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Introduction

The topic of this thesis is the analysis of the linear stability and long-time
asymptotic behavior of solutions to the 2D incompressible Euler equations

∂tω + v · ∇ω = 0,
∇× v = ω,

∇ · v = 0,

which describe the dynamics of an inviscid incompressible fluid. More specifically,
the focus is on solutions close to monotone shear flows and the phenomenon of linear
inviscid damping. Here, we consider both an infinite and finite periodic channel,
the latter with impermeable walls.

The Euler equations possess many conserved quantities, among them the kinetic
energy, the enstrophy and entropy, and in particular exhibit neither dissipation
nor entropy increase. As shown by Arnold, [Arn66b], they even possess the struc-
ture of an infinite-dimensional Hamiltonian system on the Lie algebra of smooth
volume-preserving diffeomorphisms. It was thus a very surprising observation of
Kelvin, [Kel87], and later Orr, [Orr07], that small perturbations to Couette flow,
i.e. the linear shear v(t, x, y) = (y, 0), are damped back to a (possibly different)
shear flow. This phenomenon is commonly called inviscid damping in analogy to
Landau damping in plasma physics.

If one considers the linearization around Couette flow in an infinite periodic
channel, T× R, the equations can be solved explicitly using the method of charac-
teristics and Fourier methods. One can thus directly compute that a perturbation
(v, ω) ∈ L2 ×H2 is damped to a shear flow with algebraic rates:

‖v1 − 〈v1〉x‖L2 ≤O(t−1)‖ω0 − 〈ω0〉x‖H−1
x H1

y
,

‖v2‖L2 ≤O(t−2)‖ω0 − 〈ω0〉x‖H−1
x H2

y
,

and that these decay rates are optimal. Going beyond the explicitly solvable (and
in this sense trivial) setting of linearized Couette flow, however has remained mostly
open until recently.

• In [BM10], Bouchet and Morita give heuristic results suggesting that
linear damping and stability results should also hold for general monotone
shear flows. However, their methods are highly non-rigorous and lack
necessary regularity, stability and error estimates, as discussed in [Zil12].
In particular, even supposing their asymptotic computations were valid,
they do not yield the above decay rates.

• Lin and Zeng, [LZ11], use the explicit solution of linearized Couette flow
to establish linear damping also in a finite periodic channel. Furthermore,
they show the existence of non-trivial stationary solutions to the full 2D
Euler equations in arbitrarily small Hs neighborhoods of Couette flow for
any s < 3

2 . As a consequence, nonlinear inviscid damping can not hold in
such low regularity.
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• Recently, following the work of Villani and Mouhot, [MV11], on nonlinear
Landau damping, Masmoudi and Bedrossian, [BM13b], have proven non-
linear inviscid damping for small Gevrey (see Definition 3.1) perturbations
to Couette flow in an infinite periodic channel. We briefly discuss their
results and the additional challenges in the nonlinear setting in Chapter 6.

As the main result of this thesis, in Chapters 4 and 5, we, for the first time, rigorously
establish linear inviscid damping for a general class of monotone shear flows. Here,
we treat both the setting of an infinite periodic channel with period L, TL ×R, and
a finite periodic channel, TL × [0, 1], with impermeable walls. In the latter setting,
we show that boundary effects play a non-negligible role and prove (almost) sharp
results on the stability in fractional Sobolev spaces.

As a first result in this direction, in the author’s Master’s thesis, [Zil12], it has
been shown that damping results of the above form also hold for general, regular,
strictly monotone shear flows, assuming one can control the regularity of the vorticity
moving with the underlying shear flow.

Theorem 0.1 (Damping). Let U(y) be a strictly monotone, regular shear flow,
i.e. U ′ > c > 0 and U ′ ∈ W 2,∞. Then for any solution ω of the linearized 2D
Euler equations in either the infinite periodic channel or the finite periodic channel,
denoting

W (t, x, y) := ω(t, x− tU(y), y)− 〈ω0〉x(y),

the perturbation to the velocity field is controlled by

‖v1(t)− 〈v1〉x‖L2 ≤O(t−1)‖W (t)‖H−1
x H1

y
,

‖v2(t)‖L2 ≤O(t−2)‖W (t)‖H−1
x H2

y
.

Assuming control of ‖W (t)‖L2
xH

2
y
uniformly in time, the velocity perturbation

hence decays with the optimal algebraic rates. As a consequence, under the same
assumption, it can be shown that ω converges to a free solution of the underlying
transport equation, i.e. that W converges to some asymptotic profile.

Theorem 0.2 (Scattering). Let W be a solution of the linearized 2D Euler
equations in either the infinite periodic channel or finite periodic channel and suppose
that U ′′ ∈ L∞ and that

‖v2(t)‖L2 = O(t−1−ε),

for some ε > 0. Then there exists W∞ ∈ L2, such that

W (t) L2

−−→W∞,

as t→∞.

In Corollary 4.2 in Section 4 of Chapter 4, this result is further improved to
arbitrary L2 initial data:

Theorem 0.3 (L2 scattering). Let Ω = TL × R or TL × [0, 1] and suppose that
there exists c such that

0 < c < U ′ < c−1 <∞,

and further suppose that

‖U ′′(U−1(·))‖W 2,∞L
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is sufficiently small. Then, for every ω0 ∈ L2(Ω), there exists W∞ ∈ L2(Ω), such
that the solution, ω, of the linearized Euler equations on Ω with initial datum ω0
satisfies

W (t, x, y) := ω(t, x− tU(y), y)
L2
xy−−→W∞,

as t→∞.

More precise statements, proofs and further similar results are given in Section
1 of Chapter 4. It is thus shown that linear inviscid damping, like Landau damping,
fundamentally is a problem of stability and regularity. We stress that the uniform
damping results necessarily cost regularity and that stability results hence rely on a
detailed analysis of fine properties of the dynamics.

As the first main result of this thesis we establish stability of the linearized
Euler equations around regular, strictly monotone shear flows in an infinite periodic
channel for arbitrarily high Sobolev spaces. For this purpose, we first introduce a
model problem to analyze the damping mechanism. Subsequently, we introduce a
decaying Fourier weight adapted to the dynamics. As a consequence of the stability
result, we establish linear inviscid damping with optimal rates and scattering for a
large class of monotone shear flows.

Theorem 0.4 (Stability for TL × R). Let j ∈ N and suppose that
0 < c < U ′ < c−1 <∞,

and U ′′(U−1(·)) ∈W j+1,∞(R). Suppose further that
L‖U ′′(U−1(·))‖W j+1,∞

is sufficiently small. Then, for any m ∈ N and any ω0 ∈ Hj
yH

m
x ,

‖W (t)‖HjyHmx . ‖ω0‖HjyHmx ,

uniformly in time.

When considering a finite channel instead, we show that such a regularity result
can not hold in arbitrary Sobolev spaces, but rather that in general boundary
derivatives of W will develop (logarithmic) singularities as t→∞ (c.f. Propositions
5.1 and 5.5). The regularity is thus limited to fractional Sobolev spaces, which is
shown to be sharp (c.f. Theorems 4.14 and 5.1). More precisely, instability is proven
for the standard fractional Sobolev spaces, Hs

y([0, 1]). For the stability results, for
technical reasons, we instead consider the periodic fractional Sobolev spaces Hs

y(T)
and additionally require the coefficient functions, U ′, U ′′, corresponding to the shear
flow to have regular periodic extensions. As discussed in Remark 9 in Section 1 in
Chapter 5, these periodicity assumptions can probably be relaxed.

Theorem 0.5 (Sharp stability in TL × (0, 1)). Let U ′, U ′′ ∈W 3,∞([0, 1]) and
suppose that there exists c > 0 such that

0 < c < |U ′| < c−1 <∞,
and that

L‖U ′′‖W 3,∞

is sufficiently small. Then, for any m ∈ N and any ω0 ∈ Hm
x H

1
y (TL × [0, 1])

‖W (t)‖Hmy H1
y
. ‖ω0‖Hmx H1

y
,

uniformly in time.
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Suppose further that U ′, U ′′ ∈ W 3,∞(T), i.e. that the periodic extensions are
also regular, and let

L‖U ′′‖W 3,∞(T)

be sufficiently small. Then also for any s < 3
2 ,m ∈ N and any ω0 ∈ Hm

x H
s
y(TL×T),

‖W (t)‖Hmx Hsy . ‖ω0‖Hmx Hsy ,

uniformly in time.

If ω0|y=0,1 and U ′′|y=0,1 are non-trivial, then for any s > 3
2 and any m ∈ N,

sup
t
‖W (t)‖Hmx Hsy(TL×[0,1]) =∞.

Restricting to perturbations with ω0|y=0,1 = 0, the stability and instability
results can be improved by one derivative, which is shown to be a sharp restriction
for general perturbations (c.f. Theorems 4.15 and 5.4).

Theorem 0.6 (Sharp stability in TL × (0, 1) under restricted perturbations).
Let U ′, U ′′ ∈W 4,∞([0, 1]) and suppose that there exists c > 0 such that

0 < c < |U ′| < c−1 <∞,

and that

L‖U ′′‖W 4,∞

is sufficiently small. Then, for any m ∈ N and any ω0 ∈ Hm
x H

2
y (TL × [0, 1]) with

ω0|y=0,1 = 0,

‖W (t)‖Hmy H2
y
. ‖ω0‖Hmx H2

y
,

uniformly in time.

Suppose further that U ′, U ′′ ∈ W 4,∞(T), i.e. that the periodic extensions are
also regular, and let

L‖U ′′‖W 4,∞(T)

be sufficiently small. Then also for any s < 5
2 ,m ∈ N and any ω0 ∈ Hm

x H
s
y(TL ×T)

with ω0|y=0,1 = 0,

‖W (t)‖Hmx Hsy . ‖ω0‖Hmx Hsy ,

uniformly in time. Furthermore, limt→∞ ∂yW |y=0,1 exists.

Suppose that the limit limt→∞ U ′′∂yW |y=0,1 exists and is non-trivial. Then, for
any s > 5

2 and any m ∈ N,

sup
t
‖W (t)‖Hmx Hsy(TL×[0,1]) =∞.

As a consequence, we obtain linear inviscid damping in a finite periodic channel
for a large class of monotone shear flows. Subsequently, we discuss the implications
of the singularity formation at the boundary for the nonlinear problem, where very
high regularity is used to control nonlinear interactions.

We conclude this introduction with a short overview of the organization of the
thesis’s chapters:
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• In Chapter 1, we introduce the Euler equations and their various for-
mulations and briefly review classical stability results, the Hamiltonian
structure and conserved quantities. Furthermore, we introduce the Vlasov-
Poisson equations and discuss their structural commonalities with Euler’s
equations.

• In Chapter 2, free transport serves to introduce the phase-mixing mecha-
nism underlying Landau damping and inviscid damping. It also provides
a heuristic model to discuss the expectations for damping rates and the
role of regularity.

• In Chapter 3, we briefly sketch how to prove linear Landau damping
and discuss the additional challenges arising for the nonlinear dynamics,
following [MV11], [BMM13].

• In Chapter 4, we establish linear inviscid damping for general monotone
shear flows:
– As a first step, following [Zil12], we show that, like Landau damping,
(linear) inviscid damping is fundamentally a problem of regularity and
stability. More precisely, assuming control of W in Sobolev regularity,
decay estimates are proven for a large class of general, regular, strictly
monotone shear flows. We stress that, as uniform damping estimates
necessarily lose regularity, stability results need to make use of finer
properties of the damping mechanism.

– In the setting of an infinite channel, TL×R, we first introduce a model
problem to study finer properties of the dynamics. Subsequently, we
construct a Fourier weight, which is adapted to the dynamics, and
prove stability in arbitrarily high Sobolev norms, Hm

x H
j
y .

– The setting of a finite channel, TL × [0, 1], is shown to be not only
technically more challenging, but to exhibit qualitatively different
behavior due to boundary effects. Here, we prove stability in Hm

x H
1
y

for generic perturbations. In contrast to the setting of an infinite
channel, where stability holds in arbitrarily high Sobolev spaces, we
show that in a finite channel Hm

x H
2
y stability necessarily needs to

restrict to perturbations, ω0, with zero Dirichlet data, ω0|y=0,1 = 0.
For such perturbations, hence linear inviscid damping with the optimal
rates and scattering hold.

An earlier version of this chapter has been made available as a preprint on
arXiv, [Zil14].

• In Chapter 5, we further study boundary effects and the formation of
singularities. There, we show that the stability results under general
perturbations can be improved to the periodic fractional Sobolev spaces
Hm
x H

s
y(TL × T), s < 3

2 . Furthermore, s = 3
2 is shown to be critical in the

sense that for any s > 3
2 , due boundary effects, the Hm

x H
s
y(TL × [0, 1])

norm of W blows up as t→∞.
Restricting to perturbations such that ω0|y=0,1, the critical space in y

is shown to be H
5
2
y . That is, we prove stability for s < 5

2 and prove that,
in general, for any s > 5

2 , due boundary effects, the Hm
x H

s
y norm of W

blows up as t→∞,
• Finally, in Chapter 6, we discuss consistency and implications for the
nonlinear dynamics. There, we also briefly review the existing literature
on nonlinear inviscid damping for Couette flow and discuss the additional
challenges arising for the nonlinear dynamics.
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CHAPTER 1

The Euler and Vlasov-Poisson equations

In this chapter, we introduce the various formulations of Euler’s equations and
briefly review some of the classical results on stability, well-posedness and long-time
asymptotic behavior of solutions. Subsequently, we introduce the Vlasov-Poisson
equations of plasma physics and discuss the structural similarities of both equations.

1. The incompressible Euler equations

The incompressible Euler equations model the evolution of an incompressible,
inviscid fluid. While physical fluids are neither perfectly incompressible nor perfectly
inviscid, for many applications Euler’s equations nevertheless provide a good descrip-
tion. In this section, we introduce the incompressible 2D Euler equations in their
various formulations and discuss their structure and conserved quantities. We also
briefly discuss the 3D Euler equations and comment on some of the additional chal-
lenges. For simplicity, in this chapter we phrase all results for the whole space R2 or
R3 respectively and only briefly comment on the modifications for regular bounded
domains, such as imposing boundary conditions on the velocity field. Additionally,
as can be seen by the results of Buckmaster, De Lellis and Székelyhidi, [BDLSJ14],
low regularity solutions can behave in unexpected and somewhat unphysical ways,
such as not preserving the kinetic energy. In the following, we therefore argue
formally and assume that all functions are “smooth and rapidly decaying at infinity”.
For a more precise and extensive discussion we refer to the book of Majda and
Bertozzi, [MB01].

Subsequently, we review the stability results by Arnold, Fjørtoft and Rayleigh.
In particular, we recall that the Euler equations have an (infinite-dimensional)
Hamiltonian structure and possess many conserved quantities.

1.1. The velocity formulation. Let n = 2, 3, then the incompressible Euler
equations on Rn in velocity formulation are given by

∂tv + v · ∇v = ∇p,
∇ · v = 0,(Euler)

where the velocity
v : Rn × (0, T )→ Rn,

is a smooth vector field and the pressure
p : Rn × (0, T )→ R,

is a smooth scalar function.
The derivative

Dt := (∂t + v · ∇),
is called a convective derivative, i.e. the derivative along particle trajectories, as we
discuss in more detail in Section 1.4. The gradient of the pressure p

F = ∇p

13



is a force field, which acts as a Lagrange multiplier to ensure the incompressibility
constraint

∇ · v = 0.

We expand on this characterization in Section 2.1. The Euler equations are thus
structurally similar to Newton’s second law

m
d

dt
v = F,

and, indeed, can be formally derived from it by studying the motion of small
domains of the fluid. A more rigorous derivation of Euler’s equations such as the
hydrodynamic limit of Boltzmann’s equations, [SR09], is, however, technically much
more challenging.

This thesis’s focus is on the stability and asymptotic behavior of solutions to
the two-dimensional Euler equations close to shear flow solutions v = (U(y), 0),
which we discuss in Section 1.5. In this chapter, we work in slightly more generality
and consider solutions in two or three dimensions. The Euler equations in velocity
formulation thus involve either 3 or 4 unknowns, respectively. In order to reduce
the number of unknowns, we may express p in terms of v. Taking the divergence of
the first equation and using that ∇ · v = 0, p satisfies

∆p = ∇ · (v · ∇v).

Imposing suitable boundary conditions on the Laplacian, p and thus Euler’s equations
can be expressed in terms of v only. However, the dependence on v is then even
more nonlinear and also non-local.

In the following, we consider another common reduction to eliminate p, which
is called the vorticity-stream formulation.

1.2. The vorticity-stream formulation. In this section, we introduce the
vorticity-stream formulation of Euler’s equations, which focuses on the evolution of
the vorticity ω = ∇× v. In three dimensions the vorticity is a vector field taking
values in R3, while in two dimensions ω is a scalar function, which greatly simplifies
the equations. In the following, we therefore first discuss the three dimensional case
and subsequently study the simplifications for two dimensions.

Let n = 3, then the vorticity

ω = ∇× v : R3 × (0, T )→ R3

satisfies

∂tω +∇× (v · ∇v) = 0,

where we used that

∇× (∇p) = 0.

We compute

∇× (v · ∇v) = v · ∇ω + ω · ∇v.

The first term is of transport type, i.e. ω is transported by the velocity field v. The
second term is called the vortex-stretching term, which is of considerable interest for
well-posedness theory and blow-up in three dimensions (c.f. [BKM84] and [MB01,
Chapter 2]).

14



Thus, the functions v and ω satisfy
∂tω + v · ∇ω + ω · ∇v = 0,

∇ · v = 0,
∇× v = ω,

which involves 6 unknowns (v, ω) at the moment, but is linear in both v and ω. In
order to express the equations in terms of ω only we have to solve

∇ · v = 0,
∇× v = ω,

(1)

for v.

Proposition 1.1 (Hodge decomposition, [MB01, section 2.4]). Let ω ∈
L2(R3;R3) be a smooth vector field, vanishing sufficiently rapidly at infinity.

• The equations (1) have a smooth solution v, vanishing rapidly at infinity,
if and only if

∇ · ω = 0.
• If ∇ · ω = 0, then v is determined constructively by

v = −∇× ψ,
where ψ solves

∆ψ = ω,

and there is an explicit kernel K3(x)

K3(x)h = 1
4π

x× h
|x|3

, h ∈ R3,

such that

v(x) =
∫
R3
K3(x− y)ω(y)dy.

Proposition 1.2 (Vorticity-stream formulation in R3, [MB01, section 2.4]).
For smooth flows that vanish sufficiently rapidly at infinity, the system of equations

∂tω + v · ∇ω − ω · ∇v = 0,
ω|t=0 = ω0 = ∇× v0,

with v determined by the previous proposition, is equivalent to the Euler equations.

Compared to the Euler equations in velocity formulation, this system of equa-
tions contains only three unknowns ω and the dependence of v on ω is linear. As we
discuss in the following, in two dimensions the vorticity stream formulation yields
an even greater simplification.

Let n = 2, then the vorticity
ω = ∇× v : R2 × (0, T )→ R

satisfies
∂tω + v · ∇ω = 0,

where we used that
∇× (∇p) = 0

and
∇× (v · ∇v) = v · ∇(∇× v).

15



The vorticity is thus only transported by v and there is no vortex-stretching term.
We discuss the implications of this in Section 2.2.

In order to express v in terms of ω, we note that
0 = ∇ · v = ∇× (−v2, v1) =: ∇× v⊥.

There thus exists a potential φ, called the stream function, such that
v⊥ = ∇φ⇔ v = ∇⊥φ.

Taking the curl of this equation we thus obtain
∆φ = ω,

∇⊥φ = v,

where, in the case of a bounded domain, φ is chosen to satisfy given boundary
conditions for v.

Definition 1.1 (Vorticity-stream formulation). The 2D Euler equations in
vorticity-stream formulation are given by

∂tω + v · ∇ω = 0,
∆φ = ω,

v = ∇⊥φ,
(E)

where, in the case of a bounded domain, the boundary conditions for φ or v
respectively are further specified.

Proposition 1.3 (Vorticity-stream formulation for R2 [MB01, page 45]). For
smooth 2D flows vanishing sufficiently rapidly at infinity, the velocity formulation is
equivalent to the vorticity-stream formulation.

The preceding two-dimensional results can be adapted to settings involving
boundaries.

In this thesis we are primarily interested in the following two settings:
• The infinite periodic channel, T× R.
• The finite periodic channel, T×[0, 1]. Here the natural boundary conditions
are given by impermeable walls, i.e. v2(x, y) = 0 whenever y ∈ {0, 1}.

As we discuss in Chapters 4 and 5, in the latter setting the boundary conditions
strongly influence the dynamics.

In the following section, we consider symmetries of the Euler equations in two
and three dimensions.

1.3. Symmetries and Galilean invariance. Like many physically relevant
models, the Euler equations enjoy many symmetries, including invariance under
Galilean transformations.

Lemma 1.1 ([MB01, page 3]). Let (v, p) be a solution to Euler’s equations on
Rn, n = 2 or 3. Then the following transformations also yield solutions:

(1) Galilean invariance: For any c ∈ Rn, the pair (vc, pc) with
vc(t, x) = v(t, x− tc) + c,

pc(t, x) = p(t, x− tc),
is also a solution.

(2) Rotation symmetry: Let Q ∈ SO(n), then the pair (vQ, pQ) with
vQ(t, x) = QT v(t, Qx),
pQ(t, x) = p(t, Qx),

is also a solution.
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(3) Scale invariance: Let λ, τ ∈ R \ {0}, then the pair (vλ,τ , pλ,τ ) with

vλ,τ (t, x) = λ

τ
v(x
λ
,
t

τ
),

pλ,τ (t, x) = λ2

τ2 p(
x

λ
,
t

τ
),

is also a solution.

We remark that, in the case of a domain Ω ⊂ R2 different from R2 or the
(in)finite periodic channel, not all symmetries leave the underlying domain invariant,
but rather yield solutions on a modified space.

In particular, in this way it is possible to rescale any given infinite channel,
TL × R, to the one with a prescribed (unit) period, T× R. In the case of a finite
channel, we instead normalize the width, i.e. TL × [0, b] is rescaled to TLb × [0, 1].

1.4. The Lagrangian and Eulerian perspective. In both the velocity and
vorticity-stream formulation, we considered the evolution of the fluid with respect
to a fixed, given spatial coordinate system. In this section, we adopt a differ-
ent perspective and consider particle markers α “moving with the flow” as our
coordinates.

Definition 1.2 (Flow map). Let n = 2, 3 and let

v : Rn × (0, T )→ Rn

be a given, smooth velocity field. Then the flow-map X : Rn × [0, T ) → Rn is
defined as the unique solution of

∂tX(α, t) = v(X(α, t), t),
X(α, 0) = α.

Here, α is the initial position of a particle.

The spatially fixed perspective is called Eulerian, while the one moving with
the flow is called Lagrangian. As we discuss in the following, for sufficiently smooth
velocity fields it is equivalent to consider the evolution of X and of the associated
velocity field. In this way we introduce a particle-trajectory formulation of Euler’s
equations. Here, again the two-dimensional setting is greatly simplified compared
to the three-dimensional setting.

Before further studying this formulation, we briefly elaborate on our previous
remark that convective derivative

Dt = ∂t + v · ∇

is a derivative “along the flow of v”.

Lemma 1.2. Let n = 2, 3 and let

f : Rn × (0, T ) 7→ R

be any smooth function, v a smooth velocity field and X its associated flow map.
Then

Dtf(t, α) = d

dt
|t=0f(t,X(t, α)).

Proof. This follows immediately by the chain rule and the initial condition

X(α, 0) = α.

�
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The incompressibility condition of Euler’s equations

∇ · v = 0,

further implies that X is volume-preserving.

Lemma 1.3 ([MB01, page 5]). Let X be the flow corresponding to a smooth
velocity field v. Then,

d

dt
det(∇αX) = (∇x · v)|(X(α,t),t) det(∇αX).

In particular, if ∇ · v ≡ 0, then det(∇αX) ≡ 1.

In oder to make use of this particle-trajectory formulation of Euler’s equations,
we need to be able to express v(t,X(α, t)) in terms of X and the initial data only
(c.f. [MB01, section 2.5]). In two dimensions the vorticity is transported by the
velocity field:

∂tω + v · ∇ω = 0,

and thus ω satisfies

ω(t,X(t, α)) = ω0(α).

In particular, given X and ω0, we can compute ω and thus v. Here the kernel K2 of
the mapping

ω 7→ v =
∫
R2
K2(x− y)ω(t, y)dy

is given by (c.f. [MB01, page 81])

K2(x) = 1
2π (−x2

|x|2
,
x1

|x|2
), x ∈ R2.

Using the fact that X is volume-preserving, we thus compute

v(x, t) =
∫
K2(x− y)ω(t, y)dy =

∫
K2(x−X(t, α′))ω(t,X(t, α′))dα′

=
∫
K2(x−X(α′, t))ω0(α′)dα′.

In two dimensions the flow map X thus is given by the solution of the integro-
differential equation

d

dt
X(α, t) =

∫
K2(X(α, t)−X(α′, t))ω0(α′)dα′,

X(α, 0) = α.

In three dimensions, as discussed in Section 1.2 the vorticity is not only trans-
ported but can be stretched by the flow. It can be shown (c.f [MB01, page 82])
that in this case ω satisfies

ω(X(α, t), t) = ∇αX(α, t)ω0(α).

Proceeding as previously, with K3 as in Section 1.2, we obtain that X satisfies
d

dt
X(α, t) =

∫
K3(X(α, t)−X(α′, t))∇αX(α′, t)ω0(α′)dα′,

X(α, 0) = α.

The equivalence of this particle-trajectory formulation and the velocity formulation
of the 3D Euler’s equations is given by the following proposition.
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Proposition 1.4 ([MB01, page 83]). Let v0 be a smooth 3D velocity field
with ∇ · v0 = 0 and ω0 = ∇ × v0. Let X be a solution of the particle-trajectory
formulation with

d

dt
|t=0X = v0,

and define

v(t, x) =
∫
R3
K3(x−X(α, t))∇αX(α′, t)ω0(α′)dα′.

Then v is a solution of Euler’s equations with initial datum v0. Thus the particle-
trajectory formulation is equivalent to the velocity formulation for sufficiently smooth
solutions with rapidly decaying vorticity ω0.

In Section 2.2, this formulation is used to study well-posedness and the blow-up
of solutions in two and three dimensions.

In the following sections, we return to the velocity and vorticity formulations
and discuss stationary solutions and review stability results. There our focus is on
the two-dimensional case.

1.5. Shear flow solutions to the 2D Euler equations. In this section, we
introduce shear flow solutions to the 2D Euler’s equations and briefly discuss the
structure of stationary solutions.

Lemma 1.4 ([Swa00, page 93]; [Zil10, section 4]). Let (ω, φ) be a (regular,
classical) solution of the vorticity-stream formulation of Euler’s equations. Then ω
is a stationary solution, if and only if ∇φ and ∇∆φ are collinear.

Proof. By the Euler equations, ω is a stationary solution if and only if
0 = v · ∇ω = ∇⊥φ · ∇∆φ,

where we used that ω = ∆φ. As we are in R2

∇⊥φ = (−∂yφ, ∂xφ)
is obtained from ∇φ by a rotation by π

2 and is thus orthogonal to ∇∆φ if and only
if ∇φ and ∇∆φ are parallel. �

As the gradient is the normal of the level set, the preceding result also has
implications for the level sets of φ and ω = ∆φ. We, however, remark that in the
case of a vanishing gradient the identification of level sets degenerates in the sense
that, e.g. for the pair (φ, ω) with

φ = y2

2 ,

ω = 1,
ω is constant on every level set of φ, but the converse does not hold. Assuming
some additional non-degeneracy, i.e. that ∇ω is non-trivial, locally the converse
holds and thus there locally exists a function F such that

φ = F (∆φ).
At this point, we introduce some notation for the formulation of Arnold’s stability
theorem in Section 2.3.

Definition 1.3 ([Zil10], section 4). Let φ be a stationary solution and let thus
∇φ and ∇∆φ be collinear. Then on the set where ∇∆φ 6= 0, there exists λ such
that

∇φ = λ∇∆φ.
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We follow Arnold’s notation and denote
∇φ
∇∆φ := λ.

Corollary 1.1 ([Zil10], section 4). Let φ ∈ C3 be a stationary solution and
let F be such that locally

φ = F (∆φ),

and ∇∆φ 6= 0. Then,

F ′(∆φ) = ∇φ
∇∆φ.

Proof. By the chain rule

∇φ = F ′(∆φ)∇∆φ,

which agrees with our definition of
∇φ
∇∆φ.

�

A particular class of stationary solutions is given by those whose stream function,
φ, depends only on a single variable, e.g. φ = φ(y). In this case

∇φ ‖ e2 ‖ ∇∆φ.

Solutions of this form are called shear flows.

Definition 1.4 (Shear flow). Let U(y) be a smooth function. Then the
stationary solution of Euler’s equations given by

v = (U(y), 0),
p = 0,

is called a shear flow and U(y) is called its profile.

y

x ∈ T

(
U(y)
0

)

Figure 1. A shear flow (U(y), 0) in a finite periodic channel

The behavior of solutions to Euler’s equation close to shear flows is the main
topic of this thesis.
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1.6. Linearization around shear flows. Let U(y) ∈ C2 be the profile of a
shear flow and consider solutions of Euler’s equation of the form ω = −U ′+ εω∗, v =
(U(y), 0) + εv∗.

Then they solve

ε(∂tω∗ + U(y)∂xω∗ − v∗2U ′′) = ε2v∗ · ∇ω∗,

v∗ = ∇⊥∆−1ω∗.

Considering very small perturbations, i.e. ε very small, we linearize and hence omit
the right-hand-side.

For convenience of notation, in the sequel we further omit the ∗ and denote the
perturbation by ω, v, if there is no danger of confusion.

Definition 1.5 (Linearized Euler equations). The linearized Euler equations
around a shear flow (U(y), 0) are given by

∂tω + U(y)∂xω = U ′′v2 = U ′′∂xφ,

∆φ = ω,
(E)

where the boundary conditions on φ are chosen depending on the domain considered.

As suggested by our notation, we consider the transport on the left-hand-side

∂t + U(y)∂x
and the resulting shearing as the main underlying dynamics and the right-hand-side
as a perturbation. The heuristic implications of this perspective are discussed in
the following Chapter 2.

Before that, we recall the main classical stability results for Euler’s equations and
in particular their implications for the stability and long-time asymptotic behavior
of shear flows.

1.7. Couette flow. A particularly simple shear flow is given by U(y) = y.
This flow is called Couette flow and is distinguished from other shear flows by
also being a stationary solution of the Navier-Stokes equation. Furthermore the
linearized equations around Couette flow are greatly simplified as U ′′ identically
vanishes.

The linearized Euler equations are thus given by
∂tω + y∂xω = 0,
v = ∇⊥∆−1ω.

(Couette)

We in particular note that the first equation does not contain v and that, in
the case of an infinite periodic channel, (x, y) ∈ T×R, the first equation is identical
(up to notation) to the free transport equation.

As we discuss in Section 3, the study of this flow has a long history starting
from the work of Kelvin, [Kel87], and Orr, [Orr07]. Many fascinating problems
concerning its asymptotic behavior and stability are associated with it.

In particular, it has been observed that the velocity field of small perturbations
asymptotically decays with algebraic rates (in L2), a phenomenon which is called
(linear) inviscid damping. While this linear result for Couette flow is classical and
admits explicit solutions, as we discuss in Chapter 2, extending the result to other
shear flows or the nonlinear equation has remained open until recently:

• The present work, for the first time, rigorously establishes linear inviscid
damping with optimal algebraic rates and asymptotic stability in Sobolev
spaces for a large class of monotone shear flows, of which Couette flow is
one prototypical example.
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• First results on nonlinear inviscid damping for Couette flow have recently
been obtained by Masmoudi and Bedrossian [BM13b] and are discussed
in Chapter 6.

2. Stability and well-posedness

2.1. Classical linear stability. As with any evolution equation a prominent
question concerns the long-time dynamics and stability of solutions. Since the
equations are nonlinear however, it is difficult to give meaningful general answers.
Therefore much attention has been payed to special cases and linearizations around
specific flows, in particular shear flows, and specific forms of perturbations.

Here the classical results are due to Rayleigh [Ray79] and were later extended
by Fjørtoft (see [DR04], [Dra02]). Both consider so-called normal-mode perturba-
tions to the linearized Euler equations around shear flows. In the sequel we briefly
discuss these results.

Considering solutions close to a given shear flow (U(y), 0), i.e. a vorticity of the
form Ω = −U ′ + ω, the linearized Euler equations are given by

∂tω + U∂xω = U ′′∂xφ,

∆φ = ω.

As U,U ′′ do not depend on x, in the case of an infinitely long or periodic channel,
i.e. in the cases of x ∈ R or x ∈ T, we may take a Fourier transform in x and thus
obtain the following decoupled system of equations for each frequency k

∂tω̂ + ikUω̂ = U ′′ikφ̂,

(−k2 + ∂2
y)φ̂ = ω̂.

(E)

For convenience, in following we drop the hats, ·̂, from our notation, if there is no
danger of confusion.

In this setting Rayleigh and Fjørtoft study the question of exponential instability
under normal-mode perturbations. More precisely, they ask whether there exist
non-trivial solutions with a stream function of the form

φ(t, x, y) = f(y)eiτt+ikx,

where k ∈ R \ {0}, τ ∈ C,=(τ) < 0 and f ∈ L2(R) or f ∈ C2
0 ([0, 1]) in the case of

a finite channel (the boundary conditions correspond to impermeable walls). This
type of instability is called exponential or spectral instability.

Using this ansatz, the ODE satisfied by f is then given by
iτ(f ′′ − k2f) + ikU(f ′′ − k2f) = U ′′ikf.

⇔ (iτ + ikU)f ′′ + (−ik2τ − ik3U − ikU ′′)f = 0.
Dividing by ik and denoting the phase velocity by c = − τk , we arrive at

(U − c)f ′′ + (k2c− k2U − U ′′)f = 0,
⇔ (U − c)(f ′′ − k2f)− U ′′f = 0.

(2)

The theorems of Rayleigh and Fjørtoft provide necessary conditions for the existence
of non-trivial solution (f, c, k) with =(τ) = −k=(c) < 0 to (2). In particular, if
these conditions are not satisfied, no exponential instability in the above sense is
possible, which can be interpreted as a stability result.

Remark 1. If there exists an exponentially decaying solution (f, c, k), then
(f, c,−k) is also a solution and is exponentially increasing. Here, · denotes complex
conjugation.
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This symmetry corresponds to the time-reversibility of the equation, i.e. an
exponentially decreasing solutions blows up as t→ −∞. In particular, if c 6∈ R, then
either c or c corresponds to a exponentially growing solution. Stability thus requires
that there are no non-trivial solutions for c 6∈ R.

Theorem 1.1 (Rayleigh’s theorem [DR04, page 131]). A necessary condition
for spectral instability of a shear flow (U(y), 0) is that U ′′ changes sign or vanishes
on a set of positive measure.

Proof. Suppose there exists c ∈ C with =(c) < 0 and a non-trivial solution
f decaying at infinity. As c 6∈ R, the quotient U ′′

U−c exists and is bounded if U ′′ is
bounded.

Testing

f ′′ − k2f + U ′′

U − c
f = 0(3)

with f and considering only the imaginary part, we obtain∫
=
(

U ′′

U − c

)
|f |2 = 0.

Computing

=
(

U ′′

U − c

)
= U ′′=(c) 1

|U − c|2
,

and recalling that |f |2 ≥ 0 is assumed to be non-trivial, this leads to a contradiction
unless U ′′ vanishes on the support of f or changes sign. �

Fjørtoft further improves this theorem by making use of the real part.
Theorem 1.2 (Fjørtoft’s theorem [DR04, page 132]). Another necessary con-

dition for spectral instability of the shear flow (U(y), 0), is that for any point ys with
U ′′(ys) = 0, the inequality

U ′′(y)(U(y)− U(ys)) < 0
holds for some y.

Proof. Let c ∈ C with =(c) < 0 and suppose that there exists a non-trivial
solution f decaying at infinity. Testing (3) with f again, but now considering the
real part, we obtain∫

U ′′(U −<(c))
|U − c|2

|f |2 = −
∫
|f ′|2 + k2|f |2 < 0.

Using the proof of the previous theorem, we further know that∫
U ′′

|U − c|2
|f |2 = 0.

Subtracting a suitable multiple of the second equation from the first, thus yields∫
U ′′(U − d) |f |2

|U − c|2
< 0,

for any d ∈ R. This, however, can only be the case if U ′′(y)(U(y)− d) < 0 for some
y. Choosing d appropriately concludes the proof. �

We again stress that the previous theorems do not prove linear stability in the
classical sense, but rather give a sufficient but not necessary condition to rule out a
specific type of linear instability. In Section 1 of Chapter 6 we show that a large
class of monotone shear flows is spectrally stable regardless of inflection points.

In the following sections, we consider well-posedness and nonlinear (Lyapunov)
stability.
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2.2. The Beale-Kato-Majda criterion. As discussed in Section 1.4, the
Euler equations in two and three dimensions can, for sufficiently regular flows,
equivalently be formulated as equations for the flow map

d

dt
X(t, α) = v(X(t, α), t),

X(t, α) = α.

Heuristically, one would thus expect local existence if v is Lipschitz continuous.
Beale, Kato and Majda, [BKM84], prove an even better result and show that

it suffices to control
• ω = ∇× v instead of the full gradient ∇v and that
• the L∞ control need only hold in an integrated sense, i.e.∫ T

0
‖ω(t)‖L∞x dt <∞.

Under these conditions, they prove local existence and that, indeed, this is the only
way local existence can fail. Thus, assuming a good control on∫ T

0
‖ω(t)‖L∞x dt,

the local existence result can be iterated to yield global existence.

Theorem 1.3 ([MB01, page 146], [BKM84]). Let ω0 = ∇×v0, with ∇·v0 = 0,
be compactly supported and suppose that ω0 ∈ Cγ for some γ > 0. Suppose that for
any time T > 0, there exists M1 such that∫ T

0
‖ω(·, s)‖L∞x ds ≤M1,

then the solution exists globally in time.
Conversely suppose that there exists a maximal time of existence T ? <∞, then

necessarily

lim
T→T?

∫ T

0
‖ω(·, s)‖L∞x ds =∞.

In three dimensions, due to the vortex-stretching term in the evolution, obtaining
a bound on ‖ω‖L1

t,loc
L∞x

is a challenging problem. In contrast, in two dimensions,
the vorticity ω0 is transported and thus the L∞ norm at any given time T > 0
(formally) equals its initial value ‖ω0‖L∞ . In order to make use of such conserved
quantities, however, as shown by the results of Buckmaster, De Lellis, Székelyhidi
[BDLSJ14], some regularity requirement is necessary. Under suitable assumptions,
the previous theorem thus yields global existence for the 2D Euler equations.

Corollary 1.2 (2D global existence). Let ω0 = ∇× v0,∇· v0 = 0 be compactly
supported and suppose that ω0 ∈ Cγb for some γ > 0. Then there exists a global
solution.

Proof of Corollary 1.2. Suppose to the contrary, that for a given ω0, there
exists a maximal time of existence 0 < T ? <∞.

Then, for any t ∈ [0, T ?), as shown in Section 1.4, ω satisfies

ω(t,X(t, α)) = ω0(α).

Hence, in particular, for all such t

‖ω(t)‖L∞ = ‖ω0‖L∞ .
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Integrating this equality, we obtain

lim
T→T?

∫ T

0
‖ω(t)‖L∞x,ydt = ‖ω0‖L∞x,yT

? <∞.

Therefore, by the preceding theorem, T ? is not maximal. Contradiction. �

We further remark, that in two dimensions there also exist results on unique-
ness and continuity of the solution map. Therefore, this result implies global
well-posedness for the 2D Euler equations in L∞ with some additional regularity
assumptions.

