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“When you have eliminated the impossible, whatever remains, however improbable,  

must be the truth.” 

Sir Arthur Conan Doyle 
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Abbreviations 

°C  degrees Celsius 

1D  one dimensional 

2D  two dimensional 

3-DHQ  3-dehydroquinic acid 

3-DHS  3-dehydroshikimic acid 

[α]D
T  specific rotator power, sodium D-line (589 nm); T: temperature 

α   optical rotation 

δ  NMR chemical shifts [ppm] 

λ  wavelength [nm] 

ε  molar absorption coefficient  

µ  micro (10-6) 

µg  10-6  gram 

µl  10-6  liter 

µM  10-6 molar, micromolar (=10-6 mol L-1) 

ν  wave number [cm-1] 

AAA  aromatic amino acid 

Ac  acetone 

ACV  δ-(L-α-aminoadipyl)-L-cysteine-D-valine 

AHBA  3-amino-5-hydroxybenzoic acid 

AIDS  acquired immune deficiency syndrome 

AMP  antimicrobial peptide 

Aoe  2-amino-8-oxo-9,10-epoxydecanoic acid 

APIs  active pharmaceutical ingredients 

ASW   artificial sea water 

BBr3  boron tribromide 

BDA  bisdethiobis(methylthio)-acetylaranotin 

BDAA  bisdethiobis(methylthio)-acetylapoaranotin  

BMS  biomalt salt  



Abbreviations 

br   broad (in connection with NMR data) 

c  concentration 

C18  C-18 modified silica gel 

Ca+2  calcium ion 

CaCl2  calcium chloride 

calcd  calculated 

cDNA  complementary deoxyribonucleic acid 

cf.  confer [lat.], compared to 

CHAP  cyclic hydroxamic acid containing peptides 

CO2  carbon dioxide 

CoA  coenzyme A 

conc.  concentration 

COSY  correlated spectroscopy 

cm   10-2 meter 

d  doublet (in connection with NMR data) 

dd  doublet of doublet (in connection with NMR data) 

Da  Dalton 

DAD  diode array detector 

DAHP  3-deoxy-D-arabino-heptulosonic acid-7-phosphate 

DCM  dichloromethane 

DEPT  distortionless enhancement by polarization transfer 

DHAP  dihydroxyacetone phosphate 

DKP  diketopiperazine 

dm   10-1 meter 

DMAPP dimethylallyl diphosphate  

DMEM  Dulbecco’s modified Eagle's medium 

DMR  dynamic mass redistribution 

DMSO  dimethylsulfoxide 

E-4-P  erythrose-4-phosphate  

https://en.wikipedia.org/wiki/Renato_Dulbecco


Abbreviations 

EA  ethylacetate 

e.g.  exempli gratia [lat.] or example given (for example) 

EI  electron ionization 

ES  enniatin synthase 

ESI  electron spray ionization 

et al.   et alli [lat.]; and others 

EtOAc  ethylacetate 

EtOH   ethanol 

ETP  epipolythiodioxopiperazine 

FCS  fetal calf serum 

FDA  food and drug administration 

FDAA  1-fluoro-2-4-dinitrophenyl-5-L-alanine amide 

Fr  fraction 

FurAla  furylalanine 

g   gram 

G418  Geneticin 

GalR  galanin receptor 

GI  growth inhibition 

GPCR  G protein-coupled receptor 

GPP  geranyl diphosphate 

h   hour 

H3BO4  boric acid 

HCl  hydrochloric acid 

HDAC  histone deacetylase  

HDP   host defence peptide 

HEK  human embryonic kidney 

HIF-1α  hypoxia inducible factor-1 alpha 

HMBC  heteronuclear multiple-bond correlation 

HMG-CoA 3-hydoxy-3-methylglutaryl-CoA  



Abbreviations 

HPLC  high performance liquid chromatography 

HR  high resolution 

HSQC  heteronuclear single quantum correlation  

H2O   water 

IBS  irritable bowel syndrome 

i.e.  id est [lat.]; that is  

IL-2  interleukin 2 

IPP  Isopentenyl diphosphate  

IR  infrared 

J  spin-spin coupling constant [Hz] 

KBr  potassium bromide 

KCl  potassium chloride 

l  cell length 

L  liter 

LC  liquid chromatography 

Leu  leucine 

LPS  lysergylpeptidyl synthase 

m  meter 

m  multiplet (in connection with NMR) 

m/z  mass-to-charge ratio (in connection with mass spectrometry) 

Me  methyl 

MeOH  methanol 

MEP  methylerythritol phosphate   

mg  10-3 gram 

MgCl2  magnesium chloride 

MHz  megahertz 

min   minute 

mL  10-3 liters 

mm  10-3 meters 



Abbreviations 

mM  10-3 molar, millimolar (=10-3 mol L-1) 

MRSA  methicillin resistant Staphylococcus aureus  

MS  mass spectrometry 

MVA  mevalonic acid 

N  normality 

NaCl  sodium chloride 

NaHCO3 sodium bicarbonate 

Na2SO4  sodium sulfate 

n.d.  not detectable 

n.e.  not enriched 

NFAT  nuclear factor of activated T-cells 

ng  10-9 gram 

NH4Ac  ammonium acetate 

nm  10-9 meter 

N-Me  N-methyl 

NMR   nuclear magnetic resonance spectroscopy 

no   number 

NOE  nuclear Overhauser effect 

NOESY  nuclear Overhauser effect spectroscopy 

NP  normal phase (in connection to chromatography) 

NRPS  non-ribosomal peptide synthase 

NSCLC  non-small cell lung cancer  

OSMAC one strain many compounds 

p-  para 

PBP  penicillin binding protein 

PDA   photodiode array 

PE  petroleum ether 

PEP  phosphoenolpyruvate 

PGPR  plant growth promoting rhizobacteria 



Abbreviations 

pH  potentia hydrogenii 

Phe  phenylalanine 

PKS  polyketide synthase 

PLP  pyridoxal phosphate 

ppm  part per million 

PPP  pentose phosphate pathway 

PTX  pertussis toxin 

qC  quaternary carbon 

ROESY  rotating frame Overhauser effect spectroscopy 

RP  reversed phase (in connection with chromatography) 

RPP  reductive pentose phosphate 

rpm   revolutions per minute 

RT  room temperature 

s   singlet (in connection with NMR data) 

SAR  structure activity relationship 

sec   second 

Si   silica gel 

sp.   species 

spp.   species (plural) 

SrCl2  strontium chloride 

t  triplet (in connection with NMR data) 

tR  retention time 

TE  thioestrase 

TLC   thin layer chromatography 

U-  uniformely 

USD  United States dollar 

UV  ultraviolet 

Val   valine 

VIS  visible 



Abbreviations 

VLC  vacuum liquid chromatography 

v/v  volume for volume 

WG  working group 

w/v  mass for volume
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1. Introduction  

1.1 The role of peptides in therapy 

A thorough inspection of pharmacy shelves could one let perceive that commonly 

marketed drugs are either ‘small-molecule’ chemicals or high molecular weight biologics, 

the latter mostly being proteins. There is however a third group with a molecular weight 

in the medium range (500 – 5000 Da), i.e. peptide-based drugs, which are gradually 

moving to the front stage.1 Peptides are set apart from proteins in that they are 

composed of less than 50 amino acids.2 Peptides that occur in nature as secondary 

metabolites, such as daptomycin and cyclosporine, are furthermore characterized by the 

unusual amino acid building blocks like D-amino acids and N-methylated amino acids. 

Physiological peptides are known to be involved in many processes, e.g. acting as signals 

as in the case of cytokines, neurotransmitters as for example galanin or hormones like 

somatotropin.3 Since most biological targets, referred to as drug targets in pharmacy, are 

proteins, e.g. enzymes, ion-channels and receptors, peptidic natural products may be 

envisaged as prospective ligands. Additionally, they may exhibit target specificity and 

hence minimal toxicity, the latter is also credited to there sound metabolism to the 

constituent amino acids which are readily cleared from the body with minimal tissue 

build-up.4 

Peptide chemists, inspired by the structure and function of peptides isolated from natural 

sources, were successful in synthesizing peptide analogues through chemical or biological 

synthesis.5 However there is still the need for new peptide scaffolds, able to serve as drug 

leads that may have arisen from natures biosynthetic machineries. This calls for the 

dedicated work of natural product chemists in isolating and characterizing such peptides, 

further exploring them deeper to understand their biosynthesis and biological activities 

and later on to be implemented in the drug-design process.  
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Fig 1-1. Peptide secondary metabolites. 

1.2 Peptides from fungi 

Peptides are produced by prokaryotes and eukaryotes alike.6 The fungal kingdom is 

regarded as a rich source to be investigated further for the production of secondary 

metabolites including peptides. Their structures were refined through years of evolution, 

since these compounds are important for the survival and growth of the producers in 

their rivalry natural habitat. Such compounds may act as siderophores, toxins or signaling 

molecules for communication.7 From a human point of view, fungi are double-faced 

organisms, their dark-side being associated with their disease-causing or putrescent 

properties, some of these properties being attributed to their metabolite production, e.g. 
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mycotoxins. However, fungal metabolites provide us already today with important drugs, 

e.g. lovastatins, and are of importance for our future drugs.8   

 

Fig 1-2. Fungal metabolite used as drug. 

1.2.1 Fungal peptides assembly lines 

Fungal peptides are assembled either through the ribosomal machinery, i.e. through 

direct gene translation, including the amatoxins and phalloidin,9 or by multi-modular non-

ribosomal peptide synthetases (NRPS), the later accounting for most of the isolated 

fungal peptides.10 These are megaenzymes divided into modules termed initiation and 

elongation modules where each module is responsible for integrating an amino acid into 

the growing peptide chain. This is done with the help of catalytic domains, a subdivision 

of each module. Fundamental domains are indispensable for the selection and activation 

of the building blocks (adenylation, A-domain), the tethering of the product to the 

enzyme (peptidyl carrier protein, PCP-domain) and peptide bond formation 

(condensation, C-domain). Structural diversity arises due to the presence of auxillary 

domains imparting unique structural features to the non-ribosomal peptides. These 

include epimerization (E) domains for incorporating D-amino acids, N-methylation (N-Mt) 

and C-methylation (C-Mt) domains for introducing methyl groups, formylation (F) domain 

for introducing formyl groups and  oxidation (Ox) and reduction (R) domains for 

formation of thiazoles, oxazoles and thiazolidines, oxazolidines, respectively.11 While 

bacterial NRPS feature a thioesterase (TE) domain at the end of the NRPS template to 

catalyze peptide release and cyclization, fungal NRPS employ an alternative enzymatic 

cyclization strategy with the help of a condensation like CT-domain.12 Based on the type of 

cyclization linkage, fungal cyclic peptides are classified into homodetic cyclic peptides, 
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whose ring is solely composed of normal peptide bonds arising from head-to-tail 

cyclization, heterodetic cyclic peptides featuring other covalent bonds during cyclization, 

e.g. depsipeptides, and complex cyclic peptides combining both types of linkage, e.g. 

bicyclic peptides.13
  

 

Fig 1-3. Ribosomally synthesized fungal peptides. 

Fungal NRPS are classified into 3 major classes based on genetic studies of the domain 

architecture and the end peptide produced.14 Type A with a linear NRPS template, as seen 

for the δ-(L-α-aminoadipyl)-L-cysteine-D-valine (ACV) synthetase and cyclosporine 

synthetase which are responsible for the production of the penicillin core structure and 

cyclosporine, respectively. Here the sequence of the end peptide is easily forecasted from 

the module architecture, as each module is responsible for incorporating a single amino 

acid building block. The second class is type B with an iterative NRPS template, where the 

modules are repetitively being used during peptide assembly, e.g. enniatin synthetase 

(ES). Lastly type C with a non-linear NRPS template, featuring an irregular domain 

architecture, from which the end peptide could not be inferred. So far, most studied 

fungal NRPS belong to the first 2 classes, whereas products of the last class have not been 

isolated so far. This is imminent to change, as fungal genes are increasingly being 

sequenced with the aim to explain fungal NRPS enzymology and probably isolate more 

secondary metabolites. 
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1.2.2 Fungal non-ribosomal peptides 

Fungal non-ribosomal peptides share common structural features making them 

interesting drug scaffolds:  

1. A cyclic architecture, bestowing several attractive attributes such as structural 

rigor eliciting better target binding and thus specific and enhanced biological 

activity. Stitching the loose ends, normally targeted by proteolytic enzymes, gives 

them added stability against enzymatic degradation. Moreover, masking of the 

charged termini, infers better membrane permeability.15  

2. N-methylation of the peptide skeleton imposes steric hindrance about the N-

methylated peptide bond which effects the whole peptide conformation. This 

plays an additional role in receptor affinity and selectivity. Replacing a hydrogen 

with a methyl group effects the hydrogen-bonding capabilities of the peptide, i.e. 

intra and intermolecular bonding. This is speculated to play a role in improving 

intestinal permeability and thus enhancing oral bioavailability, although the exact 

mechanism is still not clear.16 

3. Presence of atypical building units, aside from the known L-configured 20 amino 

acids, such as D-amino acids, non-proteinogenic amino acids and carboxy acids, 

further improves their proteolytic stability.17  

Due to these advantages, peptide-based drugs from fungal origin are employed since 

some time as extremely valuable drugs. 

1.2.3 Fungal peptides as drugs 

The β-lactams, ‘a story that never grows old’ 

The antibiotic era was shaped by the fortunate discovery of penicillin, a non-ribosomal 

cyclic tripeptide isolated from Penicillium sp. in 1928, which played a pivotal role in saving 

the life’s of hundreds from infection.10 Since then, the search for antibiotics from 

microorganisms is commonplace, due to the development of resistance. The 

cephalosporins, a ring expanded form of the penicillins, were later isolated from 

Cephalosporioum acremonium obtained from a water sample off the coast of Sardinia in 
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1949, which is the first metabolite to be isolated from a water source.18 Both penicillins 

and cephalosporins follow a similar biosynthetic route from the tripeptide δ-(L-α-

aminoadipyl)-L-cysteine-D-valine (ACV) assembled by ACV synthetase. With the help of 

isopenicillin-N-synthase (IpnA), cyclization of the linear tripeptide gives the famous β-

lactam nucleus, isopenicillin-N. Isopenicillin-N, a common intermediate for both 

antibiotics, acts as a branching point from which the complete biosynthesis of penicillin 

and cephalosporin is further realized using several more synthases.19 β-lactams exert 

their anti-bacterial activity through irreversibly inhibiting the penicillin binding protein 

(PBP), responsible for cross-linking of the growing peptidoglycan layer of bacterial cell 

wall.20 
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Fig 1-4. Biosynthetic route for β-lactam antibiotics, penicillin G and cephalosporin C (adopted from 

literature).
19 

To this day, both antibiotic peptide classes have been modified in several ways, through 

synthetic and semi-synthetic approaches, to provide us with more potent and superior 

analogues in terms of improved pharmacokinetics and antibiotic activity. The latest 5th 

generation cephalosporin antibiotic ceftaroline fosamil (Zinforo®), active against MRSA, 

was recently approved in the European Union in 2012 and many more are in the pipeline, 

indicating that a lot could still be derived from the β-lactam nucleus. 21,22 

 

Fig 1-5. Ceftaroline fosamil a fifth generation cephalosporin antibiotic. 

Cyclosporine peptides more than just immunosuppressants 

Customary organ transplantation success is credited to cyclosporine A (Fig 1-1), a cyclic 

non-ribosomal undecapeptide, originally isolated in 1972 from Tolypocladium inflatum. It 

consists of several N-methylated amino acids, D-amino acid, i.e. D-alanine, as well as 

unusual amino acids such as L-α-aminobutyric acid and butenylmethyl-threonine. Its 

immunosuppressive property is due to its high affinity binding to cyclophilins in T-cells, 

inhibiting calcinuerin, a protein phosphatase, responsible for activation of NFAT (Nuclear 

factor of activated T-cells), a transcription factor that stimulates the expression of IL-2 

(Interleukin 2), a cytokine signaling molecule, hence repressing the activity of the T-cells, 

an integral part of the immune system.23 It is originally marketed as oral and intravenous 

formulations for use in organ transplantation, rheumatoid arthritis and psoriasis 

(Neoral®), with total net sales in 2013 exceeding 750 million USD.24 A new formulation, 

ophthalmic emulsion (Restasis®), was launched in 2002 for the treatment of dry eyes.25 

Voclosporin, a cyclosporine A analogue with a single modified amino acid, was granted 

orphan designation for treatment of non-infectious uveitis, and is now in phase 2b clinical 

http://en.wikipedia.org/wiki/Interleukin_2
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trials for treatment of lupus nephritis.26 Alisporivir, a second-generation cyclophilin 

inhibitor, synthetically modified from cyclosporine A but lacking immunosuppressive 

activity,27 is currently in phase 3 clinical trials for AIDS treatment and is in phase 2 clinical 

trials for treatment of hepatitis C.24 

 

Fig 1-6. Cyclosporine peptide analogues in clinical trials. 

The ‘Penicillin of anti-fungals’ 

Echinocandins are the most recent clinically approved antifungal drug class, comprising 

the caspofungin, micafungin and anidulafungin. All are semi-synthetic analogues of the 

natural echinocandin B, isolated from Aspergillus nidulans in 1974, not clinically 

applicable due to its hemolytic activity. Echinocandins are cyclic lipo-hexapeptides with an 

N-linked fatty acyl side chain, along with several hydroxylated non-proteinogenic amino 

acids.28  
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Fig 1-7. One of the first naturally isolated echinocandins. 

Echinocandin biosynthesis is achieved by a six-module non-ribosomal peptide synthetase 

EcdA, along with several additional synthetases, such as EcdI for incorporating fatty 

acids.29 They are considered the ‘penicillin of antifungals` due to their exclusive mode of 

action targeting fungal cell wall, not the case for older antifungals. They non-

competitively inhibit the β-1,3-D-glucan synthase, responsible for the biosynthesis of an 

integral part of fungal cell wall. Their mode of action makes them selective to fungal cell 

wall with no effect on mammalian host cells, in view of their different cell wall 

construction. They thus exhibit good safety and tolerability profiles with minimal toxicities 

and drug interactions. They are fungicidal against Candida sp., including azole-resistant 

strains, and fungistatic against Aspergillus sp..30 Unfortunately, echinocandins are not 

orally bioavailable and have to be administered intravenously; this incites organic 

chemists in finding newer analogues that can overcome this formulation shortcoming. 

Aminocandin a new member of this class in clinical trials has a longer half-life, and hence 

may partially avoid the common drawback of a daily intravenous administration, allowing 

an extended dosing interval.31  
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Fig 1-8. Approved semi-synthetic echinocandin antifungal drugs on the market. 

The emerging increase in fatal invasive fungal infections, and the limited antifungal drug 

classes clinically at hand, calls upon the urgent intervention to introduce newer 

antifungals.32 Echinocandins being the first antifungal drug class to target cell wall 

biosynthesis, prompted the interest in searching for newer antifungal drugs with a similar 
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mode of action, favorably orally administered. Recently, a semi-synthetic enfumafungin 

derivative MK-3118, a fungal triterpenoid glycoside, is in clinical trials as an orally active 

antifungal, similarly targeting the β-1,3-D-glucan synthase.33  

 

Fig 1-9. Newer antifungal drugs in clinical trials targeting the β-1,3-D-glucan synthase. 

Fungal cyclic hexadepsipeptides 

The enniatins are a family of cyclohexadepsipeptides initially isolated from Fusarium sp., 

but also produced by other fungal genera. So far 29 enniatins have been isolated, all 

featuring three N-methyl-L-amino acids, such as valine, leucine and isoleucine, and three 

D-hydroxyacids, with alternating ester and amide bonds forming a ring structure.34 They 

are biosynthesized in an iterative manner with the help of the enniatin synthetase (ES), a 

two-module multienzyme, showing flexible substrate selectivity incorporating variable 

amino acids, which explains the structural diversity of the enniatins.35 Beauvericin and 

destruxin are other fungal cyclohexadepsipeptides, structurally related to the enniatins, 

which were originally isolated from the entomopathogenic fungi Beauveria bassiana and 

Metarhizium anisopliae respectively.36,37 

http://en.wikipedia.org/wiki/Entomopathogenic_fungi
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A characteristic feature of these fungal cyclohexadepsipeptides is their ionophoric 

activity. They form cation selective pores or channels, which disturbs the cell’s normal ion 

balance and thus disrupt the cell membrane integrity leading to cell death. This 

mechanism is suggested to account for their wide range of interesting biological activities, 

including insecticidal, anti-microbial, cytotoxic and anti-viral activity, nominating them as 

prospective drug leads.34,36,37 Currently fusafungine, an enniatin mixture, is marketed for 

topical use in upper respiratory tract infection for its antibiotic and anti-inflammatory 

properties.38  

 

Fig 1-10. The enniatins, fungal cyclohexadepsipeptides. 

Fungal cyclo-dipeptides in cancer chemotherapy 

Cyclo-dipeptides, referred to as diketopiperazines, are the smallest peptides composed of 

two amino acids joined in a head-to-tail fashion to form a characteristic heterocyclic ring. 

Their simple, rigid and chiral structure endows them with interesting biological activities, 

such as cytotoxic, anti-microbial and anti-inflammatory activities.39  

Since the concomitant isolation of phenylahistin (halimide) from cultures of a terrestrial 

and marine Aspergillus sp., by two independent work groups from opposite sides of the 

world, and the frantic quest for newer better anti-cancer analogues, employing the 
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natural scaffold of phenylahistin is ongoing.40,41 Phenylahistin features a phenylalanine 

and an isoprenylated dehydrohistidine moieties. With most of the anticancer drugs 

available to date being derived from natural products, nature’s contribution in treating 

and providing a better understanding of the cancer black box is highly appreciated.42 

Phenylahistin inhibited cell proliferation through a colchicine-like tubulin depolymerizing 

activity and showed cytotoxic activity towards several cancer cell lines.43 Plinabulin (NPI-

2358), a chemically modified analogue still retaining important structural features 

required for anticancer activity, i.e. a pseudo-tricyclic structure, an L-phenylalanine and a 

gem-dimethyl at position 5 of the imidazole,44 has completed phase 2 clinical studies as a 

vascular disrupting agent (VDA) in combination with docetaxel in patients with non-small 

cell lung cancer (NSCLC). VDA’s are a new class of anti-angiogenic agents targeting the 

present tumor vasculature, necessary for the growth and proliferation of solid tumors.45 

Plinabulin displayed notable antitumor activity with satisfactory safety and toxicity 

profiles and is to be moved to phase 3 testing.46 Profiting from emerging drug delivery 

technologies, an antibody drug conjugate of plinabulin is being developed for selective 

targeting of cancer cells.47 

 

Fig 1-11. Fungal diketopiperazines as anticancer drug leads. 

Another fungal diketopiperazine overarched by a disulfide bridge, which is gaining much 

attention, is the mycotoxin gliotoxin. It’s the prototype of the compound class 

epipolythiodioxopiperazine (ETP). Its biosynthesis from 2 amino acid building blocks, i.e. 

L-serine and L-phenylalanine has been extensively studied.48 Its toxicity is dependent on 

the sulfide bridge, which on the other hand is responsible for its potential therapeutic 

value. Gliotoxin targets hypoxia inducible factor-1 alpha (HIF-1α), which plays an 

important role in tumor progression and angiogenesis, and hence makes a promising 

anticancer drug scaffold.49   
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Fig 1-12. Gliotoxin biosynthesis, involving a series of enzyme-catalyzed steps converting phenylalanine and 

serine to gliotoxin (adopted from literature).
48 
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Fungal cyclic tetrapeptides as histone deacetylase (HDAC) inhibitors 

With the guidance of a trapoxin-based affinity compound, purification of histone 

deacetylase, an enzyme ubiquitously distributed and involved in several cellular 

mechanisms such as cell growth and development, was possible for the first time.50 

Epigenetic changes in the level of expression of histone deacetylase, results in several life 

threatening disorders, such as cardiovascular and neurological diseases, metabolic 

disorders and cancers. Histone deacetylase is regarded as the molecular target of histone 

deacetylase inhibitors and are thus recognized as a potential therapeutic domain for a 

wide range of prevalent diseases.51 Furthermore, cyclic peptides are an important class of 

HDAC inhibitors. 

Trapoxin, a hydrophobic cyclic tetrapeptide isolated from the fungus Helicoma ambiens, 

features a unique amino acid, 2-amino-8-oxo-9,10-epoxydecanoic acid (Aoe), which is 

responsible for its irreversible HDAC inhibitory activity. Other previously isolated fungal 

cyclic tetrapeptides with an epoxy-ketone group, such as HC toxin, chlamydocin, WF-3161 

and Cyl-2, similarly exhibited isoform selective inhibition of HDAC. A synthetic hybrid 

between the epoxy-ketone containing cyclic tetrapeptides and the hydroxamate class of 

HDAC inhibitors, resulted in a new class termed cyclic hydroxamic acid containing 

peptides (CHAP) with improved inhibitory activity and selectivity towards HDAC isoform 

classes.52 Apicidin isolated from Fusarium sp., although lacking a terminal α-keto epoxide, 

posses HDAC inhibitory activity. Thus Aoe is not essential for biological activity apart from 

exerting an irreversible inhibitory mechanism.50 The combined use of apicidin and 

docetaxol, a cytotoxic agent, was found to exhibit a synergistic anticancer effect with a 

reduction in adverse effects, thus discerning the beneficial effect of novel combination 

regimes for cancer treatment.53 Moreover, these non-ribosomally assembled cyclic 

tetrapeptides are used as conformational rigid scaffolds for the preparation of new HDAC 

inhibitors and simultaneously attain a deeper understanding of the pharmacophore 

elements essential for HDAC inhibitory activity.54 
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Fig 1-13. Fungal HDAC inhibitor peptides. 
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Ergopeptines/ Ergopeptides 

Ergopeptides are considered one of the oldest fungal metabolites. These are peptidic 

alkaloids isolated from the ergot fungus belonging to the genus Claviceps. They are 

composed of a tripeptide, modified into a bicyclic cyclo-lactam structure, linked to a 

tetracyclic ergoline ring. They have been used in folk medicine by midwives as an 

abortifacient, to induce labor and in treatment of post-partum hemorrhage. Their mode 

of action is generally realized from their agonist activity to several receptors as a result of 

their structural analogy to several neurotransmitters, e.g. serotonin, dopamine and 

epinephrine.55 Ergotamine, the major alkaloid produced by ergot, is still prescribed for 

acute migraines usually in combination with caffeine (Cafergot®). Bromocriptine 

(Parlodel®), a semi-synthetic derivative of the ergopeptide ergocriptine, is used in the 

treatment of hyperprolactinaemia and parkinson disease.56 In 2009, bromocriptine 

mesylate (Cycloset®) was approved by the FDA for treatment of type 2 diabetes.57  

 

Fig 1-14. Ergopeptides used as drugs. 

