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ABSTRACT 

 

Crop models, typically developed for field-scale applications, are increasingly used to regionally 

assess the impacts of climate change and adaptation on agricultural production. This is due to their 

ability to consider dynamic interactions between genotype, environment, and management factors 

and variabilities herein, as particularly relevant for climate. Uncertainties emerging from the scale 

change and data constraints when analyzing and further utilizing the results of regional crop model 

applications are largely unclear. A thorough analysis distinguishing between the three main 

uncertainty sources attributable to regional crop model application: (a) model structure, (b) 

parameters and (c) input data is crucial to develop robust assessment approaches and modelling 

tools that can support policy decisions concerning adaptation of agricultural systems to climate 

variability and change. The present thesis offers a systematic analysis, particularly on the two last 

points mentioned above. On the one hand, we investigated the calibration quality and strategy 

which concerns parameters (b) and input data (c). On the other hand, we assessed the influence of 

resolution of input data (c) on regional modelling results for crop models differing in model 

structure and detail (a). Three specific studies were designed to increase understanding on these 

issues:  

1. In a continental simulation study (EU25) the influence of considering the sub-regional 

differences in environmental and management conditions on the parameter estimation process of a 

model were investigated. Three different calibration strategies were tested: (i) calculation of 

phenology parameters only, (ii) consideration of both phenology calibration and a yield correction 

factor and (iii) calibration of phenology and selected growth processes. The third strategy, i.e. 

taking into consideration sub-regional differences of model parameters related to crop growth in 

addition to crop phenology resulted in the best agreement between simulated and observed yield at 

the European scale. However, since accurate calibration of crop growth and development 

parameters requires data which are presently scarce in the required quality and resolution for entire 

Europe, the use of a yield correction factor after phenology calibration (strategy 2) might be still 

meaningful and is advised as the preferred strategy. 

 2. A regional study in Jokioinen, representing an important barley producing region in South-West 

Finland, was undertaken in order to systematically analyse the influence of aggregation of weather 

data on yield simulations. The responses of four crop models of different complexity to five 

weather data aggregation levels (Weather station, 10 km  x 10 km, 20 km x 20 km, 50 km x 50 km , 

and 100 km x 100 km) were compared. Differences between models were larger than the effect of 

the chosen spatial weather data resolution. Models showed different characteristic „fingerprints‟ of 

simulated yield frequency distributions independent of the resolution used for yield simulation. 

Additionally, using one model (SIMPLACE<LINTUL-SLIM>) the effect of aggregation of model 

input versus model output data was assessed. Results showed that aggregating weather data had a 

smaller effect on the yield distribution than aggregating simulated yields which caused a 



 

 

deformation of the model fingerprint. For the studied region and period, changes in the spatial 

resolution of weather input data introduced less uncertainty to the simulations than the use of 

different crop models. However, it was concluded that more evaluation will be required for other 

regions with a higher spatial heterogeneity in weather conditions. Also, it would be necessary to 

undertake a similar study considering input data related to soil and crop management. 

3. Thus, a complementary study to the weather data aggregation was formulated for soil input data 

and undertaken in the State of North-Rhine Westphalia in Germany. This comprised a systematic 

analysis of the influence of three different spatial soil data resolutions on simulated regional yields 

and simulated total growing season evapotranspiration. The resolutions used corresponded to soil 

maps of the scales: 1 : 50 000; 1 : 300 000 and 1 : 1 000 000. The responses of four crop models of 

different complexity were compared. In contrast to the weather data resolution study, a model using 

the Richards approach (DAISY) was considered. This was to particularly pay due attention to 

different modelling approaches with respect to the simulation of soil water dynamics. Differences 

between models were again larger than the effect of the chosen spatial soil data resolution. Three 

main causes were identified as possible explanations for the low influence of soil data resolution on 

yield simulations: a) the high precipitation amount in the region b) the methods applied to calculate 

water retention properties and c) the method of data aggregation. No characteristic “fingerprint” 

between sites, years and resolutions could be found for any of the models.  

 

After an integrated analysis and synthesis of the results of all three studies in this thesis, one main 

conclusion was that data collection and data administration protocols should be implemented at 

regional and larger scale (e.g. within projects such as MACSUR and AgMIP). Additionally, the 

utilization of various crop models differing in complexity and approaches of modelling relevant 

processes should become common practice for large area impact assessment studies since the 

uncertainties introduced by the model choice have been shown in this study to be more important 

than the uncertainties caused by the input data resolution. Nevertheless, since the areas chosen for 

studies 2 and 3 had a large influence on the results, for regions with more spatial variation in 

weather than in study 2, and with more variable and erratic rainfall than in study 3, results might 

look differently and therefore both a model ensemble approach and proper scaling methods might 

be needed. As well, the crop modelling community is appealed to make an effort to develop 

accurate and consistent model parameter estimation methodologies and strategies. 



 

 

 

ZUSAMMENFASSUNG 

 

Pflanzenwachstumsmodelle, die typischerweise für Ertragseinschätzungen kleiner Flächen 

Verwendung finden, werden zunehmend auch genutzt, um den Einfluss von Klimawandel auf 

landwirtschaftliche Produktion sowie deren Anpassung an verschlechterte Anbaubedingungen auf 

regionaler Ebene zu untersuchen. Grund dafür ist, dass diese Modelle dynamische 

Wechselwirkungen zwischen Genotyp, Umwelt und darin enthaltenen Management-Faktoren 

sowie die Variabilität dieser drei Einflussgrößen berücksichtigen können. 

Dabei ist weitgehend unklar, welche Unsicherheiten aus der veränderten Skalierung und der 

eingeschränkten Datenlage entstehen, wenn man die Ergebnisse regionaler Anwendungen von 

Pflanzenwachstumsmodelle analysiert und weiter verwendet. Um robuste Untersuchungsmethoden 

und Modellierungswerkzeuge zu entwickeln, die als Grundlage für politische Entscheidungen über 

die Anpassung landwirtschaftlicher Systeme an Klimavariabilität und -wandel dienen können, ist 

eine sorgfältige Analyse unabdingbar, die zwischen den drei Hauptunsicherheitsquellen regionaler 

Anwendungen von Pflanzenwachstumsmodellen unterscheidet: (a) Modellstruktur, (b) Parameter 

und (c) Eingangsdaten. Die vorliegende Arbeit bietet eine systematische Analyse insbesondere der 

beiden letztgenannten Punkte. Sie untersucht zum einen die Kalibrierungsgüte und -strategie, was 

Parameter (b) und Eingangsdaten (c) betrifft. Zum anderen ermittelt sie den Einfluss der 

Eingangsdatenauflösung auf die Ergebnisse regionaler Modellierungen für 

Pflanzenwachstumsmodelle, die sich in ihrer Struktur und Genauigkeit (a) unterscheiden. Drei 

spezifische Studien wurden entworfen, um in diesen Punkten zu einem besseren Verständnis zu 

gelangen. 

 

1. In einer kontinentweiten Simulationsstudie (EU25) wurde untersucht, inwiefern die 

Miteinbeziehung der subregionalen Unterschiede in Umwelt- und Managementbedingungen den 

Parameterschätzungsprozess eines Modells beeinflusst. Drei verschiedene Kalibrierungsstrategien 

wurden erprobt: (i) alleinige Berechnung von Phänologieparametern, (ii) Berücksichtigung der 

Phänologiekalibrierung und eines Ertragskorrekturfaktors und (iii) Kalibrierung von Phänologie 

und ausgewählten Wachstumsprozessen. Die dritte Strategie, d.h. die Berücksichtigung von sub-

regionalen Unterschiede pflanzenwachstumsbezogener Modellparameter sowie von 

Pflanzenphänologie, ergab die größte Übereinstimmung zwischen simuliertem und tatsächlichem 

Ertrag auf europäischer Ebene. Da jedoch für eine exakte Kalibrierung von Pflanzenwachstum und 

Entwicklungsparametern Daten nötig wären, die zurzeit kaum in der benötigten Qualität und 

Auflösung für ganz Europa vorhanden sind, könnte es dennoch von Bedeutung sein, nach der 

Phänologiekalibrierung (Strategie 2) einen Ertragskorrekturfaktor zu verwenden. 

 

2. Eine regionale Studie in Jokioinen, einem wichtigen Gersteanbaugebiet in Südwestfinnland, 

wurde durchgeführt, um den Einfluss der Aggregierung von Wetterdaten auf Ertragssimulationen 



 

 

systematisch zu analysieren. Dazu wurde das Verhalten von vier Pflanzenwachstumsmodellen 

unterschiedlicher Komplexität auf fünf verschiedenen Wetterdatenaggregierungsstufen 

(Wetterstation, 10 km  x 10 km, 20 km x 20 km, 50 km x 50 km und 100 km x 100 km) verglichen. 

Die Unterschiede zwischen den Modellen waren größer als die Auswirkungen der jeweiligen 

Wetterdatenauflösung. Jedes Modell zeigte einen charakteristischen „Fingerabdruck“ in Bezug auf 

die Wahrscheinlichkeitsverteilung der simulierten Erträge, unabhängig von der für die 

Ertragssimulation verwendeten Auflösung. Zusätzlich wurde für ein Modell 

(SIMPLACE<LINTUL-SLIM>) der Effekt der Aggregierung von Input- im Vergleich zu 

derjenigen von Outputdaten untersucht. Die Ergebnisse zeigten, dass die Aggregierung von 

Wetterdaten eine geringere Auswirkung auf die Ertragsverteilung hatte als die Aggregierung 

simulierter Erträge, die eine Verformung des Fingerabdrucks der Modelle zufolge hatte. Für die 

untersuchte Region brachten Veränderungen in der räumlichen Auflösung der Wetterdaten im 

Untersuchungszeitraum weniger Unsicherheit in die Simulationen ein als der Gebrauch 

unterschiedlicher Pflanzenwachstumsmodelle. Es wurde jedoch festgestellt, dass weitere 

Evaluationen für andere Regionen mit einer größeren räumlichen Heterogenität der 

Wetterbedingungen vonnöten sein werden. Außerdem bestünde der Bedarf, eine ähnliche Studie zu 

den Inputdaten in Bezug auf Boden- und Pflanzenmanagement zu durchzuführen. 

 

3. Daher wurde eine ergänzende Studie zur Wetterdatenaggregierung für Bodeninputdaten 

formuliert und in Nordrhein-Westfalen durchgeführt. Dies umfasste eine systematische Analyse 

des Einflusses dreier verschiedener räumlicher Bodendatenauflösungen auf simulierte regionale 

Erträge und simulierte Evapotranspiration der Gesamtwachstumsperiode. Die verwendeten 

Bodendatenauflösungen entsprachen Bodenübersichtskarten der Maßstäbe: 1 : 50 000; 1 : 300 000 

und 1 : 1 000 000. Die simulierten Erträge von vier verschieden Wachstumsmodellen wurden 

verglichen. Anders als bei der Studie, die den Einfluss von Wetterdatenauflösung untersuchte, 

wurde hier zusätzlich ein Modell, das den Richards-Ansatz verwendet (DAISY)  verwendet. Somit 

wurden unterschiedliche Modellansätze im Bezug auf Bodenwasserhaushaltberechnungen 

berücksichtigt. In den Ergebnissen waren die Unterschiede zwischen den Modellen erneut größer 

als die Auswirkungen der jeweiligen Bodendatenauflösungen. Drei Hauptgründe wurden als 

mögliche Erklärungen dafür vorgeschlagen: a) die hohe Niederschlagsmenge im untersuchten 

Gebiet, b) die zur Berechnung der hydraulischen Bodeneigenschaften angewandten Methoden und 

c) die verwendete Aggregierungsmethode. Charakterisierende Fingerabdrücke für Subregionen, 

Jahren oder Auflösungen konnten für kein Modell gefunden werden. 

 

Nach einer integrierenden und synthetisierenden Analyse der drei genannten Studien in dieser 

Dissertation ist eine daraus entstehende Hauptschlussfolgerung: Es müssen Protokolle zum 

Sammeln und Verwalten von Daten auf regionaler und großflächiger Ebene eingeführt werden (wie 

zB. in Projekten wie MACSUR und AgMIP). Da die Ergebnisse dieser Dissertation ergaben, dass 



 

 

 

die Unsicherheiten, die durch die Modellwahl entstehen, größer sind als die Unsicherheiten, die 

durch die Auflösung von Inputdaten verursacht werden, sollte der Einsatz von mehreren Modellen, 

die sich in Bezug auf Komplexität und Art der Modellierungsansätze verschiedener Prozesse 

unterscheiden, ein unverzichtbarer Bestandteil der großflächigen Auswirkungseinschätzungen von 

Klima(wandel) auf Erträge werden. Dennoch sind die Ergebnisse von Studien 2 und 3 von den 

Eigenschaften der gewählten Regionen abhängig. Daher könnten für Regionen mit höher 

räumlicher Variabilität der Wettereigenschaften als in Studie 2 und mit heterogenerer und 

unregelmäßigerer Niederschlagsverteilung als in Studie 3 die jeweiligen Ergebnisse unterschiedlich 

ausfallen. In diesem Falle empfiehlt sich der Einsatz von Modellensembles und passenden 

Skalierungsmethoden. Zugleich sollen die Modellierungsforschergruppen gemeinsam an der 

Entwicklung von genaueren und konsequenteren Parametereinschätzungsmethoden und -strategien 

arbeiten. 
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1. General introduction  

 

1.1 Crop models: from field to region 

 

1.1.1 Yield assessment tools 

Mechanistic crop growth models (further on referred to as crop models) are relatively simple 

mathematical representations of a crop and its physiological processes, used to study crop growth 

and development (Penning de Vries et al., 1989) and typically have been developed for small 

spatial extents, i.e. plots or fields. Some research efforts have aimed to develop crop models to be 

explicitly applied at regional level (e.g. Bondeau et al., 2007; Challinor et al., 2004; Tubiello and 

Fischer, 2007). The regional characteristics of these models are not always evident and therefore 

they are not considered in the present work. Instead, it is assumed and evaluated in this thesis that 

field scale crop models might be useful as regional assessment tools if the uncertainties caused by 

scale change can be reported and quantified. 

Statistical approaches have also been applied to assess agricultural productivity at different spatial 

extents (e.g. Lobell et al., 2008). However, the utilization of crop models is regarded as more 

advantageous when process-based explanations of the behaviour of crop systems are required. 

Also, statistical models are confronted with the problem of confounding (e.g. Bakker et al., 2005) 

The ability of crop models to consider dynamic interactions between genotype, environment, and 

management factors makes them a powerful tool and they are increasingly used to regionally assess 

the impacts of climate change and adaptation on agricultural production (e.g. Challinor et al., 2010; 

Therond et al., 2011; White et al., 2011). The regional applicability of crop models is a promising 

field of research (e.g. Adam et al., 2012; De Wit et al., 2010; Hansen and Jones, 2000; Moen et al., 

1994; Reidsma et al., 2009a; Therond et al., 2011). There are especially two areas that require 

critical reflection in this respect. 

First, the validity domain of the majority of crop models is limited to the spatial extent at which 

they have been developed and validated, i.e. plot or field scale (e.g. Boogaard et al., 1998; Jones et 

al., 2003a; Spitters, 1990; Van Ittersum et al., 2003a; Williams et al., 1983). Thus, when applying 

crop models at larger spatial extents, emerging scale change issues have to be handled properly in 

order to produce useful results from regional assessments of crop productivity (Ewert et al., 

2011b). 

Second, and closely related to the first area, since the original application of the majority of crop 

models is limited to small spatial extents, they require detailed information about the crop‟s 

environment (weather and soil) and management as input data (Faivre et al., 2004). Due to the high 

spatial and temporal variability of the mentioned variables and the relative scarcity of observations 

with adequate spatial density, challenges in manipulating model input data to apply model for 

larger spatial extents need to be addressed. In this regard, it is essential to develop coherent 

strategies that allow and facilitate the utilization of available input data for the regional application 
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of crop models (Ewert et al., 2011b; Hansen and Jones, 2000; Launay and Guerif, 2005; Leenhardt 

et al., 2006). 

In the present work, the terms scale, resolution and aggregation will be consistently utilized 

following the definitions given by O‟Neil and King (1998), Faivre et al. (2004), and Ewert et al. 

(2006). Accordingly, scale is used as a synonym of spatial extent and refers to the spatial 

dimension of a phenomenon studied. The term resolution refers to the ratio between the area 

covered by observations and the total area considered by a study (extent). Finally, aggregation 

refers to the sum, count or average of the information at a (lower) biological/biophysical 

organization level to reach a higher hierarchical level. The same terminology can be applied to the 

temporal dimension which however is not considered as it is not the subject of this thesis. 

 

1.1.2 State of the art of regional applications 

During the early 1990s, first global assessments of climate change impacts on  food security were 

performed utilizing plot and field scale crop models as tools for assessing climate change impacts 

on  rice, wheat, soybean and maize at global scale (e.g. Parry et al., 1999; Rosenzweig and Parry, 

1994). In these studies, experimental data from over 100 sites were used to simulate the possible 

crop responses to global warming and raising atmospheric CO2 concentration. The simulation 

results based on experimental stations data were extrapolated for important production regions all 

over the world and used in conjunction with economical models to build scenarios of the possible 

effects of global climate change in global food production (Rötter et al., 2013b). In the following 

years an increasing number of research groups began to utilize crop models as regional assessment 

tools (e.g. Rötter and Van Diepen, 1994), especially (but not only) in the context of climate change 

(White et al., 2011). Consequently, it became necessary to establish simulation protocols (e.g. 

Moen et al., 1994; Rosenthal et al., 1998) and to suggest approaches to deal with the scale change 

issues and input data limitations inherent to the regional application of crop models (e.g. Faivre et 

al., 2004; Hansen and Jones, 2000). As well, model inter-comparison exercises, at the small scale, 

were undertaken in order to identify systematic errors and further improve crop models (e.g. Ewert 

et al., 2002; Jamieson et al., 1998; Porter et al., 1993).  

During the last two decades some work has been done in order to identify and estimate the 

uncertainties emerging from the regional application of crop models (e.g. Easterling et al., 2001; 

Easterling et al., 1998; Mearns et al., 2001; Mearns et al., 2003; Niu et al., 2009; Olesen et al., 

2007; Rötter et al., 2013b; Rötter et al., 2011b; Trnka et al., 2007). Nevertheless, only few 

examples in the literature can be found, of studies investigating explicitly and systematically the 

uncertainties in regional crop model applications. In these studies, the influence of the temporal and 

spatial resolution of weather and soil input data on crop phenology and yields received special 

attention (Folberth et al., 2012; Nendel et al., 2013; Olesen et al., 2000; Van Bussel et al., 2011a; 

Van Bussel et al., 2011b; Wassenaar et al., 1999). Studies investigating the uncertainties in regional 

crop model applications introduced by crop model parameters (Therond et al., 2011) and by the 
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model equations (Adam et al., 2012) are almost an exception. Recent studies have proven the 

usefulness of utilizing several crop models (multi-model ensembles) as a mean to evaluate and 

reduce uncertainty in regional crop modelling applications (Asseng et al., 2013; Palosuo et al., 

2011; Rötter et al., 2012b).  

 

1.2 The sources of uncertainty in regional crop modelling applications 

 

Uncertainty is defined by Walker et al. (2003) as “any departure from the unachievable ideal of 

complete determinism”. Following the line of Walker et al. (2003), the term uncertainty in the 

present work refers to the accumulated uncertainty reflected in the model outputs caused by 

propagation and accumulation of the uncertainties in the model structure, model inputs and model 

parameters.  

The crop modelling community has gained awareness of the lacking attention on the uncertainty 

when using crop models regionally, especially in the context of climate change assessment. As a 

result, two international initiatives have addressed the challenge of assessing and reporting 

uncertainties in climate change impact projections on agriculture and food security, and of 

improving crop models in order to reduce some of the uncertainty. These are: the Agricultural 

Model Inter-comparison and Improvement Project (AgMIP, Rosenzweig et al., 2013) and the 

European MACSUR (www.macsur.eu), the first Knowledge Hub launched by the Joint Research 

Progamming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI) 

(www.faccejpi.com). 

 

Clearly, uncertainty reporting and quantification is crucial to develop robust assessment approaches 

and modelling tools that can support policy decisions concerning food security and adaptation of 

agricultural systems to climate change at different scales (Rötter et al., 2011a). Thus, it becomes 

necessary to consider the uncertainty related to the two critical areas mentioned above (section 

1.1.1) when analysing and further utilizing the results of regional crop model applications. 

Uncertainty analysis should also distinguish between the three main sources: model structure, 

parameters and input data. 

 

1.2.1 Model structure 

Crop models consist of a series of equations which represent the soil-plant-atmosphere system 

(Faivre et al., 2004). In the common case, these equations have been developed for field scale 

applications. Consequently, uncertainty emerges when applying crop models regionally since it is 

not clear if the described processes might be appropriate for larger spatial extents and additionally, 

due to the scale change, new processes might become even more important than the ones taken into 

consideration by the original model‟s equations (Ewert et al., 2006). On the one hand, it is argued 

that the level of detail in which processes are described by field scale crop models might be too 
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demanding considering that data at larger scales are usually more aggregated and less detailed 

(Ewert et al., 2011b). On the other hand, it has been shown that oversimplification of the important 

processes such as light utilization might lead to the omission of important relationships (Adam et 

al., 2011). In general, to avoid unnecessary uncertainty introduction, it is suggested to utilize 

equations which consider mechanisms immediately related to the yield-determining processes 

(Challinor et al., 2009a), ideally at the respective scale. 

 

1.2.2 Model parameters 

The mathematical equations, which are integral part of crop models, contain coefficients which are 

commonly known as parameters (Faivre et al., 2004). The process of parameter estimation, also 

called calibration, plays a decisive role on the quality of model results (Wallach et al., 2010). Apart 

from the error introduction which is inherent to the parameter estimation process of any model 

(Palosuo et al., 2011), the regional application of crop models might act as an additional source of 

uncertainty .  

Since the processes described by the majority of crop models are highly detailed, it is difficult to 

find measured data for larger spatial extents which are qualitatively and quantitatively sufficient to 

be used for parameter estimation (Ewert et al., 2006). An alternative to overcome the data scarcity 

might be generating a set of regionalized parameters adapted to the spatial extent at which the 

model is applied (Ewert et al., 2011b). 

Until present, the parameter values for regional crop model applications are not estimated but 

usually obtained from the literature, assuming that they can be uniformly applied over large regions 

(e.g. De Wit et al., 2010; Harrison and Butterfield, 1996). Nevertheless, literature values are often 

outdated and do not consider the possible yield improvements in new crop varieties, even when 

derived from comprehensive analysis of experimental studies (Rötter et al., 2011a). In this respect, 

it  has been recommended to re-estimate the parameter values for regional applications in order to 

improve the capability of the models to capture spatial yield variability between sub-regions 

(Reidsma et al., 2009a). In the context of regional agricultural productivity assessments, especially 

in relation to the impacts of climate change and variability, the accurate depiction of yield 

variability between regions plays an important role (Challinor et al., 2009a; Hansen and Jones, 

2000; Reidsma et al., 2009a). Few studies have suggested a methodology of parameter estimation 

which considers these differences. A first step in this direction has been taken by Therond et al. 

