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Convex Optimization for
Inequality Constrained Adjustment Problems

Summary

Whenever a certain function shall be minimized (e.g., a sum of squared residuals) or maximized
(e.g., profit) optimization methods are applied. If in addition prior knowledge about some of the
parameters can be expressed as bounds (e.g., a non-negativity bound for a density) we are dealing
with an optimization problem with inequality constraints. Although, common in many economic
and engineering disciplines, inequality constrained adjustment methods are rarely used in geodesy.
Within this thesis methodology aspects of convex optimization methods are covered and analogies
to adjustment theory are provided. Furthermore, three shortcomings are identified which are—in the
opinion of the author—the main obstacles that prevent a broader use of inequality constrained ad-
justment theory in geodesy. First, most optimization algorithms do not provide quality information
of the estimate. Second, most of the existing algorithms for the adjustment of rank-deficient systems
either provide only one arbitrary particular solution or compute only an approximative solution.
Third, the Gauss-Helmert model with inequality constraints was hardly treated in the literature
so far. We propose solutions for all three obstacles and provide simulation studies to illustrate our
approach and to show its potential for the geodetic community.
Thus, the aim of this thesis is to make accessible the powerful theory of convex optimization with
inequality constraints for classic geodetic tasks.

Konvexe Optimierung für
Ausgleichungsaufgaben mit Ungleichungsrestriktionen

Zusammenfassung

Methoden der konvexen Optimierung kommen immer dann zum Einsatz, wenn eine Zielfunk-
tion minimiert oder maximiert werden soll. Prominente Beispiele sind eine Minimierung der
Verbesserungsquadratsumme oder eine Maximierung des Gewinns. Oft liegen zusätzliche Vorinfor-
mationen über die Parameter vor, die als Ungleichungen ausgedrückt werden können (beispielsweise
eine Nicht-Negativitätsschranke für eine Dichte). In diesem Falle erhält man ein Optimierungspro-
blem mit Ungleichungsrestriktionen. Ungeachtet der Tatsache, dass Methoden zur Ausgleichungs-
rechnung mit Ungleichungen in vielen ökonomischen und ingenieurwissenschaftlichen Disziplinen
weit verbreitet sind, werden sie dennoch in der Geodäsie kaum genutzt.
In dieser Arbeit werden methodische Aspekte der konvexen Optimierung behandelt und Analogien
zur Ausgleichungsrechnung aufgezeigt. Desweiteren werden drei große Defizite identifiziert, die –
nach Meinung des Autors – bislang eine häufigere Anwendung von restringierten Ausgleichungs-
techniken in der Geodäsie verhindern. Erstens liefern die meisten Optimierungsalgorithmen aus-
schließlich eine Schätzung der unbekannten Parameter, jedoch keine Angabe über deren Genauigkeit.
Zweitens ist die Behandlung von rangdefekten Systemen mit Ungleichungsrestriktionen nicht trivial.
Bestehende Verfahren beschränken sich hier zumeist auf die Angabe einer beliebigen Partikulär-
lösung oder ermöglichen gar keine strenge Berechnung der Lösung. Drittens wurde das Gauß-
Helmert-Modell mit Ungleichungsrestriktionen in der Literatur bisher so gut wie nicht behandelt.
Lösungsmöglichkeiten für alle genannten Defizite werden in dieser Arbeit vorgeschlagen und kommen
in Simulationsstudien zum Einsatz, um ihr Potential für geodätische Anwendungen aufzuzeigen.
Diese Arbeit soll somit einen Beitrag dazu leisten, die mächtige Theorie der konvexen Optimierung
mit Ungleichungsrestriktionen für klassisch geodätische Aufgabenstellungen nutzbar zu machen.
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1. Introduction

1.1 Motivation

Many problems in both science and society can be mathematically formulated as optimization
problems. The term optimization already implies that the task is to find a solution that is optimal—
i.e. better (or at least not worse) than any other existing solution. Thus, optimization methods always
come into play if a cost function should be minimized or a profit function should be maximized.
Prominent examples in geodesy include the minimization of the sum of squared residuals or the
maximization of a likelihood function.

In many cases additional information on (or restrictions of) the unknown parameters exist that
could be expressed as constraints. Equality constraints can be easily incorporated in the adjustment
process to take advantage of as much information as possible. However, it is not always possible
to express knowledge on the parameters as equalities. Possible examples are a lower bound of zero
for non-negative quantities such as densities or repetition numbers, or an upper bound for the
maximal feasible slope of a planned road. In these cases, inequalities are used to express the addi-
tional knowledge on the parameters which leads to an optimization problem with inequality
constraints.

If in addition it is known that only a global minimum exists, a convex optimization problem
with inequality constraints has to be solved.

Despite the fact that there is a rich body of work on convex optimization with inequality constraints
in many engineering and economic disciplines, its application in classic geodetic adjustment tasks
is rather scarce.

Within this thesis methodological aspects from the field of convex optimization with inequality
constraints are described and analogies to classic adjustment theory are pointed out. Furthermore,
we identified the following three shortcomings, which are—in our opinion—the main obstacles that
prevent a broader use of inequality constrained adjustment theory in geodesy:

Quality description. It is a fundamental concept in geodesy that not only the value of an es-
timated quantity is of interest but also its accuracy. Information on the accuracy is usually
provided as a variance-covariance matrix, which allows us to extract standard deviations and
information on the correlation of different parameters. However, this is no longer possible in
the presence of inequality constraints as their influence on the parameters cannot be described
analytical. Furthermore, symmetric confidence regions are no longer sufficient to describe the
accuracy as the parameter space is truncated by inequality constraints.

Rank-deficient systems. Many applications in geodesy lead to a rank-deficient system of normal
equations. Examples are the second order design of a geodetic network with more weights to
be estimated than entries in the criterion matrix, or the adjustment of datum-free networks.
However, most state-of-the-art optimization algorithms for inequality constrained problems
are either not capable of solving a singular system of linear equations or provide only one of
an infinite number of solutions.

Gauss-Helmert model. Oftentimes, not only the relationship between a measured quantity
(i.e. an observation) and the unknown parameters has to be modeled, but also the relationship
between two or more observations themselves. In this case, it is not possible to perform an ad-
justment in the Gauss-Markov model, and the Gauss-Helmert model is used instead. However,
it is not straightforward to perform an inequality constrained estimation in the Gauss-Helmert
model.
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1.2 State of the Art

A rich literature on convex optimization exists, including textbooks such as Gill et al. (1981),
Fletcher (1987) or Boyd and Vandenberghe (2004).

The same holds true for a special case of convex optimization problem: the quadratic program. Here,
a quadratic objective function should be minimized subject to some linear constraints. Two out of
many works on this topic are Simon and Simon (2003) and Wong (2011). The former proposed
a quadratic programming approach to set up an inequality constrained Kalman Filter for aircraft
turbofan engine health estimation. The latter examined certain active-set methods for quadratic
programming in positive (semi-)definite as well as in indefinite systems.

Not only in the geodetic community, there exist many articles on the solution of an Inequality Con-
strained Least-Squares (ICLS) problem as a quadratic program. Stoer (1971) for example proposed,
what he defined as “a numerically stable algorithm for solving linear least-squares problems with
linear equalities and inequalities as additional constraints”. Klumpp (1973) formulated the problem
of estimating an optimal horizontal centerline in road design as a quadratic program.
Fritsch and Schaffrin (1980) and Koch (1981) were the first to address inequality constrained least-
squares problems in geodesy. While the former formulated the design of optimal FIR filters as
ICLS problem, the latter examined hypothesis testing with inequality constraints. Later on Schaf-
frin (1981), Koch (1982, 1985) and Fritsch (1982) transformed the quadratic programming problem
resulting from the first and second order design of a geodetic network into a linear complementarity
problem and solved it via Lemke’s algorithm. Fritsch (1983, 1985) examined further possibilities
resulting from the use of ICLS for the design of FIR filters and other geodetic applications. Xu et al.
(1999) proposed an ansatz to stabilize ill-conditioned LCP problems.
A more recent approach stems from Peng et al. (2006) who established a method to express many
simple inequality constraints as one intricate equality constraint in a least-squares context. Koch
(2006) formulated constraints for the semantical integration of two-dimensional objects and digital
terrain models. Kaschenz (2006) used inequality constraints as an alternative to the Tikhonov reg-
ularization leading to a non-negative least-squares problem. She applied her proposed framework to
the analysis of radio occultation data from GRACE (Gravity Recovery And Climate Experiment).
Tang et al. (2012) used inequalities as smoothness constraints to improve the estimated mass changes
in Antarctica from GRACE observations, which leads again to a quadratic program.

Much less literature exists on the quality description of inequality constrained estimates. The prob-
ably most cited work in this area is the frequentist approach of Liew (1976). He first identified the
active constraints and used them to approximate an inequality constrained least-squares problem
by an equality constrained one. Geweke (1986) on the other hand suggested a Bayesian approach,
which was further developed and introduced to geodesy by Zhu et al. (2005).
However, both approaches are incomplete. While in the first ansatz, the influence of inactive con-
straints is neglected, the second ansatz ignores the probability mass in the infeasible region. Thus,
we propose the MC-QP method in Chap. 4 which overcomes both drawbacks.

The probably most import contributions to the area of rank-deficient systems with inequality con-
straints are the works of Werner (1990), Werner and Yapar (1996) and Wong (2011). In the two
former articles a projector theoretical approach for the rigorous computation of a general solution
of ICLS problems with a possible rank defect is proposed using generalized inverses. In the latter
an extension of classic active-set methods for quadratic programming is described, which enables us
to compute a particular solution despite a possible rank defect.
However, the ansatz from Werner (1990) and Werner and Yapar (1996) is only suited for small-scale
problems, and the approach of Wong (2011) lacks a description of the homogeneous solution. Thus,
we propose a framework for rank-deficient and inequality constrained problems in Chap. 5 that is
applicable to larger problems and provides a particular as well as a homogeneous solution.
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To the best of our knowledge, nearly no literature on the inequality constrained Gauss-Helmert model
exists. The works which come closest treat the mixed model—which can be seen as a generalization
of the Gauss-Helmert model. Here, the works of Famula (1983), Kato and Hoijtink (2006), Davis
et al. (2008) and Davis (2011) should be mentioned.
In Chap. 6 we describe two approaches to solve an inequality constrained Gauss-Helmert model.
One that uses standard solvers and one that does not but therefore takes advantage of the special
structure of the Gauss-Helmert model.

1.3 Scientific Context and Objectives of this Thesis

As implied by the title, this work is located at the transition area between mathematical op-
timization and adjustment theory. Both fields are concerned with the estimation of unknown
parameters in such a way that an objective function is minimized or maximized. As a consequence
the topics overlap to a large extent and sometimes differ merely in the terminology used.

As there exist many different definitions and as the assignment of a certain concept to one of the
two fields might sometimes be arbitrary, we state in the following how the terms will be used within
this thesis.

Adjustment theory. In adjustment theory (cf. Chap. 2) not only the parameter estimate but
also its accuracy is of interest. Thus, we have a functional as well as a stochastic model for
a specific problem as it is common in geodesy. This also includes testing theory and the
propagation of variances.
Furthermore, the term adjustment theory is often connected with three classic geodetic
models: the Gauss-Markov model, the adjustment with condition equations and the Gauss-
Helmert model. All of these models can be combined with an estimator that defines what
characterizes an optimal estimate. By far the most widely used estimator is the L2 norm
estimator which leads to the famous least-squares adjustment. Furthermore, it can be shown
to be the Best Linear Unbiased Estimator (BLUE) in the aforementioned models (cf. Koch,
1999, p. 156–158 and p. 214–216, respectively).

Mathematical optimization. In mathematical optimization (cf. Chap. 3) on the other hand,
mostly the estimate itself matters. Thus, we are usually dealing with deterministic quantities
only.
Furthermore, the optimization theory deals with methods to reformulate a certain problem
in a more convenient form and provides many different algorithms to solve it. In addition,
inequality constrained estimates are usually assigned to this field. While in adjustment theory
the focus lies on the problem and a way to model it mathematically, in optimization the focus
is more on general algorithmic developments leading to powerful methods for many tasks.

Some words might be in order to distinguish the topic of this thesis from related work in other fields.

1. We are using frequentist instead of Bayesian inference. Thus, we assume that the unknown
parameters have a fixed but unknown value and are deterministic quantities (cf. Koch, 2007,
p. 34). Thus, no stochastic prior information on the parameters is used. However, in Sect. 4.2.3
we borrow the concept of Highest Posterior Density Regions, which originally stems from
Bayesian statistics but can also be applied in a frequentist framework.
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2. Recently, many works have been published dealing with the errors-in-variables model and thus
leading to a total least-squares estimate. Some of them even include inequality constraints
(De Moor, 1990, Zhang et al., 2013, Fang, 2014, Zeng et al., 2015). However, the errors-in-
variables model can be seen as a special case of the Gauss-Helmert model (cf. Koch, 2014).
Thus, we decided to treat the most general version of the Gauss-Helmert model in Chap. 6
instead of a special case.

3. Whenever we mention the term “inequalities” we are talking about constraints for the quanti-
ties which should be estimated. This is a big difference to the field of “censoring” (cf. Kalbfleisch
and Prentice, 2002, p. 2) that deals with incomplete data. An example for an inequality in a
censored data problem would be an observation whose quantity is only known by a lower
bound as in “The house was sold for at least e500 000.” As a consequence, it is not known
if the house was sold for e500 000, e600 000 or e1 000 000. Within this thesis we explicitely
exclude censored data.

Purpose of this Work. The purpose of this thesis it to make accessible the powerful theory
of convex optimization—especially the estimation with inequality constraints—for classic geodetic
tasks. Besides the extraction of certain analogies between convex optimization methods and ap-
proaches from adjustment theory, this is attempted by removing the three main obstacles identified
in Sect. 1.1 and thus includes

• the extension of existing convex optimization algorithms by a stochastic framework.

• a new strategy to treat rank-deficient problems with inequalities.

• a formulation of a Gauss-Helmert model with inequality constraints as a quadratic program
in standard form.

The contents of this thesis have been partly published in the following articles.

Roese-Koerner, Devaraju, Sneeuw and Schuh (2012). A stochastic framework for inequal-
ity constrained estimation. Journal of Geodesy, 86(11):1005–1018, 2012.

Roese-Koerner and Schuh (2014). Convex optimization under inequality constraints in rank-
deficient systems. Journal of Geodesy, 88(5):415–426, 2014.

Roese-Koerner, Devaraju, Schuh and Sneeuw (2015). Describing the quality of inequality
constrained estimates. In Kutterer, Seitz, Alkhatib, and Schmidt, editors, Proceedings of the
1st International Workshop on the Quality of Geodetic Observation and Monitoring Systems
(QuGOMS’11), IAG Symp. 140, pages 15–20. Springer, Berlin, Heidelberg, 2015.

Roese-Koerner and Schuh (2015). Effects of different objective functions in inequality con-
strained and rank-deficient least-squares problems. In VIII Hotine-Marussi Symposium on
Mathematical Geodesy, IAG Symp. 142. Springer, Berlin, Heidelberg, 2015 (accepted).

Halsig, Roese-Koerner, Artz, Nothnagel and Schuh (2015). Improved parameter estima-
tion of zenith wet delay using an inequality constrained least squares method. In IAG Scientific
Assembly, Potsdam 2013, IAG Symp. 143. Springer, Berlin, Heidelberg, 2015 (accepted)
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1.4 Outline

This thesis is subdivided in four parts: fundamentals, methodological contributions, simulation stud-
ies, and conclusion and outlook.

The first part consists of two chapters and is devoted to fundamental mathematical principles. The
basics of adjustment theory are described in Chap. 2. This includes mathematical concepts, such as
the quadratic form, optimality conditions for unconstrained problems, systems of linear equations
as well as different models and estimators.

Existing methods in convex optimization are covered in Chap. 3. Here, the term convexity is defined
and the minimization with inequality constraints is explained. Furthermore, a special optimization
problem—the quadratic program—is introduced alongside the concept of duality. The last sections of
the chapter are devoted to active-set methods as one possible way to solve an inequality constrained
problem, and to methods for finding a feasible solution, respectively.

Our own contributions are summarized in Part Two, which consists of three chapters. A stochastic
framework for the quality description of inequality constrained estimates is proposed in Chap. 4. It
combines the actual quality description with some analytic methods for constraints. This includes
two global measures (an hypothesis test and a measure for the probability mass in the infeasible
region) and one local measure: A sensitivity analysis that allows us to examine the influence of
each constraint on each parameter. The chapter concludes with a simple example of the proposed
framework.

Rank-deficient systems with inequalities are the topic of Chap. 5. Here an extension for active-
set methods is described which is required to compute a particular solution of a singular system.
Furthermore, the rigorous computation of a general solution is described and a framework for the
solution of rank-deficient ICLS problems is proposed. The application of the framework is illustrated
with a simple two-dimensional example with a one-dimensional manifold.

The Gauss-Helmert model with inequalities is treated in Chap. 6. We show how to reformulate the
inequality constrained Gauss-Helmert model as a quadratic program in standard form. Furthermore,
the special structure of the Gauss-Helmert model is exploited leading to a tailor-made transformation
of the Gauss-Helmert model. In addition, the Karush-Kuhn-Tucker optimality conditions for the
tailor-made approach are derived and a simple example is provided.

Six different applications of inequality constrained adjustment form the third part of this thesis—the
simulation studies in Chap. 7. Here, the Huber estimator is reformulated as a quadratic program
in standard form, as an example for robust estimation with inequality constraints. Furthermore,
the stochastic description mentioned above is illustrated again at two close-to-reality examples: The
estimation of a positive definite covariance function and a VLBI adjustment with constraints on the
tropospheric delay. Afterwards, the second order design of a geodetic network and an engineering
example with strict welding tolerances are portrayed. Both tasks lead to rank-deficient systems.
In the last simulation study, the Gauss-Helmert model with inequality constraints is used for the
optimal design of a vertical road profile.

The major findings of this thesis are summarized in the last part: conclusion and outlook (Chap. 8).
Furthermore, some thoughts for further works are developed.





7

Part I

Fundamentals
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2. Adjustment Theory

In this chapter, some basic principles of adjustment theory are reviewed and the mathematical
concepts applied are introduced. The distinction between models (e.g., the Gauß-Markov model)
and estimators (e.g., the L2 norm estimator) is discussed. Special emphasis is put on rank-deficient
systems.

Due to the overlap of adjustment theory and optimization mentioned in the introduction, some
topics (such as optimality conditions) could have been assigned to either of both chapters. These
topics are mentioned as soon as they are necessary for understanding the following concepts.

2.1 Mathematical Foundations

In order to facilitate the understanding of this thesis and to counteract possible ambiguities, some
basic mathematical concepts are reviewed and necessary expressions are defined. This includes
quadratic forms and convexity as well as minimization problems and the Gauss-Jordan algorithm,
which will be important when dealing with rank-deficient systems.

2.1.1 Quadratic Forms and the Definiteness of a Matrix

The expression

f(x) =
1

2
xTCx− cTx+ c, (2.1)

is called a quadratic form. C is a symmetric m ×m matrix, c and x are m × 1 vectors and c is a
scalar quantity. Depending on the definiteness of C, four different cases can be distinguished (cf.
Shewchuk, 1994).

C is positive definite: For every vector x 6= 0

xTCx > 0 (2.2)

holds true. All eigenvalues of a positive definite matrix are positive. A quadratic form with a
positive definite matrix C is depicted in Fig. 2.1(a).

C is negative definite: For every vector x 6= 0

xTCx < 0 (2.3)

holds true. All eigenvalues of a negative definite matrix are negative. A quadratic form with
a negative definite matrix C is depicted in Fig. 2.1(b).

C is positive semi-definite: All eigenvalues of a positive semi-definite matrix are non-negative
(i.e., positive or zero). If at least one eigenvalue is zero, C has a rank defect and is called
singular. A quadratic form with a positive semi-definite matrix C with a rank defect of one is
depicted in Fig. 2.1(c).

C is indefinite: An indefinite matrix has positive as well as negative eigenvalues. As a consequence,
the corresponding quadratic form has a saddle point (cf. Fig. 2.1(d)).

Within this work, especially positive (semi-)definite matrices will be used.
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(d) Indefinite Matrix
(Eigenvalues: λ1 = −1, λ2 = 1)

Figure 2.1: Quadratic forms in the bivariate case for matrices with a different type of definiteness. Modified
and extended from Shewchuk (1994).

2.1.2 Optimality Conditions for Unconstrained Problems

In order to find an optimal solution an extremum problem has to be solved. Depending on the task,
optimization can either mean to minimize or to maximize an objective function. As it is always
possible to transform a maximization problem into a minimization problem by multiplying the
objective function by minus one, only minimization problems will be addressed. In the following, it
is assumed that the objective function is a quadratic form and thus twice differentiable.

The necessary condition for a minimum of a function is that its gradient vanishes in the critical
point x̃. For the quadratic form (2.1), this leads to

∇f(x)|x=x̃ = ∇xf(x)|x=x̃ :=


∂f(x)
∂x1

∂f(x)
∂x2
...

∂f(x)
∂xm



∣∣∣∣∣∣∣∣∣∣∣
x=x̃

= Cx̃− c = 0, (2.4)
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with ∇ being the gradient operator. In case of a positive (semi-)definite Hessian matrix, this con-
dition is not only necessary, but also sufficient. This can easily be verified by examining (2.1). Its
Hessian reads

∇ (∇f(x)) = CT = C. (2.5)

If x̃ is a minimum, there is no point x with a lower value of the objective function. An application
of Taylor’s formula yields

f(x) = f(x̃) +∇f(x)|x=x̃︸ ︷︷ ︸
=0

(x− x̃) +
1

2
(x− x̃)TC(x− x̃)︸ ︷︷ ︸
≥0, if C is pos. semi-def.

. (2.6)

If C is positive (semi-)definite, there is no point x for which (2.6) has a lower value than for x̃.
Thus, x̃ is the desired minimizer.

If C is positive definite, x is the unique minimizer of (2.1). If C is positive semi-definite, there is a
manifold of solutions (cf. Sect. 2.1.3.2).

2.1.3 Systems of Linear Equations (SLE)

Estimating optimal parameters usually includes solving a system of linear equations (SLE). This
can be done in many different ways. In the following, the Gauss-Jordan algorithm is described as one
possible method for solving a system of linear equations. Furthermore, the solution of rank-deficient
systems is explained.

2.1.3.1 Gauss-Jordan Algorithm

The Gauss-Jordan algorithm is a method to solve a system of linear equations with either one
right-hand side n, i.e.

N [m×m]x[m×1] = n[m×1],

or multiple right-hand sides ni, i.e.

N [m×m]X [m×b] =
[
n1 n2 . . . nb

]
[m×b] .

Its most basic form is shown in Alg. 1. For a practical implementation, a version with pivoting (cf.
Press et al., 2007, p. 41–46) is highly recommended to gain numerical stability. “MATLAB notation”
is used to denote the access to specify certain parts or components of a matrix or vector. G(i, :)
represents the i-th row of the Gauss-Jordan matrix and G(:, j) its j-th column. If N is of full rank
m and the right-hand sides ni are contained in its column space, the result of the Gauss-Jordan
algorithm can be written as

G =
[
I [m×m] X [m×b]

]
(2.7)

and thus contains the desired solution X of the linear system (cf. line 16 of Alg. 1). The algorithm
can be used to compute the inverse of a matrix, too (cf. Press et al., 2007, p. 41–46). To obtain for
example the inverse N−1, the columns of the identity matrix I have to be used as right-hand sides,
yielding

NN−1 = I. (2.8)

This will be helpful when dealing with rank-deficient linear systems as described in the next section.
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Algorithm 1: Basic Gauss-Jordan algorithm (without pivoting)

// Reduces and solves the system of linear equations AX = B

Data:
A[m×m],B[m×b] . . . Square Matrix A and b corresponding right-hand sides comprised in B
imax . . . Maximal number of reduction steps (imax ≤ m− 1)
ε . . . Defintion of numeric zero

Result:

X [m×b] . . . Solution of the system of linear equations

1 G = [A|B]; // Gauss-Jordan matrix: expand A with the right-hand sides B
2 G(1, :) = G(1, :)/G(1, 1);
3 // Loop over all rows
4 for (i = 1 : imax) do
5 for (j = i+ 1 : m) do
6 G(j, :) = G(j, :)−G(j, i) ∗G(i, :);
7 end
8 if G(i+ 1, i+ 1) < ε then
9 break;

10 end
11 G(i+ 1, :) = G(i+ 1, :)/G(i+ 1, i+ 1);
12 for (k = 1 : i) do
13 G(k, :) = G(k, :)−G(k, i+ 1) ∗G(i+ 1, :);
14 end
15 end
16 X = G(:,m+ 1 : m+ b); // extract solution X from G (cf. (2.7))
17 return X

2.1.3.2 Systems with Rank-Deficiencies

If the column rank r of an m×m matrix N is less than m, i.e.

Rg(N) = r < m, (2.9)

then there are d = m − r linearly dependent columns. The matrix has a rank defect of d and the
linear system

Nx = n (2.10a)

is underdetermined. Without loss of generality it is assumed that N can be rearranged and parti-
tioned in a way that the r × r matrix N11 is of full rankN11

[r×r]
N12
[r×d]

N12
[d×r]

N22
[d×d]


 x1

[r×1]

x2
[d×1]

 =

 n1
[r×1]

n2
[d×1]

 . (2.10b)

As (2.10) is an underdetermined system of linear equations, there is not one unique solution but a
manifold. Therefore, the general solution

x̃(λ) = xP + xhom(λ) (2.11)
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consists of a particular solution xP and a solution xhom(λ) of the homogeneous system

Nxhom(λ) = 0. (2.12)

xhom(λ) depends on d free parameters λi, which can be chosen arbitrarily.

In the following, two equivalent ways to determine a particular and a homogeneous solution of
(2.10) are described. The first involves the theory of generalized inverses, while the latter uses the
Gauss-Jordan algorithm.

Solution with Generalized Inverses. The homogeneous solution of (2.12) is given by

xhom(λ) = Xhom λ. (2.13)

The columns of the m × d matrix Xhom form a basis for the nullspace of N yielding

NXhom = 0. (2.14)

According to Koch (1999, p. 59) the matrix

Xhom =

[
−N−1

11 N12

I

]
(2.15)

fulfills (2.14) and is therefore a feasible choice. A particular solution of (2.10) can be obtained by
applying the symmetric reflexive generalized inverse

N−RS =

[
N−1

11 0
0 0

]
(2.16)

as described e.g., in Koch (1999, p. 57), resulting in

xP = N−RS n =

[
N−1

11 n1

0

]
. (2.17)

In addition,Xhom can be used to compute the Moore-Penrose inverse (also known as pseudo inverse)

N+ =
(
N +XhomX

T
hom

)−1 −Xhom

(
XT

homXhomX
T
homXhom

)−1
XT

hom (2.18)

(cf. Koch, 1999, p. 61).

Solution with the Gauss-Jordan Algorithm. An equivalent way to obtain the particular and
the homogeneous solution mentioned above can be developed using the Gauss-Jordan algorithm.
Applying Alg. 1 to (2.10) in a symbolic way yields

N11 N12 n1

N21 N22 n2

I N−1
11 N12 N−1

11 n1

N21 N22 n2

I N−1
11 N12 N−1

11 n1

0 N22 −N21N
−1
11 N12 n2 −N21N

−1
11 n1.

|N−1
11 · (I)

|(II)−N21 · (I)
(2.19)
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As N has a rank defect of d and thus d linearly dependent columns the Schur form

N22 −N21N
−1
11 N12 (2.20)

in the last line of (2.19) is equal to zero. If n is an element of the column space of N , the same
holds true for

n2 −N21N
−1
11 n1, (2.21)

resulting in[
I N−1

11 N12

0 0

] [
x1

x2

]
=

[
N−1

11 n1

0

]
. (2.22a)

Reformulating yields

x1 +N−1
11 N12x2 = N−1

11 n1, (2.22b)

thus

x1 = N−1
11 n1 −N−1

11 N12x2. (2.22c)

With the choice x2 := λ, the general solution[
x1

x2

]
=

[
N−1

11 n1

0

]
︸ ︷︷ ︸

xP

+

[
−N−1

11 N12

I

]
︸ ︷︷ ︸

Xhom

λ (2.23)

follows. The particular and the homogeneous solution are clearly the same as those in (2.17) and
(2.15). Throughout this thesis, the Gauss-Jordan algorithm will be used to solve underdetermined
systems of linear equations.

2.2 Models

In this section, the three fundamental models of adjustment theory are introduced. The Gauss-
Markov Model (GMM), the adjustment with condition equations and the Gauss-Helmert Model
(GHM). It is well known that the first two models can be seen as special cases of the latter (cf.
Niemeier, 2002, p. 152). Nonetheless, due to their importance in adjustment theory, all models are
introduced separately and connections are pointed out.

Note that the term model (e.g., GMM, GHM, etc...) refers to the functional and stochastic model
of an adjustment problem, only. In principle, this does not include an estimator (e.g., least-squares
estimation, least absolute deviations, etc...), which is a statement about the objective function to
minimize (e.g., the sum of squared residuals). However—if not mentioned otherwise—the least-
squares estimator is used in all models.

2.2.1 Gauss-Markov Model (GMM)

In the following, the GMM is reviewed in its unconstrained and its equality constrained form.
Furthermore, the well-known weighted least-squares (WLS) estimate in the GMM is introduced.



14 2. Adjustment Theory

2.2.1.1 Unconstrained Gauss-Markov Model

Let the functional model, i.e., the relationship between the n observations `i and the m unknown
parameters xj , be defined as

l1 + v1 = f(x1, x2, . . . , xm)

l2 + v2 = f(x1, x2, . . . , xm)

...
ln + vn = f(x1, x2, . . . , xm).

The n residuals vi are unknown as well. If this relationship is linear, the observation equations can
be written in matrix vector form

`+ v = Ax. (2.24)

` is the n×1 vector of observations and x the m×1 vector of parameters. The n×m design matrix
A is assumed to be of full rank m (if not mentioned otherwise) and the n residuals are comprised
in

v = v(x) = Ax− `. (2.25)

The random vector L is here assumed to be normally distributed with known variance-covariance
(VCV) matrix Σ, i.e.

