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1. Introduction 

1.1 The Eph-ephrin system 

The Eph-ephrin system is involved in many different processes and is ubiquitously expressed 

throughout the body (Hafner et al., 2004). Of all receptor tyrosine kinase (RTK) families found 

in the human genome, the Eph receptor family is the largest group. The Eph receptors can 

be assigned into two groups: EphA (EphA1-8, 10) and EphB (EphB1-4, 6) receptors. Upon 

ligand binding they are able to transmit signals intracellularly and thereby steer processes 

critical in embryonic development but also during adulthood (Pasquale, 2008; Pasquale, 

2010). These include cell migration and the formation of tissue boundaries and segmentation 

(Klein, 2012). Eph receptors comprise several different domains (Figure 1) within their N-

terminal ectodomain they contain a globular ligand binding domain (LBD), a cysteine rich 

region containing a sushi and an epidermal growth factor (EGF)-like domain and two 

fibronectin type III repeats (FN1 and FN2). The FN domains are followed by a transmembrane 

helix and the intracellular part. The latter part consists of a juxtamembrane region which 

contains several conserved tyrosine residues, a tyrosine kinase domain, a sterile α-motif (SAM) 

protein-protein interaction domain and a C-terminal Psd-95, Dlg and zo-1 (PDZ) domain 

(Pasquale, 2008) (Figure 1). Upon stimulation by ligand binding, the intrinsic tyrosine kinase of 

the Eph receptor is activated and can subsequently mediate tyrosine phosphorylation of 

target proteins. These target proteins in turn can regulate small Rho family GTPases, like RhoA, 

Rac1 and Cdc42 and henceforth modify cytoskeletal dynamics.  

The ephrin ligands, which have not been studied as extensively as their receptors, are also 

classified into ephrin-A and ephrin-B groups. These assignments were made based on their 

structure, which is significantly different between class A and B ephrins. Ephrin-A proteins 

(ephrin-A1-5) are attached to the membrane by a glycosylphosphatidylinositol (GPI)-anchor, 

while ephrin-B proteins (ephrin-B1-B3) are type I transmembrane proteins, which contain a 

PDZ domain in their short cytoplasmic tail (Figure 1). Both groups possess an N-terminal 

receptor binding domain. Ephrin-A ligands mainly bind to EphA receptors and ephrin-B 

ligands mainly bind to EphB receptors. An exception from this rule are the EphA4 receptor 

which can bind, albeit weaker, to ephrin-B, and the EphB2 receptor which can bind to 

ephrin-A5 (Pasquale, 2004). Within the A and B groups they bind promiscuitively to each 

other. It was found that each Eph receptor binds an ephrin ligand, dimerizes with another 

Eph-ephrin complex, and consecutively two Eph-ephrin dimers join to form a tetramer, in 

which each ligand interacts with two receptors and each receptor interacts with two ligands 

(Himanen et al., 2001). Interestingly, the receptors and their ligands not only bind in trans 

(between two neighbouring cells) but also in cis (within the same cell) to each other. It is 
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speculated that these different binding mechanisms might have an activating and an 

inhibitory effect, respectively (Arvanitis and Davy, 2008). In 1996 Holland et al. studied the 

influence of the EphB RTK on axon guidance. It had been found that mice lacking EphB RTK 

showed defects in axon guidance (Henkemeyer et al., 1996; Orioli et al., 1996). Remarkably, 

when they investigated transgenic mice expressing a catalytically inactive mutant EphB RTK, 

axon guidance remained intact (Holland et al., 1996). They concluded that the EphB/ephrin-

B system cannot only transmit signals towards the receptor holding cell (forward signaling), 

but that the ligands possess receptor-like functions and are able to induce intracellular 

signaling cascades in the ligand presenting cell (reverse signaling).  

 

 

 

Figure 1: Domain structures of ephrins and Eph receptors.  

Class A and B Eph receptors possess similar domains and are primarily discriminated based 

on their Eph class-specificity loop (Himanen et al., 1998), located within their globular ligand 

binding domain. Extracellularly, they contain a globular ligand binding domain (LBD) a 

cysteine rich region and two fibronectin type III repeats (FN1 and FN2). The intracellular part 

consists of the juxtamembrane region, a tyrosine kinase domain, a sterile α-motif (SAM) 

protein-protein interaction domain and a PDZ domain. Ephrin ligand classes substantially 

differ from each other. Ephrin-A ligands are tethered extracellularly to the plasma membrane 

by a GPI anchor. Ephrin-Bs are transmembrane I proteins and contain a receptor binding 

domain, a transmembrane domain and an intracellular domain with a PDZ domain. EphA 

receptors mainly bind ephrin-As, while EphB receptors mainly bind ephrin-Bs. Within their 

classes, ligands and receptors bind promiscuitively to each other. Scheme deduced from 

(Boyd et al., 2014). 
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Indeed, it has been found that ephrin-B also undergoes phosphorylation upon interaction 

with EphB receptors. This involves for instance Src family kinases (Bruckner et al., 1997; 

Georgakopoulos et al., 2006) and the fibroblast growth factor receptor (FGFR) (Chong et al., 

2000). During ephrin-B reverse signaling its intracellular domain (ICD) becomes 

phosphorylated upon recruitment of SH2 or PDZ domain containing proteins. Although they 

do not possess an ICD, ephrin-A proteins have also been found to transmit reverse signals 

(Holmberg et al., 2005; Knoll and Drescher, 2002), probably by means of co-receptors. The 

p75 neurotrophin receptor (p75NTR) (Lim et al., 2008) and the TrκB neurotrophin receptor 

tyrosine kinase (Marler et al., 2008; Marler et al., 2010) have been suggested as potential 

transmembrane binding partners that can mediate reverse signaling of ephrin-A. Ephrin-A 

downstream signaling involves stimulation of proteins like ephexin, Vav-2 (Cowan et al., 2005) 

and Tiam-1(Tanaka et al., 2004). Analogous to ephrin-B, ephrin-A stimulation mainly regulates 

cell adhesion and migration. Vav-2 activation for example leads to Rac1 activation  and 

thereby to cytoskeletal reorganization (Cowan et al., 2005). 

 

1.1.1 The Eph-ephrin system during CNS development 

The expression pattern of the Eph-ephrin system has been well characterized in the 

developing CNS of mice (Bruckner et al., 1999; Liebl et al., 2003). Murine knock out models 

indicated its involvement in many developmental processes (Table 1). It is known to regulate 

many processes ranging from segmentation, neural crest migration, topographic mapping of 

the CNS, axon guidance, vascular development to neurogenesis during development. In 

vertebrates, the paraxial mesoderm as well as the hindbrain is segmented. Eph-ephrin 

signaling is involved in both the initial segmentation and in the subsequent division of somites 

into anterior and posterior halves. EphA4 is expressed in the anterior half, while ephrin-B2 is 

localized to the posterior half (Durbin et al., 1998; Tepass et al., 2002). During subsequent 

hindbrain segmentation, rhombomeres 1 to 7 are transiently formed. These rhombomeres 

later specify where neural crest cells migrate and nerves originate. In mice, Eph receptors are 

expressed in rhombomeres 3 and 5, while ephrins are expressed in rhombomeres 2, 4 and 6. 

In some rhombomeres Eph receptors are expressed together with their ligands, however, at 

most sites where receptors and ligands interact, mutual cell detachment and formation of 

rhombomere boundaries occurs (Cooke and Moens, 2002).  

The Eph-ephrin system is moreover involved in spatial restriction of neural crest cells, 

specifically trunk and branchial crest cells. Neural crest cells originate at the dorsal region of 

the neural tube and continue to migrate in order to ultimately differentiate into many cell 

types, including neurons and glia of the peripheral CNS, the craniofacial skeleton and many 

pigment cells. The interaction between the Eph receptors expressed by ventrally migrating 
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neural crest cells and the ephrin ligands expressed in the posterior sclerotome mediate a 

repulsive response that restricts the migration of the cells to the anterior half of each somite 

(Krull et al., 1997; Santiago and Erickson, 2002; Wang and Anderson, 1997). Later during 

development, the Eph-ephrin system is involved in topographic mapping processes. In the 

retina and in the midbrain, different gradings of EphAs and ephrin-As control anterior-

posterior axon orientation. Axons expressing low EphA but high ephrin-A levels project to 

posterior regions, while axons with high EphA and low ephrin-A expression project to anterior 

regions (Wilkinson, 2000). Ephrins and Ephs have also been shown to segregate connections 

between the thalamus and the neocortex. It was reported that ephrin-A5 knock out mice 

display limbic-thalamic neurons which form additional aberrant projections to the 

sensorimotor cortex, again suggesting that ephrin-A5 acts as a guidance cue in order to 

prevent unrestricted connections to inappropriate neocortical areas (Uziel et al., 2002).  

Interestingly, more recent findings have implicated ephrin-B signaling in the human 

lissencephalic phenotype, which is characterized by insufficient migration of post mitotic 

neocortical neurons, resulting in an inside-out layering of the cortex and a hypoplastic 

cerebellum. This phenotype, in mice also known as Reeler phenotype, which has previously 

been associated with mutations in the extracellular matrix (ECM) glycoprotein reelin (Hong et 

al., 2000), could be rescued by ephrin-B2/-B3 overexpression. Transgenic mice displaying a 

triple homozygous knock out for ephrin-B proteins (B1, B2 and B3) in turn, resembled the 

Reeler phenotype, demonstrating an involvement of ephrin-B in the arrangement of 

neocortex laminations (Senturk et al., 2011).  

An additional prominent function of the Eph-ephrin system in the CNS, but also in the rest of 

the embryo, constitutes its role in vasculogenesis and angiogenesis. Both EphB4 and ephrin-

B2 null mice display embryonic lethality around day E10.0. It was suggested that one of the 

main reasons for this perinatal lethality is defective early angio- and vasculogenesis (Gerety 

et al., 1999; Wang et al., 1998). It was discovered that primordial arterial vessels express 

ephrin-B2, while primordial venous endothelium expresses EphB4, suggesting a role of the two 

proteins in the differentiation and/or separation of endothelial cells. Transgenic mice lacking 

the ephrin-B2 ICD resembled the defective angiogenesis of the ephrin-B2 null mice, 

indicating that ephrin-B2 reverse signaling is a prerequisite for embryonic angio- and 

vasculogenesis (Adams et al., 2001). Two other studies indicated that ephrin-B2 reverse 

signaling mediated by its PDZ domain is only crucial for lymphatic and retinal blood vessel 

development (Makinen et al., 2005; Sawamiphak et al., 2010). These results suggest that 

ephrin-B2 reverse signaling mediated by the PDZ-binding domain is critically involved in 

lymphatic and retinal blood vessel development. 
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TABLE 1: EPH-EPHRIN GENE MANIPULATION IN MICE 

Genotype Phenotype Reference 

EphA1 -/- Subpopulation kinky tail (80%), 
subpopulation disruption of hormone 
induced apoptotic processes (18% of 
females) 

(Duffy et al., 2008) 

EphA2 -/- Kinky tail and ectopic vertebrae due 
to splitting of the notochord 

(Naruse-Nakajima et al., 2001) 

EphA3 -/- 75% perinatal lethality, due to cardiac 
defects 

(Stephen et al., 2007) 

EphA4 -/- Kangaroo like hopping gait (Kullander et al., 2001b) 

EphA5 -/- Retinotectal map abnormalities (Feldheim et al., 2004) 

EphA6 -/- Involved in learning and memory (Savelieva et al., 2008) 

EphA7 -/- Reduction of somatosensory cortex, 
impaired topographic mapping of 
axons 

(Dufour et al., 2003; Miller et al., 
2006) 

EphA8 -/- No discernible phenotype, abnormal 
axon projection 

(Park et al., 1997) 

EphA10 -/- Not known N/A 

Ephrin-A1 -/- Impaired cardiac function, thickened 
aortic and mitral valves 

(Frieden et al., 2010) 

Ephrin-A2 -/- No growth morphological defects, 
retinal map abnormalities 

(Feldheim et al., 2000) 

Ephrin-A3 -/- Abnormal hippocampal spines, 
decreased learning and memory 

(Carmona et al., 2009) 

Ephrin-A4 -/- Not known N/A 

Ephrin-A5 -/- Subpopulation (17%) midline defect 
dorsal head, retinal map 
abnormalities 

(Feldheim et al., 2000; Frisen et al., 
1998) 

EphB1 -/- Reduced ipsilateral projection and 
pain behaviour after pain induction 

(Henkemeyer et al., 2003) 

EphB2 -/- No discernible phenotype (Henkemeyer et al., 1996) 

EphB3 -/- Cleft palate, with perinatal lethality 
anterior commissure, absent corpus 
callosum 

(Orioli et al., 1996) 

EphB4 -/- Embryonic lethal (E9.5), abnormal 
cardiac looping 

(Gerety et al., 1999) 

EphB6 -/- No discernible phenotype (Shimoyama et al., 2002) 

Ephrin-B1 -/- Perinatal lethality, defects in neural 
crest derived tissues, abnormal 
skeletal patterning  

(Davy et al., 2004) 

Ephrin-B2 -/- Embryonic lethal (E11), disruption of 
angiogenesis in yolk sac 

(Wang et al., 1998) 

Ephrin-B3 -/- Neo-hopping gait, failure of 
corticospinal tract (CST) pathfinding 

(Kullander et al., 2001a; Yokoyama et 
al., 2001) 
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1.1.2 The Eph-ephrin system in the adult brain 

All Eph receptors and all ephrin ligands have been shown to be expressed in the human 

brain with high expression of the Eph receptors EphA4, EphA6, EphA7, EphB1 and EphB6 and 

of the ephrin ligands ephrin-A5 and ephrin-B2. Ephrin-B3 expression levels are overall low in 

humans, but the highest expression levels can be detected in the brain (Goldshmit et al., 

2006; Hafner et al., 2004).  

The Eph-ephrin system has mainly been investigated regarding its role in synaptic plasticity in 

the adult brain. Binding of EphB to ephrin-B is thought to induce formation of large raft like 

patches on neuronal cells which contain N-methyl-D-aspartate (NMDA) receptors amongst 

other synaptic components, indicating a role of the Eph-ephrin system in the assembly of 

post-synaptic transmission, long-term potentiation (LTP) and long-term depression (LTD) (Calo 

et al., 2006; Dalva et al., 2000). Additionally, a functional role of Eph receptors in spine 

morphogenesis was demonstrated. In vitro transfection of a catalytically inactive EphB2 

variant into hippocampal neurons inhibited their spine morphogenesis (Henkemeyer et al., 

2003; Nishimura et al., 2006). The mechanisms by which EphB receptors regulate dendritic 

spine morphogenesis probably involve interaction with guanine exchange factors (GEF), 

which in turn regulate the activity of Rho GTPases and thereby control the remodelling of 

actin filaments (Henkemeyer et al., 2003; Penzes et al., 2003). Besides spine morphogenesis 

the Eph-ephrin system has also been found to induce growth cone collapse. A study by 

Murai et al. demonstrated that when EphA4, which has been shown to be expressed on 

hippocampal neurons, was stimulated by ephrin-A3, which is expressed on astrocytes 

neuronal growth cones collapsed (Murai et al., 2003). These findings suggest that the system 

mediates a form of communication between neurons and glial cells, which is important for 

synaptic plasticity and remodelling. 

 

1.1.3 Signaling of the Eph-ephrin system 

Forward signaling 

Like previously described, the Eph-ephrin system is capable of bidirectional signaling. 

Forward signaling, thus signaling toward the receptor holding cell, has been extensively 

investigated and many proteins involved in downstream cascades have been identified. 

Upon ephrin-binding, Eph receptors undergo auto- and Src mediated phosphorylation of the 

Eph ICD. Subsequently, the tyrosine kinase catalytic domain is fully activated (Kalo and 

Pasquale, 1999) and kinases which contain Src homology 2 (SH2) domains are recruited 

(Figure 2). Another way of Eph receptor activation is receptor spanning crosstalk. For 

instance, upon separate activation of fibroblast growth factor receptor (FGFR) or EphA4 both 

receptors were found to trans-phosphorylate each other and regulate common downstream 
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pathways (Yokote et al., 2005). Similar mechanisms have also been observed for Ryk, the 

chemokine receptor CXCR4, integrins, cadherins, claudins (Arvanitis and Davy, 2008).  

After SH2 domain containing protein binding to the Eph receptors, downstream effectors are 

stimulated (Kalo and Pasquale, 1999; Wybenga-Groot et al., 2001). Rho guanine nucleotide 

exchange factors (GEFs), like Vav2, Tiam, Kalirin and Intersectin, for instance have been 

shown to be activated by phosphorylated Eph receptors (Cowan et al., 2005; Klein, 2009; 

Murai and Pasquale, 2005; Sahin et al., 2005). They activate in turn key components of Eph 

signaling: Rho GTPases, including RhoA, Cdc42 and Rac. These Rho GTPases regulate cell 

shape and movement by initiating the formation of stress fibers (Rho), lamellipodia (Rac) and 

filopodia (Cdc42) (Klein, 2009; Ogita et al., 2003; Shamah et al., 2001). But also ubiquitination 

and degradation of some GEFs, like ephexin5 can be induced by phosphorylated EphB 

receptors. By this degradational mechanism, ephexin binding to EphB is inhibited, which 

simultaneously disinhibits RhoA activity (Margolis et al., 2010). The small GTPases of the Ras 

family are also subject of Eph receptor regulation. H-Ras, which is able to activate the MAP 

kinase cascade, is one of their targets. Eph receptors are among the few proteins that can 

negatively regulate H-Ras signaling (Elowe et al., 2001; Tong et al., 2003). Interestingly, 

downstream of other receptors, like other RTKs or integrins, Eph receptors can stimulate Ras-

MAP kinase signaling (Elowe et al., 2001; Kim et al., 2002b; Miao et al., 2001). The MAP kinase 

cascade is well known for its ability to stimulate cell replication, but also regulates axon 

guidance, neurite outgrowth and cell migration, by phosphorylating cytoskeletal 

components (Forcet et al., 2002; Klemke et al., 1997).  

Another important downstream forward signaling target is the focal adhesion kinase (FAK). In 

fibroblasts, ephrin-A1 stimulation resulted in increased phosphotyrosine levels of EphA2, FAK, 

p130Cas and paxillin. When fibroblasts derived from FAK or p130Cas knock out mice were 

investigated, phosphorylation as well as migration of cells was inhibited (Carter et al., 2002).  

Additionally, in 2009, Shi et al. found that mature dendritic spines could be reversed into an 

immature filopodial like phenotype in primary hippocampal neurons, when investigating 

neurons expressing a dominant negative mutant of EphB2. These cells could be rescued by 

FAK re-expression, but not by re-expression of a FAK Y397 mutant, indicating the significance 

of FAK Y397 phosphorylation in downstream EphB2 signaling (Shi et al., 2009). Subsequently, 

FAK was confirmed to be a binding partner of EphB2 in a study in which EphB2 complexes 

were analyzed via Co-IP and subsequent mass spectrometry analysis after ephrin-B1 

stimulation (Darie et al., 2011).  
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Figure 2: Eph receptor forward signaling. 

Upon ligand binding the tyrosine kinase domain of the Eph receptor is auto- or Src 

phosphorylated. An alternative way of Eph receptor activation occurs via receptor-crosstalk 

between the Eph receptor and receptors like FGFR, Ryk, cadherin, integrin, and CXCR4. Eph 

receptors activate multiple downstream cascades, many of which involve small family 

GTPases like Rho and Ras. Another prominent Eph receptor target is FAK. By stimulation of 

these downstream effectors mainly processes influencing cellular adhesion and migration 

are initiated, but also cell replication is affected.  

 

 

Reverse signaling 

The ephrin ligands possess no intrinsic catalytic activity. However, they can bind and induce 

the activation of intracellular effectors and thereby regulate intracellular signaling pathways. 

Since the way ephrin-A and ephrin-B ligands are attached to the membrane is 

fundamentally different, they also rely on different mechanisms to transmit their signals 

intracellularly (Figure 3). Both ephrin groups are subject to shedding by A disintegrin and 

metalloproteases (ADAMs) and, in case of ephrin-A1 and ephrin-B1, by matrix 

metalloproteinases (MMPs) (Beauchamp et al., 2012; Tanaka et al., 2007). As previously 

mentioned, ephrin-A molecules are tethered to the cellular membrane via GPI-anchors and 

do therefore not possess an ICD which they could utilize for reverse signaling. However, 

various studies indicate that ephrin-As are capable of reverse signaling (Cutforth et al., 2003; 

Davy and Robbins, 2000; Huai and Drescher, 2001; Knoll et al., 2001). In cultured cells, EphA 
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mediated ephrin-A activation resulted for instance in integrin dependent adhesion (Huai and 

Drescher, 2001), likely involving MAP kinases and Fyn (Davy et al., 1999; Davy and Robbins, 

2000). Ephrin-A reverse signaling furthermore affects cell adhesion and changes in 

cytoskeletal architecture via the Src family kinase Fyn (Davy et al., 1999; Davy and Robbins, 

2000) and has been implicated in the pathfinding of vomeronasal sensory neurons (Knoll et 

al., 2001) and spinal motor axons (Marquardt et al., 2005). The neurotrophin receptor p75 

forms a complex with ephrin-As and Fyn in caveolae and was therefore suggested to be a 

possible co-receptor candidate for ephrin-A (Lim et al., 2008). These studies also indicated 

that the Fyn pathway, which is downstream of ephrin-A, is p75 dependent and that ephrin-A 

associated repellent effects are p75 mediated (Lim et al., 2008). Within the same year, 

another neurotrophin receptor, namely TrκB receptor was identified as another ephrin-A 

interaction partner. The TrκB is a receptor for brain derived neurotrophic factor (BDNF), which, 

when injected into the tectum, increased branching and complexity of retinal axon arbours 

(Cohen-Cory and Fraser, 1995). Due to their expression in anteroposterior and dorsoventral 

gradients, the Eph-ephrin-A family members are ideal interaction partners for TrκB receptors, 

since they contain topographic information for axonal arbour growth. It was demonstrated 

that ephrin-A proteins suppress axonal branching in the retina by interacting in cis with the 

CC2 domain of TrκB, and thereby activated Akt further downstream (Marler et al., 2008).  

Ephrin-B proteins belong to the group of type I transmembrane proteins and possess a short 

intracellular C-terminal tail. Upon binding of an EphB receptor to an ephrin-B ligand, the 

ephrin-B proteins are extracellularly shed and/or endocytosed. Ephrin-B3 proteins are 

cleaved by the human rhomboid family protease 2 (RHBDL2) (Pascall and Brown, 2004). In 

the case of ephrin-1 and ephrin-B2, shedding induces subsequent cleavage by the γ-

secretase, which also releases the intracellular ephrin-B domain from cellular membranes. 

Georgakopoulos et al. showed that EphB2 binding induces ephrin-B2 shedding and 

subsequent γ-secretase cleavage. In this study, the resulting ICD was demonstrated to bind 

the transmembrane I protein PAG/Cbp, which typically forms a complex with the C-terminal 

Src kinase (Csk) and Src to inhibit the latter. Binding of the ICD caused the release of Src from 

the complex and subsequent Src autophosphorylation on Y418. Additionally, Src was found 

to form a complex with the ICD, suggesting not only disinhibition but also activation Src by 

release of the ephrin-B2 ICD (Georgakopoulos et al., 2011). This ICD, like many other γ-

secretase products generated intracellularly, has been shown to translocate to the nucleus, 

suggesting a gene regulatory function for this protein (Tomita et al., 2006; Waschbusch et al., 

2009). 
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Figure 3: Ephrin-A and ephrin-B reverse signaling. 

Ephrin-A reverse signaling is probably initiated by EphA receptor binding and simultaneous 

binding of p75 or TrκB. It is not clear whether neurotrophin binding to p75 or TrκB can also 

influence ephrin-A reverse signaling. Intracellular ephrin-A signaling is mediated by p75 or 

TrκB and can activate downstream effectors like PI3K/Akt, Fyn and the MAP-K cascade. By 

these cascades in turn, cytoskeletal remodelling, axon arbouring and cell adhesion are 

thought to be regulated. Ephrin-B reverse signaling is initiated by EphB receptor binding and 

is followed by intracellular ephrin-B phosphorylation mediated by Src. This phosphorylation 

recruits further downstream effectors, which can bind to the ephrin-B ICD. Ephrin-B reverse 

signaling regulates cytoskeletal remodelling, cell adhesion and migration.  

 

Furthermore, Src can also phosphorylate full length membrane bound ephrin-B. The ephrin-B 

ICD contains four SH2 domains, which have been shown to attract proteins like Grb4 upon 

tyrosine phosphorylation (Georgakopoulos et al., 2006; Segura et al., 2007). The PDZ domain 

located in the ICD has been suggested to be important for ephrin-B regulation, since it 

constitutes the binding site for the protein tyrosine phosphatase (PTP)-BL, which can 

terminate ephrin-B effector recruitment by SH2 domain dephosphorylation (Palmer et al., 

2002). Another protein that is known to bind the ephrin-B PDZ domain is PDZ- regulator of G-

protein signaling 3 (RGS3), which was shown to inactivate G-protein signaling (Lu et al., 2001). 

