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Kurzfassung

Formale Grammatiken eignen sich sehr gut zur Schätzung von Modellen mit a-priori un-
bekannter Anzahl von Parametern und haben sich daher als guter Ansatz zur Rekon-
struktion von Städten mittels 3D Stadtmodellen bewährt. Der Entwurf und die Erstellung
der dazugehörigen Grammatikregeln benötigt jedoch Expertenwissen und ist mit groÿem
Aufwand verbunden. Im Rahmen dieser Arbeit wurden Verfahren entwickelt, die diesen
Aufwand unter Zuhilfenahme von leistungsfähigen Techniken des maschinellen Lernens re-
duzieren und automatisches Lernen von Regeln ermöglichen. Das Lernen umfangreicher
Grammatiken, die die Vielfalt und Komplexität der Gebäude und ihrer Bestandteile wider-
spiegeln, stellt eine herausfordernde Aufgabe dar. Dies ist insbesondere der Fall, wenn zur
semantischen Interpretation sowohl das Lernen der Strukturen und Aggregationshierar-
chien als auch von Parametern der zu lernenden Objekte gleichzeitig statt �nden soll. Aus
diesem Grund wird hier ein inkrementeller Ansatz verfolgt, der das Lernen der Strukturen
vom Lernen der Parameterverteilungen und Constraints zielführend voneinander trennt.
Existierende prozedurale Ansätze mit formalen Grammatiken sind eher zur Generierung
von synthetischen Stadtmodellen geeignet, aber nur bedingt zur Rekonstruktion existieren-
der Gebäude nutzbar. Hierfür werden in dieser Schrift Techniken der Induktiven Logischen

Programmierung (ILP) zum ersten Mal auf den Bereich der 3D Gebäudemodellierung über-
tragen. Dies führt zum Lernen deklarativer logischer Programme, die hinsichtlich ihrer
Ausdrucksstärke mit attributierten Grammatiken gleichzusetzen sind und die Repräsen-
tation der Gebäude von der Rekonstruktionsaufgabe trennen. Das Lernen von zuerst disag-
gregierten atomaren Bestandteilen sowie der semantischen, topologischen und geometrischen
Beziehungen erwies sich als Schlüssel zum Lernen der Gesamtheit eines Gebäudeteils. Das
Lernen erfolgte auf Basis einiger weniger sowohl präziser als auch verrauschter Beispielmo-
delle. Um das Letztere zu ermöglichen, wurde auf Wahrscheinlichkeitsdichteverteilungen,
Entscheidungsbäumen und unsichere projektive Geometrie zurückgegri�en. Dies erlaubte
den Umgang mit und die Modellierung von unsicheren topologischen Relationen sowie un-
scharfer Geometrie. Um die Unsicherheit der Modelle selbst abbilden zu können, wurde ein
Verfahren zum Lernen Gewichteter Attributierter Kontextfreier Grammatiken (Weighted

Attributed Context-Free Grammars, WACFG) entwickelt. Zum einen erfolgte das Lernen
der Struktur von Fassaden � kontextfreier Anteil der Grammatik � aus annotierten Her-
leitungsbäumen mittels spezi�scher Support Vektor Maschinen (SVMs), die in der Lage sind,
probabilistische Modelle aus strukturierten Daten abzuleiten und zu prädizieren. Zum an-
deren wurden nach meinem besten Wissen Methoden des statistischen relationalen Lernens

(SRL), insbesondere Markov Logic Networks (MLNs), erstmalig zum Lernen von Parame-
tern von Gebäuden sowie von bestehenden Relationen und Constraints zwischen ihren Be-
standteilen eingesetzt. Das Nutzen von SRL erlaubt es, die eleganten relationalen Beschrei-
bungen der Logik mit e�zienten Methoden der statistischen Inferenz zu verbinden. Um
latentes Vorwissen zu modellieren und architekturelle Regelmäÿigkeiten auszunutzen, ist
ein Verfahren zur automatischen Erkennung von Translations- und Spiegelsymmetrien und
deren Repräsentation mittels kontextfreier Grammatiken entwickelt worden. Hierfür wurde
mittels überwachtem Lernen ein SVM-Klassi�kator entwickelt und implementiert. Basierend
darauf wurden Algorithmen zur Induktion von Grammatikregeln aus Grundrissdaten ent-
worfen.
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Abstract

Formal grammars are well suited for the estimation of models with an a-priori unknown
number of parameters such as buildings and have proven their worth for 3D modeling and
reconstruction of cities. However, the generation and design of corresponding grammar rules
is a laborious task and relies on expert knowledge. This thesis presents novel approaches
for the reduction of this e�ort using advanced machine learning methods resulting in au-
tomatically learned sophisticated grammar rules. Indeed, the learning of a wide range of
sophisticated rules, that re�ect the variety and complexity, is a challenging task. This is
especially the case if a simultaneous machine learning of building structures and the un-
derlying aggregation hierarchies as well as the building parameters and the constraints
among them for a semantic interpretation is expected. Thus, in this thesis, an incremental
approach is followed. It separates the structure learning from the parameter distribution
learning of building parts. Moreover, the so far procedural approaches with formal gram-
mars are mostly rather convenient for the generation of virtual city models than for the
reconstruction of existing buildings. To this end, Inductive Logic Programming (ILP) tech-
niques are transferred and applied for the �rst time in the �eld of 3D building modeling.
This enables the automatic learning of declarative logic programs, which are equivalent to
attribute grammars and separate the representation of buildings and their parts from the
reconstruction task. A stepwise bottom-up learning, starting from the smallest atomic fea-
tures of a building part together with the semantic, topological and geometric constraints,
is a key to a successful learning of a whole building part. Only few examples are su�cient to
learn from precise as well as noisy observations. The learning from uncertain data is realized
using probability density functions, decision trees and uncertain projective geometry. This
enables the handling and modeling of uncertain topology and geometric reasoning taking
noise into consideration. The uncertainty of models itself is also considered. Therefore, a
novel method is developed for the learning of Weighted Attribute Context-Free Grammar

(WACFG). On the one hand, the structure learning of façades � context-free part of the
grammar � is performed based on annotated derivation trees using speci�c Support Vector
Machines (SVMs). The latter are able to derive probabilistic models from structured data
and to predict a most likely tree regarding to given observations. On the other hand, to
the best of my knowledge, Statistical Relational Learning (SRL), especially Markov Logic

Networks (MLNs), are applied for the �rst time in order to learn building part (shape and
location) parameters as well as the constraints among these parts. The use of SRL enables
to take pro�t from the elegant logical relational description and to bene�t from the e�-
ciency of statistical inference methods. In order to model latent prior knowledge and exploit
the architectural regularities of buildings, a novel method is developed for the automatic
identi�cation of translational as well as axial symmetries. For symmetry identi�cation a su-
pervised machine learning approach is followed based on an SVM classi�er. Building upon
the classi�cation results, algorithms are designed for the representation of symmetries us-
ing context-free grammars from authoritative building footprints. In all steps the machine
learning is performed based on real- world data such as 3D point clouds and building foot-
prints. The handling with uncertainty and occlusions is assured. The presented methods
have been successfully applied on real data. The belonging classi�cation and reconstruction
results are shown.
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1 Introduction

Building models are needed for several tasks such as the calculation of escape routes or urban
planning. Particularly, for the visualization in the navigation and tourism context, detailed
façade models are essential. Therefore, the demand for high-resolution three-dimensional
models of real-world buildings has been sharply increased over the last decade. However,
the automatic derivation of such models is still an area of active and intensive research. For
autonomous piloting and rescue management, automatic real time modeling and mapping
of 3D buildings is of increasing importance. To this end, the research group �Mapping on
Demand� (MoD) founded by the German Research Foundation (�Deutsche Forschungsge-
meinschaft�, DFG) has been established. This project aims to build models of inaccessi-
ble three-dimensional man-made objects during the data acquisition by a lightweight au-
tonomously �ying Unmanned Aerial Vehicle (UAV). The UAV captures 3D point clouds
based on a high-level semantically speci�ed user inquiry. The automatic interpretation of
the provided observations in order to identify building parts such as windows or doors is of
high interest. Despite the large number of previous work, many questions are not yet sat-
isfactorily answered. In this context, this thesis as part of the MoD project constitutes an
important step towards �nding automatically semantically interpreted 3D building models.

Especially, the fully automatic extraction of high-resolution sophisticated building models
from images or 3D point clouds remains a challenging task. In particular, this is the case if
the claim is to generate models that cover semantic hierarchies and aggregations of building
parts as well as the dependencies between these parts. The knowledge about building parts
such as windows or doors and their locations in a façade provides, for example, an important
information for making decisions about response actions in the context of �ood planning and
management. For instance, Yang and Förstner (2011) employed Conditional Random Fields
(CRFs) combined with randomized Decision Forest classi�ers to semantically discriminate
regions in images of building façades. However, CRFs merely model dependencies in local
neighborhood and do not consider constraints between not directly neighboring objects.
Figure 1.1 illustrates a.o. the case of two not neighbored windows w1 and w3, which cannot
be modeled in a wide range context via a CRF. Hence, alternative modeling frameworks
are needed in order to overcome this de�ciency.

Furthermore, in the context of mapping on demand and rescue management, methods which
can deal with occlusions caused by vegetation (cf. Figure 1.1) or smoke are needed in order
to predict hidden objects of interest. For example, a precise localization of an opening in a
façade �oor is decisive for the calculation of an escape route. Hence, in order to meet these
expectations, highly structured models representing not only geometry but also semantics
and architectural regularities are needed. Such models explicitly provide an a-priori knowl-
edge to the interpretation process and a�ect to a large degree the quality and usability of
the resulting interpretations. Here, the term semantics denotes the relation between terms
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1 Introduction

Figure 1.1: Requirements on building modeling methods exempli�ed by the façade of Pop-
pelsdorf castle in Bonn. Models for re�ecting local as well as wide range context
are needed. Taking axial (red axis) and translational (orange windows) symme-
tries, alignments (green) and occlusions into consideration plays a key role for
the façade interpretation. Protrusions in buildings and building footprints a�ect
the resulting models substantially.

and the objects they refer to, according to the exchange data model CityGML (Gröger
et al., 2012). Beside semantics and its hierarchies, CityGML de�nes 3D geometry, topology
and appearance of urban objects in di�erent level of details (LoD). In the context of seman-
tics, formal grammars have proven their worth for building modeling taking the mentioned
aspects into consideration.

Formal grammars represent an important pillar in the formal language theory. They are
playing a key role in many application �elds such as syntactical and lexical analysis for
programming languages or for the processing of sentences of natural languages. In contrast
to the sequential structure of texts and strings in natural languages, building models are
characterized by a non-linear 3D structure and are mostly extracted from unstructured
data such as 3D point clouds. In order to meet this transfer challenge, the hierarchy and
taxonomy of buildings are represented using context-free grammars, whereas additional ar-
chitectural patterns such as symmetries and shape distributions are modeled by attribute
grammars as a special type of formal grammars. This is however up to now performed and
implemented in a procedural fashion such is the case of procedural modeling approaches
for the generation of consistent mass building models (Müller et al., 2007), which requires
an explicit representation of regularities and architectural constraints in hard coded proce-
dures. In this way, these approaches lack on �exibility and squander the declarative property
of formal grammars for virtual building model generation at cost of reconstruction of ex-
isting buildings. Martinovi¢ and Van Gool (2013) followed the idea of inverse procedural
modeling, which uses formal grammars for the generation of synthetic cities and for the
reconstruction of simple 2D façades from real-world existing buildings. Their approach uses
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splitting heuristics based on de�ned lattice areas. In contrast to declarative schemes, which
represent facts and assertions, procedural representations store actions and consequences.
Besides, these approaches do not enable an explicit modeling of the data uncertainty. This
thesis is based on a logic-based declarative approach, that separates between knowledge
and inference, and thus separates between the representation of buildings and their parts
from their reconstruction. Simultaneously, an explicit modeling of data uncertainty and a
reasoning over uncertain observations is provided.
In comparison to classical parameter estimation, formal grammars are generic. They allow
the estimation of models with a-priori unknown number of parameters like the number of
�oors or windows. This enables to re�ect the variety and complexity of buildings. Further-
more, formal grammars do not require any assumption on the a-priori distribution of under-
lying data. In the Geoinformation group at the Institute of Geodesy and Geoinformation in
Bonn, attribute grammars have been longstandingly used for the automatic generation and
reconstruction of buildings and their parts. For instance, the works of Schmittwilken et al.
(2009), Gröger and Plümer (2010) and Schmittwilken (2012) demonstrated that attribute
grammars are well suited to 3D building modeling. They allow to describe structures and
parameters of buildings as well as the substantial constraints between the building parts.
Moreover, this type of grammars represents well the taxonomic and the partonomic struc-
tures of buildings using a set of rules and constraints. As yet, unfortunately the grammar
rules are mostly manually derived.
The automatic learning of grammar rules for building modeling is a very demanding and
hard task, as it requires the search over a huge hypotheses space. Particularly it is the case,
if generic rules that re�ect the complexity of building models are expected. Except for few
approaches (Becker, 2009; Ripperda and Brenner, 2009; Martinovi¢ and Van Gool, 2013)
that tried to extract rules from given data, the design of rules is an expensive and laborious
process that relies on expert knowledge. However, most approaches assume façades being
planar 2D surfaces and they are almost limited to grid-like designs. Due to the variety
and the diversity of buildings, it is hard to manage the complexity, so a machine assisted
approach is required in order to acquire a large number of fairly sophisticated grammar
rules. To avoid the 2D restriction, the learning should be performed based on 3D point
clouds resulting in models that support protrusions in façades or displaced façade parts
such as the case in the façade of Figure 1.1. Besides, in order to generate models that re�ect
real-world man-made objects, the learning process has to cope with uncertain primitives
and their mutual relations over unstructured data such as 3D point clouds. Moreover, the
learned models have to deal with occluded measured regions of interest and should be able to
incorporate prior knowledge in order to exploit the architectural building regularities such as
symmetries and alignments. Figure 1.1 shows symmetries and alignments in the Poppelsdorf
castle façade. An axial symmetry axis is depicted in red color. Two translated windows are
highlighted in orange. Vertical as well as horizontal aligned windows are presented in green.
Finally, the learning approach should not only deal with uncertain data but also be able to
derive generic models, which re�ect the likelihood of the models themselves and therefore
the variety of di�erent architectural patterns.
Since apart from syntactic di�erences logic programs and attribute grammars are basically
the same language (Deransart and Maluszynski, 1985), logic-based machine learning meth-
ods such as Inductive Logic Programming (ILP) and Statistical Relational Learning (SRL)
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1 Introduction

are applied in this thesis in order to learn the rules of a weighted attribute context-free
grammar (WACFG) represented by logic programs. Therefore, an automatic approach for
the learning and reconstruction of 3D building models has been developed. The proposed
approach combines several sophisticated learning methods based on a variety of objects
stemming from precise as well as noisy data. The data consists of terrestrial LiDAR 3D
point clouds, sketches or labeled examples of façade parts as well as building footprints. In
order to cope with the hard learning task, various machine learning and reasoning meth-
ods are integrated in a cutting-edge framework and used for the �rst time for 3D building
modeling. Background knowledge such as building regularities and symmetries is modeled
as well using particular grammar rules and incorporated to support façade reconstruction.

