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Volatility of International Food Prices: Impacts on Resource Allocation and on Food 

Supply Response 

Abstract 

Uncertainty is a quintessential feature of agricultural commodity prices. After about three decades of 

low and relatively stable price levels, we have experienced a dramatic rise and volatility in 

international food prices since 2005. Besides the traditional causes of price fluctuations, agricultural 

commodities are increasingly connected to energy and financial markets, with potentially 

destabilizing impacts on prices. The study focuses on the global supply response of the world’s key 

staple crops, namely wheat, corn, soybeans, and rice, to changes in international food prices and 

volatility.  

By applying the details of the crop calendar to derive monthly global acreage and production 

time series data for the period 1961–2010, we explicitly consider the role of seasonality in global 

agricultural supply response. Depending on the respective crop, the time series econometric results 

indicate that short-run elasticities are about 0.05 to 0.40; and price volatility tends to reduce acreage 

for most of the crops. Comparison of annual and monthly acreage response elasticities suggests that 

global acreage adjusts to new information and expectations seasonally. The analysis also indicates 

that acreage allocation is more sensitive to prices during spring than in winter, with varying 

responses across months. Furthermore, the study estimates global acreage, yield and production 

response of these key agricultural commodities by employing a multi–country, crop– and calendar–

specific, seasonally disaggregated panel dataset, with price changes and price volatility applied 

accordingly. Besides confirming the time series econometric results, the dynamic panel supply 

response model results show that output price volatility has negative correlations with globally 

aggregated crop supply, implying that farmers shift land, other inputs, and yield-improving 

investments to crops with less volatile prices. In addition, we use the estimated coefficients to 

analyze whether the recent increase in prices and price volatility is an opportunity or a challenge for 

world food supply. Simulating the impact of the price dynamics since 2006, we find that price risk 

has reduced the production response of wheat in particular—and to a lesser extent, rice—thus 

dampening price incentive effects. The net-impact on production of the 2006–2010 price dynamics is 

an increase of about 3% for corn, 2% for soybeans, 1% for rice, and a decrease of about 1% for 

wheat. The study further develops country-specific acreage response models, which enable 

forecasting of planted acreages in large producer countries of major staple crops 2–3 months before 

planting.  

Every supply response study requires some form of price expectation modelling, so do the supply 

response models of the present study. Using primary data from rural Ethiopia, we investigate price 

expectation formation of farmers. The empirical results show that information regarding current and 

past output prices in nearby markets, central wholesale prices and seasonal rainfall shape farmers’ 

price expectations. Furthermore, the results indicate that farmers who invest in acquiring better price 

information are more likely to have smaller price prediction errors. This calls for public investments 

to provide smallholders with reliable market information. 
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Die Volatilität von internationalen Nahrungsmittelpreisen: Auswirkungen auf die 

Ressourcenallokation und das Nahrungsmittelangebot 

Zusammenfassung 

Unsicherheit ist eine wesentliche Eigenschaft von Agrarpreisen. Nach rund drei Jahrzehnten mit niedrigen 

und relativ stabilen Weltmarktpreisen, sind die Nahrungsmittelpreise seit 2005 stark gestiegen und volatil. 

Neben den traditionellen Ursachen von Preisschwankungen, kann die zunehmende Vernetzung von 

Agrarprodukten mit Energie- und Finanzmärkten möglicherweise einen destabilisierenden Einfluss auf 

Preise haben. Diese Studie untersucht die Anpassung des weltweiten Angebots von 

Grundnahrungsmitteln, wie Weizen, Mais, Soja und Reis, an die Veränderungen von internationalen 

Nahrungsmittelpreisen und deren Volatilität. 

Dabei wird die Saisonabhängigkeit des globalen landwirtschaftlichen Angebots durch das Ableiten 

von Zeitreihendaten der monatlichen, globalen Anbaufläche und Produktion, für die Jahre 1961-2010, 

untersucht. Je nach Nutzpflanze zeigt die Zeitreihenanalyse kurzfristige Elastizitäten von 0,05 bis 0,40, 

während die Preisvolatilität die Anbaufläche für die meisten Pflanzen zu verringern scheint. Der 

Vergleich der jährlichen und monatlichen Anbauflächenelastizitäten zeigt, dass sich die weltweite 

Anbaufläche saisonal an neue Informationen und Erwartungen anpasst. Zudem schwankt die Allokation 

der Anbauflächen zwischen den Monaten und reagiert generell sensibler auf Preise während des Frühlings 

als im Winter. Desweitern schätzen wir die Reaktion der globalen Anbauflächen, des Ertrags und der 

Produktion der wichtigsten landwirtschaftlichen Güter. Dies geschieht anhand eines neu entwickelten 

internationalen, Pflanzen- und Kalender-spezifischen, saisonal desaggregierten Paneldatensatz, 

entsprechend den jeweiligen Preisänderungen und der Preisvolatilität. Die Ergebnisse des dynamischen 

Panelmodells der Angebotsreaktion bestätigen die Resultate der ökonometrischen Zeitreihenanalyse, und 

zeigen zudem, dass die Unbeständigkeit der landwirtschaftlichen Güterpreise negativ mit dem global 

aggregierten Angebot korreliert. Dies impliziert, dass Bauern Land, weitere Inputs und erntesteigernde 

Investitionen auf Anbaupflanzen mit geringerer Preisvolatilität konzentrieren. Die Koeffizienten der 

ökonometrischen Analyse zeigen, inwiefern Preissteigerungen und Preisschwankungen das weltweite 

Nahrungsmittelangebot beeinflussen. Durch die Simulation des Einflusses der Preisschwankungen seit 

2006, konnten wir anhand der Weizenproduktion feststellen, dass das Preisrisiko einen durch die Preise 

generierten Produktionsanreiz dämpft. Der netto Einfluss der Preisschwankungen in den Jahren 2006-

2010, führte zu einem Anstieg von 3% für Mais, 2% für Sojabohnen, 1% für Reis und einer Reduktion 

von rund 1% für Weizen. Diese Studie entwickelt des Weiteren ein länder-spezifisches Reaktionsmodel 

für Anbauflächen, welches diese in den größeren Produzentenländern, für die wichtigsten 

Grundnahrungsmittel und für einen Zeitraum von 2-3 Monaten vor der Aussaat, vorhersagt. 

Eine Analyse der Angebotsanpassung benötigt komplementär immer auch ein Preiserwartungsmodel. 

Anhand von Primärdaten evaluieren wir daher die Preiserwartungen von Kleinbauern im ländlichen 

Äthiopien. Die empirischen Ergebnisse zeigen, dass Informationen über aktuelle und vergangene Preise 

auf nahen Getreidemärkten, zentrale Großhandelspreise und saisonale Niederschlagsmengen die 

Preiserwartung entscheidend formen. Zudem können Kleinbauern, die in die Beschaffung besserer 

Informationen investieren, die Preise nach einer Ernte besser antizipieren. Folglich wäre es sinnvoll 

Institutionen zu schaffen, die Marktinformationen als öffentliches Gut bereitstellen. 
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1. Introduction 

1.1. The international food price dynamics 

After about three decades of low and relatively stable level, international agricultural commodity 

prices experienced a dramatic rise since 2005 until they surge as large as an all all-time high 

level in June 2008 (in nominal terms). There was a short-lived price decline since the summer of 

2008 until we have come across to a new food price increase that started in August 2010. The 

World Bank’s Food Price Index, for example, rose by about 50 percent from June 2010 to 

February 2011 and attained its 2008 hike. Furthermore, agricultural commodity prices are 

predicted to increase, at least to remain high, in the short to medium run (FAO et al., 2011). 

Whether such a price increase outweighs the adverse impact of the accompanying price volatility 

and serves as an incentive for increasing agricultural production is the focus of this dissertation.  

Several studies addressed potential causes (e.g. von Braun & Torero, 2009) and consequences 

(e.g. Ivanic & Martin, 2008) of high and volatile food prices. Categorizing the drivers of the 

global food prices as root, intermediate, and immediate causes, von Braun and Tadesse (2012) 

indicated that climate change, biofuel production, and excessive speculation in commodity 

futures are the most important root causes of observed price volatility. Kornher and Kalkuhl 

(2013) also found out that stocks, production shocks, and international price volatility are key 

determinants of domestic price variability in several developing countries. The food price 

volatility that we experienced since 2007/08 is characterized by long and extended spikes, 

sometimes called low frequency volatility. Such volatility has implications for resource 

allocation, investment decisions of farmers and thus on their future livelihoods. Even though 

there has been a great concern about the impacts of high food commodity prices on the poor, the 

evidence on the actual impacts of high and volatile food prices on poor households and 

smallholder farmers is scanty (Ivanic & Martin, 2008). 

Not all price variations are troublesome, however. If prices change along a smooth trend or 

exhibit a regular cyclical or seasonal pattern, economic agents can anticipate them and make 

necessary ex-ante adjustments in their economic decisions. Price variations that reflect 

underlying market fundamentals are important because they contain useful public information on 

which economic agents base their economic decisions.  However, variations in prices become 
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costly for economic agents when they are abrupt and at excessive levels. Such price dynamics 

are problematic since they create uncertainty that introduces risk for economic agents, which 

could be producers, consumers, traders or the government. These are price variations that do not 

necessarily reflect market fundamentals and they can lead to suboptimal economic decisions. In 

other words, price volatility is problematic since it induces risk averse economic agents to make 

inefficient investment decisions. 

von Braun and Tadesse (2012) provide a detailed description of different varieties of price 

dynamics and their potentially differential impacts on economic agents. Figure 1.1 reproduces 

the two variants of price changes, price trend and price volatility, for wheat, corn, soybeans, and 

rice since the 1980s.  Price trend (depicted by the red lines in Figure 1.1) is the nominal price 

level after the cyclical component is removed using the Hodrick-Prescott filter. A price trend is 

an indicator of the long-term general tendency of average prices for a given period of time. For a 

given input and production cost, an upward price trend implies larger agricultural profits for 

producers, which could be invested in improving agricultural productivity. Price volatility 

(depicted by the dotted lines in Figure 1.1) is annualized variability of prices measured by the 

standard deviation of the logarithmic monthly prices in each year. It measures dispersion of a 

price series from the mean. Contrary to a price trend, price volatility introduces output price-risk, 

which has detrimental implications for producers’ resource allocation and investment decisions 

(Moschini & Hennessy, 2001; Sandmo, 1971). The impact of price risk on smallholder producers 

has been extensively studied (Binswanger & Rosenzweig, 1986). 

Changes in price level and volatility may follow different paths and may be driven by distinct 

underlying factors. While sustained changes in the market fundamentals (an increase in demand 

or reduction in supply) result in an upward price trend, shocks from both the supply and demand 

side of the market, market manipulations, and low stock levels may cause volatility. Although 

there is a general feeling that an increase in price level increases volatility, the relationship 

between them is not well defined. What is certain, however, is that the high prices of 2007/08 

and 2011 have been associated with high price volatility (Gilbert & Morgan, 2010).  
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Source: Adapted from von Braun and Tadesse (2012) using data from the World Bank (2014) 

To this end, Figure 1.1 shows that all the level, trend and volatility of the selected agricultural 

commodity prices have dramatically increased since about 2005. Corn price, however, seems to 

exhibit large volatility in the 1980s and 1990s as well.  While the upward price trend is typically 

expected to bring about a supply response in which producers allocate more land and other 

inputs to the agricultural sector and increase investment to improve yield growth (OECD, 2008), 

the volatility, on the other hand, might result in a distressed state of agriculture (Persson, 1999). 
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Figure 1.1. Global agricultural price dynamics for key staple commodities 
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1.2. The global food supply dynamics 

Currently, the factors behind high agricultural commodity prices are heatedly debated. Demand 

shocks that have persisted over the past decade played a significant role: the rapid worldwide 

shift towards corn use for fuel, aggressive Chinese soybean import, and higher demand for food 

(especially meat) due to higher income levels in several emerging economies are some of these 

demand-side causes (Abbott et al., 2011; Gilbert, 2010; Mitchell, 2008). These surges in 

demand, accompanied by the growing world population, have a remarkable bearing on the global 

food production and land allocation. For instance, the additional Chinese soybean demand was to 

a large extent met by soybean acreage expansion in Latin America (Abbott et al., 2011). There 

have also been several other acreage allocation and reallocation changes all over the world 

following the recent output price variations. While new acres are still important sources of 

changes in acreage for the developing and emerging countries, shifting land from low- to high- 

demand crops is also a key source in the developed countries where total arable land has become 

more binding. As a result, there have recently been remarkable foreign agricultural investments 

in many developing countries, primarily focusing on growing high-demand crops including corn, 

soybeans, wheat, rice, and many other biofuel crops (von Braun & Meinzen-Dick, 2009).  

Moreover, such increases in demand for particular commodities also induce technological 

changes that enable improvements in productivity. Consequently, either as a result of changes in 

acreage allocation or yield enhancements in different parts of the globe, the world production 

share of countries in the southern and northern hemisphere has changed substantially over the 

past few decades. In general, there is a trend of shifting production of several key commodities, 

in particular soybeans, from North to South. This will have implications for trade patterns as well 

as international price volatility (Glauber & Miranda, 2014).  

Wheat, corn, soybeans, and rice, which are the focus crops of this thesis, play a crucial global 

importance from both the demand and the supply side perspective. They are principal sources of 

food in several parts of the world with differential preferences across countries. To this end, 

Roberts and Schlenker (2009) reported that these crops comprise a three-quarter of the global 

calories content. The use of corn, soybeans and wheat as a feed for livestock and dairy purposes 

has also grown due to higher demand for meat following rapid economic growth in the emerging 

economies. Corn production has also another source of demand from the emerging market for 



 

16 

 

biofuel. These crops also constitute a sizable share of global area and production. Corn, wheat 

and rice, respectively, are the three largest cereal crops cultivated around the world. According to 

data from FAO (2012), they constitute above 75% and 85% of global cereal area and production 

in 2010, respectively. About a third of both the global area and production of total oil crops is 

also attributed to soybeans.  

Figure 1.2 depicts the annual global planted acreage of the four crops since 1960s. During the 

past 50 years, global production, acreage, and yield have increased, to different degrees, for all 

four key staple crops.  

 

Source: FAO (2012) and national data sources. 

Acreage expansion and yield improvements have significantly increased global production for all 

four crops during this period. Comparing the 1961–1970 and 2001–2010 decades, for instance, 

Figure 1.2. Global production, harvested acreage, and yield trends since the 1960s 

Acreage (Million ha) Production (Million MT) 
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aggregate global production has increased more than six times for soybeans, tripled for corn, and 

more than doubled for wheat and rice. Whereas most of the increase in wheat production comes 

from higher yields, the growth in soybean production is mostly attributed to acreage expansion. 

Global soybean acreage has more than tripled over the past five decades, while global corn 

acreage rose by about 40%. Some studies suggest that emerging biofuel markets and Chinese 

soybean imports are the major drivers of the acreage increases for corn and soybeans (Abbott et 

al., 2011). These changes in crop acreage have been achieved both by pulling marginal land into 

cultivation and by bidding land away from less competitive crops.  

To this end, Figure 1.3 depicts the area changes of selected crops during the six year period 

between 2004/05 and 2010/11. Agricultural producers have so far mainly responded to the 

increase in food prices by bringing in more land into production. However, close to 30% of the 

increase in area of the high-demand crops in this six year period was composed of displaced low-

demand crops. Figure 1.3 shows that the five major crops that have shown expansion in area 

cultivation added about 45 million hectares of land within these six years. Corn and soybeans 

alone have contributed close to 60% of the area increase during this period. It is likely that total 

cropland supply will be even more inelastic in the future due to population pressure, 

desertification and other climatic factors. This implies that the acreage response of countries 

towards high and volatile agricultural commodity prices will be predominantly via land 

reallocations. Closing yield gaps in several low-yield regions and further improving productivity 

in the already high-yield regions are, of course, additional potential responses towards such price 

dynamics.  

Although production, acreage, and yield of all four crops seem to show an upward trend during 

the last five decades, a closer inspection shows that there exist year-to-year variations for all 

crops. In fact, Figure 1.4 shows that annual acreage changes for soybeans, corn and wheat have 

become more variable since about 2002 relative to the preceding five years. Moreover, the 

growth of planted wheat and rice acreages has been relatively more stable compared to that of 

soybeans and corn in the past two decades. The global soybean acreage has been steadily 

growing since about the mid-1990s except for a decline of about 5% in 2007. Planted corn area 

has also shown a consistent upward trend in the past decade except a slight decline in 2009. 

Periods of major acreage increase in global corn has usually been at a cost of soybean acreage, or 
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vice versa. For instance, a close to 5% decline in global planted acreage for soybeans in 2007 

was accompanied by an increase of about 7% in the global acreage for corn. This is due to the 

fact that the two crops are typically planted in similar seasons, have similar land requirements 

and are good substitutes for animal feed.  

 
Figure 1.3. Total harvested area change for major crops in the world between 

2004/05 and 2010/11 

Source: Foreign Agricultural Service of the USDA 

As the total global harvest quantity equals the product of area planted and yield per area planted, 

it is possible to decompose harvest fluctuations into an area and a yield component.
1
 Figure 1.4 

shows the annual fluctuations of these two variables. It becomes apparent that yield fluctuations 

are of slightly higher magnitude than area fluctuations for most crops except for rice, although 

for the latter they are of similar order of magnitude. Regarding corn, yield fluctuations seem to 

have decreased within the past two decades while area fluctuations have increased. Having a 

good prediction of acreage decisions therefore reduces the uncertainties regarding future 

harvests. This, in turn, allows a rough forecast on the next period’s food supply situation which 

may already indicate possible shortages. Since an increase in productivity through technological 

progress and intensification is a rather long-term process, area expansion and re-allocation is the 

                                                 
1
 As opposed to the typical definition of yield as the ratio of harvest and area harvested, we use area planted instead, 

which is the proper decision variable of the farmer. Due to weather and pest events, farmers may harvest 

substantially less area than what was planted. Hence, harvested area contains more stochastic influences.  
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most important short-term decision variable for the farmer (Roberts & Schlenker, 2009; 

Searchinger et al., 2008). 

 
 

 

 
 

 

    Source: Authors’ calculations based on generated and FAO (2012) data 

1.3. Price expectation formation  

The theory of price expectation lies at the center of any supply response analysis. The intrinsic 

feature of agriculture that there is a time lag between production decision and output realization 

means that agricultural producers need to make their harvest time price expectations during 

production decision time. Several approaches have been applied to model expectations of 

economic agents. Naïve, adaptive, quasi-rational, and rational expectations are the most 

commonly applied approaches in agricultural markets, which we will further discuss in 

subsequent chapters. We employ a variety of price expectation assumptions in our supply 

Figure 1.4. Annual fluctuations of global area planted and yield per area planted  
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response analyses; planting period price is mostly our preferred proxy for producers’ 

expectations.  

Agricultural producers use different information when making their price expectations, which 

may include, among many, past trends, outcomes in related markets, media reports, weather, and 

published forecasts (Just & Rausser, 1981). Since obtaining and processing information is costly, 

however, it is unlikely that producers make use of all available information to form their price 

expectations (Orazem & Miranowski, 1986). This is even so in the context of smallholder 

farmers in developing countries where access to information and capital is limited. Thus, 

understanding what information set producers use and modelling how this information set is 

utilized in their production decisions have been an integral part of agricultural supply response 

models (Fisher & Tanner, 1978; Holt & McKenzie, 2003). Analysis of agricultural producers’ 

actual price expectations and the distribution of their expectations relative to realized prices may 

assist agricultural economists and policy makers to deliver price outlook and price risk 

management strategies information, and researchers estimating supply response models to 

choose more appropriate specification of price expectation. Moreover, this thesis attempts to 

explain the role that information plays in the accuracy of agricultural producers, particular 

smallholder farmers, in their price expectations. 

1.4. Objectives 

Given the discussion in the previous sections, this thesis tries to answer the question, “how much 

of the global food supply change is driven by the international price dynamics?” More 

specifically, this study has the following three major objectives: 

(i) To examine how food price risk– measured in terms of price volatility– and changes in 

price level affect supply, both in terms of acreage and yield, of key world staple crops.  

This objective addresses two related research questions: First, because the majority of existing 

econometric analyses and the empirical literature focus on national acreage response to domestic 

prices, it tries to fill this research gap by exploring global annual and intra-annual acreage 

responses of the four key staple crops to international market prices. By applying the details of 

the crop calendar for major producing countries, we derive monthly patterns of acreage 

allocation and production at the global level. We therefore explicitly consider the role of 
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seasonality on global grain supply by developing and estimating an intra-annual (monthly) 

acreage model in addition to the conventional annual acreage response model. Second, the thesis 

estimates global supply response of these key agricultural commodities employing a newly 

developed multi–country, crop– and calendar–specific, seasonally disaggregated panel data with 

price changes and price volatility applied accordingly. A dynamic panel econometric model, 

more specifically a system GMM technique, is used to estimate our dynamic supply response 

models. In addition to interpreting the results of our estimations, we use the estimated 

coefficients to address the question whether the recent increase in prices and price volatility is an 

opportunity or a challenge to agricultural producers and to the agriculture sector in general. 

Accordingly, we use simulation analyses to assess the overall impacts of recent agricultural 

commodity price dynamics, price level versus price volatility, on the supply of the key staple 

crops.  

(ii) To develop an econometric model that enables forecasting of planted acreages of major 

staple crops two to three months before the planting season starts.  

This objective attempts to develop a country and crop specific acreage response model for 

selected food crops for major producer countries. In particular, this study identifies appropriate 

specifications and factors affecting agricultural supply in each country and each crop. This 

allows us to account for the large heterogeneity in the countries’ agricultural, political and 

economic systems using a country-specific model specification. The performance of the 

forecasting tool is assessed with ex-post prediction of acreage against historical data. 

(iii) To model price expectation formation of smallholder farmers in the context of 

developing countries.  

Each of the supply models of the above objectives requires some form of price expectation 

modelling. Yet, the theoretical and empirical literature is not conclusive regarding which 

expectation formation approach is appropriate. This objective analyzes price expectation 

formation in a more detailed manner for the case of Ethiopian smallholder producers where we 

consider particularly the fact that information is not costless. In other words, we consider 

expectation formation to be part of the farmers’ economic decisions. This objective involves two 

related sub-objectives. First, it identifies the relevant variables that constitute the information set 
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of a typical smallholder farmer in his/her price expectation formation. The importance of each of 

the elements in the information set is investigated. In other words, it addresses the question, 

“what information shapes smallholders’ price expectations?” Second, we explain the role that 

information plays in the efficiency of smallholder farmers in their price expectations. This 

addresses the question of whether investing in acquiring information reduces the prediction 

errors of agricultural producers in the context of smallholder farmers in rural Ethiopia.  

In doing so, the study analyses agricultural markets and food price volatility at international, 

national and household levels. The partial equilibrium supply response model helps to 

investigate changes in the land allocation and yield of major primary agricultural commodities in 

the major producer countries, which may result from changes in output prices and volatility. 

Shocks in supply (weather), demand (biofuel) or policy changes in one or more of these 

countries may trigger the volatility in output prices, which should be captured by the proxy for 

the price expectation in our subsequent supply models. The study further goes to the household 

level and assesses how smallholder farmers in a developing country form their price 

expectations. In general, the study gives due attention to short-term food price volatility and to 

major food crops including wheat, corn, soybeans, and rice.  

1.5. Thesis outline 

Following the preceding introductory discussions, the thesis is structured into four main chapters 

and a general conclusion chapter. Although the four chapters are related, they are self-contained 

papers that specifically address the above proposed research objectives.  

Chapter 2 studies the global annual and intra-annual supply dynamics of the aforementioned four 

key staple crops. Abstracting from the ‘external’ weather and pest shocks that are hardly 

predictable some months in advance, this chapter focuses on acreage allocation decision as one 

key determinant of short-term supply. A unique feature of this chapter is that we have 

constructed monthly time series global planted acreage data since the 1960s. To this end, we use 

country–specific crop calendar to trace the annual harvested and/or planted acreage data back to 

the respective planting months of each crop. The crop-calendar generated data set enables us to 

analyze the variability of agricultural response to output prices and price risk across seasons and 

months.  
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Chapter 3 addresses a similar research question to that of chapter 2; however, besides acreage 

response, it further investigates yield and production responses to price and volatility. This 

chapter estimates global supply response of the key agricultural commodities employing a 

dynamic panel econometric model using a newly developed multi-country, crop-calendar–

specific, seasonally disaggregated panel data with price changes and price volatility applied 

accordingly. Using the econometrically estimated coefficients of price levels and volatility, the 

chapter also assesses the net-impacts of the recent agricultural commodity price dynamics on 

acreage, yield, and production. We use a simulation analysis to measure the overall impacts of 

the 2006–2010 agricultural commodity price dynamics on the supply of the aforementioned key 

interest crops. 

In chapter 4, we develop a country and crop-specific acreage forecasting tool for selected food 

crops for the major producer countries. It employs an Autoregressive Distributed Lag (ARDL) 

econometric model specification for each country and each crop. Thus, the respective acreage 

determinants are separately identified and used for forecasting. This allows us to account for the 

large heterogeneity in the countries’ agricultural, political and economic systems in a country-

specific model specification. The performance of the forecasting tool is assessed with ex-post 

prediction of acreage against historical data. The forecasting tool includes for major producer 

countries including USA, Brazil, Argentina, and the Russian Federation. 

Chapter 5 addresses the third research objective discussed above. Each of the supply models of 

the previous chapters requires some form of price expectation modelling. Yet, the theoretical and 

empirical literature is not definitive regarding which expectation formation approach is 

appropriate. This chapter analyzes this issue in a more detailed fashion for the case of Ethiopian 

smallholder producers where we consider particularly the fact that information is not costless. In 

other words, we consider expectation formation to be part of farmers’ economic decisions. The 

first section in this chapter identifies the relevant variables that constitute the information set of a 

typical smallholder farmer in his/her price expectation formation. It also investigates the role that 

information plays in the accuracy of smallholder farmers’ price expectations. To this end, this 

study develops a theoretical model that demonstrates that smallholder farmers, who are assumed 

to be risk averse, invest in acquiring better price information to improve the quality of the price 
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signal that they receive at planting season. A primary smallholder survey dataset is employed to 

empirically test this particular implication of the theoretical model. 

Finally, chapter 6 presents the major findings of the entire study, with potential policy 

implications and further research topics.  
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2. Inter-and intra-seasonal acreage response to international food price 

changes 

Abstract
*
 

Understanding how producers make decisions to allot acreage among crops and how decisions 

about land use are affected by changes in prices and their volatility is fundamental for predicting 

the supply of staple crops and, hence, assessing the global food supply situation. This study 

makes estimations of monthly (i.e. seasonal) versus annual global acreage response models for 

the world’s principal staple food crops: wheat, corn, soybeans and rice. Primary emphasis is 

given to the magnitude and speed of the allocation process. Estimation of intra-annual acreage 

elasticity is crucial for expected food supply and for input demand, especially in the light of the 

recent short-term volatility in food prices. The econometric results indicate that global crop 

acreage responds to crop prices and price risks, input costs as well as a time trend. Depending on 

respective crop, short-run elasticities are about 0.05 to 0.40; price volatility tends to reduce 

acreage for some of the crops; comparison of the annual and the monthly acreage response 

elasticities suggests that acreage adjusts seasonally around the globe to new information and 

expectations. Given the seasonality of agriculture, time is of an essence for acreage response. 

The analysis indicates that acreage allocation is more sensitive to prices in the northern 

hemisphere spring than in winter and the response varies across months.  

JEL classifications: O11, O13, Q11, Q13, Q18, Q24 

  Key words: food price volatility, acreage response, price expectation, land use, food supply, 

international prices 

 

 

 

                                                 
*
Most of the material in this chapter is drawn from our publication in Agricultural Economics: Haile, M. G., 

Kalkuhl, M. and von Braun, J. (2014), http://onlinelibrary.wiley.com/doi/10.1111/agec.12116/abstract. 

http://onlinelibrary.wiley.com/doi/10.1111/agec.12116/abstract
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2.1. Introduction 

Prices of agricultural commodities are inherently variable. The variability of prices is mainly 

caused by the stochastic characteristics of weather conditions and pest infestations that influence 

harvest. It is furthermore exacerbated by the inelastic nature of demand and supply – in particular 

the inelasticity of regional production that is typically possible once a year. Some also argue that 

demand shocks are principal sources of price co-movements of several commodities (Gilbert, 

2010). Besides these traditional causes for price fluctuations, agricultural commodities are 

increasingly connected to energy and financial markets, with potentially destabilizing impacts on 

prices (von Braun & Tadesse, 2012). 

The aim of this chapter is to understand the global annual and intra-annual supply dynamics of 

the four most important staple crops, namely wheat, corn, soybeans and rice. These commodities 

are partly substitutable at the margin in production and demand, and constitute a substantial 

share of the caloric substance of world food production (Roberts & Schlenker, 2009). 

Abstracting from the ‘external’ weather and pest shocks that are hardly predictable some months 

in advance, we focus on the acreage allocation decision as one important determinant of short-

term supply. For these and other unpredictable conditions that usually occur after planting the 

agricultural economics literature favored estimation of acreage over output response functions in 

order to understand crop production decision (Coyle, 1993). 

As the total global harvest quantity equals the product of area planted and production per area 

planted, it is possible to decompose harvest fluctuations into an area and a yield component.
2
  

Figure 2.1 shows the de-composition of production fluctuations into these two variables over two 

periods since 1961. It becomes apparent that yield fluctuations are of higher magnitude than area 

fluctuations for all crops except for rice. While yield fluctuations have decreased for all crops in 

the second period, area fluctuations slightly increased for wheat and rice. Having a good 

prediction of acreage decisions therefore reduces the uncertainties regarding future harvests. 

Analyzing the magnitude and speed of global supply response is further important to understand 

price volatility and its implications to (global) food security: The more inelastic (annual) supply 

                                                 
2
As opposed to the typical definition of yield as the ratio of harvest and area harvested, we use area planted instead, 

which is the proper decision variable of the farmer. Due to weather and pest events, farmers may harvest 

substantially less area compared to the planted area. Hence, harvested area contains more stochastic influences.  
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is the stronger is the degree that harvest and demand shocks translate to price spikes. 

Nevertheless, if supply is elastic and responds to annual and intra-annual price dynamics, harvest 

failures in one part of the world can be absorbed by increased production somewhere else. This 

is true for demand shocks as well. 

Since an increase in productivity through technological progress and intensification is a rather 

long-term process, area expansion and re-allocation is the most important short-term decision 

variable for the farmer (Roberts & Schlenker, 2009; Searchinger et al., 2008). Hence, our 

research focuses on two crucial questions regarding the global short-term supply of staple crops: 

(i) How strongly does global acreage respond to (expected) international prices and price 

changes and (ii) how fast do farmers react to price changes in terms of acreage adjustments? 

 

Figure 2.1. Volatility of global area planted and production per area planted 

Note: Volatility is measured as the standard deviation of the annual log changes 

Source: Authors’ calculations based on generated database from FAO (2012) and national data 

sources. 

Existing econometric analyses focus on national acreage response to domestic prices. As most 

countries exhibit only one major planting and harvesting season (which hardly differs among 

intra-country regions), seasonality of supply does not need to be accounted for in studies 

focusing on a single country. On a global scale, however, planting and harvesting occurs 

throughout the entire year, which has an important implication: While national production is 

highly inelastic until the next harvest in about a year, global planting can instantaneously 
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respond to current harvests and prices which, in turn, shapes the supply situation in three to four 

months’ time. Additionally, existing national supply analyses cannot be used to calculate a 

global (annual) supply elasticity as they: (i) differ in their modelling approaches, (ii) consider 

different prices, in particular, when focusing on domestic spot prices that might be poorly 

integrated with world market prices, and (iii) do only cover few countries.
3
 

The objective of this chapter is therefore to fill this research gap by exploring global annual and 

intra-annual acreage responses of the four key staple crops to international market prices. By 

applying the details of the crop calendar for major producing countries, we can derive monthly 

patterns of acreage allocation and production at the global level. We therefore explicitly consider 

the role of seasonality on global grain supply by developing and estimating (i) an annual acreage 

model, (ii) an intra-annual (monthly) acreage model, and (iii) a month-specific supply model 

(that gives supply elasticities at typical planting months of each crop).  

Finding a robust answer to our research questions requires testing for different price expectation 

formation models as expected prices are not directly observable. We further consider the impact 

of uncertainty (or risk) in the price expectation process that might influence the farmers’ acreage 

decisions. While upward output price trends are incentives for agricultural producers to make 

agricultural investments such as expanding acreage, output price volatility introduces risks that 

affect a risk-averse agricultural producer (von Braun & Tadesse, 2012). This study, therefore, 

investigates the responsiveness of global agricultural cropland to changes in output prices and 

the uncertainty therein. Estimation of intra-annual acreage elasticity is crucial especially in the 

light of the current short-term volatile food prices for policy makers concerned about food 

security, agricultural investors, and for the agribusiness sector including input supply industries.  

The chapter is structured as follows: the following two sections provide a brief overview of 

temporal and spatial global acreage dynamics where we explain the functioning of the crop 

calendar. Next, we introduce the empirical framework with some theoretical considerations 

about acreage response and explain our data sources. After discussing the econometric results for 

different model specifications, we conclude with some further suggestions regarding global food 

supply and food price volatility. 

                                                 
3
An exception is a global supply analysis by Roberts and Schlenker (2009) which, however, focuses on annual 

calorie-equivalent supply response and neglects seasonality. 
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2.2. Global acreage change and price dynamics 

The causes of high agricultural commodity prices are debated. Demand shocks that have 

persisted in the past decade played a significant role: the rapid worldwide shift towards corn use 

for fuel, aggressive Chinese soybean imports, and higher demand for food (especially meat) due 

to higher income levels in several emerging economies are some of these demand-side causes 

(Abbott et al., 2011). These surges in demand, accompanied by the growing world population, 

have a remarkable bearing on the global land allocation. For instance, the additional Chinese 

soybean demand was to a large extent met by soybean acreage expansion in Latin America 

(Abbott et al., 2011). There have also been several other acreage expansions and reallocations all 

over the world following the recent output price variations. As a result, there have lately been 

remarkable foreign agricultural investments in many developing countries, primarily focusing on 

growing high-demand crops including corn, soybeans, wheat, rice and many other biofuel crops 

(von Braun & Meinzen-Dick, 2009). 

