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Abstract 

Ecto-5′-nucleotidase (ecto-5′-NT, eN, CD73, EC 3.1.3.5) is a member of the group of ecto-

nucleotidases which dephosphorylate extracellular nucleotides. eN catalyzes the 

dephosphorylation of nucleoside monophosphates and its main substrate is AMP. Further 

members of the membrane-bound group of ecto-nucleotidases include nucleoside triphosphate 

diphosphohydrolases (NTPDases; subtypes 1, 2, 3 and 8), nucleotide 

pyrophosphatase/phosphodiesterases (NPPs 1-4) and alkaline phosphatases (APs; tissue non-

specific, intestinal, placental and germ cell APs). NTPDase and NPPs are ATP- and ADP-

hydrolyzing ecto-nucleotidases, which prevent ATP, ADP and other nucleotides from acting on 

purinergic P2X and P2Y receptors. They produce AMP which is further hydrolyzed by eN 

thereby elevating extracellular concentrations of adenosine which activates adenosine receptors.  

Recently it was shown that inhibition of eN with monoclonal antibodies, siRNA, or drug-like 

inhibitors delays tumor growth and metastasis. Thus, eN inhibitors have potential as novel 

therapeutics, e.g. for melanomas, lung, prostate and breast cancers. Only very few, moderately 

potent eN inhibitors are currently known. In the present study we used the ADP analog α,β-

methylene-ADP (AOPCP, adenosine-5′-O-[(phosphonomethyl)phosphonic acid]) as a lead 

structure for the development of potent, selective and metabolically stable eN inhibitors. 

Derivatives substituted at the N
6
-, C-8- or C-2-positions and/or at the methylene diphosphonate-

side chain were synthesized to improve potency and metabolic stability. All new compounds 

were tested for inhibition of rat recombinant eN. 

For the preparation of the target compounds with 2-, 6- or 8-substitution and for 2,6-disubstituted 

derivatives, a convergent synthetic strategy was applied which involves the initial preparation of 

the intermediate nucleosides followed by phosphorylation with methylenebis(phosphonic 

dichloride) to provide the desired AOPCP derivatives. For side-chain-modified analogs of 
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AOPCP commercially available substituted bis(phosphonic acid) derivatives were employed for 

5′-phosphorylation. Altogether 60 AOPCP derivatives and analogs were obtained in good yields 

and high purity by an optimized method for their preparation. 6-(Ar)alkylamino-substitution, 2-

amino-, 2-halo-, and 2-thioalkyl-substitution significantly improved potency. The most potent 

nucleotides were 2-chloro-N
6
-(2-chlorobenzyl)purine riboside-5′-O-[(phosphonomethyl)-

phosphonic acid] (144, Ki= 0.34 nM), and 2-chloro-N
6
-benzyl-N

6
-methylpurine riboside-5′-O-

[(phosphonomethyl)phosphonic acid] (149, Ki= 0.88 nM). The compounds displayed high 

selectivity versus other ecto-nucleotidases and ADP-activated P2Y receptors. They also showed 

high metabolic stability upon incubation with liver microsomes and blood plasma. These 

compounds are the most potent eN inhibitors known to date and may serve as valuable 

pharmacological tools to further elucidate the enzyme’s (patho)physiological roles. 
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I. Introduction 

1.1. Purinergic Signalling  

Extracellular signalling purine and pyrimidine derivatives like ATP (1), ADP (2), UTP (3), UDP 

(4) and adenosine (5) regulate various functions in living organisms. These molecules are present 

in the extracellular space by release from cells or by metabolic formation from precursors. Until 

the 1970s studies on the physiological functions of these nucleotides and nucleosides were 

limited.
1
  The research focus was restricted to the cell metabolism of ATP and its function as an 

energy source. Then, in 1970, Burnstock and coworkers presented evidence for ATP as a 

neurotransmitter in nonadrenergic, noncholinergic nerves (NANC) supplying the gut.
2-4

 Two 

years later they coined the word “purinergic” and also proposed a purinergic neurotransmission 

hypothesis.
4
 After that, there has been continuous growth in the field of extracellular purinergic 

signalling. Few years later, in 1978, they proposed specific membrane-bound, so-called 

purinergic receptors, to be activated by nucleosides and nucleotides. The receptors were initially 

divided into two families: the P1 receptors, activated by nucleosides and the P2 receptors, 

activated by nucleotides.
1
 Apart from the involvement of these nucleotides and nucleosides in 

differentiation and development, they have wide physiological involvement mediated by 

purinergic signaling. The alterations in the physiology of purinergic signalling may result in the 

development of various pathological conditions. Due to the involvement of these molecules in 

pathological conditions, there has been long standing interest in purinergic signalling from a 

medicinal chemistry point of view.
4
 Some therapeutics targeting purine receptors are already 

marketed and many are evaluated in clinical studies. The anti-platelet drug Clopidogrel which 

was later found to be an irreversible allosteric inhibitor of the P2Y12 receptor after formation of a 

reactive metabolite. It is one of the blockbuster drugs with billion dollar sales. Regadenoson, an 
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adenosine A2A receptor agonist was approved by the FDA (USA) in 2008 as a coronary 

vasodilator and is currently widely used in cardiac imaging. Diquafosol, an agonist of P2Y2 

receptors, was approved by some countries for the treatment of dry eye disease. Istradeylline, a 

selective antagonist of A2A receptors was approved for the treatment of Parkinson’s disease in 

combination with L-3,4-dihydroxyphenylalanine (L-DOPA) in Japan.  

The study of purinergic signalling has also helped to understand the potential side-effects of 

some already commercialized drugs: e.g. the non-selective adenosine receptor antagonist 

theophylline which was previously used as a bronchodilator was restricted from its usage due to 

potential side-effects such as seizures and cardiac arrhythmias caused by adenosine A1 receptor 

antagonism. 

 
Figure 1.  Extracellular purine and pyrimidine signalling molecules. 

(ATP: adenosine triphosphate; ADP: adenosine diphosphate; UTP: uridine triphosphate; UDP: uridine 

diphosphate) 

 

1.2. Synthesis and storage of ATP 

The schematic representation of synthesis, storage, release and inactivation of ATP in purinergic 

nerves as proposed by Burnstock
2-4

 is shown in Figure 2. He proposed that ATP is broken down 
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extracellularly by enzymes, namely ATPases and 5'-nucleotidases. ATPases convert ATP into 

AMP (via ADP) and 5'-nucleotidases converts AMP to adenosine. Adenosine may also be 

broken down further by adenosine deaminase to inosine, and removed by the circulation. 

Adenosine can be taken up by the vessels to resynthesise ATP for usage in mitochondria or 

stored in vesicles at the nerve endings. ATP can be released by exocytosis to act on P2 receptors 

of smooth muscle.  

 

Figure 2. The purinergic neuromuscular transmission hypothesis.
3
 

(AMP: adenosine monophosphate; Mitochondria is represented by purple color; ATP storing nerve 

vesicles are represented by brown circle; blood vessel is depicited by brown cylinder) 

Nucleotides and nucleosides in the extracellular space are subjected to metabolism by different 

enzymes. These extracellular enzymes have potential as drug targets. ATPases cleave phosphoric 

acid-anhydride bonds, whereas 5'-nucleotidase hydrolyzes nucleoside 5'-phosphoric acid ester 

bonds.
5
 These enzymes which metabolize nucleotides are collectively called ecto-nucleotidases.

6
 

Ecto-nucleotidases have important roles in purinergic signal transmission by decreasing the 
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nucleotides acting at purinergic P2 receptors.
7, 8

 The hydrolytic product generated, nucleosides in 

turn activate P1 receptors or can be taken up via nucleoside transporters for re-phosphorylation.
8
 

The hydrolytic by product is inorganic pyrophosphate (PPi) and inorganic phosphate (Pi), which 

controls bone mineralization and muscle calcification.  

1.3. Purinergic receptor family 

Presently the purinergic receptor family consists of three subfamilies: P0, P1 and P2 purinergic 

receptors.
9 

1.3.1. P0 receptors 

P0 receptors, which are also called adenine receptors, are G-protein-coupled receptors for which 

the endogenous ligand is adenine. This receptor is expressed in the small neurons of dorsal root 

ganglia, ovaries, kidney and small intestine in rat. The detailed physiological roles of adenine 

receptors is not well known but it may play an important role in nociception. Studies have also 

shown the involvement of adenine in human renal dysfunction which can be correlated to the 

significance of adenine receptors  in maintaining proper renal function.
10
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Figure 3. The purinergic receptor family, with their physiological agonists.
8, 9 

(AP4P: Diadenosine 5',5"'-P
1
,P

4
-tetraphosphate; GPCR: G protein-coupled receptor; LGIC: Ligand-gated 

ion channel) 

  

1.3.2. P1 receptor 

P1 receptors, or adenosine receptors (AR or A), are receptor proteins belonging to the family of 

membrane-bound G protein-coupled receptors (GPCRs). On the basis of their distribution 

pattern, molecular structure and physiological effects adenosine receptors are further subdivided 

into four subtypes, A1, A2A, A2B and A3.
11-13

 For human ARs, the most similar ones are the A1 

and A3 which share 49% sequence similarity and the A2A and A2B with 59% similarity. The A1 

receptor is highly expressed in brain, spinal cord, heart, stomach, eye and adrenal gland. A2A is 

expressed in brain, heart, spleen, lungs, immune cells and blood vessels. The A2B receptor is 

prominently expressed in cecum, colon and bladder whereas A3 is highly expressed in lungs and 

http://en.wikipedia.org/wiki/G_protein-coupled_receptor
http://en.wikipedia.org/wiki/Ligand-gated_ion_channel
http://en.wikipedia.org/wiki/Ligand-gated_ion_channel
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liver. A1 and A3 receptors interact with Gi/o proteins of G-protein family where as A2A and A2B 

interact with members of the Gs family. A1 and A3 receptors couple to adenylate cyclase in an 

inhibitory manner, whereas A2A and A2B receptor stimulate the enzyme. Adenosine activates 

adenosine receptors to produces many important effects, e.g., anti-inflammatory, antilipolytic, 

anticonvulsive, sedative, vasodilatory, immunosuppressive, antidiuretic, and negative inotropic 

effects. Both, activators and inhibitors of ARs, are investigated as potential drugs in many 

therapeutic areas like the respiratory and the cardiovascular systems, neuroprotection, pain 

processes and inflammatory responses.
14

 

1.3.3. P2 receptors 

P2 receptors are divided into two major families: ionotropic (P2X) and G protein-coupled (P2Y) 

receptors.
7
 Nucleotides are agonist at both, P2X and P2Y receptor subtypes. P2X receptors 

(seven subtypes, P2X1 to P2X7), are homo- or hetero-trimeric and are activated by ATP. They 

represent Na
+
-, K

+
-, and Ca

2+
-permeable ion channels and their activation results an increase in 

intracellular cations and depolarization. P2X1 and P2X3, desensitize rapidly (within 100-300 

milliseconds), and P2X2, P2X4, P2X5, P2X6 and P2X7, do not desentize at all or desensitize 

very slowly. P2X receptors are distributed on heart muscle, smooth muscle cells (vas deferens 

and urinary bladder) and neurons (nerve terminals), glial cell and leukocytes.
7, 9, 15

 The important 

physiological role of P2X receptors are modulation of vascular tone, cardiac rhythm and 

contractility, contraction of urinary bladder and  vas deferens, apoptosis, platelet aggregation and 

macrophage activation. P2Y receptors are subdivided into eight types: P2Y1 (agonist ADP), 

P2Y2 (agonists UTP and ATP), P2Y4 (agonist UTP), P2Y6 (agonist UDP), P2Y11 (agonists ATP 

and NAD
+
), P2Y12 (agonist ADP), P2Y13 (agonist ADP), and P2Y14 (agonists UDP, UDP-

glucose and other nucleotide sugars). Based on the structural similarities, P2Y receptor can be 
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divided into two groups: P2Y12,13,14 receptors whose coupling leads to the inhibition of adenylate 

cyclase and  P2Y1,2,4,6,11 receptors whose coupling results in the activation of phospholipase C. 

P2Y receptors are distributed in brain, heart, kidney, liver, lung, pancreas, prostate and thymus, 

bone and haematopoietic cells. P2Y receptors are involved in many important physiological 

processes and pathological conditions like reducing the risks of strokes and heart attacks (P2Y12), 

platelet aggregration (P2Y1 and P2Y12),
16

 treatment of hypertension (P2Y2, P2Y6 and P2Y11), 

insulin release, T-cell mediated inflammation (P2Y6), inflammation and immunomodulation 

(P2Y1, P2Y2 and P2Y11), neuroprotection in brain and treatment of neurodegenerative diseases 

such as Alzheimer’s, Parkinson’s and lateral sclerosis, target for tumor proliferation (P2Y1 and 

P2Y2), pain, cystic fibrosis (P2Y2), chronic bronchitis and chronic obstructive pulmonary disease 

(COPD).
15

 

1.4. Nucleotides and adenosine releasing pathways 

The purinergic signalling chain is initiated by the release of endogenous nucleotides to the 

extracellular spaces.
17

 The nucleotides are released by cell lysis in various pathological 

conditions like injury, shock and inflammatory conditions, and/or by non-lytic mechanisms by 

nucleotide effluxes. Nucleotides are released from various excitatory tissues such as nerve 

terminals, chromaffin cells, pancreatic acinar cells and platelets via exocytosis. Moreover, 

nucleotide  are released from various non-excitatory tissues, like astrocytes, fibroblasts,  glial 

cells, bone cells, hepatocytes, keratinocytes, cardiomyocytes, epithelial and endothelial cells, 

erythrocytes, macrophages, neutrophils, and other hematopoietic cells by various mechanical 

stimuli.  
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Figure 4. Nucleotides and adenosine releasing pathways
17

 

(Ado: adenosine) 

The cellular mechanism of nucleotide release includes: 

 electrodiffusional movement  

 facilitated diffusion  

 cargo-vesicle trafficking and exocytotic granule secretion. 

The electrodiffusional movement is through membrane ion channels e.g. connexin hemichannels, 

stretch- and voltage-activated channels. The facilitated diffusion is mediated by nucleotide-

specific ATP-binding cassette (ABC) transporters, e.g. cystic fibrosis transmembrane 

conductance regulator (CFTR), multiple organic anion transporters, and multidrug resistance 

proteins. UTP, UDP and UDP-glucose are also released as a response to stress and injury. 

Dinucleoside polyphosphates are released upon cell damage.
17, 18
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1.5. Purinergic signalling pathways and ecto-nucleotidases 

The purinergic signalling chain consists of both purinergic receptors and ecto-enzymes. 
19, 20

 

These ecto-enzyme can hydrolyzes both nucleotides and nucleosides. The major ecto-enzymes 

involved in nucleotide hydrolysis in the purinergic signaling cascade comprises ecto-nucleotide 

pyrophosphatases/ phosphodiesterases (eNPPs, 1), ecto-nucleoside triphosphate 

diphosphohydrolases (eNTPDase, 2) and ecto-5'-nucleotidase (eN, 3). The resulting adenosine 

(Ado) can be further deaminated via inosine (Ino) into hypoxanthine (Hyp) by other ecto-

enzymes such as ecto-adenosine deaminase (ADA, 4) and purine nucleoside phosphorylase 

(PNP, 5) reactions.
17,

 
21

 The inactivating mechanisms for adenine nucleotides and adenosine are 

highlighted below in Figure 5.  

 
Figure 5. Purinergic signalling pathways

17
 

(Ino: inosine; Hyp: hypoxanthine; 1: eNPPs, ecto-nucleotide pyrophosphatase/ phosphodiesterases; 2: 

eNTPDases, ecto-nucleoside triphosphate diphosphohydrolases; 3: eN, ecto-5'-nucleotidase; 4: ADA, 

ecto-adenosine deaminase; 5: PNP, purine nucleoside phosphorylase; PM: plasma membrane) 
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1.6. Ecto-nucleotidases 

The four major ecto-nucleotidases include the ecto-nucleoside triphosphate diphosphohydrolases 

( eNTPDases), ecto-5′-nucleotidase (eN), ecto-nucleotide pyrophosphatases/ phosphodiesterases 

(eNPPs), and alkaline phosphatases (APs).
22, 23

 E-NTPDases and eNPPs are ATP- and ADP-

hydrolyzing ecto-nucleotidases, while eN catalyzes the final step, the hydrolysis of AMP to 

adenosine. APs are the only ecto-nucleotidases which can hydrolyze ATP, ADP and AMP.
23, 24

 

 

Figure 6. Schematic diagram of ecto-nucleotidases.
6
 

(AP: alkaline phosphatase; GPI: glycosylphosphatidylinositol; cAMP: cyclic AMP) 
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1.6.1. Ecto-nucleoside triphosphate diphosphohydrolases 

Ecto-nucleoside triphosphate diphosphohydrolases which are also called eNTPDases are major 

nucleotide-metabolizing enzymes. They hydrolyze extracellular nucleotide tri- and diphosphates 

in the presence of millimolar concentrations of Ca
2+

 or Mg
2+

 at physiological extracellular pH 

values between 7 and 8 and nucleoside monophosphates are their final hydrolysis product. Out of 

the eight subtypes identified in human, four of these (NTPDase 1 or CD39, NTPDase 2 or 

CD39L1, NTPDase 3 or CD39L3, and NTPDase 8) are cell surface-located enzymes which 

function as ecto-nucleotidases. NTPDase 4–7 have intracellular organellar localization, whereas 

NTPDase 5 and NTPDase 6 are also intracellularly located but are present in secreted forms. 

NTPDases vary from each other in terms of substrate specificity and preference for particular 

kind of substrates.
23-25

 

Human NTPDase 1 and 2 have a preference for adenine over uracil nucleotides i.e more 

preferences for ATP and ADP. The Km values for ATP of human NTPDase 1, NTPDase 2, and 

NTPDase 3 were determined 17, 70, and 75 μM, respectively, so NTPDase 1 is the enzyme with 

the highest preferences for ATP.
26

 NTPDase 2, NTPDase 3, and NTPDase 8 hydrolyze ATP to 

ADP then further hydrolyzed to AMP after releasing from the enzyme. NTPDase 2 hydrolyzes 

ATP to ADP thus accumulating ADP before further hydrolyzing to AMP.
27-29

 But NTPDase 1 

hydrolyzed ATP directly to AMP, without accumulation of ADP. NTPDases have broad tissue 

distribution.
30-36

  

Table 1. Locolization and physiological effects of eNTPDase subtypes
23, 24, 33, 34, 36

 

Organs/ Organells/ 

Tissue/ or System 

NTPDases sub-

type  

Locolization Physiological effect 

Vasculature NTPDase 1 endothelial cells, 

vascular smooth 

muscle 

-thrombroregulatory effect  

- cerebroprotection 

- cardioprotection    
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NTPDase 2 Advential surface of 

vessels 

-vascular hemostasis 

Liver NTPDase 2 portal fibroblasts -regulation of bile ductular  

  signaling and secretion 

- regulates epithelial cell      

  Proliferation 

NTPDase 8 hepatic canalicule - regulate the concentration     

  of nucleotides, plays    

  important role in purine   

  salvage in the liver 

NTPDase 1 more on vessels and 

less on sinusoids and 

Kupffer cells  

-regulate glycogenolysis 

Pancreas NTPDase 1 Luminal membranes 

and basolateral 

membranes of larger 

ducts 

-regulats paracrine mediator    

  function  between    

  pancreatic acini and ducts 

 

NTPDase 2 epithelial cells, 

myoepithelial cells,  

the basolateral 

membrane of acini 

-regulates paracrine mediator  

  function  between    

  pancreatic acini and ducts 

 

Salivary glands NTPDase 1 Vascular cells -regulates transport of  

  electrolytes by modulating    

  the extracellular ATP  

  concentration 

 

NTPDase 2 

 

Myoepithelial 

cells and nerves 

-regulates transport of  

 Electrolytes 

Kidney NTPDase 1 vascular structures, 

including 

blood vessels of 

glomerular and 

peritubular 

capillaries 

-vascular perfusion 

NTPDase 2 Bowman’s 

Capsules 

-vascular perfusion 

NTPDase 3 cortical and outer 

medullary collecting 

ducts 

-vascular perfusion 

NTPDase 8 luminal side of 

porcine renal tubules 

-vascular perfusion 

Astrocytes NTPDase 2 subventricular zone 

of the lateral 

ventricles and the 

dentate gyrus of the 

hippocampus 

-alter their protein expression    

  Profile 
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Stem cells in brain NTPDase 2 subventricular zone augment cell proliferation 

and control neurogenesis 

Taste buds NTPDase 2 Schwann cells Regulator of taste 

Transmission 

Immune system NTPDase 1 natural killer cells, 

monocytes, dendritic 

cells, and activated 

T cells 

-control of the cellular  

  immune response 

-lymphocyte activation    

  Marker 

 

NTPDase 1 which is a well studied NTPDase, has a important role in the angiogenesis, vascular 

relaxation and permeability, macrophage function, thrombosis and tumor growth.
37-39

 Apart from 

those mentioned in Table 1, NTPDase 3 is found in brain neurons, kidney, airways, reproductive 

and digestive systems, and pancreas.
40

 NTPDase 8 has a limited tissue distribution and is 

expressed in the liver, kidney, and intestine.
38, 41

 

The closely related NTPDase 1, NTPDase 2, NTPDase 3, and NTPDase 8 contain about 500 

amino acid residues, and the molecular mass of the glycosylated monomers is about 70 to 80 

kDa sharing approximately 40 % amino acid identity. They all contain two transmembrane 

domains (TMDs), and an extracellular loop containing the catalytic domain. The extracellular 

loop contains five apyrase-conserved regions (ACRs) and ten conserved cysteine residues. 

TMDs maintain catalytic activity, substrate specificity and anchor the protein to the membrane. 

Members of the eNTPDase family form oligomeric complexes and are N-glycosylated.
27, 42
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Figure 7. Schematic representation of the ecto-domain of rat NTPDase 1
27, 28 

(Domain I and domain II are represented in blue and green respectively; Disulfide bridges are shown in 

orange; N-glycosylation sites are shown in purple; five chloride ions are depicited in yellow; dotted 

lines represent unmodeled region) 

Among the 5 ACRs, ACR1 and ACR4, and ACR3 and ACR5 form symmetry axis and connects 

the two domains (domain I and II). As per the published crystal structures,
27,28

 the residues 

involved in water-mediated coordination of the metal ion are aspartic acid-45 and aspartic acid-

201, binding of the substrate’s phosphate tail are serine-48 to histidine-50, glycine-204 to serine-

206, and positioning of the nucleophilic water is serine-206. ACR3 provides the catalytic base 

glutamic acid-165 which along with tryptophan-436 from ACR5 are involved in water-mediated 

metal ion binding.
43

 ACR2 provides threonine-122, alanine-123, and arginine-126 for the 

substrate as well as cofactor binding and positioning of the nucleophile water. 

Hydrolysis proceeds via an attack of a nucleophilic water on the terminal phosphate resulting in 

the increase in partial positive charge of the phosphorus by coordination of the metal ion. Upon 

nucleophilic attack, a trigonal planar transition state is formed. The two phosphate-binding loops 

(i.e. ACR1 and 4) provide proton-donating hydrogen bonds to stabilize the negative charge of the 

transition state.
38
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1.6.2. Ecto-nucleotide pyrophosphatase/phosphodiesterases 

To date, seven ecto-nucleotide pyrophosphatase/phosphodiesterase subtypes (eNPP 1-7) were 

found to be expressed in vertebrates.
44

 NPP 1–NPP 4 are classified as alkaline nucleotide 

pyrophosphatase (EC 3.6.1.9) and phosphodiesterase I (EC 3.1.4.1), and can only hydrolyze 

nucleotides.
45

 They hydrolyze nucleoside triphosphates and diphosphates, NAD
+
, FAD, UDP 

sugars, dinucleoside polyphosphates and synthetic substrates such as p-nitrophenyl thymidine 

monophosphate.
46, 47

 NPP 2 hydrolyzes phospholipids and sphingosylphosphorylcholine but has 

low affinity for ATP which is an exception among the NPPs.
48, 49

 eNPPs are the major enzymes 

responsible for the extracellular hydrolysis of dinucleoside polyphosphates.
50

 They can also 

produce nucleotides as additional agonists of P2X and P2Y receptors as a result of hydrolysis of 

dinucleoside polyphosphates.
51

 Nucleoside monophosphates such as AMP or UMP are not 

hydrolyzed. NPP 1–NPP 4 have a wide tissue distribution.
52

 According to the different literatures 

the Km values of eNPPs for ATP range between 17 and 300 μM.
23, 53

 

Table 2. Members of the eNPP family with their cellular expression pattern and functions
53,54

 

NPP type Expressing cell type Physiological function Pathological function 

NPP 1 Synoviocytes 

Chondrocytes 

Hepatocytes 

Plasmacytoma 

Osteoblasts 

Nucleotide recycling, 

calcification 

Ossification of posterior 

longitudinal ligament 

 (OPLL), Calcium 

pyrophosphate dihydrate 

disease (CPPD disease), 

type 2 diabetes
55

 

NPP 2 Osteosarcoma 

Synoviocytes 

Epithelial cells 

Neuroblastoma 

Mesenchymal 

progenitor cells 

Endothelial and 

smooth muscle cells 

Calcification, regulation 

of cell motility 

Increased tumor motility 

and invasion, 

angiogenesis 

NPP 3 Vascular smooth 

muscle cells and 

Chondrocytes 

Nucleotide recycling Increased tumor invasion 
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NPP 4 Brain vascular 

endothelium 

Inducing 

platelet aggregation 

Stroke 

 

Human NPP 1–NPP 3 contain 863–925 amino acid residues with a molecular mass of 115 to 125 

kDa and shares 40–50 % identity. NPP 1 and NPP 3 contain a N-terminal transmembrane helix, a 

cytoplasmic domain, and a extracellular domain where as NPP 2 is a secreted protein and 

synthesized as a pre-pro-enzyme and contains C-terminal transmembrane helix.
48

 NPP 1 and 

NPP 3 are homodimeric whereas NPP 2 is monomeric. The ecto-domains of NPP 1–3 consist of 

two short somatomedin B-like repeats of 40 to 50 amino acids, a central catalytic domain of 

approximately 400 amino acids, and a C-terminal nuclease like domain (NLD) of approximately 

250 residues. The “EF hand” which is the Ca
2+

-binding motif is essential for the catalytic activity 

in NPP 1 and NPP 3 but has less effect on the NPP 2. NPP 1–NPP 3 also contain two cysteine-

rich tandem structures which is the protein interaction domains.
56

 

1.6.3. Alkaline phosphatases 

Alkaline phosphatases (APs) can hydrolyze extracellular ATP via ADP and AMP to adenosine 

sequentially so are included under ecto-nucleotidases.
57

 APs are widely expressed in prokaryotes 

and eukaryotes and are found in every mammalian tissue as well as serum. They are located on 

endothelium, enterocytes, kidney tubules, biliary epithelium, mucosal surface of airways, 

embryonic stem cells, primordial stem cells, neural stem cells, and hair follicles.
58

 APs are 

expressed in variety of tumors. APs have optimum activity at alkaline pH values of 9-10. All 

mammalian APs reveal broad substrate specificity and they can also catalyze the hydrolysis of 

phosphoric acid monoesters e.g. mineralization inhibitor PPi and pyridoxal 5'-phosphate (PLP).
59
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Table 3. Member of APs with their expression pattern and physiological role
57-59

 

APs subtype Human genes Expression Physiological role 

Tissue-nonspecific AP 

(TNAP)
60

 

ALPL Liver 

bone 

kidney 

bone mineralization 

Placental AP (PLAP) ALPP Syncytiotrophoblast 

tumor-cells 

Unknown 

Germ cell AP (GCAP) ALPP2 Testis 

malignant trophoblasts 

testicular cancer 

Unknown 

Intestinal AP (IAP) ALPI Gut (microvillus 

membranes of enterocytes) 

-intestinal absorption 

-preventing       

 inflammation 

-homeostasis 

 

APs are homodimeric proteins with a MW of about 80 kDa and behave as non-cooperative 

allosteric enzymes. The stability and catalytic properties of each monomer are controlled by the 

conformation of the second subunit. The catalytic site contains three metal ions, two Zn
2+

, and 

one Mg
2+

.
56

 The activation takes place in two steps. First, the transporters stabilize the apoform 

of the enzyme then in a second step, Zn
2+

 is loaded onto the protein, converting it from the apo- 

to the holo-form and finally carried to the plasma membrane. All APs contain a signalling 

sequence of 17 to 21 amino acid residues, a glycosylphosphatidylinositol (GPI)-anchor, and five 

cysteine residues, of which four are involved in disulfide bonds formation.
61

 

1.6.4. Additional nucleotide-metabolizing enzymes 

Apart from these enzymes, there are some other enzymes that can also hydrolyze certain 

nucleotides. 

Table 4. Additional nucleotide-metabolizing enzymes with substrate and physiological effect
23

 

Enzymes Subsrate Expression Physiological effect 

Mammalian prostatic 

acid phosphatase 

 AMP 

 ADP(minor extent) 

dorsal spinal cord antinociceptive effects 

(A1-adenosine 
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(PAP)
62

 receptor activation) 

Mammalian tartrate 

resistant acid 

phosphatase 

(TRAP)
63, 64

 

Phosphate monoesters, 

nucleotides (ATP and 

ADP) 

osteoclasts, osteoblasts bone remodeling 

Soluble calcium-

activated 

nucleotidase 

(CAN)
65

 

NDPs mainly UDP testis, smooth muscle 

in stomach and small 

intestine, platelets, 

lungs, placenta 

Hemostasis 

Neural cell adhesion 

molecule (NCAM) 

ATP Glia, neurons, skeletal 

muscle, natural killer 

cells 

Cell-cell adhesion, 

synaptic plasticity, 

neurite outgrowth, 

development of gut 

 

2. Ecto-5′-nucleotidase 

CD73 or ecto-5'-nucleotidase (eN, EC 3.1.3.5) is a Zn
2+

-binding glycosylphosphatidylinositol 

(GPI)-anchored homodimeric protein, with its catalytic domain facing the extracellular medium. 

Therefore it belongs to the group of ecto-nucleotidases.
23

 It is found both in membrane-anchored 

and soluble forms.  eN hydrolyzes ribo- and deoxyribonucleoside 5′-monophosphates but the 

ribonucleotide AMP, the principal substrate of eN, is the most effectively hydrolyzed one.
66

 Km 

values for AMP range between 1-50 μM.
67

 Human eN is encoded by the NT5E gene and can 

hydrolyze nicotinamide mononucleotide and NAD
+
 to a minor extent. eN has been described to 

exist in both, catalytically active and inactive forms. eN is the major AMP hydrolyzing ecto-

nucleotidase and the production of extracellular adenosine from extracellular AMP is its major 

function. eN activity is also controlled by a feedback mechanism depending on the extracellular 

level of nucleotides and adenosine. The adenosine formed activates specific G protein-coupled 

adenosine (P1) receptors (A1, A2A, A2B, A3).
23

eN is involved in cellular reuptake and purine 

salvage of adenosine. eN has a broad tissue distribution, and it is expressed by subpopulations of 

human T and B lymphocytes and also by a variety of tumor cells.
68, 69

 ATP and ADP are 



I. Introduction 

19 
 

competitive inhibitors of eN with Ki values in the low micromolar range. ATP and ADP, despite 

being nucleotides, bind to the catalytic site of the enzyme without being hydrolyzed.
23

 

2.1. General properties of ecto-5'-nucleotidase 

Ecto-5'-nucleotidase is a well studied ecto-nucleotidase. It was first cloned from rat, human 

placenta, and the electric ray (Torpedo electric organ), and the cDNA sequence of a different 

mammalian species has also been identified.
70

 The mouse eN cDNA is 86 and 92 % identical to 

the human and rat cDNAs, respectively. The apparent molecular mass of mammalian eN is 60–

80 kDa for the monomer and 160 kDa for the dimer. A glycosylphosphatidylinositol (GPI) 

anchor is attached to the hydrophobic C-terminal fragment and is linked to the serine-523 residue 

which is conserved in all species. GPI anchors impart a variety of functional properties including 

lateral motility, lipid clustering, transmembrane signaling and cellular sorting. Phylogenetically, 

eN is grouped into the calcineurin superfamily of dinuclear metallophosphatases with plenty 

members in prokaryotes and eukaryotes. The bacterial eN reveals a broader spectrum of substrate 

specificity as compared to the murine and human orthologs.
67

  

2.2. Protein and crystal structure of ecto-5'-nucleotidase 

Ecto-5'-nucleotidase consists of two domains (N-terminal domain and C-terminal domain), 

which are linked by a long α-helix. The N-terminal domain (residues 25 to 342) binds two metal 

ions and also confers the phosphohydrolase activity. The C-terminal domain (residues 362 to 

550) has a GPI-anchor. This domain is responsible for the substrate specificity and also provides 

sites for binding the nucleotide substrates. The active site is located in a space between the two 

domains.
71
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Figure 8. Domain movements of human eN
71

 

(Figure on the left shows active site closure movement of eN and figure on the right shows dimerization 

interface. C-terminal domain are shown in grey; two open conformations are shown by yellow and green 

in the left figure; closed conformation is shown in blue; respective colored dashed line along with dashed 

red line represents rotation axis; hinge residue are represented by red color)  

Ecto-5'-nucleotidase has been crystallized in both open and closed form and undergoes a large 

and unique domain motion. In the open form, the nucleotide binding pocket is accessible for 

substrate binding and product leaving and the substrate AMP binds at a distance of about 25 Å 

away from the di-metal site. In the closed conformation, the ADP analogue α,β-methylene-ADP 

(AOPCP) which is also the inhibitor of eN, binds as shown in Figure 8. In both open and closed 

form, the adenosine moiety of the substrate binds to the same binding site of the C-terminal 

domain. eN shows a hinge-bending domain movement which resembles a ball- and-socket 

motion in catalysis. The C-terminal domain mimics the ball rotating around its center, supported 

by bending residues 352–364, and resulting in conformational switch between the open and 

closed forms.
72

 

 2.3. Active site and catalytic mechanism of ecto-5'-nucleotidase 

The crystal structure of AOPCP (α,β-methylene-ADP) with eN in the closed form provides 

details of  substrate binding and catalysis mechanism. eN is a divalent enzyme and contains two 
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metal ions (viz. 1 and 2) in the active site approximately 3.3 Å apart from each other. Unlike 

metal ion 2, residues of the coordination sphere of the metal ion 1 are not conserved in E. coli 

and human, whereas Q254 (glutamine-254) of the E. coli enzyme is replaced by an asparagine 

residue (N245) in the human enzyme. The asparagine-254 residue in the human eN is shorter, 

therefore it binds to a water molecule which in turn is coordinated to the metal ion.
73

  

AOPCP binds to the active site between both domains, and the adenosine moiety is bound by the 

C-terminal domain, whereas the terminal part of the methylene(bisphosphonic acid) is bounded 

to the N-terminal domain. The adenine-base formed hydrophobic stacking interaction between 

two phenylalanine residues. The N1 nitrogen of the adenine ring formed a hydrogen bond to the 

asparagine-431 in the E. coli which is replaced by glycine-419 in the human. The ribose group is 

coordinated by aspartic acid-504, glycine-458, and arginine-410. Arginine-375 and arginine-379 

bind the α-phosphate group of AOPCP. The β-phosphate group of AOPCP binds to arginine-410 

of C-terminal domain as well as to asparagine-116 and histidine-117 of N-terminal domain.
71

 

 

Figure 9. Binding of AOPCP to human eN in the closed form.
71
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The terminal phosphate group (β) of AOPCP is bound to the amino acids of N-terminal domain 

via hydrogen bonds to and is bridged to the metal ion 1 by a water molecule. One oxygen atom 

of the terminal phosphate group (β) is directly coordinated to the metal ion 2 because of which 

phosphate group is polarized for nucleophilic attack, with the neucleophile being the water 

molecule terminally coordinated to the metal ion 1. Coordination to the metal ion lowers the pKa 

value of the water molecule resulting its deprotonation to a hydroxide ion even at neutral pH. 

The coordination results in the transition state stabilized by the two metal ions, as well as by 

histidine-117 and arginine-410. For catalysis of AMP hydrolysis protonation of the alkoxide 

leaving group is facilitated by a water molecule resulting the direct transfer of the phosphoryl 

group to the water nucleophile without the formation of a covalent intermediate.
23, 71, 74

 

2.4. Physiological functions of the ecto-5'-nucleotidase 

The broad tissue distribution of eN contributes to its involvement in various physiological and 

pathological functions. The physiology of eN in various pathological conditions is related to the 

formation of extracellular adenosine. eN is overexpressed in inflammation. The phosphorylated 

A2A receptor agonist 2-cyclohexylethylthio-AMP is a potent prodrug for treating inflammation 

where eN expression is preferentially activated.
66, 75

 eN is involved in many patho-physiological 

roles like endothelial barrier function and fluid transport, hypoxia and the airways, ischemia, the 

cardiovascular system (CVS), lung, liver, and kidney function, immunity and inflammation, 

leucocyte trafficking, the nervous system, nociception and cancer immunity and metastasis.
76-78

 

2.4.1. Ischemic-reperfusion injury of the lungs and hypoxia  

Ischemic-reperfusion injury is common in the lung transplanted patient. Ischemic-reperfusion 

injury is the tissue damage caused by returning blood supply to the tissue after a brief period of 

ischemia or lack of oxygen. CD73 (eN) is expressed on endothelial cells and lymphocytes of the 
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lungs.
79

 eN decreases proinflammatory adenine nucleotides and generates anti-inflammatory and 

immunosuppressive adenosine. Thus eN plays an important role as an immunoregulator. The 

stimulation of A2A receptors by adenosine released from eN activity decreases the adhesion of 

leukocytes and reduces of endothelial-leukocyte interaction, thus decreasing the generation of 

injurious free radical like superoxides and subsequently reducing ischemia.
80

 

Hypoxia is the condition where there is lack of adequate oxygen supply in the whole body or a 

part of the body. Anoxia is a more severe hypoxic condition where there is complete deprivation 

of oxygen. Adenosine generated by eN plays an important role in decreasing hypoxia by 

increasing cerebral blood flow and cerebrovascular resistance. Hypoxia damages the blood brain 

barrier (BBB) leading to vasogenic brain edema. In the central nervous system (CNS) the 

adenosine concentration is dramatically increased up to 100-fold because of eN upregulation. 

During brain ischemia adenosine produced by eN in brain microvessel endothelial cells exerts 

neuroprotective effect in the brain maintained by A1 receptors. Stimulation of A1 receptors also 

prevents brain edema by releasing glutamate (excitatory neurotransmitter) and increases neuronal 

activity. 
81, 82

  

2.4.2. Inflammation 

Inflammation is a protective phenomena on the vascular tissue in response to a harmful stimulus, 

such as pathogens, irritants or damaged cells. eN is expressed widely in immune cells and 

produces inflammation in several disease models. The role of eN in several inflammation models 

has been studied e.g. in chronic vascular inflammation disease atheroscloresis.
83

 This is an 

inflammatory disease produced by intense immunological activity resulting in the formation of 

atherosclerotic plaques which contain mainly neutrophil and T-cells.
84

 During inflammation 

there is massive accumulation of ATP which trigger pro-inflammatory responses. There is 
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negative feedback inhibition by over expression of NTPDase 1 and eN in neutrophil and T-cells. 

Over expression of NTPDase 1 converts ATP to AMP, and over expression of eN in T regulatory 

(Treg) cells and uncommitted primed precursors Th (Thpp) cells generates adenosine. Thus 

generated adenosine inhibits proliferation and cytokine secretion of Th1 effector cells resulting 

in the suppression of interferon gamma (INF-γ) and tumor necrosis factor alpha (TFN-) 

production through A2A receptors thereby depressing the immune cell activity and promoting 

inflammation.
85-89

 

 

Figure 10. Immunomodualation by NTPDase 1 and eN in tandem
90 

(Thpp: uncommitted primed precursors Th; Treg: T regulatory cells; IFN-γ: interferon gamma; TFN-: 

tumor necrosis factor alpha) 

 

2.4.3. Antinociceptive effects 

 Nociception is the ability of the body to sense potential harm. Nociceptors or pain receptors can 

sense pain as a result of tissue damage. eN is expressed in peptidergic and non-peptidergic 

nociception (pain sensing) neurons and their axon terminals in spinal cord and spine. eN can be 

used for the treatment of chronic pain involving A1-receptors. eN generates adenosine, which 

might have A1-receptor dependent antinociception effects.
91
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2.4.4. Platelet function 

Nucleotides metabolism are important in proper maintaining of platelet function. Certain degree 

of platelet dysfunction resulting from reduction of bleeding time has been observed in eN-

deficient mice. In eN-deficient mice it has also been observed that platelet cAMP was reduced 

because of decrease in the circulating adenosine.
78

 

2.4.5. Renal function 

Adenosine is important for the maintaining of proper glomerular filtration involving 

tubuloglomerular feedback mechanism. In eN-deficient mice tubuloglomerular feedback 

mechanism was found to be very low with reduced nephron glomerular filteration rates as 

compared to wild types. It was also found that the decrease was due to the reduction in 

extracellular adenosine concentration not due to the defects in adenosine receptor activation.
78

 

2.4.6. Cancer 

Cancer, also known as malignant tumor, comprises diseases with abnormal cell growth with its 

potential to invade or spread to other parts of the body. eN is involved in metastasis of tumor as 

well as immunity. Extracellular adenosine induces potent immunosuppressive effect via 

adenosine receptors. 
92

 Several studies in cancer models have indicated that an increase in 

expression of eN is associated with tumor invasiveness and metastasis.
93

  eN activity is increased 

in human colon adenocarcinoma, breast cancer, gastric cancer, pancrese cancer and lymphoma.
95

 

Studies have shown that eN is increased in many breast cancers, promotes tumor growth and also 

serve as a marker of breast cancer progression.
96

 As progression of tumor depends on 

vasodilatation, angiogenesis, cytoprotective and immunosuppressive activities, eN promotes 

cancer progression via activation of A2B adenosine receptor. In breast cancer, at early stage 

extradiol down regulates the expression of eN through estrogen receptor. But in advance stage 
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there is loss of estrogen receptor (ER) expression because of increase in eN expression and 

resulting in increase in extracellular adenosine concentration which can promotes tumor directly. 

Targeted blockade of eN using monoclonal antibody, siRNA
102

 and eN inhibitors inhibit the 

metastatic potential of tumor cell. To evaluate the therapeutic potential of eN inhibitors, studies 

are also focused on eN knockout mice. Tumor growth is retarded in eN knockout mice. eN 

deficiency also suppresses prostate tumorigenesis in TRAMP transgenic mice (transgenic 

adenocarcinoma of the mouse prostate). High eN expression has been reported in triple-negative 

breast cancers (TNBC), and it has also been demonstrated that targeted blockade of CD73 

significantly prolonged the survival in anthracycline-resistant animal models of cancer.
97
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II. Literature review 

3. Medicinal Chemistry of ecto-5'-nucleotidase inhibitors 

Ecto-5'-nucleotidase inhibitors have potential as novel drugs, e.g. for cancer therapy.
97-104 

eN 

inhibitors reduce extracellular adenosine levels, resulting in an indirect blockade of adenosine 

(P1) receptor activation. In contrast to direct receptor ligand interaction, enzyme inhibitors are 

indirect antagonists, which will exhibit site- and event-specific effects since they are only active 

in the presence of enzyme, substrate, and receptor. ADP and ATP are competitive inhibitors of 

eN. However these inhibitors are not suitable as drugs, since they themselves are subjected to 

enzymatic degradation by eNTPDase, eNPPs and/or non-specific alkaline phosphatases. [{5-(6-

aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl}methoxy-hydroxyphosphoryl]methylphosphonic 

acid (α,β-Methylene-ADP, AOPCP), an analog of ADP, is one of the more potent, competitive 

inhibitors of eN. In addition to nucleotide analogues, only anthraquinones, sulfonamides, 

sulfonic acid derivatives, some polyoxometalates (POMs) and some natural polyphenol 

derivatives are currently known to potently inhibit eN. Among them the most potent inhibitors 

are anthraquinone derivatives, but their selectivity versus NTPDases as well as P2Y receptor 

subtype is limited.
38, 105-115

 

3.1. Adenine nucleotide derivatives as ecto-5'-nucleotidase inhibitors 

Adenine nucleotide derivatives were the first eN inhibitors to be discovered. ATP (1) and ADP 

(2) despite being the inhibitors of eN are physiological nucleotides.
105

 AOPCP (6) has a Ki value 

of 850 and 870 nM for Torpedo marmorata and, rat eN, respectively. The inhibitors ATP, ADP 

and AOPCP are not highly selective. ATP and ADP are activators of various P2 purinergic 

receptors. Moreover NTPDases, NPPs and APs can hydrolyse ATP and ADP. AOPCP has been 
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reported to also block NPP 1 with a Ki value of 16.5 ± 3.2 µM.
106

 P2Y1 and P2Y12 are ADP-

activated P2Y receptors. ADP has EC50 values of 289 and 133 nM at P2Y1 and P2Y12 

respectively.
107

 Various ATP derivatives (7-9) have moderate activity as eN inhibitors (see Table 

5).
108-110

 

Table 5. Activity of adenine nucleotide derivatives at rat eN
109-110

 

 

Compd. R rat eN 

Ki ± SEM (µM) 

1 

ATP 
 

8.90 ± 0.36 (pH 7.4)
a
 

10.6 ± 4.0 (pH 5.6)
b
 

 70.8 ± 8.7 (pH 7.4)
b
 

2 

ADP 
 

0.91 ± 0.01 (pH 7.4)
a
 

0.51 ± 0.06 (pH 5.6)
b
 

 1.20 ± 0.01 (pH 7.4)
b
 

6 

AOPCP 
 

   0.87 ± 0.02
 
(pH 7.4)

a
 

     0.073 ± 0.0014 (pH 5.6)
b
 

         0.028 ± 0.0057 (pH 7.4)
b
 

7 

APPNHP 

 

      54 (pH 7.4)
a 

> 20 

8 

β, γ-Me-ATP 

 

       56 (pH 7.4)
a 

> 20 

9 

, β-Me-ATP 

 

      73 (pH 7.4)
a 

> 20 

Capillary electrophoresis assay: 
a
substrate concentration 0.5 mM AMP, Km of AMP = 25 µM, 

inhibitor concentration is 100 µM. 
b
substrate concentration 0.4 mM AMP, Km of AMP = 45.9 

µM at pH 5.6 and 45.2 at pH 7.4. 
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3.2. Uridine nucleotide mimetics as ecto-5'-nucleotidase inhibitors 

Brunschweiger et al. described uracil and 5,6-dihydrouracil nucleotide mimetics as potent 

inhibitors of eN.
109

 These molecules were uracil derivatives which contain terminal 

dicarboxylate groups were linked via alkyl linkers and amide bonds to the 5’-position of the 

nucleoside. 5,6-Dihydrouracil derivatives were more potent as compared to uracil and adenosine 

derivatives. Among them the most potent was compound 11 with a IC50 value of 1340 nM at pH 

5.6. The compound exhibits a non-competitive mechanism of inhibition.
110

 Compound 11 was an 

activator of eN at physiological pH. This property of compound 11 may be used for the 

development of pH-dependent therapeutics as many tumor cells have lower pH values than 

normal cells, where 11 may act as inhibitor. Acid ester derivatives were inactive at eN indicating 

the free carboxylate groups were required. Inhibitor 10 and 11 were selective against NTPDase 

1, hP2Y4, rP2Y6, and hP2Y12.
109

 

Table 6. Potency of uridine derivatives at rat eN
110

 

Compd. Structure rat eN 

IC50 ± SEM (µM)  

10 

 

81.40 ± 20.7 (pH 5.6)
a
 

>> 25 (-10.0 ± 4.2) (pH 7.4)
a
 

 

11 

PSB-11532 

 

13.4 ± 1.90 (pH 5.6)
a
  

> 25 (-66.2 ± 6.0) (pH 7.4)
a
 

inhibitor at pH 5.6 and activator at 

pH 7.4 

12 

 

72.5 ± 10.3 (pH 5.6)
a 

>> 25 (11.5 ± 7.5) (pH 7.4)
a
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a
Capillary electrophoreisis assay: substrate concentration 0.4 mM AMP, Km of AMP = 45.9 

µM. Effects were normalized to the signal induced by AMP.
110

 

 

3.3. Anthraquinone derivatives as ecto-5'-nucleotidase inhibitors 

Baqi et al. discovered anilinoanthraquinone derivatives related to the dye Reactive Blue-2 as a 

new class of eN inhibitors.
111

 These compounds exhibit a competitive mechanism of inhibition. 

The most potent compound was 13 with activity in the nano-molar range. These compounds 

were optimized to obtain more potent and selective eN inhibitors. Compound 13 had a selectivity 

of about 150-fold versus NTPDases as well as P2Y (P2Y2, P2Y4, P2Y6, P2Y12) receptor 

subtypes. During the structure-activity relationship study it was found that a sulfonate group at 

position/2 of the anthraquinone scaffold appeared to be essential for eN inhibitory activity. The 

amino group at the 4-position of anthraquinone was substituted by various lipophilic groups like 

benzyl, phenyl, substituted phenyl, cycloalkyl residues etc. Among them anthracenyl substitution 

was the best, since anthracene derivatives probably fit best into the hydrophobic pocket of eN 

and forms aromatic stacking interactions with aromatic protein residues.
111

 

Table 7. Potency of anthraquinone derivative at rat eN
111

 

 

Compd. R rat eN 

Ki ± SEM (nM) 

13 2-anthracenyl 150 ± 0.20
a 

 

14 2-carboxy-5-flourophenyl 260 ± 0.10
a 

 

15 4-aminophenyl 297 ± 0.90
a 
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16 4-hydroxyphenyl 620 ± 1.50
a 

 
a
Capillary electrophoreisis assay: substrate concentration 0.5 mM AMP, Km of AMP = 25 µM. 

