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One day I will find the right words, and they will be simple.

— Jack Kerouac [47]





A B S T R A C T

One of the challenges that a computer game developer faces when cre-
ating a new game is getting the difficulty “right”. Providing a game
with an ability to automatically scale the difficulty depending on the
current player would make the games more engaging over longer
time. In this work we aim at a dynamic difficulty adjustment algo-
rithm that can be used as a black box: universal, nonintrusive, and
with guarantees on its performance. While there are a few commer-
cial games that boast about having such a system, as well as a few
published results on this topic, to the best of our knowledge none of
them satisfy all three of these properties.

On the way to our destination we first consider a game as an inter-
action between a player and her opponent. In this context, assuming
their goals are mutually exclusive, difficulty adjustment consists of
tuning the skill of the opponent to match the skill of the player. We
propose a way to estimate the latter and adjust the former based on
ranking the moves available to each player. Two sets of empirical ex-
periments demonstrate the power, but also the limitations of this ap-
proach. Most importantly, the assumptions we make restrict the class
of games it can be applied to.

Looking for universality, we drop the constraints on the types of
games we consider. We rely on the power of supervised learning and
use the data collected from game testers to learn models of difficulty
adjustment, as well as a mapping from game traces to models. Given
a short game trace, the corresponding model tells the game what
difficulty adjustment should be used. Using a self-developed game,
we show that the predicted adjustments match players’ preferences.

The quality of the difficulty models depends on the quality of ex-
isting training data. The desire to dispense with the need for it leads
us to the last approach. We propose a formalization of dynamic diffi-
culty adjustment as a novel learning problem in the context of online
learning and provide an algorithm to solve it, together with an up-
per bound on its performance. We show empirical results obtained in
simulation and in two qualitatively different games with human par-
ticipants. Due to its general nature, this algorithm can indeed be used
as a black box for dynamic difficulty adjustment: It is applicable to
any game with various difficulty states; it does not interfere with the
player’s experience; and it has a theoretical guarantee on how many
mistakes it can possibly make.
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1
R O A D M A P

In recent years there was a steady interest in researching how video
games can adjust themselves to their players. In this work we aim
at creating an algorithm for one aspect of such an adjustment, the
game’s difficulty. Note that regardless of the purpose of a game, be
it entertainment, education, or training, the goal is generally to keep
players’ attention for as long as it is reasonable. What is a certain way
to lose their attention? A straightforward answer is for a game to be
boring, be it because of a trivial story, lack of excitement, repetitive
too difficult or too easy challenges, etc.

A game and its player are two interacting entities. Both of them
have a set of goals that they attempt to achieve through the interac-
tion. For the player the goals may be for example defeating whatever
challenges the game is presenting to her, exploring the game world,
or exploiting the rules of the game, but globally a typical player plays
to have fun. For a typical commercial game the main goal is to max-
imise its sales figures, which can be achieved via different means, but
the most sure one is for the game to be simply fun to play. What
constitutes the fun when playing a game?

There are three main components in the theories on why gaming is
fun: reward, flow and iteration [71]. Reward derives from our intrinsic
nature to reward ourselves for doing something. Video games play
on this by providing immediate in-game rewards for completing in-
game tasks. Flow is the player’s ability to become almost a part of the
game. Being in the flow means that the player becomes immersed in
the game and loses the track of reality and the sense of self. For this
to occur in a game the player must be actively involved, concentrated
and unaware of realities of time and space boundaries. Iteration is the
games ability to be different upon repetition.

There is a theory that our brains are physiologically driven by a
desire to learn something new: new skills, new patterns, new ideas
[96, 6]. We have an instinct to play because during our evolution as a
species playing generally provided a safe way of learning new things
that were potentially beneficial for our life. Daniel Cook [12] created
a psychological model of a player as an entity that is driven to learn
new skills that are high in perceived value. This drive works because
we are rewarded for each new mastered skill or gained knowledge:
The moment of mastery provides us with the feeling of joy. The games
create additional rewards for their players such as new items avail-
able, new areas to explore. At the same time there are new challenges
to overcome, new goals to achieve, and new skills to learn, which cre-
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2 road map

ates a loop of learning-mastery-reward and keeps the player involved
and engaged.

An inherent feature of any challenge (and of the learning required
to master it) is its difficulty. Here the difficulty is a subjective factor
that stems from the interaction between the player and the challenge:
Some people find controlling a simulation of a helicopter in a three-
dimensional space as easy and natural as walking, but most would
struggle with it for quite a while before they master it. This example
also demonstrates that the perceived difficulty is not a static property:
It changes with the time that the player spent learning a skill. In
general the more time and effort we invest into learning something
new, the better we get at it and the easier subjectively the tasks that
exercise this skill get.

To complicate things further, not only the perceived difficulty de-
pends on the current state of the player’s skills and her learning pro-
cess, the dependency is actually bidirectional: The ability to learn the
skill and the speed of the learning process are also controlled by how
difficult the player perceives the task. If the bar is set too high and
the task appears too difficult, the player will end up frustrated and
will give up on the process in favour of something more rewarding.
Then again if the challenge turns out to be too easy (meaning that
the player already possesses the skill necessary to deal with it) then
there is no learning involved: Even though the player accomplishes
the task and receives the in-game rewards, she is missing out on that
internal reward, the feeling of joy that the moment of mastery pro-
vides. And without it there is no sense of accomplishment, which
makes the game appear boring.

For these reasons the game that strives to be fun should provide
the challenges for the player of the “right” difficulty: The one that
stimulates the learning without pushing the players too far or not
enough. Ideally, the difficulty of any particular instance of the game
should be determined by who is playing it at this moment; the game
should possess an ability to change the difficulty of its challenges on
the fly, in an online fashion.

The traditional way in which games treat difficulty adjustment is
to provide players with a way of controlling the difficulty level them-
selves. To this end, typical levels would be ‘beginner’, ‘medium’, and
‘hard’. Such a strategy has many problems. On the one hand, if the
number of levels is small, it may be easy to choose the right level but
it is unlikely that the difficulty is then set in a very satisfying way. On
the other hand, if the number of levels is large, it is more likely that
a satisfying setting is available but finding it becomes more difficult.
The necessity of going back and forth between the gameplay and the
settings when the tasks become too difficult or too easy disrupts the
flow component of the game. On yet another hand, for game devel-
opers, it is not an easy task to map a complex game world into one
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variable. Constructing such “mapping” requires extensive testing, re-
sulting in time and money costs. Consider also the fact that gener-
ally games require several different skills to play them. Providing the
computer with an ability to adjust the game to all these skill levels
automatically is more user-friendly than offering several settings for
a user to set.

Gilleade et al. [29] and Sweetser and Wyeth [84] state that providing
players with a personalised, adaptive experience can sustain their at-
tention and keep their interest for longer, which agrees with the argu-
ment that games with a personalised dynamic difficulty adjustment
system are more interesting. Motivated by this, we aim at creating a
mechanism for developing games that on the fly provide challenges
of the “right” difficulty, i. e., such that players are stimulated but not
overburdened. To this purpose, we investigate how machine learning
techniques can be employed to automatically adjust the difficulty of
games. A general technique for this problem has natural applications
in the huge markets of video games but can also be used to improve
the learning rates when applied to serious games.

This work is about the design of a dynamic difficulty adjustment
algorithm that is driven by the following requirements:

• Universality: The resulting algorithm should be applicable to as
many games as possible, independently of their type, structure,
or features;

• Non-intrusiveness: If desired, the resulting algorithm should
work in a transparent way, in real-time, not requiring an inter-
action with players;

• Feasibility: There should be guarantees about the resulting al-
gorithm’s performance.

The main part of the thesis is organized into three chapters, each
of these dealing with the same question but applied to different and
progressively more difficult settings. Here in brief are some of the
main contributions. A more detailed overview follows below.

Chapter 3 starts with a precisely defined world of board games
and describes a dynamic difficulty adjustment heuristic. Specifically,
we propose that in a setting with clearly defined ‘moves’ and a way
to evaluate their influence on the game’s outcome, the dynamic dif-
ficulty adjustment mechanism chooses the next move based on the
quality of a player’s moves so far. We present the experiments demon-
strating the power of this heuristic and describe its limitations.

In Chapter 4 we use the power of supervised learning to construct a
dynamic difficulty adjustment algorithm. To this purpose we require
that players have an ability to adjust the difficulty of the game in real
time, at least during the playtesting phases of game development. To
provide the learning algorithm with the training input, we collect the
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data: game traces that among other features contain the difficulty ad-
justments chosen by players. From this data the algorithm constructs
a set of players’ models and learns to classify game traces into the
set of models. After the learning stage is finished, any new player is
provided with a difficulty adjustment that is specified by his or her
model.

Finally, Chapter 5 presents an algorithm that doesn’t demand any
particular prerequisites from a game, apart from two that we feel are
essential for any plausible dynamic difficulty adjustment mechanism:

• The game should possess states of different difficulty.

• The game should provide information on how well the current
state matches the player’s skill and preferences.

The algorithm is built using online learning principles and satisfies
all the criteria listed above, including the theoretical guarantees on its
performance.

1.1 dynamic difficulty adjustment via ranking of avail-
able actions

A lot of games are based on interactions between a player and one or
more in-game entities, e. g. computer opponents in a real-time strat-
egy, bots in a first-person shooter, non-player characters in a role-
playing game. The problem of automatic difficulty scaling can be
viewed in the context of these interactions. The player is a person
who is currently playing the game. The agent is an in-game entity,
the player’s opponent. It is natural to assume that at any given time
the agent has a set of actions (strategies) available to it. The question
of how to adjust the game difficulty automatically can be formulated
as which action or strategy should the in-game agent choose as next.

Consider the situation where both player’s and agent’s sets of ac-
tions are similar, as it may be the case in a two-player board game (i. e.
tic-tac-toe, connect four, or backgammon), but also in a “real” com-
puter game such as, for example, a real-time strategy. In any given
game state some actions are better than the others or, in other words,
there is a naturally occurring ranking on the available actions. Know-
ing the ranking, the agent can evaluate the performance of the player
and choose its own actions accordingly. This approach allows us to
create an online adaptive agent, where “online” means that the agent
adapts to its opponent during the course of a single game.

In Chapter 3 we investigate the ranking approach to developing
online adaptive agents on examples of connect four and checkers. To
evaluate the resulting agents we design a test environment consist-
ing of two parts. The first part contains several preprogrammed al-
gorithms with distinct skill levels. The second part provides an envi-
ronment where human players can play against the developed agents
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and the statistics necessary for evaluation are gathered. The empiri-
cal evaluation provides insights both into strengths and weaknesses
of the ranking dynamic difficulty adjustment.

1.2 dynamic difficulty adjustment via modelling of play-
ing types

Next we consider the dynamic difficulty adjustment as a supervised
learning problem. Luckily, there is a large selection of supervised
learning methods available. To make use of them though, we need
training data.

Game development process usually includes multiple testing stages,
where a multitude of players is requested to play the game to provide
data and feedback. This data is analysed to tweak the games’ param-
eters in an attempt to provide a fair and fun challenge for as many
players as possible. The question we investigate in Chapter 4 is how
the data from these tests can be used for designing intelligent diffi-
culty settings with the help of supervised learning.

We assume there is a phase of the game development in which
the game is played by a multitude of players and the difficulty is
manually adjusted by them. If the data collected during the testing
includes the difficulty adjustments, we can induce a difficulty model
and build it into the game. The actual players do not notice any of this
and, ideally, are always challenged at the difficulty that is estimated
to be just right for them.

In the first approach, we assume that there is a finite number of
player types. (This assumption is supported by the fact that a lot of
games offer a player a choice from several predefined difficulty set-
tings, such as for example ‘easy’, ‘medium’, ‘hard’.) We do not prede-
fine this number, but rather use clustering on the training data to see
which number fits the data the best.

Our approach to building a difficulty model consists of three steps:
(i) cluster the recorded game traces, (ii) average the supervision over
each cluster, and (iii) learn to predict the right cluster from a short
period of gameplay. In order to validate this approach, we use a leave-
one-player-out strategy on data collected from a simple game and
compare our approach to less sophisticated, yet realistic, baselines.
All approaches are chosen such that the players are not bothered. In
particular, we compare the performance of dynamic difficulty versus
constant difficulty as well as the performance of cluster prediction
versus no-cluster.

To test our approach we implemented a simple game using the
Microsoft XNA framework 1 and one of the tutorials from the XNA
Creators Club community, namely “Beginner’s Guide to 2D Games”

1 http://msdn.microsoft.com/en-us/xna/default.aspx

http://msdn.microsoft.com/en-us/xna/default.aspx
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2. During each game all the information concerning the game state
(e. g. the amount of hit points, the positions of the aliens, the buttons
pressed, etc) is logged together with a timestamp.

Even though our experimental results confirm that dynamic adjust-
ment and cluster prediction together outperform the alternatives sig-
nificantly, there are a few open questions. The most important ones
are:

• The length of a game trace in our evaluation is rather short (no
more than 100 seconds). Is it possible that longer games would
decrease the performance?

• The length of a prefix that the learning is based on is a param-
eter. It is clear that it must have an influence on the outcome.
What is its optimal value in terms of balance between the adap-
tation speed and performance?

We propose another supervised dynamic difficulty adjustment method
that neatly sidesteps both of these questions. Instead of dividing a
game trace into a prefix and a suffix, we train an ‘online’ predictor:
It predicts only the next (time step) difficulty adjustment based on
a few last time steps. The experiments performed on the same data
as above show that this predictor indeed can follow the self-inflicted
difficulty adjustments quite closely.

1.3 dynamic difficulty adjustment via online learning

In the last of the main chapters (Chapter 5) we drop any and all
assumptions about the game and its players apart from the following
two:

1. The game should possess states of different difficulty.

2. The game should provide information on how well the current
state matches the player’s preferences.

The first assumption is quite natural: if there are no distinct states of
different difficulty, there cannot be a system for changing it, neither
dynamically, nor statically. The second assumption should hold as
well, since without input of any kind it is impossible to design a
learning system.

In Chapter 5 we formalise dynamic difficulty adjustment as a meta-
game between a master and a player in which the master tries to predict
the most appropriate difficulty setting, played on a partially ordered
set modelling the ‘more difficult than’-relation. As the player is typi-
cally a human with changing performance depending on many hid-
den factors as well as luck, no assumptions about the player can be

2 http://creators.xna.com/en-GB/

http://creators.xna.com/en-GB/
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made. The meta-game is played in turns where each turn has the
following elements:

1. the master chooses a game’s state (i. e. decides on a difficulty
setting),

2. the player plays one ‘round’ of the game in this state, and

3. the master receives the feedback on whether the state was ‘too
difficult’, ‘just right’, or ‘too easy’ for the player.

The master aims at making as few as possible mistakes, that is, at
choosing a difficulty setting that is ‘just right’ as often as possible.
We present an algorithm for the master with theoretical guarantees
on the number of mistakes in the worst case while not making any
assumptions about the player.

The crucial part of the analysis consists of representing a set of dif-
ficulty settings as a (finite) partially ordered set. As we can not make
any assumptions about the player, we compare our algorithm theoret-
ically and empirically with the best static difficulty setting chosen in
hindsight, as is commonly the case in online learning [9]. This base-
line has a natural relation to the real life: it reflects the best setting
that the player would choose if she knew the game and her abilities.

While the theoretical results show that the master’s algorithm’s per-
formance depends on the properties of the partially ordered set and
in a good case is on par with a full information predictor (i. e. the one
who at each round receives information about all states rather than
one), the empirical studies we have conducted demonstrate even bet-
ter results.

1.4 summary

In sum this work presents several new methods for dynamic difficulty
adjustment in order of increasing generality.

Chapter 3 presents a simple way to match an opponent’s skill by
ranking available strategies and monitoring the opponent’s choices.
This heuristic works as long as (i) the opponents are relatively simi-
lar, (ii) full information (about available strategies and the opponent’s
action) is available, (iii) the strength of the adaptive player is unlim-
ited.

Chapter 4 presents two supervised learning approaches to the dy-
namic difficulty adjustment problem, provided there is necessary train-
ing data available: the game traces from a sufficient amount and suf-
ficiently different players. As for any other supervised learning algo-
rithm, the quality of the resulting models depends on the quality of
the provided training data.

Finally, Chapter 5 presents a theoretically sound, online dynamic
difficulty adjustment algorithm that does not impose any assump-
tions on games or players that it can be applied to. This algorithm
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works as long as (i) for any two game states it is possible to say
whether any one is more difficult than the other, (ii) the oracle report-
ing the player’s perceived difficulty of the current state (too difficult,
just right, or too easy) is available.

1.5 bibliographical notes

Most of the research presented in this dissertation is a joint work with
Thomas Gärtner and has appeared elsewhere, in one form or another.

The results in Chapter 3 were published in the proceedings of
the 4th International Conference on Games Research and Development Cy-
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[58].

The first algorithm presented in Chapter 4 has appeared in the
proceedings of the 12th International Conference Discovery Science in a
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[59]. The second algorithm is a joint work with Martin Mladenov
and was published in the proceedings of the International Workshop on
Machine Learning and Games, colocated with ICML 2010, in a paper
titled “Offline learning for online difficulty adjustment” [62].

The research in Chapter 5 was published in Advances in Neural Infor-
mation Processing Systems 24 [61] under the title “ Predicting dynamic
difficulty”. An extended abstract describing this research appeared in
the proceedings of the 7th International Workshop on Mining and Learn-
ing with Graphs [60].

The empirical studies in Chapters 3 and 5 is a joint work with
Laurenţiu Ilici and Jiao Jian Wang. The corresponding paper, titled
“Dynamic difficulty for checkers and Chinese chess”, was published
in the proceedings of the 2012 IEEE Conference on Computational Intel-
ligence and Games [42].



2
L A N D S C A P E

We begin with a brief history of the dynamic difficulty adjustment in
video games.

The simplest difficulty a game can have is a static one. However, it
is also the most boring difficulty a game can have. Game developers
have used the concept of a learning curve to produce a difficulty
curve in their games: The difficulty changes as the game progresses,
but in a strictly prescribed way. For example, the further a player is
in the game, the more difficult it becomes. The shape of the curve is
something for a developer to decide, for a few examples see Figure 1.
Note, that the difficulty in this case changes in exactly the same way,
regardless of a particular player.

The next best thing is to provide the player with a few variants of
the difficulty curve, i. e. a static choice of the difficulty level in the
beginning of the game (Figure 2). Unfortunately, that can lead to a
situation where if the player faces an insurmountable obstacle, she
will have to restart the whole game. A logical solution here is to give
the player an ability to switch between the difficulty levels on the
fly. While removing one problem, this method introduces a different
one: The necessity of going back and forth between the gameplay and
the settings when the tasks become too difficult or too easy (i. e. the
player’s learning curve does not match the selected difficulty curve)
disrupts the flow of the game and breaks the immersion, two of the
components that are responsible for the game being enjoyable.