2.3. Nonlinear stability and Hamiltonian structure. In [Arn66b], Arnold
gives a characterization of Euler’s equations on a Riemannian manifold M as the ge-
odesic equations on the (infinite-dimensional) manifold of smooth volume-preserving
diffeomorphisms, SDiff(M).

For simplicity, we here only provide a brief sketch of these results for the case
of M = R2 or M = R3. A more thorough discussion can be found in the books
of Arnold, Khesin and Wendt [AK98], [Arn89], [KW09] as well as the author’s
Bachelor thesis [Zil10].

As we have seen in Section 1.4, under smoothness assumptions, Euler’s equations
can be alternatively understood as equations for the flow map X(t, α). By the
incompressibility condition, these maps are volume-preserving and thus invertible.
We will additionally assume that they are C∞. The set of all such diffeomorphisms
then has the structure of Fréchet manifold over C∞(M ;M). Furthermore, the
diffeomorphisms have a group structure under composition and the group operations
are smooth. We hence obtain a Fréchet Lie group.

An energy functional E can then be defined by the kinetic energy

E(v) = 1
2

∫
M

v2.

This functional is right-invariant, since composition by a volume-preserving map
preserves the L2 scalar product and yields a Riemannian structure on the Lie group
and Lie algebra by identification.

Arnold explicitly computes the geodesic equations with respect to this Rie-
mannian structure in terms of group operations and the Lie bracket, which in this
particular case corresponds to a commutator of vector fields.

The geodesic equations are given by

∂tv = −B(v, v),

where B is defined via the commutator of vector fields, [·, ·], as

〈B(c, a), b〉 = 〈[a, b], c〉.

Proposition 1.5 ([AK98, page 20]). In the case of 3D hydrodynamics, i.e.
M = R3, the geodesic equations are given by

∂tv = v × (∇× v)−∇p,

which is equivalent to Euler’s equations.

Proof. Let a, b, c be divergence-free vector fields, then

〈B(c, a), b〉 = 〈∇ × (a× b), c〉 = −〈a× b,∇× c〉 = −〈(∇× c)× a, b〉.

Thus, B(v, v) = v × (∇× v) +∇p for some pressure p, as b is divergence-free.
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In order to see that this equation is equivalent to the velocity formulation of
Euler’s equations, we compute

(v × (∇× v))k = εijkvi(∇× v)j = εijkviεlmj∂lvm

= −(εikjεlmj)vi∂lvm = −(δilδkm − δimδkl)vi∂lvm
= −(v · ∇)vk + ∂k|v|2.

Modifying p 7→ p+ |v|2, hence shows the equivalence. �

Interpreting Euler’s equations as geodesic equations, allows one to use methods
of geometry and the calculus of variations to study stability. As we are only
permitted to vary via group actions, it however has to be noted that the group
action of volume-preserving diffeomorphisms is not surjective. For example, in the
2D case,

ω 7→ ω ◦X

preserves all Lp norms, for any vorticity ω and any volume-preserving diffeomorphism
X (not necessarily a solution). Hence, in this case, any two vorticities ω1, ω2 for
which for some p ∈ [1,∞]

‖ω1‖Lp 6= ‖ω2‖Lp ,

can not share the same orbit, as ω1 ◦X1 = ω2 ◦X2 would imply

‖ω1‖Lp = ‖ω1 ◦X1‖Lp = ‖ω2 ◦X2‖Lp = ‖ω2‖Lp ,

and thus yield a contradiction.
For the purpose of variational arguments, it is thus necessary to restrict to the

orbit of a given vorticity under the group action. Vorticities with the same orbit are
called isovortical. Using this as an equivalence relation, we obtain a foliation of L2.
It can then be shown that stationary solutions are distinguished points on each leaf.

Lemma 1.5 ([AK98]; see also [Zil10]). Consider a leaf of the isovortical
foliation, then a point is a stationary solution, if and only if it is a critical point of
the energy functional restricted to this leaf.

Sketch of proof. Let v be a given point and ξ a tangent vector at that point.
It can be shown that the bilinear form B(·, ·) from above is non-degenerate. As a
consequence, there exists f such that

ξ = B(v, f).

The variation of the energy at v in direction ξ is hence given by

δE = 〈v, ξ〉 = 〈v,B(v, f)〉 = −〈B(v, v), f〉.

δE therefore vanishes for all f , if and only if B(v, v) = 0, which is equivalent to the
solution being stationary. �

Considering the second variation in such critical points, one can obtain stability
results, if the second variation is positive definite. This is in analogy to the finite-
dimensional situation.

Theorem 1.4 ([AK98, page 90]; see also [Zil10]). Let v be a stationary solution
with stream function ψ. Then the second variation of the energy restricted to the
corresponding leaf is given by

δ2E = 1
2

∫
(δv)2 + ∇ψ

∇∆ψ (δω)2,

where δv, δω is the velocity and vorticity perturbation.
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Recall that the notation
∇ψ
∇∆ψ

has been introduced in Section 1.5. Supposing a good control on this quotient,
Arnold then establishes a stability theorem.

Theorem 1.5 (Arnold’s stability theorem [Arn66b], [Arn89], [AK98]; see
also [Zil10], [Zil12]). Let ψ be the stream function of a stationary solution. Suppose
further that φ = F (∆φ) globally and that

0 < c <
∇ψ
∇∆ψ < C <∞.

Then any solution with stream function ψ + φ with the same circulation around the
boundary, satisfies ∫

|∇φ|2 + c|∆φ|2 ≤
∫
|∇φ0|2 + C|∆φ0|2.

Similarly, if

0 < c < − ∇ψ
∇∆ψ < C <∞,

then any solution with stream function ψ + φ with the same circulation around the
boundary, satisfies ∫

c|∆φ|2 − |∇φ|2 ≤
∫
C|∆φ0|2 − |∇φ0|2.

In the first case, Arnold’s theorem provides a control of the perturbation’s
(change to the) kinetic energy and enstrophy

‖∇⊥φ‖2L2 + ‖∆φ‖2L2 .

It thus provides a nonlinear stability result. However, as we discuss in the sketch of
the proof, it crucially relies on a convexity mechanism via the control of the quotient
∇φ
∇∆φ as well as a conserved quantity. In particular, for most monotone shear flows
(U(y), 0), including Couette flow,

∇φ
∇∆φ = U

U ′′

does not satisfy the assumptions of the theorem. For such flows, it is hence necessary
to make use of a fundamentally different damping mechanism, called (linear) invisid
damping. The study of this mechanism is the main topic of the present thesis and
is introduced on a heuristic level in Chapter 2.

Sketch of proof of Theorem 1.5. As remarked in the definition of ∇ψ∇∆ψ ,
by the chain rule

F ′(∆ψ) = ∇ψ
∇∆ψ .

Defining a primitive function G of (an extension of) F , by our assumptions G
satisfies

c < G′′(∆φ) < C.

G is thus a convex function.
It can then be shown that

H2(φ) =
∫∫
|∇φ|2

2 + (G(∆ψ + ∆φ)−G(∆ψ)−G′(∆ψ)∆φ)

is a conserved quantity.
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By convexity and the mean value theorem, for any x and y
c

2y
2 ≤ G(x+ y)−G(x)−G′(x)y ≤ C

2 y
2.

Therefore,∫
|∇φ|2 + c|∆φ|2 ≤ H2(φ) = H2(φ0) ≤

∫
|∇φ0|2 + C|∆φ0|2.

The concave case, where

0 < c < − ∇ψ
∇∆ψ < C <∞,

is proven analogously. �

We remark that Arnold’s theorem does not necessarily require that U is convex
or concave but allows for inflection points. For example, considering the Kolmogorov
flow U(y) = sin(y), we compute that

sin(y)
(sin(y))′′ ≡ −1,

where the singularity at the inflection points y ∈ πZ have been removed.

In the following section, we discuss conserved quantities of Euler’s equations
and their use in the study of stability.

2.4. Conserved quantities. As discussed in the previous section, Euler’s
equations can be interpreted as geodesic equations and thus in particular have the
structure of a Hamiltonian system. Therefore, there exist many conserved quantities,
of which we list several for the two-dimensional case. A more extensive list of
conserved quantities, including the three-dimensional case, can be found in [MB01,
section 1.7].

Lemma 1.6. Let ω be smooth solution of the 2D Euler’s equations, then:
• The kinetic energy

‖v(t)‖L2

is conserved.
• The enstrophy

1
2‖ω(t)‖L2

is conserved.
• Let f ∈ C0, then ∫

f(ω)

is conserved. In particular, for any non-negative vorticity the entropy∫
ω log(ω)

is conserved.

The last family of conserved quantities is very general and includes not only all
Lp, p ∈ [1,∞] norms by choosing

f(x) = |x|p,
but also the entropy

f(x) = x log(x)
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for non-negative vorticities.
The Euler equations thus exhibit neither dissipation nor entropy increase or

other usual damping mechanisms and are even time-reversible.
Furthermore the conserved quantities imply nonlinear Lp stability of Couette

flow, i.e. v(t, x, y) = (y, 0), for any p ∈ [1,∞].

Lemma 1.7. Let v = (y, 0, ) + v′, ω = −1 + ω′ be a solution of the 2D Euler
equations. Then for any p ∈ [1,∞] and any t ∈ R

‖ω′(t)‖Lp ≡ ‖ω′|t=0‖Lp .

Proof. By the particle-trajectory formulation, at any time t
ω = ω|t=0 ◦X = 1 + ω′|t=0 ◦X

for some volume preserving diffeomorphism X. Thus, for any p <∞, choosing
f(x) = |x− 1|p

in the previous lemma, the Lp norm is conserved. Similarly the L∞ norm is
conserved. �

We remark that this result crucially uses that the vorticity corresponding to
Couette flow is constant. Conversely any shear flow with constant vorticity is affine
and thus equal to Couette flow up to symmetries. While very powerful, this result is
hence not useful for considering perturbations around any more general shear flows.

When considering the linearized problem instead, using a condition similar to
Arnold’s, we can however still make use of conserved quantities to derive a stability
result.

Lemma 1.8 ([Zil12, page 30]). Let U(y) be a shear profile such that
U

U ′′

is well-defined. Then for any solution (ω, v) of the linearized equations∫
v2 + U

U ′′
ω2

is conserved.

We stress that, unlike Arnold’s stability theorem, this only provides linear
stability. Furthermore, for most monotone shear flows, including Couette flow, the
quotient U

U ′′ does not satisfy the assumptions of the previous lemma and thus a
different stability mechanism has to be used.

In the following sections we introduce the Vlasov-Poisson equations of plasma
physics and discuss their structural similarities with Euler’s equations. As we discuss
in Chapters 2 and 3, for these equations one encounters the phenomenon of Landau
damping, which motivates our study of linear inviscid damping for general monotone
shear flows.

3. The Vlasov-Poisson equations

In this section, we briefly introduce the Vlasov-Poisson equations of plasma
physics and their homogeneous solutions. Subsequently, we discuss the structural
similarities with the Euler equations in Section 4.

The Vlasov-Poisson equations model the evolution of the phase-space density
f(x, v, t),

f : Tn × Rn × (0, T )→ [0,∞)
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of a plasma and are given by

∂tf + v · ∇xf + F [f ](t, x) · ∇vf = 0,

F [f ] = ∇W ∗x
(∫

fdv −
∫∫

fdvdx

)
: = ∇W ∗x (ρ− 〈ρ〉x).

We stress that, unlike in the previous setting of Euler’s equations, in the context
of the Vlasov-Poisson equations and other transport equations v ∈ Rn is used to
denote a variable instead of a vector field.

F [f ] is a force field and depends on f only via the density

ρ(x, t) =
∫
Rn
f(x, v, t)dv.

Various choices for W are possible, but in the following we focus on the cases of a
Coulomb or Newton potential, i.e.

F [f ](x, t) = ±∇x∆−1
x (ρ− 〈ρ〉x).

Formally, one can see that

∇W ∗x c = W ∗x ∇c = W ∗x 0 = 0

for any constant c and therefore one might be tempted to remove 〈ρ〉x in the above
formulae. However, as ∇W is not in L1, this heuristic is not quite rigorous and is
known as the so-called Jeans swindle. A rigorous justification for this “swindle” can
be obtained by defining F as the limiting case of some cut-off potentials Wε for
which ∇Wε ∈ L1 (confer [MV10a] and the references therein).

By the above reasoning, we, however, see that densities f with

ρ− 〈ρ〉x ≡ 0,

play a distinct role. A particular class of such solutions is given by homogeneous
solutions, i.e.

f = f(v)

being independent of x.
As the force field vanishes for such solutions, it seems reasonable to assume that

solutions close to homogeneous solutions behave similar to solutions of free transport.
The implications of these heuristics are discussed in more detail in Section 4 of
Chapter 2.

3.1. Linearization around homogeneous solutions. In this section, we
introduce the linearization of the Vlasov-Poisson equations around homogeneous
solutions.

Let f(t, x, v) = fin(v) + εh(t, x, v) be a solution of the Vlasov-Poisson equation.
Then h satisfies

ε∂th+ εv · ∇xh+ εF [h] · ∇vfin = −ε2F [h]∇vh.

Here we used that

F [fin + εh] = F [fin] + εF [h] = εF [h].

Neglecting the quadratic nonlinearity, we arrive at the linearized Vlasov-Poisson
equations.

30



Definition 1.6 (Linearized Vlasov-Poisson equations). Let fin(v) be a homo-
geneous density, then the linearized Vlasov-Poisson equations around fin are given
by

∂th+ v · ∇xh = −F [h] · ∇vfin,
F [h] = ∇W ∗x (ρ− 〈ρ〉x),

ρ(t, x) =
∫
h(t, x, v)dv.

(LVP)

It has been shown by Landau, [Lan46], that, under certain condition on fin,W
and h|t=0, one observes Landau damping, i.e. the force field decays in time. A
heuristic for the underlying mechanism of Landau damping is given in Chapter 2.
Subsequently, in Chapter 3, we briefly sketch a proof of linear Landau damping
and discuss Villani and Mouhot’s seminal results, [MV11], on nonlinear Landau
damping.

In the following section, we discuss the structural similarities of the Vlasov-
Poisson equations and the 2D Euler equations.

4. The connections between Euler and Vlasov-Poisson

In this section, we discuss the structural similarities and differences of the
Vlasov-Poisson and Euler’s equations, following the book of Majda and Bertozzi
[MB01, chapter 13] as a reference.

As discussed in the previous section, the Vlasov-Poisson equation are given by

∂tf + v · ∇xf + F [f ](t, x) · ∇vf = 0,
F [f ] = ∇W ∗x (ρ− 〈ρ〉x),

ρ =
∫
fdv,

where, for this section, we restrict to the one-dimensional case, i.e.

f : T× R× (0, T )→ [0,∞).

Furthermore, we restrict F to the case of Coulomb or Newton interaction:

F [f ] = ±∂x(∂2
x)−1(ρ− 〈ρ〉x).

We remark that for Vlasov-Poisson equations the underlying domain has the structure
of a tangent bundle, e.g. T × R = TT. Hence, in contrast to the Euler setting,
geometric settings with boundary effects such as a finite periodic channel, T× [0, 1],
are not physically relevant.

Denoting

ψ = ∆−1(ρ− 〈ρ〉x) = ∂−1
xx (ρ− 〈ρ〉),

and further introducing

φ = v2

2 ± ψ,

we may express our equation as

∂tf + u · ∇x,vf = 0,
∇ · u = 0,

u = (v,−∂xψ) = ∇⊥φ,
∇× u = ∂xxψ = ρ− 〈ρ〉x.
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As u is divergence-free, the associated flow is volume-preserving and

〈ρ〉x =
∫∫

f

is a constant, which is preserved in time.
The Vlasov-Poisson equations are thus structurally very similar to the Euler

equations in vorticity-stream formulation
∂tω + v · ∇x,yω = 0,

∇ · v = 0,
v = ∇⊥φ,

∇× v = ∆φ = ω.

We however remark that there is a significant difference in the dependence of
the potential φ on f or ω respectively: In the case of Vlasov-Poisson, φ depends on
f via ρ only, the problem is thus effectively lower-dimensional (1D in this case).

Property V-P Euler
Nonlinear transport ∂tf + u · ∇f = 0 ∂tω + v · ∇ω = 0

∇ · u = 0 ∇ · v = 0
∇× u =

∫
fdv − 〈ρ〉x ∇× v = ω

Stream function φ = v2

2 + ∆−1
x (
∫
fdv − 〈ρ〉x) φ = ∆−1ω

u = ∇⊥φ v = ∇⊥φ

Figure 2. Summary of the structural similarities, adapted from
[MB01, page 512].

In addition to the above structure, both equations share further similarities such
as in the study of electron sheets and vortex sheets. A more thorough discussion
may be found in [MB01, chapter 13]. For our purposes, however, we are most
interested in the similarities of the transport structure. In particular, considering
homogeneous solutions of the Vlasov-Poisson equations, f = f(v), or the Couette
flow solution of Euler’s equations in an infinite channel T× R, the equations read:

∂tf + v∂xf = 0,
in the case of Vlasov-Poisson and

∂tω + y∂xω = 0,
in the case of Euler’s equations. Recalling the difference in notation, i.e. (x, v) ∈
T× R instead of (x, y) ∈ T× R, both equations are actually identical and are given
by the free transport equation.

As we discuss in the following Chapter 3, this underlying transport structure
plays an integral role in both Landau damping and inviscid damping. However, we
again highlight the difference of the dependence of F on f and of the velocity field
v on ω. As a consequence, the actual damping mechanism, the damping rates and
the role of regularity differ.
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CHAPTER 2

Free transport and phase-mixing

In this chapter we introduce the free transport equation and use its explicit
solution to study its asymptotic behavior. While the free transport equation is
time-reversible and possesses many conserved quantities and, in particular, exhibits
neither dissipation nor entropy increase, one observes a very strong mixing behavior
and resulting damping phenomena.

We discuss the phase-mixing mechanism underlying this damping and sub-
sequently study the heuristic implications for the behavior of solutions of the
Vlasov-Poisson equations

∂tf + v · ∇xf = −F [f ](t, x) · ∇xf

close to homogeneous densities f(v) and for the 2D Euler equations

∂tω + v · ∇ω = 0

close to Couette flow, i.e. v = (y, 0).

1. The free transport equation

The free transport equation models the evolution of a phase-space density
transporting itself and is given by

∂tf + v · ∇xf = 0,
f = f(t, x, v),

(t, x, v) ∈ R× T× R.
(4)

Using the method of characteristics, the solution of the free transport equation
can be computed explicitly from its initial data

f(t, x, v) = f0(x− tv, v).

We note that the equation is translation invariant with respect to x. Hence, even
without a periodicity assumption, x ∈ T, we could restrict to studying frequency-
localized initial data. The periodicity assumption, however, provides a more natural
frequency localization, a low-frequency cut-off and a better physical intuition.

In order to obtain first insights into the dynamics of general solutions to free
transport on T× R, it is instructive to consider the common example of f0 being
the characteristic function of a square, as depicted in Figure 1.

We observe that the solution is strongly sheared and mixed, which has two
contrasting implications:

• The solution loses regularity in time and, unlike usual damping mechanisms
such as dissipation, the behavior is very rough and “violent”.

• Integral operators, averages or anti-derivatives benefit from the mixing
behavior due to cancellations.

Reconciling these opposing behaviors and their effects on the regularity of solutions
and potentials such as the velocity field ∇⊥∆−1f , is at the core of both inviscid and
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Figure 1. A characteristic function sheared by free transport at
the initial time, after a small and a long time. See also [Zil12],
[MV10a].

Landau damping. In the latter case, the mechanism is also referred to as violent
relaxation (c.f. [MV10a]).

In the following sections, we study the explicit solution of free transport and a
characterization in Fourier space in order to obtain a fine analysis of the damping
mechanism and to deduce necessary requirements, which have to be imposed on the
initial perturbation.

2. Transport, shearing and regularity

In this section, we discuss the effects of shearing on the regularity of solutions
and, in particular, on potentials and negative Sobolev norms.
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As shown in the following lemma, unlike dispersion, free transport preserves all
Lp norms.

Lemma 2.1. Let p ∈ [1,∞] and let f be a solution of the free transport equation
with initial datum f0 ∈ Lp(T× R), then for any t ∈ R

‖f(t)‖Lp = ‖f0‖Lp .

Proof. As remarked previously, f(t) can be computed explicitly in terms of
f0, using the method of characteristics:

f(t, x, v) = f0(x− tv, v).

Hence, the Lp norm of f at a given time t satisfies

‖f(t)‖pLp =
∫∫
|f0(x− tv, v)|pdxdv =

∫∫
|f0(x′, v)|pdx′dv = ‖f0‖pLp ,

where we used that the change of variables

(x, v) 7→ (x+ tv, v)

is volume-preserving. �

We further note that, while different frequencies in x move with different speeds,
e.g.

f0(x) = sin(kx) 7→ f(t, x, v) = sin(kx− ktv),

they do not asymptotically separate in space due to periodicity. They, however,
separate in Fourier space, as we discuss in the following.

Let f be a solution of the free transport equation and denote its Fourier
transform in both x and v by f̃ . Then f̃ satisfies

∂tf̃ − k∇η f̃ = 0,(5)

where k ∈ Z and η ∈ R correspond to x and v respectively.
We observe that (5) is again of the form of a transport equation on Z× R and

can be explicitly solved:

f̃(t, k, η) = f̃0(k, η + kt).

Furthermore, the equation decouples with respect to k and we may hence treat k ∈ Z
as a given parameter and separately consider the evolution of fk(t, η) := f(t, k, η).

Using the Fourier characterization, we obtain an explicit description of the
evolution of arbitrary Sobolev norms.

Lemma 2.2. Let f be a solution of free transport, (5), with initial datum f0.
Then for any s1, s2 ∈ R

‖f(t)‖2Hs1,s2 :=
∑
k

∫
(< k >2s1 + < η >2s2)|f̃(t, k, η)|2dη

=
∑
k

∫
(< k >2s1 + < η − kt >2s2)|f̃0(k, η)|2dη,

where < · > is defined as

< x >:=
√

1 + |x|2.

Proof. We recall that f(t) satisfies

f̃(t, k, η) = f̃0(k, η + kt).

The result hence follows by a volume-preserving change of variables η 7→ η− kt. �
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As the equation decouples with respect to k, a finer description of the behavior
can be obtained by considering single modes. More precisely, let h(y) be a given
(smooth, integrable) function and consider

f0(x, y) = eikxh(y).

Then the solution f of the free transport equation with initial data f0 satisfies

‖f(t)‖H0,s =
∫

(1+ < η − kt >2s)|(Fyh)(η)|2dη.(6)

Denoting Fyh =: g, in the following we thus study

I(t; g, k, s) :=
∫
< η − kt >2s |g(η)|2dη,

for given k, s, t ∈ R. For simplicity, in the following we additionally assume that
g ∈ C∞c (R) and k > 0.

The multiplier < η − kt >2s is depicted in Figure 2 for the case k = 1 and
s = −1.

1/(1+(η	-t)2)

-4
-2

	0
	2

	4

t-4

-2

	0

	2

	4

η

	0
	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8
	0.9

	1

	0
	0.1
	0.2
	0.3
	0.4
	0.5
	0.6
	0.7
	0.8
	0.9
	1

Figure 2. The multiplier, < η − t >−2, decays as either t or η
tend to infinity. This decay does, however, not hold on the diagonal
t = η, where the multiplier equals 1.

Considering a fixed frequency (k, η), k 6= 0, we observe that

< η − kt >−2

decays in t only after the critical time tc := η
k and, in fact, increases before the

critical time. The implications of this change in behavior are discussed in the
following lemmata and again in Section 3 in the context of the linearized 2D Euler
equations around Couette flow.
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Lemma 2.3. Let k < 0 and suppose that g ∈ C∞c (R) is supported on the positive
half-line, η ≥ 0.

Then, for any s ≥ 0 and t ∈ (0,∞)
I(0; g, k, s) + |kt|2s‖g‖2L2 . I(t; g, k, s) . I(0; g, k, s) + |kt|2s‖g‖2L2 ,

and I(t; g, k, s) is monotonically increasing in t.
In the case s ≤ 0 and t ∈ (0,∞)

I(t; g, k, s) . min(I(0; g, k, s), |kt|s‖g‖2L2)
and I(t; g, k, s) is monotonically decreasing in t.

Proof. Let g, k and t ≥ 0 be given. Then on the support of g all critical times
η
k are negative and hence

< η − kt >=< |η|+ |k|t >
is monotonically increasing for t ≥ 0. Furthermore

< η > +|kt| .< |η|+ |k|t >.< η > +|kt|,
which yields the desired estimate.

Concerning the case s ≤ 0, we note that negative powers of an increasing
positive function are monotonically decreasing. �

In view of equation (6), the lemma hence agrees with the heuristics obtained
from Figure 1, that negative Sobolev norms of f asymptotically decrease and positive
Sobolev norms asymptotically increase. However, we stress that this is only the
case asymptotically.

Lemma 2.4. Let k < 0 and let η < 0, then for t ∈ [0, ηk ]
|η − kt|

is monotonically decreasing in t.
Hence, for any s < 0, C > 1 and any T > 0, there exists k and g ∈ C∞c (R)

such that
I(0; g, k, s) = 1,

I(t; g, k, s) is monotonically increasing in t on [0, T ],
I(T ; g, k, s) > C.

Proof. The first statement follows by noting that for k, η, t as above,
|η − kt| = |η| − |k|t

is monotonically decreasing in t ∈ [0, ηk ].
It remains to prove the second statement. Let thus s < 0, C > 1 and T > 0 be

given. Then there exist k ∈ Z and η0 ∈ R such that
k < 0,
η0 < 0,
η0 = kT,

< η0 >
−2s > C.

Consider a function g, which is supported in a small neighborhood of η0 and
normalized such that

I(0; g, k, s) = 1.
Then, by the first result and our choice of k, η0,

I(t; g, k, s) =
∫
< η − kt >2s |g(η)|2dη
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is monotonically increasing for t ∈ (0, T ). Furthermore,

I(T ; g, k, s) =
∫
< η − kT >2s |g(η)|2dη ≈

∫
< η0 − kT >2s |g(η)|2dη

=< η0 >
−2s

∫
< η0 >

2s |g(η)|2dη

> CI(0; g, k, s) = C.

�

Again recalling (6), we thus note that, while negative Sobolev norms of solutions,
f , to free transport tend to zero asymptotically, they might grow by an arbitrarily
large factor in an arbitrarily small time. However, for any s < 0 and any t

I(t; g, k, s) ≤ I(t; g, k, 0) = ‖g‖2L2 .

Hence, there can be no blow-up of I(t; g, k, s) if ‖g‖2L2 is controlled. Recalling the
definition of I via f0, this can equivalently be expressed as

‖f(t)‖H0,s ≤ ‖f0‖L2
x,y
,

for s < 0. Negative Sobolev norms of the solution to the free transport equation,
(5), can thus be uniformly controlled by the more regular L2 norm of the initial
data.

In the context of the linearized Euler equations around Couette flow, the
previously discussed growth of negative Sobolev norms, more precisely of the kinetic
energy

‖v‖L2 ≈ ‖ω‖H−1 ,

and the controlling influence of higher regularity is well-studied and known as the
Orr mechanism. We discuss this in the following section.

3. Linear inviscid damping for Couette flow

As we have noted in Section 1.7, the linearized 2D Euler equations around
Couette flow, i.e. around the shear flow (y, 0), on an infinite channel T× R

∂tω + y∂xω = 0,
are (up to a change of notation) identical to the free transport equation. Thus, by
the discussion from the previous section, we expect perturbations to the velocity
field, i.e.

v = ∇⊥∆−1ω,

to asymptotically decay (towards another shear flow).
Such dynamics for small perturbations have been experimentally observed and

studied on a linearized level by Kelvin and Orr [Kel87], [Orr07] (see also [LZ11]).
More precisely, as we discuss in the following for the setting of an infinite channel,
it is shown that for solutions of the linearized equations with ω0 ∈ H2:

• There exists a shear flow (U(y), 0) such that

v − (U(y), 0) L2

−−→ 0,(7)
as t→∞. That is,

lim
t→∞

‖v(t, ·)− (U, 0)‖L2 = 0.

• The rate of convergence is algebraic:
‖v − (U(y), 0)‖L2 = O(t−1),

‖v2‖L2 = O(t−2).
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This asymptotic convergence to another shear flow with algebraic rates is known as
(linear) inviscid damping.

As the linearized Euler equations around Couette flow are identical to free
transport, they, in particular, admit explicit solutions. Hence, in this case linear
inviscid damping can be easily shown to hold via a direct computation. Going
beyond the (in this sense trivial) setting of linear inviscid damping for Couette flow,
however has remained mostly open until recently.

• In [BM10], Bouchet and Morita give heuristic results suggesting that
linear damping and stability results should also hold for general monotone
shear flows. However, their methods are highly non-rigorous and lack
necessary regularity, stability and error estimates, as discussed in [Zil12].
In particular, even supposing their asymptotic computations were valid,
they do not yield the above decay rates.

• Lin and Zeng [LZ11] use the explicit solution of linearized Couette flow
to establish damping also in a finite periodic channel. Furthermore, they
show the existence of non-trivial stationary solutions to the 2D Euler
equations in arbitrarily small Hs neighborhoods of Couette flow for any
s < 3

2 . As a consequence, nonlinear inviscid damping can not hold in such
low regularity.

• Recently, following the work of Villani and Mouhot, [MV11], on nonlinear
Landau damping, Masmoudi and Bedrossian, [BM13b], have proven non-
linear inviscid damping for small Gevrey (see Definition 3.1) perturbations
to Couette flow in an infinite periodic channel. We briefly discuss their
results and the additional challenges in the nonlinear setting in Chapter 6.

As the main result of this thesis, in Chapters 4 and 5, we, for the first time, rigor-
ously establish linear inviscid damping for a general class of monotone shear flows.
Here we treat both the setting of an infinite periodic channel, T× R, and a finite
periodic channel T× [0, 1] with impermeable walls. In the latter setting, we show
that boundary effects play a non-negligible role and derive (almost) sharp results
on the stability in fractional Sobolev spaces.

For simplicity, in this section, we discuss the linearized 2D Euler equations
around Couette flow in an infinite periodic channel. This allows us to study the
effects of the shearing and mixing by free transport on the evolution of the velocity
field

∇⊥∆−1ω,

via explicit solutions in both spatial and Fourier space.
More precisely, recall that the Fourier transform of the vorticity ω̃, as a solution

of free transport, satisfies
ω̃(t, k, η) = ω̃0(k, η + kt).

Furthermore, v = ∇⊥∆−1ω can be expressed in terms of ω using a Fourier multiplier:

ω 7→ v = F−1

(
− iη
k2+η2
ik

k2+η2

)
Fω.

Combining both equations, we hence obtain an explicit expression for ṽ:

ṽ1(t, k, η) = iη

k2 + η2 ω̃0(k, η + kt),

ṽ2(t, k, η) = ik

k2 + η2 ω̃0(k, η + kt).
(8)
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Using this explicit characterization, one can prove damping with algebraic rates
and further show that the rates are optimal and that the regularity requirements on
ω0 are necessary.

Lemma 2.5 (Compare [LZ11, Chapter 4]). Let ω0 ∈ L2(T× R) be given and
let v1, v2 satisfy (8). Then, as t→∞,

(I) v2
L2

−−→ 0.
(II) ṽ1(t, k, η)→ 0 for any k 6= 0 and almost every η ∈ R. The average in x,

ṽ1(t, 0, η), is time-independent.
(III) v converges to the shear flow U(y) := ∂−1

y 〈ω0〉x in the sense that

v − (U(y), 0) L2

−−→ 0.

(IV) Suppose additionally that ω0 ∈ H−1
x H1

y , then

‖v − (U(y), 0)‖L2 = O(t−1)‖ω0‖H−1
x H1

y
.

(V) Suppose additionally that ω0 ∈ H−1
x H2

y , then

‖v2‖L2 = O(t−2)‖ω0‖H−1
x H2

y
.

(VI) These regularity requirements are necessary for uniform estimates and the
decay rates are optimal, even under higher regularity assumptions.

(VII) Considering the velocity field moving with the flow V (t, x, y) := v(t, x −
ty, y), for any s1, s2 ∈ R and any s3 ∈ [0, 1], s4 ∈ [0, 2]

‖V − (U(y), 0)‖Hs1x H
s2
y
≤ ‖ω0‖Hs1−1

x H
s2
y
,

‖V − (U(y), 0)‖Hs1x H
s2
y
≤ O(t−s3)‖ω0‖Hs1−1

x H
s2+s3
y

,

‖V2‖Hs1x H
s2
y
≤ O(t−s4)‖ω0‖Hs1−1

x H
s2+s4
y

.

Proof. We note that the change of variables (k, η) 7→ (k, η − kt), i.e. moving
with the flow, is volume-preserving. For any L2 estimate, instead of considering (8),
we may thus equivalently work with

Ṽ1(t, k, η) := − i(η − kt)
k2 + (η − kt)2 ω̃0(k, η),

Ṽ2(t, k, η) := ik

k2 + (η − kt)2 ω̃0(k, η).
(9)

These multipliers are uniformly bounded and converge to zero as t→ ±∞ for any
k 6= 0.

In the case k = 0, the second multiplier is identically zero, while the first one
yields

iη−1ω̃0(0, η)

in Fourier space and

∂−1
y 〈ω0〉x(y) =: U(y)

in real space. Subtracting (U(y), 0) from V , we may thus restrict to frequencies
k 6= 0.

We note that the multipliers in (9) only tend to zero point-wise but not uniformly.
More precisely, let k 6= 0 be given and consider some (very large) time T > 0. Then,
for η0 := kT , the time T is critical and hence, in this case,

ik

k2 + (η0 − kT )2 = ik

k2 = i

k
.
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As a consequence, for any given k 6= 0 and any T > 0, the estimate

‖Ṽ1(T, k, ·)‖L2(R) ≤
1
|k|
‖ω̃0(k, ·)‖L2(R),

is sharp in the sense that there exists ω0 ∈ L2(T ∈ R) (localized in Fourier space
around (k, η0) with η0 = kT ) such that

‖Ṽ1(T, k, ·)‖L2 ≥ 1
2|k| ‖ω̃0(k, ·)‖L2 .(10)

We, however, stress that a given ω0 ∈ L2 can not be concentrated in Fourier space
around modes (k, kT ) for arbitrarily many times T . In the following, we thus use
the L2 integrability of ω0 and a cut-off in Fourier space to prove (I)-(III).

We claim that, for a given ω0 ∈ L2(T × R), for any ε > 0 there exists a time
T = T (ω0, ε) > 0 such that, for any time t > T

‖v(t, x, y)− (U(y), 0)‖L2
x,y(T×R) ≤ ε‖ω0‖L2(T×R).(11)

The results (I)-(III) then follow from the claim by letting ε tend to zero.
Let thus ω0 ∈ L2(T× R) be given and let ε > 0. Then, by the L2 integrability

of ω0 and Plancherel’s theorem, there exists an R1 = R1(ω0, ε), such that

‖ω̂0(k, y)1|k|>R1‖L2
k,y

(Z×R) ≤
ε

4‖ω0‖L2(T×R).

As there are only finitely many k ∈ Z such that |k| ≤ R1, by the L2 integrability in
y, choosing R2 = R2(ω0, ε, R1) sufficiently large, also

‖ω̃0(k, η)1|k|≤R11|η|>R2‖L2
k,η

(Z×R) ≤
ε

4‖ω0‖L2 .

Letting R := max(R1, R2), we hence obtain

‖ω̃0(k, η)(1− 1|k|≤R1|η|≤R)‖L2
k,η

(Z×R) ≤
ε

2‖ω0‖L2 .(12)

Using this as a cut-off, we split
ω0 = F−11|k|≤R1|η|≤RFω0 + F−1(1− 1|k|≤R1|η|≤R)F =: ωI + ωII .

We note that ωI is compactly supported in Fourier space and that ωII , by (12),
satisfies

‖ωII‖L2 ≤ ε

2‖ω0‖L2 .

Using (9), the contribution of ωII to the velocity field V (and equivalently v) is
controlled by∥∥∥∥∥ 1√

k2 + (η − kt)2
ω̃II

∥∥∥∥∥
L2
k,η

((Z\{0})×R)

≤ ‖ωII‖L2(T×R) ≤
ε

2‖ω0‖L2(T×R),(13)

where we used (12) and that

sup
k∈(Z\{0}),η∈R

1√
k2 + (η − kt)2

≤ 1.

In order to estimate the contribution by ωI , we use that ωI is compactly supported
in Fourier space. Hence,∥∥∥∥∥ 1√

k2 + (η − kt)2
ω̃I

∥∥∥∥∥
L2
k,η

((Z\{0})×R)

≤ ‖ωI‖L2 sup
1≤|k|≤R,|η|≤R

1√
k2 + (η − kt)2

.

Given R, there exists T > 0, such that for any t > T ,

sup
1≤|k|≤R,|η|≤R

1√
k2 + (η − kt)2

≤ ε

2 .

41



Therefore, for t > T ,

∥∥∥∥∥ 1√
k2 + (η − kt)2

ω̃I(t, k, η)

∥∥∥∥∥
L2
k,η

((Z\{0})×R)

≤ ε

2‖ωI‖L
2(T×R) ≤

ε

2‖ω0‖L2(T×R).

(14)

Combining (13) and (14) then proves the claim, (11), and hence (I)-(III).

In order to prove (IV) and (V), we note that (9) can be improved by penalizing
large frequencies η via regularity. For example, in the case of Ṽ1, we estimate

i(η − kt)
k2 + (η − kt)2 ω̃0(k, η) = i(η − kt) < k >

(k2 + (η − kt)2) < η >

(< η >

< k >
ω̃0(k, η)

)
.

Controlling ∣∣∣∣ i(η − kt) < k >

(k2 + (η − kt)2) < η >

∣∣∣∣ = O(t−1),

then proves (IV). (V) is proven in the same way, using <η>2

<η>2 instead of <η><η> .

In order to prove (VI), we proceed as in estimate (10). Let thus T > 0 be a
given (large) time and consider a vorticity ω0, whose Fourier support is localized on

{(η, k) : |η − kT | < ε, |k| ≈ 10}

for some small ε. Then, considering (9) at time t = T , we see that on the support
of ω0 the multipliers are comparable to 1

|k| and hence

‖V |t=T − (U(y), 0)‖L2 ≈ ‖ω0‖H−1
x L2

y
.

Recalling the support assumption on ω0, a uniform estimate by O(t−1) can thus
hold only if

< t >1 ‖ω0‖H−1
x L2

y
≈ ‖ω0‖H−1

x H1
y
. 1.

In particular, control of just ‖ω0‖H−1
x L2

y
(or ‖ω0‖L2

xH
s
y
, s < 1) is not sufficient. The

necessity of control of ‖ω‖H−1
x H2

y
for (V) is proven in the same way.

The last statement, (VII), follows by noting that all preceding estimates are
invariant under multiplication with < k >s1< η >s2 and interpolating between the
cases s3 = 0, 1 and s4 = 0, 2, respectively. �

Following the same approach as in Lemma 2.4 of the previous Section 2 (or by
time-reversibility), we note that, prior to the respective critical times, the multipliers
in (9) can be increasing:

Lemma 2.6. Let η0, k0 with k0, η0 < 0 be given and let ω0 ∈ L2 be localized in
Fourier space around the frequency (k0, η0). Then the corresponding kinetic energy,
‖v‖2L2 , is increasing for 0 < t < η0

k0
=: tc.

At the critical time tc:

‖v(tc)‖L2 ≥ 1
2

√
k2

0 + η2
0

|k0|
‖v(0)‖L2 .

Proof. Using (9), we compute

‖v(t)‖2L2 =
∑
k

∫ 1
k2 + (η − kt)2 |ω̃0(k, η)|2dη.
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Taking the localization of the support of ω̃0 into account, the multiplier is mono-
tonically increasing until the critical time tc. Evaluating at k0, η0 and at the times
0, tc, we thus obtain a quotient

1
k2

0 + (η0 − tck0)2

/ 1
k2

0 + η2
0

= k2
0 + η2

0
k2

0
,

which yields the result. �

The growth and asymptotic decay, together with the involved regularity require-
ments, are known as the Orr mechanism.

