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Bonn, Mai 2015



Diese Arbeit ist die ungekürzte Fassung einer der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn im Jahr 2015 vorgelegten Dis-
sertation von Sabrina Wahl aus Köln.

This paper is the unabridged version of a dissertation thesis submitted by Sabrina Wahl born in
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Abstract

Over the last decade, advances in numerical weather prediction (NWP) led to forecasts on even
finer horizontal scales and a better representation of mesoscale processes. High-resolution mod-
els provide the user with realistic weather patterns on the km-scale. However, the evaluation
of such small-scale model output remains still a challenge in forecast verification and the quan-
tification of forecast uncertainty. Ensembles are the main tool to assess uncertainty from NWP
models. The first operational mesoscale NWP ensemble was developed by the German Meteo-
rological Service (DWD) in 2010. The German-focused COSMO-DE-EPS is especially designed
to improve quantitative precipitation forecasts, which is still one of the most difficult weather
variables to predict.

This study investigates the potential of mesoscale NWP ensembles to predict quantitative pre-
cipitation. To comprise the uncertainty inherent in NWP, precipitation forecasts should take the
form of probabilistic predictions. Typical point forecasts for precipitation are the probability that
a certain threshold will be exceeded as well as quantiles. Quantiles are very suitable to predict
quantitative precipitation and do not depend an a priori defined thresholds, as is necessary for
the probability forecasts. Various statistical methods are explored to transform the ensemble
forecast into probabilistic predictions, either in terms of probabilities or quantiles. An enhanced
framework for statistical postprocessing of quantitative precipitation quantile predictions is de-
veloped based on a Bayesian inference of quantile regression.

For a further investigation of the predictive performance of quantile forecasts, the pool of
verification methods is expanded by the decomposition and graphical exploration of the quantile
score. The decomposition allows to attribute changes in the predictive performance of quantile
forecasts either to the reliability or the information content of a forecasting scheme. Together
with the Bayesian quantile regression model, this study contributes to an enhanced framework
of statistical postprocessing and probabilistic forecast verification of quantitative precipitation
quantile predictions derived from mesoscale NWP ensembles.
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1. Introduction

Since the beginning of numerical weather prediction (NWP), quantification of forecast uncer-
tainty is a major desire. Uncertainty arise from the nature of numerical prediction: the as-
sumptions about model physics, the discretization in space and time, the parameterization of
subgrid-scale processes, and imperfect initial conditions. All this affects the accuracy of numer-
ical forecasts of complex systems like the earth’s atmosphere. On the other side, the chaotic
nature of the atmosphere itself leads to an intrinsic uncertainty inherent in every weather fore-
casting system. Some weather situations (e.g. large scale flows) will always be more predictable
than others, e.g. small-scale weather events like thunderstorms, hail, or wind gusts. Predictabil-
ity is a measure of forecast error and defines a horizon for skillful predictions (Lorenz, 1963b).
On the global scale, NWP gives skillful forecasts for about 10 days, while on the convective
scale the weather is mainly predictable for several hours. However, much effort is put in the de-
velopment of NWP models. The increase of computational power allows to calculate numerics
on even finer spatial grids, which are capable to describe more and more detailed physical pro-
cesses. Although NWP has seen great advances and has become more accurate during the last
century, the quantification of forecast uncertainty is still a crucial task. More complex weather
prediction models lead to more realistic weather forecasts, but do not have smaller uncertain-
ties.

The focus of this study is on the assessment of forecast uncertainty from convective-scale NWP
models. The small-scale nature of mesoscale processes leads to faster error growth and hence
less predictability (Lorenz, 1969). Predictions of small-scale events therefore must be proba-
bilistic in nature, accounting for the uncertainty which is inherent to those forecasts (Murphy,
1991). Convective-scale ensemble systems are used to obtain probabilistic guidance. The main
objectives of this study are

• the evaluation of ensemble forecast performance,

• the verification of probabilistic forecasts derived from the ensemble,

• the development of ensemble postprocessing techniques in order to obtain skillful proba-
bilistic predictions.

The evaluation is focused on precipitation, which is still one of the most difficult weather vari-
ables to predict (Ebert et al., 2003). Especially during summer, the skill of quantitative pre-
cipitation forecasts is very low (Fritsch and Carbone, 2004). Precipitation is a result of very
complex, dynamical and microphysical processes and is often used to measure model perfor-
mance of mesoscale NWP systems.
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1. Introduction

1.1. Convective-scale weather prediction

Convective-scale weather prediction yields a better representation of small-scale weather phe-
nomena triggered by deep moist convection. Non-hydrostatic model dynamics and a horizontal
resolution of just a few kilometers allow to simulate convective processes more explicitly. The
benefit of convection-permitting NWP models is a better physical representation of mesoscale
convective systems, more realistic looking weather patterns and localized intense events like
heavy precipitation (Mass et al., 2002; Done et al., 2004; Schwartz et al., 2010). They do not
necessary improve point specific forecasts and often suffer from positioning and timing errors.
Convective-scale weather prediction models are combined with ensemble techniques in order
to assess forecast uncertainty.

The assessment of forecast uncertainty does not necessarily focus on the forecast error at
the end of forecast lead time. At first one is concerned about the forecast error at the begin-
ning of the forecast, the initial time step. Forecast uncertainty starts with the definition of an
initial atmospheric state, a 3-dimensional field around the globe which can never be known
with certainty. In a second step, one is concerned about how these initial uncertainties will
evolve during model integration using imperfect model physics. Instead of the trajectory of the
deterministic atmospheric state in the phase space one is interested in the evolution of the mul-
tivariate probability distribution of the atmospheric state (Epstein, 1969). The time evolution
of a probability function can be solved directly by the Liouville equation. However, solving the
Liouville equation is not feasible for high-dimensional systems like the atmosphere. A prag-
matic solution to the Liouville equation is the so called Monte Carlo ensemble (Leith, 1974).
A Monte Carlo ensemble consists of several model integrations, starting from different initial
conditions using different model physics. The ensemble of weather trajectories is an indicator
of forecast uncertainty and predictability, and represents the probability of the atmosphere to
be in a certain state.

Ensemble forecasts provide the user with additional information. An ensemble issues the
most probable state of the atmosphere, e.g. the ensemble mean, together with its uncertainty,
e.g. the ensemble spread. But ensemble predictions are only useful if they obey the principles
of good forecasts (e.g. Murphy, 1993). Altogether we want to know how much confidence we
can put into a forecast system. That leads us to the large field of forecast verification.

1.2. Verification and ensemble postprocessing

The verification of ensemble forecasts has mainly two branches. A verification based on the
individual ensemble members specifies attributes like reliability, discriminative power, or in-
formation content. It answers the questions: Does the ensemble represent sufficient ensemble
spread? Can the ensemble discriminate between different outcomes of the observations? This
does not necessarily lead to a ranking of several competitive ensemble systems. The second
branch is the verification of probabilistic products derived from the ensemble, like predictive
distribution or density functions, but also functionals thereof (e.g. mean, quantiles, probabili-
ties). The verification of probabilistic forecasts is based on proper scoring rules (Gneiting and
Raftery, 2007; Bröcker, 2012), which can either be regarded as cost-functions which a fore-
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1.3. Bayesian postprocessing

caster wants to minimize, or as a reward which should be maximized. In both cases, score
functions assign a value to a forecast system which allows to define a ”best” system or a ranking
of systems. One has to keep in mind, that such score functions not only evaluate the ensemble
but also the process used to derive the probabilistic forecast.

In this sense, statistical postprocessing is closely related to forecast verification. The trans-
lation of a set of realizations into e.g. an empirical distribution function, a mean value, or
quantiles is a simple form of postprocessing. More advanced methods use a historic data set of
ensemble forecasts and observations to define a statistical relationship. Regression techniques
allow to link covariates from the ensemble to the expected outcome of an observed variable.
Different covariates can increase the information content of an ensemble, while the statistical
relationship can account for calibration and systematic biases. Statistical models are estimated
such that the postprocessed forecasts optimize their respective score function, e.g. a score func-
tion which is consistent for the type of prediction (Gneiting, 2011a). The drawback of such a
statistical postprocessing is that we often have to make assumptions e.g. about the distribution
of a variable or about the form of the statistical relationship. The performance of statistical
models strongly depends on how well these assumptions fit to the real data. However, if a
suitable statistical relationship for the historic data set can be found, it can be used to make
future predictions given that the forecasting system does not change. The added value of post-
processing can be expressed in terms of an improvement of the score function. A decomposition
of score functions allows to attribute the improvement directly to forecast characteristics like
reliability/calibration, resolution/information content, or discrimination.

1.3. Bayesian postprocessing

Statistical postprocessing is often limited in the dependence structure and complexity of statisti-
cal relationships. Bayesian models offer a more flexible and complex formulation. Fundamental
in the Bayesian framework of statistical postprocessing is the treatment of unknown model pa-
rameters (e.g. regression coefficients) as random variables. Prior knowledge (i.e. expert opin-
ion or external knowledge) about the parameters can be included into the postprocessing by
appropriate prior distributions. Moreover, the hierarchical structure of a Bayesian model is suit-
able to describe complex structures, like spatial variations of model parameters. The drawback
of Bayesian models are the high-computational costs. Numerical solutions often rely on itera-
tive processes, which require a vast amount of computational capacities. Increasing technical
resources have made Bayesian modeling more feasible during the last decades. However, the
exploration of Bayesian models for numerical weather prediction application is still an active
field of research.

1.4. Outline

This study was conducted in the framework of the research project ”Bayesian ensemble postpro-
cessing”, funded by the German Meteorological Service (Deutscher Wetterdienst, DWD) within
the extramural research program. The main tasks of the project was the development of ensem-
ble postprocessing techniques tailored for precipitation forecasts derived from a convective-scale
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1. Introduction

ensemble system. The project started in 2009 and used a skeleton EPS interim solution, based
on the convective-scale NWP model COSMO-DE which is centered over Germany. A poor man’s
ensemble was constructed from the deterministic COSMO-DE model and time-shifted model
runs. The objectives of the first project phase focused on different types of probabilistic pre-
dictions (e.g. predictive distributions, functionals), the translation of ensemble forecasts into
probabilistic predictions, and the exploration of methods for statistical calibration. The main
results are published in Bentzien and Friederichs (2012).

In the second phase of the project, the most promising methods were applied to the COSMO-
DE-EPS, the first operational convective-scale ensemble prediction system. The German-focused
COSMO-DE-EPS was implemented 2010 by DWD. In a pre-operational phase between Decem-
ber 2010 and May 2012, COSMO-DE-EPS run under operational conditions, and became opera-
tional on May 22, 2012. The data set used in this study holds forecasts from the pre-operational
phase for the year 2011. The focus lies on probability and quantile forecasts derived from lo-
gistic and quantile regression. A Bayesian quantile regression model is developed and explored
for a further enhancement of quantile forecasts derived from the ensemble.

Special focus was hold on the verification of the probabilistic forecasts. Both forecast types
use a consistent scoring function. Probabilities are evaluated using the Brier score (Brier, 1950;
Murphy, 1973). The well known decomposition into reliability, resolution and uncertainty gives
more detailed insights in forecast performance than a single score value. The reliability diagram
yields as a graphical representation of forecast calibration. Verification of quantile forecasts
uses a score function based on the asymmetric check-loss function. Since the quantile score
is a proper score function, an analog decomposition into reliability, resolution and uncertainty
must exist. In Bentzien and Friederichs (2014), we have derived this decomposition in order to
extend the verification framework for quantile forecasts. We now dispose over a decomposition
which gives us detailed insights in the calibration of quantile forecasts, as well as a quantifica-
tion of their information content. A graphical representation of reliability for quantile forecasts
is explored.

Part I of this study gives a brief overview about numerical weather prediction and ensemble
generation. Chapter 4 is dedicated to ensemble forecast verification, and introduces the newly
developed extended framework for quantile verification. Part II comprises the statistical meth-
ods for ensemble postprocessing. The main results for the poor man’s ensemble are given in
chapter 7, which is a summary of the key findings of Bentzien and Friederichs (2012). Chapter
8 presents the results for COSMO-DE-EPS. In Part III the Bayesian quantile regression model is
explored. This study is closed in Part IV by a summary and conclusion.
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Numerical weather prediction and
verification
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2. Mesoscale numerical weather prediction

Modern weather forecasting describes the atmospheric state and motion by a set of mathemat-
ical equations. The equations follow the physical laws of fluid dynamics and thermodynamics,
e.g. the primitive equations. The initial atmospheric state is derived from irregular spaced
observations on the one hand, as well as satellite or radar data on the other hand. Data assimi-
lation methods are required to obtain the best available initial state to start the model integra-
tion. Numerical weather prediction (NWP) models solve the set of mathematical equations on
a discrete 3-dimensional grid defined around the globe. The effect of subgrid-scale processes
(e.g. clouds, precipitation, solar radiation, turbulence, soil and vegetation) on the atmospheric
state must be incorporated by empirical parameterizations, which play an important role in the
setup of a NWP model.

Since the beginning of operational weather forecasts in the 1950s, NWP models have seen
great advances (Harper et al., 2007). With increasing computer powers, the horizontal resolu-
tion of global NWP models lies between 30-50 km. In contrast to global models, limited-area
models cover only a limited part of the earth thereby allowing for even higher spatial and
temporal resolutions. They account for more complex physical processes which are treated ex-
plicitly instead of parameterizations and represent surface conditions and orography in more
detail. However, limited area models strongly depend on lateral boundary conditions which
must be obtained from a driving host model (e.g. global model).

A major task of meteorological services is the prediction and warning of weather that has
the potential for hazardous impacts, denoted as high-impact weather. High-impact weather in
western Europe is related to strong mean winds, severe gusts, and heavy precipitation (Craig
et al., 2010). Especially during summer, these weather situations are often related to moist
convective processes. In order to resolve such mesoscale processes explicitly, high-resolution
models (HRM) with a horizontal grid spacing of less then 10 km are developed. A prerequi-
site for NWP on these spatial scales is a non-hydrostatic formulation of the model dynamics.
Today, many meteorological services use HRMs for operational forecasts and weather warnings
for their specific area of responsibility (e.g. Skamarock and Klemp, 2008; Saito et al., 2006;
Staniforth and Wood, 2008; Baldauf et al., 2011b; Seity et al., 2011).

Despite all advances in HRM, precipitation is still one of the major challenges in NWP. Due to
its high temporal and spatial variability, it is one of the most difficult meteorological variables
to predict (Ebert et al., 2003). Precipitation can be induced by many processes on larger and
smaller scales (e. g. convection, convergence, orography), all of which have to be represented
within the model. Moreover, a complex chain of microphysical processes is necessary to describe
the building and life cycle of hydrometeors. Processes involved in precipitation range over
all scales from microphysics to the mesoscale and the larger scale. The skill of precipitation
forecasts critically depends on an accurate prediction of the whole atmospheric state, and thus
is often used to measure model performance in NWP (Ebert et al., 2003).
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COSMO-EU

COSMO-DE

GME

Figure 2.1.: Illustration of the operational model chain of DWD (Source: DWD).

The focus of this study is on precipitation forecasts for Germany, derived from the oper-
ational HRM of the German Meteorological Service (DWD). The operational model chain of
DWD consists of the global model GME with a horizontal resolution of 30 km, the regional
model COSMO-EU (7 km) which is centered over central Europe and is nested into the GME,
and the high-resolution model COSMO-DE (2.8 km) which retrieves hourly boundary condi-
tions from COSMO-EU. The model domain of COSMO-DE covers the area of Germany, parts of
the neighboring countries and most of the Alps region. The model chain is illustrated in Fig.
2.1. COSMO-EU and COSMO-DE are both applications of the flexible COSMO model which is
developed and maintained by the Consortium for Small-scale Modeling. The models are partic-
ularly designed to predict high-impact weather in Europe and Germany. The following section
gives a general overview of the COSMO model. Section 2.2 describes the operational setup of
COSMO-DE. Note that the forecast system is subject to steady changes which are documented
on the webpage http://www.dwd.de/modellierung (see Changes in the NWP-system of DWD).

2.1. The COSMO model

The COSMO model is a non-hydrostatic limited-area NWP model for operational forecasts and
research applications. It is developed and maintained by the members of the consortium, which
comprises the national weather services of Germany, Swiss, Italy, Greece, Poland, Romania,
and Russia. Other academic institutes and regional and military services are also participating.
Detailed information about COSMO and its various applications, including a large number of
documentations, can be found on the webpage http://www.cosmo-model.org. The following
overview of the COSMO model is taken from Schättler et al. (2013).

The main features of the COSMO model are the non-hydrostatic model dynamics which
are based on the primitive hydro-thermodynamical equations. They describe a full compress-
ible flow in a moist atmosphere on a rotated latitude-longitude grid with generalized terrain-
following vertical coordinates. The prognostic variables are wind, pressure disturbances, tem-
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2.2. The COSMO-DE forecasting system

perature, specific humidity, and cloud water content, with options for a prognostic treatment of
cloud ice content and precipitation in form of rain, snow, and graupel. Numerical time integra-
tion is based on variants of two time-level Runge-Kutta or three time-level leapfrog schemes.

The non-hydrostatic model formulation allows for simulations on a broad range of spatial
scales. The focus lies on the meso-� and meso-� scale. A horizontal resolution of 10 km or
less leads to a better representation of near-surface weather conditions like clouds, fog, frontal
precipitation and orographically and thermally forced wind systems. On spatial scales of 1-3
km deep moist convection should be explicitly resolved by the model dynamics. That allows
for a direct simulation of small-scale severe weather events like thunderstorms, squall-lines,
mesoscale convective systems and winter storms.

The COSMO model provides a comprehensive package of physical parameterizations to cover
different applications, spatial and temporal scales. The package includes parameterizations for
moist convection (Tiedtke, 1989; Kain and Fritsch, 1993), radiation (� two-stream radiation
scheme after Ritter and Geleyn, 1992), subgrid-scale clouds, subgrid-scale turbulence, amongst
others. Precipitation is parameterized by a Kessler-type bulk formulation with options for cloud
ice and graupel. The microphysical scheme also allows for a prognostic treatment of precipita-
tion in forms of rain, snow and graupel. COSMO includes variants of a multilayer soil model, a
fresh-water lake parameterization and a sea ice scheme.

Initial and lateral boundary conditions are generally provided by coarser gridded models, like
the global model GME or a COSMO model with lower resolution. COSMO uses a continuous
4-dimensional data assimilation scheme based on observation nudging (Newtonian relaxation).
Observations are taken from radiosondes (wind, temperature, humidity), aircrafts (wind, tem-
perature), wind profiler, and surface data from observational sites (SYNOP), ships, and buoys
(pressure, wind, humidity). In order to provide a full data assimilation cycle, COSMO has
an optional soil moisture analysis to improve the 2m-temperature, a sea surface temperature
analysis, and a snow depth analysis.

The COSMO model is a very flexible model and the actual setup depends on the application
and the availability of observational data. It can be used for short-range weather predictions
(e.g. the operational COSMO-EU or COSMO-DE) as well as for long-term climate projections
(COSMO-CLM; Rockel et al., 2008). Special versions of the COSMO model are developed by
academic researches, e.g. for aerosols and reactive tracers (COSMO-ART; Vogel et al., 2009),
or fog forecasting (COSMO-FOG; Masbou, 2008). Most recently, a regional reanalysis system
for Europe based on the COSMO model has been setup by the Climate Monitoring Branch of
the Hans Ertel Center for Weather Research (Bollmeyer et al., 2015).

2.2. The COSMO-DE forecasting system

COSMO-DE is at the high-resolution end of the DWD model chain and in operational use since
April 2007. The model setup is described in Baldauf et al. (2011a,b). The model grid covers
Germany and parts of the neighboring countries with a horizontal grid spacing of 0.025� (⇠ 2.8
km) and a total of 421 ⇥ 461 gridpoints (⇠ 1200 ⇥ 1300 km2). COSMO-DE uses 50 vertical
layers in generalized terrain-following height coordinates. The levels range between 10 m and
22 km above sea level. The dynamical core of COSMO-DE uses a two time-level split-explicit
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2. Mesoscale numerical weather prediction

Runge-Kutta variant. The advection of scalar fields is based on a three dimensional extension
of the Bott scheme (Bott, 1989).

Due to the horizontal grid spacing of 2.8 km deep moist convection should be explicitly re-
solved by the model dynamics. Only shallow convection is parameterized by a reduced Tiedtke
scheme. Prognostic precipitation in forms of rain, snow, and graupel is modeled within a three-
category ice scheme described in Reinhardt and Seifert (2006). Subgrid-scale turbulence is
parameterized according to the level-2.5 scheme of Mellor and Yamada (1974).

A key feature of COSMO-DE is the assimilation of radar derived rain rates through latent heat
nudging (LHN). The 3-dimensional thermodynamical field is adjusted such that the modeled
precipitation rates better match the observed radar field (Stephan et al., 2008). LHN initializes
convective events at the beginning of the simulation thereby improving forecasts during the first
forecast hours and leading to a short model spin-up time. Bierdel et al. (2012) showed, that
COSMO-DE produces horizontal wind fields that represent a realistic energy spectrum on the
atmospheric mesoscale down to 12-15 km which indicate an effective resolution of 4 to 5 of the
horizontal grid spacing.

COSMO-DE retrieves hourly boundary conditions from the coarser gridded COSMO-EU. The
model domain of COSMO-EU covers western Europe with a horizontal grid-spacing of 7 km.
In COSMO-EU, deep moist convection is fully parameterized by the Tiedtke scheme. The mi-
crophysical scheme considers a prognostic treatment of cloud ice and precipitation in form of
rain and snow. However, a LHN scheme is currently not applied to the operational COSMO-
EU. COSMO-DE and COSMO-EU both use a multilayer soil model (TERRA-ML) and a fresh-
water lake parameterization scheme (FLake). A sea-ice scheme is only applied to COSMO-EU.
While the update cycle for COSMO-EU starts every 6 hours for a forecast lead time of 2-3 days,
COSMO-DE is initialized every 3 hours and produces forecasts for the next 21 hours.