Furthermore, it is not an easy task to create even one difficulty
curve in a satisfactory way. The obstacles multiply when game de-
velopers have to provide several different ones. For instance, how to
decide how many? The choices range from the standard three (‘easy’,
‘normal’, and ‘difficult’) to apparently an infinity (a continuous slider
on the settings screen instead of a discrete choice). How different
should they be from each other? Would switching from one to another
disrupt the story and the world? Answering these questions together
with constructing different difficulty settings requires additional ef-
fort and extensive testing, costing developers time and money.

An alternative mechanism is to tie the difficulty adjustment not
only with the player’s progress through the game, but also with her
performance. One of the earliest examples of this can be found in
Zanac, developed in 1986 by Compile Co., Ltd. It possessed a system,
called the “Automatic Level of Difficulty Control” or ALC [43], which
was unique at the time. It is constantly monitoring the player’s per-
formance, keeping track of such variables as the amount and types
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Figure 1: Examples of difficulty curves’ shapes.
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Figure 2: Several difficulty curves in a game. The choice of a difficulty set-
ting constrains the player to following one of them.

of enemies killed, power-ups collected, lives lost, etc. Based on pre-
programmed rules this data leads to changes in the challenge that the
player is facing, for instance, a greater or smaller number of enemies
on the screen [43]. According to the players’ reports ALC produces a
challenging game that adapts to the player’s skill level [88].

To create a similar dynamic difficulty adjustment mechanism, one
needs to answer three questions:

1. What to monitor?

2. What to adjust?

3. Plus how to adjust (2) given (1).

On the second glance, though, assuming that

• nothing stops us from monitoring everything possible, and

• everything adjustable can be adjusted to the purpose of tweak-
ing the difficulty,

the main question really is how: How to adjust what we can, given
what we observe. More than a few games published in the last twenty
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years use a dynamic difficulty adjustment system in one way or an-
other. The common theme is that all of them use a heuristic to answer
that question, i. e. a set of rules tuned for this particular game that
was created by game developers and tested on players up to some
degree. In the following we will look at some examples and discuss
their positive and negative sides.

2.1 heuristics

One quite popular approach to dynamic difficulty adjustment is a
so-called rubber banding. The name means that the player and her op-
ponents are virtually held together by a rubber band: If the player
is “pulling” in one direction (playing better or worse than her oppo-
nents), the rubber band makes sure that her opponents are “pulled”
in the same direction (that is they play better or worse respectively).
While the idea that the better you play the harder the game should
be is sound, the implementation of the Rubber Band AI often suf-
fers from disbalance and exploitability. A typical example of this ap-
proach can be found in some racing games, for example, the Need for
Speed series, where the opponents’ cars are driving faster the further
ahead of them the player is, and slower the further behind she is. This
behaviour appears unnatural and irritating if players become aware
of it.

A particularly well-known example is the game called “Mario Kart”
by Nintendo [55]: Players compete in go-kart races, controlling ve-
hicles with inherently different speeds, that effectively serve as the
different difficulty settings without needing to call them that way.
“Mario Kart” employs rubber banding in a few different ways. One of
them is a quite direct implementation of the above description: The
speed of the computer-controlled opponents is adjusted depending
on the player’s performance. If the player is not doing well, all the
opponents will slow down. If, on the other hand, the player is racing
proficiently, the opponents will also speed up and make sure they
are right there with her. Another dynamic adjustment concerns the
amount and types of power-ups that are available to the player dur-
ing a race. The weaker and slower players are given more and better
power-ups than the faster ones.

Overall, the system serves its purpose in creating a game that ev-
eryone can play and win, regardless of their skill level. It also makes
sure that there are some opponents around the player at all times,
which is important in a combat-oriented racer. Unfortunately, apart
from the fact that the system appears (i) to punish the skilful players,
and (ii) to be easily exploitable: The best strategy seems to be to ar-
tificially slow yourself down to ensure that opponents do not go too
fast and that you get all the powerful weapons. Which is probably
not what the game designers intended.
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Another example of dynamic difficulty adjustment is provided by
most of the modern computer role-playing games (CRPG): As soon as
the player’s character gains a new level, the monsters’ characteristics
(health, inflicted damage) or the areas (types and amount of monsters)
are adjusted accordingly, the “level” value being considered a univer-
sal indicator of a player’s strength. Unfortunately, even in the very
numerical world of a typical CRPG, with all properties expressed in
numbers and their relations in formulas, this single value represents
neither the character’s strength, nor the player’s skill with the game.
It is all too easy to create and develop a character who is not fit for
the game world and its levelling up does not mean it becomes any
stronger, but the game follows its logic and becomes too difficult as it
progresses. On the other hand, give a strong character together with
the instructions on how to develop it during the game to a newbie,
and the game would be too difficult for this player, even though the
character can deal with it potentially.

The downsides of this become obvious in an open-world game,
where game designers have to ensure that the player can go wher-
ever she wants to and do whatever she sees fit without breaking the
story or the feeling of slowly gaining power. An example of such
a game together with its typical problems is “The Elder Scrolls IV:
Oblivion” by Bethesda Game Studios [87]. In accordance with the
principles described above, in “Oblivion” enemies scale their levels
and their presence based on the player’s level. City guards are al-
ways 2-5 levels above the player, bandits 2-5 below, and so on. This
helps to make sure that no matter where the player decides to go, she
does not feel as if she couldn’t go there. Unfortunately, it is rather
difficult to decide what to scale exactly and how much. In “Obliv-
ion” scaling permeates nearly every aspect of gameplay, from how
strong enemies are, to which enemies actually spawn, to what they
carry, even to what items shops could sell. As a result of this, after
the player reaches a certain level, the lower branches of enemies’ hier-
archy, such as wolves and lower-end Daedra, simply disappear from
the world. This not only brings with itself the problem that the world
looks unbalanced. Rather, certain quests become impossible to com-
plete as they depend on the presence of creatures that are not there
any more. On the other hand, common road bandits would start wear-
ing the most powerful armour in the game, disrupting the economics
of the world. The quest enemies would be summoned of such a high
level, that the player’s allies wouldn’t have any chance against them.
These problems were important enough to include warnings about
them into the “Oblivion” own official strategy guide [64].

Apart from breaking the story and disrupting the player’s sense of
growing power, this also creates a ground for exploits. The best, even
if probably unsatisfying, way to ensure that the game stays easy, is
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for the player to choose to never level up, which goes rather against
the whole mechanics of a CRPG.

One of the seemingly simplest examples of the ‘observe → adjust’
approach can be found in “Half-Life 2” by Valve Corporation [32].
Commentary Mode in Episode 1 and 2 reveals that the game slightly
modifies the contents of the supply boxes the player encounters, de-
pending on the protagonist’s status at the time the player breaks
them. The full health signifies a relatively easy play-through and re-
sults in smaller healing items or random ammo, while the low health
prompts the game to put something more useful in the boxes, such as
+20 first-aid kits. The observation consists of a single parameter and
the game world is modified in a way that does not interfere with the
player’s experience.

The next one by complexity is “Max Payne” by Remedy Entertain-
ment [56]. While the game has an explicit choice for the difficulty
setting (Easy, Medium, and Hard), it also includes a dynamic diffi-
culty, whose way of adjusting depends on the setting chosen by the
player. The observable parameter is a number of times the player has
died repeatedly. On all settings multiple deaths prompts the game
to provide the player with more health items, but the more difficult
the setting, the smaller the amount of these bonuses [27]. There is
some evidence that apart from that the game also very slightly ad-
justs the level of aim assistance the player gets, and increases the
enemy’s health a bit depending on her estimated skill level and the
projected success [92]. Note that also in this case the adjustments are
minor and easy to calculate in, taking into account that the enemies
are all spawned in the predefined locations. That ensured that game
designers could test the effects and tune them to desirable values.

The Capcom’s “Resident Evil 4” [68] went much further than that
both in terms of observables and adjustables. Even though the full
information about the algorithm is not disclosed, it is known that it
is a quite complex heuristic that takes into account almost everything
that the player does in the game, from how many times she died to
how fast she went through the areas. Based on this data, the algorithm
adjusts in a probabilistic way multiple parameters of the game world,
from the amount of the opponents to their behaviour. Judging from
the players’ responses this is a particularly successful implementation
of dynamic difficulty adjustment.

The game that is famous for, among other features, its dedication
to produce adjusting challenges is “Left 4 Dead” by Valve Corpora-
tion [50]. Here, the game’s dramatics, pacing, and difficulty are con-
trolled, or to express it more precise, created by the artificial intelli-
gence called the “Director”. It is entirely procedural, which means
that none of the interactive elements of a level (triggers, flags, or en-
emies) is predefined. Rather, they are all placed and spawned anew,
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depending on each player’s current situation, status, skill and loca-
tion, creating a new experience for each playthrough [1]. To quote:

The Director takes into account the “stress level” of every
individual survivor. It does not want anyone to experience
a boring game, nor does it want someone to get a heart at-
tack by having a constant stream of zombies, which would
really make you numb to the excitement. . . . The Director
is a wonderful thing – it keeps you guessing, it makes ev-
ery experience unique, and most importantly by changing
it up it keeps you fully immersed and does not let you fall
into the same boring pattern of play.

The benefits of a well-designed system in this style are that it
yields consistent, well-paced play, and since it is transparent and non-
intrusive, it is easy for the player to forget that it is there, so they feel
a greater sense of accomplishment when they complete a particular
challenge, even if the bar was continually lowered until it was within
their reach.

One of the downsides is that a fraction of players feels cheated
if the game’s challenge was being altered behind their backs while
they were playing. Another one is that a system like this is relatively
reactive, i. e. it has to observe you for a while until it is able to make
a good guess about how to react to your play.

To finish our review of different dynamic difficulty adjustment sys-
tems employed in commercial video games, we will talk about “God
Hand” by Clover Studio [30]. On the one hand, it follows the above
strategy (observe → adjust). On the other hand, it is strikingly dif-
ferent because it does not hide anything from the player. Rather, the
observations and the resulting adjustments are an important part of
the interface: In the bottom left hand corner of the screen there is an
indicator of the actual difficulty meter. As the player successfully pro-
gresses through the game, the meter fills up and when it reaches the
top, the difficulty increases and the meter is emptied. As the player
sustains the damage, the meter decreases, and with it the difficulty.
The difficulty is adjusted by letting the enemies use better strategies
and hit harder. The game rewards the player both implicitly, by giv-
ing her the chance to succeed over impossible odds, and explicitly, by
awarding her extra points which are converted to cash at the end of
each level. Cash is spent on new moves to help the player beat down
more thugs.

Interestingly enough, “God Hand” was created by the same person
as “Resident Evil 4”, Shinji Mikami. Judging by the players’ responses,
both systems provide excellent pacing and a sense of accomplishment.
However, due to the fact that “God Hand” does not attempt to hide
anything and makes the whole dynamic difficulty adjustment explicit
to the player, it avoids the “unfair play” problem.
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As we have seen above, there is quite some interest in creating
and incorporating dynamic difficulty adjustment systems into com-
mercially produced games. As we will see below, there are also a
few researchers from the machine learning and artificial intelligence
communities who also investigate the question of how to create a
dynamic difficulty adjustment mechanism.

2.2 academic approaches

We will start our review from the body of work where the same gen-
eral scheme as above is assumed: observations → adjustments. As
such, the dynamic difficulty adjustment in this research is explicit,
and usually is the ultimate goal of the algorithms being developed.
On the way we will also look at a couple of examples of how the ob-
servations of players’ state can be made. After that we will talk about
the implicit systems, where the dynamic difficulty adjustment is not
the goal, but rather a side product of an adaptive or intelligent game
engine.

2.2.1 Explicit dynamic difficulty adjustment

Most academic researchers of the explicit dynamic difficulty adjust-
ment base their investigations on the same problem structure as the
one used by game developers:

• repeat until the game ends:

– observe the player’s state;

– adjust game parameters.

The open questions in this case are again the same as the ones game
developers are striving to answer:

1. What to observe?

2. What to adjust?

3. What is the mapping between observations and adjustments?

From these three questions the second one is the least susceptible
to the scientific approach. As we have seen above, in the dynamic dif-
ficulty adjustment systems employed in actual games, the parameters
that are being adjusted range from something as simple as an item
in the next chest to pretty much the whole layout of the next level,
including the strategies of opponents generated on this level. We feel
that it is the natural state of things: The developers of any particular
game know best which parameters influence the difficulty and how.
Even though it is tempting to imagine a future where this informa-
tion is available automagically, to the best of our knowledge there are
currently no attempts at solving this problem.
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Below we will review existing approaches to the other two ques-
tions, observations and mappings.

2.2.1.1 Observations

The goal of having any observations at all in the context of dynamic
difficulty adjustment is to provide an input for the adjustment map-
ping. In other words, we have to be able to tell based on some informa-
tion, when to adjust. Recall that the purpose of tuning the difficulty
on the fly is to keep the player in the “Zone” or in the “Flow” [84],
to match the challenge to her current abilities. Therefore, we need to
be able to tell when she leaves the “Zone”, when the ability does not
match the challenge any more.

Even the games without the dynamic difficulty adjustment usually
possess a so-called difficulty curve, where the game difficulty changes
depending on how far the player is in the game. It is assumed in this
case that the progress alone serves as an indicator of the ability, i. e. if
she has gotten that far, she needs to and should be able to deal with
the new level of challenge.

In the heuristics described in the previous section the observations
usually are made of the player’s performance; the choice and the con-
version of primitive attributes (health points, time to progress, etc.)
to a single variable, i. e. “the game needs to be harder/easier”, is im-
plemented on a case by case basis by game developers. Some of the
researchers adopt a similar approach: They develop a dynamic diffi-
culty adjustment algorithm, put it into a game of their choice, and
create an observational heuristic tailored to that game that provides
the algorithm with observations.

Fortunately, there are also a couple of methods that can collect the
observations for the dynamic difficulty adjustment in a more inde-
pendent and universal manner. The first one that we will look at is
Player Modelling, which is a relatively new area of interest for the
researchers in the context of computer games [40]. Player Modelling
is used mainly for two different goals. On the one hand, it allows,
at least in theory, to transfer human behaviour onto computer oppo-
nents (we will talk about this application in more detail later). On the
other hand, creating, collecting, and processing models of the play-
ers leads to the reality-based player types as opposed to the prede-
fined {“beginner”, “intermediate”, “advanced”} set. Once these player
types are discovered, game developers can tailor their game to each
type separately. Any new player is then monitored as well, but not to
decide about her state, rather, to determine to which type she belongs
and to offer her the most fitting experience.

Charles and Black [10] discuss the need of player modelling for cre-
ating games that adapt to players, where adaptation is not limited
to the choice of the right challenge. They describe a general frame-
work that places together player’s preferences, in-game observations,
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learned models, and in-game adaptations. They also suggest how the
learning tasks of the framework can be solved by using neural net-
works, both in a supervised and non-supervised settings. These tasks,
however, can be solved with a multitude of machine learning tools.
We have to remember though, that they have their own particular
properties that render some of the approaches less applicable than
others. For instance, in a standard release-once mode of game devel-
opment, when after the development process is finished the game is
released to the public and no further development takes place, the
training data that is representative of the whole player-base could be
costly to obtain. The learning or the prediction or both should hap-
pen online, in other words during a single game, and the acceptable
performance should be achieved as quickly as possible.

Schadd et al. [72] describe a way to classify the playing style of an
opponent into one of the several pre-defined models, using an RTS
game as a test bed. The models are manually created beforehand and
depend heavily on the game in question. The authors state that to
simplify the classification process, the models are organized in a hier-
archical way. The classification then happens on each level of the hi-
erarchy independently. The classifiers are adapted from the repeated
games theory, their parameters are adjusted based on the training
data (games versus particular opponents). Both classifiers show good
performance during a game, but with a significant delay (one with
seven minutes, another after forty minutes in games lasting on aver-
age for fifty minutes). All this shows the potential problems of such
approach: (i) difficulties with creating and the inherent heuristic na-
ture of hand-crafted models, (ii) the parameters have to be adjusted
based on the real players, since the artificially created training data
(i. e. games played versus a specific bot or bots) most probably fails
to represent them sufficiently well, (iii) by the time the needed con-
fidence level of the prediction is reached, it is probably too late to
make any significant changes.

Hawkins et al. [35] show how particle filtering [66] can be used to
learn the models by collecting the data from a multitude of players
rather than create them explicitly by hand. Another advantage of this
approach is that the observable parameters are translated into model
parameters and vice versa explicitly, which means that (i) assigning
a new player to one of the models is an automatic, dynamic process;
(ii) the dynamic adjustments can be read off the models.

Yannakakis and Hallam [99] and their previous work describe re-
sults of using neuro-evolution [98] together with a Bayesian network
to create an explicit player’s model in a modified version of Pac-Man
or a self-made game Dead End. They compare the interestingness
achieved by using player models with hand-crafted and with random
choice of parameters. From the results one may conclude that using
an explicit player model is better than leaving things to chance.
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One of the few examples of player modelling done on real world
data is the work of Drachen et al. [19]. The authors use self-organized
maps (SOMs) [49] to infer player models from the data collected from
Tomb Raider: Underworld [91]. The raw data consists of game se-
quences recording events that a player goes through. For the study,
six high level features were extracted from the collected data. Note
that the features are hand-crafted by the researchers themselves. The
data then was clustered (using a SOM), and the resulting clusters in-
terpreted in terms of the features used, showing four distinct player
types.

Note that there is an implicit assumption used above that the player’s
performance (i. e. the parameters that can be read from a game’s state)
is correlated with her emotional state or her place inside/outside of
the “Zone”. While there is definitely some strong evidence in favour
of this assumption, it also raises a question: Why not measure her
emotional state directly? If we can reliably tell, whether the player is
bored or stressed out, that would be a perfect input for a dynamic
difficulty adjustment algorithm.

Emotional state of players (and humans in general) can be per-
ceived and estimated through a variety of observable signals, in par-
ticular physiological ones (such as cardiovascular responses, muscle
tension, respiratory rate etc.) [65]. Especially of interest for dynamic
difficulty adjustment is the anxiety level. Liu et al. [53, 54] describe
how it could be used for adjusting the game’s difficulty level on the
fly. The procedure is as follows (on a person by person basis):

1. To generate a model:

• collect the signal data (ECG (Electrocardiogram), ICG (Impedance
Cardiogram), PPG (Photoplethysmogram), Heart Sound,
GSR (Galvanic Skin Response), peripheral temperature, and
EMG);

• extract multiple features (the detailed description can be
found in [53]);

• use a learning method to extract the underlying state (in
this particular case, a regression tree), the known labels are
extracted from the self-reports;

2. To infer and use the players’ emotional state, use the generated
model to estimate the anxiety level and act accordingly.

Note that in these papers the difficulty levels are predefined (as
usually, designing them would be left for game developers). Also, a
relatively simple schema for adjustment is used (i. e. if the anxiety is
high → go to the lower level, if it is low → go to the higher one).
Nevertheless, according to the empirical data received, it results in a
better game experience (better performance and better self-reported
level of engagement) for the players involved.
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This evidence shows that affective computing can be used as a com-
plementary approach to player modelling based on the performance
features to design a universal way to answer the question number one
from above: “What to observe?” Next on our list is “How to adjust?”