Effects were normalized to the signal induced by AMP, corresponding to a maximal response at 

the enzyme.
111

 

 

3.4. Sulfonamide derivatives as ecto-5'-nucleotidase inhibitors 

Ripphausen, Freundlieb et al. performed docking analysis (structure-based virtual screening 

approach augmented by chemical similarity searching) of 372 compounds selected from the 

ZINC-8 database, and a subset of 128 compounds was selected based on certain criteria.
112

 Out 

of these compounds 51 commercially available compound were procured and tested in eN 

assays. Among them 13 compounds were found with eN inhibition activity. Compound 17 (6-

chloro-2-oxo-N-(4-sulfamoylphenyl)-2H-chromene-3-carboxylic acid amide), showed an IC50 

value of 1.90 μM and was the most potent inhibitor of the series. These compounds exhibit a 

competitive inhibition mechanism. Moreover, these structurally diverse compounds show drug-

like property. The structure of these compounds was mapped with other nucleotide-based 

inhibitors and observed to contain two moieties, first a nucleoside-mimicking heterocycle or a 

substituted benzene ring and second a sulfonamide group that very likely interacts with an active 

site zinc cation, like phosphate, phosphonate or sulfonate groups in other eN inhibitors. An 

amide, a hydrazone, or a urea linker connected the both moieties.
112

 

Table 8. Potency of sulfonamide derivatives as inhibitors of rat eN
112

 

Compd. Structure rat eN 

IC50 ± SEM (nM) 

17 

 

1900 ± 2.10
a 
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18 

 

6540 ± 2.60
a 

 

19 

 

3900 ± 1.46
a 

 

20 

 

8030 ± 6.10
a 

 

a
Radiometric assay: Effects were normalized to the signal induced by 5 µM [

3
H]AMP, 

corresponding to a maximal response at the enzyme. 

 

3.5. Sulfonic acid derivatives as ecto-5'-nucleotidase inhibitors 

Iqbal et al. discovered a series of simple sulfonic acid derivatives as moderately potent eN 

inhibitors.
113

 About thirteen molecules were tested to evaluate their inhibitory potency against 

both rat and human enzyme. Some compounds were found to be moderately potent inhibitors of 

both, rat and human enzyme. All compound showed higher activity in human as compared to the 

rat enzyme. Compound 21 was the most potent inhibitor for both the rat and human enzyme. The 

structure-activity analysis suggests that amino, hydroxyl and sulfonic acid groups are important 

for the activity. Compound 21 contains all three groups attached to the naphthalene ring 

system.
113

 

Table 9. Activity of sulfonic acid derivatives at rat eN
113

 

Compd. Structure eN 

Ki ± SEM (nM) 

21 

 

1320 ± 0.90 (human)
a 

10400 ± 33 (rat)
a 
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22 

 

6100 ± 3.00 (human)
a 

44300 ± 10.0 (rat)
a 

 

 

23 

 

30500 ± 21.0 (human)
a 

> 25000 (rat)
a 

 

24 

 

47600 ± 16.0 (human)
a 

72900 ± 13.0 (rat)
a 

 

a
Capillary electrophoreisis assay: Substrate concentration 0.5 mM AMP, Km of AMP = 25 µM, 

inhibitor concentration is 100 µM. 

 

3.6. Various ecto-5'-nucleotidase inhibitors 

Various polyphenols isolated from the seed of the betel palm (Areca catechu) showed some eN 

inhibition activity. A small series of polyphenolic compounds were tested, including NPF-86IA, 

NPF-86IB, NPF-86IIA and NPF-86IIB. They were found to be the non-competitive inhibitors in 

the low micro-molar range.
114

 The flavonoid quercetin was found to be an inhibitor of eN 

expressed on the human U138MG glioma cell line.
115

 Its IC50 was determined to be 45300 nM. 

Similarly concanavalin A (ConA), a lectin from jack-bean (Canavalia ensiformis) also inhibited 

eN of intact C6 glioma cells. An IC50 was obtained of 20 µg of ConA/mL. But complete 

inhibition was not observed even at high concentrations. Recently Lee, Fiene et al. had identified 

rhenium and tungsten-based POMs as inhibitors of eN. K6H2[TiW11CoO40]·13H2O, 

K4[(Re6S8)(OH)6]·8H2O and K4[(Re6S8)(HCOO)6] had IC50 values of 14.1, 11.8, 4.57 µM 

respectively at rat eN. These POMs inhibitors had non-competitive inhibition mechanism.
116
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4. Assays of ecto-5'-nucleotidase 

There are several methods to assay 5'-nucleotidase, involving luminescent, spectroscopic and 

radiometric techniques. But some of these methodologies have drawbacks. These methods are 

time-consuming, possess low sensitivity, and require high substrate concentration. Some 

methods are only suitable for water-soluble inhibitors.
 117-121 

The conventional methods to assay 

eN include  

 measurement of free phosphate by using a dye such as malachite green 

 measurement and quantification of adenosine produced by chromatographic techniques 

such as high performance liquid chromatography (HPLC) or by capillary electrophoresis. 

 

Phosphate-containing and colored compounds cannot be detected in the malachite green assay. 

HPLC and capillary electrophoresis techniques are relatively time-consuming.
118

 

 

4.1. Malachite green assay 

It is the most widely used colorimetric method for eN assays. Malachite green is the basic dye 

and its reaction with inorganic phosphate released from the substrate (AMP) hydrolysis because 

of eN activity formed the malachite green-phosphomolybdate complex in presence of sodium 

molybdate. This complex has strong absorbance band and can be measured at 620-650 nM.
120

 

This assay procedure ensured a color change (yellow to greenish blue) during the course of the 

reaction which can be visible even through naked eye. This assay is generally performed 

according to the method developed by Baykov et al. for orthophosphate determination.
121

 Since 

the molar absorption coefficient of the malachite green-phosphomolybdate complex is higher, 

the absorbance can be measured more conveniently as compared to other colorimetric methods. 
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By this method non-coloring substances can be efficiently measured. This method is simple and 

highly sensitive and even can detect 10
-5

 IU of the enzyme.
120, 121

 

4.2. Capillary electrophoresis assay 

 Iqbal et al. developed a capillary electrophoresis (CE)-based electrophoretically mediated 

microanalysis assay method.
108

 In this method, enzyme and substrate with or without inhibitor 

are incubated, followed by electrophoretic separation of products formed. For determing Km and 

Vmax, 500 µM of AMP as substrate was dissolved in the reaction mixture and the reaction was 

initiated by adding 10 µL of enzyme at 37
o
C for 15 min. After stopping the reaction, 50 µL of 

reaction mixture was transferred to a capillary electrophoresis vial in the off-line capillary 

method, or in the online method the whole reaction was carried out in the capillary along with 

quantification. The Km value determined for the online and offline methods were similar, 25 µM 

and 23 µM, respectively, for AMP using recombinant rat eN. This CE-based assay is a powerful 

method for screening eN inhibitors as it could test one compound in only 6 minutes. This method 

could also be performed in the 96-well plate format making it suitable for high-through put 

screening of inhibitors.
108

 

4.3. Luciferase-based assay 

Sachsenmeier et al. developed a method which indirectly measures AMP metabolism in a 

luciferase-based system.
122

 This method has the advantage, that it can also be used for inhibitors 

containing phosphate in contrast to the malachite green assay. The assay uses a luciferase-based 

assay reagent, the Promega CellTiter-Glo (CTG) kit. The kit converts ATP to AMP and 

diphosphate. But the presence of AMP in the reaction mixture inhibits luciferase reaction and it 

is indicated by the emission of little or no light. Addition of soluble recombinant eN to a reaction 

mixture of ATP and AMP in the buffer, resulted the conversion of AMP to adenosine. The 
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hydrolysis of AMP leads to the whole or partial rescue of AMP-mediated inhibition of the ATP 

reaction. The eN enzyme activity is measured as the resultant increase in ATP detection which is 

directly proportional to light detected in the CTG assay. The standardized parmeters for the assay 

includes 100 μM ATP, 30 min of incubation time, and 300 ng/mL of enzyme for the recombinant 

human eN. This assay is high-throughput compatible and was validated with anti-eN antibody.
122

 

4.4. Radiometric assay 

Freundlieb et al. developed a new, highly sensitive eN assay method that uses [
3
H]adenosine-5’-

monophosphate (AMP) as a substrate.
118

 The reaction product [
3
H]adenosine was separated from 

[
3
H]AMP by precipitation of the latter with lanthanum chloride. The filtrate was collected by 

filtration through glass fiber filters. It was further quantified in the scintillation counting by 

adding scintillation cocktail. Series of experiments were done to optimize various assay 

parameters for recombinant rat eN. The optimized parameters were 5 µM AMP as a substrate, 

0.3 µg/mL enzyme, and 25 min of incubation time. The determined Km value was 59 µM for 

AMP. For further validation of the assay, the inhibitory effects of known competitive inhibitors, 

AOPCP and ADP, were determined. The assay validation demonstrated its suitability for high-

throughput screening. Advantages of the new assay include a very low limit of detection (LOD) 

of 0.03 µM for adenosine, which was much lower than that of all other assay methods. 

Moreover, this assay does not interfere with colored compounds or inorganic phosphate.
118
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5. Aim of the project 

A major drawback of eN inhibitors discovered till now is their moderate potency and selectivity 

and/or the fact that they are highly polar since they contain acidic residues. Some of them, e.g. 

nucloeotides, are presumably not highly stable, susceptible to being hydrolyzed by physiological 

enzymes such as ecto-nucleotidases and phosphatases. The number of studies on structure-

activity relationships (SARs) of eN inhibitors is very limited. AOPCP has relatively high 

chemical and metabolic stability as compared to ADP. The newly synthesized eN inhibitors 

should have selectivity vs. P1 and P2 receptors, high potency, selectivity, suitable 

pharmacokinetic properties and high chemical and enzymatic stability. AOPCP is one of the most 

potent eN inhibitors so far with Ki value of 0.87 μM.
108

 Our goal is to synthesize selective eN 

inhibitors derived from AOPCP, which are more potent and more stable in-vivo in comparison to 

the lead structure.  

5.1. Design and synthesis of adenine-base modified analogues of AOPCP 

In the present study we designed and synthesized variety of base-modified analogues of AOPCP  

by introducing substituent at the 2-, 6- and 8-position of AOPCP. Furthermore, we planned to 

combine the best functionalities in order to obtain more potent derivatives. Simultaneously, we 

planned to enhance the metabolic stability and selectivity by synthesizing N
6
-disubstituted 

analogues as well as 6-O- or 6-S-analogues. The structures of the target compounds are depicted 

in Figure 11. 
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Figure 11.  Structures of base-modified target compounds  

For these newly synthesized analogues we used the radiometric eN assay at rat eN to 

pharmacologically characterize and to improve the potency of newly synthesized analogues. 

AOPCP analogues appear to have advantages: though having ADP-mimetic functional groups 

they do not potently activate any of the P2 receptor subtypes, as well as AOPCP also has at least 

some selectivity versus other ecto-nucleotidases. 

5.2. Design and synthesis of side-chain-modified analogues of AOPCP 

As a further part of this project we planned to modify the methylenebis(phosphonic acid) side 

chain of AOPCP in order to obtain more potent and selective analogues. Several substituted 

bis(phosphonic acid) derivatives are commercially available or can be synthesized, and we 

planned to combine those with adenosine at the 5’-position. Target structures are depicted in 

Figure 12. 
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Figure 12. Structures of side chain-modified target compounds 

5.3. Metabolic stability studies of selected potent AOPCP derivatives and analogues 

Selected potent AOPCP derivatives and analogues were to be further investigated for their 

stability, (i) in rat liver microsomes and (ii) human blood, in order to investigate potential 

metabolic degradation by liver enzymes and plasma, respectively. 
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6. Results and discussion - part I: chemical synthesis 

For the preparation of the target compounds, a convergent synthetic strategy was applied which 

involves first the synthesis of the intermediate nucleosides followed by their phosphorylation to 

give the desired nucelotides. Different purine nucleosides were synthesized with substituents in 

the 2-, 6- and 8-position of the purine ring. Progressive structural modification of the compounds 

was based on the biological screening results so as to synthesize more potent and selective 

derivatives with improved pharmacokinetic properties. 

6.1. N
6
-Mono- and dialkyl-or aryl-substituted adenosine-5′-O-[(phosphonomethyl)phosphonic  

acid]  derivatives (53-76) 
 

N
6
-Mono- and dialkyl- or aryl-substituted adenosine-5′-O-[(phosphonomethyl)phosphonic acid]s 

were prepared by phosphorylation of 6-substituted purine nucleosides (29-48). 

6.1.1. Synthesis of (intermediate) 6-substituted nucleosides (29-48) 

There are different methods for the synthesis of N
6
-mono- and dialkyl- or aryl-substituted 

adenosine derivatives (29-48).
123

 The most common method is the substitution of 6-halopurine 

ribosides with amines. Some 6-halopurine ribosides like 6-chloropurine riboside (28) are 

commercially available, but expensive. So, the reaction was started from commercially available 

inosine (25). The method for the synthesis of 6-substituted purine-nucleosides
124

 involves four 

steps: 

 synthesis of 2′, 3′,5′-tri-O-acetylinosine (26) 

 synthesis of 6-chloro-2′, 3′,5′-tri-O-acetylinosine (27) 

 synthesis of 6-chloropurine riboside (28) 

 synthesis of N
6
-substituted purine riboside derivatives (29-48) 
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6.1.1.1. Synthesis of 2′,3′,5′-tri-O-acetylinosine 

6-Chloroadenosine was synthesized from inosine according to a reported procedure with little 

modification (Schemes 1-3).
124-125

 The chlorination of the keto-functional group at the 6-position 

of inosine requires protection at the 2′-, 3′- and 5′-hydroxyl groups as they are all susceptible for 

chlorination. There are several reported protecting groups such as (2′,3′,5′-O-acetyl), (2′,3′,5′-O-

phenyl), (2′,3′,5′-O-benzyl), (2′,3′-acetonide), (2′,3′-dibenzyloxycarbonylester) etc. Since 

nucleosides are unstable in highly acidic medium, acetyl as a protecting group was used as it can 

be conveniently removed under mild alkaline condition. Protection of the 2′-, 3′- and 5′-hydroxyl 

groups of inosine was carried out using acetic anhydride and pyridine by refluxing at 80 
o
C 

(Scheme 1). The forward reaction was favored by adding an excess amount of acetic anhydride. 

The excess of acetic anhydride was quenched after the completion of the reaction by adding ice 

and stirring for additional 30 min. The resulting product 26 was obtained by extraction with 

dichloromethane in high yield and purity. 

 

Scheme 1. Synthesis of 2′,3′,5′-tri-O-acetylinosine (26) 

 

6.1.1.2. Synthesis of 6-chloro-2′,3′,5′-tri-O-acetylinosine (27) 

 

Various chlorine-containing compounds are used for chlorination like carbon tetrachloride, 

phosphorus oxychloride, phosphorus pentachloride, phosphorus trichloride, sulfuryl chloride, 

thionyl chloride, N-chlorosuccinimide etc. There are reported methods of chlorination of 26 with 
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thionyl chloride.
126-127 

Chlorination using thionyl chloride is generally preferred because it 

generates gaseous side-product which would simplify the purification process. However, these 

by-products are themselves highly reactive and may generate a large number of side-products. 

During the chlorination of 26 with thionyl chloride, many side-products were observed. So the 

chlorination of 26 was carried out with phosphorus oxychloride (Scheme 2). The hydrogen 

chloride generated as a by-product in this reaction might cleave the glycosidic bond between 

ribose and purine. In order to diminish side-product formation, the chlorination was carried out 

with phosphorus oxychloride in the presence of N,N-dimethylaniline. N,N-Dimethylaniline is a 

tertiary amine and can neutralize the hydrogen chloride generated in the reaction. Optimization 

of the reaction showed that stirring it for only 20 min resulted in the desired product with high 

yield. Excessive phosphorus oxychloride in the reaction was neutralized by adding ice. Crude 27 

was extracted by dichloromethane and purified by silica gel column chromatography. 

 

Scheme 2. Synthesis of 6-chloro-2′,3′,5′-tri-O-acetylinosine (27) 

6.1.1.3. Synthesis of 6-chloropurine riboside (28) 

The deprotection of acetyl groups at the 2′-, 3′- and 5′-positions is the crucial reaction step for the 

synthesis of 6-chloropurine riboside.
128

 The acetyl groups can be removed by both, acids and 

bases. As explained earlier, acidic medium can cleave glycosidic bond between the purine and 

ribose. However some bases can also react with the chloro-functional group at 6-position and 
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again result in the amino group at the 6-position. For preliminary trials various bases like 

ammonia in water, sodium methoxide, ammonia in methanol and ethanol were used. Complete 

deprotection was achieved using ammonia 7N solution in methanol, and adenosine as a side-

product was not observed under these conditions (Scheme 3). The desired product 28 was 

precipitated during the course of the reaction and was collected by filtration. It was then 

dissolved in methanol and purified by silica gel column chromatography. 

 

Scheme 3. Synthesis of 6-chloropurine riboside (28) 

6.1.1.4. Synthesis of N
6
-substituted purine ribosides (29-48) 

For the synthesis of the intermediate N
6
-substituted purine ribosides, 6-chloropurine riboside (28) 

was reacted with N-mono- or N,N-dialkylamine.HCl, and N-mono- or N,N-dialkyl- or 

arylamine.
129-132

 Since diethyl and dimethylamine are commercially available as hydrochloride 

salts, the N,N-dialkylamine.HCl salt was reacted with 28 in DMF at low temperature (0 
o
C) 

followed by addition of triethylamine resulting in the corresponding free amine, which would 

alkylate 28. The completion of the reaction was monitored by TLC with a solvent system of 

dichloromethane: methanol (3: 1) mixture. After completion of the reaction the 

triethylammonium hydrochloride precipitate was filtered off and DMF was evaporated in vacuo. 

The crude mixture was then purified by silica gel column chromatography to give derivatives 31 

and 32. For the synthesis of other intermediate nucleoside derivatives 29, 30 and 33-48, 6-
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chloropurine riboside dissolved in ethanol was refluxed with those amines that were 

commercially available as free amines, in the presence of triethylamine (Scheme 4).
127

  

 

Scheme 4. Synthesis of N
6
-substituted-purine ribosides (29-48) 

6.1.2. Phosphoprylation of 6-substituted nucleosides (29-48) 

Selective phosphorylation of nucleosides in the 5′-position occasionally requires protection of 

the 2′- and 3′-hydroxyl groups as they are all liable for phosphorylation. Protection will result in 

the formation of less number side-products and increase the yield of nucleotide.  

6.1.2.1. Synthesis of N
6
-substituted-2′,3′-O-isopropylidene-purine ribosides (49-52) 

Frequently, nucleosides are treated with benzyldehyde or p-methoxybenzyldehyde and zinc 

chloride in THF to give acetal-protected compounds.
133

 But 2′,3′-O-acetyl protection with 
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benzyldehyde did not work out with the N
6
-substituted nucleosides. Therefore 2′,3′-O-

isopropylidene protection was carried out using acetone and 2,2-dimethoxypropane under 

strongly acidic conditions  to give protected nucleosides (Scheme 5).
135

 2,2-Dimethoxypropane 

is an alkylating agent which can also be used as a water scavenger in water-sensitive reactions. 

Strong acids like p-toluenesulfonic acid (tosylic acid), nitric acid and sulphonic acid are 

frequently used to give 2′,3′-O-isopropylidene protection. In our reaction we used conc. sulfuric 

acid, which has the additional property of being a dehydrating agent and at the same time being 

very strong acid. The yield with sulfuric acid was higher than with other acids. During the 

optimization of the reaction with sulfuric acid, we obtained the same yield with or without the 

use of 2,2-dimethoxypropane. The use of 2,2-dimethoxypropane decreases the reaction time and 

simplify the purification steps. The amount of sulfuric acid used during the reaction was less than 

1%. After completion of the reaction the solvents were evaporated in vacuo and the desired 

product was purified by silica gel column chromatography. 

 

Scheme 5. Synthesis of N
6
-substituted-2′,3′-O-isopropylidene purine ribosides (49-52) 



IV. Results and discussion 

46 
 

6.1.2.2. Optimization of the phosphoprylation reaction 

For the preparation of nucleoside-5′-O-[(phosphonomethyl)phosphonic acid] derivatives there 

are several commonly used multi-step methods, such as:  

 protected nucleoside reacting with strongly activated bisphosphonates like (4-

nitrophenyl)ethyl phosphonates
135

 

 

 Mitsunobu reaction of phosphonates with protected nucleosides
136

 

 Esterification of phosphonic acid with protected nucleosides by trichloroacetonitrile and 

dicyclohexylcarbodiimide 

 

 Preparation of a protected nucleoside-5′-sulfonyl ester followed by its nucleophilic 

substitution with alkylammonium salts of bisphosphonic acid.
137-139

  

All of these methods utilize protected nucleosides and give products in low yields. However in 

the early 2000s, two separate groups reported on the preparation of nucleoside-5′-O-

[(phosphonomethyl)phosphonic acid] derivatives by phosphorylation of nucleosides with 

methylenebis(phosphonic dichloride) followed by hydrolysis with TEAC (triethyl ammonium 

bicarbonate buffer, pH 7.4-7.6).
140,141

 Methylenebis(phosphonic dichloride) is a similar reagent 

to phosphorus oxychloride which is used for the 5′-phosphorylation of nucleosides. But it is 

more bulky and reactive than phosphorus oxychloride. We also observed that all of the products 

were formed faster with higher yields as compared with phosphorus oxychloride. The lack of 

electron back-donation from the central methylene group in methylenebis(phosphonic 

dichloride) makes phosphorus centre more electrophilic.
140

 During phosphorylation of 

nucleosides in addition to the 5′-phosphorylation there is a risk of 2′- and 3′-phosphorylation (III 

and IV). Apart from that, there is also a high risk of the formation of the nucleoside-5′,3′-

cyclomethylenebis(phosphonic acid) (V) and dinucleoside-bisphosphonic acid (II). The 

formation of many products will hinder and complicate the purification process. So the use of 



IV. Results and discussion 

47 
 

2′,3′-O-isopropylidene protection can be justified as it limits 2′- and 3′-phosphorylation and the 

formation of 5′,3′-cyclomethylenebis(phosphonic acid).  

 
Figure 133. Possible products of the phosphorylation of nucleoside using methylenebis(phosphonic 

dichloride) 

 

The phosporylation reaction is generally carried in various dry solvents like acetonitrile, DMF or 

DMSO. Yoshikawa et al. introduced the phosphorylation of nucleosides in trimethyl 

phosphate.
142

 The inertness of trimethyl phosphate improves the selectivity and efficiency of 

product formation. Trimethyl phosphate itself can participate in producing an electrophilic 

adduct for initiating the reaction.
143

 

 

Scheme 6. Electrophic adduct formed by the reaction of trimethyl phosphate and methylenebis 

(phosphonic dichloride) 
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 The phosporylation reaction was carried in two steps. First nucleosides or protected nucleosides 

are phosphorylated using methylenebis(phosphonic dichloride) leading to the formation of 

intermediate X. The second step involved hydrolysis of the highly unstable intermediate X with 

TEAC (Scheme 7).
140

  

 

Scheme 7. Intermediate formed during phosphoryaltion reaction by methylenebis(phosphonic dichloride) 

Since the phosphorylation reaction yields a number of side-products, it is always desirable to 

increase the yield of product formation. In-order to increase the yield of products using protected 

and unprotected nucleosides two different strategies were used: 

 increasing the amount of methylenebis(phosphonic dichloride) used during the reaction     

 decreasing the reaction time.  

For optimization reaction, both protected and unprotected nucleosides [2′,3′-O-isopropylidene-

N
6
-dimethyladenosine (51) and N

6
-dimethyladenosine (35)] were used. Compounds 35 and 51 

were separately reacted with various equivalents of methylenebis(phosphonic dichloride) and the 
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reaction was quenched at different time intervals. The products formed were analyzed by LC-

MS. Detailed LC-MS study results are summarized in Table 10 and 11. 

Table 100. Optimization of reaction condition for the synthesis of N
6
-dimethyl-2′,3′-O-isopropylidine-

purine riboside methylenebis(phosphonic acid)] 
 

Equivalent of 

methylenebis(phosphonic dichloride) 

Time of 

reaction 

Products formed 

2 eq. 4 h Only dinucleotide-methylenebis(phosphonic 

acid) 

3 eq. 2 h Only dinucleotide-methylenebis(phosphonic 

acid) 

4 eq. 2 h Mixture of dinucleotide 

methylenebis(phosphonic acid) and nucleoside 

-5′-O-[(phosphonomethyl)phosphonic acid] 

5 eq. 1 h Only nucleoside-5′-O-

[(phosphonomethyl)phosphonic acid] 

 

The reaction of 51 was started with the method reported for adenosine (using 2 equivalents of 

methylenebis(phosphonic dichloride) and stirring for 4 h,
140

 but only dinucleotide- 

methylenebis(phosphonic acid) was obtained. Then simultaneously the reaction time was 

decreased thereby increasing the amount of methylenebis(phosphonic dichloride) used in the 

reaction. Using 5 equivalents of methylenebis(phosphonic acid) and stirring for only 1 hour gave 

only the desired product. The optimization of the reaction of 35 was also started from the same 

method as described for adenosine.
140

 However, we obtained a complex mixture of side-

products. By using the method optimized for protected nucleoside we obtained mainly 5′-

phosphorylated product and a very low amount of side-products. So we decreased the reaction 

time to 30 min keeping the same amount of methylenebis(phosphonic acid). Under these 

conditions we got only 5′-phosphorylated product. In addition to that we observed that a small 

amount of unreacted nucleoside remained, this can be easily removed by HPLC as nucleoside 

and nucleotide have very different retention times. 
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Table 11. Optimization of reaction conditions for the synthesis of N
6
-dimethylpurine riboside 5′-O-

[(phosphonomethyl)phosphonic acid] 

Equivalent of 

methylenebis(phosphonic dichloride) 

Time of 

reaction 

Products formed 

2 eq. 4 h complex mixture of dinucleotide- 

methylenebis(phosphonic acid) and 2′- and 

3′-phosphorylated product 

4 eq. 3 h mixture of dinucleotide- 

methylenebis(phosphonic acid) and 2′- and 

3′-phosphorylated product 

4 eq. 2 h 2′-, 3′-and 5′-phosphorylated product 

and dinucleotide- 

methylenebis(phosphonic acid) 

5 eq. 1 h 5′-phosphorylated product and very low 

amount of side-products 

5 eq. 30 min Only 5′-phosphorylated product and a 

small amount of unreacted nucleoside 

 

6.1.2.3. Phosphorylation reaction with protected nucleosides (49-52) and deprotection 

The initial phosphoryation reactions were performed using protected nucleosides (49-52). Only 

after complete optimization of the reactions, they were carried out using un-protected 

nucleosides, since the optimization led to the sole formation of nucleoside-5′-O-

[(phosphonomethyl)phosphonic acid] derivatives. Reaction using 5 equivalents of 

methylenebis(phosphonic dichloride) for 1 hour followed by hydrolysis with TEAC produced 

only 2′,3′-O-isopropylidene-nucleoside-5′-O-[(phosphonomethyl)phosphonic acid] as the final 

product (Scheme 8). The advantage of the synthesis of some 2′,3′-O-isopropylidene-nucleoside-

5′-O-[(phosphonomethyl)phosphonic acid] derivatives were also to elaborate the role of free and 

protected 2′,3′-hydroxyl groups in relation to the compounds’ enzyme inhibition potency.  
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Scheme 8. Synthesis of target nucleotides 53-60 

The isopropylidene-protecting group at the 2′,3′-position of ribose is frequently deprotected by 

acids. Compounds 53-56 have two groups which are liable to be degraded by acid, i.e. the 

glycosidic bond between purine and ribose, and the 5′-oxygen-phosphorus bond. So, we 

optimized this deprotection by using various acids, including HCl, acetic acid and trifluoroacetic 

acid (TFA) at different concentrations. We found that 6-8% TFA can effectively deprotect the 

ribose in 4 hours without cleaving any other bonds. Compounds 53-56 and 57-60 were purified 

by ion exchange chromatography followed by HPLC. 

6.1.2.4. Phosphorylation reactions of un-protected nucleosides (33-48) 

Reaction using 5 equivalents of methylenebis(phosphonic dichloride) for 30 min, followed by 

hydrolysis with TEAC produced only nucleoside-5′-O-[(phosphonomethyl)phosphonic acid] 
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derivatives as the final product (Scheme 9). The nucleotides were purified by HPLC using 

various gradients of 50 mM ammonium bicarbonate buffer solution and acetonitrile. 

 

Scheme 9. Synthesis of target derivatives 61-76 

6.1.2.5. Purification of nucleotides 

The phosphorylation reaction yields a number of side products. The most crucial step is the 

purification and separation of side-products. The purification of nucleotide derivatives is critical 

for biological evaluation, as the side-products also being the nucleotides can influence biological 

assay readings. So, our goal was to obtain high purity products. Depending on the type of side-

product formed during the reaction, the separation process also varies. The compounds were 

generally purified by using ion-exchange chromatography followed by HPLC.
66

  

The synthesized nucleotides were initially purified by anion exchange chromatography on 

Sephadex diethylaminoethyl (DEAE) A-25 gel using a fast protein liquid chromatography 

(FPLC) instrument. The negatively charged nucleotides are eluted after interaction with the 
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positively charged gel by applying a linear gradient of a 0-900 mM TEAC according to the 

number of charges. Uncharged molecules and compounds with a lower number of charges are 

eluted first. In addition to nucleotide side-products the reaction mixture also contains a large 

number of inorganic salts, such as phosphates, bisphosphates and its decomposed products as 

well as buffer components. So the products were further purified by HPLC on reverse phase C18 

material. Some inorganic phosphates may be coeluted with the nucleotides.
66

 The structures of 

the isolated compound were elucidated by mass spectroscopy as well as 
31

P-NMR for purity 

determination. Our synthesized biphosphate derivatives should have two peaks in the 
31

P-NMR 

spectra and compounds having more than two peaks were not subjected to biological evaluation 

though, having more than 95% LC-MS purity. Those compounds were subjected to multiple 

purification processes to achieve sufficient purity. The final purity of all compounds was above 

98% as confirmed by LC-MS and NMR analyses. The structures of the synthesized compounds 

were confirmed by 
1
H-, 

13
C-NMR, DEPT-135 and 

31
P-NMR spectroscopy, in addition to 

LC/ESI-MS in positive and negative mode. 

6.2. 6-Ethoxy-, 6-benzyloxy-, and 6-benzylthio-purine riboside-5′-O-

[(phosphonomethyl)phosphonic acid] (81-83) 

The synthesis strategy to obtain the target nucleotides involved the synthesis of the 

corresponding nucleosides followed by phosphorylation. 

6.2.1. Synthesis of O
6
-ethyl, O

6
-benzyl, and S

6
-benzyl-purine riboside derivatives (77-80) 

Nucleoside 6-ethoxy-, 6-benzyloxy-, and 6-benzylthio-purine ribosides were synthesized from 6-

chloroadenosine (28). 
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6.2.1.1. Synthesis of
 
6-ethoxy- and 6-benzyloxypurine riboside (77, 78) 

For synthesis of 6-(aryl)alkoxy-substituted purine nucleoside derivatives, 6-chloro-purine 

riboside (28) was reacted with sodium (aryl)alkoxide in the corresponding (aryl)alkyl alcohol 

(Scheme 10).
124, 144

 For the synthesis of 6-ethoxy-substituted derivative 77, sodium ethoxide in 

ethanol and for the 6-benzyloxy-substituted derivative 78, sodium benzyloxide in benzyl alcohol 

was used. Both, benzyloxide and ethoxide are commercially available. The reaction of 6-

chloropurine riboside with sodium (aryl)alkoxide is characterized as a salt metathesis reaction 

where there is an exchange of bonds between the two reacting chemical species. The reaction 

was performed by refluxing the reaction mixture at 100 
o
C, and the progress of reaction was 

monitored by TLC in a DCM : methanol (9 : 1) mixture. After the reaction was completed the 

volatiles were removed in vacuo and the products were separated by silica gel column 

chromatography. 

 

Scheme 10. Synthesis of 6-ethoxy- and  6-benzyloxypurine riboside (77, 78) 

 

6.2.1.2. Synthesis of 6-benzylthiopurine riboside (80) 

6-Benzylthio-substituted derivative was also synthesized from 6-chloropurine riboside (28), in a 

two step reaction: first 6-chloropurine riboside was converted to the 6-thiopurine riboside (79). 
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The next step was the alkylation of the thiol.
145

 Hydrogen sulfide, sodium hydrogensulfide and 

thiourea are common thiolating agents. In our case we used thiourea. The reaction of thiourea 

with 6-chloropurine riboside is a multistep, one pot process where isothiouronium salt is the 

intermediate which is then hydrolyzed to give 6-thiopurine riboside (79) in the presence of base 

sodium hydroxide. The product formed was separated from the formed urea by washing with 

water, followed by filtration and evaporation of the filtrate to give 79. Thiols readily undergo S-

alkylation reaction with various alkyl halides to yield thioethers.
146

 Therefore, 6-thiopurine 

riboside was reacted with benzyl chloride under microwave conditions in the presence of base to 

give 6-benzylthiopurine riboside product 80, which was then purified by silica gel column 

chromatography (Scheme 11). 

 

Scheme 11. Synthesis of 6-benzylthiopurine riboside (80) 

 

6.2.2. Phosphorylation of 6-ethoxy-, 6-benzyloxy-, and 6-benzylthiopurine riboside (77, 78, 

80) 

Both
 

6-O-alkyl/aryl-purine riboside (77, 78) and 6-S-benzyl-purine riboside (80) were 

phosphorylated applying the earlier explained method using methylenebis(phosphonic 

dichloride) followed by hydrolysis with TEAC buffer solution (Scheme 12). 
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Scheme 12. Synthesis of target nucleotides 81-83 

 

6.3. 8-substituted adenosine-5′-methylenebisphosphonic acid derivatives (89-92) 

The synthetic strategy involved first the synthesis of the 8-substituted-nucleosides followed by 

phosphorylation. 

 

6.3.1. Synthesis of 8-substituted adenosine derivatives (84, 86-88) 

For the synthesis of 8-substituted nucleoside derivatives, a commercially available adenosine 

was used as a starting compound. Four different 8-substituted derivatives were synthesized, that 

are 8-bromo- (84), 8-chloro- (86), 8-thioethyl- (87) and 8-aminomethyl-substituted adenosine 

derivatives (88). 

6.3.1.1. Synthesis of 8-bromoadenosine (84) 

Unlike for chlorination reactions, the most popular bromination reagent is bromine itself. 

Adenosine was brominated using bromine-water at room temperature in sodium-acetate buffer to 

give 8-bromoadenosine (84).
147

 The carbon-carbon double bond in the 8-position of adenosine is 

selective for bromination versus that at the 2-position of the adenine ring. It is a typical case of a 

halogen addition reaction to the double bond system, where the bromine atom approaching for 
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the attack at the 8-position behaves as an electrophile due to electron repulsion by the double 

bond. The other bromine atom is released as hydrogen bromide thereby increasing the pH values 

of reaction mixture, which was balanced by a sodium-acetate buffer solution. After completion 

of the reaction, the mixture was decolorized by NaHSO3 (Scheme 13). The pH was adjusted to 7 

and left overnight for crystallization of 8-bromoadenosine at 4 
o
C. 

 

Scheme 13.  Synthesis of 8-bromoadenosine (84) 

 

6.3.1.2. Synthesis of 8-chloroadenosine (86) 

8-Chloroadenosine (86) was synthesized from 8-thioadenosine (85) by reacting it with N-

chlorosuccinimide for 4 h at room temperature. 8-Thioadenosine was synthesized as previously 

explained by thiolation of 8-bromoadenosine (86) using thiourea (Scheme 14).
148

 Stirring of the 

85 with N-chlorosuccinimide in methanol gave 8-chloradenosine. The solution was evaporated in 

vacuo and the product was purified by HPLC. 

 

Scheme 14. Synthesis of 8-chloroadenosine (86) 
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6.3.1.3. Synthesis of 8-ethylthioadenosine (87) 

8-Thioadenosine (85) was reacted with ethyl iodide yielding 8-ethylthioadenosine (87). Iodide is 

a good leaving group and ethyl iodide is a powerful ethylating agent. 

 

Scheme 15. Synthesis of 8-ethylthioadenosine (87) 

 

6.3.1.4. Synthesis of 8-aminomethyladenosine (88) 

8-Aminomethyladenosine (88) was directly synthesized from 8-chloradenosine (86) by reacting 

it with methylamine in the presence of triethylamine.
149

 Methylamine dissolved in methanol is a 

good nucleophile as it is basic and unhindered. 

 

Scheme 16. Synthesis of 8-methylaminoadenosine (88) 

 

6.3.2. Phosphoprylation of 8-substituted adenosine derivatives (84, 86-88) 

8-Substituted adenosine derivatives were subsequently reacted with 5 equivalents of 

methylenebis(phosphonic dichloride) to give the corresponding nucleoside 5′-O-

[(phosphonomethyl)phosphonic acid] derivatives as final products. Reactions of these derivatives 
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for 30 min under the optimized conditions resulted in very low yields. Therefore, the reaction 

mixtures were stirred for 1 h (Scheme 17). The yields for 8-substituted derivative were lower 

than those of the 6-substituted derivatives as the larger substituents at 8-position can induce a 

conformational change from the anti- to the syn-conformation around the nucleosidic bond.
150, 151

  

 

Scheme 17. Synthesis of nucleotides 89-92 

6.4. 2-Substituted adenosine-5′-O-[(phosphonomethyl)phosphonic acid]  derivatives (109-114) 

The synthesis strategy involved first the synthesis of the 2-substituted-nucleosides followed by 

phosphorylation. 

6.4.1. Synthesis of intermediate 2-substituted-adenosine derivatives (98-108)  

The 2-substituted adenosine derivatives were synthesized from the commercially available 

guanosine (93). 

6.4.1.1. Synthesis of 2′,3′,5′-tri-O-acetylguanosine (94) 

Guanosine (93) was acylated by a similar procedure as described for inosine (25), but by using 

acetic anhydride, 4-dimethylaminopyridine (DMAP) and N-ethyldimethylamine (EDMA) at 40 
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o
C for 1 h to achieve 94 (Scheme 18). Acetic anhydride is a versatile reagent for acylation. Bases 

such as DMAP and pyridine function as catalysts in the acylation reaction. 

 

Scheme 18.  Synthesis of 2-amino-2′,3′,5′-tri-O-acetylinosine (94) 

6.4.1.2. Synthesis of 2-amino-6-chloro-2′,3′,5′-tri-O-acetylinosine (95) 

2′,3′,5′-Tri-O-acetylguanosine (94) was then chlorinated at the 6-position to give 2-amino-6-

chloro-2′,3′,5′-O-acetyl-purine riboside (95) using phosphorus oxychloride, N,N-dimethylaniline 

and  tetraethylammonium chloride.
125, 152 

The use of tetraethylammonium chloride in the 

chlorination reaction of guanosine increases the yield of 95 to 75%. 

 

Scheme 19. Synthesis of 2-amino-6-chloro-2′,3′,5′-tri-O-acetylinosine (95) 

 

6.4.1.3. Synthesis of 2-amino-6-chloropurine riboside (96) 

The next step was the removal of the acetyl groups from 2-amino-6-chloro-2′,3′,5′-tri-O-

acetylinosine (95). Deprotection of acetyl groups is normally carried out using bases, e.g. NH3 or 

sodium methoxide. We used the method as for inosine (25) but the yield was very low. So, we 
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tested various concentrations of sodium methoxide solutions. The best result was obtained with 

2% NaOMe in methanol. NaOMe has the property of methylating the 6-position, resulting in the 

formation of O
6
-methyl derivatives. However, 2% NaOMe in methanol is not sufficient to 

methylate the 6-position. A small amount of starting material was remaining after stirring the 

mixture for several days. So the reaction was stopped after 24 h and the desired product 2-amino-

6-chloropurine riboside (96) was purified by the silica gel column chromatography. 

 

Scheme 20. Synthesis of 2-amino-6-chloropurine riboside (96) 

 

6.4.1.4. Synthesis of 2′,3′,5′-tri-O-acetyl-2,6-dichloropurine riboside (97)  

2-Amino-6-chloro-2′,3′,5′-tri-O-acetylinosine (95) was diazotized with benzyltriethylammonium 

nitrite (BETA-NO2) in the presence of acetyl chloride to give 2,6-dichloro-substituted nucleoside 

97, which on reacting with ammonia in ethanol, 2-chloroadenosine (98) was obtained (Scheme 

21).
153 

The employed Sandmeyer reaction utilizes aryl diazonium salts to convert anilines to aryl 

chlorides. Mechanistically aromatic amino group is converted to a diazonium salt followed by its 

displacement with a nucleophile resulting in the formation of halides. BETA-NO2 is not 

commercially available so it is prepared from the benzyltriethylammonium chloride (BETA-

chloride) by replacing chloride with nitrate using ion-exchanger. 2,6-Dichloro-2′,3′,5′-tri-O-

acetylinosine (97) was obtained in good yield.
153, 154

 Deprotection of 97 with sodium methoxide 

and 7N ammonia solution in methanol resulted 2,6-dichloropurine riboside with a low yield.
154
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In contrast deprotection with ammonia in ethanol appeared more beneficial as ammonia 

promotes nucleophilic attack on the acetyl-protecting groups resulting in 2-chloroadenosine. 2-

Chloroadenosine (98) was purified by silica gel column chromatography.
155

  

 
Scheme 21. Synthesis of 2-chloroadenosine (98) 

 

6.4.1.5. Synthesis of 2′,3′,5′-tri-O-acetyl-6-chloro-2-iodopurine riboside (99) 

Intermediate 95 was also diazotized with isoamyl nitrate in the presence of cuprous(I) iodide and 

diiodomethane to give the 2-iodo-6-chloro nucleoside 99 which on readily reacting with 

ammonia in ethanol afforded 2-iodoadenosine (100). This is the direct diazotization-iodination 

reaction, where isoamyl nitrate acts as a diazotizing agent.
156

  

 
Scheme 22. Synthesis of 2-iodoadenosine (100) 

 

6.4.1.6. Synthesis of 2-hydrazinyladenosine (101) 

In general, hydrazine hydrate is a good nucleophile which can readily replace the halogens. 2-

Chloroadenosine (98) was reacted with hydrazine hydrate to give 2-hydrazinyl derivative 101. It 
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was also prepared by the same process as reported by El-Tayeb et al.
157

 The progress of reaction 

was determined by TLC (CH2Cl2:MeOH = 3:1).
158 

 

 

Scheme 23. Synthesis of 2-hydrazinyladenosine (101) 

 

6.4.1.7. Synthesis of 2-piperazinyladenosine (103) 

1-Boc-piperazine is basic and can be N-alkylated by halides. However, 2-chloroadenosine (98) is 

less reactive than 6-chloropurine riboside (28). Alkylation requires an excess of both, 1-boc-

piperazine as well as triethylamine.
159

 2-Chloroadenosine (98) was reacted with 1-boc-piperazine 

to give intermediate 102, which was purified by column chromatography after evaporating the 

volatiles in vacuo. The tert-butyloxycarbonyl protecting group (boc group) was removed by 8% 

triflouroacetic acid in CHCl3 : water (9 : 1) to give 2-piperazinyladenosine (103), which was 

subsequently purified by HPLC (Scheme 24). 

 

Scheme 24. Synthesis of 2-piperazinyladenosine (103) 
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6.4.1.8. Synthesis of 2-alkylthio-adenosine derivatives (107, 108) 

2-Thioadenosine (106) was obtained by oxidation of adenosine using a previously reported 

method.
66,

 
160, 161

 Adenosine was oxidized with hydrogen peroxide in the presence of acetic acid 

to give adenosine N
1
-oxide (104). Subsequent ring opening with sodium hydroxide afforded the 

carboximidoxime intermediate 105, which was then thiolated with carbon disulfide in an 

autoclave to give 2-thioadenoisine (106). Compound 106 was subsequently alkylated with allyl 

bromide, and 2-cyclohexylethyl bromide respectively, to give 2-allythio- and 2-

cyclohexylethylthioadenosine (107 and 108). 

 
Scheme 25. Synthesis of 2-cyclohexylethylthio- and 2-allythioadenosine (107, 108) 

 

6.4.2. Phosphorylation of 2-substituted-nucleosides 

All 2-substituted adenosine derivatives (98-102, 107 and 108) were phosphorylated using earlier 

optimized method of phosphorylation. The reaction was carried out using 5 equivalents of 

methylenebis(phosphonic dichloride) for 30 minutes (Scheme 26). The target compounds were 
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obtained in good yields and purified by HPLC using a gradient of ammonium bicarbonate buffer 

and acetonitrile. 

 

Scheme 26. Synthesis of target nucleotides 109-114 

6.5. 2-Amino-, 2-choro- and 2-iodo-N
6
-mono-/dialkyl-or aryl-substituted adenosine-5′-O-

[(phosphonomethyl)phosphonic acid]  derivatives (139-150) 

The synthetic strategy involved first the synthesis of the corresponding 2-amino-, 2-choro- and 2-

iodo-N
6
-mono-/dialkyl-and aryl-substituted purine ribosides followed by phosphorylation. 

6.5.1. Synthesis of 2,6-disubstituted nucleosides (127-138) 

For the synthesis of the intermediate nucleosides, the 2-amino-6-chloro-substituted compound 

95, the 2,6-dichloro-substituted compound 97, and 6-chloro-2-iodo-substituted compound 99 

were refluxed with the appropriate amines in the presence of triethylamine to give the 

corresponding N
6
-substituted nucleoside derivatives (115-126), using the same methods as used 

for 2-unsubstituted-6-substituted nucleosides (Scheme 27). For N-alkylation of 2-unsubstituted 

nucleosides 6-chloropurine riboside (28) had been used. For the 2,6-dihalo-subsubstituted 
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derivatives 97 and 99, the reaction was selective for the 6-position. The progress of the reaction 

could be monitored by TLC and the reaction was stopped before 2-alkylation started. 

Deprotection of the intermediates 115-126 was achieved in a solution of 2% NaOMe in methanol 

to provide 127-138. All compounds, intermediate and final products were purified by column 

chromatography. 

 
Scheme 27. Synthesis of 2-amino, 2-choro or 2-iodo-N

6
-mono/dialkyl or aryl-purine ribosides (127-138) 

6.5.2. Phosphorylation of 2,6-disubstituted purine ribosides (127-138) 

All nucleoside derivatives 127-138 were phosphorylated using the earlier optimized method to 

give the target nucleotides 139-150 (Scheme 28). 
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Scheme 28. Synthesis of target nucleotides 139-150 

 

6.6. Phosphorylation of further nucleosides 

Other nucleosides like inosine (25), guanosine (93), 6-chloropurine riboside (28), 2-amino-6-

chloropurine riboside (96), 2,6-diaminopurine riboside (155) and isoguanosine (157) was 

phosphorylated to yield the corresponding nucleotides. 

6.6.1. Phosphorylation of inosine (25) 

Inosine (25) was phosphorylated using the earlier optimized method to give the target nucleotide 

151. It was purified by ion exchange chromatography followed by HPLC. 

 

Scheme 29. Synthesis of inosine-5′-O-[(phosphonomethyl)phosphonic acid] (151) 
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6.6.2. Phosphorylation of 2-chloropurine riboside (28) 

6-Chloro-purine riboside (28) was phosphorylated using the earlier optimized method to give the 

corresponding target nucleotide 152. 

 

Scheme 30. 6-chloropurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (152) 

 

6.6.3. Phosphorylation of guanosine (93) 

Guanosine (93) was phosphorylated using the earlier optimized method to yield nucleotide 153. 

 

 

Scheme 31. Synthesis of guanosine-5′-O-[(phosphonomethyl)phosphonic acid] (153) 

 

6.6.4. Phosphorylation of 2-amino-6-chloropurine riboside (96) 

2-Amino-6-chloropurine riboside (96) was phosphorylated using the previously optimized 

method to give nucleotide 154. 
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Scheme 32. Synthesis of 2-amino-6-chloropurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] 

(154) 

 

6.6.5. Synthesis and phosphorylation of 2,6-diaminopurine riboside (155) 

2,6-Diaminopurine riboside (155) was synthesized from 2-amino-6-chloropurine riboside (96) by 

the same method as previously used for the synthesis of 2-chloro- and 2-iodo-adeonsine by 

treatment of 96 with ammonia in ethanolic solution. Compound 155 was phosphorylated using 

the previously optimized method to give nucleotide 156. 

 

Scheme 32. Synthesis of 2,6-diaminopurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (156) 

6.6.6. Synthesis and phosphorylation of isoguanosine (157)   

Isoguanosine (157) was synthesized from 2,6-diaminopurine riboside (155) by selective 

deamination at the 2-position by nitrous acid.
162

 Nitrous acid was generated in situ by using 

sodium nitrite and acetic acid. For this reaction sodium nitrite was used in excess. Isoguanosine 

was phosphorylated using the previously optimized method to give the nucleootide 158. 