14



3. Mesoscale ensemble prediction

Forecasts of deterministic NWP models as described in Section 2 start from a single set of initial
conditions and predict the future state of the atmosphere. Such forecasts can never be certain.
The initial state of the atmosphere is always known within a certain margin of error and hence
affects forecast accuracy. Moreover, imperfect model dynamics and unresolved scales contribute
to the forecast error. The demand for ensemble prediction and probabilistic forecasting arose
already at the very beginning of numerical weather prediction by Eady (1949) and Thompson
(1957). Due to the uncertain character of initial conditions, the ”answer” in terms of numeri-
cal forecasts must also be stated in terms of probabilities (Eady, 1951). The idea was further
motivated by the research of Edward Lorenz in the 1960s. Predictability is a measure of fore-
cast error at a certain time step and provides additional information about the confidence of a
deterministic forecast (Lorenz, 1963b). It defines a horizon for skillful predictions from a NWP
model. The quantification of model uncertainty and hence predictability is a central part in
NWP.

3.1. Overview of operational ensemble prediction

The initial state of the atmospheric system can be considered as a single point in a phase space,
where NWP describes the evolution of the system along a certain weather trajectory. However,
small perturbations in the initial state lead to varying trajectories. Such forecast errors grow
with forecast lead time, and the future state of the atmosphere becomes uncertain or unpre-
dictable after some integration time (Lorenz, 1963a). In order to extend the range of skillful
forecasts, Lorenz (1965) proposed to use an ensemble of possible initial states instead of a sin-
gle estimate. Variations in the initial conditions should resemble the errors in observations. A
model integration is started from each of the initial conditions, leading to an ensemble of future
states. Probabilistic guidance in terms of the probability of an event or the mean and variance
of a certain weather quantity can be achieved. The skill of probabilistic forecasts at longer time
scales overcomes the limit of deterministic predictions. Ensembles of this kind are called Monte
Carlo ensembles.

A theoretical concept of Monte Carlo ensembles is given by Epstein (1969). Instead of calcu-
lating several model runs as an approximation to the forecast distribution, the evolution of the
probability density function of the atmospheric state in phase space can be predicted directly.
This is done by solving the Liouville equation, the continuity equation for probabilities. How-
ever, for high-dimensional problems like NWP a solution of the Liouville equation is computa-
tional unattainable. Instead, Monte Carlo forecasts can be regarded as a feasible approximation
to stochastic dynamic predictions (Leith, 1974), and became the common choice of operational
ensemble forecasting. Moreover, Monte Carlo ensembles can easily be extended to represent
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model uncertainties, e.g. by combining different NWP models (multi-model ensembles; see also
Palmer et al., 2005) or by using different setups of the same model (multi-physics ensemble). A
historical review of ensemble methods is given in Lewis (2005, 2014).

The generation of meaningful initial condition perturbations is a complex task. Kalnay et al.
(2006) show the close relation to data assimilation and give a comprehensive overview of the
variety of methods which are developed. Following Buizza et al. (2005), the performance
of ensemble forecasts strongly depends on the data assimilation scheme to create the initial
conditions and the numerical model to generate the forecasts. Moreover, a successful ensemble
should also represent model-related uncertainties. The generation of an appropriate ensemble
design is still a field of active research, and there is no general solution to define a perfect
ensemble setup.

3.1.1. Global ensemble prediction

After decades of active research, ensemble predictions on the global scale became routinely
available in the mid-nineties by the European Center for Medium-Range Weather Forecasts
(ECMWF; Molteni et al., 1996), the National Center for Environmental Predictions (NCEP; Trac-
ton and Kalnay, 1993), and the Canadian Meteorological Center (CMC; Pellerin et al., 2003).
Several competing schemes of initial perturbation generation were developed. The ECMWF EPS
uses singular vectors (Buizza and Palmer, 1995; Barkmeijer et al., 1999) to create 32 ensemble
members, and later 50 members (Buizza et al., 1998). Toth and Kalnay (1993) introduced the
breeding vectors, which are used by the NCEP Global Ensemble Forecast System (GEFS). Since
2006, 20 perturbed initial conditions are created by an extended version of breeding vectors
using the ensemble transform and rescaling (Wei et al., 2008). The CMC ensemble is based on
perturbations from data assimilation cycles described in Houtekamer et al. (1996). Since 2005,
the CMC EPS uses the ensemble Kalman filter (Houtekamer et al., 2009).

Model uncertainty was implemented into the ECMW EPS in 1998 by a stochastic parame-
terization scheme (Buizza et al., 1999; Palmer et al., 2005). The NCEP GEFS implemented
a stochastic total tendency perturbation scheme in 2010 (Hou et al., 2010). A multi-model
approach is used by the CMC EPS. Two different global models are used to drive 8 ensemble
members, respectively. Meanwhile other meteorological services follow the ensemble approach,
and some of these global ensemble systems are part of the THORPEX Interactive Grand Global
Ensemble (TIGGE; Park et al., 2008).

3.1.2. Regional ensemble prediction

Additional challenges arise for regional ensembles based on limited area models. The gener-
ation of initial perturbations is not straight forward (e.g. nonlinear error growth, faster error
growth on smaller scales). Model errors have a larger impact on regional ensembles. More-
over, the perturbation of lateral boundary conditions has to be considered. Eckel and Mass
(2005) and their references give a comprehensive overview about the challenges of short-range
ensemble forecasting. A pragmatic approach is the nesting of a limited area model into an
ensemble or set of different global or coarser grid models. The first operational short-range
ensemble forecasting systems became available in the first years of the 21th century, e.g. for
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North-America (NCEP SREF), the Pacific North-West (UWME; Grimit and Mass, 2002), and Eu-
rope (COSMO-LEPS; Marsigli et al., 2005). A more detailed overview is given in Bowler et al.
(2008).

3.1.3. Convective-scale ensemble prediction

The first mesoscale ensemble system with a convection-permitting NWP model was imple-
mented by DWD in 2010. The COSMO-DE-EPS is a multi-analysis and multi-physics ensem-
ble. Initial and boundary conditions are obtained from different global models, while model
uncertainty is accounted by different formulations of model physics. A detailed description of
COSMO-DE-EPS follows in Section 3.2.2. The UK MetOffice also implemented a convection per-
mitting ensemble (MOGREPS UK), which became operational in 2012 (Golding et al., 2014).
MOGREPS UK is a downscaling ensemble with a horizontal resolution of 2.2 km, covering the
area of UK and surroundings. The 12 members of MOGREPS UK are driven by initial and lat-
eral boundary conditions from the regional (and later from the global) ensemble MOGREPS R
(MOGREPS G). Currently under development is the AROME EPS by Météo France (Vié et al.,
2011). The generation of convective-permitting ensembles is still a field of active research, and
a brief overview is given in Peralta et al. (2012) and Vié et al. (2011).

3.2. Ensembles based on the COSMO-DE forecasting system

3.2.1. COSMO-DE lagged average forecasts

Before Monte Carlo ensembles became routinely available for NWP, Hoffman and Kalnay (1983)
proposed the method of lagged average forecasts (LAF) as pragmatic alternative to the compu-
tational expensive Monte Carlo ensemble. Forecasts from successive initialization times are
combined to an ensemble forecast for a common verification period. The LAF ensemble comes
at no additional costs, since the different members are already provided by the operational up-
date cycle of NWP. Several studies show the benefit of LAF in short-range weather prediction,
e.g. Lu et al. (2007); Mittermaier (2007); Yuan et al. (2009). However, LAF is a pragmatic
approach to ensemble generation. It ignores model errors and therefore does not represent all
sources of uncertainty.

In Bentzien and Friederichs (2012) we construct a LAF ensemble from the rapidly updated
COSMO-DE forecasting system. COSMO-DE is initialized every three hours and simulates a
period of 21 hours ahead. Four successively started forecasts describe a joint verification period
of at most 12 hours. The combination of model runs is illustrated in Fig. 3.1. Each forecast is
initialized with different initial and boundary conditions. Thus the LAF can be considered as an
multi-analysis ensemble. Note that the different initial conditions derived from the time-lagged
members are not independent since they are obtained from the previous forecast cycle, modified
by observations. However, COSMO-DE-LAF serves as a benchmark for the more sophisticated
ensemble prediction system COSMO-DE-EPS.
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0 63 129 211815 lead time

Figure 3.1.: Illustration of the COSMO-DE-LAF forecast for a common verification period of at most 12
hours. Forecasts are initialized every 3 hours. The lead time of the forecasts is 0 - 12h, 3 -
15h, 6 - 18h, and 9 - 21h, respectively.

3.2.2. COSMO-DE ensemble prediction system

COSMO-DE-EPS is developed by DWD as a multi-physics and multi-analysis ensemble based on
the COSMO-DE forecasting system (Gebhardt et al., 2011; Peralta et al., 2012). It runs pre-
operational at DWD since December 2010, and got operational on May 22nd, 2012. However,
the ensemble design and the operational setup did not change, and in this study we focus on
pre-operational forecasts for the year 2011. The 20 members of COSMO-DE-EPS differ from
COSMO-DE with respect to initial and boundary conditions and physical parameterizations.
Boundary conditions are provided by four global models (IFS from ECMWF, GME from DWD,
GFS from NCEP, and GSM from the Japanese Meteorological Agency). A so-called boundary
conditions EPS (BCEPS) is constructed using the coarser-grid model COSMO-EU. The ensemble
model chain emphasizes forecasts from the four global models, which are used to drive four dif-
ferent members from BCEPS. Every group of 5 members from COSMO-DE-EPS are nested into
one member of COSMO-BCEPS. In order to preserve the benefit of latent heat nudging, initial
conditions for the different COSMO-DE-EPS members are obtained by slightly modifying the
original COSMO-DE analyses with differences from the respective COSMO-BCEPS member and
COSMO-EU (Theis et al., 2012). Therefore, each member of COSMO-DE-EPS receives bound-
ary and initial conditions from one of the four BCEPS members. Model physics are disturbed by
parameter variation of parameterizations for microphysics, turbulence, and shallow convection.
Perturbations are applied to the turbulent length scale, the scaling factor for the thickness of
the laminar boundary layer for heat, the critical value for normalized over-saturation, and the
mean entrainment rate for shallow convection. More information about the meaning of the
perturbed parameters can be found in Baldauf et al. (2011a) and Schättler et al. (2013). The
variation of parameters is kept constant over time and for each ensemble member. Altogether
we have five different model physics configuration, each of them driven by four different initial
and boundary conditions from the BCEPS. The ensemble setup for COSMO-DE-EPS is illustrated
in Fig. 3.2.

While the LAF method was originally developed as pragmatic approach to ensemble predic-
tion, it nowadays becomes popular again as a useful tool to extend existing ensemble systems
which are often restricted in member size due to computational limits. In this study, the LAF ap-
proach is used to create a time-lagged ensemble from COSMO-DE-EPS. Analogously to COSMO-
DE, the COSMO-DE-EPS has a rapid update cycle of 3 hours and simulates 21-hour forecasts.
For each of the 20 members, four time-lagged forecasts are derived according to the scheme
in Fig. 3.1. All forecasts are equally weighted. This is in accordance to Ben Bouallègue et al.
(2013), who used a combination of three time-lagged model runs to enlarge COSMO-DE-EPS.
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IFS GME GFS GSM

maximal turbulent length scale

1 6 11 16

2 7 12 17

3 8 13 18

4 9 14 19

5 10 15 20

COSMO-DE-EPS

critical value for normalized over-saturation

scaling factor boundary layer for heat (max)

scaling factor boundary layer for heat (min)

mean entrainment rate for shallow convection

Figure 3.2.: Illustration of the COSMO-DE-EPS setup. The 20 members are driven by different global
models (initial and boundary conditions) and perturbed physics.

The time-lagged COSMO-DE (COSMO-DE-TLE in the following) consists of 80 members, and
allows inference of the ensemble size and the generation of ensemble spread. To this end, an-
other 20-member ensemble COSMO-DE-TLEsub is constructed, which consists of 5 members of
the COSMO-DE-EPS and their respective time-lagged forecasts1. Comparison of these ensem-
bles will show the contribution of the time-lagged members to the ensemble spread.

1The members 1,7,13,15,19 from Fig. 3.2 are chosen in order to have one member from each physical perturbation
and each global model.
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4. Verification of ensemble forecasts

Forecast verification in general is based on the inference of the joint distribution of forecasts and
observations. The joint distribution describes the degree of association between predictions for
future quantities and the events that have materialized. It is an a posteriori assessment of fore-
cast performance. In the simple case of binary forecasts and observations, the joint distribution
can be represented by a contingency table. It shows the relative frequencies of possible combi-
nations of predicted and observed events. The factorization of the joint distribution into a con-
ditional and marginal distribution allows to assess different attributes of forecast performance.
This is known as calibration-refinement or likelihood-base rate factorization and described in
detail by Murphy and Winkler (1987). Table 4.1 provides a list with certain characteristics of
forecast performance which might be of interest for users. A comprehensive overview of tra-
ditional forecast verification methods based on this distribution-oriented approach is given in
Wilks (2006b), Chapter 7, and Jolliffe and Stephenson (2012). However, most of the traditional
methods focus on the verification of deterministic forecasts, thereby comparing a single-valued
forecast to a single-valued observation.

The verification of ensemble forecasts faces new challenges. We have multiple forecasts on
the one side, which, in the ideal case, represent independent realizations from the distribution
of the observations. On the other side we still have a single-valued observation. Hence we
cannot observe what we want to predict: the distribution of future weather quantities. Forecast
and verification strategies are manifold. Ensemble forecasts are at first finite sets of determinis-
tic forecast realizations. An evaluation based on the individual members measures attributes of
forecast performance. Typical methods are the rank histogram to check ensemble consistency,
the discrimination score or the spread-skill relationship to assess the information content of the
ensemble. A brief overview of such methods is given in Weigel (2012). However, a set of realiza-
tions is in general not a useful forecast for potential users, e.g. decision makers or economists.
A typical forecast strategy is to transform the ensemble into a probabilistic prediction, e.g. a
predictive distribution or statistical functionals (e.g. moments, quantiles, probabilities). The
verification of probabilistic forecasts relies on proper score functions, e.g. cost functions which
a forecaster aims to minimize. Probabilistic forecast verification is described in detail by Gneit-
ing and Raftery (2007) and Bröcker (2012), amongst others. One has to keep in mind, that,
in the case of ensemble forecasting, the score evaluates not only the ensemble system but also
the process used to derive the probabilistic forecast. In this sense, verification is closely related
to postprocessing of ensemble forecasts. Probabilistic forecasts derived from the ensemble can
be optimized by minimizing the corresponding score function. More details will be given in
Chapter 5.

Proper scores are a quantitative measure of forecast accuracy. They assign a single value
to a forecast system which allows to define a ”best” system or a ranking of systems. To get
more detailed insights, decompositions of proper scores are proposed. Of particular interest are
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4. Verification of ensemble forecasts

Table 4.1.: Glossary of forecast attributes which are of interest in evaluating forecast performance. De-
scriptions are taken from Murphy (1993), Table 2, and Wilks (2006b), Section 7.1.3.

The joint distribution of an observation y and a forecast f can be factorized into a condi-
tional and marginal distribution following Murphy and Winkler (1987)

p(y, f)| {z }
joint distribution

= p(y|f) p(f)| {z }
calibration-refinement

= p(f |y) p(y)| {z }
likelihood-base rate

Association p(y, f) (linear) relationship between individual pairs of forecasts
and observation

Accuracy p(y, f) correspondence between individual pairs of forecasts and
observation; generally assessed by score functions

Skill p(y, f) accuracy of forecasts relative to a reference forecast; gener-
ally measured by skill scores

Bias p(f), p(y) unconditional bias or systematic bias
correspondence between the mean of the forecasts and the
mean of the observations

Reliability p(y|f) p(f) calibration or conditional bias
correspondence between conditional mean observations
and conditioning forecasts

Resolution p(y|f) p(f) difference between conditional mean observations (condi-
tional on the forecasts) and the unconditional mean of the
observations

Discrimination p(f |y) p(y) converse of resolution; difference between conditional
mean forecasts (conditional on the observations) and the
unconditional mean of the forecasts

Sharpness p(f) refinement
variability of forecasts; sharpness and resolution become
identical if forecasts are completely reliable

Uncertainty p(y) variability of observations

the forecast attributes reliability and resolution. Their estimation is related to the calibration-
refinement factorization proposed by Murphy and Winkler (1987). A decomposition has already
been derived for several scores, e.g. the continuous ranked probability score and the Brier score.
In Bentzien and Friederichs (2014), we derive a similar decomposition of the quantile score and
explore a graphical representation of quantile reliability. With this decomposition, we contribute
to an extended framework for quantile forecasts.

The remainder of this chapter is organized as follows: Section 4.1 focus on ensemble verifica-
tion using the rank histogram. An introduction to probabilistic forecast verification is given in
Section 4.2. The section describes the concept of proper scores and elucidates the general de-
composition of score functions to assess different attributes of forecast performance. Section 4.3
presents methods for the estimation of scores, with a special focus on the calibration-refinement
factorization.
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4.1. Rank statistics and the beta score

A first evaluation of statistical consistency between the ensemble and the verifying observations
is commonly done by the analysis rank histogram (e.g. Anderson, 1996; Hamill and Colucci,
1997). If the ensemble members represent mutual independent realizations from a perfect pre-
dictive distribution (i.e. a distribution that corresponds to the best forecaster’s estimate), then
the ranks of the observations within the ensemble are uniformly distributed. A generalization of
the rank histogram which applies to predictive distribution functions either empirical or para-
metric is the probability integral transforms (PIT, Gneiting et al., 2007). Consider an ensemble
of forecasts E1, ..., EM when y is the event that materializes. If FP is the predictive distribution
function based on E1, ..., EM , the probability integral transform is given by PIT = FP (y). For a
perfect or ideal ensemble, the PIT values are uniformly distributed. Deviations from the uniform
distribution can be used to identify deficiencies of the ensemble forecasting system. They are
usually displayed graphically by a histogram of the PIT values. A flat histogram indicates statis-
tical consistency between the ensemble and the verifying observations. A skewed distribution
of PIT values indicates a bias in the ensemble mean. If the histogram exhibits a bulb (u-shaped)
form, this points to an over (under) representation of ensemble spread. The observations are
too frequently in the middle (outside) of the ensemble forecast range. Note that if the verify-
ing dataset contains aggregations over a large spatial or temporal domain, deficiencies can be
averaged out (Hamill, 2001).

Keller and Hense (2011) propose the beta score (�S) and beta bias (�B) to quantitatively
evaluate the PIT histograms. A beta distribution which is determined by two parameters ↵,� is
fitted to the histogram of PIT values. Beta score and beta bias are then calculated as

�S = 1 �
r

1

↵ · � ,

�B = � � ↵ .

For a perfectly flat histogram, the beta score equals zero. The ensemble spread is underesti-
mated (overestimated) for a negative (positive) �S . A beta bias greater (smaller) than zero
indicates a bias towards higher (lower) values (L- or J-shaped histogram).

4.2. Probabilistic forecast verification

We now turn to probabilistic forecast verification. Consider again an ensemble forecast with
a finite set of realizations, and a probabilistic forecast f derived from the ensemble, e.g. a
predictive distribution FP . Here, f can also take the form of statistical functionals T [FP ] which
can be understood as point forecasts of the predictive distribution (Gneiting, 2011a). Typical
functionals are the mean E[FP ], the variance, or quantiles. A score function assigns a real value
to individual pairs of forecast and observation S(f, y). Table 4.2 shows some score functions
applicable to probabilistic predictions. The expected score is now the expectation of S(f, y)

with respect to the joint distribution p(f, y). Thus, the expected score is a measure of forecast
accuracy. Smaller scores indicate a better agreement between the probabilistic predictions and
the events that materializes.

23



4. Verification of ensemble forecasts

Table 4.2.: Consistent score functions for probabilistic forecasts. The predictive distribution or density
is denoted by F (t) or f(t). Forecasts in terms of statistical functionals are denoted by x.
Observations are continuous y 2 R, while R can be the real line or any interval on the real
line, e.g. the positive half axis. Probability forecasts are taken as probabilities for the excess
of a certain threshold u. The abbreviations are: CRPS – continuous ranked probability score,
LS – logarithmic score, MSE – mean squared error, MAE – mean absolute error, QS – quantile
score, BS – Brier score.

forecast type score function

cumulative distribution F(t) CRPS
R

(F (t) � H(t � y))2dt

probability density f(t) LS � log(f(y))

mean x = E[F (t)] MSE (y � x)2

median x = F�1(0.5) MAE |y � x|2

⌧ -quantile, ⌧ 2 [0, 1] x = F�1(⌧) QS ⇢⌧ (y � x)

probability, u 2 R x = 1 � F (t = u) BS (x � I(y > t))2

An important property of probabilistic forecast verification is the propriety of the score func-
tion (Murphy, 1973; Gneiting and Raftery, 2007). A score function is (strictly) proper if the
expected score is minimized if (and only if) the forecaster’s best judgment is issued as forecast.
Only proper score functions guarantee honesty and prevent hedging. There exists a wide range
of proper score functions, and their application depends on the kind of probabilistic forecast
that is issued. In this sense, Gneiting (2011a) demands that score functions must be carefully
matched with the type of probabilistic prediction. All score functions listed in Table 4.2 are
proper and consistent for the given functional. We will concentrate in the following on the con-
tinuous ranked probability score, the Brier score and the quantile score, which all have a close
relationship.

4.2.1. Proper score functions

We consider in the following continuous observations y 2 R, while R can be the real line
or any interval on the real line, e.g. the positive half axis. Forecasts issued in terms of a
predictive distribution function FP are commonly verified by the continuous ranked probability
score (CRPS, Matheson and Winkler, 1976; Hersbach, 2000)

SCRP (FP , y) =

Z

R
[FP (t) � H(t � y)]2 dt . (4.1)

Here, H(t�y) denotes the Heaviside step function. The predictive distribution FP can either be
obtained as empirical distribution of the ensemble members, or from statistical postprocessing
with the ensemble forecasts as covariates. For a deterministic forecast, the CRPS reduces to the
mean absolute error.
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The integral in eq. (4.1) averages the quadratic loss (FP (t)�H(t�y))2 over the whole range
of forecast values t 2 R. Deficiencies in different parts of the distribution function may remain
undetected by the CRPS. An evaluation with respect to certain thresholds or probability levels
is highly recommended (Gneiting and Ranjan, 2011). In this sense, we focus here on two other
proper scoring rules which are widely used in probabilistic forecast verification and are closely
related to the CRPS, namely the Brier score (BS) and the quantile score (QS).