2.2.1.2 Adjustments

After the observations, the next component in a dynamic difficulty
adjustment system is the mapping between them and the adjustables.
Once the input and the output (the player’s state and the adjustable
parameters’ space) are fixed, we have on our hands a learning prob-
lem: given a particular player’s state, find the matching set of adjust-
ments. Which method to choose in order to solve it would usually
depend on external constraints, e. g. can the learning be performed in
an offline mode or should it be online, how much of the training data
is available, etc. Below we will describe a few published approaches
that were applied in different circumstances.

An example of an in-game online adaptive agent based on a modi-
fied Reinforcement Learning (RL) approach is presented in the work
of Danzi de Andrade et al. [15]. Informally, in an RL setting an agent
is interacting with an environment by perceiving it, executing actions
and receiving rewards. The agent’s goal is to learn to execute such
actions (depending on its state) that maximize its reward in the long
run (for a formal definition and ways to solve an RL problem see the
book of Sutton and Barto [83]). Danzi de Andrade et al. [15] use Q-
learning together with a challenge function to build intelligent agents
that automatically control the game difficulty level. Q-learning pro-
duces a ranking on a set of actions available to the agent in any given
state. The ordinary Q-learning agent learns the value function by it-
eratively collecting the information about the environment, and at
every step chooses the best possible action given the current value
function. In contrast to that, the agent designed by the authors at ev-
ery step chooses the action depending on the current value function
and the manually created challenge function, which reports to the
agent whether its performance is better or worse than the opponent’s.
The output of the challenge function is used as an indicator of the per-
ceived difficulty: If the opponent is doing worse than the agent, the
game is too difficult, and vice versa. First, the available actions are
ordered with regard to their values: The maximum value signifies
the best action to take to win the game, the minimum one, the worst.
Next, if according to the challenge function, the game appears to be
too difficult (easy) for the opponent, the agent chooses the action that
is worse (better) than the one it made before. This approach was eval-
uated empirically in the context of a fighting game, Knock ’em, and
proved successful against the algorithmic agents developed by the au-
thors. Unfortunately, this approach faces all the problems associated
with reinforcement learning [44]: bad scaling to high-dimensional
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spaces, difficulties in dealing with continuous spaces, long learning
times, which means that it would require a substantial amount of
improvement to use it with games that people play.

Another example is described in the work of Hunicke and Chap-
man [41]. They look at the problem of dynamic difficulty adjustment
in computer games from the point of view of inventory theory. Games
are viewed as the flow of supply and demand in players’ inventories.
The game engine traces and evaluates the player’s performance and
attempts to adapt the game world in such way that the game keeps
being challenging for the player. The adaptation takes the form of
adjusting the characteristics of the player’s opponents, their numbers
and locations, etc. While this approach certainly has its place in solv-
ing the problem of developing games that adapt themselves to the
players, there exist games with rigid rules, where changing the game
world is not possible or where players do not possess inventories in
any sense.

A setting of interacting entities is considered in work of Herbrich
et al. [38]. In this case the difficulty adjustment happens through creat-
ing and matching teams of players in such a way that the skill ratings
of resulting teams are approximately the same. The authors propose
and evaluate a novel approach to estimate the skill ratings based on
the outcomes of multiple games. A possible application of this ap-
proach to “one player vs one (or more) in-game agents” would be to
have a set of in-game agents possessing different skill ratings. Then,
based on the estimated rating of the player, an appropriately skilled
agent can be chosen to create a “right” difficulty level. Still, to pro-
duce the estimation the player needs to play multiple games.

2.2.2 Implicit dynamic difficulty adjustment

Above we looked at the examples where researchers tackle an explicit
dynamic difficulty adjustment problem, i. e. creating a system of ob-
servations together with adjustments whose purpose is to keep the
game’s difficulty level matched to the player’s state. There is also a
separate area of research that deals with a more global problem of
creating an intelligent or an adaptive game AI, such that the games
employing it appear intelligent, flexible, and possessing human-like
characters. As a consequence of these qualities in such systems the au-
tomatic adjustment of the difficulty happens or should happen on the
fly and automagically. In the following we will look at the directions
that this research takes.

2.2.2.1 Adaptive game AI

So far we have made no assumption about the power or the intel-
ligence of the game engine. If we look at the games available today
though, programming a decent AI for quite a large fraction of them is
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a challenging task (real-time strategies come to mind first, but also tac-
tical games that would benefit from players’ opponents being smarter
and able to work cooperatively). Therefore, it does not make much
sense to talk about dynamic difficulty adjustment for these games
without considering the bigger question of developing a better or,
more specifically, intelligent, context-aware, and dynamic AI.

One example of such research can be found in work by Bakkes
et al. [4]. The authors apply case-based reasoning together with an
“adaptive mechanism” that is treated as a black box (as a possibility
reinforcement learning is mentioned): Games are represented as fea-
ture vectors (features being time stamps) and in any given game and
time the system looks for a most similar game from already recorded
and recovers the best strategy in this situation. The approach was
tested in a commercial real-time strategy (RTS) game. While the au-
thors do not focus on dynamic difficulty adjustment, they suggest
that it happens as a side-effect of on overall adaptive AI.

Another example of Adaptive AI is called Dynamic Scripting, in-
troduced by Spronck et al. [81, 82], Szita et al. [85], (as opposed to
the static scripting of game’s characters): The scripts are broken into
basic, elementary pieces and the AI learns to associate these proto-
scripts with in-game situations depending on the positive or negative
feedback. The feedback can be tailored to match the purpose of adap-
tation. If the learning is allowed to continue during the play as well,
the AI becomes adaptive, able to change depending on new circum-
stances, for example, the change in player’s skills. Thus, dynamic
difficulty adjustment happens as a natural consequence.

2.2.2.2 Opponent modelling

We have talked about Player Modelling for the purpose of creating
more truthful observations of players. There is also a different applica-
tion of it that could potentially lead to dynamic difficulty adjustment,
namely transferring human behaviour onto computer opponents. The
closest example of this is presented by Bauckhage et al. [5]. The au-
thors use a combination of machine learning methods to construct
opponents in a first person shooter game with the sole purpose of
producing behaviour that visually appears human-like. To evaluate
the performance they played short video clips of people and com-
puter opponents playing the game and asked the viewers their opin-
ion on whether the player was a human or a computer. The results are
very encouraging, the viewers misidentified the imitation opponents
as humans 69% of the time and correctly identified human players
also 69% of the time. It remains to be seen, though, how this can be
used in creating a dynamic difficulty adjustment system.

Ponsen et al. [67] pursue a related but not quite the same goal.
The purpose of opponent modelling in their case is to enhance the
strength of the opponent in a situation where the assumption of ra-
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tional play does not hold, i. e. the humans are incapable of playing
perfectly, and, therefore, it is worthwhile to explore other options
rather than the moves optimal under the rationality assumption.

Yannakakis and Hallam [100, 101] argue against an explicit diffi-
culty adjustment, rather they want to change the behaviour of oppo-
nents to optimize the game’s ‘interestingness’, where the challenge
is taken into account as part of the ‘interestingness’ (the second one
being the ‘curiosity’, which they define as the unpredictability of op-
ponents). It is indeed rather curious how neatly the opponents’ be-
haviour can be split in this particular case into challenge (speed) and
curiosity (variance). To create a model, first, the data from the played
games was collected together with the players own evaluations of
what was more fun. Then, a neural network was trained (evolved)
[63] with this data to produce a mapping: game and player features
→ ‘fun’. Using the resulting model, the authors designed an adap-
tive mechanism and tested it in games with children. The first results
demonstrate that the participants tend to rate the adaptive version of
the game as more fun than the static one.

The following example of opponent modelling goes even further
away from dynamic difficulty adjustment. Kang and Tan [45] attempt
to create an adaptive agent with the purpose of giving players per-
sonalized recommendations and advices. They use a combination
of reinforcement learning and neural networks to create and train
player models. Unfortunately, the authors evaluate their agents on
hand-crafted simulation of players. While it follows from the empir-
ical results that having an adaptive agent is better than a static one
in terms of correct recommendations, it is also obvious that the pro-
posed approach is too slow to deal with actual humans. Even though
eventually the agent reaches the accuracy of 70− 80%, which means
that three out of four recommendations are approved (‘liked’) by the
player, it takes more than a hundred interactions with a player to
reach the accuracy of 50%.

2.2.2.3 Procedural content generation

An orthogonal idea to Opponent Modelling, i. e. creating adaptive
opponents, is to create an adaptive game world. For example, if we
consider a racing game, a suitable adaptation mechanism could be
creating racing tracks on demand, such that they fit the player’s style
and skill. That is what Togelius et al. [90] describe. Their approach
could be summarized as follows:

1. Build a set of player models;

2. extract an appropriate set of parameters from them (in this case,
the fitness values of the racing tracks, i. e. how much a track fits
a player model);



2.3 conclusion 23

3. generate (in this case, evolve) the game world/levels/maps (in
this case, racing tracks) tailored to a particular model (set of
parameters).

The problem is, everything is a problem here. Building player mod-
els: difficult. Choosing parameters: unclear. Constructing levels to fit
to parameters: arcane knowledge. Nevertheless, the potential for (im-
plicit) dynamic difficulty adjustment is there, even though the authors
never mention it.

On a more general level, there is a question whether it is possible
to automatically create a game itself for a particular player. Halim
and Baig [33] attempt to answer this question by generating the game
world or ‘rules’ that adapt to a player. Unfortunately, what the au-
thors call ‘rules’ is rather like choosing a point in a predefined param-
eter space. All games generated that way are essentially one game,
which is underlined by the fact that they use a single agent controller
based on human-defined rules to play and evaluate all generated
games. It makes one wonder: If a set of rules defined once and for
all is sufficient to play all games, do they really provide different lev-
els of entertainment? On the other hand, it could be a valid approach
for finding the optimal or close to the optimal set of parameter val-
ues. That still leaves the question open: How does that game adapt
to a particular player? The authors do not answer this question, but
one can imagine combining the search (‘generation’) procedure with
player modelling.

Which is what’s happening in the work of Shaker et al. [78]: First
the authors create player models using neural networks with measur-
able features (observables in our previous terminology) and control-
lable parameters of the world (adjustables) as the input. The player
models predict the levels of fun, challenge, and frustration. Then they
are used together with an exhaustive search of controllable parame-
ters’ space to generate a next level that is supposedly adapted to the
current player. Unfortunately, the experiments were conducted on a
small scale, which prevents one from making a definite conclusion.

Since this particular line of research is only vaguely related to the
topic of this work, we refer a curious reader to other sources about
various approaches to generating games’ levels, such as a survey on
procedural content generation by Hendrikx et al. [37], as well as
newer work by Liapis et al. [51], Cardamone et al. [8], Shaker et al.
[79]. For work related to generating games’ rules see the results pub-
lished by Hom and Marks [39], Browne [7], Togelius and Schmidhu-
ber [89], Font et al. [23].

2.3 conclusion

We have attempted to review the different approaches to dynamic
difficulty adjustment existing at the moment: heuristics, explicit, and
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implicit methods. From the limited amount and the breadth of pre-
sented approaches it is apparent that this area of research is not yet
mapped very well. A learning problem involving humans, their per-
ceptions and reactions, is inherently a difficult one, since humans are
difficult to formalise. In our work presented in the following chap-
ters we try to move away from heuristics or specialized approaches
and in the end we arrive to a universal dynamic difficulty adjustment
mechanism.



3
A D A P T I V E R A N K E R

3.1 introduction

The problem of a dynamic difficulty adjustment can be viewed in
the context of an interaction between a player and one or more in-
game entities, e. g. computer opponents in a real-time strategy, bots
in a first-person shooter, non-player characters in a role-playing game.
We will call a specific in-game entity involved in this interaction the
agent. It is natural to assume that at any given time the agent has a
set of actions (strategies) available to it. The question of how to adjust
the game difficulty automatically can be formulated as what action
(strategy) should the agent choose as next.

Consider the situation where player’s and agent’s goals are mutu-
ally exclusive, i. e. when one of them ‘wins’, the other one ‘loses’. This
is often the case in two-player board games, e. g. in tic-tac-toe, connect
four, or backgammon, but also in “real” computer games such as
real-time strategies. Assuming that the game contains states labelled
‘winning’ and ‘losing’, in any given game state actions leading to ‘win-
ning’ states are better than the ones leading to ‘losing’ states. In other
words there is a naturally occurring ranking on the available actions.
Knowing the ranking, the agent can evaluate the performance of the
player by looking at the rank of actions performed by the player and
choose its own actions accordingly. This principle allows us to create
an online adaptive agent, Adaptive Ranker (Algorithm 1).

Under the assumption that the player wants to win the game, the
ranking of {action, state} pairs should reflect the quality of an action
with regard to its relation to the winning and losing states. In an
extreme case an action that allows the player to win immediately is
the best one and should have the highest rank, while an action that
forces the player to lose is the worst one and, correspondingly, should
have the lowest rank. For all the actions whose influence cannot be
seen immediately, there should be a way to look ahead, to be able to
determine their future consequences.

One particular way to enable the looking ahead is to represent a
game with a tree. A game tree is a directed tree, where game states
are represented by vertices and actions are represented by edges that
lead from a vertex to its children. The complete game tree is the game
tree starting at the initial state and containing all possible legal states.
A game representation by a tree in this way is also called an extensive
form of a game. Note that with a complete game tree one can find an
optimal sequence of moves for both players that will guarantee either

25
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Algorithm 1 Adaptive Ranker

Require: a ranking function for a set of {action, game state} pairs
repeat

Wait for the player to finish her turn.
Retrieve a set of {action, state} pairs, where actions are the actions
that were available to the player on the previous turn, and states
are the states that these actions would have led to.
Retrieve action a performed by the player on the previous turn
that led to the current state s
Retrieve the rank of {a, s} using given ranking function.
Retrieve a set of {action, state} pairs available to self on the cur-
rent turn.
Return the action of an {action, state} pair with the same rank as
{a, s}.

until the game is over.

a win for one of them or a tie. This is called solving a game. For formal
definitions as well as a discussion of various aspects of game trees we
refer the reader to a book by Fudenberg and Tirole [26].

The leaves of the complete game tree provide the genuine informa-
tion about which actions (or rather action sequences) lead to which
outcomes, allowing to evaluate them correspondingly. Starting from
these values and traversing the tree upwards, one can assign labels
to every node in a game tree. Starting with the leaves, we attach a
label +1 to the agent’s winning states, 0 to the draws, and −1 to the
losing ones. Note that in the parent state of any leaf the choice for
either the player, or the agent is clear: The former would choose an
action leading to the −1-state, while the latter the one leading to the
+1-state. Therefore, depending on whose turn it is in the leaf’s par-
ent, we can assign it the appropriate label. Applying the same logic,
the labels can be propagated upwards in the tree all the way to the
root, marking the quality of all the states and of the actions leading
to them. See Figure 3 for an example.

Due to the complexity of most of the games that people play, the
corresponding game trees are so large that the traversal of paths in
them would take an unreasonably long time. Consider, for example,
checkers: Solving this game took several years as reported in a book
by J. Schaeffer [73]. The other problem with using a game tree to eval-
uate game states is presented by games with imperfect information,
such as Poker.

In such situations one could use various machine learning tech-
niques to learn an evaluation function for a given game or forego
the evaluation scores completely and directly learn the ranking on
state-action pairs or possibly state-action pair sequences (taking into
account the history).
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Figure 3: A fictional complete game tree with propagated labels. The square
nodes represent leaves. The red arrows indicate how the labels are
propagated upwards depending on who chooses the next action.
Note, the agent is maximizing the value of the next state, while the
player is minimizing it.

As a proof of concept in this chapter we present Adaptive Ranker

implementations for two board games, connect four (Section 3.2) and
checkers (Section 3.3). Since our work does not include research ques-
tions connected to dealing with large game trees or learning evalu-
ation functions and rankings, we limit ourselves to using the depth
search restricted MiniMax algorithm (described below) with manu-
ally designed evaluation functions. To evaluate the resulting agent we
design a test environment consisting of two parts. The first part con-
tains computer opponents with distinct skill levels. The second part
provides an environment where human players can play against the
developed agents.

3.2 connect four

Connect four is a game for two players. Each player has 21 identi-
cal stones. We assume that one set of stones is white and the other
is black. The game is played on a rectangular board consisting of 7
vertical columns of 6 squares each. If a stone is “dropped” in one of
the columns, it will “fall down” to the lowest unoccupied square. No
stones can be dropped into columns that are already full. One move
consists of placing one stone in one of the columns.

The players make their moves in turn. The goal of the game for each
player is to get four of her own stones connected either vertically, or
horizontally, or diagonally. If all 42 stones are placed on the board and
no such group was created, the game is a draw. In the game displayed
in Figure 4a the player with the black stones has built a winning
horizontal group. Figure 4b displays a possible draw situation.

In this work we assume that the player with the white stones makes
the first move and in the following will be referred to as White. The
player with the black stones will be called Black.
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(a) Black wins: b2-e2.
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(b) After 42 moves no winning
group was created.

Figure 4: Possible endgame situations in connect four.

Before describing the adaptive agent for connect four in Section
3.2.3, we present in Section 3.2.1 a set of algorithms implemented to
play connect four with distinctly different skill levels and report on
how they were used to evaluate the skill levels of human players in
Section 3.2.2.

3.2.1 Testing ground

The purpose of the testing environment was to provide a set of algo-
rithms that play connect four with distinctly different skill levels, so
that (i) they can be used to evaluate the strength of human players,
and (ii) the adaptive agent can be tested against them to see how well
it can adapt. For this we have implemented four algorithms: Naive,
Simple, MiniMax, and Optimal. To establish their relative skill we
let them play against each other in several episodes, each episode
consisting of 1000 games, where for half of the games one of the al-
gorithms was playing the white side, and for the other half it was
playing the black side. From the resulting statistics, i. e. how many
times each algorithm has won, lost, or led the game to a draw, we
have established the following ranking:

1. Naive. The easiest algorithm to beat.

2. Simple. It almost always beats Naive.

3. MiniMax. The performance of this algorithm depends on its
limited search depth; its value was set in such way as to ensure
that

• MiniMax reliably beats Simple and Naive;

• MiniMax plays as good as possible while still requiring no
more than a few seconds for each move.

4. Optimal. The optimal algorithm always wins when playing
White.
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Table 1: Players’ payoffs in connect four.

Outcome of a strategy

White wins Black wins Draw

Payoff for
White +1 −1 0

Black −1 +1 0

In the following we describe all four of the non-adaptive computer
opponents used in the testing ground and the results of their playing
against each other.

Optimal

In 1988 Victor Allis designed the optimal algorithm based on nine
strategic rules that describe local situations on the board and proved
that White always wins if it plays according to his algorithm [2].
An implementation of the optimal algorithm developed by Giuliano
Bertoletti was used in our environment. The engine is written in C
and was modified slightly to allow the interaction with the other al-
gorithms in the testing ground.

MiniMax

In terms of game theory a game consists of a set of players, a set of
moves (or strategies) available to these players and a specification of
players’ payoffs for every combination of strategies [26]. For connect
four the set of players consists of Black and White and the set of
strategies is a set of all sequences of legal moves.

