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Introduction

Individuals differ not only by gender and hair color, they also exhibit heterogeneities

in various probably not fully genetically determined dimensions as personality, pref-

erences and skills.1 Moreover, individuals live in different social environments and

yield unequal life outcomes as health or income. Understanding how differences in

these aspects affect each other is of relevance not only for behavioral sciences, but

also for informing policy as it helps to uncover reasons for social mobility and to

target intervention programs. In this regard, especially the understanding of mal-

leability of individual heterogeneities and life outcomes in response to social envi-

ronment is of great interest. In general, despite their fundamental importance, little

is known about the interactions between the three aspects named in the title.

This dissertation consists of five self-contained chapters which jointly seek to con-

tribute to a better understanding of the interactions within the triangle of individual

heterogeneities, social environment and life outcomes. To do so, Chapter 1 and 2

consider the relation between individual heterogeneities, as personality and prefer-

ences, and life outcomes, as income, health and education. Chapter 3 and 4 analyze

the role of (early) social environment on the development process of personality and

preferences. Finally, Chapter 5 considers the direct effect of social environment on

life outcomes.

Although both economists and psychologists seek to identify determinants of

heterogeneities in behavior and life outcomes, they use different concepts to capture

them. In Chapter 1, we first analyze the extent to which economic preferences and

psychological concepts of personality, such as the Big Five and Locus of Control, are

1Providing evidence for this claim is part of Chapter 4

1



related.2 We analyze data from incentivized laboratory experiments and representa-

tive samples and find only low degrees of association between economic preferences

and personality. We then regress life outcomes (such as labor market success, health

status, and life satisfaction) simultaneously on preference and personality measures.

The analysis reveals that the two concepts are rather complementary when it comes

to explaining heterogeneity in important life outcomes and behavior.

In Chapter 2 we seek to extent the framework of individual heterogeneities an-

alyzed in Chapter 1 by integrating “non-cognitive skills”.3 Although research on

non-cognitive skills has recently become very popular in applied economic research,

there is little agreement on what is actually meant by this concept. In labor eco-

nomics e.g. non-cognitive skills are usually seen as the only broadly defined second

dimension in 2-factor models (next to the cognitive component), while in behav-

ioral economics it is seen as a superordinate concept summarizing various specific

concepts which include economic preferences as well as personality measures. To

contribute to a joint understanding of non-cognitive skills we relate various proto-

typical one-dimensional non-cognitive factors to each other and decompose them

into combinations of underlying personality traits and economic preference param-

eters. Hereby, we shed light on what previous papers measured when using different

identification strategies for the non-cognitive factor. Finally, in predicting educa-

tional success, we compare different 2-factor models (including non-cognitive and

cognitive components) to a “preferred” model, which uses the personality traits and

economic preferences and IQ directly. We find that the inputs used to estimate 2-

factor system greatly influence what is actually measured and which conclusions are

reached about the role of non-cognitive skills. The results suggests a more careful

interpretation of non-cognitive skills is needed when debating their importance in

determining life outcomes.

Although heterogeneities in preferences and personality play such a crucial role in

determining important life outcomes such as health or labor market and educational

success, little is known about their origins and determinants. To provide insights into

2This chapter is based on Becker et al. (2012) and is joint work with Anke Becker, Thomas
Deckers, Thomas Dohmen and Armin Falk.

3This chapter was developed jointly with John Eric Humphries.
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the process of preference formation, Chapter 3 and 4 analyze the role of the social

environment and focus on the (early) childhood as a critical and sensitive period in

the human development process.

To contribute to an understanding of the preference formation process, Chapter

3 proceeds in two steps.4 In a first step we present evidence showing that breastfeed-

ing duration is a valid measure of quality of early life circumstances. In the main

analysis, we secondly investigate how early life circumstances affect the formation

of fundamental economic preferences such as time, risk and social preferences. In a

sample of preschool children we find that longer breastfeeding duration is associated

with higher levels of patience and altruism as well as a lower willingness to take

risk. We repeat the analysis on a sample of young adults, which allows us to test

whether the observed pattern is enduring and persists into adulthood. The results

exactly mirror those found in preschool children. Importantly, in both data sets the

pattern is robust to controlling for cognitive ability and socio-economic family en-

vironment. Moreover, we report evidence on health-related behavior and outcomes

that are predicted based on the relation between breastfeeding duration and prefer-

ences. Finally, using data from a representative panel, we find the same preference

pattern arising in response to historical variations in breastfeeding duration on a

cohort level. Altogether, our findings strongly suggest that early life circumstances

as measured by breastfeeding duration systematically and persistently affect human

preference formation.

In Chapter 4 we build on the findings presented in Chapter 3 and, with a fo-

cus on prosociality, provide a straightforward analysis of the causal role of social

environment.5 Prosociality pervades human societies, is of fundamental importance

at all levels of social interaction and contributes to economic, political and social

success. Therefore it is an essential question for the well-being of individuals and

societies how humans acquire prosocial attitudes. Here we present descriptive and

causal evidence on the role of social environment for the formation of prosociality,

measured in terms of altruism, trust and other-regarding behavior. In a first step we

4This chapter is based on joint work with Armin Falk.
5This chapter was developed in collaboration with Thomas Deckers, Armin Falk and Hannah
Schildberg-Hörisch.
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provide descriptive evidence on parental background and show that socio-economic

status (SES) as well as mothers’ prosocial attitudes systematically affect primary

school children’s prosociality. Children from a low SES parental background show

lower levels of prosociality than children from a high SES background. Moreover,

we find a positive and significant association between the prosociality of mothers

and their children. This sets the stage for studying the causal role of investments

in low SES children. We present evidence on a randomly assigned variation in life-

circumstances, providing children with a mentor for the duration of one year. Our

data reveal a significant increase in altruism, trust and other-regarding behavior in

the treatment relative to the control group. These findings thus provide evidence in

favor of a causal effect of social environment for the formation of prosociality. Our

data additionally reveal that the investment under study substantially reduces the

observed developmental gap in prosociality between low and high SES children. Fi-

nally we show that investments are most effective for children whose mothers score

relatively low on our prosociality measure. In combination with the fact that men-

tors are particularly prosocial, this suggests that the mentoring program serves as a

substitute for prosocial stimuli at the household level.

Chapter 5 takes another perspective and directly analyses the causal role of social

environment on life outcomes.6 We provide a complementary approach by combin-

ing lab and field data and focus on the effect of treatment at the workplace on

health outcomes. In particular we investigate physiological responses to perceptions

of unfair pay. We use an integrated approach exploiting complementarities between

controlled lab and representative field data. In a simple principal-agent experiment

agents produce revenue by working on a tedious task. Principals decide how this

revenue is allocated between themselves and their agents. Throughout the experi-

ment we record agents’ heart rate variability, which is an indicator of stress-related

impaired cardiac autonomic control and has been shown to predict coronary heart

diseases in the long-run. Using three measures of perceived unfairness our findings

establish a link between unfair payment and heart rate variability. Building on these

findings, we further test for potential adverse health effects of unfair pay using data

6This chapter was developed in collaboration with Armin Falk, Ingo Menrath, Johannes Siegrist
and Pablo Emilio Verde.
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from a large representative data set. The analysis includes cross-sectional and dy-

namic panel estimations. Complementary to our experimental findings we find a

strong and highly significant negative association between health outcomes, in par-

ticular cardiovascular health, and the perception of unfair pay.

5
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Chapter 1

The relationship between

economic preferences and

psychological personality measures

1.1 Introduction

Both economists and personality psychologists seek to identify determinants of het-

erogeneity in behavior. Economists typically depict decision problems in a framework

of utility maximization. An individual’s utility is shaped by preferences such as risk

preferences, time preferences and social preferences.1 These preferences in combina-

tion with expectations of future events, perceptions, beliefs, strategic consideration,

prices and constraints shape behavior. Personality psychology, the branch of psy-

chology studying personality and individual differences, offers several frameworks

1In the standard expected utility framework, risk preference is captured by the curvature of the
utility function, while the degree of risk aversion is represented in the concavity of the utility
function (e.g. Gollier, 2004). Time preference describes how an individual trades off utility at
different points in time (Samuelson, 1937; Frederick et al., 2002). Social preferences capture the
idea that an individual’s utility does not only depend on his or her own material payoff, but
that it is also shaped by others’ behavior and material payoff. Social preferences include altruism
(e.g. Eckel and Grossman, 1996) and negative and positive reciprocity (e.g. Falk and Fischbacher,
2006). Finally, trust describes an individual’s belief about others’ trustworthiness combined with
a preference to take social risks (e.g. Fehr, 2009). Another important economic preference is the
preference for work vs. leisure. This preference is difficult to measure in experiments and is therefore
not part of our analysis.
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describing universal traits and individual differences. Personality traits – defined by

Roberts (2009, p. 140) as “the relatively enduring patterns of thoughts, feelings, and

behaviors that reflect the tendency to respond in certain ways under certain circum-

stances” – are an important determinant of personality (Roberts, 2006), and affect

outcomes. There has been a long tradition in personality psychology to measure

personality traits. The Big Five or five-factor model is the most widely used tax-

onomy of personality traits. It originates from the lexical hypothesis of Allport and

Odbert (1936) which postulates that individual differences are encoded in language

(see Borghans et al. 2008). After years of research in this tradition, psychologists

have arrived at a hierarchical organization of personality traits with five traits at

the highest level. These Big Five traits, that are commonly labeled as openness to

experience, conscientiousness, extraversion, agreeableness, and neuroticism, capture

personality traits at the broadest level of abstraction. Each of the Big Five traits con-

dense several distinct and more narrowly defined traits. It has been argued that the

bulk of items that personality psychologists have used to measure personality can be

mapped into the Big Five taxonomy (see, e.g., Costa and McCrae, 1992).2 Another

important concept in psychology focusing on individual beliefs and perceptions is

the Locus of Control framework by Rotter (1966). It represents the framework of

social learning theory of personality and refers to the extent people believe they

have control over events.

An integration of the different measures and concepts used by economists and

personality psychologists promises much potential for amalgamating evidence about

the drivers of human behavior which has been accumulated disjointedly in the fields

of economics and psychology (Borghans et al., 2008). Recently, scholars have be-

gun to integrate personality into economic decision making (e.g., Borghans et al.

2008). Almlund et al. (2011) enrich theory by incorporating personality traits in a

standard economic framework of production, choice, and information. Their model

interprets measured personality as a “construct derived from an economic model

of preferences, constraints, and information” (Almlund et al., 2011, p. 3). However,

empirical knowledge is too limited to judge how personality traits relate to the con-

2For a more detailed description of the research on the development of the Big Five, criticism of
the approach and alternative measurement systems see Borghans et al. (2008).
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cepts and parameters economists typically model to predict behavior.

To shed more light on the relationship between economic preferences and psy-

chological measures of personality we therefore study how key economic preferences,

such as risk preferences, time preferences or social preferences, are linked to conven-

tional measures of personality, such as the Big Five and Locus of Control. We analyze

this relationship in a coherent framework using two main approaches. Our first ap-

proach focuses on assessing the magnitude of the correlations between psychological

and economic measurement systems in three unique data sets. Our second approach

departs from the fact that both preference measures and measures of personality

traits predict a wide range of important life outcomes. If these two measurement

systems are closely linked, they are expected to be substitutes in explaining hetero-

geneity in behavior. If, however, preferences and personality traits capture different

aspects of behavior the two measurement systems may have complementary predic-

tive power for important life outcomes. We therefore evaluate the individual as well

as the joint explanatory power of economic preferences and psychological measures

of personality in explaining health, educational and labor market outcomes.

We use three complementary datasets. First, we look at data from laboratory

experiments. Using a student subject pool we conducted choice experiments on key

economic preferences, namely risk taking, time discounting, altruism, trust, positive

and negative reciprocity. We incentivized decision-making and obtained multiple be-

havioral measures for each preference. We assessed the Big-Five domains using the

60-item NEO-FFI (Costa and McCrae, 1989) and a 15 item subset, the so called BFI-

S (Gerlitz and Schupp, 2005). We also measured Locus of Control using ten items

adapted from Rotter (1966). Our second data set comprises very similar incentivized

experimental measures with respect to risk taking and time discounting using a rep-

resentative sample of almost 1000 participants from the German population. We are

therefore able to obtain incentivized preference measures for a representative popu-

lation. Personality was assessed using the BFI-S. The third data set stems from the

German Socio-Economic Panel Study (SOEP), comprising preference and personal-

ity measures for a representative sample of more than 14.000 individuals. Preference

measures were obtained using subjective self-assessment survey items rather than

incentivized experiments, and personality was measured by using the BFI-S and the

9



Locus of Control questionnaire. Using this data set we analyze associations between

important life outcomes, such as labor market success, subjective health status or

life satisfaction, and individuals’ preferences and personalities.

These three data sets allow for a comprehensive analysis. The first data set con-

tains very detailed personality measures in combination with multiple experimental

indicators for preferences. This student sample therefore provides a particularly ac-

curate assessment of potential relations between economic preferences and personal-

ity. The second data set uses experimental measures for a limited set of preferences

and a shorter version of the Big Five but a representative sample. Comparing results

of the two data sets therefore informs us about the generalizability of our findings

from the student sample. The third data set additionally allows us to study an even

larger sample and to explore the explanatory power of personality and preferences

for important life outcomes.

We start by analyzing data on 489 university students. We relate all five factors

that capture personality according to the Big Five taxonomy and the measure of

Locus of Control to our experimental preference measures. We generally find only

small correlations between personality traits and preferences. In particular, only 11

of the 36 correlations in our student sample exceed 0.1 in absolute value and only

one correlation exceeds 0.2 in absolute value. These eleven correlation coefficients

are all significant at conventional levels, and eight of them involve correlations be-

tween social preferences and personality traits.

Next, we gauge whether the correlation patterns generalize to representative sam-

ples. We first turn to the data set that contains very similar experimental measures

of risk and time preferences and survey measures of the Big Five for about 1000

individuals, who were sampled to be representative of the adult population living in

Germany (see Dohmen et al., 2010). The correlation structure between personality

traits and risk and time preferences turns out to be similar to the one we find for

students, with few exceptions.

Finally, we assess whether the empirical associations between preference parame-

ters and personality traits are sensitive to the way in which preferences are measured.

We compare correlations between personality traits and measures of preferences de-

rived from the incentivized choice experiments in the student and the representative
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sample to correlations that are constructed based on the non-incentivized subjective

self-assessments in a representative sample of 14.000 individuals from the SOEP.

Our result on the pattern of correlations between preference measures and person-

ality measures is again largely confirmed.

We then turn to a different type of analysis in which we assess the power of

preferences and personality in explaining life outcomes, including health, life sat-

isfaction, earnings, unemployment and education. Our analysis reveals that both

measurement systems have similar explanatory power when used separately as ex-

planatory variables. The explained fraction of variance increases by about 60% when

life outcomes are regressed on both measurement systems. We therefore conclude

that each measurement system captures distinct sources of the heterogeneity in life

outcomes. A coherent picture emerges from our analysis. Both approaches strongly

suggest that standard measures of preferences and personality are complementary

constructs.

So far no clear picture concerning the relations between measures of personality

and economic preferences has emerged in the literature (see Almlund et al., 2011).

For example, the study by Daly et al. (2009) suggests a negative relationship be-

tween conscientiousness and the discount rate, but such a negative correlation is

neither corroborated by Dohmen et al. (2010), who relate experimental measures of

willingness to take risk and impatience to survey measures of the Big Five in a rep-

resentative sample of adults living in Germany, nor by Rustichini et al. (2012), who

relate a measure of delay acceptance to four of the Big Five domains in a sample of

1065 U.S. trainee truckers.3 In fact, Dohmen et al. (2010) find no significant relation-

ship between personality traits and preference measures in a regression framework

that includes controls for IQ, gender, age, height, education, and household income.

Raw correlations between preference and personality measures, which are also re-

ported in Almlund et al. (2011), are weak; time preference is significantly correlated

to agreeableness only (at the 10 percent level).4 This finding is confirmed by the sig-

nificant correlation between delay acceptance and agreeableness in the truck driver

3The effect sizes of the correlations between preference and personality measures are all smaller
than 0.1 in absolute value.

4We report this data in Table 1.3.
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sample of Rustichini et al. (2012).

Evidence on the link between risk preferences and Big Five domains is equally

mixed. Raw correlations between a lottery choice measure of risk preference and

personality traits in the data from Dohmen et al. (2010) indicate significant re-

lationships between risk preferences and openness to experience (at the 1 percent

level) and with agreeableness (at the 5 percent level). Rustichini et al. (2012) do

not measure openness to experience. They do not find a significant correlation for

risk preference and agreeableness, but report a weak correlation between risk pref-

erence and neuroticism (0.05 in absolute value), which is significant at the 10 per-

cent level. This finding is in line with the significant positive association between

risk aversion and neuroticism reported by Borghans et al. (2009). Other researchers

(e.g. Zuckerman, 1994) have related risk preferences to sensation seeking, a facet of

extraversion in the Big Five taxonomy, and found mixed evidence. While Bibby and

Ferguson (2011) report a significant correlation between a measure of loss aversion

and sensation seeking (r = 0.27), Eckel and Grossman (2002) find no evidence of an

association between risk preferences and sensation seeking.

Evidence on the link between social preferences and personality is somewhat

stronger. Dohmen et al. (2008) relate survey measures of social preferences to mea-

sures of the Big Five using data from the German Socio-Economic Panel Study

(SOEP) and find significant associations between trust, as well as positive and neg-

ative reciprocity and personality traits. Trust is positively related to agreeableness

and openness to experience, and negatively to conscientiousness and neuroticism;

while positive reciprocity is positively associated with all five personality factors,

negative reciprocity is negatively related to conscientiousness and extraversion, and

positively to neuroticism. A link between extraversion and behavior in the dictator

game, which can be interpreted as a measure of altruism, has been established by

Ben-Ner and Kramer (2011).

The paper is structured as follows. Section 1.2 describes our three data sets.

In section 1.3 we introduce our research strategy for investigating the link between

personality and preferences. Section 1.4 presents evidence on the correlation be-

tween measures of personality and measures of preferences. In addition it contains

an assessment of the explanatory power of preferences and personality in explaining
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important life outcomes. Section 1.5 concludes.

1.2 Data and measures

In this section we provide a description of the three complementary data sets that

we employ for our analysis. Before we present our experimental and survey measures

in detail a few comments on identification are warranted. Economists typically try

to infer preferences from choices, the so-called revealed preference approach. For

example, one might surmise that a person who does not wear a safety belt or does

not invest in risky stocks has a preference for taking risks. It is, however, easy to

show that the same behavioral pattern is compatible with very different risk prefer-

ences if other factors affect the person’s decisions. For example, differences in beliefs

about how risky driving without a safety-belt or investing in stocks actually is may

affect decisions equally strong than underlying risk preferences. The problem is that

the decision context is uncontrolled and person specific, rendering precise statements

about preference parameters very difficult.5 This is why economists run experiments

to infer preferences. In a typical choice experiment subjects take decisions in a well

controlled decision environment. In risk experiments, e.g., stakes and probabilities

are fixed and the action space is identical for every subject. Observing subjects’

decisions in a controlled experimental environment therefore rules out many po-

tentially confounding factors, allowing a more precise identification of preferences.

Even in an experiment, however, identification of preferences is limited (see Manski

(2002) for a thorough discussion on identification of experimental outcomes). The

same observed action can reflect different risk attitudes, e.g., if the experimental

subjects dispose of different wealth levels and the curvature of the utility function

is not invariant to wealth levels. Despite these limitations experiments deliver much

more precise behavioral outcomes than non-experimental observations. In strategic

situations, which are relevant for measuring trust and reciprocity, we are able to

5Conceptually identical problems apply to the identification of traits, such as ability, physical
strength and personality characteristics from observed performance on tasks, when performance
also depends on other unobserved factors such as time, energy or attention devoted to the task.
An illuminating discussion of the identification problem is provided in section 1.3 of Almlund et
al. (2011).
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elicit not just an action but a complete strategy. With field observations this is im-

possible. The relevance of eliciting a strategy is obvious: Suppose observing a second

mover who defects in a cooperation context, in response to a non-cooperative act of a

first mover. This could reveal selfish preferences as well as reciprocal preferences. To

disentangle the two requires knowledge about what the decision maker would have

done, had the first mover cooperated. Eliciting a strategy instead of observing only

actions does exactly this. Experimental observations have the additional advantage

over survey responses that decisions have immediate monetary consequences. This

is of obvious importance, e.g., for identifying altruism. It makes a big difference to

simply state altruistic preferences or to reveal them in a costly manner.

1.2.1 Experimental data

The first data set consists of decisions from laboratory experiments among university

students. We ran a series of simple incentivized choice experiments to elicit prefer-

ences concerning risk taking, discounting, positive and negative reciprocity, trust as

well as altruism.6 Table 1.1 presents an overview of the experiments and provides a

short description of the elicitation methods and the obtained behavioral measures.

Four important features about our experimental design are worth noting. First, for

risk taking, discounting, trust and positive reciprocity subjects took part in two very

similar experiments each. This allows us to average over both outcomes for each sub-

ject in order to minimize measurement error. Second, in order to reduce spillovers

between different choices, experiments were not run in one single session but in two

sessions, which were scheduled one week apart from each other.7 Third, in order

to reduce possible income effects with respect to outcomes within session, feedback

about experimental outcomes was only given at the very end of an experimental

session. Fourth, the vast majority of subjects in the experiments had never taken

part in an experiment before. This eliminates possible confounds in behavior due

to previous experiences in similar experiments. In total, 489 students from different

6For a detailed description of the experimental procedures see Falk et al. (2011).
7We reversed the order of the sessions for half of the subjects. Statistical tests reveal no significant
order effects.
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majors from the University of Bonn took part.8 The experiments were run at the

Laboratory for Experimental Economics at the University of Bonn (BonnEconLab).

We used zTree (Fischbacher, 2007) as experimental software and recruited subjects

using ORSEE (Greiner, 2004). Each session lasted about two hours, and average

earnings were 64 Euros.

Table 1.1: Overview: Experimental measures

Preference Experiment Measure
Time Two lists of choices between Average switching point

an amount of money “today” over both lists of choices
and an amount of money from the early to the
“in 12 months”. delayed amount.

Risk Two lists of choices between Average switching point
a lottery and varying safe over both lists of choices
options. from the lottery to the

safe option.
Positive Second mover behavior in two Average amount sent back
Reciprocity versions of the Trust Game in both Trust Games.

(Strategy Method).
Negative Investment into punishment after Amount invested into
Reciprocity unilateral defection of the opponent punishment.

in a Prisoner’s Dilemma
(Strategy Method).

Trust First mover behavior in two Average amount sent as
versions of the Trust Game. a first mover in both

Trust Games.
Altruism First mover behavior in a Size of donation.

Dictator Game with a charitable
organization as recipient.

1.2.1.1 Preference measures

Risk preferences In order to elicit risk attitudes we adapted the design from

Dohmen et al. (2010). Subjects were shown a list of binary alternatives, a lottery

8Out of these 489 students, 80 took part in a pretest of the study. Most of these 80 subjects had
taken part in an experiment before. The pretest did not include the experiments on altruism and
negative reciprocity.
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and a (varying) safe option. The lottery was the same for each decision: if they chose

the lottery participants could either win 1000 points or zero points with 50 percent

probability each. The safe option increased from row to row, starting from a value of

(close to) zero, and increasing up to a value of (close to) the maximum payoff of the

lottery. To reduce measurement error subjects participated in two risk experiments.

The choice list of the second experiment was simply a perturbed version of the

first one. Perturbations were constructed such that a randomly drawn integer value

between -5 and +5 was added to the safe option in every choice, corresponding to

perturbations of maximally 5% of the step size of the increase in the safe option.

The complete list of choices was shown to subjects on the first screen. Each choice

situation was then presented on a separate screen, where subjects entered their

respective choice. Subjects were informed that one choice in each list would be

selected randomly and paid. Subjects with monotonic preferences should choose the

lottery for lower safe options and switch to the safe option when the latter reaches

or exceeds the level of their certainty equivalent. Thus, switching points inform us

about individual risk attitudes. The earlier a subject switches to the save option the

less he or she is willing to take risks. For our analysis we constructed a risk preference

measure using the average of the two switching points from the two experiments.9

Time preferences To measure individuals’ time preferences we implemented a

procedure very similar to the one for risk attitudes. In the discounting experiments,

subjects were given two lists of choices between an earlier amount of money (“to-

day”), which was the same in all choices, and an increasing delayed amount of money

(“in 12 months”). In the first row the early amount was equal to the delayed amount.

Delayed amounts increased from row to row by 2.5%. As for risk preferences subjects

participated in a very similar second discounting experiment with small perturba-

tions of delayed amounts between +0.5 and -0.5 percentage points. One choice in

each of the two lists was randomly selected for payment. Payments resulting from

the two experiments were sent to subjects via regular mail. If a subject chose the

9If subjects switched between the lottery and the safe option more than once, we took the average
switching row as an estimate of their certainty equivalent. This happened in 16 % of the cases in
the first experiment on risk taking, and in 11 % of the cases in the second experiment.
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early amount, the payment was sent out on the day of the experimental session. If

a subject chose the delayed amount, the payment was sent out with a delay of 12

months.10 The switching point from early to delayed payment informs us about a

subject’s time preference. Subjects who switch later discount the future amount by

more, i.e., are less patient, than subjects who switch earlier.11 Our measure of indi-

vidual discounting is the average switching row in both lists. To ease interpretation

of the correlations reported below, we recode the measure, such that higher values

imply earlier switching rows, i.e., a higher level of patience.

Trust We elicited trust from first mover behavior in the so-called Trust Game

(Berg et al., 1995). We conducted two versions of the Trust Game. In one version,

the amount sent by the first mover was doubled by the experimenter, while in the

second version the amount was tripled. Every subject was in the role of the first

and of the second mover twice.12 Both Trust Games were incentivized, i.e., every

(relevant) decision was paid. In the role of a first mover subjects could choose to send

any amount in {0, 50, 100, . . . , 500} points to the second mover. All interactions in

the Trust Game as well as in all other social preference experiments were one-shot

and anonymous (perfect stranger matching protocol). The average amount sent as

a first mover in both Trust Games constitutes our experimental measure for trust:

subjects who send higher amounts of money are those who display higher levels of

trust.

Positive reciprocity To elicit positive reciprocal inclinations we measure sub-

jects’ second mover behavior in the Trust Game (compare previous paragraph). We

implemented the Strategy Method (Selten, 1967). This means that for every possi-

ble amount sent by the first mover, subjects were asked to indicate how much they

wanted to send back. The actual decision of the first mover determined which of

these decisions became payoff relevant. The average amount sent back as a second

10Keeping the payoff mode identical over both time horizons rules out credibility concerns.
11For subjects, who switched more than once, we took the average switching row as an estimate of
their discount rate. This happened in 5 % of the cases in the first experiment on time discounting,
and in 7 % of the cases in the second experiment.
12Overall, we therefore ran four Trust Games.
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mover in both Trust Games was taken as individuals’ willingness to reciprocate,

such that higher values imply a higher willingness to reciprocate.

Negative reciprocity In order to measure subjects’ willingness to engage in

costly punishment of unfair behavior, we conducted a Prisoner’s Dilemma with a

subsequent punishment stage.13 In the punishment stage, subjects could choose to

invest points in order to deduct points from their opponent. Punishment was costly.

Again, we implemented the Strategy Method. Before taking their decisions in the

first stage of the experiment, i.e., in the Prisoner’s Dilemma, subjects were asked to

indicate how many points they wanted to deduct from the other player in case he

or she cooperated or defected, for both own cooperation and own defection. Then,

they played a simultaneous Prisoner’s Dilemma. The outcome of the first stage

determined which choice of the second stage became payoff relevant. The chosen

investment into punishment after unilateral defection of the other player served as

a measure of an individual’s willingness to reciprocate negatively.

Altruism To measure altruistic behavior subjects took part in a modified Dictator

Game in which the recipient was a charitable organization (adapted from Eckel and

Grossman, 1996). Subjects were endowed with 300 points and had to decide how

much of this endowment to donate to a charitable organization.14 This decision

serves as our experimental measure of subjects’ altruistic inclination.

1.2.1.2 Personality measures

Big Five As part of the study, subjects were given a paper-and-pencil survey,

which they were asked to fill out at home and return to us via mail.15 319 out of 489

subjects completed the survey and sent it back to us. The survey included the NEO-

FFI version of the Big Five (Costa and McCrae, 1989). During the experimental

sessions all 489 subjects also answered a shorter version of the Big Five, consisting
13The design of the experiment was adapted from Falk et al. (2005)
14Subjects could choose a charitable organization from a list, or name one themselves.
15We also handed out stamped envelopes with the address of our research institute, in order to
minimize additional costs for returning the survey to us.
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of 15 items which are a subset of the NEO-FFI. This so-called BFI-S has been

developed by Gerlitz and Schupp (2005) and was also part of the 2005 and 2009

waves of the German Socio Economic Panel (SOEP). Correlations between the long

version and the short version of the Big Five differ between the five personality

dimensions. The lowest correlation is r = 0.48 for openness, the highest is r = 0.71

for conscientiousness, respectively (all p-values < 0.001). We constructed our Big

Five measure in that we use data from the long version whenever available, while

for the remaining subjects we refer to the short version. That way, we have measures

of all Big Five domains for all 489 subjects.