L ∼ N(Aξ,Σ). (2.26)

ξ is the true parameter vector. The observations comprised in ` are assumed to be a realization
of the random vector L. In case of a non-linear relationship, the observation equations have to be
linearized first (cf. Koch, 1999, p. 155–156) using a Taylor approximation of degree one

f(x) = f(x0 + ∆x) ≈ f(x)|x=x0︸ ︷︷ ︸
`0

+∇xf(x)|x=x0︸ ︷︷ ︸
A

∆x, (2.27)

resulting in

`− `0 + v = ∆`+ v = A∆x. (2.28)

As a consequence, the adjustment has to be carried out using an iterative scheme (also known
as Gauss-Newton approach, cf. Nocedal and Wright, 1999, p. 259–262). In each iteration only the
increment ∆x is computed and the vector of parameters is updated using

x = x0 + ∆x. (2.29)

In the following we will assume that the observation equations are linear. Minimizing the weighted
sum of squared residuals

Φ(x) = v(x)TΣ−1v(x) (2.30a)

= (Ax− `)TΣ−1(Ax− `) (2.30b)

= xTATΣ−1Ax− 2xTATΣ−1`+ `TΣ−1` (2.30c)

= xTNx− 2nTx+ `TΣ−1`, (2.30d)

with the substitutions

N = ATΣ−1A, (2.31a)

n = ATΣ−1`, (2.31b)

leads to the Weighted Least-Squares (WLS) adjustment in the Gauss-Markov model :
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Weighted Least-Squares (WLS) adjustment in the Gauss-Markov model

objective function: Φ(x) = xTNx− 2nTx+ `TΣ−1` . . .Min

optim. variable: x ∈ IRm. (2.32)

Closed formulas for the solution can be derived by setting the gradient of the objective function
with respect to x equal to zero (cf. Sect. 2.1.2)

∇xΦ(x) = 2Nx− 2n
!

= 0, (2.33)

yielding the normal equation system

Nx̃ = n (2.34)

and the least-squares estimator in the GMM (cf. Koch, 1999, p. 158)

x̃ = N−1n (2.35a)

=
(
ATΣ−1A

)−1
ATΣ−1`. (2.35b)

The VCV matrix of the estimated parameters is given by

Σ{X̃} = N−1 =
(
ATΣ−1A

)−1
. (2.36)

The (estimated) residuals read

v = Ax̃− ` (2.37)

and the adjusted observations are given by˜̀= `+ v. (2.38)

2.2.1.2 Equality Constrained Gauss-Markov Model

If there exist p̄ linear equality constraints

B
T
x = b, (2.39)

which have to be strictly fulfilled, (2.32) has to be extended to the Equality Constrained (weighted)
Least-Squares (ECLS) adjustment in the Gauss-Markov model :

Equality constrained least-squares (ECLS) adjustment in the GMM

objective function: Φ(x) = xTNx− 2nTx+ `TΣ−1` . . .Min

constraints: B
T
x = b

optim. variable: x ∈ IRm.

(2.40)

B is the m× p̄ matrix of equality constraints and the p̄× 1 vector b is the corresponding right-hand
side. Here and in the following, all quantities originating from equality constrained problems are
marked by a bar to distinguish them from inequality constraints. The Lagrangian

L(x,k) = Φ(x) + 2k
T

(B
T
x−b) (2.41a)

= xTNx− 2nTx+ `TΣ−1`+ 2k
T

(B
T
x−b), (2.41b)
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can be used to compute necessary and sufficient optimality conditions of the constrained optimiza-
tion problem (2.40) (cf. Koch, 1999, p. 171–172).

The p̄× 1 vector k contains the Lagrange multipliers. We will see later in Sect. 4.3.3 that—together
with the matrix of constraintsB and the normal equation matrixN—they can be used as a measure
for the distortion through the associated constraint (cf. Lehmann and Neitzel, 2013). However, one
should be careful as the absolute value of the Lagrange multipliers does not matter as they are
dimensionless. Therefore, often a multiple αk is used instead of the Lagrange multipliers k them-
selves, in order to obtain convenient equations. Throughout this thesis, we will use this whenever it
seems appropriate. Sometimes, even negative scaling factors α are applied to the Lagrange multi-
pliers when dealing with equality constraints. However, this should not be done with Lagrange
multipliers that are linked to inequality constraints as their sign is important for the interpretation
(cf. Sect. 3.5.1.6).

The gradients of the Lagrangian (2.41a) read

∇xL(x,k) = 2Nx− 2n+ 2Bk (2.42)

∇
k
L(x,k) = 2(B

T
x−b). (2.43)

The extended normal equations[
N B

B
T

0

][
x

k

]
=

[
n

b

]
(2.44)

result from setting the rearranged gradients equal to zero. Thus, the estimated parameters x̃ can
be computed by solving (2.44) and the values of the residuals and adjusted observations can be
obtained by evaluating (2.37) and (2.38), respectively. The same holds true for the VCV matrix of
the estimated parameters which can be extracted from the inverse of the extended normal equation
matrix.

2.2.2 Adjustment with Condition Equations

Instead of a relationship between observations and parameters, it can be more convenient to establish
r conditions between two or more observations

g1(`1, `2, . . . ,`n)
!

= 0 (2.45a)
...

gr(`1, `2, . . . ,`n)
!

= 0. (2.45b)

This ansatz is especially well suited for problems with a small redundancy r = n − m. If the
conditions are linear, these condition equations can easily be expressed in matrix vector notation

B
T

(`+ v)−b= 0, (2.46a)

leading to

B
T
v +B

T
`−b= 0 (2.46b)

and thus

B
T
v +w = 0, (2.46c)
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with the substitution

w :=B
T
`−b. (2.47)

If the condition equations (2.45) are non-linear, they have to be linearized first, using a Taylor
approximation of degree one

g(˜̀) = g(`0 + ∆`+ v) (2.48a)
= g(`)|`=`0︸ ︷︷ ︸

w0

+∇` g(`)|`=`0︸ ︷︷ ︸
B

T

(∆`+ v) (2.48b)

= w0 +B
T

(∆`+ v) (2.48c)

= w0 +B
T

∆`︸ ︷︷ ︸
w

+B
T
v (2.48d)

=B
T
v +w = 0 (2.48e)

and the adjustment has to be carried out using an iterative scheme.

Minimizing the sum of squared residuals in this model yields the adjustment with condition equations
(cf. Koch, 1999, p. 220–221):

Adjustment with condition equations

objective function: Φ(v) = vTΣ−1v . . .Min

constraints: B
T
v +w = 0

optim. variable: v ∈ IRn.

(2.49)

The normal equations read[
B
T
ΣB

]
k = −w, (2.50)

and the optimal values for the Lagrange multipliersk, the residuals v and the adjusted observations ˜̀
can be obtained via

k̃= −(B
T
ΣB)−1w, (2.51)

v = ΣB k̃, (2.52)˜̀= `+ v. (2.53)

A proof using duality theory is given in Sect. 3.4.1. This proof is an alternative to the classical ones
and spans a bridge between optimization and geodetic adjustment theory. The VCV matrix of the
adjusted observations reads

Σ{L̃} = Σ−ΣB(B
T
ΣB)−1B

T
Σ. (2.54)

2.2.3 Gauss-Helmert Model

The Gauss-Helmert Model (GHM, Helmert, 1872, p. 40–41) can be described as a combination of the
Gauss-Markov model (cf. Sect. 2.2.1) and the adjustment with condition equations (cf. Sect. 2.2.2).
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2.2.3.1 Unconstrained Gauss-Helmert Model (GHM)

Given

` . . . n× 1

Σ = Σ{L} . . . n× n

we assume b possibly non-linear functional relationships between one or more observation(s) and up
to m parameters

g(`,x)
!

= 0, (2.55)

which will be introduced as equality constraints. To linearize the functional relationship (2.55), one
has to split up the quantities

x̃ = x0 + ∆x (2.56)˜̀= `+ v = `− `0︸ ︷︷ ︸
∆`

+`0 + v = `0 + ∆`+ v (2.57)

and choose a Taylor point related to both parameters and computed observations (cf. Lenzmann
and Lenzmann, 2004, Koch, 2014)

z0 =

[
x0

`0

]
. (2.58)

Linearization using a Taylor series and the Taylor point mentioned above yields

g(˜̀, x̃) = g(`0 + ∆`+ v,x0 + ∆x)

= g(`,x)|`=`0,x=x0︸ ︷︷ ︸
w0

+∇` g(`,x)|`=`0,x=x0︸ ︷︷ ︸
B

T

GHM

(∆`+ v) +∇x g(`,x)|`=`0,x=x0︸ ︷︷ ︸
A

∆x

= w0 +B
T
GHM(∆`+ v) +A∆x

= w0 +B
T
GHM∆`︸ ︷︷ ︸
w

+B
T
GHMv +A∆x (2.59)

= w +B
T
GHMv +A∆x = 0.

With the least-squares objective function

vTΣ−1v . . .min,

the weighted least-squares adjustment in the Gauss-Helmert model can be stated:

Weighted least-squares adjustment in the Gauss-Helmert model

objective function: Φ(v) = vTΣ−1v . . .Min

constraints: B
T
GHMv +A∆x+w = 0

optim. variable: v ∈ IRn,∆x ∈ IRm.

(2.60)
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The corresponding Lagrangian reads

L(v,∆x,kGHM) = vTΣ−1v − 2k
T

GHM(B
T
GHMv +A∆x+w). (2.61)

Once again setting the gradients to zero yields the first order optimality conditions

∇vL(v,∆x,kGHM) = 2Σ−1v − 2BGHMkGHM
!

= 0 (2.62)

∇∆xL(v,∆x,kGHM) = −2ATkGHM
!

= 0 (2.63)

∇
kGHM

L(v,∆x,kGHM) = −2(B
T
GHMv +A∆x+w)

!
= 0, (2.64)

leading to

v = ΣBGHMkGHM (2.65)

ATkGHM = 0 (2.66)

B
T
GHMv +A∆x+w = 0. (2.67)

Inserting (2.65) in (2.67) yields

B
T
GHMΣBGHMkGHM +A∆x+w = 0. (2.68)

In matrix vector notation, the normal equations (2.68) and (2.66) read[
B
T
GHMΣBGHM A

AT 0

] [
kGHM
∆x

]
=

[
−w
0

]
. (2.69)

Solving this linear system yields an estimate ∆̃x. x̃,v and ˜̀ can be computed using (2.56), (2.37) and
(2.38), respectively. As this is a linearized form, iterations according to the Gauss-Newton method
(cf. Nocedal and Wright, 1999, p. 259–262) may be necessary. It can be shown that a unique solution
exists, if the design matrix is of full rank

Rg(A) = m (2.70)

and the rank of the composed matrix
[
B
T
GHM A

]
is equal to the number of constraints

Rg(
[
B
T
GHM A

]
) = p. (2.71)

As in the equality constrained GMM, the VCV matrix of the estimated parameters can be extracted
from the inverse of the normal equation matrix (cf. (2.69)).

2.2.3.2 Equality Constrained Gauss-Helmert Model (ECGHM)

Now we assume that there exist p̄ linear equality constraints concerning the parameters

B
T
x = b

∗
(2.72a)

which have to be strictly fulfilled. Splitting up the parameter vector yields

B
T

(x0 + ∆x) = b
∗
, (2.72b)

leading to

B
T

∆x = b
∗ −BTx0 =: b. (2.72c)

Thus, problem (2.60) has to be extended to the Equality Constrained (weighted) least-squares ad-
justment in the Gauss-Helmert Model (ECGHM):
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Equality Constrained (weighted) LS adjustment in the GHM (ECGHM)

objective function: Φ(v) = vTΣ−1v . . .Min

constraints: B
T
GHMv +A∆x+w = 0

B
T

∆x = b

optim. variable: v ∈ IRn,∆x ∈ IRm.

(2.73)

As in the unconstrained case the Lagrangian

L(v,∆x,kGHM,k) = vTΣ−1v − 2k
T

GHM(B
T
GHMv +A∆x+w)− 2k

T
(B

T
∆x−b) (2.74)

can be used to compute a solution. Again the multiples and signs of the Lagrange multipliers of the
inherent constraint kGHM and the additional equality constraint k are chosen in a way to make the
following computations as convenient as possible. Setting the gradients to zero yields

∇vL(v,kGHM) = 2Σ−1v − 2BGHMkGHM
!

= 0 (2.75)

∇∆xL(kGHM,k) = −2ATkGHM −Bk !
= 0 (2.76)

∇
kGHM

L(v,∆x) = −2(B
T
GHMv +A∆x+w)

!
= 0 (2.77)

∇
k
L(∆x) = −

(
B
T

∆x−b
)

!
= 0, (2.78)

leading to

v = ΣBGHMkGHM (2.79)

ATkGHM +Bk= 0 (2.80)

B
T
GHMv +A∆x+w = 0 (2.81)

B
T

∆x = b. (2.82)

It should be noted that (2.79) and (2.81) are identical to the equivalent formulations (2.65) and
(2.67) in the unconstrained GHM. Inserting (2.79) in (2.81) yields

B
T
GHMΣBGHMkGHM +A∆x+w = 0. (2.83)

The equations (2.83), (2.80) and (2.82) can be combined to the systemB
T
GHMΣBGHM A 0

AT 0 B

0 B
T

0


kGHM

∆x

k

 =

−w0
b

 . (2.84)

Solving this system of linear equations yields estimates for the parameters ∆̃x (and x̃) and the
Lagrange multipliers kGHM and k corresponding to the inherent constraints and the additional
equality constraints, respectively. As this is a linearized form, iterations according to the Gauss-
Newton method (cf. Nocedal and Wright, 1999, p. 259–262) may be necessary. Again, the VCV
matrix of the estimated parameters can be extracted from the inverse of the extended normal
equation matrix (cf. (2.84)).
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2.3 Estimators

One of the main targets in adjustment theory is the estimation of optimal parameters. However,
there are different options to define optimality. Each of these requires a certain objective function
Φ(v)—which is a function of the residuals v—to be minimal. Depending on that choice, different
estimators can be distinguished.

In the following, it is assumed that all observations are independently and identically distributed.
However, possible correlations and differing weights can be accounted for by introducing a metric
P of the vector space v is defined in.

L2 Norm Estimator. Hitherto, only the L2 norm estimator was described. Its objective function
reads

ΦL2(v) = ||v||22 = vTv = v2
1 + v2

2 + ...+ v2
n (2.85)

and is convex. The L2 norm estimator is the one most commonly used in adjustment theory and
also known as ordinary least-squares estimator. In the linear(ized) GMM, it leads to the unbiased
estimator with minimal variance (cf. Jäger et al., 2005, p. 105). However, it is not a robust estimator
as its influence function (not shown here) is unbounded (cf. Peracchi, 2001, p. 508). Thus, the
estimator is sensitive to outliers, in the sense of “an observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data” (Barnett and Lewis, 1994, p. 7).

L1 Norm Estimator. The objective function of the L1 norm estimator (cf. Koch, 1999, p. 262)
reads

ΦL1(v) = ||v||1 = |v1|+ |v2|+ . . .+ |vn| (2.86)

and is convex. It does not yield an estimate with minimal variance for normally distributed obser-
vations as the L2 norm estimator does. However, this least absolute deviations estimator is a robust
estimator and thus less sensitive concerning outliers.

Huber Estimator. The loss function of the Huber estimator

ρHuber(v) =

{
1
2v

2, |v| ≤ k
k|v| − 1

2k
2, |v| > k

(2.87)

can be seen as a mixture of the L1 and L2 norm estimators. k is a tuning parameter, which is often
set to 1.5 or 2.0, depending on the assumed portion of outliers in the data (cf. Koch, 1999, p. 260).
The corresponding objective function is defined as the sum of the loss functions of all observations

Φ(v) =
n∑
i=1

ρ(vi). (2.88)

The Huber estimator is a robust estimator and has a convex objective function (cf. Boyd and
Vandenberghe, 2004, p. 299).
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Hampel Estimator. Due to its loss function

ρHampel(v) =



1
2v

2, |v| < k1

k1 |v| − 1
2k

2
1, k1 ≤ |v| ≤ k2

k1k2 − 1
2k

2
1 + 1

2k1(k3 − k2)

[
1−

(
k3−|v|
k3−k2

)2
]
, k2 ≤ |v| ≤ k3

k1k2 − 1
2k

2
1 + 1

2k1(k3 − k2), |v| > k3

, (2.89)

the Hampel estimator is a robust estimator, too. However, its loss function is not convex (cf. Suykens
et al., 2003, p. 163). Standard values for the tuning parameters are k1 = 2, k2 = 4, k3 = 8 (cf. Jäger
et al., 2005, p. 119).

L∞ Norm Estimator. The L∞ norm objective function

ΦL∞(v) = ||v||∞ = lim
p→∞

(|v1|p + |v2|p + . . .+ |vn|p)1/p = max |vi| (2.90)

depends only on the largest absolute value vmax. Therefore, it is very sensitive to outliers. This
estimator is also called Chebyshev or Min-Max estimator (cf. Jäger et al., 2005, p. 127) as the
maximal residual is minimized. It has a convex objective function (cf. Boyd and Vandenberghe,
2004, p. 634–635 together with p. 72).
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3. Convex Optimization

According to Rockafellar (1993), “the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.” As within this thesis, the focus is on convex opti-
mization, some basic principles of convex optimization theory are reviewed in this chapter.

Special emphasis is put on inequality constrained optimization and a taxonomy of different opti-
mization problems is established. Quadratic programs and active-set algorithms to solve them are
introduced. In the optimization community the term program is used as a synonym for optimization
problem. Furthermore, the concepts of duality and feasibility are explained.

3.1 Convexity

According to Boyd and Vandenberghe (2004, p. 137), convex optimization is defined as the task of
minimizing a “convex objective function over a convex set”. Therefore, the terms convex function
and convex set are defined in the following.

3.1.1 Convex Set

A set C ⊆ IRm is convex if and only if

αx+ (1− α)y ∈ C (3.1)

holds for any α ∈ (0, 1) and any x,y ∈ C (cf. Boyd and Vandenberghe, 2004, p. 23). Geometrically,
this means that the line segment between any two points x and y in C lies in C. This is visualized
for the bivariate case in Fig. 3.1.
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(b) Non-convex set

Figure 3.1: In a convex set (a), the line of sight between any two points of the set lies completely within
the set. This is not the case for a non-convex set (b).
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3.1.2 Convex Function

A function f : C → IR that maps the non-empty convex set C ⊆ IRm to IR, is convex if and only if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), α ∈ (0, 1), ∀ x,y ∈ C (3.2)

holds (cf. Boyd and Vandenberghe, 2004, p. 67). Geometrically, this is equivalent to the statement
that the line segment between any two points x and y in C is never below the graph of the function.
For the univariate case, this is visualized in Fig. 3.2. It should be noted that—due to the above
definition—a linear function (e.g., a line or a plane) is a special case of a convex function, too.
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(b) Non-convex function

Figure 3.2: A convex function (a) has only one minimum. This need not be the case for a non-convex
function (b).

An essential property for optimization is that every convex function has exactly one minimum value.
However, it is possible that there are many adjacent points with minimal value of the objective
function. Therefore, in convex optimization, techniques to find a local minimum are sufficient as
any local minimum found is the global minimum of the function. Furthermore, it should be noted
that every quadratic form (cf. Sect. 2.1.1) with a symmetric and positive (semi-)definite matrix is
a convex function (cf. Boyd and Vandenberghe, 2004, p. 71).

3.2 Minimization with Inequality Constraints

In the following, the focus is on inequality constrained estimation problems of the form

Minimization with inequality constraints

objective function: Φ(x) . . .Min

constraints: g(x) ≤ 0
h(x) = 0

optim. variable: x ∈ IRm.

(3.3)

Φ(x) is the objective function, g(x) are possibly non-linear inequality constraints and h(x) are
linear or non-linear equality constraints. The vector x contains the optimization variables. Without
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Optimization

Convex Non-Convex

Linear Program Quadratic Program
General Non-Linear

Program
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Binding-Direction
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Active-Set Algo.
Barrier Method

Primal-Dual
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Dantzig's 
Simplex Method

 for QPs

Figure 3.3: Taxonomy of optimization problems. Problem categories are indicated by blue ellipses. The two
main classes of solvers are shown as yellow boxes. Some existing algorithms are depicted as orange (active-set
methods) and green (interior-point methods) rectangles, respectively.

loss of generality only less than or equal to constraints will be treated within this thesis. This is
sufficient as any greater than or equal to constraint can be easily transformed into a less than or
equal to constraint.

Although the program (3.3) contains both types of constraints, problems of this type will be referred
to as “inequality constrained problems” and not as “inequality and equality constrained problems”.
This abbreviation of notation is legitimated by the fact that if both types of constraints appear,
the inequalities are the much more challenging ones. Furthermore, it is easy to incorporate equality
constraints in almost any algorithm for inequality constrained estimation.

Maybe the biggest difference between unconstrained (or equality constrained) optimization and in-
equality constrained optimization is that for the latter, it is not known beforehand which constraints
will influence the result. Equality constraints in general influence the result. However, this is not
the case for inequalities. Due to this fact, there exist only iterative algorithms to solve inequal-
ity constrained problems. In general, such a problem is much harder to solve than an equality or
unconstrained one.

To position the current work within the context of optimization, Fig. 3.3 shows a taxonomy of
inequality constrained optimization problems.

The blue ellipses represent different problem categories. The general optimization problem (3.3) can
be subdivided into convex and non-convex ones. As stated above, in the following only convex op-
timization problems are treated. Three sub-cases of convex optimization problems: linear programs,
quadratic programs and general non-linear programs are depicted in order of ascending complexity.
We will focus on Quadratic Programs (QP, cf. Sect. 3.3) only, which include Inequality Constrained
Least-Squares (ICLS) adjustment as a prominent example.
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There are two main classes of solvers for QPs: exact active-set methods and numerical interior-point
methods, which are depicted as yellow boxes in Fig. 3.3. Within this thesis, the focus lies on active-
set methods as those allow a warm-start (i.e., providing an initial solution), which will be beneficial
in combination with the Monte Carlo approach used in Chap. 4.

Some existing algorithms are shown as orange (active-set methods) and green (interior-point meth-
ods) rectangles, respectively. A binding-direction primal active-set method is described in Sect. 3.5.1.
Dantzig’s Simplex Method for Quadratic Programs is described in Dantzig (1998, p. 490–497), and
a barrier method as well as a primal-dual interior-point method can be found for example in Boyd
and Vandenberghe (2004, p. 568–571 and p. 609–613, respectively).

The process of solving an inequality constrained optimization problem can be subdivided into two
phases. While phase 1 is concerned with feasibility, i.e., finding a point that fulfills all constraints,
phase 2 deals with optimality, i.e., determining the point that minimizes the objective function (cf.
Wong, 2011, p. 1). Within this thesis, we will focus on the second phase. However, some approaches
to obtain a feasible solution are discussed in Sect. 3.6.

3.3 Quadratic Program (QP)

An optimization problem

Quadratic Program (QP)

objective function: ΦQP(x) = γ1x
TCx+ γ2c

Tx . . .Min

constraints: BTx ≤ b
B
T
x = b

optim. variable: x ∈ IRm

(3.4)

is called a Quadratic Program (QP) in standard form (cf. Fletcher, 1987, p. 229). It consists of a
quadratic and convex objective function ΦQP, p linear inequality constraints and p̄ linear equality
constraints. γ1 and γ2 are scalar quantities, allowing to weight the quadratic and the linear term in
the objective function. If not mentioned otherwise we will use γ1 = 0.5 und γ2 = 1 throughout this
thesis. This is for reasons of convenience only. C is a symmetric and positive (semi-)definite m×m
matrix (cf. Sect. 3.1.2) and c is a m× 1 vector. In Chap. 5 we will see that the solution is unique if
C is positive definite. In the positive semi-definite case, there will be a manifold of solutions (if it
is not resolved through the constraints).

B and B are the m × p and m × p̄ matrices of inequality and equality constraints, respectively.
The p × 1 vector b and the p̄ × 1 vector b are the corresponding right-hand sides. As in the last
section, quantities corresponding to equalities are marked with a bar. As only linear constraints are
allowed, the feasible set—i.e., the region, in which all constraints are satisfied—is always a convex
set (cf. Sect. 3.1.1). Therefore, we are again minimizing a convex function over a convex set. As a
result, there is only one minimum. If not stated otherwise, the optimization variable x is allowed to
obtain positive or negative values (which is a difference to the standard form of a linear program).

It is often beneficial to transform an optimization problem into such a standard form, as there exists
a large variety of algorithms to solve problems in that particular form (such as those mentioned in
Sect. 3.2).
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3.3.1 Karush-Kuhn-Tucker (KKT) Optimality Conditions

In this section, necessary and sufficient optimality conditions for a QP are derived. They are often
referred to as Karush-Kuhn-Tucker (KKT) conditions. As in Sect. 2.2.1.2, the necessary conditions
are obtained by minimizing the Lagrangian

L(x,k,k) = ΦQP(x) + kT (BTx− b)−kT (B
T
x−b) (3.5a)

= γ1x
TCx+ γ2c

Tx+ kT (BTx− b)−kT (B
T
x−b). (3.5b)

The derivatives with respect to the optimization variable x and with respect to both Lagrange
multiplier vectors k and k yield the gradients

∇xL(x,k,k) = 2γ1Cx+ γ2c+Bk −Bk (3.6a)

∇kL(x,k,k) = BTx− b (3.6b)

∇
k
L(x,k,k) = −(B

T
x−b). (3.6c)

Setting these gradients (less than or) equal to zero yields the first three KKT conditions

2γ1Cx+ γ2c+Bk −Bk !
= 0 (3.7a)

BTx
!
≤ b (3.7b)

B
T
x

!
= b. (3.7c)

The first equation states the relationship between the parameters x and the Lagrange multipliers.
The second and the third one assure that all constraints are fulfilled. However, special care has to
be taken of the inequality constraints. As they are “permeable” in one direction an additional sign
constraint for the Lagrange multipliers has to be introduced

ki
!
≥ 0, ∀i = 1, 2, . . . , p (3.7d)

(cf. Boyd and Vandenberghe, 2004, p. 244). Furthermore, the condition of complementary slackness
(cf. Boyd and Vandenberghe, 2004, p. 243), states that all products

ki (B(:, i)Tx− bi) !
= 0, ∀i = 1, 2, . . . , p (3.7e)

of the Lagrange multiplier and the corresponding inequality constraint have to be equal to zero.
We will pick up this idea in Sect. 3.5.1 again, as it allows to separate constraints that influence the
result from those that do not. Together, the five equations of (3.7) form the KKT conditions and
are the necessary optimality conditions of a QP.

If there exists a solution of the convex QP (3.4)—i.e., the constraints are not contradictory, meaning
that the feasible region is not empty—the necessary conditions become also sufficient. This is known
as Slater’s condition or Slater’s constraint qualification (cf. Boyd and Vandenberghe, 2004, p. 226–
227). Consequently, any point x that satisfies the KKT conditions (3.7) is a solution of the QP (3.4)
and is called KKT point.
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3.3.2 Inequality Constrained Least-Squares Adjustment as Quadratic Program

The majority of problems treated within this thesis are Inequality Constrained (weighted) Least-
Squares (ICLS) problems in the GMM:

Inequality constrained least-squares (ICLS) adjustment in the GMM

objective function: Φ(x) = v(x)TΣ−1v(x) . . .Min

constraints: BTx ≤ b
B
T
x = b

optim. variable: x ∈ IRm.

(3.8)

As stated above this problem is easier to solve if it can be expressed as a QP in standard form. It
can easily be seen that the constraints as well as the optimization variable already are conform with
the notation of the standard form (3.4). In this section, it is shown that the objective function can
easily be transformed into standard form, too. Using the well known transformations from (2.30),
the objective function reads

Φ(x) = xTNx− 2nTx+ `TΣ−1`. (3.9)

Neglecting the last part (which is constant and thus irrelevant for minimization) and using the
substitutions

C := 2N , (3.10a)
c := −2n, (3.10b)

the objective function (3.9) reads

Φ(x) =
1

2
xTCx+ cTx. (3.11)

Thus, the ICLS problem can be expressed as a QP in standard form with γ1 = 1
2 and γ2 = 1, and

a great variety of QP algorithms (e.g., those mentioned in Sect. 3.5) can be used to solve it.

Note that the substitutions of C and c were performed this way, to obtain exactly those numbers
for the two scaling factors γ1 and γ2. This is done for reasons of convenience only, as these values
are used very often in the optimization literature. However, the choice is completely arbitrary.

It should be mentioned that there are sometimes deviating opinions on what is called a “linear
problem” in the optimization and the adjustment community. In the adjustment community, a
problem with linear observation equations

`+ v = Ax

is called a linear problem (cf. Sect. 2.2.1). However, minimizing the sum of squared residuals, leads
to the quadratic objective function (3.9) and thus to a quadratic program.

In the optimization community, a linear problem often refers to a Linear Program (LP), i.e., to the
problem of minimizing a linear objective function subject to some linear constraints. Within this
thesis, the term “linear problem” will be used as done in the adjustment community. Thus, it refers
to a problem with linear observation equations.
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3.4 Duality

The basic idea of the duality principle is that for every constrained optimization problem (called the
primal problem) there exists an equivalent representation, called the (Lagrange) dual problem. Both
representations are linked via the Lagrangian (3.5a). The objective function of the dual problem is
defined as the minimum of the Lagrangian with respect to x

Ψ(k,k) = min
{
L(x,k,k) : x ∈ IRm

}
(3.12)

and is called the Lagrange dual function or simply dual function (cf. Boyd and Vandenberghe, 2004,
p. 216). While the optimization variables of the primal problem are the parameters x, the Lagrange
multipliers k and k are the optimization variables of the dual problem—the so called dual variables.
If Slater’s condition holds (which is always the case for a QP, cf. Sect. 3.3.1), it can be shown that
by solving the dual problem

Lagrange dual problem

objective function: Ψ(k,k) . . .Max

constraints: k ≥ 0

optim. variable: k ∈ IRp, k∈ IRp̄

(3.13)

optimal values for the primal variables can be obtained (cf. Boyd and Vandenberghe, 2004, p. 248),
too. Sometimes this is more convenient than solving the primal problem. It should be emphasized
that the only constraints in the dual formulation are that the Lagrange multipliers linked with
inequality constraints have to be nonnegative. The Lagrange multipliers of the equality constraints
are not sign-constrained.

Furthermore, it can be beneficial to explicitly compute the values of the Lagrange multipliers as
they are “a quantitative measure of how active a constraint is” (cf. Boyd and Vandenberghe, 2004,
p. 252). Along this line of thought, Lehmann and Neitzel (2013) proposed an hypothesis test for the
compatibility of constraints using the Lagrange multipliers.

In the following section, the duality principle is used to derive the well-known formulas of an ad-
justment with condition equations in an alternative way.

3.4.1 Duality in Least-Squares Adjustment

For the primal problem of the adjustment with condition equations (cf. Sect. 2.2.2)

Primal problem (adjustment with condition equations)

objective function: Φ(v) = vTΣ−1v . . .Min

constraints: B
T
v +w= 0

optim. variable: v ∈ IRn,

(3.14)
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the Lagrange function reads

L(v,k) = vTΣ−1v − 2k
T

(B
T
v +w), (3.15)

yielding the dual function

Ψ(k) = min
{
L(v,k) : v ∈ IRn

}
. . .Max. (3.16)

In order to minimize (3.15) with respect to v its derivative is set equal to zero

∇vL(v,k) = 2Σ−1v − 2Bk
!

