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Abstract
This work investigates and proposes statistical analysis methods for pattern detection
in high-throughput data from perturbation experiments in biology and medicine.
This is demonstrated in three examples.

The first part of this thesis investigates the transcriptional responses of TGF-β
stimulation in different human and mouse cell types based on time-course microarray
data from extensive experiments. The used statistical and bioinformatics methods
enabled to identify commonly affected biological subsystems across different cell types.
In particular the analysis suggests an important role of transcription factors, which
appear to have a conserved influence across cell-types and species. Validation via an
independent dataset confirms the findings and network analyses suggest explanations,
how TGF-β perturbation could lead to the observed effects

The second part investigates pro epileptic markers in microRNA expression profiling
data from perturbation-induced pathogenic animal models. Experimental implica-
tions resulting in incomplete and censored high-throughput qPCR data impairs the
performance of analysis methods. A designated test procedure, which showed higher
detection power at lower false positive rates base on simulated data, is proposed to
resolve this issue. The method enabled the identification of novel pathogenic relevant
miRNAs in epilepsy models.

In the last part of this work a new method for drug-drug similarity assessment based
on drug-proteins interaction network and drug pharmacological effects on disease
related targets is proposed. The similarity measure, which does not require chemical
structure information, is applied within a consensus clustering algorithm to detect
useful patterns in a large compound dataset from different diseases. The method
produced separated and stable clusters that could not be found using chemical
structure-based approaches. Target proteins of compounds falling into one cluster
suggested several new compound-target combinations, which could in several cases
be confirmed by independent data.

Altogether this thesis demonstrates that advanced analysis methods could help to
extract common patterns from complex and seemingly heterogeneous data.





Contents

1 INTRODUCTION 1

2 HIGH-THROUGHPUT TECHNOLOGY IN BIOLOGY AND MEDICINE 7
2.1 The Microarray Technology . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Normalization of Microarray Data . . . . . . . . . . . . . . . . . . . 11

2.2.1 Background Correction . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Within-Array Normalization . . . . . . . . . . . . . . . . . . 13
2.2.3 Between-Array Normalization . . . . . . . . . . . . . . . . . . 14

2.3 High-Throughput qPCR Technology . . . . . . . . . . . . . . . . . . 15
2.3.1 Normalization & Analysis of qPCR Array Data . . . . . . . . 18

2.4 Assessing Biological Activity of Chemical Compounds . . . . . . . . 19

3 PATTERNMINING & KNOWLEDGE DISCOVERYMETHODS IN HIGH-
THROUGHPUT DATA 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Differential Expression Analysis Methods . . . . . . . . . . . . . . . 24

3.2.1 Assessing Differential Expression by Log-Ratio . . . . . . . . 24
3.2.2 Assessing Differential Expression by Statistical Tests . . . . . 25
3.2.3 Linear models for Microarray Data (limma) . . . . . . . . . . 27
3.2.4 Multiple Testing Correction . . . . . . . . . . . . . . . . . . . 29

3.3 Differential Expression Analysis Methods for Time-Course Data . . . 30
3.3.1 A Bayesian Approach for Time-Course Differential Expression

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Hierarchical Clustering Methods . . . . . . . . . . . . . . . . 36
3.4.2 The Consensus Clustering Approach . . . . . . . . . . . . . . 38
3.4.3 Clustering Methods For Time-Course Data . . . . . . . . . . 41

3.5 Functional & Enrichement Analysis Methods . . . . . . . . . . . . . 46
3.5.1 Over-representation Analysis & The Hypergeometric Test . . 48

i



Contents

3.5.2 Univariate Logistic Regression-based Association Analysis . . 49

4 TRANSFORMING GROWTH FACTOR BETA (TGF-β) STIMULATION
EFFECTS IN DIFFERENT TISSUE TYPES OF HUMAN AND MOUSE 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Normalization and Preprocessing . . . . . . . . . . . . . . . . 54
4.2.2 Differential Gene Expression . . . . . . . . . . . . . . . . . . 55
4.2.3 Cluster Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.4 Pathways and Gene Ontology Analyses . . . . . . . . . . . . 56
4.2.5 Transcription Factor Binding-Sites Analyses . . . . . . . . . . 56
4.2.6 Identification of Homologous Genes . . . . . . . . . . . . . . . 57
4.2.7 Network Analyses . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.8 Functional Similarity Maps . . . . . . . . . . . . . . . . . . . 58

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Differential Gene Expression . . . . . . . . . . . . . . . . . . 59
4.3.2 TGF-β1 Pathway Genes React Time-Dependant and Tissue-

Specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Time-Point Specific Analyses Confirms Highly Tissue-Specific

Expression Changes on Gene Expression Level . . . . . . . . 64
4.3.4 Cluster Analyses Revealed Functionally Similar Gene Groups

in Different Cell Types . . . . . . . . . . . . . . . . . . . . . . 66
4.3.5 Enrichment Analyses Reveal Commonly Affected Biological

Processes, Pathways & TFBS . . . . . . . . . . . . . . . . . . 70
4.3.6 Enrichment of Biological Processes, Pathways and Transcrip-

tion Factor Binding-Sites (TFBS) is Reproducible on an Inde-
pendent Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 INVASIVE AND NONINVASIVE MICRORNA BIOLOGICAL MARKERS
IN CHRONIC AND ACUTE EPILEPSY 81
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 84
5.2.2 Differential Expression Analysis Procedure for Censored Ex-

pression Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.3 Normalization and Differential Expression Analyses in Microar-

ray Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.4 Normalization and Differential Expression Analyses in High-

Throughput qPCR Data . . . . . . . . . . . . . . . . . . . . . 90

ii



Contents

5.2.5 Normalization and Differential Expression Analyses in RT-PCR
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.6 Functional Analysis of miRNA Target Sets . . . . . . . . . . 91
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Global Expression Comparisons Revealed Differences between
Chronic Epilepsy and Acute Seizure Models . . . . . . . . . . 92

5.3.2 Double Detection Procedure Identified Differentially Expressed
miRNAs in Rat Serum High-Throughput qPCR Data . . . . 95

5.3.3 MiRNAs Show Different Expression Patterns in Pilocarpine,
SSSE and 6-Hertz Mouse Models . . . . . . . . . . . . . . . . 96

5.3.4 Overlap Analyses of Deregulated miRNAs in Mouse Models . 100
5.3.5 Deregulated miRNAs Successfully Validated via External Ex-

periments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.6 Targets of Deregulated miRNAs are Enriched in Meaningful

Biological processes and Biochemical Pathways . . . . . . . . 104
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 BIOLOGICAL EFFECT SIMILARITIES OF COMPOUND TREATMENTS
BASED ON INTEGRATED INFORMATION FROMMULTIPLE SOURCES111
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.2 Biological Effects Similarity (BES) . . . . . . . . . . . . . . . 114
6.2.3 Drug-Target Affinities . . . . . . . . . . . . . . . . . . . . . . 118
6.2.4 Biological Similarity of Compound Targets . . . . . . . . . . 119
6.2.5 The Consensus Clustering . . . . . . . . . . . . . . . . . . . . 120
6.2.6 Chemical Structure Similarity . . . . . . . . . . . . . . . . . . 121
6.2.7 Maximum Common Substructure Analysis . . . . . . . . . . . 121
6.2.8 Enrichment Analyses . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.1 Characterization of Target Proteins . . . . . . . . . . . . . . 124
6.3.2 Validation of BES with Gene Expression Data and Comparison

to Existing Similarity Measure . . . . . . . . . . . . . . . . . 126
6.3.3 Influence of Different Features on BES . . . . . . . . . . . . . 126
6.3.4 Application of BES for Compound Consensus Clustering . . . 127
6.3.5 Protein Targets of BES Clusters show Enrichment of Biological

Pathways, Processes, Protein Domains and Sequence Motifs . 128
6.3.6 Cluster Analysis Suggests Novel Compound-Target Pairs . . 129
6.3.7 BES Clustering Groups Structurally Diverse Compounds . . 135

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

iii



Contents

7 CONCLUSIONS 139

Appendices 143

A CHAPTER 4 APPENDICES 145
A.1 Cell and Tissue Types . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.1.1 Mouse Hematopoietic Progenitor Cells (MPP & CDP) . . . . 145
A.1.2 Primary Mouse Hepatocytes and Human HepG2 Cells (HPC) 147
A.1.3 Human Mesenchymal Stromal Cells (MSC) . . . . . . . . . . 149
A.1.4 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.2 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.2.1 Supplementary Excel Files . . . . . . . . . . . . . . . . . . . . 155

B CHAPTER 5 APPENDICES 157
B.1 Cell and Tissue Types . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.1.1 Mouse Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
B.1.2 Tissue collection and RNA isolation . . . . . . . . . . . . . . 158
B.1.3 MicroRNA Microarray Profiling . . . . . . . . . . . . . . . . . 158
B.1.4 Real-time RT-PCR . . . . . . . . . . . . . . . . . . . . . . . . 159

B.2 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.3 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.4 Supplementary Tables & Excel Files . . . . . . . . . . . . . . . . . . 165

C CHAPTER 6 APPENDICES 167
C.1 Supplementary Figures . . . . . . . . . . . . . . . . . . . . . . . . . . 167
C.2 Supplementary Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C.2.1 Supplementary Excel Files . . . . . . . . . . . . . . . . . . . . 179

iv



List of Figures

1.1 An overview of common perturbation types, their point of action in
the cell and the observation possibilities for assessment . . . . . . . . 3

2.1 cDNA Microarray Technology . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Ploymerase Chain Reaction (PCR) technique . . . . . . . . . . . . . 16
2.3 Quantitative ploymerase chain reaction procedure . . . . . . . . . . . 17
2.4 Saturation binding curve for radioligand assays . . . . . . . . . . . . 21

4.1 The Transforming Growth Factor beta (TGF-β) pathway . . . . . . 53
4.2 Venn diagram of differentially expressed genes . . . . . . . . . . . . . 60
4.3 Heatmaps of top differentially expressed genes at different time points 61
4.4 Time-course expressions patterns of differentially expressed TGF-β

genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Venn Diagrams of differentially expressed genes and associated KEGG®

pathways and GO® terms . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Heatmap of common genes in the different cell types at 4 hours . . . 65
4.7 Expression mean-curves of the clusters in the different cell types . . 67
4.8 GO® semantic similarity heatmap for cluster groups . . . . . . . . . 68
4.9 Similar time-course expression patters in clusters across different cell

types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.10 Clustered heatmaps of common pathways and gene ontologies ® terms 70
4.11 Network of transcription factor binding-sites and differentially ex-

pressed genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.12 Functional similarity maps of the different cell types . . . . . . . . . 74
4.13 Human protein-protein interaction network . . . . . . . . . . . . . . 76
4.14 Murine protein-protein interaction network . . . . . . . . . . . . . . 77
4.15 Validation and reproducing the results based on an independent data set 78

5.1 Flow chart of testing procedure for high-throughput qPCR data . . 86

v



List of Figures

5.2 Distribution of censored (undetermined) expressions in the simulated
and real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Method performance comparison based on ROC curves . . . . . . . . 88
5.4 Principal component analysis (PCA) plots . . . . . . . . . . . . . . . 93
5.5 Dendrogram of hierarchical clustering . . . . . . . . . . . . . . . . . 94
5.6 Heatmap plots of top deregulated miRNAs in Pilocarpine and SE mice

at 24 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Heatmap plots of top deregulated miRNAs in Pilocarpine and SE mice

at 28 days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.8 Heatmap plots of top deregulated miRNAs at different time-points in

sound-induced SE mice (6-Hertz) . . . . . . . . . . . . . . . . . . . . 99
5.9 Venn Diagrams of all significantly deregulated miRNAs . . . . . . . 101
5.10 RT-PCR expressions of selected validated miRNAs . . . . . . . . . . 103

6.1 Compound-target network . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Flow-chart of Biological Effects Similarity (BES) computation . . . . 117
6.3 Overview of HIV and cancer compounds and their bioactivity levels

and standardization of compound affinities . . . . . . . . . . . . . . . 119
6.4 Area under the curve (AUC) & silhouette plots . . . . . . . . . . . . 125
6.5 Influence of the different features on BES . . . . . . . . . . . . . . . 127
6.6 Maximum common substructure analysis . . . . . . . . . . . . . . . . 136
6.7 Comparison of the BES-based clustering and the fingerprints-based

clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1 Hematopoietic stem cells differentiation . . . . . . . . . . . . . . . . 146
A.2 Sorting of murine Dendritic cells . . . . . . . . . . . . . . . . . . . . 147
A.3 Cultivation of the primary mouse Hepatocytes and human HepG2 cells148
A.4 Mesenchymal stromal cells differentiation . . . . . . . . . . . . . . . 150

B.1 Experimental design in rats . . . . . . . . . . . . . . . . . . . . . . . 160
B.2 Density and box plots of qPCR data . . . . . . . . . . . . . . . . . . 161
B.3 Mean-variance plots of real and simulated high-throughput qPCR . . 162
B.4 MA plots for 2 exemplary chips from the mouse two-channels array data163
B.5 Volcano plots for 6-Hertz mouse model 3-hours versus 0-hours and

6-hours versus 0-hours . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.1 Heatmap of enriched GO (biological processes) terms in target proteins168
C.2 Heatmap of enriched GO (molecular functions) terms in target proteins169
C.3 Heatmap of enriched pathways in target proteins . . . . . . . . . . . 169
C.4 Heatmap of enriched protein domains in target proteins . . . . . . . 170
C.5 Heatmap of enriched sequence motifs in target proteins . . . . . . . 171

vi



List of Tables

3.1 Contingency table for the frequency distribution of gene set categories 48

4.1 Numbers of differentially expressed genes in each cell type and condi-
tion according to the time-course analysis . . . . . . . . . . . . . . . 60

4.2 Clusters overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Pathway enrichment overview . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Gene ontology enrichment overview . . . . . . . . . . . . . . . . . . . 71
4.5 Transcription factor binding-sites analysis overview . . . . . . . . . . 72

5.1 Numbers of differentially expressed miRNAs at the different time-point
in rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Numbers of differentially expressed miRNAs at the different time-point
in mouse epilepcy models . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Validation of deregulated miRNA’s via RT-PCR experiments . . . . 102
5.4 Pathways enrichemtn analyses results . . . . . . . . . . . . . . . . . 106
5.5 Gene Ontology enrichemtn analyses results . . . . . . . . . . . . . . 108

6.1 Compounds in repurposing clusters with strong bioactivity for both,
HIV and cancer related targets . . . . . . . . . . . . . . . . . . . . . 131

6.2 Compounds in repurposing clusters with strong bioactivity for HIV,
but unknown bioactivity for cancer related targets . . . . . . . . . . 132

6.3 Compounds in repurposing clusters with strong bioactivity for cancer,
but unknown bioactivity for HIV related targets . . . . . . . . . . . 133

A.1 Overview of the experiments . . . . . . . . . . . . . . . . . . . . . . 152
A.2 Transcription factor’s binding-sites (TFBS) analysis for the time-course

differential genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.3 Transcription factor’s binding-sites (TFBS) analysis for the differen-

tially expressed genes at 4 hours . . . . . . . . . . . . . . . . . . . . 154

B.1 Performance of the double detection procedure based on simulated data.165

vii



List of Tables

C.1 Summary table of BES clustering with number of compounds per
cluster and associated targets . . . . . . . . . . . . . . . . . . . . . . 172

C.2 Top enriched biological vocabularies . . . . . . . . . . . . . . . . . . 175

viii



CHAPTER 1
INTRODUCTION

Advances in biotechnology made targeted perturbations and genome-scale measure-
ments possible. Perturbation experiments help understand and characterize biological
systems by revealing causal relationships among biomolecular entities (Lin et al.,
2005; Nelander et al., 2008; Azmi, 2012) and high-throughput genomics, transcrip-
tomics, proteomics and metabolomics have the potential to identify the functional
consequences of induced and natural genetic variations (Jansen, 2003). A single run
of such experiments has only limited informative value. Therefore, evidences are
gathered from several experiments and statistical methods are employed to facilitate
inference and prediction of perturbation responses.

As early as high-throughput technologies for gene expression began to be used
routinely, Tilstone (2003) documented the alarming warnings raised by many parties
that lack of proper statistical analysis methods could undermine the revolution
promised by genomics and biotechnology. Few years later many approaches for
mining perturbation high-throughput expression and drug affinity data have been
established (Beaumont and Rannala, 2004; VanGuilder et al., 2008). However, the
advancing and changing technologies and the vast amounts of data generated still
represent great challenges for handling, computational integrating the data and
devising appropriate analysis methods.

In molecular biology, a targeted perturbation typically inhibits or activates functions
of molecules in the cell (Nelander et al., 2008), e.g. by indel mutation of target DNA,
or gain of function e.g. by recruiting transcriptional activation domains (Shalem
et al., 2015). Perturbations can be permanent or temporary, global or local (Kravchik
et al., 2014), it can also be natural or investigational (Nelander et al., 2008). It is
easier to build concise hypotheses and test them under parsimonious assumptions
by single-perturbations. However, combinatorial-perturbations experiments are now
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Chapter 1 INTRODUCTION

increasingly carried out, for example in drug discovery libraries of compounds are
tested against a panel of different cancer cell lines (Lamb et al., 2006). Perturbation
experiments are used to generate and investigate akin cellular states of medical rele-
vance (e.g. pathological models). Such an approach allows for upfront establishment
of causal relationship between genotypes and phenotypes and has potential for e.g.
discovering functionally relevant genes that are not mutated or directly affected by
the perturbation (Ginsburg and Willard, 2012).

An overview of common perturbation types and their point of action in the cell is
given in Figure 1.1. Gene expression can be changed through competition triggered
by excess amount of small RNA (Loinger et al., 2012), e.g. by fusion of virus
particles into the cell leading to depletion & degradation of active target mRNA
and translation inhibition during cell division (Kim et al., 2005; Loinger et al., 2012;
Shalem et al., 2015).

Drugs (chemical compounds) and natural protein ligands influence the cell by acting
on receptors, transporters or enzymes of cell membrane. Drug perturbation involves
changing proteins or compounds when adding ligands in order to determine location
of binding, affinity of the ligand or the structure of the resulting complex (Brader
et al., 1997; Williamson, 2013).

Direct manipulation of the genetic makeup via recombinant DNA technology, e.g.
CRISPR/Cas-System, can be used to create transgenic organisms that differ from
their wild type only in the affected gene (Baltimore et al., 2015; Liang et al., 2015).
This involves indel mutation of target DNA leading to complete (knock-out) or partial
(knock-down) deletion of the target (Shalem et al., 2015). Thus, the transcription of
the affected genes is either reduced or completely stopped so that they are translated
into non-functional proteins or not translated at all. Altered targets are typically
genes with known sequence whose functions are not fully determined. Genetic
modification, specially in human, is tangled with ethical issues (O’Connell et al.,
2014; Lanphier et al., 2015).

The result of perturbation ultimately is a discernible phenotype that is different from
the wild (naive) type. The effects of perturbation can be assessed through phenotype
observations at different levels: (I) by observing features of the discernible phenotype
(e.g. growth and differentiation), or by observing indirect genotype measurements
(II) by readouts at transcriptic gene regulation level (e.g. from high-throughput
microarray and next generation sequencing data), (III) or by assessing down-stream
measurement at protein level (Figure 1.1). Perturbation (pathological/treatment)
system is compared to the normal (wild type/naive) system by investigating significant
changes in defined read-outs (e.g. microscopic phenotype, transcriptome, proteome,
metabolome and DNA methylation).

2



Figure 1.1: An overview of common perturbation types, their point of action
in the cell and the observation possibilities for assessment. Small inhibitory
RNA change gene expression. Drugs (chemical compounds) and natural protein
ligands act on receptors, transporters or enzymes of cell membrane. Direct
genetic alteration, e.g. by knockdown genes have diverse functional effects and is
widely applied to generate disease models. Perturbation effect can be assessed by:
(I) observing the discernible phenotype features (e.g. growth and differentiation),
or by observing indirect genotype measurements (II) by readouts at transcriptic
level (e.g. from high-throughput data), (III) or by examining down-stream
measurement at protein level (modified after Nelander et al. (2008)).

Depending on the experimental setting, phenotypic observations of the different levels
are taken at useful and practicable points that represent snapshot of the perturbed
biological system. Investigating transcription and protein levels involves observing
high numbers of entities (Oliver and Leblanc, 2003). Ever evolving technologies can
now provide unbiased quantification of multiple molecular and phenotypic changes
across tens of thousands of individual features from perturbed cells simultaneously
(Liberali et al., 2014). High-throughput technologies made this feasible on a large scale
by performing high numbers of individual experiments in parallel using automation
without compromising the quality. These methods can measure cellular responses
and regulations by quantitative measures of activity of the elements of the cell (Bork
and Koonin, 1996; Quackenbush, 2001; Lonnstedt and Speed, 2002; Yang and Speed,
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2002; Maeda et al., 2003). The transcriptom (all from DNA transcribed RNA) is
typically measured by microarray, quantitative polymerase chain reaction (qPCR)
and high-throughput RNA-sequencing, the genome through DNA-sequencing, mass
spectrometry & gel electrophoesis techniques are usually used to determine proteom
& metabolom (Parmigiani et al., 2003; Stingele et al., 2012).

However, these technologies introduce variation into the acquired data that is not
purely due to the biological impact. variations have many sources and make the infor-
mation value of a single perturbation experiment limited and unreliable. Therefore,
evidences are gathered from adequate repetitions of the experiment (Kuo et al., 2000;
Liang et al., 2003; Lin et al., 2005). Biological replicates, for example, are raised
to accounts for biological variation and technical replicate to compensate technical
variation.

The sheer volume and high dimensionality of high-throughput data make advance
computational statistical methods indispensable to extract meaningful patterns that
help elucidate the real biological systems. Replicates enable statistical inference
through evaluation of variability within and between experimental conditions and
advanced normalization techniques allow for accurate estimation of absolute and
relative expressions.

Advancing technologies and innovations permit for intricate experimental settings
and provide for generating data of different types and formats. This makes analyzing
the data more challenging. For instance, a lack of consensus still exists on how to
perform, analyze and interpret qPCR experiments (Bustin et al., 2009). This problem
is exacerbated e.g. by introducing multiple chips for high-throughput qPCR. It is
also often the case that multiple and heterogeneous data sets need to be evaluated
and integrated in the context of the same research questions. Thus, the process of
choosing proper analysis methods for the data and accurately implementing them
is still challenging. In many cases novel approaches need to be devised or generic
existing methods need to be adapted to cope with the data and research assumptions.
Altogether, this emphasize the essence of coordinating experimental and analytical
methods. Experimental validation of analysis findings is not always possible, therefore,
analytical validation methods are required. Literature & text mining methods and
functional analysis approaches can help to structure and validate information gleaned
from the data.

Secondary predictive methods can use perturbation effects to computationally reverse
engineer individual biological processes (Froehlich et al., 2007; Zacher and Abnaof et
al., 2012). These methods are outside the scope of this thesis, however, they greatly
depend on the outcome of the primary methods described here.
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From the above we conclude that perturbation experiments allow gaining insights
about the functions of biological systems. However, major challenges lie in consolidat-
ing the complex read outs of various such experiments and in identifying meaningful
patterns. The aim of this work is to explore, devise and develop methodologies
for efficient extraction of biologically relevant patterns from diverse perturbation
experiments. The stress lies in the coordination and adaptation of statistical methods
to varieties of high-throughput data types and formats.

This thesis is organized as follows:

Chapter 2 gives the biological and technological background of the relevant categories
of high-throughput data which are analyzed in the context of this thesis. These
include microarray technology, qPCR arrays and compound biological activity data.
Post experiment advanced normalization techniques and pre-processing methods for
these data types are discussed.

Chapter 3 covers the most relevant aspects of established statistical methods and
bioinformatics techniques that have been used throughout this work. Many methods
and applications have been discussed in this chapter and illustrated in variety of
applications in the subsequent chapters. This include differential expression analysis
methods, clustering approaches, functional analyses approaches for gene sets & cluster
groups in e.g. gene ontologies & biochemical pathways and prediction methods for
transcription factors, sequence patterns and protein domains.

Chapter 4 shows, how statistical and bioinformatics methods can be used to obtain
biologically relevant insights from a collection of complex perturbation experiments.
More specifically, the transcriptional response of TGF-beta stimulation in different
human and murine cell types is investigated using extensive microarray experiments
(Gudrun and Abnaof et al., 2013; Abnaof et al., 2014). I demonstrate that differential
time-course analysis together with biological sequence and network analysis methods
can unravel commonly affected biological sub-systems across different cell types.
A devised visualization tool demonstrates efficiency in integrating comprehensive
results of various functional analyses and helped discovering patterns at tissue and
organism levels. In particular the analysis suggests an important role of transcription
factors, which appear to have a conserved influence across cell-types and species.
Validation via an independent dataset confirms the findings and network analyses
suggest explanations, how TGF-β perturbation could lead to the observed effects.

Chapter 5 provides another example for pattern mining from perturbation data. mi-
croRNAs (miRNA) and relevant target genes are investigated as potential biomarkers
in epilepsy (Kretschmann and Abnaof et al., 2015a). Epileptic seizures are induced
in rat and mouse models and longitudinal microarray and high-throughput qPCR
data are generated from blood and hippocapus samples. MicroRNAs naturally have
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a low abundance in the blood, and thus often fall below the detection limit of the
qPCR technique. This effectively results in right censored measurements, which
complicate follow-up statistical analysis. In order to address this issue I suggest a
specific work-flow, which is also tested in simulations. The devised procedure enabled
the identification of novel pathogenic relevant miRNAs. Relevant target mRNAs
could be identified and indirect characterization of epilepsy types is achieved through
comparisons of miRNA activities in the animal models at different time points.
A number of disease relevant biological processes and pathways were significantly
associated to gene target sets of deregulated miRNAs.

Pattern mining in a different context is demonstrated in chapter 6. a novel biological
effects similarity measure (BES) for chemical compounds is proposed. In contrast
to existing similarity measures the BES integrates compound-target affinities and
captures compound perturbation induced effects by integrating large set of diverse
features of target proteins. The BES was validated with gene expression data and then
used for pattern discovery in a dataset of over 4,500 chemicals. BES based consensus
clustering detected several separable and statistically stable clusters, of which targets
could be related to specific pathways, biological processes, protein domains and
sequence motifs. The identified clusters could not be found in a traditional chemical
structure based clustering using fingerprints and the Tanimoto-Jaccard similarity.
Targets of compounds falling into one cluster suggested several new compound-target
combinations, which could in several cases be confirmed by independent data. BES
based clustering may thus help to explore compound libraries and identify interesting
novel compound-target indications for follow-up experiments.

Final discussion, concluding remarks and prospectives for research are presented in
chapter 7.
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CHAPTER 2
HIGH-THROUGHPUT TECHNOLOGY
IN BIOLOGY AND MEDICINE

The development of novel and advancing high-throughput technologies in the course of
human genome research enables the comprehensive analysis of biological information.
These technologies have been increasingly used for the profiling of molecular biology
entities and chemical substances in the research fields of biology, medicine and
pharmacology.

Examples of high-throughput technologies are mass spectrometry based on measure-
ment of proteom and metabolome, transcriptome assessment by DNA microarrays
or by next generation sequencing. Importantly, these technologies enable to get a
comprehensive picture of the biological processes that are executed in a living cell
by quantifying biological activities of thousands of molecules. For example, from
the measurements of gene expressions and the resulting proteome, insights can be
derived about metabolic processes, cellular differentiation and intra- and extracellular
signaling pathways.

Different types of high-throughput technologies produce data of different types and
format. Therefore, a thorough understanding of theses technologies is essential for
the active role of the analysis of the produced data. This incorporates the correct
data acquisition, handling and integration. Three categories of high-throughput
technologies are addressed in the context of this thesis. These are the microarray
technology, high-throughput quantitative polymerase chain reaction (qPCR) assays,
and measuring compound’s biological activities. Data sets involved in the subsequent
chapters of this work are majorly gained using these methods. Normalization
techniques for these data types are briefly discussed.
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Chapter 2 HIGH-THROUGHPUT TECHNOLOGY IN BIOLOGYANDMEDICINE

2.1 The Microarray Technology

The genetic information of an organisms is decoded in the Deoxyribonucleicacid
(DNA). Genes are short segments of the DNA. The genetic information in these
segments can be read via transcription process and transformed into RNA molecules.
Certain types of these RNA molecules, the messenger RNAs (mRNAs), can be
synthesized via translation process into proteins (Chang, 1983; Schena et al., 1995).

The type of RNAs molecules and proteins expressed in the cell reflect the activities of
the corresponding genes in it. Thus, the magnitude of gene activity can be indirectly
quantified by measuring the abundance of the proteins and RNA molecules in the
cell. Microarray is a technology by which such types of indirect regulation of gene
expressions can be investigated (Heller, 2002; Ehrenreich, 2006; Dufva, 2009). For
instance, differences in the amounts of RNA between cells/organisms which have
been exposed to various controlled perturbation conditions can be assessed. This
way, genes showing different expressions between different cell conditions can be
specified. Such genes which are assumed to cause the cell response due to perturbation
are usually identified via statistical methods for differential expression analyses of
microarray data (section 3.2).

A microarray is a chip, usually made of glass or silicon, that contains thousands
(25,000-60,000) of microscopical small spots. There are many types of microarrays; e.g.
DNA, protein & tissue microarrays, or antibody microarrays. In DNA microarrays
multiple copies of a uniquely specific DNA segment (e.g. parts of a gene) of interest
are placed in each one of the spots on the microarray chip. The DNA segments are
olignucleotides or cDNA segments of moderate length (500-500bp). The DNA is
amplified and purified by polymerase chain reaction (PCR) technology (section 2.3)
before applying it to the chip. The biological material is printed on the chip by a
robot arm that has several hundreds needles thus allowing for application of large
number of molecules per printing step (Goldmann and Gonzalez, 2000). After doing
this the points in the chip are ready to act as docking spots e.g. for mRNA molecules.
The printed (loaded) chips can then be used to measure abundance of biological
material in samples applied to them (Figure 2.1).

Thousands of unique mRNA molecules extracted from the cell are labeled with
certain fluorescent solution and applied to a microarray chip. Hydrogen bonds are
built, under adequate application of heat, between the Amine and carbonyl groups on
the complementary base-pairs of mRNA and the DAN material on the chip (Adenine
(A) & Thymine (T) and Cytosine (C) & Guanine (G) are complementary to each
other).
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2.1 The Microarray Technology

Guided by the property of complementary base-paring each mRNA molecule docks
(binds) onto a certain point in the microarray chip, namely onto the spot where the
gene is located to which the mRNA molecule corresponds. This docking process
is termed hybridization. The rest of the biological material that did not bind is
washed away after hybridization step (Maskos and Southern, 1992; Guo et al., 1994;
Lockhart et al., 1996).

Sometimes binding takes place between some strand of mRNA and the DNA in the
spot although these are only partially complementary to each other. This process
called cross-hybridization negatively affects the accuracy of the binding by producing
unspecific spots (none perfect-match). Cross-hybridization can be avoided by carefully
adjusting the temperature at which the hybridization is done. Higher temperature
reduces the chance for cross-hybridization. However, very high temperature might
block the hybridization even in the perfect-match spots (Zhang et al., 2005; Pozhitkov
et al., 2006; Deng et al., 2008).

The intensity of the light emissions of the fluorescent solution and thus the amount of
hybridized mRNA for each point of the microarray is then measured with a scanner.
This is done by exposing the chip to laser light which activates the fluorescence
mixture in the spots. The spots glow with colored light emissions that has different
intensities depending on the amount of biological material in each spot. These light
signals are then scanned by a designated scanner that gives a pixel-image for each
chip. The intensities of color pixels that correspond to the spots on the chip are
filtered and transformed by an image-processing software (e.g. GenePix® Pro) to
digital intensities. The measured intensities are calibrated to produce gene expression
which reflect the activity of corresponding genes. Figure 2.1 gives an over view of
manufacturing and utilization steps of microarray chips.

There are a number of different main types of microarrays. One type is the patented
and commercially available the oligonucleotide-array like the GeneChip®, Affymetrix®

and Agilent® microarrays. The other one is a freely accessible technology such as the
cDNA-Array which is developed at Stanford University. The cDNA-Array uses cDNA
guidance for spot binding and is usually utilized for double probe hybridization, thus,
producing two-color (tow-channels) arrays (containing r-color fluorescent probes and
g-color fluorescent probes). The oligonucleotide-array uses synthetic oligonucleotides
as docking mark for the probes. This type is usually utilized to produce one-color
(one-channel) arrays where each probe is hybridized only once in the chip.

In order to ensure that microarray data can be easily interpreted and that results de-
rived from its analysis can be independently verified certain standards and guidelines
have been formulated. The standards are summarized in the so-called “minimum
information about microarray experiment” (MIAME) guide (Brazma et al., 2001).
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Chapter 2 HIGH-THROUGHPUT TECHNOLOGY IN BIOLOGYANDMEDICINE

These guidlines involve the use of designated software tools, standardized data
annotation and unified file-exchange formats.

Figure 2.1: cDNA Microarray Technology. The DNA segments are amplified
and purified by PCR technology and then printed onto microaray’s chip. Target
cDNA or oligonucleotides material (e.g. mRNA of two cell types; the naive
control type and the stimulated ‘perturbed’ type) are marked with fluorescent
marker and hybridized under heat to the printed chips. Chips are exposed to
laser and signal emissions are scanned to images. The images are transformed
into numerical intensities by an image-processing software (e.g. GenePix® Pro).
Intensity values are calibrated to gene expression values by normalization and
pre-processing method and analyzed by further statistical methods.
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2.2 Normalization of Microarray Data

The expression values are usually assessed by the log-ratio of the red-channel and
green-channel probe intensities in the two-channels array (subsection 3.2.1). In the
one-channel arrays the calibrated absolute expression values are compared between
the different perturbation sample sets. Therefore, it is very important to know the
type of array before applying data pre-processing and further analysis steps.

Biological molecules (e.g. mRNAs) are not exclusively hybridized to their corre-
sponding features (e.g. genes) from which they were transcribed. They usually
refer to parts of these features. This leads to random error in the measurements of
high-throughput microarray data. Statistical methods are therefore required for the
evaluation of this data. High-throughput data have three major problems: (i) sample
size is typically small, (ii) samples are of high dimension (iii) explanatory variables
are usually highly correlated.

The small sample size problem is due to the fact that the technology is still expensive
and biological material required for experiments are usually either limited or costly.
The high dimensionality of the data is due to the typically very high number of
features measured in each sample. Because of these problems, the application of
classical statistics approaches for the analysis of this type of data is often ineffective.
Therefore, new methods have been proposed that allow for accurate analysis and
deeper insights into the predictive structure of high-throughput data (Rao et al.,
2008).

2.2 Normalization of Microarray Data

The signal intensities in oligonucleotide chips and other microarray types contain
variations that are not solely due to biological influences under investigation. The
sources of these variations are many. Examples of these sources are; fluctuation in
the amount of RNA in the biopsy, the efficiency of the RNA extraction and reverse
transcription procedure and fluorescent detection. But also technical artifacts such
as dye bias, different incorporation of dyes and stray signals resulting from unspecific
binding and cross-hybridization and different scanning parameters can cause such
undesired variations. However, the intensities should act as unbiased estimator of
feature’s abundance. Therefore, removing these variations is necessary before the
values can be used in further analyses.

The undesired variation in signal intensities are of two types; stochastic effects and
systematic effects. The former, are difficult to estimate and thus remain as noise
and model error, the later are similar effect of many measurements which can be
estimated from the data and therefore can be removed by calibration.
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Chapter 2 HIGH-THROUGHPUT TECHNOLOGY IN BIOLOGYANDMEDICINE

Calibration or normalization is the transformation by reducing intensity-dependent
variations and technical artifacts. Part of the systematic effects influence all the arrays
in a similar way, another part differs within the array. Therefore, two different types
of normalization are required to eliminate the systematic variations (in two-channel
cDNA arrays): (i) within-array normalization to compensate for the systematic
variations in the individual arrays, (ii) between-array normalization to calibrate the
different arrays to each other. In some microarray types a background correction of
the intensity values is usually performed. Background correction can be seen as part
of the within-array normalization procedure. The normalization is done under the
assumptions that expressions have the same distribution and only small proportion
of the total features are differentially expressed (Yang et al., 2001; Quackenbush,
2002; Irizarry et al., 2003; Wilson et al., 2003; Smyth and Speed, 2003; Chen et al.,
2003; Do and Choi, 2006; Rao et al., 2008; Hua et al., 2008).

The aspects of within-array normalization, between array normalization and back-
ground correction are explained briefly in the following and the used methods and
procedures are discussed.