Locus of Control The paper-and-pencil survey included 10 items that allows

us to construct a measure of Locus of Control for the 319 individuals who filled in

the survey. These 10 items have been adapted from Rotter (1966) and they have

also been implemented in the 2005 wave of the SOEP. The personality construct of

Locus of Control assesses in how far a person believes to have control over their life

outcomes, or in how far their life is determined by forces that are outside of their

control, such as luck or faith. We constructed the measure such that higher values

represent a more internal Locus of Control, i.e., the belief that the person can in-

fluence their life outcomes. Lower values represent a more external Locus of Control.

1.2.2 Representative experimental data

The second data set we employ consists of experimental data for a representative

sample of the German population.16 This data set is used to assess whether the find-

ings from the sample of university students can be corroborated in a representative

sample. Subjects’ risk and time preferences were elicited, and we again have informa-

tion on participants’ personality. The data used here stem from a study conducted

in 2005 and contains information on 1012 individuals. For a detailed description of

the study and its procedures see Dohmen et al. (2010).

16The same data set is used in Dohmen et al. (2010).

19



Preference measures The experiments on risk and time preferences were similar

to the ones we used in the laboratory experiments. In both experiments subjects

had to make multiple decisions in a list of choices. To elicit their risk preferences

subjects chose between a lottery, which remained the same in all choices, and safe

options, which increased in their value. Like before, the switching point informs

us on the individual’s willingness to take risks. similarly, to elicit individuals’ time

preferences all participants made a number of intertemporal choices. They had to

decide between an amount “today” and a larger amount 12 months later. The early

amount remained the same in all choices. The first delayed amount presented to

subjects was devised to imply a 2.5% return on the early amount assuming semi-

annual compounding. In the subsequent choices the delayed payment was gradually

increased and was calculated such that the implied rate of return rose in steps of

2.5 percentage points. As before, the switching points from the early to the delayed

option inform us on the subjects’ time preferences.

Personality measures The five personality domains were assessed using the BFI-

S (see section 1.2.1.2 for a more detailed description).

1.2.3 Representative panel data

The third data set we use stems from the German Socio-Economic Panel Study

(SOEP), a large panel data set that is representative of the adult population living

in Germany (see Schupp and Wagner (2002) and Wagner et al. (2007) for a detailed

description of the SOEP). We use information from eight waves collected in the years

between 2003 and 2009. In each of these waves more than 20,000 individuals were

interviewed. The SOEP combines extensive socio-demographic information with var-

ious measures of attitudes, preferences and psychological traits. In particular, the

SOEP includes survey items relating to all personality and preference measures that

we have analyzed in the previous sections.

Personality and economic preference measures were elicited several times between

2003 and 2009. To construct a measure for each individual, we use the maximum

available number of observations of a given measure. If several measures of personal-
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ity and preferences are available, we take the average of the standardized measures

of all years in which this measure was elicited. The resulting average is then stan-

dardized as well. In case a particular measure was elicited only in one wave (as it is

the case for patience, for example) we just take the standardized measure from that

respective year. We restrict the sample to individuals for whom we have informa-

tion about each personality and preference measure. This results in a sample size of

14,243 individuals.

Preference measures As a measure for time preference we use answers to the

following survey question: “How would you describe yourself: Are you generally an

impatient person, or someone who always shows great patience?”.17 Participants gave

an answer on an 11-point scale where zero means “very impatient” and ten means

“very patient”. This item was implemented only in 2008. The risk preference question

was asked in the same manner: “How do you see yourself: Are you generally a person

who is fully prepared to take risks, or do you try to avoid taking risks?” Answers were

given on an 11-point scale where zero means “unwilling to take risks” and ten means

“fully prepared to take risks”. This question was asked in the four waves 2004, 2006,

2008 and 2009. The general risk question has been studied in various papers and has

been validated using incentivized experiments in representative samples as well as

using behavioral evidence in Dohmen et al. (2011). In 2005 the SOEP contained six

items to measure reciprocal inclinations, three items each on positive and negative

reciprocity. Examples for positive and negative reciprocity are: “If someone does me

a favor, I am prepared to return it” and “If I suffer a serious wrong, I will take

revenge as soon as possible, no matter what the costs”. Participants expressed how

well these six statements apply to them on a 7-point Likert scale. For a detailed

description see Dohmen et al. (2009). Standard trust questions were asked in the

two waves 2003 and 2008, using three sub-statements about whether “one can trust

people”, whether “in these times one can’t rely on anybody else” and whether “when

dealing with strangers it is better to be cautious”. Answers were given on a 5-point

scale ranging from “Totally agree” to “Totally disagree”. Finally, our survey measure

17The behavioral validity of this question with respect to incentivized experiments is documented
in Vischer et al. (2013).

21



for altruism is the answer to the question how important it is for the participant “to

be there for others”. Answers were given on a 4-point scale. The altruism question

was asked in waves 2004 and 2008.

Personality measures The 2005 and the 2009 wave of the SOEP contained the

BFI-S questionnaire, developed by Gerlitz and Schupp (2005). Locus of Control was

elicited in 2005 using Rotter’s Locus of Control scale (Rotter, 1966). Both inventories

were also used in our lab experimental data. See section 1.2.1 for more details on

the BFI-S and the Locus of Control scale.

1.3 Research strategy

To answer the question whether measures of personality and economic preferences

are closely linked we first study the raw correlations between these measures. High

correlations would indicate some degree of substitutability. Low correlations, on the

other hand, would suggest that the two measurement systems are complementary

concepts in explaining heterogeneity in behavior. Whether a correlation should be

interpreted as “high” or “low” is of course always debatable. We therefore first

look at statistical significance levels. Statistical significance, however, can also be

found for correlations which are low in terms of effect size (Cohen, 1992). Following

conventions in the social sciences we interpret effect sizes, i.e., correlations r, as

rather “low” if r is between 0.1 and 0.3, as “medium” if r is between 0.3 and 0.5

and as “large” if r is larger than 0.5. Since the analysis of correlations is restricted

to linear relations, we also check for potential non-linear associations by conducting

non-parametric regressions. In particular, we look at Kernel-weighted local linear

polynomial regressions.

We then check whether measures of personality and preferences are substitutes or

complements in terms of their explanatory power for life outcomes. In particular, we

conduct linear regressions and assess the explanatory power of the two concepts by

reporting levels of adjusted R-squared. In these regressions, measures of personality

and preferences are included individually as well as jointly. If the two measurement
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systems are substitutes, adjusted R-squared in the combined regressions should not

be distinctly higher than in regressions in which only one of the two concepts is

included. The opposite should hold for complements. Additionally, we investigate

model selection criteria in these regressions. We check for robustness using binary

and ordered choice models as well as more comprehensive specifications including

square terms and cross-products of all regressors.

1.4 Results

In this section we discuss our main findings. Note that in order to ease comparison

between data sets and measures all experimental as well as all personality measures

were standardized for the data analysis.

1.4.1 Correlation structure

1.4.1.1 Experimental data

Table 1.2 displays the 36 raw correlations of the personality and economic preference

measures obtained from the lab experiments. A first inspection of Table 1.2 reveals

that only eleven of these 36 correlations are statistically significant at the 5% or

1% significance level.18 All correlation coefficients are smaller than 0.3 in absolute

value. Hence, there is no correlation with “medium” effect size or larger. Moreover,

of all 36 correlations only eleven exceed 0.1 in absolute value and only one of these

slightly exceeds 0.2.19

Table 1.2 also shows that among all personality factors agreeableness exhibits

the highest and statistically most significant correlations with measures of economic

preferences. It is significantly correlated with measures for positive and negative

reciprocity, trust and altruism (all p-values < 0.01) as well as with time preference

18Five additional correlations are weakly significant, i.e., significant at the 10% significance level.
19Results qualitatively stay the same when investigating Spearman correlations instead of Pearson
correlations (see Table A1.2 in Appendix A1). Moreover, when looking at a potential linear map-
ping, i.e., linear regressions of either the Big Five on preferences or vice versa, R2 is always below
10%.
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Table 1.2: Correlation structure experimental data set

Openness Conscientiousness Extraversion Agreeableness Neuroticism LoC
Time 0.0370 0.0057 −0.0084 0.1026∗∗ −0.0518 0.0847
Risk −0.0379 −0.0611 0.0762∗ 0.0202 −0.1201∗∗∗ 0.0434
Pos. Reciprocity 0.1724∗∗∗ 0.0140 0.0211 0.2042∗∗∗ 0.0361 0.0152
Neg. Reciprocity −0.0885∗ −0.0393 0.0943∗ −0.1451∗∗∗ −0.0136 −0.1418∗∗

Trust 0.1232∗∗∗ −0.1300∗∗∗ 0.0004 0.1665∗∗∗ −0.0134 −0.0140
Altruism 0.1242∗∗ −0.0979∗ 0.0249 0.1911∗∗∗ 0.0847∗ 0.0480

Pearson correlation coefficients. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level. Correlations between
economic preferences and the Big Five were calculated using between 394 and 477 observations. Correlations between
economic preferences and Locus of Control were calculated using between 254 and 315 observations. All measures are
standardized.
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(p-value < 0.05). Correlations with social preferences are all in the range between 0.1

and 0.3 in absolute value, indicating a small effect size according to the classification

of Cohen (1988). The high frequency of significant correlations of agreeableness with

social preferences is not surprising as the former is defined as “the tendency to act

in a cooperative, unselfish manner, . . . ” (see Table A1.1).

Finding only moderate correlations between preference and personality measures

does not necessarily indicate that these constructs are weakly connected; it only in-

dicates that there are weak linear relations. For example, a perfect U-shaped relation

between a personality factor and a preference would result in an insignificant lin-

ear correlation. To explore the possibility of non-linear relationships we therefore

estimate Kernel-weighted local linear polynomial regressions.20 In each regression,

we restrict the sample to a range of four standard deviations around the mean of

each variable to circumvent an analysis biased by outliers. Therefore, the results are

calculated using 70% to 97% of all observations. The predicted regressions are dis-

played in Figure A1.1. Although sometime there are small deviations from linearity

at the boundaries, the overall picture strongly suggests a linear relation in the vast

majority of combinations.

Summarizing our analysis of the lab experimental data we find that associations

between preference and personality measures are linear and that the degree of as-

sociation is rather low, suggesting a complementary relationship. We next turn to

the question whether the correlation patterns observed in student samples can be

replicated in a sample that is representative of the adult population.

20We use the Epanechikov kernel and bandwidth is selected via the plugin estimator of the asymp-
totically optimal constant bandwidth.
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1.4.1.2 Representative experimental data

Table 1.3: Correlation structure representative experimental data

Openness Conscientiousness Extraversion Agreeableness Neuroticism
Time −0.0080 −0.0682 −0.0655 −0.0830∗ −0.0602
Risk 0.1356∗∗∗ −0.0720 0.0757 −0.0941∗∗ −0.0290

Pearson correlation coefficients. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level.

All measures are standardized.

Table 1.3 shows the correlations between the outcomes from the risk and time ex-

periments and the personality traits. As before, the measure for time is reversed, so

that higher values indicate higher patience. In terms of significance the pattern is

similar to the one in the laboratory study. Only one correlation is significant at the

1%-level, one is significant at the 5%-level and one is significant at the 10%-level. In

terms of effect size, only the coefficient of the association between openness and risk

preferences exceeds the 0.1 benchmark to be classified as a small correlation (Co-

hen, 1988).21 Interestingly, the sign is positive, in contrast to our laboratory data.

The other two significant coefficients are even smaller. The analysis of representative

data therefore confirms that the level of association between preference personality

measures is rather small. However, we can only draw this conclusion with respect to

time and risk preferences, as we do not have experimental data on trust and social

preferences. We next analyze whether these findings also hold when looking at all

preference measures in a large representative sample.

1.4.1.3 Representative panel data

In this section we study whether our findings from the experiments generalize to

a large representative sample using survey rather than experimental instruments

for measuring economic preferences. Table 1.4 shows the raw correlations between

21Results qualitatively stay the same when investigating Spearman correlations instead of Pearson
correlations (see Table A1.3 in Appendix A1).
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Table 1.4: Correlation structure SOEP

Openness Conscientiousness Extraversion Agreeableness Neuroticism LoC
Time 0.0183∗∗ 0.1122∗∗∗ −0.0415∗∗∗ 0.3122∗∗∗ −0.0584∗∗∗ 0.0681∗∗∗

Risk 0.2793∗∗∗ −0.0400∗∗∗ 0.2601∗∗∗ −0.1454∗∗∗ −0.0996∗∗∗ 0.1521∗∗∗

Pos. Reciprocity 0.1814∗∗∗ 0.2520∗∗∗ 0.1473∗∗∗ 0.1842∗∗∗ 0.0872∗∗∗ 0.0954∗∗∗

Neg. Reciprocity −0.0522∗∗∗ −0.1558∗∗∗ −0.0264∗∗∗ −0.3756∗∗∗ 0.0612∗∗∗ −0.2154∗∗∗

Trust 0.1272∗∗∗ −0.0680∗∗∗ 0.0575∗∗∗ 0.0945∗∗∗ −0.1919∗∗∗ 0.2094∗∗∗

Altruism 0.1756∗∗∗ 0.1495∗∗∗ 0.1670∗∗∗ 0.2557∗∗∗ 0.0908∗∗∗ 0.0874∗∗∗

Pearson correlation coefficients. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level. Correlations are calculated
using 14,243 observations. All measures are standardized.
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personality measures and economic preferences using 14,243 observations from the

SOEP. Given the large number of observations it is not surprising to find a large

number of significant correlation coefficients (p-values < 0.05 for all correlation co-

efficients). In terms of effect size, however, only two correlations are of “medium”

size, i.e., larger than 0.3. 18 of the reported 36 correlations can be classified as being

“small”, while 16 correlations are even below 0.1. This confirms the overall pic-

ture which emerged from the analysis of the two experimental data sets.22 A closer

comparison of the SOEP survey measures with our experimental measures further

reveals large similarities. As reported above, eleven correlations are significant at the

5% level in the experimental data. Ten of these correlations have the same sign and

are significant at the 1% level using survey data. Moreover, as it is the case in the

lab data set, it is again the personality trait agreeableness which exhibits the highest

correlations with economic preferences, in particular social preferences. While there

are small differences in the results compared to the experimental data set, i.e., seven

out of 36 correlation coefficients show a different sign, the general pattern emerging

from the SOEP measures is consistent with our previous findings. Out of the seven

correlation coefficients only two are (weakly) significant in the experimental data

set. Nevertheless, we think that the inconsistency of signs questions the conjecture

that correlations are universally identical, i.e., identical irrespective of age or other

person characteristics. We return to this aspect in the final section.

We conclude this section with an analysis of potential non-linearities between

our SOEP preference and personality measures. As for the lab experimental data,

we perform Kernel-weighted local linear polynomial regressions restricting the sam-

ple in each regression to four standard deviations above and below the mean. The

resulting subsamples represent 92% to 97% of the observations of the main sample.

The predicted functions presented in Figure A1.2 show no particular non-linearities,

except for some splines at the left ends of the considered range. Thus, analogously

to the experimental data set, it is not the case that systematic non-linearities bias

22Results qualitatively stay the same when investigating Spearman correlations instead of Pearson
correlations (see Table A1.4 in Appendix A1). Moreover, when looking at a potential linear map-
ping, i.e., linear regressions of either the Big Five on preferences or vice versa, R2 is always around
15% with the exception of agreeableness, where R2 reaches 28%.
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correlation coefficients.

1.4.2 Explanatory power for life outcomes

Figure 1.1: Adjusted R-squares for life outcomes

This figure shows adjusted R-squares for linear regressions. The number of observations varies
for the different life outcomes: Subjective Health (14,218 obs.), Life Satisfaction (14,214 obs.),
Gross Wage (7,199 obs.), Unemployed (9,095 obs.), Years of education (13,768 obs.). Gross Wage
measures the gross hourly wage.

All reported correlation structures indicate that personality and preference mea-

sures are far from being perfectly substitutable. In order to determine whether they

actually complement each other, we now analyze their explanatory power with re-

spect to important life outcomes. To that end we again use data from the SOEP. In

particular, we consider the following outcomes: subjective health, life satisfaction,

gross wage, being unemployed and years of education. For each outcome we estimate

linear regression models in which outcomes are regressed on the set of economic pref-

erences, Big Five and Locus of Control, separately as well as jointly.23 The idea is to

assess the explanatory power of each concept in isolation and in combination. This

23The corresponding regressions are shown in Table A1.5 in Appendix A1.
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enables us to check the extent to which explanatory power increases when combining

the concepts and thus allows us to reach conclusions regarding the degree of their

complementarity. The criterion used to compare differences in explanatory power is

adjusted R-squared.

All life outcomes we use come from the 2009 wave of the SOEP. Subjective health

was measured on a 5-point-scale, from “very good” to “bad”. We reverse the answer

scale such that higher values indicate a better subjective health status. Life sat-

isfaction was elicited using the question “How satisfied are you with your life, all

things considered?”, which was answered on an 11-point-scale (with higher values

indicating higher life satisfaction). Our measure for gross hourly wage is the gross

monthly wage divided by monthly working hours.24 Unemployment status is a bi-

nary variable equal to one if the person was unemployed at the time of the survey

and zero otherwise. The variable years of education is created by adding up years

of schooling and additional occupational training (including university).25

Figure 1.1 shows adjusted R-squares for the different life outcomes. R-squared

values for the three concepts – Big Five, Locus of Control and economic preferences –

in isolation are in a range between 1 and 10 percent and vary both between concepts

and outcomes. Thus, they contribute to explaining heterogeneity in important life

outcomes.26 More important in light of our research question, however, is the fact

that the explanatory power is considerably larger when combining Big Five, Locus

of Control and economic preferences compared to using each concept individually.

Moreover, explanatory power is always maximized when all three concepts are in-

cluded in the regression, hereafter referred to as the full model. In this case, resulting

adjusted R-squared values reach levels of about 6 to 18 percent. This clearly indi-

cates the existence of important complementarities among the different concepts.27

Since the question we are answering here is a question of model selection, we also

24Monthly working hours are calculated as the average weekly working hours multiplied by four.
25For each school degree and occupational training (including university) official standard gradu-
ation times in years are used for the calculation.
26When explaining life outcomes such as gross wages, unemployment or years of education the
preference for work vs. leisure would probably play a key role. However, no question relating to
this preference was included in the survey.
27For an overview over the raw correlations between each preference and personality trait and life
outcomes see Figure A1.3 and A1.4.
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employ model selection criteria (in particular the Akaike and Bayesian information

criterion) to check whether the full model is also chosen by model selection criteria.

As can be seen in Table A1.6 in Appendix A1 this is the case for all life outcomes

considered, corroborating our previous results. We perform the same analysis using

binary and ordered choice models when appropriate. Again, the full model is chosen

by the model selection criteria in all cases. As another robustness check we consider

more flexible models: Next to including each predictor linearly in our regressions

we also include square terms and all possible cross products (see Table A1.7 in Ap-

pendix A1). Again the full model obtains the highest adjusted R2 measures when

using OLS estimation and is also chosen by the information criteria in nearly all

cases.28 Results are again robust for employing binary and ordered choice models

when appropriate. Moreover, in all models considered the joint hypothesis that all

coefficients are equal to zero is always rejected at the 1% level (Tables A1.6 and

A1.7 in Appendix A1). Summing up, sizeable complementarities among the differ-

ent concepts are corroborated in all robustness checks.

1.5 Discussion

In this paper we have examined the relation between economic preferences and per-

sonality using three different data sets. We find no indication for a strong linear nor

a non-linear association between the two. Thus we conclude that the two concepts

cannot substitute each other. In fact, when it comes to explaining heterogeneity in

life outcomes, we find that the two concepts play a complementary role. Our find-

ings imply that researchers in economics and psychology can heavily benefit from

the respective other discipline when looking for potential sources of heterogeneity

in life outcomes.

Finding a rather low association between economic preferences and psychologi-

cal measures of personality is perhaps not surprising. First, both concepts are con-

structed in very different ways. While preferences are rooted in utility theory, derived

28Only the BIC choses a model just including Locus of Control when it comes to explaining gross
wage and unemployment. However, this is not surprising given the number of regressors included
and the tendency of BIC to choose parsimonious models.
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in terms of specific functional forms of utility functions, the Big Five personality in-

dicators originate in language analysis. Second, the Big Five measure rather broad

aspects of personality. In particular, each dimension of the Big Five is by itself

already an aggregation of different attitudes or subfacets. Thus, while our results

show low associations between personality and economic preferences, we cannot ex-

clude the possibility that there is a stronger degree of association between economic

preferences and subfacets of the five personality traits. The trait extraversion, for

example, is composed of different attitudes, such as being “relatively more outgo-

ing, gregarious, sociable, and openly expressive” (see Table A1.1), measured by 12

different questions in the NEO-FFI or three different questions in the BFI-S. Put

differently, each personality measure is not only made up of multiple items, but more

importantly captures distinct aspects of a character trait. Economic preferences, on

the other hand, are defined more narrowly. For example, the concept of time prefer-

ences refers to the individual’s willingness to abstain from something in the present

in order to benefit from that decision in the future. While this concept is appli-

cable to different domains, e.g., to health outcomes or financial decision making,

the underlying concept remains the same and is measured by standard incentivized

experiments or survey items as employed in this study. In this sense, our preference

measures might resemble the subordinate aspects of the five personality factors.

Third, finding strong complementarities between economic preferences and per-

sonality measures may simply reflect conceptual differences in the way economic and

psychological models are constructed. The economic model explains heterogeneity in

behavior in terms of three distinct components: preferences, beliefs and constraints,

such as abilities. In contrast, psychological measures such as the Big Five include no-

tions of preferences as well as beliefs and constraints. In other words, in our analysis

we have correlated economic preferences at least partly with beliefs and constraints,

which by construction should not necessarily be correlated. A good example is con-

scientiousness. Being able and willing to work hard and being organized comprises

aspects of both, preferences and personal abilities. Likewise, emotional instability,

which is part of the neuroticism facet, is related to personal inability rather than

a preference. Even more extreme is the case of Locus of Control, which is clearly

a belief rather than a preference. This does not rule out the possibility that the
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two concepts are related, e.g. because an external Locus of Control is conducive to

the development of impatient behavior: if it does not pay off to invest because life

circumstances are predominantly determined by circumstances beyond my control,

the willingness to forgo current consumption and wait in order to earn a return in

the future makes little sense. Yet, beliefs and preferences are two distinct concepts.

The main focus of this paper is the rather weak association and complementary

nature of economic and psychological measures of personality. We have not discussed

the specific signs of the correlations or ways to integrate personality into the eco-

nomic model. Important work in this direction has been done in Almlund et al.,

2011. Many signs of the correlations reported above are consistent across the three

data sets, in particular those that are significant. For example, in all three data

sets risk attitudes and extraversion are positively, risk and neuroticism are nega-

tively correlated. There are important exceptions, however. In the student sample,

e.g., risk attitudes and openness are negatively correlated while they are positively

and significantly negatively correlated in the two representative data sets. These

and other inconsistencies raise important questions. One possible reason for finding

different signs is the use of different elicitation methods for economic preferences

(experiments and survey responses). Another possibility is that the reported corre-

lations vary over the life-cycle. If traits develop with different speed and at different

points in life correlations should vary with age. This could explain differences be-

tween a relatively young student sample and the representative samples. Not much

is known about how economic preferences develop over the life-cycle but at least for

risk attitudes there seems to be a robust and large negative age effect on willing-

ness to take risks (Dohmen et al., 2011). Another possibility is that preferences and

personality are generically differentially correlated between specific groups of the

population, e.g., varying by gender, age, height or education. From an evolutionary

perspective the co-evolution of traits may serve different purposes depending on spe-

cific life circumstances. It may be “optimal” for one subgroup of the population to

develop a positive correlation between particular traits, while for another subgroup

it is adaptive to form a negative correlation. More work needs to be done to uncover

potential group specific correlations between personality and preferences.

The approach taken in this paper is agnostic in the sense that we simply correlate
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existing and important measurement systems as they are. We think this is an im-

portant exercise but it can only be a first step. What is needed is the development

of a comprehensive framework that combines insights from the approaches taken

by economists and psychologists to capture sources of heterogeneity in behavior.

It is surprising that the Big Five apparently misses important preferences such as

attitudes towards risk and time. Likewise the economic model is incomplete with

respect to important preferences, but also with respect to capturing heterogeneity

in abilities and beliefs. In the standard economic framework, beliefs are assumed to

be endogenous to the strategic situation and formed in a rational way. Perhaps, with

the exception of interpersonal trust, beliefs are typically assumed to follow common

prior assumptions and rational updating. The importance of Locus of Control for

explaining fundamental life outcomes on top of preferences, however, reveals the

importance of enduring and individual specific belief systems. Other examples com-

prise optimism and pessimism, religious beliefs or ideological beliefs. The stability of

belief heterogeneity is not well understood. It probably originates in different priors

inherited from parents, self-selection into peer groups and institutions with rein-

forcing belief characteristics as well as boundedly rational belief formation, such as

selected perception, non-Bayesian updating or ego utility (Koeszegi, 2006). Regard-

less of the precise channels that support enduring heterogeneous beliefs, economics

would largely benefit from measuring and including them in explaining economic

outcomes. In addition, economists have started to model the fact that preferences

and beliefs are intimately related and not as separable as traditionally assumed. In

fact, people often want to believe certain things, e.g., in terms of being liked by

others or being better than others (overconfidence). Finally, another important ex-

tension of the economic model would be the measurement of person specific abilities.

While IQ has become a standard individual specific characteristic to be included in

outcome regressions, little work has acknowledged the importance of other compe-

tencies captured by Big Five traits, e.g. the role of conscientiousness for educational

or labor market outcomes.
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Chapter 2

Interpreting and decomposing the

effect of non-cognitive skills on

educational outcomes

2.1 Introduction

Multiple traits matter for success in life. Yet, the underlying dimension, classifi-

cation, and identification of these traits are widely contested. For many economic

models, a one dimensional skill or ability differentiates workers (Becker, 2009; Herrn-

stein and Murray, 2010; Neal and Johnson, 1996; Carneiro, 2003). A large literature

studies how single ability, commonly not fully observed, affects educational choice

and labor market outcomes (Heckman, 1979; Willis and Rosen, 1979; Card, 2001).

More recently, economists have become interested in the multidimensional set of

abilities which affect educational choices, educational success, and later life out-

comes (Heckman and Rubinstein, 2001; Jacob, 2002; Heckman et al., 2006; Cunha

and Heckman, 2007, 2008; Conti and Heckman, 2010). Much of this work adds a

second “non-cognitive” or “socio-emotional” component which is an aggregate of

skills or traits other than cognition that matter in life.

The measures used to identify the second component, also due to data availi-
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bility, vary widely. Some papers use revealed behavior at young ages, while others

use responses to various questionnaires. Which questionnaires are used to estimate

non-cognitive skills also varies across papers. For example, Heckman et al. (2006)

use questionnaires on self-esteem and locus of control, while Jacob (2002) uses the

portion of academic performance (grades, hours spent on homework) not captured

by cognitive ability and disciplinary records from school. Conti and Heckman (2010)

also use locus of control, but supplement this with measures of perseverance, coop-

eration, completeness, attentiveness and persistence. Heckman et al. (2013) allow

the cognitive and the non-cognitive factor to load on 9th grade GPA and include

measures of early risky behavior. Typically the cognitive and non-cognitive factors

are extracted through factor analysis or through constructing indices. While the cog-

nitive factor relatively clearly maps into the concept of intelligence1, the extracted

non-cognitive component must be interpreted by the factor’s measurement system.

The single “non-cognitive” trait is generally difficult to interpret and does not easily

map into pre-existing taxonomies. Heckman et al. (2006) state in this context “we

choose these measures because of their availability in the NLSY79. Ideally, it would

be better to use a wider array of psychological measurements and ... to connect

them with more conventional measures of preference parameters in economics.” (p.

429). Using GSOEP data (Wagner et al., 2007), we find that the choice of which

2-factor system to estimate greatly influences what is actually measured and which

conclusions are reached about the role of non-cognitive factor concerning important

educational outcomes. Our results suggest a more careful interpretation within the

debate on the importance of non-cognitive skills is needed.

Some papers that study cognitive and non-cognitive skills do not explicitly use

a 2-factor structure (for example, Cobb-Clark and Tan, 2011; Farkas, 2003; Lleras,

2008; Rustichini et al., 2012). Rather, these papers include a number of measures

which they believe proxy for non-cognitive skills and discuss how these measures

affect the outcome of interest.2 While these papers do not explicitly use a two fac-

1Psychological theory sometimes distinguishes between different components as fluid and crys-
talline intelligence, see e.g. Cattell (1987).

2This approach places less structure on the model, but also fails to account for measurement error
(which can be corrected for when explicitly working with factors).
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tor model, the papers vary widely in what they use for non-cognitive measures.