A unique feature of ergopeptine biosynthesis is their assembly by two NRPS subunits, a 

trimodular lysergylpeptidyl synthetase 1 (LPS1) and a monomodular lysergylpeptidyl 

synthetase 2 (LPS2). LPS2 is responsible for activation of D-lysergic acid, a modified 

tryptophan, which is sequentially elongated by LPS1 to form D-lysergyltripeptide. This is 

released as D-lysergyltripeptide lactam (L-ergopeptam), which then undergoes 

heterocyclization to give the ergopeptines.58 
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Fig 1-15. Ergopeptines biosynthesis. (adopted from literature).
58 
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Fungal Antimicrobial Peptides (AMP) 

With the upsurge of antibiotic resistant pathogens and its impact on the global public 

health, the relentless search for new antibiotics classes, that don’t readily develop 

resistance, is becoming no longer an extravagance.59,60 Antimicrobial peptides (AMP) 

preferably named host defense peptides (HDP), as their activities includes more than 

being antimicrobial, is an archaic part of the innate immune system of most multi-cellular 

organisms. Recently they have been the focus of research, initially for their novel anti-

infective potential, but also for a wide range of other clinical applications, such as anti-

inflammatory, anticancer, wound healing, vaccine adjuvants etc.61 

Defensins, the largest family of HDP, are gene-encoded cationic amphipathic cysteine-rich 

peptides stabilized through disulfide bridges.62 Plectasin, the first fungal defensin, was 

isolated from a black saprophytic ascomycete Pseudoplectania nigrella.63 It displayed 

potent antibacterial activity against Gram +ve bacteria, by inhibiting cell wall biosynthesis 

through complexing with bacterial cell wall precursor Lipid II.64 NZ-2114 a plectasin 

derivative with three mutational amino acids, showed superior activity against 

streptococci and staphylococci, including methicillin resistant 

Staphylococcus aureus (MRSA). Additionally, it demonstrated 

minimal cell toxicity with prolonged serum stability and in-vivo 

half-life, credited to its protease resistant disulfide-stabilized 

scaffold.65,66 NZ-2114 is currently undergoing preclinical 

development and may soon join other HDP entering clinical 

trials as a promising new generation of antibiotics.67 

 

a) GFGCNGPWDEDDMQCHNHCKSIKGYKGGYCAKGGF--VCKCY 

    © Nature 2005 

Fig 1-16. a) Plectasin amino acid sequence, b) A single representative structure of plectasin in cartoon mode 

showing the proximity of disulphide bridges. Cystine bridges are highlighted in orange (adopted from 

literature).
63

                 

 

b) 



Introduction 

20 
 

1.3 Peptides incorporating 3-(3-furyl)-alanine and their bioactivities 

Almost three decades ago, rhizonin A a heptapeptide mycotoxin, was isolated from 

Rhizopus microsporus, a fungus used to prepare fermented food such as tempeh, a 

popular vegetarian meat substitute.68 Two decades later, it was found to be originally 

produced by the bacterial endosymbiont Burkholderia sp.69 Rhizonin A is considered the 

major metabolite produced by the plant growth promoting rhizobacteria (PGPR) strain 

Burkholderia sp., enhancing seed germination and growth, and is to be explored for 

sustainable agriculture production.70  Interestingly, rhizonin A is the first naturally isolated 

peptide that contains 3-(3-furyl)-alanine, a non-proteinogenic amino acid rarely 

encountered in nature. Rhizonin A showed in-vitro hepatotoxicity, as well as in-vitro fat-

accumulation inhibitory activity against 3T3-L1 murine adipocytes.71 Synthetic 

replacement of 3-(3-furyl)-alanine with phenylalanine gave analogues with increased fat-

accumulation inhibitory activity and reduced cytotoxicity when compared to rhizonin A. 

Accordingly, cytotoxicity of rhizonin A could be ascribed to its 3-(3-furyl)-alanine content, 

which appears to be non-essential for the observed biological activity.72 This is in 

agreement with earlier studies focusing on synthetic heterocyclic analogues of 

phenylalanine, i.e. 3-(3-furyl)-alanine, exhibiting growth inhibitory activity in both 

bacteria and fungi, which was reversed by the addition of phenylalanine.73 

A cyclic pentapeptide bingchamide B, isolated from the soil-dwelling bacterial strain 

Streptomyces bingchenggensis, was also seen to incorporate this rare amino acid moiety. 

Bingchamide B showed in-vitro cytotoxic activity towards a human colon cancer cell line 

with an IC50 value of 18 µg ml-1. This makes it an interesting scaffold for the development 

of antitumor agents.74  

Chemically synthesized L-3-(3-furyl) and L-3-(2-furyl)-alanine are used as an agrochemical 

fungicide, industrial microbiocide and wood preservative.75 So far, 3-(3-furyl)-alanine was 

never independently isolated from natural sources, apart from a carboxy derivative 

isolated from the fruiting bodies of the gilled mushrooms Phyllotopsis nidulans and 

Tricholomopsis rutilans.76,77   
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Little is known about the biosynthesis of this unusual amino acid, apart from being 

considered as a potential substrate of the NRPS machinery, known to incorporate such 

atypical building blocks.  

 

Fig 1-17. Peptides incorporating 3-(3-furyl)-alanine and a carboxy derivative of 3-(3-furyl)-alanine.
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2. Scope of the present study 

With the current trend towards peptide-based drugs, as observed in the increasing 

number of such compounds entering clinical trials annually,6 the search for new peptide 

scaffolds is ongoing. They are used for their diverse disease curing properties, as a 

platform for selective drug delivery or as a diagnostic tool to study biological process.78 

The design of peptides by fungal metabolism is unprecedented, which is notable from the 

growing number of publications focusing on fungal peptides. Fungi from diverse habitats, 

both terrestrial and marine, are investigated and yielded fascinating structural diversity 

and a wide spectrum of biological activity.18,79,80,81,82  

The scantly explored marine fungal strain Stachylidium sp. is elected in the present study 

for an in-depth investigation. Previous studies in our group demonstrated the metabolic 

capabilities of this strain in terms of unique metabolites. These belong to different 

compound classes (including peptides), with both interesting chemistry and biological 

activity.83,84,85 Furthermore, the Stachylidium sp. belongs to the phylum Ascomycota, the 

largest fungal phylum, whose members include the well known Penicillum and Aspergillus 

spp. extensively studied for their medicinal and disease causing properties. They are the 

most frequent producers of natural products, including the penicillin antibiotics and the 

cholesterol lower drug lovastatin. It is believed that the full biosynthetic potential of the 

Stachylidium sp. has not been totally brought to light. Much could be earned from 

studying this strain, in terms of unique chemistry, biosynthetic mechanisms employed 

and most important promising biological activity. 

Course of study 

The first part of the study has the aim to isolate and elucidate novel peptide scaffolds. 

With the help of chromatographic (VLC, HPLC) and spectroscopic (NMR, MS, UV, IR) 

techniques successful isolation and chemical characterization of novel metabolites is 

anticipated.  

The focus of the second part of the study is the intensive investigation of the biosynthetic 

origin of the isolated metabolites. Thus, classical isotope feeding experiments are 

planned, preceded by preliminary experiments to assist in setting up a successful feeding 
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protocol that would ensure maximal incorporation of fed precursors into the target 

metabolites.  

The third and last part is to evaluate the biological activity of the isolated metabolites 

with focus on their potential activity on the G protein-coupled galanin receptors. 
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3. Materials and Methods (General procedures)  

3.1 Fungal material 

The marine-derived fungus Stachylidium sp. was isolated in our lab from the sponge 

Callyspongia sp. cf. C. flammea, collected from the coral reef in Bare Island, New South 

Wales, Australia. The fungal strain was identified through the Belgian coordinated 

collections of microorganisms of the Catholic University of Louvain (BCCM/MUCL) by Dr. 

P. Massart and Dr. C. Decock. A fungal specimen is deposited at the Institute for 

Pharmaceutical Biology, University of Bonn, isolation number “293K04”, running number 

“220”. 

3.2 Cultivation and extraction 

Culture media 

Biomalt salt medium (BMS): 20 g L-1 biomalt extract, 15 g L-1 agar (for solid medium) and 1 

L ASW (artificial sea water): 0.10 g L-1 KBr, 23.48 g L-1 NaCl, 10.61 g L-1 MgClx6H2O, 1.47 g 

L-1 CaCl2x2H2O, 0.66 g L-1 KCl, 0.04 g L-1 SrCl2x6H2O, 3.92 g L-1 Na2SO4, 0.19 g L-1 NaHCO3 

and 0.03 g L-1 H3BO3. 

Pre-cultures 

First pre-culture (solid): fungal strain was inoculated on BMS agar petri-dishes and 

incubated at 25°C for 4 weeks. 

Second pre-culture (liquid): from the first pre-culture, a seed inoculum was used to 

inoculate 1 L Erlenmeyer flasks (3 flasks) each containing 300 ml of liquid BMS media. 

Liquid pre-cultures were shaken at 121 rpm at 25°C for 10 days. 

Main culture 

From the previous liquid pre-culture, liquid seed inoculums were aseptically transferred 

to Fernbach flasks (5 ml for each flask) containing 250 ml BMS agar media and incubated 

at room temperature for 30 days.  
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Extraction 

At the end of the cultivation period (30 or 60 days), the homogenized fungal biomass and 

cultivation media were exhaustively extracted with ethyl acetate and concentrated under 

vacuum (using vacuum rotatory evaporator, 40°C) to yield the crude extract.  

3.3 Chromatography 

3.3.1 Thin Layer Chromatography (TLC) 

Standard chromatograms of extracts and fractions were developed on either TLC 

aluminum sheets silica gel 60 F254 (Merck) as stationary phase using a petroleum 

ether/acetone mixture in different concentrations or TLC aluminum sheets RP-18 F254 

(Merck) as stationary phase using a methanol/water mixture in different concentrations, 

both at room temperature under saturated conditions. Chromatogram detection was 

accomplished under UV light (λ 254 nm and 366 nm) and using vanillin-sulphuric acid 

spraying reagent (0.5 g vanillin dissolved in a mixture of 85 ml methanol, 10 ml acetic acid 

and 5 ml sulphuric acid, TLC plates heated at 100°C after spraying).  

3.3.2 Vacuum Liquid Chromatography (VLC) 

VLC was used for crude extract fractionation using Merck silica gel 60M (0.040-0.063 mm, 

230-400 mesh size) as sorbent. Standard glass columns (dimensions 10 x 2 cm) were wet 

packed and equilibrated under vacuum using petroleum ether. Two gradient solvent 

systems of increasing polarity were used for sample elution, either starting with 100% 

petroleum ether to 100% dichloromethane to 100% ethyl acetate to 100% acetone to 

100% methanol yielding 9 fractions or starting with 100% petroleum ether to 100% 

acetone to 100% methanol yielding 8 fractions. Fractions were collected and 

concentrated under vacuum (using vacuum rotatory evaporator, 40°C). 

3.3.3 High Performance Liquid Chromatography (HPLC) 

Preparative HPLC was performed on either (a) HPLC system composed of a Waters 515 

pump with a Knauer K-2300 differential refractometer, using a Knauer column (250 x 8 

mm, 5µm, Eurospher II-100 Si, flow rate 2 ml min-1) or (b) a Merck-Hitachi system 



Materials and Methods 

26 
 

equipped with an L-6200A pump, an L-4500A photodiode array detector and a D-6000 

interface, using Macherey-Nagel columns (Nucleodur C18 EC Isis and Nucleodur C18 Sphinx  

RP each with 250 x 4.6 mm, 5µm, flow rate 1 ml min-1). 

3.4 Structure elucidation 

The chemical structures of the isolated compounds were established using one 

dimensional and two dimensional NMR techniques along with MS methods. Additional 

structural information was provided from optical rotation measurements, UV and IR 

spectroscopy. Database and literature search using MarinLit database®, AntiBase 

database® and Scifinder database® was performed to determine the novelty of the 

isolated compounds. 

3.4.1 NMR spectroscopy 

All NMR spectra were recorded in acetone-d6 or methanol-d4 referenced to residual 

solvent signals with resonances at δH/C 2.04/29.8 and δH/C 3.35/49.0 respectively, using 

either a Bruker Avance 300 DPX spectrometer operating at 300 MHz (1H) and 75 MHz 

(13C) or a Bruker Avance 500 DRX spectrometer operating at 500 MHz (1H) and 125 MHz 

(13C). Spectra were processed using Bruker 1D WIN-NMR, 2D WIN-NMR or XWIN-NMR 

version 2.6, 3.1 and 3.5 software. The following NMR experiments: 1H, 13C, DEPT 135, 1H-

1H COSY, 1H-13C direct correlation (HSQC), 1H-13C long range correlation (HMBC) and 1H-1H 

ROESY,  were performed for structural assignment. From DEPT experiments, multiplicity 

of carbons could be deduced. Incorporation of 13C-labeled precursors was evaluated using 

both 1H decoupled 13C NMR spectroscopy and inverse gated 1H decoupled 13C NMR 

spectroscopy. 

3.4.2 Mass Spectrometry (MS) 

HPLC-MS measurements were conducted by Ekaterina Eguereva (Institute for 

Pharmaceutical Biology, University of Bonn, Germany), employing an Agilent 1100 Series 

HPLC including DAD, with RP C18 column (Macherey Nagel Nucleodur 100, 125 x 2 mm, 

5µm) and a 2 mmol NH4Ac buffered methanol/water gradient elution system (flow rate 

0.25 ml min-1), starting from 10% to 100% MeOH over a 20 min period, then isocratic for 
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10 min. The HPLC system was coupled with an API 2000, Triple Quadrupole LC/MS/MS, 

Applied Biosystems/MDS Sciex and an ESI source. Samples were dissolved in MeOH (1 mg 

ml-1) prior to injection. 

HRESIMS measurements were conducted by C. Sondag (Department of Chemistry, 

University of Bonn, Germany) using a Bruker Daltonik micrOTOF-Q mass spectrometer 

with an ESI source. 

3.4.3 Optical rotation 

Optical rotations were measured on a Jasco DIP 140 polarimeter (1 dm, 1 cm3 cell) 

operating at wavelength λ=589 nm corresponding to the sodium D line at room 

temperature. Specific optical rotation [α]D
T was calculated pursuant to: 

100 × α 

[α]D
T= 

           c × l    

T: temperature [°C] 

D: sodium D line at λ=589 nm 

c: concentration [g/100 ml] 

l: cell length [dm]  

α: optical rotation 

Compounds were dissolved in methanol and the average optical rotation α was based on 

at least 10 measurements. 

3.4.4 UV measurements 

UV spectra were obtained using a Perkin Elmer Lambda 40 UV/Vis spectrometer with UV 

WinLab Version 2.80.03 software, using 1.0 cm quartz cell. The molar absorption 

coefficient ε was determined in accordance with the Lambert-Beer-Law: 
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A= ε × c × b         ε = A/(c × b) 

ε: molar absorption coefficient [L/mol×cm] 

A: absorption at peak maximum  

c: concentration [mol L-1] 

b: layer thickness of solution [cm] 

3.4.5 IR spectroscopy 

IR spectra were recorded as film using Perkin Elmer FT-IR Spectrum BX spectrometer, with 

Spectrum v3.01 software. 

3.4.6 Advanced Marfey’s method 

Peptide hydrolysis: Peptides (0.5 mg of each) were separately dissolved in 6 N HCl (0.5 

ml) and heated at 110°C for 16 hours in closed glass vials. After cooling, the solvent was 

removed using a nitrogen stream and redissolved in 50µl H2O.  

Derivatization: The peptide hydrolysate and 1 mg of each respective standard L- and D-

amino acid were resuspended in 50 µl H2O, and 100 µl of 1% (w/v) L-FDAA (in acetone) 

and 40 µl of 1 M NaHCO3 were added. The mixture was heated at 70°C for 40 minutes. 

After cooling to room temperature, the reaction was quenched by adding 20 µl of 2 N 

HCl, and solvents evaporated to dryness. 

Analysis: Samples were resuspended in MeOH (1 mg ml-1) for HPLC-MS analyses. 

Comparison of the retention times observed for the derivatized hydrolysates and the 

derivatized standards revealed the absolute configuration of the peptide residues. 

3.5 Biosynthetic studies 

3.5.1 Time-scale cultures 

The fungus was cultivated on BMS agar petri-dishes (incubated at room temperature) and 

liquid BMS Erlenmeyer flasks (shaken at 121 rpm and 25°C). Unlabeled compounds 
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(glycerol, phenylalanine and sodium acetate) were added as filter sterile aqueous 

solutions to some of the cultures (final concentration 1 mg ml-1). After defined time 

intervals (days 5, 9, 14, 20, 30 and 55), representative cultures were extracted with ethyl 

acetate and analyzed using HPLC-MS. Metabolites of interest were monitored at specific 

retention times.  

3.5.2 Precursor directed biosynthesis 

The fungus was cultivated on liquid (with shaking) and solid BMS media to which several 

precursors, including amino acids and halogenated precursors, were added as filter 

sterilized aqueous solutions (final conc. 1 mg ml-1) and cultivated for 15 and 30 days 

respectively, followed by extraction with ethyl acetate and analysis.  

3.5.3 Feeding experiment with [1-13C]phenylalanine 

The fungus was cultivated in four Fernbach flasks each containing 250 ml BMS agar media 

using a liquid seed inoculum from the second liquid fungal pre-culture (5 ml for each 

Fernbach flask). [1-13C]phenylalanine was added as filter sterilized aqueous solution twice 

on day 5 and day 10 (final conc. 1 mg ml-1). The flasks were incubated at room 

temperature for 30 days, followed by extraction with ethyl acetate and analysis.   

3.5.4 Feeding experiment with [U-13C]glycerol 

The fungus was cultivated in two Fernbach flasks each containing 250 ml BMS agar media 

using a liquid seed inoculum from the second liquid fungal pre-culture (5 ml for each 

Fernbach flask). [U-13C]glycerol was added as filter sterilized aqueous solution twice on 

day 5 and day 10 (final conc. 2 mg ml-1). The flasks were incubated at room temperature 

for 30 days, followed by extraction with ethyl acetate and analysis.   

3.5.5 Feeding experiment with [1-13C]glucose 

The fungus was cultivated in two Fernbach flasks each containing 250 ml BMS agar media 

using a liquid seed inoculum from the second liquid fungal pre-culture (5 ml for each 

Fernbach flask). [1-13C]glucose was added as filter sterilized aqueous solution twice on 
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day 5 and day 10 (final conc. 2 mg ml-1). The flasks were incubated at room temperature 

for 30 days, followed by extraction with ethyl acetate and analysis.   

3.5.6 Feeding experiment with [1-13C]sodium acetate 

The fungus was cultivated in six Fernbach flasks each containing 250 ml BMS agar media 

using a liquid seed inoculum from the second liquid fungal pre-culture (5 ml for each 

Fernbach flask). [1-13C]sodium acetate was added as an autoclaved aqueous solution 

thrice on day 10, day 20 and day 30 (final conc. 2.5 mg ml-1). The flasks were incubated at 

room temperature for 60 days, followed by extraction with ethyl acetate and analysis.  

3.5.7 Feeding experiment with [Me-13C]methionine 

The fungus was cultivated in six Fernbach flasks each containing 250 ml BMS agar media 

using a liquid seed inoculum from the second liquid fungal pre-culture (5 ml for each 

Fernbach flask). [Me-13C]methionine was added as filter sterilized aqueous solution thrice 

on day 10, day 20 and day 30 (final conc. 1.3 mg ml-1). The flasks were incubated at room 

temperature for 60 days, followed by extraction with ethyl acetate and analysis.  

3.5.8 Feeding experiment with [1,7-13C]shikimic acid 

The fungus was cultivated in a petri-dish containing 10 ml BMS agar media using a liquid 

seed inoculum (0.5 ml) from the second liquid fungal pre-culture. [1,7-13C]shikimic acid 

was added as filter sterilized aqueous solution twice on day 5 and day 10 (final conc. 1 mg 

ml-1). The petri-dish was incubated at room temperature for 30 days, followed by 

extraction with ethyl acetate and analysis. 

3.6 Biological testing 

3.6.1 Agar diffusion assays 

Antimicrobial tests of isolated compounds were performed by Edith Neu (Institute for 

Pharmaceutical Biology, University of Bonn) following the method described by Schulz et 

al.86,87 The bacteria Bacillus megaterium and Escherichia coli were used as representatives 

for gram positive and gram negative bacteria. Microbotryum violaceum (Ustomycetes), 
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Eurotium rubrum (formerly E. repens) (Ascomycetes), and Mycotypha microspora 

(Zygomycetes) were used as fungal test organisms.  

Pure compounds were dissolved in acetone or methanol to give a concentration of 1 mg 

ml-1 per test sample. 50 µl (equivalent to 50 µg) of each solution were pipetted onto 

sterile filter disks (diameter: 9 mm, Schleicher & Schuell 2668), which was then placed 

onto the appropriate agar medium and sprayed with a suspension of the test organism. 

Growth media, preparation of spraying suspensions and conditions of incubation were 

carried out according to Schulz et al.87 For tested samples, a growth inhibition zone ≥ 3 

mm and/or a complete inhibition ≥ 1 mm, measured from the edge of the filter disk, were 

regarded as a positive result. Growth inhibition was defined as follows: growth of the 

appropriate test organism was significantly inhibited compared to a negative control; 

total inhibition: no growth at all in the appropriate zone. Benzyl penicillin (1 mg ml-1 

MeOH), streptomycin (1 mg ml-1 MeOH) and miconazole (0.5 mg ml-1 DCM) were used as 

positive controls. 

3.6.2 Label-free dynamic mass redistribution (DMR) assay for galanin receptors - 

HEK293 cell lines 

Label-free dynamic mass redistribution assays were performed by working group Kostenis 

(Institute for Pharmaceutical Biology, University of Bonn), as described previously in 

detail, recorded on the EnSpire® multimode plate reader (Perkin Elmer, Hamburg, 

Germany) at 37oC.88,89 

Native and recombinant human embryonic kidney (HEK293) cell lines were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) fetal calf 

serum (FCS), penicillin (100 U ml-1) and streptomycin (100 µg ml-1). For recombinant 

HEK293 cell lines harboring human galanin receptor type1 (GalR1), the medium was 

supplemented with G418 (450 µg ml-1) (InvivoGen). cDNA coding for this receptor cloned 

into pcDNA3.1+ (Invitrogen) at EcoRI (5’) and XhoI (3’) was purchased from UMR cDNA 

Resource center, University of Missouri-Rolla, Rolla, USA. Stable single cell clone-derived 

cell lines were generated by Ca2+ phosphate co-precipitation in conjunction with clonal 

selection using G418 as described previously.90 All cells were cultivated with 5% CO2 at 
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37oC in a humidified atmosphere. For signal pathway inhibition, cells were incubated for 

16 h with 200 ng ml-1 of pertussis toxin (PTX). 

3.7 Chemicals and other materials 

Chemicals were supplied by Merck (Germany), Fluka (Switzerland), Roth (Germany) and 

Sigma-Aldrich (Germany). Stable isotope labeled compounds [1-13C]phenylalanine, [U-

13C]glycerol, [1-13C]glucose, [1-13C]sodium acetate and [Me-13C]methionine were obtained 

from Cambridge Isotope Laboratories. [1,7-13C]shikimic acid was kindly provided by Prof. 

Dr. Taifo Mahmud from the Oregon State University, USA. All precursors were filter 

sterilized using Millipore filters (pore size 0.20 µm) or autoclaved (for [1-13C]sodium 

acetate). Deuterated NMR solvents were supplied from Deutero GmbH (Germany).  

Solvents used where either distilled before use, of HPLC grade or LC/MS grade. 

Deionized water used was obtained from a Milli-Q-system. 

3.7.1 Materials and reagents for cell culture and molecular biology 

Tissue culture media and reagents were purchased from Invitrogen. Pertussis toxin (PTX) 

was from BIOTREND Chemikalien GmbH, restriction endonucleases and modifying 

enzymes were from New England Biolabs. All other laboratory reagents for cell culture, 

molecular biology and DMR assays were obtained from Sigma-Aldrich unless otherwise 

specified. 

3.7.2 Synthesis of 2-chloro-protocatechuic acid  

Demethylation of commercially available 2-chloro-3,4-dimethoxybenzoic acid to give 2-

chloro-protocatechuic acid was conducted under supervision of Dr. Nader Boshta, 

Pharmaceutical Chemistry I, University of Bonn. Demethylation was carried out using 

boron tribromide in dichloromethane (molar ratio of 2-chloro-3,4-dimethoxybenzoic acid 

to BBr3 1:2) for 24 h. The reaction mixture was then neutralized with NaHCO3 until 

evolution of CO2 stopped (pH 7.0). The mixture was then extracted three times with 

dichloromethane, washed with water and dried over MgSO4.91 



Results 

33 
 

4. Results 

4.1 Isolation of novel cyclic peptides from Stachylidium sp.  

A 3 liter culture of Stachylidium sp. on biomalt agar medium supplemented with sea salt 

was cultivated for 30 days at room temperature (see 3.2). Fungal biomass and media 

were homogenized with an Ultra-Turrax followed by exhaustive extraction with ethyl 

acetate to yield 600 mg of crude extract. This was further subjected to VLC fractionation 

on silica open columns using a gradient solvent system of increasing polarity (see 3.3.2), 

starting with 100% petroleum ether to 100% dichloromethane to 100% ethyl acetate to 

100% acetone to 100% methanol, yielding 9 fractions. Cyclic tetrapeptides (peptides 1-7) 

were isolated from VLC fraction 4, by NP-HPLC fractionation using petroleum 

ether/acetone (3:1) and RP-HPLC using methanol/water systems. Diketopiperazines 

(peptides 8 and 9) were isolated from VLC fractions 6 and 7, by NP-HPLC fractionation 

using petroleum ether/acetone (2:3) and RP-HPLC using a methanol/water system (Fig 4-

1). 