2.2.1 Background Correction

Microarray chip scans provides foreground and background intensities for each
spot. The background intensities arise the unspecific binding to array chips or
caused by the optical noise during chip scanning. These background intensities
vary considerably in the different parts of the chip. Therefore, they are locally
calculated for each individual spot, usually using the median value. For each spot
the background intensity is computed as the median intensity of the intensities in
the area surrounding the spot. This is done because different areas of the chip have
different background intensity levels. There are many technical reasons that different
areas in the chips share similar spot intensity levels which are different from each
other. Systematic differences like this might be caused by the ‘Print-Tip’ groups in
the chip (by the move of robot arm printing head in each printing step) or due to
marker-specific effects.

The foreground intensities are the actual spot raw intensities. Thus the foreground
intensities are composed of specific and unspecific signals. It is important to perform
background-correction for signal intensities before normalizing the data.

Various methods for background correction have been proposed in the literature
(Edwards, 2003; Silver et al., 2009; Schützenmeister and Piepho, 2010). In a simple
approach the specific true signal intensities are computed by subtracting the back-
ground intensities from the foreground intensities. This is done assuming that the
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unspecific intensities of a certain spot can be derived from the spot surrounding-area
intensities (in this case by the median value). However, this method often produces
negative signal intensity values or values that are close to zero. The negative inten-
sities are difficult to interpret and the methods for further analysis usually do not
allow for negative expression values.

Therefore, other methods beside this subtraction method have been proposed (Ritchie
et al., 2007). For this thesis the ‘Normexp’ approach is of relevance. The ‘Normexp’
method is based on mixture model of normal and exponential distributions. The
background noise is modeled as normally distributed and the signal is assumed to
follow an exponential distribution (Ritchie et al., 2007; Silver et al., 2009). The
method produces only positive signal intensity values. If these intensity values happen
to be close to zero then an ‘off-set’ values of 50 can be added to all spot intensities. We
used the ‘Normexp’ method for background correction of our two-channel microarray
data in chapter 5.

2.2.2 Within-Array Normalization

Systematic variation within an array is partially due to the intensity dependent
variation. This cause the signal differences (e.g. between two conditions as in ‘Log
Fold Change’, or between red and green signal intensities in two-color arrays as in
‘LogRatio’, for details see subsection 3.2.1) for high intensities to be higher than
signal differences for low intensities although the difference magnitude might be the
same (Yoon et al., 2004).

To remove within array systematic variation of this sort, methods such as the
LOWESS normalization method is used. This normalization is based on the LOWESS
(locally weighted scatterplot smoothing) regression method (Workman et al., 2002;
Berger et al., 2004). This is a non-parametric regression where a smoothed curve is
estimated for the M-values in relationship to the A-value (see subsection 3.2.1). The
link function type and the number of data points involved in fitting the smoothing
curve can be flexibly specified. Furthermore, a separate LOWESS curve might be
fitted for each ‘Print-Tip’ spot group in the chip in order to balance the systematic
differences in them. However, the smoothing of the curves might not be optimal if
the number of the spots in the print-tip group is low.

The resulting global regression curve is subtracted from the M-values so that the
normalized values are distributed closer to the null horizontal line in an MA-plot.
This true under the assumption that the signal intensities and hence the differentially
expressed features are symmetrically distributed around the line M = 0. However,
this assumption might not always be reasonable (Yang and Thome, 2003).
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2.2.3 Between-Array Normalization

The within-array normalization removes systematic variations within the individual
arrays. However, differences between the chips due to various scales still exist. Such
differences can be reflected by the differences in variance values of the different
chips (typically visualized by Box-plots of background corrected and within-array
normalized spot intensities in each chip). Moreover, the variability of the inten-
sities depends on the mean intensity values. Therefore, a further between-array
normalization step, involving the scale transformation of the array, is required. Such
normalization is done, for instance, by adjusting the variances of the chips so that
they are comparable.

A number of scale transformation normalization methods have been proposed (Quack-
enbush, 2002; Smyth and Speed, 2003; Yang and Thome, 2003; Wilson et al., 2003).
A frequently used normalization method is the quantile normalization (Bolstad et al.,
2003; Boes and Neuhäuser, 2005; Rao et al., 2008). The quantile normalization
method adjusts the quantiles of intensity values of the different arrays to each other
so that the expression values of the aligned arrays are comparable. This method is
strict in assimilating the arrays to each other. Therefore, it is suitable for oligonu-
cleotide arrays which naturally contain tens of thousands of features. For arrays with
few features it is rather not suitable.

The variance stabilizing normalization (VSN) method and another related method,
the log-transformation normalization, are frequently utilized (Huber et al., 2002).
Both methods involve the estimation of calibration parameters; the shift and scale
parameters. The VSN normalization method is based on additive-multiplicative
error model (Rocke and Durbin, 2001; Huber et al., 2002, 2003). Here, intensities
in chip i and probe k are fitted into a two terms model ycaliberateik = αik + bik × yik.
According to Huber et al. (2002) these terms are; an offset term αik which is a
chip-specific constant term representing background signal; and a signal term which
is a multiplicative term of the signal value yik and a scaling factor bik. The shift
parameter is estimated as: αik = αi+εik, and the scaling factor as: bik = bi×bk×%ηik,
where bi is a chip-specific normalization factor, bk affinity factor per probeset and
%ηik is a multiplicative error term.

These normalization methods assume that only a mall proportion of the features in
the chips are truly differentially expressed. These normalization methods focus on
removing variance-mean dependency in signal intensities. However, other sources of
variations such as variations in tightness of gene transcriptional control between the
experimental conditions are ignored.
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2.3 High-Throughput qPCR Technology

The polymerase chain reaction (PCR) is an enzyme-dependent processes for the
reproduction of certain (gene) sequences in the DNA. The principles of this natural
process that take place during replication in the cell can be imitated for in-vitro
amplification of gene sequences. Done this way, PCR can be used for measuring
DNA molecules abundance in the cell by exponentially copying it. The principles of
this method, by which even very small quantities of DNA can be proliferated and
measured in short time, have been invented by the chemist Kary Mullis in 1983.
Few years later PCR was one of the most utilized technologies in molecular biology
(Higuchi et al., 1992, 1993; Pabinger et al., 2014).

Single-stranded or double-stranded DNA chains with known sequences (of length
100-600 bases) can be replicated using PCR (VanGuilder et al., 2008). To carry
out amplification, primers, individual nucleotide-triphosphate molecules as well as a
heat resistant DNA ploymerase and a thermal-cycler are required. The primers are
complementary to the sequences in the DNA so that they can bind to certain sites of
sequence strand. PCR involves heating the mixture material (up to 94 °C). Therefore,
a polymerase that is not easily destroyed with heat is essential. A frequently used
heat resistant DNA ploymerase is the Tag-ploymerase which is isolated from the
Thermus-Aquaticus bacteria.

The DNA polymerase extends the primers so that copies of the starting sequences
are generated. Through heat modification of the biological material the double
stranded chains can be denatured (separated). Now new copies of the starting
sequences and the copied sequences are generated using the same primers in the
second PCR cycles. Thus, the DNA material is replicated exponentially to the
number of amplification cycle. In cases of single-stranded RNA molecules (mRNA,
miRNA) reverse transcription is used to transform the molecules into complementary
DNA (cDNA) before running PCR. Figure 2.2 gives an over view of one cycle in
DNA PCR process.

In order to measure the abundance of DNA molecules so many PCR runs are
performed until the DNA quantity accumulated (amplicon) is more than a certain
threshold. The cycle number at which this occurs is called the Cycle threshold (Ct)
value. Thus, the data acquired in PCR technology are the Ct values.

In the end-point-PCR the detection and quantification of amplified sequence is
achieved at the end of the procedure. In real-time-PCR (RT-PCR) the accumulation
of amplicon is detected and quantified during the reaction progression in real time.
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Figure 2.2: Ploymerase Chain Reaction (PCR). Short DNA sequences (100-600
bp) generated (from e.g. mRNA) by reverse transcription is denatured at ∼
94 °C and the strands separate. The sample is cooled to below 60 °C and two
sequence specific primers (orange-colored) are annealed to the separated strands,
each one to its complementary site of the respective strand. By heating the
samples (∼ 70 °C) Tag polymerase extends the two single strands from the
primers into double stranded DNA (blue-colored) so that the DNA sample is
now duplicated. The process is repeated in the subsequent cycles1.

The amount of the amplified product in both PCR types is measured by a fluorescent
dye that produce detectable signals. Fluorescent dyes that are widely used in PCR
technology are the SYBER® Green (Ponchel et al., 2003) and the fluorogeneic probes
like the Tagman probes (McGoldrick et al., 1999).

The fluorescence signals have starting phase at early cycles, exponential phase
in the middle and saturated phase at the end of PCR reactions. The amount
of the accumulated amplified product remains low at early cycles, so that the
fluorescence signal remains as background noise. This amount is duplicated in each
PCR cycle so that the amount of amplified product accumulates enough to generate
a detectable signal. This usually happens at the exponential phase of the signal
curve. The cycle number at which the signal cross a designated threshold is called the

1Adapted from source: (accessed: 24th July 2015) http://www.microbiologybook.org/pcr/
pcr-home.htm
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2.3 High-Throughput qPCR Technology

Figure 2.3: Quantitative Ploymerase Chain Reaction (qPCR) procedure. RNA
are isolated from samples and transformed to cDNA by reverse transcription.
In high-throughput PCR all DNA molecules are loaded in plate before running
PCR. After several amplification cycles (most of the thermal-cycler machines
usually allow upto 40 cycles; cycle number plotted in the X-axis) Ct values are
detected when fluorescent signals curve (fluorescence signal are plotted in the
Y-axis) cross the horizontal threshold line (preferably in the exponential part
of the signal curve). The plot shows different amplification curves which are
generated by different-fold diluted starting materials. The most diluted samples
produce the curves towards the right-hand side and their signals (Ct values) are
detected at higher cycle numbers.

threshold cycle Ct. Most of PCR machines typically allow for up to 40 amplification
cycles. Features which are not detected until maximum cycle number are labeled as
“undetermined” and typically assigned Ct value of 40. This practice raise problems
for the normalization and analysis of this type of data (see chapter 5).

In high-throughput qPCR high number of different DNA sequences are amplified in
parallel. After RNA isolation and reverse transcription of the DNA sequences the
purified samples are loaded in chips that typically contains 384 wells to accommodate
the samples (Figure 2.3 left). Instead of individual sequences the amplification is
done for all samples in the chip (Higuchi et al., 1992; Schmittgen and Livak, 2008).
Figure 2.3 right shows PCR fluorescence signal curves of 6 amplified samples with
different dilutions.

The starting material (template) at the beginning of amplification reactions affect the
resulting Ct values at the end of the cycles. Therefore, dilution of starting material
is utilized as strategy to control the resulting Ct values. Variation errors caused in
samples extraction and PCR procedures make the raw Ct values less optimal for the
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quantification of amplified product. Therefore, these values need to be calibrated
and relative PCR expression values are required.

2.3.1 Normalization & Analysis of qPCR Array Data

The Ct values are determined by the amount of the biological material at the
beginning of the amplification reaction. In addition, there are other sources of
systematic errors and noise. For example, the efficiency of RNA extraction and the
reverse transcription step before PCR process adds to the experimental complexity
and variation errors in the acquired data. In order to obtain useful quantification
values that are also suitable to compare expression levels of features across different
conditions, normalizing the raw Ct values is required.

A number of methods for normalization of RT-PCR data have been proposed (Van-
desompele et al., 2002; Huggett et al., 2005; Peltier and Latham, 2008). A frequently
used normalization and analysis method for relative gene expression RT-PCR data
is the MM Ct method suggested by Livak and Schmittgen (2001). This method
assumes doubling of target DNA in each cycle and requires one or more endogenous
reference genes (Schmittgen and Zakrajsek, 2000; Hamalainen et al., 2001; Eisenberg
and Levanon, 2003; Pfaffl et al., 2004; Silver et al., 2006; de Jonge et al., 2007). The
reference genes should fulfill certain criteria. For instance, they should be expressed
(i.e. Ct ≤ 40), however, they should also be non-regulating towards the experimental
setting so that their expression is stable and none-differential across the perturbing
conditions. The Ct values of the reference gene are subtracted from the Ct values
of the target gene producing M Ct values. Expression ratios of target gene between
control and perturbation are then computed by the differences of their M Ct:

M Ct = Cttarget − Ctreference
MM Ct =M Cttreatment− M Ctcontrol

FC = 2−MMCt
(2.1)

This normalization reduce the variations in in target gene expression because the
sources of errors in expression values affect the reference and target genes in the
same manner.

High-throughput qPCR data are often normalized and analyzed by typical microarray
normalization and analysis methods (Schmittgen et al., 2008). However, methods of
large-scale mRNA microarray data are not appropriate for high-throughput-qPCR
which typically comprise few hundreds of features (Pabinger et al., 2014). In case
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of microRNA qPCR data there is not even assessment of the performance of these
methods. There are many other issues, for instance, the majority of miRNA are
either expressed or not expressed at very low levels with many “undetermined” Ct
values. That can bias the normalization and the analysis (Pradervand et al., 2009;
Git et al., 2010). Therefore, a number of normalization methods have been suggested
for high throughput qPCR data, these include reference gene (house-keeping gene)
normalization (Livak and Schmittgen, 2001; Mar et al., 2009) and geometirc mean,
rank-invariant, scale-rank and quantile normalization methods (Dvinge and Bertone,
2009; Mestdagh et al., 2009).

A number of tests for differential-expression analyses approaches have been proposed
for PCR data. These range from non-parametric tests such as Wilcoxon-Mann-
Whitney test to usual t-test and linear-models aided t-test. However, most of these
methods which are traditionally used for gene expression data from microarray
adapt assumptions that may not be appropriate for high-throughput PCR data.
Performance of some of these methods have been investigated based on simulated
and real data sets in chapter 5. Furthermore, we showed that aiding one of the
existing methods with a variance estimation technique for censored data improved
its performance.

2.4 Assessing Biological Activity of Chemical Compounds

Chemical substances can be classified descriptively according to their qualitative
effects on the biological targets into classes such as inhibitors, suppressors or activators.
However, such classes are highly overlapping on targets levels and the classification
does not explain how the activity takes place and lacks quantitative aspects. Thus, a
more refined and quantitative measure of compound effect is needed. Drug effects
can be derived from their activity mechanism at the molecular and cellular levels.

The quantification of compound effect is decided by the dose-response relationship
(Crump et al., 1976; Altshuler, 1981; Sühnel, 1998; Shoichet, 2006; Gaydos et al.,
2006). Compound combines with a receptor at a rate that is dependent on the
concentration of the ligand and the concentration of the receptor. This relationship
can be described in its kinetic and dynamic equilibrium by the law of mass action
(Waage and Gulberg, 1986). Using this concept, performance of a bioactive substance
on targets can be characterized by the required concentration of the substance to
invoke certain level of effect on a target.

Biological activity of a compound with respect to a biological target can be assessed
by the dose-response principle. The dose-response principle describe the change in
effect in a biological target that is caused by exposing the target to different dose

19



Chapter 2 HIGH-THROUGHPUT TECHNOLOGY IN BIOLOGYANDMEDICINE

concentrations of the drug. Dose-response relationship is experimentally determined
by incrementally increasing the concentration of the chemical substance to reach
maximum effect in a solution of individual isolated tissues, cells or membranes. The
maximum effect is reached if all solution molecules have responded to the chemical
substance. So now instead of the administered dose, the drug concentration in the
solution can be used for the quantification of the compound activity.

A mathematical relationship can be set between concentration and effect e.g. by
fitting a curve (Altshuler, 1981). Most drugs exhibit non-linear relationship between
concentration and response. Plotting the logarithm of the dose concentrations against
the percent levels of the effect ideally gives a sigmoid curve. The position of the
curve along the x-axis reflect the potency of the drug (concentration that is necessary
for e.g. half-maximal effect), the peak of the curve stands for drug efficacy (intrinsic
Activity; extent of the maximum effect), and the slope of the curve reflects how wide
is the concentration rage between minimal and maximal effects. Using the dose-
response relationship comparable measurements for compound biological activity can
be defined. For example the EC50 measures the dose concentration (e.g. in mole) of
an agonistic compound required to induce 50% of the maximum possible effect, and
the IC50 measures the concentration of antagonist drug needed to inhibit 50% of a
given biological function. EC50 and IC50 are opposite to each other, i.e. lower IC50
and higher EC50 values mean higher biological activity of the compound.

Another measure is the inhibition constant (Ki) which assesses the rate of competitive
inhibitory binding affinity of antagonistic compound. The Ki measures the concen-
tration of the inhibitor that causes 50% inhibition of enzymatic reaction. Lower Ki
value means higher binding affinity of the drug. While EC50 and IC50 depend on
how the experiments are done, Ki is an absolute inhibition constant of a compound
and does not depends on the experiment. IC50 values for inhibitor of enzyme activity
and ligand binding can be converted into Ki values by the Cheng-Prusoff equation
(Cheng and Prusoff, 1973; Munson and Rodbard, 1988).

The advancing technology in the computational design and automated screening
help to experimentally detect certain perturbation effects. Such perturbations can
be caused, among others, by chemical agents. Special assays can be used to test
hundreds of thousands of chemical compounds (usually set in libraries of similar
compounds) for their biological activities towards numerous biological perturbed
targets in short time. This process called High throughput screening (HTS) is done
using small and efficient in-vitro test systems and microtiter plates.

The assay type used depends on the target and whether it is cell based (functional
assays) or cell free non functional functional assays. Biological activity detection
techniques used in most of the assays are based on radioactivity, or light emissions
in form of fluorescence/luminescence or based on other target-supported methods
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(Skehan et al., 1990; Johnson et al., 2007; Martinez Molina et al., 2013). An assay
type that is frequently used to measure binding affinity is the class of binding assays.
These are microplates with radioligand markers that are susceptible to biological
targets. The advantages of this assay type are that they are quick, and through
their multiple-well setting they can process many samples in parallel (Rishton, 1997;
Macarron, 2006).

Figure 2.4: Saturation binding curve for radioligand assays.In saturation radi-
oligand binding assay a labeled ligand [L] binds to a receptor [R] (x-axis). In
competitive binding assays an unlabeled ligand [L] ‘the competitor’ binds to a
receptor [R] in competition with a labeled ligand (x-axis). The equilibrium of
the dissociation constant (Kd) which is the opposite of the inhibition constant
(Ki) is given by the equation in the left-hand side box that describe a saturation
experiment. Kd is figured out by non linear curve fit, so that Kd is the free lig-
and/receptor concentration that corresponds to 50% (Bmax/2) of the maximum
concentration of binding (Bmax). If Kd for the labeled ligand is known then the
inhibition constant (Ki) can also be computed in competitive binding assays
(Hulme and Trevethick, 2010).

The inhibition constant (Ki) and the dissociation constant of the inhibitor (Kd) are
measured in saturation or competitive binding inhibition (e.g. generic CYP) assays
(see Figure 2.4). by varying the inhibitor concentrations e.g. for different spots in a
microtiter plate that contains constant enzyme concentration. Fluorescent signals
measure the inhibition kinetic in the enzyme activity (Bisswanger, 2002; De Jong
et al., 2005; Findlay and Dillard, 2007; Hulme and Trevethick, 2010).
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CHAPTER 3
PATTERN MINING & KNOWLEDGE
DISCOVERY METHODS IN
HIGH-THROUGHPUT DATA

3.1 Introduction

The vast amounts of data generated by high-throughput technologies need to be
adequately and thoroughly analyzed. This requires multivariate statistical methods
for the extraction of meaningful patterns.

Particularly relevant to mining of high-throughput data are statistical tests for the
identification of relevant features (e.g. to perturbation experiment). Clustering and
classification techniques are essential for determining functionally related groups of
samples and features.

In the following sections the major methods used in the subsequent chapters are
explained comprehensively including brief literature reviews. The categories of
methods explained here include statistical tests for differential expression analysis,
clustering approaches and enrichment analysis methods for gene sets.
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3.2 Differential Expression Analysis Methods

One of the central tasks in biological high-throughput data analysis is the detection
of relevant features. For example, in gene expression data analysis one objective
is to find genes that exhibit differential expression between two conditions. The
assumption behind differential expression analysis is that the true differences between
perturbation conditions can be attributed to a small number of deregulated features.

In the following, differential expression analysis methods for stationary and time-
course expression data are briefly discussed and the methods used in the subsequent
chapters are explained in more detail. It is assumed that the data have passed the
quality control check and are properly normalized. The null hypothesis for each
feature under investigation is that there is no difference in feature’s mean expression
between the conditions. Each condition is usually represented by multiple sample
replicates. Usually it is important to distinguish technical replicates from biological
replicates.

3.2.1 Assessing Differential Expression by Log-Ratio

The objective of biological expression data analysis is to detect differential expressed
features in the data. In this context the difference or relative expression values
of the feature (e.g. between different cell types) is of interest rather than merely
the expression values themselves. Because the difference of expressions is not scale-
independent the ratio between the average expressions of two conditions is usually
used instead (Huang et al., 2004). However, the relative values lack the symmetry
which make them difficult to interpret. This problem is circumvented by taking the
logarithm of the ratios (Log-Ratio; to the base 2) to express differential expression
(Quackenbush, 2001). For instance, in a two-color arrays the Log-Ratio (M -value) is
defined as:

M(gi) = log 2
(
Ri
Gi

)
= log 2(Ri)− log 2(Gi) (3.1)

where, Ri is expression of the red-marked spot of the feature probe gi, and Gi the
the other spot of the same probe which is green marked. The logarithm to the base
of 2 make the interpretation of the Log-Ratio values easier. Instead of two-color
arrays nowadays microarray experiments are often done in one-channel arrays with
replicated samples in each condition. In that case the averages of ratios and their
logarithm are used:
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log2(FC) = log2(ȳ)− log2(x̄) = log 2
(
ȳ

x̄

)
(3.2)

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

m

∑m
i=1 yi are the average expression values for the

feature in the samples of the two conditions (e.g. control condition x and treatment
condition y).

Another value which is often used in the context of within-array normalization is the
average of expression logarithms denoted A-value and defined as:

A(gi) = log2(
√
Ri ×Gi) = 1

2(log 2(Ri) + log 2(Gi)) (3.3)

The Log-Ratio (M -Value) and logFC are not good measures to assess differential
expression. Averages upon which the logFC is computed are highly influenced by
outliers. It has been shown that these ratios are not stable at low intensity values,
highly sensitive to rounding errors and do not allow for negative expression values.
Furthermore, their range is unbounded so that they can produce extremely high
values that affects their variation thus making them unreliable measures (Ultsch,
2003). Other measures are proposed to avoid these limitations. An example is the
relative-difference of R & G defined as: RelDiff(gi) = 2 (Ri−Gi)

Ri+Gi
. However, this

measure does not eliminate all the above limitations. In addition, both the Log-Ratio
and the RelDiff measures are not suitable in the case that different features have
different variations. Moreover, these measure are useless in case the feature is off
(below detection limit) in one condition (Newton et al., 2001; Yang et al., 2002;
Ultsch, 2003).

3.2.2 Assessing Differential Expression by Statistical Tests

Simply ranking genes according to their logFC does not take into account the variance
of the fold changes. Therefore, a number of sophisticated statistical tests have been
suggested for the identification of differentially expressed features. These tests have
been enhanced in different ways so that they can handle particular study designs
and data specifications.

Hypotheses can be formulated for each test, in a null-hypothesis (H0) and an
alternative (e.g. here two-sided) hypothesis (H1), as follows:
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H0 : featurei is not differentially expressed (Mi = 0)
H1 : featurei is differentially expressed (Mi 6= 0)

(3.4)

The test statistics value is then used to decide whether the a null-hypothesis (H0) can
be rejected and thus the subject feature can be considered differentially expressed,
i.e. its log-ratio between the conditions Mi is none-zero, or not.

The test is performed individually for each feature so that the variance is estimated
in the standard form from the observations of that feature only. Variances estimated
this way get affected by small sample sizes and outlying observations. In addition
these local estimates ignore variance heterogeneity among all features. All that affects
test statistics stability and comparability for the individual features and accordingly
its detection power.

The most commonly used method to determine differential expression of genes in
high-throughput data is the Student’s t-test method. In replicated two-conditions
study designs a standard t-test can be done for each single feature and t-statistics
can be used to determine which feature is differentially expressed. This test is valid
under the assumption that the log-ratios between the conditions follow a Student’s
t-distribution.

Many modifications have been introduced to the t-test. For instance, a global variance
that is pooled across all the features can be estimated in order to mitigate variance
heterogeneity effect. However, this might not completely eliminate the effect. Baldi
and Long (2001a) suggested regularizing the variance by combining feature-specific
and a global average variance estimates by a weighted average (Baldi and Long,
2001a,b). The significance analysis of microarrays (SAM) tool uses a modified t-test
(called S-test) where a small constant S0 is added to the local variances in order to
minimize the coefficient variations of the test statistics (Tusher et al., 2001; Chu
et al., 2011). Various other t-test modifications have been suggested (Pan, 2002;
Dudoit et al., 2002; Yu et al., 2011).

Other statistics have also been suggested for differential expression analysis, the
B-statistic is one example. The B-statistic is the logarithm of posterior odds of
differential expression i.e. the logarithm of the ratio of two probabilities; the proba-
bility that the feature is differentially expressed and the probability that it is not
(Lonnstedt and Speed, 2002).

The B-statistic and most of the suggested modifications for the t-test statistic have
serious limitations. For instance, in the adjustment of the denominator of the t-test
the methods do not distinguish between differential and none-differential feature’s
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classes. Moreover, the estimated prior variance is treated equally to the local or
global variances. The major problem however, is that most of these methods are
limited to two-condition (treatment versus control) designs.

3.2.3 Linear models for Microarray Data (limma)

The experimental design of high-throughput expression studies is usually complicated
and involves more than barely a comparison of two perturbed conditions. Experi-
ments with multiple perturbations, different time-points responses with biological &
technical replications and associated covariates are frequently encountered. Planning
the analysis of the data of such experiments based on ratios is not sufficient as these
ratios do not consider data from other conditions which are not being compared.

A method that avoids the drawbacks of the above methods and has the advantages
of handling very complicated experimental designs (e.g. direct designs, factorial
designs and time course experiments) is the linear models for microarray data (limma)
method (Smyth, 2004a, 2005). The limma method allows for tow-conditions as well
as experiment designs with multiple conditions through the use of moderated t-test
and F-tests. It can handle one-channel oligonucleotides arrays as well as two-channel
cDNA arrays with and without dye swapping. Furthermore, it can incorporate
mixture models and thus allows for incorporation of spot & array quality weights
and other covariates in the analysis. The method mitigate heterogeneity of variations
in the different features by adapting the hierarchical models of Lonnstedt and Speed
(2002) to high-throughput expression data in an empirical Bayes setting (Robbins,
1956; Casella, 1985; Efron et al., 2001; Efron, 2003).

The analysis of complicated experiment designs in limma is refined and organized
by the help of two matrices. The first is the design matrix which is used to store
coefficient’s pointer of the different RNA targets which have been hybridized to the
different arrays. The design matrix contains a row for each array (sample) and a
column for each comparison condition (phenotype). This way, the design matrix
defines the statistical dependencies of samples between different conditions and
replicates using biological factors underlying the experimental layout. The second
matrix is the contrast matrix which allows coefficients of array sets defined in the
design matrix to be combined into contrasts of interest that correspond to the planned
experimental comparisons.

Limma starts by expressing each gene response in a linear models setting. Let
Y T
g = yg1, yg2, . . . , ygn be the normalized expression vector of gene g in n microarays

(log-ratios or log-intensities, see subsection 3.2.1). A single observation form the above
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vector can be expressed by mean expressions µgj and an error term εgj ∼ N(0, σ2
g)

as:

ygj = µgj + εgj (3.5)

In experiment designs with multiple conditions the mean expressions can be expressed
as:

µgj = XT
j βg , (3.6)

where XT
j is the row in a design matrix of full column rank that corresponds to

array j. Testing the null hypothesis H0 : µtreatment − µcontrol = 0 is now equivalent
to testing the corresponding null hypothesis that the individual contrast coefficients
are equal to zero; H0 : βgj = 0. The ordinary empirical t-statistic for regression
coefficient under certain assumption can be formulated as follows:

tgj = β̂gj√
s2
g
√
vgj

, (3.7)

where vgj is the variance of the coefficient β̂gj , and the residual variance s2
g is

assumed to follows a χ2 distribution. However, as discussed before the denominator
in Equation 3.7 dose not consider variance heterogeneity among the different features.
This problem is solved by estimating a moderated variance s̀2

g.

The empirical Bayes method is used to estimate a prior variance s2
0 for each feature

by borrowing information from the other features under the assumption that the
variance σ2

g for feature g follows an inverse gamma distribution. The method adapts
the hierarchical models of Lonnstedt and Speed (2002) to high-throughput expression
data in order to estimate σ2

g . A posterior feature-specific estimate s̀2
g of the variance

σ2
g is then given by a weighted combination of the s2

g estimate and the prior s2
0 as

follows:

s̀2
g =

dos
2
o + dgs

2
g

do + dg
, (3.8)

where d0 and dg are weights that depends on the relative size of the prior degrees of
freedom and the observed degrees of freedom respectively. The estimate s̀g reduces
to the classical standard error of mean difference sg if d0 = 0. So now, the limma
moderated t-statistic t̀gj for regression coefficients is:
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t̀gj = β̂gj
s̀g
√
vgj

= β̂gj√
doS2

o+dgs2
g

do+dg
×√vgj

, (3.9)

This statistic t̀gj is independently distributed from s2
g, and follows a Student t-

distribution under the null hypothesis: H0 : βgj = 0 with dg + d0 degrees of
freedom.

Executing the analysis in experiments with multiple comparisons simultaneously can
be done by performing analysis of variance (ANOVA) which uses a (moderated)
F-test (Stuhle and Wold, 1989; de Gruyter, 1996; Kerr et al., 2000; Lee et al., 2002;
Wu et al., 2003).

3.2.4 Multiple Testing Correction

Differential expression analysis involves performing thousands tests simultaneously.
This leads to underestimation of the false positive rate in the tests which means type
I error α (rejecting the null hypothesis although it is correct) for the individual tests
is no longer valid for all tests. This multiple testing problem is addressed either by
correcting the significance level α or the nominal p-value of the individual tests. A
number of multiple test correction methods have been suggested.

One approach for multiple testing correction is based on controlling family-wise error
rate (FWER) (probability of making at least one type I error in the family of tests
given that the null hypothesis is true). Bonferroni (1935) suggested a method for
strong control of FWER (Bonferroni, 1935, 1936). The type I error for the individual
test is controlled if FWER ≤ α regardless of which and how many null hypothesis
are true. This can be translated to a new and more stringent significance level ὰ
defined as:

ὰ = α

n
(3.10)

A number of other multiple test correction methods have been suggested that are
also controlling FWER like the step-down correction method (Dudoit et al., 2002)
and the permutation based one-step adjustment method (Wu et al., 2003). The
Bonferroni multiple test correction is very conservative and sets a high threshold
for significance which might drastically affects the detection power of the statistical
tests. This also applies to other FWER adjustment methods, in addition some are
computationally expensive.
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Another suggested procedure that is less conservative and frequently used is based
on the correction of false discovery rate (FDR). The method balances between the
true discovery of statistically significant genes, the true-positive (TP), and possibility
of false-positive classifications (FP; rejection of the null hypothesis although it is
correct). The FDR is computed as the ratio of the FP to the sum of FP and TP
(true-positive):

FDR = FP

FP + TP
(3.11)

The FDR thus gives the expected proportion of genes which are falsely classified
as differentially expressed within the total number of genes which are declared as
differentially expressed. This way, it balances between specificity and sensitivity of
the test classification.

A number of methods have been suggested to estimate the FDR. In case that the
p-values can be easily derived from the test statistics distribution, then the methods
suggested by Benjamini and Hochberg (1995) can be used to estimate FDRBH .
In case the test statistic distribution can not be estimated then the FDR can be
established by permutation plug-in estimates (Tusher et al., 2001; Storey, 2002; Storey
and Tibshirani, 2003b; Storey, 2003; Storey and Tibshirani, 2003a; Parmigiani et al.,
2003; Storey, 2010). Storey (2002) suggested a direct approach to false discovery
rates. Story’s measure can be approximated by multiplying the above FDRBH by π,
where π estimates the probability that a gene is not differentially expressed. Efron
and Tibshirani (2002) suggested a modified version of local FDR using empirical
Bayes.

Benjamini and Yekutieli (2001) extended the FDR estimation so that it is also
valid for multiple testing under dependency. The modification proved to be useful
for multiple testing under dependence structures such as in the case of gene set
enrichment analysis of gene ontology.

3.3 Differential Expression Analysis Methods for
Time-Course Data

Gene activities and regulation processes in the cell are intrinsically dynamic. A
stationary study design is not enough to capture these processes in their full scope.
Therefore, it is often the case that observations are acquired at different successive
time points. In such study designs the objective usually is to uncover the underlying
dynamic regulatory and transcriptional processes in the living cell by the means of
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observable features (genes) of these processes. This is typically the case in time-course
microarray data.

As in classical static study designs, such data have the high-dimensionality problem
of microarray data and have an inherent complexity due to hidden relatedness
(correlations) caused by co-expression of genes. These co-expressed genes are generally
functionally related, belong to the same pathway or protein family or are controlled
by same transcriptional regulatory programme (Dehmer et al., 2011). Samples of
same donor in different time points are naturally related. This introduces additional
relatedness (correlations) between samples at different time points. In this sense,
time-course data are repeated measurement data where the sampling time-points are
ordered. This ordering entails a non-uniform relationships between the different time
points. It is expected that the relationship between two consecutive time-points will
usually be higher than that between other time points. Because the sampling time-
points are usually sparse and irregular distributed over the course of time, replicates
are very essential for the analysis of such data. Relatedness within replicates of a
donor further adds to the complexity of time-course expression data. Approaches
that take all the complexity of time-course expression data are therefore essential for
appropriate differential expression analysis.

Linear models approaches prove utility in evaluating differential expression in station-
ary experiments (section 3.2) (Smyth, 2004b; Chu et al., 2002; Wolfinger et al., 2001;
Kerr and Churchill, 2001; Park et al., 2003). Some of these approaches are further
adapted to time-course expression data (Smyth, 2004a; Aryee et al., 2009). However,
linear modeling approaches treat time points as unordered thus ignoring the dynamic
structure of this type of expression data. This results in weaker detection power of
genes, which exhibit differential time courses.

An approach that allows for integrating the dynamic structure of time-course ex-
pression data is represented in a number of methods that involve fitting smoothed
curves to the individual features and applying test statistics on these curves (Storey
et al., 2005; Bar-Joseph et al., 2003). Such methods exploit the relationships between
samples of same donors in the different time points. An example of such methods is
the application Extraction and Analysis of Differential Gene Expression (EDGE)
which is introduced by Leek et al. (2006) and extends the method by Storey et al.
(2005). However, due to experimental constrains, sampling time points are usually
sparse and irregularly distributed over the course of time. That might lead to high
bias in assuming too simple model and result in uderfitting in the smoothed curves.

Within the empirical Bayes framework a number of approaches have been suggested to
test differentially expressed time-courses of features. The empirical Bayes procedure
is used to circumvent the problem of few sampling time-point (small sample size) by
stabilizing estimates (Robbins, 1956; Efron, 2003). A number of methods have been
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suggested in this context. For example a non-parametric empirical Bayes methods
which permit for pre-defined relationships between the different time-points have
been proposed in (Efron et al., 2001), Eckel et al. (2004) and Tai and Speed (2006).
The relationships between the samples of different time points are limited to uniform
correlations between the time points in this method. However, the correlation between
measurements of the ordered time points is nonuniform, e.g. correlations between
expression of consecutive time points are expected to be higher than correlations
between non-consecutive time points. Guo et al. (2003) suggested an improved
version that allows for none-uniform serial correlations between the time points.
However, their method can be applied only to one-condition time-course experiments.
Tai and Speed (2006) introduced a method that allows for the analysis of data
from single-condition time-course experiments and for time-course experiments with
multiple experimental conditions.

Aryee et al. (2009) improved the empirical Bayes approach to circumvent the draw-
backs of the previous methods. Their Bayesian estimation of temporal regulation
method estimates the probabilities of differentiall expression of individual features.
It uses time-dependent structure in the data at different magnitude for the different
time-points, and thus incorporates the dynamic and intrinsic non-uniform relation-
ships between the different time-points. The method also allows for single- and
multi-condition expression data by detecting the differences between two conditions
or by comparing to a baseline in one condition. Furthermore, this method can be
used for one- and two-color microarray data (see section 2.1). This method has been
used in the analyses of microarray data of TGF-β stimulation study in different cell
types in human and mouse (see chapter 4). In the following paragraphs the method
of Aryee et al. (2009) is briefly explained (the reader is referred to the original paper
for more details).