IV. Results and discussion 

70 
 

 
Scheme 33. Synthesis of isoguanosine-5′-O-[(phosphonomethyl)phosphonic acid] (158) 

 

6.7. Synthesis of methylene diphosphonate-side chain-modified analogues of AOPCP (161, 

162) 

Various substituted bisphosphonates,e.g. etidronate, clodronate, alendronate etc are used as drugs 

for the treatment of osteoporosis.
163

 We selected two non-nitrogen containing first-generation 

bisphosphonates, and commercially procured the compounds as free acids. The two compounds 

were clodronic acid [(dichloro-phosphono-methyl)phosphonic acid] and etidronic acid [(1-

hydroxyethan-1,1-diyl)bis(phosphonic acid)]. They were employed for the preparation of the 

side-chain modified AOPCP analogues adenosine-5′-dichloromethylenediphosphonic acid (161) 

and adenosine-5′-(1-hydroxy)ethane-1,1-diphosphonic acid (162). 

6.7.1. Synthesis of adenosine-5′-dichloromethylenediphosphonic acid (161) 

There are several methods for the phosphorylation of adenosine by nucleophilic displacement of 

5′-halogen or sulfonate ester derivative using activated bisphosphonate derivatives. For the 

synthesis of targeted compound we utilized the procedure by Davisson et al., where nucleophilic 

displacement of 5′-O-tosyl-nucleosides by the tris-(tetra-n-butylammonium) salt of substituted-

bis(phosphonic acid)s affords the desired products.
137-139

 But this is the multi-step method which 

involves protection of adenosine at the 2′,3′-position, tosylation at the 5′-position, followed by 

displacement of the tosyl moiety with tris-(tetra-n-butylammonium) bisphonates, and final 

deprotection at the 2′-,3′-position to gave the desired products. 
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The reaction was started from the commercially available adenosine. Adenosine was protected at  

the 2′-hydroxyl and 3′-hydroxyl group to give 2′,3′-O-isopropylidene-adenosine (159) by the 

earlier reported process using acetone, 2,2-dimethoxypropane and sulfuric acid. Protection of the 

2′- hydroxyl and 3′-hydroxyl groups of ribose is essential for 5′-tosylation as all hydroxyl groups 

are reactive towards the tosylating reagent. 2′,3′-O-Isopropylidene-5′-tosyladenosine was 

prepared by reacting 2′,3′-O-isopropylidene-adenosine (159)  with p-toluenesulphonyl chloride 

in the presence of DMAP as a catalyst and pyridine as a solvent.
138

 After completion of the 

reaction 5′-tosylated adenosine was obtained as a white solid after evaporation of solvent 

pyridine in vacuo followed by extraction and crystallization. The substituted bisphosphonic acids 

were converted to their tris-(tetra-n-butylammonium) salts by trituration with tetra-

butylammonium hydroxide in methanol, followed by evaporation of the methanol in vacuo and 

finally lyophilization of the obtained slurry after adding water to get white fine powders.
138 

 

The next step was the phosphoryation where tris-(tetra-n-butylammonium) dichloromethyl-

enebis(phosphonic dichloride) dissolved in DMF in an air-tight flask was added slowly to the 5′-

tosylated adenosine 160.
138

 After stirring of the mixture for 36 h, water was added and the 

mixture was lyophilized. It was purified by ion-exchange chromatography to give 2′,3′-O-

isopropylidene- adenosine 5′-dichloromethylenediphosphonic acid, which was then deprotected 

by 6-8% trifluoroacetic acid in water : CHCl3 (9 : 1), followed by a purification with HPLC to 

obtain the desired nucleotide adenosine-5′-dichloromethylenediphosphonic acid (161). 
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Scheme 34. Synthesis of adenosine-5′-dichloromethylenediphosphonic acid (161) 

 

6.7.2. Synthesis of adenosine-5′-(1-hydroxy)ethane-1,1-diphosphonic acid (162) 

The desired compound was obtained by same process as described for 161 where 5′-

tosyldenosine derivative 160, was reacted with tris(tetra-n-butylammonium) 1-hydroxyethane-

1,1-diphosphonic acid. 

 

Scheme 35. Synthesis of adenosine-5′-(1-hydroxy)ethane-1,1-diphosphonic acid (162) 
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Figure 14. 
31

P NMR spectra (202 MHz, D2O) δ ppm: purity control of compound 110 and 148 

respectively 
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Figure 15. 
31

P NMR spectra (202 MHz, D2O) δ ppm: purity control of compound 149 and 112 

respectively 
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Figure 16. LC/ESI-MS spectra of the synthesized nucleotide 63 (mass spectra in the positive and negative 

mode), HPLC chromatogram of 63 and its purity determined by HPLC-DAD from 220-300 nm (100 %). 
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Figure 17. LC/ESI-MS spectra of the synthesized nucleotide 71 (mass spectra in the positive and negative 

mode), HPLC chromatogram of 71 and its purity determined by HPLC-DAD from 220-300 nm (100 %). 
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Figure 18. LC/ESI-MS spectra of the synthesized nucleotide 82 (mass spectra in the positive and negative 

mode), HPLC chromatogram of 82 and its purity determined by HPLC-DAD from 220-300   
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7. Results and discussion - part II: Pharmacological Evaluation 

Enzyme inhibition was determined in radiometric eN assay using [
3
H]AMP as a substrate. The 

compounds were investigated in eN by Marianne Freundlieb.
118

 Selectivity studies at eNPP 1-3 

were done by Sang-Yong Lee, eNTPDase 1-3 by Amelie Zech and P2Y1 and P2Y12 receptor 

studies by Dr. Aliaa Abdelrahman.  

Compounds were investigated in radiometric enzyme inhibition assay at recombinant rat eN at 

10 different concentrations in triplicate. For all compounds full concentration-response curves 

were determined and Ki values were calculated from the obtained IC50 values using the Cheng-

Prusoff equation.
164

 Results are summarized in Table 12-17 and curves are shown in Figure 19. 

7.1. Pharmacological Evaluation at rat eN 

A series of 60 derivatives (see Table 12-17) were evaluated at rat eN. ADP and its methylene 

analog AOPCP tested under the same condition showed Ki values of 3880 and 197 nM, 

respectively. All tested inhibitors were competitive inhibitors of rat eN. 
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7.1.1. Structure-activity relationships of 6-substituted AOPCP derivatives at rat ecto-5′-

nucleotidase 

6-(Ar)alkylamino-substitution of AOPCP improved potency. But, 6-(ar)alkylamino-substituted 

2′,3′-O-isopropylidene-protected-derivatives showed reduced potency as compared to the 

standard inhibitor AOPCP. There was a correlation between the substitution pattern and the 

compounds’ potency. Studies were started with simpler alkyl groups like methyl and ethyl at the 

N
6
-position. Substitution at the N

6
-position appears to be beneficial as their inhibitory potency 

was improved. 2′,3′-O-Isopropylidene-protected compounds were also tested. All 2′,3′-O-

isopropylidene-protected compounds were less potent than the corresponding unsubstituted 

ribosides. The lower potency of 2′,3′-O-isopropylidene-protected compounds indicates that free 

2′,3′-hydroxyl group are important to form hydrogen bonds with aspartic acid and asparagine 

residues (as suggested by the crystal structure, PDB code 4H2I).
71, 72

 Among the 2′,3′-O-

isopropylidiene-protected compounds, the N
6
-monoethyl-substituted derivative 54 was the best 

one with a Ki value of 365 nM. Among the N
6
-alkyl-substituted derivatives, the rank order of 

potency was N
6
-ethyl derivative 58 (Ki 43.8 nM, 4.5-fold improvement in potency as compared 

with AOPCP) > N
6
-diethyl-substituted derivate 60 (Ki 68.0 nM, 3-fold improvement in potency 

as compared with AOPCP) > N
6
-dimethyl-substituted derivate 59 (Ki 86.0 nM). Compound 54 is 

the 2′,3′-O-isopropylidene-protected derivative of 58. Since the di-substituted derivatives will not 

yield adenosine receptor-activating metabolites we also synthesized derivatives with 

unsymmetrical alkyl-substitution at the N
6
-position, i.e. N

6
-ethyl-N

6
-methyl-substituted 

derivative 61, which showed a Ki value of 23.6 nM (8.5-fold improvement in potency as 

compared with AOPCP). This was the best compound among the N
6
-alkyl-substituted 

derivatives. 
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Table 11. Inhibitory potency of N
6
-substituted-purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] 

derivatives at rat ecto-5′-nucleotidase 

 

Compd. R
1
 R

2
 rat eN 

Ki ± SEM
a 
(nM) 

AOPCP H H 197 ± 5.00 

53 methyl H 3870 ± 918 

54 ethyl H 365 ± 31 

55 methyl methyl 415 ± 60.0 

56 ethyl ethyl 679 ± 49.0 

57 methyl H 104 ± 13.0 

58 ethyl H 43.8 ± 0.30 

59 methyl methyl 86.0 ± 19.1 

60 ethyl ethyl 68.0 ± 5.10 

61 ethyl methyl 23.6 ± 4.90 

62 phenyl H 36.8 ± 4.70 

63 benzyl H 9.03 ± 1.24 

64 2-phenylethyl H 8.04 ± 2.24 

65 benzyl methyl 4.64 ± 0.20 

66 benzyl ethyl 76.4 ± 5.00 

67 benzyl benzyl 92.5 ± 8.50 

68 4-aminobenzyl H 29.0 ± 1.70 
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69 4-chlorobenzyl H 7.23 ± 0.78 

70 3-chlorobenzyl H 8.18 ± 3.85 

71 2-chlorobenzyl H 3.56 ± 0.83 

72 4-hydroxybenzyl H 9.06 ± 1.45 

73 4-methoxybenzyl H 4.84 ± 0.30 

74 1-phenylethyl H 3.39 ± 0.59 

75 4-nitrobenzyl H 17.6 ± 1.50 

76 4-sulphamoylbenzyl H 14.4 ± 1.70 

a
[
3
H]AMP (5 µM) was used a substrate (Km value 59 µM). 

 

From these results we concluded that hydrophobic groups are tolerated at the 6-position. Thus, 

we designed and synthesized aryl-substituted derivatives. Initially N
6
-phenyl-substituted 

derivative 62 was synthesized, which showed Ki value of 36.8 nM (5-fold improvement in 

potency as compared with AOPCP). Since the aryl-substitution was also improving potency, we 

designed derivatives with increased length of the carbon chain between the amino group and the 

terminal aryl group. To serve this purpose N
6
-benzyl-substituted derivative 63 and N

6
-

phenylethyl-substituted derivative 64 were synthesized. Both of these substituents produced a 

tremendous improvement in potency yielding low nano-molar range inhibitors. This indicated 

that longer and bulkier alkyl-substituents at the N
6
-position are beneficial. N

6
-benzyl-substituted 

derivative 63 and N
6
-phenylethyl-substituted derivative 64 showed Ki values of 9.03 nM (22-fold 

improvement in potency as compared with AOPCP) and 8.04 nM (25-fold improvement in 

potency as compared with AOPCP) respectively. Elongation of the linker between the 6-amino 

group and the distal aromatic group led to an increase in potency, but the products were all 

monosubstituted derivatives. Their potential metabolites might activate adenosine receptors after 

the cleavage of the methylene diphosphate residue. Since N
6
-phenylethyl-substitution is more 
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bulky than N
6
-benzyl-substitution, we modified the N

6
-benzyl-derivative yielding N

6
-

disubstituted derivatives. Symmetrical di-substitution as well as unsymmetrical derivatives with 

smaller alkyl groups like methyl and ethyl were obtained. N
6
-benzyl-N

6
-methyl-substituted 

derivative 65 showed a Ki value of 4.64 nM (43-fold improvement in potency as compared with 

AOPCP). Similarly, N
6
-benzyl-N

6
-ethyl-substituted derivative 66, was synthesized as N

6
-diethyl- 

substituted derivative 60 was more potent than N
6
-dimethyl-substituted derivate 59. Derivative 

66 showed a slight improvement in potency with 76.4 nM. N
6
-Dibenzyl-substituted derivative 66 

was less potent with a Ki value of 76.4 nM. Surprisingly, we observed that introduction of 

unsymmetrical substitution at the N
6
-position was better than a symmetrical substitution pattern 

(observable for N
6
-ethyl-N

6
-methyl derivative 61, Ki 23.6 nM versus N

6
-diethyl 60, Ki 68.0 nM, 

and N
6
-benzyl-N

6
-methyl derivative 65,  Ki 4.64 nM versus N

6
-dibenzyl, 67, Ki 92 nM). These 

results also indicate that disubstitution at N
6
 may increase the compounds’ potency, but while 

one of the N
6
-substituents may be large, the size of the second one is more limited and should 

preferably be a methyl group.  

Table 12. Potency of inosine-5′-O-[(phosphonomethyl)phosphonic acid], 6-chloro-purine riboside-5′-O-

[(phosphonomethyl)phosphonic acid], and O
6
- and S

6
-substituted-purine riboside-5′-O-

[(phosphonomethyl)phosphonic acid]  at rat ecto-5′-nucleotidase 

 

Compd. X R rat eN 

Ki ± SEM
a
(nM) 

151 see structure above 2830 ± 421 

81 O ethyl 32.0 ± 4.10 
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82 O benzyl 9.20 ± 0.52 

83 S benzyl 9.50 ± 1.79 

152 see structure above 161 ± 0.14 

a
[
3
H]AMP (5 µM) was used a substrate (Km value 59 µM). 

 

The benzyl-substituted derivative 63 was selected for further modification due to its high 

potency, and because a large number of substituted benzylamine derivatives were easily 

accessible. So, we designed benzyl-substituted derivatives by making various substitutions on 

the benzyl ring like 4-amino, 4-chloro, 3-chloro, 2-chloro, 4-hydroxy, 4-methoxy, 4-nitro, 4-

sulphamoyl and 1-phenylethyl. The order of potency was 1-phenylethyl derivative 74 (Ki 3.39 

nM, 59-fold improvement in potency as compared with AOPCP) > 2-chlorobenzyl derivatives 71 

(Ki 3.56 nM) > 4-methoxybenzyl derivatives 73 (Ki 4.84 nM) > 4-chlorobenzyl derivatives 69 

(Ki 7.23 nM) > 3-chlorobenzyl derivatives 69 (Ki 8.18 nM) > 4-sulfamoylbenzyl-substituted 

derivative 76 (Ki 14.4 nM) > 4-nitrobenzyl-substituted derivative 75 (Ki 17.6 nM) > 4-

aminobenzyl derivatives 68 (Ki 29.0 nM). Electron-withdrawing groups (e.g. Cl) appeared to be 

better tolerated in the p-position of the phenyl ring than electron-donating functions (NH2). 1-

Phenylethyl derivative 74 was the most potent compound among the 6-substitued derivatives. 

The nitrogen atom at 6-position of the adenine ring was exchanged for oxygen or sulfur yielding 

of O
6
- and S

6
-substituted derivatives. The synthesis of O

6
- and S

6
- substituted derivatives is also 

justified as their metabolites will also not yield adenosine receptor activating compounds. This 

offers the possibility to move away from adenine nucleotide derivatives, which might be 

metabolized to (N
6
-substituted) adenosine derivatives after hydrolysis of the ester bond between 

the ribose and the diphosphonate moiety. Certain N
6
-substituted adenosine derivatives are known 

to potently activate adenosine A1 receptors and may thereby induce negative inotropic and 
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chronotropic effects, which might even lead to cardiac arrest.
166-167 

All O
6
- and S

6
- substituted 

derivatives showed retainment of activity which confirmed the notion that hydrogen bond-

donating groups are not required at position 6. When N
6
-benzyl derivative 63 (Ki 9.03 nM), was 

compared with O
6
-benzyl derivative 82 (Ki 9.20 nM), both gave comparable potency (21-fold 

improvement in potency as compared with AOPCP). Similarly, N
6
-ethyl was replaced by O

6
-

ethyl also resulting in nearly comparable potency; derivative 81 with (Ki 32.0 nM) and derivative 

58 with (Ki 43.8 nM). S
6
-Benzyl derivative 83 (Ki 9.52 nM) also showed comparable activity 

(21-fold improvement in potency as compared with AOPCP). The bisphosphonic acid derivative 

of inosine 151, showed a complete loss of activity. In the case of compound 152 (Ki 157 nM), 

when the amino group at the 6-position of AOPCP (Ki 197 nM) was substituted by a 6-chloro 

function, there was a slight improvement in activity. This could be due to different, non-aromatic 

tautomeric structure of 151 as compared to AOPCP and 152. 

7.1.2. Structure-activity relationships of 8-substituted AOPCP derivative at rat ecto-5′-

nucleotidase 

 

8-Substituted derivatives were also evaluated under the same assay conditions. Among 8-halo-

substituted derivatives 8-chloro-substituted derivative 90 was more potent as compared to 8-

bromo-substituted derivative 89. Compound 90 showed a Ki value of 93.5 nM which is a 2-fold 

improvement in potency as compared with AOPCP. Other 8-substituted derivatives, 8-thioethyl- 

and 8-amoinomethyl-substituted derivative 91 and 92, showed reduced potency. These results 

showed that only small substituents were tolerated at the purine 8-position. A reason for this may 

be that larger 8-substituents can induce a conformational change from the anti- to the syn-

conformation around the nucleosidic bond, which is unfavourable for binding to the enzyme.
 168
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Table 13. Potency of 8-substituted-adenosine-5′-O-[(phosphonomethyl)phosphonic acid] derivatives at 

rat ecto-5′-nucleotidase 

 

Compd. R rat eN 

Ki ± SEM
a
(nM) 

89 bromo 491 ± 50 

90 chloro 93.5 ± 4.5 

91 aminomethyl 1720 ± 384 

92 thioethyl 3610 ± 576 

a
[
3
H]AMP (5 µM) was used a substrate (Km value 59 µM). 

 

7.1.3. Structure-activity relationships of 2-substituted AOPCP derivative at rat ecto-5′-

nucleotidase 
 

Several substituents at the 2-position produced improved potency. SARs were also studied for 

the 2-substituted AOPCP derivatives. Studies were started with nucleotide derivatives of 

guanosine and isoguanosine (isoguanosine > guanosine). Isoguanosine derivative 158 was 3-fold 

more potent than guanosine derivative 153. But guanosine derivative 153 was more potent than 

inosine derivative 151. Both of these nucleotides, guanosine derivative 153 and isoguanosine 

derivative 158 gave no improvement in potency as compared to AOPCP. The lower potency of 

guanosine and isoguanosine can be correlated to the low potency of inosine derivative 151. 6-

Chloro-2-amino-substituted derivative 154 was more potent as compared to guanosine derivative 

153 and isoguanosine derivative 158. 2,6-Diaminoadenosine nucleotide 156 was 2-fold more 
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potent as compared to AOPCP with a Ki value of 90.6 nM. Comparing the potency of derivatives 

154 and 156 showed that the amino group at 2-position improves potency. Similarly, 2-halo-

substitution produces a tremendous improvement in potency, e.g. 2-iodo substitution in 110 and 

2-chloro-substitution in 109 gave Ki values of 15.1 nM and 18.6 nM, respectively. 2-Iodo 

substitution showed a 13-fold improvement in potency as compared to an 11-fold improvement 

in potency for the 2-chloro-substitution. 2-Iodo-substituted derivative 110 is the best derivative 

among the 2-substituted derivatives. Other 2-substituted derivatives like 2-hydrazinyl 111 did not 

significantly improve the activity but were more potent than AOPCP, however less potent than 

the 2,6-diamino-adenosine nucleotide 156. 2-Piperazinyl-derivative 112 showed a complete loss 

of potency. The order of potency for 2-substituted compounds were: 2-iodo > 2-chloro > 2-

amino > 2-hydrazinyl > 2-oxo >> piperazinyl. Among the 2-thio-substituted derivatives 2-

cyclohexylethylthio derivative 114 was slightly more potent than 2-thioallyl-substituted 

derivative 113. Compounds 113 and 114 were 3- and 3.5-fold more potent. From this various 

synthesized 2-substituted derivatives amino-, chloro- and iodo-substitution produced 

improvement in potency. So we combined these best 2-substituents with the best alkyl and aryl- 

substitution patterns to make derivatives with 6- and 2-disubstitution. 
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Table 14. Potency of 2-substituted-adenosine-5′-O-[(phosphonomethyl)phosphonic acid] derivatives at 

rat ecto-5′-nucleotidase 

 

Compd. R
1
 R

2
 rat eN 

Ki ± SEM
a
(nM) 

153, guanosine dvts oxo amino 1110 ± 350 

158, isoguanosine dvts amino oxo 326 ± 42 

154 chloro amino 268 ± 21 

156 amino amino 90.6 ±7.30 

110 amino iodo 15.1 ± 1.20 

109 amino chloro 18.6  ± 3.80 

111 amino hydrazinyl 116 ± 18 

112 amino piperazinyl 2290 ± 240 

113 amino thioallyl 65.7 ± 5.60 

114 amino cyclohexylethylthio 47.1 ± 8.30 

a
[
3
H]AMP (5 µM) was used a substrate (Km value 59 µM). 
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7.1.4. Structure-activity relationships of 2,6-disubstituted AOPCP derivative at rat ecto-5′-

nucleotidase 

 

Various N
6
-alkyl-substitutions was combined with a 2-amino residue. N

6
-diethyl-, 2-amino-

substituted derivative 140 was slightly more potent than the N
6
-dimethyl-, 2-amino derivative 

139. Derivative 140 showed a Ki value of 29.8 nM. Compounds 140 and 139 were 6.6-fold and 

5.7-fold more potent as compared to the lead compound AOPCP. These results were in 

accordance with results from 2-unsubstituted-N
6
-disubstitiuted derivative, where the diethyl 

derivative was found to be more potent than the dimethyl derivative. These N
6
-disubstituted 

compounds will not yield adenosine receptor-activating metabolites. Similarly N
6
-benzyl was 

combined with the three best 2-substituents, namely chloro, iodo and amino. N
6
-benzyl-2-amino-

substituted derivative 141, N
6
-benzyl-2-chloro-derivative 142, and N

6
-benzyl-2-iodo-derivative 

143 showed Ki values of 5.25, 1.23 and 1.53 nM, respectively. Compounds 142 was 160-fold 

more potent than the lead structure AOPCP. N
6
-(2-Benzyl)-2-chloro derivative 144 (Ki = 0.34 

nM) was 4-fold more potent than the N
6
-benzyl-2-chloro derivative 142, and 580-fold more 

potent as compared to AOPCP. Compound 144 is the most potent compound in the whole series. 

The potency of N
6
-(1-phenylethyl)-2-chloro derivative 145 (Ki = 1.20 nM) was lower than that of 

N
6
-(2-benzyl)-2-chloro derivative 144. Since N

6
-(1-phenylethyl)-2-chloro derivative 145 is 

racemic we also synthesized derivatives with different enantiomeric substituents which represent 

diastereomers. But there was no drastic difference in potency. N
6
-((S)-1-Phenylethyl)-2-chloro 

derivative 146 (Ki = 0.92 nM) was slightly more potent as compared to N
6
-((R)-1-phenylethyl)-

2-chloro derivative 147 (Ki = 1.12 nM). Compound 146 showed 215-fold improvement in 

potency as compared to lead structure AOPCP. Since N
6
-disubstituted derivatives are expected 

not to yield adenosine receptor-activating metabolites after hydrolysis, we synthesized 

derivatives combing N
6
-benzyl-N

6
-methyl and amino or iodo or chloro-substituents at the 2-
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position. N
6
-benzyl-N

6
-methyl-2-amino derivative 148 showed a Ki value of 7.3 nM as compared 

to a Ki value of 2.20 nM for N
6
-benzyl-N

6
-methyl-2-iodo derivative 150 and a Ki value of 0.88 

nM for N
6
-benzyl-N

6
-methyl-2-chloro derivative 149. Compounds 149 and 150 showed 224- and 

89-fold improvement in potency as compared to AOPCP. 

Table 15. Potency of 2-amino, 2-chloro or 2-iodo-N
6
-mono-/dialkyl- or aryl-adenosine-5′-O-

[(phosphonomethyl)phosphonic acid] derivatives at rat ecto-5′-nucleotidase 

 
 

Compd. R
3 R

4 R rat eN 

Ki ± SEM
a
(nM) 

139 methyl methyl amino 34.1 ± 2.90 

140 ethyl ethyl amino 29.8 ± 1.70 

141 benzyl H amino 5.25 ± 1.10 

142 benzyl H chloro 1.23 ± 0.04 

143 benzyl H iodo 1.53 ± 0.24 

144 2-chlorobenzyl H chloro 0.34 ± 0.06 

145 1-phenylethyl H chloro 1.20 ± 0.04 

146 (S)-1-phenylethyl H chloro 0.92  ± 0.13 

147 (R)-1-phenylethyl H chloro 1.12 ± 0.28 

148 benzyl methyl amino 7.37 ± 1.36 

149 benzyl methyl chloro 0.88 ± 0.53 

150 benzyl methyl iodo 2.22 ± 0.11 
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a
[
3
H]AMP (5 µM) was used a substrate (Km value 59 µM). 

 

 

7.1.5. Structure-activity relationships of AOPCP derivatives with modification of the 

methylene bis-phosphonate partial structure at rat ecto-5′-nucleotidase 
 

Further derivatives with substitution in the methylene bisphosphonate side-chain of AOPCP 

were also synthesized. Adenosine-5′-dichloromethylenediphosphonic acid 161 and adenosine-5′-

(1-hydroxy)ethane-1,1-diphosphonic acid 162 were tested the under same assay conditions. Both 

substitutions resulted in reduced potency. 

Table 16. Potency of adenosine-5′-dichloromethylenediphosphonic acid and adenosine-5′-(1-

hydroxy)ethane-1,1-diphosphonic acid 

 

Compd. R
5
 R

6
 rat eN 

Ki ± SEM
a
(nM) 

161 chloro chloro 292 ± 23 

162 hydroxy methyl 4050 ± 240 

a
[
3
H]AMP (5 µM) was used a substrate (Km value 59 µM). 
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Figure 19.  Radiometric assays at rat eN. Concentration-response curves of selected potent derivatives 

58, 61, 62, 63, 64, 109, 110, 111, 113, 114, 151, 153, 156, 158, 161, 162, ADP and AOPCP (I). Rat 

enzyme Km, 59 μM; AMP concentration, 5 μM. Data points are from three separate experiments 

performed in duplicate. 
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7.2. Selectivity studies 

Selected potent compounds were further investigated at various purinergic targets including 

other ecto-nucleotidases like eNTPDase 1-3 and eNPP 1-3 as well as ADP-activated P2Y 

receptors (P2Y1 and P2Y12). 

7.2.1. Activity at nucleoside triphosphate diphosphohydrolases and nucleotide 

phosphodiesterases 
 

The lead compound AOPCP showed some inhibitory potency at eNPP 1 (Ki = 16500 nM). This 

mean that it has a 85-fold selectivity for eN versus eNPP 1. AOPCP has competitive mechanism 

of inhibition at eNPP 1.
106, 116

 Most of the new compounds were inactive at the tested enzymes, 

which showed that we were able to achieve selectivity. The highest percentage of inhibition at 

human NTPDases 1 tested in the malachite green assay
117, 169 

was observed for the compounds 

61 (21 %) and 64 (16 %) at 10 µM concentration. At human NPP 1 all of the tested compounds 

were less active than AOPCP (percentage of inhibition at 10 µM of 21%) tested under same 

conditions, except for 140 which showed 31 % inhibition at 10 µM. The results are summarized 

in Table 18. 
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Table 17. Potency of selected derivatives at human NTPDase 1-3 and NPP 1-3 

Compd. human NTPDase  

% inhibition 

(at 20 µM), n=3 

(% Effect ± SEM)
a,b 

or 

Ki ± SEM
 
(nM) 

human NPP  

% inhibition 

(at 10 µM), n=3 

(% Effect ± SEM)
a,b 

or 

Ki ± SEM (nM) 

 NTPDase 1 NTPDase 2 NTPDase 3 NPP 1 

 

NPP 2 NPP 3 

AOPCP >>10000 

(1± 3) 

>>10000 

(-7 ± 8) 

>>10000 

(-4 ± 11) 

16500 ± 3.2 

(21 ± 1) 

>>10000 

(4 ± 0) 

>>10000 

(1 ± 1) 

ADP n.d. n.d. n.d. >10000 

(28 ± 4) 

>>10000 

(4 ± 0) 

>>10000 

(2 ± 2) 

61 >>10000 

(-2± 4) 

>10000 

(27 ± 3) 

>>10000 

(-6 ± 9) 

>>10000 

(12 ± 0) 

>>10000 

(3 ± 1) 

>>10000 

(-1 ± 0) 

63 >>10000 

(9± 4) 

>>10000 

(-15 ± 11) 

>>10000 

(-17 ± 7) 

>>10000 

(9 ± 1) 

>>10000 

(2 ± 1) 

>>10000 

(-1 ± 1) 

64 >>10000 

(12± 5) 

>>10000 

(16 ± 12) 

>>10000 

(-5 ± 12) 

>>10000 

(13 ± 1) 

>>10000 

(-1 ± 3) 

>>10000 

(0 ± 4) 

69 >>10000 

(17± 3) 

>>10000 

(8 ± 5) 

>>10000 

(-12 ± 8) 

>>10000 

(10 ± 0) 

>>10000 

(2 ± 1) 

>>10000 

(1 ± 1) 

82 >>10000 

(3± 3) 

>>10000 

(14 ± 26) 

>>10000 

(-2 ± 17) 

>>10000 

(11 ± 3) 

>>10000 

(0 ± 2) 

>>10000 

(0 ± 1) 

109 n.d. n.d. n.d. >>10000 

(16 ± 2) 

>>10000 

(4 ± 1) 

>>10000 

(0 ± 1) 

114 n.d. n.d. n.d. >>10000 

(19 ± 1) 

>>10000 

(5 ± 2) 

>>10000 

(0 ± 2) 

140 n.d. n.d. n.d. >10000 

(31 ± 2) 

>>10000 

(6 ± 2) 

>>10000 

(0 ± 2) 

142 n.d. n.d. n.d. >>10000 

(8 ± 1) 

>>10000 

(8 ± 1) 

>>10000 

(1 ± 1) 

144 n.d. n.d. n.d. >10000 

(27 ± 0) 

>>10000 

(-3 ± 4) 

>>10000 

(0 ± 4) 

149 n.d. n.d. n.d. >>10000 

(14 ± 1) 

>>10000 

(4 ± 2) 

>>10000 

(4 ± 1) 

150 n.d. n.d. n.d. >>10000 

(20 ± 3) 

>>10000 

(3 ± 1) 

>>10000 

(3 ± 2) 

154 n.d. n.d. n.d. >>10000 

(22 ± 4) 

>>10000 

(2 ± 1) 

>>10000 

(0 ± 2) 
a
Screening was performed at a concentration of 10 µM for NPPs and 20 µM for NTPDases. 

b
Effects were normalized to the effect induced by 400 µM of p-nitrophenylthymidine 

monophosphate for NPP 1 and 70 µM of ATP for NTPDase 1. 
c
Ki value. (n.d., not determined) 
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7.2.2. Selectivity versus ADP-activated P2Y receptors 

 

Selected compounds were further investigated at the P2Y receptor subtypes P2Y1 and P2Y12.
170

 

P2Y receptors are G protein-coupled receptors. The activators of P2Y receptors are nucleotides. 

ADP and its more potent analogue 2-MeSADP are agonists of both, P2Y1 and P2Y12 receptors. 

Our synthesized nucleotides are isosteres of ADP where an oxygen atom between two 

phosphoric acids has been replaced by methylene residue binding phosphonic acid derivatives. 

All tested nucleotide derivatives showed negligible potency at the investigated P2Y receptor 

subtypes which proved their selectivity versus both, P2Y1 and P2Y12 receptors. The results are 

summarized in Table 19. 

Table 18. Potency of selected derivatives at ADP-activated P2Y receptor subtypes 

Compd. human P2Y1 

EC50 ± SEM (nM) 

(% Effect
a
 ± SEM) 

human P2Y12 

EC50 ± SEM (nM) 

(% Effect
a
 ± SEM) 

ADP 289 ± 6.7 133 ± 2.6 

AOPCP >10000 (26 ± 7) >>10000 (5 ± 4) 

58 >>10000 (17 ± 7) >>10000 (4 ± 5) 

61 >>10000 (16 ± 12) >>10000 (-2 ± 4) 

63 >> 10000 (15 ± 1) >>10000 (0 ± 2) 

82 >> 10000 (20 ± 2) >>10000 (1 ± 1) 

109 >10000 (38 ± 6) >>10000 (6 ± 5) 

114 >>10000 (7 ± 9) >10000 (34 ± 13) 

145 >>10000 (20 ± 4) >10000 (36 ± 5) 

149 >>10000 (12 ± 3) >>10000 (-1 ± 2) 

154 >> 10000 (7 ± 4) >>10000 (3 ± 4) 

a
Screening was performed at a concentration of 10 µM. 
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8. Results and discussion - part II: Metabolic stability studies 

Metabolic stability is an important property of drug molecules, because this property determines 

both efficacy and safety (toxicity). Metabolic studies also determine parameters such as 

clearance, half-life, and bioavailability. Therefore, few selected, potent inhibitors were further 

investigated for their metabolic stability, (i) in rat liver microsomes in order to investigate 

potential metabolic degradation by liver enzymes, in order to identify stable inhibitors for 

extended pharmacological experiments, and (ii) in human blood, in order to determine plasma 

stability of the inhibitors. Inhibitors were incubated with microsomes, or plasma, respectively, at 

37 °C and subsequently analyzed by LC-MS.
133

 

8.1. Stability of inhibitors in liver microsomes 

Metabolism increases clearance of clinical candidates. The main site of metabolism of drugs is 

the liver. Apart from the liver, the metabolism of drugs takes place in the gastrointestinal- (GI) 

tract, primarily the small intestine, and also in lungs, skin, nasal mucosa and kidneys. Metabolic 

studies are important as structural modification of the compounds with groups blocking or 

sterically interfering with metabolic sites increases metabolic stability.
171, 172

 In drug discovery 

several pharmacologically important molecules are discarded at later stages of development 

because they are not sufficiently stable. So, the metabolic stability studies are a must for the 

successful development of stable compounds even at the lead optimization stage. An orally 

applied drug undergoes various enzymatic and chemical reactions in different parts of the body. 

In the GI-tract the molecule undergoes intestinal decomposition, in the liver it encounters hepatic 

metabolism and in plasma it undergoes plasma decomposition by hydrolytic and other enzymes 
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in the blood. Optimization of metabolic stability is one of the biggest challenges in drug 

discovery.
172

 

8.1.1. Metabolism/ biotransformation 

 

The metabolism reactions have been divided into two phases. Phase I reactions include structural 

modifications of drug molecules by addition or unmasking of polar and functional moiety, such 

as oxidation or dealkylation. Different enzymes which catalyze phase I reactions include 

monooxygenases, the cytochrome P450 (CYP) family and the flavine monooxygenase (FMO) 

family. Typical phase I reactions by CYP and FMO are oxidation, dealkylation etc. Other 

enzymes like esterases produce hydrolysis.
172

 

Phase II reactions are additions or conjugations of polar groups to the molecular structure or the 

products of phase I reactions. However a compound may undergo phase II reaction before phase 

I reactions, if it has polar groups to allow conjugations. The common phase II reactions are 

glucuronidation, sulfation, acetylation, glycination, glutathione conjugation etc. The combining 

effects of phase I and II metabolism produce polar products with increased aqueous solubility 

which allows excretion from the body via bile and urine. Metabolism increases clearance and 

produces low bioavailability which results in a lower concentration of a drug at the therapeutic 

target.
172

 

Metabolism has a direct relationship with clearance (CL). An increase in metabolism leads to an 

increase in clearance. CL and volume of distribution (Vd) directly affect the half-life of the 

drugs. Half-life determines how often the dose must be administered to achieve the desirable 

bioavailability, accounting absorption and clearance. So, the early metabolic study of chemical 

compounds determines the amount of drug to be administered during the animal experiments. 
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The phase 1 metabolism reactions depend on the binding of the compound to the metabolic 

enzyme as well as reactivity of specific site on the compounds to the reactive site of metabolic 

enzyme.
172

 Structural changes reduce compound binding or reactivity and will increase 

metabolic stability. The strategies for increasing metabolic stability from phase I metabolism are 

blocking of metabolic site by adding blocking groups like halogens, removing labile functional 

groups or easily metabolizing groups, cyclization of molecular structure, change in ring size, 

change in chirality, reducing lipophilicity and removing unstable groups. Phase II metabolism 

can be reduced by introducing electron-withdrawing groups or steric hindrance and changing 

polar group to non-polar (e.g changing phenolic hydroxyl to cyclic urea or thiourea).
172

 Phenolic 

hydroxyl groups can be converted to prodrugs thereby increasing phase II stability. There are 

both in vitro as well as in vivo metabolic stability models. The in vivo models are expensive and 

time-consuming, so in vitro models are more popular. In vitro metabolic stability data often 

guide structure modifications to improve stability. They can also provide information to select 

the optimal compound(s) for in vivo activity testing by predicting in vivo pharmacokinetic 

performance.
 172 

 

8.1.2. Invitro-metabolic study models 

 

Different in-vitro models are used for metabolic studies as detailed below. 

I. Hepatocytes: They are prepared from fresh livers and are used for both phase I and phase II 

metabolic studies. They contain all the co-factors, enzymes and transporters for drug 

metabolism. They can be used for screening of the metabolic stability of drugs, for metabolite 

profiling, liver toxicity studies, and enzyme induction studies (P450 induction). They cannot be 

used for the study of drug-drug interaction and reaction phenotyping.
172, 173
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II. Liver Slices: They are similar to hepatocytes and they contain all the enzymes/transporters 

and co-factors for drug metabolism. They are harder to prepare but are the most physiologically 

relevant samples used for qualitative and quantitative measurement of hepatic metabolism. Like 

hepatocytes they are rarely used for absorption, distribution, metabolism, and excretion, 

(ADME) studies.
173

 

III. Liver Microsomes: They contain all cytochrome P450s, flavin-containing monooxygenases 

(FMOs), and uridine 5'-diphospho-glucuronosyltransferases (UGTs). They are easy to prepare 

and can be stored for long periods (-80ºC), withstand several freeze and thaw cycles and can be 

re-used without significant loss of enzyme activity. The samples can also be pooled e.g. 20 to 

150 liver samples of same or different animal species. They are used for drug half-life 

determination, metabolite profiling, enzyme mapping, reaction phenotyping study, study of drug-

drug interaction, and mechanistic studies.
173

 

IV. Liver S9 fraction: They are post-mitochondrial supernatant fraction which is the mixture of 

microsomes and cytosol. They are same as microsome fractions and contain many enzymes like 

CYPs, FMOs, carboxylesterases, epoxide hydrolase, UGTs, sulfotransferases, 

methyltransferases, acetyltransferases, glutathione S-transferases and other drug metabolism 

enzymes. They have the same advantages as microsomes but P450 activity is four to five-fold 

lower. It contains all enzymes for both phase I and phase II metabolic studies.
173

 

8.1.3. Metabolic stability results 

 

The aim of this metabolic study was primarily to check whether the compounds are stable 

enough for further in vivo studies. Studies were only limited to the time-dependent degradation 

of compounds and possible identification and structural elucidation of resulting metabolites. Four 

http://en.wikipedia.org/wiki/Absorption_(pharmacokinetics)
http://en.wikipedia.org/wiki/Distribution_(pharmacology)
http://en.wikipedia.org/wiki/Metabolism
http://en.wikipedia.org/wiki/Excretion
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inhibitors 150, 149, 74 and 71 along with the standard inhibitors AOPCP and ADP were 

incubated at 37 °C and subsequently analyzed by high performance liquid chromatography 

coupled to electrospray ionization mass spectroscopy (LC-MS). To check the enzymatic activity 

of liver microsomes, a well studied drug, diazepam, was used for comparison as its in-vitro and 

in vivo metabolites are well documented.
171

 Results are presented as percentage of remaining 

compound measured by LC-MS at different time intervals. 

 

Figure 20. Compounds used in the liver microsomal metabolic study 

Incubation with rat liver microsomes showed that the inhibitors were relatively stable towards 

liver enzymes. Only a very small percentage (<10%) of inhibitors was metabolized under the 

applied conditions, while >90% of the compounds were recovered unchanged after incubation 

for 8 hours.  
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Table 20. Percentage remaining of AOPCP and ADP at different time intervals (min) 

Time 

(min) 

% AOPCP % ADP 

0.0 100.00 100.00 100.00 100.00 100.00 100.00 

2.5 100.00 96.11 96.22 31.60 35.78 23.34 

5.0 54.51 44.84 74.10 27.24 23.41 6.67 

7.5 33.21 23.69 34.63 24.00 11.17 1.11 

10.0 22.57 13.89 17.29 1.70 1.67 0.00 

15.0 16.58 9.47 9.83 0.00 1.91 0.00 

30.0 0.00 0.00 0.00 0.00 0.00 0.00 

The studies were validated by using diazepam. Diazepam on incubation with liver microsomes 

initially showed relatively high stability but on incubation for longer times showed many 

metabolities. We were able to elucidate at least three different metabolites. Diazepam (284.1 

g/mol) got metabolized to oxazepam (286.1 g/mol) and also to nordiazepam (270.1 g/mol) and 

temazepam (270.1 g/mol) to a lesser extent. This shows that various cytochrome P450 enzymes 

like CYP2C19 and CYP3A4 (responsible for phase I metabolism of diazepam to oxazepam) are 

present in the liver microsome preparation. But, unfortunately, we could not elucidate any of the 

phase II products for diazepam metabolism.  

Table 191. Percentage remaining of diazepam, 71, 74, 149 and 150 at different time intervals (hour) 

Time (h) % Diazepam % 149 % 150 

0.0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

2.0 94.70 94.77 96.22 100.00 100.00 100.00 100.00 100.00 100.00 

8.0 91.10 91.10 90.00 100.00 100.00 94.80 86.79 90.70 94.01 

30.0 75.00 75.53 78.80 65.83 61.34 67.76 58.92 64.58 62.37 

 

Time (h) % 74 % 71 

0.0 100.00 100.00 100.00 100.00 100.00 100.00 

2.0 100.00 100.00 100.00 100.00 100.00 100.00 

8.0 73.27 66.27 73.85 81.60 77.50 78.30 

30.0 37.42 31.11 38.34 45.32 49.30 46.30 
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For both, ADP and AOPCP, low stability was observed. ADP was stable for 5 min as compared 

to 15 minutes for AOPCP. The low stability of ADP and its more stable analog AOPCP has been 

also documented in various in vivo experiments.
174, 175
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Figure 21. Metabolic stability studies of ADP, AOPCP, diazepam and AOPCP derivatives 71, 74, 149 

and 150 in rat liver microsomes. Results are presented as percentage remaining of compounds measured 

by LC-MS at different time intervals. Data points are from three separate experiments performed in 

duplicate. 

For ADP the metabolic products obtained were adenosine and adenine. For the bisphosphonic 

acids, the corresponding side-product of phosphonic acid ester cleavage at 5′-position was not 

observed. Probably it got further degraded to phosphonic acid. Adenine was only detected in the 

sample which was incubated for a long time, e.g. 2 h incubation. This may be because adenosine 

gets further degraded to adenine. Hydrolysis during the late phase I reactions are catalyzed by 

amidases and esterases. The mode of metabolism was hydrolytic cleavage of the glycosidic bond 

between ribose and adenine. For AOPCP, the metabolites obtained were adenosine, adenine and 

methylenebis(phosphonic acid). Hydrolysis is typical for a phase I reaction for nucleoside- 

derived drugs. 
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Figure 22. Phase 1 metabolic products of ADP, AOPCP and inhibitor 149 after incubation with rat liver 

microsomes 

 

For our inhibitors, the studies were carried under the same conditions. Upon incubation for 5 

hours, only few percentages of compounds were decomposed. So we incubated for longer time 

up to 30 hours. Among the inhibitors, 149 was most stable after incubation for 30 h. Only 34% 

of 149 was metabolized. Under the same conditions about 38% of 150, 53% of 71 and 64% of 74 

was metabolized. Diazepam was metabolized only by 23% after 30 h incubation. The 

metabolites identified from the inhibitors were analyzed as nucleoside, nucleobases and 

methylenebis(phosphonic acid). Since phase II metabolism products were not detected we 

performed more studies by adding an NADPH-regenerating system consisting of nicotinamide 

adenine dinucleotide phosphate  (0.57 mM), nicotinamide adenine dinucleotide (0.57 mM), 

isocitrate (6.4 mM), isocitrate dehydrogenase (0.57 mM), and MgCl2 (23.4 mM) maintained at 

pH 7.2, which will facilitate the conjugation with phase I metabolites.
133

 The half-life of 149 and 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNicotinamide_adenine_dinucleotide_phosphate&ei=WzmVVMDbCYG2OrGngIgK&usg=AFQjCNHjek8LrJvoc7RGm01X8MH-pB80kQ&sig2=Ab89zX_RtKmISH1xKU55pw
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNicotinamide_adenine_dinucleotide_phosphate&ei=WzmVVMDbCYG2OrGngIgK&usg=AFQjCNHjek8LrJvoc7RGm01X8MH-pB80kQ&sig2=Ab89zX_RtKmISH1xKU55pw
http://en.wikipedia.org/wiki/Nicotinamide_adenine_dinucleotide
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74 in the studies with NADPH-regenerating system were found to be approximately 125 min 

(149), and 55 min (74), respectively. As expected NADPH-regenerating system addition favors 

phase II reaction by forward conjugation of sugars (products from the enzymatic activity of 

NADPH regenerating system) to the hydroxyl groups of compounds as well as metabolites. 

There were many metabolites with increased molecular weight by 180 and 192, probably due to 

the addition of glucose and isocitrate to the ribose moiety of metabolites and compounds. 

Table 22. Percentage remaining of 74 and 149 at different time intervals (hour) under incubation with 

liver microsomes after adding NADPH regenerating system 

Time (h) % 74 % 149 

0.0 100.00 100.00 100.00 100.00 100.00 100.00 

0.5 71.83 65.54 73.37 100.00 100.00 100.00 

1.0 52.37 53.56 57.86 86.79 90.70 94.01 

2.0 20.34 25.18 20.17 58.92 64.58 62.37 

3.0 10.01 8.06 2.03 40.83 41.24 46.54 

5.0 0.05 0.00 0.00 20.20 23.18 15.13 

8.0 0.00 0.00 0.00 10.03 12.10 10.50 
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Figure 23. Representative HPLC chromatogram and corresponding MS spectra of compound 149 after 4 

h incubation with rat liver microsomes at 37° C.The peak at the retention time of 8.99 min belongs to 

compound 149 (M= 563.82 g/mol). 
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Figure 24. Representative HPLC chromatogram and corresponding MS spectra of compound 149 

after incubation with rat liver microsomes at 37° C at different time intervals.The peak at the 

retention time of 8.97, 9.02, 9.01, 8.99, and 8.96 min belongs to compound 7 (M= 563.82 g/mol). 
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Figure 25. Representative HPLC chromatogram and corresponding MS spectra of ADP after 

incubation with rat liver microsomes at 37° C at different time intervals. The peak at the 

retention time of 0.83, 0.73, 0.63, 0.62, 0.61 and 0.80 min belongs to compound ADP (M= 

427.20 g/mol). 
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Figure 26. Representative HPLC chromatogram and corresponding MS spectra of AOPCP after 

incubation with rat liver microsomes at 37° C at different time intervals. The peak at the 

retention time of 0.84, 0.99, 0.79, 0.82and 0.84 min belongs to compound AOPCP (M= 425.23 

g/mol). 
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8.2. Plasma stability 

Compounds with certain functional groups can decompose in the bloodstream resulting in high 

clearance and short half-lives. These compounds have poor in vivo pharmacokinetics (PK) and 

disappointing pharmacological performance. Microsomal enzymes are different than plasma 

enzymes so, liver metabolic stability studies will yield different results than those in plasma. 