= 0, (3.17a)

yielding

v = ΣBk. (3.17b)

Inserting (3.17b) in (3.15) yields

Ψ(k) =k
T
B
T
ΣΣ−1ΣBk− 2k

T
(B

T
ΣBk+w) (3.18a)

= −kTBTΣBk− 2k
T
w. (3.18b)

This results in the dual problem

Dual Problem (adjustment with condition equations)

objective function: Ψ(k) = −kTBTΣBk− 2k
T
w . . .Max

constraints: −
optim. variable: k∈ IRp̄.

(3.19)

As there are no inequality constraints, no sign restrictions concerning the Lagrange multipliers k
are required. Therefore, using the duality principle, the constrained estimation problem (3.14) was
transformed into an unconstrained one.

To maximize Ψ(k), the derivative with respect to k is computed and set equal to zero

∇
k

Ψ(k) = −2B
T
ΣBk− 2w

!
= 0, (3.20a)

yielding

k̃= −(B
T
ΣB)−1w. (3.20b)

Inserting (3.20b) in (3.17b) yields the desired primal variables—the residuals v. Equations (3.20b)
and (3.17b) are exactly those used in the classic geodetic approach of an adjustment with condition
equations (cf. Sect. 2.2.2). Thus, the adjustment with condition equations can be seen as an example
for solving the primal problem via its dual formulation and therefore for the impact of the duality
principle in geodesy.

However, the duality principle offers many more concepts that may be beneficial for the process of
solving an optimization problem. One of them—the so called duality gap—is introduced in the next
section.
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3.4.2 The Duality Gap

The difference between the primal and dual objective function

d(x,k,k) = Φ(x)−Ψ(k,k) (3.21)

is called duality gap and can be evaluated for any triplet x,k,k. If Slater’s condition holds (which
is always the case for a QP, cf. Sect. 3.3.1), the duality gap vanishes in the point of the optimal
solution (cf. Fig. 3.4). This is equivalent to the statement that in the KKT point (cf. Sect. 3.3.1),

x, k, k̄

Φ
(x

)

Ψ
(k
,k̄

)

Duality
Gap

Primal objective function

Dual objective function

Figure 3.4: Schematic of the duality gap (red line segment) of a univariate problem with equality and
inequality constraints. Strong duality holds. Thus, the values of the primal (blue graph) and the dual objective
function (black graph) are identical in the point of the optimal solution.

the values of the primal (blue graph) and dual objective function (black graph) are identical

Φ(x̃) = Ψ(k̃,k̃). (3.22)

This is called strong duality (cf. Boyd and Vandenberghe, 2004, p. 226). Summarized, strong duality
enables us to test whether the optimization algorithm has already converged (i.e., the duality gap
is zero) or how close we are to the optimal solution (the smaller the duality gap, the closer is the
KKT point).
It should be mentioned that there exist non-convex optimization problems with a duality gap of
zero (cf. Geiger and Kanzow, 2002, p. 326). Thus, it is not possible to use strong duality to derive
a statement about the convexity of a problem.

In the following section, the dual problem of an ICLS adjustment in the GMM is derived exemplarily.

3.4.2.1 Dual Formulation of an Inequality Constrained Least-Squares Problem

As stated in Sect. 3.3.2, the primal objective function of the ICLS problem (3.8) reads

Φ(x) = vTΣ−1v

= xTNx− 2nTx+ `TΣ−1` . . .Min

and the corresponding Lagrangian is given by

L(x,k,k) = xTNx− 2nTx+ `TΣ−1`+ 2kT (BTx− b)− 2k
T

(B
T
x−b). (3.23)
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Note that again multiples of the Lagrange multipliers are used to obtain simpler derivatives. To
obtain Lagrange’s dual function, the gradient with respect to x is computed

∇xL(x,k,k) = 2Nx− 2n+ 2Bk − 2Bk. (3.24)

Setting it equal to zero

2Nx− 2n+ 2Bk − 2Bk
!

= 0 (3.25a)

yields the desired minimal value of the primal variable

x̃ = N−1(n−Bk +Bk). (3.25b)

Inserting (3.25b) in (3.23) yields the objective function of the dual problem

Ψ(k,k) = min
{
L(x,k,k) : x ∈ IRm

}
=x̃TNx̃− 2nT x̃+ `TΣ−1`+ 2kT (BT x̃− b)− 2k

T
(B

T
x̃−b) (3.26a)

=− kTBTN−1Bk −kTBTN−1Bk+ 2kTBTN−1Bk

+ 2
(
nTN−1B − bT

)
k − 2

(
nTN−1B−bT

)
k (3.26b)

− nTN−1n+ `TΣ−1`.

The complete transformation is stated in Appendix A.1. Applying (3.26), the ICLS dual problem
reads

ICLS Dual Problem

objective function: −kTBTN−1Bk −kTBTN−1Bk+ 2kTBTN−1Bk

+ 2
(
nTN−1B − bT

)
k − 2

(
nTN−1B−bT

)
k

−nTN−1n+ `TΣ−1` . . .Max

constraints: k ≥ 0

optim. variable: k ∈ IRp, k∈ IRp̄.

(3.27)

As problem (3.27) can be easily transformed into a QP in standard form (cf. Appendix A.1), any
QP algorithm can be used to obtain a solution. In the next section, some algorithms to solve either
the primal or the dual problem are explained.

3.5 Active-Set Algorithms

There exists a big variety of algorithms for solving inequality constrained convex optimization
problems of type (3.3). Most of them can be subdivided into two main classes: active-set and
interior-point methods (cf. Fig. 3.3). While algorithms of the first type are usually tailor-made for
quadratic and linear programs, the latter are applicable to a wide range of problem types. As within
this thesis the focus is on QPs, both classes would be suited. However, many active-set methods
allow a warm-start (i.e., allow to specify an initial solution). As this is beneficial for the Monte Carlo
methods presented in Chap. 4, we will focus on active-set methods.
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Figure 3.5: Basic ideas of (a) active-set and (b) interior-point approaches. While algorithms of the first type
follow the boundary of the feasible set, the latter follow a central path through the interior of the feasible
region.

Furthermore, in active-set algorithms, the constraints enter in an exact way, while interior-point
methods use relaxed constraints, which are tightened in each iteration. Compared with active-set
approaches, interior-point methods usually need less, but more expensive, iterations to solve an
optimization problem (cf. Gould, 2003).

It is also possible to transform a QP into a linear complementarity problem (LCP, cf. Koch, 2006,
p. 24–25) and solve it e.g., via Lemke’s Algorithm (cf. Fritsch, 1985) or into a Least-Distance Program
(LDP) and solve it e.g., via the LDP algorithm described in Lawson and Hanson (1974, p. 165). More
recent approaches include the aggregation of all inequality constraints into one equality constraint
with a high complexity (Peng et al., 2006).

As mentioned above, within this thesis, only active-set methods are used. For a comparison of
different active-set, LCP and LDP algorithms see e.g., Roese-Koerner (2009).

The main idea of active-set methods is to follow the boundary of the feasible region (i.e., the
region in the parameter space, where all constraints are satisfied; white region in Fig. 3.5(a)) in an
iterative approach until the optimal solution (red circle in the lower right) is reached. This is done
by extracting the constraints that hold as equality constraints (called active set) in the point of
the current solution and therefore solve a sequence of equality constrained subproblems (cf. Wong,
2011, p. 2). If at least one constraint is active, the point of the optimal solution will always be at
the boundary of the feasible region. For a brief overview of different types of active-set methods see
e.g., Nocedal and Wright (1999, Chap. 16) or Wong (2011).

In the following section, a basic version of the algorithm is stated, which allows to solve strictly
convex problems. An extension to the case with a singular matrix C in the objective function is
discussed in Sect. 5.2.

3.5.1 Binding-Direction Primal Active-Set Algorithm

The method described in the following is a binding-direction primal active-set method, which is a
combined version of the algorithms described in Gill et al. (1981), Best (1984) and Wölle (1988).
For reasons of readability we will refer to it only as “the” active-set method. The method relies on
two concepts for different types of constraints and directions, which will be explained first.
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3.5.1.1 Active, Inactive and Violated Constraints

An inequality constraint

bj1x1 + bj2x2 + . . .+ bjmxm ≤ bj (3.28)

is called active if it holds as the equality constraint

bj1x1 + bj2x2 + . . .+ bjmxm = bj . (3.29)

This is equivalent to the statement that x is on the boundary of the feasible set. A constraint is
inactive if the strict inequality

bj1x1 + bj2x2 + . . .+ bjmxm < bj (3.30)

holds. In this case there is a “buffer” between x and the constraint. If

bj1x1 + bj2x2 + . . .+ bjmxm > bj , (3.31)

the constraint is violated, which must not happen throughout the iterations of the algorithm de-
scribed in the next sections. For each feasible point x a working set

W Tx = w, (3.32)

can be assembled, in which all active inequality constraints (3.29) and all equality constraints are
comprised in the m× pw matrix W and the pw × 1 vector w. All pv inactive inequality constraints
are combined to

V Tx < v, (3.33)

with the m × pv matrix V and the pv × 1 vector v. Taken together, both sets yield the (possibly
permuted) original set of constraints

[
W T

V T

]
︸ ︷︷ ︸
BT

x ≤
[
w
v

]
︸︷︷︸
b

. (3.34)

Each point x(i) has its specific set of active and inactive constraints. Thus, it would be consequent
to write

W (i)Tx(i) = w(i) (3.35)

V (i)Tx(i) < v(i). (3.36)

However, we decided to drop the iteration index (i) of the sets in the following whenever it seems
appropriate to keep the formulas tidy. Thus, one should keep in mind that these sets change at each
iteration.
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3.5.1.2 Binding, Non-binding and Infeasible Directions

Within the algorithms, the parameter vector will be updated repeatedly using a search direction
p(i) and a step length q(i)

x(i+1) = x(i) + q(i)p(i), q(i) > 0. (3.37)

Therefore, it is crucial to be able to determine if a step in a potential search direction p(i) can
violate a constraint. For inactive constraints a step in any direction is possible, if q(i) is chosen
small enough. Thus, it is sufficient to examine solely the active constraints as they can be violated
through an update in the “wrong” direction (cf. Fig. 3.6(c)). A direction is called binding concerning
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Figure 3.6: Binding, non-binding and infeasible directions for an active constraint in a bivariate example.
pi are the vectors of directions starting from point x. Figure modified from Roese-Koerner (2009, p. 22).

all active constraints, if

W Tp(i) = 0 (3.38)

holds. This is equivalent to the statement that p(i) is in the nullspace of W and all constraints
active in x(i) will stay active after the next iteration (cf. Fig. 3.6(a) and (3.29)), due to

W Tx(i+1) = W T
(
x(i) + q(i)p(i)

)
(3.39a)

= W Tx(i) + q(i)W Tp(i)︸ ︷︷ ︸
=0

(3.39b)

= W Tx(i) (3.39c)
= w.

This property will be essential for the active-set algorithm. A direction is called non-binding con-
cerning the constraint j if

W (:, j)Tp(i) < 0 (3.40)

holds. As a consequence, the constraint j will become inactive in the point x(i+1) (cf. Fig. 3.6(b)
and (3.30))

W Tx(i+1) = W T
(
x(i) + q(i)p(i)

)
(3.41a)

= W Tx(i)︸ ︷︷ ︸
=wj

+ q(i)︸︷︷︸
>0

W Tp(i)︸ ︷︷ ︸
<0

(3.41b)

< wj .
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Algorithm 2: Binding-Direction Primal Active-Set Algorithm

// Iterative algorithm to solve a quadratic program in standard form (3.4)

Data:
C [m×m], c[m×1] . . . Matrix and vector with the coefficients of the objective function
B[m×p], b[p×1] . . . Matrix and corresponding right-hand side of the inequality constraints
B[m×p̄],b[p̄×1] . . . Matrix and corresponding right-hand side of the equality constraints
x

(0)
[m×1] . . . feasible initial solution vector

Result:

x[m×1] . . . Vector containing the solution of the QP
kw [pw×1] . . . Vector containing the Lagrange multipliers of the active constraints

1 [W ,w,V ,v] = findActiveConstraints(B, b,B,b,x) // cf. Sect. 3.5.1.1
2 for i = 1 : imax do
3 [p,kw] = computeSearchDirection(C, c,W ,x) // cf. Sect. 3.5.1.4
4 q = computeStepLength(V ,v,x,p) // cf. Sect. 3.5.1.5
5 x = x+ qp

6 [W ,w,V ,v] = updateActiveSet(W ,w,V ,v,x, q) // cf. Sect. 3.5.1.6
7 if min(kw ≥ 0) then
8 break
9 end

10 end
11 return x,kw

For an infeasible direction concerning the constraint j

W (:, j)Tp(i) > 0 (3.42)

holds. The feasible region would be left through a step of an arbitrary step size in this direction
(cf. Fig. 3.6(c) and (3.31))

W Tx(i+1) = W T
(
x(i) + q(i)p(i)

)
(3.43a)

= W Tx(i)︸ ︷︷ ︸
=wj

+ q(i)︸︷︷︸
>0

W Tp(i)︸ ︷︷ ︸
>0

(3.43b)

> wj .

This must not happen throughout the algorithm.

3.5.1.3 Outline of the Binding-Direction Primal Active-Set Method

Having the concepts described in the last two paragraphs at hand an outline of the Binding-Direction
Primal Active-Set algorithm can be stated, which is given in Alg. 2.

Starting at a feasible point x(0) an initial active set can be obtained by evaluating the constraints
at x(0) (line 1 of Alg. 2). It has to be taken care of that the initial matrix of active constraintsW is
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of full column rank (cf. Wong, 2011, p. 10). Therefore, it might be necessary to eliminate dependent
columns from W and the corresponding values in w.

Afterwards a search direction p, the Lagrange multipliers of the active constraints kw (line 3) and a
step length q (line 4) are computed, and an update of the solution is performed (line 5). Subsequently,
a decision has to be made, which constraints stay in the active set and which are dropped (line 6).
The last four steps are repeated iteratively until all Lagrange multipliers associated with inequalities
are non-negative. Starting with the search direction all steps are explained in more detail in the
following.

3.5.1.4 Search Direction p

The search direction p(i) shall be computed in a way that all active constraints

W (i)Tx(i) = w(i)

are kept active after the update

x(i+1) = x(i) + p(i) (3.44)

and such that the value of the objective function of problem (3.4) becomes minimal in the current
subspace (i.e., the nullspace of the matrix of active constraints). This ensures that we move along
the boundary of the feasible region towards the minimum. We have intentionally omitted the step
length q here, as we want to derive a search direction which directly points to the minimum of the
current subspace without the need for a “scaling”. The step length will come into play again in the
next paragraph, as it is essential for not violating constraints inactive in the point of the current
solution.

Therefore, the following subproblem has to be solved. It should be noted that in this case p is the
optimization variable and x is fixed (iteration indices were omitted)

Search direction Subproblem

objective function: Φ(p) = 1
2(x+ p)TC(x+ p) + cT (x+ p) . . .Min

constraints: W Tp = 0

optim. variable: p ∈ IRm.
(3.45)

The search direction can either be obtained by computing a direction to the unconstrained minimum
and using projectors to map it to the nullspace of the matrix of active constraints W (cf. Wölle,
1988, p. 39) or by an approach using the Lagrangian of the problem (cf. Best, 1984). We will use
the latter as it is numerically more stable and can be extended to allow the treatment of a positive
semi-definite matrix C (cf. Chap. 5). The Lagrangian of problem (3.45) reads

L(p,kw) =
1

2
(x+ p)TC(x+ p) + cT (x+ p) + kTw(W Tp) (3.46a)

=
1

2
pTCp+ xTCp+

1

2
xTCx+ cTx+ cTp+ kTwW

Tp. (3.46b)

kw are the Lagrange multipliers linked with the active constraints. The gradients of (3.46) with
respect to p and kw read

∇pL(p,kw) = Cp+Cx+ c+Wkw

= Cp+ g +Wkw, (3.47)

∇kw
L(p,kw) = W Tp. (3.48)
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The gradient

g = g(x) = Cx+ c, (3.49)

was used as substitution. Setting the derivatives equal to zero results in[
C W

W T 0

] [
p
kw

]
=

[
−g
0

]
. (3.50)

Therefore, by solving the equation system above, it is possible to compute a search direction that will
not violate any active constraint. As a byproduct, the Lagrange multipliers of all active constraints
are obtained, which will be used later on to determine which active constraints should be deactivated.
However, no statement about inactive constraints has been made, yet. This will be done in the next
section, when dealing with the step length q.

3.5.1.5 Step Length q

The search direction was computed in a way that no active constraint will be violated after the
parameter update. A maximal feasible step length q ∈ (0, 1] is determined within this paragraph,
to ensure that also no inactive constraint will be violated. As a first step, those constraints shall be
identified that could possibly be violated through a step in direction p.

According to Gill et al. (1981, p. 169), those inactive constraints for which

V (:, j)Tp(i) ≤ 0 (3.51)

holds, cannot be violated through a step in direction p. This can be verified by examining the
product

V (:, j)Tx(i+1) = V (:, j)T
(
x(i) + q(i)p(i))

)
(3.52a)

= V (:, j)Tx(i)︸ ︷︷ ︸
<vj

+ q(i)︸︷︷︸
<0

V (:, j)Tp(i))︸ ︷︷ ︸
≥0

(3.52b)

< vj .

This is equivalent to the statement that the constraint j will stay inactive in the next iteration step.
Therefore, it could be concluded that only constraints for which

V (:, j)Tp(i) > 0 (3.53)

holds, can become active or violated in the next step. Those constraints shall be called potentially
violated constraints. If

V (:, j)Tx(i+1) = V (:, j)T
(
x(i) + q

(i)
j p

(i)
)

= vj (3.54a)

holds for a certain qj , the constraint j will become active in the next iteration step. Reformulating
(3.54a) with respect to qj can be used to determine the distance to the constraint j in the direction
p

q
(i)
j =

vj − V (:, j)Tx(i)

V (:, j)Tp(i)
. (3.54b)

Therefore, the maximal feasible step length qmax is restrained by the constraint j that would first
be violated through a step in direction p. As described above, the best achievable step length would
be one, as in this case, the new point x(i+1) will be the minimum of the current subspace. As a
consequence, the optimal step length is defined as

q = min
(
q

(i)
j , 1

)
, ∀ {j | V T

j p
(i) > 0}. (3.55)
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3.5.1.6 Update of the Active Set

So far it was described how an optimal solution in the current subspace can be obtained. Within
this paragraph, a strategy to update the set of active constraints—i.e., drop constraints from the
set or include new ones—is explained. As this determines the subspace and therefore the sequence
of equality constrained subproblems to be solved, it can be seen as the “core” of the algorithm. Two
cases have to be distinguished, depending on the chosen step length q.

If q is less than 1, the hitherto inactive constraint j prevents that a “full step” can be taken. In this
case, the constraint j is removed from the inactive set V ,v and included in the active set W ,w.
Therefore, in the next iteration step a new equality constrained optimization problem has to be
solved.

If q = 1 holds, due to its design, the point x(i+1) is the minimum of the current subspace (cf. prob-
lem (3.45)). This means it is the point which has the minimal value of the objective function that
keeps all active constraints of iteration step (i) also active after step (i + 1). As a consequence, it
is not possible to further minimize the objective function without removing a constraint from the
active set. Therefore, it is mandatory to identify those active constraints that prevent a decrease of
the objective function. It can be shown that all inequality constraints which are associated with a
negative Lagrange multiplier are the ones to deactivate (a proof is provided in Appendix A.2). It
should be noted that equality constraints will never be removed from the active set. If there are no
negative Lagrange multipliers, it is not possible to further reduce the value of the objective function.
Thus, x(i+1) is the optimal solution and the algorithm terminates.

The combination of all steps described above yields the binding-direction primal active-set approach
outlined in Sect. 3.5.1.3 and Alg. 2.

3.6 Feasibility and Phase-1 Methods

The topics feasibility and phase-1 methods are closely related. While the former is concerned with
the question whether there is a feasible solution of an optimization problem, the latter deals with
the determination of such a point that fulfills all constraints and can therefore be used as initial
value for the second phase: the minimization of the objective function.

3.6.1 Feasibility

Whenever the task is to examine if the constraints are consistent, a feasibility problem (cf. Boyd
and Vandenberghe, 2004, p. 129) has to be solved

Feasibility problem

objective function: –

constraints: g(x) ≤ 0
h(x) = 0

optim. variable: x ∈ IRm.

(3.56)

As the aim is to determine if a feasible point exists or if the constraints are inconsistent, no objective
function is stated. As the transformation of the feasibility problem (3.56) into a QP in standard
form is not straightforward, some approaches are outlined in the next section.
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3.6.2 Finding an Initial Point

As many phase-2 algorithms require a (primal) feasible initial point (e.g, the binding-direction active-
set method described in Sect. 3.5.1), many different approaches to solve the feasibility problem (3.56)
exist. One of these phase-1 methods is outlined in the next section and references to other approaches
are provided afterwards. In the following we restrict ourselves to the case of linear constraints.

3.6.2.1 The Sum-of-Infeasibilities Ansatz

In the sum-of-infeasibilities ansatz (cf. Boyd and Vandenberghe, 2004, p. 580) the feasibility problem
(3.56) is extended by one auxiliary variable si for each inequality constraint. Those can be combined
to a p× 1 vector s, yielding

Phase-1: Sum of infeasibilities

objective function: 1Ts . . .Min

constraints: BTx− b ≤ s
B
T
x = b

optim. variable: x ∈ IRm, s ∈ IRp.

(3.57)

1 is a p×1 vector containing only Ones. Therefore, the objective function can be seen as a summation
of the existing “infeasibilities” of the inequality constraints. If there exists a point x(0) for which all
si are non-positive, the problem is feasible and x(0) can be used as initial value. If no such point
exists, the constraints are inconsistent.

In contrast to problem (3.56), the problem (3.57) is a LP in standard form (cf. Sect. 3.3.2). Therefore
it can be solved by any LP solver (e.g., by Dantzig’s Simplex Method, Dantzig, 1998, p. 94–108) or
by any QP solver which is able to deal with a positive semi-definite (or non-existing) matrix C in
the objective function (cf. Chapter 5).

Furthermore, it is trivial to find a feasible starting point for problem (3.57) or to prove that there
exists none: First, a solution of the usually underdetermined linear equation system of the equality
constraints

B
T
x = b

has to be found. This can for example be done by using the Gauss-Jordan algorithm described in
Sect. 2.1.3.1. If the equation system has no solution, the equality constraints are inconsistent and
it is not possible to fulfill all constraints. Subsequently, initial values for the auxiliary variables are
computed by evaluating

s
(0)
i = max

(
B(:, i)Tx(0) − bi, 0

)
. (3.58)

If all s(0)
i are non-positive, x(0) is a feasible initial solution for the original optimization problem

and the second phase can be started. Otherwise, the initial values s(0) and x(0) are used to solve
program (3.57) with a suitable solver. The computation can be aborted, as soon as all si take a non-
positive value. If optimal values for s and x are found and there is still a positive si, the constraints
are inconsistent and no feasible solution exists. In this case, the positive entries of s are connected
to those constraints that could not be satisfied.
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3.6.2.2 Alternatives

Instead of using the ansatz described above, it is also possible to use standard LP, QP or LCP solvers
that need no initial solution (such as Lemke’s Algorithm, cf. Fritsch, 1985) and abort the iterations
as soon as a feasible point is encountered. The advantage is that the resulting initial point is likely
to be closer to the optimal solution than in approaches that do not take the objective function into
account. The drawback is that these algorithms usually converge slower to a feasible solution as they
are not tailor-made for finding an initial point. As a consequence, using the sum-of-infeasibilities
approach is usually more preferable than using another solver to determine a feasible solution.

When dealing with phase-1 problems, sometimes the Big-M-method is mentioned. At first glance, it
looks very similar to the sum-of-infeasibilities approach mentioned above, as auxiliary variable are
used in a very similar way. However, the original objective function is used, too, and the auxiliary
variables are weighted in the objective function using a weightM with a big value. As a consequence
it suffers from numerical difficulties (especially for larger problems) so that Gill et al. (1981, p. 199)
conclude that it “is not reliable in practice”.
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Part II

Methodological Contributions
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4. A Stochastic Framework for ICLS

This chapter is a modified and extended version of the articles A stochastic framework for inequality
constrained estimation (Roese-Koerner et al., 2012) and Describing the quality of inequality con-
strained estimates (Roese-Koerner et al., 2015).

Quality description is one of the key features of geodetic inference. In Ordinary or Equality Con-
strained Least-Squares (OLS and ECLS, respectively) adjustment, a wide range of tools to quantify
the accuracy of an estimate is available. As there is an analytical solution, it is possible to propagate
the accuracy of the observations (given in the form of a covariance matrix) to the parameters. This
is no longer possible in the inequality constrained case, as the parameters are not linked analyti-
cally with the observations. Therefore, iterative solvers are used (either active-set or interior-point
methods, cf. Sect. 3.2), and the law of error propagation (cf. Koch, 1999, p. 100) can no longer be
applied. The idea of a symmetric standard deviation, in the sense of an interval around estimated
quantities, is no longer sufficient to describe the accuracy, dealing with a parameter space truncated
by inequality constraints, which can destroy symmetry.

Some analytical methods have been developed for describing the quality of inequality constrained
estimates. However, these methods either ignore the probability mass in the infeasible region (cf.
Geweke, 1986, Zhu et al., 2005) or the influence of inactive constraints (cf. Liew, 1976) and therefore
yield only approximate results.

Nevertheless, it is crucial to have a measure for the accuracy of an estimate. In contrast to standard
deviations, confidence regions can be given in truncated parameter spaces, as they can be adapted to
the constraints. In order to construct confidence regions, the Probability Density Function (PDF)
of the estimates must be known. Due to the above mentioned difficulties in applying analytical
techniques for quality description of ICLS estimates, the approach proposed in this chapter is a
Monte Carlo technique. This has the advantage that no intricate analytical relationship has to be
evaluated and that it is well suited for parallel computing.

We use a binding-direction primal active-set method (cf. Sect. 3.5.1) to solve M instances of the
original problem with randomized observation vectors to compute an empirical PDF of the estimated
parameters. Knowing this discrete approximation of the PDF, Highest Posterior Density (HPD)
regions are computed and several ideas of what constitutes a best estimator in this case are discussed.

In addition, the influence of the constraints on the estimate is examined. Therefore, a sensitivity
analysis is described, as a local measure for the influence of each constraint on each parameter.
Furthermore, two global measures are provided: an hypothesis testing is outlined to determine if
data and constraints are consistent, and it is shown how the ratio of probability mass inside the
feasible region can be computed.

The purpose of this chapter is to describe a frequentist framework for the stochastic description of
ICLS estimates (cf. problem (3.8)), which overcomes many of the drawbacks of the existing methods.
We subdivide the task of defining a stochastic framework for ICLS estimates into the problem
of quality description (Sect. 4.2) and the problem of measuring the influence of the constraints
(Sect. 4.3). Afterwards, both parts are combined to the aforementioned stochastic framework and
referred to as Monte Carlo Quadratic Programming method (MC-QP, Sect. 4.4). The case of an
inequality constrained estimate of a line of best fit serves as proof of concept (Sect. 4.5).
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4.1 State of the Art

All existing methods to find the solution of an inequality constrained estimation problem are based
on iterative procedures (cf. Sect. 3.2). Therefore—and due to the presence of inequality constraints
itself—it is difficult to describe the quality of the estimate. In the following sections two existing
approaches to give a measure for the accuracy of those estimates are described: The active constraint
approach, which uses frequentist statistics, and a Bayesian method. Both methods as well as their
strengths and weaknesses are outlined in the next sections.

4.1.1 Active Constraint Approach

The idea of Liew (1976) is to reduce an inequality constraint problem to an equality constraint
one. As active constraints hold as equality constraints, only those constraints active in the optimal
solution are taken into account and are treated as equalities. This approach consists of four steps:

1. As it is not known beforehand which of the constraints will be active for the optimal solution,
in a first step the ICLS problem is solved (for example via the active-set method described in
Sect. 3.5.1).

2. Afterwards, the Lagrange multipliers are used to identify the active constraints W ,w
(cf. Sect. 3.5.1.1). This is possible, as the rule of complementary slackness (3.7e) states that
only Lagrange multipliers of active constraints are different from zero (cf. Sect. 3.3.1). We
will later use the reverse conclusion that the larger the value of a Lagrange multiplier is, the
stronger is its influence on the solution.

3. Having identified those constraints which hold as equalities, and therefore have an associ-
ated Lagrange multiplier with a positive value, a standard equality constrained least-squares
estimate (cf. Sect. 2.2.1.2) can be carried out, discarding all inactive constraints

ECLS subproblem

objective function: Φ(x) = xTNx− 2nTx+ `TΣ−1` . . .Min

constraints: W Tx = w

optim. variable: x ∈ IRm.
(4.1)

4. A variance-covariance (VCV) matrix of the equality constrained problem is computed.

One severe shortcoming of this method is that—due to the restriction on the first two moments—
one only gets a symmetric PDF of the ICLS problem rather than the one shown in Fig. 4.1, where
the ICLS PDF is the region bounded by the constraints. Though the inactive constraints do not
contribute to the estimation process, it will be shown in Sect. 4.5 that they do matter in estimating
a PDF. Furthermore, the treatment of active constraints as equalities may lead to overoptimistic
variances. One can easily imagine worst case scenarios where it even leads to a (highly unrealistic)
variance of zero, for example the univariate case with one active constraint. As only one realization
of the random variable L is used to compute the set of active constraints (and the VCV matrix),
the approach is not robust to changes in the active set due to (small) changes in the observations.
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Figure 4.1: Effect of a single inequality constraint (dotted line) on the PDF of a parameter with expectation
value µ (univariate case). As the probability mass has to be conserved, it is necessary to decide how to handle
the part of the probability mass of the unconstrained estimate (dashed line) that is truncated by the constraint
(gray shaded area). This could either be done by scaling the whole function (approach of Zhu et al., 2005,
gray line) or by accumulating that probability mass at the boundary of the feasible set (MC-QP approach,
black line). Figure taken from Roese-Koerner et al. (2012).

4.1.2 Bayesian Approach

Besides the frequentist approaches, the problem of ICLS estimation can also be tackled using
Bayesian statistics. As a consequence, the unknown parameters are treated as random vectors (in
contrast to the frequentist approach, cf. Koch, 2007, p. 34). Thus, the inequality constraints are
converted into prior information on the parameters. Geweke (1986) suggested this approach, which
was further developed and introduced to geodesy by Zhu et al. (2005).

