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Abstract

Automatic understanding of human actions is at the core of several application domains,

such as content-based indexing, human-computer interaction, surveillance, and sports video

analysis. The recent advances in digital platforms and the exponential growth of video and

image data have brought an urgent quest for intelligent frameworks to automatically analyze

human motion and predict their corresponding action based on visual data and sensor signals.

This thesis presents a collection of methods that targets human action recognition using

different action modalities. The first method uses the appearance modality and classifies

human actions based on heterogeneous global- and local-based features of scene and human-

body appearances. The second method harnesses 2D and 3D articulated human poses and

analyizes the body motion using a discriminative combination of the parts’ velocities, loc-

ations, and correlations histograms for action recognition. The third method presents an

optimal scheme for combining the probabilistic predictions from different action modalities

by solving a constrained quadratic optimization problem.

In addition to the action classification task, we present a study that compares the utility

of different pose variants in motion analysis for human action recognition. In particular, we

compare the recognition performance when 2D and 3D poses are used. Finally, we demon-

strate the efficiency of our pose-based method for action recognition in spotting and seg-

menting motion gestures in real time from a continuous stream of an input video for the

recognition of the Italian sign gesture language.
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CHAPTER 1

Introduction

Understanding human actions is a remarkable human skill that they can easily perform on

a daily basis. Humans constantly try to explain their surrounding environments and inter-

pret behaviors to differentiate between ordinary or alarming activities for development and

survival in life. In the machine age, much effort has been devoted towards understanding

how the human visual system can effortlessly recognize motion and interpret its meaning

to create intelligent machines. The first steps towards understanding human actions can be

attributed to the analysis of human motion by Eadweard Muybridge (1830-1904), a Brit-

ish photographer, who succeeded in breaking down human actions into distinct, observable

body poses. It was not until 1975 when Johansson (1975) provided a psychological under-

standing of human motion that explains the perception of biological motion by the human

visual system. The advent of the computer then brought the quest for intelligent frameworks

that can automatically analyze and predict human actions based on visual data and sensor

signals. Many use cases appeared to address several challenges ranging from data manage-

ment and indexing, through automatic-based surveillance systems, to novel approaches for

human-computer interaction applications.

With the advances in digital platforms and the exponential growth of video and image

data, interest towards automatic human action recognition became intensified as content-

based indexing greatly simplifies the manageability of visual data. This advancement has led

to greater efficiency in searches. In order to account for the speed of growth in such video

data, it is worth noting some recent statistics. For instance, Facebook has recently announced

1



Chapter 1 Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Action recognition and motion tracking applications: (a) A clip from the Minority Report
movie which features a “Pre-Crime” police unit that predict crimes before they are committed. The
police use a gesture-based interface designed for the film by an MIT media lab team. (b) Tom Hanks
equipped with motion capture markers to animate the character in the movie: Polar Express. (c)
Kinect game illustration showing motion and action recognition for entertainment applications. (d)
An application of human action and gesture recognition for elder care and health control. (e)+(f)
Applications of automatic gesture recognition for indoor and public environments.

that they operate one of the largest data warehouses storing more than 300 petabytes of data,

the equivalent capacity of as much as 34,245 years of high-definition video. Furthermore,

they have reported that more than 500 years worth of YouTube videos are watched every day

on Facebook. YouTube has also reported that more than 60 hours of video are uploaded every

minute, or one hour of video is uploaded to YouTube every second1. The same trend goes

for Flickr, where it has been reported in 2014 that it hosts more than five billion images with

an average of 3,000 pictures being uploaded every minute2. Unfortunately, to this date, the

management and retrieval of such large-scale video or image archives are only possible at

the cost of expensive manual annotation.

1 https://www.youtube.com/yt/press/statistics.html
2 https://www.flickr.com/photos/franckmichel/6855169886/

2



The interest in designing automatic human action recognition also goes beyond managing

large amounts of data and spans several other fields. Industrial monitoring and surveillance

systems using closed-circuit television (CCTV) cameras have been largely criticized for their

limited role in detecting abnormal and criminal activities. For instance, in the city of London,

it has been reported that more than one million CCTV cameras have already been installed

at a cost of approximately 200 million British pounds. However, despite the high cost, an

internal report by the Metropolitan Police of London stated that the installed CCTV cameras

have not been effective3. The report largely cites the manual analysis of video footage by

untrained officers to be the major drawback in detecting criminal activities using the CCTV

cameras.

Exertion game applications, especially for elderly care and health control, may benefit

from action and gesture recognition in changing the conventional ways of playing video

games for more engaging life experiences (see Figure 1.1). While typical gaming interfaces

were based on keyboards, mouses or other haptic-based controllers, human actions and ges-

tures are increasingly used as a direct input. Several approaches have been proposed to ad-

vance human-machine interaction. The Microsoft Kinect for example, has fostered research

in many disciplines of computer vision and human-computer interactions by providing di-

verse real-time action modalities of depth imagery, voice, RGB, and pose data at affordable

price4.

These examples necessitate automatic action recognition frameworks that can robustly

process, analyze, and respond in real-time, if needed, to such challenging scenarios. Unfor-

tunately, despite the extensive research that has been conducted in the field of human action

recognition over the past few years, efforts to interpret human actions in images or videos

are still in their infancy due to the variation challenges of real-world footage. Variations can

be caused by occlusion, viewpoint, scale, background clutter, as well as variation in subject’s

size, appearance, speed and style of movement. This thesis focuses on methods to overcome

these challenges, and proposes several approaches to achieve the construction of a robust, ef-

ficient, and low-latency human-action recognition system to support real-time applications.

3 http://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-
says-CCTV-survey.html

4 http://www.xbox.com/en-US/xbox360/accessories/kinect/KinectForXbox360
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Chapter 1 Introduction

1.1 Problem Statement

This dissertation focuses on the problem of human-action recognition with respect to differ-

ent action modalities. While the action representation may be presented in different modal-

ities such as RGB, human pose or body silhouettes, the main goal is to provide an efficient

real-time solution of the semantic labels of human actions and investigate the significance of

accounting multiple action representations on performance. Therefore, we propose a set of

methods that achieves these goals and overcomes some of the challenges in understanding

human actions.

To provide an intuitive labeling scheme, action recognition frameworks should follow a

natural language convention which uses the typical structure of the sentence: subject, verb,

and object. Actions can be defined solely by the verb, for instance “walking” or “running”.

They can also be used in conjunction with objects such as “playing football” or “drink-

ing coffee”. Therefore, it is worth accounting for the difference between action terms that

have been interchangeably used to refer to different constructs of human actions. A good

taxonomy of human actions by Moeslunda, Hiltonb and Krüger (2006) presents them as a

hierarchy that consists of: (i) action primitives and gestures, (ii) actions, and (iii) activities.

Action primitives refer to the atomic entities that comprise an action, while actions refer to

an ordered sequence of action primitives. Activities, on the other hand, are comprised of a

higher level combination of actions that share some temporal relationships between the indi-

vidual actions. For example, action primitives in the “play tennis” game may be comprised

of “run forward”, “run backward”, “throw ball”, and “hit ball”, whereas the “tennis serve”

action can be described as a set of action primitives that may consist of “throw ball” and “hit

ball”. The activity of “playing tennis” stands for larger-scale events that usually depend on

the context of the environment, objects, or interacting humans.

Thus, in this dissertation, we focus on automatic action recognition of different action con-

structs using different action representations, and evaluate our proposed approaches based

on several benchmarks. In most cases, these benchmarks use appearance, depth, and human

pose representation and focus on the lower constructs of the action hierarchy: primitive ac-

tions such as “reach” and “release” in the TUM dataset (Tenorth, Bandouch and Beetz, 2009)

and actions such as “walking” and “running” in the Web-actions dataset (Ikizler, Cinbis and

Sclaroff, 2009). However, some benchmarks may encompass more complex activities such

as “cleaning sofa” in the MSR-DailyActivity dataset (Wang et al., 2012a).
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1.2 Human Action Representation

1.2 Human Action Representation

The first step in human action recognition is to capture the action’s signal using a sensing

device or some kind of input representation (modality) that portrays the action. A read-

ily available modality of human actions is their appearance, which is often captured using

consumer-like cameras and shared on the Internet. Alternative action representations, such

as pose and depth field, also became common due to the recent technological advancements

in sensing devices and computer vision algorithms. This section introduces various human

action representations that are commonly used for action recognition, describes their advant-

ages and disadvantages, and explains their utility in solving the problem of human action

recognition. In this context, we briefly describe the appearance modality (Section 1.2.1), the

depth modality (Section 1.2.2), and the pose modality (Section 1.2.3). Note that throughout

this thesis, the terms “representation” and “modality” are used interchangeably to refer to the

format with which human actions are introduced to the action recognition framework.

1.2.1 Action Appearance

With the advent of digital cameras at the beginning of the twenty-first century, images and

videos became a common medium to capture, communicate, and share special moments of

our lives. This has led to an exponential growth in volumes of digital media repositories,

triggering an urgent necessity of content-based analysis systems to organize and manage

such large repositories. In the domain of human action recognition, the application environ-

ment plays a decisive role in the design of appearance-based action recognition frameworks.

Applications that can influence environmental parameters to a certain degree, such as sur-

veillance, for example, can take certain restricting assumptions for fixed view and limited

background clutter. These environments are often referred to as constrained environments.

On the other hand, applications that do not have any conditions on the captured appearance

modality are often referred to as unconstrained environments. This is the case for most

available visual data in TV and cinema movies, sports broadcasts, music videos, or personal

footage clips. In such environments, only very few assumptions can be made, such as that

humans are fully visible and relatively well displayed in the captured video or image scene.

In contrast to constraint environments, unconstrained environments present more challenges

as they capture more realistic data and include wide variations in viewpoint, scale, and back-
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Chapter 1 Introduction

ground clutter, as well as variations in subjects’ appearance, size, and abrupt movement.

1.2.2 Action Depth Field

Recent technological advances in sensory data have led to the development of several optical

sensors that can acquire three-dimensional scans of a scene in real-time. Previously, obtain-

ing such 3D representation was predominately achieved by carefully setting up a multicamera

environment where depth could be reconstructed via triangulations. Nowadays, the newly

introduced sensors can easily provide depth information as a measurement of the distance

from the camera sensor to the closest object’s surface. Two types of optical devices have

appeared to obtain depth measurements: Time-of-Flight (ToF) and structured light sensors.

ToF sensors operate similarly to radar where the range image produced is similar to a radar

image, except through the use of a light pulse. Cameras, based on the structured light prin-

ciple, project a known infrared light pattern into the scene and capture the projected pattern

using a regular infrared camera. In contrast to ToF, structured light sensors, such as the

Microsoft Kinect sensors are simpler to construct and therefore, comparably less expensive

than ToF sensors5. However, this is subject to change as the technology is rapidly advancing

toward designing affordable depth sensors based on both technologies6.

Despite the wide impact of depth sensors on various computer vision domains, current

depth data is still limited, due to several reasons, including: noise, limited maximum-range,

artifacts, and data resolution, which is comparably smaller to other optical cameras. For

instance, current ToF cameras have a resolution of 200 × 200 pixels, while the Kinect sensor

captures 640 × 480 pixels. Moreover, depth sensors can reconstruct only the depth locations

that are facing the sensors, i.e. no 3D points are generated at locations where the emitted

sensor light can not reach. Therefore, the obtained depth representation is often referred

to as 2.5D. Examples of typical depth sensors and their captured depth fields are shown in

Figure 1.2.

1.2.3 Action Poses

Poses as an input modality of human motion have been widely used after the pioneering

work of Johansson (1975). Johansson (1975) presented a visual interpretation of biological

5 http://www.xbox.com/en-US/xbox360/accessories/kinect/KinectForXbox360
6 http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-depth-technologies.html
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1.2 Human Action Representation

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.2: Typical depth sensors for capturing depth fields: (a) ToF sensor, (b) ToF amplitude image,
(c) Color coded depth image, (d) 3D point cloud, (e) Kinect sensor, (f) Kinect RGB image, (g) Color
coded depth image, (h) 3D point cloud reconstructed from the Kinect depth image.

motion which shows that humans are able to interpret their motion solely from the motion

of a few moving light displays (MLD) (see Figure 1.3). Various motion-capture approaches

use this representation to obtain natural portrayals of human motion using optical tracking

systems of markers that are attached to the limbs of the body. While motion-capture systems

provide accurate measurements for the movements of the body joints’ locations in 3D, they

have critical drawbacks that appear when considering realistic unconstrained environments.

In such situations, attaching markers to body joints or wearing special suits is impractical

for actors who are pursuing some type of daily activity. Recent motion-capture technolo-

gies introduced systems that do not demand markers, however, at the cost of careful setup

of the environments in terms of visibility and lighting conditions. Typically, these mark-

erless motion-capture systems use multiple regular cameras which are arranged around a

common area, and the silhouette of an actor is extracted for each camera view. The extracted

silhouettes are employed to reconstruct and estimate the human pose. Unfortunately, these

markerless systems demand ideal scene illumination and clear, textureless backgrounds in

order to reliably extract body silhouettes.

The environmental restrictions of motion-capture systems motivated automatic-based pose

estimation methods to identify and localize different parts of the body from the visual appear-
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Figure 1.3: Action examples with moving light displays (MLD) attached to the body’s joints

ance of the human body. Comprehensive surveys on recent pose estimation techniques can

be found in (Moeslunda, Hiltonb and Krüger, 2006; Sala et al., 2014). Unfortunately, these

approaches are still limited in their performance capabilities as they are heavily challenged

by the complexities of the high dimension of the search space and the large number of de-

grees of freedom involved in estimating the body pose. Further complexities arise due to the

variation of cluttered backgrounds, body parameters, and illumination changes in real world

scenarios. An important milestone towards markerless pose-estimation was achieved after

the release of the Kinect sensor, where current approaches on pose estimation from depth

data obtain a reliable estimation of the human body pose. While providing a good estimation

of the human body pose, approaches based on depth data still presume that the entire subject

is mostly visible and facing the Kinect sensor.

1.3 Contributions

Our research investigates the utility of different action modalities to achieve efficient and reli-

able human action recognition. It presents novel algorithms and provides extensive empirical

evaluation, providing state-of-the-art performance on several action recognition benchmarks.

Below we give an overview of our contributions.

We explore the significance of the appearance representation for human action recognition

and investigates the benifits of combining different appearance-based features. To this pur-

pose, we present a novel supervised classification framework for action recognition that is

based on non-negative matrix factorization (NMF). The presented classification framework

is a multiclass framework that determines probability estimates of classes for the provided

patterns. Therefore, it can efficiently integrate various estimates of different patterns in or-

der to enhance the classification performance. Our research builds on the recent work on
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1.3 Contributions

non-negative matrix factorization to multiview learning, where the primary dataset benefits

from auxiliary information in obtaining shared and meaningful spaces. For discrimination,

we use action labels in a supervised setup as an auxiliary source of information to learn the

representative latent set of bases vectors. The evaluation considers an appearance-based ap-

proach on two challenging image datasets of human action recognition. In the evaluation, we

show how the proposed algorithm achieves competitive classification results. This work was

published in (Eweiwi, Cheema and Bauckhage, 2013) and is presented in Chapter 3.

Despite the encouraging performance, the obtained recognition rates using the appearance

features only are not ideal for real world application scenarios due the extreme inconsist-

ency of the action appearances. Therefore, we investigate other action representations that

can provide better invariance while preserving the distinctive features among semantically

different actions. In Chapter 4, we propose a pose-based framework for action recognition

that overcomes the varying challenges of appearance-based recognition frameworks. We

also show that unlike most previous pose-based approaches, our training and testing time

for human action recognition is fast and can meet the demands of real-time applications.

Further, the proposed approach achieves state-of-the-art results on several action recognition

benchmarks and can work for 2D or 3D pose-based action representations. This work was

published in (Eweiwi et al., 2014) and is presented in Chapter 4.

Since most estimation methods for monocular views reconstruct only 2D poses, we com-

pare 2D and 3D pose-based features for human action recognition. We further investigate the

significance of reconciling the 2D poses and obtain their corresponding 3D poses for action

recognition using a regression scheme. Our study concludes that learning a mapping from 2D

poses to 3D poses to obtain view-invariant features can boost the performance significantly.

Further, we evaluate the significance of joint orientation features and their role for large scale

human action recognition. This work is detailed in Chapter 5 and provides an extension to

the work published in (Eweiwi et al., 2014).

As human actions are not usually associated with only the pose representation, but rather

on a synergy of representations that captures different action perspectives such as action mo-

tion, scale, and scene appearance, we present a novel late-fusion framework that combines

several classification results of different action modalities. Our approach is based on formu-

lating and solving a constrained quadratic optimization problem that determines the optimal

fusion weights of classifiers based on their operating modality. In contrast to the previously

proposed late fusion approaches, our approach puts constraints on the semantics of mixture
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coefficients, such that they represent the posterior of every participating classifier for each

class. Experiments on a number of established benchmark action datasets show that the

presented approach improves on baseline late-fusion approaches and improves on state-of-

the-art results. This work is detailed in Chapter 6 and published in (Cheema, Eweiwi and

Bauckhage, 2014).

1.4 Related Publications

The following list presents the publications and the contributions made and presented in this

dissertation:

[1] A. Eweiwi, S. Cheema, C. Thurau, C. Bauckhage, “Temporal key poses for human

action recognition”, ICCV-WORKSHOPS, 2011.

[2] A. Eweiwi, S. Cheema, C. Bauckhage, “Discriminative joint non-negative matrix fac-

torization for human action classification”, GCPR, 2013.

[3] A. Eweiwi, S. Cheema, C. Bauckhage, “Action Recognition in Still Images by Learning

Spatial Interest Regions from Videos”, Pattern Recognition Letters 37, 2014.

[4] A. Eweiwi, S. Cheema, C. Bauckhage, J. Gall, “Efficient Pose-based Action Recogni-

tion”, ACCV, 2014.

[5] S. Cheema, A. Eweiwi, C. Bauckhage, “Action recognition by learning discriminative

key poses”, ICCV-WORKSHOPS, 2011.

[6] S. Cheema, A. Eweiwi, C. Bauckhage, “Gait Recognition by Learning Distributed Key

Poses”, ICIP, 2012.

[7] S. Cheema, A. Eweiwi, C. Bauckhage, “Who is Doing What? Simultaneous Recogni-

tion of Actions and Actors”, ICIP, 2012.

[8] S. Cheema, A. Eweiwi, C. Bauckhage, “Human Activity Recognition by Separating

Style and Content”, Pattern Recognition Letters 34, 2013.

[9] S. Cheema, A. Eweiwi, C. Bauckhag, “A Stochastic Late Fusion Approch to Human

Action Recognition”, GCPR, 2014.
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CHAPTER 2

Related Work

2.1 Preface

Human action recognition has attracted much attention in the past decade and remains an

active research topic in computer vision. The challenge in computer vision, simply stated, is

to be able to efficiently and robustly classify human actions. Efficiency denotes the capab-

ility of the system in obtaining accurate and fast performance for human action recognition.

Robustness refers to the capacity of the system in maintaining its efficiency under unpre-

cedented situations. As noted in (Campbell and Bobick, 1995), the representation of the

performed actions often determines the key characteristics of the designed algorithm (i.e.

efficiency, robustness, and applicability extents). Ideally, the representation should be in-

variant towards variations in different actors’ styles, views, and backgrounds. Meanwhile,

it should preserve the distinctive features among semantically different actions. Following

this intuition, we describe the human action recognition challenge from a representation per-

spective. First, we briefly review current approaches to action recognition, with an emphasis

on their used representations (see Figure 2.1). Then, we review the research frontiers on this

problem and present exemplar approaches based on the adopted representation. Finally, we

elaborate on the advantages and disadvantages of using each representation for delivering

efficient and robust human action recognition solutions. From this standpoint, we roughly

categorize the proposed methods for human action recognition into two categories based on

their corresponding representation:
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(a) (b) (c) (d)

Figure 2.1: Different action views of human: (a) appearance, (b) depth field, (c) silhouettes, and (d)
pose representations

• Action recognition using high-level representations:

High-level representation of human actions presents the human body pose as a col-

lection of interconnected body parts and joints in a deformable configuration model.

These models are offten called body poses or stick-figures. (see Figure 2.1(d)).

• Action recognition using low-level representations:

Low-level representation of human actions presents its visual appearance as an ordered

set of pixels of different intensity values for each channel. These channels may corres-

pond to the visual appearance of the action using colored pixels (i.e. RGB), or depth

image with pixel intensities that capture the distance of the projected light ray from the

real world to the sensor, or body silhouettes where each pixel indicates if it is part of

the human body or not.

In the following sections, we elaborate further on both approaches and describe some of

the recent research made based on these action representations.

2.1.1 Action Recognition Using High-level Representation

Earlier attempts for human action recognition relied on simple human representations called

stick-figure models (Johansson, 1975). The stick-figure model is based on a pose structure,

where line segments are connected by the body joints to form a hierarchical structure. Ob-

taining such representation assumes accurate measurements of the body’s joints; thus, it

often requires special setups and tools. The influence of the psychological studies of hu-

man perception of motion (Johansson, 1975) motivated several researchers to account for
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this representation in automatic human action recognition. For instance, the approaches in

(Campbell and Bobick, 1995; Bissacco et al., 2001; Ali, Basharat and Shah, 2007) use dif-

ferent phase space features extracted from joint trajectories for actions and gaits recognition.