With payoffs defined in Table 1 connect four turns into a two-
players zero-sum game: The total sum of gains and losses of both
players is zero for any game ending. Two-players zero-sum games
are solvable by applying the MiniMax algorithm [70].

Recall that a complete game tree allows to solve the game by travers-
ing it from the leaves up to the root and assigning the appropriate
labels to the nodes (Figure 3). In the practical implementations of
MiniMax it is usually only a subtree that gets investigated. It is built
from the complete game tree by considering a subtree whose root is
the node representing the current board situation, and following it
downwards for a fixed amount of levels. In this case the tree does not
contain the full information any more. While genuine leaves of the
original game tree still possess their exact evaluation scores, the leaves
of the subtree that result from cutting off the original tree should be
evaluated using an evaluation function.
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Figure 5: Black has to refute two White threats, one on b1 and one on f1, in
one turn, which is not possible.

To construct it, we consider two features of a game state, open lines
and forks. Both represent an advantage for their owner, since both can
be turned into a win, given an opportunity.

More specifically, four squares on the board forming a straight line
either vertically, or horizontally, or diagonally such that three or less
of them are taken by one player, and none by the other, are called
an open line. A former open line of the player is called broken if the
opponent placed a stone in it effectively discarding this threat.

A fork is a connected group of squares of size four or five lying on
a straight line, such that (i) both squares on the ends of the group are
empty, and (ii) all the squares apart from the ones on the ends are
taken by one player. A White fork built with three stones on Figure 5

presents immediate loss situation for Black, since it cannot be refuted.
In general, an opponent’s fork built with two stones should be refuted
as soon as possible to prevent it from becoming a 3-fork. On the other
hand building of player’s own forks should be preferred, since they
offer great advantage.

Given a state, the evaluation function calculates the weighted sum
of player’s forks, her open lines, and opponent’s forks and broken
lines. The resulting number is the evaluation score of the state.

The function operates with three weights: wf, wpl, wol. Assuming
fp(v) and lp(v) are the numbers of player’s forks and open lines in
state v, lo(v) and fo(v) are the numbers of her opponent’s broken
lines and forks in state v, the evaluation score is

eval(v) = wpl · lp(v) +wf · fp(v) +wol · lo(v) −wf · fo(v)

The larger the value of eval(v), the better the state v is from the heuris-
tic’s point of the view. The values for the weights wf, wpl, and wol
were chosen empirically and set to 5, 5, and 1 respectively [57].

When using a subtree MiniMax cannot be sure any more that it
finds the optimal path through the tree, because it replaces the exact
information contained in the genuine leaves with heuristic values. We
will call the height of the subtree that MiniMax traverses search depth.
Increasing the search depth improves the performance of MiniMax
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Algorithm 2 MiniMax

Require: game tree node v, depth d, maximizing mx ∈ {true, false},
evaluation function for a game tree node eval()
if d = 0 or v is a leaf then

Return eval(v)
end if
if mx is true then

for each child c of v do
sc = MiniMax(c,d− 1, false)

end for
Return maximum of sc over all children of v

else
for each child c of v do
sc = MiniMax(c,d− 1, true)

end for
Return minimum of sc over all children of v

end if

at the cost of time needed to evaluate the game tree. The choice of the
particular search depth represents a trade-off between how well we
want MiniMax to play and the time spent on calculating one move.
While playing versus humans, this time should not exceed a few sec-
onds. The search depth restricted variant of MiniMax is presented in
Algorithm 2.

To improve the performance of MiniMax the amount of nodes
visited for a given search depth can be reduced using Alpha-Beta
pruning [70]. Alpha-Beta terminates an evaluation of the move when
at least one possibility has been found that proves this move to be
worse than the current optimum value. The efficiency of Alpha-Beta
depends on the order in which the nodes are evaluated. It has been
shown that in optimal conditions, when the first child considered for
a given node is enough to prune the others, Alpha-Beta doubles the
effective search depth of MiniMax algorithm [70] (see Figure 6). Ran-
domizing the order in which moves are evaluated results in the aver-
age total number of traversed nodes being of the order of O(b3d/4),
where b is the average branching factor, d is the search depth [48].

Already for search depth 11 on the equipment and the implemen-
tation used, the time that it takes for MiniMax to make a move can
reach up to 4-5minutes. Therefore, we decided to set the search depth
of MiniMax to 10. At this value MiniMax takes up to several seconds
to make a move, which is still tolerable for games played against hu-
man players.
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Figure 6: An example of Alpha-Beta pruning. On a level marked max (min)
the maximum (the minimum) of the children’s values is assigned
to the parent. After node b is assigned 10 and node d is assigned
5, the subtree starting from node e does not need to be evaluated
any more: c = min{d, e} 6 5 < 10 6 max{b, c}, and is, therefore,
irrelevant for evaluating node a.

Simple and Naive

The adaptive agent should be able to adapt even to the players of
a very low skill level. Therefore, we needed an algorithm that per-
formed badly without making deliberately bad moves. The stronger
of two weakest algorithms, Simple, is MiniMax with the search depth
set to 1. While quite weak, it still possesses some amount of intelli-
gence due to the evaluation function. Naive, on the other hand, dis-
cerns only winning and losing moves.

A move is called winning, if it creates for the player a group of
four stones connected either vertically, or horizontally, or diagonally.
A move is called preventive, if it would be a winning move for the
opponent.

Naive tests the given board for the presence of the winning and
preventive moves. Naive chooses the next move from available ones
with the following priorities:

1. Choose uniformly at random one of the winning moves, if there
is at least one.

2. Else, choose uniformly at random one of the preventive moves,
if there is at least one. (Note that if there is more than one such
move, Naive will lose the game regardless of which move it
makes.)

3. Else, choose uniformly at random one of the moves that do not
make Naive to lose immediately, if there is at least one.

4. Else, choose uniformly at random one of the available moves.
(Note that all of these moves are losing ones.)
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Figure 7: The relative strength ratio of the non-adaptive computer oppo-
nents in the testing ground when playing against each other.

Results

To evaluate the performance of the computer opponents, we intro-
duce a metric called relative strength ratio. Let i and j be two oppo-
nents, who have played ni,j games against each other, wini,j is the
amount of games i has won, drawsi,j is the amount of draws. Then
the relative strength ratio ri,j is defined as follows:

ri,j =
wini,j + drawsi,j/2

ni,j
. (1)

Note that ri,j ∈ [0, 1] with ri,j = 0.5 meaning that the opponents are
of equal strength.

The results of all non-adaptive computer opponents playing against
each other are presented in Figure 7. From the values of the relative
strength ratio we see that they indeed possess distinctly different skill
levels, with Optimal being the strongest, and Naive the weakest of
the four.

3.2.2 Human testing ground

(Un)fortunately humans are very good at learning and exploiting the
determinism and flaws of computer algorithms. Because of that it was
especially interesting to see how the developed adaptive algorithm
will score against human players. For that purpose a testing environ-
ment was developed to let people play against any of the algorithms
used for the testing ground described in Section 3.2.1 as well as the
adaptive algorithm described in Section 3.2.3. During the period of
three weeks 52 participants played 1347 games.

The algorithms from the testing ground were used to try and deter-
mine the skill levels of human participants. Even though each player
was asked to play at least 10 games against one of the non-adaptive
algorithms and 10 games against the adaptive algorithm, practically
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no one held to this suggestion. Instead, most of the players played no
more than 4 or 5 games versus each of non-adaptive agents and on
average 14-15 games against the adaptive one.

The fact that most of the participants played against more than
two non-adaptive algorithms allowed us to attempt to determine the
skill level of each player. Let us denote with t1, t2, t3, t4 the total
amount of games played by a specific player p against Naive, Simple,
MiniMax, and Optimal respectively, with pl1, pl2, pl3 the percent-
age of games won by the same player p against Naive, Simple, and
MiniMax respectively, and with pl4 the percentage of games drawn
against Optimal. It is natural to assume that players winning against
stronger opponents are themselves stronger than players winning
against weaker opponents. Therefore, in calculating the skill level of
a player we weigh the values pl1, pl2, pl3, pl4 with weights that re-
flect the skill level of the respective algorithm. To take into account
the fact that most of the players didn’t play against all of the algo-
rithms presented on the playground, we sum the statistics only over
the algorithms that a particular player played against. Based on these
considerations we estimate player’s p skill level as follows:

s(p) =

∑
i:ti 6=0wipli∑
i:ti 6=0wi

, (2)

where w1 = 1, w2 = 2, w3 = 3, and w4 = 4 are the weights as-
signed to Naive, Simple, MiniMax, and Optimal respectively. The
weights were set in an ad hoc way, to represent the relative skill of
the algorithms.

The results of the experiments are presented in the form of plots
of skill level versus percentage of games won (or, in case of Optimal,
drawn) in Figure 8. The correlation coefficient values confirm that
there exists some dependency between the chosen skill level function
(Equation 2) and the amount of games players win against every non-
adaptive algorithm. From this data we conclude that s(p) bears some
resemblance with the actual skill level of player p.

The data obtained from the games played by humans versus the
adaptive agent is described in Section 3.2.4.

3.2.3 AdaptiveMiniMax

The basic idea behind the proposed adaptive agent is that, given a
way to rank the player’s and the agent’s actions, throughout the game
the agent should choose actions that have the same rank as the ones
chosen by the player in the previous turns. In the implementation
of the adaptive ranking agent for connect four, we use the MiniMax

algorithm to establish the ranking and call our adaptive agent Adap-
tiveMiniMax.
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(a) Humans vs Naive. The correlation coefficient = 0.54.
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(b) Humans vs Simple. The correlation coefficient = 0.41.
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(c) Humans vs MiniMax. The correlation coefficient = 0.32.
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(d) Humans vs Optimal. The correlation coefficient = 0.39.

Figure 8: The plots of human players’ winning rates (Y) against their skill
levels (X) in the games versus the non-adaptive algorithms pre-
sented in the playground.
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Recall that, given a complete game tree, MiniMax assigns the fol-
lowing evaluations to all the vertices in the tree: +1 to the winning
states (and, correspondingly, to the moves that lead to them), −1 to
the losing ones, and 0 to the ones resulting in a draw. For the purpose
of ranking the moves, this gradation is not detailed enough. Consider
the situation, where the agent has three available moves (m1,m2,m3)
with evaluation scores being (0,−1,−1). That would result in move
m1 having the rank of 1, while moves m2 and m3 will get a rank
drawn uniformly at random without replacement from {2, 3}.

While both moves are losing ones, their quality could differ. Imag-
ine that m2 forces MiniMax to lose in one turn, but m3 results in the
game going on for 20 turns more. The first option corresponds to a
much weaker opponent. Also, assuming the player does not follow an
optimal strategy, m3 allows for other options to be discovered further
into the game, possibly even changing its outcome.

To achieve a more detailed ranking we modified the evaluation
procedure of the game tree leaves in such way that it also reflects the
length of the path leading from the root of the tree to the leaf. To
implement this idea we replaced +1 and −1 with sufficiently large
numbers +L and −L. Sufficiently large in this context means that the
numbers should allow the modification of the winning/losing scores
without losing their signature properties: They should be easily dis-
tinguishable from scores returned by a heuristic evaluation function
applied to the pruned leaves of the MiniMax subtree. Positive num-
bers should indicate the winning path of MAX player, while negative
numbers should indicate the winning path of MIN player. To include
the information about the length of the winning (or losing) path on
every tree level along the winning path of MAX player, 1 was sub-
tracted from the previous score. Similarly, 1 was added to the previ-
ous score on every level along the losing path of MAX player. Hence,
the move with the evaluation score of L− 5 means that there exists
a winning path for MAX player starting from this move and it is six
moves long, while the move with the evaluation score of L− 1 means
that MAX player can win in two moves if she chooses this one.

We refined the gradation of available moves further using the heuris-
tic evaluation function of MiniMax (Section 3.2.1) for the pruned
leaves of the MiniMax’s subtree. Taking into account that the cho-
sen heuristic provides the scores in the range [−20, 20] and that the
maximum height of connect four game tree is 42, L was set to 100.
This choice satisfies the properties mentioned earlier: Even the mod-
ified winning and losing scores cannot overlap with the range of the
scores provided by the heuristic. These scores allow us to impose a
ranking on a set of available moves in every game state. As men-
tioned above, for the moves with the same evaluation scores the cor-
responding ranking scores are drawn uniformly at random without
replacement from the respective range.
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Figure 9: The mean and the standard deviation of the percentage of games
won by AdaptiveMiniMax against all the non-adaptive algo-
rithms in the testing ground (drawn in the case of Optimal). The
statistics are calculated over 10 episodes of 1000 games each.

Before evaluating the available moves and making a decision, Adap-
tiveMiniMax evaluates the moves that were available to its opponent
and calculates a ranking score for each. To decide which move to take,
AdaptiveMiniMax calculates the average ranking score of the move
made by the opponent: r = Σti=1r(mi)/t, where t is the amount of
moves made by the opponent so far, and mi is the move made by
the opponent at turn i. After evaluating and ranking its own avail-
able moves AdaptiveMiniMax chooses not the optimal move, but
the one with the ranking score closest to the average ranking score of
the opponent, r.

3.2.4 Experimental results

Recall that Naive, Simple, MiniMax, and Optimal algorithms have
distinctly different skill levels when playing connect four. In Figure 9

we show the performance of AdaptiveMiniMax versus all of them.
Against an opponent of a weaker or an equal skill, AdaptiveMi-
niMax adapts well, winning approximately half of the games. The
data collected from the games of AdaptiveMiniMax versus Optimal

clearly shows the agent’s disadvantage. Since it is built on top of Min-
iMax, it can play only as good as MiniMax itself. Therefore, it cannot
adapt to any opponent that is stronger than MiniMax.

One of the results of the experiments with human players is that
clearly participants preferred to play against an adaptive opponent.
When they chose one of the others they usually found very fast (in
less than 5 games on average) how relatively easy or difficult this
specific opponent was to beat and we can say “got bored” with it and
moved onto another one. Whereas against an adaptive opponent they
spent much more time (on average 14− 15 games). We can speculate
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Figure 10: Players’ skill levels (X) against their winning rate (Y) versus Adap-
tiveMiniMax. The correlation coefficient = 0.04

that it was influenced by the fact that this opponent is adaptive and at
least to some extent is playing at the same level as the human players.

The plot of players skill levels (Eq. 2) against their winning rates
in the games with AdaptiveMiniMax is presented on Figure 10 (cf.
Figure 8). We can see that independently of the players’ skill levels
all the plotted points lie in a region between 50% and 80%. It is also
interesting to note that the weakest and the strongest players have
approximately the same winning rate, 70%. Furthermore, the corre-
lation coefficient of 0.04 tells us that there is no substantial correlation
between the players’ skill levels calculated according to Equation (2)
and their winning rate against AdaptiveMiniMax. We conclude that
in the experiments with human players AdaptiveMiniMax shows
good adaptive qualities.

Comparing Figures 8c and 10 we see that even though AdaptiveM-
iniMax is built on top of MiniMax algorithm and supposedly it can
play only as strong as MiniMax, players who displayed perfect per-
formance when playing against MiniMax, could not repeat their suc-
cess when playing against AdaptiveMiniMax. In fact, AdaptiveMi-
niMax’s evaluations are different from MiniMax’s ones, because they
include information about the length of the strategies into resulting
moves’ scores. It is possible that as the result AdaptiveMiniMax can
play stronger than MiniMax. Another possible reason for the differ-
ent experimental data is the fact that all the players played very few
games against MiniMax (no more than six, and the strongest players
no more than four). If they played more games, the results could have
been different.

We conclude that, at least for connect four, the principle of adaptive
ranking together with the hand-made evaluation function results in
the agent that successfully adapts both to computer opponents and
to human players of various skill levels. In the next section we will
see that for another well known board game this is not the case.
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3.3 checkers

Checkers or English Draughts is a well known board game, in terms
of popularity among human players as well as in terms of academic
research. It is played by two players on a fixed size chequerboard (8x8

for the English Draughts variant) using two sets

Figure 11: Starting position in
checkers.

of pieces, dark and light (Figure 11).
Players make their moves in turns
by moving one of their pieces in a
prescribed way: The pieces can ei-
ther move to a free adjacent diago-
nal square, or jump diagonally over
an opponent’s piece, if the square to
land on is unoccupied. For a com-
prehensive description of the game
we refer the reader to the corre-
sponding Wikipedia article1.

From a computer science point of
view the game has been studied for
almost 60 years. The research has
been mostly focused on creating strong computer opponents. This
direction has been exhausted as checkers were solved by Schaeffer et
al. [74]: Assuming perfect play from both sides the game always ends
in a draw.

Just as for connect four, we provide the adaptive ranking agent
with computer opponents of various skill levels, which we describe
in Section 3.3.1. Compared to connect four, checkers is more complex
in various ways, in particular, it has a higher average branching factor,
which makes comparing the moves’ rankings more complex as well.
We talk about the differences in Section 3.3.2, then in Section 3.3.3 we
suggest several variants of the AdaptiveMiniMax algorithm tailored
to address the problems coming from the higher average branching
factor. In the same section we present the experimental results.

3.3.1 Computer opponents

Jonathan Schaeffer and his colleagues created an optimal checkers
algorithm, Chinook [73]. In contrast to the optimal algorithm for con-
nect four that exploits the structural properties of the game, Chinook
includes among other things an algorithm to perform the deep search
of the game tree and a linear hand crafted evaluation function that
considers several features of the game board. The endgame database
of Chinook is publicly available, but since AdaptiveRanker requires
ranking of all available moves, rather than simply the optimal one,
we have decided not to use it.

1 http://en.wikipedia.org/wiki/Draughts

http://en.wikipedia.org/wiki/Draughts
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Figure 12: The relative strength ratio of the computer opponents with the
search depth ranging from 2 to 8, when playing against each
other.

Instead we have created a set of computer opponents based on the
open source checkers project called raven-checkers2 that uses Mini-
Max algorithm and Martin Fierz’s Simple checkers evaluation func-
tion3. To regulate the strength of the opponents we vary the search
depth of MiniMax from 2 to 8.

To illustrate the skill levels of computer opponents produced this
way, we show the plots of relative strength ratio (Eq. 1), where i and
j encode the search depths of the corresponding pair of opponents in
Figure 12.

3.3.2 Differences between checkers and connect four

Both checkers and connect four are zero-sum games, but checkers
have higher complexity than connect four: The average depth of a
game tree in checkers is 70 versus 36 in connect four. The branching
factor (the amount of available moves) varies from 1 to 17, the average
branching factor is 8 versus 4 in connect four. The estimate of the
game tree complexity, i. e. how many nodes the MiniMax algorithm
would need to traverse to evaluate the root, is 1031 [74] versus 1021

in connect four [2].
The difference most important for the adaptive ranking agent is the

large variance of the branching factor. If the opponent had a choice
of two moves, while the agent is faced with nine or ten or vice versa,
it is to be expected that their rankings are not directly comparable.

From the highly variable branching factor follows another differ-
ence, the sensitivity towards the quality of the move. The position in
the ranking does not represent the quality of the move in the context
of winning the game: The third best move for one of the players could

2 https://code.google.com/p/raven-checkers/

3 http://www.fierz.ch/engines.php

https://code.google.com/p/raven-checkers/
http://www.fierz.ch/engines.php
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be still a good move according to the evaluation function, while the
third best move for the other could force it to lose the game.

