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Abstract

Within this work, the efficiency of Markov Chain Monte Carlo methods on infinite dimen-

sional spaces, such as function spaces, is analyzed. We study two aspects in this respect:

The first aspect is a Multilevel Markov Chain Monte Carlo algorithm. It extends a Multi-

level Monte Carlo method introduced by Giles to Markov Chains, and overcomes the need

for a trade–off between discretization error and Monte Carlo error. We develop the Mul-

tilevel algorithm, state and prove its order of convergence and show results of numerical

simulations.

The second part of this work deals with the analysis of the speed of convergence of the

Metropolis Adjusted Langevin Algorithm (MALA). Controlling the speed of convergence is

an important tool for bounding the error of Markov Chain Monte Carlo methods. It is also

a crucial ingredient for bounding the order of convergence of the Multilevel algorithm. We

apply a method of Eberle to the Hilbert space case and obtain a subexponential bound on

the distance of the distribution of the MALA–process to its invariant measure.

Both aspects are illustrated by an application from molecular dynamics called Transition

Path Sampling. In this example, Markov Chain Monte Carlo methods on path spaces are

used to simulate the properties of transitions from one metastable state of a molecule to

another. We present this application and apply the results on the Multilevel estimator and

the MALA–process in this context.
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Chapter 1

Introduction

Since their introduction by Metropolis et al. [35] and Hastings [25], Markov Chain

Monte Carlo methods have been applied in a wide range of fields from biology to economics.

The main idea of these methods is the approximation of an integral µ(f) of a function f

with respect to a measure µ by generating a Markov Chain (Xk)k∈N with ergodic measure

µ, and using the ergodic average 1
N

∑N
k=1 f(Xk) as an estimator for µ(f).

This thesis deals with the efficiency of Markov Chain Monte Carlo methods on high– and

infinite–dimensional continuous state spaces with an invariant measure µ which is absolutely

continuous to a Gaussian measure ν. This setting often arises in different applications.

Withhin this thesis, the main application is Transition Path Sampling, which is explained

in a later part of this introduction. We analyze the question of efficiency by two means:

The first approach is the development and analysis of a Multilevel Markov Chain Monte

Carlo algorithm. This Multilevel algorithm extends an idea of Giles [18] from the Monte

Carlo setting to Markov Chains. In case it is applicable, the Multilevel algorithm can leat

to a significant speed–up in computational time compared to the classical Markov Chain

Monte Carlo.

The second approach is the analysis of the process of the Metropolis Adjusted Langevin Al-

gorithm (MALA) in possibly infinite–dimensional state spaces. This is partially motivated

by the analysis of the Multilevel algorithm, as exponentially fast convergence with uniform

constants is needed for the Markov Chains used in the algorithm to prove its efficiency.

The methods applied here could be tools to proof such bounds. But of course, results on

the speed of convergence of Markov Chain Monte Carlo processes are of interest on their
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own.

In the next two sections, we introduce Multilevel Markov Chain Monte Carlo

and the MALA–process, state our main results, and give references to prior work. The

third section describes the application Transition Path Sampling, which is used as running

example during this thesis.

Multilevel Markov Chain Monte Carlo

The Multilevel Monte Carlo method of Giles

For solving quadrature problems of stochastic differential equations, the Multilevel

Monte Carlo method was introduced in 2008 by Giles [18]. Giles was interested in approx-

imating expectation values with respect to the distribution µ of a stochastic differential

equation with Lipschitz coefficients:

µ(f) :=

∫
E
f(x)µ(dx).

The standard way to approach this kind of problems is via discretization and Monte Carlo

simulations. We discretize the function f and the stochastic differential equation, for ex-

ample with the Euler–Maruyama scheme, to obtain discretizations µM , fM , generate i.i.d.

samples (XM
i )1≤i≤N from µM and approximate

µM (f) ≈ 1

N

N∑
k=1

fM (XM
k ).

By applying this procedure, we induce two kinds of errors. The discretization error

|µM (fM )− µ(f)|, and the Monte Carlo error
∣∣∣µM (fM )− 1

N

∑N
k=1 fM (XM

k )
∣∣∣. For a given

discretization method, the discetization error is reduced by increasing the dimension of the

approximation. The Monte Carlo error is reduced by increasing the sample size N . At this

point, we face a trade–off, as sampling usually is more computational expensive in higher

dimension, increasing the dimension to reduce the discretization error decreases the number

of samples that can be computed in given time, thus it increases the Monte Carlo error.

Giles proposed a Multilevel algorithm to improve the performance of this scheme. The idea
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is to use a high–dimensional approximation, but to shift calculations to low–dimensional

spaces where the sampling can be performed at low costs. To this end, µ and f are approx-

imated on a sequence of spaces Ei with increasing dimension, and µM (fM ) is decomposed

in

µM (fM ) =

M∑
i=1

(µi(fi)− µi−1(fi−1)) + µ0(f0).

The crucial step in the construction of the Multilevel algorithm is to find low–variance

estimators for each θi := (µi(fi) − µi−1(fi−1)) for given i ∈ N. In the case of [18], this

is solved via coupling. A coupling (Xi
k, X̃

i
k)1≤k≤Ni is constructed, such that (Xi

k)1≤k≤Ni

are i.i.d. µi—distributed variables and (X̃i
k)1≤k≤Ni are i.i.d. µi−1–distributed variables.

Furthermore,
∥∥∥Xi

k − X̃i
k

∥∥∥
Ei

is small for large i. Then

µi(fi)− µi−1(fi−1) ≈ 1

Ni

Ni∑
k=1

fi(X
i
k)− fi−1(X̃i

k) =: θ̂i

is an unbiased estimator, and by the Central Limit Theorem the mean square error is

asymptotically given by

E
[∣∣∣θi − θ̂i∣∣∣2] ≈ 1

Ni
var
(
fi(X

i
1)− fi−1(X̃i

1)
)
.

The small distance
∥∥∥Xi − X̃i

∥∥∥
Ei

for large i implies that for Lipschitz–continuous fi : Ei → R

the variance is small, too. Therefore, fewer steps Ni are required on the higher levels.

Exploiting this mechanism, Giles Multilevel Monte Carlo method manages to improve the

order of convergence to 1
2 with logarithmic corrections.

Multilevel Markov Chain Monte Carlo

We apply the Multilevel idea of Giles to the Markov Chain Monte Carlo setting.

The aim is to construct an efficient method to approximate integrals of the form

µ(f) :=

∫
E
f(x)µ(dx)

for functions f : E → R and probability measures µ which are absolutely continuous to a

Gaussian measure ν on E of the form

µ(dx) =
1

Z
exp (−V (x)) ν(dx),
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where Z is an unknown normalization constant. In contrast to the setting of Giles described

above, we assume that we can not sample from the distributions µi directly. Instead, we

are running Markov Chains (Xi
k)k∈N to approximate these distributions:

µi(f) ≈ 1

Ni

Ni∑
i=1

f(Xi
k) =: ΘS

i (Ni)

for large Ni. Here, we face the same trade–off as in the Monte Carlo setting. On the one

hand, we need to minimize |µ(f)− µM (fM )|, which requires a high–dimensional approxi-

mation. On the other hand, evaluation of fM and sampling of (XM
i )0≤i≤N is often more

computational expensive in higher dimension, so that for a given amount of resources, fewer

steps of the Markov Chain can be simulated in higher dimensions. This leads to a worse

approximation of
∣∣∣µM (fM )− Θ̂S

M (NM )
∣∣∣.

In the remaining part of this section of the work, we develop a Multilevel Markov Chain

Monte Carlo method based on the Multilevel Monte Carlo method of Giles, which overcomes

this conflict by performing a significant part of the calculations for a high–dimensional ap-

proximation in low–dimensional spaces.

As in [18], we decompose the expectation value µM (fM ) into

µM (fM ) =
M∑
i=1

(µi(fi)− µi−1(fi−1)) + µ0(f0)

It is now the crucial part to find a low variance estimator

θ̂i ≈ µi(fi)− µi−1(fi−1)

that works in the Markov Chain Monte Carlo setting.

Results

To describe the computational complexity, we introduce the notation for cost,

denoted by cost(X). For a random variable X, cost(X) models the cost needed for sampling

X. In a specific application, this could for example be the computational time required for

sampling X. For our analysis, we assume we are in the following situation:

Assumption 1.1.
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1. The space E is approximated by a sequence of subspaces Ei with dimension di = 2i.

There exist projections Πi : E → Ei satisfying Πi ◦Πj = Πi for j ≥ i.

2. ϕ is approximated by a sequence of functions ϕi : Ei → R. Assume ϕ0 ≡ 1. µi

is defined as µi(dx) := 1
Zi
ϕi(x)νi(dx) where νi is the image measure of ν under the

projection Πi: νi := ν ◦Π−1
i and Zi are normalization constants.

3. f is approximated by a sequence of functions fi : Ei → R. Assume f0 ≡ 0.

We construct extensions of fi and ϕi to functions fi : E → R and ϕi : E → R by

fi := fi ◦Πi

ϕi := ϕi ◦Πi.

In the following, we use the same symbol for the functions fi, ϕi and their extensions. We

also define

µ̃i(dx) :=
1

Z̃i
ϕi−1(x)νi(dx).

We now present the Multilevel Markov Chain Monte Carlo method: First, we define

hi : E × E → R by

hi(x, y) := fi(x)− fi−1(x)
ϕi−1(x)

ϕi(x)

ϕi(y)

ϕi−1(y)
. (1.1)

Let (Ω,F ,P) be a probability space, and for each i = 1 . . .M , let Xi
0, Y i

0 be independent

random variables with distribution νi on (Ω,F ,P). Furthermore, let (Xi
k)k∈N and (Yk)

i
k∈N

be two independent Markov Chains on (Ω,F ,P), starting in Xi
0, Y i

0 , with unique ergodic

measure µi, µ̃i respectively. Then for Ni, ni ∈ N, define the estimators

θ̂i(ni, Ni) :=
1

Ni

Ni∑
k=0

hi(X
i
ni+k

, Y i
ni+k

),

Θ̂M :=

M∑
i=1

θ̂i(ni, Ni). (1.2)

We include two parameters ni and Ni for each estimator θ̂i that can improve the estimation,

an increase of Ni takes the average over more states of the Markov Chain, while increasing ni

gives the chain some time to converge to its invariant measure before the averaging is started.

Although Θ̂M depends on (Ni)i∈{1,...,M} and (ni)i∈{1,...,M}, we omit this dependencies in the
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notation for convenience.

The Multilevel algorithm relies on two observations: The function hi is constructed in such

a way that its expectation value with respect to µi ⊗ µ̃i equals θi:∫
Ei

∫
Ei

hi(x, y)µi(dx)µ̃i(dy) = µi(fi)− µi−1(fi−1),

As the chain (Xi
k, Y

i
k )k∈N is assumed to be ergodic, with unique ergodic measure (µi ⊗ µ̃i),

this implies that the estimator θ̂i(ni, Ni) converges to µ(fi) − µi−1(fi−1) P–almost surely

as Ni → ∞. Under additional assumptions outline below, the variance of hi decreases

exponentially in i:

varµi⊗µ̃i(hi) .
1

2i
.

Here and in the following, the notation ai . bi means that for given sequences (ai)i∈N and

(bi)i∈N , there exists a constant C, such that for all i ∈ N

ai ≤ Cbi.

The variance is an important factor in the error estimates for Markov Chain Monte Carlo

methods. When the variance decreases like 2−i, the number of steps that a sufficiently

well mixing chain requires achieving a given error scales like 2−i in i. This will counteract

the fact that operations on higher dimensional spaces are more expensive. In particular,

we can assume that the costs for operations on the space Ei can scale linearly with the

dimension, and still a given error for approximations of µi(fi)−µi−1(fi−1) can be achieved

with constant costs independent of the discretization level i. This is crucial for the efficiency

of the Multilevel algorithm.

We now present the main theorem of the Multilevel section. It states that under assumptions

on the approximations of the density ϕ and the integrand f , uniform conditions on the speed

of convergence to equilibrium of the Markov Chains (Xi
k, Y

i
k )k∈N, the order of convergence

of the Multilevel scheme is 1
2 up to logarithmic corrections.

Theorem 1.1. Under Assumption 1.1, as well as Assumptions 2.1 – 2.4 (see below), the

following statements hold: For given η, ε > 0, there exists M(η, ε), Ni(η, ε), ni(η, ε) and

C, η0 > 0 such that for η ≤ η0,

P
[
|Θ̂M(η,ε) − µ(f)| > η

]
< ε,
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and

cost
(

Θ̂M(η,ε)

)
≤ C

η2ε
log4

(
1

ηε

)
.

The full version of this theorem including the explicit form of M(η, ε), Ni(η, ε)

and ni(η, ε) will be given in Chapter 2.

Comparison of the Multilevel MCMC to the Multilevel Monte Carlo ap-

proach of Giles

The estimator for µi(fi) − µi−1(fi−1) used in the Multilevel Monte Carlo setting

is constructed via coupling. We construct a sequence of i.i.d couplings (Xi
k, X̃

i
k)k∈N, where

Xi
k is µi–distributed and X̃i

k is µi−1 distributed. The coupling is chosen in such a way that

the distance between Xi and X̃i is small, which implies that the random variable

hi(X
i
k, X̃

i
k) := fi(X

i
k)− fi−1(X̃i

k)

has a small variance for large i.

The main difference compared to our approach is the following: While we want to transfer

the Multilevel Monte Carlo method to the Markov Chain Monte Carlo setting, we do not use

a coupling approach to construct low–variance estimators for the terms µi(fi)−µi−1(fi−1).

This has the reason that we did not succeed in doing so. A direct transfer of the coupling

idea to the Markov Chain Monte Carlo setting would either require to construct couplings

πi(dx,dy) of the measures µi(dx) = 1
Zi
ϕi(x)νi(dx) and µi−1(dy) = 1

Zi−1
ϕi−1(y)νi−1(dy)

which is concentrated near the diagonal, and to construct processes which are reversible

with respect to πi. Or we at least need to construct a processes (Xi
k, X̃

i
k)k∈N such that

their marginals (Xi
k)i∈N, (X̃i

k)i∈N are reversible with respect to µi, µi−1 respectively, and

d(Xi
k, X̃

i
k) is small for an appropriate metric d.

In neither of these approaches, we managed to construct a coupling whose variance decreases

fast enough to be useful for a Multilevel estimator. Instead, we use the importance sampling

technique as seen in (1.1). For this purpose, the expectation value of fi−1 with respect to

µi−1 is expressed as an expectation value with respect to µi by

µi−1(fi−1) :=
Zi
Zi−1

µi

(
fi−1

ϕi−1

ϕi

)
= µ̃i

(
ϕi
ϕi−1

)
µi

(
fi−1

ϕi−1

ϕi

)
.
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Therefore, ignoring the normalization constants for now, we can use the Markov Chain

(Xi
k)k∈N to estimate both µi(fi) and µi−1(fi−1). The chain (X̃i

k)k∈N accounts for the quo-

tient of the normalization constants and is chosen to be independent of (Xi
k)k∈N.

While this approach fulfills the desired low variance characteristics, it has some disadvan-

tages compared to the coupling method. In order for the Multilevel method to be efficient,

the function hi has to have a small variance with respect to µi⊗ µ̃i, which requires the term

ϕi
ϕi−1

to be close to 1. This implies that (µi)i∈N has to converge in total variation sufficiently

fast. In contrast, for the coupling approach, we only need
∣∣∣fi(Xi)− fi−1(X̃i)

∣∣∣ to be small,

which can be fulfilled if
∥∥∥Xi − X̃i

∥∥∥
E
→ 0 sufficiently fast for i→∞ on some space E, and

the functions fi converge with respect to the same norm.

Overview on further work on Multilevel Monte Carlo methods

The Multilevel Monte Carlo method has been widely applied. Even before the

work of Giles, Heinreich [26] used a Multilevel to compute solution of integral equations,

and Heinreich and Sindambiwe [28] for parametric integration. An overview on these ap-

plications can be found in Heinreich [27].

In [10], Creutzig, Dereich, Müller–Gronbach and Ritter analyzed the integration of Gaus-

sian measures on Banach spaces, and the Multilevel Monte Carlo method in particular,

from the complexity theoretical point–of view an derived lower bounds on the complexity.

This is also surveyed by Müller–Gronbach and Ritter in [36]. By using the Milstein scheme

to discretize the stochastic differential equation, Giles [19] proposed a modification of his

Multilevel algorithm for stochastic differential equations, which improved the order of con-

vergence to 1
2 without logarithmic corrections.

Hutzenthaler, Jentzen, Kloeden [30] analyzed Giles’ Multilevel scheme for stochastic differ-

ential equations with non–Lipschitz coefficients and realized that the scheme is divergent in

this case. The effect is related to the fact that the Euler scheme with fixed time discretiza-

tion is eventually divergent if the considered time–horizon is large enough. The Multilevel

algorithms uses large sample sizes on low–dimensional discretization levels. Therefore, even-

tually one of these samples will diverge. Hutzenthaler, Jentzen, Kloeden showed that this

happens at such a high rate that the algorithm is divergent. They proposed a modification
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to the algorithm by truncating the discretization of the drift term. This modified Multilevel

algorithm also works for stochastic differential equations with non–Lipschitz coefficients.

There have been other approaches for an extension of the Multilevel idea of Giles to the

Markov Chain Monte Carlo setting, like in the paper of of Hoang, Schwab and Stuart [29].

They work in a setting where a coupling of the Markov Processes can be performed. Basi-

cally, the decomposition of µM (fM ) chosen is

µM (fM ) ≈ µM
2

(fM
2

)
M∑
i=M

2

µi(fi)− µ̃i(fi−1), (1.3)

where µ̃i is the projection of µi to Ei−1. This allows to construct a coupling (Xi
k, X̃

i
k)k∈N

reversible with respect to (µi, µ̃i) by constructing (Xi
k)k∈N reversible with respect to µi, and

obtaining (X̃i
k)k∈N as the projection of (Xi

k)k∈N to Ei−1. This procedure introduces a new

error µi(fi)− µ̃i(fi) on each level. In the setting of [29], this error decreases with order 2−2i

for approximations on spaces Ei whose dimension increase like 2i. As the decomposition

is started on level M
2 , the total error introduced by not having exactly the same measures

in the telescopic sum in (1.3) is negligible. For our Multilevel algorithm, we only assume

that the error decrease with a factor of 2−
i
2 on 2i–dimensional spaces, and thus we can not

follow this procedure.

Finally, we want to note that there is a long history of Multilevel methods in the Markov

Chain Monte Carlo literature, starting with Goodman and Sokal [20], who developed a

Multilevel method for sampling spin systems. Simulated Tempering and Parallel Temper-

ing [17, 33] can also be considered Multilevel algorithms, although their method is not a

reduction of the dimension but a modification of the density in order to overcome bottle-

necks of the distribution. All these methods improve the rate of convergence of a Markov

chain Monte Carlo scheme by using multiple levels, in [20] by reducing the dimensionality,

exploiting that the lower dimensional chains have better mixing properties, and in Simulated

Tempering or Parallel Tempering by varying the measure which leads to faster converging

chains. While all these methods also uses multiple levels of approximations, this is done

to improve the speed of convergence of the Markov Chain to its invariant measure. Our

goal is a different one, we already are in a situation where the chain is rapidly mixing, but

nevertheless the mentioned conflict between low discretization error and high computational
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costs for high dimensional approximation arises. We use the different levels to mitigate this

conflict and improve the order of convergence of the estimator.

Speed of Convergence of the MALA–process

One central assumption that is required for the proof of Theorem 1.1, that shows

the efficiency of the Multilevel algorithm, is a uniform spectral gap of the applied Markov

Processes. This is needed to guarantee an exponentially fast speed of convergence of the

used chains. The second part of this thesis analyzes the speed of convergence of Markov

Chain Monte Carlo processes in high–dimensional state spaces as they arise when con-

structing the Multilevel Markov Chain Monte Carlo estimator.

The speed of convergence of Markov Chains on high– and even infinite–dimensional state

spaces has been attracted attention since several years. For finite–dimensional state spaces,

a good overview can be found in Roberts, Rosenthal [38]. The first steps to the infinite–

dimensional state spaces were the works of Roberts, Gelman and Gilks [37] and Roberts,

Rosenthal [39]. They studied the Random Walk Metropolis (RWM) and the Metropolis ad-

justed Langevin algorithm (MALA) with product measure targets, and developed optimal

scaling results as the dimension increases to infinity.

Roberts, Gelman and Gilks [37] and Roberts, Rosenthal [39] analyzed the speed of the

diffusion limits of one–dimensional marginals of the RWM– and MALA–process on Rd.

The result was that, in order to have non–zero speed, the step–sizes of the RWM– and

MALA–process have to be scaled with order O(d−1) and O(d−
1
3 ) respectively. In addition,

they characterized the optimal acceptance rate of these processes to be 0.574 and 0.234

respectively in the scaling limit for product measure targets. Afterwards, these acceptance

rates were used as heuristics to optimize the speed of Markov Chains, see Bédard, Rosen-

thal [2]

In more recent years, these scaling results have been extended to non–product measures.

The focus here was shifted to measures that are absolutely continuous with respect to Gaus-

sian measures. The scaling limit results from the product case where extended by Beskos,

Roberts, Stuart [3]. These methods also require the step size of the process to converge

to zero as the dimension increases, in order to obtain a non–zero acceptance probability
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in the limit. By using a semi–implicit discretization of the Langevin s.d.e. as proposal

for the Markov chain, Beskos, Stuart, Roberts, Voss [8] and Beskos, Stuart [4] constructed

non–degenerating processes, which allow strictly positive step–sizes as the dimension of

the state space converges to infinity. This allowed Mattingly, Pillai, Stuart [34] to define

the corresponding MALA–process directly on the infinite–dimensional Hilbert space. For

step–sizes h converging to 0, they showed weak convergence of the MALA–process to the

corresponding stochastic differential equation.

Analysis of the speed of convergence of discrete time processes on high– or infinite–

dimensional state spaces has been carried out by Bou–Rabée, Hairer, Vanden–Eijnden [9],

who proved exponentially fast convergence to equilibrium of the MALA–process by com-

paring it to the continuous time diffusion limit and using established convergence results for

that limit. However, the result depends on the dimension of the state space and thus does

not scale to the infinite–dimensional setting. An infinite–dimensional result was achieved by

Hairer, Vollmer, Stuart [22]. They analyzed the RWM–algorithm and obtained exponential

convergence even without assuming log–concavity of the measure in this case. However,

the result is rather non–quantitative with non–explicit constants in the bounds on the rate

of convergence.

There are lots of works studying the speed of convergence of Langevin diffusion to its

equilibrium measure, see Roberts, Tweedie [40], Roberst, Rosenthal [39] or da Prato,

Zabczyk [13]. In general, one can expect exponentially fast convergence if the equilibrium

measure is log–concave. However, the comparison of the Markov Chain Monte Carlo meth-

ods and their diffusion limits must be handled with care. Convergence of the process to

a diffusion is usually only known for fixed time horizons, while results for the speed of

convergence of Markov Chain Monte Carlo methods are asymptotic results for time to in-

finity. Furthermore, the Markov Chain Monte Carlo process converge to the diffusion limit

only as the step–size converges to 0. For efficient sampling, one prefers larger step–sizes to

improve the mixing properties of the chain. Thus, the heuristic implied from results on the

diffusion limits could be misleading when being directly applied to Markov Chain Monte

Carlo methods, and explicit analysis of this methods is needed when one wants to state

results on their efficiency.

In this work, we study the MALA–process on a Hilbert space W in the semi–
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implicit form. This process is constructed to have invariant measure µ given by

µ(dx) :=
1

Z
exp (−V (x)) ν(dx),

where ν is a Gaussian measure on W with mean 0 and covariance operator C and the

potential V is a function V : E → R. Let (Ω,F ,P) be a probability space, and (Ni)i∈N

be a i.i.d. sequence of ν–distributed random variables, and (Ui)i∈N be an i.i.d sequence

of uniform distributed variables on [0, 1] independent of (Ni)i∈N on (Ω,F ,P). Define the

scalar product 〈·, ·〉S as

〈x, y〉S =
〈
C−

1
2x, C−

1
2 y
〉
W
,

and let S be the Hilbert space

S = {x ∈W |‖x‖S <∞}.

Given x ∈W and h ∈ (0, 2), the proposal Yh,n(x) is given by

Yh,n(x) :=

(
1− h

2

)
x− h

2
∇SV (x) +

√
h̃Nn+1.

Here h̃ := h− h2

4 . Let X0 ∈W be a random variable, and let Px be the probability measure

P[·|X0 = x] for x ∈ W . The MALA–process is now constructed as follows: At time n + 1,

the state Yh,n(Xn) is proposed. It is accepted as new state of the process with acceptance

probability a(Xn, Yh,n(Xn)); if it is rejected, the state does not change:

Xn+1 :=

 Yh,n(Xn) if Un+1 < a(Xn, Yh,n(Xn)),

Xn otherwise.
(1.4)

The acceptance probability is chosen is such a way that (Xn)n∈N is reversible with respect

to ν. The exact form is derived in Chapter 3.

The choice of the proposal corresponds to the ones in Beskos and Stuart [4], and Beskos,

Roberts, Stuart and Voss [8]. It has the advantage that the acceptance probability remains

positive for fixed h > 0 even in the infinite–dimensional limit. This is mainly due to the

fact that in the Gaussian case V ≡ 0, the Gaussian measure ν is reversible with respect

to the kernel induced by the proposal Yh,n(x). This is not true for other proposals like

in the original RWM or MALA, whose proposals are singular with respect to ν in infinite
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dimensions.

As a Markov Process, (Xi)i∈N can be described by its kernel qh : W ×B(W )→ [0, 1], where

B(W ) denotes the Borel sets on W . It is defined by

qh(x)(A) := Px [X1 ∈ A] for x ∈W, A ∈ B(W ).

Our aim of this thesis is to bound the speed of convergence of the MALA–process to its

invariant measure µ, if said measure fulfills log–concavity. The distance of the distribution to

its invariant measure is measured in the Wasserstein distance. Given a metric d : W ×W →

[0,∞], the Wasserstein distance Wd : P(W )× P(W )→ [0,∞) is defined by

Wd(η, η̃) := inf
π

∫
W×W

d(x, x̃)dπ(x, x̃),

where the infimum is taken over all couplings π of η and η̃. We will apply this to the metrics

dR given by

dR(x, y) = ‖x− y‖W ∧R for x, y ∈W, R ∈ [0,∞).

We use two assumptions on the potential V to prove our result. First, we need a fixed

bound on the second derivative of V .

Assumption 1.2. There exists a constant 0 ≤ L < 1 such that

‖∇SV (x)−∇SV (y)‖W ≤ L‖x− y‖W . (1.5)

Furthermore, we need polynomial bounds on the first four derivatives of the po-

tential.

Assumption 1.3. The potential V is four times differentiable with respect to W , and

constants Cn, pn ∈ [0,∞) exist, such that the derivatives, as operators from W⊗n to R are

bounded by a polynomial:

|DnV (x)(ξ1, . . . , ξn)| ≤ Cn max{1, ‖x‖W }
pn ,

for all x ∈W , ‖ξ1‖W = . . . = ‖ξn‖W = 1, and n ∈ {2, 3, 4}.

Our main result states a subexponential bound on the distance of the distribution

of the MALA–process to its invariant measure µ, if Assumptions 1.2 and 1.3 are satisfied.
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Theorem 1.2. Let qh be the kernel of the MALA–process with step-size h ∈ (0, 2). Let

Assumptions 1.2 and 1.3 be satisfied. Then there exists C > 0, r > 0 and n0 > 0 such that

for given n ≥ n0, there exists h(n) > 0 such that

Wd1(νqnh(n), µ) ≤ exp
(
−cn

2
1+r

)
(Wd∞(µ, ν) + C).

The constant r depends on the degree of the polynomial bounds of the derivatives of the

potential V , and is given by (3.33).

The idea of the proof is based on the construction of a coupling of the MALA–

process. We will show that it is contracting with constant γ(R) < 1 on a ball with radius R

with respect to a suitable metric. The contraction property is proven by showing that the

proposal of the MALA–process is contracting. The contraction rate of the MALA–process

itself is then controlled via an asymptotic analysis of the rejection probabilities.

As outlined in Eberle [16], this leads to an estimate of the Wasserstein distance of the

distribution of the MALA–process to its invariant measure of the form

Wd(µq
n, νqn) ≤ γnWd(µ, ν) +

R

1− γ
(Cn(BR, µ) + Cn(BR, ν)), (1.6)

where Cn(BR, µ) is the highest probability that the process, started with distribution µ, is

not in the ball with radius R after i steps, and i runs from 1 to n. In Section 3.3.3, we show

that the second term is exponentially small in R, such that the theorem can be proven by

bound (1.6), and the correct choice of R(n) and h(n).