Others (Yacoob and Black, 1998; Rao, Yilmaz and Shah, 2002; Junejo et al., 2008) rely

on different similarity measures for tracking and matching body joints’ trajectories. Para-

meswaran and Chellappa (2003) propose an invariant feature set for human motion analysis

and action recognition using five plenary points of human body joints. Vasilescu and Sethi

(2001) pose the human action classification as a model-based object recognition problem

using a generalized cylindrical representation called action cylinders. Sheikh, Sheikh and

Shah (2005) identify three sources of variability within a performed action and propose to

alleviate them through a linear combination model in a joint spatio-temporal space. These

approaches, however, demand an expensive and time-consuming setup to operate in order

to generate accurate measurements of body joints’ locations; therefore, their applicability to

real-world environments is limited.

With the recent advances in both depth sensors and automatic human pose estimation al-

gorithms, interest has been rekindled in high-level representations for action and behavior

analysis (Ye et al., 2013). Despite their noisy estimations in monocular (Yang and Ramanan,

2011), depth sensors (Shotton et al., 2013), or multiview (Yao, Gall and Gool, 2012) setups,

several recent studies (Tran, Kakadiaris and Shah, 2011; Jhuang et al., 2013; Wang, Wang

and Yuille, 2013; Wang et al., 2012b; Yao, Gall and Gool, 2012) strongly point to the util-

ity of the pose representation in obtaining superior performance as opposed to low-level

features (Section 2.1.2). For example, Tran, Kakadiaris and Shah (2011) utilize polar co-

ordinates of joints in a sparse reconstruction framework to classify human actions in real-

istic video datasets. Their evaluation clarifies the implication of accurate pose estimation

on action recognition and identifies the potentials of current state-of-the-art pose estimation

in obtaining excellent recognition performances. Similar observations are reported in (Yao,

Gall and Gool, 2012; Jhuang et al., 2013) for larger and more complex datasets. In particular,

Jhuang et al. (2013) show that in some scenarios, high-level features extracted using current

state-of-the-art pose estimation algorithms (Yang and Ramanan, 2011) outperform best low-

level features based on dense trajectories (Wang et al., 2011a). These observations motivated

researchers to further examine the potentials of high-level features under conventional and

newly proposed challenges in videos and depth sensor data. For instance, Wang et al. (2012a)

propose learning sets of most distinctive joints through mining. While Zanfir, Leordeanu and
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(a) (b)

Figure 2.2: Exemplar features extracted from skeleton-based representation using (a) joints trajector-
ies (Sheikh, Sheikh and Shah, 2005) and (b) trajectory similarity matrix (Junejo et al., 2008)

Sminchisescu (2013) weight poses of actions based on a mutual information criteria, Wang,

Wang and Yuille (2013) mine the most occurring temporal and spatial structures.

2.1.2 Action Recognition Using Low-level Representation

Due the practical challenges in obtaining high-level pose representation, research in human

action recognition has slowly deviated towards low-level representations of human actions.

Two major factors have led towards such a transition. The first is the progress made on

low-level features for object detection/recognition. The second is the limited performance of

automatic pose estimation algorithms at that time and the high expanses of motion capture

setups in obtaining high-level representations. Therefore, alternative low-level action repres-

entations were proposed such as body pose silhouettes, action appearances, and depth fields

of the action scene. Next, we list exemplar approaches based on each representation and

point out the advantages and disadvantages of each representation in action recognition.

Silhouettes-based Approaches

Human body silhouettes were frequently used for human action recognition, especially in

the environments where they can be reliably and efficiently captured using background sub-

traction techniques. A popular work that advocated using this representation was made by

Bobick and Davis (2001) where motion and shape cues are combined to create two distinctive

action templates called Motion History Images (MHI) and Motion Energy Images (MEI). An

extension towards view invariance was proposed in (Weinland, Ronfard and Boyer, 2006) by

modeling the human action as 3D template volumes called Motion History Volumes (MHV).

Other successful uses of silhouettes were presented in (Thurau and Hlavac, 2007; Thurau et
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(a) (b)

Figure 2.3: Exemplar features extracted from silhouettes-based representation as (a) space-time ob-
jects (Blank et al., 2005) and (b) action-sketches (Yilmaz and Shah, 2005)

al., 2011; Eweiwi et al., 2011) where they modeled the temporal sequence of human action

as a histogram of key poses. These key poses are representative body poses which result

from clustering a pool of diverse human body poses. Another histogram-based approach was

used by Ikizler, Cinbis and Sclaroff (2009) where they encoded human silhouettes using a

histogram of oriented rectangular blocks that span the body pose. Object recognition ap-

proaches were also adapted for action recognition through the work of (Yilmaz and Shah,

2005; Gorelick et al., 2007). Their approaches model human actions as spatio-temporal ob-

jects that are matched to test samples using a predefined similarity measure. Despite the

success made using silhouettes-based approaches, the proposed methods are still bound with

the (constrained) environments where silhouettes can be obtained reliably. Moreover, these

approaches are still heavily impeded by noise that results from scene-occlusion or inaccurate

extraction of the human pose. Therefore, the emphasis of using silhouettes for action recog-

nition has decayed in favor of other representations, such as depth- and appearance-based

representations that we describe next.

Appearance-based Approaches

The significant progress made in object and human detection using appearance-based repres-

entation (i.e. RGB) promoted several adaptations of motion and visual appearance cues in

modeling human actions. Roughly, one can categorize the adopted approaches on modeling

human action appearances into:

• Global template-based models became popular after the introduction of efficient ob-

ject and human descriptors, for example, the Histogram of Oriented Image Gradients
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(HOG) descriptor that was presented in (Dalal and Triggs, 2005). In this line, an auto-

matic approach for mining human actions from web images using a variant of the

(HOG) descriptors is used in (Ikizler, Cinbis and Sclaroff, 2009). Thurau and Hla-

vac (2008) apply Non-negative Matrix Factorization (NMF) on the HOG features of

pose appearances to learn a set of body-pose primitives. Classification is performed

on top of a histogram of pose primitives using Kullback-Leibler (KL) divergence.

Efros et al. (2003) use the optical flow fields in constructing global templates of hu-

man actions where classification is performed for videos on each frame individually.

Motion template features were also used to discriminate among actions, either by en-

coding the foreground trajectories (Wu, Oreifej and Shah, 2011) or using the optical

flow fields (Sadanand and Corso, 2012). In general, global based modeling of human

actions works well in delivering the general structure of the human action. But it be-

comes vulnerable as the variations among actions gets smaller. Moreover, global-based

approaches can be severely affected by various impeding factors such as body-parts oc-

clusion, view variations, and background clutter.

• Part-based models also present convenient methods for dealing with human action re-

cognition. These methods became popular after their success in many human and object

detection challenges (e.g., PASCAL visual object recognition challenge 1). Felzenszwalb

et al. (2010) describe a deformable model for human detection that was used to achieve

state-of-the-art performance in action recognition on several benchmarks. Bourdev and

Malik (2009) model the human appearance using a set of part-based appearance tem-

plates called poselets which capture similar pose configurations. Maji, Bourdev and

Malik (2011) utilize poselets to identify human poses, as well as actions in still im-

ages. Sun and Savarese (2011) propose an articulated part-based model for human

pose estimation and detection that adopts a hierarchical (coarse-to-fine poselet-like)

representation. Yang, Wang and Mori (2010) exploit poselets as a coarse representa-

tion of the human pose and treat them as latent variables for action recognition. The

pose-appearance view was also used in (Yao and Fei-Fei, 2012) through a 2.5D repres-

entation that considers both pose and appearance information of the body parts. Despite

their recent success on different action recognition challenges, it is still questionable if

these methods can make use of the favorable statistics of today’s large-scale datasets as

the construction of suitable poselets often requires extensive human intervention and
1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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manual labeling in the training phase.

• Bag-of-Features (BOF) models had been widely used for human action recognition,

especially, after the introduction of interest points in video sequences (Laptev, 2005;

Willems, Tuytelaars and Gool, 2008). The BOF model originated from document and

text analysis research in (Salton and McGill, 1986) where documents are represented

as a set of orderless words sampled from a language dictionary. The same analogy was

used for image and video analysis by constructing a dictionary of visual words to sim-

plify the image or video representation. Briefly, in action recognition, the BOF model

starts with extracting spatio or spatio-temporal features in the vicinity of random-

(Gall et al., 2011), key- (Laptev, 2005; Willems, Tuytelaars and Gool, 2008), dense-

points (Sharma, Jurie and Schmid, 2012; Deltaire, Laptev and Sivic, 2010). Then, a

dictionary of visual words is constructed using a clustering scheme. The final histo-

gram representation is obtained by encoding and pooling the local features into their

corresponding bins. One of the earliest implementations of BOF for action recognition

in videos was proposed in (Laptev et al., 2008), where spatio-temporal key-points are

used to extract local features of human actions. Later experiments adopted a dense-

based feature extraction (Reddy and Shah, 2013; Kuehne et al., 2011) which showed

better performance in detecting and recognizing human actions.

Recent work on BOF model addresses limitations of the disordered representation of

BOF model and low-level features (Kovashka and Grauman, 2010). Some methods

propose a mid-level representation that conveys more semantics about the actions by

encoding spatial and temporal relationships among low-level features. Others (Gilbert,

Illingworth and Bowden, 2011; Liu et al., 2012) employ data mining to build high-level

compound features from noisy and over-complete sets of low-level spatio-temporal fea-

tures. Song, Goncalves and Perona (2003) use a triangular lattice of grouped point

features to encode spatial layouts. The authors of (Coates and Ng, 2011; Malinowski

and Fritz, 2013; Sharma, Jurie and Schmid, 2012) propose weighting schemes of local

features while pooling them in a way that regards the classification task at hand. Unfor-

tunately, these approaches provided limited enhancements over their low-level counter-

parts as they lack semantic meaning, making the interpretation of their mid-level fea-

tures difficult. Incorporating the semantics behind the visual appearance of the action

appears to be a key-factor in obtaining better action models using BOF. Therefore, re-
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cent approaches (Matikainen, Hebert and Sukthankar, 2009; Wang, Wang and Yuille,

2013; Wang et al., 2011a) use semantic constructs like motion trajectories instead of

key-points for sampling local action features. Jhuang et al. (2013) notice that encoding

local appearance and motion features in the vicinity of motion trajectories boosts the

performance of BOF models. While Wang et al. (2013b) show that accurate estimation

of action trajectories further enhances the performance of these models.

Despite encouraging results of the appearance-based representation for action recognition

on several datasets, many factors greatly impede the progress in this domain. Among these

are the heavy variations of the same action appearance across different view points, different

subjects, different scales, and even different scenes. Moreover, low-level features of the

appearance representation are often limited in their discriminative power for complex and

realistic scenarios as they carry limited semantics of the represented actions.

Depth-based Approaches

Much effort has been devoted recently to developing features for action recognition on depth

data due to the reliable, affordable, and rich representation depth fields provide for the hu-

man actions. Some approaches that use the depth-based representation adopt appearance-

based approaches by assuming the depth-field as an intensity image. These approaches used

global-based (Yang et al., 2012) or part-based (OhnBar and Trivedi, 2013) templates to cap-

ture action depth characteristics. Other recent approaches follow more delicate methods by

mining discriminative depth-based occupancy patterns that are randomly distributed over the

body’s depth field (Wang et al., 2012c) or only around the body’s joints (Wang et al., 2012b).

Histogram-based approaches were also used in this domain. For example, Li, Zhang and Liu

(2012) represent each depth frame as a bag of 3D points on the human silhouette and employ

HMM to model the temporal dynamics. Oreifej and Liu (2013) build histogram-based fea-

tures based on the normals extracted from the 4D spatio-temporal space of the human body

(i.e. XYZ+T). Despite the current limitations of maximum captured depth of current depth

sensors (e.g., Kinect and Time-of-Flight), the representation still presents a unique view of

human action that is beneficial, especially for indoor applications of human action recogni-

tion systems.
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2.1.3 Action Recognition: A Multimodal Approach

In the previous sections, we have introduced several action views of high-level (e.g., body

poses) and low-level representations (e.g., appearance and depth fields). Noticeably, each

view is characterized by several limitations which prohibit obtaining robust action recogni-

tion systems. Therefore, the recent trend for action recognition targets fusing several comple-

mentary action representations to cope with different action aspects such as motion, scene,

pose, and context. Two approaches commonly are used to achieve fusion. The first is early

fusion which combines different representations on the feature level. For instance, methods

in (Deltaire, Laptev and Sivic, 2010; Rohrbach et al., 2012; Wang et al., 2011b) combine a

variety of heterogeneous representations by simply concatenating feature descriptors. This,

however, may undermine the discriminative potential of each individual representation for

particular classes. To overcome this limitation, Wang et al. (2012a) follow a principled ap-

proach to combine a set of mined action features called actionlets using Multiple Kernel

Learning (MKL) (Bach, Lanckriet and Jordan, 2004), which assigns different linear or non-

linear weights to the feature kernels in order to obtain better similarity measures. A recent

evaluation Gehler and Nowozin (2009) show that the simple kernel averaging, a much faster

method, can achieve similar results as MKL.

The second approach is late fusion, often called classifier-level fusion. This approach has

certain key advantages over other fusion schemes. Firstly, late fusion is generally fast and

scalable, especially as the trained system grows to adapt new features. In this case, classifier

level fusion requires only the retraining of the fusion part in contrast to feature level fusion

where the whole system needs to be retrained. Secondly, it abstracts away details of the

underlying classifiers, giving the freedom of selecting arbitrary classification models that

best suit a given feature. Baseline approaches for classifier level fusion such as the sum-rule

or the SVM-rule (Kittler et al., 1998) have been extensively evaluated for several application

(Kittler et al., 1998; Xu, Krzyzak and Suen, 1992). These baselines assume that individual

classifier outputs are normalized to an estimate of posterior probabilities so that they can

be combined homogeneously (Jain, Duin and Mao, 2000). For instance, Eweiwi, Cheema

and Bauckhage (2013) combine the estimated confidences rates of different models trained

using actions’ pose appearances and scene appearances. While Yao et al. (2011a) combine

the confidence estimates of models trained on different pose and appearance features. In

summary, both late and early fusion of action features for different representations have
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shown significant improvements on human action recognition. Therefore, recent approaches

focus on the design of better fusion schemes, other than baseline techniques, that adhere

the individual advantages of each action representation allowing for better human action

recognition systems (Liu et al., 2013a; Ye, Liu and Chang, 2012).

2.2 Human Actions Datasets

The technological advancement in terms of memory, processing speed, and sensory data has

opened new application domains and provided appealing tools for analyzing diverse, com-

plex, and large amounts of visual data. As the demand for automatic analysis of visual me-

dia became mandatory for wide application domains (e.g. video indexing human-computer

interaction, and surveillance), researchers proposed several benchmarks that have had an

increasing complexity throughout the last few years. These datasets consider different as-

sumptions of human actions according to the anticipated application domains of the designed

algorithms. Among these assumptions are the scale of the recognition problem, its working

environment (i.e. constrained or unconstrained), and the representations of human actions

(i.e. RGB, RGB-D, silhouettes, motion capture, and skeleton-based representations).

We divide these benchmarks into two categories based on whether they comprise high-

level action representation (i.e. human poses depicted by body skeletons) or low-level action

representations (i.e. appearance- and depth-based). Table 2.1 lists the action datasets we used

in this dissertation and their main characteristics.

2.2.1 Low-level Representation Benchmarks

Low-level representation depicts the visual appearance of human actions as an ordered set

of pixels with different intensity values of different channels. These channels may either

correspond to the visual appearance of the action depicted by colored pixels (i.e. RGB), or

the depth field through pixels whose intensities correspond to the distance of the projected

light ray from the real world to the sensor, or silhouettes where each pixel indicates if it

corresponds to a human body or not.
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Figure 2.4: Exemplar frames for the MuHVAi human action dataset (first row) with their silhouettes
and for the HMDB dataset (second row)

Multi-view Human Action Video (MuHAVi) Dataset

The MuHAVi dataset is a video dataset of two different representations: human silhouettes

and RGB data. Silhouette-based representations have been widely used for action recognition

in constrained environments. It became popular as it suits particular applications (e.g., sur-

veillance) where reliable human silhouette extraction is possible. The dataset was presented

by Singh, Velastin and Ragheb (2010) and considers human actions in a constrained environ-

ment. It provides multi-view data of actions of different actors with CCTV-like views (i.e. at

an angle and some distance from the observed person). The data consists of 136 samples of

14 primitive actions, performed by two actors, and is observed from two different views. The

actions in the data set can be reorganized into eight classes where similar actions constitute a

single class. Figure 2.4 shows example frames of this dataset for different human actions in

the RGB and the silhouette representations.

Web-actions Dataset

The exponential growth in unconstrained human action videos exposed the potential limit-

ation of silhouette-based representations. These representations are usually intractable for

images and unconstrained action videos because of the absence of reliable silhouette extrac-

tion methods. As such, several datasets were proposed to recognize human actions based

only on their visual appearance (i.e. RGB data). The Web-actions dataset is among these

datasets that targets action recognition from images gathered for the web. It was presented
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Table 2.1: Human action recognition benchmarks and their key characteristics: number of actions,
number of samples, type of samples (I: Images, SV: Segmented videos, and UV: Unsegmented
videos), year of release, and the available action modalities (A: Appearance, D: Depth, P: Pose,
and S Silhouettes
Dataset Actions Samples Type Modality Year

MuHAVI (Singh, Velastin and Ragheb, 2010) 14 136 SV S 2010
Web-Actions (Ikizler, Cinbis and Sclaroff, 2009) 5 2458 I A 2009
Willow (Deltaire, Laptev and Sivic, 2010) 7 911 I A 2010
HMDB51 (Kuehne et al., 2011) 51 6766 SV A 2011
MSR-Action3D 2 20 576 SV A+D+P 2011
MSR-DailyActivity 16 320 SV A+D+P 2011
3D-Action-Pairs (Oreifej and Liu, 2013) 12 352 SV A+D+P 2013
TUM (Tenorth, Bandouch and Beetz, 2009) 10 20 UV A+P 2009
ChaLearn Gestures 3 20 630 UV A+D+P+S 2014

Table 2.2: Example algorithms with their performance on Web-actions dataset
Method Accuracy(%) Year
(Ikizler, Cinbis and Sclaroff, 2009) 56.54 2009
(Yang, Wang and Mori, 2010) 61.07 2010
(Eweiwi, Cheema and Bauckhage, 2013) 64.05 2013

by Ikizler, Cinbis and Sclaroff (2009) and contains images downloaded from the Internet

using the keywords of human actions. The human body is then extracted using a state-

of-the-art human detector and post-processed to align the extracted human bounding boxes

with respect to their head position. The resulting dataset consists of five different actions:

“dancing”, “playing golf”, “sitting”, “running”, and “walking” and contains a total of 2,458

images. Examples from this dataset are shown in Figure 2.5. Pictures in this dataset are

characterized by the visibility of human body parts. However, it represents a challenge as

the body appearance shows wide pose variations, especially for the “dancing” and “playing

golf” actions. Exemplar approaches and their reported results on this dataset are reported in

Table 2.2.

Willow Dataset

Advances in social media have revolutionized not only the amount of personal pictures we

share on the web, but also provided a diverse view and quality of human visual appear-
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Figure 2.5: Examples of different human action images taken from the Web-action (first row) and the
Willow (second row) datasets

Table 2.3: Example algorithms with their performance for the Willow dataset
Method mAP(%) Year
(Deltaire, Laptev and Sivic, 2010) 62.14 2010
(Eweiwi, Cheema and Bauckhage, 2013) 61.57 2013
(Sharma, Jurie and Schmid, 2012) 65.9 2012
(Delaitre, Sivic and Laptev, 2011) 64.1 2011

ances. The willow dataset4 proposed by Deltaire, Laptev and Sivic (2010) addresses these

challenges by introducing a human action dataset of consumer-like photos that stand for a

wide range of variations in view, scene, scale and quality of the visual appearance for people.

This dataset consists of 911 images distributed over seven different actions: “interacting with

computer”, “taking photo”, “playing music”, “riding bike”, “riding horse”, “walking”, and

“running”. Some images were taken from the Pascal 2007 VOC Challenge and the rest were

collected from Flickr by querying on keywords such as “running people” or “playing piano”.

Images that do not clearly depict the action of interest were manually removed. A common

observation between the obtained results on the Web-actions (see Table 2.2) and the Willow

datasets (see Table 2.3) is the relatively low performance of the proposed approaches for hu-

man action recognition as compared to other datasets that comprise further motion-, depth-,

or pose-based representation. This points out to the greater challenges of solving the human

action recognition using appearance in images as compared to RGB-videos or other action

modalities.

4 www.di.ens.fr/willow/research/stillactions
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Table 2.4: Example algorithms with their performances for the HMDB51 dataset
Method Accuracy (%) Year
Dense Trajectory (Wang et al., 2013b) 46.6 2013
ActionBank (Sadanand and Corso, 2012) 26.6 2012
MIP (Gross et al., 2012) 29.2 2012
C2 (Kuehne et al., 2011) 23.0 2011
HOG/HOF (Kuehne et al., 2011) 20.0 2011

Large Human Motion Database (HMDB51)

As billions of videos are shared and viewed on the Internet everyday, new frontiers emerged

in computer vision to arrange such gigantic growth of media. In contrast to earlier bench-

marks for action recognition, HMDB51 addresses the large scale evolution in media and

is considered one of the largest and most challenging benchmarks for action recognition.

It comes with 51 distinct action categories each contains at least 101 samples for a total of

6,766 action samples. Each sample clip is validated by at least two human observers and con-

tains additional meta information (i.e. view-point, indicator of camera motion, quality, and

the number of actors involved) to provide more flexible experiments for evaluation. Several

algorithms were evaluated in this dataset; Table 2.4 shows the state-of-the-art performance

achieved in this dataset. Noticeably, the HMDB51 dataset is one of the most challenging

benchmarks for action recognition where the best performance of only 46.6% was reported

by Wang et al. (2013b) in 2013 using an improved dense trajectory features.

