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Abstract 

Ecological interactions of Fusarium species and the meal beetle Tenebrio molitor  

Contamination of stored grains by moulds and their mycotoxins results in quality and 

nutritional reduction. Ingestion of contaminated products and feed poses a significant hazard 

to human and animal health. The moulds deterioration and storage insects are of major 

concern in poor post-harvest management conditions. The interactions between the storage 

moulds (Fusarium spp.) and insects (T. molitor) are bilateral. 

Fusarium species colonized wheat kernels affected the feeding behaviors, weight gain and 

survival rate of T. molitor mature larvae. Wheat kernels colonized by F. proliferatum and F. 

poae attracted T. molitor larvae significantly more than untreated (control) kernels; whereas 

kernels colonized with F. avenaceum or Beauveria bassiana were avoided by the larvae. 

However, larvae fed on F. culmorum, F. avenaceum or B. bassiana colonized kernels had 

enhanced larvae mortality. Our results indicated that T. molitor larvae have the ability to 

sense potential survival threats of kernels colonized with F. avenaceum or B. bassiana.  

T. molitor acted as vehicle for Fusarium spp. dissemination within grains. After feeding on 

Fusarium mycelia and conidia for 24 h, live conidia were traceable in beetles’ excreta. 

Beetles were capable of contaminating a high proportion of wheat kernels up to 20 days. 

Kernels contamination and fungal colony forming unit density of F. proliferatum were higher 

than other tested Fusarium species. T. molitor beetles disseminated tested Fusarium fungal 

conidia internally and externally. Fungal contamination by beetle copulation to eggs was first 

described in our present research.  

F. proliferatum drew our research attention for its attracting meal beetles property. 

Pathogenicity of different F. proliferatum strains on T. molitor was assessed according to 

mortality on 4th instar larvae. Radiate growth rate, sporulation, and DNA biomass in larvae 

tissue were evaluated as parameters to determine the contribution to pathogenicity. For 

pathogenicity on wheat plants, we demonstrated that F. proliferatum strains can systemically 

colonize the wheat plant (cv. Taifun) from soak-inoculation of mature wheat seeds to stem, 

leaf and then to wheat kernels. The pathogenicity on T. molitor larvae and wheat plants was 

not consistent, which indicated different pathogenicity mechanisms. 
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Kurzfassung 

Ökologische Interaktion zwischen Fusarium Spezies und dem Mehlkäfer T. molitor 

Die Kontamination eingelagerten Getreides mit Vorratspilzen und deren Mykotoxinen sowie 

der Befall mit Vorratsschädlingen führen zur Minderung von Qualität und Nährwert. Durch 

die Aufnahme kontaminierter Nahrungs- und Futtermittel entstehen erhebliche Gefahren für 

die menschliche und tierische Gesundheit. Die Interaktionen zwischen Vorratspilzen 

(Fusarium spp.) und Insekten (T. molitor) sind bilateral. Von Fusarium besiedelte Weizen- 

körner beeinflussten Nahrungsaufnahme, Gewichtszunahme und Überlebensrate von T. 

molitor Larven. Von F. proliferatum und F. poae befallene Körner lockten signifikant mehr T. 

molitor Laven an als unbehandelte Körner, während Körner mit F. avenaceum oder Beauveria 

bassiana von den Larven gemieden wurden. Larven, die mit F. culmorum, F. avenaceum oder 

B. bassiana befallen Körner gefressen hatten, wiesen eine höhere Sterblichkeit auf. Unsere 

Ergebnisse deuten darauf hin, dass T. molitor Larven die Fähigkeit haben, potentielle 

Schadwirkungen von Körnern mit F. avenaceum oder B. bassiana zu erkennen. T. molitor 

fungierte als Vehikel für Fusarium spp. Nachdem die Käfer 24 h mit Fusarium Myzel und 

Konidien gefüttert worden waren, waren lebende Konidien in ihren Exkrementen 

nachweisbar. Die Käfer waren 20 Tage lang in der Lage, große Anteile exponierter 

Weizenkörner zu kontaminieren. Die Menge der durch die Käfer kontaminierten 

Weizenkörner und die Dichte der koloniebildenden Einheiten waren bei F. proliferatum höher 

als bei den anderen untersuchten Fusarium Spezies. T. molitor verbreitete die Konidien von 

Fusarium intern und extern. Die Kontamination von Eiern durch die Kopulation wird 

erstmals in unserer vorliegenden Arbeit beschrieben. Die Pathogenität verschiedener F. 

proliferatum Stämme wurde anhand der Sterblichkeitsrate des vierten Larvenstadiums von T. 

molitor bewertet. Als Parameter der Pathogenität wurden radiale Wachstumsrate, Sporulation 

und Pilz-DNA in Larvengewebe untersucht. Es konnte gezeigt werden, dass F. proliferatum 

Stämme in der Lage sind, ausgehend von einer Tauchinokulation von Saatgut die daraus 

entstehenden Pflanzen systemisch über Stängel und Blätter bis zu den Körnern zu besiedeln. 

Die Pathogenität für Weizenpflanzen korrelierte nicht mit der für T. molitor Larven, was auf 

unterschiedliche Mechanismen der Pathogenität hinweist.  
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Chapter 1 General introduction 

1. Important of Fusarium species 

The genus Fusarium (Ascomycota, Nectriaceae) was introduced by Link in 1809 

(Link, 1809) as species with fusiform conidia borne on a stroma (Cai et al., 2011). 

Fusarium species are the most diverse and ubiquitously distributed soil-borne 

plant-pathogenic fungi (Summerell et al., 2010). They cause serious diseases of maize 

(Logrieco et al., 2002b), small-grain cereals like wheat, barley, rice, sorghum, oat 

(Parry et al., 1995), vegetables such as tomato, eggplant (Katan et al., 1976), 

cucumber (Liu et al., 1995) and asparagus (Seefelder et al., 2002), and even trees, for 

example chestnuts (Chen & Zhu, 2011) and others (Dochinger & Seliskar, 1962). 

Decreased yields as well as diminished quality of plant products due to Fusarium 

infection cause significant economic losses worldwide (Placinta et al., 1999, Glenn, 

2007) Beside plants, the members of this genus incite directly diseases in humans 

(Nir-Paz et al., 2004), and domesticated animals (Goyarts & Dänicke, 2006, Kallela & 

Ettala, 1983, Marasas et al., 1988) 

 

Fusarium head blight (FHB) of wheat and other small grain cereals is a destructive 

disease with huge economic impact in many wheat and barley growing area around 

the world, especially in the humid and semi-humid wheat-growing regions (Bai & 

Shaner, 1994). The infection of heads of small grain cereals and maize plants with 

Fusarium species impairs both grain yields and quality (Parry et al., 1995) in various 

ways, including adversely affected grain size, weight, germination rate, protein 

content, baking quality of the flour, fungal colonization of the ear and cutting off the 

supply of nutrients to the upper spikelet, seedling blight as a result of seed infections 

and mycotoxins in the grain products (Brandfaß, 2006, Snijders, 1990). FHB is caused 

by several fungal species. The predominant Fusarium species in European are F. 

graminearum, F. culmorum, F. avenaceum and F. poae (Bottalico & Perrone, 2002). 
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Cereals contaminated by Fusarium usually take place in the field before or during 

harvest, but infection may develop in the field or in storage (Agrios, 2005).  

 1.1 Fusarium avenaceum description 

Fusarium avenaceum (teleomorph Gibberella avenacea R. Cook) is the main 

pathogen that causes head blight of wheat (Kang et al., 2005). F. avenaceum is 

predominantly soil-borne and causes damaged grain kernels. The infected kernels are 

smaller, shriveled, and discolored (white to pale pink). Additionally, the quality and 

yield are reduced and accompanied with accumulation of toxic secondary metabolites 

in the infected kernels and chaff (Abramson et al., 1987). F. avenaceum also causes 

damping-off, root rot, stalk rot, or fruits rot under conditions adverse to vegetable host 

plants like broccoli and fruits rot (Gerlach & Nirenberg, 1982, Mercier et al., 1991). 

F. avenaceum can synthesize significant quantities of secondary toxic metabolites in 

vitro, such as beauvericin, enniatins (Logrieco et al., 2002c), fusarin C (Farber & 

Sanders, 1986), moniliformin (Marasas et al., 1984b). Beauvericin and enniatins have 

similar cyclic hexadepsipeptides structure with a specific cholesterol acyltransferase 

inhibitor activity (Tomoda et al., 1992). Beauvericins have toxicity to several human 

cell lines (Logrieco et al., 2002a) and induce cell apoptosis and DNA fragmentation 

(Logrieco et al., 2002a, Ojcius et al., 1991). Furthermore, beauvericin is suggested as 

a potential risk of cardiotoxicity in contaminated grains and foods. Enniatins cyclic 

peptides, primarily enniatins A, B and B1, are synthesized by some strains of F. 

avenaceum under laboratory (Logrieco et al., 2002c) and field conditions (Jestoi et al., 

2004). Enniatins are reported that to a role in plant pathogenicity (Herrmann et al., 

1996). F. avenaceum is not a trichothecenes producer because of the absence of 

carrying tri5 gene, which is essential for the production of trichothecenes (Tan & 

Niessen, 2003). 

 

F. avenaceum toxicoses to any animals or human beings haven’t been reported, but 

ground crop products are toxic to chicks and mice, and are dermotoxic to rabbits 
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(Marasas et al., 1984a). F. avenaceum possesses resistance to most clinical antifungals, 

while amphotericin B is reported as the most effective (Pujol et al., 1997).  

1.2 Fusarium culmorum description 

Fusarium culmorum is one of predominant Fusarium species associated with 

Fusarium head blight, particularly in cool parts of Europe like north, central and west 

Europe (Parry et al., 1995). Beside head blights, it also causes cereal foot rots (Leslie 

et al., 2006). Plants ears with head blights have shrunken and chalk kernels, but these 

infected kernels are not responsible for disease dispersal in the field conditions 

(Gilbert et al., 2003). F. culmorum, closely related with F. graminearum, are two 

important fungi becoming the more commonly observed cause of head blight disease 

(Waalwijk et al., 2003). Well-known as a soil fungus, F. culmorum can be splash 

dispersed to the heads of some small grain cereals, such as: wheat and barley 

(Jenkinson & Parry, 1994), where head blight symptoms are shown and grains are 

extensively colonized (Jackowiak et al., 2005). Arabidopsis thaliana is susceptible to 

the cereal ear blight fungal pathogen F. culmorum, which may assist the research of 

host pathogen interactions of this fungus (Urban et al., 2002).  

 

F. culmorum synthesizes mycotoxins such as moniliformin (Scott et al., 1987), 

deoxynivalenol and related trichothecenes (Quarta et al., 2005, Marasas et al., 1984b), 

fusarin C (Farber & Sanders, 1986), zearalenone (Marasas et al., 1984b) and steroids 

(Burmeister & Vesonder, 1990). Reports of the production of T-2 toxin and 

neosolaniol by F. culmorum have not been substantiated. F. culmorum is a 

trichothecenes producer because it carries tri5 and tri6 genes (Covarelli et al., 2004), 

They are essential for the production of trichothecenes. Trichothecene production is 

an important factor in Fusarium head blight of small grains (Snijders & Perkowski, 

1990, Miedaner & Reinbrecht, 2001). 
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1.3 Fusarium poae description 

Parryet al. (Parry et al., 1995) reported that up to 17 Fusarium species have been 

associated with Fusarium head blight. Fusarium poae is one of most common of 

Fusarium complex species responsible for ear (head) blight of small grain cereals 

according to the survey in Great Britain, Argentina, Canada, Germany, and Italy, and 

other countries (Parry & Nicholson, 1996). F. poae was associated with the species 

most commonly isolated from glumes affected by ear blight symptoms according to 

the ear diseases survey of winter cereals. It is a relatively weak pathogen with a high 

frequency, however, Abramson et al. (Abramson et al., 1993) found that F. poae 

alongside with Gibberella zeae and F. sporotrichioides synthesized the greatest 

amount and the greatest number of trichothecene mycotoxins.  

 

Trichothecenes mycotoxins can cause human and animal toxigenicity through 

consumption of colonized cereal grains by F. poae (Leslie et al., 2006). Nivalenol 

(NIV), a type B trichothecene, was cited as one of the most common mycotoxins 

among all mycotoxins synthesized by F. poae. (Stenglein et al., 2014, Jestoi et al., 

2008, Vogelgsang et al., 2008). F. poae also can produce trichothecenes of type A such 

as T-2 and HT-2, among others (Thrane et al., 2004). Moreover, mycotoxins syntheses 

depend on the host plants. For example, fusarenone-X and nivalenol (Foremska et al., 

1999) are produced by F. poae strains inoculated maize. Nivalenol is produced when F. 

poae inoculated onto barley (Salas et al., 1999). Isolates of F. poae can produce 

beauvericin (Logrieco et al., 1998) and fusarin C (Farber & Sanders, 1986).  

1.4 Fusarium proliferatum description 

Fusarium proliferatum (sexual stage: Gibberella intermedia) is an important pathogen 

infecting numerous crop plants worldwide and causes serious economic problems on 

agricultural cultivation. In various climatic zones, F. proliferatum colonizes an extra 

-ordinarily broad range of host plants including maize (Marín et al., 1998), wheat 

(Desjardins et al., 2007), barley (Jurado et al., 2010), rice (Park et al., 2005), sorghum 
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(Leslie et al., 1990), asparagus (Seefelder et al., 2002), banana (Jimenez et al., 1993), 

date palm (Abdalla et al., 2000), garlic, onion (Stankovic et al., 2007) and so on. 

Infection of plants with F. proliferatum leads to products quality decline, and a 

decrease in yield to unprofitable level. 

 

The toxicity of F. proliferatum to ducklings was determined by feeding on 

contaminated feed, the results indicatedthat the toxicity was corresponding with the 

amount of moniliformin produced instead of the amount of fumonisins produced 

(Vesonder & Wu, 1998). After experimental rats ingested in contaminated grain, also 

causes death, they appeared hemorrhage and diarrhea symptoms (Abbas et al., 1988). 

F. proliferatum is the main producer of fumonisins mycotoxins with high levels in 

food and feed products (Leslie et al., 2004). Moreover, the FUM gene cluster required 

for fumonisin biosynthesis has been sequenced and characterized in some detail 

(Waalwijk et al., 2004).  

 

Besides, F. proliferatum is capable of synthesizing other mycotoxins, including 

beauvericin (Leslie et al., 2004), enniation (Meca et al., 2010) , fusaric acid (Bacon et 

al., 1996), fusarin (Miller et al., 1995, Bacon et al., 1996), fusaproliferin (Leslie et al., 

2004, Reynoso et al., 2004, Ritieni et al., 1995) and moniliform (Logrieco et al., 1995, 

Miller et al., 1995). 

2. Mycotoxins: trichothecenes, zearalenones and fumonisins 

Microorganisms produce primary metabolites during active cell growth: such as 

amino acids, carbohydrates, acetone, ethanol, vitamins, organic acids. Micro 

organisms also can synthesize secondary metabolites such antibiotics, alkaloids and 

toxins, which are not essential for their growth, but play an important role for 

protecting themselves to survive from the enemy. 

 

Mycotoxins are worldwide discovered in many different agricultural commodities and 

foods because pathogens (molds) can be dispersed by soil, air, water, insects and 
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vegetation (Smith, 2005). Mycotoxins can be produced during the growing seasons, 

the post-harvest period or in some cases, during all storage, transport and food 

processing stages (Smith, 2005). The six main genera synthesizing mycotoxins are 

Aspergillus, Claviceps, Fusarium, Penicillum, Neotyphodium associated with plant 

tissue and Stachybotrys related with construction materials (Smith, 2005). Fusarium 

mycotoxins are produced due to complex interaction of biological, chemical, and 

physical factors and have been found in India, Japan, several African and European 

countries, and North America (Fratamico et al., 2005). Most Fusarium mycotoxins are 

produced in the field and remain in the storage grain. 

 

Chelkowski (Chelkowski, 1998) reported that although about 20 Fusarium species 

can infect small grains worldwide, only six species cause more concern because of the 

mycotoxins they produce: F. culmorum and F. graminearum produce deoxynivalenol 

or vomitoxin, nivalenol, and zearalenone; F. poae produces nivalenol; and F. 

avenaceum produces moniliform and F. verticilliodes and F. proliferatum produce 

fumonisins in maize (Smith, 2005).  

 

Three major classes of mycotoxins produced by Fusarium that have been proven to 

cause animal disease outbreaks: trichothecenes, zearalenones and fumonisins 

(Desjardins, 2006). 

2.1 Trichothecenes 

Trichothecenes are agriculturally important mycotoxins of relevance to chronic and 

fatal toxicosis of human and animals (Desjardins, 2006). All trichothecenes contain an 

epoxide at the C12,13 position, which is responsible for their toxicological function. 

Different classifications of trichothecenes (Type A, B, C, D) depend on chemical 

structures on C position (Sudakin, 2003).  
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                   Main structure of trichothecenes  (McCormick et al., 2011)  

2.2 Zearalenones 

Zearalenones are not acutely toxic and have not been associated with any fatal 

mycotoxicoses in humans or animals. Zearalenones are non-steroidal estrogenic 

mycotoxins and have been associated with estrogenic syndromes in swine and 

experimental animals (Desjardins, 2006). 

 

 
Main structure of zearalenones  (Desjardins, 2006) 

 

 

 

 



Chapter 1 General introduction                     

8 
 

a  Numbering system has been simplified for clarity (Desjardins, 2006) 

2.3 Fumonisins 

Fumonisins are a family of toxic and carcinogenic mycotoxins produced by F. 

verticillioides (formerly Fusarium moniliforme) and F. proliferatum. The chemical 

structures of six different molecules of the fumonisin group (FA1, FA2, FB1, FB2, FB3 

and FB4) have been described. Only ‘B type’ fumonisins have been shown to be toxic. 

FB1 is the most abundant and most toxic of fumonisins found in contaminated maize 

(Visconti & Doko, 1994). FB1 is hepatotoxic and hepatocarcinogenic for rats 

(Gelderblom & Sny136 man, 1991; Gelderblom et al., 1991). It causes weight loss in 

chickens and injuries to several organs (kidney, liver and heart) (Javed et al., 1992a, 

b). In vitro assays on animal cell cultures show that FB1 inhibits cellular 

multiplication and causes cytotoxicity in some cell strains (Shier et al., 1991; Norred 

et al., 1992; Yooet al., 1992; Abbas et al., 1993). Recently, Wang et al., (1991) 

demonstrated that FB1 inhibits the biosynthesis of sphingolipids, which play critical 

roles in a number of cellular functions, such as cell-cell communication, 

differentiation and cell transformation. FB1 is the first naturally-occurring inhibitor of 

sphinganine and sphingosine-N-acyltransferase (Abado‐Becognee et al., 1998, 

Wang et al., 1991, Yoo et al., 1992, Riley et al., 1993).  

 

The striking structural similarity of fumonisins to sphinganine and other long-chain 

sphingoid based the possibility that fumonisins might disturb sphingolipid 

metabolisim (Desjardins, 2006).  