This study also suggested that downstream pathways of the chemokine stromal cell derived 

factor-1 (SDF-1) may be regulated by the ephrin-B PDZ domain and the PDZ-RGS3 protein, 

thereby linking reverse signaling to cellular guidance. Furthermore the previously described 
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ephrin-B SH2 domain binding protein Grb4 was found to attract the G protein-coupled 

receptor kinase-interacting protein 1 (GIT 1) (Segura et al., 2007). These two examples 

indicate a role of ephrin-B reverse signaling in the regulation of processes which are 

mediated by G proteins. 

Proteolytic processing and subcellular trafficking 

After high affinity binding between Eph and ephrin proteins the interaction can be 

terminated by either of two mechanisms: 1) Extracellular shedding or 2) endocytosis. Eph 

receptors as well as ephrin proteins are substrates of ADAM proteases. Shedding of Eph 

receptors by ADAM proteases is triggered upon binding of the receptor to its ligand and can, 

like the binding between Ephs and ephrins, occur in cis or in trans (Georgakopoulos et al., 

2006; Hattori et al., 2000; Janes et al., 2005). In addition to shedding, the interaction between 

Ephs and ephrins that are localized on different cells i.e. in trans, can also be terminated by 

means of endocytosis. In case of endocytosis the Eph-ephrin complex can be internalized 

into the receptor holding or the ligand holding cell in order to evoke de-adhesion and 

repulsion between two cells (Lauterbach and Klein, 2006; Mann et al., 2003; Marston et al., 

2003; Zimmer et al., 2003). This process is called trans-endocytosis and, interestingly, resulted 

in the internalization of vesicles containing both full length proteins (Marston et al., 2003; 

Pitulescu and Adams, 2010; Spacek and Harris, 2004; Zimmer et al., 2003). In a study by 

Marston et al. for instance, neighbouring fibroblasts were microinjected with either EphB4 or 

ephrin-B2. At contact sites of the neighbouring cells, trans-endocytosis was observed to take 

place. Trans-endocytosed vesicles contained full length proteins of the EphB4 as well as the 

ephrin-B2 ligand. The determinants of the direction of endocytosis are not fully understood. It 

was however shown that if cells which express EphB2, bind to cells expressing ephrin-B1 

variants lacking the ICD, the complex is mostly endocytosed by the EphB2 containing cell. 

When however EphB2 phosphorylation is defective, the complex is internalized into the 

ligand holding cell (Zimmer et al., 2003). Thus, the direction of endocytosis seems to be 

dependent on the direction of signaling. Furthermore, in this process, which so far has not 

been widely explored, EphB1 was found to be associated with caveolin-1, while ephrin-B1 

was found to be associated with clathrin (Vihanto et al., 2006), suggesting involvement of 

caveolae and a clathrin-dependent mechanism, respectively. Whether the internalized 

molecules are degraded or recycled and in which way this process could influence the 

migrational behaviour of cells remains to be resolved and might give interesting information 

on the regulation of cell repulsion and cell sorting independent of proteinase cleavage.  

1.1.4 The Eph-ephrin system in pathological conditions 

Since the Eph-ephrin system is ubiquitously expressed throughout the body, it has been 

implicated in various pathological conditions.  
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In neural cell repair after injury, the system seems to provide guidance cues to re-establish 

appropriate connections. Macrophages expressing EphB3 were found to promote axonal 

sprouting of damaged retinal neurons, which expressed ephrin-B3 (Liu et al., 2006). Other 

results indicated that the Eph-ephrin system hinders proper axon regrowth through its 

repulsive signaling (Wu et al., 2007). A study by Yue et al. found for instance that ephrin-A5 

stimulation of neurites inhibited outgrowth of EphA4 positive spinal cord neurons (Yue et al., 

1999). Similar mechanisms have been shown for cortical neurons in response to ephrin-B3 

(Benson et al., 2005; Kullander et al., 2001a).  

A disease which is known to be caused by different mutations, or in some cases a deletion of 

ephrin-B1 is the X-linked developmental disorder craniofrontonasal syndrome (CFNS) (Davy et 

al., 2006; Wieland et al., 2004). In this disease mosaic-like ephrin-B1 expression causes 

impaired gap junction communication, and thereby cell sorting abnormalities and inhibition 

of osteoblast differentiation (Compagni et al., 2003). Ephrin-B1 mutant mice display similar 

malformations of the axial skeleton like humans, i.e. polydactyly, asymmetric attachment of 

ribs and lack of joints (Compagni et al., 2003; Henkemeyer et al., 1996; Orioli et al., 1996). The 

CFNS associated ephrin-B1 mutations T111I and P54L are located in an essential part of the 

ephrin-B1 receptor binding domain, suggesting impaired ephrin-B1 signaling in CFNS patients. 

Accordingly, in vitro Eph receptor induced ephrin-B1 cluster formation as well as intracellular 

ephrin-B1 signaling is impaired in cells expressing mutant ephrin-B1 proteins (Makarov et al., 

2010). It is not known whether mutations in other Ephs and ephrins may cause related 

disorders. 

Given its prominent role in cell differentiation and signaling the Eph-ephrin system is 

extensively studied in the field of oncology. Eph-ephrin protein expression is altered in 

essentially all types of cancer cells (Ireton and Chen, 2005). It is also expressed in tumor 

vasculature, where it promotes angiogenesis (Brantley-Sieders and Chen, 2004; Heroult et al., 

2006). In cancer cells, Eph receptors are mostly upregulated, while ephrin ligands are 

downregulated. Therefore, despite their high expression levels Eph receptors are mainly 

inactive in those cells. Although mostly downregulated, ephrin ligands have been reported 

to promote cell transformation and cancer cell migration/metastasis (Campbell et al., 2006; 

Meyer et al., 2005; Tanaka et al., 2007). The expression of Eph-ephrin proteins in blood vessels 

is essential during development as well as in adulthood. In tumor angiogenesis however, it 

significantly contributes to tumor growth and metastasis and has therefore been targeted in 

cancer treatment and therapy. Ephrin-B2 for example is widely expressed in the vasculature 

of many tumors, which is not surprising given the fact that ephrin is found in the embryonic 

arterial vasculature and its expression in endothelial cells is upregulated by hypoxia and 

VEGF and is therefore a cancer therapy target (Brantley-Sieders and Chen, 2004; Heroult et 

al., 2006).  
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Interestingly, in a genome wide association study (GWAS), Hollingworth et al. showed a 

correlation between Alzheimer disease and the occurrence of the single nucleotide point 

(SNP) mutation rs11767557 of the EphA4 receptor (Hollingworth et al., 2011). Recently, 

Rosenberger et al. found an altered distribution of the EphA4 receptor in hippocampi of AD 

patients compared to control cases. This was observed at early AD stages, in which synaptic 

loss is thought to occur. Furthermore in AD patients, the EphA4 receptor colocalized with 

neuritic plaques. It was therefore suggested that impaired hippocampal EphA4 signaling 

may lead to the onset of memory decline in AD (Rosenberger et al., 2014). Correspondingly, 

reduced expression of the EphA4 receptor has previously been linked to cognitive 

impairment in a transgenic mouse model for AD (Simon et al., 2009).  

Two other studies state by contrast that EphA4 signaling is enhanced in transgenic mouse 

models of AD and mediates synaptic plasticity impairment (Fu et al., 2014; Vargas et al., 

2014). They also showed that soluble Aβ oligomers, which also contribute to synaptic loss in 

AD, induced EphA activation and that inhibition of EphA4 in the CA1 region reversed 

suppression of long term potentiation in mice (Fu et al., 2014). Due to these controversial 

findings it would be interesting to investigate whether the different binding partners of EphA4, 

which range from ephrin-A to ephrin-B proteins might influence the nature of EphA4 effects. 

1.2 The γ-secretase complex 

As described above, Ephs and ephrin-Bs can undergo proteolytic processing by the γ-

secretase. The γ-secretase complex has been and still is of great interest to researchers 

investigating Alzheimer’s disease, since it is responsible for the generation of the β-amyloid 

peptide, a protein which accumulates in the CNS of patients who suffer from Alzheimer’s 

disease (AD) (Benilova et al., 2012; Murphy and LeVine, 2010). However, being able to 

cleave more than 90 transmembrane I proteins, this aspartyl protease has been shown to be 

involved in many more processes surpassing those involved in the etiology of AD. Together 

with the site-2 protease (S2P), the signal peptide peptidases (SPPs), and the rhomboids, the γ-

secretase belongs to the family of intramembrane cleaving proteases, called I-CliPs 

(Haapasalo and Kovacs, 2011). The γ-secretase complex consists of four critical subunits 

called presenilin (PS1 or PS2), nicastrin (Nct), Anterior pharynx-defective 1 (Aph-1) and 

presenilin enhancer 2 (Pen-2) (Figure 4). All four subunits are essential for the functioning of 

the transmembrane aspartyl protease (Edbauer et al., 2003). Due to the plethora of presenilin 

mutations that have been found to be associated with early onset familial Alzheimer’s 

disease (EOAD), the PS are the most intensively studied components of the γ-secretase 

complex. Containing two aspartic acid residues (Asp257 and Asp385) which catalyze 

substrate cleavage, PS constitutes the active site of the complex. PS comprises a total of 9 

transmembrane domains (TMDs) (Laudon et al., 2005; Oh and Turner, 2005; Spasic et al., 
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2006). The two aspartic acid residues important for substrate cleavage are located in TMD 6 

and 7. During assembly and maturation of the complex, PS undergoes endoproteolysis 

resulting in the generation of an N- and a C-terminal PS fragment (NTF and CTF, respectively), 

which form stable heterodimers (Seeger et al., 1997; Yu et al., 1998).  

Nct was the secondly discovered γ-secretase subunit (Yu et al., 2000). This large and highly 

conserved transmembrane I protein was suggested to be the substrate binding unit of the γ-

secretase. Specifically, the DYIGS and peptidase (DAP) domain of Nct, which is located in its 

large extracellular part, was found to form the substrate binding site (Shah et al., 2005). 

Others found Nct to be important for γ-secretase maturation but not for its activity (Chavez-

Gutierrez et al., 2008). The discussion about the Nct function remains controversial.  

 

 

 

Figure 4: The γ-secretase complex and intramembranous cleavage. 

The γ-secretase complex consists of four subunits. Presenilin (PS), Nicastrin (Nct), Anterior 

pharynx-defective 1 (Aph-1) and the Presenilin enhancer 2 (Pen-2). The γ-secretase complex 

always exists in a 1:1:1:1 stoichiometry. Two PS genes exist, PS1 and PS2. Aph-1 has two 

isoforms, Aph-1a and Aph-1b, of which Aph-1a also has two splice variants, called Aph-1aS 

and Aph-1aL. The γ-secretase mainly cleaves type I transmembrane (TM I) proteins. 

Ectodomain shedding of the TM I proteins (red arrow) precedes intramembranous γ-

secretase cleavage (yellow arrow). Two conserved aspartate residues in the sixth and eighth 

TMR of PS, namely D257 and D385 respectively, serve as active site residues, defining the γ-

secretase as an aspartyl protease. Scheme deduced from (Steiner et al., 2008). 

 

 

Two years later, an additional component of the γ-secretase complex was found: Aph-1. 

Upon Aph-1 knock out, a phenotype comparable to that seen in PS and Nct deficient 
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C.elegans was observed (Francis et al., 2002; Goutte et al., 2002). The 7 TMD protein Aph-1 

associates with PS and Nct, regulating the assembly of the γ-secretase complex (Lee et al., 

2002). Aph-1 possesses two isoforms, Aph-1 a and Aph1 b, former occurring in two splice 

variants (Aph-1aS and Aph-1aL) (Shirotani et al., 2004b). Concurrently with Aph-1, the fourth 

component, Pen-2, was discovered. It contains two TMDs, with a luminal C- and N-terminus. 

Aph-1 is thought to be necessary for endoproteolytic processing of PS into its N- and C-

terminal fragments and for full maturation of nicastrin, thereby facilitating the translocation 

from the endoplasmatic reticulum (ER) into the Golgi (Francis et al., 2002). 

 

1.2.1 Assembly of the y-secretase complex 

As mentioned previously, presence of all four components of the γ-secretase complex and its 

proper assembly has been shown to be crucial for its function and its transport out of the ER. 

It was demonstrated that PS fragment levels strongly decrease upon Nct and Aph-1 RNAi 

knock down (Edbauer et al., 2002; Shirotani et al., 2004a). Knock down of Pen-2 resulted in 

accumulation of PS holoproteins, suggesting a regulatory role of Pen-2 in endoproteolytic 

processing of PS proteins (Prokop et al., 2004). Additionally, knock out of PS decreased Pen-2 

levels and, while its expression levels stayed unchanged, Nct accumulated in its immature 

form indicating that the γ-secretase complex cannot exit the ER in absence of PS (Edbauer 

et al., 2002). In the ER the four components are not only generated but also assembled into 

one complex. Essential domains for γ-secretase complex assembly are the PS1 C-terminus 

(Bergman et al., 2004; Kaether et al., 2004), the TMD of Nct (Capell et al., 2003; Morais et al., 

2003), the C-terminus of Pen-2 (Hasegawa et al., 2004; Kim et al., 2004; Prokop et al., 2004) 

and the TMD 4 of Aph-1 (Edbauer et al., 2004; Lee et al., 2004b). Mature Nct, which 

underwent glycosylation, can bind Aph-1. This heterodimer then binds the PS holoprotein, 

forming a heterotrimer, which in turn can bind to Pen-2. Upon Pen-2 binding, PS can undergo 

endoproteolytic cleavage in the ER, the ER-Golgi intermediate compartment (ERGIC), 

and/or the Golgi. Some γ-secretase components, like Nct and PS, have a half-life of less than 

24 hours when they are not incorporated into the complex and cannot leave the ER due to 

ER retention signals. Upon full assembly however, ER retention signals in Pen-2 are masked 

between the proteins and the membrane and the complex can translocate from the ER to 

the Golgi via the ERGIC (Dries and Yu, 2008; Kaether et al., 2004; Kaether et al., 2007; Spasic 

et al., 2007). Upon reaching the trans-Golgi, Nct is fully matured by further glycosylation. It has 

further been proposed that the γ-secretase needs a slightly acidic environment for effective 

substrate cleavage indicating γ-secretase activity in endosomal or lysosomal compartments 

rather than at the plasma membrane (Pasternak et al., 2003). Others found the γ-secretase 

to be active at the plasma membrane however (Chyung et al., 2005; Hansson et al., 2005), 

making this topic a matter of ongoing discussion. 
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1.2.2 Regulation of y-secretase activity 

The activity of the γ-secretase complex is regulated on multiple levels. Firstly, as previously 

mentioned, expression of γ-secretase components may be regulated by degradation after 

their synthesis in the ER. Secondly, presence of all four subunits and proper assembly is 

needed for the functionality of the γ-secretase (Edbauer et al., 2003). Overexpression of a 

single component, such as PS, does only lead to a moderate increase of γ-secretase activity, 

since the amount of endogenous γ-secretase components is rate limiting (Levitan et al., 

2001). Furthermore, different isoforms of γ-secretase components can be incorporated into 

the complex. In the case of PS, either PS1 or PS2, in the case of Aph-1, either Aph-1a or Aph-

1b are utilized for complex assembly, and isoforms of one protein do not appear 

simultaneously within one complex (Lai et al., 2003; Shirotani et al., 2004b). Thus, different 

combinations of γ-secretase components could affect the activity and specificity of this 

protease complex. 

Differential activity of the PS isoforms is demonstrated by the fact that phenotypic 

characteristics of PS1 and PS2 deficient systems are distinct. Additionally, isoform-specific 

expression levels are variable among different tissues (Lai et al., 2003). For Aph-1a, two splice 

variants (Aph-1aS and Aph-1aL) have been found which increases the number of assembly 

variants once more (Shirotani et al., 2004b). It was for instance found that if γ-secretase 

complexes contain different Aph-1 isoforms, they also produce Aβ fragments of different 

lengths (Serneels et al., 2009). It is still investigated whether product generation is influenced 

by different cleavage site preferences of the isoforms. 

Several proteins, like CD147 (Zhou et al., 2005), TMP21(Chen et al., 2006), calsenilin (Buxbaum 

et al., 1998), X11/Mint proteins (Borg et al., 1998) and γ-secretase activating protein (GSAP), 

were suggested to have γ-secretase activity modulating functions. The 16 kDa GSAP 

fragment, for instance, was shown to form a complex with the γ-secretase and the CTF of the 

amyloid precursor protein (APP), thereby affecting the production of Aβ and the APP 

intracellular domain (AICD). When GSAP was knocked out or the GSAP inhibitor Imatinib was 

administered to the experimental animals, levels of Notch cleavage stayed unaffected, 

while Aβ generation was selectively decreased (He et al., 2010) (Chu et al., 2014). This study 

was supported by the finding that the GSAP SNP rs4727380 is correlated with a higher risk of 

developing AD (Zhu et al., 2014). However, whether GSAP and its inhibitory drug, Imatinib, 

really play a role in controlling γ-secretase mediated APP cleavage in humans remains 

controversial. During a phase IV trial, Imatinib was tested as a treatment against chronic 

myeloid leukaemia (CML), while its effects on Aβ42 levels in the plasma of patients could 

simultaneously be determined. After a period of 12 months however, no changes in Aβ 
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production could be detected, challenging previous results (Olsson et al., 2014). Another 

protein which has been described as a potential regulator of γ-secretase mediated Notch 

cleavage is the transcription factor hypoxia induced factor-1α (HIF-1α). Since several years, 

HIF-1α is known for its role in Notch signaling (Gustafsson et al., 2005; Mukherjee et al., 2011), 

but it has recently been shown to directly bind the γ-secretase, thereby stimulating its Notch 

cleaving activity (Villa et al., 2014). The study indicates that hypoxia and HIF-1α activation 

rapidly turn inactive into active y-secretase complexes. 

While the molecular mechanisms that directly regulate the catalytic activity of the γ-

secretase are not clear, it is evident that it can only cleave protein substrates with small 

ectodomains (Struhl and Adachi, 2000). Thus, membrane proteins with larger ectodomains 

require ectodomain shedding, before regulated intramembrane proteolysis (RIP) by the γ-

secretase can occur. When comparing the phenotypes of A disintegrin and 

metalloproteinase (ADAM) 10 -/- mice and PS double (PS1-/-/PS2-/-) -/- mice the resemblances 

are remarkable. Both are embryonic lethal (E9.5), display defective heart and CNS 

development, vasculogenesis and somitogenesis; and defective Notch signalling (Donoviel 

et al., 1999; Hartmann et al., 2002; Herreman et al., 1999). Investigating more mechanisms 

that control the specificity of sheddase activity would therefore also help to understand γ-

secretase regulation. 

 

1.2.3 γ-Secretase substrates in cell adhesion and the function of RIP 

Since the discovery of the γ-secretase, many substrates for this protease have been 

identified. Most substrates are single pass type I transmembrane proteins with an average 

ectodomain length of slightly below 15 amino acids (after shedding) (Struhl and Adachi, 

2000). Despite those mostly applicable parameters, there are exceptions. Beta1,6-N-

acetylglucosaminyltransferase V (GnT-V) (Nakahara et al., 2006) and CD74 (Becker-Herman 

et al., 2005), for instance, are type II transmembrane proteins, and the glutamate receptor 

subunit 3 (GluR3) is a multipass transmembrane protein (Meyer et al., 2003). It has furthermore 

been shown that γ-secretase cleavage does not exclusively occur within the 

transmembrane region. γ-Secretase cleavage mostly starts outside the lipid bilayer at the 

membrane-cytosol interface and then progressively continues its cleavage in a step-wise 

manner throughout the transmembrane domain (Chandu et al., 2006; Marambaud et al., 

2002; Uemura et al., 2006; Zhao et al., 2007). Regarding γ-secretase cleavage specificity, 

there have been diverse findings. It has been reported that a valine in the ErbB4 receptor 

tyrosine kinase (Vidal et al., 2005) and the Notch I receptor (Huppert et al., 2000) TMD is 

required for adjacent γ-secretase cleavage. Although a similar positioned valine has been 

found in many other γ-secretase substrates it was shown that in other cases this amino acid is 
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dispensable (Andersson et al., 2005; Lichtenthaler et al., 1999; Taniguchi et al., 2003). 

Cleavage by the γ-secretase might also be modulated by clustering of protein substrates via 

TMD interactions (Asundi and Carey, 1995; Huber et al., 1999; Mendrola et al., 2002; Munter et 

al., 2007; Yonekura et al., 2006), which can occur, for instance, in the case of RTKs upon 

ligand binding (Fantl et al., 1993). A large number of γ-secretase substrates beside Eph 

receptors and ephrins are involved in cell-cell interaction, cell adhesion and migration (Table 

2).  

For instance, deleted in colorectal cancer (DCC), which is a cell surface receptor for netrin-1, 

regulates axonal outgrowth and cell migration during development (Moore et al., 2007). 

Together with other co-receptors DCC has been shown to also regulate chemoattraction (Ly 

et al., 2008). The full-length DCC protein seems to promote axonal outgrowth, while the 

released DCC intracellular domain has been found to inhibit this process (Parent et al., 2005). 

Other examples are E-cadherin-β-catenin complexes and the voltage-gated sodium 

channel β2 subunit (Navβ2). The processing of E-cadherin-β-catenin complexes by γ-

secretase cleavage results in disassembly of adherens junctions and thereby inhibits cell 

adhesion (Ito et al., 1999; Marambaud et al., 2002; Parisiadou et al., 2004). Overexpression of 

the γ-secretase product Navβ2 ICD, in CHO and neuroblastoma cells was associated with 

increased migration in wound healing assays. Inhibition of the γ-secretase in these cells also 

led to decreased migration (Kim et al., 2005). In summary, the processing of these proteins by 

γ-secretase could regulate axonal and cell process retraction, inhibition of cell adhesion and 

stimulation of cellular migration.  

For most ICDs produced by γ-secretase cleavage, no signaling function is apparent. 

Therefore the γ-secretase is sometimes considered as “the proteasome of the membrane” 

(Kopan and Ilagan, 2004). Several ICDs translocate to the nucleus, some ICDs have already 

been proven to modulate gene transcription(Haapasalo and Kovacs, 2011). They contain 

protein-interaction domains (Georgakopoulos et al., 2006), recognition sites for protein 

modification, transcription activation domains, and enzymatic activities (Haapasalo and 

Kovacs, 2011; Kopan and Ilagan, 2004). The ICD derived from CD44 for instance can elevate 

its own expression by activating promoters that contain a 12-O-tetradecanoylphorbol-13-

acetate (TPA) responsive element (Okamoto et al., 2001). The CD44 ICD can thereby also 

regulate MMP-9 expression in cancer cells by binding to a consensus DNA sequence of the 

MMP-9 promoter region (Miletti-Gonzalez et al., 2012). Furthermore, by targeting the 

transcription co-activator CBP (cAMP-responsive-element binding protein (CREB) binding 

protein) for degradation, the N-Cadherin ICD has been found to be able to depress the 

CREB- dependent transcription (Marambaud et al., 2003). Another prominent example is the 

Notch ICD (NICD). So far at least 13 proteins have been found to interact or be influenced by 

the NICD in multiple ways (Andersson et al., 2011), among them are HIF-1α which stabilizes 
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the NICD and synergizes with it to induce transcription of Notch target genes (Bertout et al., 

2009; Gustafsson et al., 2005; Sahlgren et al., 2008) and the nuclear factor of kappa light 

polypeptide gene enhancer in B-cells 1 (NFκB) which is retained longer in the nucleus upon 

NICD expression and therefore increases transcription of its target genes (Shin et al., 2006).  

In summary, a number of the RIP products generated by the γ-secretase seem to have 

important functions. However, for most of them a physiological or pathophysiological role 

remains unclear.  

 

TABLE 2: TYPE I PROTEINS CLEAVED BY Y-SECRETASE INVOLVED IN CELL-CELL INTERACTION, ADHESION AND MIGRATION 

(DEDUCED FROM (HAAPASALO AND KOVACS, 2011)). 