On the supply end, the four crops corn, wheat, rice and soybeans, which are the subject of this 

study, constitute a sizable share of global area and production. Corn, wheat and rice, 

respectively, are the three largest cereal crops cultivated around the world. According to data 

from FAO (2012), they make up more than 75% and 85% of global cereal area and production in 

2010, respectively. About one third, of both the global area and production, of total oil crops is 

attributed to soybeans. 

Figure 2.2 depicts the trends of global acreages of selected crops and of total arable land since 

1961. Until 1985, total arable land expanded with increasing demand for cereals and oilseeds. 

However, arable land has become more and more binding as cultivation of new land could not 

compensate for losing land due to desertification and urbanization (Hertel, 2011). While new 

acres have been the principal sources of area expansion at the global level, area reallocation is 

more important for countries with arable land constraints such as the United States (Abbott et al., 

2011). The same study describes that total cropland area in these countries has been stable over 

the past two decades and acreage expansion of some crops has been at the expense of ‘low-

demand crops’ such as barley and oats. It is likely that total cropland supply will be even more 

inelastic in the future due to more population pressure, desertification and changing climatic 
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factors. This implies that the acreage response of countries towards high and volatile agricultural 

commodity prices will be predominantly via land reallocations. 

 

Figure 2.2. Trends in total arable land and global acreages of selected crops (1961–2010) 

Source: FAO (2012) 

This study builds on the extensive literature on the estimation of land allocation decisions in 

agricultural economics. The acreage response literature has actually gone through several 

important empirical and theoretical modifications. These include acreage response studies in line 

with the Nerlovian general supply response function (Askari & Cummings, 1977; Nerlove, 1956) 

and recently in a theoretically more consistent mode that integrate both producer and consumer 

economic behavior (Chavas & Holt, 1990; Chavas & Holt, 1996; Lin & Dismukes, 2007). 

Nevertheless, there are various reasons to reconsider the research on acreage-price relationships. 

The majority of the previous empirical literature investigating acreage response focuses largely 

on particular crops for a few countries such as the United States (Arnade & Kelch, 2007; Liang 

et a.l, 2011), Canada (Coyle, 1992; Weersink et a.l, 2010) and few others (Lansink, 1999; Letort 

& Carpentier, 2009). To our knowledge, there are few studies that estimate acreage elasticity at 

the country level (e.g. Barr et al., 2009; Hausman, 2012), and none at the global level. The effect 

of price volatility is usually considered as a microeconomic problem for producers. However, 

there are several factors (such as foreign direct investment in agriculture) that render the global 
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and country level agricultural production to be equally affected by price volatility as the farm 

level production. Given that previous analyses show the acreage effect of price volatility at micro 

and national level, we ask whether this effect ensues at the global scale. The analysis at global 

scale appears to be even more important as the global supply response on price changes and price 

risk influences local food availability through market integration. Such global analysis involves 

data aggregation that could result in potential loss of efficiency of estimates. Nevertheless, since 

each producer faces the same international price in our global level analysis, the potential 

aggregation bias will be less problematic.  

2.3. Monthly patterns of global cropped acreage  

Global crop acreages, both sown and harvested, are neither uniformly distributed among all 

months within a year nor across geographical regions in the world. The global cropped acreage is 

rather concentrated in a few months depending on agro-ecological zones of the key producer 

countries. Since global harvested and planted acreage data are published annually, we construct a 

monthly database using country-specific crop calendar to trace the annual harvest and acreage 

data back to the respective harvesting and planting months for each crop (see Tables A5–A8 in 

Appendix I). The countries for which we have compiled crop calendar data comprise more than 

80% of both the world production and sown acreage for each of the four crops. A symmetric 

multangular probability distribution is used to assign values to each month in case of multiple 

planting and harvesting months. The acreage data for countries in the ‘rest-of-world’ (ROW) 

category are evenly distributed across all months within a year.
4
  Area harvested is used as a 

proxy for planted area if data for the latter are not available from the relevant national 

agricultural statistics. As we have area planted for many countries, the proxied area amounts to 

roughly one quarter of the total global area (for soybeans this number is even lower, 7%). The 

proxied area may introduce estimation bias if the deviation between planted and harvested 

acreage is linearly correlated with any of the independent variables in our acreage models. 

Although it is likely that this deviation is correlated with spot prices at harvesting period, there is 

                                                 
4
 Although Tables A5-A8 in Appendix I include crop calendars for more countries, we assigned former Soviet 

Union countries and countries with a global acreage share of less than half a percent in the ‘rest-of-world’ (ROW) 

category for the empirical analyses in this study. 
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no a priori reason to expect such correlation with expected prices at planting time that are used 

in our model.
5
  

Figure 2.3 displays the average annual global acreage and production shares of each month for 

the period between 2001 and 2010. The figure shows that most of the global planted acreage of 

these crops is cultivated in two major crop seasons, winter and spring.
6
 While most of the global 

wheat is sown in winter, with a peak in October, the majority of the global corn is planted in 

spring, mainly in April and May.  Nevertheless, global soybean is cultivated both in spring and 

winter seasons, with major peaks in May and November, respectively. Rice planting is relatively 

more spread throughout the year with a peak in the early summer. There are several regions in 

diversified agro-ecological zones where rice can be planted all year round.    

Figure 2.3 also illustrates how the growing periods vary across crops. Considering the major 

planting and harvesting months, the growing periods range from as short as 3-4 months for rice, 

soybeans and spring wheat to as long as 8-9 months in the case of winter wheat. Unlike summer 

crops, which continuously grow from sowing to harvesting, winter wheat is sown in fall and 

stays dormant during the winter until it resumes growing in spring of the following year. What is 

also clear from Figure 2.3 is that no major planting and harvesting exists in the world for about a 

third of the year, December to March. For instance, only about 6% and 7% of the total wheat 

area and production during the last decade are planted and produced in these four months, 

respectively.  

                                                 
5
 We calculated the linear correlation of the planted-harvested acreage deviation and the planting period prices of the 

selected crops for the United States and Brazil: the simple correlation coefficients range between 0.07-0.52. 
6
 In this study “winter” and “spring” refer to the respective seasons in the northern hemisphere. 
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Figure 2.3. Global average monthly-planted acreage (top) and production (bottom) shares 

of selected crops for the period 2001–2010 

Source: Authors’ calculations based on global crop calendar information and data from 

FAO (2012) and national data sources. 

With regard to the geographical distribution, the global acreage shares of individual countries 

illustrate that cultivation of these crops is concentrated in a few countries (see Tables A5–A8 in 

Appendix I). It can be seen that the top five soybean growing countries -United States, Brazil, 

Argentina, China and India- cultivated close to 90% of the global soybean acreage planted in 

2008. Above 60% of the global cultivated land for both corn and wheat is also found in the top 

six producers including the European Union (EU-27) as one entity. Similarly, close to half of the 

global rice acreage is planted in China and India. Therefore, it is sufficient to use data from key 

producer countries in order to get a good representation of global cultivations for these crops. 

Adding a spatial dimension to Figure 2.3 above shows which countries dominate the cultivation 

and hence the production in those peak planting and harvesting months. While countries in the 
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North produce the larger share of winter wheat and rice, the global soybean and corn production 

is nearly evenly shared between the two hemispheres.  

Our crop calendar data has some limitations, however. First, the monthly disaggregation does not 

capture any change of planting dates over time. Early or delayed planting and harvesting may 

occur for several reasons such as climatic and agronomic factors, ownership of tractors, 

availability of inputs, technological change and other socio-economic reasons which are not 

predictable and which vary across countries and over time. As it is difficult to account for these 

complexities, the monthly data are best approximations for the respective months rather than 

accurate acreage values. The other limitation is that the crop calendar observations are specified 

at the national level despite planting and harvesting month variations within countries. 

Nevertheless, the crop calendar data set enables investigation of intra-annual and inter-national 

acreage responses to output prices and their variability. The disaggregated data is central to 

analyze the variability of agricultural response to output prices and price risk across seasons and 

months. 

2.4. Empirical Framework 

2.4.1. Theoretical base 

Modelling crop production in terms of acreage response is preferred to output supply since, 

unlike observed output, planted area is not influenced by the conditions after planting (e.g. 

weather, pest) (Coyle, 1993). Agricultural producers do also respond to output prices primarily in 

terms of changes in acreage allocation (Roberts & Schlenker, 2009; Searchinger et al., 2008), 

especially in the short-term. Several agricultural economists adopted Nerlove’s partial 

adjustment and adaptive expectations model (Nerlove, 1956) to estimate acreage response 

equations, with various theoretical and empirical modifications (Chavas & Holt, 1990; Chavas & 

Holt, 1996; Lin & Dismukes, 2007). This section describes the theoretical framework for a profit 

maximizing farmer who chooses the optimal allocation of land under crop price uncertainty. 

Uncertainty is a typical feature of agricultural production for several underlying reasons 

(Moschini & Hennessy, 2001). The profitability of a land allocated to a certain crop is affected 

by the uncertainty of the crop’s price that in turn affects the acreage allocation decision of the 

producer.  
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Consider a multi-output expected profit Π maximizing agricultural producer with a fixed total 

cropland 𝑙 ̅ that can be allocated for N crops where 𝑙𝑖 denotes the acreage allocated for the i-th 

crop (Arnade & Kelch, 2007; Chambers & Just, 1989). Assuming a mean-variance approach 

(Coyle, 1992, 1999; Lansink, 1999), the risk preferences of the farmer are specified in terms of a 

utility function where the certainty equivalent of the expected utility maximization is expressed 

in term of the first two moments of profit (mean, Π̅ and variance, 𝜎Π
2)  

                     𝐸 𝑈(Π) = 𝐸 Π(𝒑, 𝒘, 𝑙, 𝒛) −  
1

2
 𝛼 𝜎Π

2                                           (2.1) 

         𝑠. 𝑡. ∑ 𝑙𝑖 ≤ 𝑙 ̅𝑁
𝑖=1     

where Π(𝒑, 𝒘, 𝒍, 𝒛) =  𝒑′𝒚(𝒙, 𝒍, 𝒛) − 𝒘′𝒙 is the farmer’s profit, p and y are vectors of output 

price and quantity, respectively;  w and x are vectors of input price and quantity, respectively; l 

denotes the vector of land which in its sum is fixed by 𝑙 ̅  but allocatable; z is a vector of other 

fixed inputs (machinery and equipment); and 𝛼 is a measure of  risk aversion representing risk 

averse (𝛼 > 0), risk neutral (𝛼 = 0), and risk loving (𝛼 < 0) producers respectively. 

Assuming that crop prices p remain the only random variables in the model (input prices are 

treated as exogenous), the expected mean and variance of profit are
7
: 

𝐸(𝛱) =  𝐸[𝒑]′𝒚(𝒙, 𝒍, 𝒛) − 𝒘′𝒙                                                    (2.2) 

𝜎Π
2 = 𝒚′𝛀𝒑𝒚 

where Ω𝑝 denotes the covariance matrix of crop prices and Ω𝑝𝑖𝑗 refers the (co)variances of the 

prices of crops i and j. Using the above first and second moments of the profit function, we 

obtain the following optimal allocation of land to crop i after optimization: 

  𝑙𝑖
∗ = 𝑙𝑖

∗(𝐸[𝒑], 𝒘, Ω𝑝, 𝑙,̅ 𝒛)                                                                  (2.3) 

Unlike the land allocation functions resulting from the traditional price-certainty models, the 

corresponding functions from the mean-variance approach are affected by output price 

uncertainty. The first-order condition with respect to the acreage allocation, li indicates that 

higher own price variance or higher positive covariances of the price of a given crop with other 

                                                 
7
 Uncertainty regarding yields may also play a role in the allocation decision but is not dealt with here. The formal 

integration of yield risk is similar to price risk with a further consideration of co-variances between yield and prices.  



 

36 

 

crops’ prices require a lower shadow price of land.
8
 Holding the shadow price of land constant, 

this implies that acreage allocated to i-th crop declines with higher variance or positive 

covariances of crop prices. However, the results of the price-certainty model can be obtained 

either if the risk aversion measure 𝛼 is zero or if the covariance of crop prices 𝛀𝒑 is a null 

matrix. Risk aversion implies that marginal costs are lower than output prices, implying that 

acreage and hence output is lower than optimal output under risk neutrality (Lansink, 1999). 

2.4.2.  Model Specification 

Price expectations and risks 

The farmer has to make his optimal crop acreage choices subject to output prices that are not 

known at the time when planting decisions are made. Thus, expected rather than realized output 

prices are used for decision making.  Neither is there an a priori technique to identify the 

superior price expectation model nor does the empirical literature provide unambiguous evidence 

on which expectation model to use for empirical agricultural supply response estimation 

(Nerlove & Bessler, 2001; Shideed & White, 1989).  

Since expected prices are not realized at planting time, we employ several alternative expectation 

assumptions in our empirical global acreage response model. First, we use the price of the 

harvesting period prior to the planting period as proxy for expected harvest crop prices (Coyle et 

al., 2008; Hausman, 2012). This corresponds to a naïve expectation model where farmers base 

their future price expectation on the most recent harvest price. Second and in a somewhat 

different fashion, we consider crop prices during the pre-planting month(s). These prices contain 

more recent price information for farmers and they are also closer to the previous harvest period, 

conveying possibly new information about the future supply situation. Third, when applicable, 

the futures prices at harvesting time traded in the months prior to planting are used to represent 

farmers’ price expectations (Gardner, 1976).  

As mentioned above, this study captures price risk (uncertainty) using a measure of international 

price instability. We measured price risk as the standard deviations of the changes in the 

logarithmic output prices of the previous 12 months (Gilbert & Morgan, 2011). In addition, the 

                                                 
8
 The first-order condition is given by {𝐸[𝑝𝑖] − 𝛼Ω𝑝𝑖𝒚}

𝜕𝑦𝑖

𝜕𝑙𝑖
= 𝜙 , where 𝜙 is the shadow price of land. 
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co-variances between expected crop prices were used as additional variables to capture price 

risk. 

Global acreage estimation 

We consider a reduced-form representation of agricultural response according to: 

𝑙𝑖𝑡 = 𝛼𝑖𝑙𝑖𝑡−1 + ∑ 𝛽𝑖𝑗𝐸[𝑝𝑗𝑡]4
𝑗=1 + ∑ 𝛿𝑖𝑗Ω𝑗𝑡  4

𝑗=1  + 𝜃𝑖𝑍𝑖𝑡 + 𝛾𝑖𝑡𝑖 + 𝑐𝑖 + 휀𝑖𝑡           (2.4) 

where li denotes the acreage planted to the i-th crop (1=wheat 2 = corn, 3 = soybeans, and 4 = 

rice), E[pj] is the expected price for the j-th crop, Ω 𝑗𝑡 is the variance of crop prices, Zi denotes 

production costs (fertilizer price index), and 휀 is the error term. The time trend 𝛾 captures the 

effect on acreage of technological change over time and of the increase in output demand 

resulting from increases in demand for biofuel, income and population. Since some crops are 

substituted into rotations relatively easier than others, we include lagged own crop acreages in 

order to control for such adjustment costs.  

We do not impose any symmetry constraints on cross-price elasticities that would follow from a 

homogenous production function. Instead, we use a less restrictive reduced-form approach as 

other competing crops are not integrated (the four considered crops contribute to roughly 40 % 

of total arable land, see Figure 2.2). Furthermore, world-market prices instead of domestic 

producer prices are used. Although farmers respond to expected domestic producer prices rather 

than (expected) world-market prices, we are interested in the global supply response to world 

market prices, which might differ from the domestic producer prices due to imperfect price 

transmission and integration into the global market. 

The basic econometric approach in equation (2.4) is modified to three specifications that focus 

on different time scales of acreage response given in Table 2.1 below. 
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Table 2.1. Description of estimated models 

Item Annual Model (t on annual 

basis) 

Intra-annual Model (t on monthly basis) 

 (1) (2) 

Dep. 

variable 

Annually aggregated sown 

acreage 

Monthly sown acreage Sown acreage for typical 

planting months 

Proxies for 

price 

expectations 

Annual average prices at 

the year before planting 

Monthly prices 1 month 

(wheat, rice) and 2 months 

(corn, soybean) before 

planting month 

Monthly prices 1 month 

(wheat, rice) and 2 months 

(corn, soybean) before planting 

month 

Price risk SD of monthly price 

returns in the previous year 

SD of price returns in the 12 

months preceding the start of 

the planting period 

SD of price returns in the 12 

months preceding the start of 

the planting period 

Lagged 

acreage 

Acreage in the year before 

planting 

Acreage in the same month of 

the previous year  

Acreage in the same month of 

the previous year 

Production 

costs 

Annual average fertilizer 

price in the year before 

planting 

Monthly fertilizer price in the 

month before planting 

Monthly fertilizer price in the 

month before planting 

Selected 

year 

dummies 

Yes, crop specific year 

dummies 

No Yes, crop specific year 

dummies 

Monthly 

dummies 

No Yes, to consider seasonal 

planting pattern 

No 

Output Annual acreage elasticties Average monthly acreage 

responses 

Month-specific acreage 

response 

Note: To save degrees of freedom and due to problems of high multicollinearity problem the cross-price variances, 

𝛀𝒊𝒋𝒕−𝟏 for 𝒋 ≠ 𝒊, are dropped from the annual regressions.  

2.4.3.  Data 

The econometric model relies on a comprehensive and elaborate database covering the period 

1961–2010. The empirical model utilizes global and country-level data to estimate global 

acreage responses for the key world crops. While data on planted acreage were obtained from 

several relevant national statistical sources
9
,  harvested acreage for all countries were obtained 

                                                 
9
 These data sources are available in Appendix I (Table A9). In order to assess the quality of the cultivated acreage 

data, we compared different data sources (National Statistics, FAO and USDA) with respect to data on area 

harvested, as these are reported in all sources. We found the data to be broadly consistent. This could be indicative 
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from the Food and Agricultural Organization of the United Nations (FAO) and the United States 

Department of Agriculture (USDA). The crop-calendar for emerging and developing countries is 

obtained from the General Information and Early Warning System (GIEWS) of the FAO, and the 

Office of the Chief Economist (OCE) of the USDA is the source for that of the advanced 

economies. The crop calendar is further modified with expert knowledge on planting and 

harvesting periods from Bayer CropScience AG. The international spot market output prices, 

crude oil prices and fertilizer price indices were obtained from the World Bank’s commodity 

price database. All commodity futures prices were obtained from the Bloomberg database. 

Finally, the US Consumer Price Index (CPI) used in this study was obtained from the US Bureau 

of Labor statistics.   

The spot and futures crop prices, crude oil price and fertilizer price indices used in our estimation 

were all in real terms - deflated by the US CPI. The price of crude oil as well as fertilizer price 

indices are used as proxies for production costs which otherwise would not be captured. The 

crude oil price, as defined by the World Bank, refers to the average spot prices of Brent, Dubai 

and West Texas Intermediate with equal weights. The fertilizer price index, which is also 

obtained from the World Bank price database, contains the prices of natural phosphate rock, 

phosphate, potassium and nitrogenous fertilizers. 

2.5. Results and Discussion 

In the following section, we discuss several regression results to highlight the relationship 

between acreage, prices and price uncertainty. A standard approach to estimate such acreage 

response model is the seemingly unrelated regressions (SUR). However, we chose single 

equation methods of estimation. This is primarily for three reasons: the Breusch-Pagan test does 

not show significant correlation of residuals across the acreage equations
10

; a misspecification in 

one of the acreage equations in the system generally results in inconsistent estimates for the other 

equations (Coyle et al., 2008); and the explanatory variables are highly correlated across the 

                                                                                                                                                             
of the reliability of the data from the national statistical agencies. Few exceptions where deviations are higher than 

5% include wheat in Argentina, corn in Japan, and Rice in Mexico. The USDA data for Turkey and Uruguay seems 

to deviate from the other sources. 
10

 For instance the Breusch-Pagan test of independence of residuals in the annual acreage response model has a chi-

squared statistic of 8.16 with P-value = 0.23. 
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equations. Thus, the efficiency gains from SUR will be small and single equation estimations are 

more robust.
11

  

We have conducted the standard statistical unit root tests, augmented Dickey-Fuller (ADF) and 

Phillips-Perron (PP) tests (Dickey & Fuller, 1979; Phillips & Perron, 1988), for each time series 

in the acreage response models of all four crops. The unit root test results in Table 2.2 indicate 

that the entire price and the annual global acreage variables of all crops are non-stationary series 

and are integrated of order 1. However, the monthly price volatility and the intra-annual acreage 

variables of all four crops were found to be stationary series.
12

 The typical solution to avoid 

spurious regression resulting from a non-stationary time series, but not cointegrated, is 

differencing the series until we get a non-stationary series, I(0). Thus, we included the first order 

difference of the I(1) variables in the annual model. However, if either the dependent or the 

independent variable or both is stationary, which is the case in the intra-annual specifications of 

this study, then the regression is misspecified by differencing the series. By first differencing, we 

are imposing the constraint that the parameter on the lagged variable is one, which may not be 

true if the series is stationary. In such circumstances, including lagged values of the dependent 

and independent variables as regressors helps to avoid the problem of spurious regression. In this 

case, a set of parameters for which the error term is stationary exists and the t-statistics for the 

individual coefficient estimates will have the usual asymptotic normal distribution. Our intra-

annual model specifications have both the lagged dependent and independent variables as 

explanatory variables and thus the estimated coefficients are asymptotically consistent.  

All acreage and price variables (except for price volatilities, which are rates) are specified as 

logarithms in the econometric models of the proceeding discussion. Hence, the estimated 

coefficients can be interpreted as short-run elasticities. Depending on the disaggregation method, 

annual as well as monthly acreage elasticities are estimated. As the price co-variance terms cause 

problems of high multicollinearity and turned out to be insignificant, we omitted them. Since the 

lagged endogenous variable implies autocorrelation in our econometric estimations, we 

employed the Newey-West autocorrelation adjusted standard errors. 

                                                 
11

 We provide results from SURE as Appendix I (Table A1) for the annual model where the equations contain 

slightly different variables: the results are quite robust. 
12

The Phillips-Perron test results are consistent with those of the Augmented Dickey-Fuller test results reported in 

Table 2.2. 
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Table 2.2. Unit root (ADF) test statistics (Ho: unit root) 

Intra-annual model  Annual Model 

Variable Non-trended 

model 

Trended 

model 

 Non-trended model Trended model 

Level First difference level First difference 

Wheat acreage  −17.02 −17.13  −1.79 −3.59 −1.89 −3.68 

Corn acreage −15.98 −17.26  0.12 −3.97 −1.64 −3..92 

Soybean acreage −10.22 −17.38  −1.02 −3.85 −1.46 −3.96 

Rice acreage −15.63 −16.10  −1.93 −3.82 −2.42 −3.98 

Wheat price  −2.13 −2.86  −1.31 −4.48 −1.99 −4.47 

Corn price −1.88 −2.81  −1.18 −3.66 −1.65 −3.65 

Soybeans price −2.14 −2.75  −1.24 −3.29 −1.56 −3.27 

Rice price −1.80 −2.50  −1.39 −5.58 −2.32 −4.41 

Fertilizer price −2.50 −2.43  −2.26 −5.58 −2.20 −4.29 

Wheat price  vol. −3.42 −3.70  −2.15 −4.32 −2.71 −4.31 

Corn price vol. −4.31 −4.76  −2.19 −4.55 −2.67 −4.48 

Soybeans price vol. −4.37 −4.67  −2.38 −4.64 −2.35 −4.58 

Rice price vol. −4.99 −4.98  −3.24 −5.58 −3.20 −5.51 
        

Critical value (5%) −2.9 −3.5  −2.9 −2.9 −3.5 −3.5 

Notes: Critical values are taken from Fuller (1976, p. 373). The results are ADF tests with three lag lengths: We 

also checked ADF tests with different lag lengths for all variables. The unit-root test results are consistent across 

these specifications except for the annual price volatility variables whereby the ADF test results with no lag 

values seem to show existence of stationary series in these four variables.   

2.5.1. Annual acreage response 

The annual regression gives a conventional estimate of supply elasticities that indicate how 

annual global acreage changes in response to changes in output price expectation. To our 

knowledge, this is a first study to estimate acreage elasticities at a global scale. Additionally, 

short-term price movement indicators are considered to assess the impact of price risk or 

unpredictability of prices. 

Table 2.3 shows the global annual acreage response results. We considered planting year cash 

prices (in the year before harvesting) as the expected harvest period prices. Since most of the 

sowing for the harvest of a specific year for wheat, corn and soybeans occurs during the spring of 

the same year or during the winter of the previous year, we lagged both spot prices and volatility. 

As rice is planted in most of the months throughout the year, we use the same-year values. We 

alternatively considered harvest time futures prices, observed in the months when planting 

decisions are made, as proxy for expected prices at planting time. As these periods differ from 

country to country, we use the planting and harvesting periods of the US as a reference since it 
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accounts for a large share of global production of the crops under consideration. We also 

considered futures contracts traded in the US. While, in the case of wheat, the expected prices 

are derived from the average July wheat futures traded from October to December, the futures 

prices for corn and soybeans are the average December corn futures prices observed from March 

to May and the average November soybeans futures prices observed from April to June, 

respectively. We failed to find a significant area-price relationship using these futures prices, 

which could imply that several agricultural producers do not make use of futures prices 

information in forming price expectations. Indeed, futures prices are good proxy for expected 

prices for those producers in countries where the domestic price is strongly linked to the futures 

prices, i.e. where the maturity basis is constant. Although the farmers in advanced economies 

widely participate in the futures markets and the futures prices are linked to the cash prices, this 

is not the case in several developing countries. 

Table 2.3. Annual global acreage response estimates 

Variables Wheat Corn  Soybeans Rice 

Acreage (t-1) -0.262** -0.242* -0.348* -0.149 

 

(0.102) (0.133) (0.179) (0.133) 

Wheat price  0.088*** -0.108*** 0.025 -0.554* 

 

(0.032) (0.033) (0.069) (0.027) 

Corn price  -0.005 0.179*** -0.194** 0.026 

 

(0.032) (0.033) (0.086) (0.023) 

Soybean price  0.033 -0.02 0.374*** 0.022 

 

(0.031) (0.031) (0.104) (0.021) 

Rice price  -0.008  0.00 -0.003 0.022* 

 (0.017) (0.018) (0.029) (0.011) 

Fertilize price index -0.023** 0.017 -0.042* 0.013 

 

(0.013) (0.011) (0.024) (0.008) 

Own price volatility  -0.798* -0.618** -1.417* -0.397*** 

 

(0.470) (0.311) (0.745) (0.110) 

Time trend -0.0* 0.0 0.0 -0.0* 

 (0.000) (0.000) (0.000) (0.000) 

R-squared 0.41 0.53 0.55 0.36 

N 48 

Notes: Figures in parentheses are autocorrelation adjusted standard errors.  Selected year dummies 

were also included for each specification. *P < 0.10, **P < 0.05, ***P < 0.01. 
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The following discussion relies on the results obtained from the specifications with spot prices.
13

 

The regression estimates show that all the acreage responses to own prices are statistically 

significant and positive, consistent with economic theory. The short-run acreage responses to 

own prices range from 0.02 (rice) to 0.37 (soybeans). The results also show that the statistically 

significant cross-price acreage coefficients are consistent with economic theory: although they 

are not symmetric, the area responses to competing crop prices are negative. In this regard, 

expectations about wheat prices seem to be important for all but soybean crop acreages. 

Expectation of higher wheat prices encourages cultivation of more land for wheat production. 

The cross price coefficients suggest that shifting away land from corn and rice cultivation 

contributes to this additional land for wheat production. Besides encouraging more land to corn 

cultivation, the results also show that higher corn prices lead to less land for soybean production. 

Own price volatility reduces global crop acreage for all crops. The respective estimated 

coefficients of own price volatility range between -0.40 for rice and -1.42 for soybeans. Fertilizer 

prices are statistically significant for the global wheat and soybean acreages in the annual model 

(at the 10% level for the soybean model). As described above both the dependent variable, sown 

area, and its lagged independent variable are first-differenced to avoid spurious results due to 

unit root. The coefficients of the lagged acreage are negative for all crops and statistically 

significant for all crops except for rice. The interpretation is that a higher acreage growth in a 

certain year is associated with a lower growth in the coming year. This may be indicative of the 

cyclical (cobweb) nature of agricultural production.  

2.5.2. Monthly acreage response 

The annual regression is able to predict global annual acreage changes based on averaged annual 

prices. One important feature of the crop calendar and the resultant disaggregated data is that it 

allows calculating short-term supply elasticities on a monthly basis using information on prices 

and other factors that exhibit more intra-annual fluctuation. This will help understand the 

magnitude and the speed of the farmers’ response to prices. We will present two different 

estimations: the first gives monthly price elasticities of crop acreage (represented as intra-annual 

supply elasticity in Table 2.4); the second estimates are month- specific elasticities (Table 2.5).  

 

                                                 
13

Results where we used futures prices as proxy for expected prices are available in the Appendix (Table A2). 
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Intra-annual supply elasticities 

The advantage of estimating month-independent supply elasticities is to have a rough estimate of 

acreage response to prices given the price information of the month(s) prior to planting time. We 

expect planting time prices to be better proxies for producers’ expectations than just last year’s 

prices since producers have a lot more knowledge at planting time. Additionally, we included 

monthly dummies in order to account for the effect of seasonality that may arise due to climatic 

and geographic conditions that may in turn affect the scale of cultivation in each specific 

planting month. 

Table 2.4. Intra-annual global supply response estimates 

Variable Wheat  Corn  Soybeans  Rice
+ 

 

Acreage (t-12) 0.837*** 0.842*** 0.961*** 0.821*** 

 

(0.029) (0.042) (0.011) (0.041) 

Wheat price  0.068** 0.031 0.021 -0.014 

 

(0.027)      (0.020) (0.032) (0.013) 

Corn price  0.021 0.114** -0.086** -0.010 

 

(0.028) (0.055) (0.036) (0.014) 

Soybean price  -0.057** -0.015 0.144** 0.006 

 

(0.026) (0.021) (0.067) (0.016) 

Rice price  -0.023 -0.028** 0.011 0.007 

 

(0.017) (0.013) (0.024) (0.008) 

Fertilizer price 0.013 0.002 -0.032 -0.008 

 (0.015) (0.011) (0.025) (0.008) 

Wheat price vol.  -0.894** 0.269 0.317 -0.377 

 

(0.425) (0.279) (0.602) (0.240) 

Corn price vol.  1.014** 0.286 0.057 -0.062 

 

(0.501) (0.330) (0.646) (0.234) 

Soybean price vol. 0.635* -0.184 0.730 0.540** 

 

(0.336) (0.331) (0.583) (0.234) 

Rice price vol. -0.151 0.072 -0.781** 0.189 

 (0.306) (0.276) (0.366) (0.154) 

Trend  0 0.001 0.002** 0.001* 

 

(0.001) (0.001) (0.001) (0.000) 

R-squared 0.99 0.99 0.99 0.99 

N 588 

Notes: Figures in parentheses are autocorrelation adjusted standard errors. Monthly dummies were also 

included for each crop regression and coefficients are available upon request. 
+
The rice price is the 

average price of the previous 12 months. *P < 0.10, **P < 0.05, ***P < 0.01. 
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Table 2.4 summarizes the monthly regression results. In this case, we assume farmers base their 

expectations on the spot prices during the pre-planting months.
14

 Since including both first and 

second lagged prices for all the crops causes high multicollinearity problem, we alternatively 

include output prices of up to two-month lags for each cropland model. While the second lagged 

own price is not statistically significant for wheat and rice acreages, it is statistically important 

for corn and soybean acreage models. Thus, in order to avoid any simultaneity bias, which might 

result from imprecise crop calendar, we used the second lagged prices for the latter crop acreage 

models. The dependent own acreage variables are the values corresponding to the same month of 

the previous year.  

In comparison with the annual model there are some interesting similarities. Analogously to the 

annual estimates, the monthly acreage responses are consistent with economic theory in the sense 

that area responds positively to own prices and negatively to competing crop prices. The fact that 

acreage, on global average, adjusts monthly to changes in international monthly prices prior to 

planting time attests that the prices preceding the planting period of these crops contain relevant 

information that the producers base their harvest time price expectations on. Aside from the 

wheat acreage where the coefficients are in the same order of magnitude, the monthly acreage 

responses to own crop prices are smaller than the annual responses. This suggests that producers 

base their price expectations not only on monthly prices but also on prices over a longer period 

before planting, as they already anticipate that the price immediately before planting time might 

change until harvesting. The results suggest that doubling of the respective own spot prices leads 

to – on a global average – acreage increases of between 7% for wheat, 11% for corn and 14% for 

soybeans in the short-run. Global monthly rice acreage is not responsive to own prices prevailing 

in the month before the start of the planting period. In addition to the responses to own crop 

prices, the monthly acreage specification findings reveal that higher crop prices result in lower 

land allocation for competing crop production. In particular, global wheat producers negatively 

respond to expected soybean prices whereas expectations of corn and rice crop prices are more 

important for global soybean and corn producers, respectively. 

                                                 
14

 Results from acreage models where we consider futures prices as proxy for farmers’ price expectations are 

consistent with the reported results. These results are reported in the Table A3 in Appendix I. 
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In agreement with the annual crop acreage specification, price risk seems to be detrimental to 

wheat producers in the intra-annual acreage model. While higher fluctuations of the own crop 

price discourage producers from allocating more land to wheat production, this could be offset if 

prices of competing crops such as corn and soybeans also exhibit such fluctuations. The 

estimated lagged acreage planted variables were both statistically and economically relevant in 

determining current cultivations of all crops. With regard to the time trend, the global acreages of 

soybeans and rice have increasing trend, implying annual average growth rates of about 0.1% for 

rice and 0.2% for soybean acreages. 