For example, Kaestner and Callison (2011) use self-esteem and cognition to predict

later life health, but do not find other non-cognitive measures predictive. Waddell

(2006) similarly uses self-esteem and poor attitude early in school and finds that they

affect later educational choices. Alternatively, Dunifon et al. (2001) use cleanliness

and keeping an organized household as measures of non-cognitive ability using PSID

data. Lleras (2008) explores how behaviors such as social skills, work habit, and par-

ticipation in extracurricular activities directly predict later educational success and

earnings. These papers vary widely in what traits they use to proxy non-cognitive

skills and how these proxies are measured which makes it difficult to compare their

findings.

Personality psychologists use a variety of personality taxonomies to predict and

explain behavior. The most widely used model is the Big-5 personality inventory

(conscientiousness, agreeableness, neuroticism, openness, and extraversion). The

Big-5 (e.g. Costa and McCrae, 1992) were developed based on the lexical hypothesis

by Allport and Odbert (1936), which suggests that individual personality differences

are encoded in language (for an overview and discussion see Borghans et al. (2008)).

In contrast, theoretical economic models include individual preference parameters

which, while potentially related, are unique from ability. Developed as part of util-

ity maximization theory, the two most common economic preference parameters are

time preference3 and risk preference (see e.g. Becker et al., 2012).

Measures of the Big-5 or economic preferences are absent from most economic

surveys, limiting the possibility to integrate empirical and theoretical work and forc-

ing empirical economists to develop ad-hoc non-cognitive factors. Despite their fun-

damental importance, little is known about how the non-cognitive factors estimated

in the economics and education literature are related to the Big-5 and economic

preference parameters. Moreover, non-cognitive factors are estimated using different

measures and different methodologies across different studies, making it difficult to

3The economic concept of time preference is strongly related to concepts as self-control and self-
regulation. For an overview see Frederick et al. (2002), for a discussion on the role of the different
concepts in the development process see Bartling et al. (2010); Bettinger and Slonim (2007); Kosse
and Pfeiffer (2012).
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compare and interpret results.4 Understanding how different estimated non-cognitive

factors map into established taxonomies can help create consilience across previous

work and can inform policy.

Previous literature has shown that school performance and education decisions

are critical conjectures for later life outcomes (see e.g. Heckman et al., 2013). While

there is a broad consensus that non-cognitive traits play a critical role in the deter-

mination of these outcomes and decisions (see discussion in Almlund et al., 2011),

little is known about the actual drivers behind the abstract concept of non-cognitive

traits. A deeper understanding about the actual processes might aid policy interven-

tions in the context of educational decisions. There is a long lasting discussion on

how to improve college access for children from families with a low socio-economic

status. Van der Klaauw (2002) and Nielsen et al. (2010) explore the effect of financial

aid while Bettinger et al. (2012) explore the effect of the assistance and informa-

tion provisions. Knowledge about specific traits that drive the college enrollment

decisions could lead to more targeted interventions. For example, if conscientious-

ness plays a crucial role, implementing interventions that are targeted to improve

children’s conscientiousness might be useful to improve college enrollment among

certain subgroups.

In this paper, we use data from the German socio-economic panel (GSOEP)

(Wagner et al., 2007), a unique panel data set which includes broad information

about teenage behavior, preferences, personality, and later-life outcomes like GPA

and college enrollment.5 We construct several 2-factor models (cognitive and non-

cognitive) based on measurement systems which are used in the previous literature.

The resulting stylized models build the ground for a broad comparison of previously

used non-cognitive factors. By decomposing these non-cognitive factors into a combi-

nation of underlying personality traits and economic preference parameters, we shed

light on how non-cognitive models in the literature are related to each other and to

4Rustichini et al. (2012) and Becker et al. (2012) relate economic preferences to personality mea-
sures, but do not try to decompose non-cognitive skills.

5Germany is an ideal country to study due to very low college fees and broadly available student
grants (BAföG). Students face relatively few financial constraints which could otherwise bias the
decision to go to college.
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more traditional taxonomies. In doing so, we create a road map of which personality

traits and preferences are measured when using different identification strategies for

the non-cognitive factor. We find that the choice of measures used to construct the

non-cognitive factor can broadly change its interpretation. The second half of this

paper compares the 2-factor models to our “preferred” model, which uses the Big-5

and economic preferences directly. We find that the preferred model outperforms all

of the 2-factor models in predicting educational success. Moreover, there is a great

deal of heterogeneity between non-cognitive factors. The more correlated the non-

cognitive factor is with traits from our preferred model, such as conscientiousness

and time preference, the more predictive it is of later outcomes. The combination of

the models shows that the non-cognitive factors add little to no predictive power to

the preferred model.

2.2 Data and measures

Our analysis uses data from the youth questionnaire of the GSOEP which is con-

ducted at age 17, the age at which children first answer questionnaires on their own.

Starting in the year 2006, the youth questionnaire measures preference and person-

ality and includes a short IQ test. We complement this information with revealed

behaviors and outcomes collected in following waves. Our main analysis uses data

on more than 1,300 adolescents interviewed at age 17 in the years 2006 to 2012.

The Big-5 inventory is measured using a validated 15-item questionnaire (Gerlitz

and Schupp, 2005) that is commonly used in empirical personality research (see e.g.

Becker et al. (2012)). Risk preference is measured by the question “How do you see

yourself: Are you generally a person who is fully prepared to take risks, or do you try

to avoid taking risks?” Answers were given on an 11-point scale, where zero means

“unwilling to take risks” and 10 means “fully prepared to take risks” This so called

general risk question has been studied in various papers and is highly correlated

with incentivized experimental measures and revealed behavior (see e.g. Dohmen

et al. (2011)). To measure time preference, the participants rate how strongly they

agree with the two statements “I abstain from things today to be able to afford
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more tomorrow” and “I prefer to have fun today and don’t think about tomorrow”

(reversed) on a 7-point Likert scale. We construct our measure of time preference

by summing the standardized responses. The resulting score is well correlated with

incentivized experimental measures of time preference.6 To measure cognitive skills,

the participants took part in a validated short version of the well-established “I-

S-T 2000 R” (Amthauer et al., 1999), covering all three subsets which are verbal,

numerical and figural abilities (for details see Solga et al. (2005)).

We estimate four different stylized 2-factor models where the non-cognitive fac-

tor in each model is constructed using different reported behaviors or questionnaire

responses. The different measurement systems used to identify the non-cognitive

factor are chosen to be similar to measurement systems used in the economics and

education literature. The cognitive factor is uniformly constructed from three IQ

sub-tests across all models.7 Each model estimates the two factors jointly by confir-

matory factor analysis and allows for correlation between factors. We assume that

the factors have multivariate normal distributions, though our conclusions do not

change when using minimum-distance estimators which do not rely on the assump-

tion of normality. For each 2-factor system, a different set of behaviors or responses

are used to identify the non-cognitive factors: Model 1 (NC-LOCUS) uses responses

to a 10-item Locus of Control questionnaire (Rotter, 1966), as has been done in

work using the National Longitudinal Survey of Youth 1979, such as in Heckman

et al. (2006). Model 2 (NC-ENGAGEMENT) uses participation in extra-curricular

activities, time used on productive or enriching tasks, time used on unproductive

or passive tasks, and number of close friends. Model 3 (NC-RELATIONS) uses re-

sponses on if the individual argues with their parents, argues with their friends or

significant others, the number of close friends which they have, and responses on

communication and interactions between the individual and their parents. Model

4 (NC-BEHAVIORS) uses reported behavior on drinking habits, smoking habits,

eating habits, if the individual argues with their parents, and if the individual ar-

6E.g. using data of Vischer et al. (2013) indicates a highly significant correlation (p < 0.001, N =
965).

7Some papers use achievement tests to measure cognition rather than IQ. As shown in Borghans
et al. (2011), achievement tests may capture traits other than IQ. As the GSOEP does not include
achievement test scores, we cannot consider variation along this dimension.
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gues with their friends or significant others.8 Across the four models, we believe we

have embodied many of the identification strategies used by work on the impor-

tance of non-cognitive skills. We compare each 2-factor model to our “preferred”

model, which uses the Big-5 and economic preference factors directly, either with

IQ (Pref-1) or without IQ (Pref-2). For an overview of the four 2-factor models and

our preferred models, see Table 2.1.

Table 2.1: Measurement systems of different non-cognitive constructs

Model Measurement System

NC-LOCUS (NC-L) Rotter’s Locus of Control (10-items).

NC-ENGAGEMENT (NC-E)
Frequency of engagegment (volunteering, sport,
technical work, reading), number of close
friends.

NC-RELATIONS (NC-R)
Relation to parents and friends (bonding, love,
argues or fights, problems solving), number of
close friends.

NC-BEHAVIORS (NC-B)
Consumption behavior of alcohol and tabacco,
eating behavior, argues or fights with family or
friends.

PREFERRED incl. IQ (Pref-1)
Big-5 (conscientiousness, agreeableness, neuroti-
cism, openness, extraversion), economic prefer-
ences (risk and time), IQ.

PREFERRED w/t IQ (Pref-2)
Big-5 (conscientiousness, agreeableness, neuroti-
cism, openness, extraversion), economic prefer-
ences (risk and time).

2.3 Results

We find that different constructions of the non-cognitive factor lead to different

conclusions about the relative importance of non-cognitive skills. The extracted non-

cognitive factors have only moderate (or even negative) correlations across models

and have plausible but varying correlations with the Big-5 and economic preference

8There are only around 750 observations for this measure as it uses variables which are collected
in later questionnaires, which have not yet been answered by all those who have answered the age
17 questionnaire.
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factors. We decompose each non-cognitive factor by regressing them on the covariates

from our preferred model. We find that different personality traits and economic

preferences play important roles in the different constructions of the non-cognitive

factors. Finally, we compare regressions of GPA and college enrollment on each of

our 2-factor models and on our preferred model. We find that the non-cognitive

factors vary widely in their ability to explain outcomes, that the preferred model

outperforms every 2-factor model, and that the non-cognitive factor from each 2-

factor model adds little or no additional explanatory power to the preferred model.

As shown in Table 2.2, the correlations between the four non-cognitive factors are

quite low. Moreover, different non-cognitive factors are correlated with different as-

pects of the Big-5, economic preference parameters, and IQ. The correlation between

the different non-cognitive factors ranges between -0.12 and 0.20. Interestingly the

correlation between NC-LOCUS and NC-BEHAVIORS is negative, while the corre-

lations between NC-RELATIONS and NC-LOCUS and between NC-RELATIONS

and NC-BEHAVIORS are positive. This suggests that each factor may be cap-

turing different aspects of a vector of unobservable non-cognitive characteristics.

NC-LOCUS is correlated with conscientiousness and IQ and has a strong negative

correlation with neuroticism. NC-ENGAGEMENT has lower correlations, but is cor-

related most with risk, openness, and extraversion. NC-RELATIONS is highly corre-

lated with many of the other factors. It is positively correlated with conscientiousness

and openness. NC-BEHAVIORS is positively correlated with both conscientiousness

and neuroticism but negatively correlated with risk preference, extraversion, and IQ.

Table A2.1 regresses the cognitive factor and each of the non-cognitive factors on

the Big-5 personality traits and economic preferences.9 This table provides similar

evidence as Table 2.2, but now considers partial correlations between parameters in

our preferred model and the non-cognitive factors. For each factor we provide the

regression on only the Big-5 and on both the Big-5 and economic preference param-

eters. First, we find that cognition is correlated with personality traits. As found

in the psychology literature, we find the strongest partial correlation with open-

9In actuality, each model has a uniquely estimated cognitive factor as the factors in each model are
estimated jointly. Yet, the cognitive factors are estimated using the same measures across models
and have correlations of nearly unity.
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Table 2.2: Correlations between different noncog. and cog. constructs

NC-L NC-E NC-R NC-B
NC-L 1
NC-E 0.111∗∗∗ 1
NC-R 0.198∗∗∗ 0.0968∗∗∗ 1
NC-B -0.122∗∗∗ -0.0367 0.0844∗∗ 1
Cons. 0.255∗∗∗ 0.0985∗∗∗ 0.192∗∗∗ 0.130∗∗∗

Agree. -0.148∗∗∗ -0.0253 -0.224∗∗∗ -0.0660∗

Neuro. -0.459∗∗∗ -0.0243 -0.0968∗∗∗ 0.123∗∗∗

Open. 0.0848∗∗∗ 0.185∗∗∗ 0.180∗∗∗ -0.0552
Extra. 0.180∗∗∗ 0.127∗∗∗ 0.154∗∗∗ -0.149∗∗∗

Time 0.0977∗∗∗ 0.0741∗∗∗ 0.123∗∗∗ 0.0974∗∗∗

Risk 0.0761∗∗∗ 0.0952∗∗∗ -0.0320 -0.186∗∗∗

IQ 0.296∗∗∗ 0.122∗∗∗ 0.144∗∗∗ -0.136∗∗∗

Notes: Table shows correlations between the constructed non-cognitive factors, the Big 5
personality traits, discount rate, risk aversion, and IQ. NC-L is based on the Rotter’s Locus of
control. NC-E is based on engagement behavior, NC-R is based on self-reported relationships,
and NC-B is based on self reported risky behaviors. Number of observations varies between 760

and 1416 due to data availability. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

ness. Agreeableness is also positively correlated with the cognitive factor, while ex-

traversion and neuroticism are negatively correlated. Considering the non-cognitive

factors, we see that the ceteris paribus relationship with neuroticism tends to be neg-

ative and statistically significant, but that the relationships vary for other parame-

ters. Conscientiousness tends to be positively related, but is not significant in some

models. Agreeableness is positively associated with some non-cognitive factors but

negatively associated or unassociated with others. Similarly, risk preference varies

between positively related, unrelated, and negatively related with the non-cognitive

factor. Evaluating the non-cognitive factors according to the R2 by personality and

preference measures reveals fundamental differences. While Big-5 and preference

measures can explain more than 25% of the variation in NC-LOCUS, they explain

only about 5% of the variation in NC-Engagement.

Given the importance of non-cognitive skills in the determination of school per-

formance and education decisions (see discussion in Almlund et al. (2011)), we will

focus on educational success and decision making as our key outcomes in the remain-

ing analysis. Tables 2.3 and A2.2 consider how different 2-factor models predict GPA
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and college enrollment decisions. Both models control for gender, urban status, and

residence in Eastern Germany. The regression model in Table 2.3 also controls for

the secondary education tier in which the grade was received.10

The dependent variable in Table 2.3, GPA, can range from one to six and is

coded such that higher values indicate better performance. Due to data availability,

GPA is regarded at age 17 and calculated as the average of grades in mathematics,

German and first foreign language. The mean (standard deviation) in our sample

is 4.07 (0.72). First, we regress GPA on the respective 2-factor models, then these

results are contrasted to those of our preferred model (full set of Big-5, economic

preferences and IQ), and finally we check if the extracted factors provide additional

predictive validity over our preferred model. We find that cognitive ability predicts

GPA, but that so do all of the non-cognitive traits (though they vary in size and

significance). The smallest statistically significant coefficient is less than half of the

size of the largest coefficient. Turning to the preferred model, we see that cognition,

conscientiousness, agreeableness, and time preference are positively correlated with

GPA while risk preference is negatively correlated. The preferred model explains six

percent11 more of the variance compared to the 2-factor models.12 When we include

the different non-cognitive factors in the preferred model, none provide substantial

additional explanatory power over the preferred model alone.

10The secondary education system within Germany has basically three tracks (low, medium, high)
which are supplemented by comprehensive schools and vocational school.
11Although, the compared models vary regarding the number of coefficients, due its straightforward
interpretation our analysis is based on comparisons of R2 instead of e.g. adjusted R2 or information
criteria. Given the large number of observations the results remain very similar when using other
measures of fit.
12Note that personality and economic preference have substantial predictive power and explain
12% of the variance in GPA without the inclusion of IQ.

44



Table 2.3: Model comparison: GPA

NC-L NC-E NC-R NC-B Pref-1 Pref-2 Comb-L Comb-E Comb-R Comb-B
Cog 0.246∗∗∗ 0.253∗∗∗ 0.249∗∗∗ 0.273∗∗∗ 0.234∗∗∗ 0.238∗∗∗ 0.233∗∗∗ 0.231∗∗∗ 0.246∗∗∗

(0.019) (0.019) (0.019) (0.025) (0.020) (0.020) (0.020) (0.020) (0.027)
Noncog 0.038∗∗ 0.031∗ 0.055∗∗∗ 0.070∗∗∗ -0.012 0.021 0.029 0.042∗

(0.019) (0.018) (0.018) (0.025) (0.021) (0.018) (0.019) (0.025)
Cons. 0.170∗∗∗ 0.152∗∗∗ 0.171∗∗∗ 0.168∗∗∗ 0.168∗∗∗ 0.177∗∗∗

(0.022) (0.023) (0.022) (0.022) (0.022) (0.030)
Agree. 0.054∗∗ 0.087∗∗∗ 0.053∗∗ 0.052∗∗ 0.059∗∗∗ 0.072∗∗

(0.021) (0.022) (0.021) (0.021) (0.021) (0.028)
Neuro. -0.038∗ -0.109∗∗∗ -0.043∗ -0.038∗ -0.037∗ -0.031

(0.021) (0.022) (0.023) (0.021) (0.021) (0.029)
Open. 0.025 0.184∗∗∗ 0.023 0.021 0.025 0.011

(0.034) (0.034) (0.035) (0.035) (0.034) (0.047)
Extra. -0.024 -0.147∗∗∗ -0.022 -0.023 -0.027 0.018

(0.033) (0.033) (0.034) (0.033) (0.033) (0.046)
Risk -0.062∗∗∗ -0.074∗∗∗ -0.061∗∗∗ -0.064∗∗∗ -0.060∗∗∗ -0.067∗∗

(0.019) (0.020) (0.019) (0.019) (0.019) (0.027)
Time 0.024 0.040∗∗ 0.024 0.023 0.023 0.036

(0.019) (0.020) (0.019) (0.019) (0.019) (0.026)
Observations 1327 1327 1327 732 1327 1327 1327 1327 1327 732
R2 0.145 0.144 0.148 0.147 0.208 0.121 0.208 0.209 0.209 0.220

Notes: Table shows regressions of GPA on one of the four constructed 2-factor models, our two preferred models, or combined models. NC-L is based on
the Rotter’s Locus of control. NC-E is based on engagement behavior, NC-R is based on self-reported relationships, and NC-B is based on self reported
risky behaviors. All estimated OLS models include the following controls: gender, urban status, residence in Eastern Germany and the education tier in

which the grade was received. Standard errors are shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A2.2 mirrors Table 2.3, but considers college enrollment. We consider col-

lege enrollment at age 21 and only include those who reached age 21 by the year 2012

and were in the top tier of the secondary education system.13 Of those, 51.1% enrolled

into college.14 Table A2.2 displays the average marginal effects on the choice to enter

college.15 Unlike GPA, we find that while the cognitive factor matters, none of the

non-cognitive factors play a statistically significant role.16 Yet, when we consider the

preferred model, we find that it outperforms the 2-factor models in terms of pseudo

R2 by a factor of 1.5, with conscientiousness playing a statistically significant role in

the choice to enroll in college. In contrast to the small and statistically insignificant

non-cognitive factors, the coefficient on conscientiousness is nearly as large as the

coefficient on cognition and is statistically significant. This indicates a substantial

contrast between the ad-hoc two factor models and the preferred model.17

2.4 Conclusion

This paper aims to compare many different identification strategies for a non-

cognitive factor and to decompose and interpret their relative effectiveness. We

construct stylized factors based on identification strategies in the previous literature

and relate the different estimates of non-cognitive skills to each other and to estab-

lished taxonomies. The correlation between the different non-cognitive factors varies

greatly, ranging between -0.12 and 0.20. Given the heterogeneity among the different

of non-cognitive factors, we compare them with a preferred model which contains

13Only graduation in the top tier of the secondary education gives you full access to the college
systems. For those individuals who spent a year of civilian or military service we consider college
enrollment at the age of 22.
14We consider all types of college, including universities and universities of applied sciences.
15Note this is the average of the marginal effects rather than the marginal effect at the average.
16Lack of statistical significance may be driven by the fewer observations – due to restrictions on
school leaving degree and age cohort.
17To rule out that the relations between personality factors and educational outcomes are purely
driven by heterogeneities in the socio-economic background we repeat the analysis of Table 2.3 an
Table A2.2 and include parental education as an additional control. The results are displayed in
Appendix A2. As expected, parental education has a significant positive relation to child’s GPA
and college enrollment decision, but it only explains 2% more of the variation in the data. The
effect sizes of the cognitive, non-cognitive, and personality factors remain the same magnitude,
though they are generally smaller than when parental education is omitted.
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personality traits and economic preference parameters. The Big-5 and economic

preferences explain between 5% and 25% of the variation in different non-cognitive

factors.

In the context of educational outcomes, we find that the preferred model outper-

forms all of the 2-factor models in terms of predictive power. Moreover, there is an

enormous heterogeneity among the relevance of the different non-cognitive factors.

In general, the higher the correlation with traits from our preferred model, such as

conscientiousness and time preference, the higher their predictive power concerning

educational outcomes. The combination of the models indictes that the ad hoc mea-

sured non-cognitive factors add little to no predictive power to the preferred model,

which indicates that the underlying non-cognitive traits of the ad hoc measured

models are already part of the measurement system of the preferred model.

In summary, the choice of which 2-factor system to estimate greatly influences

what is actually measured and what conclusions are reached about the role of non-

cognitive skills in life – and its relative importance compared to cognitive skills. Our

results suggest a more careful interpretation within the debate on the importance

of non-cognitive skills is needed.
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Chapter 3

Breastfeeding duration, early life

circumstances and the formation

of human preferences

3.1 Introduction

Human preferences such as time, risk and social preferences are key building blocks

of any economic model and fundamentally determine human behavior and life-

outcomes (Heckman et al., 2006; Sutter et al., 2013; Dohmen et al., 2011; Becker

et al., 2012). For example, time preferences are relevant for any type of investment

decision because investment, by its nature, requires patience, i.e., a willingness to

forego current consumption and wait, in order to earn a higher return in the fu-

ture. Similarly, most decisions involve uncertainty, and risk preferences determine

how someone behaves in the presence of uncertainty. Moreover, almost all social

interactions are shaped by social preferences, as e.g., altruism.

Despite their fundamental importance, little is known about how human prefer-

ences form. Understanding the process of preference formation is of great relevance

not only for behavioral sciences that model behavior based on preferences, but also

for informing policy as it helps to uncover reasons for social mobility and provides in-
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sights concerning the effectiveness of early childhood interventions. To shed light on

the process of preference formation, we focus on early childhood which has been in-

dicated as critical and sensitive period in the human development process by various

fields of research (Heckman, 2006; Cunha and Heckman, 2007; Currie and Almond,

2011; Lanigan et al., 2009; Ainsworth and Bowlby, 1991; Sroufe, 1988). First, we

present evidence for breastfeeding duration as valid measure of quality of early life

circumstances and quality of parenting in general. Building on these findings, in

our main analysis, we secondly investigate the role of early life circumstances in

systematically shaping human preferences.

3.2 Breastfeeding and quality of early life circum-

stances

The role of breastfeeding and associated effects have been studied in various fields

(Heinrichs et al., 2002; Meyer-Lindenberg et al., 2011; Uauy and De Andraca, 1995;

Chen and Rogan, 2004). In this section, we provide new evidence for the convergent

and discriminant validity of breastfeeding duration as a measure of quality of early

life circumstances. Note that the extent to which breastfeeding duration is a measure

of quality of early life circumstances varies between cultures. Our validation con-

cerns Western societies, especially Germany. In developing countries the decision to

breastfeed may be determined by very different considerations (Jayachandran and

Kuziemko, 2011). Our analysis is based on data from the SOEP (SOEP, 2012; Wag-

ner et al., 2007), a large representative panel of the German population including

very detailed information about life circumstances in the first three years of life for

about 550 children of the birth cohorts 2004-2007 and their natural parents. The

share of children who were ever breastfed is 88%, of these, the average duration of

non-exclusive breastfeeding is 7.6 months (std. dev. is 6.0 months). Figure A3.1 dis-

plays the cumulative distribution of breastfeeding duration and reveals substantial

variation. In analyzing this data we find that the decision to breastfeed at all is

mainly driven by maternal health and socio economic status. In contrast, the vari-
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ation in breastfeeding duration reflects heterogeneities in the quality of time spent

with children, i.e., of early life circumstances.

When their children are between two and three year years old, mothers are

asked how many times in the last 14 days she, or the main caregiver, has done

nine particular activities together with their child. A principal component analysis

concerning responses to all potential activities yields three components (see Table

A3.1). The first component reflects activities which involve face-to-face contact and

intense interaction between mother and child such as reading or telling children’s

stories or singing children’s songs with the child (high quality time). The second

component reflects activities with less intense interaction and direct contact such as

going shopping or visiting other families with the child (medium quality time). The

third component comprises watching TV or videos (low quality time).

In Table A3.2 we report results of multivariate regression analyses to investigate

determinants of being breastfed at all (Column 1) and of breastfeeding duration

given a child was breastfed (Column 2). Results in Column (1) indicate that being

breastfed at all is strongly determined by physical health problems of the mother

(p < 0.01) as well as socio-economic status (p < 0.05) while there is no jointly sig-

nificant relation to the quality of time spending (see bottom of Table A3.2 for Wald-

tests). In contrast, results of the multivariate analysis in Column (2) reveal that,

breastfeeding duration is highly positively correlated with high quality time spend-

ing (p < 0.01). The correlation is weakly negative for spending medium (p < 0.1)

and low quality time (p < 0.1). The duration is not significantly correlated with

health conditions of the mother or maternal education and household income. Using

other measures of positive early childhood environment and other data sets confirms

these results. Table A3.3 reports positive correlations of breastfeeding duration with

quality of stimulations and support using the HOME inventory (Bradley and Cald-

well, 1981; Blomeyer et al., 2009), life satisfaction of the mother in the year of the

child’s birth and how important it is for the mother to have children.

In sum, the analysis justifies the interpretation that the breastfeeding duration is

determined by an underlying and not directly observable quality of early life circum-

stances and an error term, which could reflect, e.g., local breastfeeding traditions or
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health shocks. If this error term is uncorrelated with the underlying quality of early

life circumstances (classical error-in-variables assumptions) (Wooldridge, 2010) the

estimation coefficients on breastfeeding duration, represent a lower bound estimate

of the effect of quality of early life circumstances. To limit the attenuation bias and

since never being breastfed is to a large extent determined by health shocks, we will

restrict the analysis to children who were breastfed.

Using breastfeeding duration as a measure of early life circumstances offers a

great potential: Research has shown that mothers remember breastfeeding dura-

tions in a valid and reliable way (Li et al., 2005). Therefore, information about

breastfeeding duration is accessible in retrospect, enabling researchers to explore

the effect of early life circumstances in various independent samples covering differ-

ent age cohorts and outcomes.

3.3 Early life circumstances and preference for-

mation

The validation of breastfeeding duration as a measure of quality of early life cir-

cumstances sets the stage for our main analysis. We study the effect of early life

circumstances on the formation of fundamental preferences in two independent data

sets. The first is a preschool children sample that allows analyzing the effect of in-

terest as close as possible to children’s early childhood experience. The complexity

of experiments to elicit preferences makes studying even younger children difficult.

The second data set repeats the setting for a sample of young adults. Comparing our

findings between these two data sets enables us to study robustness, and whether

the observed pattern persists into adulthood.

Data set 1: The preschool sample consists of 302 breastfed children and their

natural mothers (see Methods for details on design of the study and experimental

procedures). 194 mother-child pairs took part in a time preference experiment while

108 pairs took part in experiments to measure risk preferences and altruism. All

experiments were run using real incentives and all children had to answer control
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questions to check understanding of experimental instructions and payment rules.

Children who were unable to properly answer the control questions were excluded

from the analysis. To measure children’s time preference we used an adaption of the

Marshmallow Experiment (Mischel et al., 1989; Bartling et al., 2010). In this task

children face the trade-off between receiving a smaller reward (one pack of gummy

bears) sooner, or waiting and receiving a larger reward (two packs of gummy bears)

later. In the risk and social preference experiments children could earn chips, which

were exchanged for toys at the end of the experiment. To measure children’s risk

preferences, they played a version of the so-called devil’s task (Slovic, 1966). To elicit

altruism, a simple distribution choice was used (Fehr et al., 2008). In particular, the

child had to decide between allocating either two chips to himself and no chip to

another anonymously matched child or to allocate one chip to himself and one chip

to the other child. In addition, IQ of the children was measured accounting for

crystalized and fluid aspects of intelligence (Cattell, 1971).

To measure mothers’ time and risk preferences as well as altruism, standard

incentivized experimental protocols were used (Dohmen et al., 2010). In addition,

mothers completed a short IQ Test and answered a detailed survey, covering items

such as personality of the mother (Big-5), socio-economic background and breast-

feeding duration.

