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Zusammenfassung

Die vorliegende Arbeit pra�sentiert einen neuen Ansatz der Bildinterpretation von Luft-
bildern mit Hilfe von gelernten Bayes-Netzen. Luftbilder sind der Ausgangspunkt zur
Herstellung von Karten und damit der Ausgangspunkt fu�r Infrastrukturplanungen und
Navigationsdaten.

Das Verfahren arbeitet auf einem Regionen-basierten hierarchischen Merkmals-Nachbar-
schafts-Graph. Dieser entha�lt alle aus dem Bild extrahierten homogenen Regionen, inklu-
sive ihrer Nachbarschaftsstrukturen. Die Regionen werden dabei durch 17 Bild-Merkmale
beschrieben. Diese sind z.B. Farbe, Struktur, Form oder Symmetrien. Die Nachbarschafts-
beziehungen selbst werden durch sieben Merkmale attributiert.

Das Bayes-Netz besteht aus Knoten fu�r die Beobachtung der Regionen, ihrer Merk-
male und Nachbarschaften, sowie die Aggregationsstufen der Cliquen, Objekte und der
Szene als Ganzes. Die Regionen des Merkmal-Nachbarschafts-Graphen sowie ihre Attri-
bute werden als Beobachtungen in den entsprechenden Knoten des Bayes-Netzes einge-
fu�hrt. Im Lern-Schritt wird dazu auch der Typ der Bildszene als Beobachtung eingefu�hrt.
Die anderen Knoten des Bayes-Netzes sind unbeobachtet. Das pra�sentierte Verfahren der
Bildinterpretation ist zweistu�g: In der ersten Stufe wird das Bayes-Netz anhand von
vorhandenen Interpretationsergebnissen auf bekannten Bildern trainiert. Dabei werden
die Struktur des Bayes-Netzes und die Wahrscheinlichkeitsdichten gelernt. Die gelernten
Parameter fu�r die Abha�ngigkeiten und die Wahrscheinlichkeitsdichten, die das Bayes-
Netz repra�sentiert, sind das Ergebnis der ersten Stufe. Sie werden abgespeichert und in
der zweiten Stufe verwendet.

Die zweite Stufe benutzt die Parameter, welche in der ersten Stufe ermittelt wurden,
zur Interpretation. Dafu�r werden wiederum die Elemente aus demMerkmals-Nachbarschafts-
Graph als Beobachtung fu�r das Bayes-Netz benutzt. Dann wird in einer iterativen Maximum-
a-posteriori Scha�tzung die bestanpassende Struktur als Lo�sung fu�r das Bayes-Netz ge-
sucht. Die Zusta�nde der Knoten im Bayes netz repra�sentieren nun die Interpretation
des Bildes mit den im ersten Schritt erzeugten Vokabeln. Ergebnisse der so gefundenen
Interpretation werden visualisiert und ausgewertet.

In verschiedenen Experimenten wird die Stabilita�t und Robustheit des Verfahrens auf
vier verschiedenen Datensa�tzen von Luftbildbe�iegungen gezeigt.





Abstract

In this thesis we present a new approach for image interpretation of aerial images using
learned graphical models.

The approach uses a region based hierarchical feature adjacency graph. This contains
homogeneous regions that were extracted out of the image as well as its neighbor rela-
tionships. For each region there are 17 image features extracted to describe the region,
e.g. color, structure and symmetries. The neighbor relations are attributed by seven fea-
tures describing their geometrical relation. The Bayes net consists of nodes for regions
and their image features as well as the neighbor relationships. It also models the higher
aggregated elements with nodes for cliques, objects and the image scene. The regions of
this adjacency graph and the describing features are used as observations for the nodes of
the Bayes net. In the �rst learning step also the scene node is introduced as observation
the other nodes are hidden i.e. not observed.

The presented approach has two stages. In the �rst stage the Bayes net is trained
with known ground truth data. By introducing the observations, a structural learning
algorithm searches the best net structure and learns the probability distributions and
the dependencies of the nodes of the Bayes net. The learned parameters are the result
of the �rst stage. They are saved and used in the second stage

The second stage interprets new images using a Bayes net with the parameters of the
�rst stage. Again, the regions and features of the region based feature adjacency graph
are introduced as observations. Using an iterative maximum a posteriori estimation, we
search for the optimal Bayes net structure to describe the underlying image. The states
of the nodes of the Bayes net represent now the interpretation according to our learned
vocabulary.
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Chapter 1

Introduction

In this thesis we will present an approach for interpreting the content of aerial images.

We develop a statistical model that is capable to classify and interpret image regions

in a hierarchical way and create a scene interpretation of it. The parameters of the

interpretation process represent the knowledge about the scene and its objects. These

parameters are determined in a preceding learning step from annotated images (Fig. 1.3).

Although the learning and interpretation is capable of processing any image content in

general, we will focus on the specialties of the interpretation of aerial images.

1.1 Motivation and goal

The detection of objects is a challenging task in computer vision that attracted much

attention in the last years. The demand for object detection algorithms today is big.

Images are used everywhere since cheap digital camcorders and consumer cameras are

available. The quality and size of the images increase and storage is cheap, so there

are a lot of huge image databases. Be it the private collection of the last holiday or a

professional database or images of an observation camera, to search the database for a

certain motive of object in the scene quickly gets painful if there is no label that can be

searched easily. Also in applications that apply for machine vision like robotics underline

the need for object detection once more.

Due to the historical connection to the cadastre and surveying, photogrammetry had

always a strong focus on building and terrain reconstruction which are e.g. essential for

mapping.

Also in the classical domain of photogrammetry the demand for aerial images and

interpretation is big and not restricted to the geodetic community as the success of
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1.1. MOTIVATION AND GOAL

applications like Google Earth show. The use of such data is quickly growing, where

nowadays the home computer technology overcomes the di�culty of large images. A

main task for photogrammetry is creating maps from aerial photos. The need for the

task of mapping can be imagined by looking on mega cities like Mexico City or Bombay.

Their daily growth is uncontrollable and fast. Aerial images are in this case the only

chance for mapping and decision making. An automatic image interpretation is needed

to produce actual maps.

Although the use of additional sensors seem to be useful to supply the recognition

process, the presence of additional data is rare and will be expensive for a long time

in comparison to the small costs of (digital) images. Also there are tasks like �nding

bomb shells in the ground 60 years after the Second World War. This is done with the

interpretation of old aerial images taken in the 1940s [Landes NRW 2011].

Images provide iconic information that is easily accessible for humans but is not

decodable directly for computers. The image feature extraction as part of the low level

vision makes the transition from the image as a signal coded by pixels to a symbolic level.

But also this level not yet provides the desired information for accessing and interpreting

the content of the image. Goal of the detection here is to make a further step to a

semantic level which assigns labels to �objects� that are built of features of any kind.

Figure 1.1: Goal of this thesis is to interpret the aerial image on the left side and get an
interpretation result like shown on the right side. The colors de�ne the di�erent object
classes. In this case there are streets [black], saddle roofs [green], hip roofs [orange], �at
roofs [light blue] and other roofs [dark blue] found.

To design an optimal detection method, there are several requirements to be met. It

2



1.1. MOTIVATION AND GOAL

Task Existence Name Class Position Form

Object localisation + · + ? ·
Object reconstruction + · + + ?
Object identi�cation · ? ? + ·
Object detection ? · + · ·
Image interpretation · ? ? ? ?

Figure 1.2: Tasks in computer vision: +=given; ?=searched; ·=irrelevant, unknown,
perhaps searched, perhaps given; Categorization from [Förstner 2009]

is helpful if the algorithm is able to learn from examples. This is the form also humans

learn and thus this kind of teaching is familiar. The learning phase should be able to

learn the probability densities of regions contained in image scenes with few samples and

the knowledge base should be expandable for the case we want to add new object classes.

The detection itself should be invariant to image transformations and distortions like

noise and partial occlusions. It should handle a large number of classes that are part of

an ontology specifying a taxonometry and a partonomy and containing spatial or other

constraints. Using this, the optimal detection method should detect every object of a

scene. Also, the detection should comply in a reasonable short time.

Like shown in Fig. 1.2 there are di�erent kinds of related tasks of dealing with objects

in images. These tasks have di�erent input and output and therefore have di�erent

complexity to deal with. In object localisation and object reconstruction the position

and form is unknown whereas the existence and the class of the objects are known. In

the identi�cation there is the de�nitive knowledge that there is an object on a certain

position, which has to be classi�ed. Also the detection needs parameters as input: it

determines whether a given object is present in the image or not, possibly reporting

its location. In contrast to this, the process of image interpretation normally has no

necessary input about the presence of objects in a speci�c scene. It has only generic

knowledge about the objects appearance. Not only the name, class, position and pose

is unknown, also the existence of objects has to be proved against the model. It can be

seen as object detection with an open list of concurrent objects. To comply with this

challenge we need a complex model and an algorithm that is capable to perform these

tasks and combine the results.

The goal in this thesis is to develop a method of a scene interpretation of aerial

images. The interpretation implements knowledge about the classes that are taught in a

learning step. Everything else in the scene will be classi�ed as background. The results

of the scene interpretation are instances of objects found in the image scene (see �g. 1.1).
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1.2. STRATEGY FOR INTERPRETATION

These objects are represented by nodes of a Bayes net. The reprojection of the found

object class to the dependent features in the image is displayed in �g. 6.2.

1.2 Strategy for interpretation

Our image interpretation task is composed of two steps. In the �rst step the method

builds up a knowledge base about the objects and their image features, which is the

learning step. Then follows the detection and reconstruction in a second step.

The idea that is followed here is that it is easier to let the computer �nd its model for

a certain task than to engineer a set of criteria for the object detection. Therefore the

desired objects and their parts are learned in a supervised step. The supervision by the

human teacher has not to be provided online, but it can be done by using an annotated

image database. The knowledge that is extracted in this step is represented explicitly in

parameters. These can be used for classifying new images (�g.1.3).

For carrying out the classi�cation we propose the use of a Bayes net Koller and

Friedman [2009]. This has certain advantages: The structure can be modeled very �exible

and it represents a statistically based scheme. The probabilities and dependencies inside

the net are interpretable by humans. Bayes nets are a well understood tool for reasoning

and it is possible to learn the probability densities as well as their dependencies. These

parameters can be expanded in a second step; a repetition of the learning of the previous

data sets after adding new cases is not necessary.

One reason for the choice of this learning approach is the problem of an adequate

strength of the model. As shown in Brunn and Förstner [1995] and Kulschewski [1997]

there has to be a consideration between the strength of the model and the strength of the

data. This problem can be cleared out by learning the detection model directly from the

data. In this case the knowledge is not derived from an engineered model. The problem

is to avoid over�tting that would hinder the generalization in learning. Another reason is

that there exist a lot of di�erent feature extraction algorithms. Because of their amount

and di�erent behavior it is not clear what type of feature is able to contribute evidence to

the interpretation. For this reason we provide a bouquet of di�erent feature detectors that

are implemented as observations. After the learning procedure, those features, that add

evidence to the interpretation process, will have clearly peaked probability distributions.

Those which do not serve the interpretation will instead have ��at� distributions and

a high variance respectively. The image model enables us to implement features that

represent the geometry, topology and color.

The feature extraction part is region based, i.e. the region is in the focus and every

4



1.2. STRATEGY FOR INTERPRETATION

Figure 1.3: The overall strategy: the learning step extracts scene knowledge from images
with given ground truth. This knowledge is represented by parameters that de�ne the
structure and the probability distributions of the Bayes net. These can be used in the
detection step for scene interpretation.

observation is a description of a region: points and lines are incorporated as information

about the boundary of regions. This was chosen because the unknown objects are mod-

eled as region like structures and the topology structure is easily accessible in this type

of region adjacency graph.

Another possibility is to use tripods of the aspect graph (cf. Braun [1994]). Within

this model the objects are projected into the image plane which can be brittle. In most of

the aerial image the pitch angle from nadir is small so that the extraction of the tripod-

con�guration are not very distinctive. In Kulschewski [1999] oblique aerial images are

used to overcome this de�cit. Also the use of point-like information, e.g. with SIFT-

features has shown that due to clutter and vegetation the desired objects in the image

are the most homogeneous and stable regions, where in turn the least number of point

descriptors are found. In this work a segmentation that builds a complete partition of

the image and its geometry, topology and color information is used.