To address these difficulties we explore below different variants of
using the ranking on the moves to produce the next move for the
adaptive ranking agent.

3.3.3 AdaptiveMiniMax

The first AdaptiveMiniMax variant we have implemented uses the
basic idea of picking the move with the same rank as the one that
the opponent has made with the following modification: If the move
that AdaptiveMiniMax is supposed to take has a negative evalua-
tion score, AdaptiveMiniMax climbs up the ranking until it finds
the first move with a non-negative evaluation score and uses this one.
In the case there was no move with the given rank (which happens
when the opponent had more moves available than AdaptiveMini-
Max), AdaptiveMiniMax uses the lowest move in the ranking with
a non-negative evaluation score. In this way we ensure that no obvi-
ously bad moves are made by AdaptiveMiniMax regardless of the
opponent’s choices.

The second AdaptiveMiniMax variant deals with the problem of
the varying branching factor by mapping the absolute ranking of op-
ponent’s moves and of its own moves to the [0, 1] interval and picking
a move that has the new relative rank on [0, 1] closest to that of the
opponent’s move. It also applies the same correction for negative eval-
uation scores as above.

The third AdaptiveMiniMax variant ignores the ranking altogether
and instead chooses a move that has the evaluation score closest to
that of the opponent’s move in terms of Euclidean distance. In this
variant AMM does not eliminate moves with the negative evaluation
scores.

All three variants take the history into account by using the de-
cayed average of the rank (resp. the evaluation score) instead of their
current values. Let vi be the rank or the evaluation score of the oppo-
nent’s move at turn i, t+ 1 a total amount of opponent’s moves so far,
δ ∈ [0, 1] the decay factor. The decayed average rank (resp. evaluation
score) v at turn t+ 1 is v = Σti=0δ

t−ivi/(t+ 1).
As was the case with connect four, all three variants of AdaptiveMi-

niMax are built on top of the MiniMax algorithm. Their search depth
was set to 7, while their opponents were instances of MiniMax with
the search depth running from 2 to 8. The results of these games are
presented in Figure 13.

The first thing to note is that as the opponent’s search depth be-
comes larger than 7, the performance of all three variants start to
deteriorate. Furthermore, as expected, due to the varying branching
factor and the sensitivity of the game’s outcome to the quality of
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Figure 13: The relative strength ratio of the AdaptiveMiniMax variants
when playing checkers against MiniMax with the search depth
ranging from 2 to 8.

moves, the AdaptiveMiniMax variant using the absolute rank per-
forms the worst both in terms of adapting to its opponents and in
terms of its own performance. Using the relative rank appears to im-
prove the adaptive qualities of AdaptiveMiniMax somewhat, but the
real winner in this setting is the variant choosing the moves that have
their evaluation score closest to that of the opponent’s moves.

3.4 conclusion

In this chapter we described an approach to develop an online adap-
tive agent for games where: (i) the players’ goals are mutually ex-
clusive, and (ii) there is a ranking on players’ moves available that
represents their respective merit with regard to achieving one’s goals.

By “adaptive” we mean that the agent is able to modify its play-
ing strategy depending on the abilities of its opponent, and “online”
means that the agent’s reasoning is based on the events happening in
the current game only.

The main idea behind the adaptive ranking agent was to establish
a ranking on the moves available to the agent and to its opponent and
choose the moves with the ranking scores ‘close’ to the ranking scores
of the opponent’s moves (see Algorithm 1). The way the ranking is
constructed and how the ‘closeness’ of ranking scores is defined has
to be decided based on the particular game’s properties. The quality
of the ranking bounds the quality of the agent: if it consistently mis-
places moves, the agent would lose its adaptive properties against the
opponents who are better at estimating the moves’ strength.

As a proof of concept we have implemented the adaptive ranking
agent based on MiniMax algorithm (AdaptiveMiniMax) for games
of connect four and checkers. In connect four AdaptiveMiniMax

showed good performance when playing against the computer op-
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ponents, adapting well to their respective skill levels, with exception
of Optimal, to which it was losing steadily. In the experiments with
the human players, data confirming the adaptive qualities of Adap-
tiveMiniMax was obtained. There is hardly any correlation between
the skill level of a specific player and the percent of games this player
won against AdaptiveMiniMax. From the same data it seems that for
the majority of players AdaptiveMiniMax choose a strategy that was
weaker than the corresponding player’s skill level, i. e. the percentage
of the games won by human players is mostly greater than 50%.

Checkers is an example of a board game where opponents’ situ-
ations on consecutive turns often are not similar. Thus, this game
illustrates the limitation of AdaptiveRanker: If the rankings are not
comparable, it does not adapt well. In this case we could still create an
adaptive agent by choosing moves with similar evaluation scores, but
the success of this approach also depends on certain similarity of op-
ponents’ situations. Hence, AdaptiveRanker does not fulfill the first
of our requirements for a dynamic difficulty adjustment algorithm,
universality. We move on to explore how supervised machine learn-
ing can be used to create a universally applicable dynamic difficulty
adjustment.





4
D I F F I C U LT Y M O D E L L I N G

4.1 introduction

The game development process usually includes multiple testing stages,
where a multitude of players is requested to play the game to provide
data and feedback. This data is analysed to tweak the game param-
eters in an attempt to provide a fair challenge for as many players
as possible. The question we investigate in this chapter is how a dy-
namic difficulty adjustment mechanism can be created using the data
from the alpha and beta testing together with supervised learning.

Our aim is to devise a difficulty adjustment algorithm that does not
bother the actual players. For that, we assume there is a phase of the
game development in which the game is played by testers and the
difficulty is manually adjusted to be just right by each tester individ-
ually. In the background the data that represents the game states and
players’ decisions is collected. From this data, we induce a difficulty
model and build it into the game. The players do not notice any of
this and are always challenged at the difficulty that is estimated to be
just right for them.

We present two different approaches to implement such a system:
static (Section 4.3) and dynamic (Section 4.6). The names reflect how
the prediction is made: The static algorithm predicts the difficulty
setting for a new player exactly once, while the dynamic algorithm
predicts the difficulty adjustment at every time step. Before going
into the details we also describe in Section 4.2 a simple game that
was used to simulate the data collection phase and to evaluate both
algorithms.

The static algorithm consists of two phases. First, it uses all the data
collected to build several difficulty models by clustering the recorded
game traces and averaging the supervision over each cluster. After
that it learns to predict the correct model from a short period of game-
play. In Section 4.4 we show how this algorithm performs using the
data collected from human players. We compare the resulting models
to less sophisticated, yet realistic, baselines. In particular, we look at
the performance of changing with time versus constant difficulty as
well as the performance of cluster prediction versus no-cluster. While
the results are encouraging (i. e. non-constant adjustment and clus-
ter prediction together outperform the alternatives significantly), it
is important to note that the success depends on several open ques-
tions (e. g. how does the performance depend on the prefix/suffix

45
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partition?) as well as the choice of values for several parameters (see
Section 4.5 for a discussion).

Seeing that a game trace is nothing else than a time sequence leads
us to the dynamic algorithm (Section 4.6). The question of how to
adjust the difficulty at the next time step turns into a time series
prediction problem. The algorithm learns to predict the next difficulty
value from a very short period of gameplay using the support vector
regression with a Gaussian kernel. We evaluate its performance using
the same setup as for the static algorithm and present the results in
Section 4.7.

4.2 experimental setup

To test both algorithms we implemented a simple game, Aliens, using
the Microsoft XNA framework1 and one of the tutorials from the XNA
Creators Club community, namely “Beginner’s Guide to 2D Games”2.
The player controls a cannon that can shoot cannonballs. The game-
play consists of shooting down the alien spaceships while they are
shooting at the cannon.

Figure 14: Screenshot of Aliens.

A total of five spaceships can
be simultaneously on the screen.
They appear on the right side of
the game screen and move on a
constant height from the right to
the left. The spaceships are gen-
erated so that they have a ran-
dom speed within a specific inter-
val from a given average speed.
Whenever one of the spaceships
is shot down or leaves the game
screen, a new one is generated. At the beginning of the game the
player’s cannon has a certain amount of hit points, which is reduced
by one every time the cannon is hit. At random time points a repair
kit appears on the top of the screen, floats down, and disappears
again after a few seconds. If the player manages to hit the repair kit,
the cannon’s hit points are increased by one. The game is over if the
hit points are reduced to zero or a given time limit of 100 seconds is
up.

Additionally to the controls that allow the player to rotate the can-
non and to shoot, there are also two buttons by pressing which the
player can increase or decrease the difficulty at any point in the game.
Behind the scenes the difficulty is controlled by the average speed
of the alien ships. For every destroyed spaceship the player receives
a certain amount of score points, which increases quadratically with

1 http://msdn.microsoft.com/en-us/xna/default.aspx

2 http://creators.xna.com/en-GB/

http://msdn.microsoft.com/en-us/xna/default.aspx
http://creators.xna.com/en-GB/
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Figure 15: Game traces from one player. Different colours represent different
game traces. A lot of the game traces end prematurely (i. e. the
health goes to zero and the game ends) and are filled up with
the last recorded feature values. Since the data is logged when at
least one of the feature values changes, every trace is a step-wise
constant function.

the difficulty level. During each game all the information concern-
ing the game state (e. g. the amount of hit points, the positions of
the aliens, the buttons pressed, etc.) is logged together with a times-
tamp. For the empirical evaluation we held one gaming session with
17 participants and collected the data on how the players behave in
the game with the total of 232 game traces.

Out of all logged features we restricted our attention to the three:
the difficulty level, the score, and the health, as they seem to repre-
sent the most important aspects of the player’s state. The game traces
of one randomly chosen player are shown in Figure 15. There are a
few things to note about them. First, we can see that one player ex-
hibits various behaviours, to the point that it is difficult to discern any
clear patterns. Second, out of all game traces of this player, only one
reaches the time limit of 100 seconds. (It is the cyan trace that has the
difficulty of approximately 3.5, the score slowly increasing to about
1100 points, and the health points staying close to 11.) Comparing
this trace with the others, we conclude that our player does not set-
tle for the difficulty that allows her to get through the game. Rather,
she actively engages in the process of tuning the difficulty to give her
the experience she wants. It is, in fact, the typical behaviour for our
participants.

4.3 static algorithm

Recall, that in this chapter we focus on the question of how a game
can adapt to a particular playing type given two sources of infor-
mation: the data collected from the alpha/beta-testing stages (offline
phase), as well as the data collected from the new player (online
phase). By playing type we mean a certain pattern in behaviour with
regard to challenges. To simplify the problem of difficulty adjustment
it is the common practice to discretise the space of all possible play-
ing types. The simplest such discretisation is into beginners, averagely
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skilled players, and experts (corresponding to easy, average, and hard
settings). In our experiments we do not predefine the types, rather, we
infer them by clustering the data collected in the offline phase. After
that, we learn a mapping from a set of game traces into the set of dif-
ficulty adjustments that correspond to the types. In the online phase,
given a new player, the game needs only to determine which type she
belongs to and then apply the learned model.

Let T be a set of collected game traces. The algorithm’s outline
consists of the following steps:

1. Cluster the set T .

2. For each cluster construct a difficulty adjustment model.

3. Given a new player, decide on which cluster she belongs to
and predict the difficulty adjustment using the corresponding
model.

Note that it is desirable to adapt to the new player as quickly as
possible. To this purpose we propose to split each game trace T into
two parts:

• a prefix, T pre, the relatively short beginning that is used for the
training of the predictor in the offline phase;

• a suffix, T post, the rest of the trace that is used for constructing
the difficulty adjustment model.

In our experiments we used the K-means algorithm [34] for the
clustering step and an SVM with a Gaussian kernel function [13] for
the prediction step of the algorithm outlined above. In the following
we describe the static algorithm in detail.

4.3.1 Preprocessing

As mentioned above, the game traces are split into two parts, T =

(T pre, T post), such that T pre contains the first 30 seconds of the trace T ,
and T post contains everything after the first 30 seconds from the trace
T . The pre parts of the traces are used for training the predictor. The
post parts of the traces are used for constructing difficulty models.

First thing to note about the collected data, is that even though the
game ends after the 100 seconds, a lot of the game traces are shorter
than that because the cannon’s hit points drop to zero. To equalize the
duration of all collected data, we fill up the traces that lasted less than
the predefined time with the last achieved features’ values, making
them all to last for 100 seconds.

Next thing to consider is that to reduce the computational load the
data is logged only when the game’s or the player’s state changes
(in the case of a simple game used in our experiments it may seem a
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trivial concern, but this is important to keep in mind for more com-
plex games). As a result for two different game traces their time lines
are different. One way to produce identical time lines for each game
trace is to sample at the regular intervals the piece-constant functions
that the collected data represent (see Figure 15). Note that in this
case every game trace becomes an instance in a (number of game
features)× (number of time steps)-dimensional space.

To reduce the dimensionality of the instance space, we construct a
set of polynomial fits for each game trace prefix and suffix, a polyno-
mial for each game feature, such that they minimize the root-mean-
square error (RMSE). In the following T refers to a single game prefix
or suffix, N = |T |. Let ui be the value of the feature u at time ti,
ui = u(ti). Let Pu be a polynomial of degree d, Pu(x) =

∑d
k=0 aukx

k.
We want to find au0 , . . . ,aud ∈ R such that the sum over i of the
squared differences between Pu(ti) and ui is minimal. Formally,

(au0 , . . . ,aud) = argmin
(a0,...,ad)∈Rd+1

1

2

N∑
i=1

(
d∑
k=0

akt
k
i − ui

)2
.

Hence, we can find au0 , . . . ,aud by solving a system of linear equa-
tions:

∂

∂auj

1

2

N∑
i=1

(
d∑
k=0

aukt
k
i − ui

)2
=

N∑
i=1

d∑
k=0

(
aukt

k
i − ui

)
t
j
i = 0,

where j = 0, . . . ,d.
To choose an appropriate polynomial degree, we have calculated

the average RMSE over the available data for degrees ranging from
1 up to 19. Note, we are constructing a descriptive as opposed to a
predictive model. Hence, we are not concerned about overfitting and
testing the predictive accuracy on the unseen data. Rather, we want to
minimize the RMSE on the data present. The resulting average values
of the error for every feature are shown on Figure 16. Note that the
difficulty level appears to be the most difficult to fit. Based on these
results we have decided in the following to use d = 7.

After constructing the fit, all game trace prefixes and suffixes are
replaced with their corresponding sets of the polynomials :

T̂ = {Pu,Pv, . . .} .

To de-clutter the notation in the following we write T instead of T̂
meaning the representation of game traces, as well as their prefixes
and suffixes, by the corresponding polynomials.

4.3.2 Clustering

The next step is based on the assumption that there is a finite, small
number of playing types. To discover them we cluster the game traces,
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Figure 16: RMSE of polynomial fits for different features. The error is dis-
played in percentages of the corresponding feature’s range.

specifically, the polynomials corresponding to the suffixes of the dif-
ficulty feature. For this purpose we use K-means clustering [34]. The
idea of the algorithm is to minimize the intra-cluster distances over
all clusters. To achieve that, the algorithm takes as a parameter the
amount of clusters and the initial choice of cluster centroids (in our
implementation they are drawn uniformly at random from Rd+1).
Then it iteratively (i) assigns data instances to the nearest centroid,
and (ii) recalculates the centroids. The algorithm stops when the clus-
ters don’t change any more.

We represent each playing type by the index of the cluster. The in-
dices will be used in the classification step to train the SVM. Further-
more, the instances belonging to each cluster will be used together to
produce various difficulty models and to evaluate the overall perfor-
mance of the static algorithm.

For illustrative purposes, in Figure 17 we show the result of cluster-
ing the game traces from Figure 15 using 3 clusters. (In this case, to
make the comparison with the original traces easier, the whole game
traces are clustered using their difficulty feature, not only their suf-
fixes.) We can see that what appeared chaotic in Figure 15, in fact,
demonstrates two clear patterns: one with the difficulty increasing
steeply right from the start and staying at the maximum (the top clus-
ter), and the other with the difficulty starting to increase somewhat
later during the game, not quite as steep as in the first cluster, and
also staying at the maximum once it reached it (the centre cluster).
The bottom cluster contains the traces that are sufficiently remote
from both of these patterns. This demonstrates that while a player
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Figure 17: Game traces from Figure 15 after the interpolation and clustering.
We can see two playing types: (i) in the top cluster increase the
difficulty as much as possible, reach moderate score values, and
die quickly; (ii) in the centre cluster wait somewhat before in-
creasing the difficulty, reach higher score values, increase health
points (and die not so quickly). The bottom cluster contains out-
liers.

can exhibit a seemingly indiscernible variety of behaviours, it is a rea-
sonable idea to cluster her game traces to find patterns, what we call
playing types. Note also, that even though we use only the difficulty
feature for clustering, the other two features follow the resulting clus-
ters. If that was not the case, we would advise using a combination
of features for clustering.

4.3.3 Classification

In the classification step we want to obtain a mapping that, given a
prefix of a game trace, returns the corresponding cluster index. Recall
that in a supervised learning problem there is a training set X ⊆ Xm,
a set of corresponding labels Y ⊆ Ym, and an unknown underlying
process mapping instances to labels, g : X → Y. The learner’s task is
to find a function f : X → Y that approximates g good enough, that is
that minimises some measure of error.

The measure of error usually employed is the empirical risk,

Remp[f] =
1

m

m∑
i=1

l (xi,yi, f(xi)) ,
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where m is the size of the training set, xi ∈ X, yi ∈ Y, l : X× Y× Y→
[0,∞) is a loss function, such that l(x,y,y) = 0 for all x ∈ X,y ∈ Y.
In the case when the class of possible solutions f is sufficiently lim-
ited we can hope to approximate the minimizer of the expected error
over all possible training patterns (the expected risk) by minimizing
the empirical risk [94, 95].

Our learner of choice is a support vector machine (SVM) [13]. To
solve a binary classification problem, that is Y = {±1}, it relies on two
ideas:

• It utilises the kernel trick [75], that is it uses a kernel function to
map the original instances to a high-dimensional feature space,
and finds a hyperplane that separates two classes.

• To achieve the higher stability against instance noise, it max-
imises the decision gap between the training instances belong-
ing to different classes.

For a detailed information on SVMs and their use for classification
problems, we refer the reader to an excellent book by Cristianini and
Shawe-Taylor [14].

Note that, since the cluster indices run from 1 to k, we have a multi-
class classification problem. We solve it by using one-versus-all strat-
egy [21]: We train k different SVMs such that the i-th SVM gets as an
input a set of prefixes with their labels set to 1 if their corresponding
suffixes belong to cluster i, otherwise their labels are set to −1. Let
m again be the size of the training set, and function ind () return a
cluster index for a given game trace prefix, ind (T

pre
j ) ∈ {1, . . . ,k},

Xi =
{
T

pre
j |j = 1, . . . ,m

}
,

Yi =
{
yij |j = 1, . . . ,m

}
,

yij =

 1, if ind
(
T

pre
j

)
= i

−1, otherwise.