3.3.1 A Bayesian Approach for Time-Course Differential Expression
Estimation

This method suggested by Aryee et al. (2009) fits two different models for each
feature (gene) in the data. The first one is a simpler model in case the feature is
non-differentially expressed and the other model in the case the feature is differentially
expressed. In this model the differences of mean expressions of features at each time
point between perturbed groups are taken as random effects. In this way it allows
for none-uniform relationship structures which is typical for time-course expression
data with many sources of variations. By determining which of these models better
fit the time course expression data probability of differential expression is estimated
for each feature in the data.
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Modeling Setup

The idea behind this method is that a feature which is in reality not differentially
expressed will have zero log-ratio between the two conditions in all time points (see
subsection 3.2.1). Any deviation from a flat zero-based-line across all time point will
be due to random noise. On the other hand, a truly differentially expressed feature
will show a substantial effect δ which is empirically measured by the expression
changes between the experimental groups. Let the differential expression state of a
feature be represented by a Bernoulli indicator random variable Ig ∈ {0, 1}, where
Ig = 0 if the feature is not differentially expressed and Ig = 1 if it is differeitially
expressed. The aim is to estimate the probability of Ig = 1.

Assuming a two-condition experiment with at least two replicates in each time-point,
let Xgi = (Xgi1, Xgi2, . . . , XgiT ) denote the log-transformed expression value for
replicate i of gene g at time points 1, 2, . . . , T

X
(Tr)
gi = µ(Tr)

g + ε
(Tr)
gi (3.12)

X
(Co)
gi = µ(Co)

g + ε
(Co)
gi , (3.13)

where µ(Tr)
g and µ

(Co)
g are mean expression of the gene g in the control (Co) and

perturbed (treatment) (Tr) groups, ε(Tr)
gi & ε

(Co)
gi ∼MVN(0,ΣEg). The covariance

structure ΣEg represents correlations of error terms between time-points and within
the different replicates at each time point.

For one condition and equal number of replicates N define X̄g = ∑
iXgi/N and

ε̄g = ∑
i εgi/N means expression and mean error across replicates.

The objective is to examine whether the difference between the man expressions of
the control and perturbed groups for each feature g is larger than zero. This fold
change Yg = X̄

(Tr)
g − X̄(Co)

g can then be modeled as follows:

Yg = (µ(Tr)
g − µ(Co)

g ) + (ε̄(Tr)
gi − ε̄(Co)

gi ), with (3.14)

Yg ∼MVNT

(
δg,

2
N

ΣEg

)
, (3.15)

with δg = (δg1, δg2, . . . , δgT ) a vector of log ratios for all time points. These are
modeled as random effects in order to capture non-uniform correlation.
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The distribution of gene’s expression values Yg takes the following forms when
it is differentially expressed δg|(Ig = 0) = 0 and when it is not δg|(Ig = 1) ∼
MVN(0,ΣDg). We note that ΣDg is non-zero only for the true differentially expressed
features. The distribution of expression fold change of features given it is differentially
expressed or non-differentially expressed will take the following two forms:

Yg|(Ig = 0) ∼ f0 ≡MVNT

(
0, 2
n

ΣEg

)
(3.16)

Yg|(Ig = 1) ∼ f1 ≡MVNT

(
0,ΣDg + 2

n
ΣEg

)
, (3.17)

The Bayes rule is used to infer the probability of differential expression of a feature
g as follows:

P (Ig = 1|Yg) = ρf1(Yg)
(1− ρ)f0(Yg) + pf1(Yg)

, (3.18)

with ρ being the proportion of the differentially expressed features, defined as those
which have P (Ig = 1|Yg) greater than a threshold 1− α.

Parameter Estimation

The unknown parameters ΣEg and ΣDg are estimated from the data. The variance
of the treatment group ΣEg is estimated by the empirical pooled sample covariance
as follows:

SEg = (N (Tr) − 1)S(Tr) + (N (Co) − 1)S(Co)

N (Tr) +N (Co) − 2
(3.19)

with S(Tr) = ∑
i(X

(Tr)
gi − X̄g)(X(Tr)

gi − X̄g)T /(N (Tr) − 1) and S(Co) = ∑
i(X

(Co)
gi −

X̄g)(X(Co)
gi − X̄g)T /(N (Co) − 1). The variance in the case of differential expression

ΣDg is estimated by a weighted average of the sample covariance matrix SDg = YgY
T
g

and a target matrix represented by the a covariance matrix for differentially expressed
features only i.e. where Îg = P (Ig = 1|Yg) is above a threshold 1− α. ρ is estimated
by the proportion of the features that fulfills Îg ≥ 1− α.

An iterative procedure is used to update parameter estimations of ΣDg and Ig
successively until convergence. This procedure starts with a default estimate for
ρ and initial gene ranking. This iterative algorithm is found to be fast converging
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(3-6 iterations). The final 1 − Îg are corrected for multiple testing using Storey’s
positive false discovery rate method (Storey, 2002) and the probabilities of differential
expression of features are driven from them.

Method Evaluation

The performance of the method has been compared by the authors to the Linear
Models for Microarray Analysis (limma) method (Smyth, 2004a), Extraction and
analysis of Differential Gene Expression (EDGE) (Storey et al., 2005; Leek et al.,
2006; Storey et al., 2007) and the Multivariate empirical Bayes MB-statistics (Tai and
Speed, 2006) through application on simulated data where differentially expressed
features are known. The authors showed that their method has higher detection
power at a lower false positive rates.

3.4 Clustering Methods

Clustering is an unsupervised exploratory descriptive learning approach that has the
goal of discovering new categories or groups in a data set. The aim of the various
clustering algorithms is to achieve maximum homogeneity of the data elements within
each group while providing a maximum separation between them. The assessment by
which groups are separated is usually intrinsic i.e. driven solely from the data itself.
Therefore, the groups built this way arrange the element in an efficient representation
that characterize the population of which the data is driven. Formally, the clustering
groups are arranged in non-overlapping k subsets (clusters) P =: P1, P2, . . . , Pk of
the data set D such that; D = ∪ki=1Pi and Pi ∩ Pj = φ for i 6= j (Kaufman and
Rousseeuw, 1990; Hastie et al., 2001; Berry and Castellanos, 2007; Everitt et al.,
2011).

Cluster analyses is a complementary step in the analysis of microarray data. It
helps to subset features (e.g. genes or samples) in groups that show similar behavior
in the experiments. Features or samples are grouped together if they are similar
to each other. The degree of similarity between two genes can e.g. be assessed
by comparing their expression levels. For each gene one expression vector in the
n-dimensional space is defined, where n is the number of experiments. Thus, each
experiment represents an axis in space and the measured expression value represents
the corresponding coordinate. Gene expression data are usually represented in a
matrix format. This representation helps to visualize and interpret the data. The
rows of such a matrix usually contain the expression vectors of the genes and columns
represent the individual experiments.
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In distance-based clustering methods dissimilarity between two gene expression
vectors is expressed as the distance between the vectors (where, dissimilarity =
1−similarity). Depending on the type of data there are several distance metrics. For
instance, there are distance metrics for nominal, ordinal and binary attributes. Most
common dissimilarity/similarity measures in gene expression data include distance
measures like the Euclidean (Cartesian), Mahalanobis, Manhattan, Chebyshev,
Minkovsky and χ2 distances. Other measures like the correlation coefficient and
relative entropy are also frequently used.

The distance d(X,Y ) between two expression vectors X and Y can be assessed e.g.
by the Euclidean distance measure defined as:

d(X,Y ) =

√√√√ n∑
i

(xi − yi)2, (3.20)

where xi and yi are the expression values for the genes X and Y in the experiment
i = 1, 2, . . . , n.

The Euclidean distance and Pearson correlation coefficient are very often used in
the hierarchical clustering e.g. for visualization of gene expression data in heatmaps.
The hierarchical clustering is explained in the following.

3.4.1 Hierarchical Clustering Methods

The hierarchical clustering approach is a distance-based clustering approach that
builds hierarchy of clusters based on two major types of procedures; (I) agglomerative
(bottom-up) algorithm, and (II) divisive (top-down) algorithm (Ward, 1963; Johnson,
1967; Kaufman and Rousseeuw, 1990; Johnson and Wichern, 2007; Moore, 2001). In
case of agglomerative hierarchical clustering the algorithm begins by forming singleton
clusters, so each gene expression vector has its own cluster. Pairwise distances between
expression vectors are computed (e.g. using the Euclidean distance) and usually
arranged in a distance matrix. The two elements with the lowest entry, that is, with
the greatest similarity in the distance matrix are merged to form a cluster. The
distances between this new cluster and the remaining elements are calculated in the
following step. The algorithm continues until all elements are contained in one cluster.
The divisive procedure follows an opposite logic where all elements initially put into
one cluster that is recursively split into smaller clusters based on the recomputed
distances until each element hat its own cluster. Merging and splitting clusters
is a greedy algorithm problem. Complexity of agglomerative clustering (O(n3)) is
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reduced in single linkage and complete linkage applications. For the calculation of
the distance between two clusters there are different linkage criteria:

• Single Linkage; the distance d(I, J) between two clusters I and J is taken
as the minimum distance between any element from cluster I and any other
element from cluster J :

d(I, J) = min(d(i, j) | i ∈ I, j ∈ J) (3.21)

• Complete Linkage; the distance d(I, J) between two clusters I and J is taken
as the maximum distance between any element from cluster I and any other
element from cluster J :

d(I, J) = max(d(i, j) | i ∈ I, j ∈ J) (3.22)

• Average Linkage; the distance d(I, J) between two clusters I and J is taken
as the average of distances between all element from cluster I and all other
element from cluster J :

d(I, J) = ArgAverage(d(i, j) | i ∈ I, j ∈ J) (3.23)

• Ward’s minimum variance criterion; the cost d(I, J) of merging two clusters I
and J is taken to optimize (minimize) an objective function e.g. the error sum
of squares. The initial distance is considered a weighted squared Euclidean
distance proportional to:

d(I, J) = nI × nJ
nI + nJ

|| mI −mJ ||2, (3.24)

where m is the center of the cluster and n its size.

The result of a hierarchical clustering can be visualized in a Dendrogram. A Den-
drogram is a binary tree, in which each leaf represents one gene (Kaufman and
Rousseeuw, 1990). An agglomorative hierarchical clustering algorithm has been
used in a context of consensus clustering procedure (subsection 3.4.2) for grouping
chemical compounds based on a novel compound similarity measure in chapter 6.
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3.4.2 The Consensus Clustering Approach

Generic clustering methods try to find optimal clustering based on method-specific
clustering criteria and from a single run. Thus, applying different clustering algorithms
on the same data often produce different clustering results. The algorithms used
in these methods are often heuristic so that different runs of the same clustering
algorithm produce different results. Many clustering methods are not equipped with
internal system to determine the adequate number of clusters and do not provide for
assigning confidence to the resulting clusters. Clustering stability is a major problem
particularly in high dimensional gene expression data with typically small sample
size (Berry and Castellanos, 2007; Everitt et al., 2011).

Few methods have been suggested for the assessment of clustering stability from
simulated data perturbations gained by re-sampling from the original data (Jain
and Moreau, 1987; Levine and Domany, 2001; Ben-Hur et al., 2002; Dudoit and
Fridlyand, 2002; Tibshirani and Walther, 2005). The consensus clustering (also called
aggregation or ensemble clustering) is such an elaboration of the classical clustering
problem that also provide for the assessment of clustering stability with respect to
sampling variability (Strehl and Ghosh, 2003; Monti et al., 2003; Senbabaoglu et al.,
2014b,a). The consensus clustering involves sub-sampling from the data points and an
optimization problem of reconciling clustering ensemble to consensus formulated e.g.
as an objective function. The criteria that two data points belong to same consensus
cluster is represented here by the relative frequency of these two points falling in
same clusters in an ensemble of clustering runs. The optimization problem of the
consensus clustering has been shown to be NP-complete (Filkov and Skiena, 2003).
Therefore, iterative algorithms such as expectation maximization (EM) algorithm are
used to estimate objective function optimization. The consensus clustering procedure
can often be combined with many clustering algorithms.

There are many versions of consensus clustering that majorly differ from each other in
the way their consensus optimization problem is formulated and solved. For example,
Strehl and Ghosh (2003) suggested graph and hyper-graphs representations of the
pairwise consensus similarity matrix and implemented three different algorithms
to partition the graph/hypergraph into clusters. Topchy et al. (2003) proposed
two approaches; an approach that uses estimation maximization (EM) algorithm to
estimate maximum likelihood of a mutual information objective function (Topchy
et al., 2003), the other approach uses EM algorithm to estimate maximum likelihood of
a mixture model (Topchy and Jain, 2004). Abu-Jamous et al. (2013a,b) demonstrated
the utility of a consensus clustering of certain data points base on multiple clustering
methods as well as based on multiple information sources. Nguyen and Caruana
(2007) proposed three algorithms for finding the consensus clustering in clustering
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ensemble. Their approach allows for different numbers of clusters in the clustering
runs in an ensemble, however in the final consensus clustering they left the question
of determining appropriate number of clusters unanswered.

Monti et al. (2003) proposed a consensus clustering approach that provides a clever
solution for most of the draw-backs of the consensus clustering approaches mentioned
above. This method is based on multiple runs of a base clustering algorithm where
each base clustering algorithm is allowed to have a different number of clusters.
The method provides an internal criterion to determine the appropriate number of
clusters in the provided range. Furthermore, the approach allows for the use of many
clustering algorithm and uses resambling to asses cluster stability. In our application
in chapter 6 we used this consensus clustering approach proposed by Monti et al.
(2003). This is explained below in short (for further details refer to the original
paper).

Given a dataset D = e1, e2, ..., en the aim of clustering is to divide the data into
exhaustive and not overlapping k-clusters. Formally; P ≡ P1, P2, ..., Pk such that
∪kk=1Pk = D, and Pi ∩ Pj = φ, ∀i,j ; i 6= j. In consensus clustering the dataset D is
resampled into H datasets, where an Indicator (n× n) matrix Ih controls whether
items i and j are present in dataset Dh by a corresponding entry of 1 if so, and 0
otherwise. By applying the clustering algorithm on Dh, a connectivity (n×n) matrix
Mh can be defined as follows:

Mh(i, j) =
{

1 if item i and j belog to the same cluster,
0 otherwise.

(3.25)

For cluster number k a consensus matrix Mk can be defined by the normalized sum
of all connectivity matrices for all resampled data sets as follows:

Mk(i, j) =
∑
hM

h(i, j)∑
h I

h(i, j) (3.26)

Choosing appropriate number of clusters

A consensus matrix with values either 1 or 0 amounts to a perfect consensus. However,
generally these values are positive fractions. By running the clustering for a series of
cluster numbers (K = 2, 3, ...,Kmax), one can chose the number of clusters such that
the dichotomized consensus matrix is as close as possible to the perfect one. For
this purpose a measure of area under the empirical cumulative distribution function
(CDF) for each Mk is computed as follows:
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A(k) =
m∑
i=2

[xi − xi−1]CDF (xi) (3.27)

where [x1, x2, ..., xm] is the sorted set of entries of the consensus matrix and m =
n(n − 1)/2 is the number of its possible sorting. The CDF for a histogram of a
consensus matrix Mk over the range [0, 1] is defined as:

CDF (c) =
∑
i<j I{M(i, j) ≤ c}
n(n− 1)/2 (3.28)

where I{...} is an indicator function, The area under CDF (AUC) supposedly increases
by increasing number of clusters. The maximal relative increase A(k+1)−A(k)

A(k) delineate
the appropriate number of clusters in the data.

Silhouette Analyses of Consensus Clusters

The silhouette analysis is a method to assess the quality of the resulting sets produced
by a clustering algorithm. The idea is to compare within cluster distances and between
cluster distances for each point in the data. A silhouette value is computed for each
data point assessing its relatedness to all other point in its appointed cluster compared
to data points in other clusters. Formally, the silhouette value for a data point i is
defined as follows:

S(i) = (b(i)− a(i))
max(a(i), b(i)) , (3.29)

where a(i) is the average distance of the point i to all other points in its appointed
cluster. b(i) is the distance of the data point i to the nearest neighboring cluster,
measured by the minimum of the by-cluster-averaged distance of the data point i to
all the points in each one of the other clusters. The value of S(i) is between [0, 1] and
averaging these value in a cluster give cluster’s silhouette width and averaging the
values for all data points give silhouette width for the clustering algorithm. Silhouette
width values closer to 1 indicate compact cluster which are distinct from each other
and a good performance of the clustering algorithm.
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3.4.3 Clustering Methods For Time-Course Data

Clustering time-course data serves as a tool for identifying co-regulated features
and discovering sets of features which have similar temporal or spatial expression
patterns. This can thereafter be used to simplify the analysis of gene regulatory
networks in order to detect cellular processes underlying these networks and assign
functionality to genes (Sturn et al., 2002; Shannon et al., 2003; Gollub and Sherlock,
2006; Song et al., 2007).

Although probabilistic-model-based approaches predominate in the analysis of time-
course expression data, generic distance-based clustering methods like k-means,
hierarchical clustering and self-organizing maps (SOM) are still quite popular (Costa
et al., 2004; Jonnalagadda and Srinivasan, 2008; Chen, 2009). For instance, a modified
correlation coefficient is suggested which takes into account the concordance between
two temporal expression profiles and order of time points at which maximum and
minimum expression levels are measures in the two profiles (Son and Baek, 2008).
Other proposed distance metrics include the Edwardian, maximum and Manhattan
distance metrics (Miller, 1974; Efron, 1982; Heyer et al., 1999; Scharl and Leisch,
2006).

The distance measure used for clustering greatly influence the resulting clusters.
However, there is no methodological guidance for selecting appropriate distance
measure in the clustering process, so that this task remains difficult. Furthermore,
not all distance measures are distance metrics. This introduces many problems.
For example, when assessing clustering performance on multiple data sets, distance
measure normalization is necessary to match their ranges in order to asses the
different results. Conversely, the effective comparison of different clustering results
based on distinct distance measures on a given data set becomes highly challenging.
Many of the distance measures can not handle outliers and most of them can not even
be computed if parts of the data are missing. All these issue make distance-based
clustering unfavorable for time-course gene expression data.

A number of probabilitsic model approaches have been proposed for clustering time-
course gene expression data. Fraley and Raftery (2002, 2003) sugested a general
multivariate Gaussian model for clustering time-course expression data that takes
into account the relatedness structure between time point. This model considers the
time points only as un-ordered observations. However, the time order in the data is
very important for feature expression and cluster interpretation.

Yi et al. (2009) proposed a clustering method that ranks feature’s temporal expression
values after discretizing them. This method then uses a bootstrap significance test
to classify features into predefined candidate profiles. Apart from the fact that
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data discretization will inevitably results in information loss, the method uses the
Euclidean distance to measure dissimilarity between rank vectors which might lead to
sporious correlation problem (Pearson, 1897). In addition, no suggested mechanism
by which the number of candidate profiles and consequently number of clusters could
be internally determined. Another class of clustering methods for time-course gene
expression data are based on smoothing splines models. Chen (2009), for instance,
used self-organizing maps (SOM) for clustering longitudinal expression data utilizing
cubic smoothing splines. First, Each feature is represented by a cubic smoothing
spline thus adhering for time-course data requirements. Then the SOM clustering is
applied on these smoothed splines.

Further spline methods have been introduced for high-dimensional longitudinal
expression data (Luan and Li, 2003, 2004; Coffey et al., 2014). In these method
the mean expression of a supposed cluster is modeled as a linear combination of
spline bases of all features falling in that cluster. James and Sugar (2003) proposed
a curve-based approach for sparsely sampled time-course data. Their method can be
used to handle missing data or to predict parts of missing portions of the features
fitted curves with confidence intervals.

Effectively, the spline features (number of knots and spline bases) are treated as fixed
and has to be pre-defined. In particular the knots dose not necessarily correspond
to the measurement time-points in these methods. Setting pre-specified basis spline
function is not done only to find best shapes that tally that data, but also in order
to avoid over-fitting. However, while different choices renders different shapes of
spline curves, the pre-selection of spline bases and knots is still presumptuous and
lacks methodological guidance (Ruppert et al., 2003). In Addition, the estimation
maximization (EM) algorithm used in these methods is not feasible for high dimen-
sional expression data with tens of thousands of features. Furthermore, the problem
of defining the number of clusters is not solved in most of these methods.

Ma et al. (2006) proposed a data-driven method that adheres to requirements of
time-course expression data and overcomes some disadvantages of previous methods.
A mixed-effect smoothing spline model is used for curves in the data. A rejection-
controlled estimation maximization (RCEM) algorithm is used to fit the model.
This algorithm is less computationally expensive than the traditional EM algorithm.
The method provides cluster assignment of the features in the data, predicts the
mean curve for each cluster accompanied with confidence interval bands and R2

values. Mean curve estimates for the clusters and for the individual features are made
simultaneously. The number of clusters is determined internally and automatically
using Bayesian information criterion (BIC). The method by Ma et al. (2006) is
described briefly in the following.
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Model Formulation

The function yj = f(tj) + εj can be used to represent expression values with respect
to time tj (j = 1, 2, . . . , T ), where the error terms εj ∼ N(0, σ2). Such curves are
fitted by minimizing the residual sum of squares (RSS): RSS = ∑T

j=1(yj − f(tj))2.

In order to enforce smoothness of f the second derivative at each time point should
remain sufficiently small. That means for a specific positive value η, the following
constraint over a twice-differentiable f is assumed:

∫
(f ′′(t))2 dt < η, (3.30)

Formulation of the optimization problem of residual sum of squares (RSS) subject to
the above constraint in Lagrange multiplier method is then equivalent to minimizing
the following:

T∑
j=1

(yj − f(tj))2 + λT

∫
(f ′′(t))2 dt, (3.31)

This function f is represented via a cubic smoothing spline:

f̂(t) = d0(λ) + d1(λ)t+
T∑
j=1

cj(λ)
∫

(tj − µ)+(t− µ)+ du, (3.32)

where (.)+ refer to the positive part of the numbers.

Mixed-effect Model

Each gene’s time course may differ from the mean curve by a certain shift. In the
model this is represented by a random effect i.e. a zero mean centered random
variable. This way, the observed expression of a feature i at time-point j belonging
to cluster k can be expressed as:

yij = µk(tij) + bi + εij , (3.33)

where µk is a cluster-specific shape function of time represented by the mean curve
of cluster k, bi ind∼ N(0, σ2

bk) and εij iid∼ N(0, σ2) is a measurement random error, with
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i = 1, 2, . . . , N feature labels, j = 1, 2, . . . , T time labels and k = 1, 2, . . . ,K cluster
labels.

For a vector of observations over time-course yi and cluster mean vector over time-
course µk the equation 3.33 above is equivalent to:

yi ∼ (µk,Σk) (3.34)

if Σk = σ2
bkET×T + σ2IT×T , where ET×T is a square matrix of ones of dimensions

T × T , and IT×T is the identity matrix of dimension T × T . The variation in the
clusters are combinations of covariance structure of feature-specific random effect b
which depends on cluster k and variance term σ2IT×T which depends only on σ2

bk.

The cluster membership of genes and the number of clusters are not known a priori.
Therefore, the time-course expression of a feature yi can be modeled by a mixture of
Gaussian distributions:

yi ∼ p1N(µ1,Σ1) + p2N(µ2,Σ2) + · · ·+ pKN(µK ,ΣK) (3.35)

where the cluster mean curve µk and cluster curve variance Σk are defined above.
p1, p2, . . . , pK are the size proportions of the clusters and represent the probabilities
that a certain feature i belongs to a cluster k.

Parameter Estimation via Rejection-Controlled Expectation Maximization
Algorithm (RCEM)

Estimates of the parameters pk and µk can be obtained by maximizing a penalized
log-likelihood function. Such penalized log-likelihood function can be expressed in
terms of a smoothness constraint, feature-specific shifts and a random measurement
error for each cluster. However, such log-likelihood functions are not traceable for
multiple clusters with simultaneous assignment of features to clusters.

A possible alternative that circumvent this problem is using the expectation max-
imization (EM) algorithm to estimate the pk and µk parameters. However, the
EM algorithm is not stable and computationally very expensive specially in case
of time-course gene expression data with thousands of features. Ma et al. (2006)
suggested a modified version of EM algorithm called rejection-controlled expectation
maximization (RCEM) to overcome the problems of conventional EM algorithm.

The difference to conventional EM algorithm is that, very low probabilities of gene-
to-cluster memberships are set to zero thus reducing the computation cost in the
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M-step. The expectation step estimates the probabilities of a gene belonging to all
clusters given models parameters as follows:

P (genei ∈ k) = pkN(µk,Σk)
p1N(µ1,Σ1), ...+ pkN(µk,Σk)

(3.36)

A weighted penalized log-likelihood is computed in the maximization step as follows:

−
K∑
k=1


n∑
i=1

P (genei ∈ k)

 T∑
j=1

(yij − µk(tij)− bi)2

2σ2 + b2
i

2σ2
bk

− λkT ∫ [µ′′
k(t)]2dt+ C


(3.37)

Optimal values of smoothing paramters σ2
bk and λk are chosen via a generalized cross

validation procedure (Gu and Ma, 2005; Craven and Wahba, 1978). The parameters
Pk are updated in this step as follows:

pk =
∑n
i=1 P (genei ∈ k) + ak(

n+∑K
k=1 ak

) (3.38)

The expectation and maximization steps are repeated until convergence of gene-to-
cluster assignment is reached.

Determining Number of Clusters

Bayesian Information Criterion (BIC) is used to restrict the number of clusters to an
optimal trade-off between model complexity and goodness of fitting (Gu, 2004; Gu
and Ma, 2005). For a number of free parameters vk in cluster k BIC is defined as
follows:

BIC = −2
n∑
i=1

log
K∑
k=1

pkN(µk,Σk) +
K∑
k=1

vklog(nT ) (3.39)

The quality of the clusters are measured in this method by R2 which estimates the
fraction of variations in the clusters that can be explained by the modeling. 95%
confidence intervals of mean curve in each cluster are also computed within RCEM
algorithm (Gu, 2002; Gu and Ma, 2005).
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3.5 Functional & Enrichement Analysis Methods

Transcriptomic experiments investigate gene expressions in different conditions. Dif-
ferentially regulated genes or genes falling into a specific cluster can further be
investigated for their membership to predefined groups of functionally related gene
products. These predefined groups of functionally related genes are represented by
controlled vocabularies (ontologies) which are standard terminologies that describe
biological concepts. They are defined by capturing experimental information from
published literature. These functional sets help in structuring the analysis, formula-
tion and interpretation of biological information in genomic studies. Gene products
are assigned to such groups if they have similar biological function or belong to the
same biochemical reaction chain. The motivation for this categorization of genes and
gene products is that investigating individual genes is a tedious task, in addition,
Many diseases are believed to be associated with modest regulation in a set of related
genes rather than to a strong regulation in individual genes (Subramanian et al.,
2005).

Prominent annotation databases for functional gene sets are the Gene Ontology
(GO®)1 (Ashburner et al., 2000; Camon et al., 2004) and Kyoto Encyclopedia for Gene
and Genome database (KEGG®)2 (Ogata et al., 1999; Kanehisa and Goto, 2000).
These databases are conceptually different from each other. The latter database
groups genes based on their participation in biochemical pathways and the former
categorizes genes based on molecular functions, cellular compartments and biological
processes. Furthermore, these databases differ in their underlying structure.

The elucidation of biological concepts associated to differentially expressed genes is
very important for the analysis and interpretation of genomic data. The number of
these concepts and functional gene sets is growing due to the availability of annotation.
All that drives the need for systematic analyses and visualization methods. A number
of methods have been proposed which utilize different test statistics that reply on
various statistical hypotheses. They all assess the association or enrichment of a
functional gene set mostly by assigning a p-value to it that reflects the significance
of the association.

The overrepresentation analysis (ORA) tests the overlap of the differentially regulated
genes and the predefined functional gene sets (Breitling et al., 2004; Geistlinger et al.,
2011). The hypergeometric test is widely used and accepted in ORA (Khatri and
Draghici, 2005).

1The Gene Ontology Consortium Database: http://www.geneontology.org/
2KEGG® Database: http://www.genome.jp/kegg/
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A limitation of the ORA is the usual discrimination of genes into a set of interest (e.g.
the differentially expressed ones) and the large rest and the need for a predefined
threshold for this discrimination. This discrimination is highly sensitive to the defined
threshold so that different threshold choices may lead to dramatically different
enriched categories, and thus different biological conclusions (Pan et al., 2005).
Moreover, any ranking (e.g. by p-value of fold change) is completely ignored (Goeman
and Bühlmann, 2007). Nevertheless, ORA remains quite popular due to the propitious
features of the hypergeometric test which only requires that the set of interest is clearly
defined without the need of any other additional information. This is especially useful
when no such additional information is available, for example when investigating
genes within a given cluster.

The Gene Set Enrichment Analyses (GSEA) method avoids the shortcomings of
ORA (Subramanian et al., 2005; Dinu et al., 2009). In this method the ranking of
the genes is compared to a uniform distribution using a Kolmogorov-Smirnov test.
Various versions of the GSEA have been proposed (Dinu et al., 2009). Rather than
considering only the subset of differentially expressed genes, GSEA takes the whole
list of features and use their P-Values for ranking. Therefore, it is not limited to
significant features. GSEA also considers features with moderate significance. This
is beneficial, because biological relevance of features is not always reflected only by
their significance (Geistlinger et al., 2011).

Most gene set enrichment and association analysis methods assume independence
and do not consider correlations between genes resulting from co-regulation and
co-expression mechanisms (Tamayo et al., 2012). Moreover, these methods ignore
the dynamical behavior of the trascriptional process as well as the direction of
regulatory interactions. Some recently established methods try to avoid some of these
disadvantages (Shojaie and Michailidis, 2010; Geistlinger et al., 2011; Poirel et al.,
2011; Glaab et al., 2012; Massanet-Vila et al., 2012). These are, predominantly, graph
based approaches that exploit the network structure and ontology of the functional
annotation in the databases to enhance the enrichment analysis. These methods are,
however, not of further interest for this thesis.

In gene set enrichment analysis the tests are usually repeated several times (for
hundreds of GO® terms of KEGG® pathways). Therefore, multiple test correction
should be performed (see subsection 3.2.4). The method suggested by Benjamini and
Yekutieli (2001) for multiple testing under dependency is used for this purpose. This
method is useful for multiple testing under dependence structures such as in the case
of gene set enrichment analysis of gene ontology (GO®).

In the following paragraphs, two gene set enrichment and association methods used
in the subsequent chapters are briefly explained, namely the ORA approach and a
test that is based on univariate logistic regression.
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3.5.1 Over-representation Analysis & The Hypergeometric Test

ORA approach tests whether certain functional gene set (pathway, GO-term) within
the gene set of interest (differentially expressed genes) are more often contained
than expected by chance. For doing so, a two-dimensional contingency table is
constructed for the overlap groups of the tow sets considering the gene universe,
i.e. the exhaustive set of all genes (Table 3.1). The entries of this table, as shown
exemplary here below, are therefore non-negative integers.

Table 3.1: Two-dimensional contingency table. N represents the population
size (gene universe), n the sample size (size of functional set) and k represents
the number of successes (or the probability of success).

in set of interest ¬ in set of interest Total
in functional gene set k n - k n
¬ in functional gene set M - k N + k - n - M N - n

Total M N - M N

The probabilities of observing all possible sets of frequencies as they appear in the
contingency table given row and column totals are computed using a hypergeometric
distribution (Agresti, 1996, 2002). The hypergeometric distribution, like the binomial
distribution, is a discrete probability distribution that models the number of successes
k in a sequence of n trials using an urn model. However, unlike the binomial distri-
bution the hypergeometric distribution is based on the notion of sampling without
replacement. Considering the following null hypothesis: H0: there is no association
between the set of interest and the functional gene set, the exact probability mass
function of observing k in the contingency table given its row and column sums is
calculated in a hypergeometric distribution by the formula:

P (X = k) := f(k|N ;M ;n) =

(
M
k

)(
N −M
n− k

)
(
N
n

) , (3.40)

where
(
a
b

)
is a binomial coefficient.

In the case of over-representation (enrichment) the p-value is calculated by summing
up the probabilities of all the frequency tables that are more extreme (P (X ≥ k)) to
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the observed frequency table. Reciprocally, P (X ≤ k) define the probabilities of the
not-so-often investigated case of under-representation (depletion). If the p-value is
small enough (p− value ≤ α; usually a significance level α = 0.05 is considered) then
the null hypothesis can be rejected and it is concluded that the gene set of interest
is statistical-significantly enriched (or depleted) in the functional gene set and the
overlap between the two sets is not due to random chance.

Falcon and Gentleman (2007) proposed a conditional hypergeometric test procedure,
primarily for GO-terms, to avoid the problem of highly overlapping ontologies. Their
method (available in the R-package ‘GOstats’) considers the hierarchical graph
structure of gene ontology (Alexa et al., 2006; Falcon and Gentleman, 2007). It
starts the testing from the bottom of the graph and remove features of the significant
tested children.

3.5.2 Univariate Logistic Regression-based Association Analysis

A logistic regression-based method has been proposed for functional association
of gene set categories to the differential expression level of genes (Sartor et al.,
2009; Montaner and Dopazo, 2010). This method overcomes the drawbacks of ORA
methods as it does not requires significance threshold, considers all genes in the chip
and it uses the differential expression analysis ranking criteria. Unlike the GSEA,
this method does not depend on which or how many genes have been measured in
the chips and/or ranked in the differential expression analysis.

Let π represents the relative size of the category, i.e. the probability that a gene
falls in this category c at a certain significance level. The odds corresponds to this
probability can be modeled by the logistic regression:

log

(
π

1− π

)
= α+ βx, (3.41)

where the explanatory variable x represents significance of differential expression.
Here x is defined as −log10(p-value). The slope parameter β corresponds to the
change in log-odds values when changing x. If changing the values of x results in
changes in log-odds values then it is concluded that the category c is associated
with the differential expression. Thus, a null hypothesis for association of a specific
category c can be formulated as: H0 : βc0 (Enrichment: β 6= 0, depletion β < 0).
This can be assessed using the Wald test which, in this case, can be formulated as:

W =
(
β̂

sβ̂

)2

(3.42)
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where β̂ is a maximum likelihood estimate of β and sβ̂ is the estimated standard
deviation of β̂. Under the null hypothesis this test follows a χ2 distribution (Buse,
1982; Phillips, 1986).

The authors showed, based on experimental and simulated data, that this method
outperforms other relevant methods in the identification enriched GO® terms and
the reproducibility of the results. This method is extended to time-course expression
data (Sartor et al., 2009) and a multivariate version is proposed by Montaner and
Dopazo (2010) for additional covariates.
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CHAPTER 4
TRANSFORMING GRWOTH FACTOR
BETA (TGF-β) STIMULATION EFFECTS
IN DIFFERENT TISSUE TYPES OF
HUMAN AND MOUSE

4.1 Introduction

The focus of this thesis is the study of pattern discovery in perturbation experiments.
Detecting phenotypic responses patterns to cellular perturbation from array data
is, therefore, an important part. This chapter shows how different cell systems
which have been exposed to the same perturbation, namely TGF-β1 stimulation,
exhibit common response patterns on the level of biological functions, pathways and
protein networks. This allows for conclusions about the treatment and the different
cell systems and helped to enhance the knowledge about the interactions of the
hormone-regulating transforming growth factors signaling pathway.

The transforming growth factor-beta1 (TGF-β signaling pathway is a fundamental
pathway in the living cell, which plays a role in many central cellular processes.
The TGF-β superfamily contains over 30 different proteins, such as BMPs, Activins,
Inhibins, and the TGF-β isoforms (Giacomini et al., 2006; Hinck, 2012; Renner et al.,
2004). The pathway contributes to regulation of various cellular processes, such as
apoptosis, cell differentiation, cell growth as well as tumor suppression and immune
regulation processes (Oomizu et al., 2004).

51
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There are three TGF-β isoforms (TGF-β1, TGF-β2, TGF-β3) which have different
physiological and pathological effects on epithelial, endothelial, lymphatic, myeloid
and mesenchymal tissues (Hentges and Sarkar, 2001). The TGF-β pathway is one
of the most studied pathways (Alexandrow and Moses, 1995; Massagué, 1990, 1998;
Roberts AB, Heine UI, Flanders KC, 1990; Roberts AB, 1993). However, the complex
and sometimes contradicting mechanisms by which TGF-β yields phenotypic effects
is not yet completely understood (Hentges and Sarkar, 2001). The classical TGF-β
pathway is already well established since several years (Massagué, 1998). However, the
identification of alternative signaling pathways that contain different receptors and
Smad proteins has increased the overall complexity of the TGF-β signaling pathway
(Orlova et al., 2011). Figure 4.1 shows a simplified cartoon sketch comprising mainly
Smads cascades in the TGF-β signaling pathway.

