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Preface 

This dissertation is completely based on my personal work and large national and 

international collaborations. It consists of four related topics of biological studies on 

macrophages using bioinformatic methods. 

Chapter 4 attempts to explore human macrophage activation systematically via large 

transcriptomic data from diverse signal inputs using systems biology methods. Parts of 

Chapter 4 were published by me as first author in Immunity (Xue et al., 2014) together with 

some additional work, which is not included in this thesis. For this publication I was 

responsible for all major areas including concept formulation, data collection and analysis, as 

well as manuscript composition.  

Chapter 5 is an extensive study on the same subject not yet published. For example this 

study refines the common regulatory networks identified in Chapter 4 by integrating 

multiple inference methods. The same human macrophage dataset was used. The results of 

this study are currently prepared as a manuscript for submission. Parts of the study have 

been presented as an oral presentation as well as a poster at the Keystone Symposium 

“Dendritic Cells and Macrophages Reunited” in Montreal. 

Chapter 6 summarizes transcriptome-based network analysis of human peripheral blood 

mononuclear cells (PBMC) stimulated with bacterial and fungal pathogens. This is an 

international collaboration project with the group of Prof. Mihai G. Netea from the 

Department of Medicine, Radboud University Nijmegen Medical Centre, The Netherlands. I 

did the bioinformatic analysis of the large microarray data and we are currently preparing a 

manuscript to publish the results. 

Chapter 7 extends from human in vitro work to murine in vivo data.  It is also based on a 

large dataset established in collaboration with the group of Prof. Dr. Marco Prinz at the 

Institute of Neuropathology, University Hospitals of Freiburg. For this project, my task was to 

analyze the transcriptional dataset to describe the role of the transcription factor Irf8 in 

myeloid cells during embryogenesis and in adult tissue cells and to identify novel markers for 

further experimental validation. The results will be prepared as a manuscript for publication 

as well. 
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I declare that the dissertation is written completely by myself. None of the text is taken 

directly from previously published or collaborative articles.   
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Summary 

Macrophages are very plastic and versatile immune cells in response to different 

environmental signals. Similar phenomenon has been observed for other myeloid 

compartment, such as monocytes. Moreover, it has been described that different tissue 

macrophage subpopulations have distinct origins. In this dissertation, I systematically 

analyzed a large resource dataset to assess transcriptional regulation during human 

macrophage activation by comparing a diverse set of stimuli on a single microarray platform 

under highly standardized conditions. Network modeling of this dataset led to the extension 

of the current M1 versus M2 polarization model to a “multi-dimensional model” with at least 

nine distinct macrophage activation programs. Applying these transcriptional programs to 

human in vivo alveolar macrophages from smokers and patients with chronic obstructive 

pulmonary disease (COPD) revealed an unexpected biology. Reverse engineering of large 

transcriptional dataset by integrating multiple network inference approaches sharpens the 

resolution of the common macrophage activation regulatory networks. And the refined 

network indicated that transcription factors are the most important components in 

regulatory circuits involved in macrophage activation. Furthermore, by applying the same 

computational methodologies to a transcriptomic dataset of infected human peripheral 

blood mononuclear cells (PBMC), I extended my studies to identify common and stimulus-

specific transcriptional programs in host defense against bacteria and fungi. By combination 

of knowledge-based and data-driven analysis, I propose refined pathway models for these 

microbial infections on transcriptional level. Finally, computational studies on gene 

expression profiles for embryonic and adult tissue macrophages from both wild type and 

Irf8-deficient mice revealed distinct origins and transcriptional profiles of different tissue 

macrophage subpopulations and a crucial role of Irf8 in macrophage ontogeny and 

homeostasis. Overall, applying systems biology approaches, especially advanced methods on 

large enough transcriptional datasets enables robust and accurate statistical predictions. 

Thus, the studies on macrophages or myeloid cells using these approaches successfully 

uncovered the complex dynamic regulatory networks of these cells and reflected a hitherto 

unexplored biology.  
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1  Introduction 

Macrophage biology has been attracted an enormous interest during the last 5 years – in 

part due to the recognition that these cells are not only responsible for phagocytosis but 

fulfill a myriad of other functions. Furthermore, thanks to the rapid development of high-

throughput data generation techniques and corresponding data analytic tools during last 

two decades, genome-wide assessments of genetic, epigenetic and transcriptional changes 

allow to better understand macrophage biology. 

There are numerous open questions in macrophage and myeloid cell biology ranging from 

aspects of their origin, their differentiation, to their activation. In three independent studies, 

by analyzing three independent transcriptional profiling datasets, I have addressed the 

questions: how human macrophage activation can be better described by global 

transcriptional profiling, what the role of myeloid cells like monocytes and macrophages play 

in the response to infectious pathogens and in a murine in vivo system. Moreover, I have 

studied the role of a particular transcription factor Irf8 during macrophage development and 

in different adult tissue macrophage populations. 

Macrophages are versatile immune cells that are involved in inflammation, diseases and 

maintenance of tissue homeostasis. In the last two decades, a conceptual paradigm for the 

characterization of macrophage activation, i.e. M1 (classical activation) versus M2 

(alternative activation) polarization model representing two extreme states of signals 

collected by macrophages, has been established (Biswas and Mantovani, 2010). The 

dichotomous system has been very helpful in describing immune responses during acute 

infections, allergies, asthma, and obesity (Chinetti-Gbaguidi and Staels, 2011). However, 

more and more observations from macrophages involved in chronic inflammation, chronic 

infection,  cancer and other diseases strongly suggest that the myeloid compartment has a 

much broader and more complex transcriptional repertoire relying on the different 

microenvironmental signals they obtain (Boorsma et al., 2013; Chow et al., 2011; Edin et al., 

2012; Hodge et al., 2011; Lawrence and Natoli, 2011; Martinez et al., 2009; Mosser and 

Edwards, 2008; Murray and Wynn, 2011; Noy and Pollard, 2014; Ostuni et al., 2015; Reinartz 

et al., 2013; Vlahos and Bozinovski, 2014). In spite of many genomic studies analyzing 

macrophage activation in response to toll-like receptor (TLR) ligands, microbial pathogens 

and cytokines, heretofore nearly no attempts have been made to reconcile these 
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observations by building new and integrative models of macrophage activation (Martinez et 

al., 2006; McDermott et al., 2011; Nau et al., 2002; Ramsey et al., 2008).  

The immune system plays crucial roles in bacterial and fungal infections. Peripheral blood 

mononuclear cells (PBMC) are the major components, which quickly give responses to these 

pathogens. These responses on the one hand undergo stimulus-specific mechanisms; 

however, on the other hand, share particular intracellular signaling pathways, which 

ultimately lead to host protective effects such as production of pro-inflammatory cytokines, 

antigen processing and presentation.  

Other than inflammatory conditions, the origins of different tissue macrophages and their 

embryonic development are also an important aspect to study macrophage biology. It is 

known that tissue-resident macrophages stand at the frontline of tissue defense where they 

are discretely distributed and transcriptionally programmed to encounter with 

environmental signals. Different subsets of tissue macrophages originate from different 

origins, i.e. primitive hematopoiesis and definitive hematopoiesis (Ginhoux and Jung, 2014). 

And these processes are controlled by a few global regulators such as Pu.1, Myb and Irf8 

(Kierdorf et al., 2013). 

The aim of this PhD study is to precisely characterize human macrophage activation from 

diverse signal inputs and to refine the pathway models of host defense against various 

pathogens on transcriptomic level. With the mouse data I attempt to transcriptionally 

illustrate the distinct tissue macrophage populations and the role of one transcription factor 

Irf8 in macrophage development and adult tissue macrophages in mice. 
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2 Background  

2.1 Blood cells and mononuclear phagocyte system 

Blood cells (hematocytes), which are produced by hematopoiesis, are classified into three 

general categories: red blood cells (erythrocytes), white blood cells (leukocytes) and 

platelets (thrombocytes). Erythrocytes normally live for about 120 days in humans and the 

role is to carry oxygen, collect carbon dioxide via hemoglobin, and transport them 

throughout the body. Additionally they are positioned around the leukocyte to protect the 

healthy cells. Thrombocytes are very small, irregularly shaped clear cell fragments involved 

in hemostasis, which results in the formation of blood clots. Leukocytes are involved both in 

innate and adaptive immune responses to defend the body against both infectious diseases 

and foreign materials (Tortora and Derrickson, 2012). 

By the late 1960s, the mononuclear phagocyte system (MPS) was initially formulated, 

constituting monocytes and macrophages (Vanfurth and Cohn, 1968). Till the discovery of 

the dendritic cell (DC) by Steinman in the 1970s, monocytes, macrophages and DCs have 

been grouped together although they have distinct morphology, function and origin 

(Vanfurth et al., 1972). However, lineage-tracing studies demonstrated that under 

homeostatic conditions, most macrophages in adults are not reliable on blood monocytes 

but depend almost exclusively on self-renewal (Hashimoto et al., 2013; Yona et al., 2013). 

Moreover, classical DCs originate from adult hematopoietic stem cells (HSC)-derived DC 

precursors, which differ from classical monocytes (Naik et al., 2013; Schraml et al., 2013). 

Therefore, not as originally proposed, instead, MPS encompasses three main groups of cells: 

CDP-derived DCs, embryonic-derived macrophages and monocyte-derived cells (Figure 2.1). 

The nomenclature of MPS has been challenged for a long time. Recently, Guilliams et al. 

proposed a two-level nomenclature system, which is, mononuclear phagocytes should be 

first defined based on their ontogeny and then be classified on the basis of their function, 

location and phenotype (Figure 2.1) (Guilliams et al., 2014). 
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Figure 2.1 Two-level nomenclature system to classify mononuclear phagocytes.  Figure was 

adapted from (Guilliams et al., 2014). It was suggested by the authors that mononuclear 

phagocytes should first be defined on the basis of their ontogeny (level one nomenclature; 

yellow boxes), followed by their function, location and/or morphology (level two 

nomenclature; pink, orange and blue boxes). Due to distinct dominant transcription factors 

during development and discrete committed precursors, DCs could be further subdivided 

into classical type 1 DCs (cDC1s, BATF3 dependent), cDC2s (IRF4 dependent) and 

plasmacytoid DCs (pDCs, E2-2 dependent). BATF3: basic leucine zipper transcriptional factor 

ATF-like 3; cMoP: common monocyte progenitor; CSF1: colony-stimulating factor 1 (also 

known as M-CSF); CSF2: colony-stimulating factor 2 (also known as GM-CSF); FLT3: FMS-like 

tyrosine kinase 3; HSC: hematopoietic stem cell; IL-34: interleukin-34; iNOS: inducible nitric 

oxide synthase; IRF4: interferon-regulatory factor 4; RELMα: resistin-like molecule-α.  

2.2 Peripheral blood mononuclear cells and monocytes 

Peripheral blood is the flowing, circulating blood of the body. Peripheral blood mononuclear 

cells (PBMC) are blood cells containing a rounded nucleus, including T cells, B cells, natural 

killer (NK) cells, monocytes, macrophages and DCs, with a few contaminants of neutrophils 

and mast cells. They are central players in the immune system to fight infections and 

invaders. Myeloid compartments such as monocytes participate in tissue healing, clearance 

of pathogens and dead cells, and initiation of adaptive immunity. However, recruited 

monocytes can also contribute to the pathogenesis of infection and chronic inflammatory 

disease. 

Monocyte subsets were discovered by means of flow cytometry with CD14 and CD16 

antibodies in human blood more than 20 years ago and their phenotype and function has 
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been characterized in detail in health and disease. The first evidence for heterogeneity of 

monocytes was the discovery of CD16+ monocytes provided in the late 1980s (Passlick et al., 

1989). The CD16- classical monocytes (CD14+) cover 90% of the major population and the 

CD16+ cells account for about 10% of all monocytes under physiological conditions. The 

number of the CD16+ monocytes can vary strongly under various conditions (Ziegler-

Heitbrock, 2014). For many inflammatory conditions an increase to more than 50% of all 

monocytes for severe infection has been observed (Fingerle et al., 1993). A recent 

nomenclature proposal has further subdivided the CD16+ monocytes into non-classical and 

intermediate cells (CD14+CD16+ population) (Ziegler-Heitbrock et al., 2010).  

2.3 Macrophages as part of the innate immune system  

Macrophages were first discovered in the late 19th century by Ilya Metchnikoff and are 

evolutionary conserved phagocytes that evolved more than 500 million years ago. 

Macrophages are distributed in tissues throughout the body and contribute to both 

homeostasis and disease. 

2.3.1 Monocyte-derived macrophages 

It has long been known that monocytes are a systemic reservoir of myeloid precursors for 

generation of macrophages or DCs in response to various stimuli. But only until the middle of 

the 1990s people discovered colony stimulating factor-1 (CSF-1, also known as macrophage 

colony stimulating factor [M-CSF]) as a key factor for differentiating monocytes into 

macrophages in mice (Cecchini et al., 1994; Wiktor-Jedrzejczak and Gordon, 1996), in vitro 

generation of macrophages from blood monocytes became possible for mammalian cells. 

Another CSF family molecule, CSF-2, or granulocyte-macrophage colony stimulating factor 

(GM-CSF), was considered to control the development and homeostasis of the macrophage-

DC lineage but to be dispensable for monocyte development (Auffray et al., 2009). However, 

it is also used for monocyte-macrophage/DC differentiation. 

2.3.2 Tissue-resident macrophages 

Most tissues in the body encompass tissue-resident macrophages, which are extremely 

heterogeneous populations because they fulfill tissue-specific and microenvironment-

specific functions during development and adulthood. It is widely known that tissue-resident 

macrophages play an important role as immune sentinels in the frontline of tissue defense 
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where they are discretely distributed and transcriptionally programmed to encounter with 

pathogens or environmental stresses (Davies et al., 2013). Recent research has shown that 

other than blood macrophages, most adult tissue macrophages originate during embryonic 

development but not from circulating monocytes. The composition and functions of 

embryonically derived and adult-derived macrophages are dependent on different tissues 

(Table 2.3). Nevertheless, it still needs to be find out whether macrophages from distinct 

origins have interchangeable functions or if they have unique effects at steady state 

(Epelman et al., 2014b). Tissue macrophages modulate homeostasis and normal physiology 

through their regulation of diverse activities, including metabolism and neural connectivity, 

and by detecting damage. However, the normal physiology of tissue macrophages can be 

disrupted by continuous insult in many cases and thereby give rise to macrophages 

associated diseases, such as cancer, metabolic disorders and obesity (Sagaert et al., 2012; 

Wynn et al., 2013). 

The multiple waves of hematopoiesis during development are classified into two stages 

(Figure 2.3.1). The initial wave of blood production in the mammalian yolk sac is called 

primitive hematopoiesis. Primitive hematopoietic progenitors are generated in the yolk sac 

blood islands and produce primitive (yolk sac-derived) macrophages from embryonic day 

8.5-9.0 (E8.5-E9.0). These primitive hematopoietic progenitors also spread into embryos to 

establish the blood circulatory system and colonize the whole embryo from E9.0-E10.0 to 

generate fetal primitive macrophages, which is dependent on the transcription factor PU.1 

but independent of Myb. The primitive hematopoietic system is transient and rapidly 

replaced by adult-type definitive hematopoiesis. The wave of definitive hematopoiesis 

occurs in the aorta–gonads–mesonephros (AGM) from E10.5 and is responsible for the 

generation of hematopoietic stem cells (HSCs) with multi-lineage hematopoietic potential, 

which is responsible for formation of the fetal liver. This process is dependent on Myb (Orkin 

and Zon, 2008). Around E11.5-E12.5, hematopoiesis in the fetal liver generates monocytes, 

which start to migrate into the blood from E12.5-E13.5 and then attack embryonic tissues 

around E13.5-E14.5. Nonetheless, yolk sac progenitors can also contribute to fetal liver 

hematopoiesis during the middle phase of embryonic development (from E8.5) and might be 

involved in the generation of fetal liver monocytes. Once inside the tissues, in presence of 

colony-stimulating factor 1 receptor (CSF1R), fetal liver-derived monocytes proliferate and 

differentiate into macrophages and further become sub-populations of adult tissue 
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macrophages such as alveolar macrophages in the lung (Guilliams et al., 2013) and cardiac 

macrophages in the heart (Epelman et al., 2014a). However, microglia arise predominantly 

from yolk sac-derived macrophages (Ginhoux et al., 2010); and Langerhans cells have two 

types of origins, i.e., they mostly originate from fetal liver-derived monocytes but also keep a 

few yolk sac-derived ones (Hoeffel et al., 2012). These findings suggest that the origin of 

adult macrophages in the steady state can be divergent considerably between tissues and 

tissues like the skin and gut contain adult monocyte-derived macrophages.  

Microglia, parenchymal tissue-resident macrophages in the central nervous system, are 

important mediators in tissue homeostasis in health and disease. Microglia are sustained 

and self-renew within host tissues throughout adulthood independent of progenitors from 

the bone marrow. In yolk sac from E8.0-9.0, erythromyeloid progenitors (EMP) are 

developed into immature yolk sac macrophages (A2) via early myeloid progenitors (A1) 

dependently of PU.1 and Irf8. Once mature microglia are formed (E10.5), matrix 

metallopeptidases MMP8/9 become key regulators in phagocytosis and migration. During 

maturation in the embryo, the proliferative capacity of microglia is decreasing (Figure 2.3.2) 

(Kierdorf et al., 2013). 
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Table 2.3 Macrophages in tissues, homeostasis and disease 

Tissue 
Tissue macrophage populations:  

origins in mice 
Normal physiology Pathology 

Brain 
Microglia: 

Yolk sac 

Neuronal patterning, 

fluid balance 
Neurodegeneration 

Bone 

marrow 

Osteoclasts and macrophages: 

Bone marrow 

Bone remodeling, 

hematopoiesis 

Osteoporosis and 

osteopetrosis, leukemia 

Lung 

Alveolar macrophages:  

HSC (embryonic) 

CD11b+ macrophages: unknown 

Immunity Asthma, COPD 

Liver 

Kupffer cells: 

Yolk sac + HSC (embryonic) 

CD11b+ macrophages: unknown 

Lipid metabolism, toxin 

removal 
Fibrosis 

Heart and 

vasculature 

CCR2- macrophages: 

Yolk sac + HSC (embryonic and 

adult) 

CCR2+ macrophages: 

HSC (adult) 

Angiogenesis Atherosclerosis 

Spleen 

Red pulp macrophages: 

HSC (embryonic) 

Marginal zone macrophages: 

 unknown 

Branching 

morphogenesis 
Cancer and metastasis 

Kidney 
Kidney macrophages: 

HSC (embryonic and adult?) 
Immunity Arthrotos, EAE, IBD 

Intestine 
Intestinal macrophages: 

HSC (adult) 

Maintaining mucosal 

homeostasis 

Infectious diseases, 

metabolic disorders, 

inflammatory bowel 

diseases, malakoplakia 

Skin 

Langerhans cells (LC): 

Yolk sac + HSC (embryonic) 

Dermal macrophages: 

HSC (adult) 

Antigen processing and 

presentation 
LCH 

Peritoneum 
Peritoneal macrophages: 

HSC (embryonic) 
Immunity Peritoneal infections 

Adipose 

tissue 

Adipose tissue macrophages: 

Bone marrow 

Metabolism, 

adipogenesis 
Obesity and diabetes 

HSC, hematopoietic stem cell; EAE, experimental autoimmune encephalomyelitis; IBD, 

inflammatory bowel disease; LCH: Langerhans cell histiocytosis. 
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Figure 2.3.1 Embryonic macrophage development in mouse.  Figure was adapted from 

(Ginhoux and Jung, 2014). CNS: central nervous system; CSF1R: colony-stimulating factor 1 

receptor. 

 

Figure 2.3.2 Microglial development in mouse. Figure was suggested by (Kierdorf et al., 

2013). During maturation of microglia in the embryo, the proliferative capacity is decreasing. 

EMP: erythromyeloid progenitor; A1: early myeloid progenitor; A2: immature yolk sac 

macrophage.  
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2.4 Inflammation and macrophage activation 

Inflammation is a protective immunovascular response to external or internal stimuli, such 

as pathogens, damaged cells or pain. It involves immune cells, blood vessels, and molecular 

mediators and is considered as a mechanism of innate immunity, which is unspecific to each 

pathogen. The goal of inflammation is to drop down the risk of cell injury by eliminating its 

initial cause, cleanup cells and tissues damaged from the original offence and inflammatory 

processes, and also  to initiate tissue repair (Abbas and Lichtman, 2009). 

Inflammation is often categorized as either acute or chronic. Acute inflammation is the initial 

response of the body to harmful stimuli and is achieved by the increased movement of 

plasma and leukocytes (especially granulocytes) from the blood into the injured tissues. The 

duration is only a few days. Chronic inflammation, however, often lasting for up to months 

or years, leads to a progressive shift in the type of cells present at the site of inflammation 

and is characterized by simultaneous destruction and healing of the tissue from the 

inflammatory process. The major involved players are fibroblasts and mononuclear cells 

including monocytes, macrophages, lymphocytes and plasma cells (Abbas and Lichtman, 

2009). 

Macrophages, as major players in inflammation, respond and behave differently when 

receiving different microenvironmental signals. Cytokines and microbial products profoundly 

affect the function of macrophages and other mononuclear phagocytes. 

2.4.1 Classical and alternative activated macrophages 

A decade ago, the M1 (classical activation) and M2 (alternative activation) paradigm was 

established as mirror states for Th1 and Th2 polarization of T cells (Biswas and Mantovani, 

2010; Mantovani et al., 2002). Moreover, much progress has been made in defining the 

signaling pathways, transcriptional networks, and epigenetic mechanisms underlying this 

bipolar system. 

The M1 phenotype, triggered by stimulation of interferon-γ (IFNγ), was first discovered in 

1983 (Nathan et al., 1983). In the following years, studies on these macrophages revealed 

their characteristics such as the high expression of pro-inflammatory cytokines (e.g. tumor 

necrosis factor [TNF] and interleukin-1β [IL1β]), high production of reactive nitrogen and 

oxygen intermediates, promotion of Th1 response and strong microbicidal and tumoricidal 
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activity. A few years after discovery of Th1 and Th2 in T cell immunity (Mosmann and 

Coffman, 1989), an alternative activation of macrophages was proposed and further 

described as M2 macrophages (Abramson and Gallin, 1990; Stein et al., 1992). Driven by 

IL4/IL13 stimulation, they are described to have anti-inflammatory effects and 

immunoregulatory functions and induce Th2 response. They are characterized by efficient 

phagocytic activity, high expression of scavenging molecules, the expression of mannose and 

galactose receptors, production of ornithine and polyamines through the arginase pathway 

(Gordon and Martinez, 2010). They play essential roles in parasite control and promotion of 

tissue remodeling and tumor progression. M1 and M2 macrophages have distinct chemokine 

expression profiles (Sica and Mantovani, 2012). Additionally, cells stimulated with stimuli 

including IL10, glucocorticoid hormones, immune complexes and molecules released from 

apoptotic cells were also  considered to be “M2-like” because they share some properties 

with M2 cells (e.g. high expression of mannose and scavenger receptor) although with 

different chemokine production (Biswas and Mantovani, 2010). 

It is a complex repertoire of signaling molecules, transcription factors, post-transcriptional 

regulators and epigenetic mechanisms such as histone modifications, modulating each state 

of macrophage activation. Activation of canonical IRF/STAT signaling pathways by IFNγ and 

toll-like receptor (TLR) signaling skews macrophage function towards the M1 phenotype via 

transcription factor STAT1 while activation by IL4/IL13 leads to the M2 phenotype via STAT6 

(Sica and Bronte, 2007). 

2.4.2 Stimuli associated with chronic inflammation 

Chronic inflammation, a mechanism of innate immunity, is a protective immunovascular 

response with longer duration. It is often caused by persistent injury or infection (e.g. 

tuberculosis), autoimmune diseases (e.g. rheumatoid arthritis and multiple sclerosis) and 

prolonged exposure to a toxic agent (e.g. pulmonary silicosis) (Kumar et al., 2013). 

Phagocytic cells infiltrated in chronic inflammation caused by infectious pathogens including 

intracellular bacteria, for instance, Mycobacterium tuberculosis (Flynn and Chan, 2001). 

Macrophages and neutrophils play a major role during early immune responses against these 

intracellular pathogens (Grivennikov et al., 2005; Tsai et al., 2006). Previous research showed 

that the combination of the factors TNF, prostaglandin E2 (PGE2) and TLR2 ligand P3C (TPP) 

induced expression of genes including CD25, COX-2, IL10, and indoleamine 2,3-dioxygenase 
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(IDO) in macrophages in human granulomatous structures, suggesting that these host factors 

shape the transcriptional program during chronic inflammation (Popov et al., 2006; Popov et 

al., 2008). 

2.4.3 Non-classical stimuli such as free fatty acids  

Fatty acids are carboxylic acids with a long aliphatic chain, which is either saturated or 

unsaturated (Table 2.4). Free fatty acids (FFAs) that are not attached to other molecules are 

generally derived from the breakdown triglyceride molecules. They are usually released from 

adipose tissues and transported in the blood. Under certain conditions of metabolic 

dysfunction, cellular components of the innate immune system may be activated by FFAs in 

the absence of external pathogens, leading to pathologic consequences. For example, 

macrophages play a crucial role in the initiation of a chronic inflammatory state in obesity 

which leads to insulin resistance. Already in 2001, it has been observed in mouse models 

that omega-3 fatty acids are anti-inflammatory, polyunsaturated fatty acids are weak or 

neutral, and saturated fatty acids are pro-inflammatory (Lee et al., 2001). In response to 

increases in FFA release from obese adipose depots, pro-inflammatory macrophages 

infiltrate adipose tissues. These pro-inflammatory macrophages trigger inflammatory 

signaling and stress responses within cells that signal via TLR4 through JNK or IKKβ pathways, 

resulting in insulin resistance. If over-nutrition persists, mechanisms that counteract 

inflammation (such as PPAR signaling) are suppressed, and the inflammation becomes 

chronic (Patel et al., 2013).  