2.2.2 High-level Representation Benchmarks

High-level representation of human actions abstracts away most information that is irrelevant

to the human body. The representation focuses on modeling the human body and presenting

it as a collection of interconnected body parts and joints in a deformable configuration model.

Human actions in this depiction can be defined as a collective articulation of the body’s joints

and parts that uniquely determine the action. This representation is widely adopted in com-

puter graphics, movie production, and animation using motion capture data. Obtaining such

representation usually requires special setups that are often time consuming and costly. Fig-

ure 2.8a depicts an example of its setup and application for generating high quality computer

animations. Recently, with the advent of new sensors (e.g., Kinect and time-of-flight), ro-

bust algorithms were developed to reliably estimate the human pose in a low-cost monocular
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(a) Body poses from depth data

(b) Body poses from mocap data

Figure 2.6: Approaches for capturing abstract human body representations (i.e. body pose) using (a)
depth data from the Kinect sensor and (b) special motion capture setup

view setup (Figure 2.7b). As a result, researchers presented several challenges that provide

not only low-level representations (e.g. RGB-D), but also high-level representations (i.e.

body poses) of human actions. In the following sections, we present these datasets and the

reported state-of-the-art results on each.

MSR-Action3D Dataset

The MSR-Action3D dataset is an action dataset captured with an RGB-D camera and desig-

nated for gaming-like interactions. The selected actions reasonably cover the various artic-

ulation of arms, legs, torso and their combinations. Additionally, if an action is performed

by a single arm or leg, the subjects were advised to use their right arm or leg. The sub-

jects were facing the camera during the performance. The dataset consists of 567 temporally

segmented action sequences and contains 20 actions; each performed 2-3 times by 10 differ-

ent subjects. The actions are: “high-arm-wave”, “horizontal-arm-wave”, “hammer”, “hand-

catch”, “forward-punch”, “high-throw”, “draw-x”, “draw-tick”, “draw-circle”, “hand-clap”,

“two-hand-wave”, “side-boxing”, “bend”, “forward-kick”, “side-kick”, “jogging”, “tennis-
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Table 2.5: Recognition accuracies reported for the MSR-Action3D dataset. These methods use differ-
ent action representations of poses (P) and depth fields (D).

Method Modality Accuracy(%)
(Wang and Wu, 2013) D+P 92.67
(Wang et al., 2012b) D+P 88.2
(Wang et al., 2012c) D 86.5

(Oreifej and Liu, 2013) D 88.36
(Zanfir, Leordeanu and Sminchisescu, 2013) P 91.7

(Wang, Wang and Yuille, 2013) P 90.22
(LXia and Aggarwal, 2013) D 89.3

Figure 2.7: Human body-pose exemplar frames for the TUM dataset (left) and the 3D Action Pairs
dataset (right).

swing”, “tennis-serve”, “golf-swing”, “pick-up”, and “throw”. Table 2.5 shows example

methods and their reported results using different action representations. Both depth- and

pose-based features perform relatively well on this dataset which signify their importance.

However, the best results on this dataset (Wang and Wu, 2013) were reported when both

depth- and pose-based representations results are combined. This demonstrates the neces-

sity of accounting different action representations in order to achieve better performances in

action recognition.

3D Actions Pairs Dataset

This dataset emphasizes particular scenarios where motion and shape cues are highly correl-

ated. It is comprised of six pairs of actions, such that within each pair, the motion and the

shape cues are similar, but their temporal correlations vary. Therefore, this dataset is useful

to investigate how well the action features capture the prominent cues jointly in the action
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Table 2.6: Exemplar recognition accuracy for the 3D Action Pairs. These methods use different action
representations of poses (P) and depth fields (D)

Method (Wang and Wu, 2013) (Wang et al., 2012b) (Oreifej and Liu, 2013)
Modality D+P D D

Accuracy(%) 97.22 82.22 96.67

Table 2.7: Exemplar recognition accuracies for the MSR-DailyActivity dataset. These methods use
different action modalities of poses (P) and depth fields (D).

Method Modality Accuracy(%)
(Zanfir, Leordeanu and Sminchisescu, 2013) P 73.8

(Wang et al., 2012b) P 68.0
(Wang et al., 2012b) P+D 85.75

(LXia and Aggarwal, 2013) P+D 88.2

sequence. The action pairs are: “Pick up a box”/ “Put down a chair”, “Lift a box”/ “Place

a box”, “Push a chair”/ “Pull a chair”, “Wear a hat”/ “Take off hat”, “Put on a backpack”/

“Take off a backpack”, and “Stick a poster”/ “Remove a poster”. Table 2.6 shows some re-

cently proposed approaches for action recognition in this dataset. Similar to MSR-Action3D

dataset, the best reported result is obtained when both depth- and pose-based representations

are combined.

MSR-DailyActivity Dataset

This dataset was captured by using an RGB-D camera to mimic daily human activities in a

living room. There are 10 subjects performing 16 different daily human activities: “drink”,

“eat”, “read book”, “call cellphone”, “write on a paper”, “use laptop”, “use vacuum cleaner”,

“cheer up”, “sit still”, “toss paper”, “play game”, “lie down on sofa”, “walk”, “play guitar”,

“stand up”, “sit down”. Each subject performs each activity twice, once in a standing posi-

tion, and once in a sitting position on a sofa located in the scene. Three data representations

are recorded from the human actions: (i) depth maps, (ii) pose joint positions, and (iii) RGB

video. The dataset consists in total of 960 files, i.e. 320 video files for each. The provided

RGB and depth data representations are recorded independently, so they are not strictly syn-

chronized. The provided body pose representation comprises both real world coordinates (x,

y, z) and screen coordinates plus depth (u, v, and depth, where u and v are normalized to be
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within [0, 1]). In addition, an integer value is padded at the end to state the confidence value

of the captured joint position.

Current state-of-the-art results (see Table 2.7) obtained from this dataset show convenient

results when a uni-modal representation of the body pose is used. However, fusing multiple

modalities (e.g., body poses and depth fields) may provide an enhanced performance over

uni-modal frameworks, especially for actions that share identical properties of pose (e.g.,

“play game” and “use laptop”) or pose and appearance (e.g., “write on a paper” and “read

book”).

TUM Kitchen Dataset

The TUM kitchen dataset was provided to encourage research in the areas of motion seg-

mentation, markerless human motion capture, and human action recognition. It contains

observations for different subjects setting a table in different ways. Some subjects act like a

robot, transporting the items one-by-one. Others act more naturally by grasping multiple ob-

jects and transporting them together. In general, the TUM kitchen dataset focuses on a home-

monitoring scenario using a multi-view camera (four cameras). The setup is completely

non-intrusive for the human subject, and the recorded sequences are clear of obstructive ob-

jects. The dataset provides motion capture data of the subjects using a markerless skeleton

tracker. The tracker can reliably track the subjects that interact and manipulate objects even if

they were partially occluded by the environment. The dataset also provides different sources

of information to better identify the performed actions. These sources include:

1. Video RGB data from 4 different viewing points.

2. Motion capture data of the human poses estimated by a markerless full-body tracker.

3. RFID tag readings from three fixed readers embedded in the environment

4. Magnetic sensors to detect when a door or drawer is opened.

5. Labels of the performed actions in all sequences.

For completeness, we also list the reported results on this dataset in Table 2.8.
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Figure 2.8: ChaLearn gesture exemplars for 20 different classes from Italian sign language
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Table 2.8: Example algorithms with their performance for the TUM dataset
Method Accuracy (%) Year
(Yao, Gall and Gool, 2012) using 3D pose 81.0 2012
(Yao, Gall and Gool, 2012) using appearance 71.0 2012

ChaLearn Gesture Dataset

The ChaLearn dataset has been recently proposed to address the overwhelming demand of

automatic real-time action recognition framework of human gestures from multiple sensory

data. It presents several representations of the performed actions including: appearance,

depth field, poses (skeletons), and body silhouettes. The objective of this dataset is to design

a multi-modal automatic learning algorithm of a set of 20 sign gestures performed by dif-

ferent users, with the aim of performing user-independent, continuous gesture spotting. The

dataset is divided into: (i) the development set which comprises more than 7,754 manually

labeled gestures, (ii) validation set for cross-validation and model learning and is comprised

of 3,362 labeled gestures, and (iii) finally, the evaluation set which is comprised of 2,742

gestures. In total, it stands for almost 14,000 gestures distributed over the 20 classes of

Italian sign gesture categories. The 20 gestures’ classes in this dataset are: “vattene”, “vie-

niqui”, “perfetto”, “furbo”, “cheduepalle”, “chevuoi”, “daccordo”, “seipazzo”, “combinato”,

“freganiente”, “ok”, “cosatifarei”, “basta”, “prendere”, “noncenepiu”, “fame”, “antotempo”,

“buonissimo”, “messidaccordo”, and “sonostufo”. Each sample sequence corresponds to an

actor who randomly selects and performs several gestures among the 20 sign gestures, but

he may also perform other undefined movements or gestures. Figure 2.8 shows exemplars of

the sign gestures provided for this dataset.

2.3 Summary

This chapter reviewed the human action recognition challenge from a representation per-

spective. We emphasized the decisive role of the used representation in determining the key

characteristics and the applicability extents of the designed algorithm for action recognition.

As such, researchers presented several datasets to evaluate the performance attributes of the

designed algorithms under the different working environments. These environments can be

constrained or controlled, as is often the case for silhouette-based representation, or uncon-

strained, as is the case for consumer-like videos and images. In the following chapter, we
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present the problem of human action recognition using different appearance-based repres-

entation of scene and body appearances. Then, we evaluate the proposed methods on several

action datasets that were earlier presented in this chapter.
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CHAPTER 3

Appearance-based Human Action
Recognition

3.1 Preface

Appearance-based representation has recently achieved a considerable interest in human ac-

tion recognition. It became widely used owing to its success in several challenging vision

tasks including pedestrian detection (Dalal and Triggs, 2005; Felzenszwalb et al., 2010),

scene analysis(Lazebnik, Schmid and Ponce, 2006), and object recognition (Felzenszwalb

et al., 2010). Consequently, research in human action recognition devoted special interest

towards analyzing and extracting discriminative appearance-based patterns for action recog-

nition. Often it is the case that the extracted patterns do not correspond only to a particular

appearance-view of the human action (i.e. the appearance of the body pose, scene, object or

even the body motion), but rather to the synergy of multiple measurements that considers dif-

ferent appearance-based patterns. This chapter follows this incentive by presenting a novel

supervised classification approach based on non-negative matrix factorization (NMF). The

presented classification framework is a multiclass framework that presents probability es-

timates of classes for the provided patterns. Therefore it can efficiently integrate various

estimates of different patterns in order to enhance the classification performance. The pro-

posed framework in this chapter extends the recent work on non-negative matrix factoriza-

tion to multiview learning, where the primary dataset benefits from auxiliary information for
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obtaining shared and meaningful spaces. For discrimination, we use the action labels in a

supervised setup as an auxiliary source of information to learn the representative latent set

of bases vectors. The evaluation considers two challenging image datasets of human action

recognition. In the evaluation, we show how the proposed algorithm achieves competitive

classification results. We also demonstrate how the integration of different appearance-based

features boosts performance and obtains state-of-the-art in two popular action datasets

3.2 Introduction

Non-negative matrix factorization has been widely used in image analysis and pattern ex-

traction during the last few years. This can be attributed to the convenient interpretation of

factorized components and its direct relation to other probabilistic frameworks. Recent re-

search has spanned the applications of NMF from retrieval and clustering to other domains

including multiview learning. Multiview learning, in the context of retrieval systems for ex-

ample, profits from auxiliary sources of information in improving retrieval performance on

the primary dataset. Such performance gain becomes plausible by estimating meaningful

latent structures that explicitly model the co-occurrences between primary and auxiliary data

sources. In this sense, one can interpret any supervised classification task as a multiview

problem by using the auxiliary category information in extracting discriminative latent struc-

tures between different classes.

Despite the venerable tradition of multiview learning in pattern recognition and machine

learning, its applications to computer vision and image analysis vision is still limited. The

most popular multiview learning approaches, Canonical correlation analysis (CCA) (Ho-

telling, 1936) and partial least squares (PLS) (Wold, 1966), aim at revealing latent compon-

ents from different modalities that maximally explain the correlation (CCA) or covariance

(PLS) distributions of different views. Donner et al. (2006) harness CCA for fast model

searching in active appearance models(AAM). Kim, Wong and Cipolla (2007) extend CCA

for tensor analysis of human actions, where similarities among action’s videos are measured

through joint shared spaces. PLS on the other hand has been recently used for modeling the

appearance and pose variations in different views (Dondera and Davis, 2011; Haj, Conzalez

and Davis, 2012), achieving state-of-the-art results on multiple benchmark datasets. In this

chapter, we emphasize multiview NMF learning in a supervised setting, where action ap-

pearance categories play the role of auxiliary view of the datasets, and classification results
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simply approximate the posterior probabilities of target classes.

Multiview learning using NMF is receiving increasing interest owing to the convenient and

the semantic interpretation of parts for the extracted bases. Akata, Thurau and Bauckhage

(2011) learn shared spaces from different views of image datasets through joint non-negative

matrix factorization (JNMF) for the applications of segmentation and indexing. Caicedo

et al. (2012) present an asymmetric algorithm for the construction of shared latent spaces

that first derives a semantic representation from the reliable view of the dataset, and then

follows by an adaptation over other views. Gupta et al. (2010) argue for limiting the number

of shared spaces learned from JNMF to cope with the diversity among various data sources.

Liu et al. (2013b) propose an NMF-based multiview clustering algorithm by searching for

a factorization that gives compatible clustering solutions while maintaining meaningful and

comparable results across multiple views.

In the domain of human action recognition, it is often that the outcome is not associ-

ated with any single view, but rather the synergy of multiple measurements like body pose,

appearance, motion, and scene representation. Earlier works on action recognition have gen-

erally considered a single view approach for defining the human action (Eweiwi et al., 2011;

Ikizler, Cinbis and Sclaroff, 2009; Thurau and Hlavac, 2008; Willems et al., 2009). How-

ever, recent studies pointed out the significance of combining multiple views for an accurate

modeling of human actions (Yao et al., 2011a). Yao and Fei-Fei (2012) propose coupled fea-

tures of pose and appearance by learning body part appearance models. In a similar fashion,

Maji, Bourdev and Malik (2011); Yang, Wang and Mori (2010) capture local appearances of

multiple body parts using poselets (Bourdev and Malik, 2009). Others follow a kernelized

approach in a Support Vector Machine (SVM) setup to fuse various feature sets obtained

from scene and person appearances (Deltaire, Laptev and Sivic, 2010), or motion and scene

appearance models (Wang et al., 2011a) to reach to a common consensus of the identity

of an action. Despite their good performance on multiple datasets, these approaches have

to deal with heterogeneous features of different modalities which are sometimes difficult to

combine.

In summary, this chapter presents an approach to classify human actions using their ap-

pearances by adapting JNMF for multi-class classification. We also show the efficiency

of our approach in integrating various appearance features to enhance the classification ac-

curacy over different benchmark datasets. The rest of this chapter is organized as follows:

Section 3.3 reviews the basics of NMF, its multiview adaptation (Akata, Thurau and Bauck-
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hage, 2011), and our proposed extension for discriminative analysis. Section 3.4 elaborates

on the extracted features used for capturing different action modalities. Finally, Section 3.5

presents our evaluation on two benchmark datasets, and compares our approach with other

state-of-the-art approaches.

3.3 Non-negative Shared Spaces Learning Via JNMF

Our discriminative joint space learning method is formulated using NMF. The following

sections review the NMF algorithm and its expansion to multiview learning using JNMF.

Section 3.3.3 introduces our proposed approach for using NMF for multi-class classification

using different appearance features.

3.3.1 Data Factorization Using NMF

NMF has been used recently in various image analysis and computer vision fields. It became

widely known after Lee and Seung (1999) investigated its proprieties and presented simple

algorithms for the factorization. Formally, NMF aims to factorize a non-negative data matrix

X ∈ RN×M into a product of a basis matrix W ∈ RN×K and its coefficient matrix H ∈ RK×M.

This factorization can be viewed as a least squares optimization problem, and read as:

minW,H ‖X −WH‖2F
s.t.W,H < 0.

(3.1)

Both factorized matrices W,H are constrained to be non-negative. In contrast to other fac-

torization techniques such as singular value decomposition (SVD) and principal component

analysis (PCA), the extracted bases W present an intuitive part-based representation for ap-

plications where the analyzed matrices consist exclusively of non-negative measurements

like color histograms or bag-of-words data representations. These bases also achieve some

level of sparsity due to the non-negativity of matrix H as the basis vectors (parts) can only

be added and hence participate in a sparse manner to reconstruct the data matrix X.

The NMF problem as described in Equation 3.1 is a constrained optimization problem

which is convex in either W or H but not for both. Therefore, possible solutions are usually

not optimal and correspond to local minimal points. The two most popular algorithms for

solving the optimization problem of Equation (3.1) are:
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Algorithm 1 Multiplicative update algorithm
1: procedure NMF(X,K,maxiter) . K: number of bases for NMF, X: train features,

maxiter: maximum number of iteration
2: Initialize W,V ← random matrices.
3: for i = 1 to maxiter do
4: H ← H. ∗ (XT X)./(W tWH
5: W ←W. ∗ (XHT )./(WHHT

6: end for
7: end procedure

Algorithm 2 Alternating least squares algorithm
1: procedure NMF(X,K,maxiter) . K: number of bases for NMF, X: train features,

maxiter: maximum number of iteration
2: Initialize W,V ← random matrices.
3: for i = 1 to maxiter do
4: W tWH ←WT X
5: Set all negative values to 0 in H
6: HHTWT ← HVT

7: Set all negative values to 0 in W
8: end for
9: end procedure

1. Multiplicative update algorithm (Lee and Seung, 1999): The multiplicative update

algorithm is the most popular approach for solving the NMF optimization problem and

is known for its simplicity. However, it often yields suboptimal solutions and requires

many iterations to reach convergence. The multiplicative update rule is described in

Algorithm 1.

2. Alternating least squares algorithm (Paatero and Tapper, 1994): The alternating

least squares algorithm is another approach for extracting positive bases W and coeffi-

cient matrix H, where an alternating least square optimization is performed with non-

negativity constraints between W and H. Unfortunately, solving the least square in

this problem with the non-negativity constraints significantly increases the cost of the

solution. Therefore, researchers settle for the speed offered by simply projecting the

extracted W and H back to the non-negative orthant. Detailed description of the work

flow of this algorithm is provided in Algorithm 2.
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3.3.2 JNMF for Multiview Learning

Recent studies presented several adaptation techniques of the NMF algorithm to multiview

learning (Liu et al., 2013a; Caicedo et al., 2012; Gupta et al., 2010; Akata, Thurau and Bauck-

hage, 2011). Our work is directly motivated by their efforts along with the study of Barker

and Rayens (2003) that explains the statistical discrimination capabilities of traditional mul-

tiview learning algorithms like canonical correlation analysis (CCA) and partial least squares

(PLS). We follow the adaptation by Akata, Thurau and Bauckhage (2011) in learning fully

shared spaces among primary and auxiliary representations of the dataset. Formally, they

assume different modalities of a given dataset of M samples captured by matrices X ∈ RN×M

and Y ∈ RL×M. The basic idea of their algorithm is to find K suitable basis vectors W ∈ RN×K

and V ∈ RM×K for both modalities that are coupled implicitly via a common coefficient

matrix H. In other words, the algorithm aims at finding two low rank approximations such

that:

X = WH and Y = VH (3.2)

The proposed solution can be formulated as a convex combination of two constrained least

squares problems

min
W,H

(1 − α)‖X −WH‖2F + (α)‖Y − VH‖2F

s.t V,W,H < 0.

(3.3)

where α ∈ [0, 1] controls the residual error penalty on each factorized view. This optim-

ization objective can be solved using similar rules presented by Lee and Seung (1999), with

a small modification to fit the multiview setup. The multiplicative update rules for bases of

both views W,V are

W = W �
XHT

WHH t and

V = V �
YHT

VHH t

(3.4)

while the update rule for the shared coefficients matrix H among different views factoriz-
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ations is

H = H �
(1 − α)WT X + (α)VTY

((1 − α)WTW + αVTV)H
(3.5)

3.3.3 Discriminative Analysis Using JNMF (DA-JNMF)

Direct adaptation of JNMF for statistical discrimination has been investigated in this study,

and compared with the proposed approach. In this setup, we assume an annotated feature

set for M samples of G different categories, we encode the auxiliary information of group

membership of feature matrix X ∈ RM×N using a dummy matrix Y ∈ RM×G as in (Barker and

Rayens, 2003) as 
1m1 0m1 . . . 0m1

0m2 1m2 . . . 0m2

...
...

. . .
...

0mg
0mg

. . . 1mg


where mg denotes the number of features of class g. One major drawback of such adapta-

tion is related to the optimization problem itself of Equation 3.3, which aims at minimizing

the weighted difference of the Frobenius norm simultaneously for all categories. This ad-

aptation often leads to a quick descent into local minima for both W and V. Therefore,

the extracted bases fail to capture the discriminative latent space of the training dataset. To

remedy this limitation, we suggest proceeding in an incremental fashion where the joint fac-

torization is performed individually for each class. We hypothesize that such a technique

results in more discriminative latent structures, and it consequently provides better models

for classification. Our empirical results, detailed in Section 3.5, validate this observation over

multiple benchmark datasets.

