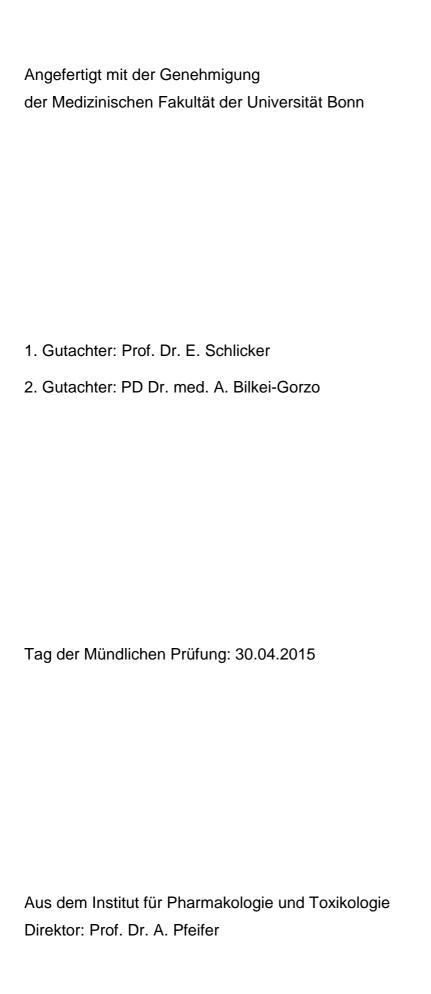
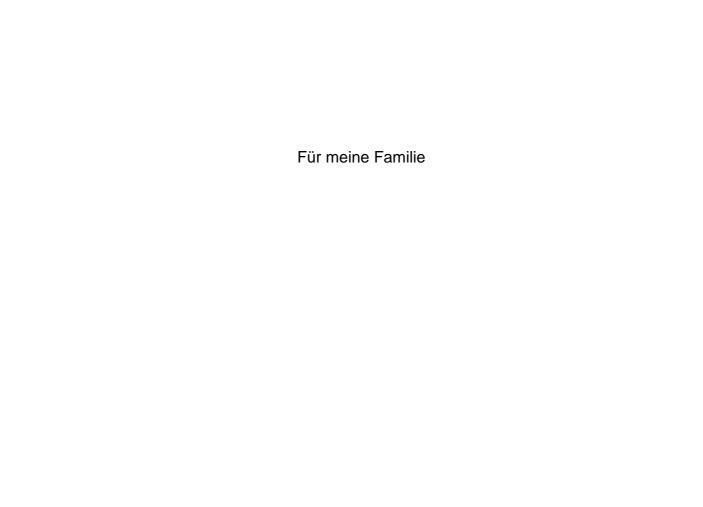
Prostaglandin-EP₃-Rezeptor-vermittelte Hemmung der Monoamin-Freisetzung in Nagergewebe: Beweis mit dem kompetitiven Antagonisten L 826266

Inaugural-Dissertation


zur Erlangung des Doktorgrades


der Hohen Medizinischen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität

Bonn

Jan Christoph Günther aus Olpe 2015

Inhaltsverzeichnis

	Abkürzungsverzeichnis	8
1.	Einleitung	11
1.1	Präsynaptische Modulation	11
1.2	Prostaglandine	12
1.3	Prostaglandin-Rezeptoren	14
1.4	Der EP ₃ -Rezeptor	15
1.5	Signaltransduktion am EP ₃ -Rezeptor	16
1.6	Liganden am EP ₃ -Rezeptor	17
1.7	Zielsetzung der Arbeit	19
2.	Material, Methoden und Statistik	20
2.1	Versuchsanordnung	20
2.2	Berechnungen und Statistik	22
2.2.1		22
2.2.2	Berechnung pharmakologischer Wirkungsstärken	23
2.2.3	Statistik	24
2.3	Material	26
2.3.1	Chemikalien	26
2.3.2	Modifizierte Krebs-Henseleit-Lösung für die Superfusion	26
2.3.3	Verwendete Geräte und Verbrauchsmaterialien	27
3.	Ergebnisse	28
2.4	Allgamainas	20
3.1	Allgemeines Recole Tritiumfreientzung	28
3.1.1	Basale Tritiumfreisetzung Noradrangen Nouretransmission	28
3.2 3.2.1	Noradrenerge Neurotransmission Klebeeffekt von L 826266?	30 31
J.Z. I	MEDECHEKI VOH L 020200!	ا ا

6.	Literaturverzeichnis	65
5.	Zusammenfassung	63
	_ opa 1 1010012411g .	5 _
	Dopamin-Freisetzung?	62
4.4.	Beteiligung von Prostaglandin-Rezeptoren an der	
	freisetzung?	61
4.3	Beteiligung von Prostaglandin-Rezeptoren an der Azetylcholin-	
4.2.4	Wirkstärke und Antagonismus von L 826266	59
	Rattenkortexmodell	59
4.2.3	Vergleich der Wirkung von PGE ₂ und Sulproston im Mäuse- und	
	ausschüttung im zentralen Nervensystem	58
4.2.2	EP ₃ -Rezeptor vermittelte Inhibierung der monoaminergen Transmitter-	
	im autonomen Nervensystem	55
4.2.1	EP ₃ -Rezeptor vermittelte Inhibierung der NA-Ausschüttung	
	in monoaminergen Neuronen?	55
4.2.	Über welchen EP-Rezeptor-Subtyp wirkt PGE ₂	
4.1.4	Einwirkzeit von L 826266	54
4.1.3	Möglicher "Klebeeffekt" von L 826266?	53
4.1.2	Hilfspharmaka	52
4.1.1	Reizbedingungen	51
4.1	Beurteilung der Versuchsbedingungen	49
4.	Diskussion	49
3.5	Dopaminerge Neurotransmission	46
3.4	Cholinerge Neurotransmission	44
3.3	Serotonerge Neurotransmission	40
3.2.4	Großhirnrindengewebe der Maus	37
	Großhirnrindengewebe der Ratte	35
3.2.2	Periphere Gewebe der Ratte	32

7.	Abbildungs- und Tabellenverzeichnis	7
8.	Danksagung	76

Abkürzungsverzeichnis

% (m/V) Masse in Volumenprozent

% (V/V) Volumenprozent

[3H] Tritium (Isotop des Wasserstoffs mit der Atommasse 3)

[x] Konzentration eines Stoffes x

°C Grad Celsius µ mikro- (10⁻⁶)

5-HT Serotonin (5-Hydroxy-Tryptamin)
5-HT_x Serotonin-Rezeptor vom Subtyp x

A Ampere

Abb. Abbildung

AH 6809 6-isopropoxy-9-oxoxanthene-2-carboxylic acid

Aqua dem. demineralisiertes Wasser

B Königreich Belgien

bzw. beziehungsweise

C Kohlenstoff
CA Kalifornien

cAMP zyklisches Adenosinmonophosphat

CDN Kanada

D Bundesrepublik Deutschland

DK Königreich Dänemark

DMSO Dimethylsulfoxid

EP_x Prostaglandin E-Rezeptor vom Subtyp x

et al. und andere Autoren (et alii)

F Französische Republik

g Gramm

G-Protein Guaninnucleotid-bindendes Protein

GTPyS Guanosin-5'-O-(3-thiotriphosphat)

h Stunde

HACU High-Affinity-Choline-Uptake

HEK menschliche embryonale Nierenzellen

Hz Hertz
IL Illinois

i. Br im Breisgau

KH Krebs-Henseleit

Konz. Konzentration

log dekadischer Logarithmus

m Meter

m milli- (10⁻³) M molar (mol/l)

min Minute

mol Mol

M_x muskarinischer Acetylcholin-Rezeptor vom Subtyp x

n Anzahl der Messwerte

n nano- (10⁻⁹) NA Noradrenalin

NAT Noradrenalin-Transporter

NL Niederlande

n.s. nicht signifikanto.g. oben genannte

p negativer dekadischer Logarithmus einer Konzentration

p Irrtumswahrscheinlichkeit

pA₂ negativer dekadische Logarithmus der Antagonistenkonzentration, bei der

die Konzentrations-Wirkungs-Kurve eines Agonisten um den Faktor 2 ver-

schoben wird.

pEC₅₀ Konzentration eines Agonisten, die eine halbmaximale Wirkung hervorruft.

PG Prostaglandin

pH negativer dekadischer Logarithmus der Wasserstoffionenaktivität (potentia

Hydrogenii)

s Sekunde

s Standardabweichung

SC 19220 8-chloro-dibenz[b,f][1,4]oxazepine-10(11H)-carboxy-(2-acetyl)hydrazide

SEM Standardfehler des Mittelwerts (standard error of the mean)

SERT Serotonintransporter

sog. sogenannt

s. siehe

Tab. Tabelle

TTX Tetrodotoxin

U46619 (5Z)-7-[(1R,4S,5S,6R)-6-[(1E,3S)-3-Hydroxy-1-octenyl]-2

oxabicyclo[2.2.1]hept-5-yl]-5-heptenoic acid

UK Vereinigtes Königreich Großbritannien und Nordirland

USA Vereinigte Staaten von Amerika

VMAT vesikuläre Monoamintransporter

x "dose ratio": Quotient aus EC₅₀-Werten eines Agonisten in An- und Ab-

wesenheit eines Antagonisten.

ZNS Zentrales Nervensystem

z.B. zum Beispiel

1. Einleitung

1.1 Präsynaptische Modulation

Der Informationsfluss im zentralen (Gehirn, Rückenmark) und peripheren Nervensystem erfolgt anatomisch über Leitungsbahnen, die man als Neurone bezeichnet. Der Informationsfluss innerhalb eines solchen Neurons erfolgt auf elektrischem Wege. Dagegen wird die Information zwischen einem vor- und nachgeschaltetem Neuron oder zwischen Neuron und Erfolgsorgan (z.B. Herzmuskel oder Samenleiter) chemisch durch Ausschüttung eines Überträgerstoffes (Transmitter) weitergegeben. Die entsprechende Schnittstelle wird als Synapse bezeichnet. Der freigesetzte Transmitter wirkt auf sog. Rezeptoren am nachgeschalteten Neuron oder Erfolgsorgan; Aktivierung dieser sogenannten postsynaptische Rezeptoren führt je nach Art des Transmitters zur Stimulation oder Hemmung des nachgeschalteten Neurons oder des Erfolgsorgans. Ausmaß und Zeitverlauf der Transmitterfreisetzung in den synaptischen Spalt wird durch eine Vielzahl von Faktoren beeinflusst und moduliert. Präsynaptische Rezeptoren (d.h. Rezeptoren, die am Ende des Neurons vor dem synaptischen Spalt lokalisiert sind) sind bei diesen Vorgängen besonders wichtig.

Die Veränderung der Freisetzung von Neurotransmittern ist die pathophysiologische Grundlage für viele Funktionsstörungen und Krankheiten des Nervensystems und somit der Ansatzpunkt verschiedener Medikamente. Präsynaptische Rezeptoren stellen eine Zielstruktur für Wirkstoffe dar, die als Agonisten (Rezeptor-aktivierend) oder Antagonisten (Rezeptor-blockierend) die Neurotransmitter-Freisetzung modulieren und möglicherweise weniger unerwünschte Nebenwirkungen bergen als Wirkstoffe, die an der Postsynapse angreifen (Miller, 1998).

Das pharmakologische Potenzial an vielen präsynaptischen Elementen ist noch nicht voll ausgeschöpft, und als Basis für weitere therapeutische Ansatzpunkte dient das genaue Verständnis aller Komponenten, die modulierend auf die Neurotransmitterfreisetzung wirken (Südhof und Starke, 2010).

Besitzt eine präsynaptische Zellmembran Rezeptoren für den in den synaptischen Spalt freigesetzten Neurotransmitter, kann dieser über eine *"feedback-Schleife"* über sogenannte Autorezeptoren zur Hemmung der eigenen Transmitterfreisetzung führen (Starke et al., 1989). Als bekanntes Beispiel kann die negative Rückkopplung durch Noradrenalin über präsynaptisch lokalisierte α_2 -Autorezeptoren genannt werden (Starke, 1977). Außerdem existieren präsynaptische Rezeptoren, über die Neurotransmitter aus benachbarten Neuronen oder Zellen oder mit dem Blut herantransportierte bzw. lokal synthetisierte Substanzen modulierend auf die Transmitterfreisetzung wirken können. Diese Rezeptoren werden als Heterorezeptoren bezeichnet. Präsynaptische Auto- und Heterorezeptoren üben untereinander eine starke Wechselwirkung aus (Schlicker und Göthert, 1998).

In dieser Arbeit wird die präsynaptische Modulation durch Prostaglandine in cholinergen, dopaminergen, serotonergen und noradrenergen Transmittersystemen in verschiedenen neuronalen Geweben untersucht (es handelt sich also um präsynaptische Heterorezeptoren).

1.2 Prostaglandine

Ulf von Euler berichtete 1935 von einer aus der Prostata gewonnen blutdrucksenkenden Substanz mit dem damals vorläufigen Namen Prostaglandin (Von Euler, 1935). Nach der Isolation und Strukturaufklärung der ersten natürlich vorkommenden Prostaglandine durch Bergström und Samuelsson sind weitere biologisch aktive Arachidonsäuremetaboliten entdeckt worden. Prostaglandine zeichnen sich dadurch aus, dass sie normalerweise nicht gespeichert, sondern auf verschiedene Stimuli hin ständig neu synthetisiert und freigesetzt werden. Da diese lokalen Mediatoren rasch inaktiviert werden, ist ihre Halbwertszeit sehr kurz (ca. 1 min). Ihre Wirkung ist vorwiegend auto- oder parakrin in fast allen Geweben zu finden. Sie werden auch als Gewebshormone bezeichnet (Egan und Fitzgerald, 2006).

Das durch die Cyclooxygenase-Reaktion synthetisierte PGH₂ wird anschließend durch verschiedene Prostaglandin-Synthasen zu den Prostaglandinen PGD₂, PGE₂ und

 $PGF_{2\alpha}$, zu Prostacyclin (PGI_2) und zu Thromboxan (TXA_2) umgewandelt. Diese drei Substanzgruppen werden auch als Prostanoide zusammengefasst (Simmons et al., 2004).

Alle Prostanoide besitzen als oxygenierte Fettsäuren eine ähnliche Struktur, bestehend aus 20 Kohlenstoffatomen mit einem Kohlenstoffring, C13 – C14 Doppelbindung und einer Hydroxylgruppe an C15. Unterschieden werden Thromboxane (T) mit einem Cyclohexanring und Prostaglandine (PG) mit einem Cyclopentanring, die weiter klassifiziert werden mit den Buchstaben A bis I mit tiefgestellter arabischer Ziffer 1-3, bezogen auf die Substitutionsstruktur des Kohlenstoffringes und die Anzahl der Doppelbindungen (Bos et al., 2004).

Bezüglich der präsynaptischen Modulation inhibieren Prostaglandine der E-Serie (Formel von Prostaglandin E₂, s. Abb. 1) die Freisetzung von Noradrenalin (Reimann et al., 1981) und Serotonin (Schlicker et al., 1987) im zentralen Nervensystem und von Noradrenalin und Azetylcholin im autonomen Nervensystem (Boehm und Kubista, 2002; Fuder und Muscholl, 1995). Dieser Effekt ist Gegenstand weiterer Untersuchungen in dieser Arbeit an verschiedenen Geweben von Ratte, Maus und Meerschweinchen.

Prostaglandine sind an der Regulation des Schlaf-Wach-Rhythmus (Hayaishi, 1991), der Schmerzentstehung und -wahrnehmung (Horiguchi et al., 1986), beim metabolischen Syndrom und bei der Fieberentstehung (Blatteis, 2000) beteiligt. Darüber hinaus wirken PG bzw. Prostanoide unter anderem auf die Aggregation der Blutplättchen, auf glattmuskuläre Gewebe wie Gefäße, besitzen eine wichtige Rolle bei der Entstehung von

Abb. 1: Strukturformeln von Prostaglandin E₂ (links) und Sulproston

Tumoren, beeinflussen die Magensaftsekretion, und sind bei inflammatorischen Prozessen beteiligt (Murakami, 2011).

1.3 Prostaglandin-Rezeptoren

Prostaglandine bzw. Prostanoide wirken über Prostanoid-Rezeptoren. Diese werden in fünf Gruppen eingeteilt: DP, EP, FP, IP und TP. Ihre Nomenklatur leitet sich von der Bezeichnung der natürlich vorkommenden Prostanoide PGD_2 , PGE_2 , $PGF_{2\alpha}$, PGI_2 (Prostacyclin) und TXA_2 (Thromboxan) ab und richtet sich nach der jeweiligen stärksten Affinität (Coleman et al., 1994). Es gibt aber auch eine nicht zu vernachlässigende Affinität jedes Prostanoids zu den anderen Prostanoid-Rezeptoren. Für den Prostaglandin-Rezeptor sind vier Rezeptor-Subtypen EP_{1-4} bekannt (Woodward et al., 2011).

Die Struktur der Prostaglandin-Rezeptoren entspricht dem Aufbau von G-Proteingekoppelten Rezeptoren (Alexander et al., 2011). Die aus ca. 350 Aminosäuren bestehenden Ketten durchqueren die Zellmembran siebenmal, wodurch außer den beiden Nund C-terminalen Sequenzen und den sieben transmembranären Domänen drei extra-

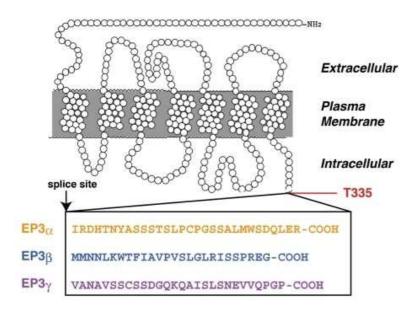


Abb. 2: Exemplarische Darstellung des G-Protein-gekoppelten EP₃-Rezeptors der Maus mit sieben Transmembrandomänen. Aminosäuresequenzen des C-terminalen Endes von den drei Isoformen der Maus (Ichikawa et al., 2010).

und drei intrazelluläre Schleifen entstehen. Das N-terminale Ende der Amino-säurekette liegt im Extrazellularraum, während das C-terminale Ende intrazellulär lokalisiert ist (Abb. 2). Phylogenetisch gehören die Prostanoid-Rezeptoren zum Rhodopsin-Rezeptor-Typ der G-Protein-gekoppelten-Rezeptoren (Toh et al., 1995).

Obwohl alle PG-Rezeptoren eine relativ hohe Affinität zu PGE₂ haben, zeigen die Subtypen im Vergleich ihrer Aminosäuresequenz eine niedrige Strukturhomologie und unterscheiden sich in der Sequenz des C-Terminus, woraus man schließt, dass diese Abweichung für die Bindungscharakteristik der Subtypen für verschiedene spezifische Liganden verantwortlich ist (Simmons et al., 2004). Grundsätzlich treten alle Liganden über den N-Terminus mit dem Rezeptor in Verbindung und lösen eine G-Proteinvermittelte Signalkaskade aus. In Bezug auf die präsynaptische Modulation noradrenerger und serotonerger Neuronen scheint vor allem der EP₃-Rezeptor von Bedeutung.