Table 2.4 Examples of saturated and unsaturated fatty acids 

Category Common name Chemical structure 

Saturated fatty acids 

Lauric acid (LA) CH3(CH2)10COOH 

Palmitic acid (PA) CH3(CH2)14COOH 

Stearic acid (SA) CH3(CH2)16COOH 

Unsaturated fatty acids 
Oleic acid (OA) CH3(CH2)7CH=CH(CH2)7COOH 

Linoleic acid (LiA) CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH 

 

2.4.4 High density lipoprotein (HDL) 

HDL is an 8-11 nm high-density (1.063-1.210 g/ml) lipoprotein with 40-50% protein, 25% 

phospholipids, 15% cholesterol and 5% triglycerides.  The major protein component of HDL 

particles is APOA1, which functions as an acceptor for phospholipids and cholesterol on 
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hepatocytes, enterocytes and macrophages. HDL particles carry cholesterol from peripheral 

tissue to the liver. It is known that HDL has potent anti-inflammatory properties and is able 

to sever the links between cholesterol accumulation and inflammation, thereby being 

protective against atherosclerosis and other inflammatory and metabolic diseases (Tall and 

Yvan-Charvet, 2015). Recent studies on HDL-activated macrophages demonstrated that the 

protective effects of HDL against TLR-induced inflammation were fully dependent on the 

transcriptional regulator ATF3, rather than the quantity of HDL itself (De Nardo et al., 2014). 

2.5 Host defense against microbial pathogens 

Macrophages as a member of myeloid cells, however, do not work independently of their 

microrenvironment. Other mononuclear cells such as monocytes can also respond rapidly to 

foreign materials or interact with the primarily affected cells. In the next paragraphs, I will 

introduce previous researches on the response of peripheral blood derived human 

monocytes within peripheral blood derived mononuclear cells to four common microbial 

pathogens or pathogenic stimuli that can attack the human immune system. I will also elute 

to the molecular pathways that induce host protective effects by these mononuclear cells 

during these model infections.  

Monocytes are crucial participants for an effective immune response to most pathogens. 

Chemokine receptors and adhesion receptors modulate monocytes migrating from the blood 

to the site of infection or injury (Karlmark et al., 2012). It was previously suggested that 

monocytes use the chemokine receptor CCR2 only for their recruitment to infected tissues. 

However, experiments in murine models revealed that monocytes also require CCR2 to 

emigrate from the bone marrow into the blood circulation (Dunay et al., 2008; Serbina and 

Pamer, 2006). Furthermore, circulating TLR-ligands can induce the production of MCP-1, 

which is the major binding partner for CCR2, by the bone marrow mesenchymal stem and 

progenitor cells during infection (Shi et al., 2011). These mechanisms enable monocytes to 

exit and migrate toward the site of infection. 

2.5.1 Bacterial pathogens 

Bacteria are one of the major external stimuli that affect the immune system. Many bacterial 

pathogens can lead to systemic infections with peripheral blood-derived immune cells being 

involved in host defense. For instance, LPS is one of the best studied immunostimulatory 
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components of bacteria, which can induce systemic inflammation and sepsis in presence of 

excessive signals (Beutler and Rietschel, 2003). LPS is an important structural component in 

the outer membrane of Gram-negative bacteria e.g. Escherichia coli (E. coli). LPS stimulation 

of mammalian cells requires the interactions between several proteins including the LPS 

binding protein (LBP), CD14, MD-2 and TLR4 (Gioannini and Weiss, 2007; Miyake, 2007). LBP 

is a soluble shuttle protein, which directly binds to LPS and facilitates the association 

between LPS and CD14 (Tobias et al., 1986; Wright et al., 1989). CD14 facilitates the transfer 

of LPS to the TLR4/MD-2 receptor complex and modulates LPS recognition (Wright et al., 

1990) while MD-2 non-covalently associates with TLR4 but can directly form a complex with 

LPS in absence of TLR4 (Nagai et al., 2002). Although there is no evidence suggesting that 

TLR4 can bind LPS directly, TLR4 has the ability to enhance the binding of LPS to MD-2 

(Mitsuzawa et al., 2006). 

As an example of Gram-positive bacteria, Mycobacterium tuberculosis (Mtu) is an inhaled 

intracellular bacterial pathogen that causes systemic infections in mammals and persists in 

macrophages of infected organs. Host defense against Mtu is T cell-mediated and requires 

secretion of IFNγ, TNF, and IL12 and production of reactive nitrogen intermediates (RNIs) as 

well as signal transduction through MyD88 (Flynn and Chan, 2001; Scanga et al., 2004). The 

recognition of Mtu is mainly mediated by TLR2 and NOD2 receptor although TLR4 and DC-

SIGN also plays a minor role (Kleinnijenhuis et al., 2011). 

Furthermore, Borrelia burgdorferi (Bbu) is also a model of intracellular microorganism that 

infects mononuclear cells. It is an agent of Lyme disease, which typically begins with 

erythema migrans and in addition, might develop cardiac, neurologic and/or arthritic 

complications (Borchers et al., 2015). Unlike Gram-negative bacteria, Bbu does not contain 

LPS (Takayama et al., 1987) and instead it has a variety of lipoproteins, many of which 

embedded on the spirochete's outer membrane (Cervantes et al., 2014). Previous studies 

have shown that monocytes, DCs, macrophages, NK cells, NK-T cells, and polymorphonuclear 

cells (PMNs) all contribute to generate a coordinated and robust response to Bbu infection 

(Moore et al., 2007; Salazar et al., 2003). And the recognition of Bbu signal is mainly 

modulated by TLR2 and NOD2 receptor (Berende et al., 2010). 

In general, the immune response to a bacterial stimulus, particularly sepsis, often comprise 

the following processes: first, pathogen-associated molecular patterns of the bacterial 
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pathogens activate pattern recognition receptors of the innate immune system; second, pro-

inflammatory and anti-inflammatory mediators are produced in order to contain infection 

and trigger the clinical signs of sepsis; third, when sepsis and signs of failing organs become 

obvious, pro-inflammatory processes will stop and a hypo-inflammatory phase with 

anergy/tolerance of monocytes and apoptosis of T cells will become predominant 

(Giamarellos-Bourboulis and Raftogiannis, 2012). 

Monocytes kill bacteria by producing reactive nitrogen intermediates (RNIs) and reactive 

oxygen intermediates (ROIs) (Fang, 2004) and through the action of phagolysosomal 

enzymes (Amer and Swanson, 2002). Although generation of nitric oxide (NO) by human 

macrophages in vitro is difficult to demonstrate, inducible nitric oxide synthase (iNOS) 

expression in human monocytes can be induced in vitro in response to Mtu lipoproteins 

(Brightbill et al., 1999) and in vivo in the lungs of patients with active Mtu (Nicholson et al., 

1996), indicating that the RNI-mediated pathway may be operative in human infection. It has 

been reported that human monocytes and macrophages can kill Mtu in a TLR-dependent 

and NO-independent way (Thoma-Uszynski et al., 2001). 

2.5.2 Fungal pathogens 

Candida albicans (Cal), a model of human fungal pathogen, causes mucosal disease as well as 

systemic infections. A recent study by integrating transcriptional analysis and functional 

genomics demonstrates that the type I IFN pathway plays a central role in protective 

immunity mediated by human PBMC against Cal and type I IFNs skewed Cal-induced 

inflammation from a Th17 response towards a Th1 response (Smeekens et al., 2013).  

It is well known that tissue macrophages and neutrophils play crucial roles in defense against 

fungal infection (Hohl et al., 2006; Romani, 2004). Although recruitment of monocytes to 

sites of fungal infection has been demonstrated in vivo in mouse models (Duong et al., 1998), 

the underlying mechanism of their contribution to fungal killing is still obscure. Nonetheless, 

in vitro studies of purified murine and human monocytes or cultured macrophages have 

been performed to characterize the induction of inflammatory and fungicidal mediators, 

rates of fungal killing (Ibrahim-Granet et al., 2003; Schaffner et al., 1983), and host cell 

transcriptional responses to Aspergillus fumigatus and Cal (Cortez et al., 2006; Kim et al., 

2005). But whether in vitro-defined mechanisms of fungal inactivation are also functioning in 

vivo and how they contribute to fungal clearance require further investigation. 
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2.5.3 Pattern-recognition receptors and downstream signaling pathways 

The understanding of host defense against pathogenic microorganisms has been 

revolutionized in the past two decades due to the discovery of dedicated germline-encoded 

receptors called pattern-recognition receptors (PRRs) that recognize patterns of microbial 

structures. During infection, the host inflammatory reaction is initiated by the recognition by 

PRRs of evolutionarily conserved structures of the pathogenic microorganisms known as 

pathogen-associated molecular patterns (PAMPs) (Netea et al., 2012). So far, five major 

categories of PRRs have been described: the TLRs, the CLRs (C-type lectin receptors), the 

NLRs (nucleotide-binding domain-, leucine-rich repeat-containing receptors), the RLRs (RNA 

helicase RIG-I-like receptors) and the ALRs (cytoplasmic DNA receptor AIM2-like receptors) 

(Takeuchi and Akira, 2010; Unterholzner et al., 2010).  

Among the PRR families, TLRs were the first to be discovered and have been studied most 

intensively for over 10 years. At the first line of innate host defense, TLRs activate an acute 

inflammatory reaction after engaging with PAMPs from all the major classes of 

microorganisms. Subsequently, stimulation via the TLR initiates and modulates the adaptive 

cellular and humoral immune responses. This requires Toll-IL-1 receptor (TIR) domain-

containing adaptors that connect the receptors to downstream effector proteins. Five 

adaptors have been identified to play a role in TLR signaling: MyD88, MAL (also known as 

TIRAP), TRIF, TRAM and SARM (O'Neill and Bowie, 2007). Broadly, these adaptors can trigger 

two main pathways that are dependent on either MyD88 or TRIF, which lead predominantly, 

but not exclusively, to the production of inflammatory cytokines, or type I IFNs (e.g. IFNα/β), 

respectively (De Nardo, 2015) (Figure 2.5.3).  
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Figure 2.5.3 Overview of TLR signaling pathways.  Figure was adapted from (De Nardo, 

2015). 

MyD88 is the universal signal transducer, because it interacts with almost all the TLRs except 

TLR3, the receptor for double-stranded RNA. Overexpression of MyD88 (with or without its 

TIR domain) in vitro gives rise to constitutive activation of signaling pathways (Burns et al., 

1998). MyD88 directly couples to the intracellular TIR domains of TLR dimers. However, in 

the case of TLR2 and TLR4, due to suboptimal electrostatic surface charges between their 

respective TIR domains, MyD88 is thought to require the bridging adaptor, MAL with a more 

favorably charged TIR domain (Dunne et al., 2003; Fitzgerald et al., 2001; Horng et al., 2002). 

MyD88 also has a death domain, which recruits IL1 receptor-associated kinases (IRAKs, e.g. 

IRAK1, IRAK2 and IRAK4), launching signaling pathways that culminate in the activation of 

transcription factors (TFs), most remarkably NFκB (O'Neill and Bowie, 2007). The multi-

protein complex of the MyD88-IRAK family has been called the “Myddosome”. According to 
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the presence of IRAK1 or IRAK2, two Myddosomes have been characterized. In each, six 

MyD88 molecules assemble and interact with four IRAK4 molecules, which in turn interact 

with four IRAK1 molecules or four IRAK2 molecules (Gay et al., 2011; Lin et al., 2010). 

Furthermore, the Myddosome is also employed by the receptors for IL1, IL18 and IL33, which 

makes MyD88 especially important for inflammation and host defense. This is also true for 

the IRAK molecules, with IRAK4 being important for the activation of T cells by IL1 (in TH17 

cells) and most likely IL18 (in TH1 cells) (Staschke et al., 2009), which expands the role of this 

system into adaptive immunity. Activation of the IRAKs allows transient recruitment of the 

E3 ubiquitin (Ub) ligase, TNFR-associated factor 6 (TRAF6) to the receptor complex. This is 

followed by the subsequent activation of TRAF6 and its release into the cytosol to form a 

complex with TAK1, TAB1 and TAB2/3 (Qian et al., 2001b), and thus, activates an IKK 

complex consisting of NEMO, IKKα and IKKβ, leading to phosphorylation and degradation of 

IκB, the release and nuclear translocation of NFκB, and the initiation of cytokine production 

(Napetschnig and Wu, 2013). Additionally, it was observed in mice that TRAF6 signaling also 

leads to activation of IRF5, which is important for the production of pro-inflammatory 

cytokines (Takaoka et al., 2005). In parallel, TAK1 triggers the MAP kinase pathway thereby 

mediating AP-1 and CREB activation, which are also important for cytokine gene 

transcription (Takeuchi and Akira, 2010). Although the MyD88-dependent pathway 

predominantly terminates in cytokine production, there is evidence in plasmacytoid 

dendritic cells (pDCs) that MyD88-IRAK1 signaling could activate the transcription factor IRF7, 

which initiates the transcription of type I IFNs (Gohda et al., 2004; Honda et al., 2004). 

Recruitment of the TRIF triggers a specific signaling cascade that is utilized by both TLR3 and 

TLR4 (Yamamoto et al., 2003a). Activation of TLR4 induces both the MyD88- and TRIF-

dependent pathways. TLR3 can directly interact with TRIF; however, TLR4 requires the 

bridging adaptor, TRAM, in order to convey signals downstream of TRIF (Yamamoto et al., 

2003b). When TLR4 activation initially causes MAL/MyD88 signaling from the plasma 

membrane, TRAM/TRIF signaling subsequently proceeds due to translocation of TLR4 into 

endosomal compartments. This was elegantly demonstrated by inhibiting dynamin and 

clathrin-dependent endocytosis, which had no effect on NFκB but abolished IRF3-dependent 

IFNβ production (Kagan et al., 2008). TLR4 is degraded within lysosomal compartments when 

TRIF signaling terminates (McGettrick and O'Neill, 2010). The engagement of TRIF by TLR3 or 

TLR4 is associated with both TRAF6 and TRAF3 via putative TRAF6 binding motifs to the 
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receptor complex. The transduction by TRAF3 leads to IRAK1- and TBK-1-mediated activation 

of IRF7 and IRF3, respectively, and thus results in the production of type I IFNs, whereas 

TRAF6 recruitment triggers RIP1 kinase and IKK complex, which initiate NFκB activation 

(Gohda et al., 2004; Sato et al., 2003). 

2.6 Whole-genome transcriptional profiling data 

Gene expression profiling data are generated by DNA microarray or RNA-sequencing (RNA-

Seq) technology, which simultaneously measures the relative activity of thousands of 

previously identified target genes, to provide a global view of the complete transcriptome 

for cell of interest.  

The core principle for microarray technology is hybridization between two DNA strands, i.e. 

the property of complementary nucleic acid sequences to specifically pair with each other by 

forming hydrogen bonds between complementary nucleotide base pairs. Each chip consists 

of thousands of DNA spots. Each DNA spot contains picomoles (10-12 moles) of a specific 

DNA sequence (probe), which can be a short fragment of a gene or other DNA element that 

are used to hybridize a complementary DNA (cDNA) or cRNA (target) under high-stringency 

conditions. After washing off non-specific bonding sequences, only strongly paired strands 

with high numbers of complementary base pairs will remain hybridized. Signals can be 

detected from fluorescently labeled target sequences that bind to a probe sequence. The 

signal intensity from a spot relies on the amount of target sample binding to the probes 

present on that spot and can be quantified by image analysis (Staal et al., 2003). One 

example for Affymetrix microarrays is illustrated in Figure 2.6.  

Compared to one-color microarrays, two-color microarrays can be performed by using cDNA 

from two samples (e.g. cancer cells versus normal cells) labeled with two different 

fluorophores. The commonly used fluorescent dyes include Cy3 (a fluorescence emission 

wavelength of 570 nm, green) and Cy5 (a fluorescence emission wavelength of 670 nm, red). 

The two Cy-labeled cDNA samples are mixed and hybridized to a single microarray that is 

then scanned in a microarray scanner to visualize fluorescence of the two fluorophores after 

excitation with a laser beam of a defined wavelength. Relative intensities of each 

fluorophore may then be used in ratio-based analysis to identify up-regulated and down-

regulated genes (Tang et al., 2007). 
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Since the detection of expression levels in microarrays is dependent on known gene 

sequences or existing reference genomes or transcriptomes, the disadvantage of this 

technology is that it is unable to identify novel gene targets or other molecular fragments 

such as unknown microRNAs. In recent years, the development of RNA-Seq technologies 

enables a fast way to characterize and quantify gene expression from a whole transcriptome. 

Independent of a reference genome or transcriptome, RNA-Seq can also be used for new 

model organisms whose genome has not been sequenced yet, which microarray is unable to 

accomplish. Until recently, researchers still choose the microarray technology preferentially 

due to lower costs especially with large sample size. Eventually however, RNA-Seq 

technologies will subsidize microarray technologies completely.  

During the last 10 years, the two dominant microarray manufacturers in the world were 

Affymetrix (Santa Clara, California, USA) and Illumina (San Diego, California, USA). Affymetrix 

uses a silicon chip as solid surface that the probes can be fixed whereas Illumina uses Nano 

beads instead of the large solid support. In 2015, Illumina has stopped its microarray product 

for assessing gene expression in mice and suggested to its customers to use RNA-Seq instead. 
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Figure 2.6 The principle steps of Affymetrix microarray experiments.  Figure was adapted 

from (Staal et al., 2003).  Total RNA is extracted from one cell population and cDNA is 

prepared for each array chip. The cDNA is used in an in vitro transcription (IVT) reaction to 

generate biotin-labeled cRNA. After fragmentation with heat and Mg2+ ions, this cRNA is 

hybridized to microarrays, washed and stained with PE-conjugated streptavidin. And 

subsequently the stained chip is scanned on a laser scanner. The signal intensity of each 

probe on the microarray represents the “absolute” gene expression level which is finally 

analyzed by bioinformatics methods. 
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2.7 Public transcriptomic datasets of immune cells 

Transcriptomics has considerably contributed to a better understanding of immune cell 

function and regulation. Large consortia such as the ImmGen consortium (Best et al., 2013; 

Bezman et al., 2012; Cohen et al., 2013; Gautier et al., 2012; Miller et al., 2012) or the 

Human Immunology Project Consortium (Poland et al., 2013) compiled extensive datasets 

and defined a core transcriptional program for murine tissue macrophages and dendritic 

cells (DC) under steady state conditions (Gautier et al., 2012; Miller et al., 2012). A 

complementary approach has been introduced by InnateDB (Breuer et al., 2013). Data on 

molecular interactions between proteins of the innate immune system derived from smaller 

datasets have been compiled and can be used to reveal mechanistic insights into immune 

cell function (Hume et al., 2010; Mabbott et al., 2010). Applying new sequencing 

technologies (a combination of RNA-Seq, ChIP-Seq and ATAC-Seq data analysis) enables to 

study epigenetic landscapes of murine tissue-resident macrophages (Lavin et al., 2014). 

Unfortunately, meta-analysis of small datasets has been hampered by several challenges. 

Differences in the genetic background of mice, in stimulation conditions, and the 

combination of in vitro and in vivo data limit or even bias model generation of incongruous 

data sets (Mabbott et al., 2010). Moreover, comparative studies have identified substantial 

differences in immune cell gene expression between mice and humans (Schroder et al., 2012; 

Shay et al., 2013). Therefore, it remains to be fully elucidated, how immune cell activation - 

particularly in human macrophages - is transcriptionally controlled and to which degree 

these pathways are conserved across species (Murray and Wynn, 2011). Standardizing data 

acquisition and assembling larger datasets, such as by the ImmGen consortium (Heng and 

Painter, 2008), is necessary to answer such questions.  

2.8 Computational approaches applied to gene expression profiling 

In the next paragraphs, I will introduce mainly those computational approaches that were 

utilized in the four major projects described in this thesis. The field of gene expression 

profiling has seen an enormous development during the last decade and several approaches 

have become standard, while others are still experimental. Efforts to standardize and 

compare methodologies from the DREAM (Dialogue for Reverse Engineering Assessments 

and Methods) competitions and the tools compared in DREAM5 have also been used as part 

of this thesis.  
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2.9 Dimensionality reduction 

As high-throughput data consist of thousands of variables (genes), that means, thousands of 

dimensions, which cannot be recognized by humans. Hence, reduction of dimensionality is 

necessary to visualize the fundamental structures within a dataset. There are many ways to 

reduce dimensionality of data. The following two, principal component analysis and 

correlation analysis, are two widely used computational methods. 

2.9.1 Principal component analysis 

Principal component analysis (PCA) is a linear transformation method that uses an 

orthogonal transformation to convert a set of observations of possibly correlated variables 

into a set of values of linearly uncorrelated variables called principal components. The 

number of principal components is always less than or equal to the number of original 

variables, which consequently reduces the dimensionality of the original data. The 

transformation is defined in such a way that the first principal component has the largest 

possible variance (that is, accounts for as much of the variability in the data as possible), and 

each succeeding component in turn has the highest variance possible under the constraint 

that it is orthogonal to (i.e., uncorrelated with) the preceding components. The principal 

components are orthogonal because they are the eigenvectors of the covariance matrix, 

which is symmetric. PCA is sensitive to the relative scaling of the original variables (Jolliffe, 

2002). 

As PCA is a linear transformation that focuses on keeping the low-dimensional 

representations of dissimilar data points apart from each other, it has limitations to keep the 

low-dimensional representations of similar data points close together. Therefore, non-linear 

dimensionality reduction techniques have been developed, for example, t-SNE, to visualize 

the similarities within a high-dimensional dataset (van der Maaten and Hinton, 2012). 

2.9.2 Correlation analysis 

In statistics, correlation refers to statistical relationships between two dependent variables. 

There are several correlation coefficients, often denoted ρ or r, measuring the degree of 

correlation. A perfect correlation of 1 or -1 occurs when each of the variables is a perfect 

monotone function of the other. Similarly, when the correlation coefficient equals to 0, the 

corresponding two variables are completely independent of each other. 
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2.9.2.1 Pearson correlation coefficient 

The most widely used correlation coefficient is the Pearson correlation coefficient, which is a 

measure of linear correlation between two variables. The values are always between 1 and -

1 inclusive, where 1 is the total positive correlation, 0 is no correlation, and -1 is the total 

negative correlation. It was developed by Karl Pearson from a related idea introduced by 

Francis Galton in the 1880s (Myers et al., 2010). 

Pearson's correlation coefficient between two variables X and Y is defined as the covariance 

of the two variables divided by the product of their standard deviations.  

𝜌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

∑ (𝑥𝑖 − �̅�)( yi − �̅�)𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

 

where: 

 𝑥𝑖  and 𝑦𝑖 are values from X and Y, respectively; n is the size of the samples 

 �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  (sample mean) 

2.9.2.2 Spearman’s rank correlation coefficient 

Other correlation coefficients such as the Spearman’s rank correlation coefficient have been 

developed to be more robust than the Pearson correlation – that is, more sensitive to 

nonlinear relationships. Spearman's coefficient is appropriate for both continuous and 

discrete variables, including ordinal variables. 

The Spearman correlation coefficient is defined as the Pearson correlation coefficient 

between the ranked variables. For a sample of size n, the n raw scores  Xi, Yi   are converted 

to ranks  xi, yi , and ρ is computed from: 

𝜌 = 1 −
6 ∑ (𝑥𝑖 − yi)

2𝑛
𝑖=1

𝑛(𝑛2 − 1)
 

Identical values (rank ties or value duplicates) are assigned a rank equal to the average of 

their positions in the ascending order of the values (Myers et al., 2010).  
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2.10 Cluster analysis 

Cluster analysis is unsupervised machine learning to group and dissect data objects based 

only on information retrieved in the data that describes the objects and their relationships. 

The objects within a group should be similar (or related) to one another and different from 

(or unrelated to) the objects in other groups after clustering. The greater the similarity (or 

homogeneity) within a group and the greater the difference between groups, the better or 

more distinct the clustering will be. Either for understanding or as a utility, cluster analysis 

has long played an important role in a wide variety of fields such as psychology, biology, 

statistics, pattern recognition, information retrieval, machine learning, and data mining. 

Following are some examples of clustering methods that are commonly applied in 

bioinformatics. 

2.10.1 Hierarchical clustering 

Hierarchical clustering is an unsupervised learning approach which aims to construct a 

hierarchy of clusters. In general, there are two types of strategies or algorithms for 

hierarchical clustering. One is agglomerative (a "bottom up" approach): each observation 

starts in its own cluster, and pairs of closest clusters are merged as one moves up the 

hierarchy. The other is divisive (a "top down" approach): all observations start in one cluster, 

and separation of discriminate observation is performed recursively as one moves down the 

hierarchy (Maimon and Rokach, 2010).  

The results of hierarchical clustering are usually displayed as a dendrogram. An appropriate 

metric as a measurement of dissimilarity between sets of observations is required to decide 

which clusters should be combined, or where a cluster should be split. The commonly used 

metrics for hierarchical clustering are Euclidean distance, Squared Euclidian distance, 

Manhattan distance, maximum distance and Mahalanobis distance (Maimon and Rokach, 

2010). 