Instead of a class label, each SVM outputs a real-valued confidence
value. Given a new prefix and k trained SVMs, the predicted cluster
index is the index of the SVM with the largest confidence value. Each
SVM uses a Gaussian kernel [76].

4.3.4 Difficulty models

After the preprocessing and the training, for each new prefix T pre the
classifier predicts i, the index of the cluster that the corresponding
suffix T post belongs to. Let cluster i contain traces T1, . . . , Tm. Let vj
be the feature corresponding to the difficulty adjustment in Tj, and
vjl = vj(tl). The next step in the algorithm is to use the information
stored in T1, . . . , Tm to predict the difficulty adjustment curve for the
trace T . To this purpose we consider the following approaches:
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1. The constant model. Given the cluster, this function averages
over all instances in the cluster and additionally over the time,
resulting in a constant difficulty adjustment.

yconst =
1

Nm

m∑
j=1

N∑
l=1

vjl .

2. The mean model. Given the cluster, this function for each time
point returns the average over all instances in the cluster.

ymean(t) =
1

m

m∑
j=1

vj(t) .

For the next model, given the cluster, we train the regularised least
squares regression (RLSR) [69] with the Gaussian kernel on its in-
stances. As the classification, the regression is also a supervised learn-
ing problem. In contrast with the classification problem, here Y ⊆ R.

RLSR minimizes the mean squared error between the given labels
and the predicted values, while controlling the complexity of the pre-
dictor by simultaneously minimizing its norm:

min
f

1

2

m∑
i=1

(f(xi) − yi)
2 +

λ

2
‖f2‖K ,

where xi ∈ X, yi ∈ Y, and λ is the regularization parameter. By apply-
ing the Representer Theorem [77] and properties of kernel functions
the minimizer of the problem above can be found as a solution of a
system of linear equations:

c = (K+ λI)−1y ,

f(x ′) =

m∑
i=1

cik(xi, x ′) ,

where c ∈ Rm, y = (y1, . . . ,ym)T , x ′ ∈ X, k : X×X → R is a kernel
function, K = (k(xi, xj))mi,j=1 is the kernel matrix calculated on the
training set. Hence, the third difficulty model that we consider is:

3. The regression model. It maps the prefixes of cluster i to the
suffixes of cluster i. Let cluster i contain game traces T1, . . . , Tm.
Recall that all game trace prefixes and suffixes are represented
by sets of polynomials of degree d, each polynomial, in turn,
by a vector of its coefficients. The training instances are the pre-
fixes of the game traces in cluster i, X = {T

pre
j |j = 1, . . . ,m}.

Their labels are the polynomials corresponding to the difficulty
adjustment feature in their suffixes, Y = {P

v
post
j

|j = 1, . . . ,m}.

Note, in contrast to the RSLR formulation above, each label
is not a scalar, but a vector, yj ∈ Rd+1. Hence, both y and c



54 difficulty modelling

are matrices with m rows and d + 1 columns. Taking into ac-
count that we have three game features, the regression predic-
tor f maps R3(d+1) to Rd+1. Given a new instance x ′ = T pre,
f(x ′) =

∑m
l=1 clk(T

pre
l , x ′) = (a0, . . . ,ad)T , and the model’s out-

put is

yregr(x
′, t) =

d∑
k=0

akt
k .

4.4 evaluation

To evaluate the performance of a predictor the standard approach is
to use cross-validation [17] in one of its forms. Cross-validation is a
technique to estimate the accuracy of a predictor on unseen data. The
general idea is to consider various splits of the training data into a
train and a test set, where the predictor is trained on the train set and
its predictive error is calculated on the test set. The error averaged
over all splits is an estimate of the predictive error on the unseen
data.

To evaluate the performance of the static algorithm we conduct a
cross-validation on the data that is similar to the standard “leave one
out” approach. For each player presented we construct a following
train/test split:

• training set consists of the game traces played by all players
except this one;

• test set consists of all the game traces played by this player.

Constructing the train and test sets in this way models a real-life
situation of adjusting the game to a previously unseen player.

As performance measures we use two metrics: the classification
accuracy, which is the percentage of correctly classified instances in
the test set, and the RMSE calculated on the exhibited behaviour in
the test instances and the behaviour prescribed by the models of the
predicted cluster.

To provide the baselines for the performance evaluation, we con-
struct for each test instance a sequence of “cheating” predictors: The
first (best) one chooses a cluster that delivers a minimum error; the
second best chooses the cluster with the minimum error among the
remaining clusters, and so on. We call these predictors “cheating” be-
cause they have access to the test instances’ data before they make the
prediction. For each “cheating” predictor the error is averaged over
all test instances and the error of the SVM predictor is compared to
these values. As the result we can see which place in the ranking of
the “cheating” predictors the SVM one takes.
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Figure 18: The accuracy of the SVM predictor for various values of the ker-
nel width and for various amounts of clusters. The grey horizon-
tal lines represent a baseline for each amount of clusters: A pre-
dictor that assigns each instance to one of the clusters uniformly
at random.

4.4.1 Learning parameters

The first part of the evaluation concerns the choice of two learning
parameters, the Gaussian kernel widths for the SVM predictor and
for the regression model.

Figure 18 illustrates how the accuracy of the SVM predictor de-
pends on the amount of clusters and the value of its kernel width.
For two clusters we see a clear winner, with the kernel width equal to
2.5 the accuracy is close to 70%. As the amount of clusters increases,
the winner becomes less clear-cut, but until we reach eleven clusters,
the value of 2.5 still appears to be a good choice. As we will see later,
we will restrict our evaluation to the amount of clusters ranging from
one to ten. Hence, in the following we set the SVM kernel width to
2.5

Next, we investigate the performance of the regression model for
different values of the kernel width, while varying the amount of
clusters (Figure 19). At the same time we look at the error values
of the other two models. As a result we arrive at two conclusions:
(i) the best error values of the regression model are achieved for the
kernel width equal to one; (ii) the errors of the constant and the mean
models are very close to each other. Hence, in the following we set
the regression kernel width to one, and consider only the regression
and the constant models.



56 difficulty modelling

10

20

30

40

50

60

70

80

90

100

0.001
0.01
0.1
1 10 100
0.001
0.01
0.1
1 10 100
0.001
0.01
0.1
1 10 100
0.001
0.01
0.1
1 10 100
0.001
0.01
0.1
1 10 100

R
M

S
E
 (

%
)

Kernel width

2 clusters 3 clusters 5 clusters 7 clusters 9 clusters

constant
regression

mean

Figure 19: The RMSE of all three models for various values of the kernel
width and for various amount of clusters. The regression model
performs best with the width set to one. The error values of the
other two models are very close to each other.

4.4.2 Regression versus constant model

We want to verify the hypothesis that a difficulty function that de-
pends not only on the cluster, but also on the prefix itself (e.g. the
regression model) is more appropriate than the one depending on
the cluster alone. To this aim we performed proper statistical tests
with the null hypothesis that the models perform equally well. As
suggested recently [16] we used the Wilcoxon signed ranks test.

The Wilcoxon signed ranks test is a non-parametric test to detect
shifts in populations given a number of paired samples. The under-
lying idea is that under the null hypothesis the distribution of differ-
ences between the two populations is symmetric about 0. It proceeds
as follows:

1. compute the differences between the pairs,

2. determine the ranking of the absolute differences, and

3. sum over all ranks with positive and negative difference to ob-
tain W+ and W−, respectively.

The null hypothesis can be rejected if W+ (or min(W+,W−), respec-
tively) is located in the tail of the null distribution which has suffi-
ciently small probability.

For settings with a reasonably large number of measurements, the
distribution of W+ and W− can be approximated sufficiently well by
a normal distribution. Unless stated otherwise, we consider the 5%
significance level (the corresponding critical value t0 is 1.78).

To eliminate all other influences, we considered first and foremost
only a single cluster. In this case, as expected, the adjustment pre-
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Table 2: t-values for comparison of the constant model versus the regression
model.

c best-const vs best-regr worst-const vs worst-regr

1 8.46 8.46

2 6.12 9.77

3 5.39 12.64

4 5.26 11.37

5 4.90 12.62

6 4.77 11.05

7 4.80 10.38

8 4.62 6.83

9 4.61 7.20

10 4.63 4.36

11 4.55 0.71

12 4.68 -0.77

13 4.60 -9.16

14 4.50 -5.54

15 4.57 -13.26

dicted by the regression model significantly outperforms the constant
setting (the corresponding t-value is 2.67).

We also wanted to compare the performance of regression and con-
stant models for larger numbers of clusters. To again eliminate all
other influences, we considered the best and the worst cluster for
either strategy. The t-values for these comparisons are displayed in
Table 2.

While varying the amount of clusters from one to fifteen we found
out that the regression model always significantly outperforms the
constant model when choosing the best cluster. The same effect we
can observe for the worst cluster, but only while the amount of clus-
ters used is less than eleven. For more clusters the constant model
starts to outperform the regression one, probably due to there being
an insufficient amount of instances in some clusters to train a good
regression model. Based on these results in the following we consider
only the regression model and vary the amount of clusters from one
to ten.

4.4.3 Right versus wrong choice of cluster

As a sanity check, we next compared the performance of the best
choice of a cluster versus the worst choice of a cluster. To this end we
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found—very much unsurprisingly—that for any non-trivial number
of clusters, the best always significantly outperforms the worst.

This means there is indeed room for a learning algorithm to fill.
The best we can hope for is that in some settings the performance of
the cluster predicted by SVM is close to, i. e., not significantly worse
than, the best predictor while always being much, i. e., significantly,
better than the worst predictor.

4.4.4 One versus many types of players

The last parameter that we need to check before coming to the main
part of the evaluation is the number of clusters. It can easily be under-
stood that the quality of the best model improves with the number of
clusters while the quality of the worst degrades even further. Indeed,
on our data, having more clusters was always significantly better than
having just a single cluster for the best predictor using the regression
model.

Under the assumption that we do not want to burden the players
with choosing their difficulty, this implies that we do need a clever
way to automatically choose the type of the player. Adjusting the
game just to a single type is not sufficient.

4.4.5 Quality of predicted clusters

We are now ready to consider the main evaluation of how well the
type of the player can be chosen automatically. As mentioned above
the best we can hope for is that in some settings the performance of
the predicted cluster is close to the best cluster while always being
much better than the worst cluster. Another outcome that could be
expected is that performance of the predicted cluster is far from that
of the best cluster as well as from the worst cluster.

To illustrate the quality of the SVM predictor we look at its place
in the ranking of the “cheating” predictors while varying the amount
of clusters. The results of the comparison of the predictors’ perfor-
mance for the regression model are shown in Table 3. Each line in
the table corresponds to the amount of clusters specified in the first
column. The following columns contain values ‘w’, ‘s’, and ‘b’, where
‘w’ means that the SVM predictor displayed the significantly worse
performance than the corresponding “cheating” predictor, ‘b’ for the
significantly better performance, and ‘s’ for the the cases where there
was no significant difference. The columns are ordered according to
the ranking of the “cheating” predictors, i. e. 1 stands for the best
possible predictor, 2 for the second best, and so on.

We can observe a steady trend in the SVM predictor’s performance:
Even though it is always (apart from the trivial case of one cluster)
significantly worse than that of the best possible predictor, it is also
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Table 3: Results of the significance tests for the comparison of performance
of the SVM predictor and “cheating” predictors using the regression
model. Here ‘w’ stands for significantly worse, ‘b’ for significantly
better, ‘s’ for no significant difference.

1 2 3 4 5 6 7 8 9 10

1 s

2 w b

3 w s b

4 w b b b

5 w s b b b

6 w w b b b b

7 w s b b b b b

8 w s b b b b b b

9 w w s b b b b b b

10 w w s b b b b b b b

always significantly better than that of the most other predictors. In
other words, regardless of the amount of clusters, the SVM predictor
always chooses a reasonably good one.

This last investigation confirms our hypothesis that predicting the
difficulty-type for each player based on short periods of gameplay is
a viable approach to taking the burden of choosing the difficulty from
the players.

4.5 discussion

Above we presented and investigated one possible use of supervised
learning for dynamical difficulty adjustment. Our aim was to devise
a difficulty adjustment algorithm that does not bother the actual play-
ers. Our approach to building a difficulty model consists of cluster-
ing different types of players, finding a good difficulty adjustment
for each cluster, and predicting the cluster for short traces of game-
play. Our experimental results confirm that dynamic adjustment and
cluster prediction together outperform the alternatives significantly.

Note that there are a few aspects that can influence the perfor-
mance of the algorithm. First, it requires training data, which could
be both an advantage and a disadvantage. In this particular case, the
data consists of players’ game traces: for each time step a record of
a game state. It is fairly straightforward to obtain, there is nothing
in there that needs new methods or is costly as such, and it is being
collected routinely for other purposes. As is usual, the performance
of the learning algorithm directly depends on the quality and the
amount of training data.
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In our experiments, there was a competition element (the high
scores information was available to all participants), and since the
score points were driven by the difficulty as well as other factors,
the players were motivated to increase their difficulty past the point
where they were comfortable. The models constructed incorporated
this behaviour accordingly. One must be aware that if the data does
not represent the behaviour of the majority of players, the learning
algorithm will not be able to produce reliable predictions.

Another potential problem concerns our choice of models’ con-
struction, namely clustering. The drawbacks of K-means clustering
are well known: The number of clusters has to be defined in advance
and the algorithm is dependent upon the starting centroid locations.

One further parameter left out in our investigation is the length of
the prefix that is used for the prediction. Note that the game traces
in the considered test setup were very short (100 seconds). It is plau-
sible that this plays a crucial role in the quality of the model and
for the longer games the short prefix of the game trace does not pro-
vide enough information to make accurate predictions. Longer game
traces can probably be broken into smaller pieces, for which it is estab-
lished in some way (for instance, with the help of grid search) what
length of prefix and suffix works sufficiently well. This idea leads us
directly to the next algorithm presented in Section 4.6: Let us use very
short pieces of a game trace (for instance, three time points) to predict
a single difficulty adjustment for the next time point.

Formulated that way, we have a time series prediction problem.
Non-linear techniques for time series prediction are used to model
a wide variety of processes in fields like finance [93], [86], telecom-
munications [22] and autonomous systems [36]. Black box modelling
techniques are the usual way to deal with non-linearity [80], among
which backpropagation neural networks are a classic [24]. In recent
years, however, support vector machine-based approaches [31] have
been gaining popularity due to their theoretical guarantees, relative
ease of model selection, and good generalization abilities.

In the following section we present an algorithm that learns a map-
ping from short intervals of game traces to the difficulty adjustments
and predicts appropriate ones given a new player and a short trace
of in-game observations.

4.6 dynamic algorithm

In Section 4.3 the main assumption is that there exists a finite num-
ber of types of players, where by type we mean a certain pattern in
behaviour with regard to challenges. Having access to data collected
from players in the testing stage allows us to infer these types by clus-
tering rather than define them manually. Furthermore, a function is
learned for each type of the player: given a short trace of the start of
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the game from a new player this function tells us how the difficulty
should be changed in the rest of the game. In this section we inves-
tigate how this approach can be modified to make sequential online
predictions as the player progresses through the game.

The idea we present is rather simple. Rather, than breaking up a
given time trace of a game trace into a prefix and a suffix and learning
the mapping from a set of prefixes into a set of suffixes, we propose
breaking a time trace into a sequence of rather short intervals. The
next step is to learn a mapping between an interval and the difficulty
value that succeeds it, so that for any player the game can observe his
current “state” and use the learned mapping to predict the difficulty
adjustment for the next time step.

A single point in a game trace consists of values of different fea-
tures that describe the game state at this time point. In our approach
we want to find a mapping between the state of the game and the
game difficulty. This mapping should model as close as possible the
way players adjusted the difficulty in the testing phase. We can regard
the process of difficulty adjustment as a non-linear dynamic system
with inputs corresponding to the features of the game and the out-
put being the desired difficulty. Let us denote the difficulty setting at
time ti by yi, and all the other features at time ti by ui. We could
formulate the mapping as

yn+1 = f(yn, ...,yn−k, un, ..., un−k),

where f is an unknown non-linear function.
A critical decision is whether to include the difficulty value itself as

a feature of a training instance. On the one hand, including it provides
the learning algorithm with important piece of information. On the
other hand, in this case a simple predictor returning the same value
as was used as a part of the input becomes very hard to beat due to
the long constant periods of difficulty in any given time trace. Note
that even though this predictor will produce a small error using for
example the mean square distance, it will completely miss all the
important points, i. e. the ones where the player wanted to change
the difficulty.

As a result, we considered our main task to construct a predictor
that does not use the difficulty level itself as a part of the input. That
means that the variable yn is not available during training, and the
dynamic model appears to be feed-forward [80], i. e. not taking into
account any feedback,

ŷn+1 = f̂(un, ..., un−k).

Nonetheless, it is likely that the past behaviour of the game difficulty
does contain information which is beneficial for the prediction, thus
we want to include it in our model in some way.
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To address this issue, we train a second stage predictor where we
add the output of the first predictor ŷ to the list of features with the
hope that it is a substitute for the unobservable variable y. In this way
we arrive at the prediction equation

ȳn+1 = f̄(ŷn, ..., ŷn−k, un, ..., un−k).

The learning and predicting is done using the support vector re-
gression (SVR) with a Gaussian kernel [20, 75]. The parameters for
the SVR were chosen via a grid search and set to

• for the first stage: γ = 0.1,C = 100;

• for the second stage: γ = 0.1,C = 10.

4.7 evaluation

To test the ‘online’ algorithm we use the same experimental setup
and data as above (Section 4.2). Note that in contrast to above, we
use very short intervals of game traces as instances. Thus, there is no
reason to use polynomial fits to represent the data. To overcome the
irregularity of the time steps we construct a stepwise-constant fit for
each trace and then sample the fit every 0.25 of a second to produce
the time sequences with identical time steps.

We conduct the leave-one-player-out cross-validation on the data
to evaluate the performance of the predictor. Just as above, for each
player presented we construct the following train/test split:

• the training set consists of the game traces played by all players
except this one;

• the test set consists of all the game traces played by this player.

As a performance measure we use the mean square difference be-
tween the exhibited behaviour in the test instances and the behaviour
predicted by the SVR model. The mean is calculated over the time
and over the test instances.

As baselines we use two simple models. The first one is a “random
walk” predictor, i. e. a model that at each time step decides uniformly
at random whether to increase the difficulty, to decrease it, or to stay
at the same level.

The second baseline represents the best possible choice of the con-
stant difficulty level in hindsight, i. e. given a test instance of a game
trace it calculates the mean of the difficulty levels chosen by the player
and at each time predicts this value.

The error values averaged over the test sets used in leave-one-player-
out cross-validation are presented in Table 4. To illustrate the quality
of the SVR predictor we have included plots of the randomly picked
games from the test sets corresponding to different players. As you
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Table 4: Comparison of performance of the SVR predictor and the baselines.

