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Abstract

The prophylaxis and therapy of thrombotic diseases is one of the major columns supporting

our continuously increasing life expectancy and health. The transglutaminase factor XIIIa

(FXIIIa), which is part of the blood coagulation cascade, therefore is an interesting target for

antithrombotic and thrombolytic treatment with enzyme inhibitors. Additionally, powerful

and specific FXIIIa inhibitors are valuable research tools to elucidate the multiple functions

of FXIIIa in more detail. An example for such a powerful inhibitor of FXIIIa can be found

in nature: Tridegin, a 66mer peptide was first isolated from the salivary gland of the giant

amazon leech Haementeria ghilianii in 1997 and is still one of the most potent and specific

FXIIIa inhibitors described. The aim of this thesis is to gain access to the peptide by different

preparation methods and to characterize in detail the inhibitory mechanism and structure of

this interesting peptide. In the course of this research tridegin was synthesized by solid-phase

peptide synthesis followed by oxidative self folding to form disulfide bonds. Additionally,

recombinant expression of the peptide in Escherichia coli was performed. Functional analysis

by enzyme activity and binding assays revealed that the major inhibitory action is localized in

the C-terminal part of the peptide, whereas the N-terminal part contributes to binding affinity.

The disulfide connectivity of both the synthetic and the recombinant peptide variant was

elucidated by mass spectrometric analysis and showed that three different disulfide-linked

isomers were formed. Subsequently, molecular modeling of all three isomers was performed

and the models were docked to the FXIII-A° structure. In general, this work greatly increases

the understanding of the natural FXIIIa inhibitor tridegin, which provides the scientific

community with a valuable research tool and a potential lead structure for the development

of new FXIIIa inhibitors.
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Zusammenfassung

Die Prophylaxe und Therapie thrombotischer Erkrankungen ist eine der wichtigsten Säulen,

die unsere stetig steigende Lebenserwartung und Gesundheit trägt. Die Transglutaminase

Faktor XIIIa (FXIIIa), die Teil der Blutgerinnungskaskade ist, ist daher ein interessantes Target

für antithrombotische und thrombolytische Behandlungen mit Enzyminhibitoren. Zudem sind

starke und spezifische FXIIIa-Inhibitoren wertvolle Werkzeuge zur detaillierten Erforschung

der verschiedenen Funktionen von FXIIIa. Ein Beispiel für einen solchen wirkungsvollen

Inhibitor für FXIIIa kann man in der Natur finden: Tridegin, ein 66mer Peptid, wurde 1997

aus der Speicheldrüse des Amazonas-Riesenblutegels Haementeria ghilianii isoliert und ist

noch immer einer der potentesten spezifischen bekannten FXIIIa Inhibitoren. Das Ziel dieser

Arbeit ist es, Zugang zu Tridegin durch verschiedene Herstellungsverfahren zu erhalten und

den inhibitorischen Mechanismus und die Struktur dieses interessanten Peptids im Detail zu

charakterisieren. Im Verlauf dieser Untersuchungen wurde Tridegin durch Festphasenpep-

tidsynthese und anschließende oxidative Selbstfaltung zur Ausbildung der Disulfidbrücken

hergestellt. Die rekombinante Expression des Peptids in Escherichia coli war ebenfalls erfolg-

reich. Funktionelle Analysen mittels Enzym-Aktivitäts-Untersuchungen und Bindungsstudien

zeigten, dass die hauptsächliche inhibitorische Aktivität im C-terminalen Teil des Peptids

lokalisiert ist, wohingegen der N-terminale Teil zur Bindungsaffinität des Inhibitors beiträgt.

Die Disulfidverbrückung sowohl der synthetischen als auch der rekombinanten Peptidva-

riante wurde mit Hilfe von Massenspektrometrie aufgeklärt und es wurde gezeigt, dass

drei verschiedene disulfidverbrückte Isomere gebildet wurden. Anschließend wurde eine

computergestützte Modellierung aller drei Isomere sowie ein Docking der Modelle an FXIII-A°

durchgeführt. Insgesamt erhöht diese Arbeit das Verständnis des natürlichen FXIIIa-Inhibitors

Tridegin, welcher der wissenschaftlichen Gemeinschaft ein wertvolles Forschungswerkzeug

und eine potentielle Leitstruktur für die Entwicklung weiterer FXIIIa-Inhibitoren zur Verfü-

gung stellt.
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1 Introduction

The connection between leeches and medicine has been established so long ago, that it

is hard to tell, when these animals were first applied in therapy. This is stressed by the

fact, that “leech” is derived from the Anglo-Saxon word “laece”, which meant physician.1

Even today, leech therapy continues to play a role, for example, when blood flow needs

to be re-established in reattached limbs.2 When it comes to the molecular mechanisms of

leech therapy, the probably most important parts of the leech are the peptides and proteins

secreted into the leech saliva, with which the leech numbs the pain of the bitten animal and

prevents blood coagulation to occur. The most prominent representative of leech-derived

anticoagulants, a peptide named hirudin after the scientific name for the medicinal leech,

Hirudo medicinalis, was already discovered in the beginning of the 20th century.3 Since then,

hirudin has been investigated in great detail and is now applied in clinical practice as a

thrombin inhibitor.4

A wide variety of similar substances have been identified to date, some of which are fully

characterized, and some of which still need further investigation.5 One example of the latter

group is tridegin, a potent inhibitor of the blood coagulation factor XIIIa. Since its first

isolation from the salivary gland of the giant amazon leech Haementeria ghilianii in 1997,

little has been published concerning structure or inhibitory mechanism of tridegin. Therefore,

this thesis is dedicated to intense studies of tridegin with focus on structural analysis of the

inhibitor, its interaction with factor XIIIa and the relationship between the structural and

functional details.

Tridegin as a well characterized inhibitor might serve as a research tool, a drug or a lead

structure for development of new anticoagulants. And the leeches could prove again that

they can live up to their name.
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2 Theoretical Background

2.1 Transglutaminases

Transglutaminases (Tgases, EC 2.3.2.13) in general are enzymes that catalyze the formation of

ε-(γ-glutamyl)lysine isopeptide bonds between an acyl donor and an acyl acceptor substrate.

The reaction proceeds via a covalent enzyme-substrate complex between the active center

cysteine side chain and the acyl donor substrate (Figure 2.1).6,7 While transglutaminases

show a high and isoenzyme-dependent substrate specificity for the acyl donor (usually a

glutamine residue in a peptide or protein chain), specificity for the acyl acceptor is relatively

low.6 Besides lysine side chains in peptides or proteins, small amines or even water are

accepted. Therefore, the enzyme-substrate complex can be resolved by the formation of an

isopeptide bond, but also by incorporation of a low molecular weight amine or by hydrolysis

(thereby turning the glutamine residue into glutamate). If the incorporated small amine has

Figure 2.1: Overview over the reactions catalyzed by transglutaminases: After formation of the covalent
intermediate between the acyl donor and the active site cysteine, three different reactions can follow: a)
the incorporation of a small amine, b) hydrolysis of activated thioester, turning the amide substrate into a
carboxylic acid or c) transamidation resulting in the formation of an isopeptide bond. Modified from Griffin et
al.6
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2 Theoretical Background

Table 2.1: Human transglutaminases.

Name Synonym Preferred substrates Physiological functions

Tgase 1 Keratinocyte Tgase Q-x-K/R-φ-x-x-x-W-P9 Assembly of the cornified envelope

Tgase 2 Tissue Tgase Q-x-P-φ10 various

Tgase 3 Epidermal Tgase Y/F/W-Q-S/T-R/K-φ11 Assembly of the cornified envelope

Tgase 4 Prostate Tgase – Mediator of cell-matrix-adhesion

Tgase 6 Neuronal Tgase Q-x-x-φ12 neuronal differentiation/apoptosis

Factor XIIIa Fibrin stabilizing factor Q-x-x-φ-x-W-P10 Blood coagulation, wound healing

a second amino group, such as spermidine or spermine, the resulting product can serve as

an acyl acceptor in the next reaction (secondary cross-link, Figure 2.1).6

There are eight different transglutaminases found in the human genome, which show

strong sequence similarity and belong to the superfamily of papain-like cysteine proteases.6

All members of this family share a common catalytic triad in the active site, consisting of

cysteine, histidine and aspartate or asparagine. However, only six of these transglutaminases

have been described at protein level so far (Table 2.1). Additionally, “erythrocyte-bound

4.2” has been identified as a homologue, but due to a mutation of the active site cysteine

it is no longer enzymatically active and serves structural purposes.6 All transglutaminases

require Ca2+ for their crosslinking function. Additionally, Tgases 2 and 3 can be negatively

regulated by the binding of either GTP or GDP, which is not the case for factor XIIIa or Tgase 1.

However, Tgases 1 and 3 as well as Factor XIIIa can be activated by proteolytic cleavage,

which, in turn, is not described for Tgase 2.8

Of the six transglutaminases in humans, transglutaminase 2 (or tissue transglutaminase)

is probably the best characterized. It is ubiquitously expressed and localized both intra- and

extracellularly.13 Besides its transglutaminase activity, it has been shown to act as a GTPase,

protein disulfide isomerase and kinase. Tgase 2 plays a role in cell death and differentiation,

matrix stabilization, adhesion and migration.6,13 It is also involved in a number of pathogenic

processes, such as celiac disease and cystic fibrosis.14,15

Transglutaminase 1 is expressed predominantly in keratinocytes, where it is anchored to

the keratinocyte plasma membrane via palmitoylation and myristoylation. It helps in the

assembly of the cornified envelope, consisting of heavily cross-linked proteins in the cornified

layer of the skin.16,17 Low levels of Tgase 1 have been shown to be associated with Lamellar

ichthyosis, a rare epidermal disorder that results in extensive scaling of the skin.18 Mice

deficient in Tgase 1 show a phenotype similar to the disease and die shortly after birth due

to an impaired barrier function of the skin.19

Transglutaminase 3 is expressed in the squamous epithelium and is also involved in

4



2.2 Coagulation Factor XIIIa

cornification.16,17 Tgase 3 has been described as an auto-antigen, which might be involved

in the pathophysiology of dermatitis herpetiformis.16

Relatively little is known about transglutaminase 4, which is uniquely expressed in the

prostate gland.20 Recently, Tgase 4 has been shown to increase the aggressiveness of prostate

cancer cells by mediating cell-matrix-adhesion.21

Transglutaminase 6 is predominantly expressed in the central nervous system. Its ex-

pression pattern during embryogenesis suggests a role in neuronal differentiation and/or

programmed cell death.22

The biochemistry and physiological role of factor XIIIa will be described in detail in the

following sections.

2.2 Coagulation Factor XIIIa

Factor XIIIa (FXIIIa) was first described in a short article by Laki and Lóránd in 1948 as

a thermolabile component of the blood serum that, in presence of calcium ions, renders

a blood clot insoluble in highly concentrated urea solutions.23 Therefore, FXIIIa is also

called Laki-Lorand-Factor or fibrin-stabilizing factor. Later, in 1964, it was shown that this

fibrin-stabilizing factor was present as a precursor (FXIII) in plasma, and that it needs to be

activated by thrombin.24 Knowledge on FXIII and FXIIIa has increased significantly since

then. As more different forms and activation states of FXIII were found, Muszbek et al.

suggested a nomenclature, which will be used throughout this document.25

2.2.1 Localization and activation of FXIII

FXIII is present in the plasma as an A2B2-heterotetramer. The two A subunits (FXIII-A)

harbor the enzymatic activity, while the B-subunits (FXIII-B) have an inhibitory and carrier

function.26 This tetrameric form is referred to as plasmatic FXIII (pFXIII). Additionally,

FXIII can be found in the cytoplasm of different cell types, mainly in platelets and mono-

cytes/macrophages. In this case, it is present as an A2-dimer.27

The pFXIII (A2B2) circulates in the blood in an average concentration of 21.0µg/ml.28

There is a 50 % excess of the B-subunit over the A-subunit, however, only about 1 % of the

A-subunit are present in free form. A recent re-evaluation of the binding constant between

the two types of FXIII subunits revealed a Kd value in the range of 10-10 M, which is in good

agreement with the measured proportions of the free subunits in plasma.29 The A-subunit is

synthesized primarily in bone marrow, whereas the B-subunit originates from liver cells.29

From patients deficient in FXIII-B, it is known that the B-subunits protects the catalytic

A-subunit from clearance (see also section 2.3.1). Therefore, a high proportion of complexed

5



2 Theoretical Background

Figure 2.2: Different ways of activation for plasma FXIII. Proteolytic activation is probably the physiological
way of pFXIII activation (A), while activation with calcium ions alone requires unphysiologically high calcium
concentrations (B). Abbreviations as suggested by Muszbek et al. are given below. Modified from Muszbek
et al.25

FXIII-A is crucial to maintain FXIII plasma levels. However, the B-subunit also inhibits the

activation of pFXIII, so that a multi-step activation process is necessary for the formation

of the active enzyme (Figure 2.2). The proposed physiological activation process in plasma

involves the concerted action of both thrombin and calcium ions. First, thrombin cleaves

the activation peptide of FXIII-A (37 amino acids from the N-terminus), then the binding

of calcium ions induces dissociation of the B-subunits and a conformational change in the

A-subunit that uncovers the active center.24,30 The cleavage of the activation peptide is

enhanced in the presence of fibrinogen or non-cross-linked fibrin31 and also the dissociation

of the B-subunit is greatly facilitated in the presence of fibrin.30 Additionally, pFXIII can also

be activated by non-physiological high Ca2+ concentrations (>30 mM). In this case, Ca2+

ions alone are able to induce dissociation of the B-subunits and a subsequent conformational

change in the A-subunits, thereby activating the enzyme (denoted FXIII-A°).30,32 Whether

this mechanism plays any role in the in vivo activation of pFXIII remains questionable.

In contrast, intracellular FXIII (cFXIII) behaves differently. While cFXIII is identical to the

A-subunit of pFXIII, it is not accompanied by B-subunits and activated more readily by Ca2+-

ions alone (Figure 2.3). This activation occurs already at concentrations of 2 mM Ca2+, albeit

very slowly.33 For maintenance of activity, 2 mM Ca2+ were required, at lower concentrations

the enzyme was shown to deactivate again. Both the Ca2+-dependent activation as well as

the deactivation are reversible. Still, these calcium concentrations are much higher than the

6



2.2 Coagulation Factor XIIIa

Figure 2.3: Cellular FXIII is not bound to B-subunits, therefore activation occurs more readily in presence of
calcium ions (A). Proteolytic activation by thrombin or, supposedly, other proteases is nevertheless possible
(B). Modified from Muszbek et al.25

10-4 mM of calcium usually found in resting cells.33 It is suggested that Ca2+-ion influx after

stimulation of cells could activate cFXIII in vivo.34 Additionally, cFXIII can also be activated

by proteolytic cleavage. Activation by thrombin proceeds similar as described for pFXIII,

omitting the B-subunit dissociation. In platelets, activation of cFXIII by the cysteine protease

calpain has been described.35 However, in activated platelets no proteolytic truncation has

been observed, leaving Ca2+-activation as the more likely pathway in vivo.36

2.2.2 Structure of FXIII-A

The crystal structure of cFXIII has been first described by Yee et al. in 1994.37 Since then, it

has been crystallized several times.38–40 As crystallization of the activated FXIIIa was not

successful in the following years, other approaches were used to gain understanding of the

conformational changes that accompany activation of the enzyme. The crystal structure

of the homologous Tgase 241 was used as a scaffold for homology modeling of FXIIIa.42

Also, hydrogen-deuterium-exchange has been used to study the conformational dynamics

of FXIIIa.43,44 Finally, in 2013 a probably active conformation (Ca2+-activated FXIII-A°)

was crystallized with the help of the covalent inhibitor ZED1301.45 A crystal structure of

the B-subunit, the pFXIII (A2B2-tetramer) or the proteolytically activated FXIIIa is still not

available.

In general, the FXIII-A structure consists of four major domains. The activation peptide

(37 N-terminal amino acids) is followed by a β-sandwich domain (38-184), the catalytic

core domain, which is also the largest domain (185-515) and two β-barrel domains (β-

barrel 1: 516–628 and β-barrel 2: 629–731). This overall structure is conserved in Tgase

2 and Tgase 3 as well.41,46 The catalytic triad of FXIIIa is formed by Cys314, His373 and

Asp396 (Figure 2.4). In the inactive state up to one calcium binding site is populated and

the catalytic site is blocked by the β-barrel 1 domain. The side chain hydroxy group of

Tyr560 forms a hydrogen bond with the sulfur of the active site cysteine.37 Upon activation

7



2 Theoretical Background

A

B C

D E

Figure 2.4: A) Overall domain structure of FXIII-A B) Structure of the inactive FXIII-A2. One monomer is
shown in blue, the other monomer is colored according to domain structure.40 C) Structure of FXIII-A°. The
irreversible inhibitor ZED1301 is shown in blue, Ca2+-ions in violet.45 D) and E) show enlarged views of the
active site in FXIII-A and FXIII-A°, respectively. AP: activation peptide.

8



2.2 Coagulation Factor XIIIa

to FXIII-A° by calcium binding, two additional calcium binding sites are populated and the

two β-barrel domains move aside to allow access to the active center. The coordination of

the two additional calcium ions is suggested to be the driving force for this rearrangement.45

During this process, a channel for the lysine substrate is opened and an additional catalytic

diad is formed by His342 and Glu401, which is supposed to facilitate the nucleophilic attack

of the lysine substrate.

In contrast, only little is known about the structure of the B-subunit and the A2B2-tetramer.

The FXIII-B sequence shows a highly repetitive structure containing 10 sushi domains and

is similar to fibronectin.47 Electron microscopy and gradient sedimentation experiments

suggest that the B subunit has an asymmetric, elongated shape.48 The tetramer, in contrast,

has a more compact structure, suggesting that the B-subunit is in some way wrapped around

the A-subunit.48 Further investigations showed, that free, recombinant FXIII-B can form

homodimers, a function that could be attributed to the ninth sushi domain by comparison

with truncated variants. However, the formation of tetrameric complexes with FXIII-A

was dependent on the presence of the first (N-terminal) sushi domain, which is therefore

thought to be responsible for the binding to FXIII-A. The formation of the A2B2-tetramer was

independent on the ability of the truncated variants to form dimers.47

2.2.3 Substrate specificity of FXIIIa

Transglutaminases in general show a relatively high substrate specificity for the glutamine

containing substrate, whereas specificity for the lysine containing substrate is rather low, so

that not only peptides containing lysine residues are accepted, but also small primary amines

like glycine ethyl ester.49 Despite the specificity of FXIIIa for certain glutamine substrates,

it proved difficult to derive a universal consensus sequence. Sugimura et al. determined a

consensus sequence by applying a phage-display library approach. They came up with a

preference for substrates containing a QxxφxWP motif (φ is any hydrophobic amino acid).10

The development of an inhibitor based on this consensus sequence validates this approach.45

Therefore it is even more surprising, that most of the natural substrates of FXIIIa do not

share this common sequence (Table 2.2).50 This indicates that the overall structure of the

substrate might also play an important role.

A recent study using a proteomics approach identified 147 substrates of FXIIIa in blood,

and 48 proteins that were actually incorporated in the plasma clot. Again, a consensus

sequence could not be derived from the data, apart from the complete absence of proline

in the first position C-terminal of the glutamine residue. However, they found an over-

representation of reactive glutamine residues in loop regions after categorizing their hits

according to secondary structure.51 A list of selected FXIIIa substrates is given in Table 2.2.