1.4 Der EP₃-Rezeptor

Die pharmakologische Charakterisierung des EP₃-Rezeptors begann mit der Beschreibung der Kontraktion von glatten Muskelzellen (Coleman et al., 1994). Unter den PG-Rezeptoren nimmt der EP₃-Rezeptor eine Sonderstellung ein, da durch alternatives Splicing multiple EP₃-Rezeptor mRNAs entstehen, die für verschiedene Isoformen dieses Rezeptors kodieren (Irie et al., 1994; Namba et al., 1993). Bisher wurden unter anderem neun verschiedene mRNA-Varianten für acht Splicevarianten des EP₃-Rezeptors beim Menschen (Kotelevets et al., 2007; Schmid et al., 1995), vier Isoformen bei der Ratte (Oldfield et al., 2001), drei Isoformen bei der Maus (Abb. 2), fünf Subtypen beim Kaninchen und vier Isoformen beim Rind (Hatae et al., 2002) nachgewiesen.

Die verschiedenen Isoformen des EP₃-Rezeptors unterscheiden sich in der Aminosäuresequenz des C-terminalen Endes. Für die Isoformen gibt es keine einheitliche Einteilung, und so werden die Einteilungen der Erstautoren benutzt. Beispiel ist der pharmakologisch bereits gut charakterisierte EP₃-Rezeptor der Maus mit den drei Isoformen EP3 $_{\alpha}$, EP3 $_{\beta}$, EP3 $_{\gamma}$ (Abb. 2). Unter den EP-Rezeptoren ist die zerebrale Expression des EP₃-Rezeptors am besten untersucht. Erstmals zeigten Radioliganden-Bindungsstudien eine hohe Dichte von PGE₂-Bindungsstellen im Gehirn (Matsumura et al., 1992). Eine *in-situ* Hybridisierungsstudie an der Maus zeigte eine über das ganze Gehirn verteilte Expression von EP₃-Rezeptor mRNA, wie z.B. in Neuronen des Kortex, Hippocampus, Thalamus, Hypothalamus, Mesencephalon und des Hirnstamms (Sugimoto et al., 1994). Ein ähnliches EP₃-Rezeptor Expressionsmuster zeigte sich im Gehirn der Ratte (Nakamura et al., 2000). Das PGE₂-Bindungsmuster in der o.g. Radioligandenbindungsstudie entsprach dem EP₃-Rezeptor Verteilungsmuster beider genannter Studien. Der EP₃-Rezeptor ist der dominierende EP-Rezeptor Subtyp des Gehirns (Sugimoto et al., 2000).

Außerdem ist der EP₃-Rezeptor in vielen anderen Geweben und Organen wie dem peripheren Nervensystem, Herz-Kreislauf-System, Reproduktionssystem, den Nieren und den ableitenden Harnwegen lokalisiert. Überdies besitzt er wie auch die anderen Prostanoidrezeptoren eine Funktion bei der Regulation von Tumorwachstum und Entzündungsprozessen. Trotz vieler Information über den EP₃-Rezeptor ist die physiologische Relevanz der ausgelösten Signalkaskaden oft noch unklar (Bos et al., 2004). Anhand der Vergleiche von Agonisten-Wirkstärken ist der inhibierende Effekt von PGE₂ auf die Freisetzung von Noradrenalin und Serotonin im zentralen und autonomen Nervensystem als EP₃-Rezeptor vermittelt klassifiziert worden.

1.5 Signaltransduktion am EP₃-Rezeptor

Die Isoformen des EP₃-Rezeptors unterscheiden sich in der Aminosäuresequenz des Cterminalen Endes, welches unter anderem die Spezifität für ein G-Protein determiniert (Irie et al., 1994; Namba et al., 1993). Der Hauptweg der Signaltransduktion von EP₃-Rezeptoren ist die Gi-vermittelte Inhibierung der Adenylatcyclase. Allerdings können die meisten Isoformen an weitere G-Proteine koppeln, und es entsteht eine hohe Brandbreite an Mechanismen der intrazellulären Signalweiterleitung. Für den humanen EP₃-Rezeptor konnte die isoformspezifische Kopplung an ein G_s-, G_i- bzw. G_q-Protein nachgewiesen werden. Für andere Spezies wie z.B. die Maus zeigte sich zusätzlich auch eine EP₃-Rezeptor gekoppelte Aktivierung des G₁₃-small GTPase Rho Signalweges

(Hatae et al., 2002). In Tabelle 1 sind die Signaltransduktionswege des EP $_3$ -Rezeptors der Maus mit den drei Isoformen EP3 $_{\alpha}$, EP3 $_{\beta}$, EP3 $_{\gamma}$ im Vergleich zu den anderen EP-Rezeptor-Subtypen dargestellt. Funktionell unterscheiden sich die EP $_3$ -Rezeptoren auch noch in der Desensitisierung nach Agonisten-Bindung und der Rezeptor-Internalisierung, sowie in Ruhe in der konstitutiven Aktivität (Sugimoto und Narumiya, 2007). Insgesamt lässt sich so die große Bandbreite verschiedener physiologischer Funktionen der EP $_3$ -Rezeptoren erklären. Für die präsynaptische Inhibierung von monoaminerger Transmitterauschüttung im zentralen und peripheren Nervengewebe ist, wie bei viele anderen präsynaptisch lokalisierten Rezeptoren, von einer Aktivierung von Gi-Proteinen auszugehen.

Tab. 1: Signaltransduktion der EP-Rezeptor-Subtypen und der EP₃-Rezeptor-Isoformen der Maus (Sugimoto und Narumiya, 2007). ¹Folgende Botenstoffe können beeinflusst werden: intrazelluläre Freisetzung von Ca²⁺-Ionen; Bildung von zyklischem AMP (cAMP); intrazelluläre Freisetzung von Inositroltriphosphat (IP3); Aktivierung von Rho.

Sub-	Iso-	Amino-	G-	Signaltransduktion ¹	Desensitisier-
typen	formen	säuren	Proteine		ung
EP1		405	unklar	Ca ²⁺ □	
EP2		362	Gs	cAMP□	nein
EP3	α	366	Gi, G12	cAMP□, IP3/Ca ²⁺ □□□Rho	ja
	β	362	Gi, G12	cAMP□, IP3/Ca ²⁺ □□□Rho	nein
	γ	365	Gi, Gs	cAMP□,cAMP□,IP3/ Ca ²⁺ □	
EP4		513	Gs, (Gi)	cAMP	ja

1.6 Liganden am EP₃-Rezeptor

Nach Alexander et al. (2011) stehen für alle EP-Rezeptor-Subtypen selektive Agonisten zur Verfügung, für den EP₃-Rezeptor SC46275 und ONO-AE-248. Sulproston (Strukturformel, s. Abb. 1) hat eine hohe agonistische Wirkstärke am EP₃-Rezeptor, besitzt aber auch eine Affinität zum EP₁-Rezeptor. Es wird klinisch zur Auslösung von Uteruskontraktionen und zur Eröffnung des Zervixkanals genutzt. Für den EP₃-Rezeptor gilt die Rangordnung nach Agonistenaktivität (pIC50): Sulproston > PGE₂ = Misoprostol = PGE₁ >> Iloprost, PGF_{2a}, U46619 (Coleman et al., 1994).

Mangels eines selektiven EP₃-Antagonisten konnte in der Vergangenheit ausschließlich diese Rangordnung genutzt werden, um Hinweise für den EP₃-Rezeptor-Subtyp zu finden.

Antagonistisch wirkende Substanzen stehen unter anderem mit den selektiven EP₃-Rezeptor L 798106 und L 826266 erst seit kurzem zur Verfügung (Gallant et al., 2002). Die Entwicklung dieser Substanzen basierte auf einer Serie von Biaryl-Acyl-Sulfonamiden, wobei L 826266 das Chlor-Analogon von L 798106 darstellt (Abb. 3). Die Klassifizierung des inhibitorischen präsynaptischen EP-Rezeptors als EP₃-Rezeptor stand bisher aus und stellt das Hauptanliegen der vorliegenden Arbeit dar.

Abb. 3: Strukturformel von L 826266

1.7 Zielsetzung dieser Arbeit

- 1. Antagonisiert der selektive EP₃-Antagonist L 826266 die Wirkung von PGE₂/ Sulproston in verschiedenen Geweben ?
- 2. Welche Form des Antagonismus liegt vor und mit welcher Stärke wirkt L 826266 ?
- 3. Existieren EP₃-Rezeptoren auf cholinergen Neuronen in verschiedenen Hirnregionen der Ratte ?
- 4. Existieren EP₃-Rezeptoren auf dopaminergen Zellen in der Retina des Meerschweinchens ?

2. Material, Methoden und Statistik

2.1 Versuchsanordnung

Die Superfusionsversuche in dieser Arbeit wurden an Geweben von männlichen Wistar-Ratten (220-410 g), männlichen Dunkin-Hartley Meerschweinchen (180-1070 g) und C57BL/6J-Mäusen (24-50 g) beiderlei Geschlechts durchgeführt (Bezugsquelle der Tiere: Charles-River-Laboratories, Sulzfeld, D). Dazu wurden die Tiere guillotiniert, die unten genannten Organe freipräpariert und nach Entnahme direkt auf Eis gekühlt, in modifizierter Krebs-Henseleit-Lösung (Tab. 2) zwischengelagert und zügig folgendermaßen weiterverarbeitet:

- Retina (Netzhaut): Nach Entfernung der Linse und des Glaskörpers wurde die Retina von der Augenhinterwand herausgelöst und Scheiben von 3 mm Durchmesser gestanzt.
- Samenleiter: Der Samenleiter wurde von umgebendem Bindegewebe freipräpariert und mittels Skalpell in ca. 3 mm lange Stücke geschnitten.
- Großhirnrinde, Hippokampus und Striatum wurde von den anderen Anteilen des Gehirns freipräpariert; mit Hilfe eines Plexiglasblocks mit eingefräster Vertiefung wurden Schichten von 0,3 mm Dicke geschnitten und anschließend Scheiben von 3 mm Durchmesser gestanzt.
- Atrium (Herz-Vorhof): Das an der Gefäßwurzel abgeschnittene Herz wurde auf Höhe der Vorhöfe aufgeschnitten und aus den Vorhofwänden wurden Würfel mit ca. 1 mm langer Kantenlänge geschnitten.
- Aorta: Die abdominale Aorta wurde von umgebendem Bindegewebe freigelegt und in ca. 1 mm breite Ringe geschnitten.
- Niere, Milz: Nach Freipräparierung von Mark und Kapsel wurde die Rinde der Niere bzw. die Milz in Würfel mit ca. 1 mm Kantenlänge geschnitten.

Anschließend wurden diese Gewebepräparate 60 Minuten lang in KH unter ständiger Zufuhr von Carbogen (Gasgemisch aus 95 % Sauerstoff, 5 % Kohlendioxid) mit radioaktiv markierten Neurotransmittern bei 37 °C inkubiert. Die Inkubation erfolgte mit 100 nM

[³H]-Cholin, 25 nM [³H]-Noradrenalin oder 25 nM [³H]-Serotonin. In der Superfusionsanlage wurde das vorinkubierte Gewebe anschließend in Superfusionskammern auf Polypropylennetzen zwischen zwei Platinelektroden platziert und unter verschiedenen Versuchsbedingungen mit KH und entsprechenden Pharmaka superfundiert (Näheres, s.u.). Die Durchflussgeschwindigkeit betrug 0,6 ml/min (Samenleiter, [³H]-Cholin-vorinkubierte Gewebe) oder 1 ml/min (restlichen Präparate). Die Tritiumabgabe wurde während zwei 2-minütigen Reizperioden ab der 40. (S₁) und 90. (S₂) Minute nach Beginn der insgesamt 110 Minuten dauernden Superfusion durch elektrische Feldstimulation (Rechteckimpulse) stimuliert. Der Zeitpunkt und die Dauer der Stimulation von 120 Sekunden war bei allen Versuchen gleich, die exakten Stimulationsparameter unterschieden sich in den einzelnen Versuchsreihen und werden jeweils im ersten Absatz der Abschnitte 3.2 bis 3.5 näher beschrieben.

Das Superfusat wurde ab der 35. Minute in 5-Minuten-Fraktionen gesammelt und mit 1,2 Volumenanteilen Lumagel SafeTM (Szintillationscocktail mit hoher Wasseraufnahmekapazität) versetzt. Direkt nach Versuchsende erfolgte die Auflösung der Gewebestücke in 0,5 ml SolueneTM, gefolgt von der Beimischung eines selbst hergestellten Szintillationscocktails mit geringer Wasseraufnahmekapazität (6 mg PPO und 100 μg POPOP in 1 ml Toluol). Der Tritiumgehalt der aufgefangenen Superfusatproben sowie der aufgelösten Gewebestücke wurde im Anschluss mit einem Flüssigkeitsszintillationszähler gemessen.

Grundsätzlich waren bei [3 H]-Noradrenalin-vorinkubierten Geweben (außer Retina) während der gesamten Superfusion als Hilfspharmaka Rauwolscin (1 μ M) und Desipramin (1 μ M) sowie bei Versuchen mit L 826266 zusätzlich als Hilfspharmaka Naproxen (10 μ M) im Superfusionsmedium enthalten. In den Versuchen an Retinagewebe des Meerschweinchens waren keine Hilfspharmaka im Superfusionsmedium enthalten. Bei Versuchen mit [3 H]-Cholin-vorinkubierten Geweben wurden als Hilfspharmaka Hemicholinium (10 μ M) und bei einigen Versuchen zusätzlich auch AF-DX 384 (1 μ M) gebraucht. Die Antagonisten waren normalerweise von Beginn an im Superfusionsmedium enthalten. In den Versuchen mit [3 H]-Serotonin-vorinkubierten Schnitten der Großhirnrinde enthielt das Superfusionsmedium stets einen Serotonin-Wiederaufnahme-Hemmer

(z.B. Femoxetin), und in den Versuchen zur Klärung der Wirkung von L826266 auch noch Naproxen 10 μ M (Kap. 3.3).

Der in dieser Arbeit unter anderem untersuchte Antagonist L 826266 wurde aufgrund seiner chemischer Eigenschaften bei einigen Versuchen auch schon während der Inkubationszeit mit den radioaktiv markierten Neurotransmitter und z.T. zusätzlich in einer vorgeschalteten Inkubationsphase gegenüber dem Gewebe exponiert (s. Tabelle 9). Zwischen S₁ und S₂ erfolgte ein Pharmakonwechsel, wobei die zu untersuchenden Agonisten zur Superfusionslösung hinzugegeben wurden. Die Versuchsprotokolle für einige Vorversuche wurden leicht abgeändert, diese Einzelheiten werden jeweils im ersten Absatz der Abschnitte 3.2 bis 3.5 beschrieben.

2.2 Berechnungen und Statistik

2.2.1 Berechnung der basalen und stimulierten Tritiumfreisetzung

Der Tritiumgehalt wurde durch Flüssigkeitsszintillationsmessung bestimmt. Die Tritiumabgabe (Efflux) wurde berechnet als Anteil des Tritiums, das zu Beginn der einzelnen 5-Minuten-Sammelperioden im Schnitt vorhanden war. Die ohne Stimulation gemessene Tritiumfreisetzung (basaler Efflux) wurde vor und nach dem Pharmakonwechsel in den Sammelperioden zwischen der 55. und 60. Minute (t₁) und vor dem 2. Reiz zwischen der 85. und 90. Minute (t₂) ermittelt. Somit kann durch den Quotienten t₂/t₁ der Einfluss einer Substanz auf die basale Tritiumfreisetzung nach Pharmakonwechsel gezeigt werden. Sollte die Wirkung eines Pharmakons, das während der gesamten Superfusion im Medium enthalten war, auf den basalen Efflux ermittelt werden, so wurde t in Ab- und Anwesenheit des entsprechenden Pharmakons verglichen.

Aus der Differenz zwischen der totalen und der basalen Tritiumabgabe während der Stimulation und den folgenden 13 Minuten ergab sich die stimulierte Tritiumfreisetzung. Hierbei wurde angenommen, dass die basale Tritiumabgabe von der Fraktion vor dem Reiz bis zur Fraktion 15-20 Minuten nach dem Reiz linear abnimmt. Die stimulierte Tritiumfreisetzung wurde in Prozent des Tritiums angegeben, das zu Beginn der entspre-

chenden Reizperiode noch im Gewebe vorhanden war. In Studien, bei denen das Testpharmakon nach S_1 zugefügt wurde, ergab der Quotient S_2/S_1 im Vergleich mit dem entsprechenden Quotienten der Kontrollen einen möglichen Pharmakoneffekt auf den stimulierten Tritiumefflux. In Studien, bei denen das Testpharmakon während der gesamten Versuchsdauer im Superfusionsmedium anwesend war, wurde die durch S_1 stimulierte Abgabe in Gegenwart des Pharmakons mit dem S_1 -Wert in dessen Abwesenheit verglichen. Hinsichtlich des zeitlichen Ablaufs der Superfusion wurde bei den Experimenten an Retinagewebe etwas anders verfahren als bei den restlichen Versuchen. Die Gesamtdauer der Superfusion betrug 120 (statt 110) min; das Testpharmakon war in der Lösung ab der 82. (statt 62.) min enthalten; S_1 und S_2 erfolgten nach 60 und 100 (statt 40 und 90) min. t_1 und t_2 wurden in den Sammelperioden von der 75. bis 80. und 95. bis 100. min (statt 55. - 60. bzw. 85. – 90. min) bestimmt.

2.2.2 Berechnung pharmakologischer Wirkungsstärken

Der pEC₅₀-Wert diente als Maß für die Wirkungsstärke eines Agonisten und ist definiert als negativer dekadischer Logarithmus der Agonistenkonzentration, welche 50 % des maximal möglichen Effektes hervorruft. Der Maximaleffekt wurde definiert als die Wirkung, die bei der höchsten untersuchten Konzentration gemessen wurde.

$$pA_2 = \log\left(\left(\frac{[E']}{[E]} - 1\right)\right) - \log[B]$$

- [E'] Konz. des Agonisten in Anwesenheit des Antagonisten
- [E] Konz. des Agonisten in Abwesenheit des Antagonisten
- [B] Konzentration des Antagonisten

Die Wirkungsstärke des in dieser Arbeit untersuchten Antagonisten L 826266 wurde durch den pA₂-Wert bestimmt (Furchgott, 1972). Der pA₂-Wert stellt den negativen dekadischen Logarithmus der Antagonistenkonzentration dar, bei der die Konzentrations-Wirkungs-Kurve um den Faktor zwei nach rechts verschoben wird. Streng genommen muss man bei den meisten in dieser Arbeit gezeigten pA₂-Werten von "scheinbaren"

pA₂-Werten sprechen, da nicht mindestens drei Konzentrationen der jeweiligen Antagonisten untersucht wurden.

In einem Versuchsmodell (Abb. 8) wurde die Wirkung von drei Konzentrationen von L 826266 (die einen Konzentrationsbereich von 40 umspannen) gegen Sulproston und von einer weiteren Konzentration von L 826266 gegen PGE₂ untersucht. Die dekadischen Logarithmen der experimentell ermittelten "dose ratio-1" (entspricht dem ersten Term rechts vom Gleichheitszeichen in der oben gezeigten Gleichung) wurden nach Arunlakshana und Schild (1959) in Abb. 9 gegen die dekadischen Logarithmen der Konzentrationen von L 826266 aufgetragen.

2.2.3 Statistik

Die Ergebnisse sind angegeben als Mittelwerte ± SEM (Standardabweichung des Mittelwertes) aus n Experimenten, wobei n die Anzahl der Versuche wiedergibt. Der SEM errechnet sich aus dem Quotienten der Standardabweichung und der Wurzel aus der Versuchsanzahl. Die S₁- und t₁- Werte ergeben sich aus dem Mittelwert von mehreren Schnitten pro Versuch, die S₂/S₁- und t₂/t₁-Werte basieren auf je einem Schnitt pro Experiment. Die Diagramme zeigen die elektrisch stimulierte Tritiumfreisetzung, dargestellt als Quotient S₂/S₁, der in Relation gesetzt wurde zum S₂/S₁-Wert der Kontrollversuche. Der Student-t-Test für unverbundene Stichproben diente dem Vergleich der Mittelwerte. Beim Vergleich von zwei oder mehreren Versuchswerten mit der gleichen Kontrolle wurde der t-Test der Bonferroni-Korrektur unterzogen.