In this study the downstream effects of TGF-β perturbation on the dynamical
response of gene expression in mouse and human in different cell and tissue types are
investigated and compared. Two types of mouse hematopoietic progenitor cells were
used: multipotent progenitor (MPP) and dendritic cell (DC) committed progenitors,
referred to as common dendritic progenitor (CDP) cells. CDP differentiate from
MPP and give rise to two types of DC: plasmacytoid DC (pDC) and conventional
DC (cDC). MPP and CDP were obtained from bone marrow by in-vitro culture with
a specific cytokine cocktail and FACS sorting (Felker et al., 2010; Seré et al., 2012).
Further cell type that is also employed is the human mesenchymal stromal cell type
(MSC), which differentiate into osteocytes, chondrocytes or adipocytes (Dominici
et al., 2006; Wagner and Ho, 2007; Walenda et al., 2012). Finally, primary murine
hepatocytes (HPC) and immortalized human hepatocytes (human HPC, HepG2)
cells were used. These different cell types are taken for three reasons: (i) All these
cells are highly responsive to TGF-β. (ii) The different cell types reflect different
degrees of differentiation. (iii) The different cells show a variable response to TGF-β.
While in hepatocytes TGF-β induces apoptosis, multipotent progenitors initiate a
differentiation programme in response to TGF-β.

Very little and vague information is known about the detailed influence of TGF-β
in these different cell systems. For example, TGF-β is known to be necessary for
MSC proliferation. It is essential for chondrogenic differentiation. On the other
hand, TGF-β participates in inhibition of adipogenic and osteogenic differentiation.
Furthermore, there are evidences, that TGF-β contributes to supporting myogenic
differentiation of MSC (Gao et al., 2010; Post et al., 2008; Wang et al., 2002). There
are also evidences that the TGF-β pathway play a role in the induction of cellular
senescence in MSC (Ito et al., 2007). Although TGF-β1 triggers primary early
responses (e.g. Smad activation) and EMT in human HPC (HepG2) cells, cell cycle
arrest and apoptosis are generally not promoted by TGF-β1 (Buenemann et al., 2001;
Xu XM, Yuan GJ, Li QW, Shan SL, 2012). Furthermore, TGF-β1 is known to be
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crucial for development of Langerhans cells, the cutaneous contingent of migratory
dendritic cells, both in-vivo and in-vitro and it evidently contributes in accelerating
their differentiation and directing their subsets specification toward cDCs (Borkowski
et al., 1996; Felker et al., 2010; Strobl et al., 1996, 1997).

Figure 4.1: Transforming growth factor-β1 (TGF-β1) docks on a type II
(1) and type I TGF-β receptors (TGF-βRI and TGF-β RII) (2). The two
receptors then form a receptor complex where TGF-βRI get phosphorylated
(3). Subsequently, TGF-βRI phosphorylates the receptor-regulated cytoplasmic
proteins (R-Smads) Smad2 and Smad3 (5). This happens with the help of
accessory proteins e.g. SARA which is located in the extracellular matrix
(ECM) (4). The R-Smads form a complex and bind with the phosphorylated
common mediator (co-Smad) Smad4 and transduce into the nucleus (6). There
they interact with different DNA proteins, co-activators and co-repressors (7) to
induce or suppress the transcription of numerous target genes (8). The inhibitory
Smads (I-Smads) Smad6 and Smad7) form a negative feedback and mark the
receptors for degradation (9) while R-Smads become inactive by the Smurf effect
(modified after (Massagué, 1998)).

53



Chapter 4 TGF-β STIMULATION EFFECTS IN DIFFERENT TISSUE TYPES

A panel of bioinformatics methods is used, ranging from statistical testing over
functional and promoter sequence analysis to clustering for pattern discovery in
the gene expression time series data. Only one gene, the SKI-like oncogene (Skil),
was commonly found to be differentially expressed (DE) in all cell types. Skil is a
component of the SMAD-pathway, which regulates cell growth and differentiation.
Moreover, Smad7 that blocks TGF-β receptor activity seems to play a major common
role, because it was identified as DE in most cell types. Despite of the differences on
the level of individual genes a conserved effect of TGF-β perturbation on a number of
biological processes and pathways is observed. Moreover, a number of overrepresented
Transcription Factor Binding-Sites (TFBS) could be identified. These are commonly
found in several cell types. Specifically EGR1 seems to have major relevance for the
transcriptional perturbation response in mouse and human.

By analysis of an independent dataset on human A549 lung adenocarcinoma cells
(CRL) from GEO (access No. GSE17708: first published in Sartor et al. (2010)) we
were able to reproduce a highly significant proportion of the commonly identified
biological processes, pathways and transcriptional factors in the datasets. Network
analysis suggests explanations, how TGF-β perturbation in different organisms could
lead to the observed effects.

4.2 Material and Methods

4.2.1 Normalization and Preprocessing

Raw probe intensities were normalized and summarized to expression levels using
the FARMS algorithm which utilizes a factor analysis approach (Hochreiter et al.,
2006). A rigorous quality assessment confirmed a fairly good quality of the chips
with exception of mouse HPC chips where Initial chip quality assessment revealed
a strong batch effect and one bad chip (replicate no. 1 at time 1 hour). The bad
chip was excluded and batch adjustment was performed to alleviate that effect on
those chips via the “ComBat” method (Johnson et al., 2007). Affymetrix probe
IDs were mapped to Entrez gene IDs using the Bioconductor annotation packages
“mogene10sttranscriptcluster.db” in mouse chips and “hugene10sttranscriptcluster.db”
in human chips (Arthur, 2010b,a). Details about microarray chips technology and
normalization are in section 2.1.
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4.2.2 Differential Gene Expression

Time Point-Specific Analyses

Differential gene expression analyses via “limma” Linear Models for Microarray
Data (Smyth, 2005) using empirical Bayes method (Casella, 1985) was performed by
comparing samples at each time point after TGF-β stimulation to the unstimulated
cells at time point 0. Statistical dependencies of samples between time points and
replicates were considered via a factorial design matrix in “limma” using a “time” and
a “replicate” factor, and contrasts are considered for interaction effects. Corrections
for multiple testing was done using the Benjamini & Hochberg’s method (Benjamini
and Hochberg, 1995). Significant differentially expressed genes are considered those
with FDRBH ≤ 0.01 and absolute logarithm of fold change value | log2(FC)| ≥ 1.
Details about differential expression analysis methods and the “limma” method can
be found in section 3.2 and subsection 3.2.3.

Analysis of Whole Time-Courses

The small number of replicates in the experiments limits the power of statistical
testing procedures for assessing differential gene expression at individual time points.
Furthermore, the number of measured time points is not the same for each cell
type, which complicates any further meta-analysis. Therefore, the “betr” method to
analyze whole time series at once is employed (Aryee et al., 2009). The algorithm of
this method uses a random-effects model together with the empirical Bayes method
to estimate probabilities for differential expression of whole time courses. Genes were
considered to be significant at a probability cutoff of P ≥ 0.99 for the whole time-
course analysis and absolute logarithm of fold change value | log2(FC)| ≥ 1. Since
“betr” requires the same number of replicates per time point and one chip in mouse
HPC had to be omitted due to low quality (see Normalization & Preprocessing)
unfortunately in this particular cell line the time point 1 h had to completely
be excluded from the time-course analysis. The “betr” method is explained in
subsection 3.3.1.

4.2.3 Cluster Analyses

Clustering of gene expression time series was done via the MFDA method proposed
in (Ma et al., 2006).It is worth mentioning that the MFDA is not applied on raw
gene expression data here, but on log fold-changes relative to the reference time
point 0 hours. The reason was that the genes should not be grouped merely on the

55



Chapter 4 TGF-β STIMULATION EFFECTS IN DIFFERENT TISSUE TYPES

basis of their absolute expression values, they should be rather grouped on the basis
of similar responses to the perturbation stimulus. RCEM with 5 Markov chains,
rejection threshold of 0.5 and iteration maximum limit of 100 are used. Details about
MFDA clustering method can be found in subsection 3.4.3.

4.2.4 Pathways and Gene Ontology Analyses

Analyses of pathways in KEGG® (Kanehisa and Goto, 2000) and biological pro-
cesses in Gene Ontology project (GO®) (Ashburner et al., 2000) were performed as
follows: The − log 2P -value of all genes in the individual time point analysis and
− log 21− probabilities of all genes in the whole time-course analysis, respectively,
were taken as a ranking score for each transcript. Gene sets of KEGG® pathways
and GO® terms were then tested for their association with these ranking scores
via a univariate logistic regression based test (see subsection 3.5.2 and Sartor et al.
(2009); Montaner and Dopazo (2010)). Unlike enrichment analysis, this kind of
association analysis considers all genes in the chip. Thus, overcoming enrichment
analysis drawbacks, beside it is more suitable for comparisons were the numbers of
DE genes in a cell type are different than in the others which was the case here.
A hypergeometric test based over-representation analysis have been used for the
gene cluster groups (subsection 3.5.1). Details of the gene set enrichment analysis
methods are explained in section 3.5.

Resulting p-values of KEGG® pathways and GO® terms were adjusted according to
Benjamini & Yekutieli’s false discovery rate control under dependency (Benjamini
and Yekutieli, 2001), and significant KEGG® pathways and GO® terms reported at a
cutoff value of FDRBY ≤ 0.05. Details about multiple test correction can be found
in subsection 3.2.4

4.2.5 Transcription Factor Binding-Sites Analyses

Analyses of transcription factor binding-sites (TFBSs) are performed using the de
novo sequence motif detection method XXmotifs (Luehr et al., 2012). Identified
sequence motifs were then aligned to known TRANSFAC TFBS via STAMP (Mahony
and Benos, 2007) and the top match is considered. The XXmotif method uses BLAST
(Altschul et al., 1990) all-against-all comparisons to mask regions of local homology
in order to avoid false positives. The method then performs an enrichment analysis
after transforming the found patterns to position weight matrices (PWMs). The
STAMP method utilizes a global or un-gapped local alignment to detect DNA
motifs similarities to defined PWMs. Furthermore, it considers familial binding
profiles, thus improving transcription factors (TF) classification accuracy. TFBSs
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analysis was done using these methods in each cell type for those genes, which
according to the time-course analysis showed a probability of p ≥ 0.99 for differential
expression. Promoter sequences of the genes under consideration (2Kbp upstream of
transcription start site1) were obtained from the Ensembl database (Flicek et al.,
2011) via “biomaRt” (Durinck et al., 2005, 2009). Only the top matching motif for
each TRANSFAC TFBS was considered and significant TFBSs were reported at
threshold of E-value ≤ 0.001.

Mapping of TFBS to individual transcription factors was performed via manual
inspection of TRANSFAC PWMs. Proteins which had been used to construct each
of the PWMs are obtained, and their names are mapped to Entrez gene IDs with
the help of the commercial software GeneGo Metacore® 2.

As a consequence, the differentially expressed genes Foxp2 and FoxP1 are found
for the transcription factors TFBS FOXP1 (in MPP, CDP mouse cells). For the
TFBS FOX the human gene FAU was identified (human HPC). Egr1/EGR1 (mouse
HPC, human MSC) and EGR2 (human MSC) are found For KROX. For TEF
Klf3/KLF3 are identified (MPPs, CDPs, human HPC), TRIM37 and USP7 (human
HPC, MSC).

4.2.6 Identification of Homologous Genes

Human homologs of mouse genes were identified via the KEGG® Sequence Similarity
Data Base (SSDB), which contains local alignments of amino acid sequences for
protein coding genes from different species. Two genes are considered to be homologs,
if the alignment E-value was below 1e − 30 and bit-score ≥ 112. In case of more
than one homologous gene, all are considered.

4.2.7 Network Analyses

Information about protein-protein interactions was collected separately for human
and mouse from the BioGRID database version 3.2.109 (Stark et al., 2006). Corre-
spondingly, a network comprising 16,011 nodes and 140,471 physical interactions
was constructed for human. For mouse the network consisted of 6,233 nodes and
16,100 physical interactions. Nodes in these networks were weighted by the average
probability (mean over all cell types from the same organism) for differential time
course expression according to the “betr” model (subsection 3.3.1). A “distance” for

1Promoter and enhancer regions which act as target sequence for DNA-binding proteins (TFBS)
are up-stream sequences of transcription start site in a gene.

2https://portal.genego.com
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each edge was then calculated as 2 minus the sum of its incident nodes’ weights.
Hence, the smaller the distance the higher the weight of its incident nodes. The
Dijkstra’s algorithm is used to search for minimum distance (i.e. maximum node
weight) path connecting TGFB1 with each of SKIL, SMAD7, EGR1, PPARG and all
genes annotated to glutathione metabolism, purine metabolism, oxidation-reduction
process, innate immune response, negative regulation of apoptotic process, angiogene-
sis, positive regulation of cell proliferation and positive regulation of cell migration.
For each of the last mentioned terms those genes are kept as representatives which
showed the minimum distance to TGFB1. If there were several paths of the same
minimum distance, all of them were considered. In the network for mouse Tgfb1 was
not identified and hence the analysis is started with Tgfbr1 instead.

4.2.8 Functional Similarity Maps

We developed a technique for computing and visualizing similarities of different
cell types with respect to different levels of functional annotation, such as GO®,
KEGG® and predicted TFBS. The idea is to associate each cell type with a vector
in which each position corresponds to a GO® term, KEGG® pathway or TFBS being
significant in at least one cell type. In case of GO® and KEGG® annotations the
vectors contain − log2(FDR) values (logarithm to base 2), and in case of TFBS they
contain − log2(E-V alues). In order to compare whole cell types with respect to these
vectors their cosine similarities using a dot-product and magnitude are computed:

Similarity(i, j) = (xi · xj)
‖ xi ‖ ‖ xj ‖

, (4.1)

where xi and xj are the vectors associated to cell types i and j. Calculation of this
similarity for each pair i, j hence yields a similarity matrix (one for GO®, one for
KEGG® and one for TFBS). Plotting these functional similarity matrices yields
what we call functional similarity maps. These visualize proximities of cell types
with respect to associated GO®, KEGG® and TFBS annotation. Here, functional
similarity maps are plotted separately for GO®, KEGG® and TFBS, but potentially
also weighted combinations would be possible (Figure 4.12).
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4.3 Results

Time Series Transcriptome Measurements

All cell types were treated with TGF-β in three biological replicates. TGF-β treatment
concentrations were optimized in each cell type to show a maximal effect. Extracted
RNA samples were hybridized to microarrays (Affymetrix Gene 1.0 ST) for genome-
wide transcriptome analysis. Mouse progenitor cells and HepG2 cells were measured
at 6 successive time points, mouse primary HPC cells at 5, and human MSCs at
4 different time points. Table A.1 gives an overview of the experiments and the
measured time-points. Details about the cell types, cell cultures, stimulation, RNA-
isolation and array hybridization in our experiments can be found in the appendices
section A.1.

4.3.1 Differential Gene Expression

Transcriptional Response is Highly Tissue-Specific on Gene Level

The “betr” method (Aryee et al., 2009) is employed to quantify the probability of
differential expression of genes in whole time-courses (see section 3.3). Using this
approach it is possible to assess differential gene expression for each gene in each cell
type in a comparable manner. A gene is considered to have differential time-course
expression (DE), if it had a probability of p ≥ 0.99 and is at least two-fold up- or
down-regulated at one time point minimum (Figure 4.2 a & b, Table Table 4.1,
details in appendices A Excel file 8). The strongest stimulatory effect of TGF-β was
observed in CDP cells (614 genes). Eight out of these genes in CDP are already
known to play a role in the TGF-β pathway (Tgfb3, Smad7, Thbs1, Tgfbr1, Smurf1,
Smad3, Smad6, Tgfbr2). In mouse HPC a significantly lower number of DE genes
were found compared to other cell types.

Set comparisons of DE genes across cell types are conducted. It is worth mentioning
in this context that comparisons between mouse and human genes were done on
the basis of homologous genes (see Material and Methods). Not surprisingly, the
found overlap was particularly high among mouse hematopoietic progenitor cells
(MPP and CDP). These were 173 genes, which equals a harmonic mean of above
41% of DE genes in both cell types (Figure 4.2 a). Only two of these genes, namely
Smad7 and Tgfbr1 are known to play a role in the TGF-β pathway. Three genes
(Lox, Pmepa1, Skil) are found to be DE in all mouse cells (CDP, MPP and HPC).
Pmepa1 (Prostate Transmembrane Protein) is known to interact with Smad and
suppress the TGF-β pathway (Xu et al., 2000, 2003).
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Table 4.1: Numbers of differentially expressed genes. Genes with prob-
ability p ≥ 0.99 and |logFC| ≥ 1 in each cell type and condition according to
the time-course analysis. Comparisons between mouse and human are based
on homologous genes (see Material and Methods). The diagonal in the table
indicates the number of DE genes in each cell type. The other numbers are
pair-wise overlaps.

Organism Mouse Human

MPP CDP HPC HPC MSC

Mouse MPP 228 173 2 9 10
CDP 173 614 4 16 19
HPC 2 4 15 1 3

Human HPC 9 16 1 226 18
MSC 10 19 3 18 208

Figure 4.2: (a) Venn diagram of DE genes (probability≥ 0.99 and | log2(FC)| ≥
1) in mouse MPP and mouse CDP. (b) Union of DE genes in MPP and CDP
compared to all other cell types (homolog genes, see subsection 4.2.6).
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Only the protein-coding gene Skil (Ski-like-oncogene) that encodes a protein in the
SMAD-pathway (Cohen et al., 1999; Nomura et al., 1989) was found to have a DE
time-course in all cell types. In addition, the gene Smad7 was commonly found in all
cell types except mouse HPC cells. 18 genes including ROR1, C10orf10, SMAD7,
FSTL3, GADD45B, JUNB, ZFP36, OLFM2, SPTLC3, ID1, LMCD1, SLC38A3,
GXYLT2, SKIL, HES1, RASGEF1B, CITED2 and PDGFA were DE in all human
cells (MSC, HepG2). The heatmaps in Figure 4.3 visualize patterns of temporal
behavior for particular groups of genes. Here again, similarity in gene expressions
between mouse dendritic cells is evidenced.

Figure 4.3: Heatmaps depicting mean logarithm of fold changes of top DE
genes at different time points. (a) Mouse MPP and CDP (together 84 genes),
(b) mouse HPC (16 DE genes), (c), (d) top 50 DE genes in HepG2 (HPC) and
human MSCs, respectively
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These findings on one hand stress the similarity of the transcriptional response in
MPP and CDP, which is not very surprising given the fact that these cells were both
derived from bone marrow. On the other hand they highlight that TGF-β treatment
affects by far not only genes within the canonical TGF-β pathway, but leads to a large
number of diverse secondary downstream effects, which are only partially overlapping
across different cell types. In other words there is a high tissue specificity of the
transcriptional TGF-β perturbation response on the level of individual genes.

4.3.2 TGF-β1 Pathway Genes React Time-Dependant and
Tissue-Specific

Genes which are known to play a role in the TGF-β pathway, such as Bmp(s), Smad(s)
and Id(s), are closely investigated. In Figure 4.4 the log fold changes (logarithm to
the base 2) of 17 genes involved in the TGF-β pathway, which are DE in at least one
cell type, are depicted. It can be noticed that almost all genes show time-dependant
transcriptional effects. These effects are distinct between early and later time points,
with moderate activities until 4h and mostly higher activities at late times.

It can also be noticed that cells of similar origin are more alike. For example, Bmp2,
Bmp4, Bmp6, Cdkn2b and Comp are dys-regulated (i.e. significantly differ from 0
level according to “betr”) only in human and not in mouse tissues. Fs1 is similar to
these genes, but also shows activity in mouse HPC. Id1 in human cells is up-regulated
at earlier time points and a down-regulated after 4h. Inhba shows activity only in
MSC cells where its expression after 1 hour constantly increases. Smad3, Smad6 and
Smad7 reveal similar time courses in mouse MPP and CDP cells and in human MSCs.
Smad3 is increasingly down-regulated over time and the other two genes are always
up-regulated. Smurf1 is always over-expressed and shows a curve that is opposite
to Smad3, Smad6 and Smad7. Tgfb3 is over-expressed at later time points in MPP
and CDP cells and shows almost no activity in the other cell types. Thbs1 is highly
active in all cell types. However, while it is underrepresented in MPP and CDP, it
shows elevated expression in mouse and human HPC. Tgfbr1 and Tgfbr2 behave
similar, in particular in mouse progenitor cells, where Tgfbr2 is less up-regulated
than Tgfbr1.
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Figure 4.4: Time-course expressions patterns of differentially expressed TGF-β genes. The plots depict
the logarithm of fold-changes of 17 genes, which are DE in at least one cell type and are known to play a
role in the TGF-β pathway (according to KEGG® annotation).
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4.3.3 Time-Point Specific Analyses Confirms Highly Tissue-Specific
Expression Changes on Gene Expression Level

In order to cross-validate the previous analysis, which considers time series as a
whole, also time-point specific analyses of differential gene expression using linear
models for microarray data (limma) are conducted. For this purpose gene expressions
at 4 hours after stimulation are compared to the initial expression at time point 0
hours. The time period of 4 hours was chosen because at least short-time relevant
effects are expected in all cell types after this period.

In the context of time point analysis of transcriptional effects a gene is considered to
be differentially expressed (DE) if FDRBH ≤ 0.01 and the absolute fold changes was
log2(FC) ≥ 1. The overlap analysis of DE genes at 4h agrees with the time-course
analysis. There are no or very few genes in common between the different cell types
except in the case of mouse dendritic cells (Figure 4.5 A). Moreover, the direction of
regulation (up or down) differs between cell types (details in appendices A Excel file
9).

Figure 4.5: Venn Diagrams of differentially expressed genes (FDRBH ≤ 0.01
and | log2(FC)| ≥ 1) and associated KEGG® pathways and GO® terms
(FDRBY ≤ 0.05) in mouse MPP & CDP and in human HPC & HPC cell
types at 4 hours (taking homologous genes between human and mouse into
account, see subsection 4.2.6, details in appendices A excel files).

The heatmap in Figure 4.6 depicts the log fold changes of all genes, which are DE in
at least one cell type. The plot indicates two gene sets, which clearly show a similar
behavior in mouse MPP and CDP cell types. The first set contains 36 genes that are
over-expressed. The other set (42 genes) is under-expressed. Interestingly, the 36
genes being up-regulated in MPP and CDP cells are not regulated by TGF-β1 in
other cell types. Although not DE genes in every cell type, the genes Smad7, Pmepa1
(beside the gene Skil) seem to be up-regulated in all the cells. The rest of the genes
are regulated in a rather cell-type specific manner.
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Figure 4.6: Heatmap depicting logarithm of fold changes of all genes that are differentially expressed in
at least one cell type 4 hours after stimulation.
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4.3.4 Cluster Analyses Revealed Functionally Similar Gene Groups in
Different Cell Types

Time series cluster analyses are conducted in order to find groups of DE genes
showing similar expression changes over time (observed as within cell-type temporal
behavior shown in Figure 4.3, between cell-types similarities shown in Figure 4.6).
The cluster analyses yielded 12 clusters in MPP and mouse HPC, 20 in CDP and
11 in human MSC (Table 4.2). Genes contained in individual clusters can be found
in details in appendices A Excel file 14). Figure 4.7 depicts the mean curves for
each of these clusters in each cell type. Functional similarity of genes across different
clusters is investigated. For this purpose the R-Package “GOSemSim” (Yu et al.,
2010) utilizing the semantic similarity measure proposed by Wang et al. (Wang et al.,
2007) was employed. Semantic similarities are means to compare GO® annotations
of gene pairs in a quantitative manner, for example on the basis of the information
content of GO® terms. Pesquita et al. (2009) provide an overview in this subject.

Table 4.2: Clusters overview. Differentially expressed genes in each cell type
and number of resulting clusters (details in appendices A Excel file 14).

Organism Mouse Human

MPP CDP HPC HPC MSC

Differentially expressed genes 230 631 15 232 208
Number of Clusters 12 20 1 12 11

A heatmap depicting these GO® semantic similarities suggested a high functional
similarity of genes in several clusters from different cell types (Figure 4.8 details in
appendices A Excel file 15 & Excel file 16). In particular cluster B (MPP), and cluster
B (CDP) are highly similar to each other (semanticsimilarity ≥ 0.7). Time-course
logarithm of fold changes of the corresponding genes are shown in (Figure 4.9 top). As
can be noticed the clusters are of different size, but have several genes in common (13
genes). Functional analysis revealed that genes in these clusters are enriched for cell
adhesion molecules (CAMs), valine, leucine and isoleucine biosynthesis, Pantothenate
and CoA biosynthesis and regulation of cellular extravasation biological processes
gene ontology terms. Enrichment analysis was conducted here via the R-package
GOstats (Falcon and Gentleman, 2007), which employs a hypergeometric test taking
into account the dependency structure among GO® terms.
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Figure 4.7: Mean-curves of logarithm of fold changes of gene groups in the clusters detected in the
different cell types. For mouse HPC no clusters could be identified and hence all DE genes treated as one
group.
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The second group of functionally similar clusters (Figure 4.9, bottom) contains cluster
K (human HPC) and cluster B (MSCs). Genes in these clusters play (among others)
a role in TGF-β and Notch signaling pathways (details in appendices A; Excel file
15 & Excel file 16). Taken together the cluster analyses showed that despite evident
differences on the level of individual genes, functionally similar clusters of genes can
be identified across cell types.

Figure 4.8: GO® semantic similarity heatmap for all the resulting clusters in all
cell types. The color code indicates the degree of functional similarity between
clusters according to their GO® annotation. GO® semantic similarities were
computed via the Bioconductor R-package “GOSemSim” using the similarity
measure by Wang et al. (2007).
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Figure 4.9: Logarithm of fold changes of two groups of functionally similar clusters detected in different
cell types. Genes appearing in more than one cluster depicted in colors, gray curves are cluster-specific
genes. Upper group: two similar clusters MPP and CDP. Lower group: two similar clusters in human
HPC and MSC.
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4.3.5 Enrichment Analyses Reveal Commonly Affected Biological
Processes, Pathways & TFBS

Commonly Found Pathways and Gene Ontology Terms

The previous findings motivates investigating whether there are common functional
patterns across all cell types. For this purpose GO® terms and KEGG® pathways
are scanned for significant association with differential time course gene expression
in each cell type (overview in Table 4.3 & Table 4.4, details in appendices A Excel
file 10 & Excel file 12). The analysis brought up 6 KEGG® pathways and 11
GO terms, which were significantly associated to all cell types (FDRBY < 0.05,
Figure 4.10). The 6 KEGG® pathways associated to all cell types were: Metabolic
pathways, Glutathione metabolism, Lysosome, Purine metabolism, Peroxisome and
PPAR signaling pathway. The 11 GO terms associated to all cells were: oxidation-
reduction process, innate immune response, positive regulation of transcription from
RNA polymerase II promoter, negative regulation of apoptotic process, angiogenesis,
lipid metabolic process, positive regulation of cell proliferation, positive regulation of
cell migration, proteolysis and positive regulation of transcription DNA-dependent
and response to drug. The role of TGF-β in apoptosis, cell proliferation as well as
immune response is well known. Moreover, an effect of TGF-β perturbation on PPAR
signaling has been described in skin fibroblasts (Ghosh et al., 2004).

Figure 4.10: Clustered heatmaps of (a) the 6 common KEGG® pathways and
(b) 11 GO® terms in different cell types. The color code indicates the degree of
association (− log2(FDR)) of a KEGG® pathway and GO® term to each cell
type, respectively.
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In (Liu and Gaston Pravia, 2010) the authors describe TGF-β mediated oxidative
stress and decreased glutathione concentration in fibrosis models. Finally, there is
evidence that TGF-β has an effect on angiogensis and cell migration (Yang and
Moses, 1990). Hence, our findings largely fit to the current biological knowledge
about TGF-β

Table 4.3: KEGG® pathway Enrichment overview. Numbers of enriched
KEGG® pathways in each cell type and condition at FDRBY ≤ 0.05 (diagonal)
according to time-course analysis. The other numbers are pair-wise overlaps,
these are all significant overlaps between the corresponding two cell types,
according to a hyper-geometric test with P -value ≤ 0.05 (details in appendices
A Excel file 10).

Organism Mouse Human

MPP CDP HPC HPC MSC CRL

Mouse MPP 98 85 22 31 54 57
CDP 85 116 24 36 58 68
HPC 22 24 47 16 18 26

Human HPC 31 36 16 58 32 37
MSC 54 58 18 32 84 64
CRL 57 68 26 37 64 106

Table 4.4: GO® terms Enrichment overview. Numbers of enriched GO®

terms in each cell type and condition at FDRBY ≤ 0.05 (diagonal) according to
time-course analysis. The other numbers are pair-wise overlaps. black numbers
are significant overlaps between the corresponding two cell types and red are
insignificant overlaps, according to a hyper-geometric test with P -value ≤ 0.05
(details in appendices A Excel file 12).

Organism Mouse Human

MPP CDP HPC HPC MSC CRL

Mouse MPP 255 166 36 48 68 87
CDP 166 238 33 55 66 94
HPC 36 33 139 30 22 35

Human HPC 48 55 30 191 73 92
MSC 68 66 22 73 252 127
CRL 87 94 35 92 127 504
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Conserved Role of EGR1/2 Transcription Factors

DE genes are analyzed with respect to overrepresented sequence motifs in their
promoter regions with the XXmotif tool (Luehr et al., 2012). Significant motifs were
then compared to known position weight matrices (TRANSFAC) of transcription
factors (TFs) via STAMP (Mahony and Benos, 2007). The analysis in each cell type
predicted between 11 and 21 regulating Transcription Factor Binding-Sites (TFBS) in
the time-course analysis (Table 4.5, details in appendices A Excel file 17 & Excel file
18), except for mouse HPC, where no overrepresented TFBS could be detected. This
may be attributed to the small number of 16 DE genes in this cell type. Overlaps
were particularly high within mouse MPP and CDP and within human cells.

FOXP1, KROX, TEF, POU6F1, FOX and PITX binding-sites were commonly
identified in mouse MPP and CDP. KROX, HFH4 and PAX4 were found in all human
cells. FOX, FOXP1, KROX and TEF were found to be themselves representatives of
DE genes. Figure 4.11 shows a network representation of all eight TFBS together
with the set of DE genes containing respective binding-sites. The plot reveals a
relative clear difference between mouse and human cells with the exception of the
KROX TFBS, which appears in all four cell types. KROX represents EGR1 and
EGR2.

Table 4.5: TFBS analysis overview. Total number of predicted transcription
factor binding-sites (TFBS) in each cell type and condition (best match according
to STAMP and E-value ≤ 1e− 3) according to time-course analysis. The other
numbers are pair-wise overlaps (details in appendices A Excel file 17).

Organism Mouse Human

MPP CDP HPC HPC MSC

Mouse MPP 11 6 0 5 2
CDP 6 18 0 3 2
HPC 0 0 0 0 0

Human HPC 5 3 0 21 3
MSC 2 2 0 3 13
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Figure 4.11: Network of eight overrepresented Transcription Factor Binding-Sites (TFBS) and differ-
entially expressed genes containing these binding-sites. For the sake of better visualization only the set
of genes being DE in both, HPC and MSC as well as both, MPP and CDP, are shown. Red genes are
known to play role in the TGF-β pathway. The width of the blue lines is chosen to be proportional to the
average − log2(E-value), which resulted from the transcription factors analyses.73
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Functional Similarity Maps Display Conservation of Biological Processes and
Pathways

In addition to the previously shown heatmaps, a technique called functional similarity
maps was developed (see Material and Methods) that enables visualizing of overall
similarities of cell types with respect to their GO® and KEGG® annotation as well
as predicted TFBS from a more global perspective. Functional similarity map in
Figure 4.12 demonstrates a comparably high similarity of all cell types with respect
to their GO® annotation, a more cell type specific reaction with respect to KEGG®

pathways and relatively high tissue specificity with respect to over-represented TFBS.
An interesting observation is that mouse HPC are more similar to human HPC with
respect to affected biological processes, but more different with respect to associated
KEGG® pathways and TFBS. Moreover, on the level of GO® annotation all HPC
are more similar to MPP and CDP than on the level of the other annotations.

Taken together these observations imply that TGF-β stimulation in all cell types
yields the response of a transcriptional core program, which besides several metabolic
pathways, appears to be related to the insulin signaling and adipocytokine signaling
pathways as well as immune response, apoptosis and cell proliferation (see above).

Figure 4.12: Functional similarity maps visualizing the proximity of different
cell types based on significant GO® Terms (left), KEGG® Pathways (middle)
and predicted Transcription Factor Binding-Sites (TFBS) (right). Circles size
indicate the degree of similarity or dissimilarity (larger size = higher) and circles
color indicate the direction of similarity or dissimilarity (red color mean similarity
of 1 ‘exactly the same’ and zero values are represented with small white circle).
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The identified transcription factors seem to be rather species-specific. The exception
is the transcription factor KROX, which represents genes Egr1 and Egr2. In human
target genes of EGR1 are known to play a major role in cell differentiation and
mitogenesis. Moreover, EGR1 is involved in several signaling pathways (BMP signal-
ing, cytokine mediated signaling, interleukin-1-mediated signaling, type-I interferon
mediated signaling – see GO® annotation).

Network Analysis Suggests Possible Signal Transduction Pathways in Mouse
and Human

In order to better understand how TGF-β may influence the commonly identified
transcription factor, biological processes and the PPAR-pathway a network analysis
is conducted. Using protein-protein interaction information from the BioGRID
database (Stark et al., 2006) a mouse and a human specific networks are constructed.
These networks depict dys-regulated paths from TGF-β to SKIL, SMAD7, EGR1
as well as genes involved into glutathione metabolism, purine metabolism, PPAR
signaling, oxidation-reduction process, innate immune response, negative regulation
of apoptotic process, angiogenesis and positive regulation of cell proliferation and
positive regulation of cell migration (Figure 4.13 and Figure 4.14; further details in
Material and Methods part).

The network analysis suggests pathways, by which TGF-β stimulation is possibly
propagated via protein-protein interactions to the commonly identified biological
processes. Due to the organism specificity of interactome information these pathways
show certain differences: Far less protein-protein interactions are known in mouse
than in human. In human, for example, negative regulation of apoptosis might be
mediated via SMAD3 and SOX9 (Yanagisawa et al., 1998). In contrast, the GO®

and network analysis in mouse suggests a direct role of TGFBR1.

4.3.6 Enrichment of Biological Processes, Pathways and Transcription
Factor Binding-Sites (TFBS) is Reproducible on an Independent
Dataset

In order to validate the central finding from the data, namely the existence of
commonly affected biological processes, pathways and transcription factors in all cell
types, comparisons to results from an independent data are made. For this purpose
dataset is downloaded. This dataset comprise gene expression data measured at 9
time points (0, 0.5, 1, 2, 4, 8, 16, 24, 72h) after TGF-β stimulation in human A549
lung adenocarcinoma cell-lines (CRL, GSE17708). The dataset was analyzed in the
same manner as described for our data before. High fractions of the 11 GO® terms

75



Chapter 4 TGF-β STIMULATION EFFECTS IN DIFFERENT TISSUE TYPES

Figure 4.13: Human protein-protein interaction network connecting TGFB1,
TGFBR1, SMAD7, SKIL, EGR1, PPARG with genes involved into commonly
identified biological processes. The dashed green line indicates the putative
transcriptional regulation of SMAD7 by transcription factor EGR1. The darker
the red color of a node the higher the average probability for differential time
course expression.
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Figure 4.14: Murine protein-protein interaction network connecting Tgbfr1,
Smad7, Skil, Egr1, Pparg with genes involved into commonly identified biological
processes. The dashed green line indicates the putative transcriptional regulation
of Smad7 and Tgfbr1 by transcription factor Egr1. The darker the red color of
a node the higher the average probability for differential time course expression.

and 6 KEGG® pathways commonly identified in all of the cell types were also found
in GSE17708 (Figure 4.15, details in appendices A Excel file 10).

Out of the KEGG® pathways and GO® terms associated to all of the human cells 70%
and 74%, respectively could be reproduced on the independent dataset (Figure 4.15,
details in appendices A Excel file 12). Notably, 11 (61%) out of the 18 genes which
exhibiting differential time courses in both the human MSC and HPC cells were
found also to have differential time-courses in GSE17708 cells, these were ROR1,
SMAD7, FSTL3, GADD45B, JUNB, ZFP36, ID1, LMCD1, GXYLT2, SKIL and
HES1. This corresponding fraction is significantly larger than expected by chance (p
< 1E-9, hypergeometric test).
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Figure 4.15: Percentages of KEGG® pathways (left) and GO® terms (right)
enriched commonly in the cell types that could be reproducibly identified in
GSE17708. The numbers in tip of the bars are the P-value for the null-hypothesis
to see the corresponding overlap just by chance (hypergeometric test).

The KROX TFBS (corresponding to transcription factors EGR1 and EGR2), which
was enriched in all of the cell types, was also found in GSE17708. Moreover, the other
two TFBS that identified in the human cells (HFH4, PAX4) were also enriched in the
A549 lung cancer cell line (details in appendices A Excel file 17). Taken together this
analysis reveals a high reproducibility of the commonly identified biological processes,
pathways as well as transcription factors.
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4.4 Conclusions

An in-depth comparison of the dynamical TGF-β response profile on gene expression
level across several cell types have been conducted in this work. Despite of a generally
high degree of cell type specificity, there appears to be a common functional response,
which is conserved across cell types and species (i.e. mouse and human). Our analysis
suggests a common effect of TGF-β stimulation on apoptosis, cell proliferation,
immune response, angiogenesis, cell migration, PPAR signaling, oxidative stress as
well as purine and glutathione metabolism. Network analysis gives hints to possible
pathways, by which these effects could be mediated.