As shown in [Zil12] and as we recall in Chapter 4, similar results also hold for
fairly general monotone shear flows or even diffeomorphisms with some shearing
structure. This also extends to more general domains, including the physically
relevant finite periodic channel. In our proof, we follow a similar approach as given
by Lin and Zeng, [LZ11].

4. Implications for Vlasov-Poisson

In Section 3 we have introduced the Vlasov-Poisson equations

∂tf + (v, F [f ](t, x)) · ∇x,vf = 0,
∇x,v · (v, F [f ](t, x)) = 0,

F [f ] = ∇W ∗x (ρ− 〈ρ〉x),

ρ(t, x) =
∫
f(t, x, v)dv,

(VP)

as well as their linearization around homogeneous densities f0(v)

∂th+ v · ∇xh = −F [h] · ∇vf0,

F [h] = ∇W ∗x ρ− 〈ρ〉x,

ρ(t, x) =
∫
h(t, x, v)dv.

As discussed in Section 4, these equations exhibit neither dissipation, nor entropy
increase or other usual damping mechanisms and indeed the Vlasov-Poisson equations
are even time-reversible. It was thus a very surprising result due to Landau, [Lan46],
that these equations exhibit damping behavior around homogeneous densities (on a
linearized level).

In this section, we provide simplified heuristics for the damping mechanism by
considering the free transport dynamics instead of the evolution by the linear and
nonlinear Vlasov-Poisson equations. We thus assume the (small) force field to yield
a negligible perturbation to the dynamics and treat f or h as exact solutions of free
transport

∂tf + v · ∇f = 0,
(t, x, v) ∈ R× T× R.

(T)

and consider how the force field F [f ] evolves under the free transport dynamics.
A discussion of actual linear Landau damping and Villani and Mouhot’s results,
[MV11], on nonlinear Landau damping follows in Chapter 3.

This section is based on a discussion in the works of Mouhot and Villani,
[MV11], [MV10a], which was also used for the introductory discussion in the
author’s Master’s thesis, [Zil12].
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Considering some smooth initial data fin, we recall that the explicit solution of
the free transport equation is given by

f(t, x, v) = fin(x− tv, v),
f̃(t, k, η) = f̃in(k, η + kt),

and that f weakly converges to the x average. Thus,

ρ− < ρ >x⇀ 0,

and

F [f ] = ∇W ∗x (ρ− < ρ >x)→ 0,

which is the observed damping phenomenon.
In order to obtain a more quantitative description, we note that

Fx(F [f ])(t, k) = kŴ (k)ρ̂(t, k) = kŴ (k)f̃in(k, kt).

Lemma 2.7 (Damping under free transport dynamics). Let fin be given and let
f(t) be the solution of the free transport equations with initial datum f0. Suppose
further that for some s > 0, f̃in satisfies

sup
η,k
| < η >s f̃in(k, η)| < C <∞.

Then the density ρ associated to f(t), i.e.

ρ(t, x) =
∫
f(t, x, v)dv,

satisfies

|Fρ(t, k)| = |f̃in(k, kt)| = O(< kt >−s).

Suppose further that fin is Gevrey regular, i.e. that for all k and some λ, α > 0,
fin satisfies

‖eλ|η|
α

f̃in(k, η)‖L2
η
< C <∞.

Then for any λ′ < λ, ρ also satisfies

|Fρ(t, k)| = |f̃in(k, kt)| = O(e−λ
′|kt|α).

Furthermore, F [f ] decays:

|Fx(F [f ])(t, k)| = |kŴ (k)f̃in(k, kt)| = O(e−λ
′|kt|α).

Proof. Considering η = kt yields the results.
We remark that the supremum norm in Fourier space is less commonly used

than for example L2 based Sobolev norms:

‖ < η >s f̃in(k, η)‖L2
η
.

Results for those spaces can be obtained using embeddings. In the Gevrey case
this distinction is less apparent, as, choosing λ′ slightly smaller, one may freely use
embeddings. �

From this free transport model, we observe several heuristics:
• Higher regularity of fin results in faster decay of ρ and F [f ].
• The regularity is necessary, i.e. uniform estimates on the decay rate require
fin to be regular.
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• The dependence of the decaying factors on t is via kt. Hence, higher modes
decay faster and a lower bound on |k| is needed to obtain uniform decay
rates.

• Gevrey 1 regularity, i.e. α = 1, results in exponential decay of F [f ].
The exponential decay of the force field for the Vlasov-Poisson equations is the
experimentally observed Landau damping.

We stress again that this section’s discussion only provides heuristics for Landau
damping, as we considered F [f ] for a solution f of free transport instead of F [h] for
a solution of the (linearized) Vlasov-Poisson equation. While it heuristically seems
reasonable to expect that this behavior persists also for the (linearized) Vlasov-
Poisson dynamics, provided the force field F is small initially, this, of course, has to
be proven and assumptions on the potential W generating F have to be imposed.

In the following Chapter 3, we briefly sketch a proof of linear Landau damping
and, in Section 2, we comment on the additional challenges and effects arising in the
nonlinear setting such as plasma echoes and the resulting potential loss of regularity.
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CHAPTER 3

Landau damping

In Section 4 we introduced the Vlasov-Poisson equations

∂tf + (v, F [f ](t, x)) · ∇x,vf = 0,
∇x,v · (v, F [f ](t, x)) = 0,

F [f ] = ∇W ∗x (ρ− 〈ρ〉x),

ρ(t, x) =
∫
f(t, x, v)dv,

(VP)

as well as their linearization around homogeneous solutions, f = f(v), and discussed
similarities with the 2D Euler equations.

We have further seen that, under free transport dynamics, the force field is
damped with a rate depending on the regularity of the initial data. As these
heuristics neglect the changes of the dynamics by the force field, they only provide
a motivation to expect Landau damping for small perturbations to homogeneous
densities. It thus remains to establish that the actual solutions, evolving by the
(linear) Vlasov-Poisson equations, behave similarly enough to free transport such
that damping still holds.

In this chapter we briefly review the classical results on linear Landau damping
and which type of control on F and the initial data is necessary to derive these
results. Here a particular focus is on the technical approaches and the role of gliding
regularity or moving with a chosen flow. Subsequently we review and discuss some
of the central challenges arising for nonlinear Landau damping, such as loss of
regularity and plasma echoes.

The discussions of both linear and nonlinear Landau damping follow the works
of Villani and Mouhot, [MV11], [MV10a], [MV10b], which have also been the
basis of the introductory discussions in [Zil12].

1. Linear damping

In this section, we consider the linearized Vlasov-Poisson equations around an
analytic, homogeneous density f0(v)

∂th+ v · ∇xh = −F [h] · ∇vf0,

F [h] = ∇W ∗x (ρ− 〈ρ〉x),

ρ(t, x) =
∫
h(t, x, v)dv,

(LVP)

and sketch a proof of linear Landau damping for smooth solutions satisfying some
of the common stability criteria.

As discussed in Chapter 2, we regard free transport as the main underlying
dynamics. Hence, we employ Duhamel’s formula to express the linear Vlasov-Poisson
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equation as an integral equation

h(t, x, v) = hin(x− tv, v)−
∫ t

0
S(τ, x− (t− τ)v, v)dτ,

F [h](t, x) = ∇W ∗x (ρ− 〈ρ〉x),

ρ(t, x) =
∫
h(t, x, v)dv,

where

S(t, x, v) := F [h](t, x) · ∇vf0(v).

Employing a Fourier transform, we compute that h satisfies

h̃(t, k, η) = h̃in(k, η + kt)−
∫ t

0
S̃(τ, k, η + k(τ − t))dτ.

By the product structure of S

S̃(τ, k, η) = 4π2k · ηŴ (k)ρ̂(τ, k)f̃0(η).

Considering η = 0, we thus obtain a closed equation for ρ̂(t, k) = h̃(t, k, 0):

ρ̂(t, k) = h̃in(k, kt)−
∫
K0(t− τ, k)ρ̂(τ, k)dτ,

K0(t, k) : = 4π2Ŵ (k)f̃0(kt)|k|2t.
(15)

As the force field, F , depends on h only via ρ, we in the following only consider
η = 0.

We note that the integral in (15) is a convolution in time and that the equation
is thus of the form of a Volterra equation, i.e.

φ(t) = a(t) +
∫ t

0
K(t− τ)φ(τ)dτ,(Volterra)

with k being an additional parameter. Introducing the complex Laplace transform,
(c.f. [MV10a, section 3.3.]):

φL(ξ) :=
∫ ∞

0
e2πξtφ(t)dt,

for ξ ∈ C, which we for the moment suppose to exist for ξ ∈ R, the convolution is
thus transformed into a product. Hence,

φL = aL +KLφL ⇔ φL = aL

1−KL
.

Supposing a to decay exponentially fast and KL to be bounded away from one
uniformly, the following lemma shows that φ(t) decays exponentially fast as well.

Lemma 3.1 ([MV10a, page 36]). Let K : R+ → C be such that

|K(t)| . e−λ0t,

|KL(ξ)− 1| ≥ κ > 0 for 0 ≤ <(ξ) ≤ Λ.

Suppose further that |a(t)| . e−λt. Then the solution φ of

φ(t) = a(t) +
∫ t

0
K(t− τ)φ(τ)dτ

exists and for any 0 ≤ λ′ < min(λ, λ0),

|φ(t)| . e−λ
′t.

48



Corollary 3.1. Let h be a solution of the linearized Vlasov-Poisson equation
and suppose that for all k

a(t) = h̃in(k, kt),

K(t) = 4π2Ŵ (k)f̃0(kt)|k|2t,
satisfy the assumptions of the Lemma 3.1.

Then
F [h] = ∇W ∗x (ρ− 〈ρ〉x)

decays exponentially fast.

This decay of the force field is measured in physical experiments and is commonly
referred to as Landau damping.

As the assumptions of the corollary are difficult to verify directly, in the
following we discuss weaker, sufficient conditions. The condition |a(t)| . e−λt

requires exponential decay of h̃ with respect to η, i.e.

sup
k
|h̃in(k, η)| = O(e−λ|η|).

For this it is sufficient to assume that hin is in a suitable Gevrey class:

Definition 3.1 (Gevrey). A function u : R 7→ C is in the Gevrey class Gs, s > 0,
iff for some λ > 0,

‖eλ|η|
1
s (Fu)(η)‖L2

η(R) <∞.

In particular, smaller s yield a stronger condition and s = 1 corresponds to analytic
regularity.

For the exponential decay of the kernel, |K(t)| . e−λt, by a similar argument it
is sufficient to require that f0 is in a suitable Gevrey class.

It remains to obtain a sufficient condition for the bound of the kernel:
|KL(ξ)− 1| ≥ κ >0 for 0 ≤ <(ξ) ≤ Λ.(16)

For this purpose, we use that
|KL(ξ)− 1| ≥ min(=(KL)(ξ), |1− |KL(ξ)||, |1−<(KL(ξ))|).

Hence, it suffices to verify that either:
(A) |=(KL(ξ))| > 0.
(B) |<(KL(ξ))| < 1 or |KL(ξ)| < 1.
It can be shown ([MV10a], section 4), that for λ ∈ R, w > 0, KL satisfies:

KL((λ− iw)|k|, |k|) = Ŵ (k)
∫
R

f0(v)
v − w + iλ

dv.(17)

We note that

| 1
v − w + iλ

| ≤ 1
|λ|

and similarly

| 1
v − w + iλ

| . 1
|w|

for |v| ≤ |w|/2. Letting λ or w tend to infinity and using the decay of f0 at infinity,
KL((λ− iw)|k|, |k|) tends to zero and hence (B) is satisfied.

It therefore remains to verify (A) and (B) on the compact set
{|w| ≤ Ω, 0 ≤ λ ≤ Λ}
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for given Ω,Λ > 0. Considering the limit λ ↓ 0 in (17), the Plemelj formula yields

lim
λ↓0

KL((w − iλ)|k|, |k|)

= Ŵ (k)
(
p.v.

∫
f ′0(v)
v − w

dv − iπf ′0(w)
)

=: z(k,w),

where p.v. denotes the principal value.
Considering (A) at such points and letting Λ be sufficiently small in (16), by

compactness of |w| ≤ Ω we may further restrict to (neighborhoods of) w such that
the imaginary part vanishes. As Ŵ is real-valued, by the product structure of (17),
either f ′0(w) = 0 or Ŵ (k) = 0. In the latter case however, the real part vanishes as
well and hence (B) is satisfied.

The control of points w ∈ R such that f ′0(w) = 0 is formalized in the Penrose
stability criterion:

Definition 3.2 (Penrose stability criterion [MV10a]). Let Ŵ be given. Then
f0 satisfies the Penrose stability criterion, if for some κ > 0 and for all w ∈ R

f ′0(w) = 0⇒ Ŵ (k)p.v.
∫

f ′0(v)
v − w

dv < 1− κ,

where again p.v. denotes the principal value.

By the preceding discussion, linear Landau damping thus holds, if
• hin is in a suitable Gevrey class.
• f0 is in a suitable Gevrey class.
• f0 satisfies the Penrose stability criterion.

Mouhot and Villani, [MV10a], discuss the application of this criterion to both
gravitational and electric interaction, which we briefly reproduce in the following.

Let f0 be a Gaussian density with standard deviation β and W corresponding
to gravitational interaction, i.e.

Ŵ (k) = −G
π|k|2

,

f0(v) = ρ0

√
β

2π e
−βv2

.

The Penrose stability criterion then reads

1 > Gρ0β

π|k|2
.

If we consider periodic perturbations with period length L, then k ∈ π
LZ \ {0}.

Taking the supremum over such k, the stability criterion requires an upper bound
on L:

L <

√
π

Gρ0β
=: LJ .

LJ is called the Jeans length.
When considering Coulomb interaction, the sign is changed and

1 > 0 > −Qρ0β

π|k|2
,

for all k. The stability criterion is thus always satisfied.
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2. Nonlinear damping

In the previous section, we have seen that Landau damping holds on a linearized
level. A natural question is thus whether this behavior persists for the nonlinear
dynamics.

Here, it has been noted by Backus, [Bac60], that the linear dynamics can a
priori not be expected to stay close to the nonlinear dynamics for large times. More
precisely, suppose that the nonlinearity is negligible and that thus h approximately
evolves by free transport. Then Sobolev norms of h asymptotically grow with
algebraic rates, e.g.

F(∇vh) ≈ ηh̃in(k, η + kt)

grows linearly in time, which contradicts the smallness assumption of the linearisation
for large times (c.f. [MV10a, chapter 4.3]). Thus, the asymptotic behavior of the
linear equation can a priori not be expected to provide information on the asymptotic
behavior of the nonlinear equation.

A further indication that the nonlinear dynamics could be very different from
the linear dynamics, is the phenomenon of so-called plasma echoes, experimentally
observed in 1968, [MWGO68]. In the experiment two modes are excited at different
times and damping is observed. However, after some amount of time, which can be
computed from the modes, a peak is observed. The damping has thus not removed
information but rather transfered it to high frequencies, where both excitations can
interact to strongly influence a third mode, which at its critical time manifests as a
peak.

Despite these obstructions Villani and Mouhot in their seminal work, [MV11],
proved nonlinear Landau damping for Gevrey regular perturbations around analytic,
homogeneous profiles. Following this work and using similar but slightly different
methods, Bedrossian and Masmoudi, [BM13b], proved nonlinear inviscid damping
for small Gevrey regular perturbations to Couette flow. These methods have subse-
quently also been adapted to Landau damping, [BMM13].

The main result of [MV11] is given by the following theorem.

Definition 3.3 (Damping Condition (L)). We say that f0 and W satisfy the
condition (L), if there are constants C0, λ, κ > 0 such that for any η ∈ Rd, |f̃0(η)| ≤
C0e

−2πλ|η|; and for any ξ ∈ C with 0 ≤ <ξ < λ,

inf
k∈Zd

|KL(ξ, k)− 1| ≥ κ.(L)

Theorem 3.1 (Nonlinear Landau damping [MV11, Theorem 2.6]). Let f0 :
Rd → R+ be an analytic velocity profile. Let L > 0 and W : TdL → R be an
interaction potential satisfying

∀k ∈ Zd, |ŴL(k)| ≤ CW
|k|1+γ

for some constants CW > 0, η ≥ 1. Assume that f0 and W satisfy the stability
condition (L) with some constants λ, κ > 0; further assume that, for the same
parameter,

sup
η∈Rd

(
|f̃0(η)|e2π|η|

)
≤ C0,∑

n∈Nd0

λn

n! ‖∇
n
vf

0‖L1(Rd) ≤ C0 < +∞.
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Then for any 0 < λ′ < λ, β > 0, 0 < µ′ < µ, there is ε = ε(d, L,CW , C0),
κ, λ, λ′, µ, µ′, β, γ) with the following property: if fi = fi(x, v) is an initial datum
satisfying

δ := ‖fi − f0‖λ,µ +
∫∫

Td
L
×Rd
|fi − f0|eβ|v|dvdx ≤ ε

then
• the unique classical solution f to the nonlinear Vlasov equation

∂f

∂t
+ v · ∇xf − (∇W ∗ ρ) · ∇vf = 0,

ρ =
∫
Rd
fdv,

(Vlasov)

with initial datum f(0, ·) = fi, converges in the strong topology as t→ ±∞,
with rate O(e−2πλ′|t|), to a spatially homogeneous equilibrium f±∞;

• the density ρ(t, x) =
∫
f(t, x, v)dv converges in the strong topology as

t→ ±∞, with rate O(e−2πλ′|t|), to the constant density

ρ∞ = 1
Ld

∫
Rd

∫
Td)L

fi(x, v)dxdv;

in particular the force F = −∇W ∗ ρ converges exponentially fast to 0.
• the spatial average 〈f〉(t, v) =

∫
f(t, x, v)dx converges in the strong topology

as t → ±∞, with rate O(e−2πλ′|t|), to f±∞. More precisely, there are
C > 0, and spatially homogeneous distributions f+∞(v) and f−∞(v),
depending continuously on fi and W , such that

sup
t∈R
‖f(t, x+ vt, v)− f0(v)‖λ′,µ′ ≤ Cδ;

∀η ∈ Rd, |f̃±∞ − f̃0(η)| ≤ Cδe−2πλ′|η|

and

∀(k, η) ∈ Zd × Rd,
∣∣L−df̃L(t, k, η)− f̃+∞(η)1k=0

∣∣ = O(e−2π λ′L t) as t→ +∞;

∀(k, η) ∈ Zd × Rd,
∣∣L−df̃L(t, k, η)− f̃−∞(η)1k=0

∣∣ = O(e−2π λ′L |t|) as t→ −∞;

∀r ∈ N, ‖ρ(t, ·)− ρ∞‖Cr(Td) = O(e−2π λ′L |t|) as |t| → ∞;

∀r ∈ N, ‖F (t, ·)‖Cr(Td) = O(e−2π λ′L |t|) as |t| → ∞;

∀r ∈ N,∀σ > 0, ‖F (t, ·)‖Crσ(Rdv) = O((e−2π λ′L |t|) as |t| → ∞.
In this statement Cr stands for the usual norm on r times continuously dif-

ferentiable functions, and Crσ involves in addition moments of order σ, namely
‖f‖Crσ = supr′≤r,v∈Rd |f (r′)(v)(1 + |v|σ)|.

Villani also gives some sufficient conditions for (L) to hold (cf. [MV11, Propo-
sition 2.1]).

2.1. Techniques for the nonlinear setting. In this subsection we briefly
comment on some of the main techniques used in the proof of nonlinear Landau
damping. For a more in-depth discussion we refer to Villani’s various publications
[MV10a], [MV10b], [MV11] as well as [BMM13] and [BM13b].

As we have seen in the previous section, in the linearized setting the equation
decouples in frequency and a fairly direct approach via explicit solutions. Therefore,
the integral representation using Duhamel’s formula is possible. The additional
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coupling in the nonlinear problem removes this simplifying structure and thus a
more abstract approach is necessary.

We briefly comment on the main tools used:
• As in the linearized setting, regularity can only be expected when moving
with the flow. This is formalized as gliding regularity, that is norms having
the transport frozen in as a parameter:

‖ · ‖Xt := ‖e−tS · ‖X ,

where ‖ · ‖X is a given norm and etS denotes the solution operator of the
underlying transport.

• h exhibits self-improvement, i.e. if F improves (regularity, decay) then so
does h.

• On short time scales h improves and thus also F .
• As compositions play an important role, many different norms adapted
to the problem are introduced and their behavior under composition is
analyzed.

• A Newton scheme together with the fast decay (analytic → exponential
decay) and estimates for the quasi-linear equation are used to deduce the
result.

In the following Chapters 4 and 5, we in particular make use of gliding regularity
and spaces adapted to the problem in order to prove linear inviscid damping for
general regular, strictly monotone shear flows. There we also show that boundary
effects in a finite periodic channel T × [0, 1] have a large effect on the dynamics.
As the Vlasov-Poisson equations are posed on the phase space T× R, there is no
corresponding setting for Landau damping.

Subsequently, in Chapter 6, we briefly comment on the additional challenges
in the nonlinear setting as seen in Bedrossian and Masmoudi’s work, [BM13a], on
nonlinear inviscid damping for Couette flow.

53





CHAPTER 4

Linear inviscid damping for monotone shear flows

As we have discussed in Section 3 of Chapter 2, the linearized Euler equations
around Couette flow in an infinite periodic channel, T× R, exhibit linear inviscid
damping. That is, any perturbation, (v, ω) ∈ L2(T×R)×H2(T×R), is damped to
a shear flow with algebraic rates:

‖v1 − 〈v1〉x‖L2 ≤O(t−1)‖ω0 − 〈ω0〉x‖H−1
x H1

y
,

‖v2‖L2 ≤O(t−2)‖ω0 − 〈ω0〉x‖H−1
x H2

y
,

(18)

and these decay rates are optimal. Going beyond this explicitly solvable (and in
this sense trivial) setting, however has remained open until recently.

As the main result of this thesis, in this chapter, we, for the first time, rigorously
prove linear inviscid damping for a large class of general, monotone shear flows.
Furthermore, in addition to the common setting of an infinite periodic channel,
T× R, we also prove linear inviscid damping in the physically relevant setting of
a finite periodic channel, T× [0, 1], with impermeable walls. There, we show that
the latter setting is not only technically more challenging due to the lack of Fourier
methods and similar tools, but that boundary effects play a non-negligible role.

Our strategy to prove linear inviscid damping is summarized by the following
figure:

Sobolev
regularity

Damping Scattering
trade for Duhamel

adapted energy estimates

Considering the linearized Euler equations around a strictly monotone shear
flow U(y),

∂tω + U(y)∂xω = U ′′v2,

as a perturbation around the underlying transport by the shear, we introduce the
scattered vorticity

W (t, x, y) := ω(t, x− tU(y), y).

As a first step and as we recall and expand on in Section 1, in the author’s
Master’s thesis, [Zil12], it has been shown that, assuming regularity of W , i.e. that

‖W (t)‖L2
xH

2
y
< C <∞

for all t ≥ 0, damping estimates of the form (18) can be extended to a class of
general, strictly monotone shear flows.
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Theorem 4.1 (Damping). Let U(y) be a strictly monotone, regular shear flow,
i.e. U ′ > c > 0 and U ′ ∈ W 2,∞. Then for any solution ω of the linearized 2D
Euler equations in either the infinite periodic channel or the finite periodic channel,
denoting

W (t, x, y) := ω(t, x− tU(y), y)− 〈ω0〉x(y),
the perturbation to the velocity field is controlled by

‖v1(t)− 〈v1〉x‖L2 ≤O(t−1)‖W (t)‖H−1
x H1

y
,

‖v2(t)‖L2 ≤O(t−2)‖W (t)‖H−1
x H2

y
.

Assuming control of ‖W‖L2
xH

2
y
uniformly in time, the velocity perturbation

hence decays with the optimal algebraic rates. As a consequence, under the same
assumption, it can be shown that ω converges to a free solution of the underlying
transport equation, i.e. that W converges to some asymptotic profile.

Theorem 4.2 (Scattering). Let W be a solution of the linearized 2D Euler
equations in either the infinite periodic channel or finite periodic channel and suppose
that U ′′ ∈ L∞ and that

‖v2(t)‖L2 = O(t−1−ε)

for some ε > 0. Then there exists W∞ ∈ L2, such that

W (t) L2

−−→W∞,

as t→∞.

It is thus shown that linear inviscid damping, like Landau damping, is at its
core a problem of regularity and stability. We further stress that the damping result
necessarily costs regularity, as the underlying transport is a unitary operation and
can therefore not yield any decay. Our strategy, which is depicted in the figure,
can thus not be easily closed. Instead, in order to prove stability results and in
particular a control of the regularity of W (t),

‖W (t)‖L2
xH

2
y
. ‖ω0‖L2

xH
2
y
,

we thus have to invest considerable technical effort to make use of finer properties
of the dynamics.
The main results of this Chapter are given by Theorem 4.11 in Section 2 and
Theorem 4.15 in Section 3, which establish L2

xH
2
y stability – and thus linear inviscid

damping with optimal algebraic rates as well as scattering– for the infinite periodic
channel and finite periodic channel, respectively.

More precisely, Theorem 4.11 establishes stability in arbitrary Sobolev spaces
Hm
x H

s(T×R), j,m ∈ N0. In contrast, in the setting of a finite channel, we establish
stability in Hm

x H
1
y (T× [0, 1]),m ∈ N0, for general perturbations. However, due to

boundary effects, for stability in Hm
x H

2
y (T× [0, 1]),m ∈ N0, we have to additionally

require that our perturbations ω0 have vanishing zero Dirichlet data, ω0|y=0,1 = 0.
In section 6, we show for the setting of Couette flow that this not only a technical
restriction but that otherwise ∂yW |y=0,1 asymptotically blows up with a logarithmic
rate and in particular forbids high regularity.

In Chapter 5, we further study these boundary effects in more detail and for
general shear flows and show that, depending on the perturbations considered, the
fractional Sobolev spaces Hm

x H
3/2
y and Hm

x H
5/2
y are critical for stability results.

More precisely, we show stability in all subcritical (periodic, for technical reasons)
fractional Sobolev spaces and blow-up in the supercritical spaces.
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Theorem 4.16 combines the stability, damping and scattering result and thus
proves linear inviscid damping for a large class of monotone shear flows, both in an
infinite periodic channel, as well as in a finite period channel:

Theorem 4.3. Let Ω be either the infinite periodic channel of period L, TL×R,
or the finite periodic channel, TL × [0, 1], with impermeable walls. Let U : R 7→ R
be a monotone shear flow and suppose that there exists c > 0 such that

0 < c < U ′ < c−1 <∞,

and that U ′′(U−1(·)) ∈W 3,∞. Suppose further that
L‖U ′′(U−1(·))‖W j+1,∞

is sufficiently small.
Then, for any ω0 ∈ L2

xH
2
y (TL × R) or ω0 ∈ L2

xH
2
y (TL × R) with zero Dirichlet

data, ω0|y=0,1 = 0, there exists a function W∞ ∈ L2
xH

2
y (Ω), such that the solution

ω of the linearized Euler equations on Ω with initial data ω0, satisfies
‖W (t)‖L2

xH
2
y
. ‖ω0‖L2

xH
2
y
,(Stability)

‖v(t)− 〈v〉x‖L2 = O(t−1)‖ω0‖L2
xH

2
y
,(Damping)

‖v2(t)‖L2 = O(t−2)‖ω0‖L2
xH

2
y
,

W (t)→L2 W∞, as t→∞,(Scattering)
where

W (t, x, y) = ω(t, x− tU(y), y).

1. Damping under regularity assumptions

In the following, we extend the damping result for Couette flow of Section 3
of Chapter 2 to more general shear flows (U(y), 0). Here, we consider the settings
of an infinite channel of period L, TL × R, as well as of a finite periodic channel,
TL × [0, 1]. In both settings the linearized Euler equations around a shear flow
(U(y), 0) are given by:

∂tω + U(y)∂xω = U ′′v2,

v2 = ∂xφ,

∆φ = ω,

(19)

where for the infinite channel, the velocity field v = ∇⊥φ is required to be integrable,
i.e.

φ ∈ Ḣ1(TL × R),

and in the case of a finite channel, TL × [0, 1], we consider impermeable walls, i.e.
we additionally

v2 = 0 for y ∈ {0, 1}.
For simplicity of notation, in the following we write T to denote the torus of period
1, T1, if there is no danger of confusion.

In view of the damping results of Chapter 2, we consider the right-hand-side,
U ′′v2, to be a perturbation and introduce the scattered vorticity

W (t, x, y) := ω(t, x− tU(y), y).(20)
As for Couette flow, taking the x average of the equation, we see that

〈W 〉x(t, y) = 〈ω〉x(t, y) = 〈ω0〉x(y)(21)
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is independent of time. By linearity and writing

ω0 = (ω0 − 〈ω0〉x) + 〈ω0〉x,

in the following without loss of generality we only consider the case 〈W 〉x ≡ 0.
The results of Section 3 of Chapter 2 for Couette flow show that regularity

of W is needed to establish damping results for the velocity field. In this section,
we assume W to be of regularity comparable to ω0 also in high Sobolev norms,
uniformly in time.

The proof of stability of W and hence control of

‖W (t)‖L2
xH

2
y
,

which is the main result of this chapter, is obtained in Sections 2 and 3.
Using the regularity, we establish damping results with the same optimal

algebraic rates as for Couette flow also for general, strictly monotone shear flows,
where the bounds are now in terms of W instead of ω0. In Section 1.1, these results
are further generalized and reformulated in terms of the respective flow maps.

As we consider general shear flows and also the setting of a finite periodic
channel, Fourier methods are not available anymore. We therefore obtain results by
duality in analogy to classical stationary phase arguments and as an extension of
[LZ11] and [BM10, Appendix A.1].

Theorem 4.4 (Generalization of [LZ11, Theorem 3]; [Zil12]). Let Ω be either
the infinite periodic channel, TL ×R, or the finite periodic channel, TL × [0, 1]. Let
ω be a solution to the linearized Euler equations, (19), around a strictly monotone
shear flow U(y), on the domain Ω. Suppose further that the initial datum, ω0,
satisfies 〈ω0〉x = 0 and that 1

U ′ ∈W
2,∞(Ω). Then the following statements hold:

(1) If W (t) ∈ H−1
x H1

y (Ω) for all times, then

‖v(t)− 〈v〉x‖L2(Ω) = O(t−1)‖W (t)‖H−1
x H1

y(Ω), as t→ ±∞.

(2) If W (t) ∈ H−1
x H2

y (Ω) for all times, then

‖v2(t)‖L2(Ω) = O(t−2)‖W (t)‖H−1
x H2

y(Ω), as t→ ±∞.

Proof. The results are established by testing. More precisely, in the infinite
channel case, denoting the stream function by φ, v satisfies

‖v − 〈v〉x‖2L2(TL×R) ≤ ‖v‖
2
L2 =

∫∫
TL×R

|∇⊥φ|2 =
∫∫

TL×R
|∇φ|2

= −
∫∫

TL×R
φ∆φ = −

∫∫
TL×R

φω,

(22)

where we used that φ decays sufficiently rapidly for |y| → ∞ and that ∆φ = ω.
Hence,

‖v − 〈v〉x‖L2(TL×R) . sup
ψ∈H1(TL×R),‖ψ‖H1≤1

∫∫
TL×R

ψω.(23)

It can be shown (see [Lin04, Lemma 3]), that an estimate of this form also holds in
the setting of a finite channel, where the supremum is instead taken over elements
of Ĥ1 := {ψ ∈ H1(TL × [0, 1]) : ψ = 0 for y ∈ {0, 1}}, i.e.

‖v‖L2(TL×[0,1]) . sup
ψ∈Ĥ1,‖ψ‖H1≤1

∫∫
TL×[0,1]

ψω.(24)
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Indeed, let φ be the stream function corresponding to v, then

∇⊥(φ− 〈φ〉x) = v − 〈v〉x,
φ− 〈φ〉x|y=0,1 = 0,

where we used that on the boundary, y ∈ {0, 1}

0 = v2 = ∂xφ,

and hence φ − 〈φ〉x|y=0,1 = 0. An integration by parts as in (22) thus yields no
boundary contributions and hence the same estimate.

For simplicity of notation, in the following we use Ĥ1 to also denote H1(TL×R),
so that both (23) and (24) read the same.

We further introduce fk(t, y) := FxW (t, k, y). Then,

‖v − 〈v〉x‖L2(Ω) . sup
ψ∈Ĥ1,‖ψ‖H1≤1

∣∣∣∣∫∫
Ω
ψω

∣∣∣∣
= sup
ψ∈Ĥ1,‖ψ‖H1≤1

∣∣∣∣∣∣
∑
k 6=0

∫
ψ−kfke

iktU(y)

∣∣∣∣∣∣ .
We integrate by parts to obtain∫

ψ−kfke
iktU(y)dy = −

∫
eiktU(y)

ikt
∂y

(
ψ−kfk
U ′

)
dy,(25)

where, in the case of a finite channel, the boundary terms

eiktU(y)

iktU ′(y)ψ−kfk
∣∣∣∣1
y=0

vanish as ψ vanishes on the boundary. Using the strict monotonicity of U and
Hölder’s inequality, we thus bound

‖v(t)− 〈v〉x‖L2(Ω) . sup
ψ∈Ĥ1,‖ψ‖H1≤1

O(t−1)‖W (t)‖H−1
x H1

y
‖ψ‖H1 ,(26)

which establishes the first statement.

In order to bound v2, we proceed slightly differently. Note that v2 satisfies

∆v2 = ∂xω.(27)

We thus introduce a potential ψ such that

∆ψ = v2.

In the case of an infinite channel, we require that ∇ψ ∈ L2(TL × R). For the finite
channel, we additionally require zero Dirichlet conditions, i.e.

ψ = 0, for y ∈ {0, 1}.(28)

Therefore,∫∫
TL×[0,1]

∂xωψ =
∫∫

TL×[0,1]
∆v2ψ

=
∫ 1

0
ψ∂xv2|Lx=0 dy +

∫
TL

ψ∂yv2|1y=0 dx−
∫∫

TL×[0,1]
∇v2 · ∇ψ

= −
∫ 1

0
v2∂xψ|Lx=0 dy −

∫
TL

v2∂yψ|1y=0 dx+
∫∫

v2∆ψ = ‖v2‖2L2(TL×[0,1]),
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where we used periodicity in x and that v2 and ψ vanish whenever y ∈ {0, 1}. Hence,
for both the infinite and finite channel,

‖v‖2L2(Ω) =
∫∫

Ω
∂xωψ.(29)

Using (29), we compute

‖v2‖2L2(Ω) =
∫∫

∂xωψ =
∑
k

∫
ikeiktU(y)fkψ−k

=
∑
k

∫
eiktU(y)

t
∂y

(
fkψ−k
U ′

)
.

Integrating by parts once more, we obtain

− 1
t2

∑
k

∫
eiktU

ik
∂y

(
1
U ′
∂y

(
fkψ−k
U ′

))
,

and an additional boundary term in the setting of a finite channel:

1
t2

∑ eiktU(y)

ikU ′
∂y

(
fkψ−k
U ′

)∣∣∣∣1
y=0

.

Using Hölder’s inequality, trace estimates and that 1
U ′ ∈ W

2,∞(Ω), we hence
obtain:

‖v2(t)‖2L2(Ω) . O(t−2)‖W (t)‖H−1
x H2

y(Ω)‖ψ‖H2(Ω).(30)

By classic elliptic regularity theory for the Laplacian, ‖ψ‖H2(Ω) . ‖v2‖L2(Ω). Thus,
dividing by ‖v‖L2(Ω) yields the result. �

Remark 2. • Assuming that ‖W (t)‖H−1
x H2

y
is bounded uniformly in t,

we hence obtain damping with the optimal algebraic rates. Furthermore,
slightly slower decay still holds, if the growth of the norms of W (t) can be
adequately controlled. Consider for example the last inequality (30):

‖v2(t)‖L2 . O(t−2)‖W (t)‖H−1
x H2

y
.

If ‖W (t)‖H−1
x H2

y
grows with a rate of O(tα), α < 2, then ‖v2(t)‖L2 =

O(tα−2) still decays.
• Analogously to Lemma 2.5, it is possible to interpolate between the two
estimates of Theorem 4.4 and hence obtain

‖v(t)− 〈v〉x‖L2(Ω) = O(t−s)‖W (t)‖H−1
x Hsy(Ω),

for 1 < s < 2, provided W (t) ∈ H−1
x Hs

y(Ω) for all times.

Consider the linearized Euler equations, (19), in either the finite or infinite
channel and introduce

V2(t, x, y) := v2(t, x− tU(y), y).
Then W satisfies

∂tW = U ′′(y)V2.(31)
Furthermore, since

(x, y) 7→ (x− tU(y), y)

is an L2 isometry,
‖V2‖L2(Ω) = ‖v2‖L2(Ω).

Integrating (31), sufficient decay of ‖v2‖L2 hence implies a scattering result.
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Theorem 4.5 (Scattering). Let Ω be either the infinite periodic channel or
finite periodic channel and let ω be a solution of the linearized Euler equations, (19),
on Ω with initial datum ω0 ∈ L2

xH
2
y (Ω). Let further U satisfy the assumptions of

Theorem 4.4, U ′′ ∈ L∞(Ω) and suppose that, for all times t, W satisfies

‖W − 〈W 〉x‖H−1
x H2

y(Ω) < C <∞.

Then there exist asymptotic profiles W±∞ ∈ L2
xH

2
y (Ω), such that

W
L2

−−→W±∞,

as t→ ±∞.

Proof. By Duhamel’s formula, which in our scattering formulation is just
integrating (31), W satisfies

W (t) = ω0 +
∫ t

0
U ′′V2(τ)dτ.(32)

By Theorem 4.4, we control∥∥∥∥∫ t

0
U ′′V2(τ)dτ

∥∥∥∥
L2(Ω)

≤ ‖U ′′‖L∞(Ω)

∫ t

0
O(τ−2)dτ.

Therefore, the limits W±∞ of (32) as t → ±∞ exist in L2(Ω) and by weak com-
pactness of the unit ball in H−1

x H2
y (Ω) and lower semi-continuity, also W±∞ ∈

H−1
x H2

y (Ω). �

In the following subsection, we further generalize the conditional damping
results from shear flows, (x, y) 7→ (x− tU(y), y), to diffeomorphisms Y , which are
structurally similar to shear flows.

1.1. Diffeomorphisms with shearing structure. Consider the full 2D Eu-
ler equations in either the infinite periodic channel, T × R, or the finite periodic
channel, T× [0, 1],

∂tω + v · ∇ω = 0,
∇× v = ω,

∇ · v = 0,
ω|t=0 = ω0,

(33)

where, in the case of a finite periodic channel, we consider impermeable walls, i.e.

v2 = 0, for y ∈ {0, 1}.(34)

Restricting to sufficiently regular solutions, by the results of Section 1.4, we
may equivalently consider the evolution of the flow maps Xt:

∂tXt = v(t,Xt),
X0 = Id,

ω(t,Xt) = ω0.

(35)

We further recall that, as v is divergence-free, DX satisfies

det(DX) ≡1,

and is thus measure-preserving and invertible. Hence, if ω0 ∈ Lp(Ω), then for any
time t also ω(t) ∈ Lp(Ω) and

‖ω(t)‖Lp(Ω) = ‖ω0‖Lp(Ω).
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However, we note that, in an infinite periodic channel, for solutions close to a
monotone shear flow, U(y), in general ω0 6∈ Lp(TL × R), since ∇ × (U(y), 0) =
−U ′(y) 6∈ Lp(TL × R). Furthermore, if Xt is not a shear, then

〈ω〉x = 〈ω0 ◦X〉x 6= 〈ω0〉x ◦X 6= 〈ω0〉x.