A simultaneous learning of building structures and parameters addresses their mutual in-
teraction. However, as stated by De Raedt (2008), �Learning both the structure and the
parameters1 of a �rst-order probabilistic logic program is extremely hard, if not impossible.�
This thesis takes the approach that separates these two tasks (i.e. structure and parameter
learning) from each other and makes clear that the relational learning of building models
becomes feasible if the structure is learned �rst and the parameters afterwards. Similar to
the structure learning of Bayes networks, the order a�ects the learning process of building
structures. As stated by Koller and Friedman (2009), �a bad choice of order [of network
variables] can result in poor learning results�. Hence, an incremental approach with a good
chosen order plays an important role in the learning process. This thesis demonstrates that
a bottom-up learning starting from the smallest atomic features of a building part together
with the semantic, topological and geometric constraints is a key to a successful learning
of the whole building part. Structures � symmetries and aggregations � can be modeled
using context-free grammars. Further parameters � location, shape and rules distribution �
require probabilistic attribute grammars. This work shows that advanced machine learning
methods contribute to the automatic learning and reconstruction of 3D building models.
Especially, a skillful combination of heterogeneous methods contributed signi�cantly to de-
signing a novel learning and 3D reconstruction approach.

The main contribution of this thesis is a novel method for automatic learning of 3D weighted
attribute context-free grammars of buildings and their parts. Additionally, a parsing method
of the learned grammar rules is developed for the 3D reconstruction of building façades from
3D point clouds. This thesis demonstrates that it is possible to represent and reconstruct
buildings with a fully automatically learned stochastic attribute grammar. For the �rst
time, the representation and the learning of the grammar rules are performed in a pure
declarative way using logical and statistical relational learning techniques. This enables not
only to cope with an a-priori unknown number of parameters, but also to learn and model
the likelihood of the grammar rules. Moreover, the introduced approach is able to deal and
learn from both precise models and noisy observations leading to uncertain models as well.
Structure hierarchies and their depths, like global and local symmetries, are also modeled
and inferred if they are available. The presented approach deals successfully with complex-
ity, uncertainty and unobservability in real-world problems. This is explicitly addressed by

1In this thesis, the term parameters denotes not only the weights and likelihood of the grammar rules, but

also the shape and location parameters of the building parts as well as their probability distributions.
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uncertain projective geometry, probability density functions, probabilistic grammar rules
and Markov Logic Networks.

This thesis demonstrates how 3D building models can be represented in a pure declarative

fashion using statistical and relational formalisms. Herewith, the thesis presents not only
the learning of the WACFG but also introduces a method for the parsing of the WACFG
rules in order to derive an interpreted model for given data based on di�erent components
and methods:

• Logical learning of grammar rules of building parts from precise models and noisy
observations

• Statistical relational learning of weighted grammar rules for façade reconstruction

• Grammar-based learning and representation of symmetries in building footprints to
support façade reconstruction

The �rst part deals with the investigation of declarative methods for the learning of building
structures. It studies how such structures can be learned via the learning of logic programs
for building parts using Inductive Logic Programming and shows that the ILP-based learn-
ing is feasible even if the structures are recursive. ILP, which has been successfully applied
in many �elds such as predicting protein structures (Muggleton et al., 1992), is therefore
transferred for the learning of building structures. During a high-level learning, semantic
and topological primitives of building parts are induced in a modular and an incremental
way using positive and negative examples in addition to a set of background knowledge. In
order to handle data uncertainty, this approach is extended by a low-level module, that in-
cludes the concept of uncertain projective geometry for learning noisy geometric relations on
the one hand and probability density functions together with decision trees for topological
constraints on the other hand.

The ILP-based relational approach focuses attention on the uncertainty of the underlying
data as well as the geometric reasoning under uncertainty. In order to take the uncertainty
of models into consideration as well, a statistical relational learning (SRL) approach, that
combines logic and probabilities, is tailored for the automatic learning of 3D building models.
In this manner, this approach serves to learn a weighted attribute context-free grammar
automatically in order to reconstruct sophisticated façades. The uncertainty of observations
is afresh addressed based on geometric reasoning by the use of uncertain projective geometry
to provide a knowledge base for an SRL. Furthermore, the likelihood of di�erent structural
patterns is modeled using the rule weights from the context-free part of the WACFG as
well as the weights of a set of logical formulas using Markov Logic Networks (MLNs). The
SRL-based method is an incremental approach, that consists in learning the structure of
façades, which corresponds to the context-free part of the grammar in a �rst step. This
is performed using speci�c Support Vector Machines (SVMs) for structured data based on
input-output pairs, that consists of a treebank of labeled façade structures. Afterwards, the
context-free model is lifted leading to an attributed model, that expands the grammar rules
by further constraints existing between the façade parts using an automatically learned
MLN. In this manner, mapping of uncertain data into precise annotations as derivation
trees for the learning of the context-free grammar played a key role in order to meet this
learning challenge. Likewise, the acquisition of categorical facts from noisy observations
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1 Introduction

using uncertain projective geometry for MLNs has proven to be the key to a successful
learning process.
In the last part of this thesis, prior knowledge is modeled and considered in order to support
the previously mentioned SRL-based façade reconstruction. It is demonstrated that for-
mal grammars are suitable to describe a-priori hidden and analyzed regular patterns from
weak observations. Especially latent symmetry information (axial as well as translational)
is identi�ed and represented with context-free grammar rules. For this task, a novel method
is designed and implemented for the automatic detection and modeling of hierarchical and
repetitive structures from available authoritative building footprints. This information en-
ables the derivation of the symmetry properties of façades from the corresponding foot-
prints without any observations of the façades. Hence, models acquired from the previous
approach can be compressed becoming redundant-free. Further, due to existing occlusions
in the measured point clouds a model repair or shape completion can be performed. The in-
herent uncertainty of the geometry of the footprint segments and their angles is considered.
This is performed using a supervised classi�cation approach for learning symmetries with
SVMs. In contrast to classical statistical methods, for SVMs assumptions on the a-priori
distribution of the data are not required. The developed classi�er is trained based on a set
of polylines labeled as axial symmetric or non axial symmetric. SVMs are simultaneously
used for classifying pairs of segments in order to discriminate between translational and non
translational segments. Building upon the classi�cation results, context-free grammar rules
which represent explicitly axial as well as translational symmetries are derived.
This thesis summarizes the results of my research and my publications on the automatic
learning of 3D building models. The developed approaches are presented, discussed and
tested on several real-world measured objects. The following publications are most relevant
for this thesis and are appended to the thesis:
Dehbi, Y., Plümer, L., 2011. Learning grammar rules of building parts from precise models
and noisy observations. ISPRS Journal of Photogrammetry and Remote Sensing 66, 166-
176. Quality, Scale and Analysis Aspects of Urban City Models.

Dehbi, Y., Hadiji, F., Gröger, G., Kersting, K., Plümer, L., 2016b. Statistical rela-
tional learning of grammar rules for 3d building reconstruction. Transactions in GIS,
doi:10.1111/tgis.12200.

Dehbi, Y., Gröger, G., Plümer, L., 2016a. Identi�cation and modelling of translational
and axial symmetries and their hierarchical structures in building footprints by formal
grammars. Transactions in GIS, doi:10.1111/tgis.12177.

The remainder of this thesis is structured as follows: The theoretic foundations and method-
ological background of the used methods will be explained in Section 2. In this section it is
explained why these methods are suitable to contribute to solve the addressed questions of
this thesis. The developed approaches are presented in Section 3. Especially in Section 3.1,
the logical learning of grammar rules from precise models and noisy observations using ILP
is demonstrated. Section 3.2 shows how statistical relational learning is exploited in order
to learn probabilistic attribute grammar rules. Section 3.3 gives insight into learning and
modeling of regularities in building footprints using formal grammars in order to support
façade reconstruction. Section 4 concludes and summarizes the thesis and gives an outlook
and some perspectives.
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2 Methodological background and related

work

This chapter gives insight into the relevant methods for this thesis and presents related
work. Section 2.1 introduces brie�y geometric reasoning from noisy observations using the
formalism of uncertain projective geometry, that has been used for the learning and modeling
of uncertain geometric relations. Since formal grammars represent a substantial component
of this thesis, Section 2.2 gives a short introduction and motivates their application in the
�eld of building modeling and reconstruction. Section 2.3 presents a speci�c type of Support
Vector Machines (SVM) and depicts how it can be used for the learning of building façade
structures represented by weighted context-free grammar rules. This section shows as well
how these grammar rules are parsed in order to �nd a most likely structure corresponding
to given observations. Section 2.4 introduces the basic notions in logical and statistical
relational learning. Beside the theoretical background, this section explains the utility and
usefulness of logic and SRL for 3D building modeling and reconstruction.

2.1 Uncertain projective geometry

The process of measurement and mapping of real-world objects leads in most cases to
imprecise and error-prone data. Moreover, it is not rare that a real-world object itself is
noisy and uncertain. In order to deal with all these kinds of uncertainty, probabilities and
statistical approaches such as SRL are suitable. For providing deterministic logical facts
for the learning process with SRL or ILP, an uncertain geometric reasoning is needed.
Especially if following questions for building modeling are addressed: �are two windows the
same?�, �are they aligned?�. In addition to MLNs and probability density functions, my
approach represents and addresses the quality of the given observations and the derived
constraints explicitly, using concepts from uncertain projective geometry for learning and
deriving geometric and topological relations.
Projective geometry is an alternative mathematical framework to Euclidean geometry, which
enables a simple and consistent representation and transformation of geometric entities such
as lines or planes. In order to enable geometric reasoning using projective geometry, an
Euclidean entity x ∈ Rn can be in general represented as a homogeneous vector (Dorst
et al., 2007) x ∈ Rn+1. Table 2.1 gives an overview of the di�erent entity representations.
It further depicts examples of possible geometric constraints between these entities such as
paralleltity and orthogonality, which are expressed as simple multi-linear relations such as
cross or dot product. A list of all possible relations can be found in (Heuel, 2004).
For an e�cient performance of geometric reasoning under uncertainty, Heuel (2004) inte-
grated the potentials of projective geometry and statistics. His approach draws upon the
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2 Methodological background and related work

Geometric

entity

Euclidean

representation

Projective

representation

point X = (x, y, z) X = (tx, ty, tz, t)

plane A = (a, b, c, d) (Ah, A0) = (a, b, c, d)

line L = A ∩B (Lh, L0) = (Ah ×Bh, A0Bh −B0Ah)

Geometric relation Algebraic representation

orthogonal(planeA, planeB) c = AThBh
!

= 0

orthogonal(lineL, planeA) c = Lh ×Ah
!

= 0

parallel(planeA, planeB) c = Ah ×Bh
!

= 0

parallel(lineL, planeA) c = LThAh
!

= 0

identical(PointX, PointY)
c = X ∧ Y
= (XhY0 − YhX0, X0 × Y0)

!
= 0

Table 2.1: Projective representation of objects and constraints

modeling of error propagation during the reasoning process, which consequently enables
testing uncertain spatial relations between geometric entities. This is achieved by extending
the homogeneous entity x with its covariance matrix Σxx in order to get an uncertain entity
(x, Σxx). A hypothesis test of spatial relations between geometric entities is usually reduced
to the test whether an observed n-vector c has to be zero. For instance, the parallelity of
two planes can be proven if the cross product of their homogeneous part is zero (see Table
2.1). Against the statistical test theory (Koch, 1999), this leads to the following chi-square
test:

T = cTΣ−1cc c ∼ χ2
d, (2.1)

with d being the degree of freedom of the constraint, that has to be tested. In case the
covariance matrix does not have a full rank, that is if rank (

∑
cc) = r ≤ d, the following

test has to be performed:
T = cTΣ+

ccc ∼ χ2
r , (2.2)

hereby
∑+

cc denotes the pseudo-inverse of the covariance matrix
∑

cc (Förstner, 2005).
With a signi�cance number α, T is now compared with the critical value χr,1−α of the
χ2-distribution. If the following inequality

T > χ2
r,1−α (2.3)

is satis�ed, then the hypothesis on c is rejected.

To sum up, uncertain projective geometry provides a compact and consistent represen-
tation and transformation of geometric entities together with their uncertainties. In this
thesis, statistical geometric reasoning using uncertain projective geometry is performed
in order to make decisions about similarity of geometric entities such as windows and
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hence to answer the questions about similarity mentioned above. This enables to pro-
vide the required categorical facts for the subsequent logical and statistical relational
learning. To this aim, the SUGR1 library has been used. SUGR expects covariance ma-
trices of 2D or 3D geometric objects like points or lines as uncertainty measures. For
constructing or estimating new uncertain entities from existing ones, the error propa-
gation is modeled enabling tests of uncertain spatial relations. In this thesis, the test
for identity and similarity of building parts is performed in the feature space instead
of 3D coordinate system of the façade. In this manner, for example, the test whether
two windows w1(width1, height1, depth1) and w2(widtth2, height2, depth2) are geometri-
cally identical (same shape parameters) is reduced to an identity test of two 3D points
p1(width1, height1, depth1) and p2(widtth2, height2, depth2) consisting of shape parame-
ters of the compared windows. Analogously, the veri�cation of the alignments of windows
is reduced to the veri�cation of the parallelity of two lines using a chi-squared statistical
hypothesis test. However, the veri�cation of orthogonality for di�erent surfaces belonging
to subsequent steps in a staircase is realized in a classical way using their corresponding
planes in the 3D coordinate system of the façade.

