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Abstract

Correlation functions are an omnipresent tool in astrophysics, and they are routinely used
to study phenomena as diverse as the large-scale structure of the Universe, time-dependent
pulsar signals, and the cosmic microwave background. In many cases, measured correlation
functions are analyzed in the framework of Bayesian statistics, which requires knowledge about
the likelihood of the data. In the case of correlation functions, this probability distribution is
usually approximated as a multivariate Gaussian, which is not necessarily good approximation
– hence, this work aims at finding a better description.
To this end, we exploit fundamental mathematical constraints on correlation functions, which

we use to construct a quasi-Gaussian likelihood. We explain how to compute the constraints, in
particular for multi-dimensional random fields, where this can only be done numerically, check
the quality of the quasi-Gaussian approximation, and compare it to alternative approaches –
most importantly, we test the new-found description of the likelihood in a toy-model Bayesian
analysis.
Finally, we compute correlation functions from the Millennium Simulation and show that they

obey the constraints. By studying statistical properties of the measured correlation functions,
we present further indications for the validity of the quasi-Gaussian approach.

iii





Contents

1 Introduction 1

2 Cosmology and statistics 5
2.1 The standard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 World models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 A brief history of the Universe . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Cosmological parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Problems of the standard model . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Statistical methods in cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Two-point statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Higher-order statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Constraints on correlation functions 21
3.1 Analytical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Comparison of the constraints for one-dimensional fields . . . . . . . . . . . . . . 25

4 A new approximation for the probability distribution of correlation functions 31
4.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Analytical work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 The quasi-Gaussian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Quality of the quasi-Gaussian approximation . . . . . . . . . . . . . . . . 34
4.4 Analytical calculation of mean and covariance matrix . . . . . . . . . . . . . . . . 36

4.4.1 Calculations in ξ-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Transformation of mean and covariance matrix to y-space . . . . . . . . . 41

4.5 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.1 A copula approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2 Box-Cox transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Performance of the quasi-Gaussian approximation in a likelihood analysis 47
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Components of the quasi-Gaussian likelihood . . . . . . . . . . . . . . . . . . . . 48
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



6 Constrained correlation functions from the Millennium Simulation 53
6.1 N -body simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 The Millennium Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Computing correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Testing the constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Quality of the Gaussian approximation in ξ and y-space . . . . . . . . . . . . . . 66

7 Conclusion 71
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Acknowledgments 75

B Bibliography 77

C List of figures 85

D List of tables 87

E List of acronyms 89

vi



CHAPTER 1

Introduction

In the past decades, there have been remarkable advances in cosmology, finally culminating
in the emergence of a cosmological standard model, which is widely accepted despite the fact
that it still faces some challenges on small scales and, even more noteworthy, states that our
Universe consists largely of “dark” components, which are not yet well understood. Due to the
unique situation of cosmology as a science that deals with the Universe as a whole, this feat has
only been possible with the help of sophisticated tools – especially considering that, as Martin
Rees put it, “our brains are made for survival in the African savanna, not for cosmology”1.
Among the most powerful “weaponry” of a modern astronomer are statistical methods, mainly
owing to the fact that large parts of astronomical data are statistical in nature, be it the
distribution of galaxies in the sky, cosmic shear signals from gravitational lensing by large-scale
structure (LSS) in the Universe, or time-series measurements of pulsars – in fact, one of the
most ground-breaking recent astronomical results, namely the determination of cosmological
parameters from the cosmic microwave background (CMB) with unprecedented accuracy by the
Planck Collaboration et al. (2014b), would not have been possible without refined statistical
tools. With upcoming surveys and instruments like Euclid becoming more and more ambitious,
it is to be expected that the requirements to the astronomers’ statistical tool set will rise even
higher.
It is striking, however, that despite the high level of sophistication of this tool set, even in

the very simplest of mathematical setups, not everything is understood – in particular, there
are still gaps in our knowledge about something as (seemingly) basic as two-point statistics of
one-dimensional Gaussian random fields, which is the key motivation for this thesis.
The two-point correlation function ξ is a very common tool in cosmology (in fact, a remarkable

percentage of astronomical literature already deals with higher-order statistics), and, whenever
correlation function measurements are used in a Bayesian framework in order to determine
cosmological parameters, the probability distribution function (PDF) of the correlation function
is needed. Usually, this likelihood is assumed to be Gaussian; examples include an analysis of
the CMB correlation function by Seljak and Bertschinger (1993) or common methods of baryon
acoustic oscillations (BAO) detection (see e.g. Labatie et al. 2012a).
However, the use of Gaussian likelihoods does not necessarily provide the level of precision

required from statistical tools that are used to analyze state-of-the-art astronomical data. For

1 From an interview published in ZEITmagazin 31/08, translated from German.
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1 Introduction

one, objections against the use of Gaussian likelihoods as a “safe default” in cases where knowl-
edge of the exact form of the likelihood is lacking have been raised: For example in the case
of power spectrum estimators, Carron (2013) shows that using Gaussian likelihoods can assign
too much information to the data and thus violate the Cramér-Rao inequality. Along the same
lines, Sun et al. (2013) argue that the use of Gaussian likelihoods in power spectra analyses can
have significant impact on the bias and uncertainty of estimated parameters.

More importantly, there are indications that, specifically in the case of correlation functions,
the assumption of a Gaussian likelihood is problematic: Using independent component analysis,
Hartlap et al. (2009) detect a significant non-Gaussianity in the likelihood in the case of a
cosmic shear study. As a more fundamental argument, the proof of the existence of constraints
on correlation functions (i.e. on the range of allowed values correlation functions can take) by
Schneider and Hartlap (2009) from purely mathematical arguments shows that the likelihood of
the correlation function cannot be truly Gaussian, since a Gaussian distribution would require
infinite support.

Of course, non-Gaussian likelihood functions have been studied before: For the case of the
cosmic shear power spectrum, Sato et al. (2011) use a Gaussian copula to construct a more
accurate likelihood function. The use of a copula requires knowledge of the univariate distribu-
tion, for which the authors find a good approximation from numerical simulations. However, in
the case of correlation functions, work aiming for a description of the non-Gaussian likelihood
is sparse in the literature, and thus, a better description of the correlation function likelihood
is sorely needed in order to “catch up” and allow for more precise constraints on cosmological
parameters from correlation function measurements.
Several steps have been taken in this direction: Clearly, the most fundamental approach is

to try and calculate the probability distribution of correlation functions, p(ξ), analytically – to
do so, Keitel and Schneider (2011) use a Fourier mode expansion of a Gaussian random field in
order to obtain the characteristic function of p(ξ). From it, they calculate the uni- and bivariate
probability distribution of ξ through a Fourier transform. Since this calculation turns out to
be very tedious, an analytical computation of higher-variate PDFs (which would be required
for cosmological parameter estimation) is probably not feasible.
A different approach, namely using a coordinate transformation suggested in Schneider and

Hartlap (2009) (which makes use of the constraints derived in the aforementioned work) in order
to Gaussianize the correlation function and thus obtain a new, “quasi-Gaussian” likelihood
function for the correlation functions of one-dimensional Gaussian random fields, will be one of
the pinnacles of this PhD thesis – some results of the quasi-Gaussian approach have previously
been published in Wilking and Schneider (2013).
This work is structured as follows: In Sect. 2, we briefly introduce the cosmological standard

model. In particular, we stress the connection between cosmology and statistics and highlight
numerous statistical methods that are being used in astronomy. Sect. 3 deals with the con-
straints on correlation functions, summarizing both analytical and numerical results previously
obtained and comparing them. The main focus of Sect. 4 are attempts to find a new approxi-
mation for the probability distribution of correlation functions – we describe analytical as well
as numerical work in that direction, culminating in the quasi-Gaussian approximation, and
also mention alternative approaches: In particular, we try to obtain the multivariate p(ξ) by
coupling the analytical univariate results with a Gaussian copula. Also, the strategy of trans-
forming a random variable in order to obtain a well-known probability distribution suggests a
comparison to similar attempts, e.g. using Box-Cox methods in order to find an optimal vari-
able transformation to Gaussianity (see e.g. Joachimi et al. 2011). We will argue, however, that
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both approaches do not seem to yield satisfactory results in our case.
Thus, in Sect. 5, we stick to the previously derived quasi-Gaussian likelihood and test its

performance in a toy-model likelihood analysis, indicating its possible impact on cosmological
parameter estimation. Sect. 6 summarizes our attempts to test our results in a more astro-
physical context: To this end, we compute correlation functions from a cosmological N -body
simulation and test the relevance of the constraints, as well as the Gaussianity of p(ξ). We
conclude with a short summary and outlook in Sect. 7.
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CHAPTER 2

Cosmology and statistics

In this chapter, we will give an overview of the theoretical background needed for this thesis.
Since this work is thematically situated in the intersection of cosmology and statistics, we will
give a brief overview of the prerequisites from both fields, starting with a summary of our
current cosmological model in Sect. 2.1 and then highlighting the connection to statistics and
introduce required statistical concepts in Sect. 2.2.

2.1 The standard model
As a science, cosmology has evolved significantly over the past decades, not only due to huge
datasets and surveys produced by more and more sophisticated instruments, but also thanks
to fruitful interactions with related scientific fields such as mathematics, computer science,
and physics. These developments have given rise to a standard model of cosmology, the so-
called ΛCDM model. In this chapter, we will briefly summarize this model and its theoretical
foundations, tackle the problem of how to mathematically describe the Universe as a whole
(Sect. 2.1.1) as well as outline our understanding of the history of the Universe (Sect. 2.1.2). In
particular, we will explain how to obtain the parameters of the model using different methods
and give their current best values in Sect. 2.1.3. More detailed introductions to cosmology can
be found in numerous textbooks, e.g. Schneider (2006) or Peacock (1999).
Finally, although the standard model is widely accepted as current state-of-the-art, it is not

devoid of problems – we will highlight some in Sect. 2.1.4.

2.1.1 World models
When describing the Universe as a whole, i.e. on cosmological scales, gravity is the only relevant
interaction, hence we have to work within the framework of General Relativity (GR). Thus,
one of the most fundamental equations in cosmology is Einstein’s field equation:

Gµν = −8πG
c4 Tµν − Λgµν . (2.1)

Einstein’s theory aims for a fully covariant formulation and thus operates in a (four-dimensional)
space-time, thus the most fundamental quantities are tensors with indices (e.g. µ, ν) running
from zero to three. In particular, Gµν denotes the Einstein tensor, which is a function of the
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2 Cosmology and statistics

metric tensor gµν and describes the geometry of space-time. On the other hand, the stress-
energy tensor Tµν encodes the matter and energy content of the Universe; the additional term
in Eq. (2.1) includes the famous cosmological constant Λ, which Einstein originally introduced
to allow for a static Universe, later discarding it. In modern cosmology, it has again found its
place as a description of the Dark Energy component of the Universe.
While the mathematical framework of GR is quite complex, it is often helpful to operate

in a more intuitive picture: Namely, the field equation describes how matter and energy bend
space-time, thus influencing the paths (so-called geodesics) along which matter (and light) move
in space-time.
In order to solve the field equation, one usually assumes the cosmological principle to hold:

It states that the Universe is isotropic and homogeneous on large scales, a claim that is well
justified e.g. from CMB measurements, though obviously not true on small scales. Under these
assumptions, one exact solution of the field equation is the so-called Friedmann-Lemaître-
Robertson-Walker (FLRW) metric (Robertson 1935; Walker 1937), which describes an expand-
ing Universe. In the dynamics of expansion, the spatial location r is given as r(t) = a(t) x,
where x denotes the comoving coordinate, and the scale factor a(t) (by definition, it is equal
to one at present time, a(t0) = 1) incorporates the global expansion.
Using these definitions and plugging in the FLRWmetric as well as the corresponding tensors,

Eq. (2.1) yields the famous Friedmann equations:(
ȧ

a

)2
= 8πG

3 ρ− Kc2

a2 + Λ
3 , (2.2)

ä

a
= −4πG

3

(
ρ+ 3p

c2

)
+ Λ

3 . (2.3)

Here, p and ρ denote pressure and density, respectively, and are related by the equation of state;
K is the curvature of the Universe, which can be used as a classification of cosmological models:
K < 0 corresponds to an open, K > 0 to a closed Universe. Specializing the limiting case K = 0
to today (i.e. t = t0) yields the so-called critical density ρcr, i.e. the total energy density today
corresponding to K = 0. It can be used to define the density parameters Ωi = ρi/ρcr of the
different components of the Universe (denoted by indices), namely radiation, matter, and Λ,
interpreted as Dark Energy (DE). The total energy density is denoted by Ω0 ≡

∑
i Ωi, where

the case Ω0 = 1 corresponds to a spatially flat Universe.
In this formulation, the Friedmann equations can be solved for the various components of

the Universe, i.e. their densities with different scale factor dependence, which can be written in
the form ρi = ρ0i a

−νi , where ρ0i denotes the current density (recall a(t0) = 1). This power-law
ansatz is motivated by the first law of thermodynamics and the components’ equations of state,
which relate pressure and density – for example, in the case of (pressure-less) matter, p = 0,
resulting in νm = 3. In this context, Eq. (2.3) is usually rewritten using the Hubble parameter
H(t) = ȧ/a (whose value today is the Hubble constant H0 ≡ H(t0)), yielding

H2 = H0

(Ωr
a4 + Ωm

a3 + 1− Ω0
a2 + ΩΛ

)
. (2.4)

One important consequence of the expanding Universe is cosmological redshift: Assuming
a distant source emits a photon of wavelength λe, this wavelength is stretched due to cosmic
expansion, resulting in an observed wavelength λobs which is higher by a factor equal to the
scale factor (correspondingly, the observed frequency is lower than the emitted one). Thus, one
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2.1 The standard model

defines the redshift z as
(1 + z) ≡ νe

νobs
= λobs

λe
= 1
a(t) . (2.5)

Assuming the emitted wavelength is known (and shifts due to the local Doppler effect can be
neglected), z can be used as a direct proxy for the distance of the source, depending, of course,
on the underlying cosmological model whose parameters determine the scale factor. Thus,
measuring redshifts (ideally by taking spectra; however, redshift determination by photometric
methods is also possible, though less accurate) is an important tool for distance estimation of
far-away sources, which remains one of the biggest challenges in astronomy. In this context, it
is important to note that the concept of distance in cosmology merits some discussion, since in
an expanding (and potentially curved) Universe, distance is not a straightforward concept: For
example, assuming the angular diameter of a source at a given redshift is known, it is possible
to determine the (comoving) distance from the Friedmann equations, which of course requires
an underlying cosmological model. In an alternative scenario, we might know the luminosity
of a source, allowing us to measure its flux and determine the distance from these quantities.
In Euclidean space, the two measurements would yield the same result, but in general, angular
diameter distance and luminosity distance are not equal.

2.1.2 A brief history of the Universe

The evolution of our Universe is in fact a thermal history, since it can be expressed in terms
of temperature or energy, which decrease as the Universe expands from its singular, hot initial
state to its current form. It can be shown from the Friedmann equations that there must have
been a point in the past where the scale factor a was very close to zero, formally corresponding
to an “infinitesimally small” Universe. This initial state is called the Big Bang, and while we
can trace back the history of the cosmos to very early times, the Big Bang itself is still not
completely understood – in particular due to the fact that the interpolation t → 0 involves
energy scales at which known physics breaks down, and a Grand Unified Theory (GUT), i.e.
a theory that describes both electroweak and strong interactions in a generalized framework,
would be required. While the GUT scale is still out of reach for today’s particle accelerators
such as the Large Hadron Collider (LHC), future experiments might shed light on the GUT
epoch.
Still, we have a fairly good idea about the very early stages of the Universe, namely about the

era of inflation – a very fast exponential expansion of the Universe that happened immediately
after the Big Bang. Inflation is in fact not considered part of the standard model, but rather an
extension of it that has been introduced to solve problems in the standard expansion history,
namely the flatness problem (the fact that the Universe is almost flat today, requiring a fine-
tuning at early time to guarantee Ω0 ≈ 1) as well as the horizon problem, i.e. the homogeneity of
the Universe even between regions that would never have been in causal contact without an early
rapid expansion. While inflation serves to solve these problems, its exact picture is still being
debated and a huge variety of inflation models exist (see Martin et al. 2013 for an exhaustive
compilation as well as a more thorough introduction to inflation). As a final remark on inflation,
it is important to note that until recently, there was no direct proof for inflation. However,
measurements of the CMB polarization by the BICEP2 experiment (BICEP2 Collaboration et
al. 2014) show a clear signal originating from inflationary gravitational waves, thus providing
not only the first direct experimental evidence of the era of inflation, but also the first detection
of gravitational waves.
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2 Cosmology and statistics

In the description of the (standard) expansion history of the Universe, the equilibria and
decoupling processes between the different matter components play a crucial role: In the early
Universe, high temperatures allow particles to be in (thermodynamic) equilibrium, since the
reaction rates for processes that convert particles (e.g. e+e− ↔ γγ for electrons and photons)
are high enough. As the Universe cools down and reaction rates decrease, the various species
decouple successively, namely neutrinos (at a temperature of 1.4 MeV) and, later, protons and
neutrons (at 0.7 MeV). Once the temperature drops below 0.5 MeV, electron-positron pairs can
no longer be created, all remaining anti-matter is annihilated, and finally, at around 0.1 MeV,
the first atomic nuclei (most importantly 4He) form – notably, the evolution described so far
covers “only” the first few minutes after the Big Bang.
When studying the creation of atomic nuclei in the early Universe, usually called Big Bang

nucleosynthesis (BBN), it is possible to compute number densities and mass fractions of different
nuclei. In fact, the standard model predicts a helium abundance of 25 %, which can be used as
a rigorous test of the model.
After BBN, the Universe experiences a long, less eventful era. At this point, the main matter

components are protons, helium nuclei, electrons, photons, neutrinos, and Dark Matter (DM),
believed to consist of weakly interacting massive particles (WIMPs). Below temperatures of
about 1 eV, nuclei (mostly protons) and electrons can form atoms; this era is called recombina-
tion (although it actually happens for the first time, since up to that point, all baryonic matter
was ionized). Shortly after the Universe becomes neutral, it also becomes transparent, since
matters and photons decouple, allowing the latter to stream freely. This marks the origin of
the CMB, which today allows us a glance at the Universe during the epoch of recombination,
i.e. about 380 000 years after the Big Bang, corresponding to a redshift of about 1100. Due to
the ongoing expansion of the Universe, the CMB has since cooled down from a few thousand to
2.7 K, and it has been studied in great detail using satellite missions such as the Cosmic Back-
ground Explorer (COBE), the Wilkinson Microwave Anisotropy Probe (WMAP), and Planck.
While it shows an almost perfect black body spectrum, there are small anisotropies imposed on
it, which constitute one major source for determining cosmological parameters – we will give
results from CMB experiments in Sect. 2.1.3.
It is important to mention that, despite recombination, the Universe today is essentially

completely ionized: The so-called Gunn-Peterson test, i.e. the search for a drop in the spectrum
of very distant quasi-stellar objects (QSOs) (which would result from redshifted Lyα lines of
neutral hydrogen along the line of sight) yields that practically all hydrogen in the intergalactic
medium (IGM) is ionized. While the epoch of reionization is not yet understood in detail, it
has most likely been caused by the first stars or active galactic nuclei (AGN).
So far, we have only considered a homogeneous Universe – however, if we want to understand

how the structures we observe today have formed, we obviously have to consider deviations
from homogeneity. Mathematically, these can be expressed in terms of the density contrast
δ, which describes how the density at a given location differs from the average density of the
Universe:

δ(x, t) = ρ(x, t)− ρ̂(t)
ρ̂(t) . (2.6)

As mentioned before, the seeds of structure formation are already visible in our earliest images
of the Universe, namely in the CMB anisotropies, which are tiny perturbations of order 10−5

originally caused by quantum fluctuations. To describe their evolution, one commonly uses
perturbation theory, so one has to solve the fluid equations. Assuming that the perturbations
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2.1 The standard model

are small and linear theory holds, this can be done analytically, and for example the scale factor
dependence of δ for radiation and matter during different epochs can be computed.
However, as perturbations become larger (most notably on small scales), non-linear structure

growth sets in. In this case, one has to resort to numerical methods (we will go into details
on numerical simulations of structure formation in Sect. 6.1 and also show some exemplary
output of such a simulation, see Fig. 6.1). In large N -body simulations, one tries to reproduce
observable structures in the cosmos, such as galaxies, galaxy clusters, and the filaments and
voids of the large-scale structure (LSS). One striking result from these simulations, which seems
to agree quite well with observations, is that the mass profiles of DM halos of very different
sizes can be approximated by a universal law, the so-called Navarro–Frenk–White (NFW) profile
(Navarro et al. 1996).
At this point, one connection to statistics becomes apparent: Obviously, we cannot expect

the results of numerical simulations to look exactly like our Universe, but rather to share some
of its (statistical) properties. Thus, in order to describe and compare these results, we have
to use statistical methods such as correlation functions, power spectra, and related statistical
quantities. In this context, the density contrast δ is understood as a realization of a random
field, as we will describe in more detail in Sect. 2.2.