2.10.2 K-means clustering 

K-means clustering is a method of vector quantization, a machine learning approach that 

was originally proposed by James MacQueen in 1967 through the idea of Hugo Steinhaus in 

1957 (Manning et al., 2008). The aim of this method is to partition n observations into a 

certain number (k) of clusters in which each observation belongs to the cluster with the 
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nearest mean, serving as a prototype of the cluster. The algorithm can be described as 

following: 

Given a set of observations (x1, x2, … , xn), where each observation is a d-dimensional real 

vector, k-means clustering aims to partition the n observations into k ( k ≤ n ) sets 

𝑆 = (S1, S2, … , Sn), so as to minimize the within-cluster sum of squares. In other words, its 

objective is to find: 

arg min ∑ ∑ ||x − μi||
2

x∈Si

k

i=1

 

where μi is the mean of points in Si. 

The problem is computationally difficult, i.e. it is a non-deterministic polynomial-time hard 

(NP-hard) problem. However, if k and d (the dimension) are fixed, the time complexity of the 

problem would be Ο(ndk+1logn) (Wu, 2012). 

2.10.3 Self-Organizing Map 

Self-Organizing Map (SOM) or Kohonen Self Organizing Feature Map was a vector 

quantization method invented by Teuvo Kohonen (Kohonen, 2013). It is an efficient data 

compression technique for visualizing low-dimensional views of high-dimensional data. It has 

been adopted as a standard analytical tool in many fields of science such as statistics, signal 

processing and systems biology.  

The stages of the SOM algorithm can be summarized as follows. First, initialization: choose 

random values for the initial weight vectors 𝑤𝑗. Second, sampling: draw a sample training 

input vector 𝑥 from the input space. Third, matching: find the winning neuron 𝐼(𝑥) with 

weight vector closest to input vector. Fourth, updating: apply the weight update equation 

∆𝑤𝑗𝑖 = 𝜂(𝑡)𝑇𝑗,𝐼(𝑥)(𝑡)(𝑥𝑖 − 𝑤𝑗𝑖). Fifth, continuation: keep returning to step 2 until the feature 

map stops changing (Kohonen, 2013). 

However, studies in the last two decades indicate that SOM has limitations for either 

clustering/vector quantization (VQ) or multi-dimensional scaling (MDS) when comparing to 

traditional VQ or MDS techniques (Balakrishnan et al., 1994; Bezdek and Nikhil, 1995). SOM’s 

ability of doing both VQ and MDS at the same time is also challenged by a new combined 
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approach, online K-means clustering plus Sammon mapping of the cluster centroid (Flexer, 

1997).  

2.10.4 Markov Cluster (MCL) Algorithm  

The MCL algorithm is a fast and scalable unsupervised cluster algorithm for networks based 

on simulation of stochastic flow in networks (Van Dongen, 2008). The algorithm was 

invented by Stijn van Dongen and fully explained in his PhD thesis. 

The engine of the MCL algorithm is a Markov chain process, which is a discrete uncoupling 

process for finite space. The algorithm consists of three main steps: parameter setup, MCL 

process computing and result interpretation. The MCL process takes a stochastic matrix as 

input, and then alternates expansion and inflation, each step defining a stochastic matrix in 

terms of the previous one.  Given a graph (or a network) G, the algorithm employs the 

process by applying it to the matrix of random walks on G (Van Dongen, 2008). 

The MCL algorithm has following properties: First, it generates well-balanced flat (non-

hierarchical) clusters. Second, it is intrinsically a bootstrapping method, by which seeding 

information, especially the number of clusters, is not required. Third, it has a natural 

parameter (inflation) affecting cluster granularity (size). Fourth, it is scalable to sparse 

graph/matrix implementation techniques. Fifth, mathematical results link MCL process 

iterands, the cluster interpretation, inflation, and the number of clusters together (Van 

Dongen, 2008). 

2.11 Network analysis on high-throughput data  

Since 15 years, the availability of high-throughput gene expression data has made it possible 

to infer large-scale gene regulatory networks. The gene-to-gene relationships could be 

computed by applying a variety of mathematical metrics given by a plenty of sample size (in 

some cases even larger than 100 samples) to include individual variations for statistical 

predictions (Margolin et al., 2006). Due to this prerequisite, currently gene expression 

profiles from microarray experiments are the major resource for gene regulatory network 

inference rather than using high-resolution sequencing data to control the research costs. 

The inferred gene-to-gene relationships or gene pairs are often ranked by certain score 

defined by each algorithm and the high-ranking gene pairs are considered as gene-gene 

interactions, which can be visualized by network analysis tools in 2D or 3D fashion.  
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Cytoscape (http://www.cytoscape.org/) is an open source software written in Java for 

visualizing molecular interaction networks and biological pathways and integrating these 

networks with annotations, gene expression profiles and other high-throughput data. 

Although it was originally designed for biological research and made public in 2002, now it is 

a general platform for complex network analysis and visualization. Cytoscape core 

distribution provides a basic set of features for data analysis, integration and visualization 

and also additional plugins (Apps) for customized usage such as network and molecular 

profiling analyses, new layouts, additional file format support, scripting, and connection with 

databases. Most of the Apps are freely available from Cytoscape App Store 

(http://apps.cytoscape.org/). 

There have been various attempts to reconstruct gene regulatory networks from microarray 

expression data. Of them, the commonly applied algorithms will be introduced.  

2.11.1 Network inference algorithms 

A Bayesian network is a probabilistic graphical model that represents a set of random 

variables and their conditional dependencies via a directed acyclic graph (DAG). In particular, 

each node in the graph represents a random variable, while the edges between the nodes 

represent probabilistic dependencies among the corresponding random variables. These 

conditional dependencies in the graph are often estimated by using known statistical and 

computational methods. Bayesian network is one of the first implemented algorithms to 

infer gene regulatory networks from high-throughput microarray expression data 15 years 

ago (Friedman et al., 2000). However, network prediction has always been challenged due to 

the limited amount of independent experimental conditions and noise inherent in the 

measurements. Therefore, supervised approaches were used to systematically integrate 

expression data and biological prior knowledge, related, for instance, to transcription factor 

binding locations in promoter regions or partially known signaling pathways from the 

literature (Werhli and Husmeier, 2007). 

As the most popular manner to represent statistical relationships between two observations, 

correlation methods have been applied to analyze gene expression data in the field of 

systems biology at the very beginning. BioLayout Express 3D is one of the fast and convenient 

network generation tools on the basis of correlation methods (Theocharidis et al., 2009). 

However, it has been demonstrated that the gene expression relationship between a TF and 

http://www.cytoscape.org/
http://apps.cytoscape.org/
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its targets is complex. In most cases, they do not have a correlated expression profile over a 

time course. Sometimes, in fact, there is a lag time between the expression of the TF and its 

target (Qian et al., 2001a). Moreover, correlation methods have shown bias in predicting 

different network motifs, e.g., they are good at inferring feed-forward loops, but not 

knockouts and directionality (Marbach et al., 2012).  

Mutual information, another metrics for measurement of dependencies between variables, 

was utilized to calculate the relationships between each gene pair within gene expression 

profiles since 2000 (Butte and Kohane, 2000). Unlike correlation, mutual information does 

not assume linearity, continuity, or other specific properties of the dependence. As such, 

mutual information possesses the flexibility to detect regulatory interactions that might be 

missed by linear measures such as the correlation coefficient.  

Formally, the mutual information of two discrete random variables X and Y can be defined as: 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)

𝑥∈𝑋𝑦∈𝑌

log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) 

Or in the case of continuous random variables, the summation is replaced by definite double 

integral (Mc Mahon et al., 2014): 

𝐼(𝑋; 𝑌) = ∫ ∫ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)𝑑𝑥𝑑𝑦

𝑋𝑌

 

Due to these advantages, several network prediction methods based on MI have been 

released during the last decades. The more advanced method ARACNe (algorithm for the 

reconstruction of accurate cellular networks), combining mutual information and a well-

known staple of data transmission theory, the 'data processing inequality' (DPI), was first 

reported to be successfully applied on gene-expression profile data from human B cells 

(Basso et al., 2005; Margolin et al., 2006). ARACNe has been also extensively applied to time-

course data to develop TimeDelay-ARACNE and was tested on Saccharomyces cerevisiae and 

E. coli networks (Zoppoli et al., 2010). Furthermore, the context likelihood of relatedness 

(CLR) algorithm also uses mutual information for scoring the similarity between the 

expression levels of two genes in a set of microarrays and applies an adaptive background 

correction step to eliminate false correlations and indirect influences (Faith et al., 2007). 
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These methods based on information theory were proposed to be better performed in 

predicting gene regulatory networks of large complex mammalian cells (Basso et al., 2005). 

Regression techniques, which fit the data to a priori models, are one big category of network 

inference methods. For example, Yeung et al. uses singular value decomposition to construct 

a family of candidate solutions and then uses robust regression to identify the solution with 

the smallest number of connections as the most likely solution (Yeung et al., 2002). More 

recently, GENIE3 (GEne Network Inference with Ensemble of trees) was proposed as the best 

performer in DREAM 4 Project. It decomposes the prediction of a regulatory network 

between p genes into p different regression problems, in each of which the expression 

pattern of one of the genes (target gene) is predicted from the expression patterns of all the 

other genes (input genes), using tree-based ensemble methods random forests (Huynh-Thu 

et al., 2010).  

2.11.2 Community-based methods 

The results of network inference rely predominantly on the studied data including type of 

the data (real or simulated), size of the network, number of samples, amount of noise, 

experimental design (observational, experimental or interventional), type of network 

structure (random, scale-free or small-world), etc. Due to these factors, there is no one 

“right” method that is able to fulfill all different biological, technical and experimental 

conditions best (Emmert-Streib et al., 2014), but it has been shown that a number of 

methods have the potential to infer similar biological information (de Matos Simoes et al., 

2013). Therefore, a recent trend in this field is to use ensemble methods (Zhang and Singer, 

2010) or community-based methods to improve the stability and accuracy of the inferred 

networks. Computational studies from the DREAM project demonstrate that community-

based methods integrated from many individual approaches are much more robust than 

individual methods (Marbach et al., 2012). In brief, the underlying idea is to first apply 

individual inference methods and then aggregate all separate outcomes by average rank to 

build a consensus network. So far, these methods have been applied to gene expression data 

derived from microorganisms only and the results were evaluated based on known biological 

interactions (Marbach et al., 2012). 
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2.11.3 Network analysis on immune cells 

Recently, several elegant studies have revealed the importance of analyzing networks based 

on gene expression profiling in immune cells such as macrophages (Martinez et al., 2006; 

Nau et al., 2002; Ramsey et al., 2008) and Th17 cells (Ciofani et al., 2012; Yosef et al., 2013). 

By combining unsupervised learning of transcriptome data and supervised learning of 

database-stored information, these studies show how technological and analytical advances 

can reveal network structures in immune cells. But most mathematical approaches require 

large datasets. For example, the reverse engineering algorithm ARACNe (Algorithm for the 

Reconstruction of Accurate Cellular Networks), which is robust in predicting gene regulatory 

networks for mammalian cells, has previously been employed to characterize B cell 

activation (Basso et al., 2005) and further refined during the last few years (Marbach et al., 

2012). The requisite of these algorithms is to have at least 100 gene expression profiles as 

input. However, due to the lack of large enough datasets, reverse engineering approaches 

were not applied to other immune cells like human macrophages and monocytes so far prior 

to this thesis.    

2.12 Knowledge-based analysis 

So far, only data-driven approaches have been introduced. However, it is also very important 

to link the data to prior knowledge from literature or databases. Therefore, the most 

commonly used knowledge-based analytic methods will be described in the next paragraphs. 

2.12.1 Gene Ontology (GO) and GO enrichment analysis 

The Gene Ontology (GO) project (http://geneontology.org/), founded in 1998, is a 

collaborative effort that provides controlled vocabularies of defined terms representing gene 

product properties. The aim of the project is to address consistent descriptions of gene 

products across databases. The ontology covers three domains: first, cellular component, the 

parts of a cell or its extracellular environment where a gene product is involved; second, 

molecular function, the elemental activities of a gene product at the molecular level, such as 

binding or catalysis; and third, biological process, operations or sets of molecular events with 

a defined start and end, relevant to the functioning of integrated living units: cells, tissues, 

organs, and organisms.  

http://geneontology.org/
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The ontology is structured as a directed acyclic graph (hierarchical structure) where each 

term has defined relationships to one or more other terms in the same domain, and 

sometimes to other domains. The GO vocabulary is designed to be species-independent, and 

includes terms applicable to prokaryotes and eukaryotes, and single and multi-cellular 

organisms. 

A GO enrichment analysis will find which GO terms are over-represented or under-

represented using annotations for a given set of candidate genes, e.g.  genes that are up- or 

down-regulated under certain conditions. The over-representation of GO terms could be 

evaluated by several values, such as enrichment p-value. P-value is the probability of 

observing at least x number of genes out of the total n genes in the list annotated to a 

particular GO term, given the proportion of genes in the whole genome that are annotated 

to that GO Term, i.e. the GO terms shared by the given genes are compared to the 

background distribution of annotation. The closer the p-value is to zero, the more significant 

the particular GO term is associated with the set of genes. 

There are a number of different GO enrichment tools. Tools may use diverse algorithms and 

perform different statistical tests.  In this study, I mainly used a Cytoscape plug-in BiNGO 

(see more in Materials and Methods). 

2.12.2 KEGG Pathway and pathway enrichment analysis 

KEGG (Kyoto Encyclopedia of Genes and Genomes) (http://www.genome.jp/kegg/) is a 

database resource for understanding high-level functions of the biological system, from 

molecular-level information, especially large-scale molecular datasets generated by genome 

sequencing and other high-throughput experimental technologies. 

Similar to GO enrichment analysis, pathway enrichment analysis aims to identify over-

represented KEGG pathways using a given set of candidate genes. 

  

http://www.genome.jp/kegg/
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3 Materials and Methods 

3.1 Gene expression profiling data generation and retrieval 

3.1.1 Illumina microarrays 

For human macrophage resource data (GEO accession number: GSE47189), total RNA was 

further purified using the MinElute Reaction Cleanup Kit (Qiagen). Biotin labeled cRNA was 

generated using the TargetAmp Nano-g Biotin-aRNA Labeling Kit for the Illumina System 

(Epicentre). Biotin labeled cRNA (1.5 μg) was hybridized to HumanHT-12V3 or HumanWG-

6V3 Beadchips, and scanned on an Illumina HiScanSQ system. Raw intensity data of a total 

number of 384 samples were processed in Genome Studio (Illumina) excluding probesets 

with missing bead types to increase validity.  The microarray experiments were performed 

mainly by Susanne V. Schmidt, Michael R. Mallmann and Marc Beyer. 

The human PBMC microarray data (GEO accession number: GSE42606) were retrieved from 

Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/). The dataset comprises 299 

samples generated by Illumina HumanHT-12 V4.0 expression Beadchips. 

3.1.2 Affymetrix microarrays 

The murine yolk sac and tissue macrophage data were generated by Affymetrix MoGene-

2_1-st-v1 arrays. In this research, there are in total 27 cell populations, each of which has at 

least two or three biological replicates (sample size = 81). The microarray experiments were 

performed by a collaboration partner from KFB Regensburg (Kompetenzzentrum für 

Fluoreszente Bioanalytik, Regensburg). 

3.2 Primary expression data handling 

3.2.1 Illumina microarrays 

For each study, the complete transcriptomic dataset was imported into Partek Genomics 

Suite (PGS) for further analysis including quantile normalization. Batch effects coming from 

different array experiments were removed from normalized log2-transformed data. 

Background signal was calculated within R based on coefficient of variation. The 

corresponding log2-transformed background value will be described for each dataset in the 

results section. Genes are only kept for further analysis if their mean expression values are 

higher than background in at least one group or condition. Afterwards, multi-probes were 

http://www.ncbi.nlm.nih.gov/geo/
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filtered allowing only one probe with the highest mean expression within each group 

representing corresponding genes. Only unique present genes, which represent most 

informative genes, were retained for further analyses such as network analysis. 

3.2.2 Affymetrix microarrays 

Robust Multi-array Average (RMA) function was used to normalize the data during 

importation of raw Affymetrix data into PGS. Background value was set to be the median of 

the entire normalized data throughout genes. Probes below the background and multiple 

probes were filtered as described for the Illumina data (see Chapter 3.2.1). For the murine 

tissue macrophage data, 17,888 unique present genes were derived for further analysis. 

3.3 Identification of differentially expressed genes and hierarchical clustering 

Differentially expressed (DE) genes were defined by Analysis of Variance (ANOVA) models by 

setting certain fold change (FC) and False Discovery Rate (FDR, Benjamini and Hochberg, 

1995) adjusted p-value cutoffs to determine differences between two comparable groups or 

conditions. The corresponding cutoffs used for a particular comparison will be described in 

the result section. The most variable genes were determined in ANOVA models to compare 

the variations throughout groups by t-test, i.e. genes with most significant p-values. 

Hierarchical clustering using Euclidean distance on both genes and samples enables 

visualization of DE genes or most variable genes on particular conditions. 

3.4 Co-regulation analysis by BioLayout Express3D 

BioLayout Express3D (BioLayout) is a powerful tool for the visualization and analysis of 

network graphs based on co-expression (Theocharidis et al., 2009). In this PhD work, 

BioLayout was applied to either discriminate different sample groups or identify gene-gene 

co-expression interactions. Sample-sample correlation or gene-gene correlation was 

calculated and transformed into 3D coordinates. A specific Pearson correlation cutoff is 

required to construct and visualize the co-regulation network. For gene-wise co-regulation 

networks, a proper Pearson correlation cutoff should be chosen to fulfill the power law for 

degree-node distribution. 
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3.5 Self-Organizing-Map (SOM) clustering 

To reduce the dimensionality of high-dimensional data for visualization, SOM clustering was 

used. It projects the input space on prototypes of a low-dimensional regular grid that can be 

effectively utilized to explore properties of the data (Kohonen, 1982). SOM clustering was 

performed to classify the different conditions using PGS. First, the expression values were z-

transformed (z-scores) and this was followed by 20,000 training iterations to cluster similar 

probes close to each other on the map. In our settings, the whole transcriptome was divided 

into 10 × 10 clusters, and the expression values of each cluster gene are rescaled to one 

eigenvalue, which represent the general expression value of this cluster. The resulting data 

are then visualized as a heatmap representing increased values in red, decreased values in 

blue and intermediate values in green. It needs to be mentioned that the input data (e.g. 

number of samples or conditions) influences the cluster structure and standardized mean 

expression values (z-scores).   

3.6 Pearson and Spearman correlation coefficient matrices 

To investigate the similarities across sample groups, Pearson correlation coefficients or 

Spearman correlation coefficients in a pairwise fashion between all conditions were 

computed using PGS, which results in a Pearson or Spearman correlation coefficient matrix. 

The individual samples were grouped into one using mean expression values of the 

corresponding group. The resulting correlation coefficient matrices were visualized as 

heatmaps with or without hierarchical clustering of the sample groups. 

3.7 Calculation of the vectors for the multi-dimensional model of macrophage 

activation 

The multi-dimensional model of macrophage activation was established by grouping the 

samples according to the clusters obtained by the PCCM analysis, utilizing the 3D 

coordinates of the individual macrophage samples determined by co-regulation analysis, 

calculating mean vectors for the clusters and plotting the information in a 3D graph using the 

coordinates of the baseline macrophages (Mb) as the origin. The coordinates of the nodes 

can be joined by conditions or clusters using ‘Collapse Nodes by Class’ function in BioLayout 

by setting Mb as origin (0, 0, 0) and then the joined coordinates of other conditions or 
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clusters are rescaled based on the origin in 3D space. The vectors starting from Mb to all 

activation states were plotted in 3D space using Matlab. 

3.8 Gene modular analysis by weighted gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) can be used to identify underlying 

data structures in a complex dataset (Langfelder and Horvath, 2008).  WGCNA was  used to 

identify co-regulated genes associated with the studied conditions. The WGCNA R package 

(http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/ Rpackages/WGCNA/) 

was utilized for the analysis. The mean expression matrix of 29 conditions from preprocessed 

human macrophage activation data was used as input. The standard parameters such as 

power and minimal module size were altered to obtain better clustering of gene modules. 

For each module the eigengene corresponding to the first principal component of a given 

module was calculated. The network for each module of interest was generated using the 

“1-TOMsimilarityFromExpr” function of the WGCNA R package. The eigengenes of 49 

identified modules was correlated to the 29 conditions and the correlation matrix was 

visualized as a heatmap. The WGCNA analysis was performed mainly by Thomas Ulas. 

3.9 GO enrichment analysis and GO network visualization 

To link the data to prior knowledge, GO enrichment analysis was applied by using the 

Cytoscape plug-in BiNGO (v2.44) (Maere et al., 2005). To include only significant results, the 

FDR q-value threshold was set to 0.05 as default. The Cytoscape plugins Enrichment Map 

(v1.1) (Merico et al., 2010) and Word Cloud (Oesper et al., 2011) were used to visualize the 

GO networks. Certain cutoffs for similarity of the GP terms, Jaccard coefficient (default: 0.25), 

and their significance FDR q-value (default: 0.1) were utilized depending on the size of the 

networks. It will be described in the result section if the default settings were not used. 

3.10 Pathway enrichment analysis 

To understand the involvement of a certain list of candidate genes in biological pathway, 

pathway enrichment analysis was performed in PGS, which derives well-established pathway 

information from KEGG database (http://www.genome.jp/kegg/) and compute the 

enrichment scores and enrichment p-values (t-test) for each particular pathway based on 

corresponding gene lists. 

http://labs.genetics.ucla.edu/horvath/htdocs/CoexpressionNetwork/%20Rpackages/WGCNA/
http://www.genome.jp/kegg/
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3.11 miRNA-Seq data generation and analysis 

Next-generation sequencing of miRNAs for four human macrophage conditions, i.e. baseline 

(Mb), IFNγ (MIFNγ), IL4 (MIL4) and the combination of TNF, PGE2 and P3C (TPP, MTPP), was 

performed according to the manufacturer’s recommendations. In brief, 5x106-2x107 

macrophages were harvested and total RNA including small RNAs was isolated. Small RNA 

libraries were generated from 1 μg total RNA with the TruSeq Small RNA Sample Preparation 

Kit (Illumina). After successful ligation of 3’ and 5’ adapters to RNA molecules, RNA was 

reverse-transcribed using SuperScript II reverse transcriptase (Invitrogen). cDNA was 

amplified by 11 PCR cycles with high-fidelity Phusion Polymerase (Finnzymes). cDNA with the 

size of miRNAs plus ligated adapters was purified on a pre-cast 6% Tris/Borate/EDTA 

polyacrylamide gel electrophoresis gel (Invitrogen). Generation of clonal clusters from single 

molecules of the cDNA library was done with the TruSeq Cluster Kit (Illumina) on a CBot 

station. Sequencing by synthesis was performed by using the TruSeq SBS Kit on a HiScanSQ 

system (Illumina). The sequencing experiments were performed mainly by Susanne V. 

Schmidt. Afterwards, sequencing reads were retrieved as FASTQ files. After demultiplexing 

adapter sequences were trimmed from each read using Flicker 3.0 (Illumina). Trimmed reads 

were mapped to the human genome hg19 and hairpin and mature human miRNAs deposited 

in miRBase version 19 using the short read aligner Bowtie 0.12.9 (Langmead et al., 2009) 

with no mismatch allowance. The number of reads mapping to a specific miRNA sequence 

were counted within PGS. The dataset was then normalized by using the statistical software 

R package DESeq (Anders and Huber, 2010) and miRNAs having less than one normalized 

read count in all Mb samples were excluded. The read counts were transformed into log2 

counts per million (cpm) and were divided by the corresponding library size (in millions) by 

using the R package limma (Smyth, 2005). The R package sva (Johnson et al., 2007) was used 

to perform a batch removal for the random factors date and donor. Then miRNAs having less 

than one transformed read count in all samples of the same condition were excluded. 

Differentially expressed miRNAs between MIFNγ, MIL4 or MTPP were determined against Mb by 

using the R package limma (Smyth, 2005) with a p-value of 0.05 as well as an absolute fold 

change of 2 as cutoffs. Finally, for each condition a set of uniquely differentially expressed 

miRNAs was determined, which was then sorted by the transformed expression values. The 

first five most highly abundant up-regulated and the first five most highly abundant down-
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regulated miRNAs were chosen to be represented within a heatmap. The analysis of miRNA-

Seq data was performed mainly by Martina Emde and Jil Sander. 

3.12 Gene set enrichment analysis (GSEA) 

GSEA was applied to discover similar gene expression signatures between a known list of 

condition-specific genes and two groups of interest, especially between two datasets. From 

one unexplored dataset, every time two groups, i.e. experimental condition versus control, 

were taken to be compared by only looking into a given gene set. For example, this 

approaches was used to discover whether the transcriptional programs identified in in vitro 

activated macrophages can be also found in in vivo tissue macrophages. Two microarray 

datasets generated from human alveolar macrophages were compiled containing three 

clinical groups, smokers, non-smokers and chronic obstructive pulmonary disease (COPD) 

patients. Smokers and COPD patients were compared with non-smokers separately to be 

able to apply the  GSEA algorithm. The 49 WGCNA gene modules (see Chapter 3.8) defined 

from the human macrophage dataset representing stimulus-specific gene signatures were 

employed as 49 gene sets. 1,000 permutations were performed for each gene set in PGS 

(Subramanian et al., 2005). In the end, normalized enrichment score (NES), allowing 

comparisons of overrepresentation between different gene sets, together with enrichment 

p-values of GSEA were visualized as Volcano plots.  

3.13 Gene regulatory network predictions 

The filtered expression matrix (with unique present genes) from the macrophage activation 

dataset (Xue et al., 2014) were utilized as input for network inference methods. The 

following are the five major network inference methods that were used. 