2.3 Material

2.3.1 Chemikalien

Die Stammlösungen der Pharmaka wurden je nach Versuchsbedingungen und Löslichkeit mit Ethanol (Prostaglandin E₂, Sulproston), DMSO (L 826266, WIN 55,212-2) oder Aqua dem. (andere Substanzen) hergestellt und mit dem Superfusionsmedium bis zur benötigten Konzentration verdünnt. Bei allen Kontrollversuchen ohne Pharmaka wurde das Differenzvolumen durch Lösungsmittel ergänzt. Die organischen Lösungsmittel selbst (Endkonzentration von Ethanol oder DMSO bis 0,3%) beeinflussten die Tritiumabgabe nicht.

2.3.2 Modifizierte Krebs-Henseleit-Lösung für die Superfusion

Die KH ähnelt in der Zusammensetzung dem menschlichen Blutserum; so sollte genau die Situation des Extrazellularraumes simuliert werden. Gewährleistet wird die passende Elektrolytzusammensetzung, die optimale Nährstoffversorgung und die Pufferung des pH-Wertes auf 7,4 durch die Zusammensetzung der KH, der ständigen Sauerstoffsättigung des Mediums mit Carbogen (Gemisch aus 95 % O₂ mit 5 % CO₂) und des physiologischen CO₂/HCO₃-Systems.

Tab. 2: Zusammensetzung der verwendeten physiologischen Salzlösung (KH, mM). ¹Inkubationslösung aller Versuche sowie Superfusionslösung von [³H]-Noradrenalin-vorinkubiertem Großhirnrinden- und Retinagewebe und [³H]-Serotonin-vorinkubiertem Großhirnrindengewebe, ²Superfusionslösung von [³H]-Noradrenalin-vorinkubiertem Gefäß-, Samenleiter-, Atrium-, Milz- und Nierengewebe und von [³H]-Cholin-vorinkubiertem Striatum-, Hippokampus- und Großhirnrindengewebe, ³Ethylendiamintetraessigsäure-Dinatriumsalz

NaCl	118	KCI	4,8	NaHCO₃	25
KH₂HPO₄	1,2	CaCl ₂	$1,3^1 / 3,25^2$	MgSO ₄	1,2
Ascorbinsäure	0,06	Glucose	10	Na₂EDTA ³	0,03

Tab. 3: Zusammenstellung der verwendeten Substanzen mit deren Bezugsquellen einschließlich der Radiochemikalien. ¹Lumagel Safe[®] ist ein eingetragenes Warenzeichen der Lumac-LSC B.V., 9703 LM Groningen, Niederlande. ²Soluene[®] ist ein eingetragenes Warenzeichen der Packard Instrument Company Inc., Meriden, CT 06450, USA.

AF-DX 384 (5,11-Dihydro-11-{[(2-{2-[(dipropyla-	Boehringer-Ingelheim, Biberach an			
min)methyl]-1-piperidinyl}ethyl)amino]carbonyl}-	der Riss, D			
6H-pyrido-(2,3-ß)(1,4)benzodiazepin-6-on)				
L 826266 (5-Bromo-N-[3-(5-chloro-2-naphtalen-	Merck Frosst, Pointe-Claire-Dorval,			
2-ylmethyl-phenyl)-acryloyl]-2-methoxybenzol-	Québec, CDN			
sulfonamid)				
Calciumchlorid	Merck KGaA, Darmstadt, D			
Carbogen (95% O ₂ , 5% CO ₂)	Linde Gas Therapeutics, Unter-			
	schleißheim, D			
Desipramin	Novartis, Wehr, D			
DMSO (Dimethylsulfoxid)	Merck KGaA, Darmstadt, D			
Ethanol absolut	KMF-Laborchemie, Lohmar, D			
Femoxetin	Ferrosan, Kopenhagen, DK			
Hemicholinium-3	ChemCon, Freiburg, D			
Indalpin	Pharmaka, Gennevilliers, F			
Lumagel [®] Safe ¹	Lumac LSC, Groningen, NL			
Metitepin	Sigma, München, D			
Naproxen	Sigma, München, D			
Oxotremorin	Sigma-Aldrich Chemie, Steinheim, D			
POPOP (1,4-Bis-[5-phenyl-2-oxazolyl]-benzol)	Acros Organics, Fair Lawn, NJ USA			
PPO (2,5-Diphenyloxazol)	Acros Organics, Fair Lawn, NJ USA			
Prostaglandin E ₂	Sigma-Aldrich Chemie, Steinheim, D			
R-(+)-WIN-55,212-2(R(+)-[2,3-Dihydro-5-me-	Sigma-Aldrich Chemie, Steinheim, D			
thyl-3-[(morpholinyl)-methyl]pyrrolo[1,2,3-de]-				
1,4-benzoxazinyl]-(1-naphthalenyl)methanon-				
mesylat)				
Rauwolscin	Carl Roth, Karlsruhe, D			
Saccharose	Merck KGaA, Darmstadt, D			
Salzsäure 1 M	KMF Laborchemie, Lohmar, D			
Sulproston	Bayer-Schering Pharma, Berlin, D			
Soluene®-5002 (0,5 M quarternäres Ammoni-	PerkinElmer, Boston, USA			
um-hydroxid in Toluol)				
Toluol	Merck KGaA, Darmstadt, D			
Viqualin	Pharmaka, Gennevilliers, F			
Zimelidin	Sigma, München, D			
[³ H]-Noradrenalin	PerkinElmer, Zaventem, B			
(spezifische Aktivität: 53 Ci/mmol)				
[³ H]-Cholin	PerkinElmer, Zaventem, B			
(spezifische Aktivität: 70,3 Ci Ci/mmol)				
[³ H]-Serotonin	PerkinElmer, Zaventem, B			
(spezifische Aktivität: 28,1 Ci/mmol)				

2.3.3 Verwendete Geräte und Verbrauchsmaterialien

Tab. 4: Zusammenstellung der für die Superfusionsversuche verwendeten Geräte und Materialien sowie deren Bezugsquellen.

Analysenwaage Sartorius 2004 MPG	Sartorius, Göttingen, D		
Flüssigkeitsszintillationszähler Beckman LS	Beckman Coulter, Fullerton, CA,		
6000 TA	USA		
Fraktionssammler Multirac 2111	LKB, Freiburg, D		
Guillotine	Eigenbau der Institutswerkstatt		
Laborflaschen Duran [®]	Schott, Mainz, D		
Laborwaage L610D	Sartorius, Göttingen, D		
Magnetrührer Combimag RCO	IKA, Staufen i. Br., D		
Magnetrührer MR 82	Heidolph, München, D		
Mini Poly-Q-Vials [®] Nr. 592928	Beckman, München, D		
Multipette Nr. 4710	Eppendorf, Hamburg, D		
Multipetten-Spitzen Combitips®	Eppendorf, Hamburg, D		
Parafilm PM-956	Pechiney Plastic Packaging, Chi-		
	cago, IL, USA		
Pipetten Eppendorf Reference: 0,5-10 µl, 1000	Eppendorf, Hamburg, D		
μl			
Pipetten Eppendorf Research: 10-100 μl, 100-	Eppendorf, Hamburg, D		
1000 μl, 1000-5000 μl,			
Pipettenspitzen Sarstedt	Sarstedt, Nümbrecht, D		
Präparierbesteck	Everhards, Meckenheim, D		
Rollerpumpe	Eigenbau der Institutswerkstatt		
Spannungsquelle PowerPac 3000	Bio-Rad, Hercules, CA, USA		
Standzylinder Blaubrand [®]	Brand, Wertheim, D		
Stimulator 215/II	Hugo Sachs, March-Hugstetten,		
	D		
Superfusionsanlage	Eigenbau der Institutswerkstatt		
Thermostat Typ MD	Julabo, Seelbach, D		
Thermostat Typ MS	MGW, Lauda-Königshofen, D		
Vortex Mixer Reax 2000	Heidolph, München, D		
Wasserbad und Schüttler 4010	Köttermann, Hänigsen, D		
Wasserbad Typ 1083	GFL, Burgwedel, D		

3. Ergebnisse

3.1. Allgemeines

Die verschiedenen Bedingungen der Superfusionsversuche (Gewebeschnitte, Tracer, Reizparameter, Hilfspharmaka) sind jeweils zu Beginn jedes Kapitels (3.2 - 3.5) aufgeführt.

3.1.1 Basale Tritiumfreisetzung

Die Berechnung des basalen Tritiumefflux erfolgte wie unter "Material, Methoden und Statistik" beschrieben und wurde entweder als t_1 oder als t_2/t_1 bestimmt. Die t_2/t_1 -Werte waren bei allen Experimenten nahe 0,7 und wurden nicht durch Pharmaka verändert, die erst nach dem 1. Reiz (S₁) in der KH enthalten waren; auf die Wiedergabe der Werte wurde verzichtet. Die t_1 -Werte unter Kontrollbedingungen sind aus Tabelle 5 ersichtlich. Vor der Auswertung der Versuche wurde überprüft, ob sich die basale Tritiumfreisetzung durch Pharmaka, die ab Beginn der Superfusion im Versuchsmedium enthalten waren, statistisch signifikant ändert. Der selektive EP₃-Rezeptor-Antagonist L 826266 hatte keinen Einfluss auf den basalen Efflux (Kapitel 3.2 und 3.3). In Versuchen mit [³H]– Serotonin vorinkubierten Großhirnrindenschnitten der Ratte steigerten verschiedene Serotonin-Wiederaufnahme-Hemmer und der 5-HT-Autozeptor-Antagonist Metitepin den basalen Efflux, wie aus Abbildung 12 (s. Kapitel 3.3) bzw. Tabelle 5 ersichtlich wird.

Tab. 5: Basaler Efflux (t₁; min⁻¹) in den untersuchten Geweben unter Kontrollbedingungen. [3 H]-NA = [3 H]-Noradrenalin; [3 H]-5-HT = [3 H]-Serotonin; $^+$ H., Hemicholinium 10 μ M; $^{++}$ A., AF-DX 384 1 μ M; **p < 0,01, verglichen mit dem entsprechenden Wert ohne Metitepin.

Kapi- tel	Spezies	Gewebe	Tra- cer	Hilfspharmaka	t ₁	n
	Dotto	Großhirnrinde	_	Desipramin 1 μM,	0,0043 ± 0,0002	21
	Ratte	Samenleiter	[³ H]- NA	Rauwolscin 1 µM	0,0016 ± 0,0001	10
	Maus	Großhirnrinde		Naproxen 10 µM	0,0032 ± 0,0002	8
3.2		Atrium			0,0024 ± 0,0002	10
		Samenleiter			0,0023 ± 0,0002	6
	Ratte	Niere	[³ H]- NA	Desipramin 1 µM, Rauwolscin 1 µM	0,0045 ± 0,0004	6
		Milz		,	0,0022 ± 0,0002	6
		Aorta			0,0037 ± 0,0003	6
	Ratte	Großhirnrinde	[³ H]- 5-HT	Naproxen 10 µM Metitepin 1 µM	0,0089 ± 0,0006	12
3.3				Naproxen 10 µM Femoxetin 1 µM	0,0065 ± 0,0004	6
				Naproxen 10μM Femoxetin 1 μM Metitepin 1 μM	0,0091 ± 0,0004	6
		Striatum		H. ⁺	$0,0033 \pm 0,0004$	5
		Otriatam	-3	H. + A. ⁺⁺	0,0025 ± 0,0005	4
3.4	Ratte	Hippokampus	[³ H]- Cho-	H.	$0,0020 \pm 0,0003$	6
3.4	Natio	Пррокатраз	lin	H. + A.	$0,0023 \pm 0,0004$	6
		Großhirnrinde		H.	0,0023 ± 0,0003	6
				H. + A.	0,0021 ± 0,0003	4
3.5	Meer- schwein- chen	Retina	[³ H]- NA	-	0,0055 ± 0,0006	17

3.2 Noradrenerge Neurotransmission

Der Effekt von PGE $_2$ und dessen Analogon Sulproston (EP $_3$ -Rezeptor) sowie deren Wechselwirkungen mit dem selektiven EP $_3$ -Rezeptor-Antagonisten L 826266 auf die elektrisch induzierte Freisetzung von [3 H]-Noradrenalin wurde an drei verschiedenen Modellen (Tab. 6) untersucht. Dazu wurden Schnitte von verschiedenen peripheren Geweben der Ratte und von der Großhirnrinde der Ratte und der Maus 60 min lang mit [3 H]-Noradrenalin vorinkubiert und dann superfundiert. Elektrisch gereizt wurde nach 40 min (S $_1$) und erneut nach 90 min (S $_2$) für jeweils 120 Sekunden (Einzelheiten der Versuchsbedingungen s. Tab. 6). Die Hilfspharmaka sowie der Antagonist L 826266 waren jeweils während der gesamten Versuchsdauer im Superfusionsmedium enthalten, während PGE $_2$ bzw. Sulproston dem Medium ab der 62. min zugeführt wurde. S $_1$ -Werte (% des Gewebetritiums) unter Kontrollbedingungen sind aus der Tabelle 7 ersichtlich. Tabelle 7 zeigt, dass L 826266 die [3 H]-Noradrenalin-Freisetzung (S $_1$) in Geweben der Ratte nicht verändert. In Versuchen mit Großhirnrinden-Schnitten der Maus kam es durch L 826266 (0,32 μ M) zu einer Steigerung der elektrisch induzierten Tritiumfreisetzung um 15 %.

Tab. 6: Versuchsbedingungen für die im Abschnitt 3.2 untersuchten Modelle. [3 H]-Noradrenalin.

Tracer	Spezi- es	Gewebe	Hilfspharmaka	Fluss- rate (ml/min)	Ca ²⁺ - Kon- zentrati- on (mM)	Reizpa- rameter
[³H]- NA	Ratte Ratte Oroßhirn- rinde	Samenleiter Niere Milz	Desipramin 1 μM Rauwolscin 1 μM	0,5	3,25	3 Hz, 200 mA, 2 ms
			Naproxen 10 μM Desipramin 1 μM Rauwolscin 1 μM	1,0	1,3	0,3 Hz, 50 mA, 2 ms
		Samenleiter		0,5	3,25	3 Hz, 200 mA, 2 ms
	Maus	Großhirn- rinde		1,0	1,3	0,3 Hz, 50 mA, 2 ms

Tab. 7: Kontrollwerte der elektrisch induzierten [3 H]-Noradrenalin-Freisetzung (S $_1$ in Prozent des Gesamtgewebetritiums) unter Kontrollbedingungen und unter Einfluss des Antagonisten L 826266 in superfundiertem Ratten— und Mausgewebe für die im Abschnitt 3.2 untersuchten drei Modelle. Mittelwert \pm SEM aus 4 - 6 Experimenten. *p < 0,05 im Vergleich zur Kontrolle.

Ab-	Spezies / Ge- webe	Tracer	Stimulierte Tritiumfreisetzung (S ₁ , % des Gewebetritiums) L 826266 (µM)				
Schille	webe		0	0,05	0,1	0,32	2
3.2.3	Ratte/ Großhirnrinde	[³ H]-NA	10,29 ± 0,64	10,04 ± 0,63	10,76 ± 0,37	11,05 ± 0,58	10,67 ± 0,87
3.2.2	Ratte/ Samenleiter	[³ H]-NA	4,44 ± 0,70	1	-	4,32 ± 0,86	-
3.2.4	Maus/ Großhirnrinde	[³ H]-NA	13,07 ± 0,50	•	-	15,05 ± 0,55*	-

3.2.1 Klebeeffekt von L 826266?

Aufgrund der chemischen Eigenschaften des EP₃-Rezeptor-Antagonisten L 826266 ergab sich der Verdacht der Ablagerung an Innenflächen der Superfusionsanlage mit Beeinflussung nachfolgender Versuche. Um diesen möglichen Klebeeffekt näher zu untersuchen, wurden Konzentrations-Wirkungs-Kurven von Sulproston bezüglich dessen Hemmwirkung auf die elektrisch stimulierte Tritiumabgabe in [³H]-Noradrenalin vorinkubierten Großhirnrinden- und Samenleiterschnitten der Ratte erstellt. Die Wirkung von Sulproston wurde einmal getestet, nachdem im vorherigen Versuch in der Superfusionsanlage L 826266 benutzt wurde. Diese Ergebnisse wurden mit dem Effekt von Sulproston in gleichartigen Versuchen, ohne L 826266 im Vorversuch, verglichen. Abbildung 4A zeigt bei Versuchen mit Großhirnrindengewebe (Flussrate: 1 ml/min) eine allenfalls marginale Rechtsverschiebung durch L 826266 im Vorversuch, welche jedoch nicht relevant erscheint und statistisch auch nicht signifikant ist. Abbildung 4B zeigt bei Versuchen am Samenleiter, mit einer niedrigeren Flussrate von 0,6 ml/min, eine leichte Rechtsverschiebung bei niedrigen Agonistenkonzentrationen, welche einen antagonisti-

schen Effekt von L 826266 zeigen könnte. Diese Rechtsverschiebung zeigt jedoch statistisch keine Signifikanz.

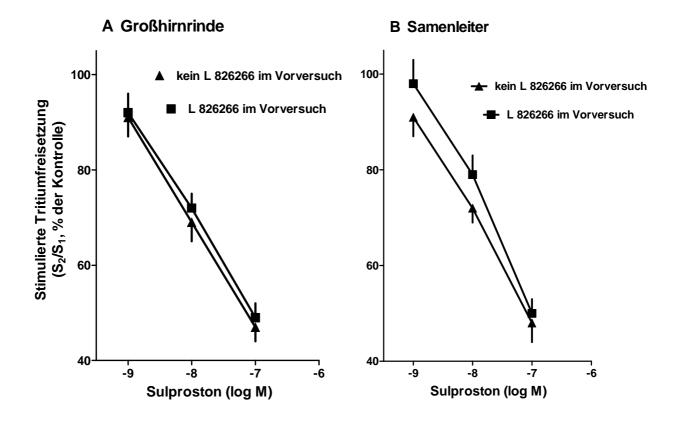


Abb. 4: Wirkung von Sulproston auf die elektrisch stimulierte [3 H]-Noradrenalin-Freisetzung in superfundiertem Großhirn- und Samenleitergewebe der Ratte. Versuchsreihe ohne L 826266 im Vorversuch, sowie im Anschluss an Versuche, welche den Antagonisten L 826266 (0,32 μ M) enthielten. Die Flussrate der Superfusionslösung bei Versuchen mit Samenleiter betrug 0,6 ml/min, bei Versuchen mit Großhirnrinde 1,0 ml/min. Mittelwerte \pm SEM von 4 - 6 Experimenten.