 

  
Molecular     Carbon positiona      

Zearalenone  Weight C-4 C-5 C-7—C-8 C-11 C-12 C-14 

Zearalenone  318 OH H C=C H 1=O H 

α-and β-Zearalenol 320 OH H C=C H OH H 

α-and β-Zearalanol 322 OH H C-C H OH H 

11-Hydroxyzearalenone 334 OH H C=C OH 1=O H 

14-Hydroxyzearalenone 334 OH H C=C H 1=O OH 

4-Acetylzearalenone 360 OAc H C=C H 1=O H 

5-Formylzearalenone 346 OH CHO C=C H 1=O H 
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Main structure of fumonisins  (Desjardins, 2006) 

 
(Griessler & Encarnação, 2009) 

 
(Griessler & Encarnação, 2009) 

 

  Molecular 
                  Carbon  

Position  
  

Fumonisins  Weight C-2 C-5 C-10 

Fumonisin B1  721 NH2  OH OH 

Fumonisin B2  705 NH2  OH H 

Fumonisin B3  705 NH2  H OH 

Fumonisin B4  689 NH2  H H 

Fumonisin A1  763 N-acetyl OH OH 

Fumonisin A2  747 N-acetyl OH H 

Fumonisin A3  747 N-acetyl H OH 

Fumonisin P1  800 N-hydroxypyridinium OH OH 

Fumonisin P2  784 N-hydroxypyridinium OH H 

Fumonisin P3  784 N-hydroxypyridinium  H OH 

(Desjardins, 2006) 

 

Mechanism of fumonisins: the toxicity of fumonisin is based on the structural 

similarity to the sphingoid bases: sphingosine and sphinganine. They are inhibitors of 

sphinganine (sphingosine) N-acyltransferase (ceramide synthase), a key enzyme in the 

lipid metabolism, resulting in a disruption of this pathway. This enzyme catalyzes the 
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acylation of sphinganine in the biosynthesis of complex sphingolipids and also the 

deacylation of dietary sphingosine and the sphingosine that is released by the 

degradation of complex sphingolipids (ceramid, sphingomyelin and 

glycosphingolipide) (Wang et al. 1991). Sphingolipids are basically important for the 

membrane and lipoprotein structure and also for cell regulations and communications 

(second messenger for growth factors) (Berg et al. 2003). The other consequence of 

inhibition ceramide synthase is rapid increase of sphingoid bases (sphinganine and 

sphingosine). Free sphingoid bases are toxic to most cells by affecting cell 

proliferation and induce apoptosis or necrotic cell death (Riley et al. 1996; Stevens et 

al. 1990 (Griessler & Encarnação, 2009). 

3. Post-harvest infection of Fusarium 

Knowledge of a wide variety of abiotic and biotic factors influence grain quality after 

harvest has been studied in the stored grain ecosystem. Important factors include 

respiration of crop kernels and contaminant mould, storage insects and mites, and the 

key mini-environmental factors of water availability and temperature. Associations 

between these factors influence the dominance of fungi, particularly mycotoxigenic 

species.  

 

A post-harvest survey was conducted in cereals like wheat, barley and oats to 

determine Fusarium species occurrence and geographic distribution in Norwegian 

(Kosiak et al., 2003). According to the investigation results, F. avenaceum, F. poae, F. 

tricinctum and F. culmorum were most frequently isolated Fusarium species (Kosiak 

et al., 2003). Poor post-harvest management of cereals can cause fast deterioration in 

kernels nutritional quality. Microbial (bacteria, yeasts and filamentous fungi) 

activities can cause undesirable effects in grains including discoloration, contribute to 

increasing the temperature and relative humidity in the microenvironment and losses 

in dry matter like starch through the utilization of carbohydrates as energy sources, 

degrade lipids and proteins or alter their digestibility, produce volatile metabolites 
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giving off-odors, cause loss of germination rate of seeds, reduce baking and malting 

quality; affect utilization as animal feed or as seed (Magan et al., 2004). Studies have 

shown that growth, mycotoxin production, competitiveness and niche occupation by 

mycotoxigenic species are influenced by the presence of other contaminant moulds 

and environmental factors. This has been demonstrated for both Fusarium culmorum 

and deoxynivalenol production, Aspergillus ochraceus/Penicillium verruscosum and 

ochratoxin production and Fusarium section Liseola and fumonisin production. 

Certain species of both fungi and insects in grain storage are primary causes of 

deterioration and often these are also intimately associated (Dunkel, 1988). Therefore, 

a more holistic ecological view is needed when considering long-term-safe storage 

management approaches to of cereal grains after harvest (Magan et al., 2003).   

4. Storage insects Tenebrio molitor  

Tenebrio molitor (Coleoptera: Tenebrionidae) is an important and globally distributed 

insect of stored grain ecosystem and its capability of selecting optimal ratios of 

dietary components (Morales-Ramos et al., 2011). It reacts to protein quality changes 

of the nutritional feed substrate (Davis & Sosulski, 1974) and is sensitive to small 

quantitative variations of dietary composition (Davis, 1969). T. molitor mature larvae 

perform preference to F. proliferatum 21.1 colonized wheat kernels and avoidance to 

F. avenaceum colonized wheat kernels causing high mortality (Guo et al., 2014), 

which indicate that T. molitor larvae are capable to screen adverse factors, such as 

mycotoxins synthesize by different Fusarium species.   

5. Fungi transmission by storage insects  

The close relationship between fungi and storage insects in the stored grain ecosystem 

has been well studied (Dunkel, 1988). Insects damage grains by ingestion, oviposition 

and also the body friction. All of these actions break the seed envelop which allows 

entry of fungi (Dunkel, 1988). Storage insects play an important role in the 

distribution of spores. Some insects externally disseminate the fungal spores attached 



Chapter 1 General introduction                     

12 
 

on the cuticle of the insects (antenna, mouthpart, wings and legs) and internally 

disseminate the fungal spores survived from the gut passage by excretion. Windels 

also supposed that picnic beetles Glischrochilus quadrisignatus are attracted to 

variety of habitats could acquire various Fusarium species. Fusarium species were 

isolated from both external and internal of larvae, pupae and newly emerged beetles 

(Windels et al., 1976). Some insects are known to use spoilage moulds as a food 

source. Some fungi can provide B vitamins not available in their stored product diet 

(Dunkel, 1988). With their metabolic activity water and heat production, storage 

insects can increase the water activity and temperature of grain to levels suitable for 

fungal growth. Fungi affect the behavior, growth and reproduction of insects. In 

addition, fungi are important olfactory signals for insects in the storage system 

(Dunkel, 1988). 

6. Management of postharvest grain contamination 

Post-harvest grains contamination by fungi has not drawn so much attention. The 

management of postharvest deterioration and spoilage by of grains, and commercial 

feeds depend on certain precautions and storage conditions that must be fulfilled 

before and during harvest, and during transport and storage to minimize mycotoxins. 

The crop products should be healthy and high quality when they are harvested. Taken 

the following strategies into consideration, its subsequent infection and spoilage in 

storage will be diminished. First, the moisture content should be kept below the 

minimum levels which required for the growth of the common storage fungi. For 

example, when moisture content reaches to 13.0 to 13.2%, Aspergillus species will 

grow and cause starchy cereal seeds spoilage. Accurate and regular moisture 

measurements to ensure safe thresholds are not breached. Second, low temperature 

decelerates the respiration of grain and microorganisms. Most storage fungi grow very 

slowly at the temperature range 12 to 15 °C, and their growth almost ceases at 5 to 

8 °C. Therefore, the temperature of stored grains should be kept as low as possible. 

Meanwhile, an increase of moisture in grain should be concerned. Third, infestation 
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of stored products by storage insects (Tenebrio moliter, Tribolium castaneum) and 

mites should be kept to a minimum through the use of fumigants. This helps keep the 

storage fungi from getting dispersed and growing rapidly. At last, the stored grain 

should avoid impurity, and be free of mechanical damage and broken seeds. Such 

grains decrease the risk infected by storage fungi compared to weakened or cracked 

grain. In addition, quick airflow drying through storage bins to remove excess 

moisture and heat is also an efficient approach. Strategies mentioned above can be 

combined for the prevention of spoiled grains and mycotoxins entering the human and 

animal food chains (Agrios, 2005). 

7. Research objectives 

Fusarium species are among the most diverse and widely dispersed plant-pathogenic 

fungi. Fusarium species can infect the plants in the field, even they contaminate the 

crops products after harvest, during the transport, or storage period. The general 

objective of this research is to investigate ecological interactions of the meal beetle 

Tenebrio molitor with diverse Fusarium species on wheat kernels. On one hand, 

whether Fusarium species or Fusarium colonized kernels affect the T. molitor larvae 

feeding behavior and mortality after ingestion on Fusarium mycelia or Fusarium 

colonized kernels. Different F. proliferatum strains pathogenicity on T. molitor larvae 

and wheat was assessed. Or the T. molitor larvae can benefit from feeding on the 

Fusarium mycelia or Fusarium colonized kernels. On the other hand, storage insects 

also disperse fungal spores in storage barn and cause more deterioration. In addition, 

insects can increase the water activity and temperature of grain to levels suitable for 

fungal growth. 

 

The specific objectives of the research are as follows: 

1) Investigate effects of fungal colonization of wheat grains with Fusarium spp. on 

food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor) to 

convince whether the larvae can screen adverse situations 
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2) Fusarium species dissemination within grain by the meal beetle T. molitor and the 

fungi dissemination routine and duration by beetle T. molitor to assess the 

deterioration and to improve post-harvest management approaches  

3) Illustrate F. proliferatum strains pathogenicity on 4th instar T. molitor larvae and 

whether F. proliferatum mycelia penetrate and propagate in the larvae tissue from 

cuticle or gut 

4) Quantification of fungal DNA biomass and mycotoxins amount in wheat kernels 

and stem, flag leaves to determine if F. proliferatum can systemically infect wheat 

plants 
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Chapter 2 Effects of fungal colonization of wheat grains with    

Fusarium spp. on food choice, weight gain and mortality of        

meal beetle larvae (Tenebrio molitor) 

Abstract 

Species of Fusarium have significant agro-economical and human health-related impact by 

infecting diverse crop plants and synthesizing diverse mycotoxins. Here, we investigated 

interactions of grain-feeding Tenebrio molitor larvae with four grain-colonizing Fusarium 

species on wheat kernels. Since numerous metabolites produced by Fusarium spp. are toxic to 

insects, we tested the hypothesis that the insect senses and avoids Fusarium-colonized grains. 

We found that only kernels colonized with F. avenaceum or Beauveria bassiana (an 

insect-pathogenic fungal control) were avoided by the larvae as expected. Kernels colonized 

with F. proliferatum, F. poae or F. culmorum attracted T. molitor larvae significantly more 

than control kernels. The avoidance/preference correlated with larval feeding behaviors and 

weight gain. Interestingly, larvae that had consumed F. proliferatum- or F. poae-colonized 

kernels had similar survival rates as control. Larvae fed on F. culmorum-, F. avenaceum- or B. 

bassiana-colonized kernels had elevated mortality rates.  

 

HPLC analyses confirmed the following mycotoxins produced by the fungal strains on the 

kernels: fumonisins, enniatins and beauvericin by F. proliferatum, enniatins and beauvericin 

by F. poae, enniatins by F. avenaceum, deoxynivalenol and zearalenone by F. culmorum. Our 

results indicated that T. molitor larvae have the ability to sense potential survival threats of 

kernels colonized with F. avenaceum or B. bassiana, but not with F. culmorum. Volatiles 

potentially along with gustatory cues produced by these fungi may represent survival threat 

signals for the larvae resulting in their avoidance. Although F. proliferatum or F. poae 

produced fumonisins, enniatins and beauvericin during kernel colonization, the larvae were 

able to use those kernels as diet without exhibiting increased mortality. Consumption of F. 

avenaceum-colonized kernels, however, increased larval mortality; these kernels had higher 

enniatin levels than F. proliferatum or F. poae-colonized ones suggesting that T. molitor can 

tolerate or metabolize those toxins. 
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1. Introduction 

Fusarium species (Ascomycota, Nectriaceae) are among the most diverse and widespread 

plant-infecting fungi (Summerell et al., 2010). They cause important diseases of maize, 

small-grain cereals, vegetables and even trees (Parry et al., 1995). Decreased yield as well as 

diminished quality of plant products due to Fusarium infection cause significant economic 

losses worldwide (Placinta et al., 1999, Glenn, 2007). Moreover, Fusarium species are 

prominent producers of medically relevant mycotoxins (D’mello et al., 1999, Desjardins, 

2006). Toxicologically most important mycotoxins produced by Fusarium species comprise 

sesquiterpenoids trichothecenes such as T-2 toxin and deoxynivalenol (McCormick et al., 

2011), polyketides such as fumonisins (Nelson et al., 1993), and depsipeptides such as 

beauvericin or enniatins (Moretti et al., 2007, Wang & Xu, 2012). Mycotoxin exposure 

resulting from the ingestion of contaminated products poses a hazard to human and animal 

health (Pestka, 2007, Placinta et al., 1999, Voss et al., 2007). Moreover, immunocompromized 

patients occasionally develop invasive fusariosis caused most often by F. solani, F. oxysporum, 

or F. verticillioides (Nucci & Anaissie, 2007, Cambuim et al., 2007) and some mycotoxins 

were found to suppress humoral as well as cell-mediated immunity in mammals (Voss et al., 

2007, Pestka, 2007).  

 

Beauvericin a cyclic hexadepsipeptide was isolated from an entomopathogenic fungus 

Beauveria bassiana and was demonstrated to be toxic to invertebrates (Hamill et al., 1969) 

before it was identified in extracts of two Fusarium species that were toxic to Colorado potato 

beetle (Gupta et al., 1991). Toxicity of beauvericin to insects is now well established (Grove 

& Pople, 1980, Wang & Xu, 2012). Enniatins, chemically closely related to beauvericins, 

were purified from extracts of Fusarium species because of their antibiotic activity (Gäumann 

et al., 1947). Insecticidal properties of enniatins were discovered only after enniatins were 

purified from cultures of entomopathogenic (and plant pathogenic) species Fusarium 

lateritium (Grove & Pople, 1980). The demonstration of the toxicity of enniatins was later 

extended to further insect species (Strongman et al., 1988). Although beauvericin and 

enniatins are most prominent insecticidal mycotoxins of Fusarium species, toxic effects of 

other Fusarium mycotoxins on insect individuals as well as tissue cultures were reported 

(Dowd et al., 1989, Fornelli et al., 2004, Teetor-Barsch & Roberts, 1983). Studies performed 

with purified mycotoxins are inherently limited because toxic effects in nature result from 

exposures to mixtures of compounds with additive or synergistic effects, involving known 

mycotoxins as well as numerous less- or unknown metabolites. Moreover, while the 
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biological function of trichothecenes as virulence factors in plant infection (Proctor et al., 

1995) and zearalenone as agent of interference competition and protection against 

mycoparasitic fungi (Utermark & Karlovsky, 2007) have been demonstrated, little is known 

about the biological functions and ecological roles of numerous other Fusarium-mycotoxins.  

 

With few exceptions, Fusarium species are not known as entomopathogens (Teetor-Barsch & 

Roberts, 1983) and our understanding of ecological interactions of grain-feeding insects and 

grain-colonizing fungi is still scarce. Here, we used T. molitor to investigate interactions of 

meal beetles with diverse Fusarium species on wheat kernels. B. bassiana is a potent 

pathogen of tenebroid beetles (Knorr et al., 2009) and was used as a positive control and 

uninfected kernels were used as negative control. T. molitor is an important and globally 

distributed pest of stored products and its capability of selecting optimal ratios of dietary 

components (Morales-Ramos et al., 2011) indicates that beetles may also sense and avoid 

toxic fungi-colonized diet. Our working hypothesis was that T. molitor can distinguish among 

kernels colonized with diverse Fusarium species or B. bassiana and that the insect’s 

repulsion/attraction of respective kernels correlates with their impact on larvae’s survival.  

2. Materials and methods 

Isolation and identification of the strains was described in a previous study (Görtz, 2009). In 

brief, F. avenaceum 1.27 was isolated from colonized wheat kernels in the year 2008 at 

Poppelsdorf, Bonn, Germany, and taxonomically characterized as described in this study; F. 

culmorum 3.37 was isolated from colonized wheat in the year 2004 at Klein-Altendorf, Bonn, 

Germany; F. poae DSM 62376 was purchased from Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany); F. proliferatum 21.1 

was isolated from colonized maize in the year 2007 at Hainichen, Germany; and B. bassiana 

Bea2 was isolated from infected Otiorhynchus sulcatus (the black vine weevil) in the year 

1989 at Stuttgart, Germany. The strains were grown on potato dextrose agar (PDA) plates in 

darkness at 23 °C.  

 

The meal beetle T. molitor is a common storage pest and destructive insect species. T. molitor 

larvae were reared on whole wheat flour with 5% yeast extract in a climate chamber in 

darkness at 27 ± 2 °C and a relative humidity of 65 ± 5%. Last instar larvae were starved for 

72 h and were randomly selected prior use in experiments.  
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2.1 Inoculation of wheat kernels  

For preparing diet contaminated with fungi, spring wheat kernels (cultivar Taifun) were 

soaked in distilled water for 18 h at room temperature and placed into 1 litre plastic bags 

separately, subsequently autoclaved for 30 min. Autoclaved wheat kernels were inoculated 

with fungal mycelia on PDA agar and incubated at room temperature for 4 weeks to ensure 

complete colonization of the kernels. Control diet was handled in a same way with 

un-inoculated PDA agar. 

2.2 Larvae’s preference/avoidance experiments 

To determine preference or avoidance reactions of the larvae, feeding experiments were 

performed on Petri dishes with a diameter of 142 mm. The dishes were marked to generate 

four equal sectors in the form of identical pie slices (1, 2, 3 and 4). Into opposing sectors each 

6 g uninfected kernels were placed and in the remaining two sectors each 6 g of kernels of 

interest (fungi-colonized or non-colonized). Then, 10 individuals of T. molitor were placed 

randomly in the centre of the Petri dishes. After 20 min in darkness and without any 

disturbance, the number of larvae in each sector was determined. In total, 20 repetitions with 

using each 10 naive, inexperienced larvae per sample were performed within one replicate 

and in total three independent replicates were performed. 

2.3 Larval weight gain determination  

To monitor feeding of larvae, we determined the cumulative weight gain of 10 larvae within 

24 h when fed on fungi-colonized or control kernels. Integral weights of 10 individuals were 

measured before and 24 h after placing on respective kernels. Per treatment 10 independent 

determinations were performed and in total three independent replicates were performed. 

2.4 Survival rate analysis of larvae on fungal mycelium, colonized kernels or upon 
stabbing or injection-based infections 

Per treatment 30 individuals of T. molitor were reared on mycelia of diverse Fusarium strains 

grown on PDA plates and survival rates were monitored daily for 15 days. In total five 

independent replicates were performed. For survival analysis on fungi-colonized kernels, 30 

individuals of T. molitor per treatment were reared on respective kernels and survival rates 

were monitored for 15 days. In total three independent replicates were performed. For 

stabbing-based infection experiments, F. avenaceum, F. culmorum, F. poae, F. proliferatum or 

B. bassiana were inoculated on PDA plates and incubated for 2 weeks. Sterilized insect 
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minutin pins were used to scratch a mixture of mycelia and conidia from the plate and to 

wound larvae dorso-laterally leaving mycelia and spores as small plug at the wounding site. 

In three independent replicates survival of larvae was monitored for the period of one week. 

Additionally, infection with spores using a syringe-based injection of approx. 104 conidia into 

each larva in 5 µl of water with 0.01% Tween 20 was performed. Survival of larvae was 

monitored after 5 days incubation in three independent replicates, with 120 larvae per group 

and per replicate. Living larvae were harvested at 0 day, 5 days, 10 days and 15 days time 

points then freeze-dried at -50 °C for 48 h. The freeze-dried larvae were ground for 

subsequent DNA extraction and quantitative real time PCR analysis. 