Thus, unlike in the linear setting, the “underlying shear”:

〈v〉x =
(
〈v1〉x(t, y)

0

)
(36)

corresponding to

∇× 〈v〉x = 〈ω〉x,
∇ · 〈v〉x = 0,

is not anymore time-independent.

In the following, we thus instead consider 〈ω〉x(t, y) and 〈v〉x(t, y) as given
functions and let Yt denote the flow by 〈v〉x, i.e. the solution map of

∂tf + 〈v〉x · ∇f = 0.

The flow, Yt, is then of the form

Yt : (x, y) 7→ (x− u(t, y), y),(37)

where

u(t, y) =
∫ t

0
〈v1〉x(τ, y)dτ.(38)

In particular, denoting

W (t) := (ω − 〈ω〉x) ◦ Y −1
t ,

we observe that, unlike (36):

〈W (t)〉x = 〈W (t)〉x ◦ Yt = 0.(39)

Similar to Theorem 4.4, in the following theorem we assume that Yt is a good
approximation to X in the sense that W (t) ∈ H2

x,y(Ω), uniformly in time.
We then study under which assumptions on Yt, the perturbation to the velocity

field v − 〈v〉x:
∇× (v − 〈v〉x) = ω − 〈ω〉x = W ◦ Yt,
∇ · (v − 〈v〉x) = 0,

(40)

decays with algebraic rates.

Theorem 4.6 (Damping in terms of the flow map Y and W ). Let W (t) ∈
L2
xH

1
y (Ω) be such that for all times

〈W (t)〉x = 0,(41)
‖W (t)‖L2

xH
1
y(Ω) < C <∞.(42)

Let further Yt be given by

Yt : (x, y) 7→ (x− u(t, y), y),(43)

and suppose ∂yu(t, y) ∈W 2,∞ satisfies

inf
t,y

1
t
∂yu(t, y) > c > 0.(44)
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Then, for any test function ψ ∈ H1(Ω) with compact support in y:

∫∫
ψW ◦ Y =

∫∫
ψ
d

dx

(
d

dx

)−1
W ◦ Y

=
∫∫

ψ
1

∂yu(t, y)
d

dy

(
d

dx

)−1
W ◦ Y +

(
d

dx

)−1
(∂yW ) ◦ Y )

=
∫∫ 1

∂yu(t, y)ψ
(
d

dx

)−1
((∂yW ) ◦ Y )− d

dy

(
1

∂yu(t, y)ψ
)(

d

dx

)−1
W ◦ Y.

(45)

In particular, taking the supremum over all test functions ψ such that ‖ψ‖H1(Ω) ≤
1, we obtain

‖v − 〈v〉x‖L2 .
1
ct
‖W‖H−1

x H1
y
.

1
ct
‖W‖L2

xH
1
y

= O(t−1).

Proof of Theorem 4.6. As W satisfies 〈W 〉x = 0 and as this property is
preserved under composition with Y ,

(
d
dx

)−1
W ◦ Y is well-defined and

W ◦ Y = d

dx

(
d

dx

)−1
W ◦ Y = d

dx

((
d

dx

)−1
W

)
◦ Y.

We further note that, by the chain rule
d

dx
W ◦ Y = ∂xY1(∂xW ) ◦ Y + ∂xY2(∂yW ) ◦ Y,

d

dy
W ◦ Y = ∂yY1(∂xW ) ◦ Y + ∂yY2(∂yW ) ◦ Y,

(46)

and that

det
(
∂xY1 ∂yY1
∂xY2 ∂yY2

)
≡ 1.(47)

Thus,
d

dx
W ◦ Y = ∂xY2

∂yY1

d

dy
W ◦ Y + 1

∂yY1
(∂yW ) ◦ Y.

The equation (45) hence follows using integration by parts.
In order to prove the desired damping result, we recall from the proof of Theorem

4.4, that

‖v − 〈v〉x‖L2 . sup
ψ:‖ψ‖H1(Ω)≤1

∫∫
ψ(ω − 〈ω〉x).

Using (45), the proof hence concludes by an application of Hölder’s inequality and
using that

1
∂yu(t, y) <

1
ct
.

�

As seen in the proof, the theorem can be formulated for flows not of the form
(37) and we can also allow det(DY ) to be non-constant. In this case, (45) is replaced
by∫∫

ψW ◦ Y =
∫∫ det(DY )

∂yY1
ψ

(
d

dx

)−1
((∂yW ) ◦ Y )− d

dy

(
∂xY2

∂yY1
ψ

)(
d

dx

)−1
W ◦ Y.
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However, in order to use
(
d
dx

)−1
W ◦ Y , we have to require that

〈W ◦ Y 〉x = 0,

which heavily restricts the possible choices for Y and W . In particular, in general
one can not choose W = ω0 − 〈ω0〉x and Y = X. However, as we will see in Section
4 of Chapter 6, flows of the form (37) are well-suited to study the behavior close to
shear flow solutions.

Thus far all damping results have been conditional under the assumption of
regularity. In the following two sections we remove this restriction by establishing
stability and thus regularity of the linearized Euler equations considered as a
scattering problem around the underlying transport equation,

∂tω + U(y)∂xω = 0.

2. Asymptotic stability for an infinite channel

As discussed in Section 1, thus far all our damping results are conditional under
the assumption that our scattered solution, W , of

∂tω + U(y)∂xω = U ′′v2, on TL × R× R 3 (x, y, t),
v2 = ∂x∆−1ω,

W (t, x, y) : = ω(t, x− tU(y), y),
(48)

stays regular in the sense that the L2, H1 and H2 norm of W remain uniformly
bounded or at least grow very slowly.

In the case of L2 stability, as discussed in Chapter 1, there are classical sta-
bility results due to Rayleigh, [Ray79], Fjørtoft, [Dra02, page 132], and Arnold,
[Arn66a]. However, these results use fundamentally different mechanisms, namely
orthogonality, cancellation or convexity, while we use mixing by shearing. In partic-
ular, our flows are in general not covered by any of these classical stability results.
Furthermore, we show that the shearing mechanism is more robust in the sense that
it can also be used to derive stability results in higher Sobolev norms.

Before stating the main result, we introduce coordinate transformations, notation
and perform a Fourier transform in x to simplify the equation.

As U : R 7→ R is strictly monotone, it is also bijective and invertible. We hence
introduce a change of variables, y 7→ z = U(y), as well as functions

f(z) : = U ′′(U−1(z)),
g(z) : = U ′(U−1(z)).

(49)

Here, it is convenient to assume that U ′ is not only bounded from below but also
from above so that the change of variables is bilipschitz. For simplicity of notation,
we often also assume that g > 0, i.e. U is strictly monotonically increasing, but all
described results remain valid for strictly monotonically decreasing U as well.

In the new coordinates, the linearized Euler equations are given by
∂tω + z∂xω = f(z)∂xφ,

(∂2
x + (g(z)∂z)2)φ = ω.

(50)

The underlying transport structure hence turns into Couette flow, which is par-
ticularly useful for computing derivatives and applications of a Fourier transform.
As a trade off, the equation for the stream function is not anymore given by the
Laplacian. However, the equation is still elliptic if and only if g is bounded away
from zero, i.e. iff U is strictly monotone.
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Changing to a scattering formulation, i.e. introducing
W (t, x, z) := ω(t, x− tz, z),
Φ(t, x, z) := φ(t, x− tz, z),

(51)

the left-hand-side of (50) simplifies and we obtain
∂tW = f(z)∂xΦ,

(∂2
x + (g(z)(∂z − t∂x))2)Φ = W.

We further note that, like Couette flow, the x average 〈W 〉x = 〈ω〉x satisfies
∂t〈W 〉x = f(z)〈∂xΦ〉 ≡ 0

and is thus conserved. We may therefore subtract 〈ω0〉x from ω0 and assume that
〈W 〉x(t, y) ≡ 0.

As f and g do not depend on x, after a Fourier transform in x the system
decouples and the frequency k plays the role of a parameter

∂tŴ = f(z)ikΦ̂, on (Z \ {0})× R× R 3 (k, y, t),

(−k2 + (g(z)(∂z − ikt))2)Φ̂ = Ŵ .

Furthermore, we adjust the definition of Φ by dividing by k2, which is well-defined,
as we assumed that

〈W 〉x(t, z) = Ŵ (k = 0, t, η) ≡ 0.
Relabeling z as y, we thus obtain the following simplified linearized Euler

equations in scattering formulation:

∂tŴ = if

k
Φ̂, on L(Z \ {0})× R× R 3 (k, y, t),

(−1 + (g(∂y
k
− it))2)Φ̂ = Ŵ .

(52)

Our main result of this section is given by the following stability theorem, which
is proved in Subsection 2.3.

Theorem 4.7 (Sobolev stability for the infinite periodic channel). Let s ∈ N0
and f, g ∈W s+1,∞(R) and suppose that there exists c > 0, such that

0 < c < g < c−1 <∞.

Suppose further that
L‖f‖W s+1,∞

is sufficiently small. Then for all m ∈ N0 and ω0 ∈ Hm
x H

s
y(TL×R), the solution W

of the linearized Euler equations in scattering formulation, (52), with initial datum
ω0 satisfies

‖W (t, x, y)‖Hmx Hsy . ‖ω0‖Hmx Hsy .

Remark 3. As (52) decouples with respect to k, in our stability results we
actually prove that, for any given k,

‖Ŵ (t, k, ·)‖Hsy . ‖ω̂0‖Hsy .

The results for Hm
x H

s
y are then obtained by summing in k. In particular, any result

for L2
xH

s
y can be easily shown to also hold for Hm

x H
s
y .

In the following sections, we hence consider k as a fixed parameter in (52) and
study the stability of Ŵ (t, k, ·) ∈ Hs(R).
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Remark 4. A main difficulty in establishing stability results such as Theorem
4.7 is that the operator

W 7→ Φ,

interpreted as an operator from L2 to L2 does not improve in time, as multiplication
by eikty is a unitary operation. More precisely, for any given k, the operator norm
of the solution operator to

e−ikty(−k2 + (g∂y)2)eikty(53)

is independent of time. As a consequence, the uniform damping results of Section
1 necessarily sacrifice regularity in order to obtain uniform decay. In the proof
of Theorem 4.7, we therefore have to use the more subtle mode-wise decay, where
for each fixed frequency, (k, η), the solution operator of (53) decays with rate
O(|η − kt|−2).

In the following, we first introduce the mechanism of our proof in a simplified
setting of a constant coefficient model, for which we can also compute the solution
explicitly. Using a perturbation argument, we establish L2 stability for the general
setting in Section 2.2 and subsequently extend the result to higher Sobolev norms
in Section 2.3.

2.1. A constant coefficient model. In order to obtain a better understand-
ing of the dynamics of the linearized Euler equations, in the following we consider a
simplified model. Here, we formally replace f(y) and g(y) in (52) by constants to
recover the decoupling:

∂tΛ = cΨ, on L(Z \ {0})× R× R 3 (k, y, t),

(−1 + (∂y
k
− it)2)Ψ = Λ,

Λ|t=0 = ω̂0(k, ·).

(CC)

Here, c ∈ C should be thought of as small and not necessarily imaginary. For
simplicity of notation, we choose the constant in front of (∂yk − it)

2 to be 1. In
general, min(g2) > 0 is the natural choice.

Like the linearized Euler equations in scattering formulation, (52), the model
problem, (CC), decouples with respect to k (c.f. Remark 3). In the following, we
hence write Λ(t) ∈ Hs = Hs(R) to denote that, for given k,

Λ(t, k, ·) ∈ Hs(R).

Estimates in the Sobolev spaces Hm
x H

s
y(TL × R) can then be obtained by summing

in k.

By our choice of constant coefficients in (CC), the model problem further
decouples after a Fourier transform in y and is explicitly solvable:

Theorem 4.8. Let ω0 ∈ L2, then the solution of the constant coefficient problem,
(CC), is given by

Λ = F−1 exp
(
c
(

arctan(η
k
− t)− arctan(η

k
)
))
Fω0.(54)

In particular, for any s ∈ N such that ω0 ∈ Hs, also Λ(t) ∈ Hs and

‖Λ(t)‖Hs ≤ e|c|π‖ω̂0(k, ·)‖Hs

uniformly in time.
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Remark 5. An estimate by π|<(c)| would of course also be possible in this case.
However, dropping the imaginary part of c corresponds to using antisymmetry and
orthogonality, which is more difficult to employ in the variable coefficient setting. As
we seek to obtain a robust strategy, we therefore limit ourselves to using the shearing
mechanism only.

While the constant coefficient case allows for an explicit solution, in the general
case a more indirect proof is required, which we introduce in the following.

The underlying method of our proof is to introduce a weight that decreases at
the right places at a large enough rate to counter potential growth. This method of
proof is reminiscent of integrating factors in ODE theory and is sometimes called
ghost energy, [Ali01]. Recent applications of similar methods can, for example, be
found in a more sophisticated form in the work of [BM13b].

For simplicity of notation, in the following we assume that c > 0, in order to
avoid writing absolute values.

Theorem 4.9. Let c > 0 and let Λ be the solution of the constant coefficient
problem, (CC), with initial data ω0. Let C > 0 and define

E(t) := 〈Λ,F−1
η exp

(
C arctan(η

k
− t)

)
FyΛ〉 =: 〈Λ, A(t)Λ〉.(55)

Then for |c| � C sufficiently small, E(t) is non-increasing and uniformly comparable
to ‖W (t)‖2L2 . In particular:

e−CπE(t) ≤ ‖Λ(t)‖2L2 ≤ eCπE(t) ≤ eCπE(0) ≤ e2Cπ‖ω0‖2L2 .(56)

Remark 6. As can be seen from the explicit solution, the assumptions of
Theorem 4.9 and the factors in (56) are not optimal for our decoupling model. For
example, even for large c, choosing C ≥ c would work. However, in the general
case, we additionally have to control the commutator of A and multiplication by f

ik .
Hence, at least for finite times, we can not avoid incurring an operator norm, eCπ,
and thus a condition of the form

c < Ce−Cπ,

which does not improve for large C. This is discussed in more detail in Section 2.2.
Therefore, we think of C as approximately 1 and require c to be small.

Proof of Theorem 4.9. We compute the time-derivative of E(t):
∂tE(t) = 〈Λ, ȦΛ〉+ 2<〈A(t)Λ, cΨ〉.(57)

By our choice of A, Ȧ is a negative semidefinite symmetric operator. For the proof
of our theorem it hence suffices to show that

〈Λ, ȦΛ〉 ≤ 0
is negative enough to absorb the possible growth of

|2<〈A(t)Λ, cΨ〉|.
This therefore ensures that ∂tE(t) ≤ 0.

Using Plancherel, it suffices to show that

∫
R

−CeC arctan( ηk−t)

1 + (ηk − t)2 |Λ̃(t, k, η)|2dη + 2
∫
R
<(c)e

C arctan( ηk−t)

1 + (ηk − t)2 |Λ̃(t, k, η)|2dη ≤ 0,

(58)

for arbitrary functions |Λ̃(t, k, η)|, which in this case holds if
2|c| ≤ C.

�
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2.2. L2 stability for monotone shear flows. In the following, we adapt the
L2 stability result, Theorem 4.9 of Section 2.1, to the linearized Euler equations in
scattering formulation, (52),

∂tW = if

k
Φ,

(−1 + (g(∂y
k
− it))2)Φ = W,

(k, y, t) ∈ L(Z \ {0})× R× R,

(59)

where for simplicity we dropped the hats, ·̂, from our notation. As noted in Remark
3, (59) decouples with respect to k. For the remainder of this chapter and also in
the following chapter, we thus follow the same convention as in Section 2.1 and use
W ∈ Hs(R) to denote that, for given k,

W (t, k, ·) ∈ Hs(R).

In analogy to the constant coefficient model, (CC), for a given solution W of
(59), we introduce the constant coefficient stream function Ψ:

(−1 + (∂y
k
− it)2)Ψ = W.(60)

We stress that, starting from this section, Ψ does not correspond to a solution of the
constant coefficient problem, (CC), but only to a given right-hand-side W in (60).

More generally, we introduce the following notation:

Definition 4.1 (Constant coefficient stream function). Let k ∈ L(Z \ {0}) and
let R(t) ∈ L2(R) be a given function. Then the constant coefficient stream function,
Ψ[R](t), is defined as the solution of

(−1 + (∂y
k
− it)2)Ψ[R](t, y) = R(t, y).(61)

Let further W be a solution of (59), then for any k, t

Ψ(t, k, y) := Ψ[W (t, k, ·)](t, y).(62)

As Φ and Ψ = Ψ[W ] satisfy very similar (shifted elliptic) equations, (59) and
(60), with the same right-hand-side, we can estimate Sobolev norms of Φ in terms
of Ψ, as is shown in Lemma 4.1. We note that, for this purpose, W need not solve
(59), but can be any given L2 function.

Lemma 4.1. Let 1
g ∈W

1,∞ and assume there exists c > 0 such that

0 < c < g < c−1 <∞.

Then for any W (t) ∈ L2(R), the solutions Φ,Ψ of

(−1 + (g(∂y
k
− it))2)Φ = W,(63)

(−1 + (∂y
k
− it)2)Ψ = W,(64)

satisfy

‖Φ‖2
H̃1 := ‖Φ‖2L2 + ‖(∂y

k
− it)Φ‖2L2 . ‖Ψ‖2L2 + ‖(∂y

k
− it)Ψ‖2L2 .

In the following, we establish L2 stability of (59) using Lemma 4.1 and subse-
quently give a proof of Lemma 4.1.
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Theorem 4.10 (L2 stability for the infinite periodic channel). Let W be a
solution to the linearized Euler equations, (59), and assume that g satisfies the
assumptions of Lemma 4.1. Let further A be defined as in Theorem 4.9, i.e.

I(t) := 〈W,A(t)W 〉L2(R) :=
∫
|W̃ (t, k, η)|2 exp

(
C arctan(η

k
− t)

)
dη,(65)

and suppose that
‖f‖W 1,∞L

is sufficiently small. Then, for any initial datum ω0 ∈ L2(R), I(t) is non-increasing
and satisfies

‖W (t)‖2L2 . I(t) ≤ I(0) . ‖ω0‖2L2 .

Proof of Theorem 4.10. Let Ψ[AW ] be as in Definition 4.1, i.e. Ψ[Aw] ∈ L2

is the solution of

(−1 + (∂y
k
− it)2)Ψ[AW ] = AW.

Then, by integration by parts, the time-derivative of I(t) satisfies

∂tI(t) = 〈W, ȦW 〉+ 2<〈AW, if
k

Φ〉

≤ 〈W, ȦW 〉+ 2‖f
k
‖W 1,∞‖Ψ[AW ]‖H̃1‖Φ‖H̃1 .

(66)

By Lemma 4.1, the last term is further controlled by

C1‖
f

k
‖W 1,∞‖Ψ[AW ]‖H̃1‖Ψ‖H̃1 .(67)

As A is a bounded Fourier multiplier and commutes with the Fourier multiplier
u 7→ Ψ[u], we control

‖Ψ[AW ]‖H̃1 ≤ ‖A‖‖Ψ‖H̃1 ≤ ‖A‖
√
|〈W,Ψ〉|,(68)

where we used that

‖Ψ‖2
H̃1 := ‖Ψ‖2L2 + ‖(∂y

k
− it)Ψ‖2L2 = −〈W,Ψ〉.(69)

Furthermore,

−〈W,AΨ〉 = −〈(−k2 + (∂y
ik
− t)2)Ψ, AΨ〉

=
∫

(k2 + (η
k
− t)2) exp

(
C arctan(η

k
− t)

)
|Ψ̃(t, k, η)|2dη.

(70)

Therefore,
‖Ψ‖2

H̃1 ≤ ‖A‖(−〈W,AΨ〉) ≤ ‖A‖2‖Ψ‖2
H̃1 ,

where we used that A−1 has the same operator norm as A. Thus, (67) is further
controlled by

C1‖
f

k
‖W 1,∞‖A‖2|〈W,AΨ〉|.(71)

Hence, combining (66) and (71), I(t) satisfies

∂tI(t) ≤ 〈W, ȦW 〉+ C2‖A‖2‖
f

k
‖W 1,∞ |〈W,AΨ[W ]〉|.

Using the explicit characterization of A and Ψ in Fourier space, we conclude as in
the proof of Theorem 4.9, provided

c := C2‖f‖W 1,∞‖A‖2 sup
k 6=0

1
|k|
. e2Cπ‖f‖W 1,∞L(72)
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is sufficiently small. �

Proof of Lemma 4.1. Testing (63) with 1
gΦ and integrating by parts, we

obtain: ∫ 1
g
|Φ|2 + g|(∂y

k
− it)Φ|2 = 〈W, 1

g
Φ〉.(73)

As by our assumption, c < g < c−1, the left-hand-side is bounded from below by

c(‖Φ‖2L2 + ‖(∂y
k
− it)Φ‖2L2) & ‖Φ‖2

H̃1 .

Hence, it remains to estimate 〈W, 1
gΦ〉 from above.

Using (64) and integrating by parts, we obtain

〈W, 1
g

Φ〉 =
〈

(−1 + (∂y
k
− it)2)Ψ, 1

g
Φ
〉

≤
√
‖Ψ‖2L2 + ‖(∂y

k
− it)Ψ‖2L2

√
‖1
g

Φ‖2L2 + ‖(∂y
k
− it)1

g
Φ‖2L2

.‖1
g
‖W 1,∞

√
‖Ψ‖2L2 + ‖(∂y

k
− it)Ψ‖2L2

√
‖Φ‖2L2 + ‖(∂y

k
− it)Φ‖2L2 .

Dividing by ‖Φ‖H̃1 =
√
‖Φ‖2L2 + ‖(∂yk − it)Φ‖

2
L2 , we thus obtain the result. �

Remark 7. Testing (63) with Φ instead of 1
gΦ has the small drawback of

introducing commutators involving gg′ on the left-hand-side, which one can control
either by a smallness or sign condition. The right-hand-side however is simplified.

Testing (64) with Ψ and integrating

〈W,Ψ〉 = 〈(−1 + (g(∂y
k
− it))2)Φ,Ψ〉(74)

by parts, we analogously obtain that

‖Ψ‖H̃1 . ‖Φ‖H̃1 .

One can more generally show that, up to a factor, both Φ and Ψ attain

‖W‖H̃−1 := sup{〈W,µ〉 : ‖µ‖2L2 + ‖(∂y
k
− it)µ‖2L2 ≤ 1}.

Remark 8. It is possible to reduce the requirements of Theorem 4.10 for large
‖A‖ slightly, by noting that

Ψ[AW ] = AΨ[W ],

as Fourier multipliers commute and that, as a positive multiplier, we can split
A = A1/2A1/2 for the purpose of our L2 bound. Hence, in (66), instead of estimating

2<〈AW, if
k

Φ〉 . C1‖
f

k
‖W 1,∞‖A‖2|〈W,AΨ〉|,

it suffices to obtain an estimate of the form

‖A1/2 if

k
Φ‖H̃1 . ‖A1/2Ψ‖H̃1 .

However, we note that for non-constant f , even for Φ = Ψ, such an estimate would
have to control

A1/2fA−1/2,(75)
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as an operator from H̃1 to H̃1. Asymptotically, i.e. for t→ ±∞, arctan(η−t)→ ±π2
and thus A±1 ⇀ e±C

π
2 Id. Therefore, for all C,

A1/2fA−1/2 ⇀ f,

as t→ ±∞. However, for each finite time we obtain commutators involving
C(arctan(η1 − t)− arctan(η2 − t)),

which are not bounded uniformly in C. Hence, at least for finite times, the operator
norm corresponding to (75) is not better than

ec1C‖f‖W 1,∞ .

for some c1 > 0, and thus only provides a small improvement over (72).

2.3. Iteration to arbitrary Sobolev norms. Thus far we have only shown
L2 stability. In order to derive damping, it remains to extend the result to ensure
stability in higher Sobolev norms.

In the constant coefficient model, this generalization is trivial as our equation is
invariant under taking derivatives. Hence, after relabeling, we may apply the L2

result to ∂syΛ.

Corollary 4.1. Let s ∈ N, ω0 ∈ Hs(R) and let Λ be the solution of the
constant coefficient problem, (CC), with initial data ω0. Then ∂syΛ solves the
constant coefficient problem, (CC), with initial data ∂syω0 and for c < Ce−Cπ,

‖∂syΛ‖L2 . ‖∂syω0‖L2 .

When taking derivatives of the linearized Euler equations, we obtain additional
lower order corrections due to commutators. More precisely, for given j ∈ N, ∂jyW
satisfies:

∂t∂
j
yW = i

k
∂jy(fΦ) =: i

k

∑
j′≤j

cjj′(∂j−j
′

y f)∂j
′

y Φ,

(−1 + (g(∂y
k
− it))2)∂j

′

y Φ = ∂j
′

y W + [(g(∂y
k
− it))2, ∂j

′

y ]Φ.
(76)

In order to control these corrections, we introduce a family of energies
Ij(t) = 〈∂jyW,A∂jyW 〉,(77)

and a combined energy:

Ej(t) =
∑
j′≤j

Ij′(t).(78)

With this notation our main theorem is:

Theorem 4.11 (Soboloev stability for the infinite periodic channel). Let j ∈ N
and assume f, g satisfy the assumptions of Theorem 4.10, f, g ∈ W j+1,∞(R) and
that

‖f‖W j+1,∞L

is sufficiently small. Then for any initial datum ω0 ∈ Hj(R), Ej(t) is non-increasing
and satisfies

‖W (t)‖2Hj . Ej(t) ≤ Ej(0) . ‖ω0‖2Hj .

As in the previous proof, we compare with constant coefficient potentials Ψ:

Lemma 4.2. Let j ∈ N and let g satisfy the assumptions of Theorem 4.11. Then,

‖∂jyΦ‖H̃1 .
∑
j′≤j

‖∂j
′

y Ψ‖H̃1 .
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Proof of Theorem 4.11. For any j′ ≤ j, Ij′ satisfies

∂tIj′(t) = 〈∂j
′

y W, Ȧ∂
j′

y W 〉+ 〈A∂j
′

y W,∂
j′

y

if

k
Φ〉

≤〈∂j
′

y W, Ȧ∂
j′

y W 〉+ ‖Ψ[A∂j
′

y W ]‖H̃1

∥∥∥∥fk
∥∥∥∥
W j′+1,∞

∑
j′′≤j′

‖∂j
′′

y Φ‖H̃1 .
(79)

Summing over all j′ ≤ j and using Lemma 4.2 and Young’s inequality, we hence
obtain:

∂tEj(t) ≤
∑
j′≤j

〈∂j
′

y W, Ȧ∂
j′

y W 〉+
∥∥∥∥fk
∥∥∥∥
W j+1,∞

∑
j′≤j

‖Ψ[A∂j
′

y W ]‖2
H̃1 + ‖∂j

′

y Φ‖2
H̃1


.
∑
j′≤j

〈∂j
′

y W, Ȧ∂
j′

y W 〉+
∥∥∥∥fk
∥∥∥∥
W j+1,∞

∑
j′≤j

‖Ψ[A∂j
′

y W ]‖2
H̃1 + ‖∂j

′

y Ψ‖2
H̃1

 .

(80)

We further note that ∂j′y Ψ = Ψ[∂j′y W ]. Hence, relabeling and applying the constant
coefficient L2 result, Theorem 4.9, we obtain that for any j′ and for c sufficiently
small

〈∂j
′

y W, Ȧ∂
j′

y W 〉+ c(‖Ψ[∂j
′

y W ]‖2
H̃1 + ‖Ψ[A∂j

′

y W ]‖2
H̃1) ≤ 0.(81)

Supposing that

sup
k 6=0
‖f
k
‖W j+1,∞ = ‖f‖W j+1,∞L� c,

summing (81) with respect to j and (80) hence imply

∂tEj(t) ≤ 0,(82)

which concludes our proof. �

Proof of Lemma 4.2. We prove the result by induction in j. The case j = 0
has been proven as Lemma 4.1 in Section 2.2. Hence, it suffices to show the induction
step j − 1 7→ j:

‖∂jyΦ‖H̃1 . ‖∂jyΨ‖H̃1 +
∑

j′≤j−1
‖∂j

′

y Φ‖H̃1 ,(83)

for j ≥ 1.

Recall that ∂jyΦ satisfies (76):

(−1 + (g(∂y
k
− it))2)∂jyΦ = ∂jyW + [(g(∂y

k
− it))2, ∂jy]Φ.

Proceeding as in the proof of Lemma 4.1, we thus test (76) with 1
g∂

j
yΦ to obtain an

estimate by

‖∂jyΦ‖2
H̃1 . ‖∂jyΨ‖H̃1‖∂jyΦ‖H̃1 + 〈∂jyΦ, [(g(∂y

k
− it))2, ∂jy]Φ〉,(84)

where we used that

|〈∂jyΦ, ∂jyW 〉| = |〈∂jyΦ, (−1 + (∂y
k
− it)2)∂jyΨ〉| ≤ ‖∂jyΨ‖H̃1‖∂jyΦ‖H̃1 .(85)

In order to estimate the contribution of the commutator,

[(g(∂y
k
− it))2, ∂jy]Φ,(86)
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we note that at least one of the derivatives ∂jy has to fall on the coefficient function
g. Hence, (86) can be expressed in terms of

∂j
′

y Φ, (g(∂y
k
− it))∂j

′

y Φ

and

(g(∂y
k
− it))2∂j

′

y Φ,(87)

with j′ ≤ j − 1. Integrating (∂yk − it) by parts in the case (87), (84) is thus further
estimated by

‖∂jyΦ‖2
H̃1 . ‖∂jyΨ‖H̃1‖∂jyΦ‖H̃1 + C(g)‖∂jyΦ‖H̃1

∑
j′≤j−1

‖∂j
′

y Φ‖H̃1 ,(88)

where C(g) depends on all derivatives of g up to order j.
Dividing (88) by ‖∂jyΦ‖H̃1 hence proves the induction step, (83), and concludes

our proof. �

As we discuss in Section 4, Theorem 4.11 in particular provides a uniform
control of

‖W‖L2
xH

2
y(TL×R),

and hence allows us close our strategy and thus prove linear inviscid damping with
the optimal decay rates for a large class of monotone shear flows in an infinite
periodic channel. Furthermore, as discussed in Section 1, as a consequence of
sufficiently fast damping, we obtain a scattering result via Duhamel’s formula.

Prior to this, however, we in the next Section 3 prove a similar stability result
in the case of a finite channel TL × [0, 1] with impermeable walls. There, boundary
effects are shown to have a non-negligible effect on the dynamics.

3. Asymptotic stability for a finite channel

Inspired by the Fourier proof in the whole space case, in the following we establish
stability in the setting of a finite periodic channel TL× [a, b]. The physically natural
boundary conditions in this setting are that the boundary in y is impermeable

v2 = 0, for y ∈ {a, b}.(89)

As the stream function φ satisfies

v2 = ∂xφ,

this, in particular, implies that φ restricted to the boundary only depends on time.

y

x ∈ T

(
U(y)
0

)
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Following the same reduction steps as in Section 2.1, in particular removing
the mean 〈W 〉x, φ and thus Φ vanishes identically on the boundary. The linearized
Euler equations in scattering formulation are hence given by

∂tW = if(y)
k

Φ,

(−1 + (g(y)(∂y
k
− it))2)Φ = W,

Φ|y=U(a),U(b) = 0,
(t, k, y) ∈ R× L(Z \ {0})× [U(a), U(b)].

(90)

In order to simplify notation, we translate in y and rescale L by a factor (see Section
1.3 of chapter 1) to reduce to [U(a), U(b)] = [0, 1].

As in Section 2 (c.f. Remark 3), the equations (90) decouple with respect to
k. Hence, in the following we again consider k as a given parameter and write
W (t) ∈ Hs to denote that

W (t, k, ·) ∈ Hs([0, 1]).
Our main result is given by the following theorem and proved in Section 3.3.

Theorem 4.12. Let W be a solution of (90), f, g ∈ W 3,∞ and suppose that
there exists c > 0 such that

0 < c < g < c−1 <∞.
Suppose further that

‖f‖W 1,∞L

is sufficiently small.
Then, for any ω0 ∈ H2([0, 1]) with ω0|y=0,1 = 0 and for any time t,

‖W (t)‖H2 . ‖ω0‖H2 .

As we show in the following, the case of a finite channel is not only technically
more involved, due to the lack of Fourier methods as well as the loss of the multiplier
structure for Φ (even for Couette flow), but the qualitative behavior also changes
due to boundary effects.

When differentiating the equation, we see that ∂nyΦ satisfies non-zero Dirichlet
boundary conditions. Computing the boundary conditions explicitly, we, in particu-
lar, show asymptotic H2 stability is possible if and only if ω0 satisfy zero Dirichlet
conditions, ω0|y=0,1 = 0. Higher Sobolev norms in turn would require even stronger
conditions, as we discuss in Section 6. As the damping results provide the sharp
algebraic decay rates already for H2 regularity, we restrict ourselves to considering
only L2, H1 and H2 stability. In Chapter 5, we improve these results to the (almost)
sharp Sobolev spaces H3/2−ε for general perturbations and H5/2−ε for perturbations
ω0 with vanishing Dirichlet boundary data, ω0|y=0,1 = 0, respectively.

3.1. L2 stability via shearing. As in Section 2.2, we consider the linearized
Euler equations, (90), this time in the finite periodic channel, TL × [0, 1],

∂tW = if(y)
k

Φ,(
−1 +

(
g(y)

(
∂y
k
− it

))2
)

Φ = W,

Φ|y=0,1 = 0,
(t, k, y) ∈ R× L(Z \ {0})× [0, 1],

(91)
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and additionally introduce the constant coefficient stream function Ψ(
−1 +

(
∂y
k
− it

)2
)

Ψ = W,

Ψy=0,1 = 0.
(92)

As in Definition 4.1 of Section 2.2, we introduce constant coefficient stream
functions for a given right-hand-side, where additionally prescribe boundary condi-
tions:

Definition 4.2 (Constant coefficient stream function for a finite periodic
channel). Let k ∈ L(Z \ {0}) and let R(t) ∈ L2([0, 1]) be a given function. Then
the constant coefficient stream function, Ψ[R](t), is defined as the solution of

(−1 + (∂y
k
− it)2)Ψ[R](t, y) = R(t, y),

Ψ[R](t, y)|y=0,1 = 0.
(93)

Let further W be a solution of (91), then for any k, t, we define

Ψ(t, k, y) := Ψ[W (t, k, ·)](t, y).(94)

If we considered periodic boundary conditions, in a Fourier expansion, Ψ[·]
would again be given by a multiplier and could be estimated explicitly in the same
way as in the setting of an infinite periodic channel, TL × R. As we however have
zero Dirichlet conditions, we can not anymore solve the evolution of a constant
coefficient model explicitly, but rather have to establish control of boundary effects
and growth of norms, using more indirect methods. Thus, stability results are
already non-trivial even for a constant coefficient model.

Emulating the proof of the L2 stability with a decreasing weight A(t) as in
Section 2.2, a natural replacement for the Fourier transform is given by the expansion
in an L2-basis (en).

In view of our zero Dirichlet conditions a natural choice of such a basis is

sin(ny), n ∈ N.

For the current purpose of L2 stability, however, it is advantageous to instead
consider an expansion in the Fourier basis

einy, n ∈ 2Z,

for which calculations greatly simplify, at the cost of worse mapping properties in
higher Sobolev spaces. This trade-off and the role of the choice of basis is discussed
in more detail in Section 5.

In the following we introduce several lemmata, which allow us to prove L2

stability in Theorem 4.13:
• Lemma 4.5 provides a definition of a decreasing weight A, as in Theorem
4.9, and proves that the constant coefficient stream function Ψ can be
controlled in terms of this weight. In the case of an infinite channel as
in Section 2, this result immediately followed from the explicit Fourier
characterization. In the setting of a finite channel, however, additional
boundary effects have to be controlled, which is accomplished by the basis
computations in Lemmata 4.3 and 4.4.

• Lemma 4.6 provides an estimate of Φ in terms of Ψ and hence a reduction
similar to Lemma 4.1 of Section 2.2.
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Lemma 4.3. Let n ∈ 2πZ and let Ψ[einy] be given by Definition 4.2, i.e. let
Ψ[einy] be the solution of

(−k2 + (∂y − ikt)2)Ψ[einy] = einy,

Ψ[einy]|y=0,1 = 0.

Then, for any m ∈ 2πZ,

〈Ψ[einy], eimy〉 = δnm
k2 + (n− kt)2 + k

(k2 + (m− kt)2)(k2 + (n− kt)2) (a− b),

where a, b solve (
ek+ikt e−k+ikt

1 1

)(
a
b

)
= −

(
1
1

)
.

Lemma 4.4. Let Ψ,W ∈ L2 solve

(−k2 + (∂y − ikt)2)Ψ = W,

Ψ|y=0,1 = 0.

Denote the basis expansion of W with respect to einy, n ∈ 2πZ, by

W (y) =
∑
n

Wne
iny.

Then W satisfies

|〈W,Ψ〉| . k−2
∑
n

<
n

k
− t >−2 |Wn|2.

Lemma 4.5. Define the operator A(t) by

A(t) : einy 7→ exp
(
−
∫ t

<
n

k
− τ >−2 dτ

)
einy = exp

(
arctan

(n
k
− t
))

einy.

Then A : L2 → L2 is a uniformly bounded, symmetric, positive operator and satisfies

‖W‖2L2 . 〈W,AW 〉 . ‖W‖2L2 ,

where the estimates are uniform in t. Furthermore, the time derivative Ȧ is sym-
metric and non-positive and there exists a constant C > 0 such that, for Ψ as in
Definition 4.2,

|〈W,AΨ〉|C + 〈W, ȦW 〉 ≤ 0.

Lemma 4.6. Let W ∈ L2, 0 < c < g < c−1 <∞, 1
g(y) , f(y) ∈ W 1,∞ and A as

in Lemma 4.5. Let W,Φ,Ψ solve

(k2 + (g(∂y − ikt))2)Φ = W,

Φy=0,1 = 0,
(95)

(k2 + (∂y − ikt)2)Ψ = W,

Ψy=0,1 = 0.
(96)

Then there exists a constant C such that

|〈AW, if
k

Φ〉| ≤ C

k
|〈AW,Ψ〉|.

With these lemmata we can now prove L2 stability:
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Theorem 4.13 (L2 stability for the infinite periodic channel). Let f, g ∈W 1,∞

and suppose that there exists c > 0, such that

0 < c < g < c−1 <∞.

Suppose further that

L‖f‖W 1,∞

is sufficiently small. Then for all ω0 ∈ L2, the solution W of the linearized Euler
equations, (90), with initial datum ω0, for any time t, satisfies

‖W (t)‖L2 . ‖ω0‖L2 .

Proof of Theorem 4.13. The time derivative of I(t) := 〈W,AW 〉 is con-
trolled by

2|〈AW, if
k

Φ〉|+ 〈W, ȦW 〉.

By Lemma 4.6 there exists a constant C1, such that

İ(t) ≤ C1

|k|
|〈AW,Ψ〉|+ 〈W, ȦW 〉.

Requiring |k| to be sufficiently large, C1
|k| ≤ C . Thus, Lemma 4.5 yields

İ(t) ≤ |〈W,AΨ[W ]〉|C + 〈W, ȦW 〉 ≤ 0.

In particular,

‖W (t)‖2L2 . I(t) ≤ I(0) . ‖ω0‖2L2 .

�

It remains to prove the previously stated Lemmata 4.3-4.6.

Proof of Lemma 4.3. The constant coefficient stream function for einy is
given by

Ψ[einy] = 1
k2 + (n− kt)2 (einy + aeky+ikty + be−ky+ikty),

where a, b solve (
ek+ikt e−k+ikt

1 1

)(
a
b

)
= −

(
1
1

)
.