The chapter 3 is a generalization of the work of Eberle [16], who proved a con-

vergence result for the MALA–process via coupling methods on finite–dimensional state

spaces. However, the result is independent of the dimension, and the proof can be extended

to infinite–dimensional state spaces quite directly, so that the main ideas and calculations

were adopted.

Note that the bound we obtain here is only sub–exponential and thus does not suffice to

prove the exponential bound needed for the Multilevel algorithm. This is also expected for

the MALA–process, as already for the one–dimensional setting it is known that MALA–

process in a polynomial potential does not converge exponentially fast, see Roberts and

Tweedie [40]. However, the analysis in this work can be seen as a step towards a better un-

derstanding of Markov Chain Monte Carlo settings, and might, applied to another Markov
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Process eventually leads to an exponential bound.

Transition Path Sampling

As announced, we use Transition Path Sampling throughout this work as visual-

ization. In this chapter, we introduce the general definitions of this setting. This thesis

deals with efficient integration with respect to and sampling from a measure µ of the type

µ(dx) =
1

Z
exp(−V (x))ν(dx),

where ν is a Gaussian measure and the potential V is a function V : E → R. There are

plenty of applications where one is interested in this type of measures, including models in

molecular dynamics, signal processing and data assimilation. See e.g. Beskos and Stuart [5]

for an overview.

Our main motivation arises from Transition Path Sampling. Transition Path Sampling is a

technique used in biological chemistry, especially in molecular dynamics. Within this area,

the transition of a molecule from one metastable state to another is analyzed. The main

idea behind Transition Path Sampling is the following: Consider the dynamics of a molecule

modelled by a stochastic differential equation in Rd

dXt = g(Xt) dt+ σ(Xt)dBt, (1.7)

X0 = x0 ∈ Rd, (1.8)

where Bt is a d–dimensional Brownian Motion, g : Rd → Rd and σ : Rd → Rd × Rd are

functions controlling the dynamic. We are interested in transitions of the molecule from

the state x0, or some metastable region A0 3 x0, to the state x1, or the metastable region

A1 3 x1. Typically, these transitions occur very rarely, and happen very fast when they do.

This means that very small time–steps are needed within a simulation of the solution of the

stochastic differential equation, to resolve the transition we are interested in. Moreover,

the process would spent most of the time in the meta–stable regions, and very little time

in the transition regions we are interested in. So most of the computational time is wasted,

as only a tiny fraction of the path captures the relevant behaviour.
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To find a workaround, we consider paths which are conditioned on performing the wanted

transition in a given time frame. Therefore, the solution of the stochastic differential equa-

tion as presented above is conditioned on the event {XT = xT }. Here, x0 ∈ Rd represents

one metastable configuration and xT ∈ Rd represents the other one. This strategy was first

proposed by Dellago, Bolhuis, Chandler [14]. Since then, the technique is widely used, see

Dellago, Bolhuis [15] for a survey on the topic.

Mathematically, the easiest case to analyze is the so called “gradient case” when g = −∇f

for some smooth function f : Rd → R, and σ ≡ 1. This is a strong limitation, as many

important examples, including equations arising from Newton’s law of motion, are not

captured in this setting. However, the gradient case is often assumed, as the density of the

measure is smooth in this case.

The first rigorous mathematical study of the processes arising in the (gradient case) Tran-

sition Path Sampling setting was done by Hairer, Stuart, Voss, Wiberg [23], [24]. They

showed that µ is absolute continuous with respect to a Brownian Bridge on Rd with density

ϕ(x) :=
1

Z
exp

(
−
∫ 1

0
Φ(xs)ds

)
,

where Φ : Rd → R is given by

Φ(z) :=
1

2
(∆f(z) + |∇f(z)|) .

Additionally, they constructed solutions to the stochastic partial differential equations

∂tz = ∂2
uz −∇Φ(z) +

√
2∂tw (1.9)

z(t, 0) = x0, z(t, 1) = x1,

z(0, t) = z0(t)

and

∂tz(t, u) = −z(t, u) + y(t, u) +
√

2∂tw̃(t, u) (1.10)

∂2
uy = ∇Φ(z)

y(t, 0) = x0 y(t, 1) = x1,

z(0, u) = z0(u).
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and showed that µ is the unique ergodic measure of the solutions of (1.9) and (1.10). The

first equation is called the “non–preconditioned equation”, the second one the “precondi-

tioned equation” in these papers. The MALA–process as analyzed in this thesis can be

considered as a time–discretization of equation (1.10) which preserves the invariant mea-

sure. We briefly discuss the implication of using discretizations of other equations like (1.9)

or intermediate equations in Section 3.5.

The non–gradient case is significantly more difficult to analyze mathematically, because the

density is much more irregular in this case. Hairer, Stuart, Voss [22] studied the fourth–

order stochastic partial differential equation

∂tz(t, u) = (∂2
u −m2∂4

u)z(t, u) +N(z)(t, u) +
√

2∂tw(t, u).

The invariant measure of its solution is characterized as

mẍ(t) = f(x(t))− ẋ(t) + ẇ(t) (1.11)

conditioned on x(0) = x0 and x(1) = x1, when N(z)(t, u) is chosen in the right way. Here,

the additional smoothing of the fourth order differential operator guarantees the existence

of the solution. Formally, the stochastic differential equation conditioned on its endpoint is

given by the limit m → 0 in (1.11). This relation is analyzed in Hairer [21]. They showed

that for this particular equations, the limit of the solution of (1.11), as m converges to 0, is

indeed a solution of the conditioned stochastic differential equation.

This measure is our main motivating example, and it will reoccur during the following chap-

ters. In particular, the results on the Multilevel algorithm and the speed of convergence of

the MALA–process are applied in the context of Transition Path Sampling.

We are going to apply the results on the Multilevel algorithm and on the speed of conver-

gence of the MALA–process to the Transition Path Sampling setting.

Results related to Transition Path Sampling

In Chapter 2, we apply the Multilevel algorithm to the Transition Path Sampling

setting. Under conditions on the drift term g in equation (1.7), we show that the order of

the Multilevel algorithm convergence, in the sense of Theorem 1.1, is 1
2 .
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Theorem 1.3. Let µ, Φ and (Xi
k)k∈N, (Y i

k )k∈N be defined as constructed above. Let f :

C0([0, T ],Rd)→ R be given. Assume that for constants c, L > 0,

|f(x)− f(x)| ≤ L‖x− y‖Lq([0,T ],Rd) for all x, y ∈ C([0, T ],Rd)

cost(fi(ξ)) . 2i + cost(ξ),

|Φ(u)− Φ(v)| ≤ L‖u− v‖Rd for all u, v ∈ Rd

c−1 ≤ Φ(u) ≤ c for all u ∈ Rd.

Then the Multilevel estimator Θ̂M(η,ε) constructed in (1.2) satisfies

P
[
|Θ̂M(η,ε) − µ(f)| > η

]
< ε,

and

cost
(

Θ̂M(η,ε)

)
≤ C

η2ε
log4

(
1

ηε

)
.

In Chapter 3, we analyze the MALA–process in the Transition Path Sampling

context. We show that its speed of convergence is bounded under growth conditions on the

derivatives of Φ. We assume that Φ and its derivatives are bounded by a polynomial.

Assumption 1.4. For all η1, . . . , ηn ∈ Rd with
∥∥ηi∥∥Rd = 1 for i ∈ {1, . . . , n},∣∣DnΦ(z)(η1, . . . , ηn)

∣∣ ≤ Cn (max{1, ‖z‖Rd})
pn (1.12)

for n = 1, . . . , 4 and constants Cn and pn.

The second assumption deals with a uniform bound on the second derivative on

Φ.

Assumption 1.5. The second derivative of Φ is uniformly bounded by LΦ < π√
2
: For all

z ∈ Rd, and all η1, η2 in Rd∣∣D2Φ(z)(η1, η2)
∣∣ ≤ LΦ

∥∥η1
∥∥
Rd
∥∥η2
∥∥
Rd .

Theorem 1.4. Let qh be the kernel of the process (Xn)n∈N with step–size h as constructed

in (1.4) for the measure µ. Let Assumptions 1.4 and 1.5 be satisfied. Then for given n ∈ N,

there exist h(n) > 0 and constants c, C and r such that

Wd1(νqnh(n), µ) ≤ exp
(
−cn

1
1+r

)
(Wd∞(µ, ν) + C),
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We also show a uniform bound on the speed of convergence of the MALA–process

for a sequence of finite–dimensional discretizations of µ. Define dN := 2N−1, let EN be

the piece–wise linear functions on the partition
{

0, 1
dN
, . . . , 1

}
, and ΠN : E → EN be the

projection to EN . Consider the measures µN given by

µN (dx) :=
1

ZN
exp

(
1

dN

dN∑
k=1

Φ

(
x k
dN

))
νN (dx), (1.13)

where νN is the image measure of ν under ΠN . Let (XN
i )i∈N be the MALA–process con-

structed according to (1.4) and qN,h its kernel.

Applying the results on the MALA–process on Hilbert spaces, we obtain the following

uniform result on distance to equilibrium of the distribution of the MALA–process:

Theorem 1.5. Let qN,h be the kernel of the process (XN
n )n∈N with step–size h for the

measure µN given by (1.13). Let Assumptions 1.4 and 1.5 be satisfied. Additionally assume

LΦ ≤ π
3 . Then for given n ∈ N, there exists h(n) > 0 and constants c, C and r such that

Wd1(ν(qnN,h(n)), µ) ≤ exp
(
−cn

1
1+r

)
(Wd∞(µ, ν) + C),

The constants are independent of N .

Again, we will specify the constants in later chapters.

Organization of the thesis

The remaining parts of this thesis are organized in the following way.

Chapter 2 is devoted to the Multilevel Markov Chain Monte Carlo estimator.

In Section 2.1 the estimator is introduced, and theorem 1.1 as well as the assumptions

needed to prove it are stated. Within Chapter 2.2, basic results that are implied by the

assumptions are proven. These are used in Section 2.3 to prove Theorem 1.1 on the order

of convergence of the Multilevel estimator. In Section 2.4, the Multilevel estimator in the

context of Transition Path Sampling is analyzed and Theorem 1.3 is proven. In Section

2.5, numerical examples are presented which compare the performance of the Multilevel

Markov Chain Monte Carlo method to classical Markov Chain Monte Carlo alogrithms.
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Chapter 3 deals with the speed of convergence of the MALA–process on high–

or infinite–dimensional spaces. In Section 3.1, the Hilbert–space valued MALA–process is

constructed. The Transition Path Sampling version of this process is covered as an example

in Section 3.2. Within Section 3.3 a bound for the speed of convergence of the process is

derived and Theorem 1.2 is proven. In Section 3.4, this theorem is applied to the Transition

Path Sampling setting and Theorems 1.4 and 1.5 are proven. Finally, in Section 3.5, we

analyze different possible choices of Metropolis Chains that are reversible with respect to

µ, and show that these choices would not lead to a contracting process.
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Chapter 2

Multilevel Markov Chain Monte

Carlo

2.1 Setting

Let µ : B(E)→ [0, 1] be a probability measure on a seperable Banach space E with

Borel sets B(E). Assume µ is absolutely continuous with respect to a Gaussian reference

measure ν on E with density ϕ known up to a normalization constant Z:

µ(dx) =
1

Z
ϕ(x)ν(dx).

Let f ∈ L1(E,µ) be a integrable function. We are interested in approximations of the

integral

µ(f) :=

∫
E
f(x)µ(dx).

In 2008, Giles [18] introduced the Multilevel Monte Carlo method to improve the order

of convergence of Monte Carlo estimators in the infinite–dimensional setting, for example

when µ is the distribution of the solution of a stochastic differential equation. A survey

by Müller–Gronbach and Ritter on Multilevel Monte Carlo can be found in [36]. Giles

was interested in expectation values with respect to distributions of solutions of stochastic

differential equations. He noticed that in the common approach, in which we discretize

the s.d.e. with (say) the Euler–Maruyama scheme and generate independent samples of

this discretized equation, we face two opposing effects: While higher–dimensional approx-

imations lead to a smaller discretization error, sampling of the distribution gets more
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expensive. The Multilevel method of Giles overcomes this issue by transforming parts of

the calculations to low–dimensional spaces. This improves the order of convergence from

1
3 to 1

2 with logarithmic corrections. However, the method relies on the possibility to draw

i.i.d. samples of the measures µn to approximate µ.

In many application, it is not possible to generate i.i.d. samples, and Markov Chain Monte

Carlo methods are used. A wide range of application with infinite–dimensional target

measures is presented e.g. in [5], including problems in signal processing, geophyics and

molecular dynamics. In principle, MCMC methods for infinite–dimensional targets face the

same effect as Monte Carlo methods: Higher–dimensional approximations improve the dis-

cretization error, but sampling of the Markov Chain is more expensive in higher dimensions.

This raises the question if, and how, the Multilevel method can be modified to work in the

Markov Chain Monte Carlo setting. This work gives a first approach to answer this question.

We assume that we have a sequence of approximating spaces Ei ⊂ E as well as

approximation ϕi : Ei → R, fi : Ei → R, and νi on Ei for i ∈ N. We further assume

that f0 ≡ 0 and that νi is given as image measure of ν under a sequence of projections:

There exist continuous projection operators Πi : E → Ei from E to Ei, that is for j ≥ i,

Πi ◦Πj = Πi, as well as Πixi = xi for xi ∈ Ei, and νi is given by

νi(A) := ν(Π−1
i (A)) for A ∈ B(Ei).

To simplify the notation later on, we extend functions gi : Ei → R to functions on E by

defining

gi(x) := gi(Πi(x)) for x ∈ E.

We use the same symbol for the function and its extension. We define the probability

measure µ̃i by

µ̃i(dx) :=
1

Z̃i
ϕi−1(x)νi(dx).

where Z̃i is the normalization constant. This measure is chosen in such a way that its

marginal on Ei−1 is µi−1.

Finally, for i ∈ N, let (Xi
k)k∈N be a Markov Chain on Ei that is reversible with respect to µi.
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As in the Monte Carlo setting of Giles introduced in Chapter 1, we decompose the

expectation µM (fM ) in

µM (fM ) =
M∑
i=1

(µi(fi)− µi−1(fi−1)) + µ0(f0)

=
M∑
i=1

(µi(fi)− µi−1(fi−1))

as f0 ≡ 0. We will construct estimators θ̂i for θi := µi(fi)− µi−1(fi−1). Then we define

Θ̂M :=

M∑
i=1

θ̂i

as an estimator for µM (fM ). An important point in the Multilevel approach is the construc-

tion of an estimator with low variance on high–dimensional spaces Ei. When the variance

decreases like 2−i, the number of required steps of the chain to achieve a given error also

scales like 2−i in i. This allows us to find estimators with a given error with identical costs

compared to the low–dimensional spaces, despite the fact that sampling is more expensive

in high dimensions. In this work, this is achieved by performing fewer steps of the Markov

Chain on higher–dimensional spaces. Nevertheless, we can obtain a small error, if we have

an integrand with small variance. To obtain this, we define hi : E × E → R by

hi(x, y) := fi(x)− fi−1(x)
ϕi−1(x)

ϕi(x)

ϕi(y)

ϕi−1(y)
. (2.1)

The function hi is constructed in a way that its expectation value with respect to µi ⊗ µ̃i
equals θi:

Lemma 2.1. For hi : Ei × Ei → R defined in (2.1),∫
Ei

∫
Ei

hi(x, y)µi(dx)µ̃i(dy) = µi(fi)− µi−1(fi−1)

holds.

Additionally, under assumptions outlined below, the variance of hi decreases ex-

ponentially:

Lemma 2.2. Under Assumptions 2.2 and 2.3, for µi, µ̃i and hi defined above, there exists

C <∞ independent of i such that

varµi⊗µ̃i(hi) ≤ C
1

2i
.
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Finally, we define the estimators for θi and ΘM : For Ni, ni ∈ N:

θ̂i :=
1

Ni

Ni∑
k=0

hi(X
i
ni+k

, Y i
ni+k

),

Θ̂M :=

M∑
i=1

θ̂i. (2.2)

We will now present the assumptions we need to bound the order of convergence

of the Multilevel Markov Chain Monte Carlo estimator, followed by the corresponding

Theorem which bounds the order of convergence.

First, we introduce the following notation: For two sequences (ai)i∈N and (bi)i∈N we will

write ai . bi if there exists C <∞ such that for all i ∈ N ai ≤ Cbi holds.

Now, we introduce a cost model to measure the efficiency of algorithms. For a random

variable X, we model the algorithmic costs needed to sample this variable by cost(X). To

prove the efficiency result on the Multilevel algorithm, we need the following assumption

on the costs of the Singlelevel estimators.

Assumption 2.1. For i,M ∈ N, the costs for sampling the estimators θ̂i and Θ̂M are

bounded by

cost(Θ̂M ) .
M∑
i=1

cost(θ̂i)

.
M∑
i=1

(Ni + cost((hi(X
i
k, Y

i
k ))0≤k≤ni+Ni)).

For i ∈ N, the costs for evaluating (hi(X
i
k, Y

i
k )0≤k≤ni+Ni is bounded by

cost
(
(hi(X

i
k, Y

i
k )0≤k≤ni+Ni

)
. 2i(ni +Ni).

The first part of the assumption represents the requirement that in a reasonable

cost model, the cost for calculating the sum or the product of random variables is roughly

the sum of the costs for calculating each summand or factor. The second part bounds the

cost for sampling the variable (hi(X
i
k, Y

i
k ))0≤k≤ni+Ni . This can for example be satisfied if

the costs of the evaluation of fi and ϕi which are needed to calculate hi and one step of the

Markov Chains (Xk)k∈N and (Yk)k∈N are of order 2i.

fi, ϕi and ϕ−1
i satisfy the following uniform integrability–bounds:
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Assumption 2.2. There exists Z∗ <∞, such that for all i ∈ N,

‖ϕi‖L32(Ei,νi)
≤ Z∗∥∥ϕ−1

i

∥∥
L4(Ei,νi)

≤ Z∗

‖fi‖L8(Ei,νi)
≤ Z∗.

Furthermore, we assume that the approximations fi, ϕi converge sufficiently fast

Assumption 2.3.

lim
M→∞

∣∣∣∣∫
EM

fM (x)µM (dx)−
∫
E
f(x)µ(dx)

∣∣∣∣ = 0,

and for i ∈ N,

‖fi − fi−1‖L4(Ei,νi)
. 2−

i
2

‖ϕi − ϕi−1‖L32(Ei,νi)
. 2−

i
2 .

Remark 2.3. Assumption 2.2 guarantees (by Jensen’s inequality) that (Zi)i∈N is uniformly

bounded away from 0 and ∞ by

0 < Z−1
∗ ≤ Zi ≤ Z∗ <∞ for all i ∈ N.

We now define two sequences of Markov Chains (Xi
k)k∈N and (Y i

k )k∈N, which are

used in the Multilevel Monte Carlo estimator. Let (Ω, (Fn)n∈N,P) be a filtered probability

space. For each i = 1 . . .M , let Xi
0, Y i

0 be independent F0–measurable random variables

on (Ω, (Fn)n∈N,P) with distribution νi. Furthermore, let (Xi
k)k∈N and (Y i

k )k∈N be two

independent Markov Chains on (Ω, (Fn)n∈N,P), starting in Xi
0, Y i

0 , adapted to (Fn)n∈N

and with unique invariant measure µi, µ̃i respectively.

Our last assumption is related to the speed of convergence of the chains (Xi
k)k∈N

and (Y i
k )k∈N. Denote by (pin)n∈N the semigroup generated by (Xi

k)k∈N and qin the semigroup

generated by (Y i
k )k∈N, defined by

pin(g)(x) := Ex,i[g(Xi
n)] for g ∈ L2(Ei, µi), x ∈ Ei

qin(g)(x) := Ex,i[g(Y i
n)] for g ∈ L2(Ei, µ̃i), x ∈ Ei,

where Ex,i denotes the expectation value with respect to P conditioned on {Xi
0 = x, Y i

0 = x}.

We assume that the chains posses a uniform spectral gap:
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Assumption 2.4. (pin)n∈N and (qin) n ∈ N have uniform spectral gaps with constant ρ:

There exists ρ > 0 such that for all i ∈ N and for all g : Ei → R with
∫
Ei
g(x)µi(dx) = 0∫

Ei

g(x) (pi1g)(x)µi(dx) ≤ (1− ρ)

∫
Ei

g(x)2µi(dx),

and for all g with
∫
Ei
g(x)µ̃i(dx) = 0∫
Ei

g(x) (qi1g)(x)µ̃i(dx) ≤ (1− ρ)

∫
Ei

g(x)2µ̃i(dx).

Furthermore, the cost for sampling (Xi
k)k≤N is bounded by

cost((Xi
k)k≤N ) . 2iN.

We can now present the main theorem of this chapter. It states that the Multilevel

estimator can achieve an error of η for costs that scale like 1
η2

with logarithmic corrections.

Theorem 2.1. Under Assumptions 2.1 - 2.4, the following statements hold: There exists

M(η, ε), Ni(η, ε), ni(η, ε) and η0 > 0 such that for η ≤ η0 and ε > 0

P
[
|Θ̂M(η,ε) − µ(f)| > η

]
< ε.

Furthermore, there exists C > 0, such that the cost of the evaluation of (2.2) is bounded by

cost
(

Θ̂M(η,ε)

)
.

1

η2ε
log4

(
1

ηε

)
.

M(η, ε), Ni(η, ε) and ni(η, ε) are known explicitly and will be stated in Section 2.3.

In this context, for functions a, b : [0, 1]× [0, 1]→ R, the notation a(η, ε) . b(η, ε)

denotes that there exists C <∞, such that for all 0 < ε, η < 1
2 , a(η, ε) ≤ Cb(η, ε) holds.

The proofs of Lemmas 2.1 and 2.2 and Theorem 2.1 will be presented in Sections 2.2 and 2.3.

2.1.1 Example: Transition Path Sampling

As an example we consider the Transition Path Sampling setting. Here, we are

interested in the distribution µ of the solution of the equation

dXt = −V (Xt) dt+ εdBt (2.3)

X0 = x0 (2.4)
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conditioned on the event {X1 = x1}, for t ∈ [0, 1]. Here x0, x1 ∈ Rd, V : Rd → Rd is

a smooth vector field and Bt is a d-dimensional Brownian Motion. In the case where V

is a gradient ∇U of a function U : Rd → R, µ is absolutely continuous with respect to a

Brownian Bridge with density proportional to

ϕ(x) = exp

(
−
∫ 1

0
Φε(xs) ds

)
. (2.5)

The function Φε : Rd → R is given by

Φε(z) =
1

2

(
∆U(z) +

1

ε2
|∇U(z)|2

)
,

see e.g. [24].

We consider the linear interpolations on a equidistant partition as approximations. For each

level i, we take the partition 0 =: li0 < . . . < li
2i

:= 1 of the interval [0, 1] with 2i sub-intervals

where

lik :=
k

2i
0 ≤ k ≤ 2i, (2.6)

and construct finite–dimensional approximations of E by the piece-wise linear functions on

this partition

Ei :=
{

(f1, . . . , fd) ∈ E
∣∣∣∃zj1, . . . , zj2i ∈ R,∀t ∈ [lik, l

i
k−1] : f j(t) = L(zjk−1, z

j
k, l

i
k−1, l

i
k; t)

}
.

Here, L(x, y, v, w; t) is the line spanned by (v, x) and (w, y), given by

L(x, y, v, w; t) := x
t− w
v − w

+ y
t− v
w − v

.

The projections Πi(x) are defined as the linear interpolations of the values of (x(lik))0≤k≤2i .

For i ≤ j the partition {lik}k is a subset of {ljk}k, so the projections are consistent: Πi ◦Πj =

Πi.

An with respect to 〈·, ·〉S orthonormal basis of Ei is given by {ek,m,j} for m ∈ {1, . . . , i},

k ∈ {1, . . . 2m−1} and j ∈ {1, . . . , d}.

ek,m,j(t) :=


2−

m
2
−1(x− 2−mk) ej 2−m(k − 1) ≤ t ≤ 2−m(k − 1

2)

−2−
m
2
−1(x− 2−m(k + 1)) ej if 2−m(k − 1

2) ≤ t ≤ 2−mk

0 otherwise.
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where {ej}j=1,...,d are the unit–vectors in Rd. As a first step in the definition of the Markov

Chains (Xi
k, Y

i
k )k∈N, we construct νi–distributed random variables: For j ∈ {1, . . . , d},

m ∈ {1, . . . , i} and k ∈ {1, . . . , 2m−1}, let ξjm,k be i.i.d. Gaussian random variables on R

with mean 0 and variance 1. For j = 1, . . . , d, the one–dimensional Brownian Bridge N j is

now constructed iteratively by

N j(0) := 0 ej ,

N j(1) := 1 ej

and for l ∈ {1, . . . , i}, m ∈ {1, . . . , i} and k ∈ {1, . . . , 2m−1}

N j
(
lm2k−1

)
:=

1

2

(
N j
(
lm−1
k−1

)
+N j

(
lm−1
k

))
+ 2−

m
2
− 1

2 ξjm,k ej . (2.7)

For points s 6∈ {li1, . . . , li2i}, N
j(s) is given by linear interpolation.

This construction implies that

N j(s) =

i∑
l=1

2l−1∑
k=1

ξl,ke
l
k.

Therefore, N j(s) is a one–dimensional Brownian Bridge. This follows from [41, Theorem

6.1], where a similar construction is given for the Brownian Motion, and the fact that for a

Brownian Motion (B̃s)s≥0,

Bs := B̃s − sB̃1

is a Brownian Bridge. We now set N :=
(
N1, . . . , Nd

)
, which then is νi–distributed.

As reversible Markov Chains, we construct the Random Walk Metropolis algorithm with

respect to µi. Given a sequence of independent νi–distributed random variables (N i
k)k∈N,

the discrete Ornstein–Uhlenbeck process

Z̃k+1 :=
√

1− h2Z̃k + hN i
k

is reversible with respect to νi for each 0 < h ≤ 1. We construct a chain reversible with

respect to µi by adding a Metropolis rejection step: Given a sequence (U ik)k∈N of i.i.d.

uniformly distributed variables on [0, 1], we define the acceptance function ai : Ei × Ei →

[0, 1] by

ai(x, y) := min

(
1,
ϕi(y)

ϕi(x)

)
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and set

Z̃ik+1 :=
√

1− h2Zik + hN i
k

Zik+1 :=

 Z̃ik+1 if U ik < ai(Z
i
k, Z̃

i
k+1)

Zik otherwise.

The process (Zik)k∈N is reversible with respect to µi, see e.g. [8], [38].

In Section 2.4, we check Assumptions 2.1 – 2.4 to apply Theorem 2.1 in the Tran-

sition Path Sampling setting.

2.2 Basic Lemmas

We now prove some basic lemmas that are implied by the assumptions.

As νi is defined as the image–measure of ν under Πi, the following lemma holds:

Lemma 2.4. For g : E → R,∫
Ei

g(Πi−1(x))νi(dx) =

∫
Ei−1

g(x)νi−1(dx).

In particular, ∫
Ei

g(Πi−1(x))µ̃i(dx) =

∫
Ei−1

g(x)µi−1(dx)

and

Z̃i = Zi−1.

Proof. We know that νi−1 is the image–measure of νi under Πi−1, as Πi−1 = Πi−1 ◦ Πi.

Consequently, ∫
Ei

g(Πi−1(x))νi(dx) =

∫
Ei−1

g(x)νi−1(dx).

The third statement follows from the first one applied to the function ϕi−1(x) = ϕ(Πi−1(x)).

For the second statement note that∫
Ei

g(Πi−1(x))µ̃i(dx) =
1

Z̃i

∫
Ei

(gϕ)(Πi−1(x))νi(dx)

=
1

Zi

∫
Ei−1

g(x)ϕ(x)νi−1(dx).
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We now restate and prove Lemma 2.1: .1

Lemma 2.2. For hi : Ei × Ei → R defined in (2.1),∫
Ei

∫
Ei

hi(x, y)µi(dx)µ̃i(dy) = µi(fi)− µi−1(fi−1).

Proof. We have∫
Ei

∫
Ei

hi(x, y)µi(dx)µ̃i(dy)

=

∫
Ei

fi(x)µi(dx)−
∫
Ei

∫
Ei

fi−1(x)
ϕi−1

ϕi
(x)

ϕi
ϕi−1

(y)µi(dx)µ̃i(dy)

Using Lemma 2.4, we get for the second term∫
Ei

∫
Ei

fi−1(x)
ϕi−1

ϕi
(x)

ϕi
ϕi−1

(y)µi(dx)µ̃i(dy)

=

∫
Ei

fi−1(x)
ϕi−1

ϕi
(x)µi(dx)

∫
Ei

ϕi
ϕi−1

(y)µ̃i(dy)

=
Zi−1

Zi

∫
Ei

fi−1(x)µ̃i(dx)
1

Zi−1

∫
Ei

ϕi(y)νi(dy)

=

∫
Ei

fi−1(x)µ̃i(dx)

=

∫
Ei−1

fi−1(x)µi−1(dx),

which shows ∫
Ei

∫
Ei

hi(x, y)µi(dx)µ̃i(dy) = µi(fi)− µi−1(fi−1).

