-differential equations for the condensate wave
function and the two-point correlation functions related to the non-condensed particles. We
have used the Bogoliubov-Hartree-Fock approximation for the self-energies to study the short
time dynamics of weakly interacting Bose-condensed gases in atomic traps. In this approx-
imation the equations of motion reduce to a system of coupled partial-differential equations.
However, this approximation does not include the correlations between the initial and the in-
termediate states. In order to address the question of thermalization and equilibration, we have
considered the full second-order approximation for the self-energies.
We have used the non-equilibrium formalism described above to study the temporal dynamics

of Bose-condensed gases in situations out equilibrium, such as Josephson junctions between
condensates and the non-trivial time evolution of a coherent state placed at the center of
a 2-dimensional optical lattice. A model including interatomic interactions as well as single
particle excitations was proposed for the description of the dynamics of Josephson-coupled
Bose-Einstein condensates after switching on the Josephson coupling. The temporal dynamics
of the atoms on the 2-dimensional lattices were studied using the Bose-Hubbard model. In
addition, we analyzed the two-site Bose-Hubbard model with the same initial conditions as the
Josephson-coupled condensates in order to compare the results with the dynamics obtained
from the model we have proposed.
In spite of its limitations, the Bogoliubov-Hartree-Fock approximation has revealed very in-

teresting phenomena for short times. The model proposed for the non-equilibrium description of
Bose Josephson junctions recovers the mean-field dynamics reported by Smerzi et al. [62] when
neglecting the quantum fluctuations. If the initial population imbalance exceeds a critical value
depending on the interaction strength, the system undergoes a transition from the delocalized
regime (Josephson oscillation) into the self-trapped regime, in which the population imbalance
is self-locked. Taking the single particle excitations into account, the Bose Josephson junction
reveals that it can sustain multiple, undamped Josephson oscillations for an extended time
period before particles get excited out of the condensates as an “avalanche” and the behavior
changes abruptly to fast Josephson and Rabi oscillations. This is a consequence of the crossing
of the lowest quasiparticle energy and the highest condensate eigenenergy. We observed that
a state, that was initially self-trapped, will be destroyed by these fast dynamics. The time
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6 Conclusion

evolution of a coherent state released at the center of a 2-dimensional lattice shows an initial
expansion, which is slowed down by the on-site interactions. For small interactions the gas
expands ballistically. Increasing the on-site repulsion results in a diffusive expansion with a
small fraction of the particles propagating ballistically. We observe that the depletion of the
coherent state increases with the interaction parameters and decreases with the total number
of particles.
Beyond the Bogoliubov-Hartree-Fock approximation, the numerical analysis is very demand-

ing and time consuming. For this reason we restricted our analysis to small systems. The
results obtained using the Bogoliubov-Hartree-Fock approximation were confirmed for short
times. However, deviations from these results increased with time and also when increasing
the interaction parameter, and decreased while increasing the number of particles. This is due
to the correlations between the initial conditions and the intermediate states. In some cases
we were able to propagate the solutions long enough in time in order to observe the system
approaching a steady state.
The non-equilibrium description for Bose-condensed gases used in this thesis is independent of

the set up. It can be applied to a variety of situations involving weakly interacting Bose gases
out equilibrium. For example, the expansion of a Bose-Einstein condensate on a disordered
potential could be of great interest. Even though our approach provides a description for the
quantum dynamics including scattering processes between particles, it is not able to describe
non-equilibrium effects close to the transition from the superfluid to the Mott insulator phase.
This would require the non-equilibrium generalization of methods that are able to characterize
this transition.
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APPENDIX A

Analytical Continuation Procedure

We mentioned in section 2.2, that when considering the non-equilibrium version of the Dyson’s
equation or the equation of motion for the closed time path Green’s function, one encounters
terms containing the convolution and/or product of various two-point correlators, whose time
arguments reside on the CTP. However, these contour-ordered quantities are not easy to inter-
pret and one therefore needs an approach, which brings them to a real time formulation. In
this section we proceed to show how the deformation of the closed time path can lead to the
required expressions.
We start considering the convolution between two two-point correlators

C(t1, t1′) =
∫
C
dτ A(t1, τ)B(τ, t1′), (A.1)

where we left out the spacial dependence for simplicity reasons, and since we are currently only
interested in temporal dynamics.
Now we will carry out the derivation for the expression for the “lesser” component of A.1. In

order to do this let us assume that t1 resides on the upper branch of the closed time path and
t1′ on the lower brach.