Integrating against another basis function eimy, we obtain:

〈Ψ[einy], eimy〉 = 1
k2 + (n− kt)2

(
δnm +

eky+ikty
∣∣1
y=0

k + i(kt−m)a+
eky+ikty

∣∣1
y=0

−k + i(kt−m)

)
= 1
k2 + (n− kt)2

(
δnm +

k eky+ikty
∣∣1
y=0

k2 + (kt−m)2 a−
k eky+ikty

∣∣1
y=0

k2 + (kt−m)2 b

− i(kt−m)
k2 + (kt−m)2

(
−1
1

)(
ek+ikt e−k+ikt

1 1

)(
a
b

))
= δnm
k2 + (n− kt)2 + k

(k2 + (m− kt)2)(k2 + (n− kt)2) (a− b).

�
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Proof of Lemma 4.4. Using Lemma 4.3, we expand 〈W,Ψ〉 in our basis and
explicitly compute:

〈W,Ψ〉 =
∑
n,m

Wm〈eimy,Ψ[einy]〉Wn

=
∑
n,m

Wm

(
δnm

k2 + (n− kt)2 + k

(k2 + (m− kt)2)(k2 + (n− kt)2) (a− b)
)
Wn

=
∑
n

1
k2 + (n− kt)2 |Wn|2 + k(a− b)

(∑
n

1
k2 + (n− kt)2Wn

)(∑
m

1
k2 + (m− kt)2Wm

)

≤

(∑
n

|Wn|2

k2 + (n− kt)2

)1 + |k(a− b)|

∥∥∥∥∥ 1√
k2 + (m− kt)2

∥∥∥∥∥
2

l2m


.
∑
n

|Wn|2

k2 + (n− kt)2 .

�

Proof of Lemma 4.5. Expressed in the Fourier basis, einy, A(t) is a diagonal
operator with positive, monotonically decreasing coefficients that are uniformly
bounded from above and below by exp(±‖ < t >−2 ‖L1

t
) = e±π. It remains to show

|〈W,AΨ[W ]〉|C + 〈W, ȦW 〉 ≤ 0.
Modifying the proof of Lemma 4.4 slightly, we obtain that

|〈W,AΨ[W ]〉| .
∑

<
n

k
− t >−2 |Wn|2

.
∑

<
n

k
− t >−2 exp

(∫ t

<
n

k
− τ >−2 dτ

)
|Wn|2

= −〈W, ȦW 〉.
�

Proof of Lemma 4.6. Let Ψ[AW ] solve

(−1 + (∂y
k
− it)2)Ψ[AW ] = AW,

Ψ[AW ]y=0,1 = 0.
By integration by parts, we then obtain

|〈AW, if
k

Φ〉| ≤
√
‖Ψ[AW ]‖2L2 + ‖(∂y

k
− it)Ψ[AW ]‖2L2‖f‖W 1,∞

1
|k|

√
‖Φ‖2L2 + ‖(∂y

k
− it)Φ‖2L2

=:‖Ψ[AW ]‖H̃1‖f‖W 1,∞
1
|k|
‖Φ‖H̃1 .

By our basis characterization, and as A is a bounded, positive multiplier on our
basis,

‖Ψ[AW ]‖2L2 + ‖(∂y
k
− it)Ψ[AW ]‖2L2 = |〈AW,Ψ[AW ]〉| . ‖A‖|〈AW,Ψ〉|,

so it only remains to control the factors involving Φ. Testing (95) with − 1
gΦ and

using (96), we obtain:

‖Φ‖2L2 + ‖(∂y
k
− it)Φ‖2L2 . −<〈W,

1
g

Φ〉 = <〈(1− (g(∂y
k
− it))2)Φ, 1

g
Φ〉

. ‖1
g
‖W 1,∞‖Ψ‖H̃1‖Φ‖H̃1 .
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Dividing by ‖Φ‖H̃1 :=
√
‖Φ‖2L2 + ‖(∂yk − ikt)Φ‖

2
L2 , then provides the desired esti-

mate. �

This concludes our proof of Theorem 4.13 and thus establishes L2 stability for
a large class of strictly monotone shear flows in a finite periodic channel. Unlike the
setting of an infinite periodic channel, where in Section 2.3 the L2 stability results
could be extended to arbitrarily high Sobolev norms, in the following subsections
we show that boundary effects introduce additional correction terms (even in the
constant coefficient model), which qualitatively change the stability behavior of the
equations.

3.2. H1 stability. In order to extend the stability results to H1, we proceed
as in Section 2.3 and differentiate the linearized Euler equations for a finite periodic
channel, (91). We note, that ∂yΨ and ∂yΦ do not anymore satisfy zero Dirichlet
boundary conditions, and thus split ∂yΦ = Φ(1) +H(1):

∂t∂yW = if

k
(Φ(1) +H(1)) + if ′

k
Φ,

(−1 + (g(∂y
k
− it))2)Φ(1) = ∂yW + [(g(∂y − it))2, ∂y]Φ,

Φ(1)
y=0,1 = 0,

H(1) = ∂yΦ− Φ(1).

(97)

The homogeneous correction, H(1), hence satisfies

(−1 + (g(∂y
k
− it))2)H(1) = 0,

H(1)|y=0,1 = ∂yΦy=0,1.
(98)

The control of the contributions by Φ and Φ(1) is obtained as in Section 3.1,
while the control of the boundary corrections due to H(1) is given by the following
lemmata.

Lemma 4.7 (H1 boundary contributions). Let A(t) be a diagonal operator
comparable to the identity, i.e.

A(t) : einy 7→ An(t)einy,
1 . An(t) . 1,

ω0 ∈ H1, f, g ∈W 2,∞ and suppose that 0 < c < g < c−1 <∞. Let further W be the
solution of (97).

Then, for any 0 < γ, β < 1
2 there exists a constant C = C(γ, β, ‖f‖W 2,∞ , c, ‖g‖W 2,∞),

such that
|〈A∂yW, fH(1)〉| ≤ C < t >−2(1−γ) ‖ω0‖2H1 + C

∑
n

< t >−2γ<
n

k
− t >−2β |(∂yW )n|2.

If additionally ω0|y=0,1 ≡ 0, then for any 0 < β < 1
2 there exists a constant

C = C(γ, β, ‖f‖W 2,∞ , c, ‖g‖W 2,∞), such that

|〈A∂yW, fH(1)〉| .
∑
n

< t >−1<
n

k
− t >−2β |(∂yW )n|2.

Lemma 4.8 (H1 stream function estimate). Let A,W, f, g satisfy the assumptions
of Lemma 4.7. Then

|〈A∂yW,
if

k
Φ(1) + if ′

k
Φ〉| . k−1‖f‖W 2,∞(‖Ψ[A∂yW ]‖2

H̃1 + ‖Ψ[∂yW ]‖2
H̃1 + ‖Ψ[W ]‖2

H̃1).

Using Lemmata 4.7, 4.8 and the lemmata of Section 3.1, we prove H1 stability.
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Theorem 4.14 (H1 stability for the finite periodic channel). LetW be a solution
of the linearized Euler equations, (97), and suppose that f, g ∈W 2,∞ and that there
exists c > 0, such that

0 < c < g < c−1 <∞.

Further define a diagonal weight A(t):
A(t) : einy 7→ An(t)einy,

An(t) = exp
(
−
∫ t

0
<
n

k
− τ >−2 + < τ >−2γ<

n

k
− τ >−2β dτ

)
,

(99)

where β, γ < 1
2 and 2γ + 2β > 1. Also suppose that

‖f‖W 2,∞L

is sufficiently small. Then, for any ω0 ∈ H1([0, 1]), the solution W of (91) (and
hence (97)) with initial datum ω0, satisfies

‖W (t)‖2H1 . I(t) := 〈A(t)W,W 〉+ 〈A(t)∂yW,∂yW . I(0) . ‖ω0‖H1 .

If additionally ω0|y=0,1 ≡ 0, then I(t) is non-increasing.

Proof of Theorem 4.14. Let W be a solution of (97), then we compute
d

dt
〈∂yW,A∂yW 〉 = 〈Ȧ∂yW,∂yW 〉+ 2<〈A∂yW,

if

k
Φ(1) + if ′

k
Φ〉+ 2<〈A∂yW,

if

k
H(1)〉.

Using Lemma 4.8 in combination with Lemma 4.4, we estimate the second term by:

2<〈A∂yW,
if

k
Φ(1) + if ′

k
Φ〉

.
‖f‖W 2,∞

|k|
(‖Ψ[A∂yW ]‖2

H̃1 + ‖Ψ[∂yW ]‖2
H̃1 + ‖Ψ[W ]‖2

H̃1)

.
‖f‖W 2,∞

|k|
(|〈W, ȦW 〉|+ |〈∂yW, Ȧ∂yW 〉|).

Using Lemma 4.7, the last term is controlled by:

2<〈A∂yW,
if

k
H(1)〉

.
‖f‖W 2,∞

|k|
< t >−2(1−γ) ‖ω0‖2H1 + ‖f‖W

2,∞

|k|
∑
n

< t >−2γ<
n

k
− t >−2β |(∂yW )n|2,

or by

C1
‖f‖W 2,∞

|k|
∑
n

< t >−1<
n

k
− t >−2β |(∂yW )n|2,

if ω0|y=0,1 ≡ 0.

Hence, for

sup
k 6=0

‖f‖W 2,∞

|k|
sufficiently small,

2<〈A∂yW,
if

k
Φ(1) + if ′

k
Φ〉+ 2<〈A∂yW,

if

k
H(1)〉

can be absorbed by

〈Ȧ∂yW,∂yW 〉 = −
∑
n

An(t)
(
<
n

k
− t >−2 + < t >−2γ<

n

k
− t >−2β

)
|(∂yW )n|2 ≤ 0.
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Thus, I(t) satisfies
d

dt
I(t) .< t >−2(1−γ) ‖ω0‖2H1 ,

or, in the case of vanishing Dirichlet data, ω0|y=0,1 = 0,
d

dt
I(t) ≤ 0.

Integrating these inequalities in time concludes the proof. �

Proof of Lemma 4.7. Similar to the construction of Lemma 4.3, let uj , j =
1, 2, be solutions of

(−1 + (g(∂y
k
− it))2)u = 0

with boundary values
u1(0) = u2(1) = 1,
u1(1) = u2(0) = 0.

(100)

Recalling the sequence of transformations turning φ into Φ, the functions uj are
given by linear combinations of the homogeneous solutions

e±kG(y)+ikty,

where G(y) = U−1(y) satisfies G(y)′ = g(y).
Further recalling the boundary conditions in (98), H(1) is hence given by

H(1) = ∂yΦ(0)u1 + ∂yΦ(1)u2.

In order to compute ∂yΦ|y=0,1, we test the equation for Φ in (91), i.e.

(−1 + (g(y)(∂y
k
− it))2)Φ = W,

Φ|y=0,1 = 0,
(101)

with uj :

〈W,uj〉 = 〈(−1 + (g(∂y
k
− it))2)Φ, uj〉

= ujg(∂y
k
− it)(gΦ)

∣∣∣∣1
y=0
− gΦ(∂y

k
− it)(guj)

∣∣∣∣1
y=0

+ 〈Φ, (−1 + (g(∂y
k
− it))2)uj〉

= uj
g2

k
∂yΦ

∣∣∣∣1
y=0

,

where we used that Φ|y=0,1 = 0. Using the boundary values of uj , (100),

u1
g2

k
∂yΦ

∣∣∣∣1
y=0

= −g
2(0)
k

∂yΦ|y=0,

u2
g2

k
∂yΦ

∣∣∣∣1
y=0

= g2(1)
k

∂yΦ|y=1.

As k 6= 0 and g2 > c > 0, we may solve for ∂yΦ|y=0,1:

H(1) = k

g2(0) 〈W,u1〉u1 −
k

g2(1) 〈W,u2〉u2.(102)
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The boundary contribution can thus be explicitly computed in terms of u1, u2:

〈A∂yW, fH(1)〉 = k

g2(0) 〈W,u1〉〈A∂yW, fu1〉 −
k

g2(1) 〈W,u2〉〈A∂yW, fu2〉.

As the homogeneous solutions e±kG(y)+ikty and thus u1, u2 are highly oscillatory,
we integrate k〈W,uj〉 by parts and use that the evolution of (90) preserves boundary
values, i.e. W |y=0,1 = ω0|y=0,1. Denoting primitive functions of uj by Uj and using
that

e±kG(y)+ikty = 1
±kg + ikt

∂ye
±kG(y)+ikty,

we therefore obtain
k〈W,uj〉 = kUjω0|1y=0 − 〈∂yW,kUj〉

≤O(t−1)(‖ω0‖H1 + |〈∂yW,u1〉|+ |〈∂yW,u2〉|).
(103)

Using Young’s inequality, this yields a bound by∣∣∣〈A∂yW, fH(1)〉
∣∣∣ . < t >−1 (|〈∂yW,u1〉|2 + |〈A∂yW, fuj〉|2)

+ < t >−1 |〈A∂yW, fuj〉|‖ω0‖H1

. < t >−2γ (|〈∂yW,u1〉|2 + |〈A∂yW, fuj〉|2)

+ < t >−2(1−γ) ‖ω0‖2H1 ,

(104)

where 0 < γ < 1
2 is chosen close to 1

2 .
Expanding ∂yW in our basis and choosing 0 < β < 1

2 close to 1
2 , we further

estimate

|〈∂yW,uj〉| .
∑
n

|(∂yW )n||〈einy, uj〉| .
∑
n

|(∂yW )n|
1

|k + i(n− kt)|

≤ 1
k
‖(∂yW )n <

n

k
− t >−β ‖l2n‖ <

n

k
− t >−1+β ‖l2n

.β ‖(∂yW )n <
n

k
− t >−β ‖l2 .

A similar bound also holds for 〈A∂yW, fuj〉, where the constant further includes a
factor ‖f‖W 1,∞ .

Thus, (104) can further be controlled by∣∣∣〈A∂yW, fH(1)〉
∣∣∣ .< t >−2(1−γ) ‖ω0‖2H1 +

∑
n

< t >−2γ<
n

k
− t >−2β |(∂yW )n|2.

The improved result for ω0|y=0,1 ≡ 0 similarly follows from (104), as in that
case the term < t >−1 |〈A∂yW, fuj〉| is not present. �

Proof of Lemma 4.8. Using the vanishing boundary values of Φ and Φ(1)

and introducing

(−1 + (∂y
k
− it)2)Ψ[A∂yW ] = A∂yW,

Ψ[A∂yW ]|y=0,1 = 0,
we integrate by parts to bound by∣∣∣∣〈(−1 + (∂y

k
− it)2)Ψ[A∂yW ], if

k
Φ(1) + if ′

k
Φ
〉∣∣∣∣

≤
(
‖Ψ‖L2 + ‖(∂y

k
− it)Ψ‖L2

)
‖f‖W 2,∞

k

(
‖Φ‖L2 + ‖(∂y

k
− it)Φ‖L2 + ‖Φ(1)‖L2 + ‖(∂y

k
− it)Φ(1)‖L2

)
≤‖f‖W

2,∞

k
(‖Ψ‖2

H̃1 + ‖Φ‖2
H̃1 + ‖Φ(1)‖2

H̃1).
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In order to further estimate ‖Φ(1)‖H̃1 , we again use the vanishing boundary
values of Φ(1) and test

(−1 + (g(∂y
k
− it))2)Φ(1) = ∂yW + [(g(∂y − it))2, ∂y]Φ,

Φ(1)
y=0,1 = 0,

with − 1
gΦ(1), to obtain that

‖Φ(1)‖2
H̃1 .− 〈(−1 + (g(∂y

k
− it))2)Φ(1),

1
g

Φ(1)〉

≤ − 〈(−1 + (∂y
k
− it)2)Ψ[∂yW ], 1

g
Φ(1)〉+ 〈[(g(∂y

k
− it))2, ∂y]Φ,Φ(1)〉

.‖Ψ[∂yW ]‖H̃1‖Φ(1)‖H̃1 + ‖Φ‖H̃1‖Φ(1)‖H̃1 .

Using this inequality and Lemma 4.6 to estimate ‖Φ‖H̃1 . ‖Ψ‖H̃1 , then concludes
the proof. �

As a consequence of the H1 stability result, Theorem 4.14, Theorem 4.4 of
Section 1 yields damping with rate t−1, i.e.

‖v − 〈v〉x‖L2(TL×[0,1]) ≤ O(t−1)‖W (t)‖L2(TL×[0,1]) ≤ O(t−1)‖ω0‖L2(TL×[0,1]),

‖v2‖L2(TL×[0,1]) ≤ O(t−1)‖ω0‖L2(TL×[0,1]).

As discussed in Section 3 of Chapter 2, the first estimate thus already attains the
optimal rate. The estimate for v2, however, does not yet provide an integrable decay
rate, O(t−1−ε), and thus, in particular, is not sufficient to prove scattering.

In the following section, we thus prove H2 stability and hence linear inviscid
damping with the optimal rates as well as scattering. There, we additionally require
our perturbations to satisfy zero Dirichlet boundary conditions, ω0|y=0,1 = 0.

As we discuss in Section 6 and Chapter 5, this is not only a technical restriction:
We show that otherwise ∂yW asymptotically develops a logarithmic singularity at
the boundary, which by the trace theorem in particular forbids stability in any
Sobolev space more regular than H

3
2
y . Furthermore, this restriction is shown to

be optimal in the sense that stability holds in all subcritical (periodic) fractional
Sobolev spaces Hs

y(T), s < 3
2 , and blow up occurs in all supercritical Sobolev spaces,

Hs
y([0, 1]), s > 3

2 .

3.3. H2 stability. Following a similar approach as in the previous Subsection
3.2, we obtain H2 stability and hence linear inviscid damping with the optimal rates
and scattering for a large class of monotone shear flows in a finite periodic channel.
As we discuss in Section 6 and Chapter 5, for this stability result it is necessary to
restrict to perturbations with zero Dirichlet data, ω0|y=0,1 = 0.

We again differentiate our equation and introduce homogeneous correction terms
H(1), H(2). Let thus W be a solution of (91), then ∂2

yW satisfies

∂t∂
2
yW = if

k
(Φ(2) +H(2)) + 2f ′

ik
(Φ(1) +H(1)) + f ′′

ik
Φ,

(−1 + (g(∂y
k
− it))2)Φ(2) = ∂2

yW + [(g(∂y
k
− it))2, ∂2

y ]Φ,

Φ(2)
y=0,1 = 0.

(105)
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Here the homogeneous correction H(2) satisfies

(−1 + (g(∂y
k
− it))2)H(2) = 0,

H(2)|y=0,1 = ∂2
yΦ|y=0,1.

We recall that the equations satisfied by ∂yW,Φ(1), H(1) are given by (97) and (98),
respectively.

As in Section 3.2, we introduce several lemmata to control boundary corrections.
Using these lemmata, we then prove the main stability result, Theorem 4.15.

Lemma 4.9 (H2 boundary contribution I). Let A(t) be a diagonal operator
comparable to the identity, i.e.

A : einy 7→ Ane
iny,

1 . An . 1,

and let W be a solution of (105) with initial datum ω0 ∈ H2([0, 1]) with ω0|y=0,1 = 0.
Suppose further that f, g ∈W 3,∞ and k (or L respectively) satisfy the assumptions
of the H1 stability result, Theorem 4.14. Then H(1) satisfies

‖H(1)‖2
H̃1 .< t >−2 ‖W‖2H1 .< t >−2 ‖ω0‖2H1

and for any 0 < β, γ < 1
2 ,

|〈A∂2
yW,

if ′

k
H(1)〉| .β,γ ‖f‖W 2,∞k−1

(
log2(t) < t >−2(1−γ) ‖ω0‖2H2

+
∑
n

< t >−2γ<
n

k
− t >−2β |(A∂2

yW )n|2
)
.

Lemma 4.10 (H2 boundary contribution II). Let A, f, g,W, k as in Lemma 4.9.
Then for 0 < γ, β < 1

2 there exits a constant C = C(f, g, k, β, γ), such that

|〈A∂2
yW,

if

k
H(2)〉| ≤ C log2(t) < t >−2(1−γ) ‖ω0‖2H2

+ C
∑
n

< t >−2γ<
n

k
− t >−2β |(∂2

yW )n|2.

Lemma 4.11 (H2 stream function estimate I). Let A, f, g,W, k as in Lemma
4.9. Then,

|〈A∂yW,
if

k
Φ(2)〉| . k−1‖f‖W 1,∞(‖Ψ[A∂2

yW ]‖2
H̃1 + ‖Ψ[∂yW ]‖2

H̃1 + ‖Ψ[W ]‖2
H̃1).

Lemma 4.12 (H2 stream function estimate II). Let A, f, g, k,W as in Lemma
4.9. Then,

| < A∂yW,
if

k
Φ(1) + if ′

k
Φ > | . 1

|k|
‖f‖W 2,∞(‖Ψ[A∂yW ]‖2

H̃1 + ‖Ψ[∂yW ]‖2
H̃1 + ‖Ψ[W ]‖2

H̃1).

Theorem 4.15 (H2 stability for the finite periodic channel). Let f, g,W, k as
in Lemma 4.9 and let A(t) be defined as in Theorem 4.14, i.e. let A(t) be a diagonal
weight:

A(t) : einy 7→ An(t)einy,

An(t) = exp
(
−
∫ t

0
<
n

k
− τ >−2 + < τ >−2γ<

n

k
− τ >−2β dτ

)
,

(106)

where β, γ < 1
2 and 2γ + 2β > 1. Further suppose that

‖f‖W 3,∞L
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is sufficiently small. Then, for any ω0 ∈ H2([0, 1]) with vanishing Dirichlet data,
ω0|y=0,1 = 0,

E2(t) := 〈A(t)W,W 〉+ 〈A(t)∂yW,∂yW 〉+ 〈A(t)∂2
yW,∂

2
yW 〉

satisfies

‖W (t)‖H2 . E2(t) . E2(0) . ‖ω0‖H2 .

Proof of Theorem 4.15. The control of

〈A(t)W,W 〉+ 〈A(t)∂yW,∂yW 〉

has been established in Theorem 4.14.

Differentiating 〈A(t)∂2
yW,∂

2
yW 〉 in time, we have to control

〈A∂2
yW,

if

k
Φ(2) + 2f ′

ik
Φ(1) + f ′′

ik
Φ〉+ 〈A∂2

yW,
if

k
H(2) + 2f ′

ik
H(1)〉.

As Φ(2),Φ(1) and Φ have zero boundary values, we integrate

(−1 + (∂y
k
− it)2)Ψ[A∂2

yW ] = A∂2
yW,

Ψ[A∂2
yW ]y=0,1 = 0,

by parts and bound by the H̃1 norm:

‖Ψ[A∂2
yW ]‖H̃1

‖f‖W 3,∞

k

(
‖Φ(2)‖H̃1 + ‖Φ(1)‖H̃1 + ‖Φ‖H̃1

)
.

Lemmata 4.11 and 4.12 provide control by
1
|k|
‖f‖W 3,∞(‖Ψ[A∂2

yW ]‖2
H̃1 + ‖Ψ[A∂yW ]‖2

H̃1 + ‖Ψ[∂yW ]‖2
H̃1 + ‖Ψ[W ]‖2

H̃1).(107)

Supposing that

sup 1
|k|
‖f‖W 3,∞(108)

is sufficiently small, and using Lemma 4.5, (107) can be absorbed by

〈W, ȦW 〉+ 〈∂yW, Ȧ∂yW 〉+ 〈∂2
yW, Ȧ∂

2
yW 〉.(109)

Using Lemmata 4.9 and 4.10 and supposing again that (108) is sufficiently small,
the boundary contributions

〈A∂2
yW,

if

k
H(2) + 2f ′

ik
H(1)〉,

can be partially absorbed in (109), with the remaining terms estimated by

< t >−2 ‖ω0‖2H1 + ‖f‖W 2,∞ |1
k
| < t >−2(1−γ) ‖ω0‖2H2 + log2(t) < t >−2(1−γ) ‖ω0‖2H2 .

(110)

We thus obtain that E2(t) satisfies

∂tE2(t) ≤ d

dt

(
〈A(t)W,W 〉+ 〈A(t)∂yW,∂yW 〉+ 〈A(t)∂2

yW,∂
2
yW 〉

)
. (< t >−2 + log2(t) < t >−2(1−γ))‖ω0‖2H2 .

As 0 < γ < 1
2 , this is integrable and thus yields the result. �

It remains to prove the Lemmata 4.9-4.12.
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Proof of Lemma 4.9. We recall from the proof of Lemma 4.7 that H(1) is
explicitly given by

H(1) = ∂yΦ(0)u1 + ∂yΦ(1)u2.

By the triangle inequality, we thus estimate by

‖H(1)‖H̃1 . |∂yΦ(t, 0)|‖u1(t)‖H̃1 + |∂yΦ(t, 1)|‖u1(t)‖H̃1 .

We further recall that the homogeneous solutions u1, u2 are of the form

a(t)ekG(y)+ikty + b(t)ekG(y)+ikty,

where a(t), b(t) are chosen to satisfy the boundary conditions, (100). Hence, for any
time t

‖uj(t)‖H̃1 ≤ |a(t)|‖ekG(y)+ikty‖H̃1 + |b(t)|‖e−kG(y)+ikty‖H̃1 = |a(t)|‖ekG(y)‖H1 + |b(t)|‖e−kG(y)‖H1 .

Therefore, by direct computation of the coefficients a, b (analogously to Lemma 4.3),

‖uj(t)‖H̃1 < C <∞,

uniformly in time.
Thus, H(1) satisfies

‖H(1)‖H̃1 . |∂yΦ(t, 0)|+ |∂yΦ(t, 1)|.

Recalling the explicit characterization of ∂yΦ|y=0,1, (102),

∂yΦ|y=0 = k

g2(0) 〈W,u1〉,

∂yΦ|y=1 = − k

g2(1) 〈W,u2〉,

and the subsequent estimate, (103),

|k〈W,uj〉| .< t >−1 (‖ω0‖H1 + |〈∂yW,u1〉|+ |〈∂yW,u2〉|),

we further control

‖H(1)‖H̃1 .< t >−1 ‖W‖H1 ,(111)

which yields the first result.

In order to estimate

〈A∂2
yW,

if ′

k
H(1)〉 = ∂yΨ(0)〈A∂2

yW,u1〉+ ∂yΨ(1)〈A∂2
yW,u2〉

.< t >−1 |〈A∂2
yW,uj〉|,

we proceed as in Lemma 4.7 and expand 〈A∂2
yW,uj〉 in our basis. Thus, we obtain:

|〈A∂2
yW,uj〉| .β ‖(A∂2

yW )n <
n

k
− t >−β ‖l2 ,

for 0 < β < 1
2 . Hence, by Young’s inequality:

〈A∂2
yW,

if ′

k
H(1)〉 .< t >−1 ‖W‖H1‖(A∂2

yW )n <
n

k
− t >−β ‖l2

.< t >−2(1−γ) ‖W‖2H1 +
∑
n

< t >−2γ<
n

k
− t >−2β |(A∂2

yW )n|2.

�
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Proof of Lemma 4.10. We follow the same strategy as in the proof of Lemma
4.7 and Lemma 4.9 and explicitly compute

H(2) = ∂2
yΦ(0)u1 + ∂2

yΦ(1)u2,

〈A∂2
yW,

if

k
H(2)〉 = ∂2

yΦ(0)〈A∂2
yW,

if

k
u1〉+ ∂2

yΦ(1)〈A∂2
yW,

if

k
u2〉

. |∂2
yΦ|y=0,1|

∥∥∥< n

k
− t >−β (A∂2

yW )n
∥∥∥
l2n

.

(112)

It hence remains to estimate ∂2
yΦ|y=0,1. We thus expand the equation for the stream

function Φ in the linearized Euler equations, (91)),

(−1 + (g(∂y
k
− it))2)Φ = W,

and obtain

−Φ + g2k−2∂2
yΦ + k−1gg′(∂y

k
− it)Φ− g2it

∂y
k

Φ + g2t2Φ = W.

Thus, using that Φ and W vanish at the boundary, ∂2
yΦ|y=0,1 satisfies

g2∂2
yΦ|y=0,1 = (−gg′ + iktg2)∂yΦ|y=0,1.

Dividing by g2 (which we required to be bounded away from zero), we may thus
solve for ∂2

yΦy=0,1:

∂2
yΦ|y=0,1 = −gg

′ + iktg2

g2 ∂yΦ|y=0,ψ = O(kt)∂yΦ|y=0,1.

Again recalling the explicit characterization of ∂yΦ|y=0,1, (102),

∂yΦ|y=0 = k

g2(0) 〈W,u1〉,

∂yΦ|y=1 = − k

g2(1) 〈W,u2〉,

from the proof of Lemma 4.7, we further compute
O(kt)∂yΦ|y=0,1 . k

2t〈W,uj〉 . k〈∂yW,uj〉+ kujW |1y=0

.< t >−1 〈∂2
yW,uj〉+ < t >−1 ∂yWuj |1y=0 + kujW |1y=0

=< t >−1 〈∂2
yW,uj〉+ < t >−1 ∂yWuj |1y=0,

where we again used that W |y=0,1 = ω0|y=0,1 ≡ 0. The first term can again be
estimated by

< t >−1 ‖ < n

k
− t >−β (A∂2

yW )n‖l2n
and thus yields a contribution of the desired form.

To estimate the second term,
< t >−1 ∂yWuj |1y=0,(113)

we restrict the evolution equation for ∂yW , (97), to the boundary and obtain

∂t∂yW |y=0,1 = f ′

ik
Φ|y=0,1 + f

ik
∂yΦy=0,1 = f

ik
∂yΦ . |〈W,uj〉| .

Controlling the right-hand-side by O(t−1)‖W‖H1 and using the H1 stability result,
Theorem 4.14, we thus obtain a logarithmic control

|∂yW |y=0,1| = O(log(t))‖ω0‖H1 .

Hence, (113) can be bounded by
< t >−1 ∂yWuj |1y=0 . log(t) < t >−1 ‖ω0‖H1 .
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Using these estimates, we may further estimate equation (112) by

〈A∂2
yW,

if

k
H(2)〉 .(< t >−1 ‖ < n

k
− t >−β (A∂2

yW )n‖l2n+ < t >−1 log(t)‖ω0‖H1)

· ‖ < n

k
− t >−β (A∂2

yW )n‖l2n

. log2(t) < t >−2(1−γ) ‖ω0‖2H1 +
∑
n

< t >−2γ<
n

k
− t >−2β |(A∂2

yW )n|2

+
∑
n

< t >−1<
n

k
− t >−2β |(A∂2

yW )n|2.

�

Proof of Lemma 4.11. We introduce

(−1 + (∂y
k
− it)2)Ψ[A∂2

yW ] = A∂2
yW,

Ψ[A∂2
yW ]y=0,1 = 0,

and use the vanishing boundary values of Φ(2) to integrate by parts and obtain

|〈A∂yW,
if

k
Φ(2)〉| . k−1‖f‖W 1,∞(‖Ψ[A∂2

yW ]‖2
H̃1 + ‖Φ(2)‖2

H̃1).

It thus remains to control ‖Φ(2)‖2
H̃1 . Testing

(−1 + (g(∂y
k
− it))2)Φ(2) = ∂2

yW + [(g(∂y
k
− it))2, ∂2

y ]Φ,

Φ(2)
y=0,1 = 0,

with − 1
gΦ(2), we estimate

‖Φ(2)‖2
H̃1 .− 〈(−1 + (g(∂y

k
− it))2)Φ(2),

1
g

Φ(2)〉

.‖Ψ[∂2
yW ]‖H̃1‖Φ(2)‖H̃1 + 〈[(g(∂y

k
− it))2, ∂2

y ]Φ, 1
g

Φ(2)〉

.‖Φ(2)‖H̃1(‖Ψ[∂2
yW ]‖H̃1 + ‖∂yΦ‖H̃1 + ‖Φ‖H̃1).

Using the triangle inequality

‖∂yΦ‖H̃1 . ‖Φ(1)‖H̃1 + ‖H(1)‖H̃1 ,

Lemma 4.9 and Lemma 4.8 then provide the desired control. �

Proof of Lemma 4.12. We introduce

(−1 + (∂y
k
− it)2)Ψ[A∂2

yW ] = ∂2
yW,

Ψ[A∂2
yW ]y=0,1 = 0,

and use the vanishing boundary values of Φ(1) and Φ to integrate by parts, to obtain

| < A∂yW,
if

k
Φ(1) + if ′

k
Φ > | . |k−1|‖f‖W 2,∞(‖Ψ[A∂yW ]‖2

H̃1 + ‖Φ(1)‖2
H̃1 + ‖Φ[W ]‖2

H̃1).

Lemma 4.8 then provides the desired control. �

With these stability results, we now have the desired control on ‖W‖H2 and
hence, as we discuss in the following section, can prove linear inviscid damping with
the optimal algebraic decay rates for a large class of strictly monotone shear flows
in a finite periodic channel.
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4. Scattering and consistency

In this section, we combine the results of the previous sections and thus close
our strategy to prove linear inviscid damping for monotone shear flows:

Sobolev
regularity

Damping Scattering
trade for Duhamel

adapted energy estimates

Theorem 4.16 (Linear inviscid damping for the infinite periodic channel and
finite periodic channel). Let ω0 ∈ L2

xH
2
y with 〈ω0〉x ≡ 0 and let W solve

∂tW = f∂xΦ,
(∂2
x + (g(∂y − t∂x))2)Φ = W,

(114)

either on the infinite periodic channel, TL×R, or finite periodic channel, TL× [0, 1].
Suppose that there exists c > 0 such that

c < g < c−1,

1
g
, f ∈W 3,∞,

and that

L ‖f‖W 3,∞

is sufficiently small. In the case of a finite periodic channel, additionally assume
that

ω0(x, 0) ≡ 0 ≡ ω0(x, 1).

Then there exists a function W∞ ∈ L2
xH

2
y such that

‖W‖L2
xH

2
y
. ‖ω0‖L2

xH
2
y
,(Stability)

‖v − 〈v〉x‖L2 = O(t−1),(Damping)
‖v2‖L2 = O(t−2),
W (t)→L2 W∞,(Scattering)

as t→∞.

Proof. Let ω0 ∈ L2
xH

2
y and f, g be given. Then by the stability results for the

infinite channel, Theorem 4.11, and for the finite channel, Theorem 4.15, W satisfies

‖W‖L2
xH

2
y
. ‖ω0‖L2

xH
2
y
.

As the mean in x is conserved, i.e.

〈W (t)〉x ≡ 〈ω0〉x ≡ 0,

we may apply Poincaré’s theorem to deduce that

‖W‖H−1
x H2

y
. ‖W‖L2

xH
2
y
. ‖ω0‖L2

xH
2
y
.

The damping result, Theorem 4.4, of Section 1 then implies decay of the velocity
field with the optimal algebraic rates.
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Duhamel’s formula in our scattering formulation is just integrating (114) in
time and leads to:

W (t, x, y) = ω0(x, U−1(y)) +
∫ t

0
f(y)V2(τ, x, y)dτ,(115)

where
V2(t, x, y) = ∂xΦ(t, x, z) = v2(t, x− ty, U−1(y)).

Hence, as the change of variables (x, y) 7→ (x−tU(y), y) is an isometry and y 7→ U(y)
is bilipschitz,

‖fV2‖L2 ≤ ‖f‖L∞‖V2‖L2 . ‖f‖L∞‖v2‖L2 = O(t−2).

Thus, the integral in (115) is uniformly bounded in L2 for all t and the improper
integral for t→ ±∞ exists as a limit in L2. Therefore,

W
L2

−−→W±∞ := ω0 + lim
t→±∞

∫ t

0
fV2(τ)dτ.

As ‖W‖L2
xH

2
y
. ‖ω0‖L2

xH
2
y
uniformly in time, weak compactness and lower semi-

continuity imply W±∞ ∈ L2
xH

2
y and
‖W±∞‖H2

yL
2
x
. ‖w0‖L2

xH
2
y
.

�

Corollary 4.2 (L2 scattering). Let f, g, L be as in Theorem 4.16 and let
ω0 ∈ L2, then there exists W∞ ∈ L2 such that

W (t, x, y) L2

−−→W∞, as t→∞.

Proof. Let H2 3 ωj0
L2

−−→ ω0 as j →∞. Then by the previous theorem there
exist W j

∞ such that

W j(t) L2

−−→W j
∞, as t→∞.

By the L2 stability results, Theorem 4.10 of Section 2 and Theorem 4.13 of Section
3, and letting t tend to infinity, W j

∞ is a Cauchy sequence in L2. Denoting the limit
by W∞, a diagonal sequence argument yields W (t) L2

−−→W∞ as t→∞. �

A natural question following these linear inviscid damping and scattering results
is, of course, whether such behavior also persists under the non-linear evolution.
Bedrossian and Masmoudi, [BM13b], answer this question positively in the case of
Couette flow, where the perturbations are required to be small in the Gevrey < 2
class to control nonlinear effects.

As a small step in the direction of similar results for monotone shear flows, we
follow Bouchet and Morita, [BM10], and answer the simpler question of consistency.
We recall from Section 1.6, that in the linearized Euler equations

∂tω + U(y)∂xω = U ′′∂xφ,

∆φ = ω,
(116)

we neglected nonlinearity:
v · ∇ω = v1∂xω + v2∂yω.(117)

For a consistency result, we show that the nonlinearity, when evolved with the linear
dynamics, is an integrable perturbation in the sense that

sup
T>0

∥∥∥∥∥
∫ T

0
v · ∇ωdt

∥∥∥∥∥
L2

< C <∞.
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In view of Theorem 4.16, at first sight we would expect decay of (117) with a
rate of only O(t−1), as

‖v1‖L2 = O(t−1),
‖v2‖L2 = O(t−2),
‖∂yω‖L2 = ‖(∂y − tU ′∂x)W‖L2 = O(t).

However, there is some additional cancellation, which can be used. In scattering
coordinates v · ∇ω is given by

−(∂y − tU ′∂x)Φ∂xW + ∂xΦ(∂y − tU ′∂x)W = ∇⊥Φ · ∇W.

Combining the the stability results on ∇W and the damping results on ∇⊥Φ of
Sections 2.3 and 3.2, we obtain quadratic decay

‖∇⊥Φ‖L2 = O(t−2).

and thus consistency.

Lemma 4.13 (Consistency). Let W be a solution to the linearized 2D Euler
equation, (114), on T× R with initial datum ω0 ∈ H3

x,y(TL × R) . Suppose further
that the assumptions of the Sobolev regularity result, Theorem 4.11, for j = 3, as
well as of the damping result, Theorem 4.4, are satisfied. Then

‖∇⊥Φ · ∇W‖L2 = O(t−2).

In particular,

W (t) +
∫ t

∇⊥Φ(τ)∇W (τ)dτ

is close to W (t) in L2 uniformly in time and there exist asymptotic profiles W±∞con
such that

W (t) +
∫ t

∇⊥Φ(τ)∇W (τ)dτ L2

−−→W±∞con , as t→ ±∞.

Proof. By Theorem 4.11, W satisfies

‖W (t)‖H3
x,y
. ‖ω0‖H3

x,y
.

Hence, by Theorem 4.4,

‖∇⊥Φ‖L2 = O(t−2)‖W (t)‖H3
x,y

= O(t−2)‖ω0‖H3
x,y
.

Using the Sobolev embedding,

‖∇W‖L∞x,y . ‖W (t)‖H3
x,y
. ‖ω0‖H3

x,y
.

An application of Hölder’s inequality then gives the desired bound:

‖∇⊥Φ∇W‖L2 ≤ ‖∇⊥Φ‖L2‖∇W‖L∞ = O(t−2)‖ω0‖2H3
x,y
.

�

We remark that the regularity assumptions on ω0 are not sharp. As we are,
however, only interested in the qualitative property of consistency, we assume
sufficiently much regularity to use a Sobolev embedding.