Substrate Function Cleavage 

product 

Reference 

CD43 Cell-Cell interaction CD43-ICD (Andersson et al., 

2005; Mambole 

et al., 2008) 

CD44 Cell adhesion, hyaloronan 

receptor 

1.CD44-ICD 

2. CD44-β 

(Cui et al., 2006; 

Lammich et al., 

2002; Murakami 

et al., 2003; 

Okamoto et al., 

2001; Pelletier et 

al., 2006) 

CXCL16 Transmembrane chemokine, cell 

adhesion 

Smaller MW 

CTF 

(Schulte et al., 

2007) 

CX3CL1 Transmembrane chemokine, cell 

adhesion 

Smaller MW 

CTF 

(Schulte et al., 

2007) 

Desmoglein-2 Structural component of 

desmosomes; formation of 

intercellular junctions, regulation 

of tissue morphogenesis 

DSG2-ICD (Hemming et al., 

2008) 

Dystroglycan Member of dystrophin-

glycoprotein complex; connects 

ECM with cytoskeleton 

DG ICD (Hemming et al., 

2008) 

E-Cadherin Cell adhesion E-Cad/CTF2 (Ito et al., 1999; 

Marambaud et 

al., 2002; 

Parisiadou et al., 

2004) 

Ep-CAM Transmembrane glycoprotein 

expressed in human 

malignancies; cell adhesion 

EpICD (Maetzel et al., 

2009) 

EphA4 RPTK; regulation of dendritic 

spines 

EphA4-ICD (Inoue et al., 

2009) 

EphB2 RPTK; axon guidance, cell 

morphogenesis, tissue 

patterning, angiogenesis, 

synapse formation, LTP 

EphB2/CTF2 (Litterst et al., 

2007) 

ephrin-B1 Cell-Cell interaction ephrin-B1 ICD (Tomita et al., 

2006) 
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ephrin-B2 Axon guidance Ephrin-B2 ICD (Georgakopoulos 

et al., 2006) 

L1 Cell adhesion, neuronal 

migration, neurite outgrowth 

L1-CTF2 (Maretzky et al., 

2005) 

N-Cadherin Cell adhesion, synapse 

formation and maintenance 

N-cad/CTF2 (Marambaud et 

al., 2003; Uemura 

et al., 2006) 

NaV-β1 Voltage-gated sodium channel 

subunit; cell adhesion, synaptic 

transmission 

Not known (Wong et al., 

2005) 

NaV-β2 Voltage-gated sodium channel 

subunit; cell adhesion, synaptic 

transmission 

β2-ICD (Kim et al., 2007; 

Kim et al., 2005) 

NaV-β3 Voltage-gated sodium channel 

subunit; cell adhesion, synaptic 

transmission 

Not known (Wong et al., 

2005) 

NaV-β4 Voltage-gated sodium channel 

subunit; cell adhesion, synaptic 

transmission 

Not known (Wong et al., 

2005) 

Nectin-1α Formation of adherens junctions 

and synapses 

NE-ICD (Kim et al., 

2002a) 

Protocadherin α4 Cell adhesion α4-CTF2 (Bonn et al., 

2007) 

Protocadherin γC3 Cell adhesion Pcdhγ-CTF2 (Haas et al., 

2005; Hambsch 

et al., 2005) 

RPTPκ RPTP; cell adhesion, synapse 

formation, learning and memory 

RPTPκPIC (Anders et al., 

2006) 

RPTPµ RPTP; cell adhesion, synapse 

formation, learning and memory 

RPTPµPIC (Anders et al., 

2006) 

Syndecan-1 HSPG; neurite outgrowth, cell 

migration, learning and memory 

Not known (Hemming et al., 

2008) 

Syndecan-2 HSPG; neurite outgrowth, cell 

migration, learning and memory 

Not known (Hemming et al., 

2008) 

Syndecan-3 HSPG; neurite outgrowth, cell 

migration, learning and memory 

SICD (Schulz et al., 

2003) 

VE-Cadherin Cell adhesion Not known (Marambaud et 

al., 2002) 
 

 

1.2.4 The γ-secretase in AD 

 

AD is characterized by dementia, cerebral cortical atrophy, and the combined occurrence 

of extracellular β-amyloid plaques and intraneuronal neurofibrillar tangles (Buckner et al., 

2005; Villemagne and Masters, 2014). The greatest known risk factor for Alzheimer’s disease 

(AD) is age. Most AD patients are diagnosed after the age of 65. Only 5 % of AD patients are 

younger than 65 at the onset of the disease. These patients, who suffer from early onset 

Alzheimer’s disease (EOAD) have in 30-70 % of the cases PS1 gene mutations (Campion et 

al., 1999; Cruts and Van Broeckhoven, 1998; Rogaeva et al., 2001), in up to 5 % PS2 gene 
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mutations (Bird et al., 1988; Finckh et al., 2000; Lleo et al., 2004) and in 10-15 % amyloid 

precursor protein (APP) mutations (Campion et al., 1999). Thus, about 50 % of EOAD cases 

can be attributed to mutations in these three genes. Many presenilin mutations are clustered 

within the transmembrane domains and in the large C-terminal loop of the sixth presenilin 

TMD (Dries and Yu, 2008). Due to the critical role of PS and of course APP itself in Aβ 

production, one of the dominant theories in the field is the ‘amyloid-cascade hypothesis’. It 

links pathologic amyloid accumulation with neuronal dysfunction and dementia (Hardy and 

Higgins, 1992).  

Commonly, presenilin and APP mutations result in early deposition of aggregated Aβ in the 

brain. Surprisingly, conditional complete loss of presenilin also results in neurodegeneration 

without any Aβ present (Saura et al., 2004). As described above, presenilin and APP 

mutations only cause the disease in a small fraction of AD patients. However, the fact that 

mutations in these genes can trigger the onset of AD, suggests that these proteins also play 

an important role in the etiology and/or progress of LOAD patients.  

Furthermore, neuroinflammatory processes have been involved in the etiology and/or 

progression of AD. Neuroinflammation in AD patients is associated with neuronal damage, 

increased Aβ generation and cognitive impairment. Whether it is a cause or a consequence 

of the disease has not been determined. Some animal models suggest that the onset of 

microglial activation takes place before accumulation of amyloid plaques, while other have 

stated the opposite (Cagnin et al., 2001; Griffin et al., 1989; Heneka et al., 2005; Okello et al., 

2009). As possible cause or consequence of AD, neuroinflammation and therefore also 

microglial behaviour has become increasingly important to study (Heneka et al., 2015). 

1.3 Microglia 

Microglia, are the only resident immune cells in the CNS and resemble macrophages in the 

brain. They are relatively uniformly distributed in the brain, with higher densities in areas like 

the olfactory telencephalon, the dendate gyrus of the hippocampus, the substantia nigra 

and portions of the basal ganglia (Lawson et al., 1990; Mittelbronn et al., 2001; Sharaf et al., 

2013). Microglia comprise 10-15 % of all glial cells in the CNS and display highly ramified 

processes and a small cell body under physiological conditions. Even in this ‘resting state’ 

they constantly scan and surveil their environment. In 1990, time-lapse microscopy of primary 

rat microglia identified them as highly dynamic cells, that constantly extend and retract their 

processes to palpate their environment (Thomas, 1990). Microglia are of myeloid origin and 

invade the CNS from the yolk sac during embryonic development where they are 

maintained by self-renewal throughout adult life (Ginhoux et al., 2010; Hashimoto et al., 

2013). Initially a broad classification into the M1 and M2 phenotype was used for microglia. 
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Microglia rather contributing to a more cytotoxic and pro-inflammatory environment were 

classified as M1 phenotype, while the M2 phenotype was attributed to microglia playing a 

more neuroprotective role. It is now widely accepted that numerous forms of microglia exist, 

which have not ultimately been characterized (Cherry et al., 2014). However a rather 

inflammatory phenotype is triggered by pathogen associated molecular patterns (PAMPs), 

like lipopolysaccharides (LPS) and pro-inflammatory cytokines, produced by Th1 cells, of 

which IFNγ is the main constituent (Boche et al., 2013; Colton and Wilcock, 2010; Perry and 

Teeling, 2013). A rather neuroprotective microglial phenotype is triggered, among other 

factors, by stimulation with glucocorticoids, IL-10 and IL-4. The latter two can be secreted by 

Th2 cells, eosinophils and basophils (Martinez and Gordon, 2014). Under physiological 

conditions, main processes that are regulated by microglia are the phagocytosis of dendritic 

spines and apoptotic cells during development and in adulthood. Microglia probably 

contribute to brain plasticity for instance. In 2010, Tremblay et al. found that synapses that 

were previously contacted by microglia, were pruned more often than those without 

microglial contact (Tremblay et al., 2010). More recently, microglia were directly identified to 

phagocytose synapses in the juvenile visual cortex, mediated probably by molecules of the 

complement system (Schafer et al., 2012). Furthermore, phagocytosis of apoptotic cells and 

cellular debris, and in some cases even viable cells is one of the most important tasks of 

microglia, especially during development. In certain brain areas in which cells undergo 

programmed cell death during rat development, microglia were reported to remove up to 

100% of the cells present (Dalmau et al., 2003). In mice, microglia were shown to 

phagocytose 90% of all cells undergoing apoptosis between the age of one to twelve 

months (Sierra et al., 2010). As previously mentioned, microglia can also phagocytose viable 

neurons (Fricker et al., 2012; Neher et al., 2011), their progenitors (Neukomm et al., 2011; 

Reddien et al., 2001) and other viable cells (Kopatz et al., 2013; Neumann et al., 2008). This 

process was recently termed ‘phagoptosis’. In physiology, this mechanism is used by 

microglia to kill and remove senescent cells. Phagoptosis also occurs under pathological 

conditions, i.e. to defend the CNS against invading cells during inflammations (Brown and 

Neher, 2014). 

 

Microglia in pathology 

The spectrum of functions and processes influenced and mediated by microglia under 

pathological conditions is broad. As the only resident immune cells of the CNS they 

participate in virtually all neurological diseases. An important function under pathological 

conditions is the phagocytosis of microbes, including bacteria, yeast and fungi. Although 

microglial pathogen detection, promotion of inflammation and phagocytosis help to protect 

the CNS, they can also cause CNS damage. A study by Hoffmann et al. showed that 
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intrathecal treatment of mice with a TLR-2 agonist resulted in meningeal inflammation and 

neuronal apoptosis. TLR-2 is expressed nearly exclusively on microglial cells compared to 

other cells residing in the brain. These results indicate that TLR-2 driven neurodegeneration 

could possibly be caused by microglia (Hoffmann et al., 2007). In the course of Parkinson’s 

disease (PD), microglia also become highly activated, and produce proinflammatory 

cytokines, chemokines and reactive oxygen species (ROS)(McGeer et al., 1988) and have 

been found to engulf degenerating dopaminergic neurons (Barcia et al., 2012), a 

mechanism which worsens progression of the disease.  

On the other hand PD is characterized by loss of dopaminergic neurons in the substantia 

nigra pars compacta and neuronal accumulation of α-synuclein in cytoplasmic inclusions 

(Lewy bodies)(Beitz, 2014). The exact contribution of microglia to the progression of the 

disease is not clear yet, since the CNS of Parkinson’s patients may be infiltrated with T-cells 

(Brochard et al., 2009; Mosley et al., 2012). Microglia may however, scavenge accumulating 

α-synuclein protein and thereby promote neuronal viability. It was reported that microglial 

TLR-4 deficiency impaired clearance of α-synuclein in a multiple system atrophy (MSA) 

mouse model. This clearance deficiency resulted in neuronal cell death, motor dysfunction 

and increased pro-inflammatory cytokine release (Stefanova et al., 2011), indicating a 

decelerating effect of microglial function on PD progression.  

In Alzheimer’s disease (AD) microglial cells are localized around Aβ plaques, which are one 

of the main neuropathological hallmarks of AD. So far, like in the case for other CNS diseases 

involving microglia, there is dissension whether microglia play a protective or a destructive 

role in the Alzheimer’s brain. In the early stages of the disease they might phagocytose 

aggregated Aβ molecules effectively and thereby slow down its harmful consequences. 

However, at later stages activated microglia can participate in a form of chronic 

neuroinflammation, in which they constantly secrete cytokines, neurotoxins and proteases 

which induce or at least contribute to neurodegenerative changes in the Alzheimer’s brain 

(Akiyama et al., 2000; McGeer and McGeer, 2004). It has been suggested that ageing 

and/or this chronic neuroinflammatory environment may alter the microglial state of 

activation. Apart from age dependent microglial changes, the numerous forms of activated 

microglia that exist remain to be characterized in more detail (Minghetti, 2005; Streit et al., 

2008). Hence, their significance in the etiology and their targeting for a possible treatment of 

AD, remains debatable (Streit, 2004).  

In 2013, a genome wide association study published by Guerreiro et al. demonstrated a 

genetic correlation between the occurrence of LOAD and the R47H mutation of the 

triggering receptor expressed on myeloid cells 2 (Trem2) (Guerreiro et al., 2013; Jonsson et al., 

2013). There are still various findings about Trem2 expression patterns. However many 

publications state that Trem2 is expressed on microglia under physiological and/or under 
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pathological conditions (Hickman et al., 2013; Jay et al., 2015; Lue et al., 2015; Sessa et al., 

2004; Thrash et al., 2009). Interestingly, loss of function mutations of Trem2 and its co-receptor 

DAP12, result in a phagocytic system disease, termed Nasu-Hakola or polycystic 

lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) (Paloneva et 

al., 2002), in which patients display dementia (Bianchin et al., 2004). These results support the 

hypothesis that microglia play an important role in the etiology of LOAD. 

 

1.3.1 Microglial migration 

In 1999, Dailey et al. observed that microglia were capable of phagocytosing dead cells on 

hippocampal slice cultures. They saw that these microglia transformed from highly ramified 

cells into an amoeboid cell type, first retracting their processes and then extending dynamic 

protrusions, followed by cellular movement (Dailey and Waite, 1999; Stence et al., 2001). 

When brain tissue is damaged, degenerated neurons release several signaling molecules, 

like cytokines, nucleotides and chemokines, to recruit microglia. The microglial stages of 

activation can be assigned into ‘find-me’ and ‘eat-me’ signals (Ravichandran, 2011). Lipid 

lysophosphatidylcholine (LPC) (Lauber et al., 2003), sphingosine 1-phosphate (S1P) (Gude et 

al., 2008), the fractalkine CX3CL1 (Truman et al., 2008), and the nucleotides ATP and UTP 

(Elliott et al., 2009), are well known find-me signals. Microglia possess several purinergic 

receptors, like P2Y6, P2Y12 and P2X4, which, upon activation, can stimulate microglial 

process extension, migration and phagocytosis. Inhibiting those receptors also negatively 

affects microglial migration. 

The fractalkine CX3CL1 can be released by neurons as a soluble 60 kDa fragment, in a 

caspase dependent manner. This fragment can act as a chemoattractant for microglia, 

which in comparison to other CNS cell types almost exclusively express the CX3CL1 receptor 

(CX3CR1) (Cardona et al., 2006; Lee et al., 2010). Therefore, it is not surprising that CX3CR1 

knock out mice produce microglia and macrophages which display dysfunctional migration 

(Truman et al., 2008) and that in animal models of neurodegenerative diseases the CX3CR1 

knock out induces neuronal cell death (Cardona et al., 2006; Pabon et al., 2011). It was also 

reported that neurons generate interleukin-34 (IL-34) in order to communicate with microglia 

and stimulate their migration (Mizuno et al., 2011). The IL-34 receptor, termed colony-

stimulating factor 1 receptor (CSF1R), is primarily expressed by microglia. These examples 

indicate how crosstalk between neurons and microglia is established and shows the 

importance of find-me signals in the brain. Once the phagocytes have followed the ‘find-

me’ signal and are in proximity of a non-viable and/or damaged cell, they recognize it by 

‘eat-me’ signals. Eat me signals are localized on the outer leaflet of the apoptotic cell and 

include high amounts of phosphatidylserine (PtdSer), alteration of intercellular adhesion 
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molecule-1 (ICAM-1) epitopes, changes in charge and glycosylation patterns on the cell 

surface and exposure of the endoplasmatic reticulum (ER)-resident protein calreticulin 

(Ravichandran, 2011).  

Notably, γ-secretase also has been implicated in microglial function. Although for other cells 

PS1 has been shown to be the predominantly occurring catalytical variant in the γ-secretase 

complex, Jayadef et al. and Farfara et al. showed that loss of PS2 rather than loss of PS1 

activity impairs microglial function. In those studies PS2 knock out led to increased cytokine 

secretion and decreased migratory behaviour during microglial responses (Farfara et al., 

2011; Jayadev et al., 2010). 

Key components of microglial migration: podosomes 

In order to adhere to a substrate or to move its body, a cell needs to transfer intracellular 

forces to the ECM. This occurs via transmembrane proteins, such as integrins, which can 

extracellularly connect to the ECM and intracellularly to adapter proteins and the 

cytoskeleton. Depending on the cellular function and cell type, these connections can be 

differently assembled. Under physiological conditions many cell types express structures 

termed focal complexes and adhesion sites (FAS), which have a dash-like appearance and 

are enriched in proteins such as talin, paxillin and vinculin (Zamir and Geiger, 2001). Some 

cells, like osteoclasts (Zambonin-Zallone et al., 1988), macrophages (Lehto et al., 1982; Linder 

et al., 1999), dendritic cells (Burns et al., 2001) and endothelial cells (Burgstaller and Gimona, 

2005), however, express podosomes instead. These structures are also called invadopodia in 

cells associated with pathological conditions, due to their invasive properties, for example 

when being expressed by invasive human cancer cell lines. Podosomes are dot-like contacts 

that have an F-actin core that is surrounded by a ring structure consisting of adhesion and 

scaffolding proteins, like talin and vinculin (Linder and Aepfelbacher, 2003) (Figure 5). Despite 

the different shape and size, the composition of FAS and podosomes seems to be largely 

similar, with a few exceptions (Block et al., 2008; Wernimont et al., 2008). Moreover, these 

structures contain multiple proteinases, like MMP-2 (Osiak et al., 2005) and MMP-9 (Sato et al., 

1997), which can modulate the ECM, enabling podosome containing cells to move through 

dense tissue (Linder and Kopp, 2005). Proteins that have been identified in podosomal 

structures, include actin nucleators (Arp2/3, formins), polymerization activators (cortactin, 

coronin, WIP and Wiskott-Aldrich Syndrome proteins WASp and N-WASp), actin binders 

(tropomyosin, coronin), filament crosslinkers (α-actinin, caldesmon), adhesion molecules 

(vinculin, zyxin) and kinases (Abl, Src, Pyk2/FAK) (Gimona et al., 2008). A signaling cascade 

involving Cdc42, (neural) Wiskott–Aldrich syndrome protein ((N-)WASP) and the Arp2/3 

complex plays a crucial role in the formation of podosomes and actin filaments (Linder and 

Aepfelbacher, 2003).  
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Figure 5: Podosomal structure and components. 

Podosomes consist of an F-actin core surrounded by a ring structure, consisting of highly 

tyrosine phosphorylated adhesion and scaffolding proteins. The ring structure is connected to 

the ECM by transmembrane receptors like the integrin heterodimers. Src and FAK, which can 

also integrate into the podosomal ring structure, are known as the main kinases which 

phosphorylate tyrosine residues of podosomal proteins. Scheme deduced from (van den 

Dries et al., 2013). 

 

 

Assembly of podosomes involves tyrosine phosphorylation of most podosomal proteins. The 

main kinases responsible for the phosphorylation in podosomes are Src and FAK (also known 

as Pyk2). Interestingly, it has been reported that the mere presence but not the activity of 

these kinases is sufficient for podosome assembly. Their activity rather seems to be crucial for 

podosomal disassembly. Inactive FAK and Src leads to strong adhesion and thus, low motility 

of cells (Ilic et al., 1995; Kaplan et al., 1994). Upon kinase activation they initiate podosomal 

remodelling, which is a prerequisite for cell migration. Calpain, which is another important 

player of podosomal disassembly, cleaves podosomal components, such as WASP, FAK and 

Talin1 (Calle et al., 2006; Chan et al., 2010; Franco et al., 2004) and thereby also promotes 

cell movement. 
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1.4 Rationale and aim of the study 

The Eph-ephrin system is known to play important roles during development and adulthood. 

It is associated with the regulation of cellular adhesion and migration. So far, mainly 

regulation and effects of Eph forward signaling have been investigated. Although 

downstream targets of ephrin-B reverse signaling have been less investigated, it is known that 

reverse signaling can stimulate proteins like Src and Grb4 and thereby endothelial sprouting 

and cell repulsion (Georgakopoulos et al., 2006). In previous studies, the γ-secretase complex 

was revealed to be involved in ephrin-B1 as well as ephrin-B2 processing in MEF and HEK293 

cells (Georgakopoulos et al., 2006; Tomita et al., 2006). Additionally, deletion of PS1 and/or a 

PS1/2 double knock out was demonstrated to disrupt FAS in fibroblasts. Interestingly, they 

could be rescued by overexpressing the γ-secretase product ephrin-B2 ICD (Waschbusch et 

al., 2009).  

The interest in microglia has increased in recent years, due to the fact that many diseases, 

including AD, are believed to be strongly affected by neuroinflammation. Therefore, the 

overall goal of this project was to characterize the role of γ-secretase and ephrin-B in 

microglial migration.  

To this end, we aimed to generate a microglial cell model, expressing different PS and 

ephrin-B2 constructs. Embryonic stem cell derived microglial precursor cells (ESdM) were used 

for most of our analyses. These cells stably proliferate, have not been oncogenically 

transformed and have most characteristics of primary microglia (Napoli et al., 2009). For 

stable target gene expression, a lentiviral transduction system was established. The influence 

of γ-secretase inhibition on ephrin-B2 signaling was investigated by a pharmacological as 

well as a genetic approach. Moreover, intracellular ephrin-B2 dependent signaling pathways 

were analyzed and characterized. An additional important objective was to assess the 

functional relevance of γ-secretase and ephrin-B2 by structural analysis of cell adhesion and 

migration assays. 
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2. Materials and Methods 
 

Chemicals used in the following experiments were purchased in purity grade “per analysi” 

from Sigma-Aldrich (Steinheim, Germany), LifeTechnologies (Frankfurt, Germany) Roche 

(Basel, Switzerland), Roth (Karlsruhe, Germany), Applichem (Darmstadt, Germany), 

Tocris/R&D Systems (Wiesbaden-Nordenstadt, Germany), Cayman Chemicals (Ann Arbor, 

USA) or SantaCruz Biotechnology (SantaCruz, USA). Cell culture media and buffers were 

purchased from LifeTechnologies (Frankfurt, Germany). Exceptions are stated in the 

respective experiment descriptions. For a list of used equipment see Table 3.  

 

TABLE 3: LABORATORY EQUIPMENT 

Equipment Company 

-80°C Freezer Thermo Scientific 

37°C CO2 Incubator Binder 

Cell culture clean bench Thermo Scientific 

Centrifuge (5804) Eppendorf 

Water bath Medigen 

SDS PAGE chamber Höfer 

Xcell SureLock Mini-Cell Life technologies 

Xcell 4 SureLock MidiCell Life technolgies 

Western Blotting chamber Höfer 

Cooling System (E100) Lauda 

Chemiluminescence Imager (ChemiDoc 

XRS) with Analysis Software Quantity One 

Bio-Rad 

Licor Infrared Imager (Odyssey CLx) with 

Analysis Software Image Studio 3.1 

LiCor 

PCR Cycler Eppendorf 

DNA-electrophoresis chamber Amersham 

7300 Real-Time PCR System Applied Biosystems 

TransUV illuminator (GVM 20) Syngene 



43 

 

Implen Nano-Spectrophotometer P-class Implen 

Microcentrifuge (5415R) Eppendorf 

Centrifuge (5804R) Eppendorf 

Centrifuge (5804) Eppendorf 

Autoclave H+P 

Heating block Stuard Scientific 

Thermomixer (compact) Eppendorf 

Magnetic stirrer Velp Scientifica 

pH meter (MP225) Mettler Toledo 

Photometer (Genesis) Thermo Scientific 

Vortex (MS2 Minishaker) IKA 

Analytical Balance (Labstyle 204) Mettler Toledo 

Microtiterplate Reader (Multiskan RC) Thermo Scientific 

Fluorescence microscope (AxioVert 200) with 

ZEN 2 analysis Software 

Zeiss 

Nikon eclipse Ti with 

NIS-elements Software 

Nikon 

2.1 Molecular biological techniques 

2.1.1 Polymerase chain reaction (PCR) 

Template DNA encoding ephrin-B2 sequences used for this project, were a kind gift of Dr. 

Bernd Hoffmann. In order to subclone the constructs into lentiviral vectors, they were first 

amplified by PCR (Table 4, Table 5). For this, a master mix containing the following 

components was used: 

 

10x Pfu buffer + 20 mM MgSO4  5 μl 

dNTP mix, 10 mM each   1 μl 

Forward Primer    0.5-1 μM 

Reverse Primer     0.5-1 μM 

Template DNA     10-100 ng 

Pfu Polymerase    1 μl 

H2O      to 50 μl 
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During the PCR program, DNA strands were denatured, primers were annealed at 

temperatures indicated in Table 5, and finally, elongated (Table 4, 2 minutes /kilo base), to 

create a new DNA strand. Then, program steps 2-4 were repeated 29 times until step 5 was 

started. 