 

Fig 4-1. Isolation scheme for cyclic peptides (1-9) from a 30 day Stachylidium sp. culture on biomalt salt agar 

medium. Experimental details are described in section 3.3. 
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4.2 Structure elucidation of isolated novel cyclic peptides  

1H and 13C NMR spectra of the isolated compounds 1-7 exhibited typical signals indicative 

of a tetrapeptide molecule. The 1H NMR spectra showed four signals between δ 4 - 5 

characteristic for the α protons of four amino acid residues, two methyl singlets at around 

δ 2.8, indicative of N-methyl protons, and two broad doublets at around δ 7.9 

characteristic for amide protons. Diastereotopic β proton resonances were observed 

between δ 2.5 - 3.7. The region between δ 7.0 - 7.5 showed overlapping resonances due 

to aromatic ring protons pointing to the inclusion of aromatic amino acid residues. In 

addition, the 13C NMR spectra displayed four down-field signals between δ 170 and δ 173, 

attributable to amide carbonyls, as well as signals between δ 50 - 70, where peptidic α-

carbons normally appear. Presence of 2 amide protons and N-methyl singlets in the 

spectra implied a cyclic structure for the tetrapeptides.  

Four of the isolated peptides, i.e. peptides 1, 5, 6 and 7, displayed doubling of the signals 

in both 1H and 13C NMR spectra. A first hint pointed to the likely-hood of the presence of 

conformational isomers, frequently seen in peptides and justified by the conformational 

flexibility of the constituent amino acid residues.92 NMR measurements at elevated 

temperatures or using different solvents did not result in improvements of NMR 

resolution as normally expected with peptide conformers.93 From the detailed 

investigation of the 2D-NMR spectroscopic data we could conclude that these peptides 

are isolated as a mixture of co-eluting positional isomers with similar chromatographic 

properties and differing only in the connectivities of the constituent amino acid residues. 

Trials to purify them further using different HPLC stationary phases and mobile phase 

systems were unsuccessful, especially due to the small amounts isolated, and in several 

instances separation of peptide isomers using liquid chromatography was most 

challenging.94  

HRESIMS of peptide 1 and 1’ showed an ion peak at m/z 547.2902 [M+Na]+ and was 

assigned a molecular formula of C29H39N4O5  indicating 12 degrees of unsaturation. The 1H 

NMR and 13C NMR spectra revealed doubling of signals suggesting the presence of 

inseparable isomers (Fig S3 and S4). The 1H NMR spectrum displayed eight α proton 

signals between δ 4 – 5, two splitted singlets at δ 2.7 and δ 2.8, indicated the presence of 
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N-methyl protons, and two doublets at δ 7.84 and δ 7.92, characteristic for amide 

protons. The 13C NMR spectrum displayed six carbonyl signals, four resonances at δ 171.8, 

δ 172.2, δ 172.5 and δ 172.9, and two signals at δ 170.5, and δ 170.9 with double the 

intensity, along with four splitted α carbon signals at δ 49.0, δ 56.0, δ 62.0 and δ 63.0. 

This pointed to the preliminary assignment of a mixture of two closely related cyclic 

tetrapeptide isomers. Proton and carbon resonances in the aromatic region were 

suggestive of two distinct aromatic moieties, of which one incorporates an oxygen atom 

(as indicated from the molecular formula), anticipated to be a furyl moiety, while the 

remaining resonances in the aromatic region where indicative of a phenyl moiety. The 

structure of the remaining amino acid residues were assigned as valine and leucine. 

Comprehensive analysis of the 2D NMR spectroscopic data revealed the structures and 

sequence of four heterogeneous amino acid residues: N-MeFurAla, Leu, N-MePhe and Val 

(Table 4-1).  

 

For peptide 1, spin systems in COSY and HMBC were assigned to valine, as correlations 

ranging from CH3-28 and CH3-29 to βCH-27 and αCH-26, and correlations of βCH-27 and 

αCH-26 with qC-25 were observed. The valine unit was not methylated as COSY 

correlations were observed between αH-26 (δH 4.26) and NH-26 (δH 7.84). Another 

subunit was allocated as leucine determined from the COSY spin system linking the two 

methyl groups, CH3-13 and CH3-14, to NH-10 (δH 7.92) through γH-12, βH2-11 and αH-10. 

Further HMBC correlations of βCH2-11 and αCH-10 to the qC-9 finalized the assignment of 

a non-methylated leucine. Characteristic carbon resonances at δ 144.5, δ 141.1, δ 110.9 

and δ 122.0 along with their relevant proton resonances at δ 7.55, δ 7.46 and δ 6.41 

established a furyl moiety. Two of the three sp2 methine protons of the furyl moiety, i.e 
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H-6 (δH 7.55) and H-7 (δH 7.46), were shifted downfield due to the deshielding effect of a 

common adjacent oxygen. CH-5 and CH-7 are both connected to the quaternary carbon, 

qC-4 (δc 122.0), deduced from the HMBC correlations of H-5 and H-7 to qC-4, hence 

closing the furyl ring. Supplementary COSY and HMBC correlations of CH-5 and CH-7 to 

βCH2-3, and between βCH2-3 and αCH-2, along with that between the carbonyl qC-1 (δC 

170.9) and the NCH3-8 (δH 2.80) ascribed this residue as N-methyl-3-(3-furyl)-alanine. 

Residual resonances were assigned to the second aromatic and last residue. The COSY 

spectrum revealed correlations of five aromatic methine protons, which were assigned a 

spin system H-19, H-20, H-21, H-22 and H-23. HMBC correlations between H-19 and H-23 

to CH2-17 (δc 34.7), H-20 and H-22 to qC-18 (δc 139.0), of H2-17 and H-16 to the carbonyl 

qC-15 (δC 170.5), and of αCH-16 to NCH3-24 (δH 2.75) concluded the last residue as an N-

methyl-phenylalanine. The sequential relationship of the four amino acid residues was 

deduced from HMBC correlations of the α-protons of the amino acid residues and the 

carbonyl carbon of the adjacent amino acid, thus αCH-2 (NMeFurAla) to qC-9 (Leu), αCH-

10 (Leu) to qC-15 (NMePhe), αCH-16 (NMePhe) to qC-25 (Val) and αCH-26 (Val) to qC-1 

(NMeFurAla). This was fortified with HMBC correlations of the N-methyl substituents with 

the adjacent carbonyl carbons and α protons, that is NCH3-8 (δH 2.80) to qC-9 (δc 172.9) 

and αCH-2 (δH 4.42), NCH3-24 (δH 2.75) to qC-25 (δc 171.8) and αCH-16 (δH 4.51). Thus the 

final peptide sequence was assigned as cyclo-[N-methyl-3-(3-furyl)-alanyl, leucyl, N-

methyl-phenylalanyl, valinyl]. 

For peptide 1’, the same amino acid residues were confirmed, differing only in their 

connectivity. This was deduced from HMBC correlations between amide protons to 

carbonyl carbons of the adjacent amino acids, i.e. NH-10 (Val) to qC-14 (NMePhe) and 

from NH-25 (Leu) to qC-1 (NMeFurAla), as well as HMBC correlations between the N-

methyl and the adjacent carbonyl carbons and α-protons, i.e. from NCH3-8 (NMeFurAla) 

to qC-9 (Val) and αCH-2 (NMeFurAla), and from NCH3-23 (NMePhe) to qC-24 (Leu) and 

αCH-15 (NMePhe). Thus the final peptide sequence was assigned as cyclo-[N-methyl-3-(3-

furyl)-alanyl, valinyl, N-methyl-phenylalanyl, leucyl].    
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Table 4-1. 1D NMR spectroscopic data for peptide 1 and 1’. 
Peptide 1: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-leucyl, N-methyl-(L)-phenylalanyl, (L)-valinyl] 
Peptide 1’: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, N-methyl-(L)-phenylalanyl, (L)-leucyl] 

Peptide 1 Peptide 1‘ 

Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

N-Me-L-FurAla 1 170.90, qC - N-Me-L-FurAla 1 170.50, qC - 

 2   62.80, CH 4.42, dd (3.3,11.7)  2   62.70, CH 4.34, dd (3.3, 11.7) 

 3   24.50, CH2 a: 2.97, dd (11.0, 15.0)  3   24.50, CH2 a: 2.96, dd (11.0, 15.0) 

   b: 3.42, dd (3.3, 15.0)    b: 3.41, dd (3.3, 15.0) 

 4 122.00, qC -  4 122.00, qC - 

 5 110.90, CH 6.41, br s  5 110.90, CH 6.41, br s 

 6 144.50, CH 7.55, br s  6 144.50, CH 7.55, br s 

 7 141.10, CH 7.46, br s  7 141.10, CH 7.46, br s 

 8   30.70, CH3 2.80, s  8   30.40, CH3 2.76, s 

 N    N   

L-Leu 9 172.90, qC - L-Val 9 172.20, qC - 

 10   49.30, CH 4.71, m  10   56.30, CH 4.39, t (8.8) 

 11   42.00, CH2 a:1.33, m  11   30.20, CH 2.15, m 

   b:1.67, m  12   20.80, CH3 0.87, d (6.6) 

 12   25.00, CH 1.45, m  13   18.40, CH3 0.90, d (6.6) 

 13   22.50, CH3 0.83, d (6.6)  NH-10 - 7.84, d (9.5) 

 14   23.20, CH3 0.78, d (6.6) N-Me-L-Phe 14 170.90, qC - 

 NH-10  - 7.92, d (9.5)  15   63.80, CH 4.59, br d (11.7) 

N-Me-L-Phe 15 170.50, qC -  16   34.70, CH2 a: 3.01, m 

 16   63.50, CH 4.51, br d (11.7)    b: 3.69, m 

 17   34.70, CH2 a: 3.00, m  17 139.00, qC - 

   b: 3.67, m  18 129.20, CH 7.31, m 

 18 139.00, qC -  19 129.50, CH 7.31, m 

 19 129.20, CH 7.31, m  20 127.50, CH 7.24, m 
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Peptide 1 Peptide 1‘ 

Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

 20 129.50, CH 7.31, m  21 129.50, CH 7.31, m 

 21 127.50, CH 7.24, m  22 129.20, CH 7.31, m 

 22 129.50, CH 7.31, m  23   30.70, CH3 2.81, s 

 23 129.20, CH 7.31, m  N   

 24   30.40, CH3 2.75, s L-Leu 24 172.50, qC - 

 N    25   49.10, CH 4.60, m 

L-Val 25 171.80, qC -  26   41.90, CH2 a:1.23, m 

 26   56.20, CH 4.26, t (8.8)    b:1.60, m 

 27   30.00, CH 2.03, m  27   25.00, CH 1.58, m 

 28   20.70, CH3 0.72, d (6.6)  28   22.50, CH3 0.91, d (6.6) 

 29   18.40, CH3 0.83, d (6.6)  29   23.30, CH3 0.87, d (6.6) 

 NH-26 - 7.84, d (9.5)  NH-25 - 7.92, d (9.5) 
a
 CD3COCD3, 300/75.5 MHz. 

b
 Assignments are based on extensive 1D and 2D NMR experiments (HMBC, HSQC, COSY).  

c
 Implied multiplicities determined by DEPT.  



Results 

39 
 

Peptide 2 was assigned a molecular formula of C32H37N4O5 

using HRESIMS, indicating 16 degrees of unsaturation. The 

13C NMR and DEPT135 spectra revealed 32 resonances, 

resulting from four methyls, three methylenes, five sp3 

methines, 13 sp2 methines and seven quaternary carbons. 

The 1H NMR spectrum (Fig S5) displayed four α proton 

signals at δ 4.26, δ 4.50, δ 4.55 and δ 4.78. Two singlets at 

δ 2.72 and δ 2.79 indicated the presence of two N-methyl 

protons and two doublets at δ 7.79 and δ 7.93 are characteristic for amide protons. The 

13C NMR spectrum (Fig S6) displayed four carbonyl signals at δ 170.4, δ 171.0, δ 171.8 and 

δ 172.2, along with four α carbon signals at δ 51.4, δ 56.2, δ 63.5 and δ 63.6, all resulting 

in the preliminary assignment of a peptide-like molecule, composed of four amino acid 

residues, two of which are N-methylated. Comprehensive analysis of the 2D NMR 

spectroscopic data revealed the sequence and structures of the four amino acid residues 

of peptide 2 as NMePhe, FurAla, NMePhe and Val (Table 4-2). COSY revealed correlations 

of two closely related spin systems, each consisting of five aromatic methine protons, one 

reaching from H-5 through to H-9, and a second from H-22 through to H-26. HMBC 

correlations assigned quaternary carbons qC-4 (δC 138.93) to the first and qC-21 (δC 

138.90) to the second aromatic ring respectively. The first aromatic ring displayed HMBC 

correlations between H-5 (δH 7.27), and H-9 (δH 7.27), to CH2-3 (δc 35.0), which showed a 

strong correlation in both COSY and HMBC to αCH-2 (δH/δC 4.55/63.6). Both CH2-3 and 

αCH-2 displayed HMBC correlations to the quaternary carbonyl qC-1 (δC 171.0), hence 

concluding the first aromatic amino acid as phenylalanine (Phe A). The second aromatic 

ring showed similar correlations and hence concluded the second aromatic amino acid 

also to be phenylalanine (Phe B). HMBC correlations from CH3-31 and CH3-32 to βCH-30 

and αCH-29, and from H-30 (δH 2.04) and H-29 (δc 4.26), to the quaternary carbonyl 

carbon qC-28 (δc 171.8), along with COSY correlations of H-29 and NH-29 (δH 7.79), lead 

to the identification of a valine amino acid unit which was not N-methylated. The last 

residue displayed carbon resonances characteristic for a 3-substituted furyl moiety, i.e. δ 

143.2, δ 141.1, δ 121.8 and δ 112.7. This is confirmed with HMBC correlations from sp2 

methines H-15 (δH 6.20), and H-17 (δH 7.14), to the quaternary furyl carbon qC-14 (δC 

121.8). COSY evidenced a spin system from αH-12 (δH 4.78), to NH-12 (δ 7.93). The αCH-
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12 (δC 51.35) carbon resonance was shifted upfield indicating that this unit was not N-

methylated. HMBC correlations of αCH-12 and βCH-13 with the carbonyl carbon qC-11 (δC 

172.2), finalized the assignment of the last residue as 3-(3-furyl)-alanine. The sequential 

relationship of the four amino acid residues was deduced from HMBC correlations of the 

α-protons of the amino acid residues and the carbonyl carbon of the adjacent amino acid, 

i.e. αCH-2 (Phe A) to qC-11 (FurAla), αCH-12 (FurAla) to qC-18 (Phe B), αCH-19 (PheB) to 

qC-28 (Val) and αCH-29 (Val) to qC-1 (Phe A). The N-methyl substituents were positioned 

on the relevant amino acid residues Phe A and Phe B, based on HMBC correlations with 

their adjacent carbonyl carbons and α protons, that is NCH3-10 to qC-11 and αCH-2, 

NCH3-27 to qC-28 and αCH-19. This supplemented the peptide sequence, as cyclo-(N-

methyl-phenylalanyl, furylalanyl, N-methyl-phenylalanyl, valinyl). 
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Table 4-2. 1D and 2D NMR spectroscopic data for peptide 2, (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-
furylalanyl, N-methyl-(L)-phenylalanyl, (L)-valinyl]. 

Amino acid position δC, mult.
a, b, e

 δH
a, b

 (J in Hz) COSY
a, c

 HMBC
a, d

 

N-Me-L-Phe  1  171.00, qC -   

 2    63.64, CH 4.55, dd (3.3, 11.7) 3a, 3b 1, 3, 4, 10, 11 

 3    35.00, CH2 a: 3.67, dd (3.3, 15.0) 2, 3b 2, 4, 5, 9 

   b: 3.02, dd (11.7, 15.0) 2, 3a 1, 2, 4, 5, 10 

 4  138.93, qC -   

 5  129.10, CH 7.27, m 6 3, 4, 6, 7 

 6  129.50, CH 7.30, m 5, 7 5, 7, 8 

 7  127.50, CH 7.23, m 6, 8 5, 6, 8, 9 

 8  129.50, CH 7.30, m 7, 9 6, 7, 9 

 9  129.10, CH 7.27, m 8 3, 4, 7, 8 

 10    30.90, CH3 2.79, s  2, 11 

  N       

L-FurAla 11   172.20, qC -   

 12 51.35, CH 4.78, dt (9.5, 6.6) 13a, 13b, NH-12 11, 13, 14, 18 

 13 28.00, CH2 a: 2.52, dd (6.6, 15.0) 12, 13b, 17 11, 12, 14, 15, 17 

   b: 2.90, dd (6.6, 15.0) 12, 13a, 17  

 14 121.80, qC -   

 15 112.70, CH 6.20, br s 16, 17 13, 14, 16, 17 

 16 143.20, CH 7.38, t (1.8)  15, 17  15, 17 

 17 141.10, CH 7.14, br s  13, 15, 16 13, 14, 15, 16 

  NH-12  - 7.93, d (9.5) 12  

N-Me-L-Phe 18  170.40, qC -   

 19    63.50, CH 4.50, dd (3.3, 11.7) 20a, 20b 18, 20, 21, 27, 28 

 20    34.70, CH2 a: 3.61, dd (3.3, 15.0) 19, 20b 18, 21 

   b: 2.92, dd (11.7, 15.0) 19, 20a  

 21  138.90, qC -   

 22  129.20, CH 7.27, m 23 20, 21, 23, 24 

 23  129.50, CH 7.30, m 22, 24 21, 22, 24, 25 

 24  127.50, CH 7.23, m 23, 25 22, 23, 25, 26 

 25  129.50, CH 7.30, m 24, 26 20, 21, 23, 24, 26 

 26  129.20, CH 7.27, m 25 19, 20, 21, 22, 25 

 27    30.50, CH3 2.72, s  19, 28 

  N       

L-Val 28   171.80, qC -   

 29 56.20, CH 4.26, dd (7.7, 9.2) 30, NH-29 1, 28, 30, 31, 32 

 30 30.40, CH 2.04, m 29, 31, 32 28, 29, 31, 32 

 31 20.70, CH3 0.68, d (6.6) 30 29, 30, 32 

 32 18.40, CH3 0.82, d (7.0) 30 29, 30, 31 

  NH-29  - 7.79, d (9.2) 29  
a 

CD3COCD3, 300/75.5 MHz. 
b 

Assignments are based on extensive 1D and 2D NMR experiments (HMBC, 
HSQC, COSY). 

c
 Numbers refer to proton resonances. 

d
 Numbers refer to carbon resonances. 

e
 Implied 

multiplicities determined by DEPT.  
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Peptide 3 was assigned a molecular formula of C34H40N4O4 using 

HRESIMS, indicating 17 degrees of unsaturation. The 13C NMR 

and DEPT135 spectra revealed 34 resonances, resulting from four 

methyls, three methylenes, five sp3 methines, 15 sp2 methines 

and seven quaternary carbons. The molecular formula of peptide 

3 had one oxygen atom less than peptide 2, suggesting a closely 

related structure in which the furylalanine moiety is replaced by 

a more hydrophobic residue as deduced from NP-HPLC. Signals similar to those of peptide 

2 were observed in the 1H and 13C NMR spectra (Fig S7 and S8), due to the presence of a 

valine and two N-methyl-phenylalanine moieties. Characteristic signals for the 

furylalanine moiety were not observed, instead overlapping resonances were observed in 

the aromatic region and these were assigned to the aromatic spin systems H-15, H-16, H-

17, H-18 and H-19. They displayed HMBC correlations between H-15 (δH 7.07), and H-19 

(δH 7.07), to βCH2-13 (δC 38.4), which showed a strong correlation to αCH-12 (δH/δC 

4.91/52.1). Both αCH-12 and βCH2-13 displayed HMBC correlations to the quaternary qC-

14 (δC 139.0) and carbonyl qC-11 (δC 172.1), thus concluding an additional phenylalanine 

residue. This is consistent with our earlier speculations concerning the replacement of the 

furylalanine residue with an aromatic and probably more hydrophobic residue in this case 

phenylalanine. The HRESIMS spectrum showed an ion peak at m/z 569.3119 [M+H]+, 

which through comparison of spectroscopic data with literature values revealed this 

peptide as cyclo-(N-methyl-phenylalanyl, phenylalanyl, N-methyl-phenylalanyl, valinyl) 

(Table 4-3). This peptide was reported from an entomopathogenic fungus Hirsutella sp. 

and was named hirsutide sequent to the producing organism.95 
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Table 4-3. 1D and 2D NMR spectroscopic data for peptide 3,  (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-
phenylalanyl, N-methyl-(L)-phenylalanyl, (L)-valinyl]. 

Amino acid Position δC, mult.
a, b, e

 δH
a, b

 (J in Hz) COSY
a, c

 HMBC
a, d

 

N-Me-L-Phe  1 171.00, qC -   

 2    63.58, CH 4.56, dd (3.3, 11.7) 3 1, 3, 4, 10 

 3    34.98, CH2 a: 3.66, dd (3.3, 15.0) 2 2, 4, 5, 9 

   b: 3.01, dd (11.7, 15.0)   

 4  139.00, qC -   

 5  129.00, CH 7.24, m 6, 7 3, 4, 7, 9 

 6  129.50, CH 7.30, m 5, 7 5, 7, 8, 9 

 7  127.50, CH 7.24, m 6, 8 5, 6, 8, 9 

 8  129.50, CH 7.30, m 7, 9 4, 7, 9 

 9  129.00, CH 7.24, m 8 3, 4, 7, 8 

 10    31.25, CH3 2.77, s 2, 3 2, 11 

  N       

L-Phe  11 172.10,qC -   

 12   52.10,CH 4.91, dt (9.5, 7.0) 13, NH-12 11, 13, 14 

 13   38.40, CH2 a: 2.66, dd (7.0, 13.9) 12 11, 12, 14, 15, 19 

   b:3.11, dd (7.0, 13.9)   

 14 139.00, qC -   

 15 130.20, CH 7.07, d (7.0) 16 13, 14, 16, 17 

 16 128.80, CH 7.22, m 15, 17 14, 15, 18 

 17 126.80, CH 7.16, m 16, 18 14, 15, 16, 18, 19 

 18 128.80, CH 7.22, m 17, 19 14, 16, 17, 19 

 19 130.20, CH 7.07, d (7.0) 18 13, 14, 17, 18 

 NH-12 - 7.97, d (9.5) 12  

N-Me-L-Phe  20  170.10, qC -   

 21    63.40, CH 4.46, dd (3.3, 11.7) 22 20, 22, 23, 29 

 22    34.68, CH2 a: 3.52, br d (15.0) 21 21, 23, 24, 28, 29 

   b: 2.80, dd (11.7, 15.0)   

 23  139.00, qC -  21, 22, 24, 25 

 24  129.00, CH 7.24, m 22a, 25 22, 23, 25, 26 

 25  129.50, CH 7.30, m 24, 26 23, 24, 26, 27 

 26  127.47, CH 7.24, m 25, 27 24, 25, 27, 28 

 27  129.50, CH 7.30, m 26, 28 23, 25, 26, 28 

 28  129.00, CH 7.24, m 22a, 27 21, 22, 26, 27 

 29    31.07, CH3 2.72, s  21, 30 

  N         

L-Val 30   171.80, qC -   

 31     56.20, CH 4.25, br t (8.05) 32, NH-31 30, 32, 33, 34 

 32     30.50, CH 2.04, m 31, 33, 34 31, 33, 34 

 33     20.70, CH3 0.70, d (6.6) 32, 34 31, 32, 34 

 34     18.50, CH3 0.82, d (6.6) 32, 34 31, 32, 33 

  NH-31   - 7.8, d (9.5) 31  
a 

CD3COCD3, 300/75.5 MHz. 
b 

Assignments are based on extensive 1D and 2D NMR experiments (HMBC, 
HSQC, COSY). 

c
 Numbers refer to proton resonances. 

d
 Numbers refer to carbon resonances. 

e
 Implied 

multiplicities determined by DEPT.  
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Peptides 4 and peptide 5 and 5’ were isolated from the same NP-HPLC fraction, showed 

very close HPLC retention times and an ion peak at m/z of 571.2532 [M+Na]+ and 

571.2526 [M+Na]+ using HRESIMS for peptide 4 and peptide 5 and 5’, respectively. They 

were assigned a molecular formula of C30H35N4O6, indicating 15 degrees of unsaturation. 

They displayed differing 1H and 13C NMR spectra which suggested two closely related 

compounds with probably the same amino acid composition but differing in their 

connectivity.  

The 13C NMR and DEPT135 spectra of peptide 4 

revealed 30 resonances, resulting from four methyls, 

three methylenes, five sp3 methines, 11 sp2 methines 

and seven quaternary carbons. 1H and 13C NMR spectra 

(Fig S9 and S10) displayed characteristic proton and 

carbon resonances for two magnetically equivalent 3-

(3-furyl)-alanine moieties, which were N-methylated. 

The remaining proton and carbon resonances in the aromatic region where indicative of a 

phenylalanine residue. COSY correlations between NH-23 (δH 7.93) and αH-23 (δH 4.96) 

indicated that the phenylalanine residue was not N-methylated. The last residue was 

ascribed as valine based on COSY and HMBC correlations. COSY correlations between NH-

10 (δH 7.77) and αH-10 (δH 4.36) indicated that the valine residue was not N-methylated. 