Figure 1.4 shows the hierarchy of the interpretation scheme using the Bayes net.

Given the image, the extracted image features are represented in a graph, which is the

feature adjacency graph. The image feature extraction delivers a complete partition

of the image with adjacent regions. For each of the regions a random variable will be

instantiated that represents an object-part node in the Bayes net. These object-part

nodes are modeled as dependent nodes of the level above which are the object nodes.

There are one or more object-parts dependent of an object node, but each object-part is
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1.3. PREREQUISITS AND ASSUMPTIONS

associated only to one object. The objects themselves are dependent on their neighbor-

objects building a graph. Every object node is dependent on the random variable that

instantiates the scene node, that acts as prior information about the type of the scene.

The nodes of the features (not shown here) represent the observations that are carried out

in the feature adjacency graph. They are modeled as continuous or discrete variables but

their observations are numbers that do not have to be interpreted directly. The object

nodes and the scene node have labels that are taken out of the ground truth database

(visualized here as character). These labels are given by the human operator and his

acquisition rule respectively. In contrast, the object-part nodes are not given. These

manually created labels are stored in a ground truth database. It stores object labels, e.g.

saddle-roof building, but not its decomposition into parts, e.g. roof window or chimney.

The labels of these nodes are found automatically during the learning procedure. These

found labels are shown as di�erent colors. In Chapter 6 an interpretation of these labels

is shown.

1.3 Prerequisits and assumptions

A good approach for an image interpretation model has to meet several reuirements. We

used the following requirements to develop the model. The model should be:

semantic: The system has to represent spatial relations of objects. These are containing

information like �streets are in the neighborhood of buildings�. This context enables

us to distinguish several classes of objects with similar image features. Therefore

the model should be semantic.

region based: The underlying object model shows, that many objects of the human

environment are planar. Highly structured objects like in Bastian Leibe and Schiele

[2004], Weber et al. [2000a] or Helmer and D. Lowe [2004] are not handled. The

structured regions are recaptured again when they are smoothed in the higher levels

of the scale space (c.f. Lindeberg [1996]). Our model should therefore be region

based.

teachable: To avoid errors and to create a model that is adequate to the strength of

the data, the model should derive the model from a typical subset of the data. It

is necessary for the model to be teachable by a supervising user.

hierarchic: The system has to build the learned interpretation knowledge from bottom

up. Many image features give evidence for the object part. Multiple object parts

6



1.3. PREREQUISITS AND ASSUMPTIONS

Figure 1.4: Layout of the interpretation scheme with the Bayes net. The labels
of the object-nodes are de�ned in the ground truth database (S=street, B=building,
V=vegetation) during the learning step. The labels of the object-parts instead are found
automatically as visual words. They have no human readable labels and are here coded
with colors instead.
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1.3. PREREQUISITS AND ASSUMPTIONS

build one object and several objects yield a scene. Vice versa it is possible to

in�uence the detection by introducing knowledge at a higher level e.g. the scene

information. Prior knowledge can be used to act top-down. The model should

represent its knowledge in a hierarchic way.

dynamic: The number and location of objects can vary. We consider to model con-

stant image partitions e.g. rectangular regions that are classi�ed separately as not

useful. The objects in an image are of varying size and orientation. They follow

di�erent spatial relations. Di�erent to terrestrial images, in aerial images a certain

arrangement of the objects in the image plane can not be assumed. To handle these

variations in number and location, the model should be dynamic.

�exible: The system should be able to handle di�erent kinds of image domains, e.g.

aerial and terrestrial images.

robust: The model has to deal with suboptimal results as input from the underlying

feature extraction process. Although there are many good feature extraction algo-

rithms, each of them performs suboptimal if it is working out of their speci�cation.

Since the parameters can not be tuned for every image, the interpretation has to

work with this uncertainty of the feature extraction.

Every single point itself can be met in a quite simple way. To ful�ll the combination of

these requirements, it needs a felxible and powerful model.

1.3.1 The special content of aerial images

Aerial images are quite special due to their orientation, size and resolution. For the

image interpretation it is necessary to detect an unknown number of objects in a large

image. The desired objects have some properties that make the detection model more

complicated. First there is no prior information about the position or orientation of the

objects. In terrestrial images objects are mostly under the sky and above a ground plane,

orientation is induced by gravity.

Second, the desired class �building� has a big intra class variety. Even for humans

the class �building� is not easy to de�ne. Especially older European cities have very

complicated roof structures. As roofs normally are not seen from the street, these are

often no tidy structures.

Finally due to image noise and occlusions the feature extraction gives only suboptimal

results. Even if there exist a lot of feature extraction algorithms, every one has its own

special domain where it works best.

8



1.3. PREREQUISITS AND ASSUMPTIONS

Without tuning the parameters in a classi�cation process the results will be only

suboptimal for an average real photo. The solution on which many detection and cat-

egorization approaches in recent years have built on, were rotation and scale invariant

operators. These operators do not provide good results in our case because the image

contains typically much vegetation. In the speci�c image scale of most aerial imagery

they �nd extremely well points in the highly noisy and self similar vegetation but not on

roofs. A challange is the clarity of the used ontology for the ground truth.

1.3.2 Image and object model

The objects we want to detect in the scene are man-made objects. We follow the work

of Braun et al. [1994] who propose a model structure shown in �g. 1.5. Here, the

correspondence of two-dimensional and three-dimensional models and their instances is

constructed. On the 3D side a scene contains objects that decompose into object-parts,

feature-graphs, features and eventually into voxels. The corresponding model to the

objects are aspects that are position dependent views of the object. These decompose

into aspect-parts, e.g. tripods of boundary lines [André Fischer et al. 1998].

Unlike other researchers, e.g. Kulschewski [1999] and A. Fischer et al. [1999], we favor

a fully two-dimensional approach, which leads to a detection and a boundary reconstruc-

tion according to the underlying segmentation. The transition to the 3D-description,

the right side of �g.1.5, is moved to a postponed reconstruction step. In contrast to the

proposed model structure of Braun et al. [1994] stay in on the left side of �g. 1.5. Instead

of the aspects we use objects and object-parts for the aspect-parts. The object model

does not know anything about depth, so occlusion and perspective are pushed into the

uncertainty of the detection. We use a phenomenological description of the scene. This is

possible because we assume that deformations due to the projection into the image plane

are small. On the other hand the learning step concentrates on features and regions that

are stable. This leads to the e�ect that the extracted image features are invariant to the

viewpoint.

The resulting image model conforms to the framework of Förstner [1994]. We assume

that the objects are geometrically and physically bounded. In the digital image we have

to deal with image noise as well as image distortions and deformations due to non-ideal

cameras. This leads to an image description with regions, lines and points as image

features as well as the mutual relations among those. In contrast to [Fuchs 1998] we use

a image feature extraction that represents a complete partition of the image, i.e. every

pixel is covered and there is no overlapping of image features and no background pixel

9



1.3. PREREQUISITS AND ASSUMPTIONS

Figure 1.5: The structure of model hierarchies according to Braun et al. [1994]. Instead of
modeling the 3D Scene, we use only the 2D model. The scheme acts phenomenologically
and the model itself is learned from sample data.

between them.

1.3.3 Choice of image features

There is a big variety of di�erent image features that can be extracted from images and

can be used for detection. Every one of these has its own special domain where it is

made for. If the feature extraction algorithm is used with di�erent boundary conditions

like di�erent illumination, image noise or perspective, their result can be suboptimal.

Without tuning the parameters, the results will be suboptimal for a randomly chosen

image.

The image interpretation, for which the features are used, should work on many image

domains. Therefore tuning the feature extraction is suboptimal in this case. Instead we

use a group of di�erent feature extraction algorithms. Their results are rated in the

supervised learning step. By this rating we are able to distinguish between the cases

and features that contribute to a successful interpretation and the ones that produce

irrelevant features. This rating is performed in a statistic way.

Due to the image model we use, the backbone is a region-based feature extraction.

These regions are used to extract a neighborhood graph of the tessellation. Every region is

described by multiple descriptors. Line features and their attributes are used to describe

10



1.3. PREREQUISITS AND ASSUMPTIONS

the boundaries and multiple attributes of the regions are used.

The result of the feature extraction step is an uninterpreted image description in form

of a hierarchical region graph.

1.3.4 Choice of graphical models

After extracting the hierarchic feature graph, we need a method that is able to infer the

inherent content of the feature graph to produce an interpretation of the image content.

For this method we have chosen a graphical model in the form of a Bayes net. The choice

of a Bayes net enables to meet the requirements mentioned 1.3 and has advantages over

other approaches:

With Bayes nets we are able to infer, i.e. we can conclude from many weak occurrences

to strong decisions. That allows us to detect objects in the image. Bayes nets represent

not only a static design. They can be modi�ed in structure und densities. It is possible

to learn both, the underlying probability distributions and the conditional dependencies

of these distributions as well as combinations of it. We will use both types of learning

although the learning of the structure of the net is only applied on the region and clique

node level.

We restrict the Bayes net to have a tree structure. This allows for the fastest and

easiest way for inference algorithms of Bayes nets. It also re�ects the natural object

structure for image interpretation that forms a pyramid since the image features form a

2-d tessellation: The lower levels instantiate the image features. The image observations

are introduced as observed nodes. Above these are the levels of the region-, clique- and

object nodes. The top node represents the type of the image scene itself.

It is possible to follow the interpretation process in the Bayes net in every step. The

dependency of a parent and child node for inference in Bayes statistics has always an

interpretation of cause and implication [Pearl 2000]. In Bayes nets it is easily possible

to do a dynamic augmentation of nodes during the interpretation process. This helps to

manage the inference with a variety of net con�gurations.

Although we have chosen the Bayes net for this work, there are also other promising

approaches that could be used to learn this kind of detection.

One of these approaches is boosting, where a strong classi�er is learned by many

weak classi�ers. This algorithm has much in common with the naive Bayes classi�er.

The boosting framework is used in [Elkan 1997] to learn classi�ers for detection. Also

in [A. B. Torralba 2003] a boosting approach is successfully used. Neuronal networks

are very similar to Bayes nets. They are used in a lot of works, an overview can be
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found in [Ripley 2007]. Also the discriminative algorithms are used to represent learn

able algorithms, e.g. K-means-clustering and support vector machines are used for image

interpretation.

1.4 Contribution

We choose a statistical approach to cope with the following issues that we have found

during the work with real world image data and feature extraction algorithms:

• The optimal feature extraction algorithms are not given and/or the parameters for

the image processing step are not given in a way that would lead to optimal and

error free feature extraction in sense of a human scene perception. These two error

sources lead to a set of extracted features that can contain

� too many features, e.g. at places where they should not be extracted,

� too few features, e.g. features existing in the image could not be extracted,

� features of low con�dence, e.g. features are extracted not in the exact place

or with a wrong occurrence.

• The basic set of observations which is used to learn from has de�ciencies, e.g. wrong

types of classes, missing features and partly occlusions.

• There is a set of di�erent kinds of features that can be extracted from an image.

These must be examined weather they are able to help the detection or not.

• Context provides information. Often the interpretation of existent features are

ambiguous. Only the context information out of the neighborhood can lead to the

right interpretation. These information can be of the type �buildings are in the

neighborhood of streets�.

These assumptions are explained in more detail in the subsequent chapters.

The approach uses a Bayes net that is learned from a database. For the learning

process relatively few samples are used.

We present a pure 2 dimensional approach. Although � especially for buildings �

the 3D reconstruction is of interest, the localization and outline reconstruction in 2D is

an important step toward the reconstruction of the 3D structure. In a second step the

3D reconstruction algorithms can work on the identi�ed and isolated areas.

12
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1.5 Outline of the thesis

Chapter two presents related work in the areas of object detection, scene categorization,

building detection and reconstruction. The chapter three contains the fundamentals

about graphical models in general and learning Bayes nets in particular. This is followed

by the chapter about the feature extraction algorithms that are used for the detection.