Instability in plasma should be accounted to eliminate erroneous PK. Pharmaceutical companies 

do not develop drugs that are unstable in plasma except they are prodrugs or antedrugs (soft 

drugs).
176

 Therefore, it is important for researchers to anticipate and assess the plasma stability at 

an early stage. Blood contains a large number of hydrolytic enzymes, such as cholinesterase, 

dehydropeptidase, lipase, aldolase, alkaline and acid phosphatase. The compound with affinity 

for one of these enzymes can be decomposed in the plasma if it has a hydrolyzable group in the 

right position. The compound’s pharmacological activity at the target protein can be modulated 

by replacing and removing the hydrolyzable group.
176

 Hydrolysis in plasma is the major cause of 

compound clearance thereby restricting in vivo pharmacological efficacy. Thus it is important to 

either modify or deprioritize the series with unstable moieties at early discovery stage before 

spending a large amount of effort on activity optimization. The common functional group liable 

to plasma degradation includes ester, carbamate, amide, lactone, lactam, and sulfonamide 

functions. Plasma stability data are important for the succeeding in vivo studies. Typically, 

plasma stability is less in rodents than in humans.
176

 

Substituting a less hydrolyzable group, e.g an amide, for a hydrolyzable group like an ester, 

increasing steric hindrance and removing electron-withdrawing groups are some basic tactics for 

improving plasma stability. Plasma stability data can be used to prioritize compounds for in vivo 
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animal studies by identification of easily liable structural motifs, and subsequently help structural 

modifications.
176

 

8.2.1. Plasma stability results 

The same sets of compounds was taken for the plasma stability studies (ADP, AOPCP, 150, 

149, and 71). Owing to the low stability of 74 in rat liver, it was left out for the plasma stability 

studies. Incubation with human blood showed that ADP was unstable, but the rest of the 

compounds was stable. ADP was degraded in less than 30 min as compared to liver microsomes 

where it got degraded in 5 min. The type of enzymes and their concentrations are different in 

liver and plasma. Plasma contains alkaline and acid phosphatases which are known to hydrolyze 

ADP. AOPCP was more stable than ADP. More than 50 % of AOPCP could be recovered after 

incubation under the same conditions. Inhibitors 150, 149, and 71 were also stable. Among them 

the most stable was 149 of which less than 5% was metabolized under the applied conditions, 

while >95% of the compounds were recovered unchanged after incubation for 5 hours. After 5 

hour incubation the order of stability was 150  71  150  AOPCP.  
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Figure 27. Stability studies of ADP, AOPCP and AOPCP derivatives 149, 150 and 71 in human blood. 

Results are presented as percentage remaining of compounds measured by LC-MS at different time 

interval. Data points are from three separate experiments performed in duplicate. 
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Table 23. Percentage remaining of ADP, AOPCP, diazepam, 71, 149 and 150 at different time intervals 

(min) 

Time 

(min) 

% ADP % AOPCP % 71 

0.0 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

5.0 23.86 83.16 53.51 100.00 100.00 100.00 100.00 100.00 100.00 

10.0 10.98 44.17 27.57 98.58 100.00 100.00 100.00 100.00 100.00 

30.0 2.58 0.60 1.59 90.17 100.00 100.00 89.16 98.88 93.50 

60.0 1.70 0.00 0.00 83.05 88.58 85.58 86.02 95.50 90.34 

120.0 0.00 0.00 0.00 54.90 60.05 61.02 82.70 84.53 83.16 

300.0 0.00 0.00 0.00 50.20 50.00 48.62 74.50 74.54 74.32 

 

Time (min) % 149 % 150 

0.0 100.00 100.00 100.00 100.00 100.00 100.00 

5.0 100.00 100.00 100.00 100.00 100.00 100.00 

10.0 100.00 100.00 100.00 100.00 96.14 98.52 

30.0 100.00 100.00 95.74 87.22 98.47 85.22 

60.0 100.00 100.00 91.86 76.52 79.58 81.32 

120.0 100.00 100.00 89.32 75.51 81.98 77.35 

300.0 100.00 100.00 87.59 70.12 49.51 75.82 

 



IV. Results and discussion 

111 
 

 

Figure 28. Representative HPLC chromatogram and corresponding MS spectra of 149 after incubation 

with human blood at 37° C at different time intervals. The peak 2 belongs to compound 149 (M= 563.82 

g/mol).  
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Figure 29. Representative HPLC chromatogram and corresponding MS spectra of ADP after 

incubation with human blood at 37° C at different time intervals. The peak belongs to compound 

ADP (M= 427.20 g/mol).  
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Figure 30. Representative HPLC chromatogram and corresponding MS spectra of AOPCP after 

incubation with human blood at 37° C at different time intervals. The peak belongs to compound AOPCP 

(M= 425.23 g/mol). 
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V. Experimental 

9. Chemical synthesis 

9.1. General remarks 

All reagents were commercially obtained from various producers (Acros, Aldrich, Fluka, Merck, 

and Sigma) and used without further purification. The purity of all compounds including starting 

material was more than 95%. Commercial solvents of specific reagent grades were used, without 

additional purification or drying. The reactions were monitored by thin layer chromatography 

(TLC) using aluminum sheets with silica gel 60 F254 (Merck) using dichloromethane : methanol 

(9:1, 5:1, or 3:1) and n-butanol: acetic acid: water (2:1:1) as the mobile phase. Column 

chromatography was carried out with silica gel 0.060-0.200 mm, pore diameter ca. 6 nm. Mass 

spectra were recorded on an API 2000 (Applied Biosystems, Darmstadt, Germany) mass 

spectrometer (turbo ion spray ion source) coupled with a Waters HPLC system (Agilent 1100) 

using a Phenomenex Luna 3μ C18 column. The LC/MS samples were prepared by dissolving 1 

mg/mL of compound in H2O : MeOH (1:1) containing 2 mM ammonium acetate. A sample of 10 

μL was injected into an HPLC instrument and elution was performed with a gradient of water: 

methanol (containing 2 mM ammonium acetate) from 90:10 to 0:100 for 20 min at a flow rate of 

250 μL/ min. UV absorption was detected from 190 to 400 nm using a diode array detector. 
1
H, 

31
P, and 

13
C NMR spectra were performed on a Bruker Avance 500 MHz spectrometer and 

Bruker Avance 600 MHz spectrometer. DMSO-d6, MeOD-d4, or D2O were used as solvents. 
31

P-

NMR spectra were recorded at room temperature; orthophosphoric acid (85%) was used as an 

external standard. Shifts are given in ppm relative to the external standard (in 
31

P-NMR) or 

relative to the remaining protons of the deuterated solvents used as internal standard (
1
H-, 

13
C-
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NMR). Melting points were determined on a Buchi 530 melting point apparatus and are 

uncorrected. For the microwave reactions, a CEM focused microwave synthesis, Discover 

apparatus was used. For lyophilization, a freeze dryer (CHRIST ALPHA 1-4 LSC) was used. For 

HPLC purification (Knauer Smartline 1050 HPLC system) was used. For ion exchange 

chromatography FPLC instrument from Amersham Biosciences was used. 

9.2. Preparation of triethylammonium hydrogen carbonate buffer (TEAC) 

 A 1 M solution of TEAC was prepared by adding dry ice slowly to 1 M triethylamine solution in 

water for several hours till the pH of approximately 7.4-7.6 was indicated in pH-meter. 

9.3. Ion Exchange Chromatography 

The crude nucleoside-5′-O-[(phosphonomethyl)phosphonic acid] derivatives were purified by 

ion exchange chromatography on an FPLC instrument (AKTA FPLC, from Amersham 

Biosciences) with an XK 26 mm X 20 cm length column (Pharmacia). The column was packed 

with Sephadex DEAE A-25 gel, HCO3
-
 form, swelled in a 1 M solution of TEAC at 4 °C for 48 

h. Before running purification the column was washed and equilibrated with deionized water. 

The sample was prepared by dissolving crude product in 5 mL of aqueous triethylammonium 

hydrogen carbonate buffer. Separation was achieved by running a solvent gradient of 0-900 mM 

TEAC buffer using approximately 3000 mL of solvent to elute the bis-phosphonic acids 

derivatives. The UV absorption was detected at 254 nm. Fractions were collected and 

appropriate fractions pooled, diluted in water, and lyophilized. 
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9.4. Preparative HPLC  

 Lyophilized nucleoside-5′-O-[(phosphonomethyl)phosphonic acid]s were dissolved in 5 mL of 

deionized water and injected into an RP-HPLC column (Knauer 20 mm i.d., Eurospher-100 

C18). The column was eluted with a solvent gradient of 0- 65% of acetonitrile in 50 mM aqueous 

NH4HCO3 buffer for 40 min at a flow rate of 10 mL/min. The UV absorption was detected at 

254 nm. Fractions were collected and appropriate fractions pooled, diluted with water, and 

lyophilized several times to remove the NH4HCO3 buffer, yielding the nucleotides as white 

powders. 

10.1. 2′,3′,5′-Tri-O-acetylinosine (26) 

 

A solution of inosine (25, 10.0 g) and acetic anhydride (12.97 g) was suspended in 50 mL 

pyridine and was refluxed at 60 
o
C for 3 h until the solution become clear. After that 25 mL of 

methanol was added and stirred for 1 h to quench the unreacted acetic anhydride. Then the 

solution was evaporated in vacuo to get white oil which was dissolved in 100 mL of water. The 

aqueous layer was extracted with DCM (2 x 100 mL). The combined organic layers were washed 

with 2M HCl (2 x 50 mL) and brine (2 x 50 mL), dried, and evaporated. The resulting residue 

was triturated with ethanol to get a white precipitation which was filtered off to yield the crude 

product as a white solid.  
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Yield: 13.70 g (93%). 

Melting Point (
o
C): 219-221 [literature, 238-243].

128, 153 

1
H NMR (500 MHz, DMSO-d6): δ 8.29 (s, 1H, C8-H), 8.08 (s, 1H, C2-H), 6.14 – 6.17 (m, 1H, 

C1′-H), 5.87 – 5.89 (m, 1H, C3′-H), 5.51 – 5.53 (m, 1H, C2′-H), 4.38 (t, 1H, C4′-H), 4.21 – 4.25 

(m, 2H, C5′-H2), 2.10 (s, 3H, OCOCH3), 2.03 (s, 3H, OCOCH3), 2.01 (s, 3H, OCOCH3). 

13
C NMR (125 MHz, DMSO-d6): δ 169.35, 169.65, 170.17, (3s, 3C, OCOCH3), 153.45 (1C, 

C6), 160.00 (1C, C2), 143.93 (1C, C4), 142.22 (1C, C8), 130.90 (1C, C5), 86.57 (1C, C1′), 80.81 

(1C, C4′), 73.28 (1C, C3′), 70.52 (1C, C2′), 62.66 (1C, C5′), 20.35, 20.59, 20.70 (3C, CH3-CO). 

LC/ESI-MS: negative mode 393 ([M - H]
-
), positive mode 395 ([M + H]

+
).  

10.2. 6-Chloro-2′,3′,5′-tri-O-acetylinosine (27) 

 

A suspension of 26 (2.45 g), N,N-dimethylaniline (0.83 mL), and phosphorus oxychloride (12.2 

mL) was stirred at room temperature for 7 min under an atmosphere of argon. The flask was 

heated in a preheated oil bath at 100 
o
C for 13 min. After completion of reaction, the solution 

was evaporated, and the resulting oil was stirred in DCM (20 mL) and ice (20 mL). The aqueous 

layer was extracted with DCM (2 x 25 mL). The combined organic layers were washed with 2M 

HCl (4 x 20 mL) and brine (2 x 20 mL), dried with Na2SO4, and evaporated to yield 2.0 g of 

green oil. Purification using silica chromatography (1:10 MeOH/DCM) yielded the title 

compound 27 as a pale green solid. 

Yield: 2.0 g (77%). 
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Melting Point (
o
C): 145-146 [literature, 122-123].

128 

1
H NMR (500 MHz, DMSO-d6): δ 8.88 (s, 1H, C8-H), 8.83 (s, 1H, C2-H), 6.35 – 6.36 (m, 1H, 

C1′-H), 5.98 – 6.01 (m, 1H, C3′-H), 5.62 – 5.65 (m, 1H, C2′-H), 4.38 (t, 1H, C4′-H), 4.22 – 4.25 

(m, 2H, C5′-H2), 2.11(s, 3H, OCOCH3), 2.03 (s, 3H, OCOCH3), 1.99 (s, 3H, OCOCH3). 

13
C NMR (125 MHz, DMSO-d6): δ 169.35, 169.6, 170.17 (3C, OCOCH3), 152.00 (1C, C2), 

151.45 (1C, C6), 149.96 (1C, C4), 146.42 (1C, C8), 131.70 (1C, C5), 86.55 (1C, C1′), 79.88 (1C, 

C4′), 72.23 (1C, C3′), 70.54 (1C, C2′), 62.61 (1C, C5′), 20.39 – 20.51 (3C, CH3CO).  

LC/ESI-MS: negative mode 411 ([M - H]
-
), positive mode 413 ([M + H]

+
).  

10.3. 6-Chloropurine riboside (28) 

 

Compound 27 (2.0 g) was dissolve in 5 mL of methanol. To that, 20 mL of 7 N NH3 in methanol 

was added while stirring at 0 
o
C. It was further stirred 3 h at 0 

o
C followed by stirring at rt for 16 

h. Resulting precipitate was collected. The precipitate was washed with 2 M HCl (4 x 20 mL), 

brine (2 x 20 mL), and water (2 x 20 mL) and dried. Purification using silica chromatography 

(1:10 MeOH/DCM) yielded the title compound 28. 

Yield: 1.2 g (87%). 

Melting Point (
o
C): 158-160 [literature, 161-163].

144,
 
177 

1
H NMR (500 MHz, DMSO-d6): δ 8.96 (s, 1H, C8-H), 8.83 (s, 1H, C2-H), 6.03 (d, 1H, J = 5.1 

Hz, C1′-H), 5.51 (d, 1H, J = 5.5 Hz, C2′-H), 5.30 (d, 1H, J = 5.4 Hz, C3′-H), 5.13 (t, 1H, J = 5.3 
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Hz, C4′-H), 4.57 (m, 1H, C5′-H), 4.22 (m, 1H, C5′-H), 4.12 (m, 1H, C5′-OH), 3.4 – 3.7 (m, 2H, 

C2′-OH and C3′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 152.93 (1C, C2), 151.41 (1C, C4), 143.26 (1C, C6), 142.84 

(1C, C8), 133.52 (1C, C5), 87.31 (1C, C1′), 86.87 (1C, C4′), 73.52 (1C, C2′), 71.26 (1C, C3′), 

62.08 (1C, C5′). 

LC/ESI-MS: negative mode 285 ([M - H]
-
), positive mode 287 ([M + H]

+
).  

11.1 General procedure for the synthesis of N
6
-substituted-purine ribosides (29, 30, 33-48) 

A mixture of 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg, 1.74 mmol), and (1.76 mmol) 

of amine, (1.6 mmol) of Et3N and 25 mL of ethanol was refluxed at 60 
o
C for 18 h. After 

completion of reaction it was evaporated under high vacuo. Purification using silica 

chromatography and precipitation using acetone (1:8 MeOH/DCM) yielded the title compound.  

11.2. Procedure for the synthesis of N
6
-substituted-purine ribosides (31-32) 

A mixture of 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg, 1.74 mmol), and diethylamine 

hydrochloride (191 mg, 1.76 mmol), or dimethylamine hydrochloride (144 mg, 1.76 mmol) was 

stirred vigorously in dimethylformamide (DMF) at 0 
o
C for 30 min. Triethylamine (1.6 mmol, 

162 mg), was added and it was stirred at 0 
o
C for 2 h followed by stirring at rt for 16 h. 

Triethylamine hydrochloride formed was filtered off, and was washed with cold DMF. DMF was 

evaporated in vacuo. Purification using silica chromatography (1:8 MeOH/DCM) yielded the 

title compound 31-32 in the form of brown oil. Precipation using acetone and recrystallization in 

methanol yield 31-32 as solid. 
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11.3. N
6
-Methylpurine riboside (29) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

120 mg of methylamine, and was isolated as a white solid. 

Yield: 420 mg (95%). 

Melting Point (
o
C): 169-171 [literature, 172].

178 

1
H NMR (500 MHz, D2O-d6): δ 8.65 (s, 1H, C8-H), 8.43 (s, 1H, C2-H), 6.45 (bs, 1H, NH), 6.17 

– 6.18 (m, 1H, C1′-H), 4.70 – 4.72 (m, 1H, C2′-H), 4.54 – 4.56 (m, 1H, C3′-H), 4.40 – 4.41 (m, 

1H, C4′-H), 4.30 (bs, H, C5′-OH), 4.18 – 4.20 (m, 2H, C5′-H2), 3.85 – 3.87 (m, 2H, C2′-OH and 

C3′-OH), 1.29 (s, 3H, CH3). 

13
C NMR (125 MHz, D2O-d6): δ 158.53 (1C, C1), 153.41 (1C, C2), 149.82 (1C, C4), 142.24 

(1C, C8), 120.26 (1C, C5), 93.32 (1C, C1′), 86.31 (1C, C4′), 72.87 (1C, C2′), 71.34 (1C, C3′), 

62.82 (1C, C5′), 41.65 (1C, CH3). 

LC/ESI-MS: negative mode 280 ([M - H]
-
), positive mode 282 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 100%. 
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11.4. N
6
-Ethylpurine riboside (30)

 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

159 mg of ethylamine, and was isolated as a white solid. 

Yield: 390 mg (93%). 

Melting Point (
o
C): 189-191 [literature, 191-192]

178 

1
H NMR (500 MHz, DMSO-d6): δ 8.64 (s, 1H, C8-H), 8.42 (s, 1H, C2-H), 6.45 (m, 1H, NH), 

6.17 – 6.18 (m, 1H, C1′-H), 4.68 – 4.70 (m, 1H, C2′-H), 4.53 – 4.56 (m, 1H, C3′-H), 4.14 (s, 1H, 

C4′-H), 4.21 – 4.22 (m, 2H, C5′-H2), 4.05 (bs, H, C5′-OH), 3.83 – 3.85 (m, 2H, C2′-OH and C3′-

OH), 3.61 –  3.63 (m, 2H, CH2), 1.36 – 1.38 (m, 3H, CH3).  

13
C NMR (125 MHz, DMSO-d6): δ 159.38 (1C, C6), 153.21 (1C, C2), 150.36 (1C, C4), 141.23 

(1C, C8), 115.69 (1C, C5), 98.19 (1C, C1′), 88.21 (1C, C4′), 73.96 (1C, C2′), 71.53 (1C, C3′), 

62.47 (1C, C5′), 37.85 (1C, CH2), 17.89 (1C, CH3). 

LC/ESI-MS: negative mode 294 ([M - H]
-
), positive mode 296 ([M + H]

+
) .  

HPLC-UV (254 nm)-ESI-MS: 98.7%. 
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11.5. N
6
-Dimethylpurine riboside (31)

 

 

Yield: 390 mg (97%). 

Melting Point (
o
C): 182-183 [literature, 183-184]

179 

1
H NMR (500 MHz, D2O-d6): δ 8.40 (s, 1H, C8-H), 8.20 (s, 1H, C2-H), 5.94 – 5.93 (m, 1H, 

C1′-H), 4.25 – 4.22 (m, 1H, C2′-H), 4.01 – 4.03 (m, 1H, C3′-H), 4.05 (bs, H, C5′-OH), 3.92 (s, 

1H, C4′-H), 3.85 – 3.83 (m, 2H, C2′-OH and C3′-OH), 3.45 – 3.44 (m, 2H, C5′-H2), 2.90 – 3.18 

(m, 2H, CH2),  1.88 – 1.91 (m, 6H, 2xCH3).  

13
C NMR (125 MHz, D2O-d6): δ 154.38 (1C, C5), 152.05 (1C, C2), 150.54 (1C, C4), 138.13 

(1C, C8), 119.42 (1C, C6), 97.39 (1C, C1′), 86.91 (1C, C4′), 83.84 (1C, C2′), 74.27 (1C, C3′), 

67.31 (1C, C4′), 45.59 (2C, CH3). 

LC/ESI-MS: negative mode 294 ([M - H]
-
), positive mode 296 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 99.0%. 

11.6. N
6
-Diethylpurine riboside (32) 
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Yield: 320 mg (70%). 

Melting Point (
o
C): 178-180

 

1
H NMR (600 MHz, DMSO-d6): δ 8.34 (s, 1H, C8-H), 8.19 (s, 1H, C2-H), 5.89 (d, J = 6.0 Hz, 

1H, C1′-H), 5.40 (d, J = 6.2 Hz, 1H, C2′-H), 5.34 (dd, J = 7.0, 4.5 Hz, 1H, C3′-H), 5.13 (d, J = 

4.7 Hz, 1H, C4′-H), 4.58 (td, J = 6.1, 4.9 Hz, 1H, C5′-H), 4.14 (td, J = 4.9, 3.2 Hz, 1H, C5′-H), 

3.95 (q, J = 3.5 Hz, 1H, C5′-OH), 3.66 (q, J = 12.0, 4.5, 3.6 Hz, 1H, C3′-OH), 3.54 (q, J = 12.1, 

7.0, 3.6 Hz, 1H, C2′-OH), 3.29 (s, 4H, 2xCH2), 1.19 (t, J = 7.0 Hz, 6H, 2xCH3). 

13
C NMR (126 MHz, DMSO-d6): δ 153.28 (1C, C5), 151.95 (1C, C6), 150.06 (1C, C2), 138.96 

(1C, C4), 119.48 (1C, C8), 87.96 (1C, C1′), 85.92 (1C, C4′), 73.58 (1C, C2′), 70.71 (1C, C3′), 

61.74 (1C, C5′), 42.55 (2C, CH2), 13.59 (2C, CH3). 

LC-MS (m/z): negative mode 322 [M-H]
-
, positive mode 324 [M+H]

+
.  

HPLC-UV (254 nm)-ESI-MS: 100%. 

11.7. N
6
-Ethyl-N

6
-methyl-purine riboside (33) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

(123 mg, 2.08 mmol) of N-ethylmethylamine, and was isolated as a white solid. 

Yield: 533 mg (98%). 

Melting Point (
o
C): 159-160
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1
H NMR (500 MHz, DMSO-d6): δ 8.34 (s, 1H, C8-H), 8.22 (s, 1H, C2-H), 6.13 (d, J = 3.0 Hz, 

1H, C1′-H), 5.32 (dd, J = 6.2, 3.1 Hz, 1H, C2′-H), 5.18 (dd, J = 5.9, 5.1 Hz, 1H, C3′-H), 4.95 

(dd, J = 6.2, 2.5 Hz, 1H, C4′-H), 4.21 (dt, J = 4.9, 2.4 Hz, 2H, C5′-H2), 4.07 – 4.05 (m, 3H, 

CH3), 3.51 – 3.60 (m, 2H, CH2CH3), 1.54 (m, 3H, CH2CH3). 

13
C NMR (126 MHz, DMSO-d6): δ 153.80 (1C, C5), 152.13 (1C, C6), 149.75 (1C, C2), 138.66 

(1C, C4), 119.49 (1C, C8), 89.78 (1C, C1′), 86.57 (1C, C4′), 83.45 (1C, C2′), 81.50 (1C, C3′), 

61.73 (1C, C5′), 27.22 (1C, CH2), 25.35 (2C, CH3).  

LC-MS (m/z): negative mode 308 [M-H]
-
, positive mode 310 [M+H]

+
.  

HPLC-UV (254 nm)-ESI-MS: 100%. 

11.8. N
6
-Phenylpurine riboside (34) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

328 mg of aniline, and was isolated as a white solid. 

Yield: 533 mg (95%). 

Melting Point (
o
C): 186-187 [literature, 186-187].

180 

1
H NMR (500 MHz, DMSO-d6): δ 8.55 (s, 1H, C8-H), 8.24 (s, 1H, C2-H), 7.44 – 7.48 (m, 2H, 

Ph), 7.39 – 7.42 (m, 2H, Ph), 7.23 – 7.26 (m, 1H, Ph), 6.12 – 6.15 (m, H, NH), 6.11 – 6.12 (m, 
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1H, C1′-H), 4.56 (s, 1H, C2′-H), 4.53 – 4.54 (m, 1H, C3′-H), 4.48 (bs, H, C5′-OH), 4.38 – 4.39 

(m, 1H, C4′-H), 4.16 – 4.18 (m, 2H, C5′-H2), 3.78 – 3.82 (m, 2H, C2′-OH and C3′-OH).  

13
C NMR (125 MHz, DMSO-d6): δ 152.46 (1C, C2), 150.34 (1C, C4), 145.71 (1C, C6), 141.69 

(1C, C8), 130.82 (2C, Ph), 128.91 (1C, Ph), 124.67 (1C, Ph), 120.43 (1C, C5), 118.65 (2C, Ph), 

99.56 (1C, C1′), 88.32 (1C, C4′), 72.63 (1C, C2′), 70.72 (1C, C3′), 61.81 (1C, C5′).  

LC/ESI-MS: negative mode 342 ([M - H]
-
), positive mode 344 ([M + H]

+
). 

HPLC-UV (254 nm)-ESI-MS: 100%. 

11.9. N
6
-Benzylpurine riboside (35)  

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

378 mg of benzylamine, and was isolated as a white solid. 

Yield: 533 mg (95%). 

Melting Point (
o
C): 177-178 [literature, 177-179].

178-180 

1
H NMR (500 MHz, D2O-d6): δ 8.48 (s, 1H, C8-H), 8.18 (s, 1H, C2-H), 7.28 – 7.38 (m, 5H, Ar-

H), 6.66 (bs, 1H, NH), 6.09 – 6.10 (m, 1H, C1′-H), 4.81 (s, 1H, C2′-H), 4.70 – 4.72 (m, 2H, CH2-

Ar), 4.64 (bs, H, C5′-OH), 4.52 – 4.53 (m, 1H, C3′-H), 4.36 – 4.37 (m, 1H, C4′-H), 4.15 – 4.16 

(m, 2H, CH5′-H2), 4.03 – 4.05 (m, 2H, 2′-OH and 3′-OH).  

13
C NMR (125 MHz, D2O-d6): δ 159.44 (1C, C6), 153.45 (1C, C2), 149.38 (1C, C4), 145.21 

(1C, C8), 145.26 (1C, Ar), 128.53 (2C, Ar), 127.67 (2C, Ar), 126.32 (1C, Ar), 120.45 (1C, C5), 
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98.41 (1C, C1′), 88.42 (1C, C4′), 75.04 (1C, C2′), 71.31 (1C, C3′), 65.66 (1C, C5′), 42.81 (1C, 

CH2-Ar). 

LC/ESI-MS: negative mode 356 ([M - H]
-
), positive mode 358 ([M + H]

+
). 

HPLC-UV (254 nm)-ESI-MS: 100%. 

11.10. N
6
-(2-Phenylethyl)purine riboside (36) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

251 mg of 2-phenylethylamine, and was isolated as a  white solid.
 

Yield: 597 mg (91%). 

Melting Point (
o
C):170-171 [literature, 167-168].

181 

1
H NMR (500 MHz, DMSO-d6): δ 8.33 (s, 1H, C8-H), 8.22 (s, 1H, C2-H), 7.33 – 7.23 (m, 5H, 

Ar-H), 7.21 – 7.13 (m, 1H, NH), 5.88 (d, J = 6.1 Hz, 1H, C1′-H), 5.43 – 5.34 (m, 2H, CH2-CH2-

Ar), 5.13 (d, J = 4.6 Hz, 1H, C2′-H), 4.60 (td, J = 6.2, 4.9 Hz, 1H, C3′-H), 4.14 (td, J = 4.8, 3.0 

Hz, 1H, C4′-H), 3.96 (q, J = 3.5 Hz, 1H, C5′-H), 3.77 – 3.68 (m, 1H, 5′-OH), 3.66 (dd, J = 4.5, 

3.6 Hz, 1H, C5′-H), 3.55 (q, J = 12.1, 7.3, 3.7 Hz, 1H, C3′-OH), 3.16 (d, J = 5.2 Hz, 1H, C2′-

OH), 2.94 – 2.89 (m, 2H, CH2-CH2-Ar). 

13
C NMR (126 MHz, DMSO-d6): δ 154.70 (1C, C6), 152.51 (1C, C2), 148.43 (1C, C4), 139.74 

(1C, C8), 138.50 (1C, Ar), 128.61 (2C, Ar), 127.70 (2C, Ar), 126.16 (1C, Ar), 119.90 (1C, C5), 

88.06 (1C, C1′), 86.02 (1C, C4′), 73.62 (1C, C2′), 70.78 (1C, C3′), 61.80 (1C, C5′), 41.40 (1C, 

CH2-CH2), 35.12 (1C, CH2-Ar). 
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LC-MS (m/z): negative mode 370 [M-H]
-
, positive mode 372 [M+H]

+
. 

HPLC-UV (254 nm)-ESI-MS: 100%. 

11.11. N
6
-Benzyl-N

6
-methyl-purine riboside (37) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

426 mg of N-benzylmethylamine, and was isolated as a white solid. 

Yield: 597 mg (90%). 

Melting Point (
o
C): 207-208

 

1
H NMR (500 MHz, DMSO-d6): δ 8.45 (s, 1H, C8-H), 8.24 (s, 1H, C2-H), 7.36 – 7.37 (m, 5H, 

Ar-H), 6.14 – 6.15 (m, 1H, C1′-H), 5.26 – 5.28 (m, 2H, CH2), 4.87 (bs, H, C5′-OH), 4.74 – 4.76 

(m, 1H, C2′-H), 4.56 – 5.58 (m, 1H, C3′-H), 4.53 – 4.56 (m, 1H, C4′-H), 4.12 – 4.14 (m, 2H, 

C5′-H2), 3.45 – 3.47 (m, 2H, C2′-OH and C3′-OH), 3.36 – 3.38 (m, 3H, CH3).   

13
C NMR (125 MHz, DMSO-d6): δ 159.62 (1C, C5), 154.84 (1C, C6), 152.71 (1C, C2), 150.16 

(1C, C4), 140.36 (1C, C8), 138.72 (1C, Ar), 129.43 (2C, Ar), 125.47 (2C, Ar), 120.61 (1C, Ar), 

98.12 (1C, C1′), 88.33 (1C, C4′), 74.61 (1C, C2′), 71.34 (1C, C3′), 62.52 (1C, C5′), 43.47 (1C, 

CH3). 
 

LC/ESI-MS: negative mode 356 ([M - H]
-
), positive mode 358 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 98.5%. 
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11.12. N
6
-Benzyl-N

6
-ethyl-purine riboside (38) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

281 mg of N-ethylbenzylamine, and was isolated as a white solid. 

Yield: 559 mg (82%). 

Melting Point (
o
C): 224-225

 

1
H NMR (500 MHz, DMSO-d6): δ 8.38 (s, 1H, C8-H), 8.24 (s, 1H, C2-H), 7.35 – 7.20 (m, 5H, 

Ar), 5.92 (d, J = 6.0 Hz, 1H, C1′-H), 5.41 (d, J = 6.2 Hz, 1H, C2′-H), 5.29 (t, J = 6.9, 4.6 Hz, 1H, 

C3′-H), 5.14 (d, J = 4.8 Hz, 1H, C4′-H), 4.60 (td, J = 6.1, 5.0 Hz, 1H, C5′-H), 4.15 (td, J = 4.9, 

3.2 Hz, 1H, C5′-H), 3.96 (q, J = 3.6 Hz, 1H, C5′-OH), 3.67 (q, J = 12.0, 4.7, 3.7 Hz, 1H, C3′-

OH), 3.55 (q, J = 12.0, 6.9, 3.7 Hz, 1H, C2′-OH), 3.12 – 3.10 (m, 2H, CH2-CH3) 1.15 (s, 3H, 

CH2-CH3).  

13
C NMR (126 MHz, DMSO-d6): δ 153.83 (1C, C5), 152.01 (1C, C6), 150.34 (1C, C2), 139.14 

(1C, C4), 138.65 (1C, C8), 138.55 (1C, Ar), 127.43 (2C, Ar), 127.10 (2C, Ar), 119.47 (1C, Ar), 

87.91 (1C, C1′), 85.92 (1C, C4′), 73.60 (1C, C2′), 70.69 (1C, C3′), 61.70 (1C, C5′), 50.63 (1C, 

CH2-Ar), 41.58 (1C, CH3-CH2), 13.07 (1C, CH3-CH2).  

LC-MS (m/z): negative mode 384 [M-H], positive mode 386 [M+H]
+
. 

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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11.13. N
6
-Dibenzylpurine riboside (39) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

410 mg of dibenzylamine, and was isolated as a white solid. 

Yield: 603 mg (77%). 

Melting Point (
o
C): 260 (slow decomp.)

 

1
H NMR (500 MHz, DMSO-d6): δ 8.41 (s, 1H, C8-H), 8.30 (s, 1H, C2-H), 7.36 – 7.18 (m, 10H, 

Ar-H), 5.95 (d, J = 6.0 Hz, 1H, C1′-H), 5.43 (d, J = 6.2 Hz, 1H, C2′-H), 5.24 (dd, J = 6.7, 4.7 Hz, 

1H, C3′-H), 5.16 (d, J = 4.8 Hz, 1H, C4′-H), 4.91 (s, 4H, 2xCH2), 4.62 (td, J = 6.1, 4.9 Hz, 1H, 

C5′-H), 4.16 (td, J = 4.9, 3.2 Hz, 1H, C5′-H), 3.97 (q, J = 3.6 Hz, 1H, C5′-OH ), 3.71 – 3.62 (m, 

1H, C3′-OH), 3.55 (q, J = 12.1, 6.8, 3.8 Hz, 1H, C2′-OH). 

13
C NMR (126 MHz, DMSO-d6): δ 154.37 (1C, C5), 152.07 (1C, C6), 150.64 (1C, C2), 148.26 

(1C, C4), 139.34 (1C, C8), 137.92 (2C, Ar), 128.67 (4C, Ar), 128.34 (4C, Ar), 127.36 (1C, Ar), 

119.49 (1C, Ar), 87.90 (1C, C1′), 85.96 (1C, C4′), 73.63 (1C, C2′), 70.69 (1C, C3′), 61.69 (1C, 

C5′), 52.25 (2C, CH2-Ar).  

LC-MS (m/z): negative mode 446 [M-H]
-
, positive mode 448 [M+H]

+
. 

Purity by HPLC-UV (254 nm)-ESI-MS: 99.2%. 
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11.14. N
6
-(4-Aminobenzyl)purine riboside (40) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

294 mg of 4-aminobenzylamine, and was isolated as a yellow solid powder. 

Yield: 509 mg (78%). 

Melting Point (
o
C):188-189

 

1
H NMR (500 MHz, DMSO-d6): δ 8.33 (s, 1H, C8-H), 8.19 (s, 1H, C2-H), 8.13 (s, 1H, NH), 

7.09 – 6.95 (m, 2H, Ar-H), 6.52 – 6.42 (m, 2H, Ar-H), 5.87 (d, J = 6.1 Hz, 1H, C1′-H), 5.42 – 

5.33 (m, 2H, CH2-Ar), 5.13 (d, J = 4.2 Hz, 1H, C2′-H), 4.87 (s, 2H, Ar-NH2), 4.60 (q, J = 5.6 Hz, 

1H, C3′-H), 4.52 (m, 2H, C5′-H2), 4.17 – 4.11 (m, 1H, C4′-H), 3.96 (q, J = 3.4 Hz, 1H, C5′-OH), 

3.67 (dt, J = 12.1, 4.0 Hz, 1H, C3′-OH), 3.54 (q, J = 12.2, 7.2, 3.6 Hz, 1H, C2′-OH).  

13
C NMR (126 MHz, DMSO-d6): δ 154.87 (1C, C6), 152.46 (1C, C2), 147.53 (1C, C4), 146.40 

(1C, Ar), 139.83 (1C, C8), 128.36 (1C, Ar), 127.05 (2C, Ar), 120.87 (1C, C5), 113.80 (2C, Ar), 

88.12 (1C, C1′), 86.03 (1C, C4′), 73.61 (1C, C2′), 70.79 (1C, C3′), 61.82 (1C, C5′), 40.92 (1C, 

CH2-Ar). 

LC-MS (m/z): negative mode 371 [M-H]
-
, positive mode 373 [M+H]

+
.  

HPLC-UV (254 nm)-ESI-MS: 100%. 
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11.15. N
6
-(4-Chlorobenzyl)-purine riboside (41) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

490 mg of 4-chlorobenzylamine, and was isolated as a white solid. 

Yield: 509 mg (95%). 

Melting Point (
o
C): 185-186 [literature, 181-182].

130,
 
178-180 

1
H NMR (500 MHz, DMSO-d6): δ 8.51 (s, 1H, C8-H), 8.21 (s, 1H, C2-H), 7.29 – 7.32 (m, 4H, 

Ar-H), 6.42 (bs, 1H, NH), 6.10 – 6.11 (m, 1H, C1′-H), 4.82 – 4.84 (m, 2H, CH2-Ar), 4.75 (m, 1H, 

C2′-H), 4.58 (bs, 1H, C5′-OH), 4.53 – 4.54 (m, 1H, C3′-H), 4.37 – 4.38 (m, 1H, C4′-H), 4.17 – 

4.18 (m, 2H, C5′-H2), 3.24 – 3.26 (m, 2H, C2′-OH and C3′-OH).   

13
C NMR (125 MHz, DMSO-d6): δ 160.12 (1C, C6), 152.63 (1C, C2), 149.71 (1C, C4), 141.57 

(1C, C8), 138.44 (1C, Ar), 131.28 (2C, Ar), 126.89 (2C, Ar), 124.21 (1C, Ar), 117.31 (1C, C5), 

93.72 (1C, C1′), 81.71 (1C, C4′), 74.26 (1C, C2′), 72.87 (1C, C3′), 62.82 (1C, C5′), 42.91 (1C, 

CH2-Ar). 

LC/ESI-MS: negative mode 390 ([M - H]
-
), positive mode 392 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 98.5%. 
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11.16. N
6
-(3-Chlorobenzyl)-purine riboside (42) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

490 mg of 3-chlorobenzylamine, and was isolated as a white solid. 

Yield: 510 mg (95%). 

Melting Point (
o
C): 164-166 [literature, 164-165].

130 

1
H NMR (500 MHz, DMSO-d6): δ 8.38 (s, 1H, C8-H), 8.20 (s, 1H, C2-H), 7.35 – 7.25 (m, 5H, 

Ar), 5.89 (d, J = 6.1 Hz, 1H, C1′-H), 5.40 – 5.38 (m, 1H, C2′-H), 5.31 – 5.27 (m, 1H, C3′-H), 

5.14 – 5.10 (m, 1H, C4′-H), 4.75 – 4.67 (m, 2H, -CH2-Ar), 4.64 – 4.52 (m, 1H, C5′-H), 4.15 (t, J 

= 5.0, 3.1 Hz, 1H, C5′-H), 3.96 (q, J = 3.5 Hz, 1H, C5′-OH), 3.67 (t, J = 12.0, 3.8 Hz, 1H, C3′-

OH), 3.55 (t, J = 11.9, 3.6 Hz, 1H, C2′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 161.33 (1C, C6), 154.50 (1C, C2), 152.45 (1C, C4), 146.72 

(1C, C8), 142.81 (1C, Ar), 140.17 (2C, Ar), 133.00 (2C, Ar), 130.25 (1C, Ar), 126.22 (1C, C5), 

88.08 (1C, C1′), 86.00 (1C, C4′), 73.64 (1C, C2′), 70.74 (1C, C3′), 61.76 (1C, C5′), 45.04 (1C, -

CH2-Ar). 

LC/ESI-MS: negative mode 390 ([M - H]
-
), positive mode 392 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 100%. 

 

 



V. Experimentation 

133 
 

11.17. N
6
-(2-Chlorobenzyl)-purine riboside (43) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

490 mg of 2-chlorobenzylamine, and was isolated as a white solid. 

Yield: 509 mg (95%). 

Melting Point (
o
C): 182-183 [literature, 183-184].

130 

1
H NMR (500 MHz, DMSO-d6): δ 8.42 (s, 1H, C8-H), 8.18 (s, 1H, C2-H), 7.59 – 7.50 (bs, 1H, 

NH), 7.46 – 7.36 (m, 2H, Ar), 7.29 – 7.18 (m, 3H, Ar), 5.90 (d, J = 6.0 Hz, 1H, C1′-H), 5.42 (s, 

1H, C2′-H), 5.32 (s, 2H, -CH2-Ar), 5.16 (s, 1H, C3′-H), 4.81 – 4.73 (m, 2H, C5′-H2), 4.61 (d, J = 

6.3 Hz, 1H, C4′-H), 3.96 (q, J = 3.5 Hz, 1H, C5′-OH), 3.66 (dd, J = 12.1, 3.8 Hz, 1H, C3′-OH), 

3.56 – 3.42 (m, 1H, C2′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 154.66 (1C, C6), 152.50 (1C, C2), 148.76 (1C, C4), 140.29 

(1C, Ar), 136.77 (1C, C8), 131.86 (1C, Ar), 130.76 (1C, Ar), 129.21 (1C, Ar), 128.45 (1C, Ar), 

127.25 (1C, Ar), 120.03 (1C, C5), 88.07 (1C, C1′), 86.05 (1C, C4′), 73.64 (1C, C2′), 70.78 (1C, 

C3′), 61.79 (1C, C5′), 41.17 (1C, -CH2-Ar). 

LC/ESI-MS: negative mode 390 ([M - H]
-
), positive mode 392 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 97.2%. 
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11.18. N
6
-(4-Hydroxybenzyl)-purine riboside (44) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

432 mg of 4-hydroxybenzylamine, and was isolated as a white solid. 

Yield: 509 mg (95%). 

Melting Point (
o
C): 201-202 [literature, 201-204].

182 

1
H NMR (500 MHz, DMSO-d6): δ 8.33 (s, 1H, C8-H), 8.16 (s, 1H, C2-H), 7.11 – 6.93 (m, 2H, 

Ar-H), 6.53 – 6.37 (m, 2H, Ar-H), 5.87 (d, J = 6.1 Hz, 1H, C1′-H), 5.13 (d, J = 4.2 Hz, 1H, C2′-

H), 4.87 (s, 2H, -CH2-Ar), 4.60 (q, J = 5.6 Hz, 1H, C3′-H), 4.52 (m, 2H, C5′-H2), 4.21 – 4.12 (m, 

1H, C4′-H), 3.96 (q, J = 3.4 Hz, 1H, C5′-OH), 3.67 (dt, J = 12.1, 4.0 Hz, 1H, C3′-OH), 3.54 (q, J 

= 12.1, 7.2, 3.7 Hz, 1H, C2′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 154.60 (1C, C6), 152.46 (1C, C2), 148.49 (1C, C4), 147.53 

(1C, Ar), 139.83 (1C, C8), 128.36 (1C, Ar), 127.05 (2C, Ar), 119.86 (1C, C5), 113.80 (2C, Ar), 

88.12 (1C, C1′), 86.03 (1C, C4′), 73.61 (1C, C2′), 70.79 (1C, C3′), 61.82 (1C, C5′), 52.73 (1C, 

CH2-Ar). 

LC/ESI-MS: negative mode 372 ([M - H]
-
), positive mode 373 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 98.2%. 
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11.19. N
6
-(4-Methoxybenzyl)-purine riboside (45) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg, 1.74 

mmol), and 442 mg of 4-methoxybenzylamine, and was isolated as a white solid. 

Yield: 509 mg (95%). 

Melting Point (
o
C): 161-163 [literature, 154-156].

130 

1
H NMR (500 MHz, DMSO-d6): δ 8.35 (s, 1H, C8-H), 8.18 (s, 1H, C2-H), 8.12 (bs, 1H, NH), 

7.43 (d, J = 7.6 Hz, 2H, Ar-H), 7.25 – 7.21 (m, 2H, Ar-H), 7.10 – 7.05 (m, 2H, Ar-H), 6.16 – 6.10 

(m, J = 6.1 Hz, 1H, C1′-H), 5.75 – 5.73 (m, 1H, C2′-H), 5.50 (d, J = 6.2, Hz, 1H, C3′-H), 5.45 – 

5.40 (m, 1H, CH2-Ar ), 4.70 – 4.68 (m, 1H, C4′-H), 4.10 – 4.00 (m, 1H, C5′-H), 3.95 – 3.90 (m, 

1H, C5′-H), 3.83 (d, J = 7.0 Hz, 3H, -OCH3) 3.79 (dt, 1H, C5′-OH), 3.58 (dq, J = 11.7, 1H, C3′-

OH), 3.54 – 3.51 (m, 1H, C2′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 158.69 (1C, C6), 154.78 (1C, C2), 152.37 (1C, C4), 140.38 

(1C, Ar), 132.20 (1C, C8), 130.57 (2C, Ar), 126.40 (2C, Ar), 121.20 (1C, Ar), 119.40 (1C, C5), 

97.03 (1C, C1′), 87.49 (1C, C4′), 73.76 (1C, C2′), 70.50 (1C, C3′), 61.67 (1C, C5′), 55.86 (1C, -

OCH3), 48.92 (1C, CH-Ar). 

LC/ESI-MS: negative mode 386 ([M - H]
-
), positive mode 388 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 98.0%. 
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11.20. N
6
-(1-Phenylethyl)-purine riboside (46) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg, 1.74 

mmol), and 426 mg of 1-phenylethylamine, and was isolated as a white solid. 

Yield: 509 mg (95%). 

Melting Point (
o
C): 201-202.

 

1
H NMR (500 MHz, DMSO-d6): δ 8.36 (s, 1H, C8-H), 8.29 (s, 1H, C2-H), 8.15 (bs, 1H, NH), 

7.43 (d, J = 7.6 Hz, 2H, Ar-H), 7.27 (td, J = 7.6, 1.3 Hz, 2H, Ar-H), 7.24 – 7.13 (m, 1H, Ar-H), 

5.87 (dd, J = 6.1, 3.6 Hz, 1H, C1′-H), 5.51 – 5.43 (m, 1H, C2′-H), 5.40 (dd, J = 6.2, 3.1 Hz, 1H, 

H3′), 5.36 – 5.27 (m, 1H, CH-Ar ), 5.14 (d, J = 4.6 Hz, 1H, C4′-H), 4.59 (dd, J = 8.6, 5.4 Hz, 1H, 

C5′-H), 4.13 (td, J = 4.8, 3.0 Hz, 1H, C5′-H), 3.95 (dt, J = 6.2, 3.4 Hz, 1H, C5′-OH), 3.65 (dq, J 

= 11.7, 3.8 Hz, 1H, C3′-OH), 3.54 – 3.46 (m, 1H, C2′-OH), 1.53 (d, J = 7.0 Hz, 3H, -CH3). 

13
C NMR (125 MHz, DMSO-d6): δ 161.59 (1C, C6), 153.98 (1C, C2), 152.37 (1C, C4), 148.68 

(1C, Ar), 145.30 (1C, C8), 139.87 (2C, Ar), 126.65 (2C, Ar), 126.28 (1C, Ar), 119.89 (1C, C5), 

88.02 (1C, C1′), 85.99 (1C, C4′), 73.56 (1C, C2′), 70.75 (1C, C3′), 61.77 (1C, C5′), 48.92 (1C, 

CH-Ar), 22.66 (1C, -CH3). 

LC/ESI-MS: negative mode 370 ([M - H]
-
), positive mode 372 ([M + H]

+
).  

HPLC-UV (254 nm)-ESI-MS: 99.0%. 
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11.21. N
6
-(4-Nitrobenzyl)purine riboside (47) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg, 1.74 

mmol), and 392 mg of 4-nitrobenzylamine, and was isolated as a yellow powder. 

Yield: 531 mg (75%). 

Melting Point (
o
C): 169-171 [literature, 167-168].

183 

1
H NMR (500 MHz, DMSO-d6): δ 8.57 (s, 1H, C8-H), 8.39 (s, 1H, C2-H), 8.19 (s, 1H, NH), 

8.17 (d, J = 2.0 Hz, 2H, Ar-H), 8.15 (d, J = 1.9 Hz, 1H, Ar-H), 7.58 (d, J = 2.0 Hz, 1H, Ar-H), 

5.93 – 5.83 (m, 1H, C1′-H), 5.35 (d, J = 58.6 Hz, 2H, CH2-Ar), 5.15 – 5.10 (m, 1H, C2′-H), 4.82 

– 4.75 (m, 1H, C3′-H), 4.60 (tt, J = 9.8, 4.9 Hz, 1H, C4′-H), 4.20 – 4.06 (m, 1H, C5′-H), 3.58 – 

3.52 (m, 1H, C5′-H), 3.71 – 3.70 (m, 1H, C5′-OH), 3.96 (q, J = 3.8 Hz, 1H, C3′-OH), 3.70 – 3.63 

(m, 1H, C2′-OH). 

13
C NMR (126 MHz, DMSO-d6): δ 152.45 (1C, C6), 151.81(1C, C2), 146.52 (1C, C4), 142.54 

(1C, Ar), 140.28 (1C, C8), 130.53 (1C, Ar), 128.17 (2C, Ar), 123.59 (2C, Ar), 119.25 (1C, C5), 

88.00 (1C, C1′), 85.95 (1C, C4′), 75.42 – 72.64 (1C, C2′), 72.06 – 68.46 (1C, C3′), 64.28 – 60.68 

(1C, C5′), 54.12 (1C, CH2-Ar).  

LC-MS (m/z): negative mode 401 [M-H]
-
, positive mode 403 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 98.0%. 
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11.22. N
6
-(4-Sulfamoylbenzyl)adenosine (48) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 

463 mg of 4-sulfamoylbenzylamine, and was isolated as a white powder. 

Yield: 517 mg (67%). 

Melting Point (
o
C): 215-216

 

1
H NMR (500 MHz, DMSO-d6): δ 8.50 (s, 1H, C8-H), 8.38 (s, 1H, C2-H), 8.19 (s, 1H, NH), 

7.79 – 7.69 (m, 2H, Ar-H), 7.48 (d, J = 8.0 Hz, 2H, Ar-H), 7.23 (s, 2H, CH2-Ar), 5.89 (d, J = 6.1 

Hz, 1H, C1′-H), 5.39 – 5.37 (m, 1H, C2′-H), 5.30 – 5.25 (m, 1H, C3′-H), 5.14 – 5.10 (m, 1H, 

C4′-H), 4.76 (s, NH2), 4.60 (t, J = 5.6 Hz, 1H, C5′-H), 4.14 (dd, J = 5.0, 3.0 Hz, 1H, C5′-H), 3.96 

(q, J = 3.5 Hz, 1H, C5′-OH), 3.66 (dd, J = 12.0, 3.7 Hz, 1H, C3′-OH), 3.58 – 3.48 (m, 1H, C2′-

OH). 