Assumption 2.2 allows us to bound the variance of the relative density dνi
dµi

. The

variance controls the distance of the starting measure νi of the chains (Xi
k)k∈N and (Y i

k )k∈N

with respect to the target measure µi. It is important that this distance is uniformly

bounded for all levels i to ensure uniform bounds on the errors of the estimators θ̂i.

Lemma 2.5. Under Assumption 2.2, the variance of the relative density, varµi

(
dνi
dµi

)
can

be bounded uniformly in i:

sup
i∈N

varµi

(
dνi
dµi

)
<∞.

We set

Vsup := sup
i∈N

varµi

(
dνi
dµi

) 1
2

. (2.8)
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Proof. The lemma follows from:

varµi

(
dνi
dµi

)
=

1

Zi

∫
Ei

(
Ziϕ

−1
i (x)− 1

)2
ϕi(x)νi(dx)

≤ Zi
∫
Ei

ϕ−1
i (x)νi(dx) + 1

≤ Z2
∗ + 1.

The assumptions we have made so far allows us to estimate the discretization error.

Lemma 2.6. Under Assumption 2.2 and 2.3,

|µ(f)− µM (fM )| . 2−
M
2 .

In particular, there exists c0 > 0 such that for M(η, ε) := 2 log2

(
1
η

)
+ c0,

∣∣µ(f)− µM(η,ε)(fM(η,ε))
∣∣ ≤ η

2
.

Proof. We apply the triangular inequality and Hölder’s inequality and get:∣∣∣∣∫
E
f(x)µ(dx)−

∫
E
fM (x)µM (dx)

∣∣∣∣
≤
∞∑
i=M

∣∣∣∣∣
∫
Ei+1

fi+1(x)µi+1(dx)−
∫
Ei

fi(x)µi(dx)

∣∣∣∣∣
≤
∞∑
i=M

∣∣∣∣∣
∫
Ei+1

fi+1(x)

(
1

Zi+1
ϕi+1(x)− 1

Zi
ϕi(x)

)
νi+1(dx)

∣∣∣∣∣
+
∞∑
i=M

∣∣∣∣∣
∫
Ei+1

1

Zi
ϕi(x)(fi+1(x)− fi(x))νi+1(dx)

∣∣∣∣∣
≤
∞∑
i=M

(∫
Ei+1

f2
i+1(x)νi+1(dx)

∫
Ei+1

(
ϕi+1

Zi+1
(x)− ϕi

Zi
(x)

)2

νi+1(dx)

) 1
2

+

∞∑
i=M

(∫
Ei

ϕ2
i

Z2
i

(x)νi(dx)

∫
Ei+1

(fi+1(x)− fi(x))2νi+1(dx)

) 1
2
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Using Remark 2.3 and Assumption 2.3, we can find an upper bound:∫
Ei+1

(
ϕi+1

Zi+1
(x)− ϕi

Zi
(x)

)2

νi+1(dx)

= Z2
∗

∫
Ei+1

(Ziϕi+1(x)− Zi+1ϕi(x))2νi+1(dx)

≤ 2Z4
∗

∫
Ei+1

(ϕi+1(x)− ϕi(x))2νi+1(dx) + 2Z2
∗

∫
Ei

((Zi − Zi+1)ϕi(x))2νi(dx)

≤ 2Z4
∗

∫
Ei+1

(ϕi+1(x)− ϕi(x))2νi+1(dx) + 2Z4
∗

(∫
Ei+1

(ϕi(x)− ϕi+1(x))νi+1(dx)

)2

.
∫
Ei+1

(ϕi+1(x)− ϕi(x))2νi+1(dx)

. 2−i.

Consequently, with Assumption 2.2 and 2.3 this leads to∣∣∣∣∫
E
f(x)µ(dx)−

∫
E
fM (x)µM (dx)

∣∣∣∣
.
∞∑
i=M

(∫
Ei+1

f2
i+1(x)νi+1(dx)

∫
Ei+1

(ϕi+1(x)− ϕi(x))2 νi+1(dx)

) 1
2

+

∞∑
i=M

(∫
Ei

ϕ2
i (x)νi(dx)

∫
Ei+1

(fi+1(x)− fi(x))2νi+1(dx)

) 1
2

.

.
∞∑
i=M

2−
i
2

. 2−
M
2 ,

which proves the first statement. For the second one, set M(η, ε) := 2 log2

(
1
η

)
+ c0. Then

for a given C, there exists c0 such that

|µ(f)− µM (fM )| ≤ C 2−
M(η,ε)

2

≤ η C 2−
c0
2

≤ η

2
.

To measure the distance of a Markov Process to its invariant measure we use the

total variation distance. For two probability measures η1, η2 : B(E)→ [0, 1], it is defined by

‖η1 − η2‖TV :=
1

2
sup
|f |≤1

(η1f − η2f),
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where the supremum is taken over all measurable functions f : E → R such that |f(x)| ≤ 1

for all x ∈ E.

We now define the mixing time tmix(ε;X, (νi, νi)) of a Markov Process (Xk)k∈N. It is the

first time at which the total variation distance of the process (Xi
k, Y

i
k )k∈N started in (νi, νi)

to its invariant measure decreases below ε. The mixing time will be used to control the

burn–in ni in the definition of the estimator θ̂i. For times later than the mixing time,

the chain is guaranteed to be sufficiently close to its invariant measure, which is needed to

control the error of θ̂i.

Definition 2.1. Let (Xk)k∈N be a Markov Process on E with invariant measure π and

semigroup r on L2(E, π). Let η be a probability measure on E. We define

tmix(ε;X, η) := min {t ∈ N : ‖rtη − π‖TV ≤ ε}

We denote the mixing times of the process (Xi
k, Y

i
k )k∈N starting in νi ⊗ νi by timix.

timix(ε) := tmix(ε; (Xi, Y i), νi ⊗ νi) ≤ min
{
t ∈ N :

∥∥pitνi − µi∥∥TV +
∥∥qitνi − µ̃i∥∥TV ≤ ε}

It is well–known that a spectral gap implies exponentially fast convergence of the

chain to its equilibrium. This can be used to bound the mixing time.

Lemma 2.7. Assume r is a reversible semigroup with spectral gap σ on L2(E,µ). Then

‖νrn − µ‖TV ≤ (1− σ)n varµ

(
dν

dµ

) 1
2

.

In particular, given Assumption 2.4 and

sup
i∈N

varµi

(
dνi
dµi

) 1
2

≤ Vsup,

the mixing time timix is bounded by

timix (ε) ≤ 1

log((1− ρ)−1)
log

(
2Vsup

ε

)
.

uniformly in i.
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Proof. The total variation distance is bounded by the L2-norm of the relative density:

‖νrn − µ‖TV =

∫
E

∣∣∣∣dνrndµ
− 1

∣∣∣∣dµ
≤

(∫
E

(
dνrn
dµ
− 1

)2

dµ

) 1
2

=

(∫
E

(
rn

(
dν

dµ

)
− 1

)2

dµ

) 1
2

≤ (1− σ)n

(∫
E

(
dν

dµ
− 1

)2

dµ

) 1
2

.

Applying this for r = p, as well as Assumption 2.4, we get∥∥pitνi − µi∥∥TV ≤ ε

2
.

for t > log1−ρ

(
ε

2Vsup

)
. The second summand

∥∥qitνi − µ̃i∥∥TV can be bounded similarly by

ε
2 , leading to tmix ≤ 1

log((1−ρ)−1)
log
(

2Vsup
ε

)
.

The next lemma bounds the probability that the difference between the ergodic

average of a Markov Chain and its expectation value is larger than a given η > 0. It is a

modification of a similar result for finite state spaces as shown in [32, Theorem 12.19] to

continuous state spaces of, and is the main tool in our proof of Theorem 2.1.

Lemma 2.8. Let (Xk)k∈N be a Markov Chain with reversible measure µ on E, starting in

X0 with distribution ν under Pν . Let Assumptions 2.2 and 2.4 be satisfied. If n > tmix( ε2)

and N ≥ 4
varµ(f)
η2ερ

, then

Pν

[∣∣∣∣∣ 1

N

N∑
k=1

f(Xn+k)− µ(f)

∣∣∣∣∣ > η

]
< ε.

To proof Lemma 2.8, we need the following error bound of the ergodic average of

a Markov Chain started in its invariant measure:

Lemma 2.9. Let (Xk)k∈N be a Markov Chain with semigroup p and reversible measure µ

satisfying a spectral gap with constant ρ. Assume (Xk)k∈N is starting with the reversible

distribution µ. Then for each g ∈ L2(E,µ),

Eµ

( 1

N

N∑
k=1

(g(Xk)− µ(g))

)2
 ≤ 4

varµ(g)

Nρ
.
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The proof given here is a modification of the proof of [32, Lemma 12.20] to non–

finite state–spaces.

Proof. Without loss of generality we demand µ(g) = 0, otherwise consider g̃(x) := g(x) −
µ(g). We apply the following bound:

Eµ

( 1

N

N∑
k=1

g(Xk)

)2
 =

1

N2
Eµ

( N∑
k=1

g(Xk)

)2


≤ 2

N2

N∑
k=1

N∑
l=k

Eµ[g(Xk)g(Xl)].

By the Markov property, we have for l ≥ k

Eµ[g(Xk)g(Xl)] ≤ Eµ[g(Xk)(pl−kg)(Xk)]

= Eµ

[
g(Xk)

∫ ∞
−∞

λl−k dEλ(g(Xk))

]
,

where Eλ is the spectral family of the positive, self–adjoint operator p1. Moreover,

Eµ

[
g(Xk)

∫
E
λl−k dEλ(g(Xk))

]
=

∫ ∞
−∞

λl−k d〈Eλg(Xk), g(Xk)〉L2(µ)

=

∫ 1−ρ

0
λl−k d〈Eλg(Xk), g(Xk)〉L2(µ)

≤ (1− ρ)l−k
∫ ρ

0
1 d〈Eλg(Xk), g(Xk)〉L2(µ),

as the spectrum of p1 on the subspace {g ∈ E : µ(g) = 0} is concentrated on [0, 1− ρ] and

d〈Eλg(Xk), g(Xk)〉L2(µ) is a positive measure. Finally the invariance of X with respect to

µ leads to the following transformation:

(1− ρ)l−k
∫ 1−ρ

0
1 d〈Eλg(Xk), g(Xk)〉L2(µ) = (1− ρ)l−k‖g(Xk)‖L2(µ)

= (1− ρ)l−kvarµ(g).
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We thus have Eµ[g(Xk)g(Xl)] ≤ (1− ρ)l−kvarµ(g) and conclude

Eµ

( 1

N

N∑
k=1

g(Xk)

)2
 ≤ 2

N2

N∑
k=1

N∑
l=k

Eµ[g(Xk)g(Xl)]

≤ 2

N2

N∑
k=1

N∑
l=k

(1− ρ)l−kvarµ(g)

≤ 2

N2

N∑
k=1

N (1− ρ)kvarµ(g)

≤ 2

Nρ
varµ(g).

We can now prove Lemma 2.8

Proof. (Lemma 2.8)

We adopt the proof of Theorem [32, Theorem 12.19] for non-finite state spaces: Let p be

the kernel of X, and let πn be the optimal coupling of νpn and µ, that is πn : B(E)×B(E)

is the probability measure such that for every A ∈ B(E),

πn(A,E) =

∫
E
pn(x,A)ν(dx),

πn(E,A) = µ(A),∫
E
πn(dx,dx) = 1− ‖νpn − µ‖TV .

Define a Markov Process (Vk,Wk)k∈N on E × E by the kernel

Q((x, y),d(v, w)) =


p(x, dv) if x = y and v = w

p(x, dv)p(y,dw) if x 6= y

0 otherwise,

and let the distribution of (V0,W0) under Pπn be πn. So (Vk)k∈N and (Wk)k∈N start with

the optimal coupling of pn(x,dy) and µ(dy) and move independently until they meet. Af-

terwards, they move together. Because of the Markov property, (Xn+k)k∈N has the same
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distribution under Pν as (Vk)k∈N has under Pπn . We can now write

Pν

[∣∣∣∣∣ 1

N

N∑
k=1

f(Xn+k)− µ(f)

∣∣∣∣∣ > η

]

= Pπn

[∣∣∣∣∣ 1

N

N∑
k=1

f(Vk)− µ(f)

∣∣∣∣∣ > η

]

≤ Pπn [V0 6= W0] + Pπn

[∣∣∣∣∣ 1

N

N∑
k=1

f(Wk)− µ(f)

∣∣∣∣∣ > η

]
.

The construction of πn gives us

Pπn [V0 6= W0] = ‖νpn(x, dy)− µ(dy)‖TV .

Therefore, the first summand is bounded by ε
2 due to the definition of tmix( ε2). As W0 is

distributed according to the reversible measure µ, we can apply Lemma 2.9 to the second

summand and in connection with Tschebycheff inequality, we conclude

Pπn

[∣∣∣∣∣ 1

N

N∑
k=1

f(Wn)− µ(f)

∣∣∣∣∣ > η

]
≤ 1

η2
varµ

(
1

N

N∑
k=1

f(Wn)

)

≤ 2

Nη2ρ
varµ(f).

By choosing N ≥ 4
varµ(f)
η2ερ

we can bound this term by ε
2 which proves the result.

2.3 Order of convergence of the Multilevel estimator

We restate the main results and give the explicit form of the constants M , Ni and

ni appearing in the theorem:

Theorem 2.1. Under Assumptions 2.1 - 2.4, the following statements hold: For given

η, ε > 0, choose M(η, ε) = 2 log2

(
1
η

)
+ c0, Ni(η, ε) = 16M(η, ε)3 varµi⊗µ̃i (hi)

η2ερ
, and ni =

1
log((1−ρ)−1)

log
(

8M(η,ε)Vsup
ε

)
, where Vsup is given by (2.8) and c0 is introduced in Lemma

2.6. Then

P
[
|Θ̂M(η,ε) − µ(f)| > η

]
< ε.

Furthermore, the cost of the evaluation of Θ̂M is bounded by

cost
(

Θ̂M(η,ε)

)
.

1

η2ε
log4

(
1

ηε

)
.
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Before we prove the theorem, we present the outstanding proof of Lemma 2.2,

which is important for bounding the costs of the Multilevel estimator. .2

Lemma 2.2. Under the Assumptions 2.2 - 2.3,

varµi⊗µ̃i(hi) .
1

2i
.

Proof. Applying Hölder’s inequality and using Assumption 2.2, we get

varµi⊗µ̃i(hi) ≤
∫
Ei

∫
Ei

(
fi(x)− fi−1(x)

ϕi−1

ϕi
(x)

ϕi
ϕi−1

(y)

)2 ϕi
Zi

(x)
ϕi−1

Zi−1
(y)νi(dx)νi(dy)

.

(∫
Ei

∫
Ei

(
fi(x)− fi−1(x)

ϕi−1

ϕi
(x)

ϕi
ϕi−1

(y)

)4

νi(dx)νi(dy)

) 1
2

.

Using the triangular inequality, Hölder’s inequality and Assumptions 2.2 and 2.3, we get

∫
Ei

∫
Ei

(
fi(x)− fi−1(x)

ϕi−1

ϕi
(x)

ϕi
ϕi−1

(y)

)4

νi(dx)νi(dy)

.
∫
Ei

(fi(x)− fi−1(x))4νi(dx)

+

∫
Ei

∫
Ei

f4
i−1(x)

(
1− ϕi−1

ϕi
(x)

ϕi
ϕi−1

(y)

)4

νi(dx)νi(dy)

.
1

22i
+

(∫
Ei

f8
i−1(x)νi(dx)

) 1
2

(∫
Ei

∫
Ei

(
1− ϕi−1

ϕi
(x)

ϕi
ϕi−1

(y)

)8

νi(dx)νi(dy)

) 1
2

.

∫
Ei
f8
i−1(x)νi(dx) is uniformly bounded because of Assumption 2.2, and

∫
Ei

∫
Ei

(
1− ϕi(x)

ϕi−1(x)

ϕi−1(y)

ϕi(y)

)8

νi(dx)νi(dy)

≤
(∫

Ei

1

ϕi(x)16
νi(dx)

∫
Ei

1

ϕi−1(y)16
νi(dy)

) 1
2

·
(∫

Ei

∫
Ei

(ϕi(x)ϕi−1(y)− ϕi−1(x)ϕi(y))16 νi(dx)νi(dy)

) 1
2

.

By Assumption 2.2,
∫
Ei

1
ϕi(x)16

νi(dx) and
∫
Ei

1
ϕi−1(y)16

νi(dy) are also uniformly bounded.
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The last term can be bounded by∫
Ei

∫
Ei

(ϕi(x)ϕi−1(y)− ϕi−1(x)ϕi(y))16 νi(dx)νi(dy)

.
∫
Ei

∫
Ei

ϕi(x)16(ϕi−1(y)− ϕi(y))16νi(dx)νi(dy)

+

∫
Ei

∫
Ei

ϕi(y)16(ϕi(x)− ϕi−1(x))16νi(dx)νi(dy)

≤
(∫

Ei

ϕi(x)32νi(dx)

∫
Ei

(ϕi−1(y)− ϕi(y))32

) 1
2

+

(∫
Ei

ϕi(y)32νi(dy)

∫
Ei

(ϕi(x)− ϕi−1(x))32νi(dx)

) 1
2

≤ 2−8i

due to Assumptions 2.2 and 2.3. Inserting this into the inequalities above yields

varµi⊗µ̃i(hi) . 2−i.

We now introduce two lemmas to prove the two statements of the theorem.

Lemma 2.10. Under the assumptions of Theorem 2.1, the following holds

cost
(

Θ̂M(η,ε)

)
.

1

η2ε
log4

(
1

ηε

)
. (2.9)

Proof. By Assumption 2.1, the cost for evaluating Θ̂M(η,ε) is bounded by

cost
(

Θ̂M(η,ε)

)
.

M(η,ε)∑
i=1

cost(θ̂i)

.
M(η,ε)∑
i=1

2i(Ni(η, ε) + ni(η, ε)).

With our choices of Ni and ni, and since i is bounded by M , we get

2i(Ni(η, ε) + ni(η, ε))

. 2iM(η, ε)3 varµi⊗µ̃i(hi)

η2ε
+ 2i

(
log

(
M(η, ε)

εη

))
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Applying Lemma 2.2, we can bound the variance

2iM(η, ε)3

(
var(µi⊗µ̃i)(hi)

η2ε

)
. 2i

1

η2ε
log3

(
1

η

)
2−i

=
1

η2ε
log3

(
1

η

)
.

The second summand is bounded by

2i
(
c0 + log

(
M(η, ε)

ε

))
. 2M(η,ε) log

(
log2(η−2)

1

ε

)
.

1

η2
log

(
1

εη

)
.

This bound is now used within the sum, and by choosing M(η, ε) = 2 log2

(
1
η

)
+ c0, we get

cost
(

Θ̂M(η,ε)

)
.

M(η,ε)∑
i=1

cost(θ̂i)

.
1

η2ε
log4

(
1

ηε

)
.

Lemma 2.11. Under the assumptions of Theorem 2.1, the following holds

P
[
|Θ̂M(η,ε) − µ(f)| > η

]
< ε.

Proof. This result follows from the error estimates we have established for the Markov

Chains (Xi
k, Y

i
k )k∈N on each level i in Lemma 2.8. Applying the triangular inequality, we

can bound

P

∣∣∣∣∣∣
M(η,ε)∑
i=1

1

Ni(η, ε)

Ni(η,ε)∑
k=0

hi(X
i
ni(η,ε)+k

, Y i
ni(η,ε)+k

)−
∫
E
f(x)µ(dx)

∣∣∣∣∣∣ > η


≤ P

[∣∣∣∣∣
∫
E
f(x)µ(dx)−

∫
EM(η,ε)

fM(η,ε)(x)µM(η,ε)(dx)

∣∣∣∣∣ > η

2

]

+ P

∣∣∣∣∣∣
∫
EM(η,ε)

fM(η,ε)(x)µM(η,ε)(dx)−
M(η,ε)∑
i=1

1

Ni(η, ε)

Ni(η,ε)∑
k=0

hi(X
i
ni(η,ε)+k

, Y i
ni(η,ε)+k

)

∣∣∣∣∣∣ > η

2

 .
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The first term equals 0 if
∣∣∣∫E f(x)µ(dx)−

∫
EM(η,ε)

fM(η,ε)(x)µM((η,ε)dx)
∣∣∣ < η

2 , which is

follows from Lemma 2.6. For the second term, the error of the Multilevel estimator

can be bounded by the sum of the errors at each level i, and therefore we get with

θi :=
(∫

Ei
fi(x)µi(dx)−

∫
Ei
fi−1(x)µi−1(dx)

)
:

P

∣∣∣∣∣∣
M(η,ε)∑
i=1

1

Ni(η, ε)

Ni(η,ε)∑
k=0

hi(X
i
ni(η,ε)+k

, Y i
ni(η,ε)+k

)−
∫
EM(η,ε)

fM(η,ε)(x)µM(η,ε)(dx)

∣∣∣∣∣∣ > η

2


≤

M(η,ε)∑
i=1

P

∣∣∣∣∣∣ 1

Ni(η, ε)

Ni(η,ε)∑
k=0

hi(X
i
ni(η,ε)+k

, Y i
ni(η,ε)+k

)− θi

∣∣∣∣∣∣ > η

2M(η, ε)

 .
We apply Lemma 2.8 which states

P

∣∣∣∣∣∣ 1

Ni(η, ε)

Ni(η,ε)∑
k=0

hi(X
i
ni(η,ε)+k

, Y i
ni(η,ε)+k

)− θi

∣∣∣∣∣∣ > η

2M(η, ε)


<

ε

M(η, ε)
,

as ni(η, ε) = 1
log((1−ρ)−1)

log
(

8M(η,ε)Vsup
ε

)
≥ timix

(
ε

2M(η,ε)

)
by Lemma 2.7 and Assumption

2.4. Therefore, we get

P

∣∣∣∣∣∣
M(η,ε)∑
i=1

1

Ni(η, ε)

Ni(η,ε)∑
k=0

hi(X
i
ni(η,ε)+k

, Y i
ni(η,ε)+k

)−
∫
E
f(x)µ(dx)

∣∣∣∣∣∣ > η

 < ε,

which proves the lemma.

The two previous lemmas imply Theorem 2.1:

Proof. (Theorem 2.1) Combining Lemma 2.10 and 2.11 proves the Theorem.

2.4 Application to Transition Path Sampling

As an example, we apply the results of Theorem 2.1 the Transition Path Sampling

setting, where we are interested in the distribution µ of the solution of the equation

dXt = −V (Xt) dt+ εdBt (2.10)

X0 = x0 (2.11)



42

conditioned on the event {X1 = x1}. Here x0, x1 ∈ Rd, V : Rd → Rd is a smooth vector

field and Bt is a d-dimensional Brownian Motion. In the case where V is a gradient ∇U of

a function U : Rd → R, µ is absolutely continuous with respect to a Brownian Bridge with

density proportional to

ϕ(x) = exp

(
−
∫ 1

0
Φε(xs) ds

)
. (2.12)

The function Φε : Rd → R is given by

Φε(z) =
1

2

(
∆U(z) +

1

ε2
|∇U(z)|2

)
,

see e.g. [24]. In this setting, direct Monte Carlo simulations of µ (or its approximations)

are often not possible and Markov Chain Monte Carlo methods are used. Analysis of

MCMC–method in the Transition Path Sampling setting can be found in [8]. We give a

discretization of the space E and conditions on Φε and f such that the Assumptions 2.2 -

2.3 of the previous sections hold, construct chains (Xi
k, Y

i
k )k∈N that satisfy Assumption 2.4

and introduce a cost model that satisfies Assumption 2.1

We assume that Φ is positive and Lipschitz–continuous. For each level i, we

generate an equidistant partition 0 = li0 < . . . < li
2i

= T of the interval [0, 1] with 2i sub-

intervals where

lik :=
k

2i
0 ≤ k ≤ 2i, (2.13)

and construct finite–dimensional approximations of E by the piece-wise linear functions on

this partition,

Ei :=
{

(f1, . . . , fd) ∈ E
∣∣∣∃zj1, . . . , zj2i ∈ R,∀t ∈ [lik−1, l

i
k] : f j(t) = L(zjk−1, z

j
k, l

i
k−1, l

i
k; t)

}
,

where L is given by

L(x, y, v, w; t) := x
t− w
v − w

+ y
t− v
w − v

.

The projections Πi(x) are defined as the linear interpolations of the values at

(x(lik))0≤k≤2i . For i ≤ j the partition {lik}0≤k≤2i is a subset of {ljk}0≤k≤2j , so the projec-

tions are consistent: Πi ◦Πj = Πi.
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The approximation ϕi : Ei → R are defined using the Riemann-sum approximation

of the integral:

ϕi(x) =
1

Zi
exp

(
− 1

di

di−1∑
k=1

Φ(xlik
)

)
, (2.14)

where di := 2i. The boundary terms Φ(xli0
) and Φ(xli

2i
) can be neglected as they are fixed

by the boundary conditions, and therefore just appear in the normalization constant Zi.

To measure the computational complexity, we use the following cost model: We

define cost (X) := 1, if

• X is a uniform distributed random variable on [0, 1], or

• for k ≤ d, X is a Gaussian random variable on Rk with mean m ∈ Rk and variance

σ ∈ Rd×d, or

• X is a constant.

For other random variables, the costs can be bound recursively by the following rules:

For k ≤ d, given an injective map π : {1, . . . , l} → {1, . . . , k}, and Λ : Rk × . . . × Rk → Rl

be one of the following functions:

(x1, . . . , xn) 7→
n∑
i=1

xi

(x1, . . . , xn) 7→
n∏
i=1

xi for x1, . . . , xn ∈ R

x 7→ Φ(x) for x ∈ Rd

x 7→ x−1 for x ∈ R, x 6= 0

x 7→ −x

x 7→ exp(x) for x ∈ R

Then

cost ((X1, . . . , Xn,Λ(Xπ1 , . . . , Xπk))) ≤ cost((X1, . . . , Xk)) + k.
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Furthermore, the cost of a vector is bounded by the sum of the costs of its components: For

k ≤ d amd X1, . . . , Xn ∈ Rk,

cost(X1, . . . , Xn) ≤
n∑
i=1

cost(Xi).

This is a coarse model that allows basic operations on Rd for unit costs, and does not

measure the exact effort for e.g. sampling a Gaussian random variable. However, this is

not required for further analysis since we focus on the asymptotics of the algorithm as the

dimension dN of the approximation converges to infinity. For that, constant factors on the

costs of low–dimensional operations are not of interest.

We verify Assumptions 2.1 – 2.4 for our choice of the density and its approximation.

Conditions to satisfy Assumptions 2.2 and 2.3 are given in the next theorem:

Theorem 2.2. Let ϕ and ϕi be given by (2.12) and (2.14), where Φ : Rd → R is positive

and Lipschitz–continuous. For f : E → R let fi be defined as

fi := f ◦Πi.

Assume f is Lipschitz–continuous with respect to the Lq–norm for some q ≥ 1:

|f(x)− f(y)| ≤ L‖x− y‖Lq([0,1],Rd) for all x, y ∈ C0([0, 1],Rd).

Then Assumptions 2.2 and 2.3 are satisfied.

The proof proceeds in a number of lemmas.

Lemma 2.12. Under the assumptions of Theorem 2.2, there exists Z∗ such that

‖ϕi‖L32(Ei,νi)
< Z∗,∥∥ϕ−1

i

∥∥
L4(Ei,νi)

< Z∗.

Proof. As Φ is positive,
∫
Ei
ϕ32
i (x)νi(dx) ≤ 1 holds for all i. Using the Lipschitz–continuity
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of f , the inverse moment can be bounded by∫
Ei

1

ϕi(x)4
νi(dx) =

∫
Ei

exp

(
4

di

di∑
k=1

|Φ(xlik
)|

)
νi(dx)

≤
∫
Ei

exp

(
4|x0|+

4L

di

di∑
k=1

|xlik |

)
νi(dx)

≤
∫
Ei

exp

(
4|x0|+ 4L max

k∈{1,...,di}
|xlik |

)
νi(dx)

≤
∫
E

exp

(
4|x0|+ 4L max

s∈[0,1]
|xs|
)
ν(dx),

where we bounded the maximum of the finite dimensional marginal of the Brownian Bridge

by the maximum of the Brownian Bridge in the last line. By applying the formula for the

distribution of the maximum of a Brownian Bridge (see e.g. [31, Example 3.12]), we get∫
E

exp

(
4|x0|+ 4L max

s∈[0,1]
|xs|
)
ν(dx)

≤ exp(4|x0|)
∫ ∞

0
4z exp (4Ldz) exp(−2z2)ν(dz)

< C,

for a constant C independent of i.