In chapter �ve we develop the model for the detection. This model is tested in several

experiments, presented in chapter six. A conclusion is drawn in the last chapter.
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Chapter 2

Related methods

Object detection and scene interpretation is one of the key tasks in Computer Vision and

Photogrammetry. It therefore has left a signi�cant imprint in the vision publications.

There are many di�erent approaches and di�erent combinations of algorithms of which

some are introduced in short.

The related work we present here has many aspects under which it can be compared

to each other. First of all there is the goal of the approach. As stated before, this

can be an image categorization, an object detection of one or more objects with or

without localization or even a reconstruction of the scene. Other aspects are the type

of representation and tightly bundled the type of the used algorithms. Also the used

image features, the type of knowledge representation and the original input data will be

examined in short in this chapter.

2.1 The strategy

One of the basic ideas with object recognition has been formulated by Fischler and

Elschlager [1973]. Their concern is the representation with part based models. The

main idea is that relations between distinct regions contribute to the recognition (�g.

2.1). Therefore image features as `meaningful parts' of the object are identi�ed in the

image. Relations between these parts allows to infer the main object in the image.

The representation of the meaningful parts can vary as well as the representation of

the relations. It is important that the recognition always relies on image features and

geometric (projective distorted) relations between them. Every image feature gives some

evidence that there could be an object in the image, but only the community of features

let us conclude the presence. Especially for the case of multiple objects in the scene this
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Figure 2.1: The model for recognition after Fischler and Elschlager [1973] identi�es
meaningful parts in the image. The model of the object contains relations of these
meaningful parts to each other, which identi�es the object in the image.

becomes relevant.

Another basic work is Biederman [1987]. He provides a model how the human visual

system could detect objects. He introduces the concept of GEONS. These are small 3D

objects of simple geometry. They are used as a vocabulary by which almost every man-

made object can be composed by CSG-operations (�g. 2.2). The object parts and the

composition operations are easier to model and parameterize than the complex model

for the whole object.

Sharing common atomic parts enables the modeling of the high number of 10.000s of

classes that humans are able to distinct. This divide and conquer strategy has in�uenced

many others, e.g. the part-based approaches rely on this. The important di�erence to

Fischler and Elschlager [1973] is that here the features (i.e. geons) are generic features

that do not have a speci�c meaning. Their contribution is context sensitive. The cylinder

can be part of the neck of an mammal as well as an vase or a trunk of a tree. In

a constructive sense this helps to quickly build objects like in a CAD program out of

a vocabulary of generic parts. For the recognition task this is an extra dimension of

freedom which has to be solved. These basic ideas can be found in many approaches of

recognition. It is the divide and conquer strategy that makes it successful.
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Figure 2.2: The GEONS are used as a CAD like vocabulary to construct real life ob-
jects. Biederman [1987] The interpretation of the same object parts depends on the
arrangement, i.e. the context.

In addition to this, Fischler and Elschlager [1973] use more speci�c image parts which

have also geometric constraints to their neighbors to detect complex object in a scene.

This idea is the basis for the visual words approach that can be seen often. Here, image

patches are used as a "`vocabulary"'. Like words in a language can form sentences to

describe objects, here these visual words are used as visual terms or a "`bag of words"'.

The visual words can be any image feature like shapes [Burl et al. 1998], image patches

[Weber et al. 2000a,b] or SIFT features [S. Agarwal and Roth 2002]. The disadvantage

is that the parts can be distributed over the image, so we can not distinguish multiple

objects or objects that are represented by similar features. This leads to an image

categorization for the most prominent object in the image. To detect single objects in

a scene, the context in recognition is important. Rabinowich et al. [2007] provide an

additional cooccurence information in a conditional random �eld for their visual words

approach. This helps to distinguish similar image parts from di�erent objects. Other

researchers introduce the spatial arrangement of the features [Carneiro and David Lowe

2006; Crandall et al. 2005; Fergus et al. 2005; B. Leibe et al. 2004]. Here the relative

position among the features or against a common center point are modeled. This helps

to get multiple features as well as their orientation and position in the image. These

properties are important to our image interpretation with many similar objects in aerial

images.

The idea of Biederman follows the work of A. Torralba et al. [2004] who emphazies

the importance of sharing the same features for the e�cient representation for recognition

of objects. This plays a big role in learning the representation in an e�cient way. L.

Fei-Fei et al. [2003, 2004] and L.-J. Li and Li Fei-Fei [2007] show that it is possible to

teach generative models from few samples. This is important to get to an incremental
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learning.

An interesting approach to shift the scene interpretation to a desciptive level is pre-

sented in Farhadi et al. [2009]. The researchers use image features to learn textual

desciptive attributes wich describe the scene. Using this extra layer, the image interpre-

tation can operate on a more human compatible descriptive way. [Russakovsky et al.

2013] presents an analysis of the status and the next steps regarding object detection

and localization in image databases.

2.2 Image features

The image as a set of pixels coded as gray values is di�cult to address for part based

interpretation. This is why most approaches use some kind of feature extraction to work

on a more abstract symbol level than the pixel level itself.

The approaches that use Markov random �elds are able to work on the image pixels

themself [Klonowski and Koch 1997; Meidow 2000]. With direct pixel observation in a

classical Markov random �eld or HMM the complexity of the scene is often very limited

or has to build a hierarchy to model more abstract objects [S. Kumar and Hebert 2003].

The basic image feature that is widely used is the edge or line. This can be a contour

line of the object, e.g. generated by a blur descriptor Berg et al. [2005] or level sets

Rosenhahn et al. [2006]. The contour line can be matched to known objects by using the

curvature, length or color information Belongie et al. [2002]; Mikolajczyk and Cordelia

Schmid [2003]; Rodrigues and Albuquerque Araújo [2002]. To handle view point and

intra class variations, several researchers formulate a generalization of the shape, e.g.

over a contour network de�ned by intersection of contour lines Ferrari et al. [2006] or

graph matching like in Dickinson et al. [2005] or Tu et al. [1999]. The use contour line

works well for recognition as long as we have only few distinct objects with no occlusion

in the scene. For our task of interpretation of elements this is not applicable.

In contrast to the closed contour lines, straight line elements are often used to �nd

geometrical objects in scenes. This approach can be seen in many approaches for building

reconstruction like C. Lin and R. Nevatia [1995, 1996]; Chungan Lin and Ramakant

Nevatia [1998] or Noronha and Ramakant Nevatia [1997, 2001]. They use the extraction

of long edges as features. The edges are grouped and used to build hypotheses about

geometric structures like rectangles, parallelograms and trapezes. These are matched

with geometrical models to �nd buildings and reconstruct them as 3D model (Collins

et al. [1998]; Paparoditis et al. [1998] and Jaynes et al. [1997]).

The approach with straight lines is not suitable for objects that are of irregular

18



2.3. MODELS AND ALGORITHMS

shape. In this case correlation of image patches [Amores et al. 2005], color histograms

[A. Agarwal and Triggs 2006; Chang and Krumm 1999] or texture [Y. Li et al. 2005] and

entropy [S. Kumar and Hebert 2003] can be used.

Important image features are point features to identify salient points in the image.

The points themself are mostly found by Harris or Foerstner point detectors, but also

based on stable regions [Matas et al. 2002] or entropy [Kadir and Brady 2001]. Descriptors

like the one of D. G. Lowe [2004] bring the advatage that they are invariant to some

distortions like scale and rotation. This helps to cut down the search space for the

matching. The big number of approaches shows the importance for object recognition

and detection, e.g. Helmer and D. Lowe [2004]; Loy and Eklundh [2006].

Descriptive image patches and regions can be found by the segmentation of the image.

Segmentation approaches are published for example in [Vogel 2004] and [Felzenszwalb

and Huttenlocher 2005]. [L.-j. Li et al. 2010] introduce a meta feature layer. They use

a �lter bank like they are used in texture detection. Here, these �lters are trained to

objects and can be of various kinds, here represented by an trained SVM object detection

and a texture �leter. The answer from the �lter bank over a scale space of the image is

then fed to a classi�er to carry out the scene interpretation itself.

2.3 Models and algorithms

Model and algorithm are very closely interlinked that in most models they cannot be

separated.

For the recognition and detection of man made objects, especially objects that have

long straight lines like buildings or indoor legoland scenes, geometrical reasoning is used in

many publications. Therefore, egdes and lines are grouped together to geometrical struc-

tures like rectangles, trapezoids etc. These are matches against the geometrical model

to �nd the best hypotheses. Especially for the use of building detection, 3D knowledge

is used in the model that is validated against stereo images to infer the detection.

Graph matching is used in approaches that have organized the image features in

a graph structure. Tu et al. [1999] use for example a graph matching to recognize

objects by identifying aspect parts with image segments. The problem of invariance

against projective deformations is addressed in Dickinson et al. [2005] and Bangham et

al. [1999]. The merging of regions by following the region over the scale space creates a

graph structure that is matched against a learned graph structure.

The clustering of high dimensional feature vectors with k-means [Philbin et al. 2007]

or nearest neighbour [Aly et al. 2011] algorithms can be very fast due to e�ecting indexing
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algorithms. The key is to �nd the appropriate and lowest possible dimensionality of the

feature vectors [Jegou et al. 2012].

Other discriminative models are found in the literature. Especially those models that

are easy to train like boosting [Zhang et al. 2005] or support vector machines [Dorkó and

C. Schmid 2003] or probabilistic maximization approaches [Burl et al. 1998].

Many approaches use graphical models for recognition. The Markov random �elds

or conditional random �elds often have been used in low level vision, e.g. for image

segmentation. But it can also be applied for pixel labeling [Meidow 2000] and image

segmentation [Boykov and Jolly 2001; Korc 2012; Rother et al. 2004]. There are some

ideas published that try to overcome the limitation of the Markov �elds to be restricted

to the regular 2D grid of the image plane. If the Markov �eld is not de�ned in the level

of image pixels but one level higher in abstraction, it can be used to represent image

patches and regions, e.g. Drauschke [2011]; A. B. Torralba [2003] where the conditional

random �eld is learned on a region adjacency graph structure to obeserve the color and

texture.

The nature of the MRF that the nodes are horizontally dependent on their neighbor

nodes is a big advantage because it helps to identify connected features in the image that

belong to one (rigid) object and can be seen as some spatial constraint. With this it is

possible to detect multiple instances of objects in the image.

Bayes nets in general do not have that feature, but it can be augmented in the model.

Instead they are more �exible to model the scene content, i.e. the hierarchy of objects

and object-parts and their spatial context. Examples for these spatial terms in a Bayesian

net are found in L. Fei-Fei et al. [2004]; Niebles and Li Fei-Fei [2007]; Weber et al. [2000b]

or Cao and Li Fei-Fei [2007]. Also factor graphs as a generalization of graphical models

are used for scene interpretation, e.g. in Yang [2011].

2.4 Prior knowledge

The result of a recognition and image interpretation can be enhanced by prior knowledge

about the object or scene which is not hard coded in the model. This may be the

position, posture or number of objects. There are multiple ways how to integrate such a

prior knowledge. In K. Murphy, A. Torralba, Eaton, et al. [2005]; Oliva and A. Torralba

[2001] the authors introduce the GIST, a low dimensional abstraction of the image which

is calculated by a pricipal component analysis over the pixel domain. This is used in

K. Murphy, A. Torralba, and Freeman [2003]; A. B. Torralba et al. [2003] to initialize

the scene interpretation with prior knowledge and steer the interpretation in this way. In
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Oliva, A. B. Torralba, et al. [2003] this method is used to introduce a top down control of

visual attention. The GIST provides in this context a saliency map where to look �rst in

the image. Also in M. Kumar et al. [2005] there is a very basic segmentation introduced

as prior knowledge into an HMM for labeling the image and infer the segmentation.

L.-J. Li and Li Fei-Fei [2007] show that the scene type interacts with the object detec-

tion but can also be inferred from this. Other approaches like Vogel and Schiele [2004] or

Schröder-Brzosniowsky [1999] use a very small image scale to get a scene categorization.