2.5 Mycotoxin analysis1 

Wheat kernels and larvae were freeze-dried, ground and extracted as described (Nutz et al., 

2011). Samples analyzed for beauvericin and enniatin content were not defatted to avoid 

losses of the mycotoxins in the organic phase. HPLC separation was performed on a RP 

column at 40 °C and trichothecenes A, B and zearalenone were detected by tandem mass 

spectrometry using triple quadrupol 1200 L (Varian, Darmstadt, Germany) based on published 

methods (Adejumo et al., 2007a, Adejumo et al., 2007b). Two mass transitions were used for 

each toxin. Beauvericin, fumonisin B1 and enniatins were separated on the same HPLC 

system but detected using ion trap 500MS (Varian, Darmstadt, Germany) as described (Nutz 

et al., 2011). For each mycotoxin detected on the ion trap, three mass transitions were used. 

Calibration curves were constructed using analytical standards dissolved in methanol/water 

(1:1) with a correction for recovery and matrix effects. The limits of quantification for 

deoxynivalenol, nivalenol, fusarenon X, T2-toxin, diacetoxyscirpenol and neosolaniol, 

beauvericin, enniatin A, B, A1, B1 and fumonisin B1 ranged between 9 and 170 µg/kg in 

kernels and 9 and 130 µg/kg in larvae. 

2.6 Molecular analyses of Fusarium species 

qPCR was conducted to monitor if any of tested Fusarium strains had the ability to proliferate 

in Tenebrio body cavity or tissue. Total DNA from T. molitor larvae was extracted from 30-50 

mg of freeze-dried material using a CTAB method (Brandfass & Karlovsky, 2008), purified 

by phenol extraction, precipitated with isopropanol and dissolved in 50 µl TE buffer (10 mM 

Tris, 1 mM EDTA, pH 8.0). DNA was diluted fifty fold prior to PCR analysis.  

 

                                                             
1
 The mycotoxins analyses experiments were done by Dr. Katharina Pfohl 



Chapter 2 Effects of Fusarium colonization kernels on Tenebrio molitor larvae 

27 
 

Thermocycler (CFX384TM, BioRad, USA) was used for real-time PCR analysis (qPCR) in a 

total volume of 4 µl. Primers MGBF/R (Waalwijk et al., 2004), OPT 18F/R (Schilling et al., 

1996), Fp 82F/R (Parry & Nicholson, 1996), Fp3F/4R (Jurado et al., 2006) and P1/P3 

(Hegedus & Khachatourians, 1996) were used for F. avenaceum, F. culmorum, F. poae, F. 

proliferatum and B. bassiana, respectively. The reaction mixture consisted of buffer (16 mM 

(NH4)2SO4; 67 mM Tris-HCl; 0.01% (v/v) Tween-20, pH 8.8 at 25 °C, Bioline, Lükenwalde, 

Germany), 0.15 mM of each dNTP (Bioline, Lükenwalde, Germany), 2.5 mM MgCl2, 0.1 U 

of Taq DNA polymerase (BIOTaq, Bioline, Lükenwalde, Germany), 0.3 µM of each primer, 

0.1 x SYBR Green I (Invitrogen, Karlsruhe, Germany) and 1 mg/ml bovine serum albumin. 

The lowest standards set as limits of quantification (LOQ) were 14-40 ng/g for all four 

Fusarium spp. and 1.0 µg/g for B. bassiana. 

 

To amplify translation elongation factor 1-alpha (TEF) gene region, primers ef1/ ef2  

(O’Donnell et al., 1998) were used. PCR was performed in reaction mixture described above 

with hot-start DNA polymerase (Immolase DNA Pol, Lükenwalde, Germany) in a total 

volume of 25 µl The following cycling conditions were used: 1 cycle of 10 min at 95 °C, 30 

cycles of 60 s at 94 °C, 45 s at 58.5°C, and 60 s at 72 °C, followed by a final extension cycle 

at 72 °C for 5 min. Amplified DNA products were sequenced (LGC Genomics, Berlin, 

Germany) by Sanger method in both directions. The sequence of the TEF-1a gene of F. 

avenaceum strain 1.27 was deposited at EMBL Nucleotide Sequence Database with the 

accession number HG794242. The taxonomical identity of the strain was determined with the 

help of morphological characters (Leslie & Summerell, 2006), its mycotoxin profile 

(Desjardins, 2006) and TEF-1a sequence (Geiser et al., 2004).  

2.7 Statistical analyses 

Statistical analyses were performed with R 2.15.3  Weight gain values were log transformed 

before ANOVA. Survival rates over time were analyzed with a Cox regression model (coxph 

function) and survival proportion values were fitted to a generalized linear model (GLM) with 

quasibinominal error structure and logit link function.  
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3. Results 

3.1 Survival rates of Tenebrio molitor larvae fed on mycelium of Fusarium species 

In a first step we determined the capability of Fusarium species to induce mortality of larvae. 

We monitored the survival rates of T. molitor larvae reared on PDA plates covered with 

mycelium of four Fusarium species during a period of 15 days. Under these conditions fungal 

mycelium on PDA was the sole diet available for the larvae. We fitted a Cox’s proportional 

hazards model with censoring on the data set and found evidence for significant differences 

between the survival curves (log-rank-test, 2 = 35.53; d.f. = 8; P < 0.001) with a significant 

effect of Fusarium strains (2 = 27.17; d.f. = 4; P < 0.001) when compared to controls (Fig. 1). 

We also found a significant effect of the second variable replicate (2 = 10.3; d.f. = 4; P = 

0.036) with one out of five replicates showing some difference (z = 2.01; P = 0.045) when 

compared to the other replicates. Our analysis revealed that the daily hazard of larvae survival 

increased by 7.85 times (confidence interval at 95% level (CI) = 1.89 to 32.65 times) when 

feeding on F. culmorum mycelium, by 3.76 times (95% CI = 0.89 to 15.81 times) on F. 

avenaceum mycelium, by 4.96 times (95% CI = 1.19 to 20.76 times) on F. poae mycelium and 

by 5.34 times (95% CI = 1.28 to 22.29 times) on F. proliferatum mycelium, respectively, 

when compared to controls. 
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Fig. 1: Survival of larvae feeding on mycelium of diverse Fusarium species grown on PDA. Survival 

curves of larvae reared on PDA plates covered with mycelium of diverse Fusarium species were 

significantly reduced when compared to controls (Cox regression model, 2 = 35.53; d.f. = 8; P < 0.001; 

N=560). In addition, survival curve on mycelium of the entomopathogen B. bassiana is shown as positive 

control. 

3.2 Larval preference or avoidance to fungi-colonized wheat kernels 

In a next step we investigated potential selective feeding behaviors of the larvae as we 

expected avoidance reactions towards kernels that were colonized with different Fusarium 

species. T. molitor larvae showed significant preference or avoidance reactions to colonized 

kernels depending on the fungal strain (Fig. 2A). Inspection of diagnostic plots as well as use 

of the Fligner-Killeen test for equality of variances (Conover et al., 1981) revealed that values 

were normally distributed and that there was homogeneity of variance for the examined 

groups. Therefore, an ANOVA test was performed on the data set. Unexpectedly, we found 

that larvae significantly preferred wheat kernels colonized with F. proliferatum (mean ± S.D. 

= 77 ± 4 %; CI = +21 to +33%), F. poae (70 ± 5 %; CI = +14 to +26 %) or F. culmorum (60 ± 

2 %; CI = +4 to +16%) while avoided kernels colonized by F. avenaceum (43 ± 2 %; CI = -7 

to -13%) or B. bassiana (18 ± 5 %; CI = -26 to -38%) when compared to control kernels (50 ± 
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1 %;  CI = 46 to 54 %) (ANOVA, F = 113.3; d.f. = 5 and 12; P < 0.001).  

 

The preference or avoidance behaviors correlated with significant changes in larval weight 

gain within 24 h on kernels (Fig. 2B). Inspection of diagnostic plots as well as use of the 

Fligner-Killeen test for equality of variances revealed that logarithmically transformed values 

were normally distributed and that there was homogeneity of variance for the examined 

groups. Therefore, an ANOVA test was performed on the data set with the log-transformed 

response variable weight gain. When compared to larvae reared on control kernels 

(cumulative weight gain of 10 larvae within 24 h: 138.1 ± 22.1 mg; CI = 132.2 to 153.4 mg) 

larvae significantly gained more weight on wheat kernels colonized by F. proliferatum (173 ± 

35.2 mg), F. poae (168.4 ± 32 mg) or F. culmorum (167.8 ± 29.1 mg), while gained less 

weight on kernels colonized by F. avenaceum (108.5 ± 20.6 mg) or B. bassiana (79.1 ± 13.6 

mg) (ANOVA, F = 66.79, d.f. = 7 and 172, P < 0.001). Of note, we found a significant effect 

of the explanatory variable replicate (F = 3.31; d.f. = 2; P = 0.039) with one out of three 

replicates showing significant difference (t value = -2.57; P = 0.011) when compared to the 

other two replicates. 

3.3 Survival rates on wheat kernels colonized with mycotoxin-producing fungi 

We determined the survival rate of larvae ingesting fungi-colonized kernels for a period of 15 

days. Fitting the data to a generalized linear model with quasibinominal error structure and 

logit link function revealed that the survival rate of the T. molitor larvae feeding on F. 

proliferatum (80 ± 12 %; odds ratio (OR) = 0.77 and CI = 0.53 to 1.13) or F. poae (79 ± 13 %; 

OR = 0.72 and CI = 0.49 to 1.05) colonized kernels were not significantly different when 

compared to survival rates on control kernels (84 ± 11 %), even when there was a slight 

reduction (Fig. 2C). However, survival rates of larvae feeding on F. avenaceum (73 ± 14 %; 

OR = 0.53 and CI = 0.37 to 0.77; P < 0.001), F. culmorum (73 ± 13 %; OR = 0.51 and CI = 

0.35 to 0.73; P < 0.001) or B. bassiana (41 ± 36 %; OR = 0.13 and CI = 0.09 to 0.19; P < 

0.001) colonized kernels were significantly reduced when compared to larvae feeding on 

control kernels (Fig. 2C) (GLM, F = 40.635; d.f. = 5 and 354; P < 0.001).  
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Fig. 2: Reactions of larvae to fungi-colonized wheat kernels. (A) Boxplot of relative preference or 

avoidance reactions of larvae within 20 min towards fungi-colonized wheat kernels. N=360. (B) Boxplot of 

cumulative weight gain of each 10 larvae per data point within 24 h on colonized wheat kernels with in 

total N=1,800. (C) Relative survival rate of larvae on colonized kernels was determined within 15 days. 

Results are shown as mean values ± CI at 95% levels with N=360. Significant differences are indicated by 

letters or by asterisks. 
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To test our initial hypothesis that larvae’s avoidance levels against fungi-colonized kernels 

correlate with the capability of respective kernels to induce higher mortality rates in larvae, 

we performed a Kendall's tau statistical analysis. This analysis estimates a rank-based 

measure of association of not normally distributed values. The results of this test indicated 

that avoidance levels of larvae were negatively correlated with their survival rates in our 

examined cases.  

 

Table 1: Correlations between percentage of larvae avoidance the colonized kernels and survival rate 

 Avoidance (%) Survival rate 

Kendall's tau_b The percentage of the 

larvae avoiding colonized 

kernels [%] 

Correlation Coefficient 1.000 -.579** 

Sig. (2-tailed)  .003 

N  360 360 

Survival rate Correlation Coefficient -.579** 1.000 

Sig. (2-tailed) .003  

N 360 360 
 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

3.4 Mycotoxin analysis 

To examine whether mycotoxins accumulated in colonized kernels were responsible for the 

reduction of survival rates and avoidance behavior towards colonized kernels, we estimated 

the content of mycotoxins in wheat kernels and in larvae that died within 15 days. The 

analysis of kernels confirmed the production of fumonisin B1, enniatins and beauvericin by F. 

proliferatum, of enniatins and beauvericin by F. poae, enniatins by F. avenaceum, beauvericin 

by B. bassiana, and deoxynivalenol and zearalenone by F. culmorum (Table 1). Of note, low 

amounts of enniatins were found in kernels colonized with B. bassiana that likely originated 

from naturally contaminated kernels. In general, mycotoxins found in kernels were also found 

in larvae fed on the respective kernels, with the only exception of deoxynivalenol. 
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Table 1: Mycotoxin content in kernels or T. molitor larvae 

 

 B. bassiana F. avenaceum F. culmorum F. poae F. proliferatum  

 Kernels Larvae Kernels Larvae Kernels Larvae Kernels Larvae Kernels Larvae 

 (µg mycotoxin/g meal) 

Beauvericin 0.03 <LOQ <LOQ <LOQ - - 30.10 1.19±0.32 36.36 0.24±0.34 

Enniatin A <LOQ <LOQ 14.26 0.04±0.03 - - <LOQ <LOQ 0.03 0.01±0.01 

Enniatin A1 <LOQ <LOQ 60.51 0.33±0.25 - - <LOQ <LOQ <LOQ <LOQ 

Enniatin B 0.21 0.19±0.04 >90 13.00±5.96 - - 0.32 1.84±2.59 27.09 0.09±0.06 

Enniatin B1 <LOQ <LOQ >90 0.99±0.35 - - 0.03 0.21±0.31 2.89 0.01±0.01 

Fumonisin B1 <LOQ <LOQ <LOQ <LOQ - - <LOQ <LOQ 39.74 1.86±0.64 

Diacetoxyscirpenol - - <LOQ <LOQ - - <LOQ <LOQ - - 

Neosolaniol - - <LOQ <LOQ - - <LOQ <LOQ - - 

T-2 toxin - - <LOQ <LOQ - - <LOQ <LOQ - - 

Deoxynivalenol - - <LOQ <LOQ 10.24 <LOQ <LOQ <LOQ - - 

Nivalenol - - <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ - - 

Zearalenone - - <LOQ <LOQ >210 0.02±0.01 <LOQ <LOQ - - 

Fusarenon X - - <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ - - 

The values indicate mean values and respective standard deviation. Hyphens indicate that the mycotoxin was not analyzed. 
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3.5 Altered feeding behavior of larvae on colonized kernels 

Interestingly, we observed that T. molitor larvae showed varying preference in feeding outer 

or inner parts of colonized kernels, probably as consequence of concentration variations of 

more water soluble or insoluble fungal metabolites within the kernels (Fig. 3). To quantify 

these preferences of larvae, we first compared values of respective percentages of kernels 

with visible feeding traces for all groups. We fitted a generalized linear model with 

quasibinominal error structure and logit link function to the data and observed that there were 

significantly more wheat kernels with feeding sign when colonized with F. proliferatum 

(62.93 ± 3.28 %; OR = 1.8; CI = 1.56 to 2.06), F. poae (61.55 ± 2.69 %; OR = 1.69; CI = 1.47 

to 1.94) or F. culmorum (59.18 ± 6.49 %; OR = 1.53; CI = 1.33 to 1.76) and less kernels with 

sign of feeding colonized with F. avenaceum (31.67 ± 3.32 %; OR = 0.49; CI = 0.43 to 0.56) 

or B. bassiana (20.29 ± 2.57 %; OR = 0.27; CI = 0.23 to 0.31) when compared to controls 

(48.6 ± 2.22 %) (GLM, F = 216.32; d.f. = 5 and 54; P < 0.001). Next, we compared kernels 

with feeding signs divided by the number of kernels with additional signs of caving. Since 

uninfected kernels as well as kernels colonized with F. avenaceum or B. bassiana showed no 

signs of caving at all, these groups were excluded from the analysis. Using a generalized 

linear model with quasibinominal error structure and logit link function we found significant 

differences between the groups (GLM, F = 946.31; d.f. = 2 and 27; P < 0.001); kernels 

colonized with F. proliferatum with no signs of caving were 92.1 ± 1.99 % (OR = 19.05; CI = 

15.85 to 23.04), with F. poae 90.43 ± 1.83 % (OR = 15.46; CI = 13.01 to 18.47) and with F. 

culmorum were 37.93 ± 3.71 % (OR = 0.61; CI = 0.56 to 0.67), respectively. 
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Fig. 3: Selective feeding behavior of larvae on fungi-colonized wheat kernels. (A)Un-inoculated wheat 

kernels as negative control; (B) F. avenaceum, (C) F. culmorum and (D) F. proliferatum colonized kernels 

are shown. Larvae preferred feeding on the inner parts of the kernels infested with F. culmorum and on the 

outer parts of the kernels infested with F. proliferatum whereas larvae avoided feeding on F. avenaceum 

colonized wheat kernels 

3.6 Survival rates of larvae infected by inoculation of conidia into the hemocoel 

To address the question whether Fusarium species are capable of replicating in the insect’s 

hemocoel and thereby contributing to the reduction of larvae’s survival rate we injected 

fungal strains into larvae. As a first experiment, we performed a stabbing-based infection 

route using fungi-contaminated needles. Using this approach, we found no significant effect 

on larval survival rates by injected Fusarium strains; however, as expected, a significantly 

reduced survival rate by entomo-pathogenic B. bassiana (GLM, F = 17.66; d.f. = 6; P < 0.001) 

(Figure S1).  
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Figure S1: Mortality rates of larvae stabbed with fungi-contaminated minutin pins within 7 days. The 

figure showed the accumulative mortality rate of the larvae. Short vertical lines in the small box indicated 

the amount of the dead larvae. N=630. 

 

In a second experiment, we used a syringe-based injection method resulting in an inoculation 

with approx. 104 fungal conidia per larva. Using this second approach with a relatively high 

infection dose, we determined a significant reduction in larvae's survival rate post injection 

with each fungus. Fitting the data to a generalized linear model with quasibinominal error 

structure and logit link function revealed that larvae’s survival rate was reduced by F. 

proliferatum (65.19 ± 1.7 %; OR = 0.53; CI = 0.42 to 0.67), F. poae (66.3 ± 2.31 %; OR = 

0.56; CI = 0.45 to 0.71), F. culmorum (29.63 ± 3.57 %; OR = 0.12; CI = 0.09 to 0.15) or F. 

avenaceum (32.6 ± 2.31 %; OR = 0.14; CI = 0.11 to 0.17) when compared to wounded 

controls (77.78 ± 5.09 %) or sterile puffer injected animals (74.81 ± 1.69 %) (GLM, F = 

300.32; d.f. = 6 and 14; P < 0.001). Values from B. bassiana challenged larvae were excluded 

from the analysis, since all treated animals died resulting in a variance of 0 thereby disturbing 

statistical analysis.  

 

The DNA content of used Fusarium species in inoculated larvae was estimated by qPCR after 

a period of 5, 10, and 15 days to determine whether the fungi can germinate and proliferate in 

the larvae. Fusarium species DNA biomass in the living larvae was under limits of 
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quantification; only DNA of B. bassiana used as a positive control was measurable. 

4. Discussion 

The present study provides insights into ecological interactions of the meal beetle T. molitor 

with selected Fusarium species and B. bassiana on wheat kernels. When fungal mycelium 

was provided as the only food source, survival rates of the larvae were reduced with all tested 

Fusarium species. However, in a more ecologically relevant situation, when fungus-colonized 

wheat kernels were used as diet, we observed that the survival rates of T. molitor larvae fed on 

F. proliferatum- or F. poae-colonized kernels were similar to controls and larvae fed on F. 

avenaceum- , F. culmorum- or B. bassiana-colonized kernels were significantly reduced when 

compared to survival rates of larvae fed on non-colonized kernels. T. molitor larvae preferred 

feeding on kernels colonized with F. proliferatum, F. poae, or F. culmorum over control 

kernels and avoided feeding on kernels colonized with F. avenaceum or B. bassiana. These 

behavioral reactions correlated with the capability of fungal species to reduce larvae survival 

on colonized wheat kernels, except for F. culmorum-colonized kernels.  