The sequential relationship of the four amino acid residues was deduced from HMBC 

correlations of the α-protons of the amino acid residues and the carbonyl carbon of the 

adjacent amino acid, i.e. αCH-2 (FurAla A) to qC-9 (Val), αCH-10 (Val) to qC-14 (FurAla B), 

αCH-15 (FurAla B) to qC-22 (Phe) and αCH-23 (Phe) to qC-1 (FurAla A) and was 

supplemented with HMBC correlations of the N-methyl substituents. Thus peptide 4 was 

assigned as cyclo-[N-methyl-3-(3-furyl)-alanyl, valinyl, N-methyl-3-(3-furyl)-alanyl, 

phenylalanyl] (Table 4-4). 
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Table 4-4. 1D and 2D NMR spectroscopic data for peptide 4, (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-
valinyl, (N-methyl-(L)-3-(3-furyl)-alanyl), (L)-phenylalanyl]. 

Amino acid Position   δC, mult.
a, b, e

 δH
a, b

 (J in Hz) COSY
a, c

 HMBC
a, d

 

N-Me- 1   169.80, qC -   

L-FurAla  2 62.50, CH 4.25, dd (3.3, 11.7) 3a, 3b 1, 3, 4, 8, 9 

 3 24.30, CH2 a: 2.73, m 2, 3b 1, 2, 4, 5, 7 

   b: 3.22, dd (3.3, 15.6)  2, 3a, 7  

 4   122.00, qC -   

 5   110.95, CH 6.30, dd (0.9, 1.7) 6, 7 3a, 4,  6, 7 

 6   144.40, CH 7.50, t (1.7) 5 4, 5, 7 

 7   140.90, CH 7.37,  br s 5, 3b 3a, 4,  5, 6 

 8 30.50, CH3 2.71, s   2, 9 

  N       

L-Val 9   172.10, qC -   

 10 56.20, CH 4.36, m  11, NH 12, 13 

 11 30.40, CH 2.11, m 10, 12, 13 12, 13 

 12     20.80, CH3 0.82, d (6.6) 11, 13 10, 11, 13 

 13     18.40, CH3 0.84, d (6.6) 11, 12 10, 11, 12 

 NH-14  - 7.77, d (9.5) 10  

N-Me- 14   170.70, qC -   

L-FurAla  15 62.70, CH 4.34, m 20a, 20b 18, 20, 21, 25 

 16 24.68, CH2 a: 2.95, dd (11.3, 15.6)  19, 20b 18, 19, 21, 22, 24 

   b: 3.36, dd (3.3, 15.6) 19, 20a, 24 18, 19, 21, 22, 24 

 17   121.90, qC -   

 18   110.80, CH 6.31, dd (0.9, 1.7) 23, 24 20a, 20b, 24 

 19   144.40, CH 7.44, t (1.7) 22 21, 22, 24 

 20   141.00, CH 7.38,  br s 20b, 22 21, 22, 23  

 21 30.64, CH3 2.78, s  19, 26 

 N       

L-Phe 22   172.50, qC -   

 23 52.20, CH 4.96, m 24a, 24b, NH 24a, 24b 

 24 38.50, CH2 a: 3.20, dd (6.8, 13.9) 23, 24b 22, 23, 25, 26, 30 

   b: 2.72, m 23, 24a 22, 23, 25, 26, 30 

 25  139.00, qC -   

 26  130.40, CH 7.18, m 24a, 27 24a 

  27   128.70, CH 7.24, m 26, 28 25, 26, 28 

 28   126.90, CH 7.17, m 27, 29 26, 27, 29, 30 

 29   128.70, CH 7.24, m 28, 30 25 

 30   130.40, CH 7.18, m 29 24a 

 NH-10 - 7.93, d (9.5) 23  
a 

CD3COCD3, 500/125 MHz. 
b 

Assignments are based on extensive 1D and 2D NMR experiments (HMBC, 
HSQC, COSY). 

c
 Numbers refer to proton resonances. 

d
 Numbers refer to carbon resonances. 

e
 Implied 

multiplicities determined by DEPT.  
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Proton and carbon signals for peptide 5 and 5’ were doubled suggesting the presence of 

two isomers. The presence of 3-(3-furyl)-alanine and phenylalanine units was undoubted 

from primal examination of the 1H and 13C NMR spectra (Fig S11 and S12) and was 

verified after detailed analysis of the 2D NMR data. COSY and HMBC correlations revealed 

the presence of two distinct 3-(3-furyl)-alanine residues, one of which showed downfield 

shifted furyl protons, i.e. H-5, H-6 and H-7, and α carbon resonances, i.e C-2, and was 

assigned as N-methyl-3-(3-furyl)-alanine. The other 3-(3-furyl)-alanine was not N-

methylated, as implied from COSY correlations of the α protons, i.e H-10 (δH 4.86) for 

peptide 5 and H-25 (δH 4.76) for peptide 5’, to the corresponding amide protons, i.e. NH-

10 (δH 7.93) for peptide 5 and NH-25 (δH 7.97) for peptide 5’. Residual resonances in the 

aromatic region were assigned to N-methyl-phenylalanine. The last residue was assigned 

as valine and COSY correlations between α proton and amide proton indicated that it was 

not N-methylated.  

This shows that peptide 4 and peptide 5 and 5’ have similar amino acid composition but 

differ in the positioning of the N-methyl substituent. Lastly, sequential relationship of the 

four amino acid residues was deduced from HMBC correlations of the α-protons of the 

amino acid residues and the carbonyl carbon of the adjacent amino acid with HMBC 

correlations of the N-methyl substituents confirming the sequence. Thus, peptide 5 was 

assigned as cyclo-[N-methyl-3-(3-furyl)-alanyl, furylalanyl, N-methyl-phenylalanyl, valinyl] 

and peptide 5’ as cyclo-[N-methyl-3-(3-furyl)-alanyl, valinyl, N-methyl-phenylalanyl, 3-(3-

furyl)-alanyl] (Table 4-5). 
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Table 4-5. 1D NMR spectroscopic data for peptide 5 and 5’. 

Peptide 5: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-3-(3-furyl)-alanyl, (N-methyl-(L)-phenylalanyl), (L)-valinyl] 

Peptide 5’: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-phenylalanyl), (L)-3-(3-furyl)-alanyl] 

  Peptide 5   Peptide 5’ 

Amino acid Position   δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

N-Me-L-FurAla 1   170.87, qC -  N-Me-L-FurAla 1 170.25, qC - 

 2     62.77, CH 4.37, m  2   62.57, CH 4.32, m 

 3     24.73, CH2 a: 2.96, dd (8.0, 11.7)  3   24.44, CH2 a: 2.85, dd (8.0, 11.7) 

   b: 3.40, dd (3.3, 8.0)     b: 3.33, dd (3.3, 8.0) 

 4   121.90, qC -  4  121.90, qC - 

 5   110.90, CH 6.36, br s  5  110.90, CH 6.37, br s 

 6   144.40, CH 7.47, t (1.5)  6  144.40, CH 7.52, t (1.5) 

 7   141.10, CH 7.43, br s  7  141.10, CH 7.43, br s 

 8     30.87, CH3 2.79, s  8    30.55, CH3 2.72, s 

  N      N   

L-FurAla 9   172.5, qC -  L-Val 9 172.11, qC - 

 10     51.39, CH 4.86, dt (9.2, 6.9)  10   56.30, CH 4.37, t (8.4) 

 11     27.97, CH2 a: 2.61, m  11   30.28, CH 2.13, m 

   b: 2.97, m  12   20.78, CH3 0.84, d (6.5) 

 12   121.7, qC -  13   18.43, CH3 0.86, d (6.5) 

 13   112.7, CH 6.19, br s  NH-10 - 7.81, d (9.3) 

 14   143.1, CH 7.38, t (1.5)  N-Me-L-Phe 14 170.87, q C - 

 15   141.0, CH 7.13, br s  15   63.59, CH 4.54, dd (3.3, 11.7) 

 NH-10 - 7.93, d (9.8)  16   34.96, CH2 a:3.01, dd (11.7, 15.3) 

N-Me-L-Phe 16 170.25, qC   -    b: 3.65, dd (3.3, 15.3) 

  17   63.46, CH 4.46, dd (3.3, 11.7)  17 138.9, qC - 

 18   34.63, CH2 a: 2.89, dd (11.7, 15.3)   18 129.10, CH 7.26, m 

   b: 3.58, dd (3.3, 15.3)  19 129.40, CH 7.26, m 
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  Peptide 5   Peptide 5’ 

Amino acid Position   δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

 19  138.90, qC -  20 127.50, CH 7.26, m 

 20  129.20, CH 7.26, m  21 129.40, CH 7.26, m 

 21  129.50, CH 7.26, m  22 129.10, CH 7.26, m 

 22  127.50, CH 7.26, m  23   30.87, CH3 2.80, s 

 23  129.50, CH 7.26, m  N   

 24  129.20, CH 7.26, m  L-FurAla 24 172.11, qC - 

 25    30.55 , CH3 2.71, s  25   51.23, CH 4.76, dt (9.2, 6.9) 

 N      26   27.97, CH2 a: 2.50, m 

L-Val 26 171.72, qC -    b: 2.87, m 

 27 56.30, CH 4.23, t (8.4)  27 121.90, qC - 

 28 30.08, CH 2.00, m  28 112.90, CH 6.30, br s 

 29 20.67, CH3 0.69, d (6.5)  29 143.10, CH 7.41, t (1.5) 

 30 18.43, CH3 0.80, d (6.6)  30 141.10, CH 7.27, br s 

  NH-27 - 7.81, d (9.3)  NH-25 - 7.97, d (9.8) 
a
CD3COCD3, 300/75.5 MHz. 

b
 Assignments are based on extensive 1D and 2D NMR experiments (HMBC, HSQC, COSY). 

c
 Implied multiplicities determined by DEPT.  
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Peptides 6 and 6’ and 7 and 7’ showed quite similar 1H and 13C NMR spectra, differing 

only in the resonances observed in the aromatic region. On the basis of HRESIMS data the 

molecular formulae C28H44N4O4 and C26H42N4O5 were assigned for peptides 6 and 6’ and 

peptide 7 and 7’, respectively. Detailed analysis of the NMR data established the presence 

of the branched amino acids valine and two leucines in each peptide. NMR spectra of 

peptide 6 and 6’ (Fig S13 and S14) featured characteristic signals for a phenylalanine 

residue, while those of peptide 7 and 7’ featured signals characteristic for a furyl moiety 

(Fig S15 and S16). Thus the structural difference between both peptides was found to lie 

in the substitution of a phenylalanine moiety in peptide 6 and 6’ with a 3-(3-furyl)-alanine 

in peptide 7 and 7’. This is consistent with a higher hydrophobicity observed in NP-HPLC 

for peptide 6 and 6’ as compared to peptide 7 and 7’. Based on HMBC correlations, the N-

methyl substituents were positioned on the amino acid residues, leucine and the 

aromatic amino acids, i.e. phenylalanine in peptide 6 and 6’ and 3-(3-furyl)-alanine in 

peptide 7 and 7’.  

Detailed interpretation of 2D-NMR spectra revealed that both peptide 6 and 6’ and 

peptide 7 and 7’, consist of inseparable positional isomers, accounting for the proton and 

carbon signals observed in pairs. Thus, peptide 6 was assigned as cyclo-[N-methyl-

phenylalanyl, leucyl, N-methyl-leucyl, valinyl] and peptide 6’ as cyclo-[N-methyl-

phenylalanyl, valinyl, N-methyl-leucyl, leucyl] (Table 4-6). Similarliy, peptide 7 was 

assigned as cyclo-[N-methyl-3-(3-furyl)-alanyl, leucyl, N-methyl-leucyl, valinyl] and 

peptide 7’ as cyclo-[N-methyl-3-(3-furyl)-alanyl, valinyl, N-methyl-leucyl, leucyl] (Table 4-

7). 
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Table 4-6. 1D NMR spectroscopic data for peptide 6 and 6’. 

Peptide 6: (-)-Cyclo-[N-methyl-L-phenylalanyl, (L)-leucyl, (N-methyl-(L)-leucyl), (L)-valinyl] 

Peptide 6’: (-)-Cyclo-[N-methyl-L-phenylalanyl), (L)-valinyl, (N-methyl-(L)-leucyl), (L)-leucyl] 

  Peptide 6   Peptide 6’ 

Amino acid Position   δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

N-Me-L-Phe 1 170.40, qC -  N-Me-L-Phe 1 170.50, qC - 

 2   63.40, CH 4.51, dd (3.7, 11.5)  2 63.70, CH 4.60, dd (3.5, 11.5) 

 3   34.70, CH2 a: 2.96, dd (11.5, 15.0)  3 34.80, CH2 a: 2.98, dd (11.5, 15.0) 

   b: 3.62, dd (3.5, 15.0)    b: 3.67, dd (3.5, 15.0) 

 4 139.10, qC -  4 139.50, qC - 

 5 129.10, CH 7.25, m  5 129.10, CH 7.25, m 

 6 129.40, CH 7.30, t (7.5)  6 129.40, CH 7.30, t (7.5) 

 7 127.40, CH 7.20, t (7.3)  7 127.50, CH 7.20, t (7.3) 

 8 129.40, CH 7.30, t (7.5)  8 129.40, CH 7.30, t (7.5) 

 9 129.10, CH 7.25, m  9 129.10, CH 7.25, m 

 10   30.50, CH3 2.73, s  10   30.50, CH3 2.79, s 

  N      N   

L-Leu 11  172.00, qC -  L-Val 11 172.60, qC - 

 12    48.80, CH 4.60, m  12   55.93, CH 4.26, m 

 13    42.00, CH2 a: 1.19, m  13   30.50, CH 2.00, m 

   b: 1.54, m  14   20.80, CH3 0.68, d (6.7) 

 14    25.00, CH 1.66, m  15   18.40, CH3 0.76, d (6.7) 

 15    23.20, CH3 0.92, d (6.7)  NH-12  7.70, d (8.8) 

 16    22.47, CH3 0.97, d (6.7)  N-Me-L-Leu 16 172.00, qC - 

 NH-12 - 7.79, d (8.8)  17   60.00, CH 4.26, dd (3.7, 11.4) 

N-Me-L-Leu 17 171.49, qC -  18   38.10, CH2 a: 1.77, m 

 18   60.00, CH 4.18, dd (3.7, 11.4)     b:1.95, m 

 19   37.95, CH2 a: 1.74, m  19   25.64, CH 1.43, m 
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  Peptide 6   Peptide 6’ 

Amino acid Position   δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

   b: 1.93, m  20    23.60, CH3 0.95, d ( 6.7) 

 20   25.55, CH 1.41, m  21   22.50, CH3 0.97, d (6.7) 

 21   23.20, CH3 0.76, d (6.7)  22   30.80, CH3 2.74, s 

 22   22.50, CH3 0.80, d (6.7)  N   

 23   30.40, CH3 2.71, s  L-Leu 23 173.10, qC - 

 N    24   49.40, CH 4.90, m 

L-Val 24 172.40, qC -  25   42.25, CH2 a: 1.41, m 

 25   56.40, CH 4.58, m    b: 1.79, m 

 26   31.40, CH 2.25, m  26   25.07, CH 1.66, m 

 27   20.90, CH3 0.92, d (6.7)  27   23.27, CH3 0.92, d (6.7) 

 28   18.50, CH3 0.96, d (6.7)  28   22.47, CH3 0.97, d (6.7) 

 NH-25 - 7.81, d (8.8)  NH-24 - 7.88, d (8.8) 
a 

CD3COCD3, 300/75.5 MHz. 
b 

Assignments are based on extensive 1D and 2D NMR experiments (HMBC, HSQC, COSY). 
c
 Implied multiplicities determined by DEPT.  
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Table 4-7. 1D NMR spectroscopic data for peptide 7 and 7’.  

Peptide 7: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-leucyl, (N-methyl-(L)-leucyl), (L)-valinyl] 

Peptide 7’: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-leucyl), (L)-leucyl] 

  Peptide 7   Peptide 7’ 

Amino acid Position   δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

N-Me-L-FurAla 1 170.60, qC -  N-Me-L-FurAla 1 170.33, qC - 

 2    62.70, CH 4.40, dd (3.3, 11.7)   2   62.50, CH 4.37, dd (3.3, 11.7) 

 3    24.20, CH2 a: 2.94, m  3   24.40, CH2 a: 2.92, m 

   b: 3.38, m    b: 3.36, m 

 4 122.10, qC -  4 122.20, qC - 

 5 110.90, CH 6.35, br s  5 111.00, CH 6.36, br s 

 6 144.40, CH 7.50, t (1.65)  6 144.50, CH 7.50, t (1.65) 

 7 141.00, CH 7.41, br s  7 141.10, CH 7.42, br s 

 8   30.50, CH3 2.78, s  8   30.60, CH3 2.78, s 

  N      N   

L-Leu 9   173.09, qC -  L-Val 9 172.29, qC - 

 10     49.40, CH 4.88, m  10   55.90, CH 4.37, t (9.0) 

 11     42.00, CH2 a: 1.39, m  11   30.50, CH 2.11, m 

   b: 1.77, m  12   20.76, CH3 0.81, d (6.7) 

 12     25.08, CH 1.64, m  13   18.40, CH3 0.82, d (6.7) 

 13     23.50, CH3 0.92, d (6.7)  NH-10  7.70, d (9.5) 

 14     22.50, CH3 0.95, d (6.7)  N-Me-L-Leu 14 171.80, qC - 

 NH-10 - 7.90, d (9.5)  15   60.00, CH 4.26, dd (3.7, 11.4) 

N-Me-L-Leu 15 171.40, qC -  16   38.00, CH2 a: 1.77, m 

 16   60.00, CH 4.18, dd (3.7, 11.4)     b:1.95, m 

 17   38.10, CH2 a: 1.74, m  17   25.70, CH 1.40, m 

   b: 1.93, m  18    23.50, CH3 0.96, d ( 6.7) 

 18   25.60, CH 1.40, m  19   21.40, CH3 0.97, d (6.7) 
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  Peptide 7   Peptide 7’ 

Amino acid Position   δC, mult.
a, b, c

 δH
a, b

 (J in Hz) Amino acid Position δC, mult.
a, b, c

 δH
a, b

 (J in Hz) 

 19   23.30, CH3 0.81, d (6.7)  20   30.80, CH3 2.74, s 

 20   22.50, CH3 0.84, d (6.7)  N   

 21   30.40, CH3 2.71, s  L-Leu 21 173.00, qC - 

 N    22   49.00, CH 4.70, m 

L-Val 22 172.30, qC -  23   42.20, CH2 a: 1.27, m 

 23   56.40, CH 4.56, t (9.0)    b: 1.63, m 

 24   30.50, CH 2.25, m  24   25.11, CH 1.64, m 

 25   20.90, CH3 0.90, d (6.7)  25   23.30, CH3 0.92, d (6.7) 

 26   18.45, CH3 0.94, d (6.7)  26   22.50, CH3 0.95, d (6.7) 

 NH-23 - 7.81, d (9.5)  NH-22 - 7.80, d (9.5) 
a 

CD3COCD3, 500/125 MHz. 
b
 Assignments  are based on extensive 1D and 2D NMR experiments (HMBC, HSQC, COSY). 

c
 Implied multiplicities determined by DEPT.  
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1H and 13C NMR spectra of peptide 8 (Fig S17 and S18) and peptide 9 (Fig S19 and S20) 

displayed various resemblances, including two amide carbonyl carbon resonances 

(between δC 165 - 168), two α proton signals (between δH 3.6 - 4.3) and a down-field 

shifted methyl singlet (around δH 3.0 / δC 33.0), together with proton and carbon 

resonances in the aromatic region, all concluding the presumption of an N-methylated 

dipeptide molecule incorporating an aromatic moiety. Additionally, both compounds 

showed an ion peak at m/z of 297.1568 [M+Na]+ and 297.1555 [M+Na]+, for peptide 8 and 

peptide 9, respectively, using HRESIMS, suggesting they share the same elemental 

composition. They have a molecular formula of C16H22N2O2, indicating seven degrees of 

unsaturation. 13C NMR and DEPT135 spectra revealed 16 resonances, resulting from three 

methyls, two methylenes, three sp3 methines, five sp2 methines and three quaternary 

carbons. Comprehensive analysis of the 1D and 2D NMR spectroscopic data uncovered 

the identity of the two amino acid residues, as leucine and phenylalanine. Placement of 

the methyl functionality was based on COSY and HMBC correlations of the N-methyl 

substituent with their adjacent carbonyl carbons and α-protons, i.e. for peptide 8, NCH3-

16 to qC-1 and αCH-8, and for peptide 9, NCH3-7 to qC-8 and αCH-2. This accounts for the 

shifted resonances observed for the α-carbons of the leucine and phenylalanine residues. 

For peptide 8, the αCH-8 carbon resonance (δC 64.3) of the phenylalanine residue was 

shifted downfield indicating that this unit was N-methylated. In turn the αCH-2 carbon 

resonance (δC 60.5) of the leucine residue of peptide 9 was shifted downfield indicating 

that leucine was N-methylated. Their cyclic structure was deduced from HMBC 

correlations of αCH-2 (δH/δC 3.64/54.1) to qC-7 (δC 166.8), αCH-8 (δH/δC 4.21/64.3) to qC-1 

(δC 167.2) and NCH3-16 (δH/δC 3.03/32.9) to qC-1 for peptide 8 and of αCH-2 (δH/δC 

3.61/60.5) to qC-8 (δC 165.8), αCH-9 (δH/δC 4.26/57.6) to qC-1 (δC 167.60) and NCH3-7 

(δH/δC 2.85/32.6) to qC-8 for peptide 9. Thus, peptide 8 was assigned as cyclo-(leucyl, N-

methyl-phenylalanyl) (Table 4-8) and peptide 9 as cyclo-(N-methyl-leucyl, phenylalanyl) 

(Table 4-9), diketopiperazines varying in the positioning of the N-methyl substituent.     
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Table 4-8. 1D and 2D NMR spectroscopic data for peptide 8, (-)-Cyclo-[(L)-leucyl, N-methyl-(L)-phenylalanyl]. 

Amino acid Position    δC, mult.
a, b, e

 δH
a, b

 (J in Hz) COSY
a, c

 HMBC
a, d

 

L-Leu 1   167.20, qC -   

 2 54.10, CH 3.64, ddd (3.7, 4.8, 9.8) 3a,3b, NH-2 1, 3, 4 

 3 45.60, CH2 a: -0.11, ddd (4.8, 9.9, 13.9)  2, 3b, 4 1, 2, 4, 5, 6 

   b: 0.75, ddd (4.4, 9.5, 13.9) 2, 3a, 4 1, 2, 4, 5, 6 

 4 24.50, CH 1.48, m 3a, 3b, 5, 6 3 

 5 21.80, CH3 0.70, d (6.6) 3a, 4, 6 3, 4, 6 

 6 23.70, CH3 0.65, d (6.6) 4, 5 3, 4, 5 

 NH      

N-Me- 7   166.80, qC -   

L-Phe 8 64.30, CH 4.21, t (4.4) 9a, 9b, 16 7, 9, 10, 16 

 9 37.60, CH2 a: 3.24, dd (4.4, 13.9) 8, 9b 7, 8, 10, 11, 15,16 

   b: 3.18, dd (4.4, 13.9) 8, 9a,11, 15  7, 8, 10, 11, 15, 16 

 10   137.50, qC -   

 11   131.40, CH 7.13, dd (2.2, 7.7) 12 9, 10, 12, 13, 15 

 12   129.60, CH 7.29, t (7.7)  11, 13 10, 11, 13, 14 

 13   128.30, CH 7.25, t (7.7) 12, 14 11, 12, 14, 15 

 14   129.60, CH 7.29, t (7.7) 13, 15 10, 12, 13, 15 

 15   131.40, CH 7.13, dd (2.2, 7.7) 14 9 

 16     32.90, CH3 3.03, s 8 1, 8, 9 

 N     
a 

CD3COCD3, 300/75.5 MHz. 
b 

Assignments are based on extensive 1D and 2D NMR experiments (HMBC, 
HSQC, COSY). 

c
 Numbers refer to proton resonances. 

d
 Numbers refer to carbon resonances. 

e
 Implied 

multiplicities determined by DEPT.  
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Table 4-9. 1D and 2D NMR spectroscopic data for peptide 9, (-)-Cyclo-[N-methyl-(L)-leucyl, (L)-phenylalanyl]. 

Amino acid Position    δC, mult.
a, b, e

 δH
a, b

 (J in Hz) COSY
a, c

 HMBC
a, d

 

N-Me-L-Leu 1   167.60, qC -   

 2     60.50, CH 3.61, dd (3.7, 9.2) 3b 3a, 3b, 7 

 3     42.70, CH2 a: 0.96, ddd (4.0, 9.3, 13.8) 3b, 4 2, 5, 6 

   b: 0.47, ddd (4.6, 9.5, 13.8) 2, 3a 2, 5, 6 

 4 25.50, CH 1.70, m 3a, 5, 6 2, 3a, 3b 

 5 23.30, CH3 0.69, d (6.5) 4, 6 3a, 3b, 6 

 6 21.80, CH3 0.81, d (6.5) 4, 5 3a, 3b, 5 

 7 32.60, CH3 2.85, s  2 

 N     

 L-Phe 8   165.80, qC -   

 9     57.60, CH 4.26, m 10a, 10b 10a, 10b 

 10     40.40, CH2 a: 3.18, dd (5.5, 13.4) 9, 10b 9, 11, 12, 16 

   b: 3.00, dd (4.7, 13.4) 9, 10a 9, 11, 12, 16 

 11   137.50, qC -  10a, 10b, 12, 16 

 12   131.10, CH 7.18, d  (7.7)  13, 14 11, 13 

 13   129.20, CH 7.29, t  (7.7) 12, 14 14 

 14   127.80, CH 7.23, m 13, 15 13, 15 

 15   129.20, CH 7.29, t (7.7) 14, 16 14, 16 

 16   131.10, CH 7.18, d (7.7) 14, 15 11, 15 

 NH     
a 

CD3COCD3, 500/125 MHz. 
b 

Assignments are based on extensive 1D and 2D NMR experiments (HMBC, 
HSQC, COSY). 

c
 Numbers refer to proton resonances. 

d
 Numbers refer to carbon resonances. 

e
 Implied 

multiplicities determined by DEPT.  