This can be used to in�uence the object detection or interpretation.

Additional sensor data is also used to improve the results of scene interpretation

tasks. In a classical way, the height information given by radar or a general digital

elevation model Dissard et al. [1997]; Rottensteiner [2003] can be introduced to improve

the inference. In the recent years th availability of point clouds coming from dense image

matching or LIDAR are taken to detect also the 3D structure of scenes Zia et al. [2013]

and buildings Nguatem et al. [2013].
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Chapter 3

Theoretical basis

3.1 Notation

Throughout the text we will use the following notation:

x random variable or its corresponding node in the Bayes net

x set of random variables or nodes

P (x) probability of x

p(x) probability density of x

Ep(·)(x) Expectation of x regarding p(·)
pa(xi) the set of parents nodes of xi

ch(xi) the set of children nodes of xi

O set of indices

M the model, i.e. the graph structure

D set of data

T set of test data

Θ a vector of probability densities

x⊥y two independent probabilty densities

3.2 Probability theory

The data that is produced by the feature extraction step results in a set of data of

the general form D = {x1, . . . , xn}, where the xi are vectors of observations. We use

statistical methods to derive conclusions on the nature of the underlying process that

produced these observations as well as the expected values for some future events. The

probability model for our interpretation is a multidimensional probability distribution
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Name Probability Density cpd

Beta p(x) = Beta(x | α, β) = Γ(α+β)
Γ(α)Γβ x

α−1 (1− x)β−1

Binomial p(x) = Bin(k | p, n) =
(n
k
)
pk (1− p)n−k Beta

Multinomial p(x) = Multi(x | µ) =
∏K
k=1 µ

xk
k Dirichlet

Poisson p(x) = Poiss(x | λ) = e−λ λ
x

x! Gamma

Gaussian p(x) = N (x | µ, σ) = 1
σ
√

2π
exp−1

2

(x−µ
σ

)2
Gaussian

Figure 3.1: Probability distributions with their parameters and the conjugate prior dis-
tributions (cpd).

that we �rst estimate out of the data and later use for inference of evidence. All derived

statistical conclusions are conditional to this assumed probability model.

We use the Bayesian statistics in a sense that we use conventional probability theory

in the context of the axiomatic introduction by Kolmogorov and the interpretation of

Bayes rule for inferencing.

The classical de�nition of the probability P for the discrete random variable Xi to

yield a speci�c result xi is denoted as

P (xi) = P (Xi = xi)

.

3.3 Bayes nets

A graphical model is a probabilistic model that factorizes according to an underlying

graph. As such graphical models are a graphical representation of a joint distribution

over a large number of random variables by a product of local functions that each depends

on a small number of variables.

Graphical models describe conditional independencies of the random variables in a

graphical scheme. This graphical scheme can be used to visualize the structure and

reduce the computational complexity of inference in the model. According to the graph

and the formulation of the local factors, we can distinguish between Bayes nets that are

based on a directed graph and the Markov random �elds with an undirected graph. Both

types can be formulated as a factor graph [Bishop 2006].

The factorization of the joint distribution of the example net shown in Fig. 3.2 can
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Figure 3.2: A small Bayes net modeling four nodes. The nodes x2 and x3 are independent
from each other, as well as x1 and x4.

be written as

P (x1, x2, x3, x4) = P (x4|x3, x2)P (x2|x1)P (x3|x1)P (x1).

The graph structure models the independence of the variables. The Bayes net consists

of the variables x graph structure M and the parameters for steering the probability

distribution Θ.

The preferred graph structure for Bayes nets is a directed acyclic graph, for which an

exact inference solution is possible. In this case the joint distribution factorizes as

P (x1, . . . , xn) =
∏
i

P (xi| pa(xi))

where pa(Xi) denotes the parent nodes of the node xi in the graph.

Often Bayes nets consist of repeating structures. Instead of writing the Bayes net

with all nodes like in Fig. 3.4, the plate writing scheme can create a better overview.

Therefore we write multiple dependencies of similar nodes as a plate and indicate the

number of nodes on that plate (see �g 3.5).

The variables in a graphical model can be of various probability densities (e.g. �g.

3.1). If the parents of a node have other probability densities than the conjugates of the

node, there exists no closed form for the posterior, so inference can only be approximated.

This can be numerically di�cult.
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Noninformative priors

It is an often observed phenomenon that if there is a lot of strong data the model seems

to emerge from the data without help, independent of any prior information. If the data

is weak or there are too few samples, the model becomes highly dependent on the a priori

knowledge in the Bayes net. This behavior will occur if the samples contain not enough

information to reproduce the characteristics of the data. For learning graphical models,

it can happen that the training data is weak or that during an automated model search

the model does not �t the data. In this case, the knowledge that is incorporated in the

a priori distribution prevents an improvement of the results.

To avoid a burning-in of the probability density function by a prior we have to in-

troduce a so called non-informative prior. This enables us to model the knowledge that

there is no knowledge so far. Bishop [2006] gives an introduction of non informative

priors for the Gaussian family. In most cases it is a good approach to model the prior

like a uniform distribution, e.g. to initialize the Gaussian with a very high variance.

3.4 Inference

In a recognition task there are some nodes of the Bayes net that are observed i.e. they

are bound to �xed values that are introduced into the Bayes net. In the graphical

formulation we note these nodes as shaded (see �g 3.3). Given these observations it is

of interest how the probability of the unobserved nodes behave. Therefore we wish to

compute the posterior distributions of the other variables in the net.

a)

b)

c)

d)

Figure 3.3: Two random variables: a) x⊥y, b) joint probability P (x, y) c) conditional
probability P (y|x) and d) P (x|y)

There are many algorithms proposed for inference that can be divided in exact infer-

ence and approximate inference approaches.

In general Bayes net graphs which can have loops, the processing can be complex.

Here we can use the junction tree algorithm, loopy belief propagation [Ihler et al. 2005]

or the generalized belief propagation [Broadway et al. 2000].
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For singly connected networks like trees there are algorithms like message passing

and belief propagation [Pearl 1988], arc reversal or subtree conversion [Lauritzen 1996].

The main idea behind most of the inference algorithms is the scheme of local message

passing. This says that every node sends a message to its parent nodes and children.

The message to the parents consists of the probability of every state of the parents given

the evidence of the observed children nodes ch(x) and the node x itself. The message to

the children is then instead the probability of the node x given the evidence observed in

the parents pa(x). In graphs that do not have loops, e.g. tree structures, this behavior

divides the graph into two half, the parents and the children of node x. The marginal

distribution of a node is then proportional to the product of the messages of the parents,

the message of the children and the probability of the node itself.

P (X|evidence) ∝
[∑

i P (X|pai(X))
∏
j P (pa(Xj)|pa((pa(Xi)))

]
(3.1)∏

k P (chk(X), ch(ch(X)), X)

where the integration has to be done over the complete parameter space of node X. Often

the path of in�uence of the message passing can be limited due to d-separation [Buntine

1994], but in general the problem of exact inference is NP-complete [Heckerman et al.

1995].

To reduce the computational load the inference can be approximated like Monte

Carlo Markov Chain methods [Pradhan and Dagum 1996] or variational Bayes inference

[Jordan et al. 1999; Winn et al. 2005]. An approximation that combines the simplicity of

message passing with the variational Bayes inference is the variational message passing

algorithm [Winn et al. 2005]. The inference and learning of graphical models is the topic

of many approaches. Lauritzen [1996], Zoubin Ghahramani [1997], Kevin P. Murphy

[2001] as well as Almuallim and Dietterich [1991] solve the problem to receive many not

relevant observations that disturb the learning by using PAC-Algorithms Valiant [2013].

This is done by evaluating the bias and introduces this as a penalty term into the learning

algorithm to avoid over �tting.

3.4.1 Plate writing

In Bayes nets there often exist repeating structures like depicted in �g. 3.4. To shorten

this, another writing is introduced: the plate writing. With this, the net in �g. 3.5 is

equivalent to the models before. The rounded rectangle with a number or variable in the

lower corner represents the repetition of the contained structure of the net.
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Figure 3.4: Repeated structures in Bayes nets

Figure 3.5: The plate writing. the nets are equivalent to the ones in Fig.3.4.

28



3.5. LEARNING

3.5 Learning

A graphical model contains the following types of information that must be provided

to allow for direct inference or drawing samples: The graph structure, the types of

the probability densities and their parameters. It is cumbersome or even impossible to

manually specify the structure of the probabilities in real world situations. Therefore it

is prefereable to learn these.

When we think in the Bayesian way, parameters can be modeled like new random

variables. In this case, learning the parameters can be treated like the inference of hidden

variables. In the non Bayesian thinking we carry out a point estimation of the parameters

using a maximum likelihood or a maximum a posteriori search. Thus we can use the

same algorithms of exact or approximate inference to learn the parameters in the fully

observed case.

In the easiest case we have given the structure of the Bayes net and we can observe

all random variables. In this case learning the Bayes net reduces to counting the states

(for discrete variables) or integrating over the random vairables.

If it is not possible to observe all of the nodes during the learning step or the graph

structure is unknown, the learning procedure becomes more complex because we have to

integrate over unknown nodes. There are the following cases:

3.5.1 Learning parameters with unobserved data

In the case that the observations are not contained in the dataset or nodes are not

observable at all like mixing variables we model these as hidden variables in the Bayes

net. In the case of hidden variables, the decomposition like in 3.3 fails. Given an observed

node Y and a hidden node X we get

L(θ) = log P (d|θ) = log
∑
X

P (Y,X|θ) (3.2)

for discrete variables.

We can solve this by using an EM-algorithm as follows: Introducing an arbitrary
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distribution for the unobserved node X ∼ Q(X) we can derive a lower bound for L:

log
∑
X

P (X,Y |θ) = log
∑
X

Q(X)
P (X,Y |θ)
Q(X)

(3.3)

≥
∑
X

Q(X) log
P (X,Y |θ)
Q(X)

(3.4)

=
∑
X

Q(X)log P (X,Y |θ)−
∑
X

Q(X) log Q(X) (3.5)

=
∑
X

I(X,Y )−
∑
X

H(X) (3.6)

= F(Q, θ) (3.7)

where 3.4 follows from the Jensen-inequality. I(X,Y |θ) denotes the mutual entropy of

the distributions P and Q, H(X) the entropy of the distribution Q in X. F(Q, θ) can be

interpreted in physics as the free energy. We can now use the expectation-maximization

algorithm (EM-algorithm) [Dempster et al. 1976] to maximize F with respect to Q and

θ.

1) Expectation step: Qk+1 ← argmaxQF(Q, θk)

For the maximization of the lower bound we get

Q(X) = P (X,Y |θk).

2) Maximisation step: θk+1 ← argmaxθ F(Qk+1, θ)

So we get

Qθk+1
=
∑
h

P (X|Dh, θk)log P (X,Dh|θk+1).

3.5.2 Learning structure with complete data

An insu�cient modeled dependency can not be compensated by tuning of the parameters.

Each additional arc leads to higher complexity and eventually to an over �tting; each

missing dependency leads to de�cits for modeling the data.

In the case we have given some nodes without knowing their interdependencies but

with a fully observed dataset, we can continue a search over the space of models M.

With the given data we can integrate out the dependency of the parameters θ and get

P (M|D) =

∫
P (D|θ,M)P (θ|M)dθP (M)

P (D)
(3.8)
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to �nd the best �tting structure. If there is any prior knowledge about a preferred

structure we can insert this by providing an informative prior about the set of models

P (M).

The search space over the model space is super exponential in the number of nodes

so it becomes quickly very large. It is not easy to �nd an adequate search strategy for

introducing arcs. There can be a local search strategy with a gradient ascent or a global

search like simulated annealing.

Another assumption concerns the evaluation of the net structure. Here we have to

de�ne how to prefer one structure over the other. The maximum likelihood estimation

can not be used to evaluate the best modelMML. Because the insertion of an additional

dependency between two nodes leads to a higher scoring, the search would tend to insert

as many arcs as possible, leading to a fully connected Bayes net. The result would be an

over-�tted network.