 

None of the tested Fusarium species multiplied in living larvae when injected into the insect’s 

hemocoel, in contrast to the entomopathogen B. bassiana. The differences within some 

independent replicates in our experiments provide some evidence for the hypothesis that 

Fusarium mycotoxins are responsible for increased insect mortality rates, since mycotoxin 

levels tend to vary between replicates even if environmental factors are strictly controlled 

(Waskiewicz et al., 2010). 

 

Larve fed on grain colonized with F. culmorum exhibited the highest mortality rate.  Major 

mycotoxins produced by F. culmorum are deoxynivalenol and zearalenone. High levels of 

both mycotoxins were found in kernels colonized with F. culmorum but only low or 

undetectable concentrations were found in larvae fed on F. culmorum-colonized kernels. This 

may be a result of insects avoiding kernel parts with high toxin content and/or that these 

mycotoxins were efficiently metabolized. However, the survival of larvae fed on these kernels 

was low indicating that either transformation products of deoxynivalenol or zearalenone were 

still toxic or other toxic products of F. culmorum were present. In F. avenaceum-colonized 

kernels high levels of enniatins may have contributed to the elevated mortality rates of larvae 

fed on colonized kernels; insect toxicity of enniatins is well documented (Grove & Pople, 

1980, Strongman et al., 1988). Interestingly, we detected only low amounts of beauvericin in 
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wheat kernels colonized with B. bassiana, which probably killed insects by utilizing other 

mechanisms including multiplication within the host. Another evidence that beauvericin may 

not be responsible for larval mortality in this study is the high survival rates of larvae fed on F. 

proliferatum and F. poae-colonized kernels, which contained high levels of beauvericin.  

 

Natural selection is likely to act on multiple levels in both insects and fungi. Insects may use 

fungi as diet or may avoid potentially pathogenic fungi or fungal toxins. For example, the 

beetle Coccinella septempunctata a predator of many insects was shown to avoid B. 

bassiana-colonized insect preys or contaminated leaf surfaces (Ormond et al., 2011). A 

similar avoidance behavior was found in the bug Anthocoris nemorum (Meyling & Pell, 2006). 

Fungal volatiles represent key repellence signals for these insects and probably also for T. 

molitor in our study. A recent study with the termite Macrotermes michealseni provided 

evidence that a mixture of the volatiles 4, 5-dihydro-5-pentyl-2-(3H)furanone, borneol, 

4-nonanone, 2-nonanone, butyrolactone, and camphor contributed largley to the repellency of 

B. bassiana to this termite species (Mburu et al., 2013). On the other side, insects may 

increase their tolerance or resistance against potentially pathogenic fungi or their toxins. 

Supporting this view, larvae of T. molitor have recently been reported to be much more 

tolerant or resistant to tested Fusarium mycotoxins than other insect larvae such as 

armyworms; Moore and Davis reported that T. molitor larvae were about 100 times more 

tolerant to dietary T-2 toxin than the armyworm Mamestra configurata (Moore & Davis, 

1983). Genomic data of a related tenebrionid beetle, the red flour beetle Tribolium castaneum, 

further supports this view by identifying specific genetic adaptations including gene 

duplications of the CYP450 subfamilies CYP6 and CYP9, which are known to be involved in 

toxin resistances (Richards et al., 2008), or of immune-inducible anti-fungal thaumatins 

(Altincicek et al., 2013). Taken together, this indicates that tenebrionid beetles may have 

adapted to counteract to toxic fungi in their environments and determination of the genome 

sequence of T. molitor may further help to address this hypothesis. Fungi, on the other side, 

may produce chemical compounds to react to competition or may increase tolerance against 

grazing. Moreover, producing diverse volatile components fungi could easily gain fitness 

benefits by attracting, repelling or remaining invisible to potential insect hosts, competitors or 

vectors depending on selective pressures. Indeed, recent studies revealed the role of fungal 

toxins in interactions of fungi with fungivorous arthropods (Rohlfs & Obmann, 2009, Staaden 

et al., 2010, Trienens & Rohlfs, 2012, Rohlfs & Churchill, 2011). Enhanced production of 

fungal toxins as a defense response of Aspergillus nidulans against fungivorous collembolans 
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was recently established (Döll et al., 2013). In the present study we have not investigated 

induced reactions of Fusarium fungi to the presence or feeding of beetles; this will be the 

subject of subsequent studies. 

 

In conclusion, our study shed light on ecological interactions of T. molitor larvae with four 

Fusarium species. We found that larvae have evolved to sense threats derived from F. 

avenaceum- or B. bassiana-colonized kernels, but not the threats of F. culmorum-colonized 

kernels. Kernels infested with F. poae or F. proliferatum showed no significant impact on 

larvae’s survival rates under tested conditions. To identify the nature of the threat signals for 

the larvae will be part of our future studies. Knowledge on these signals as well as their 

correlations with the presence of specific mycotoxins may help better understand mutual 

ecological adaptations of meal beetle and Fusarium species. 
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Chapter 3 Fusarium spp. dissemination within grains by 

Tenebrio molitor 

Abstract 

Fusarium species have negative impact on food security by infecting a wide array of crop 

plants and producing numerous human-health threatening toxins. Recently, we found that the 

common pest of stored products, the meal beetle Tenebrio melitor, was preferably feeding on 

wheat grains colonized with F. proliferatum. This was surprising since F. proliferatum was 

capable of increasing beetle’s mortality after T. molitor larvae grazing F. proliferatum mycelia 

and conidia or F. proliferatum colonized wheat kernels. We draw the hypothesis that F. 

proliferatum attracts meal beetles to gain fitness benefits by getting dispersed using the 

beetles as vector.  

After feeding on Fusarium mycelium and conidia, live conidia were traceable in beetles’ 

excreta and beetles were capable of contaminating a high proportion of wheat kernels. The 

duration of fungal dissemination by beetles and fungal colony forming unit density in beetles 

excreta were recorded for up to 20 days. Fungal DNA in live beetle was quantified by qPCR 

at different time points after feeding on Fusarium spp. mycelia and conidia to monitor 

whether Fusarium species survive or proliferate in live beetles. Conidia were traceable for at 

least up to 20 days in beetles’ excreta and also F. proliferatum DNA were positively detectable 

in living beetles collected at 1 day, 5 days, 10 days and 15 days time points. HPLC-MS was 

performed to detect beauvericin, fumonisins, enniatins in live beetles. Beauvericin was found 

in beetles feeding on F. poae, F. proliferatum, or Beauveria bassiana mycelium.  

Our study indicated that 1) Conidia of Fusarium species survived through beetles' gut passage. 

Fungal DNA of Fusarium and mycotoxins including beauvericin, enniatins were detectable  

in beetles and 2) Kernels contamination and fungal colony forming unit density of F. 

proliferatum were higher than other tested Fusarium species, although F. culmorum spores 

were also detectable in beetles' feces for up to 20 days. We believe that our results provide 

new insights for the hypothesis that F. proliferatum attracts meal beetles to gain fitness 

benefits by getting dispersed. A deeper understanding of the impact of insects on 

toxin-producing fungi dissemination within storage grains is essential for food security and 

may help in the improvement of post-harvest management approaches. 
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1. Introduction 

Colonization of kernels by Fusarium species causes serious problems in food security by 

diminishes the quality of the crop products. F. proliferatum has a wide host plant range and 

has frequently been isolated from cereal plants, including maize, wheat, barley, rice, sorghum, 

oats  as well as other plants such as  banana (Jimenez et al., 1993), citrus fruits (Hyun et al., 

2000), asparagus (Elmer, 1995), orchids , date palm (Abdalla et al., 2000) and pine seedlings 

(Ocamb et al., 2002). F. proliferatum (Gibberella intermedia, Gibberella fujikuro imating 

population D) is together with F. verticillioides (Gibberella moniliformis, G. fujikuroimating 

population A) the main source of fumonisin toxin production in food and feed products 

(Jurado et al., 2010, Desjardins et al., 2007). The primary health concerns resulting by high 

dose fumonisin ingestion are acute toxic effects as well as potential carcinogenic effects by 

lower dose intake over time. Consumption of fumonisin-contaminated maize was reported to 

be associated with higher rates of esophageal cancer and neural tube birth defects (Meeting & 

Organization, 2001). Besides fuminisins, F. proliferatum is capable of synthesizing other 

mycotoxins including beauvericin , fusaproliferin , fusarins (Miller et al., 1995), and 

moniliformin (Logrieco et al., 1995, Miller et al., 1995).  

 

Insects represent an important route in the transmission of numerous pathogens between  

plants (Feldman et al., 2008). Fermaud and Menn reported that the grape berry  

moth Lobesia botrana transmitted Botrytis cinerea from infected to healthy grape berries in  

1992 (Fermaud & Le Menn, 1992). Paine et al. discussed that the fungal species Ophiostoma  

may benefit from the association with the bark beetles by transport to new host trees. Beetle  

species (Dendroctonus) may benefit from the association with fungi by feeding on the fungi,  

or by the fungi contributing to the death of the host trees through mycelia penetration of host  

tissue, toxin release, interactions with preformed and induced conifer defenses (Paine et al., 

1997). Prom et al.demonstrated that contaminated adult corn earworm feeding on the 

honeydew secreted by Claviceps africana could transmit the sorghum ergot from diseased to 

healthy panicles when environmental conditions are favorable for infection  

(Prom et al., 2003).  Rust fungus Puccinia monoica inhibits flowering in its  

host plants (Arabis species) and radically transformed infected leaves that mimic true flowers  

of unrelated species in shape, size, color and nectar production. These fungal pseudoflowers  

are highly successful in attracting pollinating insects which fertilize the rust (Roy, 1993).  

Moreover, some pathogens were found to synthesize volatile organic compounds and sugars  

to attract insects for dissemination (Feldman et al., 2008). Friedli and Bacher presented a  
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by-product-purloined mutualism between stem-boring weevil and rust fungus, weevil  

purloined benefits from feeding on rust-infected tissue and rust fungus receiving by-product  

benefits from the weevil transmission spores (Friedli & Bacher, 2001).  

 

Recently, we found that colonization of wheat grains with Fusarium spp. had a significant 

impact on food choice, weight gain and mortality of the meal beetle Tenebrio molitor an 

important cosmopolitan pest of stored products (Guo et al., 2014). We found that F. 

proliferatum colonized wheat kernels were more attractive as food source to T. molitor 

compared negative control, which led us to the hypothesis that F. proliferatum attracts these 

insects for their dissemination. Here, we investigated potential dissemination routes of F. 

proliferatum on wheat kernels by T. molitor.  

2. Materials and Methods  

2.1 Study organisms and general medium 

T. molitor larvae were reared on whole wheat flour with 5% yeast extract in a climate 

chamber in darkness at 27 ± 2 °C and a relative humidity of 65 ± 5%. T. molitor beetles were 

used in the experiment because of the most dispersive stage (Dunkel, 1988). The beetles were 

starved for 24 h and were randomly selected prior use in experiments. T. molitor beetles were 

starved for 24 h for cleaning up the remaining food also to make sure the adults will feed on 

the mycelia (Davis et al., 1975). For beetles surface sterilization, the beetles were carefully 

washed with autoclaved distilled water to wash away the attachments on the cuticle, then with 

1.2~1.3% sodium hypochlorite for 3 min followed by 3 times washing with autoclaved 

distilled water for 2 min. The beetles were dried on autoclaved paper with covering sterile 

plastic cover over at room temperature under laminar flow cabinet (super-clean bench).  

 

Single-spore fungal strains F. avenaceum 1.27, F. culmorum 3.37, F. poae DSM 62376, F. 

proliferatum 21.1, and Beauveria bassiana Bea2 were grown on potato dextrose agar (PDA) 

plates and incubated in darkness at 23 °C. Isolation and identification of the strains was 

described in a previous study (Goertz et al., 2010). The identification of all species was 

confirmed by real time PCR with species-specific primers besides morphological 

identification. F. avenaceum 1.27 was isolated from infected wheat kernels in the year 2008 at 

Poppelsdorf, Bonn, Germany, and taxonomically characterized as described (Guo et al., 2014); 

F. culmorum 3.37 was isolated from infected wheat in the year 2004 at Klein-Altendorf, Bonn, 

Germany; F. poae DSM 62376 was purchased from Deutsche Sammlung von 
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Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany); F. proliferatum 21.1 

was isolated from infected maize in the year 2007 at Hainichen, Germany B. bassiana Bea2 

was isolated from infected Otiorhynchus sulcatus (the black vine weevil) in the year 1989 at 

Stuttgart, Germany.  

 

CLA (Carnation Leaf-piece Agar): aseptically placing sterile 2 pieces of carnation leaves into 

2% water agar plate (20 g agar in 1 L of water).The carnation leaf pieces are prepared from 

fresh carnation leaves free from fungicide or insecticide residue. Immediately after collection, 

the leaves are dried in oven with the temperature 70 °C for 3-4 hours until brittle. The dried 

leaves are sterilized by 1.5 % sodium hypochlorite and dry again under clean bench and then 

2 pieces of leaves are placed on water agar plate (Leslie & Summerell, 2006). 

 

CZID-Agar: Czapek-Dox-Iprodione-Dichloran Agar (Abildgren et al., 1987, Thrane, 1996), 

when the CZID medium cools down to around 55 °C after autoclave, add 1 ml Penicillin, 1 ml 

Streptomycin, 1 ml Ampicillin with the concentration 1 g/10 ml distilled water and 10 ml 

Chlortetracyclin with the concentrction 1 g/100 ml distilled water. And 1 ml Rovral (BASF, 

Germany) solution with the concentration 60 mg/10 ml autoclaved distilled water was added. 

2.2 Fungi conidia and mycelia attachment on beetles 

T. molitor beetles were starved for 24 h and 10 beetles were subsequently placed on one PDA 

(potato dextrose agar) plate fully covered with F. proliferatum 21.1 mycelia (2 weeks growth) 

for 24 h feeding (Jayasinghe & Parkinson, 2009). Live individual beetles were frozen to death 

at -20 °C prior analysing using scanning electronic microscopy (desktop Phenom™ G2 Pro by 

Phenom-World, Netherland). Figures of mycelia and conidia attached on the antennae, 

mouthparts, wings, abdomen and legs were taken for observing fungal mycelia and conidia 

attachment to body parts of the beetles. 

2.3 Fungi colonized the dead beetles 

To determine fungi colonization and Fusarium conidia germination on dead beetles, beetles 

which died within 15 days after feeding on F. proliferatum mycelia and conidia were collected.  

Dead beetles were surface sterilized with 1% sodium hypochlorite for 3 min. Subsequently, 

beetles were rinsed 3 times with sterile distilled water and placed on CZID (selective medium 

priority for Fusarium growth) plates. Images of the specimens observed under light 

microscope were recorded digitally with a camera incorporated to the Leitz DMRB Leica 
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light microscope using software Diskus 4.2 (Hilgers, Königswinter, Germany). 

2.4 Time duration of fungi dissemination by feeding behaviour and cuticle friction  

Autoclaved wheat kernels were investigated for contamination by beetles’ cuticle friction and 

mouthparts ingestion. After feeding on F. avenaceum, F. culmorum, F. poae, F. proliferatum, 

or B. bassiana mycelia and conidia for 24 h, beetles were individually placed in the sterilized 

small Petri dishes with autoclaved wheat kernels. Autoclaved kernels were changed each day.  

Kernels at the time points 1, 5, 10, 15, and 20 days grazing were harvested for assessment 

time duration of contamination, percentage of the contaminated wheat kernels out of all the 

tested wheat kernels was considered as parameter to value tested Fusarium species. 15 wheat 

kernels were collected and placed on CZID medium for the contamination test. 5 repetitions 

were conducted. The whole experiments were repeated twice. 

2.5 Fungal conidia detection in beetle’s excreta 

To investigate fungal dissemination by survived conidia in excreta from gut passage, T. 

molitor excreta were collected 1, 5, 10, 15 and 20 days time points after beetles feeding on F. 

avenaceum, F. culmorum, F. poae, F. proliferatum, or B. bassiana mycelia and conidia for 24 

h. Excreta were mashed and suspended in the sterilized water, then the suspension was spread 

on CZID plates to clarify the time spores existing in adults’ excreta. After 3-4 days incubation, 

fungal colony forming unit density was recorded and treated as parameter to value the 

difference among species (colony forming unit/mg excreta). 5 repetitions were done. The 

whole experiments were repeated twice. 

2.6 Fungi DNA quantification and mycotoxin analyses in beetles2 

qPCR was performed to monitor if any of tested Fusarium species as follows: F. avenaceum, 

F. culmorum, F. poae, F. proliferatum, or B. bassiana  had the ability to proliferate in living 

beetles. After beetles grazed 24 h mycelia and conidia of different Fusarium spp. above on 

PDA plates, beetles feed on autoclaved wheat kernels as unique food source and were 

harvested at 1, 5, 10, and 15 days. Beetles were stored in 96% ethanol and then evaporated in 

the speed vacuum at 40 ℃ overnight to evaporate. Then dry beetles were grinded into fine 

powder.  

 

                                                             
2 The mycotoxins analyses experiments were done by Dr. Katharina Pfohl. 



Chapter 3 Fusarium spp. dissemination within grains by T. molitor 

48 
 

Fine beetles powder of 15~17 mg was weighted and transferred into 2 ml new eppis. 1 ml 

acetonitrile: water (84:16) was added. After thoroughly stirring the samples, they were shaken 

overnight at 180 rpm. Next day the samples were centrifuged at 14,500 rpm for10 min. 950 ul 

supernatant was transferred into 2 ml eppis and stored in -20 ℃ for mycotoxin analyses.  

 

The samples analyzed for trichothecene B and zearalenone were additionally defatted with 

cyclohexane. Beauvericin, fumonisin B1 and enniatins were separated on a RP column at 

40 °C followed by electrospray ionization in positive mode connected to an ion trap 500 MS 

(Varian, Darmstadt, Germany) as described (Nutz et al., 2011). For each mycotoxin detected, 

three mass transitions were used. Nivalenol, deoxynivalenol and zearalenone were separated 

on the same HPLC system but detected by tandem mass spectrometry using triple quadrupol 

1200 L (Varian, Darmstadt, Germany) based on published methods (Adejumo et al., 2007a, 

Adejumo et al., 2007b). Two mass transitions were used for each toxin. Calibration curves 

were constructed using analytical standards dissolved in methanol/water (1:1) with a 

correction for recovery and matrix effects. The limits of quantification for beauvericin, 

enniatin A, B, A1, B1 and fumonisin B1 were 150 and 390 ng/g in beetles respectively. 

 

After mycotoxin extraction, the beetle meal was dried with the vacuum concentractor at 

40 ℃for 4 h. Total DNA of T. molitor beetle was extracted from dried beetles fine powder 

using a CTAB method (Brandfass & Karlovsky, 2008). The pellet was dissolved in 50 ul TE 

buffer (10 mM Tris, 1 mM EDTA, pH 8.0). DNA was diluted fifty fold prior to PCR analysis. 

Inhibition assay was done to test if any matrix effects on the amplification of fungi DNA. 