3.2.2 Periphere Gewebe der Ratte

Zunächst wurde der Effekt von Prostaglandin E_2 in fünf verschiedenen peripheren Geweben der Ratte bestimmt, die mit [3 H]-Noradrenalin vorinkubiert und unter gleichen Versuchsbedingungen (Tab. 6) untersucht worden waren. Die S_2/S_1 -Werte der fünf Versuchstypen sind aus Abbildung 5 ersichtlich. In der Versuchsreihe mit Samenleiter-Schnitten konnte Prostaglandin E2 (1 μ M) die Noradrenalinfreisetzung signifikant hem-

men (p < 0,001, s. Abb. 5), was mit der Zeit-Effekt-Kurve verdeutlicht wird (Abb. 6).In den In den anderen vier peripheren Geweben kam es zu keiner signifikanten Hemmung der Noradrenalinfreisetzung durch PGE2 (Abb. 5). Somit erwiesen sich die Versuche am Samenleiter als einziges geeignetes Modell, um die Wechselwirkung von L 826266 mit PGE2 bezüglich der noradrenergen Neurotransmission an einem peripheren Gewebe zu untersuchen. Für die meisten weiteren Versuche wurde PGE2 durch dessen Analogon Sulproston (EP3-Rezeptor Agonist) ersetzt, das eine höhere Selektivität und Wirkungsstärke am EP3-Rezeptor besitzt. Die S1-Werte (% des Gewebetritiums) unter Kontrollbedingungen und unter dem Einfluss von L 826266 sind aus Tabelle 7 ersichtlich.

Abbildung 7 zeigt eine Konzentrations-abhängige Hemmung der [3 H]-Noradrenalin-Freisetzung durch Sulproston mit einer maximalen Hemmung von ca. 50 % bei einer Konzentration von 0,1 μ M. Der hieraus ermittelte pEC $_{50}$ -Wert war 8,68 (s. auch Tab. 8, Kapitel 3.2.3). Der Antagonist L 826266 (0,32 μ M) verschob die Konzentrations-Wirkungs-Kurve von Sulproston nach rechts. Der ermittelte scheinbare pA $_2$ -Wert lag bei 7,82 (s. auch Tab. 8). Die Einwirkzeit von L 826266 auf die Samenleiter-Schnitte war 2,5

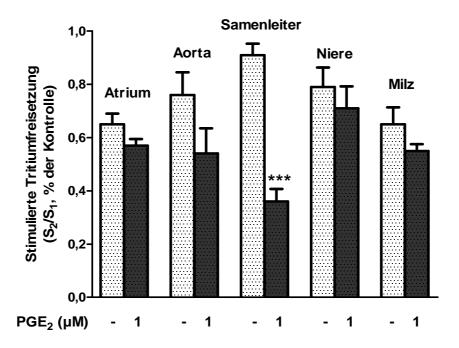


Abb. 5: Effekt von Prostaglandin E_2 (PGE₂; ab 62. min) auf die elektrisch stimulierte [3 H]-Noradrenalin-Freisetzung in verschiedenen superfundierten peripheren Geweben der Ratte. Mittelwert + SEM aus 4 - 10 Experimenten. ***p < 0,001 im Vergleich zur Kontrolle.

Stunden (vor und während der Inkubationszeit und während der Superfusion, s. dazu auch Kapitel 3.2.4).

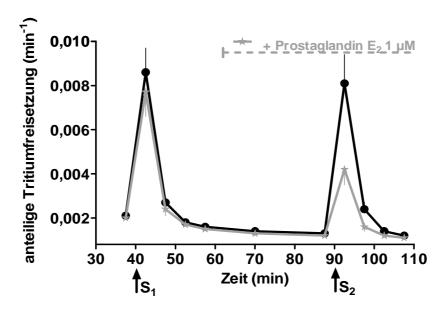


Abb. 6: Einfluss von Prostaglandin E₂ (1 μM ab 62. Minute) auf den Verlauf der anteiligen Tritiumfreisetzung ([³H]-Noradrenalin) in superfundierten Samenleiter-Schnitten der Ratte. Mittelwert und SEM aus 6 - 8 Experimenten.

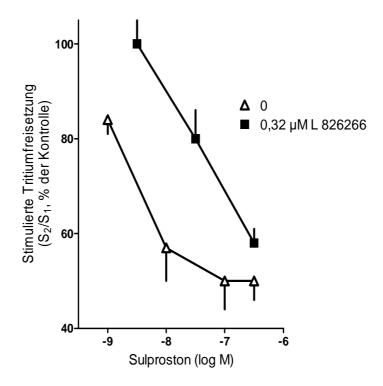


Abb. 7: Effekt von Sulproston auf die elektrisch stimulierte [³H]-Noradrenalin-Freisetzung in superfundierten Samenleiterschnitten der Ratte und dessen Wechselwirkung mit dem EP₃-Rezeptor-Antagonisten L 826266. Mittelwerte ± SEM von 4-10 Experimenten.

3.2.3 Großhirnrindengewebe der Ratte

In Abbildung 8 sind die Konzentrations-Wirkungs-Kurven für die beiden Agonisten Sulproston und PGE₂ bezüglich ihrer Effekte auf die elektrisch stimulierte Tritiumabgabe in [³H]-Noradrenalin vorinkubierten Großhirnrindenschnitte der Ratte aufgetragen (Einzelheiten der Versuchsbedingungen s. Tab. 6). Die S₁-Werte (% des Gewebetritiums) unter Kontrollbedingungen und unter dem Einfluss von L 826266 sind aus Tabelle 7 ersichtlich.

PGE₂ hemmte Konzentrations-abhängig die [³H]-Noradrenalin-Freisetzung (Abb. 8A) mit einem maximalen Effekt von ca. 70 % und einem pEC₅₀-Wert von 7,43. Durch den Antagonisten L 826266 (0,1 μM) wurde die Kurve nach rechts verschoben, bei einem pA₂-Wert von 7,72. Auch durch das Analogon Sulproston kam es zu einer konzentrationsabhängigen Hemmung der [³H]-Noradrenalinfreisetzung (Abb. 8B), ebenfalls mit einer maximalen Hemmung von ca. 70 %, allerdings mit einem höheren pEC₅₀-Wert von 8,06.

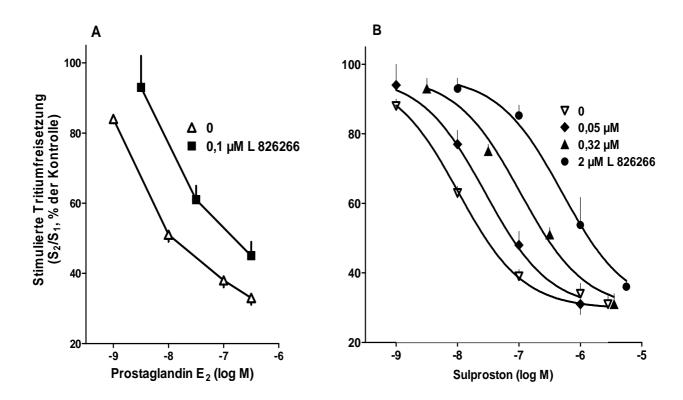


Abb. 8: Effekt von Prostaglandin E₂ und Sulproston auf die elektrisch stimulierte [³H]-Noradrenalin-Freisetzung in superfundierten Großhirnrindenschnitten der Ratte und deren Interaktion mit dem EP₃-Antagonisten L 826266 in verschiedenen Konzentrationen. Mittelwert und SEM aus 3 - 7 Experimenten.

So zeigte Sulproston eine leicht höhere Potenz gegenüber PGE_2 bei gleichem maximalem Effekt. Die Wirkung des EP_3 -Agonisten Sulproston wurde durch drei verschiedene Konzentrationen des Antagonisten L 826266 (0,05 μ M, 0,32 μ M und 1 μ M) nach rechts verschoben (Abb 8B).

Der p A_2 -Wert von L 826266 wurde ermittelt, indem die Logarithmen der "dose ratios - 1" gegen die Logarithmen der Konzentrationen von L 826266 aufgetragen wurden. Dieser Schild-Plot ergab eine Gerade mit einer Steigung von etwa 1 (Abb. 9), was auf einen kompetitiven Antagonismus schließen lässt. Der p A_2 -Wert für L 826266 betrug 7,68 und ist somit ähnlich den scheinbaren p A_2 -Werten für L 826266 in den anderen zwei Modellen (Tab. 8).

Die Einwirkdauer von L 826266 auf die Gewebeschnitte betrug bei den L 826266-Konzentrationen 0,05, 0,1 und 0,32 µM 1,5 Stunden. Bei der Versuchsreihe mit der höchsten L 826266-Konzentration von 2 µM mussten die Gewebeschnitte bereits 4 Stunden vor der Inkubationszeit sowie während der Inkubation und Superfusion gegenüber L 826266 ausgesetzt werden, und somit wurde die Einwirkdauer auf insgesamt 6,5 Stunden verlängert (s. dazu auch Tab. 9).

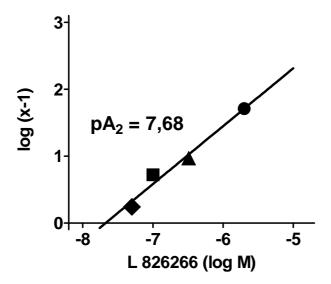


Abb. 9: Schild-Plot für den Antagonisten L 826266 auf die Wirkung des Agonisten Sulproston. Aufgetragen ist der Logarithmus der L 826266-Konzentration gegen den Logarithmus von x-1. x ist der Quotient der Konzentration von Sulproston oder PGE2, die den halbmaximalen Effekt in An- und Abwesenheit von L 826266 hervorrufen.

Tab. 8: Übersicht über maximale Effekte und Wirkstärken von Prostaglandin E₂ und Sulproston sowie die antagonistische Wirkstärke von L 826266 in mit [³H]-NA bzw. [³H]-5-HT vorinkubierten superfundierten Ratten- und Mausgeweben. ^aDie ermittelten scheinbaren pA₂-Werte beruhen auf *einer* Antagonisten- Konzentration von L 826266. ^bDer pA₂-Wert ist durch vier Konzentrationen des Antagonisten L 826266 (drei gegenüber Sulproston - Abb. 8B und einer gegenüber PGE₂ - Abb. 8A) und dem Schild Plot Verfahren abgeleitet worden.

Abb.	Gewebe	Tracer	EP ₃ -Rez	eptor- Agonis	L 826266	
ADD.	Gewebe	Hacei	Agonist	Maximaler Effekt (ca.)	pEC ₅₀	pA ₂
8	Großhirnrinde/ Ratte	[³ H]-NA	PGE ₂ Sulproston	70 70	7,43 8,06	7,72 ^a 7,68 ^b
7	Samenleiter/ Ratte	[³ H]-NA	Sulproston	50	8,68	7,87 ^a
11	Großhirnrinde/ Maus	[³ H]-NA	Sulproston	90	8,51	7,55 ^a
15	Großhirnrinde/ Ratte	[³ H]-5- HT	Sulproston	40	8,35	7,67 ^a

3.2.4 Großhirnrindengewebe der Maus

Um zu zeigen, dass die Effekte von Sulproston und L 826266 nicht nur für Gewebe der Ratte zutreffen, wurde eine andere Spezies untersucht. In der ersten Versuchsreihe wurde eine Konzentrations-Wirkungs-Kurve von Sulproston bezüglich dessen Hemmwirkung auf die elektrisch stimulierte Tritiumabgabe in [³H]-Noradrenalin vorinkubierten Großhirnrindenschnitten der Maus erstellt (Versuchsbedingungen s. Tab. 6). Sulproston hemmte die [³H]-Noradrenalinfreisetzung Konzentrations-abhängig mit einem maximalen Effekt von ca. 90 % bei einer Sulproston-Konzentration von 0,1 μM (Abb. 11). Der pEC₅₀-Wert war 8,51 (Tab. 8).

Abbildung 10 zeigt einen Vergleich der hemmenden Wirkung von Sulproston auf die [³H]-Noradrenalin-Freisetzung in Großhirnrindengewebe der Ratte (aus Kapitel 3.2.3) und der Maus. Sulproston zeigt sowohl eine höhere Potenz (pEC₅₀) als auch einen größeren Maximaleffekt (90 vs. 70 %) in Großhirnrindengewebe der Maus als im Rattengewebe (Tab. 8).

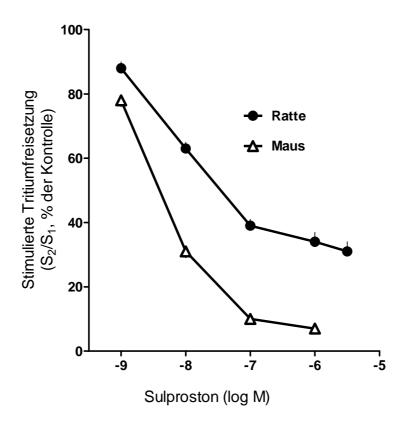


Abbildung 10: Vergleich der Wirkung von Sulproston auf die elektrisch stimulierte [³H]-Noradrenalin-Freisetzung in superfundiertem Großhirnrinden-Gewebe der Ratte und der Maus. Mittelwerte ± SEM von 4 - 8 Experimenten.

Der Antagonist L 826266 verschob auch in diesem Modell die Konzentrations-Wirkungs-Kurve von Sulproston nach rechts. Da L 826266 in vorherigen *in-vitro* Versuchen (Jones et al., 2008; sowie unsere eigenen Erfahrungen; s. Tab. 9) eine längere Zeit zur Einstellung des Gleichgewichtes benötigte, wurde zusätzlich eine weitere Versuchsreihe mit der gleichen Konzentration von L 826266 (0,32 μM), jedoch mit einer verlängerten Einwirkzeit des Antagonisten auf die Gewebeschnitte, durchgeführt. Die Einwirkzeit des Antagonisten auf die Gewebeschnitte wurde von 90 min (Superfusion) auf 150 min (Superfusion- und Inkubationszeit) verlängert, und L 826266 zeigte einen signifikant stärkeren Effekt auf die Hemmwirkung von Sulproston auf die [³H]-Noradrenalin-Freisetzung (Abb. 11). Der unter diesen modifizierten Versuchsbedingungen bestimmte scheinbare pA₂-Wert beträgt 7,55 (Abb. 11, Tab 8).

Tab. 9: Übersicht über Einwirkzeiten (Stunden) der verschiedenen Konzentrationen von L 826266 auf die verschiedenen Gewebe.

Abbil- dungen	L 826266	Vor der Inkuba- tion	Während der Inku- bation	Während der Super- fusion	Gesamtzeit
8	von 0,05 bis 0.32 μM			1,5	1,5
8	2 μΜ	4	1	1,5	6,5
11	0,32 μΜ		1	1,5	2,5
15	0,32 μΜ		1	1,5	2,5
7	0,32 μΜ			1,5	1,5

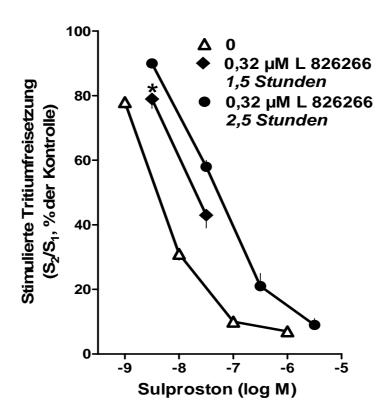


Abb. 11: Effekt von Sulproston auf die elektrisch stimulierte [³H]-Noradrenalin-Freisetzung in superfundiertem Großhirnrinden-Gewebe der Maus und dessen Interaktion mit dem EP₃-Antagonisten L 826266. Mittelwert und SEM aus 3 - 8 Experimenten. *p < 0,05 im Vergleich zwischen Experimenten mit einer L 826266 Einwirkzeit von 2,5 anstatt 1,5 Stunden.

3.3 Serotonerge Neurotransmission

Um die Wirkungen von Sulproston und L 826266 an einem anderen Monoamin-Transmittersystem zu untersuchen, wurden Versuche mit [³H]-Serotonin-vorinkubierten Großhirnrindenschnitten der Ratte durchgeführt. In der ersten Serie wurde der Einfluss von vier verschiedenen Serotonin-Wiederaufnahme-Hemmern auf den Tritiumefflux und des Beeinflussung durch Sulproston an [³H]-Serotonin-vorinkubierten Großhirnrindenschnitten der Ratte untersucht. Die t₁-Werte sind aus Tabelle 5 und Abbildung 12 ersichtlich. Die Serotonin-Wiederaufnahme-Hemmer Viqualin, Zimelidin und Indalpin steigerten die basale Tritiumfreisetzung (t₁) ungewöhnlich stark um bis zu 80 % (Viqualin), während Femoxetin keinen Einfluss hatte (Abb. 12).

Tab. 10: Versuchsbedingungen für Abschnitt 3.3. [³H]-5-HT = [³H]-Serotonin; * mit oder ohne Serotonin-Wiederaufnahme-Hemmer (Femoxetin, Indalpin, Viqualin, Zimelidin), s. Abb. 12.

Tracer	Spezies	Gewebe	Hilfspharmaka	Fluss- rate	Ca ²⁺ -Kon- zentration	Reizpa- rameter
[³ H]-5- HT	Ratte	Großhirn- rinde	1. Serie:* Naproxen 10 µM Metitepin 1 µM 2. Serie: Naproxen 10 µM Femoxetin 1 µM	1,0 ml/min	1,3 mM	3 Hz, 200 mA, 2 ms

Tab. 11: Kontrollwerte der elektrisch induzierten Tritiumfreisetzung (S₁ in Prozent des Gesamtgewebetritiums) unter Kontrollbedingungen und unter Einfluss des Antagonisten L 826266 in [³H]-5-HT-vorinkubierten Großhirnrindengewebe der Ratte (Abschnitt 3.3). Mittelwert ± SEM aus 4 - 6 Experimenten.

Ab- schnitt	Spezies / Ge- webe	Tracer	(9			reisetzun etritiums) M)	•
			0	0,05	0,1	0,32	2
3.3	Ratte/ Großhirnrinde	[³ H]-5-HT	4,38 ± 0,45	-	-	4,23 ± 0,66	-

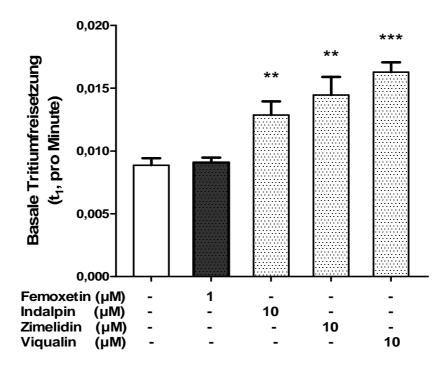


Abb. 12: Effekt verschiedener Serotonin-Wiederaufnahme-Hemmer auf die basale Tritiumfreisetzung in [3 H]-5-HT-vorinkubierten Großhirnrinden-Gewebe der Ratte. Elektrisch gereizt (3 Hz, 200 mA, 2 ms) wurde nach 40 min (S_1) und erneut nach 90 min (S_2). Zusätzlich waren als Hilfspharmaka der 5-HT-Rezeptor Antagonist Metitepin (1 µM) und Naproxen (10 µM) während der ganzen Zeit im Superfusionsmedium enthalten. Mittelwert + SEM aus 7-12 Experimenten. **p < 0,01, ***p < 0,001 im Vergleich zur Kontrolle.