Lemma 2.13. Let Φ : Rd → R be positive and Lipschitz–continuous. Let ϕi be given by

(2.14). Then for p ≥ 1,

‖ϕi − ϕi−1‖L32(Ei,νi)
. 2−

i
2 .

Proof. We estimate ∫
Ei

(ϕi(x)− ϕi−1(x))32νi(dx)

≤
∫
Ei

∣∣∣∣∣∣ 1

di−1

di−1∑
k=1

Φ(xli−1
k

)− 1

di

di∑
k=1

Φ(xlik
)

∣∣∣∣∣∣
32

νi(dx)

≤
∫
Ei

∣∣∣∣∣∣ 1

di

di−1∑
k=1

Φ(xli2k
)− Φ(xli2k−1

)

∣∣∣∣∣∣
32

νi(dx)

≤
∫
Ei

(
L

2

)32 1

di−1

di−1∑
k=1

∣∣∣xli2k − xli2k−1

∣∣∣32
νi(dx)

=

(
L

2

)32 1

di−1

∫
Ei

di−1∑
k=1

∣∣∣xli2k − xli2k−1

∣∣∣32
νi(dx).
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The mean of the Gaussian random variable (xli2k
−xli2k−1

) is given by 1
di

(x1 − x0), its variance

is bounded by 1
di

. Consequently, we can bound the 32th moment by∫
Ei

∣∣∣xli2k − xli2k−1

∣∣∣32
≤ Cd−16

i .

for a constant C <∞. Putting all terms together, we finally get

‖ϕi − ϕi−1‖L32(Ei,νi)
. 2−

i
2 .

The following lemma provides conditions on f to satisfy the assumptions of The-

orem 2.1:

Lemma 2.14. Let f : C0([0, 1],Rd) → R be Lipschitz–continuous with respect to the Lq–

norm for some q ≥ 1, i.e. there exists L <∞, such that for all x, y ∈ C0([0, 1],Rd),

|f(x)− f(y)| ≤ L‖x− y‖Lq([0,1],Rd),

and let the approximations fi : Ei → R be given as

fi := f ◦Πi.

Then for all p ≥ 1,

‖fi − fi−1‖Lp(Ei,νi)
. 2−

i
2 .

Furthermore, there exists Z∗ such that

‖fi‖L8(Ei,νi)
< Z∗

uniformly in i.

Proof. The Lipschitz–continuity of f implies∫
Ei

(fi(x)− fi−1(x))pνi(dx) =

∫
E

(f(Πi(x))− f(Πi−1(x)))pν(dx)

≤ L
∫
E
‖Πi(x)−Πi−1(x)‖p

Lq([0,1],Rd)
ν(dx).

Considering the Schauder decomposition of the Brownian Bridge, we see that

∫
E
‖Πi(x)−Πi−1(x)‖Lq([0,1],Rd)ν(dx) ≤ E

2i−1∑
k=1

∥∥ei−1
k

∥∥
Lq([0,1],Rd)

|ξik|p
 ,
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where for each i, ξik are independent Gaussian random variables with mean 0 and variance

2−i, and eik is given by

eik(t) :=


2i+1(x− 2−ik) 2−i(k − 1) ≤ t ≤ 2−i(k − 1

2)

−2i+1(x− 2−i(k + 1)) if 2−i(k − 1
2) ≤ t ≤ 2−ik

0 otherwise.

Estimating the p–th moment of a Gaussian random variable with variance 2−i, we get∫
E
‖Πi(x)−Πi−1(x)‖p

Lq([0,1],Rd)
ν(dx) . 2−p

i
2 .

To prove the second statement, note that∫
Ei

fi(x)8νi(dx) .
∫
E
f(x)8ν(dx) +

∫
E

(f(x)− fi(x))8ν(dx)

. f(0)8 +

∫
E
‖x‖8Lq([0,1],Rd)ν(dx) +

∫
E
‖x−Πi(x)‖8Lq([0,1],Rd)ν(dx).

Using the Schauder decomposition to represent x and (x−Πi(x)) we can easily bound these

terms independently of i.

We now construct the sequence of Markov Chains for the Multilevel algorithm: On

a fixed level i, a Metropolis chain (Zin)n∈N with invariant measure µi can be constructed the

following way: Given a sequence of independent νi–distributed random variables (N i
k)k∈N,

the discrete Ornstein–Uhlenbeck process

Z̃k+1 :=
√

1− h2Z̃k + hN i
k

is reversible with respect to νi for each 0 < h ≤ 1. The process becomes reversible with

respect to µi by adding a Metropolis rejection step: Given a sequence (U ik)k∈N of i.i.d. uni-

formly distributed variables on [0, 1], and a starting point z0 ∈ Ei, we define the acceptance

function ai : Ei × Ei → [0, 1] by

ai(x, y) := min

(
1,
ϕi(y)

ϕi(x)

)
.

We set Z0 := z0, and for k ∈ N,

Z̃ik+1 :=
√

1− h2Zik + hN i
k

Zik+1 :=

 Z̃ik+1 if U ik < ai(Z
i
k, Z̃

i
k+1)

Zik otherwise.
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The process (Zik)k∈N is reversible with respect to µi, see e.g. [8].

For the Multilevel algorithm, we define two independent Metropolis chains (Xi
k)k∈N and

(Y i
k )k∈N on each level i, Xi being reversible with respect to µi, and Y i being reversible with

respect to µ̃i. The estimator Θ̂M is now set to

Θ̂M :=
M∑
i=1

1

Ni

Ni∑
k=0

hi(X
i
ni+k

, Y i
ni+k

), (2.15)

where hi is given by (2.1).

Furthermore, we need to consider the spectral gaps of the processes (Xi
k)k∈N and

(Y i
k )k∈N. The following lemma provides this result:

Lemma 2.15. Assume ϕi is given by (2.14) and there exists C > 0 such that

c−1 ≤ Φ(z) ≤ c for all z ∈ Rd.

Then for each i ∈ N, (Xk)
i
k∈N and (Yk)

i
k∈N possess a spectral gap of size ρ with

ρ ≥ − exp
(
3(c−1 − c)

)
log
(√

1− h2
)
> 0.

Remark 2.16. Note that if Φ is bounded as in Lemma 2.15, it is possible to use an exact

sampling algorithm for Transition Path Sampling as presented in [6, 7]. As one simulates

the exact measure with this method, it does not have an approximation error. Given the

independent and exact samples (Xi)i∈N of µ of this method, we can construct the estimator

θ̂ES := 1
N

∑N
i=1 f(Xi) for ν(f). If also f can be evaluated exactly, its error decreases like

T−
1
2 by the Central Limit Theorem.

Basically, the Exact Sampler is an Acceptance–Rejection Sampler. It proposes samples of

the Brownian Bridge and rejects or accepts them with a rate such that the accepted samples

have distribution µ. It works well when the relative density of the target measure with respect

to the Brownian Bridge is large for typical realizations of a Brownian Bridge, whereas the

acceptance rate and therefore the performance of the algorithm decreases if the density is

small. This is not the case for the Multilevel sampler, which is based on a Markov Chain

Monte Carlo algorithm, which typically behaves well as long as the state space does not have

isolated modes, although a spectral gap is difficult to prove.

Proof. We compare (Xk)
i
k∈N and (Yk)

i
k∈N with the discrete Ornstein–Uhlenbeck process

(Z̃k)k∈N given by

Z̃k+1 =

(
1− h

2

)
Zk +

√
h̃Nn+1 for k ∈ N,

Z̃0 = z0.
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The distribution of Z̃k coincides with the distribution of the continuous–time Ornstein–

Uhlenbeck process zt at time t = −k log
(√

1− h2
)

, where z is given by

dzt = −ztdt+
√

2dwt.

Here wt is a EN–valued Wiener process with covariance given by (−∆0,N )−1, see e.g. [11,

Propositions 8.13, 9.13]. zt possesses a spectral gap of size 1 [1, Remarque 1.5.8], therefore

Z̃k possesses a spectral gap of size γOU := − log
(√

1− h2
)

. As the density ϕi is bounded

from above and below, we have for f ∈ L1(Ei, µi)∫
Ei

f(x)µi(dx) =
1

Zi

∫
Ei

f(x)ϕi(x)νi(dx) ≤ exp(−c−1 + c)

∫
Ei

f(x)νi(dx),∫
Ei

f(x)νi(dx) = Zi

∫
Ei

f(x)ϕi(x)−1µi(dx) ≤ exp(c− c−1)

∫
Ei

f(x)µi(dx).

Furthermore, the acceptance probability is bounded from below by

ai(x, y) ≥ exp(−c+ c−1).

So if pi denotes the semigroup of (Xi
k), and qi denotes the semigroup of the discrete

Ornstein–Uhlenbeck process, we can split pi into qi and p̃i by

pif(x) = exp(−c+ c−1)qif(x) +
(
1− exp(−c+ c−1)

)
p̃if(x),

where p̃i is the semigroup

p̃if(x) :=

∫
Ei

ãi(x, y)qi(x, dy) + δx(dy)

∫
Ei

(1− ãi(x, y))qi(x, dy),

for the modified acceptance probability

ãi(x, y) =
(
1− exp(−c+ c−1)

)−1 (
ai(x, y)− exp(c− c−1)

)
∈ [0, 1].

As it is a kernel of a Metropolis chain, p̃i is a Markov kernel again, and we can represent

the semigroup pi by∫
Ei

f(x)pif(x)µi(dx) = exp(−c+ c−1)

∫
Ei

f(x)qif(x)µi(dx)

+
(
1− exp(c− c−1)

) ∫
Ei

f(x)p̃if(x)µi(dx).

Applying the bound on µi(dx)
νi(dx) and using the spectral gap of the Ornstein–Uhlenbeck process,

we get

exp(−c+ c−1)

∫
Ei

f(x)qif(x)µi(dx) ≤ exp(−2(c− c−1))

∫
Ei

f(x)qif(x)νi(dx)

≤ exp(−3(c− c−1))γOU

∫
Ei

f(x)2µi(dx),
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leading to ∫
Ei

f(x)pif(x)µi(dx) ≤
(
1− γOU exp(−3(c− c−1))

) ∫
Ei

f(x)2µi(dx).

The proof for (Yk)
i
k∈N works analogously when we replace the acceptance rate ai by ai−1.

To apply to apply Theorem 2.1, in the Transition Path Sampling setting, it remains

to verify Assumption 2.1.

Lemma 2.17. Let for every random variable ξ on Rd,

cost(fi(ξ)) . 2i + cost(ξ).

Then the Multilevel Markov Chain Monte Carlo estimator ΘM as defined in (2.15) satisfies

Assumption 2.1.

Proof. Assumption 2.1 consists of 3 substatements: The first is

cost
(

Θ̂M

)
.

M∑
i=1

cost
(
θ̂i

)
.

As ΘM :=
∑M

i=1 θ̂i, we have by the construction of our cost model

cost
(

Θ̂M

)
= M + cost

(
(θ̂1, . . . , θ̂M )

)
≤M +

M∑
i=1

cost
(
θ̂i

)
≤ 2

M∑
i=1

cost
(
θ̂i

)
.

The second statement is

cost
(
θ̂i

)
. Ni + cost

(
hi(X

i
k, Y

i
k )0≤k≤ni+Ni

)
.

This follows form the definition θ̂i := 1
Ni

∑Ni
i=ni

hi(X
i
k, Y

i
k ), we have

cost
(
θ̂i

)
≤ 2 + cost

(
Ni∑
i=ni

hi(X
i
k, Y

i
k )

)
. Ni + cost

(
hi(X

i
k, Y

i
k )0≤k≤ni+Ni

)
.

It remains to show the third part, which is

cost
(
hi(X

i
k, Y

i
k )0≤k≤ni+Ni

)
. 2i(Ni + ni).
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By the construction in (2.7), we can construct the Gaussian random variables (N i
k) with

costs bounded by

cost(N i
k) . 2i

for i ∈ {1, . . . ,M}, k ∈ {1, . . . , Ni + ni}. Using this construction, we can construct the

values of the Markov Chain (Xi
k, Y

i
k ) up to time Ni + ni by

cost
(
(Xi

k, Y
i
k )0≤k≤Ni+ni

)
. 2i(Ni + ni),

as evaluation of fi and ϕi can be done for additional costs bounded by a constant factor of 2i

by the assumptions of this lemma and the construction of ϕi. Furthermore, with definition

(2.1) we have

cost
(
hi(X

i
k, Y

i
k )0≤k≤ni+Ni

)
. 2i + cost

(
(Xi

k, Y
i
k )0≤k≤ni+Ni

)
.

Summarizing the previous Lemmas, we obtain the following theorem addressing

the order of convergence of the Multilevel algorithm in the Transition Path Sampling setting.

Theorem 2.3. Let µ, Φ and (Xi
k)k∈N, (Y i

k )k∈N as constructed above. Let f : C0([0, T ],Rd)→ R
be given. Assume that for constants c, L > 0, and every random variable ξ on Rd,

|f(x)− f(x)| ≤ L‖x− y‖Lq([0,T ],Rd) for all x, y ∈ C([0, T ],Rd),

cost(fi(ξ)) . 2i + cost(ξ),

|Φ(u)− Φ(v)| ≤ L‖u− v‖Rd for all u, v ∈ Rd,

c−1 ≤ Φ(u) ≤ c for all u ∈ Rd.

Then the Multilevel estimator Θ̂M(η,ε) defined in (2.2) satisfies

P
[
|Θ̂M(η,ε) − µ(f)| > η

]
< ε,

and

cost
(

Θ̂M(η,ε)

)
≤ C

η2ε
log4

(
1

ηε

)
.

Proof. Under the assumptions of this theorem, Lemmas 2.13 and 2.14 imply Assumption 1

and 2. Assumption 3 follows from Lemma 2.12. Finally, Lemma 2.15 shows that Assumption

4 is satisfied, such that we can apply Theorem 2.1 which implies the result.
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2.5 Numerical Results

This section presents the results of a numerical implementation of the Multilevel

algorithm to show its behaviour in a concrete example. The results are compared to the

implementation of a Singlelevel algorithm defined on only one discretization level. The

examples discussed here are not completely covered by the theory of the previous sections,

for example the considered functions are not Lipschitz–continuous as assumed in Section

2.4. Nevertheless the Multilevel algorithm is shown to outperform the Singlelevel algorithm.

We analyze the estimation of µ(f), where µ is a distribution that is absolutely con-

tinuous with respect to the distribution ν of the one–dimensional Brownian Bridge starting

in x0 = 0 and ending in x1 = 0. The density ϕ = dµ
dν is given by

ϕ(x) =
1

Z
exp

(
−λ
(

max
s∈[0,1]

xs

)2
)
,

where Z is the normalization constant. The function f is given by f(x) := max
s∈[0,1]

xs. As the

maximum of a Brownian Bridge satisfies

P

[
max
t∈[0,1]

Bt ∈ dz

]
= 4z exp

(
−2z2

)
for z ≥ 0,

see e.g. [31, Proposition 8.1], the exact expectation value is given by

µ(f) =

∫∞
0 z2 exp

(
−(2 + λ)z2

)
dz∫∞

0 z exp (−(2 + λ)z2) dz

=

√
π

4(λ+ 2)

As finite–dimensional approximations of the infinite–dimensional space C0([0, 1],R) we

choose piece–wise linear functions on a equidistant partition {(lik)k, k ∈ Di} with Di :=

{1, . . . , 2i} as in Section 2.4, and f and ϕ are discretized by

ϕi(x) := exp

(
−λ
(

max
l∈Di

xlik

)2
)

fi(x) := max
l∈Di

xlik
.

Πi is given by piece-wise interpolations as in Section 2.4, and νi as the image–measure of ν

under Πi.
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We assess the performance of the Multilevel estimator for different values of λ.

Therefore, we calculate 120 samples of the Multilevel estimator Θ̂MT
defined in Section

2.4,:

Θ̂MT
=

MT∑
i=1

Ni∑
k=0

hi(X
i
ni+k

, Y i
ni+k

).

As we analyze the error of the Multilevel estimator over a long period of time, the optimal

number of levels changes over time. The chain is started with M0 = 10 levels, adding an

additional level after 2i minutes, for i ∈ {−5,−4, . . .}.

We take 64 minutes of CPU-time to calculate the estimator, where the number of

steps on level i decrease exponentially. More precisely, the chain on level i is calculated for

ni +Ni = b 1
MT

(2i−1 − 1)−1(N1 + n1)c steps. Here the factor (2i−1 − 1) corresponds to the

dimension of the approximation on level i. N1 is then determined by the limit of CPU–time.

The burn-in is chosen as ni = 100 and the step–size as h = 0.7.

For comparison, we calculate the ergodic average of Singlelevel chains Zi reversible with

respect to µi,

Θ̂S
i =

1

Ni

Ni∑
k=ni

fi(Z
i
k)

for i = 14 . . . 20, also with 64 minutes CPU–time each. This is repeated 120 times to pro-

duce 120 independent samples of the estimators Θ̂M and Θ̂S
i .

Figure 2.1 shows the mean square error of the estimators for λ = 2. The Multilevel algo-

rithm’s quadratic error (black line) is compared to the Singlelevel’s errors (coloured lines).

The Multilevel error is always lower than the one of the best instance of the Singlelevel algo-

rithms, for roughly a factor 3 after some seconds, and a factor 30 after 1 hour. Furthermore,

it can be observed for the Singlelevel algorithm, that the lowest–dimensional approximation

has the smallest error of all instances in the beginning, but after some time its error does

not decrease any more and one of the higher–dimensional approximations has the lowest

error.

The steps in the Multilevel’s graph can be explained by the chosen burn–in and the suc-

cessive addition of levels. The higher levels enter the calculation only after some time, and

when they do, the error drops fast.

The Multilevel estimator is quite sensible with respect to the increase of the den-

sity’s oscillation. To demonstrate the effect, we set λ = 10 and repeat the simulations. In
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Figure 2.1: Comparison of the Multilevel algorithm to Singlelevel algorithm on different
discretization levels for parameters λ = 2.

Figure 2.2, the mean square error of the estimators are depicted. For λ = 10, the Multi-

level algorithm takes some time to perform better than the best instance of the Singlelevel

algorithms, and in the end it is only a factor of about 6 better than the Singlelevel’s. Fur-

thermore, we see bumps in the Multilevel’s graph where the error temporarily increases.

These are caused by the quotient of the densities ϕi(x)
ϕi+1(x) which can get very large for some

values of x, leading to large values of the function hi and to an increasing of the estimator.

The likelihood for this scenario depends on the choice of the approximation of ϕ. In our

example the quotient grows exponentially in λ. For λ = 20, the effect is so strong that

several instances of the Singlelevel algorithms outperform the Multilevel algorithm due to

these effects. This demonstrates that the performance of the Multilevel estimator crucially

depends on a good sequence of approximations for ϕ, such that the quotients ϕi
ϕi+1

and ϕi+1

ϕi

can be controlled.
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Figure 2.2: Comparison of the Multilevel algorithm to Singlelevel algorithm on different
discretization levels for parameters λ = 10 (left) and λ = 20 (right).
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Chapter 3

Speed of convergence of the

MALA–process in infinite

dimensions

In this chapter, we analyze the speed of convergence of a Markov Chain Monte

Carlo process in a potentially infinite–dimensional state space. This is partly motivated

by the results of the previous chapter. For controlling the error of the Multilevel method,

we need a control on the speed of convergence of the underlying Markov Chains, c.f. As-

sumption 2.4. This chapter outlines a method to bound the distance to equilibrium of a

particular Markov Chain, called the Langevin Adjusted Metropolis Algorithm (MALA),

for log–concave target measures that are absolutely continuous to a Gaussian measure.

Again, the main motivating example are target measures arising in the Transition Path

Sampling introduced in Chapter 1, and we apply the results in this setting. The methods

applied in this chapter are an application of the approach of Eberle [16]. In that work,

the MALA–process with log–concave target measure is analyzed in a finite–dimensional

setting, and its distance to equilibrium in an appropriate Wasserstein–metric is bounded

using coupling methods. As these techniques are designed to scale well in high–dimensional

settings, they carry over quite directly to the infinite–dimensional case.

We are now introducing the setting for the MALA–process before defining it in

detail.
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Let W be a separable Hilbert space, and ν a Gaussian measure on W with mean 0 and

covariance operator C : Dom(C) ⊃ W → W . We consider the probability measure µ on W

given by

µ(dx) =
1

Z
exp(−V (x))ν(dx), (3.1)

where V is a Borel–measurable function V : W → R, and Z > 0 is the normalization

constant such that
∫
W µ(dx) = 1. Let S be the Cameron–Martin space of ν,

S := Dom(C−
1
2 )

equipped with the scalar product

〈x, y〉S :=
〈
C−

1
2x, C−

1
2 y
〉
W
.

We denote with cπ the operator–norm of C on S, which coincides with the Poincaré constant

of ‖·‖S with respect to ‖·‖W :

‖Cx‖S ≤ cπ‖x‖S for all x ∈ S,

which implies

‖x‖W = ‖Cx‖S ≤ cπ‖x‖S for all x ∈ S.

Given a space W ⊃ S, we denote with W ′ its topological dual space. As S ⊂ W , W ′ is

continuously embedded in S via Riesz isometry. We identify W ′ with its embedding in S

and also denote it with W ′. For k ∈ W ′, we can extend the function 〈k, ·〉S : S → R to a

function 〈k, ·〉S : W → R, by defining

〈k, x〉S := k(x) ∀x ∈W. (3.2)

We define the function U : S → R by

U(x) := V (x) +
1

2
‖x‖2S .

In finite dimensions, µ can be written as

µ(dx) ≡ exp(−U(x))dx,
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where dx is the Lebesgue measure on W . Of course, in infinite dimensions, the Lebesgue

measure does not exist, and U is ν–almost surely not defined. Nevertheless, this notation

is meaningful in many contexts, for example when considering finite–dimensional approxi-

mation or using Girsanov’s formula.

We are going to analyze stochastic processes with invariant measure µ as given

by (3.1), especially in their speed of convergence to equilibrium. For this purpose, the

MALA–process will be appliedin the setting presented above. It was briefly introduced in

the Introduction in Chapter 1, a more detailed construction is given in Section 3.1.

Before we move on, we would like to connect the setting above to our running example.

A wide class of distributions which are of type (3.1) are measures on path spaces. In

particular, the Transition Path Sampling setting also fits into in this framework. Let x0, x1 ∈

Rd, f : Rd → R be a smooth potential, and Bt be a Rd–valued Brownian motion, and let µ

be the distribution of the solution of the stochastic differential equation

dXt = −∇f(Xt)dt+ dBt,

X0 = x0,

conditioned on the event {X1 = x1}. This distribution is of the form described above:

Set E := L2([0, 1],Rd), and let ν be the distribution of the Brownian Bridge. ν is the

Gaussian measure with mean 0 and covariance operator CE := (−∆0)−1 on E, where ∆0 is

the Laplacian on [0, 1] with zero boundary conditions. This implies S := H1
0 ([0, 1],Rd) with

norm ‖x‖S :=
∫ 1

0 |x
′
s|

2ds.

Using Girsanov’s formula and integration by parts, it is shown in [24], that µ is absolutely

continuous with respect to ν: For

ϕ(x) := exp(−V (x)),

µ is given by

µ(dx) =
1

Z
ϕ(x)ν(dx), (3.3)

where Z is a normalization constant and for x ∈ E

V (x) :=

∫ 1

0
Φ(xs)ds
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and

Φ(z) :=
1

2

(
∆f(z) + |∇f(z)|2

)
for z ∈ Rd.

3.1 Construction of the MALA–process

We now give an explicit construction of the MALA–process that we later analyze.

The MALA–process goes back to [39], although the version we use here is a slight variation

of the original process, that keeps the process stable in the infinite–dimensional limit. The

version used here also coincides with the “Preconditioned Implicit Algorithm” in [8] with

parameter θ = 1
2 .

The first step in our construction of the MALA–process is the discrete–time

Ornstein–Uhlenbeck process. This process is reversible with respect to the Gaussian mea-

sure ν. It can be constructed as follows:

Let (Nn)n∈N be a sequence of i.i.d ν-distributed random variables onW . For given h ∈ (0, 2),

set (Zhn)n∈N as

Zhn+1 :=

(
1− h

2

)
Zhn +

√
h̃Nn. (3.4)

Here, and for the rest of this work, h̃ is defined as

h̃ := h− h2

4
. (3.5)

As (Zhn)n∈N is a time–homogeneous Markov Process, it induces a stochastic kernel q̃h by

q̃h(x,A) := P
[
Zhn+1 ∈ A

∣∣∣Zhn = x
]

for x ∈W,A ∈ B(W ),

where B(W ) denotes the Borel sets of W .

We now show that the kernel q̃h is reversible with respect to ν:

Proposition 3.1. The kernel q̃h is reversible with respect to ν.
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Proof. We consider the characteristic function of the measure νq̃h. Let l1, l2 ∈ W . As ν

and q̃h are Gaussian measures, we get for the characteristic function∫
W×W

exp (−i〈(l1, l2), (x, y)〉W ) ν(dx)q̃h(x, dy)

=

∫
W×W

exp

(
−i
〈

(l1, l2),

(
x,

(
1− h

2

)
x+ y

)〉
W

)
ν(dx)q̃h(0,dy)

= exp

(
−1

2

∥∥∥∥l1 +

(
1− h

2

)
l2

∥∥∥∥2

S

− 1

2
h̃‖l2‖2S

)
.

The characteristic function is symmetric in l1, l2 if and only if q̃h is reversible with respect

to ν. The exponent can be written as

1

2

∥∥∥∥l1 +

(
1− h

2

)
l2

∥∥∥∥2

S

+
1

2
h̃‖l2‖2S

=
1

2
‖l1‖2S +

〈
l1,

(
1− h

2

)
l2

〉
S

+
1

2

∥∥∥∥(1− h

2

)
l2

∥∥∥∥2

S

+
1

2
h̃‖l2‖2S

As
〈
l1,
(
1− h

2

)
l2
〉
S

is symmetric and(
1− h

2

)2

‖l2‖2S + h̃‖l2‖2S = ‖l2‖2S ,

the characteristic function is symmetric and q̃h is reversible with respect to ν.

We now construct a discrete–time process which is reversible with respect to µ

by a variant of the Metropolis–Hastings scheme, the MALA–process. The MALA–process

accounts for the gradient of the potential in the proposal of the Metropolis chain, which

asymptotically (for h→ 0) leads to an high acceptance probability. This property is needed

to get good bounds on the derivatives of the acceptance probability. The bounds are used

in the proof of the contraction property of the process.

Let (Nn)n∈N be a sequence of i.i.d ν–distributed random variables on W and for given

x0 ∈W , set X0 := x0. Define the random variable Yh,n(x) by

Yh,n(x) :=

(
1− h

2

)
x− h

2
∇SV (x) +

√
h̃Nn+1, (3.6)

or, in terms of U , by

Yh,n(x) = x− h

2
∇SU(x) +

√
h̃Nn+1,
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where h̃ = h− h2

4 as above. Yh,n(Xn) serves as proposal of the Metropolis chain, we denote

the kernel generated by (Yh,n)n∈N with qh.

The proposal is accepted with probability ah(Xn, Yh,n(Xn)), where the acceptance proba-

bility a : W ×W → [0, 1] is given by

ah(x, y) := min

(
1,
µ(dy)qh(y,dx)

µ(dx)qh(x, dy)

)
for x, y ∈W. (3.7)

The proposals are realized by generating a sequence (Un)n∈N of i.i.d. uniformly distributed

random variables on [0, 1] and set

Xn+1 :=

 Yh,n(Xn) if Un+1 < a(Xn, Yh,n(Xn)),

Xn otherwise.

The kernel generated be (Xn)n∈N is denoted by ph. It is well–known that is reversible with

respect to µ if the process is constructed in the way described above. We will also prove

this in Lemma 3.2 for the MALA–process considered here. In the setting outlined above,

the acceptance probability satisfies the following equation:

Lemma 3.2. Let ah : W ×W → [0, 1] be the acceptance probability defined in (3.7). Then

ah is given by

ah(x, y) = min (1, exp(−Gh(x, y))) for x, y ∈W, (3.8)

where

Gh(x, y) := V (y)− V (x)− 1

2
〈∇SV (x) +∇SV (y), y − x〉S

+
h

8− 2h
〈∇SV (y)−∇SV (x), x+ y〉S (3.9)

+
h

8− 2h

(
‖∇SV (y)‖2S − ‖∇SV (x)‖2S

)
.