13
C NMR (126 MHz, DMSO-d6): δ 154.56 (1C, C6), 152.45 (1C, C2), 148.70 (1C, C4), 144.25 

(1C, Ar), 142.59 (1C, Ar), 140.17 (1C, C8), 127.44 (2C, Ar), 125.79 (2C, Ar), 121.30 (1C, C5), 

88.06 (1H, C4′), 86.01 (1H, C4′), 73.64 (1H, C2′), 70.75 (1H, C3′), 61.77 (1H, C5′), 42.83 (1H, 

CH2-Ar). 

LC-MS (m/z): negative mode 435 [M-H]
-
, positive mode 437 [M+H]

+
.  

HPLC-UV (254 nm)-ESI-MS: 94.8%. 
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12.1. Procedure for the synthesis of N
6
-substituted 2′,3′-O-isopropylidene-purine ribosides 

49-52 

 

About 1 g of 29-32 was suspended in a mixture of 45 mL of dry acetone and 5 mL of 2′,3′-

dimethoxypropane. To this was added 0.5 mL of conc. H2SO4. It was then vigorously stirred for 

1 h. Then 3 mL of Et3N was added and the resulting solution was evaporated under high vacuo. 

Purification using silica chromatography (1:12 MeOH/DCM) yielded the title compound in the 

form of colourless oil. Precipation using hexane and recrystallization in methanol yielded 49-52 

as white solids. 

12.2. 2′,3′-O-Isopropylidene-N
6
-methyl-purine riboside (49) 

 

Yield: 315 mg (91%). 

Melting Point (
o
C): 170-171

 

1
H NMR (500 MHz, DMSO-d6): δ 8.31 (s, 1H, C8-H), 8.23 (s, 1H, C2-H), 7.76 (s, 1H, NH), 

6.12 (d, J = 3.1 Hz, 1H, C1′-H), 5.33 (dd, J = 6.2, 3.1 Hz, 1H, C2′-H), 5.19 (dd, J = 6.0, 5.1 Hz, 

1H, C3′-H), 4.96 (dd, J = 6.2, 2.5 Hz, 1H, C4′-H), 4.21 (td, J = 4.9, 2.5 Hz, 1H, C5′-OH), 3.65 – 

3.49 (m, 2H, C5′-H2), 2.95 (s, 3H, NH-CH3), 1.54 (d, J = 0.8 Hz, 3H, C-CH3), 1.32 (d, J = 0.8 

Hz, 3H, C-CH3).
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13
C NMR (126 MHz, DMSO-d6): δ 155.21 (1C, C6), 152.78 (1C, C2), 147.96 (1C, C4), 139.53 

(1C, C8), 119.75 (1C, CH3-C-CH3), 113.18 (1C, C5), 89.77 (1C, C1′), 86.52 (1C, C4′), 83.40 

(1C, C2′), 81.50 (1C, C3′), 61.73 (1C, C5′), 27.22 (1C, CH3), 25.34 (2C, C-CH3).  

LC-MS (m/z): negative mode 320 [M-H]
-
, positive mode 322 [M+H]

+
.  

HPLC-UV (254 nm)-ESI-MS: 97.8%. 

12.3. 2′,3′-Isopropylidiene-N
6
-ethyl-purine riboside (50). 

 

Yield: 261 mg (78%). 

Melting Point (
o
C): 185-187 [literature, 109-111].

184 

1
H NMR (500 MHz, DMSO-d6): δ 8.31 (s, 1H, C8-H), 8.21 (s, 1H, C2-H), 7.81 (s, 1H, NH), 

6.11 (d, J = 3.0 Hz, 1H, C1′-H), 5.63 – 5.20 (m, 2H, C2′-H), 4.96 (dd, J = 6.2, 2.5 Hz, 1H, C3′-

H), 4.20 (td, J = 4.9, 2.5 Hz, 1H, C4′-H), 3.55 (td, J = 10.7, 9.8, 3.6 Hz, 2H, C5′-H2), 3.47 – 3.40 

(m, 2H, -CH2-Ar), 1.54 (s, 3H, CH3), 1.32 (s, 3H, CH3), 1.17 (t, J = 7.1 Hz, 3H, CH2-CH3).
 

13
C NMR (126 MHz, DMSO-d6): δ 154.63 (1C, C6), 152.73 (1C, C2), 148.17 (1C, C4), 139.52 

(1C, C8), 119.60 (1C, CH3-C-CH3), 113.15 (1C, C5), 89.77 (1C, C1′), 86.53 (1C, C4′), 83.39 

(1C, C2′), 81.50 (1C, C3′), 61.72 (1C, C5′), 34.69 (1C, CH2-CH3), 27.21 (1C, C-CH3), 25.33 

(1C, C-CH3), 14.92 (1C, CH2-CH3).  

LC-MS (m/z): negative mode 334 [M-H]
-
, positive mode 336 [M+H]

+
.  
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Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

12.4. 2′,3′-Isopropylidiene-N
6
-dimethyl-purine riboside (51) 

 

Yield: 436 mg (88%). 

Melting Point (
o
C): 177-179 [literature, 176-177].

184 

1
H NMR (600 MHz, DMSO-d6): δ 8.34 (s, 1H, C8-H), 8.22 (s, 1H, C2-H), 6.13 (d, J = 3.0 Hz, 

1H, C1′-H), 5.32 (dd, J = 6.1, 3.0 Hz, 1H, C2′-H), 5.18 (t, J = 5.5 Hz, 1H, C3′-H), 4.95 (dd, J = 

6.2, 2.5 Hz, 1H, C4′-H), 3.38 – 3.33 (m, 1H, C5′-OH), 4.21 (td, J = 4.8, 2.5 Hz, 1H, C5′-H), 3.56 

(dt, J = 11.7, 5.0 Hz, 1H, C5′-H), 3.44 (s, 6H, 2xCH3), 1.54 (s, 3H, C-CH3), 1.32 (s, 3H, C-CH3). 

13
C NMR (151 MHz, DMSO-d6): δ 154.40 (1C, C5), 152.03 (1C, C2), 149.76 (1C, C4), 138.53 

(1C, C8), 119.70 (2C, CH3-C-CH3), 113.14 (1C, C6), 89.77 (1C, C1′), 86.56 (1C, C4′), 83.44 

(1C, C2′), 81.50 (1C, C3′), 61.71 (1C, C5′), 27.20 (2C, 2xCH3), 25.33 (2C, CH3-C-CH3). 

LC-MS (m/z): negative mode 334 [M-H]
-
, positive mode 336 [M+H]

+
.  

HPLC-UV (254 nm)-ESI-MS: 99.7%. 
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12.5. 2′,3′-Isopropylidene-N
6
-diethylpurine riboside (52) 

 

Yield: 254 mg (66%). 

Melting Point (
o
C): 195-197

 

1
H NMR (500 MHz, DMSO-d6): δ 8.34 (s, 1H, C8-H), 8.21 (s, 1H, C2-H), 6.13 (d, J = 3.1 Hz, 

1H, C1′-H), 5.80 – 5.75 (m, 1H, C2′-H), 5.32 (dd, J = 6.2, 3.1 Hz, 1H, C3′-H), 4.97 (q, J = 10.9, 

6.2, 2.7 Hz, 1H, C4′-H), 4.21 (td, J = 4.9, 2.6 Hz, 2H, C5′-H2), 3.93 (s, 4H, 2xCH2-CH3), 3.55 (tt, 

J = 12.1, 6.1 Hz, 1H, C5′-OH), 1.53 (d, J = 3.8 Hz, 3H, -C-CH3), 1.32 (d, J = 5.7 Hz, 3H, -C-

CH3), 1.23 – 1.18 (m, 6H, 2xCH3). 

13
C NMR (126 MHz, DMSO-d6): δ 153.25 (1C, C5), 149.78 (1C, C6), 138.78 (1C, C2), 126.83 

(1C, C4), 119.24 (1C, CH3-C-CH3), 113.13 (1C, C8), 89.78 (1C, C1′), 86.59 (1C, C4′), 83.46 

(1C, C2′), 81.51(1C, C3′), 61.73 (1C, C5′), 27.22 (2C, 2xCH2-CH3), 25.34 (2C, 2xC-CH3), 13.56 

(2C, 2xCH2-CH3).  

LC-MS (m/z): negative mode 362 [M-H]
-
, positive mode 364 [M+H]

+
.  

HPLC-UV (254 nm)-ESI-MS: 98.6%.
 

13.1. General procedure for the synthesis of nucleotides (53-56) 

 A solution of methylenebis(phosphonic dichloride) (2 mmol) in trimethyl phosphate (2 mL), 

cooled to 0 
o
C was added to a suspension of  corresponding N

6
-substitued-nucleosides, 49-52 (1 

mmol) in trimethyl phosphate at 0 
o
C. The reaction mixture was stirred at 0 

o
C and samples were 
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withdrawn at 10 min interval for TLC to check the disappearance of nucleosides. After 1 h, on 

disappearance of nucleoside, 7 mL of cold 0.5 M aqueous TEAC solution (pH 7.4-7.6) was 

added. It was stirred at 0 
o
C for 15 min followed by stirring at room temperature for 1h. 

Trimethyl phosphate was extracted using (2 x 100 mL) of tert.butylmethyl ether and the aqueous 

layer was lyophilized. The mixture of nucleotide and dinucleotide was separated by ion-

exchange chromatography on DEAE Sephadex (A-25, HCO
-
3 form), using linear gradient of 

aqueous TEAC. Fractions containing the product were pooled and evaporated to dryness, with 

ethanol added repeatedly to remove TEAC buffer. The compound was then purified by RP-

HPLC using a gradient of 50 Mm ammoniumbicarbonate/ACN from 100:0 to 40:60 and suitable 

fraction were pooled and lyophilized to obtain the final product as a glassy solid. 

 

13.2. 2′,3′-O-Isopropylidene-N
6
-methylpurine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid] (53) 
 

 

1
H NMR (600 MHz, methanol-d4): δ 8.64 (s, 1H, C8-H), 8.38 (s, 1H, C2-H), 6.25 (d, J = 3.2 

Hz, 1H, C1′-H), 5.53 – 5.30 (m, 1H, C2′-H), 5.22 (dd, J = 6.0, 2.2 Hz, 1H, C3′-H), 4.59 (d, J = 

3.7 Hz, 1H, C4′-H), 4.26 (m, 2H, C5′-H2), 2.42 – 2.24 (m, 2H, P-CH2-P), 1.64 (s, 3H, C-CH3), 

1.43 (s, 3H, C-CH3), 1.35 (t, J = 7.3 Hz, 3H, CH3). 

13
C NMR (151 MHz, methanol-d4): δ 153.39 (1C, C6), 149.61 (1C, C2), 148.49 (1C, C4), 

142.69 (1C, C8), 120.19 (1C, CH3-C-CH3), 115.49 (1C, C5), 92.94 (1C, C1′), 87.53 (1C, C4′), 
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87.31 – 86.18 (1C, C2′), 83.40 (1C, C3′), 66.31 (1C, C5′), 46.13 (1C, P-CH2-P), 27.80 (1C, 

CH3), 25.82 (1C, 2xC-CH3). 

31
P NMR (243 MHz, methanol-d4): δ 18.86 (P), 14.60 (Pβ).  

LC-MS (m/z): negative mode 478 [M-H]
-
, positive mode 480 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

 

13.3. 2′,3′-O-Isopropylidene-N
6
-ethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid ] (54) 
 

 

1
H NMR (500 MHz, methanol-d4): δ 8.59 (s, 1H, C8-H), 8.33 (s, 1H, C2-H), 6.25 (d, J = 3.2 

Hz, 1H, C1′-H), 5.38 (s, 1H, C2′-H), 5.21 (dd, J = 6.0, 2.2 Hz, 1H, C3′-H), 4.56 – 4.50 (m, 1H, 

C4′-H), 4.20-4.15 (m, 2H, C5′-H2), 3.77 – 3.55 (m, 2H, -CH2-CH3), 3.26 – 3.22 (m, 3H, -CH2-

CH3), 2.30 (td, J = 19.9, 4.5 Hz, 2H, P-CH2-P), 1.64 (s, 3H, C-CH3), 1.43 (s, 3H, C-CH3).
 

13
C NMR (126 MHz, methanol-d4): δ 155.10 (1C, C6), 152.47 (1C, C2), 149.28 (1C, C4), 

134.62 (1C, C8), 130.07 (1C, CH3-C-CH3), 115.01 (1C, C5), 92.02 (1C, C1′), 86.85 (1C, C4′), 

85.77 (1C, C2′), 82.9 (1C, C3′), 65.81 (1C, C5′), 47.66 (1C, P-CH2-P), 27.35 (1C, -CH2-CH3), 

25.37 (2C, 2xC-CH3), 9.02 (1C, -CH2-CH3).  

31
P NMR (202 MHz, methanol-d4): δ 18.82 (P), 14.41(Pβ). 

LC-MS (m/z): negative mode 492 [M-H]
-
, positive mode 494 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 98.5%. 
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13.4. 2′,3′-O-Isopropylidene-N
6
-dimethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid]  (55)
 

 

1
H NMR (500 MHz, methanol-d4): δ 8.57 (s, 1H, C8-H), 8.39 (s, 1H, C2-H), 6.27 (d, J = 3.0 

Hz, 1H, C1′-H), 5.41 (dd, J = 6.1, 3.0 Hz, 1H, C2′-H), 5.22 (dd, J = 6.2, 2.1 Hz, 1H, C3′-H), 4.58 

(d, J = 3.4 Hz, 1H, C4′-H), 4.28 – 4.17 (m, 2H, C5′-H2), 3.35 (q, J = 3.3, 1.7, 0.5 Hz, 6H, signal 

overlap with water of MeOD, 2xCH3), 2.35 – 2.23 (m, 2H, P-CH2-P), 1.64 (s, 3H, C-CH3), 1.43 

(s, 3H, C-CH3).
 

13
C NMR (126 MHz, methanol-d4): δ 152.53 (1C, C5), 149.41 (1C, C2), 148.36 (1C, C4), 

141.66 (1C, C8), 121.30 (1C, CH3-C-CH3), 115.54 (1C, C6), 94.25 – 92.42 (1C, C1′), 87.41 (1C, 

C4′), 87.09 – 85.48 (1C, C2′), 85.48 – 82.70 (1C, C3′), 66.34 (1C, C5′), 48.21 (1C, P-CH2-P), 

27.76 (1C, CH3), 25.80 (1C, CH3), 9.50 (2C, -CH2-CH3).
 

31
P NMR (202 MHz, methanol-d4): δ 20.65 (P), 16.94 (Pβ).  

LC-MS (m/z): negative mode 492 [M-H]
-
, positive mode 494 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.5. 2′,3′-O-Isopropylidene-N
6
-diethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid]  (56)
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1
H NMR (600 MHz, methanol-d4): δ 8.47 (s, 1H, C8-H), 8.30 (s, 1H, C2-H), 6.25 (d, J = 3.3 

Hz, 1H, C1′-H), 5.39 (dd, J = 6.1, 3.4 Hz, 1H, C2′-H), 5.22 (dd, J = 6.2, 2.2 Hz, 1H, C3′-H), 4.52 

(dd, J = 4.1, 2.4 Hz, 1H, C4′-H), 4.18 (dd, J = 5.9, 3.9 Hz, 2H, C5′-H2), 4.05 (s, 5H, CH2-CH3), 

3.22 (q, J = 7.0 Hz, 5H, CH2-CH3), 2.36 – 2.24 (m, 2H, P-CH2-P), 1.65 (s, 3H, C-CH3), 1.43 (s, 

3H, C-CH3).
 

13
C NMR (151 MHz, methanol-d4): δ 154.02 (1C, C5), 152.03 (1C, C6), 150.70 (1C, C2), 

140.18 (1C, C4), 120.71 (1C, C-CH3), 115.32 (1C, C8), 91.91 (1C, C1′), 86.70 (1C, C4′), 85.79 

(1C, C2′), 83.34 (1C, C3′), 66.12 (1C, C5′), 47.80 (1C, P-CH2-P), 28.40 – 26.99 (2C, 2xCH2-

CH3), 25.72 (2C, 2xC-CH3), 9.30 (2C, 2xCH2-CH3).
 

31
P NMR (243 MHz, methanol-d4): δ 18.83 (d, J = 7.0 Hz, P), 14.33 (d, J = 6.8 Hz, Pβ).  

LC-MS (m/z): negative mode 520 [M-H]
-
, positive mode 522 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.6. General procedure for the synthesis of nucleotides (57-60) 

2′,3′-O-Isopropylidene-nucleoside-5′-O-[(phosphonomethyl)phosphonic acid]s 53-56 (100 mg) 

was dissolved in 4.5 mL dichloromethane then, 0.5 mL of water and 0.65 mL of triflouroacetic 

acid was added to it. It was stirred at room temperature for 3 hours. After completion of the 

reaction, the mixture was evaporated and the solid was precipitated adding diethyl ether. Then 

the crude solid product was dissolved in 6 mL water and 0.6 mL methanol. It was then purified 

by RP-HPLC using a gradient of H2O/MeOH from 100:0 to 0:100, and finally appropriate 

fraction were pooled and lyophilized to get final product. 
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13.7. N
6
-Methylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (57)

 

 

1
H NMR (500 MHz, D2O): δ 8.66 (s, 1H, C8-H), 8.43 (s, 1H, C2-H), 6.18 (d, J = 5.1 Hz, 1H, 

C1′-H), 4.82 (m, 1H, C2′-H), 4.56 (t, J = 4.4 Hz, 1H, C3′-H), 4.46 – 4.32 (m, 1H, C4′-H), 4.21 – 

4.18 (m, 2H, C5′-H2), 2.27 (t, J = 19.3 Hz, 2H, P-CH2-P), 1.29 (t, J = 7.3 Hz, 3H, CH3).  

13
C NMR (126 MHz, D2O): δ 153.49 (1C, C6), 150.46 (1C, C2), 148.83 (1C, C4), 145.89 (1C, 

C8), 122.82 (1C, C5), 91.85 (1C, C1′), 88.13 (1C, C4′), 78.33 (1C, C2′), 74.06 (1C, C3′), 67.45 

(1C, C5′), 50.59 (1C, P-CH2-P), 12.10 (1C, CH3).  

31
P NMR (202 MHz, D2O): δ 19.78 (P), 17.20 (Pβ).  

LC-MS (m/z): negative mode 438 [M-H]
-
, positive mode 440 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.8. N
6
-Ethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (58) 

 

1
H NMR (500 MHz, D2O): δ 8.64 (s, 1H, C8-H), 8.42 (s, 1H, C2-H), 6.18 (d, J = 5.1 Hz, 1H, 

C1′-H), 4.83 (d, J = 2.1 Hz, 1H, C2′-H), 4.56 (t, J = 4.5 Hz, 1H, C3′-H), 4.46 – 4.38 (m, 1H, C4′-
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H), 4.23 – 4.21 (m, 2H, C5′-H2), 3.63 (d, J = 13.2 Hz, 2H, CH2-CH3), 2.32 (t, J = 19.4 Hz, 2H, P-

CH2-P), 1.43 – 1.35 (m, 3H, CH2-CH3). 

13
C NMR (126 MHz, D2O): δ 154.56 (1C, C6), 152.48 (1C, C2), 148.73 (1C, C4), 145.85 (1C, 

C8), 121.38 (1C, C5), 91.84 (1C, C1′), 88.15 (1C, C4′), 78.32 (1C, C2′), 74.07 (1C, C3′), 67.50 

(1C, C5′), 50.59 (1C, P-CH2-P), 30.63 (1C, CH2-CH3), 12.10 (1C, CH2-CH3).  

31
P NMR (202 MHz, D2O): δ 19.05 (P), 17.11 (Pβ).  

LC-MS (m/z): negative mode 452 [M-H]
-
, positive mode 454 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.9. N
6
-Dimethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (59) 

 

1
H NMR (600 MHz, D2O): δ 8.54 (s, 1H, C8-H), 8.25 (s, 1H, C2-H), 6.13 (d, J = 5.4 Hz, 1H, 

C1′-H), 4.78-4.75 (m, 1H, C2′-H), 4.55 (t, J = 4.4 Hz, 1H, C3′-H), 4.39 (q, J = 3.2 Hz, 1H, C4′-

H), 4.27 – 4.13 (m, 2H, C5′-H2), 3.54 – 3.43 (m, 6H, 2xCH3), 2.19 (t, J = 19.3 Hz, 2H, P-CH2-P).  

13
C NMR (151 MHz, D2O): δ 154.95 (1C, C5), 152.21 (1C, C2), 151.55 (1C, C4), 141.90 (1C, 

C8), 121.95 (1C, C6), 90.01 (1C, C1′), 86.95 (1C, C4′), 77.10 (1C, C2′), 73.10 (1C, C3′), 66.36 

(1C, C5′), 49.52 (1C, P-CH2-P), 11.07 (2C, CH3).  

31
P NMR (243 MHz, D2O): δ 18.67 (P), 15.18 (Pβ).  

LC-MS (m/z): negative mode 452 [M-H]
-
, positive mode 454 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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13.10. N
6
-Diethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (60)

 

 

1
H NMR (500 MHz, D2O): δ 8.62 (s, 1H, C8-H), 8.38 (s, 1H, C2-H), 6.19 (d, J = 5.2 Hz, 1H, 

C1′-H), 4.84 – 4.82 (m, 1H, C2′-H), 4.56 (dd, J = 5.1, 4.1 Hz, 1H, C3′-H), 4.41 (q, J = 4.4, 3.0, 

1.5 Hz, 1H, C4′-H), 4.36 – 4.18 (m, 4H, 2xCH2-CH3), 3.78 (s, 2H, C5′-H2), 2.39 – 2.25 (m, 2H, 

P-CH2-P), 1.37 (t, J = 7.2 Hz, 6H, 2xCH2-CH3).  

13
C NMR (126 MHz, D2O): δ 150.80 (1C, C5), 149.98 (1C, C6), 147.86 (1C, C2), 143.63 (1C, 

C4), 121.79 (1C, C8), 90.77 (1C, C1′), 87.03 (1C, C4′), 77.25 (1C, C2′), 73.01 (1C, C3′), 66.53 

(1C, C5′), 49.94 (2C, 2xCH2-CH3), 48.11 (1C, P-CH2-P), 13.77 (1C, 2xCH2-CH3).  

31
P NMR (202 MHz, D2O): δ 19.41 (d, P), 16.94 (Pβ).  

LC-MS (m/z): negative mode 480 [M-H]
-
, positive mode 482 [M+H]

+
. 

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.11. General procedure for the synthesis of nucleotides (61-76) 

A solution of methylenebis(phosphonic dichloride) (5 mmol) in trimethyl phosphate (2 mL), 

cooled to 0 
o
C was added to a suspension of  corresponding N

6
-substitued-nucleosides 33-48 (1 

mmol) in trimethyl phosphate at 0 
o
C. The reaction mixture was stirred at 0 

o
C and samples were 

withdrawn at 10 min interval for TLC to check the disappearance of nucleosides. After 30 min, 

on disappearance of nucleoside, 7 mL of cold 0.5 M aqueous TEAC solution (pH 7.4-7.6) was 

added. It was stirred at 0 
o
C for 15 min followed by stirring at room temperature for 1 h. 

Trimethyl phosphate was extracted using (2 x 100 mL) of tert.butylmethyl ether and the aqueous 
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layer was lyophilized.  The crude product was then purified by RP-HPLC using a gradient of 50 

Mm ammoniumbicarbonate/ACN from 100:0 to 60:40 to get final product. Since there was no 

formation of dinucleotide, ion exchange chromatography was not used. 

13.12. N
6
-Ethyl-N

6
-methylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (61) 

 

1
H NMR (500 MHz, D2O): δ 8.37 (s, 1H, C8-H), 8.04 (s, 1H, C2-H), 6.04 (t, J = 3.8 Hz, 1H, 

C1′-H), 4.75 – 4.73 (m, 1H, C2′-H), 4.52 (t, J = 4.6 Hz, 1H, C3′-H), 4.35 (t, J = 3.6 Hz, 1H, C4′-

H), 4.16 (dd, J = 5.3, 2.7 Hz, 2H, C5′-H2), 3.80 (s, 2H, CH2-CH3), 3.23 (s, 3H, CH2-CH3), 2.12 

(t, J = 19.6 Hz, 2H, P-CH2-P), 1.15 (td, J = 7.3, 2.6 Hz, 3H, CH3).  

13
C NMR (126 MHz, D2O): δ 156.38 (1C, C5), 154.90 (1C, C6), 151.90 (1C, C2), 140.52 (1C, 

C4), 121.45 (1C, C8), 89.74 (1C, C1′), 86.44 (1C, C4′), 76.96 (1C, C2′), 72.91 (1C, C3′), 66.21 

(1C, C5′), 50.21 (1C, CH2-CH3) 48.73 (1C, P-CH2-P), 39.19 (1C, CH3), 14.72 (1C, CH2-CH3).  

31
P NMR (202 MHz, D2O): δ 20.17 (P), 13.67 (Pβ).  

LC-MS (m/z): negative mode 466 [M-H]
-
, positive mode 468 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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13.13. N
6
-Phenylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (62)  

 

1
H NMR (500 MHz, D2O): δ 8.55 (s, 1H, C8-H), 8.24 (s, 1H, C2-H), 7.44 (q, J = 8.5, 4.9, 2.4 

Hz, 4H, Ar-H), 7.33 – 7.12 (m, 1H, Ar-H), 6.12 (t, J = 5.2 Hz, 1H, C1′-H), 4.76 – 4.71 (m, 1H, 

C2′-H), 4.55 (dd, J = 5.2, 4.0 Hz, 1H, C3′-H), 4.39 (tq, J = 3.7, 1.6 Hz, 1H, C4′-H), 4.19 (dd, J = 

5.4, 3.3 Hz, 2H, C5′-H2), 2.21 (tt, J = 19.9, 2.5 Hz, 2H, P-CH2-P). 
 

3
C NMR (126 MHz, D2O): δ 154.73 (1C, C2), 154.34 (1C, C4), 151.65 (1C, C6), 143.20 (1C, 

C8), 139.64 (2C, Ar-H), 132.10 (1C, Ar-H), 128.44 (1C, Ar-H), 125.85 (1C, C5), 122.21 (2C, 

Ar-H), 89.99 (1C, C1′), 86.79 (1C, C4′), 77.12 (1C, C2′), 73.09 (1C, C3′), 66.39 (1C, C5′), 53.10 

(1C, P-CH2-P).  

31
P NMR (202 MHz, D2O): δ 24.86 – 18.08 (d, P), 15.29 (d, J = 9.6 Hz, Pβ).  

LC-MS (m/z): negative mode 500 [M-H]
-
, positive mode 502 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.14. N
6
-Benzylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (63) 
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1
H NMR (500 MHz, D2O): δ 8.48 (s, 1H, C8-H), 8.18 (s, 1H, C2-H), 7.63 – 7.14 (m, 5H, Ar-H), 

6.10 (dd, J = 6.5, 2.3 Hz, 1H, C1′-H), 5.03 – 5.01 (m, 2H, CH2-Ar), 4.53 (dd, J = 5.2, 3.7 Hz, 

1H, C2′-H) (dd, J = 5.2, 3.7 Hz, 1H, C3′-H), 4.37 (td, J = 4.1, 2.7 Hz, 1H, C4′-H), 4.16 (dt, J = 

6.5, 3.3 Hz, 2H, C5′-H2), 2.19 (ddt, J = 22.3, 18.5, 3.3 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 157.35 (1C, C2), 155.69 (1C, C4), 151.11 (1C, C6), 142.28 (1C, 

C8), 131.55 (2C, Ar-H), 130.16 (1C, Ar-H), 129.76 (2C, Ar-H), 121.82 (1C, C5), 89.69 (1C, 

C1′), 86.78 (1C, C4′), 77.02 (1C, C2′), 73.13 (1C, C3′), 66.41 (1C, C5′), 53.50 (1C, CH2-Ar), 

46.82 (1C, P-CH2-P).  

31
P NMR (202 MHz, D2O): δ 18.67 (d, 9.6 Hz, P), 15.03 (td, 9.6 Hz, Pβ).  

LC-MS (m/z): negative mode 514 [M-H]
-
, positive mode 516 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.15. N
6
-(2-Phenylethyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (64)  

 

1
H NMR (500 MHz, D2O): δ 8.41 (s, 1H, C8-H), 8.13 (s, 1H, C2-H), 7.30 – 7.15 (m, 5H, Ar-H), 

6.06 (d, J = 5.5 Hz, 1H, C1′-H), 4.74 – 4.68 (m, 1H, C2′-H), 4.52 (dd, J = 5.2, 3.8 Hz, 1H, C3′-

H), 4.36 (d, J = 3.5 Hz, 1H, C4′-H), 4.20 – 4.08 (m, 2H, C5′-H2), 3.80 (s, 2H, CH2-CH2-Ar), 3.01 

– 2.88 (m, 2H, CH2-CH2-Ar), 2.26 – 2.12 (m, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 157.39 (1C, C6), 155.49 (1C, C2), 150.79 (1C, C4), 142.00 (1C, 

C8), 139.50 (1C, Ar-H), 131.86 (2C, Ar-H), 131.31 (2C, Ar-H), 129.24 (1C, Ar-H), 121.63 (1C, 
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C5), 89.63 (1C, C1′), 86.73 (1C, C4′), 76.99 (1C, C2′), 73.11 (1C, C3′), 66.40 (1C, C5′), 54.28 

(1C, CH2-CH2-Ar), 44.81 (1C, P-CH2-P), 37.73 (1C, CH2-CH2-Ar).
 

31
P NMR (202 MHz, D2O): δ 18.81 (P), 15.01 (Pβ).  

LC-MS (m/z): negative mode 528 [M-H], positive mode 530 [M+H]
+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.16. N
6
-Benzyl-N

6
-methylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (65)

 

 

1
H NMR (500 MHz, D2O): δ 8.46 (s, 1H, C8-H), 8.24 (s, 1H, C2-H), 7.48 – 7.21 (m, 5H, Ar-H), 

6.15 (dd, J = 5.8, 1.7 Hz, 1H, C1′-H), 5.25 (s, 2H, CH2-Ar), 4.74 (d, J = 2.3 Hz, 1H, C2′-H), 4.54 

(dd, J = 5.2, 3.5 Hz, 1H, C3′-H), 4.45 – 4.33 (m, 1H, C4′-H), 4.17 (t, J = 4.2 Hz, 2H, C5′-H2), 

3.36 (s, 3H, CH3), 2.18 (t, J = 19.7 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 157.23 (1C, C5), 154.80 (1C, C6), 152.52 (1C, C2), 141.19 (1C, 

C4), 139.89 (1C, C8), 131.68 (1C, Ar-H), 130.14 (2C, Ar-H), 128.35 (2C, Ar-H), 121.94 (1C, 

Ar-H), 89.61 (1C, H1′), 86.80 (1C, H4′), 76.95 (1C, H2′), 73.13 (1C, H3′), 66.42 (1C, H5′), 

56.81 (1C, CH2-Ar), 45.32 (1C, P-CH2-P), 30.27 (1C, CH3).  

31
P NMR (202 MHz, D2O): δ 18.73 (P), 15.18 (Pβ).  

LC-MS (m/z): negative mode 528 [M-H]
-
, positive mode 530 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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13.17. N
6
-Benzyl-N

6
-ethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (66) 

 

1
H NMR (500 MHz, D2O): δ 8.61 (s, 1H, C8-H), 8.44 (s, 1H, C2-H), 7.51 – 7.32 (m, 5H, Ar-H), 

6.21 (d, J = 5.3 Hz, 1H, C1′-H), 5.62 (s, 2H, -CH2-Ar), 4.74 (t, J = 0.7 Hz, 1H, C2′-H), 4.56 (t, J 

= 4.5 Hz, 1H, C3′-H), 4.42 (d, J = 3.7 Hz, 1H, C4′-H), 4.21 (dt, J = 11.7, 7.2 Hz, 2H, C5′-H2), 

3.95 – 3.65 (m, 2H, -CH2-CH3), 2.29 (td, J = 19.9, 15.6 Hz, 2H, P-CH2-P), 1.51 – 1.23 (m, 3H, -

CH2-CH3).  

13
C NMR (126 MHz, D2O): δ 156.18 (1C, C5), 151.08 (1C, C6), 148.15 (1C, C2), 143.73 (1C, 

C4), 138.78 (1C, C8), 131.89 (1C, Ar-H), 131.11 (2C, Ar-H), 129.89 (2C, Ar-H), 122.03 (1C, 

Ar-H), 90.88 (1C, C1′), 87.15 (1C, C4′), 77.27 (1C, C2′), 73.05 (1C, C3′), 66.56 (1C, C5′), 56.36 

– 53.01 (1C, -CH2-Ar′) , 47.87 (1C, P-CH2-P), 41.58 (1C, -CH2-CH3), 13.57 (1C, -CH2-CH3).  

31
P NMR (202 MHz, D2O): δ 18.80 (P), 16.88 (Pβ).  

LC-MS (m/z): negative mode 542 [M-H]
-
, positive mode 544 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.18. N
6
-Dibenzylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (67)
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1
H NMR (500 MHz, D2O): δ 8.50 (s, 1H, C8-H), 8.34 (s, 1H, C2-H), 7.45 – 7.19 (m, 10H, Ar-

H), 6.17 (d, J = 5.6 Hz, 1H, C1′-H), 5.19 (s, 4H, 2xCH2-Ar), 4.82 (d, J = 0.8 Hz, 1H, C2′-H), 

4.54 – 4.51 (m, 1H, C3′-H), 4.39 – 4.34 (m, 1H, C4′-H), 4.19 – 4.16 (m, 2H, C5′-H2), 2.22 (t, J = 

19.4 Hz, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 155.99 (1C, C5), 152.56 (1C, C6), 151.82 (1C, C2), 142.26 (1C, 

C4), 138.63 (1C, C8), 131.71 (2C, Ar-H), 130.64 (4C, Ar-H), 130.14 (4C, Ar-H), 121.96 (2C, 

Ar-H), 90.22 (1C, C1′), 87.03 (1C, C4′), 77.08 (1C, C2′), 73.11 (1C, C3′), 66.53 (1C, C5′), 54.64 

(1C, P-CH2-P), 30.01 (2C, 2xCH2-Ar).  

31
P NMR (202 MHz, D2O): δ 18.16 (P), 16.10 (Pβ).  

LC-MS (m/z): negative mode 604 [M-H]
-
, positive mode 606 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.19. N
6
-(4-Aminobenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (68)

 

 

1
H NMR (500 MHz, D2O): δ 8.50 (s, 1H, C8-H), 8.21 (s, 1H, C2-H), 7.38 (d, J = 8.0 Hz, 2H, 

Ar-H), 7.14 (d, J = 8.0 Hz, 2H, Ar-H), 6.11 (d, J = 5.7 Hz, 1H, C1′-H), 5.13 (d, 1H, C2′-H), 4.87 

(s, 2H, CH2-Ar), 4.61 – 4.48 (m, 1H, C3′-H), 4.38 (dq, J = 4.4, 2.9 Hz, 1H, C4′-H), 4.17 (dd, J = 

5.4, 3.2 Hz, 2H, C5′-H2), 2.19 (td, J = 19.8, 2.3 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 156.95 (1C, C6), 152.52 (1C, C2), 149.80 (1C, C4), 146.46 (1C, 

Ar-H), 138.55 (1C, C8), 137.62 (1C, Ar-H), 131.23 (2C, Ar-H), 128.77 (1C, C5), 119.42 (1C, 
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2C, Ar-H), 89.75 (1C, C1′), 86.90 – 86.85 (1C, C4′), 77.04 (1C, C2′), 73.11 (1C, C3′), 66.41 (1C, 

C5′), 55.65 (1C, CH2-Ar), 49.25 (1C, P-CH2-P) . 

31
P NMR (202 MHz, D2O): δ 18.71 (d, J = 9.7 Hz, P), 15.14 (d, J = 9.7 Hz, Pβ).  

LC-MS (m/z): negative mode 529 [M-H]
-
, positive mode 531 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.20. N
6
-(4-Chlorobenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (69)  

 

1
H NMR (500 MHz, D2O): δ 8.51 (s, 1H, C8-H), 8.22 (s, 1H, C2-H), 7.29 – 7.21 (m, 4H, Ar-H), 

6.11 (d, J = 5.6 Hz, 1H, C1′-H), 4.82 (d, J = 1.0 Hz, 1H, C2′-H), 4.76 (s, 2H, CH2-Ar), 4.74 (d, J 

= 1.3 Hz, 1H, C3′-H), 4.54 (dd, J = 5.2, 3.9 Hz, 1H, C4′-H), 4.18 (dd, J = 5.5, 3.3 Hz, 2H, C5′-

H2), 2.20 (td, J = 19.8, 1.4 Hz, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 157.08 (1C, C6), 155.40 (1C, C2), 149.28 (1C, C4), 142.46 (1C, 

C8), 139.72 (1C, Ar-H), 135.14 (1C, Ar-H), 131.31 (2C, Ar-H), 129.45 (2C, Ar-H), 121.83 (1C, 

C5), 89.73 (1C, C1′), 86.81 (1C, C4′), 77.05 (1C, C2′), 73.13 (1C, C3′), 66.40 (1C, C5′), 46.21 

(1C, P-CH2-P), 37.61 (1C, CH2-Ar).  

31
P NMR (202 MHz, D2O): δ 21.30 – 17.66 (P), 15.26 (Pβ).  

LC-MS (m/z): negative mode 548 [M-H]
-
, positive mode 550 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 
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13.21. N
6
-(3-Chlorobenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (70)

 

 

1
H NMR (500 MHz, D2O): δ 8.52 (s, 1H, C8-H), 8.21 (s, 1H, C2-H), 7.35 (s, 1H, Ar-H), 7.31 – 

7.19 (m, 3H, Ar-H), 6.11 (d, J = 5.6 Hz, 1H, C1′-H), 4.76 (t, J = 5.4 Hz, 1H, C2′-H), 4.54 (dd, J 

= 5.2, 3.9 Hz, 1H, C3′-H), 4.43 – 4.33 (m, 1H, C4′-H), 4.18 (dd, J = 5.5, 3.2 Hz, 2H, C5′-H2), 

2.20 (td, J = 19.8, 1.9 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 153.88 (1C, C6), 152.21 (1C, C2), 139.94 (1C, C4), 133.72 (1C, 

C8), 130.03 (1C, Ar-H), 132.50 (1C, Ar-H), 126.53 (2C, Ar-H), 125.20 (2C, Ar-H), 118.90 (1C, 

C4), 86.91 (1C, C1′), 83.91 (1C, C4′), 74.19 (1C, C2′), 70.21 (1C, C3′), 63.50 (1C, C5′), 46.59 

(1C, P-CH2-P), 40.10 (1C, CH2-Ar). 

31
P NMR (202 MHz, D2O): δ 18.69 (d, J = 9.9 Hz, P), 15.22 (d, J = 9.7 Hz, Pβ). 

LC-MS (m/z): negative mode 548 [M-H]
-
, positive mode 550 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.22. N
6
-(2-Chlorobenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (71)
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1
H NMR (500 MHz, D2O): δ 8.48 (s, 1H, C8-H), 8.20 (s, 1H, C2-H), 7.38 – 7.32 (m, 1H, Ar-H), 

7.29 (d, J = 7.3 Hz, 1H, Ar-H), 7.18 (dt, J = 18.9, 7.5 Hz, 2H, Ar-H), 6.03 (d, J = 5.4 Hz, 1H, 

C1′-H), 4.74 (d, J = 2.8 Hz, 1H, C2′-H), 4.68 – 4.57 (m, 2H, CH2-Ar), 4.55 – 4.40 (m, 1H, C3′-

H), 4.30 (t, J = 3.5 Hz, 1H, C4′-H), 4.15 – 3.99 (m, 2H, C5′-H2),  2.13 (t, J = 19.8 Hz, 2H, P-

CH2-P). 

13
C NMR (126 MHz, D2O): δ 154.34 (1C, C6), 152.10 (1C, C2), 143.40 (1C, C4), 136.71 (1C, 

Ar), 135.64 (2C, Ar), 132.98 – 131.26 (2C, Ar), 130.04 (1C, Ar), 121.61 (1C, C5), 90.21 (1C, 

C1′), 86.92 (1C, C4′), 77.22 (1C, C2′), 73.04 (1C, C3′), 66.38 (1C, C5′), 49.50 (1C, CH2-Ar), 

45.69 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 18.54 (P), 5.69 (d, J = 24.4 Hz, Pβ). 

LC-MS (m/z): negative mode 548 [M-H]
-
, positive mode 550 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 

13.23. N
6
-(4-Hydroxybenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (72) 

 

 

1
H NMR (500 MHz, D2O): δ 8.50 (s, 1H, C8-H), 8.21 (s, 1H, C2-H), 7.38 (d, J = 7.9 Hz, 2H, 

Ar-H), 7.14 (d, J = 8.0 Hz, 2H, Ar-H), 6.11 (d, J = 5.7 Hz, 1H, C1′-H), 4.65 – 4.50 (m, 1H, C2′-

H), 4.41 – 4.29 (m, 1H, C3′-H), 4.17 (dd, J = 5.4, 3.2 Hz, 2H, C5′-H2), 3.59 (d, J = 10.7 Hz, 1H, 

C4′-H), 2.19 (td, J = 19.8, 2.3 Hz, 2H, P-CH2-P). 
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13
C NMR (126 MHz, D2O): δ 156.54 (1C, Ar), 154.08 (1C, C6), 152.35 (1C, C2), 149.89 (1C, 

C4), 139.60 (1C, C8), 133.41 (1C, Ar), 128.33 (2C, Ar), 120.75 (1C, C5), 114.99 (2C, Ar), 86.83 

(1C, C1′), 84.00 (1C, C4′), 74.13 (1C, C2′), 70.22 (1C, C3′), 63.50 (1C, C5′), 52.70 (1C, CH2-

Ar), 46.61 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 18.71 (d, J = 9.7 Hz, P), 15.14 (d, J = 9.7 Hz, Pβ). 

LC-MS (m/z): negative mode 530 [M-H]
-
, positive mode 532 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.24. N
6
-(4-Methoxybenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (73) 

 

 

1
H NMR (500 MHz, D2O): δ 8.58 (s, 1H, C8-H), 8.30 (s, 1H, C2-H), 7.33 (d, J = 8.2 Hz, 2H, 

Ar-H), 6.98 – 6.83 (m, 2H, Ar-H), 6.12 (d, J = 5.4 Hz, 1H, C1′-H), 4.75 – 4.71 (m, 1H, C2′-H), 

4.55 (t, J = 4.5 Hz, 1H, C3′-H), 4.39 (q, J = 3.4 Hz, 1H, C4′-H), 4.26 – 4.07 (m, 2H, C5′-H2), 

3.82 (m, OCH3), 2.30 – 2.10 (m, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 158.24 (1C, Ar), 155.26 (1C, C6), 152.27 (1C, C2), 144.17 (1C, 

C4), 140.60 (1C, C8), 132.45 (1C, Ar), 129.30 (2C, Ar), 128.75 (1C, C5), 121.11 (2C, Ar), 87.31 

(1C, C1′), 84.04 (1C, C4′), 74.36 (1C, C2′), 70.17 (1C, C3′), 63.47 (1C, C5′), 55.28 (1C, OCH3), 

55.21 (1C, CH2-Ar), 46.62 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 18.62 (d, J = 9.7 Hz, P), 15.47 (Pβ). 

LC-MS (m/z): negative mode 544 [M-H]
-
, positive mode 546 [M+H]

+
.  
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Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

13.25. N
6
-(1-Phenylethyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (74) 

 

1
H NMR (500 MHz, D2O): δ 8.48 (s, 1H, C8-H), 8.12 (s, 1H, C2-H), 7.44 (d, J = 7.4 Hz, 2H, 

Ar-H), 7.36 (td, J = 7.6, 1.6 Hz, 2H, Ar-H), 7.27 (td, J = 7.2, 1.4 Hz, 1H, Ar-H), 6.09 (d, J = 5.7 

Hz, 1H, C1′-H), 5.32 (s, 2H, CH2-Ar), 4.75 – 4.71 (m, 1H, C2′-H), 4.56 – 4.49 (m, 1H, C3′-H), 

4.36 (tq, J = 3.6, 1.6 Hz, 1H, C4′-H), 4.16 (dd, J = 5.3, 3.3 Hz, 2H, C5′-H2), 2.18 (td, J = 19.9, 

2.0 Hz, 2H, P-CH2-P), 1.61 (d, J = 6.9 Hz, 3H, -CH3). 

13
C NMR (126 MHz, D2O): δ 156.64 (1C, C6), 155.67 (1C, C2), 146.81 (1C, C4), 142.21 (1C, 

Ar), 131.64 (1C, C8), 130.13 (2C, Ar), 128.58 (1C, Ar), 121.84 (1C, C5), 89.64 (1C, C1′), 86.78 

(1C, C4′), 77.02 (1C, C2′), 73.12 (1C, C3′), 66.40 (1C, C5′), 53.21 (1C, CH2-Ar), 45.42 (1C, P-

CH2-P)  25.15 (1C, -CH3). 

31
P NMR (202 MHz, D2O): δ 18.90 (P), 15.05 (Pβ). 

LC-MS (m/z): negative mode 528 [M-H]
-
, positive mode 530 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 
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13.26. N
6
-(4-Nitrobenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (75)  

 

1
H NMR (500 MHz, D2O): δ 8.53 (s, 1H, C8-H), 8.20 (s, 1H, C2-H), 8.10 (d, J = 8.5 Hz, 2H, 

Ar-H), 7.51 (d, J = 8.5 Hz, 2H, Ar-H), 6.10 (d, J = 5.5 Hz, 1H, C1′-H), 4.87 (d, J = 9.4 Hz, 2H, 

CH2-Ar), 4.74 (d, J = 1.2 Hz, 1H, C2′-H), 4.54 (t, J = 4.6 Hz, 1H, C3′-H), 4.40 – 4.30 (m, 1H, 

C4′-H), 4.18 (dd, J = 5.5, 3.2 Hz, 2H, C5′-H2), 2.21 (t, J = 19.8 Hz, 2H, P-CH2-P).   

13
C NMR (126 MHz, D2O): δ 156.65 (1C, C6), 155.02 (1C, C2), 149.48 (1C, C4), 149.01 (1C, 

Ar), 142.79 (1C, C8), 130.46 (2C, Ar), 127.67 – 125.05 (2C, Ar), 121.75 (1C, Ar), 119.63 (1C, 

C5), 89.89 (1C, C1′), 86.83 (1C, C4′), 77.13 (1C, C2′), 73.11 (1C, C3′), 66.4 (1C, C5′), 47.00 

(1C, C6, CH2-Ar ), 46.46 (1C, C6, P-CH2-P).  

31
P NMR (202 MHz, D2O): δ 18.68 (P), 15.39 (Pβ).  

LC-MS (m/z): negative mode 559 [M-H]
-
, positive mode 561 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 

 

13.27. N
6
-(4-Sulfamoylbenzyl)purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (76)  
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1
H NMR (500 MHz, D2O): δ 8.55 (s, 1H, C8-H), 8.25 (s, 1H, C2-H), 7.83 (d, J = 8.3 Hz, 2H, 

Ar-H), 7.55 (d, J = 8.2 Hz, 2H, Ar-H), 6.12 (d, J = 5.5 Hz, 1H, C1′-H), 5.01 – 4.84 (m, 2H, CH2-

Ar), 4.74 – 4.70 (m, 1H, C2′-H), 4.54 (dd, J = 5.1, 4.0 Hz, 1H, C3′-H), 4.38 (dd, J = 4.0, 1.6 Hz, 

1H, C4′-H), 4.19 (dt, J = 5.8, 2.7 Hz, 2H, C5′-H2), 2.21 (td, J = 19.9, 1.2 Hz, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 155.11 (1C, C6), 154.40 (1C, C2), 150.62 (1C, C4), 146.13 (1C, 

Ar), 142.94 (1C, C8), 139.34 (1C, Ar), 132.07 (2C, Ar), 130.54 (2C, Ar), 128.98 (1C, C5), 90.03 

(1C, C1′), 86.86 (1C, C4′), 77.15 (1C, C2′), 73.05 (1C, C3′), 66.37 (1C, C5′), 57.84 (1C, CH2-

Ar), 49.49 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 18.59 (d, J = 10.2 Hz, P), 15.46 (d, J = 9.9 Hz, Pβ).  

LC-MS (m/z): negative mode 593 [M-H]
-
, positive mode 595 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 98.0%. 

14.1. General procedure for the synthesis 6-O-alkylpurine riboside (77, 78) 

A mixture of 6-chloro-9-(β-D-ribofuranosyl)purine 500 mg and 3 mL of 1.0 M sodium 

(ar)alkoxide in 8 mL of subsequent (ar)alkyl alcohol was stirred at rt for 3 h. After completion of 

reaction, as indicated in TLC it was evaporated under high vacuo. Purification using silica 

chromatography (1:8 MeOH/DCM) yielded the title compound 77 or 78 as white solid. 

14.2. 6-Ethoxypurine riboside (77) 
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The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 3 

mL of 1.0 M sodium ethoxide in 8 mL of ethanol, and was isolated as a white solid.  

Yield: 303 mg (71%). 