SVR 0.027 ± 0.004

Random 0.238 ± 0.013

Mean 0.086 ± 0.007

can see on Figure 20 the predicted difficulty (the black line) matches
the difficulty set by the players themselves (the red line) fairly closely.
It is all the more impressive if you keep in mind that there is no feed-
back to the predictor about the true values of difficulty level during
the game trace.

4.8 conclusion

In this chapter we have shown how one can create a dynamic diffi-
culty adjustment mechanism using off-the-shelf methods of machine
learning, such as clustering, support vector classification, and support
vector regression. The data that is required for these methods to work
can be collected during such standard phases of game development
as alpha and beta testing.

Our first approach to building a difficulty model consists of clus-
tering game traces to infer playing types, finding a good difficulty
adjustment for each cluster, and predicting the cluster for short traces
of gameplay. Our experimental results confirm that the regression
model and cluster prediction together outperform the alternatives sig-
nificantly.

One important parameter that could influence the quality of the
prediction is the length of the prefix used for the mapping. While we
haven’t investigated the limits of its influence, we have proposed a
way to avoid this question completely by constructing a dynamic dif-
ficulty adjustment algorithm that uses extremely short time intervals
of gameplay (three time steps in our experiments) to predict the next
difficulty adjustment.

The error values as well as the visual investigation of the output of
the dynamic algorithm allows us to state confidently that predicting
the difficulty adjustments for each player based on short periods of
gameplay is a viable approach for taking the burden of choosing the
difficulty away from the players.

The quality of learned models critically depends on the quality of
training data. Additionally, even though empirical results are encour-
aging, there are no guarantees on the performance of the presented
algorithms. In the next chapter we will formulate the dynamic diffi-
culty adjustment problem in such a way that it allows us to dispense
with the need for training data, as well as to create an algorithm with
an upper bound on the amount of mistakes it can make.
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Figure 20: The comparison of the predicted difficulty values (the black lines)
versus the actual difficulty values set by the players (the red line).
Different plots represent randomly chosen games from the test
sets corresponding to different players. The x-axis is the time, the
y-axis is the difficulty rescaled to the [0; 1] interval.



5
M A S T E R O F PA RT I A L LY O R D E R E D S E T S

Imagine that you are a game developer, who wants to implement
a dynamic difficulty adjustment mechanism in a new game. In an
attempt to save time and money, you start by looking at what has
been done by others in a similar situation. You find several heuristics
and a few published algorithms. How should you decide, whether to
take one of the existing routines, or to create you own?

The main motivation for this work was a wish to create a black
box mechanism for dynamic difficulty adjustment: Something that
any game developer can take and use in any game, while spending
minimum time on adjusting it to their particular needs. Let’s look at
what properties game developers would wish for in such a device.

First, any such mechanism should be as independent of a game,
as possible. This, in turn, means that it can be applied to any game,
regardless of its type or structure.

Second, it should be as independent of and as non-intrusive to
a player, as possible. It is perfectly fine to collect some information
from a player engaged in a game with a purpose of improving her
experience. But it is rather undesirable to subject a player to a lengthy
training procedure.

Third, making it work should not cost a fortune in terms of time
or money: No excessive training times, or excessive training data, or
excessive setting up.

Fourth, it should work! There should exist guarantees about its
performance. Heuristics don’t have these by definition, and existing
publications (algorithms) didn’t seem to be interested in this ques-
tion. Their performance is confirmed by empirical studies, which are
usually small, limited to one game, or unrealistic (with the notable
exception of the work by Herbrich et al. [38]).

Fifth, preferably, it should be understandable by a human. This
simply because people tend to use things that they believe they un-
derstand.

In this chapter we present our answer to all of these requirements:
An online dynamic difficulty adjustment algorithm, which is univer-
sal, usable almost as is, learning in an online fashion, possessing the-
oretical performance guarantees, and also quite simple.

5.1 introduction

When game developers create controls for a player to modify the dif-
ficulty setting, they explicitly attach difficulty values to game states:

65
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Each setting constrains the player to a subset of all possible game
states of a particular difficulty value. A much less daunting task is,
when presented with a pair of game states, to decide which one, if
any, is more difficult than the other. Note, that some states can be
incomparable in this way, inducing a partial order on all game states.

A player induces her own structure on game states at any particular
time: Her skills and other qualities create a labelling that could be
unknown even to the player herself, where some states are marked as
‘too difficult’, some as ‘too easy’, and others as ‘just right’. Two things
are worth noting about this labelling:

• It respects the difficulty relation between the states. If state i is
more difficult than state j, their respective labels should reflect
that.

• It changes with time. The skills development, the level of bore-
dom or tiredness, or even change of a player would shift the
labels.

The task of adjusting the difficulty automatically can be formu-
lated in terms of online learning problem [3]: There are K arms (game
states), to which an adversary (a player) assigns loss values on each
iteration (0 to the ‘just right’ states, 1 to all the others). The goal of the
algorithm is to choose a ‘just right’ arm as often as possible, or, equiv-
alently, choose an arm on each iteration to minimize its overall loss.
In Section 5.2 we briefly review partially ordered sets and classical
multi-armed bandit setting.

Note that in contrast to the classical setting there is the additional
information in the form of the structure over game states. The partial
order allows the learning algorithm to infer more from the feedback
on each iteration. In Section 5.3 we formalise the learning problem
and propose a learning algorithm for it in Section 5.4. For this algo-
rithm we then give a bound on the number of proposed difficulty
settings that were not just right (in Section 5.5). The bound limits
the number of mistakes the algorithm can make relative to the best
static difficulty setting chosen in hindsight. For the bound to hold,
no assumptions whatsoever need to be made on the behaviour of the
player.

Last but not least we empirically study the behaviour of the algo-
rithm under various circumstances (in Section 5.6). In particular, we
investigate the performance of the algorithm ‘against’ statistically dis-
tributed players by simulating the players as well as ‘against’ adver-
saries by asking humans to try to trick the algorithm in a simplified
setting. Furthermore, we present the results and challenges of imple-
menting our algorithm into a real game and testing it on real human
players.
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5.2 preliminaries

In this chapter we are exclusively interested in applying adversarial
online learning to partially ordered sets (posets). We begin with re-
viewing the needed properties of posets and the classical multi-armed
bandit setting of online learning.

5.2.1 Partially ordered sets

A partially ordered set is a mathematical structure that consists of a
set together with a binary relation that, given a pair of elements from
the set, establishes a precedence of one of the pair’s elements over the
other. Note that the relation does not necessarily cover every pair of
elements, this is reflected in the term ‘partially’.

Definition 5.2.1. A partial order on a set K is a binary relation � ⊆
K×K, which is reflexive, antisymmetric, and transitive, i. e., for all
a,b, c ∈ K holds:

• a � a (reflexivity),

• a � b,b � a⇒ a = b (antisymmetry),

• a � b,b � c⇒ a � c (transitivity).

The pair (K,�) is referred to as a partially ordered set, or a poset for
short.

For a,b ∈ K, if a � b or b � a, then a and b are comparable,
otherwise they are incomparable. A partial order under which every
pair of elements is comparable is called a total order or linear order; a
totally ordered set is also called a chain. A poset in which no two
distinct elements are comparable is called independent or an antichain.
A poset is called dependent if it has two distinct elements that are
comparable. An element a covers an element b if a � b, a 6= b, and
there is no element c ∈ K with a � c, c � b.

An important notion for the algorithm that follows is a path cover.
To introduce it, first we note that there is a direct connection between
posets and directed acyclic graphs. Given a poset (K,�), we construct
a corresponding directed acyclic graph (dag) G = (K,E) by (i) identi-
fying a set of vertices with K, and (ii) creating an edge (i, j) for each
pair of vertices i, j ∈ K such that i covers j.

Given a directed graph G = (K,E), a directed path is a sequence
of edges in E, P = (v1, v2), (v2, v3), . . . , (vn−1, vn), such that (i) all
involved vertices are distinct, and (ii) all edges are distinct. A path
cover is a set of directed paths such that every vertex k ∈ K belongs
to at least one path. A minimum path cover is a path cover containing
the least amount of paths.
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Recall that an antichain is a poset in which no two distinct elements
are comparable. In terms of the corresponding dag that means that
the set of edges E is empty, i. e. no two vertices are adjacent. The min-
imum path cover of this graph consists of paths of length zero: Each
vertex belongs to its own path. Therefore, the size of the minimum
path cover is exactly the size of the vertices’ set.

Consider antichains that are subsets of the original poset (K,�).
Each of them has a corresponding independent set in G, i.e a set of
vertices no two of which are adjacent. In any path cover all the vertices
of such set have to belong to distinct paths. Hence, the size of the
minimum path cover is at least the size of the maximum antichain in
(K,�). In fact, it is exactly this size, as stated by Dilworth’s theorem
[18]:

Theorem 5.2.1 (Dilworth’s Theorem). Let every set of k+ 1 elements of
a partially ordered set P be dependent, while at least one set of k elements is
independent. Then P is a set sum of k disjoint chains.

5.2.2 Online learning

Online learning is concerned with learning in a sequential setting. In
the original formulation, on each round the learner (i) is presented
with some information about the world it is in, (ii) makes its predic-
tion, (iii) and is informed in some way about the quality of its pre-
diction. Then the game moves on to the next round. The goal of the
learner is to make as few mistakes as possible [52]. In classical online
learning, the first step of each round consists of giving the learner an
instance from the learning domain, while in the full information or
bandit games the learner receives information about the structure of
the loss function [25, 3]. Note also that in contrast to the setting pre-
sented by Littlestone [52], the main focus of research in this area has
been on minimizing the total loss achieved by the learner over the T
rounds, rather than the amount of mistakes.

The bulk of research on online learning has been concentrating on
the case where the problems’ domain is finite, i. e. there are K actions,
arms, experts, etc, and on each round the learner chooses one (or sev-
eral) of them. The multi-armed bandit setting refers to the case, where
the feedback is restricted to the loss incurred by the arm the learner
predicted. The traditional measure of the learner’s performance is
the so-called regret: the difference between the loss of the best static
choice in hindsight and of the learner (the expected regret in case of
randomized algorithms). The overall goal is to create a learner that
achieves a regret sublinear in t. Various bounds on the regret were
proven for various assumptions on the adversary’s (environment’s)
behaviour, for more information we refer the reader to the excellent
book by Cesa-Bianchi and Lugosi [9].
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The best known to-date algorithm that does not use any additional
information is the Improved Bandit Strategy (called ImprovedPI in
the following) [9]. The upper bound on its regret is of the order√
KT ln(T), where T is the amount of iterations. ImprovedPI will be

the second baseline after the best static in hindsight (Bsih) in our
experiments.

5.3 formalisation

To be able to theoretically investigate dynamic difficulty adjustment,
we view it as a meta-game between a master and a player, played on
a partially ordered set modelling the ‘more difficult than’-relation.
The meta-game is played in turns where each turn has the following
elements:

1. the master chooses a difficulty setting,

2. the player plays one ‘round’ of the game in this setting, and

3. the master experiences whether the setting was ‘too difficult’,
‘just right’, or ‘too easy’ for the player.

The master aims at making as few as possible mistakes, that is, at
choosing a difficulty setting that is ‘just right’ as often as possible. In
this chapter, we aim at developing an algorithm for the master with
theoretical guarantees on the number of mistakes in the worst case
while not making any assumptions about the player.

To simplify our analysis, we make the following, rather natural
assumptions:

• the set of difficulty settings is finite and

• in every round, the (hidden) difficulty settings respect the par-
tial order, that is,

– no state that ‘is more difficult than’ a state which is ‘too
difficult’ can be ‘just right’ or ‘too easy’ and

– no state that ‘is more difficult than’ a state which is ‘just
right’ can be ‘too easy’.

Even with these natural assumptions, in the worst case, no algorithm
for the master will be able to make even a single correct prediction.
As we can not make any assumptions about the player, we will be
interested in comparing our algorithm theoretically and empirically
with the best statically chosen difficulty setting, as is commonly the
case in online learning [9].

This setting is related to learning directed cuts with membership
queries. For learning directed cuts, i. e., monotone subsets, Gärtner
and Garriga [28] provided algorithms and bounds for the case in
which the labelling does not change over time. They then showed that
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the intersection between a monotone and an antimonotone subset in
not learnable. This negative result is not applicable in our case, as the
feedback we receive is more powerful. They furthermore showed that
directed cuts are not learnable with traditional membership queries
if the labelling is allowed to change over time. This negative result
also does not apply to our case as the aim of the master is “only” to
point at a green vertex as often as possible and as we are interested
in a comparison with the best static vertex chosen in hindsight.

5.4 algorithm

In this section we give a multiplicative update algorithm for predict-
ing a vertex that corresponds to a ‘just right’ difficulty setting in a
finite partially ordered set (K, �) of difficulty settings. The partial
order is such that for i, j ∈ K we write i � j if difficulty setting i is
‘more difficult than’ difficulty setting j. The learning rate of the algo-
rithm is denoted by β ∈ (0, 1). The response that the master algorithm
can observe ot is +1 if the chosen difficulty setting was ‘too easy’,
0 if it was ‘just right’, and −1 if it was ‘too difficult’. The algorithm
maintains a belief w of each vertex being ‘just right’ and updates this
belief if the observed response implies that the setting was ‘too easy’
or ‘too difficult’.

Algorithm 3 Partially-Ordered-Set Master (Posm) for Difficulty
Adjustment

Require: parameter β ∈ (0, 1), K difficulty Settings K, partial order
� on K, and a sequence of observations o1,o2, . . .

1: ∀k ∈ K : let w1(k) = 1
2: for each turn t = 1, 2, . . . do
3: ∀k ∈ ct : let At(k) =

∑
x∈K:x�kwt(k)

4: ∀k ∈ ct : let Bt(k) =
∑
x∈K:x�kwt(k)

5: Predict kt = argmaxk∈K min {Bt(k),At(k)}
6: Observe ot ∈ {−1, 0,+1}
7: if ot = +1 then

8: ∀k ∈ K : let wt+1(k) =

βwt(k) if k � kt

wt(x) otherwise
9: end if

10: if ot = −1 then

11: ∀k ∈ K : let wt+1(k) =

βwt(k) if k � kt

wt(x) otherwise
12: end if
13: end for

The main idea of Algorithm 3 is that in each round we want to
make sure we can update as much belief as possible. The significance
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of this will be clearer when looking at the theory in the next section.
To ensure it, we compute for each setting k the belief ‘above’ k as well
as ‘below’ k . That is, At in line 3 of the algorithm collects the belief of
all settings that are known to be ‘more difficult’ and Bt in line 4 of the
algorithm collects the belief of all settings that are known to be ‘less
difficult’ than k. Upon each mistake, depending on the observation,
we will be able to either update the believes above or below the cho-
sen setting and as we are considering a worst case scenario, we can
only guarantee to update an amount of belief larger than or equal to
min{Bt(k),At(k)}. To achieve the best performance, we choose the k
that gives us the best worst case guarantee in line 5 of the algorithm.

5.5 theory

We will now show a bound on the number of inappropriate difficulty
settings that are proposed, relative to the number of mistakes the best
static difficulty setting makes. We denote the number of mistakes of
the master algorithm until time T by m and the minimum number of
times a statically chosen difficulty setting would have made a mistake
until time T by M. Furthermore, we denote the total amount of belief
on K at time t by Wt =

∑
k∈Kwt(k).

The analysis of the algorithm relies heavily on a path cover of K

that we denote by C. To achieve the tightest bound, the minimum
path cover of K should be chosen. The minimum path cover can be
found in time polynomial in |K| and its size is equal to the size of the
largest antichain in (K,�).

For all c ∈ C we denote the amount of belief on every chain by
Wc
t =

∑
x∈cwt(x), the belief ‘above’ k on c and ‘below’ k on c by

Act(k) =
∑
x∈c:x�kwt(x) and by Bct(k) =

∑
x∈c:x�kwt(x), respec-

tively. To relate the amount of belief updated in the algorithm to the
amount of belief on each chain observe that

max
k∈K

min{At(k),Bt(k)}

=max
c∈C

max
k∈c

min{At(k),Bt(k)}

>max
c∈C

max
k∈c

min{Act(k),B
c
t(k)} .

Denote the ‘heaviest’ chain by

ct = argmax
c∈C

max
k∈c

min{Act(k),B
c
t(k)} . (3)

We will now show that in each iteration in which our algorithm
proposes an inappropriate difficulty setting, we update at least half
of the weight of the heaviest chain. That is, we will first show that
maxk∈ct min{Actt (k),Bctt (k)} >Wct

t /2. For that, we choose

i = argmax
k∈ct

{Bctt (k) | Bctt (k) < Wct
t /2}
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and

j = argmin
k∈ct

{Bctt (k) | Bctt (k) >Wct
t /2} .

This way, we obtain i, j ∈ ct for which Bctt (i) < Wct
t /2 6 Bctt (j) and

which are consecutive, that is, @k ∈ c : i ≺ k ≺ j. Such i, j exist and
are unique as ∀x ∈ K : wt(x) > 0. We then have Bctt (i)+Actt (j) =Wct

t

and thus also Actt (j) > Wct
t /2. This immediately implies

Wct
t /2 6 min{Actt (j),Bctt (j)} 6 max

k∈ct
min{Actt (k),Bctt (k)} .

That is, for each mistake we update an amount of belief greater
than or equal to Wct

t /2. As, furthermore Wct
t > Wt/|C|, the total

amount of belief changes such that

Wt+1 6W
ct
t /2+βW

ct
t /2+ (Wt −W

ct
t )

6
Wt

2|C|
+β

Wt

2|C|
+ (Wt −Wt/|C|)

=

[
|C|− 1

2|C|
+
β

2|C|

]
Wt .

Applying this bound recursively, we obtain for time T

WT 6W0

[
|C|− 1

2|C|
+
β

2|C|

]m
6 |K|

[
|C|− 1

2|C|
+
β

2|C|

]m
.

As we only update the weight of a difficulty setting if the response
implied that the algorithm made a mistake, βM is a lower bound
on the weight of one difficulty setting on this chain and hence also
WT > βM. Solving

βM 6 |K|

[
|C|− 1

2|C|
+
β

2|C|

]m
for m, we obtain

m 6

 ln |K|+M ln 1/β

ln 2|C|
2|C|−1+β

 .

Note, that this bound is similar to the bound for the full informa-
tion setting [9] despite much weaker information being available in
our case. The influence of |C| is the new ingredient that changes the
behaviour of this bound for different partially ordered sets.
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5.6 experiments

We performed two sets of experiments: (i) in an artificial environment
we evaluated how well POSM can minimize the regret when dealing
with various kinds of adversaries; (ii) in Chinese chess we evaluated
how well POSM can perform against various opponents, how well it
can predict the skill level of an opponent, and how satisfied human
players were with POSM’s playing skill.

5.6.1 Artificial environment

To evaluate the performance of POSM independently of any real
game, we created an artificial environment replicating the online learn-
ing setting on K arms with a partial order. To this purpose we simu-
lated a stochastic opponent, as well as used human players to provide
our algorithm with a non-stochastic non-oblivious adversary. In this
environment we compare the total loss of our algorithm with two
baselines. The first one is the best static difficulty setting in hindsight:
it is a difficulty that a player could pick if she knew her skill level in
advance and had to choose the difficulty only once. The second one
is the ImprovedPI algorithm [9].