C1
t

t0

C1′

t1 t1′

Figure A.1: Deformation of the closed time path into a contour built by the contours C1 and C1′ .

The first step is to deform the contour, as indicated in fig. A.1. Thus, we get

C<(t1, t1′) =
∫
C1

dτ A(t1, τ)B<(τ, t1′) +
∫
C1′

dτ A<(t1, τ)B(τ, t1′), (A.2)
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A Analytical Continuation Procedure

where use the “<”-sign to highlight that on the contour C1, t1′ appears later than τ ∈ C1, and
on the contour C1′ , t1 appears before τ ∈ C1′ . Splitting each of the contour integrations into
two parts, we get

C<(t1, t1′) =
t1∫
−∞

dt A>(t1, t)B<(t, t1′) +
−∞∫
t1

dt A<(t1, t)B<(t, t1′)

+
t1′∫
−∞

dt A<(t1, t)B<(t, t1′) +
−∞∫
t1′

dt A<(t1, t)B>(t, t1′)

=
∞∫
−∞

dt θ(t1 − t)
[
A>(t1, t)−A<(t1, t)

]
B<(t, t1′)

+
∞∫
−∞

dt A<(t1, t)θ(t− t1′)
[
B<(t, t1′)−B>(t, t1′)

]
, (A.3)

where t0 → −∞. Replacing the expressions in the integrals with the definitions of the retarded
and advanced Green’s function, we obtain

C<(t1, t1′) =
∞∫
−∞

dt
[
Aret(t1, t)B<(t, t1′) +A<(t1, t)Badv(t, t1′)

]
. (2.21)

The equation for the greater component is derived in a similar way.
With the expressions for the lesser and greater component of the convolution A.1, we can

proceed to derive the retarded/advanced component:

Cret(t1, t1′) = θ(t1 − t1′)
[
C>(t1, t1′)− C<(t1, t1′)

]
= θ(t1 − t1′)

∞∫
−∞

dt
[
Aret(B> −B<) + (A> −A<)Badv

]

= θ(t1 − t1′)


t1∫
−∞

dt (A> −A<)(B> −B<)

−
t1′∫
−∞

(A> −A<)(B> −B<)


=

∞∫
−∞

dt Aret(t1, t)Bret(t, t1′). (A.4)

The equation for the advanced component is obtained in the same manner.
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APPENDIX B

Numerical Propagation of the Two-Time
Correlation Functions

In section 4.2.2, we derived the equations of motion for the upper components of the non-
condensate spectral function and the statistical function for our model describing Bose Joseph-
son junctions out of equilibrium. In our model we absorbed the spacial dependence in the
Josephson coupling, the condensate on-site energies, the overlap matrix elements related to the
interatomic interactions, and other parameters. As we stated before, these parameters can be
computed by solving the GPE for a double-well trap. However this is not the subject of our
analysis and we, therefore, regard them all as input parameters of our model. Absorbing the
spacial dependence in the input parameters simplifies the equations of motion, because instead
of analyzing a system of IPDEs, we have system of integro-differential equations that resembles
a “non-linear first order ordinary Volterra integro-differential equation” (see [87]). The only
difference resides on the two-time arguments of the correlation functions, which we will explain
in the following how to handle.

Consider now the equations of motion for the two-time correlation functions

i
∂

∂t
AGnm(t, t′) =

[
En` + ΣHF

n` (t)
]
AG`m(t, t′)− ΩHF

n` (t)AF`m(t, t′)∗

− i
t∫

t′

dt
[
ΓGn`(t, t)AG`m(t, t′) + ΓFn`(t, t)AF`m(t, t′)

]
, (4.77)

i
∂

∂t
AFnm(t, t′) =

[
En` + ΣHF

n` (t)
]
AF`m(t, t′)− ΩHF

n` (t)AG`m(t, t′)∗

− i
t∫

t′

dt
[
ΓGn`(t, t)AF`m(t, t′) + ΓFn`(t, t)AG`m(t, t′)

]
, (4.78)
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B Numerical Propagation of the Two-Time Correlation Functions

and

i
∂

∂t
FGnm(t, t′) =

[
En` + ΣHF

n` (t)
]
FG`m(t, t′)− ΩHF

n` (t)FF`m(t, t′)∗

− i
t∫

0

dt
[
ΓGn`(t, t)FG`m(t, t′) + ΓFn`(t, t)FF`m(t, t′)