(2011). The authors propose to use region-specific factors for 12 European regions in order to 

correct simulations of phenological stage for regional differences. They conclude that this strategy 

substantially improves yield simulations in comparison to using the same phenological parameter 

set for all regions. They also strongly recommend proceeding the same way with growth 

parameters for obtaining more accurate simulation of growth in biomass and yield. 
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1.2.3 Model input data  

As mentioned above, the application of crop models at larger spatial extents is severely hindered by 

their detailed data requirements. Several methods have been suggested to overcome this problem 

(e.g. Faivre et al., 2004; Hansen and Jones, 2000; Leenhardt et al., 2006). They are mainly based on 

some form of data aggregation (e.g. Mearns et al., 2003; Van Der Velde et al., 2009). For a 

comprehensive description of such methods to manipulate models and data for larger scale crop 

model applications the reader is referred to Ewert et al. (2011b). There is an increasing interest in 

explicitly assessing the uncertainties inherent to the process of data aggregation and manipulation 

(e.g. Niu et al., 2009; Olesen et al., 2000; Van Bussel et al., 2011a; Van Bussel et al., 2011b). An 

important question regarding this field of research is to which extent the choice of spatial resolution 

of environmental input data (soil, weather) influences model simulations (e.g. De Wit et al., 2005; 

Folberth et al., 2012; Mearns et al., 2001; Nendel et al., 2013). However, the effect of spatial 

aggregation of input data on simulated yields has only been partially assessed until now and 

demands more systematic analyses. Also, possible interactions between model related uncertainties 

(Asseng et al., 2013; Palosuo et al., 2011; Rötter et al., 2013b; Rötter et al., 2012b) and uncertainty 

due to scaling are in need of attention.  

 

1.3 General objective and research questions 

 

In response to the need of more insight into the critical aspects inherent to the application of crop 

models at larger spatial extents, the overall objective of the present PhD thesis is to systematically 

address the uncertainties emerging from the regional application of crop models. For this purpose I 

aim to answer the three following research questions. 

 

Question 1 (Q1).- What is the relevance of considering region-specific differences in the 

calibration of a crop model at large scale? 

 

This question focuses on examining different calibration strategies for simulating spatial and 

temporal yield variability. 

 

Question 2 (Q2).- What are the effects of changes in the spatial resolution of weather input data on 

the simulation results of diverse crop models? 

 

Question 3 (Q3).- What are the effects of changes in the spatial resolution of soil input data on the 

simulation results of diverse crop models? 

 

The changes in the spatial resolution mentioned in Q2 and Q3 concern different data aggregation 

levels based on a high spatial resolution data set which is systematically manipulated to obtain 
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lower resolution input data sets. Since the influence of the method of aggregation is not the focus of 

this question, simple averaging in the case of weather input data and sampling of the most 

representative units in the case of soil input data are used. 

The effects of the aggregation levels of input data on the simulation results are evaluated in terms 

of the influence of data resolution on simulation statistics including frequency distributions of 

model outputs. 

The crop models taken into consideration use different approaches to simulate crop growth and 

development, and describe those physiological processes at different degrees of complexity. 

 

1.4 Study setting 

 

In order to answer Q1 a continental yield simulation study considering 25 member countries of the 

European Union (EU 25) was established. This choice was made based on the availability of two 

extensive databases: the European SEAMLESS database (Andersen et al., 2010; Van Ittersum et 

al., 2008) which provides soil and weather information and the JRC/MARS Crop Knowledge Base 

(JRC, 1998) containing yearly sowing and harvest data for grain maize, potato, sugar beet, winter 

barley and winter wheat.  

The yield simulation study dealing with Q2 was undertaken in the Yläneenjoki region, a rather 

small (approx. 4000 km
2
) and well established barley producing region in south-western Finland. 

The reason to consider this area was the access to a climate data set from the Finish Meteorological 

Institute available for whole Finland  with a 10 km x 10 km grid cells resolution (Venäläinen et al., 

2005), which served as highest data resolution used as basis for the stepwise aggregation of 

weather input data. An special advantage of the selected area was the availability of crop data for 

400 to 600 parcels from the MYTAS database (Palva et al., 2001). Based on this information a 

supplementary analysis of the influence of aggregation on the distributions of observed yield data 

was possible. 

Finally, a yield simulation study involving seven counties in the Federal State of North-Rhine 

Westphalia was set up in order to answer Q3. The access to the exceptionally detailed soil data 

information, a soil map at a scale of 1:50 000 (BK50, 2004) provided by the Geological Service of 

North-Rhine Westphalia, justifies choosing this region. The soil map contains information about 

the distribution of approximately 7000 soil units for the entire State which are used as starting point 

for the stepwise aggregation of soil input data. 

 

1.5 Structure of the thesis 

 

The thesis comprises 5 chapters. This first chapter is the general introduction, while chapters 2 to 4 

deal with the three research questions in the order mentioned above. Chapter 2 compares three 

different model calibration strategies using: i) region-specific phenology parameters but only one 
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parameter set for the EU 25, ii) both phenology calibration and a region-specific final yield 

correction factor and iii) calibration of phenology and region-specific parameters for selected 

growth processes. The effects of the tested calibration strategies are assessed and the best 

performing strategy is used to estimate the impacts of climate change combined with increasing 

CO2 concentration and technology development on yields. In Chapter 3 the effect of spatial 

aggregation of weather data on regional yields simulated by four crop models is investigated. The 

frequency distributions of yields simulated using five weather data resolutions are compared and 

the differences between them caused by the choice of the resolution for each model and between 

models are evaluated. Additionally, the effects of model input vs. model output aggregation on 

simulated yield distributions are investigated as well as the effects of aggregating observed yields 

as compared to the aggregation of simulated yields. Similarly, Chapter 4 explores the importance 

of aggregation of soil input data when simulating regional yields using four crop models. Three 

spatial resolutions are tested and the frequency distributions of simulated yields and simulated total 

growing season evapotranspiration are compared to assess the influence of soil input data 

resolution on model results. Moreover, the behaviour of the four crop models with respect to soil 

input data resolution is analysed to gain insights into the uncertainty of model simulations. Finally, 

in Chapter 5, the main findings of the PhD thesis are summarized and discussed. Emerging 

research questions related to the regional application of crop models are proposed and a number of 

recommendations are given concerning the assessment of uncertainty in regional climate change 

impact projections for agriculture. 
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2. Implication of crop model calibration strategies for assessing regional 

impacts of climate change in Europe 

 

2.1 Introduction 

 

Despite the persisting challenge in scaling up detailed information on crop growth and 

development from the field to the regional and higher level (Ewert et al., 2011b; Faivre et al., 2004; 

Hansen and Jones, 2000), process-based crop simulation models (hereafter referred to as crop 

models) are a commonly used tool for large area impact assessment of climate variability and 

change on crop yields (e.g. Challinor et al., 2010; Olesen and Bindi, 2002; Parry et al., 2004; Rötter 

et al., 2011a; Xiong et al., 2008). In contrast to statistical models (e.g. Lobell et al., 2008) crop 

models provide process-based explanations of systems behaviour to changes in the environment. 

Furthermore crop models are able to consider dynamic interactions between environment, genotype 

and management factors, which justifies their application in projecting impacts of climate change 

and adaption on agricultural crop production. However, large area applications of these models are 

often hindered by limited data availability for model calibration and testing and extensive 

computing time. Most large scale applications of crop models have some way of considering the 

spatial variability of input data such as climate, soil characteristics and management practices, 

often through some form of data aggregation (Fischer et al., 2005; Mearns et al., 2001; Van Der 

Velde et al., 2009; Wassenaar et al., 1999). However, only few attempts have been made to 

quantify errors related to the method of input data aggregation (Olesen and Bindi, 2002; Van 

Bussel et al., 2011a; Van Bussel et al., 2011b). Even less information is available about the 

importance of model calibration for large area applications with aggregated and scarcely available 

data from observations. 

It is well recognised that model calibration is indispensable to improve the accuracy of yield 

estimations in climate change studies (Jagtap and Jones, 2002; Wolf et al., 1996) and that it has 

implications for the overall reliability of the model simulations (Challinor et al., 2009a). With a few 

exceptions (e.g. Challinor et al., 2004) crop parameters are usually not subjected to calibration, but 

they are obtained from the literature assuming that they can be uniformly applied over large 

regions. For example, De Wit et al. (2010) used a multiple crop parameter set based on field 

experiments in the Netherlands, UK and Belgium to simulate crop yields in Europe with the 

WOFOST model. Harrison and Butterfield (1996) considered variety-specific phenology 

parameters for major wheat growing regions in Europe, but did not calibrate any other growth 

parameters. In fact, recent model applications have considered regional differences in phenological 

development, but only few examples are known were the regional variability of growth parameters 

is considered. For instance, Xiong et al. (2008) used a cross-calibration procedure that explicitly 

accounted for variety characteristics and proposed variety-specific parameter sets for each of 16 
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major rice producing zones in China in order to capture the spatial variability of regional yields. In 

global studies, models such as GAEZ (Fischer et al., 2005) and LPGmL (Bondeau et al., 2007) 

consider region-specific parameters for phenology and some selected growth processes, however,  

it remains a challenge to develop parameters with a common approach that are comparable and 

have been extensively tested for all regions. 

Recently, Therond et al. (2011) argued that crop model parameters can only be derived from field 

experiments where growth and development processes have been measured. Furthermore, they 

suggest that aggregated data from regional statistics are insufficient to derive parameters for crop 

models as these have been originally developed for field-level applications based on field 

experiments. Instead, the authors propose an approach to calibrate the phenology module of the 

crop model APES (Donatelli et al., 2010; Van Ittersum et al., 2008) for 12 European regions using 

correction factors which were calculated based on the differences between simulated and observed 

phenology dates. When these region-specific factors where applied to correct simulated dates of 

phenological stages, simulations of grain yield improved substantially in comparison to yield 

simulations with only one parameter set for all regions. However, Therond et al. (2011)  also 

stressed that calibration of phenology is not sufficient to reproduce observed yields across regions 

in Europe.  

Some efforts are known where parameters have been derived from comprehensive analysis of 

experimental studies, which, however, date back decades ago (Boons-Prins et al., 1993). In a recent 

analysis of European-wide simulations with the WOFOST model (Boogaard et al., 1998) using 

these parameters, Reidsma et al. (2009a) concluded that a re-calibration of crop-growth-related 

parameters could improve the model‟s capability in capturing spatial (regional) yield variability. 

Model parameters apparently referred to old varieties and crop improvement was not considered, a 

phenomenon common to many of the widely used crop models (Rötter et al., 2011a). This also 

applies to impact assessment studies were crop and management improvement over time is hardly 

accounted for. Very few examples are known (e.g. Ewert et al., 2005; Hermans et al., 2010) where 

estimations of climate change effects on crops are combined with scenario dependent assumptions 

about changes in agro-technology development affecting yield potential and the yield gap (Lobell 

et al., 2009).   

Spatially explicit and comprehensive studies assessing the influence of climate change on 

agricultural yields in Europe using crop models are scarce (Harrison and Butterfield, 1996; Trnka 

et al., 2011). The few attempts that have been made, e.g. Van Der Velde et al. (2009) for pan-

European rapeseed production, have highlighted the importance of considering the regional 

differences in climate change assessments. Acknowledging the large data, parameter, and output 

uncertainties when using process-based models in regional yield prediction, Ewert et al. (2005) 

suggested a simple empirical approach to estimate crop productivity under climate change in 

Europe that accounts for regional yield variability and temporal changes due to crop and 
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management improvement. However, effects of climatic variability could not be assessed with this 

approach.  

None of the above-mentioned studies has investigated the possible effects of model calibration for 

crop phenology, growth and yield-related parameters on large area simulations and possible 

implications for estimations of climate change impacts. Accordingly, in this study we aim to 

investigate the importance of a region-specific model calibration for simulations of five crops 

across 25 member countries of the European Union (EU25). We do not question the need for a 

region-specific calibration of phenology parameters as this is already commonly accepted. The 

focus of our study is on the calibration of growth processes and yield. We assume that region-

specific parameters for growth and yield will improve yield simulations, including their spatial and 

temporal variability. More specifically, we compare three different ways of calibrating a crop 

model (further referred to as calibration strategies) using (i) calculated region-specific phenology 

parameters and one growth-influencing parameter set for all regions in Europe, (ii) consideration of 

both phenology calibration and a region-specific final yield correction factors, and (iii) calibration 

of phenology and region-specific parameters for three selected growth processes. Simulations are 

performed with LINTUL2 (Van Ittersum et al., 2003b) combined with a calibration algorithm 

implemented in the modelling interface LINTUL-FAST for 533 climate zones (Andersen et al., 

2010) across EU25. We also test to which extent the different calibration strategies affect 

estimations of climate change impacts on crop yields. Finally, we consider the best performing 

calibration strategy to estimate the impacts of climate change in combination with increasing 

atmospheric CO2 concentration and technology development on yields. These impact projections 

are performed stepwise to understand the individual contributions of climate change, increasing 

atmospheric CO2 concentration and technology development on estimated yield changes. 

 

2.2 Materials and Methods 

 

2.2.1 Model Description 

Our modelling activities are based on the crop model LINTUL2 for potential and water-limited 

conditions (Farré et al., 2000; Spitters and Schapendonk, 1990; Van Ittersum et al., 2003b).  As the 

original model LINTUL2 simulates phenology only for spring crops it was extended with a 

phenology model as used in APES together with LINTUL2 (Adam et al., 2012). LINTUL2 was 

combined with a search algorithm, (see 2.5) to calibrate parameters. LINTUL2 equipped with the 

mentioned calibration algorithm was developed in the modelling interface FAST which allows fast 

simulations for large numbers of spatial units and years for which temporal model performance 

becomes a critical issue.  The resulting model combination LINTUL-FAST is used in this study. 

LINTUL2 considers effects of climate including limited water supply as described in (Farré et al., 

2000; Spitters and Schapendonk, 1990). It has been used in numerous climate change studies (e.g. 
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Ewert et al., 1999; Hijmans, 2003; Van Oijen and Ewert, 1999; Wolf and Oijen, 2002). Different 

from other model versions (Ewert et al., 1999; Rodriguez et al., 2001; Van Oijen and Ewert, 1999; 

Wolf and Oijen, 2002) for the present study a simple representation of the effects of increased 

atmospheric CO2 concentration (denoted as [CO2]) on biomass production was considered using the 

relationship between [CO2] and radiation use efficiency proposed by Stockle et al. (1992):  

 

RUEe = (100)([CO2])/[-[CO2] + bl exp(-b2 [CO2]) ]   (1) 

 

where RUEe is Radiation use efficiency in g MJ
-1

 and [CO2] represents the atmospheric [CO2] in 

ppm. The values assigned to the parameters bl and b2 are 6928 and 0.0014 respectively, and 

correspond to a moderate increase of RUE due to atmospheric [CO2] elevation from 350 to 600 

ppm (Stockle et al., 1992). This relationship was assumed for all crops except for grain maize 

which is a C4 plant and presents no (≤1%) stimulation of photosynthesis at elevated (≥600 ppm) 

atmospheric [CO2] (Leakey et al., 2009). The second effect of [CO2] on biomass production is to 

reduce crop transpiration. A linear diminution of transpiration up to 10% for all crops was taken 

into consideration when the atmospheric [CO2] reaches 700 ppm (Ewert et al., 2002; Kruijt et al., 

2008). In addition, for calibration strategy 3, where one specific calibrated value of RUE is utilized 

for each climate zone and which is used for the performed climate change impact simulations, the 

fertilization effect of elevated atmospheric [CO2] was calculated using a correction factor: 

 

RUEn= RUEen* RUEc0/ RUEe0  (2) 

 

Where RUEn is the corrected RUE value for any future year n depending on CO2 concentration, 

RUEen is the RUE value obtained for the correspondent n year when applying equation (1), RUEc0 

is the RUE value obtained from calibration strategy 3 for ambient CO2 concentration and RUEe0 is 

the RUE value under ambient CO2 concentration when applying equation (1). 

 

2.2.2 Weather data 

Weather data were obtained from the SEAMLESS database (Janssen et al., 2009; Van Ittersum et 

al., 2008) for 533 climate zones in EU25 (Andersen et al., 2010; Janssen et al., 2009) for the period 

1983-2006. A climate zone is defined a spatial unit that combines NUTS-2 (Nomenclature of 

Territorial Units for Statistics) regions and Environmental Zones (EnZ) (Metzger et al., 2005). Data 

included daily rainfall (mm d
-1

), maximum air temperature (°C), minimum air temperature (°C), 

global solar radiation (MJ m
-2

 d
-1

), wind speed (m s
-1

) and vapour pressure (hPa). 

Evapotranspiration (mm d
-1

), was available from the observed database where it was calculated 

with the Penman-Monteith formula as applied by Allen et al. (1998a).  

2.2.3 Soil data 
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Soil characteristics at the level of AgriEnvironmental Zones (AEnZ) (Hazeu et al., 2010), a further 

refinement of the climatic zones were also available from the Pan European SEAMLESS database 

(Andersen et al., 2010; Van Ittersum et al., 2008). Six different soil types were defined according to 

topsoil organic carbon levels (Hazeu et al., 2010). However, in this study only the dominant soil 

type per AEnZ, i.e. the soil type covering the largest area in each AEnZ, was considered and 

aggregated to the level of NUTS-2 administrative regions for which yield statistics were also 

available. 

 

2.2.4 Crop data 

2.2.4.1 Crop phenology 

Yearly sowing and harvest dates for grain maize, potatoes, sugar beet, winter barley and winter 

wheat were obtained from the JRC/MARS Crop Knowledge Base for 233 NUTS-2 regions across 

Europe (JRC, 1998). However, due to missing values in some NUT2 regions and years, these dates 

were averaged to the level of EnZ across Europe. Subsequently, the obtained sowing and harvest 

dates for the 13 EnZs were disaggregated again to the climate zones. These data of sowing and 

harvest dates were then used for the calibration of LINTUL-FAST. 

 

2.2.4.2 Crop yields 

Annual yields were available for NUTS-2 regions from 1983 to 2006 from the EUROSTAT 

database (Eurostat, 2010). For Germany, data gaps were noticed and filled with data from the 

Federal Office of Statistics of Germany (Destatis, 2010). Other data gaps could not be filled, so that 

consistent data for the entire period were not available for all regions (Section 2.3.2, Figure 4d).The 

yield data were the basis for the calibration exercise of LINTUL-FAST. 

 

2.2.5 Model calibration 

2.2.5.1 Calibration criteria 

LINTUL-FAST uses an optimization brute-force search algorithm for the calibration of crop 

phenology, three biomass production parameters and the yield correction factor. The targeted 

parameters were determined by the minimum root mean square error RMSE between simulated and 

observed data given by: 

 

RMSE(θs- θo) = √[∑
n
i=0(xs,i- xo,i)

2
/n)]   (3) 

 

where s is simulated and o is observed yield, θ is a yield data vector and x is a yield data point. The 

calibration algorithm was set up to search for the best value for each considered parameter (i.e. 

minimising RMSE) within a maximum of eight iterations. Tests have shown that larger numbers of 

search iterations improve parameter values only marginally. 
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2.2.5.2 Calibration procedure and strategies  

In this study we test the effect of three different strategies of calibrating the crop model  LINTUL-

FAST,  

(1) Region-specific parameters of phenological development only, 

(2) Region-specific phenology parameters and a correction factor for yield estimations. 

(3) Region-specific phenology parameters and calibration of selected growth parameters instead 

of a yield correction factor. 

 

Strategy 1: calibration for phenological development 

For all three calibration strategies temperature sums for 533 climate zones of EU25 were calculated 

using aggregated observed crop phenology data for the stages sowing and maturity, and the 

historical weather data at climate zones level. Values of temperature sums were calculated from 

sowing to anthesis and from anthesis to maturity for each climate zone based on available data (see 

Section 2.2.4). Due to the uncertainty regarding the variation of base temperature among genotypes 

and development stages (McMaster et al., 2008), one base temperature value was considered for 

each crop and applied for all climate zones (Yin and Van Laar, 2005). Growth influencing 

parameters were not calibrated in this strategy, thus one set of growth parameters for each crop was 

used for all regions across Europe. Table 1 presents an overview of the main crop growth 

influencing parameter values considered for each crop. 

 

Table 1. Default parameters as used in simulations of calibration strategies 1 and 2. 

(RUE=radiation use efficiency, SLA=specific leaf area, DT=drought tolerance). 

 

 
Parameter References 

Crops RUE  SLA DT 
   

 

(g Mj
-1

) (m
2
g

-1
) (-) 

      
Winter wheat 2.8 0.028 0.3 Garcia et al., 1988; Yin and Van Laar, 2005* 

          Winter barley 2.9 0.031 0.3 Goyne and Hare, 1993, Adam pers. com
+
 

          Potato 2.7 0.033 0.4 Spitters and Schapendonk, 1990 

          Sugar beet 3.5 0.02 0.4 Jaggard et al., 2003 

          Maize 3.8 0.022 0.2 Farré et al., 2000 

* Xinyou and Laar, 2005 provide values for SLA for all crops. 
+ Adam provided values for DT for each crop  
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Strategy 2: calculation of yield correction factors 

This strategy extends from strategy 1, region-specific phenology parameters are used (strategy 1) in 

addition to a yield correction factor. This yield correction factor was calculated for each climate 

zone based on minimising RMSE between observed and simulated yields from 1983 until 2006, as 

follows:  

 

λ= ∑sioi/∑si
2
   (4) 

 

where λ is the yield correction factor, s is the simulated and o the observed yield in an i-zone. The 

obtained yield correction factor for each climate zone was applied, to all years in this climate zone. 

The available yields statistics were de-trended to exclude yield increases resulting from technology 

development. For this purpose, yield trends were calculated for each climate zone by fitting a linear 

regression line through the correspondent observed yields, as proposed by Ewert et al. (2005).  The 

yearly yields in each climate zone were then de-trended by adding or subtracting the correspondent 

value of the slope of the linear regression. The yield trends were explicitly considered in the 

scenario analysis (see section 2.2.6). No calibration of growth parameters was performed and one 

set of growth parameters was used for all regions in Europe.  

 

Strategy 3: calibration of growth parameters 

Selected growth parameters were calibrated using observed crop yields from 1983-2006 which 

were de-trended as described above under strategy 2. The calibration referred to three parameters, 

(i) radiation use efficiency (RUE), (ii) specific leaf area (SLA) and (iii) drought tolerance (DT). It 

was assumed that these parameters represent main variety differences in leaf area index and thus 

light capturing, light conversion to biomass and drought sensitivity. The incorporated calibration 

algorithm in LINTUL-FAST allows for a simultaneous search of the 3 parameters:  

 

‖Sim(RUEi
n
, SLAj

n
, DTk

n
)-o‖ ≤ ‖Sim(RUEi, SLAj, DTk)-o‖ for all i,j,k  (5) 

 

where,  

RUEi=RUE0-RUE0*r+(RUE0*r*2)/7*(i-1) 

SLAj=SLA0-SLA0*r+(SLA0*r*2)/7*(j-1) 

DTk=DT0-DT0*r+(DT0*r*2)/7*(k-1) 

 

i
n
, j

n
,k

n
 = selected values  

i,j,k=1,2...8 

r=allowed percentage of variation of the parameter.  
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The total variation of each parameter was limited to 45% (r=0.45) of its default value. Three 

successive iterations were undertaken to search for the best parameter values since preliminary 

tests showed that more than three iterations did not further minimize RMSE significantly. For the 

first search iteration RUE0, SLA0 and DT0 were set to the default values of each parameter (Table 

1). For the second interaction RUE0, SLA0 and DT0 were replaced with the resulting values of 

RUEi, SLAj and DTk from the first iteration. For the third iteration, the values of RUE0, SLA0 and 

DT0 were replaced with the resulting values of RUEi, SLAj and DTk from the second iteration. No 

yield correction factor was considered in this strategy. Thus, instead of a yield correction factor, 

one set of growth parameters was provided for each climate zone and was applied to all years for 

which data were available in this climate zone.  

 

2.2.6 Scenario analysis 

2.2.6.1 Climate change scenarios 

The scenario analysis considered changes in climate, atmospheric [CO2] and technological 

development and compared a baseline scenario (1983-2006) with future scenarios for the period 

2041-2064. 

Data from an ensemble of simulations with 15 coupled atmosphere-ocean General Circulation 

Models (GCMs) for three emission scenarios (10 GMCs with SRES B1 forcing, 15 with A1B and 

14 with A2, Nakicenovic et al., 2000) were downloaded from the CMIP3 archive (Meehl et al., 

2007) for those variables required for crop modelling. A subset of the following seven scenarios 

was selected to span the range of changes in temperature and precipitation by the mid-21
st
 century: 

 SRES A1B 15-model ensemble mean (15GCM A1B) – this provides a central projection of the 

changes with respect to all variables. 