Earlier studies (Ding, Li and Peng, 2008) revealed that by estimating W D−1 or alternatively

DH where D ∈ RK,K is a diagonal matrix defined as Dk,k =
∑

i Wi,k promotes all formal

properties of a conditional probability matrix where each column of H defines to which

degree feature i is associated for the basis k. Given this fact, we normalize all extracted bases

from both views using the diagonal matrix D. Empirically, we observed that normalizing the

extracted bases led to a slight enhancement on the performance of our algorithm; results are

further detailed in Section 3.5.
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(a) (b)

Figure 3.1: General diagram of DA-JNMF classification for (a) training on ground truth data and (b)
testing on new samples

Algorithm 3 DA-JNMF algorithm
1: procedure DA-JNMF(X,Y, Xt, k,G) . k: number of bases for NMF, G: number of

classes
2: Initialize WG,VG to empty matrices.
3: for g = 1 to G do
4: Wg,Vg ← solve optimization of (Equation 3.3) using (Equation 3.4) and (Equa-

tion 5.2)
5: Wg ← WgD−1

g

6: Vg ← VgD−1
g

7: WG ← [WG|Wg]
8: VG ← [VG|Vg]
9: end for

10: Ht ← solve for Ht in Xt = WGHt

11: Yt ← VGHt

12: return Yt

13: end procedure
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3.4 Action Appearance Features

To evaluate our proposed algorithm on the problem of human actions, we capture various

representations of body-pose and scene appearance. Observing that these multiple features

often provide complementary information, it appears natural to integrate them for better per-

formance rather than relying on a single feature representation. As our algorithm provides

an approximation of the posterior probability for an action given its features, it would be

suitable to integrate those multiple approximations from different features to gain a better

performance over each. To this purpose, we utilize different action features that describe the

action pose appearance using the Histogram of Oriented Gradients (HOG) descriptors and

local based feature that describes the scene using Bag-Of-Features (BOF) model.

3.4.1 HOG Feature Templates

The HOG feature is a rigid template descriptor that count the occurrences of gradient orient-

ation of a set of ordered local image regions. It was proposed by Dalal and Triggs (2005)

and has shown to be efficient in capturing the shape and pose appearance in several com-

puter vision challenges including pedestrian detection (Dalal and Triggs, 2005), and human

action recognition (Thurau and Hlavac, 2008). The descriptor divides the image region into

a small connected regions called cells. From each cell, the gradient orientation is quantized,

aggregated, and contrast-normalized within a larger image region called block. As a result,

the descriptor provides better invariance against illumination and shadowing. The combina-

tion of block histograms generates the final HOG descriptor. In our experiments, we define

the cell region to be of size 8 × 8 pixels, while the block region to be of size 2 × 2 cells with

an overlap of one among the blocks.

3.4.2 Local Action Features

Local features of human action are often used to capture appearance and context features as

they are invariant to certain transformation such as translation and scaling. The extraction of

local image features constitutes of two main steps:

1. The detection of sampling points using a dense sampling approach (Wang et al., 2011a),

or a random-based approach (Tuytelaars, 2010) or based on a measure of their interest

(Mikolajczyk and Schmid, 2002; Lowe, 2004). Our experiments follows the recent
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convention of using dense sampling grid for defining interest points (Tuytelaars, 2010)

as it has shown better recognition performance in several object and action recognition

applications (Deltaire, Laptev and Sivic, 2010; Yao et al., 2011b; Yao and Fei, 2010).

2. The extraction of local image features by describing the surrounding regions of the

sampled points. The description of these regions can be as simple as an intensity his-

togram. However, more complex local feature descriptors are often preferred because

they account for some degree of invariance against illumination change or geometric

distortions. In our experiments, we use the SIFT descriptor which computes eight ori-

entation directions over a 4 × 4 grid which produces a 128-dimensional feature vector.

To offer some level of invariance against geometric distortion and noise, Lowe (2004)

used Gaussian window function that gives more weight to the gradients computed near

the center of the local region. Also, to provide some robustness against illumination

changes, the SIFT descriptor is normalized to one. After obtaining a set of local action

features, the next step is to cluster them using Kmeans and obtain a visual codebook.

This codebook is used for coding local image features to a different representation

by (non) linear operation. The codes are pooled afterwords using a pooling operator

to obtain the final BOF representation. Our implementation uses the recent encoding

scheme of Locality Linear Coding (LLC) proposed in (Wang et al., 2010) and pools

the resulting local features codes using a maximum pooling operator. Due to the order-

less nature of the BOF model, we use a Spatial Pyramid binning scheme (Lazebnik,

Schmid and Ponce, 2006) over three levels of 1× 1, 2× 2, and 4× 4 to account the spa-

tial distribution of local features while preserving the invariance of the representation

against translation and scaling.

Both descriptors were used with our DA-JNMF Algorithm 3. The results were later fused

by using the sum rule (Kittler et al., 1998) of both trained model outputs and selecting the

class that had the maximum confidence as the action of the queried image. The final class Q

of an image is obtained as:

Q = arg max
1
|v|

|v|∑
i

Yi (3.6)

where |v| denotes the number of modalities used to represent an action.
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3.5 Evaluation

We evaluate the proposed classification scheme on two benchmark datasets for human action

recognition. This section describes the experimental setup, and compares our technique with

current state-of-the-art approaches used for human action recognition.

3.5.1 Datasets

We selected two diverse and challenging datasets of human action images to evaluate our

proposed approach. Our goal is not limited to show the competitive performance of our

classification scheme in terms of accuracy and performance, but also to investigate the merits

of integrating multiple views of action images for the purpose of action recognition. The first

dataset is the Willow dataset1 (Deltaire, Laptev and Sivic, 2010) (see Section 2.2.1). This

dataset comprises of seven different actions “interacting with computer”, “taking photo”,

“playing music”, “riding bike”, “riding horse”, “walking”, and “running”. The total number

of images is 968 split into training, testing, and validation sets. The dataset targets human

action recognition in normal consumers photos obtained from Flickr. It stands for a wide

variation in terms of the human pose, views, and scenes. The second dataset is the Web-

actions dataset2 (see Section 2.2.1) is presented by Ikizler, Cinbis and Sclaroff (2009). It

contains a total of 2,458 images downloaded from the Internet. We operated on the processed

version of the dataset with cropped and aligned human body with respect to head position.

The dataset consists of five different actions: “dancing”, “playing golf”, “sitting”, “running”

and “walking”. We randomly split it into 1
3 for training and the rest for testing. Pictures in

this dataset are characterized by a better visibility of human body parts, but still represent

a challenge as they show wide pose variations. Examples from both datasets are shown in

Figure 3.2

3.5.2 Results

We followed the experimental procedure proposed by Deltaire, Laptev and Sivic (2010) for

the Willow dataset. We considered pose appearance captured in terms of human bounding

boxes using a three level spatial pyramid with LLC encoding (F.SPM), and the scene view

1 www.di.ens.fr/willow/research/stillactions
2 http://cs-people.bu.edu/ncinbis/actionsweb/dataset_release
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(a) working on
computer

(b) taking
photo

(c) taking
photo

(d) playing mu-
sic

(e) playing mu-
sic

(f) riding mo-
torbike

(g) walking (h) sitting (i) playing golf (j) dancing (k) walking (l) playing golf

Figure 3.2: Examples of human action images from the Willow action dataset (first row), and the
Web-actions dataset (second row)

using the original images with the same feature (B.SPM). In both cases, images were re-

sized to a maximum size of 300 pixels before extracting the features. For the Web-actions

dataset (Ikizler, Cinbis and Sclaroff, 2009), we captured human pose appearance using the

HOG descriptor while the scene is represented using a three level spatial pyramid. Finally

both results were integrated as we have mentioned in Section 3.4. Figure 3.3 depicts the

classification accuracy of each action view on both datasets using the proposed approach.

As discussed above, our classification model needs only to specify the number of latent

bases K used in the DA-JNMF algorithm. We observed a small variation in classification

accuracy when K varies between 100 and 400. Setting the parameter K beyond these values

results in a worse performance in terms of overall accuracy (if K < 100), or in terms of

training time (if K > 400). Figure 3.3 (a) and (b) show the effect of varying this parameter

on overall classification results obtained from both views on both dataset using both JNMF

and DA-JNMF.

Table 3.1 compares our results with state-of-the-art on both datasets. Note that our results

on the Web-action dataset significantly outperform the baseline result (Ikizler, Cinbis and

Sclaroff, 2009) and state-of-the-art (Yang, Wang and Mori, 2010) as both features capture

complementary action proprieties of body pose appearance using the HOG descriptor, and
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(a) (b)

Figure 3.3: Classification accuracy for different number of bases K using the HOG and SPM features
and (JNMF) compared to our proposed approach with SPM features (DA-JNMF (DA-JNMF/SPM),
HOG features (DA-JNMF/HOG) and their fused results (DA-JNMF/Final) on the (a) Willow dataset,
and the (b) Web-actions dataset

Table 3.1: Results on the Willow and the Web-actions datasets
Methods on Willlow Overall acc. (%) Mean per-class (%)

BOF+LSVM (Deltaire, Laptev and Sivic, 2010) - 62.14
Our approach 61.04 61.57

Methods on Web-actions ds.
Baseline (Ikizler, Cinbis and Sclaroff, 2009) 56.45 52.46
Latent Poses(Yang, Wang and Mori, 2010) 61.07 62.09

Our approach 64.05 64.44

scene appearance using the spatial pyramid. For the Willow dataset, our results still compare

with state-of-the-art. An advantage of the proposed algorithm compared to state-of-the-art

methods is in the classification model, which can be very efficient in real time applications

as it requires only simple matrix multiplications, and summations. Finally, the confusion

matrices of both datasets are depicted in Figure 3.4. Note that the major confusion within

the Web-actions dataset occurs in the case of “dance” action with “sit”, as both stands for

different body pose articulations. Similarly, a noticeable confusion occurs between actions

of “walk” and “run” as both have close pose and appearance views. For the Willow dataset,

the action of “taking photo” is highly confused with other actions due to the limited visual

clue of the presence of a camera for this action.
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(a) (b)

Figure 3.4: Confusion matrices of our classification framework for the (a) Willow dataset, and the (b)
Web-actions dataset.

3.6 Summary

In this chapter, we presented a novel classification algorithm based on recent advances in

multiview NMF. The evaluations of this algorithm took over challenging action recognition

datasets and demonstrated not only its significance for multiclass classification, but also its

capability in benefiting from heterogeneous action features in a late fusion process. We

showed also that the resulting classification model rely only on matrix multiplications in es-

timating classes posteriors, therefore, it represents a good candidate for real time applications

where interest in classification confidence goes beyond one class to all other classes.

Despite the encouraging performance, our obtained recognition rates are not ideal for real

world application scenarios due to the limited training data and the extreme inconsistency

of the appearances of human actions. The typical inconsistency that exists in unconstrained

action environments affects several defining patterns of the human actions such as actors

appearances, action styles, camera views, scene appearance; making the classification using

only appearance features a challenging task. Therefore, we investigate additional action

representations that can provide better invariance towards variations in view, scale, and scene

information while preserving the distinctive features among semantically different actions.

In the following chapter, we elaborate further on a candidate representation that holds such

properties. We also present a novel human action framework that better satisfies the key

defining factors for human action recognition systems: robustness and efficiency.

46



CHAPTER 4

Discriminative Pose-based
Framework for Human Action
Recognition

4.1 Preface

Designing invariant action features against view, style, and scene variations is of great in-

terest for reliable action recognition. Different actors and scenes often confer their own char-

acteristics on the action representation, limiting the reliability of the extracted features. In

Chapter 3, we presented a classification framework that only relied on appearance features.

Despite the encouraging results in this domain, we discussed that several factors still greatly

impede obtaining robust recognition performance using such representation. Among these

factors were action variation across different viewing points, action styles, scales, and diverse

appearances of actions’ actors. Therefore, we resort to a high level action representation of

human actions that subsides these inherited drawbacks of the appearance representation. This

chapter presents a novel framework for human action recognition that is based on the pose

representation of human actions. The proposed approach is based on a discriminative formu-

lation of body-joints features that is: (i) invariant against different action styles, (ii) invariant

against camera view variation, (iii) time efficient for both training and testing with low re-

sponse latency, and (iv) achieves state-of-the-art results on four challenging human action
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datasets of temporally segmented and unsegmented action videos. The benchmarks used for

the evaluation in this chapter are MSR-Action 3D (Wanqing, Zhengyou and Zicheng, 2010b),

MSR-DailyActivity (Wang et al., 2012a), 3D Action Pairs (Oreifej and Liu, 2013), and TUM

Kitchen (Tenorth, Bandouch and Beetz, 2009).

4.2 Introduction

Human action recognition has recently attracted an increasing interest in computer vision

owing to its applications in many fields including surveillance, human computer interaction,

and multimedia indexing. This interest resulted in a rapid development for the human action

recognition in terms of its scale, algorithms efficiency, and action’s input representation.

Early approaches for action recognition assumed accurate measurements of the human poses

(i.e. the spatial configuration of body joints) as an abstract high level representation of human

actions. For instance, the approaches in (Campbell and Bobick, 1995; Bissacco et al., 2001;

Ali, Basharat and Shah, 2007) use different phase space features of moving actor skeletons

for action and gait recognition. However, in these days, obtaining an accurate measurements

of the body pose often demanded special setups that are often time consuming and expensive.

Consequently, effort deviated toward alternative low and mid-level representations of pose,

motion, visual appearance, or particular combinations of them for better action models. For

instance, Wu, Oreifej and Shah (2011); Efros et al. (2003) rely majorly on motion cues to

identify action sequences under static or moving camera setups. Our work presented earlier

in Chapter 3, describe an action recognition approach that utilizes scene and body pose ap-

pearances to perform action recognition. Thurau and Hlavac (2008); Ikizler, Cinbis and

Sclaroff (2009) harness the human pose appearance as the basic building block in discrimin-

ating actions. The introduction of interest points in video sequences (Laptev, 2005; Willems,

Tuytelaars and Gool, 2008) led towards a successful adaption of the bag-of-words model for

human action recognition (Laptev et al., 2008; Wang et al., 2011a; Xia and Aggarwal, 2013).

Despite the encouraging results of low- and mid-level features for action recognition on sev-

eral datasets, these approaches are greatly impeded by variations of view point, subject, scale,

and appearance. Moreover, they lack a semantic meaning making the interpretation of the

results sometimes difficult. In contrast, high-level representations (e.g., body pose) abstract

most of these factors and provide a semantic interpretation of the results.

The recent advances in both human pose estimation algorithms and depth sensors have
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rekindled interest in high-level human representations for action and behavior analysis (Ye

et al., 2013). Despite their noisy estimations in monocular (Yang and Ramanan, 2013), depth

sensors (Shotton et al., 2013), and multi-view (Yao, Gall and Gool, 2012) setups, several re-

cent studies (Tran, Kakadiaris and Shah, 2011; Jhuang et al., 2013; Wang, Wang and Yuille,

2013; Yao, Gall and Gool, 2012) strongly point to the utility of pose estimation in obtain-

ing superior or competitive performance as opposed to low- and mid-level features. Tran,

Kakadiaris and Shah (2011) utilize polar coordinates of joints in a sparse reconstruction

framework to classify human actions in realistic video datasets. Their evaluation clarifies the

implication of accurate pose estimation on action recognition and identifies the potentials of

current state-of-the-art pose estimation in obtaining excellent action recognition. Similar ob-

servations are reported in (Yao, Gall and Gool, 2012; Jhuang et al., 2013) on larger and more

complex datasets. In particular, Jhuang et al. (2013) show that in some scenarios high-level

features extracted by a current pose estimation algorithm (Yang and Ramanan, 2013) already

outperform a state-of-the-art low-level representation based on dense trajectories (Wang et

al., 2011a). These observations motivated researchers to further examine the potentials of

high-level features under conventional and newly proposed challenges in videos and depth

sensor data. For instance, Wang et al. (2012b) propose learning sets of most distinctive joints

through mining. While Zanfir, Leordeanu and Sminchisescu (2013) weight poses of actions

based on a mutual information criteria, Wang, Wang and Yuille (2013) mine for most occur-

ring temporal and spatial structures of body joints for classification. A noticeable limitation

in the aforementioned approaches resides in their demand of laborious mining of meaningful

poses (Zanfir, Leordeanu and Sminchisescu, 2013), joints (Wang et al., 2012b), or temporal

and spatial joints structures (Wang, Wang and Yuille, 2013), therefore, complicating model

training and presenting considerable overhead on model future updates. Consequently, the

applicability of these approaches for real world applications that demand online model learn-

ing with low latency is still questionable.

Unlike previous appraoches, we propose a pose-based algorithm for action recognition that

is faster and more efficient for training and testing. Yet, it achieves on popular datasets for

action recognition from 3D pose or RGB-D videos like (Wanqing, Zhengyou and Zicheng,

2010b; Oreifej and Liu, 2013), state-of-the-art performance and outperforms other related

pose-based approaches. The efficiency is achieved by simplicity in design. Each joint is

modeled by a single feature vector that encodes only the essential information to characterize

an action: the relative location of the joint, the velocity of the joint, and the correlation
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Figure 4.1: Overview of our pose-based framework for human action recognition.

between location and velocity. Inspired by Tran, Kakadiaris and Shah (2011), the information

over a short video clip is encoded by histograms. Based on these features, a compact and

discriminative representation is learned using partial least squares (PLS) Barker and Rayens

2003; Haj, Conzalez and Davis 2012; Harada et al. 2011; Schwartz et al. 2009; Sharma and

Jacobs 2011. The representation can then be used with any classifier like SVM or Kernel-PLS

(KPLS) Rosipal et al. 2001.

4.3 High-level Pose Representation

High-level pose representation presents the human pose as a collection of interconnected

body parts and joints in a deformable configuration. To represent human actions by a high-

level pose-based representation, a sequence of extracted 2D or 3D pose per frame is given. In

order to be flexible and learn the importance of a single joint, our representation consists of

a feature for each joint as depicted in Figure 4.1. The Joints features, which are discussed in

Section 4.3.1 in more detail, model the distributions of the locations, velocities, and geomet-

ric orientation of the movements within a video clip or fixed number of frames as histograms.

The histograms for each joint are then concatenated to build the feature matrix and matrix

50



4.3 High-level Pose Representation

(a) Location vectors (b) Velocity vectors (c) Normal vectors

Figure 4.2: Illustration of the locations feature fl, velocities feature fv, and the normals feature fn for
a single joint j. For each frame k or frame pair (k, k + 1), the vectors l jk, v jk, and n jk are converted
into spherical coordinates and added to a histogram as shown in Figure 4.1.

discriminant analysis is performed to obtain a set of discriminant eigenvectors, which are

used as high-level representation of the video clip. The representation can then be used with

any classifier for classification.

4.3.1 Joint Features

To increase the robustness of the features to variations caused by different body shapes or

even foreshortening in case of 2D pose, we convert relative joint positions and other vectors

into a spherical coordinate system. 2D vectors from 2D poses are represented by the length r

and the orientation angle θ ∈ [0, 360]. For a 3D skeleton representation, we use the horizontal

orientation or azimuth α ∈ [0, 360] and the vertical orientation or zenith φ ∈ [0, 180]. A

vector v = (x, y, z) ∈ R3 is then converted into spherical coordinates (r, α, φ) by:

r =
√

x2 + y2 + z2 (4.1)

φ =
180
π
× (arccos

(z
r

)
) (4.2)

α =
180
π
× (atan2(y, x) + π) (4.3)

Using spherical coordinates, we propose three features that represent distributions over a

fixed set of K frames as 3D or 2D histograms. For each feature, we indicate if it applies to

2D and 3D poses or both:
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Joint Location Feature fl (2D and 3D):

The fl features resemble their 2D counterparts presented in (Tran, Kakadiaris and Shah,

2011). But with 3D skeletons, our representation includes the azimuth α and zenith φ angles

along with the joint displacement r from a reference point. The reference point is selected

as the location of the spine s, which naturally corresponds to the center of the body. For a

given location x jk of a joint j at frame k, we quantize the polar coordinates (r, α, φ) of the

joint location vector l jk = x jk − s into a 3D histogram (R×Olv×Olh), where R,Olv,Olh are the

number of bins for radius, vertical, and horizontal angle. The location vectors of all frames

but of a single joint are accumulated in a single 3D histogram. The joint location vectors

for three frames and one joint are illustrated in Figure 4.2 (a). Thus, the locations feature

fl consists of J 3D histograms, where J is the number of joints. In case of 2D pose, the

histograms are 2D corresponding to the 2D coordinates (r, θ) for each 2D vector.

Joint Velocity Feature fv (2D and 3D) :

The joint location features do not encode any temporal information. The joint motion is,

however, of great significance for understanding the semantics of actions, especially for ac-

tions consisting of identical body and joints configuration but in different temporal order

such as carry/put; stand-up/sit-down; and catch/throw. Given the locations of a joint j at

successive frames l jk and l j(k+1), we convert the velocity vector v jk = l j(k+1) − l jk into spherical

coordinates without radius (α, φ). The radius is not taken into account to be invariant to dif-

ferent execution speeds of an action among subjects. The velocity vectors for all K −1 frame

pairs are then added to the 2D histogram Ovv×Ovh, where Ovv and Ovh are the numbers of bins

for vertical and horizontal angle. The velocity vectors for two frame pairs are illustrated in

Figure 4.2 (b). The velocities feature fl therefore consists of J 2D histograms. The features

fl are in many cases complimentary to the fv features. While fv captures the velocity distri-

butions of all joints, fl captures the location distributions of all joints. This is important for

actions where there is not much movement for some joints, but their relative position matters

for the interpretation (e.g. call cellphone,sit still and write on a paper).