According to Bayes’s theorem

f(x|`) =
f(`|x)f(x)

f(`)
(4.2)

the posterior probability density f(x|`) of the parameters, given a set of observations, can be
described as the product of the likelihood function

f(`|x) = f(v) ∝ exp

{
− 1

2σ2
0

vT Σ−1 v

}
(4.3)

(depending on the residuals v and the VCV matrix of the observations Σ) and the prior distribution
f(x) of the parameters (cf. Koch, 2007, p. 89). Usually a uniform distribution of the form

f(x) ∝

{
1 , if BTx ≤ b

0 , otherwise
(4.4)

is used. In statistics, the normalization term f(`) is often neglected, resulting in

f(x|`) ∝ f(`|x)f(x). (4.5)

The idea with this method is that we assume that the observations ` and the residuals v a priori
follow the normal probability density function f(`) and f(`|x) = f(v), respectively, and further
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we assume that the possible solutions x a priori follow a uniform density function within the
given constrained bounds. Thus, inserting these probability densities in (4.5) provides us with an
a posteriori density function as follows

f(x|`) ∝

 exp

{
− 1

2σ2
0

vT Σ−1 v

}
, if BTx ≤ b

0 , otherwise
. (4.6)

The posterior density is a truncated (piece-wise continuous) version of the non-informative prior
distribution of the observations, where the truncation points are determined by the constraints.
If the truncated posterior distribution has to be treated like a probability density function, then
the area under the function must be equal to one. This is not the case for the truncated function.
One way of dealing with this condition is to normalize the posterior density with a constant factor.
However, this results in a scaling of the whole PDF (see gray line in Fig. 4.1) meaning that the
constraints influence not only the boundary regions but the entire PDF.

An advantage of this approach is that it gives an analytical expression for the stochastic descrip-
tion of the ICLS estimate. However, the numerical evaluation of the PDF is computationally very
expensive in the multivariate case. Furthermore, distributing the probability mass that is outside
the feasible region over the whole PDF (i.e., scaling), might not be the most realistic treatment. We
suggest that a more proper treatment would be to move the probability mass outside the feasible
region only as far as needed to satisfy the constraints (see black line in Fig. 4.1). Therefore, in the
next section we propose a (frequentist) Monte Carlo approach, which follows the idea described
above.

One could also think of a modification of the Bayesian method (for example using Dirac delta
functions to model the singularities at the boundaries of the feasible set as is done in Albertella
et al., 2006). However, the modification of the Bayesian approach will not be pursued here as it is
not the intention of this thesis.

4.2 Quality Description

Along the line of thought described at the end of the last section we develop a method to compute a
(possibly multivariate) PDF of the estimated parameters with the property that all the probability
mass in the infeasible region is projected to the nearest spot in the feasible region due to the metric
of our objective function. In the absence of analytical expressions, we use a Monte Carlo method to
compute an empirical PDF of the parameters, which also allows to derive confidence regions.

4.2.1 Deriving the Posterior PDF of the Parameters

The general idea is to generateM samples of the observations, according to their distribution (which
is assumed to be known). All M realizations of the observations are seen as independent problems
and solved via an optimization method (e.g., an active-set method) resulting in M realizations of
the estimated parameters. If M is chosen large enough, the histogram of the parameters will be an
adequate approximation of the PDF of the estimated parameters. In the following, all steps will be
described in detail.

For the quality description, it is essential that the design matrix A and the VCV matrix Σ are of
full column rank. Therefore, it is not possible to combine the stochastic framework described in this
chapter with the ansatz to handle rank-deficient problems provided in Chap. 5.
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First we compute the ICLS solution x̃ and the WLS solution of the unconstrained problem (2.32)

x̂ = (ATΣ−1A)−1ATΣ−1`, (4.7)

which will be used to determine the expectation value of the observations

E{L} = ̂̀ = E{AX} = Ax̂. (4.8)

In the following, the adjusted observations ̂̀ are interpreted as approximation of the true obser-
vations ` and thus treated as a specific realization of a random vector. Hence, the vector ̂̀ is a
constant.
Henceforth in this chapter, unconstrained quantities are marked with a hat to distinguish them from
quantities of an adjustment with constraints, which are indicated by a tilde. Assuming the most
general case in which the VCV matrix Σ of observation vector L is fully populated, a Monte Carlo
simulation for correlated data can be carried out using the Cholesky factorization (cf. Alkhatib and
Schuh, 2007). Therefore, the positive definite VCV matrix Σ of the observations is decomposed into
the product of a lower triangular matrix RT and an upper triangular matrix R:

Σ = RTR. (4.9)

This is expedient to model the full stochastic information of the observations. Afterwards, M in-
dependent samples s(i)

e are generated using the standard normal distribution E ∼ N(0, I). The
superscript (i) denotes the number of the sample (i = 1, 2, ...M). Now the vector s(i)

e is transformed
to

s
(i)

∆`
= RTs

(i)
e .

All vectors generated in that manner are realizations of the random vector ∆L ∼ N(0, Σ) repre-
senting the colored noise of the observations. Adding the noise vectors to the estimated observations ̂̀
(which are treated as constant quantities) we get M realizations of the observation vector

`(i) = ̂̀+ s
(i)

∆`
. (4.10)

For each of these M realizations of the observations, we compute a sample s(i)

x̃ of the estimated
parameters x̃ using the binding-direction primal active-set method to solve the ICLS problem
(cf. Sect. 3.5.1). Usually, when performing a Monte Carlo simulation to determine the accuracy
of an estimate, an empirical VCV matrix is estimated from the parameters

Σ{X̃} = E{(X̃ − E{X̃})(X̃ − E{X̃})T }. (4.11)

However, as mentioned before, this second central moment would not contain the full stochastic
information in the inequality constrained case because we have to deal with truncated PDFs. There-
fore, it is more conducive to compute anm-dimensional histogram of the parameters. This histogram
can be seen as a discrete approximation of the joint PDF of the parameters. Approximations of the
marginal densities can be computed the same way, adding up the particular rows of the hyper matrix
of the histogram. The quality of approximation of the continuous PDF depends directly on M (cf.
Alkhatib and Schuh, 2007), which therefore has to be chosen in a way that allows a satisfactory
approximation while keeping the computation time at an acceptable level. In each Monte Carlo
iteration a new optimization problem has to be solved. However, as the solution of the original
ICLS problem can be used as feasible initial value for the parameters, convergence of the active-set
method is usually quite fast.

It should be emphasized again that we compute a histogram as discrete approximation of a contin-
uous PDF here. As a consequence, all probability mass in the infeasible region concentrates at the
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“last bin(s)” in the feasible region. In a continuous PDF this probability mass would concentrate
exactly on the boundary of the feasible region and thus have an extent of zero. This would lead to
problems with the claim that the integral of a density has to be one. In the discrete histogram on the
other hand all bins have an extent larger than zero. Thus, it is possible to quantify the probability
mass concentrated at a single point and the probability mass of all bins sums up to one.

4.2.2 Optimal ICLS Solution

Having obtained an approximation of the posterior density, one can think of at least four different
possibilities to define an optimal point estimate (cf. Zhu et al., 2005): The mean, the median, the
mode and the solution that minimizes the original ICLS problem. As the introduction of inequality
constraints might lead to multi-modal distributions (due to the accumulation at the boundaries),
mean and mode are in general improper.

Empirical studies have shown that the median of the PDF and the point that minimizes the original
problem often are very similar but not necessarily the same. Henceforth in this thesis, we will use
the term solution to refer to the solution of the original problem as it is more convenient to compute.
As this is either the WLS estimate or its projection onto the boundary of the feasible set, it is best
in the sense that it is the solution with the smallest sum of squared residuals of all feasible points.

4.2.3 Highest Posterior Density (HPD) Regions

Different definitions of confidence regions have been developed. One concept, which is perfectly
suited to be combined with Monte Carlo methods is called highest posterior density (HPD) region
and originates from Bayesian statistics (cf. Koch, 1999, p. 71). It gives a quality measure of the
estimate in form of a region Ω containing a certain percentage (e.g., 95 percent) of the samples

P (x ∈ Ω|`) = 1− α. (4.12)

1−α is the level of significance. According to Chen and Shao (1999) a region is called a HPD region
if it is the smallest possible region with the property that every point inside has a higher density
than every point outside the region.

Benefits of HPD regions are that they do not rely on (asymptotic) normality assumptions, and are
able to describe also multimodal densities. However, one has to be aware that they are computa-
tionally expensive to obtain, and may not be connected in the multimodal case (Chen and Shao,
1999, p. 84). As stated in GUM Supplement 1 (Joint Committee for Guides in Metrology, 2008,
p. 30), HPD intervals of a unimodal and one-dimensional problem can be computed by sorting the
results of the Monte Carlo study and discarding the smallest and largest α

2 percent.
For the multivariate and/or multimodal case, this region can be computed in a similar fashion.
However, we have to use the values of the m-dimensional histogram described above instead of the
estimates themselves. They are sorted by value, starting with the largest one. Afterwards, the cu-
mulative sum is computed until 1−α percentage is reached. All bins of the histogram that added up
to 1−α percentage form the confidence region. To allow for a meaningful sorting the chosen number
M of Monte Carlo iterations has to be large enough. This is especially true for high dimensional
problems.

In contrast to the traditional approach working with the first two moments of the PDF, in the
HPD approach no assumptions about the geometry of the confidence regions are needed. This is a
necessary feature as we will have to deal with ellipses truncated by constraints and possibly extended
along the boundary of the feasible set.
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Figure 4.2: Approximations of the probability density functions and confidence intervals of different esti-
mates for a one-dimensional problem and M → ∞: OLS (light gray), Bayesian ICLS approach (gray) and
MC-QP method (dark gray, dash-dotted). The dashed line represents the inequality constraint x ≤ 1 and
the minimal value of the objective function is reached for x = 0. The parts not contained in the confidence
intervals are the shaded regions below the curves. In contrast to an OLS estimate the confidence region of an
ICLS estimate can be asymmetric, which is why the OLS PDF has symmetric shaded regions, while those
of Bayes and MC-QP are one-sided. Figure taken from Roese-Koerner et al. (2015).

Figure 4.2 illustrates such confidence intervals for a one-dimensional example for M → ∞. The
PDF of the OLS estimate with E{X} = 0 is plotted in light gray. The α percent not included in
the confidence interval (shaded areas) are symmetrically distributed at both tails of the distribution
(α2 at each side). This symmetry is destroyed when introducing the inequality constraint x ≤ 1 and
performing an ICLS estimate.

The PDF of the MC-QP estimate (cf. Sect. 4.4) is indicated by the dash-dotted dark gray line, which
coincides with the OLS estimate in the feasible region and accumulates all the probability mass in
the infeasible region at its boundary. Thus, as the confidence interval contains the values which are
most likely, the whole α percent not included in the confidence interval are at the left tail of the
PDF (depending on the constraint). As a consequence, the confidence interval is bounded on one
side by the constraint and on the other side by the α percent that are “most unlikely“. As can been
seen in Fig. 4.2, this results in a smaller confidence interval.

However, this is not true for the Bayesian estimate (gray curve). The symmetry is destroyed here
as well, but the scaling of the PDF leads to a shift of the beginning of the (1− α)-percent-interval
and therefore to a bigger interval compared to the MC-QP method.

4.3 Analysis Tools for Constraints

Besides the actual quality description, it might also be reasonable to measure the influence of the
constraints on the solution. We will present tools to perform such an analysis: Two global measures
to investigate if the data support the constraints in general, and a local measure to determine the
influence of each constraint.
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4.3.1 Global Measure I: Testing the Plausibility of the Constraints

In order to test if the introduction of inequality constraints results in a significant change in the
parameters, a testing procedure according to Wald (1943) is applied, which was first used in the
inequality constrained case by Koch (1981). Usually this test is used in the equality constrained
case. In order to apply the Wald test for inequality constraints, the ICLS problem is solved, all pw
active constraints

W Tx = w

are treated as equality constraints and all inactive constraints are neglected as in the approach of
Liew (1976). Then the estimation is carried out as a two-step approach.
In a first step a WLS adjustment is done:

`+ v = Ax, Σ{L} = Σ (4.13)

Σ{X̂} = (ATΣ−1A)−1 (4.14)

x̂ = (ATΣ−1A)−1ATΣ−1` = Σ{X̂}ATΣ−1` (4.15)
v̂ = Ax̂− `. (4.16)

Afterwards, an adjustment of the equality constraints is carried out

W T (x̂+ r) = w (4.17)

r = −Σ{X̂}W (W TΣ{X̂}W )−1(W T x̂−w) (4.18)
x̃ = x̂+ r. (4.19)

Now, the estimated a posteriori variance factor of the first step

ŝ2
1 =

v̂TΣ−1v̂

n−m (4.20)

and of the second step

ŝ2
2 =

rTΣ{X̂}−1r

pw
(4.21)

are computed and the actual hypothesis testing is carried out via the Wald test:

Test hypothesis H0 vs. hypothesis HA:
H0: The changes through the equalities are not significant.
HA: The changes through the equalities are significant.

As Ŝ2
1 and Ŝ2

2 are independent (c.f. Koch, 1999, p. 273–274), the test statistic

T =
Ŝ2

2

Ŝ2
1

∼ Fpw,n−m (4.22)

follows the Fisher distribution, as it is the ratio of two independent, χ2 distributed quantities, which
are reduced by their degrees of freedom (n −m and pw, respectively). Now, a level of significance
1−α is chosen (e.g., 95 percent) and a one-sided test is carried out. If the test statistic of the Wald
test is less than or equal to the critical value of the Fisher distribution, then the changes due to the
constraints are not significant. This is equivalent to the statement that the constraints only lead to
negligible changes in the parameters. If the test statistic is greater than the critical value, then the
constraints are very strong and will change the result significantly. In this case, each constraint can
be tested separately, if required.
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Similar to Liew (1976), we can conclude from this test solely if the equality constraint problem is
supported by the data or not. We can draw no conclusions what will happen if other inequality
constraints become active, because in that case a different hypothesis testing would be carried out,
due to the changes in the test statistic and in the degrees of freedom. However, for the set of
constraints active in the actual solution, the hypothesis testing does allow for an interpretation as
stated above.

4.3.2 Global Measure II: Probability Mass in the Infeasible Region

Another global measure of the change in the result due to the introduction of constraints is the
ratio d of estimates in which at least one constraint is active (ICLS estimates) compared to the
total number of estimates (= number of Monte Carlo samples). If at least one constraint is active,
then the unconstrained WLS solution will be in the infeasible region. Therefore, d is an unbiased
estimator of the probability mass outside the feasible region. If it is close to one, then in nearly every
sample of the Monte Carlo study the optimal solution is projected onto the boundary of the feasible
set. If d is close to zero, then the constraints have solely a very small influence on the estimation
process.

4.3.3 Local Measure: Sensitivity Analysis

In order to determine the influence of each constraint on each parameter, the derivative with respect
to the parameters x of the Lagrangian (3.23) of the ICLS is revisited. As stated in equation (3.25b),
setting it equal to zero and resolving for x yields

x̃ = N−1(n−Bk̃ +B k̃).

The Lagrange multipliers k̃ and k̃ are marked with a tilde, too, to emphasize that the adjusted
quantities are used (i.e., after the algorithm has converged). The equation stated above can be
rewritten as

x̃ = N−1(n−Bk̃ +B k̃) (4.23a)

= N−1n−N−1Bk̃ +N−1B k̃ (4.23b)

= x̂−Σ{X̂}Bk̃ + Σ{X̂}B k̃︸ ︷︷ ︸
∆x

= x̂+ ∆x. (4.23c)

With this explicit relation between the unconstrained solution x̂, the constrained solution x̃ and
the Lagrange multipliers k̃ and k̃ it is possible to perform a sensitivity analysis.
The perturbation of x̂ consists of three parts:

1. influence of the Lagrange multipliers k̃ and k̃,

2. influence of the design Σ{X̂},

3. influence of the matrix B of constraints.

As a rule of thumb one can say that the larger the value of the Lagrange multiplier is, the larger
is the perturbation by the related active constraint. If there are no correlations between the pa-
rameters and each constraint contains only one parameter (called independent constraints), then
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one constraint only influences one parameter. If there are correlations between the parameters, then
the constraints will also have an influence on all the correlated parameters. The individual influ-
ence of each constraint on the parameters can be determined (only Lagrange multipliers of active
constraints have values different from zero) by evaluating (4.23a). It should be kept in mind that
equality constraints are always active.

According to Boyd and Vandenberghe (2004, p. 252) the Lagrange multipliers can be interpreted as
a measure for the activeness of a constraint. If the Lagrange multiplier k̃i is zero, there will be no
change in the sum of squared residuals Φ(x) through the ith constraint. For small values of k̃i, there
will be an effect on Φ(x) which is small, whereas for large k̃i even small changes to the constraints
can result in great changes in Φ(x). Needless to say that this is just a rule of thumb, as in (4.23a)
there still are the influences of the VCV matrix Σ{X̂} and the constraint matrices B andB.

4.4 The Monte Carlo Quadratic Programming (MC-QP) Method

In order to gain as much information about the quality of the estimate, all tools described above
are now combined into a framework for the stochastic description of ICLS estimates. In this Monte
Carlo Quadratic Programming (MC-QP) method, we are no longer restricted to computing solely
the solution of an ICLS estimator, but can also determine some of its statistical properties. The
proposed stochastic framework is summarized as pseudo code in Alg. 3.

Algorithm 3: A Stochastic framework for ICLS estimates: The MC-QP method (modified from
Roese-Koerner et al. (2012)).

1 [x̂, ˆ̀] = solveWlsProblem(A, `,Σ) // cf. Sect. 2.2.1.1
2 [x̃, ˜̀, k̃] = solveIclsProblem(A, `,Σ,B, b,B,b, x̂) // cf. Sect. 3.5.1
3 hypothesisTesting(x̂,A,Σ, ˆ̀,B, b,B,b) // cf. Sect. 4.3.1
4 for i = 1 : M do
5 generate sample s(i)

L of L ∼ N(AX̂ , Σ) // cf. Sect. 4.2.1

6 [s
(i)

x̃ , s˜`
, s ˜k

] = solveIclsProblem(s
(i)

L ,A,Σ,B, b,B,b, x̃) // cf. Sect. 3.5.1

7 end
8 f = computeEmpiricalPdf(sx̃) // cf. Sect. 4.2.1
9 deriveConfidenceRegions(f) // cf. Sect. 4.2.3

10 d = computeProbabilityMassInInfeasibleRegion(s ˜k
) // cf. Sect. 4.3.2

11 sensitivityAnalysis(A,Σ,B,B, k̃,k̃) // cf. Sect. 4.3.3

First the WLS and ICLS solutions are determined and an hypothesis testing is carried out to
determine if the constraints are plausible. If the null hypothesis is discarded (meaning that the data
do not support the constraints), one can decide whether to compute the solution with or without
constraints (depending on the problem).

Afterwards a Monte Carlo simulation is carried out, the empirical probability density function of the
parameters X̃ is computed, and their confidence regions are derived. The influence of each constraint
on each parameter can be determined in a sensitivity analysis using the Lagrange multipliers k̃ and
k̃. As an overall measure for the influence of the constraints the percentage d of the probability mass
outside the feasible region and on its boundary can be computed.

It should be emphasized again that is approach is only valid for problems in which the design matrix
A as well as the VCV matrix Σ are of full column rank.
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Figure 4.3: Illustration of some of the observations (gray dots), the WLS line-fit (gray line) and the ICLS
line-fit (dashed black line). Figure taken from Roese-Koerner et al. (2012).

4.5 Example

In this section, two bivariate examples will be shown to elucidate the features of the MC-QP method.
In both cases the slope (x1) and the intercept (x2) of a line of best fit (cf. Fig. 4.3) are to be estimated.
Stochastic description based on the Bayesian method of Zhu et al. (2005) will also be shown for
comparison. We restricted ourselves to inequality constraints only, as this is the most interesting
case. However, adding additional equality constraints is straightforward.

In the application part (Chap. 7), two more examples are provided in which the proposed stochastic
framework proves useful. In Sect. 7.2.1 the task ist to estimate a positive definite covariance function
and in Sect. 7.2.2 we apply constraints on the tropospheric delay in a VLBI setting. The examples
focus mainly on the sensitivity analysis capabilities to illustrate the full potential of the MC-QP
approach.

4.5.1 Line of Best Fit with Independent Constraints

The observations along the line are generated by taking an arbitrary slope x1 = 1.3 and intercept
x2 = 1.5 and to these true values white-noise is added in form of the vector E ∼ N(0, I):

`i = ti x1 + x2 + ei (4.24a)

` = Ax+ e, x =

[
x1

x2

]
. (4.24b)

To this line-fitting problem inequality constraints are added, which are given as[
x1

x2

]
≤
[

1.30
1.85

]
. (4.24c)

Therefore, the constraint matrix becomes B = I. The identity matrix implies that the constraint
applied to one parameter is functionally independent of the one applied to the other parameter.
Such constraints will be referred to as independent constraints. In such cases, the application of
constraints is equivalent to applying constraints in a univariate case, provided the parameters are
uncorrelated.
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Table 4.1: Numerical results from the line-fitting problem with independent constraints. The table on
the left shows the WLS (x̂) and ICLS (x̃) estimates. The table on the right shows the sensitivity analysis
performed with Lagrange multipliers (k̃), which indicate that there is only one active constraint (k̃2) and
it contributes to the perturbations (∆x) in the ICLS estimates. d = 67% is the percentage of probability
mass in the infeasible region. The result of the Wald test shows that the test statistic 0.17 is smaller than
the critical value of 4.38, meaning that the data supports the constraints (cf. Sect. 4.3.1).

x̂ x̃

x1 1.218 1.224
x2 1.953 1.850

k̃1 = 0 k̃2 = 3.474

∆x1 0 0.007
∆x2 0 −0.103

ICLS estimates : d = 67%, Wald test: 0.17 < 4.38

Now, the stochastic framework outlined in Sect. 4.4 is applied to this ICLS problem. The numerical
results show that the WLS estimate of the slope already satisfies the constraint but that of the inter-
cept does not. After applying the ICLS estimation both estimates have been changed (cf. Tab. 4.1).
Sensitivity analysis of the parameters using the Lagrange multipliers (k̃) shows that the constraint
on the slope is inactive (k̃1 = 0), while the constraint on the intercept is active (k̃2 = 3.474). How-
ever, the active constraint on the intercept contributes to both the changes in slope and intercept,
and that is due to the negative correlation introduced by the design matrix A. Analytically, this
can be explained using (4.23a), where if B = I and only inequality constraints exist, then

∆x = −1

2
Σ{X̂} k̃. (4.25)

In (4.25), the VCV matrix Σ{X̂} describes the correlations between the parameters. If the pa-
rameters are correlated in the independent constraints case, they directly affect the perturbations
∆x.

It is valid to question the utility of the inactive constraints in ICLS problems as they do not
directly contribute to the estimation process. However, the inactive constraints in addition to the
active constraints define the parameter space, and therefore the probability space of the estimates.
Therefore, while those constraints that are known to be inactive in the optimal solution can be
neglected within the estimation process, they might be essential for describing the quality of the
parameter estimates.

The quality of the estimates from WLS, MC-QP and the Bayesian methods are shown in Fig. 4.4.
The peak of the ICLS PDF of slope (x1) is slightly shifted from that of the WLS PDF. This is
an interesting case, since the constraints that were applied were independent of each other. The
reason for this shift in the peak is the negative correlation between slope and intercept of the line:
if the slope increases the intercept has to decrease and vice-versa. A similar shift has not taken
place in the PDF of the intercept, whose WLS estimate has not satisfied the constraints. This is due
to the spread of the probability densities of the intercept, and hence the slope introduced by the
correlation does not affect the accumulation of the densities. Therefore, the inactively constrained
estimates will undergo a shift in their values based on the correlation between the parameters and
the size of the changes in the values of the actively constrained estimates. In this context, it should
be mentioned that even though the constrained and unconstrained estimates seem to be very similar
in this example (cf. Fig. 4.3), their respective probability densities are entirely different (cf. Fig. 4.4).

In general, whether a frequentist or a Bayesian approach is followed, one should arrive at the same
result for the confidence regions and the PDF curves (neglecting the roughness which is a conse-
quence of the Monte Carlo sampling). However, in the example problem (4.24), the two approaches
differ drastically (cf. Fig. 4.4). The drastic difference is mainly due to the way in which the boundary
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Figure 4.4: Probability density functions (joint and marginal) from the line-fitting problem with inde-
pendent inequality constraints. The contours in joint PDFs and gray bars in the marginal PDFs are from
WLS estimates. In the marginal PDFs black lines indicate MC-QP method and gray lines indicate Bayesian
approach. The dotted lines indicate the truncation by the constraints. The HPD region in the joint PDFs
is marked as a black contour line. The accumulation (MC-QP) and scaling (Bayesian) difference is clearly
evident both in the joint and marginal PDFs. Figure taken from Roese-Koerner et al. (2012).

of the truncated parameter space is treated in the Bayesian method (scaling or accumulating). This
difference ends up in the different sizes of the HPD regions: a compact HPD region for the MC-QP
approach and wider one for the Bayesian approach. A modification of the Bayesian method for a
similar treatment of the boundary conditions should provide the same quality description as the
MC-QP method (cf. Sect. 4.1.2).

4.5.2 Line of Best Fit with Dependent Constraints

An additional constraint is added to the line-fitting problem defined in (4.24) such that it relates
both the parameters, as follows  x1

x2

−x1 − x2

 ≤

 1.30
1.85
2.90

 . (4.26)
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Table 4.2: Results from the line-fitting problem with dependent constraints. The arrangement of the tables
is the same as that of Tab. 4.1. Despite the ICLS estimates being identical to those in the independent
constraints case, the probability mass in the infeasible region, indicated by d, is significantly different. This
is a clear indication of the influence of inactive constraints on the statistical properties of the estimate.

x̂ x̃

x1 1.218 1.224
x2 1.953 1.850

k̃1 = 0 k̃2 = 3.474 k̃3 = 0

∆x1 0 0.007 0
∆x2 0 −0.103 0

ICLS estimates : d = 79%, Wald test: 0.17 < 4.38
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Figure 4.5: Probability density functions (joint and marginal) from the line-fitting problem with dependent
constraints. From the joint PDFs it is clear that this is a bounded constraint problem as the densities are
confined to the triangular region formed by the constraints. Due to the inclined plane x1 + x2 ≥ 3, there
is complex accumulation of the probability densities taking place in the marginal PDF of x2. Figure taken
from Roese-Koerner et al. (2012).
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Now the constraint matrix B is not an identity matrix anymore due to the constraints being depen-
dent on both the parameters. Such constraints will be called dependent constraints. The stochastic
framework is applied to the ICLS problem subject to the constraints of (4.26). The third constraint
that was added is an inactive constraint, and hence the ICLS estimated parameters have the same
values as in the problem with independent constraints. This is further confirmed by the Lagrange
multipliers of the constraints (cf. Tab. 4.2).

Though the estimates of the ICLS problem with independent constraints and dependent constraints
are equivalent, their joint PDFs are completely different. The striking difference is seen in the
Marginal Density Function (MDF) of the intercept x2 (cf. Fig. 4.5). While the MDF from the
independent constraints is only affected at the boundary between the feasible and infeasible region,
the MDF from the dependent constraints is affected on either side of the boundary. This is clearly
due to the constraint (x1 + x2 ≥ 3) cutting diagonally across the joint density function. The
addition of the third constraint, although inactive, is felt most in the HPD region: The region is far
more compact for the dependent constraints than in the independent constraints case.
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5. Rank-Deficient Systems with Inequalities

This chapter is a modified and extended version of the articles Convex optimization under inequality
constraints in rank-deficient systems (Roese-Koerner and Schuh, 2014) and Effects of different ob-
jective functions in inequality constrained and rank-deficient least-squares problems (Roese-Koerner
and Schuh, 2015).

Solving a rank-deficient normal equation system results in not one unique but a manifold of solutions.
In the unconstrained case, a rigorous general solution can easily be computed using the theory of
generalized inverses (Koch, 1999, p. 48–59). This also includes the computation of a unique solution
via the Moore-Penrose inverse. However, this is no longer possible in the presence of inequality
constraints. Most state-of-the-art optimization algorithms—e.g., the active-set method described in
Sect. 3.5.1 and in Gill et al. (1981, p. 167–173) or the interior-point methods described in Boyd and
Vandenberghe (2004, p. 568–571 and p. 609–613, respectively)—are either not able to deal with an
objective function with a rank-deficient matrix or yield only one of the infinite number of particular
solutions.

Despite the highly sophisticated estimation theory for unconstrained rank-deficient systems and well
defined but inequality constrained systems (cf. Sect. 3.2), only few publications (cf. Sect. 5.1) have
been dedicated to singular optimization problems with inequality constraints.
However, in geodesy, these problems occur on many occasions. Examples are the second order
design of a geodetic network with more weights to be estimated than entries in the criterion matrix,
the adjustment of datum-free networks or a spline approximation with data gaps and additional
information on the function behavior.

In this chapter a line of thought similar to that of Werner and Yapar (1996) will be followed
(cf. Sect. 5.1). Accordingly, we propose a two step approach for a rigorous computation of the general
solution. In a first step, the constraints are neglected and a general solution of the unconstrained
problem is computed. Subsequently, the constraints are taken into account and a second optimization
problem is solved, depending on whether there is an intersection of manifold and feasible region or
not. To keep the equations tidy, the focus of this chapter is on problems with inequality constraints
only. Possible equality constraints have to be removed before (cf. Boyd and Vandenberghe, 2004,
p. 142–143).

The proposed approach has four major advantages. First, it allows for a description of the manifold
including the constraints as these will be reformulated in terms of a basis for the nullspace of the
design matrix. Second, an additional optimization step is performed in this nullspace to provide
a particular solution, which fulfills certain optimality criteria and allows us to aim for desirable
properties such as sparsity. Third, it is not restricted to small scale problems. Fourth, the proposed
method detects if the dimension of the manifold of the unconstrained problem is reduced through
the introduction of inequality constraints (up to the case of a unique solution).

The current state of the art of inequality constrained rank-deficient systems is reviewed in Sect. 5.1.
An extension of the binding-direction primal active-set method (cf. Sect. 3.5.1), which facilitates
the computation of a particular solution despite a possible rank defect, is provided in Sect. 5.2.
The ideas and computations for the rigorous computation of general ICLS solutions are described
in Sect. 5.3 and combined to a framework in Sect. 5.4. The simple synthetic example in Sect. 5.5
illustrates the application of the framework and serves as proof of concept. Two close-to-reality
examples—the second order design of a geodetic network and an application with strict welding
tolerances—are provided in Sect. 7.3.1 in the applications chapter.
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5.1 State of the Art

Barrodale and Roberts (1978) presented a modification of the standard simplex method for linear
programming, which is able to handle rank-deficient problems. However, extending it to a QP is not
straightforward.

Schaffrin (1981) treated the special case that in addition to the linear inequality constraints all
parameters are restricted to be non-negative. He developed a method to compute a particular
solution through the introduction of slack variables. However, his approach is limited to problems
with only non-negative parameters.