On average, the children are 72.6 months (5.95 years) old, 51.0% are male and

mean age of mothers is 37.0 years. Our main result is displayed in Panel A of

Table 3.1. The dependent variable is the child’s respective preference, which is re-

gressed on breastfeeding duration. Columns 1, 3 and 5 show the estimates without

further controls. The results indicate that a longer duration of breastfeeding is as-

sociated with a lower willingness to take risk and higher levels of patience and

altruism. Columns 2, 4 and 6 include controls which might affect breastfeeding du-

ration and preference formation simultaneously (Jayachandran and Kuziemko, 2011;

Currie and Moretti, 2003). These controls include child characteristics (e.g., gender

and IQ), socio-economic family background (e.g., income and education) as well as

personality and other characteristics of the mother. For example, if more patient

and educated mothers breastfed longer, the omission of a mother’s time preference
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and education would potentially lead to an overestimation of the effect of breast-

feeding duration on a child’s patience. Furthermore, we include controls specific to

the respective experiment, such as elapsed time since the last bigger meal in the

time preference regression. Results in columns 2, 4 and 6 show that the observed

pattern is very robust to including these controls. A comparison of the coefficients of

breastfeeding duration to those of the control variables (see Table A3.4) further re-

veals the quantitative relevance of early life circumstances. To illustrate, a simulated

change in breastfeeding duration from the 25%-percentile (2 months) to the 75%-

percentile (9 months), increases the probability of being patient by 18.5% points

(from 68.6% to 87.1%), which, e.g., exceeds the average effect of a two standard

deviations increase in mother’s patience.

Wald tests reveal significant joint effects of child characteristics as well as per-

sonality and preferences of the mother on the child’s preferences, but no significant

effect of the socio-economic environment (see Table 3.1). In sum these results sug-

gest that the quality of early life circumstances and personality of the mother play a

more crucial role in the process of preference formation than intellectual or monetary

resources.

Data set 2: To study robustness of the reported pattern and persistence into

adulthood we study a sample of 175 breastfed university students. Mean age of stu-

dents is 21.8 years and 44.6% of them are male. Experimental preference measures

were obtained using standard and well-established tools for risk and time preferences

(Becker et al., 2012; Dohmen et al., 2010). Altruism was elicited using a 3-item ques-

tionnaire. We repeat the same analysis as for the preschool sample and report the

results in Panel B of Table 3.1. Columns 1, 3 and 5 display estimations without

controls. In Columns 2, 4 and 6 we include controls for important individual charac-

teristics such as gender, age, and intelligence, as well as occupation of the parents.

The signs of the coefficients of interest are identical to the preschool sample. Longer

breastfeeding duration is statistically significantly associated with less willingness to

take risks and higher levels of patience and altruism. As before, all effects are robust

to including a set of controls. In terms of effect size the coefficients concerning the

two samples are difficult to compare due to the different sample compositions and
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Time Risk Altruism
(1) (2) (3) (4) (5) (6)

Panel A preschool children
Dependent variable Binary Standardized Binary
Type of estimation Probit OLS Probit
Duration of breastfeeding (in months) 0.025∗∗∗ 0.024∗∗∗ -0.032∗∗ -0.033∗ 0.016∗∗ 0.021∗∗∗

(0.008) (0.008) (0.016) (0.020) (0.007) (0.006)
Individual characteristics No Yes No Yes++ No Yes++

Socio-economic environment No Yes No Yes No Yes
Personality/preferences/IQ of mother No Yes No Yes No Yes++

Task specific controls No Yes No No No Yes
Observations 194 194 108 108 100 100
(Pseudo) R-squared 0.047 0.179 0.025 0.183 0.058 0.286

Panel B young adults
Dependent variable Standardized Standardized Standardized
Type of estimation OLS OLS OLS
Duration of breastfeeding (in months) 0.042∗∗ 0.038∗∗ -0.039∗ -0.047∗∗ 0.047∗∗∗ 0.044∗∗∗

(0.016) (0.016) (0.023) (0.020) (0.015) (0.015)
Individual characteristics No Yes+ No Yes No Yes
Socio-economic environment No Yes+++ No Yes+++ No Yes++

Observations 175 175 175 175 175 175
R-squared 0.028 0.222 0.021 0.210 0.037 0.165

Table 3.1: The effect of quality of early life circumstances on preferences of preschool
children and young adults. Displayed coefficients are average marginal effects with re-
spective preference as dependent variable and robust standard errors in parentheses.
Panel A shows results for the sample of preschool children, Panel B for the sample
of young adults, respectively. The complete specifications and estimation results can
be found in Tables S4 and S5. ∗∗∗, ∗∗,∗ indicate significance at 1-, 5-, and 10-percent
level, respectively. +++, ++, + indicate significance at 1-, 5-, and 10-percent level, of
Wald-tests testing the hypothesis that all coefficients of the respective category are
zero.
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elicitation techniques. However, concerning risk preferences where we use ratio scale

measures in both samples, effect sizes are moderately bigger for the young adults

than for the preschoolers. This suggests an increasing impact of early life circum-

stances within the development process which is in line with a self-productive and

dynamic complementary pattern of a production function (Heckman, 2006; Cunha

and Heckman, 2007).

3.4 Real-life behavior and cohort effects

We conclude with answering two important questions arising from our main find-

ing: (i) how does the effect of early life circumstances on preferences translates into

real-life behavior or outcomes, and (ii) is the long-term variation in breastfeeding

practices that is characteristic for western societies related to heterogeneities in pref-

erences across birth cohorts? Concerning the first question, note that previous work

has shown positive behavioral and health outcomes for more patient and risk averse

individuals (Sutter et al., 2013; Ida and Goto, 2009). These individuals forego imme-

diate risky pleasures such as smoking, drinking or eating sweet food, which decreases

the risk of adverse health effects later in life. In light of these findings we hypothesize

that because a higher quality of early life circumstances is associated with higher

levels of patience and less willingness to take risk, a higher quality of early life

circumstances should also positively affect health and self-control outcomes. Using

the German Health Survey for Children and Adolescents (KiGGS, 2008) we find

supporting evidence for this hypothesis. In particular, we analyze health-related be-

haviors and outcomes, i.e., body-mass index (BMI), smoking and drinking behavior

of more than 4,000 breastfed adolescents at the age of 11 to 17 years and relate these

behaviors to breastfeeding duration. As hypothesized, results in Table A3.6 reveal

that breastfeeding duration is negatively associated with BMI and the probability of

smoking and drinking. These relations are robust to controlling for socio-economic

status of the families.

To address the second question, note that breastfeeding durations have un-

dergone substantial historical variations implying that there are not only hetero-
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geneities in breastfeeding duration within a birth cohort but also across birth cohorts

(Heimerdinger, 2009). Although there exist no administrative data on breastfeed-

ing in Germany for birth cohorts before 1986, it is possible to construct historical

breastfeeding patterns. In particular, we use breastfeeding data recorded for the

purpose of marketing research by Nestlé. The data consist of breastfeeding quotas

and breastfeeding durations elicited in interviews of 250 mothers (each wave) during

the 1970s to the 1990s (see Figure A3.2). We match this data by year of birth with

preference data from the SOEP (SOEP, 2012; Wagner et al., 2007) and construct

a panel on cohort level including repeated measures of preferences (see Methods

for details). Estimates for each preference are reported in Table A3.7. It turns out

that the coefficients of interest mirror the patterns we found in our two cross-section

data sets on an individual level. In a historical perspective and on a cohort level,

breastfeeding duration is again negatively associated with willingness to take risk

(p < 0.05) and positively associated with altruism (p < 0.01) and patience (not

significant).

3.5 Concluding remarks

We have explored the role of quality of early life circumstances, measured in terms

of breastfeeding duration, concerning the formation of preferences. Using two in-

dependent data sets, varying by age of participants (preschool children vs. young

adults), we find a robust, systematic and persistent effect of early life circumstances

on time, risk, and social preferences. Our results imply that early life circumstances,

above and beyond purely intellectual or monetary resources, are a crucial determi-

nant for the development of human personality with far-reaching implications for

social mobility and early childhood intervention policies. We also report relevance

of early life circumstances concerning health-related behavior and outcomes in a

way that is predicted by the specific preference formation pattern observed in our

two data sets. Using historical variations in the population as a whole we further

document long-term effects on preference formation, empirically complementing the-

oretical contributions in this domain (Doepke and Zilibotti, 2008, 2012). Our finding

concerning historical variations suggests an interesting interaction, which has not re-
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ceived much attention yet: changes in “technology”, such as parental care, have the

potential to systematically affect changes in preferences on a societal level.

3.6 Methods

Panel A: Preschool children

Sample. Data concerning preschool children consist of two independent sub-data

sets which are administered by the DIW Berlin under the names MuKi III b and

c. These data sets feature experimental measures concerning time preference (Part

A), risk preferences (Part B) and altruism (Part B) run with preschool children and

their mothers. All experiments and interviews were conducted by specially trained

and experienced interviewers from the same organization that collects the data for

the SOEP. The data sets include intelligence and personality measures as well as

information on socio-economic background. The time preference experiment was

conducted at the families’ own homes (see below) while the experiments of the

children in Part B were conducted in an extra room in children’s day-care centers.

The interviews of the mothers were generally held at their own homes. All mothers

took part in a two-part computer assisted personal interview (CAPI) conducted

with a laptop (Dohmen et al., 2010). In the first part mothers answered a detailed

survey including demographic and socio-economic questions, as well as, questions

concerning breastfeeding duration and their personality (all questions are based on

the SOEP questionnaires) (Wagner et al., 2007). In the second part mothers took

part in a short intelligence test and incentivized behavioral experiments.

All experiments were run using real incentives. In Part A children decided about

gummy bears, while in Part B they could earn chips, which were exchanged for

toys at the end of the experiment. In our analysis we only include children who

demonstrated understanding of the experiment (control questions and interviewer

rating). We exclude children from Part A for whom the mother indicated that her

child does not like gummy bears at all or not so much. For non-biological children

it is very unlikely that breastfeeding duration is a valid measure of quality of early

life circumstances and therefore we also restrict the analysis to biological children.
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To receive comparable results we also exclude observations with missing values in

covariates from the analysis (see Table A3.4).

Experimental measures. The experiment concerning children’s time prefer-

ence was a field adaption of the “marshmallow experiment” of Walter Mischel (Mis-

chel et al., 1989; Bartling et al., 2010) and was conducted at the families’ own homes.

Mother, child and the interviewer remained in the same room. Before the detailed

interview of the mother started, the interviewer opened a pack of gummy bears and

explained that the child could either eat them now or wait until the end of the

mother’s interview and receive an additional pack. Thus, children were faced with

the decision between receiving a smaller reward (one pack of gummy bears) sooner,

or waiting and receiving a larger reward (two packs of gummy bears) later. Gummy

bears were used since they are more popular in Germany than marshmallows. 23.7%

of the children took the opened pack before the interview ended. They are classi-

fied as impatient. 76.3% waited and received two packs of gummy bears. They are

classified as patient.

Concerning their risk preferences, children played an adaption of the devil’s task

(Slovic, 1966). They were presented with 10 indistinguishable closed boxes of which

nine included a chip and one a robber (in the English original it is a devil, the direct

translation to the word used here is robber). The children could sequentially open as

many boxes as they wanted to. They could keep all chips, which they found in the

opened boxes, but if they opened the box with the robber, they lost all chips of this

round. The game was played for six rounds and we use the average voluntary stop-

ping point as measure for children’s willingness to take risk. The average voluntary

stopping point is not identified for those children who never stopped voluntarily and

never had the chance to open the 9th box because the robber always occurred before.

For those three children we assume the voluntary stopping point to be the 9th box

(the maximum, upper bound) which seems plausible since they opened the 7th or 8th

box when they had the chance to do so. The analysis shows very similar results if we

use the maximum number of opened boxes (lower bound) for these children instead.

The mean average voluntary stopping point is 5.08 (standard deviation 2.19).

To elicit altruism, we used a distribution choice as in the study of (Fehr et al.,
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2008). The child had to decide between different distributions of chips affecting

himself and another anonymously matched child that could be from the own kinder-

garten group or from another unknown kindergarten. The child was told whether

the receiver was from the own group or not and we control for the different setting in

our analysis. We focus on the costly altruism variant of the game. In this game the

children had to decide between two chips for themselves (2,0) or one for themselves

and one for the other child (1,1). The 15.0% children who chose (1,1) are classified

as altruistic. Similar as in Fehr et al., the children also played three other variants

of the game.

Cognitive ability. The children took part in three modules of intelligence tests.

Two of them are sub modules of the Culture Fair Intelligence Test Scale 1 (CFT1)

(Weiss, 2006) and measure the fluid intelligence of children. The first submodule

was a classification test where the child had to find one out of five symbols which

does not fit into the row. The second one was a matrix test where the child had

to add a fitting pattern to a row of three patterns. Both subtests contain 12 items.

The sum of the correct answers builds the fluid intelligence score. The third module

was a modified version of the German Peabody Picture Vocabulary Test Revised

(PPVT-R) (Bartling et al., 2010), in which the child heard a word and had to match

it to one out of four symbols. This test is a verbal scale, which captures culture and

education related components of intelligence. The test contains 61 items and the

number of correct answers reflects the score of crystallized intelligence of the child.

To obtain an IQ score of the child, first both scores were standardized, then the

standardized values were added up and finally the resulting sum was standardized

again. This results in a score with mean equal zero and standard deviation equal

one.

Our study also uses an intelligence test concerning the mother. Frieder Lang

developed ultra-short tests concerning cognitive skills of adults; one of them is the

Symbol-Digit-Test (SDT) (Lang et al., 2005), which is a modified submodule of the

Wechsler Adult Intelligence Scale (HAWIE-R) (Tewes, 1994). In the SDT mothers

had to match as many numbers and symbols as possible according to a correspon-

dence list within 90 seconds. The results of this ultra-short test correlate well with
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test scores from well-established intelligence tests (Lang et al., 2005, 2007).

Experimental measures of preferences of mothers. All experiments con-

cerning mothers preferences were conducted in their own homes as a part of a com-

puter assisted personal interview (CAPI). Concerning time and risk preferences of

mothers, the same procedures and protocols as in Dohmen et al. (2010) were used.

Mothers were informed that in case of a win they would receive the amount as a

cheque by mail. For measuring time preference mothers faced the trade-off between

receiving 100 e “today” and receiving a higher amount in six months. The offered

higher amount started at 101.2 e and was increased in 19 further steps of 2.5% p.a..

One out of seven mothers was randomly selected and was paid according to one

of her decisions, which was selected randomly. This ensures incentive compatibility.

We use the standardized reversed first switching row as measure for time preference

of the mothers.

Mothers’ risk preferences were measured in a similar way. Here they had to

decide between a lottery that pays zero or 300 e with equal probabilities and a safe

payment. The safe payment increased from 10 e to 200 e in steps of 10 e. The

probability that one randomly selected decision would be implemented was 1/9. We

use the standardized switching row from choosing the lottery to choosing the safe

amount as our measure of willingness to take risk.

Mothers’ altruism was elicited in the same way as for the children except for

the fact that the mothers played for money and the anonymously assigned receiver

was an unknown other participant. The mothers had to decide between 16 e for

themselves and 4 e for the other participant (16,4) or 10 e for themselves and 10

e for the other participant (10,10). The mothers who chose (10,10) are labeled as

altruistic. 84.0% percent of the mothers chose the altruistic distribution.

Panel B: Young adults

Sample. Data for the young adults feature the same preferences as for the preschool

children and were collected in the BonnEconLab at the University of Bonn. 412

students took part in a series of experiments, 212 of them answered an additional
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take-home-survey in which they were requested to ask their parents how long they

were breastfed. 175 students were breastfed.

Experimental measures. Time and risk preferences of students were elicited

in a similar manner as for mothers in the preschool sample and as in Dohmen et al.

(2010). To measure the students’ time preferences they were faced with trade-offs

between a smaller but sooner available reward and increasing larger but delayed

rewards. The smaller sooner reward was fixed to 1600 points and the larger later

reward also started at 1600 points and was increased 24 times by 2.5% p.a. assuming

semi-annual compounding (100 points correspond to 0.8 e). To reduce measurement

error, students played four different versions of this experiment in a random order. In

the first version the sooner payment date was “today” and the later in six months. In

the second version the sooner payment date was also “today” but the later was in 12

months. In the third version the payment dates were in six and in 12 months and the

fourth version was a perturbation of the second version. Participants were informed

that one decision would be randomly selected and paid. They also knew that the

money was sent by mail irrespective of the payment date. We take the average first

switching row from the sooner to the later payment as our measure of the students’

time preference. For a more intuitive comparison with the results of the children

the switching row was mirrored such that small values indicate impatience and high

values indicate patience. To measure risk preferences of students they played two

versions of an experiment where they had to decide between a lottery that pays zero

or 1000 points with equal probability, and a successively increasing safe payment.

The safe payment increased in steps of 50 points from zero to 1000. The two versions

were played in random order and differed only in the exact size of the increase: In

one version the increase in safe payments was in steps of exactly 50 points while in

the other the increase was 50 points +/- 10 percent, i.e., with slight perturbation.

One decision from both experiments was paid. 100 points corresponded to 0.8 e.

We calculated the average first switching point from lottery to safe payment as our

measure of the willingness to take risks. To measure altruism, we elicited responses

to a three-item questionnaire. For the children the receiver could be a classmate (but

not indicated who exactly) or a child from another unknown class. To match this
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situation for the young adults, we asked the question “How would you assess your

willingness to share with others without expecting anything in return, concerning

the following groups . . . ?” combined with the items “people from my neighborhood”,

“people from my city” and “strangers”. Each item was answered on an 11-point Likert

scale. We aggregated the survey answers using a principal component analysis.

Details on historical variation in breastfeeding duration

Research on time use (Sayer et al., 2004; Gauthier et al., 2004) and recent work

in sociology (Hays, 1996; Faircloth, 2014) suggest that the pronounced variation in

breastfeeding duration from the 1970s until the 1990s in Germany reflects general

improvements in early life circumstances of children in this period through channels

such as enhanced maternity leave legislation, and a general trend towards intensive

parenting (Heimerdinger, 2009). To complement the evidence based on our cross-

section analyses we therefore investigate whether the heterogeneity in breastfeeding

durations across birth cohorts is related to heterogeneities in preferences. To test

this conjecture we combined average historical breastfeeding data with preference

measures from the German Socio-Economic Panel. We show that the pattern be-

tween early life circumstances and preferences found in our two cross-section data

sets is also present in a panel based cohort analysis. Due to lack of administrative

data we use breastfeeding data recorded for the purpose of marketing research by

Nestlé. The information on breastfeeding quotas and durations are based on 250

interviews (per wave) of mothers of newborns. The interviews were conducted every

second year starting in 1976. Figure A3.2 shows the data and reflects the historical

variation in breastfeeding. Although these data were not conducted for scientific

purposes they fit the pattern of fragmental information concerning this time (see

the study of Heimerdinger (2009) and references therein).

We combine these data on breastfeeding with preference related data of the

German Socio-Economic Panel (SOEP, 2012; Wagner et al., 2007) which is a rep-

resentative panel survey of private households and persons in Germany. It contains

about 11,000 households and more than 21,000 individual respondents. Since 2003

validated preference related questions have been part of the survey (Becker et al.,

2012).
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As a measure for time preference we use answers to the following survey ques-

tion: “How would you describe yourself: Are you generally an impatient person, or

someone who always shows great patience?”. Participants gave an answer on an 11-

point Likert scale where zero means “very impatient” and ten means “very patient”.

This time preference question was part of the survey only in 2008 and was vali-

dated with respect to incentivized experiments (Vischer et al., 2013). Concerning

risk preference we use the answer to the question: “How do you see yourself: Are you

generally a person who is fully prepared to take risks or do you try to avoid taking

risks?”. Answers were also given on an 11-point Likert scale where zero means “risk

averse” and ten means “fully prepared to take risks”. This question was asked in

the six waves 2004, 2006, 2008, 2009, 2010 and 2011. The general risk question has

been studied in various papers and was validated using incentivized experiments in

representative samples as well as using behavioral evidence (Dohmen et al., 2011).

Altruism towards other people was measured by the question how important it is

for the participant “to be there for others”. Answers were given on a 4-point scale.

The altruism question was asked in waves 2004 and 2008 (Becker et al., 2012).

In our analysis we match the shares and the mean durations of breastfeeding

(given initially breastfeeding) with preference measures from the SOEP by year of

birth. Since the available breastfeeding data does not include citizens from the area

of the former German Democratic Republic we also exclude these subjects from the

preference data. Due to the lack of individual breastfeeding information we cannot

exclude the not breastfed subjects as we did in the cross-sectional analysis. There-

fore we adapt our estimation strategy such that we include the share of breastfed

individuals and run the following aggregate level pooled OLS estimation:

Prefyt = β0 + β1 [P (ever BFy)× BF Durationy] + β2 [1− P (ever BFy)] + β3Ageyt + eyt

where Prefyt indicates the average preference measure of individuals born in year

y, measured in year t, P (ever BFy) is the share of individuals born in year y who

were ever breastfed, BF Durationy is the average duration of breastfeeding of indi-

viduals born in year y (given they were initially breastfed) and Ageyt is the Age of

birth cohort y measured in year t. Therefore the marginal effect of an increase in
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BF Duration is β1 × P (ever BFy) and indicates the effect of an increase in breast-

feeding duration weighted by the share of breastfed children. To illustrate, β1 shows

the effect of an increase in BF Duration if all children would be initially breastfed.

Given the information concerning breastfeeding for a given birth cohort for every

second year starting in 1976 and the preference measures in the SOEP we construct

a panel on the cohort level including repeated measures of risk and altruistic pref-

erences and a cross-sectional data set concerning time preference. Since the partic-

ipants in the main part of the SOEP are interviewed for the first time at the age

of 18 we can match birth-year-averages of breastfeeding durations to every cohort

which was at least 18 years old at the date of a given wave. As the time preference

question was only asked in 2008 we only yield eight observations in this case (the

birth cohorts 1976, 1978, 1980, 1982, 1984, 1986, 1988 and 1990). Concerning risk

preference we have observations based on six birth cohorts in wave 2004, followed

by seven in 2006, eight in 2008, eight in 2009, nine in 2010 and nine in 2011. This

yields 47 pooled observations. For altruism we got six birth cohorts in 2004 and

eight in 2008, resulting in 14 pooled observations. The average preference measures

are based on 116 to 254 individuals per wave and birth cohort.

We perform a pooled OLS estimation on risk and altruistic preferences and clus-

ter the standard errors by birth cohort. Due to the lack of repeated measures con-

cerning time preference we perform a cross-section OLS analysis. Since age is varying

across waves the panel structure of our data concerning risk and altruism enables

us to disentangle the breastfeeding duration effect from the age effect. Table A3.7

presents the results and indicates that the pattern found on the individual level is

also present in a cohort level panel data analysis: breastfeeding duration is again neg-

atively associated with willingness to take risk (p < 0.05) and positively associated

with altruism (p < 0.01) and patience (not significant).
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Chapter 4

Formation of human prosociality:
Causal evidence on the role of
social environment

4.1 Introduction

Prosociality is a particularly important aspect of human personality and affects a

wide range of social and economic outcomes such as the provision of public goods,

contract enforcement, charity, management of commons, financial development, gov-

ernmental and judicial efficiency, redistribution and economic growth (Arrow, 1972;

Knack and Keefer, 1997; Zak and Knack, 2001; Ostrom et al., 2002; Fehr et al.,

1997; Fehr and Gächter, 2002; La Porta et al., 1997; Guiso et al., 2009). Despite

its fundamental importance for the well-being of individuals and societies, little is

known about how human prosociality forms, in particular about the causal effect of

social environment1. This is not surprising, as it requires random assignment of life

circumstances, and valid instruments to measure prosociality. We address these chal-

lenges by implementing a random variation of the environment and by measuring

prosociality using different sources and established measures.

Our research strategy builds on the conceptual framework suggested by Cunha

and Heckman (Heckman, 2006; Cunha and Heckman, 2007, 2008). They highlight

early childhood as the critical and sensitive period in the human development

1For descriptive evidence on development patterns Fehr et al. (2008); Almås et al. (2010); Sutter
and Kocher (2007); Fehr et al. (2013)
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process. Accordingly, our sample consists of elementary school children. Moreover,

Cunha and Heckman identify two primary channels responsible in the skill formation

process, parental background and investments2.

Here, we study both channels. In terms of parental background we compare

children with different socio-economic status (high vs. low). In addition, we inves-

tigate the role of intergenerational transmission of prosociality, i.e., the correlation

of prosociality between children and their mothers. To study the role of investments

we randomly assigned children to an enriched social environment in the form of a

mentoring program.

Our sample consists of 607 primary school children (47.0% are girls, age at the

start of the program: mean= 7.76 years, std. dev.= 0.48) and their mothers who

were recruited using official registry data (see Appendix A4 for details). Families

were informed via postal mail about the possibility to take part in a study on child

development and potentially a mentoring program. Families interested in participat-

ing had to send back a short questionnaire on socio-economic characteristics of the

household and to state their willingness to have their child participate in the men-

toring program and the interview. Using this information a household was classified

as low SES if at least one of the following three criteria was met: low income, low

education or single parent3. All other households were classified as high SES. We

invited all low SES families and a randomly chosen subset of high SES families to

participate, yielding 113 high SES and 494 low SES households (for details of the

recruiting procedure see Appendix A4).

In total we thus study outcomes of three distinct groups. From the 494 low SES

households 180 children were selected to participate in the intervention, using strat-

ified random sampling4. This constitutes our intention to treat group (Treatment

2Their research builds on a dynamic model of skill formation where the technology of skill produc-
tion is denoted by θt+1 = ft(h, θt, It). θt stands for the vector of skill stocks at time t, h stands for
parental characteristics such as personality and SES and It stands for the investments in children
in at time t.

3Low income: equivalence income of the household is lower than 1.065 Euro, which corresponds
to the 30% quantile of the German income distribution); Low education: both mother and father
of the child have at most secondary education, i.e., are not qualified for university studies; Single
parent households: Single parent who is not living together with a partner.

4Stratification included the three qualification criteria for low SES and place of residence (Cologne
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Low SES)5. The remaining 314 children with low SES background form our interven-

tion control group (Control Low SES). The third group consists of 113 children with

high SES background (Control High SES). To study effects of parental background

we compare prosociality of untreated children, i.e., Control Low SES and Control

High SES. To investigate the effect of the investment in the form of a mentoring

program, we compare outcomes between Treatment Low SES and Control Low SES.

4.2 Intervention, measures of prosociality and
empirical strategy

The intervention we randomly implemented was a pre-existing non-profit mentor-

ing program (see Appendix A4 for details). In this program, children are provided

with a mentor for the duration of one year. Mentors are mainly university students

(age at the start of the program: Mean = 23.76 years, std. dev. = 2.63) who signed

up as volunteers. Conceptually, the idea of the program is to extend a child’s hori-

zon through engaging in joint activities with a new contact or attachment person,

enhancing experiences and skills which are potentially scarce in the given family

context. The most important feature of the program is the mere existence of a per-

son responsive to a child’s individual needs, strengths, weaknesses, and interests.

The child experiences that an unrelated person spends time and effort, and takes

care and responsibility for someone else. The program is meant to foster the acquisi-

tion of new skills on a purely informal basis. The informal character of the program

therefore differentiates it from interventions meant to increase formal achievements

such as educational attainment6. On a practical level, children met with their men-

tor once a week and engaged in versatile activities such as visiting the zoo, museum,

or playground, reading, cooking, ice skating or just having a conversation.

and Bonn), the selection was random conditional on place of residence, see discussion and Appendix
A4 for details.

5133 of these children were actually matched with a mentor. The reason for not matching all ITT
children was the unexpected lack of voluntary mentors. We define a child as matched to a mentor
if he had at least one meeting with the mentor.

6For an overview regarding different types of interventions and their effects see Rodríguez-Planas
(2012); Heckman and Kautz (2014)
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Before and after the intervention, children and their mothers7 from all three

groups, Treatment Low SES, Control Low SES, as well as Control High SES, were

interviewed by trained interviewers (see Appendix A4 for details). Children partici-

pated in incentivized choice experiments and answered a short questionnaire. During

the time her child participated in the experiments, the mother filled out a extensive

questionnaire covering socio-economic background information and assessments of

personality and attitudes regarding her child and herself.

To measure a child’s expressions of prosociality in a comprehensive manner, we

elicited three facets: altruism, trust and other-regarding behavior in everyday life

(for detailed descriptions and protocols see Appendix A4). We elicited altruism us-

ing three incentivized choice experiments, one simple binary choice game as well

as two continuous dictator games. Running variations of a similar game generates

multiple measures of a child’s altruistic behavior and thus allows reducing measure-

ment error. Importantly, decisions in the experimental games had real consequences.

We implemented an experimental currency called “stars”. At the end of the experi-

ments, children could exchange the collected amount of stars into toys. These were

arranged in four categories, which visibly increased in objective value and subjective

attractiveness to children. During the experiments, children knew that more stars

would result in the option to choose toys from a higher category.

Following the procedures of Fehr et al. (2008) in the binary choice game, a child

had to decide between two possible allocations of two stars, between himself and

another unknown child of similar age and from the same city. In one allocation the

decision maker received two stars, while the other child received zero stars (2,0).

In the alternative allocation both decision maker and recipient received one star

each (1,1). Both possible allocations were physically shown to the children and

interviewers checked whether the children had fully understood the implications

of each allocation. We also ran two so-called dictator games. In both versions of

this game, interviewers showed the children two paper bags, one belonging to the

7Actually, 95% of the children were accompanied by their biological mother, 3% by their biological
father, 3 children by a step or foster parent and we do not have unambiguous information on the
accompanying person for about 2% of the children. We use the term “mother” for the adult
accompanying the child.