Seasonal supply elasticities 

For the second intra-annual regression, we estimate the acreage response in typical planting 

months depending on prices in the preceding month. Similar to the monthly model above, we 

include individual crop area allocations in the same month of the previous year as additional 

explanatory variables. We present results for those months where cultivation of each crop is 

predominant in the global setting (see Figure 2.3 above). Table 2.5 presents the results for these 

selected months. 

 Table 2.5. Month-specific global elasticities for typical planting months 

Variable 

Wheat Corn 

April May November April May November 

Acreage (t-12) 0.506*** 0.468*** 0.822*** 0.334*** 0.346*** 0.640*** 

 

(0.097) (0.106) (0.092) (0.118) (0.126) (0.096) 

Wheat price  0.134*** 0.303** 0.014 -0.044 -0.015 0.047 

 

(0.048) (0.120) (0.027) (0.044) (0.031) (0.043) 

Corn price  -0.05 -0.144 -0.018 0.111* 0.095** -0.116* 

 (0.045) (0.110) (0.028) (0.060) (0.044) (0.060) 

Soybean price  0.048 0.023 0.028 0.05 0.02 0.039 

 (0.034) (0.043) (0.038) (0.041) (0.025) (0.050) 

Own price vol.  -0.627 -1.807 -0.252 -0.675 -0.082 0.937 

 (0.468) (1.089) (0.301) (0.758) (0.422) (0.822) 

Fertilizer price  -0.023 -0.069** -0.004 -0.006 -0.008 0.022 

 

(0.024) (0.032) (0.014) (0.028) (0.020) (0.018) 

Time trend 0.002** 0.005*** 0.002 0.007*** 0.008*** 0 

 

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

R-squared 0.88 0.62 0.94 0.87 0.94 0.74 

N 49 
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       Table 2.5. Continued. 

Variable 

Soybeans Rice 

May June November May June November 

Acreage (t-12) 0.792*** 0.804*** 0.923*** 0.662*** 0.680*** 0.556*** 

 

(0.104) (0.056) (0.043) (0.063) (0.063) (0.110) 

Wheat price  0.061 0.025 0.141 _ _ _ 

 

(0.049) (0.056) (0.100) 

   Corn price  -0.156** -0.13 -0.068 _ _ _ 

 

(0.063) (0.078) (0.157) 

   Soybean price  0.178*** 0.222*** 0.013 _ _ _ 

 (0.057) (0.054) (0.148)    

Rice price  _ _ _ 0.019* 0.022** -0.01 

    (0.010) (0.010) (0.020) 

Own price vol. 0.158 -0.169 0.659 0.113 0.131 -0.213 

 

(0.728) (0.700) (0.750) (0.179) (0.165) (0.292) 

Fertilizer price  -0.039 -0.034 -0.005 0 -0.006 0 

 

(0.024) (0.029) (0.067) (0.010) (0.011) (0.015) 

Time trend 0.003 0.006*** 0.004 0.001*** 0.002*** 0.002 

 

(0.002) (0.002) (0.004) (0.000) (0.000) (0.001) 

R-squared 0.94 0.98 0.99 0.92 0.94 0.82 

N 49 

Notes: Figures in parentheses are robust standard errors. *P < 0.10, **P < 0.05, ***P < 0.01. 

The short run own-price acreage elasticity for wheat ranges from 0.30 in May to nearly zero in 

November. Similarly, short-run own-price acreage elasticities range from 0.11 (corn in April), 

0.22 (soybeans in June), and 0.02 (rice in June) to fairly price insensitive acreages in winter 

(November). In accordance with both the annual and the intra-annual results above, the month-

specific cross-price acreage elasticity shows that the global soybean cultivation (in spring) 

competes for land with corn cultivation. It is also during the spring that the global wheat and 

soybean acreages respond to fertilizer prices. One explanation for this negative relationship 

could be that when fertilizer prices are high, acreage expansion is more profitable than increasing 

intensification. We also conducted a separate regression where we used average crude oil prices 

as additional explanatory variables (results are not reported here for reasons of brevity). The 

effect of crude oil prices is not clear since it implies higher production cost on the one hand and 

higher output prices due to higher demand for biofuel on the other hand. The results indicate that 

the latter effect outweighs in case of corn and soybeans where the global acreage of these crops 

positively respond to higher crude oil prices.   
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The estimated coefficients of the lagged area were both statistically and economically relevant in 

determining the acreage at any particular planting month of all crops. As opposed to the acreage 

responses to output and input prices, the lagged own acreage coefficients are relatively larger 

during the winter months. This may affirm the already implied relative rigidity of acreage 

allocation during the winter. Similar to the above results, the estimated coefficients indicate that 

global soybean acreage has the largest producers’ inertia that may reflect adjustment costs in 

crop rotation and crop specific land and/or soil quality requirements. However, the coefficients 

of the lagged dependent variables might also reflect unobservable dynamic factors and 

interpretation should be made with caution (Hausman, 2012). 

This seasonally variable global acreage response may be partly explained by the lower 

availability of land during spring as it is the dominant planting season for all of these four crops 

although less so for wheat. The differences of the coefficients across the months also reflect 

differences across the countries where sowing takes place in the respective months and captures 

characteristics such as global market integration or domestic institutions and government policy 

interventions. The time trend estimates show that more and more land has been allocated for 

these crops during the spring season. The results demonstrate that the global acreage of all these 

crops has been consistently growing at an annual rate of between 0.1% and 0.8% during spring. 

On the other hand, neither of the crop acreages shows any significant time trend during the 

winter.  

In summary, our empirical results align with previous work in this topic. Table 2.6 below gives a 

summary of acreage elasticities for selected countries estimated by the Food and Agricultural 

Policy Research Institute (FAPRI) and other literature. With the exception of the elasticity 

reported by Roberts and Schlenker (2009), elasticties are at national or sub-national levels. While 

the supply elasticity from Roberts and Schlenker (2009) is at a global level and straightforward 

to compare with the estimated elasticties of this study, it is aggregated for all the four crops in 

terms of their caloric content. Apart from rice acreage elasticties that are smaller in this study, 

our estimated elasticities are mostly comparable with existing elasticity estimates at the national 

level. This has implications for whether our estimates serve as complements to or substitutes for 

micro and national level supply models and as verifications of whether involved household and 

farm level estimations add up to patterns that are apparent in the aggregate global data. 
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Table 2.6. Summary of existing own price acreage elasticities 

Countries Wheat Corn Soybeans Rice 

Africa 

Egypt 0.25 0.09 0.03 0.16 

South Africa 0.09 0.28 0.03 0.03 

Asia 

China 0.09 0.13 0.45 0.16 

India 0.29 0.21 0.36 0.11 

Pakistan 0.23 0.28 0.29 0.29 

South America 

Argentina 0.41 0.7 0.32 0.24 

Brazil 0.43 0.42 0.34 0.07 

Middle East 

Turkey 0.2 0.14 

 

0.47 

Iran 0.08 0.01 0.01 0.01 

Europe 

EU 0.12 0.08 0.19 0.24 

Russian Federation 0.19 0.31   

North America 

Canada 0.39 0.18 0.32  

United States 0.25 0.17 0.3 0.35 

Australia 

Australia 0.33 0.23 

 

0.17 

Weighted average (weighted by area share) 0.18 0.14 0.31 0.07 

Roberts and Schlenker (2009), Global 0.11 

Roberts and Schlenker (2013), Global 0.10 0.27 0.55 0.03 

This study, Annual model 0.09 0.18 0.37 0.02 

This study, Intra-annual model 0.07 0.11 0.14 0.01 

This study, Annual month-specific model 0.30 0.10 0.22 0.02 

Source: Food and Agricultural Policy Research Institute (FAPRI).
15

  

Note: Since FAPRI does only report rice acreage elasticties for the United States, we took elasticties from 

Lin and Dimuskes (2007) for the other crops. We also took average acreage elasticties for other Africa for 

non-reported elasticties for Egypt and South Africa. Price elasticities for individual countries refer 

acreage responses to domestic (producer) prices while global price elasticities of this study refer to 

responses to world market prices. 

                                                 
15

http://www.fapri.iastate.edu/tools/elasticity.aspx 

 

http://www.fapri.iastate.edu/tools/elasticity.aspx
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2.6. Conclusions 

In recent years, global crop production has faced a series of emerging issues and showed 

noticeable variations in acreage. Factors such as ongoing developments in bio-technology, 

fluctuations in corn and soybean prices due to the rising demand for ethanol and changes in 

production costs affect producers’ acreage allocation decisions. These changes have huge 

implications for the global food supply as well as for the agribusiness sector such as input supply 

industries. To this end, a recent study showed that land use changes, as a result of expansion of 

biofuels, significantly decreases global food supply mainly in developing countries (Timilsina et 

al.,  2012).  

This study is the first of its kind in estimating annual and intra-annual acreage responses at a 

global scale. We have used country-specific crop calendar in order to apportion annual acreage 

values into respective planting months and to choose the most likely output prices that shape 

producers’ price expectations. This enables us to investigate how crop acreages in one part of the 

world are affected by harvest changes in the other part of the world. Global acreage responds to 

monthly as well as to annual price changes, the latter being slightly stronger. Generally, corn and 

soybean acreages are more responsive to prices with annual short-run own-price elasticities of 

0.18 and 0.37, respectively, than wheat (0.09) and rice (0.02). Land for rice cultivation requires 

capital investment (canals, sluices etc.) to ensure flooding at the time of planting. These 

investments are long-term decisions. Short run price responses are therefore inevitably low. In 

general, the low acreage supply elasticities may be indicative of the need for productivity 

improvements to meet (growing) demand, as area expansion is economically and 

environmentally limited. 

Acreage response to price changes, however, leads to further acreage response through the auto-

regressive term in the following period. The long-run acreage responses, measured as the area 

response for an infinite time horizon due to a permanent shift of prices, are, in equilibrium, larger 

than the short-run responses. In the annual acreage model, for instance, while long-run price 

elasticity of wheat acreage is about twice larger than the short-run elasticity, those of soybeans 

and rice are more than three times larger than their respective short-run elasticity estimates. The 

long-run price elasticity of corn acreage is also slightly larger than the short-run value. Thus, we 
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might observe a higher acreage increase in the long-term due to global price increases than what 

the short-term elasticities suggest.
16

  

Although the estimated short-run global acreage responses to price changes are generally small, 

they vary across crops and exhibit seasonal variability. Our disaggregation from annual to 

monthly acreage data allows us to further study the intra-annual acreage responses to prices and 

other factors. The monthly acreage response model resulted in month-independent price 

elasticities that are of comparable magnitude with the annual price elasticities. However, the 

seasonal month-specific price elasticities reveal that global acreages respond stronger to price 

changes in some specific months than in others. More specifically, the area planted during spring 

is more price sensitive than area planted in winter owing partly to greater land competition 

during the spring season. This may also reflect other country-specific reasons including national 

policies that limit the flexibility of crop acreage adjustments. 

Results from this study indicate a negative impact from price uncertainty, measured by output 

price volatility, on aggregate supply response for the major global field crops. The annual 

acreage model results show that own output price volatility introduces risks that affect the 

investment decisions of a risk-averse agent and ultimately results in a lower acreage allocation of 

the respective crop. Furthermore, both the own and competing crop price fluctuations are 

statistically significant and economically relevant to global wheat acreage allocation in the intra-

annual model. The results indicate that, on average, global wheat acreage declines in response to 

higher own price volatility. It is a well-known finding in economic theory that price uncertainty 

is a disincentive to agricultural producers under the underlying risk aversion assumption and 

where insurance markets are poorly operating (Sandmo, 1971). The findings in this study support 

that this behavioral assumption of risk-aversion is likely to hold for the majority of the wheat, 

corn, soybeans and rice producers in the world. This is relevant for policy makers suggesting that 

managing output price volatility could lead to an expansion of agricultural land and hence crop 

production. 

 

 

 

                                                 
16

 The Long run and short run elasticities are reported in Table A4 in the Appendix I. 



 

52 

 

3. A dynamic panel data analysis of production, area and yield responses 

Abstract
*
 

This chapter estimates global supply response for the key agricultural commodities wheat, rice, 

corn, and soybeans, employing a newly developed multi-country, crop-calendar–specific, 

seasonally disaggregated model with price changes and price volatility applied accordingly. The 

findings reveal that, although higher output prices serve as an incentive to improve global crop 

supply as expected, output price volatility acts as a disincentive. Depending on the crop, the 

results show that own price supply elasticities range from about 0.05 to 0.35. Output price 

volatility, however, has negative correlations with crop supply, implying that farmers shift land, 

other inputs, and yield-improving investments to crops with less volatile prices. Simulating the 

impact of price dynamics since 2006, we find that price risk has reduced the production response 

of wheat in particular—and to a lesser extent, rice—thus dampening price incentive effects. 

Own-price volatility tends to dampen yield by about 1% to 2% for the crops under consideration. 

Key words: food prices, price volatility, global supply response, staple food commodities 

JEL codes: O11, O13, Q11, Q13, Q18, Q24 

 

 

 

 

 

 

                                                 
*
Most of the material in this chapter is drawn from our publication in the American Journal of Agricultural 

Economics: Haile, M. G., Kalkuhl, M. and von Braun, J. (2015), 

http://ajae.oxfordjournals.org/content/early/2015/04/15/ajae.aav013.abstract. 

 

http://ajae.oxfordjournals.org/content/early/2015/04/15/ajae.aav013.abstract


 

53 

 

3.1. Introduction 

After about three decades of low and relatively stable prices for staple food commodities, the 

world has experienced a surge in the prices of many staple food commodities since 2005. Such 

high prices are typically expected to bring about a supply response in which producers allocate 

more land to the agricultural sector and increase investment to improve yield growth (OECD, 

2008). Higher prices were, however, accompanied by higher volatility (Gilbert & Morgan, 

2010). Price volatility introduces output price risk, which has detrimental implications for 

producers’ resource allocation and investment decisions (Moschini & Hennessy, 2001; Sandmo, 

1971). Because agricultural producers in many developing countries are often unable to deal with 

(Binswanger & Rosenzweig, 1986) and are unprotected from (Miranda & Helmberger, 1988) the 

consequences of price volatility, they are exposed to the effects of international agricultural 

market price instability to the extent it is transmitted to local markets. Given this backdrop, this 

study analyzes the supply responsiveness of key world staple food commodities—namely, 

wheat, corn, soybeans, and rice—to changes in output prices and volatility. Understanding how 

global food commodity producers allocate cropland and how their decisions about crop 

production are affected by changes in price levels and volatility is fundamental for designing 

policies related to agricultural growth and food supply.   

The literature on estimation of supply response to prices has a long history in agricultural 

economics (Houck & Ryan, 1972; Lee & Helmberger, 1985; Nerlove, 1956). Nevertheless, there 

are various reasons to reconsider the research on supply response. The majority of the previous 

empirical literature is concentrated on a few countries, lacking global linkages. Also, the effect 

of price levels and price volatility has usually been considered a micro-level problem limited to 

the producer. Now, however, several factors such as foreign direct investment in agriculture 

make global and country-level agricultural production sensitive to price levels and volatility, as 

is the case at the individual producer level. Another reason for renewed research interest in the 

topic is the growing demand for biofuels and the financialization of agricultural commodities, 

which are suspected to have contributed to the high and volatile food prices that have in turn 

affected the global food supply (Gilbert & Pfuderer, 2014; Tadesse et al., 2014). 

Furthermore, existing econometric analyses focus on supply responses to domestic prices. In 

contrast, this study investigates the supply response of the key world staples to international 
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market prices. In doing so, the chapter makes the following major contributions: (1) It provides 

updated short- and long-term supply elasticities that indicate how major agricultural commodity 

producers have responded to the recent increase in global food prices and volatility. This reveals 

to what extent the global agricultural system is responding to emerging global food scarcities. (2) 

It addresses whether the recent increase in prices and price volatility is an opportunity or a 

challenge to agricultural producers and to the agriculture sector in general. (3) Given some 

empirical evidence suggesting that the largest share of the supply response to output price, in the 

short run, is through acreage adjustments (e.g. Roberts & Schlenker, 2009), both acreage and 

yield responses are estimated to contest or affirm this finding. (4) It uses simulation analyses to 

assess the overall impacts of recent agricultural commodity price dynamics on the supply of key 

staple crops.  

The rest of the chapter is organized as follows: The next section presents a brief overview of 

global production, acreage, and yield. The sections that follow provide the modelling framework 

and newly constructed data used for the empirical analysis and then present and discuss the 

econometric and simulation results. The last section concludes.  

3.2. Production, Acreage, and Yield: An Overview  

Agricultural productivity and competition for land are the major drivers of global food 

production and farming in the future (Smith et al., 2010). Whereas total cropland constituted less 

than a tenth of the global land cover in the 18th century (Beddow et al., 2010), about a third of 

global land area is devoted to agricultural use today (Hertel, 2011). Although there is little room 

for extensification (bringing more land under crop cultivation) in South and East Asia, the 

Middle East, North Africa, and many advanced economies, extensification may have substantial 

potential to increase crop production in other regions such as Sub-Saharan Africa and Latin 

America (Bruinsma, 2003). The recent rise in agricultural commodity prices has also resulted in 

more competition for agricultural land and raising land prices. For instance, there have been 

large foreign agricultural investments in many developing countries, primarily focusing on 

growing high-demand crops including corn, soybeans, wheat, rice, and other biofuel crops (von 

Braun & Meinzen-Dick, 2009). Rising agricultural commodity prices should also be incentives 

for larger agricultural investments in yield-improving technologies. 
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The global dynamics depicted in Figure 1.2 reflects the changes in the major producer countries 

of each crop. Table 3.1 shows the ten-year average and percentage change in production, 

acreage, and yield between the decades 1961–1970 and 2001–2010. In line with the global 

changes already described, aggregate production in the top six cultivating countries increased 

most for soybeans, followed by corn. Production and yields of all four crops were higher in all 

six top producer countries in 2001–2010 than they were in the 1960s. Large expansions in 

soybean acreage took place in all of these countries except China. China has increased its 

soybean imports, a situation that has been at least partly responsible for the strong expansion in 

soybean acreage in the Latin American countries. The three largest soybean producer countries 

in Latin America—Brazil, Argentina, and Paraguay—accounted for close to 45% of the global 

soybean acreage in 2010, up from merely half a percent in 1961. Similarly, area under wheat and 

rice cultivation has increased for all countries except China. The area under corn cultivation has 

risen for all countries except Mexico. India experienced expansion in sown acreage for all four 

crops during this period. In addition, India’s share of global acreage for these crops was higher in 

2010 than in 1961, except for a slight decline in the case of rice. Other Asian countries including 

Indonesia, Thailand, Myanmar, and Viet Nam increased their share of global rice acreage. No 

African country is among the top six cultivating countries of any of these four crops.  

Although production, acreage, and yield of all four crops have increased during the past five 

decades, Figure 1.2 shows that the changes have not always been smooth upward trends. This 

chapter examines how the supplies of the four staple food commodities have responded to 

international price levels and price volatility. Cross-country panel data are used for panel 

econometrics in order to test hypotheses on the scale and determinants of crop supply responses 

to price levels and price volatility.  
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Table 3.1. Production, area, and yield for selected crops of the six largest cultivating Countries, 

1961–1970 and 2001–2010 

Crop/country 

Production (million MT) 
 

Area (million ha) 
 

Yield (MT/ha) 

1961–

1970 

2001–

2010 

 

% ∆ 

 

1961–

1970 

2001–

2010 % ∆ 

 

1961–

1970 

2001–

2010 % ∆ 

Wheat            

India 13 73 452 
 

14 27 92 
 

0.9 2.7 191 

EU 57 133 132 
 

25 26 2 
 

2.3 5.1 126 

China 23 102 337 
 

25 23 -6 
 

0.9 4.4 364 

USA 36 57 58 
 

20 20 1 
 

1.8 2.8 56 

Russian 

Federation
a 

36 49 35 
 

22 24 6 
 

1.2 2.0 73 

Australia 9 20 109 
 

8 13 63 
 

1.2 1.5 27 

Top six total 175 434 147 
 

114 133 16 
 

1.4 3.1 123 

Corn            

USA 104 286 174 
 

23 31 33 
 

4.5 9.3 106 

China 25 143 468 
 

16 28 77 
 

1.6 5.2 222 

Brazil 11 46 304 
 

9 13 49 
 

1.3 3.6 171 

India 5 16 203 
 

5 8 49 
 

1.0 2.1 102 

Mexico 8 21 164 
 

7 7 -1 
 

1.1 3.0 169 

EU 23 59 160 
 

8 9 6 
 

2.7 6.6 147 

Top six total 177 573 223 
 

68 95 39 
 

2.1 5.0 143 

Soybeans            

USA 24 81 236 
 

14 30 109 
 

1.7 2.7 62 

Brazil 1 53 8,327 
 

1 20 3,427 
 

1.1 2.6 143 

Argentina 0.02 38 209,107 
 

0.02 14 87,268 
 

1.1 2.6 140 

India 0.01 9 87,672 
 

0.02 8 36,069 
 

0.4 1.1 139 

China 8 15 106 
 

9 9 2 
 

0.8 1.7 99 

Paraguay 0.02 5 23,144 
 

0.01 2 20,080 

 

2.1 2.3 10 

Top six total 32 201 521 
 

24 83 251 
 

1.2 2.2 80 

Rice            

India 55 135 147 

 

36 43 19 
 

1.5 3.1 107 

China 88 184 109 
 

30 29 -4 
 

2.9 6.3 119 

Indonesia 14 57 294 
 

7 12 62 
 

1.9 4.7 145 

Bangladesh 16 42 164 
 

9 11 16 
 

1.7 3.8 128 

Thailand 12 31 153 
 

7 10 58 
 

1.8 2.9 61 

Myanmar 8 28 261 
 

5 7 56 
 

1.6 3.8 130 

Top six total 193 476 147 
 

95 113 20 
 

1.9 4.1 115 

Source: Data are from FAO (2012) and national sources. 

Notes: The production and area figures are annual averages for the respective periods and crops of the top six 

largest cultivating (in terms of area) countries as of 2010. Yield in the “Top six total” rows refers to the average 

yield of the six countries. EU refers to the 27 countries that were members of the European Union as of 2010.  
a
In the case of the Russian Federation, the annual average for 1992–2000 is used for the 1961–1970 column.  
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3.3. Review of related literature  

This study builds on the extensive agricultural economics literature on the estimation of 

agricultural supply response. Elasticities from a supply response model refer to the speed and 

size of adjustments in desired output to expected output prices. Neither the desired output nor the 

expected price is observable, however. The empirical literature employs different types of 

proxies for these variables, which could affect the results obtained. We attempt to briefly revise 

the literature with respect to the alternative proxies of these two variables. 

In terms of the proxy for expected output prices, the literature does not provide unambiguous 

evidence regarding which expectation model to use for empirical agricultural supply response 

estimation (Nerlove & Bessler, 2001; Shideed & White, 1989). The widely applied expectation 

formation hypotheses in the supply response literature include naïve expectation (Ezekiel, 1938), 

where expected prices are assumed to be equal to the latest observed prices; adaptive expectation 

(Nerlove, 1958), where farmers are assumed to revise their expectations depending on past 

errors; and rational expectation (Muth, 1961), which assumes that expectations are consistent 

with the underlying market structure and that economic agents make efficient use of all available 

information. Other research has focused on modelling supply response models using a quasi-

rational price expectation (Holt & McKenzie, 2003), which is consistent with price prediction 

from a reduced-form dynamic regression equation. Futures prices are also used as proxy for price 

expectations (Gardner, 1976). The naïve and adaptive expectation hypothesis are criticized to be 

backward-looking (Nickell, 1985); in other words, they ignore that the dynamics of price 

expectations by decision-makers can influence prices in the future. Although forward looking, 

the rational expectation hypothesis is criticized as it implies that economic agents make efficient 

use of all available information, which may not be the case when some information is costly or 

difficult to process (Chavas, 2000). Additionally, the rational expectation is not supported in 

some experimental and survey datasets (Nelson & Bessler, 1992; Nerlove & Schuermann, 1995). 

The applicability of futures price as a proxy is also dubious in supply analyses in countries where 

farmers are neither able to make any futures transactions nor have access to information from 

exchange markets. Moreover, some empirical evidence shows that heterogeneous expectations 

coexist among agricultural producers simultaneously (Chavas, 2000). 
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Following Nerlove (1958) several empirical supply response models employ the adaptive 

expectation hypothesis and its variants. Askari & Cummings (1977) and later Nerlove & Bessler 

(2001) provide a thorough review of such literature; however, Yu et al. (2012); Vitale et al. 

(2009), and de Menezes and Piketty (2012) can be mentioned as recent examples. While 

Aradhyul & Holt (Aradhyula & Holt, 1989) employ the rational expectation hypothesis to 

investigate broiler supply in the US, Eckstein (1938) and Lansink (Lansink, 1999) employ this 

hypothesis to estimate crop acreage elasticities using aggregate agricultural data and farm-level 

data respectively. Moreover, other empirical applications show the relevance of the quasi-

rational expectation approach in their supply models (Holt & McKenzie, 2003; Nerlove & 

Fornari, 1998). Last but not least, including Gardner (1976) himself, Lin and Dsimukse (2007), 

Liang et al. (2011) and Hausman (2012) are a few of the studies that use harvest time futures 

prices as proxy for farmers’ price expectations at planting season. 

The empirical agricultural supply response literature often uses acreage, yield or production as a 

proxy for desired output supply. Several studies prefer to use acreage to production in modelling 

output supply response (Coyle, 1993; Haile et al., 2014) since acreage, unlike observed output, is 

not influenced by external shocks that occur after planting. However, acreage elasticities may 

only serve as a lower bound for the total supply elasticity (Rao, 1989), as the latter depends also 

on yield changes to prices. Accordingly, several studies estimate both acreage and yield 

responses to prices (Mythili, 2008; Weersink et al., 2010; Yu et al., 2012). When there is little 

interest in whether supply response to output prices occurs via acreage or yield, total observed 

production is another proxy used to estimate output supply response in the literature (Coyle, 

1999). Because “external” weather and pest shocks —that usually happen after farmers make 

their production decisions and that are hardly predictable for farmers to take them into account in 

their production decisions — influence this proxy, the estimated supply response may not reflect 

the actual response of farmers to prices. There is, however, another proxy that is being used in 

recent studies— total caloric production, which is the sum of the caloric value of specific crops 

(Roberts & Schlenker, 2009, 2013). This proxy implicitly assumes that the crops in the caloric 

aggregate are perfectly substitutable, which is less plausible as it assumes identical land and 

other input requirements for each crop. This ignores the possibility of producers to switch across 

crops as a result of changes in relative prices, which is supported by recent study that shows 

acreage expansion of higher demand crops, such as corn, by shifting out land from lower demand 
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crops (Abbott et al., 2011; Goodwin et al., 2012). Such aggregation excludes inter-crop acreage 

and other input shifts, which, by definition, implies that aggregate output elasticities are likely to 

be smaller than crop-specific elasticites. This conforms to the statistically significant cross-price 

elasticities of crop acreage findings of several studies. Hendricks et al. (2014), for instance, 

conclude that most of the acreage response to price of corn and soybeans in the US occurs 

through substitution rather than through area expansion. Aggregation of crops also conceals any 

implications for and effects of crop-specific policies with respect to changing intra-commodity 

price relations.  

On the other hand, output supply can be estimated at plot or farm-level, where farm size, soil-

quality and other farm characteristics that may influence supply response can be controlled for; 

at household level, which enables better understanding of supply behavior of farmers; or at larger 

aggregation scopes such as at national, regional, or global levels, which have methodological 

limitations to capture the effects of contextual factors but that still enable to sufficiently measure 

supply responsiveness. Yet, estimation of aggregate agricultural supply response to changing 

price incentives is essential as it has crucial implications for economic growth and poverty 

alleviation of economies with a sizable share of the agricultural sector in their national income. 

While there are several farm- and micro-level studies (e.g. Lansink, 1999; Vitale et al., 2009; Yu 

et al., 2012) and good number of studies at national level (e.g. Barr et al., 2009; de Menezes & 

Piketty, 2012), global level studies are few. Nevertheless, cross-country analyses using a certain 

group of countries are conducted to determine the role of prices on agricultural supply. Peterson 

(1979), for instance, finds that agricultural supply in developing countries fairly respond to crop 

prices (estimated long run elasticities range between 1.25–1.66). Using a sample of 58 countries 

from the period 1969–1978, Binswanger et al. (1987), on the other hand, find that agricultural 

supply responds weakly to price incentives but strongly to non-price factors. More recent cross-

country study by Subervie (2008) based on a sample of 25 developing countries between 1961 

and 2002 finds a rather small but statistically significant aggregate supply elasticity of 0.04. 

Findings from Imai et al. (2011), which use data from a panel of ten Asian countries, and other 

crop-disaggregated studies that find much larger supply elasticities hint that such aggregation of 

crops could result in the small supply elasticities. The other scope of aggregation is when supply 

is aggregated over all countries and crops. Two similar studies by Roberts and Schlenker (2009, 

2013) estimate the caloric aggregated world supply and demand of staple crops— corn, wheat, 
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soybeans, and rice—and find supply elasticity in the range of 0.055–0.116. They use lagged 

weather shocks, approximated by deviations of yield from trend, to identify the supply elasticity 

of agricultural commodities. Hendricks et al. (2014) replicate Roberts and Schlenker’s analysis 

and found little difference between their estimates that control for the realized yield shock and 

the estimates by Roberts and Schlenker that use weather shocks in the previous year as an 

instrument for potentially endogenous expected prices. These authors also suggest that the use of 

planted acreage as dependent variable can reduce this endogeneity bias in the supply elasticity 

estimates. Along the lines of this suggestion, Haile et al. (2014) aggregate acreage of all 

countries to estimate crop-specific world supply elasticties that range between 0.03 for rice and 

0.34 for soybeans.  

The present chapter subtly differs from the literature discussed above, in terms of both the level 

of aggregation employed for the dependent variables and the proxy used for expected prices. 

Besides using all crop acreage, yield and production as alternative proxies for the desired output 

supply, these variables are aggregated at the world level for each crop. Nevertheless, the 

aggregation retains the panel feature of the data, which enables us to control heterogeneities 

across countries. For example, we make use of the country and crop specific planting and 

harvesting seasons to assign the relevant proxy for price expectation in each country and for each 

crop. This leads us to the second point on how our proxy for expected prices differs from that 

used in the literature. We use planting season world price as proxy for farmers’ anticipated prices 

in each country, in other words, we estimate crop supply response to changes in world prices 

rather than to specific domestic prices. Thus, unlike the commonly understood agricultural 

supply response, which estimates how output supply responds to changes in prices that producers 

face, we estimate production, area and yield responses to changes in international prices. These 

two supply response estimates are identical under the assumption of complete transmission of 

international prices to domestic producer prices.  However, they could be different in case of 

incomplete price transmission – an argument which is supported by the literature (e.g. Kalkuhl, 

2014). Finally, with the exception of Subervie (2008), none of the cross-country panel studies 

discussed above and, to our knowledge, no worldwide aggregated supply response study except 

Haile et al. (2014) has accounted for price volatility (price risk) in the respective supply models.  
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3.4. Conceptual Framework 

The supply response literature has gone through several important empirical and theoretical 

modifications, out of which two major frameworks have been developed. The first approach is 

the Nerlovian partial adjustment model, which allows for analyzing both the speed and the level 

of adjustment from actual toward desired output. The second is the supply function approach, 

derived from the profit-maximizing framework. This second approach requires detailed input 

prices and simultaneous estimation of input demand and output supply equations. However, 

input markets—in particular land and labor markets—are either missing or imperfect in many 

countries. Moreover, our main interest lies in the output supply function. Thus, the econometric 

approach of the present study is in line with the partial adjustment framework, enhanced with 

dynamic (including intra- annual) response, alternative price expectation assumptions, and the 

introduction of price-risk variables.  

There has been a wide variety of applications of the Nerlovian model with modifications of the 

original framework. Modifications have included alternative expectation assumptions such as the 

use of futures prices as additional information in price expectation formation (Gardner, 1976), 

expected net returns rather than prices alone (Chavas & Holt, 1990; Davison & Crowder, 1991), 

and output/land value rather than prices or returns (Bridges & Tenkorang, 2009). Risk variables 

have also been included to capture the behavioral aspects of farmers’ decisions (Liang et al., 

2011; Lin & Dismukes, 2007). Furthermore, in earlier studies time-series data were often used to 

capture the dynamics of agricultural production, and more recently econometric developments 

have allowed for the use of panel data.  

Models of the supply response of a crop can be formulated in terms of output (Q), area (A), or 

yield (Y) response. For instance, the desired output of a certain crop in period t is a function of 

expected output prices and a number of other exogenous factors (Braulke, 1982):  

𝑄𝑡
𝑑 = 𝛽1 + 𝛽2𝑝𝑡

𝑒 + 𝛽3𝑍𝑡 + 휀𝑡                                           (3.1) 

where 𝑄𝑑 is the desired output in period 𝑡; 𝑝𝑒is a vector of the expected price of the crop under 

consideration and of other competing crops; 𝑍 is a set of other exogenous variables including 

fixed and variable input prices, climate variables, and technological change; 휀𝑡 accounts for 
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unobserved random factors affecting crop production with zero expected mean; and 𝛽𝑖 are the 

parameters to be estimated. Usually output (determined by area and yield) adjustments are 

delayed for one or two agricultural production cycles because of lack of resources. To account 

for such time lags in agricultural supply response, it is important to apply a dynamic approach. 

Supply response is usually a two-stage process. Because harvest-time prices are not realized 

during the time of planting, producers, in the first stage, make acreage allocation decisions 

conditional on expected prices. As in the production equation above, the desired area to be 

cultivated for a certain crop at time 𝑡 is determined by expected own and competing crop prices 

and other non-price factors: 

𝐴𝑡
𝑑 = 𝛼1 + 𝛼2𝑝𝑡

𝑒 + 𝛼3𝑍𝑡 + 휀𝑡                                      (3.2) 

Given the acreage allocation for each crop, farmers then determine crop yield based on other 

inputs and climate conditions. During the growing period, they may make revisions to their 

production practices by adjusting input quantity, input quality, and crop protection. Hence, the 

desired yield of each crop is defined similarly to equations (3.1) and (3.2) except that the output 

price vector includes only the crop’s own price.  