Best (1984) identified equivalence relations between different quadratic programming algorithms.
This includes an extension of a generic active-set method for singular equation systems. However,
no homogeneous solution is provided.

O’Leary and Rust (1986) developed an approach for computing confidence regions for ill-posed
weighted non-negative least-squares problems. The inequality x ≥ 0 is used to truncate the solution
space and eliminate the non-uniqueness of the solution. However, their approach cannot easily be
extended to general linear constraints as it aims to completely resolve the manifold, which is not
always possible.

Fletcher and Johnson (1997) proposed a nullspace method for ill-conditioned QPs with solely equal-
ity constraints: The aim is to compute the nullspace of the matrixB

T
of equality constraints. This

allows to reformulate a problem with equality constraints as a problem without constraints. Under
certain conditions, it is now possible to compute a solution even if the coefficient matrix or the
matrix of constraints is ill-conditioned. This could be applied in an active-set approach to solve an
inequality constrained problem as a sequence of equality constrained ones. However, as the focus of
their contribution is on ill-conditioned problems and not on rank-deficient ones, the computation of
a general solution is not discussed.

Dantzig’s Simplex Method for Quadratic Programming (Dantzig, 1998, p. 490–498) allows for the
computation of a particular solution in case of a rank-deficient design matrix. However, no statements
about the homogeneous solution are given.

Xu et al. (1999) analyzed the stability of ill-conditioned Linear Complementarity Problems (LCP)
in geodesy, which could be used to solve an ICLS problem. In case of an unstable LCP due to an
ill-conditioned LCP matrix (a case often encountered when processing GPS data), they proposed a
regularization of the LCP matrix.

Among many others, Geiger and Kanzow (2002, p. 362–365) described a Tikhonov regularization
for ill-conditioned convex optimization problems.

In the projector theoretical approach of Werner (1990) and Werner and Yapar (1996) a rigorous
computation of the general solution of ICLS problems with possibly rank-deficient matrices A and
Σ is performed using generalized inverses. First, an ordinary least-squares solution is computed,
then the update to the ICLS solutions is computed in an iterative approach. As the ICLS solution
is obtained by testing arbitrary subsets of constraints, this approach is mostly suited for small scale
problems with few constraints.

Wong (2011) described extensions of different types of active-set methods for rank-deficient systems.
Similar to the approach of Dantzig mentioned above, only a particular solution is computed and no
statements about the homogeneous solution are provided. Nonetheless, we will revisit her ideas in
the next section, because it enables us to find a particular solution that fulfills all constraints.
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5.2 Extending Active-Set Methods for Rank-Deficient Systems

When dealing with a rank-deficient system, the critical part of active-set methods (e.g., of the
binding-direction primal active-set method described in Sect. 3.5.1) is the computation of the search
direction p and of the step length q. This is, because the system of equations (5.1) might be
inconsistent, which makes it hard to determine a value for p (cf. Sect. 5.2.1.3). Furthermore, q
might not be uniquely determined if the point x(i) is part of the solution manifold of the current
subspace.

Best (1984) and Wong (2011), for instance, proposed some techniques to overcome these difficulties.
In the following sections, the ideas of Wong (2011) are explained (Sect. 5.2.1) and a modified version
of the binding-direction primal active-set method using the Gauß-Jordan algorithm is provided
(Sect. 5.2.2), which enables us to compute an optimal—but not necessarily unique—solution despite
a rank defect. In our proposed framework this method will be used in case the manifold is resolved
through the inequality constraints (cf. Sect. 5.3.4).

5.2.1 Modifications for Rank-Deficient Systems

5.2.1.1 Using a Subspace Minimizer as Initial Point

As pointed out in Sect 3.5.1.6, in each iteration of the algorithm either the point x(i) is a minimum
of the subspace defined by problem (3.45)—in this case a constraint can be removed from the active
set—or the subspace is modified by adding a new constraint to the active set. In the latter case x(i)

is not a minimum of the current subspace. For the alternative computation of the search direction
described in Sect. 5.2.1.2, it is essential that the initial point is a minimum of the current subspace
and that all active constraints are linearly independent (cf. Wong, 2011, p. 19–20). Therefore, before
starting the actual algorithm a subspace minimizer has to be computed.

One option to compute such a minimizer and the corresponding active set is to start the “original”
active-set method (Alg. 2) at a feasible, but not necessarily optimal point and proceed as long as
new constraints become active in each iteration. For the computation of the search direction p the
Gauss-Jordan algorithm can be used to determine a particular solution of the system of equations
(5.1). Determining a step length is not an issue here, as each step is “blocked” by a constraint.
There exist much more sophisticated and efficient methods to compute a subspace minimizer and
the corresponding active set. However, as they are not in the focus of the current work, the reader
is referred to Wong (2011, p. 57–62).

5.2.1.2 Determination of the Search Direction p for Rank-Deficient Systems

As stated in Sect. 3.5.1.4, the desired search direction p should have the property that all active
constraints

W Tx = w

are kept active after the update step

x(i+1) = x(i) + qp.

To determine such a search direction p, the Search Direction Subproblem
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Search direction Subproblem

objective function: Φ(p) = 1
2(x+ p)TC(x+ p) + cT (x+ p) . . .Min

constraints: W Tp = 0

optim. variable: p ∈ IRm

(cf. problem (3.45)) has to be solved. As described in Sect. 3.5.1.4, this subproblem directly leads
to the system of linear equations[

C W

W T 0

]
︸ ︷︷ ︸

H

[
p
kw

]
︸ ︷︷ ︸
z

=

[
−g

0

]
(5.1)

(identical to (3.50)). kw are the Lagrange multipliers associated with the active constraints. In some
cases this system is singular or even inconsistent. In case of a singular but consistent system, a
particular solution can be computed via the Gauss-Jordan algorithm and used as search direction.

An inconsistent system can for example appear if some entries of the main diagonal of C are zero
but the corresponding elements in the gradient g are not. Wong (2011, p. 13) states that in this case
the search direction subproblem (3.45) is unbounded below and proposes to determine a “search
direction of zero curvature” instead. Her approach is stated here in a slightly modified version. The
search direction p should have the following three properties:

1. The search direction should not be ascending. Thus, the scalar product with the gradient has
to be non-positive

gTp ≤ 0. (5.2a)

2. The curvature of the objective function in search direction p should be zero

pTCp = 0. (5.2b)

3. All active constraints should stay active after the update

W Tp = 0. (5.2c)

To compute such a search direction, a homogeneous solution Zhom of (5.1) is computed using the
Gauss-Jordan algorithm (Wong, 2011, p. 13). If the rank defect is larger than one, Zhom is a matrix
and each of its columns fulfills

HZhom(:, i) = 0. (5.3)

Therefore, an arbitrary column j of the homogeneous solution can be selected to compute the search
direction

zhom,j :=

[
p
kw

]
= Zhom(:, j). (5.4)

Then the scalar product gTp is evaluated. If it is positive, the vector zhom,j is multiplied with −1.
As a homogeneous solution can be arbitrarily scaled, the vector is still a basis of the nullspace ofH.
Thus, a step in this “mirrored” direction does not influence the set of active constraints. Therefore,
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the basic properties of the algorithm are not violated and a viable and binding search direction is
found (Wong, 2011, p. 13). However, it is essential for this computation that the initial solution is
a subspace minimizer (cf. Sect. 5.2.1.1) to prevent cycling of the algorithm.

Furthermore, as the homogeneous solution is not unique, it is preferable to compute the values of
the Lagrange multipliers kw of the active constraints independently. For example, by solving (Wong,
2011, p. 10)

Wkw = −g. (5.5)

As a consequence, in the function computeSearchDirectionRankDefect in line 4 of Alg. 4, three
different cases have to be distinguished

1. If (5.1) is consistent and H is well-defined, the unique solution of the system is determined.

2. If (5.1) is consistent but H has a rank defect, a particular solution is computed.

3. If (5.1) is inconsistent, one column of the homogeneous solution is selected.

5.2.1.3 Determination and Handling of the Step Length q for Rank-Deficient Systems

In the non-singular case, due to the construction of the search direction p, the optimal step length
is q = 1 and it was only necessary to check, if a step of full length would lead to the violation of
an inactive constraint (cf. Sect. 3.5.1.5). However, this is not sufficient for singular systems, as p
might be a line of zero curvature. As a consequence, there might be no optimal step length and
different cases have to be distinguished depending on the curvature of the objective function in
search direction (cf. Wong, 2011, 13–14) and the presence of blocking constraints.

The following four cases have to be distinguished:

1. p is a line of positive curvature and no inactive constraint is blocking a step of full length. In this
case p is the projected Newton direction and thus correctly scaled by design (cf. Sect. 3.5.1.4).
This yields q = 1 and the new solution will be a minimizer of the current subspace.

2. p is a line of positive curvature and there is a blocking constraint. As stated in (3.54b) the
maximal feasible step length

q = min
(
q

(i)
j

)
= min

(
vj − V (:, j)Tx(i)

V (:, j)Tp(i)

)
(5.6)

is chosen and a new constraint will become active after the update step.

3. p is a line of zero curvature and there is no inactive constraint in search direction. In this
case, no other constraint will become active, no matter how the step length is chosen. Thus,
the objective function is unbounded below and the algorithm terminates without a solution
(Wong, 2011, p. 15).

4. p is a line of zero curvature and there is a blocking constraint. As a constraint prevents that
the problem is unbounded below, the maximal feasible step length (5.6) is computed and a
new constraint will become active after the update step.

This distinction of cases is formalized in the function computeStepLengthRankDefect in line 6 of
Alg. 4.
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Algorithm 4: Binding-Direction Primal Active-Set Algorithm for Rank-Deficient Systems

// Iterative algorithm to solve a (possibly rank-deficient) quadratic program in standard form (3.4)

Data:
C [m×m], c[m×1] . . . Matrix and vector with the coefficients of the objective function
B[m×p], b[p×1] . . . Matrix and corresponding right-hand side of the inequality constraints
B[m×p̄],b[p̄×1] . . . Matrix and corresponding right-hand side of the equality constraints
x

(0)
[m×1] . . . feasible initial solution vector

Result:

x[m×1] . . . Vector containing the solution of the QP
kw [pw×1] . . . Vector containing the Lagrange multipliers of the active constraints

1 [W ,w,V ,v] = findActiveConstraints(B, b,B,b,x)
2 [x,W ,w,V ,v] = computeSubspaceMinimizer(C, c,W ,w,V ,v,x) // cf. Sect. 5.2.1.1
3 for i = 1 : imax do
4 [p,kw] = computeSearchDirectionRankDefect(C, c,W ,x) // cf. Sect. 5.2.1.2
5 if i > 1 then
6 q = computeStepLengthRankDefect(H,V ,v,x,p) // cf. Sect. 5.2.1.3
7 x = x+ qp

8 else
9 q = 1

10 end
11 [W ,w,V ,v] = updateActiveSet(W ,w,V ,v,x, q) // cf. Sect. 3.5.1.6
12 if min(kw ≥ 0) then
13 break
14 end
15 end
16 return x,kw

5.2.2 Binding-Direction Primal Active-Set Method for Rank-Deficient Systems

The ideas described above are now combined to a modified version of the binding-direction primal
active-set method described in Sect. 3.5.1.3. This algorithm is capable of finding a particular solution
of a QP in standard form (3.4) despite a possible rank-deficient matrix C and stated in Alg. 4.

Starting at a feasible point x(0) an initial active set can be obtained by evaluating the constraints
at x(0) (line 1 of Alg. 4). Afterwards a solution x that minimizes the current subspace is computed
and a corresponding active set which includes only linearly independent constraints is obtained
(line 2 and Sect. 5.2.1.1). Subsequently, a search direction p and the Lagrange multipliers of active
constraints kw are computed (line 4 and Sect. 5.2.1.2). The next steps are the computation of a step
length q (line 6 and Sect. 5.2.1.3) and of an update of the parameters (line 7). As the algorithm
starts with a minimizer of the current subspace, these two steps are omitted in the first iteration
as it is not possible to reduce the value of the objective function without deactivating a constraint.
Subsequently, as in the original version of the algorithm, a decision has to be made, which constraints
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stay in the active set and which are dropped (line 11). These steps are repeated iteratively until all
Lagrange multipliers associated with inequalities are non-negative.

It should be noted that in the general framework this algorithm is solely used if manifold and feasible
region are disjunct (cf. Sect. 5.3.1.2).

5.3 Rigorous Computation of a General Solution

Before describing the actual framework, it is instructive to examine how the introduction of inequal-
ities can change the original problem and especially the manifold.

5.3.1 Changes Through Inequality Constraints

We will distinguish two main cases depending on whether there is an intersection of the feasible
region and the manifold of solutions (case 1 ) or not (case 2 ). As it is crucial for understanding the
theory our proposed framework is built on, the differences to the unconstrained case (cf. Sect. 2.1.3.2)
will be described in some detail.

Figure 5.1(a) shows the isolines of the objective function of the unconstrained, bivariate optimization
problem stated in Sect. 5.5.1.1. One particular solution is computed using the Moore-Penrose inverse
(2.18) and depicted as orange cross. The one-dimensional manifold of solutions is shown as a dashed
black line.

5.3.1.1 Case 1: Intersection of Manifold and Feasible Region

This case can be subdivided into three sub-cases. Let case 1a be defined as a problem with only one or
more inactive inequality constraints that are parallel to the solution manifold. As the unconstrained
solution already is in the feasible region, the parallel constraint(s) do not influence the solution at
all.

Case 1b, another possible influence of constraints, is shown in Fig. 5.1(b). Here, the constraint is not
parallel to the manifold and therefore restricts it. The manifold is still one-dimensional. However,
due to the constraint, it is no longer a line but a half-line, since it is now bounded in one direction but
still unbounded in the other one. Introduction of more constraints can further restrict the manifold
to a line segment.

The introduction of constraints can also lead to a decrease of the dimension of the manifold (case 1c).
This is always the case for equality constraints which are not parallel to the manifold of solutions.
However, the same can be true for inequality constraints. An easy to imagine example is the case
where one equality constraint is expressed by two inequality constraints.

5.3.1.2 Case 2: Manifold and Feasible Region are Disjunct

In some cases, the introduction of inequality constraints enables us to determine a unique solution
of a rank-deficient optimization problem (case 2a, green cross in Fig. 5.1(c)). This is always the
case, if the solution of the constrained problem is not contained in the original manifold and if there
are no active parallel constraints.

In case 2b, the influence of a constraint that is parallel to the manifold of solutions is further
examined (cf. Fig. 5.1(d)). It is obvious that the active inequality constraint (red line) shifts the
one-dimensional manifold but does not constrain it further. Therefore, there is still a manifold of
the same dimension as in the original problem.
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(a) Isolines of the objective function
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(b) Case 1b: Manifold and feasible region intersect and
the manifold is restricted by the constraint
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(c) Case 2a: Manifold and feasible region are disjunct,
unique solution
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(d) Case 2b: Manifold and feasible region are disjunct,
but there is still a manifold of solutions due to the
active parallel constraint

Figure 5.1: Isolines of the objective function of the bivariate convex optimization problem, which is stated
in Sect. 5.5.1. The one-dimensional manifold (i.e., a straight line) is plotted as dashed black line. A particular
solution of the unconstrained case was computed via the Moore-Penrose inverse and is shown as orange cross.
The infeasible region is shaded and inequalities are plotted as red lines. In (c) the unique ICLS solution is
depicted as green cross. Figure taken from Roese-Koerner and Schuh (2014).
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5.3.1.3 General Remarks and Outline of the Framework

It is important to notice that the direction of the manifold cannot be changed through the intro-
duction of inequality constraints. More specifically, a translation (case 2b), a general restriction
(case 1b) or a dimension reduction (case 1c and 2a) of the manifold are possible, but never a rota-
tion. This leaves us in the comfortable situation that it is possible to determine the homogeneous
solution of an ICLS problem by determining the homogeneous solution of the corresponding uncon-
strained WLS problem and reformulate the constraints in relation to this manifold. Therefore, our
framework consists of the following major parts that will be explained in detail in the next sections:

To compute a general solution of an ICLS problem (3.8), we compute a general solution of the
unconstrained WLS problem and perform a change of variables to reformulate the constraints in
terms of the free variables of the homogeneous solution. Next, we determine if there is an intersection
between the manifold of solutions and the feasible region. In case of an intersection, we determine
the shortest solution vector in the nullspace of the design matrix with respect to the inequality
constraints and reformulate the homogeneous solution and the inequalities accordingly. If there
is no intersection, we use the modified active-set method described in Sect. 5.2.2 to compute a
particular solution and determine the uniqueness of the solution by checking for active parallel
constraints.

It should be noted that any QP solver that is capable of handling singular systems can be used to
determine this particular solution. In earlier publications (Roese-Koerner and Schuh, 2014, 2015)
Dantzig’s Simplex Algorithm for QPs was used for this purpose. However, we found that the mod-
ified active-set method is less memory consuming than Dantzig’s algorithm (at least in its basic
formulation) and therefore replaced the latter.

5.3.2 Transformation of Parameters

In order to solve the ICLS problem (3.8), as a first step, we compute a general solution of the
unconstrained WLS problem (2.32) as described in Sect. 2.1.3.2

x̃WLS(λ) = xWLS
P + xhom(λ) = xWLS

P +Xhom λ. (5.7)

Afterwards, we perform a change of variables and insert (5.7) and (2.13) into the inequality con-
straints

BTx ≤ b

to reformulate them in terms of the free variables λ at the point of the particular solution

BT
(
xWLS

P +Xhom λ
)
≤ b, (5.8a)

leading to

BTxWLS
P +BTXhom λ ≤ b. (5.8b)

With the substitutions

BT
λ := BTXhom, (5.9)

bλ := b−BTxWLS
P , (5.10)

(5.8b) reads

BT
λλ ≤ bλ, (5.11)
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being the desired formulation of the inequality constraints. If the extended matrix [BT
λ|bλ] has

rows that contain only zeros, these rows can be deleted from the equation system, as they belong
to inactive inequality constraints which are parallel to the solution manifold but do not shift the
optimal solution (cf. case 1a in Sect. 5.3.1.1).

For some applications, it is possible to directly state a basis Xhom for the nullspace of A. This
offers the advantage that the free parameters λ are interpretable. For example in the adjustment of
a geodetic direction and distance network, the free parameters represent translation, rotation and
scaling of the network and an explicite basis for the nullspace is known (cf. Meissl, 1969).

For an horizontal network, where there is a known basis for the nullspace of the design matrix, Xu
(1997) worked out constraints (such as a positive scaling parameter) for the free parameters to obtain
a geodetically meaningful solution. These constraints can easily be included in our framework by
using the known basis of the nullspace as homogeneous solutionXhom and expanding the constraints
BT
λ and bλ to the free parameters.

Next, we examine if the constraints (5.11) form a feasible set or if they are inconsistent. This can be
done by formulating and solving a feasibility problem (cf. Boyd and Vandenberghe, 2004, p. 579–
580). If the constraints form a feasible set, there is at least one set of free parameters λi that fulfills
all constraints. This is equivalent to the statement that there is an intersection between the manifold
of solutions and the feasible region of the original ICLS problem which is described in Sect. 5.3.3. If
the constraints are inconsistent, the manifold and the feasible region are disjoint and we will proceed
as described in Sect. 5.3.4.

5.3.3 Case 1: Intersection of Manifold and Feasible Region

If there is an intersection of manifold and feasible region, we aim for the determination of a unique
particular solution x̃P that fulfills certain predefined optimality criteria. Therefore, a second opti-
mization problem is introduced (e.g., minimizing the length of the solution vector with respect to
the norm LP). As this minimization takes place in the nullspace of the design matrix A, the value
of the objective function of the original problem (3.8) does not change

Nullspace optimization problem

objective function: ΦNS

(
xICLS

P (λ)
)
. . .Min

constraints: BT
λλ ≤ bλ

optim. variable: λ ∈ IRd.

(5.12)

The minimization yields optimal free parameters λ̃, whose insertion in (5.7) results in

x̃ICLS
P = xWLS

P +Xhomλ̃, (5.13)

which is a unique particular solution that fulfills all constraints. As the reformulated constraints
depend on the chosen particular solution, we have to adapt them to the new particular solution
using (5.8). Now, we can combine our results to a rigorous general solution of the ICLS problem
(3.8)

x̃ICLS(λ) = x̃ICLS
P + xhom(λ), (5.14a)

BT
λλ ≤ bλ. (5.14b)

In the following, the influence of the use of different norms and functional relationships of the
objective function ΦNS of the nullspace optimization problem (5.12) is discussed.



5.3. Rigorous Computation of a General Solution 69

5.3.3.1 Nullspace Optimization

As stated above, the whole minimization takes place in the nullspace of the design matrix and
the value of the original objective function (3.8) will not change. Nonetheless, choosing a suitable
second objective function for a particular problem can be helpful to achieve properties such as
sparsity of the parameter vector. If this second objective function is chosen in a way that the
nullspace optimization problem becomes a QP, it can for example be solved using the active-set
method described in Sect. 3.5.1. In case the problem is an LP or a general non-linear problem,
specialized solvers (e.g., CVX, see Grant and Boyd, 2014) have to be used.

Two different parts of the objective function can be distinguished, which will be examined in some
detail: the functional relationship and the norm, with respect to which the minimization (or maxi-
mization) shall be performed.

Functional Relationship. The functional relationship strongly depends on the application. How-
ever, there are two main concepts which are applicable to a large variety of problems.

First, the length of the parameter vector x can be minimized. This can for example be beneficial
if not absolute coordinates but coordinate differences are estimated, which should be close to the
initial coordinates. In a Bayesian interpretation this could be seen as introduction of isotropic prior
information on the parameters.
More sophisticated approaches include a weighted minimization of the length of the parameter
vector. For example if prior knowledge about the magnitude of the parameters is given. Prominent
examples are Kaula’s rule of thumb in gravity field estimation or the demand for a decay of the
amplitudes of higher frequencies in signal processing to achieve a square integrable function. A
mathematical example for the minimization of the length of the parameter vector is provided in
Sect. 5.5.1.2.

The other main concept is to maximize the distance of the solution to the constraints

||BTx(λ)− b|| . . .max, (5.15a)

thus

||BTxP +BTXhomλ− b|| . . .max . (5.15b)

This could be beneficial, if the constraints constitute a kind of outermost threshold. In Sect. 7.3.2
an engineering application including welding tolerances is described, in which this type of functional
relationship is applied. One of the main advantages of the use of inequality constraints is that they
do not influence the result, if they are not active. Therefore, it it usually not possible to provide a
buffer to the boundary of the feasible set without losing estimation quality (shown by an increased
value of the original objective function). However, due to the optimization in the nullspace of A,
we are in the unique position to apply such a buffer without deteriorating the estimate.

Norms. In the following, we will point out some general aspects of different norms and their
influence on the most classical functional relationship: the length of the solution vector. Lp norms
used in adjustment theory include the L1 norm, the L2 norm and the L∞ norm (cf. Sect. 2.3 and
Jäger et al., 2005, Boyd and Vandenberghe, 2004, p. 125–128 and p. 635, respectively).

Most often, the length of a vector is minimized with respect to the L2 norm (also known as Euclidean
norm), which results in the nullspace objective function

ΦL2
NS

(
xICLS

P (λ)
)

= ||xICLS
P (λ)||2 (5.16a)

=
(
xICLS

P (λ)
)T
xICLS

P (λ). (5.16b)
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Figure 5.2: Two-dimensional unit spheres of L1 (orange), L2 (blue) and L∞ norm (green). The L1 diamond
evolves from the summation of x and y value, while for the L∞ square, only the value of the largest quantity
is decisive. Figure taken from Roese-Koerner and Schuh (2015).

Inserting (5.7) yields

ΦL2
NS (λ) =

(
xICLS

P +Xhom λ
)T (

xICLS
P +Xhom λ

)
(5.16c)

= λTXT
homXhomλ+ 2

(
xICLS

P

)T
Xhomλ+

(
xICLS

P

)T
xICLS

P (5.16d)

and the following quadratic program:

L2 norm nullspace optimization problem

objective function: ΦL2
NS (λ) = λTXT

homXhomλ+ 2
(
xICLS

P

)T
Xhomλ . . .Min

constraints: BT
λλ ≤ bλ

optim. variable: λ ∈ IRd.

(5.17)

The last term of objective function (5.16) is constant and was neglected as it does not influence the
minimization result. In case of solely inactive constraints, the resulting solution will be equivalent
to the one obtained via the Moore-Penrose inverse in the unconstrained case. If the constraints
prevent that the optimal unconstrained solution is reached, our particular solution will be the
one with shortest length among all solutions that minimize the objective function and fulfill the
constraints. The procedure could therefore be seen as a kind of pseudoinverse that takes inequality
constraints into account.

Using the L2 norm is a quite natural choice which can easily be visualized geometrically. However,
as the influence of one element on the norm decreases if its absolute value becomes smaller, a
minimization with respect to the L2 norm will seldom result in a sparse vector. This can be verified
by examining the blue L2 norm unit sphere depicted in Fig. 5.2.

The naive choice to achieve maximal sparsity of a vector would be a minimization with respect to
the L0 norm (e.g., the number of nonzero elements). However, a minimization with respect to the
L0 norm is a combinatorical problem and computationally very demanding. Therefore, e.g., Candes
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et al. (2006) approximated the L0-minimization problem by the L1-minimization problem in the
context of compressed sensing. They showed that a minimization with respect to the L1 norm in most
cases yields sparse results, too. This is used in many compressed sensing algorithms. Minimization
with respect to the L1 norm is a convex optimization problem and can be formulated as a linear
program (cf. Dantzig, 1998, p. 60–62). As can be seen in Fig. 5.2, the corners of the orange L1 norm
unit sphere coincide with the coordinate grid. This is equivalent to the statement that one parameter
is zero there, yielding a sparse solution.

Application of the L∞ norm (also known as Chebyshev norm) results in a parameter vector with
minimal maximal value that is usually not sparse. See Fig. 5.2 for the corresponding unit sphere.
The L∞ norm is often applied, when trying to maximize the distance to the constraints, in order
to maximize the minimal buffer to the boundary. However, it should be noted that L∞ norm
minimization is an intricate task as there is often no analytical solution (cf. Grant et al., 2006).
Within this thesis we used the CVX software (Grant and Boyd, 2014) whenever an L∞ norm
minimization is performed.

5.3.4 Case 2: Manifold and Feasible Region are Disjunct

If there is no intersection between the feasible region and the manifold of solutions, there either is
a unique solution or at least one active constraint is parallel to the solution manifold meaning the
solution is still non-unique (cf. Sect. 5.3.1.2). To compute a particular solution of problem (3.8) the
modified binding-direction primal active-set method discussed in Sect. 5.2.2 can be used, resulting
in an arbitrary optimal solution xICLS

P . To decide whether the solution is unique, we check for active
parallel constraints. If there is at least one, there exists a manifold of solutions, which is a shifted
version of the original one. In this case, we proceed as described in Sect. 5.3.3 using xICLS

P instead
of xWLS

P .

If there is a unique solution, it means that the introduction of constraints has resolved the manifold
yielding

x̃ICLS = xICLS
P (5.18)

as the final result.

5.4 A Framework for the Solution of Rank-Deficient ICLS Problems

Using the tools described, we devised a framework for the computation of a rigorous general solution
of rank-deficient ICLS problems, which is shown in Alg. 5.

The first three lines correspond to the transformation of parameters and the test for intersection of
feasible region and solution manifold (described in Sect. 5.3.2). If there is no intersection (case 2,
feasible = false) a particular solution is computed as described in Sect. 5.3.4 and a test for parallel
constraints is performed (lines 4–12). If no active constraint is parallel to the manifold, the computed
particular solution is unique and the algorithm terminates (line 8).

If there is an intersection of the sets (case 1, feasible = true) or an active parallel constraint, we
proceed as described in Sect. 5.3.3 and solve a second optimization problem (lines 13–17).

In lines 2, 11 and 17 a transformation of the constraints is computed. This is necessary, as the
constraints with respect to the Lagrange multipliers ki depend on the chosen particular solution.
Fortunately, this transformation is a computationally cheap operation.
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Algorithm 5: A framework to estimate the general solution of ICLS problems with rank defect
1 [xP,xhom] = GeneralWlsSolution(A, `,Σ) // cf. Sect. 5.3.2
2 [Bλ, bλ] = transformConstraints(B, b,xP,xhom) // cf. Sect. 5.3.2
3 feasible = testFeasibility(Bλ, bλ)
4 if feasible == false then
5 // Case 2
6 [xP, k̃] = computeParticularSolution(A, `,Σ,B, b) // cf. Sect. 5.3.4
7 if activeParallelConstraint == false then
8 x̃ICLS

P = xP,xhom = ∅,Bλ = ∅, bλ = ∅
9 return (x̃ICLS

P ,xhom,Bλ, bλ)

10 else
11 [Bλ, bλ] = transformConstraints(B, b,xP,xhom) // cf. Sect. 5.3.2
12 end
13 end
14 // Case 1 or at least one active parallel constraint
15 λ̃ = solveNullspaceOptimizationProblem(xP,xhom,Bλ, bλ) // cf. Sect. 5.3.3

16 x̃ICLS
P = xP + xhom(λ̃)

17 [Bλ, bλ] = transformConstraints(B, b, x̃ICLS
P ,xhom) // cf. Sect. 5.3.2

18 return (x̃ICLS
P ,xhom,Bλ, bλ)

One may ask the question: Why not directly compute a particular ICLS solution as performed in
line 6 of the framework? We intentionally decided to first compute an unconstrained general solution
and to check for set intersection in order to achieve optimal runtime behavior. This is because solving
the original quadratic program is the most expensive operation performed within this framework.
If feasible set and manifold intersect, we can avoid solving the original problem directly. Instead a
general unconstrained solution is computed and an optimization problem with respect to the free
parameters λi is solved. Computationally this is a lot cheaper, as the dimension reduces from an
m-dimensional problem to a d-dimensional problem. The number m of parameters is usually much
greater than the dimension d of the rank defect. Hence, computations become faster.

It should be noted that it is not possible to apply the MC-QP method described in Chap. 4 to a
rank-deficient problem. This is for two reasons: First, the computation of a particular solution via
the active-set method is somewhat arbitrary, which does not go well with an algorithm using a Monte
Carlo approach. Second, the concept of perturbing the observations as input for each Monte Carlo
step may not effect the Nullspace optimization procedure and can therefore lead to an overoptimistic
stochastic description.

5.5 Example

The presented framework for the rigorous computation of a general solution of an ICLS problem was
applied to a small two-dimensional synthetic example. We chose this setup because of its simplicity
which allows to concentrate on details of the presented framework and exploit the fact that it is
possible to explicitly draw the objective function of a two-dimensional problem.