Further FXIIIa substrates can be found in the transdab database.52
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Table 2.2: Selected glutamine containing substrates of FXIIIa. Updated from Böhm, 2010.53

Sequence Origin Ref.

Natural substrates

...WNSGSSGTGSTGN Q328 NPGSPRPGSTGTW... Fibrinogen α-chain 54

...HWTSESSUSGSTG Q366 WHSESGSFRPDSP... Fibrinogen α-chain 54

...IIPFNRLTIGEGQ Q398 HHLGGAKQAGDV-OH Fibrinogen γ-chain 54

H-EA Q3 QIVQPQSPLTVSQ... Fibronectin 54

...SKIRKPKMCPQLQ Q670 YEMHGPEGLRVGF... α2-Macroglobulin 54

H-N Q2 EQVSPLTLLKLGN... α2-Antiplasmin 55

H-FQSG Q5 VLAALPRTSRQVQ... TAFIa 56

...NQIKAYISMHSYS Q292 HIVFPYSYTRSKS... TAFI 56

...MTPENFTSCGFMQ Q83 IQKGSYPDAILQA... plasminogen activator inhibitor 2b 57

...TSDLQAQSKGNPE Q93 TPVLPEEEAPAPE... Vitronectin 54

...TVMFPPQSVLSLS Q167 SKVLPVPEKAVPY... β-Casein 54

...QERCVDGCSCPEG Q313 LLDEGLCVESTEC... von Willebrand factor 58

...PVIPANMDKKYRS Q378 HLDNFSNQIGKHY... coagulation factor V 51,59

Putative natural substratesc

...DKLGEVNTYAGDL Q77 KKLVPFATELHER... Apolipoprotein A-IV 51

...GTAFVIFGIQDGE Q280 RISLPESLKRIPI... Complement C3 51

...EEVDQVTLYSYKV Q78 STITSRMATTMIQ... ITId heavy chain H2 51

...SVVHLGVPLSVGV Q42 LQDVPRGQVVKGS... Complement C4-B 51

...PVVAEFYGSKEDP Q111 TFYYAVAVVKKDS... Serotransferrin 51

...NGDRIDSLLENDR Q168 QTHMLDVMQDHFS... Clusterin 51

...WLLVAVGSACRFL Q64 EQGHRAEATTLHV... Complement C8 γ-chain 51

Artificial substrates

H-LGPG Q5 SKVIG-OH K9-peptide (Berichrom®-substrate) 60

H-N Q2 EQVSPLTLLKLGN-OH derived from α2-Antiplasmin 60

H-N Q2 EQVSPLTLLK-OH derived from α2-Antiplasmin 55

H-D Q2 MMLPWPAVKL-OH Screening 10

H-W Q2 HKIDLRYNGA-OH Screening 10

H-S Q2 HPLPWPVLML-OH Screening 10

H-SVLSLS Q7 SKVLPVPE-NH2 derived from β-Casein 61

aThrombin-activatable fibrinolysis inhibitor. Q2 is also a substrate glutamine. bQ82 and Q86 are also substrate glutamines.
cFrequently, more than one reactive glutamine residue was found. In this case, only the most N-terminal representative is
chosen here. dInter-alpha-trypsin inhibitor.
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2.2 Coagulation Factor XIIIa

2.2.4 Involvement in haemostasis and fibrinolysis

The most important biological function of FXIIIa is its involvement in blood coagulation. It

differs from most of the other coagulation enzymes in that it is not a serine protease, but

a transglutaminase. In the final stages of blood coagulation, thrombin cleaves fibrinogen

to form fibrin and also activates FXIII. The fibrin monomers assemble to a non-covalent

fibrin clot, which is then covalently cross-linked by FXIIIa. This is also the reaction that was

originally observed by Laki et al. when they discovered FXIIIa.23 The covalent crosslinking

of fibrin makes the clot insoluble even at high concentrations of urea, while non-cross-linked

fibrin clots dissolve readily under these conditions. Later, measurements of the viscoelastic

properties of cross-linked and non-cross-linked clots showed a remarkable increase in clot

stiffness after FXIIIa treatment.62,63 This is attributed to the crosslinking of α- and γ-fibrin

chains. The fastest reaction is γ-chain dimerization by the reciprocal cross-linking between

Lys406 on one chain, and Gln398 or Gln399 on another chain. This is then followed by the

slower α-chain cross-linking, in which multiple lysine and glutamine residues are involved

and which results in high molecular weight polymers. It is suggested that the second, slower

reaction, has more influence on clot stiffness.27

The action of FXIIIa on fibrin also renders a clot more resistant to fibrinolysis by plasmin.

Initially it was thought that this also results from fibrin cross-linking. However, it was shown

by Fraser et al. that the resistance of the clot to fibrinolysis is almost solely influenced by

α2-antiplasmin (α2-AP), which is covalently attached to the fibrin chains by FXIIIa.64 α2-AP

is a natural inhibitor of the fibrinolytic protease plasmin. It is secreted by the liver as Met1-

α2-AP, which is a mediocre substrate for FXIIIa, but antiplasmin cleaving enzyme (APCE),

a protease present in the blood, partially converts Met1-α2-AP to Asn1-α2-AP by removing

12 N-terminal amino acids. Asn1-α2-AP is an excellent substrate of FXIIIa and is rapidly

incorporated into the clot.36 The importance of this physiological process is underlined by the

fact that α2- AP-deficiency leads to severe bleeding tendency very similar to FXIII-deficiency

(see section 2.3.1).65

Another component of the fibrinolytic system that is cross-linked to fibrin by FXIIIa is

plasminogen activator inhibitor 2 (PAI-2).57 This protein is usually found in monocytes, but

can also be secreted and is detectable in plasma during pregnancy.66,67 It is an inhibitor

of urokinase (also called urokinase-type plasminogen activator or u-PA). PAI-2 prevents

urokinase from converting plasminogen to plasmin, and therefore has an antifibrinolytic

function.67

Thrombin-activatable fibrinolysis inhibitor (TAFI) is a more recently described inhibitor of

fibrinolysis, which is also incorporated in the clot by FXIIIa.56 It is activated by thrombin,

most efficiently in the presence of thrombomodulin, resulting in activated TAFI (TAFIa). It
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2 Theoretical Background

Figure 2.5: Overview of fibrinolytic and anti-fibrinolytic processes. Substrates of FXIIIa are marked in gray.

then acts by inhibiting a positive feedback mechanism in the activation of plasmin: Plasmin

cleaves fibrin after selected lysine and arginine residues. These free C-terminal lysine residues

enhance the formation of plasmin from plasminogen, thereby increasing fibrinolysis.36,68

TAFIa eliminates these C-terminal lysine and arginine residues from the partially degraded

fibrin and reduces this positive feedback mechanism. The covalent cross-linking of TAFI and

fibrin is suggested to facilitate the activation of TAFI and protect it from degradation.56

The interaction of FXIIIa with platelets and the involvement of the intracellular cFXIII of

platelets in the coagulation process seems to be more complex. Although cFXIII is present

in platelets in huge amounts reaching about 3 % of total cell protein,69 the influence of

cFXIII from platelets on the crosslinking of the clot is negligible and cFXIII is not released

during platelet activation.36,70 The presence of platelets themselves, however – independently

on whether or not they contain cFXIII – did accelerate the fibrin cross-linking reaction of

pFXIIIa, indicating that platelets provide a catalytic surface by a yet unknown mechanism.36

The role of cFXIII inside platelets has also been investigated in more detail. There are

contradictory findings on whether or not cFXIII is involved in clot retraction, i.e. a platelet

mediated shrinking of the clot that pulls the edges of the lesion closer together.36,71,72

Studies on the localization of cFXIII inside the platelets showed a diffuse, cytoplasmatic

distribution of cFXIII in resting platelets, but upon activation of the platelets by either

thrombin or Ca2+-influx, cFXIII rapidly relocalizes to the periphery. As this is a region of

major cytoskeletal reorganization in activated platelets, and as FXIIIa has been shown to

associate with cytoskeletal proteins, an involvement of FXIIIa in cytoskeletal stabilization

was suggested.73

The whole process of fibrinolysis is summarized in Figure 2.5. With these findings in mind,

it is evident that FXIIIa is a key player in the regulation of fibrinolysis and clot stability and

has an overall anti-fibrinolytic effect. However, recently other physiological roles for FXIII

have been suggested, and will be reviewed in the following section.
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2.2 Coagulation Factor XIIIa

2.2.5 Other physiological functions

Multiple physiological functions for FXIIIa have been suggested apart from the involvement in

blood coagulation. This includes a participation in wound healing, angiogenesis, maintenance

of pregnancy, inflammation, immune response, cardiac protection and bone metabolism,

which have recently been reviewed.36,50,74 Figure 2.6 gives an overview on this topic.

Wound healing and angiogenesis An important additional function of FXIIIa is its influence

on wound healing processes. An impaired wound healing has been documented both in

FXIII-A deficient humans and mice.75,76 When the closure of coutaneous wounds was studied

in FXIII-A deficient mice, they showed poor epidermal regeneration, formation of abnormal

scar tissue and necrosis. Only 73 % of total wound closure was reached after 11 days, a time

span sufficient for wound closure in control animals. The substitution of FXIII in the deficient

mice, in contrast, resulted in nearly normal wound healing.76 This suggests that pFXIII is

sufficient to restore the normal phenotype, despite the cFXIII deficiency of the mice, which

was not affected by FXIII substitution.76 The molecular mechanism is not fully understood

yet. The most important physiological processes involved in wound healing are fibrin gel

formation, invasion of macrophages, migration and proliferation of fibroblasts, production

of extracellular matrix and angiogenesis.36 FXIIIa seems to be involved in several steps of

this process. It was shown that FXIIIa (but not inactivated FXIIIa) significantly enhances

proliferation and migration of monocytes and fibroblasts and also reduces apoptosis in these

cell types.77 Additionally, FXIIIa is known to cross-link certain matrix proteins, for example

fibronectin, which is covalently cross-linked by FXIIIa and is also attached to fibrin-clots,

thereby enhancing fibroblast migration into the clot.36,50 Finally, FXIIIa is also pro-angiogenic,

a property not uncommon among coagulation enzymes that is also the case for thrombin,

factor VII and tissue factor.78 Dardik et al. showed that FXIIIa had a positive influence on

migration and proliferation of endothelial cells and inhibited apoptosis. Additionally, FXIIIa

treatment lowered the expression of thrombospondin 1, a well-characterized anti-angiogenic

factor, in these cells. Again, these effects were not seen with inactivated FXIIIa.79 The effect

of FXIIIa on angiogenesis in vivo was also evaluated. In a murine neonatal cardiac allograft

model, a dose dependent increase in blood vessels was found when injected with FXIIIa.80

This angiogenic function of FXIIIa is assumed to play an important role in wound healing.

Maintenance of pregnancy Besides bleeding, premature abortion is a common symptom

in FXIII deficient women. Of 124 reported cases of pregnancies in FXIII deficient patients

without prophylactic therapy, 91 % resulted in miscarriages. When pFXIII is substituted,
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2 Theoretical Background

Figure 2.6: Physiological functions of FXIIIa.

pregnancy is largely normal in these patients.81 An interesting finding is the proliferation of

cFXIII containing cells in the placenta in the first trimester of pregnancy.82 However, the fact

that pFXIII substitution is sufficient to maintain pregnancies leads to the conclusion, that

pFXIII is of primary importance.36 It has been shown in case of a deficient patient that the

absence of FXIIIa impaired the formation of the cytotrophoblastic shell, a layer that connects

the fetal and maternal parts of the placenta. It is thought that FXIIIa serves an important

function in the cross-linking of extracellular matrix proteins in this region thereby stabilizing

the placenta.83

Inflammation and immune response The connections between FXIII and infection control

have been reviewed recently.84 Entrapment of bacteria in blood or similar body fluids is an

evolutionary old mechanism of immune systems, which is still a primary line of defense in

animals like the horseshoe crab, whose hemolymph reacts with coagulation after contact

with bacterial endotoxins.84 This mechanism is still conserved in humans, as shown by the

activation of the blood coagulation upon contact with bacteria. Moreover, FXIII may also be

activated in this process and has been shown to efficiently cross-link bacteria into the forming

clot, thereby immobilizing them. This entrapment can also be seen in vivo, a mechanism

that was shown to be impaired in FXIII deficient mice where bacteria were distributed more

widely in the early stages of infection compared to normal mice.85

Besides this very ancestral line of immune defense, there is also a cross talk between FXIIIa,

the complement system and immune cells.34,74 An example for this is mannan-binding lectin-
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2.3 Pathophysiology of Factor XIIIa

associated serine protease-1 (MASP1), a component of the complement system, that has a

similar substrate specificity as thrombin. It was shown to activate FXIII, but more slowly

than thrombin.86 This could be one of the mechanisms also involved in the cross-linking of

bacteria and fibrin clots. Interestingly, a study on potential substrates of FXIIIa identified a

number of other complement proteins as FXIIIa substrates.51

An example for the connection between FXIIIa and immune cells is the already mentioned

pro-proliferative effect of FXIIIa on monocytes.77

Cardiac protection In 2006, Nahrendorf et al. discovered a novel functional impairment in

FXIII deficient mice. They could show that both homozygous and heterozygous FXIII deficient

mice died due to a cardiac rupture a few days after an experimental myocardial infarct was

introduced. They could also demonstrate that FXIII was present within the healing infarct in

wild-type mice.87 This finding was strengthened by a study on the life span of FXIII deficient

mice, which revealed that especially male mice tended to die of heart bleeding.88 Also, a

similar human case has been reported, which underlines the possible clinical relevance of

this topic.89

Various Additionally, other potential physiological functions of FXIII have been described.

Among these are an involvement in bone and cartilage development. FXIII has been found

in hypertrophic, i.e. terminally differentiated, chondrocytes.90 Furthermore, it has been

shown to participate in the differentiation of these chondrocytes and an involvement in

osteoarthritis is discussed.91 FXIII also came up in a genome wide association study on genes

correlated with obesity92 and most recently, FXIII was shown to be a negative regulator of

adipogenesis.93

2.3 Pathophysiology of Factor XIIIa

Despite the ongoing, thorough investigations of the physiological functions of FXIIIa, its

pathophysiology is only partly understood. While the deficiency in FXIII is well studied, the

implications of FXIII levels on other diseases are still a matter of debate.

2.3.1 Factor XIII deficiency

Factor XIII deficiency is a rare bleeding disorder caused by low levels of (functional) FXIII in

the plasma. Clinical symptoms include frequent bleeding events, for example subcutaneous

hematomas, intramuscular and joint hemorrhage, and intracranial hemorrhage.75 The latter

is also the most frequent cause of fatality and disability in FXIII deficient patients.75,94
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2 Theoretical Background

Rebleeding of wounds is a common symptom as well. However, due to the multiple functions

of factor XIII in man, bleeding is not the only symptom of a FXIII deficiency. Most notably,

deficient patients suffer from impaired wound healing and scar formation. In women, FXIII

deficiency leads to recurrent pregnancy losses (see also section 2.2.5).81

Factor XIII deficiency can be inherited (congenital) or acquired. Congenital FXIII deficiency

is a very rare, autosomal recessive disease with a prevalence of 1 in 2 or 3 million people.75,95

It can present as either FXIII-A or FXIII-B deficiency, depending on whether the A- or the

B-subunit is affected. FXIII-A deficiency can be further classified into type I or type II. Type

I deficiency is a quantitative defect. The plasma level of FXIII-A is low or not detectable,

usually caused by a mutation in the F13A-gene which leads to a misfolded or truncated

protein. More than 100 mutations have been reported so far.96 On the other hand, FXIII-A

type II deficiencies are caused by a dysfunctional FXIII-A-subunit. Up to now, there is only

one such example, where an amino acid exchange at the thrombin cleavage site renders

the protein resistant to thrombin cleavage and thereby prevents activation of FXIII.75 A

nonfunctional FXIII-B subunit on the other hand results in increased clearance of FXIII-A

from the plasma, thereby also lowering the plasma levels of FXIII. However, the phenotype is

somewhat milder compared to FXIII-A deficiencies, which is probably due to small amounts

of FXIII-A (about 10 % of the normal value) still present in the plasma.75

Acquired FXIII deficiency may have a variety of causes. As known for other coagulation

factors as well, a high consumption of these enzymes for example during major surgery or

inflammatory bowel disease, can lead to a significant decrease in plasma levels.75 On the

other hand, autoantibodies against FXIII (in most cases the A-subunit, rarely the B-subunit96)

have been reported, which can inhibit FXIIIa, prevent the activation of FXIII or the binding

of FXIII to fibrinogen.97 Most commonly these autoantibodies are found in patients suffering

from autoimmune diseases such as systemic lupus erythematosus.98 Treatment is more

difficult in these cases, as substitution of FXIII is often not successful. Therefore, treatment

is usually focused on suppressing the immune response and/or treating the underlying

autoimmune condition.75

2.3.2 Involvement of FXIII in thrombotic diseases

Since FXIII plays an important role in coagulation and haemostasis, it seems stringent to

look for an involvement of the enzyme in thrombotic diseases (Figure 2.7). However, there

is relatively few evidence that elevated levels of FXIII could influence this type of disease.99

For example, two studies on deep vein thrombosis (DVT) and venous thromboembolism

(VTE) did not find a link between FXIII levels and risk of DVT.100,101 However, it was shown

that FXIII is significantly decreased in patients with pulmonary embolism, and the decrease
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2.3 Pathophysiology of Factor XIIIa

Figure 2.7: Overview over different complica-
tions arising from venous and arterial throm-
bus formation. In case a thrombus forms in
veins, embolization (i.e. breaking free of the
thrombus) can lead to obstruction of smaller
blood vessels in the lung, causing life threat-
ening pulmonary embolism. Thrombi formed
in the arteria may also embolize and can for
example block capillaries in the brain or heart
muscle, also causing potentially fatal obstruc-
tion of these.

was correlated with the pulmonary occlusion rate. This indicates a consumption of FXIII in

the course of the disease and therefore direct contribution of FXIII to the clot formation.102

On the other hand, high FXIII levels have been linked to an increased risk for myocardial

infarction. This correlation is gender specific and applies only to women.103

A lot of attention has been given to the influence of a common polymorphism of FXIIIa

(Val34Leu) on pathological conditions. The frequency of this allele is about 25 % in Cau-

casians, but significantly lower in Africans or Asians.104 The Val34Leu substitution is close to

the thrombin cleavage site in FXIII and has indeed been shown to enhance the activation

rate by thrombin and affect the cross-linked fibrin structure.105 Studies demonstrated that

the risk of DVT is slightly decreased in both homozygous and heterozygous carriers of the

Val34Leu polymorphism.100 However, there seems to be no influence of this polymorphism

on ischemic stroke, as a recent meta-analysis suggests.106

A more indirect influence of FXIII on atherosclerotic diseases has been investigated by

AbdAlla et al. The group could demonstrate that angiotensin 1 receptors (AT1 receptors) in

monocytes can be cross-linked by cFXIII in the presence of calcium ions and angiotensin II. This

leads to dimerization of the AT1 receptors which renders them hyperresponsive. Interestingly,

an increased level of these AT1 receptor dimers was found in patients that already showed

hypertension.107 Therefore it is suggested that activation of intracellular FXIII may be a risk

factor for the development of atherosclerosis.107

2.3.3 FXIIIa and cancer

There is some evidence that FXIIIa is associated with oncogenesis. For example, FXIII-A

has been shown to be present in acute promyelocytic leukemia cells.108 Activity of FXIIIa

in plasma was elevated in patients with non-small cell lung carcinoma.109 A more detailed

analysis on the function of FXIII in tumor metastasis revealed, that the absence of FXIII

impairs the formation of metastases by hematogenous tumor cells. FXIII is suggested to
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2 Theoretical Background

enhance the survival of micrometastases by providing a cross-linked fibrin rich matrix that

prevents natural killer cells from entering the metastatic site and eliminating the tumor.110 A

similar effect was described for brain tumors, where fibrin deposition and the presence of

FXIII were described.111 The whole picture of FXIII influence on tumors is not yet understood,

but will probably be addressed in more detail in the future.