3.5. Data 

The econometric model relies on a comprehensive database covering the period 1961–2010. The 

empirical model uses global and country-level data in order to estimate global production, 

acreage, and yield responses for the world’s key staple crops. While data on planted acreage are 

obtained from several relevant national statistical sources,
17

 harvested acreage, production, and 

yield for all countries are obtained from the Food and Agriculture Organization of the United 

Nations (FAO). Area harvested serves as a proxy for planted area if data on the latter are not 

available from the relevant national agricultural statistics. International spot market output prices 

as well as different types of fertilizer prices and price indices are obtained from the World 

Bank’s commodity price database. All commodity futures prices are from the Bloomberg 

database. Table 3.2 reports the 31 countries or regions included in this study, and the rest of the 

world is aggregated. 

                                                 
17

 Data sources are available in Appendix I, Table A9. 
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A producer may choose to cultivate different crops at planting time (Just & Pope, 2001). 

Therefore, it is worthwhile to consider price, price risk, and other information available to the 

farmer during the planting season. Accordingly, we use crop calendar information to identify the 

major planting seasons of each country in order to construct country-specific spot and futures 

prices, measures of price risk and yield shocks, and input prices.
18

  

Table 3.2. Study countries and regions 

Asia  
Bangladesh 

Africa  
Egypt 

South America 

Argentina 

Europe  
EU-27 

Cambodia Ethiopia Brazil  Russian Federation 

China Nigeria Mexico Ukraine 

India South Africa Paraguay  

Indonesia  Uruguay  

Japan    

Kazakhstan    

Myanmar  

Pakistan  

Philippines 

Sri Lanka  

Thailand 

Uzbekistan  

Viet Nam 

Middle East  
Iran  

Turkey 

North America 
Canada  

USA 

Australia 
Australia 

 

Other  
Rest of the world 

(ROW) 

Notes: While data on production and area are pooled across the 27 EU member countries and 

across all the remaining countries for the “Rest of the world”, data on yield are averages of all 

the countries within each group. Post-1991 data are applicable for the former Soviet Union 

countries.  

Because actual prices are not realized during planting, we model farmers’ price expectations 

using the relevant spot and futures world price information available during planting. Since they 

contain more recent price information for farmers, own and competing crop spot prices observed 

in the month before the start of planting are used in the empirical model. Alternatively, harvest-

time futures prices quoted in the months prior to planting are used. The use of these two price 

series to formulate producers’ price expectations makes our supply response models adaptive as 

well as forward-looking. Because the planting pattern varies across countries and crops, both the 

                                                 
18

 The crop calendar for emerging and developing countries is obtained from the Global Information and Early 

Warning System (GIEWS) of the FAO, and the crop calendar for the advanced economies is from the Office of the 

Chief Economist (OCE) of the US Department of Agriculture (USDA). Tables A5-A8 in Appendix I present the 

crop calendar information for several countries. 
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futures and spot prices of each crop are country-specific. For countries in the rest of the world 

(ROW), we use annual average spot and generic futures prices.
19

  

The level of transmission of international to national prices can of course vary among countries. 

By using international instead of local prices, we implicitly assume that international price 

change is a proxy for domestic producer price change. Comparisons of the global and national 

supply response elasticities point to the fact that price transmission from world to domestic 

prices is in some countries imperfect or absent. Consequently, producers’ response to 

international price changes and volatility—that is, the focus of this study—should be expected to 

be low. Empirical evidence, however, shows that world prices are a significant source of 

variation in domestic prices, even when countries are poorly integrated with the global 

agricultural market (Mundlak & Larson, 1992). Recent empirical literature also shows that 

domestic markets are integrated to world markets mostly through adjustment of domestic prices 

to deviations from the long-run domestic-world price relationship (Baquedano & Liefert, 2014; 

Kalkuhl, 2014). 

We include yield shocks calculated as deviations from country and crop-specific trends in our 

empirical supply models. Our presumption is that these deviations from the respective yield 

trends, which may be a result of weather shocks, pest infestations, or other factors, could serve as 

proxy for producers’ yield expectations. Following Roberts and Schlenker (2009), the yield 

shocks are the jackknifed residuals from separate yield-on-trend regressions for each crop in 

each country. A positive deviation entails good yield expectations, implying a positive effect on 

crop supply. For countries in the ROW, we pool the crop yields across the remaining countries to 

generate yield shocks for each crop.  

Own and cross volatility of international spot prices are used to capture output price risk. For 

price volatility we use the standard deviation of the log returns (that is, first differences instead 

of levels of log prices) in order to use the de-trended price series. The price-risk measures show 

country-specific output price variability in the 12 months preceding the start of the planting 

season of each crop in each country. Table 3.3 presents international price volatility along with 

the respective average real prices for all four crops. The volatility of world prices of selected 

                                                 
19

 Countries with a global acreage share of less than half a percent are grouped in the rest of the world (ROW) 

category. 
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crops, as measured by the moving standard deviation of monthly logarithmic prices, was higher 

in the recent decade relative to earlier periods, although not as high as in the 1970s.  

Table 3.3.  International price volatility and levels for wheat, corn, soybeans, and rice 

 

Period 

Price volatility  Price level 

Wheat Corn Soybeans Rice  Wheat Corn Soybeans Rice 

1961–1970 0.06 0.07 0.08 0.10  258 220 467 594 

1971–1980 0.16 0.12 0.18 0.19  267 210 502 598 

1981–1990 0.09 0.13 0.12 0.13  182 140 320 331 

1991–2000 0.13 0.13 0.08 0.14  149 113 256 285 

2001–2010 0.15 0.14 0.15 0.13  191 133 323 328 

2001–2005 0.11 0.11 0.13 0.09  160 111 273 236 

2006–2011 0.21 0.19 0.16 0.16  227 169 384 423 
Notes: Price volatility is measured by the standard deviation of logarithmic monthly prices using World 

Bank international prices. Prices are in real 2005 US dollars per metric ton. The figures in each row 

refer to average values of the annualized volatilities and prices over the respective decade. 

Fertilizer price indices are used as proxies for production costs in the present study. Given the 

weights used by the World Bank, the fertilizer price index contains the prices of natural 

phosphate rock, phosphate, potassium, and nitrogenous fertilizers. The fertilizer price indices are 

also crop- and country-specific depending on the planting pattern of each crop in each country. 

The fertilizer price index in the month prior to the start of planting is used.   

3.6. Econometric Model 

Given the above theoretical model and assuming there are K countries observed over T periods, 

the supply functions of the four crops can be specified most generally as   

𝑄𝑖𝑘𝑡 = 𝜋𝑖𝑄𝑖𝑘,𝑡−1 + ∑ 𝛼𝑖𝑗𝑝𝑗𝑘,𝑡𝑘

4

𝑗=1

+ ∑ 𝜑𝑖𝑗𝑣𝑜𝑙(𝑝)𝑗𝑘,𝑡𝑘

4

𝑗=1

 

+ 𝜆𝑖1𝑤𝑖𝑘,𝑡𝑘
+ 𝜆𝑖2𝑌𝑆𝑖𝑘,𝑡𝑘

+ 𝜇𝑖𝑡 + 𝜂𝑖𝑘 + 𝑢𝑖𝑘𝑡                        (3.3) 

where 𝑄𝑖 denotes the total production (or area under cultivation) of crop 𝑖 (1 = wheat, 2 = corn, 3 

= soybeans, and 4 = rice), 𝑝 denotes a vector of either spot or futures prices that are used to 

proxy expected own and competing crop prices at planting time, 𝑣𝑜𝑙(𝑝) is a vector of the 

volatility measures for own and competing crop prices, 𝑤 refers to prices of variable inputs (such 

as fertilizer), 𝑌𝑆 refers to a yield shock for each crop, 𝜇 captures time dummies to account for 

some structural changes or national policy changes, 𝜂 denotes country-fixed effects to control for 
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all time-invariant heterogeneities across countries, and 𝑢 denotes the idiosyncratic shock. 

𝜋, 𝛼, 𝜑, and 𝜆 are parameters to be estimated. The subscript 𝑘 denotes the country: this implies 

that the lag lengths of the relevant futures and spot price, output price volatility, input price, and 

yield shock variables are country-specific. As mentioned, the seasonality of agricultural 

cultivation in different countries enables us to construct international prices that are country-

specific variables at the seasonally appropriate time in terms of each country’s crop calendar. 

This approach is more precise than assuming that all countries face the same yearly output price. 

This is particularly important given that planting decisions in the early months of the calendar 

year (or marketing year) in some countries affect the annually averaged price and would cause an 

endogeneity problem in any global supply response model that uses annual data. Likewise, if 

planting decisions take place later in the calendar or marketing year, an average annual price will 

contain past prices that dilute the information signal that more recent planting-time prices could 

convey.
20

 Taking the lagged annual average price is not a good remedy because producers adjust 

their price expectations with more recent information (Just & Pope, 2001).  

As described in the conceptual model section, the yield equation is specified similarly to 

equation (3.3) except that the output price and price volatility vectors do not include price and 

volatility of competing crops. There is a subtle difference between the yield deviation measures 

used in the acreage and yield response models in order to proxy yield expectations. Whereas they 

are derived from the harvest period prior to planting in the acreage response models, they are 

derived from the harvest of the previous year in the yield response models. Accordingly, the 

deviations in the yield response models are lagged whereas they need not be lagged in the 

acreage response models if the prior harvest was in the year of planting. We therefore exclude 

these variables from the regressions of the production and yield response functions because they 

are by definition correlated with the respective lagged dependent variables.
21

 All quantity, 

output, and input price variables (except for price volatilities, which are rates) are specified as 

logarithms in the econometric models. Hence, the estimated coefficients can be interpreted as 

short‐run elasticities. 

                                                 
20

 See Chapter 2 for global intra-annual planting and harvesting patterns. 
21

 The yield shock variables are not statistically significant in the acreage response models, and we omit them from 

the final regression. 



 

67 

 

Applying ordinary least squares (OLS) estimation to a dynamic panel data regression model such 

as in equation (3.3) above results in a dynamic panel bias because of the correlation of the lagged 

dependent variable with the country-fixed effects (Nickell, 1981). Since current acreage is a 

function of the fixed effects (𝜂𝑘), it is obvious that lagged acreage is also a function of these 

country-fixed effects. This violates the strict exogeneity assumption, and hence the OLS 

estimator is biased and inconsistent. An intuitive solution to this problem is to transform the data 

and remove the fixed effects. However, under the within-group transformation, the lagged 

dependent variable remains correlated with the error term, and therefore the fixed-effect 

estimator is biased and inconsistent. While the correlation between the lagged dependent variable 

and the error term is positive in the simple OLS regression, the estimated coefficient of the 

lagged dependent variable is biased downward in the case of the fixed effects estimator 

(Roodman, 2009a, 2009b).  

Therefore we need an estimator that gives an estimate of the true parameter that lies in the range 

of the OLS and the fixed effects estimate for the coefficient on the lagged dependent variable. 

Anderson and Hsiao (1982) suggest using the instrumental variable (IV) method to estimate the 

first differenced model. This technique eliminates the fixed-effect terms by differencing instead 

of within transformation. Since the lagged dependent variable is correlated with the error term, 

this method uses the second lagged difference as an IV. Although this method provides 

consistent estimates, Arellano and Bond (1991) developed a more efficient estimator, called 

differenced GMM, in order to estimate a dynamic panel difference model using all suitably 

lagged endogenous and other exogenous variables as instruments in the GMM technique 

(Roodman, 2009a). Blundell and Bond (1998) further developed a strategy named system GMM 

to overcome dynamic panel bias. Instead of transforming the regressors to purge the fixed effects 

and using the levels as instruments, the system GMM technique transforms the instruments 

themselves in order to make them exogenous to the fixed effects (Roodman, 2009a). The 

estimator in the differenced GMM model can have poor finite sample properties in terms of bias 

and precision when applied to persistent series or random-walk types of variables (Roodman, 

2009b). The system GMM estimator allows substantial efficiency gains over the differenced 

GMM estimator provided that initial conditions are not correlated with fixed effects (Blundell & 

Bond, 1998). Thus, we use the system GMM method to estimate our dynamic supply models.  
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Several statistical tests are done to check the consistency of our preferred GMM estimator. First, 

the Arellano-Bond test for autocorrelation is used in order to test for serial correlation in levels. 

The test results, reported in the next section, indicate that the null hypothesis of no second-order 

autocorrelation in residuals cannot be rejected for nearly all production, acreage, and yield 

models, indicating the consistency of the system GMM estimators. Second, the Hansen test 

results cannot reject the null hypothesis of instrument exogeneity. We also conduct a test for the 

validity of the Blundell-Bond assumption using the difference-in-Hansen test of the two-step 

system GMM. The test statistics give p-values greater than 10% in all cases, suggesting that past 

changes are good instruments of current levels and that the system GMM estimators are more 

efficient. Furthermore, the standard error estimates for all specifications are robust in the 

presence of any pattern of heteroskedasticity and autocorrelation within panels. The Windmeijer 

(2005) two-step error bias correction is incorporated. Following Roodman (2009a, 2009b), we 

also “collapsed” the instrument set in order to limit instrument proliferation. 

3.7. Results  

3.7.1. Econometric results 

Table 3.4 and Table 3.5 present the GMM results of the production/acreage and yield response 

functions respectively. For each respective crop, we estimate the supply models using pre-

planting month spot prices and harvest period futures prices (except for rice) as proxy for 

expected prices at planting time.
22

 We failed to find a significant supply-price relationship using 

futures prices (except for soybeans), which could imply that many agricultural producers do not 

make use of information on futures prices in forming their price expectations. Indeed, futures 

prices are good proxies for expected prices for producers in countries where domestic prices are 

strongly linked to the futures prices—that is, where the maturity basis is constant. Although the 

farmers in advanced economies participate widely in futures markets and the futures prices are 

linked to the cash prices, this is not the case in many developing countries. Thus, we reported the 

results obtained from the specifications with spot prices. 

                                                 
22

 Rice futures markets have relatively short time-series data, and local prices are unlikely to be strongly correlated 

with futures prices in several countries. 
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Table 3.4. Estimates of production and acreage response 

Variable 

Production  Acreage 

Wheat Corn Soybeans Rice Wheat Corn Soybeans Rice 

Lagged dependent 

variable 0.96*** 0..96*** 0.93*** 0.99*** 

 

0.99*** 0.97*** 0.93*** 0.99*** 

 

(0.01) (0.04) (0.04) (0.02)  (0.01) (0.03) (0.03) (0.00) 

Wheat price 0.09** -0.03 -0.21***   0.08*** 0.01 -0.03*** 

 

 

(0.04) (0.06) (0.06)   (0.03) (0.01) (0.01) 

 Corn price 0.08 0.24** -0.04   -0.002 0.07*** -0.12*** 

 

 

(0.06) (0.11) (0.06)   (0.03) (0.02) (0.02) 

 Soybean price -0.02 0.06 0.36**   -0.05 -0.04* 0.15** 

 

 

(0.05) (0.06) (0.16)   (0.03) (0.02) (0.07) 

 Rice price -0.01 -0.14** -0.07 0.05***  

   

0.03** 

 

(0.03) (0.07) (0.06) (0.01)  

   

(0.01) 

Wheat price 

volatility -0.69** 0.16 0.44**  

 

-0.37** 0.12 -0.07 

 

 

(0.29) (0.28) (0.17)   (0.14) (0.15) (0.16) 

 Corn price volatility 0.49 0.30 -0.44**   0.25* 0.14 0.11 

 

 

(0.45) (0.23) (0.17)   (0.13) (0.09) (0.15) 

 Soy price volatility 0.36 -0.66 0.18   0.28** -0.11 0.22** 

 

 

(0.24) (0.57) (0.41)   (0.11) (0.13) (0.09) 

 Rice price volatility    -0.25**  

   

-0.11** 

 

   (0.11)  

   

(0.05) 

Fertilizer price -0.08** -0.01 0.05** -0.01  -0.01 -0.02 0.02 -0.01* 

 

(0.03) (0.02) (0.02) (0.01)  (0.01) (0.01) (0.03) (0.01) 

Time dummies Yes Yes Yes Yes  Yes Yes Yes Yes 

N 1 ,174 1,444 1,371 1,342  1,162 1,418 1,350 1,342 

F-test of joint 

significance: p-

value 0.00 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 

Test for AR(2): p-

value 0.15 0.15 0.07 0.09 

 

0.89 0.29 0.98 0.14 

Diff-Sargan test: p-

value 0.99 0.99 0.98 0.99 

 

1.00 0.99 0.99 0.98 
Notes: All regressions are two-step system GMM. Two-step standard errors clustered by country, incorporating 

the Windmeijer (2005) correction, are in parentheses. Yield deviations are included in the acreage response 

models as additional control variables. *, **, and *** represent the 10%, 5%, and 1% levels of significance. All 

the production and area response models are weighted by the global crop acreage share of the respective 

country. Sensitivity analyses where we estimated elasticities using panels excluding countries in the rest of the 

world (ROW) group provide consistent results. Rice price and volatility are excluded in the non-rice acreage 

response models since land for rice cultivation is not usually suitable for these crops; however, competition in 

production is possible through input substitution. 
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In general, production, acreage, and yield responses to own prices are positive and statistically 

significant, consistent with economic theory. The results suggest that higher output prices induce 

producers to increase acreage and to invest in improving crop yields, implying that global food 

supply response to prices appears to occur through both acreage and yield changes. The 

production responses to own prices are larger than the respective acreage and yield responses 

(with the exception of the wheat yield response). The acreage and yield own-price elasticities are 

mostly similar in their order of magnitude.  

The results show that soybeans and corn have the largest production responses to own-crop 

prices followed by wheat and rice. Conditional on other covariates, a 10% rise in the expected 

own crop price induces a production increase of about 4% for soybeans, 2% for corn, 1% for 

wheat, and 0.5% for rice in the short run. These production responses typically reflect the 

acreage and yield adjustments. An equivalent increase in the respective international crop prices 

induces farmers to increase their land allocated to soybean and corn cultivation by about 1.5% 

and 0.8%. Moreover, the yields of both soybeans and corn respond by an increase of about 1% 

following similar increases in international own crop prices. Global wheat acreage and yield also 

respond to output prices, with short-run elasticities of 0.08 and 0.17, respectively. In line with the 

production response results, rice has relatively weaker acreage and yield responses to own prices. 

Rice cultivation in some areas requires capital investment (such as canals and sluices) to ensure 

flooding at the time of planting. These investments are long-term decisions, implying that short-

run price responses are inevitably low.  

Additionally, the statistically significant cross-price elasticities have negative signs consistent 

with economic theory. Higher wheat prices are negatively correlated with soybean production, 

and corn producers respond to higher international rice prices by lowering corn production. The 

cross-price elasticities show that corn and soybeans compete for land at a global level, with a 

stronger corn price effect on soybean acreage than vice versa. In addition, higher international 

wheat prices lead to less land for soybean production.   

Unlike own crop price levels, own-price volatility does not have a uniform effect on the supply 

of all crops. Price volatility seems to affect wheat and rice production most. The results reveal 

that an increase in the volatility of international wheat and rice prices leads producers to allocate 
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less land to these crops and to reduce yield-improving investments, resulting in a decline in 

wheat and rice production. To some extent the negative wheat acreage response to own-price 

volatility could be offset if prices of competing crops such as corn and soybeans also exhibit 

such volatility. For corn, the negative supply impact of own-price volatility is due mainly to 

declining yields. While producers react to rising corn prices by using more inputs to improve 

corn productivity, corn price risk induces producers to shift inputs away from corn production. 

For soybean acreage, on the other hand, the estimated coefficients of wheat and own-price 

volatilities have a statistically positive sign. This result is consistent with previous national-level 

studies that find either insignificant or positive effects of price volatility on soybean acreage (e.g. 

de Menezes & Piketty, 2012). The majority of soybean producers in the world are large, 

commercial holders who are likely to be well informed about price developments. Thus, they are 

likely to be willing and able to absorb price risks.  

Table 3.5. Estimates of yield response 

Variable Wheat Corn Soybeans Rice 

Lagged dependent 

variable 0.92*** 0.96*** 0.93*** 0.98*** 

 

(0.03) (0.02) (0.04) (0.01) 

Own-crop price 0.17*** 0.09** 0.15*** 0.06*** 

 

(0.05) (0.04) (0.04) (0.01) 

Own-price volatility -0.34** -0.37** -0.47** -0.17** 

 

(0.16) (0.17) (0.23) (0.06) 

Fertilizer price -0.07** -0.01 -0.05** -0.03* 

 

(0.03) (0.02) (0.02) (0.01) 

Time dummies Yes Yes Yes Yes 

N 1,174 1,444 1,371 1,363 

F-test of joint 

significance: p-value 0.00 0.00 0.00 0.00 

Test for AR(2): p-value 0.05 0.43 0.08 0.13 

Diff-Sargan test: p-value 0.96 0.74 0.93 0.84 

Notes: All regressions are two-step system GMM. Two-step standard errors clustered by country, 

incorporating the Windmeijer (2005) correction, are in parentheses. *, **, and *** represent the 

10%, 5%, and 1% levels of significance.  

In addition to output prices, input prices are also important factors in farmers’ production 

decisions, as shown by fertilizer price elasticities. Higher international fertilizer prices not only 

have a negative effect on wheat production and rice acreage, but also hold down the yields of 
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nearly all crops. A doubling of international fertilizer price indices results in a 1% to 7% 

reduction in crop productivity.  

The lagged dependent variables were both statistically and economically relevant in all crop 

supply models. The estimated coefficients indicate producers’ inertia, which may reflect 

adjustment costs of crop rotation, crop-specific land (and other quasi-fixed and fixed inputs), 

technology, and soil-quality requirements. The coefficients of the lagged dependent variables 

may also, however, reflect unobservable dynamic factors, and interpretation should be made with 

caution (Hausman, 2012). The estimated coefficients of the lagged dependent variables are close 

to one, indicating that agricultural supply is much more responsive to international output prices 

in the longer term than in the short term.   

In summary, our empirical results align with previous work and with the global time series 

results in the previous chapter showing that agricultural supply is inelastic in the short run (refer 

to Table 2.6). Apart from the soybean supply elasticities, which are of the same order of 

magnitude, our estimated elasticities are smaller than the weighted average of the national-level 

estimates. Despite the positive response of national crop supply to international prices, this 

discrepancy may hint that supply responses to domestic prices are relatively stronger.  

3.7.2.  Simulation results 

The estimation of the price and volatility coefficients in Table 3.4 and Table 3.5 enables us to 

simulate the impacts of recent agricultural commodity price dynamics on acreage, yield, and 

production. To this end, we calculate the differences in the predicted outcome variables under the 

realized prices and under a counterfactual scenario where all output prices and volatility as well 

as fertilizer prices after 2006 are set equal to their 1980–2005 mean values. We consider only the 

direct short-term impacts and neglect the influence of the auto-regressive term, which would 

further exacerbate the changes in the long run. The results of these simulations are shown in 

Figure 3.1. and Figure 3.2. The net impact of increasing own and competing crop prices is a 1–

2% increase in the area under cultivation of wheat, corn, and rice. However, the effect of higher 

prices of competing crop prices on soybean acreage outweighs that of higher own prices. In 

contrast, increasing fertilizer price reduces acreage by comparable amounts, except for soybeans, 
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where it has a positive effect.
23

 The coefficient for volatility is statistically insignificant for corn, 

but higher volatility affects wheat acreage negatively and corn acreage positively.  

 

Note: The figure shows the impact of output and fertilizer prices, and output price volatility on acreage and 

yield compared with a counterfactual where these values were set to their long-term average. The net effect 

is calculated as the sum of the three components. The depicted rates refer to the net impacts during the 

five-year period 2006–2010. These changes are the direct short-term response, and they are the lower 

bounds for the longer-term effects as the coefficients of the autoregressive term are positive and closer to 

unity. 

Figure 3.1. Impacts of the 2006–2010 price dynamics on acreage and yield 

The overall impact of the 2006–2010 output and input price dynamics on acreage is estimated to 

be, on average, positive for corn and soybeans, negligible for rice, and slightly negative for 

wheat. The different price dynamics have greater impacts on yields, but because of strong 

opposing effects, the net impact is similar in magnitude to the impact on acreage allocation 

decisions. Own-price volatility tends to dampen yields by about 1–2% for the crops under 

consideration. 

We use two approaches to calculate the impact of price level and price volatility on production. 

First, we simulate the impact on production using the estimated coefficients analogously to the 

                                                 
23

 One explanation for this is that soybeans require less nitrogen fertilizer than the other crops, which makes it more 

attractive when fertilizer prices are high. 
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acreage and yield calculation (direct method). We also calculate the production impact from the 

acreage and yield simulations by using the identity that production equals the product of acreage 

and yield (indirect method). The basic difference between these approaches is that the first one 

estimates the overall production effect directly from the observed data whereas the second one 

relies on the two-stage decision process where acreage and yield decisions are temporally 

decoupled. The results from both procedures are shown in Figure 3.2. Although the quantitative 

effects differ slightly, the findings are by and large consistent. The largest deviation between the 

two approaches is visible for soybeans, where the direct approach gives opposite directions for 

volatility, own-price, and fertilizer price impacts compared with the indirect approach. This 

deviation occurs because these variables have opposite effects on acreage and yield. The indirect 

estimation is driven by the yield simulation results because the acreage impacts are small. 

According to the direct method, the net impact of the 2006–2010 price dynamics on production 

is about a 6.5% increase for soybeans, a 3% increase for corn, negligible for rice, and about a 3% 

decrease for wheat.  

 

Figure 3.2. Impacts of the 2006–2010 price dynamics on production 

In summary, the simulation results show that more volatile output prices and higher input prices 

have weakened the extent to which rising international agricultural commodity prices have 

increased output production since the middle of the last decade.  

-12%

-8%

-4%

0%

4%

8%

12%

D
ir

ec
t

In
d
ir

ec
t

D
ir

ec
t

In
d
ir

ec
t

D
ir

ec
t

In
d
ir

ec
t

D
ir

ec
t

In
d
ir

ec
t

Wheat Soybeans Corn Rice

Impact of volatility

increase

Impact of fertilizer

increase

Impact of price

increase

Net effect



 

75 

 

3.8. Conclusions 

Uncertainty is a quintessential feature of agricultural commodity prices. Besides the traditional 

causes of price fluctuations, agricultural commodities are increasingly connected to energy and 

financial markets, with potentially destabilizing impacts on prices (Tadesse et al., 2014). Using 

cross-country panel data for the period 1961–2010, this chapter investigates the global supply 

impacts of international price levels and volatility. Estimation of the recent supply response to 

input and output price levels and output price volatility is a necessary step in predicting the 

future global food supply effects of developments in output price levels and volatility. In 

addition to responding to price changes by reallocating acreage, producers react to expected price 

changes by making decisions that affect yields.  

The results underscore the relevance of output price volatility for the supply of the key global 

agricultural staple crops. Although higher risk in prices is usually associated with higher returns, 

economic theory shows that output price risk is detrimental to producers (Sandmo, 1971). 

Coefficients for the price-risk variables are statistically and economically significant in the 

supply response models for wheat and rice and in the yield response models for all crops. 

Besides inducing producers to shift land away from wheat and rice cultivation, higher output 

price volatility weakens their incentive to invest in yield improvement. For corn, own-crop price 

volatility has little or no impact on acreage allocation, but it has a negative impact on yield. 

Consequently, reducing agricultural price volatility is likely to increase food supply in the world 

and, more importantly, in developing countries. Some agricultural producers, however, do not 

shy away from making investments in order to obtain the higher returns associated with higher 

price risks. Such producers need not be hurt by output price volatility. The findings of the present 

study suggest that this is the case for the majority of soybean producers in the world. This result 

is relevant for policy makers because it suggests that a one-size-fits-all approach to price 

volatility management—such as through stockholding or public price risk insurance systems—

would not be appropriate. 

This chapter explains why the current high food prices have not brought about a large increase in 

global agricultural supply as one might expect. The estimated short-run supply elasticities are 

generally small. Agricultural supply does not, in the short run, increase on a par with output price 

increases. In other words, agricultural producers need more time to make necessary production 
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adjustments and investments to increase supply. Furthermore, this study identifies for the first 

time how much the increased latent output price uncertainty represented by price volatility 

weakens the global positive supply response.  
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4. Short-term acreage forecasting model for staple food commodities  

Abstract 

The global supply of major grains like wheat, corn, and soybeans depends, particularly in the 

short term, on the acreage devoted to each of these crops and the yield obtained. Forecasting 

production is important to identify possible shortages in food supply and, thus, food security 

risks. Forecasting production, however, is also important for improved input allocation planning 

which affects agribusiness and the input supply industry. This paper explains methods and data 

used to forecast acreage response for major global producer countries. We focus on forecasting 

acreage – one of the two major determinants of grain production – three months before planting 

starts. According to basic economic theory, crop and input prices are used as major explanatory 

factors for acreage decisions: prices convey much information on agricultural fundamentals that 

are difficult to observe and quantify directly. One particular characteristic of the underlying 

study is that for each country and each crop the respective determinants are identified and used 

for forecasting. This allows us to account for the large heterogeneity in the countries’ 

agricultural, political and economic systems in a country-specific model specification. The 

performance of the forecasting tool is assessed with ex-post prediction of acreage against 

historical data.   Our forecasting tool includes major producer countries including USA, Brazil, 

Argentina, and the Russian Federation. All data, except the futures prices that are accessed from 

the Bloomberg database, are publicly available in the countries’ respective agricultural statistical 

agencies. 

Key words: Acreage forecasting, short-term acreage response, international prices, crops, price 

expectations 
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4.1. Introduction  

The purpose of this chapter is to develop a short-term acreage response model for key crops, 

namely corn, soybeans, and wheat for selected major producing countries. In general, 

agricultural producers respond to own and competing output prices, input prices, price volatility, 

and other variables (Chavas & Holt, 1990; Coyle, 1993). Some variables such as rainfall and 

unexpected policy changes may not be available in advance. Thus, our estimations include the 

most important variables that are observable about three months before the planting season starts. 

Producers respond to prices and other factors in terms of their land allocation for different crops 

at planting time  (Just & Pope, 2001). Since harvest prices are not realized at the time of 

planting, producers need to form their price expectations about harvest-period prices. Depending 

on the respective countries and crops, we considered planting time cash prices and futures prices 

in order to proxy producer’s expectations in the acreage response models. These prices contain 

more recent price information for producers and they are also closer to the previous harvest 

period, conveying possibly new information about the future supply situation. Besides own and 

competing crop prices, we considered the previous year’s area, time trend as well as fertilizer 

and oil prices. Since global agricultural markets exhibit high frequency volatility, an annual 

model would do little to capture such intra-annual price dynamics and shocks. Thus, we 

developed an econometric model that enables us to forecast the planted area of each crop using 

intra-annual data. We have developed country and crop specific acreage response model 

specifications. This allows us to account for the large heterogeneity in the countries’ agricultural, 

political and economic systems in a country-specific model specification.  

Forecasting acreage before planting ensues is crucial for several reasons. First, it serves as an 

indication of how much food will be produced in the subsequent harvest season in the respective 

countries and for the respective crops. The selected countries and crops in our acreage 

forecasting model are major exporters and key staple crops in many countries, respectively. In 

other words, forecasting the amount of area allocated to these crops hints at the availability of 

food (a shortfall or an excess) at the international market, which has implications for global food 

security. For a given yield per hectare of land, forecasting acreage is an important first step in 

understanding and forecasting the entire production of the major crops. Second, it provides key 
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information for input and crop protection supply industries to adapt their productions 

accordingly.  

Our short-term models were validated by using historical data. As will be discussed later, in most 

cases our estimations have the right directional changes, and the confidence intervals provide a 

good assessment of the likely range.  

4.2. Methodology 

4.2.1. Acreage response model 

A basic econometric supply model explaining acreage of a certain crop is formulated as a 

function of its own and competing crops’ harvest-time prices, input prices and other exogenous 

factors. The producers make their optimal crop acreage choices subject to output prices that are 

not known at the time when planting decisions are made. Thus, expected rather than realized 

output prices are used for decision making. Information and expectations change rapidly in the 

course of a year and models that proxy expectations on previous annual average prices cannot 

capture short-term effects. As a consequence, we consider intra-annual price information in order 

to proxy producers’ price expectations in our empirical acreage response models. Second, when 

applicable, the prior-to-planting season futures prices that mature at harvesting time are used to 

represent farmers’ price expectations. In efficient markets, futures prices are an unbiased 

estimator of spot prices when the future contract matures (Gardner, 1976; Liang et al., 2011). 

When no futures prices are available (for example, in countries where commodity exchanges are 

missing), spot prices also convey relevant information about expected future prices due to 

intertemporal arbitrage of grain storage: If stocks are non-zero, current spot prices are in 

equilibrium with future prices and a change of expected future prices leads therefore to a change 

of spot prices (Fama & French, 1987; Hernandez & Torero, 2010). 

Following the preceding two chapters, the implicit acreage response model can be specified as 

follows: 

𝐴𝑡,𝑖 = 𝑓[𝐴𝑡−1,𝑖, 𝐸(𝑝𝑡,𝑖), 𝐸(𝑝𝑡,𝑗≠𝑖), 𝑣𝑜𝑙(𝑝𝑡,𝑖), 𝑍𝑡 , 𝑡]                 (4.1.) 

where, 𝐴𝑡,𝑖 and 𝐴𝑡−1,𝑖   are planted acreages of crop i at period t and t-1, respectively; 𝐸(𝑝𝑡,𝑖) and 

𝐸(𝑝𝑡,𝑗≠𝑖) are expected harvest time price of own crop i and competing crop j, respectively; 
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𝑣𝑜𝑙(𝑝𝑡,𝑖) is own crop price volatility; 𝑍𝑡 refers to variable input prices, namely fertilizer or crude 

oil prices; and 𝑡 is a linear time trend in order to capture the effects of smooth over time trends 

including technological and demand changes. 