Unter dem Einfluss aller genannten selektiven Serotonin-Wiederaufnahme-Hemmer hemmte Sulproston die elektrisch stimulierte Tritiumfreisetzung (Abb. 13). Da Femoxetin, wie oben gezeigt, keinen Einfluss auf den basalen Efflux zeigte, wurde dieses Pharmakon für die weiteren Versuche gewählt. Da das Hilfspharmakon Metitepin die Hemmwirkung von Sulproston steigerte (nicht gezeigt) und außerdem die basale Tritiumabgabe stark erhöhte (Tab. 5), wurde es in den nachfolgenden Versuchen nicht weiter als Hilfspharmakon benutzt. Anschließend wurde eine Konzentrations-Wirkungs-Kurve von Sulproston bezüglich dessen Hemmwirkung auf die elektrisch stimulierte Tritiumabgabe in [³H]-Serotonin vorinkubierten Großhirnrindenschnitte der Ratte erstellt (Abb. 15)

Tabelle 10 zeigt die Bedingungen für die nachfolgenden Versuche der zweiten Serie. Beispielhaft für den Verlauf der Superfusion mit [³H]-Serotonin vorinkubierten Großhirn-

rindenschnitten der Ratte ist die in Abbildung 14 dargestellte Zeit-Effekt-Kurve der Tritiumfreisetzung mit einer Hemmung der Serotoninausschüttung durch Sulproston (0,1 μ M). Abbildung 15 zeigt eine Konzentrations-abhängige Hemmung der [3 H]-Serotonin-Freisetzung mit einer maximalen Hemmung von ca. 40 % bei einer Sulproston Konzentration von 0,1 μ M (pEC $_{50}$ war 8,35). Der Antagonist L 826266 (0,32 μ M, Expositionsdauer 2,5 h, s. Tab. 9) verschob die Konzentrations-Wirkungs-Kurve von Sulproston nach rechts. Der ermittelte scheinbare pA $_2$ -Wert lag bei 7,67 (s. auch Tab. 8). L 826266 hatte keinen Einfluss auf die elektrisch induzierten Tritiumfreisetzung (S $_1$) (Tab. 11).

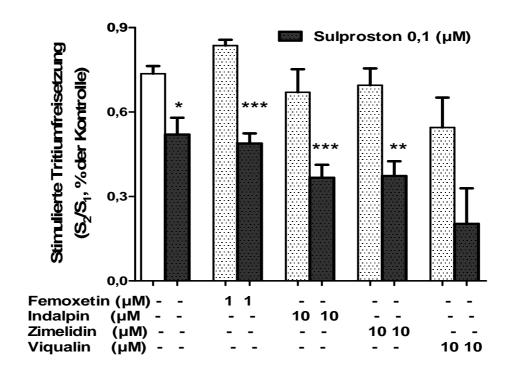


Abb. 13: Effekt von Sulproston unter verschiedenen Bedingungen auf die elektrisch stimulierte [³H]-Serotonin-Freisetzung. Mittelwert + SEM aus 7-12 Experimenten. *p<0,05, **p<0,01, ***p<0,001 im Vergleich zur Kontrolle.

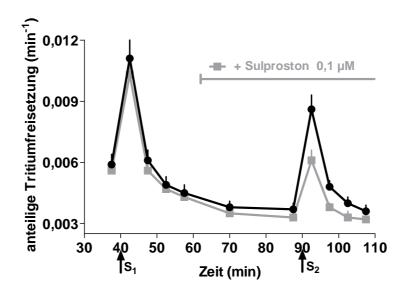


Abb.14: Einfluss von Sulproston (0,1 µM ab 62. Minute) auf den Verlauf der Tritiumfreisetzung in [³H]-Serotonin-vorinkubierten Großhirnrinden-Schnitten der Ratte. Mittelwert und SEM aus 6 - 8 Experimenten.

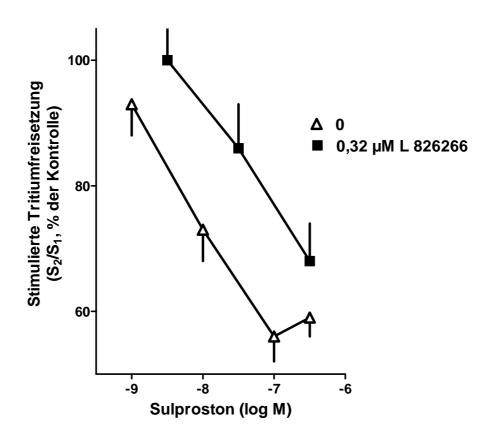


Abb. 15: Effekt von Sulproston auf die elektrisch stimulierte Tritiumfreisetzung in [3H]-Serotonin-vorinkubierten Großhirnrindengewebe der Ratte und dessen Interaktion mit dem EP3-Antagonisten L 826266. Mittelwert und SEM aus 4-10 Experimenten.

3.4 Cholinerge Neurotransmission

Um die Wirkung von Prostaglandin E2 auf die Azetylcholinfreisetzung in verschiedenen Hirnregionen der Ratte zu untersuchen, wurden Superfusionsexperimente an Hippokampus, Striatum und Großhirnrinde durchgeführt. Diese wurden 60 min lang mit [3H]-Cholin vorinkubiert und dann superfundiert (Ca2+-Konzentration der Superfusionslösung 3,25 mM). Elektrisch gereizt wurde nach 40 min (S_1) und erneut nach 90 min (S_2) . Als Hilfspharmaka waren Hemicholinium (10 µM) und bei einigen Versuchen zusätzlich der Muskarin_{2/4}-Rezeptor Antagonist AF-DX 384 während der ganzen Zeit im Superfusionsmedium enthalten. AF-DX 384 zeigte dabei keinen Einfluss auf die elektrisch induzierte Tritiumfreisetzung (S₁) (Abb. 16). Zusätzlich wurden unter gleichen Bedingungen Versuche mit dem Muskarin-Rezeptor Agonisten Oxotremorin durchgeführt. Die S₂/S₁-Werte der drei Versuchsmodelle sind aus Abbildung 17 ersichtlich. Prostaglandin E2 hemmte in keiner der drei Hirnregionen die elektrisch induzierte Tritiumfreisetzung. Auch bei Versuchen, welche zusätzlich noch den Muskarin-Rezeptor-Antagonisten AF-DX 384 enthielten, konnte Prostaglandin E2 keine Hemmung erreichen. Oxotremorin, das als Positivkontrolle diente, hemmte hingegen die Azetylcholinfreisetzung in AF-DX 384freien Versuchen (Abb. 17).

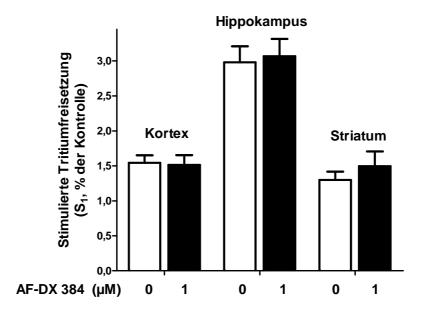


Abb.16: Wirkungen von AF-DX 384 auf die elektrisch stimulierte [³H]-Azetylcholin-Freisetzung in verschiedenen superfundierten Regionen des Rattenhirns. Mittelwert + SEM aus 4-10 Experimenten.

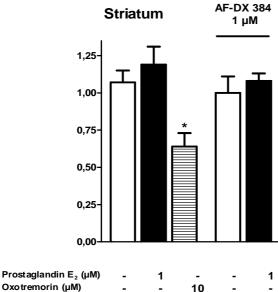


Abb. 17: Wirkungen von Prostaglandin E_2 und Oxotremorin auf die elektrisch stimulierten [3 H]-Azetylcholin-Freisetzung in verschiedenen superfundierten Regionen des Rattenhirns. Mittelwert + SEM aus 4 - 10 Experimenten. *p < 0,05, **p < 0,01, ***p < 0,001 im Vergleich zur Kontrolle.

Beispielhaft für den Verlauf der Superfusion mit [3 H]-Cholin vorinkubierten Hirnschnitten der Ratte ist die in Abbildung 18 dargestellte Zeit-Effekt-Kurve der Tritiumfreisetzung mit einer Hemmung der Azetylcholinfreisetzung durch Oxotremorin (10 μ M) beim 2. Reiz. Prostaglandin E_2 erzielte keinen hemmenden Effekt.

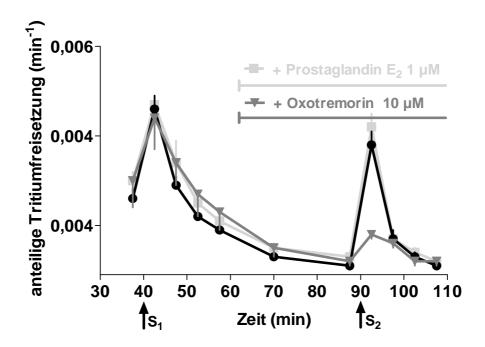


Abb.18: Einfluss von Prostaglandin E₂ und Oxotremorin auf den Verlauf der anteiligen Tritiumfreisetzung in [³H]-Cholin-vorinkubierten Großhirnrindengewebe der Ratte. Mittelwert und SEM aus 6-8 Experimenten.

3.5 Dopaminerge Neurotransmission

Um den Effekt von Prostaglandin E_2 auf das dopaminerge System der Retina des Meerschweinchens zu untersuchen, wurden 60 min lang Retina-Schnitte mit [3 H]-Noradrenalin vorinkubiert und dann superfundiert (Ca^{2+} -Konzentration der Superfusionslösung 1,3 mM). Elektrisch gereizt wurde nach 60 min (S_1) und erneut nach 100 min (S_2). In der Retina des Meerschweinchens gibt es keine noradrenergen Neurone bzw. Zellen. [3 H]-Noradrenalin wird in diesem Gewebe in dopaminerge Zellen aufgenommen und bei elektrischer Stimulation wie Dopamin freigesetzt. Der S_1 -Wert betrug in den Versuchen 4,55 ± 0,37 % des Gewebetritiums (Mittelwert ± SEM aus 17 Experimenten).

Die S₂/S₁-Werte sind aus Abbildung 19 ersichtlich. Prostaglandin E₂ hemmte die [³H]-Noradrenalin-Freisetzung nicht, während der Cannabinoid-Rezeptor-Agonist WIN 55,212-2, der als Positivkontrolle mitgeführt wurde, eine Hemmung von 53 % erzielte.

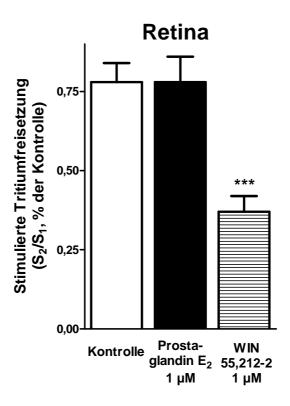


Abb. 19: Effekt von Prostaglandin E_2 und WIN 55,212-2 auf die elektrisch stimulierte Tritiumfreisetzung (3 Hz, 200 mA, 2 ms) in der [3 H]-Noradrenalin-vorinkubierten Retina des Meerschweinchens. Mittelwert + SEM aus 16-17 Experimenten. ***p < 0,001 im Vergleich zur Kontrolle.

Beispielhaft für den Verlauf der Superfusion mit [3 H]-Noradrenalin vorinkubierten Retinagewebe des Meerschweinchens ist die in Abbildung 20 dargestellte Zeit-Effekt-Kurve der Tritiumfreisetzung. Prostaglandin E $_2$ (1 μ M) hatte keinen hemmenden Effekt, während WIN 55,212-2 (1 μ M) eine Hemmung zeigte.

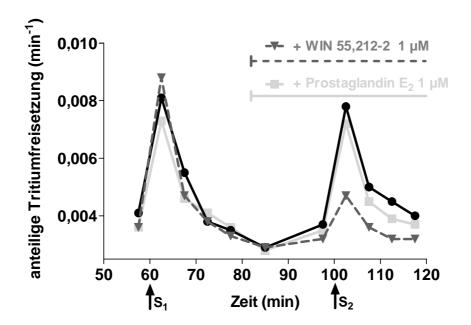


Abb. 20: Einfluss von Prostaglandin E₂ und WIN 55,212-2 (ab 62. Minute) auf den Verlauf der Tritiumfreisetzung in der [³H]-Noradrenalin-vorinkubierten Retina des Meerschweinchens. Mittelwert und SEM aus 16-17 Experimenten.

4. Diskussion

4.1 Beurteilung der Versuchsbedingungen

Die in der vorliegenden Arbeit gewonnenen Daten beruhen auf der Methode der Superfusion (Überströmung) von Gewebeschnitten mit elektrischer Feld-Stimulation. Mit dieser seit langem etablierten Methode kann die Transmitterfreisetzung und deren Modulierbarkeit durch präsynaptisch lokalisierte Rezeptoren untersucht werden (Starke, 1977).

In dieser Arbeit wurden Superfusionsstudien an [³H]-Noradrenalin-, [³H]-Serotonin- oder [³H]-Cholin vorinkubierten Gewebeschnitten ausgeführt. Diese Tritium-markierten Transmitter besitzen die gleichen chemischen Eigenschaften wie die nicht markierten Analoga und werden während der Inkubation der Gewebeschnitte über hochaffine neuronale Transportmechanismen ins terminale Axon aufgenommen. Anschließend erfolgt die Speicherung in präsynaptischen Vesikeln und nach entsprechender Stimulation die exozytotische Freisetzung. Die in physiologische Salzlösung abgegebene Radioaktivität kann am Ende detektiert werden und somit die Menge an freigegebenen Transmittern berechnet werden. Um die Identifizierung präsynaptischer modulatorischer Mechanismen zu ermöglichen, erfolgte diese Stimulation dabei in An- oder Abwesenheit diverser Rezeptor-selektiver Agonisten und Antagonisten.

Die in dieser Arbeit verwendeten Tritium-markierten Monoamine Noradrenalin und Serotonin werden über Noradrenalin- (NAT) bzw. Serotonintransporter (SERT) aufgenommen und anschließend über vesikuläre Monoamintransporter (VMAT 1 in sympathischen Ganglien; VMAT 2 in zentralen Neuronen) in präsynaptische Vesikel aufgenommen und dort gespeichert (Südhof, 2004). Um die Freisetzung von Azetylcholin in verschiedenen zentralen Hirnregionen zu untersuchen, wurden Schnitte mit dem Präkursor [³H]-Cholin inkubiert, welches über den High-Affinity-Choline-Uptake (HACU) in cholinerge Nervenendigungen aufgenommen wird (Kuhar und Murrin, 1978). Anschließend wird das Cholin azetyliert und über den Azetylcholin-Transporter (VAChT) in die Vesikel transportiert und dort gespeichert (Südhof, 2004). Die Untersuchung des dopaminergen Systems der

Meerschweinchenretina erfolgte indirekt mit [³H]-Noradrenalin, da bei früheren Messungen nach Inkubation mit [³H]-Dopamin eine hohe Variabilität der Ergebnisse auftrat (Schlicker et al., 1996). [³H]-Noradrenalin wird wie [³H]-Dopamin über Dopamin-Transporter in die dopaminergen Amakrinzellen aufgenommen und durch elektrische Reizung freigesetzt. Dieses Prozedere ist nur in der nicht vaskularisierten Retina des Meerschweinchens möglich, die keine noradrenergen Zellen oder Neurone enthält, sodass [³H]-Noradrenalin nur in dopaminerge Zellen aufgenommen wird. Auch die Netzhaut des Hausschweins enthält keine noradrenergen Zellen, allerdings postganglionäre Sympathikusneurone, welche die in dieser Species vorhandenen retinalen Gefäße begleiten (Chase, 1982). In der Schweine-Retina wird [³H]-Noradrenalin sowohl von den dopaminergen Zellen als auch von den noradrenergen (Sympathikus-) Neuronen aufgenommen, wobei der letztgenannte Prozess quantitativ extrem überwiegt (Schlicker et al., 1990).

Die Freisetzung der radioaktiv markierten Neurotransmitter wird auch unter den künstlichen *in vitro* Bedingungen durch Aktionspotentiale hervorgerufen und ist durch den Ca²⁺-abhängigen Vorgang der Exozytose vermittelt. Wenn die Transmitterfreisetzung durch das Entfernen von Ca²⁺ aus der Superfusionsflüssigkeit (Göthert et al., 1986) oder

Tab. 12: Nachweis einer *quasi-physiologischen* Transmitter-Freisetzung in verschiedenen Geweben.

Spezies	Gewebe	³ H-Transmitter	Transmitter	Literatur-
Ratte	Großhirnrinde	³ H-Noradrenalin	Noradrenalin	Schlicker et al. (1992)
Maus	Großhirnrinde	³ H-Noradrenalin	Noradrenalin	Schlicker et al. (1992)
Ratte	Samenleiter	³ H-Noradrenalin	Noradrenalin	Schlicker et al. (2003)
Ratte	Niere	³ H-Noradrenalin	Noradrenalin	Rump et al. (1992), Reutelsterz (2008)
Meer- schwein- chen	Retina	³ H-Noradrenalin	entspricht Dopamin	Schlicker et al. (1996)
Ratte	Großhirnrinde	³ H- Serotonin	Serotonin	Schlicker et al. (1987)
Ratte	Hippokampus	³ H-Cholin	Azetylcholin	Kathmann et al. (2001)

durch Unterbrechung der Fortleitung des Aktionspotenzials durch die Blockade von spannungsabhängigen Natriumkanälen, z.B. mit Tetrodotoxin (TTX) (Aktories et al., 2009), gehemmt werden kann, entspricht dies einer *quasi-physiologischen* Freisetzung. Die TTX-Sensitivität und Ca²⁺-Abhängigkeit wurde für die meisten der hier verwendeten Superfusionsmodelle bereits in früheren Arbeiten unserer Gruppe gezeigt (Tab. 12) und kann für die weiteren Modelle ebenfalls angenommen werden.

In dieser Arbeit wurden Superfusionsversuche in insgesamt zwölf verschiedenen Modellen an Geweben von drei Species durchgeführt. Die Versuchsbedingungen in den einzelnen Versuchsreihen sind in Kapitel 3.1 und/oder zu Beginn der einzelnen Kapitel (3.2 bis 3.5) aufgeführt. Zum Teil wurden sie in dieser Arbeit, zum Teil in vorangegangenen Arbeiten unserer Arbeitsgruppe optimiert.

4.1.1 Reizbedingungen

Das Ausmaß der Modulierbarkeit der elektrisch stimulierten Tritiumfreisetzung hängt von der Stärke des elektrischen Reizes (insbesondere der Stimulationsfrequenz), der Ca²⁺-Konzentration in der Superfusionsflüssigkeit sowie von Zusatzpharmaka ab. Generell wurde bei den einzelnen Versuchsreihen darauf geachtet, dass eine möglichst geringe elektrische Stimulationsfrequenz eingesetzt wurde, da bei höheren Reizfrequenzen die Transmitterfreisetzung zwar steigt, die Modulierbarkeit jedoch abnimmt (Starke, 1977).

In den hier beschriebenen Versuchen an peripheren Geweben und an der Retina musste mit 3 Hz eine relativ hohe Reizfrequenz gewählt werden, um eine ausreichend hohe absolute Transmitterfreisetzung zu erzielen. Dies galt auch für die Versuche an [³H]-Cholin- und [³H]-Serotonin-vorinkubierten Hirnschnitten. Bei Versuchen an [³H]-Noradrenalin-vorinkubiertem Gehirngewebe war hingegen eine Reizfrequenz von 0,3 Hz ausreichend.

4.1.2 Hilfspharmaka

Physiologisch gibt es unterschiedliche Mechanismen, die die Konzentration des Transmitters nach der Freisetzung im synaptischen Spalt beeinflussen und somit Einfluss auf die zu messende freigesetzte Tritiumfreisetzung haben. Relevant für die Superfusionsversuche sind zum einen die direkte aktive Wiederaufnahme des Transmitters aus dem synaptischen Spalt über spezifische Transporter sowie die über präsynaptische Autorezeptoren vermittelte Hemmung der weiteren Transmitterfreisetzung, im Sinne eines negativen Rückkopplungsmechanismus. Diese Mechanismen wurden in einem Teil der Versuche während der Superfusion mittels Hilfspharmaka blockiert, damit mögliche Interaktionen mit Testpharmaka unterbunden werden. Ferner steigern beide Maßnahmen die Menge an freigesetztem Transmitter. Schließlich erhöht die Autorezeptor-Blockade das Ausmaß der über andere präsynaptische Rezeptor-Systeme vermittelte Hemmung der Transmitterfreisetzung, was an noradrenergen Neuronen für viele präsynaptisch lokalisierte Rezeptoren (Schlicker und Göthert, 1998) und auch für Prostaglandin-Rezeptoren nachgewiesen wurde (Exner und Schlicker, 1995).