 Pattern-scaled SRES B2 15-model ensemble mean (15GCM B2) – all changes of the A1B 

ensemble mean are reduced by a scaling factor obtained from a simple climate model to 

emulate difference in the forcing. 

 BCCR_BCM2_0/SRES B1 (BCCR B1) – less warming consistent across all regions and 

seasons. 

 MIROC3.2(hires)/SRES A1B (MIROC A1B) – more warming consistent across all regions and 

seasons. 

 CCCMA-CGCM3.1/SRES A2 (CGCM A2) – wet in northern Europe. 

 MIROC3.2(hires)/SRES B1 (MIROC B1) – wet in central Europe. 

 GISS_MODEL_E_H/SRES A1B (GISS A1B) – dry in central and northern Europe. 

 

Simulated monthly changes between the periods 1980-1999 and 2040-2059 were calculated from 

the GCMs for all required variables, averaged for the 533 regions of the observed weather data, 

interpolated to daily deltas and added to the observed time series. In this simple delta-change 
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approach, possible changes in inter-annual or daily variability were not considered. All scenario 

data were checked to provide physically plausible values, for further details see Ewert et al. 

(2011a).  

The present and future atmospheric [CO2] were based on emission scenarios taken from the Special 

Report on Emissions Scenarios (SRES -Nakicenovic and Swart, 2000): A1B, B1, A2 and B2. 

According to these projections average [CO2] concentrations for the period 2041-2064 are 531.6, 

534, 486.6 and 478.3 ppm for the SRES scenarios A1B, A2, B1 and B2, respectively. 

 

2.2.6.2 Technology development 

The importance of considering technology development in climate change impact assessments 

studies has been stressed by several authors (Challinor et al., 2009a; Ewert et al., 2005; Rötter et 

al., 2011a; Semenov and Halford, 2009). Here we use the approach described in Ewert et al. (2005) 

to estimate yield changes due to improved varieties and crop management. In this approach, 

historic yield trends are used as a basis to extrapolate yields into the future. The extrapolated trends 

are, however, modified depending on scenario specific assumptions about breeding progress to 

increase potential yields and crop management to reduce the yield gap (Ewert et al., 2005). In this 

study we used the same technology parameters to correct the historic yield trends as described in 

Ewert et al. (2005). Importantly, historic trends were calculated for the period 1983-2006 for each 

NUTS-2 region and disaggregated to the climate zone. Thus, all climate zones in one NUTS-2 

region use the same historic yield trend. Calculated scenario-specific yield changes due to 

technology development were then used to correct simulated yields under climate change and 

increased [CO2].   

 

2.2.7 Simulation 

The calibrated model LINTUL-FAST was used to simulate five annual crops, i.e. winter wheat, 

winter barley, potato, sugar beet and grain maize for Europe (EU25) for the baseline period 1983 - 

2006. Future crop yields were simulated for the 24 year period centred around 2050 (2041-2064) 

for the 7 climate change scenarios described above (Section 2.2.6.1). In order to analyse separately 

the effects of climate, increased atmospheric [CO2] and technology development, each scenario 

was run in three steps. First, simulations considered the influence of climate change on yields only. 

The next step included also the effect of increased [CO2]. Finally, in the third step, the influence of 

technology development was considered in addition to the effects of climate change and increased 

[CO2]. 

  



Chapter 2 –Regional calibration strategies 

19 

 

2.3 Results 

 

2.3.1 Effect of calibration strategies on simulations 

2.3.1.1  Baseline conditions 

 

Table 2. Summary statistics of observed and simulated yields of 5 crops using three calibration 

strategies  applied in Europe over 24 years (1983 to 2006). 

 

Crop  Statistic Yield 

Observed Strategy 1 Strategy 2 Strategy 3 

      

Winter wheat Mean 3.84 5.14 3.56 3.75 

 St. Dev 1.78 2.45 2.01 1.83 

 RMSE  2.36 1.10 0.70 

 CV(RMSE)  0.56 0.26 0.17 

 R
2
 

 

 0.26 0.72 0.86 

      

Winter barley Mean 3.37 6.87 3.27 3.31 

 St. Dev 1.34 2.02 1.40 1.33 

 RMSE  3.94 0.72 0.59 

 CV(RMSE)  1.17 0.21 0.16 

 R
2
 

 

 0.42 0.75 0.81 

      

Potato Mean 5.11 5.49 4.67 4.93 

 St. Dev 1.99 2.83 2.42 2.11 

 RMSE 

 

2.65 1.54 1.13 

 CV(RMSE)  0.52 0.30 0.21 

 R
2
 

 

 0.12 0.63 0.73 

      

Sugar beet Mean 11.21 6.16 8.99 10.13 

 St. Dev 3.19 3.68 6.45 4.27 

 RMSE 

 

6.50 5.97 3.45 

 CV(RMSE)  0.58 0.53 0.31 

 R
2
 

 

 0.06 0.25 0.42 

      

Grain maize Mean 5.97 8.41 5.53 5.54 

 St. Dev 2.03 3.16 2.32 2.31 

 RMSE  4.33 1.94 1.81 

 CV(RMSE)  0.73 0.32 0.30 

 R
2
 

 

 -0.06 0.37 0.44 
 

Abbreviations: St. Dev=Standard deviation, RMSE=root mean square error, CV(RMSE)=coefficient of variation of RMSE 
[RMSE/mean], CV=coefficient of variation, R2=coefficient of determination, Strategy 1= calculation of phenology parameters only, 

Strategy 2= consideration of both phenology calibration and a yield correction factor, Strategy 3=calibration of phenology and selected 

growth processes.  
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An overview of the effects of the three applied calibration strategies is presented in Table 2 

summarized for all crops and regions over 24 years (from 1983 to 2006). 

Simulations considering regional differences in phenology only (i.e. strategy 1, section 2.2.5.2) 

resulted in large differences between simulated and observed yields for all crops as depicted 

exemplarily for winter wheat in Figure 1a. With the exception of winter barley, no relationship 

between simulated and observed yields could be obtained. Considering region-specific correction 

factors (in addition to phenology parameterisation) for yield simulations (i.e. strategy 2, section 

2.2.5.2) noticeably improved simulation results for all crops but to a different extent depending on 

the crop (Table 2). However, there was still disagreement between observed and simulated yields 

which could be further reduced by applying a more extended calibration of growth parameters (i.e. 

strategy 3, section 2.2.5.2) as evident for winter wheat (Figure 1c), but also for other crops (Table 

2). 

 

 

 

Figure 1. Comparison between observed and simulated yields from three calibration strategies, (a) 

phenology only, (b) using a yield correction factor, and (c) an extended calibration of selected 

growth parameters of winter wheat for 533 climate zones in Europe in the period from 1983 to 

2006. See text for explanation of calibration strategies. 

 

 

2.3.1.2 Climate change effects 

Further analysis revealed that the simulated climate change effects depend on the calibration 

strategy used (Figure 2 and Figure 3). For instance, comparison of calibration strategies for wheat 

with respect to the simulated yield difference between the climate change scenarios (here: 15 GCM 

A1B) and the baseline showed different relationships depending on which strategies were 

compared (Figure 2).  
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Figure 2. Relationships between calibration strategies for absolute yield differences between 

simulations from baseline and climate change scenario 15 GCM A1B for (a) basic calibration 

(strategy 1) vs. yield correction factor (strategy 2), (b) basic calibration (strategies 1) vs. extended 

calibration (strategy 3) and (c) extended calibration (strategy 3) vs. yield correction factor (strategy 

2), for winter wheat in 533 climate zones in Europe over 24 years (1983-2006). See text for 

explanation of calibration strategies. (The fact that most points are located in the bottom left 

quadrant points out that all calibration strategies predict on average a negative effect of climate 

change). 

 

 

For most crops except for sugar beet application of strategies 2 and 3 resulted in smaller simulated 

yield differences between a climate change scenario and the base line as compared to strategy 1 

(Figure 3).  

 

 

Figure 3. Absolute yield differences between simulations from baseline and climate change 

scenario 15 GCM A1B for three calibration strategies and five crops. Data represent averages over 

533 climate zones in Europe and 24 years (1983-2006). See text for explanation of calibration 

strategies.  
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2.3.2 Spatial and temporal variability 

As evident from Figure 1 and Table 2 model calibration considering growth parameters (strategy 3) 

provided the best agreement between observed and calibrated yields. Thus, further analysis was 

restricted to this calibration strategy. 

A comparison of the simulated spatial pattern of wheat yields averaged over the 24 year period 

(1983-2006) with the observations over the same time period showed the expected good agreement 

between simulated and observed data (Figure 4a, b). Observed high productivity in regions of 

Central and Western Europe (France, Belgium, The Netherlands and Germany) and low 

productivities in regions of the Mediterranean countries (Spain, Italy and Greece) were also 

simulated by the model (Figure 4a, b).  

This good agreement between simulated and observed data is not surprising as spatial differences 

are considered in the calibration through region-specific parameters. However, there were 

differences in the simulation results for individual regions. RMSEs were particularly high in 

regions of southern and parts of northern Europe (Figure 4c). Further analysis revealed that relative 

RMSEs were high in regions where observed yields were low (Figure 4e). This may point to a 

limitation of the present strategy to calibrate on actual yields, particularly when the gap between 

actual and potential yield is large due to drought and factors not accounted for in the model such as 

pests, diseases and weeds. It should also be noted that the number of years available for calibration 

differed among regions (Figure 4). However, this did not explain regional differences in model 

accuracy (Figure 4). These results suggest that temporal variability of yields within each region 

was better reproduced in regions where observed yields were high. At the aggregated EU25 scale 

simulated yields agreed well with the observed temporal yield variability (see Figure 5). However, 

there was some effect due to the incomplete time series of yield data in several regions. If only data 

from regions were considered for which yield data were available from 22-24 years (i.e. about 40% 

of all regions) the model accuracy slightly declined but showed still some agreement with the 

observed temporal variability (Figure 5b). 
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Figure 4. Spatial patterns of model calibration results for strategy 3 for winter wheat for 533 

climate zones in Europe between 1983 and 2006, considering (a) observed and (b) simulated winter 

wheat yields (Mg ha
-1

), (c) regional RMSE between observed and simulated winter wheat yields 

and (d)  number of years per region with observed winter wheat yields used for model calibration. 

Relationships between e) CV(RMSE) of observed and simulated yield and observed mean yield, 

and between  f) CV(RMSE) of observed and simulated yield and the number of years considered 

for model calibration. CV(RMSE) is the coefficient of variation of RMSE [RMSE/mean].  
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Figure 5. Temporal yield variability of observed (blue) and calibrated (red) winter wheat yields 

(Mg  ha
-1

) averaged over EU25 for the period from 1983 to 2006 considering (a) all climate zones 

and (b) only climate zones where more than 21 years of observed yield data were available for 

model calibration. 

 

 

2.3.3 Calibration of other crops 

Calibration results for other crops based on strategy 3 (phenology and growth parameters) were 

fairly satisfactory but some differences between observed and simulated yields were observed 

(Figure 6). Yield simulations were in better agreement with observations for winter crops wheat 

and barley as compared to the spring crops potato, maize and sugar beet yields, with the latter 

showing the largest differences. One reason for the larger differences between observed and 

simulated data for potato, sugar beet and maize as compared to the winter cereals could be the 

limited (or incorrect) availability of phenology data, particularly sowing dates. Discrepancies of 

some weeks between estimated and observed sowing date are more important and can have a large 

impact when simulating spring crops as compared to winter crops. 
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Figure 6. Comparison between observed and calibrated (strategy 3) yields of four crops in Europe 

(EU25) considering 533 climate zones and 24 years (1983 to 2006). (a) winter barley, (b) sugar 

beet, (c) potato, (d) grain maize (strategy 3). 

 

 

Simulated spatial (Figure 7) and temporal (not shown) variability of yields in Europe for the 

selected crops are in acceptable agreement with observations. High productivity regions observed 

in Central and Western Europe (France, Netherlands, Belgium, Germany) for barley, potato and 

sugar beet are reproduced well as expected by the model. For grain maize, the highest yields are 

typically recorded in southern regions (Spain, Italy, and Greece) which the calibration strategy also 

captured. For some zones and crops, e.g. winter barley for Finland, phenological parameters were 

missing and no model calibration and simulation was performed. 
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Figure 7. Spatial pattern of observed (a,c,e,g) and simulated (b,d,f,h) yields (Mg ha
-1

) based on 

extended calibration of selected growth parameters (calibration strategy 3) for (a,b) winter barley, 

(c,d) potato, (e,f) sugar beet) and (g,h) maize in Europe averaged for the period 1983 to 2006.  
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2.4 Simulation of future yields 

2.4.1.1 Impact of climate change  

Climate change, without considering increasing atmospheric [CO2] and advances in technology, 

causes a yield decrease for all crops and scenarios compared to the baseline yields (Figure 

8a,d,g,j,m). The largest yield declines due to climate change were simulated with the GISS A1B 

scenario, a predominantly dry scenario (see section 2.2.6.1). However, differences between crops 

were observed. Projected climate change impacts on yields were largest for maize, approximately -

1.7 Mg ha
-1

 (Figure 8m) and smallest for winter wheat, about -0.4 Mg ha
-1

 on average over EU25 

(Figure 8a). We also realized that simulated responses to climate change were less for winter crops 

as compared to spring crops. This may be due to the longer vegetative period typical for winter 

crops, which allows winter crops to recover better from extreme events such as drought spells in 

spring. Also, climate change induced changes in growing season length due to temperature increase 

will be relatively smaller in winter as compared in spring crops.  

 

2.4.1.2  Combined impacts of climatic change and increased [CO2] 

Taking into account elevated [CO2] when simulating climate change impacts increases simulated 

yields for all crops and scenarios but with some variation. Yield increases are highest for the winter 

crops and compensate for the negative yield effect due to climate change (Figure 9b,e). In these 

crops projected future yields are higher than baseline yields for all scenarios. Also for the root 

crops, sugar beet and potatoes, the simulated yields are higher than the baseline yields in most 

scenarios, but for the scenario with the largest climate change impact, GISS A1B, the positive 

[CO2] effect cannot compensate for the negative effect of climate change (Figure 8h,k). For grain 

maize there is almost no yield increase due to elevated [CO2] (Figure 8n). Maize is a C4 plant and 

therefore elevated [CO2] has no improving effect on radiation use efficiency but only on the 

transpiration rate (see section 2.2.1). 

 

2.4.1.3 Combined impacts of climate change, increased [CO2] and technology development  

When both the effect of increased [CO2] and technology development are taken into consideration 

together with the effect of climate change, simulated yield increases are considerable (Figure 

8c,f,i,l) but with some noticeable differences among the crops. While for winter cereals and the 

root crops, yield increases are higher than the baseline for all future scenarios, simulated grain 

maize yields remain below the baseline yields (Figure 8o). Apparently, the simulated pronounced 

climate change effect on maize yield could not be compensated by increased [CO2] and technology 

development. For the other crops, the highest yield increases are simulated for A1B scenarios 

(Figure 8c,f,i,l), in which [CO2] abundance and temperature reach the highest values. Importantly, 

the consideration of technology development results also in larger differences of simulated yields 

among the scenarios.  
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Figure 8. Simulated effects of (a,d,g,j,m) climate change, (b,e,h,k,n) climate change and increased 

[CO2], and (c,f,i,l,o) climate change, increased [CO2] and technological development on yields of 

five crops for 24 years in Europe (EU25) using four IPCC CC scenarios. Baseline and future 

scenarios are centred around 1990 and 2050 respectively. Crops considered are winter wheat 

(a,b,c), winter barley (d,e,f), sugar beet (g,h,i), potato (j,k,l) and maize (m,n,o).  
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An analysis of the spatial variability of simulated yields under combined changes in climate, [CO2] 

and technology shows little differences among scenarios as can been seen from the comparison of 

yield simulation from A1B (15GCMs A1B) and B1 (MIROC B1), although some differences in the 

extent of yield changes in the individual regions can be noticed (Figure 9). For the winter cereals 

yield increases of 30% and more compared to the baseline are simulated for most regions. There 

are small areas on the Iberian and Italic peninsulas were yield decreases are projected compared to 

the baseline (Figure 9b,d). These declines are mainly due to the pronounced negative climate 

change effect which could not be compensated for by the positive [CO2] and technology effect. The 

latter is relatively small due to the comparably small yield increases for these regions observed in 

the past. For potatoes and sugar beet yield increases are also simulated for most regions in Europe 

except for some areas in Southern Europe (Italy, Greece and Spain), and few regions in Poland and 

Finland, but in most of the cases the decreases do not surpass 10% in relation to baseline. For grain 

maize the spatial variability in yield changes ranges between <-30% to >30% (Figure 9i,j).  Yield 

increases are highest in South-western Europe and yield declines are mainly projected for Eastern 

Europe.  
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Figure 9. Differences between simulated baseline yields and yields from two climate change 

scenarios (a,c,e,g,i) A1B and (b,d,f,h,j) B1 for 5 crops over 24 years in Europe (EU25). The 

baseline and future time series are centred around 1990 and 2050, respectively. Crops considered 

are winter wheat (a,b), winter barley (c,d), sugar beet (e,f), potato (g,h) and maize (i,j).   
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Finally, we compared the temporal variability of our future projections with the baseline and the 

observed yield variability. Results are shown for three selected crops representing the range of 

responses for all five crops (Figure 10). The crop model LINTUL-FAST reproduces well the 

observed yield variability for all crops and most regions as was already described above (section 

2.3.2). However, we identified some overestimations of the yield variability for potatoes and maize 

on the Iberian Peninsula. This may be due to an overestimation of the drought effect in the model. 

This overestimation can be expected for models applying the RUE concept instead of detailed 

photosynthesis routines (Rötter et al., 2012b). However, yield variability was reproduced 

satisfactorily in most regions.  

There were only small changes in yield variability for the projected future scenarios for most crops, 

except for maize (Figure 10,h,i). The coefficients of variation (CV) of simulated grain maize 

decreased for the climate change scenarios as compared to the baseline on the Iberian Peninsula 

(Figure 10i). On the other hand, an increase in yield variability of maize due to climate change was 

observed for some regions in east Europe, mainly Poland (Figure 10i,).  

 

 

Figure 10. Coefficient of Variation (CV) over 24 years in Europe for (a,d,g) observed and 

simulated yields for (b,e,h) baseline (centred around 1990) and (c,f,i) the 15 GCM A1B scenario 

(centred around 2050). Crops shown are winter wheat (a,b,c), potato (d,e,f) and maize (g,h,i).    
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2.5 Discussion 

 

2.5.1 Importance of model calibration 

The present analysis is to our knowledge the first study in which the impacts of region-specific 

calibration of a crop model on yield simulations at continental scale (EU25) have been 

investigated. Our results are in agreement with earlier studies (Reidsma et al., 2009a; Therond et 

al., 2011) that consideration of differences in phenological development alone (strategy 1) does not 

suffice to capture variety differences among regions. Therond et al. (2011) proposed the use of a 

yield correction factor to account for regional yield differences not attributable to differences in 

phenological development. However, results have not been presented by the authors. In the present 

study we tested the use of such a correction factor and found a noticeable improvement of 

European-wide crop yield simulations when this factor was taken into account. However, further 

improvement on yield simulations was reached after a more extended calibration of selected 

growth parameters (strategy 3), (Figure 1). Furthermore, with this extended calibration strategy we 

were able to reproduce not only the spatial but also some of the temporal variability of crop yields 

(Figure 5).  However, to which extent this confirms the capability of mechanistic crop growth 

simulation models to adequately capture the effects of climate on yield variability also at larger 

areas (Challinor et al., 2005; Hansen and Jones, 2000; Palosuo et al., 2011) needs further 

investigation as in our study model accuracy was only good in high yielding environments. Xiong 

et al. (2008) also improved simulations of yield variability in 16 Sub-Agro Ecological zones in 

China when considering region-specific model calibration. In their study the relative RMSE 

between simulated and observed yields, was from 15% to 74% after calibration. In our study the 

relative RMSE values were between 17% and 30% depending on the crop. Larger differences 

between observed and simulated data for potato, sugar beet and maize as compared to the winter 

cereals could be attributed to the limited (or incorrect) availability of phenology data, particularly 

sowing dates. Discrepancies of some weeks between estimated and observed sowing date are more 

important and can have a large impact when simulating spring crops as compared to winter crops. 

The choice of the calibration strategy has implications for the reliability of model simulations 

(Challinor et al., 2009a). The results of the present study corroborate this affirmation and 

additionally provide a clear hint of the impact of the calibration strategy on the simulated effects of 

climate change on yield. Based on the present data we cannot assess which calibration strategy 

simulates climate change effects most accurately. Further research and most importantly data from 

independent regional time series will be needed to provide confirming evidence for this result. 

Although our results indicate the importance of region-specific calibration of growth parameters, 

we are aware that the proposed strategy has some limitations. First, we have considered only three 

growth parameters of which we know that they refer to important growth processes such as light 

capturing, light conversion and effects of drought on biomass production. However, we have not 
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tested that the choice of these parameters is sufficient as crop models typically comprise many 

more parameters. Such evaluation will require a larger effort and was not the aim of this study. We 

have also not tested whether the calculated parameter values correctly represent the varieties grown 

in a specific region. As our calibration is based on observed yields from regional statistics, we 

cannot exclude that other effects related to factors such as pests and diseases or limitations of 

nutrients have affected these observed yields and thus our calibrated parameters. Such testing 

would require location specific information about crop growth and development processes for 

which European-wide data is not available. As crop models are typically calibrated using location 

specific information of crops grown on a sample of small plots (Faivre et al., 2004), some effort is 

needed to better understand the up-scaling of these parameters from the plot to region scale. 

Therefore, without further investigations we cannot recommend the calibration of growth 

parameters on regional yield statistics for large scale impact assessment. Although results of the 

present study suggest some improved model behaviour if growth parameters are calibrated, the use 

of a yield correction factor is still more meaningful. However, multiplication of simulated yield 

with a yield correction factor may also affect the yield variability resulting in larger RMSEs and 

therefore more detailed investigations are required to better clarify this effect.   

In our study we have also not investigated the potential of other calibration approaches such as the 

Bayesian approach which is increasingly used also in crop and ecosystem modelling (Lehuger et 

al., 2009; Reinds et al., 2008; Tao et al., 2009; Tremblay and Wallach, 2004). By applying the 

theorem of the conditional probability, the Bayesian approach utilizes output variables, for example 

yield, to calculate a posterior calibrated parameter values distribution based on a prior probability 

distribution which is given by the quantified uncertainty of the parameter values of a model (Van 

Oijen et al., 2005). This approach may provide a more comprehensive overview about the relative 

importance of parameters capturing regional differences in crop growth and yield. It could also 

give more qualified information about the parameter uncertainty and insides to appropriate 

parameter-space sampling. However, with our study we could show that uncertainty due to 

restricted parameterisation can be large for both simulated yields and climate change effects on 

yields and that model calibration of growth parameters for individual regions can substantially 

improve model accuracy as compared to the use of one general set of growth parameters (e.g. De 

Wit et al., 2010).  

 

2.5.2 Impacts of climate change, [CO2] increase and technology development 

Our results suggest that for EU25 the negative effects of climate change on crop yields range 

between 12% and 34% depending on the crop and region. Climate change effects are less 

pronounced for winter cereals (barley and wheat) as compared to tuber crops (potatoes and sugar 

beet) or other spring crops (maize). One possible explanation, still subject of further investigation, 

is the longer vegetative period for winter crops which may allow the winter crops to better cope 
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with extreme events such as drought spells in spring. Also, changes in growing season length due 

to temperature increase will be relatively smaller in winter as compared to spring crops.  