2.1.3 Cosmological parameters

When describing our state of knowledge about the Universe as a whole, one usually tries to
summarize our current cosmological model in a few numbers, the so-called cosmological param-
eters. Their respective values have drastic influence on the expansion behavior and geometry
of the Universe; as an example, Fig. 2.1 shows a classification of cosmological models in the
Ωm − ΩΛ-plane.
While numerous fundamentally different methods of obtaining cosmological parameters exist

(see for example Lahav and Liddle 2014 for a brief review), they all agree that the dominat-
ing components in the Universe today are Dark Energy and Cold Dark Matter (hence the
name ΛCDM model). In the following, we will list some methods of measuring cosmological
parameters: One of the most powerful tools of modern cosmology, the CMB angular power
spectrum of fluctuations, can constrain practically all cosmological parameters. In addition to
that, measuring the expansion rate of the Universe allows us to determine the Hubble constant
H0 directly, as done most famously by the Hubble Key Project (Freedman et al. 2001), but also
by time-delay measurements in strong gravitational lensing (Suyu et al. 2013). Type Ia super-
novae (SNe) are almost “standard candles”, so by applying a correction based on the shape of
their light-curves, it is possible to obtain their absolute magnitudes, which can then be used as
a distance indicator. Finally, X-ray observations of galaxy clusters as well as galaxy redshift
surveys allow us to determine the baryon and matter content of the Universe. In conclusion,
it is important to stress that not only have all cosmological parameters been measured by in-
dependent methods, but more remarkably, these distinct measurements establish a consistent
framework.
One difficulty in the description of a cosmological model is the definition of a minimal set

of parameters, since they are, in part, interdependent. Assuming a spatially flat Universe
(which is well justified by measurements), the minimum number of base parameters is usually
taken to be six; as an example, Table 2.1 shows one of the most precise (and most recent)
sets of measurements, namely from the Planck CMB satellite. Here, the first six rows show
the base parameters, which were chosen to be the baryon and CDM density parameters today
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2 Cosmology and statistics

Figure 2.1: Different cosmological models classified by their expansion behavior and spatial geometry.
The diagonal line marks flat models (adapted from Peacock 1999).

(multiplied by h2, where h denotes the Hubble constant in units of 100 km/s/Mpc), the angular
size of the sound horizon at recombination θMC, the optical depth after reionization, the slope
of the primordial power spectrum (assumed to be a power-law, P (k) ∝ kns), and the log power
of the primordial curvature perturbations. The lower six rows show derived parameters, namely
the DE and matter density parameters, the root mean square (RMS) matter fluctuations at
8h−1 Mpc, the reionization redshift, the Hubble constant, and the age of the Universe.

It is important to mention that the measurements from Planck are in some tension with
other measurements of the Hubble constant, including previous CMB measurements by WMAP
(Hinshaw et al. 2013) – a large compilation of cosmological parameters from many sources from
1990 to 2010 (collected by Croft and Dailey 2011) as well as a comparison to Planck results using
median statistics can be found in Crandall and Ratra (2013). There are attempts to explain the
tension between Planck and other results: In the case of the Hubble constant, Schneider and
Sluse (2013) show that measurements from strong lensing time-delays are subject to a potential
bias, which can be large enough to explain the discrepancy between the H0 values from strong
lensing and Planck. As a further example, Li et al. (2014) use a different calibration of light-
curve fitting parameters in Type Ia SNs distance estimation in order to improve compatibility
between the measurements. On a more theoretical note, Wyman et al. (2014) propose an
additional massive sterile neutrino species – however, despite those attempts, it is not yet clear
how to explain the discrepancies between Planck and other measurements.
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2.1 The standard model

Table 2.1: Cosmological parameters for the best-fit ΛCDM model, adapted from Planck Collaboration
et al. (2014a,b) (see text for an explanation of the parameters). The columns show the best-fit values
and 1σ limits obtained when using only the Planck temperature maps plus lensing; for the rightmost
columns, also external data sets (WMAP polarization [WP] at low multipoles `, high-` experiments, as
well as BAO) were used (note that the value for Ωm in the rightmost columns only makes use of Planck
maps and WMAP polarization).

Planck (CMB+lensing) Planck+WP(+highL+BAO)

Parameter Best fit 68% limits Best fit 68% limits

Ωbh
2 . . . . . . . . . 0.022242 0.02217± 0.00033 0.022161 0.02214± 0.00024

Ωch2 . . . . . . . . . 0.11805 0.1186± 0.0031 0.11889 0.1187± 0.0017
100θMC . . . . . . . 1.04150 1.04141± 0.00067 1.04148 1.04147± 0.00056
τ . . . . . . . . . . . . 0.0949 0.089± 0.032 0.0952 0.092± 0.013
ns . . . . . . . . . . . 0.9675 0.9635± 0.0094 0.9611 0.9608± 0.0054
ln(1010As) . . . . . 3.098 3.085± 0.057 3.0973 3.091± 0.025

ΩΛ . . . . . . . . . . 0.6964 0.693± 0.019 0.6914 0.692± 0.010

Ωm . . . . . . . . . . 0.3036 0.307± 0.019 0.3183 0.315+0.016
−0.018

σ8 . . . . . . . . . . . 0.8285 0.823± 0.018 0.8288 0.826± 0.012

zre . . . . . . . . . . 11.45 10.8+3.1
−2.5 11.52 11.3± 1.1

H0 . . . . . . . . . . 68.14 67.9± 1.5 67.77 67.80± 0.77
Age/Gyr . . . . . . 13.784 13.796± 0.058 13.7965 13.798± 0.037

2.1.4 Problems of the standard model

Apart from the aforementioned issues regarding the values of some cosmological parameters
determined from Planck data, the ΛCDM model faces several additional challenges. Most of
them concern the immediate vicinity of our Milky Way: For example, some properties of dwarf
galaxies in the Local Group, in particular their anisotropic spatial distribution and low number,
are not in good agreement with expectations from simulations. To explain this, it has been
suggested to modify the laws of gravity (see for example Kroupa et al. 2012), e.g. by applying
Modified Newtonian Dynamics (MOND), but by now, relativistic extensions of MOND exist
as well. Some of these theories seem to be quite successful in explaining observations on small
scales and, in parts, also on large scales, but there, they also require the introduction of an
additional DM component.
However, since most of these challenges of the standard model arise either on small scales

(where ΛCDM simulations run into problems, since more complex physics than simple gravi-
tational interactions become relevant) or rely on low-number statistics (in extreme cases being
limited to very few or even single objects, e.g. galaxy clusters considered too heavy to be
compatible with ΛCDM), the general consensus seems to be that most likely, these issues can
be remedied without a major change of paradigm, in particular since GR is one of the most
thoroughly tested theories in modern physics.

Nonetheless, it is important to keep in mind that fundamental parts of the cosmological
standard model are still unexplained, in particular the nature of DM and DE, which are still
very much science in progress: As mentioned before, the search for DM candidates, for example
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at the LHC, is still ongoing, and numerous other experiments attempting direct and indirect
detection of DM particles exist (see Arrenberg et al. 2013 for a review on complementary DM
searches). One interesting recent result in this context is the discovery of a new, weak line
in the X-ray spectra of two DM-dominated objects (namely the Andromeda galaxy and the
Perseus galaxy cluster) by Boyarsky et al. (2014), which might be a possible signature of DM
decay, but requires further studies.
The nature of DE poses an even greater mystery: While we do have some knowledge about

it (for example, weak gravitational lensing, galaxy cluster studies, and BAO already allow us
to constrain the DE equation of state; see e.g. Davis 2014 for a qualitative review of different
ways DE has been measured), its origin is still unclear. Even worse, quantum-mechanical pre-
dictions of the DE density are off by many orders of magnitudes, indicating that our theoretical
understanding in this respect is still very incomplete. Future missions, in particular X-ray
observatories such as eROSITA, will hopefully deliver insights into the nature of DE.

2.2 Statistical methods in cosmology

In Sect. 1 and 2.1.2, we already mentioned some examples of applied statistics in astrophysics
– in this chapter, we will give a more detailed introduction to key statistical concepts and
introduce some notation (for a more detailed introduction to statistics and probability theory
from a mathematical point of view, we refer to Hogg et al. 2005). We will mostly concentrate
on basic quantities relevant for this work since giving a complete overview of the field is not
possible in this framework – in recent years, astrostatistics has become a viable science of its
own right, with a very vivid community and even attempts to establish a dedicated journal and
a separate PhD.
The key motivation for a statistical approach to astrophysics is twofold: On the one hand,

the LSS of the Universe is inherently statistic because of its quantum origins. Furthermore, due
to the nature of many astronomical observations (e.g. probing a patch of sky which is assumed
to be representative, but random), astronomical data often comes in the form of random fields.
Thus, this is the first concept we will introduce in Sect. 2.2.1; in the following sections, we will
deal with the challenge of how to characterize a random field, since the field itself is seldom
directly observable. Therefore, we will give an overview of two-point statistics, but also briefly
venture into higher-order statistics, which are important tools nowadays, though we do not
make use of them in the main body of this work.

2.2.1 Random fields

For most practical purposes, it is sufficient to have a graphic understanding of the concept
of a random field, i.e. to think of it simply as spatial data: At different locations, a certain
quantity is measured, and this set of measurements (which are stochastic in nature) forms a
random field. To give a mathematically sound characterization, however, a random field has to
be defined via a mapping from an index space I (e.g. I = R3 for a three-dimensional Cartesian
coordinate system) to a target space T (in the case of a scalar field, for example, T = R). This
mapping g : I → T is one realization of a random field, which in turn is fully characterized by
its probability. Thus, the most fundamental way to define a random field is to understand it as
a mapping from a realization g to its probability, g → R+

0 . However, for the sake of readability,
one usually does not distinguish between the mapping and a realization and simply refers to g
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as “the random field”; we will also follow this convention. In the following, we introduce some
notation.
As a first important concept, we define the Fourier transform of a random field g(x) as

g̃(k) =
∫

dnx g(x) e−ik·x. (2.7)

In practice, especially in the case of numerical simulations of random fields, it is necessary to
evaluate the field at discrete grid points, i.e. simulate it in an n-dimensional periodic cube with
side length L in real space (which is equivalent to introducing a grid in k-space such that the
wave number can only take integer multiples of the smallest possible wave number ∆k = 2π/L).
In order to span the whole space Rn, we can then choose L large enough and introduce periodic
boundary conditions. The discretized form of the inverse of Eq. (2.7) reads

g(x) =
∑
k

g̃k eik·x (2.8)

with the Fourier coefficients
g̃k =

(∆k
2π

)n
g̃(k). (2.9)

In this work, we will mostly be dealing with Gaussian random fields, i.e. fields where the
Fourier components g̃k are statistically independent and follow Gaussian distributions. Gaus-
sian random fields play a crucial role in cosmology, as we will see in Sect. 2.2.3, and have some
convenient mathematical properties: In particular, a Gaussian field is fully described by its
power spectrum (which we will define in the next section); additionally, assuming a continuous
power spectrum, a Gaussian field is always ergodic: This means that, whenever an ensemble
average of a field-related quantity needs to be taken, it can be replaced by a spatial average.
Obviously, this property is vital in many astronomical applications where only one realization
of the random field is available – this can then be remedied by observing different areas of the
sky.

2.2.2 Two-point statistics

The simplest way of analyzing random fields is two-point statistics, i.e. using correlation
functions and power spectra. The two-point correlation function of the field is defined as
ξ(x,y) = 〈g(x) g∗(y)〉 ; it is the Fourier transform of the power spectrum:

ξ(|x|) =
∫ dnk

(2π)nP (|k|) exp(ik · x) =
∫ dk

2πk
n−1P (k) Zn(kx), (2.10)

where the function Zn(η) is obtained from integrating the exponential over the direction of
k. In particular, Z2(η) = J0(η) and Z3(η) = j0(η), where J0(η) denotes the Bessel function
of the first kind of zero order and j0(η) is the spherical Bessel function of zero order. In the
one-dimensional case, Eq. (2.10) becomes a simple cosine transform,

ξ(x) =
∫ ∞

0

dk
π
P (|k|) cos(kx). (2.11)
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As mentioned before, the central property of a Gaussian random field is that it is entirely
specified by its power spectrum, which is given as a function of σ(|k|):

P (|k|) =
( 2π

∆k

)n 〈∣∣g̃k∣∣2〉 =
( 2π

∆k

)n
σ2(|k|). (2.12)

The definition of the correlation function as an ensemble average of the underlying random
field is mainly constructed from a theoretical point of view, since the random field is the
mathematically fundamental quantity in statistics. However, the field itself cannot be measured
directly in many practical applications and thus, a different approach is required. In the case
of galaxy surveys, one defines the correlation function via the probability dp of finding a galaxy
in a volume element dV at distance r from another galaxy:

dp = n̄ [1 + ξ (r)] dV, (2.13)

where n̄ denotes the average galaxy density. Thus, in order to measure ξ, one has to make use of
pair counting methods: Namely, one counts the number dd(s) of galaxy pairs for different sepa-
rations s in the data catalog and in a random catalog (rr(s)) with uniform galaxy distribution,
as well as the cross-correlation dr(s). This procedure shows an advantage of using correlation
functions instead of power spectra in the statistical analysis of galaxy surveys, namely, it is
quite easy to deal with complicated survey geometries (e.g. due to masks) by simply applying
the same mask to the random and the data catalog. Since the catalogs can differ in size (in
particular, it is advisable to generate a large random catalog in order to avoid introducing un-
necessary noise), these count rates have to be normalized by the total number of galaxy pairs,
yielding

DD(s) = dd(s)
1/2 nd (nd − 1) (2.14)

RR(s) = rr(s)
1/2 nr (nr − 1) (2.15)

DR(s) = dr(s)
ndnr

, (2.16)

where nd and nr denote the number of galaxies in the data and random catalog, respectively.
From these count rates, the correlation function can be computed – however, different esti-

mators have been used in the literature (see Table 2.2 for a compilation of the most common
ones). Various studies have been conducted in order to gauge the performance of the various
estimators (see for example Kerscher et al. 2000 or Vargas-Magaña et al. 2013 and references
therein), and in general, the Landy-Szalay (LS) estimator (Landy and Szalay 1993) is consid-
ered to show the best properties (in particular, low bias and variance). Under some simplifying
assumptions (namely infinitely large random catalogs, large survey volumes, and vanishing
correlation function), it can even be shown analytically to have minimal variance.
It is worth mentioning that, although the LS estimator is quite well established, the search

for more sophisticated estimators is still ongoing: For example, Vargas-Magaña et al. (2013)
show that the LS estimator does not reach the Poisson noise limit in the case of a non-vanishing
correlation function and propose a way to find an optimized estimator. The iterative procedure
they set up is based on the observation that all commonly used estimators (i.e. the ones listed
in Table 2.2) are linear combinations of ratios of pair counts – thus, they suggest to use all pair
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Table 2.2: Different correlation function estimators (adapted from Vargas-Magaña et al. 2013).

ξ̂PH = DD

RR
− 1 Peebles and Hauser (1974)

ξ̂Hew = DD −DR
RR

Hewett (1982)

ξ̂DP = DD

DR
− 1 Davis and Peebles (1983)

ξ̂H = DD ×RR
DR2 − 1 Hamilton (1993)

ξ̂LS = DD − 2DR+RR

RR
Landy and Szalay (1993)

count ratios up to second order (i.e. terms of the form DD/RR, DR/RR, . . . , DR×RR/DD2,
RR2/DD2, . . . ) and construct an estimator (called Vargas-Magaña (VM) estimator in the
following) as a weighted sum of all these ratios. The most crucial step is to optimize the
coefficients in the summation, which they do using a χ2 minimization over a large set of mock
catalogs, finally yielding a correlation function estimator that has, by construction, a lower
variance than the LS estimator, but might be biased. This bias can, in principle, be calculated
and accounted for, however, it does show a cosmology dependence. In several tests, Vargas-
Magaña et al. (2013) show that the optimized estimator can yield a 20 − 25% improvement
in the error bars of ξ for Sloan Digital Sky Survey (SDSS) geometry and a ΛCDM correlation
function (see Ahn et al. 2014 for the latest SDSS data release and details on the survey).

A different approach to find an optimized correlation function estimator is performed in Jones
Baxter and Rozo (2013): Assuming a Gaussian likelihood for the observables (i.e. the count
rates D, R, DR, . . . ), they optimize the correlation function estimator in such a way that it
maximizes the likelihood. The resulting estimator can be shown to converge to the LS estimator
in the limit of infinite survey volume. While the authors stress the speed and universality of
their approach when compared to the VM estimator (although the latter yields a more drastic
improvement in the error bars of ξ in some cases), the assumption of multivariate Gaussianity
for the count rates does not seem well motivated.
In summary, the level of sophistication in the methods used to optimize correlation func-

tion estimators may yield improvements in the estimator properties under certain conditions,
however, it makes a careful choice of estimator even more important.