Two more applications—the task of estimating optimal repetition numbers in an underdetermined
system, and a setup with strict welding tolerances—are used to underline the potential of the
framework for classical geodetic applications. Both examples can be found in the applications chapter
(Sect. 7.3.1 and Sect. 7.3.2, respectively).
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5.5.1 2D Synthetic Example with 1D Manifold

The two summands of the weighted sum

`i + vi = x1 + 2x2 (5.19)

shall be estimated in a Gauss-Markov model. We assume each observation to follow a normal
distribution with a standard deviation of one and state that all observations are independent and
identically distributed. Therefore, the VCV matrix Σ is an identity matrix. It should be noted that
this is done for reasons of simplicity only, as the proposed framework is able to handle the case of
correlated observations, too.

The resulting two-dimensional system clearly has a rank defect of one, as it is solely possible to
estimate one summand depending on the other one

`+ v =


1 2
1 2
1 2
1 2
1 2


[
x1

x2

]
= Ax. (5.20)

Obviously, both columns of the design matrixA are linearly dependent. Given the following synthetic
observations

`T =
[

23.2 16.4 12.9 8.2 13.7
]
, (5.21)

we will demonstrate the computation of the unconstrained OLS solution in Sect. 5.5.1.1, as this is
identical to the first steps of our framework. Next, we will introduce two different sets of constraints
to cover case 1 where manifold and feasible region intersect (Sect. 5.5.1.2) as well as case 2, in
which there is no such intersection (Sect. 5.5.1.3). The isolines of the objective function are shown
in Fig. 5.1(a).

5.5.1.1 Unconstrained OLS Solution

The elements of the normal equations read

N = ATA =

[
5 10
10 20

]
, n = AT ` =

[
74.40

148.80

]
. (5.22)

Applying the Gauss-Jordan algorithm to solve

Nx = n (5.23)

yields

5 10 74.40
10 20 148.80

1 2 14.88
0 0 0.

| : 5
| − 2(I)

(5.24)

Thus, inserting (2.17) and (2.15) in (2.11) the general solution reads

x̃OLS(λ) =

[
14.88

0

]
︸ ︷︷ ︸
xOLS

P

+

[
−2

1

]
︸ ︷︷ ︸
Xhom

λ = xOLS
P +Xhomλ. (5.25)

As expected, there is no unique optimal solution but a manifold, which is expressed by an arbi-
trary particular solution xOLS

P and a solution Xhom of the homogeneous system. The manifold is
represented by the dashed black line in Fig. 5.1(a) for the arbitrarily chosen interval 2.44 ≤ λ ≤ 7.44.
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Figure 5.3: Contour lines of the objective function of case 1. Red lines represent constraints, the infeasible
region is shaded. The dashed black line indicates the manifold of solutions. The green cross is the L1 norm
solution, the black circle the L2 solution. For comparison the solution using a pseudoinverse (blue star)
is shown, too. Appropriately scaled unit spheres are depicted in orange (L1) and light blue (L2). Figure
modified from Roese-Koerner and Schuh (2015).

5.5.1.2 Case 1: Intersection of Manifold and Feasible Region

Introduction of the constraints

x1 ≤ 2, x2 ≤ 10 (5.26a)

and thus

BTx =

[
1 0
0 1

]
x ≤

[
2

10

]
= b (5.26b)

restricts the manifold as can be seen in Fig. 5.3. Transforming the constraints in the point xOLS
P of

the particular solution with respect to the free parameter λ according to (5.8) yields

−2λ ≤ −12.88, λ ≤ 7, (5.27a)

leading to

BT
λλ =

[
−2

1

]
λ ≤

[
−12.88

7

]
= bλ. (5.27b)

Now, a feasibility problem is solved to determine if a feasible solution exists or if the constraints
are contradictory. For this trivial example one can easily find a solution that fulfills all constraints,
e.g., λ = 7. Thus, as there is an intersection of manifold and feasible set (cf. Fig. 5.3) a second
optimization problem in the nullspace of the design matrix has to be solved. We chose to examine
the different effects of minimizing the length of the parameter vector with respect to the L1 or
L2 norm:
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Synthetic 2D example: Nullspace optimization

objective function: ||xOLS
P +Xhomλ||p . . .Min

constraints: BT
λλ =

[
−2

1

]
λ ≤

[
−12.88

10

]
= bλ

optim. variable: λ ∈ IR.

The resulting value λ̃ is used to compute the shortest solution vector that fulfills all constraints.
Depending on the chosen norm this results in either

x̃ICLS,L2

P = xOLS
P +Xhomλ̃

L2 =

[
2.00
6.44

]
(black circle in Fig. 5.3) (5.28)

or

x̃ICLS,L1

P = xOLS
P +Xhomλ̃

L1 =

[
0.00
7.43

]
(green cross in Fig. 5.3), (5.29)

respectively. As expected, utilization of the L1 norm in the nullspace optimization step leads to
a sparse solution without an increase in the sum of squared residuals of the original problem.
Considering the changed particular solution, we transform the constraints again and achieve as final
result

x̃L2 = x̃ICLS,L2

P + xOLS
hom(λ) =

[
2.00
6.44

]
+ λ

[
−2

1

]
(5.30a)

subject to
[
−2

1

]
λ ≤

[
0

0.56

]
, (5.30b)

and

x̃L1 = x̃ICLS,L1

P + xOLS
hom(λ) =

[
0.00
7.43

]
+ λ

[
−2

1

]
(5.31a)

subject to
[
−2

1

]
λ ≤

[
2

2.57

]
, (5.31b)

respectively. Due to the introduction of inequality constraints the manifold is no longer a line, but
a line segment. The constraint x1 ≤ 2 prevents that the ICLS solution is identical to the solution
obtained via the pseudoinverse. This can also be seen in the final solution of the L2 case (5.30), as
there is one value on the right hand side of the transformed constraints that is zero—meaning that
the constraint is active. As the absolute value of the second transformed constraint is small, it can
be concluded that the manifold is only a small line segment which is also depicted in Fig. 5.3.

5.5.1.3 Case 2: Manifold and Feasible Region are Disjunct

This section deals with the same synthetic example as described in Sect. 5.5.1.1, but the second
constraint is narrowed to demonstrate the case, in which the introduction of inequality constraints
resolves the manifold and yields a unique solution. Let the constraints be

x1 ≤ 2, x2 ≤ 2, (5.32a)

leading to

BTx =

[
1 0
0 1

]
x ≤

[
2
2

]
= b. (5.32b)
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This setup is depicted in Fig. 5.1(c). The constraint transformation yields

−2λ ≤ −12.88, λ ≤ 2 (5.33a)

and thus

BT
λλ =

[
−2

1

]
λ ≤

[
−12.88

2

]
= bλ.  (5.33b)

These new constraints (5.33b) are contradictory as—due to constraint 2—the maximal feasible
value of λ is 2, which is not enough to satisfy the first inequality. Therefore, one particular solution
xICLS

P of the original problem and the corresponding Lagrange multipliers k are computed using
the binding-direction primal active-set method for rank-deficient systems described in Sect. 5.2.2,
resulting in

xICLS
P =

[
2.00
2.00

]
, k =

[
88.8

177.60

]
. (5.34)

As there is no active constraint that is parallel to the manifold of solutions, the introduction of
inequality constraints resolves the manifold and the computed particular solution

x̃ICLS = xICLS
P =

[
2.00
2.00

]
(5.35)

is unique. This can be geometrically verified, considering Fig. 5.1(c), where x̃ICLS is shown as green
cross.
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6. The Gauss-Helmert Model with Inequalities

In many applications it is crucial to model the relationship between two or more observations
explicitly. If in addition some parameters of the system should be estimated, the Gauss-Helmert
Model (GHM) is the model of choice to perform an adjustment. The GHM may be viewed as a
special case of the mixed model (Koch, 1999, p. 213).

In this chapter an extension of the weighted least-squares adjustment in the Gauss-Helmert model
described in Sect. 2.2.3 to the inequality constrained case is developed. As equality constraints are
inherent to the GHM, we are dealing with a problem with both equality and inequality constraints.

Despite the fact that the GHM is often used in geodesy, not much literature (cf. Sect. 6.1) is
devoted to the (weighted) least-squares adjustment in the Inequality Constrained Gauss-Helmert
Model (ICGHM).

It should be noted that we slightly abuse the abbreviations here: For ICLS (the acronym for an
Inequality Constrained Least-Squares adjustment, the (least-squares) estimator was eponymous
and it is usually assumed that the Gauss-Markov model is used.
On the other hand, for ICGHM the name resulted from the model and it is assumed that the
least-squares estimator is used (if not mentioned otherwise). However, as ICLS is a well established
term, we have chosen to sacrifice some consistency here, for the sake of an easier distinction between
both approaches.

The reformulation of the ICGHM as a quadratic program in standard form and the appendant
KKT conditions are developed in Sect. 6.2.1. A less general but more sophisticated transformation
is described in Sect. 6.2.2 as is an adaption of the binding-direction primal active-set algorithm to
the peculiarities of this transformation. Again, the chapter concludes with a simple example, which
serves as proof of concept (Sect. 6.3).

6.1 State of the Art

Famula (1983) described the use of inequality constraints for the estimation of non-negative variance
components in the mixed model for a problem in animal science. However, besides the claim for
non-negative variance components no further constraints are applied.

Kato and Hoijtink (2006) proposed a Bayesian approach for estimation and model selection in the
linear mixed model with inequality constraints. They apply the Gibbs Sampler to problems with
order constraints and sample from a truncated normal distribution. However, no (KKT) optimality
conditions are provided and the focus is mostly on the sampling strategy.

Davis et al. (2008) and Davis (2011) explained a method for maximum likelihood estimation in what
they called “general linear mixed models under linear inequality constraints”. The term general in
this context means that no assumptions on the distribution of the observations are required. An
active-set method is utilized in their approach. However, the (KKT) optimality conditions are only
mentioned very briefly and the focus is put on hypothesis testing and the aspect of missing data.
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6.2 WLS Adjustment in the Inequality Constrained GHM

The unconstrained Gauss-Helmert model was stated in Sect. 2.2.3 and reads

Weighted least-squares adjustment in the Gauss-Helmert model

objective function: Φ(v) = vTΣ−1v . . .Min

constraints: B
T
GHM v +A∆x+w = 0

optim. variable: v ∈ IRn,∆x ∈ IRm.

Now, in addition to the inherent equality constraint, some equality constraints

B
T
eq

[˜̀
x

]
= b
∗
eq (6.1)

and some inequality constraints

BT

[˜̀
x

]
≤ b∗ (6.2)

shall be introduced. As the optimization variables represent solely changes of the original variables˜̀= `+ v, (6.3)

x = x0 + ∆x, (6.4)

the constraints (6.1) and (6.2) have to be reformulated, yielding

B
T
eq

([
`
x0

]
+

[
v

∆x

])
= b
∗
eq, (6.5a)

which implies

B
T
eq

[
`
x0

]
+B

T
eq

[
v

∆x

]
= b
∗
eq. (6.5b)

Rearranging the terms yields

B
T
eq

[
v

∆x

]
= b
∗
eq −B

T
eq

[
`
x0

]
=: beq. (6.5c)

An analogous reformulation of the inequality constraints leads to

BT

[
v

∆x

]
≤ b∗ −BT

[
`
x0

]
=: b (6.6)

and thus to the

WLS adjustment in the Inequality Constrained GHM (ICGHM)

objective function: vTΣ−1v . . .Min

constraints: B
T
GHM v +A∆x+w = 0

B
T
eq

[
v

∆x

]
= beq

BT

[
v

∆x

]
≤ b

optim. variable: v ∈ IRn,∆x ∈ IRm.

(6.7)
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As the GHM can be seen as a combination of the adjustment with condition equations (cf. Sect. 2.2.2)
and the adjustment in the GMM (cf. Sect. 2.2.1) the residuals v as well as the parameters ∆x are the
optimization variables. It is therefore possible to directly constrain the parameters and the residuals
(and thus the adjusted observations). Therefore, it will prove convenient to partition the matrix B
of inequality constraints in four submatrices, yielding

BT

[
v

∆x

]
=

[
BT
v BT

v∆x
BT

∆xv BT
∆x

] [
v

∆x

]
≤ b. (6.8)

It should be noted that in most cases the involved matrices Bv and B∆x are not symmetric.
Furthermore

Bv∆x 6= B∆xv (6.9)

holds. If solely constraints are introduced that concern ∆x or v, B becomes a (usually non-
symmetric) block-diagonal matrix. However, we chose to state the constraints in their most general
form which includes also constraints that affect both ∆x and v.

One drawback of the use of reduced parameters ∆x as optimization variables is that iterations
and—due to the dependency from the constraints on the current solution—a recomputation of the
constraints may be necessary if the initial point is far away from the optimal solution. However, this
is not a result of the introduction of inequalities but true for the unconstrained case, too. In the
unconstrained case, the Gauss-Newton method (cf. Nocedal and Wright, 1999, p. 259–262) is used
as iteration scheme. Its extension to the constrained case is known as Lagrange-Newton method or
Sequential Quadratic Programming (SQP, cf. Fletcher, 1987, p. 304–317). It is a generalization of
the Quadratic Programming theory, which allows to solve a general non-linear optimization problem
as a sequence of QPs.

Two comments concerning the ideas developed in the last chapters (namely the stochastic descrip-
tion and the treatment of rank-deficient systems) and their usefulness for the ICGHM might be
appropriate. First, it is indeed possible (and often worthwhile) to combine the stochastic descrip-
tion treated in Chap. 4 with the ICGHM. However, we chose to focus on the development of the
ICGHM framework without the stochastic description part in order to keep the formulas and algo-
rithms tidy.
Unfortunately, the combination of the methods for rank-deficient systems described in Chap. 5 with
the ICGHM is not that easy, due the non-linearities inherent to the GHM and the resulting need for
Lagrange-Newton iterations. As a consequence, the computation of one particular solution is pos-
sible, but the computation of a homogeneous solution with respect to the constraints might prove
difficult and is not pursued here.

6.2.1 Formulating the ICGHM as Standard Quadratic Program

In order to formulate the ICGHM problem (6.7) as a quadratic program in standard form
(cf. Sect. 3.3):

Quadratic Program in Standard Form

objective function: ΦQP(z) = γ1z
TCz + γ2c

Tz . . .Min

constraints: BTz ≤ b
B
T
z = b

optim. variable: z ∈ IRm+n,

the optimization variable, the objective function and the constraints have to be adapted.
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Optimization Variable. The parameters ∆x and v are combined to the vector

z :=

[
v

∆x

]
. (6.10)

Sometimes ∆z is used instead of z to explicitly denote that it contains the residuals and the reduced
parameters.

Objective Function. Consequently, the objective function reads

[
vT ∆xT

]︸ ︷︷ ︸
zT

[
Σ−1 0

0 0m

]
︸ ︷︷ ︸

C

[
v

∆x

]
︸ ︷︷ ︸
z

. . .Min. (6.11)

As the VCV matrix Σ is assumed to be positive definite, C is a positive semi-definite matrix, which
has direct consequences for the solution algorithm (cf. Sect. 6.2.2). Without loss of generality the
other terms of the objective function can be set as follows:

c := 0, γ1 := 1, γ2 := 1. (6.12)

Constraints. The inequality constraints are already almost in standard form, only substitution
(6.10) has to be applied, yielding[

BT
v BT

v∆x
BT

∆xv BT
∆x

] [
v

∆x

]
= BT

[
v

∆x

]
= BTz ≤ b. (6.13)

Reformulation of the inherent equality constraints is also straightforward as

B
T
GHM v +A∆x+w = 0 (6.14a)

implies

[
B
T
GHM A

] [ v
∆x

]
= −w, (6.14b)

thus [
B
T
GHM A

]
z = −w. (6.14c)

Combination with the additional equalities (6.5) yields[BTGHM A

]
B
T
eq


︸ ︷︷ ︸

B
T

z =

[−w
beq

]
︸ ︷︷ ︸
b

. (6.15)
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6.2.1.1 The ICGHM with Independent Constraints

In the last section, the ICGHM was reformulated as a QP in standard form. Thus, the usual KKT
optimality conditions of a standard QP (which are derived in Sect. 3.3.1) apply. However, in this
section, the special case of independent equality and inequality constraints for parameters and
adjusted observations[

B
T
v 0

0 B
T
∆x

] [
v

∆x

]
=

[
bv
b∆x

]
, (6.16)[

BT
v 0

0 BT
∆x

] [
v

∆x

]
≤
[
bv
b∆x

]
(6.17)

is examined, because it allows for a direct interpretation of the Lagrange multipliers involved.
Furthermore, inequality constraints that apply to both parameters and adjusted observations are
rather scarce. In order to keep the formulas tidy, the optimization variables v and ∆x are not
combined to one vector (as was done in the last section) but kept separately. Thus, the problem for
which we will derive the KKT conditions reads

Inequality Constrained GHM with independent constraints

objective function: vTΣ−1v . . .Min

constraints: B
T
GHM v +A∆x+w = 0

B
T
vv = bv

B
T
∆x∆x = b∆x

BT
vv ≤ bv

BT
∆x∆x ≤ b∆x

optim. variable: v ∈ IRn,∆x ∈ IRm.

(6.18)

6.2.1.2 KKT Conditions of the Standard Transformation

The Lagrangian corresponding to problem (6.18) reads

L(v,∆x,kGHM,kv,k∆x,kv,k∆x) = vTΣ−1v − 2k
T

GHM(B
T
GHM v +A∆x+w) (6.19)

− 2k
T

v(B
T
vv −bv)− 2k

T

∆x(B
T
∆x∆x−b∆x)

+ 2kTv(BT
vv − bv) + 2kT∆x(BT

∆x∆x− b∆x).

kGHM denotes the Lagrange multipliers corresponding to the GHM inherent equality constraint
(6.14),kv andk∆x those linked with the additional equality constraints (6.16) and kv and k∆x those
linked with the inequality constraints (6.17). Now the gradients with respect to the optimization
variables can be computed and set equal to zero

∇vL(v,kGHM,kv,kv) = 2Σ−1v − 2BGHMkGHM − 2Bvkv + 2Bvkv
!

= 0 (6.20)

⇒ v = Q(BGHMkGHM +Bvkv −Bvkv) (6.21)

∇∆xL(kGHM,k∆x,k∆x) = −2ATkGHM − 2B∆xk∆x + 2B∆xk∆x
!

= 0. (6.22)



82 6. The Gauss-Helmert Model with Inequalities

The gradients with respect to the Lagrange multipliers follow to be

∇
kGHM

L(v,∆x) =B
T
GHM v +A∆x+w

!
= 0 (6.23)

∇
kv
L(v) =B

T
vv −bv

!
= 0 (6.24)

∇
k∆x

L(∆x) =B
T
x∆x−b∆x !

= 0 (6.25)

∇kvL(v) = BT
vv − bv

!
≤ 0 (6.26)

∇k∆x
L(∆x) = BT

∆x∆x− b∆x
!
≤ 0, (6.27)

which are nothing else than the original constraints. The conditions of complementary slackness
(cf. Sect. 3.3.1) read

kvi(Bv(:, i)Tv − bvi)
!

= 0, ∀ i = 1, 2, . . . pv (6.28)

k∆xi(B∆x(:, j)T∆x− b∆xj )
!

= 0, ∀ j = 1, 2, . . . p∆x. (6.29)

All Lagrange multipliers linked with inequality constraints have to be non-negative (cf. Sect. 3.3.1)

kvi

!
≥ 0, ∀ i = 1, 2, . . . pv (6.30)

k∆xj

!
≥ 0, ∀ j = 1, 2, . . . p∆x. (6.31)

Thus, it is directly possible to examine the influence of a constraint on the objective function
by interpreting the associated Lagrange multiplier. However, one has to be careful as Lagrange
multipliers are dimensionless quantities. Thoughts on the computation of some measures that are
easier to interpret can be found in Sect. 4.3.

As described above, it is possible to transform an ICGHM problem into a QP in standard form.
However, this may lead to a large “overhead” of the problem, which could lead to numerical difficulties
and an increase in run time. Under certain circumstances, a more elegant and efficient way to solve
an ICGHM problem can be found, which is explained in the next section.

6.2.2 Tailor-Made Transformation of the ICGHM

As stated above, every ICGHM can be reformulated as a QP in standard form. However, this has
some drawbacks:

1. As can be seen in (6.11) the matrix C in the objective function will always be positive semi-
definite and have many rows and columns containing only zeros. If dense matrix computations
are used, this will generate a large computational “overhead” and an increase in run-time and
memory requirements.

2. As ∆x and v are both used as optimization variables (cf. (6.10)), in every Lagrange-Newton
iteration feasible initial values have to be provided. Especially for v this might be difficult in
some cases (due to the presence of both equality and inequality constraints).

Therefore, in this section, a more sophisticated transformation of the ICGHM is introduced, which
should overcome the disadvantages mentioned above. However, it requires a tailor-made computation
of the search direction of the active-set method described in Sect. 3.5. Thus, it will not be possible to
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solve this formulation of the ICGHM with a standard solver. Furthermore, it is solely possible here
to incorporate constraints to the parameters x and not to the adjusted observations ˜̀. However, the
dimension of the problem will be much smaller than in the “standard formulation” and the system
can be solved more efficiently.

We will follow a similar line of thought as in the equality constrained GHM (ECGHM,
cf. Sect. 2.2.3.2). This is possible because with active-set methods, an inequality constrained prob-
lem is solved as a sequence of equality constrained ones (using in each iteration only the active
constraints, cf. Sect. 3.5.1). This can be exploited to reduce the size of the system.

6.2.2.1 The ICGHM with Constraints Concerning Solely the Parameters ∆x

As stated above, only constraints concerning the parameters ∆x shall be introduced in this section

B
T
∆x∆x = bx, (6.32)

BT
∆x∆x ≤ bx. (6.33)

Thus, the resulting problem reads

ICGHM with Constraints Concerning Solely the Parameters ∆x

objective function: vTΣ−1v . . .Min

constraints: B
T
GHM v +A∆x+w = 0

B
T
∆x∆x = b∆x

BT
∆x∆x ≤ b∆x

optim. variable: v ∈ IRn,∆x ∈ IRm.

(6.34)

As hinted in the last section, we will exploit the fact that in active-set methods the inequality
constrained problem is solved as a sequence of equality constrained ones. Therefore, in each iteration
the active constraints

B∆x,active∆x = b∆x,active

are identified and a working set

W :=
[
B∆x B∆x,active

]
(6.35)

w :=

[
b∆x

b∆x,active

]
(6.36)

is derived, which contains all equality constraints as well as the active inequalities (cf. Sect. 3.5.1.1).
In contrast to Sect. 3.5.1.1 we mark the working set with a bar, too. This is for two reasons. First, we
would like to emphasize that these constraints are treated as equalities. Second, to avoid confusion
with the vector of misclosures w. The problem which has to be solved in each iteration of the
active-set method reads

Tailor-Made Subproblem: ICGHM Including Only Active Constraints

objective function: vTΣ−1v . . .Min

constraints: B
T
GHM v +A∆x+w = 0

W
T

∆x =w

optim. variable: v ∈ IRn,∆x ∈ IRm.

(6.37)
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It should be noted that the working set changes in every active-set iteration. Thus, a tailor-made
adaption of a binding-direction primal active-set algorithm is provided in Sect. 6.2.2.3. For the sake
of an easier interpretation we chose not to include the optimization variables v and ∆x in one vector
but to keep them separately. The same holds true for the inherent and the additional constraints.

6.2.2.2 KKT Conditions of the Tailor-Made Transformation

As problem (6.37) is an equality constrained problem, the Lagrangian

L(v,∆x,kGHM,kw) = vTΣ−1v − 2k
T

GHM(B
T
GHMv +A∆x+w)− 2k

T

w(W
T

∆x−w) (6.38)

is identical to (2.74)—the Lagrangian of ECGHM problem (2.73)—but withW andw instead ofB
and b, respectively. The same holds true for the KKT conditions resulting from setting the gradients
equal to zero and the substitution (2.79) of v

B
T
GHMΣBGHMkGHM +A∆x+w = 0, (6.39)

ATkGHM +Wkw = 0, (6.40)

W
T

∆x =w, (6.41)

as well for the resulting KKT systemB
T
GHMΣBGHM A 0

AT 0 W

0 W
T

0


kGHM

∆x

kw

 =

−w0
w

 . (6.42)

6.2.2.3 A Tailor-Made Active-Set Method for the Gauss-Helmert Model

As we have substituted v in order to reduce the size of the resulting KKT system (6.42), some small
changes to the active-set method described in Sect. 3.5.1 are required as now only a part of the
original parameter vector

z =

[
v

∆x

]
(6.43)

is contained in the equation system. More specifically, the computation of the search direction p
has to be modified.

Therefore, we have to recall that if no inactive constraints prevent that a step of full length is taken
(cf. Sect. 3.5.1.5)

∆x(i+1) = ∆x(i) + p(i) (6.44)

holds. As a consequence, it is possible to compute the search direction by solving (6.42) and com-
puting the difference

p(i) = ∆x(i+1) −∆x(i). (6.45)

The resulting modified active-set method is shown in Alg. 6. One peculiarity should be mentioned.
In (6.38) we chose to introduce a negative weight for the Lagrange multiplier kw of the active
constraints in order to obtain a symmetric matrix in the KKT system (6.42). As a consequence,
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Algorithm 6: Binding-Direction Primal Active-Set Algorithm Tailored for the GHM

Data:
B[m×p], b[p×1] . . . Matrix and corresponding right-hand side of the inequality constraints
B[m×p̄],b[p̄×1] . . . Matrix and corresponding right-hand side of the equality constraints
BGHM[n×b],w[b×1] . . . Matrix with the GHM inherent equality constraints and misclosure
Σ[n×n] . . . VCV matrix of the observations
∆x

(0)
[m×1] . . . Feasible initial (reduced) solution vector

Result:

∆x[m×1] . . . Vector containing the (reduced) solution of the QP
kGHM[b×1] . . . Vector containing the Lagrange multipliers of the GHM inherent constraints
kw[pw̄×1]

. . . Vector containing the Lagrange multipliers of active additional constraints

1 [W,w,V ,v] = findActiveConstraints(B, b,B,b,∆x) // cf. Sect. 3.5.1.1
2 for i = 1 : imax do
3 ∆xold = ∆x

4 solve


B

T
GHMΣBGHM A 0

AT 0 W

0 W
T

0


kGHM

∆x

kw

 =

−w0
w


 // cf. Sect. 6.2.1.2

5 p = ∆x−∆xold

6 q = computeStepLength(V ,v,∆x,p) // cf. Sect. 3.5.1.5
7 ∆x = ∆x+ qp

8 [W,w,V ,v] = updateActiveSet(W,w,V ,v,∆x, q) // cf. Sect. 3.5.1.6
9 if max(kw ≤ 0) then

10 break
11 end
12 end
13 return ∆x,kGHM,kw̄

the abortion criterion of the algorithm has to be adapted: Now, all kw should be less or equal to
zero—and not greater or equal to zero as in Alg. 2 and Alg. 4.

It should be emphasized that this algorithm is to be seen as a kind of “inner loop” as all matrices
of constraints depend on the values of the current solution x(j) and the adjusted observations.
Therefore, they have to be recomputed every time Alg. 6 terminates. The “outer loop” is formalized
in Alg. 7.

One comment concerning the runtime of Alg. 6 might be in order: The computationally most
expensive operation in this algorithm is the solution of the system of linear equations (6.42). As
there are only small changes in this system in every iteration, it might be worthwhile to examine
its structure. In every iteration only the quantitiesW,w and w change and the upper left block of
the KKT matrix[

B
T
GHMΣBGHM A

AT 0

]
(6.46)
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Algorithm 7: WLS estimate in the Inequality Constrained Gauss-Helmert Model (ICGHM)

Data:
`[n×1] . . . Vector of observations
Σ[n×n] . . . VCV matrix of the observations
x

(0)
[m×1] . . . Feasible initial solution vector

Result:

x[m×1] . . . Vector containing the solution of the QP
kGHM[b×1] . . . Vector containing the Lagrange multipliers of the GHM inherent constraints
kw[pw̄×1]

. . . Vector containing the Lagrange multipliers of active additional constraints

1 `0 = `
2 for j = 1 : jmax do
3 ∆` = `− `0

4 ∆x = 0 // ensure feasibility of the starting point
5 A = assembleDesignmatrix(`0,x0)

6 [B, b,B,b,BGHM] = assembleConstraints(`0,x0) // cf. (6.5), (6.6) and (6.15)
7 w0 = computeMisclosure(`0,x0)

8 w =B
T
GHM∆`+w0

9 [∆x,kGHM,kw] = ActiveSetAlgoForGhm(B, b,B,b,BGHM,w,Σ,∆x) // cf. Alg. 6
10 x0 = x0 + ∆x

11 v = ΣBGHMkGHM // cf. Sect. 2.2.3.1
12 `0 = `+ v
13 if max |∆x| < ε then
14 break
15 end
16 end
17 return x0,kGHM,kw̄

stays constant. Furthermore, interim values for the Lagrange multipliers kGHM of the GHM inherent
constraint are not required for further computations. Thus, there is a huge potential to optimize
the solution strategy.

One could e.g., use an LU decomposition and precompute the reduction of the constant block (6.46)
or use the Gauss-Jordan algorithm (cf. Sect. 2.1.3.1) for this task, which leads to the Schur form.
This precomputation only has to be computed once and can then be used in every iteration yielding
a system that is already partly reduced. Furthermore, it is not necessary to completely reduce
the system, as the values of the kGHM only have to be computed explicitly when the algorithm
terminates. As the focus of this chapter is on the methodologic development, these thoughts on
improvements of the run-time behavior are mentioned only briefly and not explained in detail.

6.2.3 Comparison of Both ICGHM Reformulations

A comparison of the two ICGHM reformulations presented in Sect. 6.2.1 and Sect. 6.2.2, respec-
tively is provided in Table 6.1. In summary—due to the faster and more stable computation—it
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Table 6.1: Advantages and drawbacks of two possible representations of the ICGHM: The formulation
as a standard quadratic program described in Sect. 6.2.1 and the formulation via a tailor-made approach
described in Sect. 6.2.2.

ICGHM . . . . . . as a standard QP . . . as a tailor-made approach

Constraints possible for x and l̃ only x
Required feasible initial values ∆x and v (difficult) only x
Use of standard solvers possible not possible
Numerics relatively unstable stable
Speed and memory requirem. large SLEs, slow smaller SLEs, faster

is recommendable to use the tailor-made approach, whenever possible. The requirements are that
there exist solely constraints for the parameters ∆x and—as a result of the tailored computation of
the search direction—that the use of a standard solver is not mandatory.

6.3 Example

In order to obtain results which can be validated, an example for the least-squares adjustment in
the GHM from Lenzmann and Lenzmann (2004) is used as proof of concept and one additional
inequality constraint is introduced. As the introduced constraint affects solely a parameter x, the
solution is computed using the tailor-made approach developed in Sect. 6.2.2.