 

The absolute configuration of the amino acids in the isolated peptides, i.e. peptide 1 and 

1’, peptide 2, peptide 3 and peptide 4, were assigned after acidic hydrolysis followed by 

derivatization of the amino acids with Marfey’s reagent and HPLC analysis (see 3.4.6). 

Based on comparison of retention times to standard amino acids we could assign the L-

configuration to the amino acids valine, leucine and phenylalanine (Fig S42-S45). As for 

the 3-(3-furyl)-alanine moiety for which no standard was available, an L-configuration was 

suggested as determined earlier from X-ray crystallography of endolide A (Fig 4-2), a cyclic 

tetrapeptide formerly isolated from the same fungal strain.96 For those peptides isolated 

in lower quantities, i.e. peptide 5 and 5’, peptide 6 and 6’, peptide 7 and 7’, peptide 8 and 

peptide 9, it was not possible to establish the absolute configuration of the amino acid 

residues, however based on biogenetic origin an L-configuration is implied for them.   
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Fig 4-2. Endolide A, cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), L-valinyl, (N-methyl-(L)-3-(3-furyl)-alanyl), L-

leucyl], cyclic tetrapeptide formely isolated from the Stachylidium sp.
96

 



Results 

59 
 

 

Fig 4-3. Structures of the isolated cyclic peptides. 
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Peptides isolated 

Peptide 1 and 1’, cyclic tetrapeptide, peptide 1 (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), 

(L)-leucyl, (N-methyl-(L)-phenylalanyl), (L)-valinyl] and peptide 1’ (-)-Cyclo-[(N-methyl-(L)-

3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-phenylalanyl), (L)-leucyl]: white solid (2.5 mg 

L-1), [α] D
23 -133 (c 0.44, MeOH); UV (MeOH) λmax 204 nm (log Є 4.69); IR (ATR) νmax 3345 

(br), 2958, 2871, 1704, 1660, 1511, 1364, 1089 cm-1; 1H NMR and 13C NMR (Table 4-1); 

LRESIMS m/z 525.5 [M+H]+, m/z 523.9 [M-H]-; HRESIMS m/z 547.2902 [M+Na]+ (calcd. for 

C29H40N4NaO5, 547.2896). 

Peptide 2, cyclic tetrapeptide, (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-furylalanyl, N-

methyl-(L)-phenylalanyl, (L)-valinyl]: white solid (1.5 mg L-1), [α] D
23 -129 (c 0.2, MeOH); UV 

(MeOH) λmax 204 nm (log Є 3.45); IR (ATR) νmax 3330 (br), 2961, 2360, 1704, 1660, 1514, 

1362, 1091 cm-1; 1H NMR and 13C NMR (Table 4-2); LRESIMS m/z 559.4 [M+H]+, m/z 557.6 

[M-H]-; HRESIMS m/z 581.2731 [M+Na]+ (calcd. for C32H38N4NaO5, 581.2740). 

Peptide 3, cyclic tetrapeptide, (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-phenylalanyl, N-

methyl-(L)-phenylalanyl, (L)-valinyl]: white solid (1 mg L-1), [α] D
23 -153 (c 0.125, MeOH); 

UV (MeOH) λmax 207 nm (log Є 3.06); IR (ATR) νmax 3329 (br), 2961, 1703, 1659, 1512, 

1362, 1090 cm-1; 1H NMR and 13C NMR (Table 4-3); LRESIMS m/z 569.7 [M+H]+, m/z 567.7 

[M-H]-; HRESIMS m/z 569.3119 [M+H]+ (calcd. for C34H41N4O4, 569.3128). Data are in 

accordance with those in literature.95 

Peptide 4, cyclic tetrapeptide, (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-

methyl-(L)-3-(3-furyl)-alanyl), (L)-phenylalanyl]: white solid (1.4 mg L-1), [α] D
23 -76 (c 

0.058, MeOH); UV (MeOH) λmax 204 nm (log Є 3.62); IR (ATR) νmax 3331 (br), 2926, 2359, 

1660, 1505, 1386, 1090 cm-1; 1H NMR and 13C NMR (Table 4-4); LRESIMS m/z 549.4 

[M+H]+, m/z 547.5 [M-H]-; HRESIMS m/z 571.2532 [M+Na]+ (calcd. for C30H36N4NaO6, 

571.2533). 

Peptide 5 and 5’, cyclic tetrapeptide, peptide 5 (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), 

(L)-3-(3-furyl)-alanyl, (N-methyl-(L)-phenylalanyl), (L)-valinyl] and peptide 5’ (-)-Cyclo-[(N-

methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-phenylalanyl), (L)-3-(3-furyl)-

alanyl]: white solid (0.6 mg L-1), [α] D
23 -110 (c 0.166, MeOH); UV (MeOH) λmax 204 nm (log 
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Є 3.41); IR (ATR) νmax 3331 (br), 2925, 2358, 1663, 1515, 1401, 1088 cm-1; 1H NMR and 13C 

NMR (Table 4-5); LRESIMS m/z 549.4 [M+H]+, m/z 547.5 [M-H]-; HRESIMS m/z 571.2526 

[M+Na]+ (calcd. for C30H36N4NaO6, 571.2533). 

Peptide 6 and 6’, cyclic tetrapeptide, peptide 6 (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-

leucyl, N-methyl-(L)-leucyl, (L)-valinyl] and peptide 6’ (-)-Cyclo-[N-methyl-(L)-phenylalanyl, 

(L)-valinyl, N-methyl-(L)-leucyl, (L)-leucyl]: white solid (0.6 mg L-1), [α] D
23 -105 (c 0.108, 

MeOH); UV (MeOH) λmax 206 nm (log Є 3.03); IR (ATR) νmax 3332 (br), 2957, 2358, 1667, 

1507, 1456 cm-1; 1H NMR and 13C NMR (Table 4-6); LRESIMS m/z 501.4 [M+H]+, m/z 499.4 

[M-H]-; HRESIMS m/z 501.3438 [M+H]+ (calcd. for C28H45N4O4, 501.3441). 

Peptide 7 and 7’, cyclic tetrapeptide, peptide 7 (-)-Cyclo-[N-methyl-(L)-3-(3-furyl)-alanyl, 

(L)-leucyl, N-methyl-(L)-leucyl, (L)-valinyl] and peptide 7’ (-)-Cyclo-[N-methyl-(L)-3-(3-

furyl)-alanyl, (L)-valinyl, N-methyl-(L)-leucyl, (L)-leucyl]: white solid (0.6 mg L-1), [α] D
23 -67 

(c 0.083, MeOH); UV (MeOH) λmax 204 nm (log Є 3.12); IR (ATR) νmax 3342 (br), 2924, 2359, 

1714, 1652, 1520, 1365 cm-1; 1H NMR and 13C NMR (Table 4-7); LRESIMS m/z 491.9 

[M+H]+, m/z 489.8 [M-H]-; HRESIMS m/z 513.3045 [M+Na]+ (calcd. for C26H42N4NaO5, 

513.3053). 

Peptide 8, diketopiperazine, (-)-Cyclo-[(L)-leucyl, N-methyl-(L)-phenylalanyl]: white solid 

(0.35 mg L-1), [α] D
23 -14 (c 0.083, MeOH); UV (MeOH) λmax 203 nm (log Є 3.12); IR (ATR) 

νmax 3198 (br), 2954, 2924, 2359, 1678, 1455, 1326 cm-1; 1H NMR and 13C NMR (Table 4-8); 

LRESIMS m/z 275.6 [M+H]+, m/z 273.4 [M-H]-; HRESIMS m/z 297.1568 [M+Na]+ (calcd. for 

C16H22N2NaO2, 297.1579). 

Peptide 9, diketopiperazine, (-)-Cyclo-[N-methyl-(L)-leucyl, (L)-phenylalanyl]: white solid 

(0.15 mg L-1), [α] D
23 -241 (c 0.066, MeOH); UV (MeOH) λmax 203 nm (log Є 2.85); IR (ATR) 

νmax 3248 (br), 2925, 2359, 1681, 1455, 1340 cm-1; 1H NMR and 13C NMR (Table 4-9); 

LRESIMS m/z 275.6 [M+H]+, m/z 273.4 [M-H]-; HRESIMS m/z 297.1555 [M+Na]+ (calcd. for 

C15H20N2NaO2, 297.1573). 
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4.3 Biosynthetic studies of secondary metabolites from Stachylidium sp. 

Cyclic peptides  

For studying the biosynthesis of the cyclic peptides, peptide 1 and 1’ (Fig 4-4) was chosen 

as a prototype, on the grounds that it incorporates all the four amino acid building blocks. 

A closer look into the structural architecture of the isolated peptides proposed a non-

ribosomal biosynthetic origin, implied from the incorporated modified amino acid 

residues, i.e. N-methylated, and the unusual non-proteinogenic amino acid, i.e. 3-(3-

furyl)-alanine. Three of the four amino acids, i.e. valine, leucine and phenylalanine, are 

discernibly derived from proteinogenic amino acids modified by methylation as seen in 

phenylalanine. Of special interest was the remaining amino acid, 3-(3-furyl)-alanine, a 

rare building block reported before in heptapeptides from the fungus Rhizopus 

microsporus68 and more recently in the pentapeptide bingchamide B from Streptomyces 

bingchenggensis.74 We thus set up to determine the biosynthetic origin of the 3-(3-furyl)-

alanine, and propose a biosynthetic scheme for its biosynthesis, not investigated before, 

employing classical isotope tracer experiments.  

 

Fig 4-4. Structures of the positional isomers peptide 1 and 1’. 

Polyketides 

The marilones and marilines are polyketide compounds with a phthalide and 

phthalimidine skeleton, respectively (Fig 4-5).83,84 This type of compound class is known to 

be produced by polyketide synthase (PKS) biosynthetic machineries, using acetate as 

basic building blocks in a Claisen-type condensation reaction to expand the growing 

ketide chain.97 Precedent biosynthetic studies for the phthalide skeleton, such as in 
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mycophenolic acid,98 nidulol and silvaticol,99 proved the tetraketide nature of the 

phthalide skeleton, while no biosynthetic studies were conducted for phthalimidine 

metabolites, which probably follows a similar biosynthetic route. An unusual structural 

feature in both the marilones and marilines is the methyl substituent at C-8. This could be 

postulated to be introduced either from a propionate starter unit, by methylation of an 

acetate starter unit, or by loss of a carbon unit from a pentaketide intermediate, generally 

not known in fungal polyketide biosynthesis. Thus, biosynthetic studies would help to 

resolve this ambiguity.  

 

Fig 4-5. Structures of isolated polyketides, marilone A and mariline B. 

4.3.1 Preliminary feeding experiments  

Biosynthetic feeding studies in marine organisms are generally known to be faced with 

major difficulties.100,101 These are related to the producing microorganisms, which are 

usually slow growing under laboratory conditions with low amounts of metabolites being 

produced. Another facet is related to the used feeding protocol, which includes the 

choice of growth media, and the concentration and the time of feeding the precursors. 

Liquid media have generally been regarded as the media of choice in biosynthetic studies, 

as they ensure adequate distribution of the fed precursors. The amount of fed precursor 

should be sufficient for being incorporated and analytically detected in the final 

metabolite, and at the same time not too high as to hamper biosynthesis or to be toxic 

for the growing microorganism. Lastly, the time course of feeding the precursor should be 

adjusted, as biosynthesis of secondary metabolites usually follows primary metabolism 

after the microorganism has fully developed.10 Therefore, a too early feeding of a single 

precursor dose may be used up in primary metabolism, and thus multiple feeding after 

sufficient microorganism growth could likely overcome this hurdle.  
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To address these difficulties, preliminary experiments were initiated in both solid and 

liquid biomalt salt culture media, with and without the putative precursors of interest 

(see 3.5.1 for experimental details). The aim was to determine the onset of metabolite 

production and to investigate possible changes in the level of metabolite production 

before proceeding further with biosynthetic experiments. Information gained from these 

preliminary experiments was essential in setting up a successful feeding protocol that 

would ensure maximal incorporation of the labeled precursors into the metabolites of 

interest.  

From the time-scale experiment, we tracked the production of secondary metabolites, 

where solid biomalt salt cultures were harvested at different time points and analyzed 

using LC-MS. The peptides were starting to be detected at around day 9, with the 

amounts increasing with fungal growth, becoming highly distinct at around day 30, and 

still being clearly detected throughout the 55 days cultivation period. As for the 

polyketides, i.e. marilones and marilines, they were starting to be produced at a fairly 

later stage, around day 20, in clearly lower amounts compared to the peptides (Table 4-

10).  

Table 4-10. Production of secondary metabolites on solid biomalt salt medium as implied from LC-MS 

results of time-scale experiment. 

Day Peptides
1 

Polyketides
2 

5 - - 

9 + - 

14 ++ - 

20 ++ + 

30 +++ + 

55 +++ ++ 

1
 for structures see Fig 4-3, 

2
 for structures see Fig 4-5 

 
 

Liquid culture medium was found unsuitable for further biosynthetic studies as 

preliminary experiments in liquid biomalt salt culture medium showed the absence of 

some of the major metabolites of interest, i.e. peptides with a 3-(3-furyl)-alanine amino 

acid.  
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Addition of general precursors normally employed in biosynthetic studies such as glucose, 

glycerol, shikimic acid or sodium acetate, did not exhibit any deleterious effect on the 

growing fungus, or noticeably affect the amount of metabolite produced. On the other 

hand, addition of phenylalanine clearly led to an increased production of those peptides 

incorporating a phenylalanine residue.  

From a liquid biomalt salt culture medium supplemented with phenylalanine two 

compounds, hitherto not encountered in this fungus, were isolated (see 3.5.2). Through 

the interpretation of the NMR data (Fig S21-S24 and Table S1) and literature search, they 

were assigned as bisdethiobis(methylthio)-acetylaranotin (BDA) and 

bisdethiobis(methylthio)-acetylapoaranotin (BDAA), thiodiketopiperazines previously 

reported from the fungi Arachniotus aureus and Aspergillus terreus (Fig 4-6).102 Their 

biosynthesis involves a phenylalanine intermediate, thus supplementing the culture 

media with phenylalanine, probably stimulated their production.103 They belong to the 

group of epipolythiodioxopiperazines, a class of fungal toxins, featuring a seven 

membered 4,5-dihydrooxepine ring, with absence of a disulfide bridge. They were tested 

for antimicrobial activity against Escherichia coli, Bacillus megaterium, Microbotryum 

violaceum, Eurotium rubrum and Mycotypha microspora and were found to be inactive 

(see 3.6.1 for experimental details).  

 

Fig 4-6. Isolated epipolythiodioxopiperazines from liquid biomalt medium fed with phenylalanine.   

Based on observations from the preliminary experiments, a biosynthetic feeding protocol 

on solid biomalt salt culture media was established (Table 4-11). For the peptides a twice 

feeding starting on day 5, supplemented with a second feeding on day 10 and harvesting 

after a 30 day period would be optimal, to avoid dilution of the labeled peptides with 

unlabeled peptides. For the polyketides, a longer cultivation period of around 60 days 
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would be necessary and a thrice feeding starting on day 10, as to avoid consumption of 

the labeled precursor in primary metabolism, and on days 20 and 30 would ensure a 

stable supply of the labeled precursors during polyketide biosynthesis.   

Table 4-11. Established feeding protocol for labeled precursors based on observations from preliminary 

experiments. 

Day Peptides
1
 Polyketides

2
 

1 Fungal Inoculation 

5 1
st

 feeding  

10 2
nd 

feeding 1
st

 feeding 

20  2
nd

 feeding 

30 Harvesting & Extraction 3
rd

 feeding 

60  Harvesting & Extraction 

1
 for structures see Fig 4-3, 

2
 for structures see Fig 4-5 
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4.3.2 Biosynthetic/Metabolic origin of building blocks in peptide 1 and 1’ 

For the experimental investigation of any biosynthetic pathway, it is necessary to 

establish a hypothetical biosynthetic scheme for the conversion of fed precursors into the 

target metabolite. Our first hypothesis was based on the structural relationship between 

the 3-(3-furyl)-alanine and the phenylalanine skeleton and points to the possibility of 3-(3-

furyl)-alanine being derived by ring cleavage of a phenylalanine intermediate, notably 

that both amino acid moieties are incorporated into the isolated peptides. As little was 

known about the biosynthetic origin of 3-(3-furyl)-alanine, a general carbon source 

precursor involved in several biosynthetic pathways, such as glucose or glycerol, could 

help in delineating the involved biosynthetic pathway. This approach was supported by 

earlier biosynthetic studies on the reductiomycin antibiotic produced by Streptomyces 

xanthochromogenus, in which they fed labeled glycerol to study the biosynthetic origin of 

the dihydrofuranacrylic acid moiety of reductiomycin,104 which shares the basic skeleton 

with 3-(3-furyl)-alanine. Their results point to the shikimate pathway as the origin for the 

dihydrofuranacrylic acid moiety. To test our hypotheses, stable isotope precursors labeled 

at one or more positions were fed to the growing fungal culture (see 3.5 for experimental 

details), followed by extraction and isolation of the metabolites of interest using VLC 

fractionation and HPLC techniques (see 3.3 for chromatographic isolation details and Fig 

4-1 for isolation scheme). The labeling pattern was then established using NMR and mass 

spectroscopic techniques (see 3.4). With mass spectrometry we could detect the mass 

difference between natural abundance isotopic distribution and isotopically enriched 

molecules, although the exact site of incorporation cannot be deduced.105 While with 13C-

NMR spectroscopy, incorporation of a precursor containing 13C at more than natural 

abundance, i.e. more than 1.1%, in a specific position gives rise to an enhanced signal in 

the 13C-NMR spectra as compared to those carbons of natural abundance. The labeling 

pattern can thus be deduced by comparing the 13C-NMR spectrum of the labeled 

metabolite with the spectrum of the unlabeled metabolite.106  

4.3.2.1 Labeling studies with [1-13C]phenylalanine  

By feeding [1-13C]phenylalanine, we tested whether phenylalanine, an aromatic amino 

acid of shikimate biosynthetic origin, could be a plausible intermediate in the biosynthesis 
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of 3-(3-furyl)-alanine (see 3.5.3 for experimental details). Incorporation of fed [1-

13C]phenylalanine in peptide 1 and 1’ was monitored using LC-MS. A signal was observed 

at m/z 526.1 [M+H+1]+, with a 1 Da mass shift compared to the unlabeled control, i.e. m/z 

525.2 [M+H]+ (Fig S36). This was further verified after isolation of peptide 1 and 1’ and 

13C-NMR spectroscopic analysis, where we observed a prominent signal for the carbonyl 

carbon, i.e. C-15 (δc 170.5) and C-14 (δc 170.9), of the phenylalanine residue of peptide 1 

and 1’ (Fig S26). However, no incorporation of the labeled phenylalanine was observed in 

the 3-(3-furyl)-alanine residue (Fig 4-7).  

 

Fig 4-7. Observed 
13

C enrichment in peptide 1 and 1’ after feeding [1-
13

C]phenylalanine. Pink dots indicate 

13
C enriched atoms. 

Validity of this experiment was confirmed with the simultaneous isolation of peptide 3 

(Fig 4-3), which was found to incorporate three [1-13C]phenylalanine units identified as 

three enhanced signals for the carbonyl carbons, i.e. C-1 (δc 171.0), C-11 (δc 172.1), C-20 

(δc 170.1), of the phenylalanine residues in the 13C-NMR spectrum (Fig S27). Along with 

that, a 3 Da mass shift was observed for peptide 3 in the LC-MS spectrum of the crude 

extract of the Stachylidium sp. culture supplemented with [1-13C]phenylalanine. Labeled 

peptide 3 showed a signal at m/z 572.4 [M+H+3]+ compared to the unlabeled control, i.e. 

m/z 569.2 [M+H]+ (Fig S37). 

4.3.2.2 Labeling studies with [U-13C] glycerol 

Feeding fully labeled [U-13C]glycerol gave a complex 13C-NMR spectrum (Fig S28) for the 

isolated peptide 1 and 1’ (see 3.5.4 for experimental details). Detailed analysis of the 

signal pattern and 13C-13C coupling constants in the inverse gated proton decoupled 13C-

NMR spectrum of the 3-(3-furyl)-alanine moiety of peptide 1 and 1’ showed the presence 
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of two doubly coupled spin systems, i.e. C-1/C-2/C-3 and C-5/C-4/C-7, and a single 

enriched non-coupled signal for C-6 (Fig 4-8). For detailed chemical shifts and coupling 

constants see Table S2 and S3 for [U-13C]glycerol-derived peptide 1 and 1’, respectively.  

 

Fig 4-8. Observed 
13

C-labeling pattern for the 3-(3-furyl)-alanine moiety of peptide 1 and 1’ from the 

experiment with [U-
13

C]glycerol: bold lines indicate 
13

C labeled isotopomers with directly adjacent 
13

C 

atoms, arrows indicate 
13

C atoms connected by long-range coupling and their corresponding coupling 

constants (J values) in Hz. Dots indicate 
13

C enriched atoms. 

From the established metabolic fate of glycerol, glycolysis gives rise to an intact three-

carbon unit in the form of phosphoenolpyruvate.104 Concurrently, glycerol is converted in 

the reductive pentose phosphate (RPP) cycle, via dihydroxyacetone phosphate and 

phosphoglyceraldehyde into fructose-6-phosphate, which contains two coupled three-

carbon units, which with the help of a transketolase gives erythrose-4-phosphate with 

one intact three-carbon units and a single non-coupled carbon (Fig 4-9).107 
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Fig 4-9. Formation of PEP and E-4-P from [U-
13

C]glycerol via the glycolytic and RPP pathway and their 

incorporation into 3-(3-furyl)-alanine and phenylalanine of peptide 1 and 1’. Bold lines indicate 
13

C labeled 

isotopomers with directly adjacent 
13

C atoms. Dots indicate 
13

C enriched atoms. 

4.3.2.3 Labeling studies with [1-13C]glucose  

The observed labeling pattern in the [U-13C]glycerol experiment was further supported by 

feeding studies using [1-13C]glucose (see 3.5.5 for experimental details). We observed 

enriched signals for C-3 (δc 24.5) and C-5 (δc 110.9) of the 3-(3-furyl)-alanine moiety of 

peptide 1 and 1’ (Fig S29). These originate from [3-13C]phosphoenolpyruvate via glycolysis 

and [4-13C]erythrose-4-phosphate via the pentose phosphate pathway, following 

conversion of [1-13C]glucose to [6-13C]glucose-6-phosphate or [1,6-13C]glucose-6-

phosphate via glycolysis and gluconeogenesis (Fig 4-10).108 
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Fig 4-10. Formation of PEP and E-4-P from [1-
13

C]glucose via the glycolytic and pentose phosphate pathway 

and their incorporation into 3-(3-furyl)-alanine and phenylalanine of peptide 1 and 1’. Dots indicate 
13

C 

enriched atoms originating from [1-
13

C]glucose. 

Thus, the observed labeling pattern after feeding [U-13C]glycerol and [1-13C]glucose points 

to a shikimate-related pathway for the biosynthesis of 3-(3-furyl)-alanine, from 

condensation of phosphoenolpyruvate and erythrose-4-phosphate with 3-deoxy-D-

arabino-heptulosonic acid-7-phosphate as an intermediate (Fig 4-11).  
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Fig 4-11. Summary of 
13

C enrichment pattern in the 3-(3-furyl)-alanine moiety of peptide 1 and 1’ from a 

biomalt salt agar culture of Stachylidium sp. labeled with both [1-
13

C]glucose and [U-
13

C]glycerol in separate 

experiments. Bold lines indicate 
13

C-labeled isotopomers with directly adjacent 
13

C atoms. Dots indicate 
13

C 

enriched atoms. 

4.3.2.4 Labeling studies with [1,7-13C]shikimic acid  

For the verification of the shikimate origin of 3-(3-furyl)-alanine, [1,7-13C]shikimic acid was 

chosen to be fed (see 3.5.8 for experimental details). However, no labeled 3-(3-furyl)-

alanine and phenylalanine could be observed in LC-MS (Fig S38(B)). Failure of this 

experiment can be attributed to several reasons. The applied feeding protocol, i.e. a too 

low concentration, or the impermeability of fungal cells to labeled shikimic acid are 

plausible explanations. The latter was previously reported from several biosynthetic 

studies109 and was thought more likely as the added labeled shikimic acid was detected 

intact in the fungal crude extract. Thus results of this experiment were not predictive (Fig 

4-12).  
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Fig 4-12. Predicted labeling patterns for the 3-(3-furyl)alanine and phenylalanine moieties of peptide 1 and 

1’ from the experiment with [1,7-
13

C]shikimic acid. Bold lines indicate 
13

C-labeled isotopomers with directly 

adjacent 
13

C atoms. Dots indicate 
13

C enriched atoms. Unfortunately, the conducted labeling experiment did 

not result in any incorporation  

4.3.2.5 Feeding studies with halogenated precursors and proteinogenic amino acids  

Earlier studies have investigated the use of halogenated precursors as a biosynthetic label 

benefiting from their low cost in comparison to 13C labeled precursors.110 Additionally, the 

incorporation of the halogenated precursors and the isolation of novel metabolite 

analogues with superior and selective biological activity is exploited (precursor directed 

biosynthesis).111 In our continuous search for a plausible intermediate involved in the 

biosynthesis of 3-(3-furyl)-alanine, we fed 2-chloro-protocatechuic acid, with 

protocatechuic acid being a known intermediate in the shikimate pathway. 2-chloro-

protocatechuic acid was synthesized from 2-chloro-3,4-dimethoxybenzoic acid after 
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successful demethylation using BBr3 in dichloromethane (see 3.7.2 for experimental 

details). Added 2-chloro-protocatechuic acid was not seen to be incorporated into 

peptide 1 and 1’, by LC-MS analysis (Fig S38(C)). This indicates failure of incorporation, 

due to its irrelevance to the 3-(3-furyl)-alanine biosynthesis, or because the biosynthetic 

enzymes do not accept chlorinated substrates, or as in the labeled shikimic acid 

experiment due to fungal cell impermeability. Again, results of this experiment were not 

conclusive (see 3.5.2 for experimental details). 