To avoid this we can use a prior on the model P (M) that is more probable for

simpler models. Since such a prior is di�cult to formulate, we can approximate this

behavior. The solution here is to insert a term that punishes the increase of the network

complexity. We use a scoring function that acts equivalently to a Minimum Description

Length criterion. Therefore we can use the Bayesian Information Criterion (BIC) or the

Akaike Information Criterion (AIC).

BIC : logP (G|D) ≈ logP (D|G, θ̂ML)︸ ︷︷ ︸
A

−d
2

logN︸ ︷︷ ︸
B

(3.9)

AIC : logP (G|D) ≈ logP (D|G, θ̂ML)︸ ︷︷ ︸
A

−d︸︷︷︸
B

(3.10)

Here we compare the increasing posteriori probability (A) with the punishing term for

the net complexity (B), where d denotes the number of parameters and N the number of

samples. The maximum likelihood estimation of the parameters is denoted as θ̂. Instead

of the likelihood we estimate a maximal score by using the EM-algorithm.

The scoring functions have another useful property: They decompose according to

the net structure. For the Bayesian Information Criterion we could formulate this as

BIC(G|D) =
∑

iBIC(Xi|PaGXi ,D). As a consequence, we do not need to recompute the

score for large networks for every local modi�cation on the graph structure. Instead we

can cache the scores of the unchanged parts and reuse it during the search for an optimal

structure [Koller and Friedman 2009].
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3.5.3 Learning structure with incomplete data

In the case that we have not completely observed data like in the sections before, com-

puting the marginal likelihood is intractable because it is required to sum out the hidden

variables as well as integrate out all the parameters θ

P (Y |G) =
∑
X

∫
θ
P (X,Y |G, θ)P (θ|G). (3.11)

The score here is not easy to compute and the term does not decompose easily into

local terms like the statements above. The search for an optimal structure and its best

parameter set has to be combined in one or another way.

There are two possible approaches for this problem. The �rst is to approximate the

marginal likelihood and link this into a structure search algorithm, the second would be

to use a special scoring function that decomposes.

Friedman et al. [1997] show how to model the search for the best structure as a

Bayesian problem itself. They cut the graph in subgraphs and de�ne a probability

distribution over the existence of these parts. The structure is approximated then by a

MCMC search through the model space, c.f. [P. Green 1995; Richardson and P. J. Green

1997].

Friedman [1997] develops a Structured-EM algorithm (SEM) that combines the struc-

tural search with the parameter search. It extends the EM algorithm to search alternately

for the best �tting structure and then for the best �tting distribution parameters. First

it computes a new set of parameters θi
′
, then it evaluates all the graph structures G′ of

the Bayes net that are "`neighbored"' the actual graph G. The new neighbor graphs G′

are assessed by evaluating the BIC score. The graph with the best score is set as the new

actual graph structure and its parameters are updated in a M-step. Algorithm 1 shows

the pseudo-code after [Friedman 1998].
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Algorithm 1 A pseudo-code for the Structural-EM algorithm. Additional to the expec-
tation and maximization step of the parameters, the graph structure is searched through
and evaluated with a BIC-score. The structure with the best score is then taken as
structure for the next iteration.
1: procedure StructuralEM(G0 as initial Graph, θ0 as initial )
2: i = 0;
3: while not converged do
4: estimate θi

′
. expectation step

5: for all neighbor Gin of Gi do . modify the graph
6: compute θin for new graph . compute also here the Expectation
7: compute sn = BIC-score(Gin) . and compute the cost term
8: end for

9: G∗ := argmaxsn G
n . �nd the best match

10: if BIC − score(G∗) > BIC − score(Gi) then
11: Gi+1 := G∗ . structural M step
12: θi+1 := θ(G∗) . parametric M step
13: else

14: converged := true
15: end if

16: i++;
17: end while

18: end procedure
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Chapter 4

Structure of the hierarchical region

adjacency graph

One key issue for learning is the representation of the image features as input for the

interpretation. It is not e�cient to operate on the pixels themself when we want to detect

objects in the image. This parameter space is high dimensional and due to the heavy

over-parametrization mostly empty. Therefore we use feature extraction algorithms to

code the content of the image more e�ciently.

There is a big variety of di�erent image features that are used in the computer vision

and image processing community. Each of them has its own domain where it is used

in an optimal way. Unfortunately most of the features have only little use if they are

applied out of their original context and with di�erent image conditions like image noise

or illumination changes. Some feature extraction algorithms extract features that are

invariant against several transformations like rotation or scaling, see [D. G. Lowe 2004].

These are very e�cient in some context. There are no super-features that have equal

interpretation under all conditions, so the detection step has to cope with suboptimal

features.

In the work of Fuchs [1998] a consistent framework is presented that addresses point,

line and region like features in a consistent map over an adjacency graph. We used this

framework as prototype for the creation of a feature adjacency graph. The three features

do not partition the image area completely but leave certain pixel unclassi�ed. This is

why we implemented an other partitioning scheme.

The image model that we use in the detection is presented in Förstner [1994]. It

characterizes rigid objects that appear as more or less homogeneous regions that have

a sharp contour line that de�nes its scope. To be able to describe this object model,
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4.1. EXTRACTION OF HOMOGENEOUS REGIONS

Figure 4.1: On the left the maximum stable regions in color space using the �rst part
of the MSER algorithm is shown. The right image shows the extracted and separated
regions. To show the result better, the regions are eroded by 1 px width and regions
smaller than 20px are left out.

we de�ne our adjacency graph as region based. All other features (i.e. lines, shape

information etc.) are then related to the regions. We apply this image model to aerial

images, but it can hold also for terrestrial images if the objects are man-made and

occlusion is low.

4.1 Extraction of homogeneous regions

The algorithm used here is a derivative of the region detector MSER Matas et al. [2002]

that extracts the maximal stable regions in the color space. The regions used here

(see �g. 4.1) are maximum stable regions which are extracted by a watershed algorithm

running on the squared gradient of the image. Here only one threshold is used to separate

lines and regions thus the regions are separated by lines of one pixel width. The region

detector gives a partition of the image, but tends to over-segment the scene. Especially

in vegetation areas it has some problems. The extracted regions are listed in the regions

set R = {Ri}.
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4.2. EXTRACTION OF LINES AND POINTS

Figure 4.2: The image on the left shows the region boundaries of the extracted regions.
Out of these edge-chains, the straight lines (here with a length > 25 pixel) are extracted
(right image). These are stored as feature properties per region in the feature adjacency
graph.

4.2 Extraction of lines and points

In this work, the boundary regions of the region extraction described above are not taken

as edges. Even if the region detector has detected two regions, it can happen, that the

di�erence is that small that there is no edge between the regions. Therefore we use an

extra edge detection that follows the boundaries of the extracted regions.

The binary pixel results boundary operator are lined up to edges and are strati�ed

by a Peucker algorithm [Douglas and Peucker 1973] to remove jitters and disturbing

e�ects. The result is a net of lines, connected over junctions. This is �tted later in the

feature adjacency graph (see 4.4) by attaching them to the corresponding regions. The

set Lr = {Lj} contains all extracted lines for the Region r. The boundary lines that

are between two regions are introduced separately for each region into the bayes net as

independent observations.

4.3 Features over scale

The motivation for the use of scale spaces is the fact that most real-world objects exist

only on a certain range of scale. The use of di�erent levels of scale is well known in

cartography. The making of maps makes heavy use of the knowledge of scale spaces.

There are di�erent approaches to create scale spaces. The most common is the Gaus-
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4.3. FEATURES OVER SCALE

sian scale space where a Gaussian kernel is used to smooth the data iteratively Lindeberg

[1990]. Other approaches use morphological �lter sets, or, to de�ne the problem on multi

channel data, a minimum-maximum �lter, cf. see Mayer [2000], Bangham et al. [1999]

or Harvey et al. [1997]. Additionally there are continuous problem approaches which are

solved by e. g. using di�usion equations Clarenz et al. [2004]. We will use the Gaussian

scale space for this work.

In this context we use the scale space to examine scale space events for those regions,

i.e. the merging of regions. In contrast to other work on scale space events our interest

is not only the change that the event creates. Here the emphasis is on the stability of

the existence of regions between the events. The stability of manmade objects in aerial

images has been investigated by Drauschke et al. [2006]. The result of this work is that

manmade objects have a longer existence over the scales than natural features.

For creating the scale space we follow the approach of [Crowley et al. 2003]. Therefore

a Gaussian scale space is introduced. The pyramid levels are de�ned by

gc(x, y, σ) = gc(x, y) ∗ 1

2πσ
e−

(x2+y2)
2σ (4.1)

where gc denotes the color information of each pixel and ∗ denotes the convolution. The
scale space is discretely sampled at ten levels λ = 1, . . . , 10. To spread the levels equally,

the Gaussian smoothing is done with σ = 2λ−1.

The lifespan of a region that we observe is de�ned as the maximum number of scales

under which the region does not vary. Thus the segmentation provides a complete par-

tition of the image
⋃
lRegionl,σ where l is the number of the region, so there are no

overlapping regions inside one scale. A region is labeled to be stable if there is no merg-

ing of regions. Figure 4.3 shows the situation for regions and their boundaries. The

chosen scale space creates not exact merging: due to the Gaussian �ltering and the sub-

sequent region extraction the boundary lines can move slightly without a complete merge.

To overcome this, we approximate the scheme of 4.3. The stable regions are extracted by

comparing two regions in adjacent octaves. If the non overlapping part is smaller than a

threshold, the region is marked as stable:

Vσi,σj ∈ [σi, σj ] : |R(l, σi) \R(j, σj)| < ts (4.2)

The threshold is set to 5% of the merged region size. We do extract only the �rst region

in the scale dimension, that reaches the stability criterion, since we want to stay in the

over segmentation concerning the objects. Figure 4.5 shows the life span of the �rst 160
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4.4. EXTRACTION OF THE FEATURE ADJACENCY GRAPH

Figure 4.3: Schema of the scale space over 7 octaves. The periods between the merging
events in scale space are periods of stability. These can be extracted for lines (dotted)
and regions.

regions shown in �gure 4.4.

4.4 Extraction of the feature adjacency graph

For the detection of objects it is necessary to know not only the shape of the examined

object itself but also to know about its neighbors because a signi�cant part of the infor-

mation is provided by the context of an object. Therefore an adjacency graph is created

that incorporates all the extracted features as nodes. The attributed graph G is de�ned

as

G = (V ,E , f, g) (4.3)

where the vertices V are the features and the edges E represent the neighborhood of the

features. Both, the vertices V and edges E are attributed: f(vi) and g(ei). The vertices

contain an attribute vector with observations that are made per image region. The edges

contain information about the adjacency measure and symmetry.

The adjacency of the regions is found by using an exoskeleton around each region like

proposed in [Fuchs 1998]. Due to the di�erent image partition algorithm, in general we

have a complete partition of the image. In this case, we would only need to follow the

edges that divide the regions to �nd the neighbored regions. Due to the over-segmentation

of the image partition there exist many small regions. They appear often along weak

edges, for example illumination changes. If we take the directly neighbored regions into

the adjacency graph only, irrelevant neighborhood information would drop the evidence in

the learning step. Deleting these small regions has the di�culty to de�ne an appropriate

threshold for the size without canceling useful regions like e.g. roof windows. Small but

elongated regions can be of signi�cant size.
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σ1 σ2

σ3 σ4

σ5 σ6

σ7 σ8

σ9 σ10

Figure 4.4: The region extraction algorithm on a Gaussian scale space.
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Figure 4.5: The lifespan of the �st 160 regions of the scene in �g. 4.4

Figure 4.6: De�nition of the adjacent regions R1 and R2 with a bu�er. The distance d
between the features is determined via a exoskeleton, the maximal distance is the size of
the bu�er dBuffer. The inner region on the left has only one neighbor, the outer region
has a special attribute for the child region.
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4.4. EXTRACTION OF THE FEATURE ADJACENCY GRAPH

Figure 4.7: The region adjacency graph. The lines between the region denote the adja-
cency in the graph. Each of these lines has a parameter vector attached, representing
the neighbor observations. The end points of the lines in the �gure are representative
points of their regions.