70



interviewed child and the other belonging to another child, the receiver. Between

games we varied the receiver. In one game the receiver is a child living in a city

nearby. In the other game the child lives in an African country. Subjects knew that

the African child does not live together with his parents since the latter are either

“ill or dead”. In both versions, children were endowed with six stars and could choose

how to distribute the six stars between the two bags. Our joint measure of altruism

is the average share a child gives away in the three experiments8.

Trust was elicited as part of a survey. Children had to state how much they agree

to three statements on a five-point Likert scale, ranging from “totally correct” to

“totally incorrect”. The scale was printed on an extra paper sheet. The interviewer

explained the procedure and scale use with a simple neutral example item (“I like

Spaghetti”). The trust items are age-adapted questions on the basis of the trust

questions used in the German Socio Economic Panel Study (SOEP)9 and read as

follows: “One can trust other people”, “Other people have good intentions towards

me”, and “One can rely on other people, even if one does not know them well”. The

average rating on the Likert scale over the three items is our measure for a child’s

trust10.

Finally, we elicited other-regarding behavior of the child using survey responses

of the mothers. As part of the survey, mothers answered the Strength and Difficulties

Questionnaire (SDQ), which is a well-established behavioral screening questionnaire

(Goodman, 1997). Statements about their child were rated on a seven point Likert

scale, ranging from “does not apply at all” to “applies completely”. In the analysis

we focus on the seven items which refer to a child’s other-regarding behavior, which

read as “My child. . . ” “Shares readily with other children (treats, toy, pencils etc.)”,

“Is helpful if someone is hurt, upset or feeling ill”, “Often fights with other children or

bullies them” (reversed), “Gets along better with adults than with other children”

(reversed), “Is generally liked by other children”, “Is kind to younger children”,

8Mean = 0.390, std. dev. = 0.156, N = 604; due to failed control questions or missing answers
three children were excluded from the analysis of altruism

9These questions were experimentally validated in Fehr et al. (2002) and significantly predict
choices in trust game experiments.
10Mean = 3.193, std. dev. = 0.765, N = 607; all 607 children answered all three trust question.
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“Often volunteers to help others (parents, teachers or other children)”. The average

rating on the Likert scale over the seven items is our measure of other-regarding

behavior in everyday life of the child11.

In sum, we obtained three facets of prosociality, altruism, trust and other-

regarding behavior, using incentivized choice experiments, experimentally validated

survey responses and well-established survey items elicited from the mother. Thus

our measures capture a broad characterization of prosocial disposition based on

different elicitation methods, and statements from different sources (mother and

child). In the analysis below we use standardized measures (z-scores, mean = 0,

std. dev. = 1) in order to enhance comparability. We also collapse the three indi-

vidual measures into one joint measure of prosociality, interpreting altruism, trust

and other-regarding behavior as facets of an underlying prosocial disposition. To

detect this joint underlying trait (and further reduces measurement error) the joint

measure is constructed using principal component analysis12. Using responses to

validated survey items we also generate a measure of prosociality for mothers and

mentors (see Appendix A4 for details). As for children, the measure consists of the

three facets altruism, trust and other-regarding behavior.

Concerning the effect of parental background, following recent findings (see Bauer

et al. (2014) and Chapter 3 herein), we hypothesized that additional material and

cognitive resources available in high SES households have a positive effect on proso-

ciality relative to low SES households. In light of recent empirical and theoretical

work13 we further expected a positive impact of mothers’ prosocial attitudes, i.e.,

an intergenerational transmission of prosociality. Concerning the effect of the inter-

vention, evidence on social learning (Bandura, 1965, 1986) suggests that exposure

11Mean = 5.885, std. dev. = 0.811, N = 604; to limit missing values due to incomplete mother
questionnaires, we include an observation if at least four out of seven items are completed; three
missing values remain.
12We performed a principal component analysis using the standardized measures of altruism, trust
and other-regarding behavior, resulting in one component according to the Kaiser Criterion (Eigen-
value > 1).
13For an example of theoretical work see Bisin and Verdier (2001). Empirically, for one of our three
facets, trust, Dohmen et al. (2012) have in fact shown a strong and systematic intergenerational
correlation. Similarly, risk attitudes and time preferences are positively correlated between parents
and children, see Dohmen et al. (2012) and Kosse and Pfeiffer (2012).
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to role models affects prosocial behavior. The investment under study provides the

child with such a positive role model. The mentor represents an additional attach-

ment person, responsive to a child’s individual needs, who spends time and effort,

and takes care and responsibility for an unrelated person (the child). Mentors dis-

play a relatively high level of prosociality (see below). We therefore hypothesized a

positive effect of the mentoring program on the prosociality of children, in particular

in those households where prosociality is rather low.

In presenting our results we first analyze the impact of parental background.

We then show our main finding, the treatment effect of the intervention on prosocial

dispositions in children. Throughout, we report intention-to-treat (ITT) estimates14.

The measures of prosociality that we use in the main analyses were elicited in the

second interview that took place right after the intervention period. Below we also

use measures from the first interview (before assignment into the mentoring pro-

gram), to address potential concerns such as baseline balance and attrition bias,

and also refer to alternative estimates.

4.3 Parental background: SES and mothers’
prosociality

Fig. 4.1 (left panel) displays a pronounced SES effect. For the two untreated groups

of children, Control Low SES and Control High SES, the figure shows that children

from high SES households score significantly higher on the prosociality measure

than children from low SES households (p < 0.01, N = 424, two sided t-test). In

terms of effect size, the difference amounts to 35.4% of a standard deviation. The

right panel of Fig. 4.1 additionally shows that mothers’ prosocial attitudes have

a strong impact on children’s prosociality. It compares the levels of prosociality

for children whose mothers either score above or below median on the prosociality

measure (p < 0.01, N = 417, two sided t-test). The intergenerational correlation

of prosociality is 0.228 (p < 0.01, N = 417, Pearson correlation coefficient, Control

Low SES and Control High SES).
14An ITT analysis is based on the initial treatment assignment and not on the treatment eventually
received
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These results reveal that parental background significantly affects formation of

prosociality, both in terms of SES and intergenerational transmission. Importantly,

we observe a gap in the development of prosocial attitudes for elementary school

children in response to different socio-economic environments. This sets the stage

for analyzing the potential effect of the intervention on low SES children.

Figure 4.1: Prosociality and Parental Background. The left panel shows higher levels
of children’s prosociality in the Control High SES group compared to the Control
Low SES group. The right panel shows higher levels of prosociality for children of
highly prosocial mothers (median split). The prosociality measures of mother and
child are constructed using a principal component analysis for the aggregation of
altruism, trust and other-regarding behavior, respectively. The scale on the y-axis
indicates z-scores (i.e. standardized measures) of children’s prosociality. Error bars
show standard errors of the means (SEM). ∗∗∗ indicates significant differences at the
1% level (two-sample t-tests, N(left panel) = 424, N(right panel) = 417, difference
due to incomplete mother questionnaires).
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4.4 Investment: The causal effect of social envi-
ronment on prosociality

Figs. 4.2 and 4.3 show our main results. Fig. 4.2 displays a positive and significant

treatment effect for the joint measure of prosociality. Children whose social environ-

ment was randomly enriched through participation in the mentoring intervention

score 29.5% of a standard deviation higher on the prosociality measure than chil-

dren from the control group (p < 0.01, n = 489, two-sided t-test). Fig. 4.2 also shows

that the high-low SES developmental gap shown in Fig. 4.1 is substantially reduced

for children who participated in the mentoring program. In fact children from Low

SES Treatment and High SES Control score very similarly on the prosociality mea-

sure. The difference between high and low SES children is no longer statistically

significant (p = 0.605, n = 289, two-sided t-test).

The positive effect of enriching the environment is not only sizeable and signifi-

cant using the joint measure, but also when looking at three measures independently

(see Fig. 4.3). Children in the Low SES Treatment group are more altruistic, reveal

higher levels of trust and show more prosocial other-regarding behavior than chil-

dren in Low SES Control. In terms of altruism, children in Low SES Treatment

give 18.6% of a standard deviation more compared to children in Low SES Control

(p < 0.05, N = 492, two-sided t-test). Likewise, treatment children report signifi-

cantly higher levels of trust with an increase of 20.9% of a standard deviation com-

pared to the control group (p < 0.05, N = 494, two-sided t-test). Finally, mothers of

treated children report more pronounced other-regarding behavior of their children

in comparison to mothers from the control group. The difference amounts to 19.4%

of a standard deviation (p < 0.05, N = 491, two-sided t-test).
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Figure 4.2: Significantly higher levels of prosociality for treated children compared
to untreated children (Treatment Low SES vs. Control Low SES). Reduction of de-
velopmental gap: There is no significant difference between Treatment Low SES and
Control High SES group. The prosociality measure is constructed using a princi-
pal component analysis for the aggregation of altruism, trust and other-regarding
behavior. The scale on the y-axis indicates z-scores (i.e. standardized measures) of
children’s prosociality. Error bars show standard errors of the means (SEM). ***
indicates significant differences at the 1% level (two-sample t-tests, N(Treatment
Low vs. Control Low) = 489, N(Control High vs. Control Low) = 424, N(Treatment
Low vs. Control High) = 289).
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Figure 4.3: Significantly higher levels of altruism, trust and other-regarding behavior
for treated children compared to untreated children (Treatment Low SES vs. Control
Low SES). Altruism is measured in three different incentivized dictator games. The
trust measure is based on children’s responses to a questionnaire. Other-regarding
behavior is based on a questionnaire rating by the mother with respect to other-
regarding behaviors of their child in every-day life. The scale on the y-axis indicates
z-scores (i.e. standardized measures) of respective prosociality facet of the child.
Error bars show standard errors of the means (SEM). ** indicates significant dif-
ferences at the 5% level (two-sample t-tests, N(altruism) = 492, N(trust) = 494,
N(other-regarding behavior) = 491. Number of observations varies due to failed
control questions or missing answers).
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4.5 Discussion

In sum, the results show that both parental background and investments affect

children’s prosociality. We now combine both perspectives to answer the question

whether the investment has differential effects for children with different parental

background. To answer this question we ran OLS regressions where prosociality of

children (Low SES Treatment and Low SES Control) is regressed on a treatment

dummy, parental background variables (prosociality of mothers, income, education

and single parent status), and the respective interactions (see Table A4.1). The

analysis reveals that children whose mothers score low on our prosociality measure

benefit most. The respective interaction coefficient is significant (p < 0.1, N = 479)

and indicates that the treatment effect increases by 15.6% of a standard deviation of

prosociality if the mother scores one standard deviation lower in prosociality. A sim-

ilar reinforced effect is found for children whose parents have relatively low levels of

education, but the respective interaction effect is slightly above the 10-percent signif-

icance level (p = 0.131, N = 489, column (2)). The interaction effect with income is

very small and insignificant; the one for single parent status is larger but insignificant

as well. These findings suggest that the mentoring treatment particularly benefits

children whose mothers display low levels of prosociality, and who come from rela-

tively low educated households. Mentors provide exactly these two resources. First,

nearly all mentors are either university students or hold a university degree15. Sec-

ond, they score very high on our prosociality measure. Compared to the mothers

they score 39.7% of a standard deviation higher in prosociality (p < 0.01, N = 692,

two-sided t-test)16. Taken these findings together, this suggests that the mentoring

program benefits children by providing resources and stimuli that are scarce at the

household level.

1599 mentors answered our questionnaire. 97 mentors provide information on their education. All
of them hold at least a university entrance diploma, 93 of them are students or have already gained
a university degree.
16It is not surprising that mentors display a particularly high prosocial motivation given that they
are self-selected volunteers who spend a considerable amount of their time to serve in a mentoring
program devoted to support children, i.e., they engage in an altruistic activity at a personal cost.
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4.6 Robustness checks and alternative estimates

Potential confounds in randomized controlled studies concern baseline balance and

attrition bias. The fact that we have elicited all reported measures not only after

but also before treatment assignment allows us to directly address these potential

concerns. The analysis confirms that the randomization procedure was successful

since the pre-treatment measures of prosociality do not differ by treatment status

(see Table A4.2). The lost to follow-up rates are generally low (16.3% among all Low

SES) and do not differ between treatment and control group (p = 0.563, N = 590,

two-sided test of proportions). Moreover, pre-treatment measures of prosociality,

treatment assignment and their interactions are not related to participation in the

post-treatment interview. This indicates the absence of any outcome-related system-

atic attrition (see Table A4.3), and confirms the validity of the presented results.

Since our experimental design used conditional random assignment (conditional on

the place of residence of the families, see Appendix A4 for details), we also present

estimations using city fixed effects (see Table A4.4) for our main results (displayed

in Fig. 4.2 and Fig. 4.3). The estimates show that (facets of) prosociality do not

differ by city and that controlling for city does not affect the estimated treatment

effect.

We also provide treatment on the treated (TOT) estimates. While the presented

ITT effects build directly on the random assignment, they understate the effect of

actually receiving the treatment because not all children selected into the treatment

group were actually matched with a mentor. Estimating treatment on the treated

(TOT) effects by using random assignment as an instrument for actual treatment

adds the assumption that being assigned to treatment had no effect on those who

remained untreated. This assumption plausibly holds in our case since the vast

majority of these families were not even informed about being in the ITT group17.

The TOT effects provide policy relevant information as they reveal the expected

effects of implementing a mentor-mentee match. Given a matching rate of 73.9%

the TOT estimates exceed the ITT effects by about 35.3% (see Table A4.5).

17Due to an unexpected lack of mentors not all families in the ITT group were contacted and
offered a mentor
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Another method for the evaluation of randomized controlled studies, particular

popular in the context of development economics, is to regress post-treatment mea-

sures of interest on a treatment dummy and the pre-treatment measure. This method

outperforms post-treatment mean comparisons and differences-in-differences ap-

proaches regarding statistical power (McKenzie, 2012)18. Results using this method,

which further confirm our results, are displayed in Table A4.6.

4.7 Conclusion

Our results indicate that there is a development gap in prosocial disposition of chil-

dren from Low SES and/or low prosocial families but enriching the social environ-

ment bears the potential to positively impact the formation of prosociality. Relative

to the control group, children accompanied by a prosocial role model become more

altruistic and show higher levels of trust and more prosocial other-regarding be-

havior. The high-low SES difference is no longer significant. Given that treatment

assignment was random, our study thus provides causal evidence on the effects

of social environment on prosocial attitudes. Therefore, our findings establish the

importance of life circumstances on character formation, and provide support for

models of cultural evolution and theories that do not rely exclusively on genetic ex-

planations (Richerson and Boyd, 2008; Henrich et al., 2004). Our findings also add

to the discussion on growing inequality and the intergenerational transmission of

life-outcomes and socio-economic status (Piketty and Saez, 2014; Aizer and Currie,

2014; Haushofer and Fehr, 2014). We have shown that substitutive investments such

as the mentoring program under study have the potential to substantially reduce

personality developmental gaps arising from differences in socio-economic status.19

18For a discussion concerning the different assumptions of these estimators see Imbens and
Wooldridge (2009)
19For recent evidence on the effects of childhood interventions on life outcomes as income or health
see Campbell et al. (2014); Gertler et al. (2014).
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Chapter 5

Unfair pay and health

5.1 Introduction

A large and growing body of evidence suggests that fairness perceptions play an

important role in labor relations, affecting work morale, effort provision and market

efficiency (see e.g., Fehr et al., 1993, 1997; Abeler et al., 2010; Charness and Kuhn,

2011; Kube et al., 2012; Altmann et al., 2014).1 Fairness considerations have also

been shown to help reconciling evidence on non-standard effects of minimum wages

(Falk et al., 2006; Katz and Krueger, 1992; Card, 1995). While this work has studied

behavioral effects of fairness perceptions, the present paper provides evidence on

adverse effects of unfair pay on the physiological level. In particular, we investigate

the potential impact of unfair pay on stress and adverse health outcomes. To test for

the potential link between wage related fairness perceptions, stress and health, we use

an integrated approach, combining lab and field data to exploit complementarities

of different data sources. We proceed in two steps. First, we report results from a lab

experiment testing the hypothesis that unfairness perceptions have a negative effect

on heart rate variability (HRV). A low HRV is a stress related early indicator of

functional and structural impairments of the cardiovascular system, which increases

the probability of future manifest coronary heart disease (see e.g., (Steptoe and

Marmot, 2002; Dekker et al., 2000; Gianaros et al., 2005)). Second, we analyze data

1For an overview and related studies, see (Fehr and Gächter, 2000). The above-cited experimental
work is complemented by interview studies with personnel managers (see, e.g., Agell and Lundborg,
1995; Bewley, 1999, 2005). Akerlof (1982) provides an early theoretical analysis of fairness and labor
market efficiency.
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from a large representative data set to study whether our findings from the lab

extend to the general population and the real-life labor market, in the sense that

perception of unfair pay is related to (specific) health outcomes.

The lab experiment implements a simple principal-agent relationship. In the

experiment an agent produces revenue by working on a tedious task. The principal

receives the revenue produced by the agent and decides how to allocate it between the

agent and himself. This set-up potentially generates various degrees of unfair pay,

where the source of variation is the heterogeneity in generosity of the principals,

who are randomly assigned to agents. Agents’ HRV is monitored throughout the

experiment. The experimental set-up allows us to precisely measure physiological

responses, actual payments and revenues as well as agents’ fairness perceptions of

pay. Our hypothesis to be tested is an inverse relationship between the degree of

unfair pay and HRV2. The results support this hypothesis. Perceptions of unfair pay

are inversely related to agents’ HRV, our measure of impaired cardiac autonomic

control.

Building on our controlled laboratory evidence and the significance of HRV as

long-run indicator for stress-related cardiovascular health, we further investigate

whether perceptions of unfair pay are negatively correlated to health status in the

general population. We test this hypothesis using data from the German Socio Eco-

nomic Panel (SOEP), a large data set that is representative for the adult German

population (Schupp and Wagner, 2002). In particular, we regress employees’ subjec-

tive health status on whether they consider their wage as fair or unfair. Controlling

for a large set of individual as well as labor market characteristics such as net wages,

labor market status, occupational status, firm size and industry, we find a strong

and significant association between perceptions of unfair pay and lower subjective

general health status. We also perform dynamic panel estimations and find evidence

for a Granger causal effect of unfair pay on general health. In light of our lab findings

we further hypothesized that adverse health effects should be specific to diseases re-

2Note that low heart rate variability is observed, among others, during states of mental stress
while enhanced heart rate variability occurs during states of mental relaxation (for details and
references, see Section 5.2). This is why we expect an inverse relationship between unfairness and
HRV.
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lated to the nervous system and the experience of stress, such as heart disease and

high blood pressure. Testing for an effect on specific health outcomes is possible as

the SOEP not only elicits subjective responses to general health outcomes but also

with respect to specific diseases. Confirming our hypothesis, we find that perceptions

of unfair pay are in fact mainly correlated to cardiovascular health outcomes. No

such relation is observed for diseases such as cancer or apoplectic stroke. The effects

are most pronounced for full-time employees above age 50. This is what we would

expect given that the visible occurrence of cardiovascular diseases usually does not

start before age 50 (Roger et al., 2012), and experience of unfair pay (the stressor)

is likely to be more affective the longer the working experience.

Our findings establish a link between unfair pay and coronary heart disease

suggesting that on top of behavioral consequences reported in previous work, per-

ceptions of unfair pay can have important negative physiological consequences with

possible welfare implications: The global public health and economic burden of car-

diovascular disease is immense. By the year 2020, coronary heart disease, along with

major depression, is estimated to be the leading cause of life years lost to prema-

ture death and years lived with disability worldwide (Lopez et al., 2006). Moreover,

among adult populations of high income countries, coronary heart disease is the

leading cause of death, and cost of illness studies estimate that almost one percent

of the gross national product is attributable to the direct and indirect costs of coro-

nary heart disease (Liu et al., 2002). On an organizational level our findings suggest

that fair pay does not only contribute to higher work moral and motivation, but

also to a better health status of employees. In this sense our findings suggest impor-

tant efficiency consequences of fair wages, additional to efficiency wage arguments

(Akerlof, 1982).

The remainder of the paper is organized as follows. In the next section we present

our experimental design and results. Section 5.3 reports results regarding the repre-

sentative sample, including cross-sectional and dynamic panel estimations. Section

5.4 concludes.
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5.2 An experiment to study physiological re-
sponses to unfair pay

Experimental design and procedural details. In the experiment we imple-

mented a simple principal-agent relationship. Upon arrival to the lab, subjects were

randomly assigned to the role of agent or principal and randomly matched into pairs

consisting of one agent and one principal. The interaction was completely anony-

mous, i.e., at no point subjects learned about the identity of their partner. Subjects

received all instructions via computer screen.3 We used z-Tree as computer software

(Fischbacher, 2007). Agents received a pile of numbered sheets. On each sheet there

was a table containing a large number of zeros and ones. The work task was to

count the correct number of zeros on a given sheet and to enter this number on a

computer screen. Total working time was 25 minutes. Each correctly entered num-

ber of zeros per sheet created revenue of three Euros. If the entered number was

“almost” correct (deviation of plus/minus 1 with respect to the correct number)

revenue was one Euro. The accumulated revenue was continuously shown to agents

on the screen. Agents were explicitly told that they could complete as many sheets

as they wanted to, including completing no sheet at all. Principals were informed

that agents created revenue by working on a task. They did not work and were told

that they were free to do things like reading newspapers, completing class-work etc.

After completion of the 25 minute working time, each principal was informed

about the accumulated revenue created by his agent and was asked to allocate it

between himself and the agent. Before the principal’s allocation decision was com-

municated to the agent, the latter was asked to state the amount of money he would

consider to be an “appropriate pay”. This information was not revealed to the prin-

cipal. The agent was then informed about the principal’s actual allocation decision.

Starting with this feedback, the agent was given a time window of 15 minutes to

cope with this information.4 During this time subjects answered a short survey on

perceived fairness of the received payment. We used the following item (Fairness

3Instructions are shown in Appendix A5.
4This is a standard procedure in HRV studies. Brosschot and Thayer (2003) show that especially
negative emotions are related to a relatively long lasting heart rate response.
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question): “In your view, how fair was the return you received from your principal?”

Answers were given on a 5-point Likert scale, with higher values indicating that

returns were considered less fair.

As physiological measure of agents’ autonomic nervous system activity we used

heart rate variability (HRV), an established indicator of stress-related activation of

the autonomic nervous system (Task Force, 1996; Steptoe and Marmot, 2002)5. HRV

reflects the continuous interaction of sympathetic and vagal influence on heart rate,

indicating an individual’s capacity to generate regulated physiological responses to

demanding situations (Appelhans and Luecken, 2006). Low HRV mirrors a decreased

vagal tone with sympathetic predominance and is observed, among others, during

states of mental stress (von Borell et al., 2007). Conversely, enhanced HRV occurs

during states of mental relaxation (Vermunt and Steensma, 2003). A low HRV is

an early indicator of functional and structural impairments of the cardiovascular

system, which increases the probability of future manifest coronary heart disease

(Steptoe and Marmot, 2002; Dekker et al., 2000; Gianaros et al., 2005). In the

analysis we use two measures of HRV. The first one serves as a baseline measure

(HRV_baseline) and was measured towards the end of the working period but prior

to the revelation of the allocation decision. The second one was taken 15 minutes

after exposure to the stimulus, i.e., the revelation of the principal’s allocation deci-

sion. It records the response of the autonomic nervous system to the stimulus and

5At the beginning of the experiment a polar F810i device (polar electro OY, Kempele, Finland)
was attached to record and store time intervals between consecutive heart beats (inter-beat-interval,
IBI). Agents were instructed to remain seated during the whole experiment and try to restrict all
movements, with the exception of their dominant arm operating the computer. The target time
window for physiological recordings lasted five minutes. Data were transmitted to a PC, stored,
and analyzed offline by a researcher who was blind to the psychological outcome measures. Af-
ter visualizing and manually correcting data for artefacts a smoothness priors method was used
to remove trends of the IBI time series. Then, a HR time series was derived and the following
time-domain based HRV indices were calculated: SD-IBI (standard deviation of the IBI series),
SD-HR (standard deviation of the HR series), and RMSSD-IBI (root mean square of successive
differences of the IBI series) (Niskanen et al., 2004). The RMSSD-IBI represents a sensitive index of
parasympathetically-dominated, respiratory related, fast fluctuations of HR, and can be calculated
with milliseconds precision. It is considered to accurately index resting vagal tone directed to the
heart and was documented to be rather resistant to the biasing effects of breathing (Penttilae et al.,
2001). As SD-IBI and SD-HR are highly correlated with RMSSD-IBI we restrict the presentation
of findings to RMSSD-IBI, as a robust and well validated time-domain based indicator of parasym-
pathetic cardiac control. All calculations were done with a computer program for advanced HRV
analysis (Niskanen et al., 2004).
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serves as dependent variable (HRV_response).

Subjects were male students from the University of Bonn studying various ma-

jors except economics. They gave their informed consent to participate in the ex-

periment. Exclusion criteria were the use of medication with potential interference

with cardiovascular function or the presence of a chronic disease condition, such

as hypertension, cardiac arrhythmias, coronary heart disease, or diabetes. In total

80 subjects participated in the experiment (40 principals and 40 agents). During

the process of data collection, we had to exclude data of 10 subjects in the role of

agents, due to incomplete heart rate measurements. The main analysis is thus based

on 30 subjects in the role of agents with complete data. Importantly, the 10 subjects

who were excluded due to incomplete heart rate measurements were not different

to the other subjects, neither in terms of working behavior nor treatment by their

principals (see Footnote 7).

Experimental results. In our analysis we use three measures of perceived un-

fairness, i.e., how unfair agents perceive their principals’ allocation decisions. The

first measure is simply the difference between a principal’s and an agent’s payoff.

It is informed by fairness theories that model fairness comparisons in terms of de-

viations from an equitable share6. Note that this measure considers wage payments

and resulting payoffs only, disregarding effort costs. We have to abstract from effort

costs given that in a real effort experiment, effort costs are unknown to the experi-

menter. The second measure is the difference between the payoff an agent indicated

as “appropriate payoff” prior to knowing the actual allocation decision, and the ac-

tually received payoff. This measure therefore includes a subjective component of

the agent and accounts for fairness perceptions that include both, payoffs as well

as effort costs. The third measure concerns answers to the Fairness question, i.e.,

agents’ assessments of how fair they perceived the wage payment of their principals

(on a 5-point Likert scale). This measure completely abstracts from observed wage

payments and allows for a fully subjective fairness assessment of agents. It is also

similar to the survey measure we use in our analysis of the effects of fairness percep-

6See, e.g., Fehr and Schmidt (1999) or Falk and Fischbacher (2006) where fairness or unfairness
is evaluated as difference in payoffs (equity as a reference standard).
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tions on health outcomes in the general population. The three measures are highly

correlated (Spearman’s ρ is between 0.498 and 0.705, p < 0.01).

Table 5.1 reports means and standard deviations of our main variables7. On av-

erage agents produced total revenue of 20.93 Euro and indicated that they would

consider a share of 14.03 Euro (67% of total revenue) as “appropriate payoff”. This

contrasts sharply with the amounts agents actually received. On average princi-

pals allocated 9.53 euros to agents (46% of total revenue).8 Table 5.1 further shows

the difference in payoffs of principals and agents, as well as the difference between

the amounts considered as appropriate and the amounts actually received. Both

differences vary considerably among subjects (standard deviations of 4.90 and 4.37,

respectively). In other words the experiment generated substantial variation in (per-

ceived) fairness violations, a prerequisite for the analysis of the effect of fairness

perceptions on HRV.

Variable Mean Standard Deviation

Total revenue produced by agents (in Euro) 20.93 8.57
Payoff allocated to the principal (in Euro) 11.40 4.19
Payoff received by agent (in Euro) 9.53 5.58
Principal’s - agent’s payoff (in Euro) 1.87 4.90
Payoff seen as appropriate by the agent 14.03 6.68
Appropriate - actual payoff (in Euro) 4.50 4.37
Fairness question (scale: 1-5) 3.43 1.43

Table 5.1: Descriptive statistics. N = 30; appropriate refers to the amount, which
is stated by the agent as appropriate pay after the total revenue was known but
before the principal’s allocation decision was communicated; the difference between
principal’s and agent’s payoff is our first measure of unfairness, the second is the
difference between appropriate and actual payoff and the third is the answer to the
Fairness question; answers are given on a 5-point Likert scale and are coded such
that higher values imply higher levels of unfairness.

To test our hypothesis of an inverse relationship between the degree of fairness

violation and HRV we regress HRV_response on our three measures of unfairness.
7Table 5.1 reports data for the 30 subjects with complete heart rate measurement. Subjects with
incomplete measurement were not different in any systematic way. Total revenue for this group was
20.20 (Std. dev. 7.23), the payoff allocated to the principal was 11.70 (Std. dev. 3.71), the amount
received by the agent 8.50 (Std. dev. 5.23) and the amount seen as appropriate by the agent was
13.80 (Std. dev. 6.34). Kruskal-Wallis rank tests do not reject the null hypothesis that both groups
are drawn from the same population (p-values are between 0.54 and 0.98).