Remark 3.3. Note that as for z ≥ 0, min{1, exp(−z)} ≤ 1− z, thus

1− ah(x, y) ≤ max{Gh(x, y), 0} =: Gh(x, y)+

holds for x, y ∈W .

Proof. (Lemma 3.2)

Let q̃h be the kernel induced by Z defined in equation (3.4), and qh the kernel induced by Yh,n

defined in equation (3.6). Due to the Cameron Martin formula (see e.g. [12, Proposition
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2.24]) we know that for a centered Gaussian measure η with covariance operator C and

k ∈ S, ηk(·) := η( · − k) is absolutely continuous with respect to η with density

ηk(dy)

η(dy)
= exp

(
〈y, k〉S −

1

2
‖k‖2S

)
.

We apply this to the centered Gaussian measure

η(dy) := q̃h

(
x,dy +

(
1− h

2

)
x

)
,

with covariance operator

C∗ := h̃C

for

k := −h
2
∇SV (x),

where x ∈W . Note that for this choice of k

ηk(dy −Ax) = η(dy −Ax− k) = qh(x,dy).

Applying the Cameron Martin formula, we see that

qh(x, dy)

q̃h(x, dy)
=
ηk(dy −Ax)

η(dy −Ax)

= exp

(
〈y −Ax, k〉S −

1

2
‖k‖2S

)
= exp

(
−1

h̃

〈
h

2
∇SV (x), y −

(
1− h

2

)
x

〉
S

− h2

8h̃
‖∇SV (x)‖2S

)
= exp

(
− 2

4− h

〈
∇SV (x), y −

(
1− h

2

)
x

〉
S

− h

8− 2h
‖∇SV (x)‖2S

)
.

We can simplify

2

4− h

〈
∇SV (x), y −

(
1− h

2

)
x

〉
S

=
1

2
〈∇SV (x), y − x〉S +

h

8− 2h
〈∇SV (x), y − x〉S +

h

4− h
〈∇SV (x), x〉S

=
1

2
〈∇SV (x), y − x〉S +

h

8− 2h
〈∇SV (x), y + x〉S

which leads to

qh(x,dy)

q̃h(x,dy)
= exp

(
−1

2
〈∇SV (x), y − x〉S −

h

8− 2h

(
〈∇SV (x), y + x〉S + ‖∇SV (x)‖2S

))
.

(3.10)



63

We rewrite

µ(dy)qh(y,dx)

µ(dx)qh(x,dy)

=
ϕ(y)

ϕ(x)

ν(dy)q̃h(y,dx)

ν(dx)q̃h(x,dy)

qh(y,dx)

q̃h(y,dx)

q̃h(x,dy)

qh(x,dy)
.

Since by Proposition 3.1, q̃h is reversible with respect to ν,

ν(dy)q̃h(y,dx)

ν(dx)q̃h(x,dy)
≡ 1

holds. With equation (3.10), we get

µ(dy)qh(y,dx)

µ(dx)qh(x,dy)

=
ϕ(y)

ϕ(x)

qh(y,dx)

q̃h(y,dx)

q̃h(x, dy)

qh(x, dy)

= exp(−V (y) + V (x))

· exp

(
−1

2
〈∇SV (y), x− y〉S −

h

8− 2h

(
〈∇SV (y), x+ y〉S + ‖∇SV (y)‖2S

))
· exp

(
1

2
〈∇SV (x), y − x〉S +

h

8− 2h

(
〈∇SV (x), y + x〉S + ‖∇SV (x)‖2S

))
= exp(−V (y) + V (x))

· exp

(
−1

2
〈∇SV (x) +∇SV (y), x− y〉S

)
· exp

(
− h

8− 2h
〈∇SV (y)−∇SV (x), x+ y〉S

)
· exp

(
− h

8− 2h

(
‖∇SV (y)‖2S − ‖∇SV (x)‖2S

))
= exp(−Gh(x, y)).

This shows

ah(x, y) = min {1, exp (−Gh(x, y))} .

In the following, we also use an alternative representation of the acceptance prob-

ability.
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Lemma 3.4. For all x, y ∈W , Gh(x, y) satisfies

Gh(x, y) = V (y)− V (x)− 1

2
〈∇SV (y) +∇SV (x), y − x〉S

+
h

8− 2h
〈∇SU(y) +∇SU(x),∇SV (y)−∇SV (x)〉S

Proof. By the definition of U , we have

〈∇SV (y)−∇SV (x), x+ y〉S + ‖∇SV (y)‖2S − ‖∇SV (x)‖2S
= 〈∇SV (y)−∇SV (x), x+ y〉S + 〈∇SV (y)−∇SV (x),∇SV (y) +∇SV (x)〉S
= 〈∇SV (y)−∇SV (x), x+∇SV (x) + y +∇SV (y)〉S
= 〈∇SV (y)−∇SV (x),∇SU(x) +∇SU(y)〉S .

Therefore,

Gh(x, y) = V (y)− V (x)− 1

2
〈∇SV (x) +∇SV (y), y − x〉S

+
h

8− 2h
〈∇SV (y)−∇SV (x), x+ y〉S

+
h

8− 2h

(
‖∇SV (y)‖2S − ‖∇SV (x)‖2S

)
= V (y)− V (x)− 1

2
〈∇SV (x) +∇SV (y), y − x〉S

+
h

8− 2h
〈∇SV (y)−∇SV (x),∇SU(x) +∇SU(y)〉S .

3.2 Transition Path Sampling

We now return to the Transition Path Sampling setting and show how the setting

can be chosen to fit the abstract frame. We start with the infinite–dimensional distribution

on the path space. For simulations on a computer, this distribution will be approximated

on finite–dimensional spaces. This case will be handled in the second part.

3.2.1 The infinite–dimensional Transition Path Sampling process

We start with identifying a proper space W on which the process is realized. The

straightforward choice W = E = L2([0, 1],Rd) turns out to suit our needs. Note that

for x ∈ E, V (x) might not be defined if Φ(x·) 6∈ L1([0, 1],Rd), e.g. if Φ(z) growth faster
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than quadratically. Assumption 3.1 even requires that derivatives of V up to fourth order

are well-defined for all x ∈ W . This will require Φ(x·) to be an element of L5([0, 1],Rd).

Assuming Φ(z) is polynomial, we also need x ∈ Lq([0, 1],Rd) for some sufficient large q > 5,

depending on the degree of Φ. As we also want W to be a Hilbert space, we rely on

fractional Sobolev spaces. More precisely, the spaces Wα constructed below form a slightly

different family of spaces. The choice of the norm is motivated by its compatibility with

the piece–wise linear approximation we use in Chapter 3.2.2. But they satisfy the same

embeddings as the standard fractional Sobolev spaces, namely W 1
2
− 1
q
⊂ Lq([0, 1],Rd), and

the Brownian Bridge is supported on Wα for α < 1
2 .

We now state the main assumptions needed to prove the convergence result.

Firstly, we assume that Φ(z) is indeed bounded by a polynomial.

Assumption 3.1. For all η1, . . . , ηn ∈ Rd with
∥∥ηi∥∥Rd = 1,∣∣DnΦ(z)(η1, . . . , ηn)

∣∣ ≤ Cn (max{1, ‖z‖Rd})
pn (3.11)

for n = 1, . . . , 4 and constants Cn and pn. Define

p := max
i∈{1,...,4}

pi.

The second assumption we need is a uniform bound on the second derivative on

Φ.

Assumption 3.2. The second derivative of Φ is uniformly bounded by LΦ < π√
2
: For all

z ∈ Rd, and all η1, η2 in Rd∣∣D2Φ(z)(η1, η2)
∣∣ ≤ LΦ

∥∥η1
∥∥
Rd
∥∥η2
∥∥
Rd .

We now construct the spaces Wα. Let ei,k,j , i ∈ N, k ∈ {1, . . . , 2i−1}, j ∈ {1, . . . , d}

be the Schauder basis given by

ei,k,j(s) := 2−
i
2φ(2is− k + 1) ej , for s ∈ [0, 1], (3.12)

where ej is the j-th unit vector in Rd and φ : R→ R is the function

φ(s) :=
1

2
max{0, 1− |1− s|}.
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These vectors form an orthonormal basis of H1
0 ([0, 1],Rd), and a basis of L2([0, 1],Rd). For

x ∈ L2([0, 1],Rd) of the form

x =

∞∑
i=1

2i−1∑
k=1

d∑
j=1

xi,k,jei,k,j ,

define the norm ‖·‖Wα
by

‖x‖Wα
:=

 ∞∑
i=1

2i−1∑
k=1

d∑
j=1

2−2(1−α)i x2
i,k,j

 1
2

for x ∈ L2([0, 1],Rd).

The space Wα is defined as

Wα :=
{
x ∈ L2([0, 1],Rd)

∣∣∣ ‖x‖Wα
<∞

}
.

We define the operator Cα :Wα → S by

Cα

 ∞∑
i=1

2i−1∑
k=1

d∑
j=1

xi,k,jei,k,j

 =

∞∑
i=1

2i−1∑
k=1

d∑
j=1

2−2(1−α)i xi,k,jei,k,j .

With this notation, we have for x ∈Wα,

‖x‖Wα
=

∥∥∥∥C 1
2
αx

∥∥∥∥
S

.

Depending on the value of α, the support of the measure µ is contained in Wα,

and Wα is a subspace of Lq([0, 1],Rd). This is shown by the following two lemmas, This

implies that for 1
2 −

1
q < α < 1

2 , both the distribution of the diffusion bridge is supported

on the space Wα, and Wα is a subspace of Lq([0, 1],Rd).

Lemma 3.5. If 0 < α < 1
2 , then

suppµ ⊂Wα.

Lemma 3.6. If α > 1
2 −

1
q , then

Wα ⊂ Lq([0, 1],Rd).

Proof. (Lemma 3.5)

The Brownian Bridge can be constructed by the Wiener–Lévy expansion: For i ∈ N, k ∈
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{1, . . . , 2i}, j ∈ {1, . . . , d}, take one–dimensional Gaussian random variables Zi,k,j with

mean 0 and variance 1, and set

X :=

d∑
j=1

∞∑
i=1

2i−1∑
k=1

Zi,k,jei,k,j .

Then X is a Brownian Bridge. Now assume α < 1
2 , then

E
[
‖X‖2Wα

]
=

d∑
j=1

∞∑
i=1

2i−1∑
k=1

2−2(1−α)iE
[
Z2
i,k,j

]
=

d∑
j=1

∞∑
i=1

2i−12−2(1−α)i

=
1

2
d

∞∑
i=1

2−(1−2α)i

<∞.

Thus the Brownian Bridge is almost surely supported on Wα. As µ is absolutely continuous

with respect to ν, it is also supported on Wα.

Proof. (Lemma 3.6) Let x ∈Wα with

x =

∞∑
i=1

d∑
j=1

2i∑
k=1

xi,k,jei,k,j

where ei,k,j , i ∈ N, k ∈ {1, . . . , 2i−1}, j ∈ {1, . . . , d} form the Schauder basis orthonormal

in H1
0 ([0, 1],Rd). The Lq–norm can be bounded by

‖x‖Lq =

∥∥∥∥∥∥
∞∑
i=1

d∑
j=1

2i−1∑
k=1

xi,k,jei,k,j

∥∥∥∥∥∥
Lq

≤
∞∑
i=1

∥∥∥∥∥∥
d∑
j=1

2i−1∑
k=1

xi,k,jei,k,j

∥∥∥∥∥∥
Lq

.
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As ei,k,j and ei,k̃,j̃ have disjoint support for (k, j) 6= (k̃, j̃), we get∥∥∥∥∥∥
d∑
j=1

2i−1∑
k=1

xi,k,jei,k,j

∥∥∥∥∥∥
q

Lq

=

∫ 1

0

∣∣∣∣∣∣
d∑
j=1

2i−1∑
k=1

xi,k,jei,k,j(s)

∣∣∣∣∣∣
q

ds

=
d∑
j=1

2i−1∑
k=1

|xi,k,j |q
∫ k2−i

(k−1)2−i
eqi,k,j(s)ds

≤ 2−
iq
2 2−i

d∑
j=1

2i−1∑
k=1

|xi,k,j |q.

This gives ∥∥∥∥∥∥
d∑
j=1

2i−1∑
k=1

xi,k,jei,k,j

∥∥∥∥∥∥
Lq

≤ 2−
i
2 2
− i
q

 d∑
j=1

2i−1∑
k=1

|xi,k,j |q
 1

q

≤ 2−
i
2 2
− i
q

 d∑
j=1

2i−1∑
k=1

|xi,k,j |2
 1

2

resulting in

‖x‖Lq ≤
∞∑
i=1

∥∥∥∥∥∥
d∑
j=1

2i−1∑
k=1

xi,k,jei,k,j

∥∥∥∥∥∥
Lq

≤
∞∑
i=1

2−
i
2 2
− i
q

 d∑
j=1

2i−1∑
k=1

|xi,k,j |2
 1

2

.

We choose a sequence εi := 2
i
(

1−2α− 2
q

)
. Note that 1− 2α− 2

q < 0 if and only if α > 1
2 −

1
q .

For these α, we can show

‖x‖Lq ≤
∞∑
i=1

2−
i
2 2
− i
q

 d∑
j=1

2i−1∑
k=1

|xi,k,j |2
 1

2

≤

( ∞∑
i=1

εi

) 1
2

 ∞∑
i=1

d∑
j=1

2i−1∑
k=1

1

εi
2
−
(

1+ 2
q

)
i|xi,k,j |2

 1
2

≤ Cα,q

 d∑
j=1

∞∑
i=1

2i−1∑
k=1

2−2(1−α)i|xi,k,j |2
 1

2

≤ Cα,q‖x‖Wα
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where

Cα,q :=

( ∞∑
i=1

2
i
(

1−2α− 2
q

)) 1
2

<∞ (3.13)

for α > 1
2 −

1
q .

We now choose W := Wα for α := 1
2 −

1
6p which implies Wα ⊂ Lrp([0, 1],Rd) for

r < 6.

For this choice of S and W , the covariance operator of ν on W is given by Cα:

Lemma 3.7. The covariance operator C on W of ν is given by

C = Cα.

Proof. For i ∈ N, k ∈ {1, . . . , 2i−1} and j ∈ {1, . . . , d}, let ẽi,k,j be defined by

ẽi,k,j := 2(1−α)i ei,k,j .

By construction of the scalar product 〈·, ·〉W , this is an orthonormal basis of W . Let X be

a ν-distributed random variables given by

X :=

d∑
j=1

∞∑
i=1

2i−1∑
k=1

Xi,k,jei,k,j =

d∑
j=1

∞∑
i=1

2i−1∑
k=1

Xi,k,j2
−(1−α)iẽi,k,j

where Xi,k,j are i.i.d Gaussian random variables on R with mean 0 and variance 1. The

covariance operator C by definition satisfies for given h, h̃ ∈W〈
h, Ch̃

〉
W

= E
[
〈X,h〉W

〈
X, h̃

〉
W

]
=

d∑
j=1

∞∑
i=1

2i−1∑
k=1

2−2(1−α)hi,k,j h̃i,k,jE [Xi,k,jXi,k,j ] ‖ẽi,k,j‖2W

=
d∑
j=1

∞∑
i=1

2i−1∑
k=1

2−2(1−α)hi,k,j h̃i,k,j

=
〈
h, Cαh̃

〉
W
,

and thus C = Cα.

We now identify the terms arising in the MALA–process, and start with the gra-

dient ∇SV (x).
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Lemma 3.8. For x ∈W , ∇SV (x) is given by

(∇SV (x))t =
(
(−∆−1

0 )∇Φ(x·)
)
t

(3.14)

= −
∫ t

0

∫ s

0
∇Φ(xu)duds+ t

∫ 1

0

∫ 1

0
∇Φ(xu)duds. (3.15)

Proof. For k ∈ S and x ∈W , the derivative of V (x) in direction k is given by

∂

∂k
V (x) =

∫ 1

0
∇Φ(xs) · ksds

= 〈∇Φ(x), k〉E
=
〈
(−∆0)−1∇Φ(x), k

〉
S

which implies

(∇SV (x))t =
(
(−∆−1

0 )∇Φ(x·)
)
t
.

A direct calculation yields

(
(−∆−1

0 )∇Φ(x·)
)
t

= −
∫ t

0

∫ s

0
∇Φ(xu)duds+ t

∫ 1

0

∫ 1

0
∇Φ(xu)duds.

We also need to calculate the derivative of V in directions of the larger space W .

Under Assumption 3.1, this derivative is given by 〈∇SV (x), ·〉S , which is a well–definied

functional W → R in this case.

Lemma 3.9. Let Assumption 3.1 be satisfied. Then, for x, y ∈W ,

∂

∂y
V (x) = 〈∇SV (x), y〉S =

∫ 1

0
∇Φ(xs) · ysds.

Proof. By definition, we have

〈∇SV (x), y〉S =
∂

∂y
V (x).

For x, y ∈W , it holds

∂

∂y
V (x) =

∫ 1

0
∇SV (xs) · ysds.
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Assumption 3.1 guarantees that ∇SV (xs) · ys is integrable as∫ 1

0
|∇Φ(xs) · ys|ds ≤

(
C2

∫ 1

0
(1 + |xs|)2pds

∫ 1

0
|ys|2ds

) 1
2

≤ C
1
2
2 ‖1 + x‖p

L2p([0,1],Rd)
‖y‖L2([0,1],Rd)

≤ C
1
2
2 Cα,2pCα,2‖1 + x‖pW ‖y‖W

≤ C
1
2
2 Cα,2pCα,2(1 + ‖x‖W )p‖y‖W .

As we have identified the gradient of V with respect to S, we can define the MALA–

process as presented in Chapter 3.1. The acceptance probability ah of the MALA–process

is given by (3.8) and Gh satisfies:

Lemma 3.10. Let x, y ∈W , then

Gh(x, y) :=

∫ 1

0
Φ(ys)− Φ(xs)ds−

1

2

∫ 1

0
(∇Φ(xs) +∇Φ(ys)) · (ys − xs)ds

+
h

8− 2h

∫ 1

0
(∇Φ(ys)−∇Φ(xs)) · (xs + ys)ds

+
h

8− 2h

∫ 1

0
∇Φ(ys) ·

(
−∆−1

0 ∇Φ(y)
)
s
−∇Φ(xs) ·

(
−∆−1

0 ∇Φ(x)
)
s

ds.

Proof. Let x, y ∈W . By Lemma 3.2, Gh(x, y) satisfies

Gh(x, y) := V (y)− V (x)− 1

2
〈∇SV (x) +∇SV (y), y − x〉S

+
h

8− 2h
〈∇SV (y)−∇SV (x), x+ y〉S

+
h

8− 2h

(
‖∇SV (y)‖2S − ‖∇SV (x)‖2S

)
.

Lemmas 3.8 and 3.9 lead to

〈∇SV (x), y〉S =

∫ 1

0
∇Φ(xs) · ysds,

(∇SV (x))t =
(
(−∆−1

0 )∇Φ(x·)
)
t

for k ∈W . This result in.

〈∇SV (x) +∇SV (y), y − x〉S =

∫ 1

0
(∇Φ(xs) +∇Φ(ys)) · (ys − xs)ds,

〈∇SV (y)−∇SV (x), x+ y〉S =

∫ 1

0
(∇Φ(ys)−∇Φ(xs)) · (xs + ys)ds
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and

‖∇SV (y)‖2S − ‖∇SV (x)‖2S

=

∫ 1

0
∇Φ(ys) ·

(
−∆−1

0 ∇Φ(y)
)
s
−∇Φ(xs) ·

(
−∆−1

0 ∇Φ(x)
)
s

ds.

3.2.2 A finite–dimensional approximation of the Transition Path Sam-

pling setting

We now present a finite–dimensional approximation of the measure µ in the Tran-

sition Path Sampling setting from Section 3.2. The infinite–dimensional function spaces are

approximated by spaces of piece–wise linear functions. We first introduce the notation

dN := 2N−1

si :=
i

dN
for i ∈ {0, . . . , dN}.

For this, recall the Schauder basis defined in (3.12) and set for N ∈ N

EN := WN := SN

:= span {ei,k,j | i ∈ {1, . . . , N} , k ∈
{

1, . . . , 2i−1
}
, j ∈ {1, . . . , d}

}
.

The scalar products on these spaces are defined by

〈x, y〉EN :=
1

dN

dN∑
i=1

xsi · ysi ,

〈x, y〉WN
:= 〈x, y〉Wα

,

〈x, y〉SN := 〈x, y〉H1
0 ([0,1],Rd),

for x, y ∈ WN . Note that 〈·, ·〉EN does not exactly coincide with 〈·, ·〉L2 , because we have

for a piece–wise linear function x ∈ EN

‖x‖2L2 =

∫ 1

0
|xs|2ds =

1

dN

dN∑
i=1

2

3
|xsi |

2 +
1

3
xsi · xsi−1 . (3.16)

Nevertheless, the norms on E and EN are equivalent:
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Lemma 3.11. For x ∈ EN , the inequalities

‖x‖2E ≤ ‖x‖
2
EN
≤ 3

2
‖x‖2E .

hold.

Proof. Equation (3.16) directly implies

3

2
‖x‖2E ≥ ‖x‖

2
EN

for x ∈ EN .

As for all a, b ∈ Rd

a · b ≤ |a||b| ≤ 1

2

(
|a|2 + |b|2

)
the inequality

‖x‖2E ≤ ‖x‖
2
EN

also follows from (3.16).

The SN–scalar product has also a point–wise representation given by

〈x, y〉SN =
d2
N

dN

dN∑
i=1

(xsi+1 − xsi) · (ysi+1 − ysi)

= dN

dN−1∑
i=1

(xsi+1 − 2xsi + xsi−1) · ysi .

Therefore,

〈x, y〉SN = 〈−∆0,Nx, y〉EN , (3.17)

where ∆0,N is the discrete Laplacian on the partition
(

i
dN

)
i∈{0,...,dN}

with zero boundary

conditions. Its inverse is given by(
∆−1

0,Nx
)
si

=
1

d2
N

i−1∑
j=1

j∑
k=1

xsk −
1

d2
N

N−1∑
j=1

j∑
k=1

xsk ,

for x ∈ SN . While the sets EN ,WN , SN coincide, the metric on these sets differ to approx-

imate their infinite–dimensional pendants.

We approximate the distribution of the Brownian Bridge, ν, by its piece–wise linear ap-

proximation νN , that is the distribution of the random variable

ZN :=
1√
2

N∑
i=1

2i−1∑
k=1

d∑
j=1

Ni,k,jei,k,j (3.18)
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where Ni,k,j are i.i.d. Gaussian random variables with mean 0 and variance 1. The covari-

ance operator CEN of νN on EN is given by the inverse discrete Laplacian:

Lemma 3.12. The covariance operator of νN on EN is given by

CEN := (−∆0,N )−1.

Proof. Let ZN be a νN–distributed variable given by (3.18), and define Z ∈ E by

Z := ZN +
1√
2

∞∑
i=N+1

2i−1∑
k=1

d∑
j=1

Ni,k,jei,k,j .

It follows that Z is a ν–distributed random variable on E. Let h, h̃ ∈ EN , then we have

E
[
〈h, ZN 〉EN

〈
h̃, ZN

〉]
= E

[
〈h, Z〉E

〈
h̃, Z

〉
E

]
=
〈
h, (−∆0)−1h̃

〉
E

=
〈
h, (−∆0,N )−1h̃

〉
EN

which implies CEN = (−∆0,N )−1.

To approximate the density ϕ of µ with respect to ν as given in (3.3), we approx-

imate the integral
∫ 1

0 Φ(xs)ds by its Riemann–sum: Set

VN (x) :=
1

dN

dN∑
i=0

Φ(xsi),

ϕN (x) := exp (−VN (x)) for x ∈WN .

The following lemma presents some properties of this discretization.

Lemma 3.13. For x, y ∈WN ,

〈∇SNVN (x), y〉SN =
1

dN

dN∑
k=0

∇Φ(xsi) · ysi , and

∇SNVN (x) = −∆−1
0,N∇Φ(x).

Proof. By definition of the gradient, it holds for y ∈WN ,

〈∇SNVN (x), y〉SN =
∂

∂y
VN (x)

=
1

dN

dN∑
k=0

∇Φ(xsi) · ysi . (3.19)
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By (3.17), we also have

〈∇SNVN (x), y〉SN = 〈−∆0,N (∇SNVN (x)), y〉EN

for all y ∈WN which combined with (3.19) implies

∇SNVN (x) = −∆−1
0,N∇Φ(x).

Knowing the gradient of VN , we can now construct the MALA–process as intro-

duced in Chapter 3.1. The acceptance probability is given by (3.8), and Gh is identified in

the next Lemma:

Lemma 3.14. Let x, y ∈WN , then

Gh(x, y) :=
1

dN

dN∑
i=0

Φ(ysi)− Φ(xsi)−
1

2dN

dN∑
i=0

(∇Φ(xsi) +∇Φ(ysi)) · (ysi − xsi)

+
h

8− 2h

1

dN

dN∑
i=0

(∇Φ(ysi)−∇Φ(xsi)) · (xsi + ysi)

+
h

8− 2h

1

dN

dN∑
i=0

∇Φ(ysi) ·
(
−∆−1

0,N∇Φ(y)
)
si
−∇Φ(xsi) ·

(
−∆−1

0,N∇Φ(x)
)
si
.

Proof. By Lemma 3.2, Gh satisfies

Gh(x, y) := VN (y)− VN (x)− 1

2
〈∇SNVN (x) +∇SNVN (y), y − x〉SN

+
h

8− 2h
〈∇SNVN (y)−∇SNVN (x), x+ y〉SN

+
h

8− 2h

(
‖∇SNVN (y)‖2SN − ‖∇SNVN (x)‖2SN

)
.

Lemma 3.13 gives for y ∈WN

〈∇SNVN (x), y〉SN =
1

dN

dN∑
k=0

∇Φ(xsi) · ysi and

∇SNVN (x) = −∆−1
0,N∇Φ(x)

such that

〈∇SNVN (x) +∇SNVN (y), y − x〉SN =
1

dN

dN∑
i=0

(∇Φ(xsi) +∇Φ(ysi)) · (ysi − xsi),

〈∇SNVN (y)−∇SNVN (x), x+ y〉SN =
1

dN

dN∑
i=0

(∇Φ(ysi)−∇Φ(xsi)) · (xsi + ysi)
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and

‖∇SNVN (y)‖2SN − ‖∇SNVN (x)‖2SN

=
1

dN

dN∑
i=0

∇Φ(ysi) ·
(
−∆−1

0,N∇Φ(y)
)
si
−∇Φ(xsi) ·

(
−∆−1

0,N∇Φ(x)
)
si
.

3.3 Speed of convergence of the MALA–process

We now analyze the speed of convergence of the MALA–process. For this pur-

pose, we state conditions such that the MALA–process Xn is contracting. The distance

that measures the distance of the distributions of the coupled processes is the Wasserstein

distance, see e.g. Villani [42] for an introduction in this topic.

This section strongly relies on the work of Eberle [16]. Eberle proves the conver-

gence results using coupling techniques for Rd–valued processes with invariant measures

which is absolutely continuous to a Gaussian measure. We transfer his techniques to the

space of infinite–dimensional Hilbert spaces. Since the result in [16] aim at situations where

the finite–dimensional processes converge to an infinite–dimensional limit, this transfer is

straightforward in most cases. For the sake of completeness, we nonetheless present the full

proofs here.

We start with stating basic properties of couplings. Denote with P(W ) the space

of all probability measures on W , and by B(W ) the set of all Borel sets of W .

Definition 3.1. A probability measure π : B(W ) × B(W ) → [0, 1] is called coupling of the

probability measures η, η̃ : B(W )→ [0, 1] if for all B ∈ B(W )∫
B×W

π(d(x, x̃)) = η(B),∫
W×B

π(d(x, x̃)) = η̃(B).

Definition 3.2. Given a metric d : W ×W → [0,∞], the Wasserstein distance

Wd : P(W )× P(W )→ [0,∞)
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is defined by

Wd(η, η̃) := inf
π

∫
W×W

d(x, x̃)dπ(x, x̃)

where the infimum is taken over all couplings π of η and η̃.

Definition 3.3. Given stochastic kernels

q : W × B(W )→ [0, 1] and

c : (W ×W )× B(W ×W )→ [0, 1],

c is called pair coupling of q if for any x, x̃ ∈ W , the distribution of the first and second

component of c((x, x̃), dydỹ) is q(x,dy) and q(x̃, dỹ) respectively, that is for all B ∈ B(W ),∫
W×B

c((x, x̃), dydỹ) = q(x̃, B),∫
B×W

c((x, x̃), dydỹ) = q(x,B).