2.2 Formal grammars for building modeling

Ever since formal grammars were introduced by Chomsky (1956, 1959) for reconstruct-
ing sentences of natural language, they have also been used to generate formal languages.
Likewise they have been widely applied for the generation of synthetic city models. In this
context, Wonka et al. (2003) introduce split grammars for a rule-based generation of archi-
tectural structures inspired by the shape grammar works of Stiny et al. (1971) and Stiny
(1982). Instead of strings from natural languages, the grammar symbols stand for geometric
shapes in comparison to ordinary formal grammars.

A formal grammar G can be de�ned as quadruple {S, N, T, P} of a start symbol S, a
set of non-terminals N represented by capitalized initials, a set of terminals T denoted by
lower case initials and a set of production rules P. A special case of formal grammars are
context-free grammars, which correspond to type 2 according to Chomsky's hierarchy, which
distinguishes between four levels (type 0 - type 3) of formal grammars. Production rules
appear in the form A → a, where A is a non-terminal, and a is a sequence of terminals
and non-terminals. This rule implies that each occurrence of the symbol A can be replaced
by the string a. In a weighted context-free grammar, each rule is augmented by a weight,
which expresses the likelihood of this rule.

As illustrated in Figure 2.1, a possible context-free derivation, describing the structure of a
gable roof building, can be modeled as follows: Building as a start symbol is made of the
non-terminal Corpus and the terminal gableRoof. In addition to the Facade, Corpus consists
of left side, right side, and back side. Facade is built of window and Entrance, which is made
of door and Stairs. For the sake of simplicity of the example we assume that the façade has
one single window. Stairs can be substituted either by one Step and Stairs as a sequence
of steps or terminates with a Step, which in turn consists of a riser (vertical rectangle) and
1http://www.ipb.uni-bonn.de/data-software/sugr/
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a tread (horizontal rectangle). Likewise, a building can be represented by the production
rules in Listing 2.1.
The set of non-terminals is N = {Building, Corpus, Facade, Entrance, WinArray, Stairs,
Step}; the set of terminals is T = {gableRoof, left, right, back, window, door, riser, tread}.

Corpus → l e f t Facade r i gh t back
Facade → Entrance WinArray
WinArray → WinArray window
Entrance → door S t a i r s
S t a i r s → S t a i r s Step
S t a i r s → Step
Step → r i s e r t read

Listing 2.1: Context-free production rules of a gable roof building

In the �eld of procedural modeling, which consists in the generation of a huge number of
synthetic buildings based on a-priori designed grammar rules, Müller et al. (2007) introduced
the so-called Computer Generated Architecture (CGA) shape grammars and proposed a
system for the stepwise generation and re�nement of consistent mass building models, based
on the mentioned split grammars. This grammar encodes the building style, structure and
appearance based on procedurally implemented rules. Like split grammars, CGA shape

grammars use a set of basic shapes together with corresponding parameters and symbols
for the modeling of 3D buildings. This is performed with split rules describing a splitting
process of a shape into several sub-shapes.

Figure 2.1: A possible derivation tree of a context-free gable roof building grammar

In order to represent geometry as well as semantics for 3D building models, Schmittwilken
et al. (2009) adapted the concept of attribute grammars (Knuth, 1968, 1971), which enabled
to represent shape and location parameters of the modeled building objects and express the
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geometric and topological constraints between these objects and their parts. Hereby, termi-
nals and non-terminals are expanded by attributes, whereas production rules are extended
by semantic rules. The latter specify the constraints among the attributes. In our example,
these enable to state that all steps within the same staircase have the same dimensions,
which cannot be expressed by context-free grammars. An extract of an attribute grammar
of stairs is shown in Listing 2.2. The grammar symbols at the top are augmented by the
attributes height, depth, and width, which are used in the semantic rules R2(P2) to R4(P2)
at the bottom, in order to specify the identity between the shape parameters of risers and
treads within the same stairs. Additionally R1(P1) ensures that the new stairs consist of
exactly one more step than the one before. The superscript indices n and n-1 are used to
di�erentiate between multiple occurrences of the same symbol.

P1 : S t a i r s n → Step S t a i r s n−1

P2 : S t a i r s → Step
P3 : Step → r i s e r t read

R1(P1 ) : S t a i r s n . numberOfSteps = S t a i r s n−1 . numberOfSteps + 1
R2(P2 ) : Step . width = S t a i r s . width
R3(P2 ) : Step . he ight = S t a i r s . he ight
R4(P2 ) : Step . depth = S t a i r s . depth
. . .

Listing 2.2: Excerpt of an attribute grammar for stairs

In addition to (Schmittwilken, 2009) other approaches follow the idea of inverse procedural
modeling, which uses formal grammars not only for the generation of synthetic cities but
also for the reconstruction of real and existing buildings. Ripperda and Brenner (2009)
used a-priori de�ned grammar rules combined with reversible jump Markov Chain Monte
Carlo for supporting façade reconstruction. Martinovi¢ and Van Gool (2013) introduced an
approach for learning so-called Bayesian grammar for two-dimensional façade generation
and reconstruction from image data. They infer split grammar rules from labeled images.
However, their approach assumes that façades are planar 2D surfaces, which can be reduced
in 2D lattices. Teboul et al. (2011) used shape grammars for 2D façade parsing, applying
reinforcement learning and taking only grid-like design patterns into consideration. Becker
(2009) combined approaches for the interpretation of image as well as 3D laserscan data
with split grammars in order to detect and reconstruct windows and doors in façades.
During the interpretation, a so-called façade grammar is induced from one building façade.
However, the induced rules are not generic and are only used for the reconstruction of a
single 2D façade or façades of uniform architectural style buildings. The approach assumes
also that the considered façade is a 2D planar surface. Gröger and Plümer (2010) elaborated
an approach adapting attribute grammar rules for the generation of indoor models for route
planning.

The reason why we advocate, learn and apply weighted attribute context-free grammars
(WACFGs) is their declarative nature, their �exibility and their genericity. WACFGs are
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Figure 2.2: The parsing of a 3D point cloud using a formal grammar [modi�ed �gure from
Schmittwilken (2012)].

able to represent a whole architectural style with an unlimited number of di�erent build-
ings. WACFGs allow the estimation of building models with an a-priori unknown number
of parameters like the number of �oors and windows. They represent well the taxonomy
(semantic hierarchy) such as di�erent types of openings (windows and doors). Furthermore,
they enable the expression of partonomies (aggregation hierarchy) like the disaggregation
of �oors in several windows. In contrast to CRFs, for example, wide range dependencies like
symmetries can be modeled. Besides, the constraints among the building parts such as the
alignments of neighboring windows can be expressed using semantic rules. The aim of this
thesis is to learn stochastic attribute grammar rules automatically. Once a grammar has
been learned, it is used as model or background knowledge in order to �nd a most likely
parse tree, that matches an underlying 3D point cloud well, with successively grammar rule
application (see Figure 2.2). The next sections introduce methods for the automatic learn-
ing of a weighted attributed context-free grammar and give foundations of an approach for
parsing 3D point clouds using the learned grammar rules.

2.3 Support vector machines for learning a weighted

context-free grammar

Towards machine learning of 3D building models the separation of structure and constraints
as well as parameter learning is a key step in order to deal with the variety and complexity of
buildings. This implies that the aggregation and taxonomy of buildings, especially façades,
have to be a-priori learned at �rst. To this aim, frameworks that are able to generalize
and induct models from labeled structured examples are required. The generalization from
previously seen examples is the classical task of supervised machine learning. In this context,
the main problem is to learn a function predicting the value of a variable y for an observed
x based on a set of input and output pairs. While usually y is a simple value label, the
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learning scenario here demands complex outputs y for the prediction of a parse tree of a
given context-free grammar.

The learning of models that take functional dependencies between arbitrary input (e.g. vari-
able length) and outputs (e.g. structured data) into account represents a further challenge
for machine learning. In contrast to multinomial classi�cation relied to a �nite number of
labels, the outputs here are structured objects such as trees or sequences. In this context,
Tsochantaridis et al. (2004) proposed a framework for structured interdependent output
learning. They learn a model mapping inputs x ∈ X into complex labels y ∈ Y based on a
sample of input-output pairs (x1, y1) . . . (xn, yn) ∈ X ×Y . Herewith, a �x a-priori unknown
probability distribution is assumed. To this end, a discriminant function F : X × Y → <,
that measures the compatibility of x and y, is de�ned in order to induce a mapping f :

f(x;w) = argmax
y∈Y

F (x, y;w), (2.4)

with a parameter vector w. In the case that y ∈ Y is a labeled tree the function F is chosen
such that it generates a model isomorphic to a probabilistic context-free grammar. A node
in an output parse tree y for an input terminal sequence x corresponds to a grammar rule
gi with an associated score wi. The possible trees are evaluated using the sum of the wi
of the belonging nodes. These possible trees correspond to those generating the terminal
sequence x applying derivations beginning from the start symbol S. In this context, F can
be introduced as a score function as follows:

F (x, y;w) = 〈w,Ψ(x, y)〉 =
∑

gi∈rules(y)
wi, (2.5)

where Ψ(x, y) denotes the frequency of each grammar rule gi in the output tree y, whereas
the weight vector w consists of corresponding weights wi. The computation of f(x;w) is
performed by identifying a parse tree y that maximizes F (x, y;w) using the CKY algorithm
(Manning and Schütze, 1999).

In order to penalize parse trees that signi�cantly deviate from the correct parse tree and tol-
erate those that di�er in only a few nodes, loss functions (Weston et al., 2002) that measure
the discrepancy between the predicted structure and the expected output are considered.
To this aim, alternative loss functions instead of the zero-one loss function are used. In
this context the following function ∆(yi, y) = (1 − F1(yi, y)) for two outputs yi and y is
usually considered in natural language processing. The calculation of this loss function is
based on the F1 score representing the harmonic mean of precision and recall taking the
overlap of nodes between trees into consideration. Therefore, the large margin principle
used in Support Vector Machines (Vapnik, 1998; Schölkopf and Smola, 2001) is generalized
in order to predict structured outputs. A violation of the margin constraint with a high
loss is then penalized more than a violation that generates an output with smaller loss.
Iteratively, the single most violated constraint is retained together with a model for each
training example untill no constraint violation occurs with respect to a given threshold. The
system svm_cfg2 provides an implementation of the Support Vector Machine algorithm for
learning a weighted context-free grammar.
2http://www.cs.cornell.edu/people/tj/svm_light/svm_cfg.html
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Figure 2.3: An illustrative parsing model of a façade example. The output parse tree y is
derived given a building part sequence x using a.o. the rule frequency vector
ψ(x, y).

In this manner, a learning of a Weighted Context-Free Grammar (WCFG) for 3D building
modeling is performed in this thesis based on a labeled treebank of annotated buildings
from di�erent building styles. The resulting WCFG consists of a set of context-free rules
together with weights designating the importance of the given rule. In contrast to classical
SVMs, which expect a feature vector with a �xed size and atomic labels, the feature vector
here has an arbitrary size and the labels consist in structured parse trees. Figure 2.3 illus-
trates an instance x of the feature vector consisting of a sequence of observed façade parts
(grammar terminals) as well as a parse tree y as label. Based on the terminal sequence
x de�ning the type of some new observed building parts, a parse tree y is predicted us-
ing the learned weighted context-free grammar against equation 2.5. For example, the rule
Floor → Window Window is applied twice in the parse tree y for generating the word x,
therefore the frequency 2 is recorded in Ψ(x, y) accordingly.

In summary, the method of Tsochantaridis et al. (2004) enables the learning of a weighted
context-free grammar from labeled façade trees like the tree in Figure 2.3. Besides, this
method provides the possibility to acquire a most likely parse tree based on a sequence of
observed building parts from a 3D point cloud with respect to the induced grammar model.
The acquisition of the expected input sequence it beyond the scope of this thesis. However,
an approach for the identi�cation of façade object detectors is presented in Dehbi et al.
(2016c) in order to test the learned WACFG. This approach will be shortly described in
Section 3.2. In this way, using the building part detectors and the learned weighted grammar,
the semantic interpretation of façades from a 3D point cloud is reduced to predicting a parse
tree, that �ts the structure of the given parts. In the current section, the introduced method
represents only the taxonomy and hierarchy of building parts using the weighted context-
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free grammar. This enables to represent the likelihood of di�erent structural patterns, for
example, the likelihood to divide a façade horizontally or vertically for a given building
style. The next section presents methods for learning attributed rules based on logical and
statistical relational learning for modeling the constraints between building parts.

2.4 Logical and statistical relational learning

Apart from formal grammars and SVMs for structured data, this thesis draws upon ideas
of logical and statistical relational learning using Inductive Logic Programming (ILP) tech-
niques and Statistical Relational Learning (SRL) methods, such as Markov Logic Networks
(MLNs). ILP is a subarea of arti�cial intelligence, which combines machine learning with
logic programming. Thus, the goal of ILP, which is inherited from inductive machine learn-
ing, consists in developing techniques to induce hypotheses from observations as well as
synthesizing new knowledge from experience by using computational logic as representa-
tional scheme. ILP has been successfully applied as a learning approach in many di�erent
�elds. In bio-informatics, for instance, ILP has been used to predict protein structure (Mug-
gleton et al., 1992) and mutagenicity (King et al., 1996). Mooney (1997) has applied ILP
to natural language processing. For the �rst time, this thesis transfers, adapts and demon-
strates the potential of ILP in order to learn 3D building models inspired by these and other
works.

Before describing the basics of ILP some terminology has to be introduced (De Raedt,
2008). First, a function is called predicate if it returns a truth value, e.g. parallel. Second, a
term is a constant, a logical variable or a structured term f(t1, ..., tn) composed of a functor
f and n terms ti. Constants represent objects in our domain, e.g.: �window1�, �window2�,
�door1�. A logical variable X ranges over the domain of objects and can take values from this
domain. Third, an atom is a predicate symbol followed by its necessary number of terms,
e.g. line(X) is an atom that represents a line, which is in turn represented by the term X
as a variable. Fourth, a literal is an atom or its negation.

By using these de�nitions the key concept of a horn clause can be de�ned as an expression
of the form:

b1 ∧ ... ∧ bm → h,

in which h and bi are logical atoms. The symbol '∧' symbolizes a conjunction whereas '→'
stands for an implication. Clauses of the form: true → h are called facts.