2.2.3 Higher-order statistics

In this section, we will briefly present extensions of the statistical methods discussed so far,
namely higher-order (or n-point) statistics – an extensive introduction to this topic from both
a theoretical and an observational point of view can be found in the review on LSS and pertur-
bation theory by Bernardeau et al. (2002). Higher-order correlation functions and their Fourier
counterparts (in the lowest orders, bi- and trispectra) are of high relevance in astronomy: For
example, the CMB bispectrum has first been measured by the COBE satellite (see Komatsu
et al. 2002), and the earliest measurements of the three-point correlation function from galaxy
catalogs date back as far as Peebles (1975).
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Mathematically, n-point correlation functions are defined analogously to the two-point case
discussed in Sect. 2.2.2. However, since for example an estimator of the three-point function
contains products of three count rates (e.g. DDD), the spatial arrangement of the three points
can have a strong influence on the amplitude and shape of the correlation function – in this
case, one has to distinguish between different triangle configurations, e.g. squished or equilateral
ones.
The most relevant property of higher-order correlation functions for cosmological applications

is the fact that they are zero for Gaussian random fields – as explained in Sect. 2.2.2, a Gaussian
field is completely determined by its power spectrum (or two-point correlation function), and
thus, n-point signals can be used as a probe of non-Gaussianity. An example that is of particular
importance for cosmology is the quest to put constraints on the so-called primordial non-
Gaussianity, i.e. on non-Gaussian components in the density field of the early Universe. Since
the level of non-Gaussianity strongly depends on the exact characteristics of inflation, measuring
it allows us to distinguish between different models of inflation, thus testing fundamental physics
at very high energy scales.
However, the level of primordial non-Gaussianity also has an impact on the formation of

structure in the Universe – for example, Dalal et al. (2008) show that it can result in a scale-
dependent galaxy bias (i.e. a bias between the distribution of galaxies and the underlying
matter). There have been numerous attempts to test and constrain various kinds of primordial
non-Gaussianity, for example by measuring the galaxy power spectrum; however, the most
precise constraints today again stem from CMB measurements: Recent results from Planck
(Planck Collaboration et al. 2014c) including measurements of the CMB bispectrum yield no
evidence for the most commonly studied kind of non-Gaussianity (the so-called “local” one),
they do, however, find hints of unidentified non-Gaussianity signals.

2.2.4 Bayesian methods

Bayesian methods have been widely used in astronomy for many years and are an important
foundation for this work, in particular due to the fact that they constitute a key motivation
for investigating the probability distributions of physical quantities in the first place. Thus,
in this section, we give a brief introduction to Bayesian statistics and mention some example
applications in astronomy. Since the amount of astronomical literature making use of Bayesian
methods is so vast, this introduction can by no means be exhaustive – for a detailed introduction
to Bayesian statistics starting from first principles as well as a more in-depth review of Bayesian
methods in astronomy, we refer to Trotta (2008). Liddle (2009) also gives an overview of
statistical methods in cosmology, summarizing both Bayesian parameter estimation and model
comparison; for a more recent (but brief) overview of Bayesian cosmostatistics with emphasis
on recent CMB results, see Leclercq et al. (2014).
A central aspect of Bayesian statistics is an understanding of the concept of probability which

is fundamentally different from the frequentist one: Namely, probability is considered to be a
measure of the “degree of belief” about a proposition. Thus, the fundamental equation of
Bayesian statistics, Bayes’ Theorem, describes how the probability of a hypothesis (or model,
described by a vector of model parameters θ) changes when taking new data d into account:

p(θ|d) = L(θ) · p(θ)
p(d) . (2.17)
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Here, the left-hand side, i.e. the conditional probability of the model parameters given the data,
is usually called the posterior probability of θ, and p(θ) denotes the prior probability of the
model parameters. In cosmology, the normalization factor p(d) is called Bayesian evidence for
reasons we will explain later. The term we will be most concerned with in this work is the
likelihood L of the model parameters: It is defined as the sample distribution of the data,
L(θ) ≡ p(d|θ), and is usually written as a function of θ only, since the data d is considered to
be fixed (e.g. a measured value). It should be noted that Eq. (2.17) can easily be derived from
the axioms of probability theory and the definition of conditional probability.
If we take the data d to be a measured correlation function ξ, applying Bayes’ Theorem in

order to gain inference on cosmological parameters requires a description of the PDF of ξ, since
the likelihood p(ξ|θ) enters the equation. Technically, p(ξ) also appears in the denominator
of Eq. (2.17), however, it turns out that the Bayesian evidence is not important in parameter
estimation, where it only serves as a normalization constant. As we will briefly elaborate later
on, it does, however, play a crucial role in Bayesian model comparison.
The first major area of applications in Bayesian statistics we would like to discuss is parameter

estimation, i.e. the use of Bayes’ Theorem in order to gain inference on model parameters given
some data. One important step of the setup is the choice of θ: In general, θ will be comprised
of both physically interesting parameters and uninteresting ones, so-called nuisance parameters
(e.g. background or noise). One major advantage of Bayesian methods is the ease of dealing
with such nuisance parameters, namely by simply calculating the full posterior distribution of
all parameters and then integrating over the ones that are not of interest; this process is called
marginalization.
It is important to stress that the output of a Bayesian analysis is always a PDF, whereas in

the context of parameter estimation, one might simply be interested in a point estimate (i.e. a
“best-fit” value for a parameter including error bars). There is no single “best” choice of how to
extract this information from the posterior – the most straightforward thing to do is to give the
maximum of the posterior distribution, the maximum a posteriori (MAP), as a point estimate,
however, depending on the shape of the posterior and the context, other values might be more
suitable. In order to obtain a confidence interval (often called credible intervals in a Bayesian
framework), one gives a range of parameter values so that integrating the posterior over this
range gives a specific value – again, it is apparent that there are multiple ways of obtaining the
interval, and careful consideration should be given to it.
From a technical point of view, sampling the posterior distribution can be quite challenging,

in particular when the number of parameters is large, resulting in a high-dimensional problem.
In order to explore interesting parts of parameter space, one often has to resort to numerical
methods (see e.g. Allison and Dunkley 2014 for a comparison of different sampling techniques),
Markov chain Monte Carlo (MCMC) methods being the most common – among other things,
MCMC can also be used as a tool for integration, e.g. for marginalizing.
When using Bayes’ Theorem for parameter estimation, one obvious challenge is the choice of

priors, i.e. the PDF of the model parameters θ when not taking the new data d into account.
In many cases, one is lucky enough to have a specific idea about the parameters and their
distribution and can thus pick a shape for the prior distribution (usually called an “informative”
prior). When this is not the case, however, a simple flat prior is often used. While this may
seem like the most general thing to do in the absence of previous information, a flat prior does
have caveats, e.g. its dependence on parametrization, i.e. the choice of θ – this problem can be
solved by using a so-called Jeffreys’ prior, which is defined in terms of the Fisher information.
As mentioned before, choosing a likelihood function is, in many cases, problematic: When the
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exact shape of the likelihood is unknown, a multivariate Gaussian is often assumed as default,
even though this choice may be highly unphysical due to the fundamentally different physical
quantities which form the parameter vector θ. In cases where the form of the likelihood function
is too complicated for (repeated) computation or even unknown, it may come in handy to use
likelihood-free inference, e.g. Approximate Bayesian Computation (ABC) methods: Assuming
the process generating the data can be easily simulated, ABC provides a way to probe the
posterior distribution without the need to directly compute the likelihood. Example applica-
tions are shown by Weyant et al. (2013), where ABC is used for cosmological inference from
supernovae Ia, or by Cameron and Pettitt (2012) who use ABC in an analysis of morphological
transformations of high-redshift galaxies.
Since in precision cosmology, one often has to deal with complex probability distributions,

approximations are frequently required. Therefore, Bayesian analyses can profit from tools to
validate the (numerically) computed distributions, in other words, error diagnosis methods for
posterior distributions. One example of this is the Diagnostics for Insufficiencies of Posterior
calculations (DIP) method (Dorn et al. 2013a): Basically, it amounts to sampling the model
parameters θ from their prior distribution and using the sample to generate data according
to the likelihood, then computing the posterior, and finally applying a statistic constructed
specifically for this purpose to check the numerical implementation and approximations made
for the computation of the posterior. The DIP approach is introduced and tested in Dorn et al.
(2013a), an example application can be found in Dorn et al. (2013b), where the authors develop
an approximation for the posterior of the non-Gaussianity parameter fNL (as determined from
CMB data) and then use DIP to validate it.
Besides parameter estimation, model comparison is another large field of application for

the Theorem. As explained in Sect. 2.1.4, the standard model of cosmology still faces nu-
merous challenges, and thus, alternatives, extensions, and refinements are frequently proposed
and tested for their compatibility with recent data using Bayesian methods – see for example
Kilbinger et al. (2010) for a test of several extensions of the standard flat ΛCDM paradigm.
As mentioned before, the denominator on the right-hand side of Bayes’ Theorem plays an

important role in the context of model comparison: To understand this, it is important to keep
in mind that Eq. (2.17) assumes an underlying modelM (which is described by its parameters
θ), and in fact, all probabilities in that equation contain an implicit model dependence. When
spelling out this dependence, i.e. writing all probabilities as conditional onM, the denomina-
tor becomes p(d|M). In order to compare different models Mi, i.e. to try and quantify the
probability of a model in the presence of data, we can again use the Theorem:

p(M|d) = p(d|M) · p(M)
p(d) . (2.18)

Thus, we see that the posterior probability of a model given specific data is directly proportional
to p(d|M), which is the reason this term is called Bayesian evidence. Furthermore, the ratio
of the Bayesian evidences for different models, the so-called Bayes factor, is usually used as an
indicator of which model to prefer. An empirical scale originally introduced by Jeffreys (1961)
can serve as an aid on how to interpret the numerical values of Bayes factors as strength of
evidence. However, it has recently been pointed out by Nesseris and García-Bellido (2013) that
a blind use of Jeffreys’ scale may lead to biased results.
When considering the relation between Bayesian parameter estimation and model selection, it

seems obvious at first glance that the two are separate steps: First, one should decide on which
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model to use and then determine parameter estimates in the framework of the “best” model.
In many cases, however, model selection might be inconclusive, which raises the necessity to
incorporate uncertainties of the underlying model into parameter estimation, i.e. into the PDFs
of the parameters under consideration. One solution to this problem is the use of a method
called Bayesian model averaging (see Parkinson and Liddle 2013 for a review and example
applications in astrophysics).
As a final remark to stress the importance of Bayesian methods in astronomy, it is worth

mentioning that, while many publicly available codes for specific astrophysical problems make
use of Bayesian statistics “under the hood”, a software framework dedicated solely to Bayesian
inference (independent of the particular field of research) has recently been developed, namely
the Bayesian Inference Engine (BIE) (Weinberg 2013). It implements numerous methods of
both parameter estimation and model comparison (including new algorithms for complex data
sets and models), in particular Bayesian updating (i.e. the use of multi-component data, e.g.
multiple observations, to consecutively update the posterior distribution).
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CHAPTER 3

Constraints on correlation functions

One important ingredient for our approach to obtaining an accurate description of the proba-
bility distribution of correlation functions is the fact that their values obey strict mathematical
bounds. In this chapter, we will therefore give a brief overview of previous work on algebraic
constraints on correlation functions, i.e. show how to compute them and stress their relevance.
As a first remark, one should note that the existence of these constraints is a very funda-

mental feature of correlation functions that can be derived from first principles, i.e. from pure
mathematics – in fact, they originate from the non-negativity of the power spectrum P (k) and
thus, the results summarized in this chapter are not limited to astronomical (or even spatial)
correlation functions. In this light, it is surprising that until Schneider and Hartlap (2009),
there have been no studies in the literature about constrained correlation functions (except
for Kurchan 2002, who derives some fundamental constraints on the autocorrelation function).
While it is possible to compute the constraints analytically in certain cases (which we will show
in Sect. 3.1), it turns out that for two- or higher-dimensional random fields, one has to resort to
numerical methods (Sect. 3.2). We conclude with a comparison of analytically and numerically
obtained constraints for the one-dimensional case in Sect. 3.3.

3.1 Analytical results

In the following, we will summarize the results of Schneider and Hartlap (2009), hereafter
SH2009, regarding the analytical computation of constraints on correlation functions. The
constraints are best expressed in terms of the correlation coefficients rn ≡ ξ(n ∆x)/ξ(0), where
we made use of the fact that we use a gridded approach, thus denoting ξ(n ∆x) ≡ ξn, where
∆x = L/N is the separation between adjacent grid points. As it turns out, the constraints can
then be written in the form

rnl(r1, r2, . . . , rn−1) ≤ rn ≤ rnu(r1, r2, . . . , rn−1), (3.1)

meaning that the upper and lower boundaries are functions of the ri with i < n.
SH2009 present two ways of calculating the constraints in the case of homogeneous, isotropic

random fields. The first one applies the Cauchy-Schwartz inequality and yields the following
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constraints:

−1 ≤ r1 ≤ 1, (3.2)
−1 + 2r2

1 ≤ r2 ≤ 1, (3.3)

−1 + (r1 + rn−1)2

1 + rn−2
≤ rn ≤ 1− (r1 − rn−1)2

1− rn−2
, n > 2. (3.4)

However, while this method provides easy, closed expressions for the upper and lower bounds,
stricter constraints can be found – to calculate these, SH2009 use a covariance matrix approach:
Since the covariance matrix Cij = 〈gig∗j 〉 = ξ|i−j| has to be positive semi-definite, its eigenvalues
must be non-negative, allowing the computation of constraints on ri. The bounds obtained this
way differ from the results of the Cauchy-Schwartz method for n ≥ 4, and SH2009 show that
they are, in fact, optimal for a one-dimensional random field, meaning that no stricter bounds
exist for a general power spectrum. As we will elaborate in Sect. 3.2, this is no longer true for
higher dimensions.
The expressions for constraints are ratios of polynomials – as an example, the upper bound

on r5 reads

r5u =
{
−r3

1 + 2(−r2 + r3 + r4 + 1)r2
1 +

(
2r2

2 − 2(r3 − r4 + 1)r2 − r2
4 − 2r4 − r3(2r4 + 1) + 1

)
× r1 − r3

3 + r2
3 + r2

4 + r3 + 2r2r3(r3 + r4 − 1)− r2
2(r3 + 2r4 − 2)− 1

}
/
{
r2

1 − (2r2 + r3 − 1)r1 + r2
2 + r3 − 1

}
. (3.5)

This illustrates the fact that the polynomials quickly become large and hard to handle (for ex-
ample, saving the expression for r16l in plain-text format results in a file of about 12 Megabytes).
Nonetheless, it is necessary to use the bounds obtained from the covariance matrix approach and
not the much simpler Cauchy-Schwartz results, as can be seen when investigating the strength
of the constraints: As a measure of this strength, SH2009 compute the volume fraction of the
allowed region in the space spanned by all possible values of the correlation coefficients rn. It
can easily be seen from Eq. (2.10) that they are bounded by ±1, i.e. −1 ≤ rn ≤ 1, due to the
non-negativity of the power spectrum P (k) and thus, if we consider correlation coefficients rn
with n going up to M , the whole range of them spans a hypercube of volume 2M . In order to
compute the volume fraction VM of the part of the hypercube which is covered by correlation
coefficients obeying the constraints, we have to integrate successively, since the bounds on rn
depend on all ri with i < n:

VM =
∫ r1u

r1l

dr1
2

∫ r2u

r2l

dr2
2 . . .

∫ rMu

rM l

drM
2

=
M∏
k=1

∫ rku

rkl

drk
2 . (3.6)

The results of the integration are plotted in Fig. 3.1 as a function of the number M of
separations under consideration; the lower panel shows the linear dimension (VM )1/M of the
allowed region. In addition to the corresponding plot in SH2009, we also plot the constraints
obtained via the Cauchy-Schwartz method (note that the bump at M = 16 is purely a result
of the numerical integration and does not have any physical meaning) – it is apparent that the
(computationally simpler) bounds from the Cauchy-Schwartz approach are not sufficient, since
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Figure 3.1: Volume fraction of the correlation coefficients obeying the constraints (upper panel) and
linear dimension of the allowed region (lower panel); both are plotted as a function of the maximum
number of separations.

they are by far weaker than the optimal constraints from the covariance matrix method, in
particular for high M .

Thus, it is important to find a way of utilizing the optimal constraints rnu and rnl without
the explicit computation of the ratios of polynomials, which are hard to handle for high n,
as explained before. However, this can easily be done by computing the bounds on rn from
r1, . . . , rn−1 directly, applying the matrix methods presented in SH2009, i.e. by calculating the
eigenvalues of the covariance matrix and exploiting its non-negativity for each set of values
{r1, . . . , rn−1} separately.

While Fig. 3.1 already illustrates the strength of the constraints, one additional result from
SH2009 has to be mentioned in this context: In order to examine a more realistic setting, i.e.
a two-dimensional random field, they consider, as an example, a weak lensing survey. Drawing
realizations of the shear correlation function from a Gaussian likelihood, they check which
fraction of them lie in the allowed region by testing, for each realization, the positive semi-
definiteness of the covariance matrix. Without going into details, it is clear that the result
has to depend on the size of the survey and the number of bins n under consideration, and
SH2009 show that up to about half of the realizations can easily lie in the region explicitly
forbidden by the constraints. Apart from further underlining the strength of the constraints
and demonstrating the inadequacy of a Gaussian likelihood for ξ, this also shows that for
practical applications, it is vital to obtain the constraints for higher-dimensional random fields,
which is the focus of the following section.

3.2 Numerical methods
As mentioned before, the constraints on the correlation coefficients we described so far are only
optimal for one-dimensional random fields. In higher dimensions, they are still obeyed; however,
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3 Constraints on correlation functions

due to the isotropy of the field and the multidimensional integration in Eq. (2.10), tighter
constraints hold, which have to be computed numerically. This section mostly summarizes
work by Röseler (2013), building up on ideas from SH2009.
For the case of a two-dimensional random field, the definition of the correlation function,

Eq. (2.10), can be rewritten as

ξ(x) =
∫ dk

2π kP (k) J0(kx) ≡
∫

dk P̂ (k) J0(kx), (3.7)

where P̂ (k) > 0. Following SH2009, we apply a quadrature formula for the integral, yielding

ξ(x) =
K∑
j=1

wjP̂ (kj) J0(kjx) ≡
K∑
j=1

Wj J0(kjx), (3.8)

where the wj are positive weights given by the quadrature formula, and we defined Wj ≥ 0.
Thus, the correlation coefficient can be expressed as

r(x) ≡ ξ(x)/ξ(0) =
K∑
j=1

Vj J0(kjx), (3.9)

where the coefficients

Vj =
[
K∑
i=1

Wi

]−1

Wj (3.10)

fulfill 0 ≤ Vj ≤ 1 and
∑
Vj = 1. For fields of different dimensionality than two, it is possible to

find similar expressions for r(x) – for example, in three dimensions, the Bessel function J0 is
replaced by the spherical Bessel function j0. Since Eq. (3.9) was obtained using a quadrature
formula for the integral in Eq. (3.7), it is an approximation – however, it becomes arbitrarily
accurate as K →∞.

If we now consider correlation coefficients measured for N different separations xi, each point
r = (r1, r2, . . . , rN ) in this N -dimensional space can be written as a weighted sum along the
curve c(λ) = (J0(λx1), . . . , J0(λxN )), where we used a continuous variable λ with 0 ≤ λ < ∞
instead of discrete wave numbers kj :

r =
K∑
j=1

Vj c(λj). (3.11)

Since 0 ≤ Vj ≤ 1 and
∑
Vj = 1, each point r has to lie within the convex envelope of the

curve c(λ), which corresponds to the constraints on the correlation coefficients – for example,
constructing the convex envelope of the curve c(λ) for two points (r1, r2) in the one-dimensional
case reproduces the analytically known bounds r2u,l(r1).