In der vorliegenden Arbeit wurde folgendermaßen verfahren. Bei allen Superfusionsexperimenten an noradrenergen Neuronen wurden der Aufnahme-Mechanismus (NAT) durch Desipramin und der α₂-Autorezeptor durch Rauwolscin blockiert. Bei den serotonergen Neuronen wurde der Aufnahme-Mechanismus (SERT) durch Femoxetin gehemmt; die Blockade des 5-HT_{1B}-Autozeptors bewährte sich nicht, da Metitepin die basale Tritium-Freisetzung steigert (s. übernächster Absatz) und das Ausmaß an der Hemmwirkung von Prostaglandinen (anders als in der Arbeit von Schlicker et al., 1987) nicht steigerte. Alle Superfusionsversuche an cholinergen Neuronen wurden in Gegenwart des Aufnahme-Hemmstoffs Hemicholinium durchgeführt; die Wirkung von Prostaglandin E₂ wurde weiterhin in Experimenten untersucht, in denen der Muskarin-Autorezeptor durch AF-DX 384 blockiert war. Bei den Versuchen an den dopaminergen Zellen der Retina wurde auf sämtliche Hilfspharmaka verzichtet, damit die Versuchsbedingungen denen entsprechen, die in einer früheren Publikation unserer Arbeitsgruppe (Weber und Schlicker, 2001) gewählt worden waren.

Bei Versuchen mit dem EP₃-Rezeptor-Antagonisten L 826266 wurde die endogene Prostaglandin-Synthese mit dem Cyclooxygenase-Hemmer Naproxen inhibiert. Dies wurde deshalb gemacht, damit die Wirkungsstärke (pA₂) von L 826266 so präzise wie möglich ermittelt werden kann. Wenn im Versuchsansatz die Bildung endogener Prostaglandine möglich ist, dann würde L 826266 nicht nur gegenüber exogener zugeführten Prostaglandin E₂ oder Sulproston, sondern auch gegenüber endogenen Prostaglandinen antagonistisch wirken. Die würde zu einer Unterbewertung seiner Wirkstärke führen.

Tabelle 5 zeigt den Einfluss der verwendeten Hilfspharmaka auf die basale Tritiumfreisetzung. Wenn ein Pharmakon einen steigernden Effekt auf diesen Parameter hat, beeinträchtigt das die Berechnung der stimulierten Tritiumfreisetzung. Dies trifft in der vorliegenden Arbeit auf einige Hemmstoffe des Serotonin-Transporters und auf Metitepin zu (Tab. 5), welche bei weiteren Versuchen ausgeschlossen wurden.

4.1.3 Möglicher "Klebeeffekt" von L 826266?

Als Grundvoraussetzung für die Versuchsreihen sollte zunächst geklärt werden, ob der EP₃-Antagonist L 826266 aufgrund seiner chemischen Eigenschaften die Versuchsbedingungen in der Superfusionsanlage beeinflusst. Es musste überprüft werden, ob sich diese Substanz aufgrund ihrer Lipophilie in Teilen der Versuchsanlage ablagert und das Ergebnis nachfolgender Versuche durch diesen "Klebeeffekt" beeinflusst. Die Möglichkeit wurde für die beiden Superfusionsanlagen separat getestet. Bei der Superfusionsanlage mit Glaskammern und hoher Flussrate (1 ml/min) zeigten die Konzentrations-Wirkungs-Kurven für Sulproston keinen Unterschied, egal ob L 826266 (0,32 µM) im Versuch davor verwendet wurde oder nicht (Abb. 4A). Bei der Superfusionsanlage mit Plexiglaskammern und niedriger Flussrate (0,6 ml/min) zeigte die Konzentrations-Wirkungs-Kurve von Sulproston nach einem Versuch mit L 826266 eine geringe, jedoch statistisch nicht signifikante Rechtsverschiebung (Abb. 4B). Da auch mit höheren Konzentrationen von L 826266 (2 µM) gearbeitet wurde und um einen möglichen Klebeeffekt insbesondere bei niedrigen Flussraten der Superfusionslösung (0,6 ml/min) auszuschließen, wurde die Spülungszeit zur Reinigung der Superfusionsanlagen mit HCI 0,05% und Aqua dest. verdoppelt.

4.1.4 Einwirkzeit von L 826266

Normalerweise beträgt die Einwirkzeit für Antagonisten in unseren Superfusionsanlagen 90 min (von Beginn der Superfusion bis zu S₂). Im Falle von L 826266 zeigte sich bei einer Konzentration von 0,32 µM jedoch ein signifikant stärkerer Effekt auf die Wirkung von Sulproston im Mäusehirn, wenn die Einwirkzeit um 60 Minuten verlängert wurde (Abb. 11). Hieraus resultierte ein pA₂-Wert von 7,51 im Gegensatz zu einem pA₂-Wert von 6,95 bei kürzerer Einwirkzeit. Daraufhin wurden bei fast allen Versuchen die Einwirkzeiten gegenüber L 826266 angepasst (Tab. 9). Das gleiche Problem zeigte sich auch bei Versuchen mit Aortengewebe vom Meerschweinchen, bei denen die Einwirkzeit von L 826266 und auch die des ähnlichen EP₃-Antagonisten L 798106 verdoppelt werden musste, damit der komplette Effekt detektiert werden konnte; bei ähnlichen Versuchen mit Schnitten vom Samenleiter vom Meerschweinchen war keine Verlängerung nötig (Jones et al., 2008).

Es kann verschiedene Gründe für diese verzögerte Gleichgewichtseinstellung des Ligand-Rezeptor-Komplexes geben. Betrachtet man die chemische Struktur von L 826266 mit einer α,β-ungesättigten Amidgruppe, könnte diese theoretisch durch Bildung einer kovalenten Bindung mit dem Rezeptor zur einer *Michael Addition* führen, wenn ein nukleophiler Anteil des Rezeptors als Enolation an die Amidgruppe bindet (Bruice, 2005). Allerdings scheint dies bei dem in dieser Arbeit gezeigten Verhalten von L 826266 als kompetitiver Antagonist eher unwahrscheinlich (s. Kapitel 4.2.4).

Ein anderer Grund kann der Einfluss der schon erwähnten starken Lipophilie von L 826266 bei der Diffusion durch das Gewebe zum Rezeptor sein. Für L 826266 zeigt sich ein hoher Octanol/Wasser-Verteilungskoeffizient von logP 6,78 (Jones et al., 2008), zum Vergleich hat PGE₂ einen logP von 2,9 (Avdeef et al., 1995). Die Zeit bis zum Wirkeintritt von verschiedenen Agonisten und Antagonisten ist eindeutig logP-abhängig (Jones et al., 2010).

In dieser Arbeit benötigte L 826266 bei Versuchen mit Samenleiterschnitten – wie auch bei Versuchen mit Samenleiter vom Meerschweinchen (Jones et al., 2008) – die kürzes-

te Einwirkzeit, um die volle Wirkung zu entfalten (pA₂: 7,87). Bei zu kurzer Einwirkzeit kann L 826266 seine Potenz nicht entfalten. So zeigte sich z.B. bei Versuchen an der menschlichen Interkostalarterie für L 826266 ein pA₂-Wert von nur 6,0 (Longrois et al., 2011), was wahrscheinlich der zu kurzen Einwirkzeit von nur 30 Minuten geschuldet ist.

4.2. Über welchen EP-Rezeptor-Subtyp wirkt PGE₂ in monoaminergen Neuronen?

Ein selektiver Antagonist für den EP₃-Rezeptor-Subtyp war lange nicht verfügbar. Bisher erfolgte die Abklärung der EP-Rezeptor-Subtypen nach Rangordnung der Agonistenaktivität nach pEC₅₀-Werten und zusätzlich in einigen Studien auch den Ausschluss von anderen EP-Rezeptor-Subtypen über die Antagonisten AH 6809 (EP₁-/EP₂-R) oder SC 19220 (EP₁-R). Bezüglich der Wirkungsstärken von Agonisten gilt für den EP₃-Rezeptor: Sulproston > PGE₂ = Misoprostol = PGE₁ >> Iloprost, PGF_{2 α}, U46619 (Coleman et al., 1994). In Tabelle 13 sind zum Vergleich die Wirkstärken von PG-Rezeptor-Agonisten und AH 6809 zusammengefasst, die auf den EP₃-Rezeptor-Subtyp in den entsprechenden Studien hindeuten, ohne dies aber definitiv zu beweisen.

Um die Natur des präsynaptisch lokalisierten Prostaglandin-Rezeptors mit inhibitorischem Effekt auf die monoaminerge Neurotransmission mithilfe des selektiven EP₃-Rezeptor-Antagonisten L 826266 weiter zu charakterisieren, wurden in dieser Arbeit vier unterschiedliche EP₃-Rezeptor-Modelle ausgewählt. Die ausgewählten Modelle unterscheiden sich in Species, Gewebe und Neurotransmitter; 1. Ratte - Samenleiter - Noradrenalin; 2. Ratte - Kortex - Noradrenalin; 3. Maus - Kortex - Noradrenalin; 4. Ratte - Kortex - Serotonin.

4.2.1 EP₃-Rezeptor vermittelte Inhibierung der NA-Ausschüttung im autonomen Nervensystem

Der präsynaptische modulatorische Effekt von Prostaglandinen auf die Transmission von Noradrenalin und Azetylcholin im autonomen Nervensystem ist seit langem bekannt (Güllner, 1983; Fuder und Muscholl, 1995). In der vorliegenden Arbeit sollte zunächst ein geeignetes peripheres Gewebe der Ratte ermittelt werden; nur am Samenleiter der

Tab. 13: Wirkstärken einiger Prostaglandin-Rezeptor-Agonisten und -Antagonisten an verschiedenen EP₃-Rezeptoren.

	pEC ₅₀				pA ₂		
EP ₃ -Rezeptormodelle	Sul- proston	Miso- prostol	PG E ₂	llo- prost	L 826 266	AH 6809	
Kortex Maus (Exner und Schlicker, 1995)	8,22	8,00	7,74	5,86		3,97	
Kortex Ratte (Exner und Schlicker, 1995)			7,67				
V. saphena Mensch (Molderings et al., 1994)	8,60	6,96	6,80	< 5,2		< 6,0	
A. pulmonalis Mensch (Molderings et al., 1994)	8,35	7,70	6,80				
Vas deferens Meerschweinchen (Jones und Wilson, 1990)	9,70	9,12	8,82				
Vas deferens Meerschweinchen (Tam et al., 1997)	9,1	9,0		8,7			
Ziliarkörper Kaninchen (Ohia und Jumblatt, 1990)	9,00		7,40	6,00		< 4,5	
Widerstandsgefäße despinalisierte Ratte (Malinowska et al., 1994)	7,53	7,13	7,00	< 7,0			
Aorta Kaninchen (Jensen und Nedergaard, 1997)	8,40	8,10	8,30	6,3		Kein Effekt	
Vorhof Mensch (Molderings et al, 1998)	7,68	7,10	7,51	Kein Effekt			
Magen Ratte (Racké et al., 1994)	8,22	7,95				Kein Effekt	
A. pulmonalis Mensch (Kozlowska et al., 2012)	7,43				7,39		
Herzfrequenz despinalisierte Ratte (Kozlowska et al., 2012)	Effekt			Kein Effekt	Effekt		
Vas deferens Ratte (Hemmung der Noradrenalin-Freisetzung; diese Studie)	8,68				7,87		
Kortex Ratte (Hemmung der Noradrenalin-Freisetzung; diese Studie)	8,06			7,43	7,68		
Kortex Maus (Hemmung der Nor- adrenalin-Freisetzung; diese Studie)	8,51				7,55		
Kortex Ratte (Hemmung der Serotonin-Freisetzung; diese Studie)	8,35				7,67		

Ratte wurde eine signifikante Inhibition der Noradrenalinfreisetzung durch Prostaglandin E₂ und Sulproston gefunden. In einer anderen Versuchsreihe unserer Arbeitsgruppe mit peripheren Geweben der Maus zeigte Sulproston eine sehr starke Hemmung der NA-Freisetzung auch in der Niere, Milz und Aorta sowie im Atrium (Günther et al., 2010). Am Samenleiter der Ratte bewirkte Sulproston eine maximale Hemmung von ca. 50 %

bei einer Konzentration von 0,1 μM. Der ermittelte pEC₅₀-Wert 8,68 ist vergleichbar mit dem pEC₅₀-Wert 8,41 von Sulproston in Versuchen am Samenleiter des Meerschweinchens (Tam et al., 1997). Der Samenleiter der Ratte stellt ein häufig genutztes System zur Untersuchung der präsynaptischen Modulation dar; zahlreiche präsynaptische Rezeptoren sind dort lokalisiert und charakterisiert worden (Südhof und Starke, 2010). Auch die o.g. inhibitorische Wirkung von Prostaglandinen auf die Noradrenalinfreisetzung im Samenleiter der Ratte ist schon lange beschrieben (Tomlinson, 1980) und wird routinemäßig zur Positivkontrolle bei der Suche nach anderen präsynaptischen Rezeptoren genutzt. Allerdings ist für den Samenleiter der Ratte in der Literatur keine Charakterisierung des beteiligten Prostaglandin-Rezeptors durch Agonisten oder Antagonisten beschrieben.

Durch Aufstellen einer Rangordnung der Agonistenaktivität zeigten sich in einigen Studien Hinweise auf den EP₃-Rezeptor (Tab. 13), so im Magen der Ratte (Racké et al., 1994) und in Zellkulturen sympathischer Neuronen (Koh und Hille, 1997); außerdem auch *in situ* bezüglich der Hemmung der neurogenen Blutdruckzunahme und des neurogegen Herzfrequenzanstiegs (Malinowska et al., 1994; Kozlowska et al., 2012). Weitere *in vitro* Modelle sind die Inhibierung der NA-Freisetzung durch PG in der Pulmonalarterie, im Vorhof und in der V. saphena des Menschen (Molderings et al., 1994) sowie in der Aorta beim Kaninchen (Jensen und Nedergaard, 1997). Auch am Samenleiter des Meerschweinchens zeigte sich der Effekt von Prostaglandinen, und zwar bei Superfusionsversuchen (Driessen und Starke, 1994), bei Kontraktionsmessungen der glatten Muskulatur (Tam et al., 1997) und bei Messungen des exzitatorischen synaptischen Potentials nach Nervenreizung (Brock und Cunnane, 1996).

Die vorliegende Studie geht nun einen Schritt weiter. Sie zeigt, dass die Konzentrations-Wirkungs-Kurve von Sulproston im Samenleiter der Ratte von L 826266 mit einem pA₂ von 7,68 nach rechts verschoben wird. So kann der EP₃-Rezeptor als Subtyp eindeutig belegt werden. Der pA₂-Wert ähnelt den Werten aus Versuchen mit Hirngewebe in der vorliegenden Studie (Tab. 8 und 13). Außerdem wurde für den postsynaptischen stimulatorischen Effekt von Prostaglandinen der E-Serie auf die Gefäßmuskulatur, wie z.B. in der menschlichen Pulmonalarterie (Kozlowska et al., 2012), in der menschlichen A.

mammaria (Foudi et al., 2011) und in menschlichen Interkostalarterien (Longrois et al., 2011) vor kurzem ebenfalls der EP₃-Rezeptor als Subtyp mit dem Antagonisten L 826266 klassifiziert. Bei Versuchen an Geweben von Versuchstieren ist der Effekt in Ratten-Nierenarterien (van Rodijnen et al., 2008) und in der Meerschweinchen-Aorta (Jones et al., 2011) beschrieben worden. Der hier ermittelte pA₂ von 7,68 war mit dem für die Pulmonalarterie des Menschen ermittelten Wert von 7,39 vergleichbar (Kozlowska et al., 2012).

4.2.2 EP₃-Rezeptor vermittelte Inhibierung der monoaminergen Transmitterausschüttung im zentralen Nervensystem

PGE₂ und Sulproston zeigten bei Versuchen mit Rattenkortex eine ähnliche maximale Hemmung der NA-Ausschüttung von ca. 70 % bei höherer Affinität von Sulproston, ähnlich wie in der Literatur (Exner und Schlicker, 1995) beschrieben. Auch der maximale inhibitorische Effekt von Sulproston auf die NA-Ausschüttung im Mäusekortex mit 90 % Hemmwirkung war ähnlich wie in einer entsprechenden Versuchsreihe (Exner und Schlicker,1995) und wie bei der Untersuchung von Interaktionen zwischen EP₃-Rezeptor und anderen Heterorezeptoren im Mäusekortex (Schlicker und Marr, 1997). Der maximale inhibitorische Effekt von Sulproston auf die Serotoninausschüttung im Rattenkortex war mit 40 % geringer ausgeprägt und ähnlich wie z.B. der H₃-Rezeptor-vermittelte inhibierende Effekt von (*R*)-(α)-Methylhistamin in zentralen serotonergen Neuronen der Ratte mit einer Hemmung von 40 % (Threlfell et al., 2004).

Die vorliegende Studie zeigt nun, dass die Konzentrations-Wirkungs-Kurven des selektiven EP₃-Agonisten Sulproston bzw. von PGE₂ bezüglich der Noradrenalin- bzw. Serotonin-Freisetzung in Kortexgewebe von Maus und Ratte in allen Modellen von L 826266 nach rechts verschoben wurde. So kann mit diesen Studien bewiesen werden, dass der inhibitorische Effekt von Prostaglandinen auf die monoaminerge Neurotransmission auch im zentralen Nervensystem EP₃-Rezeptor vermittelt ist.

4.2.3 Vergleich der Wirkung von PGE₂ und Sulproston im Mäuse- und Rattenkortexmodell

Da Versuche an Großhirnrindenschnitten von zwei verschiedenen Species durchgeführt wurden, drängte sich ein Vergleich auf. So zeigte sich ein wesentlich stärkerer maximaler Hemmeffekt von Sulproston an Großhirnrindenschnitten der Maus mit 90 %, als am Rattenkortex mit 70 % (bei ähnlicher Wirkstärke). Ähnliche Ergebnisse zeigen sich auch in der Literatur (Exner und Schlicker, 1995). Im Meerschweinchenkortex zeigte sich sogar nur eine maximale Hemmung von PGE₂ auf die NA-Ausschüttung von ca. 20 % (Werthwein, 2000). Kürzlich erhobene Befunde unseres Labors zeigen, dass PGE₂ im menschlichen Kortex die Noradrenalin-Freisetzung überhaupt nicht hemmt (Schacht, von Lehe und Schlicker, unveröffentlicht).

Auch für andere Heterorezeptoren, wie z.B. für die H₃-Rezeptor-vermittelte präsynaptische Inhibierung der Noradrenalin-Freisetzung, zeigte die Maus als Versuchstier einen besonders hohen Maximaleffekt. Gründe hierfür könnten Unterschiede in der Rezeptordichte sein. Speziell beim EP₃-Rezeptor könnte es auch an den durch alternatives Splicing entstehenden Isoformen des EP₃-Rezeptor in den verschiedenen Species liegen, mit daraus resultierenden Unterschieden in den Signaltransduktionswegen, der Desensitisierung oder der Ruheaktivität (Sugimoto und Narumiya, 2007). Selbst innerhalb einer Species zeigen die drei Isoformen EP3α, EP3β und EP3γ der Maus z.B. eine unterschiedliche konstitutive Aktivität bei der Inhibierung der Adenylatcyclase; alle drei sind auch fähig, G_s-Proteine zu binden (Hatae et al., 2002).