3.13.1 Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) 

ARACNe is a robust reverse engineering algorithm to reconstruct mammalian cellular 

networks from realistic synthetic data and microarray data (Margolin et al., 2006). The 

expression data were loaded into an integrated genomic analysis platform geWorkbench 

version 2.5.1 (http://wiki.c2b2.columbia.edu/workbench/index.php/Home) to implement 

the ARACNe algorithm for network analysis. The algorithm includes two major steps: one is 

to identify gene pairs exhibiting correlated transcriptional responses by measuring mutual 

information (MI) or all input pairs of genes i and j within gene expression profiles (see also 

http://wiki.c2b2.columbia.edu/workbench/index.php/Home
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Chapter 2.11.1); the other is to eliminate indirect interactions by applying data processing 

inequality (DPI) (Basso et al., 2005; Margolin et al., 2006). All genes present in all array 

samples were taken into calculation with DPI tolerance 0.1 and the significance threshold for 

p-value was 1e-7. Gene pairs were ranked by their MI scores. 

3.13.2 TINGe 

Since the introduction of ARACNe several improvements of the original algorithm and novel 

algorithms have been introduced for reverse network engineering of transcriptome datasets. 

To ensure robustness of the computed network, a second reverse engineering algorithm, 

namely the TINGe (Tool for Inferring Network of Genes) algorithm (Aluru et al., 2013) was 

applied. Written in C++ TINGe is also based on information theory. To compare results from 

ARACNe and TINGe derived networks, the same significance threshold (p < 1e-7) and the 

same DPI tolerance (0.1) were used. 

3.13.3 Context Likelihood of Relatedness (CLR) 

CLR is one of the most commonly used approaches for gene regulatory network inference 

that have been integrated into the GP-DREAM web tool (Marbach et al., 2012; Reich et al., 

2006). A gene x condition matrix of expression values can be uploaded into GP-DREAM. The 

CLR algorithm progresses through two main steps. First, a matrix of MI values is calculated 

for all input gene pairs using B-spline smoothing (spline degree of 3) and the gene expression 

values were discretized into 10 bins. Second, CLR estimates the significance of a gene pair by 

comparing the corresponding MI values to an empirically defined background distribution of 

MI values. The significance of a gene pair is defined by a modified z-score (Faith et al., 2007). 

Gene-gene connection predictions are ranked according to the modified z-score. A cutoff of 

100,000 edges was used to obtain high ranking inferred interactions. 

3.13.4 Gene Network Inference with Ensemble of Trees (GENIE3) 

GENIE3 decomposes the prediction of a regulatory network between n genes into n different 

regression problems. In each of the regression problems, the expression pattern of one of 

the target genes is predicted from the expression patterns of all other genes based on 

Random Forests (Huynh-Thu et al., 2010). The importance of one gene in the prediction of 

the target gene is taken as an indication of a putative regulatory link. 100,000 putative 

regulatory links are then aggregated over all genes to provide a ranking of interactions to 

reconstruct a network. 
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3.13.5 BasicCorrelation 

Pearson’s correlation was employed to compute the relationships between all gene pairs 

within gene expression data. This method is also compiled within GP-DREAM. The 

relationship between gene x and y were ranked via Pearson’s correlation coefficient 

(Marbach et al., 2012). Again, only 100,000 gene pairs with highest correlation were kept. 

3.13.6 Consensus network 

All gene-gene interactions derived from each individual network prediction were ranked by 

its ranking function. By computing average rank for each gene pair, 10,000 top ranking 

interactions was obtained. These putative gene-gene interactions were imported into 

Cytoscape (Saito et al., 2012) to build a consensus network. Duplicated edges and self-loops 

were removed. 

3.13.7 Network topology analysis 

Networks were visualized in a force-directed layout in Cytoscape. To study the topology of 

the built networks, network statistical analysis such as the functional relationship between 

the numbers of nodes and their degree of connectivity (degree node distribution) was 

performed utilizing the Cytoscape plug-in Network Analysis (Cline et al., 2007). A number of 

node and edge attributes were computed, the degree-node-distribution representing the 

relationship between one particular degree of connectivity and the number of corresponding 

nodes was visualized as a scatter plot. 

3.14 Candidate gene prioritization approach 

Reverse engineered networks can predict novel functions for uncharacterized genes but also 

potential functional associations among known genes. Predictions made by such networks 

can also be supplemented with prior knowledge or additional data sources to generate new 

hypotheses for further investigation. Therefore, the network generated by ARACNe or TINGe 

was complemented with prior knowledge by applying the following strategy. The top 10% 

highly connected hub genes with a degree of connectivity higher than 30 were prioritized by 

association with macrophage lineage and activation information using the transcription 

factors PU.1 and RUNX1 as bait genes. Both have crucial roles as macrophage lineage and 

activation factors. Using these genes, similarity profiling, data fusion and network-based 

strategies were performed by applying two prioritization tools, ToppGene (Chen et al., 2009) 
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and Endeavour (Tranchevent et al., 2008). The results of the different approaches were 

subsequently combined by the Borda Count method, which was implemented by a Perl script 

(see Appendix A Script 1). 

3.15 Common transcription factor binding site prediction 

TF binding prediction was performed using the Genomatix Suite 

(http://www.genomatix.de/). First, promoter models for a set of genes of interest were 

compiled using the Gene2Promoter module in Genomatix. Subsequently, the Genomatix 

module for the search of common TF binding sites was applied to determine 

overrepresented TF binding sites. Significance measure for each TF family is represented by 

z-score, calculated with a continuity correction using the formula z = (x-E-0.5)/S, where x is 

the number of found matches in the input data, E is the expected value and S is the standard 

deviation. A z-score below -2 or above 2 can be considered to be statistically significant. The 

z-score was subsequently converted as a normal distribution to the corresponding p-value 

using pnorm command in R. 

3.16 Deconvolution analysis by CIBERSORT 

CIBERSORT (https://cibersort.stanford.edu/) is an analytical tool for characterizing cell 

composition of complex tissues or mixed cell populations from their gene expression profiles 

(Newman et al., 2015). To access the abundance of cell types from hematopoietic origin 

within complex tissues, the authors first designed and validated a leukocyte signature matrix, 

which contains 547 genes that distinguish 22 human hematopoietic cell phenotypes 

including T cells, B cells, plasma cells, NK cells and myeloid compartments. The defined 

human leukocyte signature was termed “LM22”. To deconvolute the mixture within the 

input expression matrix, CIBERSORT employs linear support vector regression, a robust 

machine learning approach, to perform feature selection from the defined cell type 

signature matrix. The gene expression data generated from PBMC were grouped into 10 

groups (Bbu, LPS, Mtu, Cal and Control at both 4 hours and 24 hours) by computing the 

mean expression over the individual samples. Utilizing this mixture of expression matrix as 

input, CIBERSORT was applied to run 100 permutations for statistical significance testing. The 

relative fractions of 18 leukocyte types from LM22 and global p-values for the deconvolution 

were calculated. 

http://www.genomatix.de/
https://cibersort.stanford.edu/
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Custom signature gene files can be defined by giving reference sample files for 

transcriptome profiles from distinct phenotypes and the corresponding phenotype classes 

file to CIBERSORT. To create human macrophage activation signatures, the expression matrix 

of 29 human in vitro macrophage activation conditions (184 samples including Mb at 0 hour 

and 28 activated conditions at 24 or 72 hour time points) from Chapter 4 (Xue et al., 2014) 

was used as input. After generation of macrophage activation signatures, CIBERSORT 

calculations were performed on the mixture file derived from the PBMC data (see above). 

3.17 Circos plots of stimulation-specific effector molecules 

To identify stimulation-specific biomarkers for bacterial and fungal infections, 1,427 surface 

markers (de Souza et al., 2012) and 55 cytokines including chemokines (Costantini et al., 

2009) that are present in 12,029 pre-filtered genes were extracted from the PBMC data. The 

markers were tested if FC > 1.5 and FDR adjusted p-value < 0.05 when comparing each 

condition against the corresponding control: if yes, one link between the TF and the 

condition was made; otherwise, no link between them would be generated. The Circos 

program (Krzywinski et al., 2009) was applied to visualize the different diagrams for surface 

markers and cytokines. Before running Circos, a few specific input files such as “karyotype”, 

“histogram” and “link” with a certain format were generated in batch by using a Perl script 

(see Appendix A Script 2). For each plot, one complete circle was split into 9 parts as virtual 

“chromosomes”, one for all the markers and the other 8 representing 8 conditions. The 

length of each “chromosome” reflecting the number of involved markers that were changed 

for the corresponding condition. The links were colored according to the conditions. The 

configuration file of one Circos run for the surfaceome plot (Figure 6.4.8) is provided in 

Appendix A Script 3. 

3.18 K-means clustering 

To identify gene clusters with similar expression patterns, K-means clustering algorithm 

(partitioning clustering) in PGS was applied. The preprocessed murine tissue macrophage 

data as described in Chapter 3.2.2 from 17 selected samples as embryonic development-

associated groups including EMP, A1, A2, embryonic F4/80high kidney cells, Kupffer cells and 

microglia (abbreviations see Table 7.1) were extracted and the mean expression values for 

each group were computed. The City block distance function was employed and the Davies-

Bouldin index (Davies and Bouldin, 1979) was calculated before clustering to check the 
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optimal number of clusters. As a result, the 17,888 present genes were clustered into 36 

clusters. 

3.19 Wet lab validation methods 

Molecular and cellular experimental validations on different levels, such as reverse 

transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked 

immunosorbent assay (ELISA), were performed via collaboration with other lab members. 

These data are only included in this thesis to illustrate the validity of the computational 

models derived within this thesis. The respective collaborators who performed the 

experiments are mentioned throughout the text.  
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4 Transcriptome-based network analysis of human macrophage 

from diverse signal inputs 

Most of the work described in Chapter 4 was published in Immunity (Xue et al., 2014).  

4.1 Extension of M1 versus M2 polarization to a multi-dimensional model 

Within the Department of Genomics and Immunoregulation at the LIMES-Institute, human 

peripheral blood mononuclear cells (PBMC) were isolated and CD14+ monocytes were 

derived by magnetic-activated cell sorting (MACS). Macrophages were generated from 

CD14+ monocytes by differentiation with GM-CSF or M-CSF, and as control cells dendritic 

cells (DCs), T cells, B cells, and Natural Killer (NK) cells were also isolated or generated and 

used for genome-wide transcriptional profiling (Figure 4.1.1, Table 4.1). To assess overall 

sample-to-sample relationships, macrophages (baseline, Mb) were clearly distinct from other 

cell types including DCs in co-regulation analysis as it is shown in Figure 4.1.2. The difference 

between Mb and DCs on protein level was then confirmed by flow cytometry experiments, 

which were performed by my collaborators in the department (mainly Susanne V. Schmidt 

and Heidi Theis) (Figure 4.1.3).  

 

Figure 4.1.1 Schema of isolation and generation of cells used in this dataset. Figure was 

adapted from (Xue et al., 2014). M-CSF: macrophage colony-stimulating factor; GM-CSF: 

granulocyte-macrophage colony-stimulating factor; GC: glucocorticoid; IC: immune 

complexes; PGE2: prostaglandin E2; P3C: Pam3CysSerLys4; TPP: TNF+PGE2+P3C; PA: palmitic 

acid; OA: oleic acid; LA: lauric acid; LiA: linoleic acid; SA: stearic acid; sLPS: standard 

lipopolysaccharide; upLPS: ultrapure lipopolysaccharide; HDL: high density lipoprotein. 
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Table 4.1 Gene expression profiling data sample overview 

Cell type Count of array samples 

B cell 3 

Dendritic cell 33 

Macrophage 299 

baseline 53 

GC 3 

HDL 4 

IFNβ 3 

IFNγ 38 

IFNγ_TNF 3 

IL10 3 

IL13 3 

IL4 40 

IL4_upLPS 6 

LA 6 

LiA 6 

M1/2 2 

OA 12 

P3C 3 

P3C_PGE2 3 

PA 12 

PGE2 3 

SA 6 

sLPS 8 

sLPS_IC 3 

sLPS_IFNγ 3 

TNF 6 

TNF_P3C 3 

TNF_PGE2 3 

TPP 46 

TPP_IFNβ 3 

TPP_IFNβ_IFNγ 3 

upLPS 9 

upLPS_IC 3 

Monocyte 15 

NK cell 3 

T cell 31 

Grand Total 384 
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Figure 4.1.2 Relationship between macrophages and other immune cells. Figure was 

adapted from (Xue et al., 2014). A Sample-sample co-regulation network (visualized in 3-

dimensional space) of monocyte-derived macrophages (baseline, Mb) induced by M-CSF or 

GM-CSF with monocyte-derived cells (DCs) induced by GM-CSF+IL4. Sample-sample co-

regulation networks additionally including B monocytes, C CD83+ DCs, CD25+ DCs and upLPS-

stimulated DCs, D T cells, B cells and NK cells. 
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Figure 4.1.3 Comparison of surface marker expression for Mb and DCs. Figure was adapted 

from (Xue et al., 2014). Representative histograms of expression of cell surface molecules 

CD11c, CD11b, CD14, CD1a, CD206 and CD209 on Mb (GM-CSF, red) and DCs (GM-CSF+IL4, 

green). Data were generated by Susanne V. Schmidt and Heidi Theis. 

The monocyte-derived macrophages (Mb) were stimulated with 28 different stimuli including 

pattern recognition receptor ligands, cytokines and metabolic cues for a certain time period 

(ranging from 0.5 to 72 hours) as shown in Figure 4.1.1. To better understand the complexity 

of transcriptional regulation after macrophage activation, the complete transcriptomes of 

Mb and macrophages activated by 28 stimulation conditions were analyzed. To determine 

the overall relationship of these activation states, co-regulation analysis was applied as it is 

shown in Figure 4.1.4. In agreement with the existing dichotomous model, a virtual axis was 

formed, where macrophages at Mb were localized in between macrophages stimulated with 

IFNγ (so-called M1, MIFNγ) and IL4 (so-called M2, MIL4) (Figure 4.1.4A). Adding other 

conditions linked to M1 (sLPS, TNF) or M2 (IL13) polarization (Biswas and Mantovani, 

2010)(Figure 4.1.4B) did not change the overall M1 and M2 axis (Figure 4.1.4A). Including 

further M1- and M2-associated stimuli (IFNγ+TNF, IL10) increased the variance in the 
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correlation matrix but the overall bipolar structure maintained (Figure 4.1.4C). However, 

when adding stimuli that have not been linked to either M1 or M2 polarization, such as free 

fatty acids, high density lipoprotein (HDL), or combinations of stimuli associated with chronic 

inflammation (TNF+PGE2+P3C, TPP), the co-regulation network revealed further extensions 

that broke the initial bipolar ‘axis’ structure (Figure 4.1.4D). When all 29 conditions were 

included in the co-regulation network, the multi-dimensional structure of macrophage 

activation was formed and expanded (Figure 4.1.4E). Furthermore, when adding samples 

generated at earlier time points after stimulation, the multi-dimensionality of macrophage 

activation was shown to consist of a dense network of individual signatures (Figure 4.1.4F).  

 

Figure 4.1.4 Co-regulation networks of 297 macrophage transcriptomes representing 29 

conditions. Figure was adapted from (Xue et al., 2014). Each node represents one sample 

generated at end of activation time points (A-E) or also including data at intermediate time 

points (F).   

These findings were validated by using several bioinformatic approaches such as Self-

Organizing-Map (SOM) clustering and Pearson correlation coefficient matrix (PCCM). 

Samples belonging to one condition have been grouped into one eigenvalue (mean 

expression over samples). Performing SOM clustering on the 17 conditions shown by co-

regulation analysis in Figure 4.1.4D revealed that every stimulus was characterized by a 

specific cluster structure (Figure 4.1.5), which further supported the multi-dimensional 

model. Similarly, a bipolar structure was not identified within the PCCM, but rather a 

condition-specific multi-dimensional structure of correlation coefficients in 5 major clusters, 

which could be further divided into 10 clusters as shown in Figure 4.1.6. PCCM results were 

quite similar when using the complete transcriptome or only 1,000 most variable probes. 
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Figure 4.1.5 Self-Organizing Map (SOM) clustering using samples displayed in Figure 4.1.4D 

(17 conditions). Figure was adapted from (Xue et al., 2014). Each transcriptome is clustered 

into 10 x 10 clusters. Each square represents the z-transformed expression value (z-score) as 

eigenvalue for cluster genes as a heatmap. Clusters with the top up- or down-regulated 

genes for each stimulus are marked with a frame.  

 

Figure 4.1.6 Heatmap of hierarchically clustered Pearson correlation coefficient matrix 

(PCCM). Figure was adapted from (Xue et al., 2014). PCCM was calculated based on 1,000 

most variable probes for 29 conditions. Pearson correlation coefficients are standardized 

from -2.78 to 2.78 (blue via white to red). 

Furthermore, sum vectors in three-dimensional space were built by using the coordinates of 

the samples defined by co-regulation analysis within the 10 clusters defined by PCCM. As a 

result, a model of macrophage activation best described by multi-dimensionality of 

transcriptional programs was proposed as illustrated in Figure 4.1.7.  
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Figure 4.1.7 Multi-dimensional model (3D) based on the 10 clusters. Figure was adapted 

from (Xue et al., 2014). Sample values (coordinates) defined by co-regulation network (from 

Figure 4.1.4E). Baseline macrophages (Mb) are set as origin, 9 activation states are 

represented by colored arrows, x-, y- and z-axes are in dashed lines with double arrows. 

Taken together, these data clearly extend the current model of M1 versus M2 polarization to 

a multi-dimensional model of macrophage activation.  

4.2 Identification of genes specifically associated with distinct stimuli 

To determine whether the different stimuli could be distinguished on the gene level within 

the complete multi-dimensional model, 9,498 genes, which were expressed in at least one 

condition from all macrophage samples at end of activation states, were kept for further 

analysis. SOM clustering was performed for these genes so that the z-transformed 

expression values (z-scores), which enable the selection of genes specifically regulated and 

enriched for individual stimuli, were calculated. As a result, genes that were selectively 

elevated in only one of the stimulation conditions were identified. For instance, 

glucocorticoid (GC) selectively induced SESN1, while palmitic acid (PA) selectively increased 

the expression of HES4 (Figure 4.2.1-4.2.2). However, there were also conditions, for which a 

single gene was insufficient to distinguish between closely associated stimuli, e.g. SERINC2 

was induced by PGE2, but also by PGE2+P3C (Figure 4.2.2), indicating that gene combinations 

are necessary to discriminate complex input signals on transcriptional level. In general, 

although some activation stimuli might be associated with the induction of single genes, the 

assessment of a substantial number of markers as representatives for different activation 

programs of macrophages will be still important in future studies.  
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Figure 4.2.1 Genes with selective expression associated with distinct stimuli. Figure was 

adapted from (Xue et al., 2014). Absolute expression values (mean ± SD) of genes defined by 

SOM clustering to be highly expressed for a particular stimulation condition. Shown here are 

genes enriched in Mb (baseline), IFNβ, GC, IL4+uLPS, upLPS+IC, PA, IFNγ, IFNγ+TNF, 

sLPS+IFNγ, or TPP+IFNβ. 
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Figure 4.2.2 Genes with selective expression associated with distinct stimuli (continued). 

Figure was adapted from (Xue et al., 2014). Absolute expression values (mean ± SD) of genes 

defined by SOM clustering to be highly expressed for a particular stimulation condition. 

Shown are the genes induced by the conditions not shown in Figure 4.2.1. 
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4.3 Network analysis identifies stimulus-associated transcriptional programs of 

macrophage activation 

To further investigate input signal-specific gene sets that are associated with the 

corresponding macrophage activation states, weighted gene co-expression network analysis 

(WGCNA) (Langfelder and Horvath, 2008) was applied on 29 conditions. It identifies pairwise 

Pearson correlation across genes, and then classifies the complete transcriptome into a 

number of gene modules. The WGCNA analysis was mainly performed by my collaborators in 

the department (mainly Thomas Ulas). On the basis of 9,498 present genes as described 

above, 49 distinct co-expression modules containing 27 to 884 genes per module were 

identified. To determine the module eigengene (ME), which is the first principal component 

of the respective module, the expression data from different genes within each computed 

module were used. Afterwards, these 49 MEs were correlated to the 29 experimental 

conditions. As examples the eigengene expression of modules 8, 15, and 30 (Figure 4.3.1), 

which are highly enriched in IFNγ, IL4 and TPP stimulation conditions, were visualized as 

colored bar plots. The resulting ME-to-condition correlation matrix was then visualized as a 

heatmap (Figure 4.3.2). The MIFNγ and MIL4 showed prominent ME patterns, while other 

stimuli clearly displayed divergent patterns further supporting a multi-dimensional model of 

macrophage activation. For example, stimulation with TPP (MTPP) induced a strong signal in 

modules 30, 32, and 33, which could not be observed in MIFNγ, or MIL4. Combined TNF, PGE2 

and TLR ligand P3C activation was introduced as a reductionist model of chronic 

granulomatous inflammation such as in tuberculosis, or granulomatous listeriosis (Marino et 

al., 1997; Popov et al., 2006; Shay and Simon, 2012). It has been demonstrated that genes 

like IL10, CD25, COX-2, and indoleamine 2,3-dioxygenase (IDO) are expressed in 

macrophages in human granulomatous structures and are induced in human macrophages 

after stimulation with the combination of the aforementioned factors (TNF, PGE2, TLR2 

ligand P3C) (Popov et al., 2006; Popov et al., 2008) suggesting that these host factors 

characterize the transcriptional program during chronic inflammation.  
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Figure 4.3.1 Bar plot visualization of the eigengene expression of modules 8, 15, and 30 in 

the 29 stimulation conditions. Figure was adapted from (Xue et al., 2014). The samples 

colored according to 29 conditions are shown in x axis while eigengene expression in y axis. 

Data were produced by Thomas Ulas. 
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Figure 4.3.2 49 stimulus-specific gene modules identified by weighted gene co-expression 

network analysis (WGCNA). Figure was adapted from (Xue et al., 2014). Heatmap showing 

the correlation of the module eigengene (first principal component, ME) to the stimulation 

conditions. Blue means negative correlation while orange means positive correlation. Data 

were produced by Thomas Ulas. 

Next, the gene modules correlated with the specific stimulation conditions IFNγ, IL4 and TPP 

were extracted to link respective module genes to biological information provided by the 

Gene Ontology (GO) consortium (http://geneontology.org/). GO enrichment analysis was 

performed by the combination of the GO enrichment calculations (BiNGO) and network 

visualization of enriched GO-terms (EnrichmentMap) (Figure 4.3.3). This analysis confirmed 

the major functional differences between MIFNγ and MIL4, e.g. that an IFNγ-driven response 

was associated with the induction of pro-inflammatory genes, whereas these genes were 

depressed in the IL4-driven response. More importantly, TPP stimulation induced a gene 

expression pattern associated with chronic inflammation, including GO terms such as 

‘chronic inflammatory response’. This approach was validated by interrogating these gene 

sets with GO analysis, pathway analysis and transcription factor (TF) binding prediction tools 

provided by InnateDB, with the same outcome (data not shown).  

http://geneontology.org/
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Figure 4.3.3 GO network of IFNγ-, IL4- and TPP-associated modules. Figure was adapted 

from (Xue et al., 2014). Network visualization of GO enrichment analysis of modules 7-9 

(positively correlated) and 43, 44, 48 (negatively correlated) for IFNγ stimulation, 13-15 

(positively correlated) and 30, 5, 32 (negatively correlated) for IL4 stimulation, 30, 32-33 

(positively correlated) respectively 12, 13, and 20 (negatively correlated) for TPP stimulation. 

Node size and node color darkness correspond with the enrichment FDR adjusted p-value (q-

value) of the GO term. Green edges stand for up-regulation of the involved genes while blue 

edges represent down-regulation. Edge thickness shows overlap of genes between neighbor 

nodes. Data were produced by Thomas Ulas. 

Subsequently, TFs within the IFNγ, IL4, and TPP-associated modules were determined using 

the Genomatix database and visualized them as co-regulation networks as shown in Figure 
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4.3.4. This analysis revealed STAT1 as a central hub in MIFNγ and STAT6 as a hub in MIL4. 

Moreover, it has been observed that additional TFs are related to these activation programs 

such as STAT2, IRF7 and IRF9s for IFNγ activated cells as well as IRF4 and the forkhead box 

proteins FOXQ1 and FOXD2, which were not previously associated with the IL4 activation. In 

the case of macrophages stimulated with TPP, the TF co-regulation network also included 

STAT4 as well as TFs mediating both inflammation and metabolism (HIF1A, (Shay and Simon, 

2012)), or TFs associated with negative regulation of TLR signaling (HEY1 (Hu et al., 2008)), or 

macrophage activation (TGIF1, (Ramsey et al., 2008)). Other TFs identified in this network 

have not yet been linked to macrophage activation as determined by pubatlas.org-based 

literature mining. This analysis identified activation-associated gene sets, which are 

responsible for essential biological functions of various macrophage subtypes. These gene 

sets assemble not only well-known TFs linked to the main macrophage activation programs, 

but also TFs that have not yet been associated with any activation states.  Taken together, 

this large dataset of macrophage activation enables the establishment of stimulus-specific 

transcriptional networks in human macrophages.  

 

Figure 4.3.4 Co-regulation network of module-specific transcription factors (TFs). Figure 

was adapted from (Xue et al., 2014).  IFNγ: modules 7-9; IL4: modules 13-15; TPP: module 30, 

32-33. Edge width shows the Pearson correlation between each TF pair. 