2.4 Inhibition of FXIIIa

The aforementioned association of FXIIIa with pathological conditions makes it an interesting

target for inhibitor design. The earliest “inhibitors” described for fibrin cross-linking were in

fact small, primary amines that were incorporated into fibrin clots and thereby prevented

fibrin cross-linking.49

In the 1980’s, Merck Sharp & Dohme developed imidazolium and thiadiazolium derived

transglutaminase inhibitors.112,113 Additionally, some naturally occuring FXIIIa inhibitors

have been identified, among them the antibiotic cerulenin114 as well as alutacenoic acids115

and derivatives116 and the peptide inhibitor tridegin (see section 2.5). Some experiments

have already shown the potential benefit of FXIIIa inhibitors. One of them was conducted

by Shebuski et al. in 1990 and showed an enhanced t-PA induced thrombolysis in a canine

model, when a FXIIIa inhibitor (L722151, see Table 2.3) was applied prior to thrombus

formation.117 Another study nine years later showed a similar result on a pulmonary embolism

model in ferrets.118 The group administered an inhibitory antibody against FXIIIa and could

demonstrate that not only thrombus lysis after t-PA administration was increased after FXIIIa

inhibition, but also the endogenous thrombolysis without addition of t-PA.118 Matlung et al.,

in contrast, could demonstrate that the inhibition of transglutaminase activity (by L682777)

did not influence the early stage development of atherosclerotic lesions in a mouse model.119

While these inhibitors gave valuable insights in in vivo experiments, they suffer from two

shortcomings: First, most of the small molecule inhibitors did not discriminate well between

the tissue transglutaminase Tgase2 and FXIIIa. Second, they showed only a short plasma

half life of 5-10 min.117 Therefore, in the last years inhibitor design concentrated on peptide-

derived inhibitors. One of them, ZED1301, has been successfully applied for co-crystallization

with active FXIII.45 Because of this, specific FXIIIa inhibitors are both, valuable tools for the

investigation of FXIIIa in vitro and in vivo and potential drug candidates.
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Table 2.3: FXIIIa inhibitors. Potency is given as IC50 and/or k2nd (apparent second-order rate constant),
depending on what information was available.

Inhibitor Potency Specificity

Chemical agents

EDTA (depletion of Ca2+-ions)120 – unspecific

iodoacetamide (alkylation of active

site cysteine)121
– unspecific

Competitive substrates

glycine ethyl ester49
–

does not discriminate between

FXIIIa and Tgase2

dansylcadaverine49

–
does not discriminate between

FXIIIa and Tgase2

Small molecule inhibitors

alutacenoic acid B115

IC50=0.61 µM

does not inhibit papain, calpain or

cathepsin, inhibits Tgase2 with

20fold higher IC50

Cerulenin114

IC50<6.2 µM122
has also antibiotic activity

alutacenoic acid derivative116

IC50=0.026 µM
unknown

L722151112,113

IC50<0.5 µM122

k2nd=23000 M-1s-1

no effect on thrombin, plasmin,

papain,112 but does inhibit

Tgase2123
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Table 2.3: FXIIIa inhibitors (continued). MAP: Michael acceptor pharmacophore, CMK:Chloro methyl ketone.

Inhibitor Potency Specificity

L682777113,124

IC50<0.08 µM124

k2nd=63000 M-1s-1

no inhibition of papain or calpain, but

apparent second-order rate

constants are in the same range for

FXIIIa and Tgase2113

Peptide derived inhibitors

ZED1251125

(Ac-Asn-MAP-Glu-Gln-Val-Ser-Pro-

Leu-Thr-Leu-Leu-Lys(alloc)-OH)

k2nd=5500 M-1s-1 unknown

ZED130145 (Ac-Asp-MAP-Nle-Nle-

Leu-Pro-Trp-Pro-OH)

IC50≈100 nM126

k2nd=4600 M-1s-1 127

IC50 for Tgase2 about 3000 nM, i.e.

30-fold lower inhibition.126

Cbz-Phe-Glu(CMK)-Val-Lys-Val-Ile-

Gly-NH2
128 k2nd=681 M-1s-1 unknown
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2.5 Tridegin

2.5 Tridegin

The natural FXIIIa inhibitor tridegin was first described in 1997 by Finney et al.129 It was

shown that the salivary gland extract of the giant amazon leech Haementeria ghilianii could

inhibit FXIIIa and subsequently a peptide of approx. 7.3 kDa was isolated. With the help

of an ammonia-release assay, the group determined an IC50 value of about 10 nM and was

furthermore able to derive the 66 amino acid peptide sequence by Edman sequencing, with

few ambiguities. These include the insufficient separation of (carbamidomethylated) cysteine

from glutamate and three positions that could not be determined at all and are suggested to be

post-translationally modified (Figure 2.8A). While the group could directly show that tridegin

inhibited the fibrin cross-linking, an effect of tridegin on other components of the coagulation

cascade (thrombin, factor Xa) or cysteine proteases (bromelain, papain, cathepsin C) was

not detectable. However, tridegin did inhibit Tgase 2, albeit with an IC50 value of about

23-fold the value which was found for FXIIIa. Tridegin is therefore a highly specific and

highly active FXIIIa inhibitor. It is also the first and up to now only natural peptidic FXIIIa

inhibitor described.129

2.5.1 Sequence and homology

Between 2000 and 2002 two patent applications on tridegin were filed130,131 and one more

containing the tridegin sequence as an example for glucose dehydrogenase fusion proteins.132

Two of these patents describe the recombinant expression of tridegin and contain a full

tridegin sequence (no ambiguities) with two additional amino acids (N-terminal methionine

and C-terminal glutamate).131,132 However, no details are given on how this sequence was

derived.

A first clear homologue of tridegin was found by an expressed sequence tag (EST) sequenc-

ing approach of the salivary complexes of Haementeria depressa.133 An alignment of this

sequence with the originally published peptide sequence performed by T. Kühl resulted in

almost the same sequence as published in the patents (see Figure 2.8).134 The H. depressa

gene product of the homologous sequence has not been isolated. Salivary gland extracts

from the H. depressa leech, however, show a significant inhibition of FXIIIa. This is also

true for the related species Haementeria officinalis, suggesting that compounds similar to

tridegin can be found in various species of the Haementeria genus.130 Since there is not

much sequence information on leeches available, clear homologues in more distantly related

species have not been found. Some homology can be assumed to sequence stretches from

the leech Helobdella robusta (of which the whole genome has been sequenced) and the

well-characterized thrombin inhibitor hirudin from the medicinal leech Hirudo medicinalis.

The latter is especially similar to tridegin concerning the spacing of cysteine residues and
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A) Tridegin sequences

KLLPCKEXHQ GIPNPRCXCG ADLEXAQDQY CAFIPQC/ERPR SELIKPMDDI YQRPVC/EFPNL PLKPRC/E 129

MKLLPCKEWHQ GIPNPRCWCG ADLECAQDQY CAFIPQ C RPR SELIKPMDDI YQRPV E FPNL PLKPR E E 131

KLLPCKEWHQ GIPNPRCWCG ADLECAQDQY CAFIPQ C RPR SELIKPMDDI YQRPV E FPNL PLKPR E 134

B) putative homologues

KLLPCKEWHQGIPNPRCWCGADLECAQDQYCAFIPQCRPRSELIKPMDDIYQRPVEFPNLPLKPRE Tridegin
|||||||||||:||||||||||||||||||||||||||||||||||.|||||||:|||.||.||

FSLVASKLLPCKEWHQGVPNPRCWCGADLECAQDQYCAFIPQCRPRSELIKPEDDIYQRPLEFPKLPPKP H. depressa EST

-KLLPCKEWHQGIPNPRCWCGADLECAQDQYCAF-----IPQCRPRSELIKPMD----DIYQRPVEFPNLPLKPRE Tridegin
....|.|..|.: |.|.....|.|...|.. ..||.......||.. |..:.|.|:..
VVYTDCTESGQNL----CLCEGSNVCGQGNKCILGSDGEKNQCVTGEGTPKPQSHNDGDFEEIPEEYLQ------- Hirudin

KLLPCKEWHQGIPNPRCWCGADLECAQDQYCAF------IPQCRPRSELIKPM----------------DDIYQRPVE Tridegin
|||.|.|.|:..|..:||||:.| |:...|||. .|.||||||.::.. ||..|||:.
KLLECTEDHERNPLAKCWCGSVL-CSDGNYCAIPSQVSEEPSCRPRSEYVERNLPGGTRRPRTTPRGICDDTVQRPIS partial mRNA

from H. robusta

Figure 2.8: A) Published sequences of tridegin: Original paper from Finney et al.129 (top), patent from Giersiefen et al.131 (middle) and the sequence derived
by Kühl134 from alignment with the H. depressa EST. B) Alignment of Tridegin with different (putative) homologues: an expressed sequence tag from the H.
depressa,133 Hirudin from H. medicinalis and a partial mRNA sequence from H. robusta.136
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2.5 Tridegin

therefore might show structural homology to tridegin (see Figure 2.8). However, the over-

all identity (19.7 %) and similarity (23.7 %) are relatively low, therefore it cannot be said

whether the sequences are truly homologous (“twilight zone”135). Alignment with two

other leech-derived peptides, ornatin from Placobdella ornata and decorsin from Macrobdella

decora yields similar results. Therefore, using structural information from hirudin, ornatin or

decorsin to derive the tridegin structure (i.e the three dimensional fold or the disulfide bond

network) is not a reliable way and other means of structure determination need to be used

(see also section 5.5.1).

2.5.2 Potency

The activity of FXIIIa and thereby also the potency of FXIIIa inhibitors is conveniently mea-

sured in vitro by different assays. The earliest assays available were an amine-incorporation

assay137 as well as different ammonia-release assays.138,139 Later on, the isopeptidase activity

of FXIIIa was exploited to measure activity by the use of fluorogenic or chromogenic assays.

In this case, release of a chromophore, fluorophore or quencher coupled to the glutamine

residue of a FXIIIa substrate is monitored.128,140,141

The potency determined for native (i. e. leech isolated) tridegin determined by Finney et al.

with an ammonia-release assay was given as an IC50 value of approx. 9.2 nM.129 They also

noted that this IC50 value varied with the concentration of FXIIIa in the assay and suggested

a 1:1 stoichiometry of tridegin and FXIIIa.129

Since then, several other preparations of tridegin have been analyzed, but none of them

from the original organism. Early investigations on tridegin produced recombinantly in E. coli

showed IC50 values of 2-4µM,131 optimization of the expression procedure (most notably

periplasmic instead of cytoplasmic expression) resulted in an IC50 of 20-40 nM.142 Analysis of

the same substance with an isopeptidase assay141 resulted in IC50 values of 92-200 nM.134,143

Tridegin synthesized by solid-phase peptide synthesis and subsequent oxidation yielded an

IC50 of 300-600 nM.53,134,143

The exact reason for these deviations is not clear. They may partly be due to different

preparation strategies, resulting in different post-translational modifications (in case of the

native tridegin) or different disulfide bonds. Furthermore, the assay conditions may play a

role as well as the method of concentration determination (Bradford assay vs. amino acid

analysis). It is of interest that the values published for the leech-extracted tridegin have never

been reached with any preparation since then, but without access to the native material, it is

impossible to determine whether structural or methodological reasons apply.
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2 Theoretical Background

2.5.3 Mutational studies

In one of the patents, Giersiefen et al. started to investigate which part of the tridegin

sequence was most important for inhibitor function. Therefore, they split the sequence

into 25 overlapping 20mer peptides and assayed the inhibitor potency of these relative to

full-length tridegin (Figure 2.9A). The experiment revealed that the main inhibitory activity

resides in the C-terminal part of the peptide.131 They then concentrated on the most potent

20mer found and sequentially exchanged every amino acid to alanine (alanine scanning,

Figure 2.9B) which resulted in a number of candidate amino acids with major influence on

the inhibitor function.

Based on this data, R. Coch continued with the synthesis of longer variants containing

an I50A mutation. Both a full-length variant and a C-terminal 30mer with the mutation

A

B

Figure 2.9: Early truncation and mutation studies on tridegin by Giersiefen et al.131 A) A series of 20mer
peptides from tridegin localizes the major inhibitory function in the C-terminal part of tridegin. B) Alanine
scanning in the most potent 20mer pinpoints influential positions. Concentration of peptides ≈7.3 µM.
Modified from Giersiefen et al.53,131
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2.6 Structural Classification of Disulfide Bonds

Table 2.4: Effect of mutations in the sequence of tridegin or a truncated analogue on inhibitor potency53,143

Peptide No. of amino acids Mutation IC50 [µM]

Tridegin 66 none 0.48

Tridegin 66 I50A 1.12

C37-E66 30 none 1.71

C37-E66 30 I50A 13.8

C37-E66 30 I50A, L62A 68.0

showed strongly decreased inhibitor potency, confirming the importance of the I50 position

fo inhibitor function.143 A later analysis of a 30mer with an additional L62A mutation, a

position also suggested to be important by Giersiefen et al., confirmed the expected decrease

in potency (Table 2.4).53

2.6 Structural Classification of Disulfide Bonds

Disulfide bonds, i.e. the oxidative covalent linkage between two cysteine sulfur atoms, are a

major structural feature in proteins and peptides. About 40 % of all mammalian proteins

contain disulfide bonds, the vast majority of these proteins are localized extracellularly.144,145

Mostly, these disulfide bonds serve structural purposes, as they protect the protein structure

in the (sometimes harsh) extracellular environment. However, in some cases these disulfides

are catalytically active, as for example in thiol-disulfide oxidoreductases. More recently it

has become evident that also allosteric influences of disulfide formation or reduction on

protein function plays a regulatory role.145,146

A classification of the three dimensional conformation of disulfide bonds on the basis of

their bond angles has first been introduced by Richardson in 1981147 and has since been

refined.145 A basic classification can be done on the orientation of the χ2, χ3 and χ ′2 bond

angles (Figure 2.10). The disulfide bonds are characterized as being either right- or left-

handed depending on whether χ3 is positive or negative, respectively. Furthermore, if χ2,

χ3 and χ ′2 all have the same orientation (either positive or negative) the disulfide bond is

referred to as a “spiral”, while “hook” refers to a bond where only one of the angles χ2 and

χ ′2 share the same orientation with the χ3 angle. Finally, a disulfide bond where both χ2 and

χ ′2 have the opposite orientation compared to χ3 are referred to as “staples”.145,147 These

are then abbreviated as either right hand (RH) or left hand (LH) spirals, hooks or staples.

For example a right hand spiral is denoted RHSpiral. With this classification, six different

disulfide bonds are possible (the disulfides are treated as symmetrical, i.e. there is only one
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2 Theoretical Background

Figure 2.10: There are five χ-angles of the disulfide bond. When only the orientation of these angles is
taken into account (i.e. − or +) and the disulfide bond is treated as symmetrical, 20 different conformations
arise. Modified from Schmidt et al.145

RHHook, independent on which of the two χ2 angles is positive).

For a more detailed classification, the orientation of χ1 and χ ′1 angles was added. In this

case, a plus or minus sign indicates whether both angles are positive or negative, respectively.

A −/+ oder +/− indicate that χ1 and χ ′1 have different orientations. Thus, −RHStaple would

indicate a minus right handed staple, i.e. the angles for χ1, χ2, χ3, χ ′2 and χ ′1 are −, −,

+, − and −. Note that there is only one possibility to form a +/−RHStaple, but there are

both +/−RHHook and −/+RHHook possible. According to this, there are 20 disulfide bond

configurations possible, all of which have been shown to exist in proteins.145 However, not all

showed the same prevalence. The −LHSpiral is the most prevalent in disulfide containing X-

ray structures (24.7 %) and also has the lowest dihedral strain energy. It is therefore assumed

to be the primary structural disulfide.145 In contrast, +RHHook, +RHStaple and +LHStaple

showed a prevalence of <1 % in the same dataset. The conformation of disulfide bonds is

also closely linked to function: while almost all catalytic disulfides are +/−RHHooks, most

allosteric disulfides are −RHStaples.145 When comparing the results from X-ray structures

with NMR structures of the same protein, it became obvious that these are not tightly fixed

conformations. Different NMR structures often showed different conformations. However, in

most cases, the conformation found in X-ray structures could also be confirmed in one of the

NMR structures.148

In general, although there is a lot of information available on the conformation of the

peptide backbone, disulfide conformation is still not very well characterized. This is a problem

especially for multiply bridged, disulfide-rich peptides, because in these the contribution of

the disulfide bonds to the overall structure is extraordinarily large.
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3 Aims of this work

This work aims at a comprehensive understanding of the natural FXIIIa inhibitor tridegin and

its interaction with FXIIIa on a molecular level. Both structural and functional aspects of the

enzyme-inhibitor interaction should be investigated in detail, to deepen our understanding of

the biochemistry of FXIIIa and to provide the scientific community with a well characterized

tool for studying the multiple functions of FXIIIa in vitro and in vivo.

To achieve this, the functional characterizations should be performed. The sequence stretch

of tridegin that probably interacts with FXIIIa has been localized in the C-terminal region of

the peptide.131,134 However, it is known that the presence of the N-terminal part enhances

inhibitor potency, but it remains unclear by what mechanism. This should be investigated in

a first step. Therefore, a series of peptides lacking different parts of the N-terminal region

should be synthesized and their inhibitory potency should be compared to the full length

inhibitor. The N-terminal part of tridegin also harbors six cysteine residues which are, to

current knowledge, fully oxidized to form three disulfide bonds. Both their function and

the pattern by which they are connected are not known. Therefore, tridegin analogues

lacking the disulfide bonds or the cysteine residues will be analyzed in more detail. All

enzyme activity assays are to be performed in cooperation with Prof. Dr. Torsten Steinmetzer

(University of Marburg).

For structural analysis, different approaches should be tested. Crystallization experiments,

which have unfortunately not been successful with pure synthetic tridegin in the past,

should be continued in presence of FXIII in cooperation with Dr. Manuel Than (FLI Jena).