On the level of individual genes the SKI-like oncogene and Smad7 were differentially
expressed in most (Smad7) or all (SKI-like oncogene) cell types and thus appear to
play a major role. Smad7 is involved into the canonical TGF-β pathway (Kanehisa
and Goto, 2000). It is a general antagonist of the TGF-β family (for review see
Yan et al. (2009)). The SKI-like oncogene is a direct target gene of Smad2, which
regulates its transcription (Lee et al., 2011). It plays a role in cell growth and
differentiation. Notably, a high fraction of the biological processes, pathways and
TFBS that have been identified to be enriched in all cell types was found also in an
independent dataset from a lung cancer cell line. This strengthens the confidence in
our results.

In summary the findings indicate that despite a high variability of transcriptional
response across cell types and organisms there appears to be a set of commonly
affected processes and pathways. In addition, the TFBS analysis suggested a major
role of the transcription factor EGR1 in the TGF-β response in human and mouse.
Indeed the induction of EGR1 via TGF-β stimulation has been already reported
earlier (Chen et al., 2006) and thus fits to the existing knowledge about TGF-β
induced transcriptional response in other cell systems.

Previous studies of TGF-β stimulation were mainly limited to one specific cell type,
e.g. fibroblasts (Clark et al., 1997; Petrov et al., 2002). In this work we went beyond
this point and conducted perturbation experiments in different cell types under as
much as possible comparable conditions. In consequence it was possible to compare
transcriptional responses across cell types and organisms, which revealed common
patterns. The identification of common and specific signal transduction pathways
that are affected by TGF-β in human and mice will allow us to define potential
therapeutic targets and will further enable us to characterize gene expression patterns
and complex regulatory networks. In addition, future work using our and other
transcriptome data can, for example, address the identification of TGF-β dependent
mesenchymal or epithelial gene signatures or the definition of cell specific cancer
signatures.
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CHAPTER 5
INVASIVE AND NONINVASIVE
MICRORNA BIOLOGICAL MARKERS
IN CHRONIC AND ACUTE EPILEPSY

5.1 Introduction

Creating pathogenic status in living organisms through controlled moods of pertur-
bations allow for standardized experimental designs in the study of disease models.
Proper statistical methods for the analysis of high-throughput transcriptome mea-
surements can help to better understand cellular malfunctions, identify biological
disease markers and investigate therapeutic approaches.

In-vivo pro epileptic micoRNA markers are investigated in expression data in a number
of epilepsy models in this work. Lower data dimensionality, compared to the typical
gene expression microarray data, required adapting normalization and differential
expression analysis methods. Experimental implications resulting in incomplete
and censored high-throughput qPCR (HT-aPCR) data impairs the performance of
analysis methods. A designated test procedure, that involve estimation of distribution
parameters for censored data, is proposed to resolve this issue. The method showed
higher detection power at lower false positive rates based on simulated data where
differentially expressed features are known.

Epilepsy is a severe chronic neurological disorder that is usually manifested in
repeated transient occurrence of signs and/or symptoms. The disease affects over 50
million people worldwide. The most common type of the disease is the Temporal Lobe
Epilepsy (TLE) which is characterized by spontaneous recurrent seizures (Weiss et al.,
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1986). A seizure (Status Epileptics (SE)) is a sudden unprovoked occurring event that
usually takes few seconds to few minutes. Epileptic seizures are caused by complex
processes in the body. The molecular processes that contribute to epilepsy involve
transcription factors (McClelland et al., 2011; Mazzuferi et al., 2013), chromatin
methylation processes (Kobow and Blümcke, 2011) and small none-coding RNAs
(Jimenez-Mateos et al., 2011, 2012; McKiernan et al., 2012)

The diagnosis of epilepsy based on the symptoms is notoriously difficult. Disease
related Biological markers can help improve better disease recognition, drug targets
specification and patient treatment management. MiRNAs represent a class of
biological markers that have not been thoroughly investigated in the context of
epilepsy disease (Mazzuferi et al., 2013; Kretschmann et al., 2015a). The aim of this
study is to investigate the role of microRNAs after generalized seizures and assess
their suitability and potential as invasive (from brain hippocapmus tissues) and
non-invasive (from blood serum samples) biomarkers for epilepsy. For this purpose
experiments are done in mouse and rat disease models and high-throughput data are
generated from hippcampal tissues and blood serum samples.

MicroRNAs (miRNAs) are short (17-28 nucleotides long) single-stranded and highly
conserved none-coding RNA molecules. They are involved in post-transcriptional
regulation (repression and silencing) of genes (Aravin and Tuschl, 2005). Many
studies showed that one miRNA may regulate hundreds of protein-coding genes
thus playing central role in many important biological processes (Hutvágner and
Zamore, 2002; Pillai, 2005). They are found to be highly abundant in brain tissues
(Kosik, 2006; Im and Kenny, 2012; McNeill and Van Vactor, 2012) and have been
detected in organisms body fluids such as urine, saliva and blood (Ross and Davis,
2011; Chen et al., 2012). Circulating (non-invasive) miRNAs are part of the cell-cell
communication system and are found to have stable expression in blood (Schöler
et al., 2011). They are transported in plasma and delivered to recipient cells by
high-density lipoproteins (HDL) (Vickers et al., 2011). Recent studies suggested that
miRNAs play essential roles in neurogenesis, in particular epileptogenesis processes
and maintenance and progression of epileptic state (Schaefer et al., 2007; Mitchell
et al., 2008; Di Stefano et al., 2011; Jimenez-Mateos et al., 2011; Margis et al., 2011;
Creemers et al., 2012; Jimenez-Mateos et al., 2012; McKiernan et al., 2012; Pritchard
et al., 2012; Volvert et al., 2012; Wang et al., 2015). Therefore, they can be used as
sensitive biological markers for epilepsy.

MiRNA profiling studies in epileptic tissues have revealed highly selective and spa-
tiotemporal alteration in expression patterns. However, inconsistencies in expression
of deregulated miRNAs have been observed. The reason for this could be the multi-
species tissues (rat versus mouse), different epilepsy models (chemical-induced versus
electrical-induced SE) used in the studies and the comparison of different time-points
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(Kretschmann et al., 2015a). Therefore, more experimentally controlled studies are
required in order to unveil miRNAs functions in the epilepsy disease.

In order to limit these problems a number of TLE animal models have been de-
veloped that are useful for the standardized experimental designs (Turski et al.,
1983; Mazzuferi et al., 2012). Each of these models have distinct characteristics
regarding the pathophysiological parameters such as onset of seizures, occurrence of
recurrent seizures, seizure severity and hippocampal sclerosis (Jimenez-Mateos and
Henshall, 2013). These parameters are expected to influence the pattern of miRNA
activities during epileptogenesis. Chronic SE is caused in animals of these models via
long-term chemical (by drugs) or electrical stimulation, so that a recurrent epileptic
seizure can be triggered when needed. The animals show pathophysiology that is
typical for epilepsy such as neuronal inflammation. Further animal models for acute
TLE are obtained by triggering a single seizure in naive animals which do not show
TLE-related pathophysiology.

In this work, miRNA expressions at different post-seizure time-points are compared to
their pre-seizure expressions in different naive chronic and acute epilepsy perturbation
models in rat and mouse. Samples are taken from hippocampal tissues and from
blood serum. The following mouse models are used in this study: (I) Pilocarpine SE
model; where status epilepticus (SE) is provoked chemically by the drug Pilocarpine.
(II) Self-Sustained Status Epilepticus (SSSE); where SE is provoked via weak and
irregular electrical stimulation “kinlding” of brain in animals through implanted
electrodes in the amygdala. It is assumed that temporary neuronal discharges leads
to long-termed changes in the nerve cells and create SE. The kindling procedure is
increasingly used to study epilepsy. These two models represent chronic types of
epilepsy. (III) 6-Hertz model; where a single acute seizure is triggered by monopolar
pulses at frequency of 6 hertz and current intensity of 44 mA. This model represents
an acute type of epilepsy. (IV) Another SSSE model in rat is also used together with
two control groups: a “sham” control group where animals have undergone electrodes
implantation surgeries but have not been kindled, and a “naive” group which have
not been subjected to surgeries. Profiling was performed using microarray in the
mouse models and high-throughput qPCR technologies in the rat models.

The miRNA profiling data are of a lower dimensionality compared to gene expression
mircoarray data and HT-qPCR data have many undetermined Ct values. Therefore,
appropriate advanced normalization techniques are applied to the data. In addition,
a differential expression analysis procedure is proposed which uses distribution
parameters estimates for censored data. The procedure showed higher detection
power compared to generic methods and enabled detection of novel deregulated
miRNAs in the data.

83



Chapter 5 MICRORNA BIOLOGICAL MARKERS IN EPILEPSY

The results of the profiling analyses revealed many deregulated miRNAs in the differ-
ent animal models and time points. Significantly high proportion of the deregulated
miRNAs in the Pilocarpine chronic model were also active in the SSSE chronic model
but very few of them were affected in the 6-Hertz model. This delineate the difference
between the two chronic models and the 6-Hertz acute model. The activity of many
deregulated miRNAs was confirmed via RT-PCR experiments. Pathway and gene
ontology analyses revealed significant enrichment of target mRNAs of deregulated
miRNAs in biological processes terms and biochemical pathways that are relevant to
neurological malfunctions. This might help focus the exploration tactics for novel
therapeutic applications in epilepsy.

5.2 Material and Methods

5.2.1 Experimental Design

Two large experiment studies have been performed in different epilepsy models in
mouse and rats. miRNAs are profiled via microarray (see section 2.1) and high-
throughput qPCR technologies. Significantly deregulated miRNAs were validated
via RT-PCR experiments (details in section 2.3).

MiRNA Profiling by Microarray: Experiments are done in mouse. Hippocampal
Samples of n = 8 of each set were taken at 24 hours and 28 days post seizure in both
chronic models. In the acute 6-Hertz model samples were dissected at 0, 3, 6, 24 &
72 hours. Control samples for Pilocarpine model are taken from naive animals at 24
hours and 28 days. A single control set was prepared for the SSSE model at 28 days.
Samples at time-point 0 hours were considered the control set in the 6-Hertz model.
Expression profiles of 579 mature miRNAs in hippocampal tissues are measured via
two-channel cDNA Microarrays in two chronic epilepsy mouse models, namely the
Pilocarpine SE model and the SSSE model, and in an acute seizure 6-Hertz model.

MiRNA Profiling by High-Throughput qPCR: Experiments are done in rat. Sam-
ples are taken from kindled animals (rats subjected to a surgery to implant electrodes
into the amygdala which are used later to stimulate (kindle) status epilepticus SE in
animals and to trigger generalized seizure), sham animals (animals that are subjected
to surgery but no kindling) and from naive animals. Profiling of 752 mature miRNAs
was performed at 4 weeks before triggering generalized seizures in animal models and
at 2 minutes, 4 hours, 24 hours, 1 week and 4 weeks after the seizure. Samples are
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taken from blood serum and hippocampal tissues. High-throughput qPCR (CYBER-
Green® and ABI-7900®) Exiqon® 2-panels chips are used for profiling miRNAs from
blood and hippocampus samples. An overview of the experimental design is found in
Figure B.1.

5.2.2 Differential Expression Analysis Procedure for Censored
Expression Data

The maximum number of amplification reaction cycles in qPCR is typically limited to
40 cycles (details in section 2.3). This intrinsic feature of qPCR technology poses the
problem that RNA expression is sometimes not fully quantifiable, i.e. Ct values are
not determined for those features whose amplifications have not reached the threshold
after 40 cycles. This is particularly the case in our study data of cell-free blood serum
with low DNA concentration. Many miRNAs were not expressed across the samples
in the data. A common way to treat these undetermined features is by imposing
their expression Ct value to 40 or by excluding them from the analysis. However, this
renders strongly negative-skewed and often bi-modal distributions of Ct values in the
samples which cannot be corrected by post experiment analysis including advanced
normalization techniques (Figure B.2). This lead to biased results.

Imposing Ct values of 40 for undetermined features or excluding these from the data
is therefore not appropriate, because the true expression values of these features are
simply not known and could be higher than 40. This implies that conventional t-test
based approaches cannot be applied directly, because the statistical distribution of
signals is truncated at the right-hand side.

In order to account for this issue we developed the double detection procedure,
which comprises a detection test as first step and in the second step a subsequent
moderated t-test based approach is used either via the “limma” method or via
estimating parameters form censored data (Figure 5.1). This procedure can be
used in differential expression analysis for any other data where expressions of the
samples or the features are partially not determined. It can also be formulated for
left-censored or interval-censored data.

First Step: The detection test is a one-sided t-test to investigate whether Ct
values of a particular feature in a given sample group are statistically significant lower
than a defined threshold, meaning there is a significant detected RNA expression.
The threshold was set to the average of the maximal observable, normalized Ct values
per sample in a given experimental condition. Formally, this means testing for the
null hypothesis: H0 : Arg_Avr(Ct)c,m ≥ Arg_Avr(max(Ct)c), where m denote
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features and the conditions c are factor combinations of treatments and replicates
factors. It is worth mentioning that due to normalization the maximum Ct value in
a given sample could be higher than 40. The detection test aims to filter out features
that are undetectable in a given sample group. Thus, it ensures the applicability of
t-test based significance tests in the subsequent step.

Figure 5.1: Flow chart of processing and testing procedure for HT-qPCR
data. The detection test decides whether a feature is at all expressed in a
given experimental condition. Differential expression analyses using “limma”
procedure is performed for features, which passed the detection test in both
experimental conditions. Variance and mean of Ct values for features that did
not pass the detection test are estimated via univariate distribution estimation
method for censored continuous data. The estimated parameters are used for
moderated Student t-test for differential expression

Second Step: The Moderated test Features, which passed the detection test are
checked for their differential expression using the “limma” method utilizing empirical
Bayes (details in subsection 3.2.3). However, typically there will be also many
features that do not pass the detection test. The data for these features can be
conceived as continuous randomly right-censored data (of type I). There are several
methods to fit distributions to data with different types of censoring using various
strategies (Turnbull, 1975; Greene, 2005; Leha et al., 2011; Busschaert et al., 2010;
Commeau et al., 2012). We used the method described in Delignette-muller and
Dutang (2015) to estimate univariate distribution parameters (i.e. for individual
features) form the censored HT-aPCR data. The normal distribution is chosen as
candidate and parameters are estimated from the cumulative distribution function
of the parametric distribution using maximum likelihood method (Andersen, 1970;
Aldrich, 1997). Variances and means estimated this way for the individual features
which did not pass the detection test are used instead of the empirical means and
variances. This is done by plugging the estimates following the idea of Smyth (2005)
in a test statistics of the form:
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tgj = β̂gj√
s2
g
√
cgj

, (5.1)

where cgj is the estimated combined variance of the two conditions A and B of
feature g in array j of the design matrix, and the coefficient β̂gj = x̂A − x̂B is the
difference between the estimated means. The prior value s2

g is estimated from the
uncensored part of the data.

Validation via Simulated High-Throughput qPCR Data: In order to examine the
performance of the above procedure 10,000 data sets with two conditions, 12 samples
per condition and 750 features are simulated. A modified version of R package
“madsim1” is used for this purpose (Dembélé, 2013). The function uses a beta
distribution with additive Gaussian noise to originally simulate microarray data. The
parameters of the distributions are modified to generate Ct values bound between
19 and 50. The package allows the use of sample seeds to estimate means and
standard deviations required to initiate the simulation, the real HT-qPCR data set is
utilized to this end. 2% of the features are considered differential and symmetrically
distributed between over and under expressed. A simple cut at Ct value 40 is used
to define the undetermined values.

On average 37% of the features have undetermined expression in at least one sample.
As in the real HT-qPCR data, this percentage increase for cut values lower than 40.
The percentages of undetermined expressions per feature in the simulated data is
comparable to those of the real data, in particular to hippocampus data Figure 5.2.
In addition, the simulated data show mean-variance distribution patters that are
similar to these of the real HT-PCR data (see appendices Figure B.3).

The double detection procedure starts by applying the detection test on the normalized
observations of the individual features in each perturbational condition after filtering
out all features which are entirely not determined in all the samples of at least one
of the two testing conditions. The detection test decides whether a feature is at
all expressed in a given experimental condition or not. This results in two sets
of features; a set of features which passed the detection test in both experimental
conditions, and another set of features that did not. Differential expression analyses
using “limma” procedure is performed on the features in the first set. Variance
and mean for individual features of the second set are estimated using the method
explained above. These values are used in a moderated t-test instead of the empirical
values Figure 5.1.

1https://cran.r-project.org/web/packages/madsim/index.html
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Figure 5.2: Distribution of censored (undetermined) expressions in the simu-
lated and real data. The boxplots shows the percent of undetermined Ct values
per feature in three exemplary simulated data sets, in serum and in hippocampus
data.

Figure 5.3: Performance of the double detection procedure based on ROC
curves from simulated data. The method is compared to the nonparametric
Mann-Whitney test, the unmoderated and moderated t-tests at A 10% censoring
and B 30% censoring
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The double detection procedure is compared against standard methods that simply
ignore the data censoring i.e. consider Ct-value = 40 for undetermined read-outs.
These methods, which are often employed, are the moderated & unmoderated two-
sided Student t-test and Mann-Whitney test. The performances of these tests are
compared based ROC curves in Figure 5.3 (Akobeng, 2007; Parikh et al., 2008; Naeger
et al., 2013). The figure shows that for low percentage of censored observations
in the data (< 15%) the detection power of the double detection procedure is only
better than the unmoderated t-test (Figure 5.3 (A)). However the performance of
the method seem to improve with increasing level of the censorship. The double
detection is found superior to the other methods in heavily truncated data with
censoring percentage between 30% and 40% (Figure 5.3 (B)). The performances
of the tests are also given via sensitivity, specificity, Positive Predictive values and
Negative Predictive values in appendix Table B.1).

However, attention should be paid to the number of samples per condition and the
distribution of the missing values since the maximum likelihood methods requires
sufficient sample size in order to produce unbiased estimates.

5.2.3 Normalization and Differential Expression Analyses in Microarray
Data

Normalization, Preprocessing & Quality Control: Red and green intensities and
their respective background values were extracted from two-channel arrays. In order to
avoid negative corrected intensities and to reduce variability of low intensity log-ratios,
the normal-exponential convolution ‘Normexp’ method was used for background
correction (see subsection 2.2.1). The LOWESS normalization procedure is used
for within-array normalization, and the variance stabilizing normalization (VSN)
for between-array normalization (see section 2.1 & Figure B.4). A rigorous quality
assessment before and after the normalization confirmed the quality of the chips. The
‘GAL’ files from Exiqon together with the 20th release of miRBase® (Griffiths-Jones,
2004; Kozomara and Griffiths-Jones, 2011) were used for chip annotation.

Differential Expression Analysis: Differential expression analyses for miRNAs were
performed using linear models for microarray data analysis “limma” utilising the
empirical Bayes method (see section 3.2) Statistical dependencies of samples between
different conditions and replicates were considered via a factorial design matrix in
“limma” using a ‘condition-replicate’ factor. Contrasts were considered for interaction
effects. Correlations between the technical quadruplicates in the chips were taken
into consideration, and spot quality weights were used (manually flagged spots,
empty, poor and negative spots are downweighted with 0.7, 0.4, 0.2 and 0.1 factors,
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respectively). Corrections for multiple testing (subsection 3.2.4) were done using
Benjamini and Hochberg (1995) method. Significant differentially expressed miRNAs
were reported at FDRBH ≤ 0.05 and visualized via Volcano plots (e.g. Figure B.5)..

Pilocarpine-treated mice samples are compared to their counterpart naive samples at
24 h and 28 days, respectively. SSSE samples at 24 h and 28 days were compared to
a single SSSE control group. In 6-Hertz data, samples at the subsequent time points
(3, 6, 24 and 72 hours) were compared to the samples at the initial time point (0
hours). For further investigation of the differences between late and early time-points
contrast of these time points (i.e. 28 days versus 24 hours) are compared withing
each of Pilocarpine and SSSE model.

5.2.4 Normalization and Differential Expression Analyses in
High-Throughput qPCR Data

Normalization Preprocessing & Quality Control: Ct values of miRNAs are ex-
tracted via Sequence Detection System (SDS 2.4) software. Inter-plate calibration
of the two panels was performed by normalizing signals relative to the feature
UniSp3 IPC. Singal quality was checked by the defined spike-in Controls in the first
panel (UniSp2, UniSp4, uniSp5, UniSp6 & cel-miR-39-3p). The Exiqon 2-panels
chip contains several potential reference RNAs (RNU1A1, RNU5G and U6-snRNA).
These are usually used as indigenous control to normalize miRNA expressions in cell
material. However, these RNAs are degraded in serum samples and therefore could
not be used here. Instead, a geometric mean based global normalization (division of
raw Ct values by the geometric mean expression of all features) was used to remove
non-biological and systematic variations in fractional Ct values between samples
(Dvinge and Bertone, 2009; Vandesompele et al., 2002; Yuan et al., 2006). This is
equivalent to converting data to linear scale. A rigorous quality assessment confirmed
the good performance of the normalization method. The plate layout and annotation
files supplied by the manufacturer for the two panels together with the 21st miRBase®

release (Griffiths-Jones, 2004, 2010; Kozomara and Griffiths-Jones, 2011) were used
for annotation.

Differential Expression Analysis: The procedure devised in subsection 5.2.3 is used
for the differential expression analysis of HT-qPCR data. Time dependency was
modeled via a grouping factor “time point”, and an additional factor “animal model”
accounted for the different treatment conditions. Finally, a random effect was added
to pool variances for the same animal, because several animals had been measured
repeatedly. Benjamini and Hochberg (1995) method was used for multiple testing
correction (subsection 3.2.4) and significant differentially expressed miRNAs are
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reported at FDRBH ≤ 0.05. MiRNA(s) which are detected in one testing condition
but have undetermined expressions in all the samples of the other condition are
ranked based on detla-significance measure (compared to same feature in the control
condition, or compared to a reference gene; 4Ct = CtTarget − CtReference. A
threshold of | 4 Ct| ≥ 4 is considered to delineate miRNA disease relevance (Livak
and Schmittgen, 2001; Schmittgen and Livak, 2008).

Samples of sham and kindled types in the different time points (pre-kindling (0 hours),
2 minutes, 4 & 24 hours, 1 & 4 weeks) are compared to their counterpart groups in
Naïve (wile type). Samples of kindled type are compared in the same manner to
samples of sham type. In addition, different sample sets in subsequent time-points in
each individual rat model are compared to their corresponding reference time point
set.

5.2.5 Normalization and Differential Expression Analyses in RT-PCR
Data

RT-PCR data are produced to validate microarray results of the different time-points
in the mouse models. RT-PCR data are normalized using the reference gene RNAU6.
A two-samples paired t-student test is used for differential expression analyses. In
addition, fold changes are calculated using the MM Ct method (Livak and Schmittgen,
2001). Fold change is defined as FC = 2−MMCt. PCR technology and normalization
methods are briefly explained in section 2.3.

5.2.6 Functional Analysis of miRNA Target Sets

To investigate the associations of deregulated miRNAs (FDRBH ≤ 0.10 and log2(FC) ≤
0.5) to biological processes and cell activities a statistical enrichment analyses of
Gene Ontology (GO®) terms (Ashburner et al., 2000) and in Kyoto Encyclopedia of
Genes and Genomes (KEGG®) pathways (Kanehisa and Goto, 2000)) are performed
(details in section 3.5). This was done via gene set enrichment analysis with regard
to the annotation of miRNA(s) to their target genes. MicroRNA predicted target
genes were retrieved from TargetScan® database release 6.2 (Lewis et al., 2003).
These target sets were tested for overrepresentation of biological process ontology
terms in GO® and of pathways in KEGG® comparing them to the gene universe of
all predicted microRNA targets. A hyper-geometric test was used for this purpose
(subsection 3.5.1) and multiple test correction conducted via Benjamini and Yekutieli
(2001) method for false discovery rate control under dependency (subsection 3.2.4).
Significant KEGG® pathways and GO® terms are reported at FDRBY ≤ 0.10.
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5.3 Results

5.3.1 Global Expression Comparisons Revealed Differences between
Chronic Epilepsy and Acute Seizure Models

Principal component analyses (PCA) are performed to analyze the variance of miRNA
expression in all three models in more detail. The expression values of all detected
miRNAs were included in this analysis.

The PCA plots showed a segregation of the different sample groups between early and
late time points and in treated and naive set of the Pilocarpine model (Figure 5.4 A).
Within each group the samples were clustering together which indicates that similar
miRNA expression patterns are observed. Furthermore, both control groups gathered
closely and are clearly separated from the pilocarpine 24 hours and 28 days time
points. Interestingly, the 24 hours pilocarpine mice represented the lowest variability
within the group and were more separated from both control and the chronic time
points (28 days). Furthermore, early as well as late time points are clustered away
from their respective controls and from each other in the pilocarpine model.

Similar to the pilocarpine model, the samples of SSSE model within each experimental
group are gathered together (Figure 5.4 B). However, the samples in the SSSE model
showed a higher relative variability compared to the experimental groups of the
pilocarpine model. Overall, as observed also in the pilocarpine model, the early and
late time points in the SSSE model can clearly be separated from each other and from
the control group. The clustering observed in both chronic models indicates that
differences in the miRNA expression pattern are detectable between the analyzed
sample groups.

The PCA for the acute seizure model (6-Hertz) is shown in Figure 5.4 C. In contrast
to the chronic epilepsy models, the samples groups of the 6-Hertz model showed
minor separation. However, partial clustering within the control, 24 hours and 72
hours groups on one side and within the 3 and 6 hours groups on the other side can
be observed. This suggests that miRNA expression differs between the early and
late time points in the 6-Hertz model.

Overall, a good separation of the control and treatment groups in the chronic models
is evidenced, whereas this clustering was less pronounced in the acute seizure model.
Furthermore a PCA analysis using all samples of all models and all time-points show
clear separation between acute and chronic models. A moderate separation between
the two chronic models could also be observed, though this might be caused by a
batch effect.
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Figure 5.4: Principal component analysis (PCA). Plots of the first and the second principal components
based on all detected miRNAs. A samples of a animals of the pilocarpine model: 24 h and 28 days naive
versus 24 h and 28 days after pilocarpine-induced status epilepticus (SE); B animals of the SSSE model:
24 h and 28 days naive versus 24 h and 28 days following electrically induced SE; C animals of the 6-Hertz
model: 0 (naive), 3, 6, 24 and 72 h following seizure induction; D showing sample of all animal models at
all time-points.
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A hierarchical clustering of all samples confirmed the finding suggesting closer
correlations of expression patterns in chronic model samples (Figure 5.5). This
highlights the differences in miRNA expression patterns between the chronic models
and the acute seizure model. However, expression patterns in the control samples of
each one of the chronic models are more similar to the expressions of their counterpart
treated groups.

Furthermore, within the chronic models, early time-point (24 hours) is separated
from late time-point (with the control group in between) suggesting that distinct
miRNA expression patterns are potentially involved in the early development of
chronic epilepsy. With progression of the disease (28 days), the two models are
more diverging. Interestingly, in the pilocarpine model, early and late time points
seem to be less related to each other compared to the same time points in the SSSE
model. This suggests that differences in miRNA expression pattern during disease
development are more pronounced in the pilocarpine model.

In addition, the dendrogramm show similarity of expression patters of early time-
point 0 hours and late time-points 24 hours & 72 hours in 6-Hertz model. Expression
patterns in this model at 3 hours are more similar to these at 6 hours. This suggests
that particular similar miRNA are potentially involved in the early development of
acute epilepsy.

Figure 5.5: Dendrogram of hierarchical clustering. Using Euklidean distance
and complete linkage agglomoration of normalized miRNAs expression values
for mouse hippocampus samples of the pilocarpine and SSSE models at 24 hours
and 28 days following SE, as well as of the 6-Hertz model at 3, 6, 24 and 72
hours following seizure
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5.3.2 Double Detection Procedure Identified Differentially Expressed
miRNAs in Rat Serum High-Throughput qPCR Data

The expression of 752 miRNAs are profiled in serum samples from naive, sham and
kindled groups using high-throughput qPCR technology. Due to low concentrations
of biological materials in the samples and qPCR experimental implications RNA
expression Ct values in 42% of the features could not be determined in at least
one sample. The double detection procedure for differential expression enabled the
detection of deregulated miRNAs in serum data. For each of the naive, sham and
the kindled groups post seizure samples at different time-points are compared to the
corresponding post seizure groups (Table 5.1).

Table 5.1: Numbers of differentially expressed miRNAs at the different post
seizure time-point compared to preseizure time point in serum samples from rat
naive, sham and kindeled groups at FDRBH ≤ 0.01 and at FDRBH ≤ 0.05.

Rat Model Type Naive

02 Minutes 04 hours 24 hours 1 week 4 weeks

Significance FDRBH ≤ 0.01 0 0 0 3 0
Significance FDRBH ≤ 0.05 4 3 0 21 21
Rat Model Type Sham

02 Minutes 04 hours 24 hours 1 week 4 weeks

Significance FDRBH ≤ 0.01 1 0 0 2 1
Significance FDRBH ≤ 0.05 1 10 1 15 14
Rat Model Type Kindled SE

02 Minutes 04 hours 24 hours 1 week 4 weeks

Significance FDRBH ≤ 0.01 18 7 0 1 1
Significance FDRBH ≤ 0.05 34 27 3 2 19

Higher numbers of significant differentially expressed miRNAs are detected in the
different time-points in kindled rat samples compared to the corresponding time-
points in naive and sham groups. This highlight the kindling effect in the former
group. In general higher regulation of miRNAs could be observed at early time-points
2 minutes and 4hours compared to late time-point. This indicate higher acute effects
of provoked generalized seizure.
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5.3.3 MiRNAs Show Different Expression Patterns in Pilocarpine, SSSE
and 6-Hertz Mouse Models

The expression of 579 miRNAs are profiled in the different mouse models using
the Exiqon miRNA microarray profiling platform. For each model the treatment
groups at different time-points are compared to the corresponding control groups.
These comparisons brought up high-to-moderate numbers of significant differentially
expressed miRNAs (Table 5.2, details in Appendices B Excel files).

In general all mouse models show higher regulation of miRNAs at early time-points
compared to late time-point. In Pilocarpine and SSSE models the numbers of
deregulated miRNAs at 24 hours (at FDRBH ≤ 0.05; 99 & 87 respectively) are
almost as double as their numbers at 28 days (51, 57 respectively). This gives two
indications; firstly: that epilepsy seizure affect large numbers of microRNAs, secondly:
The effect is higher immediately after the seizure and fades in the course of time.

Table 5.2: Numbers of differentially expressed miRNAs at the different time-
point in hippocapal samples from each of the epilepcy models at FDRBH ≤ 0.01
and at FDRBH ≤ 0.05 (appendices CHAPTER 5 APPENDICES Excel files).

Mouse Model Type PiloCarpine SE SSSE SE

24 hours 28 days 24 hours 28 days

Significance FDRBH ≤ 0.01 68 28 57 39
Significance FDRBH ≤ 0.05 99 51 87 57
Mouse Model Type 6-Herz SE

03 hours 06 hours 24 hours 72 hours

Significance FDRBH ≤ 0.01 78 111 4 1
Significance FDRBH ≤ 0.05 99 146 17 4

The numbers of deregulated miRANs in the 6-Hertz model confirms this finding.
These numbers are even higher at early time points 3 & 6 hours (99, 146 respectively)
compared to later time-points 24 hours and 3 days (17, 4 respectively). The 6-Hertz
acute model, unlike the chronic models (Pilocarpine and SSSE), is characterized by
one-time induced seizure. Therefore, the 6-Hertz model is expected to be sensitive
at early time-points, however, long-term changes of miRNA expression in it are
expected to be less pronounced at later time-points.

Deregulated miRNAs were subjected to a two-way hierarchical clustering showing
up-regulation and down-regulation of miRNAs. The created heatmaps, one for each
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comparison, showed patterns of altered miRNA expression indicating clearly that up-
and down-regulated miRNAs are present in each comparison (Figure 5.6, Figure 5.7,
Figure 5.8).

Figure 5.6: Heatmap plots. The result of the two-way hierarchical clustering
of miRNAs and samples. Expressions of the top 50 differentially expressed
miRNAs (FDRBH ≤ 0.05) are shown. A shows Pilocarpine induced SE mice at
24 hours versus the naive group. B shows Pilocarpine induced SE mice at 28
days versus the naive group.

In the pilocarpine model especially the early time-point (24 hours) showed clustering of
the naive and treated animals and a good separation between both groups (Figure 5.6
A). At the later time point clustering and group separation are less pronounced
(Figure 5.6 B) suggesting that changes in miRNA expression are more distinct at the
early time point. The same can be observed in SSSE model where a clear clustering
and group separation of the naive and treated animals at early time-point 24 hours
is better than in late time point 28 days (Figure 5.7 A & B).
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In the 6-Hertz epilepsy model the separation of naive and treatment samples is best at
time-point 6 hours (Figure 5.8). However, the 4 identified miRNAs at time-point 72
hours also separate the two groups very well in the hierarchical clustering (Figure 5.8
D). Up-regulated and down-regulated miRNAs are identified in all models and all
time-points. The numbers of down-regulated miRANs are generally higher in all
models and time points.

Figure 5.7: Heatmap plots. The result of the two-way hierarchical clustering
of miRNAs and samples. Expression of the top 50 differentially expressed
miRNAs (FDRBH ≤ 0.05) are shown. A shows electrically induced SE mice
(SSSE) at 28 days versus the naive group. B shows electrically induced SE
mice (SSSE) at 28 days versus the naive group.

98



5.3 Results

Figure 5.8: Heatmap plots. The result of the two-way hierarchical clustering
of miRNAs and samples. Expressions of at most the top 50 differentially
expressed miRNAs (FDRBH ≤ 0.05) are shown. The different heatmaps
(A-B) show miRNA expressions in sound-induced SE mice (6-Hertz) at
different time points versus the control naive group. A 03 Hours, B 06
Hours, C 24 Hours, D 72 Hours.
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5.3.4 Overlap Analyses of Deregulated miRNAs in Mouse Models

In order to identify miRNAs linked to the disease development across all models the
overlap of miRNA between the two chronic epilepsy models (pilocarpine and SSSE)
and the acute seizure model (6-Hertz) was performed. Here, the analysis was based
on all differentially expressed miRNAs (at FDRBH ≤ 0.05) for the comparisons of
treatment and control groups within each model.

A first comparison was made between the three models at time-point 24 hours upon
induction of the status epilepticus (Figure 5.9 A). Only 3 miRNAs (miR-142-5p,
mmu-miR-331-3p & mmu-miR-30a-5p) are found differential in common in all models.
Further 2 miRNAs (miR-218-2-3p & miR-335-3p) are shared between Pilocarpine
and SSSE models. In contrast 36 miRNAs are found differential in Pilocarpine and
SSSE models. This is might be due to the fact that fewer miRNAs are differentially
expressed in the 6-Hertz model. This indicates that the chronic epilepsy and acute
seizure models can be characterized by different miRNA expression patterns at the
time-point 24 hours.

To investigate the both chronic models a detailed overlap analysis of their miRNAs
sets was performed. At the early time-point (24 hours), the majority of altered
miRNAs were exclusively present in the pilocarpine model (55 miRNAs; 55%), while
27 miRNAs (31%) were exclusively present in SSSE model. At the late time point
(28 days), 18 miRNAs (35%) were exclusively specifically altered in pilocarpine, while
17 miRNAs (30%) were SSSE model-exclusive (Figure 5.9 B). In contrast, only a
single miRNA is in common in all groups and 15 miRNAs are shared between the
two chronic models at time-point 28 days. This demonstrates that big proportion of
all deregulated miRNAs were model and time point specific.

MiRNAs that are differentially expressed in both chronic models and at both time
points might be the most interesting miRNAs as targets for disease intervention.
However, only a single miRNA (miR-494-3p) is overlapping. For this reason, all
miRNAs that show up in both models at the early or late time-points are considered
for further investigation. At 24 hours 36 miRNAs and further at 28 days 14 are
identified as commonly deregulated for both models. The annotation of these miRNAs
which are potentially therapeutically interesting are shown in appendices B Excel
tables.