Thus, finding the constraints reduces to describing the convex envelope of the curve c(λ).
Unfortunately, there does not seem to be a general analytical solution for this problem, and
one has to resort to numerical methods: For example, the qhull algorithm (Barber et al. 1996,
publicly available at http://www.qhull.org) provides an efficient implementation for comput-
ing, among other things, convex hulls. It is, however, limited to inputs of dimensionality lower
than 9, meaning that it is only applicable for a maximum number of separations of N = 8.
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Figure 3.2: Two examples of the curve c(λ) for a two-dimensional random field: In the r1−r2-plane (left
panel), c(λ) = (J0(λ), J0(2λ)), and in the r1−r3-plane (right panel), c(λ) = (J0(λ), J0(3λ)), respectively.
The red circles and the line connecting them show the convex hulls determined by qhull.

As examples for the determination of the constraints, Fig. 3.2 shows the r1 − r2-plane (left
panel) and the r1 − r3-plane (right panel); in both cases, the curve c(λ) is plotted in black up
to λ = 50. In each panel, the red circles show points on the convex envelope of the curve as
determined by qhull, the interconnecting red line is the convex hull. For a given r1, the upper
and lower bounds on r2 are given as intersection with the red hull plotted in the left panel of
Fig. 3.2 – this method can of course be generalized to higher dimensions (e.g. the determination
of r5u,l from r1, . . . , r4, where the convex hull is a hypersurface in a five-dimensional space).
Following this procedure, Röseler (2013) developed a code for computing the constraints for
two- and three-dimensional fields, which we will use in our analysis of correlation functions
measured from the Millennium Simulation in Sect. 6.

3.3 Comparison of the constraints for one-dimensional fields

In the following, we will test the numerical method of obtaining the constraints – to do so, we
compare the numerical results to the analytically computed bounds. As described in Sect. 3.1,
an analytical calculation of the constraints is only possible for one-dimensional Gaussian random
fields, so we confine our comparison to that case.
There are several ways of approaching this: Most straightforward is to compare the con-

straints from the two methods directly, i.e. to compute the upper and lower bounds rnu and
rnl both analytically and numerically and check how much they differ. An alternative ap-
proach involves the coordinate transformation rn → yn, which is a central ingredient of the
quasi-Gaussian approximation: As briefly mentioned in Sect. 1 (more details can be found in
Sect. 4.3, where we give a thorough motivation and introduction to the quasi-Gaussian ap-
proach), we use the constraints in order to Gaussianize the correlation function, namely by
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3 Constraints on correlation functions

computing
yn = atanh2rn − rnu − rnl

rnu − rnl
. (3.12)

Since this transformation is where the constraints are mostly used in this work, it can and should
be applied as a means to compare the analytically and numerically obtained bounds, namely
by using the different sets of constraints in the transformation and comparing the resulting yn.
As previously described, the constraints on rn are functions of the correlation coefficients with

lower lags, and thus, we need input values for r1, . . . , rn−1 in order to compute and compare the
different rnl and rnu. Again, two possibilities arise: We can, on the one hand, use realizations of
correlation coefficients obtained from numerical simulations (described later in Sect. 4.1) – while
this approach is closest to “real-life” applications, it requires assumptions about the underlying
random field and, in particular, its power spectrum. Thus, a more general approach is to draw
the correlation coefficients randomly, i.e. from a uniform distribution over the allowed range,
rn ∈ ]rnl, rnu[. Due to the nature of the constraints, this is an iterative procedure, meaning
that one has to draw r1 ∈ ]r1l, r1u[, compute r2l,u from this r1, then draw r2 ∈ ]r2l, r2u[ in order
to determine r3l,u, and so on.

A direct comparison of analytically and numerically obtained rnu and rnl is shown in Fig. 3.3.
For each bound rnu,l, the required input values of the correlation coefficients ri with i < n
are drawn uniformly as previously described. In order to perform a statistically significant
check, this procedure is repeated 500 times, meaning that we generate 500 realizations of the
input correlation coefficients and compute the upper and lower bounds both numerically and
analytically for each realization. The values plotted in the figure are obtained by averaging
over the 500 realizations – it can be clearly seen that the numerical and analytical bounds are
in good agreement.
In order to quantify this result, we check the difference between the analytical and numerical

bounds. In addition, we also investigate how much impact the sampling of the convex hull
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Figure 3.3: Direct comparison of the analytically and numerically obtained bounds, averaged over 500
realizations. Each cross in the left panel denotes a pair of upper bounds (rana

nu , r
ana
nu ) and is labeled with

the value of n, the right panel shows the same plot for the lower bounds (see text for details).
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3.3 Comparison of the constraints for one-dimensional fields

of the curve c(λ) has on the accuracy of the numerical bounds. As shown by Röseler (2013),
it is sufficient to sample the curve c(λ) for values of 0 ≤ λ ≤ 2π; for the direct comparison
shown in Fig. 3.3, the sampling rate in the code developed by Röseler (2013) was set to 100
steps – in the following, we vary this number. The results can be seen in Fig. 3.4: Here, the
differences rana

u,l −rnum
u,l are plotted as functions of n, where the convex hull is sampled using 100

(red crosses), 200 (blue circles), and 300 (green triangles) steps. The upper three sets of points,
i.e. the ones with positive slopes, show the difference rana

u − rnum
u between the analytical and

numerical upper bounds, whereas the ones with negative slopes depict the deviation between
the lower bounds, i.e. rana

l − rnum
l .

Three conclusions can be drawn from Fig. 3.4: First, the deviation of the numerically obtained
bounds from the analytical shows a trend to grow with n – this is to be expected, since the
sampling of the convex hull becomes more challenging with increasing dimensionality. Second,
the impact of this sampling has a strong impact on the accuracy of the numerical calculation of
the bounds; namely, the difference between the numerical and the analytical results decreases
by about a factor of three when doubling the number of steps used for the convex hull sampling.
In fact, this sampling is the limiting factor for the accuracy of the numerical bounds, as can
be seen from the third observation: In the case of the upper bounds, the numerical results
are systematically smaller than the exact analytical values, whereas for the lower bounds, the
numerical values are too high. This effect is an expected consequence of the non-continuous
approximation for the smooth hull – due to convexity, the splines interconnecting the points
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Figure 3.4: The difference between the analytically and numerically obtained bounds, averaged over 500
realizations. The upper three sets of points correspond to the difference rana

u − rnum
u , whereas the ones

with negative slopes show rana
l − rnum

l . Furthermore, the different symbols denote the number of steps
used to sample the convex hull of the curve c(λ) for values of 0 ≤ λ ≤ 2π, namely 100 (red crosses), 200
(blue circles), and 300 (green triangles) steps.
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3 Constraints on correlation functions

used to sample the hull always have to be located inside the hull. To clarify this, the illustrative
plot in Fig. 3.5 shows the exemplary contours of the allowed region in ri − rj-space: Here, the
(arbitrarily chosen) black, smooth curve depicts the exact region, whereas the red lines show
the non-continuous approximation. For illustrative purposes, we use a very low number of
points to sample the hull in order to show its impact – it can be clearly seen that the numerical
approximation overestimates the lower bound and underestimates the upper one.

ri

r j

Figure 3.5: Illustration of the effect of the convex hull sampling. The black curve shows the exact shape
of the allowed region in the ri − rj-plane, and the red lines are a non-continuous approximation, which
overestimates the lower bound and underestimates the upper one. Note that the shape of the region is
chosen arbitrarily, since it serves a purely illustrative purpose.

In summary, the accuracy of the numerical constraints can be increased by improving the
sampling of the hull. While a larger number of steps could presumably improve the results
even further, using more than 300 steps for the sampling becomes impractical due to the
computational costs – however, as the following tests will further demonstrate, using 300 steps
seems sufficiently accurate.
As mentioned before, another important check for the accuracy of the numerical methods used

to compute the bounds is to apply the transformation rn → yn and to compare the resulting
yn. In the following, we adopt correlation coefficients from simulations instead of uniformly
drawn ones as input for the computation of the bounds. Namely, we use 500 realizations of the
correlation function on a one-dimensional Gaussian field of length L with N = 32 grid points
and a Gaussian power spectrum with Lk0 = 80; for details on the simulations used in this work,
we refer to Sect. 4.1.
For each simulated realization of the correlation coefficients, we compute the bounds rnu and

rnl for each n both numerically and analytically, and use them to transform rn to yn as defined
in Eq. (3.12). To visualize the resulting values for yn, we again average over the 500 realizations
and plot the numerical and analytical values against each other – as can be seen in Fig. 3.6,
they agree very well.
As before, we also plot the difference between the analytical and numerical values, and
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Figure 3.6: Direct comparison of the yn, computed using the analytically and numerically obtained
bounds, averaged over 500 realizations. The input values for the computation of the bounds used in
the transformation rn → yn stem from 500 simulated realizations of the correlation function on a one-
dimensional Gaussian field of length L with N = 32 grid points and a Gaussian power spectrum with
Lk0 = 80. Again, the labels next to the crosses denote the value of n.

investigate the impact of the sampling of the convex hull – Fig. 3.7 shows yana
n − ynum

n as a
function of n, where 100 (left panel), 200 (central panel), and 300 (right panel) steps were
used in the hull sampling. As before, the values plotted in the figure are the average over the
500 realizations; the error bars denote the standard deviations. The accuracy of the numerical
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Figure 3.7: The difference between the yn computed using the analytically and the numerically obtained
bounds. As described in the text and the caption of Fig. 3.6, the plotted values are again averages over
500 realizations; the error bars show the standard deviations. The three panels differ in the number of
steps used to sample the convex hull of the curve c(λ) for 0 ≤ λ ≤ 2π, namely 100 (left), 200 (center),
and 300 (right).
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3 Constraints on correlation functions

approximation again shows a strong dependence on the number of steps used to sample the
convex hull. Nonetheless, the difference between the values of yn computed using the analytical
and the numerical bounds becomes very small in the rightmost panel of Fig. 3.7 – thus, we
conclude that the problem of the non-continuous approximation of the curve c(λ) and its
convex hull can be tackled, and using 300 steps in the sampling yields sufficiently accurate
bounds.
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CHAPTER 4

A new approximation for the probability
distribution of correlation functions

In the following, we will show how to use the constraints on correlation functions described
in the previous chapter in order to obtain a new approximation for the PDF of correlation
functions of one-dimensional Gaussian random fields – most results in this chapter have been
published in Wilking and Schneider (2013). Before introducing the new approximation, which
we call quasi-Gaussian, in Sect. 4.3, it is necessary to briefly explain the numerical simulations
needed to obtain and test it as well as go into the analytical work on p(ξ) by Keitel and
Schneider (2011). We conclude with some tests regarding the accuracy of the quasi-Gaussian
approximation and also investigate two alternative approaches.

4.1 Simulations

In this work, numerical simulations in order to generate realizations of the correlation functions
of random fields with given power spectra play a crucial role. The purpose of these simulations
is manifold: One the one hand, they can be used to verify that the constraints on correlation
functions are actually obeyed, but additionally, the possibility to generate many realizations of ξ
allows us to probe the distribution p(ξ) directly. Thus, it is possible to test various descriptions
of this distribution, in particular study the Gaussianity of ξ, and also check the analytical
results for p(ξ).
Since details of the simulations used in this work can be found in Wilking and Schneider

(2013), we will limit ourselves to a brief description: Instead of generating a random field and
computing the correlation function from the field using an estimator, we apply a new method.
Namely, after analytically computing the PDF of the power spectrum, it is possible to directly
draw realizations of the power spectrum and obtain ξ by Fourier transforming. Additionally, in
order to further improve our simulations, we apply quasi-random (or “sub-random”) sampling
instead of uniform sampling, which guarantees that we probe the whole space of power spectra
even in the case of small sample sizes. An introduction to quasi-randomness can be found in
Press et al. (2007) – one way to generate quasi-random samples is by using a so-called Sobol’
sequence (see Joe and Kuo 2008), we use an implementation available at the authors’ website
(http://web.maths.unsw.edu.au/~fkuo/sobol/).
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4 A new approximation for the probability distribution of correlation functions

4.2 Analytical work

In this section, we will summarize some results from Keitel and Schneider (2011) regarding the
analytical calculation of p(ξ) which are necessary ingredients for our quasi-Gaussian approach.
A central mathematical quantity in this context is the characteristic function, usually denoted
by ψ(s), which is defined as the Fourier transform of the PDF of a random variable. As such, the
corresponding characteristic function completely determines a probability distribution and has
some useful properties: For example, the moments of a distribution can be expressed in terms
of the derivative of its characteristic function (see Kendall and Stuart 1977 for details). Since
we will need to compute characteristic functions in the derivation of the mean and covariance
of ξ, we postpone mathematical details and a rigorous definition of ψ(s) to Sect. 4.4.1.

From the characteristic function, Keitel and Schneider (2011) compute p(ξ) via Fourier trans-
form, i.e. by integration using the theorem of residues. However, this turns out to be challenging
both numerically and analytically, and they obtain only the uni- and bivariate distributions.
Thus, these analytical results are of limited use for a likelihood analysis, where one would deal
with correlation functions measured at more lags than two – they do, however, play a crucial
role in computing the quasi-Gaussian PDF, which requires p(ξ0) to be known, as we will show
in Sect. 4.3. In the univariate case, the exact form of p(ξ) as computed by Keitel and Schneider
(2011) reads

p(ξ) =
∞∑
n=1
{H(ξ)H(Cn)−H(−ξ)H(−Cn)}

× exp
(
− ξ

2Cn

) 1
2Cn

∞∏
m 6=n

1
1− Cm

Cn

, (4.1)

where H(ξ) denotes the Heaviside step function and the Cn are given by Cn = σ2
n cos(knx), i.e.

as functions of the wave number kn, the lag parameter x, and the σn of the underlying random
field. Thus, for the zero-lag correlation function ξ0, Cn = σ2

n holds. As a final remark, it needs
to be stressed that the analytical results by Keitel and Schneider (2011) have been shown to
agree well with simulations.

4.3 The quasi-Gaussian approach

In order to obtain an accurate description of the full multivariate PDF of ξ, the quasi-Gaussian
approach follows up on an idea originally suggested by Schneider and Hartlap (2009), namely
to transform ξ to a new variable y for which the Gaussian approximation holds, and then
obtain p(ξ) by transforming the Gaussian in y-space back to ξ-space. If the constraints are the
main reason for the non-Gaussianity of p(ξ) (which seems to be a valid assumption, since, as
Schneider and Hartlap (2009) show, the shape of the distribution of the correlation coefficients
is similar to the shape of the region allowed by the upper and lower bounds, even if it is located
well inside the bounds), then a viable transformation to “Gaussianize” the rn is

rn → yn = atanh2rn − rnu − rnl
rnu − rnl

. (4.2)
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4.3 The quasi-Gaussian approach

Here, the function in the argument of the inverse hyperbolic tangent uses the constraints to
map the allowed range of rn to the interval (−1,+1), which is then mapped to the entire real
axis (−∞,+∞). The choice of atanh by Schneider and Hartlap (2009) was an “educated guess”
rather than based on theoretical arguments. It is notable that despite its simple analytical
form, the transformation r → y is highly non-linear due to the nature of the constraints – as
explained in Sect. 3, the upper and lower bounds on rn depend on all ri with i < n.

While the transformation in Eq. (4.2) yields a quantity y which, by construction, is un-
bounded, this fact does not mean that it is Gaussian distributed. To compare the quality of
the Gaussian approximation in ξ- and y-space, Fig. 4.1 shows two examples of bivariate dis-
tributions. Here, the black contours are the iso-probability contours obtained from 400 000
simulated realizations, and the red ones show the best-fitting Gaussians, i.e. normal distribu-
tions with means and covariance matrices computed from the simulated samples. It is clear
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Figure 4.1: Iso-probability contours of p(ξ3, ξ6) (left) and p(y3, y6) (right) for 400 000 realizations of a
field with N = 32 grid points and a Gaussian power spectrum, where the length L of the field and the
width k0 of the power spectrum are related by Lk0 = 80. The dashed red contours show the best-fitting
Gaussian approximations in both cases.

“by eye” that the Gaussian approximation in y-space is very accurate (in particular, far more
accurate than the Gaussian in ξ-space), but nonetheless, it is important to test this assumption
in a more rigorous way. Results from these tests are presented in Sect. 4.3.1; for the following,
we simply assume that the Gaussian approximation in y-space holds and show how to obtain
the quasi-Gaussian PDF for ξ.
As an intermediate step, we first need to transform the Gaussian distribution for y to r-space.

To do so, we make use of the conservation of probability, which, in the univariate case, can be
written as pr(r) dr = py(y) dy. Thus, in general,

pr (r1, . . . , rn) = py (y1, . . . , yn) · |det (Jr→y)| , (4.3)

where Jr→y denotes the Jacobian of the transformation, i.e. Jr→yij = ∂yi/∂rj . The partial
derivatives required for the determinant of the Jacobian can be computed from the constraints
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4 A new approximation for the probability distribution of correlation functions

derived in Sect. 3.
As a final next step, the distribution pr has to be transformed to ξ-space. The determinant

of the Jacobian for the transformation ξ → r is simple, since ri = ξi/ξ0; however, we have to
take into account that in ξ-space, an additional variable, namely ξ0, exists. Thus, we have to
write down the transformation as follows:

p(ξ0, ξ1, . . . , ξn)
n∏
i=0

dξi = p′(ξ1, . . . , ξn | ξ0) p(ξ0)
n∏
i=1

dξi

= pr(r1, . . . , rn | ξ0) p(ξ0)
n∏
i=1

dri

= py(y1, . . . , yn | ξ0) p(ξ0)
n∏
i=1

dyi. (4.4)

Hence, we need the conditional probability on ξ0, which raises the problem of a potential ξ0-
dependence of the mean 〈y〉 and the covariance matrix Cy of the Gaussian in y-space. As
shown in Wilking and Schneider (2013), the covariance matrix is “quite independent” of ξ0,
and neglecting this dependence is a reasonably good approximation. The mean, however, does
show a non-negligible ξ0-dependence. In principle, an analytical computation of 〈y〉 and Cy
should be possible, and our attempts in this respect will be discussed in detail in Sect. 4.4.
However, since this computation yields no practically usable results, we determine both 〈y〉
and Cy from simulations, namely as sample mean and covariance from realizations with a ξ0
close to the given value.
Equipped with all these ingredients (i.e. the Gaussian in y-space including its mean and

covariance matrix, as well as the determinant of the Jacobians), we can finally compute the
quasi-Gaussian p(ξ). As an example, Fig. 4.2 shows the bivariate distribution p(ξ1, ξ2) obtained
from simulations (black contours) as well as the quasi-Gaussian approximation (red contours),
which clearly agree very well.