 

Fig 4-13. Proposed incorporation of 2-chloro-protocatechuic acid in the 3-(3-furyl)-alanine moiety. 

Unfortunately, the conducted experiment did not result in any incorporation. 

The involvement of yet another phenolic acid such as 4-hydroxybenzoic acid, a symmetric 

intermediate frequently encountered in the biosynthesis of several metabolites108,112 

including reductiomycin,104 was tested through feeding 2-fluoro-4-hydroxybenzoic acid 

(see 3.5.2 for experimental details), but did not result in any incorporation into peptide 1 

and 1’ as observed in LC-MS (Fig S38(D)). 

However, feeding halogenated ring-substituted phenylalanine such as 2-fluoro-

phenylalanine and 3-fluoro-phenylalanine, resulted in the production of new peptide 

analogues as revealed in LC-MS with a new mass peak at m/z 543.6 [M+19]+, representing 

incorporation of a single fluoro-phenylalanine into peptide 1 and 1’ scaffold. In contrast, 

4-fluoro-phenylalanine and tyrosine (a p-hydroxylated phenylalanine) were not seen to be 

incorporated into the peptides (Fig S39) (see 3.5.2 for experimental details).  

Additionally, the incorporation of alternative amino acids in the peptides was tested by 

feeding several proteinogenic amino acids, such as alanine, glycine, proline, tryptophan, 

tyrosine and serine, to the growing fungus media, but did not result in the detection of 

any further new analogues as seen in LC-MS (see 3.5.2 for experimental details). 
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4.3.2.6 Labeling studies with [1-13C]sodium acetate 

Although some carbon atoms of the 3-(3-furyl)-alanine moiety of peptide 1 and 1’ 

displayed some 13C enrichment in the 13C-NMR spectrum after feeding [1-13C]sodium 

acetate, this is not indicative of any known metabolic mechanism (Fig S31). This could be 

attributed to metabolic turnover of [1-13C]sodium acetate during fungal growth. Thus, the 

possibility of a polyketide pathway, which utilizes acetate as a basic building block, being 

involved in the biosynthesis of the 3-(3-furyl)-alanine was deemed implausible (see 3.5.6 

for experimental details).  

4.3.2.7 Labeling studies with [Me-13C]methionine 

[Me-13C]methionine, a universal methylating agent used frequently in biosynthetic 

studies, was supplemented to Stachylidium sp. biomalt salt agar cultures and gave high 

enrichments for N-methyl carbons (δc 30.4 and δc 30.7) of peptide 1 and 1’  as observed in 

the 13C-NMR spectrum (Fig S30), indicating that the N-methyl groups are derived from S-

adenosyl-L-methionine (see 3.5.7 for experimental details). 

4.3.2.8 Proposed biosynthetic scheme for N-methyl-3-(3-furyl)-alanine  

Based on the results of the feeding experiments, a scheme for the biosynthesis of N-

methyl-3-(3-furyl)-alanine is proposed for the first time, clearly following the shikimate 

pathway (Fig 4-14). Concerning the sequence of steps and intermediate precursors 

involved, many questions remain open. Ring cleavage of a shikimate intermediate 

resulting in ring opening with subsequent cyclisation would lead to the formation of the 

furan moiety, as disclosed from biosynthetic studies for the dihyrdofuranacrylic acid 

moiety of reductiomycin.104 Introduction of the amino group, probably from glutamic acid 

catalyzed by a transaminase, would lead to the basic carbon skeleton of 3-(3-furyl)-

alanine.97 A methyl group is then transferred from S-adenosyl-L-methionine to the 

nitrogen, with the help of a methyltransferase, releasing S-adenosyl-L-homocysteine in 

the process.16 
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Fig 4-14. Postulated biosynthesis of N-methyl-3-(3-furyl)-alanine of peptide 1 and 1’. 

Biosynthetic/Metabolic origin of valine and leucine in peptide 1 and 1’ 

Both branched-chain amino acids, leucine and valine follow a similar biosynthesis from 

two pyruvate starter units with α-ketoisovalerate as an intermediate. The additional 

carbon for leucine is provided through an aldol condensation of α-ketoisovalerate with 

acetyl-CoA, followed by decarboxylation of the intermediate β-keto acid to give α-

ketoisocaproate. Lastly a pyridoxal phosphate (PLP)-dependent transamination with 

glutamate introduces the amino group to give valine and leucine.113  

The labeling patterns observed for valine and leucine after feeding [U-13C]glycerol, [1-

13C]glucose and [1-13C]sodium acetate is biosynthetically trivial, but validates the applied 

feeding protocols. Metabolic turnover of fed [U-13C]glycerol and [1-13C]glucose through 

the glycolytic pathway, provides [U-13C]pyruvate, [1,2-13C]acetyl-CoA, and [3-13C]pyruvate 

and [2-13C]acetyl-CoA, respectively. This is reflected in the observed labeling pattern for 

[U-13C]glycerol incorporation, where carbons of valine and leucine occurred as either 

enriched doublets, i.e. C-9/C-10, C-12/C-14 of leucine and C-25/C-26, C-27/C-28 of valine 

for peptide 1 and C-9/C-10, C-11/C-12 of valine and C-24/C-25 and C-27/C-29 of leucine 

for peptide 1’, due to the contribution of intact two-carbon units, or as enriched singlets, 
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i.e. C-11 and C-13 of leucine and C-29 of valine for peptide 1 and C-13 of valine and C-26 

and C-28 of leucine for peptide 1’, as a result of carbon rearrangements (Fig S28). For 

detailed chemical shifts and coupling constants see Table S2 and S3 for [U-13C]glycerol-

derived peptide 1 and 1’ respectively. This is in agreement with the labeling of C-10 (δc 

49.3), C-13 (δc 22.5) and C-14 (δc 23.2) of leucine and C-28 (δc 20.7) and C-29 (δc 18.4) of 

valine for peptide 1 and C-12 (δc 20.8) and C-13 (δc 18.4) of valine and C-25 (δc 49.1), C-28 

(δc 22.5) and C-29 (δc 23.3) of leucine for peptide 1’, after feeding [1-13C]glucose (Fig S29). 

Furthermore, feeding [1-13C]sodium acetate resulted in enrichments at carbonyl carbon 

(Fig S31), i.e. C-9 (δc 172.9) of leucine for peptide 1 and C-24 (δc 172.5) of leucine for 

peptide 1’, from direct incorporation of fed [1-13C]sodium acetate (Fig 4-15).  

 

Fig 4-15. Observed labeling patterns for valine and leucine moieties of peptide 1 and 1’ after feeding 
13

C 

labeled precursors. Bold lines indicate 
13

C labeled isotopomers with directly adjacent 
13

C atoms. Dots 

indicate 
13

C enriched atoms. Balls indicate 
13

C labeled positions from [1-
13

C]sodium acetate.  
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Table 4-12. Results of feeding experiments for peptide 1. 

No. Fed precursor Enriched carbon atoms in peptide 1
1 

N-Me-FurAla Leu N-Me-Phe Val 

1 [1-
13

C]phenylalanine n.e. n.e. C-15 n.e. 

2 [U-
13

C]glycerol C-1/C-2/C-3,  

C-5/C-4/C-7,  

C-6 

C-9/C-10,  

C-12/C-14, 

C-11, C-13 

n.d. C-25/C-26, 

C-27/C-28,  

C-29  

3 [1-
13

C]glucose C-3, C-5 C-10, C-13, C-14 C-17, C-19, C-23 C-28, C-29 

4 [1-
13

C]sodium acetate n.e. C-9 n.e n.e 

5 [Me-
13

C]methionine  C-8 n.e. C-24 n.e 

n.e.: not enriched, n.d.: not detectable due to signal overlapping, 
1
 for structure see Fig 4-4 

Table 4-13. Results of feeding experiments for peptide 1’. 

No. Fed precursor Enriched carbon atoms in peptide 1’
1 

N-Me-FurAla Val N-Me-Phe Leu 

1 [1-
13

C]phenylalanine n.e. n.e. C-14 n.e. 

2 [U-
13

C]glycerol C-1/C-2/C-3,  

C-5/C-4/C-7, 

 C-6 

C-9/C-10,  

C-11/C-12, 

 C-13 

n.d. C-24/C-25, 

C-27/C-29,  

C-26, C-28  

3 [1-
13

C]glucose C-3, C-5 C-12, C-13 C-16, C-18, C-22 C-25, C-28, C-29 

4 [1-
13

C]sodium acetate n.e. n.e n.e C-24 

5 [Me-
13

C]methionine  C-8 n.e. C-23 n.e 

n.e.: not enriched, n.d.: not detectable due to signal overlapping, 
1
 for structure see Fig 4-4 
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4.3.3 Biosynthetic/Metabolic origin of marilone A and mariline B    

4.3.3.1 Labeling studies with [1-13C]sodium acetate  

Labeled marilone A and mariline B were isolated from a biomalt salt agar culture 

supplemented with [1-13C]sodium acetate following the previously described isolation 

scheme (see 3.5.6 for experimental details and Fig S2).83,84 Identity of the isolated 

marilone A and mariline B was confirmed using LC-MS, with molecular ion peaks at m/z 

345.2 [M+H]+ and m/z 388.5 [M+H]+ for marilone A and mariline B, respectively (Fig S40 

and S41).83,84 Additionally, the isotope pattern observed in the MS spectra indicated the 

incorporation of [1-13C]sodium acetate into the isolated metabolites. 13C-NMR spectra 

were analyzed by comparison with 13C-NMR spectra of previously reported unlabeled 

marilone A (Fig S32 and S33) and mariline B (Fig S34 and S35) from Stachylidium sp.83,84 

Chemical shift assignments were consistent with those previously reported (Table S4). 

Marilone A and mariline B showed enrichments for C-1, C-3, C-5 and C-7 of the basic 

skeleton, and C-1’, C-3’, C-5’and C-7’ of the geranyl side chain. Thus, alternate carbon 

atoms of marilone A and mariline B were found to incorporate intact acetate units. 

 

Fig 4-16. Observed labeling patterns for marilone A and mariline B after feeding [1-
13

C]sodium acetate. Balls 

indicate 
13

C enriched atoms.  

4.3.3.2 Labeling studies with [Me-13C]methionine  

It was not possible to isolate marilone A and mariline B from a [Me-13C]methionine fed 

biomalt salt agar culture and not much could be deduced from this experiment with 

respect to the polyketides biosynthesis (see 3.5.7 for experimental details). 
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4.3.3.3 Proposed biosynthetic scheme for marilone A and mariline B  

The observed labeling pattern for marilone A and mariline B after feeding [1-13C]sodium 

acetate suggests a total of four intact acetate units to be joined in a head-to-tail fashion 

forming a tetraketide chain to  outline the biosynthesis of the marilone A and mariline B 

basic carbon skeleton. Subsequently, cyclisation and methylation of this chain would 

afford an intermediate 3-methyl orsellinic acid derivative. Ring closure and formation of 

the lactone or lactam ring takes place to form the phthalide and phthalimidine skeleton, 

respectively. The nitrogen atom for the lactam ring of mariline B is probably derived from 

ethanolamine. Recently, the biomimetic synthesis of the phthalimidine core structure was 

carried out using ortho-formyl-arylketone which smoothly condenses with ethanolamine 

under mild conditions to yield the mariline B core structure, supporting this 

presumption.114 O-prenylation and O-methylation further decorates the basic carbon 

skeleton, with the help of a prenyltransferase and methyltransferase, respectively.  

The observed labeling pattern for the geranyl side chain of marilone A and mariline B 

after feeding [1-13C]sodium acetate, confirms it’s mevalonate origin. Through 

condensation of three units of acetyl CoA, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) is 

formed, which is further reduced to mevalonic acid. Mevalonic acid is then transformed 

into a phosphorylated isoprene unit (isopentenyl diphosphate), the basic building unit of 

terpenes. Isopentenyl diphosphate (IPP) is isomerized to give dimethylallyl diphosphate 

(DMAPP). Combination of DMAPP and IPP would give the geranyl diphosphate (GPP) side 

chain (Fig 4-17).97  
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Fig 4-17. Proposed biosynthetic scheme for marilone A and mariline B. 
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4.3.4 Discussion 

Peptide 1 and 1’ 

Feeding experiments with [U-13C]glycerol, [1-13C]glucose, [1-13C]phenylalanine, [1-

13C]sodium acetate and [Me-13C]methionine in Stachylidium sp. ascertained the 

biosynthetic origin of the peptide building blocks, i.e. valine, leucine, phenylalanine and 3-

(3-furyl)-alanine (Fig 4-18). Labeling patterns observed after feeding both [U-13C]glycerol 

and [1-13C]glucose were in accordance with previously reported labeling patterns for 

shikimate-derived metabolites.108,112,115 The involvement of shikimic acid as a biosynthetic 

intermediate could not be verified unambiguously, nonetheless the incorporation 

patterns for both [U-13C]glycerol and [1-13C]glucose into peptide 1 and 1’ give clear 

evidence for the involvement of a shikimate-related pathway in the biosynthesis of 3-(3-

furyl)-alanine. The shikimate pathway is thus believed to account for all the carbon atoms 

of the N-methyl-3-(3-furyl)-alanine, apart from the N-methyl group, which is provided by 

the methyl group of methionine. The remaining amino acids are derived from standard 

building blocks as described in literature.97,113  

 

Fig 4-18. Biosynthetic origin of the carbons in peptide 1 and 1’. 
13

C labeling patterns from the incorporation 

of [U-
13

C]glycerol, [1-
13

C]phenylalanine and [Me-
13

C]methionine. 

Exogenous supply of phenylalanine, both labeled and unlabeled, resulted in an increase in 

the amount of isolated peptides showing a phenylalanine residue, attributed to an 

increased supply of the precursor amino acid. This is normally encountered in precursor-

directed biosynthetic studies, a strategy frequently exploited to boost the production of a 

target metabolite.116,117 At the same time, this resulted in a decrease in the amounts of 

isolated peptides featuring a 3-(3-furyl)-alanine, presumably as a result of feedback 
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inhibition (Fig S36). This indicates the biosynthetic relationship between both 

phenylalanine and 3-(3-furyl)-alanine. At the same time, failure of incorporation of 

labeled phenylalanine into 3-(3-furyl)-alanine indicated that phenylalanine is not an 

intermediate in the biosynthesis of 3-(3-furyl)-alanine as hypothesized earlier, but rather 

an earlier intermediate in the shikimate pathway must provide the carbon units for the 

biosynthesis of 3-(3-furyl)-alanine.  

Unlike biosynthetic results reported for the reductiomycin, two distinct labeling patterns 

for the dihydrofuranacrylic acid moiety of reductiomycin were observed after feeding [U-

13C]glycerol (Fig 4-19). In our experiments a single labeling pattern was observed for 3-(3-

furyl)-alanine after feeding [U-13C]glycerol. Presence of two labeling patterns for the 

dihydrofuranacrylic acid moiety of reductiomycin was justified by the involvement of a 

symmetric intermediate, in this case 4-hydroxybenzoic acid, undergoing two plausible 

ring cleavage reactions leading to the dihydrofuranacrylic acid moiety. This was confirmed 

with feeding studies using labeled 4-hydroxybenzoic acid.104 The involvement of 4-

hydroxybenzoic acid as a putative intermediate in the biosynthesis of 3-(3-furyl)-alanine 

was thus not plausible and was ruled out. This is also mirrored in the failure to detect 

incorporation of a fluoro-substituted-4-hydroxybenzoic acid in peptide 1 and 1’ (Fig 

S38(D)).  

 

 

 



Results 

84 
 

 

Fig 4-19. Labeling and 
13

C-
13

C coupling pattern in the dihydrofuranacrylic acid moiety of reductiomycin 

derived from [U-
13

C]glycerol according to literature.
104

 Observed labeling pattern for 3-(3-furyl)-alanine 

after feeding [U-
13

C]glycerol. Bold lines indicate 
13

C labeled isotopomers with directly adjacent 
13

C atoms. 

Dots indicate 
13

C enriched atoms. 

Biosynthesis of a furan moiety is generally believed to proceed through a mixed acetate-

glycerol pathway, through condensation of dihydroxyacetone and a β-ketothioester as 

seen in methylenomycin furans and (propenyl-3-furanyl)carbonyl α-L-

rhamnopyranoside.118,119,120 This could not be seen as the case here, as fed [U-13C]glycerol 

was not observed to label C-3/C-4/C-7 of 3-(3-furyl)-alanine, and feeding [1-13C]sodium 

acetate resulted in high background, non-specific labeling of 3-(3-furyl)-alanine explained 

by metabolic turnover of [1-13C]sodium acetate during primary metabolism. Accordingly, 

a mixed acetate-glycerol biosynthetic pathway being involved in the biosynthesis of 3-(3-

furyl)-alanine is ruled out (Fig 4-20). 
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Fig 4-20. Observed incorporation patterns for compounds of mixed acetate-glycerol biosynthesis, i.e 

methylenomycin furan and acyl α-L-rhamnopyranoside, adopted from literature.
119,120

 Hypothetical and 

observed incorporation patterns for 3-(3-furyl)-alanine with glycerol and sodium acetate as precursors, 

excluding the involvement of a mixed acetate-glycerol pathway in the biosynthesis. Bold lines indicate 
13

C-

labeled isotopomers with directly adjacent 
13

C atoms and dots indicate 
13

C enriched atoms arising from [U-

13
C]glycerol. Balls indicate 

13
C labeled positions from [1-

13
C]sodium acetate.  

After feeding [U-13C]glycerol all carbons of 3-(3-furyl)-alanine occurred either as doublet 

of doublets, i.e. C-1/C-2/C-3 and C-5/C-4/C-7, or as a singlet, i.e. C-6, eliminating the 

contribution of two-carbon units, recognized as coupled doublets in 13C-NMR, from 

acetyl-CoA arising from metabolism of glycerol through glycolysis. This was further 

confirmed through feeding studies with [1-13C]sodium acetate, that ruled out the 

involvement of the polyketide pathway. Thus, the contribution of the mevalonate 

pathway, incorporating three acetyl-CoA building blocks, in the biosynthesis of 3-(3-furyl)-

alanine is excluded.97 Moreover, the observed labeling pattern after feeding [1-

13C]glucose does not imply the contribution of isopentenyl diphosphate (IPP), neither 

through the mevalonate (MVA) nor the methylerythritol phosphate pathway (MEP), in 

the formation of the furan ring of the 3-(3-furyl)-alanine (Fig 4-21).121  
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Fig 4-21. Exclusion of the involvement of a terpenoid biosynthetic pathway for 3-(3-furyl)-alanine. 

Hypothetical formation of a furan moiety using isopentenyl diphosphate (IPP) and dimethylallyl 

diphosphate (DMAPP) via the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways and 

observed labeling pattern for 3-(3-furyl)-alanine from [1-
13

C]glucose feeding experiment. Dots indicate 
13

C 

enriched positions arising from [1-
13

C]glucose. Adopted from literature.
121

 

Cyclisation of sedoheptulose-7-phosphate, an intermediate of the pentose phosphate 

pathway, is not considered relevant to the biosynthesis of the carbon skeleton of 3-(3-

furyl)-alanine. A sedoheptulose biosynthetic pathway, involved in the biosynthesis of the 

C7N moiety of the carba sugar acarbose and the antibiotic validamycin, gives a unique C2-

C2-C3 labeling pattern, as opposed to the C3-C4, i.e. phosphoenolpyruvate-erythrose-4-

phosphate, pattern for a shikimate pathway (Fig 4-22).122 
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Fig 4-22. Biosynthetic origin of the C7N unit of acarbose and validamycin A from sedoheptulose-7-

phosphate based on incorporation patterns after feeding [1-
13

C]glucose and [U-
13

C]glycerol.
122

 Observed 

labeling pattern for 3-(3-furyl)-alanine from [1-
13

C]glucose and [U-
13

C]glycerol feeding experiments 

excluding the involvement of sedoheptulose-7-phosphate in the biosynthesis. Bold lines indicate 
13

C labeled 

isotopomers with directly adjacent 
13

C atoms and black dots indicate 
13

C enriched atoms arising from [U-

13
C]glycerol. Red dots indicate 

13
C enriched atoms arising from [1-

13
C]glucose. 

Polyketides  

Due to the small culture size of 1.5 L biomalt salt agar medium, and the low amounts of 

polyketides, i.e. 0.26 – 0.5 mg L-1, produced by the Stachylidium sp., as previously noted 

from the preliminary experiments, it was infeasible to isolate the whole array of 

marilones and marilines previously reported.83,84 Nevertheless, we succeeded in isolating 

labeled marilone A and mariline B, a representative of each compound class, i.e. 

phthalide and phthalimidine, respectively. Both showed very similar enriched 13C-NMR 

spectra, indicating their analogous biosynthetic origin. For the basic nucleus of marilone A 

and mariline B, four intact acetate units were incorporated, joined in a head-to-tail 

fashion, to form a tetraketide chain that undergoes subsequent cyclisation to form the 

aromatic ring, as encountered in other phthalide metabolites, i.e. mycophenolic acid,98 

nidulol and silvaticol.99 The folding of the tetraketide chain probably follows the mode F, 
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which is typical for fungal producers of fused-ring aromatic structures.123 The labeling 

pattern observed for the geranyl side chain, evidenced its origin through the mevalonate 

pathway as seen in mycophenolic acid.98 It is known that fungi and animals exclusively use 

the mevalonate pathway for the synthesis of their terpenoid units.124 Marilone A and 

mariline B are thus considered to be of mixed biosynthetic origin, featuring both a 

polyketide and terpenoid part. For the starter unit involved in the biosynthesis, 

accounting for the unusual methyl substituent at C-8, this could not be unequivocally 

deduced from the feeding study with [1-13C]sodium acetate. Yet, the efficient 

incorporation of an acetate unit at C-7 as seen for both marilone A and mariline B, favors 

a methylated acetate starter unit over a propionate unit. If enrichment of C-7 was due to 

metabolic turnover of [1-13C]acetate to [1-13C]propionate (Fig 4-23), we would have 

expected a less intense signal for C-7 as compared to other carbons, i.e. C-1, C-3 and C-5, 

of the basic carbon skeleton. Definite proof for this speculation could only be confirmed 

by further feeding studies employing labeled precursors, such as propionate or 

methionine, or through genetic investigations.  

 

Fig 4-23. Metabolism of [1-
13

C]acetate into [1-
13

C]propionate.
125
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4.4 Biological activity of peptide 1 and 1’ on galanin receptors (GalR) 

Peptide 1 and 1’ (Fig 4-4) displayed selective in-vitro agonist activity to galanin receptor 

subtype 1 (GalR1), in a pilot label-free dynamic mass redistribution (DMR) assay, using 

recombinant human embryonic kidney (HEK) cells stably expressing GalR1 (see 3.6.2 for 

experimental details).88,89 When applied in a micromolar range (10-100 µM), peptide 1 

and 1’ showed a concentration-dependant increase of DMR recordings as compared to 

native HEK cells, lacking GalR1 receptors. Preincubation of the cells with pertussis toxin 

(PTX), a specific inhibitor of the GalR1-coupled G protein αi subunit, followed by addition 

of a mixture of peptide 1 and 1’, resulted in a reduction of the DMR recordings nearly to 

the niveau of native HEK cells (Fig 4-24). These results clearly reveal the association of an 

increased DMR with an activation of the GalR1 by peptide 1 and 1’, and are in accordance 

with the in-vivo anti-convulsive activity data of endolide A (Fig 4-2), a cyclic tetrapeptide 

formerly isolated from the same fungal strain.96 

 

 

Fig 4-24. DMR-profiles of non-recombinant (A) and GalR1 stably expressing (B,C) HEK293 cells. Stimulation 

of the cells with different concentrations of peptide 1 and 1’ results in a concentration-dependent increase 

in wavelength shift for the recombinant cell line (B), which is absent in native HEK cells (A). Pre-incubation 

of the recombinant cells with pertussis toxin (PTX, 200 ng ml
-1

) causes a significant blunting of the DMR 

signals (C) in comparison to PTX-untreated cells (B), resembling the DMR profile of the control cells lacking 

the receptor (A). Assays were performed by Dr. Harald Dargatz, WG Kostenis, Institute for Pharmaceutical 

Biology, University of Bonn.
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5. General Discussion 

5.1 Chemical diversity of Stachylidium sp. secondary metabolites 

Although the Stachylidium sp. strain has been chemically investigated before in our 

group, new metabolites could be still isolated during the current study. This delineates 

the impressive biosynthetic capabilities of this fungal strain as illustrated in the plethora 

of secondary metabolite classes reported so far. Compound classes isolated range from 

polyketides,83,84 to O-prenylated tyrosine-derived compounds,85 to furyl derivatives,126 

and of special interest the novel peptides characterized in the current study. These 

peptides are constructed from a varying combination of four basic building blocks, two 

branched chain amino acids, i.e. L-valine, L-leucine, and two aromatic amino acids, i.e. L-

phenylalanine and L-3-(3-furyl)-alanine. Structural similarities between the isolated 

peptides are quite remarkable. They only exhibit slight differences in terms of the 

constituent amino acids. The individual peptides differ also in terms of N-methyl 

substituents and amino acid sequence. Their very closely related structures made their 

isolation and subsequent characterization most challenging. The novel peptides and 

diketopiperazines isolated in this study (Fig 4-3) further expand the range of compound 

classes metabolically produced by the here targeted Stachylidium sp. strain. Two 

previously reported thiodiketopiperazines (Fig 4-5), i.e. bisdethiobis(methylthio)-

acetylaranotin (BDA) and bisdethiobis(methylthio)-acetylapoaranotin (BDAA),102,155 were 

also isolated from a phenylalanine supplemented liquid biomalt culture medium.  