4.2.4 Wirkstärke und Antagonismus von L 826266

Bei Versuchen mit Rattenhirngewebe wurde mit Hilfe von vier verschiedenen Konzentrationen des Antagonisten L 826266 (drei gegenüber Sulproston und einer weiteren gegenüber PGE_2) ein Schild-Plot (Arunlakshana und Schild, 1959) aufgenommen und so ein pA_2 von 7,68 bestimmt. Die Steigung (m) des Schild-Plots, die nicht signifikant verschieden von eins ist, deutet auf eine kompetitive Hemmung an einer gemeinsamen Ligand-Bindungsstelle hin. Ein Schild-Plot nach Versuchen mit menschlichen HEK Zellen zeigte für L 826266 ebenfalls eine Steigung von m=1 (Clark et al., 2008).

Die Frage, ob sich L 826266 als neutraler Antagonist oder inverser Agonist verhält, bleibt zunächst noch offen. Zwar wurde in unserer Arbeitsgruppe versucht, ein weiteres EP₃-Rezeptormodell zu etablieren, das eine Differenzierung zwischen neutralem Antagonismus und inversen Agonismus erlaubt: nämlich die [³⁵S]-GTPγS-Bindung. Allerdings beeinflusste der Rezeptor-Agonist Sulproston in einer Membransuspension des Mausund Meerschweinchen-Hippokampus die [³⁵S]-GTPγS-Bindung nicht (Günther et al., 2010).

Der durch Schild-Plot erhobene pA₂ von 7,68 passt zu den in den drei anderen EP₃-Rezeptormodellen gezeigten pA₂-Werten dieser Arbeit (Tab. 8 und 13). Die pA₂-Werte scheinen auch mit Daten aus der Literatur für EP₃-Rezeptoren kompatibel (Tab. 13 und 14). In der Aorta des Meerschweinchens zeigte L 826266 am postsynaptischen EP₃-Rezeptor einen pA₂-Wert von 7,96 und im Samenleiter vom Meerschweinchen am präsynaptischen EP₃-Rezeptor einen pA₂-Wert von 7,96 (Jones et al., 2008). Bei Versuchen mit menschlichen embryonalen Nierenzellen und Erythroleukämiezellen zeigten sich höhere pA₂-Werte von 9,1 (Juteau et al., 2001) und 8,6 (Clark et al., 2008), was eventuell auf einen Einfluss der Spezies hinweisen könnte. Allerdings zeigte sich bei Versuchen an der Pulmonalarterie des Menschen für L 826266 ein pA₂-Wert von 7.4 (Kozlowska et al., 2012). Das würde dafür sprechen, dass der Grund eher in der Versuchsanordnung (isolierte Gewebe vs. Zellkulturen) zu suchen ist.

Auch in anderen *in vitro* EP₃-Rezeptor-Modellen (Tab. 14) wurde ein antagonistischer Effekt durch L 826266 (1 μM) gefunden, wie bei Versuchen mit Mastzellen der Maus (Weller et al., 2007) und der durch PGE₂ induzierten Bradykinin-abhängigen Relaxation der Luftröhre vom Meerschweinchen (Schlemper et al., 2005). In diesen Versuchen wurde allerdings die Wirkstärke von L 826266 nicht bestimmt. Dies gilt auch für die *in situ-* und *in vivo-* Studien (Tab. 14) von Kozlowska et al. (2012; EP₃-Rezeptor-vermittelte Hemmung der neurogenen Tachykardie) bzw. Oliveira et al. (2008; EP₃-Rezeptor-vermittelte Modulation von Pentetrazol-induzierten Krämpfen bei der Ratte) sowie von Oliva et al. (2006; EP₃-Rezeptor-vermittelte Hyperalgesie in der Maus) und Kassuya et al. (2007; EP₃-Rezeptor-vermittelte Allodynie in der Maus).

Tab. 14: Nachweis einer EP₃-vermittelten Wirkung in verschiedenen Modellen, geprüft mit dem selektiven EP₃-Rezeptor-Antagonisten L 826266. Der pA₂-Wert für L 826266 wurde nur in einigen Studien bestimmt. Die in den 4 Modellen der vorliegenden Studie erzielten Werte (Spanne von 7,55 bis 7,87) sind aus Tab. 13 ersichtlich.

Studie	EP ₃ -Rezeptor-vermittelte Wirkung	Art	pA ₂
Clark et al., 2008	menschliche HEK Zellen	in vitro	8,6
Foudi et al., 2011	menschliche A. mammaria	in vivo	-
Günther et al., 2010	Hemmung der Noradrenalin-Freisetzung im Kortex der Ratte	in vitro	7,68
Juteau et al., 2001	menschliche embryonale Nierenzellen	in vitro	9,1
Kassuya et al., 2007	Allodynie in der Maus	in vivo	-
Kozlowska et al., 2012	Pulmonalarterie des Menschen	in vitro	7,39
Kozlowska et al., 2012	Herzfrequenz in der despinalisierten Ratte	in situ	-
Longrois et al., 2011	menschliche Interkostalarterie	in vivo	-
Olivea et al., 2006	Hyperalgesie in der Maus	in vivo	-
Oliveira et al., 2008	Pentetrazol-induzierte Krämpfe bei der Ratte	in vivo	-
Schlemper et al., 2005	Bradykinin-abhängige Relaxation der Luftröhre vom Meerschweinchen	in vitro	-
Weller et al., 2007	Mastzellen der Maus	in vitro	-

4.3 Beteiligung von Prostaglandin-Rezeptoren an der Azetylcholinfreisetzung?

PG-Rezeptoren könnten als Heterorezeptoren bei der Regulation der Freisetzung von Azetylcholin in zentralen Geweben eine Rolle spielen. Prostaglandin E₂ konnte allerdings in keiner der drei untersuchten Hirnregionen (Hippokampus, Striatum, Kortex) der Ratte die elektrisch induzierte Ach-Freisetzung hemmen. In diesem Zusammenhang ist von Interesse, dass der EP₃-Rezeptor-Subtyp der dominierende EP-Rezeptor des Gehirns ist (Sugimoto et al., 2000) und bei der Ratte besonders in Neuronen des Kortex, Hippokampus, Thalamus, Hypothalamus, Mesencephalon und des Hirnstamms eine starke Expression aufweist (Nakamura et al., 2000). Auch bei simultaner Blockierung des muskarinischen Autorezeptors mit AF-DX 384 zeigte sich kein Effekt von PGE₂. In

der Literatur wurden, bis auf einen inhibitorischen Effekt durch PGE₁ im Katzenhirn *in vivo* (Harsing et al., 1979), ebenfalls keine Effekte beschrieben.

Oxotremorin, das als Positivkontrolle mitgeführt wurde, hemmte als nicht selektiver Muskarin-Rezeptor (Autorezeptor)-Agonist in den drei Hirnregionen die Azetylcholinfreisetzung, wie in der Literatur beschrieben (Starke et al., 1989). Hier wirken vor allem die M₂- und M₄-Subtypen inhibitorisch auf die Neurotransmitterfreisetzung (Gilsbach und Hein, 2008; Trendelenburg et al., 2003).

4.4. Beteiligung von Prostaglandin-Rezeptoren an der Dopaminfreisetzung?

In der Retina des Meerschweinchens zeigte Prostaglandin E₂ keine Hemmung der elektrisch stimulierten Tritium-Freisetzung (die als Pendant der Dopaminfreisetzung aufgeführt werden kann, s. 4.1). In der Literatur zeigen sich unterschiedliche Ergebnisse bezüglich einer Beteiligung von Prostaglandinen der E-Serie an der Modulation der Freisetzung von Dopamin. In einer Versuchsreihe zeigte sich ein inhibitorischer Effekt durch PGE₂ auf die DA-Freisetzung im Striatum der Ratte (Bergström et al., 1973), wohingegen bei Versuchen mit Kortexschnitten von Ratte und Kaninchen kein Effekt durch PGE₂ gefunden werden konnte (Reimann et al., 1981). *In vivo* konnte an Studien im Hypothalamus von Katzen ebenfalls kein Effekt durch PGE₂ detektiert werden (von Voigtlander, 1976).

Anders als PGE₂ erzielte WIN 55,212-2 (1 μM) eine Hemmung in unserer Retina-Präparation, und zwar um ca. 60 %, wie in der Literatur beschrieben (Schultheiss, 2005); die Wirkung von WIN 55,212-2 beruht auf der Aktivierung von Cannabinoid-CB₁-Rezeptoren (Schlicker et al., 1996). Die Retina hat sich als gutes Modell zur Untersuchung der präsynaptischen Modulation dopaminerger Neurone erwiesen (Weber und Schlicker, 2001). Da die Retina Teil des ZNS ist, lassen Ergebnisse in der Retina Rückschlüsse auf das Gehirn zu.

5. Zusammenfassung

Ziel dieser Arbeit war es zu zeigen, welcher EP-Rezeptor-Subtyp die präsynaptische inhibitorische Wirkung von Prostaglandinen auf die Freisetzung der Transmitter Noradrenalin und Serotonin vermittelt. Insbesondere sollte der EP₃-Rezeptoren Antagonist L 826266 genauer untersucht werden. Außerdem wurde geprüft, ob Prostaglandin E₂ auch die Azetylcholinfreisetzung in zentralen cholinergen Neuronen und die Dopaminfreisetzung in der Retina hemmt.

Verschiedene Präparationen zentraler und peripherer Gewebe von drei Species wurden zu diesem Zweck mit [³H]-Noradrenalin, [³H]-Serotonin oder [³H]-Cholin inkubiert und im Anschluss mit physiologischer Salzlösung, der je nach Versuchsanordnung verschiedene Pharmaka zugegeben wurden, superfundiert. Die durch elektrische Stimulation mit Rechteckreizen evozierte Tritiumfreisetzung entspricht in allen untersuchten Geweben einer *quasi-physiologischen* Neurotransmitterfreisetzung.

Ich fand, dass die Noradrenalinfreisetzung im Kortex der Ratte (1.) und der Maus (2.) sowie im Samenleiter der Ratte (3.) und die Serotoninfreisetzung im Rattenkortex (4.) durch Prostaglandin E₂ und sein Analogon Sulproston gehemmt wurde. Für die Bestimmung des Wirkungsmechanismus und der Wirkungsstärke diente Sulproston, das eine höhere Wirkungsstärke als Prostaglandin E₂ selbst besitzt. Die maximal erzielbare Hemmung in den vier Modellen betrug 70, 90, 50 bzw. 40 %. Die Wirkungsstärke (pEC₅₀: Zehnerlogarithmus der Konzentration, die zum halbmaximalen Effekt führt) belief sich auf 8,1; 8,5; 8,7 bzw. 8,4. In den Versuchen zur Bestimmung der Wirkung des EP₃-Rezeptor-Antagonisten L 826266 wurde die Bildung von endogenen Prostaglandinen mit Naproxen gehemmt; ferner wurde die Äquilibrierungszeit für L 826266 für jede Versuchsbedingung individuell bestimmt (1,5 bis 6,5 h). In jedem der vier Modelle führte L 826266 zur Rechtsverschiebung der Konzentrations-Wirkungs-Kurven von Sulproston; dessen Maximaleffekt wurde jedoch nicht verändert. Die Wirkungsstärke (ausgedrückt als pA₂: negativer Zehnerlogarithmus der Konzentration von L 826266, die eine Rechtsverschiebung um den Faktor 2 bewirkt) betrug 7,7; 7,6; 7,9 bzw. 7,8. Der erstgenannte

pA₂-Wert beruht auf einem sog. Schild-Plot mit einer Steigung von 1, was den kompetitiven Antagonismus von L 826266 praktisch beweist.

Die Freisetzung von [³H]-Azetylcholin (das aus dem aufgenommenen [³H]-Cholin gebildet wurde) aus Neuronen von Striatum, Hippokampus und Kortex der Ratte wurde durch Prostaglandin E₂ nicht beeinflusst; auch nicht bei Blockierung der Muskarin_{2/4}-Autorezeptoren durch AF-DX 384. Allerdings führte der Muskarin-Rezeptor-Agonist Oxotremorin, der als Positivkontrolle diente, in allen drei Hirnregionen in Abwesenheit von AF-DX 384 erwartungsgemäß zu einem Hemmeffekt.

Die Freisetzung von [³H]-Noradrenalin (das in der Retina des Meerschweinchens ausschließlich in die dopaminergen Amakrinzellen transportiert wird und dessen Freisetzung einer *quasi-physiologischen* Dopaminfreisetzung entspricht) wurde durch Prostaglandin E₂ nicht beeinflusst. Allerdings bewirkte der Cannabinoid-CB₁-Rezeptor-Agonist WIN 55,212-2, der als Positivkontrolle mitgeführt wurde, die erwartete Hemmung.

In der vorliegenden Arbeit konnte bestätigt werden, dass Prostaglandin E₂ und sein Analogon Sulproston die Noradrenalinfreisetzung im Kortex und Samenleiter der Ratte und im Mäusekortex sowie die Serotoninfreisetzung im Rattenkortex hemmen. Ein Hemmeffekt von Prostaglandin E₂ auch auf die Azetylcholinfreisetzung in drei Hirnregionen der Ratte und auf die Dopamin-Freisetzung in der Meerschweinchen-Retina ließ sich jedoch nicht nachweisen. Es konnte insbesondere mithilfe des selektiven Antagonisten L 826266 erstmalig bewiesen werden, dass der die Hemmwirkung von Prostaglandin E₂ und Sulproston vermittelnde Rezeptor ein EP₃-Rezeptor ist. Es konnte auch erstmalig gezeigt werden, dass L 826266 ein kompetitiver EP₃-Rezeptor-Antagonist ist. Leider ist das Handling von L 826266 durch die in manchen Versuchsansätzen besonders lange Äquilibrierungszeit kompliziert.

6. Literaturverzeichnis

Alexander SP, Mathie A, Peters JA. Guide to Receptors and Channels (GRAC), 5th edition. Br J Pharmacol 2011; 164: 1-324

Aktories K, Förstermann U, Hofmann F, Starke K. Allgemeine und spezielle Pharmakologie und Toxikologie. München: Urban und Fischer Verlag, 2007

Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 1959; 14: 48-58

Avdeef A, Box KJ, Takács-Kovák K. pH-metric logP. 6. Effects of sodium, potassium and N-CH3-D-glucamine on the octanol-water partitioning of prostaglandins E1 and E2. J Pharm Sci 1995; 84: 523-529

Bergström S, Farnebo LO, Fuxe K. Effect of prostaglandin E2 on central and peripheral catecholamin neurons. Eur J Pharmacol 1973; 21: 362-368

Blatteis CM. The afferent signalling of fever. J Physiol 2000; 526: 300-470

Boehm S, Kubista H. Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 2002; 54: 43-99

Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, Versteeg HH. Prostanoids and prostanoid receptors in signal transduction. Int J Biochem Cell Biol 2004; 36: 1187-1205

Brock JA, Cunnane TC. Inhibition of purinergic transmission by prostaglandin E1 and E2 in the guinea-pig vas deferens: an electrophysiological study. Br J Pharmacol 1996; 118: 776–782

Bruice PY. Organische Chemie: Studieren kompakt. Halbergmoos: Pearson Studium Verlag, 2004

Chase J. The evolution of retinal vascularization in mammals. A comparison of vascular and avascular retinae. Ophthalmology 1982; 89: 1518-1525

Clark P, Rowland SE, Denis D, Mathieu MC, Stocco R, Poirier H, Burch J. MF498[N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-me-thyl-benzyl]-sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J Pharmacol Exp Ther 2008; 325: 425-434

Coleman RA, Smith WL, Narumiya S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 1994; 46: 205-229

Driessen B, Starke K. Modulation of neural noradrenaline and ATP release by angiotensin II and prostaglandin E2 in guinea-pig vas deferens. Naunyn-Schmiedeberg's Arch Pharmacol 1994; 350: 618-625

Egan K, FitzGerald GA. Eicosanoids and the vascular endothelium. Handb Exp Pharmacol 2006; 176: 189-211

Exner HJ, Schlicker E. Prostanoid receptors of the EP3 subtype mediate the inhibitory effect of prostaglandin E2 on noradrenaline release in the mouse brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 1995; 351: 46-52

Foudi N, Kotelevets L, Gomez I, Louedec L, Longrois D, Chastre E, Norel X. Differential reactivity of human mammary artery and saphenous vein to prosta-glandin E2: Implication for cardiovascular grafts. Br J Pharmacol 2011; 163: 826-834

Fuder H, Muscholl E. Heteroreceptor-mediated modulation of noradrenaline and acetylcholine release from peripheral nerves. Rev Physiol Biochem Pharmacol 1995; 126: 265-412

Furchgott RF. The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. Handb Exp Pharmacol 1972; 33: 283-335

Gallant M, Carrière MC, Chateauneuf A, Denis D, Gareau Y, Godbout C, Greig G, Juteau H, Lachance N, Lacombe P, Lamontagne S, Metters KM, Rochette C, Ruel R, Silpetz D, Sawyer N, Tremblay N, Labelle M. Structure-activity relationship of biaryl acylsulfonamide analogues on the human EP3 prostanoid receptor. Bioorg Med Chem Lett 2002; 12: 2583-2586

Gilsbach R, Hein L. Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol 2008; 184: 261-288

Göthert M, Schlicker E, Kollecker P. Receptor-mediated effects of serotonin and 5-methoxytryptamine on noradrenaline release in the rat vena cava and the heart of the pithed rat. Naunyn-Schmiedeberg's Arch Pharmacol 1986; 332: 124-130

Güllner HG. The interactions of prostaglandins with the sympathetic nervous system, a review. J Autonom Nerv Syst 1983; 8: 1-12

Günther J, Schulte K, Wenzel D, Malinowska B, Schlicker E. Prostaglandins of the E series inhibit monoamine release via EP3 receptors: proof with the competitive EP3 receptor antagonist L-826,266. Naunyn-Schmiedeberg's Arch Pharmacol 2010; 381: 21-31

Harsing LG, Illes P, Fürst S, Vizi ES, Knoll J. The effect of prostaglandin E1 on acetylcholine release from the cat brain. Acta Physiol Acad Sci Hung 1979; 54: 177-185

Hayaishi O. Molecular mechanisms of sleep-wake regulation: roles of prostaglan-dins D2 and E2. FASEB J 1991; 5: 2575-2581

Horiguchi S, Ueno R, Hyodo M, Hayaishi O. Alterations in nociception after intracisternal administration of prostaglandin D2, E2 or F2 alpha to conscious mice. Eur J Pharmacol 1986; 122: 173-179

Hatae N, Sugimoto Y, Ichikawa A. Prostaglandin receptors: Advances in the study of EP3 receptor signaling. J Biochem 2002; 131: 781-784

Ichikawa A, Sugimoto Y, Tanaka S. Molecular biology of histidine decarboxylase and prostaglandin receptors. Proc Jpn Acad Ser B Phys Biol Sci 2010; 86: 848-866

Irie A, Sugimoto Y, Namba T, Asano T, Ichikawa A, and Negishi M. The C-terminus of prostaglandin-E-receptor EP3 subtype is essential for activation of GTP-binding protein. Eur J Biochem 1994; 224: 161-166