Joint Movement Normals Feature fn (3D only):

Joint locations feature fl and joint velocities feature fv treat joint locations and joint velocities

independently. The joint movement normals feature models the correlation of location and
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velocity. To this end, the cross product between the location vector l jk and the velocity

vector v jk is computed or more efficiently n jk = l jk × l j(k+1). Up to a scaling factor, n jk

corresponds to the normal of the plane spanned by the three points s and the joint positions at

the two frames k and k + 1. Since the length of the normal vector is one, we convert n jk into

spherical coordinates (α, φ) without r. The normals of the K − 1 frames are quantized as the

velocities feature into a 2D histogram and we obtain J 2D histograms for fn. The movement

normals for two frame pairs are illustrated in Figure 4.2 (c). All three features model only

the most essential information to characterize an action: the relative locations of the joints,

the velocities of the joints, and the correlations between locations and velocities. However,

combined with a discriminative approach to learn a basis for the features, which is described

in detail in Section 4.3.2, we achieve state-of-the-art performance and outperform features

that are much more expensive to compute.

Impact of Feature Quantization

To evaluate the impact of feature quantization, we measured the average classification ac-

curacy over three different splits for MSR-Action3D for various quantization of length r,

azimuth α, and zenith φ of the joint locations, joint velocities, and joint movement normals.

The results are shown in Figure 4.3. While several configurations give a good performance,

we chose 5, 18, and 9 as the number of bins for length, azimuth, and zenith, respectively.

This configuration is used for all the experiments presented later in this chapter.

Normalization and Soft-binning

To reduce any binning artifacts and to be more robust against style variations, we perform

soft-binning. This is achieved by adding a quantized vector to all neighboring bins. The

weights for the bins are given by a Gaussian kernel with σ = 1. To handle sequences of

different lengths, the histograms are normalized by the L2-norm.

Temporal Pyramid

In addition, a temporal pyramid can be used. Instead of having a single histogram per video

clip, it can be subdivided into smaller temporal segments. Since the videos in the datasets

are short, we use a pyramid with only two layers. The second layer divides the video in three

equally sized parts. The three histograms of the second layer and the histogram of the first
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(a) 3 bins for r (b) 4 bins for r

(c) 5 bins for r (d) 6 bins for r

Figure 4.3: Recognition accuracy for different feature quantizations for length r, azimuth α, and zenith
φ. The plots show the accuracy when the number of bins changes. There are several configurations
that give a good performance. Among them we use 5, 18, and 9 as the number of bins for length,
azimuth, and zenith, respectively.

layer are then concatenated.

4.3.2 Learning Discriminative Action Features

Human actions perception is closely tied with our semantical interpretation of body joints

articulations. These articulations may vary significantly across different actors and styles

for the same action. For example, consider the snapshot of the “hammering” action in Fig-

ure 4.4. While the poses vary significantly across those samples, we still interpret their action

as “hammering” putting extra weights on the movements of one hand and neglecting all ir-

relevant articulation of the rest of the body. This intuition can be formally expressed by

a weighting scheme on top of the features for each joint. Given a set of J joint features
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Figure 4.4: Examples of joint’s trajectories for the hammering (first row) and (draw X) actions from
MSR-Action3D dataset (Wanqing, Zhengyou and Zicheng, 2010b). Relevant action’s trajectories of
left hand, left wrist, and left elbow are marked in blue, while other inconclusive trajectories are
marked in red. Notice that both vary significantly across different actions and actors posing more
challenges in representing human action.

{ f j ∈ R
D}Jj=1 that capture their underlying semantics. We define the pose feature fp ∈ R

D as a

weighted sum of its joints by the following equation:

fp =

J∑
j=1

w j f j (4.4)

which can be expressed in matrix form as:

fp = Fw (4.5)

where columns of F ∈ R(D×J) corresponds to the joints’ features as illustrated in Figure 4.1

and w ∈ RJ defines their corresponding weights. As the joints’ features F has a matrix

based representation, learning suitable weights w can be approached through a matrix based

discriminant analysis scheme (Li and Yuan, 2005; Barker and Rayens, 2003; Bauckhage and

Kaster, 2006; Harada et al., 2011). In this work, we investigate two approaches: 2D-LDA

and PLS.
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2D-LDA

2D-LDA (Li and Yuan, 2005) is a discriminant linear analysis method that operates on 2D

matrices. Let M denote the number of training videos and K the number of classes. We then

have for each class k, Mk videos and extract from all videos the feature matrices {Fi}
M
i=1. We

further compute the mean of the training videos, denoted by F, and the means for each class,

denoted by {Fk}
K
k=1.

The idea of 2D-LDA is to search for a projection vector w such that the combined pose

features fp for different classes have small within-classes and large inter-class variation. This

is achieved by the weighting vector w that maximizes the fisher criterion

J(x) =
tr Sb

tr Sw
, (4.6)

where Sb and Sw can be written as follows:

Sb =
1
M

K∑
k=1

Mk

[
(Fk − F)w

] [
(Fk − F)w

]T
(4.7)

Sw =
1
M

K∑
k=1

∑
ik∈Mk

[
(Fik − Fk)w

] [
(Fik − Fk)w

]T
. (4.8)

This can be rewritten as tr Sb = wTΣbw and tr Sw = wTΣww where

Σb =
1
M

K∑
k=1

Mk

[
(Fk − F)

]T [
(Fk − F)

]
(4.9)

Σw =
1
M

K∑
k=1

∑
ik∈Mk

[
(Fik − Fk)

]T [
(Fik − Fk)

]
. (4.10)

Estimating for the optimal weighting vector w∗ therefore simplifies to solving a generalized

eigenvalue problem:

Σbw
∗ = λΣww

∗ (4.11)

In practice, however, Σw can be often singular, specially in cases where the number of training

samples is less than the feature dimension for the joints.
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PLS

PLS has been recently adopted in computer vision for different applications including pose

estimation and regression (Haj, Conzalez and Davis, 2012), image classification(Harada et

al., 2011), pedestrian detection (Schwartz et al., 2009), and multi-view learning (Sharma

and Jacobs, 2011). The PLS algorithm aims at extracting common information between two

sets X = [x1, · · · , xm]n×m and Y = [y1, · · · , ym]n×m by learning a set of orthogonal linear

projections a, b that maximize the following criteria:

argmax
aT A=0

{
[cov(aT x, bTy)]2

(ata)(bT b)

}
(4.12)

According to Barker and Rayens (2003); Harada et al. (2011), an estimation of the weight

vector a reduces to the eigenvalue problem of the between-class covariance matrix Sba = λa

where tr Sb = wTΣbw. By maximizing Sb under the condition of wTw = 1 we obtain the

weighting vector w∗ as the eigenvector that corresponds to the highest eigenvalue of the

following eigenvalue problem:

Σbw
∗ = λw∗ (4.13)

For both 2D-LDA and PLS, we chose an adequate number of eigenvectors corresponding

to the largest P eigenvalues. Hence, the final feature fp of an video sample i with feature

matrix Fi is given by fp = [Fiw1,Fiw2, · · · ,FiwP] where fp ∈ R
(D×P).

Figure 4.5 depicts the first seven eigenvectors learned using PLS on the MSR-Action3D

and DailyActivity datasets. Blue and red signify positive and negative weights respectively,

and the size of the circles refer to the absolute value of the joint weight. Notice that most

of the eigenvectors focus on joints that are relevant to discriminate between actions. For

instance, in MSR-Action3D dataset, only a few body part combinations are relevant where

some joints like the hips are irrelevant for the human actions.

4.3.3 Classification

The obtained action features fp can be classified using any off-the-shelf classifier like SVM.

In our experiments, we use a non-linear classifier based on PLS, namely Kernel-PLS (KPLS)

(Schwartz et al., 2009; Rosipal et al., 2001). As training data, we have for each video clip the

label and the feature vector fp which are transformed so that all its entries are positive. While
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the features define the set X, the class labels are encoded by the set Y. As kernel, we use the

intersection kernel defined as Ki, j =
∑

l min
(
fpi(l), fpj(l)

)
.

4.4 Datasets and Experiments

We choose four challenging datasets to evaluate our approach for human action recogni-

tion. The datasets are MSR-Action3D (Wanqing, Zhengyou and Zicheng, 2010b), 3D Action

Pairs (Oreifej and Liu, 2013), MSR-DailyActivity3D1, and TUM Kitchen dataset (Tenorth,

Bandouch and Beetz, 2009). For all the experiments in the following sections, we used the

same parameters (number of bins) to construct our pose features as discussed earlier in Sec-

tion 4.3.1. We used 18 bins for the horizontal orientation (azimuth) and nine bins for vertical

orientation (zenith) for 3D skeletons. While we used 18 bins for encoding the orientation

angle (θ) in 2D. Our experiments are performed on the provided pose data that has been

captured using the Kinect skeletal tracker for the first three datasets and by a model-based

approach for the TUM dataset. On all experiments, we learn the classifier parameters using

5-fold cross validation.

4.4.1 MSR-Action3D

The MSR-Action3D dataset is an action dataset captured with a RGB-D camera and des-

ignated for gaming-like interactions. It consists of 567 temporally segmented action se-

quences and contains 20 actions, each performed two to three times by ten different sub-

jects. The actions are: “high-arm-wave”, “horizontal-arm-wave”, “hammer”, “hand-catch”,

“forward-punch”, “high-throw”, “draw-x”, “draw-tick”, “draw-circle”, “hand-clap”, “two-

hand-wave”, “side-boxing”, “bend”, “forward-kick”, “side-kick”, “jogging”, “tennis-swing”,

“tennis-serve”, “golf-swing”, “pick-up and throw”. We exclude ten sequences as in (Wang et

al., 2012b) and operate on the X,Y screen coordinates along with their corresponding depth.

For evaluation, we follow the work in (Wang et al., 2012b; Oreifej and Liu, 2013) and

consider two evaluation tasks: (i) The cross-subject setup where we train our model using

the actions of subjects 1, 3, 5, 7, 9 and report the results on the rest. (ii) The second task

reports the system performance on the average accuracy on all 252 (5-5) cross-subject splits.

1 http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
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Figure 4.5: The first seven discriminative projections of joint’s features extracted using PLS from
MSR-Action3D (first row), DailyActivity datasets (second row), 3D actions pairs dataset (third row)
and TUM dataset (fourth row). Notice that only few part combinations in MSR-Action3D dataset are
relevant where other joints like the hips are irrelevant for human actions. While in TUM, mostly the
upper parts joints features are important as the actions of this dataset correspond to the daily human
actions performed in a kitchen. Red and blue colors signify negative and positive weights respectively,
while the size of the joint signifies its weight.
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(a) MSR-Action3D (b) 3D Action Pairs

Figure 4.6: Recognition accuracies for different numbers of eigenvectors and various feature combin-
ations for (a) MSR-Action3D and (b) 3D Action Pairs datasets.

Using the first task, Figure 4.6 (a) shows the individual contribution of each joint feature

with respect to the number of projection vectors obtained by PLS. The combinations of the

three features fl, fv, and fn, which capture joint location, velocity, and their correlation,

clearly boost the performance in comparison to each single feature or feature pairs. Using all

three features and 10 pls-projections, an accuracy of 92.3% is achieved.

We further evaluated the impact of soft-binning in Figure 4.8 (a). Without soft-binning the

descriptor is more sensitive to style variations and binning artifacts. Soft-binning therefore

improves the results by a margin.

To evaluate the impact of feature quantization, we measured the average classification

accuracy over three different splits for MSR-Action3D for various quantization of length r,

azimuth α, and zenith φ of the joint locations, joint velocities, and joint movement normals.

The results are shown in Figure 4.3. While several configurations give a good performance,

we chose 5, 18, and 9 as the number of bins for length, azimuth, and zenith, respectively.

This configuration is used for all datasets.

Figure 4.8 (b) compares 2D-LDA with PLS. Due to singularities the performance drops

for 2D-LDA when adding more eigenvectors. In contrast, PLS does not suffer from singu-

larities. However, both approaches perform better than just concatenating the features and

using a SVM. The difference in performance between KPLS and SVM trained both using an

intersection kernel is shown in Figure 4.8 (c). While for few eigenvectors the performance is

the same, KPLS improves with more eigenvectors in contrast to the SVM.
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(a) (b)

Figure 4.7: Recognition accuracies for different numbers of eigenvectors and various feature combin-
ations for MSRDailyActivity MSRDailyActivity and TUM Kitchen dataset

Table 4.1 compares our approach with the state-of-the-art on this dataset. Our approach

achieves an accuracy of 92.3%. It performs comparable to the state-of-the-art (Wang and

Wu, 2013) and performs better than other skeleton-based approaches. The temporal pyramid

does not improve the results since the dataset contains short, well-defined actions where

temporal invariance is beneficial. Figure 4.9 shows the confusion matrices of our predictions

for MSR-Action3D with and without temporal pyramiding. There are only few actions where

the accuracy is not very high, namely, “hand catch”, “high throw”, “draw x”, and “pickup and

throw”. Without the temporal pyramid, the action of “draw x” is confused with “hammer”

since the movements can be very similar when the features are invariant to the magnitude

of the velocity. With the temporal pyramid, “draw x” is distinguished from “hammer”, but

it is confused with “draw circle” and “draw tick” since all three activities share very similar

movements for temporal sub-parts of the actions.

To verify the invariance of our features against different subjects. We evaluate our al-

gorithm against all possible 5–5 subjects splits of the data. In total this ends up with 252
(5-5) possible splits. For this task we achieved a mean accuracy of 88.38% and standard de-

viation of 0.027 that is of margin better than current state-of-the-art results of 82.15%±4.18
in (Oreifej and Liu, 2013). This provides an empirical evidence of the method’s robustness

against cross-subject variations for human action recognition.
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Table 4.1: Recognition accuracy for MSR-Action3D dataset. The methods use different data modalities
where S denotes skeleton data, D depth, and TP denotes the use of a temporal pyramid.

Method Modality Accuracy(%)
(Wang and Wu, 2013) D+S 92.76
(Wang et al., 2012b) D+S 88.2
(Wang et al., 2012c) D 86.5

(Oreifej and Liu, 2013) D 88.36
(Zanfir, Leordeanu and Sminchisescu, 2013) S 91.7

(Wang, Wang and Yuille, 2013) S 90.22
(Xia and Aggarwal, 2013) D 89.3

Ours S 91.5
Ours(TP) S 90.1

For the runtime evaluation, we estimated the training and testing time on the MSR-Action3D

standard split to be 27 and 14 seconds respectively. More precisely, the classification time

required for a video clip comprised of 55 frames is 161ms where the feature extraction step

takes 148ms. The approach presented by myZanfir provides comparable results in terms of

classification time, however, their training time is much more expensive since each frame

is classified by a kNN classifier. We also compared with the recent approach presented by

(Vemulapalli, Arrate and Chellappa, 2014), which uses DTW and requires many mappings

between Lie group and tangential space. Using the provided source code on the same ma-

chine, we found that classifying a single video clip of 58 frames requires around 20 seconds.

All the experiments were conducted on an Intel Core i7 CPU, 3.40GHz machine with an

8Gbyte RAM. This shows that our approach is both very efficient for training and testing.

4.4.2 3D Action Pairs Dataset

This dataset emphasizes on particular scenarios where motion and shape cues are highly

correlated. It comprises of six pairs of actions, such that within each pair the motion and

the shape cues are similar, but their temporal correlations vary. The action pairs are: “Pick

up a box/Put down a chair”, “Lift a box/Place a box”, “Push a chair/Pull a chair”, “Wear a

hat/Take off hat”, “Put on a backpack/Take off a backpack”, and “Stick a poster/Remove a

poster”. We evaluate our framework using the same cross-subject evaluation protocol as in

MSR-Action3D.

Figure 4.6 (a) shows the individual performance of each feature for different projections.
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Table 4.2: Recognition accuracy for 3D Action Pairs. The methods use different data modalities where
S denotes skeleton data, D denotes depth, and TP denotes the use of a temporal pyramid.

Method Modality Accuracy(%)
(Wang and Wu, 2013) D+S 97.22
(Wang et al., 2012b) D+S 82.22

(Oreifej and Liu, 2013) D 96.67
Ours S 92.0

Ours(TP) S 99.4

For this datasets, the correlation features fn outperform the location and velocity features

since they capture temporal-spatial correlations of the action classes better. The best per-

formance is, however, achieved when all features are used.

We compare our approach with the state-of-the-art in Table 4.2. Our algorithm achieves

93.09%. When a temporal pyramid is used, it achieves 99.4% and outperforms the other

methods. The performance boost of the pyramid can be explained by the classes. These are

activities that consist of smaller sub-actions in a specific order, which can be well captured

by the temporal pyramid.

Figure 4.10 shows the confusion matrix for 3D Action Pairs. In contrast to MSR-Action3D,

the temporal pyramid enhances the classification accuracy for 3D Action Pairs. Without us-

ing a temporal pyramid, actions with high temporal correlations are confused (i.e. place box

and lift box). The temporal pyramid resolves this confusion by being able to distinguish the

order of the motion that is affected by the box.

4.4.3 MSRDailyActivity

This dataset has been captured with an RGB-D camera to mimic daily human activities in

a living room. There are 16 different actions, each performed by ten subjects twice, once

standing and the other while sitting. The actions are: “drink”, “eat”, “read book”, “call

cellphone”, “write on a paper”, “use laptop”, “use vacuum cleaner”, “cheer up”, “sit still”,

“toss paper”, “play game”, “lie down on sofa”, “walk”, “play guitar”, “stand up”, “sit down”.

The standard task for this dataset aims at cross subject evaluation as in MSR-Action3D, where

we train on the odd numbered subjects and test on the rest.

Figure 4.7 (a) shows the individual accuracies of the different features. Unlike MSR-

Action3D and 3D Action Pairs datasets, the joints location feature ( fl) in this dataset outper-
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forms both velocity and normal features. This is because many actions in this dataset are of

static or merely static nature (e.g.,“call cellphone”, “play game”, “use laptop”). However,

our combined features outperform the individual features and achieve an overall accuracy of

70.0%. With a temporal pyramid, the accuracy is further improved to 73.1% accuracy.

Compared to previous work (Wang et al., 2012b), our method outperforms their results of

68.0% by 6.75%. Figure 4.11 depicts the confusion matrices obtained using our approach

with and without temporal pyramiding. Notice that temporal pyramiding alleviates the confu-

sion between different actions of high temporal correlations. However, the recognition is still

confused for actions with little movement like “write”, “use laptop”, or “call cell phone”. For

these actions, the involved objects need to be taken into account to improve the performance.

4.4.4 TUM Kitchen Dataset

The TUM kitchen dataset focuses on a home-monitoring scenario using a multi-view camera

setup (4 cameras). The dataset provides 3D human pose data estimated by a markerless

full-body tracker. Our evaluation criteria consider two tasks: (i) segmented test data and (ii)

unsegmented test data as in (Yao, Gall and Gool, 2012). On both tasks, we used the episodes

0-2,0-8,0-4,0-6,0-10,0-11,1-6 for testing and the remaining 13 for training. However, in

the first task we assume that the videos are already segmented while in the second task we

perform continuous classification. The evaluation criteria for the unsegmented case follow

the protocol described in (Yao, Gall and Gool, 2012), where the average class accuracies

is measured on a frame-level. We use the skeleton with 13 joints for evaluation and do

not count the errors at the transition frames between annotations with a margin of 4 frames

on both sides as in (Yao, Gall and Gool, 2012). For the first task, Figure 4.7 (b) presents

a detailed overview of the average recognition accuracies over all classes for each feature

along with their combination. Our algorithm achieves for this task an average accuracy of

86.65% over all classes.

On the second task, we evaluated the performance of our approach using a fixed sliding

window of 30 frames that was determined empirically. This task is more challenging as

the dataset stands for actions of arbitrary time stamps ranging from 10 to 150 frames. The

evaluation considers the average accuracy on frame level over all classes. Our algorithm

achieves an average accuracy of 82.5% as compared to 80.03% in (Yao, Gall and Gool, 2012).

Figure 4.12 (a) depicts the prediction of our model for an unsegmented action sequence from

the TUM dataset. While Figure 4.12 (b) shows the confusion matrix for all classes.

64



4.4
D

atasets
and

E
xperim

ents

(a) (b) (c)

Figure 4.8: Performance evaluation on MSR-Action3D dataset: (a) impact of soft binning, (b) comparison of 2D-LDA and PLS, and (c) com-
parison of KPLS and SVM classifiers
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high wavetwo hand wavebend

catch high wave side kick
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(a) Without temporal pyramid
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hammer box jogging

golf swinggolf swing
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bend
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(b) With temporal pyramid

Figure 4.9: Confusion matrices for MSR-Action3D obtained (a) without a temporal pyramid, and (b)
with a temporal pyramid.
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lift placeputdown

pullpushtake-off
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take-off hatwear hatpush

(a) Without temporal pyramid

pullpullpush

 lift liftstick poster

take-offput-downtake-poster

wear hat wear hattakeoff hat

(b) With temporal pyramid

Figure 4.10: Confusion matrices for 3D Action Pairs obtained (a) without a temporal pyramid, and
(b) with a temporal pyramid.

67



Chapter 4 Discriminative Pose-based Framework for Human Action Recognition
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Figure 4.11: Confusion matrices for MSR-DailyActivity obtained (a) without a temporal pyramid, and
(b) with a temporal pyramid.
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4.5 Summary

In this chapter, We have presented a novel framework for action recognition using high level

pose representation depicted as 3D body poses. We have demonstrated the efficiency of this

approach in terms of classification accuracy, training, and testing. We have also shown that

the presented approach achieves state-of-the-art performance results on several human action

benchmarks using only high level pose representation. This has been achieved by focusing on

the most essential information that characterizes human actions, namely the relative locations

of the joints, the velocities of the joints, and the correlations between locations and velocities

denoted as movement normals. By combining these features with a discriminative approach

to learn suitable bases, we obtain an action framework that outperforms state-of-the-art and

is more efficient for training and testing.