In the setting of a finite periodic channel T × [0, 1], we thus far have only
established stability in H2, which is not sufficient for integrable decay of ‖∇⊥Φ‖L2 .
Furthermore, in two dimensions H2

x,y regularity is critical for the Sobolev embedding.
Hence, control of ‖W‖H2(TL×[0,1]) only yields ∇x,yW ∈ BMO(TL × [0, 1]) instead
of L∞(TL × [0, 1]).
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A natural question is thus whether the stability result in a finite periodic channel
can be improved to higher Sobolev spaces. As we sketch in Section 6, stability in
H3 is in general not possible.

Introducing fractional Sobolev spaces, in the following Chapter 5, we prove that
the critical Sobolev space is given by H5/2 in the sense that stability holds for any
Hs, s < 5/2 and for any s > 5/2 the corresponding Sobolev norm will in general
grow unboundedly as t→∞.

Based on these improvements, in Chapter 6 we further elaborate on consistency
and additional implications of the stability and damping results.

The remainder of this chapter further discusses the choice of basis in the setting
of a finite channel and analyzes the homogeneous corrections to the stream function
in the case of Couette flow.

5. Bases and mapping properties

In this section, we elaborate on the role of boundary conditions, the choice of
basis and the mapping properties of

W 7→〈W,Ψ〉,
(k2 − (∂y − ikt)2)Ψ = W,

Ψ|y=0,1 = 0.

In analogy to the whole space setting, a first natural approach is via a Fourier
basis, which we used in Section 3.1. There the coefficients of Ψ have been computed
in Lemma 4.3:

Lemma 4.14. Let Ψ be as above, n,m ∈ 2πZ, then

〈Ψ[einy], eimy〉 = δnm
k2 + (n− kt)2 + k

(k2 + (m− kt)2)(k2 + (n− kt)2) (a− b),

where a, b solve (
ek+ikt e−k+ikt

1 1

)(
a
b

)
=
(

1
1

)
.

This choice of basis has a distinct advantage in its simplicity and good decoupling
multiplier structure. In particular, we may easily prove Lemma 4.4 using Cauchy-
Schwarz. We, however, see that we can not obtain a bounded map in Hs, s ≥ 1

2 , in
this way, as the decay is not fast enough and thus

ns

k2 + (n− kt)2 6∈ l
2.

When trying to use Schur’s test instead, one encounters the problem of slow decay
as n,m→∞ at an even earlier stage of our proof:

sup
m

∑
n

<
n

k
− t >α< m

k
− t >α |〈Ψ[einy], eimy〉|

≤ 1 + k−3
∑
n

<
n

k
− t >α−2.α 1 + k−2.

(118)

Therefore, this approach does not even provide an l2 estimate with optimal decay,
but only a weaker variant of Lemma 4.4 with α < 1.
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Furthermore, testing against homogeneous solutions, we only obtain slow decay:

〈einy, e±y+ity〉 = 1
±1 + i(t− n)e

±y+i(t−n)y|1y=0 = O(< n− t >−1),

〈sin(ny), e±y+ity〉 = −n 1
±1 + it

〈cos(ny), e±y+ity〉 = O(n < t >−1< n− t >−1).

Considering a sin basis instead, we may make use of vanishing boundary terms
to obtain additional cancellations and better coefficients:

Lemma 4.15. Let n ∈ πN and let Ψ[sin(ny)] be the solution of

(k2 − (∂y − ikt)2)Ψ[sin(ny)] = sin(ny),
Ψ[sin(ny)]|y=0,1 = 0.

Then, for any m ∈ πN,

〈Ψ[sin(ny)], sin(my)〉 = δnm( 1
k2 + (n− kt)2 + 1

k2 + (n+ kt)2 )

+ dk

(
1

k2 + (kt+ n)2 −
1

k2 + (kt− n)2

)(
1

k2 + (kt+m)2 −
1

k2 + (kt−m)2

)
+ i((−1)n+m − 1)nmkt

· k4t4 + 2k4t2 + 2k4 − 2k2t2(m2 + n2) + 2k2(m2 + n2) + 2m2n2

(k2 + (kt+m)2)(k2 + (kt−m)2)(k2 + (kt+ n)2)(k2 + (kt− n)2)(n2 −m2) ,

where

d = −((−1)n+m − 1) + 2(−1)n+me−k + ek

ek − e−k
+ 2(−1)meikt − (−1)ne−ikt

ek − e−k
.

Before proving this result, let us comment on some of the implications and the
relation to the results of Section 3.

• While these coefficients are much less simple than for a Fourier basis, they
asymptotically decay with rates n−3m−3. Hence, an argument via Schur’s
test as in (118) does not have to require α < 1. Furthermore, the rapid
decay suggests that the mapping

W 7→ Ψ,
L2 → L2(119)

can be extended to a bounded mapping on the fractional Sobolev spaces:∑
n

n2s|Wn|2,

for s > 0 not too large.
• Using that n,m, kt ≥ 0, one may roughly bound

k2t2√
k2 + (n+ kt)2

√
k2 + (m+ kt)2

≤ 1,

and thus trade the additional decay for the convenience of a uniform bound.
While this is far from optimal, it reduces estimates to the ones for the
Fourier basis.

• In Section 3 we use a different approach and consider boundary terms
separately. That is, we decompose ∂yΦ into a function, Φ(1), with zero
Dirichlet conditions

(k2 − (g(∂y − ikt))2)Φ(1) = ∂yW + [(g(∂y − ikt))2, ∂y]Φ,

Ψ(1)|y=0,1 = 0,
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and a homogeneous correction
(k2 − (∂y − ikt)2)H(1) = 0,

H(1)|y=0,1 = ∂yΦ|y=0,1.

The estimate of
∂yW + [(g(∂y − ikt))2, ∂y]Φ 7→ Φ(1)

is then similar to the estimate of Φ in terms of W . In order to control
H(1), we make additional use of the dynamics and study the evolution of

∂yΦ|y=0,1.

• We further note, that by our choice of basis, for 1
2 < s < 1, ∂yW ∈ Hs

would also imply that ∂yW |y=0,1 vanishes for all times. However, ∂yW |y=0,1
is not conserved by the linearized Euler equations.

Proof of Lemma 4.15. The streamfunction Ψ[sin(ny)] is given by

Ψ[sin(ny)] =
(

1
k2 + (n− kt)2 + 1

k2 + (n+ kt)2

)
sin(ny)

+ i

(
1

k2 + (n− kt)2 −
1

k2 + (n+ kt)2

)(
cos(ny) + aeky+ikty + be−ky+ikty) ,

where a, b solve (
ek+ikt e−k+ikt

1 1

)(
a
b

)
= −

(
(−1)n

1

)
.

Integrating against another basis function, sin(my), we obtain:
〈Ψ[sin(ny)], sin(my)〉

= δnm

(
1

k2 + (n− kt)2 + 1
k2 + (n+ kt)2

)
+ i

(
1

k2 + (n− kt)2 −
1

k2 + (n+ kt)2

)
·
(
m((−1)n+m − 1)

n2 −m2 + 1
2i

(
1

k + i(kt+m) −
1

k + i(kt−m)

)
((−1)mek+ikt − 1)a

+ 1
2i

(
1

−k + i(kt+m) −
1

−k + i(kt−m)

)
((−1)me−k+ikt − 1)b

)
.

As the δnm term is already of the desired form, in the following we consider
only the remaining terms. Using the equation for a, b, we obtain

(
1

k2 + (n− kt)2 + 1
k2 + (n+ kt)2

)( im((−1)n+m − 1)
n2 −m2

− 1
2

(
1

k + i(kt+m) −
1

k + i(kt−m) + 1
−k + i(kt+m) −

1
−k + i(kt−m)

)
((−1)n+m − 1)

+ 1
2

(
1

k + i(kt+m) −
1

k + i(kt−m) −
1

−k + i(kt+m) + 1
−k + i(kt−m)

)
d
)
,

(120)

where
d = ((−1)mek+ikt − 1)a− ((−1)me−k+ikt − 1)b

= ((−1)n+m − 1)− 2((−1)me−k+ikt − 1)b

= −((−1)n+m − 1) + 2((−1)me−k+ikt − 1)((−1)n − ek+ikt)
ek+ikt − e−k+ikt

= −((−1)n+m − 1) + 2(−1)n+me−k + ek

ek − e−k
+ 2(−1)meikt − (−1)ne−ikt

ek − e−k
.
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We, in particular, note that

d(t, k, n,m) = d(t, k,m, n) = d(−t, k,m, n),

and that d is uniformly bounded if k is bounded away from zero. Furthermore,
consider k large and n+m even, then in (120) only the contribution involving d is
present and

(−1)n+m − 1 = 0,

d = 2 ek

ek − e−k
+O(e−k) = 2 +O(e−k) > 1.

The factor in front of d and ((−1)n+m − 1), in (120), are given by the real and
imaginary part of

1
k + i(kt+m) −

1
k + i(kt−m) = k − i(kt+m)

k2 + (kt+m)2 −
k − i(kt−m)
k2 + (kt−m)2

= (k − ikt)( 1
k2 + (kt+m)2 −

1
k2 + (kt−m)2 )− im( 1

k2 + (kt+m)2 + 1
k2 + (kt−m)2 ).

= k( 1
k2 + (kt+m)2 −

1
k2 + (kt−m)2 ) + i

kt(4ktm)−m(2k2 + 2k2t2 + 2m2)
(k2 + (kt−m)2)(k2 + (kt−m)2)

= k( 1
k2 + (kt+m)2 −

1
k2 + (kt−m)2 )− i m(2k2 − 2k2t2 + 2m2)

(k2 + (kt−m)2)(k2 + (kt−m)2) .

The coefficients cnm(t, k) are hence explicitly given by:

δnm( 1
k2 + (n− kt)2 + 1

k2 + (n+ kt)2 )

+ dk

(
1

k2 + (kt+ n)2 −
1

k2 + (kt− n)2

)(
1

k2 + (kt+m)2 −
1

k2 + (kt−m)2

)
+ i((−1)n+m − 1)

·
(

1
k2 + (kt+ n)2 −

1
k2 + (kt− n)2

)(
− m(2k2 − 2k2t2 + 2m2)

(k2 + (kt+m)2)(k2 + (kt−m)2) + m

n2 −m2

)
= δnm( 1

k2 + (n− kt)2 + 1
k2 + (n+ kt)2 )

+ dk

(
1

k2 + (kt+ n)2 −
1

k2 + (kt− n)2

)(
1

k2 + (kt+m)2 −
1

k2 + (kt−m)2

)
+ i((−1)n+m − 1)

· nmkt k4t4 + 2k4t2 + 2k4 − 2k2t2(m2 + n2) + 2k2(m2 + n2) + 2m2n2

(k2 + (kt+m)2)(k2 + (kt−m)2)(k2 + (kt+ n)2)(k2 + (kt− n)2)(n2 −m2) .

�

6. Stability and boundary conditions

In Section 3.3, we required ω0 to satisfy zero Dirichlet conditions to establish
decay of ∂2

yΦ and ∂2
yΨ. In this section, we show that this conditions is necessary,

both for the explicit example

ω0(x, y) = 2i sin(x), (x, y) ∈ Tπ × [0, 1],

as well as for general functions with ω̂0(k) ∈ H2([0, 1]). For simplicity, we here
only consider linearized Couette flow. Results for general monotone shear flows are
obtained in Chapter 5.
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Lemma 4.16. Consider the linearized Couette flow in scattering formulation
∂tW = 0,

(−k2 + (∂y − ikt)2)Ψ = W,

with initial datum ω̂0(k, y) = δ1(k)− δ−1(k). Then there exists a sequence tn →∞,
such that e−ktny∂2

yΨ(tn, k, y) converges to a non-trivial limit in L2
y.

Proof. By symmetry it suffices to consider k = 1. The stream function Ψ is
then given by

1
1 + t2

(−1 + a(t)ey+ity + b(t)e−y+ity),

where a, b solve (
e1+it e−1+it

1 1

)(
a
b

)
=
(

1
1

)
.

Differentiating twice, we obtain

Ξ := e−ity∂2
yΨ = (1 + it)2

1 + t2
a(t)ey + (−1 + it)2

1 + t2
b(t)e−y.

As a(t), b(t) depend on t only via eit, for any c ∈ R,m ∈ 2πZ
a(c) = a(c+m),
b(c) = b(c+m).

We may thus, for example, consider sequences t1,n ∈ 2πZ and t2,n ∈ 2πZ+π tending
to ±∞. Along these sequences a, b are constant and non-trivial, while

(±1 + it)2

1 + t2
→ −1.

Therefore,
Ξ(tn)→ −aey − be−y 6= 0,

which yields the desired result.
�

A similar result also holds for generic ω0:

Lemma 4.17. Consider the linearized Couette flow in scattering formulation
∂tW = 0,

(−k2 + (∂y − ikt)2)Ψ = W.

Let further ω̂0(k, ·) ∈ H2([0, 1]) and suppose that for some k 6= 0, ω̂0(k, ·)|y=0,1 is
non-trivial. Then e−ity∂2

yΨ does not converge to zero in L2 as t→ ±∞.

Proof. Splitting ∂2
yΨ = Ψ(2) +H(2) as in Section 3.3, we obtain

‖Ψ(2)‖2L2 ≤ ‖Ψ(2)‖2
H̃1 = 〈Ψ(2), ∂2

yW 〉 ≤
∑
n

<
n

k
− t >−2 |(∂2

yW )n|2.

Using a similar argument as in the proof of Theorem 4.4, one can show that
‖Ψ(2)‖L2 → 0. Here we use that, for Couette flow, W is preserved in time and hence
an L2 estimate suffices. In the more general case, for this argument one would either
need some additional control of the L2 integrability, e.g.

lim
N→∞

sup
t>0

∑
|n|≥N

|(∂2
yW )n|2 = 0,

or control in a fractional Sobolev space. This is further discussed in Chapter 5.
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It thus remains to consider
e−iktyH(2) = ∂2

yΨ(0)e−iktyu1 + ∂2
yΨ(1)e−iktyu2.

For convenience of notation, we again set k = 1.
Restricting sequences tn ∈ 2πN, e−ityu1 and e−ityu2 do not depend on t and

are linearly independent. It thus suffices to show that ∂2
yΨ(0) and ∂2

yΨ(1) cannot
both converge to zero unless ω0 satisfies zero Dirichlet conditions.

Solving
(−1 + (∂y − it)2)Ψ = ω̂0,

for ∂2
yΨ, we obtain

∂2
yΨ|y=0,1 = ω̂0|y=0,1 + 2it∂yΨ|y=0,1.

Testing the above equation with uj , yields
∂yΨ|y=0,1 = 〈ω̂0, uj〉 = 〈ω̂0, e

ity(aey + be−y)〉

= 1
it
ω̂0|y=0,1 −

1
it

∫
eity∂y

(
ω̂0(aey + be−y)

)
〉

= 1
it
ω̂0|y=0,1 + ‖ω̂0‖H2O(t−2).

Here we used that eitny|y=0,1 = 1 for our sequence of tn. Therefore,
∂2
yΨ|y=0,1 = 3ω̂0|y=0,1 +O(t−1

n ) 6→ 0,
which concludes the proof. �

Using the same approach, one can obtain similar results for higher Sobolev
norms involving boundary values of higher derivatives. Here one can consider both
ω0 = sin(x)P (y), P a polynomial, and general ω0. However, for non-Couette flow
the boundary values of higher derivatives are not conserved by the evolution and
therefore conditions of the form

∂nyW |y=0,1 ≡ 0
are in general never satisfied for n ≥ 1. Instead, one would have to derive necessary
and sufficient conditions under which ∂nyW |y=0,1 → 0 as t→ ±∞.

In the following Chapter 5 we prove that such restrictions are also necessary for
general monotone shear flows that the critical fractional Sobolev space is given by
H

3
2
y . That is, we prove stability in all subcritical periodic fractional Sobolev spaces

Hs
y(T), s < 3

2 , and blow-up in all supercritical Sobolev space and thus, in particular,
that H2 stability can not hold in general, unless one restricts to perturbations with
zero Dirichlet data, ω0|y=0,1 = 0, where the critical space is given by H

5
2
y .
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CHAPTER 5

Boundary effects and sharp stability results

In the previous Chapter 4, we proven that the linearized 2D Euler equations in
a finite periodic channel, TL × [0, 1], are stable in Hm

x H
1
y (TL × [0, 1]) for general

perturbations, but only stable in Hm
x H

2
y (TL × [0, 1]) under perturbations with zero

Dirichlet boundary data, ω0|y=0,1 = 0.

In this Chapter, we study the boundary effects and the associated singular-
ity formation in more detail and show that the critical Sobolev spaces in y are
given by H

3
2
y and H

5
2
y , respectively. More precisely, we show that stability in

Hm
x H

s
y(TL × [0, 1]), s > 3

2 can not hold for general perturbations due the develop-
ment of (logarithmic) singularities at the boundary. On the other hand, we prove
stability in Hm

x H
s
y(TL × T) for any s < 3

2 , where for technical reasons we consider
periodic fractional Sobolev spaces, Hs(T), instead of Hs([0, 1]). In particular, sta-
bility in Hs, s > 1, allows us to prove damping with an integrable rate and thus
extend the scattering result of the previous chapter to initial perturbations without
zero Dirichlet data, which has not been possible with the H1 stability results of
Chapter 4.

Restricting to perturbations with zero Dirichlet boundary data, ω0|y=0,1 = 0,
we similarly show that the critical space is given by H 5

2 and prove stability and
instability for Hm

x H
s
y(TL × T), s < 5

2 , and H
m
x H

s
y(TL × [0, 1]), s > 5

2 , respectively.
As we discuss in Chapter 6, these improvements allow us to study consistency of the
nonlinear problem in the finite periodic channel, where the singularity formation at
the boundary and the resulting regularity restrictions have a large effect on possible
nonlinear damping results.

1. Fractional Sobolev spaces

As we make extensive use of fractional Sobolev spaces, we provide a short
introduction to their various definitions and properties. Here we follow [DNPV11]
(published as [DNPV12]).

In the whole space, fractional Sobolev spaces can be equivalently characterized
using either a Fourier weight or an appropriate kernel:

Proposition 5.1 (Fractional Sobolev space on R; [DNPV11, Section 3]). Let
0 < s < 1, then there exists Cs such that for any u ∈ S(R)

‖|η|sFu‖2L2 = Cs

∫∫
R×R

|u(x)− u(y)|2

|x− y|1+2s dxdy.

In particular, both expressions define the same quasi-norm. The fractional Sobolev
space, Hs(R), is then defined as the closure of S(R) with respect to

‖u‖2L2 + ‖|η|sFu‖2L2 .
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Hs(R) is a Hilbert space with inner product

〈u, v〉Hs = 〈u, v〉L2 + 〈|η|s/2Fu, |η|s/2Fv〉L2

= 〈u, v〉L2 + Cs

∫∫
R×R

(u(x)− u(y))(v(x)− v(y))
|x− y|1+2s dxdy.

For s > 1, s 6∈ N, the fractional Sobolev space is (recursively) defined by requiring
that u ∈ Hs−1 and ∂xu ∈ Hs−1. The definition via a kernel can be adapted to other
and higher dimensional domains. We, in particular, are interested in the setting of
the interval [0, 1].

Proposition 5.2 (Trace map; [DNPV11, Section 3]). Let 0 < s < 1 and
define Hs([0, 1]) as the closure of C∞([0, 1]) with respect to∫∫

[0,1]2

|u(x)− u(y)|2

|x− y|1+2s dxdy + ‖u‖2L2([0,1]).

Then Hs([0, 1]) is a Hilbert space. Let further s > 1/2, then Hs embeds into C0, in
particular there exists a trace map and

|uy=0,1| .s ‖u‖Hs([0,1]).

A closely related space is given by the periodic fractional Sobolev space Hs(T).

Proposition 5.3 ([BO13]). Let 0 < s < 1/2, then for any u ∈ C∞(T),

‖|η|sFu‖2L2 .
∫∫

T×[− 1
2 ,

1
2 ]

|u(x+ y)− u(y)|2

|x|1+2s dxdy . ‖|η|sFu‖2L2 .

In particular, both the kernel and Fourier characterization define the same quasi-
norm. Furthermore,∫∫

T×[− 1
2 ,

1
2 ]

|u(x+ y)− u(y)|2

|x|1+2s dxdy = 〈Fu,Bn|n|2sFu〉l2 ,

where Bn satisfies

1 . Bn := |n|−2s
∫

[− 1
2 ,

1
2 ]

sin2(xn)
4|x|1+2s dx . 1.

The fractional Sobolev space Hs(T) is defined as the closure of C∞(T) with respect
to

‖u‖2L2 +
∫∫

T×[− 1
2 ,

1
2 ]

|u(x+ y)− u(y)|2

|x|1+2s dxdy.

Hs(T) is a Hilbert space, where the inner product can be chosen as either

〈u, v〉Hs(T) : = 〈u, v〉L2 + 〈Fu,Bn|n|2sFv〉l2

= 〈u, v〉L2 +
∫∫ (u(x+ y)− u(y))(v(x+ y)− v(y))

|x|1+2s dxdy,

or

〈u, v〉Hs(T) := 〈u, v〉L2 + 〈Fu, |n|2sFv〉l2 .

From the kernel characterization, it can easily be seen that Hs(T) ⊂ Hs([0, 1]):

Proposition 5.4. Let 0 < s < 1, then any u ∈ Hs(T) is also in Hs([0, 1]) and

‖u‖Hs([0,1]) . ‖u‖Hs(T).
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Proof of Proposition 5.4. The L2 norms are equal, hence we only have to
consider the quasi-norm in Hs([0, 1]). Introducing a change of variables x 7→ z + y,
we compute

‖u‖2
Ḣs([0,1]) =

∫∫
[0,1]2

|u(x)− u(y)|2

|x− y|1+2s dxdy

=
∫

[0,1]

∫
[0,1]−y

|u(z + y)− u(y)|2

|z|1+2s dzdy

≤
∫

[0,1]

∫
[−1,2]

|u(z + y)− u(y)|2

|z|1+2s dzdy

≤ ‖u‖2
Ḣs(T) + C‖u‖2L2 . ‖u‖2Hs(T),

where we used that

sup
|z|≥ 1

2

1
|z|1+2s ≤ 2.

�

As a simplification, for the stability results of Section 2 and Section 3, we
restrict to fractional Sobolev spaces, Hs(T), in order to be able to use the Fourier
characterization. In this case, we further require that the coefficient functions,
f, g, corresponding to the shear flow, U , are not only sufficiently regular, e.g. g ∈
W 1,∞([0, 1]), but can be periodically extended in a regular way, e.g. g ∈W 1,∞(T),
in order to be able to apply the following Propositions 5.5 and 5.6.

Proposition 5.5 (Multiplication with Lipschitz functions). Let g ∈W 1,∞(T)
be periodic and Lipschitz, then for any s < 1/2 and any u ∈ Hs(T), also gu ∈ Hs(T)
and

‖ug‖Hs ≤ ‖g‖W 1,∞‖u‖Hs .

Proposition 5.6 (Commutator Estimate). Let g ∈ C0,1(T) with g2 > c > 0
and let 0 < s < 1/2. Then for any u ∈ Hs(T)

<〈u, g2u〉Hs(T) ≥ c‖u‖2Hs(T) − Cs‖g
2‖Ċ0,1‖u‖2L2 .

Remark 9. The periodicity assumption on g drastically simplifies calculations,
but can probably be relaxed.

It can be shown that the multiplication with the characteristic function of the
positive half-line, 1[0,∞), is a bounded operator on Hs(R), s < 1

2(see [RS96, page
208]). Thus, one can probably allow for a jump discontinuity of the periodic extension
of g in Proposition 5.5 and only require that g ∈W 1,∞([0, 1]).

In the case of Proposition 5.6, we, however, use that the commutator

u 7→ [(−∆) s2 , g]u,

where (−∆) s2 is defined as the Fourier multiplier

u 7→ F−1|η|sFu,

is not only a bounded operator from Hs to L2, but gains regularity in the sense that
it also is a bounded operator from Hs−ε to L2 for some ε > 0. As this is not the
case for functions with jump discontinuities, the current proof can probably only be
extended to functions g, for which the size of the jump discontinuity

|g2(1)− g2(0)|
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is sufficiently small compared to min(g2) > 0, so that the possible loss due to the
jump satisfies (by the improved version of Proposition 5.5)

|g2(1)− g2(0)|‖1[ 1
2 ,1]u‖2Hs ≤

min(g2)
2 ‖u‖2Hs

and can hence be absorbed by

〈u,min(g2)u〉Hs = min(g2)‖u‖2Hs .

Removing the restriction on the size of the jump,

|g2(1)− g2(0)|,

is probably possible, but would require considerable additional technical effort.

Proof of Proposition 5.5. We remark that gu ∈ L2 and that ‖gu‖L2 ≤
‖g‖W 1,∞‖u‖L2 is well-known. For the Hs seminorm we follow the standard proof
via the kernel characterization (see [DNPV11, page 21]).∫∫

T×[− 1
2 ,

1
2 ]

|u(x+ y)g(x+ y)− u(y)g(y)|2

|x|1+2s dxdy

.
∫∫

T×[− 1
2 ,

1
2 ]
|g(x+ y)|2 |u(x+ y)− u(y)|2

|x|1+2s dxdy

+
∫∫

T×[− 1
2 ,

1
2 ]
|u(y)|2 |g(x+ y)− g(y)|2

|x|1+2s dxdy.

The first term can be easily controlled by ‖g‖2L∞‖u‖2Hs . For the second term we use
that g ∈W 1,∞(T) is Lipschitz and thus

|g(x)− g(y)|2

|x− y|1+2s ≤ 1
|x− y|2s−1 ‖g‖

2
W 1,∞ .

Then,

sup
y∈T

∫
[− 1

2 ,
1
2 ]

1
|x− y|2s−1 dx ≤

∫ 2

−1

1
|x|2s−1 dx <∞,

as 1− 2s > −1 for all 0 < s < 1. The second term can thus be controlled in terms
of ‖u‖2L2‖g‖2W 1,∞ . �

Proof of Proposition 5.6. For the L2 product there is nothing to show.
By the kernel characterization

<〈u, g2u〉Hs(T) = <
∫∫ (u(x+ y)− u(y))(g2(x+ y)u(x+ y)− g2(y)u(y))

|x|1+2s dxdy

=
∫∫

g2(x+ y) |u(x+ y)− u(y)|2

|x|1+2s dxdy

−<
∫∫

g2(x+ y)− g2(y)
|x|1+2s (u(x+ y)− u(y))u(y)dxdy.

As g2 is Lipschitz, the second term can thus be estimated by

‖g2‖W 1,∞

∫∫ 1
|x|2s

|u(x+ y)− u(y)||u(y)|dxdy

≤ 2‖g2‖W 1,∞

∥∥∥∥ 1
|x|2s

∥∥∥∥
L1
x

‖u‖2L2 ≤ Cs‖g2‖W 1,∞‖u‖2L2 ,

where we used that 2s < 1. �
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2. Stability in H3/2− and boundary perturbations

In Chapter 4 we established stability of the linearized Euler equations, (90), in a
finite periodic channel, TL × [0, 1], in Hm

x H
1
y , for general initial data. The damping

result, Theorem 4.4, hence provides decay of the perturbations to the velocity field
with rate t−1, i.e.

‖v − 〈v〉x‖L2
x,y(TL×[0,1]) = O(t−1),

‖v2‖L2
x,y(TL×[0,1]) = O(t−1).

(121)

As this is almost sufficient to establish scattering, a natural question to ask is how
far this can be improved, that is for which values of s, with s > 1, stability in Hm

x H
s
y

still holds.

As the main result of this section, we show that the critical Sobolev exponent in
y is given by s = 3

2 . More precisely, in the Corollaries 5.1 and 5.2, we show that for
perturbations ω0 with non-vanishing Dirichlet data, ω0|y=0,1, ∂yW asymptotically
develops (logarithmic) singularities at the boundary and that hence stability in
Hm
x H

s
y(TL× [0, 1]), s > 3

2 , and H
m
x H

2
y (TL× [0, 1]) can not hold, unless one restricts

to perturbations ω0 such that ω0|y=0,1 = 0. This singularity formation is further
analyzed in Section 4, where we also study the behavior close to the boundary
and the heuristic implications for stability in Lp spaces. As we discuss in Chapter
6, these instability results have strong implications for the problem of nonlinear
inviscid damping in a finite channel.

As a complementary result to the singularity formation, Theorem 5.1 establishes
stability in the periodic fractional Sobolev spaces Hm

x H
s
y(TL × T), s < 3/2. In

particula, we thus obtain inviscid damping with an integrable ( but subquadratic)
rate and hence scattering for initial perturbations without zero Dirichlet data, which
has not been possible with the H1 stability results of Chapter 4.

We recall that the linearized 2D Euler equations, (91), in a finite periodic
channel, TL × [0, 1], are given by:

∂tW = if(y)
k

Φ,

(−1 + (g(y)(∂y
k
− it))2)Φ = W,

Φ|y=0,1 = 0,
(t, k, y) ∈ R× L(Z \ {0})× [0, 1].

(122)

Furthermore, as noted in Remark 3 of Chapter 4, the equations (122) decouple with
respect to k. Hence, for the remainder of this chapter, we consider k as a given
parameter and consider the stability of

W (t) = W (t, k, ·) ∈ Hs([0, 1]).

Results for Hm
x H

s
y(TL × [0, 1]),m ∈ N0, can then be obtained by summing over k.
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Considering the evolution of ∂yW :

∂t∂yW = if

k
∂yΦ + if ′

k
Φ,

(−1 + (g(∂y
k
− it))2)Φ(1) = ∂yW + [(g(∂y − it))2, ∂y]Φ,

Φ(1)
y=0,π = 0,

H(1) = ∂yΦ− Φ(1),

(t, k, y) ∈ R× L(Z \ {0})× [0, 1],

(123)

at the boundary, y ∈ {0, 1}, we prove that Sobolev stability can not hold for s > 3
2 ,

unless one restricts to perturbations ω0 with ω0|y=0,1 ≡ 0. In that case, as we show
in Section 3, an instability develops for s > 5

2 .
The following lemma recalls the explicit characterization of ∂yΦ|y=0,1, which

has been obtained in the proof of Lemma 4.7, and describes the asymptotic behavior
of ∂yΦ|y=0,1.

Lemma 5.1. Let W be a solution of the linearized Euler equations, (122), and
suppose that g ∈W 2,∞([0, 1]) satisfies g2 > c > 0. Then,

∂yΦ|y=0 = k

g2(0) 〈W,u1〉,

∂yΦ|y=1 = k

g2(1) 〈W,u2〉,
(124)

where
u1(t, y) = eiktyu1(0, y),

u2(t, y) = eikt(y−1)u2(0, y),
and uj(0, y) are solutions of

(−k2 + (g∂y)2)u = 0,
y ∈ [0, 1],

with boundary values
u1(0, 0) = u2(0, 1) = 0,
u2(0, 1) = u2(0, 0) = 0.

(125)

Let s > 0 and suppose that
‖∂yW (t)‖Hs < C <∞

for all time, then, as t→∞,

〈W,uj〉|j=1,2 = 1
t
ω0|y=0,1 +O(t−1−s).

As a corollary, we see that stability in s > 3/2 can in general not hold.

Corollary 5.1. Let W be a solution of the linearized Euler equations, (122),
and suppose that f, g ∈W 2,∞([0, 1]) and that g satisfies g2 > c > 0. Let s > 1 and
suppose that

‖∂yW‖Hs([0,1]) < C <∞.
Suppose further that fω0|y=0,1 is non-trivial. Then

‖∂yW (t)‖L∞([0,1]) & log |t|
as t→ ±∞.
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As a consequence, for perturbations such that fω0|y=0,1 is non-trivial, for any
s > 3

2 , necessarily
sup
t>0
‖W (t)‖Hs([0,1]) =∞.

Proof of Corollary 5.1. Restricting (123) to the boundary, we obtain

∂t∂yW |y=0,1 = if

k
∂yΦ|y=0,1,

where we used that Φ|y=0,1 = 0.
By Lemma 5.1, under the assumptions of the corollary, thus

∂t∂yW |y=0,1 = 1
t

if

k
ω0

k

g2

∣∣∣∣
y=0,1

+O(t−1−s).

Integrating this equality and using that
if

k
ω0

k

g2

∣∣∣∣
y=0,1

is independent of t and non-trivial,

|∂yW |y=0,1(t)| &
∫ t 1

τ
−O(τ−1−s)dτ & log |t|,

which provides the lower bound on ‖∂yW‖L∞ and hence the first result.

The second result is proven by contradiction. Let thus s > 3/2 be given and
suppose to the contrary that

‖W (t)‖Hs < C <∞,
uniformly in time. Then, by the trace map and the first result,

log(t) . ‖∂yW‖L∞ .s ‖W (t)‖Hs < C,

which is a contradiction as t→∞. �

Proof of Lemma 5.1. The explicit characterization, (124), has been obtained
in the proof of Lemma 4.7.

Integrating

u1(t, y) = eiktyu1(0, y) = u1(0, 1)∂y
eikty

ikt

by parts, we obtain a boundary term
1
ikt

Wu1|y=0,1 = − 1
ikt

W |y=0 = − 1
ikt

ω0|y=0,

as well as a bulk term
1
ikt
〈eikty, ∂y(Wu1(0, y))〉 = 1

ikt
〈eiktyu1, ∂yW 〉+ 1

ikt
〈eikty∂yu1,W 〉.

The boundary term is already of the desired form.
The second term of the bulk contribution can be integrated by parts once more

and thus yields a quadratically decaying contribution. It thus remains to estimate
the first term,

1
ikt
〈eiktyu1, ∂yW 〉.

There we use duality and estimate
〈eiktyu1, ∂yW 〉L2 ≤ ‖eiktyu1‖H−s‖∂yW‖Hs = O(t−s)‖∂yW‖Hs .

�
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As a consequence we obtain an improvement of the results of Section 6 of Chapter
4 and show that for stability in H2 it is necessary to restrict to perturbations with
vanishing Dirichlet boundary data, ω0|y=0,1 = 0.

Corollary 5.2. Let ω0 ∈ H2, f, g satisfy the assumptions of Lemma 5.1
and suppose that fω0|y=0,1 is non-trivial. Let further W (t) be the solution of the
linearized Euler equations, (122). Then,

sup
t
‖W (t)‖H2([0,1]) =∞.

Proof of Corollary 5.2. We follow the same strategy as in the proof of
Corollary 5.1. Thus, assume to the contrary that ‖W (t)‖H2 is bounded uniformly
in time. Then, for example at y = 0,

〈W, eityu1〉L2 = 1
ikt

W |y=0 −
1
ikt
〈eikty, ∂y(Wu1)〉L2 ,

= 1
ikt

W |y=0 + 1
k2t2

∂y(Wu1)|1y=0 −
1

k2t2
〈eikty, ∂2

y(Wu1)〉L2 .

Both the last L2 product and the trace of W and ∂yW can be controlled by
‖W‖H2([0,1]). Thus,

∂yΦ|y=0 = k

g2(0) 〈W, e
ityu1〉L2 = g2(0)

it
ω0|y=0 +O(t−2)‖W‖H2([0,1]),

where we used Lemma 5.1.
Integrating

∂t∂yW |y=0,1 = if

k
∂yΦ|y=0,1,

in t, thus yields that ∂yW |y=0,1 blows up logarithmically as t→∞. On the other
hand, the L∞ norm of ∂yW is controlled by the H2 norm via the Sobolev embedding
theorem, which yields a contradiction. �

We have thus seen that, in general, for the purposes of stability results s can
not be larger than 3/2. The main result of this section is that this condition is sharp
in the sense that stability in Hs holds for all s < 3/2. More precisely, instead of
Hs([0, 1]), we consider periodic spaces, i.e.

W (t, k, ·) ∈ Hs−1(T), ∂yW (t, k, ·) ∈ Hs−1(T),
where T = [0, 1]/ ∼ is the torus of unit period. As discussed in Section 1, this allows
us to use both a Fourier characterization and a kernel characterization.

Theorem 5.1. Let 0 < s < 1/2, ω0 ∈ H1([0, 1]) and ω0, ∂yω0 ∈ Hs(T).
Suppose further that f, g ∈ W 2,∞(T) satisfy the assumptions of the H2 stability
result, Theorem 4.15, and that

‖f‖W 2,∞(T)L

is sufficiently small. Then the solution, W , of the linearized Euler equations, (122),
satisfies

‖∂yW (t)‖Hs(T) . ‖ω0‖Hs(T) + ‖∂yω0‖Hs(T),

uniformly in time.

Remark 10. The assumptions on f and g are chosen such that we can apply
Proposition 5.5 to the functions f , g and their derivatives f ′ and g′. Furthermore,
we require

g2 = U ′(U−1(·))2

to be such that we can apply Proposition 5.6.
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As discussed in Remark 9, these assumptions can probably be relaxed to requiring
that

f, g ∈W 3,∞([0, 1]),
and that

|g2(1)− g2(0)| = |(U ′(b))2 − (U ′(a))2|
is sufficiently small compared to

min(g2) = min((U ′)2) > 0.

Proof of Theorem 5.1. In our proof, we follow a similar approach as in
Chapter 4. We split ∂yΦ into a solution with zero Dirichlet boundary conditions
and a correction term in the form of a homogeneous solution:

∂t∂yW = ikfΦ(1) + ikf ′Φ + ikfH(1),

(−k2 + (g(∂y − ikt))2)Φ(1) = ∂yW + [(g(∂y − ikt))2, ∂y]Φ,

Φ(1)|y=0,1 = 0,

where H(1) is given by
(−k2 + (g(∂y − ikt))2)H(1) = 0,

H(1) = H(1)|y=0e
iktyu1 +H(1)|y=1e

ikt(y−1)u2,

H(1)|y=0 = ∂yΦ|y=0 = 1
g2 〈W, e

iktyu1〉,

H(1)|y=1 = ∂yΦ|y=1 = 1
g2 〈W, e

ikt(y−1)u2〉.

Considering a decreasing weight A and computing
∂t(〈W,AW 〉Hs + 〈∂yW,A∂yW 〉Hs) =: ∂tI(t),

we thus have to control

〈 if
k

Φ, AW 〉Hs + 〈 if
k

Φ(1), A∂yW 〉Hs + 〈 if
′

k
Φ, A∂yW 〉Hs(elliptic)

+〈 if
k
H(1), A∂yW 〉Hs(boundary)

in terms of
C

k
|〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs |

Assuming this control and requiring k to be sufficiently large such that C
k � 1,

this then yields that I(t) is non-increasing. In particular,
‖W‖2Hs + ‖∂yW‖2Hs . I(t) ≤ I(0) . ‖ω0‖2Hs + ‖∂yω0‖2Hs .

It remains to prove the elliptic and boundary control in the following subsections. �

2.1. Boundary corrections. The control of the boundary term in the proof
of Theorem 5.1 is provided by the following theorem.

Theorem 5.2. Let 0 < s < 1/2 and let W, f, g as in Theorem 5.1. Let further
A be a diagonal operator comparable to the identity, i.e.

A : einy 7→ Ane
iny,

with
1 . An . 1,

uniformly in n.
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Then,

|〈A∂yW, ifH(1)〉Hs | .
∑
n

cn(t) < n >2s |(∂yW )n|2,

for a family cn ∈ L1
t , with ‖cn‖L1

t
bounded uniformly in n.

Proof of Theorem 5.2. H(1) is explicitly given by

H(1) = ∂yΦ|y=0e
iktyu1 + ∂yΦ|y=1e

ikty(y−1)u2.

We hence have to estimate

〈A∂yW, ifH(1)〉Hs = ∂yΦ|y=0〈A∂yW, ifu1〉Hs + ∂yΦ|y=1〈A∂yW, ifu2〉Hs .(126)

By Lemma 5.1

∂yΦ|y=0 = k

g2(0) 〈W, e
iktyu1〉

= k

g2(0)

(
1
ikt

ω0|y=0 + 1
ikt
〈eikty, ∂yWu1〉

)
,

∂yΦ|y=1 = k

g2(1) 〈W, e
ikt(y−1)u2〉

= k

g2(1)

(
1
ikt

ω0|y=1 + 1
ikt
〈eikt(y−1), ∂yWu2〉

)
.