8Only two agents received more than they indicated as an appropriate amount.
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The results are shown in Table 5.2. To ease comparison, the measures of unfairness

are standardized. All three coefficients are negative and significant, see columns (1),

(3) and (5). These results indicate that HRV reacts negatively to perceptions of

being treated in an unfair way, i.e., fairness systematically affects the autonomic

nervous system. Columns (2), (4) and (6) include two important control variables,

HRV_baseline and generated revenue. Controlling for different baseline levels ad-

dresses the possibility that subjects with a generally low baseline HRV have, e.g.,

systematically different fairness expectations or standards, and may therefore per-

ceive payments differently. Likewise, it is important to control for levels of generated

revenue to exclude the possibility that principals were willing to share relatively

higher amounts with more productive agents. Results in columns (2), (4) and (6)

show that our main result is robust to including these controls. While the coefficients

of interest are slightly smaller compared to those reported in columns (1), (3) and

(5), they remain significant.
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HRV_response
(1) (2) (3) (4) (5) (6)

Principal’s - agent’s payoff -5.361∗∗ -4.717∗∗

[1.960] [1.976]
Appropriate - actual payoff -5.781∗∗∗ -4.363∗∗

[1.781] [1.773]
Fairness question -6.514∗∗∗ -5.724∗∗∗

[2.141] [1.921]
HRV_baseline 0.457∗∗∗ 0.497∗∗∗ 0.491∗∗∗

[0.145] [0.145] [0.130]
Generated revenue -0.451∗ -0.207 -0.369∗

[0.232] [0.222] [0.181]
Constant 32.072∗∗∗ 30.483∗∗∗ 32.072∗∗∗ 24.408∗∗∗ 32.072∗∗∗ 27.927∗∗∗

[1.910] [5.198] [1.868] [4.654] [1.782] [4.244]

Observations 30 30 30 30 30 30
R-squared 0.214 0.435 0.249 0.434 0.316 0.534

Table 5.2: Regression analysis on the relation between perceived fairness and HRV.
OLS estimates with robust standard errors in brackets. ∗∗∗, ∗∗, ∗ indicate sig-
nificance at 1-, 5-, and 10-percent level, respectively. The dependent variable is
HRV_response, i.e., the heart rate variability, which was measured after exposure
to actual payoff. It records the response of the autonomic nervous system to the
stimulus. HRV_baseline measures the HRV towards the end of the working period.
Appropriate refers to the amount, which is stated by the agent as appropriate pay
after the total revenue was known and before the principal’s allocation decision
was communicated; the difference between principal’s and agent’s payoff is our first
measure of unfairness, the second is the difference between appropriate and actual
payoff and the third is the answer to the Fairness question; answers are given on
a 5-point Likert scale and are coded such that higher values imply higher levels of
unfairness. The unfairness measures are standardized (mean = 0, standard deviation
= 1). Generated revenue represents total revenue produced by the agent.

5.3 Fairness perceptions and health: Representa-
tive field data

Our experimental data show that perceiving a wage as unfairly low induces impaired

cardiac autonomic control. In view of the significance of HRV for stress related

cardiovascular health, our results suggest potential effects on health outcomes as a

reaction to perceptions of unfair exchange at work. In other words, we would expect

that if perceptions of unfair pay constitute a chronic source of stress, unfair pay

should be negatively related to employees’ general health status and in particular

to stress-related diseases. In the following we investigate this issue in the context
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of the German labor market by analyzing data from the German Socio-Economic

Panel (SOEP). Exploiting complementarities between lab and field data is useful

in terms of cross validating findings and simultaneously providing evidence that is

both, controlled and based on representative data.9

The SOEP is a representative panel survey of the adult population living in

Germany. All household members above age 17 are interviewed on a wide range of

individual and household information and for their attitudes on assorted topics.10

Each wave records information on the respondents’ current labor market status, in-

cluding wages. Due to data availability our main analysis is based on data of the year

2009 which also include an item regarding perceived fairness of wage payments.11

The question reads as follows: “Do you consider the income that you get at your cur-

rent job as fair?” with the possible answers “yes” or “no”. Among the roughly 11,000

subjects, who are active in the labor market, about 36% stated that they consider

their wage as unfair. The data set also contains items about health status, in par-

ticular about subjective health status in general and whether various diseases have

been diagnosed in the past. The question about health status in general is: “How

would you describe your current health status?” Responses were given on a 5-point

scale ranging from “very good” to “bad”. For the analysis the variable was coded

in a way that higher values indicate better health. For the full sample the mean

is 3.55 (standard deviation is 0.86). While subjective health indicators have their

limitations, previous research in health economics suggests that responses to sub-

jective health status questions predict labor market outcomes, health impairments

and mortality.12

9For a discussion of lab and field data, see Falk and Heckman (2009).
10For more details on the SOEP, see www.diw.de/gsoep/ and Schupp and Wagner (2002), SOEP
v28 is used.
11Not all items we use are elicited in every wave. Next to the Fairness question which was also asked
in 2005, 2007 an 2011, in the year 2009 the questionnaire covers items about particular diseases
and personality, which are essential for our analysis. The only exception is body mass index (BMI)
which was not elicited in 2009. BMI data are therefore taken from the 2010 wave.
12For a comprehensive discussion of the literature, measurement issues, reporting biases and effects
on labor market outcomes, see Currie and Madrian (1999). They discuss potential limitations of
subjective health measures but also point out that self-reported measures are good indicators of
health as they are highly correlated with medically determined health status. The authors thank
Janet Currie for suggesting testing for selective associations.
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A more “objective” measure can be constructed from answers to the question

whether a physician has “ever diagnosed” a particular disease, mentioned in a list

presented to participants. Analyzing responses to this question is particularly in-

formative as it allows a more precise test of our hypothesis: Since impaired cardiac

autonomic control is of particular significance for cardiovascular health, we hypoth-

esized that perceptions of unfair pay predict stress-related diseases such as heart

disease and high blood pressure, rather than diseases such as cancer or asthma.

Finding selective associations would suggest that the main mechanism how fairness

perceptions affect health operates through cardiac control similar to what we find

in our lab data.

In Table 5.3 we report OLS estimates to assess how subjective health status

is related to perceptions of unfair pay.13 Since fairness perceptions may simply re-

flect relatively low wage levels we control for net wages. We also control for age

and gender. Column (1) shows a negative, highly significant coefficient for unfair

wage. Thus, respondents who consider their income as unfair report a significantly

worse health status. Net wages and age have a significant effect on self-reported

health status in the expected directions. Column (2) adds further controls, which

may simultaneously affect fairness perceptions and health status, respectively. These

include marital status, whether the respondent lives in East Germany, labor market

experience (part and full time), educational background, firm size, occupational sta-

tus (e.g., blue collar vs. white collar), type of industry and measures of personality.

The complete specification and all coefficients are shown in Table A5.1 in Appendix

A5. In column (3) of Table 5.3 we exclude employees for whom the relation between

fairness perception and health status is less plausible. This includes employees who

work only part-time and, in particular, the self-employed who largely determine their

income themselves. Since visible occurrence of cardiovascular diseases usually does

not start before age 50 (Roger et al., 2012), we additionally, in column (4), exclude

employees who are younger than 50 years old.

Results in columns (2) and (3) indicate that the unfair wage coefficient is ro-

bust with respect to adding various controls and restricting the sample to full-time

13We get the similar results using Ordered Probit estimations.
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employees. This means that conditional on wage level, educational background, la-

bor market conditions, industry and labor market status, health status is strongly

associated with the perception of receiving an unfairly low wage. As expected, the

coefficient is somewhat larger in the specification that excludes part-time and self-

employed workers. The fact that the coefficient of interest increases when moving

from column (3) to column (4) further indicates that the observed negative relation

between unfair pay and subjective health is more pronounced for the work force

above age 50. Interestingly, an inspection of all coefficients in columns (2) to (4)

of Table A5.1 (see Appendix A5) reveals that most control variables such as in-

dustry or firm size have no systematic effect on health status. The only systematic

effect on top of unfair pay, net wages, gender and East German origin is found in

respondents’ personalities, measured with the Big-5 inventory14. The relevance of

personality in this context is in line with Conti and Heckman (2010) who provide

evidence for the importance of personality in determining health. Conscientiousness,

extraversion and agreeableness are all positively related to better health conditions.

Neuroticism, on the other hand, is negatively associated with health.

14The Big-5 can be broadly classified as follows: Openness to experience (appreciation for art,
emotion, adventure, and unusual ideas; imaginative and curious), conscientiousness (a tendency
to show self-discipline, act dutifully, and aim for achievement), extraversion (a tendency to seek
stimulation and the company of others), agreeableness (a tendency to be compassionate and coop-
erative rather than suspicious and antagonistic towards others), neuroticism (a tendency to easily
experience unpleasant emotions such as anxiety, anger, or depression). See e.g. Almlund et al.
(2011) and Becker et al. (2012) for an overview.
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Dependent variable: subjective health status (higher values indicate better health)
(1) (2) (3) (4)

Unfair wage -0.180∗∗∗ -0.169∗∗∗ -0.199∗∗∗ -0.262∗∗∗

[0.016] [0.018] [0.022] [0.041]
Net wage/1000 0.054∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.032∗

[0.006] [0.008] [0.012] [0.018]
Age -0.019∗∗∗ -0.015∗∗∗ -0.018∗∗∗ -0.005

[0.001] [0.002] [0.003] [0.007]
Female 0.013 -0.041∗ -0.050∗ 0.021

[0.016] [0.021] [0.027] [0.051]
Constant 4.351∗∗∗ 4.334∗∗∗ 4.405∗∗∗ 3.803∗∗∗

[0.030] [0.091] [0.126] [0.343]
Further controls no yes yes yes
Occupational restrictions no no yes yes
Age restrictions: Age ≥ 50 no no no yes

Observations 11,638 9,988 5,892 1,878
R-squared 0.080 0.120 0.132 0.100

Table 5.3: Relation between subjective health status and fairness perceptions
(SOEP). OLS estimates with robust standard errors in brackets. The dependent
variable measures subjective health status on a five-point scale from “bad” to “very
good”. ∗∗∗, ∗∗, ∗ indicate significance at the 1-, 5-, and 10-percent level, respectively.
“Unfair wage” is a dummy variable equal to one if the respondent answered the
question “Do you consider the income that you get at your current job as fair?”
with “no” and zero otherwise. Additional controls include marital status (married
(baseline category), single, widowed, divorced), whether the respondent lives in East
Germany in 2009, labor market status (working in public sector, tenure, full time and
part time experience), dummies for educational background (Hauptschule (baseline
category), Realschule, Fachoberschulreife, Abitur, other schooling degree, no school-
ing degree, missing), dummies for firm size (self-employed, below 5, 6-10, 11-20,
21-100 (baseline category), 101-200, 201-2000, more than 2000, missing), occupa-
tional status (unskilled blue collar worker, skilled blue collar (baseline category),
blue collar craftsman, blue collar foreman, blue collar master, white collar unskilled,
white collar skilled, white collar craftsman, white collar master, white collar high
qualified, white collar management, civil servant, civil servant intermediate, civil
servant high, civil servant executive, other occupation), industry code (agriculture
(baseline category), energy, mining, manufacturing, construction, trade, transport,
bank/insurance, services, missing). Controls also include measures of personality
(Big-5). The sample in column 1 contains all SOEP participants who are in any way
active in the labor market in 2009. The sample in column 2 excludes individuals
for whom not all controls are available or who just started in the current firm and
whose work related information therefore does not refer to the current employer.
The sample in column 3 is additionally restricted to dependent full-time employed
individuals with positive income. In addition to the restrictions in column 3, the
sample in column 4 is restricted to individuals who are at least 50 years old. For
more detailed information see Table A5.1 in Appendix A5.
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We complement the cross-sectional analysis and exploit the panel structure of

the SOEP to develop dynamic panel data models which allow testing for a Granger

causal effect of unfair pay on subjective health. Using Arellano-Bover/Blundell-Bond

estimators enables us to estimate the model for the years 2011, 2009 and 2007 (for

details on data structure, estimation strategy and estimation results see Appendix

A5). We estimate and validate models with different lag lengths and robustly reject

the null hypothesis that the coefficients of lags of unfair wage perception are zero

(p < 0.05 in all specifications). This indicates a Granger causal effect of unfair wage

perceptions on subjective health. The results are robust for reducing or increasing

the lag lengths of subjective health or extending the model by adding lags of net

wages.

We now move on to the analysis of specific diseases. Table 5.4 summarizes results

from regressions for eight specific diseases listed in the SOEP survey 2009.15 In ad-

dition we constructed a Body Mass Index (BMI) as an additional “objective” health

outcome.16 In Table 5.4 we use the same specifications as in columns (1) to (4) of

Table 5.3. Since, with the exception of BMI, outcomes are binary (diagnosed vs. not

diagnosed) we use Probit estimates and report average marginal effects. We hypoth-

esized that the unfair wage coefficient should be selectively significant for diseases

that are related to stress and impaired cardiac control and especially pronounced for

employees older than 50. This is largely what we find: Perceptions of fairness have a

highly significant effect on stress-related diseases such as heart disease, high blood

pressure, diabetes17 and high BMI. In contrast, we find only weak or insignificant

associations for depression, cancer, asthma, apoplectic stroke or migraine. Compar-

ing columns (3) and (4) in Table 5.4 reveals that the size of the effects concerning

heart disease, high blood pressure and diabetes doubles if restricting the sample to

employees above age 50. Apparently, and similar to our findings in Table 5.3, ef-

15The indication of dementia was also asked for but dementia was excluded from the analysis since
less than 0.03% of the working individuals indicated this disease. All regressions are available on
request. Note that the data structure of the SOEP does not allow constructing a dynamic panel
data model for specific diseases because questions regarding specific diseases were only asked in
2009 and 2011.
16BMI is often used as a health indicator, see Currie and Madrian (1999).
17The questionnaire asked for diabetes in general, there is no information about different types.
Eriksson et al. (2008) suggest that mainly diabetes type II is related to psychological distress.
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fects concerning unfair pay and health are driven in particular by older employees.

Summarizing, we find selective associations yielding complementary evidence with

respect to our findings from the lab.

Marginal effects of unfair wage
Disease (Share/mean) (1) (2) (3) (4)

Heart disease (3.3%) 0.011∗∗∗ 0.013∗∗∗ 0.018∗∗∗ 0.033∗∗

High blood pressure (15.2%) 0.020∗∗∗ 0.019∗∗ 0.028∗∗∗ 0.067∗∗∗

Diabetes (3.2%) 0.008∗∗ 0.010∗∗∗ 0.018∗∗∗ 0.033∗∗∗

Depression (3.9%) 0.008∗∗ 0.006 0.007 0.009
Cancer (2.0%) -0.003 -0.004 0.007∗ 0.003
Asthma (4.2%) -0.000 -0.001 0.001 0.016∗

Apoplectic stroke (0.5%) -0.001 -0.001 0.003 0.009
Migraine (5.4%) 0.007 0.006 0.007 0.016∗

Body Mass Index (26.0 kg/m2) (OLS) 0.410∗∗∗ 0.350∗∗∗ 0.305∗∗ 0.424∗

Further controls no yes yes yes
Occupational restrictions no no yes yes
Age restrictions: Age ≥ 50 no no no yes

Table 5.4: Relation between specific diseases and unfairness perceptions (SOEP).
Regression models (1) to (4) refer to the exact same specifications as in columns (1)
to (4) in Table 5.3. We use Probit estimations, reporting average marginal effects,
except for Body Mass Index (OLS). Percentages and the BMI mean are related to
the full sample in column (1). ∗∗∗, ∗∗, ∗ indicate significance of the “Unfair wage”
coefficient at the 1-, 5-, and 10-percent level, respectively.

5.4 Concluding remarks

In this paper we establish a link between the experience of unfair pay and heart rate

variability: Higher levels of perceived unfairness go along with lower heart rate vari-

ability. Low heart rate variability reflects stress and an impaired balance between the

sympathetic and the vagal nervous system, and has been shown to predict coronary

heart disease in the long-run. Using a large representative data set (SOEP) we there-

fore test whether perceptions of unfair pay predict adverse health outcomes in the

general population. Our findings suggest that health status is in fact negatively cor-

related with subjective perceptions of unfair pay. To complement the cross-sectional

analysis we exploit the panel dimension of the SOEP, develop dynamic panel data

models and provide evidence for a Granger causal effect of unfair pay on health

outcomes. Moreover, we find selective associations for specific health outcomes that
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are predicted if the mechanism operates through the nervous system. Adverse health

effects turn out to be most pronounced for full-time employees who are older than

50 years.

Our findings are related to a literature that points out behavioral effects of

fairness in labor relations. We show that perceptions of unfair pay not only affect the

efficiency of labor relations in reducing work morale (e.g., Fehr et al. (1997)), but also

by potentially affecting the health status of the workforce. Our work is also related to

research that uses a very different methodological approach: Studies in epidemiology

suggest that people who are confined to demanding jobs that fail to compensate

efforts by “adequate” rewards are at increased risk of suffering from stress-related

disorders (Siegrist, 2005). Other studies suggest that economic inequality in general

contributes to adverse health status.18

On a more general level our findings provide evidence that the human body

registers and systematically processes social and contextual information. This is re-

lated, e.g., to findings in Fliessbach et al. (2007) who show that the human brain

encodes social comparison. Using fMRI they report that for a given own wage,

receiving a wage that is lower than that of another subject is associated with a

significantly lower activation in reward-related brain areas, in particular the ventral

striatum. In our representative data analysis we show that on top of actual life cir-

cumstances and outcomes, such as net wages, mere perceptions of unfair treatment

induce adverse physiological responses. Given that health affects labor market out-

comes (see, e.g., Currie and Madrian (1999)), this suggests an important potential

feedback mechanism: Labor market experience can induce perceptions of unfairness

with consequences for health, which in turn affects labor market outcomes. The

feedback mechanism between social environment, perceptions and body responses

suggests a potential vicious circle and complementary effects. We may thus have to

think about some aspects of labor markets differently, with the fairness-health link

potentially leading to a vicious circle involving poor pay and poor health. We believe

18This was documented in epidemiological investigations using different indicators such as low
income (McDonough et al., 1997), income inequality (Kennedy et al., 1996), or perceived unfairness
(Bosma et al., 1998; Kivimaeki et al., 2002; Kuper et al., 2002; Lynch et al., 1997). Wilkinson et al.
(2011) discuss large-scale effects of inequality.
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this question deserved attention in future work.
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A1 Appendix to Chapter 1

Table A1.1: Definitions of the Big Five domains

Big Five Domain APA Dictionary Definition
Openness Refers to individual differences in the tendency to be open

to new aesthetic, cultural, or intellectual experiences.
Conscientiousness The tendency to be organized, responsible, and hardworking;

one end of a dimension of individual differences: conscientiousness
vs. lack of direction.

Extraversion An orientation of one’s interests and energies toward the
outer world of people and things rather than the inner
world of subjective experience. Extroverts are relatively
more outgoing, gregarious, sociable, and openly expressive.

Agreeableness The tendency to act in a cooperative, unselfish manner;
one end of a dimension of individual differences:
agreeableness vs. disagreeableness.

Neuroticism Characterized by a chronic level of emotional instability
and proneness to psychological distress.

This table is in parts reproduced from Borghans et al. (2008).
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Table A1.2: Spearman correlation structure experimental data set

Openness Conscientiousness Extraversion Agreeableness Neuroticism LoC
Time 0.0388 0.0162 −0.0114 0.1077∗∗ −0.0684 0.1063∗

Risk 0.0027 −0.0486 0.0786∗ 0.0206 −0.0995∗∗ 0.0485
Pos. Reciprocity 0.1606∗∗∗ 0.0078 0.0177 0.2029∗∗∗ 0.0152 0.0441
Neg. Reciprocity −0.0967∗ −0.0221 0.0462 −0.083∗ −0.0165 −0.1376∗∗

Trust 0.1354∗∗∗ −0.1198∗∗∗ 0.002 0.1696∗∗∗ −0.002 −0.0648
Altruism 0.0969∗ −0.0804 0.0034 0.2000∗∗∗ 0.0879∗ 0.0418

∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level. Correlations between economic preferences and the Big
Five were calculated using between 394 and 477 observations. Correlations between economic preferences and Locus of
Control were calculated using between 254 and 315 observations. All measures are standardized.
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Table A1.3: Spearman correlation structure representative experimental data

Openness Conscientiousness Extraversion Agreeableness Neuroticism
Time −0.0199 −0.0737 −0.0764∗ −0.0829∗ −0.0598
Risk 0.1315∗ −0.0744 0.0661 −0.0854∗ −0.0261

∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level. All measures are standardized.
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Table A1.4: Spearman correlation structure SOEP

Openness Conscientiousness Extraversion Agreeableness Neuroticism LoC
Time 0.0233 0.1192 −0.0342 0.3099 −0.0643 0.0709
Risk 0.2632 −0.0500 0.2452 −0.1496 −0.1049 0.1426
Pos. Reciprocity 0.1835 0.2622 0.1547 0.1947 0.0808 0.1041
Neg. Reciprocity −0.0616 −0.1767 −0.0426 −0.3853 0.0572 −0.2257
Trust 0.1224 −0.0693 0.0523 0.0788 −0.1889 0.2012
Altruism 0.1693 0.1501 0.1602 0.2416 0.0860 0.0843

All correlations are significant at the 1% level and are calculated using 14,243 observations. All measures are standardized.
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Table A1.5: Outcome regressions: Representative experimental data

(1) (2) (3) (4) (5)
Life Outcomes Subj. Health Life Satisf. Gross Wage Unemployed Years of Educ.
Openness 0.043*** 0.123*** 0.989*** -0.018*** 0.667***

(0.009) (0.017) (0.162) (0.004) (0.027)
Conscientiousn. 0.038*** 0.106*** 0.565*** -0.014*** -0.182***

(0.009) (0.017) (0.161) (0.004) (0.026)
Extraversion 0.026*** 0.134*** -1.201*** 0.006* -0.309***

(0.009) (0.017) (0.154) (0.004) (0.026)
Agreeableness 0.033*** 0.139*** -1.288*** 0.023*** -0.146***

(0.010) (0.018) (0.165) (0.004) (0.028)
Neuroticism -0.140*** -0.186*** -1.009*** 0.018*** -0.272***

(0.009) (0.016) (0.158) (0.004) (0.026)
LoC 0.105*** 0.307*** 1.899*** -0.043*** 0.421***

(0.008) (0.015) (0.145) (0.003) (0.024)
Patience 0.024*** 0.129*** -0.343** 0.001 -0.151***

(0.008) (0.015) (0.136) (0.003) (0.023)
Risk 0.131*** 0.076*** 0.415** 0.003 0.210***

(0.009) (0.017) (0.166) (0.004) (0.027)
Pos. Recip. -0.035*** 0.006 0.388*** -0.002 0.005

(0.008) (0.015) (0.140) (0.003) (0.023)
Neg. Recip. 0.064*** 0.039** -0.329** 0.006* -0.137***

(0.008) (0.015) (0.147) (0.003) (0.024)
Trust 0.122*** 0.308*** 1.763*** -0.035*** 0.587***

(0.009) (0.015) (0.145) (0.003) (0.024)
Altruism 0.070*** 0.072*** -0.780*** 0.005 0.084***

(0.009) (0.016) (0.152) (0.003) (0.025)
Constant 3.300*** 6.852*** 16.100*** 0.099*** 12.346***

(0.007) (0.014) (0.131) (0.003) (0.021)
Observations 14,218 14,214 7,199 9,095 13,768
Adj. R-squared 0.108 0.159 0.0919 0.0547 0.174

∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively. All measures
are standardized.
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Figure A1.1: Kernel-weighted local linear polynomial regressions using experimental
data
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Figure A1.2: Kernel-weighted local linear polynomial regressions using SOEP data
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Figure A1.3: Correlation coefficients between preference measures and life outcomes
using SOEP data
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This graph shows Pearson correlation coefficients between preference measures and life outcomes
using SOEP data. Trust always shows the strongest association with life outcomes. More trust
and a higher willingness to take risk are always related to better life outcomes, e.g. better health
and greater life satisfaction, while negative reciprocity is associated with less life satisfaction and
lower wages. The number of observations available varies for the different life outcomes: Subjective
Health (14,218 obs.), Life Satisfaction (14,214 obs.), Gross Wage (7,199 obs.), Unemployed (9,095
obs.), Years of Education (13,768 obs.). Gross Wage measures the gross hourly wage.
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Figure A1.4: Correlation coefficients between personality measures and life outcomes
using SOEP data
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This graph shows Pearson correlation coefficients between personality measures and life outcomes
using SOEP data. Locus of Control and neuroticism show the strongest associations with life
outcomes. A more internal Locus of Control is always related to better outcomes, e.g. better
health or more life satisfaction, while a higher degree of neuroticism is associated with lower wages
or a higher probability of being unemployed. The number of observations available varies for the
different life outcomes: Subjective Health (14,218 obs.), Life Satisfaction (14,214 obs.), Gross Wage
(7,199 obs.), Unemployed (9,095 obs.), Years of Education (13,768 obs.). Gross Wage measures the
gross hourly wage.
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Table A1.6: Outcome regressions: Linear specification

Subjective Health (OLS) Subjective Health (o. probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 0.0561 0.0383 0.0688 0.0975 0.1075 0.0220 0.0145 0.0268 0.0388 0.0429
F-Test/LR-Test 170.04 567.35 176.01 140.59 143.72 834.99 550.62 1016.47 1471.22 1627.11
AIC 37833 38094 37641 37201 37043 37139 37415 36960 36515 36361
BIC 37878 38109 37694 37292 37142 37207 37453 37035 36628 36482

Life Satisfaction (OLS) Life Satisfaction (o. probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 0.0899 0.0782 0.0917 0.1342 0.1588 0.0261 0.0219 0.0256 0.0390 0.0467
F-Test/LR-Test 281.88 1206.91 240.08 201.27 224.67 1406.38 1178.16 1376.73 2098.73 2513.61
AIC 55038 55216 55012 54335 53926 52448 52668 52480 51768 51355
BIC 55083 55231 55065 54426 54024 52561 52751 52601 51926 51521

Gross Wage(OLS)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC - - - - -

adj. R2/pseudo R2 0.0361 0.0388 0.0456 0.0704 0.0919 - - - - -
F-Test/LR-Test 54.97 291.20 58.31 50.57 61.71 - - - - -
AIC 55088 55088 55042 54857 54690 - - - - -
BIC 55102 55102 55090 54940 54779 - - - - -

Unemployed (OLS) Unemployed (probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 0.0191 0.0331 0.0245 0.0375 0.0547 0.0322 0.0527 0.0412 0.0648 0.0926
F-Test/LR-Test 36.34 312.13 39.05 33.22 44.82 180.12 294.52 230.37 361.89 517.42
AIC 3067 2932 3017 2900 2738 5420 5298 5372 5250 5097
BIC 3110 2946 3067 2986 2830 5463 5312 5422 5336 5189

Years of Education (OLS) Years of Education (o. probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 0.0914 0.0525 0.1061 0.1545 0.1736 0.0209 0.0126 0.0241 0.0359 0.0415
F-Test/LR-Test 277.93 763.89 273.29 229.74 242.03 1355.80 817.10 1563.14 2329.14 2688.38
AIC 65506 66078 65282 64520 64206 63490 64021 63285 62529 62171
BIC 65551 66093 65335 64610 64304 63641 64141 63443 62724 62375

The outcome variables are regressed on the indicated personality and preference measures. For OLS models we calculate R2, for ordinal models we calculate
pseudo R2. Joint significance of all coefficients is tested using the F-Test (OLS) and the LR-Test (ordinal models). All F- and LR-Tests are significant at the 1%
level. Concerning the Akaike information criterion (AIC) and Bayesian information criterion (BIC), the smallest value for each outcome regression is underlined.
Note that the full model (including Big5, LoC and Pref) is always chosen by both information criteria. The number of observations available varies for the different
life outcomes: Subjective Health (14,218 obs.), Life Satisfaction (14,214 obs.), Gross Wage (7,199 obs.), Unemployed (9,095 obs.), Years of Education (13,768
obs.). Gross Wage measures the gross hourly wage.
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Table A1.7: Outcome regressions: Flexible specification

Subjective Health (OLS) Subjective Health (o. probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 .0632 .0388 .0714 .1054 .1165 .0251 .0146 .0282 .0435 .0483
F-Test/LR-Test 48.99 288.17 41.48 22.75 21.83 952.98 555.19 1068.56 1651.38 1834.03
AIC 37740 38088 37623 37142 36977 37051 37413 36949 36467 36310
BIC 37899 38110 37834 37732 37665 37232 37458 37184 37079 37021

Life Satisfaction (OLS) Life Satisfaction (o. probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 .0948 .0783 .0948 .1397 .1659 .0278 .0219 .0273 .0422 .0505
F-Test/LR-Test 75.47 605.45 56.12 30.967 32.41 1493.78 1178.45 1470.26 2273.51 2715.76
AIC 54976 55214 54984 54311 53884 52391 52670 52428 51725 51309
BIC 55135 55237 55196 54901 54572 52617 52761 52708 52383 52065