]

+ i

t′∫
0

dt
[
ΠG
n`(t, t)AG`m(t, t′) + ΠF

n`(t, t)AF`m(t, t′)
]
, (4.79)

i
∂

∂t
FFnm(t, t′) =

[
En` + ΣHF

n` (t)
]
FF`m(t, t′)− ΩHF

n` (t)FG`m(t, t′)∗

− i
t∫

0

dt
[
ΓGn`(t, t)FF`m(t, t′) + ΓFn`(t, t)FG`m(t, t′)

]

+ i

t′∫
0

dt
[
ΠG
n`(t, t)AF`m(t, t′) + ΠF

n`(t, t)AG`m(t, t′)
]

(4.80)

For simplicity we will drop the indices referring to the single particle excitations energy levels,
depicted in fig. 4.6. After time discretization, the two-time correlation functions can be regarded
as matrices in the discrete “time-space”. We will us FG to illustrate the discretization scheme
and the method to propagate the solutions of the equations of motion 4.77 - 4.80. The matrix
FG in time-space reads

FG =


FG(0, 0) FG(0,∆t) FG(0, 2∆t) . . .
FG(∆t, 0) FG(∆t,∆t) . . .

FG(2∆t, 0)
... . . .

...

 , (B.1)

where ∆t is the time difference between to time steps.
Due to the symmetry relations summarized in table 3.1, it is only necessary to consider half of

the components of B.1. We start with the initial conditions 4.67 at time t = 0, and “artificially”
expand it. This is shown in fig. B.1 in on the left. The black dot in the two-time coordinate
system corresponds to the initial condition and the light blue dot is the copy of it, to which we
refer to as FG(0′, 0′). We artificially expand the system of initial conditions, because we want
compute FG(∆t, 0) and FG(∆t,∆t) from FG(0, 0). FG(0,∆t) is obtained from FG(∆t, 0), ac-
cording to table 3.1. We propagate from {FG(0, 0), FG(0′, 0′)} to {FG(∆t, 0), FG(∆t,∆t)} con-
forming to fourth order Runge-Kutta method. This is depicted by the green arrow pointing into
the second two-time coordinate system. At time step t = ∆t we have {FG(∆t, 0), FG(∆t,∆t)}.
Once more we artificially add FG(∆t′,∆t′), which is a copy of FG(∆t,∆t). This is depicted by
the additional light blue dot in the second coordinate system. This allows us now to propagate
from {FG(∆t, 0), FG(∆t,∆t), FG(∆t′,∆t′)} to {FG(2∆t, 0), FG(2∆t,∆t), FG(2∆t, 2∆t)}. In
this manner we can compute the time evolution for every time step. For instance, the n-th time
step is given by the propagation from {FG((n−1)∆t, 0), . . . , FG((n−1)∆t, (n−1)∆t), FG((n−
1)∆t′, (n− 1)∆t′)} to {FG(n∆t, 0), . . . , FG((n− 1)∆t, (n− 1)∆t), FG(n∆t, n∆t)}.
So far, we have explained how to propagate the two-time correlation functions numerically,
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t′

t

t′

t

t′

t

0
∆t

2∆t

n∆t

t′

Figure B.1: The vertical and horizontal axes correspond to the left and right time arguments of the
two-time correlation functions, respectively. The black dots are located on the coordinate system at the
points at which the correlation functions are evaluated. Starting from the left, we initiate we the initial
condition, that is located at origin of the coordinate system. The light blue dot is artificially added, in
order to make to propagation along the vertical axis according to the fourth order Runge-Kutta method
possible (green arrow pointing into the second coordinate system). At every time step this procedure is
repeated.

but did not discuss why do we need the knowledge about all the previous step. Taking a
closer look at the right side of eqs. 4.77 - 4.80, we observe that the higher order terms in the
interactions contained in the “memory” integrals, involve the correlation functions calculated
in the previous steps. Consequently, we need to keep track of all solutions since the initial
condition while computing the two-time evolution of the correlation functions. Fortunately, the
self-energies contained in the integrals fulfill similar symmetry relations to those satisfied by the
two-time correlation functions (see tab. 3.2). This allows us to split the interval of integration,
such that we can rewrite the integrants with the argument corresponding to the later time on
the left. We now proceed to illustrate this with the integrals appearing on the right side of eq.
4.79:

−i
t∫

0

dt
[
ΓGn`(t, t)FG`m(t, t′) + ΓFn`(t, t)FF`m(t, t′)

]

+i
t′∫

0

dt
[
ΠG
n`(t, t)AG`m(t, t′) + ΠF

n`(t, t)AF`m(t, t′)
]

= i

t′∫
0

dt
[
ΓGn`(t, t)FGm`(t′, t)∗ + ΓFn`(t, t)FFm`(t′, t)∗

]

−i
t∫

t′

dt
[
ΓGn`(t, t)FG`m(t, t′)− ΓFn`(t, t)FF`m(t, t′)∗

]

+i
t′∫

0

dt
[
ΠG
n`(t, t)AGm`(t′, t)∗ + ΠF

n`(t, t)AFm`(t′, t)∗
]
. (B.2)

Notice that the left argument corresponds to a later time in every integrant. The integrals
appearing on the right side of the equations of motion for AG, AF and FF can be worked out
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in the same way.
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APPENDIX C

Snapshots of the Time-Evolution of a BEC
Placed on a Lattice with 15× 15 Sites

In section 5.4.1, we studied the non-trivial time evolution of a coherent state place at the center
of a 2-dimensional lattice using the BHF approximation. The set up was analyzed for different
system’s sizes I × I, filling factors ρ and interactions parameters u. In this section we annex
the snapshots of the time evolution of a BEC on a lattice with 15 × 15 sites for filling factor
ρ = 1 and interactions u = 3 and u = 7.
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C Snapshots of the Time-Evolution of a BEC Placed on a Lattice with 15× 15 Sites

Jt

Time interval: 0 ≤ Jt ≤ 4
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Jt

Time interval: 4 < Jt ≤ 8

Figure C.1: The left and central columns display the time evolution of the density profile of the atoms
N

(0)
i + N

(ϕ)
i and quantum fluctuations N (ϕ)

i on a lattice with 15 × 15 sites, respectively. The right
column shows the time evolution of the 2-dimensional quasi-momentum distribution. The arrow on the
right side, beside the plots depicts the time direction. The snapshots on the previous page correspond
to the time interval 0 ≤ Jt ≤ 4, and the ones on this page to 4 < Jt ≤ 8. The data corresponds to
interaction parameter u = 3 and filling factor ρ = 1.
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C Snapshots of the Time-Evolution of a BEC Placed on a Lattice with 15× 15 Sites

(a) Condesate population along the axis iy = 0 (b) Condesate population along the axis iy = ix

(c) Fluctuations population along the axis iy = 0 (d) Fluctuations population along the axis iy = ix

Figure C.2: On the top: Time evolution of the condensate population profile N (0)
i along the iy = 0 and

diagonal axes on a lattice with 15× 15 sites during the expansion for u = 3 and ρ = 1. On the bottom:
Time evolution of the population profile N (ϕ)

i of the single particle excitations along the same axis.
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Jt

0 ≤ Jt ≤ 4
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C Snapshots of the Time-Evolution of a BEC Placed on a Lattice with 15× 15 Sites

Jt

4 < Jt ≤ 8

Figure C.3: The left and central columns display the time evolution of the density profile of the atoms
N

(0)
i + N

(ϕ)
i and quantum fluctuations N (ϕ)

i on a lattice with 15 × 15 sites, respectively. The right
column shows the time evolution of the 2-dimensional quasi-momentum distribution. The arrow on the
right side, beside the plots depicts the time direction. The snapshots on the previous page correspond
to the time interval 0 ≤ Jt ≤ 4, and the ones on this page to 4 < Jt ≤ 8. The data corresponds to
interaction parameter u = 7 and filling factor ρ = 1.
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(a) Condesate population along the axis iy = 0 (b) Condesate population along the axis iy = ix

(c) Fluctuations population along the axis iy = 0 (d) Fluctuations population along the axis iy = ix

Figure C.4: On the top: Time evolution of the condensate population profile N (0)
i along the iy = 0 and

diagonal axes on a lattice with 15× 15 sites during the expansion for u = 7 and ρ = 1. On the bottom:
Time evolution of the population profile N (ϕ)

i of the single particle excitations along the same axis.
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