In the following chapter, we evaluate our classification framework using only 2D body

pose features that we have discussed in Section 4.3.1. This evaluation is motivated by the

recent advances in 2D pose estimation (Yand and Ramanan, 2011; Yao, Gall and Gool, 2012)

alongside the strong cues provided in several studies (Yao et al., 2011a; Tran, Kakadiaris and

Shah, 2011) on the significance of pose representation for action recognition. We further

compare the resulting performances achieved using 2D and 3D poses, and propose additional

measures to enhance the performance on both 2D and 3D pose representation. We finally

present an optimization approach using integral histograms for online classification scenarios

where real time performance of human action recognition system is important.
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CHAPTER 5

Evaluating Pose-based Variants for
Action Recognition

5.1 Preface

The recent advancements in depth camera sensors and pose estimation algorithms rekindled

researchers’ interest in the importance of pose-based representations for human action re-

cognition. Roughly, three different pose variants are currently used to represent the human

body in current state-of-the-art pose estimation algorithms. These poses vary from being 2D,

as it is the case in monocular pose-estimation techniques, or 3D in motion capture data and

multiview pose estimation algorithms, or 3D with joints’ orientations, as it is the case for

the pose-estimator provided for the Kinect sensor data. Frequently, action recognition al-

gorithms focus on using state-of-the-art pose-estimation algorithms only based on a recovery

accuracy measure and not on the resulting pose variant. This chapter addresses the perform-

ance difference when different pose variants of 2D, 3D, and 3D with joints’ orientation are

used for human action recognition. In particular, we point the recognition gap between 2D

poses and their corresponding 3D poses. To bridge this gap, we propose to map the 2D poses

to their corresponding 3D poses, then use our earlier described view invariant features (see

Section 4.3.1) from 3D instead of 2D poses. Despite the reconstruction error introduced by

the 2D to 3D mapping, our experiments show a performance boost using the reconstructed

3D in comparison to 2D poses. This indicates that 3D pose estimation instead of 2D pose
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estimation from monocular videos has the potential to improve action recognition. Further-

more, we show that enriching the 3D pose with joints’ orientations benefits the recognition

performance, especially for categorization of human gestures and actions of large intra-class

and small inter-classes variation.

5.2 Introduction

Several human action recognition approaches invested significant effort using 2D and 3D

pose representations. These representations are typically obtained from motion capture sys-

tems and pose-estimation algorithms that are frequently used as a preliminary stage for auto-

matic action recognition frameworks. Early studies on human actions (Johansson, 1975)

relied on the 2D pose representation to analyze how the human visual system perceives the

body motion. Later, with the recent technological advancement, several approaches (Camp-

bell and Bobick, 1995; Bissacco et al., 2001) were proposed to automatically recognize hu-

man action from 3D poses that were readily available from motion capture systems. Despite

their success on several motion-capture benchmarks, the applicability of these approaches

are still bounded to the expensive setups of motion capture systems which presume accurate

pose estimation and tracking measurements.

The introduction of the Kinect sensor encouraged the presentation of affordable solutions

for human pose estimation. Consequently, new application domains have emerged for action

recognition and therefore, several studies were proposed in this line (Zanfir, Leordeanu and

Sminchisescu, 2013; Wang, Wang and Yuille, 2013; Wang et al., 2012b; Wang, Wang and

Yuille, 2013). A recent survey on human motion analysis from depth data was presented in

(Ye et al., 2013). While these approaches show promising performance in terms of recogni-

tion accuracy, their applicability is constrained to a few environments where actions can be

performed within the limited sensor’s distance range with a pose facing the camera sensor.

Therefore, research devoted considerable effort to obtain a generic solution to the pose es-

timation problem in a way that does not impose any restrictions on the working environment.

A survey of current trends in pose estimation techniques is presented in (Escalera, Angulo

and Gonzalez, 2014). Most prominent approaches for pose estimation use structure-based

or regression-based methods to recover the 2D body poses. Structured-based approaches

as in (Yang and Ramanan, 2011) model the human body by a set of string-like connected

parts arranged in a deformable configuration. Other approaches use a classification or re-
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gression based scheme to recover the 2D body pose from rich feature representations that

can uniquely codify the body pose appearance (Agarwal and Triggs, 2006a; Shotton et al.,

2011). Due to the complexity of this problem, most pose estimation techniques for uncon-

strained environments focus on the pose estimation problem and overlook the optimal pose

representation needed for human action recognition. Therefore, most provided solutions, ex-

cept a few (Agarwal and Triggs, 2006b), limit their pose estimation algorithms to 2D poses

for simplicity and do not leverage any 3D pose priors that can be beneficial in reconstructing

3D pose representations.

In this chapter, we revisit the problem of human action recognition and pose estimation in

order to closely differentiate between the utility of different pose variants for human action

recognition. Namely, we compare the action recognition performance when 2D, 3D, and 3D

with joints’ orientations are provided by the pose estimation algorithms. Furthermore, we

underline the benefit of 3D pose estimation as opposed to 2D in obtaining view invariant

pose features. Our results conclude that 3D pose estimation instead of 2D pose estimation

from monocular videos has the potential to improve action recognition. The results also

point out to the significance of estimating joints’ orientations in boosting the recognition

performance on challenging human actions benchmarks.

This chapter is organized as follows: We first review the theoretical bases of partial least

squares for regression and classification which we use for mapping the 2D poses to 3D poses,

Section 5.3. Next, we present our comparison in Section 5.4 between the recognition per-

formances using 2D and 3D poses for the TUM dataset. In Section 5.4.2, we show how

we use the PLS regression algorithm to reconcile the recognition performance difference

between 2D and 3D poses. Section 5.5 describes how augmenting joints orientation of the

3D poses enhances action classification, especially for complex gestures of small inter-class

and large intra-class variations.

5.3 Theoretical Review: Partial Least Squares (PLS)

PLS has been recently adopted in computer vision for different applications including pose

estimation and regression (Haj, Conzalez and Davis, 2012), image classification (Harada et

al., 2011), pedestrian detection (Schwartz et al., 2009), and multi-view learning (Sharma and

Jacobs, 2011). The PLS algorithm is an iterative process which discovers relations between

two blocks of data given by X ∈ Rn×N and Y ∈ Rn×G by learning a set of (non-) linear
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Figure 5.1: A schematic diagram that describes the PLS algorithm. The PLS algorithm discovers
relations between two blocks of data by defining (non) linear outer relations between the input and
the latent space, and inner relations between the variables in the latent space of the two blocks of data.

projections a, b (see Figure 5.1). This iterative process stands for two main subroutines:

extraction of suitable weight vectors and deflation. Since its original introduction by Wold

(1975), different forms have been proposed based on the followed deflation routine. As a

complete review of PLS algorithms is beyond the scope of this thesis, we briefly describe

here the PLS algorithm and its kernelized version. For a comprehensive review, we refer the

reader to a detailed description and comparison between the PLS variants in (Wegelin, 2000).

5.3.1 The PLS Algorithm

Given zero-mean data X ∈ Rn×N and Y ∈ Rn×G, PLS discovers relations between X and Y by

learning a set of (non-) linear projections a, b onto p latent vectors that maximize covariance

between both as follows:

argmax
{

[cov(aT x, bTy)]2

(ata)(bT b)

}
(5.1)
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X = TPT + F

Y = UQT + H
(5.2)

where T and U ∈ Rn×p contain scores or latent vectors, and P ∈ RN×p and Q ∈ RG×p are

loading matrices. PLS iteratively determines the p latent vectors T and P which, by design,

are orthogonal vectors (Rosipal et al., 2001). The algorithm can be summarized as follows:

1. randomly initialize ui

2. ai = XTui, ti = Xai, ti = ti/ ||ti||2

3. bi = YTti, ui = Ybi ui = ui/ ||ui||2

4. repeat 2 and 3 until convergence

5. pi = XTti/ ||ti||2

6.

X = X − titT
i X (5.3)

7.

Y = Y − titT
i Y (5.4)

8. repeat p times.

9. Generate matrices by aggregating [a1, a2, . . . , ap] into A ∈ RN×p, [b1, b2, . . . , bp] into

B ∈ RG×p, [u1, u2, . . . , up] into U ∈ Rn×p, and [t1, t2, . . . , tp] into T ∈ Rn×p

Once the model parameters have been determined, the regression model for a new test

instance amounts to

Yt = XtΦ (5.5)
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whereΦ ∈ RN×G, the coefficient matrix is given byΦ = A (PT A)−1BT where P ∈ RN×p is

the matrix comprised of the loading vectors and the following holds:

A = XTU (5.6)

P = XTT(TTT)−1 (5.7)

B = YTT(TTT)−1. (5.8)

Similarly, the mapping from input features to their responses Φ reads

Φ = XTU(TT XXTUF)−1TTY. (5.9)

This variant of PLS algorithm appears most frequently in chemometric literature and is

often referred to as PLS1 or PLS2. If the number of dimensions G in Y is 1, its named

PLS1, otherwise its named PLS2. Both are featured by the deflation routines followed by

equation (5.3) and equation (5.4). Hence, both are updated by subtracting an estimate based

on t, the latent variable score estimate for X.

Other variants of PLS impose orthogonality constraints on the extracted weight vectors a

and b (i.e. aT A = 0), leading to different deflation routines than mentioned in equations (5.3)

and (5.4). These correspond to the original deflation routine proposed by Wold (1975) (re-

ferred in literature as PLS-W2A) which subtracts rank-one estimates of the data matrices X
and Y. After the updates, a new cross product of XY is estimated and the process iterates.

Sampson, Streissguth and Bookstein (1989) demonstrate another variant of PLS called PLS-

SVD which updates XY directly by rank-one minimization instead of updating X and Y. In

PLS-SVD the singular value decomposition (SVD) needs to be computed once on the ori-

ginal cross-product matrix. In contrast to PLS-W2A, the singular values must be estimated

at each iteration after finding the new XY of the updated matrices X and Y.

5.3.2 The Kernel PLS Algorithm

Rosipal et al. (2001) introduce a kernelized extension for PLS so that it is possible to find

non-linear transformations to the latent space through some mapping function Φ(xi). Using

Φ(xi)Φ(xi)T = K(xi, x j), Rosipal et al. (2001) describe Kernel PLS as follows:

1. randomly initialize ui
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2. ti = KTui, ti = ti/ ||ti||

3. bi = YTti, ui = Ybi, ui = ui/ ||ui||

4. repeat 2 and 3 until convergence

5. K = (I − titT
i )K(I − titT

i )

6. Y = Y − titT
i Y

7. repeat p times

Similar to the original PLS algorithm, it is required to normalize both the kernel matrix K
and the response matrix Y to have zero-mean. Finally, the predicted response matrix Yt t can

be obtained using regression coefficient as:

Yt = Φt B = KtU(TT KU)−1TTY (5.10)

where Kt ∈ R
(nt×n)) is the centralized kernel of nt test samples (Schölkopf, Smola and Müller,

1998).

5.3.3 Partial Least Square for Classification

Partial least squares (Rosipal et al., 2001) is a regression method that models relationships

between two sets of observed variables X ∈ Rn×N and Y ∈ Rn×G by projecting them to a

common latent space where they are best aligned. Barker and Rayens (2003) point the utility

of PLS for discrimination and established it relationship to Fisher Discriminant Analysis

(FDA). The technique is known to be resistant to over-fitting, fast, easy to implement, and

simple to tune. It often performs better than other regression approaches for classification,

especially for high dimension, low sample size data (hall, Marron and Neeman, 2005). To

accommodate the PLS algorithm for classification, Barker and Rayens (2003) propose using

the label information of samples in X and encode it by the indicator matrix Y as:

Y =


1n1 0n1 . . . 0n1

0n2 1n2 . . . 0n2

...
...

. . .
...

0ng 0ng . . . 1ng


(5.11)
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Figure 5.2: An overview of the classification approach using PLS, where the query sample is assigned
to the class with the maximum regression score in the indicator vector Yt.

where ng denotes the number of instances of class g, see Figure 5.2. It was proven that

using the indicator matrix as response for input features is equivalent to FDA (Barker and

Rayens, 2003). However, FDA has the limitation that there are only G − 1 meaningful latent

variables, when a G-class problem is considered. An advantage of PLS-type algorithms for

classification is their efficiency and simplicity, even when applied to very high dimensional

data. KPLS, as a special case, enables the use of kernel functions to deal with non-linearity

and learn classification models that adapt better similarity measures between the samples for

classification.

5.4 2D vs. 3D Pose Variants for Action Recognition

Recent advances in pose estimation introduce new opportunities towards action recognition

in challenging environments. Several applications show that pose estimation is vital towards
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generalizable, robust, and efficient action recognition (Yao, Gall and Gool, 2012; Tran, Kaka-

diaris and Shah, 2011; Jhuang et al., 2013). However, most estimation methods reconstruct

2D poses from monocular views, failing to provide view invariant descriptors for action re-

cognition. In this section, we compare the performance of the pose features extracted from

2D and 3D pose variants for human action recognition. Our goal from this comparison is

to present potential insights for pose estimation algorithms regarding the best pose variant

needed for human action recognition.

5.4.1 2D Poses for Action Recognition

In the previous chapter, we have evaluated the performance of our action recognition frame-

work for the TUM dataset (Tenorth, Bandouch and Beetz, 2009) using the estimated 3D

poses. The TUM dataset (Section 2.2.2) is captured from four different calibrated views

where the camera parameters are known. Therefore, it stands as a benchmark for comparing

action recognition performance of 2D and 3D pose variants on the same action sequence. To

this end, we utilize the provided camera parameters from the TUM dataset and obtain four

different sequences of 2D human action representation; each depicts the human action from

one camera view. Given the 3D action sequence from the TUM dataset of F frames for a

human with J joints S ∈ RF×J×3, and the four camera projection matrices of the TUM dataset

{Pi}
4
i=1. We obtain the corresponding 2D action sequences S i ∈ R

F×J×2 of each individual

camera i by:

S i = S Ṗ

Afterwords, we perform action recognition using our earlier described framework, but only

using the appropriate 2D features described in (Section 4.3.1). Namely, we use the velocity,

and location features of the joints. Then, we perform soft-binning on the extracted orientation

into 18 bins. Hence, the movement normal vectors can only be estimated as a scalar in the

2D case. It this can not be used for 2D sequences. The final features of velocity and location

histograms are used to learn a classification model for each view. Similar to the training

based on 3D pose presented earlier, we train the KPLS model for classification using the

intersection kernel and follow the same evaluation protocol for the unsegmented sequences

of the TUM dataset. The number of components used for the KPLS algorithms is learned by

cross-validation on a separate portion of the training data. Table 5.2 summarizes the obtained

classification accuracies for each view.
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A common observation between results from 2D pose features is their relatively close

recognition accuracies which are justifiable for the same action sequence. However, some

views are slightly worse than others due to different degrees of view foreshortening. No-

tice also that the fourth camera have the worst recognition accuracy, which matches previous

findings in (Yao, Gall and Gool, 2012) where they use a different set of features. Another

observation is related to the classification models learned from 2D sequences, which provide

a significantly worse performance of approximately 20% less than their 3D counterparts.

This degraded performance can be justified by: Firstly, pose feature variation of the same

2D pose under different views; and secondly, the ambiguity of motion direction that is in-

troduced when the depth information is absent. These observations motivate our proposal

for 3D instead of 2D pose estimation from monocular views as they are expected to provide

higher recognition performance. To confirm this view, the next section presents a method for

reconciling the degraded performance of 2D action sequences by mapping them back to 3D,

and comparing their recognition performance using the same framework.

5.4.2 3D Pose Mapping for Robust Action Recognition

In the previous section, we compared action recognition using 3D and 2D pose features. As

opposed to the previously reported result for 3D pose features, action recognition accuracies

in 2D show a significant drop of almost 20% in recognition rates on all four cameras. The

performance is also lower than the one reported for the 2D appearance features in (Yao,

Gall and Gool, 2012), which does not use high-level features but low-level features based on

optical flow and gradients.

In order to investigate if the performance loss comes from the inherent depth ambiguity

of 2D poses or the view sensitiveness of the representation based on 2D poses, we propose

to lift the 2D poses to 3D and reconstruct the depth information of the body pose. While

learning-free approaches for pose-lifting (Taylor, 2000) provide pose mapping from 2D to

3D, their applicability to reconstruct a large sequence of 2D poses is limited, as they yield a

whole set of 3D pose candidates for a single 2D pose (Brauer and Arens, 2011). Therefore,

we resort to a regression-based approach which provides a one-to-one mapping from 2D to

3D poses. While any regression algorithm can be used to achieve this task, we chose the

KPLS regression algorithm as it has shown state-of-the-art results in many head and body

pose estimation applications (Haj, Conzalez and Davis, 2012; Sharma and Jacobs, 2011).

Given a set of 2D training poses of J joints {P}Ci ∈ R
2∗J and their corresponding 3D poses
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Figure 5.3: The residual error for each frame of a reconstructed 3D pose sequence when 5, 20, 50,
100, 200 poses per class are used to train the KPLS regression model.

{S }Ci ∈ R
3∗J. We linearly scale the individual body parts so that the distance between the

central shoulder and the central hip joints is constant. Then, we learn a mapping function Φ :

R2∗J → R3∗J that maps the observed 2D poses of a camera view to their 3D representation.

As described earlier, we use the KPLS algorithm using a radial basis kernel with (σ = 0.01).

Given a test sequence of 2D action sequence S i ∈ R
F×J×2 captured from camera i, we learn

its corresponding 3D pose sequence S ∈ RF×J×3 using KPLS regression. Then, we use

the reconstructed 3D pose sequence to extract the action features. For evaluation, we use

the same protocol as described in Section 4.4.4 for the unsegmented sequences of the TUM

dataset.

Figure 5.3 shows the residual error of the reconstructed 3D pose sequence compared with

the corresponding original 3D pose sequence. Notice that using a smaller number of training

poses leads to inaccurate reconstruction of the 3D body poses. Therefore, worse recognition

performance is observed (Table 5.1) when compared to a larger number of training poses per

action. Table 5.1 shows the recognition accuracy of our action recognition framework using

the reconstructed 3D poses as a function of the number of training poses per action. Notice

also that the recognition accuracy approximately converges to 78% when 100 or more poses

are used for training the KPLS mapping.

Table 5.2 compares the obtained accuracies using our features after and before mapping
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Table 5.1: Human action recognition using the reconstructed 3D poses when different number of poses
per class is used to train the KPLS regression model.

Number of training poses per class 5 20 50 100 200
accuracy (%) 60.67 69.81 74.32 77.33 78.47

Table 5.2: Recognition accuracy (%) for the TUM dataset. We compare a 2D appearance-based ap-
proach (Yao, Gall and Gool, 2012), 2D versions of our features, 3D features obtained by mapping the
2D pose to 3D, and 3D features computed from the provided 3D poses, which have been estimated
using all the four camera views.

Camera Camera 1 Camera 2 Camera 3 Camera 4

HF + 2D appearance features (Yao, Gall and Gool, 2012) 68.00 70.00 68.00 65.00
KPLS + joint features from 2D pose 65.66 65.19 63.95 62.51
KPLS + joint features from 3D pose

estimated from 2D pose of one camera view 77.61 77.78 78.23 78.47
KPLS + joint features from 3D pose

estimated from all camera views 82.5

the 2D poses to 3D. Despite the inaccurate reconstruction of the learned KPLS model, the

corresponding 3D features show a significant performance boost over their 2D counterparts.

It is also interesting to note that the performance is around 78% for all views, while the 2D

features show more performance variation among views. Furthermore, the 2D appearance-

based approach (Yao, Gall and Gool, 2012) is outperformed. This result underlines the bene-

fit of view invariant pose features and indicates that 3D pose estimation instead of 2D pose

estimation from monocular videos has the potential to improve action recognition.

5.5 Rich Pose-based Representation

We have described earlier how using 3D pose representation instead of 2D provided a signi-

ficant potential in enhancing current monocular pose-based action recognition methods. In

particular, we showed that this choice led to enhancing the action recognition performance

by almost 15% on the TUM dataset. The new pose estimation algorithms nowadays accom-

panied with the Kinect sensor provides further information on the 3D poses to capture the 3D

joints orientation. In this section, we briefly explain how to utilize this information and how

it affects the performance of our action recognition framework (Chapter 4). For this purpose,

we use the ChaLearn dataset which is captured using the Kinect camera sensor. The focus of
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this dataset, as described in Section 2.2.2, is to recognize gestures drawn from a vocabulary

of Italian sign gesture categories. The dataset emphasis is on user-independent, continuous

gesture spotting of a set of 20 gestures performed by different users. It provides precise la-

bels of gesture data that contains more than 900 samples, comprising near 14,000 gesture

instances and more than 1.4 million frames. We first explain the provided joint information,

and how we use it in our discriminative framework for action recognition. Then, we describe

the use of temporal integral histogram for speeding the process of feature extraction. Finally,

we elaborate on the evaluation setup for this dataset and empirically demonstrate the impact

of using joints’ orientations on the performance of our human action recognition system.

5.5.1 Joint Orientation in 3D Space

The 3D pose estimation algorithm accompanied with the Kinect provides rich representa-

tion of human pose that includes 3D joint location alongside their 3D orientations. Joint

orientations are provided in terms of unit quaternions in 3D space. To obtain a directional

orientation from the unit quaternions that expresses orientations of body’s joints as a vector

in 3D space, we convert the unit quaternions joint rotations x, y, z, w to the corresponding

rotation matrix:

R =


X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3


where:

X1 = 1 − 2 × y2 − 2 × z2 (5.12a)

X2 = 2 × x × y + 2 × z × w (5.12b)

X3 = 2 × x × z − 2 × y × w (5.12c)

Y1 = 2 × x × y − 2 × z × w (5.12d)

Y2 = 1 − 2 × x2 − 2 × z2 (5.12e)

Y3 = 2 × y × z + 2 × x × w (5.12f)

Z1 = 2 × x × z + 2 × y × w (5.12g)

Z2 = 2 × y × z − 2 × x × w (5.12h)

Z3 = 1 − 2 × x2 − 2 × y2 (5.12i)
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Elbow joint

Figure 5.4: 3D pose representation with local joints orientation coordinates provided using the pose
estimation algorithm accompanied with the Kinect sensor

The rotation matrix depicts the three local coordinates’ orientation (X-Y-Z) of the body’s

joints on each of its columns (see Figure 5.4). Similar to the velocity and normal features

described in Section 4.3.1, we extract the orientation feature by quantizing the polar coordin-

ates’ directions of azimuth (α) and zenith (φ) of a particular body joint’s rotation axis (we

used the Y axis) vector into 18 × 9 bins. In addition to the features previously described in

Section 4.3.1, we add the orientation feature and learn a suitable basis to obtain a compact

feature of the action sequence which can be used with an off-the-shelf classifier.