An example of a horn clause can be illustrated by a parallel relation in the two-dimensional
space:

line(X) ∧ line(Y ) ∧ line(Z) ∧ orthogonal(X,Z)

∧ orthogonal(Y, Z)→ parallel(X,Y ).
(2.6)

Hereby, a new predicate parallel is de�ned as head of the rule (the arrow's left hand side
being the rule's body). A line X and a line Y satisfy this predicate if there is a line Z which is
orthogonal to both lines X and Y. ILP systems are able to learn such �rst order horn clauses
(such as example 2.6) by the use of background knowledge and examples. The ability to
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provide declarative background knowledge to the learning system is one of the most distinct
advantages of ILP. This background knowledge can be given in the form of horn clauses or
as ground facts. Hereby, the prior knowledge about the predicates that appear in the learned
hypothesis later is represented. For example, if instances of the predicates orthogonal and
line (cf. last example clause 2.6) are provided, they can serve as background knowledge in
order to learn the parallel relation.

Given a set E of positive and negative examples as ground facts and a background knowledge
B, a hypothesis H has to be found which explains the given examples with respect to B

and meets the language constraints. The hypothesis H has to be complete and consistent.
H is complete if all positive examples are covered. If none of the negative examples are
covered, H is considered to be consistent. The coverage of an example e ∈ E is tested with
a function covers(B,H,e), which returns the value true if H explains e given the background
knowledge B , and otherwise returns false.

One of the most popular ILP approaches for learning �rst order horn clauses is the Progol
algorithm with many di�erent implementations. In this thesis the Aleph engine (Srinivasan,
2007) was used as a Prolog based implementation of Progol. The Progol algorithm is outlined
in Listing 2.3. Progol �rst selects a positive seed example and then �nds a consistent clause,
which is the most speci�c clause (MSC) of this example and covers this example. This
step is called the saturation step. Against the theoretical background of inverse entailment
(Muggleton, 1995) the MSC can be acquired in order to guide the search. In this way, Progol
learns by using a single example and by verifying the consistency of its generalization with
the dataset. This generalization is added to the background knowledge. Afterwards, all
redundant examples which have been covered by the MSC, are removed. This process is
repeated until a theory is found which covers all positive examples. The coverage function
is de�ned as follows:

covers(B,H, e) = true if B ∪H |= e.

In other words, the hypothesis H covers the example e with respect to the background
knowledge B if B ∪ H semantically entails e.

1. Select a positive example

2. Saturate this example i.e. construct its Most Specific Clause (MSC)

3. Generalize MSC

4. Remove covered positive examples

5. Repeat if positive examples remain

Listing 2.3: Progol Algorithm

In order to examine the goodness of clauses, each clause is evaluated by a score function.
In this context, the default evaluation of Aleph is the function coverage, which de�nes the
clause utility as P-N, in which P is the number of positive and N the number of negative
examples covered by the considered clause respectively. This can also be realized by other
evaluation functions, for example, entropy.
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ILP tasks are search problems in the space of possible hypotheses. Aleph bounds this space
with the MSC as lower bound, whereas the top of the search space is bound by the empty
clause. Once the MSC has been built, Aleph performs a top-down search in the space
of possible specializations by using θ-subsumption as re�nement operator, which enable a
partial ordering of clauses, to decide which clause is more general than another (Lavrac and
Dzeroski, 1994). In this process only the literals appearing in the MSC are used to re�ne
clauses.

Apart from syntactic di�erences, logic programs and attribute grammars are closely re-
lated. Logic programs can be transformed into semantically equivalent attribute grammars
(Deransart and Maluszynski, 1985). Thus, the learned logic programs can safely be used
for reconstruction tasks realized by attribute grammars. This thesis exploits available ILP
systems like Aleph in order to learn categorical logic programs. In contrast to procedu-
ral implementations of attribute grammars, logic programs are declarative and enable a
multi-directional constraint propagation using logical inference. Declarative logic programs
represent assertions based on logical facts. In this manner, they separate between knowledge
and inference. Thus, for the task of building modeling, they separate between the represen-
tation of buildings and their parts from their reconstruction. Procedural approaches de�ne
building splitting schemes based on algorithms, which specify actions and consequences.
This reduces the degree of �exibility of these approaches and makes the learning of gram-
mar rules harder because they learn algorithms and we learn models.

A �rst-order logic programs represent a set of hard constraints on the set of ground facts.
This is attributed to the categorical property of the logical propositions, which only allows
the expression of true or false values. A violation of a clause with a given fact leads to
a non-satis�ability of this logical formula. However, since the observations are noisy and
the building structures are complex, these categorical logical methods are not su�cient. In
order to overcome this de�ciency, a simultaneous handling of inherent uncertainty and the
exploitation of compositional structures is desirable. To this end, various approaches such
as MLNs, that combine logic and probabilities, have been introduced in the �eld of SRL.
MLNs soften the hard constraints of �rst-order logic in such a way that a violation of a
given formula makes it less probable but not impossible.

MLNs (Richardson and Domingos, 2006) represent a simple and compact framework, that
integrates ideas from logic and probabilistic graphical models. In an MLN, each formula is
expanded by a weight in contrast to the deterministic logic-based approaches. This enables
to handle uncertainty in a sound way tolerating imperfect and even contradictory knowledge.
MLNs are considered as templates for constructing Markov Random Fields (MRFs). In
contrast to CRFs, that model conditional probabilities, MRFs model the joint probabilities
in a generative way. An automatic grounding of an MLN speci�es an instantiation of an
MRF enabling the exploitation of available probabilistic inference techniques, such as Gibbs
sampling or Belief Propagation. In the following, some important concepts from probabilistic
graphical models are introduced.

An MRF characterizes a model for the joint distribution of a set of random variables X =
(X1, X2, ..., Xn) ∈ X over the domain X and consists of an undirected graph G = (V,E). V
is a set of nodes where each node Vi corresponds to a random variable Xi ∈ X and E is a
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Figure 2.4: Ground Markov Random Field (MRF) obtained by the application of an MLN
containing the Formula 2.8 to the constants �b1� and �b2�. Equation 2.9 corre-
sponds to the resulting grounded formula. For the sake of graphical simplicity
�b1� and �b2� stand for �building1� and �building2� respectively.

set of undirected edges between the nodes. The joint distribution represented by the MRF
over the variables is given as follows:

p(X = x) =
1

Z

∏
k

fk(xk) ,

where fk is a non-negative, real-value potential function de�ned over the kth clique in G,
i.e., fk : X |xk| → R+. Xk ⊆ X denotes the set of nodes occurring in the kth clique. Z is a
partition function, which enables a normalization ensuring a valid probability distribution.

Given an MRF statistical inference techniques are exploited for solving the MAP inference
problem, i.e., �nding x∗ with

x∗ = argmax
x∈X1×...×Xn

p(x) . (2.7)

Here, xi refer to an instantiation of Xi, i.e., xi ∈ Xi. More information on MRFs and
probabilistic graphical models in general can be found in Koller and Friedman (2009).

An MLN is de�ned as a set of pairs (Fi, λi) (Richardson and Domingos, 2006), where Fi is a
formula in �rst-order logic and λi ∈ R is the weight of formula Fi. Furthermore, a �nite set of
constants C = {C1, . . . , C|C|} is required in order to induce an MRF automatically. For every
ground predicate in the MLN a node is added to the MRF, e.g. isNeighbor(building1,
building2), corresponds to a binary variable in the MRF whose value models the truth
state of the ground predicate.

Equation 2.8 shows an example of a formula Fi with an attached weight 2.5.

2.5 : wilhelminianBuilding(X) ∧ isNeighbor(X,Y )→
wilhelminianBuilding(Y ).

(2.8)

Furthermore, one potential function for each possible grounding of a formula Fi is added
corresponding to a clique in the graph. For example, if one instantiation of formula 2.8 is:

wilhelminianBuilding(building1) ∧ isNeighbor(building1, building2)→
wilhelminianBuilding(building2),

(2.9)
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then a potential exp(λifk) is added to the MRF. This means that there is an edge between
two random variables if the corresponding ground predicates are appearing together in at
least one grounded formula. Figure 2.4 illustrates an automatically grounded MRF from an
MLN, that contains formula 2.8 with C = {building1, building2}.
The derivation of the �st-order rules of an MLN based on a given training data set is
an important task, which has been a subject of intensive research. For example Kok and
Domingos (2005) presented a beam search approach guided by a pseudo log-likelihood mea-
sure enabling to outperform ILP-based solutions (De Raedt and Dehaspe, 1997; Richardson
and Domingos, 2006). Moreover, in order to learn the weights of an MLN in an e�cient
and automatic way, generative approaches perform in general a maximization of a pseudo
log-likelihood instead of the log-likelihood ln p(x;w) of an MRF with respect to a given
training data set. In contrast to generative training, Singla and Domingos (2005) followed a
discriminative approach splitting the predicates into evidence and query predicates in order
to optimize the computational complexity. The conditional likelihood for query predicates
is subsequently maximized based on the observed predicates. An implementation of MLNs
is provided by Alchemy-system3 allowing structure and parameter learning as well as prob-
abilistic logic inference. Alchemy uses MaxWalkSat (MWS) for MAP inference by default.
However, it is possible to make use of message-passing algorithms such as max-product
Belief Propagation.

In this thesis, MLNs are used in order to generalize and extend the two-valued categorical
logic by probabilities enabling a stochastic logic. In this way, due to measurement errors
and uncertain observations, two windows that nearly have the same shape parameters are
rather similar than dissimilar. This can be expressed and enforced using a �rst-order formula
with an attached weight like Formula 2.8. Section 3.2 introduces experimental results of
automatically learned rules and their weights based on logical facts extracted from annotated
buildings façades. The fact extraction is performed using uncertain projective geometry as
described in Section 2.1. An important bene�t of MLNs is the automatic induction of an
MRF from the facts without the need of a human expert to de�ne dependencies. Based
on the induced MRF, statistical inference is used in order to answer questions such as the
geometrical similarity of windows. All in all, in this thesis, MLNs enable the modeling and
learning of attributed weighted constraints among building parts.

3alchemy.cs.washington.edu/
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3 Statistical relational learning of

weighted attribute context-free

grammars

This chapter is devoted to giving insights into the most relevant publications appended to
this thesis. The related articles are presented and discussed in di�erent sections. Section
3.1 deals with structure learning of building parts and demonstrates how logical and re-
lational learning techniques are successfully applicable, despite recursive structures. The
same section shows how ILP as logical relational framework can be extended by uncer-
tain projective geometry and probability density functions in order to learn not only from
precise models but also from noisy observations such as 3D point clouds. In addition to
learning from uncertain data, Section 3.2 is addressed to building models considering the
uncertainty of the models into account. To this aim, this section shows how probabilistic
grammar rules describing façade structures are learned and how logical learning is combined
with graphical models enforcing the topological and geometric constraints with uncertain-
ties. Section 3.3 presents an automatic learning approach for the identi�cation of inherent
geometric redundancy, the modeling of latent prior knowledge and the exploiting of architec-
tural regularities like symmetries in order to support the previously described 3D building
reconstruction process.

3.1 Logical learning of grammar rules from precise models

and noisy observations

This section introduces a novel approach for the automatic learning of building structures
modeled by formal grammar rules described and published in the ISPRS Journal of Pho-

togrammetry and Remote Sensing (Dehbi and Plümer, 2011). So far, except from few ap-
proaches that tried to extract the grammar rules from given data (Ripperda and Brenner,
2009; Becker, 2009; Martinovi¢ and Van Gool, 2013), the rules are mostly manually derived.
However, this is an expensive and laborious task, that needs expert knowledge. Moreover,
the mentioned approaches generated procedural models for virtual 3D scenes using split
grammar rules, which are rather suitable for the generation of synthetic building models
than for the reconstruction of existing complex real-world 3D buildings. Besides, most ap-
proaches assume façades being planar 2D surfaces and they are almost limited to grid-like
designs. This section introduces a relational logic-based method for the learning and mod-
eling of 3D building structures in a pure declarative scheme. This approach shows how
building structures can be learned despite challenging recursive structures of some parts
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like stairs. Apart from the geometric and the topological constraints between the stairs and
their parts, the speci�c challenge is to handle the recursion as a speci�c machine learning
task. This complexity has been overcome by using a bottom-up approach, which consisted
of learning the non-recursive primitives of stairs �rst before learning the whole stairs. This
reduced the gap between low level atomic structures and high level models enabling to
reduce the search space accordingly.
In a �rst step, in order to evaluate the potential of ILP for the automatic learning of building
parts, stairs have been used as a representative example of regular structures in man-made
objects. Stairs are highly structured in a regular way. But the number of steps is arbitrary
and consequently have to be modeled in a recursive way. Moreover, stairs are composed of
aggregated parts characterized by geometric and topological constraints in each aggregation
hierarchy. These constraints can be speci�ed either by the identity of coordinates or by
customized relations. In this context, the choice of the constraint modeling considerably
a�ects the search space of rules. At this stage, it is assumed that both examples for steps
and stairs and counterexamples, in the sense of ILP, are given by precise descriptions without
noise. This means that the user provides consistent examples interactively.

Figure 3.1: Stairs as a recursion of steps (left). Incremental learning of semantic and topolog-
ical primitives of stairs (right). Semantic primitives are marked in bold, whereas
topological and geometric constraints are marked in normal font.

To cope with the complexity of learning strongly interrelated concepts (aggregation and re-
cursion, geometric and topological constraints) a modular incremental bottom-up approach
has been developed in this thesis. The ability to model background knowledge enables a
multi-stage learning process of stairs, which consists of two stages. First, the non-recursive
parts of stairs are learned, and then, building upon these parts, the learning of the recursive
clause is performed. Interestingly, only a few positive and negative examples are su�cient
for the learning of this clause. This divide and conquer approach is illustrated in Figure
3.1 on the right. Stairs are disaggregated into their primitives. Disaggregation occurs in
a top-down manner, whereas learning is realized by a bottom-up approach, starting from
the smallest atomic feature to the whole stairs object. The disaggregation and learning
directions are indicated by descending and ascending arrows, respectively. On the level of
disaggregation, stairs are constructed as a recursion of steps (cf. Figure 3.1 on the right),
which in turn are composed of horizontal and vertical rectangular faces. Both faces can be
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3.1 Logical learning of grammar rules from precise models and noisy observations

Table 3.1: The whole learned logic program of stairs.

de�ned by two user-de�ned 3D points. In contrast to the disaggregation, the starting point
on the level of learning is a pair of two observed left and right 3D points for identifying the
horizontal (tread) and the vertical rectangles (riser) respectively.