4.4 Novel phenotypes and function of macrophages activated by TNF, PGE2, and 

TLR2 ligand 

To demonstrate phenotypic and functional differences of MTPP to the prototype MIFNγ and 

MIL4, experimental validation on molecular and cellular levels was performed by my 

collaborators in the department (mainly Susanne V. Schmidt, Heidi Theis, Astrid Draffehn 

and Andrea Nino-Castro). As it has been determined by PCCM (Figure 4.1.6) and WGCNA 

(Figure 4.3.2), MTPP have a transcriptomic signature distinct from MIFNγ or MIL4 macrophages. 
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Within differentially expressed genes (FC > 2, FDR adjusted p-value < 0.05) between MTPP, 

MIFNγ, MIL4, and Mb, a total number of 51 cell surface markers expressed selectively on MTPP 

was identified, i.e. they were only induced in MTPP but not in MIFNγ, MIL4 or Mb. Significantly 

high expression for CD14, CD23, CD25, CXCR7 and CD197 on MTPP (p-value < 0.05) was 

verified by flow cytometry, while CD86 was elevated on both MIFNγ and MTPP (Figure 4.4.1).  

 

Figure 4.4.1 Flow cytometry of CD14, CD23, CD25, CD86, CXCR7 and CD197 in macrophages. 

Figure was adapted from (Xue et al., 2014). Four types of macrophages are marked in 

different colors: Mb in dark grey, IFNγ in light blue, IL4 in red and TPP in light grey. Mean 

fluorescence intensities (MFI) of at least three independent experiments (mean and s.e.m.; 

p* < 0.05 Student’s t-test). Data were generated by Susanne V. Schmidt. 

Besides surface molecules, a set of TFs was found to be induced in MTPP but not in MIFNγ or 

MIL4: STAT4 as an example. It was confirmed by western blotting that STAT4 protein 

expression is only induced in MTPP (Figure 4.4.2).  
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Figure 4.4.2 Western blot analysis of STAT4 and β-actin. Figure was adapted from (Xue et al., 

2014). STAT4 expression was normalized to ß-actin expression and set to 100% in MTPP (TPP) 

(mean and s.e.m.; p* < 0.05 Student’s t-test). Data were generated by Astrid Draffehn and 

Heidi Theis. 

Moreover, further differences between MTPP and MIFNγ or MIL4 were observed on cytokine 

secretion level. For instance, as shown in Figure 4.4.3, CXCL5 secretion was significantly 

induced by MTPP and to a lesser extent by MIFNγ (p-value < 0.05), but not by MIL4, while IL1α 

was only secreted by MTPP.  

 

Figure 4.4.3 Cytokine secretion in macrophages. Figure was adapted from (Xue et al., 2014). 

CXCL5 and IL1α levels in supernatants of macrophage cultures: Mb (dark grey), IFNγ (light 

blue), IL4 (red) and TPP (light grey) activated macrophages (mean and s.e.m.; p* < 0.05 

Student’s t-test). Data were generated by Susanne V. Schmidt and Heidi Theis. 

Since macrophage activation has impact on T cell proliferation, T cell activation by CD3 and 

CD28 beads in presence or absence of macrophages was assessed by CFSE dilution. As a 

result, T cell proliferation was decreased by Mb although not statistically significant (p-value 

< 0.05), and there was no difference in CD3 and CD28 stimulated T cell proliferation in the 

presence of MIFNγ and MIL4 (Figure 4.4.4). MTPP, however, strongly repressed T cell 
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proliferation, which indicates that macrophage activation by TPP induced a distinct 

functional program from IFNγ- or IL4-activated macrophages.  

 

Figure 4.4.4 T cell activation in presence or absence of macrophages. Figure was adapted 

from (Xue et al., 2014). The percentage of dividing CD3 and CD28 stimulated T cells in 

presence or absence of Mb (dark grey), IFNγ (light blue), IL4 (red) and TPP (light grey) 

activated macrophages (mean and s.e.m.; p* < 0.05 Student’s t-test). Data were generated 

by Andrea Nino-Castro. 

MicroRNAs (miRNAs) are small RNAs that regulate gene expression after mRNA transcription. 

Therefore, miRNA expression in IFNγ, IL4, and TPP conditions was assessed globally by 

miRNA-Seq to detect their difference on post-transcriptional level. And the analysis of the 

miRNA-Seq data was performed by my collaborators Martina Emde and Jil Sander. As it is 

shown in Figure 4.4.5, MTPP clearly differed from MIFNγ and MIL4 at the miRNA level: on the 

one hand, MTPP had prominent hsa-miR-125a-5p expression and a lack of MIFNγ- (hsa-miR-

23b-3p) or MIL4-associated miRNAs (e.g. hsa-miR-125b-5p, hsa-miR-99a-5p); On the other 

hand, a set of miRNAs had significant decrease of expression in MTPP when comparing to IFNγ 

and IL4 activated cells (FDR adjusted p-value < 0.05).  
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Figure 4.4.5 Differential expression of miRNAs between IFNγ-, IL4- and TPP-induced 

macrophage activation. Figure was adapted from (Xue et al., 2014). Heatmap showing fold 

changes of highly abundant miRNAs up- or down-regulated (FC > 2, FDR adjusted p-value < 

0.05) in M1 (IFNγ) or M2 (IL4), or MTPP (TPP) compared to Mb (baseline). Fold changes 

colored from blue via white to red. Data were generated by Martina Emde and Jil Sander. 

Collectively, macrophages that are different in their global transcriptional program from 

MIFNγ or MIL4, such as MTPP macrophages, are also distinct in their phenotype and function. 

These findings further support the multi-dimensional model of macrophage activation.  

4.5 Overlay in vitro expression data to human alveolar macrophages 

Next, the relevance of the in vitro macrophage activation model for in vivo macrophage 

biology was evaluated. To address whether particular activation programs such as those 

described in Chapter 4.3 can be found in human tissue macrophages, two datasets of human 

alveolar macrophages obtained by bronchoalveolar lavage (Shaykhiev et al., 2009; Woodruff 

et al., 2005) consisting of samples from non-smokers, smokers, and COPD patients were 

collected from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/), and 

were integrated into one. After normalization and filtering steps, co-regulation analysis of 

samples was performed on the basis of differentially expressed genes among clinical groups 

(FC > 2.0, FDR adjusted p–value < 0.05). Three major clusters reflecting the three patient 

groups were revealed by co-regulation analysis (Figure 4.5.1) supporting distinct 

transcriptional programs in macrophages from the three groups.  

http://www.ncbi.nlm.nih.gov/geo/
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Figure 4.5.1 Relationships throughout samples from alveolar macrophages. Figure was 

adapted from (Xue et al., 2014). Co-regulation network of human alveolar macrophages (n = 

100) from two studies (Shaykhiev et al., 2009; Woodruff et al., 2005) using 374 differentially 

expressed genes between non-smokers (n = 39) and smokers (n = 49) or COPD (n = 12) 

patients (|FC| > 2.0, FDR adjusted p–value < 0.05).   

As a next step, stimulus-specific gene modules identified by WGCNA were utilized as 49 gene 

sets from in vitro conditions for Gene Set Enrichment Analysis (GSEA). As positive controls, 

GSEA was first applied to the comparison of IFNγ-, IL4-, TPP- and palmitic acid (PA)-

stimulated macrophages (MPA) with baseline macrophages. Normalized enrichment scores 

(NES) as well as enrichment p-values for 49 gene sets were calculated and visualized as a 

Volcano plot (Figure 4.5.2). As expected, only those gene sets or gene modules, which were 

most highly correlated with MIFNγ, MIL4, MTPP or MPA in the WGCNA analysis, showed the 

highest positive NES and lowest significant p-values for the corresponding stimuli. 
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Figure 4.5.2 Results of gene set enrichment analysis (GSEA) on 4 conditions as positive 

controls. Figure was adapted from (Xue et al., 2014). Volcano plots of normalized 

enrichment scores (NES) and enrichment p-values based on GSEA for the stimuli IFNγ, IL4, 

TPP, and PA. Red circles: gene sets positively significantly enriched (NES > 1, p-value < 0.05); 

blue circles: gene sets significantly depleted (NES < -1, p-value < 0.05). 

Since the positive controls of this approach worked properly, GSEA was subsequently applied 

to the clinical groups, smokers and chronic obstructive pulmonary disease (COPD) patients, 

in comparison to non-smokers (Figure 4.5.3). Surprisingly, for smokers a glucocorticoid-(GC) 

associated gene module (41, WGCNA) was most significantly enriched (p-value < 0.05) 

followed by several gene modules associated with free fatty acids and also IL4 and TPP 

stimulation. This indicated that there is a complex network of stimuli and signaling pathways 

playing a role in alveolar macrophages in smokers. Previous literature described the 

presence of M2-like signatures in COPD patients (Shaykhiev et al., 2009). However, no 

enrichment of IL4- or IL13-associated signatures was observed in COPD patients by using this 

data driven approach. Furthermore, the promising signature of enriched modules, which was 

observed in smokers, was completely lost in COPD patients. In the meanwhile, the most 

significantly down-regulated (NES < -1, p-value < 0.05) WGCNA module in COPD patients was 

module 8 (associated with IFNγ stimulation), which was also significantly decreased in 

smokers.  
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Figure 4.5.3 Results of gene set enrichment analysis (GSEA) on patient sample groups. 

Figure was adapted from (Xue et al., 2014). Volcano plots of normalized enrichment scores 

(NES) and enrichment p-values of the same gene sets applied to data from alveolar 

macrophages derived from smokers and COPD patients. Red circles: gene sets positively 

significantly enriched (NES > 1, p-value < 0.05); blue circles: gene sets significantly depleted 

(NES < -1, p-value < 0.05). 

To further look into the profound transcriptional signatures, positively enriched modules and 

negatively enriched modules (p-value < 0.01) for smokers and COPD patients, respectively, 

were taken for GO enrichment analysis. As a result, network visualization of GO enrichment 

analysis on smoker related modules results in several distinct GO clusters, supporting the 

complex transcriptional changes in alveolar macrophages from smokers. However, cells from 

COPD patients were seen to be mostly associated with decrease of inflammatory response 

and regulation of immune response, and loss of antigen processing. This observation is 

consistent with the depletion in the IFNγ-linked module (Figure 4.5.4).  

Taken together, by overlaying the WGCNA-determined macrophage activation programs to 

human in vivo tissue macrophages using GSEA, hitherto unexplored biological mechanisms 

were discovered in alveolar macrophages from smokers and COPD patients.  
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Figure 4.5.4 GO networks for smoker- and COPD-specific modules. Figure was adapted from 

(Xue et al., 2014). Network visualization of GO enrichment analysis on positively enriched 

modules (p-value < 0.01) for smokers (modules 41, 6, 21, 16, 39, 5, 19 and 42) and negatively 

enriched modules (p-value < 0.01) for COPD patients (modules 8, 29) using BiNGO and 

EnrichmentMap. Node size and node color darkness correspond with the enrichment FDR 

adjusted p-value (q-value) of the GO term. Green edges stand for up-regulation of the 

involved genes while blue edges represent down-regulation. Edge thickness shows overlap 

of genes between neighbor nodes.  

4.6 Common activation regulators by network inference with a single method 

While the paradigm of macrophage polarization (M1 versus M2) was clearly extended to a 

multi-dimensional model, this large cohort of data consisting of a variety of stimulation 

conditions also enabled the identification of common denominators of macrophage 

activation. To identify these common macrophage activators, the reverse engineering 

method ARACNe was employed (Margolin et al., 2006). The 9,498 genes present in at least 

one stimulation condition defined above as informative genes were again used to generate a 

so-called all-versus-all network (Bonferroni corrected p-value < 10-7) by predicting 

interactions based on mutual information between each gene pair computed from the 

expression profiles. As a consequence, 66,744 interactions between 9,073 network genes 

were identified by ARACNe. This results in an average degree of connectivity of 14.7, which 

means one gene is involved in 15 transcriptional interactions on average. The parameter 

settings for reverse engineering calculations and the corresponding network statistics were 

summarized in Table 4.6 below: 

  



74 

Table 4.6 Parameters and result summary for reverse engineered networks 

Setting No. i ii iii 

Condition all conditions 

No. of samples 299 

Background (mean log2 expression) 6.747431711 

No. of probes 9,498 

Algorithm ARACNe TINGe 

Parameters 

p-value 1.00E-07 1.00E-07 1.00E-07 

p-value adjustment Bonferroni no no 

DPI tolerance 0.1 0.1 0.1 

Nodes 9,073 9,475 9,485 

Edges 66,744 76,075 79,646 

Avg. Degree 14.713 16.058 16.794 

Regression of degree-node distribution (R-squared) 0.767 0.685 0.710 

10 % largest hubs 

Degree cutoff 30 31 39 

No. of hubs 869 882 909 

No. of interactions 30,431 31,759 35,705 

No. of combined genes (percentage) 0.876777 0.89066 0.884871 

 

To verify the ARACNe network, another reverse engineering approach TINGe (Tool for 

Inferring Network of Genes) on the basis of information theory was also applied (Aluru et al., 

2013). The TINGe network revealed high similarity in the network size and topology as well 

as the rank of hubs based on degrees of connectivity as determined by ARACNe (Figure 

4.6.1). Due to the size and complexity of the entire network, instead of displaying it 

completely, the network statistical properties (degree-node distribution) were summarized 

in Figure 4.6.2.  
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Figure 4.6.1 Comparison of topology of two networks generated from two algorithms: 

ARACNe and TINGe. Figure was adapted from (Xue et al., 2014).  Shown is the degree of 

connectivity of 9,485 genes within the networks. Parameters used for network generation 

are identical (Setting No. ii and iii as described in Table 4.6). 

 

Figure 4.6.2 Degree node distribution of the three major networks generated from 

different tools or settings. Figure was adapted from (Xue et al., 2014).  A ARACNe cutoff p-

value with Bonferroni correction, B ARACNe without Bonferroni correction, and C TINGe 

without p-value adjustment. In each plot, the number of genes with the same number of 

interactions (from 1 to 164) fits to a power law (dash line) in logarithmic range (R2 = 0.767, 

0.685 and 0.710 for A, B and C, respectively). This indicates that they are scale-free networks. 

The top 10% of hub genes (n = 869), which are the most interconnected genes inferred in the 

network, collectively participated in 30,431 interactions. They were visualized in Figure 4.6.3. 

In the 10 most highly interconnected genes, FABP5 has recently been implicated in lipid 
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metabolism and inflammation crosstalk (Furuhashi et al., 2011), and TNFAIP6 is a negative 

feedback regulator of myeloid cell activation (Choi et al., 2011). The next step was to search 

for current publications on the other most highly interconnected genes using pubatlas.org 

database. According to the result (Appendix B Table 1), little is known about the role of 

these important network genes in macrophages as well as other immune cells indicating that 

reverse engineering of large gene expression data from diverse signal inputs reveals 

unknown aspects of macrophage activation.  

 

Figure 4.6.3 Visualization of the 10% largest hub genes of the ARACNe predicted 

macrophage regulatory network. Figure was adapted from (Xue et al., 2014). For the top 10 

genes (highest degree of connectivity, blue) and TFs, mean expression values (log2, derived 

from the 10 clusters in Figure 4.1.6) are highlighted in red colors. Node size reflects degree 

of connectivity. 

Next, GO enrichment analysis of the top 10% of hub genes was performed to further 

understand the biological functions of these important genes (Figure 4.6.4). The significantly 

enriched GO-terms (FDR adjusted p-value < 0.05) were visualized as a network, which was 

subdivided into 5 major clusters. The biggest cluster was associated with immune response 
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processes (especially terms associated with ‘regulation of activation’). However, other 

clusters that were related to metabolic and catabolic processes, cell death, biosynthetic 

processes of small molecules, also constitute major aspects of macrophage activation.  

 

Figure 4.6.4 GO network of 10% largest hubs. Figure was adapted from (Xue et al., 2014). 

Network visualization of GO enrichment analysis on 10% largest hubs shown in Figure 4.6.3. 

Red nodes represent enriched GO-terms, node size represent FDR-adjusted enrichment p-

value (q-value). Edge thickness represents overlap of genes between neighbor nodes. 

To identify TFs involved in the common macrophage regulatory network, the top 10% hub 

genes were intersected with the TFCat database (Fulton et al., 2009) and in the end derived 

27 TFs (Figure 4.6.3). As the most highly expressed TFs are supposed to be the most relevant 

players in macrophage activation, and thus the 27 TFs were ranked by their average 

expression in 29 conditions and a network of the top 5 TFs (JUNB, NFKB1, HIVEP1, CREB1, 

and HBP1) with their first neighbors within the top 10% hubs (Figure 4.6.5). It has been 

established that these TFs are involved in macrophage activation: JUNB as part of the AP1 

complex, NFKB1 (global activator), and CREB1 (inducing survival signals) (Wen et al., 2010), 

except for the zinc finger protein HIVEP1, whose role is unknown. HBP1 has an impact on 

differentiation of malignant myeloid cells and the regulation of other important TFs including 

PU.1, RUNX1, JUNB, or CEBP (Yao et al., 2005). To investigate the potential binding sites of 

the 27 TFs, position-weight matrices in Genomatix was used to find out the enrichment of 

gene loci of the top 10% hub genes (Appendix B Table 2). 26 out of 27 of these TFs showed 

significantly enriched binding prediction (p-value < 0.05).  
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Figure 4.6.5 Sub-networks of the 5 most highly expressed TFs from 10% largest hubs. 

Figure was adapted from (Xue et al., 2014). First neighbors are surrounding corresponding 

TFs. Each gene is multi-colored according to its log2-transformed mean expression in 10 

clusters from Figure 4.1.6. 

As a complementary approach, ToppGene (Chen et al., 2009) and Endeavour (Tranchevent et 

al., 2008), two gene prioritization tools on the basis of machine learning, were applied as 

well to rank the potential association and closeness of the top 10% hub genes with 

macrophage cellular programs. For this purpose, the macrophage lineage TFs RUNX1 and 

SPI1 (PU.1) were used as training set. As a result, the top 11 ranked genes were TFs and in 

total, 20 of the 30 top ranked genes are associated with transcriptional regulation (Figure 

4.6.6). Besides NFKB1, JUNB and CREB1, additional TFs already associated with macrophage 

activation (STAT3) as well as other TFs not yet linked to macrophage activation (e.g. HMGA1, 

NFE2, ZNF148, SMARCA2, DDX21, MNDA, and TBLX1) turned out to be important. Several 

macrophage differentiation markers such as CSF1 (M-CSF) and MMP9 were also strongly 

linked to macrophage activation in this analysis.  
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Figure 4.6.6 Top 30 putative candidates after gene prioritization of 10% largest hubs. Figure 

was adapted from (Xue et al., 2014).  Mean log2-transformed expression from each cluster is 

displayed as a heatmap. The categorization according to cellular functions. 

Overall, this gene regulatory network analysis not only confirmed the involvement of known 

transcriptional regulators such as NFKB1, but also uncovered unexpected and hitherto 

unexplored candidate regulators, and identified five distinct GO clusters of biological 

processes as part of the macrophage activation programs. 

Taken together, the M1 versus M2 dichotomous system has been extended into a “multi-

dimensional model” for human macrophage activation by transcriptome-based network 

analysis. On the one hand, macrophage activation undergoes stimulus-specific 

transcriptional regulation, which can be also observed in human tissue macrophages.  On the 

other hand, common regulatory denominators such as NFKB1 play a central role in 

macrophage activation irrespective of input signals. 
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5 Refinement of common regulatory networks by integrating 

multiple inference methods 

In the following paragraphs, I illustrate the power of integrating several different approaches 

of network technologies to derive at a consensus network that outperforms single 

approaches. This part is prepared as a manuscript for submission.  

5.1 The community-based network is a hierarchical scale-free network  

To refine the common macrophage activation network, the same transcriptional gene 

expression profiling data as described in Chapter 4 (9,498 informative genes from a set of 

299 samples, representing perturbation of macrophage phenotypes, ranging from 

inactivated subpopulation to a variety of stimulated macrophages in vitro) were utilized as 

input for network calculations. Instead of using only one network inference algorithm, 

community-based methods were applied by integrating complementary network inference 

approaches. Gene regulatory network prediction was performed by applying five network 

inference methods: ARACNe, TINGe, CLR, GENIE3 and BasicCorrelation, most of which are 

proposed to be complementary on performance (Marbach et al., 2012). The prediction 

settings and network statistics are shown in Table 5.1.  
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Table 5.1 Network statistics on individual and community-based predictions 

Inference method 
Parameter settings and 

cutoffs 
No. of 
nodes 

No. of edges 
Average 
degree 

ARACNe 
Bonferroni corrected p-

value 1e-7, DPI 
tolerance 0.1 

9,073 66,744 14.713 

TINGe 
Unadjusted p-value 1e-

7, DPI tolerance 0.1 
9,486 79,646 16.792 

CLR 100,000 edges 7,535 99,999 13.271 

GENIE3 100,000 edges 8,372 99,999 19.035 

BasicCorrelation 
Pearson correlation, 

100,000 edges 
7,106 99,025 25.744 

Community-based 
(consensus 
network) 

Top 10,000 edges 
sorted by average rank 

4,053 8,504 4.196 

Parameter settings and cutoffs used for five individual approaches and community-based 

methods are shown. The number of nodes, edges and average degree of connectivity of the 

resulting networks were computed by Cytoscape. 

Subsequently, five individual predictions were integrated into one consensus network. The 

consensus network consists of 4,053 genes and 8,504 edges between them (Figure 5.1.1), 

which resulted in an average degree of connectivity of 4.196, meaning one gene is involved 

in 4 transcriptional interactions on average.  

To further study the topology of the network, the degree-node distribution was visualized as 

a summary of the network statistical properties (Figure 5.1.2). The power law regression in 

the relationship between the number of nodes (number of genes ranging from 1463 to 1) 

and their degree (number of interactions ranging from 1 to 76) suggests a scale-free network 

structure, i.e. the network is unevenly populated with highly connected nodes or hubs and 

less dense nodes. The R-squared value is 0.942, which is close to 1, indicating high 

correlation and a strong linear relationship between two variables. 
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Figure 5.1.1 Complete consensus network and degree-node distribution. Visualization of 

consensus macrophage regulatory network generated from gene expression profiles (n = 299 

transcriptomes) combining five inference methods. Node color and size reflect degree of 

connectivity.  

 

Figure 5.1.2 Degree node distribution of the consensus network. The number of genes with 

the same number of interactions (from 1 to 76) fits to a power law (red line) in logarithmic 

range (R = 0.942, R2 = 0.942). This indicates that they are scale-free networks. 
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5.2 Transcription factors are the most important network components 

In order to select largest central hubs, a threshold to a degree of 10 was set to obtain the 10% 

top hub genes, i.e., 409 most interconnected genes in the inferred network; they collectively 

participate in 2,342 interactions, which constitute 27.5% of all edges of the complete 

network (Figure 5.2.1). Interestingly, the 10 most central hubs with highest degrees are 

CREB1, BLZF1, C9orf80, GJC1, ZNF430, ANKRD30B, NLRP8, SDHALP1, DMC1 and ZMAT3, two 

of which are transcriptional regulators. Among the top 10% largest hubs, 10.76% are 

transcription factors (TFs), which is much higher than observed in the ARACNe-inferred 

network from Chapter 4.6 (Xue et al., 2014).   

 

Figure 5.2.1 Top 10% largest hubs of the consensus network. Visualization of the top 10% 

largest hubs in the consensus macrophage regulatory network. Node size reflects degree of 

connectivity. The 44 transcription factors are marked in red. 
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Among the most prominent TFs associated with macrophage activation independent of input 

signal were CREB1, BLZF1 and AIRE. One TF CREB1 and its first neighbors in the top 10% hubs 

were extracted and the fold-change values of these genes when comparing IFNγ, IL4 and TPP 

stimulated macrophages with baselines were visualized by node color (Figure 5.2.2). 

Apparently, there are 73 potential targets for CREB1 and most of the targets were strongly 

induced by TPP stimulation. Similar visualization with less strong up-regulation could be seen 

for IFNγ-stimulated cells while only very few of the genes increased their expression in the 

IL4 condition. 

 

Figure 5.2.2 Transcription factor CREB1 and its first neighbors (potential target genes) 

within the network. Node color represents FC value of IFNγ-, IL4- or TPP-stimulated 

macrophages versus baseline while the node size stands for the respective p-value. 
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5.3 Distinct network clusters reflect very specific cellular functions 

The top 10% sub-network was clustered into a certain number of network modules based on 

topology assigned by the MCL clustering algorithm, and the specific biological functions of 

these gene clusters were determined by GO terms using BiNGO (Figure 5.3). As a result, 18 

network modules with at least 5 genes involved were identified. But only larger modules 

with more than 10 genes showed functional enrichment. The largest module contained 76 

genes that were found to be enriched for GO-terms like “Nucleic acid metabolic process”. 

The second largest module has 44 genes and most of them were associated with innate 

immune response, type I interferon signaling pathway, etc. Most surprisingly, there was one 

cluster of genes to be associated with protein targeting to membranes, which was not 

revealed in such clarity by individual methods.  
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Figure 5.3 Function-specific network modules.  11 identified network modules with at least 

10 genes. The enriched GO terms were marked for bigger modules.  

Taken together, reverse network engineering of large transcriptional data by integrating 

several individual methods revealed a TF-centered regulatory circuit with unexpected 

complex functional components during macrophage activation. 
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6 Transcriptome-based network analysis refines pathway models for 

host defense against bacterial and fungal pathogens 

In this chapter, I present an example, how not only the methods, but also the information 

within the macrophage data can be applied to a dataset derived from a more complex 

mixture of cells, namely peripheral blood mononuclear cells (PBMC). PBMC are regularly 

studied in clinical settings addressing their reactivity towards exogenous stimuli. During the 

last 10 years numerous studies on reactivity of PBMC to pathogens have been studied, one 

of the largest being reported by one of our collaborators Prof. Mihai G. Netea from the 

Radboud University in Nijmegen, The Netherlands. I used this dataset to illustrate, how 

activation of blood-derived monocytes, precursors of macrophages can be studied in the 

context of a complex mixture of cells. This chapter is also prepared for submission as a 

manuscript.     