Furthermore, the disulfide connectivity of tridegin should be investigated in parallel, to

learn about the number and type of disulfide-connected isomers present in the differentially

produced substances. To help this aim, a smaller peptide with all cysteine residues will be

synthesized and its disulfide pattern after oxidation will be evaluated. The method of choice

for this task should be a detailed MS and MS/MS analysis of the peptides. From the results,

a computational model of tridegin will be generated in cooperation with Dr. Arijit Biswas

(University Hospital Bonn).
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3 Aims of this work

Once both functional and structural information have been gathered, these should be

combined and evaluated to derive structure-activity-relationships. Based on the structural

information derived from tridegin and the recently published structure of FXIIIa,149 computer

models of the tridegin-FXIIIa-interaction will be generated. The results are then to be

compared with the experimental data.
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4 Materials and Methods

4.1 Chemicals and Buffers

Table 4.1: Chemicals and reagents

Chemical Supplier

Solvents

Acetic acid Roth

Acetonitrile (HPLC grade) VWR

n-Butanol Roth

Dichlormethane (DCM, HPLC grade) VWR

Dimethylformamide (DMF, technical grade) VWR

Dimethylformamide (DMF, analytical grade) VWR

Ethyl acetate Roth

Isopropanol (HPLC grade) VWR

Methanol (HPLC grade) Fisher Scientific

Phenol FLUKA Chemika

Pyridine Riedel-de Haën

Water (HPLC grade) VWR

Reagents for peptide synthesis

Carboxyfluorescein (5-FAM) Novabiochem

N,N-Diisopropylethylamine (DIEA) ACROS

Ethandithiole FLUKA Chemika

O-benzotriazol-N,N,N’,N’-tetramethyl-uronium-hexafluoro-

phosphate (HBTU)

Iris Biotech GmbH

N-methyl-morpholine (NMM) Aldrich

Piperidine Sigma-Aldrich

Benzotriazol-1-yl-oxytripyrrolidinophosphonium

hexafluorophosphate (PyBOP)

Novabiochem
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4 Materials and Methods

Table 4.1: Chemicals and reagents (continued)

Chemical Supplier

Thioanisole FLUKA Chemika

Triflouroacetic acid (TFA, synthesis grade) Merck

Amino acid derivatives and resins

Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Arg(Pbf)-OH,

Fmoc-Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH,

Fmoc-Cys(Trt)-OH, Fmoc-Gln(Trt)-OH,

Fmoc-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH,

Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH,

Fmoc-Met-OH, Fmoc-Orn(Boc)-OH, Fmoc-Phe-OH,

Fmoc-Pro-OH, Fmoc-Ser(tBu)-OH, Fmoc-Thr(tBu)-OH,

Fmoc-Trp(Boc)-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Val-OH

ORPEGEN Pharma

Fmoc rink amide AmphiSphere 40 RAM PS PEG2000,

0.28 mmol/g

Varian

TentaGel amide resin, 0.24 mmol/g Intavis

Buffer components

Ammonium sulfate ((NH4)2SO4) Grüssing

Calcium chloride (CaCl2) Fluka

Dithiothreitol (DTT) Applichem

Ethylenediaminetetraacetic acid (EDTA) Roth

Glutathione, reduced (GSH) Sigma-Aldrich

Glutathione, oxidized (GSSG) Merck

Glycine Merck

Hydrochloric acid (HCl) Merck

Magnesium sulfate (MgSO4) Merck

Potassium dihydrogen phosphate (KH2PO4) Merck

Sodium chloride (NaCl) Roth

Sodium dihydrogen phosphate (NaH2PO4) Merck

Sodium dodecyl sulfate (SDS) Applichem

Sodium hydrogen phosphate (Na2HPO4) Fluka

Tricin Applichem

Tris(hydroxymethyl)aminomethane (Tris) Roth
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4.1 Chemicals and Buffers

Table 4.1: Chemicals and reagents (continued)

Chemical Supplier

Electrophoresis reagents

Acrylamide, Bisacrylamide Applichem

Agarose (SeaKem™ LE) Lonza

Ammonium persulfate (APS) Applichem

Bromophenol blue Fluka

Coomassie brilliant blue G-250 Applichem

GelRed Biotium

Glutaraldehyde 25 % in water Merck

Glycerol (water free, 99 %) Grüssing GmbH

β-Mercaptoethanol Applichem

Page ruler unstained, Low Range Protein Ladder Thermo Scientific

Tetramethylethanediamine (TEMED) VWR

Amino acid analysis

Ready to use buffers A–F ONKEN

Ready to use Reagent R ONKEN

Sample dilution buffer (PVP) ONKEN

Proteins

Faktor XIII-A, Factor XIII-B, FXIIIa (recombinantly produced

in insect cells)

Zedira

Fibrogammin® CSL Behring

Cloning, nucleic acids and nucleic acid analysis

BioMix Red PCR master mix Bioline

BL21 (DE3) Singles™ competent cells Novagen

Clonables™ ligation/transformation kit Novagen

pEN08H (Trid.) Entelechon

pET22b(+) vector Novagen

T7 Promoter primer Novagen

T7 Terminator primer Novagen

ZR plasmid Miniprep™ Classic Zymo Research

Miscellaneous

Ammonia, 25 % in water Fluka
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4 Materials and Methods

Table 4.1: Chemicals and reagents (continued)

Chemical Supplier

Ampicilline Applichem

Iodoacetamide (IAA) Applichem

LB medium (Lennox) Applichem

Ninhydrin Chemapol

α-Cyano-4-hydroxycinnamic acid Sigma Aldrich

Peptide Calibration Standard Bruker

Phosphoric acid (H3PO4) Merck

Potassium idodide Fluka

Protein Calibration Standard I Bruker

o-Tolidine Serva

Table 4.2: Composition of buffers and media

Buffer Composition

SDS-PAGE cathode buffer 0.1 M tricine, 0.1 M Tris, 0.1 % SDS

SDS-PAGE running buffer 236 mM glycine, 25 mM Tris, 0.1 % SDS

SDS-PAGE sample buffer (2×) 150 mM Tris-HCl (pH 6.8), 1.2 % (w/v) SDS, 30 % glycerol, 15 % (v/v)
β-mercaptoethanol, 36 µg/ml bromophenol blue

M9 medium 33 mM Na2HPO4, 22 mM KH2PO4, 8.55 mM NaCl, 18.7 mM NH4Cl,
2 mM MgSO4, 0.1 mM CaCl2, 0.4 % glycerol and 100 µg/ml ampicillin

Coomassie staining solution150 0.1 % Coomassie brilliant blue G-250, 10 % ammonium sulfate,10 %
phosphoric acid, 20 % methanol

4.2 Peptide Synthesis and Purification

4.2.1 Solid-phase peptide synthesis

Solid-phase peptide synthesis (SPPS) was mainly performed at an automatic peptide syn-

thesizer (Economy Peptide Synthesizer EPS 221, ABIMED) using an Fmoc protecting group

approach. All peptides were synthesized as C-terminal amides using an Fmoc rink amide

AmphiSphere resin. The peptide synthesizer was programmed to perform the following

protocol (all amounts given for 100 mg resin):
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4.2 Peptide Synthesis and Purification

1. Preparation of the resin

• 1× rinsing with DMF I (2500µl)

• 1× rinsing with DCM (1400µl)

• 1× rinsing with DMF I (1400µl)

• 1× flushing with air (300µl)

• 1× rinsing with DMF I (2500µl)

2. Cleavage of the Fmoc protecting group

• 2× Fmoc-cleavage with 20 % piperidine in DMF (1000µl) – 6 min

• 1× rinsing with DMF I (4000µl)

• 1× rinsing with DMF I (1400µl)

• 1× flushing with air (300µl)

• 2× rinsing with DMF I (2000µl)

3. Coupling

• mixing of reagents in separate vial: 450µl HBTU, 125µl NMM/DMF (1:1), 10µl

DMF II und 420µl Fmoc-amino-acid in DMF

• 1× coupling – ca. 13 min

• mixing of reagents as above

• 1× coupling – ca. 13 min

• 1× rinsing with DMF I (3000µl)

• 2× rinsing with DMF I (1400µl)

• 2× rinsing with DMF I (2000µl)

4. Final Fmoc-cleavage and rinsing of resin

• 2× Fmoc cleavage with 20 % piperidine in DMF (1000µl) – 20 min

• 1× rinsing with DMF I (4000µl)

• 1× rinsing with DMF I (1400µl)

• 1× flushing with air (300µl)

• 2× rinsing with DMF I (2000µl)

• 4× rinsing with DCM (1400µl)

• 2× flushing with air (4500µl)

In cases where carboxyfluorescein coupling was required, this was done by manually after

automated synthesis of the unlabeled precursor. The resin was incubated with 2 eq. 5-FAM,

4 eq. PyBOP and 4 eq. DIEA for 1 h. After washing with DMF, the coupling was repeated for

maximum yield.
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4 Materials and Methods

Cleavage of peptides from the resin was performed as follows: Per 100 mg resin, 1 ml of

TFA (95 % in water) and 150µl “reagent K” (0.75 g phenol, 0.25 ml ethanedithiol, 0.5 ml

thioanisole) were added. The mixture was then incubated on the shaker for 3 h, then filtered

and precipitated in cold ether. Peptide pellets were washed three times with ether and then

redissolved in a suitable solvent.

4.2.2 Peptide oxidation

For the formation of disulfide bonds, the purified linear peptides were subjected to oxidative

folding in buffer. The reaction mixture contained the peptide at a concentration of 0.01 mM,

1 mM oxidized glutathione and 2 mM reduced glutathione in 40 % isopropanol and 60 %

buffer (0.1 M Tris-HCl, 1 mM EDTA, pH 8.7). All solvents were degassed for 15 min in an

ultrasonic bath and the reaction mixture was repeatedly evacuated and flushed with argon

after addition of every component. Finally, oxidative folding was performed under argon

atmosphere at 4 °C for 24 h.

4.2.3 Peptide purification and analysis by HPLC

Peptides were purified by high performance liquid chromatography (HPLC). Semi-prepa-

rative HPLC was performed on a LC 8A-system (SHIMADZU) equipped with an Eurospher

100 column (KNAUER, C18 reversed phase, 250×32 mm, 5µm particle size, 100 Å pore size)

for amounts between 20 and 100 mg and a Vydac 218TP1022 column (C18 reversed phase,

250×22 mm, 10µm particle size, 300 Å pore size) for amounts below 20 mg. For analytical

HPLC an LC 10AT-system (SHIMADZU) with a Vydac 218TP54 column (C18 reversed phase,

250×4.6 mm, 5µm particle size, 300 Å pore size) was used. All separations were done by

gradient elution and UV absorption was monitored at 220 nm. For details on gradients and

Table 4.3: HPLC methods applied for semi-preparative and analytical separations.

Method Flow rate Gradient (eluent B) Eluent A Eluent B

semi-preparative HPLC

method A 10 ml/min 10 %–60 % in 120 min 0.1 % TFA in
water

0.1 % TFA in 90 %
acetonitrile/watermethod B 10 ml/min 15 %–65 % in 120 min

method C 10 ml/min 20 %–70 % in 120 min

analytical HPLC

method D 1 ml/min 0 %–60 % in 60 min 0.1 % TFA in
water

0.1 % TFA in
acetonitrilemethod E 1 ml/min 20 %–60 % in 40 min
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4.3 Chemical Characterization of Peptides

eluents, please refer to table 4.3. Peptides (see section 5.1) were purified by the following

methods: P4, P7 and P18 with method A, P2, P15 and P5 with method B, P1, P15 with

method C. P3 was purified on analytical scale with method E. Peptide P6 was purified using

method C before and method A after oxidation.

4.3 Chemical Characterization of Peptides

Peptides were analyzed for purity by analytical HPLC, TLC and/or SDS-PAGE. Analytical data

is listed in table 4.4

4.3.1 Mass spectrometry

Mass spectrometry was performed at either a MALDI-TOF-device (Bruker Daltonics Autoflex

II) or at an LC-ESI-device (Bruker Daltonics MircoTOF-Q) coupled to a Dionex UltiMate 3000

LC system.

For MALDI measurements, the dissolved samples were mixed with an equal volume of

matrix solution (7 mg/ml solution of α-cyano-4-hydroxycinnamic acid in 50 % acetonil-

trile/water with 0.1 % TFA). Mixing was done either directly on the target plate or separately

in advance. A total of 2µl was spotted on the target plate and left to dry. The instrument was

calibrated prior to each series of measurements with Peptide Calibration Standard (Bruker)

for smaller (400-4000 Da) or Proteins Calibration Standard I for larger (up to 30 000 Da)

samples.

For ESI-measurements the samples were either directly injected into the source or pre-

separated by the coupled LC device on a Macherey Nagel NUCLEOSHELL column (C18 reversed

phase, 100×2 mm, 2.7µM particle size, 90 Å pore size). In this case, a solvent system of

water with 0.1 % acetic acid (eluent A) and acetonitrile with 0.1 % acetic acid (eluent B) was

used. The separation was done using a gradient of 0 % eluent B to 60 % eluent B in 12 min.

4.3.2 Amino acid analysis

Amino acid analysis was performed to determine peptide concentration in solutions and

peptide content in lyophilized powders. Peptide samples were freeze dried, dissolved in

6 N HCl and subsequently incubated at 110 °C for 24 hours to achieve total hydrolysis. The

samples were afterwards dried by vacuum centrifugation at 60 °C and redissolved in an acidic

sample buffer (PVP, as purchased from Orpegen). Amino acid analysis was then performed in

an amino acid analyzer (LC 3000, EPPENDORF-BIOTRONIK). For concentration determination

an external standard containing 200 nM of all detectable amino acids was used.
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Table 4.4: Chemical characterization of synthesized peptides. For HPLC methods please refer to table 4.3. tR: retention time, Rf: retardation factor TLC. PAGE
gives the apparent molecular weight in SDS-PAGE. If higher charged states than [M+H]+ were detected in MS, [M+H]+ was calculated from these.

Peptide Sequence
number

Length
(aa)

tR method E
[min]

Rf,1
a Rf,2

a PAGE
[kDa]

mass (calc.)
[Da]

mass ([M+H]+)
[Da]

Tridegin (full lenght)

Tridegin linear P1 66 22.4 0.56
system 1

0.49
system 3

7.1 7782.1b 7783.4b

Tridegin oxidized P2 66 20.4 0.50
system 1

0.47
system 3

8.0 7777.0b 7778.7b

Tridegin dimer P3 2×66 20.1 n.d. n.d. 8.1
16.1c

15554.0b 15553.5b

Tridegin recombinant P4 66 21.3 n.d. n.d. 8.4 7776.0b 7777.1b

Tridegin all-C-to-S P5 66 18.9 0.01
system 1

0.05
system 2

7.4 7685.8b 7688.3 b

Shorter derivatives

K01–C37 (N-terminal seg.) P6 37 20.0 n.d. n.d. 5.5 4255.9 4256.9

R38–E66 (C-terminal seg.) P7 29 13.7 0.01
system 1

0.09
system 2

5.1 3531.9 3532.9

A32–E66 P8 35 17.3 0.07
system 1

0.47
system 2

n.d. 4191.2b 4192.0b

D22–E66 P9 45 19.0 0.36
system 1

0.26
system 2

n.d. 5363.2b 5363.4b

C17–E66 P10 50 20.9 0.36
system 1

0.55
system 2

n.d. 5883.8b 5884.8b

a TLC systems: system 1: n-butanol/acetic acid/water 48:18:24, system 2: pyridine/ethyl acetate/acetic acid/water 5:5:1:3, system 3: t-butanol/ethyl acetate/acetic
acid/water 1:1:1:1
b average mass
c under non-reducing conditions
n.d.: not determined .
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Table 4.4: Chemical characterization of synthesized peptides. (continued)

Peptide Sequence
number

Length
(aa)

tR method E
[min]

Rf,1
a Rf,2

a PAGE
[kDa]

mass (calc.)
[Da]

mass ([M+H]+)
[Da]

I12–E66 P11 55 21.2 0.32
system 1

0.24
system 2

n.d. 6461.5b 6462.6b

E07–E66 P12 60 21.1 0.32
system 1

0.18
system 2

n.d. 7099.2b 7099.9b

L43–L60 P13 18 16.6 0.36
system 1

0.45
system 2

n.d. 2186.1 2191.6

L43–L60, Q52E P14 18 17.2 0.29
system 1

0.39
system 2

n.d. 2187.1 2188.0

Flourescence labeled peptides

cf-Tridegin linear P15 66 21.3 0.50
system 1

n.d. 7.1 8140.5b 8142.7b

cf-Tridegin oxidized P16 66 20.8 0.50
system 1

n.d. 7.1 8146.5b 8149.7 b

cf-N-terminal segment P17 37 23.0 0.54
system 1

0.62
system 2

n.d. 4617.0b 4618.1 b

cf-C-terminal segment P18 29 17.3 0.53
system 1

0.53
system 2

n.d. 3890.2 3892.0

a TLC systems: system 1: n-butanol/acetic acid/water 48:18:24, system 2: pyridine/ethyl acetate/acetic acid/water 5:5:1:3, system 3: t-butanol/ethyl acetate/acetic
acid/water 1:1:1:1
b average mass
n.d.: not determined.
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4 Materials and Methods

4.3.3 SDS-PAGE

For analysis of peptides by polyacrylamide gel electrophoresis (PAGE), resolving gels with

18 % acrylamide/bisacrylamide and 5 % crosslinking were prepared in 0.75 M Tris-HCl pH 8.4,

0.1 % SDS, 0.1 % APS, 0.05 % TEMED. Stacking gels contained 3 % acrylamide/bisacrylamide

with 3.3 % crosslinking and were prepared in 0.75 M Tris-HCl pH 8.4, 0.1 % SDS, 0.1 % APS,

0.1 % TEMED. Peptide solutions were mixed with an equal volume of SDS-PAGE sample

buffer and applied to the gel. The gel was allowed to run at a voltage of 45 V for 1 h and at

a voltage of 100 V for another 2-3h. The gels were fixed in 5 % glutaraldehyde for 30 min,

washed 3×5 min in water and prepared for staining in 45 % methanol, 10 % acetic acid at

60 °C for 30 min. Then staining was done with colloidal Coomassie staining solution over

night. Apparent molecular weights were determined with GelAnalyzer 2010a.

4.3.4 Ellman’s assay

Ellman’s assay was used to determine the concentration of free thiol groups in peptide

solutions. Ellman’s reagent (5,5’-dithiobis-(2-nitrobenzoic acid), DTNB) was prepared at a

concentration of 1.76 mg/ml in 0.2 M sodium phosphate buffer pH 8. In a microtiter plate,

150µl of sample or standard solution were mixed with 100µl of Ellman’s reagent. After

10 min, absorption at 410 nm was measured. For calculation of free thiol groups in solution,

a standard curve was prepared using a cysteine solution at concentrations between 3 and

167µM. The standard curve was linear in this range with R2>0.999.

4.4 Recombinant Expression of Tridegin

4.4.1 Cloning strategy

The recombinant expression of tridegin in Escherichia coli was performed according to Arkona

et al.151 As there was no access to the original DNA from Haementeria ghilianii, a synthetic

cDNA sequence was used. The cDNA, optimized for expression in E. coli, was purchased

from Entelechon (Regensburg, Germany). This sequence already contained the MscI and

BamHI restriction sites necessary for cloning into the pET22b(+) vector and was provided in

a pEN08H vector (see figure 4.1A). This vector was amplified in E. coli NovaBlue (Novagen)

cells. After purification of the vector with ZR Plasmid Miniprep Classic, the synthetic fragment

was excised, purified by agarose gel electrophoresis on a 1 % agarose gel and ligated into

pET22b(+) with Clonables™ligation/transformation kit (Merck Millipore). The synthetic

DNA fragment was designed in a way that ligation could be done in frame with the pelB-leader

sequence present in pET22b(+) ( see figure 4.1B). The success of the ligation was confirmed
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A

B

Figure 4.1: Cloning strategy for recombinant tridegin. A: schematic depiction of the vectors. B: Sequences
of the multiple cloning site of the empty vector as well as the sequence of the synthetic cDNA. Restriction
sites are indicated in both sequences.