1. Initial denaturation of DNA    95ºC, 5 minutes 

2. Denaturation of DNA   95ºC, 0.5 minutes 

3. Annealing of primers   varying ºC, 0.5 minutes 

4. Elongation of primers   72ºC, 2 minutes/kilo base 

5. Final elongation    72ºC, 5 minutes 

 

 

TABLE 4: SPECIFICATION OF CONSTRUCTS USED FOR LENTIVIRAL TRANSDUCTION 

 

 

TABLE 5: CLONING PRIMERS 

Name Primer Sequence Annealing 

temp (Tm) 

Ephrin-B2 ICD myc Fw: ttt gga tcc atg aag tac cgg agg aga cac agg 

Rv: ccg acg cgt tca cag atc ctc ttc tga gat gag ttt ttg ttc gac ctt gta      

gta aat gtt 

58ºC 

Ephrin-B2 CTF myc Fw: ttt gcg gcc gc taa tac gac tca cta tag gg 

Rv: ccg acg cgt tca cag atc ctc ttc tga gat gag ttt ttg ttc gac ctt gta      

gta aat gtt 

55ºC 

Ephrin-B2 FL myc Fw: ttt gga tcc atg gct gtg aga agg gac tcc gtg tgg 

Rv: ccg acg cgt tca cag atc ctc ttc tga gat gag ttt ttg ttc gac ctt gta      

gta aat gtt 

60ºC 

 

 

 

2.1.2 Separation and purification of DNA fragments 

In order to separate the amplified DNA fragments from the template vectors, the PCR 

reaction mix was supplemented with OrangeG loading dye, and loaded on a gel consisting 

of 1 % agarose in TBE buffer, containing 2 μl GelRed/100 mL. The gel was run at 120 V, for 45 

minutes in TBE buffer. Thereafter, DNA bands were visualized via UV light, cut out of the gel 

and DNA was purified using the Wizard®SV Gel and PCR Clean up system (Promega) and 

dissolved in H2O. 

Name of construct  NCBI accession 

number 

CDS bp position 

(beginning-end) 

Length of insert (bp) 

Ephrin-B2 ICD myc NM_004093.3 825-1075 264 

Ephrin-B2 CTF myc NM_004093.3 703-1075 372 

Ephrin-B2 FL myc NM_004093.3 1-1075 1041 
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TBE buffer 

9 mM Tris-Borate, 2 mM EDTA, dH2O, pH 8.0 

6x OrangeG loading dye 

60 % Glycerin, 0.15 % Orange G, 60 mM EDTA, 10 mM Tris, dH2O, pH 7.6 

GelRed (Biotium Inc.) 

1:10.000 

 

2.1.3 DNA restriction and dephosphorylation 

Purified DNA fragment inserts and the lentiviral plasmid (pLVX-EF1α) were digested by the 

appropriate restriction enzymes (Table 6) for 3 h at 37ºC. The lentiviral vector pLVX-EF1α, 

which contains a puromycin resistance gene, allows for selective culturing of cells. The vector 

furthermore contains an EF1α promoter and therefore constitutively overexpresses inserted 

genes. After digestion the linearized DNA was dephosphorylated by adding 1 U of FastAP 

thermosensitive alkaline phosphatase for 20 minutes at 37ºC to the restriction mixture.  

 
TABLE 6: ENZYMES USED FOR RESTRICTION DIGESTION (THERMO SCIENTIFIC) 

DNA Restriction enzymes Restriction buffer 

Ephrin-B2 ICD myc BamHI, MluI BamHI buffer 

Ephrin-B2 CTF myc NotI, MluI Orange buffer 

Ephrin-B2 FL myc BamHI, MluI BamHI buffer 

pLVX-EF1α BamHI, MluI BamHI buffer 

pLVX-EF1α NotI, MluI Orange buffer 

 

2.1.4 DNA ligation  

Linearized and dephosphorylated DNA plasmids and inserts were separated and purified like 

previously described in 2.1.2. Consecutively, backbone and insert were mixed in a 1:3 molar 

ratio and the bacteriophage T4 ligase and its buffer were added. After 1 h incubation of the 

ligation mix at room temperature, T4 ligase was inactivated at 65ºC for 10 minutes.  

 

2.1.5 Generation of chemically competent E.coli (Top 10) 

For generation of chemically competent E. coli, 5 mL LB medium were inoculated with Top 10 

E.coli and grown overnight at a rotation speed of 210 rpm at 37ºC. On the next day, the 

preculture was used to inoculate 200 mL of LB medium with an optical density (OD) of 0.1 

(measured at 600 nm). The culture was grown until it reached an OD of 0.5 and was then 

chilled at 4ºC for 15 minutes. Then, the culture was centrifuged for 10 minutes at 4000xg at 

4ºC, the supernatant was discarded and the bacteria pellet was resuspended in 80 mL TfBI 
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on ice. After 15 minutes, bacteria were pelleted again, resuspended in 8 mL TfBII and again 

incubated on ice for 15 minutes. Subsequently, they were aliquoted, shock frozen in liquid 

nitrogen, and stored at -80ºC. 

 

Transformation buffer I (TFB I) 

100 mM RbCl, 50 mM MnCl2, 30 mM potassium acetate, 10 mM CaCl2, 15 % Glycerol, pH 5.8 

Transformation buffer II (TFB II) 

10 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 15 % Glycerol, pH 6.8 

Low salt Lauria-Bertani (LB) medium 

1 % tryptone, 0.5 % yeast extract, 0.5 % NaCl, dH2O, pH 7.0 (autoclaved) 

 

2.1.6 Transformation of E.coli (Top10) and E.coli colony screen 

In order to transform the chemically competent E.coli, bacteria were thawed and then 

incubated with the pre-cooled lentiviral DNA vectors on ice for 20 minutes. For DNA uptake, 

a 45 second heat shock at 42ºC was performed. After incubation on ice for 2 minutes, 1 mL 

Soc medium was added and bacteria were rotated at 750 rpm for 1 h at 37ºC.  Then, 

bacteria were pelleted, resuspended in 50 μl Soc medium, and were then plated onto an 

agar plate containing ampicillin over night at 37 °C. Following overnight incubation, the 

different colonies were screened for positive clones. For this, wells of a 96 well plate were 

filled with 200 µl Soc medium with ampicillin. Then colonies were picked and each well was 

inoculated with a different colony and incubated at 37 °C for 3 h. In order to identify positive 

clones, 0.5 µl of bacteria containing Soc medium was used as template for an ephrin-B2 PCR 

(2.1.1). Positive clones were sequenced by an external company to control for mutations. 

 

Super optimal broth with catabolite repression (SOC) medium 

0.5 % yeast extract, 2 % tryptone, 10 mM NaCl, 2.5 mM KCl, 20 mM MgSO4, 20 mM glucose 

LB agar plates 

1 % tryptone, 0.5% yeast extract, 0.5% NaCl, 15 g/l agar, dH2O, pH 7.0 (autoclaved); before 

pouring the plates the antibiotics were added to the warm (~ 40-50 °C) solution. 

Selection antibiotics 

Ampicillin: 100 μg/ml (Stock: 100 mg/ml, dH2O) 

 

2.1.7 Cryo conservation of transformed E.coli 

Overnight grown bacterial suspensions were mixed with sterile glycerol and frozen at -80ºC. 

For re-usage, a sterile tip was used to scratch off 1 μl of the glycerol stock, which was then 

grown overnight in 4 mL antibiotic containing LB medium at a rotational speed of 210 rpm at 

37ºC. 

Conservation medium 

25 %: Glycerol, dH2O (sterile filtered, pore size: 0.2 μm), 75 %: bacterial suspension 
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2.1.8 Purification of plasmid DNA from E.coli 

For purification of DNA from E.coli bacterial cultures of 50-250 mL, the NucleobondExtra Midi 

Kit (Macherey&Nagel) was used. For DNA purification of up to 5 mL cultures the NucleoSpin 

Plasmid Kit (Macherey & Nagel) was used. Briefly, cells were pelleted, resuspended and 

incubated with a lysis and a neutralization buffer. Then, then suspension was cleared from 

cell debris by centrifugation and DNA containing supernatant was loaded to a DNA binding 

column. After washing the DNA it was precipitated by isopropanol and washed with 70 % 

ethanol. The ethanol was removed and the pellet was air dried, and finally dissolved in 

DNase free H2O. 

 

2.1.9 RNA isolation from eukaryotic cells 

Prior to RNA isolation, cells were washed with Phosphate buffered saline (PBS), pelleted and 

stored on ice until further use. For RNA isolation from ≤ 3x105 cells the RNeasy Micro Kit was 

used; for ≥ 4x 105 cells the RNeasy Mini Kit was used. Briefly, cells were disrupted by adding a 

lysis buffer containing RNase inhibitors, were consecutively homogenized by passing the 

lysate 5 times through a 20 Gauge needle, and were finally loaded onto an RNA binding 

column. After the RNA binding, the column was washed and RNA was finally eluted in RNase 

free H2O. Until further use, RNA was stored at -80ºC. 

 

2.1.10 DNA digestion and reverse transcription (RT)-PCR 

In order to remove endogenous DNA from the eluted RNA (2.2.9), the RNA was incubated 

with DNase I and the respective buffer (New England BioLabs) for 20 minutes at 37ºC. DNase I 

heat inactivation was done at 75ºC for 10 minutes. Next, cDNA was transcribed from isolated 

RNA by using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific). For this 

purpose, the RNA was incubated with hexameric primers, an RNase inhibitor, mixed dNTPs, 

the reverse transcriptase and its buffer for 1 h at 42ºC. The mixture was inactivated at 70 ºC 

for 15 minutes. In case of storage cDNA was kept at -80°C. 

 

2.1.11 Photometric determination of DNA concentration 

In order to determine concentration and purity of the dissolved nucleic acids, 0.5-2 μl of 

sample were loaded onto the Nanophotometer 330 (Implen). Nucleic acids were measured 

at 260 nm. By determining the 260/280 ratio, protein contamination of the samples was 

assessed. In case of RNA, this value had to be ≥ 2.0, in case of DNA ≥ 1.8. Furthermore the 

260/230 ratio was assessed to control for impurities caused by buffer salts. Both RNA and DNA 

values had to be ≥ 2.0 for further use. 
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2.1.12 Analysis of gene expression by qPCR 

Gene expression of cells was analyzed by qPCR using a 7300 Real-Time PCR System (Applied 

Biosystems). Firstly, a primer master mix containing primers (Table 7) as well as the Sybr Green 

PCR Master Mix (Applied Biosystems) was prepared. Secondly, a cDNA template master mix, 

containing the cDNA (2.1.9 and 2.1.10) and DNase free H2O was prepared. Sybr Green is an 

asymmetric cyanine dye, which binds to double stranded DNA. The DNA-dye complex emits 

light at ~520 nm, which can be detected by the Real time PCR system. To control for volume 

fluctuations between wells, the Rox reference dye was used. It stays unaffected during the 

qPCR and is a measure for the amount of master mix that was initially added to each well. In 

order to analyze the amount of DNA generated during the reaction, a cycle threshold (Ct) 

was set automatically. The Ct is the threshold at which the fluorescence passes a certain 

level, above baseline and below exponential growth. If a gene displays a comparatively low 

Ct, only a relatively small number of cycles was necessary to generate enough DNA to pass 

the fluorescence threshold, meaning that the initial cDNA template concentration and 

cellular mRNA expression was relatively high. To calculate the relative gene expression, the Ct 

values of the target genes were normalized to two reference genes (LDH and GAPDH, Table 

7) and relative expression (2 -
ΔΔCt) was calculated. 

 

TABLE 7: LIST OF Q-PCR PRIMERS USED 

Gene Ref number (Qiagen) Amplicon length 

Mm_Capn1_1 QT00112168 76 bp 

Mm_Capn2_1 QT00106876 88 bp 

Mm_Ptk2_1 QT01059891 98 bp 

Mm_Pxn_1 QT01070041 129 bp 

Mm_Tln1_1 QT00142107 112 bp 

Mm_Tln2_2 QT01057091 74 bp 

Mm_GAPDH QT01658692 144 bp 

Mm_LDHA QT02325414 88 bp 

Mm_EfnB1 QT00251244 138 bp 

Mm_EfnB2 QT00139202 124 bp 

Mm_EfnB3 QT01659112 143 bp 
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2.2 Cell biological techniques 

2.2.1 Cell Culture 

HEK293FT cells were kind gift of Prof. Oliver Brüstle (Bonn university). Cells were maintained in 

Dulbecco´s Modified Eagle´s Medium (DMEM) GlutamaxTM containing 4.5 g/l D-glucose 

supplemented with 10 % fetal bovine serum (FCS, PAN) and 1 % Penicillin/Streptomycin 

solution (100 U/ml Penicillin, 100 μg/ml Streptomycin, ThermoFisher Scientific).  

ESdM cells were maintained in DMEM F-12 containing 1× N2 supplement, 0.48 mM L-

glutamine, 5.3 μg ml−1 D-glucose, HEPES and 1 % Penicillin/Streptomycin solution (100 U/ml 

Penicillin, 100 μg/ml Streptomycin) [29] at 37°C, 95 %. For passaging, cells were scraped 

manually and collected with a cell scraper. 

Murine primary microglia 

Microglia were isolated from C57BL/6 mice and kindly provided by Prof. Michael Heneka 

(University of Bonn). Following co-cultivation with primary astrocytes, microglia were 

maintained in Dulbecco´s Modified Eagle´s Medium (DMEM) GlutamaxTM containing 4.5 g/l 

D-glucose supplemented with 10 % Fetal bovine serum (FCS, PAN) and 1 % Penicillin 

Streptomycin solution (100 U/ml Penicillin, 100 μg/ml Streptomycin).  

 

2.2.2 Generation of lentiviral particles 

2-2.5 x 10^6 HEK 293 FT cells were split onto 15 cm dishes coated with poly-Ornithine and 

cultured for 16 h. Conditioned medium was replaced by fresh DMEM +/+ and cells were 

incubated with 25 μM Chloroquine (Sigma-Aldrich) for 5 minutes. Then, HEK293FT cells were 

co-transfected with the lentiviral plasmid encoding the respective gene, the packaging 

plasmid Pax2 and the envelope plasmid pMD2.G using 0.25 M CaCl2 and 2x HBS buffer as 

transfection reagent. After 10-16 hours of incubation, cells were washed with medium and 

fresh medium was added to the cells. After 24 h medium was renewed and the old medium 

was kept at 4°C until centrifugation. 24 h cell incubation and medium collection was 

repeated once and the cells were discarded. The collected supernatants were combined 

and centrifuged at 4000xg for 5 minutes at 4°C before being filtered through a sterile SFCA 

membrane (pore size: 0.45 μm, Corning Inc.). After that a polyethylene glycol 6000 (PEG 

6000) buffer was prepared according to Kutner et al. (Kutner et al., 2009). The suspension was 

incubated for 1.5 h at 4°C and was mixed every 20 minutes. It was then centrifuged for 30 

minutes at 4000xg. After removing the supernatant the pellet was resuspended in virus 

freezing medium and was kept at -80°C until further use.  
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2x HBS buffer 

280 mM NaCl, 10 mM KCl, 1.5 mM Na2HPO4, 50 mM Hepes, 12 mM Glucose; pH 7.00 

PEG 6000 buffer 

68.4% filtered viral supernatant, 8.5% PEG 6000, 0.3 M sodium chloride and 7.76 % PBS 

Virus freezing medium 

2x HBS buffer, 1 % bovine serum albumine 

 

2.2.3 Transduction of cells with lentiviral particles and selection 

To transduce cells, viral particles were applied to a 3.5 cm dish with 1.6 x 10^5 ESdM cells. 

ESdM cells were incubated 14-16 h with the lentiviral particles. Thereafter, cells were washed 

twice with DMEM F-12 and fresh medium was added to the cells. Cells were selected in 

DMEM F-12 containing 2 μg Puromycin for ~9 days. Overexpression of the transduced 

constructs was tested by immunocytochemical stainings and Western immunoblotting. 

 

2.2.4 Transfection of cells with siRNA 

EfnB2 siRNA (100 pmol in water, Flexitube SI00990535, Qiagen) or control siRNA (100 pmol in 

water, Flexitube , Qiagen) were pipetted into wells of a 24 well plate. To each well 5 µl 

HiPerFect (Qiagen) and 95 µl Optimem (Life Technologies) were added and incubated for 5-

10 minutes. 5.5 x 10^4 cells in 200 µl DMEM F-12 were added to each well. The cells and 

transfection reagents were incubated for 3 h, followed by addition of 200 µl of DMEM F-12 

(see 2.2.1). After incubation over night the medium was changed and cells were cultured for 

further 72 h before further analysis. 

 

2.2.5 In-Cell Western Assay 

Cells were seeded at 80% confluence and cultured overnight in a 96 well dish under 

previously described conditions (see 2.2.1). Cells were either treated with DMSO (Roth) or 10 

µM DAPT for 24 h. 16 h prior to receptor treatment, cells were cultivated in DMEM F-12 without 

supplements. Then, two master mixes were prepared containing either Optimem with Ctrl Fc 

(23.53 nM, 110-HG-100, R&D Systems) or containing EphB1 receptor (23.53 nM, 1596-B1-200, 

R&D Systems). 50 µl of each solution were pipetted in triplicates into the wells for indicated 

times. Treatment was terminated by addition of 50 µl 4% paraformaldehyde (PFA) solution. All 

steps following were performed at RT. Cells were permeabilzed for 10 minutes, incubated 

with blocking solution for 1 h and then with primary antibodies for 1 h (Table 9). Following 

antibody incubation, cells were washed 3 times and incubated with secondary antibodies 

(Table 10) for 1 h. After 3 additional washing steps, TBS without additives was added to the 

wells for detection. Plate images were taken using the Odyssey CLx (Licor) and Image studio 

software with the following settings:  
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Resolution : 169 µm 

Quality:  High Quality 

Focus:   4 mm 

4 % Paraformaldehyde (PFA) solution 

4% PFA, Tris buffered saline (TBS) 

Permeabilization solution 

0.25 % Triton-X 100 (Roth), TBS 

Blocking solution 

Licor blocking solution, TBS (1:1) 

Antibody solution 

Blocking solution: TBS (1:5), primary antibodies 

Washing solution 

0.125% Triton-X 100, TBS 

 

2.2.6 Immunocytochemistry and Total Internal Reflection Fluorescence 

(TIRF) microscopy 

For fluorescent imaging, cells were seeded onto 35 mm µ-dishes (Ibidi treat, Ibidi) at 40 % 

confluence at least 16 h prior to staining procedure. All following steps were performed at 

room temperature. Next, cells were washed once with PBS and were then incubated with 4 

% PFA in TBS for 10 minutes. Thereafter, cells were permeabilized for 10 minutes and then 

incubated with blocking solution for 1 h. Following blocking, cells were incubated with the 

primary antibody solution (Table 9) for 1 h, washed 3 times and consecutively incubated with 

secondary antibodies (Table 10), Fluoresceinyl-aminomethyldithiolano-phalloidin (Phalloidin) 

and 4′,6-Diamidin-2-phenylindol (DAPI) for 1 h. After three additional washing steps, TBS 

without additives was added to the dish for TIRF imaging. The TIRF technique allows to image 

≤ 200 nm thin layers at the specimen surface and is therefore highly suitable for the analysis of 

protein complexes located at the plasma membrane, like podosomes. By an evanescent 

wave, which is able to excite fluorophores which are adjacent to a glass-water interface, a 

very specific region can be imaged, without interference of background signals. The 

evanescent wave is generated when the incident light is totally internally reflected at the 

glass water interface. For this study, a Nikon eclipse Ti fluorescence microscope with a x 100 

apochromat objective and an EM-CCD camera iXon DU879 (Andor, Oxford) was used. 

Software: NIS-elements. 

 

Blocking solution 

5 % Bovine serum albumin (BSA) (Roth), PhosSTOP (Roche), in washing solution (2.2.4) 

Antibody solution 

1 % Bovine serum albumin (BSA) (Roth), Washing solution (2.2.4), primary/secondary 

antibodies 
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2.3 Protein biochemical techniques 

2.3.1 Preparation of cell lysates 

To obtain whole cell lysates, cells were grown to a confluence of 70-80 %. They were scraped 

off the dish, pelleted, washed with PBS, pelleted again, and were frozen at -80ºC until further 

use. For protein extraction, they were thawed and incubated 15 minutes with STEN lysis buffer 

containing protease inhibitor (PI) and 1 mM dithiothreitol (dTT) on ice. Lysates were 

homogenized by passing cells 20 times through a 20 Gauge needle. Then, lysates were 

centrifuged for 15 minutes at 16100xg at 4ºC. The supernatant was used for further analysis. 

Phosphate Buffered Saline (PBS) 

140 mM NaCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, dH2O, pH 7.4 

Hypoton buffer: 

10 mM Tris, 1 mM EDTA, 1 mM EGTA, dH2O, pH 7.6  

STEN lysis buffer: 

50 mM Tris, 150 mM NaCl, 2 mM EDTA, 1 % NP40 (Sigma-Aldrich), 1 % Triton X-100 (Sigma-

Aldrich), dH2O, pH 7.4 

25 x Protease inhibitor (PI) cocktail 

1 Complete (Roche) tablet, 1 mL dH2O 

 

2.3.2 Cell fractionation 

To separate membrane, cytosolic and nuclear fractions, cells were washed with PBS, and 

pelleted by centrifugation. 50 µl of hypotonic buffer containing PI and 1 mM dTT were added 

to the pellet. All steps hereafter were performed at 0-4ºC, all buffers contained PI and 1 mM 

dTT. After 15 minutes of incubation, cells were homogenized by passing them 20 times 

through a 20 Gauge needle and centrifuged for 5 minutes at 2000xg. The resultant 

supernatant 1 contained cellular membranes and cytosol, whilst the pellet 1 contained the 

nuclear fraction.  

The supernatant 1 was further centrifuged for 1 h at 16100xg, the pellet 1 containing nuclear 

proteins was resuspended in 30 µl buffer C and incubated for 15 minutes. It was then 

centrifuged for 15 minutes at 16100xg. The nuclear protein supernatant was used for nuclear 

protein analysis. 

After separation of membrane and cytosolic proteins out of the supernatant 1, the cytosolic 

proteins in the supernatant 2 were used for analysis. The membrane proteins contained in the 

pellet 2 were resuspended and incubated in 30 µl STEN lysis buffer for 15 minutes, in order to 

separate them from lipids. After that, this fraction was centrifuged at 16100xg for 15 minutes, 

and the supernatant contained the membrane proteins. 
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Hypotonic buffer 

10 mM Tris (pH 7.5), 10 mM NaCl, 0.1 mM EGTA 

STEN-lysis buffer 

(2.3.1) 

Buffer C 

25 % Glycerol, 20 mM HEPES (pH 7.9), 0.5 M NaCl, 1 mM EGTA, 1 mM EDTA (pH 8.0), 25 mM β-

Glycerophosphate 

 

2.3.3 Protein estimation 

For protein estimation, two different methods were used, depending on the buffer 

composition used for cell lysis.  

Bicinchoninic acid (BCA) protein assay 

To prepare the samples for measurement protein extracts were diluted in a sample/water 

ratio of 1:10-1:20 and pipetted into a 96-well plate. Consecutively, the reagents were added 

according to the manufacturer’s instructions (Thermo Scientific). The 96-well plate was 

incubated for 30 min at 37°C. Samples were measured at 562 nm using an imager and 

protein concentration of the samples was determined by means of a BSA standard curve. 

Bradford method 

In this method basic and aromatic protein side chains react with Coomassie G-250, which is 

part of the Bradford reagent (Bio-Rad), shifting its absorption maximum to 595 nm. For 

estimation protein extracts in different dilutions were mixed 1:5 with Bradford reagent, 

incubated for 5 min at RT and absorption measured at 595 nm. The protein concentration 

was finally calculated by means of a standard curve. 

 

BCA protein assay kit (Thermo Scientific) 

Bradford reagent (Bio-Rad) 

 

2.3.4 Deglycosylation of proteins 

Purified cellular membranes (see 2.3.2) were pelleted and resuspended in denaturing buffer 

(New England Biolabs) and incubated for 10 minutes at 100°C. Samples were chilled on ice 

and briefly centrifuged at 6000xg. Subsequently, samples were either incubated with 

Glycobuffer (New England Biolabs), water and the deglycosylation enzymes, or with water 

only (control) over night at 37°C. Two different deglycosylation enzymes were used: EndoH 

and PNGaseF (New England Biolabs). After the deglycosylation reaction, samples were 

incubated with loading dye for 5 min at 95°C and subjected to SDS-PAGE (see 2.3.5). 
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2.3.5 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE)/NuPAGE 

To separate proteins according to their molecular weight, SDS-PAGE was used. Depending 

on the molecular weight of the proteins of interest, solutions containing an appropriate 

Acrylamide/Bisacrylamide concentration were mixed (Table 8). The separation gel solution 

was cast into a cassette, with a layer of 70 % ethanol on top it, to prevent dehydration. Then, 

after removal of previously added ethanol, stacking gel solutions were cast onto the 

separation gel. Plastic combs were slided into the stacking gel to create wells for sample 

loading, while still being liquid. Following complete polymerization of the gel, combs were 

removed, the cassette was inserted into a gel electrophoresis chamber and running buffer 

was added to the chamber. Protein samples were denatured by addition of SDS loading dye 

and boiling for 5 minutes at 95°C. Appropriate amounts of protein samples (~20 µg) as well as 

the molecular weight standard PageRuler (Thermo Scientific) were loaded into individual 

wells. Electrophoresis was performed at 30 mA and a maximum of 150 Volt. Alternatively, 

especially in order to detect small molecular proteins, pre-cast Bis-Tris NuPAGE 4-12 % 

gradient gels (Life Technologies) were used. Protein samples were prepared according to 

manufacturer’s instruction. As molecular weight standard the LDS See Blue ladder (Life 

Technologies) was used. 