The BS is used to assess the predictive performance of probability forecasts for a dichotomous
event. In the context of a continuous predictand, a probability forecast is defined as the proba-
bility that a certain threshold u 2 R will be exceeded. In terms of a predictive distribution this
probability is given by pu = 1� FP (u). However, pu can also be estimated as the expectation of
a Bernoulli distribution derived from postprocessing. The BS is the squared difference between
the forecasts pu 2 [0, 1] and observations {0, 1} and is given by (Brier, 1950)

SB(pu, y) = (pu � I(y > u))2 . (4.2)

Here, I is an indicator function which is set to 1 if the condition in brackets is true and zero
otherwise.

Another representation of the predictive distribution is given by its inverse, the quantile func-
tion. Quantile forecasts are derived from the predictive distribution as q⌧ = F�1

P (⌧) for the
probability levels ⌧ 2 [0, 1]. However, q⌧ can also be estimated via postprocessing, e.g. quan-
tile regression. The verification of quantile forecasts is done using the QS (e.g. Koenker and
Machado, 1999; Gneiting and Raftery, 2007; Friederichs and Hense, 2007)

SQ(q⌧ , y) = ⇢⌧ (y � q⌧ ) =

(
| y � q⌧ | ⌧ if y � q⌧ ,

| y � q⌧ | (1 � ⌧) if y < q⌧ .
(4.3)

Here, ⇢⌧ (.) is the so called check loss function. The check loss is the absolute error between
observations and quantile forecasts, weighted with ⌧ if the quantile forecast does not exceed
the observations and weighted with (1 � ⌧) otherwise. The QS is minimized if q⌧ is the ”true”
quantile of y. For more information about the check loss function and its relation to quantiles,
the reader is referred to Koenker (2005) (pp. 5-7) and Gneiting (2011b).

Both the BS and QS generalize to the CRPS by the integral of the BS over all thresholds u or
the integral of the QS over all probability levels ⌧

SCRP =

Z

R
SB(pu, y)du = 2

Z 1

0
SQ(q⌧ , y)d⌧ .

The second equality is based on the work of Laio and Tamea (2007). The three representations
of the CRPS are illustrated graphically in Fig. 4.1. In its original representation (eq. 4.1), the
CRPS is the square of the gray shaded error in the left panel, which is the difference between
the predictive distribution FP and the Heaviside function evaluated at y. The BS for a certain
threshold is the square of the distance between a point of the curve 1 � FP and 0 for y  t and
1 for y > t. The distances are shown by the vertical blue lines in the middle panel. Integrated
over all possible thresholds, this results in the same representation as the left panel. In the
QS representation (right panel), the CRPS is obtained as overlapping squares. Each square
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Figure 4.1.: Illustration of the CRPS and its relation to the Brier score and quantile score. The solid line
shows the predictive distribution (or a transformation thereof), and the dashed vertical line
the verifying observation.

represents the QS for a certain ⌧ , and is given by the distance between the observation and the
quantile curve |y�F�1(⌧)| times ⌧ if y > F�1(⌧) and times 1�⌧ if y < F�1(⌧). The integration
over all probability levels results in half of the squared area of the left panel.

4.2.2. Decomposition of proper scores

For simplification, FP is used in the following for any type of probabilistic prediction, either
in terms of a predictive distribution or as a statistical functional T [FP ], which can either be a
quantile T [FP ] = F�1

P or a probability T [FP ] = 1 � FP . Proper scoring rules can generally be
decomposed into the three main characteristics uncertainty, reliability, and resolution (Gneiting
and Raftery, 2007; Bröcker, 2009). The decomposition is related to the calibration-refinement
factorization proposed by Murphy and Winkler (1987).

The uncertainty is obtained from the climatological forecast FȲ (i.e. the marginal distribution
of the verifying observations), and is given by the score function S(FȲ , y). It describes the
variability of observations and hence is a property of the observations alone.

The reliability, also known as calibration, describes the statistical consistency between fore-
casts and observations. A forecast system is reliable, if the forecast distribution is equal to
the conditional probability of the verifying observation p(y | f) = p(f). In terms of the score
function, the reliability is given by the positive score difference

D(FP , FY |P ) = S(FP , y) � S(FY |P , y) , (4.4)

where FY |P is the conditional distribution of the observations given the forecasts. A small
reliability term indicates a good agreement between FP and FY |P . Note that the reliability is
also denoted as divergence of the score function (e.g. Thorarinsdottir et al., 2013).

The resolution is related to the information content of a forecasting scheme. It describes
the ability of a forecasting system to a priori distinguish between different outcomes of the
observations (with respect to the climatology FȲ ). The resolution is given by the positive score
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4.3. Score estimation

difference
D(FȲ , FY |P ) = S(FȲ , y) � S(FY |P , y) . (4.5)

A larger resolution indicates a better discrimination of events with respect to climatology. Given
the divergences (4.4) and (4.5), the score function S(FP , y) can be expressed as

S(FP , y) = S(FY |P , y) + D(FP , FY |P )

= S(FȲ , y)| {z }
uncertainty

�D(FȲ , FY |P )
| {z }

resolution

+ D(FP , FY |P )
| {z }

reliability

. (4.6)

Since the uncertainty solely depends on the verifying observations, changes in the predictive
forecasting scheme will only affect the resolution and reliability part of the score.

Decompositions as in (4.6) have been derived for the CRPS (Hersbach, 2000; Candille and
Talagrand, 2005) and the BS (Murphy, 1973). As part of this dissertation, the decomposition of
the QS was recently developed by Bentzien and Friederichs (2014). Software routines for the
calculation and decomposition of the CRPS, BS, and now also the QS, are freely available for the
R statistical language (R Core Team, 2014) within the ”verification” package (Gilleland, 2014).
However, the calculation of the score decomposition requires an estimation of the conditional
distribution FY |P , and will be discussed in the next section.

4.3. Score estimation

Typically scores are calculated as the average value of a score function within a sufficiently
large data set of forecast-observation pairs {(FP , y)i}, with i = 1, ..., N the sample size. Hence,
verification strongly depends on the size of the data set, spatial and temporal coverage, amongst
others. Following Gneiting and Raftery (2007), the expected score is estimated empirically by
the average score which is given by

S(FP ) =
1

N

NX

i=1

S(FPi , yi) . (4.7)

A single score value is assigned to a forecasting system and can be used to compare different
forecasting schemes on the same verifying data set {yi}. A smaller score denotes a system with
better predictive performance. Often it is more intuitive to compare skill scores, which measure
the relative gain of a forecast system with respect to a reference forecast (e.g. climatology)

Skill = 1 � S(FP )

S(Fref )
.

Skill scores are positively oriented, where negative values indicate no predictive skill. Positive
values show the percentage of improvement with respect to the reference forecasts and are
bounded by 1 (100% improvement).

The evaluation of resolution and reliability requires an estimation of the conditional distri-
bution function FY |P , which is also denoted as calibration function. The estimation relies on
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4. Verification of ensemble forecasts

a categorization of forecast values. The data set is divided into groups or subsamples of sim-
ilar forecast values. Each subsample is described by a discretized forecast value F

(k)
P , with

k = 1, ..., K the number of subsamples. The conditional probability F
(k)
Y |P = F (y | FP = F

(k)
P )

(or the respective statistical functional T [F
(k)
Y |P ]) is calculated from the respective observations

in subsample k. Note that for a statistic meaningful evaluation, each subsample must be suffi-
ciently represented by the data set.

Given the values for F
(k)
Y |P and F

(k)
P , the reliability is calculated from the divergence

REL =
1

N

KX

k=1

Nk D(F
(k)
P , F

(k)
Y |P ) , (4.8)

where Nk is the number of values in the subsample k and N =
P

k Nk. For a perfect calibrated
forecast, the reliability part is zero. Calibrated forecasts can be obtained from every forecast-
ing system using the calibration function FY |P instead of the predictive distribution FP . But
calibration alone is not a sufficient criterion of predictive performance. For example, a forecast
system issuing always the climatology frequency of an event is perfectly calibrated, but cannot
distinguish between different observations. The information content of a forecasting scheme is
assessed by the resolution part. The resolution is calculated from the divergence

RES =
1

N

KX

k=1

Nk D(FȲ , F
(k)
Y |P ) . (4.9)

A larger resolution indicates a better discrimination of different observations conditional on the
forecasts. The uncertainty is calculated as the average score for the sample climatology FȲ

UNC =
1

N

NX

i=1

S(FȲ , yi) . (4.10)

4.3.1. Decomposition of the Brier score

Let pu be the probability functional T [FP ] = 1�FP (u). The discretized forecast values are given
by p

(k)
u . The conditional observed frequencies are estimated from the observations yi which

belong to the k-th subsample i 2 Ik, as ȳ
(k)
u = N�1

k

P
i2Ik

Iy>u. The climatological forecast is
given by the unconditional mean ȳu = N�1

PN
i=1 Iy > u. Using the Brier score function (4.2)

and the expressions (4.8)-(4.10), the decomposition of the BS is given by (Wilks, 2006b)

1

N

KX

k=1

X

i2Ik

(p(k)
u � I(yi > u))2

=
1

N

KX

k=1

Nk (p(k)
u � ȳ(k)

u )2

| {z }
reliability

� 1

N

KX

k=1

Nk (ȳu � ȳ(k)
u )2

| {z }
resolution

+ ȳu(1 � ȳu)

| {z }
uncertainty

.
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4.3. Score estimation

4.3.2. Decomposition of the quantile score

Let q⌧ be the quantile functional T [FP ] = F�1
P (⌧). The discretized forecast values are given

by q
(k)
⌧ . Conditional observed quantiles y

(k)
⌧ are estimated as sample quantiles from the ob-

servations yi, with i 2 Ik, which belong to the k-th subsample. The climatological quantile
is estimated from all observations and denoted by ȳ⌧ . Given the representation of (4.8)-(4.10)
and using the quantile score function in (4.3), the decomposition of the QS is given by (Bentzien
and Friederichs, 2014)

1

N

KX

k=1

X

i2Ik

⇢⌧ (yi�q(k)
⌧ )

=
1

N

KX

k=1

X

i2Ik

h
⇢⌧ (yi � q(k)

⌧ ) � ⇢⌧ (yi � y(k)
⌧ )
i

(4.11)

� 1

N

KX

k=1

X

i2Ik

h
⇢⌧ (yi � ȳ⌧ ) � ⇢⌧ (yi � y(k)

⌧ )
i

(4.12)

+
1

N

NX

i=1

⇢⌧ (yi � ȳ⌧ ) . (4.13)

The r.h.s. of the equation describes the reliability (4.11), the resolution (4.12), and the uncer-
tainty (4.13) of the quantile score.

4.3.3. Graphical representation of reliability

The reliability can be displayed graphically within a reliability diagram. This is well known for
probability forecasts and the Brier score (e.g. Hsu and Murphy, 1986), and can also be adopted
for a graphical exploration of quantile reliability (Bentzien and Friederichs, 2014). A reliability
diagram shows the values of the calibration function F

(k)
Y |P , plotted against the discretized fore-

cast values F
(k)
P . For a well calibrated forecast, i.e. forecasts which are realizations from the

same data generating underlying distribution function as the observations, the points should lie
close to the diagonal line. Deviations of the diagonal line reveal deficiencies of forecast perfor-
mance, like constant over- or underforecasting. A comprehensive discussion of the reliability
diagram can be found in Wilks (2006b), Section 7.4.4.

4.3.4. Discretization error

The discretization procedure described in Sec. 4.3 automatically leads to a bias in score esti-
mates. The average score of the discretized forecasts will differ from the score of the original
forecast values. Moreover, the discretization will also affect the estimation of the resolution and
the reliability part of the score. The intervals for the discretization have to be chosen carefully
to keep the biases as small as possible. The uncertainty is estimated from the observations alone
and is not affected by the discretization.

The discretization is determined by the number of intervals, the interval width, and the rep-
resentation of discretized forecast values. Several studies investigate the discretization error of
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the BS (e.g. Atger, 2003, 2004; Bröcker and Smith, 2007; Bröcker, 2008). Probability forecasts
are bounded by 0 and 1. A categorization is often based on 10 intervals of equal width, and the
discretized forecast values are set to the mid of the interval. A sharpness diagram shows the
number of forecast-observation pairs in each interval. However, this might not be an optimal
binning strategy. If the intervals are not sufficiently represented, a robust estimate of the cal-
ibration function cannot be guaranteed. The undersampling will result in strong biases in the
decomposition. The bias can be reduced, if intervals are chosen such that they all contain an
equal number of forecast-observation pairs (Atger, 2004). Moreover, the number of categories
should be adjusted with regard to the sample size. The discretized forecast values may also be
better represented by the mean or median of forecast values within an interval. This will also
affect the graphical representation of reliability (Bröcker and Smith, 2007).

A comprehensive study about an optimal binning procedure for quantile forecasts can be
found in Bentzien and Friederichs (2014). In general, the quantile forecast range should be split
into non-overlapping intervals which are equally populated with forecast-observation pairs. The
intervals are thus defined by the 1/K-percentiles of the forecast values, with K the number of
intervals. We have shown that an equal-distributed binning will largely reduce the discretization
error compared to an equi-distant binning procedure. Moreover, we investigated the influence
of the number of intervals onto the bias of reliability and resolution. For small K, the resolution
is largely underestimated due to less variability between the forecast values. A large number of
intervals will lead to a better representation of the resolution, but strongly affects the reliability.
There has to be a trade-off between the gain in resolution and the loss in reliability to determine
the optimal value for K (see Fig. 2 in Bentzien and Friederichs, 2014).
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Probabilistic forecasting and statistical
postprocessing
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5. Methodology

Probabilistic forecasting requires the transformation (postprocessing) of the ensemble into prob-
abilistic predictions, e.g. an empirical distribution function, statistical moments, or quantiles.
Simple postprocessing methods use solely the ensemble forecast to derive probabilistic products
and will be explained in Sec. 5.1. More advanced postprocessing methods require a sufficiently
large historic data set of forecasts and observations. A statistical relationship is defined which
accounts for biases and systematic errors. Wilks (2006a) gives an overview of state-of-the-art
ensemble postprocessing techniques.

We distinguish between point forecasts like the mean, quantiles, or probabilities on the one
hand, and distributional forecasts in terms of a probability density function or cumulative distri-
bution function on the other hand. Typical point forecasts for precipitation are the probability
that a certain threshold will be exceeded, as well as quantiles. Probability forecasts are im-
portant for weather services to issue warnings for severe weather events. However, quantile
forecasts gain more and more importance in probabilistic forecasting of quantitative precipita-
tion. Quantiles need no prior knowledge about the range of data, as is necessary for probability
forecasts to define meaningful thresholds. Boxplots are a graphical representation of a distribu-
tion in terms of its quantiles, and are a very intuitive tool to communicate uncertainty.

Regression techniques can be used to calibrate point forecasts. Logistic regression (Hamill
et al., 2004) and quantile regression (Bremnes, 2004) directly estimate conditional probabili-
ties or quantiles of the variable of interest. These semi-parametric techniques do not require
an a priori distributional assumption. However, both techniques are limited to values that are
sufficiently sampled and are generally applied for each quantile or probability separately. Meth-
ods for distributional forecasts often rely on parametric distribution functions which require the
estimation of only a few distribution parameters. Typical methods are e.g. non-homogeneous
Gaussian regression (EMOS, Gneiting et al., 2005), Bayesian model averaging (BMA, Raftery
et al., 2005), or kernel dressing (Bröcker and Smith, 2008). A parametric distribution function
allows to calculate probabilities and quantiles directly from the distribution parameters. How-
ever, the performance of such forecasts strongly depends on how suitable the a priori selected
distribution fits the data. Sloughter et al. (2007) use BMA for precipitation forecasts, assuming
a mixture of a point mass at zero and a gamma distribution. Scheuerer (2014) utilizes a gen-
eralized extreme value distribution censored at zero using EMOS. In Bentzien and Friederichs
(2012), we utilize generalized linear models (GLM) for the estimation of various parametric
distribution functions for precipitation. A generalized Pareto distribution is used for a better
representation of the tail of the distribution.

This chapter is organized as follows: Section 5.1 starts with the translation of ensemble fore-
casts into probabilistic products. Regression techniques for point forecasts in terms of probabili-
ties and quantiles are described in Section 5.2. A parametric mixture model for a full predictive
distribution as introduced by Bentzien and Friederichs (2012) is given in Section 5.3.
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5.1. From ensemble to probabilistic forecasts

Consider ensemble forecasts Ei with i = 1, ..., M members. A probabilistic forecast can be
derived by calculating statistical functionals directly from the M realizations at each grid point.
These functionals, e.g. mean, standard-deviation or quantiles, are point-estimates and each of
them represents a property of the underlying predictive distribution. The mean Ē and variance
var(E) represent statistical moments, estimated by the arithmetic averages given by

Ē =
1

M

MX

i=1

Ei , var(E) =
1

M � 1

MX

i=1

(Ei � Ē)2 .

Threshold exceedance probabilities or quantiles are specific points of the predictive distribution.
Threshold exceedance probabilities are estimated by the fraction of ensemble members which
exceed a certain threshold u. The probabilities are given by the arithmetic average

Pr(u|E1, ..., EM ) =
1

M

MX

i=1

I(Ei > u) ,

where I(.) is the indicator function which is 1 if the condition in brackets is true and zero oth-
erwise. With regard to precipitation forecasts, we consider two types of precipitation events:
the occurrence of precipitation (i.e. precipitation above zero) using the probability of precipita-
tion (PoP) and precipitation above a threshold u using the probability of threshold exceedance
(PoT).

Quantiles are estimated from the order statistics of the ensemble member. We assume that the
ensemble members are already ordered such that E1 , ..., EM . There is no unique solution
for the estimation of sample quantiles, and various software packages will handle the calculation
differently. A comprehensive overview about the most common sample quantile definitions is
given in Hyndman and Fan (1996). They generalize sample quantiles to a weighted mean of
the form

Q(⌧ |E1, ..., EM ) = (1 � �)Ej + �Ej+1 ,

where the index j is given by j = b⌧M + rc for some r 2 R. The floor function b.c denotes
the largest integer not greater than the value in brackets. This study uses the type 8 estimator,
which is given by r = 1/3(⌧ + 1) and the weight function � = ⌧M + r � j.

5.1.1. Neighborhood method and first-guess forecasts

Operational ensemble systems are often limited in ensemble size due to the high computational
costs. Time-lagging (Sec. 3.2.2) is one inexpensive way to increase the ensemble size and hence
to improve the representation of ensemble spread. Another way is the so-called neighborhood
method introduced by Theis et al. (2005). It was originally introduced to obtain probabilistic
guidance from a deterministic model forecast as illustrated in Fig. 5.1. A 12-hour precipitation
forecast from one ensemble member (deterministic forecast) is shown in Fig. 5.1(a). Statistical
functionals are calculated from a spatial neighborhood of 5⇥ 5 grid points. In case of the mean
functional, the neighborhood method leads to a smoothed forecast field as illustrated in Fig.
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5.1. From ensemble to probabilistic forecasts

Figure 5.1.: Precipitation forecast in mm/12h valid for June 6, 2011 (12-24 UTC). The deterministic
forecast in (a) is one realization of the ensemble forecast. Probabilistic products are derived
from the deterministic forecast using a 5 ⇥ 5 neighborhood. Shown here is the mean (b),
the 0.9-quantile (c), and the PoT for a threshold of 1 mm/12h (d).

5.1(b). The fine scale structure is smoothed through the averaging process, which also removes
extreme precipitation values. The 0.9-quantile, estimated from the 25 gridboxes within each
neighborhood, is displayed in Fig. 5.1(c). A smoother structure of the precipitation pattern
is obtained compared to the deterministic forecasts, but extreme values are more pronounced
than in the mean forecast. The PoT for a threshold of 1 mm/12h is shown in Fig. 5.1(d).

The neighborhood-method can be applied to ensemble forecasts, which was first introduced
by Schwartz et al. (2010). Quantiles, probabilities or mean values are estimated from an en-
larged ensemble Eij , where i = 1, ..., M are the ensemble member and j = 1, ..., S2 are the nu-
merated grid points within a spatial neighborhood of S⇥S grid points. This method is especially
suitable for precipitation forecasts, which show small-scale features which are well represented
in high-resolution numerical weather prediction forecasts, but suffer strongly from displacement
errors. Fig. 5.2 shows probabilistic products derived from the 20 member COSMO-DE-EPS (left
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5. Methodology

Figure 5.2.: Probabilistic products derived from the ensemble forecast valid for June 6, 2011 (12-24
UTC). Shown here is the mean (a,d), the 0.9-quantile (b,e), and the PoT for a threshold of 1
mm/12h (c,f). The left column (a-c) is derived from the 20 members of the ensemble alone,
while the right column (d-f) uses additionally a 5 ⇥ 5 neighborhood.
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column) and under consideration of a 5 ⇥ 5 neighborhood (right column). The latter is built
from 20 members times 25 neighbors which lead to an enlarged ensemble of 500 values for
each gridpoint. Especially the PoT forecasts in Fig. 5.2(c+f) show larger variability compared
to the forecast system in Fig. 5.1(d).

The benefit of the neighborhood method to probabilistic quantitative precipitation forecasts
from an ensemble has been shown recently by Schaffer et al. (2011), Bentzien and Friederichs
(2012), Ben Bouallègue et al. (2013), and Scheuerer (2014). What remains difficult is the
determination of an appropriate size of the spatial neighborhood. Increasing the spatial scale
does improve the predictive performance of probabilistic forecasts in terms of reliability, but
also reduces the sharpness (Ben Bouallègue, 2011). The choice of spatial scale depends on the
user. Roberts and Lean (2008) suggest that the spatial neighborhood should be at least of the
size of the effective resolution or scale of predictability as estimated e.g. by Skamarock (2004)
or Bousquet et al. (2006). For COSMO-DE-EPS, a comprehensive study based on kinetic energy
spectra was made by Bierdel et al. (2012). They found that only processes of at least 4-5 times
the horizontal grid spacing can appropriately resolved by the model dynamics. We therefore
conclude that for COSMO-DE-EPS, the size of the neighborhood should at least be set to 5 ⇥ 5

grid boxes.
In the following, probabilistic products for precipitation derived from the ensemble under

consideration of a 5 ⇥ 5 neighborhood are denoted as first-guess forecasts. They serve as a
benchmark for probabilistic forecasts derived from a statistical model which is based on a his-
torical data set. First-guess forecasts often show deficiencies with respect to calibration, espe-
cially if the raw ensemble does not show sufficient ensemble spread. These deficiencies can be
overcome using one of the regression techniques explained in the next sections.