Price expectations contain information that is relevant for farmers in their production decisions. 

Information regarding inventories, weather conditions, trade and other policies are implicitly 

accounted for in producers’ price expectations. We, therefore, consider output prices to be the 

most important variable to shape farmers acreage allocations. Figure 4.1 shows how the intra-

annual acreage allocation decisions of a typical US farmer might be affected by several factors. 

Having information about winter wheat harvest in the US itself and (partial) spring harvest of 

corn and soybeans in major producers in the South (e.g. Brazil, Argentina), a US farmer adjusts 

his price expectations for planting soybeans and corn in the spring season – which will be 

reflected in the US futures prices and spot prices. Therefore, crop prices two to three months 

before planting as well as futures prices contain such important information for the farmer. 

 

Figure 4.1. Intra-annual acreage allocation of a typical US farmer 
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4.2.2. Data and country profiles 

The acreage forecasting model in this chapter relies on data from different sources covering the 

period 1991-2013. The empirical model utilizes country-level data to estimate global acreage 

responses for the key world crops. The national level sources of planted acreage for those 

countries where we have obtained planted acreage are presented in the Appendix (Table A9). 

However, for countries where could not obtain planted acreage, we instead use harvested acreage 

obtained from Food and Agriculture organization (FAO) of the United Nations, the United States 

Department of Agriculture (USDA), or from governmental sources as a proxy. Table 4.1 shows 

the correlation between harvested and planted area for those countries where we have obtained 

acreage planted data from national statistical offices. The correlation coefficients are mostly 

(except in the case of wheat for the USA) close to unity, indicating that data on harvested 

acreage can be used as good proxy for planted acreage in our econometric models. The 

international spot market output prices, crude oil prices and fertilizer price indices were obtained 

from the World Bank’s commodity price database.  

Table 4.1. Correlation coefficients of planted and harvested area data 

Country/crop 

Correlation coefficient 

Wheat Soybean Corn 

Argentina 0.99 0.96 0.98 

Australia 0.88   

Brazil  0.96 0.99 

Canada 0.89   

United States 0.76 0.99 0.99 

Note: correlation coefficients were calculated using harvested area data obtained from FAO-AMIS and 

planted area from national statistical sources for the period 2000–2013. 

We include the major producing countries of the selected crops in our acreage forecasting 

models. For instance, about 70% of the global area under soybean cultivation is found in just 

three countries, namely, USA, Brazil, and Argentina. While the United States has been the 

dominant producer of soybeans for a long time, large soybean expansions are observed in Brazil 

and Argentina over the recent decades. According to data from the Foreign Agricultural Service 

(FAS) of the USDA, the two countries alone account for half of the total soybean production in 

the 2013/2014 marketing year. The other countries for which we have attempted to make 
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soybean acreage forecast is Ukraine since it is a country with one of the fastest soybean acreage 

expansions in the last few years. Wheat and corn, on the other hand, are produced in relatively 

more diversified countries and geographical zones. Nevertheless, about a third of the global 

planted acreage of corn is found in the USA and Brazil; and about a fourth of the global planted 

acreage of wheat is found in the USA and the Russian Federation. There are two seasons for corn 

in Brazil: while the first is harvested early in the calendar year, the second is harvested in the 

beginning of the northern hemisphere summer. There seems to be a tendency of moving to the 

second corn in Brazil in recent years. In summary, the countries for which we conducted acreage 

forecasting constitute about 70%, 40% and 35% of the global area under soybean, wheat and 

corn cultivation, respectively (Figure 4.2).  

 
Figure 4.2. Acreage share of countries included in our forecasting tool 

4.2.3. Estimation technique 

For the empirical estimation, we apply a reduced form Autoregressive Distributed Lag (ARDL) 

acreage response model: 

𝐴𝑡,𝑖 = 
0,𝑖

+ 
1

𝐴𝑡−1,𝑖 + ∑ 𝑖𝑗𝐸𝑡(𝑝𝑖𝑗)𝑛
𝑗 + 

2
𝑍𝑡−1,𝑖 + 𝑡 + 휀𝑡,𝑖                        (4.2) 

where the variables are as defined above.   
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Our general procedure is to have different model specifications for each country and each crop 

based on the crop calendar
24

 and other characteristics of the country (i.e. regarding planting and 

harvesting time, existing of futures exchange, relevance of competing crops etc.). This gives us a 

set of a priori specifications based on theoretical considerations. We then run regression models 

on these specifications with different crop prices (e.g. domestic wholesale spot prices, futures 

prices, international spot prices) and input prices (fertilizer and oil prices). After testing several 

model specifications, we ultimately chose the model with the highest predictive power adjusted 

for the number of considered variables (adjusted R-squared) and with the smallest root mean 

squared error (RMSE). The final model is the one which explains acreage the best with the 

minimum necessary data input. 

Some land is more appropriate for a certain crop than for another, and producers might have to 

incur adjustment costs to rotate land for crops. Therefore we expect a positive coefficient on last 

year’s own crop acreage. While higher own crop prices imply larger expected profits (positive 

coefficient), higher prices of competing crops induce producers to shift land away from the 

respective crop (negative coefficient). Fertilizer and oil prices indicate production costs and the 

higher such costs, the lower the incentive to cultivate more land. Thus we expect a negative 

coefficient for these variables. However, higher oil price also indicates more demand for biofuel 

and we may have a positive coefficient, especially for corn. High fertilizer prices may also have 

a positive effect on the acreage of some crops. This is typically the case for soybeans. Soybean 

production requires little or no nitrogenous fertilizer and higher fertilizer prices therefore may 

imply that it is less costly to cultivate more land for soybean production, shifting away from 

crops with large fertilizer demand. Large output price variability introduces a risk for producers 

and this may induce farmers to shift land to crops with less volatile prices
25

. Last but not least, 

the time trend measures the effect of smooth changes such as population, income and technology 

on crop acreage over time. With the coefficients of these variables for each country and each 

crop, it would then be possible to forecast acreage.  

For all of the variables in the autoregressive distributed lag models for the area forecasts, the 

values have been transformed into their logarithmic formats in the econometric models. Hence, 

                                                 
24 Refer to Tables A5-A8 in appendix I for the crop calendar information of these countries. 
25

 Since we have few observations, we exclude the price volatility measure in our country-specific empirical model 

specifications.  
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the estimated coefficients can be interpreted as acreage elasticities. Therefore, to calculate the 

total area, one cannot just take the exponential of the estimated logged variable. Instead, if the 

equation is of the ARDL form given above, one has to calculate 

�̂� = �̂�0 exp(𝑙𝑜𝑔 �̂�)                                                     (4.3) 

where the “hat” specifies the estimated variables and  

�̂�0 =
1

𝑛
∑ exp 휀�̂�

𝑛
𝑖=1                                                       (4.4) 

where n is the total number of observations (Wooldridge, 2009) 

We conducted the Augmented Dickey-Fuller (ADF) unit root test in order to check the 

stationarity of the variable series in our acreage models for each crop and country. The results 

from the ADF test are reported in Table 4.2 for each crop. The test results have four different 

outcomes, with different implications for the consequent estimation technique.  

First, all the variable series in some acreage model specifications are mean-stationary. This is, 

for instance, the case for the variables in the Argentine soybean acreage model. Accordingly, we 

run an OLS regression on level variables. Second, the dependent variable is stationary whereas 

all the independent variables (except the lagged dependent variable) are no-stationary series. 

This is the case for all crop acreage response models in Ukraine; wheat in the US and the 

Russian Federation; and Corn in Mexico. In such circumstances, including lagged values of the 

dependent and independent variables as regressors helps to avoid the problem of spurious 

regression. Since we have both the lagged dependent and independent variables as explanatory 

variables in our specifications, our estimated coefficients are asymptotically consistent.  

Third, neither the dependent nor the independent variables are mean stationary (they are 

integrated of order one); however, they are cointegrated in the long-run. In other words, they 

have a stationary linear relationship. Table 4.3 provides the cointegration test results based on the 

Engle and Granger’s two-step procedure (Engle & Granger, 1987) for country and crop 

combinations with all I(1) variable series from the first step ADF results (see Table 4.2). In our 

case, the variables in the empirical models of corn in Argentina, Brazil (2
nd

 corn), and the US; 

wheat in Canada and Kazakhstan; and soybeans in Brazil and the US have such results.  In such 
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circumstances, OLS estimation is super consistent and the estimated coefficients converge to the 

true parameters much faster than otherwise. 

Table 4.2. Unit root (ADF) test statistics (Ho: unit root) 

Corn 

Variable Corn 

acreage  

Wheat 

price 

Corn 

price 

Soy 

price 

Fertilizer 

price 

Oil price 

Argentina -1.99  -2.29   -2.27 -0.91 0.09 

Brazil 1
st
 Corn     -1.61 -1.78 -1.59  

2
nd

 Corn -2.29  -1.27  -1.15  
Mexico -3.75  -1.25  -0.91 -0.22 

Ukraine -3.48  -0.10  0.98 0.24 

USA -2.64  -1.39 -1.61 -1.76 -0.86 

Wheat 

Variable Wheat 

acreage 

Wheat 

price 

Corn 

price 

Soy 

price 

Fertilizer 

price 

Oil price 

Argentina -2.74 -1.62    -0.96   
Australia -2.82 -2.37   -1.01 -0.86    

Canada -2.47 -1.46     
Kazakhstan -2.72 -1.72 -1.41    -0.96 -0.24 

Russian Federation -3.45 -1.52 -1.32   -0.24 

Ukraine -4.06 -1.64 -1.13 -1.04  -0.98 

USA -4.29 -1.09   -1.76 -0.86 

Soybeans 

Variable Soy 

acreage 

Wheat 

price 

Corn 

price 

Soy 

price 

Fertilizer 

price 

Oil price 

Argentina −5.22  −2.71   −2.69 −0.91  
Brazil −2.78  −2.06 −1.93 −1.76  
Ukraine −3.41 -1.16 −0.10 −0.86 −0.98  
USA −2.54  −1.71 −1.82 −1.76 −0.86 

Critical value (10%) −3.20 −2.62 −2.62 −2.62 −2.62 −2.62 
Notes: Critical values are taken from Fuller (1976, p. 373). The results are ADF tests with one lag and 

with time trend for the acreage variables whereas we add no lag but a drift for the price variables.   

Last but not least, neither are any of the variable series in the acreage models stationary (Table 

4.2) nor are they cointegrated (Table 4.3). The variables in our wheat acreage response models 

for Argentina and Australia, and those of 1
st
 corn in Brazil as well as their linear relationships are 

all I(1) series. Thus, we included the first order difference of the I(1) variables in these models to 

avoid spurious regression results.  
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Table 4.3. Cointegration test results (Ho: no cointegration) 

Country Crop T-statistic 

Argentina Corn -5.08 

 Wheat -2.51 
 

Brazil 1
st
 corn -1.43 

 2
nd

 corn  -3.32 

 Soybeans -3.24 
 

Australia Wheat -1.41 
 

Canada Wheat -4.46 
 

USA Corn -3.77 

 Soybeans -3.49 
 

Kazakhstan Wheat -3.20 

Critical value  3.20 
Note: The alternative hypothesis (H1) is that there is at least one cointegration 

relationship in the long run.  

Moreover, because the lagged endogenous variable implies autocorrelation in our econometric 

estimations, we employed the Newey-West autocorrelation adjusted standard errors. 

Limitations/Caution with regard to our acreage forecast 

It is important to be aware of the limitations of our model approach, especially with regard to our 

forecasting results.  The limitations of the model are typically due to limited data availability: 

either because we can use only few observations over time or because we use only aggregated 

national data.  

As the model is based on prices as the most important (and easily measureable) determinants of 

supply response, it will have limited predictive power in cases where non-price factors are more 

important. This is the case if governments implement ad-hoc policies and controls; if farmers 

produce crops mainly for their own consumption; if farmers have limited market access; if 

farmers selling prices are systematically different from the reference prices we consider (e.g. in 

case of imperfect price transmission or non-convergence of futures and spot prices); or if other 

subsidies and taxes dilute the incentive role of prices.  

As explained above, spot prices at planting time are often good proxies for expected futures 

prices as there is an intertemporal dynamic relationship between the two price series. This 

relationship, however, can change if interest rates, storage costs or storage policies change and if 
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stocks are depleted. Finally, our model assumes a stable relationship between acreage and the 

explaining factors. In countries that experience large transformations of the agricultural sector, 

the elasticities on price are likely to change over time. For example, we would expect that in a 

former socialist country (with a centrally planned economy) which has changed to a 

decentralized market economy experience increasing supply elasticities as farmers respond more 

and more to prices during the transformation process. In our model, we assume average price 

elasticity for the entire time horizon. Nevertheless, we have typically considered periods after 

1991 in order to reduce this problem. Changing elasticities requires updating of the regressions 

every couple of years to avoid biased forecasts, which is not feasible with few observations. 

4.3. Results and discussion 

In this section, the results of all three crops and all countries for which we have conducted 

acreage forecasting are presented.  

4.3.1. Estimation results 

Tables 4.4−4.6 present the ARDL model estimation results for corn, wheat and soybean acreages 

respectively. In general, the regression estimates illustrate that own and competing crop prices 

have positive and negative coefficients respectively, consistent with economic theory. 

One can see from Table 4.4 that corn acreage responds to its own prices with elasticities that 

range from 0.1% in Mexico to as high as 0.6% for second Corn in Brazil. A 10% higher corn 

price, for instance, leads to an expansion in corn acreage by about 4% in Argentina, 2% (1
st
) and 

6% ( 2
nd

) in Brazil, 1% in Mexico, and above 3% in the US. Not only is the price response of the 

2
nd

 corn (also called Safrinha) in Brazil stronger, its acreage is also increasing at annual rate of 

6%. As a consequence, area under cultivation of Safrinha corn in Brazil took the lead over the 

first corn (also called Safra) during the 2012 planting season. While corn acreage negatively 

responds to fertilizer price index, it has positive albeit mostly statistically insignificant response 

to international crude oil prices. As it is theoretically expected, high (input) fertilizer price 

reduces producers’ profit expectations and they tend to shift land away to crops with little or no 

fertilizer demand. High crude oil price, on the other hand, has two opposite effects. On the one 

hand, higher oil price implies large production cost and hence its effect is expected to be 

negative. On the other hand, higher oil price imply larger demand for biofuel, and hence for corn, 
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and hence its acreage effect is positive. The net effect seems to be statistically negligible in our 

empirical estimations except for Corn in Mexico where the latter effect outweighs.  

Table 4.4. Estimation results for corn 

Variable Argentin

a 

Brazil Mexico Ukraine USA 

1
st
 Corn 2

nd
 Corn 

Last year area 0.76*** -0.59** 0.20 -0.47** -0.24 -0.01 

 (0.09) (0.19) (0.14) (0.21) (0.29) (0.14) 

Own crop price 0.41** 0.21* 0.57*** 0.10* 0.34 0.34** 

 (0.19) (0.11) (0.10) (0.05) (0.26) (0.10) 

Soybean price -0.41** -0.32**    -0.16* 

 (0.19) (0.14)    (0.11) 

Last year fertilizer price  0.22** -0.28*** -0.12*** -0.24 -0.03 

  (0.08) (0.07) (0.04) (0.28) (0.03) 

Last year oil price 0.06   0.11** 0.50 0.03 

 (0.04)   (0.04) (0.48) (0.03) 

Time trend  -0.004*** 0.06*** -0.02*** 0.05 0.003 

  (0.002) (0.01) (0.005) (0.04) (0.002) 

Constant 2.06** 6.96* -119.36*** 59.33*** -92.16 4.16 

 (0.73) (3.66) (24.34) (12.11) (69.73) (3.74) 

N 24 23 23 21 21 28 

Adjusted R-square 0.77 0.89 0.98 0.71 0.73 0.85 
Notes: Figures in parentheses are Newey-West autocorrelation adjusted standard errors.   

*P < 0.10, **P < 0.05, ***P < 0.01. 

Although elasticities are smaller than for the corn acreage model, wheat acreage in the different 

countries exhibits a positive response to own prices (Table 4.5). Price elasticties of wheat 

acreage range from about negligible in Kazakhstan to about 0.3% in the Russian Federation. It is 

also interesting to see that wheat acreage in these countries has a decreasing trend over time. It is 

also noteworthy to mention the positive coefficient of the international oil price variable on the 

wheat acreage models of Kazakhstan and the Russian Federation, which is contrary to our 

expectations. One explanation could be that larger export revenues as a result of higher 

international oil prices have a substantial share in national income of these countries and these 

might (partly) be invested into agriculture. 
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Table 4.5. Estimation results for wheat 

Variable Argentina Australia Canada Kazakhstan Russia Ukraine USA 

Last year area -0.09** -0.22 0.39* 0.40*** -0.35*** -0.20 0.49** 

 (0.17) (0.19) (0.20) (0.08) (0.12) (0.22) (0.21) 

Own crop price 0.14 0.14* 0.12*** 0.03 0.26*** 0.35 0.13** 

 (0.26) (0.08) (0.04) (0.10) (0.07) (0.24) (0.06) 

Soybean price 0.18     -0.31  
 (0.35)   -0.04  (0.48)  

Corn price    (0.08) -0.29*** -0.19  
     (0.07) (0.27)  

Last year fertilizer 

price  
 0.21** 

(0.09) 
 -0.07 

(0.05) 
 0.32 

(0.35) 

-0.08** 

(0.04) 

Last year oil price  -0.24**  0.23*** 0.24***  -0.01 

  (0.11)  (0.06) (0.06)  (0.03) 

Time trend -0.01 -0.001 -0.01** -0.01** -0.02*** -0.01 -0.005 

 (0.01) (0.003) (0.005) (0.004) (0.004) (0.02) (0.003) 

Constant 26.25 2.04 33.92** 26.02** 49.15*** 24.42 15.49* 

 (16.00) (3.94) (12.35) (9.80) (10.42) (35.51) (8.71) 

N 20 24 24 21 21 21 28 

Adjusted R-square 0.54 0.43 0.78 0.69 0.60 0.21 0.84 
Notes: Figures in parentheses are Newey-West autocorrelation adjusted standard errors.  

*P <0.10, ** P <0.05, *** P <0.01. 

In terms of the results from the soybean acreage response model, Ukraine seems to have the 

largest response to both own and competing crop prices. Soybean acreage in Ukraine seems to 

have a unitary positive own price elasticity, indicating that a 10% higher own crop price induces 

a 10% soybean acreage expansion. Soybean acreage in all the four countries in Table 4.6 does 

exhibit a strong upward trend, with annual growth rates ranging from 1% in the US and as high 

as 10% in Ukraine. Besides the strong price response, the results show that demand and other 

technological changes might have contributed to the acreage expansion of soybeans in Ukraine. 

Such smooth over-time changes, for instance, increases in population, income, and technology, 

seem to bring about higher land demand for soybean production in all these countries.  
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Table 4.6. Estimation results for soybeans 

Variable Argentina Brazil Ukraine USA 

Last year area 0.76*** 0.62** 0.81*** 0.44* 

 (0.13) (0.22) (0.08) (0.20) 

Own crop price 0.03 0.14 0.95* 0.13 

 (0.10) (0.17) (49) (0.10) 

Corn price -0.04 -0.02 -0.67*** -0.17* 

 (0.10) (0.17) (0.21) (0.09) 

Wheat price   -0.99**  
   (0.43)  

Last year fertilizer price  -0.08 -0.17** -012 0.05* 

 (0.05) (0.08) (0.26) (0.02) 

Last year oil price    -0.07** 

    (0.03) 

Time trend 0.02* 0.03** 0.10*** 0.01** 

 (0.01) (0.01) (0.02) (0.005) 

Constant -39.64* -48.12** -191.82*** -16.77** 

 (22.32) (20.41) (43.55) (7.44) 

N 24 23 21 28 

Adjusted R-square 0.98 0.97 0.98 0.86 
Notes: Figures in parentheses are Newey-West autocorrelation adjusted standard errors.   

*P <0.10, ** P <0.05, *** P <0.01. 

4.3.2. Forecasting results (out-of-sample forecast) 

Figure 4.3 depicts the validation of the acreage forecasting model using historical data for corn, 

wheat and soybeans in the upper, middle and bottom panel of the graph, respectively. Depending 

on the respective crop’s planting season and availability of data (3 months before planting), the 

figures also show out-of sample acreage forecasts.  

In general the predicted acreage is correct in terms of direction. Moreover, the actual data points 

are mostly in the 90% confidence interval, showing good prediction power when validated with 

historical data. While the corn acreage response models in Argentina, the US and Brazil have 

good prediction power, those of Mexico and Ukraine have a wide error margins implying less 

reliable out-of-sample forecasts.  
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Figure 4.3. Forecasting and validation of acreage response model estimations 
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Similarly, one can observe relatively better acreage prediction in the case of soybeans. Besides 

the R-square value which is relatively high for soybean acreage, the graph also shows that the 

observed data points are very close to the predicted line, especially for Argentina and Brazil. 

Apart from the 2007 planting season, the soybean acreage response model is also able to fairly 

predict planted acreage in the US.   

4.4. Conclusions  

The main results of our empirical forecast models are depicted in Tables 4.4−4.6. A substantial 

part of our analysis in this chapter has been to identify the relevant determinants of acreage 

supply for each crop and country and to select the model which provides the best prediction 

power (high explanatory power) with few input data requirement. These acreage elasticity results 

are also important robustness checks for the worldwide aggregate acreage elasticity estimates of 

Chapters two and three above. Based on the results, the world-wide aggregate results can be said 

to adequately show an average effect of prices on acreage for each crop. The country specific 

acreage elasticities can be used as inputs in acreage forecasting applications for the respective 

countries and crops. To this end, an Excel-based user interface, which uses the information from 

the country-specific acreage results, is established to calculate the forecasted area based on the 

relevant current information.   

With the help of the results reported above, it is possible to identify two groups of markets 

(Table 4.7): those with high price responsiveness (where prices key drivers of acreage) and those 

with strong time trends (where acreage growth can be expected even when prices are changing 

slowly). Markets with high price responsiveness (i.e. own-price elasticity higher than 20%) 

include: Corn in Argentina, Brazil (both 1
st
 and 2

nd
 corn), the US, and Ukraine; wheat in the 

Russian Federation and Ukraine; and soybeans in Ukraine. Countries and crops where acreage is 

expected to grow/decline by more than 2% per year (without any changes in prices or costs) 

include: Corn in Brazil (2
nd

 corn) and Ukraine; soybeans in Argentina, Brazil and Ukraine; and 

wheat in Russian Federation. In these cases, acreage expansion/shrinkage can be expected even 

if prices remain stable or are slightly decreasing. 

Input costs (fertilizer prices) are in most cases insignificant – one reason might be that 

international fertilizer prices are not strongly linked to national prices due to government 



 

93 

 

subsidies in some countries. Fertilizer prices reduce soybean and wheat acreage in Argentina, 

and soybean and 2
nd

 corn acreage in Brazil. Higher oil prices also reduce wheat acreage in 

Australia and that of soybeans in the US. On the other hand, increasing oil prices boost 

extensification in Kazhakstan and Russian Federation – where revenues from oil exports have a 

substantial share in national income and might be (partly) invested into agriculture.  

Table 4.7. Overview of the price sensitive markets and the markets with strong time trends 

Crop Price sensitive markets Markets with strong time 

trends 

Corn 
 

Argentina (0.41) 

Brazil (1
st

: 0.21, 2
nd

: 0.57) 

USA (0.34) 

Ukraine (0.34)a 

Brazil (2
nd

: 0.06) 

Mexico (-0.02) 

Ukraine (0.05)a 

Wheat Russia (0.26) 

Ukraine (0.35)a 

Australia (0.03) 

Russia (0.02) 

      Argentina (0.02) 

Soybeans Ukraine (0.95) Brazil (0.03) 

Ukraine (0.10) 

Note: The respective coefficients are given in parentheses.
  

a 
These coefficients are not statistically significant at the 5% level. 

While we are able to explain historical acreage fluctuation well for most countries and crops, 

forecasting power is weak for some particular cases. Our model, for instance, has weak 

explanatory power for wheat acreage in Ukraine. Nevertheless, we are able to adequately explain 

historical acreage decisions and to give a timely forecast for the upcoming planting season based 

on the currently and publicly available data in the remaining cases. The calculated point forecast 

is extended by an interval estimation which helps to assess the likely range of the acreage 

allocation. This is important to appropriately deal with uncertainties and risks as forecasts are 

usually uncertain. 

It should be kept in mind that the forecast is primarily based on price movements as a major 

determinant of acreage. The forecasting tool could therefore be extended by further market 

analyses based on broader political and economic factors as well as short-term weather events, 

which are not accounted in by prices but that could potentially influence acreage decisions.  

 



 

94 

 

5. Price expectation formation of smallholder farmers in Ethiopia: The role 

of information 

Abstract 

Economic agents use different information when making decisions on their economic activities. 

Given the intrinsic feature of agriculture that there is a time lag between production decision and 

output realization, price expectation plays a crucial role in the production, marketing and 

agricultural technology adoption of farmers. The empirical findings show that information 

regarding current and past output prices in nearby grain markets, central wholesale prices and 

seasonal rainfall shapes smallholders’ price expectations. Moreover, the results suggest that 

farmers who invest more in acquiring better price information and who reside closer to grain 

markets are more likely to have smaller price forecasting error margins. On the contrary, farmers 

with high discount rates are more likely to have larger forecasting errors. Accordingly, it might 

be necessary for the government to provide market information as a public good through 

organized market information systems. Thus, improving both information and physical 

infrastructures is important. Agricultural extension agents could assist in the process by 

disseminating timely and accurate output and input price information from nearby grain markets 

to farmers in local villages. 

Keywords: Price expectations; prediction accuracy; information set; smallholders, agriculture; 

Ethiopia 

JEL code: D81; D84; Q11; Q13 
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5.1. Introduction  

Economic agents use different information when making decisions on their economic activities. 

Among many, past trends, outcomes in related markets, media reports, weather and published 

forecasts are some of the information that agents use in their resource allocation decisions (Just 

& Rausser, 1981). The intrinsic feature of agriculture that there is a time lag between production 

decision and output realization makes the role that information plays for agricultural producers 

indispensable. Besides, agricultural production is inherently stochastic due to weather shocks, 

pest infestations and other shocks, which affect the general market supply condition and 

therefore prices. Thus, agricultural producers depend on their price expectations in order to make 

their production decisions. Farmers, therefore, involve themselves in gathering and processing 

price and other information, which they believe affects prices at harvesting time. Producers’ 

price expectations play a crucial role in any agricultural supply response study (Moschini & 

Hennessy, 2001). Thus, understanding what information set producers use and modelling how 

this information set is utilized in their production decisions have been an integral part of 

agricultural supply response models (Fisher & Tanner, 1978; Holt & McKenzie, 2003).  

The information set and the relevance of each of the constituting elements widely vary across 

producers depending on their access to information, education level, geographical context and 

their ability in processing information (Chavas, 2000). This chapter focuses on smallholders in 

rural Ethiopia where published price forecasts are non-existent and where literacy rate is quite 

low. Nevertheless, as any other agricultural producer, these rural households have their own 

information set to form price expectations on which they base their agriculture production 

decisions. Smallholder farmers are dynamic actors who respond to economic incentives and risks 

that they perceive in their environment (von Braun, 2004). Although availability of information 

depends on government actions as well as institutional and technological innovations, it was 

since long time ago that studies indicated the efficiency of smallholder farmers in their resource 

utilization (Schultz, 1964). By his seminar research in 1964, Schultz clarified that smallholders 

are efficient nevertheless poor. This study attempts to understand the information resource 

relevant to such farmers and how efficiently they utilize the available information in their price 

expectation formations.  
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Several approaches have been applied to model expectations of economic agents. Naïve, 

adaptive and rational expectations are the most commonly applied approaches in agricultural 

markets. The naïve expectation hypothesis (Ezekiel, 1938) assumes that future prices will be the 

same as current prices. Thus, a naïve farmer forms his expectation about futures prices based on 

the prices today. The adaptive expectation hypothesis (Nerlove, 1956), on the other hand, 

assumes that price expectations evolve overtime in the sense that farmers make adjustments in 

their expectations depending on past errors. The adaptive price expectation model is consistent 

with the moving-average process by which economic agents learn from their past behavior. The 

other expectation hypothesis, which has been dominant since the 1960s, is the rational 

expectation hypothesis (Muth, 1961). The rational expectation hypothesis, in its strong sense, 

assumes that expectations are consistent with the underlying market structure and that economic 

agents make efficient use of all available information for their price expectation formation. In 

other words, this hypothesis assumes that agents know the true data generating process (Evans & 

Ramey, 2006). Although it is not applicable for rural smallholders with no access to futures 

markets, which are the focus of this chapter, futures prices have also been used as proxy for price 

expectations (Gardner, 1976).  

Since obtaining and processing information is costly, it may be less likely that producers make 

use of all available information to form their price expectations (Orazem & Miranowski, 1986). 

This is even so in the context of subsistent smallholder farmers with limited access to 

information and capital. Thus, the fully rational expectation hypothesis has less realistic practical 

application in our context. This hypothesis is also rejected in several experimental and survey 

datasets (Nelson & Bessler, 1992; Nerlove & Schuermann, 1995). Furthermore, the 

implementation of the rational expectation hypothesis is complicated for the applied 

econometrician. For these and other practical issues, recent research has focused on modelling 

supply response models using a quasi-rational price expectation, which is consistent with price 

prediction from a reduced-form dynamic regression equation (Holt & McKenzie, 2003). The 

quasi-rational expectation hypothesis has more realistic assumptions about economic agents’ 

information set and their data processing knowledge. Empirical applications also show the 

relevance of this approach in their supply models (Holt & McKenzie, 2003; Nerlove & Fornari, 

1998). 
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This chapter has two main objectives. First, it identifies the relevant variables that constitute the 

information set of a typical smallholder farmer in his/her price expectation formation. The 

importance of each of the elements in the information set is investigated. Second, we explain the 

efficiency of smallholder farmers in their price expectations. In other words, we address the 

question, ‘who are the good predictors and does information play a role?’ in the context of 

smallholder farmers in rural Ethiopia. There may be several factors that explain why some 

farmers predict harvest time output prices more accurately than others; however, we give more 

emphasis on the role of information, the role in particular of Information and Communication 

Technology (ICT). Given the limited number of previous studies of actual price expectations and 

the availability of several theoretical models of price expectation formulation, this study may 

provide some new insight into how smallholding farmers are actually forming their price 

expectations. Analysis of their actual expectations and the distribution of their expectations 

relative to realized prices may assist agricultural economists and policy makers to deliver price 

outlook and price risk management strategies information, and researchers estimating supply 

response models to choose more appropriate specification of price expectation.  

The rest of this chapter is organized as follows: the following section presents a brief description 

of smallholder agriculture in Ethiopia. We then discuss the data and descriptive statistics in 

section 5.3. Section 5.4 provides the conceptual and empirical models of the price expectation 

objective, and the respective econometric results. Section 5.5 presents and discusses the 

theoretical and empirical models, and the econometric results for the price prediction accuracy of 

farmers. Finally, section 5.6 provides the conclusions.  

5.2. Smallholder agriculture in Ethiopia 

By and large, agriculture in Ethiopia is dominated by smallholder farming.
26

 Smallholder 

agriculture contributes about 95% of the total agricultural production and 85% of total area under 

cultivation in the country (CSA, 2010; Salami et al., 2010). Smallholder farmers grow various 

crops both for own consumption and for market supply. Cereals are the most commonly 

produced crops by smallholders in Ethiopia covering close to 80% and 85% of the total grain 

                                                 
26

A smallholder in our context is defined as farming household with a landholding of less than 2 hectares. 
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crop area and production respectively (CSA, 2012a). Teff
27

, corn, sorghum, wheat and barley are 

the dominant cereal crops cultivated in a wide range of agro-ecological zones of the country. 

While pulses and oilseeds are the other crops cultivated by smallholder farmers, smallholders’ 

participation in the horticulture sector is quite limited.  

Although they produce a majority of the food commodities in the country, smallholder farmers in 

Ethiopia have subsistence livelihoods. Several factors are argued to explain the low productivity 

and limited market surplus of smallholder agriculture in the country. Poor productivity due to 

lack of access to information, market, credit, and low adoption of modern agricultural technology 

is the long-standing challenge of smallholders in the country. For instance, in 2009/2010 main 

cropping season, only 44% and 12% of the farmers applied chemical fertilizers and improved 

seeds, respectively (Abebaw & Haile, 2013). Some also argue that small and fragmented 

landholding in the country limits intensification of smallholder agriculture and is a key constraint 

for the low farm income (Gebreselassie, 2006). The average farm size of smallholders in 

Ethiopia is less than a hectare and this is further fragmented into an average of 2.3 plots (Ibid.).  

Another feature of the Ethiopian smallholding agriculture is that it is predominantly rain-fed. 

Due to lack of capacity, agricultural technology and infrastructure, irrigation is only minimally 

practiced by smallholder farmers in the country. Some studies indicate that only 5% of the 

cultivated area in the country is irrigated (Awulachew et al., 2007). As a result, the amount, 

timing and variability of rainfall are crucial for good agricultural productivity in the country. 

Rainfall is the commonly observed exogenous phenomenon that represents one of the main 

sources of information about future production in Ethiopia (Osborne, 2004). The government 

attempts to disseminate rainfall forecasts from several stations to rural farmers for early warning 

purposes and to assist them in their production decisions.  

There are two production cycles in the country and harvest in each of the seasons greatly relies 

on the amount and onset of rainfall. Deficient or excessive as well as early or delayed rainfall 

during these two harvest seasons can lead to significant production failure. The main “meher” 

season, which accounts for about 95% of the country’s private sector grain production, refers to 

                                                 
27

Teff is a fine grain that predominantly grows in Ethiopia and is an important staple food in the country. Having 

colors that vary from white and red to dark brown, teff has an excellent balance of amino acids, and it is also high in 

protein, calcium, and iron. 
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the longer production cycle of which planting takes place mainly between May and June and 

harvesting is between November and January. Planting and harvesting of the secondary “belg” 

season take place between February to April and June to August respectively. Table 5.1 below 

illustrated the crop calendar of major cereals grown in Ethiopia.  