Analysis of the different time points in the acute seizure model 6-Hertz showed that
early time points (3 and 6 hours) displayed higher significant miRNA deregulation,
while at later time-points few miRNA were changed (Table 5.2). The majority of the
miRNAs (67; 46%) were significantly deregulated uniquely at the 6 hours time point
whereas at the 3 hours 26 miRNAs (26%) were exclusively deregulated (Figure 5.9
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C). 73 miRNAs are in common in both groups and two (miR-335-3p & miR-138-5p)
are found in all time-points. Taken together, our data show that in contrast to
the chronic models, the majority of changes in differential miRNA expression were
detected during the very early time points in the acute seizure model. Indeed, as the
acute model is characterized by the induction of a single seizure long term changes in
miRNA expression are expected to be less pronounced in the 6-Hertz model compared
to the chronic models.

Figure 5.9: Venn Diagrams of all significantly deregulated miRNAs (FDRBH ≤
0.05) in the different mouse models. A shows the numbers and overlaps of
commonly deregulated miRNAs in 6Hertz, pilocarpine and SSSE models at 24
hours following induction of seizure. B shows numbers of deregulated miRNAs
in the chronic pilocarpine and the SSSE model at 24 hours and 28 days following
SE. C shows deregulated miRNAs in the acute 6-Hertz mouse model at 3, 6, 24
and 72 hours following seizure

5.3.5 Deregulated miRNAs Successfully Validated via External
Experiments

RT-PCR technology is used for validation of the results of the microarray data.
Additional independent samples were taken for this purpose from Pilocarpine and
SSSE models at each time-point. RT-PCR runs are done in triplicates for miRNA
sets in both models at each time points. In particular miRNAs displaying differential
expression identified using microarray platform to span a range of high signals
(FDRBH ≤ 0.05 and | log2(FC) |≥ 1) and deregulated-overlapping in chronic
epileptic models at early and late time point, as well as overlapping in acute epilepsy
models at early time points (Table 5.3).
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Table 5.3: Validation of deregulated MiRNA’s via RT-PCR experiments. Lists
of highly up-regulated and down-regulated miRNAs in Pilocarpine and SSSE
epilepcy models at time-points 24 hours and 28 days validated through RT-PCR
procedure.

PiloCarpine SE SSSE Model

24 hours 28 days 24 hours 28 days

mmu-miR-21 mmu-miR-130a mmu-miR-142-3p let-7b
mmu-miR-124 mmu-miR-132 mmu-miR212 mmu-miR-221
mmu-miR-124* mmu-miR-181 mmu-miR-297-3p mmu-miR-222
mmu-miR-142-3p mmu-miR-221 mmu-miR-882 mmu-miR-298
mmu-miR-142-5p mmu-miR-222 mmu-miR-676
mmu-miR-212 mmu-miR-298
mmu-miR-882 mmu-miR-382

mmu-miR-409-5p

Endogenous control gene RNU6, which is also measured in parallel with RT-PCR from
the samples, is used as reference gene for normalization. Fold changes are calculated
using the MM Ct method (Livak and Schmittgen, 2001). Fold change is defined as
FC = 2−MMCt. A paired t-student test is used to test for differential expression
and p-values are computed. See section 2.3 for details about PCR technology and
normalization methods for PRC data.

Tha majority of moderately deregulated miRNAs (FDRBH ≤ 0.5 and 1 ≤| log2(FC) |≤
0.5), e.g. miR-331-3p, miR-30a-5p & miR-211-5p in Pilocarpine model at 24 hours,
showed no statistical difference between control and treatment groups in RT-PCR
data (i.e | FC |≤ 0.5). In contrast, a number of highly deregulated miRNAs in
Pilocarpine and SSSE models at 24 hours and 28 days are clearly confirmed in
the RT-PCR data in terms of deregulation direction and the rough deregulation
magnitude (Figure 5.10). For instance, the Ct values of miRNA-212 and miR-142-3p
(which were found highly up-regulated in microarray data at 24 hours) increased
significantly in both chronic epileptic models at 24 hours in comparison to the control
groups.

While the fold change (FC) of miR-882 in Pilocarpine 24 hours animals is hardly
above 0.5, it is over 3.5 in SSSE samples at 24 hours. This actually corresponds to the
microarray signals of this miRNA in the models at that time-point. Similar patterns
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could be observed in miR-221 at time-point 28 days; its FC is high in Pilocarpine
animals and low in SSSE. Overall, the interesting sets of miRNAs listed in Table 5.3
have at least fold changes of 0.5 (Figure 5.10).

In general, the qRT-PCR results widely confirmed the validity of findings of the
microarray experiments. These validated miRNAs can therefore be considered
potential biological markers for epilepsy and their putative target mRNA might be
investigated for further validation.

Figure 5.10: RT-PCR expressions of selected validated miRNAs which have
been identified as differentially regulated in samples of the different mouse models
at different time-points. Bar-plots show the absolute fold change values (| FC |).
Fold changes defined as FC = 2−MMCt, where the Ct values are normalized to
the reference gene U6-RNA (M Ct) and compared to control Ct values (MM Ct).
Sample size in the SE samples and control sets N = 8, RT-PCR reaction are
done in triplicates. A & B show results in Pilocarpine mouse model at 24 hours
and 28 days respectively. C & D show results in SSSE mouse model at 24 hours
and 28 days respectively.
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5.3.6 Targets of Deregulated miRNAs are Enriched in Meaningful
Biological processes and Biochemical Pathways

Mapping of mRNAs targeted by miRNAs using ‘targetScan’ (Lewis et al., 2003)
identified hundreds of genes (∼ 279 - 500, depending on comparison) including many
mRNAs known to be involved in epilepsy. The target mRNAs are used to perform
over-representation enrichment analysis of gene ontology and KEGG pathways.

In the obtained results for KEGG and GO analyses only few terms and pathways
show striking significance (FDRBY ≤ 0.10) in the different models and time points.
Nevertheless, the presence of many pathways related to etiology of epilepsy (such
as endocytosis, actin cyroskeleton remodeling, mTOR etc) support validity of used
approach.

Our finding put in focus ErbB signaling pathway, that was most enriched at both 24
hours and 28 days as well as between those two time-points in Pilocarpine animals
(Table 5.4). Interestingly, a recent report by Li et al. (2011) linked ErbB family (in
particular ErbB4 protein) to etiology of epilepsy. Down-regulation of neuregulin
1 (NRG1)-ErbB4 pathway decreased the excitability of fast spiking paravalbumin
(FS-PV) interneurons via regulation of voltage-gated potassium channel (Li et al.,
2011). Furthermore, the authors showed that mice deficient for ErbB4 receptor
in paravalbumin interneurons (Pvalb-cre;Erbb4-/- mice) were more susceptible to
seizures after treatment with colvusant agent pentylenetetrazole (PTZ) and pilo-
carpine. Interestingly, the gene ErbB4 is down-regulated in temporal lobe epilepsy
patients which makes ErbB pathway interesting pathway to target for anticonvulsant
therapy.

Detailed analysis of ErbB signaling pathway and miRNA targeting it raised ten
miRNA candidates that of particular relevance to this pathway. These are; miR-
223, miR-184, miR-431, miR-186, miR-142-3p, miR-873, miR-126-3p, miR-149,
miR-324-5p and miR-31. The first 7 of these miRNAs are detected significantly
deregulated for early onset of epilepsy.

Another pathway, the actin cytoskeleton regulation pathway was found enriched at
early pilocarpine stage. This finding agrees with previously reported critical role
of actin cytoskeleton dynamics and glutamatergic synaptic function in dendritic
spine structural integrity and stabilization which in turn leads to the development
of recurrent seizures in pilocarpine-treated animals (Ferhat, 2012). Also in kainite
model depolymerization of actin and a corresponding changes in dendritic morphology
is found to promote seizure (Zeng et al., 2007; Guo et al., 2012). This implicates
importance of actin cytoskeletal maintainance as a crucial factor for prevention of
seizures.

104



5.3 Results

mTOR and insulin pathway were found enriched in both early and late stage in
pilocarpine model. Both pathways are implicated in the development of epileptic
seizures (Huang et al., 2010; Cho, 2011). MAPK signaling pathway was significantly
altered in Pilocarpine. Although the downstream targets of MAPK in epilepsy are
still unknown, recent studies demonstrated the MAPK activation in animal models
of epilepsy. Further in-vitro and in-vivo rat studies suggested that up-regulating p38
and MAPK could help treat epilepsy (Jung et al., 2010).

Similar pathways were affected at the early stage of disease development in SSSE
model. For instance, ErbB pathway was found enriched in SSSE model and thus
again pointing at the importance of ErbB for the development of epilepsy. In contrast
to Pilocarpine model, at late stage of SSSE there were no changes in either of the
previously discussed pathways (Table 5.4).

KEGG pathway enrichment analyses for early phases (3 & 6 hours) in 6-Hertz model
pointed towards Natural killer cell mediated cytotoxicity. Bauer et al. (2008) pointed
out that these natural killers (NK) are increased following epileptic seizures in the
peripheral blood of TLE patients with hippocampal sclerosis levels (Bauer et al.,
2008). ErbB and mTOR pathway were also enriched at the 6 hours stage in 6
Hertz model. Functional changes disappear with time in 6-Hertz mouse model, i.e.
there are no significantly enriched pathways or GO terms at 24 and 72 hours. This
corresponds to the low numbers of deregulated miRNA detected by the differential
expression analyses of these time-points comparing them to the reference time-point
0 hours.

Further nonspecific pathways such as pathways in cancer were also detected as
enriched. Only few and general gene ontology terms were weakly significant enriched
in Pilocarpine late time-point (Table 5.5). However, relevant GO terms were found
enriched in late time-point, these include; negative regulation of nucleobase-containing
compound metabolic process, nuerogenesis, negative regulation of transcription from
RNA polymerase II promoter and negative regulation of biosynthetic process. The
findings of the enrichment analyses might help focus the exploration tactics for novel
therapeutic applications.
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Table 5.4: Pathways enrichemtn analyses results. Significantly enriched KEGG pathways by the miRNA
targets in the different comparisons in each epilepcy model and time point at FDRBY ≤ 0.10.

ID Term Size count FDRBY

Pilocarpine-24H vs. Pilocarpine-Naive-24H

4012 ErbB signaling pathway 61 32 0.013895
4360 Axon guidance 119 35 0,020150
4660 T cell receptor signaling pathway 77 24 0,028920
5215 Prostate cancer 68 22 0,033800
4010 MAPK signaling pathway 174 87 0.041871
4810 Regulation of actin cytoskeleton 143 59 0.043464
4150 mTOR signaling pathway 37 14 0.072392
4144 Endocytosis 140 29 0,076122
4910 Insulin signaling pathway 100 20 0,086693

Pilocarpine-28D vs. Pilocarpine-Naive-28D

4350 TGF-beta signaling pathway 60 9 0,040943
5200 Pathways in cancer 220 109 0.048769
4310 Wnt signaling pathway 123 14 0,053270
4012 ErbB signaling pathway 61 22 0.058952
4062 Chemokine signaling pathway 107 32 0,061088
230 Purine metabolism 70 19 0,061382
4120 Ubiquitin mediated proteolysis 83 47 0.061871
5210 Colorectal cancer 46 29 0.070986
4144 Endocytosis 140 31 0,072039
4916 Melanogenesis 67 30 0.076450
4910 Insulin signaling pathway 100 16 0,089920
4150 mTOR signaling pathway 37 12 0.092738

Continued on next page
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Table 5.4 – Continued from previous page
ID Term Size count FDRBY

Pilocarpine-28D vs. Pilocarpine-Naive-24H

4120 Ubiquitin mediated proteolysis 83 47 0.046015
4010 MAPK signaling pathway 174 66 0.046910
5200 Pathways in cancer 220 109 0.048769
5210 Colorectal cancer 46 29 0.061871
4916 Melanogenesis 67 38 0.063293
4012 ErbB signaling pathway 65 9 0,070366

SSSE-24H vs. SSSE-Naive

4810 Regulation of actin cytoskeleton 143 19 0.076620

SSSE-28D vs. SSSE-24H

4012 ErbB signaling pathway 61 24 0.044570
5200 Pathways in cancer 220 63 0.057812

6-Hertz.03H vs. 6-Hertz.00H

4360 Axon guidance 110 24 0.034053
4650 Natural killer cell mediated cytotoxicity 51 16 0,040189

6-Hertz.06H vs. 6-Hertz.00H

4120 Ubiquitin mediated proteolysis 83 39 0.006018
4150 mTOR signaling pathway 37 20 0.019201
4012 ErbB signaling pathway 61 29 0.037442
4650 Natural killer cell mediated cytotoxicity 51 13 0,057200
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Table 5.5: Gene Ontology enrichemtn analyses results. Significantly enriched Gene Ontology (GO)
terms by the miRNA targets in the different comparisons in each epilepcy model and time point at
FDRBY ≤ 0.10.

ID Term Size count FDRBY

Pilocarpine-24H vs. Pilocarpine-Naive-24H

GO:0080090 regulation of primary metabolic process 1974 386 0.08296

Pilocarpine-28D vs. Pilocarpine-Naive-28D

GO:0001702 gastrulation with mouth forming second 14 9 0.092096
GO:0045934 negative regulation of nucleobase-containing compound metabolic process 487 106 0.092096
GO:0000122 negative regulation of transcription from RNA polymerase II promoter 299 70 0.092096
GO:0022008 neurogenesis 315 72 0.092096
GO:0051094 positive regulation of developmental process 245 59 0.092096
GO:0033077 T cell differentiation in thymus 16 9 0.092096
GO:0002053 positive regulation of mesenchymal cell proliferation 26 12 0.092096
GO:0009792 embryo development ending in birth or egg hatching 336 76 0.092096
GO:0009890 negative regulation of biosynthetic process 529 111 0.092096
GO:0045944 positive regulation of transcription from RNA polymerase II promoter 414 90 0.092864

SSSE-24H vs. SSSE-Naive

GO:0050794 regulation of cellular process 512 41 0.079812
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5.4 Conclusions

The advantage of our study is in overstepping single epileptic model currently used
for miRNA screening. This facilitated an approach for systematic comparisons
of three different epilepsy models at different time points mimicking distinctive
forms and phases of disease development. Adapted normalization methods and a
devised procedure for differentially expression analysis for censored data enabled the
identification of novel miRNAs and relevant target genes as key players in epilepsy.

Alterations in miRNA patterns were found more pronounced in the animals of chronic
epilepsy models in comparison to the 6-Hertz animals. Significantly altered miRNA
expression patterns were detected in the early as well as in the late time-points
following SE in chronic models. The number of miRNAs co-regulated in both models
is much higher in early than in the later stage of disease progression. This might
be due to the underlying biological processes taking place in the respective disease
progression stage.

In the acute seizure model, deregulated miRNAs represent stress-induced biomarkers
changed after a single seizure. Peak of biological response in this model is taking place
immediately following seizure and returns back to basal levels comparable to control
as time progresses. Deregulated miRNAs sets in the acute model have small to no
overlaps to the sets of the chronic models. The low correlations between expression
signatures and the small overlapping in the deregulated miRNAs between acute and
chronic models clearly delineate chronic models as appropriate epilepsy models. The
microarray expression patterns of a number of the overlapping deregulated miRNAs
in the chronic epilepsy animals were successfully validated by independent RT-PCR
experiments. Indeed, some of the detected miRNA have been already implicated in
animal models of epilepsy. However, many of the miRNAs common for both chronic
models have not been tested in-vivo before.

Enrichment analyses revealed biological processes and pathways that are of great
relevance to the disease. These were more pronounced at early/acute phase of
disease due to the severity of neuronal changes taking place during the onset. At
the later/chronic time point lower number of pathways comes to focus. This can
be due to the fact that processes underlying pathophysiology of epilepsy present in
later/chronic stages of disease have cumulative effects. This could mean that not
only alteration in one biochemical process is responsible for spontaneous recurrent
seizures, but rather additive effects of more than one biochemical network contribute
to epileptic episodes. Alterations in miRNA signature at late/chronic stages could
therefore cause subtle effects that per se together lead to onset of symptoms.
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CHAPTER 6
BIOLOGICAL EFFECT SIMILARITIES
OF COMPOUND TREATMENTS BASED
ON INTEGRATED INFORMATION
FROM MULTIPLE SOURCES

6.1 Introduction

Disease and drug perturbations affect biological systems by interacting with different
types of molecules leading to regulation of expressions on cellular level (Hopkins
and Groom, 2002; Iskar et al., 2010; Schneider and Klabunde, 2013). Perturbations
involve modifying drugs in lead optimization for better biological activity or changing
proteins (e.g. receptor proteins) when adding chemical ligands in order to determine
location of binding, affinity of the ligand or the structure of the resulting complex
(Brader et al., 1997; Williamson, 2013).

In this chapter a new method for drug-drug similarity assessment based on drug-
proteins interaction network and drug pharmacological effects on disease related
targets is introduced and applied to detect useful patterns. The integration of
interaction information and perturbation data can potentially help reveal how certain
compounds work and which proteins are affected (Chu and Chen, 2008). In return,
this might aid the difficult and expensive process of drug discovery through drug
repurposing or the direct development of novel drugs (Bakheet and Doig, 2009; Iorio
et al., 2010; Wang et al., 2013a).
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Given the large number of targets and the multitude of drug-like chemical (synthetic
small molecules), enzymes, antibodies, organic- & inorganic-derived and oligopeptide
etc, the drug-target space is immense. It is estimated that around 3M human
proteins are potential drug targets (Hopkins and Groom, 2002; Russ and Lampel,
2005; Overington et al., 2006; Li and Lai, 2007; Landry and Gies, 2008). ChEMBL
alone has bioactivity evidences for over 1.4 M distinct compounds with around 13 M
bioactivity evidences (Gaulton et al., 2012). Older computational methods aiming to
predict potential drug-target interactions can roughly be classified into ligand-based
approaches and protein-based approaches. The former is based on similar properties
principle, i.e. compounds of similar structure usually share similar physicochemical
properties and biological activities (Cramer et al., 1978; M. Johnson, 1990). The
latter, the targets first principle approach, focuses on protein-ligand docking.

Structure-based analysis of proteins exploit structural and physicochemical protein
properties (Hopkins and Groom, 2002; Orth et al., 2004; Russ and Lampel, 2005;
Keller et al., 2006; Bakheet and Doig, 2009) in order to predict protein druggability
(Nayal and Honig, 2006; Cheng et al., 2007; Mehio et al., 2010; David Andersson
et al., 2011). However, this approach requires protein structure, which is not available
for many proteins (e.g. membrane proteins). Moreover, druggable proteins are not
necessarily drug targets. Ligand-based methods like QSAR (Quantitative Structure-
Activity Relationships) are based on similar properties principle and aim to predict
binding and ADME-Tox qualities of compounds from its chemical structure (Cramer
et al., 1978). These methods compare candidate compound to known drugs of certain
target(s) e.g. using machine learning method (Butina et al., 2002; Byvatov et al., 2003)
or partial least squares (PLS) (Cramer et al., 1988, 1989). However, compounds with
different structures might nevertheless have similar effects and vice versa. Moreover,
most of the physico-chemical properties and quantum-chemical descriptors do not fully
describe the structural characteristics of compounds (Bajorath, 2014). Furthermore,
the performance of these methods decrease rapidly with decreasing number of known
drugs for a target protein (Wang et al., 2013a).

Further statistical methods have been proposed that use the drug-target space and
pharmaceutical information e.g. in a graph-model settings (Cheng et al., 2012), using
supervised and semi-supervised learning methods (Yamanishi et al., 2008; Bleakley
and Yamanishi, 2009; Xia et al., 2010), utilizing chemical structure topology (Keiser
et al., 2007) or utilizing genomic sequence and pharmacological effect information
(Yamanishi et al., 2010). However, these methods either ignore protein interaction
information and/or require compound & protein structure. Moreover, missing drug-
target relationships are treated as negative samples. Gottlieb et al. (2011) suggested
a large-scale prediction method for compound indications using multiple drug-drug
and disease-disease similarity measures.
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Methods that rely on chemical structure similarity are thought to produce less
sensitive and accurate search results as these similarities are overly conservative and
usually put much weight on irrelevant details. It is also important to understand
that a chemical ligand’s effect in the living system is not limited to direct target
proteins. Much more chemical activation or inhibition of a particular protein target
can alter downstream signaling cascades and transcriptional responses (Schneider
and Klabunde, 2013).

Hence, a new line of research focuses on the use of treatment effects information. For
instance, side effects information of marketed drugs gained from text mining data
have been used in many methods to predict cooperative effects (Campillos et al.,
2008; Kuhn et al., 2010; Lee et al., 2011; Brouwers et al., 2011; Yang and Agarwal,
2011; Hurle et al., 2013; Wang et al., 2013a,b; Ye et al., 2014; Iwata et al., 2015).
Other methods used transcriptional responses following treatment information from
array data (e.g. from the Japanese Toxicogenomics Project (Uehara et al., 2010) or
the Connectivity Map (Lamb et al., 2006)) to predict novel drug indications (Hu and
Agarwal, 2009; Iorio et al., 2010; Iskar et al., 2010; Sirota et al., 2011; Qabaja et al.,
2014; Zhao et al., 2014). However, side effect information is limited to approved
drugs where side effects have been sufficiently assessed, and treatment response data
are noisy, inconsistent and limited to few hundreds of compounds and a couple of
specialized cell lines.

In this work a novel similarity measure for chemical compounds, the Biological Effects
Similarity (BES), is presented. This measure captures treatment induced biological
effects via a large number of target protein features. A consensus clustering (Monti
et al., 2003) is performed based on the BES measure to identify statistically stable
compound sub-groups. This large-scale computational framework can be used to
predict approved and novel molecules and does not explicitly require knowledge
about protein or ligand structures.

An additional feature of the BES is the direct integration of compound-target
affinities. Hence, it is in particular applicable for unsupervised, exploratory analysis
of compound collections with heterogeneous binding affinities, focusing e.g. on
detection of compound sub-groups with similar induced biological effects. This
situation is exemplified here by consensus clustering of almost 4,700 compounds,
which have been screened against protein targets that have been associated to HIV
and cancer. Both diseases comprise a large number of associated protein targets
and accordingly tested compounds. Consensus clustering with our BES measure
was able to identify well separated and statistically stable compound clusters with
several so far untested compound-target combinations. BES clustering thus suggests
to experimentally explore novel compound-target combinations.
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6.2 Material and Methods

6.2.1 Dataset

This study focuses on compounds targeting proteins, which have been associated
to cancer or HIV. These are two relevant diseases with sufficiently high number of
associated targets and compounds being developed. Both diseases are seemingly quite
different, and communalities between compounds with respect to induced biological
effects are thus not a priori expected, but cannot be excluded either. DisGenNet
(Bauer-Mehren et al., 2011) is used to retrieve disease related human proteins for
both, HIV and cancer (accessed 12/2013). These were then linked to pharmacological
data from ChEMBL® (Gaulton et al., 2012) and DrugBank® (Law et al., 2014),
yielding 60 human target proteins putatively related to HIV and 405 proteins (with
available Entrez gene IDs) putatively related to cancer.

Altogether there were 74,606 compounds with 115,007 compound-target indication
in HIV and 431,566 molecules with 1,199,265 indications in cancer. Only biological
activities assessed by the inhibition constant (Ki) and measured in saturation
or competitive binding assays are considered. Methods for assessing compound’s
biological activity towards target protein are explained in section 2.4. Compounds
with no or very weak activity (Ki > 10−6M) are removed. Moreover, compounds for
which no MACCS fingerprints could be computed are omitted (see subsection 6.2.6).
Target specific biological activities (Ki values) of compounds were standardized to
affinity values (subsection 6.2.3).

Thus, 511 compounds for HIV and 4,299 for cancer are considered at the end.
Altogether the compounds targeted 22 proteins in HIV and 198 proteins in cancer.
They showed an overlap of 154 compounds and 7 targets. The complete dataset
contains 4656 unique compounds (containing 122 FDA approved drugs according
to DrugBank®) comprising 72,925 interactions with 213 target proteins. The whole
dataset can be visualized as a large scale compound-target network (Figure 6.1).

6.2.2 Biological Effects Similarity (BES)

General Idea Our novel BES measure has two major aspects: First, protein-protein
similarities are calculated based on several information sources and then combined
into one consensus (Fig. 6.2). The second aspect of the approach is the integration
of compound-target affinities, which can be retrieved from public databases such
as ChEMBL (Gaulton et al., 2012). In this context, compound-target relationships
and relationships among proteins can be conceived as a network comprising two
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interconnected graphs. One graph is a directed, bipartite graph indicating connections
between compounds and targets. This graph is typically sparsely connected as potency
information is not available for every compound-target combination (Fig. 6.2). The
other one is an undirected complete graph that describes similarities between each
pair of proteins.

Figure 6.1: Compound-target network. Partial view of compound-target
network used in this study: Bioactivities are visualized by edge thicknesses.

The BES algorithm begins by assigning weights to edges in the combined graph. An
edge between a compound and a target protein in the first graph corresponds to an
appropriately scaled compound potency value (see subsection 6.2.3). An edge between
any pair of proteins in the second graph is weighted by the consensus similarity
from several information sources (Praveen and Fröhlich, 2013). The intuition behind
the approach is to describe biological effects similarity of a compound pair by the
biological similarities of their targets, which is weighted by the affinities of each
compound to its targets. While doing so it has to be taken into account that one
and the same protein can be targeted by both compared compounds at the same
time. The method is described in detail in the following passage.
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Step 1: Similarity of Protein Targets Let Ti be the set of proteins targeted by
compound ci and Tj be the set of proteins targeted by compound cj . For each protein
pair (p, q) ∈ Ti × Tj the similarity with respect to several annotations is calculated,
namely:

• Similarity of Gene Ontology terms (biological processes)

• Similarity of protein domains

• Path distance in protein-protein interaction network and canonical pathways

• Potentially interacting protein domains

Details about the way in which this is done are described later. The result is a set of
L similarity matrices of size | Ti | × | Tj |. These matrices are combined into one
target similarity matrix S using the Borda counts approach described in Marbach
et al. (2012). Values in S are always between 0 and 1. Notably, the intersection
between Ti and Tj can be non-empty and thus a value of 1 can appear at any position
in S.

When integrating data from different information sources a major difficulty is the
missing annotation information in one or more of the sources. How this problem is
addressed is explained in section subsection 6.2.4.

Step 2: Weighting with Compound Affinities Compounds ci and cj may have
rather different affinities to their targets. It is assume that these affinities have been
sufficiently re-scaled to the interval [0, 1] in a pre-processing step (subsection 6.2.3).
Let us denote the vector of affinities to proteins Ti and Tj by , −→a i ∈ Rn and −→a j ∈ Rm,
respectively. The affinity weighted n×m similarity matrix between protein targets
can then be computed as

BES0 = (−→a i ⊗−→a j) ∗ S, (6.1)

where ⊗ and ∗ denote the outer and element-wise products, respectively.

Step 3: Integration into BES Matrix BES0 consists of protein target similarities,
which are weighted by products of compound affinities. These values need now to be
combine into the desired Biological Effects Similarity (BES) measure. The intuition
behind the approach is that; any given p ∈ Ti is matched with p ∈ Tj to which it is
most biologically similar and most similar with respect to compound affinities.
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Thus, highest possible similarities (i.e. best possible "matches") of affinity weighted
target pairs (p, q) ∈ Ti × Tj are considered. In other words, the row and column
maxima in BES0 are separately computed. The arithmetic mean of all these m+ n
similarity values is then the raw BES value (Figure 6.2).

Figure 6.2: Example calculation of Biological Effects Similarity (BES) for two
compounds c1, c2: First step: Similarities of all target proteins are integrated in
a probabilistic manner on the basis of different biological information sources (A).
Second step: Target similarities are weighted by compound affinities (bioactivities
standardized to [0, 1]) (B). Third step: The BES is computed based on best
matches of affinity weighted protein target pairs (C). Fourth step: The BES is
normalized to [0, 1] (D).
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Step 4: Normalization of BES The raw BES is not guaranteed to lie in the
interval [0, 1], and self-similarities can be different from one. Therefore, a suitable
normalization of the raw BES values is needed. In this context the normalization
used is defined as:

BES.norm(ci, cj) = (2×BES(ci, cj))
(BES(ci, ci) +BES(cj , cj))

. (6.2)

6.2.3 Drug-Target Affinities

The efficiency of the method depends not only on the protein confidence relation-
ships and the compound-target bioactivity values, but also it depends on the chosen
normalization method for the bioactivity values. Ki values are used here to de-
scribe compound-target affinities. Raw affinity values are first scaled to the same
concentration unit (e.g. nM). The Ki values are normalized to the range [0, 1] via:

norm(Kii) = e−Ki

e−mini(Kii)
(6.3)

where mini runs over the set of all Ki values in the dataset. Higher normalized
affinity values thus indicate higher potency of the compound for the respective target.
Because the chosen concentration unit can numerically affect the normalized affinity,
a number of concentration units for Ki bioactivity values are investigated (Figure 6.3
right).

The scaling adopted here seems to give most favorable characteristics: Scaling
bioactivity values to 10−3nM yields an affinity curve that appropriately reaches a
plateau of zero affinity approximately in the middle of Ki value range that defines
weakly potent compounds (Figure 6.3).
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Figure 6.3: (Left plots) Overview of HIV and cancer compounds and their
bioactivity levels. Compounds are stratified by disease and activity classes,
which are commonly used in pharmaceutical research (Roider et al., 2014):
Ki ≤ 10−8M Strong, 10−8M < Ki ≤ 10−6M Medium, 10−6M < Ki ≤
10−5M Weak and Ki > 10−5M No-activity. (Right plot) Standardization
of compound affinities with different concentration units. Compounds Ki
concentrations in nM are represented in X-axis, Y-axis represents the normalized
bioactivity (affinity) [0, 1]. The scaling represented by the green curve to 10−3nM
is used, as it appropriately reaches a plateau of zero affinity in mid of the class
"Weak" (according to classification of compounds based on bioactivity strength)

6.2.4 Biological Similarity of Compound Targets

The question, how to quantify the similarity between two compound targets, can
be answered from different points of view. Accordingly different features can be
taken into consideration. Here, annotations with respect to pathways (KEGG,
PathwayCommons - (Kanehisa and Goto, 2000; Cerami et al., 2011)), biological
processes (Gene Ontology - (Harris et al., 2004)), protein domain annotation (InterPro
- (Mulder et al., 2002, 2007; Hunter et al., 2012)) and protein domain interactions
(DOMINE - (Yellaboina et al., 2011)) are employed.

For GO annotation (biological processes) the default similarity measure for gene
products implemented in the R-package GOSim was used (Fröhlich et al., 2007),
based on the information theoretic GO term proximity measure proposed by Lin
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(1998). Furthermore, protein domain annotations obtained from DOMINE were
compared on the basis of a binary vector representation via the cosine similarity.
The relative frequency of interacting protein domain pairs was considered as another
scoring measure for compound target similarity. Finally, network information from
pathway databases was integrated by computing shortest path distances between
pairs of proteins. For that purpose KEGG pathways were converted to a graph
structure using KEGGGraph (Zhang and Wiemann, 2009) and then joined into
one directed network. Similarly a large scale protein-protein interaction graph was
constructed form PathwayCommons. The idea behind the use of shortest path
distances and protein domain interactions was that targeting closely interacting
proteins should increase the chance to induce similar biological downstream effects.

Effectively, all considered features (pathways, GO, protein domains and protein
domain interactions) yielded a separate similarity matrix. To integrate these different
similarity matrix into a consensus, the rank based approach proposed in the work
of Marbach et al. (2012) is applied. Importantly, the method in principle allows for
handling missing values in one of the used similarity matrices, which can happen
due to incomplete annotation: For each pair of protein targets only completely
available features were considered. However, the set of available features could in
principle differ between protein pairs. For example, KEGG pathway annotation may
be available for protein pair (p1, p2), but not for both (p1, p3). Hence, for pair (p1,
p3) KEGG annotation has no numerical influence.

6.2.5 The Consensus Clustering

The consensus clustering approach proposed by Monti et al. (2003) is used (see
methods in subsection 3.4.2). The number of iterations was set to 200, and in each
of these iterations a complete linkage clustering was conducted on sub-samples of
size 80% of the data.

The area under the CDF (AUC) is then reported as a measure of clustering stability.
Monti et al. (2003) propose the AUC as a method to select a suitable number
of clusters. However, in our implementation it was not always easy to determine
the maximum relative increase in AUC. Empirically the AUC was not always a
monotonic increasing function in the application example. We therefore determined
the number of clusters by the following criterion; higher AUC values correspond
to higher number of clusters until the AUC reaches a first maximum and is not
increasing in 3 subsequent steps (see subsection 3.4.2 for more details).

After the number of clusters have been determined the quality of the produced
clustering is investigated independently by silhouette plots (Rousseeuw, 1987). The
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resulting cluster groups are investigated through enrichment analyses of individual
clusters. More specifically, this is done by looking for statistical overrepresented GO
terms, KEGG pathways, protein domains and sequence motifs (subsection 6.2.8).

Apart from consensus hierarchical clustering, the affinity propagation based clustering
is used (Frey and Dueck, 2007). This is a method which based on the concept of
"message passing" between data points and tries to determine a good cluster number
in an automated fashion.

6.2.6 Chemical Structure Similarity

Similarity searching techniques to aid the ligand-based virtual screening of large
compound collections are usually derived solely from compounds chemical structure.
Descriptors such as fingerprints, which can reflect spatial relationships between
features of a molecule, together with different similarity measures can be used to
asses similarities between compounds. If chemical structure are available for the
set of compounds related to HIV and Cancer then compounds chemical structure
coded in Simplified Molecular-Input Line-Entry (SMILE) specification system can be
queried via the pubchem http protocol. 166 bit MACCS finderptings of compounds
are then computed based on their SMILES after parsing. Given dichotomous
MACCS fingerprints, pair-wise compound similarities can be computed using distance
metrics defined for binary strings. The frequently employed Tanimoto-Jaccard index
TAB [0, 1] was chosen to assess molecular fingerprints similarities between compounds.
For dichotomous fingerprints it is defined as:

TAB = c

a+ b− c
(6.4)

where a and b denote number of bits in each of the two fingerprints, and c is the
number of common bits.

6.2.7 Maximum Common Substructure Analysis

Maximum common subgraph isomorphism (MCS) is a graph-based similarity concept
used to identify the largest substructure (subgraph) shared among two or more
compounds. More formally, given two graphs G1 and G2 representing the structures
of two compounds MCS tries to find largest usually connected subgraph of G1
isomorphic to subgraph of G2. This problem is known to be NP-hard, for at least k
isomorphic vertices it is NP-complete (Karp, 2010). The problem is usually solved
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by finding cliques in the product graph. The maximum found clique corresponds to
largest induced subgraph of graphs G1 and G2.

In this study MCS was used to investigate common structural properties of compounds
being grouped together in one cluster. The FMCS® algorithm (https://bitbucket.
org/dalke/fmcs) in the paython® tool which successively searches MCS of each
compound pair in a cluster. This algorithm employs a back-tracking strategy
to enumerate pairwise MCSs. A branch & bound procedure limits the search
space. Default settings and a maximum structure match threshold of 0.7 were used.
ChemMine® (http://chemmine.ucr.edu - (Backman et al., 2011)) was taken to
visualize the results.

6.2.8 Enrichment Analyses

Enrichment Analyses of Gene Ontology Terms and Biochemical Pathways

The R-package GOstats (Falcon and Gentleman, 2007) was employed to look for
overrepresented biological processes and KEGG pathways of targets in individual
clusters and in the whole dataset. GOstats uses a hypergeometric test, and addi-
tionally incorporates parent-child relationships between GO terms. To control the
false discovery rate in multiple testing, the p-value was adjusted using Benjamini
and Yekutieli (2001) method. Gene set enrichment analysis methods are explained
in section 3.5.

The enrichment was investigated with respect to all human genes. In order to assess
the true significance of individual terms for a defined cluster, the same analysis for the
whole dataset is also conducted. Terms being significant in the whole dataset were
not further considered within a defined cluster (details in appendices C; Figure C.1,
Figure C.2, Figure C.3, Table C.2 and Excel tables).

Protein Domain Enrichment Analyses

Protein domains are retrieved from the InterPro database (Mulder et al., 2002). The
InterPro database integrates predictions from multiple diverse source repositories and
provides functional analysis of protein sequences by classifying them into families and
predicting the presence of domains and important sites. The full human genome wide
proteome was retrieved using the org.Hs.eg.db annotation package, which contains
43827 unique Entrez Gene identifiers. The InterPro domains annotated to each
of these genes were retrieved using the biomaRt interface (Durinck et al., 2009).
Accordingly, 7131 unique InterPro domains were found in the full human genome. A
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hypergeometric test was performed to statistically evaluate the significance of the
enrichment (see details in subsection 3.5.1). To control the false discovery rate in
multiple testing, the p-value was adjusted using the Benjamini and Yekutieli (2001)
method.

Once again enrichment analysis was first done with respect to the whole human
genome, and then corrected with respect to the enrichments founds in the whole
dataset (appendices C; Figure C.4, Table C.2, and Excel tables).