39



4 Materials and Methods

by polymerase chain reaction (PCR), using T7 promoter and T7 terminator primers. The

PCR program was as follows:

1. Initialization – 95 °C, 4 min

2. Denaturation – 95 °C, 1 min

3. Annealing – 50 °C, 1 min

4. Elongation – 72 °C, 3 min

5. Final elongation – 72 °C, 10 min

6. Hold – 4 °C

Steps 2 to 4 were repeated for 30 cycles. The reaction was performed in BioMix Red

master mix and the reaction products were analyzed on a 1 % agarose gel containing GelRed

for visualization. The correct sequence of the ligation site was verified by DNA sequencing

(using T7 promoter primer, by GATC biotech). The sequence allows expression of a tridegin

variant carrying the N-terminal pelB-leader sequence for periplasmic localization. The vector

was again amplified in NovaBlue cells, purified and then transformed into competent BL21

(DE3) cells for expression.

4.4.2 Growth, harvesting and purification

The bacterial starter cultures were grown over night in LB medium and then M9 medium

was inoculated with the starter culture. The bacteria were allowed to grow at 37 °C until

an optical density of 0.4 at 600 nm was reached. Then the culture was induced by addition

of 1 mM IPTG and allowed to grow at 24 °C over night. The cells were then harvested by

centrifugation. For analysis of protein in the medium fraction, 1 ml of medium was mixed

with 5 ml of cold (-80 °C) acetone for precipitation of protein. After centrifugation, the pellet

was redissolved in SDS-PAGE sample buffer.

Preparation of the periplasmic fraction from the cell pellet was done by a protocol adapted

from the PeriPreps periplasting kit (Biozym Scientific, Germany). Per 1 g of wet cell pellet

4 ml of periplasting buffer (200 mM Tris-HCl, pH 7.5, 20 % sucrose, 1 mM EDTA and 30 U/µl

lysozyme) were added. The suspension was incubated at room temperature for 5 min, then

6 ml of cold (4 °C) water was added to induce an osmotic shock. After 10 min on ice the

mixture was centrifuged and the supernatant containing the periplasmic fraction was isolated.

All fractions were analyzed for tridegin by SDS-PAGE. As most of the peptide was found in

the medium fraction, this fraction was used for purification. The medium was freeze dried

and subsequently redissolved in 1/30 of the original volume in water. Insoluble particles

and substances were removed by centrifugation and the clear solution was purified by HPLC

method A (see table 4.3). Purity was confirmed by SDS-PAGE and analytical HPLC.
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4.5 Functional Assays

4.5.1 Chromogenic enzyme activity assay

The chromogenic enzyme activity assay was performed essentially as described.141,151 An ali-

quot of 100µl Fibrogammin®(6.25 U in total) was diluted with 500µl Tris-HCl-buffer pH 7.5

(50 mM), then 360µl 0.9 % (w/v) NaCl solution and 10µl 1 M CaCl2 solution were added.

Activation was started by addition of 1.42 U thrombin. After 20 min at 37 °C the reaction was

stopped by the addition of 10µl of a 1 mg/ml hirudin solution, thereby inhibiting further

thrombin activity. Measurements were performed on microtiter plates in a Labsystems iEMS

Reader MF spectrophotometer. Each measurement contained 50µl of the enzyme solution,

50µl of inhibitor solution, 100µl Tris-HCl buffer pH 7.5 and 50µl of a 400µM substrate

solution. The substrate used was H-Tyr-Glu(pNA)-Val-Lys-Val-Ile-Gly-NH2.141 Absorption was

measured at 405 nm for up to 1 h. For evaluation of the data, OriginPro 8 was used.

4.5.2 Fluorogenic enzyme activity assay

Activation of FXIII for these measurements was done as above. For measurement of enzyme

activity by fluorescence, a novel fluorogenic substrate H-Tyr(3-NO2)-Glu(NH-(CH2)4-NH-

Abz)-Val-Lys-Val-Ile-NH2 · 3 TFA was used based on previous substrates.128 In contrast to the

chromogenic measurements, only 1/5 of the enzyme amount per measurement was required.

Otherwise, measurements were performed as above at a substrate concentration of 20µM. For

correct evaluation of enzyme kinetic parameters, an inner filter correction was necessary.152

For this purpose, the reference fluorophor 2-Abz-NH-(CH2)4-NH2 · 2 TFA was used to establish

a calibration curve for the fluorescence signal at different concentrations (0.05µM to 20µM).

Then, inner filter correction was performed by measuring the fluorescence of the substrate at

different concentrations (1µM to 20µM) in presence and absence of the reference fluorophor.

From this, a correction factor was calculated for each substrate concentration as described.128

Synthesis of the substrate and fluorophor as well as the inner filter correction were done by

T. Steinmetzer and K. Hardes (University of Marburg).

4.5.3 Microscale thermophoresis experiments

For binding studies on fluorescence labeled molecules in solution, Microscale thermophoresis

(MST) can be used. The method is based on differences in thermophoretic behavior that occur

when the size, hydration or charge of a molecule or complex is altered upon binding.153

For these studies, carboxyfluorescein-labeled inhibitor derivatives were synthesized and

incubated with varying concentrations of FXIIIa, FXIII-A and FXIII-B. The measurements

were done on a Monolith NT 115 instrument from Nanotemper (Munich, Germany). A
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solution of 62.5-250 nM carboxyfluorescein-labeled peptide was prepared in buffer (50 mM

Tris- HCl pH 7.5, 0.9 % w/v NaCl), finally 0.1 % Tween-20 was added. A serial dilution

of the unlabeled protein was performed in the same buffer (omitting Tween20) and was

then mixed with an equal volume of inhibitor solution. After incubation for at least 20 min,

the solutions were transferred into a glass capillary and thermophoresis was measured at a

IR-laser power of 50 %. The data were evaluated using NT analysis 1.2 and OriginPro 8G.

4.6 Structure Elucidation

4.6.1 Enzymatic digests and MS analysis

For structure elucidation, peptides were digested with chymotrypsin. Per 100µg peptide,

20µg chymotrypsin were added from a stock solution of 0.1 mg/ml chymotrypsin in 1 mM

HCl. Digests were performed in slightly acidic buffer (50 mM phosphate buffer pH 6.5)

to suppress disulfide shuffling. After incubation at 37 °C for 1.5 h reaction was stopped

by the addition of an equal volume of 0.1 % TFA. Samples were freeze-dried and either

analyzed directly by mass spectrometry or subjected to analytical HPLC separation (Method

D). Samples were collected from the analytical HPLC run and freeze-dried again. All samples

were analyzed on the MicroTOF Q device (see 4.3.1) before and after reduction with 10 mM

DTT in 10 mM phosphate buffer pH 8.5. Both MS and MS/MS experiments (CID) have been

performed. Evaluation of the MS and MS/MS data was done with BioTools (Bruker).

4.6.2 Molecular modeling

Molecular modeling and docking was done by A. Biswas (University Hospital Bonn). The

models of three different disulfide-linked isomers of tridegin were generated by restraining the

γ-S atom of the cysteine residues participating in disulfide bonds at a bond length of 2 Å. The

models were afterwards energy minimized and then refined by running a molecular dynamics

(MD) simulation for 500 ps (YAMBER force field). Then, the three different structures with

the energy minimum in the simulation trajectory were used for a blind docking to FXIII-A°

(after removal of ZED1301 from the crystal structure).149 Blind docking was done on a

Z-Dock docking server.154
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The results of this thesis are a direct continuation of a diploma thesis from 2010.53 The

results presented here have been published in two full articles in 2012151 and 2014155 and

represent the major contribution to this thesis. Furthermore, part of the work described

herein was published in a master thesis156 recently.

5.1 Design of Peptides

Earlier investigations on tridegin already established the synthesis of the compound134 as

well as some functional53,143 and structural53 characteristics. These results need to be taken

into account to derive compounds that would allow a more detailed exploration of the

characteristics of the inhibitor.

5.1.1 Potency of inhibitors from different preparations

The potency of tridegin has been studied previously in vitro with the help of a FXIIIa activity

assay.134,143 It was shown that the synthetic, fully oxidized tridegin had an IC50 value

between 0.3 and 0.6µM, while a recombinant variant was substantially more potent with an

IC50 of approx. 0.1µM. Different explanations for this discrepancy are possible. First, the

oxidation of recombinant tridegin, which was produced in E.coli, is assumed to take place in

the periplasm of the bacteria, to where it is exported in the expression process.142 This is

an environment significantly different from the oxidation buffer used in the production of

synthetic tridegin, especially concerning the presence of oxidoreductases and other enzymes.

Therefore, a different disulfide connectivity might result. Second, the recombinant tridegin

is reported to be a disulfide-linked dimer, which might also influence potency.

To address the question, how these different potencies (including the high potency of the

“native” tridegin described in the literature) arise, different tridegin variants were chosen.

First, a linear, synthetic analogue P1 was prepared, as well as the buffer-oxidized version

thereof (P2). Moreover, as a side product of this oxidation reaction, a synthetic, dimeric

variant P3 was isolated which would allow a direct comparison of monomeric and dimeric

tridegin from the same source. Additionally, the recombinant expression of tridegin P4 was
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necessary to validate the potency obtained with recombinant tridegin earlier. This results in

the following sequences:

KLLPCKEWHQ GIPNPRCWCG ADLECAQDQY CAFIPQCRPR
SELIKPMDDI YQRPVEFPNL PLKPRE

(P1)

oxidized version of P1 (P2)

oxidized, dimerized version of P1 (P3)

recombinant version of P1 (P4)

5.1.2 Influence of the N-terminal part on inhibitor function

In previous investigations it was shown that the N-terminal part (i.e. K1-Q36) did not

inhibit FXIIIa at all, while the C-terminal part (C37-E66) retained about 25 % of inhibitor

potency.53,134 While this indicates that the major inhibitor function resides in the C-terminal

part of the peptide, the reason for the approx. 4fold increase in potency in the presence of the

N-terminal part is still of interest. Also, the question arises how much this is influenced by

the oxidation state of the cysteine residues, which are concentrated in the N-terminal region.

Therefore, besides the linear peptide P1 and the oxidized tridegin P2, a variant where all

cysteine residues are exchanged for serine is needed, because this efficiently eliminates the

possibility to form disulfide bonds, which might still be present in P1 due to spontaneous

oxidation.

Furthermore, due to experimental reasons, the earlier studies on the isolated N- and

C-terminal parts of tridegin split the peptide sequence between Q36 and C37, leaving five

cysteine residues in the N-terminal part and one in the C-terminal part.134 Therefore, proper

disulfide formation was not possible in the N-terminal part, which might have influenced the

result concerning the inhibitory actions of this part. To correct this, two more peptides with

the structurally more reasonable split between C37 and R38 need to be synthesized (P6 and

P7). This leaves the following additional sequences necessary to investigate the function of

the N-terminal cysteine network:

KLLPSKEWHQ GIPNPRSWSG ADLESAQDQY SAFIPQSRPR
SELIKPMDDI YQRPVEFPNL PLKPRE

(P5)

KLLPCKEWHQ GIPNPRCWCG ADLECAQDQY CAFIPQC (P6)

RPRSELIKPM DDIYQRPVEF PNLPLKPRE (P7)
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5.1.3 Potency and substrate behavior of C-terminal peptides

The potency of different sequence stretches of tridegin has previously been studied on the

basis of a series of peptides derived from a C-terminal 30mer of the inhibitor (C37-E66) by

sequentially shortening this peptide by two amino acids (one in the N-terminus and one in

the C-terminus) down to an 8mer (D48-V55).53 The rationale behind this approach was to

find a minimal effective sequence around the I50 residue, that was established earlier as an

important position (see section 2.5.3).143 This investigation revealed that inhibitor potency

did not vary much when the 30mer was shortened to a 22mer and was only slighly impaired

in the 20mer and 18mer. However, further shortening the peptides resulted in significantly

decreased potency and both the 10mer and the 8mer showed almost no inhibition of FXIIIa

(Figure 5.1).53

Another finding came up in the course of the earlier performed investigation: all the

N-terminally truncated peptides showed a progress curve in the FXIIIa activity assay that

indicated that they were competing substrates rather than true inhibitors, which was not

the case for tridegin. From this finding it was concluded that the only glutamine residue

present in all peptides (Q52) was responsible for the substrate-like behavior of these peptides

in the presence of FXIIIa and that this position might be altered by either deamidation or

transamidation which then results in a non-inhibitory compound. To test this hypothesis, the

Q52 position was mutated in one of the model peptides to ornithine, glutamate and alanine.

All of the mutant peptides showed substantial loss of inhibitor potency, which supported the

Figure 5.1: IC50 values of peptides from the C-terminal part of tridegin. Modified from Böhm, 2010.53
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theory.53

As a consequence of these findings, the question arises how long or short a sequence

stretch from tridegin must be to work as a substrate or a “true” inhibitor. Therefore, longer

peptides needed to be synthesized, which contain the full C-terminal region and truncated

N-terminally to different extent. The shortest of these peptides is the 35mer P8 and the

longest is the 60mer P12. Furthermore, two short peptides of the former series53 were

chosen to investigate the changes that occur in the presence of FXIIIa: the 18mer P13 and as

a comparison the deamidated version P14. In summary, the peptides chosen for investigation

of the substrate-behavior of the C-terminal tridegin sequence are:

AFIPQCRPRS ELIKPMDDIY QRPVEFPNLP LKPRE (P8)

DLECAQDQYC AFIPQCRPRS ELIKPMDDIY QRPVEFPNLP
LKPRE

(P9)

CWCGADLECA QDQYCAFIPQ CRPRSELIKP MDDIYQRPVE
FPNLPLKPRE

(P10)

IPNPRCWCGA DLECAQDQYC AFIPQCRPRS ELIKPMDDIY
QRPVEFPNLP LKPRE

(P11)

EWHQGIPNPR CWCGADLECA QDQYCAFIPQ CRPRSELIKP
MDDIYQRPVE FPNLPLKPRE

(P12)

LIKPMDDIYQRPVEFPNL (P13)

LIKPMDDIYERPVEFPNL (P14)

5.1.4 Binding affinity of tridegin analogues to FXIII

A question that has not been addressed so far is the binding affinity of tridegin or derivatives

towards different variants of FXIII. Binding affinity measurements are able to detect inter-

actions between the peptides and FXIII/FXIIIa even in the cases where no enzyme activity

can be measured. This allows to answer the question, whether or not tridegin or analogues

bind to inactive forms of FXIII, e.g. FXIII-A (non-activated) or FXIII-B. Furthermore, it can

be analyzed, whether peptides that do not exert inhibitory action on FXIIIa still bind to the

enzyme.

One binding assay capable of addressing these questions is microscale thermophoresis

(MST, see section 5.3.6), which requires one binding partner to be fluorescence-labeled. As

most of the peptides used here are prepared by solid-phase peptide synthesis, a labeling of the
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N-terminus with carboxyfluoresceine can conveniently be performed. Therefore, fluorescence-

labeled derivatives of linear and oxidized tridegin (P1 and P2) as well as the isolated N- and

C-terminal parts P6 and P7 were prepared resulting in the following analogues:

cf-KLLPCKEWHQ GIPNPRCWCG ADLECAQDQY CAFIPQCRPR
SELIKPMDDI YQRPVEFPNL PLKPRE

(P15)

oxidized version of P15 (P16)

cf-KLLPCKEWHQ GIPNPRCWCG ADLECAQDQY CAFIPQC (P17)

cf-RPRSELIKPM DDIYQRPVEF PNLPLKPRE (P18)

5.2 Preparation of Tridegin and Derivatives

Access to native tridegin – which has originally been extracted from the salivary gland of

Haementeria ghilianii – is very limited. Therefore, other ways of production have been

applied. As already described, solid-phase peptide synthesis is a fast and reliable way of

producing tridegin.134 However, there is also the possibility of recombinant production.131,151

Both ways to gain access to tridegin need to overcome the problem of oxidation, i.e. the

formation of three disulfide bonds in the tridegin structure. As the “native” disulfide linkage

of tridegin is currently unknown, both procedures were performed in a way that relied on

the self-folding capabilities of the peptide.

5.2.1 Synthesis

Synthesis of linear precursors All of the analyzed peptides, with exclusion of P4, were

prepared as linear precursors by standard solid-phase peptide synthesis. In case of the

carboxyfluoresceine-labeled peptides, after coupling of the last (i.e. most N-terminal) amino

acid, carboxyfluoresceine was coupled to the N-terminus. The yields for raw and purified

products are given in Table 5.1.

Peptide oxidation The oxidation of the linear precursors – when required – was carried out

in a glutathione-containing buffer, which is supposed to support folding of the peptide into its

energy minimized state and formation of disulfide bonds. However, in all cases when it was

applied (P2, P6, P16 and P17), oxidation was not finished after 24 h. Furthermore, in case of

P6, oxidation gave rise to multiple HPLC peaks with several of them containing fully oxidized

peptide (as determined by iodoacetamide derivatization and subsequent MS analysis). As
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Table 5.1: Yields of synthesized peptides (per 100 mg resin, loading capacity 0.28 mmol/g)

Yield raw product Yield purified product

Peptide Length (aa) [mg] [%] [mg] [%]

P1 66 73.4 33.7 15.2 7.0

P2 66 – – 2.9 19.31 (1.42)

P5 66 71.2 33.1 2.7 1.8

P6 (reduced) 37 40.3 33.8 2.4 2.0

P6 37 – – 0.7 29.21 (0.62)

P7 29 side product of P18 – –

P8 35 41.6 35.2 12.4 10.6

P9 45 72.8 48.5 7.4 4.9

P10 50 68.0 41.3 6.4 3.8

P11 55 76.4 42.2 7.0 3.9

P12 60 82.2 41.4 5.9 2.9

P13 18 52.3 99.6 12.5 23.8

P14 18 49.5 94.3 21.8 41.5

P15 66 128.0 56.1 4.7 2.0

P16 66 – – 0.7 14.91 (0.3)2

P17 37 – – 0.53 0.43

P18 29 37.0 33.9 0.9 1.7

1 oxidation step only. 2 whole synthesis. 3 raw product was oxidized directly

further oxidation even in the presence of oxygen did not change the HPLC profile, it was

concluded that the reaction had reached its equilibrium. Therefore, the oxidation product

was again purified by HPLC to remove partly oxidized product. Due to the low amount of

product after oxidation, yields could not be determined in all cases (table 5.1). Still, sufficient

amounts for functional analyses were generated.