We will use the following theorem to find an upper bound for the distance to

equilibrium of the MALA–process:

Theorem 3.1. Let d : W × W → [0, R] be a metric with diameter 0 < R < ∞,

c : (W ×W )× B(W ×W )→ [0, 1] a pair coupling of the stochastic kernel q : W ×B(W )→
[0, 1]. Let γ ∈ (0, 1), and assume U ⊂W is an open subset of W , such that for all x, x̃ ∈ U ,

d(x, x̃) < R. If the contraction property∫
W×W

d(y, ỹ)c((x, x̃),dydỹ) ≤ γd(x, x̃) (3.20)

holds, the Wasserstein distance of µqn and νq can be bounded for any n ∈ N and every

probability measure ν and µ:

Wd(µq
n, νqn) ≤ γnWd(µ, ν) +

R

1− γ
(Cn(U, µ) + Cn(U, ν)), (3.21)

with

Cn(U, η) := sup
k∈{0,...,n}

(ηq)(S \ U). (3.22)

for η ∈ {ν, µ}.
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Proof. We start with n = 1. If ν and µ are probability measures on B(W ), and η : B(W×W )

is a coupling of ν and µ, then the probability measure

(ηc)(B) :=

∫
W×W

η(dxdx̃)c((x, x̃), B), B ∈ B(W ×W ),

is a coupling of νq and µq. Indeed, given A ∈ B(W ), we have

(ηc)(A×W ) =

∫
A×W

η(dxdx̃)q(x,A) =

∫
W
ν(dx)q(x,A) = (νq)(A),

(ηc)(W ×A) =

∫
W×A

η(dxdx̃)q(x̃, A) =

∫
W
µ(dx̃)q(x̃, A) = (µq)(A)

as c is a pair coupling of q.

Now assume (3.20) holds for all x, x̃ ∈ U . Then (ηc) can be used to get an upper bound for

the dR–Wasserstein distance of νq and µq:

Wd(νq, µq) ≤
∫
W×W

d(y, ỹ)(ηc)(dy,dỹ)

=

∫
W×W

∫
W×W

d(y, ỹ)c((x, x̃),dydỹ)η(dydx̃)

≤
∫
U×U

∫
W×W

d(y, ỹ)c((x, x̃),dydỹ)η(dydx̃) +Rη((W ×W ) \ (U × U))

≤ γ
∫
U×U

d(x, x̃)η(dx,dx̃) +R (ν(S \ U) + µ(S \ U))

≤ γ
∫
W×W

d(x, x̃)η(dx, dx̃) +R (ν(S \ U) + µ(S \ U)).

Taking the infimum over all couplings η of ν and µ, we get

Wd(µq, νq) ≤ γWd(ν, µ) +R (ν(S \ U) + µ(S \ U)).

With induction over n,

Wd(µq
n, νqn) ≤ γnWd(ν, µ) +

R

1− γ
(ν(S \ U) + µ(S \ U))

follows.

A pair coupling of the kernel of a stochastic kernel of a Markov Process can be

constructed by considering the distribution of a coupling of the Markov Process starting in

different starting points.

Lemma 3.15. Let (Xn, X̃n)n∈N be a coupling of time–homogeneous Markov Processes with

kernel p, with (X0, X̃0) = (x, x̃) Px,x̃–almost surely. Let c be the kernel of (Xn, X̃n)n∈N.
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Then c is a pair coupling of p.

In this case: ∫
W×W

d(y, ỹ)c((x, x̃), dydỹ) = Ex,x̃
[
d(X1, X̃1)

]
.

Proof. As kernel of the process (Xn, X̃n)n∈N, c is a function c : (W×W )×B(W×W )→ [0, 1].

We need to show that for B ∈ B(W )∫
W×B

c((x, x̃), dydỹ) = q(x̃, B),∫
B×W

c((x, x̃), dydỹ) = q(x,B)

hold. This follows directly, because q is the kernel of (Xn)n∈N as well as of (X̃n)n∈N:∫
W×B

c((x, x̃),dydỹ) = Px,x̃

[
X1 ∈W, X̃1 ∈ B

]
= Px,x̃

[
X̃1 ∈ B

]
= q(x̃, B)

and ∫
B×W

c((x, x̃),dydỹ) = Px,x̃ [X1 ∈ B]

= q(x,B).

3.3.1 Contraction property of the MALA–process

In this section, we present a pair coupling c of the kernel p of the MALA–process

constructed in Section 3.1, and show that it is contracting. The pair coupling is constructed

by a coupling (Xn, X̃n)n∈N of the MALA–process starting in x and x̃ respectively. Then

the kernel of (Xn, X̃n)n∈N is a pair coupling of p by Lemma 3.15.

Coupling the proposals

We construct the coupling (Xn, X̃n)n∈N as follows: For a given i.i.d. sequence of

ν–distributed random variable (Nn)n∈N on W and for given x ∈W we define

Yh,n(x) :=

(
1− h

2

)
x− h

2
∇SV (x) +

√
h̃Nn+1. (3.23)
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Starting in Xn, X̃n ∈ W , we propose to move to Yh,n(Xn) and Yh,n(X̃n) respectively and

accept each move with acceptance probability ah(Xn, Yh,n(Xn)) and ah(X̃n, Yh,n(X̃n)). For

this, we take a sequence of uniformly distributed random variables (Un)n∈N on [0, 1] and set

Xn+1 :=

 Yh,n(Xn) if Un+1 < ah(Xn, Yh,n(Xn)),

Xn otherwise.
(3.24)

X̃n+1 :=

 Yh,n(X̃n) if Un+1 < ah(X̃n, Yh,n(X̃n)),

X̃n otherwise.
. (3.25)

We use the same random variables (Nn)n∈N and (Un)n∈N for X as well as for X̃. This leads

to Yh,n(Xn)− Yh,n(X̃n) being independent of the noise term Nn+1. Furthermore, given the

proposals Yh,n(Xn) and Yh,n(X̃n), we minimize the probability that the proposal of one

chain is accepted and the proposal of the other chain is rejected.

The goal of this section is to control the Wasserstein distance Ex,x̃[d(X1, X̃1)] of the coupling.

The first step is the decomposition of the expectation value into four cases:

Proposition 3.16. Let d : W ×W → [0, R] be a metric bounded by R, and X1, X̃1 the

processes defined in (3.24),(3.25) respectively. Then

Ex,x̃[d(X1, X̃1)] ≤ Ex,x̃[d(Yh,0(x), Yh,0(x̃))]

+REx,x̃[|Gh(x, Yh,0(x))−Gh(x̃, Yh,0(x̃))|] (3.26)

+ d(x, x̃)Ex,x̃ [min{Gh(x, Yh,0(x)), Gh(x̃, Yh,0(x̃))}] .

Proof. We decompose the expectation value into four summands, distinguishing whether

the processes (Xn)n∈N and (X̃n)n∈N except their proposals at the first time step n = 1.

Ex,x̃[d(X1, X̃1)] = Ex,x̃[d(Yh,0(x), Yh,0(x̃)), U1 < min{ah(x, Yh,0(x)), ah(x̃, Yh,0(x̃))}]

+ Ex,x̃[d(x, Yh,0(x̃)), ah(x, Yh,0(x)) < U1 < ah(x̃, Yh,0(x̃))]

+ Ex,x̃[d(Yh,0(x), x̃), ah(x̃, Yh,0(x̃)) < U1 < ah(x, Yh,0(x))]

+ d(x, x̃)Px,x̃[U1 > max{ah(x, Yh,0(x)), ah(x̃, Yh,0(x̃))]

≤ Ex,x̃[d(Yh,0(x), Yh,0(x̃))]

+REx,x̃[|ah(x, Yh,0(x))− ah(x̃, Yh,0(x̃))|]

+ d(x, x̃)Ex,x̃[min{1− ah(x, Yh,0(x)), 1− ah(x̃, Yh,0(x̃))}].

With Remark 3.3 this proves the result.
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In the sequel, we will bound each of these terms to finally show the contraction

property of the coupling. Our bounds are proven under the following two assumptions:

We need to assume that the S–gradient of V satisfies a Lipschitz bound.

Assumption 3.3. There exists 0 ≤ L < 1 such that

‖∇SV (x)−∇SV (y)‖W ≤ L‖x− y‖W (3.27)

holds. Set δ := (1− L).

Furthermore, we define constants Ln(x, y) which control the derivatives of V in

the interval [x, y] := {sx+ (1− s)y|s ∈ [0, 1]}.

Ln(x, y) := sup
z∈[x,y]

‖DnV (z)‖W⊗n→R

where ‖·‖W⊗n→R is the norm on n–form given by

‖l‖W⊗n→R := sup {l(ξ1, . . . , ξn) | ‖ξ1‖W = . . . = ‖ξn‖W = 1}

We assume that the first four derivatives of V grow at most polynomial:

Assumption 3.4. The potential V is four times differentiable in directions of W and there

exists constants Cn, pn ∈ [0,∞) such that the derivatives as operators from W⊗n to R are

bounded by a polynomial:

|DnV (x)(ξ1, . . . , ξn)| ≤ Cn max{1, ‖x‖W }
pn

for all x ∈W , ‖ξ1‖W = . . . = ‖ξn‖W = 1, and n ∈ {2, 3, 4}.

Note that if Assumption 3.4 is satisfied, Ln(x, y) bounded by

Ln(x, y) ≤ Cn max{1, ‖x‖W , ‖y‖W }
pn, n ∈ {2, 3, 4}

for x, y ∈W .

Furthermore, we can control Ln(x, Yh,n(x)) in the following way:

Lemma 3.17. Let Assumption 3.4 be satisfied. Then for x ∈ W , h ∈ (0, 2), n ∈ {2, 3, 4}
and pn ∈ [1,∞), the inequality

Ln(x, Yh,n(x)) ≤ Cn3pn−1

(
max{1, ‖x‖W }

pn +

(
h

2

)pn
‖∇SU(x)‖pnW + h

pn
2 ‖Nn+1‖pnW

)
holds.
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Proof. Using the triangle inequality, we get

‖Yh,n(x)− x‖W ≤
h

2
‖∇SU(x)‖W +

√
h̃‖Nn+1‖W .

Therefore we can bound

Ln(x, Yh,n(x)) ≤ Cn max{1, ‖x‖W , ‖Yh,n(x)‖W }
pn

≤ Cn
(

max{1, ‖x‖W }+
h

2
‖∇SU(x)‖W +

√
h̃‖Nn+1‖W

)pn
≤ Cn3pn−1

(
max{1, ‖x‖W }

pn +

(
h

2

)pn
‖∇SU(x)‖pnW + h

pn
2 ‖Nn+1‖pnW

)

by Hölder’s inequality.

Contraction property of the proposal

In this section, we present how to control the terms arising in equation (3.26). We

start with the distance of the proposals Yh,n(x) and Yh,n(x̃). Under Assumption 3.3, we

show that the coupling is contracting in the metric

d∞(x, x̃) := ‖x− x̃‖W for x, x̃ ∈W.

Lemma 3.18. Let Assumption 3.3 be satisfied. Then for all h ∈ (0, 2) and x, x̃ ∈W

Ex,x̃ [d∞(Yh,n(x), Yh,n(x̃))] ≤
(

1− 1

2
δh

)
d(x, x̃).

Proof. We firstly note that as Yh,n(x) and Yh,n(x̃) are constructed with the same noise term

Nn+1, the noise cancels in the difference so that Yh,n(x)− Yh,n(x̃) is deterministic:

Ex,x̃ [d∞(Yh,n(x), Yn,h(x̃))] = ‖Yh,n(x)− Yh,n(x̃)‖W .

Inserting the definitions of Yh,n and δ as well as the assumptions of the lemma, we get for
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h ∈ (0, 2) and x, x̃ ∈W :

‖Yh,n(x)− Yh,n(x̃)‖2W =

∥∥∥∥(1− h

2

)
(x− x̃)− h

2
(∇SV (x)−∇SV (x̃))

∥∥∥∥2

W

=

(
1− h

2

)2

‖x− x̃‖2W − h
(

1− h

2

)
〈x− x̃,∇SV (x)−∇SV (x̃)〉W

+
h2

4
‖∇SV (x)−∇SV (x̃)‖2W

≤ ‖x− x̃‖2W
[(

1− h+
h2

4

)
+ Lh

(
1− h

2

)
+
h2

4
L2

]
≤ ‖x− x̃‖2W

(
1− h(1− L) +

h2

4
(L2 − 2L+ 1)

)
≤ ‖x− x̃‖2W (1− δh) .

As
√

1− z ≤ 1− 1
2z, for z ∈ (−∞, 1], the result follows.

3.3.2 Bound on the rejection probability

In this section we bound the average rejection probability of the MALA–process.

The main result is the following Proposition which guarantees that the average rejection

probability decreases with order 3
2 of the step–size h. It is the Hilbert space version of

[16, Proposition 1.7] which bounds the rejection probability for the MALA–process in a

finite–dimensional setting. As the bound in [16] is already designed to scale well when the

dimension converges to infinity the proof can be carried over to the Hilbert space setting

almost unchanged.

Proposition 3.19. If Assumption 3.4 is satisfied, then there exists a polynomial P : R2 →
[0,∞) of degree max{p3 + 3, 2p2 + 2} such that

E
[
Gh(x, Yh,n(x))+

]
≤ P(‖x‖W , ‖∇SU(x)‖W ) · h

3
2 , for all x ∈W,h ∈ (0, 2).

To prove the Proposition, we use a couple of Lemmas. We apply the representation

of Gh in Lemma 3.2 and reexpress the terms arising in this representation in terms of

derivatives of V . Then the first line of the representation in Lemma 3.2 has the following

structure:
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Lemma 3.20. Let Assumption 3.4 be satisfied. Then for all x, y ∈W

V (y)− V (x)− 1

2
〈y − x,∇SV (y) +∇SV (x)〉S

= −1

2

∫ 1

0
t(1− t)D3V ((1− t)x+ ty)(y − x)3dt.

Proof. We expand the function f(t) := V (x + t(y − x)) with Taylor’s formula. For this

choice of f , we have

f ′(t) = DV (x+ t(y − x))(y − x) = 〈∇SV (x), y − x〉S ,

f ′′(t) = D2V (x+ t(y − x))(y − x)2,

f ′′′(t) = D3V (x+ t(y − x))(y − x)3.

With Taylor’s fomula, V (y)− V (x) can be expressed as

V (y)− V (x) =

∫ 1

0
f ′(t) dt

= 〈y − x,∇SV (x)〉S +

∫ 1

0

∫ t

0
f ′′(s) dsdt

= 〈y − x,∇SV (x)〉S +

∫ 1

0
(1− s)f ′′(s) ds.

Similarly, we get

V (x)− V (y) =

∫ 0

1
f ′(t) dt

= −〈y − x,∇SV (y)〉S +

∫ 1

0

∫ 1

t
f ′′(s) dsdt

= −〈y − x,∇SV (y)〉S +

∫ 1

0
sf ′′(s) ds.

Combining both equations, we obtain

V (x)− V (y)− 1

2
〈y − x,∇SV (x) +∇SV (y)〉S =

1

2

∫ 1

0
(1− 2s)f ′′(s) ds.

As ∫ 1

0
(1− 2s)f ′′(s) ds =

∫ 1

0
(1− 2s)

∫ s

0
f ′′′(t)dtds

=

∫ 1

0

∫ 1

t
(1− 2s)dsf ′′′(t)dt

= −
∫ 1

0
t(1− t)f ′′′(t)dt
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we conclude

V (x)− V (y)− 1

2
〈y − x,∇SV (x) +∇SV (y)〉S = −1

2

∫ 1

0
t(1− t)D3V (x+ t(y − x))(y − x)3dt.

Lemma 3.21. If V satisfies Assumption 3.4, we have for x, y ∈W

1)

∣∣∣∣V (y)− V (x)− 1

2
〈y − x,∇SV (y) +∇SV (x)〉S

∣∣∣∣ ≤ 1

12
L3(x, y)‖y − x‖3W ,

2) |〈∇SU(y) +∇SU(x),∇SV (y)−∇SV (x)〉S | ≤ L2(x, y)‖∇SU(y) +∇SU(x)‖W ‖y − x‖W ,

3) ‖∇SU(y) +∇SU(x)‖W ≤ 2‖∇SU(x)‖W + (1 + L2(x, y))‖y − x‖W .

Proof. By the definition of the upper bounds L2(x, y) and L3(x, y) of the derivatives of V ,

we get for the inequalities 1) - 3):

1): With Lemma 3.20,∣∣∣∣V (y)− V (x)− 1

2
〈y − x,∇SV (y) +∇SV (x)〉S

∣∣∣∣ ≤ 1

2
sup
z∈[x,y]

D3V (z)

∫ 1

0
t(1− t)dt

≤ 1

12
L3(x, y)‖x− y‖3W .

2): The second equation follows from

〈∇SU(y) +∇SU(x),∇SV (y)−∇SV (x)〉S
= DV (y)(∇SU(y) +∇SU(x))−DV (x)(∇SU(y) +∇SU(x))

=

∫ 1

0
D2V ((1− t)x+ ty)(∇SU(y) +∇SU(x))dt

≤ L2(x, y)‖∇SU(y) +∇SU(x)‖W ‖x− y‖W .

3): As

‖∇SV (y)−∇SV (x)‖W ≤
∥∥∥∥∫ 1

0
D2V ((1− t)x+ ty)(y − x)dt

∥∥∥∥
W

≤ L2(x, y)‖y − x‖W ,

we get

‖∇SU(y) +∇SU(x)‖W ≤ 2‖∇SU(x)‖W + ‖∇SU(y)−∇SU(x)‖W
≤ 2‖∇SU(x)‖W + ‖y − x‖W + ‖∇SV (y)−∇SV (x)‖W
≤ 2‖∇SU(x)‖W + (1 + L2(x, y))‖y − x‖W .
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We are now have the tools to bound the average rejection probability as state in

Proposition 3.19.

Proof. By Lemma 3.2, Gh(x, y) has the form

Gh(x, y) := V (y)− V (x)− 1

2
〈∇SV (x) +∇SV (y), y − x〉S

+
h

8− 2h
〈∇SV (y)−∇SV (x), x+ y〉S

+
h

8− 2h

(
‖∇SV (y)‖2S − ‖∇SV (x)‖2S

)
.

Thus we can bound Gh(x, Yh,n(x)) for h ∈ (0, 2) by

Gh(x, Yh,n(x)) ≤ I +
h

4
II,

where

I :=

∣∣∣∣V (y)− V (x)− 1

2
〈∇SV (x) +∇SV (y), y − x〉S

∣∣∣∣ and

II := |〈∇SV (y)−∇SV (x),∇SU(x) +∇SU(y)〉S |.

With Lemma 3.21, we can bound the first term by

I ≤ 1

12
E
[
L3(x, Yh,n(x))‖Yh,n(x)− x‖3W

]
and the second term by

II ≤ E
[
2L2(x, Yh,n(x))‖∇SU(x)‖W ‖Yh,n(x)− x‖W

]
+ E

[
L2(x, Yh,n(x))(1 + L2(x, Yh,n(x)))‖Yh,n(x)− x‖2W

]
.

Applying the bounds stated in Lemmas 3.21 and 3.17, it follows

I ≤ 1

12
E
[
L3(x, Yh,n(x))‖Yh,n(x)− x‖3W

]
≤ 1

12
C33p3−1

(
(1 + ‖x‖W )p3 +

(
h

2

)pn
‖∇SU(x)‖pnW

)
E
[
‖Yh,n(x)− x‖3W

]
+

1

2
C33p3−1h

p3
2 E
[
‖Nn+1‖p3‖Yh,n(x)− x‖3W

]
≤ h

3
2 ·
[

1

12
C33p3−1

(
1 + ‖x‖p3W + ‖∇SU(x)‖p3W

)
E
[
(‖∇SU(x)‖W + ‖Nn+1‖W )3

]
+

1

2
C33p3−12

p3
2 E
[
‖Nn+1‖p3W (‖∇SU(x)‖W + ‖Nn+1‖)3

]]
≤ h

3
2 · P1(‖x‖W , ‖∇SU(x)‖W )
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for a polynomial P1(x, y) of degree p3 + 3, which only depends on C3, p3 and the first p3 + 3

moments of ν on W . Similarly, II can be bounded by

II ≤ h
1
2 · P2(‖x‖W , ‖∇SU(x)‖W )

for a polynom P2(x, y) of degree p2 + 2, which only depends on C2, p2 and first p2 + 3

moments of ν on W . Applying these bounds, we get

E[Gh(x, Yh,n(x))+] ≤ I +
h

4
II

≤ h
3
2 (P1(x, Yh,n(x)) +

1

4
P2(x, Yh,n(x)))

≤ h
3
2P(x, Yh,n(x)),

where P(x, y) := P1(x, Yh,n(x))+ 1
4P2(x, Yh,n(x)) is a polynomial of degree max{p3+3, 2p2+

2}, which only depends on C2, C3, p2, p3 and the first four moments of ν on W .

3.3.3 Bound on the derivative of the acceptance probability

In this section, we bound the derivative of average rejection probability of the

MALA–process, to control the term

Ex,x̃ [ah(x, Yh,n(x))− ah(x̃, Yh,n(x̃))]

in equation (3.26). The main result of this section is the following Proposition:

Proposition 3.22. If Assumption 3.4 is satisfied, then there exists a polynomial Q : R2 →
R of degree max{p4 + 3, p3 + p2 + 2, 3p2 + 1} such that for all x ∈ W the gradient of the

acceptance probability is bounded by

E
[
‖∇WGh(x, Yh,n(x))‖W

]
≤ h

3
2Q(‖x‖W , ‖∇SU(x)‖W ) for h ∈ (0, 2).

The coefficients of Q only depend on C2, C3, C4, p2, p3, p4 and the first max{p4 +3, p3 +p2 +

2, 3p2 + 1} moments of ν on W .

Again, this result is the Hilbert space version of [16, Proposition 1.9]. The proof

carries over almost unchanged from the finite–dimensional version.

We start with some notation. Define for x,w ∈W

Fwh (x,w) := Gh

(
x, x− h

2
∇SU(x) + w

)
.
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Note that Fh is related to the acceptance probability given in (3.7) of the chain at position

x with proposal Yh,n(x) by

ah(x, Yh,n(x)) = exp
(
−Fwh

(
x, h̃Nn+1

))
.

We define for fixed w ∈W

y := yw(x) := x− h

2
∇SU(x) + w.

Let for x ∈W , ∇2
WV (x) be the linear operator on W defined by〈
ξ,∇2

WV (x)η
〉
W

= D2V (x)(ξ, η) for all ξ, η ∈W

and ∇2
SV (x) the linear operator on S defined by〈

ξ,∇2
SV (x)η

〉
S

= D2V (x)(ξ, η) for all ξ, η ∈ S.

Furthermore, note that

∇2
WV (x) = C−1∇2

SV (x)

because of 〈ξ, η〉S =
〈
C−1ξ, η

〉
W

.

For the proof of Proposition 3.22, we first establish the following bounds on the

operator norm of ∇2
SV (x) and ∇2

WV (x):

Lemma 3.23. Let Assumptions 3.3 and 3.4 be satisfied. Then, for x ∈W ,∥∥∇2
WV (x)

∥∥
W→W ≤ L2(x, x),∥∥∇2

SV (x)
∥∥
W→W ≤ cπL2(x, x).

Proof. For x, ξ, η ∈ W , the inequalities are derived throught the following considerations:

The first one is given by 〈
ξ,∇2

WV (x)η
〉
W

= D2(x)(ξ, η)

≤ L2(x, x)‖ξ‖W ‖η‖W .

The second one is due to〈
ξ,∇2

SV (x)η
〉
W

=
〈
Cξ,∇2

SV (x)η
〉
S

= D2(x)(Cξ, η)

≤ L2(x, x)‖Cξ‖W ‖η‖W
≤ cπL2(x, x)‖ξ‖W ‖η‖W .
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With the notation introduced above, we can express the derivatives D∇SV (x),

D∇SU(x) and Dy(x) as operators from W to W as described in the next lemma.

Lemma 3.24. The derivatives of ∇SV (x), ∇SU(x) and y(x) : W →W are given by:

D∇SV (x) = ∇2
SV (x)

D∇SU(x) = I +∇2
SV (x)

Dyw(x) =

(
1− h

2

)
I− h

2
∇2
SV (x)

=: I− h

2
∇2
SU(x).

Proof. For ξ, η ∈ S, we have

〈η,D∇SV (x)(ξ)〉S = D〈η,∇SV (x)〉S(ξ)

= D〈η,∇WV (x)〉S(ξ)

= D(DV (x)(η))(ξ)

= D2V (x)(η, ξ)

=
〈
ξ,∇2

Sη
〉
S
.

Therefore, D∇SV (x) = ∇2
S . As∇SU(x) = x+∇SV (x), and yw(x) =

(
1− h

2

)
I− h

2∇SV (x) + w,

their derivatives are given by

D∇SU(x) = Dx+ D∇SV (x)

= I +∇2
SV (x),

Dyw(x) =

(
1− h

2

)
Dx− h

2
D∇SV (x)

=

(
1− h

2

)
I− h

2
∇2
SV (x).

We now calculate the W–gradient of Fwh .

Proposition 3.25. Let Assumption 3.4 be satisfied. The W–gradient of Fwh (x) can be
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decomposed for x,w ∈W :

∇WFwh (x) = ∇WV (y)−∇WV (x)− 1

2
(∇2

WV (y)−∇2
WV (x))(y − x)

− h

4

(
∇2
WV (x)∇2

SV (y) +∇2
WV (y)

)
(y − x)

+
h

8− 2h

(
∇2
WV (y)−∇2

WV (x)
)

(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x)))

− h2

16− 4h

(
∇2
WV (x)∇2

SV (y) +∇2
WV (y)

)
(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x)) .

Proof. By Lemma 3.4, Fwh (x) is given by

Fwh (x) = Awh (x) +
h

8− 2h
Bw
h (x)

with

Awh (x) = V (y(x))− V (x)− 1

2
〈∇SV (y(x)) +∇SV (x), y(x)− x〉S ,

Bw
h (x) = 〈∇SU(y(x))−∇SU(x),∇SV (y(x))−∇SV (x)〉S .

First, we calculate the S–gradient ∇SFwh (x) and derive the W–gradient from the identity

∇WFwh (x) = C−1∇SFwh (x).

The S–gradient of Awh is given by

∇SAwh (x,w) = D(y)∗∇SV (y)−∇SV (x)

− 1

2
(D(y)∗∇2

SV (y) +∇2
SV (x))(y − x)

− 1

2
D(y − x)∗(∇SV (y) +∇SV (x)),

where D(y)∗ denotes the adjoint operator of D(y) on S. Note that

D(y) = I− h

2
∇2
SU(x)

and is self–adjoint on S as the sum of the identity and a second derivative operator. There-



91

fore, we can conclude

∇SAh(x,w) = ∇SV (y)−∇SV (x)− 1

2
(∇2

SV (y) +∇2
SV (x))(y − x)

− h

2
∇2
SU(x)

(
∇SV (y)− 1

2
∇2
SV (y)(y − x)

)
+
h

4
∇2
SU(x)(∇SV (y) +∇SV (x))

= ∇SV (y)−∇SV (x)− 1

2
(∇2

SV (y) +∇2
SV (x))(y − x)

− h

4
∇2
SU(x) (∇SV (y)−∇SV (x))

+
h

4
∇2
SU(x)∇2

SV (y)(y − x).

The gradient of the second summand Bw
h is derived by similar calculations:

∇SBw
h (x) =

(
D(y)∗∇2

SV (y)−∇2
SV (x)

)
(∇SU(y) +∇SU(x))

+
(
D(y)∗∇2

SU(y) +∇2
SU(x)

)
(∇SV (y)−∇SV (x))

=
(
∇2
SV (y)−∇2

SV (x)
)

(∇SU(y) +∇SU(x))

+
(
∇2
SU(y) +∇2

SU(x)
)

(∇SV (y)−∇SV (x))

− h

2
∇2
SU(x)∇2

SU(y)(∇SV (y)−∇SV (x))

− h

2
∇2
SU(x)∇2

SV (y)(∇SU(y) +∇SU(x))

=
(
∇2
SV (y)−∇2

SV (x)
)

(∇SU(y) +∇SU(x))

+
(
∇2
SV (y)−∇2

SV (x)
)

(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

+ 2∇2
SU(x)(∇SV (y)−∇SV (x))

− h

2
∇2
SU(x)(∇SV (y)−∇SV (x))

− h

2
∇2
SU(x)∇2

SV (y)(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x)).