5.5.2 Experimental Details

To evaluate the significance of joint orientation in conjunction with 3D poses for action re-

cognition, we utilize the ChaLearn dataset 1. The evaluation scheme on this gesture dataset

follows the original evaluation scheme introduced in the ChaLearn 2014 gesture challenge

(Section 2.2.2). The recognition performance of a test sequence is evaluated using the Jac-

card Index, which provides a measurement of the overlap between the ground truth and the

predicted labels of the video sequence. For each labeled gesture category from the 20 ges-

tures, the Jaccard Index is computed as follows:

Js,n =
As,n ∩ Bs,n

As,n ∪ Bs,n
(5.13)

1 gesture.chalearn.org/
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Ground truth

Walk 
sequence 
evaluation

Fight 
sequence 
evaluation

Figure 5.5: Performance evaluation of a two-class problem using the Jaccard Index. As,n and Bs,n

denote the ground truth and prediction labels of sample s for each action respectively. The mean
Jaccard Index is estimated by Jmean =

Js,walk+Js, f ight
2 which equals Jmean = 0.59

where As,n and Bs,n denote the ground truth and prediction labels of sample s for the gesture

n respectively. Introducing false positives is yet penalized in the evaluation as the Jaccard

Index of the class with false prediction is set to zero. Figure 5.5 shows an example evaluation

of mean Jaccard Index for two action sequences, “walk” and “fight”. The mean Jaccard

Index is estimated by Jmean =
Js,walk+Js, f ight

2 which equals Jmean = 0.59. Accordingly, if the

prediction present any false positive for an action that is not present in the ground truth,

e.g.“run”, the mean mean Jaccard Index will be Jmean =
Js,”walk”+Js,”run”+Js,” f ight”

3 which equals

Jmean = 0.72+0+0.46
3 = 0.39 instead of 0.59.

Our implementation follows the same procedure earlier used on the TUM dataset. How-

ever, we introduce small changes to adapt the challenge of unlabeled and noisy motion that

exists in this dataset, and limit the number of false positives that are strictly penalized by

the performance measure. To train our classification model, we use a multiple-scale slid-

ing window approach of 20, 30, and 40 frames around a labeled frame and extract training

features from each temporal window. The use of multiple scales enriches the feature space,
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(a) Prediction without joints orientation features

(b) Prediction with joints orientation features

Figure 5.6: Illustration of prediction confidence obtained from our classification framework for a
sample video sequence that contains arbitrary Italian gestures. Figure (a) presents the prediction
confidence obtained when joints orientation features are not used while (b) presents the prediction
confidence when joints orientation is used in our classification framework.86
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especially at the transition points of different gestures and provides better training models

for classification. We also run the sliding window approach over the unlabeled portion of

the video sequence to better identify noisy movements and unlabeled gestures from known

gestures. Notice that this process results in a large training data. Consequently, kernel-based

classifiers like KPLS are impractical for this setup. Alternatively, we resort to the linear vari-

ant of PLS to train our classification model. We select the model hyper-parameters of the

trained PLS classifier by cross-validation on a subset of the training data.

For testing, we predict action labels on a frame level basis using a sliding window ap-

proach. To speed up the computation of our features for a given window, we performed

the quantization and soft-binning of the feature vectors (location, velocity, and movement

normals) of the whole video sequence once. Then we compute an integral histogram repres-

entation along the temporal dimension. This reduces the computation of the feature vector

of a given window to a constant time and brings the prediction time performance to real-time

speed. The prediction can also be taken at multiple sliding window scales in order to cover

actions with variant time lengths; this results in higher recognition performance and reduces

the number of false positives introduced in the video sequence.

Our evaluation setup uses the provided 400/230 split as train/test samples. For model

selection, we split the training data into 300 samples for training and 100 samples for val-

idation. After setting the model parameters using the validation set, we retrain our classifier

using the entire training data with the best learned parameters. Figure 5.6 compares the pre-

diction confidence of a video sequence using our recognition framework with and without

the orientation feature. Notice that the use of joints orientation feature improve the prediction

performance in two ways: Firstly, it limits the number of false positives introduced by the

model that is only trained using the 3D pose features. Secondly, it provids better discrim-

ination between gestures that comprise similar motion but different hand poses such as the

gestures of “Viene que” and “Tanto tempo fa”. The mean Jaccard Index on this dataset was

44.37% when only using the joints’ location, velocity, and movements normals. The orient-

ation of the body’s joints features alone scored a mean Jaccard Index of 39.56%. This is a

significant recognition rate when compared to the performance of the 3D joint locations. By

combining both features in our framework, the mean Jaccard Index reaches up to 55.07%.
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5.6 Summary

This chapter investigated different pose variants provided by state-of-the-art pose estimation

algorithms. Our study focused on the utility of these pose variants and compared their per-

formance for action recognition using the recognition framework presented in Chapter 4. In

particular, our evaluation addressed the recognition gap between 2D and 3D poses for action

recognition, and showed that 3D instead of 2D pose estimation from monocular videos has

the potential to improve the recognition performance. Furthermore, we demonstrated how

enriching the 3D pose representation with joints’ orientations introduces substantial boost to

the recognition performance, especially for the categorization of human sign gestures. These

findings may motivate future generic pose estimation methods from monocular views to ac-

count for better pose variants in their formulation, and also to introduce better human action

recognition frameworks.
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CHAPTER 6

Optimal Late Fusion for Robust
Action Recognition

6.1 Preface

Human action recognition in videos and still images has attracted considerable interest in

recent research. A popular trend is to use ensembles of multiple features and classifiers in

order to cope with different action’s aspects such as action appearance, motion, and body

pose. Most baseline approaches for ensemble learning combine a variety of complementary

representations by simply combining their features or their corresponding confidence scores

in a process that may undermine the discriminative potential of each individual representation

for particular classes.

Motivated by the recent advances in ensemble learning techniques, especially for late fu-

sion, we present in this chapter a novel framework for fusing the probabilistic predictions of

different classifiers. Our approach is based on formulating and solving a constrained quad-

ratic optimization problem. In contrast to the previously proposed late fusion approaches

such as the sum-rule or linear weighting, our approach puts constraints on the semantics of

mixture coefficients such that they represent the posterior of every participating classifier for

each class. Unlike Bayesian inference methods, the proposed approach minimizes an error

function that also considers correlations among different models. Experiments on a num-

ber of established benchmark action datasets show that the presented approach improves on
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baseline late-fusion approaches and improves on state-of-the-art results.

6.2 Introduction

The problem of recognizing human activities from realistic images or videos has received

considerable interest over the last decade. Accordingly, existing research has achieved prom-

ising advances in terms of informative features and efficient classification models. Despite

this progress, human action recognition in unconstrained scenarios is largely an unsolved

problem – mainly due to the challenges arising from the variation of human motion, appear-

ance, scene, and body poses. To handle such variations, a practical system must incorporate

representations based on a range of these cues. Most existing methods for action recog-

nition typically rely on individual representations based on motion (Sadanand and Corso,

2012), pose (Thurau and Hlavac, 2008) or appearance features (Kuehne et al., 2011; Deltaire,

Laptev and Sivic, 2010). Recently, Wang et al. 2013b obtained state-of-the-art results on sev-

eral benchmark video datasets by encoding both motion and appearance features in a BOF

model, affirming the benefits of combining several action representations.

The tangible performance enhancement achieved by using multiple features motivated sev-

eral other attempts to combine various action representations. Frequently, these approaches

rely on feature level fusion to achieve robust recognition. For instance, Deltaire, Laptev and

Sivic (2010); Rohrbach et al. (2012); Wang et al. (2011a) combine a variety of heterogeneous

representation by simply concatenating feature descriptors. This, however, may undermine

the discriminative potential of each individual representation for particular classes. To over-

come this limitation, Wang et al. (2012a) follow a principled approach to combine a set

of mined action features called actionlets using Multiple Kernel Learning (MKL) (Bach,

Lanckriet and Jordan, 2004). MKL assigns different linear or non-linear weights to the fea-

ture kernels in order to obtain better similarity measures for the purpose of classification.

Yet, a recent evaluation Gehler and Nowozin (2009) show that simple kernel averaging, a

much faster method, can achieve similar results as MKL.

Classifier level fusion, often called late fusion, has been widely used and baselines meth-

ods have been thoroughly investigated (Kittler et al., 1998; Xu, Krzyzak and Suen, 1992).

Researchers observed that performing classifier level fusion has certain key advantages over

other fusion schemes. Firstly, classifier level fusion is generally faster than feature level

schemes, especially as the trained system grows to adapt new features. In this case, classifier
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level fusion requires only to re-train the fusion part in contrast to feature level fusion where

the whole system needs to be retrained. Secondly, it abstracts the details of the underlying

classifiers, giving the freedom of selecting classification models that best suit a given feature.

Baseline approaches for classifier level fusion such as the sum-rule or the SVM-rule (Kit-

tler et al., 1998) have been extensively evaluated for several applications (Kittler et al., 1998;

Xu, Krzyzak and Suen, 1992). These baselines assume that individual classifier outputs are

normalized to an estimate of posterior probabilities so that they can be combined homogen-

eously (Jain, Duin and Mao, 2000). Despite their good performance, these approaches are

frequently criticized as they neglect the discriminative power of features with respect to par-

ticular classes, thus leading to suboptimal fusion performance. To remedy this limitation,

alternative methods have been suggested that learn weights for classifier scores (Terrades,

Valveny and Tabbone, 2009), clustering results (Liu et al., 2012), or even on data samples

(Liu et al., 2013a).

This chapter presents a novel late fusion strategy that determines stochastic weights of the

models for each class. Our approach is based on a quadratic optimization formulation. Unlike

common linear weighting schemes for late fusion, our approach constraints the semantics of

the mixture coefficients (weights) in order to represent posteriors of a model for each class.

We evaluate our fusion scheme on different human action datasets comprising videos and

images. Our experimental results show that the proposed late fusion approach outperforms

other late fusion techniques and provides state-of-the-art classification accuracies on various

action recognition datasets.

6.3 Related Work

Fusing complementary modalities and feature representations became popular trend in com-

puter vision research. Conventional approaches such as kernel averaging and the sum-rule

have been widely adopted for their simplicity and ease of implementation (Kittler et al.,

1998; Xu, Krzyzak and Suen, 1992). Alternatively, a principled early fusion strategy con-

sists in Multiple Kernel Learning (MKL) (Bach, Lanckriet and Jordan, 2004) which aims

at optimized combinations of kernels. For instance, He et al. (2008) formulate a quadratic

optimization approach to learn optimal discriminative linear kernel weights for classifica-

tion. However, Gehler and Nowozin (2009) extensively evaluate MKL and found that even

baseline approaches such as kernel averaging can be as effective as MKL. In contrast to these
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approaches, our efforts focus on late fusion which builds on the confidence scores of different

models of different features.

Since late fusion techniques are based solely on the predictions obtained from different

models, they provide greater flexibility w.r.t. the choice of models. Kittler et al. (1998) eval-

uate baseline strategies for late fusion and concluded that the sum-rule with uniform linear

weighting performs best in almost all situations. Most existing linear weighting approaches

for late fusion use equal (sum), static, or classifier level fusion weights (Atrey et al., 2010).

Other approaches (Tavakoli, Zhang and Son, 2005; Atrey, Kankanhalli and Jain, 2006) use

domain heuristics or histories of classifiers to assign weights to individual classifiers. How-

ever, adapting such naive approaches may severely affect the final results in situations where

a specific model performs poorly on certain classes. Different attempts were made further

to learn better late fusion schemes that identify non-discriminative models in order to ignore

them in the final decision. Nandakumar et al. (2008) fit a Gaussian mixture model to the

scores of different features and then utilized a likelihood ratio test to fuse classifier scores.

Terrades, Valveny and Tabbone (2009) develop a late fusion approach that optimizes for the

best linear combination in terms of the misclassification rate under L1 constraints for mul-

tiple binary classifiers. In contrast to these approaches, our approach considers the individual

results of each model for each particular class in an optimization setup and determines a joint

stochastic linear weighting of individual models for each class.

Another late fusion scheme was recently presented in (Ye, Liu and Chang, 2012) where

they develop a novel method for fusing results of multiple models via rank minimization on

the pairwise relation matrices of the learned models. Consequently, their approach ignores

model confidence scores which, however, are of great interest for indexing and retrieval.

Recently, Liu et al. (2013a) present a promising approach that adopts a sample-specific late

fusion scheme by propagating the learned fusion weights of labeled samples to unlabeled

samples. Again, our approach differs from these ideas as we determine class level weights

in a supervised fashion. Finally, for an extensive review of related approaches in multimedia

retrieval, we refer the reader to a recent survey in (Atrey et al., 2010).

In the context of action recognition, fusion of multiple modalities is of particular interest

since different actions are often best characterized in terms of different representations per-

taining to motion, appearance, scene, and body pose. Research on combining these modal-

ities, however, still lacks an exhaustive evaluation. Deltaire, Laptev and Sivic (2010); Wang

et al. (2011a) utilize different features of spatial or spatio-temporal representations and com-
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bine them by means of averaging their kernels. Wang et al. (2012a) learn a linear combina-

tion of mined actionlets for classification which may not bring a significant enhancement on

the classification results compared to simple kernel averaging (Gehler and Nowozin, 2009).

Below, we address these limitation and propose a stochastic late fusion technique based on

quadratic optimization that jointly learns the best linear combination of models in a multi-

class classification scenario. The learned weights can reveal the significance of the utilized

features as well as the discriminating potential of each model for their respective classes.

6.4 Late Fusion: Baseline Approaches

Most baseline approaches for late fusion assume a Bayesian framework to justify the merits

behind using a specific fusion scheme. In this section, we review the theoretical background

of most popular approaches for late fusion in human action recognition and their relation

to the Bayesian theory. Then we present our optimal late fusion formulation for human

action recognition. Let’s assume that the action sample S is to be assigned to one of the

C classes (ω1, ω2, . . . , ωC), and that each sample S is represented throughM different view

representations which cast the measurements vectors [x1, x2, . . . , xM]. In the feature space,

we can model the probability density function of each class ωc as P(xi|ωc) with a priori

probability P(ωc). In a Bayesian framework, the pattern S should be assigned to the class ω j

that maximizes the posterior probability of:

P(ω j|x1, . . . , xM) = argmax
c

P(ωc|x1, . . . , xM) (6.1)

In principle, the computation of the posterior probability depends on estimating the joint

probability density function P(x1, . . . , xM) which is difficult to compute. Therefore, most late

fusion techniques relax this term by introducing further assumption to the problem formula-

tion. Next, we present the baseline approaches for late fusion and describe the assumption

taken in their formulation and their reasoning in the problem for human action recognition.

6.4.1 Product Rule

As the features obtained from different action representations [x1, x2, . . . , xM], it becomes

convenient to assume their independence. This assumption can be reflected to the formula-

tions as:
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P(ωc|x1, . . . , xM) =
P(ωc)

∏M

i=1 P(xi|ωc∑C
j P(ω j)

∏M

i=1 P(xi|ω j)
(6.2)

Using both (6.1) and (6.2), we can assign the action sample S to the class ω j that maxim-

izes

P(ω j)
M∏
i=1

P(xi|ω j) = maxC
c=1P(ωk)

M∏
i=1

P(xi|ωk) (6.3)

which can be written in terms of posterior probability as

P−(R−1)(ω j)
M∏
i=1

P(ω j|xi) = maxC
c=1P−(R−1)(ωc)

M∏
i=1

P(ωc|xi) (6.4)

6.4.2 Sum Rule

While the product rule presumes the conditional independence among observations from

various modalities, the sum rule can be yet understood with an additional strong presumption.

According to Kittler et al. (1998), the sum rule assumes that the posterior probability of the

observations slightly deviates from the prior probabilities. It therefore can be described as:

P(ωc|xi) = P(ωc)(1 + δci) (6.5)

where δci � 1. Substituting the posteriori 6.5 in 6.4 we find

P−(R−1)(ωc)
M∏
i=1

P(ωk|xi) = P(ωc)
M∏
i=1

(1 + δci) (6.6)

By expanding the right-hand side and neglecting any second or higher order, we reach

P(ωc)
M∏
i=1

(1 + δci) = P(ωc)
M∑
i=1

δci (6.7)

Substituting 6.7 and 6.5 into 6.4 we obtain the sum decision rule

(1 − R)P(ω j) +

M∑
i=1

P(ω j|xi) = maxC
c=1

(1 − R)P(ωk) +

M∑
i=1

P(ωc|xi)

 (6.8)
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6.4.3 Bayesian Inference Rule

Baseline methods for late fusion (i.e. product- and sum-rule) are often criticized because they

undermine the prior knowledge of individual performance of each modality in discrimination,

especially when the modalities provide variant accuracy performances across the classes.

Such situations are particularly frequent in the field of action recognition where for example,

motion features are very effective for detecting motion-based actions (e.g. running) and poor

in static-based action (e.g. reading). Therefore, it is crucial to allow for any prior knowledge

about the likelihood of the modality for a particular action to be utilized in the inference

process. In short, the Bayesian inference approach can be described by

P(c|x1, . . . , xM) = argmax
c

M∑
i=1

P(c|m, xi)P(c|mi)P(mi). (6.9)

where P(c|m, xi) and P(mi) are the prior parameters of the modality mi and the modality

mi for a given class c. However, these methods may not introduce much enhancement on the

fusion performance because of the absence of knowledge of suitable priors. Our presented

approach addresses this flow in Bayesian inference approaches by learning suitable priors for

the action modality through an optimal late fusion formulation that we describe next.

6.5 Late Fusion by Quadratic Programming

In the previous section, we have reviewed baseline approaches for late fusion. We have

pointed out that both sum- and product-rule are widely criticized as they do not allow any

prior knowledge of the action modalities into fusion. Furthermore, we have discussed that

the Bayesian inference approach for late fusion may not be suitable because of the absence

of knowledge of suitable priors. In this section, we present an optimal late fusion approach

that utilizes the likelihood prior of each action modality into the fusion by learning an op-

timal fusion weights using a quadratic optimization approach. This section describes our

optimization approach to late fusion and its application for human action recognition.

Let D, V, and T be three independent sets of data and let M be the number of constituting

models trained on a the training set D which contains C classes or categories. Further, let

N be the number of samples in the validation set V that will be used for learning the fusion

model. Given that each model provides a probabilistic predictions, let V(m) be an N × C
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matrix of predictions of all the N instances according to model m, i.e. each row of V(m) is

a stochastic vector. Let Y be an N × C binary indicator matrix based on true labels such

that yic = 1 only if sample i belongs to category c. Then, our objective is to find stochastic

mixture coefficients for each class and each model that minimize the sum of squared errors

over all in the training data. Let wm denote the C-dimensional column vector of the target

mixture coefficients for model m and let � represents the Hadamard (element-wise) product

of each row of a matrix with a row vector, then our objective is to solve

min
wm

∥∥∥∥∥∥∥Y −
∑

m

wT
m � V(m)

∥∥∥∥∥∥∥
F

s.t.
M∑

m=1

wmc = 1, wmc ≥ 0 ∀m, c (6.10)

where ‖.‖F denotes the Frobenius norm. Solving this system yields weights wmc that encode

the belief of a model m regarding its performance for class c. The sum-to-one constraint in

the above formulation ensures that weights of different models are normalized for each class

and hence that beliefs are measured relative to each class.

In the remainder of this section, we discuss further details regarding the formulation of the

above quadratic optimization problem and present a strategy for its solution. Note first that

the objective function in (6.10) is equivalent to

min
wmc

N∑
i=1

C∑
c=1

yic −

M∑
m=1

wmcv
(m)
ic

2

(6.11)

where v(m)
ic represents the probability that sample i belongs to class c according to model m.

Expanding this expression yields the following coefficients of the unknowns

coe f f
(
w2

mc

)
=

N∑
i=1

(
v(m)

ic

)2
(6.12)

coe f f (wmcwkc) =
1
2

N∑
i=1

v(m)
ic v

(k)
ic (6.13)

coe f f (wmc) = −2
N∑

i=1

yicv
(m)
ic (6.14)
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Next let w be a MC-dimensional column vector obtained by stacking the wm such that

w = [w11w12 . . . w1Cw21w22 . . . wMC]T . (6.15)

Further consider P to be a MC ×MC matrix whose C ×C blocks contain coefficients corres-

ponding to the quadratic terms in (6.11). Specifically, P has the following shape:

P =


P1,1 P1,2 · · · P1,M

P2,1 P2,2 · · · P2,M

...
...

. . .
...

PM,1 PM,2 · · · PM,M


(6.16)

where each Pm,k is C × C diagonal (sub)matrix and contains the coefficients coe f f
(
w2

mk

)
if

m = k and the coefficients coe f f (wmcwkc) otherwise. Note that P is positive (semi)definite

as it contains blocks of positive (semi)definite matrices.

Also let q be a 1 ×MC stacked vector containing coefficients of the linear terms in (6.11).

That is

q =
[
q1q2 · · · qM

]
(6.17)

where each qi is a C−dimensional row vector.