The simulations with the driest scenario GISS A1B resulted in the strongest negative influence on 

yields even when taking the [CO2] fertilization effect (Rötter and Van De Geijn, 1999; Tubiello et 

al., 2007) into account. The overall range in simulated yield changes among scenarios is large but 

differed among crops. Again, the range was less pronounced for winter as compared to spring 

crops. For the latter, on average for EU25 the differences among scenarios were larger than the 

climate change effect within one scenario or the simulated temporal yield variability.  

These simulated changes are more pronounced than the projection by Ewert et al. (2005) who 

calculated a climate change effect by 2050 which was on average over 15 EU member countries 

less than 3% yield reduction. Such results point to the tendency of crop simulation models to 

project higher effects of climate changes than statistical approaches. This may be explained by the 

fact that crop models primarily consider the effects of climate factors on crop growth and 

development. Effects of other factors such as weeds, pests and diseases are generally not 

considered explicitly by crop models based on mechanistic modelling but on statistical-empirical 

approaches (Savary et al., 2006). Most often the influence of such factors is expressed by a yield 

reduction factor as in the case of GLAM (Challinor et al., 2004). Large scale evaluation of crop 

models is also in an early stage (Van Oijen and Ewert, 1999). Again, experimental data will be 

required to  support such evaluation. 

Effects of elevated atmospheric [CO2] enhanced yields mainly for C3 crops to an extent which is 

consistent with data from FACE experiments (Ainsworth and Long, 2004; Long, 2006; 

Manderscheid and Weigel, 2007). Increasing [CO2] concentration stimulated yields in wheat, 

barley, sugar beet and potatoes by 14%, 11%, 14% and 7% respectively, with small differences 

between years and regions. 

However, most substantial yield changes were projected when considering the effect of technology 

development, which is consistent with earlier results (Ewert et al., 2005). Importantly, considering 

a technology effect not only increased the crop yields but also increased the differences between 

the scenarios. Projected yields were highest for the scenarios CGCM A2 and 15GCM A1B and 

smallest for the scenario 15GCM B2. This is due to the assumptions of scenario family A 

(Nakicenovic and Swart, 2000) in which higher intensification and thus a more advanced 

technology development is considered. 

Clearly, considering the effects of climate change, atmospheric [CO2] elevation and technology 

development separately had two main implications for our yield projections. On the one hand, the 

yield decreasing effect of climate change was compensated and partially superseded when 

atmospheric [CO2] elevation and technology development were taken into account which is in good 

agreement with earlier research (Ewert et al., 2005). On the other hand, the yield differences 
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between scenarios become greater when considering atmospheric [CO2] elevation and technology 

development. 

Finally, our results show some changes in yield variability under climate change (Figure 

10). However, these changes were mainly observed for maize and differed considerably depending 

on the region from decreasing to increasing yield variability under climate change. Other studies 

have reported increased yield variability as an impact of climate change in Europe (Iglesias et al., 

2010; Jones et al., 2003b; Porter and Semenov, 2005). However, in the present study we have not 

considered an approach to model the effects of extreme temperature stress (Asseng et al., 2011; 

Porter and Gawith, 1999; Porter and Semenov, 2005). Modelling such effect is likely to result in a 

more pronounced yield variability under climate change, as it has been recently shown in a global 

assessment for four crops (Teixeira et al., 2013). 

 

2.6 Conclusions 

 

The present study investigated the importance of crop model calibration to enhance assessment of 

climate change impacts on crop yield at regional scale. We find that considering regional 

differences of model parameters related to crop growth in addition to crop phenology can 

considerably improve yield simulations at continental scale (EU25). Calibration also affects 

simulations of climate change impacts on yields. These results suggest that regional projections 

with crop models can be improved if they are calibrated with region-specific data. However, proper 

calibration of crop growth and development parameters requires data which are presently not 

sufficiently available for entire Europe. Our results also confirm earlier studies about the 

importance of considering not only the effects of changes in weather variables, but also increased 

atmospheric [CO2] and technology development for future yield estimations. Particularly, 

consideration of technology development can have substantial impacts on yield projections. Further 

investigation is required to reduce uncertainty in the assumptions regarding technology 

development. The considered crops respond differently to climate change which also calls for 

extending climate change studies to a larger range of crops. The considered ensemble of climate 

change scenarios results in a range of yield responses which again is more pronounced when 

technology development is considered. As some of this technology development refers to yield 

improvements, future research on improving model calibration for large scale climate change 

studies will also need to address temporal changes in model parameters.  
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3. Characteristic ‘fingerprints’ of crop model responses to weather input 

data at different spatial resolutions 

 

3.1 Introduction 

 

Process-based crop growth models (further on referred to as crop models) are increasingly being 

utilized as tools for assessing the regional impact of climate variability and change on crop 

production (Challinor et al., 2009b; De Wit et al., 2010; Hansen and Jones, 2000; Jagtap and Jones, 

2002; Reidsma et al., 2009a; Rötter et al., 2011b; Therond et al., 2011; Tubiello and Ewert, 2002; 

White et al., 2011). However, the regional applicability of crop models is critically discussed for 

two main reasons. First, crop models have typically been developed and validated at the field scale 

(Boons-Prins et al., 1993; Brisson et al., 1998; Stockle et al., 2003; Van Ittersum et al., 2003b; 

Williams et al., 1983) and scale-change issues emerge when applying crop models at larger spatial 

extent, e.g. regions (Ewert et al., 2011b). Second, crop models require environmental (weather and 

soil) and agricultural management input data that are seldom available for larger areas at the 

required level of detail (Ewert et al., 2011b; Faivre et al., 2004; Leenhardt et al., 2006). 

Accurate weather input data are crucial to obtain coherent yield simulations when investigating the 

effects of climate change and variability on crop yields in larger regions (Hansen and Jones, 2000). 

Since weather data are measured only at a limited number of meteorological stations within a 

region, it is necessary to estimate the values of the required weather variables for the appropriate 

simulation-scale (Faivre et al., 2004). The uncertainty introduced through such estimations is 

largely unknown but should be reported when simulating crop yields. It has been found that even 

the estimation methods yielding the lowest bias in comparison to measured daily solar radiation 

generate random errors when simulating biomass production with the models DSSAT-CSM and 

WOFOST (Trnka et al., 2007). Additionally, a common practice when applying crop models 

regionally is to use weather input data spatially interpolated onto grid cells of various resolutions 

(e.g. De Wit et al., 2005; Mearns et al., 2001; Van Bussel et al., 2011a). A grid cell consists of a 

multiple set of weather parameters derived from interpolation of weather station data assigned to 

single area units or cells (e.g., Venäläinen et al., 2005). The size and boundaries (spatial 

distribution) chosen to build the individual cells inevitably causes a biasing error in relation to the 

measured data and might consequently impact negatively the validity/accuracy of the spatialized 

weather data. The mentioned biasing error which might lead to ecological fallacy is addressed in 

the literature as the modifiable areal unit problem (MAUP) (Dark and Bram, 2007; Holt et al., 

1996; Hui, 2009; Unwin, 1996). The MAUP emerging from spatialization of weather represents an 

additional source of uncertainty and should be taken into consideration when analysing the results 

of regional crop model applications (Holt et al., 1996; Unwin, 1996) 
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The effect of the spatial resolution of weather data has been assessed for countries in Europe 

(Germany and France). Precipitation and radiation data from General Circulation Models (GCM) 

which were down-scaled to a resolution of 50 km x 50 km were more appropriate for forecasting 

national yields than data from coarser spatial resolutions (De Wit et al., 2005). Likewise, Mearns et 

al. (2001) reported  effects on yield simulations by two different spatial resolutions of climate 

scenario data, one from a regional climate model (RCM) and another from a GCM, and concluded 

that climate scenarios with higher resolution are more suitable for climate impact assessment. 

Recognizing the importance of weather input data resolution, Van Bussel et al. (2011a) compared 

the effect of spatial aggregation of weather and emergence dates on phenological stages simulated 

by the model AFRCWHEAT2. According to their findings for winter wheat in Germany, cells with 

a maximum area of 100 km × 100 km can be considered a sufficiently appropriate resolution to 

simulate the length of the growing season. Model uncertainty also increases with the temporal 

aggregation of input data, It has been shown for European conditions that the temporal aggregation 

of weather data causes overestimation of simulated yields which, however, depends on the detail of 

the modelling approach used (Van Bussel et al., 2011b). 

Although the studies cited above underline the importance of weather input data resolution on crop 

model simulations, the effects of spatially aggregating weather input data on simulated yields have 

only been partially assessed until now. In a national scale study, Olesen et al. (2000) simulated 

winter wheat yields in Denmark considering the effect of aggregating weather (without 

precipitation) and soil data at 1 km x 1 km and 10 km x 10 km resolutions, and compared model 

output to aggregated observed yields. They found that spatially detailed weather information is not 

necessary for a whole-country assessment; nevertheless, increased spatial resolution of weather 

data might be required for assessing productivity of Danish sub-regions as has also been 

demonstrated for Germany (Nendel et al., 2013). 

In addition to the uncertainty associated with different spatial and temporal scales in crop model 

applications, there is an increasing interest in comparing crop models and quantifying the model 

related uncertainty (Palosuo et al., 2011; Rötter et al., 2012b). To date, the possible interaction 

between modelling approach and spatial resolution of weather input data has not been addressed 

yet (Rötter et al., 2011a). Even less is known about the degree of uncertainty in the observed yield 

data used for model calibration, validation and evaluation purposes. Only few studies consider the 

spatial or temporal distribution of simulated yields as compared to the distribution of observed 

yields (e.g. Easterling et al., 2007). In response to these knowledge gaps, this study systematically 

assesses the effects of changes in weather data resolution on simulated regional yields of four crop 

models. More specifically, we evaluate the influence of spatially aggregated weather input data on 

the frequency distributions of simulated yields in a region, in addition to commonly used centred 

statistics of means, medians and ranges. We compare the frequency distributions of simulated 

yields for different models clarifying whether a model-specific distribution pattern, a so-called 

“fingerprint”, can be identified, and to which extent it changes with the spatial resolution of input 
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data. Finally, we assess the effects of aggregating model inputs versus model outputs on the 

distribution of simulated yields, as well as the effects of aggregating observed yields in comparison 

to the aggregation of simulated yields. 

 

3.2 Materials and Methods 

 

3.2.1 Models 

The models utilized in this study were: LINTUL-SLIM(Addiscott and Whitmore, 1991a; Angulo et 

al., 2013a,), DSSAT-CSM(Jones et al., 2003a), EPIC (Gassman et al., 2004), and WOFOST 

(Boogaard et al., 1998; Van Diepen et al., 1989). These models use different approaches for 

simulating plant growth and development and differ in complexity regarding how they describe 

physiological processes and sub-systems (see, e.g. Palosuo et al., 2011; Rötter et al., 2012a). All 

models have already been applied and calibrated for Finnish conditions (Angulo et al., 2013a; 

Palosuo et al., 2011; Rötter et al., 2012a; Salo et al. in preparation). The RMSE values obtained by 

Rötter et al. (2012a) for simulated spring barley in Jokioinen were 1.31 Mg ha
-1

 for LINTUL-

SLIM, 1.5 Mg ha
-1

 for DSSAT-CSM, and 1.98 Mg ha
-1

 for WOFOST. For EPIC the RMSE value 

was 0.77 Mg ha
-1

 (Salo et al. in preparation). 

A summarized description considering the major crop growth processes relevant for the present 

study based on the description by Palosuo et al. (2011) can be found in Table 3. 

Regarding the level of detail of the processes of light interception and light utilization (for more 

details see Adam et al., 2011), the models use three different approaches.  LINTUL-SLIM and 

DSSAT-CSM use a detailed approach for simulating leaf area index (LAI) dynamics, based on 

temperature and leaf dry matter supply, driven by the development stage of the crop (Spitters, 

1990). They combine this detailed LAI approach with a simplified approach for estimating biomass 

production, utilizing the radiation use efficiency (RUE) concept (Monteith and Moss, 1977). EPIC 

utilizes a simplified approach for simulating LAI dynamics based on a forcing function (Williams 

et al., 1983), combined with the simplified RUE approach. Finally, WOFOST applies a detailed 

approach for simulating LAI dynamics combined with a detailed approach for biomass production 

based on the description of the photosynthesis and respiration to describe the production of biomass 

(Van Ittersum et al., 2003b).  

All models describe crop development stage as a function of temperature and photoperiod (Slafer 

and Rawson, 1996; Van Ittersum et al., 2003a). In LINTUL-SLIM and WOFOST, final grain yield 

is calculated as a function of total daily dry matter allocation to different plant organs according 

partitioning  functions depending on crop development stage (Van Ittersum et al., 2003b). Grain 

yield in DSSAT-CSM is calculated from simulated grain number per ear determined by the 

estimated biomass accumulation during a fixed thermal time phase before flowering, grain weight 

depending on the length of grain filling period, and ear number per area unit (Langensiepen et al., 
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2008). In EPIC final grain yield is calculated as a function of total biomass and harvest index, 

given as an input parameter (Mearns et al., 1999).  

Table 3. Major processes determining crop growth and development of the models applied in this 

study (Modified from Palosuo et al., 2011 ).  

 

Model LINTUL-

SLIM  

DSSAT-CSM EPIC WOFOST 

Version 220 4.0.1.0 0509 7.1 

Leaf area development and light interception 
a
 D D S D 

Light Utilization 
b
 RUE RUE RUE P-R 

Yield formation 
c
 Y(Prt) Y((GnGw,En.Prt)B) Y(HI,B) Y(Prt,B) 

Crop Phenology 
d
 f(T,DL,V) f(T,DL,V) f(T,DL) f(T,DL) 

Stresses involved 
e
 W W,N W,N,P W 

Water dynamic 
f
 C C C C 

Evapo-transpiration 
g
 PM PT PM P 

Soil CN-model 
h
 - CN,P(4),B CN,P(4),B - 

a Leaf eara development and light interception: S = simple or D = detailed approach. 

b Light utilization or biomass growth: RUE = Simple (descriptive) Radiation use efficiency approach, P-R = Detailed 

(explanatory) Gross photosynthesis-respiration. 

c Y(x) Yield formation depending on: HI = fixed harvest index, B = total (above ground) biomass, Gn = number of 

grains, Prt = partitioning during reproductive stages, Gw=grain weight, En=earn number. 

d Crop phenology is a function (f) of: T = temperature, DL = photoperiod (day length), V = vernalisation; O = other 

water/nutrient stresses effects considered. 

e Stresses involved: W = water, N = nitrogen stress, P = phosphorus stress. 

f Water dynamics approach: C = capacity approach, R = Richards approach. 

g Method to calculate evapo-transpiration: P = Penman, PM = Penman-Monteith, PT = Priestley-Tailor 

hSoil-CN model, N = nitrogen model, P(x) = x number of organic matter pools, B = microbial biomass pool. 

 

 

All models contain modules considering plant-soil-water dynamics. LINTUL-SLIM calculates 

potential evapotranspiration using the Penman-Monteith equation according to Allen  et al, 

(1998b). In WOFOST potential evapotranspiration is calculated with the Penman formula 

(Penman, 1956), adapted according to Frère and Popov (1979). DSSAT-CSM applies the Priestly-

Taylor equation (Priestley and Taylor, 1972) and EPIC, the Penman-Monteith equation (Monteith 

and Greenwood, 1986). 
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3.2.2 Study region  and model input  

The study area is located in South-western Finland, where spring barley, Hordeum vulgare, is 

widely cultivated. The considered region is 400 km
2
 in size, of which approximately 230 km

2
 are 

part of the Yläneenjoki river catchment. The area was chosen because of the large amount of 

available data on yield from farmers‟ fields and for weather data. According to the environmental 

stratification of Europe (Metzger et al., 2005), the area falls into the boreal environmental zone. 

The climatic characteristics of the Jokioinen experimental station located near the south-western 

border of the study area are presented in Table 4. 

 

 

Table 4. Characteristics of Jokioinen experimental station: longitude, latitude, altitude and long-

term agro-climatic conditions from 1971 to 2000. (Adapted from Rötter et al., 2012a). 

 

Characteristic  Value  

Longitude  23°30‟E  

Latitude  60°48‟N  

Altitude (m.a.s.l.)  104  

Mean annual temperature (°C)  4.3  

Mean annual precipitation (°C)  506  

 Lowest Mean Highest 

Mean temperature May-August (◦C)  11.5 13.4 15.0 

Sum of temperatures above 0◦C May-August (◦C) 1411 1644 1848 

Sum of precipitation May-August (mm) 143 252 360 

Shortwave radiation flux (Wm
-2

) 171 205 229 

 

 

Weather data 

Weather data for the period from 1994 to 2005 were obtained from two sources: the basic climate 

data set provided by the Finnish Meteorological Institute with a 10 km × 10 km grid cell resolution 

(Venäläinen et al., 2005) and the recordings from the Jokioinen meteorological weather station 

(Drebs et al., 2002). Data included daily measurements of global solar radiation (MJ m
-2

 d
-1

), 

maximum air temperature (°C), minimum air temperature (°C), rainfall amount (mm d
-1

) and 

vapour pressure (hPa). Observed daily values of wind speed (m s
-1

) from the Jokioinen station were 
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transmitted to all considered grid cells and aggregated grid cell as they were not available in the 

gridded data set. 

 

Soil data 

A clay-loam soil, typical for the region, was used as standard soil for all simulations. Originally, a 

heavy-clay soil type was also considered in the simulations. However, a preliminary analysis 

revealed that this soil did not affect the aggregation results (not shown) so that it was ignored for 

further analysis. For the clay-loam, profile-average water content values at field capacity and 

wilting point were 0.425 and 0.259 (m
3
m

-3
), respectively. As no observed values of initial soil 

water content at the beginning of the simulations runs were available, simulations of initial soil 

water content from EPIC were used as input values for all models. To obtain these values from 

EPIC, the model was initialized utilizing four additional years of weather data prior to 1994, i.e. 

from 1990 to 1993. For each year of the period from 1994 to 2005 the soil water content simulated 

by EPIC for each corresponding sowing date in a year was extracted from the daily water balance 

and used as initial soil water content for the three remaining models. 

 

Crop data 

Information on observed sowing dates and yields for spring barley at the Yläneenjoki river 

catchment was available from the Finnish Study of Monitoring the Impacts of Agri-environmental 

Support Scheme (MYTVAS). The MYTVAS-database is reported and summarized in Palva et al. 

(2001), Pyykkönen et al. (2004), Mattila et al. (2007) and Turtola and Lemola (2006). It provides 

information from 400 to 600 parcels on farms within the study region. The sowing dates 

corresponding to the values of the median, 25 and 75 percentile of the sowing dates distributions 

for the period from 1994 to 2005 were considered as model input data.  

Two cultivars were selected for the study region, Annabell and Scarlett. While Annabell is 

relatively late maturing (approx. 97 days after sowing), Scarlett represents the average maturity 

type of modern barley cultivars in Finland (approx. 93 days after sowing) (Hakala et al., 2011). 

 

3.2.3 Set-up of simulation study 

Spatial resolutions of weather data  

A summary of the simulation steps is given in Table 5. In total, seven simulation steps were 

performed. For each step identical data on soil type, sowing dates and barley varieties (see section 

2.2) were used. The difference among simulation steps refers to the different spatial weather data 

resolutions. Simulations for the three different sowing dates and two varieties were considered to 

generate a representative variability in grain yields for the area; their effects on yield were not 

specifically analysed as it was not the aim of the study. The weather data processing for each 

simulation step was done as follows: 
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Table 5. Set-up of the comparison study for each model 

 

Step Weather resolution Number of simulated yields 

 Cells (V × Sd × Cells × 12 years)* 

1  1 Weather station  72 

2  4 10x10km grid cells 288 

3  1 20x20km grid cell 72 

4  1 50x50km grid cell 72 

5  1 100x100km grid cell 72 

6  25 50x50km grid cells 1800 

7  100 100x100km grid cells 7200 

 

*V = 2 varieties (Annabell and Scarlett); Sd = 3 sowing dates; Cells = weather support unit; 12 years = considered period 

from 1994 to 2005. 

 

Step 1.- The models were run using the weather data obtained from the Jokioinen meteorological 

station as input (Figure 11). 

Step2.- Weather data from the 10 km × 10 km grid provided by the Finnish Meteorological Institute 

were used as inputs for the yield simulations. As the study area extends over mainly four (10 km × 

10 km) grid cells (no. 453,454,500,501, see Figure 11), weather data of these four cells were used 

as input for yield simulations. 

Step 3.- Weather data of the four grid cells used in Step 2 were averaged for every variable and 

day, obtaining an aggregated grid cell of 20 km × 20 km, which was used as weather input for yield 

simulations.  

Step 4.-  As in step 3, weather data of  25 (10 km × 10 km) grid cells (no. 357-361, 404-408, 451-

455, 498-502, 545-549 see Figure 11), were averaged for every variable and day, obtaining an 

aggregated grid cell with a resolution of 50 km × 50 km which was used as input data for yield 

simulations. 

Step 5.- As in step 3, weather data of 100 (10 km × 10 km) grid cells (no. 260-269, 308-317, 355-

364, 402-411, 449-458, 496-505, 543-552, 589-598, 636-645, 683-692 see Figure 11) were 

averaged and the resulting aggregated 100 km ×100 km grid cell was used as input data for yield 

simulations. 

Step 6.-  Differently from steps 1 to 5, yields were simulated individually for each individual 10 km 

× 10 km grid cell (a total of 25) within the 50 km × 50 km mega-cell used in step 4, 25 in total (see 
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b in Figure 11). The simulated yields were subsequently aggregated to the correspondent 50 km × 

50 km mega-cell.  

Step 7.- As in step 6, yields were simulated individually for each individual 10 km ×10 km grid 

cells (a total of 100) within the 100 km ×100 km mega-cell used in step 5 (see c in Figure 11). The 

simulated yields were subsequently aggregated to the correspondent 100 km × 100 km mega-cell. 

 

 

 

Figure 11. Region and aggregation units considered in the study. The number in each cell marks the 

identifying number of each grid cell. Weather data were available with 10 km × 10 km resolution.- 

Other aggregation units tested refer to: a, 20 km × 20 km; b, 50 km × 50 km and c, 100 km × 100 

km). The location of the Jokioinen weather station is marked with a box. Sites with observed yields 

are located within the shaded area.  

 

Steps 1 to 5 were performed to test the influence of the spatial resolution of weather data on the 

simulated yields including their distributions for all considered models. Steps 6 and 7 were 

performed only with the model LINTUL-SLIM, to evaluate the effect of the aggregation strategy, 

i.e. the aggregation of weather input data as compared to the aggregation of simulated yields. 

Figure 12 illustrates the two aggregation strategies exemplifying a resolution of 20 km × 20 km. 

For the first strategy (Figure 12a), yields were simulated using aggregated weather data (steps 3, 4, 

5). For the second strategy, simulated yields obtained in steps 2, 6 and 7 were averaged for every 
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year×cultivar×sowing date combination to obtain an aggregated yield distribution for a grid cell 

resolution of 20 km × 20km, 50 km × 50 km and 100 km × 100 km, respectively (Figure 12b). 

 

Effect of weather data resolution on simulated yield distributions 

Simulated yields were analysed with respect to the influence of both weather data resolution and 

model on the distribution of simulated yields. Results are presented in the form of bean plots. 

Similar to box and whisker plots, bean plots present the range of the data sample without further 

assumptions of the distribution and the median. In addition, bean plots show a density trace 

(contour line of the bean) of the analyzed data providing information about the frequency 

distribution of the data. In the present study, the normal (Gaussian) kernel was used for the 

calculation of the density trace. For a detailed description of the bean plot implementations see 

Kampstra (2008). 