6.1 The transcriptomic relationships between human PBMC stimulated with 

microbial pathogens 

Human PBMC of 46 health donors were isolated from peripheral blood and stimulated with 

four types of microbial stimuli. Their transcriptomes at 4 and 24 hours were assessed by 

microarray experiments and compared globally. Using co-regulation analysis to assess 

overall sample-to-sample relationships, cells from earlier time points were clearly 

distinguishable from cells stimulated after a longer time (Figure 6.1.1), which was confirmed 

with other approaches such as principal component analysis and hierarchical clustering (data 

not shown). Cells stimulated with LPS, B. burgdorferi (Bbu) and M. tuberculosis (Mtu) were 

clustered next to the unstimulated cells while C. albicans (Cal) treated PBMC are localized 

farther away from their steady state for both time points. At 24 hours, the Cal treated cells 

even abrogate the initial axis and extend into a third axis (Figure 6.1.1).  
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Figure 6.1.1 Sample-sample co-regulation network of 294 transcriptomes from PBMC. The 

Pearson correlation threshold of 0.97 was used. Each node stands for one transcriptome. 

Nodes are colored with conditions and time points. 

6.2 The cellular composition of human PBMC stimulated with microbial pathogens  

Very recently, cell-type identification by estimating relative subsets of RNA transcripts 

(CIBERSORT), a computational approach that accurately resolves relative fractions of diverse 

cell subsets in gene expression profiles (GEPs) from complex tissues, was introduced 

(Newman et al., 2015). CIBERSORT was applied using the previously published gene 

signatures for cells within the PBMC compartment (Newman et al., 2015) to the 294 GEPs 

derived from PBMC stimulated with Cal, Bbu, Mtu, and LPS for 4 and 24 hours prior GEP 

(Figure 6.2). The complete transcriptomes were first filtered to retain 12,029 unique present 

genes by testing if the probes are expressed in at least one condition using a calculated 

background value of 6.87. At the 4 hour time point, PBMC stimulated with Cal showed the 

most profound changes in gene signature composition with an enlargement of the gene 

signatures for activated memory CD4 T cells,  NK cells and even the appearance of a MIFNγ+sLPS 

macrophage signature. These findings are in line with previous observations demonstrating 

IFNγ and sLPS to be a central player in the defense against Cal (Smeekens et al., 2013). 

However, the CIBERSORT-based model further suggested that the global IFNγ and sLPS 

signature is due to at least three independent cellular compartments, namely CD4+ T cells, 

NK cells and monocyte-derived macrophages (MIFNγ+sLPS). Bbu, Mtu and LPS-stimulated PBMC 

did not show similarly prominent differences at the 4h time point. At the 24h time point, 

however, a relative increase of the baseline macrophage (Mb) and the activated DC signature 

as well as the regulatory T cell (Treg) signature in Bbu-, Mtu-, and LPS-stimulated PBMC was 

observed. This was in contrast to Cal-stimulated PBMC that were characterized by a further 

increase of MIFNγ+sLPS, activated NK cells and CD4+ T cells and a complete lack of the Treg 
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signature. Collectively, CIBERSORT-based modeling of in vitro stimulated PBMC revealed the 

myeloid compartment to be mainly involved in response to bacterial stimuli within the first 

24 hours, while at least three cellular compartments were involved in the response against 

Cal. 

 

Figure 6.2 Relative fractions of human hematopoietic cell types for the 10 different 

conditions within the dataset. The estimated abundances (relative fractions) of member 

hematopoietic cell types within the dataset are visualized as a stacked bar plot. As human 

leukocyte signature matrix, 18 cell phenotypes including naïve and memory B cells, plasma 

cells, 7 T cell subsets, resting and activated NK cells and myeloid compartments, were used. 

M(b): inactivated macrophages; M(IFNγ+sLPS): macrophages activated by IFNγ and sLPS ; 

M(IFNγ+sLPS+IL4): macrophages activated by IFNγ, sLPS and IL4; Treg cells: regulatory T cells; 

fh T cells: follicular helper T cells. 

6.3 Common transcriptional programs and molecular pathways for infections by 

Bbu, LPS, Mtu and Cal  

To identify common response genes after four types of microbial stimulation, an ANOVA 

model was applied for each stimulus versus the corresponding control to obtain differentially 

expressed (DE) genes from 12,029 unique present genes as described above. By overlaying 

the DE genes for four stimuli at two time points, 234 and 325 common DE genes were 

identified for 4 and 24 hours, respectively. And in them, 86 genes were shared by both time 

points (Figure 6.3.1). The large majority of DE-genes, including pro-inflammatory cytokines 
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such as CCL2, CCL3, CCL20, CXCL1, CXCL5, IL1A and IL1B, as well as transcription regulators 

such as NFKBIA and  NFKBIZ, were induced by bacterial and fungal pathogen stimulation 

whereas only four of them, namely VCAN, FGL2, FCER1A and RNASE6, were inhibited by the 

stimuli (Figure 6.3.2).  

 

Figure 6.3.1 Venn diagram of identification of 86 common differentially expressed (DE) 

genes induced by four microorganisms. The DE genes for each comparison were identified 

with |FC| > 1.5 and FDR adjusted p-value < 0.05 from 12,029 present genes. 
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Figure 6.3.2 Hierarchical clustering on 86 common differentially expressed genes induced 

by four microorganisms. Heatmap displays z-transformed expression values (z-scores) from 

blue via white to red.  
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To understand the biological functions of these common response genes, GO enrichment 

analysis was performed and followed by network visualization of enriched GO-terms using 

BiNGO and EnrichmentMap (Figure 6.3.3). This analysis demonstrated the major functional 

processes of PBMC reacting to microorganisms are for example inflammatory response, 

defense response, acute inflammatory response and ion homeostasis. Pathway enrichment 

analysis confirmed the common effective pathways for host defense against these 

microorganisms (Table 6.3).  

 

Figure 6.3.3 GO network of 86 common differentially expressed genes induced by four 

microorganisms. Each node represents one enriched GO term (FDR q-value < 0.05). The 

similarity cutoff was Jaccard coefficient of 0.45. Node size and node color darkness 

correspond with the enrichment FDR adjusted p-value (q-value) of the GO term, i.e. the 

biggest and darkest nodes are the GO terms most significantly enriched with lowest FDR q-

value. Edge thickness shows overlap of genes between neighbor nodes. 
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Table 6.3 Pathway enrichment analysis on 86 common differentially expressed genes 

Pathway Name 
Enrichment 

Score 
Enrichment 

p-value 

% genes in 
pathway that 
are present 

Rheumatoid arthritis 26.6907 2.56E-12 13.1868 

Salmonella infection 23.875 4.28E-11 12.5 

NOD-like receptor signaling pathway 15.0457 2.92E-07 11.8644 

Legionellosis 12.4082 4.08E-06 10.7143 

Cytosolic DNA-sensing pathway 9.10482 0.00011113 8.06452 

Pertussis 8.07669 0.0003107 6.49351 

Malaria 7.36131 0.00063536 7.84314 

Epithelial cell signaling in Helicobacter pylori infection 6.27754 0.00187801 5.88235 

Leishmaniasis 5.9663 0.0025637 5.40541 

Prion diseases 5.91636 0.00269498 8.33333 

Graft-versus-host disease 5.54302 0.00391469 7.31707 

Apoptosis 5.34007 0.00479555 4.54545 

Shigellosis 4.43566 0.0118473 4.91803 

Adipocytokine signaling pathway 4.06532 0.0171575 4.28571 

Hematopoietic cell lineage 3.49676 0.0302953 3.44828 

African trypanosomiasis 3.34176 0.0353745 5.26316 

Type I diabetes mellitus 3.11603 0.044333 4.65116 

Only significantly enriched (p-value < 0.05) KEGG pathways are shown. 

Collectively, these data demonstrate that microbial stimulations cause whole-genome 

transcriptional changes over time and there are common inflammatory pathways playing 

roles in PBMC activation induced by four types of microorganisms.  

6.4 Stimulation-specific gene regulatory networks 

To better understand the complexity of overall transcriptional regulation of PBMC after 

microbial infection, 1,690 genes that are differentially expressed (|FC| > 1.5, FDR adjusted p-

value < 0.05) in at least one stimulation condition were identified among 12,029 present 

genes. With a Pearson correlation cutoff of 0.83, a gene regulatory network with the most 

co-expressed genes (n = 934) was built. The genes with expression changes more than 1.5-

fold for each of the four stimulation conditions and two time points as well as the genes 

differentially expressed uniquely in the corresponding condition, were highlighted in the 

respective network (Figure 6.4.1). 
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Figure 6.4.1 Schema for co-regulation network analysis of differentially expressed (DE) 

genes for 8 conditions. 

At the 4 hour time point, Bbu and Mtu showed very similar changes with either no or one 

gene (JUNB) specifically changed after Mtu respectively Bbu stimulation (nodes with black 

border). The majority of the similarly up-regulated genes (red nodes) were co-localized in 

one network cluster within the network (Figure 6.4.2). When assessing LPS-stimulated PBMC, 

a second cluster with up-regulated genes was apparent and several genes specifically 

induced only after LPS treatment (nodes with black border). Moreover, there were a larger 

number of decreased genes located in two distant network clusters. The most prominent 

changes were observed in Cal-stimulated PBMC showing the largest number of specifically 

regulated genes. However, induced or elevated genes were located within the same two 

network clusters marked in LPS-stimulated cells and this was similarly true for down-

regulated genes. At the 24h time point, much more diversity between the stimuli was 

observed. In Bbu-stimulated PBMC, 28% of the genes regulated in the main network cluster 

of the 4 hour time point were not elevated anymore, but many additional genes in other 

regions of the network showed elevation and the number of genes specifically regulated 

after 24h of stimulation with Bbu also increased. Two distinct clusters of down-regulated 

genes appeared, one which was similarly down-regulated in all conditions. Overall, the 

distribution of expression changes of Bbu-stimulated PBMC was most similar to LPS- 

followed by Mtu-stimulated PBMC. Similar to the 4 hour time point, Cal-stimulated PBMC 

were characterized by many more genes being differentially and even specifically regulated. 

Furthermore, there were significant differences in distribution of genes with expression 

changes throughout the network.   
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Figure 6.4.2 Network visualization of differentially expressed genes for 8 conditions with 

condition-specific regulation information. Only those genes with expression changes more 

than 1.5-fold in each stimulation condition were colored in red (up-regulation) or blue 

(down-regulation). The genes only showing expression changes in one condition are 

highlighted with black border. 
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Next, a co-regulation network was constructed including 572 human transcriptional 

regulators (TRs), which are present in the gene expression dataset. The most connected TRs 

were visualized as a network (Pearson correlation cutoff 0.7) and differential expression of 

TRs for the four stimulation conditions and two time points separately was mapped onto the 

network (Figure 6.4.3). The network was partitioned into two larger and two smaller clusters. 

Throughout all 8 conditions, 7 commonly induced TFs (NFKBIA, NFKBIZ, ETS2, MAFF, BCL3, 

BCL6 and BHLHB2; FC > 1.5, FDR adjusted p-value < 0.05) were identified regardless of 

stimulus and time point (Figure 6.4.4) and one of the smaller clusters contained 4 TFs (LYL1, 

ZNF467, RXRA and CEBPD) that were down-regulated at the 4 hour time point in all 

conditions. The stimulus-independent regulation suggested that these TRs are involved in 

common cellular activation programs. Other than common regulators, stimulus-specific TFs 

within the network were also identified. For example, JUNB, an AP-1 TR,  was found to be 

only induced by Bbu stimulation after 4 hours while this induction could not be observed at 

24 hours. STAT1A, GADD45A, ETV3 and ZFAND5 were only differentially expressed (|FC| > 

1.5, FDR adjusted p-value < 0.05) 4 hours after LPS treatment while 20 hours later MN1 and 

PGS1 expression was specifically increased. Due to very similar regulation in Mtu, Bbu and 

LPS conditions, no unique regulation was observed for Mtu stimulation. In contrast, many 

more specific up- and down-regulated TRs (|FC| > 1.5, FDR adjusted p-value < 0.05) including 

NCOA7, IRF4 and RBL2, were identified for Cal-stimulated cells at both time points. 

 

Figure 6.4.3 Schema for co-regulation network analysis of common and condition-specific 

TFs. 
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Figure 6.4.4 Network visualization of common and condition-specific TFs. Co-regulation 

network of TFs that are present in 8 conditions. Only those TFs with expression changes 

more than 1.5-fold in each stimulation condition were colored in red (up-regulation) or blue 

(down-regulation). Rectangles are DE TFs shared by all 8 conditions. The TFs only showing 

expression changes in one condition are highlighted with orange circles. 



98 

To obtain a global view of the regulation of these TFs, all their FC values for the 8 conditions 

were summarized within one network by using multiple node colors as shown in Figure 6.4.5. 

Similarity and dissimilarity analysis throughout conditions based on 199 network TFs were 

performed by Spearman (Rank) correlation matrix and hierarchical clustering on FC values as 

shown in Figure 6.4.6 and Figure 6.4.7, respectively. Despite dissimilarities between earlier 

and later time points, the large majority of the up- and down-regulated TRs are separated in 

two big clusters, left and right, respectively.   

 

Figure 6.4.5 Network visualization of TFs and their regulation in 8 conditions. Each node is 

divided into 8 pieces, which display the FC values of 8 stimulation conditions against 

corresponding controls in blue-to-red color scale.  
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Figure 6.4.6 Spearman correlation coefficient matrix of 8 conditions based on expression 

changes throughout conditions for network TFs described in Figure 6.4.4-6.4.5. Red colors 

stand for higher correlation while blue colors represent lower correlation. Yellow and green 

colors show the medium values. 

 

Figure 6.4.7 Hierarchical clustering of 8 conditions based on expression changes 

throughout conditions for network TFs described in Figure 6.4.4-6.4.5. The heatmap shows 

z-transformed FC values against corresponding controls in red-to-blue color scale.  

Moreover, Cal stimulation showed completely different areas of highly induced signature 

genes with respect to the bacterial stimuli. In order to address the common and stimulus-

specific marker genes, cell surface markers (de Souza et al., 2012), cytokines and chemokines 
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that are present in the dataset were extracted and the up-regulated marker genes were 

defined in the ANOVA model (FC > 1.5 and FDR adjusted p-value > 0.05 when comparing to 

respective controls). As a result, 236 up-regulated surface makers and 55 present cytokines 

and chemokines (Costantini et al., 2009) were visualized in Circos plots (Figure 6.4.8-6.4.9). 

 

Figure 6.4.8 Circos visualization of shared and condition-specific surface molecules. The 

histogram on the top shows the number of conditions that show an up-regulation for each 

surface marker  individually for 236 up-regulated surface markers within the dataset. Orange 

bars represent surface markers that are induced by all 8 conditions while black bars stand for 

the ones that are only up-regulated in one condition, and grey ones are intermediate 

between the two. The link from each position of the histogram to one position at any of the 

8 conditions stands for one particular surface marker that is increased in the corresponding 

condition. 
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Figure 6.4.9 Circos visualization of shared and condition-specific cytokines. The histogram 

on the top shows the number of conditions that show an up-regulation for each cytokine 

individually for 55 present cytokines within the dataset. Orange bars represent ones that are 

induced by all 8 conditions while black bars stand for the ones that are not up-regulated in 

any of the 8 conditions, and grey ones are intermediate between the two. The link from each 

position of the histogram to one position at any of the 8 conditions stands for one particular 

cytokine that is increased in the corresponding condition. 
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6.5 Link PBMC data to human macrophage activation signatures 

It has been demonstrated in Chapter 6.2 that the transcriptional signals of different types of 

macrophages (approximately 10-40%) are a major component of the overall PBMC signature 

in response to microbial stimulations (Figure 6.2). Hence, the previously established 

information on macrophage activation, namely the 29 human in vitro macrophage conditions 

described in Chapter 4 (Xue et al., 2014), was linked to the signatures in the PBMC dataset 

using CIBERSORT. As a result, a signature matrix with 244 genes that discriminate the gene 

expression of these 29 conditions was generated. On the basis of the macrophage activation 

signature, estimation of the abundance of the macrophage activation conditions within GEPs 

derived from PBMC treated with 4 microbial stimuli and RPMI control for 4 and 24 hours was 

performed, but only the data for 8 stimulated conditions are shown in Figure 6.5. As 

expected, in the Cal conditions at both time points IFNβ and IFNγ signatures were most 

highly enriched, which confirmed previous findings (Smeekens et al., 2013). At the earlier 

time point, an sLPS associated activation signature (MsLPS+IC) was the largest individual 

macrophage activation signature within the three bacterial conditions. At the later time 

point, the upLPS associated signature and signatures associated with TNF (MTPP, MTPP+IFNβ) 

were elevated. Surprisingly, the HDL signature made up over 10% of the PBMC signature in 

the Bbu and LPS conditions. Together, these results indicated that although human host 

defense by PBMC show similar gene response patterns on transcriptional level, linking 

macrophage activation programs reveals differential gene regulation within the myeloid 

compartment in the four stimulated PBMC conditions. Collectively, by applying human 

macrophage activation signatures to admixture population of PBMC, a hitherto unexplored 

biology in host defense against microorganisms has been uncovered.  
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Figure 6.5 Relative fractions of human macrophage activation signature for 8 stimulation 

conditions. The estimated abundances (relative fractions) of human macrophage activation 

signatures (28 activation conditions) within the dataset are visualized as a stacked bar plot. 

As human macrophage activation signature matrix, 184 transcriptomes representing 29 

conditions from the human macrophage activation resource data (Chapter 4) (Xue et al., 

2014) were used for CIBERSORT. GC: glucocorticoid; IC: immune complexes; PGE2: 

prostaglandin E2; P3C: Pam3CysSerLys4; TPP: TNF+PGE2+P3C; PA: palmitic acid; OA: oleic 

acid; LA: lauric acid; LiA: linoleic acid; SA: stearic acid; sLPS: standard lipopolysaccharide; 

upLPS: ultrapure lipopolysaccharide; HDL: high density lipoprotein. 
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6.6 Refined model of regulatory pathways of bacterial and fungal stimulation 

Since the myeloid compartment was a major cellular compartment reacting towards 

microbial stimulation of PBMC, gene regulation was mapped onto the pattern recognition 

receptors (PRR) pathways known to be involved in the protective effects against these 

microbial infections in early (4 hours) and late (24 hours) phases. It is important to note that 

gene expression (as heatmaps) (Figure 6.6) and not pathway activation on protein level was 

mapped onto the pathway maps. Nevertheless, gene expression changes of genes involved 

in PRR signaling will have a significant impact on the downstream signaling events and 

therefore can reveal important information about differential usage of known signaling 

cascades (Arguello et al., 2015). From previous studies, it is known that LPS is exclusively 

recognized by Toll-like receptor (TLR) 4 (Hoshino et al., 1999). Bbu can be recognized by TLR2 

and the NOD2 receptor (Berende et al., 2010). Mtu is mainly recognized by TLR2 and NOD2 

receptor involved pathways, in which TLR4 and DC-SIGN also play a minor role 

(Kleinnijenhuis et al., 2011). As a fungal pathogen, Cal is mainly recognized by C-type lectin 

receptors (e.g. dectin-1, dectin-2 and mannose receptor) while TLR2 and TLR4 are also 

involved to some extent (van den Berg et al., 2012). Here, it is now shown at the early time 

point, that the NFκB and NOD2 signaling pathways were commonly activated by bacterial 

and fungal pathogens, which led to the expression of pro-inflammatory cytokines (e.g. IL1β, 

IL6, CXCL2, etc.). However, the overall increase of p105 and Tpl2 resulted in the inhibition of 

the TF AP-1. More specifically, comparing to bacterial stimuli, Cal stimulation induced the 

MyD88-mediated signaling pathways and further activated TFs such as IRF7 to induce a type 

I IFN response. At the later time point, genes of the MyD88-mediated signaling pathway 

were more considerably affected by bacterial signals in comparison to the earlier time point. 

They now also showed increase in AP-1 expression resulting in a further increase of pro-

inflammatory gene expression. As the down-stream cascade of C-type lectin receptors, the 

Syk-CARD9 signaling molecules were slightly regulated on transcriptional level, which 

probably leads to increased expression of NFκB (Marakalala et al., 2010). Cal might also 

enter the cytoplasm, which might trigger the MDA5-MAVS intracellular receptor and the 

signal transduction gene TBK-1 in macrophages to initiate a type I IFN response (Jaeger et al., 

2015). Collectively, the protective effects of human PBMC against bacteria and fungi undergo 

a very dynamic complex regulatory mechanism involving PRRs, signaling transduction genes, 

TFs and other co-regulators. 
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In summary, transcriptional network analysis revealed common and stimulus-specific 

activation programs during the host defense against bacterial and fungal pathogens by PBMC. 
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7 Origin of murine tissue macrophages and the role of Irf8 in tissue 

macrophage subsets 

Three major subjects in macrophage biology research are currently the ontogeny of 

macrophages during embryogenesis, the transcriptional regulation of tissue macrophage 

programming and the description of transcription factors involved in these processes. Since 

these aspects cannot be studied in humans, respective animal models have to be utilized. I 

had the great opportunity to address these important issues of macrophage biology in 

collaboration between our department and the group of Prof. Marco Prinz at the University 

of Freiburg. In Chapter 7, I describe my assessment of transcriptional changes in embryonic 

and adult tissue macrophages isolated from different tissues in either wild type  (IRF8+/+) or 

IRF8 knockout mice (IRF8-/-). 

7.1 Embryonic tissue macrophage development from yolk sac 

Diverse cell populations were isolated from embryonic and adult mice by FACS sorting. To 

understand the influence of Irf8 on macrophage development and function, cells from Irf8 

deficient mice were also derived. A total number of 27 cell populations were used for 

transcriptional expression profiling as it is described in Table 7.1. 

To assess the genome-wide sample-to-sample relationships and verify the quality of the 

transcriptomic data, 17,888 present genes (at least one cell population is over the 

background) were extracted from the normalized and batch corrected data. Based on the 

filtered informative genes, several bioinformatics approaches were performed on yolk sac 

macrophages (EMP, A1 and A2) and embryonic F4/80high tissue cells (Emb_F4/80_kidney, 

Emb_KC and Emb_MG) to demonstrate if F4/80high cells are derived from yolk sac as 

displayed in the diagram Figure 7.1.1. PCA, co-regulation analysis and hierarchical clustering 

of these transcriptomes suggested a model of development of macrophages starting from 

EMP, via the A1 and A2 stages toward the end-differentiated cell types identified within the 

three tissues kidney, liver and central nervous system (CNS). Overall, transcriptional profiling 

clearly supported the hypothesis that yolk sac macrophages are the origin of F4/80high cells 

(Figure 7.1.2-7.1.4). 
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Table 7.1 Overview of gene expression profiles from 27 cell populations 

Cell population Organ Time point 
Primitive/Definitive 

Hematopoiesis 
Number 
of arrays 

EMP Yolk sac dpc 8.0 Primitive 3 

A1 Yolk sac dpc 9.0 Primitive 3 

A1_Irf8-/- Yolk sac dpc 9.0 Primitive 3 

A2 Yolk sac dpc 9.0 Primitive 3 

A2_Irf8-/- Yolk sac dpc 9.0 Primitive 4 

Emb_MG CNS dpc 14.0 Primitive 3 

Emb_MG_Irf8-/- CNS dpc 14.0 Primitive 3 

Emb_KC Liver dpc 14.0 Primitive 3 

Emb_KC_Irf8-/- Liver dpc 14.0 Primitive 3 

Emb_CD11b_liver Liver dpc 14.0 Definitive 3 

Emb_CD11b_liver_Irf8-/- Liver dpc 14.0 Definitive 3 

Emb_F4/80_kidney Kidney dpc 14.0 mixed 2 

Emb_F4/80_kidney_Irf8-/- Kidney dpc 14.0 mixed 3 

Emb_CD11b_kidney Kidney dpc 14.0 Definitive 3 

Emb_CD11b_kidney_Irf8-/- Kidney dpc 14.0 Definitive 3 

A_MG CNS P60 Primitive 3 

A_MG_Irf8-/- CNS P60 Primitive 3 

A_KC Liver P60 Primitive 3 

A_KC_Irf8-/- Liver P60 Primitive 3 

A_CD11b_liver Liver P60 Definitive 3 

A_CD11b_liver_Irf8-/- Liver P60 Definitive 3 

A_F4/80_kidney Kidney P60 mixed 3 

A_F4/80_kidney_Irf8-/- Kidney P60 mixed 3 

 A_CD11b_kidney Kidney P60 Definitive 3 

A_CD11b_kidney_Irf8-/- Kidney P60 Definitive 3 

A_LC Skin P60 Definitive 3 

A_LC_Irf8-/- Skin P60 Definitive 3 

Abbreviations: EMP: erythromyeloid progenitor; A1: early myeloid progenitor; A2: immature 

yolk sac macrophage; Emb_MG: embryonic microglia; Emb_KC: embryonic Kupffer cells; 

Emb_CD11b_liver: embryonic CD11bhigh macrophages from liver; Emb_F4/80_kidney: 

embryonic F4/80high macrophages from kidney; Emb_CD11b_kidney: embryonic CD11bhigh 

macrophages from kidney; A_MG: adult microglia; A_KC: adult Kupffer cells; A_CD11b_liver: 

adult CD11bhigh macrophages from liver; A_F4/80_kidney: adult F4/80high macrophages from 

kidney; A_CD11b_kidney: adult CD11bhigh macrophages from kidney; CNS: central nervous 

system; dpc: days post coitum. 