Purification of a synthetic tridegin dimer The chemical synthesis of the linear tridegin pre-

cursor is followed by an oxidation protocol that has already been described in detail.53,134,143

It was also shown that the synthesized tridegin product after oxidation did not only con-

tain monomeric, oxidized tridegin, but also a reduction labile dimeric form and probably

some higher multimers.134 The formation of these dimers occurs randomly, if oxidation is

carried out in a self-folding procedure under oxidative conditions. Preferential formation

of monomer is achieved by a high dilution of the peptide during this process (in this case

10µM) thereby kinetically disfavoring multimer formation. However, formation of these side

products may still occur.
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A B

Figure 5.2: A) The gel filtration chromatogram shows the presence of dimeric tridegin (indicated by arrow) in
the synthetic tridegin preparation. B) SDS-PAGE performed under reducing and non-reducing conditions
proves that the isolated dimer is stable under denaturating conditions but labile in the presence of a reducing
agent.

It has been suggested by Coch143 that the dimer might have a higher inhibitory potency

compared to the monomer. Therefore it was isolated from the major, monomeric product

by gel filtration chromatography (Figure 5.2A). This was done in cooperation with M. Than

(FLI Jena), to whom tridegin was provided for crystallization experiments and who kindly

returned the dimeric side fractions after purification of the monomer. These fractions

were then purified and desalted by HPLC, which resulted in a pure dimeric tridegin (P3)

preparation. With SDS-PAGE it was shown that the dimer is indeed labile in the presence of a

reducing agent (β-mercaptoethanol), but stable in the presence of the denaturating detergent

SDS (Figure 5.2B). This indicates that the dimer is covalently cross-linked by disulfide bonds.

Mass spectrometry after iodoacetamide treatment confirmed that the dimer is fully oxidized.

5.2.2 Recombinant expression of tridegin

The lacking knowledge of the “correct” disulfide connectivity of tridegin made it necessary

to explore an alternative way of preparation, i.e. the recombinant expression of the peptide,

as well. As an expression host, E. coli was selected. The bacterial cytoplasm does not

provide a suitable oxidative environment for disulfide formation, therefore a pelB leader

sequence was added to the N-terminus of the peptide sequence, which translocates the

polypeptide chain to the periplasmic space. During this translocation, the leader sequence

is removed. In the periplasmic compartment, oxidoreductases are present, which assist in

disulfide formation.157

Due to the fact that there is no published DNA sequence of tridegin from H. ghilianii, an

artificial DNA sequence was generated from the known peptide sequence and optimized
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A B

C

Figure 5.3: Recombinant expression of tridegin. A) DNA gel electrophoresis of PCR products. M: Marker,
Ctr: empty vector, * correctly ligated clones, ** probable re-ligation of empty vector, ° no detection of vector.
B) SDS-PAGE of different fractions after tridegin expression. Tridegin (ca. 10 kDa) can be found primarily in
the periplasmic and medium fractions. The prominent band at 14 kDa in the periplasmic and speroblastic
fraction is lysozyme, which was added in the purification procedure. C) DNA sequencing of the expression
vector confirmed the correct ligation at the MscI ligation site.

for expression in E. coli (Entelechon, Germany) which was then cloned in a suitable expres-

sion vector that already contained the periplasma localization sequence (pelB leader, see

section 4.4.1 for sequences). Subsequent analysis by PCR was used to identify clones that

carried the correctly ligated vector and DNA sequencing revealed that in-frame ligation of

the pelB leader and the tridegin sequence was indeed successful (Figure 5.3A and C). After

transformation into the expression host, tridegin production was confirmed by SDS-PAGE

of the medium and the periplasmic and spheroblastic fractions, showing predominantly

monomeric tridegin (Figure 5.3B). The correct processing, i.e. cleavage of the pelB leader

sequence upon translocation into the periplasma and the full oxidation of the product were

verified by MALDI-MS of the crude extract as well.
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Tridegin was expressed without a purification tag to keep the recombinant sequence

identical to the synthetic variant (the only difference being the free C-terminus in the

recombinant tridegin). However, this made purification more challenging. An experiment

to fractionate the periplasmic extract by gel filtration chromatography and subsequent

purification by HPLC revealed, that after the gel filtration procedure tridegin was isolated as

a dimer. This effect was attributed to the neutral pH used for gel filtration (pH 7.0, 50 mM

phosphate buffer, 150 mM NaCl), which might have allowed disulfide shuffling. Since the aim

was to extract tridegin in the fold generated in the E. coli periplasm, this purification procedure

was discarded. Instead, purification was carried out by direct HPLC of the concentrated

medium fraction. This resulted in the purification of monomeric recombinant tridegin.

With this protocol, approx. 300µg of pure recombinant tridegin were isolated from 600 ml

medium, which corresponds to a yield of 0.5 mg per liter culture. The recombinant peptide

was used for further structural and functional investigations.

5.3 Functional Characterization

5.3.1 Substrate behavior of C-terminal peptides

It has been shown previously that isolated peptides from the C-terminal part of tridegin are

substrates for FXIIIa, and that the resulting product no longer shows inhibitory potential.53 It

was then assumed that Gln52 is the residue responsible for this substrate behavior and that

it is deamidated by FXIIIa or, in the presence of a small amine such as glycine ethyl ester (H-

Gly-OEt), transamidation occurs. However, the experiment proving this was still missing and

was therefore performed in the following step in cooperation with T. Steinmetzer (University

of Marburg). FXIII from Fibrogammin was activated with thrombin and incubated with a

short peptide stretch from the C-terminal part of tridegin (L43-L60, P13) in the presence and

absence of H-Gly-OEt. The results were compared with a peptide variant, in which Gln52

was substituted by Glu52, i. e. the suspected reaction product (P14). Both peptides (P13 and

P14, for sequences see section 5.1.3) have been synthesized and characterized in previous

works.53

The analysis revealed that P13 is indeed modified by FXIIIa both in the presence and

absence of H-Gly-OEt (Figure 5.4). Comparison of the reaction product (in absence of

H-Gly-OEt) with P14 showed similarity in retention time. Mass spectrometric analysis of the

reaction products confirmed the hypothesis that P13 can indeed be coupled to H-Gly-OEt by

FXIIIa. Furthermore, analysis of HPLC peak areas after different time points showed that

incorporation of H-Gly-OEt occurred much faster than deamidation of the substrate.

Interestingly, incubation of tridegin (P2) with FXIIIa did not result in a decreasing inhibitory
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Figure 5.4: HPLC of FXIIIa-catalyzed modification of P13 in the presence and absence of H-Gly-OEt. A)
activated fibrogammin, B) pure P13, C) pure P14, D) incubation of P13 with FXIIIa for 90 min in the presence
and E) in absence of H-Gly-OEt. The asterisk indicates the Glu(Gly-OEt)-containing product.

potency, both in the presence and absence of H-Gly-OEt. Also, no transamidation could

be detected. It was concluded that a part of the N-terminal region of tridegin did either

prevent or slow down a reaction with FXIIIa or retain the inhibitory function of the de-

/transamidated inhibitor. To evaluate this, a series of N-terminally truncated peptides was

synthesized, ranging from 35 to 60 amino acids in length (P8-P12).

5.3.2 Evaluation of N-terminally truncated peptides

The truncated peptides P8-P12 were synthesized as linear (reduced) peptides, because none

of them contained all cysteine residues present in tridegin and therefore oxidative folding

would not result in the correct disulfide connectivity. After purification, stock solutions were

prepared in water at concentrations between 0.3 and 2.0 mM and the oxidation state of

cysteine residues was assessed with Ellman’s test. This showed that the peptides were still

predominantly in reduced state (77 % reduced for P8, 90 % for P9, 97 % for P10, 100 % for

P11 and 95 % for P12). All peptides were studied with the help of a chromogenic enzyme

activity assay.141 The shape of progression curves was evaluated to determine, whether the

substrate-like behavior was similar to that of the shorter C-terminal peptides (see section 2.5).

A linear progression curve indicates a constant enzyme activity and stability of the inhibitor,

while a progression curve with increasing slope is explained by the turnover of the inhibitor

into a species with no or lower inhibitory potency.

Surprisingly, all of the synthesized peptides showed non-linear progression curves (Fig-

ure 5.5A). Inhibition of FXIIIa was strongest in the beginning of the measurement and

decreased over time. Full enzyme activity was not regained during the course of the mea-

surements, indicating that the reaction product (probably again a deamidated variant of the
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A B

Figure 5.5: A) Progress curves showing enzymatic activity in the presence of some of the N-terminally
truncated peptides (12.5 µM of P8 and P9, 10 µM of P12). Ctr.: control without inhibitor. The curves show
strong inhibition (i.e. substrate competition) in the beginning, but inhibition is almost completely lost later on.
B) IC50-values of the N-terminally truncated peptides (determined from the initial, linear range in the progress
curves).

peptides) did still retain a low inhibitory potency. Nevertheless this result was unexpected,

as the aim of the experiment had been to find a “threshold” length at which a true inhibitory

behavior as seen in full-length tridegin would occur. Therefore the experiment led to the

conclusion that either the mentioned “threshold” length was higher than the longest peptide

P12 (60 aa) or that the observed substrate behavior did not depend primarily on peptide

length, but on the three dimensional oxidized structure of the N-terminal region in full-length

tridegin. Therefore, this question was addressed separately (see section 5.3.3).

Furthermore, IC50 values were determined for all peptides using the linear range in the

progress curves at the beginning of the measurement. The IC50 values for peptides P8

to P12 ranged between 1.7µM and 3.0µM without any correlation with peptide length

(Figure 5.5B). This was expected, as earlier experiments already showed that an increase in

the length of the C-terminal part did not change IC50 values strongly at a length higher than

24 amino acids. The IC50 values of peptides P8 to P12 can therefore be regarded as similar

and deviations can at least partially be attributed to the fact that spontaneous oxidation of

the peptide might occur in the assay environment, thereby influencing the inhibitory potency

in a yet unknown way.

5.3.3 Inhibitory potency of different tridegin variants

For further elucidation of structure-activity-relationships, different tridegin variants were

analyzed by an enzyme activity assay. One question that arose from the previous investigations
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on tridegin-derived N-terminally truncated peptides was, how the N-terminal part of tridegin

functioned in preventing the inhibitor from being “inactivated” by FXIIIa. Therefore it was

of interest, whether the mere presence of the full N-terminal sequence was sufficient to

stabilize the inhibitor in the presence of FXIIIa, or whether oxidation of the cysteine residues

was required. To analyze this, three tridegin variants were compared: full-length oxidized

tridegin (P2), full-length linear tridegin (P1) and a full-length tridegin variant, in which

all cysteine residues were exchanged for serine (P5) to effectively exclude any possible

oxidation. Evaluation of the IC50-values revealed that P2 indeed had the highest potency

(IC50 ca. 0.5µM), while P1 and P5 displayed IC50-values of 1.5µM and 2.1µM, respectively.

The difference between P1 and P5 is probably not significant, especially since a slow or

partial oxidation of P1 under the assay conditions can be expected. This leaves a final 3-4-fold

decrease in IC50 that can be attributed to the oxidative folding of the N-terminal part of the

peptide. Surprisingly, peptide oxidation or the presence of cysteine residues in general did

not influence the inhibitory behavior compared to full-length oxidized tridegin, i.e. no loss

of inhibitory action was seen in peptides P1, P2 or P5. Therefore it can be concluded that

the oxidation of cysteine residues does increase inhibitor potency, but is not required for

inhibitor stability in the presence of FXIIIa (Figure 5.6).

Moreover, the influence of the production technique (i.e. recombinant vs. synthetic) and

the dimerization on the IC50 values of the inhibitor were analyzed. In contrast to former

findings,151 where recombinant tridegin was most active with an IC50 value of 40 nM,142

the recombinant tridegin P4 showed an IC50 of about 1.2µM, which is twice as high as

for P2. However, the dimeric tridegin P3 was significantly more potent than the monomer

A B

Figure 5.6: A) Progress curves showing enzymatic activity in the presence of selected tridegin derivatives.
Ctr.: control without inhibitor. The curves are nearly linear. B) IC50-values of selected peptides in comparison.
n.a: not active.
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with an IC50-value of 0.11µM. This value is calculated with the correct molecular weight

of the dimer, when adjusted to “per monomer”, the IC50 is 0.22µM, which is still about

twice as potent as the synthetic monomer. From these two findings it was concluded that

the higher potency that was originally described for the recombinant tridegin can at least

partially be attributed to the dimeric form of this earlier preparation.151 The fact that it is

still slightly less potent than the synthetic variant P2 might be correlated with a different

distribution of disulfide-linked isoforms in both preparations, as will be discussed in more

detail in section 5.4.4. Why the potency of the dimer is higher than that of the monomer

remains unclear. However, these results indicate that the dimer might be the “native” form

of tridegin.

In earlier studies it was already suggested that the N-terminal part alone was not capable

of inhibiting FXIIIa.151 However, the variant used in this study was not oxidized since it

lacked one cysteine residue (C37), which is why the experiment was repeated with the

oxidized, isolated N-terminal part of tridegin (P6). It was shown that also the oxidized

isolated N-terminal part does not inhibit FXIIIa to a measurable degree (IC50>50µM). For

reasons of comparison, the corresponding C-terminal part of tridegin (P7), which was not

part of the formerly tested peptide series, was analyzed as well and revealed an IC50-value

of 2.2µM which is in accordance with what has been found for tridegin-derived peptides of

similar length and sequence (see section 2.5).53

One further tridegin derivative that was tested was a carboxyfluoresceine-labeled variant

of oxidized tridegin (P16). This was done in preparation of binding assays, in which P16

was to be used to assess binding to FXIIIa. The enzyme activity assay was supposed to show,

whether the fluorescence label influenced inhibitory action of tridegin. Indeed the IC50-value

of this variant was 5.2µM, which is about 10-fold worse compared to the unlabeled variant.

However, as the inhibitor was still working, this variant was applied for later binding studies,

keeping in mind that the detected binding might be weaker than for the unlabeled P2.

5.3.4 Assessment of a fluorogenic FXIIIa assay

In addition to the chromogenic enzyme activity assay that was used to determine all IC50-

values, a novel fluorogenic enzyme activity assay was tested. Therefore, a FRET (Förster

resonance energy transfer) substrate was applied. It carries the fluorophore 2-aminobenzoic

acid (Abz) in the glutamate side chain and the quencher 3-nitrotyrosine directly adjacent

to it in the N-terminus of the following sequence: H-Tyr(3-NO2)-Glu(NH-(CH2)4-NH-Abz)-

Val-Lys-Val-Ile-NH2 · 3 TFA.155 Upon cleavage of the Abz-glutamine-bond by FXIIIa, the

fluorophore is released and separated from the quencher, resulting in increasing fluorescence.

In comparison to former fluorogenic substrates, this substrate is conveniently synthesized
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A B

Figure 5.7: IC50 determination of tridegin with A) a chromogenic and B) a fluorogenic assay. Curves were
fitted with a three parameter logistic model.

and shows a Michaelis constant Km of 2.5µM, which is more than 15-fold lower than the Km

of the chromogenic substrate (44 µM).141

Oxidized tridegin P2 was analyzed with both assays in comparison and IC50-values were

determined as shown in Figure 5.7. The IC50-value is about 2-fold lower for the fluorogenic

(0.30µM) compared to the chromogenic assay (0.68µM). This is in itself not surprising,

because the IC50 is, in contrast to Ki , strongly dependent on assay conditions. However, for

the classical inhibition types (competitive, non-competitive and uncompetitive) equations

have been derived that allow the calculation of Ki from IC50-values using the Michaelis

constant Km and the substrate concentration [S].158 For competitive inhibition, for example,

the relationship is as follows:

Ki =
IC50
[S]
Km
+ 1

(5.1)

For uncompetitive inhibition, in contrast, Ki is calculated:

Ki =
IC50

Km
[S] + 1

(5.2)

and for non-competitive inhibition:

Ki = IC50 (5.3)

Application of these equations to calculate Ki of tridegin from both the chromogenic and

the fluorogenic measurements results in the values given in Table 5.2. As can be seen from

this table, for none of the classical inhibition types a similar Ki was found for both assay

types, which would be expected if one of these pure inhibition types would apply to the

tridegin FXIIIa interaction. This indicated that tridegin might display a mixed inhibition type.
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Table 5.2: Calculation of Ki values for tridegin using different assays and inhibition types.

Assay [S] [µM] Km [µM] IC50 [µM] Ki

competitive uncompetitive non-competitive

Chromogenic 80 44 0.68 0.24 0.44 0.68

Fluorogenic 20 2.5 0.30 0.03 0.27 0.30

5.3.5 Inhibition type and stoichiometry of the tridegin-FXIIIa-interaction

To further investigate the inhibition type, an analysis with different substrate concentrations

was carried out with both assays. The aim of this investigation was to generate a Dixon plot

that would allow to determine inhibition type and Ki . Three different substrate concentrations

were tested in both assays, which were roughly 1×, 2× and 5× Km. The reaction velocity v

was derived from the progress curves and 1/v was plotted over the inhibitor concentration

according to Dixon.159 Unexpectedly, the resulting curves were not linear, but showed a shape

similar to an exponential or potential relationship. For the FRET-substrate this is depicted in

Figure 5.8A. A possible explanation for this is deviation from the 1:1 stoichiometry between

enzyme and inhibitor that is usually assumed in standard inhibitory models. A model for an

enzyme capable of binding two molecules of the same inhibitor in a random manner has been

suggested by Segel,160 and recently an example for a similar mechanism has been shown by

Kovalevsky et al. with small-molecule inhibitors of HIV-protease (Figure 5.8D and E).161 In

this case, a strong cooperativity between the two inhibitor binding sites was assumed. The

results reported in the study on HIV protease are similar to the findings for tridegin in that

the Dixon plot is non-linear.

To test the hypothesis of an alternate stoichiometry, another graphical representation was

used: the re-plotting of the slopes of Lineweaver-Burk-plots. For this, Lineweaver-Burk-plots

were generated by plotting the reciprocal velocity (1/v) versus the reciprocal substrate

concentration (1/[S]). The slope of the resulting linear curves is then again plotted versus

the corresponding inhibitor concentration. In case of a 1:1 stoichiometry of enzyme and

inhibitor, this re-plot is expected to be linear, while for a 1:2 stoichiometry a parabolic shape is

expected.160 Although the data presented is error prone, due to the low number of substrate

concentrations tested, the non-linearity of the re-plot is obvious in Figure 5.8B. However,

fitting of the data points to functions suggested by Segel or Kovalevsky was not successful,

either due to low data quality or a possible deviation from the described models.

To analyze the correct binding stoichiometry, a Hill-plot was generated. In this case, the

reaction velocity at a certain inhibitor concentration (vi) and the reaction velocity in absence

of the inhibitor v0 are used to calculate log(vi/(v0 − vi)) and to plot this value versus the
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A B

C D

E

Figure 5.8: Analysis of FXIIIa-tridegin stoichiometry. A) Dixon plots are non-linear for all three FRET-substrate
concentrations. B) Re-plotting the slope from Lineweaver-Burk plots versus the inhibitor concentration is
non-linear as well, suggesting a stoichiometry different from 1:1. C) Determination of the slope in the Hill plot
is used to estimate a 1:2.3 stoichiometry. D) Model with random sequence of inhibitor binding proposed by
Segel (modified).160 E) Inhibition model found for Darunavir inhibition of HIV protease by Kovalevsky et al.
(modified).161

logarithm of the inhibitor concentration log[I]. From the negative slope of the plot, the

stoichiometry can be estimated. In case of oxidized tridegin P2 a slope of 2.3 was found,

which suggests a 1:2 stoichiometry between enzyme and inhibitor (Figure 5.8C).