In Awh (x) and Bw
h (x), there are in total 3 terms of the type ∇2

SU(x)(∇SV (y) − ∇SV (x)).

As

−h
4

+
h

8− 2h

(
2− h

2

)
= 0,
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these terms all cancel and we can summarize the above results:

∇SFwh (x) = ∇SAwh (x) +
h

8− 2h
∇SBw

h (x)

= ∇SV (y)−∇SV (x)− 1

2
(∇2

SV (y) +∇2
SV (x))(y − x)

+
h

4
∇2
SU(x)∇2

SV (y)(y − x)

+
h

8− 2h

(
∇2
SV (y)−∇2

SV (x)
)

(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

− h2

16− 4h
∇2
SU(x)∇2

SV (y)(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

= ∇SV (y)−∇SV (x)− 1

2
(∇2

SV (y) +∇2
SV (x))(y − x)

+
h

4
(I +∇2

SV (x))∇2
SV (y)(y − x)

+
h

8− 2h

(
∇2
SV (y)−∇2

SV (x)
)

(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

− h2

16− 4h

(
I +∇2

SV (x)
)
∇2
SV (y)(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x)).

With ∇WFwh (x) = C−1∇SFwh (x), we now get the final depiction of the derivative:

∇WFwh (x) = ∇WV (y)−∇WV (x)− 1

2
(∇2

WV (y) +∇2
WV (x))(y − x)

+
h

4

(
∇2
WV (y) +∇2

WV (x)∇2
SV (y)

)
(y − x)

+
h

8− 2h

(
∇2
WV (y)−∇2

WV (x)
)

(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

− h2

16− 4h

(
∇2
WV (y) +∇2

WV (x)∇2
SV (y)

)
(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x)).

Similarly to Lemma 3.26, we now bound the terms arising in the derivative of the

acceptance probability in terms of the derivatives of the potential V .

Lemma 3.26. Let Assumption 3.4 be satisfied. Then for x, y ∈ W , the following bounds
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hold:

1)

∥∥∥∥∇SV (y)−∇SV (x)− 1

2
(∇2

SV (y) +∇2
SV (x))(y − x)

∥∥∥∥
W

≤ 1

12
L4(x, y)‖y − x‖W ,

2)
∥∥(∇2

WV (y) +∇2
WV (x))∇2

SV (y)(y − x)
∥∥
W
≤ L2(y, y)(1 + cπL2(x, x))‖y − x‖W ,

3)
∥∥(∇2

WV (y)−∇2
WV (x))(∇SV (y)−∇SV (x) +∇SU(x) +∇SU(y))

∥∥
W
,

≤ L3(x, y)(L2(x, y)‖y − x‖W + ‖∇SU(y) +∇SU(x)‖W )‖y − x‖W
4)

∥∥(∇2
WV (y) +∇2

WV (x)∇2
SV (y))(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

∥∥
W
,

≤ (1 + cπL2(x, x))L2(y, y)(L2(x, y)‖y − x‖W + ‖∇SU(y) +∇SU(x)‖W ).

Proof. 1) Analogously to the proof of Lemma 3.20, we define for x, y and ξ ∈W ,

fξ(t) := 〈∇WV (x+ t(y − x)), ξ〉W .

The derivative of fξ are given by

fξ(t) = DV (x+ t(y − x))(ξ),

f ′ξ(t) = D2V (x+ t(y − x))(ξ, y − x),

f ′′ξ (t) = D3V (x+ t(y − x))(ξ, y − x, y − x),

f ′′′ξ (t) = D4V (x+ t(y − x))(ξ, y − x, y − x, y − x).

Like in Lemma 3.20, the above terms can be used to find the following bound

〈∇WV (y), ξ〉W − 〈∇WV (x), ξ〉W −
1

2

〈
(∇2

WV (y) +∇2
WV (x))(y − x), ξ

〉
W

= fξ(1)− fξ(0)− 1

2
(f ′ξ(0) + f ′ξ(1))

=
1

2

∫ 1

0
t(1− t)f ′′′ξ (t)dt

≤ 1

12
L4(x, y)‖ξ‖W ‖y − x‖

3
W

such that ∥∥∥∥∇WV (y)−∇WV (x)− 1

2
(∇2

WV (y) +∇2
WV (x))(y − x)

∥∥∥∥
W

≤ 1

12
L4(x, y)‖y − x‖3W .

2) The second statement follows from Lemma 3.23 and the two inequalities∥∥(∇2
WV (y))(y − x)

∥∥
W
≤ L2(y, y)‖x− y‖W ,∥∥∇2

WV (x)∇2
SV (y)(y − x)

∥∥
W
≤ cπL2(x, x)L2(y, y)‖x− y‖W .
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3) For the third one, note that∥∥(∇2
WV (y)−∇2

WV (x))(∇SV (y)−∇SV (x) +∇SU(x) +∇SU(y))
∥∥
W

= sup
‖ξ‖W=1

〈
ξ, (∇2

WV (y)−∇2
WV (x))(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

〉
W

= sup
‖ξ‖W=1

(D2V (y)−D2V (x))(ξ,∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

≤ sup
‖ξ‖W=1

L3(x, y)‖y − x‖W ‖ξ‖W ‖∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x)‖W

≤ L3(y, x)‖y − x‖W (L2(x, y)‖y − x‖W + ‖∇SU(y) +∇SU(x)‖W ) .

4) Finally, the two inequalities hold∥∥∇2
WV (y)(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

∥∥
W

≤ L2(y, y)(L2(x, y)‖y − x‖W + ‖∇SU(y) +∇SU(x)‖W ) and∥∥∇2
WV (x)∇2

SV (y)(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))
∥∥
W

≤ cπL2(x, x)L2(y, y)(L2(x, y)‖y − x‖W + ‖∇SU(y) +∇SU(x)‖W ).

This leads to∥∥(∇2
WV (x)∇2

SV (y) +∇2
WV (y))(∇SV (y)−∇SV (x) +∇SU(y) +∇SU(x))

∥∥
W

≤ (1 + cπL2(x, x))L2(y, y)(L2(x, y)‖y − x‖W + ‖∇SU(y) +∇SU(x)‖W ).

We are now ready to prove the main result of this section, Proposition 3.22.

Proof. (Proposition 3.19)

By the definition of Gh, and Proposition 3.25, the expectation of Gh can be bounded by

E
[
‖∇WGh(x, Yh,n(x))‖W

]
≤ E

[∥∥∥∇SF h̃Nnh (x)
∥∥∥
W

]
≤ I +

h

4
II +

h

8− 2h
III +

h2

16− 4h
IV,

where I–IV are given by

I := E
[∥∥∥∥∇WV (Yh,n(x))−∇WV (x)− 1

2
(∇2

WV (Yh,n(x))−∇2
WV (x))(Yh,n(x)− x)

∥∥∥∥
W

]
,

II := E
[∥∥(∇2

WV (Yh,n(x)) +∇WV (x)∇SV (Yh,n(x)))(Yh,n(x)− x)
∥∥
W

]
,

III := E
[∥∥(∇2

WV (Yh,n(x))−∇2
WV (x))(∇SV (Yh,n(x))−∇SV (x) +∇SU(Yh,n(x)) +∇SU(x))

∥∥
W

]
,

IV := E [‖(∇WV (Yh,n(x))

+∇2
WV (x)∇2

SV (Yh,n(x)))(∇SV (Yh,n(x))−∇SV (x) +∇SU(Yh,n(x)) +∇SU(x))
∥∥
W

]
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The results of Lemma 3.21 and 3.26 lead to

I ≤ 1

12
E[L4(x, Yh,n(x))‖Yh,n(x)− x‖3W ], (3.28)

II ≤ (1 + cπL2(x, x))E[L2(Yh,n(x), Yh,n(x))‖Yh,n(x)− x‖W , ] (3.29)

III ≤ E[L3(x, Yh,n(x))‖Yh,n(x)− x‖W ((1 + L2(x, Yh,n(x)))‖Yh,n(x)− x‖W + 2‖∇SU(x)‖W )],

(3.30)

IV ≤ (1 + L2(x, x))E[L2(Yh,n(x), Yh,n(x))(1 + L2(x, Yh,n(x))‖Yh,n(x)− x‖W + 2‖∇SU(x)‖W )].

(3.31)

Similarly to Proposition 3.19, we can bound (3.28) – (3.31) by

I ≤ h
3
2 Q1(‖x‖W , ‖∇SU(x)‖W ),

II ≤ h
1
2 Q2(‖x‖W , ‖∇SU(x)‖W ),

III ≤ h
1
2 Q3(‖x‖W , ‖∇SU(x)‖W ),

IV ≤ h
1
2 Q4(‖x‖W , ‖∇SU(x)‖W )

where Q1,Q2,Q3,Q4 : R2 → R are polynomials of degree p4 + 3, 2p2 + 1, p3 + p2 + 2 and

3p2 + 1 respectively. Therefore, the expectation value of the gradient of the acceptance

probability satisfies

E
[
‖∇SGh(x, Yh,n(x))‖W

]
≤ I +

h

4
II +

h

8− 2h
III +

h2

16− 4h
IV

≤ h
3
2Q(‖x‖W , ‖∇SU(x)‖W )

where Q : R2 → R is a polynomial of degree dQ := max{p4 + 3, p3 + p2 + 2, 3p2 + 1}.

As a direct consequence, we get a bound on the difference between the acceptance

probabilities of the process starting in x and x̃. This lets us control the second summand

in (3.26).

Corollary 3.27. Let ah : W ×W → [0, 1] be the acceptance probability of the coupling of

the MALA–process (Xn, X̃n)n∈N as constructed in Chapter 3.3.1. Then for all h ∈ (0, 2)

E [|ah(x, Yh,n(x))− ah(x̃, Yh,n(x̃))|]

≤ E [|Gh(x, Yh,n(x))−Gh(x̃, Yh,n(x̃))|]

≤ h
3
2 ‖x− x̃‖W Q

(
max{‖x‖W , ‖x̃‖W }, sup

z∈[x,x̃]
‖∇SU(z)‖W

)
holds, where Q : R2 → R is the polynomial from Proposition 3.22.
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Proof. By construction of the coupling and of Gh, we have

a(x, Yh,n(x)) = exp(−Gh(x, Yh,n(x)) ∧ 0),

a(x̃, Yh,n(x̃)) = exp(−Gh(x̃, Yh,n(x̃)) ∧ 0).

As x 7→ exp(−x) is 1–Lipschitz for x ∈ [0,∞), we get

E [|a(x, Yh,n(x))− a(x̃, Yh,n(x̃))|] ≤ E [|Gh(x, Yh,n(x))−Gh(x̃, Yh,n(x̃))|]

≤ E
[
‖∇WGh(z, Yh,n(z))‖W

]
‖x− x̃‖W .

Proposition 3.22 bounds E
[
‖∇WGh(x, Yh,n(z))‖W

]
such that

E [|a(x, Yh,n(x))− a(x̃, Yh,n(x̃))|]

≤ h
3
2 ‖x− x̃‖W Q

(
max{‖x‖W , ‖x̃‖W }, sup

z∈[x,x̃]
‖∇SU(z)‖W

)
.

First bound on the Wasserstein distance of the MALA–process

Combining the results of the sections above where we controlled the acceptance

probability of the MALA–process, we finally derive a bound on the Wasserstein distance

of the coupling of the MALA–process. This bound depends on the Wasserstein distance of

the metric dR(x, y) := ‖y − x‖W ∧R.

Proposition 3.28. Let Assumptions 3.3 and 3.4 be satisfied, and q : W × B(W ) → [0, 1]

be the transition kernel of the MALA–process. Define dR(x, y) := ‖x− y‖W ∧ R and

UR := {x ∈W |d(x, 0) < R
2 }. Then there exists r ∈ N and a pair coupling c of q such that

for all x, x̃ ∈ UR∫
W×W

dR(y, ỹ)c((x, x̃),dydỹ) ≤
(

1− h

2
δ + h

3
2γ(1 +Rr)

)
dR(x, x̃).

Proof. Let c be the pair coupling of (Xn)n∈N and q as constructed in Section 3.3.1. (Xn)n∈N

is the MALA–process constructed in Section 3.1. By Proposition 3.16, we know that∫
W×W

d(y, ỹ)c((x, x̃),dydỹ) = Ex,x̃[dR(Yh,n(x), Yh,n(x̃))]

≤ Ex,x̃ [dR(Yh,n(x), Yh,n(x̃))]

+REx,x̃ [|Gh(x, Yh,n(x))−Gh(x̃, Yh,n(x̃))|]

+ dR(x, x̃)Ex,x̃
[
min{Gh(x, Yh,n(x))+, Gh(x̃, Yh,n(x̃))+}

]
.
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These three summands can now be bounded by the results of the previous sections. As

x, x̃ ∈ UR, we have ‖Yh,n(x)− Yh,n(x̃)‖W ≤ R and

dR(x, x̃) = ‖x− x̃‖W ,

dR(Yh,n(x), Yh,n(x̃)) = ‖Yh,n(x)− Yh,n(x̃)‖W ≤
(

1− h

2
δ

)
‖x− x̃‖.

Therefore, Corollary 3.27 leads for all h ∈ (0, 2) to

Ex,x̃ [|Gh(x, Yh,n(x))−Gh(x̃, Yh,n(x̃))|]

≤ h
3
2 ‖x− x̃‖W Q

(
max{‖x‖W , ‖x̃‖W }, sup

z∈[x,x̃]

)
.

Applying Proposition 3.22 results in

E
[
‖∇WGh(x, Yh,n(x))‖W

]
≤ h

3
2Q(‖x‖W , ‖∇SU(x)‖W ) for h ∈ (0, 2)

which implies

REx,x̃ [|Gh(x, Yh,n(x))−Gh(x̃, Yh,n(x̃))|]

≤ R sup
z∈UR

Q(‖z‖W , ‖∇SU(z)‖W ) ‖x− x̃‖W

≤ R sup
z∈UR

Q(‖z‖W , ‖∇SU(z)‖W ) dR(x, x̃).

Finally, the third summand is bounded by Proposition 3.19

dR(x, x̃)Ex,x̃
[
min{Gh(x, Yh,n(x))+, Gh(x̃, Yh,n(x̃))+}

]
≤ dR(x, x̃) sup

z∈UR
P(‖z‖W , ‖∇SU(z)‖W ) · h

3
2 .

Moreover, Assumption 3.3 gives us ‖∇SU(x)‖W ≤ (1 + L)‖x‖W + ‖U(0)‖W . As P and Q
are polynomials, we can now choose c > 0, such that

c(1 +Rr) ≥ sup
z∈UR

RP(‖z‖W , ‖∇SU(z)‖W ) +Q(‖z‖W , ‖∇SU(z)‖W ) for all R ≥ 0 (3.32)

with

r := max{degP + 1, degQ}. (3.33)
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Therefore, as δ = 1− L, ∫
W×W

dR(y, ỹ)c((x, x̃), dydỹ)

≤
(

1− 1

2
δh

)
dR(x, x̃)

+R sup
z∈UR

Q(‖z‖W , ‖∇SU(z)‖W ) dR(x, x̃)

+ dR(x, x̃) sup
z∈UR

P(‖z‖W , ‖∇SU(z)‖W ) · h
3
2

≤
(

1− h

2
δ + ch

3
2 (1 +Rr)

)
dR(x, x̃).

Remark 3.29. Note that r, the power of R in the remainder term, is bounded by

max{degP + 1,degQ} = max{p3 + 4, 2p2 + 3, p4 + 3, p3 + p2 + 2, 3p2 + 1}.

Corollary 3.30. Under the assumptions of Proposition 3.28, we have

WdR(µqn, ν) ≤
(

1− h

2
δ + h

3
2 c(1 +Rr)

)n
+

2R

h
(
δ + 2h

1
2 c(1 +Rr)

)(Cn(UR, µ) + Cn(UR, ν))

where Cn was defined in (3.22).

Proof. The result follows directly from Proposition 3.28 and Theorem 3.1.

In order to use Corollary 3.30 to find a bound on the Wasserstein distance, it

remains to get good bounds on the escape probabilities Cn(UR, µ) of the MALA–process.

This will be subject of the next section:

Controlling the escape probability

This section we show the existence of bounds for the escape probability of the

MALA–process on a ball with radius R to control the terms Cn(UR, µ) and Cn(UR, ν) as

arising in Corollary 3.30.

Theorem 3.2. Let Assumption 3.3 be satisfied. Let (Xi)i∈N be the MALA–process (Xn)n∈N,

as constructed in Chapter 3.1. Then there exist constants θ0 > 0, R0 < ∞ and κ > 0,
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independent of n ∈ N, and a polynomial function P(R), such that for all 0 < θ < θ0,

R > R0, x ∈W with ‖x‖W < 1
2R, and h ≤ h+(R),

Px [‖Xi‖W < R ∀i ∈ {0, . . . , n}] ≥ 1− n
(

exp(κ) exp

(
θ

(
‖x‖2W −

R2

2

)))
.

The upper bound for h is given by

h+(R) :=
1

4
L2P(R)−2. (3.34)

The rough idea of the proof of Theorem 3.2 is to bound the exponential moment

Ex
[
exp

(
θ(‖Xn‖2W )

)]
≤ exp(θ‖x‖2W + κ) (3.35)

for a constant κ independent of h, R and i using the contraction property established in the

previous sections, and to apply Markov’s inequality to bound the probability of the chain

leaving the ball with radius R.

To this purpose, we need the following fact on Gaussian measures on Hilbert spaces:

Lemma 3.31. Let ν be a Gaussian measure on W with covariance operator Q. Set

cw := 4 traceQ, then for s ∈
[
0, 1

cw

)
∫
W

exp(s‖z‖2W )ν(dz) ≤ exp

(
1

2
cws

)
holds. Furthermore, for all s ≥ 0 and all x ∈W ,∫

W
exp(s〈x, y〉W )ν(dy) ≤ exp

(
1

8
cws

2‖x‖2W
)
.

Proof. As ‖Q‖W→W ≤ traceQ, we have for 0 ≤ s < 1
cw

by [12, Proposition 2.16],∫
W

exp(s‖x‖2W )ν(dx) = exp

(
1

2

∞∑
k=1

(2s)k

k
traceQk

)

We now bound

∞∑
k=1

(2s)k

k
traceQk ≤ 2s traceQ

(
1 +

∞∑
k=1

(2s traceQ)k

k

)

≤ 2s traceQ
∞∑
k=0

2k

4k

≤ 4s traceQ,
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which proves the first part of the lemma. For the second one, note that 〈x, Y 〉W is one–

dimensional Gaussian with mean 0 and variance 〈x,Qx〉W if x ∈W and Y is a ν–distributed

random variable. Therefore,∫
W

exp(s〈x, y〉W )ν(dy) =
1√

2π〈x,Qx〉W

∫ ∞
−∞

exp(sz) exp

(
− z2

2〈x,Qx〉W

)
dz

= exp

(
1

2
s2〈x,Qx〉W

)
≤ exp

(
1

2
s2 traceQ‖x‖2W

)
= exp

(
1

8
cws

2‖x‖2W
)
.

The following Lemma introduces a bound on the exponential moment of Xn con-

ditioned on the event that the Markov Chain (Xn)n∈N has not left the ball of radius R until

time n− 1. This is the key step for the proof of Theorem 3.2.

For i ∈ N, define the events Bi by

Bi := {‖Xi‖ < R for i ∈ {1, . . . , i}} . (3.36)

Lemma 3.32. Let (Xi)i∈N be the MALA–process constructed in Section 3.1 with step size

h, and h+ given by (3.34). Let n ∈ N. Then there exist constants θ0 > 0, R0 < ∞ and

κ > 0, independent of i ∈ N, and a polynomial function P(R) such that for all 0 < θ < θ0,

R > R0, x ∈W with ‖x‖W < 1
2R and h ≤ h+(R)

Ex.
[
exp

(
θ(‖Xn‖2W )

)
IBn−1

]
≤ exp(θ‖x‖2W + κ).

Proof. To calculate the expectation value, we split it on the setsAn(x) := {Un < ah (x, Yh,n−1(x))},
where the proposal is accepted, and Acn(x) where it is rejected. Then for θ > 0,

Ex
[
exp

(
θ‖Xn‖2W

)
IBn−1

]
≤ Ex

[
exp

(
θ‖Yh,n−1(Xn−1)‖2W

)
IBn−1 ,An(Xn−1)

]
+ Ex

[
exp

(
θ‖Xn−1‖2W

)
IBn−1 ,Acn(Xn−1)

]
≤ Ex

[
exp

(
θ‖Yh,n−1(Xn−1)‖2W

)
IBn−1

]
+ Ex

[
exp

(
θ‖Xn−1‖2W

)
IBn−1

]
sup

‖z‖W<R
Px[Acn(z)],

(3.37)
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because ‖Xn−1‖W < R almost surely on Bn−1.

The acceptance part is the important one in our analysis, the rejection part is in the end

treated as error. It can be controlled as by Assumption 3.3, ‖∇SU(x)‖W grows at most

linearly in x. Therefore, we deduce from Proposition 3.19 the existence of a polynomial

P(R) such that for all x ∈W with ‖x‖W < 1
2R

sup
‖z‖W<R

Px[Acn(z)] ≤ P(R)h
3
2 .

Now, we turn to the acceptance part. First, we define

Y ∗n :=

(
1− h

2

)
Xn−1 +

h

2
∇SV (Xn−1).

With Assumption 3.3, we can bound this term:

‖Y ∗n ‖
2
W ≤

((
1− h

2
(1− L)

)
‖Xn‖W +

h

2
a

)2

≤
(

1− h

4
(1− L)

)
‖Xn‖2W +

(
h

2
a

)2 4

(1− L)h

= (1− ρh) ‖Xn‖2W + h
a2

4ρ

where we set ρ := 1
4(1−L), a := ‖∇SV (0)‖W , and used (x+ y)2 ≤ px2 + qy2 for 1

p + 1
q = 1

with p = 1−ρh
1−2ρh . We now calculate the conditional expectation Ex [·|Fn−1] with respect to

the sigma–algebra Fn−1 := σ(X0, . . . , Xn−1). As Nn is independent of Fn−1, we have

Ex
[
exp

(
θ‖Yh,n(Xn−1)‖2W

)
IBn−1

∣∣∣Fn−1

]
≤ exp

(
θ
∥∥Y ∗n−1

∥∥2

W

)
IBn−1Ex

[
exp

(
θ
√
h̃
〈
Y ∗n−1, Nn

〉
W

+ θh̃‖Nn‖2W
)∣∣∣Fn−1

]
≤ exp

(
θ
∥∥Y ∗n−1

∥∥2

W

)(
Ex
[
exp

(
2θ
√
h̃
〈
Y ∗n−1, Nn

〉
W

)]
Ex
[
exp

(
2θh̃‖Nn‖2W

)]) 1
2

≤ exp
(
θ
∥∥Y ∗n−1

∥∥2

W

)
exp

(
2θ2 1

8
cwh̃

∥∥Y ∗n−1

∥∥2

W

)
exp

(
1

2
θh̃cw

)
≤ exp

(
θ(1− ρh)‖Xn−1‖2W

)
exp

(
1

4
θ2cwh‖Xn−1‖2W

)
exp

(
θh

(
a2

4ρ
+

1

16

a2

ρ
θcwh+

1

2
cw

))
for θ < 1

2cw
applying Lemma 3.31. Setting

K :=
a2

4

(
1 +

1

ρ

)
+

1

2
cw
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and choosing θ ≤ min
{

1
2cw

, 2ρ
cw

}
, we can sum up the derived bounds above:

Ex
[
exp

(
θ‖Yh,n(Xn−1)‖2W

)∣∣∣Bn−1

]
≤ exp

(
θ

(
1− 1

2
ρh

)
‖Xn−1‖2W + θhK

)
.

Using this estimate for (3.37) as well as the bounds already shown for sup‖z‖W<R P [Acn(z)]

leads to

Ex
[
exp

(
θ‖Xn‖2W

)
IBn−1

]
≤ exp

(
θ

(
1− 1

2
ρh

)
‖Xn−1‖2W + θhK

)
+ P(R)h

3
2 exp

(
θ‖Xn−1‖2W

)
IBn−1 .

By applying the expectation value and using Bi+1 ⊂ Bi for i ∈ N, we conclude:

Ex
[
exp

(
θ‖Xn+1‖2W

)
IBn

]
= Ex

[
Ex
[
exp

(
θ‖Xn+1‖2W

)
IBn

∣∣∣Fn]]
≤ Ex

[
exp

(
θ

(
1− 1

2
ρh

)
‖Xn‖2W + θhK

)
IBn + P(R)h

3
2 exp

(
θ‖Xn‖2W

)
IBn

]
≤ exp(θhK)Ex

[
exp

(
θ

(
1− 1

2
ρh

)
‖Xn‖2W

)
IBn−1

]
+ P(R)h

3
2Ex

[
exp

(
θ‖Xn‖2W

)
IBn−1

]
= exp(θhK)Ex

[
exp

(
θ‖Xn‖2W

)
IBn−1

](1− 1
2
ρh)

·
(

1 + exp(−θhK)P(R)h
3
2Ex

[
exp

(
θ‖Xn‖2W

)
IBn−1

] 1
2
ρh
)

by Jensen’s inequality. We now define for n ∈ N

ln := log
(
Ex
[
exp

(
θ‖Xn‖2W

)
IBn−1

])
.

Applying the logarithm to the results above gives us

ln+1 ≤ θhK +

(
1− 1

2
ρh

)
ln

+ log

(
1 + exp(−θhK)P(R)h

3
2 ) exp

(
1

2
ρhln

))
≤ θhK +

(
1− 1

2
ρh

)
ln + P(R)h

3
2 exp

(
1

2
ρhln

)
.

Based on this inequality, we use an inductive argument to prove

ln ≤
(

1− 1

2
ρh

)n
l0 +

n−1∑
i=0

(
1− 1

2
ρh

)
. (3.38)
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For n = 0, this is trivial, so assume

lj ≤
(

1− 1

2
ρh

)j
l0 +

j−1∑
i=0

(
1− 1

2
ρh

)

to be true for j = 0, . . . , n. Note that by this inductive assumption, l0 ≤ θR2 implies

ln ≤ θR2 for sufficiently large R. Therefore, as h ≤ 1
16L

2P(R)−2 ≤ R−2 for sufficiently

large R, we get

exp

(
1

2
ρhln

)
≤ exp

(
1

2
ρθ

)
≤ e.

for θ ≤ 2
ρ . This leads to

ln+1 ≤ θhK +

(
1− 1

2
ρh

)
ln + P(R)h

3
2 e.

As h is by assumption bounded from above by h ≤ 1
4L

2P(R)−2

ln+1 ≤ h
(
θK +

1

2
Le

)
+

(
1− 1

2
ρh

)
ln

holds, which gives us

ln+1 ≤
(

1− 1

2
ρh

)n+1

l0 + h

(
θK +

1

2
Le

) n∑
i=0

(
1− 1

2
ρh

)
≤ l0 +

2Kθ + eL

ρ
e

by applying the inductive assumption. We now set

κ :=
2Kθ0 + L

ρ
e

and get

Ex
[
exp

(
θ‖Xn‖2W

)]
≤ exp

(
θ‖x‖2W + κ

)
for h ≤ 1

4L
2P(R)−2.

Theorem 3.2 is now a consequence of Markov’s inequality.

Proof. (Theorem 3.2)

We prove this by induction. For n = 0, the statement is trivial as we assumed x < R
2 . So
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assume the statement is true for i ∈ {0, . . . , n− 1}. Then

Px [‖Xi‖W < R ∀i ∈ {0, . . . , n}]

= Px [‖Xi‖W < R ∀i ∈ {0, . . . , n− 1}]− Px [‖Xn‖W > R, ‖Xi‖W < R ∀i ∈ {0, . . . , n− 1}]

≥ 1− (n− 1)

(
exp(κ) exp

(
θ

(
‖x‖2W −

R2

2

)))
− Px [‖Xn‖W > R,Bn−1] ,

where Bn was defined in (3.36). By the assumptions of Theorem, the conditions of Lemma

3.32 are fulfilled. Therefore, there exist constants κ, R0 and θ0 > 0 such that for all

0 < θ < θ0, R > R0, all x ∈W with ‖x‖W < 1
2R and h ≤ h+(R)

Ex
[
exp

(
θ‖Xn‖2W

)
IBn−1

]
≤ exp

(
θ‖x‖2W + κ

)
. (3.39)

Markov’s inequality bounds the probability that for ‖x‖W < R
2 the process X started in x

does not leave the ball at step n by

Px [‖Xn‖W > R,Bn−1] ≤ exp(−θR2)Ex
[
exp

(
θ‖Xn‖2W IBn−1

)]
≤ exp

(
−θR2

)
exp

(
θ‖x‖2W + κθ

)
.