5.2. Logistic and quantile regression

More advanced methods for postprocessing use historic data of observations and ensemble
forecasts to define a statistical relationship, e.g. in terms of a regression ansatz. Once a suitable
regression model has been specified, it can be used to provide future predictions conditional on
the ensemble forecasts for future time steps. In the following sections, the response variable of
such a regression model is denoted by Y . The regression model depends on the ensemble by the
definition of covariates, further denoted by X. The advantage of the regression ansatz is, that
one can use more than one variable of the ensemble forecasts, and not necessarily the variable
which is to be predicted. The following notation is used in the remainder of this chapter: Capital
letters refer to random variables, while small letters denote a realization thereof. Bold letters
indicate multivariate quantities. Vectors x are taken as column vectors, while the transposed
vector is given by x0.

5.2.1. Logistic regression

Logistic regression (LR) is used to derive calibrated forecasts for the PoP and PoT. LR is a gen-
eralized linear model, where the variable of interest follows a Bernoulli distribution (Fahrmeir
and Tutz, 1994). Since we have a continuous response variable Y , a dichotomous event is de-
fined by the exceedance of a threshold u. LR assumes that the probability that Y > u depends
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on a linear predictor ⌘ = x0�u transformed by the inverse logit function

Pr(Y > u|X = x) = logit(⌘) =
exp(x0�u)

1 + exp(x0�u)
.

Here, x is a vector with predictive covariates, starting with a 1 accounting for the intercept. The
regression coefficients �u are estimated by maximizing the likelihood ⇤ from a training sample
i = 1, ..., N of forecast-observation pairs

�̂u = arg max
�u

⇤(�u) , with

⇤(�u) =

NY

i=1

(x0
i�u)I(yi>u)(1 � x0

i�u)I(yiu) .

Here and in all regression models that follow, the predictive covariates x are taken from the
ensemble forecasts. We are not restricted to precipitation forecasts and the mean functional,
respectively, as is the case for e.g. BMA or kernel dressing. The regression ansatz allows to
incorporate any kind of information from the ensemble: categorical as well as continuous vari-
ables, probabilities, quantiles, et cetera. Note that covariates should be normalized before they
enter the regression model.

5.2.2. Quantile regression

Quantile regression (QR) is a method to estimate conditional quantiles of the response variable
Y given the covariates X by the use of a linear model and is described in detail by Koenker
(2005). For a given probability level ⌧ 2 [0, 1], the quantile regression function is defined as

Q(⌧ |X = x) = x0�⌧ . (5.1)

The regression coefficients �⌧ are estimated in order to minimize the quantile score function

�̂⌧ = arg min
�⌧

NX

i=1

⇢⌧ (yi � x0
i�⌧ ) . (5.2)

Censored quantile regression

An important property of the quantile function is the equivariance to monotone transformations
(Koenker, 2005, pp. 39). Quantiles are determined from the order statistics of the data, which is
not destroyed by monotone transformations. The equivariance of the quantile functions allows
the formulation of a censored quantile regression for variables which are bounded by zero.
Analogously to (5.1) and (5.2), the censored QR is formulated as

Q(⌧ |X = x) = max
�
0,x0�⌧

�
,

�̂⌧ = arg min
�⌧

NX

i=1

⇢⌧
�
yi � max

�
0,x0

i�⌧

��
.
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The coefficients �̂⌧ of the censored QR are estimated in a three step procedure (according to
Chernozhukov and Hong, 2002; Friederichs and Hense, 2007). In the first step, the probability
of precipitation is estimated using logistic regression. Based on the estimated PoP, which we
denote by ⇡0 in the following, a subsample is chosen with J0 = {i : ⇡0,i > 1 � ⌧}. The
second step calculates an initial estimate of the regression coefficients with standard quantile
regression based on the subsample J0. Another subsample J1 = {i : x0

i�̂⌧ > 0} is selected. Step
three estimates the regression coefficients �̂⌧ based on the subsample J1.

The advantage of this three step procedure is, that standard quantile regression can be cal-
culated by existing software packages like the ”quantreg” package by Koenker (2013) for the R
statistical language (R Core Team, 2014).

5.3. Mixture models

Probability and quantile forecasts can also be derived from a parametric distribution function.
Following the approach of Sloughter et al. (2007), the conditional probability density function
(PDF) of precipitation fY (Y | X = x) can be described using a two step model. In a first step
the probability of precipitation ⇡0 = Pr(Y > 0 | X = x) is estimated via LR. In a second step
the PDF of the amount of precipitation given that it is not zero is assumed to follow a parametric
distribution f⇤, defined on R+. This yields a predictive PDF of the form

fY (y | X = x) =

(
1 � ⇡0 for y = 0

⇡0 f⇤(Y | X = x) for y > 0 .
(5.3)

The cumulative distribution function (CDF) for precipitation of the PDF in (5.3) is given by

FY (y | X = x) � FY (0 | X = x) =

Z y

0
fY (t | X = x)dt

= (1 � ⇡0) + ⇡0 F⇤(y | X = x, y > 0) . (5.4)

If the CDF in (5.4) is known, it is possible to calculate the PoT forecasts as well as conditional
quantiles. The PoT’s for a threshold u are derived as

Pr(Y > u | X = x) = 1 � FY (u | X = x)

=

(
⇡0 for u = 0

⇡0(1 � F⇤(u | X = x)) for u > 0 .

The quantile function QY (⌧) = F�1
Y (⌧) is obtained by inverting the CDF

FY (y | X = x) = ⌧ = 1 � ⇡0 + ⇡0 F⇤(y | X = x)

⌧̃ =
⌧ � 1 + ⇡0

⇡0
= F⇤(y | X = x) ,

QY (⌧ | X = x) =

(
0 for ⌧̃  0 ,

F�1
⇤ (⌧̃ | X = x) for ⌧̃ > 0 .
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Since precipitation is a censored random variable Y 2 [0,1], the quantile function is cen-
sored, too. A quantile can take values greater than zero only if the probability of precipitation
⇡0 is greater than 1 � ⌧ . This follows directly from the condition

⌧̃ =
⌧ � 1 + ⇡0

⇡0
> 0

⌧ � 1 + ⇡0 > 0

⇡0 > 1 � ⌧ .

For f⇤ we assume a parametric distribution function defined on the positive real line which
belongs to the exponential family. The expectation of f⇤ and the variance parameter can thus
be estimated by generalized linear models (GLMs).

5.3.1. Generalized Linear Model

The theory of GLMs is well described in Fahrmeir and Tutz (1994) or McCullagh and Nelder
(1989). A GLM is based on two assumptions. The distributional assumption expects that the
response variable Y is conditionally independent given the covariates X and that their type
of distribution belongs to the exponential family. The structural assumption implies a relation
between the conditional expectation value µ and the linear predictor ⌘ = x0� of the form

µ(Y | X = x) = h(⌘) = h(x0�) .

Hereby, the function h is called the response function and the inverse is called the link function
h�1(µ) = g(µ) = ⌘. Thus, the GLM is described by the type of the exponential family, and the
response or link function. The conditional variance of Y is of the form

Var(Y | X = x) = �V (µ) ,

where � is the dispersion parameter. The variance function V (µ) is a function of the mean and
depends on the distributional assumption.

The parameters of a GLM are estimated from training data. At first, the regression coefficients
for the mean are estimated using maximum-likelihood techniques

�̂ = arg max
�

NX

i=1

⇤(�|yi, µi) , with µi = x0
i� .

The likelihood function ⇤ is given by the selected distribution function. The dispersion param-
eter is estimated subsequently from the moment estimator

�̂ =
1

N � P

NX

i=1

(yi � µi)
2

V (µi)
,

where N is the number of observations and P is the number of predictors. If µi and � are
estimated, they can be related to the distribution parameters. In this study, we use the Gamma,
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5.3. Mixture models

log-normal, and inverse-Gaussian distribution.

Gamma distribution

The Gamma distribution is fully determined by a shape parameter ↵ and a scale parameter ✓. It
has the form

f�(y|↵, ✓) =
1

✓�(↵)

⇣y

✓

⌘↵�1
exp

⇣
�y

✓

⌘
with ↵, ✓ > 0 ,

with expectation µ� = ↵✓ and variance �2
� = ↵✓2 (Wilks, 2006b). Hereby, �(·) denotes the

Gamma function. f� can be reparameterized in terms of µ� and ↵ as

f�(y|µ�,↵) =
1

�(↵)

✓
↵

µ�

◆↵

y↵�1 exp

✓
�y↵

µ�

◆
.

The response function determines how the linear predictor enters the gamma distribution. Typi-
cal response functions for a gamma distribution are the reciprocal µ� = ⌘�1, the identity µ� = ⌘,
or the exponential function µ� = exp(⌘). The variance is given by �2

� = µ2
�/↵, with V (µ) = µ2

and � = 1/↵ for the Gamma distribution. Hence, the shape parameter ↵ is derived by

�̂ =
1

↵̂
=

1

N � P

NX

i=1


yi � µ̂�,i

µ̂�,i

�2

.

Log-normal distribution

The log-normal distribution with mean µln and standard deviation �ln is given by

fln(y; µln,�ln) =
1

y�ln

p
2⇡

exp


�(ln(y) � µln)2

2�2
ln

�
, y > 0 .

A log-normal GLM is estimated with a Gaussian linear model for log-transformed variables. The
variance is related to the dispersion parameter using the variance function V (µ) = 1

�̂ = �̂2
ln =

1

N � P

NX

i=1

(ln(yi) � µi)
2 .

Inverse-Gaussian distribution

The inverse-Gaussian distribution is described by a mean µig > 0 and shape parameter k > 0

fig(y; µig, k) =

s
k

2⇡y3
exp

 
�k(y � µig)

2

2µ2
igy

!
, y > 0 .

The variance is given by �2
ig = µ3

ig/k, with V (µ) = µ3 and � = 1/k for the inverse-Gaussian
distribution. The shape parameter k is related to the dispersion parameter by

�̂ =
1

k̂
=

1

N � P

NX

i=1

(yi � µ̂�,i)
2

µ̂3
�,i

.
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5. Methodology

5.3.2. A mixture model with GPD tail

The parametric mixture might well represent the bulk of the distribution, but not necessarily
captures the right tail behavior. All proposed distributions in previous section exhibit an expo-
nential tail behavior, but several studies show evidence for a heavy tail behavior of precipitation
(e.g. Friederichs, 2010). A misrepresentation of the tail behavior might lead to large prediction
errors for extreme precipitation events. Extreme value theory provides an asymptotic theory for
the tail of a distribution, and is particularly developed to make predictions beyond the range of
the data. Hence, a very natural extension of the mixture model is to represent the tail of the
conditional distribution using a generalized Pareto distribution (GPD, Coles, 2001).

The GPD is used to model excesses Z = Y � u⌧ over large thresholds u⌧ . Extreme value
theory proves that under very general conditions Z asymptotically follows a GPD for large u⌧

FGPD(z) = 1 �
✓

1 +
⇠z

�u

◆�1/⇠

, z > 0 .

Hereby, �u denotes the scale parameter and ⇠ the shape parameter.
A relatively simple formulation of a mixture with variable tail behavior is used in Bentzien

and Friederichs (2012). The mixture model in Eq. (5.4) models the range below u⌧ , which is
taken as the conditional ⌧u-quantile, and the GPD models the thresholds above. The probability
⌧u is set to 0.95. The GPD is additionally conditioned on the covariates by assuming a linear
model for the scale parameter with

�u = x0�� .

The shape parameter ⇠ = ⇠0 is kept constant. The complete CDF of the GPD mixture reads

FY (y | X = x) � FY (0 | X = x) =

(
(1 � ⇡0) + ⇡0 F⇤(y | X = x) for y  u⌧ ,

⌧u + (1 � ⌧u)FGPD(y � u⌧ | X = x) for y > u⌧ .

PoT forecasts for large thresholds u > u⌧ are obtained by

Pr(Y > u | X = x) = (1 � ⌧u)

✓
1 +

⇠(y � u⌧ )

�u

◆�1/⇠

.

Estimates of conditional quantiles for ⌧ > ⌧u are obtained by the quantile function

QGPD(⌧ | X = x) =

8
<
:

u⌧ + �u
⇠

h
(1 � ⌧̃)�⇠ � 1

i
for ⇠ 6= 0 ,

u⌧ + �u log(1 � ⌧̃) for ⇠ = 0 ,

where ⌧̃ is defined as ⌧̃ = ⌧�⌧u
1�⌧u

(Friederichs, 2010).
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6. Precipitation: observations and model data

In this chapter we will shortly discuss the nature of observational data for precipitation and
introduce the data sets used in this study. Precipitation results from complex micro-physical
and dynamical processes on smaller and larger scales and exhibits a large temporal and spatial
variability. Measurements have to capture the mixed discrete-continuous character of precip-
itation, the identification of rainfall occurrence and the amount of precipitation. There exists
mainly two sources of observational data for precipitation:

• In-situ measurements are obtained from rain gauges located at observational sites. They
are point measurements limited to single locations, but with high data quality.

• Remote sensing observations like radar or satellite have a good spatial and temporal cov-
erage. However, they cannot directly measure the actually rainfall amount. Radar reflec-
tivity has to be converted to precipitation rates by empirical relationships.

In this study, in-situ measurements from rain gauges are used as target for precipitation. The
data is taken from the observational network of DWD1. DWD disposes over a dense network
of rain gauges located all over Germany. This study uses data from about ⇠ 1000 observa-
tional sites with hourly measurements of precipitation. One has of course to keep in mind
that the NWP model output represent area-mean values of precipitation for a single gridbox
(here 2.8km⇥2.8km). The area-mean can naturally not capture heavy precipitation amounts
measured by localized rain gauges. However, the ability of statistical postprocessing to link
area-mean forecasts to localized observations will be explored. Throughout the study, forecast-
observation pairs are build from the nearest gridpoint of COSMO-DE to the observational sites.

The following sections describe the two data sets for COSMO-DE-LAF and COSMO-DE-EPS
which are used for the evaluation of precipitation forecasts derived from the COSMO-DE en-
sembles. Focus of the study are daily 12-hourly precipitation accumulations between 12 to 24
UTC.2

6.1. Data set I: COSMO-DE-LAF

The first part of the study considers the development and adaption of suitable postprocessing
methods for precipitation from COSMO-DE based ensemble systems. Since data of COSMO-
DE-EPS was only available at the end of 2011, this part was done using the COSMO-DE-LAF
as skeleton EPS interim solution. Three years of data were collected from the DWD archive,
namely the time period from July, 2008 until June, 2011. Statistical postprocessing relies on

1The rain gauge data was kindly provided by M. Göber, Deutscher Wetterdienst.
2Note that the construction of the 4 member LAF is restricted to a common forecast period of 12 hours, see section

3.2.1.
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6. Precipitation: observations and model data
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Figure 6.1.: Mean precipitation intensities in mm/12h for (a) station measurements (linearly interpo-
lated) and (b) COSMO-DE forecasts for the period July 1, 2008 to June 30, 2011. The stars
in (a) represent the locations of observational sites (Figure 1 from Bentzien and Friederichs,
2012).

an extensive training period, and robust estimates require a sufficiently long data set. However,
if the training period is too long, changes in the operational forecast systems can deteriorate
the predictive skill of the postprocessing. Reforecasts are useful to study the effect of long-time
training periods (e.g. Hamill et al., 2008; Fundel et al., 2010) but are so far not available for
COSMO-DE.

To construct 12-hourly precipitation forecasts from the LAF ensemble, we use daily model
runs of COSMO-DE initialized at 03, 06, 09, and 12 UTC with forecast lead times 9-21h, 6-
18h, 3-15h, and 0-12h, respectively. The analysis is restricted to a sub-domain of the original
COSMO-DE model domain, which consists of 160 ⇥ 160 gridboxes and covers large parts of
Northwest-Germany (see Fig. 6.1). The limited model domain reduces the computational costs
and the amount of data remains considerable. Altogether, 445 observational sites are located
in the subdomain. The data set thus contains values from 1095 days at 445 locations (see Tab.
6.1).

Figure 6.1 shows mean precipitation intensities averaged over the evaluation period. The
gauge measurements are linearly interpolated only for enhanced visibility. Both, COSMO-DE
and station measurements show enhanced precipitation over the mountain ranges in the south-
ern parts. The highest precipitation intensities occur over Harz (51.8�N, 10.6�E) and Thüringer
Wald (50.7�N, 10.8�E), followed by Vogelsberg (50.5�N, 9.2�E) and Sauerland/Rothaargebirge
(51�N, 8�E). Lower precipitation intensities are observed and modeled over the northern parts
with mostly flat topography.

6.2. Data set II: COSMO-DE-EPS

The evaluation of COSMO-DE-EPS is based on a one-year evaluation period from January to
December, 2011. Ensemble forecasts are available for 357 days within this period. Daily 12-
hourly precipitation forecasts are taken from the COSMO-DE-EPS initialized at 12 UTC with
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6.2. Data set II: COSMO-DE-EPS

Figure 6.2.: Climatology of the observations for the year 2011: (a) The rain gauge network at DWD
(color coding shows the topography of Germany). (b) Mean precipitation intensities in
mm/12h at each station, linearly interpolated for enhanced visibility. (c) Frequency of days
with precipitation above zero.

lead time 0-12h. The time-lagged ensemble COSMO-DE-TLE is constructed analogously to the
LAF from the ensemble runs initialized at 03, 06, 09, and 12 UTC. The verification domain is
extended to Germany, where we dispose of observational data from 1079 rain gauges. Thus, the
data set contains values from 357 days at 1079 locations (see Tab. 6.1). Figure 6.2(a) shows
the location of the rain gauges together with the topography. Germany is characterized by a flat
topography in the northern parts and the coastal regions of Nordsee and Ostsee. The topography
is continuously rising towards the southern parts of Germany, with the highest elevations in the
alps.

Figure 6.2(b) shows the mean precipitation intensities for each station averaged over the year
2011. The data is linearly interpolated for enhanced visibility. The highest precipitation inten-
sities are observed in the alps region and in the mountainous area of Schwarzwald (48�N, 8�E).
Higher precipitation intensities are also observed in the German Mittelgebirge, especially over
the Rheinisches Schiefergebirge (51�N, 8�E) and Thüringer Wald (50.7�N, 10.8�E). The north-
eastern parts (coastal regions of Ostsee) also exhibit higher precipitation intensities. Lower
precipitation intensities occured over the federal states Rheinland-Pfalz (50�N, 8�E), Sachsen-
Anhalt (52�N, 12�E) and the northern part of Thüringen.

The frequency of rain days (days with precipitation above zero) as observed at each station in
2011 is shown in Fig. 6.2(c). The frequencies range between 25% and 45%. More rain days are
observed over north-western Germany and the coastal regions, but also over mountainous area.
The most rain days occur at the Rheinisches Schiefergebirge. The eastern part of Germany
(Sachsen-Anhalt, Brandenburg) is very dry, with small precipitation intensities, but also the
lowest number of rain days in 2011. Lower frequencies can also be found along the river
valleys of Rhein and Donau.

Fig. 6.3(a) shows the seasonal variability of mean precipitation intensities. The year 2011 is
characterized by lower precipitation intensities in spring, and higher intensities during summer
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Figure 6.3.: Summary statistics of the observations for the year 2011: (a) Monthly average of precipi-
tation between 12-24 UTC at each station. (b) Distribution of precipitation intensities. (c)
Number of stations with missing data.

which are often related to convective events. The November 2011 was unusually dry, and nearly
no precipitation was observed in Germany. The November was followed by a wet December
with precipitation intensities nearly as high as in summer3. The distribution of 12-hourly rainfall
events is shown in Fig. 6.3(b) for different categories. No rainfall is observed in 67% of the data.
Higher rainfall events occur less frequently, and values of 10 mm/12h or more are only observed
in 3% of the data (10.359 observations � 10 mm/12h). However, the range of 12h rainfall
amounts goes up to 90 mm/12h. The highest rainfall event of 93.2 mm/12h was observed in
Kubschütz (51.2�N, 14.5�E) in the very eastern part of Germany on July 20, 2011 between 12
and 24 UTC. A low pressure system lead to strong precipitation and thunderstorms in most of
the south-eastern parts of Germany.

The amount of missing data is small for the selected stations. An overview is given in Fig.
6.3(c). 79% of the stations have complete time series for 2011, and 12% have only one missing
value. Other stations have 2 to 8 missing values. A summary of the number of observations
within both data sets is given in Tab. 6.1.

3A very detailed analysis about the general precipitation climatology in Germany can be found on the webpage
http://www.dwd.de/klimaatlas (Deutscher Klimaatlas).

Table 6.1.: Overview about the size of the data sets: model domain (NW-GER: north-western Germany,
GER: Germany), time period of investigation, number of days, number of stations, number of
total observations, number of missing values (NA; less than 1%).

domain time period # days # stations # total # NA
Data set I NW-GER 01.07.2008 - 30.06.2011 1095 445 487 275 3 141

Data set II GER 01.01.2011 - 31.12.2011 357 1079 385 203 524
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7. Evaluation of COSMO-DE-LAF

The COSMO-DE-LAF serves as benchmark model to study the generation and calibration of
probabilistic quantitative precipitation forecasts from a high-resolution, convection-permitting
NWP model. The evaluation focus on the one hand on the general capability of the bench-
mark system to provide probabilistic guidance for precipitation. On the other hand, the evalu-
ation determines a suitable setup for a statistical calibration model. This includes the setup of
training- and forecast periods, the choice of predictive covariates and the comparison of various
postprocessing techniques as described in Chapter 5. The main results of the generation and
calibration of probabilistic quantitative precipitation forecasts from COSMO-DE-LAF are pub-
lished in Bentzien and Friederichs (2012) using the data set I as described in Section 6.1. The
key results are briefly summarized in the following sections.1

7.1. Statistical model setup

Statistical postprocessing relies on training data to determine the unknown parameters (i.e.
regression coefficients) for the statistical model. An important aspect for the temporal setup is
a strict separation of training and verification data. The observational data used for verification
have to be independent from those used for the training. To this end, the data set is divided
into blocks of 15 days which build the verification periods. For each verification period, the
preceding time period is used for the training of the parameters of the postprocessing. Forecasts
are then derived for the following 15 days. In this way we obtain a series of forecasts for the
evaluation period of 3 years that are independently derived from the respective observations
used for verification. Note that in this setup the data from all stations are pooled into one vector
and the relation between the local predictors and the predictand is assumed to be spatially
constant. An illustration of the gliding training and verification periods is given in Fig. 7.1.