The goal is to identify every region as adjacent that is contained in a bu�er region

around the examined region, i.e. the distance to the examined region is below a threshold,

like shown in �g. 4.6. The maximum bu�er width is set to dmax = 1, 8[m]. The regions

that are directly neighbored are addressed as �st-order neighbors later, the regions inside

the bu�er are second-order neighbors in turn.

We do not extend the adjacency graph over the scale space. This would result in a

three dimensional graph. Using this graph as observations in the Bayes net is very com-

plex. In experiments there was no signi�cant increase of the performance with including

the scale space information other than the stable lifespan of an object. This is why we

implemented the information about the stability as a region observation.

On top of the region adjacency we build a layer that represents all possible cliques of

the adjacent regions. This is a preprocessing step for searching the optimal con�guration

of regions for the observation in the Bayes net. Every clique that can be built out of the

adjacent regions is inserted as vetex connected with its region vertices. An edge between

the clique vertices is inserted, if the cliques have adjacent but no overlapping regions.
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Feature Name

FR1 Color L
FR2 Color a
FR3 Color b
FR4 Length of boundary
FR5 Size
FR6 Roundness
FR7 Compactness
FR8 2. Moment
FR9 3. Moment
FR10 4. Moment
FR11 Number of Lines
FR12 Number of parallel Lines
FR13 Number of orthogonal Lines
FR14 Number of symmetric Lines
FR15 Number of Neighbors
FR16 Number of equal sized neighbors
FR17 Number of contained neighbors

Table 4.1: List of the used features that are extracted per region in the image processing
part.

4.5 Representation of a region

The feature extraction process is region centered. That means that all features and

properties are related to the regions.

The �rst ten features are modeled as continuous variables (Fig. 4.1). For the intro-

duction in the Bayes net we used a quantization table to �t these in the Multinomial

distributions. For the color we chose the Lab color space to enable a better clustering

in the color space. The length of the outline can be directly observed by counting the

boundary pixels. A coding scheme for the boundary length in an eight-pixel neighbor-

hood according to [Jähne 1989] is used. Also the size is easy to extract. The roundness is

de�ned as R ≈ 4F
πD2 where F is the size and D the maximal diameter. The compactness is

C ≈ U2

F , with U representing the outline. The second moment de�nes the elongation, the

third moment the skewness of the region and the fourth moment de�nes the centrality

of the mass. The second and higher moments refer to the major axis of the region.

The eleventh to the 17th feature are modeled as discrete variables. The number of

lines and neighbors is small and represents counts in natural numbers that are easier to

model with discrete bins in a multinomial distribution. Therefore the number of lines
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4.5. REPRESENTATION OF A REGION

Figure 4.8: This �gure explains how the observations of parallel, orthogonal and sym-
metric lines are done. On the left there are examples for the observations that are done
per region on a typical roof layout (hip roof). On the right observations between two
adjacent regions are extracted on the same region con�guration.

is limited to (0 . . . 10). For the number of lines we count the strati�ed lines that come

out of the Peucker algorithm. According to the �lter in the feature extraction step, we

omit lines shorter than 25 px. Next, it is checked how many of the lines of the above

set are parallel and orthogonal. For symmetry we check that two lines have the same

angle with respect to a third line, i.e. the angles have to be equal and the lines have to

be connected with a common third line. The con�guration is shown in �gure 4.8. The

angles are allowed to vary ±3 degree.

The features FR15, FR16 and FR17 are extracted out of the feature adjacency graph.

The number of neighbors is �ltered for size. Those which are of the same size ±10% are

counted for FR16. The special case of neighbors is the contained neighbor. This appears

e.g. if there are windows in the roof or cars on the street. These are counted separately

in FR17.
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Figure 4.9: Di�erent cliques with increasing number of vertices. Higher ordered cliques
do not appear in the planar region graph.

Figure 4.10: A Graph with 9 one-cliques (the vertices), 13 two-cliques (the edges), two
3-cliques (blue) and a 4-clique (red).

4.6 Representation of a neighbor relation

As mentioned before also the edges of the adjacency graph are attributed. The attributes

of the neighbor relations are also listed in a vector and contain symmetry information of

the regions. The following features are extracted out of the graph:

Features

FN1 Number of parallel Lines

FN2 Number of orthogonal Lines

FN3 Number of symmetric Lines

FN4 Distance

FN5 Merging

The number of orthogonal and parallel lines is extracted in a similar way like inside the

region. The symmetry has to be with respect to a shared line between the two regions

like shown in �g. 4.8.

The distance (feature FN4) denotes the minimum distance between the two regions.

The merging feature (FN5) represents the scale step from which on the two regions merge.

4.7 Representation of cliques and their adjacency

As a preprocessing step for traversing through every possible combination of cliques

we create a layer of vertices on top of the region adjacency graph. Here we create for

every clique we instanciate a vertex connected with the connected regions. All pairs of
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Figure 4.11: The layout of the hierarchic feature graph. The lines represent the a�liation
of the image feature regions to the cliques. The dottet lines show adjacency information
in the image domain.

clique vertices, that have assigned non overlapping but adjacent regions are connected

with a connection marking this neighborhood. This helps to quickly traverse the graph

later. For �nding combinations of cliques for the object node in the interpretation step

(section 5.6 it is necessary to check that also objects with more than two cliques have no

overlapping regions assigned to avoid double observations in the Bayes net.

4.8 Conclusion

We have shown in this chapter how we extract certain image features out of the given

image. We introduce an attributed feature graph that stores these image features. This

graph is parsed in the next chapters and its data is used as observation for the Bayes

net.
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Chapter 5

Model of the Bayes net and

processing

After the extraction of the region graph and its features, the next step is the interpretation

of this data. The goal is to obtain an interpretation for every region in the image that

aligns with the proposed image model (Chapter 4). To do this we will use a Bayes net

due to the motivation above. In the following chapter we will explain the design of the

Bayes net that is able to handle the extracted image description.

In the previous chapter we have handled the two dimensions of the image plane and

the third dimension of the scale space. Now there is one more dimension to handle with:

the semantic ontology.

Our detection method works in a certain small band of spatial resolution. The lower

bound of scale of the objects to detect is physically restricted by the image resolution.

The upper bound is de�ned by the search for the stable regions in scale space. It is not

the goal to get higher semantic aggregations of objects, e. g. building blocks or the street

network. Instead we will use a scene node on top of the Bayes net which represents the

type of the whole scene.

5.1 Observing spatial relations with the Bayes net

The concept of Bayes nets is a pure statistical concept in which we need to implement

knowledge about the spatial relations of real world objects as well as the relations of

their image regions. The spatial relations are introduced implicitly over the region graph

and its region cliques. We take the region graph and examine every region together with

its relations to neighbor regions. According to our image model, real world objects in
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images consist of one or several image regions that have spatial relations to each other.

The Bayes net is not aware of spatial relations. We have to introduce groups of regions

for examination. This is done by introducing the cliques of regions in the region graph.

Cliques in the planar region graph are restricted in their size. That is why each object

in the model consists of one or more region cliques.

The image object, i.e. the real world object projected to the image, exists not alone

in the image domain. It is embedded in a planar object graph similar to the one on the

region level. The graph edges can be equipped with weights that formulate the statistical

evidence of existence of an object given its neighbor image objects. Other researchers

use a Markov Random Field at this point (e.g. [Meidow 2000]). A major problem for the

formulation as a Markov Random Field is the normalization of the nodes with an a priori

not known and irregular shaped graph structure. Because of this we keep the structure

of the Bayes net to model the dependencies between image object nodes. Therefore

we introduce a dependent node for every object in the object domain. In this way we

model the statistical dependencies of objects in the context of neighbored objects without

explicitly introducing spatial relations on the object level. Using this model, we have one

Bayes net per object in the image.

5.2 The structure of the Bayes net

The initial model introduces four di�erent levels of nodes like shown in plate writing

in �gure 5.1. The type and interpretation of nodes will be explained in the following

section.

5.2.1 The scene node

The scene node on the top level of the net models the type of the scene in the underlying

image. The scene node is a discrete node. Its cardinality depends on the scene types that

are introduced. For the case of aerial images these are urban area, suburban area and

rural area. For other than middle European airborne imagery other scene types can be

introduced. The Bayes node is represented by a multinomial distribution. It is initialized

by its prior distribution node Σ that has been noted at the left using a dotted square to

show the nature of prior information. The node in the �gure is shaded because the node

is observed in the learning step.
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Figure 5.1: The generative model in plate writing. The dark shaded nodes are observed
in the detection and the learning step. The light gray shaded nodes are observed during
the learning step. The unobserved nodes are not shaded. The nodes at the left denote
the prior distributions.
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Figure 5.2: The scheme of detection visualized in 2D. The Bayes net is instantiated on
top of the planar feature adjacency graph. It uses observations per region and also of
the neighbor structure. The objects refer to a dynamic number of cliques and regions.

5.2.2 The object node

A scene can contain many objects, each represented by an object node that is dependent

on the scene type node. This node is represented by a discrete random variable Oo for

the objects o = 1 . . . O. The random variable is chosen as a multinomial distribution

to model the discrete states of the node, i.e. the object type. Its prior is modeled as

dirichlet distribution Ω. The object node is shaded because it is observed in the ground

truth database within the learning process. The instances of the object types depend on

the data we learn. Examples for the object types are listed in the next chapter.

The object nodes have a strong interdependency with their neighbor objects, therefore

they have one or more dependency links to neighbor nodes N . This node is an object

node itself when it is in focus. The dependence to the neighbored objects is in general

undirected. The directed arc and with it the dependent modeling is chosen to keep

the net structure in a tree structure that has computationally advantages like explained

above.

5.2.3 The clique node

Each of the objects decomposes in one or more cliques that are represented by a clique

node Cc. This represents a clique of adjacent image patches that is embedded in the

feature graph. The maximum number of cliques is determined in the learning step. This

number determines the maximum complexity of buildings for the interpretation step.
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The clique node is again a discrete random variable instantiating an inherent vocabu-

lary of clique types. The cardinality of the node is �xed to �ve (4 for the clique types and

one for the state "not existent"). Due to its discreteness the distribution is multinomial.

The initialization is a prior distribution that is a Dirichlet distribution Γ.

The modeled cliques range from a one-clique to a four-clique. To avoid getting a

di�erent net structure of the Bayes net for the di�erent numbers of dependent regions

in the case of di�erent cliques, we model the Bayes net to have always four regions per

clique. The region nodes are ordered from one to four. When we have observations of

regions, these are introduced starting with node number one.

5.2.4 The region node

As mentioned, the clique node contains one to four region nodes R. These represent

the extracted homogeneous regions in the region graph. The regions are shown in white

because they are not observed in the region extraction process for the learning step. The

names for the regions are found as "visual words" during the learning step. The region

nodes are initialized according to their prior distribution ρ.

5.2.5 The feature nodes

As the lowest level there is the level of feature observations. These features are repre-

sented by feature nodes Fi with i ∈ 1..17 for the region features and with i ∈ 18..21 for

the clique features respectively. The number of features is �xed and given by the feature

extraction part of the system. In our feature extraction we have modeled 17 region fea-

tures and six di�erent observations for the cliques. The type of extracted features are

explained in chapter 4. The features are modeled by di�erent distributions with respect

to their di�erent parameter spaces. The variables of the Bayes net are modeled also as

discrete distributions. For �oat values we use a quantization to introduce them to the

discrete classes. All prior distributions are modeled as vectors of parameters. The size

of the vectors is given in bold face letters in the squares of the prior node and is set to

the cardinality of the parent node.

5.3 Sampling the net

The model is easy to understand if we examine how it can be used to generate a synthetic

dataset by sampling the Bayes net. Therefore we start at the top node and follow the

causal dependences:
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• The scene node represents the category of the image scene. By drawing this vari-

able, its outcome will decide about the change of all dependent nodes. The variables

distribution is

S ∼ Multin(S | Σ) (5.1)

with the prior distribution Σ.