 

Effect of spatial aggregation on observed yields 

Finally, we analysed the extent to which the spatial aggregation of observed yields affected the 

observed frequency distributions and introduced uncertainty into the model evaluation. In total, 

6300 yield observations were available from 12 years and more than 400 locations spreading across 

four 10 km ×10 km grid cells (Figure 11). Distributions of observed yields were evaluated for 

individual site data and two different aggregations, i.e. 10 × 10 km and 20 km × 20 km. The 

distribution of yields for the 10 km × 10 km resolution considered the weighted averages of yearly 

measured yields for the four corresponding weather grid cells separately (48 values). The 

distribution of yields at 20 km × 20 km resolution considered the weighted averages of yearly 

measured yields of all four weather grid cells (12 values). 

 

 

Figure 12. Schematic representation of scaling methods compared in this study, referring to: a, 

aggregation of weather input data and b, aggregation of outputs (adapted from Ewert et al., 2011b). 
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3.3 Results 

 

3.3.1 Influence of weather data resolution on simulated yield distributions 

Consistently for all four models, the simulated yields and their distributions were hardly affected 

by the five weather resolutions. The most noticeable effect of a resolution-change on the 

distributions of simulated yields was the transition between using point data (from one individual 

weather station) to aggregated (grid-based) data (Figure 13). For example, the median of LINTUL-

SLIM yields simulated with the single station data was 3.70 Mg ha
-1

, whereas the median of 

simulated yields using aggregated weather data was higher but ranged only between 4.44 and 4.70 

Mg ha
-1

 depending on the resolutions considered (Table 4). The median of simulated yields using 

point data was also smaller for the models EPIC and WOFOST compared to the median of yields 

using aggregated data (Figure 13). In contrast, for DSSAT-CSM (Figure 13) the distribution of 

yields simulated with the weather station data showed the highest median value (Table 4). 

 

 

 

Figure 13. Comparison of frequency distributions of simulated spring barley yields of four crop 

growth models using 5 weather data resolutions (WS: weather station, 10 = 10 km × 10 km grid 

cell, 20 = 20 km × 20 km grid cell, 50 = 50 km × 50 km grid cell, 100 = 100 km × 100 km grid cell, 

horizontal black lines in the bean plot represent the median value of the frequency distribution).   
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The distributions of yields simulated by DSSAT-CSM showed also a smaller range in the 

simulated yields, e.g. at 10 km × 10 km resolution, as compared to the other models (Table 6). 

However, the ranges of simulated yield distributions were in general hardly affected by the 

resolution of weather data (Figure 13). For example, the range of yields simulated with EPIC was 

from 2.97 Mg ha
-1

 to 3.29 Mg ha
-1 

(Table 6). 

 

 

Table 6. Summary statistics of simulated yield (Mg ha
-1

) for the four models. (Max= highest value; 

Q= Quartile; 3Q=75% percentile; 2Q=median; 1Q=25% percentile, Min=lowest value; 

Range=Max-Min). 

 

Model  Weather data resolution 

  Weather 

Station 

Grid cell 

  
10 km  ×10 

km 

20 km × 20 

km 

50 km × 50 

km 

100 km × 100 

km 

LINTUL-

SLIM 

 

Max 6.83 7.35 7.12 7.05 7.22 

 3Q 4.88 5.24 5.30 5.22 5.31 

 2Q 3.70 4.44 4.53 4.52 4.70 

 1Q 2.63 3.13 3.33 3.28 3.64 

 Min 0.82 0.32 0.36 0.85 1.45 

 Range 6.01 7.04 6.77 6.20 5.77 

DSSAT-CSM       

 Max 6.44 7.02 6.92 7.05 7.04 

 3Q 5.01 4.93 4.88 5.00 5.00 

 2Q 4.49 4.25 4.30 4.33 4.27 

 1Q 3.95 3.08 2.99 3.11 3.20 

 Min 2.00 1.72 1.78 1.63 1.99 

 Range 4.45 5.31 5.14 5.42 5.04 

EPIC       

 Max 4.63 4.76 4.76 4.69 4.64 

 3Q 3.99 4.42 4.42 4.41 4.45 

 2Q 3.40 3.59 3.59 3.53 3.56 

 1Q 2.92 3.11 3.11 3.08 3.19 

 Min 1.66 1.48 1.63 1.51 1.58 

 Range 2.97 3.29 3.12 3.18 3.06 

WOFOST       

 Max 6.23 7.12 7.12 7.11 7.12 

 3Q 5.77 6.18 6.22 6.05 6.22 

 2Q 5.20 5.41 5.52 5.44 5.31 

 1Q 4.43 3.76 3.95 3.34 3.94 

 Min 0.76 0.87 0.95 0.88 0.91 

 Range 5.47 6.26 6.17 6.24 6.20 
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Most striking was, however, the difference among the models in the frequency distributions of the 

simulated yield (Figure 13). Each model exhibited a characteristic distribution or “fingerprint” 

given by the density trace of the frequency distribution of simulated yields (contour line of the bean 

plot). When considering distributions of yields simulated with point data (Figure 13), a slight 

smoothing of the density trace could be noticed. Apart from this, the form of the density trace 

remained almost unaffected by the extent of weather data aggregation. The yield distributions 

simulated by LINTUL-SLIM and WOFOST were more spread than those simulated by EPIC and 

DSSAT-CSM (Figure 13). 

 

3.3.2 Aggregation of inputs versus aggregation of outputs 

When comparing the density traces of simulated-yield distributions, calculated by using aggregated 

weather input data at three resolutions, 20 km × 20 km, 50 km × 50 km and 100 km x 100 km 

(W20, W50 and W100), with each other, only marginal differences could be noticed (Figure 14). 

Likewise, density traces of distributions of model outputs, i.e. aggregated yields at three 

resolutions, 20 km × 20 km, 50 km × 50 km and 100 km x 100 km (Y20, Y50 and Y100) showed 

little differences among themselves (Figure 14). The density trace for Y20, for instance, was 

smoother and more prolonged towards the lower yielding tail than the resolutions Y50 and Y100. 

For all resolutions, the aggregation of model outputs (i.e. yields) smoothed the area below the 

median of the density trace and diminished the range in simulated yields. Nevertheless, the 

differences between both aggregation strategies were relatively small (Table 7). 

 

 

 

Figure 14. Influence of aggregation of weather inputs (grey fill)  and aggregation of simulated 

yields on yield distributions (white fill) of LINTUL-SLIM. for three resolutions 20 = 20 km × 20 

km , 50 = 50 km× 50 km and 100 = 100 km × 100 km . All100 (black fill) = all simulated 10 km x 

10 km yields considered.  
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Table 7. Summary statistics of LINTUL-SLIM yield simulations (Mg ha-1) for different spatial 

aggregation levels comparing two aggregation strategies aggregation of weather input data 

(Weather) and aggregation of yields (Yield). The last column contains the summary statistics of 

non-aggregated yields calculated from 100 grid cells each on a 10 km × 10 km resolution. (Max = 

highest value; Q= Quartile; 3Q = 75% percentile; 2Q = median; 1Q = 25% percentile, Min = lowest 

value; Range = Max-Min). 

 

Statistics Aggregation    

 20 km × 20 km grid cell 50 km × 50 km grid cell 100 km ×100 grid cell 
100 grid cells 

 (10 km × 10 km) 

 Weather Yield Weather Yield Weather Yield No aggregation 

(all simulated yields) 

Max 7.12 7.02 7.05 6.85 7.22 6.85 8.05 

3Q 5.30 5.23 5.22 5.48 5.31 5.48 5.58 

2Q 4.53 4.34 4.52 4.63 4.70 4.63 4.81 

1Q 3.33 3.32 3.28 3.44 3.64 3.44 3.91 

Min 0.84 1.13 0.85 1.51 1.45 1.51 1.41 

Range 6.29 5.90 6.20 5.35 5.77 5.35 6.64 

 

 

 

3.3.3 Distribution of observed yields in the study site 

The distribution of individual (not aggregated) observed yields at the study site ranged from 0 to 

6.28 Mg ha
-1

 (Table 6). When the observed yields were averaged for each of the four 10 km × 10 

km grid cells in which the yield observations were obtained, the density trace became smoother and 

less spread (see b in Figure 11). When yields were aggregated from the four 10 × 10 km grid cells 

to a 20 km × 20 km cell (see b in Figure 11), the density trace of the resulting distribution was even 

smaller and concentrated around the median value 3.7 Mg ha
-1

 (Table 6) showing a bimodal density 

trace (see c in Figure 11). 
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Figure 15. Frequency distributions of observed yields for three levels of spatial aggregation.  

 

 

Table 8. Summary statistics of observed yields (Mg ha-1). Total sample size: 1204 parcels; 

minimal sample sizes by grid: 109 fields  (Max= highest value; Q= Quartile; 3Q=75% percentile; 

2Q=median; 1Q=25% percentile, Min=lowest value; Range=Max-Min). 

 

 No aggregation Aggregated at Aggregated at 

  10 km ×10 km  20 km × 20 km  

Max 6.28 4.48 4.28 

3Q 4.10 3.94 3.97 

2Q 3.50 3.69 3.71 

1Q 3.00 3.38 3.43 

Min 0.00 2.20 2.56 

Range 6.28 2.28 1.72 

 

 

 

3.4 Discussion 

 

3.4.1 Choice of weather data resolution 

For the selected period and study region, the choice of weather data resolution influenced only 

marginally the modality and range of the distributions of yields simulated by four crop models 

differing in detail in the representation of growth processes (Figure 13). The fairly homogeneous 

topography across the study region leads to a relatively uniform character of weather conditions. It 

could therefore be argued that, under those conditions, the aggregation of weather input data has 
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only little influence on the simulated yields. Despite the importance of considering the areal effects 

related to the MAUP when using spatialized weather data, it appears that yield simulations are only 

little affected by the method of spatialization of weather data in regions where weather conditions 

are relatively homogeneous. More evident is the difference between aggregated data and single 

station data. The density traces of the distributions of yields simulated using weather station data 

appear smoother and more concentrated around the median values than the distributions of yields 

simulated using weather data from grid cells (Figure 13). It has already been argued that the higher 

variability displayed by the yields simulated using aggregated weather input data reflects a higher 

uncertainty introduced by interpolating weather data, for generating weather grid cells (De Wit et 

al., 2005; Hansen and Jones, 2000; Trnka et al., 2007).   

When considering distributions of yields simulated using gridded weather data, only small 

differences are noticed between the density traces of each resolution step (Figure 13). In former 

studies (De Wit et al., 2005; Easterling et al., 1998; Olesen et al., 2000; Van Bussel et al., 2011a) 

the statistical properties of climate data are conserved through a certain resolution range. 

Comparable to our findings, De Wit et al. (2005) found that yields simulated with WOFOST for 

Germany and France at the national level using aggregated weather at 10 km × 10 km scaled 

almost linearly with yields simulated at 50 km × 50 km weather data resolution. 

The results of the present study are valid primarily for the selected period and study region, and it 

would be recommendable to perform a similar study in regions where the weather pattern is 

spatially more heterogeneous. 

 

3.4.2 Fingerprints of models for yield simulations in response to weather 

The differences regarding simulated yields among the considered models can be attributed to the 

way each model processes weather data and calculates weather-related internal crop impact 

variables such as stresses imposed by temperature and moisture availability (Mearns et al., 1999). 

In addition, the detail in modelling of light interception and conversion into biomass may explain 

differences in simulated yield sensitivity to climatic variability (Adam et al., 2011). 

Considering both the frequency distribution and summary statistics (such as mean or median 

values), we get a more comprehensive picture when evaluating regional yield simulations of 

different models than just looking at a set of few selected statistical indicators. For example, the 

distributions of yields simulated by LINTUL-SLIM, EPIC and WOFOST using weather station 

data show lower median values than distributions of yields simulated with grid cell or averaged 

grid cell data; nevertheless, no major differences can be detected when comparing the 

corresponding yield distributions. On the contrary, the distribution of yields simulated by DSSAT-

CSM with weather station data shows a higher median value than the distributions of yields 

simulated with grid cell and averaged grid cell weather data. However, when the values of the third 

quartile (75 percentile) are compared (Table 6), no or few differences (0,13 Mg ha
-1

) are found 

between the distributions of yields simulated by DSSAT-CSM.  
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The selected way of representing distributions in this study – i.e. bean plots –facilitates a better 

visual assessment of model simulation results. The density trace of the distribution of simulated 

yields given by the shape of the outer line of the bean plot offers a judgement point for each 

depicted distribution like a fingerprint for each model (see section 3.3.1) which remains 

recognizable across different aggregation levels as in this study.  The substantial differences in the 

fingerprints are especially noteworthy among models which are not apparent from summary 

statistics such as the median.  

It would be interesting to understand whether such model specific fingerprints remain recognizable 

if models are applied across a larger range of environments and whether these fingerprints can be 

used more systematically in assessing the uncertainty in model simulations. A first attempt in this 

direction has been made by considering the simulated winter wheat yields from Palosuo et al. 

(2011) for all sites and years of their study and presenting these in the form of bean plots for the 

models LINTUL-SLIM, DSSAT-CSM and WOFOST also considered in our study (Figure 16).  

Although the form and extent (density trace) of the distributions of simulated winter wheat yields 

for the three depicted models do not coincide with their distributions of simulated spring barley 

yields, there are still similarities which allow visual differentiation and partial identification of each 

model. The agreement between the bean plots of the two crops is particularly high for DSSAT-

CSM which shows almost identical shapes of the corresponding bean plot for spring barley (Figure 

13) and winter wheat (Figure 16).  

 

 

 

Figure 16. Frequency distribution of simulated winter wheat yields for three models and eight sites 

(adapted from Palosuo et al., 2011).  
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Since attempting a thorough causal analysis for the explanation of the form and extent of the 

model-fingerprints is beyond of the scope of this study, here we provide some main points for 

discussion, which have already been raised by some previous studies comprising one or more of 

our four crop models (e.g. Palosuo et al., 2011; Rötter et al., 2012b).  

Analysis of frequency distribution for growing period length and biomass (not shown) indicated 

that growing period length does not seem to be the cause of differences in yield distributions 

between models. As expected, the shape and partially extent of the bean plots for biomass are 

almost identical with the yield plots. 

The distribution of yields simulated by EPIC is less spread than the distributions of yields 

simulated with other models. This behaviour could be attributed to the fact that the maximum 

possible value of LAI (LAI max and LAI min) in EPIC is given as input parameter by the user 

(Gassman et al., 2004) (see Table 3).  

Further analysis also revealed that the way in which water dynamics are calculated seems to 

represent a main source of differentiation between models based on their frequency distributions of 

evapotranspiration. Figure 17 depicts the distributions of the values for total evapotranspiration 

during one growing season (gET) for each model and resolution. Although the outer form (density 

trace) of the bean plots depicting the gET distributions do not coincide in all the cases with the 

shape of their corresponding yield distributions (Figure 13), some relationships can be used to 

characterise yield distributions from the underlying approaches and assumptions to calculate water 

dynamics. All models simulated water dynamics utilizing the capacity approach, but the level of 

detail describing the soil profile differs considerably among models. For instance, WOFOST 

(Boogaard et al., 1998; Van Diepen et al., 1989) describes soil as a two homogeneous layer profile, 

whereas in EPIC (Izaurralde et al., 2006) the soil profile is represented by up to 10 layers. 

Interestingly, the simpler approach in WOFOST causes less variability in gET as compared to the 

more complex, multi layer soil modules in EPIC and DSSAT-CSM. Also, the variability in gET in 

WOFOST seems to be less important for the characteristic yield distribution depicted for the model 

as compared to the other models for which the bean plots for gET and yield are more similar. 

Whether in WOFOST the variability in gET is less important for determining the variability in 

yields as for the other models needs further evaluation. However, the present form of presenting 

results can give hints on further analysis required.  
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Figure 17. Comparison of frequency distributions of simulated total growing season 

evapotranspiration of four crop growth models using 5 weather data resolutions (WS: weather 

station, 10 = 10 km × 10 km grid cell, 20 = 20 km × 20 km grid cell, 50 = 50 km × 50 km grid cell, 

100 = 100 km × 100 km grid cell, horizontal black lines in the bean plot represent the median value 

of the frequency distributions. 

 

 

3.4.3 Aggregation issues 

Weather  

The strategy of aggregating weather data chosen in this study refers to averaging of data across a 

spatial unit. Former studies (Easterling et al., 1998; Hansen and Jones, 2000) concluded that 

averaging weather variables such as temperature and precipitation over space, might influence 

negatively their daily variability. Since the main objective of this study was to test the influence of 

spatial weather data aggregation, no segregation of individual variables was undertaken. 

Nevertheless, precipitation seems to play a decisive role as yield influencing factor across 

aggregation levels. Hansen and Jones (2000), among others, found that by averaging weather data, 

simulated yields might be overestimated. On the one hand, more frequent but less intense 

precipitation events might not recharge soil water reserves in deeper layers and favour augmented 

evaporation. On the other hand, more frequent precipitation events could reduce the duration of dry 

spells between rain events and decrease the probability of water stress. Thus, simulated soil water 

balance components and their specific relations to simulated yields might be positively influenced 
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by weather data aggregation. Results of the present study suggest that the effect of weather data 

aggregation is relatively small and depends on the model. 

 

Simulated yields 

The lower value range for the distributions of aggregated yields (Table 8) might be interpreted as a 

result of variability loss, caused by aggregation (De Wit et al., 2005). Again, depicting the yield 

distributions considering density traces facilitates the evaluation process. Using this type of 

visualization shows that the model specific fingerprints also remained when output data, i.e. 

simulated yields, were aggregated for the selected resolutions (Figure 13). However, to which 

extent the small differences between the two aggregation strategies (i.e. aggregating model input 

data versus aggregating model output data) apply to other regions where weather data are more 

spatially heterogeneous awaits further testing. 

 

Observed yields 

The shape of yield distributions (density trace) for the selected period and site changed when 

observed yields were aggregated at 10 km × 10 km and 20 km × 20 km resolution. The present 

study did not focus on methods for aggregating observed yields. Other methods different from the 

weighted-average might be more adequate for aggregating observed yields (Hansen and Jones, 

2000). However, according to our results, the effect of spatial aggregation has to be considered 

when utilizing observed yields especially for the calibration process, since uncertainties in model 

results are not only related to model deficiencies but also to error introduced through insufficient or 

misleading calibration (Palosuo et al., 2011).  

 

3.5 Conclusion 

In the selected study region and period (12 years), spatial aggregation of weather input data 

influenced only marginally the shape and extent of simulated yield distributions visualised in the 

form of bean plots of four crop models. Differences in yield distributions were most striking 

between models rather than between aggregation levels. We therefore propose that crop models can 

be typified and further evaluated according to their specific yield distribution form and range - a so 

called fingerprint - which determines the probability path of simulated yields under a range of 

weather conditions in a region. This can be extended to the underlying processes to better inform 

about relationships between the variability of processes and yield. However, further evaluation will 

be required to understand the robustness of a model‟s fingerprint across a larger range of conditions 

including other factors such as soil and management, and the relationships to the underlying 

processes in order to better explain difference in fingerprints among models. Nevertheless, we 

believe that it is more advantageous to evaluate model performance considering also the frequency 

distributions than relying on selected summary statistics such as mean, median or standard 

deviation only.  
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Our results also support recent findings that a multi-model use should be the preferred option when 

assessing climate impacts on regional crop yields. 

We finally would like to stress the need of careful evaluation when aggregating simulated yields as 

compared to aggregating model input data as yield distributions can change depending on the 

aggregation level. Finally we recommend using observed site-specific yields to better understand 

the yield distribution within an area as this can be modified through aggregation.  
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“Fingerprints” of four crop models as affected by soil input data aggregation. Eur. J. Agron,. 6: 35–

48. doi:10.1016/j.eja.2014.07.005  



Chapter 4 – Soil input data resolution 

 

60 

 

4. ‘Fingerprints’ of four crop models as affected by soil input data 

aggregation. 

 

4.1 Introduction 

 

The regional application of plot-scale mechanistic crop growth simulation models (further on 

referred to as crop models) is regarded critical, mainly because of the scale change issues inherent 

to the model spatialisation process (Ewert et al., 2011b; Hansen and Jones, 2000) and its 

requirements for a high amount and quality of input data  (Faivre et al., 2004; Leenhardt et al., 

2006). Nevertheless, crop models have become a standard tool to assess plant production and crop 

productivity due to their explanatory character and low cost applicability also for large area 

applications (e.g. Angulo et al., 2013a; Batchelor et al., 2002; Ewert et al., 2011b; Reyenga et al., 

1999; Rötter et al., 2011a; Rötter et al., 2011b; Tubiello et al., 2007; Van Ittersum et al., 2008; 

Wassenaar et al., 1999). Crop models typically require input data related to weather, soil 

characteristics and crop management (Adam et al., 2012). Since the heterogeneous spatial 

distribution of soil properties is an important source of yield variability (e.g. Batchelor et al., 2002; 

Mignolet et al., 2004; Wassenaar et al., 1999), it is crucial to have sound soil input data available in 

order to obtain plausible regional yield simulations. 

There are conflicting results concerning the influence of the spatial resolution of soil input data on 

simulated yields. On the one hand, it has been found that for relatively small areas like the Hérault-

Libron-Orb valleys in France (approx. 1 200 km
2
), the variability of winter wheat yields simulated 

by EuroACCESS is strongly affected by the soil input data variability (Wassenaar et al., 1999). The 

importance of soil input data variability is attributed by the authors to the size of the region which 

favours the importance of soil data variability over a less variable climate and conditions of water 

limitation as typical for Mediterranean regions. In a national yield assessment study in Denmark, 

the capability of the crop model CLIMCROP to reproduce the spatial winter wheat yield variability 

was reduced when soil data at low resolution (dominant soil in a county) were used as input as 

compared to the highest resolution (1: 50 000 soil map) (Olesen et al., 2000). On the other hand, 

the consideration of different soil input data resolutions: field-measured soil data and soil data 

bases with a mapping scale of 1:20 000 and 1:250 000, did not play an important role as source of 

uncertainty when simulating non irrigated sorghum yields with EPIC in the Great Plains (Niu et al., 

2009). The authors suggest that the low introduction of uncertainty by soil input data might be 

related to the fact that the properties of the dominant soils were identical for field measured data 

and the 1:250 000 soil map and very similar to the 1:20 000 soil map. In a different study Folberth 

et al. (2012) concluded that the model GEPIC is less sensitive to the resolution of soil input data in 

comparison to the resolution of management (irrigation) and climate input data for simulating grain 

maize yields in the United States, confirming earlier results by Easterling et al. (1998).  
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The mentioned studies focused mainly on the influence of input data resolution on the predictive 

power of crop models and have not explicitly evaluated the influence of different levels of spatial 

resolution of soil input data on simulated yield distributions and the correspondent underlying 

causes. Moreover, all of those studies have only considered a single crop model approach. 

However, according to the results of chapter 2 (Angulo et al. 2013b) differences among models 

were more pronounced than those among scaling methods. This is in line with multi-model field 

scale studies (e.g. Palosuo et al., 2011; Rötter et al., 2013b; Rötter et al., 2012b) and suggests that 

adopting a multi-model approach in regional yield assessment studies might allow to quantify the 

uncertainty in (specially future) simulated yields introduced by the crop growth simulation 

approach (Asseng et al., 2013). The study by Angulo et al. (2013b) also points to the usefulness of 

considering yield distributions, so called „model fingerprints‟, to characterize and evaluate the 

frequency distributions of simulation results of crop models. Following up on this research our 

study aims to answer two main research questions: 1) what is the influence of the spatial resolution 

of soil input data on the distributions of simulated yields? 2) What are the differences in the 

behaviour of crop models, which differ in model approach and detail to different spatial resolutions 

of soil input data for simulating regional (i.e. county level) yields? To answer these questions we 

considered four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC, DAISY) 

applied in two regions in Germany with different climate and soil characteristics. The importance 

of soil input data aggregation was explored for different resolutions. In extension of the study by 

Angulo et al. (2013b), we analysed crop models behaviour for simulated yield and total growing 

season evapotranspiration considering frequency distributions „fingerprints‟ to get more elaborated 

insights into the uncertainty of model simulations.  