 

Thermocycler (CFX384TM, BioRad, USA) was used for real-time PCR analysis (quantitative 

PCR) in a total volume of 4 ul. Primers MGB F/R (Waalwijk et al., 2004), OPT18 F/R 

(Schilling et al., 1996), Fp 82F/R (Parry & Nicholson, 1996), Fp 3F/4R (Jurado et al., 2006) 

were used for the species-specific detection of F. avenaceum, F. culmorum, F. poae and F. 

proliferatum respectively. The reaction mixture consisted of buffer (16 mM (NH4)2SO4; 67 

mM Tris-HCl; 0.01% (v/v) Tween-20, pH 8.8 at 25 ℃, Bioline GmbH, Luckenwalde, 

Germany), 0.15 mM of each dNTP (Bioline GmbH, Luckenwalde, Germany), 2.5 mM MgCl2, 

0.1 U of Taq DNA polymerase (BIOTaq, Bioline GmbH, Luckenwalde, Germany), 0.3 mM of 

each primer, 0.1 x SYBR Green I (Invitrogen, Karlsruhe, Germany) and 1 mg/ml bovine 

serum albumin. The lowest standards set as limits of quantification were 0.169 pg/ul for F. 

avenaceum, F. culmorum, F. poae and 2.09 fg/ul for F. proliferatum. 
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2.7 Fungal dissemination by copulation between beetles 

Male T. molitor beetle reared on F. proliferatum 21.1 mycelia and conidia for 48 h, 

subsequently, the male beetle was individually placed in the plastic Petri dishes with surface 

sterilized female beetle. Eggs were picked up one by one with the sterilized forceps 5-7 days 

after copulation from dissected female beetle cavity and then placed on CZID plates. Mycelia 

grew out from the eggs were recorded. 

2.8 Fungi re-isolation and confirmation  

Finally, to confirm Koch’s postulates, F. proliferatum 21.1 as a representative species was 

re-isolated from gut of the adult beetle, contaminated wheat kernels by the beetles feeding, 

excreta of the adult beetles feeding on fungal mycelia and conidia, and eggs from female 

copulated with male that ingested on F. proliferatum mycelia and conidia for 24 h. Hypha tip 

was scratched and transferred on CZID plate, three replicates were done. Later, single 

mycelium tip was scratched and transferred again on PDA and CLA to confirm the pathogen 

through the pigment and colony, microconidia and macroconidia characteristics (Leslie & 

Summerell, 2006). Three discs of 50 mm diameter PDA filled with mycelia were cut and 

transferred into 50 ml Erlenmeyer flask with PDB medium under 150 rpm and 25 ℃ dark 

incubator condition for 4 days. Using four-layer cheese cloth for filtering the mycelia, mycelia 

were freeze-dried at -50 °C for 48 h. Mycelia were ground into fine powder with 

micro-disintegrator. 18~20 mg fine powder was used for DNA extraction.  

 

DNA was extracted according to the manufacturer’s protocol of DNeasy Plant Mini kit 

(QIAGEN, Germany) and the samples were eluted in 50 μl of elution buffer and stored 

at -20 °C. The DNA of samples was estimated by gel electrophoresis in 1.0% agarose gels 

(Agarose NEEO Ultra-Quality, Carl Roth GmbH, Karlsruhe, Germany) prepared in 1 x TAE 

buffer (diluted from 50 x TAE buffer, Applichem GmbH, Darmstadt, Germany). The 

electrophoresis was carried out at 100 V/6 cm for 30 min. The agarose gel was stained with 

10,000 x dilution Gel Red (5 ul Gel Red diluted in 50ml 1x TAE buffer, Biotium, Darmstadt, 

Germany) and documented with a digital imaging system (Gel DocTM, Bio-Rad, USA). PCR 

also be done with F. proliferatum species-specific primers. PRO1: 5’-CTTTCCGCCAAGTTT 

CTTC-3’ and PRO2: 5’-TGTCAGTAACTCGACGTTGTTGTT-3’ (Mulè et al., 2004) and the 

fragment is 585 bp. 
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3. Results 

3.1Fusarium conidia and mycelia attached on different body parts of T. molitor beetles 

To determine the attachment of mycelia and conidia on different body parts the beetles as 

transmission route, we utilized scanning electronic microscopy. Mycelia (Fig. 1A) and 

conidia (Fig. 1B) of F. proliferatum 21.1 were detected on the beetles' cuticle. In detail we 

found conidia on antennae (Supplementary Information Fig. 1: B, A as control), mouthparts 

(Supplementary Information Fig. 1: D, C as control), wings (Supplementary Information Fig. 

1: F, E as control) and legs (Supplementary Information Fig. 1: H, G as control) of T. molitor 

beetles. By attachment on beetle cuticle, conidia and mycelia could easily be disseminated 

by friction or contact to new kernels of cereals.  Moreover, Fusarium mycelia grew on 

beetles' carcass (Fig. 2: A and B), which could represent a further route of dissemination.  

 

 

Fig. 1: Fusarium species mycelia and conidia attached on cuticle of T. molitor beetles. The scanning 

microscopy figures indicated that F. proliferatum conidia (A) and mycelia (B) attached on cuticle of T. 

molitor beetles. 
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Fig. 2: Fusarium conidia germinated from dead beetles, contaminated kernels, beetles excreta and 

contaminated eggs, and cuticle friction. Fusarium conidia germination on dead beetles, beetles which 

died within 15 days after feeding on F. proliferatum  mycelia and conidia (A and B). Autoclaved wheat 

kernels were contaminated by adult mouthparts and cuticle friction after beetles ingestion behavior (C and 

D). The conidia germination from excreta proved that the conidia survived from the gut passage (E).  

Fungal disseminated through copulation by male adult ingestion 72 h mycelia and conidia to female adults’ 

eggs (F). 
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Figure S1: Fusarium species conidia and mycelia attached on different body parts of T. molitor 

beetles. The scanning microscopy figures indicated that F. proliferatum conidia attached on antennae (B, A 

as control), mouthpart (D, C as control), wings (F, E as control) and legs (G, H as control) of T. molitor 

beetles. 

3.2 Fungal dissemination by beetles  

To determine the potential contamination of naive kernels by insect feeding, autoclaved wheat 

kernels were placed into a Petri dish with T. molitor imagoes, which were feeding on F. 

proliferatum mycelium, and were changed every 24 h. This procedure was repeated for 20 

days. Kernels collected on 1, 5, 10, 15 and 20 days were incubated on CZID in dark at the 

temperature 25 ℃. Mycelia grew out from the contaminated kernels which indicated the 

contamination by the mouthparts or the body friction by the beetles (Fig. 2：C and D).  

 

We repeated this experiment for three further Fusarium species and B. bassiana as control to 

check whether there are differences on dissemination rates.  The highest contamination rate 

was found with F. proliferatum. Even after 20 days the percentage of the contaminated kernels 

was still more than 90%. Of note, F. culmorum contamination percentage on 20 days samples 

were around 40% and for F. avenacum and F. poae there was no detectable contamination  

after 20 days (Fig. 3 A). 

 

F. proliferatum 21.1 conidia survive beetle’s gut passage for a long time (Fig. 2 E), F. 

avenaceum 1.27 and F. poae DSM 62376 conidia load decreased dramatically and were not 

detectable after 10 days (Fig. 3 B). F. culmorum 3.37 conidia load decreased  to 40% 

compared to the initial value after 20 days, and Beauveria bassiana Bea2 conidia load was not 
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measurable since all treated beetles died within 5 days. 

 

 
 
Fig. 3: Fungal dissemination by adults contaminated wheat kernels and conidia in excreta survival 

from gut passage. Percentage of mycelia germinated from contaminated kernels with the time points up to 

20 days. Results were indicated mean ± S.D. N=525 (Fig. 3A). Fungal colony forming unit density existed 

in the excreta of T. molitor adults feeding on mycelia and conidia of Fusarium species. Results were 

indicated mean ± S.D. (Fig. 3B). 

3.3 DNA quantification and mycotoxin analyses 

The DNA content of  Fusarium species in beetles grazing for 24 h on respective fungal 

mycelia were quantified by real time PCR at time points 1, 5, 10, and 15 whether the fungi 

can proliferate in living beetles. Fungal DNA of 6 tested species was detectable in beetles 

(Table 1). Fungal DNA biomass of the tested Fusarium species was not significantly different 

over tested time period. Fungal DNA biomass of F. avenaceum indicated at least no detectable 

proliferation in the beetles for up to 15 days after ingestion. 

 

Table 1：Fungal DNA in beetles grazing on Fusarium spp. mycelia and conidia  

 
Fungal species 

Species-specific fungal DNA in beetles (ng/g) 

Days after grazing on fungi  

1 5 10 15 

Control <LOD <LOD <LOD <LOD 

F. avenaceum 76±73* (7/10) 47±42* (5/10) 106±68* (9/10) 153±135 (4/4) 

F. culmorum 233±250 (10/10) 90±120 (10/10) 197±201*(9/10) <LOD* (1/1) 
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F. poae 3* (1/10) 5±5* (2/10) 41±70*( 3/10) 3±3* (7/8) 

F. proliferatum 218±132 (10/10) 69±105 (10/10) 101±92(10/10) 97±204(8/8) 

Means and standard deviation of positive samples and proportions of positive sample per sampled beetles 

are shown.The value with asterisk * indicated not all the tested samples were positive. 

 

According to the mycotoxin quantification, beauvericin, enniatin B, A1, B1 were detected in 

live beetles (Table 2). Enniatin A was only detectable in beetles grazing on F. poae and B. 

bassinana. Mycotoxin of fumonisin B1 was not detected feeding on F. proliferatum mycelia 

and conidia. Deoxynivalenol, nivalenol and zearalenone were not detectable in the beetles 

ingesting F. culmorum and F. graminearum. Enniatin A1, B1, content in beetles grazing on F. 

avenaceum, F. equiseti, F. poae and F. proliferatum at time points 1 or 5 days was different. 

However, the mycotoxin content for enniatin A1 and B1 was higher at the time point 10 days. 

3.4 Fungal dissemination by copulation of beetles 

To examine whether  beetles can transmit the fungus to female beetles as well as to the 

offspring,  male imagoes ingested Fusarium were mated with naive female imagoes , After 7 

days , the female adults were dissected and eggs were taken out of the cavity. The eggs were 

surface sterilized and incubated on CZID medium. 3-4 days later the Fusarium mycelia 

growth was recorded (Fig. 2F). Out of 50 eggs we detected 30 eggs were contaminated with F. 

proliferatum. As control, 50 eggs were treated similarly and no egg contamination with F. 

proliferatum was detected. In one case we observed a contamination with Aspergillus species. 

The results indicated that Fusarium contamination can occur during beetles' mating. 

3.5 Fungal re-isolation and confirmation  

To confirm the identity of isolated Fusarium mycelium was transferred to both PDA and CLA 

plates. Fungi were tested for specific morphological features of spores. In addition, DNA of 

isolated fungi from contaminated kernels, adults’ excreta, eggs after mating, or beetles' guts 

were used in PCR with species-specific primers of e.g. F. proliferatum. A amplified DNA 

product resulting in a band with 585 bp size in agarose gel electrophoresis confirmed that the 

kernels, adults’ excreta, eggs and adult gut were contaminated by F. proliferatum. 
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Table 2: Mycotoxin content in T. molitor live beetles  1 
 2 

Fungi   Beauvericin Fumonisin B1 Enniatin A Enniatin B Enniatin A1 Enniatin B1 Deoxynivalenol Nivalenol Zearalenone 

(ng mycotoxin/g beetles meal) 

 

F. avenaceum 

1 day LOD LOD LOD 410±334* 275±12* 263±162 / / / 

5 days LOD LOD LOD 382±152 261±32* 297±97 / / / 

10 days LOD LOD LOD 510±181* 291±32* 355±111* / / / 

15 days LOD LOD LOD 216±28* LOD 177±6* / / / 

 

F. poae 

1 day 252±56* LOD LOQ LOQ 203 ±33* 156±29 / / / 

5 days 176* LOD LOQ 366* 259±80 221±102 / / / 

10 days 1153±1114 LOD LOQ 235 ±31* 337±82 305±104 / / / 

15 days 215±55* LOD 212* LOQ 345±352 292±332 / / / 

 

F. proliferatum  

1 day 1383±1656* LOD LOD 349±350* 265±108* 230±174 / / / 

5 days 499±466* LOD LOD 257±45* 207±15* 203±46 / / / 

10 days LOQ LOD LOD 466±128* 209±25* 309±92* / / / 

15 days LOD LOD LOD 185±19* 225±11* 166±12 / / / 

 

F. culmorum 

1 day / / / / / / LOD LOD LOD 

5 days / / / / / / LOD LOD LOD 

10 days / / / / / / LOD LOD LOD 

15 days / / / / / / LOD LOD LOD 

 

B. bassiana 

1 day 161* LOD LOQ 349±43* 330±103 283±111* / / / 

5 days 1759 ±1617 LOD 413±215* 232±81 279±48 224±46 / / / 

 3 
Notes; 4 

Enniatin B, enniatin A1, enniatin B1 were also detected in uninoculated control wheat kernels from field because of natural Fusarium infection. 5 

The values indicate mean values and respective standard deviation. Oblique lines indicate that the mycotoxin was not analyzed.  6 

The limits of quantification (LOQ) of beauvericin, enniatin A, enniatinB, enniatin A1, enniatin B1 were 155 ng/g while LOQ of fumonisin B1 was 390 ng/g. 7 

The asterisk * indicated not all 10 of the tested samples were positive.8 
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4. Discussion 

Here, we found evidence that T. molitor is capable of disseminating Fusarium species within 

grains. It is well reported that pest insects may increase mold in stored grain products by 

physical opening an entrance for fungi during feeding (Dunkel, 1988), however, to our 

knowledge it is the first time described that F. proliferatum may attract T. moitor to use these 

insects as vehicle to get dispersed between grains.  

 

Adult T. molitor beetles ingested F. proliferatum mycelia and conidia ，were capable of 

contaminating wheat kernels at a rate of about 90% even 20 days later. The mouthparts and 

feces may represent predominant routes for this contamination (Hendrichs et al., 1991). 

Underlining our results, Teetor-Barsch also mentioned that some insects contribute to fungus 

dissemination by means of conidia passage through their guts (Teetor-Barsch & Roberts, 

1983).   

  

Mycotoxin of fumonisin B1, deoxynivalenol, nivalenol and zearalenone were not detected in 

live beetles. One explanation could be that the insects were not  an appropriate environment 

to synthesize these  mycotoxins by fungi or that the insects detoxified the mycotoxin  or 

excreted them (Abado‐Becognee et al., 1998). Enniatin A1 and B1 mycotoxin content were 

higher at time point 10 days compared that of 1 and 5 days time points, which indicates that 

mycotoxins were synthesized in live beetles after 5 days. Comparing the fungal DNA biomass 

and the mycotoxin content in beetles, we found a positive correlation.  

 

Interestingly, we found Fusarium conidia transmission by beetles' mating in agreement with 

our study. Maniania et al. also found that male Busseola fusca moths successfully transmitted  

Metarhizium anisopliae or Beauveria bassiana fungi to females by mating (Maniania et al., 

2011).  

 

It is well documented that insects represent vectors for plant pathogenic fungi: based on a 

national survey of Fusarium species in Canada by Gordon (Gordon, 1959). F. avenaceum, F. 

culmorum and F. poae were isolated from following insects: common housefly (Musca 

domestica), clover leaf weevil (Hypera punctata) and grass hoppers (Melanoplus bivittatus). 

In addition, Windels et al. (Windels et al., 1976) isolated F. solani, F. moniliforme, F. 

oxysporum and F. roseum from picnic beetles (Glischrochilus quadrisignatus). These 
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observations suggest that other insects play also a role in the dissemination of Fusarium 

species as well. 

 

In conclusion, our study illustrated ecological interactions of T. molitor beetles with tested 

Fusarium species. We found that T. molitor beetles may serve as vehicle for conidia 

transmission particularly for F. proliferatum. We believe that our present study provides 

valuable insights into the impact of insects on toxin-producing fungi dissemination within 

storage grains, which may help in the improvement of post-harvest management approaches 

for future food security. 
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Chapter 4 Characterization of diverse Fusarium proliferatum strains 
and the pathogenicity on Tenebrio molitor 

Abstract 

Fusarium proliferatum (Matsushima) Nirenberg is an important pathogen infecting numerous 

crop plants thereby reducing yield and quality. In various climatic zones, F. proliferatum 

colonizes an extraordinarily broad range of host plants including maize, wheat, barley, rice, 

asparagus, banana, date palm, garlic, onion, miscanthus and more. In our previous 

experiments, we reported that the meal beetle T. molitor, was preferably feeding on F. 

proliferatum mycelia and conidia, and wheat kernels colonized with F. proliferatum. Our 

hypothesis is, utilizing behaviors property of the meal beetle T. molitor preference feeding on 

F. proliferatum mycelia and conidia, and F. proliferatum colonized wheat kernels, to find 

potential of F. proliferatum in biological control of storage pests as trap. 

 

Radiate growth rate, sporulation, pathogenicity on 4th instar T. molitor larvae of F. 

proliferatum single spore strains originally isolated from garlics, onions, asparagus, maize, 

miscanthus and dead larvae separately in Germany, France, Syria and Austria were recorded. 

Radiate growth rate and sporulation had weak negative correlation to the pathogenicity of F. 

proliferatum strains, and there was variance of pathogenicity among the tested F. proliferatum 

strains. DNA biomass in the larvae tissue between the cuticle and gut passage was quantified 

and illuminated that some of tested F. proliferatum strains can proliferate in the larvae. 
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1. Introduction 

Fusarium proliferatum (teleomorph: Gibberella intermedia) is a worldwide pathogen 

distribution on a variety of agricultural plants, including maize, wheat, barley, rice, sorghum, 

oats (Marín et al., 1998, Park et al., 2005, Leslie et al., 1990, Wu et al., 2005, Edwards, 2009) 

and non-agricultural hosts, including banana (Jimenez et al., 1993), citrus fruits (Hyun et al., 

2000), asparagus (Elmer, 1995), orchids (Benyon et al., 1996, Ichikawa & Takayuki, 2000), 

date palm (Abdalla et al., 2000), mango, and pine seedlings (Ocamb et al., 2002). F. 

proliferatum strains infect crops roots, seedlings, spikes, ears in the field as well as crops 

products postharvest. Fusarium mycelia colonization on postharvest kernels causes serious 

problem in storage grains and diminishes the quality of the crop products by secondary 

metabolites. 

 

Fusarium species also infect animals, such as: nematodes, spiders, insects amphibians, 

reptiles, and mammals (Teetor-Barsch & Roberts, 1983). The research on pathogenicity of 

Fusarium species against insects was well studied. More than 13 Fusarium species are 

pathogenic to insects, and the group has a host range that includes Coleoptera, Diptera, 

Hemiptera, Hymenoptera, and Lepidoptera (Humber, 1992). F. oxysporum was effective 

against larvae of Chilo auricilius, C. infuscatellus and Sesamia inferens, and adults and 

nymphs of Phytoscaphus perpusilla (Varma & Tandan, 1996). Majumdar found that dense 

mycelia of F. solani grew inside puparia from transverse dissection of infected root maggot 

pupae, which indicated F. solani fungal penetration and pathogenicity (Majumdar et al., 2008). 

F. avenacum has been demonstrated its pathogenicity on greenhouse whitefly (Trialeurodes 

vaporariorum) (Rojas et al., 2003) in Colombia. F. graminearum, F. culmorum, F. 

acuminatum, F. avenaceum, and F. equiseti had entomopathogenic properties on wheat stem 

sawfly (Cephus cinctus) (Sun, 2008).  