Note that because of our assumptions about the nature of diffi-
culty settings and the specifics of the poset, the labels build three
distinct “zones”: all the states that are ‘too easy’, all the states that
are ‘just right’, and all the states that are ‘too difficult’. In the fol-
lowing we refer to the set of vertices with ‘just right’ labels as the
zero-zone (because in the corresponding loss vector their components
are equal to zero). The border of the zero-zone Z is a set of vertices
B ⊆ K such that each vertex in B has at least one neighbour in the
zero-zone and at least one neighbour in the complement of the zero-
zone, B = {b ∈ K | N(b) ∩ Z 6= ∅ and N(b) ∩ (K \ Z) 6= ∅}, where
N(b) = {k ∈ K | k covers b or b covers k}.

In both stochastic and adversarial scenarios we consider two differ-
ent settings: so called ‘smooth’ and ‘non-smooth’ one. The settings’
names describe the way the zero-zone changes with time. In the ‘non-
smooth’ setting we don’t place any restrictions on Z apart from its
size, while in the ‘smooth’ setting no more than one vertex from B can
change its label at each iteration. These two settings represent two ex-
treme situations: one player changing her skills gradually with time
causes the labels on the poset to change ‘smoothly’; switching players
during the course of a single game makes the zero-zone ‘jump’ over
the poset. In a more realistic scenario the zero-zone would change
‘smoothly’ most of the time, but sometimes it would perform jumps.
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Figure 21: Stochastic adversary, ‘smooth’ setting.

5.6.1.1 Stochastic adversary

In the first set of experiments we performed, the adversary is stochas-
tic: On every iteration the zero-zone can change in a pre-defined way
with a pre-defined probability. In the ‘smooth’ setting only one of the
border vertices of the zero-zone at a time can change its label to 1, −1,
or stay as it is with an equal probability. Note that altering a vertex’
label may break the consistency of the labelling with regard to the
poset. The necessary repair procedure may result in more than one
vertex being relabelled at a time.

For the ‘non-smooth’ setting we consider two cases: an easier one,
where the zero-zone may contain up to 20% of all the vertices in
the graph, and an especially difficult one, with the zero-zone limited
to always containing only one vertex. The zero-zone is created on
each iteration anew. First, a vertex in a graph is chosen uniformly at
random and its label is set to zero. Then, the zero-zone is ‘grown’,
with one neighbouring vertex at a time chosen uniformly at random
and its label also set to zero, until the size limit is reached. After that
all the vertices upstream and downstream from the new zero-zone
are labelled in a consistency preserving way.

We consider two graphs that represent two different but typical
game structures with regard to the difficulty: a single chain and a
2-dimensional grid. A set of progressively more difficult challenges
that can be found for instance in a puzzle or a time-management
game can be directly mapped onto a chain of a length corresponding
to the amount of challenges. A 2- (or more-) dimensional grid on
the other hand is more like a skill-based game, where depending on
the choices players make, different game states become available to
them. Structurally, these two posets have very different path covers.
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Figure 22: Stochastic adversary, ‘non-smooth’ setting, on a chain of 50 ver-
tices.

The minimal path cover of a chain consists of exactly one path, the
chain itself, while for the 2-dimensional grid its size is the size of
the largest antichain, the diagonal of the grid. In our experiments the
chain contains 50 vertices, while the grid is built on 7 × 7 vertices
(the size of the grid is chosen so that it is close to the length of the
chain), the size of its minimal path cover is 7. Hence, we expect the
performance of POSM to be worse on the grid than on the chain.

In all considered variations of the setting the game lasts for 500
iterations and is repeated 10 times. The resulting mean and standard
deviation values of loss and regret, respectively, are shown in the
following figures: The ‘smooth’ setting in Figure 21; The ‘non-smooth’
setting in Figures 22, and 23.

Note that in the ‘smooth’ setting Posm is outperforming Bsih and,
therefore, its regret is negative. As expected, both the loss and the
regret are worse on the grid. In the considerably more difficult ‘non-
smooth’ setting all algorithms perform badly (as expected). Neverthe-
less, in the slightly easier case of larger zero-zone, Posm performance
in terms of regret gets better.

While Bsih is a baseline that can not be implemented as it requires
to foresee the future, Posm is a correct algorithm for dynamic diffi-
culty adjustment. Therefore, it is surprising that Posm performs al-
most as good as Bsih or even better.

5.6.1.2 Evil adversary

While the experiments in our stochastic environment show encourag-
ing results, of real interest to us is the situation where the adversary is
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Figure 23: Stochastic adversary, ‘non-smooth’ setting, on a grid of 7× 7 ver-
tices.

‘evil’, non-stochastic, and non-oblivious. In dynamic difficulty adjust-
ment the algorithm will have to deal with people, who are learning
and changing in hard to predict ways.

We limit our experiments to the case of a linear order on difficulty
settings, in other words, the chain. Even though it is a simplified
scenario, this situation is rather natural for games and it demonstrates
the power of our algorithm.

Instead of implementing the adversary as was the case for the
stochastic scenario, we use people as adversaries. Just as in games
with the dynamic difficulty adjustment players often are not sup-
posed to be aware of the mechanics, our methods and goals were not
disclosed to the testing persons. Instead they were presented with a
modified game of cups: On every iteration the casino is hiding a coin
under one of the cups; after that the player can point at two of the
cups. If the coin is under one of these two, the player wins it.

Behind the scenes the cups represented the vertices on the chain
and the players’ choices were setting the lower and upper borders
of the zero-zone. If the algorithm’s prediction was wrong, one of the
two cups was decided on randomly and the coin was placed under it.
If the prediction was correct, no coin was awarded.

Unfortunately, using people in such experiments places severe lim-
itations on the size of the game. Without the internal game appeals,
such as a story, achievements, or social interactions, and without any
extrinsic rewards they can only handle short chains and short games
before getting bored. In our case we restricted the length of the chain
to 8 and the length of each game to 15 iterations.
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Figure 24: Evil adversary, ‘smooth’ setting, a single chain of 8 vertices.

Again, we created the ‘smooth’ and ‘non-smooth’ settings by plac-
ing or removing restrictions on how players were allowed to choose
their cups. To each game either ImprovedPI or Posm was assigned
uniformly at random. The results for both settings are presented in
Figures 24 and 25. Note, that due to the fact that this time different
games were played by ImprovedPI and Posm, we have two different
plots for their corresponding loss values.

We can see that in the ‘smooth’ setting again the performance of
Posm is very close to that of Bsih. In the more difficult ‘non-smooth’
one, the results are also encouraging. Note, that in the games that
people played against Posm, the loss of Bsih appears to be worse. A
plausible interpretation is that players had to follow more difficult
(less static) strategies to fool Posm to win their coins. Nevertheless,
the regret of Posm is small even in this case.

The experiments performed in this synthetic environment show
that the additional information encoded in the structure of a poset
is indeed beneficial and helps POSM to achieve better loss and regret
values, when compared to ImprovedPI. How much this information
helps depends on the structure of the poset, namely on the size of its
minimal path cover, as well as on the maliciousness of the adversary.
Next we will look what POSM can achieve in a real game, namely, in
Chinese chess.

5.6.2 Chinese chess

Chinese chess or Xiangqi is a two-player Chinese board game (Figure
26), which is similar to Western chess. It is one of the most popular
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Figure 25: Evil adversary, ‘non-smooth’ setting, a single chain of 8 vertices.

board games in Chinese communities and has a long history. There
are many hypotheses on its origin, however,

Figure 26: Xiangqi board in the start-
ing position.

its modern form was first in-
troduced in the Song dynasty
(960-1279). For a comprehensive
overview of the rules we refer
the reader to one of the online
sources1. The first scientific pa-
per on computer Chinese chess
was published by Zhang [102].
The earliest human versus com-
puter competition was the annual
ACER cup, which was held in Tai-
wan from 1985 to 1990.

Our computer opponents use
the MiniMax algorithm with a
static evaluation function, which
we have constructed using the
work published by Wang et al. [97] and Chen [11]: It is a sum of
three major features of a given board configuration, each feature rep-
resented by a piece-square table.

The first major feature is material. We calculate it by adding up the
values of the pieces each player still has on the board and subtracting
the two sums from each other. The value for each piece is determined
by its type and position.

1 Tutorial for Chinese chess: www.chessvariants.org/xiangqi.html

www.chessvariants.org/xiangqi.html
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The second major feature is called tactical formation. The Cannon
piece can capture an enemy piece if and only if there exists exactly
one piece in between. A common strategy is to place one of our own
Cannons in a position such that it attacks the opponent’s king directly.
Although it would not be able to capture it, this prevents an opponent
from placing any piece in between, thus, impairing the opponent’s
defence.

The third major feature we use is mobility. It measures the number
of legal moves a player has in a given position. In addition it takes into
account the fact that the Horse and Chariot pieces have their strength
and mobility highly correlated. Therefore, it adds a penalty to these
pieces according to how restricted their mobility is by diminishing
their material value.

Each score is calculated using the values in the corresponding piece-
square tables, then the evaluation function sums up all three scores
for a given board state. In the following we refer to a computer oppo-
nent using the MiniMax algorithm with the search depth i and this
evaluation function ChessAI(i).

In the game of Xiangqi a draw is usually declared by a referee. Fur-
thermore, we had to create a system that avoids repetitions, otherwise
the computer players will get stuck in a cyclic array of positions. To
circumvent these issues we have developed a simple mechanism that
deals with the most basic kinds of repetitions and limited the games
to two hundred ply per player before calling the game a draw. In or-
der to illustrate the effects of repetitions we can make a comparison
between Western chess, where a threefold repetition means the game
ends in a draw, and Xiangqi, where it leads to a loss for the player
causing the repetition.

Posm requires an observation oracle that provides feedback about
the predicted difficulty setting. The observation oracle that we imple-
mented for Xiangqi applies to the current state the evaluation mech-
anism of ChessAI(i), where i is the current difficulty setting, and
observes how the move’s evaluation score varies from ply to ply. To
this end, we subtract the score of the previous move from the score
of the move we would be picking with the current difficulty setting.
If the absolute value of this difference surpasses a threshold value,
Posm receives a feedback of −1 or +1 according to the sign of the the
difference, otherwise it receives 0.

5.6.2.1 Results

When evaluating the Xiangqi games that POSM played against com-
puter and human opponents, we focused on two questions: (i) how
well POSM can learn the opponent’s skill; (ii) how well human play-
ers are satisfied with its skill.

We will first describe the computer player results. To see how well
Posm can predict the opponent’s search depth we ran episodes of
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Figure 27: Posm versus ChessAI(2-6). Average predicted difficulty over
episodes of 100 games against each algorithmic opponent.

100 games of Posm versus ChessAI(i) with i ∈ {2, . . . , 6} . Figure 27

illustrates the results. On the horizontal axis we have a counter for
the moves within the games, while on the vertical axis we have the
average predicted difficulty for the opponent. As stated in Section
5.4 the algorithm always picks the medium difficulty setting at the
start, in this case 4. As the game progresses and Posm receives more
feedback, the predicted difficulty setting reaches the opponent’s skill
value.

To answer the second question, we have provided an implementa-
tion of Xiangqi with Posm to human players. A total of twelve testers
volunteered for the study. We asked them to play at least ten games
against Posm. The outcome of each game was recorded. We have also
conducted a survey where the players were asked “How difficult did
you find the game?” with three possible answers “too easy”, “too
hard” and “equal”. This question was asked only once, when they
submitted their final results.

All of the testers were rated beforehand by an outside ranking sys-
tem2, thus dividing them into several categories according to their
skill level. The possible categories were Level 8 through 1 players,
Level 8 being the lowest ranking skill, followed by Master 3 through
1, Master 1 being the highest possible ranking. The results of the
games played against the different categories of testers can be seen in
Figure 28. The results of the survey as well as the spread of the play-
ers are depicted in Figure 29. To have a quantitative representation
of human players’ skills, we use the same relative strength ratio metric
as in Section 3.3.1. A scatter plot of the strength results for human
players is shown in Figure 30.

A short analysis of Figure 29 and Figure 30 shows a strong correla-
tion between the results of the survey and the relative strength ratio,
i. e., if the strength is high the survey says the opponent was too easy
and vice versa. The survey results are biased by human emotion and

2 Game platform used to rank the human players: www.qqgame.qq.com/

www.qqgame.qq.com/
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are more meaningful than the strength results, because they capture
the in-game balance information as opposed to only the end result.
After all, a game can be perfectly balanced for its whole timespan
and then just at the end a few mistakes can lead to a loss for either
of the players. This is illustrated by the Level 6 players, for whom
the proportion of won and lost games is far from 50%, but their re-
sponses in the survey show that they perceived their opponent as
being equally strong.

5.7 conclusion

In this chapter we formalised dynamic difficulty adjustment as an
online learning problem on partially ordered sets and proposed an
online learning algorithm Posm for dynamic difficulty adjustment.
Using this formalisation, we were able to prove a bound on the per-
formance of Posm relative to the best static difficulty setting chosen
in hindsight Bsih. To validate our theoretical findings empirically, we
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performed a set of experiments, comparing Posm and another state-
of-the-art algorithm to Bsih in two settings (a) simulating the player
by a stochastic process and (b) simulating the player by humans that
are encouraged to play as adversarial as possible. These experiments
showed that Posm performs very often almost as well as Bsih and,
even more surprisingly, sometimes even better. As this is also even
better than the behaviour suggested by our mistake bound, there
seems to be a gap between the theoretical and empirical performance
of our algorithm.

Apart from the synthetic experiments, we have also shown how
Posm can be incorporated in board games, by taking Chinese chess
as an example and providing the design details for our game balance
observation methods. The tests, consisting of games versus synthetic
opponents of various strength, as well as versus human players, have
shown that in almost all different settings Posm adjusts the difficulty
properly. (The exceptional cases are, as expected, the opponents who
are either too weak, or too smart.)



6
T R AV E L D I A RY

6.1 goal

In this work we concentrated on the question of creating a dynamic
difficulty adjustment algorithm. The hypothesis of usefulness of such
an algorithm is based on two theories:

• Play is important for brain development [96] and for acquiring
new skills [6];

• Games that adapt to their players can sustain their attention and
keep their interest for longer [29, 84].

Additional evidence for the usefulness of dynamic difficulty adjust-
ment algorithms comes from the industry. As reviewed in Chapter 2,
for the last twenty to thirty years commercial game developers were
creating various mechanisms to adapt the game difficulty to players.
Most, if not all, of their approaches are heuristics and suffer from typ-
ical heuristics problems, the biggest of which is non-transferability:
for a new game a new system has to be created.

Motivated by this, in the process of working on this thesis our de-
cisions were guided by the following requirements:

• Universality: The resulting dynamic difficulty adjustment sys-
tem should be applicable to as many games as possible, inde-
pendently of their type, structure, or features;

• Non-intrusiveness: If desired, the resulting system should work
in a transparent way, in real-time, not requiring an interaction
with players;

• Feasibility: There should be guarantees about the resulting sys-
tem’s performance.

6.2 landscape

Reviewing the academic results in the area of dynamic difficulty ad-
justment showed that the majority of the existing approaches are
based on reinforcement learning or evolutionary algorithms. These
methods do not satisfy the requirements above:

• They require a reward or fitness function, designing which de-
mands both the domain knowledge and the algorithm knowl-
edge. The structure of this function critically influences the per-
formance of the learner.

83



84 travel diary

• While both have various guarantees on their convergence, in
practical terms they have long learning times and do not scale
well to the high-dimensional state-spaces.

• The long learning times lead to the training using artificial op-
ponents with unclear results concerning adaptation to human
players.

All of the above makes the proposed approaches not very suitable for
using in games created and played by humans.

6.3 places visited

On the way to our destination, we have first considered games as a
series of interactions between the player and in-game entities, where
in each interaction both the player and her opponent has a selection
of moves to choose from. The simple dynamic difficulty adjustment
heuristic we have proposed, Adaptive Ranker, is based on the idea
that the choices the player makes during the game are based on her skill.
Hence, if we give the opponent a way to estimate the skill and to
choose the move that represents the same level of skill, the resulting
game should appear to the player balanced in terms of difficulty. As
a way to estimate the skill of the player we use the ranking on the
available moves produced by an evaluation function.

We have shown that in a good case, i. e. when the evaluation func-
tion estimates the quality of the moves sufficiently well, and the
player and her opponent have a similar choice of moves, Adaptive

Ranker performs well, adapting both to artificial opponents and to
human players. We have also shown that in a different case, where the
choices available to the player and her opponent are sufficiently differ-
ent, Adaptive Ranker fails to adapt. While this doesn’t disprove the
principle, it shows that this approach does not fulfil the requirements
listed above.

Next, we have proposed to use the testing phases of game develop-
ment process as a source of training data for a supervised learning
approach to dynamic difficulty adjustment. The assumption here is
that the difficulty adjustments created by the testers represent the difficulty
adjustments that players would do in similar game situations. Hence, a su-
pervised learner creates a mapping between sequences of game states
and (models of) difficulty adjustments. The experiments we have per-
formed show that this approach works well, predicting the difficulty
for an unseen player that is close to the one she has chosen herself.
It remains to be seen, how satisfied human players will be by the
suggested difficulty adjustments. The difficulty modelling fulfils two
of the requirements listed above, universality and non-intrusiveness,
with the only constraint that it needs training data, i. e. game traces
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that include difficulty adjustments and represent the players’ popula-
tion.

Finally, we have formulated the dynamic difficulty adjustment prob-
lem as an online learning problem on structured data. The crucial in-
sight was that, with regard to the difficulty, the game states form a partially
ordered set. The formulation led to the online learner on a partially or-
dered set, Posm. Applied to the dynamic difficulty adjustment prob-
lem, Posm attempts to choose for the player game states of “just right”
difficulty, while maximising the amount of information it would gain
upon a mistake. Posm fulfils all the requirements above. It can be
taken as is and implemented in any game that possesses states of
varying difficulty. It adapts to the player in real-time. We have proved
an upper bound on the amount of mistakes that Posm will make in
T iterations. Due to this, we can say that the goal we have set to our-
selves has been achieved.

6.4 further directions

One particular aspect of our work that requires further attention, is
conducting, on a larger scale, experiments involving human players.
As they stand at the moment, our experimental results with humans
have an encouraging but tentative character. Every time human play-
ers participated in our studies, we discovered some unexpected, sur-
prising behaviour that directly influenced the results. Hence, we feel
there is still much to learn by exposing our algorithms to humans.

Another interesting direction to pursue is online learning in non-
standard spaces. While there was a lot of research done in the recent
years about online learning in a Euclidean space, very few people
considered the idea that convexity, the ground concept on which on-
line learning is based, is not constrained to a Euclidean space. Rather
it is a combinatorial notion, applicable to any space where a convex
hull operator can be defined. An example of Posm shows that convex-
ity induces a structure on the input space, which is beneficial for an
online learner, since it provides additional information. Exactly how
beneficial this information is and how it can be used, remains to be
discovered.

Our battered suitcases were piled on the sidewalk again; we had longer
ways to go. But no matter, the road is life.

— Jack Kerouac [46]
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