In a first step, the length of training period has to be determined. The training period has
to be sufficiently large to obtain stable parameter estimates. However, longer training periods
are affected by inhomogeneities due to the seasonal cycle and changes in the operational model
version of COSMO-DE. Training periods between 20 and 90 days previous to the 15 days of
verification are tested. The predictive skill increases with the length of the training period up
to 50 days. Longer training periods lead to inconsistent behavior of a variety of scores, and
slowly deteriorates the predictive performance. Hence, the training length is set to 50 days in
the following. To study the effect of sampling uncertainty, an analysis is included with a training
sample that makes use of the complete data. Only the prediction period of 15 days extended by
15 days is withheld from the training. Hence, the training period encompasses 1065 days from
the 3-year time period of investigation. In order to account for the seasonal changes within the

1Please note that the COSMO-DE-LAF was abbreviated by COSMO-DE-TLE in the original publication.
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Figure 7.1.: Illustration of a gliding training and verification period. For each block of 15 days, forecast
are obtained by a training period of the preceding 20 to 90 days.

training data, a sine and cosine with a period of one year is included into the postprocessing.
In a next step, a set of informative predictors has to be chosen. A typical predictor is the

ensemble mean, as used by Wilks (2009) and Hamill et al. (2004), amongst others. Bremnes
(2004) uses quantiles, minima and maxima from the ensemble, as well as relative frequencies
of precipitation as predictive covariates. In this study, first-guess ensemble forecasts derived
from the LAF under consideration of a spatial neighborhood of 5 ⇥ 5 gridboxes are taken as
covariates. These forecasts are moreover considered as uncalibrated ensemble forecasts, and
the value of the postproccesing is determined by the added value over the first-guess forecasts.
The covariates comprise

• the ensemble mean, denoted as first-guess mean (fgM),

• first-guess quantiles (fgQ⌧ ) ranging from ⌧ = 0.25 to ⌧ = 0.999,

• the first-guess probability of precipitation2 (fgPoP), and

• first-guess probabilities of threshold exceedance (fgPoTu) for thresholds of 5 and 10
mm/12h.

Several combinations of predictors are tested for each threshold u and probability level ⌧ sep-
arately. The identification of the most informative predictors will be presented in the next
section.

To further improve the predictive performance of statistical models, many studies apply power
transformations to precipitation accumulations before they enter the postprocessing. Wilks
(2009) used the square root, Sloughter et al. (2007) the 3rd root and Hamill et al. (2004,
2008) the 4th root of precipitation. In preliminary tests, largest improvements in terms of skill
scores could be obtained with a 3rd root transformation. The power transformation is applied
to the target precipitation, as well as to the predictor precipitation in terms of fgM and fgQ⌧ .
The power transformation is not applied within the log-normal GLM.

2The fgPoP is determined from the ensemble as the probability that precipitation is equal or greater than 0.1 mm.
The threshold of 0.1 mm is used since this is the smallest amount of precipitation which is measurable by rain
gauges. The fgPoP shows a significantly better predictive performance than fgPoTu=0. However, as covariate for
statistical postprocessing, the fgPoTu=0 is a more informative predictor and is used here synonymous for fgPoP.
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7.2. Predictive covariates

7.2. Predictive covariates

The performance of statistical models strongly depends on the choice of predictive covariates.
Several combinations of predictors have been tested for LR and PoP/PoT with a threshold of 5
and 10 mm/12h, for QR with ⌧ ranging between 0.25 and 0.999, and the mixture models.

The fgM is the most informative predictor for LR and all thresholds. The combination of fgM
and the respective fgPoP/fgPoT leads to a small amount of additional skill for PoP forecasts,
and does not influence the predictive performance of PoT forecasts. For QR, the fgM is again
a good predictor, especially for the lower quantiles. However, higher quantiles perform better
if the respective fgQ⌧ is used as covariate. The combination of fgM and fgQ⌧ lead to a good
performance for all quantiles.

The mixture models need a more complex setup of covariates. The LR part of the mixture
model is used to derive the PoP. Here, a combination of fgM and fgPoP is used as predictors
which performed best in the previous analysis. For the GLM part (Gamma, log-normal, inverse-
Gaussian) a combination of fgQ0.9 and fgPoP lead to the best performance. Note that the identity
link function is used for all distributions. The estimation of the GPD part of the mixture model
also relies on fgQ0.9 and fgPoP as predictive covariates.

The regression coefficients for all statistical models (LR, QR, and the mixtures) exhibit large
variations between the different training samples of 50 days, and often follow a distinct seasonal
cycle. The size of the training sample may become an issue for the extremal quantiles and the
GPD parameter. A longer training period of 1065 days (i.e. 3 years without the 15 days for
verification extended by the following 15 days) is tested for the LR-Gamma-GPD model. A sine
and cosine is added as covariate, as well as interaction terms with the predictors. Hence, the
linear predictor for a certain day of the year d = 1, ..., 365 has the form

⌘ =�1 + �2 sin(�d) + �3 cos(�d) + (�4 + �5 sin(�d) + �6 cos(�d))x1 (7.1)

+ (�7 + �8 sin(�d) + �9 cos(�d))x2 .

Hereby, x1 and x2 are the respective covariates and �d = 2⇡D/d is a function of the day of year
with D = 365. The regression coefficients for the GPD scale parameter and the shape parameter
are shown in Fig. 7.2 for a 50-day gliding training and a 1065-day training period. The variabil-
ity within the seasonal cycle is largely reduced for the longer training period, leading to a stable
estimation of the regression coefficients throughout the year. Moreover, the larger training data
lead to a more robust and stable shape parameter estimate, which is nearly constant over the
year. However, the extended training period provides much more stable parameter estimates,
but only lead to a small increase in the predictive performance, which will be discussed in the
next section.

7.3. Predictive performance

7.3.1. First-guess forecasts and calibration with LR/QR

The fgPoP and fgPoT forecasts for thresholds of 5 and 10 mm/12h show positive skill in terms of
the Brier skill score (BSS). A stationwise climatology is used as reference forecast. The BSS lies
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Figure 7.2.: Left panel: Temporal evolution of (a) the predictive intercept, the regression coefficients
for (b) fgQ0.9 and (c) fgPoP for the scale parameter, and (d) the shape parameter of the
GPD with a 50-day training period. The gray shading indicates the standard error of the
parameter estimates. The three lines refer to the three years of data used. Right panel:
Same as left panel, but for the 1065-day training period. (Fig. 13 and 14 from Bentzien and
Friederichs, 2012).

between 20-25% for fgPoP and fgPoT5 and is about 10% for fgPoT10 (see Fig. 2 from Bentzien
and Friederichs, 2012). However, the variability between the 445 stations is large, ranging
between 0% to 45%. The number of outliers (stations with negative skill) becomes larger for
higher thresholds. Calibration with LR improves the predictive performance of first-guess fore-
casts. The benefit is largest for PoP, and the BSS of the calibrated forecasts ranges between
40% to 60% for all stations. The variability between stations is largely reduced. A strong im-
provement in the reliability as well as a significant increase in resolution is obtained from the
postprocessing for PoP. For higher thresholds, the gain in predictive performance through LR
mainly results from a better calibration, while the resolution of PoT5 and PoT10 is similar to the
first-guesses.

First-guess quantile forecasts for ⌧ ranging between 0.25 and 0.999 show very different fore-
cast performances (see Fig. 6 from Bentzien and Friederichs, 2012). The quantile skill score
(QSS) gives the percental improvement with respect to a stationwise climatology. Nearly no
skill is obtained for the lower quantile fgQ0.25. Since the mean PoP amounts to 39%, the 0.25-
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quantiles is frequently censored. However, calibration with QR results in a QSS of about 10%,
leading to skillful forecasts at nearly all stations. The QSS for fgQ0.5 (fgQ0.75/fgQ0.9) increases
to 25% (45%/50%). Postprocessing only slightly affects the predictive performance for this
range of quantiles. However, the skill of first-guess quantiles decreases for ⌧ > 0.9, and guid-
ance for extreme quantiles (⌧ > 0.95) cannot be given by the raw ensemble. QR is necessary to
obtain skillful quantile forecasts for ⌧ between 0.95 and 0.999. The QSS of the calibrated 0.999-
quantile forecasts varies between 20% and 70%. The variations between the stations become
larger for higher quantiles.

We summarize that the first-guess ensemble forecasts from COSMO-DE-LAF show a certain
degree of skill and can be useful to obtain probabilistic guidance for precipitation. However,
postprocessing largely improves the performance of PoP forecasts, and yields a better calibration
of PoT forecasts. Postprocessing of quantile forecasts is indispensable for higher quantiles with
⌧ > 0.9, but also for the lower 0.25-quantile.

7.3.2. Parametric mixture models

A mixture model aims to provide the complete predictive distribution based on a small number
of parameters. Quantiles and probability forecasts for all probability levels ⌧ or thresholds u

can be calculated directly from the distribution parameters. The CRPS is a general measure
of forecast performance for distributional forecasts. Since the CRPS averages over the whole
range of the distribution (0  ⌧  1), differences within certain parts of the distribution remain
undetected. A more complete picture for the performance of distributional forecasts is given by
an evaluation with respect to various thresholds or probability levels.

Quantile forecasts from the different mixtures (Gamma, log-normal, inverse-Gaussian) are
compared to those derived from QR. The most promising results are obtained for the Gamma
mixture. The QSS is comparable to QR for a range of ⌧ between 0.25 and 0.95. For higher ⌧ ,
the QSS of the Gamma mixture decreases compared to QR, which is mainly due to a systematic
overestimation of precipitation. Although the log-normal mixture has a similar QSS compared
to the Gamma mixture for ⌧ between 0.25 and 0.9, its predictive performance decreases more
rapidly for higher probability levels. The inverse-Gaussian distribution completely fails to rep-
resent the bulk of the distribution (⌧ between 0.75 and 0.99), but recovers skill for the very
high quantiles. Among the mixture models, the Gamma model provides the best performance
in terms of the QSS. However, the QR approach is still superior to the mixture models, especially
for higher quantiles. This can be seen from Fig. 7.3 (left panel), which shows the three-month
moving average of the QSS of QR minus the QSS of the Gamma mixture. The differences are
positive for all seasons, and vary over the year with the lowest predictive performance during
spring and early summer. The bias increases with ⌧ , which results from a general overestimation
of the tail of the Gamma mixture.

The adaptive GPD tail largely improves the Gamma mixture. With a slightly negative shape
parameter3 (compare Fig. 7.2(d)), the GPD corrects for the overestimation of precipitation and
lead to a predictive performance of higher quantiles which is similar to QR. The bias in QSS
is largely reduced, as can be seen from Fig. 7.3 (right panel). The mean differences in QSS

3Although a negative shape parameter indicates an upper bound on extreme precipitation, an interpretation in
terms of physical mechanisms should be avoided.
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Figure 7.3.: Left: Three-month moving average of QSS for QR minus QSS for the LR-Gamma mixture.
Right: Three-month moving average of QSS for QR minus QSS for the LR-Gamma-GPD
mixture. (Fig. 11 and 15 from Bentzien and Friederichs, 2012)

between QR and the Gamma mixture range between zero and 15%. The differences for the
GPD tail are largely reduced and are of the order of ±5%.

The mixture model using a gamma distribution with an adaptive GPD tail is an appropriate
parametric alternative that allows for an extrapolation towards high quantiles. However, none
of the parametric mixtures outperforms LR or QR. It depends on the user’s needs which choice
of postprocessing is most appropriate. If a complete predictive distribution is required, e.g. in
order to sample from this distribution, the LR-Gamma-GPD is an appropriate alternative to LR
and QR.
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We now turn to the evaluation of the COSMO-DE ensemble prediction system using the data
set II described in Sec. 6.2. This chapter starts with an evaluation of the raw ensemble system
using rank statistics and the beta score in Sec. 8.1. Probabilistic forecasting of precipitation
focuses on predictions in terms of probabilities and quantiles. Based on the results in Chapter 7,
calibrated forecasts are obtained from logistic and quantile regression models. The performance
of probability and quantile forecasts from COSMO-DE-EPS compared to the benchmark system
COSMO-DE-LAF are presented in Sec. 8.2 and Sec. 8.3. This chapter closes with a summary
and conclusion in Sec. 8.4.

8.1. Ensemble consistency

Probability integral transform histograms are constructed for the COSMO-DE-EPS, the COSMO-
DE-TLEsub, and the COSMO-DE-TLE. The PIT values are determined from the empirical distribu-
tion function for each day and site separately during the one-year time period of investigation.
Hence, the histograms are build from a total of ⇠ 385 000 forecast-observation pairs and are
displayed in Fig. 8.1.

The COSMO-DE-EPS reveals a largely U-shaped histogram (Fig. 8.1(a)). The observations
are lying too often outside the ensemble forecast range, indicating a general underestimation
of ensemble spread. Moreover, observations are lying more often below the ensemble forecasts,
leading to a small positive bias. The PIT histogram shows several peaks, indicating that obser-
vations are ranked frequently between different groups of members. This groups are build by
ensemble members which are driven by the same boundary conditions. The different driving
models contribute more to the ensemble spread (on average) than the different physical param-
eterizations.1 A much flatter PIT histogram is obtained for the 20-member TLEsub in Fig. 8.1(b).
Here, all members have different initial and boundary conditions either from a different driving
model or a different initialization time. The underestimation of ensemble spread is largely re-
duced, and the beta scores decreases from -0.669 for the EPS to -0.358 for the TLEsub. However,
the TLEsub reveals a stronger positive bias than the EPS. The histogram for the 80-member TLE
in Fig. 8.1(c) shows less overpopulation of the outer values, and therefore a further increase in
ensemble spread due to the additional members. Moreover, the bias is largely reduced, which
means that precipitation is less overestimated. The beta bias reduces from 0.041 for the EPS to
0.021 for the TLE. The time-lagged ensemble thus has a strong impact on ensemble consistency.
It leads to a better representation of ensemble spread and also reduces the bias in precipitation
forecasts compared to COSMO-DE-EPS.

1Note that this conclusion is only valid for the current setup of COSMO-DE-EPS as illustrated in Fig. 3.2 and as an
average over one year of data. For a specific event, the physical disturbances may have a larger contribution to
the ensemble spread than the driving models.
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Figure 8.1.: Probability integral transform histogram and beta score for (a) COSMO-DE-EPS, (b) 20-
member COSMO-DE-TLEsub and (c) 80-member COSMO-DE-TLE. The solid line shows the
beta distribution fitted to the histogram values. The dashed line shows the uniform distribu-
tion.

To further investigate the influence of the different ensemble members, various sub-ensembles
are constructed. The three ensemble categories are given by members with the same initializa-
tion time, with the same driving model, or the same model physics. An overview is given in
Table 8.1, together with the respective beta scores. All ensembles reveal a negative beta score
and a positive beta bias. Hence, all ensembles underestimate the ensemble spread and gener-
ally overestimate precipitation. Category I comprises the COSMO-DE-EPS for different forecast
lead times (0-12h, 3-15h, 6-18h, 9-21h). The 20 members of each ensemble have the same ini-
tialization time, but differ with respect to the driving global model and model physics. Longer
forecast lead times show a better representation of ensemble spread as the beta score increases
(i.e. becomes less negative) from -0.669 for EPS12UTC to -0.476 for EPS3UTC. In contrast, shorter
lead times have smaller biases and hence show less overestimation of precipitation.2

Ensembles in category II are time-lagged ensembles, each build from 5 members of the EPS
which have the same driving model. The 20 members differ with respect to model physics and
initialization time. The four ensembles TLEIFS, TLEGME, TLEGFS, and TLEGSM perform similar
in terms of the beta score, which lies between -0.54 and -0.57. A positive bias of ⇠ 0.06

2Note that forecast quality in general might depend on the time of the day when forecasts are initialized, which is
not analyzed here.
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Table 8.1.: Overview of the categories (I-III) of the various sub-ensembles and their respective beta score
and beta bias. The total number of members in each ensemble is given by M .

Cat. COSMO-DE beta score beta bias member init time M

TLE -0.278 0.021 1-20 12,09,06,03 80
TLEsub -0.358 0.066 1,7,13,15,19 12,09,06,03 20

I EPS12UTC -0.669 0.041 1-20 12 20
EPS9UTC -0.552 0.053 1-20 09 20
EPS6UTC -0.501 0.057 1-20 06 20
EPS3UTC -0.476 0.061 1-20 03 20

II TLEIFS -0.561 0.033 1-5 12,09,06,03 20
TLEGME -0.572 0.060 6-10 12,09,06,03 20
TLEGFS -0.544 0.058 11-15 12,09,06,03 20
TLEGSM -0.551 0.058 16-20 12,09,06,03 20

III TLEP1 -0.366 0.126 1,6,11,16 12,09,06,03 16
TLEP2 -0.378 0.070 2,7,12,17 12,09,06,03 16
TLEP3 -0.373 0.073 3,8,13,18 12,09,06,03 16
TLEP4 -0.383 0.057 4,9,14,19 12,09,06,03 16
TLEP5 -0.385 0.065 5,10,15,20 12,09,06,03 16

is obtained for nearly all ensembles of cat. II, with the exception of the TLEIFS. Boundary
conditions obtained from the IFS model lead to a much smaller beta bias of 0.033. While cat. I
and II ensembles show similar performances, they are still inferior compared to TLE and TLEsub.

Category III comprises ensembles where all members share the same model physics, but use
different driving models and initialization times. Note that ensembles of category III consist
of only 16 members, where 4 members are taken from COSMO-DE-EPS, complemented by the
time-lagged model runs. The ensembles TLEP1 to TLEP5 perform similar in terms of the beta
score, which lies between -0.36 and -0.39. Hence, the performance is better than for the cat I
and II ensembles, and is comparable to the TLEsub. However, the physical representations used
for the cat. III ensembles lead to different biases, ranging from 0.126 for TLEP1 to 0.057 for
TLEP4.

We can summarize that the members of COSMO-DE-EPS show deficiencies in representing
sufficient ensemble spread and generally overestimate precipitation. Time-lagging increases
the ensemble spread, and different boundary conditions contribute more to the spread than
variations of model physics. The impact on the bias is different for the various ensemble mem-
bers. Members driven by the IFS model show general a smaller bias, while the representation of
model physics in P1 leads to a larger bias. The bias is widely reduced for the COSMO-DE-TLE.
However, as Hamill and Colucci (1997) already pointed out, there is potential for statistical
postprocessing to generate calibrated forecasts, even if the ensemble is underdispersive and
biased.
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Figure 8.2.: BSS, reliability and resolution for fgPoP (gray boxplots) and calibrated PoP forecasts (blue
boxplots) derived from various ensembles. The BSS is calculated with reference to a station-
wise climatology. The boxplots show the 95% confidence interval of the scores estimated via
7-day block-bootstrapping.

8.2. Probability forecasts

Probabilistic forecasting in terms of probabilities is done using first-guess forecasts on the one
hand and calibrated forecasts derived from LR on the other hand. First-guess forecasts for PoP
and PoT are derived from the various ensembles in Tab. 8.1, as well as the COSMO-DE-LAF as
benchmark ensemble. A LR model is set up using a cross-validation technique that makes use
of the complete data. The one-year data set is divided into blocks of 21 days. Forecasts for each
block are obtained from a training period which consists of all other blocks. The seasonal cycle
is taken into account by a sine and cosine wave, as well as interaction terms with the covariates
(see equation 7.1). Based on the results from Bentzien and Friederichs (2012), the covariates
are taken by the fgM and and the respective fgPoP/fgPoT. The postprocessing is now based
on observational sites from a larger geographical region (Germany, data set II). Therefore the
elevation of the observational sites is included as a third covariate. The elevation is a stationary
covariate which accounts for spatial inhomogeneities within the extended model domain.

Figure 8.2 shows the BSS, the reliability, and the resolution component for fgPoP and cal-
ibrated PoP forecasts derived from the different ensembles. The scores are averaged over all
time steps and observational sites. The sampling uncertainty is estimated via 7-day block-
bootstrapping (Efron and Tibshirani, 1993) with 1000 replicates simultaneously for all stations,
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Figure 8.3.: Same as Fig. 8.2 but for PoT5.

thereby preserving spatial and temporal correlations. The boxplots show the 95% confidence
interval of the score. The arrows denote the orientation of the score. The reliability is negatively
orientated (i.e. the smaller the better, with zero for a perfect forecast), whereas the resolution
and the BSS are better the higher the values.

All forecasts in terms of fgPoP or calibrated PoP show positive skill with respect to a station-
wise climatology. The BSS ranges between 52% and 62%. The calibrated PoP forecasts show
a better predictive performance than the first-guess forecasts, and the benefit lies between 2%
to 4%. The improvement is due to a better reliability as well as an increase in resolution. The
EPS outperforms the benchmark ensemble LAF with a significant gain in reliability and reso-
lution. The benefit becomes even larger for the time-lagged ensembles TLE and TLEsub, which
both show a similar performance despite their differences in ensemble size. After calibration
with LR, the differences between the ensembles become smaller, indicating that statistical post-
processing can account for a lack of calibration of the raw ensembles. LR also increases the
resolution, since more predictive covariates (and hence more information) can be included into
the statistical model. However, after calibration with LR, the EPS shows the best reliability,
whereas both TLE and TLEsub have the highest resolution.

We now analyze the performance of COSMO-DE-EPS for different forecast lead times (cat. I
ensembles). Fig. 8.2 shows that the youngest forecast run EPS12UTC has the highest BSS, mostly
due to a much better resolution. That indicates that the youngest forecast run provides the
most information. The older forecast runs have lower skill in terms of BSS, but perform similar
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Figure 8.4.: Reliability diagram for (a) fgPoP and (b) calibrated PoP forecasts from COSMO-DE-EPS.
The error bars show the 95% confidence interval of the observed frequencies conditional on
each of the 10 forecast probabilities (estimated via 7-day block-bootstrapping). The barplot
refers to the frequency of forecasts in each bin. A total of ⇠ 385 000 pairs of observations
and forecasts are used for each diagram.

compared to each other. However, the fgPoP of the oldest forecast run EPS3UTC has a significant
better reliability than the younger forecast runs. This might be due to a better representation of
ensemble spread as can be seen from the beta score in Tab. 8.1. However, LR strongly affects the
reliability part, and the youngest forecast run performs significant better after postprocessing.
Note that even when the older forecast runs have a less good performance than EPS12UTC, their
combination within a time-lagged ensemble largely improves the overall forecast skill.