5.2 Novel cyclic peptides and the putative non-ribosomal peptide assembly line 

The novel isolated peptides are proposed to be synthesized by the non-ribosomal peptide 

biosynthetic machinery (NRPS). This is supported by the structural architecture of the 

peptides, incorporating unusual amino acid motifs with additional N-methylation and 

cyclization. These features are all privileged attributes frequently encountered in non-

ribosomal peptides. Contradictory to the wide array of produced cyclic peptides in the 

Stachylidium sp., a single NRPS is believed to be involved in the biosynthesis of these 

structures. This was previously observed for structurally related peptides from fungal 

species, e.g. 25 naturally occuring cyclosporins97 and as much as 29 isolated enniatins.34 

This is credited to the flexibility of NRPS systems being able to incorporate varying 
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building blocks. Rationalized by the microheterogenicity of the involved adenylation 

domains accepting different building blocks, e.g. surfactin synthetase adenylation domain 

is capable of activating L-leucine, L-valine and L-isoleucine.127 Promiscuity of fungal NRPS 

to alternative amino acid residues is generally encountered, and has been exploited with 

the aim to obtain new analogues of naturally produced peptides luckily with better 

activity and/or selectivity.128,129,130 At the same time this could provide additional 

information for biosynthetic studies.110 Feeding experiments using other amino acids, 

such as alanine, glycine, proline, tryptophan and serine, did not result in the production of 

newer analogues. Therefore, it is believed that enzymes involved in the biosynthesis of 

those peptides are specific for their amino acid residues, i.e. valine, leucine, 

phenylalanine and 3-(3-furyl)-alanine. Here the Stachylidium sp. NRPS machinery 

generated a natural combinatorial/chemical library of cyclopeptides. Using only a small 

number of basic building blocks and applying the LEGO principle a wide array of 

metabolites were formed.131 Shuffling of those four amino acids in four different 

positions, we could imagine a total of 256 different peptides to be produced, of which 

only a small fraction had been isolated in this study. In fact some of the peptides were 

predominately produced over other peptides, pointing towards the preferred activation 

of certain amino acids by the adenylation domains. 

5.3 Biosynthetic considerations 

5.3.1 General considerations of feeding protocols  

The contribution of classical isotope tracer experiments in the study of mechanisms 

involved in the assembly of secondary metabolites cannot be underestimated.105,106,110 In 

spite of the growing trend to apply molecular genetic techniques for biosynthetic studies 

on secondary metabolites, classical isotope tracer experiments are still regarded as an 

indispensable tool in exploring the biogenesis of secondary metabolites basic framework 

and revealing convergent pathways in different species.123,132,133 Information gained from 

the incorporation of isotopically labeled precursors could provide the starting point for 

further biosynthetic studies and frequently both approaches are applied 

synchronously.112,108,134,135,136 
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Regardless of the general hurdles encountered in biosynthetic feeding studies in marine 

organisms, as outlined earlier (see 4.3.1), and the non-reproducibility of biosynthetic 

experiments with different precursors, we established here a successful feeding protocol 

for the precursors of interest on solid biomalt salt media. Biosynthetic feeding 

approaches should generally be customized with regard to the nature of the 

microorganism, the prospective metabolite of interest and the fed precursor. The here 

implemented feeding protocol was carefully planned according to the valuable input 

collected from the preliminary experiments. We were confined to the use of solid media, 

not regarded as the medium of choice for biosynthetic feeding studies, since only there 

the metabolites of interest are efficiently produced. Few biosynthetic feeding studies use 

solid media,137,138,139,140,141 compared to the use of liquid shake media.98,99,104,112,115,118,136 

The amount of precursor fed depends on its nature and the target metabolite 

incorporating it. A general carbon source precursor such as glucose or glycerol has to be 

added in higher quantities compared to a more specific precursor such as phenylalanine, 

shikimic acid or methionine. This is largely due to the universality of the former, being 

involved in several biosynthetic pathways. At the same time this of course helps in 

defining the involved biosynthetic pathway, from the resulting 13C-labeled positions in the 

target metabolite. High costs of labeled precursors also dictated the volume of culture 

media used, limited to 0.5 to 1.5 liter media, which made isolation of the target 

metabolites most challenging. A multiple feeding protocol as applied in this study ensured 

a steady supply of precursors during metabolite biosynthesis, but care had to be taken in 

maintaining aseptic conditions throughout the cultivation period. The long cultivation 

period of 30 and 60 days, due to the slow-growing nature of the Stachylidium sp. strain, 

meant unavoidable lengthy waiting periods. 

In the end, it was possible to isolate the compounds of interest in 13C-labeled form, whose 

detailed analysis using NMR and mass spectrometric techniques unveiled the biosynthetic 

origin of those target metabolites, i.e. the peptides and polyketides (see 4.3).  
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5.3.2 Biosynthesis of the cyclic peptides: The shikimate pathway as a source of 

secondary metabolites 

Our results confirm the origin of the amino acid building blocks of the cyclic peptides from 

the Stachylidium sp.. Information gained from this study, concluded the involvement of 

the shikimate pathway in the biosynthesis of the non-proteinogenic amino acid N-methyl-

3-(3-furyl)-alanine, not frequently encountered in nature, and whose biosynthetic origin 

was never revealed before. The opening line in the shikimate pathway involves the 

condensation of phosphoenolpyruvate, from glycolysis, and erythrose-4-phosphate, from 

the pentose phosphate pathway, to give 3-deoxy-D-arabino-heptulosonate-7-phosphate 

(DAHP), catalysed by DAHP synthase. Elimination of phosphoric acid followed by an 

intramolecular aldol reaction gives the first carbocycle intermediate 3-dehydroquinic acid, 

which further undergoes dehydration and reduction to give shikimic acid, the first 

significant intermediate from which the shikimate pathway got its name. This is then 

followed by several metabolic steps that end with the synthesis of another key 

intermediate, chorismic acid, which has incorporated an additional phosphoenolpyruvate. 

Chorismic acid then serves as the starting point for the synthesis of the aromatic amino 

acids (AAA), i.e. phenylalanine, tyrosine and tryptophan.97  

The shikimate pathway is one of the important biosynthetic pathways in microorganisms 

and plants, extensively studied to reveal the pathway reactions and involved 

enzymology.142,143 In addition to its significance in the biosynthesis of the aromatic amino 

acids, as part of the primary metabolism, it is involved in the biosynthesis of a variety of 

secondary metabolites. It is generally accepted that secondary metabolites are not 

biosynthesized de novo and are dependent on the input of primary metabolism to 

provide the biosynthetic machinery with building blocks. These primary metabolites are 

thus modified in secondary metabolism. This way microorganisms and plants produce a 

wide variety of specialized compounds essential for their inherent needs, exemplified in 

the mycotoxins, pigments and antibiotics.144 Some of these secondary metabolites are 

being directly derived from modification of the final end products of the shikimate 

pathway, e.g. ephedra alkaloids originally isolated from Ephedra sp. have their 

biosynthetic origin from phenylalanine145 and ergot alkaloids whose basic ergoline 

skeleton is derived from tryptophan (Fig 5-1).58 Others are derived from branching points 
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alongside the shikimate biosynthetic route, e.g. the antibiotic chloramphenicol (Fig 5-1), 

originally isolated from the bacterium Streptomyces venezuelae, originates in the 

shikimate pathway via 4-amino-4-deoxy-chorismic acid,146 and the aromatic m-C7N unit of 

the mitomycin and ansamycin antibiotics, e.g. rifamycin, is derived from the starter unit 

3-amino-5-hydroxybenzoic acid (AHBA) originating from the shikimate pathway (Fig 5-

2).147 These shikimate derived secondary metabolites are already important active 

pharmaceutical ingredients (APIs) used as drugs nowadays. Shikimic acid itself is used as 

the starting material for the industrial synthesis of oseltamivir (Tamiflu®), an antiviral 

drug used against influenza (Fig 5-3).97  

 

Fig 5-1. Secondary metabolites of shikimate origin.    

 

http://en.wikipedia.org/wiki/Streptomyces_venezuelae
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Fig 5-2. Structures of m-C7N unit containing natural antibiotics derived from the shikimate pathway. 

 

Fig 5-3. Synthetic drug derived from shikimic acid. 

Additionally, the shikimate pathway accounts for the unique chemistry realized in several 

non-aromatic metabolites such as the fused bicyclic β-lactone in vibralactone isolated 

from the basidomycete fungus Boreostereum vibrans,108 the tricyclic acetal-lactone 

structure of echinosporin isolated from Streptomyces erythraceus,115 or the 

dihydrofuranacrylic acid moiety of reductiomycin (Fig 5-4).104 It thus comes as no surprise 

that the shikimate pathway is responsible for the biosynthesis of the unprecedented 

heterocyclic aromatic amino acid 3-(3-furyl)-alanine. 

 

Fig 5-4. Secondary metabolites with unique chemistry derived from the microbial shikimate pathway. 

5.3.3 Phthalides and phthalimidines biosynthesis 

A second focus of this study yielded fruitful insights concerning the biosynthesis of the 

polyketide metabolites of the Stachylidium sp.. The educated guess that the phthalide 

and phthalimidine basic skeletons are biosynthetically related was confirmed based on 

the similar incorporation patterns observed after feeding [1-13C]sodium acetate. We 

could not yet fully ascertain the starter unit accountable for the unique methyl 

substituent at C-8 (Fig 4-5). Nevertheless, our results propose a methylated acetate 

starter unit. Yet we cannot exclude that both starter units, i.e. methylated acetate or 

alternatively propionate, could be involved as seen in the biosynthesis of the mycotoxin 
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aurovertin B.148 The phthalide and phthalimidine aromatic nucleus is proposed to be 

biosynthesized from a tetraketide chain with a 3-methyl orsellinic acid derivative as an 

intermediate. Biosynthetic modifications of derivatives of the archetypical tetraketide 

orsellinic acid are seen in the production of several known fungal metabolites. These 

include the toluquinonoid nucleus of fumigatin and spinulosin, the 7-membered aromatic 

tropolone ring in puberulic and stipitatic acid, and the phthalide skeleton of gladiolic acid 

and mycophenolic acid (Fig 5-5).10  

 

Fig 5-5. Fungal tetraketide metabolites. Bold lines indicate intact acetate units incorporated. Dots indicate 

enriched carbons after cleavage or rearrangement of acetate units. 

5.4 Pharmacological relevance of isolated peptides 

One of the major goals of natural product research, including this study, is the 

characterization of secondary metabolites that could be used as drug leads. The interest 

in peptide drug scaffolds is currently on the rise, and peptides inherent characteristics 

nominates them as interaction partners for biological targets, e.g. pasireotide (Signifor®) 

a somatostatin receptor agonist indicated for Cushing’s disease, carfilzomib (Kyprolis®) a 

chymotrypsin-like protease inhibitor for treatment of multiple myeloma, linaclotide 

(Constella®) a guanylate cyclase receptor agonist indicated for chronic idiopathic 

constipation and irritable bowel syndrome (IBS) and monomethyl auristatin E (vedotin) a 

neoplastic agent linked to a monoclonal antibody, are to name just a few peptide-based 

drugs approved in the last 5 years (Fig 5-6).2,149   
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Fig 5-6. Peptide-based drugs approved in the last 5 years.  

The small amounts of novel peptides isolated in this study impeded the possibility of 

performing comprehensive bioactivity studies for the full spectrum of peptides. The 

promising results obtained for peptide 1 and 1’ on the galanin receptor subtype-1 (GalR1) 

stimulate further studies using the full array of isolated peptides. Galanin receptors are 

members of the G protein-coupled receptors (GPCR), a large group of peptide drug 

targets with around 39% of peptides in clinical trials targeting GPCRs.2 Up to now three 

galanin receptor subtypes have been recognized, i.e. GalR1 - 3, differentially expressed 

throughout the peripheral and central nervous systems, as well as the endocrine 

system.150 The ubiquitous distribution and association of the galanin receptor subtypes in 

various physiological and pathological states makes them interesting drug targets, being 

addressed by either agonists or antagonists.151 GalR1 and GalR2 seem to play a role in 

seizures, with GalR1 being responsible for seizure induction and GalR2 in maintaining and 

controlling the strength of the seizure. GalR3 showed a more limited distribution with less 

defined roles.152 Observing that galanin, an endogenous 29/30 amino acid neuropeptide, 
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was extensively up-regulated during epileptic seizures as well as in Alzehimer’s disease, 

proposed targeting the galanin system for the treatment of neuronal damage. Galanin 

analogues have been synthesized to overcome the poor pharmacokinetic properties, i.e. 

poor bioavailability and poor blood brain barrier penetration of endogenous galanin. They 

include chimeric peptidic ligands such as M15 and M35 (Table 5-1), and other ligands, like 

galnon and galmic acid (Fig 5-7), acting as either agonists or antagonists to one or more of 

the galanin receptor subtypes.152  

Table 5-1. Amino acid sequence of human galanin and peptide ligands, i.e. M15 and M35 (adopted from 

literature).
150

  

  Sequence 

Human galanin  GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS 

M15 (antagonist) GWTLNSAGYLLGPQQFFGLM-amide 

M35 (antagonist) GWTLNSAGYLLGPPPGFSPFR-amide 

 

 

Fig 5-7. Galanin receptor ligands. 

Despite the number of available galanin receptor ligands,150 the demand for receptor sub-

type selective ligands is on-going, whether as possible therapeutics or as a tool for gaining 

a deeper understanding of the galanin receptor system. The current study shows that the 

marine environment, in particular the scantly explored marine fungus Stachylidium sp., 
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could be a source for such ligands on galanin receptors (Fig 4-24). And the natural 

combinatorial/chemical library of microheterogeneous peptides isolated so far could be 

employed for further biological testing to obtain more selective and potent ligands to the 

galanin receptors and subsequently the identification of the chemically simplest scaffold 

that maintains the desired biological activity. At the same time, a deeper understanding 

of structure activity relationships has to be sought.  

5.5 Future directions and concluding remarks 

The current study highlighted the biosynthetic potential of this fungal strain, although 

focusing on a single culture medium, i.e. biomalt salt agar medium. The use of other solid 

and liquid culture media, i.e. the OSMAC approach (One Strain Many Compounds), could 

probably lead to the production of more metabolites with intriguing structural features 

and promising biological activity.153 

The inclusion of fluoro-containing amino acids, i.e. 2-fluoro-phenylalanine and 3-fluoro-

phenylalanine (see 4.3.2.5), into the peptide architecture opens up possibilities for the 

production of a variety of peptide analogues. These could expand the peptide assortment 

used for biological testing.  Halogenated natural product derivatives, particularly 

fluorinated ones, are of special interest. Several drugs available on the market contain a 

fluorine substitution, the earliest being fluorouracil, an antineoplastic drug, as well as the 

antidepressant drug fluoxetine, and the macrolide antibiotic fluorithromycin.154 A fluorine 

substitution generally improves the pharmacological properties of a compound, in terms 

of improved metabolic stability, bioavailability and receptor binding.111 It is thus 

anticipated that the new fluorinated peptide analogues would show superior biological 

activity. Moreover, further precursors should be tested. Additionally, the accumulation of 

peptides incorporating phenylalanine after supplementing the cultivation medium with 

this amino acid as observed in our feeding studies is a practical strategy that could be 

employed to stimulate the production of metabolites of interest.116,117 After feeding the 

relevant precursors, the metabolites of interest could be isolated in bigger amounts, and 

then be used for exhaustive biological testing.  

It could not be ascertained whether the isolated epipolythiodioxopiperazines, i.e. BDA 

and BDAA, from a liquid biomalt salt culture medium supplemented with phenylalanine, 
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are normally produced by the fungus but went unnoticed from our initial isolation or are 

strictly produced after addition of phenylalanine, a known precursor of this class of 

compounds.103 It could still be concluded that the required gene for biosynthesis exists in 

the fungus and addition of the precursor probably provoked the fungal biosynthetic 

machinery to produce them. This speculation requires further studies and the prospect of 

obtaining other compounds belonging to this class is plausible. BDA and BDAA did not 

exhibit any biological activity when tested for antimicrobial activity in agar-diffusion 

assays (see 4.3.1). This coincides with previous studies that reported their minimal 

biological activity,155 apart from a growth inhibitory activity towards Mycobacterium 

tuberculosis,156 when compared to their disulfide bridge containing counterparts, i.e. 

acetylaranotin and acetylapoaranotin. The disulfide bridge is thus hypothesized to 

mediate biological activity and molecular toxicity of fungal 

epipolythiodioxopiperazines.103 

Our continuous trials to purify peptides featuring positional isomers, i.e peptide 1 and 1’, 

peptide 5 and 5’, peptide 6 and 6’, peptide 7 and 7’, where unavailing. This necessitates 

the ongoing development in HPLC stationary phase properties and modified mobile phase 

systems for the selective separation of peptides, a compound class gaining increasing 

attention lately.157,158    

Overall, the Stachylidium sp. is believed to be a talented fungal strain, whose biosynthetic 

capabilities have not yet been given its full due. This study is a sequel to the ongoing 

efforts undertaken to unravel its biosynthetic potential, with special emphasis on the 

biogenesis of the novel isolated peptides and polyketides. With regards to the isolated 

peptides, still there is an information gap on the underlying biosynthetic mechanisms 

involved in converting the shikimate intermediate into the 3-(3-furyl)-alanine. Further 

study of this process is merited as it should contribute to the full elucidation of this rare 

amino acid biosynthesis in Stachylidium sp. and probably in other microorganisms 

incorporating the same amino acid.68,74 

Much progress has been made to study fungal genomes.159 A single fungal genome 

encoding several biosynthetic enzymes is capable of providing us with a plethora of 

secondary metabolite classes. Several web-based software tools, such as SMURF 
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customized for fungal genomes, have been built for easy mapping of fungal genome 

clusters.160 With the help of genomic approaches, exploring the Stachylidium sp. 

secondary metabolome will reveal details of the assembly of the amino acid building 

blocks in the peptides and the starter unit involved in the polyketide metabolites. 

Furthermore, genetic manipulation of these assembly lines could maximize the chemical 

diversity of the produced metabolites.116       

It is hoped that the results presented here will elicit further studies in exploring this 

unique fungal strain more extensively, on both the chemical and genetic level. 
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6. Summary 

The fungal kingdom has made considerable contributions to the production of peptide 

secondary metabolites, many of them with therapeutic potential, e.g. the 

immunosuppressant cyclosporine and the antifungal echinocandins.    

The detailed investigation of the marine-derived fungus Stachylidium sp. was the main 

purpose of this research, which focused on the isolation, structural elucidation and 

biosynthesis of novel cyclic peptides. From a fungal culture on biomalt agar medium 

supplemented with sea salt, we succeeded in isolating and characterizing a family of 

novel structurally related peptides (Fig 6-1). Structural elucidation of the isolated peptides 

was achieved using 1D and 2D NMR spectroscopic analysis along with high-resolution 

mass spectrometry. The absolute configuration of the amino acid building blocks was 

assigned as L-configuration using advanced Marfey’s method and X-ray crystallography. 

The four amino acids, i.e. L-valine, L-leucine, L-phenylalanine and L-3-(3-furyl)-alanine 

form the basis of the isolated peptides. Structural similarities between the isolated 

peptides are quite remarkable. They only exhibit slight differences in terms of the 

constituent amino acids. The individual peptides differ also in terms of N-methyl 

substituents and amino acid sequence. Their very closely related structures made their 

isolation and subsequent characterization most challenging.  

The cyclic nature and N-methylation of the isolated peptides, as shared with other fungal 

peptides, implied their inherent potential as interesting drug scaffolds. The positional 

isomers peptide 1 and 1’ were tested on galanin receptors, in a concentration range 10-

100 µM, and displayed a concentration-dependant selective agonist activity towards the 

galanin 1 receptor subtype (GalR1). This nominates them as potential ligands for 

therapeutic applications or as a tool for studying the galanin receptor system. 
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Fig 6-1. Structures of the isolated cyclic peptides. 

A most intriguing feature of some of the isolated peptides was the incorporation of the 

rarely encountered amino acid 3-(3-furyl)-alanine, to date only reported in the 

heptapeptides rhizonin A and B and the pentapeptide bingchamide B. Due to the novel 

nature of this building block, the current study set out to study its metabolic origin. 

Biosynthetic studies employing classical isotope tracer experiments revealed the 
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shikimate origin of this rare amino acid, along with confirming the metabolic origin of the 

other proteinogenic amino acids, with the N-methyl group being derived from methionine 

(Fig 6-2, Fig 6-3).  

 

Fig 6-2. Origin of the carbon atoms of peptide 1 and 1’ as implied from results of feeding experiments. 

 

Fig 6-3. Postulated biosynthesis of N-methyl-3-(3-furyl)alanine as proposed from the analysis of peptide 1 

and 1’ after classical isotope experiments using labeled precursors including [1-
13

C]phenylalanine, [U-

13
C]glycerol, [1-

13
C]glucose and [Me-

13
C]methionine. 

Concerning the biosynthesis of the marilone A and mariline B, phthalide and 

phthalimidine metabolites previously reported from this fungal strain, labeling studies 
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with [1-13C]sodium acetate were undertaken. Their biosynthesis involves a polyketide and 

mevalonate mixed pathway (Fig 6-4).  

 

Fig 6-4. Origin of the carbon atoms of marilone A and mariline B as implied from results of the feeding 

experiment using [1-
13

C]sodium acetate. 

Overall, these results emphasize the outstanding biosynthetic potential of the here 

investigated Stachylidium sp.. It displays exceptional competence in employing various 

metabolic pathways, through which a diverse array of secondary metabolites are 

produced. Consequently, the novel isolated metabolites characterized in this study could 

serve as lead structures for drug discovery. Furthermore, insights gained from the here 

applied classical isotopic tracer experiments will serve as the basis for future 

investigations employing genetic and enzymatic approaches. Sequencing of the 

Stachylidium sp. genome and identifying the biosynthetic gene cluster associated with the 

production of those unique fungal metabolites would lead to a conclusion concerning still 

unresolved ambiguity.
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8. Appendix 

8.1 Metabolites isolated during this study 

No.  

1 Peptide 1: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-leucyl, (N-methyl-(L)-

phenylalanyl), (L)-valinyl] 

Peptide 1’: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-

phenylalanyl), (L)-leucyl] 

2 Peptide 2 (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-furylalanyl, N-methyl-(L)-

phenylalanyl, (L)-valinyl] 

3 Peptide 3 (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-phenylalanyl, N-methyl-(L)-

phenylalanyl, (L)-valinyl] 

4 Peptide 4 (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)- valinyl, (N-methyl-(L)-3-

(3-furyl)-alanyl), (L)- phenylalanyl] 

5 Peptide 5: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-3-(3-furyl)-alanyl, (N-

methyl-(L)-phenylalanyl), (L)-valinyl] 

Peptide 5’: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-

phenylalanyl), (L)-3-(3-furyl)-alanyl] 

6 Peptide 6: (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-leucyl, N-methyl-(L)-leucyl, (L)-

valinyl] 

Peptide 6’: (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-valinyl, N-methyl-(L)-leucyl, 

(L)-leucyl] 

7 Peptide 7: (-)-Cyclo-[N-methyl-(L)-3-(3-furyl)-alanyl, (L)-leucyl, N-methyl-(L)-leucyl, 

(L)-valinyl] 

Peptide 7’: (-)-Cyclo-[N-methyl-(L)-3-(3-furyl)-alanyl, (L)-valinyl, N-methyl-(L)-

leucyl, (L)-leucyl] 

8 Peptide 8 (-)-Cyclo-[(L)-leucyl, N-methyl-(L)-phenylalanyl] 

9 Peptide 9 (-)-Cyclo-[N-methyl-(L)-leucyl, (L)-phenylalanyl] 

10 Bisdethiobis(methylthio)-acetylaranotin (BDA) 

11 Bisdethiobis(methylthio)-acetylapoaranotin (BDAA) 

12 Marilone A  

13 Mariline B 
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Fig S1. Structures of isolated metabolites.  
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Peptide 1 and 1’, cyclic tetrapeptide, peptide 1 (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), 

(L)-leucyl, (N-methyl-(L)-phenylalanyl), (L)-valinyl] and peptide 1’ (-)-Cyclo-[(N-methyl-(L)-

3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-phenylalanyl), (L)-leucyl]: white solid (2.5 mg 

L-1), [α] D
23 -133 (c 0.44, MeOH); UV (MeOH) λmax 204 nm (log Є 4.69); IR (ATR) νmax 3345 

(br), 2958, 2871, 1704, 1660, 1511, 1364, 1089 cm-1; 1H NMR and 13C NMR (table 4-1 ); 

LRESIMS m/z 525.5 [M+H]+, m/z 523.9 [M-H]-; HRESIMS m/z 547.2902 [M+Na]+ (calcd. for 

C29H40N4NaO5, 547.2896). 

Peptide 2, cyclic tetrapeptide, (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-furylalanyl, N-

methyl-(L)-phenylalanyl, (L)-valinyl]: white solid (1.5 mg L-1), [α] D
23 -129 (c 0.2, MeOH); UV 

(MeOH) λmax 204 nm (log Є 3.45); IR (ATR) νmax 3330 (br), 2961, 2360, 1704, 1660, 1514, 

1362, 1091 cm-1; 1H NMR and 13C NMR (table 4-2); LRESIMS m/z 559.4 [M+H]+, m/z 557.6 

[M-H]-; HRESIMS m/z 581.2731 [M+Na]+ (calcd. for C32H38N4NaO5, 581.2740). 