Motif Enrichment Analyses

A wrapper is programmed that uses the MEME Suite (Bailey et al., 2009) which
is a tool for discovering motifs in a group of related protein sequences. Assuming
no constrains or pre-knowledge about the motifs looked for, this method applies a
de novo motif discovery, in which short subsequences that occur more frequently
than would be expected by chance are identified. That information is then used
to build a Position Weight Matrix (PWM) describing the motif. Note that the de
novo discovery phase is not performing an exhaustive search. Much more it uses
heuristics to make some good initial guesses about which subsequences are likely to
be instances of a motif, it then adjusts and optimizes the subsequences considered
and the components of the PWM. The next step uses the PWM to search for hits
in a list of given sequences, identifying statistically significant matches to the given
motif.

The wrapper also included the MEME Suite tool called FIMO (Grant et al., 2011),
that searches a sequence database for occurrences of user provided motifs, treating
each motif independently. The program uses a dynamic programming algorithm
to convert log-odds scores into p-values, assuming a zero-order background model.
The p-values for each motif are then converted to q-values following the method
of Benjamini and Hochberg (1995). Using both tools, it is possible to conduct an
enrichment analysis using a hypergeometric test (subsection 3.5.1). It has to be
stressed here that motifs have no function of their own; function arises exclusively
out of context in the mammalian system. Therefore, interpretation of these entities
should be seen on the view of disease peculiarity and the suggested drugs.

As before, enrichment analysis was done with respect to the whole human genome
and then corrected with respect to the enrichments founds in the whole dataset
(appendices C; Figure C.5, Table C.2, and subsection C.2.1).
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6.3 Results

6.3.1 Characterization of Target Proteins

As an initial step protein targets in the employed dataset are characterized with
respect to statistically enriched KEGG pathways, GO terms, protein domains and
sequence motifs (at cutoff FDRBY ≤ 0.05). Target proteins were, for example,
enriched for protein kinases (including tyrosine kinases), chemokine receptors, GPCRs,
nuclear hormone receptors, HDACs and immunoglobulins. They were mainly involved
in signaling, metabolic processes, immune response, regulation of cell growth and
angiogenesis. While dys-regulation of cell growth and angiogenesis are known be
important in cancer development (Birbrair et al., 2013), HIV is causing an immune
deficiency. Hence, these findings are in agreement with common knowledge. KEGG
pathway analysis yielded statistically significant associations to several cancer types
as well as apoptosis, chemokine signaling, cytokine-cytokine receptor interaction and
epithelial cell signaling in helicobacter pylori infection (appendices C Excel files).
Chemokine signaling in conjunction with other processes, such as cytokine-cytokine
receptor interactions, promotes cellular morphology changes through transmembrane
receptors trigger prevention of HIV-1 infection (Berger et al., 1999; Lachgar et al.,
1998; Mellado et al., 2001; Wu, 2010). Helicobacter pylori inhibits HIV in CD4 T
cells by producing VacA toxins (Cover and Blanke, 2005).

A consensus clustering of the joint set of all protein targets based on their biological
similarities was also performed based on the approach explained in subsection 6.2.2.
This resulted in 37 clusters with an AUC of ∼ 0.95 and silhouette widths that indicate
stable and fairly well separated clusters (Figure 6.4 C1 & C2). Notably, consensus
clustering, which is based on a re-sampling strategy, focuses on clustering structure
that is statistically stable detectable.

Interestingly, the cluster analysis did not separate the two diseases: Clusters 1 –
11 contained targets from both diseases, the others comprised only cancer proteins
(Appendices C Excel files). The functional analysis of these sets of proteins confirmed
their relatedness. For example, Cluster c01, which is apparently related to cancer,
contains 18 cancer targets (e.g. SRD5A1, SRD5A2, SLC5A1, SLC16A1, SLCO1B1)
and a one HIV protein (SIGMAR1). Cluster c02 contained 10 proteins from both
diseases (HIV: CCR3, CX3CR1, CXCR1; cancer: CCR1, CXCR3, LPAR1, GRPR,
LHCGR, BDKRB2, SSTR2). These are exclusively all receptor proteins of which 5
are different types of chemokine receptors. All 8 proteins in cluster c03 are subfamilies
of the cytochrome polypeptide (cancer: CYP2A6, CYP2C9, CYP2C19, CYP2E1,
CYP2J2, CYP3A4, CYP3A5; HIV: CYP2B6). Cluster c09 contains 19 proteins of
which 7 are MAP kinases (MAPK, MAP2K) and targeted by cancer compounds.
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Figure 6.4: Area Under the Curve (AUC) & silhouette plots for complete-linkage consensus clustering of
compounds based on BES (A1, A2) and based on chemical fingerprints similarities (B1, B2). Plots C1 &
C2 show AUC & silhouette widths for complete-linkage consensus clustering of target proteins themselves
based on protein similarities. Silhouette plot for affinity propagation clustering of compounds based on
BES is shown in D1. Plots E1 & E2 show AUC & silhouette widths of clustering of compounds (subset)
using complete-linkage consensus clustering based on Adverse Side Effect Similarity (ASES).
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6.3.2 Validation of BES with Gene Expression Data and Comparison to
Existing Similarity Measure

In order to validate the developed BES as a measure for biological effect similarities
of compounds, the agreement of the results with gene expression data is checked.
For that purpose data from the Connectivity Map are downloaded (Lamb et al.,
2006). There were 215 compounds found in our dataset as well as in the Connectivity
Map. In the Connectivity Map gene expression for each of these compounds has
been profiled in a concentration dependent manner in different cell lines. Using
the “limma” (linear models for microarray analysis) method (Smyth, 2004a) gene
expression data are modeled using a two-way ANOVA model comprising a cell line
and a concentration effect. Based on this model the compound specific treatment
effect was estimated using the rest of the data (not treated with the respective
compound under consideration) as controls. The result was a t-statistic for each gene
and compound. The absolute value of the t-statistics of the top 250 genes is used as a
feature vector for each compound. These feature vectors were compared via the cosine
similarity. Consequently, a gene expression profile similarity for compound pairs is
achieved, which is compared against the proposed BES measure. This resulted in a
highly significant (P -value < 1E − 16) Pearson correlation of ∼ 0.51, indicating a
general good agreement of both measures.

For comparison the agreement of the network based adverse side effect similarity
(ASES; (Brouwers et al., 2011)) to gene expression data is assessed. The authors of
the ASES method used a confidence weighted functional protein-protein interaction
network compiled from STRING (Jensen et al., 2009) to predict adverse side effects
of compounds via the closeness of targeted proteins in the network. In contrast to
our BES the ASES measure does not include bioactivity information. The ASES
could be computed for 215 compounds tested in the Connectivity Map database,
yielding a lower correlation of ∼ 0.28 to gene expression data. Hence, the BES agrees
better with similarities of transcriptional downstream effects than ASES. The direct
correlation between ASES and the proposed BES measure was ∼ 0.2.

6.3.3 Influence of Different Features on BES

The BES is influenced by the way in which biological similarities of compound targets
are assessed. Hence, the different influence factors (KEGG and PathwayCommons
pathways, biological processes, protein domains) are investigated in more detail.
This was done by correlating the entries of the BES similarity matrix considering
only one of these factors with the combined BES similarity matrix (Figure 6.5).
This demonstrated a high influence of GO and pathway information from KEGG
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and PathwayCommons (Pearson correlation ∼ 0.75). Information from protein
domain annotation (InterPro) and protein domain interactions (DOMINE) have
comparably lower positive correlations with the combined BES matrix (∼ 0.5 and
∼ 0.6, respectively).

Figure 6.5: Pearson correlation coefficient of BES with BES calculated for one
particular information source and ASES, respectively. The significance (p-value)
of each correlation is shown on top of each bar.

6.3.4 Application of BES for Compound Consensus Clustering

After the BES measure have been evaluated, it is applied within the earlier described
consensus clustering algorithm to explore the dataset with respect to potentially
existing compound sub-groups. This resulted in 65 clusters, which are called the BES
clusters in the following. The BES clustering was highly stable with an AUC of ∼ 0.82
and resulted in relatively well separated clusters with an average silhouette width of
∼ 0.34. Around 50% of the clusters showed a silhouette width larger than 0.5, many
even close to 1 (Figure 6.4, A1 & A2 and appendix Table C.1). Four of the 65 clusters
were singleton clusters. Apart from one large cluster (1,944 compounds) clusters
contained between 2 and 324 compounds. The large cluster contained compounds,
which in most cases were found to have zero or very small BES similarities, indicating
biologically divergent effects.

The four singleton compounds have been screened against far fewer target proteins
than the rest of the compounds in the dataset, and targets are limited to certain
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protein classes (membrane receptors and enzymes). Moreover, bioactivities of sin-
gleton compounds are often rather weak. Compound CHEMBL1977148 has been
screened only against enzymes and mostly with no or weak bioactivity. Compound
CHEMBL1081312 has been measured for a limited number of enzymes (69) with few
medium bioactivities. Compound CHEMBL435523 has been only screened against
3 transcription factors showing strong bioactivities. The activity of compound
CHEMBL434159 has been tested for 5 proteins (Somatostatin receptor 1-5), where
the bioactivity was weak.

In order to assess the influence of the selected clustering algorithm on the results, the
cluster analysis is repeated using affinity propagation as described in Frey and Dueck
(2007) and using the ASES dissimilarity measure as described in Brouwers et al.
(2011). Applying consensus clustering on the ASES dissimilarity matrix produced a
lower number of clusters (47 clusters) than our BES clustering. The AUC of 0.8
demonstrated roughly comparable stability (Figure 6.4 E1), however, the average
silhouette of 0.29 is significantly lower (Figure 6.4 E2). The overlap of the ASES
clustering with the BES clustering is small (only 6 clusters had a relative overlap
≤ 25%). Thus, it is concluded that the ASES similarity can also produce statistically
stable clusters although it does not involve bioactivity information. However, ASES
clusters are of low quality and quite different than the BES cluster. The affinity
propagation method resulted in significantly worse silhouette plot (Figure 6.4, D1).
Therefore, the focus is put on consensus clustering approach in the rest of this
work.

6.3.5 Protein Targets of BES Clusters show Enrichment of Biological
Pathways, Processes, Protein Domains and Sequence Motifs

To analyze individual BES clusters further, statistical enrichment analysis were
conducted of their target proteins with respect to KEGG pathways, GO terms,
protein domains and sequence motifs using a hyper-geometric test. It is worth
mentioning that neither sequence motifs nor GO terms from the molecular function
category are integrated in the BES measure.

Most compound clusters revealed a statistically significant enrichment of specific
biological pathways, processes, protein domains and sequence motifs according to this
analysis (FDR < 5%; details in appendices C; Figure C.1, Figure C.2, Figure C.3,
Figure C.4, Figure C.5 and Excel files. Table C.2 shows the top 3 vocabularies form
each of the categories in the repurposing clusters). Notably, significant categories,
which also showed up significant in the overall dataset, are excluded.
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In most cases sequence motifs, GO terms and protein domains were found enriched,
in fewer cases also KEGG pathways. For example, targets of compounds in cluster 1
are strongly enriched in the renin-angiotensin system. Clusters 57 and 61 are related
to Wnt signaling. However, cluster 57 shows an enrichment of RAS, C2, PIK and
PKC binding domains, whereas cluster 61 targets are overrepresenting only a subset
of these domains, namely C2 and PKC.

Mining the literature for the individual target proteins revealed useful information
(details in appendices C Excel tables). Cluster 7, for instance contains many tyrosine
kinases that act as cell-surface receptors for fibroblast growth factors and play an
essential role in the regulation of embryonic development, cell proliferation, differ-
entiation and migration (Turner and Grose, 2010). Cluster 15 contained a number
of nuclear hormone receptors which are ligand-activated transcription factors that
regulate eukaryotic gene expression and affect cellular proliferation and differentiation
in target tissues (Szanto et al., 2004).

6.3.6 Cluster Analysis Suggests Novel Compound-Target Pairs

There were several BES clusters, in which protein targets were jointly associated to
HIV and cancer. Fifteen of them (clusters 2 - 7, 11, 13, 15 - 21, appendix Table C.1)
have medium or high silhouette width. These are potentially interesting clusters,
specifically, if certain compound-target pairs have not been tested so far. These
clusters will be called repurposing clusters hereafter. The compounds in these clusters
are further investigated by organizing them into three groups:

• those which have been tested for proteins associated to both diseases with
strong or medium bioactivities (Table 6.1),

• those which show a strong or medium bioactivity for targets associated to
one disease and weak or no activity for targets associated to the other disease
(Table 6.2), and

• those compounds, which have only been tested for targets associated to one of
the diseases so far (Table 6.3).

Specifically the third group of compounds represents compounds, which could con-
tain interesting candidates for follow-up screening experiments. The latest version
ChEMBL (accessed 02/2015) is used to validate some of these candidates. Different
assay data (IC50, relative inhibition, AC50) are used. This is different than the
one used for our clustering study, hence these data can be seen as independent.
Our analysis allowed us to confirm several of our initial findings (for complete lists
see; Table 6.1, Table 6.2 & Table 6.3). For example, compound CHEMBL232656
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(BAX-471/BAX-741) in cluster 3 has originally only been tested against several
cancer associated targets. However, according to the BES clustering it falls together
with several other compounds, which have been tested against chemokine receptors,
which themselves have been related to HIV infection (Berger et al., 1999; Lachgar
et al., 1998; Mellado et al., 2001; Wu, 2010).

Hence, our clustering suggests testing CHEMBL232656 for chemokine receptors.
Indeed a strong bioactivity for different types of chemokine receptor (IC50 = 1nM)
has been reported for this compound recently (Pease and Horuk, 2014). Similarly,
CHEMBL9298 (FADROZOLE), CHEMBL1444 (LETROZOLE) and CHEMBL1399
(ANASTROLE) in cluster 11 have so far only been tested against cancer associated
targets, but the clustering suggests screening them against cytochrome P-450 and
estrogen synthase, which are HIV related. The strong bioactivity of these compounds
for cytochrome P-450 and estrogen synthase is indeed confirmed by the recent
literature (Mayhoub et al., 2012).

The anatomical therapeutic chemical classification (ATC)1 system is used to further
check compounds agreements withing the clusters. Although most of the compounds
in the data are not classified in ATC a number of the clusters contained compounds
that have similar ATC classes indicating therapeutic homogeneity. For instance,
cluster 2 contains 7 compounds the belong to the ATC class S01A: Orthalmologicals
Antiinfectives for Sensory Organs, and cluster 11 contains at least 4 compounds
which belong L02B: Antineoplastic and Immunomodulating Agenets.

1http://www.whocc.no/atc_ddd_index/
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Table 6.1: Compounds in repurposing clusters with strong bioactivity for both, HIV and cancer related
targets.

Clust ChEMBL ID
C02 CHEMBL140484, CHEMBL335365, CHEMBL349008, CHEMBL335794, CHEMBL350563
C03 CHEMBL140827, CHEMBL337776, CHEMBL162880, CHEMBL1178786, CHEMBL2178569, CHEMBL115487,

CHEMBL109051, CHEMBL323172, CHEMBL138285, CHEMBL139559, CHEMBL105821, CHEMBL432170,
CHEMBL164484, CHEMBL138640, CHEMBL140418

C04 CHEMBL472832
C06 CHEMBL2326002
C07 CHEMBL2005886, CHEMBL1982465, CHEMBL2001485, CHEMBL223367, CHEMBL373598
C11 CHEMBL83, CHEMBL578028, CHEMBL575538
C15 CHEMBL475670
C16 CHEMBL2158601, CHEMBL2158599, CHEMBL1774154, CHEMBL481213, CHEMBL2158600,

CHEMBL481422, CHEMBL1774162, CHEMBL1774161, CHEMBL1774157, CHEMBL1774031,
CHEMBL1241426, CHEMBL1774158, CHEMBL1774163, CHEMBL2158053, CHEMBL1774160,
CHEMBL1774164, CHEMBL1774156, CHEMBL456400, CHEMBL516172, CHEMBL2158602,
CHEMBL2158606, CHEMBL459541

C17 CHEMBL1980297
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Table 6.2: Compounds in repurposing clusters with strong bioactivity for HIV, but unknown bioactivity
for cancer related targets. “Cancer targets” here lists proteins that are targets of some (but not all)
compounds in a given cluster and are putatively related to cancer. Bold compounds have originally not
been tested against the listed targets in our data, but are confirmed to have strong bioactivity according
to independent data.

Clust ChEMBL ID Cancer targets
C02 CHEMBL2158790, CHEMBL2207654, CHEMBL2158784, CHEMBL2158783,

CHEMBL2158791, CHEMBL2171047
CCR5, CCR1, EDNRA,
CXCR3

C03 CHEMBL2207286, CHEMBL2207660, CHEMBL2158787, CHEMBL2207657,
CHEMBL2207283, CHEMBL2158785, CHEMBL2207664,
CHEMBL2158792, CHEMBL1171008

CCR5, CCR1

C13 CHEMBL1171594 HDAC6, CYP19A1, ACE,
GHSR, CXCR3, UTS2R,
GRPR, HDAC1, HDAC2,
APP, KLK3, KCNH2, MEN1,
MME, MTAP, P2RY1,
HDAC7, PLAT, PPARA,
PPARD, PPARG, AKR1B10,
RARB, SLC16A1, SRD5A1,
SSTR3, SSTR5, ST14, BRS3

C15 CHEMBL1230584 BIRC2, BIRC3, CHRNA7,
ESR1, ESR2, AR, PPARA,
PPARG
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Table 6.3: Compounds in repurposing clusters with strong bioactivity for cancer, but unknown bioactivity
for HIV related targets. “HIV targets” here lists proteins that are targets of some (but not all) compounds
in a given cluster and are putatively related to HIV. Bold compounds have originally not been tested
against the listed targets, but are confirmed to have strong bioactivity according to independent data.

Clust ChEMBL ID HIV targets
C02 CHEMBL1513, CHEMBL29346, CHEMBL282628, CHEMBL29972, CHEMBL281977,

CHEMBL277447, CHEMBL440780, CHEMBL274489, CHEMBL112624,
CHEMBL281659, CHEMBL29793, CHEMBL285832, CHEMBL27855, CHEMBL9194,
CHEMBL128818, CHEMBL28863, CHEMBL2113316, CHEMBL282359,
CHEMBL30405, CHEMBL281549, CHEMBL28963, CHEMBL8923, CHEMBL29223,
CHEMBL303631, CHEMBL8978, CHEMBL109648, CHEMBL437472,
CHEMBL431296, CHEMBL29464, CHEMBL8981, CHEMBL1204799,
CHEMBL284656, CHEMBL282303, CHEMBL8823, CHEMBL29422, CHEMBL30092,
CHEMBL30009, CHEMBL283610, CHEMBL302564, CHEMBL29775,
CHEMBL48196, CHEMBL326059, CHEMBL282724, CHEMBL1921858

CCR3, CCR5, CCR2

C03 CHEMBL232656 CCR3, CCR5, CCR2
C05 CHEMBL186101, CHEMBL1086088 CCR3, BIRC3, CXCR1, CCR2
C06 CHEMBL213207, CHEMBL1983315, CHEMBL242865,

CHEMBL1086736, CHEMBL2159206, CHEMBL1977134, CHEMBL570366
CCR3, CX3CR1, CCR2

C07 CHEMBL1999153, CHEMBL67237, CHEMBL158405, CHEMBL158939,
CHEMBL367019, CHEMBL106666, CHEMBL289318, CHEMBL277695,
CHEMBL705

CCR3, CX3CR1, BIRC3,
HSP90AA1, CXCR1, ITK,
MDM2, CCR2

C11 CHEMBL99, CHEMBL96051, CHEMBL55380, CHEMBL483254,
CHEMBL356066, CHEMBL1213490, CHEMBL430060,
CHEMBL1089503, CHEMBL208212, CHEMBL1091204, CHEMBL1089630,
CHEMBL1444, CHEMBL73279, CHEMBL9298, CHEMBL1957214,
CHEMBL1399, CHEMBL73367, CHEMBL219531, CHEMBL74339,
CHEMBL198598, CHEMBL306022, CHEMBL70959, CHEMBL1957217,
CHEMBL101540, CHEMBL281433, CHEMBL98998, CHEMBL98537

CYP2B6, MDM2, ABCB1

Continued on next page133
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Table 6.3 – Continued from previous page
Clust ChEMBL ID HIV targets
C13 CHEMBL2153740, CHEMBL381642, CHEMBL93124, CHEMBL92615,

CHEMBL275311, CHEMBL205807, CHEMBL1080585
HCRTR2

C15 CHEMBL2151438, CHEMBL2151570, CHEMBL2151569,
CHEMBL2179874, CHEMBL2179875, CHEMBL2179877,
CHEMBL597241, CHEMBL510275, CHEMBL195190, CHEMBL2179873,
CHEMBL2179878, CHEMBL2177538, CHEMBL2177537,
CHEMBL364069, CHEMBL46937, CHEMBL12987, CHEMBL243571,
CHEMBL243789, CHEMBL395291, CHEMBL244001, CHEMBL56198,
CHEMBL58688, CHEMBL389907, CHEMBL380565, CHEMBL243791,
CHEMBL56390, CHEMBL244207, CHEMBL1358, CHEMBL390448,
CHEMBL2036560, CHEMBL128654, CHEMBL26865, CHEMBL197188,
CHEMBL50241, CHEMBL467790, CHEMBL257379, CHEMBL224204,
CHEMBL398226, CHEMBL390849, CHEMBL253535, CHEMBL402835,
CHEMBL184133, CHEMBL107367

BIRC2, BIRC3, HSP90AA1

C18 CHEMBL1994669, CHEMBL298445, CHEMBL187081 ITK
C19 CHEMBL1984548, CHEMBL1991734 ITK
C20 CHEMBL494089, CHEMBL359794, CHEMBL184510, CHEMBL1083151,

CHEMBL1083152, CHEMBL241024, CHEMBL537964
ITK

C21 CHEMBL292910, CHEMBL55401, CHEMBL2052008, CHEMBL99309,
CHEMBL291026, CHEMBL418050, CHEMBL350849, CHEMBL270437,
CHEMBL41152, CHEMBL710, CHEMBL435631, CHEMBL1237140

MDM2
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6.3.7 BES Clustering Groups Structurally Diverse Compounds

Chemical structural properties of compounds falling into the same BES cluster are
investigated. In particular, a Maximum Common Substructure (MCS) search for
none-singleton clusters is conducted (Figure 6.6). Only few clusters (clusters 35, 37,
44, 47, 60 & 63) revealed larger MCS scaffolds. Since the relative size of the MCS is
an evidence for the structurally relatedness of compounds in a cluster this indicates
that structurally diverse compounds were grouped together.

In order to investigate this point further, additional consensus clustering based
on MACCS fingerprints and the Tanimoto-Jaccard coefficient is conducted (see
subsection 6.2.6). This is called chemical clustering in the following. 254 clusters
were produced. The observed AUC was close to one, indicating a highly stable
clustering result (Figure 6.4 B1 & B2). However, most clusters showed a much lower
silhouette width than in the BES clustering. Also the average silhouette width was
significantly lower (∼ 0.19; Figure 6.4).

The relative overlap size between BES groups and chemical clusters based on the
Tanimoto-Jaccard index is investigated. Only 27 chemical clusters overlapped with
at least one BES cluster, the rest of the clusters did not overlap at all or showed
a Tanimoto-Jaccard index value below 0.05. Only 3 BES clusters had an overlap
of more than 25% (Figure 6.7). This demonstrates again that BES and chemical
clustering capture different patterns. Chemical clustering focuses on structural
similarity, whereas BES clustering focuses on similar biological effects. Compounds
with similar biological effects are in turn not necessarily structurally similar.
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Figure 6.6: Maximum common substructure analysis. Five selected repurposing clusters: Each
panel shows ligand structures in blue frames and the maximum common substructure (MCS) in a red
frame.
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6.3 Results

Figure 6.7: Comparison of BES based (Y-axis) and fingerprint (X-axis) based
clustering. The color code indicates the fraction of the overlap between cluster
pairs.
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Chapter 6 BIOLOGICAL EFFECT SIMILARITY OF COMPOUNDTREATMENT

6.4 Conclusions

The BES is developed to quantify the similarity of biological effects induced by
targeted perturbations with chemical compounds. In contrast to existing methods
the BES directly integrates compound-target affinities with different features of target
proteins. The BES measure is validated by comparing it against gene expression
data, showing a highly significant correlation.

The BES measure is applied within a similarity based consensus clustering algorithm.
This approach enabled us to identify well separated and statistically stable groups
of compounds inducing similar biological effects. The identified clusters could not
be found in a traditional ligand based clustering using MACCS fingerprints and the
Tanimoto-Jaccard similarity. Our method specifically found compound clusters with
targets associated to different diseases, hence indicating similar biological effects
despite of different tested medical application areas. It is demonstrated that the
cluster analysis may help to identify interesting novel compound-target combinations.
Altogether, a two-fold potential of the method can be specified: First, BES based
clustering could aid to explore existing compound libraries and identify promising
compound-target combinations. Second, the BES may help to optimize compounds
towards a desired effect profile.

The present analysis has been restricted to cancer and HIV targets here in order to
demonstrate the principal usefulness of our proposed BES measure. Future work
should extend the application to a broader dataset covering other disease indications.
In that context it is worth mentioning that the investigated dataset with almost 4,700
compounds containing ∼ 73, 000 interactions with more than 200 target proteins is
already quite large, specifically if re-sampling based methods like consensus clustering
are applied in order to detect statistically stable groups.

A limitation of the present work is that the unavoidable uncertainty about the
disease association of a particular protein is currently neglected. Future work should
thus extend the present approach in this direction. Despite of this limitation the
results demonstrate that useful predictions for compounds can already be retrieved
by comparison of biological effects similarities.
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CHAPTER 7
CONCLUSIONS

Perturbation experiments and high-throughput technology hold the promise to further
advance the research in biology and medicine. Targeted perturbation experiments
allow inducing controlled alternations in biological systems, and high-throughput
techniques enable measuring cellular and biochemical activity of large numbers
biomolecular entities under different perturbational variations. Interventional data
gained from multiple such experiments can guide the identification of the functional
consequences of induced or natural variations. Statistical methods that exploit varia-
tions in replicated measurements are used for inference and prediction of perturbation
responses by detecting relevant patterns in the data.

However, although advances in biotechnology permit sophisticated perturbation
experiments, particular characteristics of the experimental techniques (such as mir-
coarray, HT-qPCR and NGS) involved in measuring variety of molecules lead to
generating diverse and complicated data. The sheer volume and high dimensionality
of high-throughput data pose major challenges for its analysis and computational
integration. Further experimental implications add to this severity. Missing or
censored observations and different sources of variations in the data, for instance, can
impair the performance of generic analysis methods, and very diverse types of data
can make the computational integration very difficult. Therefore, understanding the
characteristics of experimental methods behind the acquired data is very important
in order to be able to the use appropriate analytical methods.

The main objectives of this thesis were to explore, devise and develop proper method-
ologies for efficient extraction of biologically relevant patterns from diverse perturba-
tion data. Advanced normalization techniques and statistical analysis methods for
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gene expression data have been discussed and illustrated on perturbation data from
extensive experimental studies. The large-scale characterization of biological systems
is aided by computational integration approaches for information from literature and
via text mining.

This work is composed of three parts. Each of these is a different perturbation
experiment setting with its own distinguishable experimental implications and data
analysis challenges.

The first part investigated the dynamical transcriptional responses to TGF-β
stimulation in different human and mouse cell types base on time-series microarray
data from extensive experiments. A panel of statistical and bioinformatics methods
are used to gain biologically relevant insights which could help understand the
complex mechanisms by which TGF-β yields phenotypic effects.

A Bayesian approach to determine differentially expressed time-course is used. The
method detected transcript response profiles between perturbed and naive conditions
that could not be identified by classical time-point specific differential expression
analysis. Most of these transcripts, in particular genes that are known to belong
to the TGF-β pathway, reacted time-dependent. Although the identified transcrip-
tional responses were highly tissue specific, several commonly affected processes and
signaling pathways across cell types and species are discovered. This is done using
a logistic regression-based method for gene set association analysis. This method
provides comparable results between the different cell types because it does not de-
pend on which or how many genes have been measured in the chips or ranked in the
differential expression analysis. Further functional analyses suggested an important
role of few transcription factors, which appear to have a conserved influence across
cell types and species. A devised visualization tool manifested effective integration of
comprehensive results of various functional analyses and helped assessing proximity
between tissues and organisms.

A clustering method that considers the dynamics of expression changes successfully
grouped similar expression profiles in the different cell types. Transcription factor
enrichment analyses within clusters allowed for partial reconstruction of gene reg-
ulatory modules. Validation via an independent dataset confirms the findings and
network analyses suggest explanations, how TGF-β perturbation could lead to the
observed effects.

The analysis of such complex experimental data could be improved by integrating
modeling approaches, e.g. hypotheses on the dependencies between gene regulatory
modules may be derived via advanced predictive methods such as dynamic Bayesian
networks.
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The second part investigated miRNA and relevant target genes as potential
biomarkers in epilepsy. Longitudinal microarray and high-throughput qPCR data
are generated from blood and hippocapus samples of rat and mouse perturbation
models after initiating generalized epileptic seizure in them.

I suggested a specific work-flow (the double-detection method) for differential ex-
pression analysis of HTqPCR data where part of the data is right-censored for
observations only known to be above the detection limit. The method involves
modeling the censored data based upon maximum likelihood. The devised procedure
showed higher detection power based on simulated data in comparison to methods
that exclude the censored observations from the analysis or replace them by a fixed
value.

The double detection method enabled the identification of novel pathogenic relevant
miRNAs in hippocampal tissues and blood samples. The identified biomarkers are
successfully validated via independent RT-PCR experiments. Indirect characteri-
zation of epilepsy types is achieved through comparisons of miRNA activities in
the animal models at different time points and relevant mRNAs could be identified
through annotation of sequence predicted putative targets. Using functional anal-
ysis methods a number of disease relevant biological processes and pathways were
significantly associated to the identified gene target sets of deregulated miRNAs.

The third part of this work studied drug induced downstream effects on system
level based on compound perturbation data. A new method for compound similarity
assessment based on drug pharmacological effects and drug-target interaction network
is proposed. The biological effects similarity (BES) measure of chemical compounds
integrates compound-targets affinities and captures compound perturbation induced
effects by assessing target-target proximity in a probabilistic manner using target
information from multiple sources. Unlike existing similarity measures the BES
requires neither chemical structure information nor treatment response data.

The BES showed high correlation to gene expression profile similarities computed
from treatment response data. This indicates its validity. The consensus clustering
utilizing BES-based distance measure is used for exploratory analysis of large dataset
of chemical compounds related to HIV and cancer. This procedure produced separable
and statistically stable 65 clusters, of which targets could be related to specific
pathways, biological processes, protein domains and sequence motifs. The identified
clusters could not be found in a traditional chemical structure based clustering using
fingerprints and the Tanimoto-Jaccard similarity. The clustering did not separate the
two disease, so that numerous clusters contained compounds of both diseases, hence
indicating biologically close effects despite of a very different medical application area.
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Targets of compounds falling into one cluster suggested several new compound-target
combinations, which could in several cases be confirmed by independent data.

Taken together this work suggests the usefulness of a joint view on the compound-
target space and the proposed BES measure in particular. Our results on cancer and
HIV demonstrate that the latter may help to uncover drugs with biologically similar
effects and in consequence also repurpose existing drugs for novel application areas.
However, BES measure need to be scrutinized; whether it puts much weight on the
induced effects of targets. As biological systems are robust, drug perturbation effects
are restored rather passed to nearby proteins. Investigating the method in datasets
of multiple diseases is also recommended.

In conclusion, although a number of approaches and statistical methods have been
proposed for pattern detection from high-throughput perturbation data, due to the
complexity of such data, choosing the appropriate method and correctly implementing
it is still a challenge. One reason is that choosing an appropriate method typically
requires sufficient understanding of the data generation process.

In this work I have explored, devised and developed methodologies for the efficient
extraction of biologically relevant patterns from diverse perturbation data. These
methods which incorporated several analysis stages have been illustrated in a number
of compelling studies. Further modeling techniques, including network reverse
engineering and mathematical modeling of biological systems, could be used as a
follow-up step to the approaches presented here.
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APPENDIX A
CHAPTER 4 APPENDICES

A.1 Cell and Tissue Types

A.1.1 Mouse Hematopoietic Progenitor Cells (MPP & CDP)

Multipotent Progenitors (MPP) and Common Dendritic Progenitors (CDP) are
Hematopoietic stem cells, i.e. they have a property to develop into many types of
cells. The latter are derived from the former types. In the process of specialization
the cells undergo several intermediary states and differentiate into multiple of cell
types. Instead of all getting specialized, part of the MPP proliferated population
remains as before. This is indicated by the loop in Figure A.1. CDP cells represents
such an intermediary state and is the one that gives rise to Conventional Dendritic
Cells (cDC) and Plasmacytoid Dendritic Cells (pDC) as seen in Figure A.2 (Zenke
and Hieronymus, 2006). These cells and their specialized different types partially
form the immune system. Further details can be found in (Felker et al., 2010) and
Abnaof et al. (2014).

Cell culture MPP and CDP were obtained from mouse bone marrow, using in-vitro
culture with a specific cytokine cocktail and FACS sorting (Felker et al., 2010; Seré
et al., 2012).

TGF-β1 stimulation After sorting, MPP and CDP were treated with 10 ng/mL
recombinant human TGF-β1 (R & D Systems, Minneapolis, USA) for 2, 4, 8, 12 and
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24 hours as described in (Felker et al., 2010) or left untreated. Cells were lysed in
350 µl TRI-Reagent and stored at -80 °C.

RNA Isolation RNA was isolated using the MagMAX-96 for Microarrays kit (Life
Technologies, Darmstadt, Germany) according to manufacturer’s protocol.

GeneChip Hybridization Replicated time-course microarrays are produced by creat-
ing three technical replicates for each one of the cell types at 6 successive time points;
0, 2, 4, 8, 12, 24 hours (detailes in Table A.1). Assays are produced using Affymetrix®

GeneChip type “Mouse Gene 1.0 ST Array” with 32,321 probe-sets. Hybridization,
wash and staining were done according to manufacturer’s recommended standard
techniques.

Figure A.1: Development of different blood cells from Haematopoietic stem
cells to mature cells1.

1used with permission, see original figure in source (accessed: 24th July 2015): https://en.
wikipedia.org/wiki/Haematopoiesis
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A.1 Cell and Tissue Types

Figure A.2: Multiparameter (10-colors) analysis of murine Dendritic cells using
focusing cytometer. Lymphocytes are gated via FSC/SSC parameters (left).
CD4+ T cells are separated into two populations of MPP cells & CDP cells based
on the expression of co-regulators c-kit and Flc3. MPP cells can be precised via
FSC and the expression of CD11c. CDP cells can further be divided into CD11c
and CD115 dendritic cell subtypes.

A.1.2 Primary Mouse Hepatocytes and Human HepG2 Cells (HPC)

Hepatocytes (HPC) represent the most prominent cell population in the liver. Primary
HPC are sensitive to TGF-β1, and express the corresponding type I (ALK5), type
II (TβRII), and type III (betaglycan) receptors. TGF-β1 promotes cell cycle arrest
and apoptosis of primary HPC. In addition, in-vitro TGF-β1 provokes epithelial-
to-mesenchymal transition (EMT)-like processes in this hepatic cell subpopulation,
which most likely do not occur in-vivo (Chu et al., 2011). HepG2 cells originate
from a 15 year old child with primary hepatoblastoma (Aden et al., 1979). They do
secrete the major plasma proteins but do not express the hepatitis B virus surface
antigen (HBsAg) (Knowles et al., 1980). Figure A.3 shows the application process
for HPC cells from mouse (primary) and human cell-lines. Abnaof et al. (2014) gives
further details.
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Cell culture Primary murine HPC were isolated from male C57BL/6 mice according
to the collagenase method of Seglen (Seglen, 1976). Cells were plated in collagen
coated 6-well dishes at a density of 1.2 x 106 cells using HepatoZYME-SFM (Gibco,
Life Technology, Darmstadt, Germany). Four hours after seeding the medium was
renewed and cells were grown for a further 24 hrs culture period. HepG2 (DSMZ:
DSM ACC180) were cultured in RPMI (PAA, Pasching, Austria) containing 10%
fetal calf serum (PAA), 1 x Penicillin/Streptomycin (Lonza, Cologne, Germany).
Medium was renewed every second day. For the experiment, cells were passaged
and plated in 6-well dishes using accutase (PAA) at a density of 4 x 105 cells. One
day before the experiment, cells were washed with PBS (1x), medium changed to
HepatoZYME-SFM (Gibco) and cultured for further 24 hrs.

TGF-β1 stimulation One hour before the experiment, the medium was exchanged
and cells stimulated with 1 ng/mL recombinant human TGF-β1 (R&D Systems,
Minneapolis, USA) for indicated time intervals; HepG2: 0, 20 minutes, 1, 2, 4, 24
hours; primary murine HPC: 0 min, 1, 2, 4 hours. The cells were harvested using
Qiazol for cell lysis (Qiagen, Hilden, Germany), directly frozen and stored at -80
°C.