109 

 

Figure 7.1.1 Schema of yolk sac macrophage development to F4/80high  tissue cells. 

Abbreviations see Table 7.1. 

 

Figure 7.1.2 Principal component analysis (PCA) of embryonic macrophage development. 

Only first two principal components of the samples are shown. Abbreviations see Table 7.1. 

 

Figure 7.1.3 Sample-sample co-regulation network of embryonic macrophage development. 

Pearson correlation threshold of 0.92 was used. Abbreviations see Table 7.1. 
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Figure 7.1.4 Hierarchical clustering of embryonic macrophage development based on 1,000 

most variable probes. Heatmap displays z-transformed expression values (z-scores) from 

blue to red via white. Abbreviations see Table 7.1. 

By K-means clustering on genes expressed in at least one of these cell populations, gene 

clusters with similar expression patterns throughout developmental stages were identified. 

According to Davies-Bouldin score testing (Davies and Bouldin, 1979), the complete 

transcriptome was partitioned into 36 clusters. Gene clusters characterized by increased 

expression (Cluster 3) and decreased expression (Cluster14) with later time points in 

development were determined. In order to address the biological processes they are 

involved, GO enrichment analysis was performed on clusters 3 and 14 separately. Genes 

related to immune system process, antigen processing and presentation, myeloid cell 

differentiation were up-regulated over developmental stages while genes associated with 

cell cycle, DNA repair and damage were found to be repressed, further supporting that tissue 

macrophages gain their specific functions, while losing proliferative capacities typically found 

in stem cells and progenitor cells (Figure 7.1.5-7.1.6). 
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Figure 7.1.5 GO network on Cluster 3 genes identified by K-means clustering. Node size and 

node color darkness correspond with the enrichment FDR adjusted p-value (q-value) of the 

GO term, i.e. the biggest and darkest nodes are the GO terms most significantly enriched 

with lowest FDR q-value. Edge thickness shows overlap of genes between neighbor nodes. 

 

 

Figure 7.1.6 GO network on Cluster 14 genes identified by K-means clustering. Node size 

and node color darkness correspond with the enrichment FDR adjusted p-value (q-value) of 

the GO term, i.e. the biggest and darkest nodes are the GO terms most significantly enriched 

with lowest FDR q-value. Edge thickness shows overlap of genes between neighbor nodes. 
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7.2 Distinct transcriptional profiles of F4/80high and CD11bhigh tissue macrophages 

There have been controversies about the use of different markers to isolate cells for the 

assessment of certain macrophage populations (Hume and Freeman, 2014; Hume et al., 

2013). This issue was addressed here by analyzing both F4/80high as well as CD11bhigh cells 

individually. To compare the F4/80high and CD11bhigh populations systematically, two 

approaches were combined: one-way ANOVA and MCL clustering on a co-regulation network 

to identify differentially expressed (DE) genes between F4/80high (MG, KC and F4/80_kidney) 

and CD11bhigh (CD11b_liver and CD11b_kidney) groups.  Figure 7.2.1 and Figure 7.2.2 

illustrate the hierarchical clustering of the combined DE genes between the two groups from 

embryonic and adult cells, respectively. Irrespective of variation across organs, F4/80high and 

CD11bhigh macrophages have distinct transcriptional profiles. 

 

Figure 7.2.1 Hierarchical clustering of embryonic F4/80high and CD11bhigh cells based on 

differentially expressed genes (n = 1010). Heatmap displays z-transformed expression 

values (z-scores) from blue to red via white. Abbreviations see Table 7.1. 
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Figure 7.2.2 Hierarchical clustering of adult F4/80high and CD11bhigh cells based on 

differentially expressed genes (n = 755). Heatmap displays z-transformed expression values 

(z-scores) from blue to red via white. Abbreviations see Table 7.1. 

In order to dismiss any impact of tissue origin, a more stringent filtering procedure was used 

(Figure 7.2.3) to define commonly expressed genes in either F4/80high or CD11bhigh cells. 

These non-differentially expressed (non-DE) genes throughout organs were determined by t-

test over the samples within one group (FDR adjusted p-value > 0.95).  By grouping F4/80high 

(MG, liver and kidney) and CD11bhigh (liver and kidney) populations (Figure 7.2.3A), 336 and 

631 non-DE genes in F4/80high and CD11bhigh cells, respectively, were identified for 

embryonic macrophages (Figure 7.2.3B, left panel), and subsequently 43 DE (26 up-

regulated and 17 down-regulated) genes between the two groups (irrespective of tissue of 

origin) were determined (Figure 7.2.3C, left panel). Similarly, 117 up-regulated genes and 92 

down-regulated genes were identified by comparing F4/80high and CD11bhigh populations for 

adult cells (Figure 7.2.3B-C, right panel), indicating that the difference between the two 

enlarged during adulthood. 
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Figure 7.2.3 Differentially expressed (DE) genes between F4/80high and CD11bhigh cells 

irrespective of organs. A Diagram illustrates the grouping of organ-specific F4/80high (MG, 

liver and kidney) and CD11bhigh (liver and kidney) populations for ANOVA calculation. B Venn 

diagrams overlaying the identified non-DE genes within each group (FDR adjusted p-value > 

0.95) for both embryo and adult cells in ANOVA model. C The number of up- and down-

regulated genes in F4/80high versus CD11bhigh populations (|FC| > 1.5, FDR adjusted p-value < 

0.05) from genes fulfilling the criteria in B. 

As it is still elusive how adult Langerhans cells (LC) are developing and which myeloid 

compartment they belong to, their similarities and dissimilarities to both F4/80high and 

CD11bhigh populations were studied. Using a one-way ANOVA model, 642 DE genes between 

LC and F4/80high and 526 DE genes between LC and CD11bhigh cells were identified (Figure 

7.2.4). Among them, 415 were common DE genes to both groups, which indicated that LC 

are very distinct from other tissue macrophages. 

 

Figure 7.2.4 Comparison of adult Langerhans cells (LC) with F4/80high and CD11bhigh cells. 

Venn diagram shows the differentially expressed genes between adult LC and F4/80high or 

CD11bhigh cells (|FC| > 1.5, FDR adjusted p-value < 0.05). 
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7.3 Irf8 deficiency has an impact on all tissue macrophages 

Next, the question whether Irf8 deficiency changes the gene expression profiles for tissue 

macrophages was addressed. By comparing the cells from Irf8 deficient (Irf8-/-) mice with 

their corresponding wild type (Irf8+/+) mice, up- and down-regulated genes were observed by 

a certain extent in 11 cell populations. As it is shown in Figure 7.3.1, Irf8 deficiency had 

mostly changed the embryonic Kupffer cells followed by adult Langerhans cells on 

transcriptional level. The smallest changes were observed in both embryonic and adult 

F4/80high kidney macrophages. Collectively, this analysis indicated that Irf8 plays a crucial 

role in all tissue macrophages. 

 

Figure 7.3.1 Number of differentially expressed (DE) genes between Irf8+/+ and Irf8-/- mice 

in 11 groups of cell populations. DE genes were identified by one-way ANOVA model (|FC| > 

1.5, FDR adjusted p-value < 0.05). A absolute gene numbers; B gene numbers normalized to 

the number of present genes in embryonic or adult cells. 

To determine how Irf8 influences gene regulation in both F4/80high and CD11bhigh 

populations irrespective of organ difference, the differentially expressed genes (Irf8+/+ vs. 

Irf8-/-) identified in each individual cell population from different organs (liver and kidney 

cells for CD11bhigh group; liver, kidney and microglia for F4/80high group) were overlaid in 

Venn diagrams as it is shown in Figure 7.3.2. Again, in general, more transcriptional changes 

and also common alterations among organs were observed in embryonic cells in comparison 

to adult cells, indicating that Irf8 influences embryonic tissue macrophages more significantly 

than adult tissue macrophages. 
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Figure 7.3.2 Venn diagrams of differentially expressed genes in F4/80high and CD11bhigh 

populations throughout organs. Red and blue highlighted areas are commonly up- and 

down-regulated, respectively in Irf8+/+ compared to Irf8-/- mice. 

Next, the common DE genes for F4/80high and CD11bhigh cell populations identified in at least 

two organs were extracted , and GO enrichment analysis was then performed to further 

study their known cellular functions (Figure 7.3.3-7.3.6). The significantly enriched GO-terms 

(FDR adjusted p-value < 0.05) were visualized as a network, where the GO-terms derived 

from up- and down-regulation were distinguished by red and blue connections (edges), 

respectively. The genes altered in embryonic CD11bhigh cells derived from Irf8 deficient mice 

were mainly characterized by inhibition of immune system processes, cell death, and 

developmental processes with very few induced biological processes (Figure 7.3.3). In adult 
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cells, however, there were more up-regulated terms such as microtubule-based process, cell 

cycle and DNA conformation change in knock-out mice (Figure 7.3.4).  

For embryonic F4/80high cell populations, much more up-regulation was observed in Irf8 

deficient mice, e.g. myeloid progenitor cell differentiation, localization and protein transport, 

regulation of cell proliferation (Figure 7.3.5). With adult cells, the functional changes caused 

by Irf8 deficiency became less according to very limited number of significant enriched GO 

terms including leukocyte differentiation and cell adhesion (Figure 7.3.6). 

Taken together, combination of transcriptional analysis and functional genomics reflected 

that Irf8 plays an important role in all types of tissue macrophages, but especially triggers 

developmental processes in the embryo. 

 

Figure 7.3.3 GO network based on common differentially expressed genes in embryonic 

CD11bhigh cells derived from liver and kidney in either Irf8+/+ or Irf8-/-. Red edges represent 

GO terms associated with up-regulated genes in Irf8+/+ compared to Irf8-/- mice while blue 

edges stand for down-regulation. Edge thickness shows overlap of genes between neighbor 

nodes. Node size and node color darkness (up-regulation) or node border thickness (down-

regulation) correspond with the enrichment FDR adjusted p-value (q-value) of the GO term.  
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Figure 7.3.4 GO network based on common differentially expressed genes in adult 

CD11bhigh cells derived from liver and kidney in either Irf8+/+ or Irf8-/-. Red edges represent 

GO terms associated with up-regulated genes in Irf8+/+ compared to Irf8-/- mice while blue 

edges stand for down-regulation. Edge thickness shows overlap of genes between neighbor 

nodes. Node size and node color darkness (up-regulation) or node border thickness (down-

regulation) correspond with the enrichment FDR adjusted p-value (q-value) of the GO term. 



119 

 

Figure 7.3.5 GO network based on common differentially expressed genes in embryonic 

F4/80high cells derived from at least two organs in either Irf8+/+ or Irf8-/-. Red edges 

represent GO terms associated with up-regulated genes in Irf8+/+ compared to Irf8-/- mice 

while blue edges stand for down-regulation. Edge thickness shows overlap of genes between 

neighbor nodes. Node size and node color darkness (up-regulation) or node border thickness 

(down-regulation) correspond with the enrichment FDR adjusted p-value (q-value) of the GO 

term. 
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Figure 7.3.6 GO network based on common differentially expressed genes in adult 

F4/80high cells derived from at least two organs in either Irf8+/+ or Irf8-/-. Red edges 

represent GO terms associated with up-regulated genes in Irf8+/+ compared to Irf8-/- mice 

while blue edges stand for down-regulation. Edge thickness shows overlap of genes between 

neighbor nodes. Node size and node color darkness (up-regulation) or node border thickness 

(down-regulation) correspond with the enrichment FDR adjusted p-value (q-value) of the GO 

term. 

In summary, computational studies on gene expression profiling data for tissue macrophages 

from the embryo and adult mice demonstrated the distinct origins and transcriptional 

profiles of F4/80high and CD11bhigh tissue macrophage populations. Global comparison of 

macrophages from wild type and Irf8-deficient mice indicated that Irf8 plays a crucial role in 

tissue macrophage development. 
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8 Discussion and future perspectives 

In four individual studies, I have applied computational methods to better understand 

transcriptional regulation as an important biological mechanism in macrophage biology. In 

the first part, I systematically analyzed a large gene expression dataset generated from 29 

human macrophage in vitro conditions to assess transcriptional regulation during human 

macrophage activation by comparing a diverse set of stimuli on a single microarray platform 

under highly standardized conditions. Network modeling of this dataset revealed an 

extension of the current M1 versus M2 polarization model into a “multi-dimensional model” 

with at least 9 distinct macrophage activation programs. Applying these transcriptional 

programs to human in vivo alveolar macrophages from smokers and patients with chronic 

obstructive pulmonary disease (COPD) revealed an unexpected biology. Reverse network 

engineering of the complete dataset using single inference method results in common 

regulatory denominators such as NFKB1. 

Next, I refined the common gene regulatory network of human macrophage activation by 

integrating multiple network inference approaches as a community-based method. The 

community-based method sharpens the resolution of the common macrophage activation 

regulatory networks and the refined network indicated that transcription factors are the 

most important components in regulatory circuits involved in macrophage activation.  

To assess the differentiation of human monocytes to macrophages in a complex cellular 

system, I analyzed a large gene expression dataset generated from infected human PBMC in 

a collaboration with the group of Prof. Mihai G. Netea in Nijmegen. By applying the same 

computational methodologies to the PBMC, I identified common and stimulus-specific 

transcriptional programs in host defense against bacteria and fungi. Combination of 

knowledge-based and data-driven analysis revealed refined pathway models for these 

microbial infections on transcriptional level. 

Finally, in a collaboration with the group of Prof. Macro Prinz in Freiburg, I performed 

computational analysis on gene expression profiles for embryonic and adult tissue 

macrophages derived from wild type and Irf8-deficient mice. This study revealed the distinct 

origins and transcriptional profiles of different tissue macrophage subpopulations and a 

crucial role of Irf8 in development. 
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In the following paragraphs, I will discuss important points that resulted from my studies 

here in more detail.  

8.1 Multi-dimensional model of macrophage activation expands the M1 versus 

M2 dichotomous system 

Cells from the immune system show high diversity and plasticity in respect to their 

maturations status and local environment. Data from Chapter 4 demonstrate that under 

inflammatory conditions macrophages do not always polarize into two extreme states (M1 

versus M2) but can drive towards diverse directions on both transcriptional level and 

functional level in response to different environmental signals. For instance, a triple stimulus 

TPP induces a STAT4-associated transcriptional program normally observed in 

granulomatous diseases. To decipher central activation and specific activation programs of 

human macrophages, I applied different but also complementary approaches of network 

analysis ranging from co-regulation analysis by BioLayout, weighted gene co-expression 

network analysis (WGCNA) defining specific differentiation programs, to reverse network 

engineering using ARACNe or TINGe for decoding the major activation program. Importantly, 

I was able to validate findings from network analysis with additional approaches including 

SOM clustering, correlation coefficient matrices, hierarchical clustering or PCA as shown for 

the delineation of macrophages from other control cells or the development of the multiple 

activation states from baseline macrophages (Chapter 4.1 and data not shown). Furthermore, 

it also significantly extended our understanding of these processes by developing 

macrophage polarization into a multi-dimensional model, by defining novel gene regulatory 

networks (Chapter 4.6 and Chapter 5) or by prioritizing cell surface markers distinguishing 

macrophages from other myeloid cells both in humans and mice (Xue et al., 2014).  

Linking transcriptomes derived from in vitro macrophage models of activation to 

transcriptional reprogramming in human tissue macrophages is another desired direction of 

this research (Chapter 4.5). This field is currently hindered by technical limitations, such as 

the difficulty in gaining sufficient numbers of highly purified macrophages from inflamed or 

otherwise disturbed human tissues. In fact, some of the few studies so far have focused on 

alveolar macrophages obtained by bronchoalveolar lavage (Shaykhiev et al., 2009; Woodruff 

et al., 2005). Combining these datasets and linking the in vitro differentiation programs via 

GSEA to the in vivo signatures revealed novel and unexpected results for alveolar 
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macrophages from smokers demonstrating a rather classical M2-like signature combined 

with loss of signs of inflammation induced by TLR ligands, TNF, IFNγ, and prostaglandins. 

COPD, one of the potential pathophysiological outcomes of chronic smoking exposure was 

still characterized by lack of an acute inflammatory response to TLR ligands, TNF and 

prostaglandins in alveolar macrophages, yet the IL4/IL13-driven response was no longer 

present. However, in contrast to previous interpretations of alveolar macrophage activation 

in COPD which suggest a mixed M1- and M2-phenotpye (Houghton, 2013), I unequivocally 

demonstrate by the data-driven analysis that alveolar macrophages in COPD are neither M1- 

nor M2-activated. This can be easily explained by the fact that many of the marker genes 

used in prior studies are not specific to IFNγ- or IL4-mediated reprogramming, but are rather 

induced by a larger set of different stimuli. The lack of any enrichment of the 49 gene sets 

derived from the in vitro macrophage activation model in alveolar macrophages from COPD 

patients might be explained by a reduced capability of alveolar macrophages to gain any 

immune functions during fibrotic remodeling of lung tissue in COPD. An alternative 

explanation might be that factors not assessed in our model but linked to COPD 

pathophysiology including TGF, VEGF, angiostatic peptides (angiostatin, endostatin) or 

extracellular matrix substrates might be major factors reprogramming alveolar macrophages 

in vivo (Houghton, 2013). A dominant role for such ‘non-classical’ macrophage activation 

signals might be further supported by clinical findings that classical anti-inflammatory 

therapy provides little or no benefit to COPD patients (Cazzola et al., 2012). Overall, this 

data-driven approach can contribute to the understanding of biological processes operative 

in alveolar macrophages in vivo and these findings further support the proposed multi-

dimensional model of macrophage activation.  

While in vivo validation studies using genetic mouse models have clearly indicated that TFs 

such as STAT1 and STAT6 are linked to IFNγ- and IL4-induced macrophage differentiation 

programs, respectively (Lawrence and Natoli, 2011; Spence et al., 2013), several of the TFs 

identified here are novel and appear be part of larger TF networks. They have not been 

studied in the context of either activation or differentiation of macrophages. In fact, for 

many of these genes the respective tools ranging from specific antibodies for biochemical 

and epigenomic analysis as well as suitable genetic models are currently unavailable. 

Technological advances such as the generation of tagged proteins combined with high-

throughput ChIP-Seq (Blecher-Gonen et al., 2013), and the emergence of gene editing 
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approaches including TALENs (Bedell et al., 2012), and CRISPR/Cas systems (Cong et al., 2013) 

will most likely make it possible to elucidate the role of individual TFs during complex 

processes such as macrophage activation or differentiation.  

Macrophages are very important players in maintaining many aspects of tissue homeostasis 

and mediating various acute inflammatory reactions as a host response to endogenous or 

exogenous stress signals. Also in chronic inflammatory conditions, macrophages are 

probably the most prominent cells of the myeloid compartment. However, their impact on 

many of the common diseases such as cancer, obesity, atherosclerosis, autoimmune 

disorders is still underappreciated. Thus, it will be tremendously important to understand 

how macrophages gain their functional repertoire, how they can change their function and 

their localization for better diagnosis and treatments of these diseases. Since the activation 

and function of macrophages are tightly dependent on transcriptional regulation, genome-

wide transcriptional studies at both cell population and single cell level will be still one of the 

major directions to address current and future questions of human macrophage biology in 

homeostasis and disease. The conservation of expression between human and animal 

models is still obscure, and therefore it might be wiser to study macrophage biology directly 

in humans, rather than focusing on animal models (Davis, 2008). A prerequisite for such an 

effort will be to access to not only in vitro generated macrophages but also the assessment 

of human tissue macrophages. To achieve this, research networks and consortia will have to 

be formed because single laboratories would be insufficient (Schultze et al., 2015). Higher 

resolution data from genomic technologies such as next-generation sequencing will become 

more and more prominent to study human macrophage biology in homeostasis and diseases. 

Although current data highlight information on the level of tissues or defined cell types, 

spatio-temporal information about signal integration and transcriptional regulation of 

human macrophages are still missing. Hence, systems immunology will be a key aspect in the 

future, and more robust tools and technologies need to be developed to study such 

questions with minimum effort and very little liability on our patients. 

8.2 Community-based methods outperform individual methods  

To improve our mathematical modelling of macrophage activation, I determined the impact 

of a DREAM-based model on the description of macrophage activation by utilizing our 

previously reported dataset of macrophage transcriptomes from diverse signal inputs, 



125 

applying five network inference methods and integrating the individual predictions to form a 

consensus network (Chapter 5).  

Integrating predictions from different, especially complementary methods performed better 

than using individual methods. For instance, according to the assessment of degree node 

distribution, the consensus network (Figure 5.1.2) has much higher R-squared correlation to 

the curve compared to the networks generated by single methods (Figure 4.6.2), suggesting 

that the former better fits the power law as a topologically scale-free network. Moreover, it 

was demonstrated by Marbach et al. that using complementary methods enables us to avoid 

method-specific biases in predicting various network motifs (Marbach et al., 2012). There is 

no single best method that fits all different biological, technical and experimental design 

conditions best: the more best-performing methods are combined, the more accurate and 

precise results would be obtained. Thus, it could be one of the future directions to find out 

better combinations of approaches for modelling of different biological systems. 

The consensus network indicates that transcription factors are the most important 

components of macrophage activation (Chapter 5.2). Compared to the one-method-based 

network, a big increase of weightiness of transcription regulators has been observed in the 

community-based network. Interestingly, all the predictions from five applied methods are 

on the basis of all-to-all (the complete transcriptome) calculations, i.e. none of the applied 

methods is TF-biased. Hence, this observation should be less dependent on which individual 

prediction algorithms are used but mostly relies on how many robust methods are combined. 

Among the most prominent TFs associated with macrophage activation independent of input 

signal were CREB1 and BLZF1. CREB1, a member of the leucine zipper family of DNA binding 

proteins, is a key transcription regulator in diverse cellular responses such as cell 

proliferation, survival and differentiation. It is induced by a variety of growth factors and 

inflammatory signals and subsequently mediates the transcription of immune-associated 

genes containing a cAMP-responsive element, for example, IL2, IL6, IL10 and TNF. 

Furthermore, CREB1 induces an anti-apoptotic effect in monocytes and macrophages (Wen 

et al., 2010). It has been identified to interact with more than 130 proteins in previous 

studies (data from NCBI Gene), suggesting its importance in cellular mechanisms. BLZF1 

(basic leucine zipper nuclear factor 1), however, is not studied as well as CREB1, suggesting 
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that transcriptome-based network analysis enables the discovery of important novel 

regulations during macrophage activation. 

Among the most central hubs, there are genes maintaining fundamental cellular and 

molecular functions. e.g. INIP (INTS3 and NABP interacting protein, or C9orf80) is important 

for the maintenance of genome stability (Huang et al., 2009), GJC1 is involved in gap junction 

channel activity (Kanter et al., 1994) and the gene is silenced in cancer (Sirnes et al., 2011). 

Albeit not linked to immune function, the roles of these genes in common macrophage 

activation networks should not be disregarded. 

Another important finding was the identification of distinct network clusters that reflected 

very specific cellular functions, which was not revealed in such clarity by individual methods 

(Chapter 5.3). This result indicates that the community-based method is more advanced in 

keeping more information (functional network modules) from the expression data than 

individual methods do. This could be explained by the limitations of individual methods to 

predict different network motifs. In contrast, the integration of complementary methods 

seems to cope much better with drawbacks of individual methods (Marbach et al., 2012).   

Taken together, reverse engineering of large enough transcriptional datasets by integration 

of multiple inference methods sharpens the resolution of the regulatory circuits involved in 

human macrophage activation thereby enhancing our capacity to prioritize future validation 

experiments. 

8.3 Refined pathway models for host defense against bacteria and fungi 

PBMC are a heterogeneous population of cells including lymphocytes (T cells, B cells, and NK 

cells) and myeloid cells (i.e. monocytes, macrophages and DCs). In the response to infections 

they act in concert. A big advantage of using PBMC is that the inter-cellular interactions 

between these cells are also taken into account. Previous studies on bacterial infections 

indicated that monocytes, dendritic cells, macrophages, NK cells, NK-T cells, and 

polymorphonuclear cells, all contribute to generate a coordinated and robust response to 

Bbu infection (Moore et al., 2007; Salazar et al., 2003). Except for polymorphonuclear cells, 

PBMC contain all the cells involved in a coordinated response to Bbu (Cervantes et al., 2014). 

While single cell technologies need to be developed in the future to study the development 

of immune responses in complex cell compositions on a global scale, I asked whether 
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population based analysis such as those performed on transcriptional level in PBMC could 

reveal models of immune cell activation, involvement of certain cell types and transcriptional 

regulations. Indeed, an unexpectedly high content of information could be revealed from cell 

populations studies. The estimation of cell type abundance suggested that stimulation of 

PBMC by microbial pathogens up to 24 hours triggers mainly monocytes differentiation into 

macrophages and DCs, or even activated phenotypes of these myeloid cells (Chapter 6.2). 

Acute inflammation by microorganisms relies primarily on activation of the myeloid 

compartment including monocytes, macrophages and DCs. By identifying common 

regulatory cascades, building common TF co-regulation network and mapping stimulation- 

and time-specific transcriptional information onto the network combined with pathway 

analysis (Chapter 6.3, Chapter 6.4 and Chapter 6.6), I confirmed that NFκB and NFκB 

signaling genes are common central players in anti-bacterial and fungal immunity. Initiating 

the transcription of pro-inflammatory cytokines, NFκB signaling has been linked to microbial 

infections in many previous studies (Arimilli et al., 2007; Hayden and Ghosh, 2008; Ingman et 

al., 2014; Mohamed and McFadden, 2009; Schwartz et al., 2013; Shwetha et al., 2013; Wang 

et al., 2011). This result also confirms the importance of NFκB in common activation 

programs of human macrophages as one cellular component of PBMC (Chapter 4.6).  