The production seasons as well as land and other agro-ecological requirements of corn and 

sorghum make them competing crops both for land and other inputs. The growing period for 

corn and sorghum is longer compared to the other cereals, implying that the lean season for 

households growing these crops is much longer. Wheat and barley do also typically compete for 

land and inputs whereas teff is more labor intensive and requires a slightly more wet land before 

planting. Thus, the planting and harvesting seasons matter to identify the relevant output price 

information in the production decisions of farmers for each of the crops they produce. 

Table 5.1.  Crop calendar for major cereals in Ethiopia 

Crop/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Teff              

Wheat             

Corn             

Sorghum             

Barley             

All 

cereals(“belg”) 

            

  Planting  Harvesting     

          Source: FAO GIEWS 

Figure 5.1 shows how close planting prices are to harvesting prices, which are indicative of how 

good a naïve farmer who bases his expectations on current sowing prices can potentially predict 

upcoming harvest period prices. One can observe that planting period output prices are mostly 

good indicators of harvest period prices. This is especially true for teff but less so for sorghum. 

Figure 5.1 also shows that the significant rise in the nominal harvest period prices of all the four 

cereals within the twelve months from December 2007 to December 2008 was already apparent 

in the price changes between the corresponding planting months. For instance, the harvest-period 

teff price nearly doubled between 2007 and 2008 whereas that of corn increased by about 80% 

over the same period (in nominal terms). The corresponding planting period prices more than 

doubled between these seasons. Such large price variations between two consecutive harvest 
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seasons hint that planting time output prices may be taken as more relevant price information for 

price expectation formation than previous harvest period prices.  

 

 
 

The benefit for rural farmers of higher output prices depends on the marketable surplus they 

produce and take to nearby grain markets. Coupled with the limited surplus output, high 

transaction costs and inadequate market information limit the commercialization level of rural 

farmers. Although there exists variation across different regions of the country, 

commercialization of smallholder farmers is generally limited. Table 5.2 shows that about 20% 

of smallholder grain production is marketed whereas above 60% is used for home consumption. 

The remaining is set aside for seed or used as animal feed and for in-kind-payments.  

Table 5.2. Crop utilization by smallholders in Ethiopia (2002/2003) 

Crop Utilization (%) 

Consumption Sale Seed and others 

Grains 64 20 16 

Cereals 67 16 17 

Oilseeds 61 22 17 

Pulses 34 54 12 

Source: Central Statistical Agency (CSA), Ethiopian Agricultural Sample Survey 

Pulses are cultivated by smallholders mainly for market followed by oilseeds. However, 

smallholder production of these groups of crops is not as sizable as that of cereals of which 

Figure 5.1. Planting and harvesting month nominal wholesale prices of major cereals, 2000–2013 

Source: FAO GIEWS and Ethiopian Grain Trade Enterprise (EGTE) 
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households have the lowest marketable surplus. The awareness that is being created by the 

agricultural extension agents and lower transaction cost following the government’s 

infrastructure investments are likely to change this situation in the near future. Better information 

about relevant output and input prices can foster the commercialization of farmers in the country. 

The price that farmers potentially receive for their output in the upcoming harvest season matters 

for their input application today. This, in turn, affects the productivity and future livelihood of 

the households.  

Some may argue that higher output prices are not beneficial for net-buyer farmers, and they may 

actually prefer lower prices. In this line of arguments, net-buyers need not invest in acquiring 

information selling prices. Others might also argue that self-sufficient farmers need not care 

about output price information. Nevertheless, nearly all farmers take some of their produce to the 

market at some point in a year although most of them end up being self-sufficient or net-buyers 

for the whole year. Farmers’ positions as a net-seller or a net-buyer vary from season to season 

and whether we measure the sell or purchase in terms of volume or in monetary terms. Thus, 

price information is crucial and smallholder farmers invest to acquire more and better 

information. 

5.3. Data and some descriptive statistics  

Data for this study come from a primary survey of rural smallholders from seven villages out of 

four different districts of Ethiopia, namely Kersa, Shashemene, Ada’a and Debre Birhan Zuria. 

Adele Keke is the kebele
28

 selected from Kersa district and households in this village trade with 

adjacent towns of Dire-Dawa, Harar and Aweday in the Eastern part of the country. Smallholders 

in this area produce both staple crops typically corn and sorghum and cash crops like chat
29

 and 

potato. Households were also interviewed from four adjacent villages from the Debre Birhan 

Zuria district, which is 120 kilometers northeast of Addis Ababa. The town of Debre Birhan is 

the nearby market for their livestock and grain production that typically consists of barley, wheat 

and horse beans among others. Sirbana Godeti is the other village where a sample of 78 

households was interviewed and is the major supplier of teff to the surrounding and Addis Ababa 

                                                 
28 

A kebele is the smallest administrative unit in Ethiopia 
29

 Chat is a perennial cash crop and a mild stimulant that is commonly used in the southern and eastern parts of 

Ethiopia. 
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markets. Having relatively more fertile soil, smallholders in this area also produce several 

leguminous crops and vegetables. Finally, we interviewed households from Turfe Ketchema, 

which is a village situated about 12 kilometers northeast of the town of Shashemene where they 

conduct most of their marketing with. The main crops that they produce for consumption and 

cash include potatoes, corn, wheat, barley and teff. Figure 5.2 depicts the fifteen villages selected 

for the Ethiopian rural household survey (ERHS) that started since 1989 (Webb et al., 1992), and 

the arrows indicate the survey sites of this particular study. 

The survey was conducted from April-May, 2013 on a total of 415 households that were 

randomly selected from each village through stratification techniques.
30

 The survey was 

conducted immediately before or at the onset of planting for the main “meher” season and that 

helps us to obtain good information on planting time prices.  Furthermore, the dataset provides 

detailed information on household demographics, asset holdings, production and consumption, 

purchases and sales, seasonal prices, information sources, among others.  

 

 

Following the liberalization of markets in Ethiopia in the early 1990s, prices have not only 

served as incentives to produce more but they have also become less predictable. Consequently, 

recent volatile food prices have posed additional challenges for farmers in their production 

                                                 
30

 The households in our sample were those selected for the EHRS rounds and detailed information on sampling 

techniques can be found from Dercon and Hoddinot (2004). 

Figure 5.2. Ethiopian rural household survey villages 

Source: Adapted from Dercon and Hoddinott (2011) 
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decisions. Information regarding input and output price developments, weather conditions, input 

availability and the like are hence crucial for the farmer to make a better production decision. 

From the primary survey in rural Ethiopia, we observe that most of the smallholder households 

report prices as highly unpredictable.  

While 85% of the households suggest that output prices are likely to increase in the next one 

year, the other 11% said that prices are likely to decline. Although most of the farmers (87%) 

report that output prices after a year are more likely to be in the range of decreasing by half or 

increasing twice the amount they predicted, the remaining households report that prices are so 

unpredictable and they could be outside this range (Table 5.3). For these and other reasons, many 

of the households set a high price level to enter in contract farming. Although contract farming 

prices are typically lower than the average expected harvest time price as they include a risk 

premium, about two-third of the households in our survey areas are willing to accept contract-

prices that are only equal or greater than their price expectations.   

                            Table 5.3. Perception of farmers regarding the predictability of output prices  

Item
31

 Proportion of households 

(%) 

Output price prediction (in 1 

year) 

Increase 85 

Decrease 11 

Remain the same 3 

I don’t know 1 

Likelihood of price changes as 

compared to expectations 

≥ Twice as high (H) 10 

≤ Half as low (L) 

In between L & H 

3 

87 

Contract-farming price > Expected price 35 

= Expected price  31 

< Expected price 31 

I do not know 3 

                Source: Own survey data, 2013 

These farmers form their price expectations based on their information access. We asked them 

two similar but subtly different questions regarding their sources of price information. First, we 

wanted to know what the major sources of information for the market prices of their products 

are. Second, we asked them a more specific question with regard to what information they 

observe to predict the harvest-time price of their crop choice for cultivation. Figure 5.3 below 

                                                 
31

 The respective survey questions are available in the Appendix (II-A) 
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shows the major responses of the households. There are three major sources of price information 

for rural households in Ethiopia. While most of the smallholder farmers (54%) visit close-by 

markets to sell or buy products and thereby gather information about prices of their interest 

commodities, about 45% of them get price information from their fellow farmers. Although 

about two-third of the households own either a radio (57%) or a television (8%), it is only a 

quarter of the rural households that reported radio or television as sources of output price 

information. This may be because of lack of awareness about the exact times when price 

information is transmitted. The descriptive statistics also indicate that the Ethiopian commodity 

exchange (ECX) has not done enough to reach out rural smallholder farmers with price 

information. 

  
Figure 5.3. Primary source of price information (left) and relevant information for price 

expectation formation of smallholders (right) 

  Note: respondents were allowed to give multiple responses 

Source: Own survey data, 2013 

It is also interesting to see that about half of the smallholder farmers form their harvest-time 

price expectations based on the currently available price information. About a fifth of the 

respondents also consider past harvest period prices in their price expectation formations. This 

may suggest that these households form their price expectations in line with the adaptive or naïve 

price expectation formation hypothesis. This is consistent with a finding by Chavas (2000) who 

also found that close to half of the US beef markets were associated with the naïve expectation 

hypothesis. Nevertheless, other information such as weather, input prices and central wholesale 
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prices are reported as relevant information in the process of price expectation formation of the 

smallholder farmers. The information sources for households vary depending on their market 

access and ownership of assets among other things. It is less likely for remote farmers to go to 

town markets to gather price information and they may be more likely to depend on information 

from their neighbors or from radio. 

Subject to their access to information and their ability in data processing, the smallholder farmers 

make their price predictions for the next harvest period. These also matters for the quality of 

their price expectations. The better access farmers have to relevant price information, the more 

precise their price predictions will be. This is, however, an empirical question to understand what 

explains the precision in their price expectations. This is important since better price expectations 

result in a more efficient allocation of resources in production. Table 5.4 presents the descriptive 

statistics of the smallholders in our survey sites, highlighting the household characteristics, asset 

holdings and other variables that could potentially affect the farmer’s data gathering and 

processing that are, in turn, important for better expectation formation.   

The summary statistics in Table 5.4 show a lot of similarities among the households from the 

four survey districts. On average, the household heads are in their mid-50s and greater than two-

third of them are married and male. The average family size (6.1) is slightly greater than the 

average size in rural Ethiopia, which is 5.1 according to the household consumption and 

expenditure survey in 2010/2011 (CSA, 2012b). The average family size is higher for 

households in Kersa district followed by those in Shashemene. Although about 55% of the 

overall household heads have some literacy from formal or informal education, it is only the 

second grade that the average head has completed. The total land owned by the smallholders is 

about 1.68 hectares: while smallholders in Debre Birhan district have, on average, slightly 

greater than 2 hectares those in Kersa have slightly less than a hectare of land. The average per 

capita farm size is less than half a hectare.  

Besides the above household characteristics, ownership of information assets such as mobile, 

radio and television are very important in obtaining market, rainfall and other information that 

could improve households’ production decision. Although it is less than a tenth of the 
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smallholders who own television, about 80% of them have access to information.
32

 Other 

indicators of access to market and information include distances from basic facilities. For 

instance, smallholder farmers live close to an average of 3 and 10 kilometers away from an all- 

Table 5.4. Summary statistics of sampled smallholders by district 

District Debre Birhan Ada'a Kersa Shashemene Total 

Variable Mean SD Mean SD Mean SD Mean SD Mean SD 

Household characteristics 

Age of head 55 15.34 59 15.21 52 15.20 52 18.05 54 16.05 

Female headed HH (%) 30 0.46 31 0.46 35 0.48 29 0.46 31 0.46 

Married HH head (%) 64 0.48 65 0.48 69 0.47 79 0.41 68 0.47 

Family size 5.41 2.07 5.50 2.13 7.27 3.02 6.54 3.25 6.07 2.69 

Years of schooling 1.36 2.56 1.75 2.92 1.24 2.16 3.65 4.43 1.90 3.18 

Leadership position (%) 25 0.44 13 0.34 15 0.36 20 0.40 20 0.40 

Asset ownership 

Total farm size (ha) 2.39 0.78 1.62 0.84 0.96 0.62 1.18 0.63 1.68 0.94 

Per capita farm size (ha)  0.51 0.32 0.32 0.22 0.17 0.16 0.22 0.17 0.34 0.29 

Radio ownership (%) 62 0.49 53 0.50 48 0.50 63 0.49 57 0.50 

Television ownership (%) 1 0.11 23 0.42 4 0.21 12 0.33 8 0.28 

Mobile ownership (%) 62 0.49 71 0.46 73 0.45 63 0.49 66 0.47 

Oxen ownership (%) 86 0.35 73 0.45 16 0.37 58 0.50 63 0.48 

Tropical Livestock Unit 

(TLU)
33

 9.60 4.83 5.00 3.53 2.35 1.48 2.79 2.20 5.85 4.83 

Household asset (index) 0.70 0.64 0.02 0.79 -0.89 0.82 -0.38 0.94 0.00 2.45 

Farm income share (%) 99 0.8 97 0.15 98 0.10 99 0.01 98 0.10 

Market surplus (%) 2 0.80 18 0.16 1 0.03 30 0.22 11 0.18 

Access to market and information  

Access to information 

(%) 80 0.40 81 0.40 79 0.41 80 0.40 80 0.40 

Distance to nearby 

grain market 

km 10.36 3.11 11.45 1.61 6.81 3.33 8.73 3.65 9.46 3.47 

hr 2.05 0.62 2.28 0.49 1.73 0.95 1.64 0.82 1.94 0.76 

Distance to dry 

weather road 

km 2.48 2.25 0.52 0.78 0.58 0.56 0.85 1.18 1.41 1.84 

hr 0.55 0.49 0.13 0.15 0.17 0.19 0.25 0.30 0.33 0.40 

Distance to all 

weather road 

km 3.42 2.63 1.06 1.03 1.39 1.81 2.79 2.07 2.41 2.33 

hr 0.69 0.47 0.25 0.21 0.33 0.25 0.62 0.42 0.51 0.42 

Distance to 

development 

extents’ office 

km 4.16 3.13 3.02 1.54 1.77 4.82 12.28 86.92 5.16 40.20 

hr 0.92 0.61 0.70 0.48 0.39 0.32 0.36 0.35 0.65 0.54 

N 159 78 89 89 415 

Source: Own survey data, 2013 

                                                 
32

 Access to information here is defined as ownership of any of the three assets namely, radio, television or mobile.  
33

 A Tropical Livestock Unit (TLU) is an animal unit used to aggregate different classes of livestock. The standard 

used for one TLU equals an animal of 250 kg live weight. Different formulae are used for estimating TLU 

depending on the typical livestock varieties and geographical contexts. In this study, we use 1 TLU to refer to 1 

ox/cow, 0.75 bull/heifer, 0.45 calf, 0.15 goat/sheep, 0.5 donkeys, 1.15 horse/mule, 1.5 camel and 0.005 for poultry 

(Adapted from  Ramakrishna & Demeke, 2002).  
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weather road and a nearby grain market respectively. Thus, the average household head needs to 

walk about 1 and 2 hours to access these facilities respectively. 

As agriculture is the main activity in all these four districts, it is not surprising that off-farm 

income contributes less than 2% of the households’ incomes. Market surplus, as measured by the 

share of output sale from total production, is negligible in Kersa and Debre Birhan districts. This 

is mainly because chat is the main cash crop in Kersa and sale of livestock is common in the 

latter.
34

  

The secondary data for our analyses including central wholesale prices and international prices 

are obtained from the FAO GIWS and World Bank price databases, respectively. Historical 

rainfall data are obtained from the national meteorology agency (MNA) of Ethiopia. 

5.4. Price Expectation formation of smallholder farmers 

5.4.1. Conceptual framework 

A basic economic supply model explaining production of a certain crop is formulated as a 

function of its own and competing crops’ harvest-time prices and other exogenous factors. 

Nevertheless, the harvest time prices are not realized during the time of input allocation and 

producers need to make their price expectations. Thus, a simple supply response model of a 

given crop at time t can be specified as: 

𝑄𝑡 = 𝛽1 + 𝛽2𝑝𝑡
𝑒 + 𝛽3𝑍𝑡 + 𝑢𝑡                                     (5.1) 

where 𝑄 is the desired output or acreage in period 𝑡, 𝑝𝑡
𝑒 is a vector of expected prices of the crop 

under consideration and of other competing crops, 𝑍 is a set of other exogenous variables, 𝑢𝑡 

accounts for unobserved random factors affecting crop production. Hence, there is an underlying 

price expectation that the economic agents make and the supply response modeler should make a 

hypothesis of.  

                                                 
34

 We calculate the market shares based on total sale and production of six crops, namely teff, wheat, corn, sorghum, 

barley and horse beans to be consistent with our empirical analysis 
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Figure 5.4. Conceptual framework, own illustration 

Source: Own illustration 

There is little agreement among applied researchers regarding any a priori superior specification 

for price expectation (Shideed & White, 1989). The price expectation formation of economic 

agents depends on several factors and Figure 5.4 illustrates some of the factors that potentially 

constitute the relevant information set in the context of smallholder farmers in a typical 

developing country. The smallholder gathers information from several sources about, among 

others, previous and current output prices, input prices and weather conditions. The farmer then 

processes the gathered information and makes his expectations about the likely price of his crop 

choice during the next harvest period. This data processing stage and the degree of accuracy in 

forecasting the harvest-time prices, however, depends on asset and household characteristics, 
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level of education and risk perception of the smallholder farmer among others. Depending on 

this expected price, the smallholder farmer then decides how much fertilizer, labor, acreage, and 

land management to allocate for each crop. 

In general, the expected price in the supply model above can be specified as:   

𝑝𝑡
𝑒 = 𝑓(𝑝𝑡−𝑝, 𝑤𝑡−𝑝, 𝑟𝑡, 𝑍𝑡)                                          (5.2) 

where 𝑝𝑡−𝑝 and 𝑤𝑡−𝑝 refer to current and previous output and input prices, 𝑟𝑡 refers to actual 

sowing time and expected growing time rainfall quantities, and 𝑍𝑡 denotes other exogenous 

variables that could potentially explain expectations. The above function is general and it allows 

different price expectation hypotheses depending on what information we include in the 

function. If expectations are assumed to be formed in line with the rational expectation 

hypothesis, an autoregressive moving average model of output prices should be estimated after 

substituting the price expectations function in the supply model. A quasi-rational expectation 

hypothesis, on the other hand, generates a one-step price forecast and uses these prices as data in 

the supply response model in equation (5.1) above (Shideed & White, 1989).  Similarly, the 

naïve expectation model equates the expected price with the market price in the previous year 

whereas in the futures price model the price associated with a futures contract at harvest is used 

to proxy price expectations. 

For instance, as it is typical in the literature, a quasi-rational expectation can be formulated using 

an error-correction time series model. Suppose 𝒙𝑡−1 represents a set of exogenous variables that 

smallholders use in predicting their output prices, 𝑝𝑡
𝑒 a quasi-rational forecasting regression can 

be written in the form of an error-correction model: 

∆𝑝𝑡
𝑒 = 𝛼∆𝑥𝑡−1 + 𝜌𝑧𝑝,𝑡−1 + 휀𝑡                                    (5.3) 

where 𝜌𝑧𝑝,𝑡−1 is the long-run relationship between the dependent variable and the explanatory 

variables with 𝜌 as the cointegrating term. After estimating equation (5.3) with ordinary least 

squares, fitted values can then be used to represent the economic agents’ price expectation in 

equation (5.1) above.  
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5.4.2. Empirical model 

Most of the theoretical model and empirical applications of price expectation formation are in the 

context of a time series analysis (Holt & McKenzie, 2003; Nerlove & Fornari, 1998). This is due 

to the fact that we do not know the harvest-period prices and we would like to forecast or predict 

them based on past price realizations. Hence, the researcher hypothesizes a model what he or she 

thinks best represents the agent’s expectation formation. In this study, however, we obtain the 

expected prices of the smallholder farmers from the primary survey. Thus, we need not to 

forecast or predict a price that is supposed to represent the agent’s expectation. Instead, we 

identify the factors that enable the agent to come up with the reported expected price. 

There are five major cereals, namely teff, wheat, corn, sorghum and barley, and a common 

leguminous plant in the context of Ethiopia, horse beans, for which we gather expected price 

information from smallholders.
35

 In general, the expected price of the i
th

 household for a given 

crop 𝑐 at sowing time (𝑡 = 𝑠) can be specified as: 

𝑝𝑖𝑐,𝑠
𝑒 = 𝛼0 + ∑ 𝛼𝑗𝑡=ℎ,𝑠 𝑝𝑖𝑐,𝑡 + ∑ 𝛽𝑗𝑡=ℎ,𝑠 𝑝𝑐,𝑡

𝑐𝑤 + ∑ 𝛾𝑗𝑡=ℎ,𝑠 𝑝𝑐,𝑡
𝐼       

+𝜃𝑖𝑤𝑖,𝑠 + ∑ 𝜂𝑗𝑡=𝑠,𝑔 𝑟𝑖𝑐,𝑡 + 𝑣𝑖𝑐,𝑠                                                   (5.4) 

where ℎ, 𝑠 and 𝑔 refer to the previous harvest, the current sowing and growing seasons 

respectively. The second term on the right side, for instance, refers to previous harvest and 

current planting period output prices, both obtained from the survey. The superscripts 𝑐𝑤 and 𝐼 

denote central wholesale output prices and international output prices. 𝑤 refers to variable input 

expenditure, which consists of expenses on fertilizer, pesticides, hired labor, purchased seed and 

renting oxen. Since expenditure on these inputs is known to farmers at planting time depending 

on their prices and the amounts they purchase, we consider planting time expenditure only. 

Planting as well as growing period rainfall, 𝑟 also affects price expectations. Finally, 𝛼, 𝛽, 𝛾, 𝜃 

and 𝜂 are parameters to be estimated and 𝜐 is the error term. 

The dependent variable, 𝑝𝑖𝑐,𝑠
𝑒  is obtained from a primary survey where farmers, at sowing time, 

were asked to report their expected prices for each crop for the next harvest season.  Moreover, 

farmers were asked regarding their knowledge of crop prices at the previous harvest season and 

                                                 
35 

Horse beans is usually sown from mid-June to first week of July and harvested from end of October to November. 
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at the current sowing period, referring to 𝑝𝑖𝑐,ℎ and 𝑝𝑖𝑐,𝑠 in equation (5.4). We also construct 

harvesting and sowing period crop prices using wholesale prices from the Addis Ababa market, 

𝑝𝑐,ℎ
𝑐𝑤 and 𝑝𝑐,𝑠

𝑐𝑤 and international output prices, 𝑝𝑐,ℎ
𝐼  and 𝑝𝑐,𝑠

𝐼 . The wholesale and international prices 

obviously vary across crops. Moreover, these seasonal prices have some degree of variation 

across farmers depending on the planting and harvesting seasons of the crops that the farmer 

grows. We could use international output prices as alternative or additional to the central 

wholesale prices. However, since it is only 2% of the smallholders that reported international 

prices as relevant information in their expectation formations and since some crops (e.g. teff) are 

not traded in the international market, we opt to use only the domestic wholesale prices in our 

empirical model. This is also important to reduce multicollinearity problem among explanatory 

variables in the regression.  

The rainfall variables, 𝑟𝑖𝑐,𝑠 and 𝑟𝑖𝑐,𝑔 refer to sowing and growing period rainfall amounts in 

millimeters. While the former is the actual amount of rainfall, the latter refers to smallholders’ 

rainfall expectations for the upcoming growing months of their crops. 𝑟𝑖𝑐,𝑠 is, therefore, the 

amount of rainfall from nearby meteorological stations at the sowing period of each crop.  

Similarly, the average growing period amount of rainfall over the previous five years is used as 

proxy for farmers’ rainfall expectations for the coming growing season. The rainfall variables 

vary across households since rainfall varies across the four diverse geographical study areas. 

Besides, we multiply the sowing time rainfall by the dummy of rain included in the 

questionnaire, in which smallholders were asked if sowing time rainfall was enough and on time. 

This is important as it is not only the amount of the rainfall at the village level that matters but 

also the timing and amount of rainfall with respect to the individual farmer’s crop. The rainfall 

variables also vary across crops depending on the planting and growing months of each crop 

(Table 5.1). 

Table 5.5 provides the summary statistics of the variables that are used in the estimation of the 

price expectation model. One can see that the planting period prices are, on average, higher than 

the previous harvest prices for all crops. This is a typical reflection of the seasonality of 

agricultural markets where most smallholders with little storage capacity take their output to the 

market immediately after harvest. This is consistent with the anecdotal evidence that liquidity-
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constrained smallholder farmers, in general, tend to sell their crops immediately after harvesting, 

and with studies that indicate similar patterns for Ethiopian farmers (Osborne, 2005).  

Table 5.5. Descriptive statistics of the variables used in the expectation model, by crop 

Crop Teff Wheat Corn Sorghum Barley Horse beans 

Variable 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Expected price  

1441 

(307) 

690 

(135) 

575 

(131) 

707 

(168) 

568 

(125) 

698 

(158) 

Previous harvest price  

1320 

(228) 

652 

(102) 

525 

(86) 

644 

(117) 

553 

(100) 

670 

(136) 

Sowing price  

1516 

(167) 

726 

(95) 

586 

(66) 

704 

(125) 

622 

(85) 

726 

(144) 

Sowing rainfall (mm) 

128 

(34) 

128 

(36) 

82 

(35) 

82 

(36) 

128 

(34) 

128 

(34) 

Growing rainfall (mm)  

171 

(77) 

171 

(87) 

193 

(78) 

193 

(76) 

171 

(77) 

211 

(106) 

Input expenditure (Birr) 

1040 

(1793) 

1008 

(1030) 

186 

(312) 

283 

 (366) 

2017 

(1623) 

381 

(615) 

Previous harvest wholesale price  

1309 

(0) 

667 

(0) 

461 

(0) 

942 

(0) 

500 

(0) 

1100 

(0) 

Sowing wholesale price  

1343 

(0) 

738 

(0) 

474 

(0) 

839 

(0) 

700 

(0) 

1000 

(0) 

Previous harvest world price - 

643 

(0) 

573 

(0) 

521 

(0) 

451 

(0) - 

Sowing world price  - 

570 

(0) 

542 

(0) 

516 

(0) 

431 

(0) - 

Prediction error (%)36 

20 

(9) 

19 

(9) 

19 

(10) 

19 

(11) 

20 

(10) 

19 

(01) 

Number of observations 172 313 213 133 188 168 

Note: All prices are in Ethiopian Birr per 100 kg.
37

 The international prices are average of sowing and 

harvesting month prices.  

Source: Own survey data, 2013   

The smallholders’ expected price for the next harvesting period is, on average, in between the 

previous harvest and current sowing prices for nearly all crops. This conclusion remains 

unchanged even after adjusting for inflation with the average national Consumer Price Indices 

(CPI) in the respective periods. Given that barley is mainly grown in the Debre Birhan Zuria 

district where the land is highly degraded, smallholders spend the highest amount of money on 

                                                 
36 

This is the relative deviation of farmers’ expected prices from the actual crop prices that are observed in the local 

markets at harvest time for which expectations were made. 
37

 Average official exchange rates during the harvesting and planting periods are used to convert international prices 

to local prices: the respective figures are of 18.07 and 18.42 Birr per US Dollar respectively. 
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variable inputs, mainly for fertilizer. Besides barley, teff and wheat have relatively higher 

fertilizer and other variable input requirements. The rainfall amount is typically lower during the 

sowing period compared to the growing period for all crops. 

We can pool the data across the six crops and the above model can be estimated using pooled 

ordinary least squares (OLS). However, unobserved heterogeneities across households such as 

ability in gathering and processing data affect price expectation, which potentially causes 

endogeneity problem in the OLS estimation. Such heterogeneities are, however, constant across 

crops that a farmer grows. We can get rid-off such unobserved heterogeneities in a fashion 

similar to the fixed-effects panel data framework. The Hausman test indicates that these 

individual heterogeneities are correlated with the independent variables and estimates will be 

biased if they are left in the error term. Alternatively, we use prediction error of smallholders to 

proxy some of such unobserved heterogeneities.  

5.4.3. Results and discussion 

Table 5.6 presents the econometric results for the expectation model in equation (5.4). The first 

two columns report results from OLS regressions for comparison purpose. In the second column, 

we use price prediction errors of smallholders as proxy for the unobserved heterogeneities 

described above
38

. Since there are indications for the endogeniety of variables in the expectation 

model and the proxy may not fully capture these variables, we preferred estimations from the 

FE-like regressions. The results of the expectation model from our preferred estimations show 

that each of the statistically significant regressor variables has the a priori right sign, which is 

consistent with standard economic theory. The values of the R
2
 in Table 5.6 are also informative 

of the good fit of the estimated models.  

Focusing on results from the FE-like model, farmers tend to have a higher price expectation for 

the next harvest period if they observe higher local market output prices at the previous harvest 

and current sowing periods. More specifically, a 100 Birr increase in each of these output prices 

– in nominal terms – adds about 50 Birr into the farmer’s price expectation, ceteris paribus. 

Similarly, farmers tend to have higher price expectations if they observed higher wholesale 

prices at the central market in the previous harvest period. However, the smallholders care little 

                                                 
38

 Discussions and definition of the prediction error is in order in subsequent sections of this chapter.  



 

114 

 

about the wholesale prices in the capital market at the time of sowing and, if it all, it has a 

negative effect. This may be because these farmers are predominantly subsistent and do not have 

surplus produce that lasts until the next sowing period. They take their crop production to 

markets typically after the harvest period in order to pay loans, which they borrowed to purchase 

fertilizer and other inputs at planting time. This is a typical feature of liquidity constrained 

smallholder farmers in many developing countries (Osborne, 2005). Although about a third of 

the smallholder farmers applied chemical fertilizer for at least one of their cultivated crops, input 

expenditures do not statistically affect farmers’ price expectations.  

Table 5.6. Expectation model results 

Dependent variable: Farmer price expectation  

 

OLS OLS-Proxy FE-like 

Prev. harvest price 0.42*** 0.44*** 0.46*** 

 

(0.06) (0.06) (0.07) 

Sowing price 0.58*** 0.56*** 0.49*** 

 (0.05) (0.06) (0.06) 

Sowing rainfall 0.36* 0.33 -0.29 

 

(0.15) (0.2) (0.89) 

(Expected) growing rainfall -0.02 -0.03 -0.62** 

 

(0.06) (0.08) (0.28) 

Prev. harvest wholesale price 0.12** 0.14** 0.09* 

 

(0.05 (0.05) (0.05 

Sowing wholesale price -0.13 -0.15* -0.05 

 (0.07) (0.07) (0.06) 

Input expenditure -0.003 -0.001 -0.001 

 

(0) (0) (0) 

Prediction error  2.72***  

  (0.78)  

Intercept 1.36 -47.54* 84.10 

 

(18.13) (21.66) (51.64) 

Adj. R
2
 0.80 0.81 0.89 

N 1187 
Notes: Robust standard errors adjusted for household clusters are in parentheses. ***, **,* 

denote statistically significance a 1%, 5% and 10% levels respectively. 

Rainfall is another important factor that affects smallholders’ price expectations. Both sowing 

and growing period rainfall have an expected negative sign, implying that farmers lower their 

expected prices following good rainfall conditions. Since the rainfall variable is adjusted both by 

its timing and amount, it reflects the appropriate rainfall for a better production in that particular 

season.  
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We have done alternative specifications of our preferred model. In order to understand whether 

previous harvest or current sowing period prices are more relevant in the price expectation 

formations of smallholders, we exclude either of these variables in our FE-like regression. This is 

important as the two price variables are correlated, with a partial correlation coefficient of 0.69. 

One can see from Table 5.7 that both price variables are equally important for price expectation 

formation of smallholder farmers. Nevertheless, including both price variables explains the 

variation in price expectations of smallholders better than including either price alone. And, if 

only one price is included, sowing price has a better explanatory power than harvesting price 

(due to its proximity to the next harvest). 

Table 5.7. Alternative FE regression specifications 

Dependent variable: Farmer price expectation 

 

(1) (2) (3) (4) (5) 

 Prev. harvest price  0.87***  1.04*** 0.48***  

  (0.05)  (0.03) (0.07)  

Sowing price 0.82***  0.91***  0.51***  

 

(0.03)  (0.02)  (0.06)  

Sowing rainfall 0.24 -0.49     

 (1.04) (1.04)     

(Expected) growing rainfall -0.92*** -1.35***     

 (0.3) (0.33)     

Prev. harvest wholesale price 0.09* 0.01     

 (0.06) (0.06)     

Sowing wholesale price 0.03 0.20**     

 

(0.07) (0.09)     

Input expenditure -0.004 -0.003     

 (0.01) (0)     

Intercept 106.62* 135.85** 41.09** 22.83 9.90  

 (59.83) (61.01) (17.39) (19.42) (16.25)  

Adjusted R
2
 0.87 0.87 0.87 0.86 0.89  

N  1187 
Notes: Robust standard errors adjusted for household clusters are in parentheses. ***, **,* denote 

statistically significance a 1%, 5% and 10% levels respectively. 

Overall, the results are in line with producer expectation theory and with previous empirical 

work although, to our knowledge, no related previous work considers farmer-reported price 

expectations. The results show that farmers make use of other information in addition to previous 

harvest period output prices. This might hint that assuming smallholder farmers as naïve in their 
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price expectations may not be appropriate. The results are consistent with previous empirical 

studies that applied quasi-rational forecasting models in order to fit producers’ price expectations 

in Ethiopia (Getnet et al., 2011). Using monthly information from a surplus producing area in 

Ethiopia, Getnet et al. (2011) show that producer and wholesale prices are important factors in 

forecasting producers’ expectations in the area.  