Re-evaluation of the data for the dimeric tridegin was performed next, to test, whether the

dimer P3 shows a 1:1 stoichiometry, which was, however, not the case. Stoichiometry for the

dimer was comparable to the results found for the monomer. Instead, a 1:1 stoichiometry

was found for the isolated C-terminal part P7 (Figure 5.9) as well as for the other short

C-terminal derivatives tested previously (data not shown).53 This indicates that the shorter
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A B

Figure 5.9: Hill plots of A) the dimer P3 and B) the C-terminal peptide P7.

derivatives do not only show the discussed substrate behavior, but also bind to FXIIIa in a

different way and stoichiometry than the full-length variants.

In conclusion, these analyses revealed that tridegin is not a “simple” competitive inhibitor,

as was initially expected. In contrast, the inhibition mechanism seems to be very complex

and can, with the data available, not be described with any of the standard models.

5.3.6 Binding studies

Binding studies were performed to show the binding affinity of different tridegin-derived

peptides to FXIII. In total, four peptides (P1, P2, P6 and P7) were prepared as N-terminally

carboxyfluoresceine-labeled variants (P15, P16, P17 and P18, respectively). Binding studies

were performed by microscale thermophoresis. The labeled peptide was kept at a constant

concentration and concentration of the protein was varied. In total three different forms of

FXIII were tested: FXIIIa, FXIII-A (inactive) and FXIII-B. While none of the peptides bound

to the inactive FXIII-A or the carrier B-subunits FXIII-B, all four showed binding to FXIIIa.

For three of the peptides, P16, P17 and P18, Kd values could be estimated from the binding

curves (Figure 5.10). For P16 and P17, Kd values were in the range of <100 nM, while

for P18 a Kd of ≈800 nM was found. For P15, no Kd value could be derived, because the

binding curve did not reach saturation under given condition. As all these measurements

were performed only once, one can not yet rely on the quantitative results, but the question

whether binding does occur can be answered in the cases analyzed here.

While binding of oxidized tridegin P16 to FXIIIa was expected, the strong binding of the

non-inhibitory N-terminal part P17 was surprising. In comparison, the binding affinity of the

C-terminal part P18 to FXIIIa was relatively low. However, this value might not reflect the

true binding affinity, since P18, like the other C-terminal derivatives, probably is a substrate
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A B C

Figure 5.10: Binding curves from MST experiments for A) P16 (Kd<100 nM), B) P17 (Kd<100 nM) and C)
P18 (Kd ≈800 nM) to FXIIIa.

which is transformed rapidly in the presence of excess FXIIIa. Therefore, this value might

represent the binding affinity of the corresponding Glu52 peptide. Future experiments will

help to answer this question.

In general, the binding assay suggests a strong contribution of the N-terminal region

to binding of tridegin to FXIIIa. However, due to limited availability of substances and

equipment, experiments have been done only once and a repetition or confirmation with

another binding assay is required to derive final conclusions. Anyway, these findings are

higly interesting with respect to the discussion of a mixed binding/inhibition mode.

5.4 Structural Analysis

Elucidation of the three dimensional structure of tridegin was of major importance for

structure-activity-relationship studies. Experiments with circular dichroism (CD) measure-

ments had already been performed in earlier investigations on the tridegin structure.53 This

estimation of secondary structures in tridegin (Figure 5.11) predicted low percentages of

α-helices and β-sheets and a high amount of β-turns and unordered structures. However,

CD is only a very rough method for secondary structure determination, and without detailed

knowledge on the disulfide bonding of tridegin, the overall fold of the peptide cannot be

determined. Therefore, methods that would give more detailed structural insights were

required.

Basically, three different methods for this were considered: 2D nuclear magnetic resonance

(NMR) spectroscopy, crystallization with subsequent X-ray structural analysis and elucidation

of the disulfide connectivity via mass spectrometry with subsequent molecular modeling.

The idea to perform NMR spectroscopy, although successful with other disulfide bridged

peptides such as hirudin165 and conotoxins,166 was not pursued further due to two reasons:

1) tridegin tends to form aggregates at concentrations higher than 1 mg/ml and 2) the purity

of the compound, especially with respect to the disulfide connectivity, was not clear, which
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CDNN ACDP

α-Helices 0.051 0.000

β-Sheets 0.126 0.000

– thereof parallel 0.107 n.d.

– thereof anti-parallel 0.019 n.d.

β-Turn 0.326 0.300

Aromatic/Disulfide bonds n.d. 0.030

Unordered 0.510 0.660

Total 1.014 0.990

Figure 5.11: Left: Measured (black) and fitted (red) CD-spectrum of tridegin. Right: Results of secondary
structure prediction based on CD-data. Two software packages were used: CDNN162 and ACDP.163,164

Modified from Böhm, 201053

would complicate the already challenging assignment of a 66-mer peptide. Therefore, efforts

were concentrated on crystallization experiments and MS analysis including subsequent

modeling studies.

5.4.1 Crystallization and co-crystallization experiments

Crystallization experiments were performed by Dr. M. Than (FLI Jena) and coworkers.155

First, crystallization of pure tridegin was attempted. Synthetic tridegin was purified from

the oxidized product and concentrated up to 1 mg/ml. Higher concentrations were not

possible due to above mentioned risk of aggregation and precipitation. Approximately 300

crystallization experiments at nanoliter scale were performed and promising conditions were

evaluated in subsequent finescreens. However, no peptide crystals were formed. This could

be either due to insufficient purity of the peptide (e.g. the presence of different isomers) or

a too flexible peptide structure.

In order to stabilize the tridegin structure and thereby help tridegin crystallize, co-

crystallization with the target protein was tried. Co-crystallization of tridegin with FXIIIa

had already been attempted without success and was therefore not repeated.167 However,

earlier reports from Arkona et al. suggested that tridegin also bound to inactive FXIII.142,151

The binding data discussed in section 5.3.6, which does not support binding of tridegin to

FXIII, was not available at the time. As crystallization of FXIII alone occurs readily and has

been done several times in the past,37,40 it was assumed that crystallization of a tridgin-FXIII-

complex was feasible. To assess, whether tridegin and FXIII form a stable complex in solution,

the molecules were analyzed both separately and in mixture by gel filtration chromatography
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A B

Figure 5.12: Gel filtration chromatogram of A) FXIII and tridegin and B) a FXIII/tridegin 1:1 mixture. Fractions
were collected and analyzed by SDS-PAGE (silver stain). The higher molecular weight fractions in the mixture
B did not contain tridegin, i.e. no stable complex could be isolated.

(Figure 5.12). However, the complex, if formed, was not stable enough to be isolated by this

method. Therefore, co-crystallization experiments were performed at varying tridegin:FXIII

ratios (between 1.3:1 and 5:1) to facilitate complex formation. Again, several thousand

crystallization experiments and subsequent finescreens were performed which resulted in

a variety of crystals. Analysis of these crystals revealed, however, only the presence of the

already known FXIII structure with no additional electron density, indicating the absence

of tridegin. The reason for the absence of co-crystals is suggested to be caused by the low

binding affinity of tridegin to FXIII, which has been shown later by a binding affinity assay.

Yet also other factors might be critical, such as the presence of different disulfide-linked

isomers, which may also also explain the contradictory findings on whether or not tridegin

binds to FXIII.
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5.4.2 Elucidation of disulfide connectivity

In parallel to the aforementioned crystallization experiments, elucidation of disulfide con-

nectivity by mass spectrometry was performed. There are different possibilities for disulfide

bridge determination via MS or MS/MS including partial reduction and alkylation,168 enzy-

matic digest and subsequent MS(/MS) analysis169 as well as direct MSn fragmentation.170

For elucidation of the disulfide connectivity in tridegin, an enzymatic digest protocol was cho-

sen.169 Analysis of possible cleavage sites in the tridegin sequence revealed that chymotrypsin

was the most suitable enzyme for this purpose. Chymotrypsin cleaves C-terminal of aromatic

residues (tryptophane, phenylalanine and tyrosine) as well as methionine and leucine. This

means that in between two cysteine residues of the tridegin sequence there is at least one

possible cleavage site (Figure 5.13). The enzymatic digest protocol was then optimized

using linear tridegin (P1). Samples were taken at different time points during incubation at

37 °C and analyzed by HPLC, MS and MS/MS. An incubation time of 1.5 h was then selected,

which yielded a low number of unspecific cleavages and showed some incompletely digested

fragments that might be useful for structure elucidation. The digest was then repeated with

oxidized full-length tridegin (P2) and analyzed by HPLC, both before and after reduction

with DTT (Figure 5.13). The oxidized tridegin digest should, after reduction, show the same

fragments as the linear tridegin digest, if all digestion sites have a similar accessibility in both

oxidized and reduced state (Figure 5.13B and C). Although there are some differences in

the HPLC profile of both samples, the overall pattern is similar, which shows that the digest

is not significantly impaired in the oxidized peptide. However, differences between these

samples and the oxidized digest (Figure 5.13A) are obvious. Therefore it was concluded that

chymotryptic digest of the oxidized peptide was a suitable way to prepare disulfide-linked

fragments.

To reduce complexity of the digest, fractions were collected from the HPLC analysis,

concentrated by lyophilization and subjected to ESI-MS analysis both before and after

reduction with DTT. By comparing the MS spectra, mass peaks that were present in the

non-reduced and absent in the reduced samples were identified. These were the potential

disulfide-containing fragments. When analyzing the corresponding reduced sample, one

could find either a 2 Da heavier mass peak in case of a disulfide bond within one fragment,

or two new mass peaks corresponding to two fragments that were originally linked by a

disulfide bond (Figure 5.14). As can be seen, unspecific cleavage was also detected, especially

after arginine residues. The reason for this is not known, however, a contamination of the

chymotrypsin with trypsin is suspected. Figure 5.14B shows that the tridegin sequence has

been covered completely by this approach.

To ensure a correct assignment of the fragments and resolve remaining ambiguities,
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A

B

C

D

Figure 5.13: A) Cleavage sites for chymotrypsin in tridegin. B-D) HPLC traces (method D) of chymotryptic
digest of B) linear tridegin P1, C) oxidized tridegin P2 and D) oxidized tridegin P2 and reduction of digest
with DTT. *DTT.
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A

B

C

Figure 5.14: Analysis of the chymotryptic digest of oxidized tridegin P2. A) HPLC trace (method D) of
P2 digest with identified fragments. B) All detected fragments for P2. Cysteine containing fragments are
indicated above, cysteine-free fragments below the full-length sequence. C) Concluded isomers.
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fragments were analyzed in more detail by collision-induced dissociation (CID) MS/MS.

One of these ambiguities is exemplified in Figure 5.15: The potential oxidized fragment

C19GADLEC25A has a calculated [M+H]+ ion mass of 779.270 Da, whereas oxidized C31AFI-

PQC37 has an [M+H]+ ion mass of 779.322 Da. An ion mass of 779.270 was detected,

however, the theoretical mass difference of 0.052 Da is too low to be distinguished with

sufficient certainty. Both possible peptides show a mass increase of 2 Da when reduced, which

does not allow differentiation just by analyzing reduced samples. Therefore, fragmentation

patterns of both the oxidized and reduced species were analyzed. The fragmentation of

the oxidized species did yield very few fragments, only one C-terminal alanine could be

identified (Figure 5.15B). This is a well-known behavior of oxidized peptides in CID: the ion

series stops at an oxidized cysteine residue.171 To gain a more informative CID spectrum,

the measurement was repeated with the reduced sample and, as expected, showed a clear

ion series covering almost the full peptide (Figure 5.15D). From the data it was concluded

that C19GADLEC25A was the correct assignment. In general, CID spectra were evaluated for

all disulfide-containing fragments to ascertain the assignments.

A B

C D

Figure 5.15: Detailed analysis of a disulfide-containing fragment by CID. A) mass spectrum of a disulfide-
containing fragment. B) CID fragment spectrum of the same peak. C) Mass spectrum of the same fraction
after reduction with DTT. D) CID fragment spectrum of the reduced fragment.
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Table 5.3: Disulfide-connected fragments identified by mass spectrometry.

full-length tridegin P2 N-terminal part P6

Fragment [M+H]+

expected
[M+H]+

founda
[M+H]

expected
[M+H]+

founda
Connection Isomer

1321.644 1321.628 1321.644 1321.637 C5-C17 A

765.342 – 765.342 765.321 C5-C17 A

1353.670 1353.673 1353.670 1353.659 C5-C31 C

797.368 – 797.368 797.341 C5-C31 C

1544.819 1544.817 – – C5-C37 B

– – 1472.775 1472.812 C5-C37 B

645.217 645.203 645.217 645.204 C17-C31 B

983.412 983.399 983.412 – C17-C31 B

836.366 836.362 – – C17-C37 C

– – 764.322 764.322 C17-C37 C

1206.588 1206.589 – – C31-C37 A

– – 796.351 796.338 C31-C37b A

– – 778.351 778.337 C31-C37b A

779.270 779.270 779.270 – C19-C25 A,B,C

1313.482 1313.480 1313.482 1313.464 C19-C25 A,B,C
a if detected in a higher charged state, [M+H]+ was calculated. b In case of P6, C37 is the amidated C-terminus of the
peptide.

The approach was repeated in a similar manner with the isolated N-terminal region (P6)

of tridegin. Due to a lower complexity of this peptide, the pre-separation of the digest on

HPLC could be omitted and the digest was directly analyzed by LC-ESI MS. The resulting

disulfide-connected fragments for full-length tridegin P2 and the N-terminal variant P6 are

shown in Table 5.3.

In total, three different isomers could be identified in both the oxidized tridegin P2 and

the N-terminal part P6: isomer A with a connectivity of C5-C17, C19-C25 and C31-C37,

isomer B with C5-C37, C17-C31 and C19-C25 and isomer C with C5-C31, C17-C37 and

C19-C25. Remarkably, all three isomers contain the C19-C25 bridge, and, at the same time,

all three possible isomers containing this bridge are present. It is noteworthy that both, P2

and P6, showed the same disulfide connectivities, which indicates that the presence of the

C-terminal part of tridegin does not greatly influence the folding process. Furthermore, the

fact that three different disulfide-connected isomers were formed indicates that the primary

sequence of tridegin does not drive the folding process under the given conditions into a
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single, energy-minimized folded state. This can be either due to the folding conditions

applied (i.e. oxidative self-folding in buffer in the presence of GSSG and GSH, without any

protein disulfide isomerase or chaperones) or it could be an intrinsic property of the peptide.

Whether or not different disulfide-linked isomers of peptides may occur in nature is not yet

fully understood.

However, the presence of small amounts of dimeric tridegin in the synthetic product

(section 5.2.1) could also indicate that the monomeric form is not the most stable or “native”

one, which would explain the presence of different isomers in this case. Elucidation of the

structure of dimeric tridegin might help to answer this question and thus represents an

interesting future task.

5.4.3 Side-product formation during oxidation of disulfide-linked tridegin

analogues

After 24 h of oxidation in buffer, there was still some partially oxidized P6 left, which did

not reach full oxidation even in the presence of air oxygen. This side product had two free

thiol groups, as could be identified by iodoacetamide derivatization and subsequent MS

analysis. To analyze the stable side product further, MS/MS analysis was carried out on the

iodoacetamide-derivatized and subsequently reduced product. CID fragmentation of this

product allowed the localization of the alkylated cysteine residues (Figure 5.16). These were

found to be C19 and C37. Interestingly, C19 is in all of the fully oxidized species part of the

C19-C25 bridge. In case of this by-product, C25 forms a disulfide bridge with C5, C17 or

Figure 5.16: CID fragmentation pattern of alkylated and reduced side product occurring after P6 oxidation.
The b-ion series is indicated by dashed lines, the y-ion series by dotted lines. C* denotes alkylated cysteine
residues. Some unassigned peaks hint on at least one other partly oxidized species present. However, the
assignment given here was the best fit for this spectrum.
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C31, which seems to result in an irreversibly misfolded state in which C19 is not able to form

a bond to the remaining C37.

Incompletely oxidized species have also been found in tridegin P2 after oxidation, but due

to the higher complexity of this peptide, detailed analysis was not accomplished. Nevertheless,

one can assume that a similar misfolding may occur in P2.

5.4.4 Disulfide connectivity of recombinant tridegin

The disulfide connectivity of recombinant tridegin was assessed as well. In this case, a

pre-separation of the digest was not performed, but the digest was directly analyzed by

LC-MS. Evaluation of the data was done in a semi-automated fashion, in which the digest

of all 15 isomers were simulated with Bruker BioTools software and then compared to the

generated data. The automatic evaluation was then manually reviewed and assignments

with >50 ppm mass deviation were removed.

A full sequence coverage could only be shown for isomer B, as well as the two other

possible isomers containing the C5-C37 link. However, the fragments supporting these two

isomers do also fit for isomer B, i.e. they are not unambiguous, while there is one fragment

(C19GADLEC25AQDQY, oxidized) that unambiguously supports isomer B (Table 5.4). Isomers

A and C also give relatively high sequence coverage, but not all disulfide bonds could be

confirmed by peptide fragments. It was therefore concluded that the data only supports the

presence of isomer B.
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5 Results and Discussion

Table 5.4: Sequence coverage for all 15 isomers in recombinant tridegin digest. In the overview, gray bars
show an assigned peptide, red boxes indicate confirmation by MS/MS.

% coverage by

Isomer MS MS/MS Overview

C5-C17,C19-
C25,C31-C37 (A)

97.0 78.8

C5-C17,C19-
C31,C31-C37

68.2 50.0

C5-C17,C31-
C37,C25-C31

86.4 68.2

C5-C19,C17-
C25,C31-C37

81.8 63.6

C5-C19,C17-
C31,C25-C37

71.2 53.0

C5-C19,C17-
C37,C25-C31

68.2 50.0

C5-C25,C17-
C19,C31-C37

81.8 63.6

C5-C25,C17-
C31,C19-C37

89.4 72.7

C5-C25,C17-
C37,C19-C31

68.2 50.0

C5-C31,C17-
C19,C25-C37

71.2 65.2

C5-C31,C17-
C25,C19-C37 (C)

89.4 83.3

C5-C31,C17-
C37,C19-C25

86.4 45.5

C5-C37,C17-
C19,C25-C31

100 93.9

C5-C37,C17-
C25,C19-C31

100 93.9

C5-C37,C17-
C31,C19-C25 (B)

100 93.9
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5.5 Molecular Modeling of Tridegin

5.5 Molecular Modeling of Tridegin

Molecular modeling of all three isomers of P2 was performed by Dr. A. Biswas (University

Hospital Bonn) using Yasara (Figure 5.17).173 All three isomers show primarily flexible loops,

β-and γ-turns as well as 3-4 helices (between 32 % and 41 % in total). The helix content is

somewhat higher than predicted from former CD spectra (5 %).53 Interestingly, the helices

between residues 5-8, 24-27 and 41-50 are present in all three isomers, which suggests

that these helices form the core structural fold of the peptide (Figure 5.18). Helices have

already been predicted (without prior knowledge of cysteine connectivity) for the residues

6-9 and 47-51 using PSIPRED.53,174 Apart from this similarity, however, the different disulfide

connectivities in the isomers result in three different overall structures, which cannot be

superposed.

Besides the secondary structure of the peptide backbone, the conformation of the disul-

fide bonds is also of major interest. They can be classified according to Schmidt (see

section 2.6).145 Table 5.5 reflects this classification. The C19-C25 disulfide bond that is

present in all three isomers, shows the same +/−LHHook conformation in all the models.