The predictive skill of the category II ensembles varies with the driving model. The weakest
performance in terms of the BSS is obtained for the TLEGME, with 2% less skill than the other
three ensembles. The resolution is largely reduced. The differences in predictive performances
between TLEGFS, TLEGSM, an TLEIFS are much smaller. The reliability shows a weaker perfor-
mance of both TLEGME and TLEIFS. However, the differences in reliability are largely removed
after postprocessing. Although LR does also slightly increase the resolution, the differences
between the 4 global models remain the same.

We have already seen that different initial and boundary conditions from different driving
models or time-lagged forecasts contribute more to the ensemble spread than different formu-
lations of model physics. The category III ensembles thus show a better predictive performance
for both first-guess and calibrated forecasts compared to cat. I and II ensembles. The BSS
for fgPoP varies between 58% for TLEP1 to 56% for TLEP5. The TLEP1 shows the highest BSS,
mostly due to a better resolution. The slightly worse reliability might be due to a larger bias as
indicated by the beta bias in Tab. 8.1. LR increases the skill of PoP forecast, and differences in
the reliability are removed. The resolution of all ensembles is increased after postprocessing,
but the differences between the ensembles remain again the same.

The results for PoP can be generalized to PoT forecasts. First, the BSS for PoTu forecasts
decreases with increasing threshold u, since higher thresholds are generally less predictable.
The BSS is about 50% for u = 1 mm, between 30% and 40% for u = 5 mm, and about 20%
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Figure 8.5.: Same as Fig. 8.4 but for PoT5.

for u = 10 mm (not shown). Second, the differences between the various ensembles is similar
to the PoP forecasts. The TLE and TLEsub ensemble are superior to the EPS and show the best
predictive skill. The cat. III ensembles generally perform better than ensembles of cat. I and
II. Third, the benefit of postprocessing (i.e. the increase in BSS) is smaller for PoT compared to
PoP. The benefit mainly results from a better calibration, while the resolution component is less
affected for higher thresholds. Fig. 8.3 shows the BSS, reliability and resolution for a threshold
of 5 mm/12h as illustration.

Although the improvement in terms of the BSS seems to be small, the impact on the reliability
through postprocessing becomes remarkable. The impact is stronger for the LAF and EPS than
for the TLE, which is already better calibrated. Calibrated forecasts can be derived from all
ensembles, regardless of the lack of reliability of the first-guess forecasts. Reliability diagrams
for fgPoP and calibrated PoP from COSMO-DE-EPS are shown in Fig. 8.4. The reliability curve
of fgPoP indicates an underforecasting of smaller forecast probabilities and an overforecasting
of higher probabilities. These deficiencies are removed by LR, and good calibrated forecasts
are obtained with a reliability curve which is close to the diagonal. The reliability diagram
for a threshold of 5 mm/12h is shown in Fig. 8.5. The first-guess forecasts lack calibration
for probability forecasts greater than 40%. Here, the ensemble overestimates the exceedance
probability. LR reduces the overestimation of higher forecasts, and lead again to a reliability
curve which is close to the diagonal.

Higher thresholds become less predictable, and often lack calibration for high probability
values (not shown). The reliability diagram is strongly affected by the sample size. Since high
probability forecasts of extreme thresholds are very rare, the estimation of conditional observed
frequencies becomes uncertain. If the forecast intervals are not sufficiently represented (e.g. as
revealed by the sharpness diagram), conclusions about the calibration cannot be made.

8.3. Quantile forecasts

We will now turn to quantile forecasts. First-guess quantiles from the ensembles are compared
to calibrated quantile forecasts derived from QR. The QR model uses training and verification
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Figure 8.6.: QSS, reliability and resolution for fgQ0.9 (gray boxplots) and calibrated 0.9-quantile fore-
casts (blue boxplots) derived from various ensembles. The QSS is calculated with reference
to a stationwise climatology. The boxplots show the 95% confidence interval of the scores
estimated via 7-day block-bootstrapping.

periods analog to the LR model. The predictive covariates are the fgM, the respective fgQ⌧ , and
the elevation of observational sites, as well as the seasonal cycle. Fig. 8.6 shows the QSS for the
0.9-quantile forecasts derived from the different ensembles. The 0.9-quantile yields the highest
predictive skill from a range of ⌧ between 0.25 and 0.999, and is used by weather forecasters
for an estimation of quantitative precipitation. The decomposition is estimated after Bentzien
and Friederichs (2014) with an equi-distributed binning of forecasts into 30 bins. The boxplots
show again the 95% confidence interval of the scores averaged over the time and observational
sites, estimated via 7-day block-bootstrapping.

Both the TLE and TLEsub largely improve the predictive skill of fgQ0.9. The QSS for LAF and
EPS lies between 54% and 56%, and for both TLE between 60% and 62%. The TLE’s show both
an increase in resolution and a largely reduced reliability component compared to LAF and
EPS. Although calibration improves the reliability for all ensembles, there are still significant
differences between the ensembles. Reliability curves are therefore presented in Fig. 8.7 for the
LAF, EPS, TLEsub and TLE. The deficiencies in calibration of fgQ0.9 result from a general under-
estimation of quantiles, which becomes quiet visible in the double-logarithmic representation.
The underestimation is significantly reduced for the TLE compared to LAF and EPS, especially
for the lower range of forecast values. QR compensates for the underestimation, but lead to
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Figure 8.7.: Reliability diagram for fgQ0.9 (gray lines) and calibrated 0.9-quantile forecasts (blue lines)
derived from COSMO-DE-LAF, COSMO-DE-EPS, COSMO-DE-TLEPSsub, and COSMO-DE-
TLE. The error bars show the 95% confidence interval of the observed conditional quantiles
on each of the 30 discretized forecast values (estimated via 7-day block-bootstrapping). A
total of ⇠ 385 000 pairs of observations and forecasts are used for each diagram.

a miscalibration of very small forecast values. After postprocessing, quantile forecasts are well
calibrated for values above 1 mm for LAF and EPS, and values above 0.5 mm for TLE. Smaller
values are slightly overestimated and less frequently censored.

We turn back to Fig. 8.6 and briefly discuss the predictive performance of the cat. I-III ensem-
bles. The predictive skill of fgQ0.9 varies with forecast lead time. Longer forecast lead times yield
a better predictive performance which is mainly due to a better reliability. Postprocessing again
accounts for the lack of calibration, and has a strong impact especially on the youngest forecast
run EPS12UTC. The QSS of the different driving models is very similar for TLEGFS,TLEGSM,TLEIFS,
while the TLEGME shows again a significant lower predictive performance. This is mainly due to
a much lower resolution. The ensembles show some differences in reliability, which are widely
removed after postprocessing. The cat. III ensembles show again a general better predictive
performance than the cat. I and II ensembles. The QSS ranges between 59% and 61% for the
first-guess, and between 61% and 63% for the calibrated quantile forecasts. Hence, the skill of
TLEP1 to TLEP5 is much better than for LAF and EPS. While QR mainly affects the calibration of
quantile forecasts, the impact on the resolution component is small for all ensembles. QR leads
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to a small increase of resolution, but differences between the ensembles remain the same.
In the following, we will concentrate on the LAF, EPS and TLE ensembles. Fig. 8.8 shows

the predictive skill of quantile forecasts for ⌧ between 0.25 and 0.75. Note that the mean PoP
of all observations is about 33%, and lower quantiles are frequently censored. Generally, the
QSS increases for higher probability level, ranging between 3% to 18% for the 0.25-quantile,
about 30% for the median, and up to 50% for the 0.75-quantile. The skill of fgQ0.25 is quite
low for the LAF, with a significantly lower resolution. The EPS outperforms the benchmark
system, with both a better calibration and higher resolution. The predictive performance of
fgQ0.25 is further improved by the TLE and TLEsub, with a large gain in QSS compared to the
EPS. QR largely improves the performance of 0.25-quantile forecasts mainly due to a better
reliability. The differences between the ensembles become smaller for higher ⌧ . The impact
of QR is smaller for the median and 0.75-quantile which are already well represented by the
first-guesses. However, the TLE and TLEsub are still superior in predicting quantiles. Although
the TLE and TLEsub show the best predictive skill and the highest resolution, they have a slightly
worse reliability compared to calibrated forecasts from LAF and EPS. Again, postprocessing has
only a slight effect on the resolution component for all quantile forecasts.

The predictive skill of extreme quantile forecasts for ⌧ = 0.99 and ⌧ = 0.999 is shown in Fig.
8.9. Note that first-guess quantiles are estimated from a sample of 100 (500/2000) values3 for
the LAF (EPS and TLEsub / TLE). Sampling uncertainty will become an issue for the predictive
performance of first-guess forecasts. The QSS for the fgQ0.99 amounts to 10% for LAF and EPS,
and up to 50% for TLE and TLEsub, which both have better reliability and higher resolution.
Postprocessing is indispensable for LAF and EPS, and also improves forecasts for both TLE.
Calibrated forecasts yield a QSS of over 60%. The first-guess forecasts fail to predict the 0.999-
quantile, and skillful forecasts can only be obtained by QR. The TLE and TLEsub are again
superior in predicting extreme quantiles. They show 10% more skill than forecasts from LAF or
EPS.

Quantile reliability curves for the TLE are discussed in Bentzien and Friederichs (2014) and
are shown here in Fig. 8.10. The double-logarithmic scale is chosen again for enhanced visibil-
ity. Since the fgQ0.999 shows no predictive skill, it is omitted from the plot and results are only
shown for the calibrated 0.999-quantile forecasts. The fgQ0.75 is already well calibrated, and the
reliability curve is close to the diagonal. For ⌧ > 0.75, the first-guess quantiles are significantly
underestimated. The fgQ with ⌧ < 0.75 are in turn largely overestimated. Only the zero quan-
tile forecasts are well calibrated for almost all probability levels. However, the miscalibration of
fgQ forecasts is a consequence of the underrepresentation of ensemble spread.

The potential of calibration is larger for lower and higher ⌧ , and only small improvements
can be obtained for ⌧ = 0.75. QR compensates the overestimation of lower quantiles and the
underestimation of higher quantiles. For ⌧ between 0.25 and 0.75, the reliability curves are
now close to the diagonal for forecast values above 0.3 mm. It remains a slight miscalibration
of smaller quantile values, which was already discussed for the 0.9-quantile. QR widely reduces
the underestimation of fgQ0.99, but the reliability curve still shows small deviations from the
diagonal. Forecast values up to 2 mm are still slightly overestimated. Higher forecasts values

3The number of values is given by the number of ensemble members multiplied by the size of the spatial neighbor-
hood.
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Figure 8.8.: QSS, reliability and resolution for fgQ⌧ (gray boxplots) and calibrated quantile forecasts
(blue boxplots) derived from COSMO-DE-LAF, COSMO-DE-EPS, COSMO-DE-TLEPSsub, and
COSMO-DE-TLE. The probability level ⌧ is set to 0.25, 0.5, and 0.75.
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Figure 8.9.: Same as Fig. 8.8, but for extreme quantiles with ⌧ set to 0.99 and 0.999.

are well calibrated except for the highest category above 40 mm. These forecasts are now
significantly overestimated, which might be an effect of the large compensation through QR.
The 0.999-quantile shows moderate calibration, but the sampling uncertainty is very large. The
average bin size for the estimation of the QS decomposition and hence for the reliability curve
is shown in Fig. 8.11. The first bin contains all censored quantile forecasts, i.e. all quantile
forecasts equal to zero. The number of censored forecasts N0 is shown in the left panel for ⌧

between 0.25 to 0.999. For ⌧ > 0.5, first-guess quantile forecasts are frequently more censored
than the calibrated quantile forecasts. Quantile forecasts above zero are divided into 30 equi-
distributed forecast bins. The mean size of each bin Nk is shown in the right panel of Fig.
8.11. Due to the censoring, the bin size is very mall for the 0.25-quantile (2000-3000 values),
and increases with ⌧ . Higher quantiles are thus estimated from a larger bin size. Although the
0.999-quantile is estimated from a sample of ⇠12000 values, this might still not large enough
to obtain robust estimates for the extreme quantile.
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Figure 8.10.: Reliability diagram for first-guess (upper panel) and calibrated quantile forecasts (lower
panel) derived from COSMO-DE-TLE. ⌧ ranges between 0.25 and 0.999 (see legend). The
error bars show the 95% confidence interval of the observed conditional quantiles on each
of the 30 discretized forecast values (estimated via 7-day block-bootstrapping).

8.4. Conclusion

In this chapter, forecasts from the mesoscale ensemble system COSMO-DE-EPS are evaluated
and compared to the benchmark system COSMO-DE-LAF. Moreover, the impact of an enlarged
ensemble which includes forecast from longer lead times (time-lagged members) is assessed.
The probabilistic forecasts emphasize probability forecasts for threshold excess as well as quan-
tiles forecasts. First-guess forecasts are derived from the ensemble under consideration of a
spatial neighborhood of 5 ⇥ 5 gridboxes.

The results show that the COSMO-DE-EPS generally outperforms the COSMO-DE-LAF. The
higher predictive skill results from a significant gain in resolution and a better calibration for
nearly all first-guess probability and quantile forecasts. The enlarged ensemble COSMO-DE-TLE
yields to a further significant improvement of probabilistic forecasts. The time-lagged members
largely increase the resolution of the EPS, and lead to even better calibrated forecasts. It is
remarkable that most of the benefit of the TLE can also be obtained from a smaller ensemble
(TLEsub), where only 5 members of the EPS are chosen, complemented by their respective time-
lagged members. Note that the 5 members are arbitrarily chosen, and the TLEsub might be
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Figure 8.11.: Average bin size for the estimation of the QS decomposition from COSMO-DE-TLE. The
first bin contains all censored quantile forecasts (N0). The remaining forecasts are divided
in K = 30 equi-distributed bins of size N̄k.

optimized by selecting another set of EPS members.
An investigation of various sub-ensembles reveals the contribution of the different ensemble

members. Boundary conditions from various driving models contribute more to the ensemble
spread on average than different model physics. Time-lagged members are also members with
different boundary conditions, and thus largely contribute to the ensemble spread. The results
for the various ensembles is in close connection with the investigations of the PIT histograms
in Sec. 8.1. Ensembles with a better beta score (i.e. a beta score closer to zero), show a better
predictive performance of probability and quantile forecasts. The improvement is mainly due
to both a better calibration and an increase in resolution.

Postprocessing in terms of LR and QR largely improves the calibration of probabilistic predic-
tions. The differences in the reliability of the various ensembles are largely reduced. Although
first-guess forecasts show a moderate skill, postprocessing becomes indispensable for extreme
quantile forecasts. While calibrated forecasts can be obtained for nearly all ensembles, the im-
pact on the resolution is different. LR and QR generally increase the resolution part of the score.
The effect is stronger for the occurrence of precipitation then for higher threshold exceedance,
and only slightly affects the resolution of quantile forecasts. However, both LR and QR can not
overcome structural deficiencies in resolution within the ensemble, and differences between the
ensembles remain the same after postprocessing. One way of increasing the resolution might
be to include other meteorological variables, and hence more information, into the statistical
model.

Probability and quantile forecasts represent point estimates from the distribution, either with
respect to different thresholds or to different probability levels. An advantage of the quan-
tile view is that no prior knowledge of the data is needed to define the probability levels,
whereas probability forecasts require the knowledge of the range of the data to define mean-
ingful thresholds. In this sense, quantiles may be more useful particularly for extremal levels.
The 0.99-quantile for example always lies in the tail of the distribution, but a threshold of 10
mm may be extreme in some regions and very normal in others. Quantiles can be displayed
graphically in a boxplot and are a very intuitive way to communicate uncertainty to users.
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Figure 8.12.: Quantitative precipitation forecasts from COSMO-DE-TLE for Cologne-Bonn airport in June
2011. The boxplots in the upper panel represent the interquartile range (boxes), and the
0.9- and 0.95-quantiles (whiskers). The lower panel shows the probability of precipita-
tion. The dots are the observations in mm/12h (upper panel) and as zero and one for
precipitation below and above 0.1 mm.

Fig. 8.12 shows quantitative precipitation forecasts from COSMO-DE-TLE in terms of quan-
tiles, complemented by the probability of precipitation. Precipitation at Cologne-Bonn airport
in June 2011 is dominated by a series of convective events, especially around the 5th and 20th
of June. The forecasting systems successfully distinguishes between days with the potential for
high precipitation events and days without rainfall. Higher quantile forecasts characterize the
risk of extreme precipitation events. Note that there is still a 5% chance that the 0.95-quantile
will be exceeded, as happened here on the 29th of June.

A representation of probabilistic quantitative precipitation predictions in terms of the PoP
and quantiles is highly recommended. A further investigation of quantile forecasts within a
Bayesian framework will follow in the next chapters. This involves the exploration of more
meteorological variables as predictive covariates, as well as the predictive performance of spatial
quantile forecasts. So far a spatially constant relationship between covariates and point level
measurements was assumed. Predictions can thus easily be interpolated to locations which are
not included into the training data. The predictive performance of such spatial predictions will
be investigated, and compared to a spatial modeling of regression coefficients.
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9. Bayesian quantitative precipitation quantile
prediction B(QP)2

Quantile forecasts are a very useful and intuitive way to predict quantitative precipitation to-
gether with the uncertainty. QR largely improves the reliability of quantile forecasts, and thus
has a strong positive impact on the predictive performance. However, small miscalibrations
of quantile forecasts remain which cannot be captured by the classical QR model. This might
partly be due to the formulation of the censored QR. The three step procedure described in
Sec. 5.2.2 might lead to some biases in the regression parameters which affects the predictive
performance. Miscalibrations might also result from the spatial homogeneous postprocessing.
Moreover, the resolution of quantile forecasts depends on the set of covariates. Although the
regression ansatz allows to include more predictive covariates, the selection of informative vari-
ables remains difficult.

All these issues (uncertainty, variable selection, spatial modeling) can be addressed within a
Bayesian framework. Fundamental in Bayesian analysis is the treatment of model parameters
(i.e. regression coefficients) as random variables. This allows for the incorporation of prior
knowledge about the parameters into the statistical model. Moreover, the hierarchical structure
of Bayesian models supports the formulation of complex data models, which is necessary for
the spatial modeling. A comprehensive overview about Bayesian statistics and data analysis can
be found in Banerjee et al. (2004); Gelman et al. (2004); Clark and Gelfand (2006), amongst
others.

This chapter starts with a brief introduction to Bayesian modeling in Sec. 9.1. The formu-
lation of a Bayesian QR model is provided in Sec. 9.2. Special prior distribution allow for the
selection of informative covariates from a large number of variables. A spatial QR model is
described in Sec. 9.3.

9.1. Bayesian inference

In Bayesian statistics, observations and unknown model parameters are treated as random vari-
ables. Let y denote the data vector of length N (number of observations) and let ✓ be the vector
of unobservable model parameters of length P (e.g. number of regression coefficients). The
joint distribution p(y,✓) can be factorized by the conditional sampling distribution of y given ✓

(also denoted as likelihood), and the prior distribution of ✓

p(y,✓) = p(y | ✓)p(✓) .
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Bayes theorem is applied to obtain the posterior distribution, which is given by the distribution
of the unobservable parameter vector ✓ conditional on the historic data y

p(✓ | y) =
p(y | ✓)p(✓)

p(y)
.

The marginal distribution of the observation p(y) =
R

p(y | ✓)p(✓)d✓ can often not be calcu-
lated analytically. It is independent of the parameter vector ✓ and only acts as a normalization
constant. Inference about the posterior distribution can be done using the unnormalized poste-
rior density (Gelman et al., 2004)

p(✓ | y)| {z }
posterior

/ p(y | ✓)| {z }
likelihood

p(✓)|{z}
prior

. (9.1)

The posterior distribution describes our knowledge about the model parameters given the his-
toric data and hence also characterizes the uncertainty. External knowledge or expert opinion
is incorporated by the specification of the prior distribution. The Bayesian model is specified by
the likelihood of the data (e.g. a parametric distribution function) and the prior distribution of
the parameters. It is a very flexible model which offers a common construction and analysis for
a wide range of applications (Clark and Gelfand, 2006).

9.1.1. Hierarchical modeling

The factorization of the joint probability distribution enables the user to include more complex
layers into the Bayesian model, also known as hierarchical modeling. Clark and Gelfand (2006)
describe the hierarchical model in terms of three entities: The data level describes the underly-
ing process from which observations are drawn (i.e. the likelihood). The process level specifies
the model parameters ✓ and typically involves unknown hyperparameters �. The hyperparam-
eters are specified by a prior distribution. In this sense, the joint distribution is split into the
hierarchical layers

p(data, process, parameters) / p(data | process, parameters)

⇥ p(process | parameters)

⇥ p(parameters) .

A common application of hierarchical models is the spatial modeling of the model parame-
ters. ✓ is described by a spatial latent processes which in turn depends on a parameter vector
�. The conditional probability p(✓ | �) might be given by a multivariate normal distribution,
and � consists of parameters describing its expectation and covariance. The posterior of the
hierarchical model is obtained as

p(✓ | y) /
Z

�
p(y | ✓,�)p(✓ | �)p(�)d� . (9.2)

The hyperprior p(�) must be defined and specifies the statistical properties of the parameters
for the process level p(✓ | �).
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9.1.2. Markov Chain Monte Carlo

The Bayesian framework offers a very flexible construction and less limitations in the complex-
ity of statistical models. However, the posterior in (9.1) or (9.2) can often not be calculated
analytically. Numerical approximations are generally obtained by Markov Chain Monte Carlo
(MCMC) techniques. A comprehensive overview of MCMC is given in e.g. Gilks et al. (1996). A
Markov chain is a sequence of random variables {z0, z1, z2, ...}, such that the next state zr+1 is
sampled from a distribution q(zr+1 | zr) which depends only on the current state of the chain.
q(. | .) is called the transition kernel of the chain.

The aim of MCMC is to construct a Markov chain such that its stationary distribution is pre-
cisely the posterior distribution of interest, i.e. p(✓ | y). This can be done using the Metropolis-
Hastings algorithm, based on the work of Metropolis et al. (1953) and Hastings (1970). Starting
from an initial value ✓0, the iterative process is described by repeating the following steps for
r = 1, 2, ..., R :

• A candidate of ✓? is drawn from a proposal distribution q(. | ✓r�1), which only depends
on the last value ✓r�1 of the chain.

• The acceptance probability is calculated from the ratio

↵(✓?,✓r�1) = min

✓
1,

p(✓? | y)q(✓r�1 | ✓?)

p(✓r�1 | y)q(✓? | ✓r�1)

◆
.

• For ↵ = 1, the candidate is accepted and ✓r = ✓?. Otherwise, ✓? is only accepted with
probability ↵, and ✓r is set to

✓r =

(
✓? with probability ↵ ,

✓r�1 with probability 1 � ↵ .