The resulting rules are shown in Table 3.1. In order to learn the end recursive rule (1-2), only
four positive and two negative examples are required. This low number can be attributed
to the stepwise learning strategy. It can be veri�ed that the di�erence between these rules
and those of the attribute grammar in Listing 2.2 (cf. Section 2.2) is merely syntactic. For
instance, the attribute Width in the logical predicate step is the counterpart of Step.width
in attribute grammar notation. It should be noted that the rules in Listing 2.2 are only a
subset of the rules of Table 3.1.

As described in Section 2.4, the task of learning requires a set of positive examples, which
are generalized with respect to the set of negative examples and the background knowledge.
Aleph supports �rst-order horn clauses as background knowledge and is further able to learn
ranges and functions with numeric data. These functions can also be used as background
knowledge, and they represent a good basis to describe the geometric and topological con-
straints inside building parts. This is particularly important at the low level of the learning
process, which starts with taking the point coordinates into consideration. Apart from the
observed 3D points in the case of riser, the background knowledge includes arithmetic,
namely the operations plus and vecPlus. They de�ne scalar and vector additions, which are
used to specify topological and geometric constraints between these points of the rectan-
gle and their coplanarity. Since stairs are invariant in rotation it can be, without loss of
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Figure 3.2: Incremental learning of stairs using ILP. The learning task requires positive and
negative examples.

generality, assumed an axis parallelity according to the representation on the left in Figure
3.1.

In total, two positive examples and two negative examples are necessary to learn a riser.
The learning of the concept of tread happened analogously, where the same number of
examples is required. Rules 4) and 5) show the learned rules of riser and tread. Once riser
and tread have been learned, they can be used as primitives in order to learn the concept
of step. Therefore, they are added to the background knowledge. In the following, the
incremental learning process of a step will be elaborated exemplarily. For the completion
of the necessary background knowledge of a step, information about the adjacency between
risers and treads is required. This is expressed by the relation meetsPerpendicular (see rules
6-7 and Figure 3.2), which ensures that risers and treads meet each other but only touch
in their boundaries. This is ensured by the arithmetic operation plus, which moves the left
point of riser by the distance Height along the z-axis. The perpendicularity is ensured by
the vertical and horizontal alignment of the riser and tread, respectively.

Now it is possible to learn the concept of a step. Rule 3) shows the result clause, which
de�nes a step. The head of this rule represents the whole step object, whereas the body
de�nes its aggregated primitives as well as the geometric and topological relations between
them. The attributes Point1 and Point2 serve as identi�ers for riser and tread, respectively,
which the whole step is composed of. The geometric description of the model is given by the
location and shape parameters. The location parameter of step is described by the attribute
Point1. Figure 3.2 demonstrates that this attribute represents the left point of its riser. The
remaining attributes Height, Depth and Width constitute the shape parameters. For the
consistency of the model, the location as well as the shape parameters have to be propagated,
that is, they occur as attributes in the head of the rule. The relation meetsPerpendicular

speci�es the semantic rules of the attribute grammar (cf. Listing 2.2) implicitly. The acquired
background knowledge together with the positive and the negative examples are the basis
of the inductive learning process. In order to understand how the examples in�uence the
learning, an excerpt of positive and negative examples, which has been used to learn a step,
is illustrated in Figure 3.2.

The concept of steps is only one part of the concept of stairs. The adjacency and ortho-
gonality between steps has to be learned as well. In contrast to the meetsPerpendicular in
rule 6), which describes these properties within a step, the meetsPerpendicular in rule 7)
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speci�es them between two neighboring steps within stairs. Now the necessary background
knowledge to learn the recursive concept of stairs has been acquired. The rule for stairs
has already been shown in Table 3.1 (cf. rules 1) and 2)). The square brackets in this rule
symbolize a list in Prolog. In other words, stairs are represented as a list of steps, which
is separated into head and tail (stairs([head|tail])). The new stairs on the left side of the
rule are represented recursively and consist of the stairs from the right side concatenated
with the next new neighboring step. As mentioned above, the neighborhood of the steps
is ensured with the meetsPerpendicular relation. This concatenation of steps implies that
new stairs consist of exactly one step more than the one before. Once again it should be
noted that four positive examples and two negative examples are su�cient to learn the
recursive clause stairs. Several ILP systems such as Golem (Muggleton and Feng, 1990) or
FOIL (Quinlan, 1990) were able to learn quicksort as recursive program from categorical
facts. However, man-made objects such as buildings, windows, steps and stairs are di�erent.
Especially, the learning task over imprecise observations such as 3D point clouds has to deal
with non-categorical examples.

The previous step focused on the logic learning of grammar rules of stairs, where the learning
examples consisted of exact descriptions of the model. The model has to be learned without
taking measurement errors into consideration. This requires a precise presentation of the
object parts and their mutual relations. In order to check the geometric relations between
entities such as planes, it must be ensured that a certain distance measure has to equal zero.
Since in reality this is not usually the case, two planes which meet with an angle around 90
degrees, for example, have also to be considered as orthogonal. Of course, the user could just
provide sketches, which the system could transform into precise descriptions, using snapping
functions based on thresholds and some heuristics. However, in order to model uncertainty,
an appropriate representation of the geometric objects, and especially of relations between
these objects, is crucial.

The previously described approach is not restricted to stairs. A summary of a generic method
for the learning of building parts is depicted in Figure 3.3. For an arbitrary building part,
the extended learning approach can be divided into low and high level learning as outlined
in the �gure. During low level learning, geometric as well as topological constraints between
the elements of the considered building part are identi�ed and learned. Uncertain projective
geometry and probability distributions are used as instruments in order to accomplish the
low level learning and consequently tackle uncertainty in the considered data. Once these
constraints have been identi�ed, they are converted into logical facts, which will be provided
as background knowledge to the high level learner. Afterwards, the second phase can take
place in an incremental and interactive way such as described in the precise learning step.
The low level learning comprises the selection of the structure of interest, the forming of
surfaces and learning of topological and geometric relations. During the learning from precise
models these steps have been handled by ILP due to the absence of measurement errors.
The high level learning deals with concepts on a higher hierarchical level and is therefore
independent from imprecise measurements. Thus, in this phase the formalism of ILP can
be applied similar to the learning from precise models.

The �rst step in the low level learning consists in estimating geometric entities which com-
pose a building part, e.g. a staircase. From a 3D point cloud an estimation algorithm is
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Figure 3.3: Summary of a generic method for learning buildings and their parts

performed in order to obtain the planes in the observed staircase. Before doing so, the sur-
face normals are identi�ed and then clustered in sets with similar normals using DBSCAN
(Ester et al., 1996). This preprocessing avoids the estimation of geometric entities based on
points from di�erent surfaces. For the estimation issue the MLESAC algorithm (Torr et al.,
2000) is used enabling a robust estimation of the planes from the given point cloud. In order
to �nd all planes describing a staircase, a sequential implementation of MLESAC enables
a robust estimation of these planes. After the object estimation has been performed a set
of estimated planes in R3 is acquired accordingly. In order to model the error propagation,
the estimation error of each entity x has to be calculated. This is achieved by determining
its covariance matrix Σxx. Therefore an adjustment problem is solved based on the obser-
vations and the consensus set in order to get a statistical model for the estimated objects
(Koch, 1999). For reasons of e�ciency a transformation from the Euclidean representation
of geometric entities into the homogeneous representation takes place. Afterwards, a statis-
tical hypothesis test is performed in order to decide about the orthogonality or parallelity of
two entities. In this manner knowledge about the mutual geometric relations, like parallelity
and orthogonality between the di�erent entities, is built. Together with the topological in-
formation provided in the next step, these relations complete the background knowledge to
start the incremental high level learning (cf. Figure 3.3).

In order to achieve a correct description and speci�cation of 3D geometric objects, espe-
cially stairs, a transition from reasoning with planes to surfaces is necessary. Herewith, it
is necessary to determine which 3D point blobs represent horizontal and vertical surfaces
that meet each other. However, this information is neither available in the planes nor in
the 3D point cloud. In order to tackle this problem, a knowledge based approach, which
consists of three steps is proposed. First a distribution �tting is performed on blobs, which
represent the consensus sets of the planes, in order to estimate the data boundaries of the
3D point coordinates. For this task, bounded probability density functions such as the beta
distribution (Johnson et al., 1995) are suitable. If the y-coordinates of the 3D points which
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3.1 Logical learning of grammar rules from precise models and noisy observations

Figure 3.4: Left: 3D model of a staircase from 3D point cloud. Boundaries of the blobs in
y-direction correspond to the location parameters of a probability distribution.
Right: Visualization of Wakeby (purple) and beta (green) distribution �tted to
the histogram of y-coordinates of a riser (top) and tread (bottom)

belong to a given blob were beta distributed, an estimation of the two last beta parameters
would lead to the estimation of the y-range boundaries of the considered blob. However,
for the simultaneous estimation of all four parameters of the beta distribution the �rst four
moments have to be used. Since the usage of higher moments adds more noise than sig-
nal to the estimation process, the estimation may not be accurate. In order to tackle this
problem, the so called Wakeby distribution was introduced by Houghton (1978). The choice
of a distribution cannot be based on the theoretical arguments only, without taking the
data into consideration. For this aim, about 50 distributions were examined to �nd the best
description of the underlying 3D points representing treads and risers of di�erent staircases.
The probability distribution function which �ts the data best was selected after performing
three statistic tests: Kolmogorov-Smirnow, Anderson-Darling and Chi-Squared (Lehmann
and Romano, 2005). For each blob at least two of these tests stated that the Wakeby distri-
bution ranked among the two best distributions. Figure 3.4 on the right exemplarily shows
the result of the data �tting for y-coordinates of 3D points which belong to a riser (top)
and tread (bottom) respectively.

Furthermore, taking into account the information that Wakeby distribution is the best dis-
tribution �tting the given data, the next step consists in performing a parameter estimation
to learn a closeness criterion of two di�erent blobs. This knowledge based approach is real-
ized on the basis of their 3D points, which build the consensus set obtained from the plane
estimation. These criteria can be learned by using a decision tree, which will enable us to
decide whether these blobs are neighbored. For this, the di�erent deviations between the es-
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timated y-boundaries from the Wakeby distributions are taken as features in order to learn
a speci�c closeness value in a supervised way. An example of such features is the distance
between the upper and the lower bound bi and ai+1 of two di�erent blobs (cf. Figure 3.4 on
the left). Finally, we are interested in planar surfaces rather than in planes. Therefore, the
same approach used in order to estimate the depth of the blobs turns out to be appropriate
for the determination of the width and height of each blob. The boundaries obtained from
the distribution �tting together with the estimated planes localize a reference point of a
bounding rectangle.

To sum up, the ability to incorporate background knowledge turns out to be a crucial instru-
ment to cope with the model complexity. A very limited number of examples are su�cient
to explain to the machine a human understanding of stairs. Recursion did not turn out to be
a major obstacle. This is the �rst step for the generation of semantic models and attribute
grammar rules of man-made objects such as buildings. The learned models have been ap-
plied as strong prior in order to identify stairs in a huge 3D point cloud (Schmittwilken,
2012) using an intelligent sampling strategy. The presented method focused attention on
the uncertainty of the underlying data and the geometric reasoning under uncertainty. The
next section shows how the uncertainty of models can be taken into consideration as well
and gives insights into a tailored statistical relational learning method, that combines logic
and probabilities for the automatic learning of 3D building models.

3.2 Statistical relational learning of grammar rules

In this section a novel approach for the automatic learning of a weighted attributed context-
free grammar (WACFG) for the identi�cation and reconstruction of façades from 3D point
clouds is proposed, as described in (Dehbi et al., 2016b). This work is published in the
Transactions in GIS journal. In contrast to the method in the previous section, the learn-
ing approach is also able to model the uncertainty of the derived models in addition to the
consideration and modeling of the data uncertainty. Furthermore, a key advantage of this
approach is treating unobservability of building parts and missing values due to occlusions
or noise. Besides, the proposed method addresses not only planar façades but also façades
with sophisticated 3D structures. Figure 3.5 shows that the proportion of buildings with
displaced façades and oriels cannot be neglected. Attribute grammars extend context-free
grammars by attributes and semantic rules. In the context of 3D modeling this provides
more expressive power in order to model the constraints between the primitives of the mod-
eled 3D objects. In this way, geometric, topological and semantic constraints characterizing
human-made objects can be adequately modeled. In contrast to procedural methods, a pure
declarative approach, that separates the representation of buildings and their parts from
the reconstruction task, is proposed. The learned WACFG is used for modeling as well as
for reconstruction tasks. The WACFG describes the taxonomic and partonomic structure
of buildings by a weighted context-free grammar (WCFG) and the substantial constraints,
which are described using Statistical Relational Learning (SRL) methods, namely MLNs.

Figure 3.6 shows the main façade of the Poppelsdorf castle in Bonn. The parse tree re�ects
the taxonomic and partonomic structure of the façade. The latter is aggregated from �ve
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Figure 3.5: The distribution of displaced façades and oriels in selected areas of Bonn, Ger-
many. Due to the existence of displaced façade elements such as parts (covering
all �oors, see left side) or oriels (not covering all �oors, see right side), façades
can not be always adequately modeled as 2D faces. The percentage of buildings
with such structures is signi�cant.

façade parts in a recursive way according to rules stemming from an induced WCFG. An
excerpt of these rules is shown in the box right on the top. The pi indicate the probability
for applying a given rule according to a de�ned distribution over the structures generated by
the grammar. The logical formulas of the MLN are depicted in the box left at the bottom of
the �gure. The weights λi have been automatically learned and denote the importance of the
associated formula. The formulas have been learned as well and indicate the constraints, e.g.,
the vertical and horizontal alignments, and the background knowledge, e.g., neighborhood
and �oor information, of the underlying 3D objects.

SRL models, unlike what is traditionally done in statistical learning, seek to avoid explicit
state enumeration, using a symbolic representation of states. The advantage of these mod-
els lies in the ability to succinctly represent probabilistic dependencies on an object-type
level, i.e., �rst-order level, among the attributes of di�erent related objects. This enables a
compact representation of learned models, that allow for sharing of parameters of similar
objects. Besides, SRL methods allow combining the uncertainty of the observations as well
as the structural models. The learning of aWCFG enables the modeling of façade structures
especially their aggregation in di�erent parts. Furthermore this gives insight in the distri-
bution and importance of di�erent structural patterns by weights, that expand the classical
context-free grammar rules. In comparison to classical parameter estimation, WACFGs are
generic and enable to model objects with a-priori unknown number of parameters such as
the number of �oors and windows. The introduced approach explicitly addresses the un-
certainty of observations by uncertain projective geometry, probabilistic rules and MLNs
such as described in Section 2. All in all, WACFG enables to deal with the complexity and
variety of real-world buildings. All components of the WACFG are automatically learned
from examples. The grammar rules and their probabilities are learned by SVMs, the MLN
is learned using statistical relational learning methods. The learned WACFG is applied to
reconstruct buildings from observations using classi�cation by SVMs and MLN inference.
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Figure 3.6: The main façade of the Poppelsdorf castle in Bonn modeled with the weighted
attribute context-free grammar. The structure of the façade is described by a
parse tree (top in the middle) derived from the weighted context-free part of
the grammar (top on the right). The constraints and attributes of the building
parts are modeled in a relational way using Markov Logic Networks (bottom).
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To the best of my knowledge, this is the �rst demonstration of the impact of adapting
statistical relational learning for 3D building reconstruction.