5.5. The role of information  

The second research objective of this chapter is to study the role that information plays in the 

price expectation formation of smallholder farmers in Ethiopia. Farmers involve themselves in 

gathering and processing price and other information, which they believe improves their price 

expectations. Thus, they need to invest in acquiring such information, which may be by 

purchasing information assets such as radio, television and phone or by paying for transportation 

to nearby markets. This process is costly for the individual farmer. Additionally, there is a certain 

level of externality in that the information a farmer obtains is a partially non-excludable public 

good that other farmers may use without paying. Accordingly, it might be necessary for the 

government to provide market information as public good through organized market information 

systems. However, we want to empirically test if investments on acquiring information actually 

improve the prediction accuracy of smallholder farmers in rural Ethiopia.
39

 The following 

section develops a theoretical model that motivates the importance of information in improving 

the price signal for farmers.  

5.5.1. Theoretical model  

To better understand farmer’s behaviour in deciding on the size of inputs and investments into 

acquiring information about prices that are likely to prevail during the harvest season, we 

develop a simple theoretical model. Suppose a typical farmer purchases inputs x at a constant 

unit cost c, which gives production q(x) with the usual conditions 𝑞′(𝑥) =
𝜕𝑞(𝑥)

𝜕𝑥
> 0, 𝑞′′(𝑥) =

𝜕2𝑞(𝑥)

𝜕𝑥2 < 0.
40

 As inputs need to be purchased during the planting period and revenues occur only 

                                                 
39

We use the same dataset as described in the previous section, and we do not repeat the data section here. 
40

 For the sake of simplicity, we consider here only the one-dimensional case of input decisions and abstract from 

crop choice and harvest uncertainty. 
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at the time of the harvest when production can be sold at price p, the discounted profit of the 

farmer is: 

𝜋(𝑝) = −𝑐𝑥 +
1

1+𝑟
𝑝𝑞(𝑥)                                        (5.5) 

with r being the discount rate (cost of capital). As harvest period prices are, however, uncertain 

during planting time and smallholder farmers are more likely to be risk-averse due to limited 

access to insurance markets, the farmer maximizes expected utility of discounted profits over the 

unknown price p but conditional on observed signals z, which contains some information on the 

price p that will be realized at harvest: 

𝑚𝑎𝑥𝑥 𝐸{𝑢[𝜋(𝑝)]|𝑧}            (5.6) 

The signal z can be understood as a composite of information on current and past prices as well 

as expected supply and demand conditions. We assume that farmers have rational expectations in 

the sense that they do not systematically misinterpret the signals z into one direction (either 

above or below the expected price p). Hence, without loss of generality we can set 𝑧 = 𝑝 + 휀 

with 𝐸[𝑧] = 𝐸[𝑝] and 𝐸[휀] = 0. The signal will on average reveal the correct price but the 

realized price will be different by a random component 휀. Substituting 𝑝 = 𝑧 − 휀 into (5.6) 

gives: 

max𝑥 𝐸{𝑢[𝜋(𝑧 − 휀)]}      (5.7) 

We further assume for simplicity that the noise of the signal 휀 is normally distributed with 

variance ℎ = 𝑉𝑎𝑟(휀). The variance is directly related to the quality of the signal: A good quality 

signal will have a low variance (i.e. the realized price will be close to the price revealed by the 

signal) and a bad quality signal will have high variance. A key feature of this model is that 

farmers can invest into acquiring information that improves the quality of the signal and, hence, 

reduces the variance ℎ. This is formalized by ℎ = ℎ(𝐼) ≥ 0 with ℎ′(𝐼) < 0 and ℎ′′(𝐼) > 0. This 

implies that the variance (noise of the price signal) is a decreasing function of access to 

information but at a decreasing rate. Figure 5.5 illustrates this relationship with a convex to the 

origin curve, indicating that the rate at which the quality of the signal improves with more 

information is decreasing. 
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Figure 5.5. Relationship between level of information and the quality of the price signal 

The profit function (5.5) becomes therefore: 

𝜋(𝑧 − 휀) = −𝑐𝑥 − 𝑘𝐼 +
1

1+𝑟
(𝑧 − 휀)𝑞(𝑥)    (5.8) 

with 𝑉𝑎𝑟(휀) = ℎ(𝐼), and where k is the unit cost of investing in acquiring information that 

accrues during the planting period. Applying an exponential utility function 𝑢(𝜋) =

−exp (−𝑅 𝜋) where R measures the absolute risk aversion, the expected utility maximization 

problem of the farmer can be decomposed into a weighted sum of expected profits and the 

variance of profits, which is determined by the level of investments into information I: 

max
𝑥,𝐼

𝐸 [𝑢 (−𝑐𝑥 − 𝑘𝐼 +
(𝑧 − 휀)𝑞(𝑥)

1 + 𝑟
)] 

= max
𝑥,𝐼

{−𝑐𝑥 − 𝑘𝐼 +
𝑧𝑞(𝑥)

1+𝑟
−

𝑅

2
ℎ(𝐼) (

𝑧𝑞(𝑥)

1+𝑟
)

2

 }            (5.9) 

In fact, equation (5.9) is similar to the mean-variance utility function where the certainty 

equivalent of the farmer’s expected utility from farm profit is expressed in term of its first two 

moments of profit: expectation and variance (Coyle, 1992, 1999). More specifically, equation 

(5.9) can be rewritten as 𝐸[𝑢(𝜋)] = max
𝑥,𝐼

{𝐸(𝜋) −  
𝑅

2
ℎ(𝐼)𝜎𝜋

2}. The optimal allocation of inputs 

𝑥∗ and investments into information 𝐼∗ is determined by the first-order conditions: 

𝜕𝐸[𝑢(𝜋)]

𝜕𝑥
= 0 = −𝑐 +

𝑧𝑞′(𝑥∗)

1+𝑟
− 𝑅ℎ(𝐼∗)

𝑧2𝑞(𝑥∗)𝑞′(𝑥∗)

(1+𝑟)2
   (5.10a) 

ℎ(𝐼) 

𝐼 
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𝜕𝐸[𝑢(𝜋)]

𝜕𝐼
= 0 = −𝑘 −

𝑅

2
ℎ′(𝐼∗) (

𝑧𝑞(𝑥∗)

1+𝑟
)

2

    (5.10b) 

The optimality conditions reveal some important aspects: Farmers choose the optimal level of 

input and investments in acquiring information to increase profits and to reduce revenue risk. 

When farmers are risk-neutral (𝑅 = 0) the quality of the signal becomes irrelevant for the 

farmer’s utility. Thus, optimal investment into information acquiring would be zero and the 

standard first-order conditions regarding the optimal level of inputs apply.  

Considering just the optimality condition on inputs (5.10a), and ignoring (for the moment) that I 

and h are set optimally, reveals a complex response of optimal inputs (and thus production) to 

the quality of the signal: 

𝑑𝑥∗

𝑑ℎ
= −

𝑧𝑞𝑅𝑥∗

(1+𝑟)(1−𝛼)+ℎ𝑅𝑧𝑞(2𝛼−1)
    (5.11) 

where 𝛼 =
𝑞′𝑥

𝑞
< 1 is the elasticity of the supply response to inputs. As direct implication of 

corollary 1 and 2 in Appendix II-B, a higher variance can lead to higher or lower input use and, 

thereby production, depending on the quality of the signal and the supply elasticity 𝛼: If the 

signal is not too bad (h is not very large) or if elasticity 𝛼 is sufficiently large, a marginal 

improvement of the signal on the harvest price increases input use and, thus production. On the 

contrary, if the quality of the signal is bad (h is large) and production has a weak response to 

input use, a marginal improvement in the quality of the signal will lead to lower production.  

Likewise, the optimality condition in (5.10b), again ignoring for the moment that x and q are also 

set optimally, gives: 

𝑑𝐼∗

𝑑𝑞
= −

2ℎ′(𝐼∗)

𝑞ℎ′′(𝐼∗)
> 0      (5.12) 

which implies that the higher the productivity of a farmer is, the more he will invest into 

acquiring more information to improve the quality of the signal. The reason is that the effect of 

price risk is larger for more productive farmers as they will have larger volume of production 

that otherwise will be affected by the risk.  
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Risk aversion 

The latter phenomenon becomes also visible in the total derivative of the optimal investment in 

the risk parameter R (again, ignoring the simultaneous response of inputs from equation (5.10a)):  

𝑑𝐼∗

𝑑𝑅
=

𝐼

𝑅𝛽
> 0       (5.13) 

where 𝛽 ≔ −
𝐼ℎ′

ℎ
> 0 is the elasticity of the variance to information. Hence, the more the 

absolute risk aversion of a farmer, the more he invests into the quality of the signal. The impact 

of the risk aversion of the joint optimum where equations (5.10a) and (5.10b) hold is ambiguous 

because inputs and investments simultaneously respond to a change in the risk aversion (see 

Proposition 1 in the Appendix II-B) in this case. Higher risk aversion can lead to higher or lower 

production and investments into information depending again on the elasticity of supply and the 

quality of the signal itself.   

Cost of information 

From the optimality condition (5.10a), we see that the cost of information k per se is irrelevant 

for the choice of the optimal inputs as 

𝑑𝑥∗

𝑑𝑘
= 0       (5.14) 

Regarding the investments into information, however, higher unit cost k leads to lower 

investments and thus, to a lower quality of the signal as the total derivative of (5.10b) after k is: 

𝑑𝐼∗

𝑑𝑘
= −

2(1+𝑟)2𝐼2

(𝑧𝑞)2𝑅ℎ𝛽(1+𝛽)
< 0      (5.15) 

In the joint optimum where both 𝑥∗ and 𝐼∗ adjust to changing costs of information, the sign is 

ambiguous and better information can increase or decrease production and signal quality 

depending on 𝛼 and ℎ (see Proposition 2). 

Discount rate (cost of capital) 

Regarding the role of the discount rate for applying inputs (and increase production) we find 

from (5.10a) that: 
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𝑑𝑥∗

𝑑𝑟
= −

(1+𝑟−2ℎ𝑧𝑞𝑅)𝑥

(1+𝑟)𝛤
        (5.16) 

In case of a risk-neutral farmer, 𝑅 = 0 where 𝛤 becomes always positive, implying the usual 

results that high discount rates or high costs of capital reduce input use and production as 

𝑑𝑥∗

𝑑𝑟
< 0. In case of a risk-averse farmer, lower discount rates do not necessarily lead to higher 

input use and production as these could also increase the revenue risk. Considering the isolated 

impact of the discount rate on optimal investments in information we get 

𝑑𝐼∗

𝑑𝑟
= −

2𝐼

(1+𝑟)(1+𝛽)
< 0     (5.17) 

which implies that lower discount rates lead to higher investments into information. In the joint 

optimum where both effects are considered simultaneously, the role of the discount rate is for 

both decisions ambiguous. 

While the theoretical model sheds light into the casual relationships between risk aversion, price 

uncertainty, production decisions and investments in acquiring price information, it reveals a 

complex production decision behavior. In some cases, it is not a priori clear whether a change of 

a certain parameter, for example the cost of capital, leads to higher or lower production as this 

effect depends on a variety of further conditions. Considering the isolated effect of investments 

in acquiring price information (ignoring the adjustments on optimal inputs), we found that these 

investments are higher the higher the risk aversion, the lower the cost of information and the 

lower the discount rate. The impacts of improved information on farmers’ production tends to be 

positive if the revenue risk through higher productivity is compensated by higher mean revenue 

and additionally reduced through investments into price information.  

5.5.2. Empirical model 

We apply an empirical model to test part of the above theoretical model with a primary 

household survey dataset. More specifically we empirically test if information improves the price 

signal, in other words, whether households with better access to information have more accurate 

price expectations. Our presumption is that a better price signal, as explained in the theoretical 

model, implies a more accurate price expectation. To this end, we identify relevant variables that 

affect the precision of smallholders in their expectation formation. Since we have data on 
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smallholders’ expectations of the harvest season prices at planting time, deviation of these 

expected prices (𝑝𝑒) from realized harvest period output prices (𝑝1+𝑡) can serve as a good proxy 

for the quality of the price signal. Suppose 𝑃𝐸 denotes this measure of the quality of the price 

signal, henceforth prediction error, and 𝑖 and 𝑐 are the household and crop indices as defined 

before, a simple model to explain 𝑃𝐸 can be specified as:  

𝑃𝐸𝑖 = 𝛼 + 𝛾𝐼𝑖 + 𝑋′𝛽 + 𝜔𝑖                                           (5.18) 

where 𝑃𝐸  is the deviation of each farmer’s expected prices from realized market prices; 𝐼 refers 

to ownership of information assets (radio, TV, or phone), which captures investment on 

information; 𝑋 refers to a matrix of all explanatory variables that potentially affect the level of 

precision in price expectation of each farmer; 𝜔𝑖 is an error term; and 𝛼, 𝛾 , 𝛽 are parameters to 

be estimated 

Measuring prediction error (quality of the price signal) 

We use four alternative but related measurements to proxy smallholder’s prediction accuracy. 

Suppose 𝑡 and 𝑡 + 1 refer to current sowing and next harvesting periods where the former is 

considered as the time of production decision and it is therefore the time when farmers form their 

price expectations for 𝑡 + 1; 𝑒 denotes expectation; 𝑐, 𝑖, 𝑣 denote crop, farmer and village 

specific prices respectively; and 𝑛 is the number of crops that a farmer grows and reports his 

expectations for. The alternative measures of a farmer’s price prediction error are defined as 

follows. 

a) Absolute Mean Price Error (AMPE) 

We measure AMPE as the absolute mean deviation of the farmer’s price expectations from 

realized prices in the respective grain markets for n crops that the farmer grows 

𝐴𝑀𝑃𝐸𝑖 =
∑ (|𝑝𝑐,𝑡+1 − 𝑝𝑖𝑐,𝑡

𝑒 |)𝑛
𝑐

𝑛⁄  

b) Relative Mean Price Error (RMPE) 

This is similar to the above measure except that we take the relative mean deviation of 

farmer’s price expectations from realized prices in the respective grain markets instead of the 

absolute deviation. 
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𝑅𝑀𝑃𝐸𝑖 = ∑
(|𝑝𝑐,𝑡+1 − 𝑝𝑖𝑐,𝑡

𝑒 |)

𝑝𝑐,𝑡+1
𝑛⁄

𝑛

𝑐=1

 

The above two measurements assume that the farmer gives equal weight for each crop in his 

price expectations. However, a famer may invest more in acquiring better information for a crop 

that he produces for a market as compared for a crop that he produces for home consumption. 

This, in turn, affects his prediction accuracy of the respective crops. To account for this, we 

calculate deviations of weighted expected prices from realized prices, in other words, we use the 

market share of each crop to calculate price indices for each farmer and district. Using farmers’ 

reported and expected prices for sowing and next harvesting periods, we obtain price indices for 

the respective seasons. Village level price indices are similarly calculated using observed prices 

in the respective nearby grain markets. Furthermore, we normalized both farmer and district 

specific harvest time price indices by the respective sowing time prices in order to account for 

inflation. Accounting for inflation is important to overcome endogeneity in the estimation that 

may arise due to heterogeneities in the farmers’ understanding of the overall inflation on their 

price predictions. Thus, analogously with the above two measures of prediction accuracy or 

error, we calculate the absolute and relative index price prediction error for each smallholder 

farmer. 

c) Absolute Index Price Error (AIPE)  

We calculate AIPE as an absolute deviation of indices of farmers’ expected prices from realized 

price indices in the respective markets/villages as 

𝐴𝐼𝑃𝐸𝑖 = |𝑁𝑃𝐼𝑣,𝑡+1 − 𝑁𝑃𝐼𝑖,𝑡
𝑒 | 

where NPI refers to the inflation normalized price index. 

d) Relative Index Price Error (RIPE) 

RIPE is calculated as the relative deviation of indices of farmers’ expected prices from realized 

price indices in the respective markets/villages as 

𝑅𝐼𝑃𝐸𝑖 =
(|𝑁𝑃𝐼𝑣,𝑡+1 − 𝑁𝑃𝐼𝑖,𝑡

𝑒 |)

𝑁𝑃𝐼𝑣,𝑡+1
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As measured by RMPE, for instance, the prediction error of smallholder farmers in our survey 

ranges from 0 (accurate prediction) to as far as 55% off, with a mean value of 18%.  Similarly, 

the price prediction error ranges between 0 and 62% according to the RIPE measure, with a 

mean value of 17%. Figure 5.6 illustrates how we measure the PE using self-reported price data 

for the crops of interest in this study. The area in the dotted circle refers to realized (pt+1) and 

expected (p
e
) prices of the new harvest period; the latter are the expectations of smallholder 

farmers made at sowing time, t. The graph on the right panel is a replication of the corn example 

for better illustration. What we referred to as the prediction error is the vertical distance between 

the realized and expected price, indicated by the red arrow line.   

    

Figure 5.6. Illustration of prediction error using self-reported prices 

Since these measures of smallholders’ price prediction error combine the several crops that the 

farmer grows, there might be an “averaging-out” effect if a farmer who has large expectation 

error for one product tends to have small error for other products. In other words, these measures 

are not appropriate if the same farmer has large forecasting inconsistencies between products. In 

order to shed some light on this, we computed regressions and correlation coefficients from the 

magnitudes of the individual farmer's forecasting error for corn to that for sorghum and for wheat 

to that for barley.
41

 The coefficients are presented in Table 5.8.  

We find a significant degree of consistency in prediction errors between crops for the same 

farmer. Farmers who have the largest prediction errors for corn price tend to have the largest 

                                                 
41

 We chose these crop pairs since we have enough farmers producing both of these crops. 
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errors for sorghum too. This is also true for the expectation errors of farmers growing both wheat 

and barley. This hints that the mean-deviation would not cause the error for one crop to be offset 

by the error for another, suggesting also that crop-diversification would not lead to any better 

resource allocation by the farmer. Moreover, the crop-specific price forecasting (prediction) 

error, on average, ranges between 19% and 20% with comparable standard errors (see Table 5.5). 

This provides additional clue for the absence of any large systematic difference in the difficulty 

or ease of forecasting prices of one crop compared to the other.  

Table 5.8. Consistency of farmers’ prediction errors between crops 

Crop-to-crop errors Reg. coef. Corr. coef. 

Barley and wheat 0.49*** 0.38*** 

 (0.10)  

Corn and sorghum 0.82*** 0.47*** 

 (0.16)  
        Notes: Standard errors are in parentheses. *** denote statistically significance at 1% level. 

Furthermore, we transform the absolute measures of prediction error, AMPE and AIPE, using the 

inverse hyperbolic sine (IHS) method in order to interpret the regression coefficients as 

percentage changes, comparable with the relative measures.
42

 We favor IHS over logarithmic 

transformation since some households in our sample have zero prediction errors, the log of 

which is not defined. The IHS is a logarithmic-like transformation that rather retains zero and 

negative values and has been applied by several studies (Bellemare et al., 2013; Burbidge et al., 

1988; Moss & Shonkwiler, 1993).  

5.5.3. Results and discussion 

Table 5.9 presents the results of the expectation or prediction error of smallholder farmers in the 

study area. The four columns differ based on the measurements of prediction error, as discussed 

above. Although the results are mostly consistent across the different specifications, we prefer 

                                                 
42

 The IHS transformation of variable x can be given as: 𝑖ℎ𝑠(𝑥) = ln 〈𝜃𝑥 + (𝜃2𝑥2 + 1)1/2〉 and the scale parameter 

𝜃 is assumed to be unity in most applications. 
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the results from our preferred measure of prediction accuracy, the relative price index prediction 

error (RIPE)
43

.  

The estimated coefficients indicate that, controlling for access to markets and information and 

wealth indicator variables, households with female heads do better in price forecasts compared to 

male headed households. Moreover, as expected a priori, households with better experienced and 

educated heads have statistically and significantly smaller forecasting errors. The more 

smallholders depend on farm income as the major source of the family income, the more likely 

that they predict crop prices more accurately. This is expected as these households are more 

likely to invest more time and money in data processing and gathering since they have little 

alternative income sources. As expected a priori, smallholders who own information assets such 

as radio, television or mobile phones are more likely to make better price expectations compared 

to those who do not own any of these assets. Smallholders who follow price information through 

radio and television and more importantly those who communicate with friends or relatives who 

have better price information tend to forecast prices more accurately. This finding supports the 

implication of the theoretical model developed in the previous section. Another important factor 

is proximity of households to major local grain markets, which is also implied by the theoretical 

model that shows that costs of investing in acquiring information are higher for households far 

away from grain markets. This is consistent with the descriptive statistics as most households 

report that they usually visit nearby grain markets to get price information. 

It is interesting that smallholders’ forecasting error is closely linked with self-reported proxies of 

time preferences, i.e. the discount rate. The variable “discount rate” is measured from an elicited 

minimum amount of money that a household head would have to be given in six months in order 

to make him indifferent relative to a fixed amount to be given today. Regression results in Table 

5.9 show that smallholders with higher discount rate, who are likely to be relatively poorer and 

more uncertain about the future, have larger forecasting errors. Such farmers underestimate the 

present value of future prices and they tend to get it wrong. This is in agreement with the 

theoretical model that shows that higher discount rates reduce investment into acquiring 

information. 

                                                 
43 Besides controlling for farmers’ heterogeneities regarding their understandings of inflation, this measure also 

weighs crop prices with their respective market shares. 
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Table 5.9. Factors that affect price prediction accuracy of smallholders 

Dependent variable: Relative Mean/Index price Prediction Error 

Variables AMPE AIPE RMPE RIPE 

Sex of head (1 if male) 0.1238** 0.1941*** 0.0086*** 0.0210*** 

 

(0.055) (0.062) (0.003) (0.004) 

Age of head 0.0010 -0.0050** -0.0002 -0.0006*** 

 

(0.001) (0.002) (0.000) (0.000) 

Family size  -0.0064* -0.0016 -0.0018 0.0001 

 

(0.004) (0.012) (0.001) (0.001) 

Head’s years of schooling 0.0024 -0.0238*** 0.0008 -0.0013** 

 

(0.003) (0.005) (0.001) (0.001) 

Access to information -0.0910*** -0.0731** -0.0104** -0.0205*** 

 

(0.023) (0.023) (0.004) (0.004) 

Share of farm income -0.3702*** -0.9684*** -0.0552** -0.1252*** 

 

(0.099) (0.085) (0.026) (0.011) 

Share of market surplus -0.1486* 

 

-0.0287** 

 
 

(0.090) (0.009) 

Dist. to grain market (km) -0.0141 0.0300*** -0.0004 0.0063*** 

 

(0.009) (0.008) (0.001) (0.001) 

Dist. to extension agents’ (km) 0.0010 -0.0300 0.0002 -0.0042* 

 

(0.014) (0.019) (0.002) (0.002) 

Discount rate 0.0069*** 0.0032*** 0.0004** 0.0002** 

 

(0.001) (0.001) (0.000) (0.000) 

Constant 5.8893*** 4.6186*** 0.2694*** 0.3228*** 

  (0.116) (0.166) (0.026) (0.017) 

District dummies Yes Yes Yes Yes 

No. of crop dummy Yes NA Yes NA 

Wald chi2 test (p-value) 0.00 0.00 0.00 0.00 

Root MSE            0.91 0.91 0.01 0.11 

Adjusted R-square 0.20 0.20 0.15 0.15 

N  400 
Notes: Standard Errors are bootstrapped and clustered in seven kebeles (villages). ***, **,* denote statistically 

significance a 1%, 5% and 10% levels respectively. Note that since the dependent variable is either IHS transformed 

(APME & AIPE) or in ratio (RMPE & RIPE), the coefficients are economically relevant.  

While we measure ‘access to information’ by ownership of any of the information assets – 

namely radio, television, or mobile – it may be necessary to investigate the differential impacts 

of each asset, if any. Table 5.10 presents the results using an exclusive ownership of mobile 

phones (column 2) and radio (column 3) as alternative measures of access to information.
44

 

Column (1) is the same as the last column in Table 5.9, and the dependent variable is RIPE in all 

cases. The results suggest that mobile phones alone play a statistically significant role in 

                                                 
44

 Since only less than 10% of our sample owns television (8%) or all three assets (7%), we only consider exclusive 

ownership of mobile or radio as alternative proxy for access to information.  
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improving the price forecasting accuracy of farmers. However, the marginal effect of an 

exclusive ownership of mobile phones is smaller than the effect of our preferred measure to 

information access. Smallholders may use the information assets as substitutes or as 

compliments depending on several factors. The results also highlight that ownership of a radio 

alone does not have a statistically significant effect on price prediction.   

Table 5.10. Differential impacts of access to information on price prediction  

Variables (1) (2) (3) (4) 

Sex of head (1 if male) 0.0210*** 0.0198*** 0.0209*** 0.0188** 

 

(0.004) (0.003) (0.008) (0.008) 

Age of head -0.0006*** -0.0006* -0.0006*** -0.0021*** 

 

(0.000) (0.000) (0.000) (0.000) 

Age x Access to info    0019*** 

    (0.000) 

Family size  0.0001 -0.0004 -0.0005 -0.0002 

 

(0.001) (0.001) (0.002) (0.002) 

Head’s years of schooling -0.0013** -0.0017* -0.0016* -0.0010 

 

(0.001) (0.001) (0.001) (0.001) 

Access to information
a
 -0.0205*** -0.0129** -0.0061 -0.0893** 

 

(0.004) (0.005) (0.006) (0.039) 

Share of farm income -0.1252*** -0.1221*** -0.1194*** -0.1221*** 

 

(0.011) (0.012) (0.016) (0.021) 

Dist. to grain market (km) 0.0063*** 0.0065*** 0.0065*** 0.0093*** 

 

(0.001) (0.001) (0.001) (0.003) 

Dist. to market x Access to info.    -0.0038 

    (0.003) 

Dist. to extension agents’ office (km) -0.0042 -0.0038 -0.0042 -0.0046 

 

(0.002) (0.003) (0.003) (0.003) 

Discount rate 0.0002** 0.0002** 0.0002* 0.0001 

 

(0.000) (0.000) (0.000) (0.000) 

Constant  0.3228*** 0.3061*** 0.3022*** 0.3755*** 

 

(0.017) (0.031) (0.027) (0.038) 

District dummies Yes Yes Yes Yes 

Wald chi2 test (p-value) 0.00 0.00 0.00 0.00 

Root MSE 0.11 0.11 0.11 0.11 

Adjusted R-square 0.15 0.12 0.11 0.15 

N 400 
Notes: Standard Errors are bootstrapped and clustered in seven kebeles (villages). ***, **,* denote statistically 

significance a 1%, 5% and 10% levels respectively. 
a
Access to information is measured as ownership of either a 

phone, radio or TV in (1 & 4), only a phone in (2), only a radio in (3).  
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The last column in Table 5.10 tests if the effects of some of the covariates (age and distance to 

market) are conditional on access to information. While older household heads have more 

experience and are more likely to have better price forecasts, the younger heads do better if they 

have access to information. This can be due to better knowledge of younger farmers with regard 

to using ICT tools and better understanding of the transmitted information. Another seemingly 

trivial but interesting finding is that proximity to grain markets is no more an advantage in terms 

of predicting prices as long as all households have access to information.   

The Wald-tests at the bottom of Table 5.9 show that the proposed relationship between the 

prediction accuracy or prediction error and the set of control variables in the model is statistically 

reliable. Nevertheless, the variables we include in the regression do provide only part of the story 

on who predicts better. The regressors explain only about a fifth of the variation in prediction 

error among the smallholder farmers (R
2 

≈ 0.2). One explanation for this is could be that output 

prices in Ethiopia have been very volatile in recent periods years (Rashid, 2011; Tadesse & 

Guttormsen, 2011). High price volatility reduces accuracy of producers’ and consumers’ 

forecasts of crop prices in the future (Binswanger & Rosenzweig, 1986). Given the stochasticity 

of output prices, the lucky farmer gets his expected price close to the actual value. Thus, the 

‘luck-factor’ probably explains some of the remaining variation of smallholders’ forecasting 

errors. There also appears to be a widespread exchange of price and other information among 

households, suggesting that the private information of a farmer who has the most timely and 

relevant information goes in to the public domain. This lowers the variation in the distribution of 

producers’ forecasting error. Furthermore, farmers may tend to make certain psychological 

biases that may support the behavioral finance theory that smallholders are not fully rational in 

an economic sense (Kahneman & Riepe, 1998).  

Implications for investing in market and information systems 

It is important to assess whether it pays off for farmers to invest in acquiring information, and if 

so whether they are capable of doing that by themselves. The above estimated effect sizes on the 

relative prediction error of farmers provide a basis for analyzing the relevance of investing in 

acquiring more information by the farmers or in providing market information systems (MIS) by 

public or semi-public institutions. As explained in the theoretical model, acquiring information is 
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costly for the farmers and they invest until a point where the marginal cost of acquiring 

information is equal to its additional benefit. Thus, they acquire I* level of information although 

the marginal benefit of more information is still positive, as depicted by Figure 5.7. The marginal 

cost of acquiring information constitutes of among other things, purchasing information assets, 

travelling to nearby markets to inspect prices, and the opportunity cost of the time they spend 

searching for information. The marginal benefit, on the other hand, is more accurate (better 

quality) market and other information that potentially helps farmers form a better price 

expectation. As a result, farmers make a more informed production decision or they minimize 

loss.  

Cost minimizing technological changes or public investments in information systems, which 

allow farmers to have access to better market information at lower cost, reduce the marginal cost 

of additional information and shift the marginal cost curve to the right.  

 

 

Figure 5.7.  Optimal investment in acquiring information 

As information is indivisible in its use and it is difficult to properly charge a market price, there 

is a positive externality while investing in acquiring information. As such, we argue that there is 

already a justification for the government to invest in MIS so that smallholder farmers have 

access to better quality information at a cheaper cost. Nevertheless, it is worthwhile to assess 
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how much production loss by smallholders would be saved if the government invests in MIS or 

in physical infrastructure to reduce the ‘effective’ distance that households need to travel to 

nearby grain markets. To this end, we conduct a simulation analysis using our estimated 

coefficients in order to understand how much such an investment improves the production 

decision of farmers. We use the hypotheses, parameters, and quantities in Table 5.11 as a basis 

for our simulation. 

Table 5.11. Parameters and quantities to simulate the benefit of investing in MIS  

Base variables Value Source 

Total grain production (Million MT) 25 CSA (2012/13) 

Production elasticity (grains, weighted by 

production share) 

0.20 Literature 

Relative price prediction error (%) 20 Survey data 

Grain price increase (%) 50 Hypothetical, but also 

observed data 

 

 Hypothesis: A price increase of 50%: 

Assuming a competitive and well-functioning market, a 50% increase in output prices would 

lead to a 10% increase in production, which is about 2.5 million tons of grains. Nevertheless, 

farmers make forecasting errors (≈ 20%), and as a consequence they expect prices to increase by 

only 20% instead of 50%. In other words, they increase production only by 4% (by 1 million ton 

instead of by 2.5 million tons). We ask the following three questions in order to assess whether 

public investment in providing better and easily accessible market information pays off.  

How much production loss would be saved by: 

1) Investing in providing information access to smallholder farmers? 

2) Investing to halve the ‘effective’ distance smallholder farmers need to travel to close by 

markets? 

3) Improving access to education so that the head of the household completes primary 

education (8
th

 grade)? 

Figure 5.8 illustrates how much of this production loss would have been saved under the 

above scenarios. 
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Figure 5.8.  Benefits of investing in acquiring more information 

One can see from Figure 5.8 that there will be 1.5 million metric tons of grains that would be lost 

with the status quo. However, public investments to provide farmers with price and market 

information and to halve the ‘effective’ distance they travel to nearby markets would save about 

22% (0.32 Million MT) and 27% (0.41) of this production loss. Similarly, above 10% of the loss 

would be saved if household heads complete at least primary education. It is worthwhile to 

mention that the benefits of owning information assets – our measure for access to information – 

would be much larger if the content of information transmitted via ICTs is a better quality. 

5.6. Conclusions 

Given the intrinsic feature of agriculture that there is a time lag between production decisions 

and output realization, price expectations play a crucial role in the production, marketing and 

agricultural technology adoption of farmers. Producers involve themselves in gathering and 

processing price and other information, which they believe improves their price expectations. 

This process is costly for the individual farmer. Additionally, there is a certain level of 

externality in that the information a farmer obtains is a partially non-excludable public good that 

other farmers may use without paying. Accordingly, it might be necessary for the government to 

provide market information as public good through organized market information systems. 
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However, one should know the relevant information set that producers use in formulating their 

price expectations.  

Using a primary survey dataset that elicits smallholders’ price expectations for the next harvest 

period, this study assists to identify the relevant information set that farmers use in their 

expectation formulations. The empirical findings show that information regarding current and 

past output prices in nearby grain markets, central wholesale prices and seasonal rainfall shape 

smallholders’ price expectations. There are some institutions that could potentially improve 

smallholders’ access to market information in Ethiopia. The long-lasting Ethiopian Grain Trade 

Enterprise (EGTE) as well as the recently launched Ethiopian Commodity Exchange (ECX) and 

Agricultural Transformation Agency (ATA) aim at improving agricultural productivity and 

marketing efficiency in the country. These organizations may assist farmers in providing and 

disseminating accurate and timely central wholesale prices. In coordination with the National 

Meteorology Agency (MNA), these institutions might also provide better early warning 

information regarding seasonal weather conditions. Agricultural extension agents could also 

assist by disseminating timely and accurate output and input price information from nearby grain 

markets to farmers in villages. 

Moreover, having data on farmers’ expectations regarding the next harvest-period prices, which 

are realized at the time of writing this study, enables us to assess the factors behind smallholders’ 

prediction accuracy. The empirical findings suggest that farmers who have better access to 

information and who reside closer to grain markets are more likely to have smaller forecasting 

error margins. This supports the above policy recommendation that improving information and 

physical infrastructure is important. In addition, farmers who have higher discount rates are more 

likely to have larger forecasting errors. This calls for assisting farmers in reducing future price 

and income uncertainties and enhancing their risk-management strategies.  