Considering the Cal-specific TF-network (Chapter 6.4), the enrichment of signal transducers 

and activators of transcription (STATs: STAT1/3/4) supported some earlier data that STAT1 

and STAT3 deficient patients have chronic mucocutaneous candidiasis (Marodi et al., 2012). 

Moreover, the interferon regulatory factors (IRFs: IRF7/8/9/4) are important interferon 

pathway genes that have been described to be essential for protective immunity against Cal 

(Smeekens et al., 2013). 

The investigation of relative fractions of 29 macrophage activation signatures from Chapter 4 

in the infected PBMC indicated that activation patterns are dependent on both stimuli and 

time of stimulation (Chapter 6.5). PBMC stimulated for 24 hours had increased phenotypes 

associated with chronic inflammation like MTPP instead of acute inflammation such as 

MsLPS+IFNγ. Surprisingly, the gain of upLPS and PGE2+P3C signatures at 24 hours suggested a 

complex transcriptional regulation of macrophages. As expected, significant enrichment of 

IFNγ and IFNβ signatures in Cal-stimulated cells confirmed previous findings by functional 

genomics (Smeekens et al., 2013). Albeit several of these findings are in line with known 
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biology, this study might still contain some inaccuracies due to the time points at which the 

macrophage activation programs where measured (24-72 hours) while PBMC were assessed 

at 4 and 24 hours. Unpublished results from our macrophage activation dataset of 

macrophages assessed at earlier time points clearly revealed that transcriptional regulation 

after initiation of stimulation is time-dependent.  

Moreover, different pathogens are usually recognized by different PRRs either on the 

membrane or in the cytoplasm of cells. Not only one particular PRR-induced pathway is 

signaling, but rather several PRRs are involved simultaneously. It can also not be ruled out, 

that different signals probably share several signaling pathways (Chapter 6.6). Another 

limitation might be the use of heat-killed bacteria. The immune system responds more 

robustly to viable microorganisms than it does to heat-killed microorganisms (Sander et al., 

2011). Therefore, a limitation of this study might be that the heat-killed microorganisms that 

were used in this study might lead to a weaker response of the cells that might not be as 

easily detected. 

Cellular responses to any external stimuli are dynamic processes, particularly on 

transcriptional level. As mentioned above, following initiation of stimulation, transcriptional 

waves are initiated. During such waves some genes can even show differential regulation 

with opposite directions at early and late phases, e.g. transcription regulator FOS, a member 

of the activator protein-1 (AP-1) that regulates cell proliferation, differentiation and 

transformation, were down-regulated 4 hours after initiation with bacterial stimuli but the 

expression was elevated after 24 hours, while the repression of FOS remained longer in Cal 

infection. These findings are in line with previous observations for infections by bacteria such 

as Mycobacterium bovis and Mtu (Magee et al., 2014) as well as Hepatitis C virus infections 

(Kasama et al., 2014) in humans and mice. However, longer stimulation may activate AP-1 

member proteins to mediate cytokine production via NFκB (Yang et al., 1999). Although gene 

expression changes on transcriptional level might not reflect similar protein regulation, in 

general, fungal signals transduce quicker than bacterial stimuli. 

In addition, to link these findings to microbial infectious and inflammatory diseases, besides 

transcriptional regulation, post-transcriptional regulation, epigenetic variations and genetic 

variations would be another important aspect to look into (Netea et al., 2012). 
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In spite of the limitations discussed above, the systematic transcriptional analysis of PBMC 

revealed many unexpected findings in a rather unexpected level of detail when applying 

state-of-the-art computational analysis. 

8.4 Genomic pedigree of F4/80high tissue macrophages and the impact of Irf8 on 

tissue macrophage homeostasis 

In addition to the plasticity of monocyte-derived macrophages activated by stress-signals 

from their microenvironment, tissue-specific macrophages in homeostatic conditions are 

also heterogeneous populations in both humans and mice. To study the origins and genomic 

properties of tissue macrophages, cells were isolated from different stages of embryonic 

development as well as embryonic tissue macrophages in a murine model to perform gene 

expression profiling experiments. Genome-wide transcriptomic analysis on embryonic 

populations demonstrates that F4/80high macrophages irrespective of organ localization (CNS, 

liver or kidney) originate from yolk sac (Chapter 7.1). Furthermore, transcriptomic landscape 

perfectly displays their relationships at different time points of embryonic developmental 

stages, i.e. from progenitors at EMP, A1 and A2 to the cells generated after organ formation. 

Therefore, F4/80 is an ideal surface marker for primitive (yolk sac-derived) macrophages. 

On the other hand, F4/80lowCD11bhigh populations, which are Myb-dependent during 

development and are believed to be derived from hematopoietic stem cells (HSC) by 

definitive hematopoiesis (Schulz et al., 2012), not only exist in the liver but also in the kidney. 

It has been shown by Movita et al. that CD45+CD11c−F4/80highCD11blow liver macrophages 

are large and contain multiple phagocytic vacuoles whereas CD45+CD11c−F4/80lowCD11bhigh 

cells are smaller with fine granules in the cytoplasm and are able to resemble monocytes. 

Also, the abundance of the CD11bhigh cells is strikingly growing during inflammation (Holt et 

al., 2008; Karlmark et al., 2009; Movita et al., 2012). In contrast to Kupffer cells, these cells 

have been observed to be less sensitive to gadolinium chloride- or clodronate liposome-

mediated depletion and have a lower ability to produce ROS and reactive nitrogen species, 

suggesting that they have a low endocytic and enzymatic activity (He et al., 2009; Kono et al., 

2002; Movita et al., 2012). In this study, I was able to demonstrate that despite tissue 

locations they have distinct transcriptional programs on global level when comparing to 

F4/80high macrophages derived from yolk sac (Chapter 7.2). Their differences are found quite 

considerable in the embryo and the feature expands to the adulthood. Notably, however, 
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the dissimilarity across the organs is not so apparent for both F4/80high and CD11bhigh 

populations, suggesting that the genomic properties of tissue macrophages rely more on 

their origin than on their location. Among the DE genes between F4/80high and CD11bhigh 

populations, a number of surface markers such as Pmp22, Slc40a1, P2ry13, Abcc3, Scamp5 

and Mertk are significantly highly expressed (FC > 2, FDR adjusted p-value < 0.05) in both 

embryonic and adult F4/80high cells. Mertk has been reported as macrophage core signature 

gene distinguishing macrophages from DC although its expression level varies during human 

macrophage activation (Gautier et al., 2012; Xue et al., 2014). It plays a key role in enhanced 

phagocytosis coupled with Gas6 (Albert et al., 2015), which is also significantly induced in 

F4/80high macrophages as shown in our study. Similarly, there are also many surface 

molecules that have comparably higher expression in CD11bhigh subsets, e.g. Gpr141, Ccr2, 

Atp8b4, Olr1, Sell and Slco4c1. Furthermore, Cebpe is a highly expressed TR that interacts 

with several other macrophage lineage mediating TRs like PU.1 (Du et al., 2002) and Myb 

(Verbeek et al., 1999) to induce macrophage differentiation and functional maturation of 

committed granulocyte progenitor cells. Nonetheless, whether these two populations 

behave in a different way on functional level remains to be determined.  

Langerhans cells (LC) reside in the epidermis and were originally considered to be the main 

antigen-presenting cells in the skin as the representative of the non-lymphoid tissue 

conventional DCs (cDC). However, unique properties have been observed for them. For 

instance, in the mouse, LC originate from yolk sac-derived myeloid precursors that are 

recruited to the epidermis around embryonic day 18 (Chorro et al., 2009) and from fetal 

liver-derived monocytes (Hoeffel et al., 2012), rather than from a pre-cDC precursor. Fully-

differentiated LC have a low rate of in situ proliferation to maintain their numbers in 

adulthood independently of input from adult hematopoiesis. This contrasts with that of cDC, 

which requires a continuous input of bone marrow-derived, blood-borne precursors. 

Therefore, LC have a unique 'lifestyle' that differs from that of cDC and monocyte-derived DC 

in the dermis. They were characterized as a lineage that is related to prenatally established, 

non-lymphoid tissue macrophages (Satpathy et al., 2012), but different from tissue 

macrophages and have a migratory capability that is similar to that of non-lymphoid tissue 

cDC (Tamoutounour et al., 2013). Data from Chapter 7.2 (Figure 7.2.4) suggest that LC are 

very distinct from other tissue both F4/80high and CD11bhigh macrophages on transcriptional 

level, which supports the previous findings that LC are genetically distinct from 
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hematopoietic stem cells (Schulz et al., 2012) and have dual origins: mainly from yolk sac and 

minor from fetal liver (Hoeffel et al., 2012). 

By global comparison of Irf8 deficient mice with respective wild type mice on transcriptional 

level, I demonstrate that Irf8 plays an important role in all types of tissue macrophages, 

especially triggers developmental processes in the embryo (Chapter 7.3). Irf8 deficiency also 

causes large expression changes in adult LC although the cell numbers and morphology are 

not altered much. In contrast, the transcriptional variations in microglia of adult Irf8-/- mice 

resulted in decreased cell numbers and alterations of cell morphology such as decrease of 

dendritic length and dendritic terminal points (data not shown). These results indicate that 

changes at transcriptional level might not always reflect changes in cell morphology and 

macrophage recruitment in tissues. In more detail, I found that the TF Myb is commonly 

inhibited (embryonic kidney, adult kidney and liver cells) when Irf8 is absent, again 

demonstrating that production of CD11bhigh macrophages is Myb-dependent (Schulz et al., 

2012). Similar results were observed for the Myb-interacting TF Cebpe, which is a key 

mediator for CD11bhigh subsets as shown above. Several surface molecules expressed in 

CD11bhigh populations also rely on the presence of Irf8, e.g. Slco4c1, Il28ra and Cd33, etc. 

Interestingly, among the common repressed genes in the presence of Irf8, Irf7 is a key 

regulator of type I IFN-dependent immune responses and plays a critical role in the innate 

immune response against viruses (Chariot, 2009; Ning et al., 2011). Speaking of F4/80high 

subsets, Irf8 deficiency seems to play a more important way in embryonic macrophage 

development rather than in the adult system. Runx2 is one of the repressed TFs shared by 

three organs (kidney, liver and MG) but only in embryonic cells. Additionally, functional 

analysis on DE genes in Irf8-/- mice revealed that Irf8 is essential not only in myeloid 

progenitor cell differentiation, system development and immune system processes, but also 

in antigen processing and presentation.  

In conclusion, F4/80high and CD11bhigh cells are two distinct macrophage populations no 

matter which organ they are localized. The former is developed from yolk sac by primitive 

hematopoiesis into different tissues while the latter is derived from HSC by definitive 

hematopoiesis in a Myb-dependent manner. Irf8 mediates both procedures by cooperating 

with many regulators and signaling cascades.  
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Appendix 

A. Scripts 

Script 1 Implementation of Borda Count method 

#!/usr/bin/perl 
# The script aims to combine rankings from two methods by Borda Count method. 
 
use strict; 
use warnings; 
my @matrix1 = (); 
my @matrix2 = (); 
my ($total, $fn_in1, $weight1, $fn_in2, $weight2, $fn_out) = @ARGV; 
 
my $m = 0; 
open(IN1, $fn_in1) or die "$!\n"; 
while (<IN1>) { 
    chomp; 
    my @line = ($_,$total-$m,$weight1); 
    push(@matrix1,\@line); 
    $m++; 
} 
close IN1; 
 
my $n = 0; 
open(IN2, $fn_in2) or die "$!\n"; 
while (<IN2>) { 
    chomp; 
    my @line = ($_,$total-$n,$weight2); 
    push(@matrix2,\@line); 
    $n++; 
} 
close IN2; 
 
my %hash = (); 
my @cell = (\@matrix1,\@matrix2); 
for (my $i = 0;$i < @cell;$i++){ 
    foreach my $e (@{$cell[$i]}){ 
      my $name = ${$e}[0]; 
      my $score = ${$e}[2]*${$e}[1]; 
         for (my $j = 0;$j<@cell;$j++){ 
          if($j != $i){ 
       for(my $f=0; $f < @{$cell[$j]};$f++){ 
              if ($name eq ${${$cell[$j]}[$f]}[0]){ 
               $score += ${${$cell[$j]}[$f]}[2] * ${${$cell[$j]}[$f]}[1]; 
               splice (@{$cell[$j]}, $f,1);  #delete repetitive hits from other samples 
               last; 
               } 
              elsif ( $name =~ /(${${$cell[$j]}[$f]}[0])/){ 
                ${$e}[0] = $1; 
               $score += ${${$cell[$j]}[$f]}[2] * ${${$cell[$j]}[$f]}[1]; 
               splice (@{$cell[$j]}, $f,1);  #delete repetitive hits from other samples 
               last; 
            } 
          } 
       } 
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         }  
         $hash{$name} = $score;  
    } 
} 
open(OUT, ">".$fn_out) or die "$!\n"; 
print OUT "Gene Symbol\tScore\n"; 
foreach my $key (sort hashValueDescendingNum (keys(%hash))) { 
  print OUT "$key\t$hash{$key}\n"; 
} 
close OUT; 
 
sub hashValueDescendingNum { 
   $hash{$b} <=> $hash{$a}; 
} 
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Script 2 Generation of input files for Circos 

#!/usr/bin/perl 
#The script aims to generate specific a batch of input files for Circos. 
 
use strict; 
use warnings; 
 
my ($n, $m, $boolean_text, $fn_in, $fn_karyotype, $fn_link, $fn_text,$fn_hist, $fn_band) = @ARGV; 
my @a = (); 
my @conditions=(); 
my @link = (); 
my @text = (); 
my @hist = (); 
my @count = (0)x $n; 
my $intermediate = 0; 
my $all = 0; 
 
open (IN, $fn_in) or die "$!\n"; 
while (<IN>) { 
    chomp; 
    my @temp = split("\t", $_); 
    push(@a, \@temp); 
} 
close IN; 
 
for(my $i = 2;$i<@{$a[0]};$i++){ 
  push(@conditions, $a[0][$i+1]); 
} 
 
for(my $i = 1;$i<@a;$i++){ 
 my $present = 0; 
 for(my $j = 3;$j<@{$a[$i]}-1; $j++){ 
   if ($a[$i][$j]>0){ 
  $present++; 
  my $chr = $j-2; 
  my $start = $count[$chr-1]++; 
  my @line1 = ('hs0',$a[$i][1],$a[$i][2],'hs'."$chr",$start,$start+1); 
  push (@link,\@line1); 
  if ($boolean_text){ 
         my @line2 = ('hs'."$chr",$start,$start+1,$a[$i][0]); 
         push (@text,\@line2);    
        } 
   } 
 } 
 if ($present != $a[$i][-1]){ 
  print "wrong count!\n" 
  } 
 if ($present >=1 && $present < $n){ 
  $intermediate++; 
  }  
 elsif ($present == $n){ 
  $all++; 
  }  
 my @line3 = ('hs0',$a[$i][1],$a[$i][2],$present); 
    push (@hist,\@line3);    
 
} 
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my $none =  $m-$intermediate-$all; 
if ($none>0){ 
   for (my $i = 0; $i < $none;$i++){ 
  my @line = ('hs0',$i,$i+1,0); 
  push(@hist,\@line); 
  } 
} 
 
open(OUT1, ">".$fn_karyotype) or die "$!\n"; 
 
print OUT1 "chr\t-\ths0\tpresent\t0\t$m\tlblue\n"; 
if ($none>0){ 
 print OUT1 "band\ths0\tnon-increased\tnon-increased\t0\t$none\tblack\n"; 
 my $temp=$none+$intermediate; 
 print OUT1 "band\ths0\tintermediate\tintermediate\t$none\t$temp\tvlgrey\n"; 
    print OUT1 "band\ths0\tall-increased\tall-increased\t$temp\t$m\tred\n"; 
} 
else{ 
 print OUT1 "band\ths0\tintermediate\tintermediate\t0\t$intermediate\tvlgrey\n"; 
    print OUT1 "band\ths0\tall-increased\tall-increased\t$intermediate\t$m\tred\n"; 
 } 
print OUT1 "chr\t-\ths1\t$conditions[0]\t0\t$count[0]\tgrey1\n"; 
print OUT1 "chr\t-\ths2\t$conditions[1]\t0\t$count[1]\tpink2\n"; 
print OUT1 "chr\t-\ths3\t$conditions[2]\t0\t$count[2]\tred3\n"; 
print OUT1 "chr\t-\ths4\t$conditions[3]\t0\t$count[3]\tyellow4\n"; 
print OUT1 "chr\t-\ths5\t$conditions[4]\t0\t$count[4]\torange5\n"; 
print OUT1 "chr\t-\ths6\t$conditions[5]\t0\t$count[5]\tgreen6\n"; 
print OUT1 "chr\t-\ths7\t$conditions[6]\t0\t$count[6]\tblue7\n"; 
print OUT1 "chr\t-\ths8\t$conditions[7]\t0\t$count[7]\tpurple8\n"; 
close OUT1; 
 
print "Band counts\nnon-increased:$none\tintermediate:$intermediate\tall-increased:$all\n"; 
print "chromosome sizes:\n"; 
foreach my $e (@count){ 
 print "$e\t"; 
 }  
print "\n"; 
 
open(OUT2, ">".$fn_link) or die "$!\n"; 
for (my $i = 0; $i < @link; $i++){ 
  for (my $j = 0; $j < @{$link[$i]}; $j++){ 
    print OUT2 "$link[$i][$j]\t"; 
  } 
  print OUT2 "\n"; 
} 
close OUT2; 
 
if ($boolean_text){ 
   open(OUT3, ">".$fn_text) or die "$!\n"; 
   for (my $i = 0; $i < @text; $i++){ 
      for (my $j = 0; $j < @{$text[$i]}; $j++){ 
       print OUT3 "$text[$i][$j]\t"; 
      } 
      print OUT3 "\n"; 
   } 
   close OUT3; 
} 
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open(OUT4, ">".$fn_hist) or die "$!\n"; 
for (my $i = 0; $i < @hist; $i++){ 
  for (my $j = 0; $j < @{$hist[$i]}; $j++){ 
    print OUT4 "$hist[$i][$j]\t"; 
  } 
  print OUT4 "\n"; 
} 
close OUT4; 
 
open(OUT5, ">".$fn_band) or die "$!\n"; 
print OUT5 "hs0\t0\t$none\tnon-increased\n"; 
print OUT5 "hs0\t$none\t$temp\tintermediate\n"; 
print OUT5 "hs0\t$temp\t$m\tall-increased\n"; 
close OUT5; 
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Script 3 Configuration of Circos run 

#This configuration file was used to run Circos for the Surfaceome plot (Figure 6.4.8) 
karyotype =./karyotype-surfaceome.txt 
 
chromosomes                 = hs0;hs1;hs2;hs3;hs4;hs5;hs6;hs7;hs8 
chromosomes_order_by_karyotype = yes 
chromosomes_units           = 1000 
chromosomes_display_default = yes 
chromosomes_reverse= hs1;hs2;hs3;hs4;hs5;hs6;hs7;hs8 
 
<plots> 
<plot> 
type = text 
file = ./band-surfaceome.txt 
color = black 
label_font=default 
label_size=40 
r0   = 1.02r 
r1   = 1.3r 
label_parallel = yes 
</plot> 
 
<plot> 
type      = histogram 
file      = ./histogram-surfaceome.txt 
 
r1        = 0.98r 
r0        = 0.92r 
# extend_bin  = no 
 
<rules> 
<rule> 
condition = var(value) < 8 
color      = black 
fill_color = grey 
</rule> 
 
<rule> 
condition  = var(value) > 7 
color = red 
fill_color = lred 
</rule> 
</rules> 
 
</plot> 
 
<plot> 
type             = text 
color            = black 
file             = ./text-surfaceome.txt 
r0 = 0.92r 
r1 = 0.99r 
label_size   = 20p 
label_font   = condensed 
padding  = 0p 
rpadding = 0p 
</plot> 
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</plots> 
 
<colors> 
# This is included from the Circos distribution. You do not need to create this file. 
<<include ./colors.conf>> 
# If you are using v0.55 or earlier you'll need the next line 
# <<include etc/brewer.conf>> 
</colors> 
<fonts> 
# This is included from the Circos distribution. 
<<include /home/marc/circos-0.62/etc/fonts.conf>> 
</fonts> 
<patterns> 
# This is included from the Circos distribution. 
# Only useful if you are using patterned fills. 
<<include /home/marc/circos-0.62/etc/patterns.conf>> 
</patterns> 
 
<<include /home/marc/circos-0.62/etc/ideogram.conf>> 
<<include /home/marc/circos-0.62/etc/ticks.conf>> 
<<include /home/marc/circos-0.62/etc/housekeeping.conf>> 
 
<image> 
dir   = . 
file  = surfaceome 
png   = yes 
svg  = yes 
# radius of inscribed circle in image 
radius         = 2000p 
#background      white 
# by default angle=0 is at 3 o'clock position 
angle_offset   = -135 
#angle_orientation = counterclockwise 
auto_alpha_colors = yes 
auto_alpha_steps  = 5 
</image> 
 
<links> 
show          = yes 
<link> 
file         = ./link-surfaceome.txt 
z             = 0 
radius        = 0.90r 
bezier_radius = 0r 
thickness     = 1p 
bezier_radius_purity = 0.5 
crest                = 0.25 
<rules> 
flow = continue 
<rule> 
condition     = from(hs0) 
radius1       = 0.89r 
</rule> 
<rule> 
condition     = to(hs0) 
radius2       = 0.89r 
</rule> 
<rule> 
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condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs1") 
color       = grey1 
</rule> 
<rule> 
condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs2") 
color       = pink2 
</rule> 
<rule> 
condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs3") 
color       = red3 
</rule> 
<rule> 
condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs4") 
color       = yellow4 
</rule> 
<rule> 
condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs5") 
color       = orange5 
</rule> 
<rule> 
condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs6") 
color       = green6 
</rule> 
<rule> 
condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs7") 
color       = blue7 
</rule> 
<rule> 
condition     = ( _CHR1_ eq "hs0" && _CHR2_ eq "hs8") 
color       = purple8 
</rule> 
</rules> 
</link> 
</links> 
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B. Tables 

Table 1: Identification of publications associated with the major hub genes using 

pubatlas.org 

 
Hub 

genes 
FABP5 

TFNAIP
6 

CXCR7 NME1 ACOT7 
DCTPP

1 
MRPL2

4 
RRP15 ATIC GPD1L 

Cell types / 
organs 

Total 470 192 252 918 8 1 1 2 182 10 

Macrophage 232444 25 18 8 6 1 
     

Dendritic cell 79457 6 4 4 
       

Myeloid cell 299999 23 19 14 24 1 
   

3 
 

Mast cell 38269 
 

1 2 
       

Kupffer cell 7778 1 
         

Microglia 16077 1 
 

2 
       

Alveolar 
macrophage 

16836 3 
 

1 
       

Stem cell 220821 39 14 42 11 
    

1 
 

T cell 299999 6 5 26 14 
    

5 
 

B cell 151858 3 1 15 18 
    

8 
 

NK cell 50732 
 

1 1 4 
      

Granulocyte 156204 
 

5 7 7 
    

1 
 

Neutrophil 117660 1 11 3 
     

1 
 

Basophil 10338 
          

Eosinophil 36599 
  

1 
       

Heart 299999 8 3 6 2 1 
    

5 

Lung 299999 9 8 20 69 
    

4 1 

Liver 299999 54 5 13 40 1 
  

1 4 
 

Brain 299999 16 
 

32 5 1 
   

2 
 

Kidney 299999 8 8 17 22 
 

1 
  

11 
 

Muscle 299999 20 8 6 11 2 
   

4 3 

Fat tissue 98308 109 1 
 

2 1 
     

Numbers reflect publications with the respective search terms in columns and rows. Table 

entries show cumulative publications through 2012 (as accessed Mon Apr 1 07:26:39 2013 

GMT).  
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Table 2: TFs identified among the top 10% hub genes, their predicted binding sites at gene 

loci of the Top 10% hub genes 

TF Degree TF family overrepresented z-score for TFBS p-value from normal distribution 

JUNB 33 V$AP1F -2.88 0.003976752 

BATF3 35 V$AP1F -2.88 0.003976752 

NFE2 31 V$AP1R -1.66 0.096914453 

CEBPD 33 V$CEBP -4.9 9.58E-07 

CREB1 33 V$CREB 3.58 0.000343594 

E2F3 33 V$E2FF 29.3 1.04E-188 

MXD4 77 V$EBOX 11.11 1.12E-28 

ETS2 45 V$ETSF 7.85 4.16E-15 

RIT1 36 V$EVI1 -10.23 1.46E-24 

CHES1 35 V$FKHD -12.52 5.80E-36 

FOXO3 61 V$FKHD -12.52 5.80E-36 

HEY1 37 V$HESF 10.71 9.14E-27 

HIF1A 50 V$HIFF 8.74 2.33E-18 

MUM1 31 V$IRFF -2.34 0.01928374 

MTF1 34 V$MTF1 5.14 2.75E-07 

NME1 114 V$NDPK 14.11 3.30E-45 

NFKB1 30 V$NFKB 7.4 1.36E-13 

HIVEP1 31 V$NFKB 7.4 1.36E-13 

SMAD4 31 V$SMAD 4.64 3.48E-06 

HBP1 33 V$SORY -15.3 7.65E-53 

HMGA1 43 V$SORY -15.3 7.65E-53 

CKLF 32 V$SP1F 25.86 1.88E-147 

STAT4 57 V$STAT -2.33 0.019806151 

STAT3 37 V$STAT -2.33 0.019806151 

NFX1 32 V$XBBF 3.28 0.001038071 

ZNF281 40 V$ZF02 24.29 2.50E-130 

ZNF148 35 V$ZF02 24.29 2.50E-130 

 