4.3.1 Quality of the quasi-Gaussian approximation

While it is obvious from plots of uni- or bivariate distributions (such as Fig. 4.2) that the
quasi-Gaussian approximation describes the true PDF of the simulated correlation functions
very accurately, it is important to quantify these results. To do so, we performed several
tests, described in detail in Wilking and Schneider (2013): One well-established method of
comparing probability distributions is the so-called Kullback-Leibler (KL) divergence, which
gives a measure of distance between PDFs. In the case of the univariate distribution p(ξ1), for
example, the KL divergence of the true PDF obtained from simulations and the quasi-Gaussian
one is smaller than the one of the true and the Gaussian PDF by more than one order of
magnitude.
An additional, straightforward test is to directly quantify the level of Gaussianity of the

transformed variables y and compare it to the one of the original quantity ξ. One advantage of
this approach is that multivariate tests can easily be performed, which is essential, since the fact
that the univariate PDFs p(yi) are “quite Gaussian” does not imply that the full multivariate
distribution p(y) is well described by a multivariate Gaussian distribution.
While numerous tests for multivariate Gaussianity exist (see e.g. Henze 2002 for a review),

we confine our analysis to moment-based tests. To do so, it is necessary to generalize skewness
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Figure 4.2: p(ξ1, ξ2) for a field with N = 32 grid points and a Gaussian power spectrum with Lk0 = 80.
The dashed red contours show the transformed Gaussian approximation from y-space.

and kurtosis to higher dimensions – we use the well-established definitions by Mardia (1970,
1974): Considering a sample of d-dimensional vectors xi, a measure of skewness for a d-variate
distribution can be written as

γd = 1
n2

n∑
i=1

n∑
j=1

{
(xi − µ)TC−1 (xj − µ)

}3
, (4.5)

where n denotes the sample size, and µ and C are the mean and covariance matrix of the
sample. The corresponding kurtosis measure is

κd = 1
n

n∑
i=1

{
(xi − µ)TC−1 (xi − µ)

}2
− d(d+ 2), (4.6)

where we subtracted the last term to make sure that the kurtosis of a Gaussian sample is zero.
Fig. 4.3 shows the results of the multivariate test. For a simulation run of a field with N = 32

grid points and a Gaussian power spectrum with Lk0 = 80 (using only 5000 realizations to speed
up calculations), the skewness and kurtosis of the n-variate distributions, i.e. p(ξ0, . . . , ξn−1)
(black circles) and p(y1, . . . , yn) (red, upward triangles) are plotted as a function of n. For
comparison, the blue squares show the moments of the n-variate distributions marginalized
from a 15-variate Gaussian. It is apparent that also in the multivariate case, the assumption of
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Figure 4.3: Mardia’s skewness (left-hand panel) and kurtosis (right-hand panel) of n-variate {ξ}- (black
circles) and {y}-samples (red, upward triangles) for a Gaussian power spectrum with Lk0 = 80. The
green, downward triangles show the skewness / kurtosis of {y}-samples obtained under the assumption
of a Gaussian {ξ}-sample, and the blue squares show the skewness / kurtosis of Gaussian samples. See
text for more details.

Gaussianity is by far better justified for the transformed variables y than for ξ, although the
approximation is not perfect.
To avert comparing PDFs of different random variables (namely ξ and y), we perform an

additional check: We draw a 15-variate Gaussian sample in ξ-space and transform it to y-
space (using only the realizations which lie inside the constraints); the corresponding values of
skewness and kurtosis are shown as green, downward triangles. Clearly, they are by far higher
than those obtained for the “actual” y-samples, further justifying our approach.

4.4 Analytical calculation of mean and covariance matrix

As mentioned in Sect. 4.3, the analytical calculation of the ξ0-dependence of the mean and the
covariance matrix does not produce practically usable results. Nonetheless, these results are
interesting from a theoretical point of view and we will thus present them in the following.
The computation of the quasi-Gaussian approximation requires the mean y and the covariance
matrix Cy. However, we will first show calculations in ξ-space before addressing the problem
of how to transform the results to y-space.

4.4.1 Calculations in ξ-space

In order to compute the ξ0-dependence of the mean 〈ξ1〉 (where the index is purely a numbering
and does not denote the lag), we express the mean as the first moment of the probability
distribution:

〈ξ1〉 (ξ0) =
∫

dξ1 ξ1 p(ξ1|ξ0) (4.7)
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4.4 Analytical calculation of mean and covariance matrix

with the conditional probability
p(ξ1|ξ0) = p(ξ0, ξ1)

p(ξ0) . (4.8)

Following Keitel and Schneider 2011, hereafter KS2011, we can compute the left-hand side of
Eq. (4.7) by making use of the fact that the moments of a probability distribution are related
to the derivatives of its characteristic function, which is defined as the Fourier transform of the
PDF (Φ↔ p in short-hand notation, see Kendall and Stuart 1977 for details on characteristic
functions). Thus, we need to compute the characteristic function of p(ξ1|ξ0), which is defined
by

Φ(s1; ξ0) =
∫

dξ1 eis1ξ1 p(ξ1|ξ0), (4.9)

p(ξ1|ξ0) =
∫ ds1

2π e−is1ξ1 Φ(s1; ξ0). (4.10)

Making use of the characteristic function Ψ(s0, s1) (where Ψ(s0, s1) ↔ p(ξ0, ξ1)) computed in
KS2011, we can also write

p(ξ1|ξ0) = 1
p(ξ0)

∫ ds0
2π

∫ ds1
2π e−is0ξ0 e−is1ξ1 Ψ(s0, s1)

=
∫ ds1

2π e−is1ξ1 1
p(ξ0)

∫ ds0
2π e−is0ξ0 Ψ(s0, s1). (4.11)

Comparison with Eq. (4.10) yields

Φ(s1; ξ0) = 1
p(ξ0)

∫ ds0
2π e−is0ξ0 Ψ(s0, s1). (4.12)

As stated before, the kth moment Mk of a PDF is related to the kth derivative of the corre-
sponding characteristic function ψ(s), namely by

Mk = i−k dkψ(s)
dsk

∣∣∣∣∣
s=0

. (4.13)

Thus, we can calculate the mean, i.e. the left-hand side of Eq. (4.7), from the characteristic
function in Eq. (4.12):

〈ξ1〉(ξ0) = d
ids1

Φ(s1; ξ0)
∣∣∣
s1=0

(4.14)

= 1
p(ξ0)

∫ ds0
2π e−is0ξ0 d

ids1
Ψ(s0, s1)

∣∣∣
s1=0

. (4.15)

Using the result from KS2011 for the bivariate characteristic function,

Ψ(s0, s1) =
∞∏
n=1

1
1− 2is0Cn0 − 2is1Cn1

, (4.16)
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4 A new approximation for the probability distribution of correlation functions

where Cnm = σ2
n cos(knxm), we can calculate the derivative as

d
ids1

Ψ(s0, s1)
∣∣∣
s1=0

=
∞∑
n=1

2Cn1

(1− 2is0Cn0)2
∏
k 6=n

1
1− 2is0Ck0

=
∞∑
n=1

2Cn1
1− 2is0Cn0

∞∏
k=1

1
1− 2is0Ck0

= Ψ(s0)
∞∑
n=1

2Cn1
1− 2is0Cn0︸ ︷︷ ︸

Yn(s0)

, (4.17)

where we inserted the univariate characteristic function computed in KS2011,

Ψ(s0) =
∞∏
n=1

1
1− 2is0Cn0

. (4.18)

To calculate the integral in Eq. (4.15), we use a Taylor expansion of Yn(s0) from Eq. (4.17):

Yn(s0) ≈
∞∑
k=0

2k+1 (is0)k Ckn0Cn1. (4.19)

We insert the derivative into Eq. (4.15) and thus obtain

〈ξ1〉 (ξ0) ≈ 1
p (ξ0)

∫ ds0
2π e−is0ξ0 Ψ (s0)

∞∑
n=1

∞∑
k=0

2k+1 (is0)k Ckn0Cn1. (4.20)

According to the definition of Ψ(s0)↔ p(ξ0),

dkp (ξ0)
dξk0

=
∫ ds0

2π (−is0)k e−is0ξ0 Ψ (s0) , (4.21)

and thus, after changing the order of summation and integration, Eq. (4.20) can finally be
written as

〈ξ1〉(ξ0) =
order∑
k=0

modes∑
n=1

2k+1 Ckn0Cn1 (−1)k dkp(ξ0)
dξk0

1
p(ξ0) . (4.22)

Inserting the known result for p(ξ0) and calculating its derivatives allows us to compare the
analytical result to simulations. The results can be seen in Fig. 4.4; here, the black points with
error bars show the mean of ξn for different lags n as determined from simulations (100 000
realizations, Gaussian power spectrum with Lk0 = 100), and the colored symbols show the
analytical results to different order (see figure caption for details). It seems that, although the
Taylor series in Eq. (4.22) does not converge, a truncation at order 10 yields sufficient accuracy,
barring some numerical issues for very low ξ0-values. We will briefly comment on these after
showing results of the analytical calculation of the covariance matrix.

The ξ0-dependence of the covariance matrix Cξ can be computed in a similar way to the
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Figure 4.4: The mean of ξn for different n as function of ξ0, determined from simulations (black points
with error bars) and analytically to zeroth (red crosses), first (blue circles), second (green filled triangles;
left panel only), third (purple empty triangles; left panel only), and tenth (brown squares) order.

mean. We start from the general definition of covariance,

cov (ξ1, ξ2) (ξ0) ≡ 〈(ξ1 − 〈ξ1〉) (ξ2 − 〈ξ2〉)〉ξ0
=

∫
dξ1 dξ2 (ξ1 − 〈ξ1〉) (ξ2 − 〈ξ2〉) p(ξ1, ξ2|ξ0)

=
∫

dξ1 dξ2 ξ1ξ2 p(ξ1, ξ2|ξ0)︸ ︷︷ ︸
≡A

+ 〈ξ1〉 (ξ0) 〈ξ2〉 (ξ0)
∫

dξ1 dξ2 p(ξ1, ξ2|ξ0)︸ ︷︷ ︸
=1

− 〈ξ1〉 (ξ0)
∫

dξ1 dξ2 ξ2 p(ξ1, ξ2|ξ0)︸ ︷︷ ︸
=〈ξ2〉(ξ0)

− 〈ξ2〉 (ξ0)
∫

dξ1 dξ2 ξ1 p(ξ1, ξ2|ξ0)︸ ︷︷ ︸
=〈ξ1〉(ξ0)

.

The integral A can again be expressed in terms of the characteristic function Φ(s1, s2; ξ0) ↔
p(ξ1, ξ2|ξ0):

A = d
ids1

d
ids2

Φ(s1, s2; ξ0)
∣∣∣
s1=s2=0

(4.23)

Similar to the previous calculations,

Φ (s1, s2; ξ0) = 1
p (ξ0)

∫ ds0
2π e−is0ξ0 Ψ (s0, s1, s2) (4.24)

with the trivariate characteristic function

Ψ (s0, s1, s2) =
∞∏
n=1

1
1− 2is0Cn0 − 2is1Cn1 − 2is2Cn2

. (4.25)
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4 A new approximation for the probability distribution of correlation functions

Calculating the second derivative of (4.25) yields

d
ids1

d
ids2

Ψ (s0, s1, s2)
∣∣∣
s1=s2=0

= Ψ (s0)


∞∑
n=1

4Cn1Cn2
(1− 2is0Cn0)2︸ ︷︷ ︸

Zn(s0)

+
∞∑

n,k=1

4Cn1Ck2
(1− 2is0Cn0)(1− 2is0Ck0)︸ ︷︷ ︸

Zk,n(s0)

 . (4.26)

The Taylor expansions of Zn(s0) and Zk,n(s0) read

Zn(s0) ≈
∞∑
k=0

2k+2 (k + 1) (is0)k Ckn0Cn1Cn2, (4.27)

Zk,n(s0) ≈
∞∑
l=0

2l+2 (is0)l Ck2Cn1

l∑
p=0

Cpk0 C
l−p
n0 . (4.28)

Using it as well as the expansion (4.19), we finally obtain

cov (ξ1, ξ2) (ξ0) =
order∑
k=0

1
p(ξ0)

dkp (ξ0)
dξk0

[modes∑
n

(−1)k 2k+2 (k + 1)

× Ckn0Cn1Cn2 +
modes∑
n,m

(−1)k 2k+2 Cm2 Cn1

×
k∑
p=0

Cpm0 C
k−p
n0

− 〈ξ1〉(ξ0) 〈ξ2〉(ξ0). (4.29)

We show a comparison of the results (for different elements of the covariance matrix) from
simulations and the analytical formula in Fig. 4.5. Again, the black dots are obtained from
simulations and the colored symbols represent the results from Eq. (4.29), where the last term
(i.e. the one containing the mean values 〈ξn〉) was calculated up to tenth order, thus providing
sufficient accuracy, as previously shown. As before, there are some numerical problems for very
small values of ξ0. Additionally, the analytical results do not agree with the simulations for
small lags, as can be seen from the left-most panel (the same holds for other covariance matrix
elements involving small lags). However, for the higher-lag examples (i.e. the two right-hand
panels), a truncation of the Taylor series at tenth order seems to be accurate enough.

The reasons for both the problems occurring for low-lag covariance matrix elements and the
overall issues for small ξ0-values are unclear – while the latter are not very severe and proba-
bly stem from insufficient numerical accuracy, an exact computation of all covariance matrix
elements is crucial. Since we tested the various Taylor expansions used in the computation
separately and they seem accurate enough, it remains unclear which part of the approxima-
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Figure 4.5: Different elements of the covariance matrix C({ξn}), determined from simulations (black
points with error bars) and analytically to zeroth (red crosses), first (blue circles), fifth (purple triangles),
and tenth (brown squares) order.

tion breaks down. As we shall see in the following, however, the transformation of the results
presented in this section to y-space poses an even greater challenge.

4.4.2 Transformation of mean and covariance matrix to y-space

In the previous section, we showed how to calculate the (ξ0-dependent) mean and covariance ma-
trix in ξ-space and addressed some occurring problems. The computation of the quasi-Gaussian
PDF, however, requires the mean y and the covariance matrix Cy in y-space, which cannot be
obtained from those in ξ-space analytically due to the complex nature of the transformation
ξ → y.

As a first approach, we test a linear approximation for the transformation. Under this
assumption, the mean in y-space can simply be obtained by transforming the mean in ξ, i.e.
〈y〉 = y(〈ξ〉). Since covariance is itself a linear function, the covariance matrix in y-space then
reads

cov(yn, ym) ≈
n∑
i=0

m∑
j=0

∂yn
∂ξi

∂ym
∂ξj

cov(ξi, ξj). (4.30)

In order to test the linear approximation, we calculate the approximated mean and covariance
matrix in y-space from 〈ξ〉 and Cξ (obtained from a simulated sample of correlation functions)
and compare them to the true mean and covariance matrix, i.e. the ones obtained by individ-
ually transforming each realization ξ to y-space and computing a sample mean and covariance
matrix. While the results for the mean and the variance are still quite acceptable, the linear
approximation completely breaks down for the off-diagonal elements of the covariance matrix,
which is not surprising due to the fact that the transformation ξ → y is highly non-linear.
Thus, instead of settling for a linear approximation, we have to choose a more computationally

expensive approach. Namely, we calculate the first and second moments (in ξ) of the quasi-
Gaussian distribution as functions of the mean and (inverse) covariance matrix in y-space and
equate the result to the analytical results, i.e. we solve a set of equations of the form∫

dξ ξi p
(
ξ; 〈y〉, C−1

y

)
= 〈ξi〉ana (4.31)∫

dξ ξj ξk p
(
ξ; 〈y〉, C−1

y

)
= 〈ξj ξk〉ana, (4.32)

41



4 A new approximation for the probability distribution of correlation functions

where we did not write down the ξ0-dependence explicitly for the sake of readability.
It is worth noting that this is a complicated procedure which requires powerful numerical

tools: On the one hand, the set of equations can only be solved numerically; in the following,
we use a multi-dimensional root-finding algorithm provided within the GNU Scientific Library
(GSL) (Galassi et al. 2009). Additionally, the integration on the equations’ left-hand sides can
only be performed numerically – to do so, we make use of a Monte-Carlo code from Press et
al. (2007).

Due to the complexity of this approach, we first test it in a simpler setup, thus avoiding some
subtleties and numerical challenges in the calculation of the quasi-Gaussian PDF. Instead, we
assume an N -variate Gaussian distributionN (x;µ, C) with known mean and covariance matrix
and try to recover those with the method described above. In this case, the set of equations we
need to solve looks as follows: ∫

dNx xi N (x;µ, C) = ai (4.33)∫
dNx xixj N (x;µ, C) = bij , (4.34)

where the right-hand sides denote the known, fiducial values for 〈xi〉, 〈xixj〉. Thus, for an
N -variate distribution, the system consists of N + 1

2N(N + 1) equations – for testing purposes,
we use N = 8, resulting in a set of 44 equations (8 for mean, and 36 for the covariance matrix
elements).
As fiducial values, we choose a mean of zero and a covariance matrix equal to diag(0.5),

thus setting the ai = 〈xi〉fid ≡ 0 and the bij = 〈xixj〉fid (recall that Cij = 〈xixj〉 − 〈xi〉〈xj〉).
Furthermore, the numerical solver requires starting values, which we set randomly and “not
too far” from the fiducial values. Using 500 000 Monte-Carlo steps for integration, the solver
converges after ∼ 10 iterations. The results for the elements of the mean are quite close to
the fiducial values of zero, they differ by about 0.05 at most. Fig. 4.6 visualizes the results
for the covariance matrix: The fiducial values (left panel), the output values recovered by the
numerical solver (central panel), as well as their difference (right panel) are plotted. It can be
seen that the numerical procedure does indeed recover the fiducial mean and covariance matrix
of the Gaussian distribution quite accurately, providing a proof of concept for the methods used
– it remains to be tested whether the precision is high enough in the case of the quasi-Gaussian
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Figure 4.6: Results of the test setup used to recover the covariance matrix of an 8-variate Gaussian
distribution. The first panel shows the fiducial covariance matrix, whereas the values recovered by the
numerical methods described in the text are visualized in the second panel. The third panel depicts the
difference between the fiducial and the recovered covariance matrices.
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distribution.
However, when implementing the quasi-Gaussian PDF instead of a Gaussian, we are unable

to obtain correct results for the mean and covariance matrix. One reason for this might be the
more complicated shape of the probability contours, which poses a challenge for the numerical
integration – to circumvent this problem, we perform the integration in y-space (where the
Gaussian approximation holds), and thus rewrite, for example, the left-hand side of Eq. (4.31)
as ∫

dNξ ξi p(ξ) =
∫

dN−1y dξ0 ξi(y) p(ξ0) p(y|ξ0). (4.35)

An additional complication are the computational costs, so we have to limit ourselves to the
case N = 4 (i.e. ξ = (ξ0, . . . , ξ3)T), resulting in 9 equations (namely for 〈ξ1〉, 〈ξ2〉, 〈ξ3〉; 〈ξ2

1〉,
〈ξ2

2〉, 〈ξ2
3〉; 〈ξ1 ξ2〉, 〈ξ1 ξ3〉, 〈ξ2 ξ3〉) and the same number of unknowns (〈y1〉, 〈y2〉, 〈y3〉,. . . ).