 

 

4.2 Materials and Methods 

 

4.2.1 Crop models 

Four crop models were used in this study: The SIMPLACE<LINTUL-SLIM> solution of the 

modelling platform SIMPLACE (Scientific Impact Assessment and Modelling Platform for 

Advanced Crop and Ecosystem Management) (Addiscott and Whitmore, 1991b; Angulo et al., 

2013b; Gaiser et al., 2013), DSSAT-CSM (Jones et al., 2003a), EPIC (Gassman et al., 2004) and 

DAISY (Hansen et al., 2012). All models have already been calibrated and applied to simulate 

yields of winter and spring cereals for German conditions (Angulo et al., 2013a; Gaiser et al., 2009; 

Gaiser et al., 2013; Palosuo et al., 2011; Rötter et al., 2012b). Since our study did not focus on 

analysing the predictive power of the models but rather on their behavioural response to different 

soil data resolutions, no calibration in a strict sense was undertaken but only a partial validation in 

order to verify the plausibility of the models‟ results. For this purpose the four models were applied 

to simulate winter wheat yields using phenological and management data for the years 2003 and 
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2004 from the German variety trials at the station Kerpen-Buir located in North Rhine-Westphalia 

(Figure 18) (LSV, 2012). The differences between simulated and observed yields ranged from 1.55 

Mg ha
-1

 for EPIC (in 2003) to 0.11 Mg ha
-1

 for SIMPLACE<LINTUL-SLIM> (in 2004). These 

values correspond to a relative RMSE of 2% for SIMPLACE<LINTUL-SLIM>, 6% for EPIC, 11% 

for DSSAT-CSM and 9% for DAISY of the simulated yields in relation to the observed yields. In a 

blind test with very restricted calibration, Palosuo et al. (2011) obtained higher deviations between  

simulated and observed winter wheat yields and concluded that despite a total variation of 18% the 

multi-model mean estimates could still reproduce observed yields satisfactorily.  

 

 

Table 9. Major processes determining crop growth and development of the models applied in this 

study (Modified from Palosuo et al., 2011). 

Model SIMPLACE 

<LINTUL-SLIM> 

DSSAT-CSM EPIC DAISY 

Version 220 4.6.0.8 0509 4.01 

Leaf area development and 

light interception 
a
 

D D S D 

Light Utilization 
b
 RUE RUE RUE P-R 

Yield formation 
c
 Y(Prt) Y((GnGw,En.Prt)B) Y(HI,B) Y(B,Prt) 

Crop Phenology 
d
 f(T,DL,V) f(T,DL,V) f(T,DL) f(T,DL,V) 

Stresses involved 
e
 W W,N W,N,P W,N 

Soil water dynamics 
f
 C C C R 

Evapotranspiration 
g
 PM PT PM MK 

a Leaf area development and light interception: S = simple or D = detailed approach. 

b Light utilization or biomass growth: RUE = Simple (descriptive) Radiation use efficiency approach, P-R = Detailed 

(explanatory) Gross photosynthesis-respiration. 

c Y(x) Yield formation depending on: HI = fixed harvest index, B = total (above ground) biomass, Gn = number of 

grains, Prt = partitioning during reproductive stages, Gw=grain weight, En=earn number. 

d Crop phenology is a function (f) of: T = temperature, DL = photoperiod (day length), V = vernalisation; O = other 

water/nutrient stresses effects considered. 

e Stresses involved: W = water, N = nitrogen stress, P = phosphorus stress (Not considered in this paper). 

f Water dynamics approach: C = capacity approach, R = Richards approach. 

g Method to calculate evapo-transpiration: P = Penman, PM = Penman-Monteith, PT = Priestley-Tailor, MK= Makkink. 

 

 

The main characteristics of the four models used in the present study are summarized in Table 9. 

According to the classification suggested by Adam et al. (2011), considering light utilization and 

light interception as main differentiators between models, three types of models can be 

distinguished in our study: EPIC is a fairly simple crop model since it adopts the concept of 

radiation use efficiency (RUE) which is a summarized light utilization approach (Monteith and 
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Moss, 1977) and a summarized leaf area index (LAI) dynamics approach based on a forcing 

function (Williams et al., 1983). SIMPLACE<LINTUL-SLIM> and DSSAT-CSM can be 

considered crop models of intermediate complexity since they use the summarized RUE light 

utilization approach and a detailed LAI calculation approach driven by the development stage of 

the crop and development specific partitioning fractions (Spitters, 1990). Finally, DAISY can be 

considered a fairly detailed crop model which applies a detailed light utilization approach 

calculating gross photosynthesis and maintenance and growth respiration (Van Ittersum et al., 

2003a), and a detailed LAI calculation approach.   

All models have modules to calculate soil water dynamics. DAISY uses the detailed Richards 

approach for soil water movement, the other three use a simpler capacity or tipping bucket 

approach (Van Ittersum et al., 2003a). To calculate potential evapotranspiration 

SIMPLACE<LINTUL-SLIM> and EPIC apply the Penman-Monteith equation according to Allen  

et al, (1998a) and Monteith and Greenwood (1986) respectively; and in this study, in DSSAT-CSM 

the Priestly-Taylor equation (Priestley and Taylor, 1972) is applied, while in DAISY it is the 

Makkink equation (Makkink, 1957). 

 

4.2.2 Study areas 

For the present study we considered seven counties in the Federal State of North-Rhine Westphalia 

(Figure 18) located in two contrasting regions in terms of elevation, geomorphology and climate 

(Table 3) according to the German agricultural and forest zonation system BKR (“Boden-Klima-

Raum”, German for “Soil-Climate-Zone”) (Rossberg et al., 2007). The counties Aachen, Düren, 

Erftkreis and Heinsberg are located in the BKR 141 known as “Julicher Börde”. This region 

spreads over large plain formed by the Rhine river and marine influence in the Paleozoic period 

and is characterized by mild temperatures. The counties Märkischer Kreis, Olpe and Siegen-

Wittgenstein are located in the region “Sauerland” which is a mountainous and cooler area (see 

Table 3).   
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Figure 18. Location of the selected seven counties, variety trials station Kerpen-Buir, and 

correspondent three weather stations in the German Federal State of North-Rhine-Westphalia 

(WS=Weather station, BKR=Soil-climate-zone). 

 

 

4.2.3 Soil Data 

The geomorphologic setting of the two regions differs in terms of relief and petrography. The 

Jülicher Börde region is a large plain covered by Aeolian loess deposits with a depth of several 

meters. A few remnant outcrops of the tertiary occur within the plain but they are not used as 

cropland. In contrast to the Jülicher Börde region, the Sauerland region is a mountainous area with 

undulated topography. The soil parent materials are consolidated sedimentary rocks (shale, 

mudstones) of Paleozoic origin which are occasionally covered by shallow Loess deposits with 

variable depth, which are the preferred cropland soils. 

Spatial resolution of soil data 

In practice, soil information at high resolution (mapping scale higher than 1:200000) is scarce due 

to the extremely high cost of soil mapping. Our study envisaged to clarify if there is a minimum 

soil data resolution which is necessary to adequately reproduce crop yields in the context of 

regional crop modelling applications. The commonly used technique to generate soil maps (i.e. 

generalization in cartographic terms) from higher to lower resolution, is to unite (larger) areas that 
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share similar geological and geo-morphological characteristics (soil sub-units) into a generalized 

class characterized by a dominant soil unit represented by a typical soil profile (Leenhardt et al., 

1994). Accordingly, the following three spatial resolutions of input soil data were tested for the 

present study. 

The first soil data resolution (res1) is based on the most detailed soil map with the highest 

resolution at a scale of 1:50 000 provided by the Geological Service of North-Rhine Westphalia 

(BK50, 2004). The map contains information about the distribution of approximately 7000 soil 

units for the whole State of North-Rhine Westphalia. Each soil unit is characterized by a 

representative soil profile description which reports the following properties: number and depth of 

soil layers, texture and gravel content of each layer, depth of ground water table, soil type and sub-

type according to the German Soil Classification. In res1 the spatial distribution of each mapping 

unit (at the soil sub-type level) with its respective soil properties in the two regions was considered.  

The second soil data resolution (res2) was obtained by aggregating the mapping units of the soil 

sub-types to the soil type level, which corresponds approximately to a mapping scale of 1:300 000. 

For the aggregation procedure we took into consideration only the soil sub-type unit with the 

highest spatial coverage within each of the seven counties and we assumed that this dominant soil 

sub-type unit with its specific soil profile is representative for all other sub-types belonging to the 

same soil type. The third soil data resolution (res3) is based on the German soil map at the 

reconnaissance level at a mapping scale of 1:1 000 000 (Hartwich et al., 1995). The dominant soil 

types in each county where extracted by overlaying the reconnaissance map with the boundaries of 

the seven counties. In order to keep consistency in soil properties for the same soil type in the three 

spatial resolutions, we did not use the soil profile descriptions for the different soil types as 

suggested by Hartwich et al. (1995). For each soil type on the reconnaissance map we rather used 

the soil profile description of the corresponding dominant soil sub-type on the most detailed soil 

map of scale 1:50 000 (BK50, 2004). Table 10 presents an overview of the number of soil profiles 

used for each resolution. For all three resolutions only the soil profiles occurring on cropped land 

were taken into consideration. The water holding capacity of the soils, required as soil input data 

for three models, was estimated based on the texture class information applying tabular 

pedotransfer functions developed for German soils (AG-Boden, 2005) (Appendix 1). Additionally, 

for the model DAISY, pedotransfer functions based on the data base HYPRES (Wösten et al., 

1999) were applied to calculate the required van Genuchten/Mualem parameters (θs, Ks, α, l and n).   
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Table 10. Number of soil profiles per county and resolution with respective weather station 

considered for yield simulations. 

County name Number of profiles according to 

resolution: 

Weather 

station 

ID 

(code)  

 res1 

1:50.000  

res2 

1:300.000 

res3 

1:1.000.000 

 Soil sub-unit  Soil unit  Dominant 

soil unit 

 

Aachen 88 13 6 2205 

Dürren 241 23 7 2204 

Erftkreis 132 17 4 2205 

Heinsberg 217 27 5 2204 

Sum four counties in Jülicher Börde 678 80 22  

Märkischer Kreis 122 17 6 2215 

Olpe 90 16 5 2215 

Siegen-Wittgenstein 90 13 3 2215 

Sum three counties in Sauerland 302 46 14  

 

 

4.2.4 Weather data 

Daily weather data including global solar radiation (MJ m
-2

 d
-1

), maximum air temperature (°C), 

minimum air temperature (°C), precipitation amount (mm d
-1

) and wind speed (m s
-1

) for the period 

from 1994 to 2008 provided by the German weather service (DWD, 2010) were used. Two weather 

stations were considered in the Jülicher Börde according to their proximity to the respective 

counties: the station Aachen WEWA (Code-2205) for the counties Aachen and Erftkreis; and the 

station Jülich Kernforschungsanlage (Code-2204) for the counties Düren and Heinsberg. In the 

Sauerland, the station Reichshof-Eckenhagen (Code-2215) was used for all counties (Olpe, Siegen-

Wittgenstein and Märkischer Kreis) (Figure 18). Station characteristics are given in Table 11. 

Precipitation for the period from 1994 to 2008 in both regions is abundant enough over the growing 

period (>450mm) excepting for the year 1996. 
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Table 11. Weather statistics of the three weather stations used in this study for the period 1995-

2008. 

 

 Jülicher Börde  Sauerland 

 

Station name 

Jülich 

Kenrforschungsanlage  

Aachen 

WEWA 

Reichshof-

Eckenhagen 

Station ID (code) 2204 2205 2215 

Latitude 50.91 50.78 51.00 

Longitude 6.41 6.10 7.70 

Altitude (m.a.s.l.) 91 202 350 

Mean annual precipitation (mm)* 705 812 1183 

Mean annual maximum temperature (°C) 14.95 14.58 12.83 

Mean annual minimum temperature (°C) 6.58 7.23 5.72 

Mean growing season precipitation (mm)
+
 578 664 970 

Mean growing season maximum temperature (°C) 13.95 13.55 11.79 

Mean growing season minimum temperature (°C) 5.8 6.34 4.8 

*Value represents not only rain but also snow. 

+ Period from 1994 to 2008. 

 

 

4.2.5 Yield simulations 

For each model three yield simulation steps corresponding to the three spatial resolutions of soil 

input data were performed (Table 10). In each step yields were simulated for 14 years from 1995 to 

2008.  All models were configured to use the optimum nitrogen fertilizer amount for the study 

region and the 15
th
 of October as yearly sowing date.  

The distributions of both simulated yields and simulated total growing season evapotranspiration 

for each model were assessed in form of bean plots. Bean plots similarly to box and whisker plots 

depict the range of a data sample without further assumptions of the distribution or median. 

Additionally the contour line of the bean plot represents a density trace which offers an insight of 

the frequency distribution of the sample. For the calculation of the density trace the normal 

(Gaussian) kernel was used. Kampstra (2008) offers a detailed description of the implementation of 

bean plots. 

In order to quantitatively compare the relative importance the of two sources of uncertainty: model 

choice and resolution of input data, we calculated for each model the coefficient of variation (CV) 

of simulated results and the coefficient of variation of the root mean square error (CV(RMSE)) of 

the yields simulated with res2 and res3 compared to res1 (see 4.4.3). The CV is calculated by 

dividing the standard deviation of the simulated yields by their mean. Equation (3) in the section 

2.2.5.1 describes the calculation of RMSE. The CV(RMSE) is the result of dividing the RMSE of 



Chapter 4 – Soil input data resolution 

 

68 

 

yields with their mean. The yields simulated with vres1 were used as observed values of the 

calculation of RMSE.  

 

 

4.3 Results 

 

4.3.1 Influence of soil data resolution on simulated yields 

For all models and counties considered in this study only a minimal influence of the spatial 

resolution of soil input data on the shape of the density traces of simulated yields was found. Since 

the distribution of simulated yields between the counties located in one region were very similar, 

results are not presented for individual counties but are summarized for the two regions as 

described in section 2.2. No aggregation of results was undertaken but simulated yields for all soil 

units within the four counties in the Jülicher Börde and three counties in the Sauerland were used to 

calculate the corresponding bean plots (Figure 19). 

The choice of spatial soil data resolution affected minimally the extent of the simulated yield 

distributions. When using a coarser resolution (res3) the simulated yield range was smaller for all 

counties and models compared to the range using the highest resolution (res1) (Table 12 and Table 

13). Only in the specific case of the yields simulated by DAISY for the county Siegen-Wittgenstein 

the range remained equal for all resolutions (Table 13). When considering all models and counties, 

there is no recognizable difference in the median values with respect to the spatial resolution of soil 

input data.  

 

4.3.2 Interrelation between model and aggregation 

There is a remarkable difference of the shapes and extents of the simulated yield distributions 

between the four models and between the regions (Figure 19). For instance, in the region Jülicher 

Börde (BKR 141) the ranges of the simulated yield distributions are res1: 7.1, res2: 6.3 and res3: 

4.4 Mg ha
-1 

for SIMPLACE<LINTUL-SLIM>, while for EPIC the ranges of the respective 

distribution are: res1: 9.6, res2:  9.1 and res3: 5.14 Mg ha
-1

. Also, judging from the form of the 

bean plots, which represents the probability density trace of the simulated yields, the most probable 

value for yields simulated by SIMPLACE<LINTUL-SLIM> is around 7.4 Mg ha
-1

 while for the 

yields simulated by EPIC this is over 8.0 Mg ha
-1

. 

Similarly, when considering the distributions of simulated total growing season evapotranspiration, 

the differences between models in terms of range and shape of the distributions are evident (Figure 

20). When comparing both simulated yield and simulated total growing season evapotranspiration 

for each model, no systematic correspondence between the shapes or extent of both outputs for the 

same model can be found. On the one hand, the ranges and mean values of both the distributions of 

yields and the distributions of total growing season evapotranspiration for the two regions 

simulated by EPIC are for each resolution the largest of all models (Table 12 and Table 13). On the 



Chapter 4 – Soil input data resolution 

69 

 

other hand, although the range of yields simulated by DSSAT-CSM is the second highest of all 

models, the corresponding range values of simulated total growing season evapotranspiration is the 

lowest of all.  
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Figure 19. Comparison of frequency distributions of simulated yields of four crop growth models 

using three soil data resolutions (horizontal black lines in the bean plot represent the median value 

of the frequency distribution).  
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Figure 20. Comparison of frequency distributions of simulated total growing season 

evapotranspiration of four crop growth models using three soil data resolutions (horizontal black 

lines in the bean plot represent the median value of the frequency distributions).  
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Table 12. Summary statistics of the distributions of winter wheat yields in four counties in the Jülicher Börde (BKR 141) simulated by four crop models using soil 

input data at three spatial resolutions : 1.- 1:50.000, 2.-1:3.000.000; 3.-1:1.000.000 (Max= highest value; Q= Quartile; 3Q=75% percentile; 2Q=median; 1Q=25% 

percentile, Min=lowest value; Range=Max-Min). 

 

County Aachen Düren Erftkreis Heinsberg  Jülicher Börde KR141 

(summary all 4 counties) 

Resolution 1 2 3 1 2 3 1 2 3 1 2 3  1 2 3 

SIMPLACE<LINTUL-SLIM>                 

Max 9.0 8.9 8.9 9.4 9.3 8.7 8.9 8.9 8.9 9.4 9.3 8.6  9.38 9.25 8.92 

3Q 8.3 8.3 8.3 8.0 8.0 8.1 8.3 8.3 8.4 8.1 8.0 7.8  8.14 8.1 8.11 

2Q 7.3 7.3 7.3 7.5 7.5 7.5 7.3 7.3 7.4 7.5 7.5 7.4  7.45 7.4 7.39 

1Q 6.9 6.9 6.9 7.0 7.0 7.0 6.9 6.8 6.9 7.1 7.0 7.0  7.01 6.96 6.93 

Min 2.9 4.5 4.5 2.3 4.5 4.6 3.0 3.0 4.9 3.9 4.3 5.3  2.29 2.98 4.54 

Range 6.2 4.4 4.4 7.1 4.7 4.1 6.0 5.9 4.0 5.5 5.0 3.3  7.09 6.27 4.38 

DSSAT-CSM              

   Max 10.2 10.2 10.2 10.5 10.4 10.2 11.3 10.2 10.2 10.7 10.6 10.2  11.32 10.62 10.23 

3Q 9.0 8.9 8.9 8.6 8.6 8.6 9.1 9.2 9.2 8.6 8.6 8.6  8.85 8.85 8.86 

2Q 8.5 8.6 8.6 8.1 8.1 8.2 8.6 8.7 8.7 8.1 8.0 8.1  8.2 8.21 8.33 

1Q 7.9 7.9 7.9 7.6 7.6 7.7 7.8 7.9 7.8 7.6 7.5 7.6  7.64 7.64 7.65 

Min 2.8 5.6 6.0 3.1 3.5 6.1 2.4 5.2 5.3 2.9 2.9 2.9  2.44 2.88 2.88 

Range 7.4 4.6 4.1 7.4 6.9 4.1 8.9 5.0 4.9 7.8 7.7 7.4  8.88 7.74 7.35 

EPIC              

   Max 9.6 9.4 9.3 9.9 9.8 9.2 9.9 9.4 9.3 9.9 9.6 9.2  9.88 9.82 9.29 

3Q 8.7 8.8 8.8 8.7 8.8 8.6 8.8 8.8 8.8 8.9 8.9 8.9  8.76 8.83 8.79 

2Q 8.0 8.2 8.5 8.1 8.2 8.0 8.2 8.5 8.5 8.3 8.3 8.4  8.21 8.26 8.24 

1Q 7.2 7.6 7.9 7.3 7.4 7.3 7.6 7.8 7.9 7.9 7.8 8.1  7.5 7.7 7.79 

Min 0.3 4.2 4.2 3.6 3.7 5.2 1.6 4.6 6.1 0.7 0.7 6.3  0.3 0.71 4.15 

Range 9.3 5.2 5.1 6.3 6.1 4.0 8.3 4.8 3.2 9.2 8.9 2.8  9.58 9.11 5.14 

DAISY              

   Max 8.5 8.5 8.5 8.8 8.8 8.8 8.5 8.5 8.5 8.8 8.8 8.8  8.8 8.8 8.8 

3Q 8.2 8 8.2 8.4 8.3 8.4 8.2 8.2 8.35 8.3 8.3 8.3  8.3 8.3 8.4 

2Q 7.8 7.8 7.8 7.9 7.9 8.2 7.8 7.8 7.9 7.9 7.9 8.1  7.9 7.8 7.9 

1Q 7.3 7.3 7.5 7.3 7.3 7.4 7.4 7.5 7.7 7.3 7.3 7.4  7.3 7.3 7.5 

Min 3.8 3.8 3.8 4.4 5.4 7.2 3.5 5.7 7.3 4.0 4.0 7.1  3.5 3.8 3.8 

Range 4.7 4.7 4.7 4.4 3.4 1.6 5.0 2.8 1.2 4.8 4.8 1.7  5.3 5 5 
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Table 13. Summary statistics of the distributions of winter wheat yields of three counties in Sauerland (BKR 134) simulated by four crop models using soil input 

data at three spatial resolutions: 1.- 1:50.000, 2.-1:3.000.000; 3.-1:1.000.000 (Max= highest value; Q= Quartile; 3Q=75% percentile; 2Q=median; 1Q=25% 

percentile, Min=lowest value; Range=Max-Min). 

 

 County Märkisher Kreis Olpe Siegen-Wittgenstein  Sauerland (BKR 134) 

(summary all 3 counties) 

Resolution 1 2 3 1 2 3 1 2 3  1 2 3 

SIMPLACE<LINTUL-SLIM>              

Max 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1  9.12 9.12 9.1 

3Q 8.2 8.2 8.2 8.1 8.1 8.2 8.1 8.1 8.0  8.16 8.13 8.17 

2Q 7.2 7.2 7.3 7.2 7.1 7.0 7.2 7.1 7.0  7.17 7.14 7.19 

1Q 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3  6.29 6.29 6.29 

Min 4.1 4.1 5.3 4.1 4.1 4.9 4.2 4.2 5.2  4.1 4.1 4.92 

Range 5.0 5.0 3.8 5.0 5.0 4.2 4.9 4.9 3.8  5.02 5.02 4.18 

DSSAT-CSM           

   Max 8.1 8.1 8.1 8.2 8.2 8.1 9.8 8.1 8.1  9.75 8.21 8.11 

3Q 7.1 7.1 7.3 7.1 7.1 7.2 7.2 7.1 7.2  7.15 7.09 7.26 

2Q 6.5 6.5 6.8 6.5 6.4 6.5 6.6 6.5 6.5  6.51 6.47 6.59 

1Q 5.7 5.7 6.1 5.7 5.5 5.5 5.9 5.7 6.1  5.77 5.54 5.82 

Min 2.9 3.6 5.1 2.8 2.8 2.8 3.5 3.9 5.1  2.79 2.79 2.79 

Range 5.2 4.5 3.1 5.4 5.4 5.3 6.3 4.2 3.0  6.96 5.42 5.32 

EPIC           

   Max 9.6 9.6 9.6 9.7 9.5 9.5 9.7 9.5 8.7  9.66 9.55 9.55 

3Q 8.1 8.2 8.2 8.1 8.1 8.1 8.0 8.0 7.8  8.04 8.13 8.14 

2Q 7.5 7.7 7.9 7.6 7.5 7.6 7.4 7.5 7.3  7.47 7.55 7.66 

1Q 6.7 7.1 7.4 6.7 6.3 7.1 6.5 6.4 6.9  6.63 6.65 7.2 

Min 0.0 0.0 3.8 0.0 1.7 4.0 0.0 1.2 5.7  0.01 0.02 3.83 

Range 9.6 9.5 5.7 9.7 7.8 5.5 9.7 8.3 3.0  9.65 9.53 5.72 

DAISY           

   Max 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3  8.3 8.3 8.3 

3Q 7.3 7.3 7.3 7.3 7.25 7.3 7.3 7.3 7.3  7.3 7.3 7.3 

2Q 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1  7.1 7.1 7.1 

1Q 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.8 6.4  6.9 6.9 6.9 

Min 4.6 4.6 5.1 4.6 4.6 5.0 1.3 1.3 1.3  1.3 1.3 1.3 

Range 3.7 3.7 3.2 3.7 3.7 3.3 7.0 7.0 7.0  7 7 7 
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Finally for all models, as expected, the median values of the distributions of simulated yields and 

simulated total growing season evapotranspiration of the Jülicher Börde region are higher than the 

corresponding values of the Sauerland region and only small interactions between model and 

region are simulated, i.e. simulated differences between regions are smaller for 

SIMPLACE<LINTUL-SLIM> than for the other models. 