 

Many Fusarium spp. are known to produce a broad spectrum of protein and 

polysaccharide-hydrolysing enzymes, which could be useful in complete hydrolysis of 

complex organic substances, including both living and non-living plant cell walls and insect 

cuticles. This versatility of Fusarium spp. in transforming from plant pathogens to insect 

pathogens enables them to cause epizootics of both plant diseases and insect diseases in fields 

(St Leger et al., 1997). Venugopal et al. (Venugopalrao et al., 1989) observed that epizootics 

of Fusarium caused mortality levels that were equal to or even higher than predators and 

parasitoids in populations of the whitefly, Bemisia tabaci (Gennadius). 
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In addition to the insecticidal activities of extracellular hydrolytic enzymes, mycotoxins have 

been reported as important secondary metabolites of Fusarium species. Many mycotoxins and 

their derivatives, have insecticidal properties (Roberts, 1981). F. proliferatum is the well 

known producer of fumonisins production in food and feed products (Jurado et al., 2010, 

Desjardins et al., 2007). Besides, fumonisins, F. proliferatum synthesize beauvericin (Leslie et 

al., 2004, Logrieco et al., 1995, Plattner & Nelson, 1994), fusaproliferin (Leslie et al., 2004, 

Randazzo et al., 1993, Reynoso et al., 2004), fusarins (Miller et al., 1995), moniliformin 

(Logrieco et al., 1995, Miller et al., 1995). Gupta et al.(Gupta et al., 1991) isolated the toxin 

beauvericin, a cyclodepsipeptide, from Fusarium. Those authors showed that beauvericin is 

able to kill 50% of Colorado potato beetles, Leptinotarsa decemlineata (Say), larval test 

populations at a 633-ppm dose.  

 

Tenebrio molitor is an important and globally distributed pest of stored products and sensitive 

to small quantitative variation in dietary composition and used as bioassay agent. T. molitor 

was demonstrated by Davis et al. (Davis et al., 1975) as bioassay agent to screen mycotoxins. 

Davis & Smith (Davis & Smith, 1977), who detected toxic metabolites from psychrophilic 

Fusarium pathogens in cereal grain, with larvae of T. molitor. Morales-Ramos et al. 

illustrated that T. molitor larvae have the ability to self-select optimal ratios of two dietary 

components for development and population growth (Morales-Ramos et al., 2011).  

 

In our previous experiments, we reported that the meal beetle T. molitor, was preferably 

feeding on wheat grains colonized with F. proliferatum (Guo et al., 2014). In the present study, 

31 single spore strains of F. proliferatum were isolated from garlics, onions, asparagus, maize, 

miscanthus and dead larvae separately in Germany, France, Syria and Austria were tested to 

find potential of F. proliferatum in biological control of storage pests as trap because of meal 

beetle T. molitor preference feeding behaviors property on F. proliferatum colonized wheat 

kernels. Our present study aims to illustrate that 1) whether radical growth rate and 

sporulation of tested F. proliferatum strains were correlated with pathogenicity on 4th instar 

Tenebrio molitor larvae, 2) whether F. proliferatum mycelia can penetrate and propagate in 

the larvae tissue from cuticle or gut.  

2. Materials and methods 

2.1 Fungal strains cultivation  

Single spore strains of F. proliferatum were isolated from garlics, onions, asparagus, maize, 
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miscanthus and dead larvae separately in Germany, France, Syria and Austria – these made up 

31 strains as shown in Table 1. Species-specific PCR was also used to confirm the 

identification of F. proliuferatum strains based on morphological features by the light 

microscopy according to the characteristics on CLA and PDA. Forward primer PRO1: 

5’-CTTTCCGCCAAGTTTCTTC-3’ and reverse primer PRO2: 5’-TGTCAGTAACTCGACG 

TTGTTGTT-3’ (Mulè et al., 2004). Species specific primers of F. proliferatum were designed 

based on partial sequence of the calmodulin gene (Waskiewicz et al., 2010). Beauveria 

bassiana (entomo-pathogenic fungi) was used as positive control. 

 

Table 1: Strains codes, the years isolated , the host plants and the origin of F. proliferatum strains 

Isolates Host plants Year Origin 

F. proliferatum 2-K Garlic 2000 France 

F. proliferatum 67-M Miscanthus 1993 Brandenburg, Germany 

F. proliferatum 78-M Miscanthus 1993 Brandenburg, Germany 

F. proliferatum 86-M Miscanthus 1993 Brandenburg, Germany 

F. proliferatum 2-Z Onion 2008 Bad-wuertemburg, Germany 

F. proliferatum 5-Z Onion 2008 Rheinland-Pfalz, Germany 
F. proliferatum 29-Mais Maize 2005 Brandenburg,Germany 

F. proliferatum 76-Mais Maize 2008 Frei/Rust,Germany 

F. proliferatum 219-S Asparagus 2000 Rheinland-Pfalz,Germany 

F. proliferatum 223-S Asparagus 1997 Brandenburg,Germany 

F. proliferatum 227-S Asparagus 2003 Goldgeben 1, Lower Austria 

F. proliferatum 231-S Asparagus 2003 Goldgeben 2, Lower Austria 

F. proliferatum 241-S Asparagus 2003 Upper Austria 

F. proliferatum 245-S Asparagus 2003 Burgenland,Austria 

F. proliferatum 259-S Asparagus 2003 Lower Austria 

F. proliferatum 3-B Dead larvae 2005 Syria 

F. proliferatum 14-F Maize 2006 Germany 

F. proliferatum 18-O Maize 2006 Germany 

F. proliferatum 20-J Maize 2006 Germany 

F. proliferatum 24-C Maize 2006 Germany 

F. proliferatum 27-K Maize 2006 Germany 

F. proliferatum 36-D Maize 2006 Germany 

F. proliferatum 42-D Maize 2006 Germany 

F. proliferatum 44-J Maize 2006 Germany 

F9 DSM62261   

F10 F. pro4   

F11 DSM840   

F12 DSM62267   

F13 DSM63267   

F14 DSM764   

F. proliferatum 21.1 Maize 2007 Hainichen, Germany 
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The meal beetle T. molitor, which is a common storage pest and destructive insect species, 4th 

and last instar (mature) larvae were used in our study. T. molitor larvae were reared on whole 

wheat flour with 5% yeast extract in a climate chamber in darkness at 27 ± 2 °C and a relative 

humidity of 65 ± 5%. 4th instar larvae were starved for 24 h for the pathogenicity assay and 

last instar (mature) larvae were starved for 48 h for F. proliferatum conidia germination and 

penetration experiments.Larvae were randomly selected prior use in experiments respectively. 

2.2 Growth assessment of F. proliferatum strains in vitro 

A 5.0 -mm-diameter agar disk filled with mycelia from the margin of a 3-day-old growing 

colony of each strain grown at 25 °C without light was used to centrally sub-inoculate on 

PDA. The plates were incubated at 25 °C condition for 7 days, and the experiment consisted 

of a fully replicated set of treatments with 3 repetitions. Experiments were done twice. 

Assessment of growth was recorded daily during the 7-day incubation period. The radical 

diameter of each growing colony was crisscrossed until the colony reached the edge of the 

PDA plate (Van Poucke et al., 2012, Jurado et al., 2008). The comparison of various isolates 

was done based on  the area of colony (S=πR2-πr2). 

2.3 The sporulation variability  

Mung bean medium was made according to recipe of Bai (Bai & Shaner, 1996). 1 Lwater was 

boiled in a flask on a hot plate and 40 g mung bean seeds were placed into boiling water and 

continue boiled for 10 min (make sure mung bean seeds are entire incase the seeds release the 

starch which inhibit the conidia growth). Mung beans broth was filtered through four-layer 

cheese cloth to remove mung bean and broth was harvested in clean flasks. Mung bean broth 

was subdivided 50 ml into 100 ml volume flask and then autoclaved at 121 ℃ for 20 min. 

Autoclaved mung bean broth was cooled down to room temperature. 

 

The cryocultures of different isolates of F. proliferatum were inoculated on the PDA plates 

and incubated at 25 ℃ without light for 7 days. Later, three discs of 50 mm diameter PDA 

filled with mycelia were cut and transferred into 50 ml Erlenmeyer flask with mung bean 

medium under 150 rpm and 25 ℃ dark incubator condition for 4 days. Using four-layer 

cheese cloth for filtering the mycelia, conidia were collected in 50 ml tubes. Each isolate has 

3 repetitions and the experiments were conducted twice. Harvest conidia were stored in 

-80 ℃  for plants inoculation. Conidia were counted directly in the suspension with 

haemocytometer cell.   
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2.4 The difference of pathogenicity on 4th instar T. molitor larvae 

Agar disks filled with mycelia (as mentioned above) of each F. proliferatum strain were 

inoculated on PDA plates after 7-8 days growth, the mycelia reached to the edge of the plates. 

Each strain had 5 repetition PDA plates. Per PDA plate 10 T. molitor larvae at 4th-instar-age 

were reared on mycelia and conidia of diverse F. proliferatum strains, and survival rates were 

monitored within 15 days. Dead larvae were fetched out of the plates daily to avoid becoming 

putrid and contaminating other live larvae. The 4th instar larvae were starved for 24 h and 

were randomly selected prior use in experiments. Positive control treatment was PDA plates 

with Beauveria bassiana mycelia and conidia while negative control treatment was handled in 

the same way with uninoculated PDA agar. The experiment was repeated twice. 

2.5 F. proliferatum conidia germination and penetration from gut passage 

After mature larvae were starved 48 h and then placed on PDA plates filled with F. 

proliferatum strains mycelia and conidia for 15 days. Individual larvae was dissected and 

separated into three parts: the cuticle, the larvae tissue between cuticle and the gut, and the 

gut.10 individual larvae were done for each treatment and mature larvae ingesting Beauveria 

bassiana (an insect-pathogenic fungus) mycelia and conidia as positive, blank PDA plate 

without fungi infection as negative control.  

 

The larvae tissue between cuticle and the gut samples were freeze-dried and ground into fine 

powder. Total DNA of T. molitor each larvae sample was extracted from ground sample fine 

powder using a CTAB method (Brandfass & Karlovsky, 2008). The DNA pellet was dissolved 

in 20 µl TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0). DNA of tissue was diluted fifty fold 

prior to PCR analysis. DNA of cuticle and gut was diluted a hundred fold prior to PCR 

analysis because of high lipids and chitin. Inhibition assay was done to test if any that matrix 

effects amplification of fungal DNA. 

 

Thermocycler (CFX384TM, BioRad, USA) was used for real-time PCR analysis (quantitative 

PCR) in a total volume of 4 ul. DNA biomass in these sampels of tested F. proliferatum 

strains was compared. Primers Fp 3F/4R (Jurado et al., 2006) were used for the 

species-specific detection of F. proliferatum. The reaction mixture consisted of buffer (16 mM 

(NH4)2SO4; 67 mM Tris-HCl; 0.01% (v/v) Tween-20, pH 8.8 at 25 ℃, Bioline GmbH, 

Luckenwalde, Germany), 0.15 mM of each dNTP (Bioline GmbH, Luckenwalde, Germany), 

2.5 mM MgCl2, 0.1 U of Taq DNA polymerase (BIOTaq, Bioline GmbH, Luckenwalde, 
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Germany), 0.3 mM of each primer, 0.1 x SYBR Green I (Invitrogen, Karlsruhe, Germany) 

and 1 mg/ml bovine serum albumin. The lowest standard set as limits of quantification (LOQ) 

was 2.09 fg/ul. DNA biomass in these samples of tested F. proliferatum strains was compared. 

Data analyses were conducted by SPSS (IBM SPSS Statistics 22, USA). 

3. Results  

3.1 Growth assessment of F. proliferatum strains  

In a first step we determined the radical growth rate of various F. proliferatum strains within 7 

days on PDA medium to monitor the mycelia growth speed contribution on pathogenicity of F. 

proliferatum to T. molitor larvae, which means if the radical growth was faster, the strains 

caused a higher mortality rate. We compared the colony area of thirty-one F. proliferatum 

strains according to the diameter of the colony. 

 

 
 
Fig. 1. Growth assessment of F. proliferatum strains on PDA plates (S=πR2-πr2). Radiate growth rates of 
various F. proliferatum strains isolated from divers host plants were significant  different . Bars indicated 
mean ± S.D. 
 

According to the data shown in Fig. 1, there was significant a difference among the strains. F. 

proliferatum 21.1, F14 and 219-S grew relatively faster compared to other tested strains 

whereas radical growth rates of F. proliferatum 76-Maize, 241-S, 3-B, 27-K and F9 were 

relatively lower. Even the F. proliferatum from the same host, the growth rate was variance. 
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For instance: F. proliferatum 219-S, 223-S, 227-S, 231-S, 241-S, 245-S and 259-S, were all 

isolated from asparagus. However, growth rate of F. proliferatum 219-S was significantly 

higher than that of F. proliferatum 241-S.  

3.2 Sporulation variability in mung bean medium 

To determine the sporulation contribution on pathogenicity of fungi to T. molitor larvae, the 

sporulation variability experiment of test isolates of F. proliferatum was conducted. 

 

 
Fig. 2. Sporulation variability in mung bean medium. Sporulation ability of diverse tested F. 

proliferaum strains in mung bean medium was significantly different between each other. Bars indicated 

mean ± S.D. (N=186). 
 

From the data above, sporulation variety existed among strains，sporulation value of F. 

proliferaum F12, F. proliferaum 18-O, and F. proliferaum 29-Maize were higher than the 

other strains, in contrast, conidia concentration of F. proliferaum 5-Z, F. proliferaum 241-S, 

and F. proliferaum 245-S was relatively lower. Though the strains were isolated from the 

same plant host, the sporulation ability was various, for example, F. proliferaum 2-Z and F. 

proliferaum 5-Z were isolated from onion, the sporulation ability of F. proliferaum 2-Z is 

significant higher compared F. proliferaum 5-Z. It also happened to F. proliferaum 219-S, 

223-S, 227-S, 231-S, 241-S, 245-S and 259-S, which were isolated from asparagus.  
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3.3 The correlation radical growth rate, sporulation of different tested strains and 
mortality rate of 4th instar larvae 

In a next step we determined the capability of F. proliferatum strains to induce mortality of 

larvae. We monitored the preference and avoidance feeding behaviors and also the mortality 

of 4th instar T. molitor larvae reared on PDA plates covered with mycelia of thirty-one F. 

proliferatum strains during a period of 15 days. Under these conditions fungal mycelium on 

PDA was the sole diet available for the 4th instar larvae. 

 

Table 2: The preference and avoidance of 4th instar T. molitor larvae on the PDA covered with mycelia  

Isolates Host plants Preference/Avoidance 

F. pro 2-K Garlic - 
F. proliferatum 67-M Miscanthus + + 
F. proliferatum 78-M Miscanthus + + 
F. proliferatum 86-M Miscanthus - 
F. proliferatum 2-Z Onion + + 
F. proliferatum 5-Z Onion - 
F. proliferatum 29-Mais Maize -+ 
F. proliferatum 76-Mais Maize - 
F. proliferatum 219-S Asparagus - 
F. proliferatum 223-S Asparagus + + 
F. proliferatum 227-S Asparagus - 
F. proliferatum 231-S Asparagus + + 
F. proliferatum 241-S Asparagus + + 
F. proliferatum 245-S Asparagus - 
F. proliferatum 259-S Asparagus -+  
F. proliferatum 3-B Dead larvae + + 
F. proliferatum 14-F Maize -+ 
F. proliferatum 18-O Maize + 
F. proliferatum 20-J Maize + 
F. proliferatum 24-C Maize - 
F. proliferatum 27-K Maize - 
F. proliferatum 36-D Maize - 
F. proliferatum 42-D Maize - 
F. proliferatum 44-J Maize + + 
F9 DSM62261 + + 
F10 Fpro4 + + 
F11 DSM840 + + 
F12 DSM62267 - 
F13 DSM63267 + + 
F14 DSM764 -+ 
F. proliferatum 21.1 Maize + + 

Note: -- avoid feeding; -+avoid feeding to light preference; + light preference; ++ preference 
 

 



Chapter 4 Characterization of diverse F. proliferatum strains and the pathogenicity on T. molitor 

69 
 

 
 

Fig. 3: the preference and avoidance feeding behavior of 4th instar T. molitor larvae on mycelia of 

representative strains. 4th instar T. molitor larvae preferred feeding on mycelia and conidia of F. 

proliferatum 67-M, whereas they avoided feeding on mycelia and conidia of F. proliferatum 67-M strain. 

For F. proliferatum 227-S, 30-40 % of the mycelia was grazed by the tested larvae. 
 

The 4th instar T. molitor larvae were used in this experiments because of their sensitivity on 

different strains of F. proliferatum. As shown in the table 2 and Fig. 3, the 4th instar T. molitor 

larvae preferred feeding on the mycelia of F. proliferatum 67-M, 78-M, 2-Z, 223-S, 231-S, 

241-S, 3-B, 44-J，F9，F10, F1, F13 and 21.1, which caused lower mortality rate. However, for 

F. proliferatum 86-M, 5-Z, 76-Mais, 219-S, 227-S, 245-S, 24-C, 27-K, 36-D, 42-D and F12, 

4th instar T. molitor larvae avoided grazing on these strains mycelia, which caused a higher 

mortality rate. Interestingly, 4th instar T. molitor larvae preferred feeding on 44-J and 18-O 

which caused relatively high mortality. 

 

We determined the mortality rate of larvae ingesting fungi colonized kernels for a period of 15 

days.  
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Fig. 4: the mortality of 4th instar T. molitor larvae feeding on mycelia of different F. proliferatum 
strains. Mortality of larvae reared on PDA plates covered with mycelium of diverse tested F. proliferatum 
strains within 15days. Results indicated mean ± S.D. (N=660) 

 

Mortality of 4th instar T. molitor larvae within 15 days was recorded in Fig.4, which indicated 

the pathogenicity of different tested F. proliferatum strains. The 4th instar of T. molitor larvae 

were used in this experiment because of their sensitivity of the feed. F. proliferatum 67-M, 

78-M, 2-Z, 29-Maize, 231-S, 241-S, 3-B, F9, F10, F11, F13 and 21.1 caused lower mortality, 

whereas F. proliferatum strains 2-K, 86-M, 5-Z, 227-S, 245-S, 259-S, 18-O, 24-C, 36-D and 

F12 resulted in relatively higher mortality. 

 

To determine whether radical growth rate and sporulation contribute to the pathogenicity of 

different tested F. proliferatum, the correlation between them was analyzed and the results 

were shown as below:  

 

Correlation coefficients (r) of radical growth rate, sporulation of different tested F. proliferatum strains and 

mortality rate of 4th instar larvae 

Evaluable parameters  Mortality rate on 4th instar T. molitor larvae (N=310) 

Radical growth rate (N=310) r= -0.132   Sig.=0.020*<0.05  

Sporulation      (N=180) r= -0.183  Sig.=0.014 *<0.05 

*: Correlation is significant at the 0.05 level (2-tailed). 
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According to the data analyzed by SPSS 22.0 version, interestingly, we found a weak negative 

correlation (r= -0.132) between radical growth rate and mortality of larvae. Identically, a weak 

negative correlation (r= -0.183) was also detected between the sporulation and mortality of 

the T. molitor larvae. 

3.5 F. prolifertum conidia germination and penetration from gut passage 

To monitor if the tested F. proliferatum conidia ingested in gut passage of mature larvae can 

germinate and penetrate the tissue between the cuticle and gut and proliferate, we carried out 

this experiment. 