Let us for the moment concentrate on the terms not involving ω0. Using the
control of g and 1

g , in order to estimate (126), we hence have to estimate

|〈A∂yW,
if

k
eiktyu1〉Hs

1
t
〈∂yW, eiktyu1〉L2 |(127)

Expanding this in a basis, using that 1 . An . 1, f ∈W 1,∞ and denoting

bn := |(∂yW )n|,

it suffices to consider

1
t

(∑
n

bn
< n >2s

< n− kt >

)(∑
n

bn
< n− kt >

)
.(128)

Considering the decay of the coefficients in n and taking into account that we only
control bn < n >s∈ l2, we need that

< n >s

< n− kt >
∈ l2,

which is the case iff s < 1/2.
As s < 1/2, we may choose λ < 1 such that s− λ < −1/2 and split∑

n

bn
< n >s

< n− kt >1−λ
< n >s

< n− kt >λ

≤
(∑

b2n
< n >2s

< n− kt >2(1−λ)

)1/2 ∥∥∥∥ < n >s

< n− kt >λ

∥∥∥∥
l2
.

Spliting the second factor in (128) in the same way, it suffices to show that

cn(t) := 1
t

1
< n− kt >2(1−λ)

∥∥∥∥ < m >s

< m− kt >λ

∥∥∥∥
l2m

∥∥∥∥ 1
< m >s< m− kt >λ

∥∥∥∥
l2m
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is in L1
t with ‖cn‖L1

t
bounded uniformly in n. Estimating < n >s.< n− kt >s + <

kt >s, it suffices to show that

< kt >s
∥∥∥∥ 1
< n >s< n− kt >λ

∥∥∥∥
l2
. 1.

As s− λ < −1/2, there exists a δ > 0 such that λ = 1/2 + δ + s. We thus estimate∥∥∥∥ 1
< n >s< n− kt >λ

∥∥∥∥
l2
≤ ‖ 1

< n >s< n− kt >s
‖l∞‖

1
< n− kt >1/2+δ ‖l2 .

Hence,

cn(t) . 1
t

1
< n− kt >2(1−λ) ∈ L

1
t .

It remains to discuss
1
ikt

ω0|y=0,1.

As the trace of ω0 is controlled by its initial H1 norm, we consider ω0|y=0,1 as
constants of size 1 in the following. Hence, we have to estimate∣∣∣∣〈A∂yW, ifk eityu1〉

1
kt

∣∣∣∣ .
Splitting ∣∣∣∣ 1

kt

∣∣∣∣ =
∣∣∣∣ 1
kt

∣∣∣∣γ ∣∣∣∣ 1
kt

∣∣∣∣1−γ ,
with 1/2 < γ < 1/2 + ε and using Young’s inequality, we thus obtain

|〈A∂yW,
if

k
eityu1〉

1
kt
| .< kt >−2γ +

∣∣∣∣ 1
kt

∣∣∣∣2(1−γ)
|〈A∂yW,

if

k
eityu1〉|2.

Here, the first term is an integrable contribution. Following the same strategy as
above, the second term can be controlled by∑

n

b2n
< n >2s

< n− kt >2(1−λ)
< kt >2s

< kt >2(1−γ)

Choosing γ, λ such that
s− (1− λ)− (1− γ) < −1/2

and modifying cn(t) to also include
< kt >2s

< kt >2(1−γ)< n− kt >2(1−λ) ∈ L
1
t ,

then proves the result. Such a choice is possible as s < 1/2 is given and we can
choose (1− λ) < 1/2 and (1− γ) < 1/2 arbitrarily close to 1/2. �

2.2. Elliptic control. In this section, our main goal is to prove the following
theorem, which controls the elliptic contributions in the proof of Theorem 5.1.
Here, the main steps of the proof of Theorem 5.3 are formulated as lemmata and
propositions and conclude with Lemma 5.7.

Theorem 5.3. Let 0 < s < 1/2 and let A, f, g,W as in Theorem 5.2. Then

|〈A∂yW, ifΦ(1) + if ′Φ〉Hs | .
∑
n

cn(t) < n >2s (|(∂yW )n|2 + |Wn|2),

for a family cn ∈ L1
t , where ‖cn‖L1

t
is bounded uniformly in n.

109



When working with non-fractional Sobolev spaces, in Chapter 4, this estimate
reduced to an elliptic regularity theorem of the form

‖Φ‖H̃1 . ‖W‖H̃−1 ,

where

‖Φ‖2
H̃1 = ‖Φ‖2L2 + ‖(∂y

k
− it)Φ‖2L2

and H̃−1 was constructed by duality.
Similarly, we show that the proof of Theorem 5.3 reduces to estimating

‖Φ‖2Hs + ‖(∂y
k
− it)Φ‖2Hs + ‖Φ(1)‖2Hs + ‖(∂y

k
− it)Φ(1)‖2Hs .

Lemma 5.2. Let 0 < s < 1/2 and let A, f, g,W be as in Theorem 5.3. Then

〈A∂yW, ifΦ(1) + if ′Φ〉Hs

.

(∑ < n >2s |(∂yW )n|2

< n− kt >2

)1/2

(‖f ′Φ‖Hs + ‖f ′′Φ‖Hs + ‖f ′(∂y − ikt)Φ‖Hs

+ ‖fΦ(1)‖Hs + ‖f ′Φ(1)‖Hs + ‖f ′(∂y − ikt)Φ(1)‖Hs).

Proof of Lemma 5.2. Denote
R := ifΦ(1) + if ′Φ.

Then,

〈A∂yW,R〉Hs =
∑
n

an(∂yW )n < n >2s 〈einy, R〉.

Multiplying by a factor

1 = 1 + i(n/k − t)
1 + i(n/k − t) ,

we estimate∑
n

(
An(∂yW )n

< n >s

1 + i(n/k − t)

)(
< n >s (1 + i(n/k − t))〈einy, R〉

)
≤
∥∥∥∥An(∂yW )n

< n >s

1 + i(n/k − t)

∥∥∥∥
l2n

∥∥< n >s (1 + i(n/k − t))〈einy, R〉
∥∥
l2n
.

We, in particular, note that
1

|1 + i(n/k − t)|2 ∈ L
1
t .

Thus, it suffices to control∑
n

< n >2s |(1 + i(n/k − t))〈einy, R〉|2.(129)

As
ineiny = ∂ye

iny,

and as R has zero boundary values, integrating by parts

(1 + i(n/k − kt))〈einy, R〉 = 〈einy, R〉+ 〈einy, (∂y
k
− it)R〉.

By the triangle and Young’s inequality, one thus obtains an estimate of (129) by

‖R‖2Hs + ‖(∂y
k
− it)R‖2Hs .
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Computing (∂yk − it)R by the product rule and using the triangle inequality then
concludes the proof. �

By Proposition 5.5 of Section 1, for f, g sufficiently regular, it hence suffices to
estimate

‖Φ‖Hs + ‖(∂y
k
− it)Φ‖Hs + ‖Φ(1)‖Hs + ‖(∂y

k
− it)Φ(1)‖Hs .

As the estimates for Φ and Φ(1) are very similar, to simplify notation and as we will
later on also derive such an estimate for Φ(2), we in the following consider a general
problem:

Let ψ solve

(−1 + (g(∂y
ik
− t))2)ψ = R,

ψ|y=0,1 = 0,
y ∈ [0, 1]

C > g2 > c > 0, g ∈W 2,∞.

(ELL)

for some R ∈ Hs, 0 ≤ s < 1/2.
In the following we show that, as in the case s = 0, for |k−1| sufficiently small

‖ψ‖2Hs + ‖(∂y
ik
− t)ψ‖2Hs .

∑
cn(t) < n >2s |Rn|2,

for some family cn(t) ∈ L1
t with ‖cn(t)‖L1

t
< C <∞ uniformly in n.

As in the case s = 0, the heuristic idea, is to consider the inner product (now in
Hs) of the first equation in (ELL) with ψ and estimate:

‖ψ‖2Hs + ‖(∂y
ik
− t)ψ‖2Hs .<〈ψ,R〉Hs − errors,

(lower)

<〈ψ,R〉Hs .
(
‖ψ‖2Hs + ‖(∂y

ik
− t)ψ‖2Hs

)1/2 (∑
cn(t) < n >2s |Rn|2

)1/2
.

(upper)

Here, errors are terms that can either be absorbed in the left-hand-side or estimated
by terms similar to the right-hand-side in (upper).

As we work in fractional Sobolev spaces, integration by parts and similar
estimates involve many more boundary terms, commutators and other corrections.
Controlling all these terms in a suitable way, makes (lower) technically much more
challenging than in the integer Sobolev case. The upper estimate, however, follows
analogously, as is shown in the following lemma.

Lemma 5.3. Let ψ,R solve (ELL), then

<〈ψ,R〉Hs .
(
‖ψ‖2Hs + ‖(∂y

ik
− t)ψ‖2Hs

)1/2 (∑
cn(t) < n >2s |Rn|2

)1/2
,

where

cn(t) = 1
1 + (nk − t)2 ∈ L

1
t .

Proof of Lemma 5.3. Following the same strategy as in Lemma 5.2, we
express 〈ψ,R〉Hs in a basis, multiply by a factor

1 + i(n/k − t)
1 + i(n/k − t) ,

integrate by parts and employ Cauchy-Schwarz. �
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In order to derive (lower), we first make use of our freedom in choosing the
error term, by modifying the (shifted) elliptic operator.

(−1 + (g(∂y
ik
− t))2)ψ

=− ψ + (∂y
ik
− t)g2(∂y

ik
− t)ψ − g′

ik
g(∂y
ik
− t)ψ.

Up to boundary terms, the leading operator

−1 + (∂y
ik
− t)g2(∂y

ik
− t)

is hence symmetric and negative definite, which we use for a lower estimate in
Lemma 5.5 and in combination with Proposition 5.6.

Lemma 5.4. Let ψ ∈ Hs([0, 1]) be a solution of (ELL). Then,∣∣∣∣〈ψ, g′ik g
(
∂y
ik
− t
)
ψ

〉
Hs

∣∣∣∣ . 1
|k|
|‖ψ‖Hs‖(

∂y
ik
− t)ψ‖2Hs .

For k sufficiently large, instead of (lower), it thus suffices to prove

‖ψ‖2Hs + ‖(∂y
k
− it)ψ‖2Hs . 〈ψ,−ψ + (∂y

ik
− t)g2(∂y

ik
− t)ψ〉Hs − errors.

Proof of Lemma 5.4. The first statement follows by Cauchy-Schwarz and
applying Proposition 5.5 of Section 1 with gg′ ∈W 1,∞(T).

For the second statement, we note that

c(‖ψ‖2Hs + ‖(∂y
k
− it)ψ‖2Hs) ≤ <〈ψ,R〉 − errors

= <〈ψ,−ψ + (∂y
ik
− t)g2(∂y

ik
− t)ψ〉Hs − errors

+ <〈ψ, g
′

ik
g(∂y
ik
− t)ψ〉Hs

≤ <〈ψ,−ψ + (∂y
ik
− t)g2(∂y

ik
− t)ψ〉Hs − errors

+ C

|k|
(‖ψ‖2Hs + ‖(∂y

k
− it)ψ‖2Hs).

Letting |k| � 0 be sufficiently large, Ck ≤ c/2, which allows us to absorb the last
term in the left-hand-side. �

In order to prove (lower), it thus remains to show that

−<〈ψ, (∂y
ik
− t)g2(∂y

ik
− t)ψ〉Hs

provides a control of

‖(∂y
ik
− t)ψ‖2Hs ,

up to error terms.
While in the case s = 0 this reduces to an integration by parts argument, for

s > 0 two additional challenges arise:
• Integrating by parts yields boundary terms.
• 〈u, g2u〉Hs 6= 〈gu, gu〉Hs 6≥ min(g2)‖u‖2Hs .

The second issue is addressed by Proposition 5.6 in Section 1 and the former by the
following two lemmata.
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Lemma 5.5. Let ψ ∈ Hs([0, 1]) be a solution of (ELL). Then∣∣∣∣〈ψ,(∂yik − t
)
g2
(
∂y
ik
− t
)
ψ

〉
Hs

+
〈(

∂y
ik
− t
)
ψ, g2

(
∂y
ik
− t
)
ψ

〉
Hs

∣∣∣∣
. |k−1|

(
‖ψ‖2Hs +

∥∥∥∥(∂yik − t
)
ψ

∥∥∥∥2

Hs

)1/2 ∥∥∥∥ < n >s

< n/k − t >

∥∥∥∥
l2

∣∣∣∣g2
(
∂y
k
− it

)
ψ|1y=0

∣∣∣∣ .
Furthermore, ∥∥∥∥ < n >s

< n/k − t >

∥∥∥∥
l2
.s< kt >s .

Proof. Expanding both terms in a Fourier basis and integrating by parts, the
difference is given by

∑
n

< n >2s ψn
1
k
g2(∂y

k
− it)ψ

∣∣∣∣∣
1

y=0

.

Taking absolute values inside the sum, multiplying by a factor

1 = 1 + i(n/k − t)
1 + i(n/k − t)

and using Cauchy-Schwarz, the first estimate is proven.
For the second estimate, we note that

< n >s. ks < n/k − t >s + < kt >s,

and that

< n/k − t >s−1∈ l2n,

provided s < 1/2.
�

Lemma 5.6. Let ψ,R solve (ELL), then the following estimates hold:∣∣∣∣g2
(
∂y
k
− it

)
ψ|1y=0

∣∣∣∣ . |k|−1 < t >−s

(∑
n

|Rn|2cn(t) < n >2s

)1/2

.(a)

g2
(
∂y
ik
− t
)
ψ|y=0 = k〈R, eiktyu1〉L2 ,(b)

g2
(
∂y
ik
− t
)
ψ|y=1 = k〈R, eikt(y−1)u2〉L2 ,

|〈R, eiktyu1〉L2 | .
∑
n

|Rn| <
n

k
− t >−1,(c)

|〈R, eikt(y−1)u2〉L2 | .
∑
n

|Rn| <
n

k
− t >−1,

|〈R, eikt(y−1)u2〉L2 + 〈R, eiktyu1〉L2 | . |k−1|
∑
n

|Rn| <
n

k
− t >−2 .
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Proof of Lemma 5.6. We first show that that (b) and (c) imply (a). Thus,
assume for the moment, that (c) holds. Then∣∣∣∣g2(∂y

k
− it)ψ|1y=0

∣∣∣∣ .|k−1|
∑
n

|Rn| <
n

k
− t >−2

=|k−1|
∑
n

|Rn|
< n >s

< n/k − t >1/2+ε
1

< n/k − t >1/2+ε
1

< n >s< n/k − t >1−2ε

≤|k−1|

(∑
n

|Rn|2cn(t) < n >2s

)1/2

∥∥∥∥ 1
< n/k − t >1/2+ε

∥∥∥∥
l2

∥∥∥∥ 1
< n >s< n/k − t >1−2ε

∥∥∥∥
l∞
,

where
cn(t) =< n/k − t >−1−2ε∈ L1

t .

We further estimate

‖ 1
< n/k − t >1/2+ε ‖l2 .

√
k,

‖ 1
< n >s< n/k − t >1−2ε ‖l∞ ≤< kt >−s + < kt >−1+2ε .

As s < 1/2 < 1, for ε > 0 sufficiently small 1− 2ε ≥ s, which concludes the proof of
(a).

The estimates (b) have been proven previously in Lemma 5.1 for the case of
ψ = Φ. Let again eiktyu1, eikt(y−1)u2 be the homogeneous solutions with boundary
values zero and one. Testing the equation and integrating by parts twice, yields two
boundary terms. In the case of eiktyu1, the first boundary term is given by

eiktyu1
1
ik
g2(∂y

ik
− t)ψ|1y=0 = − 1

ik
g2(∂y

ik
− t)ψ|y=0,

by the choice of the boundary values of eiktyu1. The second boundary term

ψ
1
ik
g2(∂y

ik
− t)eiktyu1|1y=0,

vanishes as ψ vanishes on the boundary. The result for eikt(y−1)u2 follows analo-
gously, which concludes the proof of (b).

It remains to prove (c). For the first two estimates, it suffices to prove that
〈einy, eiktyu1〉L2 .< n/k − t >−1,

〈einy, eikt(y−1)u2〉L2 .< n/k − t >−1 .

A first, easy but non-optimal proof integrates ei(kt−n)y by parts, which yields a
control by ∣∣∣∣ k

kt− n

∣∣∣∣ .
For an improved estimate we recall that uj is given by linear combinations of

e±kU
−1(y),

and that

ei(kt−n)y±kU−1(y) = 1
±k(U−1)′ + i(kt− n)∂ye

i(kt−n)y±kU−1(y).
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The improved final estimate of (c), follows by noting that eikt(y−1)u2 + eiktyu1
has boundary values 1, 1 and is thus periodic. A first integration by parts thus does
not yield any boundary contribution and we may integrate by parts once more to
obtain the quadratic decay.

�

Combining both lemmata, we thus have further simplified (lower) to estimating〈(
∂y
ik
− t
)
ψ, g2

(
∂y
ik
− t
)
ψ

〉
Hs

.

Employing Proposition 5.6 of Section 1, as well as the L2 estimate of Chapter 4, we
have thus proven the following proposition:

Proposition 5.7. Let ψ,R solve (ELL), 0 ≤ s < 1/2 and R ∈ Hs. Then

‖ψ‖2Hs + ‖(∂y
k
− it)ψ‖Hs .

∑
n

|Rn|2cn(t) < n >2s,

where cn ∈ L1
t with ‖cn‖L1

t
bounded uniformly in n.

Having derived this generic result for (ELL), it remains to apply it to the cases
ψ = Φ and ψ = Φ(1).

Proposition 5.8. Let 0 < s < 1/2, W ∈ Hs and let Φ be a solution of

(−k2 + (g(∂y − ikt))2)Φ = W,

Φ|y=0,1 = 0,
y ∈ [0, 1].

Let further g, g′ ∈W 1,∞(T) and g2 > c > 0. Then there exists a constant such that

‖Φ‖2Hs + ‖(∂y
k
− it)2Φ‖2Hs .

∑
n

|Wn|2 < n >2 cn(t),

for some cn(t) ∈ L1
t .

Proof of Proposition 5.8. Applying Proposition 5.7 with ψ = Φ, R = W
yields the result. �

Considering the case ψ = Φ(1), the upper estimate, Lemma 5.2, has to be
slightly modified, as the second term in

R = ∂yW +
[
(∂y
k
− it)g2(∂y

k
− it), ∂y

]
Φ

has to be treated separately.

Lemma 5.7. Let Φ,W solve

(−1 + (g(∂y
k
− it))2)Φ = W,

Φ|y=0,1 = 0,
y ∈ [0, 1].

Then,

<〈Φ(1), [(∂y
k
− it)g2(∂y

k
− it), ∂y]Φ〉Hs .

∑
n

< n >2s cn(t)(|(∂yW )n|2 + |Wn|2).
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Proof of Lemma 5.7. We compute[
(∂y
k
− it)g2(∂y

k
− it), ∂y

]
Φ = 2(∂y

k
− it)gg′(∂y

k
− it)Φ.

Integrating by parts, we thus obtain a bulk term

〈(∂y
k
− it)Φ(1), 2gg′(∂y

k
− it)Φ〉Hs ,

and, similar to Lemma 5.4, a boundary term∑
n

Φ(1)
n < n >2s k−12gg′(∂y

k
− it)Φ.(130)

Using Proposition 5.5 of Section 1 and Young’s inequality, the bulk term can be
estimated by

ε‖(∂y
k
− it)Φ(1)‖2Hs + ε−1C‖(∂y

k
− it)Φ‖2Hs .

Here, the second term can be estimated by the previous proposition, while the first
term can be absorbed in the left-hand-side of the estimate as in the proof of Lemma
5.4.

In order to estimate the boundary term, (130), we follow the same strategy as
in the proof of Lemma 5.5 and Lemma 5.6. We thus obtain an estimate by

‖(∂y
k
− it)Φ(1)‖Hs‖

< n >s

< n/k − t >
‖l2
∣∣∣∣2gg′(∂yk − it)Φ|1y=0

∣∣∣∣ .
It remains to estimate ∣∣∣∣2gg′(∂yk − it)Φ|1y=0

∣∣∣∣ .
Unlike in the last case of (c) in Lemma 5.6, there is no additional cancellation of
the contributions at y = 0 and y = 1. Hence, we estimate

|2gg′| . ‖g‖2W 1,∞

and consider the contributions at y = 0 and y = 1 separately. Using Lemma 5.6, we
express

(∂y
k
− it)Φ|y=0,1

in terms of

〈W, eiktyu1〉L2 = 1
ikt

W |y=0 + 1
ikt
〈eikty∂yWu1〉L2 .

To estimate both terms, we follow the same strategy as in the proof of Theorem 5.2.
The first term is controlled using Young’s inequality, i.e.

‖(∂y
k
− it)Φ(1)‖Hs‖

< n >s

< n/k − t >
‖l2

W |y=0,1

ikt

. ε−1|kt|−2γ + ε‖(∂y
k
− it)Φ(1)‖2Hs

< kt >2s

|kt|2(1−γ) ,

where γ > 1/2 is chosen such that 1− γ ≥ s. The first term is integrable in time
and the second can be absorbed in the left-hand-side.

It remains to estimate

‖(∂y
k
− it)Φ(1)‖Hs‖

< n >s

< n/k − t >
‖l2

1
ikt
〈eikty∂yWu1〉L2 .(131)

For this purpose, we compute
〈eikty, ∂yWu1〉L2 = 〈eikty, u1∂yW 〉L2 + 〈eikty,W∂yu1〉L2 .
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The second term can be integrated by parts once more to obtain another factor 1
ikt

and is thus easily controlled. For the first term we estimate

〈eikty, u1∂yW 〉L2 .
∑
|(∂yW )n|

< n >s

< n/k − t >1−λ
1

< n >s< n/k − t >λ
,

where 0 < λ < 1 and s+ λ > 1/2.
The terms in (131) can thus be estimated by

‖(∂y
k
− it)Φ(1)‖Hs < kt >s

1
|kt|

∥∥∥∥|(∂yW )n|
< n >s

< n/k − t >1−λ

∥∥∥∥
l2

∥∥∥∥ 1
< n >s< n/k − t >λ

∥∥∥∥
l2

.‖(∂y
k
− it)Φ(1)‖Hs

1
|kt|

∥∥∥∥|(∂yW )n|
< n >s

< n/k − t >1−λ

∥∥∥∥
l2
.

Using Young’s inequality, the first factor can be absorbed, while the second
factor is of the desired form with

cn(t) := 1
|kt|

1
< n/k − t >2(1−λ) ∈ L

1
t .

�

This concludes the stability proof in Hs, s < 3/2.
As a consequence we now have sufficient control of regularity to obtain damping

with integrable rates and scattering.

Corollary 5.3 (Scattering). Let 0 < s < 1/2 and let W be a solution of the
linearized Euler equations, (122), such that ‖∂yW‖Hs and ‖W‖H1 are uniformly
bounded (e.g. satisfying Theorem 5.1). Then there exists W∞ ∈ Hs

yL
2
x such that,

as t→∞,
‖V2‖L2 = O(t−(1+s)),

W
L2

−−→W∞,

‖W (t)−W∞‖L2 = O(t−s).

Proof of Corollary 5.3. This result is proven in the same way as Theorem
4.16. That is, by Duhamel’s formula, W (t) satisfies

W (t) = ω0 +
∫ t

0
fV2(τ)dτ.

Estimating and integrating,
‖fV2(τ)‖L2 ≤ ‖f‖L∞‖V2‖L2 = O(t−(1+s)),

then yields the result. �

Approximating ω0 ∈ L2 by functions in Hs, 1 < s < 3/2, we obtain scattering
in L2.

Corollary 5.4 (L2 scattering). Let f, g, k be as in Theorem 5.1. Then for
any ω0 ∈ L2 there exists W∞ ∈ L2 such that

W
L2

−−→W∞,

as t→∞.

Proof of Corollary 5.4. Let (ωn0 )n∈N ∈ Hs be a sequence such that

ωn0
L2

−−→ ω0,

as n→∞. By Corollary 5.4, for any ωn0 there exists an asymptotic profile Wn
∞. By

the L2 stability Theorem 4.10 the convergence of ωn0 also implies the convergence of
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Wn(t) at any time t and of Wn
∞. The result then follows by choosing an appropriate

diagonal sequence in t and n. �

3. Stability in H5/2−

In the previous Section 2, we have seen that, under general perturbations, the
critical Sobolev exponent in y is given by s = 3

2 . More precisely, for any m ∈ N0,
we have shown stability in the periodic fractional Sobolev spaces

Hm
x H

s
y(TL × T), s < 3

2 ,

and that stability in

Hm
x H

s
y(TL × [0, 1]), s > 3

2 ,

can in general not hold, unless one restricts to initial perturbations ω0 with zero
Dirichlet boundary data, ω0|y=0,1 = 0.

Restricting to such perturbations, Theorem 4.15 of Chapter 4 establishes stability
in Hm

x H
2
y (TL × [0, 1]), which is sufficient to prove linear inviscid damping with the

optimal algebraic rates. However, as discussed in Section 4 of Chapter 4, H2 stability
is not sufficient to establish consistency with the nonlinear equations. As the main
result of this section, we hence show that, for this restricted class of perturbations,
ω0, the critical Sobolev exponent in y is given by s = 5

2 . More precisely, as
shown in Corollary 5.5, for initial perturbations, ω0, with zero Dirichlet data,
ω0|y=0,1 = 0, generically ∂2

yW asymptotically develops (logarithmic) singularities
a the boundary. Hence, even for this restricted class of perturbations, stability in
Hm
x H

s
y(TL × [0, 1]), s > 5

2 , can in general not hold. As we discuss in Chapter 6, this
further implies instability of the nonlinear problem in the finite periodic channel in
high Sobolev spaces and therefore, in particular, forbids nonlinear inviscid damping
results in Gevrey regularity such as in the work of Bedrossian and Masmoudi,
[BM13b].

As a complementary result to the instability, Theorem 5.4 establishes stability
in the periodic fractional Sobolev spaces, Hm

x H
s
y(TL × T), s < 5

2 . As remarked in
Section 4 of Chapter 4, this additional stability allows us to prove consistency with
the nonlinear problem, also for the finite periodic channel.

We recall that the linearized Euler equations, (122), decouple with respect to k
and we may hence consider k as a given parameter and consider the stability of

W (t) = W (t, k, ·) ∈ Hs([0, 1]) or Hs(T).
The following two lemmata provide a description of the evolution of derivatives

of Φ on the boundary. Using these lemmata, in Proposition 5.5 we show that, in
general, stability in Hs([0, 1]), s > 5

2 , can not hold.

Lemma 5.8. Let W be a solution of the linearized Euler equations, (122),
and suppose that ‖W‖H2([0,1]) is bounded uniformly in time. Suppose further that
ω0|y=0,1 ≡ 0. Then there exist constants c0, c1 ∈ C such that

∂yW |y=0 → c0,

∂yW |y=1 → c1,

as t→∞.

We remark that c0, c1 are in general non-trivial and not determined by ∂yω0|y=0,1.
In analogy to Corollary 5.1, in Corollary 5.5 we show that non-trivial c0, c1 asymp-
totically result in a (logarithmic) blow-up at the boundary and thus provide an
upper limit on stability results.
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Proof of Lemma 5.8. Restricting the evolution equation for ∂yW , (123), to
the boundary, we obtain

∂t∂yW |y=0,1 = if

k
∂yΦ|y=0,1,

where we used that Φ|y=0,1 ≡ 0. It therefore suffices to show that ∂yΦ|y=0,1 decays
in t at an integrable rate. We recall that by Lemma 5.6

∂yΦ|y=0 = k

g(0) 〈W, e
iktyu1(0, y)〉L2 ,

∂yΦ|y=1 = k

g(1) 〈W, e
ikt(y−1)u2(0, y)〉L2 .

As k 6= 0 and as g is bounded away from 0, it suffices to consider the L2 products.
Integrating by parts once, we obtain

〈W, eiktyu1(0, y)〉L2 = − 1
ikt

W |y=0 −
1
ikt
〈eikty, ∂y(Wu1(0, y))〉L2

= − 1
ikt
〈eikty, ∂y(Wu1(0, y))〉L2 .

Recalling Lemma 5.1, a uniform control of ‖W‖Hs + ‖∂yW‖Hs for some s > 0
suffices to obtain an upper bound by O(t−1−s) and thus deduce the result.

Integrating by parts once more, we obtain

〈W, eiktyu1(0, y)〉L2 = 1
k2t2

eikty∂y(Wu1(0, y))|1y=0 −
1

k2t2
〈eikty, ∂2

y(Wu1(0, y))〉L2 .

Again using the assumption that W |y=0,1 ≡ 0, the first term can be controlled by

Ckt
−2|∂yW |y=0,1|,

and the second term by

Ckt
−2‖W‖2H2 .

Using the uniform control of ‖W‖H2 , we thus obtain the differential inequality

|∂t∂yW |y=0,1| . t−2(|∂yW |y=0,1|+ 1).

Integrating this inequality then yields the result. �

Following a similar approach as in Section 2, we show that ∂2
yW |y=0,1 in general

grows unboundedly as t→∞.

Lemma 5.9. Let W be a solution of the linearized Euler equations, (122), and
suppose that, for some s > 0, ‖W‖H2 and ‖∂2

yW‖Hs are bounded uniformly in time.
Then,

∂2
yΦ|y=0,1 = 1

ikt
∂yW |y=0,1 +O(t−1−s).

Proof. Following the same approach as in the proof of Lemma 4.10, we note
that by (122),

(−1 + (g(y)(∂y
k
− it))2)Φ = W,

and by the choice of zero Dirichlet boundary values of Φ and W ,

g2∂2
yΦ|y=0,1 = (−gg′ + iktg2)∂yΦ|y=0,1.
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Dividing by g2 and using

∂yΦ|y=0 = k

g2(0) 〈W, e
iktyu1〉

= k

g2(0)

(
1
ikt

ω0|y=0 + 〈eikty, ∂yWu1〉
)
,

∂yΦ|y=1 = k

g2(1) 〈W, e
ikt(y−1)u2〉

= k

g2(1)

(
1
ikt

ω0|y=1 + 〈eikt(y−1), ∂yWu2〉
)
,

from Lemma 5.1, it thus suffices to consider
〈eikty, ∂yWu1〉,

〈eikt(y−1), ∂yWu2〉.

Integrating eikty or eikt(y−1) by parts and using boundary values of u1, u2, yields
the leading terms

1
ikt

∂yW |y=0,1,

while the remainder is given by
1
ikt
〈eikty, ∂y(∂yWu1)〉,

1
ikt
〈eikt(y−1), ∂y(∂yWu2)〉,

respectively. By the product rule
∂y(∂yWuj) = uj∂

2
yW + ∂yW∂yuj .

For the latter term integrating by parts once more yields a term controlled by
O((kt)−2)‖W‖H2 .

It thus suffices to consider only
1
ikt
〈eiktyu1, ∂

2
yW 〉,

1
ikt
〈eikt(y−1)u2, ∂

2
yW 〉.

Expanding into a basis and using duality, the result then follows by estimating

‖eiktyu1‖H−s + ‖eikt(y−1)u2‖H−s = O(t−s).
�

Corollary 5.5. Let ω0|y=0,1 ≡ 0 and let W be the solution of (122). Further
suppose that the limits

lim
t→∞

f(y)∂yW |y=0,1

exist (e.g. by Lemma 5.8) and are non-trivial. Then for any s > 5/2,
sup
t≥0
‖W‖Hs =∞.

Proof. Suppose to the contrary that for some s > 5/2, ‖W‖Hs is bounded
uniformly in time. Then, by Lemma 5.8,

∂t∂
2
yW |y=0,1 = if

k
∂2
yΦ + if ′

k
∂yΦ|y=0,1 = if

k2t
∂yW |y=0,1 +O(t−1−s).
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Integrating this equation, we thus obtain that

log(t) . |∂2
yW |y=0,1| ≤ ‖∂2

yW‖L∞ ,

as t→∞. On the other hand by the Sobolev embedding and the choice of s > 5
2 ,

‖∂2
yW‖L∞ . ‖W‖Hs ,

which we supposed to be bounded uniformly in time. This hence yields a contradic-
tion, which proves the desired result. �

The main result of this section is given by the following Theorem 5.4, which
proves that the above restriction is sharp in the sense that stability holds for s < 5/2.
More precisely, as in Section 2, instead of Hs([0, 1]), we consider periodic spaces, i.e.

W (t, k, ·) ∈ Hs−1(T), ∂yW (t, k, ·) ∈ Hs−1(T),

which allows us to use both a Fourier characterization and a kernel characterization.

Theorem 5.4. Let 0 < s < 1/2 and let ω0 ∈ H2([0, 1]), with vanishing
Dirichlet data, ω0|y=0,1 = 0, and ω0, ∂yω0, ∂

2
yω0 ∈ Hs(T). Suppose further that

f, g ∈ W 3,∞(T) satisfy the assumptions of the H2 stability result, Theorem 4.15,
and that

‖f‖W 3,∞(T)L

is sufficiently small. Then the solution, W , of the linearized Euler equations, (122),
satisfies

‖∂2
yW (t)‖Hs(T) . ‖ω0‖Hs + ‖∂yω0‖Hs + ‖∂2

yω0‖Hs ,

uniformly in time.

Remark 11. Similar to Theorem 5.1, the assumptions on f and g are chosen
such that we can apply Proposition 5.5 to the functions f , g and their derivatives
f ′, f ′′ and g′, g′′. Furthermore, we require

g2 = U ′(U−1(·))2

to be such that we can apply Proposition 5.6.
As discussed in Remark 9, these assumptions can probably be relaxed to requiring

that

f, g ∈W 4,∞([0, 1]),

and that

|g2(1)− g2(0)| = |(U ′(b))2 − (U ′(a))2|

is sufficiently small compared to

min(g2) = min((U ′)2) > 0.

As in the previous section and as in Chapter 4, we split the contributions in
the evolution equation into boundary corrections and potentials with zero Dirichlet
conditions. Let thus W be a solution of (91), then ∂2

yW satisfies (90):

∂t∂
2
yW = if

k
(Φ(2) +H(2)) + 2f ′

ik
(Φ(1) +H(1)) + f ′′

ik
Φ,

(−1 + (g(∂y
k
− it))2)Φ(2) = ∂2

yW + [(g(∂y
k
− it))2, ∂2

y ]Φ,

Φ(2)
y=0,π = 0,

(132)
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and the homogeneous correction, H(2), satisfies

(−1 + (g(∂y
k
− it))2)H(2) = 0,

H(2)|y=0,π = ∂2
yΦ|y=0,π.

Furthermore, as discussed in the beginning of Section 2, Φ(1) and H(1) satisfy
(123):

∂t∂yW = if

k
∂yΦ + if ′

k
Φ,

(−1 + (g(∂y
k
− it))2)Φ(1) = ∂yW + [(g(∂y − it))2, ∂y]Φ,

Φ(1)
y=0,π = 0,

H(1) = ∂yΦ− Φ(1),

(t, k, y) ∈ R× L(Z \ {0})× [0, 1],

(133)

Considering a decreasing weight A and computing
∂t(〈W,AW 〉Hs + 〈∂yW,A∂yW 〉Hs + 〈∂2

yW,A∂
2
yW 〉Hs) =: ∂tI(t),

we show that I(t) is uniformly bounded.
As we have seen in the previous Section 2, the first two terms are non-positive

under the conditions of the theorem.
It thus remains to control

∂t〈∂2
yW,A∂

2
yW 〉Hs .

For this purpose, we have to estimate

〈 if
′′

k
Φ, A∂2

yW 〉Hs + 〈 if
′

k
Φ(1), A∂2

yW 〉Hs + 〈 if
′

k
Φ(2), A∂2

yW 〉Hs(elliptic)

+〈 if
′

k
H(1), A∂2

yW 〉Hs + 〈 if
k
H(2), A∂2

yW 〉Hs(boundary)

in terms of
C

|k|
|〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs + 〈∂2

yW, Ȧ∂
2
yW 〉Hs |.

Requiring |k| � 0 to be sufficiently large and thus C
|k| to be sufficiently small,

then yields the result. As in Section 2, the control of the boundary and elliptic
contributions is obtained in the following subsections.

3.1. Boundary corrections. The following two theorems provide a control of
the boundary contributions in the proof of Theorem 5.4. Here, Theorem 5.5 controls
contributions by H(1) and Theorem 5.6 controls contributions by H(2), respectively.

Theorem 5.5. Let 0 < s < 1/2 and let W, f, g as in Theorem 5.4. Let further
A be a diagonal operator comparable to the identity, i.e.

A : einy 7→ Ane
iny,

with
1 . An . 1,

uniformly in n. Then,

|〈A∂2
yW,

if ′

k
H(1)〉Hs | .

∑
n

cn(t) < n >2s (|(∂2
yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t and ‖cn‖L1

t
is bounded uniformly in n.
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Proof. Combining the approach of Lemma 4.9 and Theorem 5.2, we expand

H(1) = ∂yΦ|y=0e
iktyu1 + ∂yΦ|y=1e

ikty(y−1)u2.

We may then estimate

|〈A∂2
yW, e

iktyu1〉Hs | .
∑
n

< n >2s |(∂2
yW )n|

1
|k| < n/k − t >

.

As by our assumptions ω0|y=0,1 = 0,

∂yΦ|y=0 = k

g2(0) 〈W, e
iktyu1〉L2

has good decay in time. More precisely, as in Corollary 5.5, we integrate by parts
twice to obtain control by

|∂yΦ|y=0,1| = O(< kt >−2)‖W‖H2 .

Using the H2 stability result of Chapter 4, we may thus estimate

|〈A∂2
yW, e

iktyu1〉Hs | . < kt >−2
∥∥∥∥ < n >s

< n/k − t >(1−γ) (∂2
yW )n

∥∥∥∥
l2n

∥∥∥∥ < n >s

< n/k − t >γ

∥∥∥∥
l2
.

Choosing 0 < γ < 1 sufficiently close to 1 such that s− γ < − 1
2 , then yields∥∥∥∥ < η >s

< n/k − t >γ

∥∥∥∥
l2n

= O(< kt >s).

The result thus follows with

cn(t) :=< kt >−2+s< n/k − t >−2(1−γ)∈ L1
t .

�

Theorem 5.6. Let 0 < s < 1/2 and let A,W, f, g as in Theorem 5.5. Then,

|〈A∂2
yW,

if

k
H(2)〉Hs | .

∑
n

cn(t) < n >2s (|(∂2
yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t and ‖cn‖L1

t
is bounded uniformly in n.

Proof. Following the same approach as in Theorem 5.2 and Lemma 4.10, the
estimate of

|〈A∂2
yW,

if

k
eityu1〉Hs

1
t
〈∂2
yW, e

ityu1〉L2 |

is identical up to a change of notation.
The additional boundary correction in the current case is given by

1
ikt

∂yW |y=0,1.

While ∂yW |y=0,1 is not conserved, by Lemma 5.8 it converges as t→∞ and is thus
in particular bounded. This part of the estimate thus also concludes analogously to
the proof of Theorem 5.2. �
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3.2. Elliptic regularity. This subsection’s main result is given by the follow-
ing theorem, which provides control of the elliptic contributions in the proof of
Theorem 5.4.

Theorem 5.7. Let 0 < s < 1/2 and let A, f, g,W be a as in Theorem 5.5. Then

|〈A∂yW, ifΦ(2) + if ′Φ(1) + if ′′Φ(1)〉Hs |

.
∑
n

cn(t) < n >2s (|(∂2
yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t with ‖cn‖L1

t
bounded uniformly in n.

As in Section 2.2, Lemma 5.10 serves to reduce the proof of Theorem 5.4 to a
fractional elliptic regularity problem. The desired elliptic estimate is then formulated
in Proposition 5.9, whose prove is further broken down in Lemma 5.11 Lemma and
5.12.