 

 

4.4 Discussion 

 

4.4.1 Spatial aggregation of soil data 

The low impact of soil data resolution on the distributions of simulated yields for the period and 

regions selected for this study can be attributed to three main reasons.  

First, to calculate the distributions of simulated yields in each region we considered all years in the 

period from 1995 to 2008. Although no aggregation of results (averaging) was undertaken, the 

consideration of all years to calculate the probability distributions of simulated yields in a region 

might neglect the effect of the inter-annual variability of precipitation on the water balance. The 

heterogeneity of water retention properties of soils becomes an important yield-influencing factor 

when water supplied by precipitation is scarce (De Wit and van Keulen, 1987). Figure 4 shows 

exemplarily for the county of Aachen in the region Jülicher Börde a comparison between the 

distributions of yields simulated by all models for the driest (1996) and the wettest (2000) years of 

the selected period. The influence of the spatial resolution of soil input data on the density traces of 

simulated yields is not evident for the distributions of yields simulated for 2000. On the contrary, 

yield distributions simulated for 1996 remarkably differed among the tested spatial resolutions of 

soil data (Figure 21). In our study region for most of the years precipitation barely caused water 

stress in the model simulations. Hence, the distribution of soil properties for different spatial 

resolution has apparently not played a decisive role on average. 
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Figure 21. Comparison of frequency distributions of yields simulated by four crop growth models 

using three soil data resolutions for the county of Aachen for the driest (1996) and wettest (2000) 

years of the period from 1995 to 2008 (horizontal black lines in the bean plot represent the median 

value of the frequency distributions). 

  



Chapter 4 – Soil input data resolution 

 

76 

  

7
6

 

Second, we applied pedotransfer functions to estimate the water holding capacity of all used 

profiles and did not use any site-specific measured data on soil water holding capacity. This might 

have caused an artificial decrease in the variability of soil water holding capacity in our data set as 

compared to the actual variability of soil water holding capacity. In this respect, Lawless et al. 

(2008) undertook a numerical simulation analysis of the effect of the uncertainty emerging from 

using pedotransfer functions for estimating soil hydraulic properties on yield estimates in the UK. 

They concluded that the sole application of pedotransfer functions might be too coarse to estimate 

hydraulic soil properties used as input for mechanistic crop growth models. Consequently, they 

recommended combining pedotransfer functions with site specific soil water holding capacity 

measurements which might capture the spatial variability of hydraulic soil properties in a region. 

For large areas, however, such approach might not be feasible or hampered by the low density of 

individual measurements for large areas, which was the case in the present study.  

Finally, the aggregation process to obtain the soil data for res2 and res3 can also be the cause of the 

very low impact of soil input data resolution on yield distributions. We selected the spatially 

dominant mapping units with their soil profile descriptions as representative soil units for the next 

coarser resolution (see 4.2.3). As a result, some profiles (i.e. the representative ones) and 

consequently the information in terms of soil water holding capacity values for the models were 

repeated in each simulation step for different soil input data resolutions. The method described 

above is the standard procedure used to generate soil maps with lower resolution, if high resolution 

maps are available, and is based largely on both formal knowledge and intuition (Heuvelink and 

Webster, 2001). Thus, the impact of soil data resolution on regional yield simulations might be 

influenced by the base resolution and the criteria for selecting representative soil units utilized to 

create the generalized regional soil maps which are used as input data for crop modelling 

applications. To get more insight into this matter, we undertook an additional test with one of the 

models. We analysed the distributions of yields simulated by SIMPLACE<LINTUL-SLIM> using 

the coarsest resolution (1:1 000 000) considering three criteria for selection of representative 

profiles: a) the best yielding profiles, b) the most surface dominant profiles as described in section 

4.2.3, and c) the worst yielding profiles (Figure 22). The number of profiles selected in each county 

for the three mentioned criteria was given by the number of most representative profiles according 

to the description in section 4.2.3, for example for the county Aachen we built the bean plots of the 

yields of a) the 6 best yielding profiles, b) the yields of the 6 most representative profiles in terms 

of area and c) the 6 worst yielding profiles. Since the distributions of yields in all counties in the 

same region were very similar, we decided to present the yield distributions for the two regions and 

not for each county individually. As expected, the shapes and extends of the simulated yield 

distributions varied according to the criteria to choose the representative profiles (Figure 22). From 

these results it can be inferred that when the process of spatial aggregation of soil data uses the 

same criteria to select representative soil units for all aggregation steps, spatial resolution of soil 

input data apparently plays a negligible role as a source of uncertainty in regional crop growth 
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simulation results. It may well be that when maps of different resolutions, produced with different 

aggregation procedures, are used, the soil input data may cause distinct frequency distributions 

depending on the resolution. It would be recommendable to undertake a study to prove this. 

 

 

 

 

Figure 22. Comparison of frequency distributions of yield and total growing season 

evapotranspiration simulated by SIMPLACE<LINTUL-SLIM> considering the best soil profiles 

(left), the representative soil profiles as described in section 2.3 (middle) and the worst soil profiles 

(right). 

 

 

4.4.2 Differences between models 

The uncertainty in regional yield simulations caused by the model choice appeared to be larger than 

the uncertainty introduced by the resolution of soil input data for each model (Figure 20). We 

attempted a quantitative assessment in order to clarify the relative importance of both uncertainty 

sources. On the one hand, the coefficient of variation (CV) of the simulated results for each model 

and resolution was calculated. The CV offers a summary description of the variability of simulated 
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yields and was used as a measurement of the uncertainty introduced by the model choice. On the 

other hand, for assessing the uncertainty (error) introduced by the use of coarser resolutions of soil 

input data, we calculated the coefficient of variation of the root mean square error (CV(RMSE)) of 

the yields simulated with res2 (1 : 300 000) and res3 (1 : 1 000 000) compared to res1 (1 : 50 000 

highest resolution). Figure 23 offers an overview of CV and CV(RMSE) values for all models and 

resolutions. 
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Figure 23. Comparison of coefficient of variation (CV), coefficient of variation of root mean square 

error (CV(RMSE)) and absolute root mean square error (RMSE) of the simulated crop yields of 

four crop growth models using three soil data resolutions. (For RMSE calculations simulated crop 

yields in res1 are considered to be the best approximation to the observed yields)  
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One would expect that using a lower i.e. coarser resolution of soil input data might cause a 

decrease in the variability of simulated yields. In both considered regions this was only partially the 

case for the model EPIC. Its CV values decreased from 0.15 (res2) to 0.09 (res3) in Jülicher Boerde 

and from 0.23 (res2) to 0.11 (res3) in Sauerland. However, for all other models the CV values 

either increased or decreased only very slightly (first panel in Figure 23). Concerning the error 

introduced by a coarser resolution, it could be assumed that the values of CV(RMSE) for res3       

(1 : 1 000 000) would be higher than the ones for res2 (1 : 300 000), since in general, lower 

resolution maps contain less detailed information. However, similarly to CV, the values of 

CV(RMSE) did not show any ascending trend when lower resolution soil input data were utilized. 

The least difference between CV(RMSE) of res2 and CV(RMSE) of res3 was 0%, thus, no 

difference for SIMPLACE<LINTUL-SLIM> in the region Jülicher Boerde. The highest difference 

of 3% was found for the Model EPIC in the region Jülicher Boerde.  

In contrast, the range of differences between models when comparing the values of CV of yields 

simulated at one resolution varied between 1 and 11%. Likewise, the differences of values of 

CV(RMSE) between models at one resolution ranged between 1 to 13% (second panel in Figure 

23). 

When considering the absolute values of RMSE (third panel in Figure 23), it becomes even more 

evident that the error introduced by the choice of the model, given by the ranges of RMSE between 

0.33 to 1.26 Mg ha
-1

 is greater than the uncertainty caused by the resolution of input data in each 

model which ranged between 0.07 Mg ha
-1

 for DSSAT-CSM in the Jülicher Boerde region to 0.17 

Mg ha
-1

 for EPIC in the Sauerland region. 

 

4.4.3 Possible causes of model differences 

The differences in terms of shape and extent of simulated yield distributions between the four 

models (Figure 19 and Figure 20 ) can be basically attributed to specific structure and 

implementation of each model (Adam et al., 2012; Angulo et al., 2013b; Mearns et al., 1999). A 

detailed causal analysis of these differences is  beyond the scope of the present study; however, 

based on our results, we provide some points for discussion which may stimulate more advanced 

analysis and research in the future. 

Crop yield is the result of linear and non-linear interactions between environment, genotype and 

management. Therefore, it was not expected to find a clear linear relationship between simulated 

yields and simulated total growing season evapotranspiration. However, as we avoided the 

influence of management practices on yield simulations by using the best management practices 

recommended for our study region, we expected to find some correspondence between simulated 

yield variability and total growing season evapotranspiration, which was not the case. This lack of 

correspondence could be attributed to the differing degree of importance by which every model 

considers soil water dynamics calculations as determinant of simulated yields. For instance, in the 
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case of DAISY the relative differences (1) of the distribution median values between Jülicher 

Börde and Sauerland in each resolution are almost equal for simulated yield (res1: 0.1, res2: 0.09 

and res3: 0.10 ) and simulated total growing season evapotranspiration (0.09 for all resolutions). 

Contrarily, for SIMPLACE<LINTUL-SLIM>, the relation of the relative differences of the median 

distribution values between Jülicher Börde and Sauerland is approximately 1 to 5 for simulated 

yield: res1: 0.04, res2: 0.04, res3: 0.03 and for simulated total growing season evapotranspiration 

res1: 0.21, res2: 0.22, res3: 0.22.  

  

relative difference = med Jülicher Börden – med Sauerlandn / med Jülicher Börden (1) 

where : n=resolution; med=median value of distribution  

 

Despite our assumption to exclude management effects from the analysis, we could not exclude the 

influence of model yield reducing factors which could also have had an influence on simulated 

yields. A clear example of the described phenomena is DSSAT-CSM. When analysing the 

probability distributions of simulated temperature stress of DSSAT-CSM for the two considered 

BKRs (not shown) more pronounced temperature stress levels were found for Sauerland. This can 

be explained by the lower winter temperatures in the Sauerland region in comparison to the 

Jülicher Börde region (Table 11). Thus, for DSSAT-CSM the differences in simulated yield levels 

between Jülicher Börde (BKR141) and Sauerland (BKR134) appear to be caused mainly by 

differences in temperature and not by soil water dynamics i.e. simulated total growing season 

evapotranspiration. 

For the selected regions and period it was not possible to find single „fingerprints‟ with which a 

model might be identified. The shapes of the simulated yield and total growing season 

evapotranspiration by one model were similar for the same region but differed between regions. 

However, in agreement with the conclusions of earlier studies (Angulo et al., 2013b; Willmott, 

1981; Willmott et al., 1985), it appears to be recommendable to evaluate the simulation results of 

crop models regarding whole distributions rather than focusing only on summary statistics when 

one is interested on assessing the spatial and temporal (year to year) variability of regional yield 

simulations. For example, the median values of the distributions of yields simulated by EPIC and 

DSSAT-CSM for the Jülicher Börde region are very similar. Nevertheless, by assessing visually 

whole distributions depicted in the form of bean plots (fingerprints), it is possible to distinguish 

that for the selected period the highest density of simulated yields is between 8 and 9 Mg ha
-1

 for 

EPIC while for DSSAT-CSM the simulated yields spread relatively uniformly between 7 and 10 

Mg ha
-1

.  
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4.5 Conclusion 

 

In this study we show that for the selected regions, period and models the choice of soil input data 

resolution has little influence on the shape and extent of the distribution of simulated yields and 

total growing season evapotranspiration. We identify three reasons for this response: a) the high 

precipitation amounts in the region which diminish the importance of soil-dependent water supply; 

b) the loss of variability of the hydraulic soil properties related to the methods applied to calculate 

water retention properties of the used soil profiles; and c) the method of aggregation of soil data 

used in our study, which considered the same representativeness criteria for the three resolution 

levels based on the same soil profile database for all aggregation steps. Further research on 

evaluating the distributions of crop model regional yield simulations for different soil data spatial 

resolutions might explicitly consider different aggregation methods. For assessing the behaviour of 

various crop models, when different soil input data resolutions are used for simulating regional 

yields, it is recommendable to evaluate the model results as whole distributions, if one is interested 

in a fast and clear assessment of the year to year variability of regional yield distributions. Since in 

our study the form and partially extent of each individual model fingerprint depends not only on the 

model but also on the interaction between inter-annual weather variability and soil properties, it 

might be advisable to undertake further evaluation considering the interactions between soil and 

weather input data resolution in order to clarify the applicability of the „fingerprints‟ as model 

typifying tool. Thus, the use of fingerprints at the moment is limited to offering a qualitative 

estimate into the temporal and spatial variability of simulated regional yields. According to the 

results of the present study, the uncertainty introduced by the model choice seems to be more 

important than the uncertainties caused by the soil input data resolution. Therefore, we suggest 

applying a multi-model ensemble approach to regional studies including the assessment of the 

effect of different scaling methods. 
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5. General Discussion and Conclusions 

 

This PhD thesis was carried out in response to the urgent need of developing approaches for 

identifying, quantifying, reporting and (ideally) reducing the uncertainty emerging from the 

regional application of field scale crop models, particularly in the context of climate change impact 

studies (Asseng et al., 2013; Rosenzweig et al., 2013; Rötter et al., 2011a). This chapter discusses 

the main outcomes of the research presented in chapters 2 to 4. The first section of this chapter 

(section 5.1) addresses methodological issues of the presented analyses with particular emphasis on 

the assessment of uncertainty and the scaling up of crop models. Furthermore, the innovative 

solutions and shortcomings of the studies as well as new research questions emerging while 

answering the original research questions of the thesis introduced in chapter 1 (Q1-Q3) are 

presented in the four following sections (5.2 to 5.5). Finally, section 5.6 presents the general 

conclusions on how to manage data uncertainty in regional crop model applications. 

  

5.1 Methodological issues to characterize uncertainty in regional crop model applications 

 

5.1.1 Simulation experiments 

This thesis paid special attention to systematically analyse the effects of the spatial resolution of 

weather and soil input data (Q2, Q3) and different calibration strategies (Q1) on the uncertainty of 

regional crop model simulations. Accordingly, for studying Q2 and Q3, the spatial resolution of 

weather and soil input data was systematically reduced (from higher to lower resolution) within a 

range of 10 km x 10 km to 100 km x 100 km grids for weather data and maps of scale 1:50000 to 

1:1000000 for soil data using the same data basis for all resolutions. The three calibration strategies 

studied in chapter 2 represent different degrees of complexity in calibrating crop models from 

relatively simple (using only phenology related parameters) to a rather elaborated strategy (using 

also crop growth related parameters) (Q1- section 2.2.5.2). However, the choice of study regions, 

crops and crop models used did not follow a strictly systematic approach, but was the result of data 

availability in the study region and the ability of modelling groups to engage in this study which is 

also explain further in the following sections. 

 

Selected study regions and crops 

Since the studies presented in chapter 2 to 4 were highly dependent on the quality and quantity of 

input and validation data, the decision of the regions and crops to study was mainly taken based on 

the availability of data (see 1.4). The reader might wonder why three different spatial extents were 

considered for the three proposed research questions: continental scale for Q1, basin scale for Q2 

and sub-national for Q3. The main objective of Q1 was to test whether region-specific 

parameterisation as proposed by earlier studies in Europe (Reidsma et al., 2009a; Reidsma et al., 
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2009b; Van Der Velde et al., 2009) improved the simulation results. Here, the continental scale 

(Europe (EU25) appeared to be most adequate for this purpose as crop varieties differ across 

Europe and as good and accessible data were available. In Q2 and Q3 whole Europe was not taken 

into consideration for various reasons. First, the available resolution of weather and soil input data 

was too coarse to systematically assess the uncertainty introduced by different spatial resolutions. 

Moreover, most regional climate change impact projections on crop production are performed at 

(sub-)national scale, and finally, the time constraints for a systematic scaling study from plot to 

European level would have been beyond the scope of a single PhD study. In chapter 2 five major 

crops where considered to investigate Q1. Winter wheat, winter barley, potatoes, sugar beet and 

maize are very important crops in Europe. Although crops such as rape seed, spring wheat and 

silage maize are also important, cultivation and yield data for the selected five met best the criteria 

to be used in our study. Ideally, we should have considered the same cereal crop, for the studies in 

chapters 3 and 4. However, due to the differences between study regions, the most representative 

crops, spring barley and winter wheat were taken into consideration for the study cases in Finland 

(Yläneenjoki region) and Germany (North-Rhine Westphalia), respectively. Despite the obvious 

differences between both crops, such as the length of growing period and vernalisation 

requirements, results on the effects of the resolution of weather input data for both crops were 

similar (Figure 13 vs. Figure 16). 

 

Selected models 

The crop model LINTUL2 (Angulo et al., 2013a) was used in order to answer Q1. The choice was 

based on the relative simplicity of the model, and the working experience of our research group 

(INRES-Crop Science, University of Bonn) with it. In the case of Q2 and Q3, the most important 

criteria to choose the crop models were to have models of different complexity and structure and 

research groups competent in applying them. Final choices were strongly co-determined by close 

research contact with crop modelling research groups having ample working experience with the 

respective models and the capacities to carry out the required simulations. Crop models run by 

collaborating research groups were DSSAT-CSM (Jones et al., 2003a), DAISY(Gassman et al., 

2004), and WOFOST 7.1 (Boogaard et al., 1998; Van Diepen et al., 1989). These differ structurally 

distinctly from the two other models LINTUL2 and EPIC run at INRES-Crop Science, University 

of Bonn. Special attention was paid to the model differences regarding detail of light interception 

and light utilization for biomass assimilation processes (see Adam et al., 2011). 

Furthermore, it might have been interesting for the study undertaken in Chapter 3 (Q2) to consider 

a more detailed model of soil water dynamics such as the Richards approach in comparison to 

models using the conventional tipping bucket approach. This was not possible for Q2 due to time 

constraints. However, in the study presented in Chapter 4 (Q3), a model using the Richards 

approach, DAISY (Hansen et al., 2012), was included in the model comparison exercise.  



Chapter 5 – General Discussion and Conclusions 

 

86 

  

 

Why focus on water-limited yields? 

In all the studies of this thesis simulations refer to water-limited yields. In order to answer Q1 it 

was assumed that temperature and water supply might be the most important factors explaining 

yield variability in Europe. Thus, the parameters selected to test calibration strategy 3 (Q1-section 

2.2.5.2) were assumed to represent the differences in the varieties grown between sub-regions to 

cope with water deficiency. Other yield-limiting factors (nutrient deficiencies, pest and diseases) 

were not explicitly modelled but were likely inherently captured when calculating the growth 

parameters. 

For the studies in chapters 3 and 4 (Q2, Q3) simulations for rain-fed conditions appear justified 

since the selected study regions, West Germany and South-West Finland, are production zones 

where farmers generally apply ample fertilizer and crop protection to achieve actual yields under 

the given rainfall regimes that are close to yield potential. Other factors influencing productivity 

indirectly through crop management such as agricultural and environmental policies and market 

regulations are not considered in crop growth models but in agro-economic models and were 

therefore not considered in our studies. As crop management in the regions investigated in chapters 

3 and 4 is typically close to optimal simulation of water-limited yields seemed sufficient to gain 

first insights into effects of scaling on regional yields. 

 

5.1.2 Considered scaling method 

The focus of the research efforts undertaken in chapters 3 and 4 (Q2, Q3) was to explore the 

uncertainty introduced into regional crop model simulation results by spatial scaling of input 

data. The specific scaling method investigated was aggregation (for a definition see section 1.1.1).  

 

Weather data 

Aggregation was selected since it is commonly applied as a strategy to spatially scale weather and 

soil input data for regional crop modelling (e.g. De Wit et al., 2010; De Wit et al., 2005; Easterling 

et al., 1998; Ewert et al., 2011b; Folberth et al., 2012; Mearns et al., 2001; Mearns et al., 2003; 

Mearns et al., 1999; Nendel et al., 2013; Niu et al., 2009; Reidsma et al., 2009a; Rötter et al., 

2013b; Rötter et al., 2011b; Van Bussel et al., 2011a). Weather input data are obtainable in form of 

grid cells for a number of regions and the availability of gridded weather data for regional analysis 

is increasing (Folberth et al., 2012). Often the results of weather generators from downscaling the 

results of GCM outputs are used for both baseline and future weather conditions as inputs for 

regional climate change impact assessments (Semenov and Pilkington-Bennett, 2012; Semenov et 

al., 2013). Such data are also available and used as gridded data. Thus, depending on the scale 

considered in a regional yield assessment study, a weather grid cells size, i.e. a specific aggregation 

level of gridded weather data is often used. In this respect, systematic studies of the resolution/grid 
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cell size requirements for assessing climate change impacts on crop yield are missing. Accordingly, 

three aggregation levels (4 spatial resolutions) were tested: starting from a base weather data grid 

of 10 km x 10 km, which was step-wise aggregated to 20 km x 20 km, 50 km x 50 km and 100 km 

x 100 km grids. The additional consideration of data from a near weather station in chapter 3 

served to illustrate the differences between point and gridded weather input data.  

 

Soil data 

In general, soil profiles or, more frequently, soil maps based on soil surveys are the primary source 

of generating soil input data for regional crop model applications (Bechini et al., 2003). In many 

countries soil information at high resolution (mapping scale higher than 1:200000) is scarce due to 

the extremely high cost of soil mapping. Therefore, it is important to quantify the minimum 

resolution which is necessary to adequately reproduce crop yields in the context of regional crop 

modelling applications. The commonly used technique to generate soil maps (i.e. generalization in 

cartographic terms) from higher to lower resolution, is to unite (larger) areas that share similar 

physical/geological characteristics (soil sub-units) into a generalized class characterized by a 

typical soil profile (Leenhardt et al., 1994). Thus, choosing the scale of a soil map, to be used as 

source of soil input data means in practical terms to choose a specific spatial resolution which may 

or may not be supported by the underlying point measurement or support data (such as geo-

morphological boundaries derived from diverse sources). Accordingly, the study in chapter 4 (Q3) 

tested the effect of two aggregation levels (three soil map resolutions) on regional yield 

simulations. 

Since the effect of aggregation depends on the properties of the utilised data (Van Bussel et al., 

2011a), the obtained results are in the first place only applicable for regions were the data situation 

and the weather and soil conditions and their heterogeneity/homogeneity reflected in the data are 

similar to our studies (see sections 5.2, 5.3). 

 

Data quality 

All data from model simulations and observations are prone to error also as a result of data 

manipulation through scaling such as aggregation. According to the results presented in chapter 3, 

aggregating observed yields has a distorting effect on the shape and range of the probability 

distribution of the data (Q2-Figure 15). This has repercussions on the interpretation of observed 

data used to calibrate crop models. A first attempt to visualize the mentioned effect of aggregation, 

for example simple averaging is presented in Figure 24. On the one hand, for winter wheat, a crop 

for which many observed yield data were available, the aggregation of observed and simulated 

yields has practically no effect on the shape but it shortens the range of the frequency distributions. 