Gross Wage(OLS)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC - - - - -

adj. R2/pseudo R2 .0382 .0387 .0527 .0797 .1039 - - - - -
F-Test/LR-Test 15.30 145.74 15.84 9.092 10.27 - - - - -
AIC 55111 55090 55009 54851 54672 - - - - -
BIC 55256 55111 55202 55388 55298 - - - - -

Unemployed (OLS) Unemployed (probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 .0212 .0385 .0291 .0463 .0705 .0357 .0539 .0498 .0852 .1166
F-Test/LR-Test 10.87 183.13 11.11 6.73 8.66 199.54 301.02 278.38 475.96 651.83
AIC 3062 2882 2995 2882 2662 5431 5294 5366 5268 5118
BIC 3211 2903 3194 3437 3309 5580 5314 5565 5823 5766

Years of Education (OLS) Years of Education (o. probit)
Big5 LoC Pref Big5-Pref Big5-Pref-LoC Big5 LoC Pref Big5-Pref Big5-Pref-LoC

adj. R2/pseudo R2 .1043 .0525 .1200 .1771 .1982 .0243 .0126 .0281 .0433 .0497
F-Test/LR-Test 81.13 382.50 70.55 39.48 38.81 1575.60 817.25 1819.82 2808.59 3223.85
AIC 65324 66079 65087 64213 63869 63300 64023 63070 62181 61792
BIC 65482 66102 65297 64800 64554 63564 64151 63386 62874 62583

The outcome variables are regressed on the indicated personality and preference measures. The difference to the linear specification is that the model includes
squares of all variables as well as all cross-products. Cross-products are also calculated between concepts in case more than one concept is included, e.g., in
the Big5-Pref case, we also include (among others) the cross term neuroticicsm*risk. For OLS models we calculate R2, for ordinal models we calculate pseudo
R2. Joint significance of all coefficients is tested using the F-Test (OLS) and the LR-Test (ordinal models). All F- and LR-Tests are significant at the 1% level.
Concerning the Akaike information criterion (AIC) and Bayesian information criterion (BIC), the smallest value for each outcome regression is underlined.
Note that the full model (including Big5, LoC and Pref) is chosen by both information criteria in nearly all cases; only for cross wage and unemployment
the BIC indicates to use the model with only LoC and LoC2 included. The number of observations available varies for the different life outcomes: Subjective
Health (14,218 obs.), Life Satisfaction (14,214 obs.), Gross Wage (7,199 obs.), Unemployed (9,095 obs.), Years of Education (13,768 obs.).
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A2 Appendix to Chapter 2
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Table A2.1: Relations of traits to cog. and noncog. factors

Cog NC-L NC-E NC-R NC-B

Cons -0.042 -0.069∗∗ 0.138∗∗∗ 0.122∗∗∗ 0.068∗∗ 0.053 0.067∗∗ 0.038 0.165∗∗∗ 0.148∗∗∗

(0.030) (0.031) (0.028) (0.029) (0.032) (0.033) (0.031) (0.032) (0.041) (0.043)
Agree 0.102∗∗∗ 0.108∗∗∗ -0.086∗∗∗ -0.087∗∗∗ 0.091∗∗∗ 0.086∗∗∗ -0.162∗∗∗ -0.153∗∗∗ -0.011 0.009

(0.030) (0.030) (0.028) (0.028) (0.032) (0.032) (0.031) (0.031) (0.041) (0.041)
Neuro -0.274∗∗∗ -0.279∗∗∗ -0.433∗∗∗ -0.433∗∗∗ -0.033 -0.028 -0.082∗∗∗ -0.090∗∗∗ 0.100∗∗ 0.083∗∗

(0.029) (0.029) (0.027) (0.027) (0.030) (0.030) (0.030) (0.030) (0.040) (0.040)
Open 0.587∗∗∗ 0.588∗∗∗ -0.011 -0.016 0.250∗∗∗ 0.240∗∗∗ 0.080∗ 0.083∗ 0.012 0.036

(0.045) (0.045) (0.043) (0.043) (0.048) (0.048) (0.047) (0.047) (0.064) (0.064)
Extrav -0.473∗∗∗ -0.453∗∗∗ 0.015 0.015 -0.068 -0.077 0.018 0.047 -0.164∗∗∗ -0.141∗∗

(0.044) (0.045) (0.042) (0.042) (0.047) (0.047) (0.046) (0.047) (0.063) (0.063)
Time 0.077∗∗∗ 0.054∗∗ 0.066∗∗ 0.074∗∗∗ 0.014

(0.027) (0.025) (0.028) (0.028) (0.037)
Risk -0.034 0.025 0.067∗∗ -0.069∗∗ -0.127∗∗∗

(0.027) (0.026) (0.029) (0.028) (0.038)
N 1382 1382 1382 1382 1382 1382 1382 1382 758 758
R2 0.128 0.135 0.249 0.251 0.043 0.050 0.075 0.085 0.057 0.072

Notes: Table shows regressions of Cognition and different Non-cognitive constructs on the Big-5 Personality traits, discount rate, and risk preference.
NC-L is based on the Rotter’s Locus of control. NC-E is based on engagement behavior, NC-R is based on self-reported relationships, and NC-B is based

on self reported risky behaviors. Standard errors are shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A2.2: Model comparison: In college (marginal effects)

NC-L NC-E NC-R NC-B Pref-1 Pref-2 Comb-L Comb-E Comb-R Comb-B
IQ 0.139∗∗∗ 0.147∗∗∗ 0.146∗∗∗ 0.146∗∗∗ 0.158∗∗∗ 0.149∗∗∗ 0.159∗∗∗ 0.160∗∗∗ 0.156∗∗∗

(0.034) (0.033) (0.033) (0.033) (0.036) (0.037) (0.036) (0.036) (0.036)
Noncog 0.034 -0.008 -0.000 0.013 0.037 -0.016 -0.036 -0.016

(0.036) (0.038) (0.038) (0.038) (0.043) (0.038) (0.039) (0.039)
Cons. 0.109∗∗ 0.116∗∗∗ 0.102∗∗ 0.111∗∗∗ 0.113∗∗∗ 0.113∗∗∗

(0.043) (0.045) (0.043) (0.043) (0.043) (0.044)
Agree. -0.029 0.023 -0.024 -0.025 -0.036 -0.027

(0.043) (0.044) (0.043) (0.044) (0.044) (0.044)
Neuro. 0.078∗ 0.033 0.091∗ 0.079∗ 0.076∗ 0.077∗

(0.045) (0.046) (0.048) (0.045) (0.045) (0.045)
Open. -0.039 0.068 -0.025 -0.036 -0.038 -0.037

(0.066) (0.063) (0.067) (0.066) (0.066) (0.066)
Extra. 0.076 -0.003 0.066 0.075 0.081 0.072

(0.063) (0.063) (0.064) (0.063) (0.063) (0.064)
Risk -0.044 -0.047 -0.047 -0.042 -0.042 -0.047

(0.037) (0.038) (0.037) (0.037) (0.037) (0.038)
Time -0.031 -0.034 -0.039 -0.029 -0.030 -0.032

(0.039) (0.040) (0.040) (0.039) (0.039) (0.039)
Observations 177 177 177 177 177 177 177 177 177 177
Pseudo R2 0.099 0.096 0.095 0.096 0.152 0.086 0.155 0.153 0.155 0.153

Notes: Table shows Probit estimations of college enrollment on one of the four constructed 2-factor models, our two preferred models, or combined
models. The displayed coefficients are average marginal effects. NC-L is based on the Rotter’s Locus of control. NC-E is based on engagement behavior,
NC-R is based on self-reported relationships, and NC-B is based on self reported risky behaviors. All estimated probit models include the following
controls: gender, urban status, and residence in Eastern Germany. Standard errors are shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A2.3: Model comparison: GPA, including additional controls: Eduation of parents

NC-L NC-E NC-R NC-B Pref-1 Pref-2 Comb-L Comb-E Comb-R Comb-B
IQ 0.203∗∗∗ 0.208∗∗∗ 0.206∗∗∗ 0.228∗∗∗ 0.192∗∗∗ 0.196∗∗∗ 0.191∗∗∗ 0.190∗∗∗ 0.203∗∗∗

(0.022) (0.021) (0.021) (0.028) (0.021) (0.022) (0.021) (0.021) (0.029)
Noncog 0.036∗ 0.030 0.057∗∗∗ 0.083∗∗∗ -0.018 0.019 0.025 0.056∗∗

(0.020) (0.019) (0.019) (0.026) (0.022) (0.019) (0.019) (0.026)
Cons. 0.181∗∗∗ 0.173∗∗∗ 0.184∗∗∗ 0.180∗∗∗ 0.179∗∗∗ 0.179∗∗∗

(0.023) (0.023) (0.023) (0.023) (0.023) (0.030)
Agree. 0.057∗∗∗ 0.079∗∗∗ 0.055∗∗ 0.055∗∗ 0.061∗∗∗ 0.071∗∗

(0.022) (0.022) (0.022) (0.022) (0.022) (0.028)
Neuro. -0.026 -0.071∗∗∗ -0.033 -0.026 -0.025 -0.029

(0.022) (0.022) (0.024) (0.022) (0.022) (0.029)
Open. 0.017 0.120∗∗∗ 0.013 0.013 0.016 0.002

(0.036) (0.036) (0.037) (0.037) (0.036) (0.047)
Extra. -0.021 -0.100∗∗∗ -0.018 -0.020 -0.023 0.016

(0.035) (0.035) (0.035) (0.035) (0.035) (0.046)
Risk -0.057∗∗∗ -0.063∗∗∗ -0.056∗∗∗ -0.059∗∗∗ -0.055∗∗∗ -0.054∗∗

(0.020) (0.021) (0.020) (0.020) (0.020) (0.027)
Time 0.028 0.039∗ 0.028 0.027 0.026 0.040

(0.020) (0.020) (0.020) (0.020) (0.020) (0.026)
Observations 1217 1217 1217 715 1217 1217 1217 1217 1217 715
R2 0.162 0.162 0.166 0.167 0.229 0.177 0.229 0.229 0.230 0.238

Notes: Table shows regressions of GPA on one of the four constructed 2-factor models, our two preferred models, or combined models. NC-L is based on
the Rotter’s Locus of control. NC-E is based on engagement behavior, NC-R is based on self-reported relationships, and NC-B is based on self reported
risky behaviors. All estimated OLS models include the following controls: parent’s education, gender, urban status, residence in Eastern Germany and

the education tier in which the grade was received. Standard errors are shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

132



Table A2.4: Model comparison: In college, including additional controls: Eduation of parents (marginal effects)

NC-L NC-E NC-R NC-B Pref-1 Pref-2 Comb-L Comb-E Comb-R Comb-B
IQ 0.130∗∗∗ 0.135∗∗∗ 0.133∗∗∗ 0.134∗∗∗ 0.152∗∗∗ 0.151∗∗∗ 0.152∗∗∗ 0.154∗∗∗ 0.148∗∗∗

(0.039) (0.039) (0.039) (0.039) (0.041) (0.042) (0.041) (0.041) (0.041)
Noncog 0.016 -0.018 -0.008 0.008 0.005 -0.023 -0.044 -0.024

(0.036) (0.037) (0.038) (0.038) (0.045) (0.037) (0.038) (0.040)
Cons. 0.116∗∗∗ 0.125∗∗∗ 0.115∗∗∗ 0.119∗∗∗ 0.122∗∗∗ 0.123∗∗∗

(0.043) (0.045) (0.044) (0.043) (0.043) (0.044)
Agree. -0.026 0.017 -0.025 -0.021 -0.035 -0.023

(0.043) (0.043) (0.043) (0.043) (0.044) (0.043)
Neuro. 0.077∗ 0.041 0.079∗ 0.079∗ 0.076∗ 0.076∗

(0.044) (0.045) (0.047) (0.044) (0.044) (0.044)
Open. -0.066 0.014 -0.064 -0.061 -0.066 -0.063

(0.064) (0.063) (0.067) (0.065) (0.065) (0.064)
Extra. 0.088 0.026 0.087 0.086 0.095 0.081

(0.062) (0.062) (0.063) (0.062) (0.062) (0.063)
Risk -0.047 -0.045 -0.047 -0.044 -0.045 -0.052

(0.041) (0.042) (0.041) (0.041) (0.041) (0.041)
Time -0.023 -0.022 -0.024 -0.020 -0.020 -0.024

(0.037) (0.038) (0.038) (0.037) (0.037) (0.037)
Observations 173 173 173 173 173 173 173 173 173 173
Pseudo R2 0.120 0.120 0.119 0.119 0.176 0.126 0.176 0.178 0.181 0.178

Notes: Table shows Probit estimations of college enrollment on one of the four constructed 2-factor models, our two preferred models, or combined
models. The displayed coefficients are average marginal effects. NC-L is based on the Rotter’s Locus of control. NC-E is based on engagement behavior,
NC-R is based on self-reported relationships, and NC-B is based on self reported risky behaviors. All estimated probit models include the following

controls: parent’s education, gender, urban status, and residence in Eastern Germany. Standard errors are shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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A3 Appendix to Chapter 3

Rotated principal components
High

quality
Medium
quality

Low
quality

time time time

How many times in the last 14 days have you or the
main caregiver done the following activities together
with your child?
Singing children’s songs with or to the child 0.4443 -0.0034 -0.1241
Reading or telling stories 0.5787 -0.0178 -0.1144
Looking at picture books 0.5576 -0.0496 -0.0090
Painting or doing arts and crafts 0.3475 0.1182 0.3454
Taking walks outdoors 0.1022 0.4269 0.1194
Going to the playground 0.011 0.5464 0.0019
Visiting other families with children -0.0336 0.5602 -0.2454
Going shopping with the child -0.1521 0.4375 0.0513
Watching television or videos with the child -0.0799 -0.085 0.8879

Table A3.1: Principal component analysis concerning the quality of the parent-child
interaction (age 2-3 years). Source: SOEP (2012); N = 552; Mothers are asked
how many times in the last 14 days she, or the main caregiver, has done particular
activities together with their child. Using the answers concerning all nine potential
activities we performed a principal component analysis (rotation method: Oblique
promax (power = 3), resulting in three components according to Kaiser Criterion
(Eigenvalue > 1). The first component reflects activities, which involve face-to-face
contact and a high degree of interaction between mother and child such as reading
or telling children’s stories or singing children’s songs with the child (high quality
time). The second component reflects activities with a medium degree of interaction
and less direct contact such as going shopping or visiting other families with the child
(medium quality time). The third component represents watching TV or videos (low
quality time).
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Breastfed Duration of BF
(if BF >0)

Binary (yes=1,
no=0)

In months

Probit OLS
(1) (2)

Parent-child interaction
Component high quality time (age 2-3) 0.019∗ 0.852∗∗∗

(0.010) (0.170)
Component medium quality time (age 2-3) -0.011 -0.396∗

(0.011) (0.219)
Component low quality time (age 2-3) -0.006 -0.496∗

(0.014) (0.283)

Physical health problems of mother -0.113∗∗∗ -0.435
(last third of pregnancy and 3 months after birth) (0.028) (0.626)

Socio-economic status
College degree mother 0.141∗∗∗ 1.098

(0.047) (0.715)
Log net household income -0.009 0.529

(0.029) (0.586)

Constant 2.973
(4.602)

Cohort dummies Yes Yes

Wald-tests:
- all parent-child interaction = 0 χ2 = 4.00 F = 9.57∗∗∗

- all socio-economic status = 0 χ2 = 9.06∗∗ F = 2.12
Observations 552 484
(Pseudo) R-squared 0.120 0.074

Table A3.2: Determinants of breastfeeding duration. Source: SOEP (2012). The dis-
played coefficients are average marginal effects. For estimation of the components
of parent-child interaction, see Table A3.1. Physical health problems of mother is a
dummy indicating rather bad or very bad health in last third of pregnancy or the
first three months after birth. College degree mother is a dummy variable indicat-
ing whether mother holds a university or technical college degree. Net household
income is the self-reported net household income. For Wald-tests concerning the
OLS (Probit) estimations F - (χ2-) values are displayed. Clustered standard errors
(at household level) in parentheses; ∗∗∗, ∗∗, ∗ indicate significance at 1-, 5-, and
10-percent level, respectively.
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Correlations between breastfeeding duration (BF > 0) and Spearman’s
rho

P-value

HOME inventory (at age: 3 months)a 0.126 0.033
HOME inventory (at age: 2 years)a 0.177 0.003
HOME inventory (at age: 4.5 years)a 0.175 0.003
Importance of having children for motherb 0.111 0.015
Life satisfaction of the mother (in the year of birth of the child)b 0.099 0.030

Table A3.3: Correlations of breastfeeding duration and other variables reflecting the
quality of early life circumstances. Sources: a Mannheim Study of Children at Risk
(MARS) (Blomeyer et al., 2009) (N = 384) and b SOEP (2012) (N = 484). We ac-
knowledge provision of correlations concerning HOME Inventory by Karsten Reuß.
Displayed coefficients are Spearman rank correlation coefficients. Home Observa-
tion for Measurement of the Environment (HOME) (Bradley and Caldwell, 1981;
Blomeyer et al., 2009) is a 26 item rating. Importance of having children is measured
on a 4-point scale in the year 2008 when all children were already born. Life satis-
faction of the mother is measured in the year of birth of the child and is measured
on an 11-point Likert scale.
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Time (0/1) Risk (standardized) Altruism (0/1)
Probit OLS Probit

(1) (2) (3) (4) (5) (6)

Breastfeeding
Duration of breastfeeding 0.025∗∗∗ 0.024∗∗∗ -0.032∗∗ -0.033∗ 0.016∗∗ 0.021∗∗∗

(in months) (0.008) (0.008) (0.016) (0.020) (0.007) (0.006)

Child’s characteristics
Age (in months) 0.004 0.014 -0.002

(0.006) (0.021) (0.009)
Dummy male 0.014 0.617∗∗∗ -0.087

(0.056) (0.196) (0.070)
Height (in 10 cm) 0.028 -0.288 0.203∗∗∗

(0.040) (0.200) (0.065)
Intelligence (standardized) 0.038 0.030 0.013

(0.031) (0.150) (0.048)
Socio-economic environment
College degree mother -0.085 -0.101 0.084

(0.082) (0.237) (0.071)
Log net household income -0.065 -0.015 -0.009

(0.069) (0.281) (0.065)
Dummy older siblings -0.017 -0.054 0.037

(0.071) (0.209) (0.071)
Dummy younger siblings 0.084 0.060 0.034

(0.073) (0.239) (0.064)
Age of mother (in years) 0.006 0.004 -0.009

-0.085 -0.101 0.084
Personality/preferences/
IQ of mother
Openness to experience -0.007 0.149 -0.068

(0.029) (0.131) (0.043)
Conscientiousness 0.020 0.118 0.012

(0.030) (0.104) (0.036)
Extraversion 0.024 -0.017 0.059∗∗

(0.027) (0.090) (0.029)
Agreeableness 0.031 -0.066 0.037

(0.029) (0.117) (0.036)
Neuroticism 0.043 -0.137 0.058*

(0.035) (0.103) (0.034)
Intelligence -0.027 -0.194 0.014

(0.028) (0.125) (0.040)
Time preference 0.071∗∗

(0.030)
Risk preference -0.113

(0.099)
Altruism 0.136

(0.103)
Task specific controls no yes no no no yes

Observations 194 194 108 108 100 100
(Pseudo) R-squared 0.047 0.179 0.025 0.183 0.058 0.286
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Table A3.4: The effect of quality of early life circumstances on preschool children’s
preferences (Data Set 1). Displayed coefficients are average marginal effects with
respective preference as dependent variable. In the estimations we use age and age
squared of the child as explanatory variables. The combined intelligence measure of
the child is the standardized score of standardized fluid and crystallized intelligence.
The variable “net monthly household income” refers to the current monthly income
in eof all household members, net of taxes and benefits. For less than 20 percent of
respondents, income was only reported in intervals (<750; 750 - 1,500; 1,500 - 2,500;
2,500 - 3,500; 3,500 - 5,000; >5,000 Euros). In these cases we used the interval
midpoints (7,500 in case of income exceeding 5,000). All personality, preference
and IQ measures of the mother are standardized, the only exception is altruism
which is a dummy indicating selecting the altruistic distribution. Intelligence of
the mother is measured by the number of correct answers in a symbol-digit-test.
Time preference of mothers’ is the (reversed) switching row in the time preference
choice task, risk preference is the certainty equivalent in the lottery task. Specific
controls in column (2) are dummies indicating elapsed time since the last bigger
meal and in column (6) a dummy indicating if the matched child is from the same
kindergarten. To receive comparable results we exclude observations with missing
values in the covariates from all regressions. Robust standard errors in parentheses.
∗∗∗, ∗∗, ∗ indicate significance at 1-, 5-, and 10-percent level, respectively.
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Time (std.) Risk (std.) Altruism (std.)
OLS OLS OLS

(1) (2) (3) (4) (5) (6)

Breastfeeding
Duration of breastfeeding 0.042∗∗ 0.038∗∗ -0.036∗ -0.040∗∗ 0.048∗∗∗ 0.045∗∗∗

(in months) (0.016) (0.016) (0.020) (0.019) (0.016) (0.015)
Child’s characteristics
Age (in months) -0.030 0.030 0.056∗

(0.034) (0.034) (0.034)
Dummy male 0.155 0.033 -0.036

(0.162) (0.160) (0.161)
High school math grade -0.140∗∗ -0.038 -0.079
(low is better) (0.071) (0.077) (0.069)
Socio-economic environment
Occupation of father (dummies) No Yes++ No Yes++ No Yes+

Occupation of mother (dummies) No Yes+ No Yes+ No Yes

Observations 175 175 175 175 175 175
R-squared 0.028 0.222 0.021 0.210 0.037 0.165

Table A3.5: The effect of quality of early life circumstances on young adults’ pref-
erences (Data Set 2). Displayed coefficients are marginal effects, with respective
standardized preference measure as dependent variable and robust standard errors
in parentheses. In the estimations we use age and age squared of the young adult as
explanatory variables. High school math grade serves as a proxy for IQ and is coded
in the typical German 6-point grading system where lower values indicate better
performance. Socio-economic environment is controlled for by including dummies
indicating occupation of father and mother. ∗∗∗, ∗∗, ∗ indicate significance at 1-, 5-,
and 10-percent level, respectively. +++, ++, + indicate significance at 1-, 5-, and
10-percent level, of Wald-tests testing the hypothesis that all coefficients of the re-
spective category are zero.
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Age: 11-17 Current smoker Ever drunk alcohol BMI
(1) (2) (3) (4) (5) (6)

Dependent variable Binary Binary Continuous
Type of estimation Probit Probit OLS

Breastfeeding duration -0.006∗∗∗ -0.003∗∗ -0.006∗∗∗ -0.004∗∗ -0.050∗∗∗ -0.026∗∗

(0.002) (0.001) (0.002) (0.002) (0.013) (0.012)
Dummy male 0.000 -0.013 -0.196∗

(0.011) (0.014) (0.112)
Age (in years) 0.062∗∗∗ 0.081∗∗∗ 0.613∗∗∗

(0.003) (0.003) (0.028)
College degree mother -0.034∗∗ -0.003 -0.510∗∗∗

(0.014) (0.019) (0.127)
Log net HH income -0.048∗∗∗ 0.029∗∗ -0.612∗∗∗

(0.010) (0.014) (0.118)

Observations 4,395 4,395 4,123 4,123 4,416 4,416
(Pseudo) R-squared 0.005 0.200 0.002 0.126 0.003 0.109

Table A3.6: The effect of quality of early life circumstances on health-related be-
haviors and outcomes. Source: KiGGS (2008). Displayed coefficients are average
marginal effects with robust standard errors in parentheses. In the estimations we
use age and age squared as explanatory variables. ∗∗∗, ∗∗, ∗ indicate significance at
1-, 5-, and 10-percent level, respectively.
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Time Risk Altruism
(11-p. scale) (11-p. scale) (4-p. scale)

(1) (2) (3)

Av. duration (in months) x share 0.252 -0.291∗∗ 0.159∗∗∗

(0.533) (0.121) (0.044)
Share not breastfed (in %) 0.045∗ -0.002 0.002

(0.018) (0.009) (0.003)
Age -0.003 -0.080∗∗∗ 0.016∗∗

(0.077) (0.012) (0.006)
Constant 3.916 7.806∗∗∗ 2.562∗∗∗

(2.778) (0.644) (0.230)

Observations 8 47 14
R-squared 0.783 0.395 0.600
Adj. R-squared 0.620 0.353 0.479

Table A3.7: A cohort level analysis of the effect of quality of early life circumstances
on preferences. Source: Nestlé (see Figure A3.2) for breastfeeding durations and
shares, and SOEP (2012) for preference measures. One preference observation re-
flects the average value of a preference for one birth cohort at a given year. For risk
and altruism we estimate a pooled OLS and show clustered standard errors (at birth
cohort levels) in parentheses, for time preference data are only cross sectional. The
panel structure of our data set concerning risk and altruism enables us to disen-
tangle the breastfeeding duration effect from an age effect. For interpretations and
details see Methods. ∗∗∗, ∗∗, ∗ indicate significance at 1-, 5-, and 10-percent level,
respectively.
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Figure A3.1: The distribution of breastfeeding durations in Germany for birth co-
horts 2004-2007. Source: SOEP (2012). N = 552.

142



Figure A3.2: The development of breastfeeding durations and shares in Germany
for birth cohorts 1976-1992. Source: Nestlé. N = 250 per cohort.
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A4 Appendix to Chapter 4

Details on study design

Recruitment of sample and randomization

Using official registry data, we received more than 95% of the addresses of families

living in the German cities Bonn and Cologne who had children of age seven to nine

when the study started (October 2011). Offers to take part in the study were sent

by mail to all families with children born between 01.09.2003 and 31.08.2004 and

one third of the families with children born between 01.09.2002 and 31.08.2003. In

summer 2011, families were informed about the study which included two waves of

interviews, focused on child development and offered the possibility to take part in a

mentoring program via postal mail. If interested in the study, we asked them to send

back a short questionnaire on socio-economic characteristics of the household and to

sign an unbinding letter of intent to take part in the interviews and potentially the

mentoring program. Using answers in the survey, we categorized families according

to socio-economic status (SES). Target group families (low SES) meet at least one

of three criteria; their exact definitions are as follows:

1. Low income: Equivalence income of the household is lower than the 1065 Euro,

i.e., the 30% quantile of the German income distribution.

2. Low education: Both mother and father of the child have at most secondary

education, i.e., are not qualified for university studies.

3. Single parents: The single parent is not living together with a partner.

We invited all families who belonged to the target group to take part in the

interviews. To be eligible for treatment, they must have taken part in the first wave

of interviews and experiments (fall 2011) and given written consent to transmit their

addresses to the organization running the mentoring program. Out of 590 eligible

families, 212 were stratified randomly selected and form the intention-to-treat (ITT)

group. The stratification considered 14 subgroups resulting from the combination of

local (Cologne or Bonn) and target (low income and/or low education and/or single
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parent) criteria. Stratification was used to ensure two things: First, a proportional

representation of all criteria combinations in the ITT group and second, an adaption

to the local supply of mentors. 151 out of the 212 ITT group children were actually

treated and met their mentor at least once. 83.7% (494 out of 590) eligible families

took part in the second wave of interviews and experiments in the beginning of 2013

and build our core sample. The “lost to follow-up rates” do not differ in treatment

and control group (p = 0.563, N = 590, two-sided test of proportions).

As a second control group we also invited 150 randomly chosen high SES families

(out of those who also answered to our study information) to take part in the study.

To ensure comparability we also asked them to given written consent to transmit

their addresses to the organization running the mentoring program. 122 took part

in the first wave and gave the written consent. Out of them 113 took part in the

second wave of interviews and experiments.

The intervention: A mentoring program

The intervention we randomly implemented is a non-profit mentoring program called

“Balu und Du” (German for “Baloo and You”). In this program, children get a men-

tor by their side for a period of one year. The mentors are mainly university students

aged between 18 and 30 who wish to volunteer alongside their studies. Ideally, chil-

dren meet with their mentor once a week and, together, engage in versatile activities

such as visiting the zoo, museum, or park, cooking, ice skating, visiting the play-

ground or just having a conversation. The pedagogical idea of the program is to

enrich children’s life circumstances and to extend their horizon via joint activities

with a new contact person. An important feature of the program is the mere cir-

cumstance that there is a further person who is responsive to a child’s individual

needs and interests. The program fosters the acquisition of new skills on an informal

basis.

The mentoring program is embedded in a professional structure. Mentors admin-

ister an online diary in which they report the activities they have engaged in and

potential problems of the mentor-child relationship on a weekly basis. Program co-

ordinators read and comment these diaries, and provide support. The coordinators
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are trained and paid professionals in education science or psychology who supervise,

coach and advice mentors on a part or full-time basis. They also organize biweekly

monitoring meetings in which mentors can discuss potential problems and receive

suggestions for activities with the mentored child. To date, the mentoring program

“Balu und Du” has arranged and supervised more than 5,500 mentor-child rela-

tionships in over 50 different locations in Germany. The program has been honored

with numerous awards. More details about the mentoring program can be found

on www.balu-and-du.de. For comparisons to other mentoring or school-based pro-

grams see the overview studies of Rodríguez-Planas (2012) and Heckman and Kautz

(2014).