Nonetheless, the method does not give usable results, which may be due to a faulty implemen-
tation – in any case, it seems likely that, even after solving those problems, we would have to
accept drawbacks in accuracy in order to keep computational costs reasonably low. Thus, it is
expected that any possible gain in accuracy (which was one motivation for the analytical cal-
culation of the mean and covariance matrix in the first place) would be averted by the required
heavy use of purely numerical methods.
In summary, this procedure does not seem practical, leading us to abandon any further

attempts in this direction. Thus, as described in Sect. 4.3, we refrain from using our analytical
results for the mean and covariance matrix and simply determine them (as well as their ξ0-
dependence) from simulations, which we have shown to be sufficiently accurate.

4.5 Alternative approaches
In this section, we briefly investigate two potential alternative ways of finding a new approx-
imation for the likelihood of correlation functions, namely a copula approach and a method
involving Box-Cox transformations. Both methods have previously been applied in astronomy,
we will show, however, that they do not yield satisfactory results in the case of correlation
functions.

4.5.1 A copula approach

As the name suggests, a copula function provides a way of coupling univariate probability
distributions in order to obtain a multivariate PDF. In recent years, copula methods have
gained notoriety due to the use of Gaussian copulae at Wall Street in order to estimate the
PDF of losses, and have even been connected to the recent financial crisis (see for example
MacKenzie and Spears 2014).
Since the exact univariate PDF of ξ is known (Keitel and Schneider 2011), using a copula

approach to compute the correlation function likelihood seems to be an obvious step. According
to the definition of the copula, the joint PDF of n random variables ξi can be calculated from
the univariate distributions pi(ξi) as

p(ξ1, ξ2, . . . , ξn) = c(u1, u2, . . . , un) ·
n∏
i=1

pi(ξi), (4.36)

where the copula density function c depends on ui = Pi(ξi), i.e. on the cumulative distribution
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Figure 4.7: p(ξ1, ξ2) (left) and p(ξ3, ξ6) (right) for a field with N = 32 grid points and a Gaussian power
spectrum with Lk0 = 80. The dashed red contours show the approximation obtained from a Gaussian
copula.

functions (CDFs) of ξi. In the simplest case, the copula function is assumed to be a Gaussian.

Copulae have previously been used in cosmology, e.g. for the PDF of the density field of LSS
(Scherrer et al. 2010), or the weak lensing convergence power spectrum (see Sato et al. 2011
and its companion paper Sato et al. 2010). In the case of a Gaussian copula, the bivariate joint
PDF can be calculated (see e.g. Sato et al. 2011) as

p (ξ1, ξ2) = 1√
2π det (C)

exp
{
−1

2 (q − µ)TC−1 (q − µ)
}

×
2∏
i=1

(
1√

2πσi
exp

{
−(qi − µi)2

2σ2
i

})−1

· p (ξi) , (4.37)

where qi = Φ−1
µi,σi

(P (ξi)). Here, µ and C denote the mean and covariance matrix of the copula
function, Φµ,σ is the Gaussian CDF. Note that contrary to our usual notation, here the indices
of ξ are purely a numbering, and Eq. (4.37) can in fact be applied for arbitrary lags.

To calculate the copula likelihood, we implement the analytical univariate formulae for pi(ξi)
and Pi(ξi) derived by Keitel and Schneider (2011); the mean and covariance matrix of the
Gaussian copula are calculated directly from the simulated {ξ}-sample. Fig. 4.7 shows the
bivariate PDFs from the simulation (black contours) as well as the copula likelihood (red dashed
contours) for two different combinations of lags. It is apparent that the copula likelihood does
not describe the true PDF very well. In particular, it does not even seem to be a more accurate
description than the simple multivariate Gaussian used in the left-hand panel of Fig. 4.1, leading
us to the conclusion that our quasi-Gaussian approximation should be favored also over the
copula likelihood. Of course, the accuracy of the latter might improve if a more realistic
coupling than the Gaussian one was found.
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4.5 Alternative approaches

4.5.2 Box-Cox transformations
As previously described, a central idea of the quasi-Gaussian approach is to transform the
correlation function ξ to a new variable y, which is (almost perfectly) Gaussian distributed.
This suggests testing the performance of another, well-established method of transforming
random variables in order to Gaussianize them, namely Box-Cox transformations. They are
a form of power transforms originally introduced by Box and Cox (1964) and have been used
in astronomical applications, see e.g. Joachimi et al. (2011) for results on Gaussianizing the
one-point distributions of the weak gravitational lensing convergence.
For a sample of correlation functions {ξi} at a certain lag, the form of the Box-Cox transfor-

mation is

ξ̄i(λi, ai) =
{ [

(ξi + ai)λi − 1
]
/λi λi 6= 0

ln(ξi + ai) λi = 0
, (4.38)

with free transformation parameters λi and ai, where the case λi = 0 corresponds to a log-
normal transformation. For the following statements, we determine the optimal Box-Cox
parameters using the procedure of maximizing the log-likelihood for λi and ai explained in
Joachimi et al. (2011) and references therein.
Note that since we cannot assume the transformation parameters to be identical for each lag i,

we need to determine the full sets {λi} and {ai}. There are two different ways of addressing this:
Since we are, in the end, interested in the multivariate likelihood of the correlation function,
the most straightforward approach is to optimize the sets of Box-Cox parameters {λi} and
{ai} in such a way that the full (n+ 1)-variate distribution p(ξ̄0, ξ̄1, . . . , ξ̄n) of the transformed
variables ξ̄i is close to a multivariate Gaussian. Alternatively, one can treat all univariate
distributions p(ξi) separately, i.e. determine the optimal Box-Cox parameters in such a way
that the univariate PDFs p(ξ̄0), . . . , p(ξ̄n) of the transformed variables are univariate Gaussians.
The first approach, i.e. trying to Gaussianize the full (n + 1)-variate distribution, turns out

to be unsuccessful: The multivariate moments (as defined in Sect. 4.3.1) of the transformed
quantities ξ̄ are hardly any different from those of the original correlation functions ξ. Addi-
tionally, there is barely any improvement in the Gaussianity of the univariate distributions p(ξ̄i)
compared to p(ξi). In contrast to that, the transformation from ξ to y used in our calculation
of the quasi-Gaussian likelihood resulted in an improvement in skewness and kurtosis by about
an order of magnitude, as described in Sect. 4.3.1.
The second approach, i.e. treating all univariate distributions independently by trying to

Gaussianize them separately, of course leads to lower univariate skewness and kurtosis in the
transformed quantities ξ̄i; however, the multivariate moments are again almost unchanged
compared to the untransformed correlation functions, indicating that this approach does not
lead to a better description of the multivariate correlation function likelihood.

Thus, in summary, the quasi-Gaussian approach seems far more accurate than using Box-
Cox transformations. This is not too surprising, since the latter obviously cannot properly
take into account correlations between the different random variables (i.e. the ξi), whereas
in contrast to that, the transformation ξ → y is specifically tailored for correlation functions
and thus mathematically better motivated than a general Gaussianizing method such as power
transforms.
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CHAPTER 5

Performance of the quasi-Gaussian
approximation in a likelihood analysis

In the previous chapters, we described the fundamental constraints on correlation functions and
showed how to use them in order to obtain the quasi-Gaussian approximation for the probability
distribution of ξ. Furthermore, we discussed some subtleties in the computation of the quasi-
Gaussian PDF and performed checks to show that it agrees well with the PDF obtained from
simulations. In this section, we will construct an application for this new description for the
probability distribution of correlation functions, i.e. we will test its performance as a likelihood
function in a Bayesian parameter estimation analysis.

5.1 Setup

As explained in Sect. 2.2.4, the central equation for Bayesian parameter estimation is Bayes’
Theorem, which states how to compute the posterior probability of a vector of model parameters
θ given some data, in our case a correlation function ξ. In this setup, the theorem reads

p(θ|ξ) = L(θ) · p(θ)
p(ξ) . (5.1)

In the following, we will study the impact of using the quasi-Gaussian PDF as likelihood function
L(θ) ≡ p(ξ|θ).
For the sake of simplicity, we use artificial data instead of correlation functions actually

measured on the sky in our analysis – applying the simulation methods described in Sect. 4.1,
we generate 400 000 realizations of the correlation function of a Gaussian random field with
N = 64 grid points and a Gaussian power spectrum with L k0 = 100. To complete the setup of
our analysis, we have to define a set of parameters about which we wish to obtain inference from
this data. We choose the parameters of the power spectrum (i.e. its amplitude A and its width
k0), so θ = (A, k0). To facilitate this choice of parameters, we parametrize the power spectrum
as P (k) = A · 100/ (Lk0) exp{− (k/k0)2}, where we choose A = 1 Mpc and k0 = 1 Mpc−1 as
fiducial values (corresponding to L k0 = 100 and a field length L = 100 Mpc). Since we aim
to focus our analysis on the role of the likelihood function, we use a flat prior for θ – thus,
and due to the fact that the denominator in Eq. (5.1) (the Bayesian evidence) acts solely as a
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5 Performance of the quasi-Gaussian approximation in a likelihood analysis

normalization in the context of parameter estimation (again, see Sect. 2.2.4), the shape of the
posterior p(θ|ξ) is determined entirely by the likelihood.
In order to assess the effect of the quasi-Gaussian likelihood on the shape of the posterior,

in a first analysis, we use the classical Gaussian approximation for the likelihood, which is the
usual approach in the literature, as explained in Sect. 1. The Gaussian likelihood reads

L(θ) ≡ p(ξ|θ) = 1
(2π)n/2

√
detCξ

× exp
{
−1

2 (ξ (θ)− ξfid)T · C−1
ξ · (ξ (θ)− ξfid)

}
, (5.2)

where ξ ≡ (ξ0, . . . , ξn−1)T, and Cξ denotes the covariance matrix computed from the {ξ}-
sample; note that we use only n = 32 ξ-components, since the last 32 components yield no
additional information due to periodicity. In an analysis of actual data, the measured value of
the correlation function would have to be inserted as mean of the Gaussian distribution – since
in our toy-model analysis, we use our simulated sample of correlation functions as data, we
insert ξfid ≡ ξ (θfid) instead, which is practically identical to the sample mean of the generated
realizations.

5.2 Components of the quasi-Gaussian likelihood

Since the quasi-Gaussian PDF has a more complicated structure than the Gaussian likelihood
given in Eq. (5.2), its computation in the context of our Bayesian analysis requires some at-
tention, and we will thus study its different components in more detail. For our analysis, we
transform the simulated realizations of the correlation function to y-space and calculate the
likelihood as

p(ξ|θ) = 1
(2π)(n−1)/2√detCy

× exp
{
−1

2 (y (θ)− 〈y (ξ0)〉)T · C−1
y · (y (θ)− 〈y (ξ0)〉)

}
× p(ξ0) ·

∣∣∣det
(
Jξ→y

)∣∣∣ . (5.3)

Here, instead of inserting the fiducial value yfid as “measured value”, we incorporate the ξ0-
dependence of the mean 〈y〉 in the same way as described in Sect. 4., i.e. by calculating the
average only over those realizations with a ξ0-value close to the “current” value of ξ0, which
is the one determined by the fixed value of θ, i.e. ξ0(θ). In contrast to that, Cy denotes the
covariance matrix of the full y-sample, meaning that we neglect its ξ0-dependence, although
we have shown in Sect. 4.3.1 that incorporating this dependence increases the accuracy of the
quasi-Gaussian approximation. The reason for this is that for some values of ξ0, the number of
realizations with a ξ0-value close to it is so small that the sample covariance matrix becomes
singular. However, since the toy-model analysis presented in this section is about a proof of
concept rather than about maximizing the accuracy, this is a minor caveat – of course, when
applying our method in an analysis of real data, the ξ0-dependence of Cy should be taken
into account. It should also be mentioned that apart from the ξ0-dependence, we also neglect
any possible dependence of the covariance matrix on the model parameters θ, since this is not
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5.2 Components of the quasi-Gaussian likelihood

expected to have a strong influence on parameter estimation (for example in the case of BAO
studies, Labatie et al. 2012b show that even if C does have a slight dependence on the model
parameters, incorporating it in a Bayesian analysis only has a marginal effect on cosmological
parameter constraints).
The θ-dependence of the last two terms in Eq. (5.3) also merits some discussion, in particular,

the role of the fiducial model parameters θfid has to be specified: While the Gaussian likelihood
discussed previously is of course centered around the fiducial values by construction, since
ξ (θfid) is inserted as mean of the Gaussian distribution, this cannot be done in the case of the
quasi-Gaussian likelihood due to its more complicated mathematical form.
The p(ξ0)-term in Eq. (5.3) can be treated in a straightforward way: Namely, we fix the

shape of the PDF p(ξ0) by determining it from the fiducial power spectrum parameters θfid
and then evaluate it at the current value ξ0(θ), thus computing this term as pθfid

(ξ0(θ)). To be
more explicit, the shape of the analytically known univariate PDF p(ξ), given in Eq. (4.1), is
determined by the values of Cn and Cm. As described in Sect. 4.2, in the case of p(ξ0), the Cn
are simply equal to the variance σ2

n of the underlying random field in Fourier space, which is
in turn related to the power spectrum via P (kn) = σ2

n L, where L is the length of the random
field. Thus, we compute Cn as well as Cm using the fiducial power spectrum (given by θfid),
and then evaluate the resulting PDF p(ξ0) at ξ0(θ).

The last term, i.e. the determinant of the transformation matrix, however, has to be evaluated
for the fiducial value, yielding |det(Jξ→y(θfid))|. Thus, this term has no θ-dependence at all
and plays no role in parameter estimation; similarly to the Bayesian evidence, it does not have
to be computed, but can rather be understood as part of the normalization of the posterior.
This can be explained in a more pragmatic way: Assume that a specific value of ξ has been
measured and one wants to use it for inference on the underlying power spectrum parameters,
incorporating the quasi-Gaussian likelihood. Then one would transform the measurement to
y-space and rather use the resulting y-vector as data in the Bayesian analysis than ξ, and
thus, the | det J |-term would not even show up when writing down the likelihood. Here, we
nonetheless included it in order to follow the train of thought from Sect. 4 and for better
comparison with the Gaussian likelihood in ξ-space.
Note that the previous argument cannot be applied to the p(ξ0)-term: Calculating it as

p(ξ0(θfid)|θfid) (i.e. as independent of θ, making it redundant for parameter estimation), yields
biased results, as we shall see in the following. Furthermore, incorporating the non-negligible ξ0-
dependence of the mean 〈y〉 immediately requires the introduction of the conditional probability
in Eq. (4.4), thus automatically introducing the p(ξ0)-term.

To further study the role of the different terms of the quasi-Gaussian likelihood, we plot
the two central components separately in Fig. 5.1. For the left panel, we drop not only the
|det(Jξ→y)|-term from Eq. (5.3) (which has no impact on the parameter estimation, as previ-
ously explained), but also the p(ξ0)-term – thus, this panel shows the impact of the Gaussian
component of the quasi-Gaussian likelihood on the estimation of the parameters A and k0.
While the kinks in the contours at low values of A are simply due to the steep shape of the
contours and the low resolution of the graph (we divided the displayed region of the A−k0-plane
into 50 × 50 pixels to produce the plot), it is notable that the contours of the likelihood show
a strong degeneracy in the A of the power spectrum.
This justifies our previous argument on how to evaluate the p(ξ0)-term: Since the left panel

of Fig. 5.1 shows what the posterior would look like if we evaluated the term as p(ξ0(θfid)|θfid),
i.e. independent of θ, the visible degeneracy in A clearly shows that by doing so, we do not use
the full information contained in the measured correlation function (in particular in ξ0; recall
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5 Performance of the quasi-Gaussian approximation in a likelihood analysis
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Figure 5.1: The components of the quasi-Gaussian likelihood. For these plots, we neglect all terms of
the quasi-Gaussian likelihood except for one (namely the Gaussian in y-space for the left panel and
the p(ξ0)-term for the right panel), thus illustrating the impact of the separate terms on the parameter
estimation of θ = (A, k0). The horizontal and vertical lines are the fiducial values (1.0, 1.0).

that the transformation from ξ to y involves only ratios ξi/ξ0). Thus, in order to get stronger
constraints on the value of A, we need to incorporate the p(ξ0)-term, which is plotted separately
in the right panel of Fig. 5.1. Clearly, this term of the quasi-Gaussian likelihood does have an
A-dependence, which can be understood when considering the conditional probability p(ξ0|A):
It can be written in the form

p(ξ0|A) = 1
A
f

(
ξ0
A

)
, (5.4)

as can be seen when integrating both sides over ξ0, yielding 1 due to normalization. However,
the function f is constant, since ξ0 is proportional to A (recall that is is computed as a Fourier
integral over P (k)). Hence, the conditional probability p(ξ0|A) is proportional to A−1, meaning
that in the framework of our Bayesian analysis, large values of ξ0 favor small values of A.

In summary, we can only use the quasi-Gaussian likelihood to extract the full information
contained in the data if we treat the different terms and their dependence on the fiducial values
θfid as previously described.

5.3 Results

Combining both the Gaussian and p(ξ0)-term of the quasi-Gaussian likelihood (and assuming
a flat prior for θ) finally allows us to compute the posterior distribution and to compare it
to the one obtained when using the classical Gaussian likelihood. The posteriors resulting
from the two analyses can be seen in Fig. 5.2 – here, the left-hand panel shows the result
for the case of a Gaussian likelihood as given in Eq. (5.2), and the right-hand one is the
result of the quasi-Gaussian analysis, where we put together the different components of the
quasi-Gaussian likelihood previously plotted. Already for this simple toy model, the impact
of the more accurate likelihood on the posterior is visible. The difference may be larger for a
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Figure 5.2: Posterior probability for the power spectrum parameters (A, k0) using the Gaussian (left
panel) and the quasi-Gaussian (right panel) likelihood and flat priors.

different choice of power spectrum, where the deviation of the likelihood from a Gaussian is
more pronounced. Nonetheless, it is evident that the change in the shape of the contours is
noticeable enough to have an impact on cosmological parameter estimation.
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Figure 5.3: Marginalized posterior probabilities for the power spectrum parameters A and k0. The solid
black curves are the results obtained from the Gaussian likelihood, whereas the red dot-dashed curves
show the results from the quasi-Gaussian analysis.

Fig. 5.3 shows the marginalized posteriors for A and k0, again for the Gaussian (black solid
curve) and the quasi-Gaussian (red dot-dashed curve) case. As for the full posterior, there is a
notable difference. While it may seem alarming that the marginalized posteriors in the quasi-
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5 Performance of the quasi-Gaussian approximation in a likelihood analysis

Gaussian case are not centered around the fiducial value, this is in fact not worrisome: First, as
explained in Sect. 2.2.4, there are different ways of obtaining parameter estimates in Bayesian
statistics, and in the case of a skewed posterior (as the quasi-Gaussian one), the maximum a
posteriori (MAP) estimate, i.e. the maximum of the posterior distribution, is not necessarily the
most reasonable one. Furthermore, in our case, it should again be stressed that the Gaussian
likelihood is of course constructed to be centered around the fiducial value, since θfid is explicitly
put in as mean of the distribution, whereas the quasi-Gaussian likelihood is mainly constructed
to obey the boundaries of the correlation functions. These are mathematically fundamental
constraints, and thus, although none of the two methods are guaranteed to be bias-free, the
quasi-Gaussian one should be favored.
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CHAPTER 6

Constrained correlation functions from the
Millennium Simulation

So far, we have examined statistical properties of correlation functions in a very general, math-
ematical framework. In this chapter, we will investigate our results in a more astrophysical
context by applying them to cosmological correlation functions. Since we are not only inter-
ested in testing the relevance of the constraints on measured correlation functions, but also in
their statistical properties, we will compute correlation functions from numerical simulations:
The size of modern N -body simulations enables us to easily measure multiple realizations of ξ,
thus allowing for an approximate determination of the underlying probability distribution.