 
Fig. 5: Fungal DNA biomass of different F. proliferatum strains in tissue of mature T. molitor larvae. 

DNA of live larvae survived from feeding on mycelia and conidia of different F. proliferatum strains within 

15 days was quantified. Results indicated mean ± S.D. 

 

As shown in Fig. 5, DNA biomass of F. proliferatum was not all detected in the larvae tissue 

samples. DNA biomass in the tissue of the larvae ingesting on mycelia and conidia of F. 

proliferatum 2-K, 67-M, 5-Z, F11, F12, F13 was extremely low, whereas that of larvae tissue 

consumed mycelia and conidia of F. proliferatum 42-D, 27-K, 245-S, 14-F and 241-S was 

relatively low than the other tested strains. Surprisingly, the F. proliferatum strains 42-D, 27-K, 

or 245-S was avoided by the larvae feeding on.  
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4. Discussion  

F. proliferatum strains tested in our present study from wide range of hosts (garlics, onions, 

asparagus, maize, miscanthus and dead larvae) and geographic areas showed that strains are 

highly diverse on growth rate. Even F. proliferaum strains isolated from the same host plant, 

for instance, F. proliferaum 219-S, 223-S, 227-S, 231-S, 241-S, 245-S and 259-S, all the 

strains were isolated from asparagus, there was difference among the strains on growth rates. 

F. proliferaum 219-S strain was the fastest whereas F. proliferaum 241-S was the slowest 

compared to the growth rate of the other strains. The radial growth indicated the speed of the 

mycelia spreading in the host. Marin reported the results that there was an inverse correlation 

between growth of F. proliferatum at optimum temperature condition and fumonisin B1 

production (Marin et al., 1999). 

 

Sporulation of F. proliferaum indicated the ability of proliferation of the fungi on the host. 

Strains with high sporulation may colonize the host faster. Velluti investigated that there was 

no correlation between F. proliferaum sporulation and mycotoxin formation on colonized 

maize grains (Velluti et al., 2000). Fast growth and abundant sporulation are important 

characteristics for fungi to easily survive during the competition and occupy ecological niche 

(Ramakrishna et al., 1993).  

 

Even the strains from the same host showed differences in their virulence on larvae. For 

example, F. pro 67-M and F. pro 78-M strains were not so toxic whereas F. pro 86-M was 

more aggressive than they others. F. pro 29-Maize did not cause a high mortality rate, by 

contrast, F. pro 76-Maize caused a high mortality rate. F. pro 3-B was isolated from dead 

larvae and didn’t cause so high mortality on larvae indicating that F. pro 3-B may colonize 

larvae after they are dead as saprophytes. Radical growth rates and sporulation of the strains 

have no positive association with virulence on 4th instar T. molitor larvae. 

 

There are two possible pathways of the conidia penetrating into tissue between the gut and the 

cuticle. Firstly: the conidia attached on the cuticle germinated and penetrated into the tissue 

by the cuticle. This is also the hypothesis raised by Batta, who speculated that F. avenacum 

conidia can germinate and penetrate into the cuticle of rice weevil (Sitophilus oryzae L.) 

(Batta, 2012). Secondly, the conidia grazed by the mature larvae can germinate in the gut 

passage and subsequently penetrate the intestinal wall of the larvae. With time on, the mycelia 

colonize the tissue between the gut and the cuticle, finally, the whole insect. Hasan and Vago 
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proved that conidia of F. oxysporum germinated in the intestinal lumen after the fungi invaded 

mosquito host larvae via the oral route, subsequently, the ensuing mycelia invade all tissue 

(Hasan & Vago, 1972). 

 

In conclusion, our research determined that the radical growth rates, sporulation, 

pathogenicity on 4th instar T. molitor larvae and fungi DNA biomass in the tissue between the 

cuticle and the gut difference among the tested F. proliferatum strains. This is the first time 

that DNA biomass in the tissue between the cuticle and the gut was reported, which can be the 

favorable evidence to prove F. prolifertaum conidia can germinate in the gut passage and 

penetrate through gut intestinal lumen to the tissue. Further experiments, GFP (green 

fluorescent protein) labeled F. proliferatum strains will be used to repeat the pathogenicity on 

the larvae to confirm the infect pathway. 
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Chapter 5 Systemic infection characteristics of different strains of 
F. proliferatum on wheat 

Abstract 

Fusarium proliferatum is a Fusarium species worthy of investigation, as this fungus is 

frequently isolated from a wide range of host plants, causing crown, spears and root rot of 

asparagus, bulb rot in garlic and onion, fruit rot in date palms. In addition, F. proliferatum is 

also a main pathogen of maize worldwide and other small grains like: rice, sorghum, cause 

black point symptoms on wheat (rarely reported) and barley. Decreased yield as well as 

diminished quality of plant products due to Fusarium infection cause significant economic 

losses worldwide. 

 
Single spore strains of F. proliferatum were isolated from garlics, onions, asparagus, maize, 

miscanthus and dead larvae separately in Germany, France, Syria and Austria. Greenhouse 

experiments were conducted to determine the occurrence of pathogenicity of diverse F. 

proliferatum isolates on wheat. Flag leaves, stems and kernels matrices of the Fusarium 

susceptible summer wheat cv. Taifun were used for in vitro studies on the production of 

mycotoxins and fungal biomass by different F. proliferatum isolates. According to the fungal 

biomass in different parts of infected wheat plants, in general, biomass in stem (the part from 

ear to last node) was the highest, and then the first flag leaf, and the kernels was the lowest. 

 

Our present study illustrated that 1) Tested F. proliferatum strains from other host plants can 

colonize on wheat plants 2) F. proliferatum strains can infect systemically from stem to leaf 

and then to wheat kernels by soak-inoculation of mature seeds. 
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1. Introduction  

Fusarium proliferatum (teleomorph: Gibberella intermedia) is a member of the mating 

population-D of Gibberella fujikuroi, which is a complex of eight mating population (MPs) 

and a number of asexual lineages, sexual compatibility, and DNA-based phylogenetic analysis 

(Britz et al., 1999, Leslie, 1991, Leslie et al., 2006), describes as distinct morphological 

species (Nirenberg & O'Donnell, 1998). Most representatives of G. fujikuroi complex have 

economic importance, F. proliferatum is specially worthy of investigation, as this fungi is 

frequently isolated from wide range of host plants, causing crown, spears and root rot of 

asparagus (Bargen et al., 2009), bulb rot in garlic and onion (Stankovic et al., 2007), fruit rot 

in date palms (Abdalla et al., 2000). F. proliferatum is also a main pathogen of maize 

worldwide and other small grains like: rice (Abbas et al., 1999), sorghum (Bacon & Nelson, 

1994), cause black point symptoms on wheat (Desjardins et al., 2007) and barley (Marin et al., 

1999). Decreased yield as well as diminished quality of plant products due to Fusarium 

infection cause significant economic losses worldwide (Placinta et al., 1999, Glenn, 2007). 

 

Another detrimental effect of F. proliferatum infected grains is the accumulation of 

mycotoxins F. proliferatum, together with F. verticillioides, is the main producer of 

fumonisins, which is a health risk mycotoxin, contaminating crops products in the field and 

post-harvest. Fumonisins can be detected in symptomless infected kernels (Bacon & Hinton, 

1996, Bullerman & Tsai, 1994). Beside fumonisins, F. proliferatum synthesize beauvericin 

(Leslie et al., 2004, Logrieco et al., 1995, Plattner & Nelson, 1994), fusaproliferin (Leslie et 

al., 2004, Randazzo et al., 1993, Reynoso et al., 2004),fusarins (Miller et al., 1995) and 

moniliformin (Logrieco et al., 1995, Miller et al., 1995).  

 

Plant systemic infection has been reported by several Fusarium species. The entire maize 

plant can be systemically colonized without causing symptoms by F. verticillioides, and with 

this method, F. verticillioides can be transmitted from seeds to whole plant to kernels 

(Munkvold & Carlton, 1997, Munkvold et al., 1997). F. subglutinans was also proven to 

infect maize kernels similar as F. verticillioides. The pathway of the infection pathogens 

initiated from the colonized maize seeds, to the seedling roots and then the entire plant, and at 

last the kernels (Wilke et al., 2001). Bacon & Hinto have reported that F. moniliforme caused 

systemic infections of maize kernels, subsequently, colonized maize kernels served as 

dissemination vehicles and new inocula sources. The authors also illustrated the essential 
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difference between symptomless infected plants and plants showing disease symptoms. In 

plants without visual signs, mycelia were intercellular only and distributed through the whole 

plant, whereas in plants presenting disease symptoms, the mycelia were both intercellular and 

intracellular (Bacon & Hinton, 1996).  

 

F. proliferatum predominantly found in infected maize (Zea mays L.) and associated with 

maize ear rot and, to a lesser extent, in maize seeds (Logrieco et al., 1995). In previous studies, 

F. proliferatum was reported as an endophytic fungus isolated from the stem bark of 

Dysoxylum binectariferum Hook. f (Kumara et al., 2012). F. proliferatum was also described 

to be endophytic under non stress conditions in wheat (Bishop, 2002), and alters the hosts 

defense response (Bishop et al., 2002). However, F. proliferatum infecting wheat as a 

pathogen and causing disease were rarely studied. The objectives of this study: we conducted 

experiments with F. proliferatum strains isolated from different hosts to assess variation in 

colonization at wheat flag leaves, stems (the internode between ear to last node), and kernels 

matrices of wheat plant (cultivar: Taifun) inoculated (soak-inoculation of mature seeds). 

Colonization was quantified using species-specific DNA based on quantitative PCR. 

2. Materials and methods 

2.1 Fungi strains cultivation  

Sixteen single spore strains of F. proliferatum were isolated from garlics, onions, asparagus, 

maize, miscanthus and dead larvae separately in Germany, France, Syria and Austria (Table 1). 

Species-specific PCR was also used to confirm the identification of F. proliferatum strains 

based on morphological features by the light microscopy according to the characteristics on 

CLA and PDA. Forward primer PRO1: 5’-CTTTCCGCCAAGTTTCTTC-3’ and reverse 

primer PRO2: 5’-TGTCAGTAACTCGACGTTGTTGTT-3’ (Mulè et al., 2004). Species 

specific primers of F. proliferatum were designed based on partial sequence of the calmodulin 

gene (Waskiewicz et al., 2010). 
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Table 1 shows the isolates codes, the host plants, the years and the origins of F. proliferatum strains 
Isolates Host plants Year Origin 

Fpro-2-K Garlic 2000 France 

Fpro-67-M Miscanthus 1993 Brandenburg, Germany 

Fpro-78-M Miscanthus 1993 Brandenburg, Germany 

Fpro-86-M Miscanthus 1993 Brandenburg, Germany 

Fpro-2-Z Onion 2008 Bad-wuertemburg, Germany 

Fpro-5-Z Onion 2008 Rheinland-Pfalz, Germany 

Fpro-29-Maize Maize 2005 Brandenburg,Germany 

Fpro-76-Maize Maize 2008 Frei/Rust,Germany 

Fpro-219-S Asparagus 2000 Rheinland-Pfalz,Germany 

Fpro-223-S Asparagus 1997 Brandenburg,Germany 

Fpro-227-S Asparagus 2003 Goldgeben 1, Lower Austria 

Fpro-231-S Asparagus 2003 Goldgeben 2, Lower Austria 

Fpro-241-S Asparagus 2003 Upper Austria 

Fpro-245-S Asparagus 2003 Burgenland,Austria 

Fpro-259-S Asparagus 2003 Lower Austria 

Fpro-3-B Dead larvae 2005 Syria 

2.2 Plant material 

The main experiments were conducted using the summer wheat cultivar “Taifun” (KWS, 

Germany). The susceptible score of cv. Taifun was 6 (ranking from 1 to 9 presents from 

resistant to susceptible). Stem, flag leaf and wheat kernels matrices of the cv. Taifun were 

used for in vitro analyses on fungal biomass and mycotoxin production (Wagacha Maina, 

2008). 

2.3 Inocula preparation  

Mung bean medium was made according to recipe of Bai (Bai & Shaner, 1996) and optimized 

according to our laboratory equipments. Mung bean broth subdivided into 50 ml in 100 ml 

volume flask and then autoclaved at 121 ℃ for 20 min. Autoclaved mung bean broth was 

cooled down to room temperature. The cryo-cultures of sixteen different isolates of F. 

proliferatum were inoculated on the PDA plates and incubated at 25 ℃ without light for 7 

days. Later, three discs of 50 mm diameter PDA filled with mycelia were cut and transferred 

into 50 ml Erlenmeyer flask with mung bean medium under 150 rpm and 25 ℃  in  

darkness for 4 days. Using four-layer cheese cloth for filtering the mycelia, conidia were 

collected in 50 ml tubes. Conidia concentration was enumerated with haemocytometer cell 

and then harvest conidia were stored in -80 ℃ for wheat seeds inoculation.  
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2.4 The pathogenicity diversity of F. proliferatum strains on wheat 

Wheat seeds (Taifun) were surface-disinfested for 3 min in 1.2% sodium hypochlorite, 

subsequently rinsed 3 times with sterile water. Water was soaked up with the autoclaved paper 

under clean bench. 50 entire wheat kernels were immersed in 10 ml 104 spore/ml conidial 

suspension for 48 h on a shaker to make the conidia suspended (Glenn, 2006). Infected wheat 

seeds were sowed in the twice-autoclaved soil, 10 kernels per pot. Uninoculated control seed 

were reserved for germination in sterile water to assess sterilization effectiveness. Each strain 

had five repetitions. The experiments were carried out twice. The replicates were arranged in 

a complete randomized design in which fungal strains represented the pots. 

 

In greenhouse, the temperature cycled between 26 °C (6:00 a.m. to 22:00 p.m. daytime) and 

22 °C (22:00 p.m. to 6:00 a. m. night) in a day-night rhythm with a relative humidity of 50%. 

Pots were watered every other day after planting till the kernels were ripe. The wheat plants 

without watering two weeks after ripe, the ear, first flag leaf and the stem between first flag 

leaf and ear were collected.  

2.5 Fungi re-isolation from soak-inoculation-seeds infected wheat plants 

The stem tissues (the interdode from ear to the last node) were collected. Stem tissue was cut 

into 2~3 cm small sections and surface sterilized with 1.2% sodium hypochlorite for 3 min 

and then rinsed 3 times in the autoclaved distilled water. Stem sections were placed on CZID 

(a selective medium priority for Fusarium species growth) and incubated in 25 ℃ incubator. 

3-4 days later, the result was recorded. Single mycelium tip was transferred to PDA plated, 

and mycelia and conidia were collected for DNA extraction. PCR was carried out with F. 

proliferatum species-specific primers PRO1:5’-CTTTCCGCCAAGTTTCTTC-3’and reverse 

primer PRO2: 5’-TGTCAGTAACTCGACGTTGTTGTT-3’ (Mulè et al., 2004) to confirm the 

re-isolated fungi . 

2.6 Fungal DNA quantification in stem, flag leaf and harvest kernels  

Total DNA was extracted from inoculated wheat kernels, flag leaf and stem fine powder using 

a CTAB method (Brandfass & Karlovsky, 2008). The pellet was dissolved in 50 ul TE buffer 

(10 mM Tris, 1 mM EDTA, pH 8.0). DNA was diluted fifty fold prior to PCR analysis. 

Inhibition assay was done to test if any wheat matrix effects on the amplification of fungi 

DNA. 
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Thermocycler (CFX384TM, BioRad, USA) was used for real-time PCR analysis (quantitative 

PCR) in a total volume of 4 ul. Primers Fp 3F/4R (Jurado et al., 2006), were used for F. 

proliferatum fungal biomass detection. The reaction mixture consisted of buffer (16 mM 

(NH4)2SO4; 67 mM Tris-HCl; 0.01% (v/v) Tween-20, pH 8.8 at 25 ℃, Bioline GmbH, 

Luckenwalde, Germany), 0.15 mM of each dNTP (Bioline GmbH, Luckenwalde, Germany), 

2.5 mM MgCl2, 0.1 U of Taq DNA polymerase (BIOTaq, Bioline GmbH, Luckenwalde, 

Germany), 0.3 mM of each primer, 0.1 x SYBR Green I (Invitrogen, Karlsruhe, Germany) 

and 1 mg/ml bovine serum albumin. The lowest standard set as limits of quantification was 

2.09 fg/ul for F. proliferatum. 

2.7 Mycotoxins analyses in kernels3 

100 mg freeze-dried fine kernels powder was weighted and transferred into 2 ml new eppis. 1 

ml acetonitrile:water (84:16) was added. After thoroughly mixing the samples, they were 

shaken overnight at 180 rpm. Next day the samples were centrifuged at 14,500 rpm for 10 

min. 950 ul supernatant was transferred into 2 ml eppis and stored in -20 ℃ for mycotoxins 

analyses. For the analyses of beauvericin, fumonisin B1 and enniatin A, A1, B and B1 HPLC 

separation was performed on a RP column Kinetex C18 at 40 °C followed by electrospray 

ionization in positive mode connected to an ion trap 500 MS (Varian, Darmstadt, Germany). 

For each mycotoxin detected, three mass transitions were used.  

 

Calibration curves were constructed using analytical standards dissolved in methanol/water 

(1:1) with a correction for recovery and matrix effects. The limits of quantification for 

beauvericin, enniatin A, B, A1, B1 and fumonisin B1 were 155 and 390 ng/g separately in 

wheat kernels. 

 

3. Results  

3.1 Fungal re-isolation from infected wheat stem  

To confirm that F. proliferatum strains can systemically infect the wheat plants, fungi were 

re-isolated from stem (the internode between the ear and last node) of infected wheat plants 

(Fig.1 A). Re-isolated fungi were confirmed by the species-specific PCR (Fig.1 B).  

 

                                                             
3
 The mycotoxins analyses experiments were carried out by Dr. Katharina Pfohl. 



Chapter 5 Systemic infection characteristics of different strains of F. proliferatum on wheat 

83 
 

 

Fig.1: Fungi re-isolation from colonized wheat stem and confirmation. Fungi grew out from seed 

-inoculated wheat stem on CZID medium (A).Two single colonies were randomly selected and fungi DNA 

was extracted lane 2, lane 3. Fungi DNA was confirmed with F. proliferatum species-specific primers lane 

6 and 7; lane1and lane were DNA ladders and lane 5 was negative control of PCR (B). 

3.2 DNA biomass in stems, flag leaves and harvest kernels 

To determine whether F. proliferatum strains systemically infect wheat from seeds to the top 

of wheat plant, fungal DNA biomass in stem, flag leaf and harvest kernel were quantified. 

 

Fig. 2: DNA biomass in seed soak-inoculated wheat plant stem, flag leaf and kernels. DNA of F. 

proliferatum strains in wheat stem (the inter-node between the last node and ear), the 1st flag leaf, and 

kernels was quantified by quantitative real time PCR. 
 

As the graph shown (Fig. 2), fungal DNA in inoculated wheat stem, flag leaf and harvest 

kernel were compared. Which indicated tested F. proliferatum strains systemically infected 
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wheat plants. Several F. proliferatum strains from different hosts had colonized wheat plants. 