 

TABLE 8: COMPOSITION OF SDS- PAGE GELS FOR DIFFERENT PROTEIN SIZES 

 Separation gel Stacking gel 

 12 % 10 % 7 % 4 % 

Protein size (kDa) ≤ 70 20-100 30-200 - 

dH2O 7 mL 8.3 mL 10.3 mL 6.2 mL 

Acrylamide/Bisacrylamide 8 mL 6.7 mL 4.7 mL 1.3 mL 

Lower-TRIS 5 mL 5 mL 5 mL - 

Upper-TRIS - - - 2.5 mL 

APS 50 µl 50 µl 50 µl 25 µl 

TEMED 50 µl 50 µl 50 µl 25 µl 

Total 20 mL 20 mL 20 mL 10 mL 

 

 

Stacking gel buffer (4 x) (Upper-Tris)  

500 mM Tris, 0.4 % SDS, dH2O, pH 6.8  

Separation gel buffer (4 x) (Lower TRIS)  

1.5 M Tris, 0.4 % SDS, dH2O, pH 8.8 SDS loading dye (5 x) 50 % Glycerin, 7.5 % SDS, 0.1 M DTT, 

Ammonium persulfate (APS, Sigma)  

10 % Ammonium persulfate, dH2O  
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N,N,N´,N´-Tetramethylethylenediamine (TEMED, Roth)  

Running buffer  

25 mM Tris, 200 mM Glycine, 0.1 % SDS, dH2O Acrylamide/Bisacrylamide solution 30 % 

Acrylamide/Bisacrylamide in the ratio of 37.5:1  

SDS Loading dye (5 x) 

25 % Upper Tris, 0.34 M SDS, 0.1 M dTT, 50% glycerol, bromphenol blue, dH2O to 10 mL 

PageRuler™ prestained protein ladder (Thermo Scientific)  

SeeBlue® prestained standard (Life Technologies) 

 

2.3.6 Western Immunoblotting (WB) and ECL imaging 

 

TABLE 9: PRIMARY ANTIBODIES 

Name Company Species WB ICC 

Ephrin-B2 C-term 

(316) 

Sigma Aldrich Rabbit 1:1000  

Ephrin-B2 N-term Santa Cruz Rabbit 1:500  

pSrc (Y418) Life Technologies Rabbit 1:500 1:300 

Src Millipore Mouse 1:1000 1:300 

pFAK (Y397) Cell Signaling 

Technology 

Rabbit 1:500 1:300 

FAK Millipore Mouse 1:1000 1:300 

β-actin Sigma Aldrich Mouse 1:5000  

Talin-1 Sigma Aldrich Mouse 1:1000  

Vinculin Sigma Aldrich Mouse 1:1000  

Presenilin C-loop Eurogentec Rabbit 1:1000  

pAkt (S473) Cell Signaling 

Technology 

Rabbit 1:1000  

Akt1/PKB Cell Signaling 

Technology 

Rabbit 1:1000  

MEK 1/2 Cell Signaling 

Technology 

Rabbit 1:1000  

AIF Cell Signaling 

Technology 

Rabbit 1:1000  

Vimentin Cell Signaling 

Technology 

Rabbit 1:1000  

pTyrosine Millipore Mouse  1:300 
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TABLE 10: SECONDARY ANTIBODIES 

Antibody Company WB ICC -conjugated 

α-ms HRP Sigma Aldrich 1:25.000  HRP 

α-rb HRP Sigma Aldrich 1:25.000  HRP 

α-ms IRDye 

680RD 

Licor  1:300 IRDye 680 

α-rb IRDye 

800CW 

Licor  1:300 IRDye 800 

α-ms Alexa 

Fluor 647 

Life 

Technologies 

 1:1000 Alexa 647 

α-rb Alexa Fluor 

488 

Life 

Technologies 

 1:1000 Alexa 488 

 

 

Gels containing separated proteins, were put onto a nitrocellulose membrane (pore size 0.2 

µm. Gel and membrane were put between two papers and two sponge layers on each side. 

After clamping all layers together, the sandwich was submerged in transfer buffer and 

proteins were blotted onto the membrane at 180 V and 400 mA in 1.5 h. To monitor protein 

transfer, blotted membranes were washed with TBS-T and incubated for 2 minutes in 

Ponceau red solution. However, this was not done in case of subsequent phosphoprotein 

detection. After three more washing steps, blots were incubated 1 h with PBS-T blocking 

solution at RT, or in the case of phosphoprotein detection, with TBS-T blocking solution at 4°C. 

Then, blots were incubated with primary antibody solution overnight at 4°C containing 

appropriate concentration of antibody (Table 9). After washing the membranes 4 times 5 

minutes with TBS-T, they were incubated in a solution containing horse radish peroxidase 

(HRP) coupled secondary antibodies for 1 h at RT (Table 10).  

After 4 more washing steps, blots were briefly incubated with ECL solution in order to detect 

target proteins. Light emission was captured by an ECL imager (BioRad). Occasionally, 

membrane signals were enhanced by incubation with ECL advanced (GE healthcare). ECL 

signals were quantified with ImageJ software (Analyze->Gels). 

 

Transfer buffer 

5 mM Tris, 200 mM Glycine, 10 % methanol, dH2O 

Ponceau Red 

3 % (w/v) Ponceau S, 3 % trichloroacetic acid, dH2O 

TBS-T 

10 mM Tris, 150 mM NaCl, 0.1 % Tween20, dH2O, pH 7.5  

TBS-T blocking solution 

TBS-T, 5 %, BSA (Roth), PhosSTOP (Roche) 

PBS-T blocking solution 

PBS-T, 5 % skimmed milk powder (Roth)  
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Primary antibody solutions 

TBS-T blocking solution/PBS-T blocking solution, specific antibody (for dilution see Table)  

Secondary antibody solutions 

TBS-T/PBS-T, IgG HRP conjugate secondary antibodies (Thermo Scientific) 

ECL 

(1:1 mix of W1 and W2) 

W1: 0.1 M Tris pH 8.5, 0.4 mM cumaric acid, 0.25 mM luminol, dH2O  

W2: 0.1 M Tris pH 8.5, 0.018 % H2O2, dH2O  

 

2.3.7 Co-Immunoprecipitation (Co-IP) 

To detect protein-protein interactions co-immunoprecipitation (Co-IP) was used. For Co-IP of 

FAK and ephrin-B2 the previously described hypotonic buffer, supplemented with proteinase 

inhibitor but without dTT was used. After cell lysis, the protein concentration of the different 

samples was measured and equal amounts of protein (1 mg/vial) were aliquoted into 1.5 mL 

vials and PBS was added to 800 µl. Then, samples were incubated with 30 µl of uncoupled 

Sepharose A beads (against rabbit IgG, Invitrogen) under constant rotation for 1 h at 4°C to 

remove proteins that bind to the resin unspecifically. Next, the lysate was centrifuged for 2 

minutes at 8000xg at 4°C to remove the beads. After centrifugation, the supernatant was 

transferred into a new vial. 20 µl of the supernatant were separated and kept at -20°C 

overnight until further analysis. The rest of the supernatant was incubated with 2 µg FAK Ab 

(see Table 9) and 30 µl of Sepharose A slurry overnight under constant rotation at 4°C. 

Subsequently, the beads were collected by centrifugation and the supernatant was 

transferred into a separate vial. The beads were then washed with STEN NaCl and twice with 

STEN buffer. Washing solution was removed (using a syringe and a 0.4 mm needle). Then, 20 

µl of sup after pre-clearing, the beads coupled with FAK antibody and 20 µl of the sup after 

Co-IP were incubated with 2x loading dye. The samples were then boiled at 95°C and were 

subjected to protein separation by SDS-PAGE (see 2.3.5).  

 

STEN-NaCl  

50 mM Tris, 500 mM NaCl, 2 mM EDTA, 0.2 % NP40 (Sigma-Aldrich), dH2O, pH 7.6 

 

2.3.8 Protein precipitation with trichloroacetic acid (TCA) 

Cell culture supernatants were collected and cleared from cellular debris by centrifugation 

for 5 minutes at 300xg. Sodium desoxycholic acid was added to a final concentration of 0.02 

% and incubated for 15 min. TCA solution was then added to a final concentration of 10 %. 

Then, samples were incubated for 1 h at RT. Precipitates were pelleted by centrifugation for 

15 minutes at 16,000xg at 4 °C, and washed twice with ice-cold acetone. The washed pellets 

were air-dried, resuspended in 10 µl of Tris-SDS buffer and incubated for 10 min at 50 °C. 
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Finally, 5 µl 2x LDS-sample buffer was added, and samples were subjected to separation by 

NuPAGE (Life Technologies). 

 

DOC solution  

2 % Sodium deoxycholic acid  

Trichloroacetic acid (TCA) 

100 % TCA, dH2O  

Tris/SDS Buffer  

50 mM Tris, 1 % SDS, dH2O  

2.4 Analysis of cell migration 

For migration assays, 15 ng/mL CX3CL1 fractalkine (R&D Systems) containing serum free 

medium was pipetted into the two filling reservoirs of a µ-slide chemotaxis 3D channel (Ibidi) 

device. 3x 10^6 ESdM cells were seeded into the channel and all filling ports were sealed by 

plugs provided by manufacturer in order to prevent evaporation or movement of fluid during 

imaging. The µ-slide was kept at 37°C and cells were imaged for 8 h (1 frame/5 min) with a 

fluorescence microscope (AxioVert 200, Zeiss) with ZEN software. Image sequences were 

manually analyzed (Manual Tracking plug in, ImageJ) and tracks were subsequently plotted 

(Chemotaxis and Migration tool, Ibidi). The accumulated distance of the 10 fastest migrating 

cells in each group per day was statistically analyzed. 

2.5 Statistical analysis 

Analysis of data sets from two sample groups was done by Student’s t-test (unpaired, two-

sided). For comparison of the mean of more than two groups a One Way ANOVA (with 

Tukey’s post hoc test) was used. For analyzing more than one parameter between groups a 

Two Way ANOVA (with Sidak’s post hoc test) was applied. Confidence level: 95 %. All graphs 

display mean of data ±SD. Definition of significant P-values used: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, 

**** ≤ 0.0001.  
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3. Results 

3.1 Ephrin-B expression and processing in microglial cells 

3.1.1 Endogenous expression of ephrin-B in primary microglia and ESdM 

For this study, embryonic stem cell derived microglia (ESdM) were used. These cells closely 

resemble primary microglia and can be cultured at a large scale more easily, thereby 

allowing for biochemical and cell culture analyses (Beutner et al., 2013). Endogenous ephrin-

B family member 1-3 expression in primary microglia as well as ESdM was analyzed by qRT-

PCR expression analysis. 

 

 

Figure 6: Expression of endogenous ephrin-B (1-3) in primary microglia, ESdM and primary 

astrocytes.  

All three ephrin-B family members are expressed in ESdM as well as primary microglia (n=1, 

replicate samples=3). Like ESdM, primary microglia were isolated from C57BL/6 mice. Prior to 

primary microglia harvesting, primary microglia and astrocytes were co-cultured. Therefore 

primary microglia qRT-PCR samples were controlled for contamination with primary 

astrocytes by including primary astrocyte samples in the ephrin-B expression analysis. After 

isolation of mRNA and reverse transcription, cDNA of all three cell types was compared 

regarding ephrin-B expression. Expression levels were normalized to the reference genes 

GAPDH and LDHA. Values represent fold expression levels of all three ephrin-Bs relative to 

ephrin-B1 expression in primary microglia. Ephrin-B expression is low in comparison to 

reference gene expression (GAPDH/ephrin-B fold expression in ESdM: (B1) 1/ 0.00106222, (B2) 

1/0.00004365, (B3) 1/0.00101592). 
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Despite low ephrin-B expression in comparison to GAPDH and LDHA reference gene 

expression, the experiment shows that all ephrin-Bs are expressed in both primary and ES-

derived microglia (Figure 6). Data indicate no contamination of primary microglia with 

primary astrocyte mRNA, since ephrin-B1 and –B2 levels are substantially higher in primary 

astrocytes as compared to the primary microglia.  

 

3.1.2 Generation of ephrin-B2 overexpressing ESdM 

 

Figure 7: Subcloning of ephrin-B2 constructs.  

A) AA sequence comparison and schematic view of the C-terminal fragment of human 

ephrin-B members. The signalling domain (AA329-361) is 100 % homologous between all 

ephrin-B family members. Ephrin-B1 contains an additional phosphoserine domain in the 

juxtamembrane region (indicated in AA sequence by yellow colour). TMR: Transmembrane 

region (red), JMR: Juxtamembrane region (green), SD: signaling domain (green), SH2 (Src 

homology 2) and PDZ domain (yellow). B) Schematic view of ephrin-B2 full length (FL), ephrin-

B2 C-terminal fragment (B2 CTF), an ephrin-B2 intracellular domain (ICD) used for 

overexpression. NTF: N-terminal fragment, myc: myc-tag. C) To identify bacterial clones, 

which were successfully transformed with constructs containing the target insert, plasmids of 

several colonies were screened by PCR. Agarose gel shows bands of three positive bacterial 

clones, which are either positive for ephrin-B2 FL, ephrin-B2 CTF, or ephrin-B2 ICD (ephrin-B2 

FL_myc=1031 bp, CTF_myc=402 bp, ICD_myc=249 bp).  
 

 

Since overall ephrin-B gene expression levels of all three family members were very low in 

microglial cells, it was decided to overexpress one of the three ephrin-Bs. Ephrin-B1 knock out 

mice die perinatally and show defects in neural crest tissues (Davy et al., 2004). Ephrin-B3 

knock out mice display a characteristic hopping gait due to a defect in corticospinal 

pathfinding (Kullander et al., 2001a; Yokoyama et al., 2001). Ephrin-B2 knock out mice display 

lethality at embryonic day 11 (E11) and therefore show the most severe phenotype in 

comparison to ephrin-B1 and ephrin-B3 knock out phenotypes (Wang et al., 1998). This 

demonstrates a crucial function of ephrin-B2 in murine development and identified ephrin-B2 
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as the most promising candidate for exogenous expression in ESdM. Furthermore, this study 

aimed at analyzing ephrin-B reverse signaling, which is transmitted via the intracellular 

domain (ICD) of ephrin-Bs. The signaling domain within the ephrin-B ICD is 100% homologous 

(AA 329-361) (Figure 7A). Ephrin-B2 is furthermore highly conserved in humans and mice 

showing 97% amino acid (AA) homology. Our own experience and experiments of others 

have shown that microglial cell lines are difficult to transfect (Balcaitis et al., 2005; Smolny et 

al., 2014). Therefore ESdM were transduced with lentiviral constructs encoding either human 

ephrin-B2 FL, CTF or ICD (Figure 7B). The different ephrin-B2 cDNAs were subcloned into a 

lentiviral vector. After production and purification of lentiviral particles, ESdM cells were 

transduced with the different ephrin-B2 fragments. To remove non-transduced cells from the 

population, ESdM were cultivated in 2 µg/ml puromycin. After the selection procedure 

ephrin-B2 expression of ESdM was tested via Western immunoblotting (also see Figure 8 and 

Figure 9 ).  

 

3.1.3 Proteolytic processing of ephrin-B2 

It has previously been shown for fibroblasts and other cell types, that binding of the EphB 

receptor to ephrin-B family members induces shedding of the extracellular domains by 

ADAM’s and MMP’s (Janes et al., 2005; Tanaka et al., 2007). This has been reported to be 

followed by intramembranous cleavage by the γ-secretase in the case of ephrin-B1 and 

ephrin-B2 (Georgakopoulos et al., 2006; Tomita et al., 2006). Therefore, it was tested whether 

ephrin-B processing is similar in ESdM. Cells transduced with either a control (Ctrl) vector or an 

ephrin-B2 full length (FL) vector were investigated (Figure 8A).  

Firstly, endogenous ephrin-B expression and processing was tested in Ctrl vector transduced 

cells. As mentioned previously, the signaling domain of all ephrin-B family members is 

homologous. For detection, an ephrin-B antibody, which binds to this homologous epitope of 

the C-terminus of ephrin-B, was used. The endogenously expressed ephrin-B FL and its C-

terminal fragment (CTF) were only weakly detectable, while the intracellular domain (ICD) 

was not detectable at all in the Ctrl vector cells (Figure 6A). To test EphB stimulated ephrin-B 

processing, both cell lines were treated with a control Fc (Ctrl Fc) or a soluble EphB1-Fc fusion 

protein. Treatment of the Ctrl cells with a soluble EphB1 receptor resulted in a significantly 

stronger ephrin-B N-terminal fragment (NTF) accumulation in the medium as compared to 

the Ctrl Fc treated cells (Figure 8A, B). 
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Figure 8: Ephrin-B is shed upon stimulation with EphB1 and is subsequently cleaved.  

A) Western blot shows different ephrin-B fragments in ESdM transduced with Ctrl vector or 

ephrin-B2 FL construct. Ctrl and ephrin-B2 FL cells were additionally treated with a Ctrl Fc or a 

soluble EphB1-Fc fusion protein for 30 min. B) In comparison to the Ctrl Fc treatment, EphB1 

receptor stimulation markedly increases endogenous ephrin-B (1-3) (n=3) and overexpressed 

ephrin-B2 (n=3) shedding, resulting in elevated ephrin-B NTF levels  in both cell types. C) No 

significant differences between ephrin-B2 FL levels were observed in Ctrl or ephrin-B2 FL cells, 

treated with the different receptors (n=3). D) Cells transduced with ephrin-B2 FL show a 

significant increase of ephrin-B2 CTF levels between Ctrl and soluble EphB1 receptor 

treatment (n=3). E) Endogenous ephrin-B ICD is not detectable. Ephrin-B2 FL overexpressing 

cells show strongly increased ephrin-B2 ICD levels after EphB1 receptor stimulation (n=3). 

Statistical analysis was done using a two-sided unpaired student’s t-test. All data are 

represented as means ±SD. 
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The quantification of ephrin-B in cells showed no difference of ephrin-B FL or ephrin-B CTF 

levels upon treatment with EphB1-Fc (Figure 8A, C, D).  

ESdM transduced with an ephrin-B2 full length (B2 FL) construct (described in Figure 7) also 

showed a marked increase in ephrin-B NTF production upon stimulation with the soluble 

EphB1 receptor in comparison to the Ctrl Fc treated cells (Figure 8A, B). Ephrin-B2 CTF and 

ICD levels in these cells rose significantly upon EphB1 treatment (Figure 8A, D, E), whereas 

ephrin-B2 FL levels showed no difference (Figure 8A, C). 

 

 
 

 

Figure 9: Subcellular localization of different ephrin-B2 fragments.  

A) Western blot showing cell fractionation of cells transduced with a control vector or 

overexpressing either of the three ephrin-B2 constructs in ESdM (B2 FL, B2 CTF or B2 ICD). For 

cell fractionation, cells were lysed and the different fractions were isolated by use of 

appropriate buffers and centrifugation, as described in the methods section 2.3.2. The 

analysis shows that ephrin-B2 FL and CTF are membrane associated, while the ephrin-B2 ICD 

localizes to cytosol and nucleus. The experiment indicates that the ephrin-B2 ICD is subject to 

proteasomal degradation, since MG132 treatment (1µM, 4 h) of ephrin-B2 ICD 

overexpressing cells stabilizes the ephrin-B2 fragment. B) Representative cell fractionation 

control for the first sample of each biological triplicate for each construct shown in A). 

Detection of marker proteins shows successful separation of the membrane (M), cytosolic (C) 

and nuclear (N) fraction. AIF: apoptosis inducing factor (membrane marker), vimentin 

(cytoskeletal/nuclear marker), MEK 1/2: mitogen-activated protein kinase kinase (cytosolic 

marker). 
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It was previously described that the ephrin-B1 and –B2 ICD translocate to the nucleus in 

fibroblasts (Tomita et al., 2006; Waschbusch et al., 2009). To assess the subcellular distribution 

of ephrin-B2 and its processing products in our microglial model, membrane, cytosol and 

nuclear fractions were analyzed by Western immunoblotting (Figure 9A). The fractionation 

control furthermore showed that membrane, cytosol and nuclear fractions were separated 

successfully (Figure 9B). The overexpressed ephrin-B2 constructs ephrin-B2 FL, CTF and ICD 

migrated at an apparent molecular weight of ~45 kDa, ~20 kDa and ~14 kDa, respectively. 

Ephrin-B2 FL and CTF were mainly present in the membranous fraction. The ICD was 

detectable in the cytosolic as well as the nuclear fraction. Treatment of the ephrin-B2 ICD 

overexpressing cells with the proteasomal inhibitor MG132 was found to stabilize the 

intracellular ephrin-B2 ICD levels, indicating proteasomal degradation of the fragment. These 

findings resemble those previously made in fibroblasts and suggest that the ephrin-B2 ICD 

also translocates to the nucleus in ESdM.  

3.1.4 Maturation of ephrin-B2 FL overexpressed in BV-2 

To confirm previous findings in a different microglial cell line, BV-2 were used in the following 

experiments (Figure 10, Figure 11). BV-2 are, as opposed to ESdM, immortalized cells, which 

were generated by Blasi et al. by transduction of murine microglial cultures with a retrovirus 

(J2) carrying a c-raf/c-myc oncogene (Blasi et al., 1990). BV-2 were either transduced with a 

control vector or the previously described human ephrin-B2 FL construct (Figure 7). Since it 

has been reported that ephrin-B2 is cleaved by the γ-secretase, cells were treated with the 

γ-secretase inhibitor DAPT, to stabilize the ephrin-B2 CTF. Furthermore, since we observed 

rapid proteasomal degradation of the ephrin-B2 ICD in ESdM, cells were additionally treated 

with the proteasomal inhibitor MG132. Upon treatment with DAPT, the ephrin-B2 CTF 

accumulated, confirming γ-secretase mediated ephrin-B2 cleavage in BV-2. Cell 

fractionation showed that ephrin-B2 FL and CTF are present in the membrane fraction. The 

ephrin-B2 ICD is present in the cytosolic and the nuclear fractions, but can, similar to that in 

ESdM, be poorly detected without proteasomal inhibition (Figure 10). In the ESdM as well as in 

the BV-2, migration of full length ephrin-B2 did not fully correspond to its predicted size of ~37 

kDa but rather to a size of ~45 kDa. However, ephrin-B2 is predicted to be glycosylated, with 

its potential glycosylation sites located at Asparagine 36 and 139 within the N-terminal 

extracellular domain of the protein. 

 

 

 



65 

 

 

Figure 10: Ephrin-B2 fragments localize to similar fractions in ESdM and BV-2.  

Western immunoblot showing cell fractionation of control vector transduced or ephrin-B2 FL 

overexpressing BV-2, which were incubated with the γ-secretase inhibitor DAPT (10 µM, 24 h), 

the proteasomal inhibitor MG132 (1 µM, 4 h) or control solvent (DMSO). Only slight differences 

were detectable in the control vector transduced cells. The ephrin-B2 FL overexpressing cells, 

however, show ephrin-B2 CTF accumulation upon DAPT treatment in the membrane fraction, 

as well as accumulation of ephrin-B2 FL upon MG132 treatment. In the cytosolic and nuclear 

fraction the ephrin-B2 ICD accumulates after proteasomal inhibition with MG132. In order to 

visualize the ephrin-B2 ICD in the cytosolic and membrane fraction, a higher exposure time 

than for the membrane fraction was chosen for these images. This probably also resulted in 

the detection of unspecific bands at 60 and 50 kDa. Furthermore, ephrin-B2 FL was not only 

detected in the membrane fraction but also in the nuclear fraction, likely due to incomplete 

separation of the membrane from the nuclear fraction. 

 

 

Although some functions of glycosylation remain unclear, it is known that one or more N-

linked oligosaccharides are present on most proteins transported through the endoplasmatic 

reticulum (ER) and Golgi apparatus. They are suspected to aid protein transport, folding and 

act as protection from proteases (Bruce Alberts, 2002).  
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Figure 11: Glycosylation of ephrin-B2 in BV-2.  