It is not surprising that the control variables in our regression model explain only some of the 

variation in farmers’ forecasting errors. First, Ethiopia is one of the countries where agricultural 

commodity prices have experienced significant variability in recent years (Rashid, 2011; Tadesse 

& Guttormsen, 2011). Large variability in output prices reduces the accuracy of smallholders in 

their price forecasting, resulting in suboptimal resource allocation and welfare loss. In situations 

of extreme price volatility, better performance in forecasting prices might be due to luck. 
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Therefore, agricultural policy makers should design proper price volatility management tools to 

improve smallholders’ price expectations which, in turn, help farmers to make better production 

decisions. Furthermore, the variation of prediction efficiency among smallholders that is not 

explained by the relevant variables might suggest that cognitive or psychological bias might play 

a role (Rabin, 1998). The behavioral theory suggests that economic agents fail to be fully rational 

and make judgmental errors in maximizing their objective function (Ibid.). According to this 

theory, producers tend to, for instance, believe that prices will be in their interest, base their price 

forecast only on the recent past, and forget their mistakes (Brorsen & Anderson, 2001). 

However, further research is required to assess if such cognitive bias explains the remaining 

variation among smallholders in their price forecasting efficiency.     

In summary, access to price and market information is crucial for smallholder farmers to make 

optimal production decisions. A simple simulation analysis shows that improving farmers’ 

access to information and shortening the ‘effective’ distance that they need to travel to nearby 

grain markets would save a significant amount of production loss. Besides better physical and 

information infrastructure, proper price volatility management tools are required to improve 

smallholders’ price expectations - thereby rural households allocate their production resources 

more optimally. Moreover, agricultural extension workers may have additional role in providing 

outlook information to assist farmers in developing more rational expectations about price risks. 

A longer time period data would help to address questions such as whether smallholders who 

predict well for this year necessarily do so for other periods, which requires following up the 

same farmers to get a longitudinal information. Since producers usually revise their expectations 

from one production season to the next, this will enable us to understand whether smallholder 

farmers have historically become more or less accurate, and why. While we are able to show that 

better price prediction would save potential production loss following an increase in grain prices, 

further research is needed to test whether better price prediction essentially leads to optimal 

production decision and eventually to higher expected utility of profit. Moreover, it will be 

crucial to assess the cost of investing in market and information systems for the government.  
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6. General conclusions 

The major objective of this thesis is to study how global food supply, and acreage in selected 

major producer countries, respond to international price levels and price volatility. As it is an 

integral part of any supply response study, the thesis further analyses price expectation formation 

and the role that information plays in the price prediction accuracy of smallholder farmers in the 

context of a developing country.  

Uncertainty is a quintessential feature of agricultural commodity prices. Besides the traditional 

causes of price fluctuations, agricultural commodities are increasingly connected to energy and 

financial markets, with potentially destabilizing impacts on prices (Tadesse et al., 2014). In 

recent years, global crop production has faced a series of emerging issues and showed noticeable 

variations particularly in acreage. Factors such as ongoing developments in bio-technology, 

fluctuations in corn and soybean prices due to the growing demand for ethanol and changes in 

production costs affect producers’ acreage allocation decisions, with a potential global food 

supply impact. Using global and cross-country data for the period 1961–2010, this thesis 

investigates the supply impacts of international price levels and volatility at a global level. 

Estimation of the supply response to input and output price levels and output price volatility is a 

necessary step in predicting the future global food supply effects of developments in output price 

levels and volatility. In addition to responding to price changes by reallocating acreage, 

producers react to expected price changes by making decisions that affect crop yield.  

The findings reveal that, although higher output prices serve as an incentive to improve global 

crop supply as expected, output price volatility acts as a disincentive. Depending on the 

respective crop, the results show that own price supply elasticities range from about 0.05 to 0.35. 

Output price volatility, however, has negative correlations with crop supply, implying that 

farmers shift land, other inputs, and yield-improving investments to crops with less volatile 

prices. Comparison of the annual and the monthly acreage response elasticities from the time 

series acreage models suggests that acreage adjusts seasonally around the globe to new 

information and expectations. Given the seasonality of agriculture, time is of an essence for 

acreage response. The analysis indicates that acreage allocation is more sensitive to prices in the 

northern hemisphere spring than in winter and the response varies across months.  
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Furthermore, simulation analysis of the impact of the 2006–2010 price dynamics reveals 

differential effects on acreage, yield, and production of each crop. The overall acreage impact of 

the output and input price dynamics during this period is estimated to be, on average, positive for 

corn and soybeans, negligible for rice, and slightly negative for wheat. Furthermore, own-price 

volatility tends to dampen yield by about 1% to 2% for all the crops under consideration. 

Calculating the production impact from the acreage and yield simulations by the identity that 

production equals acreage times yield, we find that the net-impact on production is an increase of 

about 3% for corn, 2% for soybeans, 1% for rice, and a decrease of about 1% for wheat. One 

point to note here is that the adverse supply impact of price volatility is less pronounced for 

soybean and corn producers. The majority of the soybean and corn producers in the world are 

large commercial holders who are likely to be well informed about price developments. Thus, 

they are likely to be willing and able to absorb price risks.  

With the help of the country specific results, we were able to identify two groups of countries: 

those with high price responsive markets and those with strong time trends. While prices drive 

most of the acreage change in countries characterized by the former market types, acreage 

expansion or shrinkage can be expected even if prices remain stable or slightly decreasing in the 

latter case. The acreage response models are able to adequately explain historical acreage 

fluctuations for most of these countries and crops except in a few cases. The forecasting tool 

might therefore be extended by further market analysis based on broader political and economic 

factors as well as short-term weather events that are not reflected in prices but that may 

potentially influence acreage decisions.  

Finally, the results from chapter 5 show that information regarding current and past output prices 

in nearby grain markets, central wholesale prices and seasonal rainfall shape price expectations 

of smallholder farmers in Ethiopia. Furthermore, the results indicate that farmers who have better 

access to information and who reside closer to grain markets are more likely to have smaller 

price prediction errors. Using a simple simulation analysis, we show that improving farmers’ 

access to information and shortening the ‘effective’ distance that they need to travel to nearby 

grain markets would save a significant amount of production loss. This calls for public and semi-

public institutions to provide market information as public goods through organized market 

information systems in the country, and to improve the physical infrastructure.  Nevertheless, 
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further research is needed to test whether better price prediction essentially leads to optimal 

production decision and eventually to higher expected utility of profit. Moreover, it will be 

crucial to assess the cost of investing in market and information systems for the government.  

In summary, the study explains why the recent high food prices have not brought about a large 

increase in global agricultural supply as one might have expected. The estimated short-run 

supply elasticities are generally small. Agricultural supply does not, in the short run, increase on 

a par with output price increases. In other words, agricultural producers need more time to make 

necessary production adjustments and investments to increase supply. Furthermore, this study 

identifies how much the increased latent output price uncertainty represented by price volatility 

weakens the global positive supply response towards price levels.  
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Appendix I 

Table A1. Seemingly unrelated regression results for the Annual acreage response model 

(Ch. 2) 

Equation Obs Parms RMSE R-sq Chi2 P 

D_LWh_Area 48 11 0.02 0.41 34.72 0.00 

D_LCorn_Area 48 11 0.02 0.52 55.82 0.00 

D_LSoy_Area 48 11 0.03 0.55 65.56 0.00 

LRic_Area 48 8 0.02 0.88 360.36 0.00 

 

Variables  Coef. Std. Err. z P>|z| 

Wheat Area 

Lag wheat area -0.25 0.13 -1.99 0.05 

Wheat price 0.09 0.03 2.57 0.01 

Corn Price 0.00 0.03 -0.14 0.89 

Soy price 0.04 0.03 1.27 0.21 

Rice price -0.01 0.02 -0.58 0.56 

Fertilizer price -0.02 0.01 -1.53 0.13 

Wheat vol -0.90 0.34 -2.61 0.01 

trend 0.00 0.00 -1.92 0.05 

con 0.78 0.40 1.93 0.05 

Corn Area 

Lagged corn area -0.26 0.10 -2.57 0.01 

Wheat price -0.11 0.03 -3.57 0.00 

Corn price 0.18 0.03 5.71 0.00 

soy price -0.02 0.03 -0.67 0.50 

Rice price 0.00 0.01 0.01 1.00 

Fertilizer price 0.02 0.01 1.36 0.17 

corn price vol -0.65 0.27 -2.39 0.02 

year 0.00 0.00 0.26 0.79 

_cons -0.09 0.36 -0.23 0.82 

Soybean Area 

Lagged soy area -0.33 0.11 -2.89 0.00 

Wheat price 0.02 0.05 0.40 0.69 

Corn price -0.19 0.06 -3.01 0.00 

soy price 0.38 0.07 5.77 0.00 

Rice price -0.01 0.03 -0.20 0.84 

Fertilizer price -0.04 0.02 -2.11 0.04 

Soy price vol -1.52 0.47 -3.21 0.00 



 

148 

 

year 0.00 0.00 -0.51 0.61 

_cons 0.37 0.64 0.57 0.57 

Rice Area 

Lagged rice area 0.01 0.23 0.04 0.97 

Wheat price -0.03 0.04 -0.81 0.42 

Corn price 0.02 0.04 0.38 0.71 

soy price 0.00 0.04 0.10 0.92 

Rice price 0.00 0.02 0.18 0.86 

Fertilizer price 0.00 0.02 0.00 1.00 

Rice price vol -0.13 0.22 -0.61 0.54 

year 0.00 0.00 18.31 0.00 

_cons 2.55 0.51 5.02 0.00 

Correlation matrix of residuals: 

  

D_LWh_Area D_LMz_Area D_LSoy_Area LRic_Area 

 

D_LWh_Area 1.00 

   

 

D_Lcorn_Area 0.11 1.00 

  

 

D_LSoy_Area -0.23 -0.22 1.00 

 

 

LRic_Area 0.06 -0.17 0.16 1.00 

Breusch-Pagan test of independence: chi2(6) =8.162, Pr= 0.23 
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Table A2. Annual global acreage response model with futures prices (Ch. 2) 

Variables Coef. 

Newey-West 

Std.Err. t P>|t| 

Wheat 

LWh_Area -0.03 0.12 -0.24 0.81 

LWh_futures price -0.01 0.03 -0.58 0.57 

Lcorn_futures price 0.07 0.04 2.07 0.05 

LSoy_futures price -0.05 0.03 -1.50 0.14 

LFert_price 0.00 0.02 -0.16 0.88 

Wh_vol -0.25 0.45 -0.56 0.58 

year 0.00 0.00 -1.18 0.25 

_cons 0.67 0.57 1.18 0.25 

Corn 

Lcorn_Area -0.34 0.14 -2.47 0.02 

LWh_futures price -0.04 0.03 -1.53 0.14 

Lcorn_futures price 0.06 0.03 1.90 0.07 

LSoy_futures price 0.02 0.02 1.02 0.32 

LFert_price 0.01 0.02 0.33 0.75 

Mz_vol 0.08 0.39 0.20 0.84 

year 0.00 0.00 0.29 0.78 

_cons -0.10 0.40 -0.26 0.80 

Soybeans 

LSoy_Area -0.08 0.25 -0.30 0.77 

LWh_futures price -0.05 0.05 -1.02 0.32 

Lcorn_futures price -0.12 0.09 -1.36 0.18 

LSoy_futures price 0.10 0.08 1.26 0.22 

LFert_price 0.04 0.04 0.91 0.37 

Soy_vol 0.55 0.57 0.98 0.34 

year 0.00 0.00 -0.12 0.91 

_cons 0.11 0.69 0.16 0.87 
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Table A3. Monthly global acreage response model with futures prices (Ch. 2) 

Variables  Coef. 

Newey-West 

Std.Err t P>|t| 

Wheat  

l12.LWh_Area 0.84 0.03 30.36 0.00 

LWh_futures price 0.10 0.03 3.58 0.00 

Lcorn_futures price 0.00 0.03 0.09 0.93 

LSoy_futures price -0.05 0.03 -1.93 0.05 

LRic_spot price -0.03 0.02 -1.58 0.11 

LFert_price 0.00 0.02 0.11 0.92 

Wh_vol -1.16 0.45 -2.55 0.01 

corn_vol 1.16 0.48 2.40 0.02 

Soy_vol 0.78 0.35 2.18 0.03 

Ric_vol -0.24 0.27 -0.88 0.38 

year 0.00 0.00 -0.25 0.80 

MonthD1 -0.31 0.05 -5.71 0.00 

MonthD2 -0.31 0.05 -5.71 0.00 

MonthD3 -0.29 0.05 -5.61 0.00 

MonthD4 -0.21 0.04 -5.54 0.00 

MonthD5 -0.09 0.02 -5.27 0.00 

MonthD6 -0.12 0.02 -5.54 0.00 

MonthD7 -0.22 0.04 -5.72 0.00 

MonthD8 -0.27 0.05 -5.76 0.00 

MonthD9 -0.10 0.02 -5.83 0.00 

MonthD10 0.08 0.02 5.37 0.00 

MonthD12 -0.21 0.04 -5.67 0.00 

_cons 1.90 1.30 1.46 0.14 

Corn 

l12.Lcorn_Area 0.84 0.04 20.74 0.00 

LWh_futures price 0.02 0.02 0.94 0.35 

Lcorn_futures price 0.00 0.03 -0.16 0.87 

LSoy_futures price 0.00 0.02 -0.24 0.81 

LRic_spot price -0.02 0.01 -1.69 0.09 

LFert_price 0.01 0.01 0.64 0.53 

Wh_vol 0.18 0.28 0.63 0.53 

Mz_vol 0.32 0.33 0.98 0.33 

Soy_vol -0.14 0.36 -0.40 0.69 

Ric_vol 0.03 0.28 0.13 0.90 

year 0.00 0.00 1.09 0.28 

MonthD1 -0.27 0.07 -3.75 0.00 
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MonthD2 -0.22 0.06 -3.65 0.00 

MonthD3 -0.13 0.04 -3.32 0.00 

MonthD4 0.11 0.03 3.88 0.00 

MonthD5 0.16 0.04 4.02 0.00 

MonthD6 -0.04 0.01 -2.71 0.01 

MonthD7 -0.10 0.03 -3.36 0.00 

MonthD8 -0.20 0.05 -3.67 0.00 

MonthD9 -0.20 0.05 -3.84 0.00 

MonthD10 -0.12 0.03 -3.89 0.00 

MonthD12 -0.14 0.04 -3.84 0.00 

_cons -0.18 1.54 -0.11 0.91 

Soybeans 

l12.LSoy_Area 0.96 0.01 87.69 0.00 

LWh_futures price 0.01 0.04 0.23 0.82 

Lcorn_futures price 0.09 0.04 2.58 0.01 

LSoy_futures price -0.10 0.05 -2.02 0.04 

LRic_spot price 0.03 0.02 1.33 0.19 

LFert_price -0.02 0.02 -1.04 0.30 

Wh_vol 0.32 0.57 0.56 0.58 

corn_vol -0.01 0.63 -0.02 0.98 

Soy_vol 0.80 0.59 1.35 0.18 

Ric_vol -0.72 0.36 -2.02 0.04 

year 0.00 0.00 1.85 0.07 

MonthD1 0.01 0.03 0.24 0.81 

MonthD2 -0.11 0.04 -2.50 0.01 

MonthD3 -0.10 0.04 -2.43 0.02 

MonthD5 0.06 0.01 4.18 0.00 

MonthD6 0.06 0.01 4.44 0.00 

MonthD7 0.00 0.03 0.05 0.96 

MonthD8 -0.11 0.04 -2.64 0.01 

MonthD9 -0.11 0.04 -2.67 0.01 

MonthD10 0.02 0.02 0.68 0.50 

MonthD11 0.10 0.02 5.06 0.00 

MonthD12 0.05 0.02 2.93 0.00 

_cons -3.26 1.94 -1.68 0.09 
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Table A4. Short- and long-run own price elasticities of crop acreages (Ch. 2) 

Model Crop 
 

Short Run Long Run 

  Wheat 
 

0.09 0.20 

 Annual Corn 
 

0.18 0.23 

  Soybeans 
 

0.37 1.15 

  Rice 
 

0.02 0.06 

  Wheat 
 

0.07 0.43 

 Monthly Corn 
 

0.11 0.70 

  Soybeans 
 

0.14 3.59 

  Rice 
 

0.01 0.04 

 Wheat April 0.13 0.26 

  
 

May 0.3 0.56 

  Corn April 0.11 0.17 

 Month-

specific  
May 0.1 0.15 

  Soybeans May 0.18 0.87 

  
 

Jun 0.22 1.12 

  Rice May 0.02 0.06 

  
 

Jun 0.02 0.06 

Notes: The long-run elasticities are the short-run elasticities divided by (1– 𝛼) where 𝛼 is the 

estimate for the lagged dependent variable. This follows from the lag-structure of the auto-

regressive model where 𝑙𝑡+𝑠 =  𝛼 
𝑠𝑙𝑡 + 𝛽 ∑ 𝛼𝑘𝑝𝑡+𝑠−𝑘

𝑠−1
𝑘=0  (for brevity, other variables are 

omitted but could easily be considered in further additive terms). For large s,  𝛼 
𝑠𝑙𝑡 → 0 if 

𝛼 < 1; and for a permanent price shift p, the geometric series converges to  𝑙 =
𝛽

1−𝛼
𝑝, with 

𝛽

1−𝛼
 

denoting the long-term elasticity. In the case of the annual model, we took the lagged 

coefficients from the regression of the data series before first differencing. 
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Table A5. Planting and harvesting seasons of wheat for selected countries 

Country/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Global shares for 2008 calendar year (%) 

Acreage Production 

Argentina 

            

2.10 1.24 

Australia 

            

6.02 3.07 

Bangladesh     

        

0.17 0.12 

Brazil 

            

1.06 0.88 

Canada 

            

4.53 4.24 

China 

            

10.51 16.10 

Egypt 

            

0.55 1.17 

Ethiopia 

            

0.63 0.37 

EU27 

            

11.64 21.96 

India 

            

12.34 11.56 

Iran 

            

2.34 1.17 

Japan 

            

0.09 0.13 

Kazakhstan  

           

5.78 1.90 

Mexico 

            

0.38 0.59 

Myanmar  

           

0.04 0.02 

Nigeria 

            

0.01 0.01 

Pakistan 

            

4.02 3.07 

Paraguay  

           

0.17 0.12 

Russian Federation 

            

11.57 9.37 

South Africa  

           

0.33 0.31 

Turkey 

            

3.60 2.63 

Uruguay 

            

0.21 0.20 

Ukraine 

            

3.17 3.81 

United States  

          

10.65 9.95 

Uzbekistan  

           

0.63 0.89 

Others 

            

7.45 5.10 

         Planting               Harvesting               Planting and Harvesting   
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Table A6. Planting and harvesting seasons of corn for selected countries 

Country/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Global shares for 2008 calendar year (%) 

Acreage Production 

Argentina 

            

2.11 2.66 

Australia 

            

0.04 0.05 

Bangladesh 

            

0.14 0.16 

Brazil 

            

8.90 7.14 

Cambodia 

            

0.10 0.07 

Canada 

            

0.73 1.33 

China 

            

18.02 20.56 

Egypt 

            

0.56 0.90 

Ethiopia 

            

1.07 0.46 

EU27 

            

5.34 7.62 

India 

            

4.93 2.42 

Indonesia 

            

2.42 1.94 

Iran 

            

0.15 0.22 

Japan 

            

0.05 0.00 

Kazakhstan 

            

0.06 0.05 

Mexico 

            

4.79 2.90 

Myanmar 

            

0.21 0.15 

Nigeria 

            

2.29 0.91 

Pakistan 

            

0.63 0.44 

Paraguay 

            

0.52 0.30 

Philippines 

            

1.61 0.83 

Russian Federation 

            

1.03 0.81 

South Africa 

            

1.99 1.57 

Sri Lanka 

            

0.02 0.01 

Thailand 

            

0.60 0.51 

Turkey 

            

0.36 0.52 

Uruguay 

            

0.05 0.04 

Ukraine 

            

1.52 1.33 

United States 

            

20.99 37.49 

Uzbekistan 

            

0.02 0.03 

Viet Nam 

            

0.87 0.56 

Others 

            

17.90 6.04 
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Table A7. Planting and harvesting seasons of soybeans for selected countries 

Country/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Global shares for 2008 calendar year (%) 

Acreage Production 

Argentina 

            

17.73 19.90 

Australia 

            

0.04 0.02 

Brazil 

            

20.90 25.95 

Cambodia 

            

0.07 0.05 

Canada 

            

1.18 1.43 

China 

            

11.92 6.92 

Ethiopia 

            

0.01 0.00 

EU27 

            

0.23 0.28 

India 

            

9.35 4.28 

Indonesia 

            

0.58 0.34 

Iran 

            

0.08 0.09 

Japan 

            

0.14 0.11 

Kazakhstan 

            

0.05 0.04 

Mexico 

            

0.09 0.07 

Myanmar 

            

0.16 0.09 

Nigeria 

            

0.60 0.26 

Pakistan 

            

0.00 0.00 

Paraguay 

            

2.42 2.72 

Philippines 

            

0.00 0.00 

Russia 

            

0.70 0.32 

South Africa 

            

0.16 0.12 

Sri Lanka 

            

0.00 0.00 

Thailand 

            

0.13 0.08 

Turkey 

            

0.01 0.01 

Uruguay 

            

0.57 0.33 

Ukraine 

            

0.55 0.35 

United States 

            

30.13 35.03 

Viet Nam 

            

0.19 0.12 

Others 

            

1.97 1.09 

  

 

 

         Planting               Harvesting               Planting and Harvesting   
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Table A8.  Planting and harvesting seasons of rice (paddy) for selected countries 

Country/Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Global shares for 2008 calendar year (%) 

Acreage Production 

Argentina  

           

0.13 0.17 

Australia  

           

0.00 0.00 

Bangladesh  

           

7.05 6.82 

Brazil 

            

1.79 1.74 

Cambodia 

            

1.63 1.04 

China 

            

18.27 27.58 

Egypt 

            

0.47 1.06 

Ethiopia 

            

0.01 0.00 

EU27 

            

0.26 0.38 

India 

            

28.46 21.77 

Indonesia 

            

7.69 8.71 

Iran 

            

0.33 0.32 

Japan 

            

1.02 1.60 

Kazakhstan  

           

0.05 0.04 

Mexico 

            

0.03 0.03 

Myanmar  

           

5.06 4.79 

Nigeria 

            

1.50 0.61 

Pakistan 

            

1.85 1.45 

Paraguay  

           

0.02 0.02 

Philippines  

           

2.79 2.47 

Russian Federation 

            

0.10 0.11 

South Africa  

           

0.00 0.00 

Sri Lanka 

            

0.53 0.57 

Thailand 

            

7.08 4.64 

Turkey 

            

0.06 0.11 

Uruguay 

            

0.10 0.19 

Ukraine 

            

0.01 0.01 

United States  

          

0.76 1.34 

Uzbekistan  

           

0.04 0.02 

Viet Nam 

            

4.62 5.66 

Others 

            

8.28 6.74 

         Planting               Harvesting               Planting and Harvesting   
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Table A9. Country specific and common data sources 

Countries Area/production/yield data and sources  

Argentina 

 

 

 

Integrated Agricultural Information System (SIIA): 

http://www.siia.gov.ar/index.php/series-por-tema/agricultura 

Ministry of Agriculture, Livestock and Fisheries:  

http://www.minagri.gob.ar/site/agricultura/index.php 

Australia 

 

The Australian Bureau of Agricultural and Resource Economics and 

Sciences (ABARES): http://www.daff.gov.au/abares/pages/data 

Bangladesh FAO, USDA 

Brazil 

 

 

Brazilian Institute of Geography and Statistics (IBGE): 

http://seriesestatisticas.ibge.gov.br/ 

National Food Supply Company (CONAB): http://www.conab.gov.br/ 

Cambodia 

Ministry of Agriculture, Forestry and Fisheries (MAFF): 

http://www.elc.maff.gov.kh/ 

FAO, USDA 

Canada 

 

Canadian socio-economic information management system (CANSIM): 

http://www5.statcan.gc.ca/cansim 

China China Statistical Yearbook 2010 

Egypt FAO, USDA 

Ethiopia FAO, USDA 

EU27 Eurostat: http://epp.eurostat.ec.europa.eu/ 

India 

 

Directorate of Economics and Statistics, Department of Agriculture and 

Cooperation: http://eands.dacnet.nic.in/publications.htm 

Indonesia FAO, USDA 

Iran FAO, USDA 

Japan Ministry of Agriculture, Forestry and Fisheries : http://www.maff.go.jp/ 

Kazakhstan FAO, USDA 

Mexico 

 

Secretariat of Agriculture, Livestock, Rural Development, Fisheries and 

Food: http://www.siap.gob.mx/ 

Myanmar FAO, USDA 

Nigeria FAO, USDA 

Pakistan 

 

Pakistan Bureau of statistics: http://www.pbs.gov.pk/ 

http://www.finance.gov.pk/survey/chapter_12/02-Agriculture.pdf 

Paraguay FAO, USDA 

Philippines FAO, USDA 

Russian Federation FAO, USDA 

South Africa 

 

 

South African Grain Information Service (SAGIS):http://www.sagis.org.za/ 

http://www.daff.gov.za/docs/statsinfo/Abstract_2011.pdf 

FAO, USDA 

http://www.siia.gov.ar/index.php/series-por-tema/agricultura
http://www.minagri.gob.ar/site/agricultura/index.php
http://www.daff.gov.au/abares/pages/data
http://seriesestatisticas.ibge.gov.br/
http://www.conab.gov.br/
http://www.elc.maff.gov.kh/
http://www5.statcan.gc.ca/cansim
http://epp.eurostat.ec.europa.eu/
http://www.maff.go.jp/
http://www.siap.gob.mx/
http://www.pbs.gov.pk/
http://www.finance.gov.pk/survey/chapter_12/02-Agriculture.pdf
http://www.sagis.org.za/
http://www.daff.gov.za/docs/statsinfo/Abstract_2011.pdf
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Sri Lanka 

 

 

Agriculture and Environment Statistics Division of the Department of 

Census and Statistics: http://www.statistics.gov.lk/agriculture 

FAO, USDA 

Thailand FAO, USDA 

Turkey Turkish Statistical Institute: http://www.turkstat.gov.tr/  

Ukraine FAO, USDA 

Uruguay 

 

Uruguayan Department of Livestock, Agriculture, and Fisheries: 

http://portal.gub.uy/ 

USA Economic Research Service: http://www.ers.usda.gov/ 

Uzbekistan FAO, USDA 

Viet Nam FAO, USDA 

ROW FAO, USDA 

Other data and sources 

All countries, international spot prices 

World Bank price database: 

http://go.worldbank.org/4ROCCIEQ50   

All countries, futures spot prices Bloomberg Database 

Consumer Price Index (CPI) Bureau of labor statistics: http://www.bls.gov/cpi/ 

Ethiopia, rainfall  National Metrology Agency (MNA) 

All countries, Crop Calendar FAO GIES , OCE USDA 

Notes: Links are provided if applicable and available. All were accessed on/before August 15, 2014) 

 

 

 

 

 

 

 

 

 

 

 

http://www.statistics.gov.lk/agriculture
http://www.turkstat.gov.tr/
http://portal.gub.uy/
http://www.ers.usda.gov/
http://go.worldbank.org/4ROCCIEQ50
http://www.bls.gov/cpi/
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Appendix II 

A) Perception of farmers about prices in the future: Survey questions 
        Please ask household heads regarding their prices expectations for selected crops (LEAVE EMPTY IF THE RESPONDENT DOES NOT KNOW) 

Type of crop 

 

9 

How much do you 

think you will get for 

crops you produce 

and sell after the 

coming harvest in 

December next 

Ethiopian year? 

10 

Do you think it is 

possible that this price 

can be 

11 

Is/Are there 

grain market(s) 

in your kebele? 

  

1 YES 2 NO, IF 

NO SKIP TO 

QUESTION 14 

12 

At what price 

could you sell the 

crop currently in 

your kebele? 

13 

For what price 

did you sell the 

crop after the last 

harvest in your 

kebele? 

14 

 At what price 

could you sell the 

crop currently in 

the nearby grain 

market? 

15 

For what price 

did you sell the 

crop after the 

last harvest in 

the nearby 

grain market? 

16 

 If I would pay you now 

to get some of your 

crops after the next 

harvest, what would be 

your minimum price? 

 

[Start with a low price 

and increase the price 

step by step] 

17 

What do you think 

will happen to prices 

in the next… 

 

[1 increase, 2 

decrease, 3 remain 

the same] 

Price in 

Birr 

Unit 

Code m 

twice as 

high as 

your 

prediction? 

1YES 2 NO 

half as low 

as your 

prediction? 

1 YES 2 

NO 

 Price in 

Birr 

Unit 

Code m 

Price in 

Birr 

Unit 

Code m 

Price in 

Birr 

Unit 

Code m 

Price 

in Birr 

Unit  

Code m 

Price in 

Birr 

Unit   

Code m 

6 

months 

1 

year 

2 years 

Teff                   

Wheat                   

Maize                   

Sorghum                   

Barley                   

Horse beans                   

                   

Code m: QUANTITY UNITS 

1 KILOGRAMMES 11 BOBO 21 GAN 40 BIG MADABERIA 50 BUNCH (BANANAS) 60 EGIR 

2 QUINTAL 12 PACKETS 22 ENSIRA 41 SMALL MADABERIA 51 MELEKIA/LIK 61 WESLA 

3 CHINET 13 BAGS 23 GURZIGNE 42 DIRIB 52 GUCHIYE 62 MESFERIA 

4 DAWLA 14 BUNDLES 24 TASSA 43 SAHIN/LOTERY 53 BEKOLE 63 KURFO 

5 KUNNA 15 PIECES 25 KUBAYA/KELASA 44 MANKORKORIA 54 ENKIB 64 KOLELA 

6 MEDEB 16 BARS 26 BIRCHIKO 45 PLATIC BAG/FESTAL 55 SHEKIM  

7 KURBETS 17 BOXES 27 SINI 46 ZURBA 56 NUMBER 95 OTHER (Specify) 

8 SILICHA 18 LEAVES 28 GEMBO 47 AKARA 57 GOTERA  

9 AKMADA 19 LITRES 29 BOTTLES 48 SMALL PLASTIC BAG (MIKA) 58 LEMBA  

10 ESIR 20 KIL 30 BIRR 49 KERCHAT/KEMBA 59 SHIRIMERI  
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B) Theoretical model: The role of information 

We use the following substitutions to reduce complexity in the formal expressions: 

Definition 1: 

 Γ ≔ (1 + 𝑟)(1 − 𝛼) + ℎ𝑅𝑧𝑞(2𝛼 − 1)  

Definition 2: 

 Φ ≔ (1 + 𝑟)(1 − 𝛼)(1 + 𝛽) + ℎ𝑅𝑧𝑞(2𝛼 − 𝛽 − 1)  

Corollary 1: 

 The change of the optimal input x in h using (5.10a) and ignoring (5.10b) 

  
𝑑𝑥∗

𝑑ℎ
= −

𝑧𝑞𝑅𝑥∗

(1+𝑟)(1−𝛼)+ℎ𝑅𝑧𝑞(2𝛼−1)
= −

𝑧𝑞𝑅𝑥∗

Γ
 from Equation (5.11) is negative if and only if Γ > 0. 

Corollary 2: 

 Γ > 0 is equivalent to (1) ℎ < ℎ̃ ≔
1+𝑟

𝑧𝑞𝑅
 or (2) ℎ > ℎ̃ and 𝛼 >

1+𝑟−ℎ𝑧𝑞𝑅

1+𝑟−2ℎ𝑧𝑞𝑅
 

Proposition 1 (Risk Aversion):  

In the joint optimum, i.e. under (5.10a) and (5.10b), 

𝑑𝑥∗

𝑑𝑅
= −

ℎ𝑧𝑞𝑥

Φ
   and   

𝑑𝐼∗

𝑑𝑅
= −

𝐼(ℎ𝑧𝑞𝑅+(𝑟+1)(𝛼−1))

𝑅Φ
 

Proof: Substituting 𝑥∗ = 𝑥∗(𝑅) and 𝐼∗ = 𝐼∗(𝑅) into (5.10a) and (5.10b) and taking the total 

derivatives of both equations in R and solving for 
𝑑𝑥∗

𝑑𝑅
 and 

𝑑𝐼∗

𝑑𝑅
 gives Proposition 1 (under the use 

of Definition 2). 
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Proposition 2 (Cost of Information): 

 In the joint optimum, i.e. under (5.10a) and (5.10b), 

𝑑𝑥∗

𝑑𝑘
= −

2𝐼∗(1+𝑟)2𝑥∗

𝑧𝑞𝛷
   and   

𝑑𝐼∗

𝑑𝑘
= −

2(1+𝑟)2𝛤𝐼∗2

(𝑧𝑞)2ℎ𝑅𝛽𝛷
 

Proof: Substituting 𝑥∗ = 𝑥∗(𝑘) and 𝐼∗ = 𝐼∗(𝑘) into (5.10a) and (5.10b) and taking the total 

derivatives of both equations in k and solving for 
𝑑𝑥∗

𝑑𝑘
 and 

𝑑𝐼∗

𝑑𝑘
 gives Proposition 2 (under the use 

of Definition 1 and 2). 

Proposition 3 (Discount Rate):  

In the joint optimum, i.e. under (5.10a) and (5.10b), 

𝑑𝑥∗

𝑑𝑟
= −

((1+𝑟)(1+𝛽)−2ℎ𝑝𝑞𝑅)𝑥

(1+𝑟)Φ
   and   

𝑑𝐼∗

𝑑𝑟
= −

2(1+𝑟−ℎ𝑝𝑞𝑅)𝐼

(1+𝑟)Φ
 

Proof: Substituting 𝑥∗ = 𝑥∗(𝑟) and 𝐼∗ = 𝐼∗(𝑟) into (5.10a) and (5.10b) and taking the total 

derivatives of both equations in r and solving for 
𝑑𝑥∗

𝑑𝑟
 and 

𝑑𝐼∗

𝑑𝑟
 gives Proposition 3 (under the use 

of Definition 2). 