On the other hand, for sugar beet, a crop for which data on observed yields were relatively scarce 

(30% less data in comparison to winter wheat), aggregation led to a levelling of the shape and 
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reduced the range of the frequency distributions of observed and simulated yields. This shows that 

the impact of aggregation as well as the success of a calibration strategy is also closely related to 

the quality and /or quantity of base data (Hansen and Jones, 2000). 

The quality of model input data is essential prerequisite for good model performance. Available 

weather data have been provided by the DWD for the study in chapter 4 after initial quality check. 

However, some data were not sufficiently available such as wind speed and assumptions had to be 

made which may have had some implications on the obtained results (see section 5.2). 

 

 

Figure 24. Interacting effect of aggregation of simulated yields of winter wheat and sugar beet 

simulated for 533 climate zones in the period of 1983 to 2006 in relation to three model calibration 

strategies. Strategy 1: phenology only, Strategy 2: using a yield correction factor, and Strategy 3: 

extended calibration of selected growth parameters of winter wheat for 533 climate zones in 

Europe in the period from 1983 to 2006. See text for explanation of calibration strategies. Left 

panels show probability distributions built up considering all years and all climate zones for winter 

wheat (above) and sugar beet (below). Right panels show probability distributions built up with the 

average values over years of each considered climate zone. 
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5.1.3  Evaluating uncertainty  

Model evaluation 

In the present study, uncertainty in regional yield simulations was assessed from two different 

viewpoints. On the one hand, chapters 3 and 4 (Q2, Q3) addressed the effect of the spatial 

resolution of input data on model simulations. The yield predictive power of the models was 

assumed to be plausible and was not further evaluated and compared with observed data. On the 

other hand, chapter 2 (Q1) evaluated the discrepancies between observed and simulated spatial 

yield variability as measurement of the uncertainty introduced by different parameter estimation 

strategies (section 5.4 will discuss variability depiction as indicator of plausible model results). 

 

Visualisation of results 

Although the effects of soil and/or weather input data resolution have been partially investigated in 

several studies (e.g. Folberth et al., 2012; Mearns et al., 2001; Moen et al., 1994; Nendel et al., 

2013; Niu et al., 2009; Wassenaar et al., 1999), none of these studies applied a systematic approach 

to explicitly evaluate the uncertainty in crop model results caused by: i) input data resolution, ii) 

model structure and iii) the interaction of both. In support of (gradually) closing this knowledge 

gap, the use of bean plots was chosen as a major tool to illustrate the variability addressed in Q2 

and Q3.  

Similarly to box and whisker plots, bean plots depict the degree of dispersion and skewness of a 

data set and do not make any assumption about the statistical distribution to which the data might 

correspond. An additional and very advantageous feature of the bean plots for our work was their 

ability to estimate the frequency distribution of the data sets (Sheather, 2004; Sheather and Jones, 

1991; Silverman, 1986), represented by the outer form of the beans (e.g Q2-Figure 13).  

For the evaluation of simulation models it has been suggested not to rely only on the correlation 

coefficient and its square, i.e. the coefficient of determination, but to use various other statistical 

measures for characterizing model performance  (Willmott, 1981; Willmott et al., 1985). 

Increasingly, crop modelling studies have been following these recommendations and made use of 

statistics such as root mean square error (RMSE) and model efficiency (ME) (e.g. Nendel et al., 

2013; Palosuo et al., 2011; Rötter et al., 2012b). In this regard, the present PhD thesis is innovative 

for being the first work in the area of crop modelling using whole distributions in the form of bean 

plots to evaluate model outcomes.  

Due to the high amount of graphical information offered by the beans, a rapid visual assessment is 

possible to gain qualitative insight into the variability in the data analysed. For instance, the 

similarity in shape and extension between all bean plots of yields simulated by the same model but 

using different weather data resolutions (Q2-Figure 13) underlines the low effect of weather data 

resolution on uncertainty of model results at the selected sites. An additional advantage of using 
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bean plots is the low cost of implementation. Bean plots are developed in the free software R 

(http://CRAN.R-project.org/package=beanplot). 

However, bean plots also have constraints. Although they allow visual assessment of distributions, 

no quantitative information is provided. It is therefore necessary to extend the analysis into more 

formal statistics. Bean plots also do not provide explanation of different distributions. Thus, further 

analysis of causal relationships is required to explain the remarkable differences between the 

frequency distributions of the different crop models as found in this thesis. Bean plots are also not 

very useful when the predictive power of a single model is to be validated. Nevertheless, depicting 

observed yields for a specific region and time period in form of frequency distributions offers a 

rough estimate of the observed temporal and spatial regional yield variability. In theory, the bean 

plots of yields simulated by a well calibrated crop model should be similar to the bean plots of 

observed yields (see section 5.1.2). 

 

5.2 Influence of weather input data resolution on simulated yields 

 

According to the results of chapter 3, changing the resolution of weather data does not markedly 

increase the uncertainty of crop model simulations (Q2-Figure 13). However, this statement only 

applies to regions where the properties of weather are similar to the study region under 

consideration in chapter 3. The Yläneenjoki region in Southwest Finland is characterized by a very 

homogeneous topography, which in general terms implies very small differences in temperature 

and precipitation between sub-regions (Johansson and Chen, 2003). Thus, although temperature 

differences between grid cells do exist, they did not appear to be large enough to make aggregation 

(scale change) significantly influencing the yield simulations. In concordance with these results, it 

has been shown that in regions where temperature values are similar between sub-regions, a finer 

resolution does not improve the simulation results of crop phenology (Van Bussel et al., 2011a). 

Moreover, aggregation of precipitation data did not have any remarkable influence on the 

variability of simulated yields or total evapotranspiration during the growing season. It has been 

suggested that the aggregation of precipitation data in grid cells might cause an artificially 

homogeneous daily distribution of the daily amount of water supplied to the plant (Hansen and 

Jones, 2000). From our results it can be inferred that the variability lost caused by aggregating 

precipitation data should be considered only when the differences in precipitation between sub-

regions surpass a certain threshold. The determination of this precipitation variability threshold is 

still to be investigated and might be region specific. Eventually, it will be necessary to undertake a 

similar systematic study in a study region characterized by less homogeneous topography. 

One limitation to test the effect of weather data aggregation on the results of regional crop model 

applications was the already mentioned lack of gridded wind speed data. In our case study one data 

set for wind speed was used for all resolutions. Three of the four models (Q2-Table 3) calculated 

http://cran.r-project.org/package=beanplot
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the needed values of potential evapotranspiration using equations which require wind speed as 

input parameter (Allen et al., 1998a; Monteith and Greenwood, 1986; Penman, 1956). Since the 

values of evapotranspiration are a crucial internal variable to calculate water dynamics in all the 

models, it could be argued that the very low impact of weather data aggregation on model 

simulations might also be related to the fact that similar potential evapotranspiration values served 

as a base for water stress calculations in all aggregation levels for each model. However, when 

comparing the results of DSSAT-CERES, which uses an equation not requiring wind speed 

(Priestley and Taylor, 1972) with the remaining three models, no apparent difference in terms of 

variability introduction can be noticed (Q2-Figure 13). Yet, this might also be a region-specific 

phenomenon, as the aerodynamic term in the evapotranspiration estimation usually plays a minor 

role in humid, temperate or boreal climates as in Finland. The results point out the need for further 

research to quantify the influence of the methods to calculate evapotranspiration on regional yield 

simulations. If methods not considering wind speed cause a similar uncertainty as methods using it, 

crop models may use routines that do not require wind speed (at least in certain regions) and hence 

might overcome the problem of limited availability of wind speed data. 

Although previous research has already considered the influence of different weather data 

resolutions on regional yield simulations (Folberth et al., 2012; Mearns et al., 2001; Nendel et al., 

2013; Olesen et al., 2000) the work described in chapter 3 is the first systematic approach using the 

same data basis for all resolutions (aggregation steps). The small influence of weather data 

aggregation found in our study might partly be due to the small error introduced when using the 

same data basis for all resolution steps as compared to studies with diverse databases. 

Quantification and reporting of uncertainty in regional crop model applications require 

transparency in the processes of obtaining and processing input data. Therefore, there is an urgent 

need for the crop modelling community to search for cooperation in order to collect weather data 

sets as needed for crop model applications. It is recommended to involve experts in 

meteorology/climatology when processing, interpreting, and scaling weather data. 

Gaining a better understanding of the influence of scaling weather data for regional crop model 

applications might facilitate the choice of the most appropriate resolution needed when utilizing 

(regional or global)  climate models for climate impact assessments (Mearns et al., 2001; Semenov 

and Pilkington-Bennett, 2012; Semenov et al., 2013; Semenov and Shewry, 2011). For instance, in 

regions like the Yläneejoki region, where topography is fairly homogeneous, the effort of 

downscaling weather data to higher resolutions might not represent a gain in the quality of yield 

simulation results. From the results of our study it can also be recommended, that for regions where 

weather variables such as temperature and precipitation are evenly distributed, methods such as 

sampling of a representative grid cell or weather station might be enough to represent the weather 

variability of the region. 
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The influence of rainfall on crop growth is closely related to the water retention characteristics of 

soil. Since model simulation results are usually influenced by the interaction between precipitation 

and soil characteristics affecting soil water availability (e.g. Folberth et al., 2012; Nendel et al., 

2013; Niu et al., 2009), the results discussed in chapter 3 depict only partially the effect of 

aggregation of weather data on regional yield simulations. In the next paragraph results on the 

effect of aggregating soil characteristics are discussed. 

 

5.3 Effects of soil data aggregation 

 

Similarly to the results of chapter 3, the results of chapter 4 also reveal that the spatial aggregation 

of soil input data did not have a considerable effect on the variability of crop model yield 

simulations (Q3-Figure 19). Motivated by the experience gathered in chapter 3, a topographically 

more heterogeneous region was chosen to answer Q3. Although noticeable differences in terms of 

simulated yield and simulated total growing season evapotranspiration distributions between the 

plains and the mountainous sub-regions were apparent (Q3-Figure 19), no considerable impact of 

soil data resolutions within a sub-region was found.  

Most of the studies which have investigated the impact of soil data resolution on regional yield 

simulations have not focused explicitly on the uncertainty introduced by a specific form of scale 

change (Easterling et al., 1998; Folberth et al., 2012; Nendel et al., 2013; Niu et al., 2009; Olesen et 

al., 2000; Wassenaar et al., 1999). An approach considering scaling systematically has been 

hampered by the lack of extensive and reliable soil data sets. Although the data basis in the region 

investigated in chapter 4 is exceptionally good, there is still a remarkable room for data quality 

improvement. For instance, the soil data used for the study were not collected by an agricultural 

service but by a geological service. Very important soil information such as soil texture, gravel 

content and soil water table was available in a well-documented data base. Nevertheless, the water 

contents at field capacity and wilting point were not provided per horizon but per profile. This 

water content at field capacity was estimated at a water tension of 0.06 MPa instead of 0.33MPa 

which is required by the crop models used. The minimum data requirements of all crop models to 

simulate soil water content are wilting point, field capacity and saturation in each soil layer which 

were estimated based on pedotransfer functions developed by the German soils (AG-Boden, 2005). 

Even if quality control based on expert knowledge was undertaken, the utilization of pedotransfer 

rules or functions introduced additional uncertainty. However, since the study in chapter 4 focused 

on the mere influence of scale change, the uncertainty introduced by the utilization of pedotransfer 

functions was assumed to be equal for all resolution levels.  

It has also been shown that the utilization of site specific measurements of soil hydraulic properties 

to validate pedotransfer functions yields plausible values to be used as model input (Lawless et al., 
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2008). This underlines the urgent need for cooperation between soil scientists, geologists and 

agronomists to assure effective soil data collection with available resources. 

An important source of uncertainty, which is usually neglected, is the criteria taken into 

consideration to select representative soil units. A clear example is given by the results presented in 

chapter 4 (Q3-Figure 22). The three proposed criteria for selecting representative soil units (1. high 

yielding profiles, 2. the most representative profiles in terms of area and 3. the worst yielding 

profiles) have a remarkable influence on the shape and range of the distributions of simulated 

yields and simulated total growing season evapotranspiration. Therefore, it would be interesting to 

compare soil maps of a specific region depicting the same or similar resolution but produced by 

different institutions/research groups applying different criteria to select representative soil units. 

Such study might offer a powerful insight into the so called “human error” caused by different 

representativeness-assumptions made in the process of soil data aggregation. 

In chapters 3 and 4 it was intended to assess individually the effects of spatial aggregation of 

weather input data and the effects of spatial aggregation of soil input data, respectively. In both 

cases, no uncertainty introduction in simulation results was apparent. However, when considering 

the interaction between the year to year variability of precipitation and the soil characteristics, clear 

differences between soil resolutions were found (Q3-Figure 21). Such results recommend carrying 

out studies using a factorial simultaneous analysis of the influence of both weather and soil input 

data resolution on regional crop simulations.  

 

5.4 Is it necessary to consider spatial heterogeneity in the model calibration process?  

 

The parameters of plot/field crop models typically refer to crop growth and development processes 

and therefore are valid only for the scale at which they were developed (Challinor et al., 2009a). 

Due to the sub-regional differences of the factors affecting crop yields such as weather and crop 

management determined by farm characteristics, technology development and socio-economic 

conditions (Reidsma et al., 2009b), it is crucial for the calibration of models used in regional 

applications that model parameters reflect the spatial variability of such yield influencing factors 

(Hansen and Jones, 2000; Jagtap and Jones, 2002; Therond et al., 2011; Xiong et al., 2008). 

However, the majority of studies undertaken in the context of regional crop model application have 

not tested calibration strategies to solve this important issue (e.g. De Wit et al., 2010; Harrison and 

Butterfield, 1996; Van Der Velde et al., 2009). Based on the recommendations of an integrative 

European crop modelling study (Therond et al., 2011), chapter 2 (Q1) investigated the importance 

of region specific parameters to reproduce spatial heterogeneity in crop yields. The study did not 

pursue to develop a standard crop model calibration methodology but to compare calibration 

strategies about which and how parameters should be estimated (see 2.2.5.2). The third calibration 

strategy tested in this study, i.e. taking into consideration sub-regional differences of model 
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parameters related to crop growth in addition to crop phenology resulted in the best agreement 

between simulated and observed yield at the European scale (EU25) (Q1-Figure 1). Nevertheless, 

since accurate calibration of crop growth and development parameters requires data which are 

presently scarce in the required quality and resolution for entire Europe, the use of a yield 

correction factor after phenology calibration (strategy 2) might be still meaningful and is advised as 

the preferred strategy.  

Clearly, our results stress the need to consider uncertainty due to calibration as integrated part of 

the general reporting of uncertainty by the crop modelling community (Asseng et al., 2013; Rötter 

et al., 2013b). It should thus also be part of a common protocol to assess uncertainty in regional 

crop modelling applications as proposed for AgMIP (Rosenzweig et al., 2013) and MACSUR 

(Rötter et al., 2013a).  

The results in chapter 3 showing an effect of aggregation on the shape of the probability 

distribution of the observed yield (Q2-Figure 15) have implications for the way of interpreting the 

results of chapter 2. If the model calibration process limits to “fit” the average results of our crop 

models to the average of observations (Challinor et al., 2009a), simulation results might be 

misleading and not usable in the broader context of decision making. This leads back to the issue of 

data quality which has been already mentioned in sections 5.2 and 5.3 and needs to be tackled 

immediately by the global crop modelling community. An effective way of solving this issue is the 

establishment of data transfer protocols specifically designed for crop model calibration in a 

multilateral frame such as in the European  FACCE JPI project MACSUR (www.macsur.eu, Rötter 

et al., 2013a ). 

Finally, the utilization of easy to understand means such as graphics to present and discuss the 

results in chapter 2 considerably facilitated the collaborative work with other scientists such as 

economists involved in the project AgriAdapt (Ewert et al., 2011a) under which the study was 

performed. Clearly, impact assessment work is only possible when the product of the research by 

the crop modelling community is also understandable and usable for other scientists, decision 

makers and stakeholders which may need more attention in the future. 

 

5.5 Next research steps on scaling methods 

 

As a result of the work on scaling issues related to input data and model calibration a number of 

new research questions have emerged. 

Although at first sight the spatial resolution of weather and soil input data alone does not seem to 

have an important impact on the frequency distributions of simulation results of regional crop 

models, it is recommended to undertake similar studies in regions where weather and soil data are 

more heterogeneous and the occurrence of drought stress is more frequent. It would be interesting 

to search for the feasibility of analysing the effect of soil data resolution in the Jokioinen river 

http://www.macsur.eu/
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basin as well as investigating the effect of weather data resolution in North-Rhine Westphalia. In 

this regard, a systematic factorial analysis of the combined effect of soil and weather data 

resolution on simulated yield variability might bring more insight into the effect and related 

uncertainty of input data resolution for regional crop modelling. Additionally, it might be 

interesting to systematically analyse the interaction between the year to year weather variability 

and soil input data as causes of uncertainty in regional crop modelling. 

Since the studies presented in chapters 3 and 4 considered simple aggregation approaches, i.e. just 

averaging for weather data and choosing a representative soil profile for spatial soil units, further 

research should be undertaken in order to gain a deeper insight into the way uncertainty is 

introduced by other more elaborated aggregation methods such as sampling in geographic space or 

sampling in probability space (Hansen and Jones, 2000).  

The computation of water balance is highly dependent on the method used for calculating 

evapotranspiration. Therefore, a systematic analysis of the influence of evapotranspiration 

calculations and their interaction with input data resolution as source of uncertainty for regional 

yield simulations is highly recommendable. In this respect, and based on preliminary calculations 

of the difference between different pedotransfer functions used in the study presented in chapter 4, 

it is recommended to carry out a systematic analysis of the impact of different pedotransfer 

functions/rules as uncertainty source in soil input data. 

The methodology used to generate sub-regional parameter sets in chapter 2, i.e. a brute force search 

algorithm based on the minimizing of RMSE between simulated and observed yields, is very 

rudimentary and might not be recommendable to be applied in further regional studies. More 

sophisticated calibration methodologies like the Bayesian approach (Van Oijen et al., 2005) might 

offer a more comprehensive insight into the uncertainties related to the parameters which might 

influence at most the depiction of the spatial variability of crop growth and yield in crop modelling 

regional applications.  

Based on the results of chapter 2 it is recommended to further investigate the effects of considering 

sub-regional differences in the calibration process not using statistics but well documented field 

trial data. 

In general, it might be recommendable to undertake similar studies considering other (non-cereal) 

crops or even crop rotations. For this purpose, the scaling of input data referring to management 

practices might play a very important role. In this respect, it is highly recommendable to undertake 

studies searching for meaningful strategies to scale input management data. 

Finally, although yield is the most important variable for assessment, considering other output 

variables in further studies (e.g. soil-water dynamics) might offer a better understanding of the 

dynamics of plant growing at regional level. 
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5.6 Conclusion 

 

After having systematically addressed the effects of weather and soil input data aggregation, and 

the choice of model calibration strategy on regional crop model simulation results, the following 

general conclusions can be drawn: 

 

1. In humid regions, with temperate climate conditions during growing period and 

homogeneous topography, low resolution climate data seem to be sufficient for climate 

impact assessment on water limited crop yield. 

2. The utilization of various crop models differing in complexity and modelling approaches 

should become a requirement for every regional impact assessment study since the 

uncertainties introduced by the model choice have been shown in this study to be more 

important than the uncertainties caused by the input data resolution. 

3. Since the quality of input data as well as data used for model calibration is essential for 

producing accurate and plausible regional model simulation results, it is indispensable for 

the crop modelling community to tighten cooperation links with data collectors and data 

providers in order to obtain data that are suitable for regional crop model applications. For 

this purpose data collection and data administration protocols should be implemented at 

regional and global level (e.g. within projects such as MACSUR and AgMIP). 

4. Reasonable and useful regional crop modelling work cannot be undertaken by isolated 

research groups depending on limited resources and hampered by the specific requirements 

of funding agencies. Multinational and multidisciplinary scientific work focusing on the 

development of common strategies to tackle issues such as data scarcity and supporting the 

know-how exchange seems to be a good basis for the generation of knowledge which can 

be productively used by scientists to provide robust information for decision makers. 

5. The use of easy to understand means  such as bean plots can support model evaluation 

through visual assessment and guide a more elaborated quantitative assessment of the 

effect of input data resolution on the uncertainty of regional yield simulations. 

6. The influence of management practices is still not entirely considered in regional 

simulation yield assessments. Therefore, the search for meaningful strategies to scale 

management input data for regional modelling applications need to be urgently tackled by 

the crop modelling community. 
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Appendix 1. Tabular pedotransfer rules developed for German soils (adapted from _ENREF_4AG-Boden, 2005) (Min=minimum content, Max=maximum 

content, SAT=water content at saturation (pF=4.2), FC=water content at field capacity (pF=2.5), WP=water content at wilting point (pF=4.2)) 

Symbol German classification name Translation Clay_Min Clay_Max Silt_Min Silt_Max Sand_Min Sand_Max SAT FC WP 

Ls2   schwach sandiger Lehm  sandy loam1 17 25 40 50 25 43 42 25 18 

Ls3   mittel sandiger Lehm  sandy loam2 17 25 30 40 35 53 41 24 16 

Ls4   stark sandiger Lehm  sandy loam3 17 25 15 30 45 68 42 23 16 

Lt2   schwach toniger Lehm  clay loam1 25 35 30 50 15 45 42 31 22 

Lt3   mittel toniger Lehm  clay loam2 35 45 30 50 5 35 43 34 26 

Lts   sandig-toniger Lehm  sandy clay loam 25 45 15 30 25 60 42 31 22 

Lu   schluffiger Lehm  silty loam 17 30 50 65 5 33 42 29 18 

Sl2   schwach lehmiger Sand  loamy sand1 5 8 10 25 67 85 41 17 7 

Sl3   mittel lehmiger Sand  loamy sand2 8 12 10 40 48 82 41 20 9 

Sl4   stark lehmiger Sand  loamy sand3 12 17 10 40 43 78 41 23 12 

Slu   schluffig-lehmiger Sand  silty loamy sand 8 17 40 50 33 52 42 26 12 

Ss   reiner Sand  sand 0 5 0 10 85 100 42 12 4 

St2   schwach toniger Sand  clay sand1 5 17 0 10 73 95 40 14 6 

St3   mittel toniger Sand  clay sand2 17 25 0 15 60 83 42 24 15 

Su2   schwach schluffiger Sand  silty sand1 0 5 10 25 70 90 41 13 4 

Su3   mittel schluffiger Sand  silty sand2 0 8 25 40 52 75 42 20 8 

Su4   stark schluffiger Sand  silty sand3 0 8 40 50 42 60 42 23 9 

Tl   lehmiger Ton  loamy clay 45 65 15 30 5 40 44 37 27 

Ts2   schwach sandiger Ton  sandy clay1 45 65 0 15 20 55 42 37 25 

Ts3   mittel sandiger Ton  sandy clay2 35 45 0 15 40 65 42 37 23 

Ts4   stark sandiger Ton  sandy clay3 25 35 0 15 50 75 41 30 19 

Tt   reiner Ton  clay 65 100 0 35 0 35 44 39 28 

Tu2   schwach schluffiger Ton  silty clay1 45 65 30 55 0 25 44 39 29 

Tu3   mittel schluffiger Ton  silty clay2 30 45 50 65 0 20 43 35 25 

Tu4   stark schluffiger Ton  silty clay3 25 35 65 75 0 10 42 33 20 

Uls   sandig-lehmiger Schluff  sand loamy silt 8 17 50 65 18 42 42 30 13 

Us   sandiger Schluff  sandy silt 0 8 50 80 12 50 42 29 10 

Ut2   schwach toniger Schluff  clay silt1 8 12 65 92 0 27 42 31 12 

Ut3   mittel toniger Schluff  clay silt2 12 17 65 88 0 23 42 32 13 

Ut4   stark toniger Schluff  clay silt3 17 25 65 83 0 18 43 33 16 

Uu   reiner Schluff  silt 0 8 80 100 0 20 43 32 12 