Lemma 5.10. Let 0 < s < 1/2 and let A, f, g,W as in Theorem 5.5. Then

|〈A∂yW, ifΦ(2) + if ′Φ(1) + if ′′Φ(1)〉Hs | .

(∑
n

cn(t) < n >2s |(∂2
yW )n|2

)1/2

(
‖ifΦ(2)‖2Hs + ‖(∂y

k
− t)ifΦ(2)‖2Hs

+‖if ′Φ(1)‖2Hs + ‖(∂y
k
− t)if ′Φ(1)‖2Hs

+‖if ′′Φ‖2Hs + ‖(∂y
k
− t)if ′′Φ‖2Hs

)1/2
.

Proof. This result is proven in the same way as Lemma 5.2 in Section 2.2. �

The control of

‖if ′Φ(1)‖2Hs + ‖(∂y
k
− t)if ′Φ(1)‖2Hs + ‖if ′′Φ‖2Hs + ‖(∂y

k
− t)if ′′Φ‖2Hs

by ∑
n

cn(t) < n >2s (|(∂yW )n|2 + |Wn|2)

has already been obtained in the previous Section 2. It thus only remains to control

‖ifΦ(2)‖2Hs + ‖(∂y
k
− t)ifΦ(2)‖2Hs ,

which is formulated as the following proposition.

Proposition 5.9. Let f, g, ω0,W be as in Theorem 5.4. Then,

‖Φ(2)‖2Hs + ‖(∂y
k
− t)Φ(2)‖2Hs .

∑
n

cn(t) < n >2s (|(∂2
yW )n|2 + |(∂yW )n|2 + |Wn|2).

Proof of Proposition 5.9. We recall that Φ(2) satisfies (132):

(1 + (g(∂y
k
− it))2)Φ(2) = ∂2

yW + [(g(∂y
k
− it))2, ∂2

y ]Φ,

Φ(2)|y=0,1 = 0.
Using the generic results of Section 2.2 with

ψ = Φ(2),

R = ∂2
yW + [(g(∂y

k
− it))2, ∂2

y ]Φ,
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the result follows if we can obtain a good control of
〈ψ,R〉Hs

for our specific choice of R.
We note that

〈ψ, ∂2
yW 〉Hs . (‖ψ‖2Hs + ‖(∂y

k
− it)ψ‖2Hs)1/2

(∑
n

< n/k − t >−2< n >2s (|(∂2
yW )n|2

)1/2

,

is already of the desired form.
It thus remains to consider the commutator:

[(g(∂y
k
− it))2, ∂2

y ]Φ

=: (∂y
k
− it)2gg′(∂y

k
− it)Φ(1) + (∂y

k
− it)(g2)′′(∂y

k
− it)Φ

+ (∂y
k
− it)2gg′(∂y

k
− it)H(1) + h(∂y

k
− it)H(1)

+ Q,
where h can be computed in terms of the derivatives of g and Q is composed of
terms involving only

Φ,Φ(1), (∂y
k
− it)Φ, (∂y

k
− it)Φ(1).

Thus,

〈ψ,Q〉Hs . ‖ψ‖Hs(‖Φ‖2Hs + ‖(∂y
k
− it)Φ‖2Hs + ‖Φ(1)‖2Hs + ‖(∂y

k
− it)Φ(1)‖2Hs)1/2,

which, by the H3/2− result, Theorem 5.1, can absorbed
〈W, ȦW 〉Hs + 〈∂yW, Ȧ∂yW 〉Hs ≤ 0.

The control of the remaining terms is obtained in the following two lemmata. �

Lemma 5.11. Let g, ω0,W be as in Theorem 5.4. Then,

〈Φ(2), (∂y
k
− it)2gg′(∂y

k
− it)Φ(1) + (∂y

k
− it)(g2)′′(∂y

k
− it)Φ〉Hs

. (‖Φ(2)‖2Hs + ‖(∂y
k
− it)Φ(2)‖2Hs)1/2

·
(
‖Φ(1)‖2Hs + ‖(∂y

k
− it)Φ(1)‖2Hs + ‖Φ‖2Hs + ‖(∂y

k
− it)Φ‖2Hs

)1/2

+
∑
n

cn(t) < n >2s (|(∂2
yW )n|2 + |(∂yW )n|2 + |Wn|2),

where cn ∈ L1
t and ‖cn‖L1

t
is bounded uniformly in n.

Proof of Lemma 5.11. Integrating the leading (∂yk − it) operators by parts,
we obtain bulk terms

〈(∂y
k
− it)Φ(2), 2gg′(∂y

k
− it)Φ(1) + (g2)′′(∂y

k
− it)Φ〉Hs ,

which can be controlled in the desired manner using Cauchy-Schwarz and Proposition
5.5 of Section 1.

It thus only remains to control the boundary contributions∑
n

Φ(2)
n < n >2s (2gg′(∂y

k
− it)Φ(1) + (g2)′′(∂y

k
− it)Φ

)∣∣∣∣1
y=0

.
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Here we again estimate∑
n

Φ(2)
n < n2s >. (‖Φ(2)‖2Hs + ‖(∂y

k
− it)Φ(2)‖2Hs)1/2‖ < n >s

< n/k − t >
‖l2n ,

and

‖ < n >s

< n/k − t >
‖l2n .< kt >s .

It remains to estimate(
2gg′(∂y

k
− it)Φ(1) + (g2)′′(∂y

k
− it)Φ

)
|1y=0,

where we may drop the terms which involve it, since Φ and Φ(1) satisfy zero Dirichlet
boundary conditions.

A good control of ∂yΦ|y=0,1 in terms of ‖W‖H2 has already been obtained in
the proof of Corollary 5.2.

It thus remains to control ∂yΦ(1)|y=0,1. Following a similar approach as in
Lemma 5.6, ∂yΦ(1)|y=0,1 can be computed by testing the right-hand-side of the
equation against homogeneous solutions:

〈∂yW + [(g(∂y
k
− it))2, ∂y]Φ, eiktyu1〉L2 ,

〈∂yW + [(g(∂y
k
− it))2, ∂y]Φ, eikt(y−1)u2〉L2 .

In the case of the commutator terms, using integration by parts and the control of

‖(∂y
k
− it)eiktyu1‖L2 ,

we estimate by

‖Φ‖L2 + ‖(∂y
k
− it)Φ‖L2 ,

which is controlled. In order to estimate the remaining terms involving ∂yW , we
can either use the same approach as in Section 2.1 and control by∑

n

cn(t) < n >2s |(∂yW )n|2,

or integrate eikty by parts to obtain an additional factor 1
ikt and estimate by

1
t

∑
n

cn(t) < n >2s |(∂2
yW )n|2.

�

Lemma 5.12. Let g, ω0,W be as in Theorem 5.4 and let h ∈W 1,∞(T). Then,

|〈Φ(2), (∂y
k
− it)2gg′(∂y

k
− it)H(1) + h(∂y

k
− it)H(1)〉Hs |

.
1
|k|

(
‖Φ(2)‖Hs + ‖(∂y

k
− it)Φ(2)‖Hs

)
1

t2−s
‖W‖H2 .

Proof of Lemma 5.12. Using the fact that H(1) solves

(−1 + (g(∂y
k
− it))2)H(1) = 0,

as well as commuting some derivatives, one can express(
∂y
k
− it

)
2gg′

(
∂y
k
− it

)
H(1)
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as (
∂y
k
− it

)
h1H

(1) + h2H
(1),

for some functions h1, h2 ∈W 1,∞(T).
Integrating the (∂yk − it) by parts and using Proposition 5.5, the bulk term is

estimated by (
‖Φ(2)‖Hs + ‖(∂y

k
− it)Φ(2)‖Hs

)
‖H1‖Hs ,

while the boundary term is estimated in similar way as in the proof of Proposition
5.6, by

(‖Φ(2)‖Hs + ‖(∂y
k
− it)Φ(2)‖Hs)ts|H1|y=0,1|.

As shown in the proof of Corollary 5.5:

|H1|y=0,1| = O(t−2)‖W‖H2 .

Furthermore,

H(1) = H(1)|y=0e
iktyu1 +H(1)|y=1e

ikt(y−1)u2,

and

‖eiktyu1‖2Hs .
∑
n

< n >2s

< n− kt >2 . t
2s.

Thus,

ts|H(1)|y=0,1|+ ‖H(1)‖Hs .< t >s−2 ‖W‖H2 ,

which concludes the proof. �

We remark that under the conditions of Theorem 5.4, also stability in H2 holds,
as proven in Section 3.3 of Chapter 4. Thus, ‖W‖H2 can be considered as a given
constant. This then concludes the proof of Theorem 5.4.

Using these improved stability results, in the following Chapter 6, we revisit
the problem of consistency and further consider the implications of these sharp
(in)stability results for the nonlinear dynamics and for spectral stability as in
Rayleigh’s theorem.

Before that, however, in the following section, we further study the formation of
singularities at the boundary, the behavior of the homogeneous corrections close the
boundary and implications for (in)stability in fractional Sobolev spaces W 1,p([0, 1]).

4. Boundary layers

Thus far we have seen that ∂yW and ∂2
yW , when restricted to the boundary,

develop logarithmic singularities as t→∞, i.e.

|∂yW |y=0,1| & log(t).

While such a point-wise estimate is sufficient to prove instability in C0 and thus
Hs for s > 1/2, it does not provide a description for y close to the boundary, which
would, for example, be useful for the study of Lp spaces.

In the following, we therefore analyze the effect of the homogeneous correction
on our solution and describe the asymptotic behavior close to the boundary. Here,
for simplicity, we discuss only the evolution of ∂yW , but all arguments can be
adapted to study ∂2

yW as well.
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Recall that ∂yW evolves by (133):

∂t∂yW = if

k
H(1) + if

k
Φ(1) + if ′

k
Φ.

In view of the considerations on linearized Couette flow in Section 6 and as Φ(1)

and Φ vanish at the boundary and have a good structure, we in the following focus
on the asymptotic behavior of

if(y)
k

∫ T

H(1)(t, y)dt,

as T →∞ and for y close to the boundary.

Lemma 5.13. Let T > 1 and let u1, u2 be the solutions of

(−1 +
(
g
∂y
k

)2
)u = 0,

with boundary values

u1(0) = u2(1) = 1,
u1(1) = u2(0) = 0.

Then for any y ∈ [0, 1]∫ T

1
H(1)(t, y)dt =

∫ T

1
H(1)(t, 0)eiktydt u1(y) +

∫ T

1
H(1)(t, 1)eikt(y−1)dt u2(y).

Proof. It has be shown in the previous sections that

H(1)(t, y) = H(1)(0, t)eiktyu1(y) +H(1)(1, t)eikt(y−1)u2(y).

Integrating in time then yields the result. �

In Section 2, we have shown that under Hs stability assumptions ,

H(1)(0, t) = ω0

g2

∣∣∣∣
y=0

1
t

+O(t−1−s),

and therefore, for y = 0,∫ T

1
H(1)(t, 0)eiktydt|y=0 = ω0

g2 |y=0

∫ T

1

eikty

t
dt|y=0 +O(1) & log(T ).

The case y > 0 is considered in the following lemma, where for convenience of
notation we additionally assume that k > 0.

Lemma 5.14. Let k > 0, then for any y ≥ 1
2k ,∫ T

1

eikty

t
dt

is bounded uniformly in T, k and y.
For any 0 < y < 1

2k ,∣∣∣∣∣
∫ T

1

eikty

t
dt

∣∣∣∣∣ . min(log(T ),− log(ky)) +O(1).

Further restricting to 0 < y < 1
2kT , also

<

(∫ T

1

eikty

t
dt

)
& log(T ) +O(1).
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Letting T tend to infinity, the logarithmic singularity persists:∣∣∣∣∫ ∞
1

eikty

t
dt

∣∣∣∣ & − log(ky) +O(1),

for 0 < y < 1
k .

Proof. By a change of variables, t 7→ τ = kyt,∫ T

1

eikty

t
dt =

∫ kyT

ky

eiτ

τ
dτ.

Let thus x1, x2 ≥ 1/2 be arbitrary but fixed, then∫ x2

x1

eiτ

τ
dτ = eiτ

iτ

∣∣∣∣x2

τ=x1

−
∫ x2

x1

eiτ

iτ2 dτ .
1
x1
≤ 2.

Letting x1 = ky for y ≥ 1
2k , then proves the first result.

Let now 0 < ky < 1
2 . In the case that kyT > 1, we can choose x1 = 1 and

x2 = kyT in the above estimate and thus obtain∫ kTy

1

eikty

t
dt = O(1).

It hence suffices to consider ∫ min(kyT,1)

ky

eiτ

τ
dτ.

As τ ∈ (0, 1),
0 < cos(1) ≤ <(eiτ ) ≤ 1

does not yield cancellations. Thus, the integral is comparable to∫ min(kyT,1)

ky

1
τ
dτ = log(min(kyT, 1))− log(ky)

= min(log(kyT )− log(ky),− log(ky))
= min(log(T ),− log(ky)).

Letting T tend to infinity,
lim
T→∞

min(log(T ),− log(ky)) = − log(ky),

which proves the last result. �

We have thus shown that, as T →∞, for y close to zero∣∣∣∣∣
∫ T

1
H(1)dt

∣∣∣∣∣ & | log(ky)|+O(1).

In particular, while the L∞ norm diverges, for any 1 ≤ p <∞,
log(y) ∈ Lp([0, 1]),

and thus no blowup occurs in these spaces.

In view of our stability results for fractional Sobolev spaces, a natural question
concerns the behavior of (fractional) y derivatives. Here we consider

Cs(T, y) :=
∫ T

1
ts
eikty

t
dt,(134)
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for s ∈ (0, 1) as a simplified interpolated model between∫ T

1

eikty

t
dt,

and
d

dy

∫ T

1

eikty

t
dt = ik

∫ T

1
eiktydt = eikTy − eiky

y
.(135)

We note that, letting T tend to infinity in (135), the singularity is of the form
1
y
,

which is not in Lp([0, 1]) for any 1 ≤ p ≤ ∞. The intermediate cases 0 < s < 1 are
considered in the following lemma.

Lemma 5.15. Let 0 < s < 1 and let Cs(T, y) be given by (134). Then

Cs(T, 0) = T s − 1
s

,

and for 0 < y < 1
2k ,

Cs(T, y) . min(T s, (ky)−s) +O(1).

For 0 < y < 1
2kT , also

<(Cs(T, y)) & T s − 1
s

+O(1).

Letting T tend to infinity, there exists a constant c ∈ C, which is in general non-
trivial, such that

Cs(∞, y) = c(ky)−s +O(1).

Proof. For y = 0, we compute∫ T

1
ts

1
t
dt = ts

s
|Ts=1 = T s − 1

s
.

Controlling eikty by its absolute value, this also provides an upper bound for all
y > 0.

Considering y > 0, we introduce a change of variables t 7→ kyt∫ T

1
ts
eikty

t
dt = (ky)−s

∫ kyT

ky

eiτ

τ1−s dτ,(136)

which suggests a boundary singularity of the form min((ky)−s, T s). We first estimate∫ kyT

ky

eiτ

τ1−s dτ

from above. In the case x1, x2 ≥ 1, we integrate eiτ by parts and thus obtain an
estimate by ∣∣∣∣∫ x2

x1

eiτ

τ1−s dτ

∣∣∣∣ . 1
x1−s

1
≤ 1,(137)

which is uniform in k, y and T . For x1, x2 ≤ 1 it suffices to estimate by the absolute
value: ∣∣∣∣∫ x2

x1

1
τ1−s dτ

∣∣∣∣ . 1
s
xs2 ≤

1
s
.(138)
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Hence, by equation (136),∣∣∣∣∣
∫ T

1
ts
eikty

t
dt

∣∣∣∣∣ . (ky)−s(1 + 1
s

).

If ky is very small, i.e. 0 < y < 1
kT , then again eiτ does not oscillate and the

real part of the integral in (136) is comparable to∫ kyT

ky

1
τ1−s dτ = 1

s
(T s − 1)(ky)s.

More precisely, we estimate
cos(1) ≤ <(eiτ ) ≤ 1.

We thus obtain a lower bound of
<(Cs(T, y))

by

cos(1)(ky)−s 1
s

(T s − 1)(ky)s = cos(1)1
s

(T s − 1).

We again consider (136): Then by (137) the limit T →∞ exists as an improper
integral. We thus have to show that∫ ∞

ky

eiτ

τ1−s dτ = c+O(|ky|s)

for some c ∈ C, which is in general non-trivial. By (138),

lim
y↓0

∫ ∞
0

eiτ

τ1−s dτ =: c,

exists.
Splitting and again using (138),∫ ∞

ky

eiτ

τ1−s dτ =
∫ ∞

0

eiτ

τ1−s dτ −
∫ ky

0

eiτ

τ1−s dτ = c+O(|ky|s).

Thus, by equation (136),

C(∞, y) = (ky)−s
∫ ∞
ky

eiτ

τ1−s dτ = c(ky)−s +O(1).

�

Letting T tend to infinity, we thus have to control a singularity of the form y−s.

Lemma 5.16. Let 0 < s < 1 and let 1 ≤ p <∞, then
y−s ∈ Lp([0, 1])

if and only if p < 1
s .

The above result suggests that, for 1 ≤ p <∞,

sup
T>1

∥∥∥∥∥
∫ T

1
H(1)dt

∥∥∥∥∥
W s,p

is finite for 0 < s < 1
p and infinite for 1

p < s < 1. For the case p = 2, we have shown
in Section 2, that indeed s = 1

2 is critical in this sense.
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CHAPTER 6

Consistency and nonlinear inviscid damping

In this final chapter, we briefly summarize our results and comment on the
settings considered and the assumptions we imposed. Furthermore, we discuss
consistency and implications for the nonlinear dynamics and the available results in
the literature.

1. Spectral stability

As we remarked in Section 2.1, Rayleigh’s stability criterion is better understood
as a necessary but not sufficient criterion for spectral instability. It is however
generally considered to be not very far from sufficient and we thus discuss the
implications of our results for spectral stability of strictly monotone shear flows.

A result in this direction has previously been obtained by Hirota, Morrison,
Hattori, [HMH14], who show that a shear flow U is spectrally stable, if it satisfies
two assumptions:

• U is analytic and a bounded function on [0, 1].
• U is strictly monotone and, if U ′′(yI) = 0 at y = yI , then U ′′′(yI) 6= 0.

They further remark that these conditions can probably be relaxed.
As our L2 stability result, Theorem 4.13, in particular implies spectral stability,

we only need to require that
• U ′′ ∈W 1,∞ and U ′ is bounded.
• U is strictly monotone.
• A smallness condition on

‖U ′′(U−1(·))‖W 1,∞L

is satisfied, where L is the period in x.

Theorem 6.1 (Spectral stability). Let U be strictly monotone and satisfy the
assumptions of Theorem 4.13. Then, for |k| sufficiently large, U is spectrally stable.

Proof. Suppose to the contrary that there exists a non-trivial exponentially
growing solution ω(t, y) = eλtω0(y), ω0 ∈ L2, <(λ) > 0. Then, by the L2 stability
result, Theorem 4.13,

e<(λ)t‖ω0‖L2 = ‖ω(t)‖L2 . ‖ω0‖L2 .

Thus e<(λ)t . 1 for all t ∈ R+, which contradicts <(λ) > 0. �

2. Periodic channels and separation in frequency

In this section, we briefly discuss the assumption of periodicity in the linearized
problem and the relation to an infinitely long channel.

As we consider the behavior close to shear flows, the underlying domain has to
be invariant under generic shears and thus has to be of the form

R×A
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or
T×A

for some set A ⊂ R.
In both settings, the linearized Euler equations around a shear flow U(y) are

given by
∂tω + U(y)∂xω = U ′′(y)∂xφ,

(∂2
x + ∂2

y)φ = ω,

where φ is required to be periodic in x for x ∈ T or square-integrable for x ∈ R and
boundary conditions or integrability conditions are introduced in y, depending on
the specific choice of A.

As the problem separates if A is not connected, we may restrict to three distinct
cases:

• A = R, the infinite channel (or whole space). This setting has the advan-
tage of a vast existent literature for general kinetic transport equations,
availability of many useful tools such as a Fourier transform and the lack
of boundary.

• A = [0, 1], the finite channel. Here several tools such as the Fourier
transform are not available and boundary conditions play a non-negligible
role as seen in Chapters 4 and 5. However A is now a compact set and in
particular has finite measure, which is useful when working with Lebesgue
spaces.

• A = [0,∞), the half-infinite channel, is not handled explicitly in this work,
but can be either considered as a sub-case of the infinite channel, via a
suitable extension, or as a limiting case for the finite channel.

Remark 12. In principle, we could also consider the case of perturbations being
periodic in y. However, the transport by

∂t + U(y)∂x,
does not preserve this periodicity, unless U(y) is also periodic with the same period
as T, which is not possible for a strictly monotone flow. It would thus only make
sense to require that W (t, x, y) = ω(t, x − tU(y), y) is periodic. This can then be
identified with a subcase of A = [0, 1] and to our knowledge has no particular physical
relevance.

Concerning the choice of either x ∈ T or x ∈ R, we note that none of the
coefficient functions, U(y) and U ′′(y), depend on x explicitly and are in particular
both defined for all x ∈ R and periodic with respect to x.

Furthermore, fixing y, our equation decouples with respect to x in the sense
that after a Fourier transform or basis expansion the frequency in x behaves as a
parameter and there is no coupling between different frequencies k1 6= k2:

∂tω̂ + U(y)ikω̂ = U ′′(y)ikφ̂,

(−k2 + ∂2
y)φ̂ = ω̂,

(k, y) ∈ Z×A or R×A.
On this level, the only difference between a periodic channel and an infinitely long
channel is thus given by the fact that in the first case k may only take discrete
values, while in the second k ∈ R.

Considering the homogeneity in k of the right-hand-side and k close to but not
equal to zero,

ω̂ 7→ kφ̂
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has a large operator norm. For such perturbations, the underlying heuristic of our
proof that the dynamics are close to transport is thus not valid anymore. For this
reason we impose a frequency cut-off away from zero, i.e. 〈ω0〉(y) is incorporated
into the shear flow and we require that

ω − 〈ω〉x
is supported in frequencies k away from zero.

Under this assumption, all our results follow for the case of a non-periodic
infinitely long channel, i.e. x ∈ R, as well.

However, while some form of cut-off might be physically plausible also in the case
of an (infinitely) long narrow channel, e.g. tides can probably be mostly neglected
in a narrow channel, this cutoff will in general not be sharp but rather rapidly
decaying. The assumed periodicity thus provides a more convenient and natural
low-frequency cut-off mechanism.

3. Consistency and inviscid damping in a channel

A natural question, following the results on linear inviscid damping, concerns
the behavior of the full nonlinear dynamics. We prove the following three results:

• Consistency: The linear dynamics are consistent, i.e. the nonlinearity,
when evolved by the linear dynamics, is an integrable perturbation (in a
less regular space). In the case of non-fractional Sobolev spaces and the
infinite periodic channel, this has been already addressed in Section 4.

• Approximation: Supposing nonlinear inviscid damping holds in a space
containing Hs, s > 5, we show that the solution remains in an Hs−5

neighborhood of a linear solution (with U(t, y) varying in time) uniformly
in time.

• Instability: As a consequence, we show that, in a finite periodic channel,
the stability result associated to nonlinear inviscid damping can generally
not hold in high Sobolev spaces. Specifically we show that otherwise ∂yW
would in general develop a logarithmic singularity at the boundary, which
yields a contradiction.

The last result in particular implies that a Gevrey regularity result such as in
[BM13b] would have to be heavily modified in the setting of a finite channel.

We first consider consistency, i.e. the evolution of the nonlinear term under the
linear dynamics and shows that this would provide a uniformly controlled correction
in Duhamel’s formula.

Theorem 6.2 (Consistency). Let W be a solution of the linearized Euler
equations, (122), in either the finite or infinite channel, with∫

ω0(x, y)dx ≡ 0,

f, g ∈W 3,∞ and assume that for some s ∈ (2, 3)

‖W (t)‖Hs < C <∞,

is uniformly bounded (e.g. via Theorem 4.11 or Theorem 5.4). Then,

‖v · ∇ω‖L2 = O(t−(s−1)).

In particular,

W (t) +
∫ t

∇⊥Φ(τ)∇W (τ)dτ
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remains in a bounded neighborhood of W (t) and there exist asymptotic profiles
W±∞,con ∈ L2 such that

W (t) +
∫ t

∇⊥Φ(τ)∇W (τ)dτ L2

−−→W±∞,con,

as t→ ±∞.

Proof. Following the same approach as in Section 4
‖v · ∇ω‖L2 = ‖∇⊥Φ∇W‖L2 .

As s > 2 (and we consider two spatial dimensions, x, y), we can use a Sobolev
embedding to control

‖∇W‖L∞xy(Ω) . ‖W‖Hs .
It thus suffices to estimate

‖∇⊥Φ‖L2 .

Taking the ∇⊥ into account and using (an interpolated version of) the damping
results of Section 1,

‖∇⊥Φ‖L2 = O(t−(s−1))‖W‖Hs .
As s− 1 > 1, this decay is integrable, which together with the scattering result for
W (t) of Chapter 4 concludes the proof. �

We remark that this consistency result loses regularity and indeed controlling
the loss of regularity due to the nonlinearity is one of the main challenges in the
nonlinear problem, as we briefly discuss in Section 4.

While the linear dynamics are thus consistent in the above sense, higher regu-
larity and how well they approximate the nonlinear dynamics is not answered by
the preceding theorem.

In the following, we consider the converse problem, i.e. given a nonlinearly
stable solution with inviscid damping, we estimate the effect of the nonlinearity. For
this purpose, we note that the 2D Euler equations

∂tω + v · ∇ω = 0,
v = ∇⊥φ,

∆φ = ω,

on either the infinite or finite periodic channel possess a good structure with respect
to x averages. Denote

ω = (ω − 〈ω〉x) + 〈ω〉x = ω′ + 〈ω〉x,
φ = (φ− 〈φ〉x) + 〈φ〉x = φ′ + 〈φ〉x.

Then,
∂tω
′ − (∂y〈φ〉x)∂xω′ + (∂y〈ω〉x)∂xφ′ = (∇⊥φ′ · ∇ω′)′,

∂t〈ω〉x = 〈∇⊥φ′ · ∇ω′〉x.
In analogy to the linear setting, we denote

−∂y〈φ〉x =: U(t, y),
and for the moment restrict our attention to the first equation, considering U(t, y)
as given.

In this formulation the Euler equations then read
∂tω
′ + U(t, y)∂yω′ = (∂2

yU(t, y))∂xφ′ + (∇⊥φ′ · ∇ω′)′.
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Further introducing the volume-preserving change of variables

(x, y) 7→ (x−
∫ t

0
U(τ, y)dτ, y)

and definingW,Φ via these coordinates, the Euler equations in scattering formulation
are given by

∂tW = (∂2
yU(t, y))∂xΦ +∇⊥Φ · ∇W.(ES)

Obtaining a good control of the regularity of U(t, y) as well as appropriate decay is
a very hard problem, in particular as the evolution of U(t, y) and W is coupled. In
the following theorem, such control is therefore assumed.

Theorem 6.3 (Approximation). LetW (t, x, y) be a solution of (ES) and suppose
that, for some s > 2, inviscid damping holds in Hs with integrable rates, i.e. suppose
that, for some ε > 0,

‖∇⊥Φ‖Hs = O(t−1−ε)‖W‖Hs+2+ε .

Suppose further that ‖W (t)‖Hs+2+ε is uniformly bounded. Then,
‖∇⊥Φ · ∇W‖Hs = O(t−1−ε),

and, in particular, ∫ t

0
‖∇⊥Φ(τ) · ∇W (τ)‖Hsdτ

is bounded uniformly in t and converges as t→∞.

Proof. As s > 2, Hs forms an algebra and
‖∇⊥Φ · ∇W‖Hs ≤ ‖∇⊥Φ‖Hs‖∇W‖Hs = O(t−1−ε),

which proves the result. �

Remark 13. • The results of Section 1.1 can be extending to provide
sufficient conditions for inviscid damping with integrable rates to hold. The
core problem of inviscid damping is thus again the control of the regularity
of W .

• If ‖W‖Hs+2+ε < δ is small, then∫ t

0
‖∇⊥Φ(τ) · ∇W (τ)‖Hsdτ = O(δ2)

is quadratically small. The linearization thus remains valid, but only in a
less regular space. For this reason we call this theorem an “approximation”
result.

• Even if ‖W‖Hs+2+ε is not small, the nonlinearity yields a bounded contri-
bution. Hence, if

‖
∫ t

0
(∂2
yU(τ, y))∂xΦ(τ)dτ‖Hs

grows unboundedly as t → ∞ , i.e. the linear part is unstable, then, as
shown in the following theorem, the nonlinear dynamics can not be stable.

Theorem 6.4 (Instability). Let W be a solution of (ES), ∂2
yU(t, y) ∈ W 1,∞

y,t

and suppose that
∂2
yU(t, y)|y=0 > c > 0

for all t > 0. Suppose further that for some k
|Fx(∂y(∇⊥Φ · ∇W ))(t, k, 0)| = O(t−1−ε),
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and
FxW (t, k, y)|y=0 > c > 0,

for all time.
Then,

|(Fx∂yW )(t, k, 0)| & log(t),
as t→∞.

In particular, for any s > 2, ‖W‖Hsx,y then can not be bounded uniformly in
time.

Proof. Differentiating (ES) with respect to y, we obtain that ∂yW satisfies
∂t∂yW = ∂y

(
∂2
yU(t, y)∂xΦ

)
+ ∂y(∇⊥Φ · ∇W ).

Restricting to y = 0 and using that ∂xΦ vanishes on the boundary, as it is assumed
to be impermeable, we consider the k Fourier mode. Then,

∂tFx∂yW (t, k, 0) = ∂2
yU(t, 0)ik(Fx∂yΦ)(t, k, 0) +O(t−1−ε).(139)

Similar to the previous chapters, FxΦ solves a shifted elliptic equation:(
−k2 +

(
∂y − itk

∫ t

∂yU(τ, y)dτ
)2)

FxΦ = FxW.

A homogeneous solution u of this equation is then of the form

u(t, y) = exp
(∫ t

(U(τ, y)− U(τ, 0))dτ
)
u(0, y).

By the same argument as in Lemma 5.6, FxΦ(t, 0) can hence be computed in terms
of

〈FxW,u(t, y)〉L2 ,(140)
where we assumed that

u(0, 0) = 1, u(0, 1) = 0.
Integrating

u(t, y) = u(0, y) 1∫ t
∂yU(τ, y)dτ

∂y exp
(∫ t

(U(τ, y)− U(τ, 0))dτ
)

by parts in (140), then yields a leading order term of the form∣∣∣∣∣ 1∫ t
∂yU(τ, y)dτ

W |y=0

∣∣∣∣∣ & c

t
.

Integrating (139) in time thus yields a logarithmic singularity and hence the result.
�

We remark that, using a Sobolev embedding, the decay of
|Fx(∂y(∇⊥Φ · ∇W ))(t, k, 0)|

is a consequence of inviscid damping in a high Sobolev space. Furthermore, restricting
(ES) to the boundary,

FxW (T, k, 0) = Fxω0(t, k, 0) +
∫ T

0
Fx
(
∇⊥Φ · ∇W

)
(t, k, 0)dt.

If one thus assumes (Fx∇⊥Φ · ∇W )(t, k, 0) to decay with an integrable rate, then,
for Fxω0(t, k, 0) sufficiently large, also

FxW (T, k, 0)
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will be bounded away from zero uniformly in T .
The theorem thus implies that, in the generic case, solutions of (ES) can not

remain bounded in any high Sobolev space, which embeds into W 1,∞.

4. Nonlinear inviscid damping for Couette flow

In this section, we briefly comment on the additional challenges arising in
the nonlinear setting and the work of Bedrossian and Masmoudi, [BM13b], on
nonlinear inviscid damping for small Gevrey perturbations to Couette flow in an
infinite periodic channel. Their main result is given by the following theorem:

Theorem 6.5 ([BM13b, page 5]). For all 1/2 < s ≤ 1, λ0 > λ′ > 0 there
exists ε0 ≤ 1/2 such that for all ε ≤ ε0 and all ω0 such that∫∫

ω0dxdy = 0,∫∫
|yω0(x, y)|dxdy < ε,

‖ω0‖2Gλ0 :=
∑
k

∫
|ω̃0(k, η)|2e2λ0|(k,η)|2dη ≤ ε2,

then there exists f∞ with ∫∫
f∞dxdy = 0,

‖f∞‖Gλ′ . ε,

such hat

‖ω(t, x+ ty + Φ(t, y), y)− f∞(x, y)‖Gλ′ .
ε2

< t >
,

where

Φ(t, y) =
∫ t

0
〈v1〉x(τ, y)dτ = u∞(y)t+O(ε),

and

u∞ = ∂−1
y 〈f∞〉x.

Moreover

‖〈v1〉x − u∞‖Gλ′ .
ε2

< t >2 ,

‖v1 − 〈v1〉x‖L2 .
ε

< t >
,

‖v2(t)‖L2 .
ε

< t >2 .

As the proof is technically very challenging, we will not attempt a sketch but
rather discuss some of the techniques, tools and challenges. The interested reader is
referred to the expository article by Bedrossian and Masmoudi, [BM13a], for an
overview of the proof and further discussion.

As in the linear setting, it is natural to consider coordinates moving with the
underlying shear flow

(y + 〈v1〉x(t, y), 0),

which now depends on time.
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The corresponding change of coordinates is thus given by

(t, x, y) 7→ (t, z, ν),
z(t, x, y) = x− tν,

ν(t, y) = y + 1
t

∫ t

0
〈v1〉x(τ, y)dτ,

where the coordinate ν is chosen in such a way as to preserve the form x− tν.
We remark that this change of variables is not volume-preserving due to the

change from y to ν and that its regularity is not anymore given explicitly by the
initial shear flow (y, 0) but rather in terms of the regularity of ν(t, y).

In particular, as this change of variables influences the coefficients of the
(shifted) elliptic equation of the stream function, elliptic regularity results depend
on the regularity of the transformation. Therefore, the regularity of the change of
variables has to be controlled in addition to the regularity of vorticity and velocity
perturbation.

A more serious difficulty of the nonlinear problem is due to the loss of decoupling
with respect to frequencies k in the periodic direction. More precisely, while the
underlying shear still is independent of x and the linear terms thus decouple, the
nonlinearity

∇⊥φ · ∇ω

introduces a coupling between different frequencies.
We recall from Section 3 that the Orr mechanism and its associated growth

include critical times, i.e. that in a simplified model case and moving with the flow

Φ̃(t, k, η) = 1
k2 + (η − kt)2 W̃ (t, k, η),

and the multiplier is largest at the critical time t = η
k .

As the linear setting decouples, in that case one may restrict to k arbitrary but
fixed and thus for every η there is only one critical time, which we show to yield a
bounded contribution.

In this nonlinear case, however, any mode k could at its critical time have a
large effect on all other frequencies, which then at their critical time in turn could
have a large effect. Controlling this possible cascade is one of the main challenges of
the nonlinear problem.

Bedrossian and Masmoudi introduce a toy model of the form

∂tf = ∂y(φ− 〈φ〉x)∂xflo,
(∂2
x + (∂y − t∂x)2)φ = f,

where flo is a given function corresponding to the low frequency part of f .
Taking a Fourier transform in both x and y and, for simplicity, restricting to

∂xflo depending only on t and x, one obtains

∂tf̃(t, k, η) =
∑
l 6=0

η(k − l)
l2 + |η − lt|2 f̃(t, l, η)f̃lo(t, k − l).

Consider now frequencies l close to k at their respective critical times tl. The
contribution due to that mode is roughly given by∫ tl

tl−δ

η

l2 + (η − lt)2 dtf̃(t, l, η) ≈ η

l2
f̃(t, l, η) ≈ η

k2 f̃(t, l, η).

Starting at a critical time tk and considering neighboring modes, each mode
could then contribute growth by a factor η

k2 . Optimizing the size of the neighborhood
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and estimating from above by this worst case growth with all modes, Bedrossian
and Masmoudi obtain an upper growth bound by O(eC

√
µ).

The cascade is thus estimated, in the worst case, to at most amount to loss of
Gevrey 2 regularity, which results in the requirement s > 1/2 in the theorem.

There are experimental indications that some form of cascade may happen.
In [YOD05], echoes are observed, i.e. two perturbations of different frequencies
strongly influence a third mode, which results in an additional peak after a given
amount of time.

It is however not clear whether a full cascade (of a large number of modes) in the
above sense is possible and whether better than Gevrey 2 regularity is necessary. In
particular, as shown in Section 3, this would imply that, in a finite channel, nonlinear
inviscid damping either does not hold or is very different from the infinite-channel
case.

Indeed, the only known lower bound on the necessary regularity requirements
is given by the work of Lin and Zeng, [LZ11]. There, it is shown that for Sobolev
spaces Hs with s < 3/2, there exist non-trivial stationary solutions to the nonlinear
problem in the form of “cat eyes” in every neighborhood. Therefore, asymptotic
convergence to shear flow solutions can not hold unless one rules out these solutions,
which is shown to be the case in small enough Hs neighborhoods for every s > 3/2.
We stress that this is a nonlinear effect and that linear inviscid damping has been
proven in Chapter 4 without such restrictions.
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Summary

In this thesis, we study the linear stability and long-time asymptotic behavior
of solutions to the 2D incompressible Euler equations

∂tω + v · ∇ω = 0,
∇× v = ω,

∇ · v = 0,
which model the evolution of an inviscid, incompressible fluid.

The Euler equations possess many conserved quantities, among them the kinetic
energy, the enstrophy and entropy, and in particular exhibit neither dissipation nor
entropy increase. As shown by Arnold, [Arn66b], they even possess the structure
of an infinite-dimensional Hamiltonian system on the Lie algebra of smooth volume-
preserving diffeomorphisms. It was thus a very surprising observation of Kelvin,
[Kel87], and later Orr, [Orr07], that small perturbations to Couette flow, i.e. the
linear shear v(t, x, y) = (y, 0), are damped back to a (possibly different) shear flow.
As the linearized Euler equations around Couette flow can be solved explicitly, direct
computations show that under the linear dynamics

‖v1(t)− 〈v1〉x‖L2 ≤ O(t−1)‖ω0 − 〈ω0〉x‖H−1
x H1

y
,

‖v2(t)‖L2 ≤ O(t−2)‖ω0 − 〈ω0〉x‖H−1
x H2

y
,

and that these decay rates are sharp. This phenomenon is commonly called inviscid
damping in analogy to Landau damping in plasma physics.

Going beyond these classic results, which due to the explicit solution are in
a sense trivial, has, however, remained mostly open until recently. As the main
result of this thesis, we prove that linear inviscid damping holds for a large class
of regular monotone shear flows. There, we consider both the common setting of
an infinite periodic channel, T× R, as well as the physically relevant finite periodic
channel, T× [0, 1], with impermeable walls. In the latter setting, boundary effects
are shown to qualitatively change the behavior of solutions and that, in general,
asymptotically (logarithmic) singularities develop on the boundary. In particular,
regularity results with respect to y are thus limited to the critical fractional Sobolev
spaces H3/2

y ([0, 1]) for general perturbations and H5/2
y ([0, 1]) for perturbations with

vanishing Dirichlet data, ω0|y=0,1 = 0.
We further discuss the implications of our stability results for the problem of

nonlinear damping, where high regularity would be essential to control nonlinear
effects. In particular, we show that the stability results for the finite periodic
channel and the associated instability in supercritical Sobolev norms provide an
upper bound on the Sobolev regularity that can be controlled in the nonlinear
setting. It is hence unclear whether the recent results of Bedrossian and Masmoudi,
[BM13b], on nonlinear inviscid damping for Couette flow in an infinite periodic
channel and under small Gevrey perturbations can be adapted to the setting of a
finite periodic channel.
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