6.1 N-body simulations
As described in Sect. 2.1.2, an analytical description of cosmological structure formation is not
feasible as soon as density fluctuations become non-linear. Due to the increasing availability of
high-performance computing resources, numerical simulations have become a common and very
powerful tool to cope with this issue, since they allow for an analysis of cosmological models also
in the non-linear regime. While these simulations have become more and more sophisticated
over the last years (see Kuhlen et al. 2012 for a review of state-of-the-art methods), for our
purposes, the impact of, for example, baryon physics is not as vital, and thus we restrict our
discussion ofN -body simulations in this section to the most basic principles, namely to DM-only
simulations. Nonetheless, it is worth mentioning that by combining hydrodynamical and DM
simulations, recent large-scale simulation projects such as Illustris (Vogelsberger et al. 2014)
are even able to reproduce the observed galaxy populations, i.e. their distributions and internal
properties.
The most fundamental idea of simulations of structure formation is to trace representative

DM particles, since a simulation on the level of individual elementary particles is not possible
on cosmological scales. Thus, one examines the behavior of N macroscopic particles of massM .
As simulation volume, one typically chooses a comoving cube of side length L, where L should
be “large enough” for the cube to be representative, i.e. larger than the largest structures one
wishes to simulate. Additionally, periodic boundary conditions are imposed.
Simulations typically start at very high redshift, where the initial conditions are usually

fixed in such a way that the matter follows a Gaussian distribution with a power spectrum
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6 Constrained correlation functions from the Millennium Simulation

corresponding to the theoretical (linear) power spectrum of the underlying cosmological model.
In order to compute the evolution of the density field, the equations of motion of the particles
have to be solved. In principle, this requires the computation of the force acting on each particle
according to Newton’s law; however, two problems arise: First, the force law would allow for
collisions between particles, which is unphysical in this setup – it would simply be a consequence
of the choice of macroscopic DM particles. Thus, one modifies the force law in such a way that
it deviates from the Newtonian 1/r2 behavior on small scales, i.e. on scales below the so-called
softening length ε. The choice of ε is important, since it automatically determines a limit on
the spatial resolution of the simulation. Typically, one chooses a softening length of the order
of the mean separation between particles (which in turn depends on the particle mass M).

In practice, another challenge occurs: Usually, the number of particles is too large to compute
the force on individual particles due to the large number of terms. Thus, this straightforward
approach (the so-called particle-particle or PP method) is replaced by a more sophisticated one,
namely the particle-mesh (PM) method, where, instead of calculating the force on a particle
exactly, one computes an approximate force field: To do so, the particle distribution is Fourier
transformed, and the gravitational acceleration is computed via Poisson’s equation which has
a simple form in Fourier space. Since an effective numerical implementation using fast Fourier
transform (FFT) methods requires the introduction of a grid, one again has to pay attention to
the effect on the simulation’s spatial resolution – usually, the grid cell size is chosen in agreement
with the softening length.
In order to optimize accuracy, it is also possible to split up the force law into different regimes

by applying the PP method for short-range interactions and the PM method for long ranges, re-
sulting in a so-called P3M (particle-particle particle-mesh) approach. All of the aforementioned
simulation methods can be modified in numerous ways to optimize accuracy and performance
– for example, tree code can be used, which essentially means that one divides the simulation
volume into subcells and adjusts the grid resolution in each subcell.
Since running an N -body simulation requires a fixed choice of cosmology, changing the values

of the underlying cosmological parameters in principle involves rerunning the simulation. This
can easily become too expensive from a computational point of view, in particular if one wants
to study the influence of the values of cosmological parameters on structure formation. One
method that deals with this problem is simulation remapping: Angulo and White (2010) show
that by rescaling length, mass, and velocity units as well as the time axis and the amplitudes
of fluctuation modes, it is possible to adjust the output of a simulation to a (slightly) different
set of cosmological parameters – for example, they rescale the output of a simulation with an
underlying WMAP1 cosmology to the WMAP3 values of the parameters. This approach is taken
one step further by Mead and Peacock (2014), who present a remapping which immediately
acts on the halo catalog produced by the simulation instead of the particle distribution, thus
facilitating the generation of, for example, mock galaxy catalogs for different sets of cosmological
parameters.

6.2 The Millennium Simulation

The N -body simulation we use in the following analyses is the Millennium Run (Springel et al.
2005). Although it is no longer the largest cosmological simulation, the Millennium Simulation
is still widely used in astrophysics and has spawned a great number of ground-breaking results
– to date, more than 500 papers using Millennium-related data have been published. The
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6.2 The Millennium Simulation

Table 6.1: Cosmological parameters and simulation parameters used for the Millennium Simulation.

Ωm Ωb ΩΛ h nS σ8 L/
(
h−1 Mpc

)
Np MP/

(
h−1 M�

)
ε/
(
h−1 kpc

)
0.25 0.045 0.75 0.73 1 0.9 500 21603 8.61 ×108 5

Figure 6.1: The DM density obtained from the Millennium Simulation at different scales, where each
image displays the density projected in a slab of thickness 15 h−1 Mpc (from Springel et al. 2005).

simulation makes use of a TreePM code, namely GADGET-2 (Springel 2005), to follow ≈ 1010

particles in a 500 h−1 Mpc box from redshift z = 127 until the present. The parameters of
the underlying cosmology as well as the simulation parameters are listed in Table 6.1. As an
illustrative example of the output of the simulation, Fig. 6.1 shows the DM density at different
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6 Constrained correlation functions from the Millennium Simulation

scales.
One advantage of using the Millennium Simulation is that it is easily accessible: A vast

amount of simulation output is stored in a Structured Query Language (SQL) database, in-
cluding for example properties of halos and subhalos, halo merger trees, and assembly histories
of galaxies (see Lemson and the Virgo Consortium 2006 for a brief description of the database).
The data can be accessed via a web interface – Fig. 6.2 shows an exemplary SQL query which
produces a list of halos with a given mass threshold. Both the Millennium Simulation databases
used in this work and the web application providing online access to them were constructed as
part of the activities of the German Astrophysical Virtual Observatory (GAVO).

select haloID,np,m_Crit200,halfmassRadius,x,y,z
from MPAHaloTrees..MR

where snapnum=63
and m_Crit200 > 100
and x between 0 and 500
and y between 0 and 500
and z between 0 and 500

Figure 6.2: Example of an SQL query to access the output of the Millennium Run: This query produces
a list of halos (including their number of particles, M crit

200 , half-mass radius, and position) with a given
mass (here: M crit

200 > 100 × 1010 h−1 M�) at a given redshift (specified by the snapshot number, where
snapnum= 63 corresponds to z = 0) within a certain part of the simulation volume (x,y,z), in this case,
the full box of size 5003 (h−1 Mpc

)3.

6.3 Computing correlation functions
In the following, we compute the correlation function of DM halos in the Millennium Simulation.
Since we are not interested in redshift evolution, we only make use of the halo catalog from the
z = 0 simulation snapshot, from which we then select typical galaxy-mass halos by choosing a
mass cut M crit

200 > 1012 h−1 M�, yielding a total number of 440 000 halos. In order to perform
a statistical analysis, we require different realizations of the correlation function – thus, as a
first attempt, we divide the full simulation cube into 1000 subcubes of size 503 (h−1 Mpc

)3 and
measure ξ in each of the subcubes.
The calculation of the correlation function can be implemented as described in Sect. 2.2.2:

In addition to the halo catalog from the simulation, we need a random catalog, so for each
subcube, we draw halo positions uniformly. We then determine the number of halo pairs for
given pair separations in both the data and the random catalog as well as the cross-correlation.
From the count rates DD(s), RR(s), DR(s) at different pair separations s, we compute ξ using
one of the estimators listed in Table 2.2. As explained in Sect. 3, in order to calculate the
constraints, we need to measure the correlation function at equidistant lags, i.e. ξn ≡ ξ(n ·∆s),
where the maximum number of lags is n = 8 due to limitations of the numerical computation
of the constraints.
The size of the random catalog merits some discussion – ideally, it should be infinitely large,

i.e. Nrand →∞. However, the computation of the pair separations is the most time-consuming
step in the calculation of ξ and thus, the number of halos in the random catalogs for each of the
1000 subcubes is subject to practical limitations. We study the impact of the random catalog
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Figure 6.3: The correlation function from 1000 subcubes of the Millennium Simulation, computed using
the LS estimator. The points and error bars show the correlation function ξn ≡ ξ(n · ∆s) for ∆s =
5 h−1 Mpc (see text for details) averaged over the 1000 subcubes of size 503 (h−1 Mpc

)3, as well as the
standard deviation. For the blue circles, the random catalog for each subcube contained 100 halos, as
opposed to 10000 halos for the red crosses.

size in Fig. 6.3: Here, we show the correlation function for an exemplary choice of lags – we
will go into details on the choice of lags in the analysis of the constraints. For now, we choose
∆s = 5 h−1 Mpc, i.e. we measure ξ1, ξ2, . . . , ξ8 at lags of 5, 10, . . . 40 h−1 Mpc. In practice, we
need to allow for a range of pair separations in order to obtain sufficiently large numbers of
pairs – thus, we adapt a bin size of width 1 h−1 Mpc, so for example in the computation of
ξ1, we use all pairs with separations ranging from 4.5 to 5.5 h−1 Mpc. For the auto-correlation
ξ0, i.e. the correlation function at zero lag (which we do not plot in the figure, but which is
required for the calculation of the constraints), we count all pairs with very small separations,
e.g. s ≤ 1 h−1 Mpc – again, we refer to the next section for a discussion on the measurement of
ξ0. The points and error bars show the mean and standard deviation over the 1000 subcubes
of size 503 (

h−1 Mpc
)3; as estimator, we use the LS estimator, since it is the most commonly

used one – in parts due to the fact that it is less sensible to the size of the random catalog than
others (see Kerscher et al. 2000). For the blue circles, a small random catalog (Nrand = 100
halos for each subcube) was used, whereas the choice of Nrand = 10000 for the red crosses
results in noticeably smaller standard deviations over the 1000 realizations at the cost of a
longer computation time.
Thus, we aim to find a trade-off between those two values. First, one should note that,

57



6 Constrained correlation functions from the Millennium Simulation

although the mean correlation functions for the two random catalog sizes plotted in Fig. 6.3
do not seem to differ very much by eye, choosing the catalog size as small as Nrand = 100 is a
quite extreme case, since a large fraction of the realizations yield a diverging auto-correlation
ξ0 due to count rates in RR or DR being zero, at least when measuring it as previously
described. However, when increasing the random catalog to 1000 halos per subcube, the mean
correlation function for non-zero lag only shows a deviation of ∼ 1 % compared to the mean
ξ for Nrand = 10000 (and even here, about a tenth of the realizations show a diverging ξ0).
At Nrand = 5000, no such problems occur, and also the error bars as plotted in the figure
become indistinguishable from those at Nrand = 10000 – thus, a random catalog size of 5000 is
a reasonable trade-off between accuracy and computational expenses.
An additional observation from Fig. 6.3 is that ξ becomes negative for higher lags, i.e. around

20−25 h−1 Mpc, which is unphysical – the reason for this is the so-called integral constraint (see
e.g. Peacock 1999). This effect arises when measuring correlation functions in finite volumes,
where the global mean density is unknown and is usually approximated by the mean observed
density. In our case, it occurs in the normalization of count rates: As explained in Sect. 2.2.2,
we normalize DD using the total number of halo pairs in the subcube. However, the average
halo number density in each subcube n̄sub is not necessarily a good approximation for the
underlying global density, giving rise to integral constraints.
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Figure 6.4: Histograms of the distributions of overdensities in the subcubes of the simulation volume,
where ε denotes the number overdensity of halos in the subcube relative to the mean halo number density
in the whole simulation box, see Eq. (6.1). The colors indicate the number of subcubes the simulation
box was divided into.
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6.3 Computing correlation functions

One straightforward attempt to remedy this is to use the density n̄box from the whole simu-
lation box to normalize the count rates – while this approach does indeed increase the values
of ξ, it also greatly drives up the variance over the subcubes, thus making any further analysis
hard. Alternatively, we investigate other ways of renormalizing the count rates: One way to
address this is to estimate the overdensity ε in each subcube by comparing the mean number
density in the subcube to the one from the whole simulation volume,

n̄sub = n̄box (1 + ε) . (6.1)

Assuming ε is small, we can Taylor expand the count rate DD to first order, thus allowing us
to correct the measured correlation function ξmeas and to obtain the true one, ξtrue. Applying
the Peebles and Hauser (PH) estimator for simplicity, this procedure yields

ξtrue = ξmeas (1− 2ε)− 2ε. (6.2)

However, this type of correction also results in a large variance of the correlation functions
measured over the subcubes and is thus not practical.
Hence, as a final resort, we decrease number of subcubes in our analysis, and use the density

n̄sub in the individual subcubes for the normalization of the count rates. While this is a trade-off
in the sense that we obtain fewer realizations of ξ, it lessens the impact of the integral constraint
by making the individual subcubes more representative, at the same time yielding a sufficiently
small variance to allow for a precise analysis. In order to decide on the number of subcubes, we
examine the distributions of the overdensity ε, which we plot as histograms in Fig. 6.4. Here,
we slice the simulation volume into different numbers of subcubes and compute the overdensity
as defined in Eq. (6.1) in each subcube. It is apparent that the distribution p(ε) is very broad
for the value Nsubcubes = 103 used so far – as expected, it becomes quite narrow for the case
of 53 subcubes, indicating that the integral constraint does not pose a problem in this case.
The resulting correlation functions for the case of 83 and 53 subcubes (and otherwise same
parameters as before, i.e. same lags and random catalog size) are shown in Fig. 6.5. Evidently,
slicing the simulation volume into 53 subcubes yields reasonable results, i.e. a non-negative
correlation functions with a sufficiently small variance.
As a final ingredient in the measurement of correlation functions, we will briefly discuss the

choice of estimator. To do so, instead of measuring ξn at a few different lags n, it is advisable
to compute ξ(s) for all lags in each subcube – since this is obviously not doable in practice, we
compute it at a high number of lags, meaning that we divide the range of pair separations into
adjacent bins of width 0.2 h−1 Mpc. As previously discussed, we slice the simulation volume into
53 subcubes and use a fixed size of random catalog for each subcube, namely Nrand = 5000. In
the determination of ξ(s) from the count rates, we try different estimators; the results are shown
in Fig. 6.6. The lines of different color denote the five estimators from Table 2.2, where we again
average over the 125 subcubes, and the gray shaded region depicts the standard deviation in
the case of the most commonly used LS estimator. For the sake of clarity, in the left panel, we
only plot scales from 8 to 40 h−1 Mpc, whereas the right panel shows the correlation function
for very low lags, i.e. 4− 8 h−1 Mpc.
It is apparent that the numerous estimators yield very similar results, in particular compared

to the standard deviation of the 125 realizations – we will briefly discuss the influence of the
choice of estimator on the constraints on correlation functions at the end of the following section.
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Figure 6.5: The correlation function from the Millennium Simulation, computed using the LS estimator,
a random catalog size of 5000, and a lag distance of ∆s = 5 h−1 Mpc. Again, the points and error
bars show the mean and standard deviation computed over the subcubes of the simulation, where the
simulation box was sliced into 83 subcubes for the blue data points, as opposed to 53 for the red ones.

6.4 Testing the constraints

In this section, we will investigate whether the correlation functions computed from the halo
catalog of the Millennium Simulation obey the constraints introduced in Sect. 3. Since no
analytical expressions for the constraints are available in the case of random fields in three
dimensions, we have to compute them numerically – as explained in Sect. 3.2, this requires
the calculation of the convex hull of the curve c(λ). While we argue in Sect. 3.3 that using
300 points to sample the hull yields sufficiently good agreement between the numerical and the
exact analytical values of the constraints, we have to restrict ourselves to 270 points in the case
of a 3D random field due to the computational costs – although the convex hull only has to
be computed once and can then be used to determine the constraints for all sets of correlation
coefficients, sampling the hull for a 3D random field with the given accuracy poses memory
problems for the qhull algorithm, which is out of scope for us to resolve. However, this does
not pose a problem: When comparing the accuracy of the numerical constraints as plotted in
Fig. 3.4, it is apparent that the improvement in accuracy when going from 200 to 300 steps
is far smaller than the one from 100 to 200, and thus, we expect the use of 270 points to be
precise enough.
To test the constraints, we again measure the correlation function at eight lags with separa-
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Figure 6.6: The correlation function measured for “all” lags (see text for details) as a function of the pair
separation s, with a random catalog size of Nrand = 5000. The lines denote the mean ξ(s) measured in
the 125 subcubes using the different estimators from Table 2.2, and the gray shaded region shows the
standard deviation. In the left panel, the s-range from 8 to 40 h−1 Mpc is plotted, and the right panel
shows the results for very low lags, from 4 to 8 h−1 Mpc.

tions of ∆s = 5 h−1 Mpc and a bin width of 1 h−1 Mpc (thus, for example ξ2 is determined using
all pairs with separations from 9.5 to 10.5 h−1 Mpc). As described in the previous section, we
divide the simulation volume into 125 subcubes and use a random catalog of size Nrand = 5000
in each subcube. Since the constraints are best expressed in terms of the correlation coefficients,
we compute rn ≡ ξn/ξ0 for each realization, as well as the upper and lower bounds rnu and rnl.
It turns out that the width of the ξ0-bin has a strong huge influence, in particular on the width
of the distributions of the correlation functions rn. For illustrative purposes, we first choose a
relatively broad bin, i.e. we measure ξ0 for all pair separations from 0 to 2 h−1 Mpc – this choice
is primarily motivated by the fact that increasing the spread of the correlation coefficients over
the 125 realizations allows us to test how close to the edges to the allowed region the rn move.
Towards end of this section, we will further study the impact of the width of the ξ0-bin.
One question that arises is how to visualize the constraints – the simplest approach to this

are scatter-plots with dots for the individual realizations; an example in the r1 − r2-plane is
shown in Fig. 6.7. Here, the red dots show the different realizations of r1 and r2, computed for
the subcubes using the LS estimator; additionally, we plot iso-density contours containing 68,
95 and 99.7 % of the realizations. For the left panel, we sliced the simulation volume into 1000
subcubes, as opposed to 125 for the left panel. While we argued in the previous section that the
choice of 1000 subcubes yields unphysical correlation functions due to the integral constraint,
we still include the left-hand plot in order to illustrate how the higher number of subcubes
greatly increases the spread of the correlation functions, which can clearly also be observed
in r-space. In both panels, the upper and lower blue lines are the constraints, i.e. r2u,l(r1)
– note that while it would be possible to construct them analytically from the corresponding
Bessel functions in the case of the r1−r2-plane, for simplicity, we use our numerical methods to
compute the bounds for each realization of r1 shown in the figure and plot them as connected
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Figure 6.7: The correlation coefficients r1 and r2 measured from the halo catalogs in the subcubes of the
Millennium Simulation using the LS estimator, where we slice the simulation volume into 1000 subcubes
for the left-hand panel and 125 for the right-hand one, and the random catalog for each subcube contains
5000 halos. In both cases, we measure ξ at lags of separation ∆s = 5 h−1 Mpc, and use all halo pairs
with pair separations of 0 to 2 h−1 Mpc to compute ξ0. The red dots show the 1000 (125) realizations,
and the black lines are iso-density contours containing the given percentages of the realizations. The
upper and lower constraints r2u,l(r1), computed individually for each realization of r1, are shown as a
blue lines.

lines. It can be clearly seen that all realizations lie well inside the constraints.
As an additional way of depicting the constraints, we apply a part of the quasi-Gaussian

transformation in order to map the allowed range of the correlation coefficients to (−1,+1),
namely by transforming the correlation coefficients rn to

xn = 2rn − rnu − rnl
rnu − rnl

. (6.3)

Scatter-plots of the 125 realizations of x1 and x8 (using the same lags, random catalog size,
and estimator as previously described) are shown in Fig. 6.8. While the left panel again shows
the relatively narrow distribution for the lowest lag, the transformed correlation coefficients at
highest lag plotted in the right panel extend closer to the edge of the allowed range, but still
lie clearly inside.
Since scatter-plots are a slightly inept way of visualizing the constraints, we make use of

a powerful and well-established tool to visualize probability distributions, namely box-and-
whisker plots: In this kind of diagram, samples from a distribution are displayed as boxes
whose upper and lower borders show the first and third quartiles of the sample, i.e. the values
that split off the upper and lower 25 % of the data. Additionally, one usually plots the sample
median (i.e. the second quartile) as a line inside the box, as well as two whiskers, where in the
most widely used type of box-and-whisker plot, the ticks at the end of the whiskers denote the
minimum and maximum of the data. In our case, we instead use them to display the upper and
lower constraints: Since rnu,l are functions of all ri with i < n, we show the mean rnu and rnl
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Figure 6.8: The transformed correlation coefficients at lowest and highest lag, as defined in Eq. (6.3).
Again, each dot corresponds to one realization, i.e. the value measured in one of the 125 subcubes of the
Millennium Simulation using the same lags, random catalog size, and estimator as before (see text and
previous figure captions for details).

over all realizations for plots in r-space. For the transformed values xn, the bounds are simply
±1, so there is no need to average over the realizations.