The setting of interviews and experiments

The families visited a central location in Bonn or Cologne, Germany, respectively.

They participated in interviews and experiments that were conducted by trained

university students (mostly graduates) of psychology or education science. The inter-

views and experiments were conducted according to a detailed protocol (see below).

In total, the interviews lasted about one hour. Children were paid and incentivized

using an experimental currency called “stars”. At the end of the interview, children

could exchange their stars into toys. As displayed in Fig. A4.1, toys were arranged

in four categories which visibly increased in objective value and subjective attrac-

tiveness to children.

During the experiments, children knew that more stars would result in the option

to choose a toy from a higher category. We ensured that each additional star that

would not result in a higher category still had an extra value to the children by con-

verting these additional stars into “Lego” bricks. While their children participated

in the experiments, mothers filled out a comprehensive questionnaire covering the

following topics:

• Basic information about the child, e.g., name, age, etc.

• Mother assessments of personality and attitudes of the child
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Figure A4.1: Toys arranged in four categories

• Socio-economic background of the family

• Personality, preferences, and attitudes of the mother

Detailed description of experiments and questionnaire measures

Altruism: Incentivized dictator games

Altruism was elicited using three versions of dictator games in which children were

in the role of the decision maker. In particular, we played one binary dictator game

and two continuous versions of dictator games with varying receivers to learn more

about the distributions of altruistic giving.

In the binary dictator game, children had to decide between two possible allo-

cations of two stars between themselves and another unknown child from the same

city of similar age. Either both receiver and decision maker received one star (1,1)

or the decision maker got two stars, while the receiver got zero stars (2,0). Both

possible allocations were physically shown to the children and interviewers checked

whether children understood the implications of each allocation.

In both of the continuous versions of the dictator game, interviewers showed

children two paper bags, one belonging to the child itself and the other belonging to
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another child, the receiver. In the first version of the game, children were told that

the receiver is of the same age as they are, lives in a city nearby, but is unknown

to them, and has no relation to the interviewer. In the second version of the game,

children were told that the receiver is of the same age, but lives in an African country

and cannot live with his parents since they are either ill or dead. In both versions,

children were endowed with 6 stars and could choose how to distribute the 6 stars

among the two bags. After children had distributed the stars among the two bags,

the interviewer checked that they understood how many stars they and the other

child received. Only in case they did not understand the resulting allocation, the

rules were explained again and children had the opportunity to alter their decision.

Assuming that children’s behavior in the three dictator games is a function of

their true degree of altruism and some random error component, we can reduce

measurement error by using the average share of giving as our measure of altruism.

Trust: Questionnaire answers of the child

In the child questionnaire, children had to rate a series of statements in terms of how

much they agreed with each of the statements. The statements were read out aloud

by the interviewer and children indicated on a five point scale ranging from “totally

correct” to “totally incorrect” how they rated the statements. As displayed in Fig.

A2, the scale was printed on an extra paper sheet and additionally visualized by, e.g.,

using an “X” for “Totally incorrect“ and a “check mark” for “Totally correct“. The

interviewer explained the procedure using a simple example item (I like Spaghetti).

We used three items to infer children’s degree of trust. Our measure is based on

the three validated trust questions used in the German Socio Economic Panel Study

(SOEP) (Fehr et al., 2002). We adapted and reformulated these items in order to be

appropriate for children in the age range under study. In particular, the statements

are “One can trust other people”, “Other people have good intentions towards me”

and “One can rely on other people, even if one does not know them well”.
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Figure A4.2: Rating scale for the child questionnaire

Other-regarding behavior: Questionnaire answers of the mother

We asked the mother to rate her child’s other-regarding behavior in everyday life

using the seven items of the Strength and Difficulties Questionnaire (SDQ) which

directly refer to children’s behavior regarding others. The SDQ is a well-established

behavioral screening questionnaire. In the version of the SDQ that we used, parents

had to rate statements about their child on a seven point Likert scale from “does

not apply at all” (1) to “applies completely” (7). The seven statements of the SDQ

that refer to other-regarding behavior are “My child. . . ” “Shares readily with other

children (treats, toy, pencils etc.)”, “Is helpful if someone is hurt, upset or feeling ill”,

“Often fights with other children or bullies them” (reversed), “Gets along better with

adults than with other children” (reversed), “Is generally liked by other children”,

“Is kind to younger children”, “Often volunteers to help others (parents, teachers or

other children)”.

Prosociality of mothers and mentors

In order to obtain measure of prosociality of mothers and mentors, respectively, we

proceeded as similar as possible as for the children: we performed a principal com-

ponent analysis using standardized measures of altruism, trust and other-regarding

behavior resulting in one component according to the Kaiser Criterion (Eigenvalue

> 1). All measures are elicited using standardized and validated questionnaire items.
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Altruism was measured using the question “How do you assess your willingness to

share without expecting anything in return, e.g. your willingness to give to charity?”

(Falk et al., 2011). Trust was measured by the item “In general, one can trust peo-

ple” (Fehr et al., 2002). In both cases answers are given on an 11-point Likert scale.

Other-regarding behavior was measured using the Big Five dimension Agreeableness

in form of a 3-items short version (Becker et al., 2012).
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Additional Tables

Prosociality (standardized)
(1) (2) (3) (4) (5)

Treatment Dummy 0.305∗∗∗ 0.164 0.318∗∗∗ 0.362∗∗∗ 0.223
(0.092) (0.122) (0.122) (0.125) (0.245)

Prosociality of mother 0.244∗∗∗ 0.246∗∗∗

(0.052) (0.052)
Prosociality of mother x Treat -0.156∗ -0.171∗

(0.091) (0.094)
Low educated parents -0.206∗ -0.271∗

(0.117) (0.143)
Low educated parents x Treat 0.280 0.286

(0.185) (0.221)
Low income parents -0.133 -0.177

(0.116) (0.129)
Low income parents x Treat -0.059 -0.071

(0.185) (0.203)
Single parent 0.048 -0.089

(0.118) (0.152)
Single parent x Treat -0.147 -0.056

(0.185) (0.240)
Constant -0.156∗∗∗ -0.057 -0.085 -0.175∗∗ 0.100

(0.057) (0.074) (0.081) (0.077) (0.161)

Observations 479 489 489 489 479
Adj. R-squared 0.057 0.021 0.020 0.015 0.063

Table A4.1: Interaction of treatment and parental background. The prosociality
measures of mother and child are constructed using a principal component analysis
for the aggregation of altruism, trust and other-regarding behavior, respectively. The
prosociality measures are standardized, the other variables are dummies. Displayed
coefficients are OLS estimates with robust standard errors in brackets. ∗∗∗, ∗∗, ∗

indicate significance at the 1%, 5% and 10% level, respectively.
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Dependent Variable: Assigned to Treatment Low SES Group
Pre-treatment measures All Children Follow-up Sample

(1) (2) (3) (4)

Altruism 0.014 0.011
(0.020) (0.021)

Trust 0.008 0.002
(0.020) (0.022)

Other-regarding Behavior -0.002 0.010
(0.020) (0.022)

Prosociality 0.010 0.016
(0.020) (0.022)

Observations 568 568 480 480
Pseudo R2 0.0008 0.0003 0.0009 0.0009
Wald test p = 0.898 0.625 0.913 0.475

Table A4.2: Check for baseline balance regarding target variables. Dependent vari-
able is one if a child was selected into the Treatment Low SES group and zero
otherwise. In column (1) and (2) all low SES children with valid measures in the
pre-treatment interview are considered. The sample in column (3) and (4) is re-
stricted to those how also took part in the post-treatment interviews. All measures
are elicited before the families were informed about the assignment. The prosociality
measure is constructed using a principal component analysis for the aggregation of
altruism, trust and other-regarding behavior. To retain the structure of the measure
over waves, the same weights are used to construct the pre-treatment measure as for
the post-treatment measure. All independent variables are standardized. Displayed
coefficients are average marginal effects of Probit estimates with robust standard
errors in brackets. Wald tests retain the null hypothesis that all coefficients in the
respective column are simultaneously equal to zero (p-values of chi2-tests are dis-
played); in line the Pseudo R2 never exceeds 0.001. ∗∗∗, ∗∗, ∗ indicate significance at
the 1%, 5% and 10% level, respectively.
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Pre-treatment measures Dependent Variable: Lost to follow-up
(1) (2)

Treatment Dummy -0.009 -0.006
(0.031) (0.032)

Altruism 0.007
(0.015)

Altruism x Treatment Dummy 0.011
(0.026)

Trust 0.023
(0.021)

Trust x Treatment Dummy 0.020
(0.032)

Other-regarding behavior -0.008
(0.018)

Other-regarding behavior x Treatment Dummy -0.045
(0.034)

Prosociality 0.004
(0.019)

Prosociality x Treatment Dummy -0.021
(0.030)

Constant 0.158∗∗∗ 0.157∗∗∗

(0.019) (0.019)

Observations 568 568
Adj. R2 0.0039 -0.0043
Wald test p 0.269 0.882

Table A4.3: Check for the absence of selective attrition. Dependent variable is one
if a child is lost to follow-up, i.e. did not take part in the post-treatment interview,
and zero otherwise. Lost to follow-up is regressed on pre-treatment measures of
prosociality, assignment into treatment group and their interactions. The sample
under study consists of all low SES children with valid measures in the pre-treatment
interview. Prosociality variables are standardized and are elicited before the families
were informed about the assignment. The prosociality measure is constructed using
a principal component analysis for the aggregation of altruism, trust and other-
regarding behavior. To retain the structure of the measure over waves, the same
weights are used to construct the pre-treatment measure as for the post-treatment
measure. Displayed coefficients are OLS estimates with robust standard errors in
brackets . Wald tests retain the null hypothesis that all coefficients in the respective
column (except for the constant) are simultaneously equal to zero (p-values of F -tests
are displayed); in line the Adj. R2 never exceeds 0.004. ∗∗∗, ∗∗, ∗ indicate significance
at the 1%, 5% and 10% level, respectively.
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Prosociality Altruism Trust Other-regarding
behavior

(1) (2) (3) (4)

Treatment Dummy 0.299∗∗∗ 0.202∗∗ 0.235∗∗ 0.173∗

(0.092) (0.095) (0.098) (0.095)
Dummy Cologne 0.017 0.065 0.105 -0.086

(0.104) (0.106) (0.104) (0.099)
Constant -0.166 -0.145 -0.167∗ -0.044

(0.101) (0.104) (0.101) (0.096)

Observations 489 492 494 491
Adj. R2 0.016 0.005 0.008 0.006

Table A4.4: Main analysis including city fixed effects (compare Fig. 4.2 and Fig. 4.3).
City fixed effects are included since our experimental design used conditional random
assignment (conditional on the place of residence of the families). The prosociality
measure is constructed using a principal component analysis for the aggregation
of altruism, trust and other-regarding behavior. All dependent variables are stan-
dardized. Displayed coefficients are OLS estimates with robust standard errors in
brackets. ∗∗∗, ∗∗, ∗ indicate significance at the 1%, 5% and 10% level, respectively.

Prosociality Altruism Trust Other-
regarding
behavior

(1) (2) (3) (4)

Treatment effect (TOT) 0.399∗∗∗ 0.251∗∗ 0.283∗∗ 0.263∗∗

(0.126) (0.126) (0.127) (0.125)

Observations 489 492 494 491

Table A4.5: Treatment-on-the-treated (TOT) analysis using random group assign-
ment as instrument for actual treatment. 133 of the 180 children we intended to
treat were actually matched with a mentor. The main reason for not matching all
ITT children was the lack of voluntary mentors. The prosociality measure is con-
structed using a principal component analysis for the aggregation of altruism, trust
and other-regarding behavior. Coefficients are two-stage least-square (2SLS) esti-
mates with robust standard errors in brackets. ∗∗∗, ∗∗, ∗ indicate significance at the
1%, 5% and 10% level, respectively.
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Prosociality Altruism Trust Other-
regarding
behavior

(1) (2) (3) (4)

Treatment Dummy 0.251∗∗∗ 0.173∗∗ 0.207∗∗ 0.169∗∗

(0.079) (0.088) (0.088) (0.073)
Lagged Dependent Variable 0.515∗∗∗ 0.364∗∗∗ 0.359∗∗∗ 0.605∗∗∗

(0.039) (0.040) (0.046) (0.043)
Constant -0.137∗∗∗ -0.085 -0.068 -0.113∗∗

(0.050) (0.053) (0.054) (0.049)

Observations 475 480 494 489
Adj. R2 0.285 0.151 0.129 0.357

Table A4.6: Treatment effects conditional on baseline levels of outcome variables.
The post-treatment measures are regressed on a treatment dummy and the pre-
treatment measures. The prosociality measure is constructed using a principal com-
ponent analysis for the aggregation of altruism, trust and other-regarding behavior.
To retain the structure of the measure over waves, the same weights are used to con-
struct the pre-treatment measure as for the post-treatment measure. All dependent
variables and their lags are standardized by wave. Displayed coefficients are OLS
estimates with robust standard errors in brackets. ∗∗∗, ∗∗, ∗ indicate significance at
the 1%, 5% and 10% level, respectively.
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Experimental protocols (translations from German)

Binary Dictator Game
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Continuous Dictator Game A
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Continuous Dictator Game B
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A5 Appendix to Chapter 5

Table A5.1: Relation between subjective health status and fairness perceptions
(SOEP)

Dependent variable: subjective health status (higher values indicate better health)
(1) (2) (3) (4)

Unfair wage -0.180∗∗∗ -0.169∗∗∗ -0.199∗∗∗ -0.262∗∗∗

[0.016] [0.018] [0.022] [0.041]
Net wage /1000 0.054∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.032∗

[0.006] [0.008] [0.012] [0.018]
Age -0.019∗∗∗ -0.015∗∗∗ -0.018∗∗∗ -0.005

[0.001] [0.002] [0.003] [0.007]
Female 0.013 -0.041∗ -0.050∗ 0.021

[0.016] [0.021] [0.027] [0.051]
Public sector -0.042∗ -0.013 0.097

[0.025] [0.033] [0.062]
Tenure 0.000 0.000 -0.001

[0.001] [0.001] [0.002]
Experience full time -0.006∗∗∗ -0.005 -0.006

[0.002] [0.003] [0.005]
Experience part time -0.003 -0.000 -0.001

[0.003] [0.005] [0.007]
Realschule 0.029 -0.007 -0.014

[0.024] [0.031] [0.057]
Fachoberschulreife 0.017 -0.022 -0.164∗

[0.038] [0.050] [0.087]
Abitur 0.059∗∗ 0.030 -0.069

[0.030] [0.041] [0.073]
Other schooling degree 0.050 0.001 0.049

[0.041] [0.053] [0.086]
No degree -0.106 -0.169 0.427∗∗∗

[0.086] [0.123] [0.165]
In school 0.056 0.181∗∗∗

[0.127] [0.052]
School info missing 0.028 0.018 0.033
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[0.052] [0.075] [0.121]
Lives in East Germany 0.030 0.078∗∗∗ 0.136∗∗∗

[0.020] [0.026] [0.050]
Self employed 0.069

[0.053]
Firm size < 5 0.066∗ 0.054 0.051

[0.034] [0.054] [0.109]
Firm size 6-10 0.017 0.015 -0.008

[0.033] [0.046] [0.100]
Firm size 10-20 0.032 0.009 -0.062

[0.035] [0.045] [0.092]
Firm size 101-200 0.022 0.062 0.102

[0.033] [0.040] [0.071]
Firm size 201-2000 0.024 0.026 0.010

[0.026] [0.031] [0.055]
Firm size above 2000 -0.005 0.017 0.028

[0.027] [0.032] [0.058]
Firm size missing -0.016 0.023 0.130

[0.104] [0.150] [0.150]
Blue collar unskilled -0.038 -0.024 0.053

[0.052] [0.085] [0.133]
Blue collar craftsman -0.003 -0.042 -0.022

[0.037] [0.043] [0.082]
Blue collar foreman -0.068 -0.095 -0.112

[0.061] [0.065] [0.115]
Blue collar master 0.162 0.110 0.302

[0.103] [0.106] [0.214]
White collar master -0.119 -0.188 -0.232

[0.123] [0.130] [0.186]
White collar skilled 0.016 -0.017 -0.010

[0.041] [0.056] [0.110]
White collar unskilled 0.027 -0.056 -0.192

[0.051] [0.081] [0.147]
White collar craftsman 0.093∗∗∗ 0.051 0.082

[0.035] [0.043] [0.077]
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White collar high qualified 0.141∗∗∗ 0.107∗∗ 0.176∗∗

[0.039] [0.048] [0.087]
White collar manager 0.046 0.038 0.180

[0.067] [0.079] [0.135]
Civil servant low 0.385∗∗∗ 0.360∗∗ -0.231∗

[0.142] [0.159] [0.123]
Civil servant intermediate 0.062 -0.028 -0.103

[0.082] [0.088] [0.147]
Civil servant high 0.101∗ 0.091 0.119

[0.061] [0.073] [0.116]
Civil servant excecutive 0.138∗∗ 0.091 0.139

[0.069] [0.084] [0.126]
Other occupation 0.072∗ -0.040

[0.040] [0.140]
Single 0.004 0.006 -0.034

[0.023] [0.029] [0.092]
Widowed 0.032 0.010 -0.086

[0.070] [0.111] [0.132]
Divorced 0.010 0.018 0.009

[0.036] [0.044] [0.069]
Industry missing -0.125 -0.066 0.005

[0.081] [0.116] [0.177]
Industry energy -0.139 -0.050 -0.015

[0.088] [0.108] [0.184]
Industry mining -0.234 -0.279∗∗ -0.476∗∗∗

[0.145] [0.132] [0.172]
Industry manufacturing -0.112∗ -0.062 -0.139

[0.064] [0.088] [0.137]
Industry construction -0.107∗ -0.015 -0.039

[0.065] [0.088] [0.139]
Industry trade -0.134∗∗ -0.018 -0.102

[0.065] [0.090] [0.150]
Industry transport -0.189∗∗ -0.094 -0.136

[0.074] [0.097] [0.153]
Industry bank/insurance -0.131∗ -0.084 -0.280∗
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[0.073] [0.100] [0.167]
Industry services -0.114∗ -0.041 -0.177

[0.063] [0.088] [0.138]
Openness 0.016∗ 0.019 0.022

[0.010] [0.013] [0.023]
Conscientiousness 0.064∗∗∗ 0.077∗∗∗ 0.036

[0.010] [0.012] [0.024]
Extraversion 0.021∗∗ 0.016 0.022

[0.009] [0.012] [0.022]
Agreeableness 0.049∗∗∗ 0.051∗∗∗ 0.113∗∗∗

[0.009] [0.011] [0.020]
Neuroticism -0.103∗∗∗ -0.102∗∗∗ -0.115∗∗∗

[0.009] [0.011] [0.021]
4.351∗∗∗ 4.334∗∗∗ 4.405∗∗∗ 3.803∗∗∗

Constant [0.030] [0.091] [0.126] [0.343]

Observations 11,638 9,988 5,892 1,878
R-squared 0.080 0.120 0.132 0.100

OLS estimates with robust standard errors in brackets. The dependent variable measures subjec-
tive health status on a five-point scale from “bad” to “very good”. ∗∗∗, ∗∗, ∗ indicate significance at
the 1-, 5-, and 10-percent level, respectively. “Unfair wage” is a dummy variable equal to one if the
respondent answered the question “Do you consider the income that you get at your current job
as fair?” with “no” and zero otherwise. Additional controls include marital status (married (base-
line category), single, widowed, divorced), whether the respondent lives in East Germany in 2009,
labor market status (working in public sector, tenure, full time and part time experience), dum-
mies for educational background (Hauptschule (baseline category), Realschule, Fachoberschulreife,
Abitur, other schooling degree, no schooling degree, missing), dummies for firm size (self-employed,
below 5, 6-10, 11-20, 21-100 (baseline category), 101-200, 201-2000, more than 2000, missing), oc-
cupational status (unskilled blue collar worker, skilled blue collar (baseline category), blue collar
craftsman, blue collar foreman, blue collar master, white collar unskilled, white collar skilled, white
collar craftsman, white collar master, white collar high qualified, white collar management, civil
servant, civil servant intermediate, civil servant high, civil servant executive, other occupation),
industry code (agriculture (baseline category), energy, mining, manufacturing, construction, trade,
transport, bank/insurance, services, missing). Controls also include measures of personality (Big-
5). The sample in column (1) contains all SOEP participants who are in any way active in the
labor market in 2009. The sample in column (2) excludes individuals for whom not all controls are
available or who just started in the current firm and whose work related information therefore does
not refer to the current employer. The sample in column (3) is additionally restricted to dependent
full-time employed individuals with positive income. In addition to the restrictions in column 3,
the sample in column (4) is additionally restricted to individuals who are at least 50 years old.
∗∗∗, ∗∗, ∗ indicate significance of the “Unfair wage” coefficient at the 1-, 5-, and 10-percent level,
respectively.
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Panel data analysis

We complement the cross-sectional analysis and exploit the panel structure of the

SOEP to develop dynamic panel data models which allow testing for a Granger

causal effect of unfair pay on health outcomes. Causality in the sense of Granger

(1969) implies that a potential effect from x on y is absent if lagged values of xt add

no further information to explain yt beyond lagged values of yt itself.19

The bivariate dynamic panel data model we use is adapted from Holtz-Eakin

et al. (1988) and allows for individual fixed effects,

Hit =
h∑

l=1
βlHit−l +

k∑
j=1

δjUit−j + Ii + Yt + uit (1)

where Hit is subjective health of individual i in period t (i = 1, . . . , N ; t = 1, . . . T ).

Hit is explained by its own lags, the lags of the individual’s perception of unfair pay

(Uit), an individual fixed effect (Ii) and year dummies (Yt); h denotes lag lengths

of subjective health and k denotes lag lengths of fairness perception. The null hy-

pothesis to be tested is that there exists no Granger causal effect of unfair wage

perceptions on subjective health, i.e., that all δj are equal to zero.

The data structure of the SOEP does not allow constructing a dynamic panel

data model for specific diseases because questions regarding specific diseases were

only asked in 2009 and 2011. The question concerning subjective health status,

however, was asked more often and we use data from 2001 to 2011. The survey

question regarding perception of unfair pay (see section 5.3) was asked in the SOEP

in the years 2009, 2007 and 2005. This data structure determines the period length

to be two years which is conservative concerning the detection of Granger causality

since causality may become effective faster than that, but using two-years-lags is

common in health economics (see e.g., Michaud and Van Soest (2008)). Given this

data structure, to maximize the number of estimable time periods and to hold the

model as flexible as possible, we fix the number of lags of unfair pay perception (k)

to one and calibrate the model by varying j, the number of lags of subjective health

status. Using Arellano-Bover/Blundell-Bond estimators enables us to estimate the

19For an interpretation and discussion of Granger causality, see Hamilton (1994).
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model for the years 2011, 2009 and 2007, with up to three lags of subjective health

status.20 In light of the medical literature (Roger et al., 2012) and our results in

Table 5.3 (compare columns 3 and 4), we expect to observe the dynamic relation

between health and unfair pay in particular for full-time employees who are older

than 50 years. Therefore, we construct a balanced panel of individuals who work as

full-time dependent employees in the years 2011, 2009 and 2007, and are born in

1961 or earlier. Thus, every individual in the sample is at least 50 years old in one or

more periods. Estimation results are presented in Table A5.2. The estimation shown

in column 1 includes one lag of subjective health; the estimations in columns 2 and

3 include two and three lags, respectively. The Hannan-Quinn information criterion

Andrews and Lu (2001) selects the model with two lags of subjective health status

(column 2) as preferred specification and the Sargan test of overidentification does

not reject the validity of the instrumental variables in this specification (p = 0.187).

A t-test rejects the null hypothesis that the coefficient of the lag of unfair wage

perception is zero (p = 0.025) and therefore indicates a Granger causal effect of

unfair wage perceptions on subjective health. This result is robust for reducing or

increasing the lag lengths of subjective health (column 1 and 3) or extending the

model by adding lags of net wages.21

20For validity of these estimators we have to assume that there is no serial correlation in the
idiosyncratic errors . We cannot test for this assumption since the data structure limits our model
to T = 3, and testing it requires T ≥ 5 (Arellano and Bond, 1991).
21For example, adding one lag of net wage to the specification in column 2 of Table A5.2 does
basically not change coefficients. While the lag of unfair wage is significant (p = 0.021), the lag of
net wage is insignificant (p = 0.943). Results are available upon request.
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Table A5.2: Dynamic panel estimation on the relation between perception of unfair
pay and subjective health status

Dependent variable: subjective health status (higher values indicate better health)
(1) (2) (3)

Subjective Healtht−1 0.100∗∗∗ 0.170∗∗∗ 0.195∗∗∗

[0.021] [0.038] [0.052]
Subjective Healtht−2 0.072∗∗ 0.092∗∗

[0.032] [0.044]
Subjective Healtht−3 0.022

[0.030]
Unfair Waget−1 -0.089∗∗ -0.092∗∗ -0.094∗∗

[0.040] [0.041] [0.042]
Time Dummies Yes Yes Yes

Sargan statistic 21.10∗∗ 14.91 14.07
Hannan-Quinn IC -26.16 -28.41 -25.31
Number of Individuals 1,292 1,292 1,292

Arellano-Bover/Blundell-Bond linear dynamic panel estimations with standard er-
rors in brackets. The balanced sample is restricted to dependent full-time employees
who are born in 1961 or earlier. ∗∗∗, ∗∗, ∗ indicate significance at the 1-, 5-, and
10-percent level, respectively.
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Instructions of the experiment

In the following we present a translation of the original German “employee” instruc-

tions.

Instructions for Employees

You are now taking part in an economic experiment. Please read the following

instructions carefully. Everything that you need to know to participate in this ex-

periment is explained below. Should you have any difficulties in understanding these

instructions please notify us. We will answer your questions at your cubicle.

During the course of the experiment you can earn money. The amount of money

that you earn during the experiment depends on your decisions and the decisions of

another participant. At the end of the experiment you will receive the sum of money

that you earned during the experiment in cash.

Please note that communication between participants is strictly prohibited during

the experiment. In addition we would like to point out that you may only use the

computer functions, which are required for the experiment. Communication between

participants and unnecessary interference with computers will lead to exclusion from

the experiment. In case you have any questions we are glad to assist you.

The participants of this experiment were randomly assigned the roles of employers

and employees. You are an employee for the entire course of the experiment.

In the following you can earn money by working on a task. The money you earn

will be received by your employer, who decides on how to divide the money between

him and you. The interaction is completely anonymous, i.e., at no point you will

learn the identity of the employer and the employer will not learn your identity.

Your work task

The work task is to count the correct number of zeros on prepared sheets containing

zeros and ones. At your cubicle you find an example of such a sheet. At the top

you see the sheet number. Below that you find a table with zeros and ones. To earn
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money, you have to count the correct number of zeros and enter it into the computer.

To do that you will receive a new computer screen for each sheet.

The first input screen is for the first sheet. Under the heading: “How many zeros are

on sheet 1?” you find a box where you can enter a number. Type the correct number

into that box and click on “OK”. As soon as you have clicked on the “OK”-button,

the screen for the next sheet appears etc.

As long as you have not clicked on the OK-button, you can change your entry. As

soon as you have clicked on OK, however, the next screen appears.

For each correctly solved sheet you create revenue of 3 Euro. For example, if there

are 29 zeros on a particular sheet and you type 29, you create revenue of 3 Euro. If

your entry deviates by plus/minus 1 from the correct number of zeros, you receive

1 Euro. If your entry deviates by more than plus/minus 1, you create no revenue

for that particular sheet.

Example:

Suppose, the correct number of zeros on a particular sheet is 15.

If you type 15, you create revenue of 3 Euro.

If you type in either 14 or 16, you create revenue of 1 Euro.

If you type in a number smaller than 14 or larger than 16, you create revenue of

zero Euro.

Please note: As soon you have clicked OK, you cannot revise your entry

anymore. The next screen for the next sheet appears immediately.

On each input screen you are informed about the number of correctly solved sheets,

the number of almost correctly solved sheets (deviation plus/minus 1) as well as the

resulting amount of revenue you have produced. In addition you see on the screen

the remaining time in seconds.
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You have 25 minutes to solve sheets and create revenue (25 minutes = 1500 seconds).

You can work on as many sheets as you like: None, one, two etc. up to a maximum

of 20. The sheets will be allocated as soon as you have read the instructions.

The decision of the employer

Your employer will receive the amount of money you have produced. He divides

the amount of money between himself and you. Any feasible allocation is possible.

For example, the employer can keep the whole amount for himself, give the whole

amount to you, he can keep 10 percent of the amount and give you 90 percent, he

can divide exactly equally etc.

The employer does not work and does not create any revenue. He knows, however,

that the amount of money that he can divide depends on your work effort.

Following your working time and the allocation decision of the employer, you will

have to complete a short questionnaire. Then, the experiment is over and you will

receive your payments in cash, depending on the amount of money and the allocation

decision. If you have any questions, please let us know.

If you have read these instructions, please click “Start”.
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