• Given the scene type we generate objects. The number of objects per scene is

not modeled, so the model cannot give any information at this stage for generating

synthetic objects. The information about the objects geometry is generated further

down in the feature nodes. This de�ciency is discussed later in chapter 7. The

objects are generated until the scene is �lled with objects. The object node is

chosen according to

O ∼ Multin(O | S,ΩS) (5.2)

where the distribution of S is chosen according to the scene category and the

neighbor node types.

• The dependence of the neighbor nodes N has to be considered in the following

objects. The dependency on the neighbor objects is given in both ways. The

neighbor nodes are again object nodes that represent objects which are adjacent

in the scene to the surveyed one. For sampling the net we do not have to draw

samples from the neighbor node. It is represented by the other (neighbored) object

nodes.

• The clique node depends only on the object type and can be generated according

to

C ∼ Multin(C | O,ΓC). (5.3)

The number of cliques is unknown in the beginning. We instantiate all four clique

nodes. In the case that we sample the clique type "`not existent"' we stop to sample

further down the tree.

• The region is chosen according to

R ∼ Multin(P | C, ρP ) (5.4)

• On the lowest level the feature nodes are used to generate values for the image
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features. These feature nodes represent the features listed in 4.1.

F i ∼ Multin(Fi | R,φi) (5.5)

This is equivalently done with the feature nodes under the clique node representing

the relations between the regions F c.

5.4 Joint distribution and priors

According to the model, the Bayes net is organized in a tree form and is modeled only with

discrete random variables. This is the most e�ective form for learning and inference in a

Bayes net. The whole Bayes net models a joint distribution P (S,O,C,R, F | Σ,Ω,Γ, ρ, φ)

that factorizes in form of

P (S,Om, Cn, Rl, Fi | Σ,Ω,Γ, ρ, φ) =P (Σ)P (S | Σ)(∑
O

P (ΩS)P (O | ΩS)
∑
N

P (N | O)(∑
C

P (ΓO)P (C | O,ΓO)P (FC | C)(∑
R

P (ρ)P (R | C, ρ)P (φ)P (FR | R,φ)

)))
(5.6)

5.5 Learning method

After de�ning the general layout of the Bayes net, we can now begin to determine the

two parts that are not �xed in the Bayes net yet: the probability distribution and the

structure of the net in the clique and region nodes.

If every node would be annotated, the learning task in Bayes nets would reduce to

counting the cases. In the detection problem that is presented here, the problem of

learning is more complex. We have two issues based on the kind of observations that we

have to handle while learning the Bayes net.

First we do not have fully observed data because it happens that the feature extraction

is not able to extract every region correctly. This case can occur due to occlusions, image

distortions or just a wrong modeled image noise and leads to missing or wrong regions

in the region adjacency graph. The low level features that are attached to the regions,
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i.e. the observations per region, are complete.

Second, the labels for the region and clique nodes are not given a priori. Also these

nodes are not observed. The region and clique nodes are not contained in the dataset

that is provided for learning, so we do not know the instances and the number of their

labels. It is a task of the learning algorithm to create labels. This is modeled as a visual

words vocabulary and leads to an unknown cardinality of the discrete distribution of the

region node. This unknown cardinality is equivalent to an unknown structure with the

restriction that we know where the dependencies in the Bayes net are.

We are using the Structural EM-algorithm according to section 3.5 for the learning

step. In each iteration not only the parameters but also the graph of the Bayes net is

changed to �nd an optimal set. The change of the graph in our case means changing

the number of clique and region nodes. With that we can create labels of the clique and

region nodes. The introduction of new nodes (i.e. new labels) increases the acceptance

of the net, so the algorithm tends to introduce as many nodes as possible, leading to an

over�tting of the model. To avoid this over�tting in this estimation, we use a BIC-term

for punishing the creation of new states.

The learning is carried out on every object O ∈ O in the groundtruth dataset. Ground

truth is provided in form of annotated images of an image database. The annotated image

database is kept in format of the LabelMe-Database [Russell et al. 2005] of the MIT-

group. The annotation consists of simple polygons for the objects with no relation given

between the di�erent items. The annotation polygons are taken around the objects that

the borders are kept inside the polygons. There is no given ontology inside the LabelMe

toolbox. This was provided in form of an acquisition rule in which de�nes the order of

the object and its name. The annotation was then picked by hand by operators using a

tool shown in �gure 5.3.

Misinterpretations of the image and the acquisition rules must be considered by using

this data, so the training data set is not error free.

In the aerial database there are image parts that are cut out of aerial images. The

images belong to four di�erent �ights that are explained in the next chapter. Because

of the size of aerial images and the memory limitations in MATLAB the images are cut

into tiles of 1000 by 1000 pixels. The cutting was done without measuring the distance

and orientation to the nadir point, so the information that would be useful for calculating

the radial distortion was lost.

Since the automatic feature extraction of image regions di�ers from the human ex-

traction of the ground truth data set, we have to handle these di�erences. The existence

of a region is introduced by comparing the extracted regions with those polygons stored
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Figure 5.3: The GUI for classi�cation of the groundtruth data. In this screenshot �ve
objects are captured: two pools, a saddleback roof, a �at roof and a not categorized roof.

in the ground truth database. By thresholding the overlap of the segmented region with

the polygon consensus is found. Here we introduced an overlap of minimum 75% of

the region area for a hit. If an automatically extracted region overlaps less, it will be

discarded.

5.6 Interpretation method

The goal of the detection is to label each region according to its object type and thus

to interpret the scene. In the detection step the Bayes net including the structure and

the parameters for steering the probabilities are given. The feature extraction supplies

the algorithm with the hierarchical region graph that is used to introduce the feature

observations. We search for any constellation that maximizes the probability for the

observed features p(F | M,Θ) over the whole scene.

We start with creating nodes for all regions that are found in the image feature
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extraction part. For every region we introduce the observed features nodes for all image

features of the region as described in the last chapter. The task is now to �nd the optimal

combination of regions to infer the most probable clique and object nodes. So we take

recombinations of the region nodes to build a Bayes net on top of them with the type

of net topology we have learned in the learning step before. For the clique nodes we

have to search for adjacent image regions that form a clique; for the object nodes, we

search then for adjacent clique nodes. For this search we can use again the hierarchical

image feature graph we have presented in chapter 4. On top of the graph vertices that

represent the regions, we have built a layer where every possible clique combination is

represented. Between these vertices we have introduced an edge as adjacency information

that shows if two cliques have adjacent but no overlapping regions. This information we

use to iterate through the possible con�gurations for observations in the Bayes net. We

implement and connect the clique nodes according to the vertices in the clique layer and

do the same with the object nodes. For them the adjacency link of the clique vertices

is important, but it is necessary to check for double observations of regions for objects

with more than two regions.

When we model the assignment of the observed features to a Bayes net as a, we

search for

a′ = argmax
a

P (F | M,Θ, a).

As we have seen above, the search space for a is restricted due to the region graph. We

can only introduce observations of regions, cliques and objects to a Bayes net that are

implemented in the feature adjacency graph.

We use the message passing inference algorithm according to Kevin P Murphy [2012]

to propagate the knowledge to the upper nodes of the net. The propagation cannot be

done straight forward. The object nodes depend on their neighbor nodes. That means

we have to iterate The labeling is done by evaluating the MAP estimation throughout

all levels of the Bayes net.

5.7 Conclusion

In this chapter we introduced the structure of a Bayes net which can be used to observe

spatial relations in the extracted image feature graph. We have shown the details of the

net concerning the interpretation of the nodes of the Bayes net and their distributions

and priors. Also we have shown how this Bayes net can be learned by feeding training

data to it and how to to interpret aerial images with this prelearned knowledge base.
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Chapter 6

Experiments and results

In this chapter we will show that the model that we developed in the previous chapters

holds and can be used to learn and interpret real world data. To do this, we will apply

the interpretation to data sets with di�erent properties. Additionally we will provide

several modi�cations to the Bayes net and the interpretation scheme and will look at the

results to explain how the model reacts in detail.

6.1 The ground truth

For all experiments we use four di�erent datasets that were organized like shown in �gure

6.1 to learn and detect objects in images. The datasets that are available are:

Graz-Andritz (GRA) The dataset of Graz-Andritz consists of aerial images that are

taken with a digital aerial multispectral camera in the region around Graz, Austria

(�gure 6.1). Here, only the RGB-spectral parts of visible light are used. The

images contain much vegetation and trees around the buildings. The buildings are

often solitary houses. Row houses and industrial buildings are the minority. All

classical roof forms are available, but the classical and quite complicated roof forms

are common, e.g. the half-hip roof. Also dormers are common on many buildings.

In addition there are many streets, parking lots and cars labeled in these images.

Some houses have swimming pools in their garden that have been labeled as an

extra class. The scene is classi�ed as a rural scene.

Graz-Centrum (GRZ) The Graz-Centrum dataset consists of images of the same

camera like above. The images are taken of down-town Graz. The camera is

slightly defocused, so the image seems to be smoothed at some locations. The
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6.1. THE GROUND TRUTH

Figure 6.1: Typical images from the dataset Graz-Andritz. It shows the landscape around
Graz, which is partly rural, partly suburban.

objects in the images are mostly row houses and streets. The roof types are often

saddle roofs along the streets, but complicated roof types are common with newer

buildings. The roofs are often old and highly textured due to moss and age. This

leads to a heavy over-segmentation.

Vegetation is barely shown; some trees exist in the streets and on squares. Cars

and asphalt are very common, in contrast to the Graz-Andritz dataset streets are

not only elongated structures. Many backyards and squares are used for parking.

There are many specialties like sunshades on the market that have not been labeled

in the ground truth database, so that these will not be known in the detection. The

scene label is denoted as urban scene.

Bonn-Ippendorf (BOI) Ippendorf is a district of Bonn, Germany, that has subur-

ban structures. The images are taken with an analog camera for the purpose of

mapping. The images show a much higher noise and the scale is smaller than the

digital images of Graz. The roof structures are in majority saddle roofs. There are

some larger buildings that have �at roofs and rarely there are solitary houses with

walm-roofs. There are green backyards that are typical for suburban scenes. This

scene is labeled as suburban scene.

Toyonaka (TOY) This dataset shows the down-town area of Toyonaka, Japan. The
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Figure 6.2: Typical images from the dataset Graz Centrum, a dense urban scene of the
down town area of Graz.

Figure 6.3: Typical images from the dataset Bonn-Ippendorf. Ippendorf is a typical
german suburban area with many semi detached buildings and row houses along the
streets, interrupted sometimes by bigger units.
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Figure 6.4: Typical images from the dataset Toyonaka (Japan).

images consist of scenes that are not found in European scenery: The buildings

are very close together and the roof colors are diverse. In contrast to European

roof types, these are quite nested and there exist yellow, red, blue and green colors

for the roof. Next to the small and uniform private buildings exist huge �at top

buildings. The specialty of this set of images is, that these were taken with a

very high overlap between the images. This leads to the fact, that every building

is shown on up to nine images from di�erent perspectives. The illumination of

this dataset is very di�use. There are no real shadows; nearly every detail on the

ground, also between the buildings is visible. Also this dataset has the label urban

scene which can be introduced as observation for the scene node.

These datasets are used for experiments in the following sections. In the aerial

database there are approximately 200 image parts that are cut out of 60 aerial images.

The images belong to four di�erent �ights that are described before. In the database are

approximately 2100 labeled objects containing 1300 buildings of any type.

All datasets are not completely labeled, i.e. there are only salient objects that have

a label. The objects, that are completely incorporated in the datasets are the three

building (roof) types and the streets. The object types car, vegetation, grass, shadow

and pool are only partly labeled. Objects that are truncated at the image border are

not labeled either. This property of the ground truth dataset has to be kept in mind

when evaluating the detection results. This is why there are some results that could be
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Number Types

210 Flat roof building [frb]
465 Saddle roof building [srb]
579 Other roof building [orb]
159 Street area [str]
180 Car [car]
30 Pool [poo]
91 Grass [gra]
199 Vegetation [veg]
258 Shadow [sha]

Table 6.1: The table shows the number of labeled objects contained in the ground truth
database.

interpreted as false positives, which are not.