After a sufficient number of iterations (burn-in period), the Markov chain will converge to
the correct stationary distribution independent of the form of the proposal distribution q(. | .).
However, the choice of the proposal will affect the length of the burn-in period and the rate
of convergence of the chain. An important tuning parameter is the proposal variance. A small
variance lead only to small steps of the candidate, and the chain will converge very slowly. For
large variances, the chain is characterized by jumps followed by long gaps where the chain does
not move for several iterations. Several studies suggest to chose the proposal variance such that
30% to 50% of the candidates are accepted (e.g. Clark and Gelfand, 2006; Gelman et al., 2004).

A simplification of the Metropolis-Hastings algorithm is obtained if only symmetric proposals
q(✓? | ✓r�1) = q(✓r�1 | ✓?) are considered. The acceptance probability is thus independent of
q(. | .) and given by the ratio of the posteriors

↵(✓?,✓r�1) = min

✓
1,

p(✓? | y)

p(✓r�1 | y)

◆
.

This is the original algorithm proposed by Metropolis et al. (1953).
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9. Bayesian quantitative precipitation quantile prediction B(QP)2

9.2. Bayesian quantile regression

We will now turn to a Bayesian formulation of the quantile regression model. That requires the
specification of an appropriate error distribution. Recall the classical regression model

yi = x0
i� + ✏i , i = 1, ..., N ,

where the predictand yi is explained by some covariates xi 2 RP . For mean regression, the error
distribution is assumed to be Gaussian with zero mean and some error variance ✏ ⇠ N (0,�2

✏ ).
A generalization to quantile regression requires an error distribution which is defined such that
its ⌧ -quantile is equal to zero (c.f. Kneib, 2013)

✏ ⇠ f⌧ (.) , with
Z 0

�1
f⌧ (✏)d✏ = ⌧ .

An appropriate error distribution is the asymmetric Laplace distribution (ALP; Yu and Zhang,
2005), which is used by Yu and Moyeed (2001) to define a Bayesian quantile regression model.
Other studies use mixtures of ALP and Dirichlet processes (e.g. Kottas and Krnjajic, 2009; Taddy
and Kottas, 2010), or infinite mixtures of Gaussian distributions (e.g. Reich et al., 2010).

The Bayesian QR model of Yu and Moyeed (2001) can also be applied to censored variables
as proposed by Yu and Stander (2007). The ALP is determined by three parameters, the location
parameter µ, the scale parameter �, and the asymmetry parameter ⌧ which correspond to the
probability level of the quantile

f⌧ (y; µ,�, ⌧) =
⌧(1 � ⌧)

�
exp

⇢
�⇢⌧

✓
y � µ

�

◆�
.

Yu and Stander (2007) use a simple form of the ALP with � = 1. Inference with the scale
parameter showed that the results do not vary with the choice of �. Fig. 9.1(a) illustrates the
ALP for different values of ⌧ . The distribution is symmetric for ⌧ = 0.5 and shows a larger tail to
higher (lower) values for ⌧ < 0.5 (⌧ > 0.5). The likelihood function for the censored QR model
is given by

L⌧ (y | �⌧ ) = ⌧N (1 � ⌧)N exp

(
�

NX

i=1

⇢⌧ (yi � max(0,x0
i�⌧ ))

)
,

where the location parameter µi = max(0,x0
i�⌧ ) correspond to the censored quantile forecast.

The likelihood depends on the unknown parameters ✓ = �⌧ . The posterior distribution of the
regression coefficients is build by the product of the likelihood and the prior distribution p(�⌧ )

p(�⌧ | y) / L⌧ (y | �⌧ ) p(�⌧ ) . (9.3)

Since prior knowledge is generally not available, Yu and Stander (2007) use zero-mean Gaus-
sian or Laplace distributions with large variances as prior distributions for �⌧ . This corresponds
to flat or uninformative priors and put little restrain on the regression coefficients.

We adopt the Bayesian QR model of Yu and Stander (2007), and use a MCMC procedure
with a single-component Metropolis algorithm to obtain draws from the posterior in (9.3).
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Figure 9.1.: Illustration of (a) the asymmetric Laplace density for different ⌧ (µ = 0, � = 1) and (b)
zero-mean Laplace density for different scale parameter �.

Each regression coefficient is updated separately (single-component). The proposal density is a
normal distribution with proposal variance ��j

. Within each MCMC iteration r = 1, ..., R, each

regression coefficient �(j)
⌧ with j = 1, ..., P is updated as following:

• Draw a new candidate �
(j),⇤
⌧ ⇠ N (�

(j),r�1
⌧ , ��j

) from the proposal distribution, condition-

ing on the previous (initial) value �
(j),r�1
⌧ .

• Calculate the acceptance probability ↵ = min
⇣
1, p(�⇤

⌧ |y)

p(�r�1
⌧ |y)

⌘
from the ratio of new and old

posterior (Metropolis algorithm).

• Set �(j),r
⌧ =

(
�

(j),⇤
⌧ with probability ↵ ,

�
(j),r�1
⌧ with probability 1 � ↵ .

After a sufficiently long burn-in period, the regression coefficients represent draws from the
posterior p(�⌧ | y) .

9.2.1. Variable selection

The selection of predictive covariates plays an important role for the performance of regres-
sion models. While regression models can improve the calibration of forecasts, the resolution
strongly depends on the information content of the predictors. Several strategies have been
developed to identify a set of informative covariates from a wide range of predictors. This
includes stepwise backward or forward selection (see for example Fahrmeir and Tutz, 1994,
chapter 4.1.2), or penalized regression techniques (Kyung et al., 2010). In the Bayesian frame-
work, inference about variable selection can be done using appropriate prior distributions which
put constrains onto the regression coefficients (analog to penalized regression). A Bayesian im-
plementation of the least absolute shrinkage and selection operator (LASSO; Tibshirani, 1996)
is obtained by using independent zero-mean Laplacian priors for the regression coefficients

p(�⌧ | �) =

✓
1

2�

◆P

exp

8
<
:� 1

�

PX

j=1

| �(j)
⌧ |

9
=
; .
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9. Bayesian quantitative precipitation quantile prediction B(QP)2

The zero-mean Laplace distribution only depends on the scale parameter � and is illustrated
in Fig. 9.1(b). The variance is given by 2�2. Smaller values of � correspond to less variance
and a distribution which is sharper around zero. For a given �, the posterior of the regression
coefficients is given by

p(�⌧ | y) / L⌧ (y | �⌧ ) p(�⌧ | �) .

A sharp prior distribution (� ⌧ 1) forces the regression coefficients to be close to zero, unless
they contribute significantly to the likelihood. Only the most informative covariates will have
regression coefficients which are significantly unequal to zero. The scale parameter controls
the degree of sparseness of the regression coefficients, and is also denoted as LASSO parameter.
Li et al. (2010) studied Bayesian regularized quantile regression for non-censored data using
the LASSO prior. An alternative approach is the Bayesian stochastic search variable selection
framework, applied to censored quantile regression model by Ji et al. (2012). Most of the
work concerning Bayesian quantile regression, including censored data or penalized regression,
has been done using survival data in medical or biological applications. To the best of my
knowledge, this is the first attempt to use a Bayesian quantile regression model for quantitative
precipitation forecasts from short-range NWP.

9.3. Spatial quantile regression

So far, the regression coefficients �
(1)
⌧ , ...,�

(P )
⌧ are spatially constant over the model domain.

For the spatial model, each regression coefficient is now a function of the location vector r =

(r1, ..., rS)0, with S the number of observational sites. Hence, for each covariate with j =

1, ..., P , a vector of regression coefficients �(j)
⌧ (r) has to be modeled.

Reich et al. (2011) developed a Bayesian spatial quantile regression model for tropospheric
ozone predictions under different climate scenarios. The regression coefficients are represented
by a set of basis functions (Bernstein basis polynomials), with spatially varying basis function co-
efficients which are described by a latent Gaussian process. Another spatial quantile regression
model was proposed by Lum and Gelfand (2012) introducing the asymmetric Laplace process.

This study proposes a spatial quantile regression model for quantitative precipitation which
is based on the Bayesian hierarchical model by Cooley et al. (2007). In Cooley et al. (2007),
return levels for extreme precipitation are estimated using a Generalized Pareto distribution. We
adopt the hierarchical structure to our application using the Bayesian quantile regression model
for censored variables. The observations y(r, t) for each time step t = 1, ..., T are considered as
a partial realization of a spatial random process observed at fixed locations r. The total number
of forecasts and observations is given by N = S · T . The predictive covariates are given by
x1(r, t), ...,xP (r, t). The spatial quantile forecast for location ri and time step t is obtained by

q⌧ (ri, t) = max
⇣
0,�(1)

⌧ (ri)x1(ri, t) + ... + �(P )
⌧ (ri)xp(ri, t)

⌘
.

For simplification, we use the following notation:

• Y = (y(r, 1), ...,y(r, T )): S ⇥ T matrix of observations;

• B = (�
(1)
⌧ (r), ...,�

(P )
⌧ (r)): S ⇥ P matrix of spatially varying regression coefficients.
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9.3. Spatial quantile regression

Data layer The likelihood of the data, given the regression coefficients, is described again by
the asymmetric Laplace distribution

L⌧ (Y | B) = ⌧N (1 � ⌧)N exp

(
�

TX

t=1

SX

s=1

⇢⌧ (y(rs, t) � q⌧ (rs, t))

)
.

Process layer Each of the regression coefficients �(1)
⌧ (r), ...,�

(P )
⌧ (r) is represented by a Gaus-

sian random field over the model domain

�(j)
⌧ (r) ⇠ MVN (µjIS ,⌃(j)) , j = 1, ..., P .

Here, I denotes the unit vector of length S. The multivariate Gaussian distribution is described
by a spatially constant expectation µj and a parametric covariance function ⌃(j). We assume
a stationary and isotropic covariance function which depends solely on the minimum distance
between two locations | rr � rs |. The exponential covariance function is described by three
parameters (e.g. Banerjee et al., 2004, Sec. 2.1)

(⌃(j))r,s =

(
�j + ⌘j for |rr � rs| = 0

�j exp(��j |rr � rs|) otherwise .

The parameters are the partial sill �, the decay parameter �, and the nugget ⌘. Note that
the regression coefficients vary in space while the process parameters µ = (µ1, ..., µP )0,� =

(�1, ...,�P )0,⌘ = (⌘1, ..., ⌘P )0 and � = (�1, ...,�P )0 are spatially constant.

Priors Prior distributions must be assigned to the parameter vectors µ,�,�,⌘ 2 RP . The
location parameters µ are assumed to follow independent zero-mean normal distributions with
high variance (flat prior)

p(µj) ⇠ N (0,�2
µj

) .

For the partial sill �, nugget ⌘ and decay � parameters, independent inverse Gamma distribu-
tions are used as prior distributions.

Posterior The posterior distribution is given by the likelihood and the product of the prior
distributions

p(B | Y) = L⌧ (Y | B)
PY

j=1

n
p(�(j)

⌧ (r) | µj ,�j ,�j , ⌘j)p(µj)p(�j)p(�j)p(⌘j)
o

. (9.4)

Realizations of the posterior (9.4) are obtained by a MCMC procedure. Following the schematic
overview in Fig. 9.2, each regression coefficient j = 1, ..., P is updated separately. First, the
parameters of the spatial process µj ,�j ,�j , ⌘j are updated one after another using a single-
component Metropolis algorithm. Given the accepted process parameters, a new realization
�̂

(j)
⌧ (r) of the Gaussian process is drawn conditional on the previous (initial) values of the re-
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! �(1)
⌧ (r)

�(2)
⌧ (r)

�(P )
⌧ (r)

q⌧ (r, t)

Prior Data Process 
µ1 �1

�1 ⌘1

µ2 �2

�2 ⌘2

µP �P

�P ⌘P

Figure 9.2.: Illustration of the Bayesian hierarchical model for spatial quantile regression. The quantile
forecasts q⌧ (r, t) depend on the regression coefficients �

(j)
⌧ , with j = 1, ..., P the number

of covariates. The regression coefficients are modeled spatially by a multivariate Gaussian
process. The Gaussian process is described by a spatially constant expectation µj , and a
parametric covariance function which is determined by the three parameters �j , �j , ⌘j .

gression coefficients by a conditional simulation

�̂(j)
⌧ (r) | �(j)

⌧ (r) ⇠ MVN
⇣

µjIS + ⌃(j)
⇣
V + ⌃(j)

⌘�1 ⇣
�(j)
⌧ (r) � µkIS

⌘
,

⌃(j) �⌃(j)
⇣
V + ⌃(j)

⌘�1
⌃(j)

⌘
.

Here, V is a diagonal matrix with the proposal variance as entries on the diagonal and zeros off
the diagonal. The new values �̂

(j)
⌧ (r) are accepted with probability ↵, which is estimated from

the ratio of new to old posterior.

9.3.1. Spatial prediction

For a spatial prediction, the regression coefficients �(j)
⌧ (r) have to be interpolated to new spatial

locations. Let s = (s1, ..., sS?)0 be the locations for which we want to make predictions. A kriging
approach (e.g. Banerjee et al., 2004, Sec. 2.4) is used to obtain the regression coefficients
�

(j)
⌧ (s). The joint distribution of regression coefficients for s and r is given by

 
�

(j)
⌧ (s)

�
(j)
⌧ (r)

!
⇠ MVN

 
µjI

S+S?
,

 
⌃

(j)
S? ⌃

(j)
S?S

⌃
(j)
SS? ⌃

(j)
S

!!
.

The conditional expectation of �(j)
⌧ (s) | �(j)

⌧ (r), also denoted as kriging estimate, is given by

E
h
�(j)
⌧ (s) | �(j)

⌧ (r)
i

= µjIS? + ⌃
(j)
S?S

⇣
⌃

(j)
S

⌘�1 ⇣
�(j)
⌧ (r) � µjIS

⌘
.

Realizations of �(j)
⌧ (s) are obtained by kriging estimates conditional on �

(j)
⌧ (r) taken from the

MCMC iterations.
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10. Results for B(QP)2

The Bayesian quantile regression model (BQR) and spatial quantile regression model (SQR) are
explored for further enhancement of quantile forecasts from COSMO-DE-EPS. To keep the com-
putational time at a reasonable limit, the evaluation is restricted to the summer half of the year
2011 (180 days between April and September). In preparation of a spatial forecast verification,
the dataset is separated into training and verification data by stations. 457 stations are selected
for statistical model training, while the remaining 622 stations are used for verification (spatial
cross-validation).

10.1. Bayesian quantile regression

We start with the spatial homogeneous BQR as described in Sec. 9.2. First, the influence of
more covariates on the predictive performance of quantile forecasts is investigated. While QR
can largely improve the calibration, the resolution and hence the information content depends
on the covariates. A broad range of variables is considered:

• covariates based on total precipitation (first-guess): mean, standard-deviation, PoP, and
quantiles;

• other meteorological variables (mean and standard-deviation): CAPE, humidity diver-
gence (tdiv hum), total water content (twater), wind gusts 10m, as well as divergence,
vorticity and omega at 850hPa;

• the station elevation.

The BQR model uses zero-mean Laplacian priors for the regression coefficients. The com-
plexity of the model (i.e. the number of covariates) depends on the scale parameter �. Small
values of � force a sparse selection of covariates. Most of the coefficients are centered around
zero and only a few covariates are selected (e.g. have distributions which significantly differ
from zero). Figure 10.1 shows the distribution of regression coefficients under a strong LASSO
condition (� = 0.01) for the estimation of the 0.9-quantile. A MCMC with 50 000 iterations pro-
duces realizations from the posterior of the regression coefficients. The chain converges after
less than 5 000 iterations. The distribution for each regression coefficient is shown in Fig. 10.1
by the boxplots which are obtained from the last 10 000 iterations of the Markov chain. The
LASSO selects the fgM, fgPoP, and the fgQ0.99 from the total precipitation variables. Moreover,
additional variables are identified as the standard-deviations of CAPE and wind gusts, as well
as the mean of the total water content.

An overview about the selected variables for other quantiles is given in Tab. 10.1. Mainly
three covariates are selected from the total precipitation variables for each ⌧ . The fgPoP is
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Figure 10.1.: Distribution of regression coefficients from BQR for the 0.9-quantile and a strong LASSO
condition.

selected as predictor for all quantiles. The fgM is selected for quantiles with ⌧ between 0.25 to
0.9, while the fgSd is selected for the higher quantiles with ⌧ > 0.9. The 0.25- and 0.5-quantile
chose the fgQ0.25 as covariate, whereas higher quantiles select the fgQ0.99. Considering other
meteorological variables, the lower quantiles profit from the wind gusts, while higher quantiles
chose a combination of wind gusts, CAPE, and total water content.

Quantile forecasts are obtained from a non-penalized BQR model with � set to 10. This
corresponds to a flat prior for the regression coefficients. Forecasts are obtained from two sets
of variables: The first set is based on the selected variables from total precipitation alone. The
second set of covariates considers all selected variables from Tab. 10.1. Again, a MCMC with
50 000 iterations is used to obtain realizations from the posterior of the regression coefficients.
The coefficients of 1000 iterations are used to perform predictions at the verifying stations for
the 180 days. For verification, the QS and its decomposition is calculated for each of the 1000
forecasts schemes and is displayed in Fig. 10.2 (upper panel). The plot shows the resolution vs.
the reliability, while the gray contours are lines of constant QS. A better predictive performance
is indicated by a smaller reliability and a higher resolution component, and hence given by
points which lie in the upper left corner of the plot region. The error bars denote the QS of the
BQR and show the uncertainty due to the varying regression coefficients. For comparison, the
blue squares show the QS for the classic QR model with the same set of covariates. Regression
coefficients are estimated by the three-step procedure described in Sec. 5.2.2. The values for
the 0.25-quantile are omitted from the plot, since they lie far beyond the values of the BQR.

We compare forecasts from BQR for the two sets of covariates in the upper panel of 10.2.
Forecasts based on all selected variables show a significant better predictive performance than
forecasts based solely on total precipitation. The gain in QS is mostly due to an increase in
resolution. The information content is largely increased by the additional meteorological pa-
rameters. Moreover, the reliability of higher quantiles (⌧ > 0.5) is improved. The classic QR
also benefits from the additional covariates selected by the Bayesian LASSO. Forecasts from QR
show a gain in resolution if more meteorological variables are included. The BQR model per-
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10.1. Bayesian quantile regression

Table 10.1.: Selected variables from the Bayesian LASSO for various quantiles with ⌧ between 0.25 and
0.999.

⌧ = 0.25 0.5 0.75 0.9 0.99 0.999
fg-mean X X X X

fg-sd X X
fgPoP X X X X X X
fgQ25 X X
fgQ99 X X X X

wind gusts (mean) X X
wind gusts (sd) X X X X

CAPE (sd) X X X X
twater (mean) X X X X

tdiv hum (mean) X

forms similar to the classic QR model for forecasts based solely on total precipitation covariates.
A benefit from BQR is obtained for the 0.25-quantile. Here, the restriction of the training data
by the three step procedure leads to large biases in the regression coefficients for the classic QR
model. However, for forecasts based on all selected covariates, the BQR yields a better predic-
tive performance for nearly all quantiles (except the median which shows a similar performance
to classic QR).

The lower panel of Fig. 10.2 shows quantile reliability plots for first-guess quantiles, as well as
BQR and classic QR with all selected variables. First-guess quantiles generally overestimate low
quantiles (⌧ < 0.5) and underestimate higher quantiles (⌧ > 0.5). Classic QR lead to a better
calibration of quantiles with respect to the first-guesses. However, some miscalibration of small
quantile values are obtained for all quantile levels. Small values are generally overestimated,
as was already observed by the evaluation of the COSMO-DE-EPS in Section 8.3. In contrast,
all BQR forecasts are well calibrated with reliability curves which are close to the diagonal.
However, an overestimation of the highest forecast category can still be observed.

Table 10.2 shows the QSS for the BQR model with respect to a climatological forecasts (cli-
matology at each station during the time period of investigation) and with respect to first-guess
quantiles. BQR forecasts generally have positive skill. Compared to climatology, the improve-
ment in skill ranges between 10% for ⌧ = 0.25 up to 60% for ⌧ � 0.99. The benefit of postpro-
cessing can be seen from the QSS with first-guess as reference. The benefit is small for lower
quantiles and ranges between 2 to 7% for ⌧ between 0.25 and 0.75. For higher quantiles, the
gain in predictive skill largely increases from 16% for the 0.9-quantile up to 90% for the extremal
quantile. Here, postprocessing becomes indispensable to obtain skillful quantile forecasts from
the ensemble.

Table 10.2.: Quantile skill score (in %) for BQR with all selected variables and with climatology and
first-guess quantiles as reference forecasts.

⌧ = 0.25 0.5 0.75 0.9 0.99 0.999
climatology 11.70 25.63 44.64 55.66 60.99 58.16
first-guess 6.74 2.16 4.61 16.37 63.59 91.21
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Figure 10.2.: Upper panel: QS decomposition into reliability and resolution for various quantile forecasts derived from BQR (black lines) and classic
QR (blue squares) for two sets of covariates. The error bars show the 95% confidence interval for BQR. The gray contours show lines
of constant QS. Lower panel: Reliability diagram for BQR and classic QR with all selected covariates and for the first-guess quantile
forecasts.
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10.2. Spatial quantile regression

Figure 10.3.: (a) Spatial distribution of sample quantiles in mm/12h for ⌧ = 0.9, estimated at each of
the 1079 stations from the 180 days between April and September 2011. The quantiles are
bilinearly interpolated for enhanced visibility. (b) The mean spatial field of the intercept of
SQR-0, interpolated onto the grid via kriging. The arithmetic mean is estimated from 100
kriging estimates derived from the MCMC realizations. (c) The standard-deviation of the
mean spatial field.

10.2. Spatial quantile regression

We will now turn to the spatial modeling of regression coefficients and the influence on the
predictive performance of quantile forecasts. The analysis is restricted to the 0.9-quantile. Three
different SQR models are investigated:

• SQR-0 without covariates - only the intercept �0 is modeled spatially,

• SQR-1 using 1 covariate - �0 + �1· fgQ0.99,

• SQR-2 using 2 covariates - �0 + �1· fgPoP + �2· fgQ0.99.