Peptide 3, cyclic tetrapeptide, (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-phenylalanyl, N-

methyl-(L)-phenylalanyl, (L)-valinyl]: white solid (1 mg L-1), [α] D
23 -153 (c 0.125, MeOH); 

UV (MeOH) λmax 207 nm (log Є 3.06); IR (ATR) νmax 3329 (br), 2961, 1703, 1659, 1512, 

1362, 1090 cm-1; 1H NMR and 13C NMR (table 4-3); LRESIMS m/z 569.7 [M+H]+, m/z 567.7 

[M-H]-; HRESIMS m/z 569.3119 [M+H]+ (calcd. for C34H41N4O4, 569.3128). 

Peptide 4, cyclic tetrapeptide, (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)- valinyl, (N-

methyl-(L)-3-(3-furyl)-alanyl), (L)- phenylalanyl]: white solid (1.4 mg L-1), [α] D
23 -76 (c 

0.058, MeOH); UV (MeOH) λmax 204 nm (log Є 3.62); IR (ATR) νmax 3331 (br), 2926, 2359, 

1660, 1505, 1386, 1090 cm-1; 1H NMR and 13C NMR (table 4-4); LRESIMS m/z 549.4 

[M+H]+, m/z 547.5 [M-H]-; HRESIMS m/z 571.2532 [M+Na]+ (calcd. for C30H36N4NaO6, 

571.2533). 

Peptide 5 and 5’, cyclic tetrapeptide, peptide 5 (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), 

(L)-3-(3-furyl)-alanyl, (N-methyl-(L)-phenylalanyl), (L)-valinyl] and peptide 5’ (-)-Cyclo-[(N-

methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-phenylalanyl), (L)-3-(3-furyl)-

alanyl]: white solid (0.6 mg L-1), [α] D
23 -110 (c 0.166, MeOH); UV (MeOH) λmax 204 nm (log 

Є 3.41); IR (ATR) νmax 3331 (br), 2925, 2358, 1663, 1515, 1401, 1088 cm-1; 1H NMR and 13C 

NMR (table 4-5); LRESIMS m/z 549.4 [M+H]+, m/z 547.5 [M-H]-; HRESIMS m/z 571.2526 

[M+Na]+ (calcd. for C30H36N4NaO6, 571.2533). 
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Peptide 6 and 6’, cyclic tetrapeptide, peptide 6 (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-

leucyl, N-methyl-(L)-leucyl, (L)-valinyl] and peptide 6’ (-)-Cyclo-[N-methyl-(L)-phenylalanyl, 

(L)-valinyl, N-methyl-(L)-leucyl, (L)-leucyl]: white solid (0.6 mg L-1), [α] D
23 -105 (c 0.108, 

MeOH); UV (MeOH) λmax 206 nm (log Є 3.03); IR (ATR) νmax 3332 (br), 2957, 2358, 1667, 

1507, 1456 cm-1; 1H NMR and 13C NMR (table 4-6); LRESIMS m/z 501.4 [M+H]+, m/z 499.4 

[M-H]-; HRESIMS m/z 501.3438 [M+H]+ (calcd. for C28H45N4O4, 501.3441). 

Peptide 7 and 7’, cyclic tetrapeptide, peptide 7 (-)-Cyclo-[N-methyl-(L)-3-(3-furyl)-alanyl, 

(L)-leucyl, N-methyl-(L)-leucyl, (L)-valinyl] and peptide 7’ (-)-Cyclo-[N-methyl-(L)-3-(3-

furyl)-alanyl, (L)-valinyl, N-methyl-(L)-leucyl, (L)-leucyl]: white solid (0.6 mg L-1), [α] D
23 -67 

(c 0.083, MeOH); UV (MeOH) λmax 204 nm (log Є 3.12); IR (ATR) νmax 3342 (br), 2924, 2359, 

1714, 1652, 1520, 1365 cm-1; 1H NMR and 13C NMR (table 4-7); LRESIMS m/z 491.9 

[M+H]+, m/z 489.8 [M-H]-; HRESIMS m/z 513.3045 [M+Na]+ (calcd. for C26H42N4NaO5, 

513.3053). 

Peptide 8, diketopiperazine, (-)-Cyclo-[(L)-leucyl, N-methyl-(L)-phenylalanyl]: white solid 

(0.35 mg L-1), [α] D
23 -14 (c 0.083, MeOH); UV (MeOH) λmax 203 nm (log Є 3.12); IR (ATR) 

νmax 3198 (br), 2954, 2924, 2359, 1678, 1455, 1326 cm-1; 1H NMR and 13C NMR (table 4-8); 

LRESIMS m/z 275.6 [M+H]+, m/z 273.4 [M-H]-; HRESIMS m/z 297.1568 [M+Na]+ (calcd. for 

C16H22N2NaO2, 297.1579). 

Peptide 9, diketopiperazine, (-)-Cyclo-[N-methyl-(L)-leucyl, (L)-phenylalanyl]: white solid 

(0.15 mg L-1), [α] D
23 -241 (c 0.066, MeOH); UV (MeOH) λmax 203 nm (log Є 2.85); IR (ATR) 

νmax 3248 (br), 2925, 2359, 1681, 1455, 1340 cm-1; 1H NMR and 13C NMR (table 4-9); 

LRESIMS m/z 275.6 [M+H]+, m/z 273.4 [M-H]-; HRESIMS m/z 297.1555 [M+Na]+ (calcd. for 

C15H20N2NaO2, 297.1573). 

Bisdethiobis(methylthio)-acetylaranotin (BDA): amorphous solid (0.5 mg L-1), [α] D
23 -220 

(c 0.092, MeOH) ); UV (MeOH) λmax 230 nm; IR (ATR) νmax 1740, 1676, 1230 cm-1; 1H NMR 

and 13C NMR (table S1); LREIMS m/z 552.3 [M+H+18]+, molecular formula C24H26O8N2S2. 

Spectral data are in accordance with published data.102,103 

Bisdethiobis(methylthio)-acetylpoaranotin (BDAA): amorphous solid (1.2 mg L-1), [α] D
23 -

275 (c 0.1, MeOH) ); UV (MeOH) λmax 228 and 266 nm; IR (ATR) νmax 1740, 1672, 1241, 750 
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cm-1; 1H NMR and 13C NMR (table S1); LREIMS m/z 536.2 [M+H+18]+, molecular formula 

C24H26O7N2S2. Spectral data are in accordance with published data.102,103
  

 

 

Fig S2. Isolation scheme for isolated polyketides (marilone A and mariline B) from a 60 day Stachylidium sp. 

culture on biomalt salt agar medium supplemented with [1-
13

C]sodium acetate. 
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8.2 1H and 13C NMR data of isolated metabolites 

Fig S3. 
1
H NMR (300 MHz, CD3COCD3) spectrum of peptide 1 and 1’.  

Peptide 1: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-leucyl, N-methyl-(L)-phenylalanyl, (L)-valinyl] 

Peptide 1’: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, N-methyl-(L)-phenylalanyl, (L)-leucyl] 

 

Fig S4. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 1 and 1’. 
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Fig S5. 
1
H NMR (300 MHz, CD3COCD3) spectrum of peptide 2. 

(-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-3-(3-furyl-alanyl), N-methyl-(L)-phenylalanyl, (L)-valinyl] 

 

Fig S6. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 2. 
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Fig S7. 
1
H NMR (300 MHz, CD3COCD3) spectrum of peptide 3. 

(-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-phenylalanyl, N-methyl-(L)-phenylalanyl, (L)-valinyl] 

 

Fig S8. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 3. 
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Fig S9. 
1
H NMR (500 MHz, CD3COCD3) spectrum of peptide 4. 

(-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)- valinyl, (N-methyl-(L)-3-(3-furyl)-alanyl), (L)- phenylalanyl] 

 

Fig S10. 
13

C NMR (125 MHz, CD3COCD3) spectrum of peptide 4. 
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Fig S11. 
1
H NMR (300 MHz, CD3COCD3) spectrum of peptide 5 and 5’. 

Peptide 5: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-3-(3-furyl)-alanyl, (N-methyl-(L)-phenylalanyl), (L)-
valinyl] 

Peptide 5’: (-)-Cyclo-[(N-methyl-(L)-3-(3-furyl)-alanyl), (L)-valinyl, (N-methyl-(L)-phenylalanyl), (L)-3-(3-furyl)-
alanyl] 

 

Fig S12. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 5 and 5’. 
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Fig S13. 
1
H NMR (300 MHz, CD3COCD3) spectrum of peptide 6 and 6’. 

Peptide 6: (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-leucyl, N-methyl-(L)-leucyl, (L)-valinyl] 

Peptide 6’: (-)-Cyclo-[N-methyl-(L)-phenylalanyl, (L)-valinyl, N-methyl-(L)-leucyl, (L)-leucyl] 

 

 

Fig S14. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 6 and 6’. 

 



Appendix 

128 
 

Fig S15. 
1
H NMR (500 MHz, CD3COCD3) spectrum of peptide 7 and 7’. 

Peptide 7: (-)-Cyclo-[N-methyl-(L)-3-(3-furyl)-alanyl, (L)-leucyl, N-methyl-(L)-leucyl, (L)-valinyl] 

Peptide 7’: (-)-Cyclo-[N-methyl-(L)-3-(3-furyl)-alanyl, (L)-valinyl, N-methyl-(L)-leucyl, (L)-leucyl] 

 

 

Fig S16. 
13

C NMR (125 MHz, CD3COCD3) spectrum of peptide 7 and 7’. 
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Fig S17. 
1
H NMR (300 MHz, CD3COCD3) spectrum of peptide 8. 

(-)-Cyclo-[(L)-leucyl, N-methyl-(L)-phenylalanyl] 

 

Fig S18. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 8. 
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Fig S19. 
1
H NMR (500 MHz, CD3COCD3) spectrum of peptide 9. 

(-)-Cyclo-[N-methyl-(L)-leucyl, (L)-phenylalanyl]  

 

 

Fig S20. 
13

C NMR (125 MHz, CD3COCD3) spectrum of peptide 9. 

 



Appendix 

131 
 

Fig S21. 
1
H NMR (300 MHz, CD3COCD3) spectrum of bisdethiobis(methylthio)-acetylaranotin (BDA). 

 

Fig S22. 
13

C NMR (75 MHz, CD3COCD3) spectrum of bisdethiobis(methylthio)-acetylaranotin (BDA). 
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Fig S23. 
1
H NMR (300 MHz, CD3COCD3) spectrum of bisdethiobis(methylthio)-acetylapoaranotin (BDAA). 

 

Fig S24. 
13

C NMR (75 MHz, CD3COCD3) spectrum of bisdethiobis(methylthio)-acetylapoaranotin (BDAA).
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Table S1. 1D NMR spectroscopic data for bisdethiobis(methylthio)-acetylaranotin (BDA) and 

bisdethiobis(methylthio)-acetylapoaranotin (BDAA). 

 BDA
 

BDAA 

Position δC, mult.
a, b

 δH (J in Hz)
a 

δC, mult.
a, b

 δH (J in Hz)
a 

1 165.08, qC - 165.63, qC - 

2  71.70, qC - 75.53, qC - 

3    40.60, CH2 3.20, d (15.4)    40.17, CH2  3.11, t (2.2) 

4 111.93, qC 
3.00, d (15.4) 

- - 
3.16, t (2.2) 

- 

5 138.04, CH 6.73, t (2.2) 119.75, CH 6.02, m 
6 140.52, CH 6.40, dd (8.1, 2.6) 126.29, CH 6.00, m 

7 106.55, CH 4.70, dd (8.4, 1.8) 128.30, CH 5.59, m 

8  72.22, CH 5.74, dt (8.4, 2.2)   75.90, CH 6.70, m 

9  60.97, CH 5.10, d (8.4)   65.21, CH 5.14, d (13.9) 

10 170.17, qC -             170.60, qC - 

11   20.93, CH3 1.99, s     21.31, CH3 2.01, s 

2-SCH3   14.69, CH3 2.25, s    14.35, CH3 2.20, s 

1‘   165.27, qC - 

2‘     71.50, qC - 

3‘     40.96, CH2 3.11, t (2.2) 

4‘   112.12, qC 
3.16, t (2.2) 

- 

5‘   138.07, CH 6.70, d (1.83) 

6‘   140.50, CH 6.39, dd (8.1, 2.2) 

7‘   106.52, CH 4.69, dd (8.1, 1.8) 

8‘     72.30, CH 5.75, dt (8.4, 1.8) 

9‘     61.13, CH 5.06, d (8.0) 

10‘   170.13, qC - 

11‘       20.96, CH3 2.00, s 

2‘-SCH3       14.75, CH3 2.29, s 
a
 CD3COCD3, 300/75 MHz.

 b
 Implied multiplicities determined by DEPT.  
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Fig S25. Key COSY and HMBC correlations of cyclic peptides. 
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8.3 13C NMR data of labeled metabolites 

Fig S26. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 1 and 1’ after feeding [1-
13

C]phenylalanine. 

 

Fig S27. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 3 after feeding [1-
13

C]phenylalanine. 
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Fig S28. Inverse gated 
1
H decoupled 

13
C NMR (75 MHz, CD3COCD3) spectrum of peptide 1 and 1’ after 

feeding [U-
13

C]glycerol. 

 

Fig S29. Inverse gated 
1
H decoupled 

13
C NMR (75 MHz, CD3COCD3) spectrum of peptide 1 and 1’ after 

feeding [1-
13

C]glucose. 

 

 



Appendix 

137 
 

Fig S30. 
13

C NMR (75 MHz, MeOD) spectrum of peptide 1 and 1’ after feeding [Me-
13

C]methionine. 

 

Fig S31. 
13

C NMR (75 MHz, CD3COCD3) spectrum of peptide 1 and 1’ after feeding [1-
13

C]sodium acetate. 
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 Fig S32. 
13

C NMR (75 MHz, CD3COCD3) spectrum of marilone A after feeding [1-
13

C]sodium acetate.

 

Fig S33. 
13

C NMR (75 MHz, CD3COCD3) spectrum of marilone A (taken from literature).
83 
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Fig S34. 
13

C NMR (75 MHz, CD3COCD3) spectrum of mariline B after feeding [1-
13

C]sodium acetate. 

 

Fig S35. 
13

C NMR (75 MHz, CD3COCD3) spectrum of mariline B (taken from literature).
84 
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Table S2. 
13

C-NMR data for [U-
13

C]glycerol-derived peptide 1  (not including phenylalanine moiety). 

C  δc (ppm)  Signal pattern  J
(C,C)

, Hz 

1 170.9, qC dd J
(1,2)

=53.0 

 J
(1,3)

=3.0 

2  62.8, CH dd J
(2,1)

=53.0 

J
(2,3)

=38.0 

3    24.5, CH
2
 dd J

(3,2)
=38.0 

 J
(3,1)

=3.0 

4 122.0, qC dd J
(4,5)

=49.5 

J
(4,7)

=73.0 

5 110.9, CH dd J
(5,4)

=49.5 

 J
(5,7)

=3.0 

6 144.5, CH s - 

7 141.1, CH dd J
(7,4)

=73.0 

 J
(7,5)

=3.0 

9 172.9, qC d J
(9,10)

=54.1 

10  49.3, CH d J
(10,9)

=54.1 

11    42.0, CH
2
 s - 

12  25.0, CH d J
(12,14)

=35.4 

13   22.5, CH
3
 s - 

14    23.2, CH
3
 d J

(14,12)
=35.4 

25 171.8, qC d J
(25,26)

=54.1 

26    56.2, CH d J
(26,25)

=54.1 

27      30.0, CH
2
 NO NO 

28      20.7, CH
3
 d J

(28,27)
=35.4 

29     18.4, CH
3
 s - 

dd: doublet of doublet, d: doublet, s: singlet, NO: not observed 
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Table S3. 
13

C-NMR data for [U-
13

C]glycerol-derived peptide 1’ (not including phenylalanine moiety).     

C  δc (ppm)  Signal pattern  J
(C,C)

,Hz 

1 170.5, qC dd J
(1,2)

=53.0 

 J
(1,3)

=3.0 

2  62.7, CH dd J
(2,1)

=53.0 

J
(2,3)

=38.0 

3    24.5, CH
2
 dd J

(3,2)
=38.0 

 J
(3,1)

=3.0 

4 122.0, qC dd J
(4,5)

=49.5 

J
(4,7)

=73.0 

5 110.9, CH dd J
(5,4)

=49.5 

 J
(5,7)

=3.0 

6 144.5, CH s - 

7 141.1, CH dd J
(7,4)

=73.0 

 J
(7,5)

=3.0 

9 172.2, qC d J
(9,10)

=54.1 

10  56.3, CH d J
(10,9)

=54.1 

11 30.2, CH NO NO 

12   20.8, CH3 d J
(12,11)

=35.4 

13   18.4, CH
3
 s - 

24 172.5, qC d J
(24,25)

=54.1 

25  49.1, CH d J
(25,24)

=54.1 

26    41.9, CH2 s - 

27  25.0, CH d J
(27,29)

=35.4 

28    22.5, CH
3
 s - 

29    23.3, CH
3
 d J

(29,27)
=35.4 

dd: doublet of doublet, d: doublet, s: singlet, NO: not observed 
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Table S4. 
13

C-NMR chemical shifts and 
13

C enrichments (highlighted boxes) of relevant carbons from 
incorporation of [1-

13
C]sodium acetate into marilone A and mariline B.

83,84  

 
 Marilone A

 
Mariline B 

Position δC, mult.
a,b 

δC, mult.
a,b 

1 168.2, qC 167.3, qC 

2 110.0, qC 116.3, qC 

3 158.0, qC 156.9, qC 

4 120.4, qC 119.3, qC 

5 164.2, qC 161.7, qC 

6 100.8, CH 101.8, CH 

7 154.2, qC 150.0, qC 

8   77.0, CH   56.9, CH 

9   62.1, CH3   18.9, CH3 

10     8.8, CH3   62.1, CH3 

11   20.9, CH3     8.8, CH3 

12 -   43.6, CH2 

13 -
 

  61.7, CH2 

1’   66.5, CH2   66.2, CH2 

2’ 120.1, CH 120.6, CH 

3’ 142.1, qC 141.5, qC 

4’   40.1, CH2   40.1, CH2 

5’   26.9, CH2   27.0, CH2 

6’ 124.6, CH 124.6, CH 

7’ 132.1, qC 132.1, qC 

8’   25.8, CH3   25.8, CH3 

9’   16.7, CH3   16.7, CH3 

10’   17.7, CH3   17.7, CH3 
a
Acetone-d6, 75 MHz. 

b
Implied multiplicities determined by DEPT. 
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8.4 LC-ESIMS data  

Fig S36. LC-ESIMS spectra of crude extract of Stachylidium sp. BMS agar culture (A) control, showing mass 

peak at m/z 525.2  [M+H]
+
, and supplemented with (B) [1-

13
C]

 
phenylalanine, showing major isotopic mass 

peak at m/z 526.1  [M+H+1]
+
 .  

TIC: from Sample 1 (220 cont) of 2013-01-25.wiff (Turbo Spray) Max. 5,9e8 cps.
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 +Q1: Exp 1, 20,378 to 20,891 min from Sample 1 (220 cont) of 2013-01-25.wiff (Turbo Spray) Max. 1,4e6 cps.
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 +Q1: Exp 1, 20,377 to 20,891 min from Sample 2 (220ext.lab) of 2013-01-25.wiff (Turbo Spray) Max. 5,3e5 cps.
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Fig S37.  LC-ESIMS spectra of crude extract of Stachylidium sp. BMS agar culture (A) supplemented with [1-
13

C]
 
phenylalanine, showing isotopic mass peak for peptide 3 at m/z 572.4  [M+H+3]

+
 and (B) control, 

showing mass peak at m/z 569.2  [M+H]
+
 for peptide 3.  

 

TIC: from Sample 6 (220 4 lab) of 2013-01-25.wiff (Turbo Spray) Max. 9,1e8 cps.
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 +Q1: Exp 1, 21,005 to 21,519 min from Sample 6 (220 4 lab) of 2013-01-25.wiff (Turbo Spray) Max. 3,4e6 cps.

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
m/z, Da

0,0

5,0e5

1,0e6

1,5e6

2,0e6

2,5e6

3,0e6

3,4e6

I
n

t
e

n
s

i
t

y
,

 
c

p
s

537,3

554,6

572,4

539,7 589,3

502,5

 +Q1: Exp 2, 21,071 to 21,356 min from Sample 1 (220 cont) of 2013-01-25.wiff (Turbo Spray) Max. 1,7e6 cps.
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 +Q1: Exp 2, 20,716 to 21,137 min from Sample 1 (220.0) of 2012-07-06.wiff (Turbo Spray) Max. 3,2e6 cps.
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Fig S38. LC-ESIMS spectra of crude extract of Stachylidium sp. BMS agar culture (A) control, supplemented 
with (B) [1,7-

13
C]shikimic acid, (C) 2-chloro-protocatechuic acid and (D) 2-fluoro-4-hydroxybenzoic acid. No 

new ions were observed as compared to control.

 +Q1: Exp 2, 20,475 to 21,077 min from Sample 4 (1FPHBA) of 2013-05-31.wiff (Turbo Spray) Max. 3,9e5 cps.
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 +Q1: Exp 2, 20,716 to 21,137 min from Sample 1 (220.0) of 2012-07-06.wiff (Turbo Spray) Max. 3,2e6 cps.

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
m/z, Da

0,0

2,0e5

4,0e5

6,0e5

8,0e5

1,0e6

1,2e6

1,4e6

1,6e6

1,8e6

2,0e6

2,2e6

2,4e6

2,6e6

2,8e6

3,0e6

3,2e6

In
te

n
s

it
y

, 
c

p
s

525,6

492,0

412,5
426,9 616,8559,5

542,5
515,9346,8 378,8 621,8261,5 718,6 753,6251,6

 +Q1: Exp 2, 20,716 to 21,137 min from Sample 3 (220.2) of 2012-07-06.wiff (Turbo Spray) Max. 1,1e6 cps.

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
m/z, Da

0,00

5,00e4

1,00e5

1,50e5

2,00e5

2,50e5

3,00e5

3,50e5

4,00e5

4,50e5

5,00e5

5,50e5

6,00e5

6,50e5

7,00e5

7,50e5

8,00e5

8,50e5

9,00e5

9,50e5

1,00e6

1,05e6

1,10e6

1,14e6

In
te

n
s

it
y

, 
c

p
s

543,5

616,7525,6

492,0

505,7 558,5430,4
621,7

492,8390,6 749,2599,8565,8412,5265,6
279,4251,6 675,0381,6 482,6 812,0 952,1 1004,4759,7642,7 828,1 871,9530,7

 +Q1: Exp 2, 20,716 to 21,137 min from Sample 4 (220.3) of 2012-07-06.wiff (Turbo Spray) Max. 5,4e5 cps.

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
m/z, Da

0,0

5,0e4

1,0e5

1,5e5

2,0e5

2,5e5

3,0e5

3,5e5

4,0e5

4,5e5

5,0e5

5,4e5

In
te

n
s

it
y

, 
c

p
s

543,4

616,7

525,7

621,7

354,7

749,2430,4 599,7
444,6 505,8

225,5 261,6
359,5 690,7563,9

412,7 498,8 732,3637,7577,3481,5292,8251,5
338,7 865,6787,8 940,0657,4 1015,7 1178,81033,8 1084,3742,0 1252,9 1267,9 1361,1

C 

B 

A 



Appendix 

148 
 

 

 

Fig S39.  LC-ESIMS spectra of crude extract of Stachylidium sp. BMS agar culture (A) control, and 
supplemented with (B) 2-fluoro-L-phenylalanine, (C) 3-fluoro-L-phenylalanine (D) 4-fluoro-L-phenylalanine 
(E) tyrosine. New ions were observed in (B) and (C) as compared to control culture (A) to which no 
fluorinated phenylalanine was added. (F) Structure of fluorinated phenylalanine substrates and proposed 
new products. 
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Fig S40. LC-ESIMS spectrum of marilone A isolated from Stachylidium sp. BMS agar culture supplemented 
with [1-

13
C]sodium acetate, showing major mass peak at m/z 345.2049 [M+H]

+ 
and isotopic peaks indicating 

successful incorporation. 

Fig S41. LC-ESIMS spectrum of mariline B isolated from Stachylidium sp. BMS agar culture supplemented 
with [1-

13
C]sodium acetate, showing major mass peak at m/z 388.5 [M+H]

+
 and isotopic peaks indicating 

successful incorporation. 
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Fig S42. Extracted ion chromatograms (XIC) of a mixture of Marfey’s reagent (FDAA) with (A) L-valine, (B) D-
valine, and (C) hydrolysed peptide 1, 1’ corresponding to molecular mass of L- valine conjugated with 
Marfey’s reagent (FDAA).  
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Fig S43. Extracted ion chromatograms (XIC) of a mixture of Marfey’s reagent (FDAA) with (A) L-leucine, (B) 
D-leucine, and (C) hydrolysed peptide 1, 1’ corresponding to molecular mass of L-leucine conjugated with 
Marfey’s reagent (FDAA).  
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XIC of +Q1: Exp 1, 383 to 385 Da from Sample 5 (D-leu) of 2014-11-14.wiff (Turbo Spray) Max. 4,3e6 cps.
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Fig S44. Extracted ion chromatograms (XIC) of a mixture of Marfey’s reagent (FDAA) with (A) N-methyl-L-
phenylalanine, (B) N-methyl-D-phenylalanine, and (C) hydrolysed peptide 1, 1’ corresponding to molecular 
mass of N-methyl-L-phenylalanine conjugated with Marfey’s reagent (FDAA).  
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XIC of +Q1: Exp 1, 431 to 433 Da from Sample 11 (D-MePhe) of 2014-11-14.wiff (Turbo Spray) Max. 7,5e6 cps.
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Fig S45. Extracted ion chromatograms (XIC) of a mixture of Marfey’s reagent (FDAA) with (A) L-
phenylalanine, (B) D-phenylalanine, and (C) hydrolysed peptide 3 corresponding to molecular mass of L-
phenylalanine conjugated with Marfey’s reagent (FDAA).
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XIC of +Q1: Exp 1, 417 to 419 Da from Sample 8 (D-Phe) of 2014-11-14.wiff (Turbo Spray) Max. 3,9e6 cps.
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