6.2 Results of the detection

For evaluating the performance of the interpretation, we make several experiments with

di�erent parameter sets and images. First, we like to proove how good the interpretation

task works under standard working conditions, i.e. to interpret scenes of the same type

like learned before. Therefore we divide each of the data sets into two parts: One is used

for learning, the second half is used to evaluate the detection. During the learning step we

create the parameter set for each of the �ve datasets. These are applied to the second half

of each of the data set. The results are shown in �g. 6.5(a) to 6.5(d) as confusion matrices

of the reference classes versus the result classes. The correct classi�cations are shown on

the main diagonal. The o� diagonal elements represent the percentage of classi�cations

that were not correctly identi�ed. The colors of the elements are chosen on a linear

color palette from green (0%) to red (100%) to help the quick visual interpretation of

the results.

In the Graz-Andritz dataset [GRA] 6.5(a) we have strong support for the three build-

ing classes. The misclassi�cations of the buildings are interpreted as one of the other

building classes. Only the saddle roof building class is interpreted in a low percentage

as vegetation and shadow. For the class of the cars it it noticable that they were not

distinguishable enough, so the rejection class was taken in 18% of the cars in the reference

dataset. Other high rejection rates are among the classes of the shadow and the pools.

The shadow is also often (18%) misclassi�ed as vegetation. An explanation for this is,

that the vegetation class and the shadow class point to irregular shaped regions if the
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shadows origin is itself vegetation e.g. a tree. Also the grass regions are misclassi�ed as

vegetation. This shows that the geometric and color observations are not good enough

for a strong interpretation of these classes.

In the dataset of down town area of Graz 6.5(b) we see the same behaviour among

the build classes. The correctness of the class of cars is only at 60%. This could be the

outcome of many objects of similar size, shape and color on the streets of Graz, e.g. the

often occuring sunshades. Forthermore we see a high rejection percetage in the class for

grass. Since in the down town scene there are not many grass labels, this is not enough

to imprint the probability distribution of the grass node of the Bayes net.

The dataset of Bonn 6.5(c) shows a misclassi�cation rate of 31.2% for the class of

other roof buidings as saddle roof building. This happens due to the similarity of some

complex roofs of individual building to the saddle roof class.

The buildings and streets in the Toyonaka dataset 6.5(d) have a very di�erent setup.

Since the roofs are often blue, green or white, we have the proof, that the classi�cation

does not only rely on the color observation. The correctness of the classi�cation is

between 80% and 90% and is compareable to the other datasets. Since there is nealy

no vegetation or grass visible on the images, these classes are not very strong. The

grass regions are labeld as vegetation for 100% and the vegetation regions were only �t

with 50% correctness. The aerial image is taken in a very di�use light, so the shadows

only appear in the narrow space between buildings. This is rejected in a big percentage

(25.7%).

We can observe that the performance is quite equal for each of the data sets. There

are some misclassi�cations among the roof classes, also the grass- and vegetation class

have some de�ciency in selectivity.

As a next step we vary the threshold for the rejection class. If the threshold is set to

Zero, the interpretation is carried out according to the maximum a posteriori estimation.

Every region is labeled according to the maximum (a posteriori) probability. Therefore

no rejection class is possible. With a threshold above zero the rejection class is chosen,

if the distance between the two highest probabilities is below a threshold. This can

happen, if there is a kind of uniform distribution in the probability vector, i.e. multiple

object classes have the same likelihood. We introduce thresholds of 10%, 20%, 30% and

40%. The results are shown in �g. 6.9. We observe that the number of rejected objects

increases from the beginning while the correct interpretation begins to decrease over a

threshold of 20%. Applying the threshold helps to increase the sensitivity since the weak

classi�cations are rejected. Stronger thresholds reject also correct interpretations.

In another experiment we learn the parameters using several data sets and examine
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(a) Confusion Matrix for the dataset Graz-Andritz.

(b) Confusion Matrix for the dataset Graz Zentrum.

(c) Confusion Matrix for the dataset Bonn-Ippendorf.

(d) Confusion Matrix for the dataset Toyonaka.

Figure 6.5: The numbers represent the percentage of the classi�cation. The correct clas-
si�cation is shown on the main diagonal. Every other value represents a misclassi�cation.
The last column represents the rejection class which is applied here with a threshold of
20%.
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(a) Confusion Matrix for the dataset Graz-Andritz.

(b) Confusion Matrix for the dataset Graz Zentrum.

(c) Confusion Matrix for the dataset Bonn-Ippendorf.

(d) Confusion Matrix for the dataset Toyonaka.

Figure 6.6: This �gure shows the again the percentage of the classi�cation like in �g.
6.5. Here, we apply a threshold of 10%.
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the correlation for di�erent data sets. First the two datasets of Graz-Andritz and Graz-

Center, and then the data sets of Granz Andritz, Bonn Ippendorf an Graz Center are

chosen. The result is a slight decrease of correct interpretation (�g. 6.7(a) and 6.7(b)). At

this point we can look also on the interpretation of the scene node. As mentioned before,

we associated the classes rural, suburban and urban with the data sets of Graz-Andritz,

Bonn Ippendorf and Graz-Zentrum. To investigate the sensitivity of the interpretation

with reference to the given label of the scene node. Therefore we intentionally changed

the label. The result is shown in table 6.12 . We preset the scene by introducing the scene

as observation during the interpretation task. This yields nearly the same interpretation

results like the case with subdivided classes with 74% (�g. 6.7(c)) and 78% (�g. 6.7(d)).

In the next modi�cation we investigate the in�uence of the di�erent feature observa-

tions on the interpretation results. Therefore we leave out the color observations and in

a second step the neighbor observations.

Leaving out the color observation in the feature vector results for the GA dataset

mainly in two areas: The misclassi�cations between the classes pool and �at roof increase

signi�cantly as well as the misclassi�cation between vegetation and grass(�g. 6.8(a)). In

these classes, the color observation is an important feature that contributes stronlgy to

the right classi�cation. Leaving out the neighborhood dependencies results in a general

decrease of the performance (�g. 6.8(b)). The main changes here are visible in the car

and the pool class. These bene�t mostly from the neighbor information. Missing this

information the cars are often classi�ed as vegetation or shadow. The pools are also

recognized as �at roof buildings.
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(a) Confusion Matrix for the mixed datasets GRA and
GRZ.

(b) Confusion Matrix for the mixed datasets GRA, GRZ
and BOI.

(c) Confusion Matrix for the same mixed datasets like in
�g. 6.7(a) but with an observed scene type.

(d) Confusion Matrix for the same mixed datasets like in
�g. 6.7(b) but with an observed scene type.

Figure 6.7: The �rst two �gures show the classi�cation results for two sets of images from
di�erent data sources. The detection is carried out like the experiments before. The last
two results show increased values. Here we observed also the scene type of each image,
which has the e�ect of a preset in the Bayes Net.
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(a) The results of the GRA dataset with a 20% rejection.
Here the Bayes net was modi�ed so that the color informa-
tion was not used.

(b) The same dataset. This time we the neighbor-
infomation node of the Bayes net was not used.

Figure 6.8: The �gures show some experiments where the Bayes Net was modi�ed to
show the (missing) in�uence of some observations.
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(a) Results of the region classi�cation for the dataset GRA

(b) Results of the region classi�cation for the dataset GRZ

(c) Results of the region classi�cation for the dataset BOI

(d) Results of the region classi�cation for the dataset TOY

Figure 6.9: The overall results for the four datasets with di�erent acceptance thresholds.
We can observe that increasing the threshold �rst reduces the misclassi�cations. When
we increase further (≥ 20%) also the weak classi�cations, that are accepted as correct,
are rejected.
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Figure 6.10: The object layer of the dataset Graz-Andritz. The image regions are colored
according to the classi�cation result of the corresponding object nodes.
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Figure 6.11: The object-layer of Toyonaka. The image regions are colored according to
the classi�cation result of the corresponding object nodes.

Applying the model to di�erent data sets shows results of about 80% correct inter-

pretations. Inside the classes for the roof detection the correct classi�cations are between

80% and 90%. The results are very stable and hold also for images from other data sets

than the learned ground truth.

The results show, that the observed features contribute in di�erent strength to the

interpretation. Color for example contributes to the distinction between the classes

vegetation and grass land. The geometrical observations are mainly the same for these

type of classes, so the color information gains in�uence. The same can be examined for

the neighbor information: Is is especially useful for object classes that are mixed with

other objects, e.g. the multi colored rectangular cars.

The results show another important issue: The classi�cation only with geometric

features works very stable. The roof classes, especially the class other roof building, have

a complicated structure. Even the Toyonaka dataset is interpreted here successfully. In

many building detectors, the red color of the roof tile has a strong impact, and leads
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(a) (b)

Figure 6.12: These two images were identi�ed as di�erent scene types than registered in
the ground truth database. The left image is part of the BOI dataset and was labeled as
urban scene. The right one is part of the GRA dataset and was labeled as rural.

due to the number of red roofs in middle Europe to a good prior. In our approach it is

possible to interpret a scene correctly using the geometry of the objects.
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Chapter 7

Conclusion and outlook

In this thesis we present an approach for the automatical interpretation of aerial images.

We develop a statistical model that is able to classify and interpret image regions in

a hierarchical way. With this model we can detect and localize multiple instances of

prede�ned objects and create an interpretation of the complete scene. The results are

stable against image distortions and de�ciencies of the used feature extraction algorithms;

the ontology for the interpretation is not implemented in a �xed way. It is tought to the

algorithm in a learning step.

The model is a multi-level bayes net that interprets the content of a region adja-

cency graph. The bayes net is parametrized by the probability distributions and the net

structure. These are acquired in a previous learning step. The novelty of this work is

the learning of a Bayes net containing objects of variable structure. Threrefor we use

a hierarchical region adjacency graph to e�ciently code spatial information for the in-

troduction into a bayes net. Using the region graph, we are able to introduce a variety

of geometric, texture and topology observations. Because the bayes net is modeled as

a tree structure on top of the region adjacency graph, we can propagate the evidence

of the observations e�ciently while restricting the search space for the spatial neigh-

bor information. The information of the image regions are aggregated to cliques- and

objects-nodes in the bayes net. The structure of the bayes net is not �xed a priori. It

is learned together with the probability distributions of the nodes and creates a visual

words vocabulary for the region and clique nodes of the bayes net.

The results for the interpretation of aerial images show an interpretation rate of

approximately 80 percent correct classi�cations. Among the building classes the clas-

si�cation results are between 80 and 90 %. For building detection we reach results of

over 90 percent. The classi�cation is comparable to other classi�cation algorithms. The
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bene�t here is, that we are able to combine the parameters of di�erent image domains

and to use these for a correct interpretation.

The approach provides a fast interpretation of the scene, as well in the learning task

as in the interpretation. Although we tested the model for aerial image interpretation,

it will work for any other scene that complies with the underlying image model. For

example the detection of complex objects in industrial applications or categorization of

image databases could be possible.

The challenge for the future is to adapt this approach to systems like e.g. google

Earth or other image databases containing aerial or satellite data. The used algorithms

are able to work in parallel, so the processing of huge amount of data in the "`cloud"'

is very e�cient. Using this interpretation, there are phenomenona tracable like the long

term change in housing and settlements in the delevoping countries or the deserti�cation

e.g. in Africa. One scale smaller it is possible to track changes for an automatic update

of maps.

Technically, it is interesting to expand the approach in several ways. One direction

would be to include knowledge of the third dimension of the scene. Terrestrial images

have more depth information and occlusion than aerial images. Therefore other features

would be helpful. Also in the aerial images some information about the third dimension

would be helpful in a next step, e.g. the direction of shadows and the distortion due to

height di�erences.

Another goal is to widen and di�erentiate the hierarchical ontology of the data.

Therefore we would need a more detailed groundtruth database and a consistent ontology

for working on de�ned subsets of scenes.

The detection results could also be improved by using additional sensor data. By

adding other image channels like near infrared or even 3-D information by LIDAR or

SAR measurements, the evidence of the objects in the image scene can be inferred more

easily.
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