Melting Point (
o
C): 195-197

 

1
H NMR (500 MHz, DMSO-d6): δ 8.60 (s, 1H, C8-H), 8.52 (s, 1H, C2-H), 5.98 (d, J = 5.7 Hz, 

1H, C1′-H), 5.47 (d, J = 5.8 Hz, 1H, C2′-H), 5.19 (d, J = 4.8 Hz, 1H, C3′-H), 5.11 (t, J = 5.8 Hz, 

1H, C4′-H), 4.59 (d, J = 7.0 Hz, 2H, C5′-H2), 4.16 (dd, J = 5.1, 2.8 Hz, 1H, C5′-OH), 3.96 (q, J = 

3.8 Hz, 1H, C3′-OH), 3.68 (dt, J = 12.0, 4.4 Hz, 1H, C2′-OH), 3.56 (q, J = 12.0, 5.9, 3.9 Hz, 2H, 

-CH2-CH3), 1.40 (t, J = 7.1 Hz, 3H, CH2-CH3). 

13
C NMR (126 MHz, DMSO-d6): δ 160.21 (1C, C6), 151.87 (1C, C2), 142.43 (1C, C4), 126.62 

(1C, C8), 121.27 (1C, C5), 87.93 (1C, C1′), 85.85 (1C, C4′), 73.90 (1C, C2′), 70.48 (1C, C3′), 

62.71 (1C, C5′), 61.48 (1C, CH2-CH3), 14.52 (1C, CH2-CH3).  

LC-MS (m/z): negative mode 295 [M-H]
-
, positive mode 297 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 98.0%. 

14.3. 6-Benzyloxypurine riboside (78) 

 

The compound was synthesized using 6-chloro-9-(β-D-ribofuranosyl)purine (28, 500 mg) and 3 

mL of 1.0 M sodium benzyloxide in 8 mL of benzyl alcohol, and was isolated as a white solid.
 

Yield: 383 mg (75%). 
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Melting Point (
o
C): 207-208

 

1
H NMR (600 MHz, DMSO-d6): δ 8.62 (s, 1H, C8-H), 8.56 (s, 1H, C2-H), 7.54 – 7.47 (m, 2H, 

Ar), 7.43 – 7.31 (m, 3H, Ar), 5.99 (d, J = 5.7 Hz, 1H, C1′-H), 5.64 (d, J = 2.1 Hz, 2H, CH2-Ar), 

5.47 (d, J = 6.0 Hz, 1H, C2′-H), 5.19 (d, J = 4.9 Hz, 1H, C3′-H), 5.10 (dd, J = 6.1, 5.1 Hz, 1H, 

C4′-H), 4.59 (q, J = 5.6 Hz, 1H, C5′-H), 4.16 (td, J = 4.9, 3.5 Hz, 1H, C5′-H), 3.96 (q, J = 3.8 

Hz, 1H, C5′-OH), 3.68 (q, J = 11.9, 5.0, 3.9 Hz, 1H, C3′-OH), 3.56 (q, J = 12.0, 6.2, 4.0 Hz, 1H, 

C2′-OH).  

13
C NMR (151 MHz, DMSO-d6): δ 159.97 (1C, C6), 152.15 (1C, C2), 151.72 (1C, C4), 142.69 

(1C, C8), 136.41 (1C, Ar-H), 129.40 (2C, Ar-H), 127.75 (3C, Ar-H), 121.30 (1C, C5), 87.96 

(1C, C1′), 85.87 (1C, C4′), 73.93 (1C, C2′), 70.48 (1C, C3′), 67.98 (1C, C5′), 61.47 (1C, CH2-

Ar).  

LC-MS (m/z): negative mode 357 [M-H]
-
, positive mode 359 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 97.6%. 

14.4. 6-Benzylthiopurine riboside (80) 

 

6-Chloropurine riboside (28, 500 mg) was put in a 10 mL glass vial with a small magnetic stirrer. 

To this was added 2 mL ethanol, thiourea (200 mg, 2.61 mmol), and the solution was refluxed 

for 1 h. Precipitate of S-(purin-6-yl)isothiourea hydrochloride was formed followed by addition 

of benzyl chloride (330 mg, 2.61 mmol) and K2CO3 (480 mg, 3.48 mmol). Then the mixture was 
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put in the microwave synthesis apparatus and irradiated at 200 W at 100 
o
C for 10 min. After 

evaporation of the solvent, the crude product was purified by column chromatography over silica 

(1:8 MeOH/DCM) yielded the title compound as yellowish white solid. 

Yield: 222 mg (76%). 

Melting Point (
o
C): 216-217

 

1
H NMR (600 MHz, DMSO-d6): δ 8.78 (s, 1H, C8-H), 8.70 (s, 1H, C2-H), 7.48 – 7.42 (m, 2H, 

Ar-H), 7.34 – 7.27 (m, 2H, Ar-H), 7.27 – 7.21 (m, 1H, Ar-H), 5.99 (d, J = 5.5 Hz, 1H, C1′-H), 

5.49 (d, J = 5.9 Hz, 1H, C2′-H), 5.20 (d, J = 5.0 Hz, 1H, C3′-H), 5.08 (t, J = 5.6 Hz, 1H, C4′-H), 

4.70 – 4.62 (m, 2H, CH2-Ar), 4.59 (q, J = 5.5 Hz, 1H, C5′-H), 4.17 (td, J = 4.9, 3.6 Hz, 1H, C5′-

H), 3.97 (q, J = 3.9 Hz, 1H, C5′-OH), 3.68 (q, J = 12.0, 5.1, 4.0 Hz, 1H, C3′-OH), 3.56 (q, J = 

12.0, 6.1, 4.0 Hz, 1H, C2′-OH). 

13
C NMR (151 MHz, DMSO-d6): δ 159.34 (1C, C6), 151.63 (1C, C2), 148.45 (1C, C4), 143.50 

(1C, C8), 137.91 (1C, Ar-H), 131.11 (1C, C5), 129.11 (2C, Ar-H), 128.65 (1C, Ar-H), 127.35 

(1C, Ar-H), 87.99 (1C, H1′), 85.87 (1C, H4′), 73.94 (1C, H2′), 70.41 (1C, H3′), 61.38 (1C, H5′), 

31.79 (1C, CH2-Ar).  

LC-MS (m/z): negative mode 373 [M-H]
-
, positive mode 375 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

15.1. General procedure for the synthesis of nucleotides (81-83) 

A solution of methylenebis(phosphonic dichloride) (5 mmol) in trimethyl phosphate (2 mL), 

cooled to 0 
o
C was added to a suspension of  corresponding O

6
– and S

6
–substituted nucleosides, 

77, 78 and 80 (1 mmol) in trimethyl phosphate at 0 
o
C. The reaction mixture was stirred at 0 

o
C 

and samples were withdrawn at 10 min interval for TLC to check the disappearance of 
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nucleosides. After 30 min, on disappearance of nucleoside, 7 mL of cold 0.5 M aqueous TEAC 

solution (pH 7.4-7.6) was added. It was stirred at 0 
o
C for 25 min followed by stirring at room 

temperature for 1 h. Trimethyl phosphate was extracted using (2 x 100 mL) of tert.butylmethyl 

ether and the aqueous layer was lyophilized. The crude product was then purified by RP-HPLC 

using a gradient of 50 mM ammoniumbicarbonate/ACN from 100:0 to 60:40 to get final product. 

Since there was no formation of dinucleotide, ion exchange chromatography was not used. 

15.2. 6-Ethoxypurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (81) 

. 

1
H NMR (500 MHz, D2O): δ 8.69 (s, 1H, C8-H), 8.48 (s, 1H, C2-H), 6.20 (d, J = 5.4 Hz, 1H, 

C1′-H), 4.74 (d, J = 0.8 Hz, 1H, C2′-H), 4.63 (q, J = 7.1 Hz, 2H, CH2-CH3), 4.56 (dd, J = 5.2, 4.0 

Hz, 1H, C3′-H), 4.40 (q, J = 3.4 Hz, 1H, C4′-H), 4.20 (dt, J = 6.1, 3.0 Hz, 2H, C5′-H2), 2.24 (td, 

J = 19.9, 1.6 Hz, 2H, P-CH2-P), 1.40 – 138 (m, 3H, CH2-CH3).  

13
C NMR (126 MHz, D2O): δ 163.31 (1C, C6), 155.10 (1C, C2), 153.96 (1C, C4), 144.59 (1C, 

C8), 123.25 (1C, C5), 90.33 (1C, C1′), 86.81 (1C, C4′), 77.06 (1C, C2′), 73.02 (1C, C3′), 67.39 

(1C, C5′), 66.37 (1C, CH2-CH3′), 49.49 (1C, P-CH2-P), 16.46 (1C, CH2-CH3).  

31
P NMR (202 MHz, D2O): δ 18.09 (P), 16.59 (Pβ).  

LC-MS (m/z): negative mode 453 [M-H]
-
, positive mode 455 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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15. 3. 6-Benzyloxypurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (82)  

 

1
H NMR (500 MHz, D2O): δ 8.70 (s, 1H, C8-H), 8.52 (s, 1H, C2-H), 7.57 (dd, J = 8.1, 1.6 Hz, 

2H, Ar-H), 7.47 – 7.34 (m, 3H, Ar-H), 6.21 (dd, J = 5.7, 1.1 Hz, 1H, C1′-H), 5.67 (s, 2H, CH2-

Ar), 4.74 (d, J = 1.2 Hz, 1H, C2′-H), 4.59 – 4.50 (m, 1H, C3′-H), 4.40 (td, J = 3.9, 2.5 Hz, 1H, 

C4′-H), 4.19 (td, J = 3.9, 1.3 Hz, 2H, C5′-H2), 2.32 – 2.15 (m, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 163.10 (1C, C6), 155.09 (1C, C2), 154.33 (1C, C4), 144.90 (1C, 

C8), 138.52 (1C, Ar-H), 131.65 (2C, Ar-H), 131.40 (2C, Ar-H), 130.73 (1C, Ar-H), 123.58 (1C, 

C5), 90.26 (1C, C1′), 86.90 (1C, C4′), 77.07 (1C, C2′), 72.56 (1C, C3′), 68.55 – 65.68 (1C, C5′), 

61.47 (1C, CH2-Ar), 49.51 (1C, P-CH2-P).
  

31
P NMR (202 MHz, D2O): δ 18.40 (d, J = 23.6 Hz, P), 16.03 (d, J = 21.0 Hz, Pβ).  

LC-MS (m/z): negative mode 515 [M-H]
-
, positive mode 517 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

15.4. 6-Benzylthiopurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (83)
  

 

1
H NMR (500 MHz, D2O): δ 8.72 (s, 1H, C8-H), 8.67 (s, 1H, C2-H), 7.36 – 7.21 (m, 5H, Ar-H), 

6.18 (d, J = 5.4 Hz, 1H, C1′-H), 4.74 (d, J = 2.0 Hz, 1H, C2′-H), 4.61 (s, 2H, CH2-Ar), 4.55 (dd, 
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J = 5.2, 4.1 Hz, 1H, C3′-H), 4.44 – 4.35 (m, 1H, C4′-H), 4.19 (q, J = 5.6, 3.3, 1.8 Hz, 2H, C5′-

H2), 2.20 (td, J = 20.0, 1.1 Hz, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 163.32 (1C, C6), 154.77 (1C, C2), 150.62 (1C, C4), 145.62 (1C, 

C8), 139.86 (1C, Ar-H), 133.51 (1C, C5), 131.64 (1C, Ar-H), 130.43 (1C, Ar-H), 129.35 (1C, 

Ar-H), 90.23 (1C, C1′), 86.84 (1C, C4′), 77.09 (1C, C2′), 73.06 (1C, C3′), 66.34 (1C, C5′), 50.53 

(1C, P-CH2-P), 35.56 (1C, CH2-Ar).  

31
P NMR (202 MHz, D2O): δ 18.71 (d, J = 10.3 Hz, P), 15.31 (td, J = 9.7 Hz, Pβ).  

LC-MS (m/z): negative mode 531 [M-H]
-
, positive mode 533 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 97.0%. 

16.1. 8-Bromoadenosine (84) 

 

Bromine-water is a mixture of 2.8% conc. bromine dissolved in water (%w/w). Adenosine (500 

mg) and 8 mL of bromine-water was stirred at pH 4.0 maintained by acetate buffer (0.1 M) for 4 

h. The solution was decolorized with NaHSO3 and the resulting precipitate was washed with 

water followed by 1N sodium bicarbonate solution, then dried to yield orange red solid as the 

title compound 84. 

Yield: 254 mg (75%). 

Melting Point (
o
C): 185-186
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1
H NMR (500 MHz, DMSO-d6): δ 8.40 (s, 1H, C2-H), 6.56 (bs, 2H, NH2), 4.59 – 4.50 (m, 1H, 

C1′-H), 4.53 – 4.45 (m, 1H, C2′-H), 4.33 – 4.28 (m, 1H, C3′-H), 4.20 (bs, H, C5′-OH), 4.15 – 

4.13 (m, 2H, C5′-H2), 3.56 – 3.58 (m, 2H, C2′-OH and C3′-OH), 3.17  – 3.10 (m, 1H, C4′-H).  

13
C NMR (125 MHz, DMSO-d6): δ 155.8 (1C, C2), 152.5 (1C, C6), 150.1 (1C, C4), 128.1 (1C, 

C8), 120.3 (1C, C5), 95.7 (1C, C1′), 88.3 (1C, C4′), 74.5 (1C, C2′), 71.3 (1C, C3′), 62.8 (1C, 

C5′).  

LC/ESI-MS: negative mode 345 ([M - H]
-
), positive mode 347 ([M + H]

+
).  

16.2. 8-Chloroadenosine (86) 

8-Bromoadenosine (84, 500 mg) was put in a 10 mL glass vial with a small magnetic stirrer. To 

this was added 2 mL ethanol, thiourea (200 mg), and the solution was refluxed for 1 h. 

Precipitate was filterd off. The filtrate was evapotated and purified by HPLC to get 8-

thioadenosine (85). Compound 86 was synthesized by stirring 8-thioadenosine (200 mg), 3mL of 

N-chlorosuccinimide and 5 mL of methanol at rt for 3 h. Then it was evaporated in vacuo and 

purified by RP-HPLC to get desired compound as white solid. (110 mg, 52% yield). 

 

Melting Point (
o
C): 190-191 [literature, 189-191]

185 

1
H NMR (600 MHz, DMSO-d6): δ 8.12 (s, 1H, C2-H), 7.55 (s, 2H, NH2), 5.83 (d, J = 6.7 Hz, 

1H, C1′-H), 5.08 (dd, J = 6.8, 5.2 Hz, 1H, C2′-H), 4.19 (dd, J = 5.2, 2.4 Hz, 1H, C3′-H), 3.97 (td, 
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J = 4.0, 2.4 Hz, 1H, C4′-H), 3.67 (dd, J = 12.1, 4.0 Hz, 1H, C5′-H), 3.52 (dd, J = 12.2, 4.2 Hz, 

1H, C5′-H). 

13
C NMR (151 MHz, DMSO-d6): δ 155.16 (1C, C6), 152.40 (1C, C2), 149.99 (1C, C4), 127.31 

(1C, C8), 119.81 (1C, C5), 90.54 (1C, C1′), 86.82 (1C, C4′), 74.32 (1C, C2′), 71.11 (1C, C3′), 

62.22 (1C, C5′).  

LC-MS (m/z): negative mode 302 [M-H]
-
, positive mode 300 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 97.6%. 

16.3. 8-Ethylthioadenosine (87)   

 

8-Bromoadenosine (84, 500 mg) was put in a 10 mL glass vial with a small magnetic stirrer. To 

this was added 2 mL ethanol, thiourea (200 mg), and the solution was refluxed for 1 h. 

Precipitate of S-(purin-6-yl)isothiourea hydroiodide was formed followed by addition of ethyl 

iodide (330 mg) and K2CO3 (480 mg). Then the mixture was put in the microwave synthesis 

apparatus and irradiated at 200 W at 100 
o
C for 10 min. After evaporation of the solvent, the 

crude product was purified by column chromatography over silica (1:8 MeOH/DCM) yielded the 

title compound as white solid. (383 mg, 56% yield). 

Melting Point (
o
C): 169-170 [literature, 176]

186 
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1
H NMR (600 MHz, DMSO-d6): δ 8.05 (s, 1H, C2-H), 7.24 (s, 2H, NH2), 5.76 (d, J = 6.8 Hz, 

1H, C1′-H), 5.59 (dd, J = 8.8, 3.7 Hz, 1H, C2′-H), 5.38 – 5.33 (m, 1H, C3′-H), 5.17 – 5.12 (m, 

1H, C4′-H), 5.03 – 4.95 (m, 1H, C5′-H), 4.15 (dt, J = 4.8, 2.4 Hz, 1H, C5′-H), 3.96 (td, J = 3.9, 

2.3 Hz, 1H, C5′-OH), 3.66 (dt, J = 12.1, 3.6 Hz, 1H, C3′-OH), 3.56 – 3.47 (m, 1H, C2′-OH), 3.39 

– 3.19 (m, 2H, CH2-CH3), 1.35 (t, J = 7.3 Hz, 3H, CH2-CH3).  

13
C NMR (151 MHz, DMSO-d6): δ 154.71 (1C, C8), 151.41 (1C, C6), 150.55 (1C, C2), 148.65 

(1C, C4), 119.79 (1C, C5), 89.02 (1C, C1′), 86.72 (1C, C4′), 71.42 (1C, C2′), 71.11 (1C, C3′), 

62.36 (1C, C5′), 26.92 (1C, CH2-CH3), 14.95 (1C, CH2-CH3).  

LC-MS (m/z): negative mode 295 [M-H]
-
, positive mode 297 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 97.6%. 

16.4. 8-Aminomethyl-adenosine (88)
 

 

The compound 88 was synthesized from 8-chloroadenosine (500 mg), by stirring with methyl 

amine (120 mg) and triethyl amine (150 mg) for 20 h at room temperature. Then the resulting 

solution was evaporated in vacuo and separated by column chromatography and was isolated as a 

purplish solid (456 mg, 93% yield).
  

Melting Point (
o
C): 217–218 
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1
H NMR (600 MHz, DMSO-d6): δ 7.88 (s, 1H, C2-H), 6.88 (q, J = 4.6 Hz, 1H, NH-CH3), 6.48 

(s, 2H, NH2), 5.87 – 5.82 (m, 2H, C1′-H and C2′-H), 5.20 (d, J = 6.6 Hz, 1H, C3′-H), 5.09 (d, J = 

4.1 Hz, 1H, C4′-H), 4.67 (td, J = 6.9, 5.3 Hz, 1H, C5′-H), 4.11 – 4.09 (m, 1H, C5′-H), 3.95 (q, J 

= 2.4 Hz, 1H, C5′-OH), 3.69 – 3.54 (m, 2H, C2′-OH and C3′-OH), 2.88 (d, J = 4.6 Hz, 3H, 

NHCH3). 

13
C NMR (151 MHz, DMSO-d6): δ 152.58 (1C, C8), 152.21 (1C, C6), 149.97 (1C, C2), 148.62 

(1C, C4), 117.33 (1C, C5), 86.68 (1C, C1′), 85.80 (1C, C4′), 71.09 (1C, C2′), 70.89 (1C, C3′), 

61.83 (1C, C5′), 29.26 (1C, NHCH3). 

LC-MS (m/z): negative mode 295 [M-H]
-
, positive mode 297 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 97.4%. 

17.1. General procedure for the synthesis of nucleotides (89-92) 

A solution of methylenebis(phosphonic dichloride) (5-6 mmol) in trimethyl phosphate (2 mL), 

cooled to 0 
o
C was added to a suspension of  corresponding 8-substitued nucleosides, 84, 86, 87 

and 88 (1 mmol) in trimethyl phosphate at 0 
o
C. The reaction mixture was stirred at 0 

o
C and 

samples were withdrawn at 10 min interval for TLC to check the disappearance of nucleosides. 

After 60 min, on disappearance of nucleoside, 7 mL of cold 0.5 M aqueous TEAC solution (pH 

7.4-7.6) was added. It was stirred at 0 
o
C for 15 min followed by stirring at room temperature for 

1 h. Trimethyl phosphate was extracted using (2 x 100 mL) of tert.butylmethyl ether and the 

aqueous layer was lyophilized.  The crude product was then purified by RP-HPLC using a 

gradient of 50 Mm ammoniumbicarbonate/ACN from 100:0 to 60:40 to get final product. Since 

there was no formation of dinucleotide, ion exchange chromatography was not used. 
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17.2. 8-Bromoadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (89) 

 

1
H NMR (500 MHz, D2O): δ 8.40 (s, 1H, C2-H), 5.98 (d, J = 5.2 Hz, 1H, C1′-H), 4.54 (t, J = 

4.7 Hz, 1H, C2′-H), 4.33 (q, J = 3.9 Hz, 1H, C3′-H), 4.16 (dt, J = 6.6, 3.5 Hz, 2H, C5′-H2), 3.97 

(td, J = 4.0, 2.4 Hz, 1H, C4′-H), 2.14 (t, J = 19.8 Hz, 2H, P-CH2-P).   

13
C NMR (126 MHz, D2O): δ 162.36 (1C, C2), 156.06 (1C, C8), 153.31 (1C, C4), 145.04 (1C, 

C8), 126.81 (1C, C5), 90.26 (1C, C1′), 86.58 (1C, C4′), 76.55 (1C, C2′), 73.03 (1C, C3′), 66.28 

(1C, C5′), 49.47 (1C, P-CH2-P).  

31
P NMR (202 MHz, D2O): δ 23.04 – 18.65 (m, P), 14.47 (d, J = 9.6 Hz, Pβ).  

LC-MS (m/z): negative mode 503 [M-H]
-
, positive mode 505 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

 

17.3. 8-Chloroadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (90)
 

 

1
H NMR (500 MHz, D2O): δ 8.46 (s, 1H, C2-H), 6.01 (d, J = 5.0 Hz, 1H, C1′-H), 4.98 (td, J = 

4.0, 2.4 Hz, 1H, C2′-H), 4.52 (t, J = 4.8 Hz, 1H, C3′-H), 4.34 (q, J = 3.7 Hz, 1H, C4′-H), 4.14 (t, 

J = 4.4 Hz, 2H, C5′-H2), 2.07 (t, J = 19.5 Hz, 2H, P-CH2-P).   
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13
C NMR (126 MHz, D2O): δ 163.14 (1C, C6), 156.60 (1C, C2), 152.91 (1C, C4), 142.91 (1C, 

C8), 120.49 (1C, C5), 90.04 (1C, C1′), 86.66 – 86.60 (1C, C4′), 77.09 (1C, C2′), 72.84 (1C, C3′), 

66.05 (1C, C5′), 49.48 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 21.25 (P), 12.84 (Pβ). 

LC-MS (m/z): negative mode 458 [M-H]
-
, positive mode 460 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

17.4. 8-Ethylthioadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (91) 

 

1
H NMR (500 MHz, D2O): δ 8.05 (s, 1H, C2-H), 6.11 (dd, J = 15.8, 5.4 Hz, 1H, C1′-H), 5.33 – 

5.23 (m, 1H, C2′-H), 4.62 – 4.51 (m, 1H, C3′-H), 4.42 – 4.28 (m, 1H, C4′-H), 4.17 (td, J = 8.7, 

4.8 Hz, 2H, C5′-H2), 3.23 – 3.21 (m, 2H, CH2-CH3),  2.19 (t, J = 19.8 Hz, 2H, P-CH2-P), 1.30 (t, 

J = 7.5, 3.7 Hz, 3H, CH2-CH3).  

13
C NMR (126 MHz, D2O): δ 167.64 (1C, C8), 157.32 (1C, C6), 152.90 (1C, C2), 142.11 (1C, 

C4), 118.83 (1C, C5), 89.77 (1C, C1′), 86.48 (1C, C4′), 76.82 (1C, C2′), 73.05 (1C, C3′), 66.43 

(1C, C5′), 49.46 (1C, P-CH2-P), 25.12 (1C, CH2-CH3), 14.04 (1C, CH2-CH3).  

31
P NMR (202 MHz, D2O): δ 18.68 (d, J = 9.7 Hz, P), 15.27 (d, J = 9.4 Hz, Pβ).  

LC-MS (m/z): negative mode 484 [M-H]
-
, positive mode 486 [M+H]

+
. 

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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17.5. 8-Aminomethyladenosine-5′-O-[(phosphonomethyl)phosphonic acid] (92)
 

 

1
H NMR (500 MHz, D2O): δ 8.01 (s, 1H, C2-H), 5.98 (s, 1H, C1′-H), 4.97  – 4.95 (m, 1H, C2′-

H), 4.56 (d, J = 25.2 Hz, 1H, C3′-H), 4.35 (d, J = 10.1 Hz, 1H, C4′-H), 4.26 – 4.15 (m, 2H, C5′-

H2), 2.27 – 2.02 (m, 2H, P-CH2-P), 2.86 (d, J = 4.6 Hz, 3H, -NH-CH3). 

13
C NMR (126 MHz, D2O): δ 165.98 (1C, C6), 157.10 (1C, C4), 152.80 (1C, C2), 142.75 (1C, 

C8), 120.14 (1C, C5), 90.89 (1C, C1′), 86.69 (1C, C4′), 75.81 (1C, C2′), 73.11 (1C, C3′), 66.45 

(1C, C5′), 49.51 (1C, P-CH2-P), 33.07 (1C, -NH-CH3).  

31
P NMR (202 MHz, D2O): δ 18.49 (P), 16.14 (Pβ). 

LC-MS (m/z): negative mode 453 [M-H]
-
, positive mode 455 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

18.1. 2-Amino-2′,3′,5′-tri-O-acetylinosine (94)  

 

To 8.92 g of commercial guanosine was added 0.2 g DMAP, 8.8 g of EDMA and 10.2 g of acetic 

anhydride. The resulting suspension was suspended in 100 mL of acetonitrile. It was stirred for 

15 min at rt until a clear solution was obtained. Excess acetic anhydride was destroyed by adding 
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20 mL methanol and stirred for additional 15 min. Finally the reagents are removed in vacuo and 

the residue is recrystallized from isopropanol, followed by acetone and methanol. 

Yield: 8.03 g (95%). 

Melting Point (
o
C): 225-227 [literature, 224-229].

187 

1
H NMR (500 MHz, DMSO-d6): δ 8.34 (s, 1H, C2-H), 8.13 (s, 1H, C8-H), 6.49 (bs, 2H, NH2), 

6.19 (d, J =5.7, 1H, C1′-H), 5.92 (t, J = 5.4, 1H, C2′-H), 5.58 (t, J = 5.6, 1H, C3′-H), 4.38 – 4.51 

(m, 3H, H4′, C5′-H2), 2.19 (s, 3H, OAc), 2.17 (s, 3H, OAc), 2.13 (s, 3H, OAc). 
 

13
C NMR (125 MHz, DMSO-d6): δ 169.31, 169.84, 171.28 (3 xCO), 156.01 (1C, C6), 142.47 

(1C, C2), 145.83 (1C, C4), 136.26 (1C, C8), 125.42 (1C, C5), 87.65 (1C, C1′), 82.44 (1C, C4′), 

73.42 (1C, C2′), 70.81 (1C, C3′), 65.09 (1C, C5′), 22.61, 22.74, 22.85 (3C, 3xOAc).          

LC/ESI-MS: negative mode 408 ([M - H]
-
), positive mode 410 ([M + H]

+
).  

18.2. 2-Amino-6-chloro-2′,3′,5′-tri-O-acetylinosine (95)  

 

A suspension of 94 (2.45 g), N,N-dimethylaniline (0.83 mL), tetraethylammonium chloride (1.88 

g) and phosphorus oxychloride (12.2 mL) was stirred at room temperature for 7 min under an 

atmosphere of argon. The flask was heated in a preheated oil bath at 90 
o
C for 13 min. The 

solution was evaporated, and the resulting oil was stirred in DCM (20 mL) and ice (20 mL). The 

aqueous layer was extracted with DCM (2 x 25 mL). The combined organic layers were washed 

with 2M HCl (4 x 20 mL) and brine (2 x 20 mL), dried, and evaporated to yield 2.0 g of green 
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oil. Purification using silica chromatography (1:10 MeOH/DCM) yielded the title compound 95 

as a pale orange oil, which was subsequently crystallized in hexane to pale orange solid. 

Yield: 254 mg (95%). 

Melting Point (
o
C): 174-175 [literature, 174].

188 

1
H NMR (500 MHz, DMSO-d6): δ 8.28 (s, 1H, C8-H), 6.20 (d, 1H, C1′-H), 5.77 (d, 1H, C3′-H), 

5.53 (d, 1H, C2′-H), 4.46 (t, 1H, C4′-H), 4.40 (d, 2H, C5′-H2), 2.14 (s, 3H, OCOCH3), 2.12 (s, 

3H, OCOCH3), 2.06 (s, 3H, OCOCH3). 

13
C NMR (125 MHz, DMSO-d6): δ 170.17 (1C, OCOCH3), 169.65 (1C, OCOCH3), 169.35 (1C, 

OCOCH3), 160.03 (1C, C2), 153.45 (1C, C6), 143.91 (1C, C4), 142.28 (1C, C8), 130.90 (1C, 

C5), 86.52 (1C, C1′), 80.83 (1C, C4′), 73.21 (1C, C3′), 70.56 (1C, C2′), 62.61 (1C, C5′), 20.79 

(1C, CH3-CO), 20.51 (1C, CH3-CO), 20.32 (1C, CH3-CO).   

LC/ESI-MS: negative mode 413 ([M - H]
-
), positive mode 415 ([M + H]

+
).  

18.3. 2-Amino-6-chloropurine riboside (96) 

 

Compound 95 (2.0 g) was dissolve in methanol. To it was added, 2% of sodium methoxide in 

methanol. It was stirred 24 h at rt. Resulting precipitate was collected. The resulting solution was 

evaporated and purification using silica chromatography (1:10 MeOH/DCM) yielded the title 

compound 99. 

Yield: 995 mg (67%). 
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Melting Point (
o
C): 174-176 [literature, 171-172].

190 

1
H NMR (500 MHz, DMSO-d6): δ 8.83 (s, 1 H, C8-H), 6.49 (bs, 2H, NH2), 6.03 (d, 1 H, J = 5.1 

Hz, C1′-H), 5.51 (d, 1 H, J = 5.5 Hz, C2′-H), 5.30 (d, 1 H, J = 5.4 Hz, C3′-H), 5.13 (t, 1 H, J = 

5.3 Hz, C4′-H), 4.57 – 4.45 (m, 1 H, C5′-H), 4.22  – 4.13 (m, 1 H, C5′-H), 4.12 – 4.08 (m, 1 H, 

C5′-OH), 3.4 – 3.7 (m, 2H, C2′-OH and C3′-OH).  

13
C NMR (125 MHz, DMSO-d6): δ 152.98 (1C, C2), 151.41 (1C, C6), 143.27 (1C, C4), 142.82 

(1C, C8), 133.54 (1C, C5), 87.32 (1C, C1′), 86.81 (1C, C4′), 73.55 (1C, C2′), 71.21 (1C, C3′), 

62.01 (1C, C5′).  

LC/ESI-MS: negative mode 299 ([M - H]
-
), positive mode 302 ([M + H]

+
).  

18.4. 2,6-dichloro-2',3', 5'-triacetyl-purine riboside (97) 

 

2-Amino-6-chloro-2',3',5'-triacetylribofuranoslypurine (0.6 g) and acetyl chloride (0.92 g) were 

added under argon atmosphere in 20 mL of anhydrous dichloromethane. Under ice cooling, 0.8 g 

BTEA-nitrite dissolved in 10 mL of anhydrous dichloromethane was added dropwise within an 

hour. It was stirred under ice-cooling and the progress of reaction was monitored in TLC. After 

completion of reaction after five hour, the solution was extracted three times with 100 mL of 

water. The organic phase is dried over magnesium sulfate, filtered and freed from solvent to 

yield the desired compound. 

Yield: 254 mg (67%). 

Melting Point (
o
C): 160-161 [literature, 159].

191 
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1
H NMR (500 MHz, DMSO-d6):  δ 8.28 (s, 1H, C8-H), 6.20 – 6.10 (m, 1H, C1′-H), 5.77 – 5.67 

(m, 1H, C2′-H), 5.53 – 5.45 (m, 1H, C3′-H), 4.46 (t, 1H, C4′-H), 4.40 – 4.23 (m, 2H, C5′-H2), 

2.15 (s, 3H, OCOCH3), 2.12 (s, 3H, OCOCH3), 2.07(s, 3H, OCOCH3). 

13
C NMR (125 MHz, DMSO-d6): δ 170.17, 169.60, 169.35 (3C, 3xOCOCH3), 153.00 (1C, C2), 

152.45 (1C, C6), 152.19 (1C, C4), 143.21 (1C, C8), 131.35 (1C, C5), 86.5 (1C, C1′), 80.8 (1C, 

C4′), 73.21 (1C, C2′), 70.5 (1C, C3′), 62.6 (1C, C5′), 20.7 (1C, 3xOCOCH3).  

LC/ESI-MS: negative mode 446 ([M - H]
-
), positive mode 448 ([M + H]

+
).  

18.5. 2-Chloroadenosine (98) 

 

Ammoniacal ethanol solution is prepared by introducing ammonia gas in 100 mL of dry ethanol, 

under ice-cooling. The solution is used without further workup. 0.5 g of 2,6-dichoro-2',3',5'-

triacetylribofuranosylpurine (97) was dissolved in 25 mL of ammoniacal ethanol solution and 

stirred for three days at room temperature. The solvent is removed under reduced pressure and 

the crude product was applied to a silica gel column with dichloromethane: methanol elution 

(9:1). The collected fractions were freed from solvent, and a reversed-phase chromatography 

(HPLC) with an increasing gradient methanol (10:90 to 90:10 over 70 min) in water was used to 

remove acetamide. The solvent was removed by lyophilization to yield the title compound 98. 

Yield: 254 mg (67%). 

Melting Point (
o
C): 174-176 [literature, 135].

192 
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1
H NMR (500 MHz, DMSO-d6): δ 8.36 (s, 1H, C8-H), 7.80 (d, 2H, NH2), 5.97 (d, J = 5.99 Hz, 

1H, C1′-H), 5.42 (d, J = 5.99 Hz, 1H, C2′-H), 5.16 (d, J = 5.04 Hz, 1H, C3′-H), 5.01 (d, J = 5.67 

Hz, 1H, C4′-H), 4.51 – 4.41 (m, 1H, C5′-H), 4.12 – 4.01 (m, 1H, C5′-H), 3.93 – 3.82 (m, 1H, 

C5′-OH) , 3.56 – 3.54 (m, 1H, C3′-OH), 3.51 – 3.41 (m, 1H, C2′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 156.95 (1C, C6), 153.14 (1C, C2), 150.49 (1C, C4), 140.17 

(1C, C8), 118.33 (1C, C5), 87.53 (1C, C1′), 85.86 (1C, C4′), 73.57 (1C, C2′), 70.53 (1C, C3′), 

61.53 (1C, C5′). 

LC/ESI-MS: negative mode 300 ([M - H]
-
), positive mode 302 ([M + H]

+
).  

 

18.6. 6-Chloro-2-iodo-2',3',5'-triacetyl-purine riboside (99) 

 

Isoamyl nitrate (4350 g) was added to the mixture of 95 (500 mg), I2 (1000 mg), diiodomethane 

(30 mL) and CuI (2394 g) in THF (50 mL). The mixture was heated at 80 
o
C for 2 h. Insoluble 

material was removed by filteration and the filtrate was evaporated in vacuo. Then it was 

subjected to column chromatography. The desired compound was eluted with 2% methanol in 

DCM as brownish solid. 

Yield: 254 mg (47%). 

Melting Point (
o
C): 174-176.
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1
H NMR (500 MHz, DMSO-d6): δ 8.26 (s, 1H, C8-H), 6.02 (d, 1H, C1′-H), 5.80 (d, J = 5.8 Hz, 

1H, C2′-H), 5.42 (d, J = 6.2 Hz, 1H, C3′-H), 5.25 (q, J = 1.5 Hz, 1H, C4′-H), 5.13 (d, J = 1.5 Hz, 

2H, C5′-H2), 2.16 (s, 3H, COCH3), 2.11 (s, 3H, COCH3), 2.06 (s, 3H, COCH3).  

13
C NMR (125 MHz, DMSO-d6): δ 170.12 – 168.36 (3C, COCH3), 154.23 (1C, C6), 151.30 

(1C, C2), 150.45 (1C, C4), 138.20 (1C, C8), 131.35 (1C, C5), 87.65 (1C, C1′), 85.80 (1C, C4′), 

73.28 (1C, C2′), 70.58 (1C, C3′), 61.66 (1C, C5′), 20.68 (1C, COCH3), 20.34 (1C, COCH3), 

20.12 (1C, COCH3). 

LC/ESI-MS: negative mode 537 ([M - H]
-
), positive mode 539 ([M + H]

+
).  

18.7. 2-Iodoadenosine (100) 

 

6-Chloro-2-iodo-2',3',5'-triacetylribofuranosylpurine (0.5 g) was dissolved in 25 mL of 

ammoniacal ethanol solution and was stirred for three days at room temperature. The solvent was 

removed under reduced pressure and the crude product was applied to a silica gel column with 

dichloromethane: methanol (9:1) elution. The collected fractions were freed from solvent, and a 

reversed-phase chromatography (HPLC) with an increasing gradient of methanol in water (10:90 

to 90:10 over 70 min) was used to remove acetamide. The solvent was removed by lyophilization 

to yield desired compound. 

Yield: 254 mg (67%). 

Melting Point (
o
C): 185-186 [literature, 185-187].

193 
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1
H NMR (500 MHz, DMSO-d6): δ 8.36 (s, 1H, C8-H), 7.80 (d, 2H, NH2), 5.97 (d, J = 5.99 Hz, 

1H, C1′-H), 5.42 (d, J = 5.99 Hz, 1H, C2′-H), 5.16 (d, J = 5.04 Hz, 1H, C3′-H), 5.01 (d, J = 5.67 

Hz, 1H, C4′-H), 4.51 (m, 1H, C5′-H), 4.12 – 4.05 (m, 1H, C5′-H), 3.93 – 3.85 (m, 1H, C5′-OH) , 

3.56 – 5.51 (m, 1H, C3′-OH), 3.43 – 3.41 (m, 1H, C2′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 156.95 (1C, C6), 153.14 (1C, C2), 150.49 (1C, C4), 140.17 

(1C, C8), 118.33 (1C, C5), 87.53 (1C, C1′), 85.86 (1C, C4′), 73.57 (1C, C2′), 70.53(1C, C3′), 

61.53 (1C, C5′). 

LC/ESI-MS: negative mode 392 ([M - H]
-
), positive mode 394 ([M + H]

+
).  

18.8. 2-Hydrazinyladenosine (101) 

 

Solution of 100 (1.5 g, 5 mmol) in 5 mL of hydrazine hydrate was allowed to stir over night till 

disappearance of 100 determined by TLC (CH2Cl2: MeOH = 3:1). 2-Propanol (50 mL) was 

added to the reaction mixture and the formed gum was taken in water (100 mL) and stirred for 

additional 5 h. The precipitated product was filtered, washed with water, and dried to give the 

pure product. 

Yield: 254 mg (67%). 

Melting Point (
o
C): 157-159.

 

1
H NMR (500 MHz, DMSO-d6): δ 8.24 (s, 1H, C8-H), 7.45 (bs, 2H, NH2), 7.41 (s, 1H, NH-

NH2), 5.90 – 5.85 (m, 1H, C1′-H), 5.48 – 5.40 (m, 1H, C2′-H), 5.06 – 5.01 (m, 1H, C3′-H), 4.98 
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– 4.85 (m, 1H, C4′-H), 4.45 – 4.40 (m, 1H, C5′-H), 4.35 – 4.37 (m, 1H, C5′-H), 3.91 – 3.88 (m, 

1H, C5′-OH) , 3.85 – 3.81 (m, 1H, C3′-OH), 3.78 – 3.65 (m, 1H, C2′-OH). 

13
C NMR (125 MHz, DMSO-d6): δ 160.05 (1C, C1), 152.04 (1C, C2), 151.40 (1C, C4), 140.37 

(1C, C8), 113.43 (1C, C5), 88.33 (1C, C1′), 87.46 (1C, C4′), 73.77 (1C, C2′), 70.50 (1C, C3′), 

61.63 (1C, C5′). 

LC/ESI-MS: negative mode 296 ([M - H]
-
), positive mode 298 ([M + H]

+
). 

18.9. 2-Boc-piperazinyladenosine (102)  

 

A mixture of 2-chloropurine riboside (500 mg), and 1-boc piperazine (5 mL), 5 mL of Et3N in 

1:1 mixture of 20 mL of ethanol and water was refluxed at 160 
o
C for 18 h. After completion of 

reaction it was evaporated under high vacuo. Purification using silica chromatography and 

precipitation using acetone (1:8 MeOH/DCM) yielded the title compound as white solid. 

Yield: 254 mg (67%). 

Melting Point (
o
C): 178-179.

 

1
H NMR (500 MHz, DMSO-d6): δ 8.36 (s, 1H, C8-H), 6.84 (s, 2H, NH2), 5.74 (d, J = 5.9 Hz, 

1H, C1′-H), 5.31 – 5.20 (m, 1H, C2′-H), 5.10 – 4.95 (m, 1H, C3′-H), 4.87 – 4.78 (m, 1H, C4′-H), 

4.60 (t, J = 5.5 Hz, C5′-H), 4.13 (dd, J = 5.2, 3.2 Hz, 1H, C5′-H), 3.87 (q, J = 4.2 Hz, 1H, C5′-

OH), 3.68 – 3.64 (m, 2H, C3′-OH and C2′-OH), 3.40 – 3.34 (m, 4H, piperazinyl), 1.38 (s, 9H, 

3xCH3). 
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13
C NMR (125 MHz, DMSO-d6): δ 158.59 (1C, C2), 155.89 (1C, C6), 154.15 (1C, NCOO), 

151.60 (1C, C4), 137.24 (1C, C8), 113.69 (1C, C5), 87.00 (1C, C1′), 85.20 (1C, C4′), 79.07 (1C, 

C-3xCH3), 73.09 (1C, C2′), 70.68 (1C, C3′), 61.80 (1C, C5′), 45.50 (2C, piperazinyl), 44.05 (2C, 

piperazinyl), 28.23 (3C, 3xCH3). 

LC/ESI-MS: negative mode 450 ([M - H]
-
), positive mode 452 ([M + H]

+
). 

18.10. 2-piperazinyladenosine (103) 

 

Compound 102 (500 mg) was dissolved in 4.5 mL dichloromethane then, 0.5 mL of water and 

0.65 mL of triflouroacetic acid was added to it. It was stirred at room temperature for 3 h. After 

completion of the reaction, the mixture was evaporated and the solid was precipitated adding 

diethyl ether. Then the crude solid product was dissolved in 6 mL water and 0.6 mL methanol. It 

was then purified by RP-HPLC using a gradient of H2O/MeOH from 100: 0 to 0: 100, and finally 

appropriate fraction were pooled and lyophilized to get final product. 

Yield: 254 mg (67%). 

Melting Point (
o
C): 169-171.

 

1
H NMR (500 MHz, DMSO-d6): δ 8.35 (s, 1H, C8-H), 5.72 (d, J = 5.9 Hz, 1H, C1′-H), 5.35 – 

5.21 (m, 1H, C2′-H), 5.14 – 5.11 (m, 1H, C3′-H), 4.95 – 4.78 (m, 1H, C4′-H), 4.65 (t, J = 5.5 Hz, 

C5′-H), 4.25 (dd, J = 5.2 Hz, 1H, C5′-H), 3.97 (q, 1H, C5′-OH), 3.78 – 3.76 (m, 2H, C3′-OH and 

C2′-OH), 3.41 – 3.36 (m, 4H, piperazinyl). 
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13
C NMR (125 MHz, DMSO-d6): δ 160.69 (1C, C2), 157.88 (1C, C6), 151.64 (1C, C4), 140.23 

(1C, C8), 113.64 (1C, C5), 97.03 (1C, C1′), 84.24 (1C, C4′), 73.79 (1C, C2′), 70.56 (1C, C3′), 

61.86 (1C, C5′), 48.00 (2C, piperazinyl), 45.85 (2C, piperazinyl). 

LC/ESI-MS: negative mode 350 ([M - H]
-
), positive mode 352 ([M + H]

+
). 

18.11. Synthesis of 2-allylthio- and 2-cyclohexylethylthio-adenosine (107, 108) 

2-Thioadenosine (500 mg, 1 mmol) was dissolved in 20 mL of water: ethanol (1: 1) mixture, 

then 4 mL of sodium hydroxide (0.5 N) was added to the reaction mixture, followed by the 

addition of allyl bromide (243 mg, 1.2 mmol) or cyclohexylethyl bromide (385 mg, 1.2 mmol). 

The reaction mixture was stirred for 5 h at rt, and the completion of the reaction was determined 

by TLC (CH2Cl2: MeOH = 9:1). The crude product was extracted by ethyl acetate and 

evaporated to dryness under reduced pressure. The crude product was purified by silica gel 

column chromatography (CH2Cl2: MeOH = 9: 1) to afford the pure product. 

18.12. 2-Allylthioadenosine (107) 

 

Yield: 254 mg (67%). 

Melting Point (
o
C): 171-172.

 

1
H NMR (500 MHz, DMSO-d6): δ 8.22 (s, 1H, C8-H), 7.35 (s, 2H, NH2), 6.02 – 5.88 (m, 1H, 

C1′-H), 5.82 (d, J = 5.8 Hz, 1H, S-CH2-CH=CH2), 5.38 (d, J = 6.2 Hz, 1H, C2′-H), 5.32 (q, J = 

1.5 Hz, 1H, C3′-H), 5.13 (d, J = 4.9 Hz, 1H, S-CH2-CH=CH2), 5.10 – 5.05 (m, 1H, S-CH2-
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CH=CH2), 4.99 (dd, J = 6.0, 5.2 Hz, 1H, C4′-H), 4.56 (td, J = 6.0, 5.1 Hz, 1H, C5′-H), 4.12 (td, J 

= 5.0, 3.5 Hz, 1H, C5′-H), 3.91 (q, J = 4.0 Hz, 1H, C5′-OH), 3.83 – 3.73 (m, 2H, S-CH2-

CH=CH2), 3.63 (q, J = 11.9, 5.3, 4.2 Hz, 1H, C3′-OH), 3.53 (q, J = 12.0, 6.1, 4.3 Hz, 1H, C2′-

OH). 

13
C NMR (125 MHz, DMSO-d6): δ 163.12 (1C, C2), 155.66 (1C, C6), 150.26 (1C, C4), 138.83 

(1C, C8), 134.63 (1C, S-CH2-CH=CH2), 120.40 (1C,C5), 117.28 (1C, S-CH2-CH=CH2), 87.44 

(1C, C1′), 85.57 (1C, C4′), 73.55 (1C, C2′), 70.58 (1C, C3′), 61.67 (1C, C5′), 33.22 (1C, S-CH2-

CH=CH2). 

LC/ESI-MS: negative mode 338 ([M - H]
-
), positive mode 340 ([M + H]

+
). 

Purity by HPLC-UV (254 nm)-ESI-MS: 98.5%. 

18.13. 2-Cyclohexylethylthio-adenosine (108) 

 

Yield: 254 mg (67%). 

Melting Point (
o
C): 181-183.

 

1
H NMR (500 MHz, DMSO-d6): δ 8.19 (s, 1H, C8-H), 7.28 (bs, 2H, NH2), 5.80 (d, J = 5.99 Hz, 

1H, C1′-H), 5.36 – 5.25 (m, 1H, C2′-H), 5.10 – 5.05 (m, 1H, C3′-H), 4.98 (t, J = 5.51 Hz, 1H, 

C4′-H), 4.59 (t, J = 5.35 Hz, 1H, C5′-H), 4.11 (t, J = 5.35 Hz, 1H, C5′-H), 3.90 (q, J = 3.99 Hz, 

1H, C5′-OH), 3.64 – 3.50 (q, J = 3.99 Hz, 2H, C3′-OH and C2′-OH), 3.14 – 3.00 (m, 2H, CH2), 

1.74 – 1.61 (m, 2H, CH2), 1.60 – 0.87 (m, 11H, cyclohexane). 
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13
C NMR (125 MHz, DMSO-d6): δ 163.94 (1C, C2), 155.63 (1C, C6), 150.31 (1C, C4), 138.86 

(1C, C8), 117.05 (1C, C5), 87.42 (1C, C1′), 85.57 (1C, C4′), 73.31 (1C, C2′), 70.60 (1C, C3′), 

61.75 (1C, C5′), 36.82 (1C, CH2-CH2- cyclohexane), 36.61 (1C, cyclohexane), 32.46 (1C, CH2-

CH2-cyclohexane), 27.94 (2C, cyclohexane), 26.26 (2C, cyclohexane), 25.89 (1C, cyclohexane). 

LC/ESI-MS: negative mode 408 ([M - H]
-
), positive mode 410 ([M + H]

+
). 

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

19.1. General procedure for the synthesis of nucleotides (109-114) 

A solution of methylenebis(phosphonic dichloride) (5 mmol) in trimethyl phosphate (2 mL), 

cooled to 0 
o
C was added to a suspension of  corresponding nucleosides, 98, 100, 101, 103, 107 

and 108 (1 mmol) in trimethyl phosphate at 0 
o
C. The reaction mixture was stirred at 0 

o
C and 

samples were withdrawn at 10 min interval for TLC to check the disappearance of nucleosides. 