Accordingly, the problem defined in (6.10) is equivalent to the following standard quad-

ratic program

min
w

1
2

wT Pw + qw

s.t. IC×MCw = 1

IMC×MCw ≥ 0 (6.18)

where IC×MC is a matrix containing stacked identity matrices of dimension C and 0 and 1 are

MC dimensional column vectors containing zeros and ones, respectively.

The optimal solution of this convex problem determines the mixture coefficients wmc such

that each such coefficient can be interpreted as P(c|m). A given query instance x is then
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classified accordingly, i.e.

argmax
c

P(c|x) = argmax
c

M∑
m=1

P(c|m, x)P(c|m)P(m). (6.19)

where P(c|m, x) is the probabilistic prediction by model m, P(c|m) is the stochastic weight

learned by our approach and P(m) is the prior probability of the model. The prior P(m) can

be considered uniform or can be estimated in terms of average accuracies through cross-

validation in the training/validation phase (Atrey, Kankanhalli and Jain, 2006).

6.5.1 Regularization and Normalization

Formulating the energy function for optimization problems such as the one in (6.10) allows

us to penalize the weight vector and to reduce effects due to unbalanced data.

Handling unbalanced data: Unbalanced data may cause a bias in the objective function

in (6.11). This, however, is easily overcome by reformulating the objective function as

min
wmc

N∑
i=1

C∑
c=1

1∑N
i=1 yic

yic −

M∑
m=1

wmcv
(m)
ic

2

. (6.20)

This formulation normalizes the artifacts of having different sizes for different categories in

the training data. Readers may verify that this formulation affects only the diagonal entries

in the P matrix in (6.16).

Regularizing and penalizing the weight vector: The energy function formulation

permits further parametrization to introduce certain properties of optimal solution, e.g. sparsity

(L1-normalization) or smoothness (L2-normalization). Note that L1 regularization is embed-

ded in our framework as a constraint, i.e. weight vectors must be stochastic. The L2 regular-

ization can be added to the objective function which will become

min
wmc

N∑
i=1

C∑
c=1

1∑N
i=1 yic

yic −

M∑
m=1

wmcv
(m)
ic

2

+ λ
∑
c,m

w2
mc (6.21)

where λ is a regularization constant and can be evaluated through cross-validation.
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6.6 Datasets and Feature Descriptors

In this section, we briefly discuss three well known action datasets containing challenging

videos and images and provide details as which features are extracted from each dataset.

6.6.1 HMDB Video Dataset

HMDB (Kuehne et al., 2011) is one of the largest and most versatile datasets for action

recognition in videos. It contains 6,766 video sequences of 51 action categories such as

facial actions, body movements, and human interactions. In our experiments on this dataset,

we considered the following feature descriptors which are known to show good performance.

Action Bank (Sadanand and Corso, 2012)

Action bank consists of a set of high level action detectors sampled broadly in semantic

space and viewpoint spaces. Action bank feature extraction is based on spotting different

motion templates in the multiple scale spatio-temporal cuboids. We used the same settings

as in (Sadanand and Corso, 2012) to extract 14, 965 dimensional features. They have shown

good performance in combination with linear SVM classification.

HOG/HOF Around Harris3d Corners (Laptev et al., 2008)

Histogram of oriented gradient (HOG) and histogram of oriented flow (HOF) features are

determined around space time interest points (e.g., Harris 3D corners) are often considered

as baseline. We used the binaries provided by Laptev et al. (2008) to extract HOG/HOF fea-

tures along STIPs. A Bag-of-Features (BOF) method is adopted by first sampling 100,000

descriptors from the training data and then building a vocabulary of 2000 words using k-

means clustering. For a video, each descriptor is quantified to the nearest word in the vocabu-

lary and the resulting histograms are normalized to have unit sum. The best baseline classifier

is an SVM with a Gaussian kernel.

Motion Boundary Histograms and HOG/HOF Along Dense Trajectories (Wang

et al., 2011a)

Since most STIP detectors (e.g. Harris3D) are extensions of their 2D counterparts, they may

fail to identify or keep track of interesting spatio-temporal regions. To this end, (Wang et
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Table 6.1: Recognition accuracies (%) of different approaches

Datasets
Model HMDB Web-actions PPMI7

Individual

Action Bank 25.90 - -
STIP HOG/HOF 18.45 - -
Dense Trajectories MBH 34.31 - -
Dense Trajectories HOG/HOF 30.13 - -
HOG - 57.4 68.7
BOF-Sift - 56.8 63.6

Late Fusion

Bayes 40.76 65.6 72.4
Sum Rule 40.70 66.5 72.9
SVM 40.63 64.2 70.32
Our Approach 41.83 67.15 74.0

al., 2011a) proposed an efficient way to track densely sampled sampled points using op-

tical flow fields. They also proposed a novel feature descriptor based on motion boundary

histograms which is robust to camera motion. Wang et al. (2013b) use multiple features

along dense trajectories and achieved state-of-the-art results on a number of action recogni-

tion datasets including HMDB. In particular, they used the BOF approach for five different

types of descriptors with six different types of spatio-temporal griding schemes ending up

in using 480,000 dimension features. The results of 30 channels were combined in a multi-

channel chi-square kernel setting. Obviously, the application of spatio-temmporal griding

in feature extraction and use of many BOF channels can improve recognition accuracy. In

our experiments, however, we focus on expressing power of late fusion and use only two

dense trajectories channels, namely motion boundary histograms, and hog/hof along dense

trajectories with BOF scheme using code books of size 4,000.

6.6.2 PPMI and Web Actions Datasets

The Web-actions dataset was presented in (Ikizler, Cinbis and Sclaroff, 2009). It contains a

total of 2,458 images depicting 5 different human actions. We follow the same experimental

setup as proposed in (Ikizler, Cinbis and Sclaroff, 2009). People playing musical instruments

(PPMI) (Yao and Fei, 2010) is another popular action recognition dataset in still images. It

introduces different challenges for recognizing the actions depicted by those images. Our

experimental evaluation considers the seven classes classification task for the evaluation.
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HOG and BOF Image Features

For evaluation, we harness HOG features (Dalal and Triggs, 2005) with Convolved Trilinear

Interpolation (CTI) to distribute the effect of each pixel over its neighborhood. Our motiva-

tion for using this descriptor is that certain activities (e.g. “walk”) show limited variations of

pose and appearance. For the PPMI dataset, we crop 10% of each image’s width from each

side to reduce background variations. As a more flexible action representation, we use BOF

methods with Sift local features. We gather Sift local features of different scales and con-

struct a codebook of size 512. Local features are then encoded using Locality-constrained

Linear Encoding (LLC) (Wang et al., 2010) and pooled into a three level spatial pyramid

representation. For both features, we train our models using SVM classifiers with Gaussian

kernels (Pedregosa et al., 2011).

6.7 Experimental Results

In our experiments, we use the models (feature descriptors and classifiers) described earlier

and compare our late fusion approach to three different baselines: (i) the sum-rule, (ii) the

Bayes method, and (iii) SVM fusion. The sum-rule is a simple fusion strategy that sums the

confidence posteriors of a test sample across multiple modalities and assigns it the class label

with the highest response. The Bayesian fusion, as in (Atrey, Kankanhalli and Jain, 2006),

uses class-wise accuracies as probabilistic weights in the classification , i.e. P(c|m) in (6.19).

The SVM based fusion scheme builds a classifier on the prediction score space of different

models. Note that, for all experiments, we assume that the models’ confidence scores are

normalized and transformed into posterior probabilities (Jain, Duin and Mao, 2000).

In order to train our classifiers, we divide the data into their standard train- and test-splits

following standard guidelines or conventions for each dataset. We further divide the training

data into a training set D and a validation set V to learn the model parameters along with the

fusion weights wi j or P(c|m) discussed in Section 6.5. In case of the video dataset (HMDB)

where different clips may belong to the scenes of a longer video, we use the train-test and

train-validation splits which ensure that train, validation and test sets do not share clips of

the same video scene. Specifically, we use the three train-test splits provided by (Kuehne

et al., 2011) and divide the training data to three train-validation splits following the same

guidelines.
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(a) Web-actions (b) PPMI7

Figure 6.1: Class-wise accuracies of different individual and ensemble classifiers for: (a) the Web-
actions, and (b) the PPMI7 action image datasets

Figure 6.2: Class-wise accuracies of different individual and ensemble classifiers for the HMDB video
dataset

6.7.1 Recognition Performance

Table 6.1 shows classification accuracies obtained from using our proposed fusion scheme on

each dataset and compares them to three different late fusion strategies (sum-rule, Bayes and

SVM-based fusion). For the HMDB dataset, features along dense trajectories show superior

performance as compared to Action Bank features which show better results in comparison

to STIP HOG/HOF. Recall that we are using only two channels of dense trajectories features

each represented as a 4000 BOF vector. This is in contrast to (Wang et al., 2013b) that use

30 channels with BOF representations of dimensionality 480,000. Adding further channels

may enhance the classification accuracy of our approach, yet its results are still superior to

other methods that use moderate numbers of features. Notice further that our fusion scheme

of these modalities yields the best performance of 41.83% as compared with the sum-rule

(40.70%) and the SVM-rule (40.63).

Results from the PPMI7 and the Web-actions image datasets show that our weighting
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Table 6.2: Example images from PPMI7 and the recognition results using individual models and
different fusion methods.

BOF-SIFT X × X × X × X
HOG × × X X × X ×

SVM X × X × × × ×

Sum-rule X × X × X × X
Bayes method X × × X X × X
Ours X X X X X × X

scheme significantly boosts classification performance (3% to 4%) as compared to SVM and

Bayesian fusion. Our results also express power of the naive sum-rules towards late fusion.

While SVM and Bayes rule suffer from degradation of overall performance, our method of

computing class-wise probabilistic fusion weights ensures no degradation in results. Note

also that our results in Table 6.1 better state-of-the-art recognition accuracies on both data-

sets by 6% to 8%. In particular, for the Web-actions dataset, we achieve 67.15% accuracy

compared to the earlier best result of 61.07% (Yang, Wang and Mori, 2010). For the PPMI7,

we report 74.0% compared to 65.7% of the Grouplets features of (Yao and Fei, 2010). Fig-

ures 6.1–6.2 plots class-wise accuracies of different models and the fusion methods. Our

approach consistently outperforms other fusion schemes on all datasets where the sum-rule

ranks second.

6.7.2 Distribution and Impact of Fusion Weights

As discussed above, our method for learning the stochastic weight vectors for each modality

addresses the limitation of assigning fixed weights across classes for fusing the predicted

scores. This can be seen, for instance, by looking at the individual class-wise classification

accuracies of each modality on the Web-actions dataset (Figure 6.1(a)). Note that for actions

that are characterized by a limited set of poses (e.g. “walk” and “sit”), employing HOG

templates achieve good performance. For other actions that stand for a broad set of body

poses (e.g “dance” and “play golf”), using the flexible representation of BOF-SIFT proves a

more appropriate choice for recognition. In this sense, it is more intuitive to assign greater

fusion weights to the features that best suit certain classes.
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Figure 6.3: The models weights of each action for the Web-actions dataset.

Figure 6.3 shows the fusion weights learned for each class on the Web-actions dataset.

These weights are stochastic vectors and therefore can be interpreted as the posterior prob-

abilities P(model|class). Notice that for the actions “walk” and “sit”, the weights obtained

for the HOG model are greater than those for the BOF-SIFT model. While for the actions

“dance” and “playgolf”, the BOF-SIFT weights dominate. However, the two models are as-

signed comparable weights for the action “run”. Table 6.2 shows challenging images from

the PPMI7 dataset and their recognition results using HOG, BOF-SIFT and various fusion

methods. In comparison to other methods, our approach is consistent and it correctly classi-

fies the example images in most cases.

6.8 Summary

Fusing multiple representations to incorporate different sources of inter- and intra-class vari-

ations has become a paramount to human action recognition in unconstrained data. Early

fusion or concatenation of multiple (sparse) feature descriptors may lead to curse of dimen-

sionality and is computation-intensive. Therefore, the late fusion of predictions from indi-

vidual classifiers is becoming a popular choice as it provides a robust integration of classifiers

which (individually) perform well on different regions of instance space. In this chapter, we

presented a novel and principled method for late fusion of different modalities that estimates

category-wise probabilistic weights for the underlying models. Our approach is based on a

quadratic objective function and employs constrained quadratic programming to determine

semantically meaningful weights. Compared to existing approaches such as the sum-rule,

SVM-based fusion, and Bayesian frameworks, our framework offers a flexible approach that

combines favorable characteristics of these earlier methods – it considers error minimization
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6.8 Summary

like in SVM-based methods and computes probabilistic weighting factors just as Bayesian

approaches do. Experimental results on three challenging video and image action datasets

show the prevalence and consistency of our approach. Moreover, we report 6% to 8% im-

provement compared to previously published results on the two image action datasets.
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CHAPTER 7

Conclusions and Future Work

This dissertation has presented several approaches for human action recognition using dif-

ferent action representations in realistic video and image data. To conclude our work, we

summarize our key achievements and discuss conclusions in Section 7.1. We then suggest

possible future directions of our work in Section 7.2.

7.1 Summary of Thesis Achievements

In this section, we summarize our key achievements on the problem of human action recog-

nition. We first present our conclusions when using the appearance representation solely for

human action recognition (Chapter 3). These conclusions motivate our next research, which

emphasizes the need of abstract pose-based human action representation to achieve fast and

robust recognition performance (Chapter 4). In addition, we present an investigation on the

benefits of different pose variants that is obtained from pose-estimation algorithms for ac-

tion recognition (Chapter 5). Finally, we describe a principled approach for combining the

predictions achieved from different representations. This combination is presented in a way

that regards the discriminative information of the action representation for different action

classes (Chapter 6).

Appearance-based human action recognition: In Chapter 3, we focused on the

problem of human action recognition based solely on the actors’ appearances in image data.
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We have demonstrated how combining heterogeneous action features of action scenes and

body pose appearances is vital to boost the recognition performance. These results were

achieved through a novel multi-class classification algorithm that is based on recent advances

in multiview learning using NMF. We also show that the resulting classification model only

relies on matrix multiplications in estimating classes’ posteriors. Therefore, it represents

a good candidate for real-time applications where interest in classification confidence goes

beyond one class to all other classes.

Discriminative pose-based approach for action recognition: Due to the heavy

variation of action appearances under different views, scales, and scenes, we proposed in

Chapter 4 a novel action recognition framework that is based on an abstract pose-based ac-

tion representation. Action recognition frameworks can greatly benefit from pose-based rep-

resentation, as it limits the effects of varying views, scenes, and scales, while focusing on the

intrinsic movements of the body parts. Our discriminative framework for action recognition

explicitly addresses three varying factors and solutions in pose-based action representation.

These factors are:

1. Variation of humans shapes due to different actors’ sizes or inaccurate measurements

of the body’s joint locations. To resolve this variation, we follow a part-based solution

which decouples each joint feature from the body and focuses on the local character-

istics of joint location, velocity, and their correlation.

2. Variation of motion of inconclusive body parts, which may differ due to different act-

ors styles or inaccurate measurements of the body’s joint locations. Therefore, we

propose a discriminative part-based approach that down-weights the effects of incon-

clusive body parts while focusing on the conclusive ones.

3. Variation of motion of conclusive body parts for the same action, which may also differ

due to different actors styles or inaccurate measurements of body’s joint locations. To

alleviate its effect, we softly quantize the joints features of location, velocity, and their

correlation vectors to limit this variation in motion for conclusive parts.

Consequently, and unlike most previous pose-based approaches for action recognition, our

framework showed efficient performance for training and testing runtimes for a range of

challenging action and gesture datasets, where it achieves state-of-the-art performance in

most testing scenarios.
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The significance of different pose variants for action recognition: Current pose-

based recovery algorithms provide different variations of pose representation including 2D,

3D, and 3D with joints’ orientation. To investigate the differences among these representa-

tions for action recognition, Chapter 5 compared their performance by using the recognition

framework presented in Chapter 4). In particular, our evaluation addressed the recognition

gap when 2D and 3D poses are used, it also showed that 3D instead of 2D pose estima-

tion from monocular videos has the potential to improve action recognition. Further, we

demonstrated how enriching the 3D pose representation with joints’ orientation benefits the

recognition performance, especially for fine grain categorization of human gestures. These

findings may motivate future generic pose estimation methods from monocular views to ac-

count better pose variants in their formulation.

Stochastic late fusion approach for different action modalities: Naturally, hu-

man actions are often characterized by different features of multiple data representations

including action poses, scene appearances, and object shapes. Observing that these features

often provide compatible and complementary information, it is natural to integrate them to

achieve better performance rather than relying on a single feature representation. For this

purpose, Chapter 6 proposed a late fusion approach that combines these heterogeneous rep-

resentations in a way that regards the discriminative potential of each individual represent-

ation for particular action classes. Our approach presents a principled late fusion method

of different modalities that estimates category-wise probabilistic weights for the underlying

models. We evaluate our proposed approach on a range of challenging action recognition

datasets and show that the proposed late fusion approach outperforms other late fusion tech-

niques providing state-of-the-art classification accuracies on the benchmark data.

7.2 Future Work

Discriminative local pose-based action recognition: Our design of the discrimin-

ative framework for action recognition proposed in Chapter 4 can be enhanced by adopting

the following measures:

1. Limiting quantization artifacts: The performance of our discriminative joints ap-

proach can be enhanced by introducing better quantization of 3D feature vectors. The

current approach uses the azimuth and zenith angles for quantization. Consequently,
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the size of the bins used are not uniform, especially near pole points. Alternative quant-

ization schemes have been also proposed in (Klaser et al., 2010) where they use reg-

ular polyhedrons to provide a generic 3D quantization. This quantization scheme is

bounded to the polyhedrons used, and therefore can only support up to 20 bins orient-

ation. A recent work of (Oreifej and Liu, 2013) proposes a discriminative quantization

approach of the orientations in 4D. We believe that accounting for a precise quantiza-

tion approach in this regard has the potential of enhancing the overall classification of

our discriminative recognition.

2. Joint correlations features: Encoding parts’ features separately in our framework has

shown efficient performance on several action recognition benchmarks. However, re-

cent approaches (Yao et al., 2011a; Wang, Wang and Yuille, 2013; Bourdev and Malik,

2009) show that accounting for the correlation between the body parts is beneficial

for action recognition. The use of such correlations can be encoded in our framework

by mining informative correlations of body joints’ locations, movements, appearances,

and depth-imagery patterns. The mined correlations can then be invoked in a discrim-

inative formulation that regards their role in separating among classes in the feature

space for better action recognition.

3. Further features to describe the dynamics of joints orientation: Accounting more

features for joint orientation dynamics such as angular velocity to capture further details

of the joint movements. As opposed to the work in Chapter 5, we wish to explore the

utility of 3D pose recovery with their joints orientation from 2D pose representation,

and the expected recognition accuracy gain from such recovery. The insights may be

of great interest for pose estimation research, as they provide an intuitive incentive

towards 3D pose with joints orientation recovery instead of only 2D pose recovery.

Discriminative local appearance-based features for action recognition: The

use of body joints as interest points for sampling part features has been frequently used in

action recognition (Maji, Bourdev and Malik, 2011; Wang et al., 2012a). However, the com-

bination of the part features used in these approaches often undermines their discriminative

capacity. Following the same analogy of discriminative weighting of joints’ location and

motion features (Chapter 4), we suggest a similar combination of local body parts’ features

in a way that regards their discriminative local appearances of objects or parts’ shape. Our
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proposal can also be used for other action representation, including depth and silhouettes.

Temporal segmentation for better human action recognition: Many computer

vision approaches for action recognition use a supervised classification approach for local-

izing action segments within the action sequence (Klaser et al., 2010; Zanfir, Leordeanu and

Sminchisescu, 2013). However, these techniques demand training and prior knowledge of the

actions, which is often not the case for challenging datasets as we have demonstrated in the

ChaLearn dataset (Chapter 5). Moreover, the complexity of this type of localization scales

linearly with the number of action classes to be found. In contrast to the supervised action

temporal segmentation approach presented in Chapter 4, we reported a better performance

for the TUM dataset when predefined splits of the action sequence were provided. These ob-

servations raise the significance of introducing temporal segmentation as a preliminary step

for action recognition, or as recently proposed by Wang and Wu (2013) as a unified frame-

work that maximizes the margin between the resulting segment features in the action space.

As such, we propose two possible directions to resolve the action recognition problem for

unsegmented action recognition scenarios:

1. Unsupervised segmentation of action sequences into sub-sequences which can localize

possible extents of the human actions (Jones and Shao, 2014), and then perform action

recognition using, for instance, our proposed action recognition framework.

2. A unified solution for action recognition and temporal segmentation using a latent SVM

formulation that best localizes the action extent based on their corresponding features

in a maximum margin framework (Wang and Wu, 2013).

Fusion action modalities: Fusing heterogeneous modalities to incorporate different

sources of inter- and intra-class variations has become paramount to human action recog-

nition in unconstrained data (Wang et al., 2011b; Yao, Gall and Gool, 2012; Rohrbach et al.,

2012). Late fusion, in particular, became popular in this domain because it provides a robust

integration of classifiers which (individually) perform well on different regions of instance

space. In Chapter 6, we followed a linear weighting scheme of the modalities given for each

action by a quadratic formulation that minimizes the number of misclassified samples. Des-

pite its promising results, the provided weighting scheme is still bound to the class level.

In contrast to these approaches, recent studies for late fusion have shown that accounting

a sample-level (Liu et al., 2013a) or group-level weighting scheme (Liu et al., 2012) can
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achieve better performance on several object detection benchmarks. Accordingly, we aim to

explore varied optimization formulations than presented in Chapter 6 to investigate a sample-

or group-level weighting scheme for late fusion.
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