According to the data from the quantitative PCR, fungal DNA of F. pro 5-Z, F. pro 29-Maize 

and F. pro 219-S were higher than other tested strains. Especially, wheat plants inoculated 

with strains F. pro 29-Maize contaminated 1000 ng/g and 2500 ng/g fungal biomass in 

infected kernel and stem separately. However, F. proliferatum strains isolated from the same 

host Miscanthus in the same year, for instance, F. pro 67-M, F. pro 78-M, F. pro 86-M differed 

also in their fungal biomass production; the amount of fungal DNA of F. pro 86-M was much 

lower than the other two strains. The same phenomenon also happened to F. pro 29-Maize and 

F. pro 76-Maize, fungal DNA biomass of F. pro 29-Maize was obviously higher than F. pro 

76-Maize. F. pro 3-B was isolated from colonized dead larva, the DNA biomass was relatively 

lower among the tested strains. Fungal DNA from the stem was much higher than flag leaf 

and kernels as tendency.  

 

The graph (Fig. 3) indicated fungal DNA in kernels with two replicates, though the value was 

little difference, the trend was the same. The agreement between the two replicates was also 

analyzed by SPSS (IBM SPSS statistics, USA) with Kendall's tau_b method. The result was 

shown in Table 2. Kendall's tau factor =0.647 indicated that there was agreement between two 

replicates 

 

Fig. 3: the variance of the DNA biomass between the two replicates. The tendency was the same. The 

amount of fungal DNA of F. pro 29-Maize inoculated wheat kernels was higher than other tested strains. 
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Table 2 the agreement of the two replicates on fungal DNA in wheat kernel 

 Replicate 1 Replicate 2 

Kendall's tau_b Replicate 1 Correlation Coefficient 1.000 .647** 

Sig. (2-tailed) . .000 

N 17 17 

Replicate 2 Correlation Coefficient .647** 1.000 

Sig. (2-tailed) .000 . 

N 17 17 
**. Correlation is significant at the 0.01 level (2-tailed). 

3.3 Fumonisin B1, beauvericin production and their correlation with DNA biomass in 
colonized wheat kernels 

Based on the mycotoxin quantification data by HPLC, mycotoxins were not detected in all the 

tested wheat kernels samples. Fumonisin B1 was detected in F. proliferatum 2-K, 29-Maize, or 

219-S infected wheat kernels, whereas beauvericin was quantified in F. proliferatum 2-K, 

78-M, 29-Maize, 76-Maize or 219-S inoculated wheat kernels. For F. proliferatum 2-K, 

29-Maize or 219-S infected wheat plants, both fumonisin B1 and beauvericin were detected, 

moreover, fumonisin B1 production is relatively higher than that of beauvericin (Fig. S1).  

 

 

Figure S1: Fumonisin B1 and beauvericin production in colonized wheat kernels. Fumonisin B1 and 
beauvericin production in colonized wheat kernels infected by different tested F. proliferatum strains with 
soak-inoculation mature seeds method. 
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To determine whether DNA biomass correlated to fumonisin B1, or beauvericin production, 

the correlations between them were analyzed. According to the data analyzed by SPSS (IBM 

SPSS statistics, USA), interestingly, we found that there was strong positive correlation (r= 

0.817) between DNA biomass and fumonisin B1 in colonized wheat kernels. Identically, 

strong positive correlation (r= 0.871) existed between amount of fungal DNA and beauvericin 

in colonized wheat kernels (Table 3). 

Table 3 Correlation coefficients (r) of DNA biomass and fumonisin B1, beauvericin production in colonized 
wheat kernels 
 
Mycotoxin production  DNA biomass in colonized wheat kernels  (N=17) 

Fumonisin B1 (N=17) r=0.817            Sig.<0.001**  

Beauvericin  (N=17) r= 0.871            Sig.<0.001** 

**: Correlation is significant at the 0.01 level (2-tailed). 

4. Discussion 

According to results in our research, we confirmed the ability of F. proliferatum strains 

infecting wheat plants grown in greenhouse condition systemically from seed to stalk to 

wheat kernels. However there is significant difference among the tested isolates. 

Quantification of fungal DNA seen as parameter for biomass in plant material is a useful 

approach to trace the colonization of the fungi in whole plant (Schaad et al., 2003). 

Quantitative real- time PCR is convenient technique to amplify and detect the tested fungal 

DNA in one step (Schena et al., 2004). Quantification of DNA of diverse strains in different 

parts of host wheat plants indicated the ability to infect the wheat plants. Which was not 

determined by hosts (garlic, onions, asparagus, maize, miscanthus and dead larvae) that the 

strains were isolated. There was no association found between the geographic origin of the 

strains and the variance of colonization on wheat plants. 

 

In the present experiments, the first flag leaf and the stem between the ear and the last node 

were chosen for DNA biomass quantification because these parts are closest to the kernels. 

Based on the quantification data, fungal DNA in stem was the highest followed by flag leaf 

whereas the lowest amount was detected in kernels. There is a speculation, during the 

evolution of the wheat plant, that wheat plant has the mechanism to prevent transporting 

adverse nutrients to kernels. The explanation that the fungal DNA biomass was higher in the 

stem could be that F. proliferatum mycelia grew and spread in the pith parenchyma (including 
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the vascular system), which has no structure limitations and abundant nutrients and proper 

humidity for fungal dispersal. This hypothesis was already proven with F. graminearum and F. 

culmorum (Mudge et al., 2006, Guenther & Trail, 2005, Kang & Buchenauer, 1999). 

 

Conidia concentration of 104 spores/ml suspension was used for the greenhouse experiments. 

The concentration was not high, by using higher concentrations, the amount of fungal 

biomass in the wheat plant last node, flag leaf and kernels could probably be higher. Giving 

the results from greenhouse extended application, F. proliferatum is a soilborne fungi species, 

the conidia can infect the seeds in the field and finally the entire plants. Wheat seeds can also 

be infected by F. proliferatum strains that originate from soil. The procedure of infection is 

probably a symptomless (or with symptoms) systemic infection of the plants, initiated through 

the seedling roots to the stem, leaf and the kernels. The same infection pathway of F. 

verticillioides has been demonstrated in experiments (Desjardins et al., 1998).  

 

In conclusion, our study firstly proved that F. proliferatum strains can systemically infect 

wheat plants form wheat seeds to kernels. Due to the production of mycotoxins by this fungus, 

symptomless infection of wheat grains used for human and animal consumption poses a 

significant hazard to human and animal health. In addition, the vegetative parts: roots, leaves 

and stems during wheat growth infected by F. proliferatum can disperse the pathogen by the 

residues. The research broadened our understanding of the seeds infection pathway and 

heightened our awareness of the vegetative plants inoculums from symptomless infected 

wheat plants. Proper actions should be taken between the cropping seasons in field 

managements to avoid the fungus transmission.                                                                                 
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Chapter 6 General discussion 

According to our research results, T. moliotr performed preference feeding on F. prolifertaum 

and F. poae colonized wheat kernels whereas avoided grazing on F. avenaceum colonized 

wheat kernels or selectively consumed the inner part of F. culmorum colonized wheat kernels. 

Olfactory receptors (Harbach & Larsen, 1977) from T. moliotr antennae are speculated to 

sense the signal from mycotoxins and organic volatile compounds (Eifler et al., 2011) and 

perform feeding behaviors. This characteristic can be used as a biology trap to control the 

storage insects. Further studies are necessary to determine which organic volatile compounds 

(besides mycotoxins) play major roles on influence the feeding behavior of the T. molitor 

larvae on feeing Fusarium colonized wheat kernels.  

 

Two main possibilities are responsible for the mortality of T. moliotr larvae, firstly, the 

mycotoxins which have the insecticidal property like beauvericin (Xu et al., 2008) and the 

analogues of beauvericin, enniatins (Grove & Pople, 1980). Secondly, the pathogenicity of 

different Fusarium species to the larvae, mycelia or conidia ingested by T. moliotr larvae oral 

route, the conidia can germinated and penetrated through the intestinal lumen and ensued all 

the tissue. 

 

Fusarium species affected not only the storage insects T. molitor feeding behaviors and 

causing mortality on the larvae. Some Fusarium species such as F. proliferatum, which was 

attractive to the T. molitor larvae for fungal dispersal. T. molitor larvae or beetles internally 

and externally disseminated fungi conidia as vehicle. Conidia dispersed by copulation 

between contaminated male and uncontaminated female to their offspring was firstly 

illustrated in our research. Contamination of the eggs by the copulation may be caused by the 

fungal penetration through the egg integument in female beetles’ body or by the conidia on 

the cuticle of the male beetles as inoculums. To exclude the contamination from the surface 

contact with the conidia, the female beetle dissection experiment was conducted, and eggs 

were taken out from ovary. After transferred the eggs on the CZID medium, mycelia grew out, 

which denied the hypothesis that the eggs contaminated by the cuticle contamination.   

 

After the beetles fed on different Fusarium species mycelia and conidia for 24 h, the duration 

of beetles disseminating fungi to autoclaved wheat kernels was surprising: even after 20 days, 
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more than 90% of the wheat kernels were contaminated by the beetles attached fungi conidia. 

Fusarium conidia can survive through the gut passage and germinated from the feces was 

firstly illustrated in detail in our research. DNA quantification was confirmed the precise 

DNA amount at different time points. DNA biomass in beetles grazing on different Fusarium 

species at 5 days were lower compared that of at 1 day time point, the predominant factor is 

that conidia (DNA) were excreted out of the beetles. Windels et al. (Windels, Windels, & 

Kommedahl, 1976) also proved that some of the internal Fusarium propagules could be lost 

through the feces or destroyed in the gut of the insect. 

 

F. proliferatum species drew our research focus, because both mycelia and conidia of F. 

proliferatum, and F. proliferatum colonized wheat kernels were attractive to T. molitor larvae 

and beetles. Pathogenicity variance of different F. proliferatum strains from diverse plants and 

geographic origins on T. molitor larvae was determined. Moreover, fungi DNA of F. 

proliferatum strains were detected in the tissue in the larvae tissue. It was firstly reported that 

F. proliferatum strains DNA biomass was detected in the larvae’s tissue. Mycelia and conidia 

of F. proliferatum strains like F. proliferatum 67-M and F. proliferatum 21.1 were surprisingly 

attractive to T. molitor larvae, which caused lower larval mortality. However, T. molitor larvae 

avoided feeding on F. proliferatum strains like F. proliferatum 227-S and F. proliferatum 5-Z, 

which caused relative higher mortality of the larvae.  

 

F. proliferatum strains caused higher mortality of the T. molitor larvae positively associated 

with high fungal DNA biomass in leaves tissue. e.g. F. pro 245-S, F. pro 27-K and F. pro 42-D 

DNA biomass was higher than that of other tested strains and also caused higher mortality of 

T. molitor larvae. Using this characteristic, these F. proliferatum strains can be used as 

endophyte or biology to control the insects in the field. Further experiments should be 

conducted to study the mycelia from the tissue between the gut and cuticle, or to confirm 

establishing a biotrophic or pathogenic relationship within larval tissue (Bushnell, Hazen, 

Pritsch, & Leonard, 2003). F. proliferatum species is soil-borne pathogen, its 

entomo-pathogenicity can be used to control larvae or pupae of the insects in the soil 

(Majumdar, Boetel, & Jaronski, 2008).  

 

The geographic origin and hosts of the strains were found to have no association with the 

variance of colonization on wheat plants. F. proliferatum strains caused higher mortality of 

the T. molitor larvae did not associate with high fungal DNA biomass in wheat stem, leaves 
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and kernels. The pathogenicity of F. proliferatum strains on larvae was not positively 

correlated with the pathogenicity on wheat (cultivar: Taifun). Fungal DNA biomass of F. 

proliferatum strains in larvae tissue and inoculated wheat kernels were variable. For example, 

the highest DNA biomass in larval tissue was F. proliferatum 42-D with 1,500 ng/g fungal 

DNA in larval cavity tissue. While highest DNA biomass was F. pro 29-Maize1000 ng/g 

found in inoculated kernels and 2500 ng/g in colonized stem separately, which indicated that 

the pathogenicity of the same isolates was different on different hosts and the pathogenicity 

mechanisms were different. 

 

The occurrence of fumonisin B1 was low on wheat and barley in the nature (Marin et al., 

1999). This is consistent with our mycotoxin quantification result that fumonisin B1 was 

detected only in F. proliferatum 2-K, 29-Maize, 219-S strains. The mycotoxins production 

greatly differed as a result of different nutrition matrix and temperatures (Marin et al., 1999; 

Samapundo, Devliehgere, De Meulenaer, & Debevere, 2005). 

 

The systemic infection of the wheat plants can be two pathways: conidia from the soil 

germinated and infected the plants roots, subsequently, the mycelia spread in the vascular 

system and went with the water evapotranspiration to the stem to the leaves and to the wheat 

kernels. Alternatively, conidia proliferated from infected leaf or the stem and become the new 

inocula to the upper parts of the wheat plants till the kernels. 

 

Therefore, cereal straw may provide a source of Fusarium mycotoxins into the animal feed 

chain. Moreover, F. prolifertaum is frequently isolated from a wide range of host plants, e.g. 

asparagus (Bargen et al., 2009), onion (Stankovic, Levic, Petrovic, Logrieco, & Moretti, 

2007), date palms (Abdalla, Al-Rokibah, Moretti, & Mule, 2000). F. proliferatum is also a 

main pathogen of maize (Marin et al., 1999) worldwide and other small grains like: rice 

(Abbas et al., 1999), sorghum (Bacon & Nelson, 1994), wheat (Desjardins, Busman, Proctor, 

& Stessman, 2007) and barley (Marin et al., 1999). Public awareness of food contamination 

with trichothecenes and other mycotoxins is low. 

 

The findings of our research emphasized ecological interactions between Fusarium species, 

different strains of F. prolifertaum and storage insects T. molitor. The mycelia and conidia of 

tested Fusarium species, and colonized wheat kernels influenced the feeding behavior, weight 

gain and survival rate of T. molitor larvae. T. molitor beetles dissemination was tested with 
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Fusarium fungal conidia internally and externally and the DNA biomass and mycotoxin were 

quantified in the beetles at different time points. Radiate mycelia growth rate, sporulation 

ability of F. prolifertaum strains, caused mortality on T. molitor 4th larvae and DNA biomass 

in the larval tissue were treated as parameters to determine the variance among F. 

proliferatum strains. F. proliferatum strains systemic infection on wheat plants with 

seed-inoculation method illustrated further information of the pathogenicity variance among 

the strains. 
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Chapter 7 Summary 

This dissertation has elucidated the ecological interactions of Fusarium species and Tenebrio 

molitor. The results obtained in my present research can be summarized in detailed as 

follows: 

 

 We found that Fusarium species (F. avenaceum, F. culmorum, F. poae and F. 

proliferatum) colonized wheat kernels affected the feeding behaviors of T. molitor mature 

larvae. Wheat kernels colonized by F. proliferatum and F. poae attracted T. molitor 

larvae significantly more than untreated (control) kernels, whereas kernels colonized with 

F. avenaceum or Beauveria bassiana (entomo-pathogenic fungi as positive control) were 

avoided by the larvae. Interestingly, larvae selectively fed on the inner part of F. 

culmorum colonized wheat kernels. The selective feeding behaviors (avoidance or 

preference) correlated with larval weight gain within 15 days. Correspondingly, larvae 

consumed F. proliferatum or F. poae colonized kernels had similar survival rates as 

control. However, larvae fed on F. culmorum, F. avenaceum or B. bassiana colonized 

kernels had enhanced larvae mortality. Our results also indicated that T. molitor larvae 

have the ability to sense potential survival threats from kernels colonized with F. 

avenaceum or B. bassiana. 

 

Mycotoxins production both in Fusarium colonized wheat kernels and dead larvae 

grazing on Fusarium colonized wheat kernels were quantified. Although fumonisins, 

enniatins and beauvericin were detected in F. proliferatum or F. poae colonized kernel, 

the larvae were able to ingest those kernels as diet without exhibiting increased mortality. 

Consumption of F. avenaceum colonized kernels, however, increased larval mortality. 

These colonized kernels had higher enniatins levels than the ones from F. proliferatum or 

F. poae colonization, which suggested that T. molitor mature larvae can tolerate or 

metabolize those toxins.  

 

 After feeding on Fusarium (F. avenaceum, F. culmorum, F. poae, F. proliferatum and B. 

bassiana) mycelia and conidia for 24 h, live conidia were traceable in beetles’ excreta 

and beetles were capable of contaminating a high proportion of wheat kernels. Fungal 

dissemination duration by beetles and fungal colony forming unit density in beetles 
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excreta were recorded for up to 20 days. Kernels contamination and fungal colony 

forming unit density of F. proliferatum were higher than other tested Fusarium species. T. 

molitor beetles disseminated tested Fusarium fungal conidia internally and externally. 

The detailed description of the conidia attachment on antennae, mouthpart, wings and 

legs were observed under scanning electronic microscopy. And colonies from beetles 

excrete were observed on selective medium. Fungal contamination by copulation was 

first described in our present research. 

 

F. proliferatum DNA were positively detectable in living beetles collected at 1 day, 5, 10 

and 15 days time points. HPLC-MS was performed to detect beauvericin, fumonisins, 

enniatins in live beetles. Beauvericin was found in beetles feeding on F. poae, F. 

proliferatum, or Beauveria bassiana mycelium. Enniatins were detected in beetles 

grazing on F. avenaceum, F. poae, and F. proliferatum mycelia. 

 

 Various tested F. prolifertaum strains caused mortality on T. molitor 4th larvae indicated 

pathogenicity difference among the tested trains. According to the data, pathogenicity 

difference was neither related to the hosts F. prolifertaum strains isolated from garlic, 

onion, asparagus, maize, miscanthus or dead larvae separately nor associated with the 

origin in Germany, France, Syria and Austria. Radial mycelia growth rate and sporulation 

ability were treated as parameters to evaluate the difference among the tested strains, 

however, the pathogenicity was not corresponding to these two parameters.  

 

DNA biomass in the larvae tissue was quantified as parameter to assess to the variance 

among F. proliferatum strains. Surprisingly, fungal DNA was detected in the tissue 

between the cuticle and the gut passage. Fungal DNA biomass in the tissue of the larvae 

feeding on F. proliferaum 42-D, 27-K and 245-S mycelia and conidia were significantly 

higher than the others. However, the DNA biomass in the larvae tissue was not positively 

correspondingly with the mortality of the larvae. 

 

 By soak-inoculation of mature wheat seeds, diverse F. proliferatum strains (isolated from 

garlics, onions, asparagus, maize, miscanthus and dead larvae) pathogenicity on wheat 

plants under greenhouse condition was assessed. F. proliferatum infected wheat plants 

showed symptomless. However, fungal DNA was detected in flag leaf, stem and kernels 

matrics of the Fusarium susceptible summer wheat cv. Taifun. According to the fungal 
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DNA biomass, in general, DNA biomass in stem (the part from ear to last node) was the 

highest, and then the first flag leaf, and the kernels was the lowest. 

 
The results showed that F. proliferatum strains can systemically infect wheat plants from 

seeds soaked in conidia suspension to stem, leaf and then to wheat kernels, which 

indicated systemic infection to wheat. DNA biomass was quantified as marker to assess 

the aggressiveness of F. proliferatum strains, which was not corresponding to the 

mortality of the larvae. The explanation suggested the difference between mechanisms of 

F. proliferatum on insects and plants. 

 

To sum up, our present research illustrated the ecological interactions of the meal beetle 

Tenebrio molitor with diverse Fusarium species from many aspects. Different Fusarium 

species affected T. molitor larvae; T. molitor beetles disseminated different Fusarium species 

conidia internally and externally; Pathogenicity assessment of different F. proliferatum strains 

on T. molitor and wheat plant according to several parameters and different mechanisms. The 

results gave a deeper understanding of the association of insects and toxin-producing fungi 

within storage grains, which may raise awareness of food security and in the improvement of 

management approaches in post-harvest cereals.  
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