After 30 min, on disappearance of nucleoside, 7 mL of cold 0.5 M aqueous TEAC solution (pH 

7.4-7.6) was added. It was stirred at 0 
o
C for 15 min followed by stirring at room temperature for 

1 h. Trimethyl phosphate was extracted using (2 x 100 mL) of tert.butylmethyl ether and the 

aqueous layer was lyophilized. The crude product was then purified by RP-HPLC using a 

gradient of 50 mM ammoniumbicarbonate/ACN from 100:0 to 60:40 to get final product. Since 

there was no formation of dinucleotide, ion exchange chromatography was not used. 

 

19.2. 2-Chloroadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (109)
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1
H NMR (500 MHz, D2O): δ 8.46 (s, 1H, C8-H), 6.01 (d, J = 5.0 Hz, 1H, C1′-H), 4.71 (d, J = 

4.8 Hz, 1H, C2′-H), 4.52 (t, J = 4.8 Hz, 1H, C3′-H), 4.34 (q, J = 3.7 Hz, 1H, C4′-H), 4.15 (d, J = 

4.5 Hz, 2H, C5′-H2), 2.07 (t, J = 19.5 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 159.10 (1C, C6), 156.60 (1C, C2), 152.91 (1C, C4), 142.91 (1C, 

C8), 120.50 (1C, C5), 90.04 (1C, C1′), 86.63 (1C, C4′), 77.09 (1C, C2′), 72.84 (1C, C3′), 66.05 

(1C, C5′), 49.48 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 21.25 (P), 12.84 (Pβ).  

LC-MS (m/z): negative mode 458 [M-H]
-
, positive mode 460 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

 

19.3. 2-Iodoadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (110) 

 

1
H NMR (600 MHz, D2O): δ 8.43 (s, 1H, C8-H), 6.05 (d, J = 5.4 Hz, 1H, C1′-H), 4.74 (t, J = 

5.3 Hz, 1H, C2′-H), 4.54 (dd, J = 5.1, 4.1 Hz, 1H, C3′-H), 4.38 (dt, J = 4.2, 2.3 Hz, 1H, C4′), 

4.22 – 4.09 (m, 2H, C5′-H2), 2.20 (td, J = 19.9, 2.0 Hz, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 155.38 (1C, C6), 149.51 (1C, C2), 139.57 (1C, C4), 119.44 (1C, 

C8), 118.50 (1C, C5), 87.05 (1C, C1′), 83.90 (1C, C4′), 74.29 (1C, C2′), 70.13 (1C, C3′), 63.42 

(1C, C5′), 46.62 (1C, P-CH2-P). 

31
P NMR (243 MHz, D2O): δ 18.67 (d, J = 9.7 Hz, P), 15.38 (d, J = 9.8 Hz, Pβ).  

LC-MS (m/z): negative mode 550 [M-H]
-
, positive mode 552 [M+H]

+
.  
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Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

19.4. 2-Hydrazinyladenosine-5′-O-[(phosphonomethyl)phosphonic acid] (111) 

 

1
H NMR (600 MHz, D2O): δ 8.30 (s, 1H, C8-H), 5.98 (s, 1H, C1′-H), 4.98 (m, 1H, C2′-H), 4.56 

(d, J = 25.2 Hz, 1H, C3′-H), 4.35 (d, J = 10.1 Hz, 1H, C4′-H), 4.27 – 4.14 (m, 2H, C5′-H2), 2.28 

– 2.13 (m, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 159.06 (1C, C6), 157.10 (1C, C2), 152.80 (1C, C4), 142.75 (1C, 

C8), 120.14 (1C, C5), 90.89 (1C, C1′), 86.69 (1C, C4′), 75.81 (1C, C2′), 73.11 (1C, C3′), 66.45 

(1C, C5′), 49.51 (1C, P-CH2-P). 

31
P NMR (243 MHz, D2O): δ 18.49 (P), 16.14 (Pβ).  

LC-MS (m/z): negative mode 454 [M-H]
-
, positive mode 456 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

19.5. 2-Piperazinyladenosine-5′-O-[(phosphonomethyl)phosphonic acid] (112) 

 

1
H NMR (600 MHz, D2O): δ 8.15 (s, 1H, C8-H), 6.02 (d, J = 5.3 Hz, 1H, C1′-H), 4.87 (d, J = 

5.3 Hz, 1H, C2′-H), 4.54 (t, J = 4.8 Hz, 1H, C3′-H), 4.37 – 4.24 (m, 1H, C4′-H), 4.14 (q, J = 
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21.8, 8.7, 4.7 Hz, 2H, C5′-H2), 3.99 (s, 2H, piperazinyl-H), 3.33 (s, 2H, piperazinyl-H), 2.90 (s, 

1H, piperazinyl-H), 2.13 (t, J = 19.3 Hz, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 161.50 (1C, C2), 158.82 (1C, C6), 154.30 (1C, C4), 141.32 (1C, 

C8), 120.14 (1C, C6), 90.00 (1C, C1′), 86.07 (1C, C4′), 76.05 (1C, C2′), 73.06 (1C, C3′), 66.58 

(1C, C5′), 47.53 (2C, piperazine), 45.89 (2C, piperazine), 44.46 (1C, P-CH2-P). 

31
P NMR (243 MHz, D2O): δ 19.73 (P), 14.49 (Pβ).  

LC-MS (m/z): negative mode 508 [M-H]
-
, positive mode 510 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

19.6. 2-Allylthioadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (113) 
 

 

1
H NMR (500 MHz, D2O): δ 8.34 (s, 1H, C8-H), 6.09 (dd, J = 5.2, 1.8 Hz, 1H, C1′-H), 6.06 – 

5.99 (m, 1H, C2′-H), 5.36 (t, J = 17.1, 1.5 Hz, 1H, C3′-H), 5.16 (dt, J = 10.1, 1.4 Hz, 1H, C4′-H), 

4.82 (d, J = 2.2 Hz, 1H, Allyl-H), 4.55 (dd, J = 5.8, 4.0 Hz, 1H, Allyl-H), 4.34 (dt, J = 3.4, 1.7 

Hz, 1H, Allyl-H), 4.22 – 4.01 (m, 2H, C5′-H2), 3.82 (dt, J = 6.8, 1.4 Hz, 2H, Allyl-H), 2.15 (td, J 

= 19.8, 1.9 Hz, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 167.39 (1C, C2), 158.06 (1C, C6), 152.94 (1C, C4), 142.12 (1C, 

C8), 136.87 (1C, Allyl), 120.55 (1C, C5), 119.27 (1C, Allyl), 90.08 (1C, C1′), 86.38 (1C, C4′), 

76.71 (1C, C2′), 73.02 (1C, C3′), 66.38 (1C, C5′), 49.50 (1C, P-CH2-P), 36.51 (1C, Allyl). 

31
P NMR (202 MHz, D2O): δ 19.33 (P), 14.47 (Pβ). 

LC-MS (m/z): negative mode 496 [M-H]
-
, positive mode 498 [M+H]

+
.  
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Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

19.7. 2-Cyclohexylethylthioadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (114) 
 

 

1
H NMR (500 MHz, D2O): δ 8.37 (s, 1H, C8-H), 6.11 (dd, J = 15.8, 5.4 Hz, 1H, C1′-H), 4.56 

(dt, J = 20.6, 4.7 Hz, 1H, C2′-H), 4.34 (dq, J = 7.4, 3.6 Hz, 1H, C3′-H), 4.28 – 4.21 (m, 1H, C4′-

H), 4.17 (td, J = 8.7, 4.8 Hz, 2H, C5′-H2), 3.16 – 3.01 (m, 2H, -CH2-CH2-), 2.19 (t, J = 19.8 Hz, 

2H, P-CH2-P), 1.61 – 0.74 (m, 13H, -CH2-CH2-Cyclohexane-H). 

13
C NMR (126 MHz, D2O): δ 167.64 (1C, C2), 157.32 (1C, C6), 152.90 (1C, C4), 142.11 (1C, 

C8), 118.83 (1C, C5), 89.77 (1C, C1′), 86.48 (1C, C4′), 76.82 (1C, C2′), 73.05 (1C, C3′), 66.43 

(1C, C5′), 39.46 (1C, P-CH2-P), 35.46 (1C, CH2-CH2-), 31.60 (1C, Cyclohexane), 30.34 (1C, -

CH2-CH2-Cyclohexane), 29.06 (2C, Cyclohexane), 28.71 (3C, Cyclohexane). 

31
P NMR (202 MHz, D2O): δ 18.68 (d, J = 9.8 Hz, P), 15.27 (d, J = 9.4 Hz, Pβ).  

LC-MS (m/z): negative mode 566 [M-H]
-
, positive mode 568 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

20.1. General Procedure for the synthesis of nucleoside derivatives (115-126 and 127-138)  

A mixture 2-amino-6-chloro-2', 3',5'-triacetylribofuranoslypurine (500 mg) or 2,6-dichloro-2',3', 

5'-triacetylribofuranoslypurine (500 mg) or 2-amino-6-iodo-2',3',5'-triacetylribofuranoslypurine 

(500 mg), (1.76 mmol) of respective amine, (1.6 mmol) of Et3N and 25 mL of ethanol was 

refluxed at 60 
o
C for 18 h. After completion of reaction it was evaporated under high vacuo. 
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Purification using silica chromatography and precipitation using acetone (1:8 MeOH/DCM) 

yielded the title compounds 115-126 as white solid. White solid compound (100 mg) was 

dissolved in 5 mL of 2% sodium methoxide in methanol. It was stirred at room temperature for 

10 hours. After completion of the reaction, the mixture was evaporated and the solid was 

precipitated adding diethyl ether. Then the crude solid product was dissolved in 6 mL water and 

0.6 mL methanol. It was then purified by RP-HPLC using a gradient of H2O/MeOH from 100:0 

to 0:100, and finally appropriate fraction were pooled and lyophilized to get final products 127-

138. 

20.2. N
6
-Dimethyl-2-aminopurine riboside (127)  

 

The compound synthesized using 2',3',5'-tri-O-acetyl-6-chloro-2-amino-9-(β-D-

ribofuranosyl)purine (500 mg), and 123 mg of dimethylamine and was isolated as a white solid. 

Yield: 533 mg (95%). 

Melting Point (
o
C): 201-202 [literature, 200-202].

152 

1
H NMR (500 MHz, DMSO-d6): δ 8.45 (s, 1H, C8-H), 7.92 (bs, 2H, NH2), 5.97 (d, J = 2.9 Hz, 

1H, C1′-H), 5.23 (dd, J = 6.3, 2.9 Hz, 1H, C2′-H), 5.13 (dd, J = 5.9, 5.2 Hz, 1H, C3′-H), 4.98 

(dd, J = 6.2, 2.9 Hz, 1H, C4′-H), 4.12 (td, J = 5.0, 2.9 Hz, 1H, C5′-H2), 3.59 – 3.53 (m, 1H, C5′-

OH), 3.50 (q, J = 11.4, 5.9, 5.0 Hz, 2H, C3′- and C2′-OH), 1.52 (d, J = 0.8 Hz, 3H, CH3), 1.31 

(d, J = 0.8 Hz, 3H, CH3). 
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13
C NMR (126 MHz, DMSO-d6): δ 159.50 (1C, C5), 157.49 (1C, C2), 151.62 (1C, C6), 135.18 

(1C, C4), 113.49 (1C, C8), 98.78 (1C, C1′), 86.56 (1C, C4′), 73.37 (1C, C2′), 70.46 (1C, C3′), 

61.85 (1C, C5′), 27.24 (2C, 2xCH3). 

LC-MS (m/z): negative mode 309 [M-H]
-
, positive mode 311 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 95.0%. 

20.3. N
6
-Diethyl-2-aminopurine riboside (128) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-6-chloro-2-amino-9-(β-D-

ribofuranosyl)purine (500 mg), and 251 mg of diethylamine, and was isolated as a white solid.
  

Yield: 597 mg (92%). 

Melting Point (
o
C): 170-172

 

1
H NMR (500 MHz, DMSO-d6): δ 8.36 (s, 1H, C8-H), 6.92 (s, 2H, NH2), 5.77 (dd, J = 30.2, 6.0 

Hz, 1H, C1′-H), 5.32 – 5.19 (m, 1H, C2′-H), 5.09 (d, J = 31.4 Hz, 1H, C3′-H), 4.47 (t, J = 5.7 

Hz, 1H, C4′-H), 4.10 (q, J = 13.2, 4.7, 3.0 Hz, 1H, C5′-H2), 3.97 – 3.80 (m, 1H, C5′-OH), 3.70 – 

3.58 (m, 1H, C3′-OH), 3.53 (q, J = 12.1, 9.4, 3.9 Hz, 1H, C2′-OH), 3.42 – 3.35 (m, 4H, 2xCH2-

CH3), 1.15 – 1.10 (m, J = 6.9 Hz, 6H, 2xCH2-CH3). 

13
C NMR (126 MHz, DMSO-d6): δ 159.94 (1C, C5), 154.19 (1C, C2), 149.64 (1C, C6), 141.31 

(1C, C4), 123.67 (1C, C8), 86.97 (1C, C1′), 85.54 (1C, C4′), 73.54 (1C, C2′), 70.57 (1C, C3′), 

61.58 (1C, C5′), 41.54 (2C, 2xCH2-CH3), 22.63 (2C, 2xCH2-CH3).  
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LC-MS (m/z): negative mode 337 [M-H]
-
, positive mode 339 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 96.0%. 

20.4. N
6
-Benzyl-2-aminopurine riboside (129) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-6-chloro-2-amino-9-(β-D-

ribofuranosyl)purine (500 mg), and 281 mg of benzylamine, and was isolated as a white solid. 

Yield: 610 mg (99%). 

Melting Point (
o
C): 208-210 [literature, 120].

194 

1
H NMR (500 MHz, DMSO-d6): δ 8.38 (s, 1H, C8-H), 8.24 (s, 1H, NH), 7.35 – 7.20 (m, 5H, 

Ar-H), 5.92 (d, J = 6.0 Hz, 1H, C1′-H), 5.41 (d, J = 6.2 Hz, 1H, C2′-H), 5.29 (dd, J = 6.9, 4.6 Hz, 

1H, C3′-H), 5.14 (d, J = 4.8 Hz, 1H, C4′-H), 4.60 (td, J = 6.1, 5.0 Hz, 1H, C5′-H), 4.15 (td, J = 

4.9, 3.2 Hz, 1H, C5′-H2), 3.96 (q, J = 3.6 Hz, 1H, C5′-OH), 3.67 (q, J = 12.0, 4.7, 3.7 Hz, 1H, 

C3′-OH), 3.55 (q, J = 12.0, 6.9, 3.7 Hz, 1H, C2′-OH).  

13
C NMR (126 MHz, DMSO-d6): δ 160.09 (1C, C2), 154.76 (1C, C6), 151.11 (1C, C4), 146.05 

(1C, Ar), 140.63 (1C, Ar), 136.21 (2C, Ar), 128.22 (1C, Ar), 127.34 (1C, Ar), 125.64 (1C, C5), 

87.17 (1C, C1′), 85.64 (1C, C4′), 73.37 (1C, C2′), 70.83 (1C, C3′), 61.87 (1C, C5′), 42.70 (1C, 

CH2-Ar). 

LC-MS (m/z): negative mode 371 [M-H], positive mode 373 [M+H]
+
. 

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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20.5. N
6
-Benzyl-2-chloropurine riboside (130) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-2,6-dichloro-9-(β-D-

ribofuranosyl)purine (500 mg) and 410 mg of benzylamine, and was isolated as a white solid.
  

Yield: 603 mg (98%). 

Melting Point (
o
C): 225-228 (slow decomp.)

 

1
H NMR (500 MHz, DMSO-d6): δ 8.86 (s, 1H, C8-H), 8.43 (s, 1H, NH), 7.32 (dd, J = 11.8, 7.5 

Hz, 4H, Ar-H), 7.25 – 7.20 (m, 1H, Ar-H), 5.84 (d, J = 6.1 Hz, 1H, C1′-H), 5.44 (d, J = 6.1 Hz, 

1H, C2′-H), 5.25 (m, 1H, C3′-H), 4.65 (d, J = 6.8 Hz, 2H, C5′-H2), 4.49 (q, J = 5.2 Hz, 1H, C4′-

H), 4.15 – 4.03 (m, 1H, C5′-OH), 3.94 (dd, J = 11.3, 3.9 Hz, 1H, C3′-OH), 3.85 (dd, J = 11.2, 3.9 

Hz, 1H, C2′-OH). 

13
C NMR (126 MHz, DMSO-d6): δ 155.08 (1C, C6), 153.38 (1C, C2), 150.20 (1C, C4), 139.73 

(1C, C8), 139.35 (1C, Ar), 128.41 (2C, Ar), 127.35 (2C, Ar), 126.92 (1C, Ar), 118.33 (1C, C5), 

98.34 (1C, C1′), 86.90 (1C, C4′), 83.73 (1C, C2′), 71.13 (1C, C3′), 66.06 (1C, C5′), 43.27 (1C, 

CH2-Ar). 

LC-MS (m/z): negative mode 446 [M-H]
-
, positive mode 448 [M+H]

+
. 

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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20.6. N
6
-Benzyl-2-iodopurine riboside (131) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-6-chloro-2-iodo-9-(β-D-

ribofuranosyl)purine (500 mg) and benzylamine (294 mg), and was isolated as a yellow solid 

powder.
  

Yield: 550 mg (94%). 

Melting Point (
o
C): 188-189

 

1
H NMR (500 MHz, DMSO-d6): δ 8.30 (s, 1H, C8-H), 7.51 – 7.41 (m, 1H, Ar-H), 7.33 (m, 2H, 

Ar-H), 7.26 – 7.15 (m, 2H, Ar-H), 5.81 (d, J = 6.0 Hz, 1H, C1′-H), 5.42 – 5.31 (m, 1H, C2′-H), 

4.77 (d, J = 1.4 Hz, 1H, C3′-H), 4.61 (s, 2H, CH2-Ar), 4.51 (t, J = 5.5 Hz, 1H, C4′-H), 4.18 – 

4.07 (m, 2H, C5′-H2), 3.93 (q, J = 3.8 Hz, 1H, C5′-OH). 

13
C NMR (126 MHz, DMSO-d6): δ 161.88 (1C, C6), 154.05 (1C, C2), 149.28 (1C, C4), 139.58 

(1C, C8), 130.86 (1C, Ar), 128.36 (1C, Ar), 127.69 (3C, Ar), 120.84 (1C, C5), 85.94 (1C, C1′), 

73.74 (1C, C4′), 70.62 (1C, C2′), 64.07 (1C, C3′), 61.55 (1C, C5′), 44.72 (1C, CH2-Ar).  

LC-MS (m/z): negative mode 482 [M-H]
-
, positive mode 484 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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20.7. N
6
-(2-Chlorobenzyl)-2-chloropurine riboside (132) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-2,6-dichloro-9-(β-D-

ribofuranosyl)purine (500 mg), and 392 mg of 2-chlorobenzylamine, and was isolated as a 

yellow powder. 

Yield: 631 mg (95%). 

Melting Point (
o
C): 202-203

 

1
H NMR (500 MHz, DMSO-d6): δ 8.84 (s, 1H, C8-H), 8.44 (s, 1H, NH), 7.50 – 7.41 (m, 1H, 

Ar-H), 7.38 – 7.22 (m, 3H, Ar-H), 5.84 (d, J = 5.9 Hz, 1H, C1′-H), 5.20 (d, J = 25.0 Hz, 1H, C2′-

H), 4.80 – 4.66 (m, 1H, C3′-H), 4.53 – 4.45 (m, 1H, C4′-H), 4.14 (d, J = 5.2 Hz, 2H, C5′-H2), 

3.99 – 3.89 (m, 1H, C5′-OH), 3.74 – 3.60 (m, 1H, C3′-OH), 3.55 (d, J = 11.9 Hz, 1H, C2′-OH). 

13
C NMR (126 MHz, DMSO-d6): δ 155.19 (1C, C6), 153.22 (1C, C2), 149.94 (1C, C4), 140.40 

(1C, Ar), 136.09 (1C, C8), 132.04 (1C, Ar), 129.29 (1C, Ar), 128.59 (2C, Ar), 127.33 (1C, Ar), 

118.85 (1C, C5), 87.63 (1C, C1′), 85.90 (1C, C4′), 73.85 (1C, C2′), 70.52 (1C, C3′), 61.50 (1C, 

C5′), 41.35 (1C, CH2-Ar). 

LC-MS (m/z): negative mode 425 [M-H]
-
, positive mode 427 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 95.0%. 
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20.8. N
6
-(1-Phenylethylamine)-2-chloropurine riboside (133) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-2,6-dichloro-9-(β-D-

ribofuranosyl)purine (500 mg) and 392 mg of -methylbenzylamine, and was isolated as a 

yellow powder. 

Yield: 567 mg (90%). 

Melting Point (
o
C): 202-203

 

1
H NMR (500 MHz, DMSO-d6): δ 8.80 (s, 1H, C8-H), 7.43 (d, J = 7.5 Hz, 2H, Ar), 7.34 – 7.26 

(m, 3H, Ar), 5.81 (dd, J = 5.9, 1.2 Hz, 1H, C1′-H), 5.41 (d, J = 14.1 Hz, 2H, CH2-Ar), 5.15 – 

5.08 (m, 1H, C2′-H), 5.01 – 4.89 (m, 1H, C3′-H), 4.49 (t, J = 6.0 Hz, C4′-H), 4.11 – 4.08 (m, 1H, 

C5′-H), 4.00 (q, J = 6.6 Hz, 1H, C5′-H), 3.93 (q, J = 3.8 Hz, 1H, C5′-OH), 3.64 (d, J = 12.1 Hz, 

1H, C3′-OH), 3.54 (d, J = 12.0 Hz, 1H, C2′-OH), 1.63 – 1.43 (m, 3H, -CH3). 

13
C NMR (126 MHz, DMSO-d6): δ 153.14 (1C, C6), 149.87 (1C, C2), 147.93 (1C, C4), 144.46 

(1C, Ar), 139.99 (1C, C8), 128.29 (2C, Ar), 126.99 – 124.13 (3C, Ar), 118.60 (1C, C5), 85.84 

(1C, C1), 73.83 (1C, C4), 70.48 (1C, C2), 61.48 (1C, C3), 50.71 (1C, C5), 49.21 (1C, CH2-Ar), 

25.80 (1C, -CH3). 

LC-MS (m/z): negative mode 404 [M-H]
-
, positive mode 406 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 97.0%. 

Optical rotation: -53.8
o 
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20.9. N
6
-((S)-1-Phenylethylamine)-2-chloropurine riboside (134) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-2,6-dichloro-9-(β-D-

ribofuranosyl)purine (500 mg) and 392 mg of (S)--methylbenzylamine, and was isolated as a 

yellow powder.  

Yield: 599 mg (95%). 

Melting Point (
o
C): 202-203

 

1
H NMR (500 MHz, DMSO-d6): δ 8.39 (s, 1H, C8-H), 7.42 (d, J = 7.5 Hz, 2H, Ar), 7.34 – 7.26 

(m, 2H, Ar), 7.22 – 7.13 (m, 1H, Ar), 5.81 (d, J = 5.8 Hz, 1H, C1′-H), 5.40 (d, J = 14.3 Hz, 1H, 

C2′-H), 5.15 – 5.10 (m, 1H, C3′-H), 5.01 (t, J = 5.7 Hz, 1H, C4′-H), 4.48 (q, J = 4.8 Hz, 1H, C5′-

H), 4.11 (q, J = 3.7 Hz, 1H, C5′-H), 4.00 (q, J = 6.6 Hz, 1H, CH-CH3), 3.93 (q, J = 3.7 Hz, 1H, 

C5′-OH), 3.63 – 3.61 (m, 1H, C3′-OH), 3.52 – 3.45 (m, 1H, C2′-OH), 1.52 (s, 3H, -CH3). 

13
C NMR (126 MHz, DMSO-d6): δ 154.31 (1C, C6), 153.15 (1C, C2), 149.87 (1C, C4), 144.47 

(1C, Ar), 139.99 (1C, C8), 128.29 (2C, Ar), 126.57 (3C, Ar), 118.59 (1C, C5), 87.54 (1C, C1′), 

85.82 (1C, C4′), 73.88 (1C, C2′), 70.46 (1C, C3′), 61.45 (1C, C5′), 50.70 (1C, CH-CH3), 25.78 

(1C, -CH3). 

LC-MS (m/z): negative mode 404 [M-H]
-
, positive mode 406 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 97.0%. 

Optical rotation: -57.2
o 
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20.10. N
6
-((R)-1-Phenylethylamine)-2-chloropurine riboside (135) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-2,6-dichloro-9-(β-D-

ribofuranosyl)purine (500 mg) and 392 mg of (R)--methylbenzylamine, and was isolated as a 

yellow powder.  

Yield: 580 mg (92%). 

Melting Point (
o
C): 198-199 

1
H NMR (500 MHz, DMSO-d6):  δ 8.39 (s, 1H, C8-H), 7.43 (d, J = 7.6 Hz, 2H, Ar), 7.29 (td, J 

= 7.8, 6.1 Hz, 2H, Ar), 7.22 – 7.12 (m, 1H, Ar), 5.80 (d, J = 5.9 Hz, 1H, C1′-H), 5.42 – 5.25 (m, 

1H, C2′-H), 5.15 – 5.08 (m, 1H, C3′-H), 5.01 (d, J = 6.5 Hz, 1H, C4′-H), 4.50 – 4.37 (m, 1H, 

C5′-H), 4.11 (q, 1H, C5′-H), 4.00 (q, J = 6.6 Hz, 1H, CH-CH3), 3.93 (q, J = 3.8 Hz, 1H, C5′-

OH), 3.64 – 3.61 (m, 1H, C3′-OH), 3.54 – 3.48 (m, 1H, C2′-OH), 1.53 (d, J = 7.0 Hz, 3H, -

CH3). 

13
C NMR (126 MHz, DMSO-d6): δ 154.33 (1C, C6), 153.14 (1C, C2), 144.43 (1C, C4), 140.06 

(1C, Ar), 133.28 (1C, C8), 128.29 (2C, Ar), 127.81 – 124.62 (3C, Ar), 118.64 (1C, C5), 87.60 

(1C, C1′), 85.85 (1C, C4′), 73.76 (1C, C2′), 70.50 (1C, C3′), 61.49 (1C, C5′), 50.70 (1C, CH-

CH3), 25.80 (1C, -CH3). 

LC-MS (m/z): negative mode 404 [M-H]
-
, positive mode 406 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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Optical rotation: -46.5
o 

 

20.11. 2-Iodo-N
6
-methyl-N

6
-benzyl-purine riboside (136) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-2-amino-6-chloro-9-(β-D-

ribofuranosyl)purine (500 mg) and 395 mg of N-benzylmethylamine, and was isolated as a white 

powder. 

Yield: 626 mg (98%). 

Melting Point (
o
C): 207-208

 

1
H NMR (500 MHz, DMSO-d6): δ 8.23 (s, 1H, C8-H), 7.32 – 7.28 (m, 2H, Ar-H), 7.23 – 7.12 

(m, 3H, Ar-H), 5.82 (d, 1H, C1′-H), 5.76 (d, J = 6.2 Hz, 1H, C2′-H), 5.33 (d, J = 6.1 Hz, C3′-H), 

5.32 – 5.22 (m, 1H, CH2-Ar), 5.07 (d, J = 4.6 Hz, 1H, C4′-H), 4.55 – 4.44 (m, 1H, C5′-H), 4.09 

(td, J = 4.8, 3.2 Hz, 1H, C5′-H), 3.89 (q, J = 3.6 Hz, 1H, C5′-OH), 3.62 (dt, J = 12.0, 4.1 Hz, 1H, 

C3′-OH), 3.52 (q, J = 12.0, 6.4, 3.7 Hz, 1H, C2′-OH), 3.28 – 3.13 (m, 3H, CH3). 

13
C NMR (126 MHz, DMSO): δ 159.55 (1C, C5), 154.75 (1C, C2), 152.95 (1C, C6), 151.28 

(1C, C4) 140.32 (1C, C8), 138.61 (1C, Ar), 128.60 (1C, Ar), 127.52 (2C, Ar), 127.09 (1C, Ar), 

86.95 (1C, C1′), 85.55 (1C, C4′), 73.41 (1C, C2′), 70.76 (1C, C3′), 61.81 (1C, C5′), 51.78 (1C, 

CH2-Ar), 27.01 (1C, CH3). 

LC-MS (m/z): negative mode 385 [M-H]
-
, positive mode 387 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 



V. Experimentation 

202 
 

20.12. 2-Chloro-N
6
-methyl-N

6
-benzylpurine riboside (137) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-2,6-dichloro-9-(β-D-

ribofuranosyl)purine (500 mg) and 400 mg of N-benzylmethylamine, and was isolated as a white 

powder. 

Yield: 599 mg (95%). 

Melting Point (
o
C): 180-182 

1
H NMR (500 MHz, DMSO-d6): δ 8.42 (s, 1H, C8-H), 7.43 – 7.30 (m, 2H, Ar-H), 7.31 – 7.22 

(m, 3H, Ar-H), 5.86 (d, J = 5.8 Hz, 1H, C1′-H), 5.45 (d, J = 6.1 Hz, 1H, C2′-H), 5.17 (d, J = 5.0 

Hz, C3′-H), 5.17 (d, J = 5.0 Hz, 1H, CH2-Ar), 5.01 (t, J = 5.6 Hz, 1H, C4′-H), 4.51 (q, J = 5.7 

Hz, 1H, C5′-H), 4.13 (td, J = 5.0, 3.5 Hz, 1H, C5′-H), 3.94 (q, J = 3.8 Hz, 1H, C5′-OH), 3.71 – 

3.62 (m, 1H, C3′-OH), 3.54 (q, J = 12.0, 6.1, 4.0 Hz, 1H, C2′-OH), 3.07 – 3.01 (m, 3H, CH3). 

13
C NMR (126 MHz, DMSO): δ 154.63 (1C, C5), 152.74 (1C, C2), 151.51 (1C, C6), 151.28 

(1C, C4) 140.30 (1C, C8), 137.59 (1C, Ar), 128.75 (1C, Ar), 127.43 (2C, Ar), 118.59 (1C, Ar), 

87.45 (1C, C1′), 85.55 (1C, C4′), 73.83 (1C, C2′), 70.43 (1C, C3′), 61.41 (1C, C5′), 53.53 (1C, 

CH2-Ar), 37.58 (1C, CH3). 

LC-MS (m/z): negative mode 404 [M-H]
-
, positive mode 406 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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20.13. 2-Iodo-N
6
-Benzyl-N

6
-methyl-purine riboside (138) 

 

The compound was synthesized using 2',3',5'-tri-O-acetyl-6-chloro-2-iodo-9-(β-D-

ribofuranosyl)purine (500 mg) and 392 mg of N-benzylmethylamine, and was isolated as a white 

powder. 

Yield: 542 mg (90%). 

Melting Point (
o
C): 207-208

 

1
H NMR (500 MHz, DMSO-d6): δ 8.27 (s, 1H, C8-H), 7.33 (t, J = 7.5 Hz, 2H, Ar-H), 7.27 (d, J 

= 7.2 Hz, 3H, Ar-H), 5.87 (d, J = 5.1 Hz, 1H, C1′-H), 5.56 (d, J = 5.7 Hz, 1H, C2′-H), 5.37 (d, J 

= 5.5 Hz, 1H, C3′-H), 4.56 (q, J = 5.3 Hz, 1H, C4′-H), 4.32 – 4.25 (m, 1H, C5′-H), 4.20 – 4.14 

(m, 2H, CH2-Ar), 4.07 (dt, J = 6.1, 4.2 Hz, 1H, C5′-H), 3.04 (q, 1H, C5′-OH), 2.01 (s, 3H, CH3). 

13
C NMR (126 MHz, DMSO): δ 170.25 (1C, C5), 153.66 (1C, C6), 148.19 (1C, C2), 139.86 

(1C, C4), 138.53 (1C, C8), 128.72 (1C, Ar-H), 127.43 (3C, Ar-H), 119.40 (2C, Ar-H), 87.47 

(1C, C1′), 81.96 (1C, C4′), 73.14 (1C, C2′), 70.44 (1C, C3′), 63.96 (1C, C5′), 46.86 (1C, CH2-

Ar), 20.74 (1C, CH3). 

LC-MS (m/z): negative mode 496 [M-H]
-
, positive mode 498 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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21.1. General procedure for the synthesis of nucleotides (139-150) 

A solution of methylenebis(phosphonic dichloride) (5 mmol) in trimethyl phosphate (2 mL), 

cooled to 0 
o
C was added to a suspension of  corresponding nucleosides 127-138 (1 mmol) in 2 

mL of trimethyl phosphate at 0 
o
C. The reaction mixture was stirred at 0 

o
C and samples were 

withdrawn at 10 min interval for TLC to check the disappearance of nucleosides. After 30 min., 

on disappearance of nucleoside, 7 mL of cold 0.5 M aqueous TEAC solution (pH 7.4-7.6) was 

added. It was stirred at 0 
o
C for 15 min followed by stirring at room temperature for 1 h. 

Trimethyl phosphate was extracted using (2 x 100 mL) of tert.butylmethyl ether and the aqueous 

layer was lyophilized.  The crude product was then purified by RP-HPLC using a gradient of 50 

Mm ammoniumbicarbonate/ACN from 100:0 to 60:50 to get final product. Since there was no 

formation of dinucleotide, ion exchange chromatography was not used. 

21.2. 2-Amino-N
6
-dimethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (139) 

 

 

1
H NMR (500 MHz, D2O): δ 8.49 (s, 1H, C8-H), 5.92 (m, 1H, C1′-H), 4.70 (m, 1H, C2′-H), 

4.51 (m, 1H, C3′-H), 4.37 – 4.30 (m, 1H, C4′-H), 4.22 – 4.17 (m, 2H, C5′-H2), 3.89 – 2.98 (m, 

6H, 2xCH3), 2.28 – 2.23 (m, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 157.75 (1C, C5), 155.25 (1C, C2), 153.08 (1C, C6), 149.21 (1C, 

C4), 140.79 (1C, C8), 90.72 (1C, C1′), 87.11 (1C, C4′), 76.49 (1C, C2′), 72.96 (1C, C3′), 66.76 

(1C, C5′), 49.53 (1C, P-CH2-P), 11.07 (1C, 2xCH3).  
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31
P NMR (202 MHz, D2O): δ 20.52 (P), 18.02 (Pβ). 

LC-MS (m/z): negative mode 467 [M-H]
-
, positive mode 469 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 

21.3. 2-Amino-N
6
-diethylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (140)

 

 

1
H NMR (500 MHz, D2O): δ 8.41 (d, J = 1.3 Hz, 1H, C8-H), 5.94 (dd, J = 5.9, 1.4 Hz, 1H, C1′-

H), 4.72 (d, J = 1.3 Hz, 1H, C2′-H), 4.58 – 4.45 (m, 1H, C3′-H), 4.32 (dd, J = 3.6, 1.9 Hz, 1H, 

C4′-H), 4.22 – 4.05 (m, 2H, C5′-H2), 3.90 – 3.68 (m, 4H, 2x-CH2-CH3), 2.18 (td, J = 19.8, 1.5 

Hz, 2H, P-CH2-P), 1.19 (td, J = 7.1, 1.4 Hz, 6H, 2x-CH2-CH3). 

13
C NMR (126 MHz, D2O): δ 162.12 (1C, C5), 156.44 (1C, C2), 154.35 (1C, C6), 138.47 (1C, 

C4), 115.99 (1C, C8), 89.08 (1C, C1′), 86.51 (1C, C4′), 76.39 (1C, C2′), 73.15 (1C, C3′), 66.46 

(1C, C5′), 64.13 (2C, 2x-CH2-CH3), 45.99 (1C, P-CH2-P), 15.54 (2C, 2x-CH2-CH3). 

31
P NMR (202 MHz, D2O): δ 21.04 – 17.40 (d, P), 15.07 (d, J = 9.8 Hz, Pβ).  

LC-MS (m/z): negative mode 495 [M-H]
-
, positive mode 497 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 
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21.4. 2-Amino-N
6
-benzylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (141)  

 

1
H NMR (500 MHz, D2O): δ 8.43 (s, 1H, C8-H), 7.37 (d, J = 27.7 Hz, 5H, Ar-H), 5.90 (d, J = 

6.2 Hz, 1H, C1′-H), 5.03 – 4.95 (m, 2H, CH2-Ar),  4.74 (d, J = 1.3 Hz, 1H, C2′-H), 4.62 (t, J = 

5.7 Hz, 1H, C3′-H), 4.50 (q, J = 4.5 Hz, 1H, C4′-H), 4.33 (d, J = 21.8 Hz, 2H, C5′-H2), 2.23 (t, J 

= 19.8 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 157.35 (1C, C2), 155.69 (1C, C6), 151.11 (1C, C4), 139.71 (1C, 

C8), 131.68 (1C, Ar), 130.15 (2C, Ar), 129.76 (3C, Ar), 121.82 (1C, C5), 89.69 (1C, C1′), 86.78 

(1C, C4′), 76.56 (1C, C2′), 72.91 (1C, C3′), 66.76 (1C, C5′), 49.52 (1C, P-CH2-P), 44.61 (1C, 

CH2-Ar). 

31
P NMR (202 MHz, D2O): δ 19.12 (P), 15.08 (d, J = 10.9 Hz, Pβ).  

LC-MS (m/z): negative mode 529 [M-H]
-
, positive mode 531 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 

 

21.5. N
6
-Benzyl-2-chloropurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (142) 
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1
H NMR (600 MHz, D2O): δ 8.53 (s, 1H, C8-H), 7.46 – 7.38 (m, 5H, Ar-H), 6.06 (dd, J = 12.1, 

6.4 Hz, 1H, C1′-H), 5.20 – 4.92 (m, 1H, C2′-H), 4.76 – 4.70 (m, 2H, CH2-Ar), 4.54 (t, J = 4.5 

Hz, 1H, C3′-H), 4.36 (dd, J = 23.3, 3.6 Hz, 1H, C4′-H), 4.17 (dt, J = 6.1, 2.8 Hz, 2H, C5′-H2), 

2.26 – 2.14 (m, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 163.10 (1C, C6), 155.09 (1C, C2), 154.33 (1C, C4), 142.42 (1C, 

C8), 139.57 (1C, Ar), 131.65 (2C, Ar), 130.73 (3C, Ar), 123.58 (1C, C5), 88.72 (1C, C1′), 85.83 

(1C, C4′), 80.29 (1C, C2′), 75.80 (1C, C3′), 73.13 (1C, C5′), 66.36 (1C, CH2-Ar), 49.51 (1C, P-

CH2-P). 

31
P NMR (243 MHz, D2O): δ 18.69 (d, J = 10.0 Hz, P), 15.32 (d, J = 9.9 Hz, Pβ).  

LC-MS (m/z): negative mode 548 [M-H]
-
, positive mode 5550 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 

21.6. N
6
-Benzyl-2-iodopurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (143) 

 

1
H NMR (500 MHz, D2O): δ 8.48 (s, 1H, C8-H), 7.39 – 7.32 (m, 4H, Ar-H), 7.30 – 7.25 (m, 

1H, Ar-H), 6.10 (dd, J = 6.5, 2.3 Hz, 1H. C1′-H), 4.82 (s, 2H, CH2-Ar), 4.70 – 4.68 (m, 1H, C2′-

H), 4.53 (dd, J = 5.1, 3.8 Hz, 1H, C3′-H), 4.37 (td, J = 4.1, 2.7 Hz, 1H, C4′-H), 4.16 (dt, J = 6.5, 

3.3 Hz, 2H, C5′-H2), 2.19 (q, J = 21.8, 18.2, 3.0 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 162.83 (1C, C6), 157.35 (1C, C2), 155.69 (1C, C4), 142.28 (1C, 

C8), 141.18 (1C, Ar), 131.55 (2C, Ar), 129.96 (3C, Ar), 121.82 (1C, C5), 89.60 (1C, C1′), 86.78 
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(1C, C4′), 77.02(1C, C2′), 73.13 (1C, C3′), 66.41 (1C, C5′), 46.82 (1C, CH2-Ar), 42.94 (1C, P-

CH2-P). 

31
P NMR (202 MHz, D2O): δ 18.67 (P), 15.03 (d, J = 9.8 Hz, Pβ).  

LC-MS (m/z): negative mode 640 [M-H]
-
, positive mode 642 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0% 

 

21.7. N
6
-(2-Chlorobenzyl)-2-chloropurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] 

(144).  

 

1
H NMR (500 MHz, D2O): δ 8.46 (s, 1H, C8-H), 7.43 (q, J = 13.3, 7.4, 2.2 Hz, 2H, Ar-H), 7.28 

(q, J = 7.0, 4.8, 1.9 Hz, 2H, Ar-H), 6.03 (d, J = 5.6 Hz, 1H, C1′-H), 4.82 (s, 2H, CH2-Ar), 4.74 

(q, J = 1.1 Hz, 1H, C2′-H), 4.59 – 4.49 (m, 1H, C3′-H), 4.43 – 4.30 (m, 1H, C4′-H), 4.17 (dd, J = 

5.5, 3.2 Hz, 2H, C5′-H2), 2.21 (td, J = 19.9, 1.6 Hz, 2H, P-CH2-P). 

13
C NMR (126 MHz, D2O): δ 158.04 (1C, C6), 157.99 (1C, C2), 152.20 (1C, C4), 142.49 (1C, 

Ar-H), 137.60 (1C, C8), 135.68 (1C, Ar-H), 131.87 (2C, Ar-H), 129.97 (2C, Ar-H), 121.06 (1C, 

C5), 89.77 (1C, C1′), 86.87 (1C, C4′), 77.18 (1C, C2′), 73.10 (1C, C3′), 66.41 (1C, C5′), 49.51 

(1C, CH2-Ar), 45.03 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 18.60 (d, J = 10.1 Hz, P), 15.60 (d, J = 9.7 Hz, Pβ). 

LC-MS (m/z): negative mode 583 [M-H]
-
, positive mode 585 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 99.0%. 
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21.8. 2-Chloro-N
6
-(1-phenylethyl)- purine riboside-5′-O-[(phosphonomethyl)phosphonic acid] 

(145)
 

 

1
H NMR (600 MHz, D2O): δ 8.56 (s, 1H, C8-H), 7.30 (t, J = 7.3 Hz, 2H, Ar-H), 7.24 – 7.17 (m, 

2H, Ar-H), 7.13 (q, J = 7.6, 6.5 Hz, 1H, Ar-H), 5.83 (t, J = 4.8 Hz, 1H, C1′-H), 5.16 (s, 1H, CH-

Ar), 4.38 (t, J = 4.3 Hz, 1H, C2′-H), 4.33 (t, J = 4.5 Hz, 1H, C3′-H), 4.18 – 4.08 (m, 1H, C4′-H), 

4.04 – 3.94 (m, 2H, C5′-H), 2.18 (dt, J = 50.5, 19.9 Hz, 2H, P-CH2-P), 1.44 (dd, J = 7.1, 3.4 Hz, 

3H, -CH3). 

13
C NMR (151 MHz, D2O): δ 154.48 (1C, C6), 150.91 (1C, C2), 149.37 (1C, C4), 143.64 (1C, 

Ar-H), 139.47 (1C, C8), 128.79 (1C, Ar-H), 127.39 (1C, Ar-H), 125.90 (1C, Ar-H), 117.71 (1C, 

C5), 86.76 (1C, C1′), 83.97 (1C, C4′), 74.21 (1C, C2′), 70.23 (1C, C3′), 63.48 (1C, C5′), 60.32 

(1C, CH-Ar), 50.02 (1C, P-CH2-P), 21.78 (1C, -CH3). 

31
P NMR (243 MHz, D2O): δ 18.75 (d, J = 9.8 Hz, P), 15.10 (d, J = 9.6 Hz, Pβ).  

LC-MS (m/z): negative mode 562 [M-H]
-
, positive mode 564 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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21.9. 2-Chloro-N
6
-((S)- 1-phenylethyl)-purine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid]  (146) 
 

 

1
H NMR (600 MHz, D2O): δ 8.50 (s, 1H, C8-H), 7.45 (d, J = 7.7 Hz, 2H, Ar-H), 7.37 (t, J = 7.6 

Hz, 2H, Ar-H), 7.29 (t, J = 7.4 Hz, 1H, Ar-H), 6.00 (d, J = 5.2 Hz, 1H, C1′-H), 5.31 (s, 1H, CH-

Ar), 4.70 (t, J = 5.2 Hz, 1H, C2′-H), 4.51 (t, J = 4.6 Hz, 1H, C3′-H), 4.37 (dt, J = 5.2, 2.8 Hz, 1H, 

C4′-H), 4.18 (d, J = 3.0 Hz, 2H, C5′-H2), 2.38 – 2.12 (m, 2H, P-CH2-P), 1.61 (d, J = 6.9 Hz, 3H, 

-CH3). 

13
C NMR (151 MHz, D2O): δ 157.22 (1C, C6), 151.98 (1C, C2), 146.21 (1C, C4), 142.11 (1C, 

Ar), 131.62 (1C, C8), 130.26 (2C, Ar), 128.78 (3C, Ar), 120.14 (1C, C6), 90.01 (1C, C1′), 86.68 

(1C, C4′), 77.11 (1C, C2′), 72.93 (1C, C3′), 72.42 (1C, C5′), 66.43 (1C, CH-Ar), 53.19 (1C, P-

CH2-P), 24.52 (1C, -CH3). 

31
P NMR (243 MHz, D2O): δ 17.72 (d, J = 10.3 Hz, P), 17.51 (d, J = 10.0 Hz, Pβ). 

LC-MS (m/z): negative mode 562 [M-H]
-
, positive mode 564 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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21.10. 2-Chloro-N
6
-((R) -1-phenylethyl)- purine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid] (147) 

 

1
H NMR (600 MHz, D2O + NaOD):  δ 8.12 (s, 1H, C8-H), 7.20 (d, J = 7.7 Hz, 2H, Ar-H), 7.13 

(t, J = 7.5 Hz, 2H, Ar-H), 7.06 (d, J = 7.3 Hz, 1H, Ar-H), 5.55 (d, J = 5.3 Hz, 1H, C1′-H), 4.29 

(s, 1H, CH-Ar), 4.02 – 3.96 (m, 1H, C2′-H), 3.93 (d, J = 5.0 Hz, 1H, C3′-H), 3.86 (dd, J = 12.0, 

5.5 Hz, 1H, C4′-H), 3.81 – 3.67 (m, 2H, C5′-H2), 1.75 (t, J = 19.3 Hz, 2H, P-CH2-P), 1.36 (d, J = 

7.0 Hz, 3H, -CH3). 

13
C NMR (151 MHz, D2O): δ 157.22 (1C, C6), 151.98 (1C, C2), 146.21 (1C, C4), 142.11 (1C, 

Ar), 131.62 (1C, C8), 130.26 (1C, Ar), 128.78 (1C, Ar), 120.14 (1C, C5), 90.01 (1C, C1′), 86.68 

(1C, C4′), 77.11 (1C, C2′), 72.93 (1C, C3′), 72.42 (1C, C5′), 66.43 (1C, CH-Ar), 53.19 (1C, P-

CH2-P), 24.52 (1C, -CH3). 

31
P NMR (243 MHz, D2O): δ 23.22 (d, J = 8.5 Hz, P), 12.83 (d, J = 8.5 Hz, Pβ).  

LC-MS (m/z): negative mode 562 [M-H]
-
, positive mode 564 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

21.11. 2-Amino-N
6
-benzyl-N

6
-methylpurine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid]  (148)
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1
H NMR (600 MHz, D2O):  δ 8.14 (s, 1H, C8-H), 7.40 – 7.33 (m, 2H, Ar-H), 7.32 – 7.23 (m, 

3H, Ar-H), 5.97 (d, J = 5.9 Hz, 1H, C1′-H), 5.16 (s, 2H, CH2-Ar), 4.72 (t, J = 5.6 Hz, 1H, C2′-

H), 4.51 (dd, J = 5.2, 3.6 Hz, 1H, C3′-H), 4.34 (q, J = 3.6 Hz, 1H, C4′-H), 4.15 (t, J = 4.2 Hz, 

2H, C5′-H2), 3.27 (s, 3H, CH3), 2.18 (t, J = 19.8 Hz, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 161.65 (1C, C5), 157.66 (1C, C2), 154.12 (1C, C6), 140.13 (1C, 

C4), 138.81 (1C, C8), 131.66 (1C, Ar), 130.20 (2C, Ar), 116.47 (3C, Ar), 89.30 (1C, C1′), 86.65 

(1C, C4′), 76.53 (1C, C2′), 73.15 (1C, C3′), 66.53 (1C, C5′), 58.14 (1C,  CH2-Ar), 49.49 (1C, P-

CH2-P), 39.28 (1C, CH3).  