Problem Description

A parabola through the origin of the coordinate system shall be estimated. The functional model
reads

yi = xt2i . (6.47)

The yi as well as the ti are observed and assumed to be independent and normally distributed, the
unknown parameter x is to be estimated. The observations read

t1 = 2.5, t2 = 4.0 (6.48)
y1 = 4.8, y2 = 5.0 (6.49)

and are combined to the vector of observations

` =


t1
t2
y1

y2

 =


2.5
4.0
4.8
5.0

 . (6.50)

It should be noted that the residuals in both the yi and the ti will be larger than usual in most
geodetic setups. Lenzmann and Lenzmann (2004) intentionally designed the example this way, to
point out the differences between a strict and an approximative linearization scheme.

Following (2.55) we reformulate the functional relationship into

gi(`, x) = yi − xt2i
!

= 0. (6.51)

The redundancy is one, as the functional relationship consists of two equations and one parameter
shall be estimated.
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Initialization (i = 0)

We use

z
(0)
0 =

[˜̀(0)

0

x
(0)
0

]
=

[
`

0.2

]
(6.52)

as initial values. The index in brackets is the number of the current iteration. Subsequently, the
following quantities can be derived:

The non-linearized misclosure

w0 = g(`, x)|`=`0,x=x0
=

[
y1 − x(0)

0 t21
y2 − x(0)

0 t22

]
=

[
3.55
1.80

]
, (6.53)

the matrix

B
T
GHM = ∇` g(`, x)|`=`0,x=x0

=

[∂g1

∂t1
∂g1

∂t2
∂g1

∂y1

∂g1

∂y2

∂g2

∂t1
∂g2

∂t2
∂g2

∂y1

∂g2

∂y2

]
(6.54a)

=

−2x
(0)
0 t1 0 1 0

0 −2x
(0)
0 t2 0 1

 =

[
−1 0 1 0

0 −1.6 0 1

]
(6.54b)

containing the GHM inherent constraint and the design matrix

A = ∇x g(`, x)|`=`0,x=x0
=

[∂g1

∂x
∂g2

∂x

]
=

[
−t21
−t22

]
=

[
−6.25
−16.00

]
. (6.55)

As in the first iteration the observations ` are identical to the computed observations `0, (2.59)
yields that the linearized and the non-linearized misclosures are the same

w = w0. (6.56)

Strictly speaking, the quantitiesw0,w,BGHM,A and all matrices and right-hand-sides of constraints
would need an iteration index, too. However, as their values change only in every outer iteration and
as we intend to focus on the inner iterations (i.e., the adjusted active-set method), these indices
were neglected. However, the matrices and vectors of the active and inactive sets of constraints
W

(i)
,w(i),V (i) and v(i) have an iteration index as their values and dimensions change during the

inner iterations. Lenzmann and Lenzmann (2004) showed that the minimization of the sum of
squared residuals in the unconstrained GHM yields the solution

x̃ = 0.46. (6.57)

Therefore, we chose to introduce the constraint

x(0) = x
(0)
0 + ∆x(0) ≤ 0.4 (6.58)

which implies[
1
]︸︷︷︸

BT

(x
(0)
0 + ∆x(0)) ≤

[
0.4
]︸ ︷︷ ︸

b(0)∗

(6.59)
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and thus

BT∆x(0) ≤ b∗ −BTx
(0)
0 = 0.2︸︷︷︸

b

. (6.60)

As we expect the reduced parameters to be small, in the initialization step

∆x(0) = 0 (6.61)

is assumed. As shown in line 1 of Alg. 6 as a first step the active set is computed. As the constraint
is not active in x(0)

0 the components of the active setW
(0)

andw(0) are empty and the set of inactive
constraints reads

V (0) =
[
1
]
, v(0) =

[
0.2
]
. (6.62)

First Iteration (i = 1)

As there are no active constraints, the KKT system (6.42) can be reduced to the form[
B
T
GHMQBGHM A(0)

AT 0

][
k

(1)

GHM
∆x(1)

]
=

[
−w(0)

0

]
(6.63a)

yielding 2.00 0.00 −6.25
0.00 3.56 −16.00
−6.25 −16.00 0.00


k̄

(1)
1,GHM

k̄
(1)
2,GHM
∆x(1)

 =

 −3.55
−1.80

0.00

 . (6.63b)

No standard deviations of the observations are given in Lenzmann and Lenzmann (2004), but they
are assumed to be independent and identically distributed. Therefore, instead of the VCV matrix
Σ the cofactor matrix Q = I was used. Solving (6.63) yieldsk̄

(1)
1,GHM

k̄
(1)
2,GHM
∆x(1)

 =

 −1.12
0.44
0.21

 . (6.64)

Computing the search direction p as stated in line 5 yields

p(1) = ∆x(1) −∆x(0) = 0.21. (6.65)

According to (3.54b) and line 7 this results in a maximal feasible step length of

q(1) =
v(0) − V (0)T∆x(1)

V (0)T p(1)
=

0.20− 0

0.21
= 0.95 (6.66)

and thus in the update (line 7)

∆x(1) = ∆x(0) + q(1)p(1) = 0 + 0.95 · 0.21 = 0.2. (6.67)

An update of the active set (line 8) yields empty matrices V (1) and v(1) and

W
(1)

=
[
1
]
, w(1) =

[
0.2
]
. (6.68)

As the Lagrange multipliers of the active constraintskw are not recomputed at this step (cf. Alg. 6),
the algorithm will not terminate, but start a new iteration.
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Second Iteration (i = 2)

This time, the KKT system (6.42) contains also the matrix of active constraints and therefore reads

B
T
GHMQBGHM A 0

AT 0 W
(1)

0 W
(1)T

0



k

(2)

GHM

∆x(2)

k
(2)

w

 =


−w

0

w(1)

 , (6.69a)

leading to


2.00 0.00 −6.25 0.00
0.00 3.56 −16.00 0.00
−6.25 −16.00 0.00 1.00

0.00 0.00 1.00 0.00



k̄

(2)
1,GHM

k̄
(2)
2,GHM
∆x(2)

k
(2)

w

 =


−3.55
−1.80

0.00
0.20

 . (6.69b)

Solving (6.69) yields
k̄

(2)
1,GHM

k̄
(2)
2,GHM
∆x(2)

k
(2)

w

 =


−1.15

0.39
0.20
−0.90

 . (6.70)
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Figure 6.1: Parabola example: Observations (black crosses) and parabolas and adjusted observations esti-
mated in the unconstrained GHM (blue curve and crosses, respectively) and the inequality constrained GHM
(red curve and crosses, respectively). It is clearly visible that the model (a parabola without translational
term) was chosen in a way that large residuals result.
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Computing the search direction p as stated in line 5 yields

p(2) = ∆x(2) −∆x(1) = 0. (6.71)

As a consequence, no step in any direction would be made in this iteration. As furthermore the
Lagrange multiplier of the only active inequality constraint k(2)

w
is negative, the algorithm terminates

(line 9–11 of Alg. 6) with the result

x̃ = x0 + ∆x = 0.2 + 0.2 = 0.4. (6.72)

Now the quantities w0,BGHM,A,w and all matrices and right-hand-sides of constraints which
depend on x̃ or ˜̀ are recomputed and the modified active-set method is started again (cf. Alg. 7).
However, the algorithm terminates after one iteration as the initial values are already optimal.
Hence, they are the solution of the original problem. The residuals read

v = QBGHMkGHM =


0.87
−0.40
−0.30

0.15

 (6.73)

and thus

˜̀= `+ v =


3.37
3.60
4.50
5.15

 (6.74)

follows. The observations (black crosses) as well as the parabolas and adjusted observations esti-
mated in the unconstrained GHM (blue curve and crosses, respectively) and the inequality con-
strained GHM (red curve and crosses, respectively) are depicted in Fig. 6.1.
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Part III

Simulation Studies
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7. Applications

In this chapter a variety of applications is described, in which the methodology developed in the
last chapters proves useful. This could either mean that an alternative to classic approaches is
shown (e.g., the Huber estimator with inequality constraints in Sect. 7.1.1) or that the proposed
solution provides more features than existing inequality constrained approaches (e.g., the stochastic
description of the Very Long Baseline Interferometry (VLBI) estimates in Sect. 7.2.2). In case we
have already published the example only a brief description is given and the reference to the original
article is provided. The aim is primarily to show that inequalities are relevant to numerous geodetic
applications.

The Huber estimator with inequality constraints was developed by Mangasarian and Musicant
(2000). In Sect. 7.1 their approach is reviewed and introduced to geodesy as an example for the robust
estimation with inequality constraints. Two applications for the stochastic framework provided in
Chap. 4 are described in Sect. 7.2: The estimation of the coefficients of a positive definite covariance
matrix and of the tropospheric zenith wet delay from VLBI observations.
Two examples for problems with rank-deficient systems (cf. Chap. 5) are given in Sect. 7.3: The
second order design of a geodetic network and an engineering problem in which strict welding
tolerances must not be exceeded.
An example for the use of an ICGHM (cf. Chap. 6) is provided in Sect. 7.4: Here, the vertical
height gradient of a planned street is to be estimated. As there are constraints (e.g., concerning the
maximal slope), inequalities come into play.

7.1 Robust Estimation with Inequality Constraints

In the following section, an ansatz from Mangasarian and Musicant (2000) is shown that allows
to reformulate the robust Huber estimator (cf. Sect. 2.3) as a QP in standard form. This has two
advantages:

1. Usually, the Iteratively Reweighted Least-Squares (IRLS) procedure is used to compute a
solution with the Huber estimator. However, Neitzel (2004, p. 64) showed (for the L1 case)
that this approach can sometimes lead to a wrong solution. If the Huber estimator is formulated
as a QP, any standard QP solver can be used instead of the IRLS approach.

2. It is possible to introduce equality and inequality constraints.

Linear Programs are probably the most prominent among all robust inequality constrained estima-
tors. However, as this thesis focuses on QPs instead of LPs, they will not be treated here. There
exists a rich literature on linear programming. Good starting points for the interested reader are the
fundamental works of Dantzig (1998) und Dantzig and Thapa (2003) for the Simplex approach for
LPs or e.g. Boyd and Vandenberghe (2004) for interior-point methods in LPs and general convex
programs.

7.1.1 Huber Estimator

In contrast to e.g., the Hampel estimator (cf. Sect. 2.3), the loss function of the Huber estimator

ρHuber(v) =

{
1
2v

2, |v| ≤ k
k|v| − 1

2k
2, |v| > k

(7.1)
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(identical to (2.87)) is convex. However, this composite function in only once continuously differ-
entiable. As the objective function of a QP has to be twice differentiable (cf. Sect. 2.1.2), it is not
straightforward to reformulate the Huber estimator as a QP in standard form. We will follow the
line of thought of Mangasarian and Musicant (2000) (and later Jabr (2005)) who reformulate the
loss function of the Huber estimator as a convex and twice differentiable function.

7.1.1.1 Expressing the Huber Estimator as Standard QP

Mangasarian and Musicant (2000) stated that the function

ρ(v) = min

{
f(v, y) =

1

2
y2 + k|v − y| : y ∈ IR

}
(7.2)

is equivalent to the loss function (7.1) of the Huber estimator. y is an additional optimization
variable. A proof of the statement is provided in Appendix A.3. The objective function (cf. Sect. 2.3)
corresponding to loss function (7.2) reads

min

{
φ(v,y) =

1

2
yTy + k||v − y||1 : v ∈ IRn,y ∈ IRn

}
. (7.3)

Expressing the residuals v as a function of the parameters x

v = Ax− `

leads to

min

{
φ(x,y) =

1

2
yTy + k||Ax− `− y||1 : x ∈ IRm,y ∈ IRn

}
. (7.4)

In a next step, the L1 norm part of the composite objective function (7.4) shall be expressed via side
conditions. Thus, an additional variable t ∈ IRn is introduced and a transformation of parameters
is performed, yielding the QP

Huber estimator as Quadratic Program

objective function: 1
2y

Ty + k 1T t . . .Min

constraints: Ax− `− y ≤ t
−Ax+ `+ y ≤ t

optim. variable: x ∈ IRm,y ∈ IRn, t ∈ IRn.

(7.5)

With the following substitutions

z =

xy
t

 , BT =

[
A −I −I
−A I −I

]
, b =

[
`
−`

]
(7.6)

the Huber estimator can be expressed as a QP in standard form

Huber estimator as QP in standard form

objective function: 1
2y

Ty + k 1T t . . .Min

constraints: BTz ≤ b

optim. variable: z =
[
xT yT tT

]T ∈ IRm+2n.

(7.7)
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Figure 7.1: Number of international phone calls (black crosses) from Belgium.

As a consequence, it is not only possible to use any QP solver for the estimation with the Huber
estimator, but also to apply additional equality and inequality constraints. Hitherto it is assumed
that the observations are independent and identically distributed. This is because in its current
state, the algorithm is only capable of dealing with uncorrelated observations and a decorrelation
in presence of outliers is not straightforward.

In the following section the reformulated Huber estimator is applied to a real data example.

7.1.1.2 Data

We will use a classic data set from robust statistics, provided e.g., by Rousseeuw and Leroy (2003,
p. 25–26). Plotted in Fig. 7.1 are the observed total number (in tens of millions) `i of international
phone calls from Belgium versus the year ti. Clearly, the observations from the years 1964 to 1969
do not match the rest of the data. Rousseeuw and Leroy (2003, p. 25–26) stated that the reason
is that in these years another recording system was used that counts the total number of minutes
instead of the total number of calls. However, if we want to estimate how the call characteristic
develops over time, we must either eliminate these values or use an estimator that is not too much
influenced by outliers—e.g., the Huber estimator described above.

We adjust a straight line to the data in a robust way yielding the functional model

`i + vi = x1ti + x2. (7.8)

The observables `1 . . . `n are assumed to be independent and identically distributed.

7.1.1.3 Results

Figure 7.2 shows the resulting straight lines from applying the L2 norm estimator (blue line), the
L1 norm estimator (green line) and the Huber estimator with k = 1.5 (orange line). The red line
shows the result of the Huber estimator with the additional constraint that the intercept is not
allowed to be less than −6. The additional constraint was introduced to illustrate the capability of
the reformulated Huber estimator to incorporate additional side conditions.
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Figure 7.2: Number of international phone calls (black crosses) from Belgium and the lines of best fit,
estimated with the L2 norm estimator (blue line), the L1 norm estimator (green line) and the Huber estimator
(orange line). The red line shows the result of the Huber estimator with the additional constraint that the
intercept is not allowed to be less than −6.

7.2 Stochastic Description of the Results

7.2.1 Estimation of a Positive Definite Covariance Function

This section contains a modified version of the application described in the article A stochastic
framework for inequality constrained estimation (Roese-Koerner et al., 2012).

The 2D example with dependent and independent constraints described in Sect. 4.5 showed the
utility of the stochastic framework developed here. In order to demonstrate the usefulness of the
stochastic framework in a more realistic scenario, a multi-dimensional example is chosen. Also, in
the multivariate case the importance and benefits of sensitivity analysis becomes more explicit.

7.2.1.1 Data

The multi-dimensional example that will be used here is that of fitting a positive cosine expansion
to a set of observations (cf. Figure 7.3). The maximum degree of the cosine expansion is m = 9, and
since it is a positive cosine expansion, the coefficients of the expansion must be positive, which will
be guaranteed by the independent inequality constraints enforced on the parameters. Therefore, the
observation equation of our model for the i-th observation and the parametric constraints read

`i + vi =
x0

2
+ x1 cos 1ωti + . . .+ xm cosmωti, (7.9a)

xj ≥ 0, j ∈ [0 m], (7.9b)

with the period T = 1 and the angular frequency ω = 2π
T . The n = 50 supporting points ti are

equally spaced in the interval [0 0.5). The m+ 1 = 10 unknown parameters are denoted x0 . . . xm.
In matrix form the above equations read

`+ v = Ax, (7.9c)
x ≥ 0. (7.9d)
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Again, the true observations were corrupted by a vector of white noise: E ∼ N(0, I). There will be
small correlations between some of the estimated parameters as we have not sampled a complete
period. Supporting points ti and the original observations `i are listed in Tab. A.1 in Appendix A.4.
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Figure 7.3: Observations (gray dots) and the WLS (gray line) and ICLS (black line) fits to the observations
of the positive cosine function estimation problem. Figure taken from Roese-Koerner et al. (2012).

7.2.1.2 Results

The results from the unconstrained estimation show that there are three parameters (x3, x4 andx7)
that have negative values. As a consequence of the introduction of the constraints and the application
of the stochastic framework described in Alg. 3, these three parameters take the value of zero in
the ICLS estimate (cf. Table 7.1, left-hand-side table). The estimates of these parameters have been
moved to the boundary not just by the respective independent constraints but also by the other
active constraints. Again, this is due to the correlation between the parameters, as encountered in
the 2D case (cf. (4.25)).

Furthermore, the largest Lagrange multiplier is that of k̃7, and the corresponding absolute change
∆x7 to the parameter x7 is the largest as well, which is again explained by (4.25). Figure 7.4 shows
the range of joint and marginal PDFs that can be expected from a multi-dimensional estimation
problem. At least one constraint was active in every estimate. Thus, the probability mass in the
infeasible area (cf. Sect. 4.3.2) is d = 100%. However, the Wald test (cf. Sect.4.3.1) yields a test
statistic of 1.98, which is less than the critical value of 2.08. This is much closer to the critical value
in comparison to the previous examples in Sect. 4.5. However, the data still supports the constraints.

Although the method is based on the empirical Monte Carlo approach, substantial quality informa-
tion can already be obtained from the quadratic programming algorithms themselves. For example,
the Lagrange multipliers can be used to carry out a sensitivity analysis, which clearly demarcates
the active and inactive constraints and their respective contributions to the perturbation of all the
parameters.
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Figure 7.4: Probability density functions (joint and marginal) of the positive cosine function estima-
tion problem after 1 000 000 Monte Carlo iterations. Three different pairs of joint PDFs are shown:
x3 & x4, x4 & x1 and x1 & x8. The contour lines are from the WLS estimate and the dotted lines are the
constraints. These pairs show the range of joint PDFs that can be expected from a multi-dimensional esti-
mation problem. While some joint PDFs are entirely in the feasible region, some of them are either partly or
entirely in the infeasible region. Due to the negligible correlation between the parameters, all the WLS joint
PDFs are nearly circular. Figure taken from Roese-Koerner et al. (2012).
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Table 7.1: Results from the ICLS estimation and sensitivity analysis for fitting a positive cosine function.
The table on the left shows the estimates from WLS (x̂) and ICLS (x̃), and the table on the right shows the
sensitivity analysis based on the Lagrange multipliers (k̃). Sensitivity analysis is only shown for the active
constraints as the contributions from inactive constraints (k̃0, k̃1, k̃2, k̃5, k̃6, k̃8 and k̃9) are always zero. In
all estimates at least one constraint is active (d = 100%). Nonetheless, the Wald test yields a test statistic
of 1.98, which is less than the critical value of 2.08. Table taken from Roese-Koerner et al. (2012).

x̂ x̃

x0 2.318 2.274
x1 0.785 0.785
x2 2.095 2.073
x3 −0.195 0
x4 −0.070 0
x5 0.637 0.637
x6 0.443 0.421
x7 −0.362 0
x8 1.350 1.328
x9 1.039 1.039

k̃3 = 38.959 k̃4 = 18.534 k̃7 = 72.252 ∆x

∆x0 −0.016 0.002 −0.030 −0.044
∆x1 0.001 −0.004 0.003 0
∆x2 −0.008 0.001 −0.015 −0.022
∆x3 0.196 −0.004 0.003 0.195
∆x4 −0.008 0.093 −0.015 0.070
∆x5 0.001 −0.004 0.003 0
∆x6 −0.008 0.001 −0.015 −0.022
∆x7 0.002 −0.004 0.364 0.362
∆x8 −0.008 0.001 −0.015 −0.022
∆x9 0.001 −0.004 0.003 0

ICLS estimates : d = 100%, Wald test: 1.98 < 2.08

7.2.2 Constraints on the Tropospheric Delay in a VLBI Setting

This example was already published in the article Improved Parameter Estimation of Zenith Wet
Delay Using an Inequality Constrained Least Squares Method (Halsig et al., 2015).

It is crucial for space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or
VLBI, to model the path of the signal through the atmosphere as precisely as possible. Due to
refractivity variations in the neutral atmosphere, the signal is delayed. It is of particular importance
to account for the influence of the lower part of the atmosphere—the troposphere—which otherwise
would be a main error source. This total Slant Troposphere Delay (STD) can be subdivided into
two parts: a hydrostatic component and a wet component. These components can be further split
up into the product of a specific mapping function mfh(e) and mfw(e), respectively, and the Zenith
Hydrostatic Delay (ZHD) and the Zenith Wet Delay (ZWD), respectively, yielding

STD = mfh(e) ZHD +mfw(e) ZWD. (7.10)

Both mapping functions depend on the elevation angle e. While the ZHD is usually modeled using
its relationship to surface air pressure, the ZWD is often estimated in the VLBI analysis. This is
because it strongly depends on the water vapor content in the atmosphere, which is subject to high
variations. It sometimes occurs in the adjustment process that negative ZWD values are estimated.
From a physical point of view those negative values are not possible as that would imply negative
water vapor values, too. This phenomenon occurs most often at stations in cold regions. Here, one
would expect small positive ZWD values as there is not much water vapor at temperatures below
0 ◦C. If we assume that these implausible ZWD values occur because unmodeled non-tropospheric
effects are absorbed by the ZWDs (Halsig et al., 2015), it should be possible to improve the estimation
results by introducing non-negativity constraints to the ZWDs. As there are correlations between
ZWDs and the target parameters of a VLBI adjustment (e.g., terrestrial positions of the stations or
Earth orientation parameters) those will be affected, too.
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7.2.2.1 Data

We use 2333 VLBI databases from 1993 to 2010 provided by the International VLBI Service for
Geodesy and Astrometry (IVS). A classic VLBI parameterization was used: The positions of the
radio sources were fixed and terrestrial positions, Earth orientation parameters, clock behavior and
tropospheric delays are estimated. More details on the parameterization and the models used are
provided in Halsig et al. (2015). The only inequality constraints that were introduced are non-
negativity restrictions for the ZWDs.

7.2.2.2 Results

Global Results. In 454 of the 2333 databases at least one constraint was active, meaning that the
occurrence of at least one negative ZWD value was prevented. As a measure for the improvement
through the inequalities, the baseline repeatabilities were computed. Thus, a linear trend was fitted
to all repeated measurements of one baseline, as a linear behavior of the station coordinates in
time is expected. The resulting Root Mean Square (RMS) of the computation for each baseline
that is measured at least 30 times is shown in Fig. 7.5(a). Results from the solution with inequality
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(a) Repeatabilities for all baselines that are measured
at least 30 times.
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(b) Repeatabilities for baselines from sessions with at
least one active constraint.

Figure 7.5: Baseline repeatabilities of an OLS (gray asterisks) and an ICLS (black dots) estimate. Figures
taken from Halsig et al. (2015).

constraints (ICLS) are shown as black dots. Results from an unconstrained estimate (OLS, gray
asterisks) are shown for comparison. A quadratic polynomial was fitted to the data and is represented
as a solid line (ICLS) and a dashed line (OLS), respectively. As only about 20% of the sessions
were affected by the constraints, we show in Fig. 7.5(b) the results for the baselines of sessions with
at least one active constraint. Here, it can be seen that the trend of the ICLS estimates increases
slightly less than that of the OLS estimates.

For a better comparison the differences between the OLS and the ICLS solution are depicted in
Fig. 7.6. While the RMS of 9% of the baselines could be improved through the non-negativity
constraints for at least 1mm (black bars), 90% remain unchanged (light gray bars) and 1% worsened
(dark gray bars).

Station Specific Results. Negative ZWD values were often estimated in cold regions as the true
value would be close to zero. Thus, we chose the station in Ny Ålesund (Spitzsbergen, Norway,
17.01.02) to demonstrate the effect of the new constraints. The OLS (gray asterisks) and ICLS
(black dots) ZWD estimates and their corresponding HPD intervals (cf. Sect. 4.2.3) are depicted in
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Figure 7.6: Differences between the OLS and the ICLS solution. Figure taken from Halsig et al. (2015).
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Figure 7.7: OLS (gray asterisks) and ICLS (black dots) ZWD estimates from Ny Ålesund and their corre-
sponding HPD intervals. Figure taken from Halsig et al. (2015).
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(a) Ny Ålesund: ZWD differences. Black bars indicate active constraints.
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ences due to constraints on the
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(c) Wettzell: ZWD differences due to constraints in Ny Ålesund.

Figure 7.8: Differences between the OLS and the ICLS estimates. Note the different scales of the bar plots.
Figures taken from Halsig et al. (2015).

Fig. 7.7. Due to the positive correlations between the ZWDs, not only the values of the negative
ZWDs change, but also the values of all other ZWDs increase. The difference of both estimates
is depicted in Fig. 7.8(a). A black bar indicates that the corresponding non-negativity constraint
becomes active.

The same influence can be seen in the station coordinates of Ny Ålesund shown in Fig. 7.8(b). Here,
the largest influence was measured in the vertical station component. It should be noted that there is
an effect on the parameters of the other stations, too. However, an evaluation of this effect through a
sensitivity analysis (cf. Sect. 4.3.3) shows that it is much smaller than the effect on the “constrained
station” itself. For example, the influence of the constraints on the ZWDs at Ny Ålesund on the
ZWDs estimated at the station in Wettzell (Bavarian Forest, Germany) is depicted in Fig. 7.8(c).

Due to the results shown above, it seems promising to use inequality constraints to model physical
boundaries in the VLBI adjustment. However, the constraints have to be carefully applied and—up
to now—are not used in operational VLBI analysis. This is because it is not always possible to ade-
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quately model the ZHD component (e.g. because of incomplete pressure data). In an unconstrained
estimate, the influence of mis-modeled ZHDs is absorbed in the corresponding ZWDs. This would
not necessarily be possible for the ICLS estimate. Thus, the inequalities should only be applied, if
it is guaranteed that the ZHDs are modeled with sufficient precision.

7.3 Applications with Rank-Deficient Systems

7.3.1 Second Order Design (SOD) of a Geodetic Network

This section contains a modified version of the application described in the article Convex optimiza-
tion under inequality constraints in rank-deficient systems (Roese-Koerner and Schuh, 2014).

The design of a geodetic network is a classic optimization task in geodesy, which received a lot
of attention in the past (cf. Grafarend and Sansò, 1985) and still is a topic of ongoing research
(cf. Dalmolin and Oliveira, 2011, Doma and Sedeek, 2014). We focused on the SOD of a direction
and distance network as there it is most likely for a rank defect to appear. However, the same
methodology can be applied for the SOD of a GNSS network, too. See e.g., Yetkin et al. (2011),
Doma (2013) or Mehrabi and Voosoghi (2014) for approaches to determine an optimal set of GPS
baselines in an horizontal network.

7.3.1.1 Problem Description

Aim of the SOD of an existing geodetic direction and/or distance network is to determine optimal
observation weights pi in order to develop an observation plan that fulfills some predefined optimality
criteria. Usually, one tries to design a network in a way that the estimated coordinates are of a
similar accuracy and have only small correlations. Variances and covariances can be described via
the cofactor matrixQ{X̃} of the estimated parameters. Therefore, a link to the matrix of observation
weights P can be established as

ATPA = Q{X̃}−1. (7.11)

Q{X̃} can be replaced by a target cofactor matrix. This criterion matrix Qx contains the specifi-
cation of an optimal cofactor matrix (e.g., uncorrelatedness and similar variances) which serve as
observations. Classic choices for the criterion matrix are either an identity matrix or a matrix of
Taylor-Karman type (cf. Grafarend and Schaffrin, 1979). Using the Khatri-Rao product � (7.11)
can be rewritten in matrix vector notation

(AT �AT )p
!

= qinv. (7.12)

The vectors p and qinv contain the entries of P and Q−1
x , respectively. Using the substitutions

M := AT �AT , (7.13)

the L2-norm objective function can be formulated as

Φ(p) =
(
(AT �AT )p− qinv

)T (
(AT �AT )p− qinv

)
(7.14a)

= (Mp− qinv)T (Mp− qinv) . (7.14b)

Qx is a symmetric m×m matrix and all m(m+1)
2 elements of its upper right triangle can be used as

observations. If the number n of weights pi that should be determined is less or equal to this length
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of qinv, the weights can be estimated using a standard GMM. However, in practice it often occurs
that there are more weights to be estimated than entries of the criterion matrix given. Especially, if
we have to deal with small networks or with larger networks with many fixed coordinates. In these
cases, the system is underdetermined resulting in a rank-deficient normal equation matrix.

There is a direct relationship between repetition number ni and the corresponding weight

pi = ni
σ2

0

σ2
`i

. (7.15)

σ2
0 is the variance factor and σ2

`i
the variance of observation `i. As negative or huge repetition

numbers cannot be realized, box constraints are applied to the weights to ensure that they are
nonnegative

pi ≥ 0 (7.16)

and do not exceed a certain maximal repetition number

pi ≤ nmax
σ2

0

σ2
`i

. (7.17)

In matrix-vector notation, the constraints read

−Ip ≤ 0, (7.18a)
diag (Σ)p ≤ nmaxσ01n. (7.18b)

The operator diag (Σ) extracts all diagonal elements of the matrix Σ and preserves its original
dimension. 1n is a vector of length n that contains only Ones. The corresponding optimization
problem reads

Example: Second Order Design

objective function: (Mp− qinv)T (Mp− qinv) . . .Min

constraints:
[

−I
diag (Σ)

]
p ≤

[
0

nmaxσ01n

]
optim. variable: p ∈ IRn.

Naturally, computation of individual weights for each observation does not yield a final result of the
network optimization process. This is, because it is not viable in practice to measure some directions
from one standpoint more often than others. Therefore, the estimation of individual weights usually
presents the first step of a three step approach. In a second step, measurements with little impact
are identified and eliminated. Finally, in the third step, group weights—e.g., for all observations
from one standpoint—are estimated (cf. Müller, 1985). However, we focused on the first step only,
because it is most likely for a rank defect to appear there.

7.3.1.2 Data

We have applied the framework described in Sect. 5.4 to determine optimal weights for a horizon-
tal network located in the “Messdorfer Feld” in Bonn. The network consists of three fixed datum
points (black triangles) and eight new points (black dots), whose coordinates are to be estimated
(cf. Fig. 7.9). All points are located within sight distance from each other, so that directions and
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Figure 7.9: SOD of a geodetic network with 3 fixed points (black triangles) and 8 new points (black dots).
Distance measurements are shown as solid lines and direction measurements as dashed lines. Green ellipses
depict the optimal error ellipses which are approximated by the red ones. Figure taken from Roese-Koerner
and Schuh (2014).

distances between all pairs of points could be measured theoretically. A criterion matrix of Taylor-
Karman type (cf. Grafarend and Schaffrin, 1979) is chosen, resulting in the target error ellipses
plotted in green. The dimensions of the network lead to 16(16+1)

2 = 136 entries of the criterion ma-
trix, which serve as observations, and to 162 weights to be estimated, resulting from the 162 possible
direction or distance measurements. A tachymeter with an accuracy of

σdir = 0.4mgon, (7.19)
σdist = 1mm + 1 ppm (7.20)

shall be used. σdir is the assumed accuracy of a direction measurement and σdist the assumed
accuracy of a distance measurement.