In order to cope with the learning task, an incremental strategy is followed consisting
in learning the structure of façades �rst and afterwards the parameters of the building
parts as well as the related constraints. Figure 3.7 gives an overview of this approach. In
the �rst step, a weighted context-free grammar is learned based on a relational building
database (RBDB) consisting of 1300 annotated buildings from di�erent regions in Bonn,
Germany. Their façades represent di�erent building styles re�ecting the variety as well as the
complexity of building models. To this end, the open-source measureFacade1 tool has been
used for the interactive measurement of images as well as of 3D point clouds. The building
parts of interest are façades, windows, doors, balconies and oriels. The shape as well as the
location parameters of each building part are captured. In contrast to Ripperda (2008), the
relative location of each part, e.g. �oor and column, is retained not only from images but
also from 3D point clouds. All buildings are characterized by their architectural style such
as �post-war era� in Germany or �Wilhelminian� and their types e.g. single-family house
or multi-family house. Furthermore, the general shape of the related footprint is stored.
Each building consists of one or more façades with their relative position in the building. A
façade consists of several parts such as windows or oriels. Each part is associated to de�nite
columns and �oors in order to describe structural information. All data is manually taken
either from undistorted, recti�ed and scaled images or from high resolution LiDAR 3D point
clouds. 1230 façades were taken with a Canon 350D (focal length: 18mm-55mm �xed on
18mm) or Nikon D700 (�xed focal length on 20mm) digital single-lens re�ex camera with
calibrated lenses. 70 façades were captured by static scanning with a Leica HDS6100 laser
scanner.

In order to learn façade structures, a supervised learning approach is followed using Sup-
port Vector Machines for structured data as described in Section 2.3. This is performed
based on input-output pairs. In the prediction stage (Figure 3.7, yellow background), for a
given façade instance, the most likely parse tree, that represents its structural description,
taxonomy and partonomy is predicted. The input is a sequence of strings, identifying the
type (window, door, balcony and oriel) of the façade parts. The input sequence is acquired
by applying façade object detectors, that use kernel density estimation (KDE) (Wand and
Jones, 1994; Wang and Suter, 2004). This step, however, is beyond the scope of this thesis.
An approach for the identi�cation of façade object detectors is proposed in Dehbi et al.
(2016c) for testing the learned grammar. KDE enables a non-parametric estimation of a
probability density function without data distribution assumptions leading to the shape and
location parameters of the façade parts. For example, openings such as windows or doors
in the façades are interpreted as holes in the point cloud and correspond to areas with a
low point density. Albeit, in order to model the uncertainty of building object parameters
like the width of windows in an explicit way, Schmittwilken and Plümer (2010) showed that
a normal distribution can be safely assumed. In order to avoid this assumption, paramet-
ric probability distributions can be estimated based on ground truth data from the RBDB
such as performed for stairs in this thesis. In this context, Schmittwilken and Plümer (2010)
demonstrated empirically that windows parameters are better described by a Generalized
1http://www.ikg.uni-bonn.de/forschung/projektarchiv/measurefacade.html
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Figure 3.7: A survey of the WACFG approach. The results of the training phase are a
SVM-Model (for the classi�cation of the façade structure, dark brown) and an
MLN-Model (estimation of parameter of façade parts, bright brown). These
models are applied in the prediction phase (yellow) in order to derive a façade
model.
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Style Train Test

Post-war era 0.8829 0.8433
Wilhelminian 0.8402 0.8303
Without speci�cation 0.8342 0.8072

Table 3.2: F1-scores for learning a weighted context-free grammar from a building treebank.
Training and test data stem from di�erent architectural styles.

Extreme Values distribution. This information can be integrated in the current method as
input for the reasoning process using uncertain projective geometry.

For the learning of the WCFG, a treebank (Manning and Schütze, 1999; Charniak, 1996)
has been built based on the building database RBDB. For this issue, several treebank
types have been generated in order to prepare the basis for the following learning process
of the weighted context-free grammar. Parse trees have been derived from observations
using Treebankgenerator, that enables an automatic treebank entries induction from the
RBDB. Each parse tree in the resulting treebank which corresponds to a given façade is
automatically derived from RBDB leading to derivation trees re�ecting several common
architectural patterns such as �oor-wise or column-wise splitting for grid-like structured
façades. For façades that do not follow a grid structure a hybrid representation is used.
The latter consists in altering columns (columnArray) and �oor structures (�oorArray).
The split of façades is based on a reasoning process using the structural annotation from
the RBDB leading to a derivation tree following �lter criteria such as minimal description
length. More details about the induction process is described in Burger (2012).

Once a treebank has been generated, an SVM-based approach was used to derive and
parse a WCFG as described in Section 2.3 (Figure 3.7, dark brown background). The
resulting WCFG consists of a set of context-free rules together with weights designating the
importance of the given rule. In contrast to classical SVMs which expect a feature vector
with a �xed size and atomic labels, the feature vector here has an arbitrary size and the
labels consist in structured parse trees. An instance x of the feature vector consists of a
sequence of observed façade parts (grammar terminals). The label corresponds to a parse
tree y. Based on the terminal sequence x de�ning the type of some new observed building
parts, a parse tree y is then predicted using the learned weighted context-free grammar
against equation 2.5 (cf. Section 2.3, Figure 2.3).

Three di�erent Support Vector Machine models have been learned depending on the building
style. The �rst model is based on samples referring to buildings from the post-war era
in Germany, whereas the second model represents buildings following the Wilhelminian
architecture style. The last model covers the case that no information about the building
style is available. The associated inferred weighted context-free grammar of the last model
consists of about 450 rules. From the Wilhelminian style architecture about 160 rules have
been induced. The resulting rules from the post-war era buildings amount to 135. Table 3.2
shows the F1-scores of the learning and test results for the three models using the svm_cfg
2 software. The classi�cation results of the prediction of façade structures are between 0.8
2http://www.cs.cornell.edu/people/tj/svm_light/svm_cfg.html
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and 0.88 which is a very good classi�cation rate since the inputs are very weak observations:
list of several building types.

Up to now, the context-free grammar describes only the taxonomic and partonomic struc-
ture of façades. In this way, the topological constraints between the building parts are
especially considered. In order to re�ect further constraints (alignments, geometric similar-
ity, etc.) and attributes of building parts (shape and location) the context-free weighted
grammar will be augmented leading to an attribute grammar using Markov Logic Networks
(see Section 2.4). However, in order to deal with the uncertainty of the observations and
missing observations, MLNs and uncertain projective geometry are combined. To learn and
construct an MLN model, logical ground atoms which especially represent geometric and
topological constraints between façade objects are required. Thus, these atoms are gener-
ated from RBDB (Figure 3.7, bright brown). To this end, a statistical geometric reasoning
is performed using uncertain projective geometry (cf. Section 2.1) in order to make decisions
about similarity of geometric entities such as windows. The test whether two windows are
geometrically identical (same shape parameters) is reduced to an identity test of two 3D-
points. In order to consider the uncertainty of the data, the error propagation is modeled
during the reasoning process. Analogously, the veri�cation of the alignments of windows
is reduced to the veri�cation of the parallelity of two lines using a chi-squared statistical
hypothesis test. The logical atoms are extracted according to the predicate list in Table 3.3
which gives the most important predicates for the experiment but can easily be extended
and modi�ed. The full set of extracted ground atoms per façade forms the MLN training
database which was used to learn the MLN consisting of the �rst-order rules as well as their
associated weights wi.

The concepts described in Section 2.4 for learning MLNs and inference based on these MLNs
are now applied to building reconstruction. The target predicate, which is always latent
during the inference, is similar(x, y). This binary probabilistic predicate was inferred from
the database by a pairwise comparison of di�erent objects. For two building parts, similar
is true if and only if they are of the same type, have the same geometry and cannot be further
distinguished by any other property in the database. Therefore, p(similar(x, y) = True)
models the degree of similarity between two building parts. Many architectural aspects
contribute to the probability p of the similar-predicate. These aspects are among others
shape parameters of the considered objects like the width and height, the vertical and

sameFloor(x, y) true i� x and y are on the same �oor
shareHorAlignment(x, y) true i� x and y are horizontally aligned
sameColumn(x, y) true i� x and y belong to the same column
neighborHor(x, y) true i� x and y are horizontal neighbors
shareVerAlignment(x, y) true i� x and y are vertically aligned
neighborVer(x, y) true i� x and y are vertical neighbors
sameHeight(x, y) true i� x and y have the same height.
sameWidth(x, y) true i� x and y have the same width.

Table 3.3: List of the important used predicates.
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horizontal alignment, neighborhood information and whether they belong to the same �oor
(cf. Table 3.3). The mentioned aspects and their in�uence on the similarity are represented
by the MLN. To infer the similarity between pairs of building parts, a structure and weight
learning of an MLN is performed (Figure 3.7, bright brown). In the prediction stage this
MLN will be applied together with the ground atoms, that will be described in the following.

As yet a generic MLN model as well as a generic weighted context-free grammar have been
derived. Both models can be used for the derivation of a concrete 3D model for a speci�c
façade F . For a given 3D point cloud, KDE -based object detectors were applied leading
to the sequence of building part types as well as their parameter values. The latter are
uncertain and maybe incomplete. Therefore, uncertain projective geometry was used again
in order to extract ground atoms according to the predicates in Table 3.3. These atoms
describe geometric properties as well as relations between building parts of the façade F .
Examples for such atoms are sameWidth(w1,w2) and shareHorAlignment(w1,w2) for two
observed windows w1 and w2. These atoms are extracted for all pairs of building objects
for which the relation can be derived. Ground atoms for the remaining predicates from
Table 3.3, that describe structural and topological relations, are derived from the predicted
parse tree for the façade F . Examples are sameFloor(w1,w2) or neighborHor(w1,w2) for
two observed windows. Likewise these atoms are extracted for all pairs.

These ground atoms together with the generic MLN model are the input for the attribution
step (cf. Figure 3.7, yellow background) using statistical inference as described in Section
2.4. Each leaf of the parse tree corresponds to a constant in the MLN. Special attention is
given to determining the most likely con�guration of the similar-predicates, which consists
in similar ground atoms with an associated probability of being similar. The result enables
us to derive the most likely geometry of the façade and its parts (3D model). Especially
unobserved parameters can be estimated.

In a further step the proposed MLN model was evaluated and tested. For the evaluation a
dataset was used containing façades from twenty buildings in Bonn, Germany. Each build-
ing has a varying number of objects, accordingly the corresponding grounded MLNs vary
in size as well. To make the inference task more realistic and to demonstrate that the pro-
posed method can cope with unobserved objects, some of the sameWidth and sameHeight

predicates in every façade were randomly removed. All experiments were conducted in a
10-fold cross validation, i.e., 90% of the buildings have been used for parameter and struc-
ture learning, and the remaining buildings were used for testing. Herewith, the experiments
were performed on handcrafted, automatic learned and a semi-automatic learned MLN. The
�rst experimental evaluation is based on a manually crafted MLN. For this MLN, merely the
weights are learned using Alchemy and discriminative learning as described in Section 2.4.
This enabled to compare the results with a fully automatically learned MLN. The second
experiment turned attention to automatically learned MLNs by the Alchemy system. The
last experiment addresses the question if automatically learned MLNs can be combined with
expert rules to obtain improved results over the previous two experiments. To this end, the
best performing automatically learned MLN was taken, in addition to further rules specify-
ing transitivity, symmetry and re�exivity, and then a parameter re-learning was performed.
In all experiments an MAP inference on all buildings were performed and the predictions
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Handcrafted Auto. Learned Semi-Auto.
MWS BP MWS BP MWS BP

0% missing 0.971 0.483 0.998 0.998 0.998 0.973
25% missing 0.822 0.461 0.837 0.886 0.798 0.874
50% missing 0.724 0.434 0.626 0.726 0.626 0.714

Table 3.4: F1-scores for predicted similar-predicates based on MWS and BP. A 10-fold
cross validation was used. sameHeight- and sameWidth-predicates were randomly
removed.

were compared with the ground truth. Table 3.4 shows the results for running MaxWalk-
Sat (MWS) and max-product Belief Propagation (BP) for the each experiment in di�erent
columns. The performance of the results is evaluated and tested based on F1-scores. The
overall classi�cation rate for the automatically learned MLN in the case of fully observed
objects is 0.99, 0.83 if 25% of observations are missing and 0.62 if 50% are missing. It can be
shown that handcrafted rules do not outperform the automatically learned ones, that do not
require any expert knowledge. The learned MLN reveal interesting connections expressed
by the learned formulas. For example, a rule that is commonly found is the following one:

λi : ¬sameHeight(a1, a2) ∨ ¬sameWidth(a1, a2) ∨ ¬similar(a1, a2) ,

which means that the same height and width implies dissimilarity. This does not correspond
to the intuition. However the presented approach realizes this and penalizes this formula
by negative weight λi. Hence, true groundings of this formula are also penalized. The ex-
periments have shown that automatically learned MLNs can well capture regularities in
building façades without the need of a human expert to de�ne background knowledge and
relationships. Automatically learned MLNs can additionally be smaller in size and hence
allow for a faster inference.