Fig. 6.9 shows box-and-whisker plots of rn and xn at all eight lags n, where we use the same
lags and random catalog size as before, as well as the LS estimator. Again, it can be seen
that the constraints are clearly obeyed and although the distributions becoming broader for
increasing lag, the boxes showing the upper and lower quartiles only occupy a small fraction
of the allowed region. The distributions are not necessarily centered within the allowed region,
which is not surprising, since their exact shape and position also depend on the underlying
power spectrum.
Furthermore, we compare the impact of the choice of estimator in Fig. 6.10. Again, we show

the transformed correlation coefficients at lowest and highest lag, i.e. x1 and x8, but we make
use of the numerous estimators described in Sect. 2.2.2 and listed in Table 2.2. As was to be
expected from Fig. 6.6, the different estimators yield quite similar results; one thing that is
worth noting is the slightly higher variance of the Peebles and Hauser estimator for the higher
lag. In particular, none of the estimators shift the distribution within the allowed region.
As mentioned in the beginning of this section, the main influence on the variance of the

distributions in ξ- and correspondingly in r- and x-space seems to be the width of the ξ0-bin
– in Fig. 6.11 we investigate this observation and also study the impact of the choice of the
separation between the lags at which we measure ξ. In the two panels of the figure, we again
show box-and-whisker plots of the transformed correlation coefficients at highest and lowest lag,
i.e. x1 and x8, and we vary the separation ∆s of the lags as well as the bin widths of the pair
separations used to measure ξ0 and the correlation functions at non-zero lag, ξ1 . . . ξ8. In the
case of the four left-most distributions in each panel, we use a lag separation of ∆s = 5 h−1 Mpc,
where we adapt a bin width for ξ1 . . . ξ8 of 1 h−1 Mpc for the first and second distribution, and
a bin width of 2 h−1 Mpc for the third and forth one. In both cases, we separately use a narrow
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Figure 6.9: Box-and-whisker plots for rn and xn, where each data point shows the upper and lower
quartile (edges of the box), median (line inside the box), and mean upper and lower boundaries (whiskers)
for the 125 realizations measured from the simulation subcubes at the same lags as before, using the LS
estimator.
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Figure 6.10: Box-and-whisker plots (see previous figure caption) of the transformed correlation coeffi-
cients at highest and lowest lag, using the five estimators listed in Table 2.2.

and a broad bin width for the measurement of ξ0 (also 1 and 2 h−1 Mpc). The figure illustrates
that the width of the distributions of xn is mainly determined by the ξ0-bin size, whereas the
width of the bins for ξn at lags n > 0 barely has any influence. Even more noteworthy is the
fact that the width of the ξ0-bin also shifts the x1-distributions significantly – in particular,
this shift is larger than compared to a case where we measure ξn at different lags altogether, as
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Figure 6.11: Box-and-whisker plots of the transformed correlation coefficients at highest and lowest lag
for varying lag separation and bin width. The triple labeling each distribution gives the lag separation
∆s, the bin width of pair separations at non-zero lag (i.e. for ξ1 . . . ξ8), and the width of the ξ0-bin. For
example for the second case shown in each panel, we measure ξ0 from halo pairs with separations from
0 to 1 h−1 Mpc, ξ1 from those with separations from 4 to 6 h−1 Mpc, ξ2 from 9 to 11 h−1 Mpc, and so
on.

illustrated for a lag separation of ∆s = 3 h−1 Mpc in the fifth distribution shown in the figure.
In this context, it is important to stress that the problem of how to measure ξ0 in practice is
well-known, since in most applications, it is difficult to measure ξ at very low lags. As we have
shown, however, this poses a particularly hard challenge when analyzing measured correlation
functions in a quasi-Gaussian framework, since here, the exact determination of ξ0 is vital –
the auto-correlation function enters everywhere, since one would always transform ξ to y (or at
least to r) for an analysis involving the constraints.

In summary, all correlation functions we measured from the Millennium Simulation are quite
far away from the edge of the allowed region, at least for the several choices of parameters
presented in this section. In particular, the fact that every single realization of correlation
functions obeys the constraints is a clear sign for the validity of the numerous choices made
in our analysis – for example, using very small random catalog sizes does indeed yield single
realizations outside the allowed region. On a related note, allowing for halo pairs to extend
too closely to the edge of the subcubes (for examples by using a very high number of subcubes
or by choosing lags such that the ξ8-bin extends all the way to the border of the subcubes)
again does produce realizations of the correlation function that lie outside the allowed region,
even for sufficiently large random catalogs. Finally, we have shown the importance of a precise
determination of ξ0, which is crucial when computing the bounds on correlation functions –
this can pose a challenge when analyzing correlation functions obtained from actual data in a
quasi-Gaussian framework.
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6 Constrained correlation functions from the Millennium Simulation

6.5 Quality of the Gaussian approximation in ξ and y-space

In this final section, we study some properties of the PDF of the correlation functions measured
from the Millennium Simulation – in particular, we transform ξ to y as explained in Sect. 4.3
and test the Gaussianity of the distributions in y and ξ. This way, it is possible to investigate
to which degree the transformation ξ → y does indeed Gaussianize the correlation function,
which is a central ingredient for the quasi-Gaussian approach presented in this work.
While it would be preferable to directly assess the quality of the quasi-Gaussian approxi-

mation, i.e. to check how well the quasi-Gaussian PDF agrees with p(ξ) as obtained from the
Millennium Simulation, computing the quasi-Gaussian PDF requires measuring the underlying
power spectrum, which is out of scope for this work. However, as explained in Sect. 5, in
a real-life application, one would in any case transform the measured correlation function to
y-space in order to perform a Bayesian analysis, and thus, the Gaussianity of p(y) is pivotal.
Nonetheless, knowledge about the underlying power spectrum would still be required in order
to make use of the analytically known p(ξ0).

As described in Sect. 4.3.1, many tests for Gaussianity exist, and we focus on the calculation
of moments – in particular, we compute the skewness and kurtosis, which are defined in such
a way that they are zero for a Gaussian distribution. The definitions for the multivariate case
are given in Eq. (4.5) and (4.6); here, we also test the Gaussianity of the univariate PDFs. In
the univariate case, the skewness γ of a distribution p(x) reads

γ =
〈

(x− µ)3

σ3

〉
≡ m3

m
3/2
2

, (6.4)

where mi = 〈(x− µ)i〉 denotes the central ith-order moment. Thus, γ is essentially the (renor-
malized) third-order moment, and the kurtosis

κ =
〈

(x− µ)4

σ4

〉
− 3 ≡ m4

m2
2
− 3 (6.5)

is closely related to the fourth-order moment.
To test the impact of the quasi-Gaussian transformation on Gaussianity, we transform the 125

realizations of the correlation function (measured for eight lags of distance ∆s = 5 h−1 Mpc
with bins of width 1 h−1 Mpc for ξ0 . . . ξ8) to y and compute skewness and kurtosis of the
distributions in ξ- and y-space. Similar to our tests in Sect. 4.3.1, we also draw Gaussian
samples with same mean and covariance matrix as our samples {y}, both for comparison and
to account for small sample sizes. The results for the univariate distributions are plotted in
Fig. 6.12 – here, we show the skewness and kurtosis of the distributions p(ξ0), . . . , p(ξ8) and
p(y1), . . . , p(y8) as well as corresponding Gaussian samples. Evidently, the distributions in y are
far more Gaussian than those in ξ (with exception of p(ξ0)) and in particular show a kurtosis
comparable to the Gaussian samples. It is worth mentioning that due to the small sample size,
the moments of Gaussian samples fluctuate quite a bit – when drawing multiple samples of size
125, it is even very possible to obtain a Gaussian sample with higher skewness or kurtosis than
the y-samples. Note that since their purpose is only a rough comparison, we do not use the
same Gaussian samples for the two panels of the figure.
As stated in Sect. 4.3.1, the Gaussianity of the univariate distribution does not imply Gaus-

sianity of the multivariate PDFs – hence, we also compute the moments of the n-variate distri-
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Figure 6.12: Test for the univariate Gaussianity of the {ξ}-and {y}-samples obtained from the Millen-
nium Simulation, using a lag separation of ∆s = 5 h−1 Mpc and bin widths of 1 h−1 Mpc for all ξn,
including ξ0. The data points show the univariate skewness and kurtosis of the distributions p(ξn),
p(yn), and of corresponding Gaussian samples (see text for details).

butions p(ξ0, . . . , ξn−1), p(y1, . . . , yn) and of corresponding multivariate Gaussian samples and
plot them as functions of n; the results are shown in Fig. 6.13. Here the difference between
the level of Gaussianity in ξ- and y-space becomes even larger, reaching about one order of
magnitude in γ and κ.
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Figure 6.13: Multivariate Mardia’s skewness and kurtosis of the n-variate distributions of the {ξ}-and
{y}-samples obtained from the Millennium Simulation and of corresponding Gaussian samples, using
the same parameters as before (see previous figure caption and text for details).
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Figure 6.14: Multivariate skewness and kurtosis of the {ξ}-and {y}-samples obtained from the Millen-
nium Simulation and of corresponding Gaussian samples. In comparison to the previous figure, we adapt
a broader ξ0-bin, i.e. we measure the auto-correlation function from all halo pairs with pair separations
from 0 to 2 h−1 Mpc.

As we showed in the previous section, the width of the ξ0-bin, i.e. the range of pair separa-
tions used to measure the auto-correlation function, has an impact on the distributions of the
correlation coefficients and thus on those of the yn – hence, we vary the ξ0-bin width and again
study the multivariate moments of the corresponding distributions. Fig. 6.14 shows a similar
plot to Fig. 6.13, however, we use a ξ0-bin width of 2 instead of 1 h−1 Mpc. As it turns out, this
yields distributions in y-space which are almost perfectly Gaussian – their moments are hardly
distinguishable from those of the corresponding Gaussian samples with same sample size. In
fact, when performing the same test multiple times while drawing new Gaussian samples each
time, they often yield a skewness and kurtosis slightly higher than the ones of the y-samples.
As before, it seems that the width of the ξ0-bin has a far higher impact on the results than the
bin widths for ξ1 . . . ξ8 – using bins of 2 h−1 Mpc for the higher-lag correlation functions barely
influences the outcome.
As a final test, we also vary the lag separation, i.e. we measure ξ for ∆s = 3 h−1 Mpc, again

adapting bin widths of 1 h−1 Mpc both for ξ0 and ξ1 . . . ξ8. The results for the skewness and
kurtosis are shown in Fig. 6.15, plotted analogously to the previous figures – it is apparent that
changing the lags does not alter our conclusion, namely that the distributions in y-space are far
more Gaussian than those in ξ and do indeed have skewness and kurtosis comparable to those
of Gaussian samples of the same size. In summary, the tests shown in this section indicate the
validity of the quasi-Gaussian approach independent of the specific parameters used to measure
the correlation function.
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6.5 Quality of the Gaussian approximation in ξ and y-space
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Figure 6.15: Multivariate skewness and kurtosis of the {ξ}-and {y}-samples obtained from the Millen-
nium Simulation using different lags than before, and of corresponding Gaussian samples. Here, we
measure ξ of lag separations ∆s = 3 h−1 Mpc with bin widths of 1 h−1 Mpc for ξ0 . . . ξ8.
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CHAPTER 7

Conclusion

7.1 Summary
In this final chapter, we summarize the results presented in this work and give a brief outlook
on potential next steps.
When analyzing measured correlation functions in the framework of Bayesian statistics, their

likelihood is usually assumed to be Gaussian – however, this approximation is not necessarily
accurate due to the existence of fundamental constraints on the allowed values of correlation
functions, which can be derived from purely mathematical properties.
We presented a derivation of those constraints and showed how to compute them, which is

possible analytically only for a one-dimensional random field. For fields of higher dimensionality,
which constitute the main areas of application in astrophysics, one has to resort to numerical
methods. We showed how the constraints can be calculated by constructing a convex hull in
a high-dimensional space, and tested the accuracy of this method by comparing the results to
the analytical constraints for the one-dimensional case.
The constraints can then be used to transform the correlation function ξ to an unbounded

quantity y, where the Gaussian approximation for the likelihood is expected to hold to a higher
degree of accuracy. We showed that this is indeed the case also for multivariate distributions,
and then demonstrated how to make use of this observation to construct a new approximation
for the likelihood L(ξ): Transforming the Gaussian from y- to ξ-space yields a quasi-Gaussian
likelihood which agrees very well with simulated correlation functions. We presented some
attempts to improve the calculation of the quasi-Gaussian PDF, in particular by obtaining
the ξ0-dependent mean and covariance matrix analytically. Additionally, we compared our
approach to other well-established techniques of Gaussianizing, namely to Box-Cox and copula
methods, and showed that the quasi-Gaussian method is superior.

As a next step, we tested the performance of the quasi-Gaussian likelihood by actually using
it in a Bayesian analysis, though we limited our studies to a toy-model analysis: Namely, we
simulated a sample of correlation function as data, and used both the quasi-Gaussian and the
classical Gaussian likelihood to constrain the parameters of the underlying power spectrum.
While both methods manage to reproduce the input parameters quite well, the resulting poste-
rior distributions have different shapes – this is a strong hint that the quasi-Gaussian likelihood
potentially impacts the results of cosmological parameter estimation from measured correlation
functions.
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7 Conclusion

Finally, we shifted our focus closer to real-life applications, namely by measuring correlation
functions from the Millennium Simulation. The large volume of the simulation allowed us to
compute ξ in a high number of subcubes, thus obtaining a sample of correlation functions and
facilitating a statistical analysis. We discussed challenges in the measurement of ξ, for example
the choice of estimator, random catalog size, and lag separation, as well as the question of
how to overcome the integral constraint. By computing the bounds for each realization of ξ
using the numerical methods previously explained, we showed that they are very clearly obeyed,
independent of the choice of lags.
Lastly, we also tested ξ and the transformed quasi-Gaussian quantity y for Gaussianity by

computing moments of the distributions – the fact that the distributions in y-space are far
more Gaussian than the original correlation functions and in some cases even yield a skewness
and kurtosis comparable to Gaussian samples gives further support to the validity of the quasi-
Gaussian approach.

7.2 Outlook

While we established a solid groundwork for the quasi-Gaussian approach in this thesis, many
possible next steps come to mind: On the one hand, there is still room for improvement on the
theoretical side, since some attempts we presented in this work did not give usable results, such
as the analytical computation of the mean and covariance matrix for the Gaussian distribution
in y-space and in particular their ξ0-dependences. While this is a minor caveat, there are
more crucial challenges, in particular the expensive computation of the constraints for two- and
three-dimensional fields. This area merits some attention, since improving the performance
would allow for a higher accuracy of the constraints – most importantly, however, getting rid
of the current limitation to eight lags seems desirable, since modern astronomical observations
usually measure ξ at far more lags. Unfortunately, this is not only a matter of computation
costs, although they do scale strongly with the number of lags (recall that the determination
of the constraints requires the calculation of a convex hull in a space of dimensionality equal to
the number of lags) – due to limitations in the qhull algorithm used in this work, computing
convex hulls of dimensionality larger than eight would require an all-new implementation. On
a less technical note, in this context it might also be interesting to generalize the constraints to
non-equidistant lags.

Most of the potential next steps mentioned so far are testable on simulations, and the studies
of the correlation functions measured from the Millennium Simulation presented in this work
are worth revisiting: In particular, a Bayesian analysis using the realizations of ξ measured
from the simulation (which we omitted since it would require a measurement of the power
spectrum) would be a useful way to study the performance of the quasi-Gaussian likelihood.
However, the most crucial advancement would be the application of our methods to real data.
Of course, this poses many new challenges – aside from the current limitation to only eight
(and equidistant) lags, numerous other effects have to be taken into account: When making use
of N -body simulations as done in this work, the absolute halo positions in three-dimensional
space are known, but in an actual survey, one instead measures redshifts. Thus, one has to
deal with redshift-space distortions, which can impose different constraints on the correlation
function measured along and perpendicular to the line-of-sight. In other cases, one might have
to deal with different coordinate systems (e.g. spherical ones), which would also require further
work in order to compute the constraints.
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7.2 Outlook

An additional long-term goal might be to also move away from correlation functions and
consider the power spectrum instead: While from a theoretical point of view, constraints on
the power spectrum seem simple (i.e. it has to be non-negative), in practice, one has to use an
estimator, which is always effected by window functions. Thus, similar constraints must also
exist for power spectrum estimators, but these have yet to be derived.
Nonetheless, as a final remark, the constraints on correlation functions of three-dimensional

random fields are in principle treatable despite open challenges and room for improvements
– thus, this work opens up a vast field of applications where Gaussian likelihoods for ξ have
previously been used.
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