This implies

Px [‖Xi‖W < R ∀i ∈ {0, . . . , n}] ≥ 1− n
(

exp(κ) exp

(
θ

(
‖x‖2W −

R2

2

)))
.

Final result on the Wasserstein distance of the MALA–process

The bounds on the escape probabilities are the final piece we need to prove the

main theorem.

Theorem 3.3. Let qh be the kernel of the MALA–process with step-size h ∈ (0, 2). Let

Assumptions 3.3 and 3.4 be satisfied. Then there exist C > 0 and n0 > 0 such that for

given n ≥ n0 there exists h(n) > 0 with

Wd1(νqnh(n), µ) ≤ exp
(
−cn

2
1+r

)
(Wd∞(µ, ν) + C).

Proof. As Assumptions 3.3 and 3.4 hold, we can apply Corollary 3.30:

WdR(νqnh(n), µ) ≤
(

1− h

2
L+ h

3
2P(R)

)n
dR(µ, ν)

+
2R

h
(
L+ 2h

1
2P(R)

)(Cn(UR, µ) + Cn(UR, ν)).
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Theorem 3.2 provides bounds for the escape probabilities Cn:

For R > R0 and θ < min
{

1
2cw

, 2ρ
cw
, 2ρ
}

Cn(UR, ν) = sup
i∈{1,...,n}

Pν [‖Xi‖W > R]

≤ Pν [∃i ∈ {1, . . . , n} : ‖Xi‖W > R]

≤ n
∫
W

exp(κ) exp
(
θ
(
‖x‖2W −R

2
))

ν(dx) + ν

({
‖x‖W >

R

2

})

These two terms can each be bounded based on the results from Lemma 3.31:∫
W

exp(κ) exp
(
θ
(
‖x‖2W −R

2
))

ν(dx)

≤ exp(κ) exp
(
−θR2

) ∫
W

exp
(
θ‖x‖2W

)
ν(dx)

≤ exp(κ) exp
(
−θR2

)
exp

(
1

2
cwθ

)
≤ exp(κ) exp

(
−θR2

)
exp (ρ) ,

and

ν

({
‖x‖W >

R

2

})
≤ exp

(
− 1

2cw

R2

4

)∫
W

exp

(
1

2cw
‖x‖2W

)
ν(dx)

≤ exp

(
− 1

8cw
R2 +

1

4

)
.

This leads to the final bound of the escape probability Cn:

Cn(UR, ν) ≤ n exp(κ) exp
(
−θR2

)
exp (ρ) + exp

(
− 1

8cw
R2 +

1

4

)
≤ 2n exp(κ̃) exp

(
−θR2

)
for θ < min

{
1

8cw
, 2ρ
cw
, 2ρ
}

and κ̃ := max
{

1
4 , κ
}

.

The escape probability starting in µ can be bounded by

Cn(UR, µ) ≤
∫
W
n exp(κ) exp

(
θ
(
‖x‖2W −R

2
))

µ(dx) + µ

({
‖x‖W >

R

2

})
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Again, we consider both summands separately. For the first one, it holds∫
W

exp(κ) exp
(
θ
(
‖x‖2W −R

2
))

µ(dx)

≤ 1

Z
exp(κ) exp

(
−θR2

) ∫
W

exp
(
θ‖x‖2W − V (x)

)
ν(dx)

≤ 1

Z
exp(κ) exp

(
−θR2

)(∫
W

exp
(

2θ‖x‖2W
)
ν(dx)

∫
W

exp (−2V (x)) ν(dx)

) 1
2

≤ Ψ exp(κ) exp
(
−θR2

)
exp (ρ)

where Ψ is given by

Ψ :=

(∫
W exp(−2V (x))ν(dx)

) 1
2∫

W exp(−V (x))ν(dx)
.

For the second summand, we have

µ

({
‖x‖W >

R

2

})
≤ Ψν

({
‖x‖W >

R

2

})
≤ Ψ exp

(
− 1

8cw
R2 +

1

4

)
by Jensen’s inequality. Adding both terms results in

Cn(UR, µ) ≤ 2nΨ exp(κ̃) exp
(
−θR2

)
,

analogously to Cn(UR, ν).

In particular, Cn is bounded independently of h. Set

CR := Cn(UR, µ) + Cn(UR, ν) and

c1 := (1 + Ψ) exp(κ) exp(ρ)

= CR exp(θR2).

We now specify R := R(n) := n
1

2(1+r) and h := 1
16L

2(1 + Rr)−2 and choose n0 such that

R(n0) > R0. Thus, we achieve for n ≥ n0

2R(n)

h
(
L+ 2h

1
2 c(1 +R(n)r)

) =
4R(n)

hL

=
64

L3
c2R(1 +R(n)r)2

=
64

L3
c2n

1
2(1+r)

(
1 + n

r
2(1+r)

)2

and

CR ≤ c1n exp
(
−θR(n)2

)
≤ c1n exp

(
−θn

1
1+r

)
.
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Furthermore, it follows that(
1− h

2
L+ h

3
2 c(1 +R(n)r)

)n
≤
(

1− 1

4
Lh

)n
≤ exp

(
−1

4
Lhn

)
≤ exp

(
− 1

64
L3c−2R(n)−2rn

)
≤ exp

(
−bn1− 2r

2(1+r)

)
= exp

(
−bn

1
1+r

)
where b := 1

64L
3c−2 such that we get

WdR(νqnh(n), µ) ≤ exp
(
−bn

1
1+r

)
WdR(ν, µ)

+
64

L3
c2n

1
2(1+r)

(
1 + n

r
2(1+r)

)2
nc1 exp

(
−θn

1
1+r

)
.

Setting a := 1
2 min {b, θ},

C :=
64

L3
c2c1 sup

n∈N

{
n

1+ 1
2(1+r)

(
1 + n

r
2(1+r)

)2
exp

(
−1

4
θn

1
1+r

)}
and using Wd1(ν, µ) ≤ WdR(ν, µ) ≤Wd∞(ν, µ) results in the depiction of the bound for the

Wasserstein distance as stated in the theorem:

Wd1(νqnh(n), µ) ≤ exp
(
−bn

1
1+r

)
(Wd∞(ν, µ) + C).

3.4 Speed of convergence in Transition Path Sampling

We now use the results from Chapter 3.3 to bound the speed of convergence

of the MALA–process in the Transition Path Sampling setting as constructed in Section

3.2. We start with the infinite–dimensional setting and show that the conditions can be

satisfied there. Later, we discuss finite–dimensional approximations that could be used for

simulations on a computer. In this setting, we can derive uniform estimates that do not

depend on the discretization level.

We remind on the choices of the spaces W and S from Section 3.2. In principle, other

choices on these metrics are possible. We will discuss this briefly in Section 3.5.
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We now discuss conditions under which we can use the results of the previous

chapters in the Transition Path Sampling setting. First, we apply Theorem 3.3 to the

infinite–dimensional process to bound its speed of convergence. After that, we analyze

the sequence of finite–dimensional approximations constructed in Section 3.2.2 and use

Theorem 3.3 to obtain a uniform bound on its speed of convergence independent of the

dimension of the approximation. In both cases, Assumptions 3.2 and 3.1 are sufficient.

3.4.1 Application to the infinte–dimensional case

When we choose the weak metric ‖·‖W to be the Wα–norm, the estimation of the

derivatives on path space is possible by imposing bounds on the derivatives of the finite–

dimensional potential.

We show that Assumptions 3.2 and 3.1 imply Assumption 3.3 and 3.4. This allows us to

apply Theorem 3.3.

Lemma 3.33. Let Assumption 3.2 be satisfied. Then for 1
3 ≤ α < 1

2 , Assumption 3.3 is

satisfied, i.e. there exists L < 1 such that

‖∇SV (x)−∇SV (x̃)‖Wα
≤ L‖x− x̃‖Wα

.

Proof. For bounded D2Φ and η1, η2 ∈ L2([0, 1],Rd), the second derivative of V (x) =
∫ 1

0 Φ(xs)ds

is given by

D2V (x)(η1, η2) =

∫ 1

0
D2Φ(xs)(η1(s), η2(s))ds.

The difference of the gradients is then bounded by

‖∇SV (x)−∇SV (x̃)‖Wα
≤ ‖∇SV (x)−∇SV (x̃)‖S
≤ sup
‖ξ‖S=1

sup
z∈[x,x̃]

D2V (z)(ξ, x− x̃)

≤ LΦ sup
‖ξ‖S=1

‖ξ‖L2‖x− x̃‖L2

≤ Cα,2
π

LΦ‖x− x̃‖Wα

≤ L‖x− x̃‖Wα
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where the constants LΦ and Cα,2 were introduced in Assumption 1.5 and equation (3.13),

and

L :=

√
2

π
LΦ < 1.

To show this result, we need Lemma 3.6:

‖x‖L2 ≤ Cα,2‖x‖Wα
for x ∈Wα and

‖x‖L2 ≤
1

π
‖x‖H1

0 ([0,1],Rd) for x ∈ S.

Furthermore, for α ≥ 1
3 , Cα,2 can be bounded by

Cα,2 ≤

( ∞∑
i=1

2i(1− 2
3
−1)

) 1
2

=

( ∞∑
i=1

2−
2
3
i

) 1
2

=

(
1

4
1
3 − 1

) 1
2

<
√

2. (3.40)

Lemma 3.34. Let Assumption 3.1 be satisfied. Then there exists 1
3 ≤ α ≤ 1

2 such that

Assumption 3.4 is satisfied, i.e.∣∣DnV (x)(ξ1, . . . , ξn)
∣∣ ≤ Cn (max{1, ‖x‖Wα

}
)pn

for all ξ1, . . . , ξn with
∥∥ξi∥∥

Wα
= 1, i ∈ {1, . . . , n}.

Proof. The n-th derivative of V is given by

DnV (x)(ξ1, . . . , ξn) =

∫ 1

0
DnΦ(xs)(ξ

1
s , . . . , ξ

n
s )ds.

Assumption 3.1 implies

DnΦ(xs)(ξ
1
s , . . . , ξ

n
s ) ≤ Cn max {1, ‖xs‖Rd}

pn ,

so we can bound

DnV (x)(ξ1, . . . , ξn) ≤ Cn
∫ 1

0
max {1, ‖xs‖Rd}

pn
∥∥ξ1
s

∥∥
Rd · . . . · ‖ξ

n
s ‖Rd ds

≤ Cn
((

1 +

∫ 1

0
‖xs‖(1+n)pn

Rd ds

)∫ 1

0

∥∥ξ1
s

∥∥1+n

Rd ds · . . . ·
∫ 1

0
‖ξns ‖

1+n
Rd

) 1
1+n

≤ Cn
(

1 + ‖x‖pn
Lpn(1+n)

)
·
∥∥ξ1
∥∥
L1+n · . . . · ‖ξn‖L1+n .
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Since n ∈ {1, . . . , 4}, we can choose q := maxn∈{0,...,4} {pn(1 + n), 6} and by applying

Lemma 3.6 conclude for some constant c1 <∞

DnV (x)(ξ1, . . . , ξn) ≤ c1

(
1 + ‖x‖pnLq

)
·
∥∥ξ1
∥∥
Lq
· . . . · ‖ξn‖Lq

≤ c2

(
1 + ‖x‖pnWα

)
·
∥∥ξ1
∥∥
Wα
· . . . · ‖ξn‖Wα

≤ 2c2 max
{

1, ‖x‖pnWα

}
·
∥∥ξ1
∥∥
Wα
· . . . · ‖ξn‖Wα

for α > 1
2 −

1
q >

1
3 .

After showing the validity of Assumptions 3.2 and 3.3, we now explicitly calculate

the constant cw from the bounds on the exponential moments of the Gaussian measure ν

in Lemma 3.31:

Lemma 3.35. cw satisfies

cw =
d

1− 22α−1
.

Proof. By definition, cw = 4 trace C, where C is the covariance operator of the Gaussian

measure ν. Furthermore, let ẽi,k,j be the orthonormal basis constructed in (3.12). Then, as

α < 1
2 ,

trace C =
d∑
j=1

∞∑
i=1

2i−1∑
k=1

〈ẽi,k,j , Cẽi,k,j〉W

=
d∑
j=1

∞∑
i=1

2i−1∑
k=1

2−2(1−α)i

= d
∞∑
i=1

2i 2−2(1−α)i

= d
∞∑
i=1

2(2α−1)i

=
d

1− 22α−1
.

We are now in a position to prove that the distance of the MALA–process to its

equilibrium measure in Transition Path Sampling decreases with rate exp
(
−cn

1
1+r

)
, which

allows to specify the number of needed steps of this proces to achieve a given error.
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Theorem 3.4. Let qh be the kernel of the process (Xn)n∈N with step–size h as constructed

in Section 3.1. Let dR be the Wasserstein distance with respect to the distance (x, y) 7→
‖x− y‖Wα

∧ R. Let Assumptions 3.2 and 3.1 be satisfied. Then there exists C > 0 such

that for given n ∈ N, there exist h(N) > 0 such that

Wd1(νqnh(n), µ) ≤ exp
(
−c1n

1
1+r

)
(Wd∞(µ, ν) + C),

where c1 := 1
64L

3c−2, r is given by (3.33) and c is constructed in equation (3.32).

Proof. Lemmas 3.33 and 3.34 show that Assumptions 3.1 and 3.2 imply Assumptions 3.3

and 3.4, so that we can apply Theorem 3.3. As in the proof of Theorem 3.3, we choose

R := n
1

2(1+r) and h(n) := 1
16L

2c−2(1 + Rr)−2. Then, the result follows immediately from

Theorem 3.3.

3.4.2 Application to the finite–dimensional approximations

We now analyze the implications of Assumptions 3.1 and 3.2 for a finite–

dimensional approximation in the Transition Path Sampling setting. We show for the

approximations constructed in Section 3.2.2 that these conditions imply uniform bounds

in Assumptions 3.3 and 3.4 and thus a uniform bound for the speed of convergence of the

MALA–process in Theorem 3.3.

We recall the notation

dN := 2N−1 and

si :=
i

dN

from Section 3.2.2.

Lemma 3.36. Let Assumption 3.2 be satisfied. Assume furthermore that LΦ < π
3 . Then

for N ∈ N, VN satisfies Assumption 3.3, i.e. there exists L < 1 such that

‖∇SVN (x)−∇SVN (x̃)‖WN
≤ L‖x− x̃‖WN

.

α and L are independent of N .
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Proof. For bounded D2Φ and η1, η2 ∈ E, the second derivative of VN (x) := 1
dN

∑dN
i=1 Φ(xsi)

is given by

D2VN (x)(η1, η2) =
1

dN

dN∑
i=1

D2Φ (xsi)
(
η1
si , η

2
si

)
.

The difference of the gradients is now bounded by

‖∇SVN (x)−∇SVN (x̃)‖WN
≤ ‖∇SVN (x)−∇SVN (x̃)‖SN
≤ sup
‖ξ‖SN=1

sup
z∈[x,x̃]

D2VN (z)(ξ, x− x̃)

≤ LΦ sup
‖ξ‖SN=1

1

dN

dN∑
i=1

ξsi · (xsi − x̃si)

≤ LΦ‖ξ‖EN ‖x− x̃‖EN
≤ L‖x− x̃‖WN

,

where

L :=
3

π
LΦ < 1.

To show this result, we used Lemmas 3.6 and 3.11 as well as inequality (3.40): For x ∈ EN ,

‖x‖EN ≤
√

3

2
‖x‖E ≤

√
3√

2π
‖x‖SN

‖x‖EN ≤
√

3

2
‖x‖E ≤

√
3

2
Cα,2‖x‖WN

≤
√

6‖x‖WN
.

Lemma 3.37. Let Assumption 3.1 be satisfied. Then there exists α < 1
2 such that Assump-

tion 3.4 is satisfied, i.e.∣∣DnVN (x)(ξ1, . . . , ξn)
∣∣ ≤ Cn (max{1, ‖x‖WN

}
)pn

for all ξ1, . . . , ξn with
∥∥ξi∥∥

Wα
= 1, i ∈ {1, . . . , n}.

Proof. The n-th derivative of VN is given by

DnVN (x)(ξ1, . . . , ξn) =
1

dN

dN∑
i=1

DnΦ(xsi)(ξ
1
si , . . . , ξ

n
si).
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Assumption 3.1 implies

DnΦ(xsi)(ξ
1
si , . . . , ξ

n
si) ≤ Cn max

{
1, ‖xsi‖Rd

}pn ∥∥ξ1
si

∥∥
Rd · . . . ·

∥∥ξnsi∥∥Rd ,
so by applying Hölder’s inequality, this leads to

DnV (x)(ξ1, . . . , ξn)

≤ Cn
1

dN

dN∑
i=1

max
{

1, ‖xsi‖Rd
}pn ∥∥ξ1

si

∥∥
Rd · . . . ·

∥∥ξnsi∥∥Rd
≤ Cn

((
1 +

1

dN

dN∑
i=1

‖xsi‖
(1+n)pn
Rd

)(
1

dN

dN∑
i=1

∥∥ξ1
si

∥∥1+n

Rd

)
· . . . ·

(
1

dN

dN∑
i=1

∥∥ξnsi∥∥1+n

Rd

)) 1
1+n

.

As for m ∈ N and ξ ∈ EN ,

‖ξ‖mLm([0,1],Rd) ≥
2

m+ 1

1

dN

dN∑
i=1

‖ξsi‖
m
Rd ,

we get

1

dN

dN∑
i=1

‖ξsi‖
m
Rd ≤

m+ 1

2
‖ξ‖mLm([0,1],Rd)

≤ m+ 1

2
Cmα,m‖ξ‖

m
WN

,

where Cα,m was definied in (3.13). Set

Dα,m :=

(
m+ 1

2

) 1
m

Cα,m,

then

DnV (x)(ξ1, . . . , ξn)

≤ Cn

((
1 +

1

dN

dN∑
i=1

‖xsi‖
(1+n)pn
Rd

)(
1

dN

dN∑
i=1

∥∥ξ1
si

∥∥1+n

Rd

)
· . . . ·

(
1

dN

dN∑
i=1

∥∥ξnsi∥∥1+n

Rd

)) 1
1+n

≤ CnDα,(1+n)pnD
n
α,(1+n)

(
1 + ‖x‖pnWN

)∥∥ξ1
∥∥
WN
· . . . · ‖ξn‖WN

≤ 2CnDα,(1+n)pnD
n
α,(1+n) max

{
1, ‖x‖pnWN

}∥∥ξ1
∥∥
WN
· . . . · ‖ξn‖WN

.
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We can now prove a result on the distance of the MALA–process in Transition

Path Sampling to its equilibrium measure:

Theorem 3.5. Let qN,h be the kernel of the process (XN
n )n∈N with step–size h as constructed

in Section 3.1. Let dR be the Wasserstein distance with respect to the distance (x, y) 7→
‖x− y‖Wα

∧ R. Let Assumptions 3.2 and 3.1 be satisfied. Additionally assume LΦ ≤ π
3 .

Then for given n ∈ N, there exists h(n) > 0 such that

Wd1(νqnN,h(n), µ) ≤ exp
(
−c1n

1
1+r

)
(Wd∞(µ, ν) + 1)

where c1 := 1
64L

3c−2, r is given by (3.33) and c by (3.32).

Proof. Lemma 3.36 and 3.37 show that Assumptions 3.1 and 3.2 with LΦ ≤ π
3 imply As-

sumptions 3.3 and 3.4, so that we can apply Theorem 3.3. As in the proof of Theorem

3.3, we choose R := n
1

2(1+r) and h(n) := 1
16L

2c−2(1 + Rr)−2. Then, and the result follows

immediately from Theorem 3.3.

3.5 Further choices for Markov Chain Monte Carlo processes

Given a probability measure

µ(dx) =
1

Z
exp(−V (x))ν(dx),

different processes that are reversible with respect to µ can be constructed. For each positive

self–adjoint linear operator Q, the solution of the stochastic differential equation

dxt = −Qxtdt−Q∇SV (xt)dt+
√

2Q−1dwt (3.41)

driven by a S-Wiener–process w is reversible with respect to µ. The case Q = I corresponds

to the H1–case considered above for Transition Path Sampling, Q = (−∆0) corresponds

to the “non–preconditioned case” of [24] and [8]. The H1–case is called “pre–conditioned

case” in these works. We additionally consider Q = (−∆0)α for α ∈ [0, 1] to analyze the

effect of different noises on the contraction property. It turns out that the case Q = I is the

only one where the proposal of the MALA–process is contracting, and thus the only one

where our analysis can be applied.

In the next section, we consider discrete–time processes with reversible measure

µ on the space E := L2([0, 1],R), driven by varying noise, and analyze the contraction
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property of these processes. Although it is nevertheless necessary to work with discretiza-

tions for numerical simulations, the contraction property on the infinite–dimensional space

strongly indicates that is possible to find a sequence of discretizations of the process which

possess a uniform contraction constant.

Contraction properties of discrete–time processes

First, we consider the Gaussian case V = 0. Formally, discrete–time schemes for

the s.d.e. (3.41) with V = 0 are given for θ ∈ [0, 1] by

Xn+1 = Xn − θhQXn − (1− θ)hQXn+1 +
√

2hQ−1(−∆0)−1Nn

where (Nn)n∈N are i.i.d. Gaussian random variables with covariance induced by ‖·‖W . A

rigorous implementation of the scheme is given by

Xn+1 = (Q+ (1− θ)hI)−1(Q− θhI)Xn +
√

2h(Q+ (1− θ)hI)−1Q
1
2 (−∆0)−

1
2Nn. (3.42)

A semi–implicit discretization with θ = 1
2 is the only one which is reversible with respect

to ν, cf. the analysis in [8] for the case α ∈ {0, 1}. It corresponds to the process studied

above. We now show this statement for general α.

Proposition 3.38. Let qθ be the kernel induced by (3.42). Then qθ is reversible with respect

to ν if and only if θ = 1
2 .

Proof. We consider the characteristic function of the measure ν qθ:∫
E×E

exp (−i〈(l1, l2), (x, y)〉S) ν(dx)qθ(x,dy)

=

∫
E×E

exp (−i〈(l1, l2), (x,Ax+ y)〉S) ν(dx)qθ(0,dy)

= exp

(
−1

2
‖l1 +Al2‖S − h

∥∥∥(Q+ (1− θ)hI)−1Q
1
2 l2

∥∥∥
S

)
where

A := (Q+ (1− θ)hI)−1(Q− θhI).

The characteristic function of νqθ is symmetric in l1, l2 if and only if qθ is reversible with
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respect to ν. The exponent can be written as

‖l1 +Al2‖S + 2h
∥∥∥(Q+ (1− θ)hI)−1Q

1
2 l2

∥∥∥
S

= ‖l1‖S + 2〈l1, Al2〉S + ‖Al2‖S + 2
∥∥∥(Q+ (1− θ)hI)−1Q

1
2 l2

∥∥∥
S

As A is self–adjoint on S, 〈l1, Al2〉S is symmetric. So the characteristic function is symmetric

if and only if

‖Al2‖S + 2h
∥∥∥(Q+ (1− θ)hI)−1Q

1
2 l2

∥∥∥
S

= ‖l2‖S .

As powers of the Laplacian, all operators commute, and we get

‖Al2‖S + 2h
∥∥∥(Q+ (1− θ)hI)−1Q

1
2 l2

∥∥∥
S

=
〈
l2, (Q+ (1− θ)hI)−2

(
(Q− θhI)2 + 2hQ

)
l2
〉
S
.

Moreover, we can rewrite

(Q+ (1− θ)hI)−2 (Q− θhI)2 + 2hQ

= (Q+ (1− θ)hI)−2
(
(Q+ (1− θ)hI)2 − 2hQ− (1− θ)2h2I + θ2h2I + 2hQ

)
= I + (Q+ (1− θ)hI)−2

(
h2
(
−(1− θ)2 + θ2

)
I
)
.

We have symmetry if and only if the second summand vanishes, this is the case for θ = 1
2 .

Proposition 3.38 states that ν is the reversible measure of the process (Xn)n∈N

defined by

Xn+1 =

(
Q+

1

2
hI

)−1(
Q− 1

2
hI

)
Xn +

√
2h

(
Q+

1

2
hI

)−1

Q
1
2 (−∆0)−

1
2 ξn. (3.43)

It even follows that the distribution of the proposals ν(dx)qθ(x,dy) is not absolutely con-

tinuous to ν(dy)qθ(y,dx) for θ 6= 1
2 , as two Gaussian measures with the same mean and

covariance operator Q1, Q2 respectively are absolutely continuous only if the operator

(Q
− 1

2
1 Q

− 1
2

2 )(Q
− 1

2
1 Q

− 1
2

2 )∗−I, is a Hilbert–Schmidt operator, see e.g. [12, Theroem 2.23]. Thus

θ = 1
2 is the only possible choice four MALA–process, because its acceptance probability is

defined as the relative density of ν(dx)qθ(x,dy) and ν(dy)qθ(y,dx).

We now analyze the contraction properties of a coupling of two processes (Xn)n∈N

and (Yn)n∈N of (3.43) starting in different positions X0 = x0 and Y0 = y0. Analogously to
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the construction in Section 3.3.1, the processes are driven by the same W–Gaussian noise

(Nn)n∈N. They are given by

Xn+1 :=

(
Q+

1

2
hI

)−1(
Q− 1

2
hI

)
Xn +

√
2h

(
Q+

1

2
hI

)−1

Q
1
2 (−∆0)−

1
2Nn, (3.44)

Yn+1 :=

(
Q+

1

2
hI

)−1(
Q− 1

2
hI

)
Yn +

√
2h

(
Q+

1

2
hI

)−1

Q
1
2 (−∆0)−

1
2Nn.

Remark 3.39. Note that in the case α = 0 and V ≡ 0, the coupling (Xn, Yn)n∈N coincides

with the one analyzed in chapter (3.3.1). If we set h = 2ε
8−ε , then (3.44) reads

Xn+1 :=
(

1− ε

2

)
Xn +

√
ε− ε2

4
(−∆0)−

1
2Nn,

Yn+1 :=
(

1− ε

2

)
Yn +

√
ε− ε2

4
(−∆0)−

1
2Nn,

and (−∆0)−
1
2Nn is a ν–distributed random variable.

The next proposition states the contraction properties of the coupling for different

values of α.

Proposition 3.40. For α = 0, the coupling (Xn, Yn)n∈N given by (3.44) is contracting in

every norm ‖·‖
Hβ

0 ([0,1],R)
for β ∈

[
0, 1

2

)
:

‖X1 − Y1‖β ≤
2− h
2 + h

‖x0 − y0‖Hβ
0 ([0,1],R)

for all x0, y0 ∈ Hβ
0 ([0, 1],R).

For α > 0, the coupling (Xn, Yn)n∈N is not contracting in ‖·‖
Hβ

0 ([0,1],R)
for each β ∈

[
0, 1

2

)
:

There exists xε, yε ∈ Hβ
0 ([0, 1],R), such that

‖Xε
1 − Y ε

1 ‖Hβ
0 ([0,1],R)

≥ (1− ε)‖xε0 − yε0‖Hβ
0 ([0,1],R)

.

Proof. Define

A =

(
Q+

1

2
hI

)−1(
Q− 1

2
hI

)
.

Then for each β,

‖X1 − Y1‖Hβ
0 ([0,1],R)

= ‖A(x0 − y0)‖
Hβ

0 ([0,1],R)
.

For α = 0,

A =
2− h
2 + h

I,
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which clearly satisfies

‖Aφ‖
Hβ

0 ([0,1],R)
≤ 2− h

2 + h
‖φ‖

Hβ
0 ([0,1],R)

for all φ ∈ Hβ
0 ([0, 1],R).

For α > 0, let φi ∈ Hβ
0 ([0, 1],R) be the ith eigenfunction of (−∆0)−1 with respect to the

Fourier basis

φi(t) = sin

(
iπ
t

T

)
∈ H1

0 ([0, 1],Rd) ⊂Wβ for β ∈
[
0,

1

2

)
.

The corresponding eigenvalues are given by

Qφi =
1

i2α
φi,

so we see that

Aφi =

(
Q+

1

2
hI

)−1(
Q− 1

2
hI

)
φi

=
2
i2α
− h

2
i2α

+ h
φi.

For i→∞ and α > 0
2
i2α
− h

2
i2α

+ h
→ −1.

So for given ε > 0, we can find a φε such that Aφε = −(1− ε)φε which results in

‖Aφε‖Hβ
0 ([0,1],R)

= (1− ε)‖φε‖Hβ
0 ([0,1],R)

.

Setting xε0 = 0, yε0 = φε leads to the stated property.

Propositions 3.38 and 3.40 show that the choice of the proposal of the MALA–

process in (3.6) was a natural choice. While there is the possibility of choosing different

processes which are still reversible with respect to ν, Proposition 3.40 shows that one can

not expect them to have the contraction properties used in the proof of Theorem 3.3.
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