Figure 3.8 shows the model-based reconstruction of �ve façades using the WACFG. Due to
occlusions, noise or sparse point clouds the kernel density estimation (third row) does not
guarantee a complete reconstruction. In façade 1 an MLN-based inference (see fourth row)
enables to adapt and regularize the size and the alignment of the windows in the ground
�oor. In façade 2 the height of two windows as well as the door in the ground �oor could not
be identi�ed by KDE due to the vegetation in the front of the façade. With the predicted
parse tree for the façade, however the missing objects can semantically interpreted leading
to a door on the left and further two windows. The shape parameters and the alignment
constraint of these façade parts are ensured using the MLN model and a-priori learned
probability distributions of model parameters from the RBDB. Likewise in façade 3 the
false estimated shape parameters of the window in the middle due to the existence of a
tra�c sign are corrected by the MLN model. Displaced façade parts such as the case in
façade 2 left column and façade 3 fourth column are identi�ed, albeit they are graphically
not represented in the �gure.
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Figure 3.8: Façades reconstructed with the WACFG. Windows are colored in green and
doors in blue. The �rst row shows reference façade images. The second row
depicts the corresponding input 3D point clouds. Row three represents a kernel
density-based reconstruction of each façade. De�ciencies of the kernel density
estimation are overcome using the WACFG model.

Representation of uncertainty

In this thesis, the uncertainty of data as well as of models is explicitly represented in di�erent
levels. During the annotation stage for training the MLN, we pessimistically assumed that
the annotation errors3 are normal distributed with a standard deviation of 10 cm for shape
parameters. This information is incorporated in the reasoning process based on covariance
matrices of the considered geometries using uncertain projective geometry in order to derive
constraints and relations, i.e. alignments of windows, as logical facts for MLN. During
the interpretation stage, parametric probability density functions �tted on the underlying
observations are considered and integrated in the uncertain reasoning yielding logical facts
analogously. Once the façade parts have been acquired using the building part detectors, the
learned weighted context-free grammar is used to �nd the most likely parse tree explaining
the detected parts. At this stage, the learned weights of the grammar rules, expressing their

3The annotation errors occurs due to geometric inaccuracies, that stem from the user during the annotation

process and deviations resulting from imprecise semantic de�nitions of building parts.
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likelihood, are used together with the a-priori learned SVM model. The acquired parse tree
incorporates further relations such as neighborhood in �oors. In the next step, statistical
inference, in the sense of graphical models, is performed on an automatically induced MRF
to propagate the constraints among the building parts based on the extracted facts. The
learned �rst-order rules and their learned corresponding weights play an important role
in this step. The acquisition of categorical facts from noisy observations using uncertain
projective geometry for MLNs is a key to a successful learning and an interpretation process.
However, this avoid the propagation of the parameter uncertainty of the detected building
parts. This can be modeled using hybrid MLNs (Wang and Domingos, 2008) that allow the
integration of probability distributions and continuous variables. This issue can be addressed
in future research.

In order to avoid geometric redundancy and to support the building reconstruction using
the presented SRL-method, the next section introduces an automatic learning approach for
the identi�cation and modeling of architectural regularities and hidden redundancies such
as symmetries.

3.3 Grammar-based learning and representation of symmetries

in building footprints

In several prominent architectural styles, symmetries play a key role. It is important to
identify and represent them appropriately in building models. This section introduces a novel
approach for the automatic identi�cation and modeling of symmetries and their hierarchical
structures in building footprints, providing an important prior for the SRL-based façade
reconstruction described in the previous section. This work is described and published in the
Transactions in GIS journal (Dehbi et al., 2016a). Buildings and man-made objects are for
many reasons, such as economical or aesthetic, often characterized by symmetry properties.
The latter is dominating in the design of building footprints as well as of building parts such
as façades. Thus, the identi�cation and modeling of this valuable information facilitates the
reconstruction of these buildings and their parts. Figure 3.9 shows exemplarily some façades
with symmetrical properties and their associated footprints. The structure of the symmetry
property in each footprint is re�ected in the structure of the façade. Thus, the latter can
be already mostly derived from the hierarchical description of the footprint.

Symmetry models enable an accurate prediction of occluded building parts for shape com-
pletion based on sparse observations. Further, the identi�cation and explicit modeling of
axial and translational symmetries serves to discover and represent the occurrence of pro-
trusions in buildings. These information can be used in order to improve the footprint based
roof classi�cation and reconstruction (Henn et al., 2013). Such methods decompose foot-
prints in order to determine the appropriate roof type. But up to now they su�er from
suboptimal decompositions.

The presented method provides automatically models based on weak observations towards
reconstructing buildings and especially façades. This approach detects axial as well as trans-
lational symmetries in building footprints and models them, taking their hierarchical struc-
tures into account. The main problem is the inherent uncertainty of the geometry of the
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Figure 3.9: Examples of façades and their corresponding footprints. The symmetries of the
façade can already be derived from the footprint symmetries.
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3 Statistical relational learning of weighted attribute context-free grammars

Figure 3.10: Predicted axial symmetry axes (green) of a given polyline (footprint) and its
sub-polylines. Adjusted axis using least squares is highlighted (red).

footprint segments and their angles. A simple threshold based approach is not successful,
since the threshold values are not known a-priori. Instead, methods of supervised learning
are used in order to classify symmetric footprints and footprint parts. This is reduced to the
classi�cation of polylines and their sub-polylines using Support Vector Machines (Vapnik,
1998; Schölkopf and Smola, 2001) as a robust classi�er, which enables to tackle the inherent
uncertainty of the observed footprints. In this way several axial as well as translational
symmetries are detected. In contrast to classical statistical methods, no assumptions on the
a-priori distribution of the data are required for SVMs. These assumptions can in general not
be guaranteed for footprint data due to its variability. Regression methods (least squares)
are used in order to assess the quality of the identi�ed major and minor symmetry axes.
Based on the classi�cation results a novel algorithm is developed to induce formal gram-
mar rules for particularly representing the hierarchy of symmetry axes and the repetitive
structures and regularities in the footprint.

As a �rst step, the approach is based on supervised machine learning and classi�cation of
axial and translational symmetries in footprints. A footprint is modeled as a polyline con-
sisting of a set of sub-polylines, that can be discriminated in axial symmetric or non-axial
symmetric (sub-)polylines. The SVM classi�er is trained based on a set of polylines labeled
as axial symmetric or non-axial symmetric. The acquired model is applied for the classi�-
cation and determination of axial symmetric polylines. However, machine learning methods
require feature vectors of �x lengths, whereas building footprints have an arbitrary number
of segments. This problem is addressed by mapping polylines onto feature vectors by using
aggregate functions. The axial symmetry is a property of polylines, whereas translational
symmetry is a property of pairs of segments. Hence, there are two di�erent classi�cation
tasks. SVMs are also used for classifying pairs of footprint segments into translational and
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3.3 Grammar-based learning and representation of symmetries in building footprints

Figure 3.11: Identi�cation of broken symmetries in footprints. Symmetric parts in the front
are highlighted in same color.

non translational symmetric segments. As a result, a set of symmetry axes is obtained
including major as well as minor symmetry axes. Axes that belong to sub-polylines of a
given polyline deviate slightly from each other and hence are adjusted using least squares
in order to �t an optimal shared axis. Figure 3.10 shows the predicted axes in green for a
given footprint. One adjusted symmetry axis of the footprint from �gure 3.10 is exemplary
illustrated in red color. Analogously translational symmetric segments from the footprint
are classi�ed.

In the next step, the classi�cation is exploited in order to induce and learn context-free
grammar rules, which re�ect the hidden hierarchical and repetitive structures in footprints.
For this aim, an algorithm is developed, which uses a lexical analysis, in order to gen-
erate a derivation tree representing symmetry hierarchies and repetitive structures. The
inferred rules can be used as background knowledge in order to predict building parts such
as occluded parts, which are unknown a-priori. Furthermore, the grammar rules enable
a compact representation of buildings and their parts especially of symmetric ones. The
fact that symmetric building parts are often constructed in a similar way helps to restrict
the space of hypotheses during a stochastic reasoning process for the reconstruction of 3D
building models as described in (Loch-Dehbi et al., 2013). Besides, the presented approach
detects symmetries and infers adequate grammar rules even though symmetry is broken in
the given footprint (see Figure 3.11).

As mentioned above, a footprint is modeled as a polyline consisting of a set of sub-polylines.
A polyline P : (p1, ..., pn) is speci�ed by 2D points pi, i = 1 . . . n. A footprint is represented
by a special polyline, which is closed. In a closed polyline p1 and pn are connected by a
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true axial
symm. pol.

true non-axial
symm. pol.

precision (%)

pred. axial symm. pol. 1294 14 98.92

pred. non-axial symm. pol. 0 24712 100

recall (%) 100 99.94

Table 3.5: Classi�cation results of axial symmetric polylines. Two classes are considered:
axial symmetric polylines (axial symm. pol.) and non-axial symmetric polylines
(non-axial symm. pol.)

segment. A sub-polyline4 of a given closed polyline P : (p1, ..., pn) is a sub-sequence of the
points of (p1, ..., pn, p1..., pn) with maximal length n. In some cases it is more appropriate
to represent a polyline as a sequence of segments Q = (s1, . . . , sn−1) with si = pipi+1 for
i = 1 . . . n − 1. Axial symmetric parts of a given footprint P correspond to a symmetric
polyline SP , which can be de�ned as follows: A polyline SP : (p1, ..., pn) is said to be
axial symmetric if there is a symmetry axis A such that for each point pi in P , either A
passes through pi or there is a corresponding point p′i in P such that A is the bisector of
the segment pip′i. The previous de�nition holds for footprints without uncertainty, which
do rarely occur in real-world scenarios. The developed approach copes with uncertainty
based on a classi�cation using a trained model. The geometric properties of a polyline are
represented by features. A polyline consists of an arbitrary number of segments whereas the
number of features is �xed. For example the di�erence of number of segments left and right
of the bisector ∆ of the �rst and the last point or the di�erence of the sum of the azimuths
left and right were used. A feature weighting is performed in the training phase using the
Relie� algorithm (Robnik-�ikonja and Kononenko, 2003), which provides the importance
of each feature. Relie� ranks individual features according to their relevance in the context
of others. Features with a low weight are neglected. These features were used to classify
polylines into symmetric polylines and non-symmetric ones. An SVM was employed, which
has been trained on ∼ 26000 labeled polylines, which are based on about 100 authoritative
cadastral footprints from the area of Bonn, Dortmund, Münster and Düsseldorf in North
Rhine-Westphalia, which di�er in complexity. To this end, a software, that supports a
human user in order to annotate polylines and segment pairs, was implemented. The average
number of the vertices of these footprints amounts to 16.1.

Table 3.5 presents the result of the classi�cation with an overall accuracy of 99.94% and
a precision of 98.92% for symmetric polylines derived by 10 fold cross validation. Further
during the learning of the model the problem of unbalanced class frequencies has been taken
into consideration using adequate penalty parameters as suggested in Vapnik (1998).

The �nding and modeling of repetitive structures and regularities in footprints represents
an interesting task as well. Two segments s1 and s2 are translational symmetric if they
have roughly the same length and the same azimuthal angle. The identi�cation of repet-
itive structures in a footprint is considered as a classi�cation problem, which addresses
uncertainty of the segments in analogy to the case of axial symmetry. Features are the

4This de�nition copes with the case that the symmetric polylines may not start at p1 or pn but include

one of both.
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true transl.
segm.

true non-transl.
segm.

precision (%)

pred. transl. segm. 435 10 97.75

pred. non-transl. segm. 7 14039 99.95

recall (%) 98.41 99.92

Table 3.6: Classi�cation results of translational symmetric segment pairs. Two classes are
considered: translational symmetric segment pairs (transl. segm.) and non-
translational symmetric segment pairs (non-transl. segm.)

di�erence of azimuthal angles, quotient of the lengths and the minimum of the di�erences
in x and y directions. The training and the classi�cation phase as well as the results are
comparable to the classi�cation of axial symmetry. From 96 footprints from cities in North
Rhine-Westphalia 445 segment pairs are labeled as translational symmetric and 14046 pairs
as non-translational. The confusion matrix in Table 3.6 shows that an overall accuracy of
99.92% and a precision of 97.75% for translational symmetric segments have been achieved
derived by 10 fold cross validation. In both classi�cation tasks the few misclassi�ed cases
result from situations where even human observers have problems in deciding whether a
polyline or a pair of segments is symmetric or not. These cases represent decisions lying in
a twighlight zone due to the inherent uncertainty of the data where both decisions can be
justi�ed. Since the classi�cation is performed using a SVM Platt scaling approach, we get a
probability of the predicted class in addition to a prediction. In the misclassi�ed cases the
probabilities are not peaked (0.3869 against 0.6131).

Building upon the axial symmetric polylines and the translational symmetric segments from
the previous classi�cation steps, grammar rules for hierarchical and repetitive structures of
a footprint can be induced. In a preprocessing step the footprint is permuted such that it
starts with the longest symmetric sub-polyline sp, yielding s1 s2 . . . sn = sp sk+1 . . . sn.
The following rule S → s1 s2 . . . sn is generated. Starting with the longest axial symmetric
polyline, the footprint is successively decomposed into parts. Rules of a context free grammar
are generated, which re�ect the axial symmetry. In this rule the segments of sp are replaced
by nonterminal symbols N1 and N1 re�ecting the symmetry. This generates three rules:
S → N1 N1 sk . . . sn, N1 → s1 . . . sm and N1 → sm+1 . . . sk. In the case that the length
of sp is odd the �rst rule is S → N1 st N1 sk . . . sn where st is the middle segment of sp.
The other rules are adapted accordingly. Symmetric polylines are represented by two rules
expressing explicitly that one sub-polyline represents the mirrored sequence of the other.
This procedure is recursively applied to both parts in order to re�ect the inherent hierarchy
between symmetry axes. For example in Figure 3.10, a major symmetry axis is located at
the segment s5, while a minor axis lies on segment s7. Figure 3.12 depicts graphically the
parse tree on the façade based on the identi�ed axial symmetries from a given footprint.
The derived context-free grammar rules are given in Table 3.7.

In a second step, the a-priori classi�ed repetitive parts are represented by the same symbol
of the grammar, modifying the grammar derived in the last step. This enables to use the
Sequitur algorithm (Nevill-Manning and Witten, 1997), which infers a hierarchical struc-
ture from a sequence of translational symmetric segments. These hierarchies are represented
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Figure 3.12: The induced grammar rules from a given footprint. The hierarchical structure
of the symbols is illustrated in the façade as well as in the footprint.
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Figure 3.13: The induced grammar rules for translational footprint parts re�ect the repeti-
tive structure of the corresponding façade

by context free grammar rules. In the contrast to the standard Sequitur algorithm, which
generates rules from scratch, an adaptation is developed, that extends and modi�es existing
rules, which already represent axial symmetries. Figure 3.13 shows a footprint that contains
several translational symmetries. The application of the modi�ed Sequitur yields the high-
lighted structures at the bottom. The red colored parts (protrusions) and the orange parts
(two translated protrusions and a connecting wall) of the footprint as shown are translated
regions in the corresponding façade, which match the visual perception. Further grammar
rules for the non-terminals N1, N2, . . . have been previously derived in order to represent
axial symmetry yielding the rules shown in Table 3.8.