Jensen TJ, Nedergaard OA. Prejunctional modulation by prostaglandin E2 of noradrenaline release from sympathetic neurones in rabbit aorta. Pharmacol Toxicol 1997; 80: 18–23

Jones RL, Wilson NH. An EP3-receptor may mediate prostaglandin E-induced potentiation of aggregation in human platelets. Brit J Pharmacol 1990; 101: 522-524

Jones RL, Woodward D, Wang J. Investigation of the slow kinetics of the prostanoid EP3 receptor antagonists L-798106 and L-826266 on guinea-pig aorta. Fundam Clin Pharmacol 2008; 22(Suppl 2): 73

Jones RL, Giembycz MA, Woodward DF. Prostanoid receptor antagonists: development strategies and therapeutic applications. Brit J Pharmacol 2009; 158: 104-145

Jones RL, Woodward DF, Wang JW, Clark RL. Roles of affinity and lipophilicity in the slow kinetics of prostanoid receptor antagonists on isolated smooth muscle prepartions. Br J Pharmacol 2011; 162: 863-879

Juteau H, Gareau Y, Labelle M, Sturino CF, Sawyer N, Tremblay N, Lamontagne S. Structure-activity relationship of cinnamic acylsulfonamide analogues on the human EP3 prostanoid receptor. Bioorg Med Chem 2001; 9: 1977-1984

Kassuya CA, Ferreira J, Claudino RF, Calixto JB. Intraplantar PGE2 causes nociceptive behaviour and mechanical allodynia: the role of prostanoid E receptors and protein kinases. Brit J Pharmacol 2007; 150: 727-737

Kathmann M, Weber B, Schlicker E. Cannabinoid CB1 receptor-mediated inhibition of acetylcholine release in the brain of NMRI, CD-1 and C57BL/6J mice. Naunyn-Schmiedeberg's Arch Pharmacol 2001; 363: 50-56

Koh DS, Hille B. Modulation by neurotransmitters of catecholamine secretion from sympathetic ganglion neurons detected by amperometry. Proc Natl Acad Sci USA 1997; 94: 1506-1511

Kotelevets L, Foudi N, Louedec L, Couvelard A, Chastre E, Norel X. A new mRNA splice variant coding for the human EP3–1 receptor isoform. Prostaglandins Leukot Essent Fatty Acids 2007; 77: 195-201

Kozlowska H, Baranowska-Kuczko M, Schlicker E, Kozlowski M, Zakrzeska A, Grzeda E, Malinowska B. EP3 receptor-mediated contraction of human pulmonary arteries and inhibition of neurogenic tachycardia in pithed rats. Pharmacol Rep 2012; 64: 1526-1536

Kuhar MJ, Murrin LC. Sodium-dependent, high affinity choline uptake. J Neurochem 1978; 30: 15-21

Longrois D, Gomez I, Foudi N, Topal G, Dhaouadi M, Kotelevets L, Chastre E, Norel X. Prostaglandin E2 induced contraction of human intercostal arteries is mediated by the EP3 receptor. Eur J Pharmacol 2012; 681: 55-59

Malinowska B, Godlewski G, Buczko W, Schlicker E. EP3-receptor-mediated inhibition of the neurogenic vasopressor response in pithed rats. Eur J Pharmacol 1994; 259: 315-319

Matsumura K, Watanabe Y, Imai-Matsumura K, Connolly M, Koyama Y, Onoe H. Mapping of prostaglandin E2 binding sites in rat brain using quantitative autoradiography. Brain Res 1992; 581: 292-298

Miller RJ. Presynaptic receptors. Annu Rev Pharmacol Toxicol 1998; 38: 201-227

Molderings GJ, Colling E, Likungu J, Jakschik J, Göthert M. Modulation of noradrenaline release from the sympathetic nerves of the human saphenous vein and pulmonary artery by presynaptic EP3- and DP-receptors. Br J Pharmacol 1994; 111: 733-738

Molderings GJ, Likungu J, Göthert M. Modulation of noradrenaline release from the symphatic nerves of human right atrial appendages by presynaptic EP3- and DP-receptors. Naunyn-Schmiedeberg's Arch Pharmacol 1998; 358: 440-444

Murakami M. Lipid mediators in life science. Exp Anim 2011; 60: 7-20

Nakamura K, Kaneko T, Yamashita Y, Hasegawa H, Katoh H, Negishi M. Immunohistochemical localization of prostaglandin EP3 receptor in the rat nervous system. J Neurol 2000; 421: 543-569

Namba T, Sugimoto Y, Negishi M, Irie A, Ushikubi F, Kakizuka A, Ito S, Ichikawa A, Narumiya S. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 1993; 365: 166-170

Ohia SE, Jumblatt JE. Prejunctional inhibitory effect of prostanoids on sym-pathetic neurotransmitter in the rabbit iris-ciliary body. J Pharmacol Exp Ther 1990; 225: 11-16

Oldfield S, Grubb BD, Donaldson LF. Identification of a prostaglandin E2 receptor splice variant and its expression in rat tissues. Prostaglandins Other Lipid Mediat 2001; 63: 165-173

Oliva P, Berrino L, de Novellis V, Palazzo E, Marabese I, Siniscalco D, Scafuro M, Mariani L, Rossi F, Maione S. Role of periaqueductal grey prostaglandin receptors in formalin-induced hyperalgesia. Eur J Pharmacol 2006; 530: 40-47

Oliveira MS, Furian AF, Rambo LM, Ribeiro LR, Royes LF, Ferreira J, Calixto JB, Mello CF. Modulation of pentylenetetrazol-induced seizures by prostaglandin E2 receptors. Neuroscience 2008; 152: 1110-1118

Racké K, Berrino L, Möhlig A, Jäger R, Griepenkerl I, Bräutigam M, Reimann A. Modulation of noradrenaline release in rat isolated stomach by prostanoids, but not by histaminergic mechanisms. Naunyn-Schmiedeberg's Arch Pharmacol 1995; 352: 631-639

Reimann W, Steinhauer HB, Hedler L, Starke K, Hertting G. Effect of prostaglandins D2, E2 and F2 α on catecholamine release from slices of rat and rabbit brain. Eur J Pharmacol 1981; 69: 421-427

Reutelsterz A. Affinität und intrinsische Aktivität von zwei Gruppen neu synthetisierter Substanzen an β-Adrenozeptoren. Inaugural-Dissertation, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, 2009

Rump LC, Schuster MJ, Schollmeyer P. Activation of beta2-adrenoceptors by isoprenaline and adrenaline enhances noradrenaline release in cortical kidney slices of young spontaneously hypertensive rats. Naunyn-Schmiedeberg's Arch Pharmacol 1992; 345: 25-32

Schlemper V, Medeiros R, Ferreira J, Campos MM, Calixto JB. Mechanism underlying the relaxation response induced by bradykinin in the epithelium-intact guineapig trachea in vitro. Brit J Pharmacol 2005; 145: 740-750

Schlicker E, Göthert M. Interactions between the presynaptic alpha2-autore-ceptor and presynaptic inhibitory heteroreceptors on noradrenergic neurones. Brain Res Bull 1998; 47: 129-132

Schlicker E, Marr I. Mutual interactions of the presynaptic histamine H3 and prostaglandin EP3 receptor on the noradrenergic terminals in the mouse brain. Neuroscience 1998; 79: 247-254

Schlicker E, Fink K, Göthert M. Influence of eicosanoids on serotonin release in the rat brain: inhibition by prostaglandins E1 and E2. Naunyn-Schmiedeberg's Arch Pharmacol 1987; 335: 646-651

Schlicker E, Schunack W, Göthert M. Histamine H3 receptor-mediated inhibition of noradrenaline release in pig retina discs. Naunyn-Schmiedeberg's Arch Pharmacol 1990; 342: 497-501

Schlicker E, Behling A, Lümmen G, Göthert M. Histamine H3A receptor-mediated inhibition of noradrenaline release in the mouse brain cortex. Naunyn-Schmiedeberg's Arch Pharmacol 1992; 345: 489-493

Schlicker E, Timm J, Göthert M. Cannabinoid receptor-mediated inhibition of dopamine release in the retina. Naunyn-Schmiedeberg's Arch Pharmacol 1996; 354: 791-795

Schlicker E, Redmer A, Werner A, Kathmann M. Lack of CB1 receptors increa-ses noradrenaline release in vas deferens without affecting atrial noradrenaline release or cortical acetylcholine release. Br J Pharmacol 2003; 140: 323-328

Schmid A, Thierauch KH, Schleuning WD, Dinter H. Splice variants of the human EP3 receptor for prostaglandin E2. Eur J Biochem 1995; 228: 23-30

Schultheiss T. Modulation der Neurotransmitterfreisetzung durch Cannabinoide und andere präsynaptisch angreifende Liganden. Inaugural-Dissertation, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, 2005

Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004; 56: 387-437

Starke K. Regulation of noradrenaline release by presynaptic receptor systems. Rev Physiol Biochem Pharmacol 1977; 77: 1-124

Starke K, Göthert M, Kilbinger H. Modulation of neurotransmitter release by presynatic autoreceptors. Physiol Rev 1989; 69: 864-989

Südhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004; 27: 509-547

Südhof TC, Starke K. Pharmacology of Neurotransmitter Release. Handbook of Experimental Pharmacology. Berlin: Springer Verlag, 2008

Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem 2007; 282: 11613-11617

Sugimoto Y, Shigemoto R, Namba T, Negishi M, Mizuno N, Narumiya S, Ichikawa A. Distribution of the messenger RNA for the prostaglandin E receptor subtype EP3 in the mouse nervous system. Neuroscience 1994; 62: 919-928

Sugimoto Y, Narumiya S, Ichikawa A. Distribution and function of prostanoid-receptors: studies from knockout mice. Prog Lipid Res 2000; 39: 289-314

Tam F, Chan K, Bourreau JP, Jones RL. The mechanisms of enhancement and inhibition of field stimulation responses of guinea-pig vas deferens by prostacyclin analogues. B J Pharmacol 1997; 121: 1413-1421

Threlfell S, Cragg S, Kalló I, Turi G, Coen C, Greenfield S. Histamine H3-receptors inhibit serotonin-release in substantia nigra pars reticulata. J Neurosci 2004; 24: 8704-8710

Toh H, Ichikawa A, Narumiya S. Molecular evolution of receptors for eicosanoids. FEBS Lett 1995; 361: 17-21

Tomlinson DR. Do endogenous prostaglandins modulate noradrenergic transmission in the rat isolated perfused vas deferens? Med Biol 1980; 58: 82-86

Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J. Heterogenety of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2-and M4-receptor-deficient mice. Br J Pharmacol 2003; 138: 469-480

Von Euler US. Über die spezifische blutdrucksenkende Substanz des menschlichen Prostata- und Samenblasensekrets. Wien Klin Wochenschrift 1935; 14: 1182-1183

von Voigtlander PF. In vivo dopamine release and prostaglandin E2. Res Commun Chem Pathol Pharmacol 1976; 14: 431-436

van Rodijnen WF, Korstjens IJ, Legerstee N, Ter-Wee PM, Tangelder GJ. Direct vasoconstrictor effect of prostaglandin E2 on renal interlobular arteries: role of the EP3 receptor. Am J Physiol Renal Physiol 2007; 292: 1094-1101

Weber B, Schlicker E. Modulation of dopamin release in the guinea-pig retina by G_i -but not G_s - or G_{α} - protein coupled. Fundam Clin Pharmacol 2001; 15: 393-400

Weller CL, Collington SJ, Hartnell A, Conroy DM, Kaise T, Barker JE, Wilson MS, Taylor W, Jose PJ, Williams TJ. Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc Natl Acad Sci 2007; 104: 11712-11717

Werthwein S. Wirkung von Nociceptin und 8-iso-Prostaglandin F2 auf die Noradrenalinfreisetzung im Gehirn. Inaugural-Dissertation, Medizinische Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, 2000

Woodward DF, Jones RL, Narumiya S. International Union Basic and Clinical Phamacology. LXXXIII: Classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 2011; 63: 471-538

7. Abbildungs- und Tabellenverzeichnis

Abbildungen

•	Abbildung 1	
	Strukturformeln von Prostaglandin E ₂ und Sulproston	10
•	Abbildung 2	
	Exemplarische Darstellung des G-Protein-gekoppelten EP ₃ -	
	Rezeptors der Maus mit sieben Transmembrandomänen	11
•	Abbildung 3	
	Strukturformel von L 826266	15
•	Abbildung 4	
	Wirkung von Sulproston auf die elektrisch stimulierte [³ H]-Noradrenalin-	
	Freisetzung in superfundiertem Kortex und Samenleiter der Ratte mit	
	und ohne L 826266 im Vorversuch	29
•	Abbildung 5	
	Wirkung von Prostaglandin E ₂ auf die elektrisch stimulierte [³ H]-Nor-	
	adrenalin-Freisetzung in verschiedenen superfundierten peripheren	
	Geweben der Ratte	30
•	Abbildung 6	
	Wirkung von Prostaglandin E ₂ auf den Verlauf der anteiligen [³ H]-	
	Noradrenalin-Freisetzung im superfundierten Samenleiter der Ratte	31
•	Abbildung 7	
	Wirkung von Sulproston auf die elektrisch stimulierte [³ H]-Noradrenalin-	
	Freisetzung in superfundierten Samenleiterschnitten der Ratte und	
	dessen Interaktion mit L 826266	31
•	Abbildung 8	
	Wirkung von Prostaglandin E ₂ und Sulproston auf die elektrisch	
	stimulierte [³ H]-Noradrenalin-Freisetzung in superfundiertem Kortex	
	der Ratte und deren Interaktion mit L 826266	32
•	Abbildung 9	
	Schild-Plot für den Antagonisten L 826266	33
•	Abbildung 10	
	Vergleich der Wirkung von Sulproston auf die elektrisch stimulierte [³ H]-	
	Noradrenalin-Freisetzung in superfundiertem Kortex der Maus und Ratte	35
•	Abbildung 11	
	Wirkung von Sulproston auf die elektrisch stimulierte [³ H]-Noradrenalin-	
	Freisetzung in superfundiertem Kortex der Maus und dessen	
	Interaction mit L 826266	36

•	Abbildung 12 Wirkungen verschiedener Serotonin-Wiederaufnahme-Hemmer auf die basale Tritium-Freisetzung in [³H]-5-HT-vorinkubierten Kortex der Ratte	38
•	Abbildung 13	
	Wirkung von Sulproston auf die elektrisch stimulierten [³ H]-5-HT-	
	Freisetzung unter dem Einfluss verschiedener SerotoninWieder-	
	Aufnahme-Hemmer im Kortex der Ratte	39
•	Abbildung 14	
	Wirkung von Sulproston auf den Verlauf der [³ H]-5-HT-Freisetzung	
	in superfundiertem Kortex der Ratte	40
•	Abbildung 15	
	Wirkung von Sulproston auf die elektrisch stimulierte [³H]-5-HT-	
	Freisetzung in superfundiertem Kortex der Ratte und dessen	
	Interaktion mit L 826266	40
•	Abbildung 16	
	Wirkung von AF-DX 384 auf die elektrisch stimulierten [³ H]-Azetylcholin-	
	Freisetzung in verschiedenen superfundierten Regionen des Rattenhirns	41
•	Abbildung 17	
	Wirkungen von Prostaglandin E ₂ und Oxotremorin auf die elektrisch	
	stimulierten [³ H]-Cholin-Freisetzung in verschiedenen	
	superfundiertem Rattengehirngewebe	42
•	Abbildung 18	
	Wirkungen von Prostaglandin E ₂ und Oxotremorin auf den Verlauf der	
	Tritium-Freisetzung in[³ H]-Cholin-vorinkubierten Kortex der Ratte	43
•	Abbildung 19	
	Wirkungen von Prostaglandin E ₂ und WIN 55,212-2 auf die elektrisch	
	stimulierte Tritium-Freisetzung in [³H]-Noradrenalin-vorinkubierten	
	Retinagewebe des Meerschweinchens	44
•	Abbildung 20	
	Wirkungen von Prostaglandin E ₂ und WIN 55,212-2 auf den Verlauf	
	der Tritium-Freisetzung in [3H]-Noradrenalin vorinkubierten Retina-	
	gewebe des Meerschweinchens	45
T	abellen	
•	Tabelle 1	
	Signaltransduktion der EP-Rezeptor-Subtypen und der EP ₃ -Rezeptor-	
	Isoformen der Maus	14
•	Tabelle 2	
	Zusammensetzung der verwendeten physiologischen Salzlösung	22

•	Tabelle 3	
	Zusammenstellung der verwendeten Substanzen	
	mit deren Bezugsquellen	23
	Tabelle 4	
	Zusammenstellung der für die Superfusionsversuche verwendeten	
	Geräte und Materialien sowie deren Bezugsquellen	24
	Tabelle 5	
	Basaler Efflux in den untersuchten Geweben unter Kontrollbedingungen	26
•		
	Versuchsbedingungen für die im Abschnitt 3.2 untersuchten Modelle	27
•	Tabelle 7	
	Kontrollwerte der elektrisch induzierten [³ H]-Noradrenalin-Freisetzung	
	und Einfluss des Antagonisten L 826266 für Abschnitt 3.2	28
•	Tabelle 8	
	Übersicht über Maximaleffekte und Wirkstärken von Prostaglandin E ₂	
	und Sulproston sowie die antagonistische Wirkstärken von L 826266	34
•	Tabelle 9	
	Übersicht über Einwirkzeiten der verschiedenen Konzentrationen von	
	L 826266 auf die verschiedenen Gewebe	36
•	Tabelle 10	
	Versuchsbedingungen für Abschnitt 3.3	37
•	Tabelle 11	
	Kontrollwerte der elektrisch induzierten [³ H]-5-HT-Freisetzung unter	
	Einfluss des Antagonisten L 826266 (Abschnitt 3.3)	37
•	Tabelle 12	
	Nachweis einer quasi-physiologischen Transmitter-Freisetzung	
	in verschiedenen Geweben	47
•	Tabelle 13	
	Wirkstärken einiger Prostaglandin-Rezeptor-Agonisten und -Antagonisten	
	an verschiedenen EP ₃ -Rezeptoren	53
•	Tabelle 14	
	Nachweis einer EP ₃ -vermittelten Wirkung in verschiedenen	
	Rezeptor-Modellen	58

9. Danksagung

Mein herzlichster Dank geht an meinem Doktorvater Herrn Prof. Dr. E. Schlicker für die Bereitstellung dieses Themas und die außerordentlich intensive Betreuung, Geduld und Unterstützung. Dank ihm habe ich einen guten Einblick in die Forschung und die Laborarbeit gewonnen und viel gelernt.

Herrn Prof. Dr. A. Pfeiffer danke ich für die Bereitstellung der Laboreinrichtungen und der Räumlichkeiten sowohl des alten Instituts für Pharmakologie und Toxikologie der Universität Bonn als auch des neuen Instituts im Biomedizinischen Zentrum der Universität Bonn.

Außerdem bedanke ich mich für das sehr angenehme Arbeitsklima in der Arbeitsgruppe, für die Einarbeitung in labortechnische Verfahren, für die Zusammenarbeit und Hilfsbereitschaft bei Frau Doris Petri, Frau Dr. Kirsten Schulte und Frau Dr. Christina Kurz.

Weiter möchte ich mich bei meinen Eltern und Großeltern für die Ermöglichung meines Studiums und ihre unermüdliche Unterstützung bedanken. Das Wissen, mich immer auf sie verlassen zu können, gibt mir die Kraft, immer weiter zu machen und neue Wege zu suchen.

Bei Annette bedanke ich mich für ihre unendliche Geduld, Hilfe und ihr Vertrauen.