RNA Isolation RNA was isolated using the RNeasy Kit system (Qiagen), performing
a DNAse digestion according to the manufacturer’s protocol.

Figure A.3: Primary Mouse Hepatocytes and Human HepG2 Cells (HPC).
HPC are cultivated from mouse liver and from human HepG2 cell-line.

GeneChip Hybridization Replicated time-course microarrays are produced by cre-
ating three technical replicates for human HPC cell types at 6 successive time points;
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0, 20 minutes, 1, 2, 4, 24 hours and in 4 time points; 0 min, 1, 2, 4 hours (detailes in
Table A.1). Human samples were assayed using Affymetrix® GeneChip type “Human
Gene 1.0 ST Array” with 34,760 probe-sets and mouse samples were assayed in
Affymetrix® GeneChip type “Mouse Gene 1.0 ST Array” with 32,321 probe-sets. Hy-
bridization, wash and staining were done according to manufacturer’s recommended
standard techniques.

A.1.3 Human Mesenchymal Stromal Cells (MSC)

Mesenchymal stromal cells (MSC) are multipotent cells which are characterized by
their plastic adherence. They have the potential to renew itself and to differentiate
in-vitro and in-vivo into diverse vital stem cell types (Figure A.4). The differenti-
ation potential of MSC include Adipocytes, Osteoblasts, Chondrocytes, Myocytes,
Pancreatic islet cells, brain cells and neurons, Blood Cells and Hepatocytes (Sharma
et al., 2012). MSC are found in all supportive tissue as in fat tissue, bone marrow
and cord. All MSC express the surface markers CD29, CD73, CD90 and CD105 and
they lack the expression of CD14, CD31, CD34 and CD45 (Dominici et al., 2006;
Horwitz et al., 2005)).

The cells were isolated, incubated and sorted into younger (early passages) and older
(late passages) cells. Further details can be found in Abnaof et al. (2014) and in
Walenda & Abnaof et al. Gudrun et al. (2013).

Isolation and Expansion MSCs were isolated from mononuclear cells (MNCs) by
plastic adherence as described before (Koch et al., 2012; Lohmann et al., 2012;
Walenda et al., 2012). In brief, bone fragments from the caput femoris of patients
undergoing femoral head prosthesis were flushed with phosphate- buffered saline
(PBS) and washed twice with PBS. MNC were then resuspended in culture medium
and seeded into tissue culture flasks.

The cells were cultured at 37 °C in a humidified atmosphere with 5% CO2. The first
medium exchange was performed after 48 h to remove nonadherent cells. Thereafter,
media changes were performed twice per week and MSCs were passaged when reaching
80-90% of confluence.

TGF-β1 stimulation MSC from three different donors were used in an early passage
(p3-5) for stimulation with TGF-b1. 1x106 MSC were seeded into 6-well culture
plates. When the cells were attached after 24 h 1ng/mL recombinant TGF-β1 (R&D
Systems) was added to the culture media at different time points. The cells were
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harvested at the same time point with Qiazol (Qiagen) and directly frozen and stored
at -80 °C.

RNA Isolation RNA was isolated via phenol/chloroform extraction using the
miRNeasy Kit (Qiagen), performing a DNAse digestion.

GeneChip Hybridization Replicated time-course microarrays are produced by cre-
ating three technical replicates for each one of the cell types at 4 successive time
points; 0, 1, 4, 12 hours (detailes in Table A.1). Experiments are carried under equal
conditions. Assays are produced using Affymetrix® GeneChip type “Human Gene
1.0 ST Array” with 34,760 probe-sets. Hybridization, wash and staining were done
according to manufacturer’s recommended standard techniques.

Figure A.4: Mesenchymal Stromal Cells (MSC) Differentiation. MSC are
proved to be cultured in-vitro and differentiate into variety of cell types. The
differentiation and the resulting cell types depends on the culture conditions2.

2used with permission, original figure in source (accessed: 24th July
2015): http://www.discoverymedicine.com/Tracey-L-Bonfield/2010/04/15/
adult-mesenchymal-stem-cells-an-innovative-therapeutic-for-lung-diseases
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A.1.4 Data Availability

The microarray datasets for the different cell types are deposited in the Gene
Expression Omnibus (GeneExpression, 2015) under the corresponding accession
numbers (Abnaof et al., 2014):

• Murine Primary Hepatocytes (HPC); GSE459423 (Meurer SK, Walenda G,
Abnaof K, Joussen S, Lin Q, Zenke M, Hoffmann K, Wagner W, Fröhlich H,
2013b).

• Human HepG2 Cell-line (HPC); GSE459454 (Meurer SK, Walenda G, Abnaof
K, Joussen S, Lin Q, Zenke M, Hoffmann K, Wagner W, Fröhlich H, 2013a).

• Human Mesenchymal Stromal Cells MSC; GSE460195 (Meurer SK, Walenda
G, Abnaof K, Joussen S, Lin Q, Zenke M, Hoffmann K, Wagner W, Fröhlich
H, 2013c).

• Murine Hematopoietic Progenitor Cell; Multipotent Progenitors & Common
Dendritic Progenitors (MPP & CDP); GSE461096 (Meurer SK, Walenda G,
Abnaof K, Joussen S, Lin Q, Zenke M, Hoffmann K, Wagner W, Fröhlich H,
2013d).

3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45942
4http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45945
5http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46019
6http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE46109
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A.2 Supplementary Tables

Table A.1: Overview of the different experiments. Chips for mouse hepatocytes at time point 1h
were removed due to quality issues.

Organism Mouse Human

Cell Type Multipotent Comm-Dendritic Hepatocytes Hepatocytes Mesenchymal
progenitor (MPP) Progenitor (CDP) (HPC) (HPC) (MSC)

Time Points 6 6 5 6 4
Replicates 3 3 3 3 3
00 Hours 3 3 3 3 3

20 Minutes 7 7 3 3 7

01 Hours 7 7 3 3 3

02 Hours 3 3 3 3 7

04 Hours 3 3 3 3 3

08 Hours 3 3 7 7 7

12 Hours 3 3 7 7 3

24 Hours 3 3 7 3 7
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Table A.2: TFBS analyses, time-course. Significantly predicted transcription factor’s binding-sites
(TFBS) in each cell type and condition (best match according to STAMP and E − value ≤ 1e − 3)
according to time-course differential expression analysis, (details in Supplementary Excel Files Excel file
17).

Mouse Human

MPP CDP HPC HPC MSC

TFBS E-value TFBS E-value TFBS E-value TFBS E-value TFBS E-value

SP1SP3_Q4 1.11E-16 KROX_Q6 2.32E-13 KROX_Q6 3.66E-15 KROX_Q6 0.00E-00
FOXP1_01 8.93E-14 PITX2_Q2 1.28E-12 PITX2_Q2 2.61E-12 SF1_Q6 3.24E-11
SP1SP3_Q4 3.19E-13 KROX_Q6 3.73E-12 TBX5_Q5 1.90E-11 KROX_Q6 3.92E-11
KROX_Q6 4.48E-11 FOXP1_01 4.61E-12 POU1F1_Q6 4.56E-11 PU1_Q6 5.49E-09
FOXP1_01 2.61E-09 FOXP1_01 8.81E-12 HFH4_01 3.49E-09 PIT1_Q6 1.75E-08
TEF_Q6 1.81E-08 E2A_Q2 2.36E-08 SP1SP3_Q4 1.74E-08 POU3F2_01 3.90E-08
POU6F1_01 1.54E-07 NFE2_01 1.91E-07 MAZ_Q6 9.64E-08 PAX4_04 1.63E-07
FOX_Q2 4.60E-07 POU3F2_01 1.97E-07 ZNF219_01 1.21E-07 MYC_Q2 6.71E-07
MAZ_Q6 1.89E-06 FOX_Q2 2.07E-07 RBPJK_Q4 1.21E-07 IRF_Q6 1.16E-06
HFH4_01 1.06E-05 POU6F1_01 6.61E-07 HNF1_Q6_01 1.39E-07 PAX4_04 1.89E-05
PITX2_Q2 3.10E-05 TEF_Q6 1.19E-06 AP2_Q6_01 1.76E-07 HFH4_01 3.72E-05

FOXP1_01 2.72E-06 TFIII_Q6 8.09E-07 SF1_Q6 4.08E-05
VDR_Q3 7.85E-06 LFA1_Q6 5.72E-06 FOXM1_01 9.98E-04
YY1_Q6 1.01E-05 GFI1B_01 1.29E-05
CACBINDPROTEIN_Q6 1.66E-05 IRF1_01 1.33E-05
E2A_Q6 6.02E-05 PAX4_04 2.32E-05
E2A_Q2 1.25E-04 CEBPGAMMA_Q6 2.41E-05
E2A_Q2 1.25E-04 RREB1_01 5.67E-05
CACBINDPROTEIN_Q6 3.39E-04 AHR_01 6.62E-05

E2A_Q2 1.69E-04
LFA1_Q6 1.81E-04
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Table A.3: TFBS analyses at 4-hours. Significant TFBS in each cell type (best match according to
STAMP and E − V alue ≤ 1e− 03) for the significant genes at time point 4 hours (Supplementary Excel
Files Excel file 18)

Mouse Human

MPP CDP HPC HPC MSC

TFBS E-value TFBS E-value TFBS E-value TFBS E-value TFBS E-value

FOXP1_01 1.11E-16 FOXP1_01 8.91E-10 ZF5_01 5.91E-08 KROX_Q6 0.00E+00 CKROX_Q2 1.23E-10
SP1SP3_Q4 3.00E-15 PIT1_Q6 4.08E-08 HFH4_01 1.00E-05 SP1SP3_Q4 1.60E-10 PIT1_Q6 2.94E-10
ZF5_01 8.69E-11 HEN1_01 1.34E-07 AP2_Q6 2.26E-07 HNF1_Q6 6.46E-10
SP1_Q6_01 6.17E-10 DMRT5_01 1.68E-07 POU1F1_Q6 8.11E-06 KROX_Q6 4.57E-09
TEF_Q6 9.35E-07 TEF_Q6 1.73E-06 HFH4_01 2.36E-05 KROX_Q6 1.18E-07
AP2_Q6 3.25E-06 AP2_Q6_01 3.07E-06 SF1_Q6 1.03E-04 PAX4_04 1.79E-07
PPARG_02 2.50E-04 E2F_Q2 7.81E-05 CDC5_01 2.00E-04 ZNF219_01 7.99E-07

TFE_Q6 2.09E-05
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A.2 Supplementary Tables

A.2.1 Supplementary Excel Files

Additional tables in excel files containing multiple sheets. The excel file can be found
in the attached compact disc.

Excel file 8 Time-course differential expression analyses results of all cell types.

Excel file 9 Time-point differential expression analyses at 04 hours results of all
cell types.

Excel file 10 Time-course KEGG pathways analyses results for all cell types.

Excel file 11 Time-course Gene ontology analyses results for all cell types.

Excel file 12 KEGG pathways analyses at 4 hours for all cell types.

Excel file 13 Gene ontology analyses at 4 hours for all cell types.

Excel file 14 Cluster Analyses gene assignment lists.

Excel file 15 Gene-set enrichment analyses of KEGG pathways in cluster groups.

Excel file 16 Gene-set enrichment analyses of gene ontology in cluster groups.

Excel file 17 Transcription factors binding sites (TFBS) analyses of differential
time-course genes.

Excel file 18 Transcription factors binding site (TFBS) analyses of differential
genes at 4 hours.
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B.1 Cell and Tissue Types

B.1.1 Mouse Types

All procedures were carried out according to the Helsinki declaration and con-
ducted according to the guidelines of the European Community Council directive
86/609/EEC. A local Ethics Committee approved all performed experiments.

5-6 weeks old male mice, purchased from Charles River, were subjected to two different
models of chronic epilepsy causing spontaneous recurrent seizures (SRSs) (pilocarpine
and SSSE models). Single injection of 300 mg/kg pilocarpine (muscarinic agonist),
was used to trigger generalized spontaneous seizures in NMRI mice, weighing 28-32 g.
The animals were intraperitoneally injected with 1 mg/kg of N-Methylscopolamine
bromide 30 minutes prior to pilocarpine treatment. Within 10 to 45 minutes after
treatment animals displayed generalized clonic-tonic seizures that progressed to
continuous convulsive activity, i.e. status epilepticus (SE). To limit extensive brain
damage, SE was interrupted 1 to 2 h after induction by intraperitoneal (i.p.) injection
of Diazepam (10 mg/kg). The mice surviving SE typically show SRSs within the
few days and continue to display them for several weeks. As controls, age–matched,
completely naive mice were used.

Self-Sustained Status Epilepticus (SSSE) is a chronic epileptic model induced by
electrical stimulation. As previously described (Niespodziany et al, 2010) C57Bl/6J
male mice were surgically implanted with EEG electrodes: depth electrode (bipolar):
AP= -1.40 mm; L = -2.65 mm; D = -5.00 mm, cortical electrode (monopolar): AP
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= - 4.00 mm, L = + 3 mm and reference electrode in the prefrontal bone. After
recovery from surgery, mice underwent electrical stimulation through the amygdala-
implanted electrode (90 minutes duration, 100 ms trains of 1 ms alternating current
pulses (50 Hz), 2 trains per 1 s, 250 µA peak current intensity). Upon cessation
of electrical stimulation, the animals developed SSSE represented as continuous
convulsive activity that was stopped after 150 minutes by i.p. injection of Diazepam
(10 mg/kg). As controls age-matched, non-stimulated animals were used. For both,
the pilocarpine and the SSSE model, 8 animals were used per experimental group.

The third group of mice underwent electrical induction of an acute seizure (6-Hertz
model) that caused one psychomotor seizure as a model of partial epilepsy. In
the 6-Hertz model, mice were electrically stimulated to evolve acute, focal seizures.
As previously described (Kaminski et al, 2004) the induction was triggered by a
stimulator (ECT Unit 57800, Ugo Basile, Comerio, Italy) using a current intensity of
44 mA, 0.2 ms monopolar pulses at 6-Hertz frequency for a duration of 3 s through
corneal electrodes. Prior to stimulation, a drop of saline with 0.1% Unicaïne was
placed on the eyes to ensure good conductivity and mild anesthesia. After stimulation,
each mouse was observed for convulsive behaviour (i.e. stereotypy, immobility, and
mild myoclonus), typically lasting more than 7 seconds. As controls age-matched
non-stimulated animals were used. In this model 7 animals per experimental group
were used.

B.1.2 Tissue collection and RNA isolation

Mice were sacrificed 24 h and 28 days (28 d) after the induction of SE in both the
pilocarpine and the SSSE model. As control groups, 24 h and 28 d time points
were used for the pilocarpine model and a 28d time point was used for the SSSE
model for technical reasons. Mice were sacrificed at 3 h, 6 h, 24 h and 72 h following
acute seizure in the 6-Hertz model. Mouse hippocampi were extracted from fully
anesthetized animals (Nembutal, Ceva Santé Animale, France) and rapidly frozen.
Total RNA was isolated from the sonicated tissue using miRVANA miRNA isolation
kit from Ambion, Texas, USA. (Ambion Inc., Austin, Texas, USA) and RNA quality
was checked on the Agilent Bioanalyzer Lab-on-a-Chip System observing intact 5S,
5.8S and 18S ribosomal RNA. All samples analyzed had a RIN number >7.

B.1.3 MicroRNA Microarray Profiling

Profiling was performed by Exiqon A/S using the miRCURYTM LNA Array mi-
croRNA Profiling Service on dual-channel 5th generation miRNA arrays with complete
coverage of miRbase v14 according to Exiqon standard operating procedures. For
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the pilocarpine and SSSE models miRNA microarray profiling was performed at 24
h and 28 d following SE. For the 6-Hertz model miRNA microarray profiling was
done at 3 h, 6 h, 24 h, and 72 h after acute seizure. Based on comparison with the
current miRBase® (Griffiths-Jones, 2004; Kozomara & Griffiths-Jones, 2011) release
19 all sequences that are not representing miRNAs anymore were deleted from the
analysis.

B.1.4 Real-time RT-PCR

Universal cDNA synthesis kits (No. 203300), SYBR Green master mix (No. 203450)
and mercury LNA Universal RT microRNA PCR primer sets purchased from Exiqon
A/S were used for quantification of miRNAs (mmu-miR-124*, mmu-miR-132, mmu-
miR-142-3p, mmu-miR-142-5p, mmu-miR-21, mmu-miR-212, mmu-miR-221, mmu-
miR-222, mmu-miR-298, mmu-miR-882, mmu-miR-2137) Synthesis of cDNA was
done according to Exiqon standard protocols using 20 ng of total RNA. Concentration
of RNA and cDNA was measured by Nanodrop 2000c Spectrophotometer (Peqlab
Biotechnology). The real-time PCR reactions were carried out in 384 well plates
with 5 µl SYBR Green master mix, 1 µl of primer mix for each miRNA and 4 µl
of 1:80 diluted cDNA per well. Each sample was run in triplicates for the miRNA
of interest as well as for endogenous controls (SNORD68 or RNU6). The real-time
PCR assays were performed on a 7900HT system (Life Technologies). The real-time
PCR settings were 50°C for 2 minutes, 95°C for 10 minutes, 40 cycles of 95°C for 10
seconds followed by 60°C for 1 minute, and 25°C for 1 minute. Data were calculated
using the MMCt method of Schmittgen and Livak.

B.2 Data Availability

The microarray datasets for the different mouse models and time-points are deposited
in the Gene Expression Omnibus (GeneExpression, 2015) under the corresponding
accession numbers (Kretschmann et al., 2015a):

• 6-Hertz Mouse Model Data Set; GSE518401 (Kretschmann et al., 2015b).

• Pilocarpine Mouse Model Data Set; GSE518412 (Kretschmann et al., 2015c).

• SSSE Mouse Model Data Set; GSE518423 (Kretschmann et al., 2015d).

1http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51840
2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51841
3http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51842
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Appendix B CHAPTER 5 APPENDICES

B.3 Supplementary Figures

Figure B.1: Experimental design in rats. Three rat groups are considered;
naive, sham and kindling groups. The sham and kindling groups are subjected
to surgeries and electrodes are implanted in the amygdala of each animal in these
two groups. Only the kindling animals undergone kindling. Hippocampal tissues
and blood serum samples at taken form all the groups at 4 weeks pre-seizure
and at 2 minutes, 4 hours, 1 day, 1 week and 4 weeks after generalized seizure.
High-throughput qPCR (CYBER Green® and ABI-7900) Exiqon 2-panels chips
are used for profiling miRNAs from blood and hippocampus samples.
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Figure B.2: Density and box plots of high-throughput qPCR miRNAs profiling
for the first 9 chips. Imposing Ct value 40 to undetermined features renders
strongly negative-skewed and often bi-modal density distributions of the data
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Figure B.3: Mean-variance plots of real and simulated high-throughput qPCR.
The top left plot is for the real qPCR data of the kindled animals at 4 hours,
the other three plots are 3 exemplary simulated qPCR data sets (out of 100,000
data sets)
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Figure B.4: MA plots for 2 exemplary chips from the mouse two-channels
array data. The normalization is performed to minimize differences between
the colors in an intensity-dependent manner. The plots show M versus A plots
‘MA plot’; M = log2(Hy5

Hy3) (log-ratio; difference between the chennels) and
A = log2(Hy5×Hy3

2 ) (combined signals from both channels). The green spots are
Hy3 controls spotted directly on the array surface the orange spots are the 52
different spike-in controls. The plots show 2 exemplary chips from Pilocarpine
animals before (left) and after normalization (right).
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Figure B.5: Volcano plots show the relation between the logarithm (base 10) of
fold change between treatment and control groups on the x-axis and the negative
logarithm of the p-values on the y-axis. The top selected microRNAs are marked
with annotation on the plot. The plots show the comparisons 6-Hertz 3 hours
versus 0 hours (left) and 6-Hertz 6 hours versus 0 hours (right).
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B.4 Supplementary Tables & Excel Files

Table B.1: Performance of the double detection procedure, without (A) and
with (B) the use of empirical Bayes method, based on simulated data. The
method is compared to the unmoderated and the moderated t-tests and the
nonparametric Mann-Whitney test. The table gives the sensitivity, specificity,
Positive Predictive values (PPv) and Negative Predictive values (NPv). Standard
deviations of these measures are given beside each value.

Test Type Sensitivity specificity PPv NPv
Unmoder. T.test 0.650 ± 0.021 0.978 ± 0.001 0.500 ± 0.000 0.928 ± 0.002
Moderated T.test 0.833 ± 0.005 0.971 ± 0.006 0.523 ± 0.020 0.949 ± 0.007
Mann-Whitney 0.800 ± 0.001 0.973 ± 0.000 0.500 ± 0.000 0.953 ± 0.005
Double Detection A 0.834 ± 0.011 0.988 ± 0.005 0.520 ± 0.000 0.983 ± 0.008
Double Detection B 0.847 ± 0.033 0.985 ± 0.004 0.554 ± 0.045 0.988 ± 0.002

Additional tables in excel files contain multiple sheets. The excel files can be found
in the attached compact disc.

Excel file 1 Most differentially regulated miRNAs in the Pilocarpine model at 24 h
and 28 d following SE

Excel file 2 Most differentially regulated miRNAs in the SSSE model at 24 h and
28 d following SE

Excel file 3 Most differentially regulated miRNAs in the 6 Hz model at 3 h and 6
h following single seizure

Excel file 4 Overlapping miRNAs between pilocarpine and SSSE model at 24 h
and 28 d
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C.1 Supplementary Figures

Figures C.1, C.2, C.3, C.4 & C.5 show further plots, which are referenced in the
main text.
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Figure C.1: Gene Ontology (biological processes) terms enriched in target pro-
teins. The heatmap depicts negative log(FDR) values at a 1% cutoff. Individual
GO terms can be found in Supplementary Excel Files
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C.1 Supplementary Figures

Figure C.2: Gene Ontology (molecular functions) terms enriched in target
proteins. The heatmap depicts negative log(FDR) values at a 1% cutoff.

Figure C.3: KEGG pathways enriched in target proteins. The heatmap depicts
negative log(FDR) values at a 1% cutoff.
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Figure C.4: Protein domains enriched in target proteins. The heatmap depicts
negative log(FDR) values at a 1% cutoff.
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C.1 Supplementary Figures

Figure C.5: Sequence motifs enriched in target proteins. The heatmap depicts
negative log E-values at a 1% cutoff. Individual sequence motifs are accessible
in Excel file: Compounds-BES-Clusters.Sequence-Motifs-Enrichment.
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C.2 Supplementary Tables

Table C.1: Summary table of BES clustering with number of compounds per cluster and
associated targets. The number of targets linked to HIV, cancer or both is reported. Clusters with
targets associated to both diseases and or have silhouette width are called high quality repurposing clusters
(these are 15 clusters; cluster 2-7, 11, 13, 15-21; orange-shaded in the table). The number of enriched
KEGG pathways, GO terms, protein domains and sequence motifs per cluster is shown at a 1% FDR
cutoff. Categories being enriched in the overall dataset have been removed. The last column reports the
silhouette width of each cluster: 61 out of the 65 resulting clusters are none-singleton.
Cluster Compd Target Target Target Target KEGG GO (bp) GO (mf) Protein Motif Silh.

HIV Cancer Both Path Term Term Domain Width
c01 228 20 2 19 1 0 0 1 2 22 0.39
c02 60 6 3 4 1 0 13 5 5 0 0.89
c03 34 4 3 2 1 0 8 4 2 0 0.91
c04 20 5 4 2 1 0 1 0 4 9 0.95
c05 72 22 4 19 1 0 26 4 0 30 0.78
c06 63 31 3 28 0 3 50 6 5 83 0.46
c07 98 72 8 66 2 3 63 7 2 71 0.37
c08 324 105 8 98 1 0 29 2 0 10 0.05
c09 267 98 9 90 1 1 30 1 2 12 -0.17
c10 1944 158 16 146 4 0 17 0 0 0 0.00
c11 36 14 3 13 2 0 4 2 4 6 0.63
c12 27 3 1 2 0 0 0 3 7 0 -0.07
c13 77 30 1 29 0 0 1 3 0 2 0.32
c14 9 4 1 3 0 0 0 2 3 0 -0.78
c15 48 9 3 8 2 0 15 4 8 22 0.84
c16 22 2 2 2 2 1 17 3 4 14 0.27
c17 11 47 1 46 0 3 84 8 6 53 0.53
c18 17 42 1 41 0 1 68 9 5 46 0.60

Continued on next page
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Cluster Compd Target Target Target Target KEGG GO (bp) GO (mf) Protein Motif Silh.
HIV Cancer Both Path Term Term Domain Width

c19 8 8 1 7 0 0 0 4 1 3 1.00
c20 12 13 1 12 0 1 21 5 1 0 0.98
c21 82 28 1 28 1 2 1 0 0 9 0.46
c22 141 20 0 20 0 3 52 7 16 70 0.65
c23 94 23 0 23 0 5 90 6 0 65 0.70
c24 33 6 0 6 0 0 1 3 0 0 0.52
c25 16 19 0 19 0 0 40 5 4 21 0.98
c26 6 26 0 26 0 0 58 6 7 21 0.95
c27 75 13 0 13 0 0 0 2 0 9 0.43
c28 43 7 0 7 0 1 4 0 8 10 0.49
C29 33 4 0 4 0 0 4 3 2 0 0.97
c30 6 26 0 26 0 1 62 8 6 22 0.98
c31 43 28 0 28 0 0 55 10 12 94 0.58
c32 15 30 0 30 0 0 96 7 6 29 0.46
c33 16 33 0 33 0 1 84 7 5 21 -0.17
c34 25 9 0 9 0 0 32 8 3 32 -0.11
c35 9 5 0 5 0 0 49 2 1 0 0.89
c36 6 25 0 25 0 1 52 10 3 44 0.54
c37 3 20 0 20 0 0 45 4 2 7 0.79
c38 2 5 0 5 0 0 2 4 1 0 0.64
c39 60 17 0 17 0 7 50 5 12 75 0.48
C40 100 7 0 7 0 0 14 12 7 8 0.95
c41 43 5 0 5 0 1 4 1 7 9 0.76
c42 13 4 0 4 0 0 0 0 2 0 0.11
c43 1 8 0 8 0 0 31 7 6 3 0.00
c44 3 15 0 15 0 0 45 8 6 18 0.67
c45 49 16 0 16 0 0 60 3 11 49 0.86
c46 13 8 0 8 0 0 14 11 8 32 0.81

Continued on next page
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Table C.1 – Continued from previous page
Cluster Compd Target Target Target Target KEGG GO (bp) GO (mf) Protein Motif Silh.

HIV Cancer Both Path Term Term Domain Width
c47 4 9 0 9 0 1 23 13 4 35 0.51
C48 102 8 0 8 0 0 2 10 9 2 0.73
c49 22 7 0 7 0 0 6 7 6 0 0.46
c50 39 3 0 3 0 0 0 1 2 0 0.63
c51 2 10 0 10 0 0 26 7 4 33 1.00
c52 1 4 0 4 0 0 0 4 1 0 0.00
c53 25 2 0 2 0 0 0 1 2 3 0.35
c54 80 10 0 10 0 0 1 3 5 4 -0.01
c55 35 5 0 5 0 0 1 3 1 1 0.48
c56 2 6 0 6 0 1 9 1 6 1 0.53
c57 2 5 0 5 0 7 8 5 8 46 1.00
c58 2 4 0 4 0 1 0 1 5 5 0.82
c59 5 2 0 2 0 0 0 2 4 4 -0.47
C60 1 3 0 3 0 1 13 5 3 0 0.00
c61 2 3 0 3 0 11 4 0 3 35 1.00
c62 12 2 0 2 0 0 0 0 0 0 0.62
c63 7 5 0 5 0 0 13 2 3 0 0.98
c64 5 5 0 5 0 0 13 2 3 0 0.87
c65 1 3 0 3 0 0 6 2 1 0 0.00
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Table C.2: Top enriched biological vocabularies. Top three significantly
enriched KEGG pathways (KEGG:), GO terms (GO:) and protein domains
(IPR:) in 15 repurposing clusters.

ID Term P.BY

Clust02
KEGG:4062 Chemokine signaling pathway 3.49E-06
KEGG:4060 Cytokine-cytokine receptor interaction 9.48E-06
GO:0006874 cellular calcium ion homeostasis 5.54E-08
GO:0072507 divalent inorganic cation homeostasis 5.54E-08
GO:0070098 chemokine-mediated signaling pathway 9.74E-08
IPR000355 Chemokine receptor family 3.69E-13
IPR002236 CC chemokine receptor 1 4.42E-10
IPR000276 G protein-coupled receptor; rhodopsin-like 2.28E-08

Clust03
KEGG:4062 Chemokine signaling pathway 8.68E-06
KEGG:4060 Cytokine-cytokine receptor interaction 1.69E-05
GO:0070098 chemokine-mediated signaling pathway 1.32E-08
GO:0002407 dendritic cell chemotaxis 3.89E-06
GO:0006874 cellular calcium ion homeostasis 4.37E-05
IPR000355 Chemokine receptor family 4.09E-11
IPR002236 CC chemokine receptor 1 5.43E-11
IPR002240 CC chemokine receptor 5 3.52E-07

Clust04
GO:0070098 chemokine-mediated signaling pathway 1.12E-04
GO:0090026 positive regulation of monocyte chemotaxis 3.82E-03
GO:0002407 dendritic cell chemotaxis 8.46E-03
IPR000355 Chemokine receptor family 8.47E-07
IPR002236 CC chemokine receptor 1 5.35E-06

Clust05
KEGG:5200 Pathways in cancer 1.13E-06
KEGG:4062 Chemokine signaling pathway 2.85E-05
KEGG:4012 ErbB signaling pathway 5.44E-05
GO:0018193 peptidyl-amino acid modification 9.80E-08
GO:0016310 phosphorylation 9.80E-08
GO:0043549 regulation of kinase activity 1.31E-06
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic dom 1.08E-19
IPR000719 Protein kinase domain 1.08E-19
IPR002290 Serine/threonine/dual specificity prot kinase; catalytic 1.08E-19

Continued on next page
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Table C.2 – Continued from previous page
ID Term P.BY

Clust06
KEGG:5200 Pathways in cancer 1.66E-11
KEGG:4012 ErbB signaling pathway 2.19E-09
KEGG:4062 Chemokine signaling pathway 1.02E-08
GO:0018193 peptidyl-amino acid modification 6.31E-14
GO:0036211 protein modification process 1.69E-13
GO:0009893 positive regulation of metabolic process 3.76E-11
IPR011009 Protein kinase-like domain 4.03E-36
IPR020635 Tyrosine-protein kinase; catalytic domain 1.10E-35
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic dom 1.50E-35

Clust07
KEGG:5200 Pathways in cancer 1.81E-21
KEGG:4012 ErbB signaling pathway 3.31E-16
KEGG:5215 Prostate cancer 3.42E-16
GO:0040011 locomotion 7.11E-25
GO:0046777 protein autophosphorylation 7.11E-25
GO:0006928 cellular component movement 3.75E-23
IPR020635 Tyrosine-protein kinase; catalytic domain 5.99E-58
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic dom 1.32E-57
IPR002290 Serine/threonine/dual specificity prot kinase; catalytic 1.32E-57

Clust11
KEGG:140 Steroid hormone biosynthesis 8.98E-03
KEGG:5220 Chronic myeloid leukemia 9.92E-03
GO:0010870 positive regulation of receptor biosynthetic process 4.76E-04
GO:0061198 fungiform papilla formation 3.86E-03
GO:0008209 androgen metabolic process 3.86E-03
IPR023801 Histone deacetylase domain 5.02E-09
IPR000286 Histone deacetylase superfamily 5.02E-09
IPR002397 Cytochrome P450; B-class 9.69E-05

Clust13
KEGG:4080 Neuroactive ligand-receptor interaction 9.58E-04
GO:0010870 positive regulation of receptor biosynthetic process 4.87E-03
GO:0043112 receptor metabolic process 4.87E-03
GO:0006367 transcription initiat from RNA polymerase II promoter 4.87E-03
IPR023801 Histone deacetylase domain 3.48E-07
IPR000286 Histone deacetylase superfamily 3.48E-07
IPR003074 Peroxisome proliferator-activated receptor 5.10E-07

Continued on next page
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Table C.2 – Continued from previous page
ID Term P.BY

Clust15
KEGG:5200 Pathways in cancer 7.06E-04
KEGG:4621 NOD-like receptor signaling pathway 1.12E-03
GO:0006367 transcription initiation from RNA polymerase II promoter 1.57E-04
GO:0030522 intracellular receptor signaling pathway 6.31E-04
GO:2000116 regulation of cysteine-type endopeptidase activity 1.69E-03
IPR001628 Zinc finger; nuclear hormone receptor-type 2.21E-10
IPR000536 Nuclear hormone receptor; ligand-binding; core 2.21E-10
IPR008946 Nuclear hormone receptor; ligand-binding 2.21E-10

Clust16
KEGG:4621 NOD-like receptor signaling pathway 1.31E-03
KEGG:5222 Small cell lung cancer 1.31E-03
KEGG:4210 Apoptosis 1.31E-03
GO:0070424 reg. nucleotide-bind oligomerization dom contain SP 4.10E-05
GO:0039535 regulation of RIG-I signaling pathway 4.30E-05
GO:0039528 cytoplasmic pattern recognit recept SP respo to virus 1.07E-04
IPR001370 Baculoviral inhibition of apoptosis protein repeat 1.24E-06
IPR001315 CARD domain 9.60E-06
IPR011029 Death-like domain 7.28E-05

Clust17
KEGG:5200 Pathways in cancer 3.05E-14
KEGG:4012 ErbB signaling pathway 1.15E-13
KEGG:5215 Prostate cancer 1.15E-13
GO:0046777 protein autophosphorylation 2.71E-35
GO:0036211 protein modification process 1.46E-28
GO:0018193 peptidyl-amino acid modification 3.41E-24
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic dom 5.44E-75
IPR002290 Serine/threonine/dual specificity prot kinase; catalytic 5.44E-75

Clust18
KEGG:5200 Pathways in cancer 4.05E-13
KEGG:4012 ErbB signaling pathway 6.87E-13
KEGG:5215 Prostate cancer 7.15E-10
GO:0046777 protein autophosphorylation 3.16E-34
GO:0036211 protein modification process 7.91E-25
GO:0040011 locomotion 5.39E-20
IPR020635 Tyrosine-protein kinase; catalytic domain 4.64E-67
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic dom 8.15E-67
IPR002290 Serine/threonine/dual specificity prot kinase; catalytic 8.15E-67

Continued on next page
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Table C.2 – Continued from previous page
ID Term P.BY

Clust19
GO:0002764 immune response-regulating signaling pathway 3.16E-03
GO:0038095 Fc-epsilon receptor signaling pathway 3.16E-03
IPR000719 Protein kinase domain 2.72E-12
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic dom 2.72E-12
IPR002290 Serine/threonine/dual specificity prot kinase; catalytic 2.72E-12

Clust20
KEGG:5222 Small cell lung cancer 1.98E-06
KEGG:4062 Chemokine signaling pathway 2.83E-06
KEGG:4660 T cell receptor signaling pathway 2.83E-06
GO:0036211 protein modification process 4.06E-05
GO:0046777 protein autophosphorylation 9.14E-04
GO:0010604 posit regulation of macromolecule metabolic process 2.00E-03
IPR000719 Protein kinase domain 4.01E-20
IPR001245 Serine-threonine/tyrosine-protein kinase catalytic dom 4.01E-20
IPR002290 Serine/threonine/dual specificity prot kinase; catalytic 4.01E-20

Culst21
KEGG:4080 Neuroactive ligand-receptor interaction 1.11E-03
KEGG:140 Steroid hormone biosynthesis 5.15E-05
KEGG:4610 Complement and coagulation cascades 6.18E-03
GO:0040007 growth 6.14E-03
IPR003074 Peroxisome proliferator-activated receptor 1.22E-06
IPR022321 Insulin-like growth factor-bind prot family 1-6; chordata 1.33E-05
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C.2.1 Supplementary Excel Files

Additional tables in excel files containing multiple sheets. The excel file can be found
in the attached compact disc

Excel file 1 Gene Ontology (Biological Processes) enrichment analysis for targets
of compounds in BES clusters.

Excel file 2 Gene Ontology enrichment (Molecular Function) analysis for targets of
compounds in BES clusters.

Excel file 3 KEGG pathway enrichment analysis for targets of compounds in BES
clusters.

Excel file 4 Enrichment analysis of protein domains in targets of compounds in
BES clusters.

Excel file 5 Enrichment of sequence motifs in targets of compounds in BES clus-
ters.

Excel file 6 Top enriched Gene Ontology terms (biological processes) in different
clusters.

Excel file 7 Literature mining results for individual target proteins.
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