31
P NMR δ (243 MHz, D2O): 18.77 (d, J = 10.0 Hz, P), 15.13 (d, J = 9.9 Hz, Pβ). 

LC-MS (m/z): negative mode 543 [M-H]
-
, positive mode 545 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

 

21.12. N
6
-Benzyl-N

6
-methyl-2-chloropurine riboside-5′-O-[(phosphonomethyl)phosphonic 

acid]  (149)  

 

1
H NMR (600 MHz, D2O):  δ 8.40 (s, 1H, C8-H), 7.37 – 7.32 (m, 2H, Ar-H), 7.30 – 7.20 (m, 

3H, Ar-H), 6.04 (t, J = 5.5 Hz, 1H, C1′-H), 5.19 (s, 2H, CH2-Ar), 4.72 (t, J = 5.3 Hz, 1H, C2′-H), 

4.52 (dd, J = 5.1, 4.1 Hz, 1H, C3′-H), 4.40 – 4.31 (m, 1H, C4′-H), 4.22 – 4.09 (m, 2H, C5′-H2),  

3.53 – 3.06 (m, 3H, CH3), 2.25 (t, J = 19.7 Hz, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 157.80 (1C, C5), 156.46 (1C, C2), 153.84 (1C, C6), 141.10 (1C, 

C4), 139.58 (1C, C8), 131.65 (1C, Ar), 130.12 (2C, Ar), 120.97 (3C, Ar), 89.56 (1C, C1′), 86.71 
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(1C, C4′), 77.10 (1C, C2′), 73.04 (1C, C3′), 66.56 (1C, C5′), 66.40 (1C, CH2-Ar), 56.56 (1C, P-

CH2-P), 39.34 (1C, CH3).
  

31
P NMR (243 MHz, D2O): δ 18.57 (d, J = 9.7 Hz, P), 15.03 (d, J = 9.8 Hz, Pβ). 

LC-MS (m/z): negative mode 562 [M-H]
-
, positive mode 564 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

21.14. N
6
-Benzyl-N

6
-methyl-2-iodopurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] 

(150)
 

 

1
H NMR (600 MHz, D2O): δ 8.33 (s, 1H, C8-H), 7.38 – 7.34 (m, 2H, Ar-H), 7.31 (d, J = 7.8 

Hz, 3H, Ar-H), 6.06 (d, J = 5.3 Hz, 1H, C1′-H), 5.15 (s, 2H, CH2-Ar), 4.73 – 4.67 (m, 1H, C2′-

H), 4.54 (t, J = 4.6 Hz, 1H, C3′-H), 4.38 (q, J = 3.6 Hz, 1H, C4′-H), 4.18 (dd, J = 5.4, 3.2 Hz, 

2H, C5′-H2), 3.85 – 3.12 (m, 3H, CH3), 2.20 (td, J = 20.0, 2.1 Hz, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 154.15 (1C, C5), 150.45 (1C, C2), 137.89 (1C, C6), 137.85 (1C, 

C4), 137.01 (1C, C8), 128.86 (1C, Ar), 127.68 (1C, Ar), 127.51 (2C, Ar), 119.83 (1C, Ar), 

119.18 (1C, Ar), 87.04 (1C, C1′), 83.84 (1C, C4′), 74.33 (1C, C2′), 70.21 (1C, C3′), 63.60 (1C, 

C5′), 53.78 (1C, CH2-Ar), 45.76 (1C, P-CH2-P), 38.70 (1C, CH3). 

31
P NMR δ (243 MHz, D2O): 18.58 (P), 15.49 (Pβ). 

LC-MS (m/z): negative mode 654 [M-H]
-
, positive mode 656 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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22.1. 2,6-Diaminoadenosine (156) 

 

A suspension containing 0.5 g of 2-amino-6-chloro-ribofuranosylpurine (96) dissolved in 25 mL 

of ammoniacal ethanol solution was stirred at rt for three days. The solvent was removed under 

reduced pressure and the crude product was applied to a silica gel column with dichloromethane: 

methanol (9:1) elution. The collected fractions were freed from solvent, and a reversed-phase 

chromatography (HPLC) with an increasing gradient of methanol in water (10:90 to 90:10 over 

70 min) was used. The solvent was removed by lyophilization to get the desired compound. 

Yield: 531 mg (98%). 

Melting Point (
o
C): 235-237 [literature, 248]

195 

1
H NMR (500 MHz, DMSO-d6): δ 8.30 (s, 1H, C8-H), 6.75 (bs, 1H, NH2), 5.82 – 5.65 (m, 1H, 

H1′), 5.47 – 5.27 (m, 1H, C2′-H), 5.06 (d, J = 4.5 Hz, 1H, C3′-H), 4.51 (td, J = 6.2, 4.9 Hz, 1H, 

C4′-H), 4.09 (td, J = 4.7, 2.9 Hz, 2H, C5′-H2), 3.90 (q, J = 3.4 Hz, 1H, C5′-OH), 3.69 – 3.56 (m, 

1H, C3′-OH), 3.53 (q, J = 12.1, 7.1, 3.6 Hz, 1H, C2′-OH). 

13
C NMR (126 MHz, DMSO-d6): δ 160.16 (1C, C6), 156.40 (1C, C2), 151.57 (1C, C4), 136.43 

(1C, C8), 113.76 (1C, C5), 87.25 (1C, C1′), 85.68 (1C, C4′), 73.36 (1C, C2′), 70.87 (1C, C3′), 

61.91 (1C, C5′). 

LC-MS (m/z): negative mode 281 [M-H]
-
, positive mode 283 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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22.2. Isoguanosine (157) 

 

2,6-Diaminopurine riboside (155, 10.0 g, 35.5 mmol) was suspended in H2O (25 mL) at 50 
o
C, 

then NaNO2 (9.44 g, 137 mmol) in H2O (6 mL) was added. Then AcOH (245 mmol, 14.1 mL) 

was added at 50 
o
C over 5 min. The resulting clear solution was stirred for 5 min and then diluted 

with H2O (15 mL). The excess of acetic acid was neutralized by adding 2 mL of aq. NH3 soln. 

The solution was evaporated and the remaining solid washed with H2O to get light yellow 

powder. 

Yield: 531 mg (98%). 

Melting Point (
o
C): 238-240 [literature, 237-241]

162 

1
H NMR (500 MHz, DMSO-d6): δ 8.25 (s, 1H, C8-H), 7.93 (bs, 1H, NH), 7.64 (bs, 2H, NH2), 

5.86 (d, J = 3.4 Hz, 1H, C1′-H), 5.44 (s, 1H, C2′-H), 5.19 (dd, J = 6.1, 3.5 Hz, 1H, C3′-H), 4.90 

(dd, J = 6.2, 2.4 Hz, 1H, C4′-H), 4.16 (td, J = 4.3, 2.4 Hz, 2H, C5′-H2), 3.64 – 3.61 (m, 1H, C5′-

OH),  3.43 – 3.35 (m, 2H, C3′-OH and C2′-OH). 

13
C NMR (126 MHz, DMSO-d6): δ 155.10 (1C, C2), 151.32 (1C, C6), 138.01(1C, C4), 132.80 

(1C, C8), 113.09 (1C, C5) , 89.35 (1C, C1′), 86.02 (1C, C4′) , 82.86 (1C, C2′), 81.38 (1C, C3′), 

61.90 (1C, C5′). 

LC-MS (m/z): negative mode 282 [M-H]
-
, positive mode 284 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 



V. Experimentation 

216 
 

23.1. General procedure for the synthesis of nucleotides (151-154, 156 and 158) 

 A solution of methylenebis(phosphonic dichloride) (2 mmol) in trimethyl phosphate (2 mL), 

cooled to 0 
o
C was added to a suspension of  corresponding nucleosides, inosine (25), 6-chloro-

purine riboside (28), guanosine (93), 2-amino-6-chloropurine riboside (96), 2,6-diaminopurine 

riboside (155) and isoguanosine (157)  (1 mmol) in trimethyl phosphate at 0 
o
C. The reaction 

mixture was stirred at 0 
o
C and samples were withdrawn at 10 min. interval for TLC to check the 

disappearance of nucleosides. After 1 h, on disappearance of nucleoside, 7 mL of cold 0.5 M 

aqueous TEAC solution (pH 7.4-7.6) was added. It was stirred at 0 
o
C for 15 min followed by 

stirring at room temperature for 1h. Trimethyl phosphate was extracted using (2 x 100 mL) of 

tert.butylmethyl ether and the aqueous layer was lyophilized. The mixture of nucleotide and 

dinucleotide was separated by ion-exchange chromatography on DEAE Sephadex (A-25, HCO
-
3 

form), using linear gradient of aqueous TEAC. Fractions containing the product were pooled and 

evaporated to dryness, with ethanol added repeatedly to remove TEAC buffer. The compound 

was then purified by RP-HPLC using a gradient of 50 mM ammoniumbicarbonate/ACN from 

100:0 to 40:60 and suitable fraction were pooled and lyophilized to obtain final product as glassy 

solid. 

23.2. Inosine-5′-O-[(phosphonomethyl)phosphonic acid] (151) 
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1
H NMR (500 MHz, D2O): δ 8.65 (s, 1H, C8-H), 8.25 (s, 1H, C2-H), 6.17 (d, J = 5.0 Hz, 1H, 

H1′), 4.55 (t, J = 4.7 Hz, 1H, C2′-H), 4.40 (d, J = 3.7 Hz, 1H, C3′-H), 4.22 (d, J = 15.0 Hz, 2H, 

C5′-H2), 3.79 – 3.65 (m,1H, C4′-H),  2.29 (t, J = 19.5 Hz, 2H, P-CH2-P).  

13
C NMR (126 MHz, D2O): δ 160.90 (1C, C6), 151.45 (1C, C4), 149.44 (1C, C2), 142.57 (1C, 

C8), 124.60 (1C, C5), 90.80 (1C, C1′), 86.86 (1C, C4′), 77.23 (1C, C2′), 72.91 (1C, C3′), 66.41 

(1C, C5′), 51.72 (1C, P-CH2-P).  

31
P NMR (202 MHz, D2O): δ 18.06 (P), 17.53 (Pβ).  

LC-MS (m/z): negative mode 425 [M-H]
-
, positive mode 427 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

23.3. 6-Chloropurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (152) 
 

 

1
H NMR (500 MHz, D2O): δ 8.93 (s, 1H, C8-H), 8.76 (s, 1H, C2-H), 6.26 (d, J = 5.0 Hz, 1H, 

C1′-H), 4.82 (t, J = 5.1 Hz, 1H, C2′-H), 4.58 (t, J = 4.8 Hz, 1H, C3′-H), 4.48 – 4.33 (m, 1H, C4′-

H), 4.20 (d, J = 5.7 Hz, 2H, C5′-H2), 2.15 (t, J = 19.8 Hz, 2H, P-CH2-P).   

13
C NMR (126 MHz, D2O): δ 154.73 (1C, C6), 154.12 (1C, C4), 152.99 (1C, C2), 148.31 (1C, 

C8), 134.08 (1C, C5), 90.86 (1C, C1′), 86.90 (1C, C4′), 77.18 (1C, C2′), 72.90 (1C, C3′), 66.13 

(1C, C5′), 49.47 (1C, P-CH2-P).  

31
P NMR (202 MHz, D2O): δ 19.76 (d, J = 22.6 Hz, P), 14.13 (td, J = 19.6, 9.6 Hz, Pβ).  

LC-MS (m/z): negative mode 443 [M-H]
-
, positive mode 445 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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23.4. Guanosine-5′-O-[(phosphonomethyl)phosphonic acid] (153) 

 

1
H NMR (600 MHz, D2O): δ 8.28 (s, 1H, C8-H), 5.95 (d, J = 5.5 Hz, 1H, C1′-H), 4.53 (t, J = 

4.5 Hz, 1H, C2′-H), 4.40 – 4.37 (m, 1H, C3′-H), 4.35 (t, J = 3.7 Hz, 1H, C4′-H), 4.25 – 4.08 (m, 

2H, C5′-H2), 2.20 (t, J = 19.6 Hz, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 165.76 (1C, C6), 161.43 (1C, C4), 156.96 (1C, C2), 140.49 (1C, 

C8), 120.15 (1C, C5), 90.01 (1C, C1′), 86.76 (1C, C4′), 76.54 (1C, C2′), 73.06 (1C, C3′), 66.39 

(1C, C5′), 49.52 (1C, P-CH2-P). 

31
P NMR (243 MHz, D2O): δ 18.69 (P), 15.46 (Pβ).  

LC-MS (m/z): negative mode 440 [M-H]
-
, positive mode 442 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

23.5. 2-Amino-6-chloroadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (154) 
 

 

1
H NMR (500 MHz, D2O): δ 8.28 (s, 1H, C8-H), 6.11 (dd, J = 5.7, 1.1 Hz, 1H, C1′-H), 5.22 (td, 

J = 5.8, 1.0 Hz, 1H, C2′-H), 4.67 – 4.57 (m, 1H, C3′-H), 4.30 (t, J = 4.8 Hz, 1H, C4′-H), 4.27 – 

4.13 (m, 2H, C5′-H2), 2.16 (t, J = 19.9 Hz, 2H, P-CH2-P). 
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13
C NMR (126 MHz, D2O): δ 155.11 (1C, C2), 153.87 – 151.33 (1C, C4), 142.82 (1C, C6), 

132.05 (1C, C8), 120.37 (1C, C5), 91.59 (1C, C1′), 86.57 (1C, C4′), 74.05 (1C, C2′), 72.59 (1C, 

C3′), 66.39 (1C, C5′), 49.51 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 20.28 – 17.40 (d, P), 15.37 (d, J = 9.5 Hz, Pβ). 

LC-MS (m/z): negative mode 458 [M-H]
-
, positive mode 460 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

 

23.6. 2,6-Diaminoadenosine-5′-O-[(phosphonomethyl)phosphonic acid] (156) 

 

1
H NMR (500 MHz, D2O): δ 8.22 (s, 1H, C8-H), 5.91 (s, 1H, C1′-H), 4.70 – 4.65 (m, 1H, C2′-

H), 4.51 – 4.48 (m, 1H, C3′-H), 4.34 (s, 1H, C4′-H), 4.20 (s, 2H, C5′-H2), 2.21 – 2.15 (m, 2H, P-

CH2-P). 

13
C NMR (126 MHz, D2O): δ 165.69 (1C, C6), 156.87 (1C, C2), 150.67 (1C, C4), 142.30 (1C, 

C8), 120.33 (1C, C5), 90.19 (1C, C1′), 86.73 (1C, C4′), 76.74 (1C, C2′), 72.94 (1C, C3′), 66.47 

(1C, C5′), 46.67 (1C, P-CH2-P). 

31
P NMR (202 MHz, D2O): δ 18.36 (P), 16.90 (Pβ).  

LC-MS (m/z): negative mode 439 [M-H]
-
, positive mode 441 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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23.7. Isoguanosine-5′-O-[(phosphonomethyl)phosphonic acid]  (158) 

 

1
H NMR (500 MHz, D2O): δ 8.27 (s, 1H, C8-H), 5.88 (d, J = 5.2 Hz, 1H, C1′-H), 4.70 – 4.68 

(m, 1H, C2′-H), 4.51 – 4.47 (m, 1H, C3′-H), 4.39 – 4.31 (m, 1H, C4′-H), 4.18 – 4.11 (m, 2H, 

C5′-H2), 2.24 (td, 2H, P-CH2-P). 

13
C NMR (151 MHz, D2O): δ 165.97 (1C, C2), 154.91 (1C, C6), 152.66 (1C, C4), 141.36 (1C, 

C8), 120.33 (1C, C5), 90.86 (1C, C1′), 87.56 (1C, C4′), 77.10 (1C, C2′), 73.45 (1C, C3′), 66.48 

(1C, C5′), 58.11 (1C, P-CH2-P). 

31
P NMR (243 MHz, D2O): δ 18.22 (P), 17.35 (P).  

LC-MS (m/z): negative mode 440 [M-H]
-
, positive mode 442 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

24.1. 2′,3′-O-Isoproylidene-adenosine (159) 

 

Commercial adenosine 5 (1.0 g) was dissolved in 45 mL of acetone, to it 5 mL of 2,2-

dimethoxypropane and 0.5 mL of sulfuric acid was added. It was stirred at room temperature for 
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30 min. Then 5 mL of Et3N was added and the resulting solution was evaporated in vacuo and 

subjected to the column chromatography separation to yield compound 159 as white solid.  

Yield: 531 mg (98%). 

Melting Point (
o
C): 218-220 [literature, 220]

196 

1
H NMR (500 MHz, DMSO-d6): δ 8.52 (s, 1H, C8-H), 8.35 (s, 1H, C2-H), 7.35 (bs, 2H, NH2),  

6.27 (d, J = 3.4 Hz, 1H, C1′-H), 5.45 – 5.41 (m, 1H, C2′-H), 5.33 – 5.29 (m, 1H, C3′-H), 4.25 

(dd, 1H, C4′-H), 4.19 (td, 2H, C5′-H2), 1.68 (s, 6H, 3xCH3). 

13
C NMR (126 MHz, DMSO-d6): δ 158.05 (1C, C6), 152.65 (1C, C2), 148.82 (1C, C4), 141.35 

(1C, C8), 135.18 (1C, Ar), 121.43 (1C, CH3-C-CH3), 118.42 (1C, C5), 88.23 (1C, C1′), 84.03 

(1C, C2′) , 83.58 (1C, C3′), 71.34 (1C, C4′), 66.65 (1C, C5′), 27.72 (2C, 2xCH3). 

LC-MS (m/z): negative mode 306 [M-H]
-
, positive mode 308 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

24.2. 2′,3′-O-Isopropylidene-5′-tosyladenosine (160) 

 

Compound 159 (1.0 g) was dissolved in 5 mL of pyridine, to it 200 mg of DMAP and 600 mg of 

p-toluenesulphonyl chloride in an air tight flask was added. It was stirred under argon 

atmosphere at room temperature for 14 h. After completion of reaction, it was evaporated in 

vacuo. Resulting precipitate which was formed on stirring with water and ethylacetate (1: 1) was 
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removed by filtration, and the filtrate was purified by extraction with 1N HCl and brine, and 

subsequent crystallization with methanol. The final product was obtained as white solid. 

Yield: 531 mg (98%). 

Melting Point (
o
C): 179-181.

 

1
H NMR (500 MHz, DMSO-d6): δ 8.53 (s, 1H, C8-H), 8.39 (s, 1H, C2-H), 7.80 – 7.75 (m, 2H, 

Ar), 7.64 (bs, 2H, NH2),  7.23 – 7.01 (m, 2H, Ar), 6.21 (d, J = 3.4 Hz, 1H, C1′-H), 5.53 – 7.45 

(m, 1H, C2′-H), 5.27 – 5.20 (m, 1H, C3′-H), 4.27 (dd, 1H, C4′-H), 4.21 (td, 2H, C5′-H2), 1.64 (s, 

6H, 3xCH3). 

13
C NMR (126 MHz, DMSO-d6): δ 156.60 (1C, C6), 154.42 (1C, Ar), 151.71 (1C, C2), 146.18 

(1C, C4), 140.34 (1C, C8), 133.41 (1C, Ar), 130.54 (2C, Ar), 126.46 (2C, Ar), 124.84 (1C, CH3-

C-CH3), 119.49 (1C, C5), 89.10 (1C, C1′), 85.02 (1C, C2′) , 83.88 (1C, C3′), 70.78 (1C, C4′), 

68.22 (1C, C5′), 26.45 (2C, 2xCH3), 21.41 (1C, CH3-Ar). 

LC-MS (m/z): negative mode 476 [M-H]
-
, positive mode 478 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

24.3. Procedure for the synthesis of nucleotides (161, 162) 

Phosphorylating reagents, tris(tetra-n-butylammonium) dichloromethylenebis(phosphonic acid) 

and tris(tetra-n-butylammonium)1-hydroxyethane-1,1-diphosphonic acid was prepared by adding 

clodronic acid and etidronic acid (5 mmol) to 25 mL of methanol and 10 mL of tetra-n-

butylammonium hydroxide solution in water, followed by evaporation of methanol and 

lyophilization of resuting solution. Lyophilized product was kept in air-tight container till use. 

Tris(tetra-n-butylammonium) dichloromethylenebis(phosphonic acid) or tris(tetra-n-

butylammonium) 1-hydroxyethane-1,1-diphosphonic acid (5 mmol) dissolved in DMF (5 mL) in 
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air tight flash was added slowly to the 2′,3′-O-isopropylidene-5′-tosyladenosine (1 mmol). After 

stirring the mixture for 36 h under argon atmosphere, the reaction was lyophilized by adding 

water (25 mL). It was purified by ion-exchange chromatography to give intermediates. 

Intermediates were deprotected by 6-8% triflouroacetic acid for 3 h to remove 2′,3′-O-

isopropylidene-group, followed by purification with C-18 HPLC to obtained desired products, 

adenosine-5′-dichloromethylenediphosphonic acid and adenosine-5′-(1-hydroxy)ethane-1,1-

diphosphonic acid as white solids. 

24.4. Adenosine-5′-dichloromethylenediphosphonic acid (161) 
 

 

1
H NMR (600 MHz, D2O): δ 8.47 (s, 1H, C8-H), 8.20 (s, 1H, C2-H), 6.16 (d, J = 5.0 Hz, 1H, 

C1′-H), 4.75 (t, J = 4.3 Hz, 1H, C2′-H), 4.51 (t, J = 4.4 Hz, 1H, C3′-H), 4.40 (t, J = 4.4, 2H, C5′-

H2), 4.28 – 4.19 (m, 1H, C4′-H).   

13
C NMR (126 MHz, D2O): δ 156.17 (1C, C6), 152.47 (1C, C4), 149.83 (1C, C2), 140.33 (1C, 

C8), 119.41 (1C, C5), 97.01 (1C, C1′), 96.46 (1C, C4′), 86.74 (1C, C2′), 73.42 (1C, C3′), 70.39 

(1C, C5′), 60.68 (1C, P-C-P).  

31
P NMR (243 MHz, D2O): δ 19.75 (P), 17.27 (Pβ).  

LC-MS (m/z): negative mode 443 [M-H]
-
, positive mode 445 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 
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24.5. Adenosine-5′-(1-hydroxy)ethane-1,1-diphosphonic acid (162) 
 

 

1
H NMR (600 MHz, D2O): δ 8.71 (s, 1H, C8-H), 8.44 (s, 1H, C2-H), 6.15 (d, J = 5.6 Hz, 1H, 

C1′-H), 4.88 – 4.81 (m, 1H, C2′-H), 4.70 – 4.68 (m, 1H, C3′-H), 4.60 – 4.51 (m, 1H, C4′-H),  

4.45 – 4.29 (m, 2H, C5′-H2), 1.60 (d, J = 20.4 Hz, 3H).   

13
C NMR (126 MHz, D2O): δ 152.67 (1C, C6), 151.07 (1C, C4), 147.73 (1C, C2), 145.53 (1C, 

C8), 121.21 (1C, C5), 90.61 (1C, C1′), 87.16 (1C, C4′), 77.44 (1C, C2′), 72.92 (1C, C3′), 67.99 

(1C, C5′), 22.68 (1C, P-C-P), 22.10 (1C, CH3).  

31
P NMR (243 MHz, D2O): δ 21.08 (P), 19.19 (Pβ).  

LC-MS (m/z): negative mode 454 [M-H]
-
, positive mode 456 [M+H]

+
.  

Purity by HPLC-UV (254 nm)-ESI-MS: 100%. 

 

25.1. Biological experiments 

25.1.1. Radiometric eN assay (Assay performed by Marianne Freundlieb) 

The compounds were tested in a radioactive assay using [
3
H]AMP as a substrate. Purified 

recombinant rat ecto-5′-NT was used which was prepared as described in the literatures.
67, 112, 118

 

Assays were carried out with a substrate concentration of 5 μM. Compounds were initially tested 

at 10 μM concentration and for the potent compounds, full concentration−response curves were 

obtained. Data were analyzed using GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, 

CA, USA). Curves were fitted by nonlinear regression using the Marquardt method as 
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implemented in GraphPad Prism. Reactions were carried out in assay buffer consisting of 25 mM 

TRIS, 140 mM sodium chloride and 50 mM sodium phosphate with a pH adjusted to 7.4. 

[
3
H]Adenosine-5′-monophosphate diluted to a specific activity of 100 mCi/mmol was used as a 

substrate. 10 µL of the substrate solution (final concentration of 5 µM) were added to 80 µL of 

assay buffer and the mixture was preincubated for 5 min at 37 °C. The reaction was then initiated 

by adding 10 µL of enzyme solution (final concentration of 0.3µg/mL in enzyme buffer 

containing 40 mM HEPES and 4 mM iodacetamide with a pH of 7.4) to each tube. The mixture 

was incubated for 25 min at 37 °C. To stop the reaction 500 µL of precipitation buffer containing 

100 mM lanthanum chloride and 100 mM sodium acetate, pH 4.0, was added. After 30 minutes 

the precipitation was completed and the reaction mixture was filtered through GF/B glass fiber 

filters using an M24 Brandell cell harvester (Brandell M-24, Gaitherburg, MD, USA) equipped 

with an individual box for collecting the filtrates. After washing three times with 1 mL each of 

the precipitation buffer the filtrates were poured into scintillation vials containing 6 mL of the 

scintillation cocktail ULTIMA Gold XR, and were quantified by scintillation counting 

(TRICARB 2900 TR, Packard/Perkin-Elmer) at an efficiency of 34%.
112, 118

 

25.1.2. NPP 1-3 colorimetric assay (Assay performed by Sang-Yong Lee) 

 The human eNPP 2 gene (Genbank accession no. NM-006209; full length) and the human eNPP 

1and 3 genes (Genbank accession no. NM-006208 and NM-005021, respectively; partial without 

a transmembrane domain) were subcloned in the expression vector pAcG2T baculovirus (BD 

BaculoGold). Stable transfection into Sf9 insect cells was performed using Cellfectin 

(Invitrogen). After multiple infections into insect cells, the culture supernatants of Sf9 cells 

containing the recombinant enzymes were collected and further concentrated by Amicon (50 kDa 

cutoff). Subsequently, it was transferred into the buffer containing 50 mM Tris (pH 7.5), 10 mM 
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NaCl and 5% glycerol by Amicon (50 kDa cutoff). Finally, samples were kept at –80 °C till 

use.
106, 116

 

25.1.2.1. Assay condition for NPP 1 and NPP 3 

 

 The test compounds were screened at a concentration of 10 µM. They were prepared in the 

reaction buffer (1 mM CaCl2, 200 µM ZnCl2, 50 mM TRIS, pH 9.0) together with the substrate 

p-Nitrophenyl-5′-thymidine monophosphate (400 µM). The reaction was initiated by adding 20 

µL of human recombinant NPP 1 (0.9 µg) or NPP 3 (0.4 µg) and was incubated at 37 °C for 30 

min. Finally, the enzymatic reaction was stopped by adding 1.0 N NaOH. The amounts of p-

nitrophenolate liberated were measured at 400 nm.
116

 

25.1.2.2. Assay condition for NPP 2 

 The screenings were carried out at the inhibitor concentration of 10 µM. The enzyme inhibition 

assays were carried out at 37 °C in a final volume of 50 µL. The reaction mixture contained 5 

mM MgCl2, 5 mM CaCl2, 100 mM Tris, pH 9.0, and 400 µM lysophosphatidiylcholine (18:1). 

The reaction was started with the addition of 10 µL of NPP 2 (44 µg). The mixture was 

incubated for 60 min and subsequently, the released choline was quantified colorimetrically at 

555 nm after incubation at 37 °C for 10 min with 50 µL of each the peroxidase reagent (50 mM 

Tris at pH 9.0, 2 mM TOOS, 5 U/mL peroxidase) and the choline-oxidase reagent (50 mM Tris 

at pH 9.0, 2 mM aminoantipyrine, 5 U/mL choline-oxidase).
116

 

25.1.3. Human NTPDases 1-3 malachite green assay (Assay performed by Amelie Fiene) 

 COS-7 cells were transiently transfected with a plasmid encoding hNTPDase 1, 2 and 3 

respectively. Cell membranes were prepared as described in the literature.
116, 117

 Substrate ATP 
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(20 µL) was added to a well of a 96-well plate containing 10 µL 10% aq. DMSO or test 

compound in 10% aq. DMSO and the reaction was initiated by the addition of 20 µL NTPDase 

protein extract to give a final concentration of 70 µM ATP for NTPDase 1, and 100 µM of ATP 

for NTPDase 2 and 3. Then the reaction was started by adding 4 ng/µL enzyme for NTPDase 1 

and 3, and 3 ng/µL enzyme for NTPDase 2. After 10 min of incubation at 37°C  the reaction was 

stopped with 17.2 µL of ammonium molybdate solution and 12.8 µL of malachite green 

reagent.
117 

After 20 min incubation at room temperature, absorbance measurements were made at 

623 nm on a BMG PheraStar FS plate reader (BMG Labtech GmbH, Ortenberg, Germany) and 

the percent inhibition was calculated. The test compounds were screened at a concentration of 10 

µM.
116 

25.1.4. P2Y1 Calcium assay (Assay performed by Dr. Aliaa Abdelrahman) 

Measurement of intracellular calcium mobilisation (Gq signaling pathway) 

Calcium assays were performed according to the published procedures.
197 

1321N1 Human 

astrocytoma cells expressing the human P2Y1 were harvested with 0.05% trypsin / 0.02% EDTA 

and rinsed with culture medium. The cells were kept under 5% CO2 at 37°C for 45 min and then 

centrifuged at 200 x g at 4°C for 5 min. After that the cells were incubated for 1 h at 25 °C in 

Krebs-Ringer-HEPES buffer, pH 7.4 containing 3 μM Oregon Green BAPTA-1/AM and 1 % 

Pluronic
®
F127. The cells were rinsed 3 times with KRH buffer, diluted and plated into 96-well 

plates at a density of approximately 16,000 cells/well and left for 20 min. Fluorescence intensity 

was measured at 520 nm for 30 s at 0.4 s intervals. Measurements were performed using a 

Novostar®microplate reader. At least three independent experiments were performed in 

duplicates. 
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25.1.5. P2Y12  β-arrestin assay (Assay performed by Dr. Aliaa Abdelrahman) 

 For the preparation of P2Y12 cell line, the hP2Y12 sequences were cloned into pCMV- ProLink-

1vector and were subsequently expressed into CHO cell lines. The cells were selected for 2 

weeks in order to produce the desired stable cell line. The cells were kept growing in F12 

medium (Gibco – life technologies). One day before the assay, cells were detached from flask 

using dissociations buffer and were seeded into 96-well plates at a density of 30000 cells/well 

and to each well 90 μL of optimum medium was added. Compounds dilutions were diluted in 

Optimum medium without supplements, 10 μL of diluted compounds were added to each well. 

After 90 min of incubation at 37 °C, 50 μL of detection reagent (DiscoverX, Fremont, CA) per 

well were added and then the plate incubated for further 60 min at room temperature. After that, 

Luminescence was determined using a Topcount NXT plate reader (Perkin-Elmer, Meriden, CT). 

Three to four independent experiments were performed, each in duplicate. GraphPadPrism, 

Version 4.02 (GraphPad Inc., La Jolla, CA) were used to analyze Data.
107, 170, 198

 

25.2. Metabolic stability studies on rat liver 

25.2.1. Preparation of Rat Liver Microsomes  

Rat liver microsomes were prepared from fresh rat liver (6.5 g) which was homogenized in 30 

mL of freshly prepared Dulbecco’s phosphate buffered saline (DPBS) consisting of 132.5 mg of 

CaCl2·2H2O, 100 mg of MgCl2·6H2O, 200 mg of KCl, 200 mg of KH2PO4, 8000 mg of NaCl, 

and 1500 mg of Na2HPO4 in a total volume of 1000mL, pH 7.2, and centrifuged at 9000g for 30 

min at 4 °C. The supernatant, which contained the soluble microsomes, was carefully decanted 

and stored at -80 °C until used. The protein concentration was 5 mg/mL as determined by the 

method of Bradford.
133
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25.2.2. LC-MS Analyses 

  

HPLC was performed on a C18 column (50 mm × 2 mm, particle size 3 μm, Phenomenex Luna) 

using a mixture of H2O (solvent A) and MeOH (solvent B) containing 20 mM of NH4OAc as 

eluent at a flow rate of 250 μL/min. Mass spectra were recorded on an API 2000 mass 

spectrometer (electron spray ion source, Applied Biosystems, Darmstadt, Germany) coupled 

with an HPLC system (Agilent 1100, Böblingen, Germany). Data were collected and analyzed 

by Analyst Software, version 1.3.1. The separation was carried out at room temperature by 

gradient elution. The elution was started with a mixture of solvent A and solvent B (90:10, to 

0:100 v/v) up to 20 min. The limit of detection (LOD), defined as the lowest analyte 

concentration with a signal-to-noise (S/N) ratio of 3, was determined for compounds to be 

approximately 0.1 μg/mL.
133

 

25.2.3. Metabolism by rat Liver Microsomes 

Compounds were incubated with rat liver microsomes (2 mg of protein per vial) at a 

concentration of 100 μM in a final volume of 1 mL tris-HCl buffer solution with or without 

NADPH regenerating system. NADPH regenerative system consists of NADP (0.57 mM), 

NADH (0.57 mM), isocitrate (6.4 mM), isocitrate dehydrogenase (0.57 mM), and MgCl2 (23.4 

mM) (pH 7.2). The samples were incubated for different time intervals at 37 °C in a water bath 

and ice-cooled acetonitrile was added to stop the enzymatic reaction. After centrifugation at 

14000g, the supernatant was analyzed by LC-MS.
133

 

25.2.4. Plasma stability studies 

Blood from healthy donors was obtained from the blood bank, University Clinic Bonn. The 

blood (100 mL) had been mixed with 70 mL of a stabilizing solution, which contained (per 100 
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mL): citric acid monohydrate (327 mg), sodium citrate (2.63 g), sodium dihydrogenphosphate 

(251 mg), and dextrose monohydrate (2.55 g) in water (aqua ad injectabilia). For every reaction, 

a solution of compounds in water was added to give final concentration of 100 μM. The obtained 

solution was pipetted into vials (1 mL per vial) and incubated at 37 ºC. At different time points 

(1, 5, 10, 30, 60,120 and 300 min), 100 μL of sample was taken to it 300 μL of ice-cooled 

acetonitrile (LCMS quality from sigma aldrich) was added to stop the reaction. The samples 

were sonicated in an ultrasonic bath for 5 min followed by centrifugation at 4000 rpm for 10 

min. The supernatants were transferred to LC-MS sample vials and quantified. Experiments were 

performed in triplicate.
75 
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VI. Summary 

This thesis consists of five parts. The first part contains a general introduction about purinergic 

signalling and ecto-nucleotidases including our enzyme of interest ecto-5′-nucleotidase (eN, 

CD73, EC 3.1.3.5). The second part constitutes an introduction into the medicinal chemistry of 

eN inhibitors and the different high-throughput eN assay methods used for the evaluation of 

inhibitors. The third part presents the aims of the project including the design of the target 

compounds. The fourth part describes the results and their discussion including synthetic 

chemistry, pharmacological investigations and liver stability studies in microsomes as well as in 

blood plasma. The final part contains detailed experimental procedures for the syntheses, the 

pharmacological evaluation and the metabolic stability studies. 

Project I and II: Design and synthesis of adenine base-modified and methylene 

bisphosphate chain-modified derivatives and analoguesof AOPCP 

The eN belongs to a group of enzymes, the ecto-nucleotidases which dephosphorylate 

extracellular nucleotides, mainly AMP. Other membrane-bound ecto-nucleotidases include 

nucleoside triphosphate diphosphohydrolases (NTPDases; subtypes 1, 2, 3 and 8), nucleotide 

pyrophosphatases (NPPs 1-4) and alkaline phosphatases (APs; tissue non-specific, intestinal, 

placental and germ cell). NTPDases and NPPs lead to an increase in the extracellular 

concentrations of nucleotides resulting in P2 receptor activation whereas eN increases adenosine 

concentrations resulting in a stimulation of P1 (adenosine) receptors. eN inhibitors therefore 

reduce extracellular adenosine levels, resulting in an indirect blockade of adenosine (P1) receptor 

activation. They possess potential as novel drugs, e.g. for cancer therapy or for the treatment of 

neurodegenerative diseases. AOPCP, an analogue of ADP, is currently one of the most potent 

competitive inhibitors of eN.
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In part I of the current project a series of 2-, 6- and 8-substituted derivatives of AOPCP was 

synthesized with the goals to study structure-activity relationships, and to obtain more potent and 

stable eN inhibitors which cannot be metabolized to adenosine or adenosine receptor ligands. 

Also in this part the best individual substitutions at the 2-and 6-position were combined in order 

to obtain more potent and selective di-substituted derivatives. Simultaneously, we also enhanced 

the metabolic stability and selectivity by synthesizing N
6
-disubstituted AOPCP derivatives as 

well as 6-O- and 6-S-substituted analogues. For the preparation of the target compounds with 2-, 

6- or 8-substitution, or 2,6-disubstitution, respectively, a convergent synthetic strategy was 

applied which involves first the synthesis of the intermediate nucleosides followed by 

phosphorylation to provide the nucleotides- AOPCP derivatives and analogs. For project II, 

methylene bisphosphate chain-modified derivatives of AOPCP were synthesized. The side chain 

was replaced by commercially available substituted bis(phosphonic acid) derivatives, in which 

the methylene group of the 5′-methylene diphosphate group was substituted.  

A library of 55 purine nucleosides was initially synthesized, out of which 24 are novel not 

previously described in the literature. They were obtained in high yields. The nucleosides were 

subsequently phosphorylated to provide AOPCP derivatives and analogues in good isolated 

yields of 30-75% by using an optimized phosphorylation method. This was achieved by a large 

excess of phosphorylating reagent, which reduced the formation of side-products and thereby 

facilitated the purification process. The compounds were purified by ion exchange 

chromatography or by preparative HPLC depending on the type of by-products formed in each 

reaction. Altogether 60 AOPCP derivatives and analogs were synthesized, out of which 58 are 

novel, not previously described compounds. The developed synthetic strategy is straightforward 

and allows for broad structural modifications. The structures of the synthesized compounds were 
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confirmed by 
1
H-, 

13
C-NMR, DEPT-135 and 

31
P-NMR (for AOPCP analogues) spectroscopy, in 

addition to HPLC analysis coupled to electrospray ionization mass spectrometry (LC/ESI-MS), 

which was also used to determine the compounds’ purity. 

Enzyme inhibition was determined in radiometric eN assay using [
3
H]AMP as substrate.

118 
We 

were able to obtain many potent compounds. Selected inhibitors were further investigated at 

other ecto-nucleotidases including eNTPDase 1-3 and eNPP 1-3. The lead compound AOPCP 

showed some inhibitory potency at eNPP 1 with a Ki value of 16.5 µM (human enzyme). Most 

of the newly developed compounds were inactive at those enzymes, which showed that they 

were selective inhibitors of eN. Selected compounds were further investigated at the ADP-

activated P2Y receptor subtypes P2Y1 and P2Y12. The tested nucleotide derivative did not show 

any affinity for the investigated P2Y receptor subtypes and can therefore be regarded as highly 

selective for eN. 

The most potent nucleotides of the present series were 2-chloro-N
6
-(2-chlorobenzyl)purine 

riboside-5′-O-[(phosphonomethyl)phosphonic acid] (144, Ki= 0.34 nM) and 2-chloro-N
6
-benzyl-

N
6
-methylpurine riboside-5′-O-[(phosphonomethyl)phosphonic acid] (149, Ki= 0.88 nM). 

Compared to a Ki value of 197 nM for the lead structure AOPCP tested under the same 

conditions, up to 580-fold improvement in potency was achieved. The structures of AOPCP 

derivatives 144 and 149 are depicted in Figure 31. Compound 149 being N
6
-disubstituted is not 

expected to yield adenosine receptor activating metabolites. 
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Figure 31. Structure of the most potent eN inhibitors 

Structure-activity relationships of 6-and 8-substituted AOPCP derivatives 

N
6
-Substitution of AOPCP generally increased potency. N

6
-Mono-substitution indicated that 

large, hydrophobic N
6
-substituents were beneficial for high inhibitory potency of eN. N

6
-Di-

substituted derivatives with one large N
6
-substituent, but not with two voluminous residues at the 

exocyclic N atom, were also well tolerated. Analysis of structure-activity relationships allowed 

structural optimization and thus the development of highly potent inhibitors. Aromatic 

substitutions were better than alkyl-substitution at N
6
. Corresponding 2′,3′-O-isopropylidene 

analogs were less potent. We also investigated compounds with various substitutions of the N
6
-

benzyl residue (one of the potent compound in the series). Electron-withdrawing groups (e.g. Cl) 

of the phenyl ring appeared to be better tolerated than electron-donating functions (NH2). 

Especially, N
6
-benzyl-, N

6
-(2-phenylethyl)-, N

6
-(4-chlorobenzyl)-, N

6
-(3-chlorobenzyl)-, N

6
-(2-

chlorobenzyl)-, N
6
-(4-methoxybenzyl)-, N

6
-(1-phenylethyl)- and N

6
-methyl,N

6
-benzyl-

substituents at the 6-position of the core structure had major impacts on the compounds’ 

inhibitory potency yielding very potent inhibitors. When the 6-(aryl)alkylamino group was 

substituted with 6-(aryl)thio and 6-(aryl)alkyloxy groups comparable potency was observed. The 

synthesis of 6-O- and 6-S-substituted analogues offers the possibility to move away from 
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adenine nucleotide derivatives, which might be metabolized to (N
6
-substituted) adenosine 

derivatives after hydrolysis which may activate adenosine A1 receptors and thereby inducing 

negative inotropic and chronotropic effects, eventually leading to cardiac arrest. 

At the 8-position smaller substituent like 8-chloro-substitution was tolerated whereas larger 8-

substituents like 8-bromo, 8-thioethyl and 8-aminomethyl resulted in a drastic reduction in 

activity. A reason for this may be that larger 8-substituents can induce a conformational change 

from the anti- to the syn-conformation around the nucleosidic bond, which is unfavourable for 

binding to the enzyme. Compounds were inactive at purinergic targets including ADP-activated 

P2Y receptor subtypes (P2Y1 and P2Y12), eNTPDase 1-3 and eNPP 1-3. 

 
Figure 32. Structure-activity relationships of 6-and 8-substituted AOPCP derivatives and analogs 
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Structure-activity relationships of 2-mono-, 2,6-disubstituted and side-chain-modified 

AOPCP derivatives 

 

Several substitutions at the 2-position of AOPCP improved potency. The order of potency for 2-

substituted compounds was 2-iodo > 2-chloro > 2-amino > 2-hydrazinyl > 2-oxo >> piperazinyl, 

suggesting that polar and electron-withdrawing groups (e.g. Cl or I) appeared to be particularly 

well tolerated. The 2-thio-substituted derivatives, e.g. 2-cyclohexylethylthio- and 2-allylthio- 

substituted compounds were also very potent. The best 2-substituents amino, chloro and iodo 

were combined with the best 6-alkyl and 6-aryl substitutents to give 2,6-disubstituted derivatives. 

Several combinations tremendously improved activity to the sub nanomolar range. Combination 

of 2-chlorobenzyl at the N
6
-position with chloro at the 2-position produced the most potent 

derivative 144 (Ki = 0.34 nM). Combination of N
6
-benzyl-N

6
-methyl at the 6-position with 

chloro at the 2-position gave another very potent derivative 149 (Ki = 0.88 nM). The compounds 

with combinations of beneficial N
6
-groups with chloro at the 2-position were more potent than 

those with 2-iodo substitution, although iodo was the best 2-substituent without an N
6
-

substituent. This suggests that for di-substituted derivatives smaller groups like chloro are better 

tolerated at the 2-position as compared to larger residues like iodo. 

Further derivatives with substitution of the methylenebis(phosphate) side-chain of AOPCP were 

also synthesized. But the substitution resulted in a decrease or loss of potency. The structure-

activity relationships are depicted in Figure 33. 
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Figure 33. Structure-activity relationships of 2-mono-, 2,6-disubstituted and methylene bis(phosphate) 

side chain-modified AOPCP  

 

Project III: Metabolic stability studies of selected potent AOPCP derivatives and analogues 

Selected potent inhibitors were further investigated for their metabolic stability, (i) in rat liver 

microsomes in order to investigate potential metabolic degradation by liver enzymes, and (ii) in 

human blood, in order to determine plasma stability. This was done in order to be able to select 

stable inhibitors for subsequent extended pharmacological experiments. The studies involved 

incubation of inhibitors with microsomes or plasma at 37 °C and subsequent analysis of the 

samples by LC-MS. The compounds used for the studies are depicted in Figure 34. 

 
Figure  34. Compounds investigated in metabolic studies 
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For stability studies in liver microsomes all compounds depicted in Figure 22 were investigated, 

while for plasma stability studies 74 was left out owing to its low microsomal stability as 

compared to other compounds. Incubation with rat liver microsomes showed that the inhibitors 

were relatively stable towards liver enzymes, but low stability was observed for both, ADP and 

AOPCP. The order of stability was 149 > 150 > 71 > 74 >>> AOPCP > ADP. The identified 

metabolites were the corresponding nucleosides, the nucleobases and methylenebis(phosphonic 

acid). The hydrolyses are presumably catalyzed by hydrolytic enzymes present in rat liver. 

Incubation with human blood showed that only ADP was unstable, but the other compounds 

were stable. After 5 hours of incubation the order of stability was determined to be 149  71  

150  AOPCP >>> ADP.  

Concluding remarks 

Potent inhibitors for eN have been identified with potencies in the low nanomolar to sub-

nanomolar range. Selected potent eN inhibitors were found to be stable upon incubation with rat 

liver microsomes and in human blood serum. These compounds are the most potent eN inhibitors 

known to date and may serve as valuable pharmacological tools to further elucidate the enzyme’s 

(patho)physiological roles and help to validate it as a new drug target. 
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ABC                   ATP-binding cassette 

ACRs                  Apyrase-conserved regions 

ADA                   Adenosine deaminase 

Ado                     Adenosine 

ADP                    Adenosine diphosphate 

AMP                    Adenosine monophosphate 

AOPCP                α,β-methylene-ADP 

AP                        Alkaline phosphatase 

AP4P                    Diadenosine 5',5"'-P
1
,P

4
-tetraphosphate 

ATP                     Adenosine triphosphate 

BETA                     Benzyltriethylammonium 

cAMP                   cyclic AMP 

CAN                    Calcium-activated nucleotidase 

CE                        Capillary electrophoresis 

CFTR                   Cystic fibrosis transmembrane conductance regulator 

CL                        Clearance 

CPPD                   Calcium pyrophosphate dihydrate disease 

DEAE                   Diethylaminoethyl 

DEPT                    Distortionless enhancement by polarization transfer 

DMAP                  4-Dimethylaminopyridine 

DMF                     N,N-dimethylformamide 

DMSO                   Dimethyl sulfoxide 

EDMA                   N-Ethyldimethylamine 

eN                          Ecto-5'-nucleotidase 
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ER                           Estrogen receptor 

ENPPs                     Ecto-nucleotide pyrophosphatases/ phosphodiesterases 

ENTPDase              Ecto-nucleoside triphosphate diphosphohydrolases 

FAD                        Flavin adenine dinucleotide 

FDA                        Food and drug administration 

FMO                        Flavine monooxygenase 

FPLC                       Fast protein liquid chromatography 

GCAP                      Germ cell AP 

GPCR                      G protein-coupled receptor 

GPI                          Glycosylphosphatidylinositol 

Hyp                          Hypoxanthine 

HPLC                       High performance liquid chromatography 

Ino                            Inosine 

IAP                          Intestinal AP 

LC-MS                     Liquid chromatography-mass spectrometry 

L-DOPA                   L-3,4-dihydroxyphenylalanine 

LGIC                       Ligand-gated ion channel 

LOD                        Limit of detection 

NAD
+
                      Nicotinamide adenine dinucleotide  

NANC                     Nonadrenergic noncholinergic 

NCAM                    Neural cell adhesion molecule 

NLD                        Nuclease like domain 

OPLL                      Ossification of posterior longitudinal ligament 

PAP                         Prostatic acid phosphatase 

PDB                        Protein data bank 

http://en.wikipedia.org/wiki/G_protein-coupled_receptor
http://en.wikipedia.org/wiki/Ligand-gated_ion_channel
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&sqi=2&ved=0CB0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNicotinamide_adenine_dinucleotide&ei=MPrHVPrNJMTKOu6TgYgE&usg=AFQjCNFz7BXGIytDMbo3AUTPlfjDy_-AUg&bvm=bv.84607526,d.ZWU
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PLAP                      Placental AP 

PLP                         Pyridoxal 5'-phosphate 

PM                          Plasma membrane 

PNP                         Purine nucleoside phosphorylase 

POMs                      Polyoxometalates 

PSB                         Pharmaceutical Sciences Bonn 

RP-HPLC                Reversed-phase high performance liquid chromatography 

SARs                       Structure-activity relationships 

TEAC                      Triethyl ammonium bicarbonate buffer 

TFA                         Trifluoroacetic acid 

THF                         Tetrahydrofuran 

TFN-                     Tumor necrosis factor alpha  

 IFN-γ                       Interferon gamma  

Thpp                         Uncommitted primed precursors Th 

TMDs                       Transmembrane domains 

TNAP                       Tissue-nonspecific AP 

TNBC                       Triple-negative breast cancers 

TRAMP                    Transgenic adenocarcinoma of the mouse prostate 

TRAP                        Tartrate resistant acid phosphatase 

Treg                           T regulatory cells 

UDP                           Uridine diphosphate 

UMP                           Uridine monophosphate 

UTP                           Uridine triphosphate 

UGTs                         Uridine 5'-diphospho-glucuronosyltransferases 

Vd                              Volume of distribution   