To sum up, the main contribution in this section is an approach that automatically de-
tects and models axial as well as translational symmetries in footprints. The uncertainty of
the underlying observations is tackled with a Support Vector Machine based classi�cation
and a regression of symmetry axis using least squares. The classi�cation enables to model
repetitive as well as translational symmetries in an elegant way by formal grammars. This
method has been successfully applied for generating façade hypotheses for CityGML LoD3
buidlings (Loch-Dehbi et al., 2013). The introduced method delivers good prior knowledge
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Terminals = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12}
Rules:

S → N1 s6 N1 s12
N1 → s1 s2 N2 s4 N2 N1 → N3 s8 N3 s10 s11
N2 → s3 N2 → s5
N3 → s7 N3 → s9

Table 3.7: The induced grammar from the footprint in Figure 3.12. N represents an axial
symmetric part of a given part N .

accelerating a reasoning process yielding a small number of accurate hypotheses and hence
reducing the search space signi�cantly. Once one part has been detected and reconstructed,
consequently the (axial or translational) symmetric part can be likewise reconstructed. This
approach can be combined with the introduced SRL-based reconstruction method in order
to reduce the search space and to improve the reconstruction quality. A key advantage of
this approach is treating the problem of unobservability due to occlusions. More details and
algorithms can be found in Dehbi et al. (2016a).

Terminals = {s1, s2, s3, . . . , s45, s46}
Rules:

S → N1 s3 N1 T2 N2 s17 N2 T1 N3 s26 N3 T1 N4 s35 N4 T2
T1 → s6 s7 s8 s9 T2 → T1 s10 T1
N1 → s1 s2 N1 → s4 s5
N2 → s15 s16 N2 → s18 s19
N3 → s24 s25 N3 → s27 s28
N4 → s33 s34 N4 → s36 s37

Table 3.8: The induced grammar from the footprint in Figure 3.13 taking translational
symmetries into consideration. Previously extracted rules for axial symmetries
have been extended. A repeated T stands for two or more translated parts.
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3D building models have been used for several tasks such as the calculation of energy
balances or escape routes. This requires automatically derived 3D models which represent
semantics explicitly. In this thesis, new methods and approaches have been developed for
the automatic learning and parsing of grammar rules for 3D building reconstruction from
3D point clouds. A novel machine learning-based approach is introduced for the learning of
weighted attribute context-free grammar rules (WACFG). In contrast to procedural meth-
ods, a declarative approach separates the representation of buildings and their parts from
their reconstruction. The learned rules serve both as strong prior knowledge and as semantic
models for the interpretation and reconstruction of buildings and their parts from 3D point
clouds. The proposed machine aided method reduces the need for expert knowledge and the
expense of designing grammar rules manually. This addresses not only the learning of the
grammar rules but also the parsing of 3D point clouds leading to a semantically interpreted
model. Moreover, the introduced approach is able to learn from precise models as well as
noisy observations and deals with the uncertainty of models itself. The presented approach
handles successfully complexity �a varying number and type of objects�, uncertainty and
unobservability in real-world problems. This is explicitly addressed by uncertain projective
geometry, probability density functions, probabilistic grammar rules and Markov Logic Net-
works (MLNs). These formalisms enable to handle and evaluate data quality in an explicit
way. The developed approach consists of three components.

The �rst component of the learning method consists in the stepwise learning of building
parts and supports both learning from precise descriptions as well as from real observations.
Herewith, two learning levels, high and low level, have been introduced. In the �rst case,
the user as teacher provides some examples of the target concept in addition to related
background knowledge in order to learn the logical rules which describe this concept using
Inductive Logic Programming (ILP). The background knowledge contains basic spatial re-
lations like parallelity or orthogonality. The ability to model background knowledge enables
a multi-stage learning process of a building part based on its previously learned parts. In
the second case, the background knowledge is automatically extracted from a terrestrial 3D
point cloud. In addition to uncertain projective geometry, which uses hypothesis tests for
learning imprecise geometric relations (e.g. orthogonality), probability distributions are used
in order to learn the uncertain topological relations between 3D blobs within the building
parts. Only few examples were su�cient to learn from precise as well as noisy observations.

The second component consists in a two-staged incremental strategy in order to cope with
the complexity of the learning task and to take the uncertainty of models into consider-
ation as well. At �rst, the context-free part of the WACFG is learned. Afterwards, the
rules are extended by attributes and constraints between the building parts. A Support
Vector Machine-based approach was used to infer a weighted context-free grammar from
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input-output pairs given as structured data from a façade treebank. In addition to the
grammar rules a classi�cation model is obtained. This enables to parse a sequence of ob-
served façade elements in order to predict the most likely tree structure. The weighted
context-free grammar rules are extended by attributes and constraints, which describe the
geometric as well as the topological dependencies between the façade elements. To this end,
a Statistical Relational Learning (SRL) method using MLNs is applied for the �rst time
in 3D building reconstruction. In order to learn the structure, i.e. formulas, as well as pa-
rameters, i.e. weights, of an MLN model, logical atoms are automatically generated from a
relational building database consisting of 1300 annotated buildings from di�erent regions
in Bonn, Germany. It can be stated that the learned MLNs can well capture regularities in
building façades without the need of a human expert to de�ne background knowledge and
relationships. Handcrafted rules do not outperform the automatically learned ones.

In order to support and provide an important prior for the SRL-based façade reconstruction,
a third component has been described. It enables the automatic identi�cation and induction
of models for the representation of axial and translational symmetries in footprints. This in-
formation can be derived from the corresponding footprints without any observations of the
façades. Uncertainty is explicitly addressed by using classi�cation methods. Translational
as well as axial symmetries are detected using supervised classi�cation methods. Support
Vector Machines in combination with Platt's posterior probabilities (Platt, 1999) have been
used as robust classi�er, that derives not only predicted classes but also a degree of cer-
tainty of the prediction. Hierarchical and repetitive structures in building footprints are
induced based on the previous accurate classi�cation results. Context-free grammar rules
are then derived using a lexical analysis enabling the description of repetitive as well as
axial symmetric parts in a relational and compact way.

The learned models are consistent but in general they are not necessarily redundance-free. In
order to check these models for redundancy, the geometric reasoning approach presented in
(Loch-Dehbi and Plümer, 2011) can be applied. It combines algebraic methods with logical
inference rules which reduce the search space for valid rules. Conversely, the learned logical
concepts can serve as input in order to enrich the predictions made during the reasoning
process. Further, the assumption that the measurements error is greater than the uncertainty
of the theoretical concept was made. Consequently, only errors from noisy observations are
considered. However, an extension of the approach is possible by incorporating covariance
matrices, that represent the uncertainty of the object model.

In the presented method, the variables and features of MLNs are discrete. As yet uncertain
projective geometry has been used in order to extract ground atoms from imprecise observa-
tions. In order to enable the modeling of continuous variables such as the shape parameters
of building parts, hybrid MLNs (Wang and Domingos, 2008) can be investigated using prob-
ability distributions from the exponential family. Furthermore, lifted inference approaches
can be bene�cial for the underlying task. Lifted inference (Kersting, 2012) exploits symme-
tries in the underlying problem structure and clusters indistinguishable objects together to
increase e�ciency. 3D building reconstruction is expected to bene�t from such approaches
due to the fact that building façades contain a lot of symmetries. Hence, additional ground
and lifted inference algorithms should be evaluated, such as the lifted likelihood maximiza-
tion approach presented by Hadiji and Kersting (2013).
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A further open question is building footprint related symmetry model repair. In this context
the posterior probabilities of the classi�ed symmetric polylines can be exploited in order to
address this issue. These probabilities, that represent a quality assessment of the predictions,
give an evidence of the perfection of the symmetry. In this manner, errors stemming from
data acquisition can be detected and corrected. Moreover the presented approach, that
currently is limited to the induction of relational models from building footprints, can be
extended in order to derive similar models for building façades. This addresses cases of
symmetry that are not re�ected in the building footprints.

The main contribution of this thesis is a novel method for automatic learning and parsing of
3D weighted attribute context-free grammars for 3D reconstruction of buildings and their
parts from 3D point clouds. For the �rst time it is possible to represent and reconstruct
buildings with a fully automatically learned weighted grammar in a pure declarative way
using logical and statistical relational learning techniques. This enables the separation be-
tween the representation of buildings and their parts from their reconstruction from 3D
point clouds. The uncertainty of data as well as of models is explicitly represented in dif-
ferent levels by uncertain projective geometry, probability density functions, probabilistic
grammar rules, Markov Logic Networks and Support Vector Machines.
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A Appended papers

A.1 Learning grammar rules of building parts from precise

models and noisy observations

Dehbi, Y., Plümer, L., 2011. Learning grammar rules of building parts from precise models
and noisy observations. ISPRS Journal of Photogrammetry and Remote Sensing 66, 166-
176. Quality, Scale and Analysis Aspects of Urban City Models.

Abstract

The automatic interpretation of dense three-dimensional (3D) point clouds is still an open
research problem. The quality and usability of the derived models depend to a large degree
on the availability of highly structured models which represent semantics explicitly and
provide a priori knowledge to the interpretation process. The usage of formal grammars for
modelling man-made objects has gained increasing interest in the last few years. In order
to cope with the variety and complexity of buildings, a large number of fairly sophisticated
grammar rules are needed. As yet, such rules mostly have to be designed by human experts.
This article describes a novel approach to machine learning of attribute grammar rules
based on the Inductive Logic Programming paradigm. Apart from syntactic di�erences,
logic programs and attribute grammars are basically the same language. Attribute gram-
mars extend context-free grammars by attributes and semantic rules and provide a much
larger expressive power. Our approach to derive attribute grammars is able to deal with
two kinds of input data. On the one hand, we show how attribute grammars can be derived
from precise descriptions in the form of examples provided by a human user as the teacher.
On the other hand, we present the acquisition of models from noisy observations such as 3D
point clouds. This includes the learning of geometric and topological constraints by taking
measurement errors into account. The feasibility of our approach is proven exemplarily
by stairs, and a generic framework for learning other building parts is discussed. Stairs
aggregate an arbitrary number of steps in a manner which is speci�ed by topological and
geometric constraints and can be modelled in a recursive way. Due to this recursion, they
pose a special challenge to machine learning. In order to learn the concept of stairs, only
a small number of examples were required. Our approach represents and addresses the
quality of the given observations and the derived constraints explicitly, using concepts from
uncertain projective geometry for learning geometric relations and the Wakeby distribution
together with decision trees for topological relations.

For copyright reasons, the full paper is only included in the printed version.
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A.2 Statistical relational learning of grammar rules for 3D

building reconstruction

Dehbi, Y., Hadiji, F., Gröger, G., Kersting, K., Plümer, L., 2016b. Statistical rela-
tional learning of grammar rules for 3d building reconstruction. Transactions in GIS,
doi:10.1111/tgis.12200.

Abstract

The automatic interpretation of 3D point clouds is a challenging task. The interpretation
process requires highly structured models representing semantics. These models serve as
prior knowledge and enhance the quality of the reconstruction. In this context formal gram-
mars play a prominent role in building modelling in the last decade. They allow to describe
structures as well as parameters of buildings and their parts. As yet, the grammar rules
are mostly manually derived in an expensive and laborious process that relies on expert
knowledge. We propose a novel approach for the automatic learning of attribute grammar
rules for 3D building reconstruction. In order to deal with the variety and complexity
of buildings, we annotated buildings especially façades from di�erent building styles. In
order to cope with the learning task, we follow an incremental machine learning based
strategy. The approach consists in learning the structure of façades, context free part of
the grammar, in a �rst step. Afterwards the context free model is lifted leading to an
attributed model that extends the grammar rules by further constraints reigning between
the façade parts. In the �rst step, inspired by works from natural language processing we
automatically built a treebank, collection of parse trees, in order to generate the structure
of building models corresponding to the context free part of the attribute grammar. Based
on the treebank entries a weighted context free grammar is learned using a support vector
machine (SVM) based method. The latter infers rules and predict parse trees as structured
data from a given building parts sequence as well. The second step consists in a statistical
relational learning method using markov logic networks (MLNs). The latter models and
enforces the topological and geometric constraints on the pre-de�ned terminals of the
context free grammar. To this end structure as well as parameters of a MLN model are
learned. Uncertain projective geometry is used in order to generate logical atoms for this
learning task. This enables to deal with the uncertainty of the observations. Furthermore,
MLNs addressed explicitly uncertainty allowing probabilistic inference in order to make
decisions about the geometry and topology of building parts. Further MLNs are able to
deal with partially unobserved values such as the case in the context of buildings e.g. due
to occlusions. The learn and classi�cation results of both parts of the learning approach
are presented.

For copyright reasons, the full paper is only included in the printed version.
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hierarchical structures in building footprints by formal grammars

A.3 Identi�cation and modelling of translational and axial

symmetries and their hierarchical structures in building

footprints by formal grammars

Dehbi, Y., Gröger, G., Plümer, L., 2016a. Identi�cation and modelling of translational
and axial symmetries and their hierarchical structures in building footprints by formal
grammars. Transactions in GIS 20, 645-663, doi:10.1111/tgis.12177.

Abstract

Building and man-made objects are for many reasons, such as economical or aesthetic,
often characterized by symmetry properties. The latter is reigning in the design of building
footprints as well as of building parts such as façades. Thus the identi�cation and modelling
of this valuable information facilitates the reconstruction of these buildings and their parts.
This paper presents a novel approach for the automatic identi�cation and modelling of
symmetries and their hierarchical structures in building footprints, providing an important
prior for the façade and roof reconstruction. The uncertainty of symmetries is explicitly
addressed using classi�cation and regression methods. Symmetries are identi�ed using
supervised machine learning (Support Vector Machines). Axial as well as translational
symmetries are detected. The quality of the identi�ed major and minor symmetry axes is
assessed by a least squares based adjustment. Context free formal grammar rules are used
in order to model the hierarchical and repetitive structure of the underlying footprints. We
present an algorithm which derives grammar rules based on the previously acquired symme-
try information and using lexical analysis describing regular patterns and palindrome-like
structures. This o�ers insights into latent structures of building footprints and describe
therefore the associated façade in a relational and compact way.

For copyright reasons, the full paper is only included in the printed version.
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