The selection of predictors is based on the results from Section 10.1. For a better assessment
of the effect of the spatial modeling, we have limited the number of covariates. A MCMC
scheme with 30 000 iterations produces realizations of the regression coefficients �0, �1, �2 at
the 457 locations in the training data set. Conditional on these realizations, a kriging approach
is used to obtain the regression coefficients for new locations. For SQR-0, the intercept should
represent the sample quantile for the 180 days at each location. Fig. 10.3(a) shows the sample
quantiles for each of the 1079 stations, interpolated onto a regular grid for enhanced visibility.
For the spatial distribution of the intercept, 100 kriging estimates are calculated conditional
on the MCMC realizations. The mean and standard-deviation of the spatial fields is shown
in Fig. 10.3(b) and (c). The intercept shows a significant spatial structure. Lower values of
3 are obtained in western Germany, while higher values of 5 to 7 are obtained in southern
Germany. The middle and north-eastern parts show values of 4, which are close to the overall
climatological quantile of 4.2 mm/12h. The spatial structure is similar to those observed from
the sample quantiles in (a). However, the spatial model significantly underestimates the spatial
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10. Results for B(QP)2

Figure 10.4.: Mean spatial field of the regression coefficients for SQR-1, interpolated onto the grid via
kriging (�0: intercept, �1: fgQ0.99). The arithmetic mean is estimated from 100 kriging
estimates derived from the MCMC realizations.

variability. The sample quantiles have lower values of 1 mm/12h in the western part, and
values up to 11 mm/12h in the southern part. Fig. 10.3(c) shows the uncertainty of the kriging
estimates. Lower values are obtained for regions with higher station density. The northern part
has less stations, and thus shows higher uncertainties, as well as the regions outside of Germany.
However, the uncertainty of the kriging estimates is much smaller as the spatial variability1, and
the structure in Fig. 10.3(b) is highly significant.

A single covariate is used for SQR-1, and the spatial distribution of the regression coefficients
�0 and �1 is shown in Fig. 10.4. The spatial distribution is again obtained as the arithmetic
mean over 100 kriging estimates. The spatial structures are significant in the sense, that the
spatial variance is significantly larger than the variance of the kriging estimates. The regression
coefficients show a clear spatial structure with lower values in the north-west and higher values
in the south-east of Germany. The values range between 3 and 3.3 for the intercept and between
6.5 and 7 for �1. As a reference model, we use classic QR with spatial homogeneous coefficients,
further denoted by QR-1. The regression coefficients for QR-1 are estimated as �0 = 3.48± 0.03

and �1 = 6.33 ± 0.11, and thus show a slight bias compared to the range of values obtained
from SQR-1.

For the verification of the SQR-1 model, regression coefficients are estimated for the 622 loca-
tions omitted from the training data. Quantile forecasts are made from 1000 kriging estimates
for the 180 days and 622 locations. Fig. 10.5(a) shows quantile reliability plots for SQR-01,
QR-1 (with spatial homogeneous coefficients), and the first-guess quantiles as reference. The
error bars denote the 95% confidence interval estimated from the 1000 SQR forecasts. The clas-
sic QR completely fails to predict lower quantile values if only the fgQ0.99 is used as covariate.
The smallest quantile forecast amounts to 0.6 mm and is largely overestimated. Higher values
above 2 mm are better calibrated. The spatial modeling of regression coefficients improves the

1For all gridboxes in Fig. 10.3(c), the values of 1.96�/
p

n, where n is the number of kriging estimates, is much
smaller than the standard deviation of the mean field.
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Figure 10.5.: (a) Reliability diagram for the 0.9-quantile, estimated from first-guess forecasts, classic QR
with fgQ99 as single covariate and SQR-1. (b) The QS and its decomposition, evaluated at
the verifying stations for 180 days between April and September 2011. The error bars show
the 95% confidence interval for SQR. The reliability is presented on a logarithmic scale.

reliability of the quantile forecasts for lower values. The zero quantile forecasts are in good
agreement with the observations. Smaller values still show some miscalibrations and an under-
estimation of quantile values between 0.1 and 5 mm. The first-guesses largely underestimate
the 0.9-quantile over the complete range of forecast values.

The QS, reliability and resolution are displayed in Fig. 10.5(b). Compared to the first-guess,
the postprocessing increases the resolution of quantile forecasts. Both models SQR-1 and QR-1
show a similar gain in resolution obtained from the covariate fgQ0.99. The reliability of the
first-guess is worse compared to SQR/QR, which results from the general underestimation of
quantiles. The quantile forecasts have a better reliability after postprocessing, and the spatial
modeling outperforms the classic QR approach. The QSS is calculated with respect to the first-
guess forecasts, and amounts to 7.5% for the QR-1, and 11.3% for the SQR-1 model.

The SQR-2 model uses two covariates, the fgPoP and fgQ0.99. The spatial distribution of the
regression coefficients is shown in Fig. 10.6 again as the mean over 100 kriging estimates. The
spatial structures are again significant with respect to the variance of the kriging estimates. The
structures of the intercept (�0) and the fgQ0.99 (�2) are similar to SQR-1, but the values for �2

are a little bit lower and range between 5.5 and 6. The values for �1 (fgPoP) range between 0.6
and 1 with lower values in the north and higher values in the south. A classic QR model with
the same covariates is again used for comparison (QR-2). The regression coefficients for QR-2
are estimated from the training data as �0 = 3.12 ± 0.05, �1 = 0.79 ± 0.06, and �2 = 5.8 ± 0.13.
In contrast to QR-1, the regression coefficients of QR2 lie in the middle of the range of values
obtained from SQR-2 and show no bias.

The predictive performance of QR-2 is similar to the predictive performance of SQR-2. Fig.
10.7(a) shows the quantile reliability curves. The additional covariate fgPoP largely improves
the calibration of small quantile values, and the reliability curves for both models are close to
the diagonal. The QS, reliability and resolution are displayed in Fig. 10.7(b). Compared to
SQR-1, the additional covariate does not increase the resolution of the quantile forecasts. But
the reliability part of the QS is largely improved. The reliability decreases from about 0.015
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Figure 10.6.: Mean spatial field of the regression coefficients for SQR-2, interpolated onto the grid via
kriging (�0: intercept, �1: fgPoP, �2: fgQ0.99). The arithmetic mean is estimated from 100
kriging estimates derived from the MCMC realizations.

for SQR-1 to 0.0044 for SQR-2. The predictive skill of forecasts from SQR-2 and QR-2 is about
13.3% compared to first-guess quantiles.

In contrast to SQR-1, there is no significant improvement of the spatial model in the case of
the two covariates fgPoP and fgQ0.99. The covariates are taken from a numerical weather pre-
diction ensemble and already contain information about the spatial structure of precipitation. A
spatial homogeneous postprocessing might be sufficient. However, if the covariates show some
deficiencies in representing the spatial variability, as it is the case for the fgQ0.99 as single co-
variate, the spatial model can improve the calibration of the spatial forecasts, and hence lead to
a better predictive performance.

10.3. Conclusion

The Bayesian formulation of the quantile regression model is used for an enhanced postprocess-
ing of precipitation quantiles derived from the mesoscale NWP ensemble COSMO-DE-EPS. The
Bayesian model and the MCMC procedures requires a high amount of computational costs com-
pared to the frequentistic QR explored in Chapter 8.3. Nevertheless, BQR can add significantly
skill to the quantile predictions. The Bayesian LASSO allows to identify predictive covariates
from a wide range of meteorological variables. Besides total precipitation, the wind-gusts, total
water content, and CAPE are good predictors for precipitation quantiles. The additional co-
variates largely increase the information content and hence the resolution of quantile forecasts.
Moreover, they improve the calibration for higher quantiles. The selected variables from the
Bayesian LASSO also improve the predictive performance of the classic QR with a significant
gain in resolution.

The BQR yields a better estimate of regression coefficients. The censored QR is affected
by biases in the parameter estimates, which results from the three step procedure described
in Section 5.2.2. The effect is stronger for the lower quantiles. Especially the 0.25-quantile
benefits from BQR, but a gain in predictive performance from BQR can also be observed for the
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Figure 10.7.: (a) Reliability diagram for the 0.9-quantile, estimated from first-guess forecasts, classic
QR with two covariates fgPoP and fgQ0.99 and SQR-2. (b) The QS and its decomposition,
evaluated at the verifying stations for 180 days between April and September 2011. The
error bars show the 95% confidence interval for SQR.

higher quantiles if a larger number of covariates is used in the regression model. BQR yields
a better calibration for almost all quantiles compared to classic QR. Moreover, the BQR gives a
better representation of the uncertainty of the regression coefficients.

The spatial model yields significant structures of the regression coefficients over Germany. In
the case of only one covariate (fgQ0.99), the SQR leads to a large improvement in calibration
compared to the classic QR model with spatially constant regression coefficients. However,
the benefit of the SQR depends on the covariates. If the spatial distribution of precipitation is
captured well by the covariates, e.g. as in the case of the two covariates fgPoP and fgQ0.99, a
spatial homogeneous postprocessing might be sufficient. The selection of informative covariates
is thus of great importance for the predictive performance of the regression model.
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11. Summary and Conclusion

Numerical weather prediction has seen great advances during the last decade. Due to a steady
increase in computational power, NWP models run on even finer horizontal scales, include
more complex physical and microphysical processes, and provide the user with realistic weather
pattern on the km-scale. However, the validation of such small scale model output remains still
a challenge in the verification and quantification of forecast uncertainty. Ensemble forecasting
is the main tool to assess the uncertainty in NWP on all scales. Mainly two major sources
of uncertainty are addressed: incomplete knowledge about initial conditions, as well as the
model error due to discretization, parameterization and incomplete physics. However, ensemble
forecasting requires a vast amount of computational time, and is still limited with respect to the
ensemble size. Most raw ensembles provide probabilistic guidance for a range of meteorological
variables, but still suffer from an underrepresentation of ensemble spread.

This study investigates the predictive performance of a convective-scale NWP ensemble to
predict quantitative precipitation. Precipitation is still one of the most difficult weather variable
to predict and is often used to measure the performance of mesoscale NWP models (Ebert et al.,
2003). In a first step, ensemble forecasts have to be translated into probabilistic predictions. A
predictive distribution function describes the most probable state of a variable together with its
uncertainty. The formulation of a predictive distribution often relies on the specification of a
parametric distribution function. The predictive performance strongly depends on how suitable
the parametric distribution fits the data. Especially for precipitation, a suitable parametric dis-
tribution can hardly be obtained (Bentzien and Friederichs, 2012). A representation of quan-
titative precipitation in terms of quantile forecasts is thus an attractive alternative. Quantile
forecasts can be graphically displayed by boxplots and are intuitive for users. Together with the
probability of precipitation, they give a complete picture of forecast uncertainty. In order to in-
vestigate the predictive performance of quantile forecasts, a new framework for the verification
of quantile forecasts has been developed (Bentzien and Friederichs, 2014). The quantile score
decomposition gives more detailed insights with respect to calibration and information content
(resolution) of quantile forecasts. The graphical presentation of quantile reliability curves can
be used to explore ensemble calibration and the added value of statistical postprocessing.

11.1. Evaluation of ensemble forecasts

The convective-scale ensemble system COSMO-DE-EPS is a 20 member multi-analysis and
multy-physics ensemble centered over Germany. An evaluation of precipitation forecasts based
on the PIT histogram, which is a generalization of the analysis rank histogram, reveals a strong
underestimation of ensemble spread. Moreover, COSMO-DE-EPS reveals a small positive bias
due to an overestimation of precipitation. The method of lagged average forecasts is explored
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as inexpensive technique to increase the ensemble size of COSMO-DE-EPS. The so called time-
lagged ensemble largely improves the representation of ensemble spread. It is remarkable that
most of the benefit is already obtained from only 5 members of COSMO-DE-EPS complemented
by their time-lagged model runs.

First-guess quantile forecasts are estimated from the ensemble under consideration of a spa-
tial neighborhood of 5⇥ 5 gridboxes. Quantile reliability curves are explored and reveal further
deficiencies in ensemble calibration. Quantiles for the probability level ⌧ < 0.75 are generally
overestimated. Higher quantiles with ⌧ > 0.75 are in contrast largely underestimated. Merely
the 0.75-quantile shows a reliability curve which is close to the diagonal and indicates good
calibration. The time-lagged ensemble lead to better estimates of probabilistic forecasts with
quantile reliability curves which are closer to the diagonal. However, statistical postprocess-
ing largely improves the calibration of quantile forecasts, and becomes indispensable to obtain
calibrated and skillful forecasts for higher quantiles with ⌧ > 0.9.

11.2. Ensemble postprocessing

Bentzien and Friederichs (2012) explore various techniques for statistical postprocessing of en-
sembles forecasts. We focus on probability and quantile forecasts, which are either derived from
logistic and quantile regression for single thresholds and probability levels, or from a parametric
mixture model based on LR for the probability of precipitation, a Gamma-GLM for the distribu-
tion of precipitation amounts, and a GPD for the extremal tail of the distribution. Although the
mixture model gives promising results, calibrated forecasts from logistic and quantile regression
are still superior in probabilistic quantitative precipitation forecasting.

Statistical postprocessing of COSMO-DE-EPS uses LR for the probability of precipitation and
QR for quantiles between ⌧ = 0.25 and 0.999. Lower quantiles are frequently censored and
therefore omitted from the analysis. The PoP can largely be improved by LR. The improvement
is due to both, a better calibration and an increase in the resolution. Probability forecasts from
higher thresholds merely profit from a better calibration, while the resolution is not further
improved. Moreover, higher thresholds require a sufficiently large data set. A threshold of 10
mm/12h is exceeded in just 3% of the observations. Statistical calibration for higher thresholds
suffers from sampling errors and is hence limited due to the sample size.

The calibration of quantile forecasts from COSMO-DE-EPS is largely improved by QR. The
benefit is larger for lower and higher probability levels, which show larger deviations from a
perfect calibrated forecast, than the 0.75-quantile, which is already good calibrated. However,
in case of COSMO-DE-EPS, predictive quantile forecasts for ⌧ > 0.9 cannot be obtained from
the raw ensemble. Time-lagging enables predictive quantile forecasts up to the 0.99-quantile.
However, statistical postprocessing becomes indispensable for extremal quantiles.

A Bayesian formulation of the quantile regression based on Yu and Stander (2007) is used
for an advanced inference of quantile forecasts. The classic QR model mainly improves the
calibration of quantile forecasts, while the resolution depends on the set of predictive covariate.
In the Bayesian framework, inference about variable selection can be done using independent
zero-mean Laplacian priors. This is equivalent to the least absolute shrinkage and selection
operator proposed by Tibshirani (1996). The Bayesian LASSO allows the selection of predictive
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covariates from a wide range of variables. The variance parameter of the Laplacian prior de-
termines the sparseness of the regression coefficients. Smaller variances will lead to regression
coefficients which are close to zero, and identifies only a small set of informative predictors.
Most of the work concerning Bayesian quantile regression, including censored data or penal-
ized regression for variable selection, has been done using survival data in medical or biological
applications. To the best of my knowledge, this is the first attempt to use a Bayesian quantile
regression model for quantitative precipitation forecasts from short-range NWP.

Predictive covariates are selected for different quantiles separately by the Bayesian LASSO.
So far, only covariates based on total precipitation forecasts (mean and standard-deviation,
probabilities, quantiles) are used for the postprocessing. The set of covariates now also contains
other meteorological variables. In addition to the total precipitation variables, the Bayesian
LASSO reveals that lower quantiles profit from wind gusts forecasts, while for higher quantiles
a combination of wind gusts, CAPE, and total water content are informative predictors. The
additional meteorological variables largely increase the information content of the quantile
forecasts and hence lead to a much better resolution. Moreover, an improvement in reliability is
obtained for higher quantiles with ⌧ > 0.5. The selected variables also improve the performance
of the classic QR model. However, parameters of the censored QR might be biased through the
three step procedure which is used for the estimation of regression coefficients. The Bayesian
QR yields better estimates of the regression coefficients, especially for the 0.25-quantile. A
benefit can also be observed for higher quantiles, if a larger number of coefficients has to be
estimated. Moreover, the Bayesian QR gives a better representation of the uncertainty of the
regression coefficients.

A spatial QR model is developed for a better assessment of the predictive performance of
spatial quantile forecasts. So far, a spatially constant relationship is assumed between the re-
gression coefficients and the covariates. Predictions for new locations, which are not included
into the training data of the statistical model, can easily be made by the constant regression co-
efficients and the covariates for the new locations. Note that all covariates used in this study are
taken from the NWP model output and already contain information about a spatial structure.
However, the spatial modeling of regression coefficients reveals a better calibration of quantile
forecasts if the covariates do not represent sufficient information about the spatial characteris-
tics of precipitation. If the spatial distribution of precipitation is captured well by the covariates,
a spatial homogeneous postprocessing might be sufficient. The selection of informative covari-
ates is thus of great importance for the predictive performance of the regression model.

11.3. Probabilistic forecast verification

This study contributes to an enhanced framework of statistical postprocessing and probabilistic
forecast verification for quantitative precipitation forecasts in terms of quantiles. Proper scores
are the main tool in probabilistic forecast verification. They assign a single score value to a
forecasting scheme. The propriety of the score function guarantees that the score cannot be
hedged, and thus allows for a ranking of competing forecast systems, or a quantitative assess-
ment of the added value of postprocessing. Moreover, proper scores are used in estimation
problems, which is known as optimum score estimation (Gneiting and Raftery, 2007). The

93



11. Summary and Conclusion

unknown parameters of a statistical model are estimated such that the postprocessed forecasts
optimize their respective score function. In this sense, forecast verification is closely related to
statistical postprocessing.

The proposal of the quantile score decomposition provides an extended framework of quantile
verification, analog to the Brier score decomposition for probability forecasts. The QS decom-
position enables the exploration of quantile forecasts with regard to the two forecast attributes
reliability and resolution. The graphical representation of quantile reliability curves can be used
for the exploration of ensemble calibration. If the ensemble suffers from an underestimation of
ensemble spread, the quantile reliability curves will show deviations from the diagonal. The de-
viations will depend on the probability level of the quantile. Greater deviations are obtained for
the outer quantiles, which suffer most from an insufficient ensemble spread. Moreover, ensem-
bles can be compared by their information content, expressed as resolution. While reliable or
calibrated quantile forecasts can be obtained from statistical postprocessing, an increase of the
resolution depends on the selection of predictive covariates. The QS decomposition allows to
attribute the impact of different covariates either on the resolution or the calibration of quantile
forecasts.

The QS decomposition together with a Bayesian formulation of quantile regression, including
the Bayesian LASSO for variable selection, provides an enhanced framework for the verification
and statistical postprocessing of quantitative precipitation quantile predictions derived from
mesoscale NWP ensembles.
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Bröcker, J. and L. A. Smith, 2008: From ensemble forecasts to predictive distribution functions.
Tellus, 60A, 663–678.

Buizza, R., P. L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, and Y. Zhu, 2005: A comparison of
the ECMWF, MSC, and NCEP global ensemble prediction systems. Monthly Weather Review,
133, 1076–1097.

Buizza, R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties
in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological
Society, 125, 2887–2908.

Buizza, R. and T. N. Palmer, 1995: The singular-vector structure of the atmospheric global
circulation. Journal of the Atmospheric Science, 52, 1434–1456.

100



Bibliography

Buizza, R., T. Petroliagis, T. N. Palmer, J. Barkmeijer, M. Hamrud, A. Hollingsworth, A. Sim-
mons, and N. Wedi, 1998: Impact of model resolution and ensemble size on the performance
of an ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 124,
1935–1960.

Candille, G. and O. Talagrand, 2005: Evaluation of probabilistic prediction systems for a scalar
variable. Quarterly Journal of the Royal Meteorological Society, 131, 2131–2150.

Chernozhukov, V. and H. Hong, 2002: Three-step censored quantile regression and extramarital
affairs. Journal of the American Statistical Association, 97, 872–882.

Clark, J. S. and A. E. Gelfand (Editors), 2006: Hierarchical modelling for the environmental
sciences. Oxford University Press.

Coles, S., 2001: An introduction to statistical modeling of extreme values. Springer Series in
Statistics, Springer.

Cooley, D., D. Nychka, and P. Naveau, 2007: Bayesian spatial modeling of extreme precipitation
return levels. Journal of the American Statistical Association, 102, 824–840.

Craig, G., E. Richard, D. Richardson, D. Burridge, S. Jones, F. Atger, M. Ehrendorfer, M. Heikin-
heimo, B. Hoskins, A. Lorenc, J. Methven, T. Paccagnella, J. Pailleux, F. Rabier, M. Roulston,
R. Saunders, R. Swinbank, S. Tibaldi, and H. Wernli, 2010: Weather Research in Europe. A
THORPEX European Plan. WMO/TD-No. 1531, WWRP/THORPEX No. 14.

Done, J., C. Davis, and M. Weisman, 2004: The next generation of NWP: explicit forecasts
of convection using the weather research and forecasting (WRF) model. Atmospheric Science
Letters, 5, 110–117.

Eady, E., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

Eady, E., 1951: The quantitative theory of cyclone development. Compendium of Meteorology,
T. F. Malone, Editor, American Meteorological Society, Boston, 464–469.

Ebert, E. E., U. Damrath, W. Wergen, and M. E. Baldwin, 2003: The WGNE assessment of
short-term quantitative precipitation forecasts. Bulletin American Meteorological Society, 84,
481–492.

Eckel, F. A. and C. F. Mass, 2005: Aspects of effective mesoscale, short-range ensemble fore-
casting. Weather and Forecasting, 20, 328–350.

Efron, B. and R. J. Tibshirani, 1993: An introduction to the bootstrap. Chapman&Hall/CRC.

Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739–759.

Fahrmeir, L. and G. Tutz, 1994: Multivariate statistical modelling based on generalized linear
models. Springer.

Friederichs, P., 2010: Statistical downscaling of extreme precipitation events using extreme
value theory. Extremes, 13, 109–132.

101



Bibliography

Friederichs, P. and A. Hense, 2007: Statistical downscaling of extreme precipitation events
using censored quantile regression. Monthly Weather Review, 135, 2365–2378.

Fritsch, J. M. and R. E. Carbone, 2004: Improving quantitative precipitation forecasts in the
warm season: a USWRP research and development strategy. Bulletin American Meteorological
Society, 85, 955–965.

Fundel, F., A. Walser, M. A. Liniger, C. Frei, and C. Appenzeller, 2010: Calibrated precipita-
tion forecasts for a limited-area ensemble forecast system using reforecasts. Monthly Weather
Review, 138, 176–189.

Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE
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