A) Western immunoblot showing ephrin-B2 in isolated membranes of BV-2 WT or ephrin-B2 FL 

overexpressing cells. Membranes were incubated with an appropriate buffer and then either 

treated with the enzyme Endoglycosidase H (EndoH), the enzyme Peptide N-glycosidase F 

(PNGaseF) or with water. BV-2 WT cells show a single band which is affected by PNGase F 

treatment only and may represent endogenous ephrin-B. Ephrin-B2 FL overexpressing BV-2 

show effective deglycosylation of ephrin-B2 upon EndoH and PNGaseF treatment. Complete 

deglycosylation reduces the ephrin-B2 mass by ~5-7 kDa. B) AA sequence and schematic 

view of the N-terminus of human ephrin-B family members. Ephrin-B1, 2 and 3 display different 

predicted glycosylation sites (ephrin-B1: Asp139, ephrin-B2: Asp36, Asp139, ephrin-B3: Asp 36, 

Asp210). SP: Signal peptide, RBD: Receptor binding domain, JMR: Juxtamembrane region, 

TMR: Transmembrane region. 
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Next, it was tested in BV-2 cells whether oligosaccharide modifications contribute to the 

discrepancy between predicted and apparent molecular mass of ephrin-B2. 

Endoglycosidase H (EndoH) removes only high mannose and some hybrid types of N-linked 

carbohydrates, while Peptide N-glycosidase F (PNGaseF) removes all types of N-linked 

carbohydrates independent of their structure and composition.  

The untreated Ctrl sample of the ephrin-B2 FL overexpressing BV-2 in Figure 11A displays three 

distinct bands. They represent from top to bottom a putative endogenous ephrin-B band, a 

mature and an immature form of the overexpressed ephrin-B2 protein. The EndoH processed 

sample contains proteins which do not possess N-linked mannose rich carbohydrates, 

eliminating the glycosylated mature form. Proteins treated with PNGase F represent 

completely deglycosylated proteins and migrate at ~40 kDa, demonstrating that 

glycosylation of ephrin-B2 constitutes 5-7 kDa of the total protein mass. The largest detected 

proteins in the BV2 WT as well as in the ephrin-B2 FL overexpressing cell samples are not 

affected by the EndoH treatment but only by the PNGaseF treated samples. It is likely that 

the upper bands represent the endogenously expressed ephrin-B proteins. Although the 

glycosylation sites are conserved between humans and mice (Figure 11B), human and 

murine ephrin-B might migrate differently.  

3.2 γ-Secretase mediates reverse signaling of ephrin-B2 

To investigate whether EphB1 induces γ-secretase dependent ephrin-B2 cleavage, ephrin-B2 

FL overexpressing ESdM were treated with the γ-secretase inhibitor DAPT or a control solvent 

(DMSO). Upon treatment of those cells with Ctrl Fc or soluble EphB1, ephrin-B2 NTF and ICD 

generation was measured (Figure 12A). In cell culture media of DMSO as well as DAPT 

treated cells, ephrin-B2 NTF levels were significantly higher after incubation with soluble 

EphB1-Fc receptor in comparison to Ctrl Fc treatment. It was therefore concluded that γ-

secretase inhibition has no or only a minor effect on ephrin-B2 shedding (Figure 12B). 

However, when comparing the cellular ephrin-B2 ICD levels after EphB1 stimulation in the Ctrl 

and DAPT treated cells a significant decrease was measured (Figure 12C), indicating γ-

secretase dependent intramembranous cleavage of ephrin-B2 upon EphB1 binding. To 

validate these findings, ESdM overexpressing ephrin-B2 FL were treated with either DMSO or 

DAPT and were compared with PSdKO ESdM, which also overexpressed ephrin-B2 FL (Figure 

12D). Upon pharmacological γ-secretase inhibition, ephrin-B2 CTF accumulated, while ICD 

levels decreased (Figure 12D, E, F). PSdKO ESdM completely lacking γ-secretase activity show 

strong ephrin-B2 CTF and a decrease of the ephrin-B2 ICD levels below the detection limit 

(Figure 12D, E, F), further confirming that intramembranous cleavage of ephrin-B2 is 

dependent on γ-secretase. 
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Figure 12: Cleavage of ephrin-B2 is mediated by γ-secretase.  

A) Ephrin-B2 FL overexpressing cells were treated with DMSO (Ctrl) or DAPT (10 µM)for 24 h. 

Cells were then treated with Ctrl Fc or soluble EphB1 (2 µg/mL) receptor for 40 min. B) EphB1 

induced extracellular shedding can be evoked in DAPT as well as DMSO treated cells. Protein 

from cell culture medium was TCA precipitated (n=3, Two way ANOVA with Tukey post hoc). 

C) DAPT treated cells show significantly less ICD production as compared to DMSO treated 

cells (n=3, Two way ANOVA with Tukey post hoc). D) Western blot shows effects of 

pharmacological (DAPT) and genetic (PSdKO) γ-secretase inhibition in ephrin-B2 FL cells on 

ephrin-B2 CTF and ICD generation. E) Quantification demonstrates significant accumulation 

of ephrin-B2 CTFs after both pharmacological and genetic inhibition of γ-secretase (n=4, One 

way ANOVA with Tukey post hoc). F) Ephrin-B2 ICD markedly decreases after 

pharmacological inhibition with DAPT and is not detectable in PS deficient cells (n=4, One 

way ANOVA with Tukey post hoc). All data are represented as means ±SD. 
 

 

 

 

 



69 

 

3.2.1 EphB1 stimulates phosphorylation of Src and FAK 

EphB1 induced ephrin-B2 reverse signaling has previously been reported to stimulate Src 

phosphorylation in fibroblasts (Georgakopoulos et al., 2006; Georgakopoulos et al., 2011). 

Therefore, the effect of EphB1 stimulation on microglia cells overexpressing ephrin-B2 FL was 

investigated in a time dependent manner (Figure 13A).  

 

 

Figure 13: Soluble EphB1 treatment stimulates phosphorylation of Src and FAK.  

A) Time dependent stimulation of Src phosphorylation upon EphB1 treatment (2 µg/mL) in 

ephrin-B2 FL overexpressing cells. B) Quantification of Western immunoblotting, shows rapid 

increase of pSrc after 5 min and a decrease after 20-40 min (n=2, normalized to Src levels, no 

statistical analysis). C) Quantification of In-Cell Western, corresponds to findings in B) and 

shows significantly increased pSrc, 5 min after EphB1 stimulation in ephrin-B2 FL cells (n=3, 

normalized to Src levels, Two way ANOVA with Dunnett’s post hoc). D) In-Cell Western 

analysis shows significant increase of FAK phosphorylation in ephrin-B2 FL cells 5 min after 

EphB1 stimulation (n=3, normalized to FAK levels, Two way ANOVA with Dunnett’s post hoc). 

All data are represented as means ± SD. 

 

 

 

Quantification of Western immunoblotting shows a strong increase of pSrc within 5-10 min 

and a rapid decrease of pSrc levels after 20-40 min (Figure 13B). To validate this experiment 

by a different method, EphB1 induced pSrc stimulation was analyzed in an In-Cell Western 

assay. The In-Cell Western analysis closely resembled the results found by Western 

immunoblotting (Figure 13C). Since Src is known to phosphorylate FAK, an important kinase 

which regulates podosomal turn-over, FAK phosphorylation upon EphB1 receptor stimulation 

was tested. Interestingly, comparable to Src, FAK phosphorylation also peaked at 5 min 

(Figure 13D), suggesting simultaneous activation of Src and FAK and possible cross-
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phosphorylation of the kinases. Moreover, after EphB1 stimulation, levels of phosphorylated 

Src rose 2.5 fold, while FAK phosphorylation increased 10 fold. Since signal amplification is 

typical for signal transduction cascades this indicates that FAK is downstream of Src. 

 

3.2.2 EphB1 induced phosphorylation of Src is dependent on γ-

secretase 

 

 

Figure 14: EphB1 induced stimulation of Src phosphorylation is dependent on γ-secretase.  

A) ESdM expressing ephrin-B2 FL were pre-treated with either DMSO or DAPT (10 µM, 24 h), 

followed by a 5 min treatment with Ctrl Fc or soluble EphB1 receptor (2 µg/mL). B) 

Quantification of DMSO treated cells shows an EphB1 induced pSrc increase, which is 

inhibited by prior DAPT treatment (n=3, normalized to Src levels, Two-way ANOVA with Tukey 

post hoc). C) In-Cell Western, showing DMSO or DAPT (10 µM, 24 h) treated primary microglia, 

that were stimulated with Ctrl Fc or soluble EphB1 receptor (2 µg/mL) for 10 min. D) Statistical 

analysis of fluorescence values obtained in C) reveals significant differences in DMSO treated 

cells, which were stimulated by EphB1, but not in DAPT treated cells (n=3, normalized to Src 

levels, Two-way ANOVA with Tukey post hoc).  

All data are represented as means ± SD. 

 

 

Next, it was tested whether stimulation of Src phosphorylation by soluble EphB1 occurs in a γ-

secretase dependent fashion. Ephrin-B2 overexpressing ESdM were pre-treated with DAPT or 

DMSO. Then, according to the previous finding that Src activation had its peak at 5-10 min, 

cells were either treated with Ctrl Fc or soluble EphB1-Fc for 10 min (Figure 14A). Consistent 



71 

 

with earlier observations, EphB1 treatment significantly increased pSrc levels in DMSO treated 

cells (Figure 14B). Treatment with DAPT prevented EphB1 induced phosphorylation of Src, 

demonstrating γ-secretase dependence of this cascade (Figure 14B). To validate these 

findings, these experiments were repeated in primary microglia. Primary microglia were 

analyzed using an In-Cell Western approach (Figure 14C), since, as compared to 

biochemical analyses, only low cell numbers are needed to perform this assay. Similar to the 

results obtained with ESdM cells, soluble EphB1 receptor significantly increased the 

phosphorylation of Src within 10 min (Figure 14D). Again, prior DAPT treatment prevented 

stimulation, demonstrating that EphB1 receptor induced pSrc stimulation is also γ-secretase 

dependent in primary microglia.  

 

3.2.3 Eph receptor stimulated phosphorylation of Src and FAK is 

dependent on ephrin-B2 ICD generation 

To specifically assess the role of the intracellular domain of ephrin-B2 in γ-secretase 

dependent signaling we sought to establish a genetic model. Firstly, ESdM PSdKO cells were 

stably transduced with functional PS1 WT or non-functional PS1 (PS1 DN; Mutation: D385N) 

constructs. Thus, different cell lines with a homogenous genetic background were created. 

PS1 WT is endoproteolytically cleaved into an N-terminal and a C-terminal fragment. These 

two fragments form a stable heterodimer together with other proteins (also see chapter 1.2) 

to efficiently cleave γ-secretase substrates. The PS1 DN variant carries a single amino acid 

substitution in the catalytic site which completely prevents γ-secretase activity (Figure 15A) 

(Nyabi et al., 2003; Steiner et al., 1998). Secondly, the cells expressing PS1 DN were 

additionally transduced with an ephrin-B2 ICD construct. Western immunoblotting revealed 

expression of PS WT and PS1 DN in PSdKO ESdM. Functional PS is readily endoproteolytically 

cleaved into a C-and an N-terminal fragment. Therefore, PS1 WT expressing cells show a 

strong signal for the C-terminal fragment, while the full-length protein can only poorly be 

detected. The PS1 DN cells by contrast show accumulation of the full-length PS, and only a 

weak PS CTF signal since endoproteolytic cleavage of PS is strongly impaired in these cells 

(Figure 15A). The ephrin-B2 ICD was selectively detected after treatment with the 

proteasomal inhibitor MG132, indicating efficient degradation of this fragment by the 

proteasome (Figure 15B). This is consistent with the findings on the ICD derived from full-length 

ephrin-B2 (see Figure 9, Figure 10). 

Previous experiments in this study revealed that cell stimulation with EphB1 increased Src and 

FAK phosphorylation as well as the generation of ephrin-B2 ICD in a γ-secretase dependent 

manner.  
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Figure 15: Stable overexpression of PS1 WT and PS1 DN in PSdKO ESdM with or without co-

expression of the ephrin-B2 ICD.  

A) Western immunoblot probed with a C-terminal presenilin antibody shows PSdKO cells 

overexpressing either PS1 WT or PS1 DN. Impaired endoproteolytic cleavage of PS1 causes 

characteristic accumulation of PS1 FL and low levels of PS1 CTFs in PS1 DN cells. PS1 FL panel 

displays longer exposure than PS1 CTF panel. B) Treatment with the proteasomal inhibitor 

MG132 (1 µM, 4 h) reveals stable overexpression of the ephrin-B2 ICD in PSdKO PS1 DN cells. 
 

 

 

To investigate the direct role of the ephrin-B2 ICD on Src phosphorylation, cell lysates of 

PSdKO PS1 WT, PS1 DN, and PS1 DN with ephrin-B2 ICD overexpression were analyzed by 

Western immunoblotting with phosphorylation state specific antibodies for Src (Figure 

16A).Densitometric analysis showed significantly decreased pSrc levels in cells overexpressing 

inactive PS1 (PS1 DN) in comparison to PS1 WT overexpressing cells. Interestingly, this 

discrepancy could be fully compensated by overexpression of the ephrin-B2 ICD in cells 

expressing inactive PS1 (PS1 DN+B2 ICD) (Figure 16B). In earlier studies it has been shown that 

autophosphorylation of FAK at Y397 creates a binding site for the SH2 domain of Src, thereby 

promoting complex formation of both kinases (Schaller et al., 1994). Upon recruitment to 

Y397-phosphorylated FAK, Src can further phosphorylate other tyrosine residues of FAK 

(located at positions 407, 576, 577, 861, and 925 (Calalb et al., 1995; Calalb et al., 1996; 

Schlaepfer et al., 1994; Schlaepfer and Hunter, 1996)) to promote maximal FAK activation. 

pFAK levels in PS1 DN ESdM were significantly decreased in comparison to PS1 WT cells, 

showing γ-secretase dependent FAK phosphorylation (Figure 16C). Notably, re-expression of 

the ephrin-B2 ICD in cells with non-functional PS1 normalized pFAK levels to those of PS1 WT 

cells, demonstrating that FAK phosphorylation can be induced by the ephrin-B2 ICD (Figure 

16D). 
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Figure 16: Src and FAK phosphorylation is mediated by ephrin-B2 ICD.  

A) Western immunoblotting analysis of pSrc levels in PSdKO PS1 WT and PS1 DN with or 

without ephrin-B2 ICD overexpression. B) pSrc levels are significantly decreased in PS1 DN 

cells compared to PS1 WT cells. By re-expression of ephrin-B2 ICD in PS1 DN cells, pSrc levels 

are rescued (n=6, normalized to Src levels, One-way ANOVA with Tukey post hoc). C) 

Western immunoblotting of pFAK in previously described cell lines. D) Quantification shows 

significantly decreased pFAK levels in PS1 DN cells, which can be rescued by additional 

ephrin-B2 ICD overexpression (n=3, normalized to FAK levels, One-way ANOVA with Tukey 

post hoc). All values are represented as means ± SD. 

 

 

 

It was previously demonstrated that Src directly binds to the ephrin-B2 ICD (Georgakopoulos 

et al., 2006). The above described data showed that the ephrin-B2 ICD could rescue levels of 

phosphorylated FAK in cells expressing non-functional PS1. Therefore, it was tested whether 

ephrin-B2 FL or ephrin-B2 fragments also bind to FAK (Figure 17). However, co-

immunoprecipitation did not reveal direct interaction between FAK and ephrin-B2 (Figure 

17). 
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Figure 17: Ephrin B2 does not directly bind to FAK.  

A) Whole cell lysates of indicated cell types were lysed using a hypotonic buffer. After pre-

clearing of the lysates, they were incubated with 2 µg/ml FAK antibody and G-Sepharose 

overnight under rotation at 4°C. Western immunoblot shows no co-precipitation of ephrin-B2. 

Only heavy and light chains of the anti-FAK antibody were detected. Ctrl: Lysate before Co-

IP, Co-IP: Beads coupled with FAK Ab, Sup: Lysate after Co-IP. Ctrl and supernatant (Sup) 

samples show similar bands in all three cell types. This indicates no direct interaction between 

FAK and ephrin-B2 in neither of the cell types. B) Demonstration of specificity of the anti-FAK 

antibody in whole cell lysates. Besides FAK FL protein, FAK cleavage products can weakly be 

detected (arrows). 

 

 

3.2.4 Effects of the ephrin-B2 ICD on Akt phosphorylation 

Src and FAK promote cell migration by activating multiple signaling pathways involving not 

only these two proteins but also phosphatidylinositol (PI) 3-kinase, p130CAS and paxillin (Cary 

et al., 1998; Gu et al., 1999; Richardson et al., 1997; Sieg et al., 2000). The PI3 

kinase/Akt/Protein kinase B (PKB) pathway is highly conserved. PI3K activation leads to the 

conversion of phosphatidylinositol (3,4)-bisphosphate (PIP2) phospholipids to 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3). PIP3 in turn can activate Akt/PKB at the 

plasma membrane by binding to it. Since phosphorylation of Src and FAK was decreased in 

non-functional PS1 expressing cells, it was investigated whether this may also affect Akt/PKB 

phosphorylation levels. In order to stimulate Akt/PKB phosphorylation, PS1 WT and PS1 DN 

cells with or without ephrin-B2 ICD overexpression were treated with insulin (Figure 18A). As 

opposed to PS1 WT cells, cells overexpressing non-functional PS1 showed no elevation of 

pAkt levels upon stimulation with insulin. Upon re-expression of the ephrin-B2 ICD in cells with 

inactive PS1, insulin efficiently stimulated phosphorylation of Akt (Figure 18B). These results 

indicate that the stimulation of phosphorylation of Akt/PKB by insulin is dependent on γ-

secretase activity and that ephrin-B2 reverse signaling evokes activation of Akt/PKB.  
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Figure 18: γ-secretase regulates ephrin-B2 induced Akt/PKB phosphorylation.  

A) ESdM were treated with 100 nM insulin (INS) for 5 min. Then, pAkt levels in the different 

PSdKO cell lines were detected by Western immunoblot. B) Quantification shows a significant 

increase in pAkt levels in PSdKO PS1 WT cells after insulin stimulation. In cells expressing non-

functional PS1, phosphorylation of Akt/PKB was not stimulated by insulin treatment. 

Overexpression of the ephrin-B2 ICD restored phosphorylation of Akt/PKB after insulin 

stimulation (n=3, normalized to Akt, Two-way ANOVA with Sidak post hoc). All data are 

represented as mean ± SD. 

 

3.3 Functional effects of γ-secretase/ephrin-B2 signaling 

 

3.3.1 Inhibition of γ-secretase affects podosomal surface 

Src and FAK are known to be important modulators of podosome and FAK assembly and 

disassembly. Previous findings in this study showed that FAK as well as Src phosphorylation 

levels are decreased in cells expressing inactive PS1 (PSdKO PS1 DN). Therefore it was 

investigated whether these altered phosphorylation levels influence the shape or other 

characteristics of podosomes. Podosomes constitute a polarized pattern in the cells that 

predetermines the direction of migration. They are recruited to the leading edge (Figure 

19A), which makes it a suitable cellular location to analyze podosomal changes. To visualize 

podosomes, ESdM were co-stained with the filamentous actin (F-actin) marker phalloidin 

(displayed in green) and a phosphotyrosine (pTyr) antibody (displayed in red) (Figure 19B). 
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The cells were imaged using total internal reflection fluorescence (TIRF) microscopy, which is 

optimal to image cellular structures located at the basal plasma membrane (also see 2.2.7).  

Figure 19A illustrates the position of the image sections displayed in Figure 19B, related to the 

cell body. Podosomes contain an F-actin core, which is surrounded by a ring structure 

consisting of highly tyrosine-phosphorylated scaffold proteins (Linder and Kopp, 2005). Actin 

molecules therefore indicate the amount and location of podosomal structures and proteins. 

Figure 19C shows significantly increased actin levels per area in the leading edge of cells 

expressing inactive PS1 when compared to cells expressing functional PS1. Interestingly, PS1 

DN cells with re-introduced ephrin-B2 ICD displayed similar actin brightness values as the PS1 

WT cells. Very similar results were obtained for pTyr (Figure 19D). Since cells expressing inactive 

PS1 were earlier shown to possess decreased Src and FAK phosphorylation levels this finding 

was surprising. However, podosomes consist of highly tyrosine phosphorylated proteins and 

the podosomal size (represented by actin brightness) seemed to be increased. Therefore, the 

correlation between the increase in tyrosine phosphorylation and actin levels was 

determined. It was found that the increase in pTyr levels in all three cell types was similar to 

the size of podosomal surface (represented by actin values) (Figure 19E).  

These results indicated an enlargement of the total podosomal surface in the leading edge 

of cells expressing inactive PS1. Since the higher brightness per area in cells with inactive PS1 

might results from a similar amount of proteins concentrated on a smaller surface, it was 

important to analyze the size of delineated leading edges in the different cell variants. It was 

found that the average size of the delineated leading edge area was even larger in cells 

expressing inactive PS1 compared to PS1 WT cells or the rescue cells additionally expressing 

the ephrin-B2 ICD or PS1 WT cells (Figure 19F). The results thus show that cells expressing 

inactive PS1 have a brighter podosomal actin staining per area, while displaying on average 

larger leading edges, suggesting that these cells possess a larger podosomal surface in their 

leading edge. PS1 DN cells overexpressing the ephrin-B2 ICD, by contrast, display an actin 

staining intensity and an average leading edge size corresponding to that of the PSdKO PS1 

WT cells. This indicates that γ-secretase mediated ephrin-B2 reverse signaling could regulate 

podosomal assembly and disassembly in the leading edge of microglial cells.  
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Figure 19: Podosomal surface is enlarged in cells with non-functional PS1.  

 

Figure legend continued on page 78. 
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3.3.2 Involvement of γ-secretase activity in motility of microglia 

Podosomal remodelling is a prerequisite for cell migration and increased podosomal and FAS 

surface is associated with impaired cellular motility (Ilic et al., 1995; Kaplan et al., 1994). The 

finding that non-functional γ-secretase causes podosomal changes in ESdM (Figure 19), led 

to the idea that these changes may also translate to a functional impairment of microglial 

motility. Therefore, random migration was assessed in cells expressing the different PS variants 

and the ephrin-B2 ICD. For this purpose, the cells were treated with the fractalkine CX3CL1, 

which has been shown to effectively stimulate migratory behaviour in ESdM (Napoli et al., 

2009) and were imaged by live cell microscopy. The accumulated distance randomly 

travelled by the different ESdM was analyzed (Figure 20A). The motility of cells expressing 

inactive presenilin was significantly lower than the motility observed in PS1 WT cells. 

Interestingly, overexpression of ephrin-B2 ICD normalized random migration of these cells 

(Figure 20B).  

 

 

 

Figure legend (Figure 19) continued from page 77. 

 

A) Schematic view of ESdM. The leading edge is characterized by many podosomes 

(displayed in red) located next to each other. The position of the leading edge indicates the 

direction of microglial migration. Box drawn around the lamellipodium including the leading 

edge depicts which section of the cell is displayed in B). B) Representative images from total 

internal reflection fluorescence (TIRF) microscopy of lamellipodia in the different cell types. 

The bright actin and pTyr staining at the front of the lamellipodium represents the leading 

edge. Actin is displayed in green; phosphotyrosine (pTyr) is displayed in red. Scale bar: 10 µm. 

C) Leading edges were manually delineated and actin staining brightness per area was 

compared between cell lines. Quantification shows significantly increased podosomal actin 

levels in PS1 DN cells, overexpression of ephrin-B2 ICD in these cells leads to normalization of 

actin levels. D) pTyr levels are also increased in PS1 DN cells, but not in PS1 DN+ephrin-B2 ICD 

cells. E) Calculation of the ratio between pTyr and actin shows no difference, demonstrating 

that protein phosphorylation positively correlates to podosomal surface. F) Comparison of 

delineated areas in the previously analyzed cell lines shows enlarged leading edge surface 

area in PS1 DN in comparison to PS1 WT and PS1 DN+ ephrin-B2 ICD cells. Each group 

contains a minimum of 74 cells. Data was collected in two independent experiments. All 

data were statistically analyzed by a One-way ANOVA with Tukey post hoc and are 

represented as mean ± SD. 
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Figure 20: Involvement of functional γ-secretase and ephrin-B2 ICD in microglial migration.  