7.3.1.3 Results

The network shown in Fig. 7.9 has been designed using the quantities stated above, assuming an
arbitrarily chosen maximum repetition number of 50 and applying the presented framework. Since
this approach approximates the inverse of the criterion matrix instead of the criterion matrix itself,
a factor was computed and used to rescale p to prevent over-optimization (proposed in Müller,
1985). The red error ellipses indicate values of the resulting cofactor matrix Q{X̃}.

As a result of the optimization procedure a total of 146 measurements should be performed (118 di-
rection measurements, dashed lines, and 28 distance measurements, solid lines). No measurement
should be repeated more than 5 times. Furthermore, the introduction of inequalities resolves the
rank defect resulting in a unique solution. As expected, the resulting error ellipses of points in the
center of the network are more circle-like than those of the points on the borders.
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Figure 7.10: Distance measurements (black lines) are performed between points P1 to P10 (black dots). A
particular OLS solution (blue diamonds) and the ICLS solution (red circles) with maximal minimal distance
to the constraints are shown. Figure taken from Roese-Koerner and Schuh (2015).

7.3.2 Strict Welding Tolerances in a Rank-Deficient Network

This section contains a modified version of the application described in the article Effects of differ-
ent objective functions in inequality constrained and rank-deficient least-squares problems (Roese-
Koerner and Schuh, 2015).

7.3.2.1 Problem Description

This case study is based on an engineering problem. We assume that some prefabricated building
material shall be fitted between other elements so that the parts can be welded together. In order
to make welding possible, tolerances have to be fulfilled strictly.

Figure 7.10 depicts the test case. 26 distance measurements (black lines) are performed between
the ten points P1 to P10 (black dots). Their 20 coordinates are the parameters to be estimated in
a GMM. As no datum is defined, estimating absolute values of the coordinates is a rank-deficient
problem.

7.3.2.2 Data

Points P3 to P6 are located at the left-hand side of the gap the new part is supposed to fill, and
the points P7 to P10 are located on its right-hand side. P1 and P2 are external points to stabilize
the network. It shall be determined if the new part fits between both lines of points. This can be
achieved by setting up the 16 linear constraints

y7,8,9,10 − y3,4,5,6 ≤ 5.03m (7.21)
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and the 16 linear constraints

y7,8,9,10 − y3,4,5,6 ≥ 5.00m, (7.22)

resulting in a rank-deficient ICLS problem in form of (3.8). While the first constraints guarantee
that the new part is not allowed to be wider than 5.03m, the latter ensure that it is not smaller
than 5.00m (otherwise the gap would be too large for welding). The constraints force the estimated
points to align almost parallel to the x axis (cf. red circles in Fig. 7.10). If more than two of the
32 constraints mentioned above are active, the new part will not meet the tolerances. Incompatible
elements can be detected via an analysis of the Lagrange multipliers (cf. Sect. 4.3.3).

If the manifold is not resolved through the introduction of constraints, a nullspace optimization has
to be performed. This can be used to maximize the minimal distance to the constraints

ΦL∞
NS =||BTx(λ)− b||∞ . . .max . (7.23)

Using the Chebyshev norm is always beneficial if tolerances instead of standard deviations are given.

7.3.2.3 Results

The optimization problem was solved using the CVX software (Grant and Boyd, 2014). Results are
shown in Fig. 7.10. In the chosen scenario, no constraint is active. Therefore, the new part will fit
in the gap and welding is possible.

Figure 7.11 shows the welding boundary for the existing parts (gray area), the new part (black area)
and the “gaps” at its left-hand (Fig. 7.11(a)) and right-hand (Fig. 7.11(b)) side. Note the different
scales in x and y direction and the breach in the y axis. Adjusted coordinates of the ICLS estimate
with ΦL∞

NS (red circles) are compared with those of an ICLS estimate with

ΦL2
NS = ||x||2 . . .min (7.24)

as the nullspace objective function (blue circles).

While both estimates provide a decision if the new part will fit, only the adjustment with maximal
minimal distance to the constraints allows us to determine how well the new part will fit. This
can be seen in Fig. 7.11, where for this estimate the minimal distance to the constraints is at least
2.5mm at each side (namely for the points 5, 6, 8 and 10). In contrast, the blue points 3 and 10 are
exactly on the boundary. So there is clearly a benefit in choosing a suited objective function for the
nullspace optimization.

7.4 The Gauss-Helmert Model with Inequalities

In the following section the design of the profile (i.e. the vertical aspect) of a road is examined.
We will see that uncertainties exist in the horizontal as well as in the vertical data, and that
explicit relationships between the observations have to be handled. Thus, the Gauss-Helmert model
proves useful. During the design, driving dynamics should be considered which could be done by
adding additional inequality constraints concerning the maximal feasible slope or its change. Some
references for the geometric design of railroads and roads and the role of the ICGHM therein are
provided in the next section. However, one could easily imagine applications in other areas that call
for the use of the ICGHM.
In cartographic generalization for example, the position of labeling elements (e.g., a text box with
the name of a city) should be optimized in a way that it is close to the corresponding map element,
but does not hide other important information. This could be parameterized using the ICGHM.
Another example would be the design of switches in rail stations. In order to optimize the maximum
speed, the switch should be designed in a way that only minimal differences in curvature appear.
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Figure 7.11: Boundary for the existing parts (gray area), the new part (black area) and the “gaps” at the
left-hand ( a) and right-hand (b) side of the new part. The axes are scaled differently and there is a breach in
the y axis, so most of the new part is not shown. Adjusted coordinates of the above mentioned ICLS estimate
with maximal minimal distance to the constraints (red circles) are compared with those of an ICLS estimate
with ΦL2

NS as nullspace objective function (blue circles). Figures taken from Roese-Koerner and Schuh (2015)

7.4.1 Optimal Design of a Vertical Road Profile

Although a few three dimensional approaches exist (cf. Kang et al., 2012, Kühn, 2013), up to now
the design process of a road is usually split up in three different steps: The design of horizontal
alignment, vertical profile und cross section (Vitkiene and Puodziukas, 2014).

First, the horizontal alignment (i.e. the “route of the road”) is designed (Koch, 1976). This is mainly
due to the fact that many external forces such as land use, environment, preservation of historical
and cultural values (Vitkiene and Puodziukas, 2014) limit the freedom of the designer in this step.
Afterwards the vertical profile is designed. The main aspects of consideration here are the fit to the
topography, safety of the road users and driving dynamic considerations such as average speed and
the minimization of sudden slope changes (“ruptures”). As a last step, the cross section is designed
according to the estimated number of vehicles that will use this road.

In this section we will focus on the second design step: defining the vertical road profile. Thus, we
assume that the first design step is already completed and the horizontal alignment of the road is
known. This enables us to sample discrete height values along the route of the road (cf. Fig. 7.12)
from a Digital Elevation Model (DEM).

Especially in mountainous regions, the earthwork cost can account for up to 80% of the total
building cost of the road (Kang et al., 2012). Thus, the task is to find the road profile that is
optimal in the sense that the differences between the road and the surface of the Earth are minimal.
As we assume uncertainties in the vertical as well as in the horizontal component, deviations in
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Figure 7.12: Heights h along the route of the road. The transition points of the horizontal road design are
shown as vertical lines. Figure modified from Pietzsch (1989, p. 169).

both quantities should be minimized. The German road design standard “Richtlinien für die Anlage
von Landstraßen” (RAL, 2012, p. 39) mentions two standard elements that should be used to
parameterize the vertical component of a road:

1. Straight lines

2. Arcs to round crests and sags at the transition point of two straight lines (cf. Sect. 7.4.1.1).

The road can then be seen as a piecewise assembled function of these standard elements. Further-
more, several constraints are mentioned in the RAL (2012, p. 20), which have to be met. Their
values depend on the average travel speed the road shall be designed for. In this simplified example,
we will only introduce two of them and choose to design a road for an average speed of 110 km/h
(“Kraftfahrstraße, Entwurfsklasse 1” RAL, 2012, p. 20). Thus, the maximal feasible slope is 4.5%,
the minimal feasible radius of a crest is 8 km, and the minimal feasible radius of a sag is 4 km.

In many textbooks the design is not performed as an adjustment but by simply taking into account
the height at as many points as needed to assemble a uniquely defined system (e.g., Pietzsch, 1989,
p. 169–170). However, with the ICGHM it is possible to address this task as an adjustment problem
resulting in an optimal surface fit.

7.4.1.1 Elements of a Vertical Road Profile

According to RAL (2012, p. 40) the three-dimensional course of the street is essential for driving
safety and driving dynamics. To design a road that is as safe and comfortable as possible, the
transition points of the vertical design elements should be identical or close to identical to the
transition points of the horizontal design. In Fig. 7.12 the transition points of the horizontal road
design are shown as vertical lines. Several exceptions and additional design rules are stated in RAL
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(2012, p. 40–46). As the idea of this section is simply to show that the ICGHM can be a useful tool
for road design and not to design an actual road, we will not pursue them further.

As mentioned in the last section, according to RAL (2012, p.39) the following two design elements
should be used to define the vertical profile:

Straight Line. A straight line can for example be parameterized as

hi = hA +
a

100
(si − sA). (7.25)

The height hi is given in meter and measured at distance si from the beginning of the road. The
point A(sA, hA) is the starting point of the line segment. a is the slope of the road given in percentage
(as it is usual in road design).

Convex Transition Between Gradients. In order to round out the transition points of two
straight lines, a segment of a circle would seem appropriate. However, as the minimal radius of such
a circle is constrained to be at least several thousand meters (depending on the planned average
speed), the RAL (2012, p. 94) states that a polynomial of degree two

hi = hA +
a1

100
(si − sA) +

(si − sA)2

2r
(7.26)

is a sufficient approximation of a circle. a1 is the slope of the line on the left side of the polynomial.
r is the approximated vertical curve radius (computed as radius of curvature in the peak of the
polynomial). In case of a crest—i.e. the straight line on the left has a positive slope a1 and the
straight line on the right has a negative slope a2—the radius r is positive. In case of a sag—i.e. the
straight line on the left has a negative slope a1 and the straight line on the right has a positive slope
a2—the radius r is negative.

7.4.1.2 Data

The vertical profile of the road should be designed in a way that it is as close as possible to the
topography depicted in Fig. 7.12 (modified from Pietzsch, 1989, p. 169–170). As it is assumed that
measurements are given at all break points (black circles), the points are connected by a dashed line
to give a rough impression of the terrain. Due to the shape of the landscape we decided to use the
following element sequence:

straight line 1 – crest – straight line 2 – sag – straight line 3.

The transition points of the vertical elements should be close to those of the horizontal elements,
cf. Sect. 7.4.1.1. As we aim to design a road for an average speed of 110 km/h, according to RAL
(2012, p. 20), the following constraints have to be met:

Maximal feasible slope: −4.5% ≤ ai ≤ 4.5%,
Minimal feasible radius of a crest: rc ≥ 8 km,
Minimal feasible radius of a sag: rs ≥ 4 km.
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Figure 7.13: Optimal vertical gradient of the road. The adjusted observations from the ICGHM adjustment
are shown as blue diamonds and the corresponding vertical profile of the road is depicted as blue line. The
transition points of the horizontal road design are shown as vertical lines. The adjusted observations from
an unconstrained GHM are shown for comparison (red circles).

7.4.1.3 Results

With the data shown in the last sections two adjustments were performed: An unconstrained GHM
estimate and an ICGHM estimate, in which the constraints mentioned in Sect. 7.4.1.2 were incor-
porated. The observed heights hi and distances si are assumed to be uncorrelated and given with a
variance of σHi = 0.1m and σSi = 1m, respectively. The results of the unconstrained GHM estimate
read

aGHM
1 = 4.50 %, aGHM

2 = −1.83 %, aGHM
3 = 5.40 %, rGHM

c = −11 km, rGHM
s = 10 km

and are depicted in Fig. 7.13 as red circles. Clearly the slope aGHM
3 violates the constraint of a

maximal slope of 4.5%. The results of the ICGHM estimate read

aICGHM
1 = 4.47 %, aICGHM

2 = −1.94 %, aICGHM
3 = 4.50 %, rICGHM

c = −12 km, rICGHM
s = 8 km

and are depicted in Fig. 7.13 as blue diamonds. The corresponding vertical profile of the road is
depicted as a blue line. These are the results with the smallest value of the objective function that
fulfill all design constraints.

Obviously for the design of an actual road, this result would only be a first step. In a next step an
examination of the line of sight of the drivers would be performed as well as a test for certain design
deficits mentioned in RAL (2012, p. 41–46). This could lead to the redesign of the horizontal and
vertical alignments. Furthermore, the designer has to check, if the fit to the topography is sufficient
enough or if the constraints should be relaxed—which is only possible in exceptional and justified
cases (RAL, 2012, p. 39). A sensitivity analysis as described in Sect. 4.3.3 could be helpful here, to
identify those constraints that distort the result most. In addition, one can think of several further
constraints such as fixed points in the horizontal and vertical profiles (e.g. fixed transition points
to other road segments, tunnel or bridges) that could easily be incorporated using the proposed
approach.
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8. Conclusion and Outlook

8.1 Conclusion

Within this thesis concepts from the field of convex optimization were derived and analogies to
adjustment theory were pointed out. Furthermore, three major obstacles to the use of inequality
constrained estimation approaches in geodesy were identified, possible solutions were proposed, and
simulation studies were carried out to verify the approaches.

A stochastic framework for inequality constrained estimates was developed in Chap. 4. The
MC-QP method allows for the computation of the empirical PDF of a constrained estimate using
a Monte Carlo approach. Furthermore, possibly truncated confidence regions were computed. As a
result of the projection of the probability mass in the infeasible region onto the boundary of the
feasible set, the resulting confidence regions are usually more compact than those from the uncon-
strained estimate or from the Bayesian method of Zhu et al. (2005).
Thus, the major drawbacks of existing methods for the quality description of inequality constrained
estimates are overcome: Our proposed framework is more robust to changes in the set of active
constraints than the active-constraints approach of Liew (1976) and yields a more realistic PDF
than the Bayesian method of Zhu et al. (2005) as also the information from the probability mass in
the infeasible region is used. Furthermore, the empirical PDF inside the feasible region is identical
to that of the unconstrained estimate and changes solely appear at its boundary.
Besides the actual quality description the framework provides us with the opportunity to analyse
the constraints. On a global scale we suggested to examine if the data support the constraints by
using a Wald test and provide a measure for the probability mass in the infeasible region which
could be helpful to evaluate the influence of the constraints in general. On a local scale a sensitivity
analysis can be performed using the Lagrange multipliers to describe the individual influence of
each constraint on each parameter.
One limitation of the MC-QP method is that applying a Monte Carlo method remains a computa-
tionally demanding task.

A framework to treat rank-deficient least-squares problems with inequality constraints
was proposed in Chap. 5. This includes an extension of the binding-direction primal active-set
method (along the line of thought of Wong, 2011) that allows us to compute one particular solution
despite a possible rank defect.
Furthermore, the rigorous computation of a general solution was discussed. If the solution manifold
and the feasible region intersect, the proposed framework enables us to obtain a unique particular
solution with certain predefined optimality criteria. Possible choices include a solution vector that
has the shortest length of a all vectors in the solution manifold, or a solution in which the minimal
distance to the constraints is maximized. While the former can be seen as a kind of Moore-Penrose
inverse that takes the inequalities into account, the latter can be helpful to obtain a buffer to the
constraints. As this optimization is performed in the nullspace of the design matrix, the value of
the original objective function will not change. Thus, a solution with certain specific characteristics
can be derived without sacrificing optimization quality.
The direct computation of a particular solution of the original ICLS problem is avoided (if possible)
to reduce the computational complexity. Instead, the original problem is split up into three subparts:
An unconstrained adjustment in the original parameter space, and a feasibility and an optimization
problem, both in a vector space of lower dimensions. As a consequence, the proposed framework
is not limited to small-scale problems as the projector theoretical approach of Werner and Yapar
(1996).
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In addition, a homogeneous solution can be computed and the constraints are reformulated with
respect to the free parameters, which allows us to examine the influence of the constraints on the
homogeneous solution.

The Gauss-Helmert model with inequality constraints was treated in Chap. 6. A straight-
forward way to reformulate the ICGHM as a quadratic program in standard form was provided.
However, we found that this produces a large computational overhead and therefore proposed a
tailor-made reformulation which exploits the special structure of the GHM. As a consequence of the
reformulation it is no longer possible to use standard QP solvers. Consequently, we derived the KKT
optimality conditions for the modified problem and adapted the binding-direction primal active-set
method to this structure.

In summary, the findings of this thesis make it much more reasonable (and convenient!) to apply
methods from the field of convex optimization to classic geodetic tasks. With the proposed stochastic
framework, we no longer lack a quality description of inequality constrained estimates, which is
essential for geodetic applications. Furthermore, the framework for rank-deficient ICLS problems
and the introduction of the ICGHM allow for the formulation of more sophisticated models, which
was not possible before. Thus, we are no longer limited to use solely standard models. In addition,
the reformulation of the Huber estimator as a quadratic program in standard form (cf. Mangasarian
and Musicant, 2000) was introduced to geodesy, opening up new possibilities for robust estimation
with inequality constraints.

8.2 Outlook

Naturally, the removal of the three major obstacles identified in this thesis leads to further questions.

As discussed in Chap. 4 it is not possible to represent the complete stochastic information of an
inequality constrained estimate in form of a VCV matrix, because the description of the first two
moments of the PDF is no longer sufficient. Thus, it is difficult to describe the correlation between
different parameters. In particular, as we have illustrated that constraints can also add a dependency
between otherwise uncorrelated parameters, which could be interpreted as a kind of correlation,
too. As a consequence, it would be worthwhile to further investigate how to describe the natural
correlations as well as those introduced by constraints. Another promising field of research might
be the attempt to describe the probability mass accumulated at the borderline of the feasible region
analytically.

In Chap. 5 we focused on singular systems with constraints only. Here, it would be interesting to
examine the case of ill-posed problems with inequalities, too. This goes along with the problem to
determine the size of the rank defect, as this states the dimension of the subspace in which the
nullspace optimization has to be performed. Furthermore, we explicitely excluded the application
of the stochastic framework to a rank-deficient system. However, possibilities to combine both
frameworks should be addressed in the future.

In the description of the tailor-made ICGHM approach in Sect. 6.2.2.3 we outlined the possibility
to speed up the solution of the KKT system via a suited decomposition (e.g., an LU factorization)
and the precomputation of the reduction of a constant block. This should be examined further in
future work. The same holds true for the Huber estimator with inequality constraints and correlated
observations (cf. Sect. 7.1.1.1).
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Despite the examples mentioned before, the introduction of inequality constraints combined with
the key findings of this thesis can be beneficial for many applications in many geodetic disciplines.
Besides thrilling new applications that could become possible such as applying non-negativity con-
straints for the runoff estimated from GRACE in satellite geodesy, even approaches already using
inequalities can benefit from the proposed stochastic framework. This ranges from photogrammetry
(e.g. constraints on the minimal distances between cameras in a camera placement problem, see
Alsadik et al., 2012) over navigation (e.g., a Kalman filter with inequality constraints, see Simon
and Simon, 2003) to geoinformation sciences (e.g. constraints in the process of data aggregation for
a digital terrain model, see Koch, 2006).

Altogether, we hope that this thesis contributes its share in convincing many—not only geodetic—
scientists that the benefits arising from the use of inequality constrained adjustment theory outweigh
the additional effort.
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A. Appendix

A.1 Transformation of the Dual Function of an ICLS Problem

In the following, all transformation steps to obtain the dual objective function (3.26) of an ICLS
problem are provided. Inserting (3.25b) in (3.23) yields

Ψ(k,k) = min{L(x,k,k) : x ∈ IRm}
=x̃TNx̃− 2nT x̃+ `TΣ−1`+ 2kT (BT x̃− b)− 2k

T
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)
k− nTN−1n+ `TΣ−1`.

Throughout the transformation, the symmetry of N was used and the fact that scalar quantities
can be transposed without altering the result. Stating the equation in matrix-vector notation yields

Ψ(k,k) =
[
kT k

T
] [ −BTN−1B BTN−1B

B
T
N−1B −BTN−1B

]
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=:M

[
k

k

]
(A.2)

+ 2
[
nTN−1B − bT −nTN−1B+b

T
] [k
k

]
− nTN−1n+ `TΣ−1`.

As M is a symmetric and negative (semi-)definite matrix, Ψ(k,k) is a concave function. As a
consequence, −Ψ(k,k) is a convex function. Therefore, the corresponding optimization problem
(3.27) can be solved with any standard QP algorithm (cf. Sect. 3.5).
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A.2 Deactivating Active Constraints in the Active-Set Algorithm

In Sect. 3.5.1.6 it was stated that all inequality constraints associated with negative Lagrange
multipliers prevent a decrease of the objective function of problem (3.4) if x(i) is the minimum of
the current subspace. In the following, the proof of this statement is provided.

If x(i) is the minimum of the current subspace it is not possible to further decrease the value of the
objective function by a step in a binding direction (i.e., a direction that keeps all active constraints
active, cf. Sect. 3.5.1.2). Therefore, we have to identify those non-binding directions that could lead
to a decrease of the objective function.

Proposition: A sufficiently small step in a direction pj for which

gTpj < 0 (A.3)

holds, will decrease the value of the objective function.

Proof: The quadratic objective function of problem (3.4) can be completely described by a Taylor
expansion up to degree two

Φ(x(i) + qp) = Φ(x)|x=x(i) + q∇xΦ(x)|x=x(i)p+
1

2
q2pT∇x (∇xΦ(x)|x=x(i))p (A.4a)

= Φ(x(i)) + q
(
Cx(i) + c

)T
p+

1

2
q2pTCp. (A.4b)

If (A.3) holds, then there exists a small positive scalar q for which the value of the objective function
decreases. Inserting the gradient

g = Cx(i) + c,

the objective function reads

Φ(x(i) + qp) = Φ(x(i)) + q︸︷︷︸
>0

gTp︸︷︷︸
<0

+
1

2
q2pTCp︸ ︷︷ ︸
>0

(A.5)

< Φ(x(i)), for small q.

2

The proof that a step in a direction pj for which

gTpj ≥ 0 (A.6)

holds, can only increase the value of the objective function is obtained in an analogous way. There-
fore, x(i) can only be the point with smallest objective function value in the feasible region, if (A.6)
holds for all non-binding directions.

In a next step, a connection between the Lagrange multipliers of active constraints and the relation-
ship (A.3) shall be established. This will be helpful to identify those active constraints which have
to be deactivated. As x(i) is the minimum of the current subspace, the search direction p computed
in that point is zero. Therefore, the derivative (3.47) of the Lagrangian with respect to p reduces
to

g +Wkw = 0 (A.7a)
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and thus

g = −Wkw (A.7b)
= −W (:, 1)kw(1)−W (:, 2)kw(2)− . . .−W (:, pw)kw(pw). (A.7c)

This is plausible as—so far—a minimization in the nullspace of the active set W was performed.
Therefore, the gradient g in the point of the current solution has no parts in the nullspace but will lie
completely in the range space of W . As a consequence, g can be expressed as a linear combination
of the columns of W which form a basis of its nullspace.

Inserting (A.7a) in (A.3) yields the desired connection between Lagrange multipliers and constraints

gTpj = −kTwW Tpj (A.8a)

= −kw(1)W (:, 1)Tpj − kw(2)W (:, 2)Tpj − . . .− kw(pw)W (:, pw)Tpj . (A.8b)

Proposition: x(i) is the point with minimal value of the objective function within the feasible region,
if and only if all Lagrange multipliers connected with inequality constraints have a non-negative value.

Proof: As proved in Sect. 3.5.1.2

W (:, k)Tpj ≤ 0, ∀ k = 1, 2, ..., pw

holds for all feasible directions. As the columns of W are linearly independent by construction (cf.
Gill et al., 1981, p. 201), no matter if there exist linear dependent constraints in general, it is possible
to construct a direction pj for which

W (:, k)Tpj < 0 (A.9a)

and

W (:, i)Tpj = 0, i = 1, 2, . . . , k − 1, k + 1, . . . pw (A.9b)

hold. Inserting (A.9) in (A.8b) yields

gTpj = −kw(k)W (:, k)Tpj︸ ︷︷ ︸
<0

. (A.10)

Consequently, the value of the objective function would decrease through a step in direction pj if a
negative Lagrange Multiplier associated with inequality constraint k exists. In this case x(i) cannot
be the minimum and the proposition is proved. 2

Therefore, it is possible to use the sign of the Lagrange multipliers to identify the inequality con-
straint(s) that should be deactivated next (namely those that are linked with a negative Lagrange
multiplier). If more than one constraint has a negative Lagrange multiplier, usually the one with
the Lagrange multiplier that has the largest absolute value is dropped. However, one should keep in
mind that equality constraints are always active and should never be dropped from the active set.
Therefore, they should not enter the testing procedure described above.
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A.3 Reformulation of the Huber Loss Function

The following reformulation of (7.1) was proposed by Mangasarian and Musicant (2000).

Proposition: The function

ρ(v) = min

{
f(v, y) =

1

2
y2 + k|v − y| : y ∈ IR

}
(A.11)

is equivalent to the loss function

ρHuber(v) =

{
1
2v

2, |v| ≤ k
k|v| − 1

2k
2, |v| > k

(A.12)

of the classic Huber estimator (cf. (7.1)).

Proof: The derivative of (A.11) with respect to the scalar y reads

∂f(v, y)

∂y
= y − k · sign(v − y). (A.13)

As it is not defined for v = y the subderivative is computed instead (cf. Rockafellar and Wets, 2009,
p. 299), yielding the following distinction of cases

∂f(v, y)

∂y
=


y − k, v > y

y + λk, λ ∈ [−1, 1] v = y

y + k, v < y

. (A.14)

f(v, y) becomes minimal if the subderivative is equal to zero, leading to

y =


k, v > y = k

v = −λk, λ ∈ [−1, 1] v = y = −λk
−k, v < y = −k

. (A.15)

Thus, the value of y is identical to the value of the influence function

ΨH(v) =


k, v > k

v, |v| ≤ k
−k, v < −k

(A.16)

of the standard Huber estimator. Inserting (A.15) in (A.11) leads to

ρ(v) =


1
2k

2 + k(v − k) = kv − 1
2k

2, v > k
1
2v

2, |v| ≤ k
1
2k

2 + k(−v − k) = −kv − 1
2k

2, v < −k
. (A.17)

which is identical to (A.12). Thus, the proof is complete. 2
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A.4 Data of the Positive Cosine Example

In Tab. A.1, the supporting points ti as well as the observations `i of the example of estimating
a positive definite covariance function in Sect. 7.2.1 are provided. The MATLAB random number
generator was used to generate 1 000 000 samples of the observations (cf. Sect. 7.2.1).

Table A.1: Supporting points ti and observations `i from the example of estimating a positive definite
covariance function in Sect. 7.2.1.

i ti `i

1 0.0000 13.6661
2 0.0100 11.6741
3 0.0200 9.2258
4 0.0300 5.8736
5 0.0400 4.4700
6 0.0500 0.9921
7 0.0600 2.7769
8 0.0700 0.4992
9 0.0800 0.6154
10 0.0900 2.9608
11 0.1000 4.3965
12 0.1100 6.3031
13 0.1200 4.3356
14 0.1300 4.9459
15 0.1400 4.2990
16 0.1500 0.5812
17 0.1600 0.4734
18 0.1700 -2.6287
19 0.1800 -3.3337
20 0.1900 -3.3755
21 0.2000 -0.7667
22 0.2100 0.1865
23 0.2200 2.3498
24 0.2300 1.8760
25 0.2400 0.7216

i ti `i

26 0.2500 -1.7469
27 0.2600 -3.6271
28 0.2700 -6.9844
29 0.2800 -7.2926
30 0.2900 -7.9395
31 0.3000 -6.8677
32 0.3100 -4.9126
33 0.3200 -4.2674
34 0.3300 -2.6859
35 0.3400 1.0446
36 0.3500 2.1318
37 0.3600 3.7316
38 0.3700 2.4828
39 0.3800 1.8105
40 0.3900 0.9967
41 0.4000 0.3656
42 0.4100 1.1483
43 0.4200 1.2223
44 0.4300 0.6707
45 0.4400 -0.8721
46 0.4500 3.1633
47 0.4600 3.3745
48 0.4700 4.8484
49 0.4800 4.3550
50 0.4900 4.4772
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Tables of Symbols

Scalars, Vectors and Matrices

a, α Scalar
a Vector
ã Estimated vector
A Random vector
α True vector
A Matrix
B,b Matrix and vector of equality constraints
B, b Matrix and vector of inequality constraints
Im Identity matrix of size [m×m]

A(i, j) Element in row i and column j of matrix A
A(i, :) Row i of matrix A
A(:, j) Column j of matrix A
a(i) Element in row i of vector a

1 Vector containing only Ones

Mathematical Symbols and Operators

∇xf(x) =
[
∂f(x)
∂x1

T ∂f(x)
∂x2

T
. . . ∂f(x)

∂xm

T
]T

Gradient of f(x) with respect to x

x ∈ C x is an element of the set C
∀ For all
� Khatri-Rao product

diag(N) Extracts all diagonal elements of matrix N
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List of Abbreviations

BLUE Best Linear Unbiased Estimator
DEM Digital Elevation Model
ECGHM Equality Constrained Gauss-Helmert Model
ECLS Equality Constrained Least-Squares
GHM Gauss-Helmert Model
GMM Gauss-Markov Model
GNSS Global Navigation Satellite System
GPS Global Positioning System
GRACE Gravity Recovery And Climate Experiment
HPD Highest Posterior Density
ICGHM Inequality Constrained Gauss-Helmert Model
ICLS Inequality Constrained Least-Squares
IRLS Iteratively Reweighted Least-Squares
IVS International VLBI Service for Geodesy and Astrometry
KKT Karush-Kuhn-Tucker
LCP Linear Complementarity Problem
LDP Least-Distance Program
LP Linear Program
MC-QP method Monte Carlo Quadratic Programming method
MDF Marginal Density Function
OLS Ordinary Least-Squares
PDF Probability Density Function
QP Quadratic Program
RAL Richtlinien für die Anlage von Landstraßen (German road design standard)
RMS Root Mean Square
SLE System of Linear Equations
SOD Second Order Design
SQP Sequential Quadratic Programming
STD Slant Troposphere Delay
VCV matrix Variance CoVariance matrix
VLBI Very Long Baseline Interferometry
WLS Weighted Least-Squares
ZHD Zenith Hydrostatic Delay
ZWD Zenith Wet Delay
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