Furthermore, isomers A and B each contain one bridge with a −RHStaple conformation,

which has been described as allosteric disulfide bond conformation that can induce functional

changes in a protein when cleaved or oxidized. They also tend to have a high potential

energy. This might indicate that these disulfide bonds are of importance for the structural

stability of tridegin.

Table 5.5: Configuration of disulfide bonds in computational models of tridegin. The χ-angles were derived
from PDBsum,172 classification was performed according to Schmidt et al.145

Disulfide bridge Configuration χ1 χ2 χ3 χ′2 χ′1

Isomer A

Cys5 – Cys17 −RHStaple −137.6 −67.4 162.4 −85.2 −156.7

Cys19 – Cys25 +/−LHHook −68.4 −71.6 −164.2 68.6 22.9

Cys31 – Cys37 −/+RHHook 69.8 113.4 97.2 −77.9 −63.1

Isomer B

Cys5 – Cys37 +/−LHSpiral 167.6 −96 −60.3 −177.4 −163.4

Cys17 – Cys31 −RHStaple −160.9 −5.2 163.9 −49.1 −48.1

Cys19 – Cys25 +/−LHHook −46.4 −48.7 −144.7 74.3 61.7

Isomer C

Cys5 – Cys31 −RHHook −74.2 −92.7 137.8 40.1 −176

Cys17 – Cys37 −/+LHHook 23.1 109.7 −82.5 −32 −55.8

Cys19 – Cys25 +/−LHHook 67.8 −139.9 −103.4 73.3 −83.6
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5 Results and Discussion

Figure 5.17: Computational models of the three tridegin isomers (left, by YASARA) and schematic topology
(right, by PDBsum172). The structures are colored according to secondary structure: α-helix (blue), turns
and coils (cyan), 310-helix (yellow) and π-helix (green). Disulfide bonds are highlighted in red.
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5.6 Structure-Activity-Relationship

Figure 5.18: Comparison of secondary structures of the three different tridegin isomers (generated by
PDBsum172).

5.5.1 Comparison with other peptides and proteins

There are two major groups of cysteine connectivities described for leech-derived anti-

coagulants. One of them is the antistasin-type, which contains among others Antistasin,

Hirustasin and Guamerin as well as Ghilanten that is also derived from H. ghilianii. These

peptides/miniproteins contain 5 disulfide bonds which are connected 1-3, 2-4,5-8,6-9 and

7-10.175 The other one is the so-called leech antihemostatic protein (LAP) motif, which

includes Decorsin, Hirudin, Haemadin and Ornatin. These peptides contain six cysteine

residues with a disulfide pattern 1-2,3-5 and 4-6.176,177 Although the number of cysteine

residues and even their spacing in tridegin is similar to the LAP representatives (see also

Figure 2.8), tridegin clearly shows a different disulfide connectivity. This also results in a

different secondary structure: for Hirudin, Decorsin and Haemadin crystal- and/or NMR

structures are available, and none of them shows α-helices in their secondary structure (e.g.

PDB entries 1HIC,165 2PW8,178 1DEC,179 1E0F177).

5.6 Structure-Activity-Relationship

5.6.1 General relationships of the tridegin-FXIIIa-interaction

The interaction of tridegin with FXIIIa is rather complex. Simply removing parts of the

structure changes the way of interaction extensively. It has been shown that some amino

acids in the C-terminal region, such as Ile50, Gln52 and Leu62 are important for potency

of the inhibitor.151 In general, the C-terminal part shows inhibition of FXIIIa, however, this
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inhibition is more precisely described as substrate competition. Addition of all N-terminal

amino acids does not increase inhibitor potency much, but prevents the substrate-like behavior

of the inhibitor in the presence of FXIIIa. In contrast, oxidation of the 6 cysteine residues in

the N-terminus is not necessary for preventing the substrate-like behavior, but does increase

inhibitor potency. The isolated N-terminal part, however, independently of being oxidized or

not, does not inhibit FXIIIa. This already indicates a contribution to inhibitor binding, but not

direct interaction of the N-terminal region of tridegin with the active site of FXIIIa. Binding

studies support this hypothesis and could show that the isolated, oxidized N-terminal part

does efficiently bind to FXIIIa, possibly to a binding site in some distance to the active center

of the enzyme. Up to now, no experimental data is available on which of the three different

isomers present in the monomeric tridegin preparation shows the highest affinity or inhibitor

potency to FXIIIa. However, the high potency of the dimeric tridegin suggests that this might

be the biologically relevant form.

With this information in mind, docking studies of the three monomeric isomers to FXIII-A°

were performed and evaluated.

5.6.2 Docking of tridegin to FXIII-A°

The new crystal structure of activated FXIII-A° was used for docking experiments with the

three modeled isomers of tridegin. Docking was performed by A. Biswas (University Hospital

Bonn) who kindly provided the docking data.

First, the general docking regions of the three different isomers were analyzed. While

isomers A and B bind to a region close to the active site, the best dock for isomer C is in a

completely different part of the FXIII-A° structure and does not interact directly with atoms

of FXIII-A°. Figure 5.19 gives a superposition of the docking sites for all three isomers.

In general, isomers A and B showed a number of putative interactions with residues in

or close to the active site of FXIII-A°, while isomer C did not show any interactions even

in the best fitted docks. Therefore, mainly isomer A and B will be discussed. The putative

interactions of these two isomers with the FXIII-A° structure are listed in Table 5.6. Some

of these interactions are also indicated in Figure 5.20. From these data it becomes clear

that the two different isomers A and B bind in completely different ways to the active site

of FXIII-A°. Isomer A binds predominantly with the N-terminal part to FXIII-A° and shows

direct interactions between the active site cysteine (Cys314) in FXIII-A° and Gln10 in tridegin.

This is surprising, because Gln10 has not yet been associated with inhibitory potency of

tridegin, however a targeted mutation of this site has never been evaluated. Interestingly,

the N-terminal region of isomer A penetrates the substrate tunnel of FXIII-A° in a way that

the peptide chain enters through the side of the tunnel that is assumed to normally allow
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5.6 Structure-Activity-Relationship

Figure 5.19: Docking of the three different tridegin isomers to the FXIII-A° structure. Isomer A is shown in
red, B in green and C in blue. The localization of the active site is indicated with a yellow circle.
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A B

C D

Figure 5.20: Details and interactions of the docking region for A) isomer A and B) isomer B. The backbone
of FXIII° is shown in green, tridegin in blue. Active site residues are indicated in yellow and Gln10 and Gln52
in red. The surface representation (C and D) of FXIII° shows the tunnel for entrance of the amine substrate
(arrow) and the relative localization of isomer A and B, respectively.

entrance of the amine substrate (Figure 5.20). This would effectively inhibit the enzyme.

Whether or not this mode of binding contributes to inhibitory action of tridegin remains

questionable, as long as no experimental proof is found. In any case, this type of binding

is completely different to what has been observed for isolated C-terminal parts of tridegin,

where Gln52 clearly interacts with the active site of FXIIIa and Gln10 is not even present.

Most interactions of isomer B with FXIII-A°, in contrast, are located in the C-terminal

part of the peptide. In this case, Gln52 is located relatively close to the active site cysteine

residue (12 Å), but too far away for direct interaction. Still, given the inaccuracy generated

by the modeling and the docking step, this binding mode might explain the effects seen in

C-terminal peptides of tridegin. In contrast to isomer A, isomer B does not penetrate the

tunnel near the active site of the enzyme, but probably blocks access from the entrance site

for the glutamine containing substrate. This type of binding would therefore also be expected

to inhibit FXIII-A°.
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5.6 Structure-Activity-Relationship

Table 5.6: List of putative interactions of the tridegin isomers A and B with FXIII-A°. The atoms taking part in
the putative interaction are given in square brackets and follow the PDB nomenclature.180

Isomer A Isomer B

Tridegin Dist. [Å] FXIIIA° Tridegin Dist. [Å] FXIIIA°

Hydrogen bonds Hydrogen bonds

Asn14 [N] 2.90 Ser368 [OG] Lys1 [NZ] 3.3 Glu216 [OE1]

Glu7 [O] 3.72 Trp279 [NE1] Tyr51 [OH] 2.10 Gly215 [O]

Gln10 [O] 3.29 His373 [ND1] Arg53 [NH2] 3.26 Asn281 [OD1]

Gln10 [OE1] 3.21 Cys314 [SG] Val55 [N] 3.51 Gln313 [OE1]

Gln10 [OE1] 3.32 Cys314 [N] Lys63 [NZ] 2.56 Asp456 [OD2]

Gln10 [OE1] 3.39 Trp315 [N] Tyr51 [O] 2.96 Arg223 [NH2]

Pro13 [O] 3.76 Val369 [N] Tyr51 [O] 3.86 Tyr372 [OH]

Ser41 [O] 2.24 Val360 [N] Tyr51 [OH] 3.70 Glu216 [N]

Ser41 [OG] 3.43 Val360 [N] Asn59 [O] 3.01 Val369 [N]

Ser41 [OG] 3.45 Asn361 [N] Pro61 [O] 3.59 His459 [NE2]

Asp48 [OD2] 3.33 Tyr441 [OH]

Salt bridges Salt bridges

Asp48 [OD1] 3.90 His459 [NE2] Lys1 [NZ] 3.33 Glu216 [OE1]

Lys63 [NZ] 2.56 Asp456 [OD2]

In general it is encouraging that two out of three isomers readily fit into the active site

of FXIII° in a way that would inhibit the enzyme. The orientation of isomer A is surprising

and generates a new hypothesis that would be worthwhile to be tested by e.g. synthesizing

a Gln10Ala mutant. The discrepancy between experimental findings for the reaction of

Gln52 with the active site of FXIIIa and the docking of isomer A might also explain in parts

the different binding modes suggested for N-terminally truncated and full-length tridegin.

However, this binding mode would nicely explain the high affinity of the isolated N-terminal

part of tridegin to FXIIIa. The binding of isomer B relates more closely to the experimental

findings for the importance of Gln52, although a direct interaction with the active site was

not demonstrated. On the other hand, this model fails to explain the affinity of the N-terminal

region of tridegin to FXIIIa, as most interactions are located in the C-terminal part of the

inhibitor. Isomer C did not interact with FXIII-A° in the present docking study, which, however,

does not need to be true in reality.

For further studies, experimental confirmation of the models and docking studies would be

of high interest. The targeted synthesis of all three isomers via solid-phase peptide synthesis
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5 Results and Discussion

and orthogonal protecting group strategies is challenging, but a successful preparation of

the single isomers would allow individual structural and functional studies which would in

turn refine the findings presented here.
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6 Conclusion

Factor XIIIa (FXIIIa), a transglutaminase catalyzing the covalent cross-linking of fibrin in the

final step of blood coagulation, is an interesting pharmaceutical target due to its multiple

functions and involvement in a number of pathophysiological processes. Moreover, there

is still a lot of research ongoing to further elucidate the role of this enzyme in- and outside

of cells. Therefore, there is a need for specific, effective and well-characterized inhibitors

for FXIIIa. The only natural peptidic FXIIIa inhibitor available so far, tridegin, has been

isolated from the giant amazon leech Hamenteria ghilianii in 1997. The detailed structural

and functional characterization of this 66mer peptide was the aim of this thesis.

Synthesis First, the inhibitor was synthesized according to a protocol already established

in the laboratory. Different full-length variants of the peptide (synthetic, recombinant,

monomeric, dimeric) were prepared as well as a series of N-terminally truncated peptides.

Additionally, the peptide sequence was separated into a 37-mer N-terminal part and a 29-mer

C-terminal part, both of which were synthesized. An overview of the synthesized linear

precursors is given in Figure 6.1.

The isolated N-terminal part as well as the full-length peptide were allowed to self-

fold and form disulfide bonds, which is a way to prepare disulfide-bonded peptides with

unknown native disulfide connectivity. From peptides P1, P2, P6 and P7 fluorescence-

labeled derivatives were prepared by N-terminal coupling of carboxyfluoresceine, resulting

in peptides P15, P16, P17 and P18, respectively.

Figure 6.1: Overview over all synthesized linear precursors. Peptide P1 was oxidized to a monomeric (P2)
and a dimeric (P3) form. Peptide P6 was prepared only in an oxidized version. Peptides with indicated amino
acids contain mutations of the original sequence at the given positions.
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In an orthogonal approach, tridegin was also expressed recombinantly in E. coli. Expression

of the peptide was reproduced and optimized from a formerly published protocol using an

artificial DNA, since the original cDNA sequence encoding tridegin is not known.

Functional assays The different tridegin variants were subjected to functional analyses.

The inhibitory potency of the compounds was analyzed by enzyme activity assays. It was

shown that the C-terminal part P7 did inhibit FXIIIa with only about 4fold higher IC50 values

than those measured for oxidized full-length tridegin P2 (2.2µM and 0.5µM, respectively).

In contrast, the N-terminal part P6 did not inhibit FXIIIa at all. Furthermore, the linear variant

of tridegin showed an IC50 of 1.5µM, which strengthens the assumption that the disulfide

connectivity plays an important role in inhibitor function. This was further confirmed by

assaying a mutant peptide containing only serine residues instead of cysteine (P5) which

resulted in a similar potency (IC50 2.1µM). Therefore it was concluded, that the presence

of the N-terminal part only increases inhibitor potency when disulfide bonds are formed.

However, an interesting finding remains: while the isolated C-terminal part P7 loses its

inhibitory function over time in presence of FXIIIa (i.e. is a competing substrate of the

enzyme, in which Gln52 is turned into Glu), this behavior could not be observed with any of

the full-length derivatives, oxidized or not. This either means that the full-length variants

are not substrates of FXIIIa or that the product of this hypothetic reaction (i.e. the Glu52

mutant) still inhibits FXIIIa.

Furthermore, the recombinantly expressed peptide P4 was analyzed, but showed a lower

potency (IC50 of 1.2µM) than the synthesized, oxidized peptide. In contrast, a synthetic,

covalent dimer (P3) displayed am IC50 value of 0.1µM. This leads to the assumption that

the dimeric form might be the native one.

In general, the inhibition of FXIIIa by tridegin seems to be very complex and cannot be

described by e.g. a simple competitive mechanism. Also, the analyses performed did indicate

a 1:2 stoichiometry between FXIIIa and tridegin.

To further assess the function of the non-inhibitory N-terminal part, binding assays were

performed. In a thermophoresis experiment, the fluorescence-labeled peptides were incu-

bated with different forms of FXIII and binding was monitored. These experiments revealed

that linear and oxidized tridegin as well as the isolated N- and C-terminal parts did bind

to FXIIIa, but none of the peptides bound to non-activated FXIII (A-subunit) or the carrier

B-subunit. A potential explanation for the impact of the N-terminal part on inhibitor potency

is that it enhances binding of the inhibitor to the enzyme, potentially by association with a

secondary binding site different from the active center.

The structure-activity relationships gained from these experiments are summarized in

Figure 6.2.
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Figure 6.2: Structure-Activity-Relationships in tridegin (isomer B). Disulfide bonds are indicated in red, the
N-terminal part of the peptide (1-37) is colored blue, the C-terminal part (38-66) orange. The important Gln52
position is highlighted in green.
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Structure elucidation For a detailed understanding of the tridegin structure, elucidation

of the disulfide connectivity is of major importance. No suitable homologue for directly

inferring disulfide connectivity could be found, therefore the disulfide bonds had to be

determined de novo from both the synthetic and recombinant material. Crystallization of

tridegin in presence and absence of factor XIII was attempted in cooperation with Dr. M.

Than (FLI Jena) but was not successful. Thus, the oxidized peptides – full length tridegin

synthetic (P2) and recombinant (P4) as well as the isolated N-terminal analogue P6 – were

subjected to enzymatic digestion and subsequent mass spectrometric analysis. This method

was successful, and three different isomers could be identified in both P2 and P6. One of

them could also be confirmed in recombinant tridegin.

This information was then used to perform molecular modeling of the structures (in

cooperation with Dr. A. Biswas, University Hospital Bonn) and docking of the modeled

tridegin isomers to the structure of active FXIII. Two of the three identified isomers were

shown to dock to the active site of FXIIIa in silico exhibiting different binding modes.

Outlook In summary, this work greatly enhances the understanding of the FXIIIa inhibitor

tridegin. Further experimental studies are needed to assess the inhibitor potency and binding

of the three different isomers individually. Also, evaluation of full-length variants with single

amino acid mutations based on the docking experiments would be useful to confirm the

in silico studies and pinpoint interaction sites between FXIIIa and tridegin. Subsequently,

further optimization of the inhibitor might be possible.

Although some questions still remain, tridegin is now one of the best-characterized in-

hibitors for FXIIIa and might therefore serve both as research tool for the investigation of

FXIIIa function in vitro and in vivo, as well as a lead structure for FXIIIa inhibitor development.
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Abbreviations

Abbreviations of amino acids and their derivatives are used acoording to the recommendation

of the Nomenclature Committee of IUB (NC-IUB) and the IUPAC-IUB Joint Commission on

Biochemical Nomenclature (JCBN).181 If not stated otherwise, amino acids and amino acid

derivatives are L-configured.

α2AP α2-Antiplasmin

5-FAM 5-Carboxyfluorescein

Abz 2-Aminobenzoic acid

APCE Antiplasmin cleaving enzyme

APS Ammonium persulfate

bp base pairs

CD Circular dichroism

cFXIII Cellular factor XIII

CID Collision induced dissociation

CMK Chloro methyl ketone

DCM Dichlormethane

DIEA N,N-Diisopropylethylamine

DMF N,N-Dimehtylformamide

DTT Dithiothreitol

DVT Deep vein thrombosis

EDTA Ethylenediaminetetraacetic acid

eq. Equivalents

ESI Electro spray ionization

EST Expressed sequence tag

Fmoc Fluorenylmethyloxycarbonyl protecting group

FRET Förster resonance energy transfer

FXIII Factor XIII

FXIIIa Activated factor XIII

GSH Glutathione (reduced)

GSSG Glutathione (oxidized)

H-Gly-OEt Glycine ethyl ester
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HBTU O-benzotriazol-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate

HPLC High performance liquid chromatography

IAA Iodoacetamide

IC50 Half maximal inhibitory concentration

IPTG Isopropyl β-D-1-thiogalactopyranoside

LC Liquid chromatography

MALDI Matrix assisted laser desorption/ionization

MAP Michael acceptor pharmacophore

MASP1 Mannan-binding lectin-associated serine protease-1

MS Mass spectrometry

NMR Nuclear magnetic resonance

PAGE Polyacrylamide gel electrophoresis

PAI-2 Plasminogen activator inhibitor 2

PCR Polymerase chain reaction

pFXIII Plasma factor XIII

PyBOP Benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate

SDS Sodium dodecyl sulfate

SPPS Solid phase peptide synthesis

t-PA Tissue-type plasminogen activator

TAFI Thrombin activatable fibrinolysis inhibitor

TAFIa Thrombin activatable fibrinolysis inhibitor (activated)

TEMED N,N,N’,N’-Tetramethylethane-1,2-diamine

TFA Triflouroacetic acid

Tgase Transglutaminase

TLC Thin layer chromatography

TOF Time of flight

Tris Tris(hydroxymethyl)aminomethane

u-PA Urokinase-type plasminogen activator

VTE Venous thromboembolism
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