A) Representative plot of time lapse microscopy with the three different cell types. Cells were 

cultured in serum free medium for 16 h. Then, shortly before imaging, they were stimulated 

with CX3CL1 (15 ng/mL). Cells were imaged for a total of 8 h, taking one frame every 5 

minutes. B) After manual pathway tracking, the accumulated distance travelled by the cells 

was analyzed. Cells expressing inactive PS1 were significantly less motile in comparison to PS1 

WT cells. Decreased motility of the PS1 DN cells could be rescued by re-introduction of the 

ephrin-B2 ICD. Due to strong differences in migratory states of microglia, only the 10 fastest 

cells were analyzed per day and group. Data were collected from three independent 

experiments. Manual tracking was done using ImageJ (Manual tracking plug-in). Plots as well 

as statistical data were obtained using the Ibidi chemotaxis and migration tool. All data are 

represented as means ±SD and were statistically analyzed by One-way ANOVA with Tukey 

post hoc. 

 

 

To further test the importance of ephrin-B2 during random migration of cells, with a different 

approach, ephrin-B2 (name of gene: EfnB2) expression was suppressed by siRNA. Figure 21A 

shows a qRT-PCR analysis in which ephrin-B2 mRNA levels could not be detected in cells 

transfected with ephrin-B2 siRNA, indicating successful knock down of ephrin-B2. The 

migration pathways of control and ephrin-B2 knock down cells were plotted (Figure 21B) and 

the accumulated distance migrated by the cells was determined. Statistical analysis 

between the two types of knock down cells, however, showed no difference (Figure 21C). 
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Figure 21: Ephrin-B2 is dispensable for random migration of ESdM.  

A) ESdM were transfected with either control siRNA or ephrin-B2 (EfnB2) siRNA. qRT-PCR of 

transfected cells shows no detectable ephrin-B2 mRNA expression in EfnB2 siRNA transfected 

cells as compared to Ctrl siRNA transfected cells. GAPDH reference gene expression levels 

were similar in control and EfnB2 knock down cells (Ct value of GAPDH in Ctrl siRNA cells: 

10.86, Ct value of GAPDH in B2 siRNA cells: 10.42; n=1, replicate samples=3).B) Random 

migration plots of siRNA transfected cells, which were stimulated with CX3CL1. The migration 

assay was performed 72 h after siRNA transfection. C) Statistical analysis shows unchanged 

accumulated random migration of ephrin-B2 knock down cells compared to Ctrl siRNA 

transfected cells (n=1, Student’s t-test, minimum number of cells/group analyzed = 10). All 

data are represented as means ± SD.  
 

 

3.3.3 Altered cleavage of FAK in cells without γ-secretase activity 

FAK comprises three functional domains. Firstly, the protein 4.1, ezrin, radixin and moesin 

homology (FERM) domain, which allows FAK to interact with, for instance, the epidermal 

growth factor (EGF) receptor and the platelet derived growth factor (PDGF) receptor (Frame 

et al., 2010). Secondly, the tyrosine kinase domain, and thirdly the focal adhesion targeting 

(FAT) domain, which recruits FAK to focal contacts, and binds to integrin-associated proteins, 

such as talin and paxillin (Schaller, 2010; Schlaepfer et al., 2004).  
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Figure 22: Role of PS1 and ephrin-B2 ICD in the cleavage of FAK.  

A) Detection of FAK by Western immunoblot using an antibody against the N-terminal 

(binding residue AA103 to 553) in ESdM with different PS1 variants and ephrin-B2 ICD B) 

Quantification shows significant decrease of the FAK p90 fragment in cells expressing non-

functional PS1 as compared to PS1 WT expressing cells. After re-expression of ephrin-B2 ICD in 

PS1 DN cells FAK cleavage is normalized (n=3, One-way ANOVA with Tukey post hoc). C) 

Quantification of the FAK p40 fragment shows a trend similar to the p90 fragment in all three 

cell lines. However, no significant differences could be detected (n=3, One-way ANOVA with 

Tukey post hoc). All values are represented as means ± SD.  

 

 

 

FAK functions as a FAS adaptor molecule that transmits integrin and Src derived signals to 

proteins like the PI3K and the extracellular signal regulated kinase (ERK). FAK and other FAS 

associated proteins, are substrates for proteases of the calpain family (Carragher et al., 1999; 

Cooray et al., 1996; Glading et al., 2002). Calpains are calcium-dependent cysteine 

proteases, which play an important role in cellular motility and disassembly of FAS and 

podosomes (Dourdin et al., 2001; Huttenlocher et al., 1997; Palecek et al., 1998). Calpain 

mediated cleavage of FAK was reported to initially result in the generation of a 95 kDa and 

30 kDa fragment.  
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Figure 23: Impaired FAK cleavage in PSdKO cells.  

A) Comparison of FAK cleavage in ESdM overexpressing ephrin-B2 FL and treated with either 

DAPT or DMSO, with PSdKO ephrin-B2 CTF overexpressing cells. For better visualization the FAK 

p90/p40 panel displays a longer exposure time than FAK FL. B) Densitometric analysis of FAK 

fragment p90 shows a significant difference between ephrin-B2 FL and PSdKO overexpressing 

ephrin-B2 CTF cells. C) Analysis shows significant decrease of FAK p40 generation between 

ephrin-B2 FL and PSdKO ephrin-B2 CTF overexpressing cells. 

All data are represented as means ± SD. 

 

 

The 95 kDa fragment has been shown to translocate from the cytoskeletal to the cytoplasmic 

fraction, where it is further cleaved into a 50 kDa and a 40 kDa fragment (Carragher et al., 

2001; Carragher et al., 1999; Cooray et al., 1996). To investigate whether FAK cleavage is 

impaired in the previously described cell lines, generation of different FAK fragments was 

analyzed (Figure 22A). Using an antibody that binds to an N-terminal residue of FAK, the FAK 

FL (p125), FAK p95 and the FAK p40 could be detected. Levels of FAK p95 were significantly 

decreased in cells with non-functional y-secretase. When the ephrin-B2 ICD is overexpressed 

in those cells, FAK p95 levels normalized (Figure 22B). Although a trend to lower levels of the 

FAK p40 fragment could be observed in PSdKO PS1 DN cells, changes were not statistically 

significant (Figure 22C).  
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Figure 24: Processing of talin and vinculin in WT and PSdKO ESdM.  

A) Detection of talin in ESdM WT after incubation with DAPT or DMSO, with PSdKO ESdM. B) 

Quantification shows no difference in talin cleavage between cells treated with DAPT or 

DMSO. Talin cleavage differs significantly between PSdKO ephrin-B2 CTF and WT ephrin-B2 FL 

cells. C) Comparison of vinculin cleavage in previously described cell lines. The vinculin 

fragment, which was revealed at ~95 kDa, is displayed after a longer exposure time than 

vinculin FL. D) Analysis demonstrates significant decrease of vinculin fragment 95 in PSdKO 

ephrin-B2 CTF cells. 

 

In addition to FAK cleavage on a PSdKO background, processing of FAK was also 

investigated in ephrin-B2 FL overexpressing ESdM, which express endogenous γ-secretase. 

These cells were treated with the γ-secretase inhibitor DAPT or with a control solvent (DMSO) 

(Figure 23A). DAPT treatment did not affect FAK cleavage. Since PSdKO ephrin-B2 FL cells 

were not available, PSdKO overexpressing ephrin-B2 CTF cells were used in this preliminary 

experiment. When PSdKO overexpressing ephrin-B2 CTF cells, henceforth called PSdKO cells, 

were compared to the WT cells expressing ephrin-B2 FL, henceforth called WT cells (Figure 

23A), a significant difference in the levels of p95 as well as the p40 fragment was measured 

(Figure 23B, C). Talin and vinculin are both important proteins in focal adhesion assembly and 

the rate of their cleavage has been shown to correlate to podosomal turnover. Like FAK, talin 

and vinculin are known to be cleaved by calpain (Franco et al., 2004; Schoenwaelder et al., 

1997; Serrano and Devine, 2004). Talin (FL size: 230 kDa) is cleaved by calpain at amino acid 

432, between its head and rod domain, to produce a 190 kDa fragment (Schoenwaelder et 

al., 1997). When comparing ESdM WT cells, which had been treated with or without γ-

secretase inhibitor, no difference in talin cleavage was detected. Between WT and PSdKO 
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cells, however, a significantly decreased cleavage was observed (Figure 24A, B). Similar 

results were obtained when investigating vinculin cleavage in these cells. Vinculin is cleaved 

into multiple fragments, a major visible fragment has a molecular weight of 95 kDa (Serrano 

and Devine, 2004). In the PSdKO cells, less vinculin cleavage was detected (Figure 24C, D). 

Although these experiments show preliminary data which needs to be verified with 

appropriate controls, these results indicate that the function of the γ-secretase influences 

cleavage of multiple podosomal proteins. 

 

3.3.4 Ephrin-B2 ICD may act as regulator of Talin-2 expression 

Figure 7C shows that the ephrin-B2 ICD is translocated into the nucleus in ESdM. Next, it was 

tested whether the ephrin-B2 ICD influences gene expression of podosome associated 

proteins. mRNA levels of cells expressing functional or non-functional PS1with or without 

additional ephrin-B2 ICD expression were compared via qRT-PCR. The gene expression 

analysis showed no significant differences in the mRNA levels of talin in PS1 WT compared to 

PS1 DN expressing cells. However, expression of talin-2 mRNA was significantly lower in PS1 DN 

cells re-expressing the ephrin-B2 ICD relative to talin-2 in PS1 WT cells (Figure 25). No 

differences of mRNA levels were detected for the other tested FAS proteins, although a trend 

of reduced gene expression was observed for proteins like calpain2, FAK and talin1 in ephrin-

B2 ICD expressing cells. These results could indicate a gene regulatory function for the ephrin-

B2 ICD.  

 

Figure 25: Ephrin-B2 ICD downregulates mRNA levels of Talin-2.  

Relative gene expression analysis shows gene expression of different FAS and podosome 

associated proteins. The expression of the adapter protein Talin-2 is 50 % reduced in PSdKO 

PS1 DN ephrin-B2 ICD cells. However, PSdKO PS1 DN cells show no upregulation of Talin-2 

expression (n=3). All data are represented as mean ± SD.  
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4. Discussion 
 

This study shows functional involvement of the γ-secretase and ephrin-B2 in microglial 

physiology. In a microglial model, ephrin-B2 processing as well as stimulation of intracellular 

Src and FAK cascades initiated by ephrin-B2 signaling were found to be γ-secretase 

dependent. Importantly, ephrin-B2 processing by the γ-secretase was shown to affect 

podosomal dynamics as well as microglial migration. 

4.1 Expression and proteolytic processing of ephrin-B2 in 

microglial cells 

mRNA expression analysis showed that ESdM and primary microglia both endogenously 

express all three ephrin-B family members. Since overall mRNA expression of ephrin-Bs in 

microglia was low, an ESdM model was generated in which either ephrin-B2 FL, the ephrin-B2 

CTF or the ephrin-B2 ICD were overexpressed. The degree of sequence homology between 

ephin-B1 and B2 is 56 %, while the sequence homology between ephrin-B2 and B3 is 41 %. 

Within the complete ICD region ephrin-B1 and B2 even show 76 % sequence homology, 

which may indicate similar intracellular reverse signaling cascades. Since every ephrin-B 

knock out displays a severe and distinctive phenotype, their presence does not seem to be 

redundant however. For some Eph receptors and ephrin-As on the other hand, phenotypes 

in knock out experiments have indicated redundancy. Three clusters of receptor genes are 

found on human chromosome 1 (EphA2, EphA8 and EphB2), chromosome 3 (EphA3, EphA6, 

EphB1 and EphB3) and on chromosome 7 (EphA1, EphB2 and EphB6) (Kullander and Klein, 

2002). Mice possess similar clusters albeit not on the homologous chromosomes in humans. 

For ligand genes, ephrin-A1, ephrin-A3 and ephrin-A4 were found in a cluster on human 

chromosome 1. The arrangement of the genes suggests that these genes have evolved in a 

recent gene duplication process. This theory is supported by the fact that some family 

members possess similar functions (Table 1). Moreover, distant organisms like the fruit fly 

drosophila melanogaster and the nematode Caenorhabditis elegans possess a low number 

of Eph and ephrin genes (respectively, one Eph and one ephrin gene (Scully et al., 1999), 

one Eph and four ephrin genes (Chin-Sang et al., 1999; George et al., 1998; Wang et al., 

1999)). 
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Figure 26 Ephrin-B processing in microglia.  

Scheme shows 1) extracellular EphB1 receptor binding to ephrin-B2 FL, 2) subsequent ADAM 

shedding and 3) intramembranous γ-secretase cleavage of the resultant ephrin-B CTF, 

thereby generating the ICD. 

 

 

Endogenous ephrin-B protein in ESdM was detected as two FL bands of 50 kDa and 55 kDa 

after SDS-PAGE, likely caused by the divergent sizes and glycosylation of the ephrin-B family 

members. Ephrin-B CTFs of 20 kDa were also readily detectable, while ephrin-B ICD levels 

were very low. Ephrin-B2 FL was furthermore investigated regarding potential glycosylation 

sites. The molecular weight of ephrin-B decreased by ~5 kDa after deglycosylation, 

suggesting that the size deviation between predicted and apparent molecular weight was 

caused by post-translational modifications.  

It was shown that binding of an EphB receptor caused ectodomain shedding of endogenous 

as well as overexpressed ephrin-B2. This mechanism has previously been described to take 

place in a similar fashion in fibroblasts and other cell models (Georgakopoulos et al., 2006; 

Tomita et al., 2006) (Figure 26). Subcellular fractionation of ESdM and BV-2 showed that 

ephrin-B2 FL and CTF are present in the membrane fraction. The ephrin-B2 ICD was found in 

the cytosol and in the nucleus, suggesting a gene regulatory function of this ephrin-B2 
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fragment and further supporting that after intramembranous cleavage the ICD is released 

from the membrane. Ephrin-B2 shedding and cleavage upon treatment with the EphB1 

receptor with or without the γ-secretase inhibitor DAPT showed that ephrin-B2 cleavage, but 

not shedding is γ-secretase dependent. Moreover, in presenilin knock out cells, no ephrin-B2 

ICD was detectable, suggesting that intramembranous processing of ephrin-B2 occurs solely 

by γ-secretase activity in microglial cells. 

4.2 γ-secretase dependent reverse signaling of ephrin-B2  

4.2.1 Ephrin-B2 ICD dependent regulation of kinases involved in cell 

adhesion 

Others have previously revealed that Eph-ephrin signaling involves clustering of Eph-ephrin 

complexes (Himanen et al., 2010; Seiradake et al., 2010). It was suggested that in trans 

contact between Ephs and ephrins, initially leads to the formation of heterotetramers, 

followed by formation of large clusters that facilitate the transmission of forward and reverse 

signals. In this study it was found that when ephrin-B2 FL overexpressing ESdM were stimulated 

with soluble EphB1 receptor, levels of Y418 phosphorylated Src strongly increased in a time 

dependent manner. This shows effective EphB induced ephrin-B2 reverse signaling, 

potentially involving ephrin-B2 clustering. Additionally, levels of Y397 phosphorylated FAK also 

increased with similar kinetics after EphB1 receptor treatment in ephrin-B2 FL overexpressing 

cells. FAK Y397 autophosphorylation creates SH2 binding sites to which Src and other SH2 

containing proteins can bind. When Src binds to Y397 phosphorylated FAK, it can further 

phosphorylate FAK at Y576 and Y577 to promote maximal FAK activity (Hanks et al., 2003; 

Mitra et al., 2005). Overall the data indicate signal transduction by ephrin-B2 in a microglial 

model. 

Src phosphorylation of FAK SH2 domains is also associated with increased binding of SH3 

domain containing podosomal proteins, such as p130 Cas, to the proline rich regions of FAK 

(Lim et al., 2004). It has been shown that expression of a kinase-deficient Src variant in 

fibroblasts decreased FAK phosphorylation. Since in our study, cells expressing non-functional 

PS1 also showed low Src phosphorylation, this might also be the cause for the decreased 

pFAK levels in these cells (Timpson et al., 2001). However, activation of FAK could also involve 

other ephrin-B binding proteins, which have not been investigated in this study, as for 

instance previously shown for Grb4 (Cowan and Henkemeyer, 2001). 

Our findings show that Eph induced signaling of ephrin-B2 led to almost simultaneous 

activation of Src and FAK, indicating cross-activation and complex formation of both kinases. 

It was furthermore demonstrated that EphB receptor induced stimulation of Src is γ-secretase 
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dependent in microglia. It is important to note that these findings could be verified in primary 

microglia, supporting the physiological relevance of γ-secretase in Eph-ephrin signaling in 

authentic microglia and also of the ESdM as a microglial cell model. The C-terminal Src 

kinase (Csk) and phosphoprotein associated with GEMs (PAG)/Csk binding protein (Cbp) 

complex usually keeps Src bound and thereby inactive (Davidson et al., 2003; Horejsi et al., 

2004; Yasuda et al., 2002). Georgakopoulos et al. demonstrated that EphB receptor binding 

to ephrin-B induces intramembranous cleavage of ephrin-B by the γ-secretase. This led to the 

release of the ephrin-B ICD from the membrane, to dissociation of Src from its inhibitory 

complex consisting of the Csk and PAG/Cbp. Moreover, the ephrin-B ICD was found to bind 

to Src, to induce autophosphorylation and thereby activation of Src (Georgakopoulos et al., 

2011).  

In order to investigate Src stimulation by the γ-secretase product ephrin-B2 ICD, a new cell 

model was established. For this purpose, presenilin double knock out ESdM cells were 

transduced with functional and non-functional PS 1. The homogenous genetic background 

of these cells allowed to exclude impacts caused by using cells from different mice. To 

specifically investigate effects of γ-secretase mediated cleavage of ephrin-B2, cells 

expressing non-functional PS1 were transduced with the ephrin-B2 ICD. PS1 WT 

overexpression restored Src phosphorylation levels, which overexpression of non-functional PS 

1 did not, confirming γ-secretase dependence of Src phosphorylation. 

Remarkably, overexpression of the ephrin-B2 ICD in the non-functional PS1 background 

caused a significant increase in Src phosphorylation, identifying ephrin-B2 reverse signaling as 

powerful regulator of Src activity. In these cells, FAK phosphorylation was similarly affected 

within the same time span. Our results show γ-secretase dependent phosphorylation of FAK 

and a rescue of FAK phosphorylation in PSdKO PS1 DN cells by ephrin-B2 ICD overexpression. 

This supports the postulation of simultaneous activation of Src and FAK by γ-secretase 

dependent ephrin-B2 reverse signaling. 

The phosphoinositide-3-kinase (PI3K)/Akt cascade is known to play an important role in 

migration and can be activated by Src and FAK (Larsen et al., 2003; Sonoda et al., 1999; 

Thamilselvan et al., 2007). PI3K phosphorylates phosphatidylinositol (4,5)-bisphosphate 

(PtdIns(4,5)P2) to generate phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) (Chen 

et al., 2007). Immune cells like neutrophils, but also other cell types form sharp PtdIns(3,4,5)P3 

gradients in the membrane that specify the direction of migration (Kolsch et al., 2008; Nishio 

et al., 2007; Servant et al., 2000). Akt can bind to PtdIns(3,4,5)P3 with its pleckstrin homology 

domain and thus becomes activated to initiate downstream signaling in cellular migration 

(Arboleda et al., 2003; Zhou et al., 2006).  
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To investigate whether the PI3K/Akt pathway is affected in cells expressing non-functional 

PS1, Akt phosphorylation levels were compared between the previously described cell lines. 

However, no significant differences in phosphoAkt levels were found. In order to test 

phosphoAkt levels upon stimulation, cells were treated with insulin, which is not only a potent 

activator of the PI3K/Akt pathway but has also previously been shown to activate FAK (Baron 

et al., 1998).  

 

 

 

Figure 27: Akt stimulation by the insulin receptor (IR) is γ-secretase dependent.  

The insulin receptor is a potent activator of the PI3K/Akt pathway. Crosstalk between the IR 

and an integrin receptor can additionally cause activation of FAK and Src, which in turn can 

activate PI3K. In the presence of ephrin-B2 ICD IR signaling may be enhanced due to high 

levels of phosphorylated FAK and Src. 

 

 

In the insulin stimulated PSdKO PS1 DN cells, significantly decreased levels of S473 

phosphorylated Akt were found, suggesting that insulin induced Akt activation is γ-secretase 

dependent in ESdM. In cells with non-functional PS1 re-expressing the ephrin-B2 ICD cells, 

however, insulin could stimulate Akt phosphorylation. The γ-secretase was proposed to 

control insulin signaling by controlling insulin receptor (IR) expression levels (Maesako et al., 

2011). Furthermore, two studies revealed that insulin treatment stimulates migration of 
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hepatocytes and vascular smooth muscle cells (Benoliel et al., 1997; Wang et al., 2003). In an 

in vitro study performed in Chinese hamster ovary (CHO) cells, it was additionally 

demonstrated that insulin treatment increases adhesion via crosstalk between the insulin 

receptor (IR) and the integrin receptors, which then activates the PI3K/Akt pathway 

(Guilherme et al., 1998). Our findings indicate that IR signaling is affected by the γ-secretase. 

Since the ephrin-B2 ICD is involved in the activation of Src and FAK, it may indirectly facilitate 

a snowball effect of FAK and Src activation and thereby potentiate even weak signal 

transmission from the IR to downstream targets by PI3K/Src/FAK crosstalk (Figure 27).  

 

4.2.2 Ephrin-B2 in the regulation of podosomes and microglial migration 

Cellular migration can be subdivided into the following steps: 1) protrusion of the leading 

edge, determined by polarized intracellular signaling, 2)adhesion to the ECM by 

transmembrane receptors such as integrins, 3) contraction of the cell body and detachment 

of the cell rear (Petrie et al., 2009). Directional cell migration can be caused by two sources. 

The first source is ‘intrinsic cell directionality’ which is caused by a so called ‘motogenic’ 

signal (Stoker and Gherardi, 1991; Woodham and Machesky, 2014). This means, that the 

stimulus, such as a growth factor (Seppa et al., 1982), induces motility without providing 

directional information. The second source of directional cell migration is ‘external regulation’ 

(Arrieumerlou and Meyer, 2005), which mostly happens by a gradient formed for instance by 

chemokines (Bourne and Weiner, 2002) or ECM molecules (Carter, 1965). Random migration 

occurs when cells have low intrinsic cell directionality. The present data show that γ-

secretase modulates reverse signaling of ephrin-B2 by intramembranous cleavage of the 

ephrin-B2 CTF. Interestingly, the resulting ephrin-B2 ICD regulates the phosphorylation of Src, 

FAK and Akt. All three kinases are known to be involved in FAS and podosome assembly and 

disassembly, thereby also regulating migration. As previously described, cell types that rely on 

a high motility, like macrophages, invasive cancer cells and dendritic cells, often form 

podosomes instead of FAS (Burns et al., 2001; Lehto et al., 1982; Linder et al., 1999). Both, 

podosomes and FAS form in a polarized manner in the cell. They are recruited to the leading 

edge, and thereby predetermine the direction of cellular migration. Many cells of our ESdM 

model displayed a clear leading edge with a single lamellipodium even without stimulation, 

rather than multiple lamellipodia. A single lamellipodium at the leading edge of ESdM 

indicates persistent intrinsic migration or in the case of gradient induced stimulation, 

externally regulated migration. Multiple lamellipodia indicate random migration. ESdM in 

culture therefore probably secrete enough growth factors to induce persistent intrinsic 

migration. In the adult CNS microglia usually show little migration, indicating a strong 

interaction with the ECM. In order to start migration they transform into an amoeboid 

phenotype, which likely involves cell detachment from the ECM (Eyo and Dailey, 2013). 
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Besides us, others also found that microglia express podosomes rather than FAS. It was 

demonstrated that microglia can degrade ECM molecules with proteases contained in their 

podosomes, similar to invading cancer cells (Siddiqui et al., 2012; Vincent et al., 2012). In the 

presence of the fractalkine CX3CL1, we noticed only about 10 % of motile cells in culture. This 

resembles findings of an in vivo study in which Nimmerjahn et al. observed that only 5% of 

microglial somata travel through the adult CNS, while processes of sessile cells are 

remodelled continuously. Even after local injury of the adult cortex in vivo microglia did not 

move for up to 5 hours (Nimmerjahn et al., 2005).  

Pharmacological inhibition of the γ-secretase was previously shown to impair migration of the 

immortalized microglial cell line N9 after chemotactic CCL2 stimulation (Farfara et al., 2011). 

Downregulation of migration upon pharmacological inhibition of the γ-secretase was 

furthermore observed in the neuronal cell line SH-SY5Y and two breast cancer cell lines (Kim 

et al., 2005; Villa et al., 2014). The underlying mechanisms by which the γ-secretase regulates 

cellular migration have not been investigated, however. 

Our results suggest that γ-secretase mediated ephrin-B2 cleavage is involved in the 

regulation of microglial migration by downstream Src and FAK stimulation. Remarkably, 

assessment of microglial motility in the previously described cell types during time lapse 

experiments showed significantly impaired migration in cells with inactive γ-secretase. 

Consistent with an important role of γ-secretase dependent cleavage of ephrin-B2 in 

intracellular signaling cascades, expression of the soluble ICD fully restored microglial 

migration. Interestingly, these results resemble findings in kinase-deficient Src, as well as FAK 

knock out cells, in which low Src and FAK activity were associated with reduced motility (Ilic 

et al., 1995; Kaplan et al., 1994).  

Furthermore, ephrin-Bs have previously been shown to be involved in the regulation of 

neuronal migration during development (Santiago and Erickson, 2002; Senturk et al., 2011; 

Wang and Anderson, 1997). The homology of the three human ephrin-B family members 

within the signaling domain, suggests a similar function in the regulation of microglial 

migration between family members. To further investigate compensational mechanisms 

between ephrin-B family members regarding migration, a migration assay using ephrin-B2 

knock down cells was performed. This preliminary experiment indicated that ephrin-B2 is not 

required to stimulate ESdM migration, strengthening the earlier made suggestion that the 

three human ephrin-B family members play similar roles in microglial migration due to the 

homology within their signaling sequence. However, since this experiment was only 

performed once, these findings will have to be verified. 

Reverse signaling of ephrin-B proteins has been found to induce cell repulsion, cytoskeletal 

reorganization and disassembly of FAS in many cell types (Foo et al., 2006; Rudolph et al., 
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2014; Tanaka et al., 2003). In this study we found that impairment of γ-secretase decreases 

podosomal turn-over. Notably, staining intensity of podosomal F-actin and phosphotyrosine 

in the leading edge was found to be increased in cells expressing non-functional PS1. 

Strikingly, re-expression of the ICD, led to normalization of leading edge proteins levels. These 

findings suggest that the podosomal leading edge surface increases when the γ- secretase 

complex is impaired and that the ephrin-B2 ICD is a potent regulator of podosomal assembly, 

disassembly or both.  

The increased podosomal surface in the leading edge of cells without γ-secretase activity 

resembles the previously described phenotype of a Src mutant lacking its catalytic domain 

(Fincham et al., 2000; Kaplan et al., 1994; Timpson et al., 2001). This Src variant, which only 

contains the SH2 and SH3 domains (AA 1-251), translocated to and caused enlargement of 

FAS, which were extensively phosphorylated despite lack of Src kinase activity (Kaplan et al., 

1994). These findings suggest that activation of Src promotes the turn-over of FAS by 

stimulating FAS disassembly rather than FAS assembly. Furthermore, Ilic et al. showed that 

cells from FAK knock out mice displayed a larger number of FAS (Ilic et al., 1995), indicating a 

similar function for FAK in the disassembly of FAS. Together with the finding that Src as well as 

FAK kinase activity was impaired in the absence of γ-secretase activity, the combined data 

indicate that γ-secretase mediated processing of ephrin-B2 and liberation of its ICD from 

cellular membranes regulates podosomal turn-over via phosphorylation of Src and FAK 

kinase.  

Despite structural differences between podosomes and FAS, they consist of similar proteins 

(Schachtner et al., 2013). The formation of focal adhesions is induced by attachment of a 

cell to the ECM and subsequent clustering of integrin receptors (Vicente-Manzanares et al., 

2009). Upon clustering, adaptor proteins, like talin, are recruited to the intracellular integrin 

domain, which in turn can bind actin-binding proteins like vinculin and α-actinin (Nagano et 

al., 2012). By this process, the ECM is functionally connected to the cytoskeleton. During 

migration these complexes undergo remodelling, thereby dis- and reconnecting from and to 

the ECM. Y397 phosphorylated FAK binds to Grb2 and recruits regulators of endocytosis, like 

dynamin, into FAS and the extension of microtubules to FAS initiates integrin internalization 

(Ezratty et al., 2009; Ezratty et al., 2005; Mitra et al., 2005; Mitra and Schlaepfer, 2006). 

Endocytic vesicles with internalized integrins are transported from the rear of the cell to the 

leading edge to allow establishment of new cytoskeleton-ECM interactions (Mai et al., 2011; 

Margadant et al., 2011; Simpson et al., 2004). Impaired FAK-Grb2 interaction due to less FAK 

phosphorylation and hindered integrin receptor endocytosis, may be a reason for the 

enlarged podosomal surface found in our microglial cell model.  

Disassembly of FAS is also promoted by calpain. Pharmacological inhibition of calpain 

impairs retraction at the rear of the cell and cellular motility (Huttenlocher et al., 1997; 



93 

 

Palecek et al., 1998) and the phenotype of calpain knock out cells confirms these findings 

(Dourdin et al., 2001). M-Calpain (a.k.a. Calpain 2) is considered to be one of the main 

calpain family members implicated in cleavage of FAS and podosomal proteins, such as 

talin, FAK and paxillin (Chan et al., 2010; Cortesio et al., 2011; Franco and Huttenlocher, 2005; 

Franco et al., 2004). Calpain2 mediated cleavage of talin and vinculin has, corresponding to 

studies on FAK, been associated with focal adhesion turn over (Franco et al., 2004; 

Schoenwaelder et al., 1997; Serrano and Devine, 2004). Since we found that cells with non-

functional PS1 display less Src and FAK phosphorylation together with decreased motility, it 

was of high interest whether calpain cleavage of FAK may be reduced. Notably, our data 

indicate that cleavage of FAK is, at least partially impaired in cells expressing non-functional 

PS1 and can be rescued by re-expression of the ephrin-B2 ICD in microglial cells. Decreased 

cleavage of FAK was confirmed in WT and PSdKO ESdM overexpressing ephrin-B2.  

In a study by Westhoff et al, FAK phosphorylation by Src was found to be necessary to 

increase binding between Calpain2 and FAK (Westhoff et al., 2004). Moreover, FAK binding 

to calpain 2 has been shown to be important for FAK proteolysis by calpain 2 (Carragher et 

al., 2003). Confirming these findings, Westhoff et al. found that mutant FAK, which cannot be 

phosphorylated by Src, also undergoes less degradation (Westhoff et al., 2004). These results 

suggest that the increase in podosomal structures, observed in cells expressing non-

functional PS1, may involve decreased FAK phosphorylation. This would result in lower binding 

between FAK and calpain, further leading to less FAK cleavage and therefore reduced 

podosomal turnover.  

Comparison of WT and PSdKO cells overexpressing ephrin-B2 also indicated impaired 

cleavage of another FAS/podosomal protein, i.e. talin. Talin-1 and -2 are large cytoskeletal 

proteins that have been found to be crucial for focal adhesion assembly (Goksoy et al., 

2008; Nayal et al., 2004). The two talin genes (tln1 and tln2) (Monkley et al., 2001; Senetar and 

McCann, 2005) are 74 % identical (Critchley, 2009). While talin-1 was studied in more detail, 

talin-2 shares the same domain structure, similar functions and binds many of the same 

proteins (Zhang et al., 2008). As previously mentioned, talin contains a head or FERM domain 

and a rod domain, both important for binding multiple FAS/podosomal proteins. The FERM 

domain for instance contains an F-actin binding site (Lee et al., 2004a). It binds the 

cytoplasmic tails of β1, β2, β3 and β7 integrin (Calderwood et al., 1999; Horwitz et al., 1986; 

Pfaff et al., 1998) and can also bind FAK (Chen et al., 1995). The talin head also binds acidic 

phospholipids (Goldmann et al., 1992; Heise et al., 1991). In two independent studies it was 

found that talin binds PtdIns (4,5)P2 (Di Paolo et al., 2002; Ling et al., 2002). The facts that 

PtdIns(4,5)P2 is the precursor for PtdIns(3,4,5)P3 and PtdIns(3,4,5)P3 levels are associated with 

directional migration (Kolsch et al., 2008; Nishio et al., 2007; Servant et al., 2000), link talin 

signaling to directional migration. The talin rod contains an additional binding site for integrins 
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(Moes et al., 2007; Rodius et al., 2008), at least two actin binding sites (Hemmings et al., 

1996)and multiple binding sites for vinculin (Gingras et al., 2005). Accumulation of talin is an 

early step in the formation of FAS (Calderwood et al., 2013). Its importance was 

demonstrated in talin knock out embryonic stem cells, which exhibited defects in cell 

adhesion and spreading and lacked FAS or stress fibers (Priddle et al., 1998). FAS turnover 

involves talin cleavage between head and rod, and at a second site in the C-terminal 

dimerization domain by calpain 2 (Bate et al., 2012; Franco et al., 2004). Our findings show an 

increased podosomal surface as well as impaired cleavage of podosomal proteins like FAK, 

talin and vinculin in cells without functional PS. This suggests an involvement of γ-secretase 

and ephrin-B2 signaling in the regulation of calpain activity. This regulation may occur 

indirectly, by modulating phosphorylation states of calpain substrates. 

Furthermore, after cell fractionation the ephrin-B2 ICD was localized in the nucleus, indicating 

a gene regulatory function. We found significant transcriptional downregulation of talin-2 

upon overexpression of the ephrin-B2 ICD during gene expression analysis, indicating that the 

ephrin-B2 ICD acts as gene suppressor. Also, a trend to a decrease of talin-1 expression was 

also observed. Gene expression analysis showed no transcriptional upregulation of talin-2 in 

cells expressing non-functional PS1, however. These findings may result from much higher 

numbers of ephrin-B2 ICD molecules in overexpressing cells in comparison to the amount of 

endogenous molecules which are lacking in the cells expressing non-functional PS1. 

Alternatively, lacking ephrin-B2 ICD generation could be compensated by the ephrin–B3 ICD, 

since the signaling domain (AA 322-361) contained in the ICD is 100 % homologous between 

the ephrin-Bs. Ephrin-B3, for instance, has been reported to be cleaved in a γ-secretase 

independent manner, by the human rhomboid family protease 2 (RHBDL2) (Pascall and 

Brown, 2004). In conclusion, it is possible that by ephrin-B2 ICD mediated regulation of talin-2 

expression, podosomal turnover may be stimulated or inhibited. It would be interesting to 

investigate whether ephrin-B family ICDs, besides the ephrin-B2 ICD also participate in the 

regulation of gene transcription.  
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Figure 28: Model of the regulation of microglial migration by γ-secretase mediated ephrin-B2 

reverse signaling.  

Upon binding of the EphB1 receptor, ephrin-B2 is shed by ADAMs and subsequently 

intramembranously cleaved by the γ-secretase. Release of the ephrin-B2 ICD from the 

membrane causes Src activation, which in turn activates FAK. Increased FAK and Src activity 

results in higher podosomal turn over, possibly due to more calpain cleavage of podosomal 

proteins, and thereby to higher microglial motility. 
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4.3 γ-secretase mediated ephrin-B2 cleavage in the CNS 

4.3.1 Potential implications for microglia with impaired motility 

Our findings indicate a functional role of γ-secretase and ephrin-B2 for microglia in 

physiology. Since most microglia are from monocytic origin and have to migrate into the 

brain during development, potential stimulation by the γ-secretase and ephrin-B2 may be of 

great importance during this process. Furthermore, microglial migration may play a role in 

synaptic remodelling and efficient phagocytosis of apoptotic cells and cells debris.  

Microglia, which are the first line immune defence of the CNS, show decreased immune 

surveillance in aged CNS tissue, demonstrated by reduced process motility and cellular 

migration (Damani et al., 2011; Hefendehl et al., 2014). Microglia isolated from aged mice 

furthermore seem to express less genes related to motility than those isolated from young 

mice, including genes of integrin α 4 and 6, family G (with RhoGef domain) member 5, 

Heparin-binding EGF-like growth factor, C-X-C chemokine receptor 4, selectin P ligand and 

platelet factor 4 (Orre et al., 2014). It has also been found that human brains with high 

amyloid loads contain a higher number of senescent microglia than non-demented with only 

few amyloid plaques (Flanary et al., 2007). The strongest known risk factor for AD remains 

progressing age. In recent years, microglia related genes have also been linked to AD. 

GWAS identified gene variants of the HLA-DRB4-DRB1 region (encoding for major 

histocompatibility complex, class II, DRβ4 and DRβ1, respectively), cluster of differentiation 33 

(CD33)/Singlec-3 and the Triggering receptor on myeloid cells 2 (TREM2) that increased the 

risk for LOAD (Griciuc et al., 2013; Guerreiro et al., 2013; Jonsson et al., 2013; Lambert et al., 

2013). These studies suggest that dysregulation of immune related pathways could influence 

the pathogenesis of AD. This is further supported by epidemiological studies, which showed 

that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) decreased the risk for 

the development of AD (Imbimbo et al., 2010). Stimulation of immune related pathways 

might however also be a promising AD treatment. In some studies first successes with 

antibodies targeted against Aβ have become apparent. In passive immunization 

approaches with mice, antibodies were found to cross the blood brain barrier. This was 

associated with a reduction of the plaque burden in these mice (Schenk et al., 1999). Active 

immunization approaches in mice reached similar reductions of the amyloid levels in the 

brain and a reduction of cognitive dysfunction (Janus et al., 2000; Morgan et al., 2000). Ex 

vivo assays furthermore showed that antibody binding to Aβ plaques successfully induced 

microglia to phagocytose and degrade the peptides in plaques (Bard et al., 2000). These 

data suggest that microglia could contribute to the removal of amyloid and other harmful 

peptides in the brain by phagocytosis. In clinical studies, in which patients underwent active 

amyloid immunization, some were found to have a reduced amyloid plaque burden, 



97 

 

indicating that amyloid immunotherapy may be a promising treatment, at least when started 

at an early stage in AD progression. However, in these studies other patients developed 

severe meningoencephalitis (Gilman et al., 2005; Holmes et al., 2008). While it is not clear 

whether any of the effects seen were mediated by microglia it is likely that they at least 

contributed to this state. Our outcomes suggest that microglial migration may be decreased 

in FAD patients. This in turn might be a cause for decreased phagocytosis of amyloid in the 

FAD brain. It would be therefore be interesting to investigate a treatment which stimulates 

microglial migration but not neuroinflammation, for instance by administration of a specific 

ephrin-B agonist. 

Strikingly, a mutation of EphA4, a receptor that binds to ephrin-As as well as to ephrin-Bs, has 

recently been associated with an increased risk for AD (Hollingworth et al., 2011), suggesting 

an involvement of the Eph-ephrin system in AD. The EphA4 receptor is expressed on glial cells 

within the white matter (Martone et al., 1997). Additionally, EphA and EphB receptors are 

associated with immunological functions (Pasquale, 2008). EphA4 receptors have been 

found to display an altered distribution in hippocampi of AD patients at early stages of the 

disease and colocalize with neuritic plaques (Rosenberger et al., 2014). This indicates that 

EphA4 signaling impacts memory decline in AD. It is possible that the EphA4 mutation, which 

was found to be linked to the occurrence of AD, also influences ephrin-A or ephrin-B reverse 

signaling, leading to less microglial migration.  

Decreased microglial motility could not only result in a decreased clearing rate of pathogens 

and cell debris. As mentioned earlier, microglia probably contribute to synaptic plasticity by 

phagocytosing neuronal synapses (Paolicelli et al., 2011; Tremblay et al., 2010; Wake et al., 

2009) and could therefore additionally affect the remodelling of neuronal circuits in AD. 

Interestingly, decreased EphA4 expression in a transgenic AD mouse model was associated 

with cognitive impairment (Simon et al., 2009), which could be a further link between EphA4 

and microglial malfunctioning.  

Our data demonstrate a role of the Eph-ephrin system in the regulation of microglial 

migration and hence indicate a potential involvement of Eph-ephrin signaling and γ-

secretase in inflammation during neurodegeneration. Early onset Alzheimer’s disease is often 

caused by loss of function mutations of the presenilins, which probably also leads to less 

cleavage of many γ-secretase products. This needs to be kept in mind during development 

of AD drugs, specifically γ-secretase inhibitors. Moreover, γ-secretase mediated ephrin-B 

cleavage and its regulatory effects on the migration of microglia could play important roles 

in chronic neuroinflammatory processes associated with several neurodegenerative diseases 

(Cameron and Landreth, 2010; Heneka et al., 2015).  
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4.3.2 Impaired γ-secretase mediated ephrin-B2 cleavage in AD 

The discovery that FAD mutations in the presenilins influence the functioning of ephrin-B2 

reverse signaling could have implications in many processes in which ephrin-B signaling is 

involved. Deduced from the fact that ephrin-B2 knock out mice die prenatally from 

defective early angio-and vasculogenesis and from the finding that mice which lack the 

ephrin-B2 ICD resemble this defective angiogenesis, it can be assumed that ephrin-B2 reverse 

signaling is crucial for blood vessel development (Adams et al., 2001; Gerety et al., 1999; 

Wang et al., 1998).  

Interestingly, presenilin knock out mice also display dramatic vascular defects (Nakajima et 

al., 2003). Vascular pathology has been discovered in human PS1 and PS2 associated FAD 

cases, which mimic the pathology found in sporadic AD cases (Lleo et al., 2004). It is likely 

that FAD mutations affect ephrin-B1 and –B2 cleavage, which could at least contribute to 

the vasculo- and angiogenic defects observed in FAD patients. Besides the vascular 

pathology, called cerebral amyloid angiopathy (CAA), in which amyloid is deposited in the 

vascular walls, defects in the microvasculature have been found to be characteristic for 

patients suffering from familial Alzheimer’s disease. In these patients, the microvasculature is 

less dense and shows decreased branching in the basal forebrain and the hippocampus, 

while other vasculature is looped and kinked (Buee et al., 1994; Fischer et al., 1990). Down 

syndrome patients, which are known to express large amounts of APP, display similar vascular 

defects at a young age preceding amyloid plaque formation, indicating the potential 

importance of vascular pathology for the development of Alzheimer’s disease (Buee et al., 

1994).  

While defective ephrin-B cleavage in endothelial cells might contribute to defects in vasculo- 

and angiogenesis, impaired ephrin-B cleavage and/or signaling in neuronal cells could 

contribute to a decreased post-synaptic signal transmission in FAD. In cellular in vitro studies, 

additional complementary findings in ephrin-B defective as well as FAD mutated cells relate 

to defective post-synaptic transmission and LTP (Calo et al., 2006; Dalva et al., 2000). Loss of 

presenilin is associated with memory impairments preceding age-dependent 

neurodegeneration (Saura et al., 2004). Presenilin was found to associate with post-synaptic 

NMDA receptors and was suggested to support the synaptic delivery and localization of 

NMDA receptors. Interestingly, EphB binding to ephrin-B was shown to induce formation of 

large NMDA receptor patches (Calo et al., 2006; Dalva et al., 2000), indicating synergistic 

actions of γ-secretase dependent ephrin-B reverse signaling in NMDA functioning. Cisse et. al 

furthermore found that overexpression of hippocampal EphB2, which regulates NMDA 

receptor function, could reverse long term potentiation and memory deficits in amyloid 

precursor protein transgenic mice (Cisse et al., 2011). Like in conditional presenilin knock out 

mice, impaired ephrin-B function also results in memory impairments. Ephrin-B3 mutant mice 
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display impaired hippocampal LTP and less proficiency in hippocampal-based learning tasks 

(Rodenas-Ruano et al., 2006), whereas ephrin-B2 conditional knockout mice exhibited severe 

deficits in both LTP and in long-term depression(Bouzioukh et al., 2007; Grunwald et al., 2004). 

Lastly, ephrin-B1 impairment has been found to be detrimental in non-spatial learning and 

memory (Arvanitis et al., 2014). 

Besides their function in memory and learning, ephrin-B molecules were also found to be 

essential for neuronal migration during development. In a study by Senturk et al. ephrin-B2, 

and/or –B3 overexpression resulted in a full rescue of the severe developmental disorder 

lissencephaly, in which the brain displays an inside-out order of the neuronal layers in the 

cortex (a.k.a. reeler phenotype in mice). The glycoprotein reelin binds to two lipoprotein 

receptors, namely the very low density lipoprotein receptor (VLDLR) and the apolipoprotein E 

receptor 2 (ApoER2). The study suggests that ephrin-B acts as a co-receptor for VLDLR and 

ApoER2, thereby activating downstream effectors like Dab1 and stimulating neuronal 

migration during development (Senturk et al., 2011).  
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5. Outlook 
 

The present study revealed the importance of γ-secretase in the regulation of ephrin-B2 

reverse signaling in microglia. Our results show the release of soluble ephrin-B2 ICD and the 

activation of downstream targets upon ephrin-B2 reverse signaling, like Src and FAK in a 

microglial model. Since knock out of the three ephrin-Bs demonstrates three different 

phenotypes and henceforth no redundancy between them, it would be interesting to 

investigate different and common effects of all ephrin-B family members, regarding 

intracellular pathways and their effect on microglial migration.  

One could also investigate microglial migration defects in FAD and different ephrin-B knock 

out mouse models and, more specifically investigate by conditional knock outs of the ephrin-

Bs in microglia how this influences cognitive functions of the test animals. It has previously 

been shown that chemotaxis of cells can be strongly affected by ephrin-B reverse signaling, 

which regulates PDZ-RGS and thereby mediates SDF-1 stimulation (Lu et al., 2001). As 

mentioned above, this could also indicate further regulation of G-protein coupled receptor, 

like chemokine receptors, by ephrin-B reverse signaling. In vivo experiments in which the 

motility of microglia generated in this study could be assessed in cortical tissue could give 

information about the reliability of our in vitro findings. In these experiments could also be 

tested whether chemotaxis of PSdKO cells towards typical stimuli present in the AD brain is 

impaired.  

Furthermore, the finding that an EphA4 mutation correlates to the occurrence of LOAD 

indicates an involvement of the Eph-ephrin system in AD. Since abnormal EphA4 expression 

in murine hippocampi has been associated with a cognitive decline, it would be interesting 

to also test ephrin-B expression patterns in the AD brain.  

This study strongly suggests an important role of the γ-secretase in the brain, beyond APP 

cleavage. Therefore general γ-secretase inhibition would likely have detrimental 

immunological consequences in the CNS. One of the most interesting therapeutic AD 

approaches is the investigation of immunotherapies. There have already been several 

clinical trials, which investigated the effects of immunotherapy on the amyloid plaque load 

in AD patients. A problem in these trials has been the occurrence of meningoencephalitis. 

Another major problem in some studies was that a decreased plaque load was not always 

associated with improved cognitive functions. Our data indicate an involvement of γ-

secretase mediated ephrin-B2 cleavage in the regulation of microglial migration. Therefore, 

an interesting approach for an AD therapy would be specific stimulation of microglia by an 

ephrin-B agonist, and additional NSAID treatment, as the first would stimulate migration, while 
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the latter suppresses inflammatory cytokine production. It is possible that a higher degree of 

motility not only increases phagocytosis of cell debris, but also stimulates synaptic 

remodelling.  
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6. Abstract 
 

The Eph-ephrin system plays pivotal roles during development and adulthood in cell-cell 

interaction, cell adhesion and migration. It has previously been shown that ephrin-B1 and 2 

can be cleaved intramembranously by the γ-secretase. γ-Secretase mediated processing of 

ephrin-B has furthermore been linked to activation of Src, a kinase crucial for focal adhesion 

and podosome phosphorylation. Due to the finding that many familial Alzheimer’s disease 

(FAD) mutations are located in the catalytic subunit of the γ-secretase, i.e. presenilin, the γ-

secretase has in the past decades mainly been subject of investigation in early Alzheimer’s 

disease (EOAD) studies. Additionally, the positive correlation between occurrence of late 

onset Alzheimer’s disease (LOAD) and mutations in genes mainly expressed by microglia has 

drawn attention to these cells.  

In this study, the role of γ-secretase and ephrin signaling on downstream effectors, 

podosomal turnover and the migration of embryonic stem cell derived microglia (ESdM) was 

tested. We demonstrate extracellular shedding and subsequent intramembranous ephin-B2 

cleavage by the γ-secretase upon EphB1 receptor binding in a microglial cell model. It was 

furthermore found that proteolytic release of the ephrin-B2 intracellular domain (ICD) 

stimulates Src and FAK activity. 

ESdM from presenilin double knock out (PSdKO) and wild type (WT) mice were transduced 

with either WT presenilin 1 (PS1 WT) or with non-functional presenilin containing an 

inactivating mutation (PS1 DN). A rescue cell type of the PSdKO PS1 DN cells was generated, 

which additionally expressed the ephrin-B2 ICD. Expression of non-functional presenilin 1 

could not rescue phosphorylation of Src and FAK. Cell motility and podosomal morphology 

were also changed in these cells. More specifically, this genotype was associated with 

decreased motility and an enlargement of podosomal surface. Also, the present results 

indicate impaired cleavage of podosomal proteins like FAK, talin and vinculin in cells with 

inactive γ-secretase.  

Interestingly, ephrin-B2 ICD expression could fully rescue this phenotype, indicating that 

ephrin-B2 ICD mediated activation of Src and FAK modulates podosomal dynamics in 

microglial cells. Together, these results identify γ-secretase as well as ephrin-B2 as important 

regulators of microglial migration. 
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